National Guideline Centre

Final version

Chest pain of recent onset

Assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin (update)

NICE guideline CG95 Appendices A – U November 2016

Final version

Commissioned by the National Institute for Health and Care Excellence

Disclaimer

Healthcare professionals are expected to take NICE guidelines fully into account when exercising their clinical judgement. However, the guidance does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of each patient, in consultation with the patient and, where appropriate, their guardian or carer.

Copyright

National Guideline Centre, 2016

Funding National Institute for Health and Care Excellence

Contents

Арр	endices	5
	Appendix A: CG95 Surveillance review decision	5
	Appendix B: Committee members and technical teams	62
	Acknowledgements 2010	65
	Acknowledgements 2016	65
	Appendix C: Declarations of interest	66
	Appendix D: Clinical review protocols	74
	Appendix E: Health economic review protocol	90
	Appendix F: Clinical study selection	97
	Appendix G: Health economic study selection	102
	Appendix H: Literature search strategies	104
	Appendix I: Clinical evidence tables	122
	Appendix J: QUADAS-2 Quality Assessment Summary	523
	Appendix K: GRADE tables	529
	Appendix L: Economic evidence tables	548
	Appendix M: Evidence synthesis	573
	Appendix N: Excluded clinical studies	623
	Appendix O: Excluded health economic studies	733
	Appendix P: Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac	
	origin)	
	Appendix Q: Unit costs	
	Appendix R: How this guideline was updated	
	Appendix S: Sections from CG95 which have been updated	
	Appendix T: NICE technical team	791
	Appendix U: References	792

Appendices

Appendix A: CG95 Surveillance review decision

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

Centre for Clinical Practice – Surveillance Programme

Recommendation for Guidance Executive

Clinical guideline CG95: Chest pain of recent onset

Publication date

March 2010

Previous review dates

2 year review: 2012

Surveillance report for GE

December 2014

Surveillance recommendation

GE is asked to consider the proposal to update the following clinical questions in the guideline using the Standing Committee for Updates via the Clinical Guidelines Update Team:

Stable chest pain

- What is the incremental benefit and cost effectiveness of a clinical history, cardiovascular risk factors and a physical examination in evaluation of individuals with stable chest pain of suspected cardiac origin?
- What is the diagnostic utility of non-invasive and invasive tests for the evaluation of patients with stable chest pain of suspected cardiac origin?

Acute chest pain

- What is the utility and cost effectiveness of non-invasive tests in the evaluation of individuals with acute chest pain of suspected cardiac origin?
- What is the diagnostic utility of Multislice Computed Tomography (MSCT) coronary angiography in the diagnosis of patients with acute chest pain of suspected cardiac origin?
- What is the effectiveness and cost effectiveness of new, high-sensitivity troponin assay methods and other new cardiac biomarkers in low, medium, and high risk people with acute chest pain? (research recommendation)

It is proposed that the acute and stable sections are updated separately but in sequence by the same standing committee.

GE is asked to note that this 'yes to update' proposal will not be consulted on.

Key findings

			Potential impact on guidance		
			Yes	No	
Evidence from previous surveillance review		~			
Evidence identified from literature search			\checkmark		
Feedback from Guideline Development Group		\checkmark			
Anti-discrimination and equalities considerations		✓			
Feedback from Triage Panel meeting		\checkmark			
No update	CGUT update	Standard update	Transfer to static list	Change review cycle	
	✓				

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

Centre for Clinical Practice – Surveillance Programme

Surveillance review of CG95: Chest pain of recent onset

Recommendation for Guidance Executive

Background information

Guideline issue date: March 2010 2 year review: 2012 4 year review: 2014

NCC: National Clinical Guidelines Centre (formerly National Collaborating Centre for Acute and Chronic Conditions)

Outcome of four year surveillance review

 A literature search for systematic reviews and RCTs was carried out between May 2012 (the end of the search period for the previous surveillance review) and June 2014 and relevant abstracts were assessed. Clinical feedback on the guideline was obtained from 7 members of the Guideline Development Group through a questionnaire, five of which felt that the guideline requires an update relating, in particular, to new higher sensitivity troponin assays, cardiac imaging and other biomarkers.

Outcome of two year surveillance review

- 2. A surveillance review was carried out in 2012 when it was recommended that the guideline needed an update, particularly in relation to computerised tomographic (CT) angiographies for the diagnosis of ACS in patients with acute chest pain; the use of highly sensitive troponins compared to the conventional cardiac troponins to diagnose ACS in patients with acute chest pain; and the use of updated Diamond-Forrester prediction model to better estimate the pre-test probability of coronary artery disease (CAD) in patients with stable chest pain without evidence for previous CAD. An update was not scheduled into the work programme following the two year surveillance review due to capacity.
- 3. New evidence that may impact on recommendations was identified relating to the following areas within the guideline:

Q: What is the incremental benefit and cost effectiveness of a clinical history, in evaluation of individuals with stable chest pain of suspected cardiac origin? Q: What is the incremental benefit and cost-effectiveness of assessment of cardiovascular risk factors in evaluation of individuals with stable chest pain of suspected cardiac origin?

Q: What is the incremental benefit and cost-effectiveness of a physical examination in evaluation of individuals with stable chest pain of suspected cardiac origin?

Evidence summary

Evidence identified from 2-year surveillance review

One study1 was identified which found that an updated version of the Diamond–Forrester model, including age, sex, symptoms, coronary calcium scores, and cardiovascular risk factors, allowed for a more accurate estimation of the pre-test probability of CAD in stable chest pain without evidence for previous CAD. The authors concluded that this could lead to decreased referral for cardiac coronary angiography (CCA), a higher yield of angiography, and increased use of non-invasive testing for risk stratification.

Evidence identified from 4-year surveillance review

A systematic review2 assessing the diagnostic accuracy of clinical prediction models, reported that the six models identified showed good diagnostic accuracy for determining short-term outcomes in a pre-hospital population with suspected ACS.

A meta-analysis3 aimed to determine the diagnostic value of single symptoms and signs for coronary heart disease (CHD) in patients with chest pain. In total, 172 studies were included covering 42 signs and symptoms. The findings indicated that the most accurate predictors for a diagnosis of stable CHD were history of CHD, known acute MI, typical angina, history of diabetes mellitus, exertional pain, history of angina pectoris, and male sex. These are consistent with the factors listed in the guideline. Clinical feedback at the 2-year surveillance review suggested that there is additional evidence for the validity of using Diamond and Forrester to assess pre-test likelihood of CAD in contemporary practice.

GDG/clinical perspective

Feedback at the 4-year surveillance review indicated that there is evidence that the Diamond-Forrester risk prediction model over-estimates disease probability in patients with suspected angina.

Feedback was also provided at both review points indicating that parameters to assess the pre-test likelihood of coronary disease in patients with stable chest pain have changed. Further information was sought from the GDG regarding these changes and the following reference was provided: Genders TS, Steyerberg EW, Alkadhi H, Leschka S, Desbiolles L, Nieman K, et al. A clinical prediction rule for the diagnosis of coronary artery At the 2-year surveillance review, it was considered that the evidence relating to the use of an updated Diamond-Forrester prediction model in patients with stable chest pain could potentially have an impact on the current guideline. Although no further evidence was found relating to an updated Diamond-Forrester prediction model at the 4-year review, feedback from the GDG indicated that the Diamond-Forrester model may over estimate disease probability in suspected angina.

Impact

Evidence from the 4-year surveillance review showed that 6 unspecified clinical prediction models demonstrated good diagnostic accuracy for determining short-term outcomes in a pre-hospital population with suspected ACS. Furthermore, clinical feedback indicated that the parameters to assess the pre-test likelihood of coronary disease in patients with stable chest pain have changed. Further evidence was provided which supported the view that the Diamond-Forrester model overestimates the probability of CAD, particularly in women. The evidence also suggested than an updated and extended version of the model improved its performance, supporting the evidence found at the 2-year surveillance review.

The diagnostic pathway presented in the guideline

disease: validation, updating, and extension. Eur Heart J2011;32:1316-30. An assessment of the abstract indicated that the Diamond-Forrester model overestimates the probability of CAD, particularly in women. A subsequent update and extension of the model in relation to the predictive value of age, sex, and type of chest pain improved its performance. for people who present with stable chest pain, states that the application of the Diamond Forrester algorithm, as modified by consideration of additional risk factors, may permit a diagnosis of angina if the probability estimate is sufficiently high. The new evidence relating to an updated version of this model may therefore impact on this statement.

Clinical area: Investigations and diagnosis of patients with stable chest pain suspected to be stable angina - recommendations – 1.3.3.16, 1.3.4.4, 1.3.4.5, 1.3.4.6, 1.3.4.7, 1.3.4.8, 1.3.6.1

Q: What is the diagnostic utility of non-invasive and invasive tests for the evaluation of patients with stable chest pain of suspected cardiac origin?

Evidence summary	GDG/clinical perspective	Impact
<u>Evidence identified from 2-year surveillance review</u> Through a focused search, 29 studies4-32 were identified related to non- invasive and invasive tests for patients with stable chest pain. The evidence showed that various non-invasive techniques including stress echocardiography, PET, myocardial perfusion imaging, CT coronary	Clinical feedback indicated that there is new evidence about diagnostic assessment in patients with suspected stable angina, including the comparative	At the 2-year review it was considered that there was no new evidence which would invalidate the current guideline recommendations regarding assessment of patients with stable chest pain.
calcium score, coronary computed tomography, single-photon emission computed tomography (SPECT) and cardiovascular magnetic resonance, were effective in diagnosing CAD when compared to coronary angiography. Other studies found that exercise stress testing, real-time three-dimensional echocardiography and coronary artery calcium were not effective in the diagnosis of CAD when compared to angiography.	effectiveness of different imaging modalities. It was suggested that novel imaging techniques are now more widely available, particularly CT coronary angiography and MB perfusion	Computed coronary tomographic angiography There was new evidence identified at the 4-year review which suggested that CCTA is an effective first line imaging test for the diagnosis of CAD, although it was not clear from all the abstracts what the level of CAD risk was in the study
 <u>Evidence identified from 4-year surveillance review</u> Computed coronary tomographic angiography A systematic review and meta-analysis33 was identified which compared CCTA versus invasive coronary angiography in the diagnosis of CHD. For 	angiography and MR perfusion imaging for diagnosis of chest pain. CT coronary angiography is also able to pick up other issues with lungs and mediastinum which might be missed in the old paradigm.	populations. There was also evidence relating to the diagnostic effectiveness of lower radiation CCTA. The new evidence for CCTA together with clinical feedback may potentially impact on the current guideline recommendations relating to the use of

the diagnosis of obstructive stenosis, compared to invasive coronary angiography as the reference standard, CCTA had high sensitivity and specificity, and at a pre-test probability of CHD of 50% or less, resulted in a lower cost per patient. However, at a pre-test probability of CHD of 70% or higher, invasive coronary angiography provided a lower cost per patient. For the diagnosis of functionally relevant stenosis, using intracoronary pressure measurement as the reference standard, CCTA had a higher sensitivity but lower specificity than invasive coronary angiography and both types of coronary angiography resulted in substantially higher cost per patient. As such, the review recommended that neither type of angiography should be used in the diagnosis of functionally relevant stenosis.

The results of a meta-analysis34 (n=2567) indicated that patients undergoing CCTA as the first imaging test for the detection of CAD were more likely to undergo percutaneous or surgical revascularisation, and there was a reduction in the time to diagnosis and costs of care compared to non-CCTA patients.

A meta-analysis35 (n=3300) was identified which compared image quality, diagnostic accuracy, and radiation dose of prospectively triggered CCTA with retrospectively gated CTA in patients with suspected or known CAD. The results indicated that the image quality and diagnostic accuracy of both types of CTA were similarly high, but with lower radiation doses provided by prospectively triggered coronary CTA.

The findings of a systematic review and meta-analysis36 indicated that prospective ECG gating CCTA had high positive and negative predictive values (94% and 99% respectively) for the diagnosis of significant coronary stenosis. The authors concluded that the use of CCTA with prospective ECG gating allows for a reduced radiation exposure without a sacrifice in diagnostic efficacy in a population with high disease prevalence.

Radiation exposure from CT imaging is now lower with the newer scanners, so exposure will be less.

It was reported that the value of zero calcium score for excluding CAD has been questioned. Furthermore, the advice to do a calcium score prior to CT angiography is now increasingly ignored because low radiation CT angiography is now available.

One GDG member identified that the US guideline recommends exercise ECG as first diagnostic test for many patients, and neither the European nor the US guidelines recommend invasive coronary angiography for patients with high probability of disease.

One GDG member suggested that the right test to use in lower risk groups is individualised and does not fit into a risk profile. As such, most health care professionals will determine the right diagnostic approach on a patient by patient basis.

There is also a concern that the time needed to organise tests, such as

CCTA for the diagnosis of CAD in patients with stable chest pain, particularly the level of CAD risk at which to undertake CCTA. Currently the guideline only recommends 64-slice (or above) CT coronary angiography in people who have an estimated likelihood of CAD of 10-29% and have a calcium score of 1-400. For people with an estimated likelihood of CAD of 10-29% and a calcium score over 400, invasive coronary angiography is recommended. Non-invasive functional imaging is recommended for people who have an estimated likelihood of CAD of 30-60%, or for people who have an estimated likelihood of 61-90% and for whom coronary revascularisation is not being considered or invasive coronary angiography is not clinically appropriate. Invasive coronary angiography is recommended for people who have an estimated likelihood of 61–90% and for whom coronary revascularisation is being considered and invasive coronary angiography is clinically appropriate.

Functional stress testing

The GDG found that the diagnostic performance for diagnosing CAD did not support the use of one functional imaging test in preference to another and they concluded that the tests were generally comparable and any could be used. The new evidence from the 4 year surveillance review relating to functional imaging generally supports this conclusion and is therefore consistent with the guideline recommendation which states: When offering non-invasive functional imaging for myocardial ischaemia use:

A pilot RCT37 (n=180) found that CCTA was associated with increased revascularisation, lower costs and lower effective radiation dose compared with myocardial perfusion single-photon emission (MPS) CT in patients presenting with stable chest pain and suspected CAD. CTA and MPS resulted in comparable improvements in angina-specific health status.

A systematic review38 was identified which compared 64-slice CCTA and coronary angiography (CA). Ten studies, including 1188 patients with angina with suspected or known CAD, were included in the review. At a patient level, 64-slice CCTA had positive predictive values ranging from 86-97% and negative predictive values of 76.9-100%. The authors concluded that the findings supported the use of 64-slice CCTA as a noninvasive alternative to CA for standalone diagnosis of significant stenosis in patients with angina.

The results of a systematic review and meta-analysis39 (n=3,539) indicated that "triple rule-out" computed tomography (TRO CT) had high sensitivity and specificity for diagnosing CAD, although with greater radiation exposure and contrast exposure compared to non-TRO CT.

A systematic review40 was identified which assessed the clinical effectiveness and cost-effectiveness of new-generation computed tomography (NGCCT) for diagnosing CAD in patients who are difficult to image using 64-slice computed tomography (e.g. obese patients, patients with high or irregular heartbeats and patients who have high levels of coronary calcium or a previous stent or bypass graft). The results indicated that NGCCT had good diagnostic accuracy for diagnosing CAD in difficult-to-image patients. An NGCCT only strategy was most costeffective in patients with suspected CAD, whereas invasive coronary angiography after a positive NGCCT was the most cost-effective strategy in patients with known CAD.

nuclear scans and CT angiography is longer and may leave some high risk patients waiting for too long.

myocardial perfusion scintigraphy with single photon emission computed tomography (MPS with SPECT) or

stress echocardiography or

•

•

- first-pass contrast-enhanced magnetic resonance (MR) perfusion or
- MR imaging for stress-induced wall motion abnormalities.

Functional stress testing

A meta-analysis41 (n=761) reported that stress perfusion cardiac MRI had a high sensitivity and specificity (89.1% and 84.9% respectively) for diagnosing flow-limiting obstructive CAD.

The results of two RCTs42,43 suggested that stress real-time myocardial contrast echocardiography (RTMCE) increased the detection of CAD compared to conventional stress echocardiography.

The results of a meta-analysis44 (n=13304) suggested that compared to exercise tolerance testing, stress imaging with MPI and stress echocardiography were the most accurate at stratifying cardiac risk in patients over 65 years of age with known or suspected CAD.

A systematic review45 was identified which found that referral bias reduced the sensitivity and increased the specificity of exercise echocardiography and MPI for CAD. The authors concluded that further research was needed to assess the ability of these and other tests to rulein rather than rule-out CAD.

The results of a meta-analysis46 (n=11,862) found that Positron emission tomography (PET) had higher mean sensitivity than SPECT (92.6% v 88.3%) for diagnosing >50% stenosis in patients with known or suspected CAD. A second systematic review and meta-analysis47 indicated that rubidium (Rb)-82 PET provided more accurate diagnosis of obstructive CAD in comparison to SPECT. However, the review was limited by heterogeneity among study populations and referral bias in some studies. Finally, the results of a meta-analysis48 indicated that SPECT demonstrated moderate accuracy in diagnosing functional stenotic CAD, with a sensitivity and specificity of 77% and 77% respectively.

resonance (CMR) had higher sensitivity for the detection of obstructive CAD than SPECT.

A systematic review and meta-analysis50 was identified which aimed to assess the diagnostic accuracy of CMR imaging assessing myocardial viability in patients with chronic left ventricular (LV) dysfunction due to CAD. The review included 24 studies including 698 patients, evaluating myocardial viability using three techniques. Of the techniques assessed, Contrast delayed enhancement CMR had the highest sensitivity (95%) for predicting improved segmental LV contractile function after revascularisation, and low-dose dobutamine had the highest specificity (91%). The authors concluded that integrating the two methods would increase accuracy in evaluating patients with chronic LV dysfunction.

An RCT51 was identified which assessed the effect of provider-directed imaging stress testing in lower-risk chest pain patients presenting to the emergency department. Patients were randomised to receive a CMR stress test (n=60) or a provider-selected stress test (n=60) (e.g. stress echo, CMR, cardiac catheterisation, nuclear, and coronary CT). The results of the study indicated that the median cost was higher for those receiving the CMR mandated test, with no differences in other outcomes between the two groups.

A systematic review and meta-analysis52 examining the diagnostic accuracy of magnetocardiography (MCG) reported that MCG had a sensitivity of 83% and a specificity of 77% for the diagnosis of CAD. However, the authors reported that there was significant heterogeneity present in all meta-analyses.

A systematic review and meta-analysis53 was identified which assessed the efficacy of Tissue Doppler imaging (TDI) in the diagnosis of CAD. The results showed that among CAD patients, TDI was associated with a decrease in the maximum systolic velocity at rest, and a decrease in

maximum early diastolic velocity and maximum late diastolic velocity post stress. The authors concluded that TDI may have a role in the evaluation of CAD.

Clinical area: Investigations and diagnosis of patients with acute chest pain - recommendations 1.2.6.6, 1.2.6.7

Q: What is the utility and cost effectiveness of non-invasive tests in the evaluation of individuals with acute chest pain of suspected cardiac origin?

Evidence summary	GDG/clinical perspective	Impact
Evidence identified from 2-year surveillance review Through a focused search two studies were identified relating to stress testing in patients with acute chest pain. One study54 found that the addition of stress echocardiography to electrocardiography (ECG) was more effective than the individual tests alone in assessing patients with acute chest pain. The results of another study55 suggested that routine cardiac provocative cardiac testing added little to the diagnostic evaluation of low-risk young adult patients with acute coronary syndromes (ACS) compared to cardiac biomarkers.	Clinical feedback indicated that the guideline needs to be updated. One of the reasons supporting this was that cardiac imaging has moved on over the last 4 years although no further details were provided.	The evidence identified at the 2-year surveillance review found limited evidence for stress testing in the assessment of patients presenting with acute chest pain in the emergency department. The evidence was considered to be in keeping with the current recommendations relating to the evaluation of individuals with acute chest pain, which include resting 12-lead ECG and troponin testing, as well as carrying out a physical examination and taking a detailed clinical history.
 Evidence identified from 4-year surveillance review An RCT56 (n=1508) found that stress myocardial perfusion imaging (SMPI) added to a standard triage strategy (including clinical evaluation, serial ECGs, and cardiac markers) more effectively identified patients with ACS, with reduced hospital admission rates for participants who underwent SMPI compared to those who received just clinical assessment. The findings of an RCT57, including 105 intermediate-risk participants without a definite diagnosis of ACS following ECG and troponin testing, indicated that stress cardiac magnetic resonance (CMR) imaging in an observation unit reduced coronary artery revascularisation, hospital readmissions, and recurrent cardiac testing compared to usual care provided by cardiologists and internists. 		The new evidence identified at the 4-year review suggests that non-invasive cardiac imaging, including stress myocardial perfusion imaging and stress cardiac magnetic resonance imaging, may be an alternative method for excluding other diagnoses in people with symptoms of ACS but with an uncertain diagnosis following ECG and troponin testing. Currently the guideline recommends a chest X-ray to help exclude complications of ACS, and early chest computed tomography (CT) should only be considered to rule out other diagnoses. The new evidence relating to non-invasive cardiac imaging may potentially impact on these recommendations.
The results of a systematic review and meta-analysis58 (n=634) indicated		

that CMR had a higher sensitivity but lower specificity than low-dose

dobutamine CMR for the assessment of myocardial stunning after acute myocardial infarction.

Clinical area: Investigations and diagnosis of patients with acute chest pain - recommendation 1.2.6.7

Q: What is the diagnostic utility of Multislice Computed Tomography (MSCT) coronary angiography in the diagnosis of patients with acute chest pain of suspected cardiac origin?

Evidence summary

Evidence identified from 2-year surveillance review

Through a high-level search, one systematic review59 was identified which determined that 64-section coronary computed tomography angiography (CCTA) was best for identifying patients with symptoms of ACS who can safely be discharged home rather than diagnosing patients who have positive symptoms. An additional focused literature search identified 13 studies60-72 relating to computerised angiographies in patients with acute chest pain. Overall, the studies showed that various forms of computerised angiography were diagnostically effective in detecting coronary artery disease (CAD) in patients presenting with acute chest pain in emergency departments. Two of the studies also showed that computed tomography was cost effective.

Evidence identified from 4-year surveillance review

An RCT73 comparing early CCTA and standard emergency department evaluation in patients with acute chest pain found that CCTA reduced hospital length of stay and admission rates, and lessened the increased cumulative radiation dose in women with suspected ACS compared to men. The results also indicated that there were no differences in major adverse cardiac events between CCTA and standard care, or between men and women.

The results of a systematic review and meta-analysis74 indicated that CCTA led to an increase in referral rates for invasive coronary angiography and coronary revascularisation compared to usual care triage of acute chest pain in the emergency department. An RCT75 also found that CCTA

GDG/clinical perspective

Clinical feedback indicated that there is evolving evidence for the use of CT coronary angiography in patients with acute chest pain and that the newer scanners that are now available have reduced radiation exposure.

Impact

During development of the guideline the GDG appraised the evidence for the use of MSCT for emergency department triage of patients with acute chest pain and was of the opinion that there was insufficient evidence on which to make a recommendation for its use in such patients. They acknowledged that this was an evolving area, which was the subject of on-going research, but the published evidence found to date was in small cohorts of patients and further research is required.

There is new evidence identified at the 2 and 4 year surveillance reviews, as well as clinical feedback, which suggests that computed tomography is effective in the assessment of people with acute chest pain, including in the triage of patients in an emergency department. There may now be sufficient new evidence on which to make a recommendation for the use of computed tomography in such patients, thus impacting on the current guideline recommendation which states: Only consider early chest computed tomography (CT) to rule out other diagnoses such as pulmonary embolism or aortic dissection, not to diagnose ACS.

increased the frequency of revascularisations as well as improving the detection of significant coronary stenosis in patients with acute chest pain.

An RCT76 (n=60) was identified which aimed to examine the dose reduction potential of low kV triple-rule-out dual-source CT angiography (TRO-CTA) in non-obese patients with acute chest pain. The subjective image quality of the low-dose TRO-CTA was rated similar to the standard protocol TRO-CTA. There were also no differences in the signal-to-noise and contrast-to-noise ratios in different vascular segments between the two groups. However, vessel attenuation was higher in the low dose TRO-CTA group than in the standard protocol group.

Clinical area: Investigations and diagnosis of patients with acute chest pain (research recommendation) - recommendations – 1.2.1.10, 1.2.5

Q: What is the effectiveness and cost effectiveness of new, high-sensitivity troponin assay methods and other new cardiac biomarkers in low, medium, and high risk people with acute chest pain?

Evidence summary	GDG/clinical perspective	Impact
<u>Evidence identified from 2-year surveillance review</u> Through a focused literature search, 27 studies77-94 were identified. The new evidence indicated that high sensitive troponins are more effective than conventional cardiac troponins in the early diagnosis of acute myocardial infarction and ACS.	At both the 2-year and 4-year review points, clinical feedback was provided which identified that there is new evidence relating to highly sensitive troponin assays for testing patients with suspected ACS.	The clinical evidence for the following biomarkers was assessed as part of a review question in the guideline: troponin I, troponin T, creatine kinase (CK), creatine kinase-MB (CKMB), creatine kinase- MB isoforms (CKMB isoforms) and myoglobin. An additional research recommendation was made
A further four studies95-98 were identified which indicated that copeptin, together with high sensitive troponin, improves diagnostic performance in early diagnosis of patients with suspected MI.	Feedback suggested that the new troponin assays are now increasingly used and have reduced the timescales from symptom onset to results from 10-12 hours to 3-6	with the aim of investigating newer more sensitive troponin assays which may offer advantages over previous assays in terms of diagnostic accuracy, and allow exclusion of MI earlier than the 12 hour time frame currently required. The research
It was considered that the new evidence relating to high-sensitive troponin and copeptin could potentially impact on the current recommendations in the guideline.	NICE currently has no plans to update MTG4. Feedback from the	recommendation also sought to assess other proposed biomarkers compared to the best available troponin assays.
Six more studies99-104 were identified which looked at other biomarkers for ACS, including amino terminal pro-B-type natriuretic peptide,	Newcastle and York External Assessment Centre has indicated	At the 2-year surveillance review, it was considered that the evidence relating to high sensitive

unbound free fatty acids, high-sensitivity C-reactive protein, pentraxin 3 and serum ischemia modified albumin. These were just single studies and it was therefore considered that more evidence would be required to support these findings before consideration for inclusion in the guideline.

Evidence identified from 4-year surveillance review

The results of an RCT105 (n=542) suggested that a rapid diagnostic pathway (including Thrombolysis in Myocardial Infarction score, electrocardiography and 0- and 2-hour troponin tests) increased the proportion of patients with chest pain discharged within 6 hours compared to a standard-care diagnostic pathway (including troponin test on arrival at hospital, prolonged observation, and a second troponin test 6-12 hours after onset of pain) for the assessment of patients with acute chest pain consistent with ACS.

An RCT106 was identified which assessed changes in contemporary sensitive troponin I (TnI) levels in 7,863 patients after MI or unstable angina. The findings indicated that both baseline TnI levels and increases in TnI levels after 1 year were linked with an increased risk of CHD death and myocardial infarction. A second study, a systematic review and meta-analysis107 including 4 studies (n=2033), also found that elevated high-sensitivity troponin (hs-Tn) were associated with an increased risk of mortality. It is unlikely that this new evidence will impact on current recommendations.

New Diagnostics guidance, published in October 2014, reviewed the clinical and cost-effectiveness of three types of high-sensitive troponin assay (Elecsys Troponin T high-sensitive, ARCHITECT STAT High Sensitive Troponin-I and AccuTnI+3 assays) compared to standard troponin testing over 10–12 hours. The guidance recommends the Elecsys Troponin T high-sensitive assay and ARCHITECT STAT High Sensitive Troponin-I assay as options for the early rule out of non-ST-segment-elevation myocardial infarction (NSTEMI) in people presenting to an emergency department with chest pain and suspected ACS. The assays are recommended for use

that that the claimed benefits of the
copeptin assay have beentroponins compared to the conventional cardiac
troponins to diagnose ACS in patients with acute
chest pain could potentially impact on the curren
guideline recommendations. The new Diagnostic
diagnosis of MI.

troponins to diagnose ACS in patients with acute chest pain could potentially impact on the current guideline recommendations. The new Diagnostics guidance reviewed the clinical and costeffectiveness of high-sensitive troponins compared to standard troponin testing over 10–12 hours, and recommended the Elecsys Troponin T highsensitive assay and ARCHITECT STAT High Sensitive Troponin-I assay as options for the early rule out of non-ST-segment-elevation myocardial infarction (NSTEMI) in people presenting to an emergency department with chest pain and suspected ACS. The assays are recommended for use with 'early rule-out protocols', which typically include a blood sample for cardiac troponin I or T taken at initial assessment in an emergency department and a second blood sample taken after 3 hours. Currently CG95 only recommends: Take a blood sample for troponin I or T measurement on initial assessment in hospital. These are the preferred biochemical markers to diagnose acute MI; and take a second blood sample for troponin I or T measurement 10–12 hours after the onset of symptoms. The evidence identified at the 2 and 4 year surveillance reviews, together with the Diagnostics Guidance and clinical feedback, indicate that high sensitive troponins are effective in the diagnosis of acute MI and ACS, and therefore may impact on the current recommendations in the guideline.

Evidence was identified at the 2-year surveillance review regarding the improved diagnostic

with 'early rule-out protocols', which typically include a blood sample for cardiac troponin I or T taken at initial assessment in an emergency department and a second blood sample taken after 3 hours.

The results of a meta-analysis108 indicated that circulating miRNAs, particularly miR-499 and miR-133a, had good diagnostic accuracy for myocardial infarction.

A systematic review and meta-analysis109 (n=941) was identified which assessed the early diagnostic performance of glycogen phosphorylase isoenzyme BB (GPBB) in patients with suspected AMI. The results of the meta-analysis found that GPBB had a sensitivity of 0.854 and specificity of 0.767, although there was high heterogeneity across the included studies. The authors concluded that GPBB does not currently provide efficient diagnosis of AMI when used as a stand-alone test.

Two systematic reviews and meta-analyses110,111 were identified which found that the addition of heart-type fatty acid binding protein (H-FABP) to troponin increased sensitivity but decreased specificity compared to troponin alone for the diagnosis of MI.

MTG4 (NICE medical technologies guidance), published in June 2011, was identified through the intelligence gathering search for the guideline. MTG4 stated that the BRAHMS copeptin assay shows potential to reduce the time taken to rule out myocardial infarction in patients presenting with acute chest pain, when used in combination with cardiac troponin testing. However, it stated that there is currently insufficient evidence on its use in clinical practice to support the case for routine adoption of the BRAHMS copeptin assay in the NHS and recommended that further research be undertaken in the UK clinical setting to compare the BRAHMS copeptin assay in combination with cardiac troponin testing against sequential cardiac troponin testing for ruling out MI. As part of the evidence base for this guidance, two studies considered at the previous

performance of copeptin together with high sensitive troponin in patients with MI. It was considered that this evidence could potentially impact on the current guideline recommendations. However, MTG4, which was published in June 2011, reviewed the evidence for copeptin assay including two studies considered at the 2 year surveillance review. It found that whilst the assay showed potential to reduce the time taken to rule out MI when used in combination with cardiac troponin testing, there was insufficient evidence on its use in clinical practice to support the case for routine adoption in the NHS and recommended that further research be undertaken in the UK clinical setting to compare the BRAHMS copeptin assay in combination with cardiac troponin testing against sequential cardiac troponin testing for ruling out MI. Further evidence relating to copeptin was identified at the 4 year surveillance review which also showed that copeptin and troponin combined had increased sensitivity for diagnosing MI. NICE currently has no plans to update MTG4 and feedback has indicated that that the claimed benefits of the copeptin assay have been superseded by high-sensitivity troponin assays in terms of faster diagnosis of MI.

Evidence was also identified in relation to other biomarkers, including heart-type fatty acid binding protein which increased the sensitivity of troponin compared to troponin alone, and miRNAs which had good diagnostic accuracy for MI.

In summary, the evidence and clinical feedback

surveillance review (Keller et al., 2010; Reichlin et al., 2009) were considered. Through the literature search for the 4-year surveillance review, two systematic reviews112,113 were identified which published after MTG4. The studies found that copeptin and troponin combined improved sensitivity for the diagnosis of acute MI compared with troponin alone. relating to high sensitive troponins and other biomarkers for MI, suggest that there is potentially new evidence in this area which should be considered for inclusion in the guideline.

Ongoing research

- 4. The following ongoing trials relevant to this guideline were identified through clinical feedback and the literature search for the surveillance review:
 - The impact of the HEART risk score in the early assessment of patients with acute chest pain: design of a stepped wedge, cluster randomised trial. Estimated study completion date November 2014.
 - HTA 13/04/108: The RAPID-CTCA trial (Rapid Assessment of Potential Ischaemic Heart Disease with CTCA) The role of early CT Coronary Angiography in the evaluation, intervention and outcome of patients presenting to the Emergency Department with suspected or confirmed Acute Coronary Syndrome
 - The role of cardiovascular magnetic resonance imaging and computed tomography angiography in suspected non-ST-elevation myocardial infarction patients: design and rationale of the CARdiovascular Magnetic rEsoNance imaging and computed Tomography Angiography (CARMENTA) trial.
 - Role of multidetector computed tomography in the diagnosis and management of patients attending the rapid access chest pain clinic, The Scottish computed tomography of the heart (SCOT-HEART) trial. The study is expected to report in 2014.
 - Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease.
 - DETermination of the role of OXygen in suspected Acute Myocardial Infarction trial. Estimated Study Completion Date: December 2015.
 - A randomized controlled trial of oxygen therapy in acute myocardial infarction Air Verses Oxygen In myocarDial infarction study (AVOID Study).

Anti-discrimination and equalities considerations

5. Clinical feedback from the GDG indicated that there is geographical variation in access to diagnostic testing for patients with stable chest pain.

Implications for other NICE programmes

- 6. This guideline relates to the Quality Standard for Acute coronary syndromes (including myocardial infarction) (QS68 published September 2014) and to the Quality Standard for Stable angina (QS21 published August 2012).
- 7. None of the quality statements in QS68 are likely to be affected by the proposed areas for update.
- 8. The proposed area for update 'Assessment of patients with stable chest pain' is likely to affect Quality statement 1: Diagnostic investigation in QS21. In particular, recommendation 1.3.3.16 from CG95 was used as the guideline source for Statement 1 and recommendations 1.3.3.1, 1.3.3.16 and 1.3.4.4-7 are the sources for the definitions attached to this statement.

Triage Panel recommendation

- 9. The new evidence identified through the surveillance review of CG95 which may potentially impact on guideline recommendations was considered by the Triage Panel to determine the most appropriate route to commission an update.
 - i. Assessment of patients with stable chest pain:
 - a. What is the incremental benefit and cost effectiveness of a clinical history, cardiovascular risk factors and a physical examination in evaluation of individuals with stable chest pain of suspected cardiac origin?
 - The Triage Panel agreed that this question needs to be updated to reflect new evidence relating to a revised version of the Diamond and Forrester model. The evidence suggested that the current Diamond and Forrester model overestimates the probability of coronary artery disease (CAD). The revised model would therefore impact on the recommended appropriate first-line diagnostic investigation required based on a person's estimated likelihood of CAD. It was felt that the review question could be amended to ensure focus around diagnosing CAD.
 - **Decision:** NICE to update this clinical question using the Standing Committee for Updates via the Clinical Guidelines Update Team.
 - ii. Investigations and diagnosis of patients with stable chest pain suspected to be stable angina:
 - a. What is the diagnostic utility of non-invasive and invasive tests for the evaluation of patients with stable chest pain of suspected cardiac origin?
 - The Triage Panel agreed that this question would need to be updated and suggested that the body of evidence on all imaging modalities, including functional imaging should be evaluated whilst the current economic model could be adapted to include more comparators.
 - **Decision:** NICE to update this clinical question using the Standing Committee for Updates via the Clinical Guidelines Update Team.

- iii. Investigations and diagnosis of patients with acute chest pain:
 - a. What is the utility and cost effectiveness of non-invasive tests in the evaluation of individuals with acute chest pain of suspected cardiac origin?
 - The Triage Panel indicated that the new evidence relating to this question was less convincing. However, the group felt that if
 an update of Computed Tomography (CT) angiography for acute chest pain was being considered, evidence relating to
 functional imaging should also be evaluated. In terms of priorities, the group suggested that functional testing for acute
 coronary syndromes (ACS) should be a lower priority.
 - **Decision:** NICE to update this clinical question using the Standing Committee for Updates via the Clinical Guidelines Update Team.
 - b. What is the diagnostic utility of Multislice Computed Tomography (MSCT) coronary angiography in the diagnosis of patients with acute chest pain of suspected cardiac origin?
 - The Triage Panel agreed that the evidence relating to this question has moved on significantly since the guideline was developed and that the guideline recommendation relating to CT scanning would need updating. It was acknowledged that there is an ongoing HTA trial (RAPID-CTCA) in this area but that this is unlikely to report for at least two years. However, in order to avoid hindering recruitment to the trial and repeating any review of evidence already undertaken, the group agreed that an update should consider the role of CT angiography in patient groups who would not be eligible for the trial.
 - **Decision:** NICE to update this clinical question using the Standing Committee for Updates via the Clinical Guidelines Update Team.
 - c. What is the effectiveness and cost effectiveness of new, high-sensitivity troponin assay methods and other new cardiac biomarkers in low, medium, and high risk people with acute chest pain?
 - The Triage Panel agreed that this question needs to be updated as the guideline recommendation relating to the use of standard troponin assays has been superseded by current clinical practice and the recently published Diagnostics guidance (DG15) which recommends high-sensitivity troponin testing for the early rule out or diagnosis of acute myocardial infarction in people with acute chest pain. The Triage Panel indicated that there was potential for CG95 to cross reference to the Diagnostics guidance but that an additional check was needed to determine if any supplementary recommendations might be required.
 - **Decision:** NICE to update this clinical question using the Standing Committee for Updates via the Clinical Guidelines Update Team.

Conclusion

- 10. Through the surveillance review of CG95 new evidence which may potentially impact guideline recommendations was identified in the following areas:
 - Assessment of patients with stable chest pain
 - Investigations and diagnosis of patients with stable chest pain suspected to be stable angina
 - Investigations and diagnosis of patients with acute chest pain
- 11. All these areas were considered by the Triage Panel and were assessed as requiring an update at this time. It was determined that all the areas identified should be updated using the Standing Committee for Updates via the Clinical Guidelines Update Team.
- 12. For all other areas of the guideline no evidence was identified which would impact on recommendations.

Mark Baker – Centre Director Sarah Willett – Associate Director Diana O'Rourke – Technical Analyst

Centre for Clinical Practice December 2014

A.1 Decision matrix

Surveillance and identification of triggers for updating CG95. The table below provides summaries of the evidence for key questions for which studies were identified.

which aimed to assess the impact on patient preferences of a decision aid showing the pre-test probability of acute coronary syndrome (ACS) and available management options. The results suggested that compared to usual care, the decision aid increasedquestionnaire.current guestionnaire.current guestionnaire.current guestionnaire.state: clauestionnaire.geople auestionnaire.make jouestionnaire.accountuestionnaire.accountuestionnaire.uestionn	clusion of this 4-year surveillance aw (2014)
which aimed to assess the impact on patient preferences of a decision aid showing the pre-test probability of acute coronary 	ling of the diagnostic process and
unit admission and cardiac stress testing, with no major adverse cardiac events.	new evidence is consistent with the ent guideline recommendations which e: clearly explain the options to ble at every stage of investigation; e joint decisions with them and take bunt of their preferences; provide mation about any proposed stigations using everyday, jargon-free uage; and offer information about the of diagnostic testing.

People presenting with acute chest pain

95-02: What is the incremental benefit and cost effectiveness of a clinical history in evaluation of individuals with acute chest pain of suspected cardiac origin?

95-03: What is the incremental benefit and cost effectiveness of assessment of cardiovascular risk factors in evaluation of individuals with acute chest pain of suspected cardiac origin?

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
95-04: What is the incremental benefit a cardiac origin?	and cost effectiveness of a physical ex	camination in evaluation of individu	als with acute chest pain of suspected
Through a high level search two systematic reviews were identified. The results of one of the studies115 showed that the Thrombolysis in Myocardial Infarction (TIMI) risk score is an effective risk stratification tool for patients in the emergency department with potential ACS but the authors concluded that it should not be used as the sole means of determining patient disposition. Another study116 found that no instrument assisting in the diagnostic investigation of patients with suspected ACS consistently fulfils the safety requirements of clinicians. Through a focused search one study117 was identified which found that individual historical and examination findings are effective in diagnosing AMI in patients with acute chest pain. This was considered to be in keeping with the current guideline recommendation.	The results of a systematic review and meta-analysis118 indicated that telemedicine systems, including early telemetry of electrocardiograms (ECG), can reduce the risk of in-hospital mortality from AMI. An RCT119 (n=7083) was identified which evaluated the impact on quality and safety of electronic risk alerts to primary care physicians for patients with chest pain. The study found that the electronic alerts made no difference in terms of risk- appropriate management of both high and low risk patients. An RCT120 (n=550) was identified which assessed the impact of providing pre-test probability estimates for both ACS and pulmonary embolism and prescriptive clinical advice on radiation exposure and health care costs. Patients with chest pain and dyspnoea, non-diagnostic ECGs, and no obvious diagnosis	None identified through GDG questionnaire.	The new evidence relating to telemedicine systems suggests that they may reduce the risk of mortality from ACS. The use of telemedicine is not specifically covered in the guideline, although the GDG's preferred option was for a pre-hospital ECG, ideally with advanced notification to hospital, providing this did not delay transfer of the patient to hospital. It is unlikely that this evidence will impact on current recommendations which state: Refer people to hospital as an emergency if an ACS is suspected and they currently have chest pain or they are currently pain free, but had chest pain in the last 12 hours, and a resting 12-lead ECG is abnormal or not available; and take a resting 12-lead ECG as soon as possible. When people are referred, send the results to hospital before they arrive if possible.

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	were included. The findings indicated that pre-test probability estimates and clinical advice reduced exposure to chest radiation and health care costs, with no increase in adverse events. The findings of a secondary analysis from an RCT121 indicated that in patients with CAD, symptoms of chest pain and arm pain are more common in patients with ACS, and symptoms of shortness of breath and dizziness are more common in patients without ACS. The findings of a meta-analysis3 also indicated that the most accurate tests for diagnosing ACS were pain radiation to right arm/shoulder and palpitation, and visceral pain.		With regards to risk scores for ACS, the evidence identified at the 2-year review suggested that no single risk score or instrument was effective in diagnosing the cause of chest pain. This was considered to be in keeping with the current guideline recommendations. However, a study identified at the 4-year review suggested that the use of pre-test probability estimates reduced unnecessary diagnostic assessments for patients with symptoms suggestive of ACS but with non-diagnostic ECGs. For the assessment in hospital for people with a suspected ACS, the guideline recommends resting 12-lead ECG and troponin testing, as well as carrying out a physical examination and taking a detailed clinical history. The guideline further states: Only consider early chest computed tomography (CT) to rule out other diagnoses such as pulmonary embolism or aortic dissection, not to diagnose ACS. It is probable that pretest likelihood estimates would take into account the information gathered by clinicians through physical examinations and in taking a clinical history. It is therefore unlikely that this evidence to would impact on the current guideline

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
			recommendations. Evidence relating to symptoms associated with ACS is consistent with the current guideline recommendations which state: Initially assess people for any of the following symptoms, which may indicate an ACS, including pain in the chest and/or other areas (for example, the arms, back or jaw) lasting longer than 15 minutes, and chest pain associated with nausea and vomiting, marked sweating or breathlessness.
95-05: Are the symptoms and description men?	on of the symptoms different in wome	n presenting with acute chest pain	of suspected cardiac origin compared with
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-06: Are the symptoms and description origin compared with Caucasians?	on of the symptoms different in Black	and Ethnic Minorities presenting wi	th acute chest pain of suspected cardiac
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-07: What is the diagnostic utility of p	ain relief with nitrates in the identificat	ion of patients with acute chest pa	in of cardiac origin?
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-08: What is the utility and cost effect	tiveness of the resting ECG in evaluat	ion of individuals with chest pain of	f suspected cardiac origin?
No evidence identified.	A systematic review and meta- analysis122 was identified which found insufficient evidence to	None identified through GDG questionnaire.	The new evidence suggests that using ECG technicians can speed up the process for undertaking in-hospital ECGs

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	support the use of ECG-based signal analysis technologies for detecting ischemia or infarct in patients with ACS compared with the standard 12-lead ECG. The findings of an RCT123 (n=354) indicated that use of an ECG technician (ECG-T) reduced in-hospital first medical contact-to- ECG times compared to a control intervention.		for patients with chest pain. The current recommendation relating to ECGs states: Take a resting 12-lead ECG as soon as possible. There are no recommendations relating to who should take the ECG other than that a review of resting 12-lead ECGs should be obtained by a healthcare professional qualified to interpret them as well as taking into account automated interpretation. It is therefore unlikely that the new evidence will impact on the current recommendations.
95-09: What is the utility and cost effec	tiveness of non-invasive tests in the e	valuation of individuals with acute	chest pain of suspected cardiac origin?

Through a focused search two studies An RCT56 (n=1508) found that were identified relating to stress testing in patients with acute chest pain. One study54 found that the addition of stress echocardiography to electrocardiography (ECG) was more effective than the individual tests alone in assessing patients with acute chest pain. The results of another study55 suggested that routine cardiac provocative cardiac testing added little to the diagnostic evaluation of low-risk young adult patients with ACS compared to cardiac biomarkers.

stress myocardial perfusion imaging (SMPI) added to a standard triage strategy (including clinical evaluation, serial ECGs, and cardiac markers) more effectively identified patients with ACS, with reduced hospital admission rates for participants who underwent SMPI compared to those who received just clinical assessment.

The findings of an RCT57, including 105 intermediate-risk participants without a definite

Clinical feedback indicated that the guideline needs to be updated. One of the reasons supporting this was that cardiac imaging has moved on over the last 4 years although no further details were provided.

The evidence identified at the 2-year surveillance review found limited evidence for stress testing in the assessment of patients presenting with acute chest pain in the emergency department. The evidence was considered to be in keeping with the current recommendations relating to the evaluation of individuals with acute chest pain, which include resting 12-lead ECG and troponin testing, as well as carrying out a physical examination and taking a detailed clinical history.

The new evidence identified at the 4-year review suggests that non-invasive

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)	
	diagnosis of ACS following ECG and troponin testing, indicated that stress cardiac magnetic resonance (CMR) imaging in an observation unit reduced coronary artery revascularisation, hospital readmissions, and recurrent cardiac testing compared to usual care provided by cardiologists and internists. The results of a systematic review and meta-analysis58 (n=634) indicated that CMR had a higher sensitivity but lower specificity than low-dose dobutamine CMR for the assessment of myocardial stunning after acute myocardial infarction.		cardiac imaging, including stress myocardial perfusion imaging and stress cardiac magnetic resonance imaging, may be an alternative method for excluding other diagnoses in people with symptoms of ACS but with an uncertain diagnosis following ECG and troponin testing. Currently the guideline recommends a chest X-ray to help exclude complications of ACS, and early chest computed tomography (CT) should only be considered to rule out other diagnoses. The new evidence relating to non-invasive cardiac imaging may potentially impact on these recommendations.	
95-10: What is the utility and cost effect	tiveness of the chest X ray in evaluation	on of individuals with chest pain of	suspected cardiac origin?	
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.	
95-11: In adults presenting with acute c placebo?	95-11: In adults presenting with acute chest pain of suspected cardiac origin, what is the clinical and cost effectiveness of giving oxygen compared with a placebo?			
No evidence identified.	An update of a systematic review124 of RCTs was identified which investigated whether routine use of inhaled oxygen in AMI improves patient-centred outcomes, including pain and	None identified through GDG questionnaire.	The evidence reviewed in the guideline suggested that supplementary oxygen may be harmful in patients with an acute MI. It was therefore recommended that: Do not routinely administer oxygen, but monitor oxygen saturation using pulse	

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	death. One new trial was identified through the search for the systematic review, resulting in a total of four trials involving 430 participants. The results showed that use of oxygen increased the risk of death compared to air, although the authors concluded that this could be the results of chance due to the small number of deaths recorded. The results of an RCT125 (n=136) combined through meta-analysis with the results of two previous studies indicated that there were no differences in mortality and infarct size in patients with STEMI administered with high- concentration or titrated oxygen for 6 hours after presentation. However, there was clinical uncertainty over the results and the authors concluded that further studies would be needed.		oximetry as soon as possible, ideally before hospital admission. Only offer supplemental oxygen to: people with oxygen saturation (SpO2) of less than 94% who are not at risk of hypercapnic respiratory failure, aiming for SpO2 of 94–98%; or people with chronic obstructive pulmonary disease who are at risk of hypercapnic respiratory failure, to achieve a target SpO2 of 88–92% until blood gas analysis is available. The new evidence was inconclusive regarding the harmful effects of oxygen in people with MI, although one study suggested that it may lead to an increased risk of mortality. The new evidence is therefore consistent with the current guideline recommendations.
95-12: In adults presenting with acute of morphine with anti-emetic) management		t effectiveness of pain (e.g. subling	ual and buccal nitrates, diamorphine,
No evidence identified.	An RCT126 (n=1763) was identified which evaluated the impact of a combination of anxiolytics and analgesics	None identified through GDG questionnaire.	The new evidence regarding pain relief is consistent with current guideline recommendations which state: Offer pain relief as soon as possible. This may be

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)	
	(midazolam and morphine) compared to analgesics (morphine) alone in the pre- hospital treatment of patients with suspected ACS. The findings of the study indicated that combined anxiolytics and analgesics were more effective at reducing anxiety compared to analgesics alone. However, there was no difference in patients' estimation of pain between the two groups.		achieved with GTN (sublingual or buccal), but offer intravenous opioids such as morphine, particularly if an acute myocardial infarction (MI) is suspected.	
95-13: In adults presenting with chest p clopidogrel alone or in combination) con		is the clinical and cost effectivenes	s of anti-platelet therapy (aspirin,	
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.	
	95-14: In patients presenting with suspected acute coronary syndromes, what is the clinical and cost effectiveness of early treatment with glucose-insulin- potassium compared with a placebo? (new question)			
No evidence identified.	The results of an RCT127 (n=911) suggested that there were no differences in progression to myocardial infarction or 30-day survival following out-of hospital emergency administration of glucose-insulin-potassium (GIK) in patients with suspected ACS. However, there was a reduction in the composite outcome of cardiac arrest or in-hospital mortality in patients who received GIK	None identified through GDG questionnaire.	Administration of glucose-insulin- potassium was not covered in the guideline. There was limited evidence from the study that it might improve outcomes of cardiac arrest or in-hospital mortality. However, further consistent evidence would be needed before this can be considered for inclusion in the guideline.	

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	compared to placebo.		
95-15: What is the utility and cost effect		•	
 Three studies were identified relating to cardiac biomarkers which were all considered to support the current guideline recommendations. One study128 showed that measurement of cardiac troponin I is sufficient for diagnosis of patients with chest pain when compared to myoglobin and the MB isoenzyme of creatine kinase (CK-MB). Another study129 found that that the most clinically accurate biomarker for the early diagnosis of myocardial infarction is the use of cardiac troponin T assay alone, rather than a multiple-biomarker approach. The results of another study130 showed that point-of-care cardiac biomarker panel consisting of CK-MB, myoglobin, and troponin did not reduce health care costs. 	Two studies were identified which examined point of care (POC) tests in patients with suspected of acute myocardial infarction (AMI). One RCT131 (n=2243) and economic analysis evaluated a POC panel of CK-MB(mass), myoglobin and troponin compared with standard care across 6 hospitals. There was heterogeneity in the results in terms of the difference in the proportion of patients successfully discharged and the mean cost per patient for POC assessment. Another systematic review132 examining the diagnostic accuracy of POC tests found that the negative predictive values for single biomarker testing ranged from 31 to 97%, and for a multi- marker approach from 59 to 100%, for test results within 6 hours after symptom onset or in a median time from symptoms onset to testing of 3 hours.	None identified through GDG questionnaire.	The evidence from the 2-year surveillance review on troponin supports the current recommendation in the guideline which states: Take a blood sample for troponin I or T measurement on initial assessment in hospital. These are the preferred biochemical markers to diagnose acute MI. In relation to point-of-care tests, there was no consistent evidence from both the 2 and 4 year surveillance reviews of their effectiveness.

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	tests in patients due to the heterogeneity in the results in both studies.		
95-16: What is the diagnostic utility of N of suspected cardiac origin?	Aultislice Computed Tomography (MS	CT) coronary angiography in the d	liagnosis of patients with acute chest pain
Through a high-level search, one systematic review59 was identified which determined that 64-section coronary computed tomography angiography (CCTA) was best for identifying patients with symptoms of ACS who can safely be discharged home rather than diagnosing patients who have positive symptoms. This evidence was considered to be in line with the current recommendations. An additional focused literature search identified 13 studies60-72 relating to computerised angiographies in patients with acute chest pain. Overall, the studies showed that various forms of computerised angiography were diagnostically effective in detecting coronary artery disease (CAD) in patients presenting with acute chest pain in emergency departments. Two of the studies also showed that computed tomography was cost	An RCT73 comparing early CCTA and standard emergency department evaluation in patients with acute chest pain found that CCTA reduced hospital length of stay and admission rates, and lessened the increased cumulative radiation dose in women with suspected ACS compared to men. The results also indicated that there were no differences in major adverse cardiac events between CCTA and standard care, or between men and women. The results of a systematic review and meta-analysis74 indicated that CCTA led to an increase in referral rates for invasive coronary angiography and coronary revascularisation compared to usual care triage of acute chest pain in the emergency department. An RCT75 also found that CCTA increased the	Clinical feedback indicated that there is evolving evidence for the use of CT coronary angiography in patients with acute chest pain and that the newer scanners that are now available have reduced radiation exposure.	During development of the guideline the GDG appraised the evidence for the use of MSCT for emergency department triage of patients with acute chest pain and was of the opinion that there was insufficient evidence on which to make a recommendation for its use in such patients. They acknowledged that this was an evolving area, which was the subject of on-going research, but the published evidence found to date was in small cohorts of patients and further research is required. There is new evidence identified at the 2 and 4 year surveillance reviews, as well as clinical feedback, which suggests that computed tomography is effective in the assessment of people with acute chest pain, including in the triage of patients in an emergency department. There may now be sufficient new evidence on which to make a recommendation for the use of computed tomography in such patients, thus impacting on the current guideline

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
evidence that may potentially change the current guideline recommendation relating to computed tomography for assessment of acute chest pain.	well as improving the detection of significant coronary stenosis in patients with acute chest pain. An RCT76 (n=60) was identified which aimed to examine the dose reduction potential of low kV triple- rule-out dual-source CT angiography (TRO-CTA) in non- obese patients with acute chest pain. The subjective image quality of the low-dose TRO-CTA was rated similar to the standard protocol TRO-CTA. There were also no differences in the signal- to-noise and contrast-to-noise ratios in different vascular segments between the two groups. However, vessel attenuation was higher in the low dose TRO-CTA group than in the standard protocol group.		consider early chest computed tomography (CT) to rule out other diagnoses such as pulmonary embolism or aortic dissection, not to diagnose ACS.

People presenting with stable chest pain

95-17: What is the incremental benefit and cost effectiveness of a clinical history, in evaluation of individuals with stable chest pain of suspected cardiac origin?

95-18: What is the incremental benefit and cost-effectiveness of assessment of cardiovascular risk factors in evaluation of individuals with stable chest pain of suspected cardiac origin?

95-19: What is the incremental benefit and cost-effectiveness of a physical examination in evaluation of individuals with stable chest pain of suspected

s there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change his conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
The results of meta-analysis133 n=927) suggested that there was an increased risk of CAD in patients with breast arterial calcifications seen on a mammography. A systematic review2 assessing he diagnostic accuracy of clinical prediction models, reported that he six models identified showed good diagnostic accuracy for determining short-term outcomes in a pre-hospital population with suspected ACS. A meta-analysis3 aimed to determine the diagnostic value of single symptoms and signs for coronary heart disease (CHD) in patients with chest pain. In total, 172 studies were included covering 42 signs and symptoms. The findings indicated that the most accurate predictors for a diagnosis of stable CHD were history of CHD, known acute MI.	Clinical feedback at the 2-year surveillance review suggested that there is additional evidence for the validity of using Diamond and Forrester to assess pre-test likelihood of CAD in contemporary practice. Feedback at the 4-year surveillance review indicated that there is evidence that the Diamond-Forrester risk prediction model over-estimates disease probability in patients with suspected angina. Feedback was also provided at both review points indicating that parameters to assess the pre-test likelihood of coronary disease in patients with stable chest pain have changed. Further information was sought from the GDG regarding these changes and the following reference was provided: Genders TS, Steverberg EW.	The new evidence identified relating to increased risk of CAD in patients with breast arterial calcifications is not currently covered in the guideline. However, it is unlikely that it will impact on the current recommendations for diagnosing stable angina caused by CAD which state diagnose stable angina based on clinical assessment alone or plus diagnostic testing. In terms of clinical assessment, this would include taking a detailed clinical history, including any cardiovascular risk factors, for which breast arterial calcifications seen on a mammography could be one risk factor. At the 2-year surveillance review, it was considered that the evidence relating to the use of an updated Diamond-Forrester prediction model in patients with stable chest pain could potentially have an impact on the current guideline. Although no further evidence was found relating to an updated Diamond-Forrester prediction model at the 4-year review, feedback from the GDG indicated that the Diamond-Forrester model may over
	vidence/intelligence identified uring this 4-year surveillance eview (2014) that may change his conclusion? he results of meta-analysis133 i=927) suggested that there was in increased risk of CAD in atients with breast arterial alcifications seen on a hammography. systematic review2 assessing he diagnostic accuracy of clinical rediction models, reported that he six models identified showed bood diagnostic accuracy for etermining short-term outcomes a pre-hospital population with uspected ACS. meta-analysis3 aimed to etermine the diagnostic value of ngle symptoms and signs for bronary heart disease (CHD) in atients with chest pain. In total, 72 studies were included overing 42 signs and symptoms. he findings indicated that the host accurate predictors for a	 vidence/intelligence identified uring this 4-year surveillance eview (2014) that may change his conclusion? Clinical feedback from the GDG Clinical feedback at the 2-year surveillance review suggested that there is additional evidence for the validity of using Diamond and Forrester to assess pre-test likelihood of CAD in contemporary practice. Systematic review2 assessing le diagnostic accuracy of clinical rediction models, reported that the six models identified showed ood diagnostic accuracy for etermining short-term outcomes a pre-hospital population with uspected ACS. meta-analysis3 aimed to etermine the diagnostic value of ngle symptoms and signs for oronary heart disease (CHD) in atients with chest pain. In total, 72 studies were included overing 42 signs and symptoms. he findings indicated that the iost accurate predictors for a iagnosis of stable CHD were istory of CHD, known acute MI, pical angina, history of diabetes nellitus, exertional pain, history of

34

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	These are consistent with the factors listed in the guideline.	diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J2011;32:1316-30. An assessment of the abstract indicated that the Diamond- Forrester model overestimates the probability of CAD, particularly in women. A subsequent update and extension of the model in relation to the predictive value of age, sex, and type of chest pain improved its performance.	Evidence from the 4-year surveillance review showed that 6 unspecified clinical prediction models demonstrated good diagnostic accuracy for determining short-term outcomes in a pre-hospital population with suspected ACS. Furthermore, clinical feedback indicated that the parameters to assess the pre- test likelihood of coronary disease in patients with stable chest pain have changed. Further evidence was provided which supported the view that the Diamond-Forrester model overestimates the probability of CAD, particularly in women. The evidence also suggested than an updated and extended version of the model improved its performance, supporting the evidence found at the 2- year surveillance review. The diagnostic pathway presented in the guideline for people who present with stable chest pain, states that the application of the Diamond Forrester algorithm, as modified by consideration of additional risk factors, may permit a diagnosis of angina if the probability estimate is sufficiently high. The new evidence relating to an updated version of this model may therefore impact on this statement.

Chest pain of recent onset CG95 Surveillance review decision

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
95-20: Are the symptoms and description men?	on of the symptoms different in wome	n presenting with stable chest pain	of suspected cardiac origin compared with
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-21: Are the symptoms and description origin compared with Caucasians?	on of the symptoms different in Black	and Ethnic Minorities presenting wi	th stable chest pain of suspected cardiac
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-22: What is the utility (incremental v cardiac origin?	alue) and cost effectiveness of a resting	ng ECG in evaluation of individuals	with stable chest pain of suspected
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-23: What is the utility (incremental v origin?	alue) and cost effectiveness of a ches	t X ray in evaluation of individuals	with stable chest pain of suspected cardiac
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-24: What is the utility and cost effec	tiveness of coronary artery calcium sc	oring in evaluation of patients with	stable chest pain?
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-25: What is the diagnostic utility of non-invasive and invasive tests for the evaluation of patients with stable chest pain of suspected cardiac origin?			
Through a focused search, 29 studies4-32 were identified related to non-invasive and invasive tests for patients with stable chest pain. The evidence showed that various non- invasive techniques including stress echocardiography, PET, myocardial perfusion imaging, CT coronary	Computed coronary tomographic angiography (CCTA) A systematic review and meta- analysis33 was identified which compared CCTA versus invasive coronary angiography in the diagnosis of CHD. For the diagnosis of obstructive stenosis,	Clinical feedback indicated that there is new evidence about diagnostic assessment in patients with suspected stable angina, including the comparative effectiveness of different imaging modalities.	At the 2-year review it was considered that there was no new evidence which would invalidate the current guideline recommendations regarding assessment of patients with stable chest pain. Computed coronary tomographic angiography

Conclus	sions from the 2-year	
	ance review (2012)	
	score, coronary compu	
	phy, single-photon emi	
	ed tomography (SPECT ascular magnetic reson	
	ective in diagnosing CA	
	mpared to coronary	
	anhy Other studies fou	nd tha

phy (SPECT) and netic resonance. agnosing CAD coronary angiography. Other studies found that exercise stress testing, real-time three-dimensional echocardiography and coronary artery calcium were not effective in the diagnosis of CAD when compared to angiography. Overall, it was considered that there was no new evidence which would invalidate the current guideline recommendations regarding assessment of patients with stable chest pain.

compared to invasive coronary angiography as the reference standard, CCTA had high sensitivity and specificity, and at a pre-test probability of CHD of 50% or less, resulted in a lower cost per patient. However, at a pre-test probability of CHD of 70% or higher, invasive coronary angiography provided a lower cost per patient. For the diagnosis of functionally relevant stenosis, using intracoronary pressure measurement as the reference standard, CCTA had a higher sensitivity but lower specificity than invasive coronary angiography and both types of coronary angiography resulted in substantially higher cost per patient. As such, the review recommended that neither type of angiography should be used in the diagnosis of functionally relevant stenosis.

Is there any new

this conclusion?

evidence/intelligence identified during this 4-year surveillance review (2014) that may change

The results of a meta-analysis34 (n=2567) indicated that patients undergoing CCTA as the first imaging test for the detection of CAD were more likely to undergo It was suggested that novel imaging techniques are now more widely available, particularly CT coronary angiography and MR perfusion imaging for diagnosis of chest pain. CT coronary angiography is also able to pick up other issues with lungs and mediastinum which might be missed in the old paradigm.

Clinical feedback from the

GDG

Radiation exposure from CT imaging is now lower with the newer scanners, so exposure will be less.

It was reported that the value of zero calcium score for excluding CAD has been questioned. Furthermore, the advice to do a calcium score prior to CT angiography is now increasingly ignored because low radiation CT angiography is now available.

One GDG member identified that the US guideline recommends exercise ECG as first diagnostic test for many

Conclusion of this 4-year surveillance review (2014)

There was new evidence identified at the 4-year review which suggested that CCTA is an effective first line imaging test for the diagnosis of CAD, although it was not clear from all the abstracts what the level of CAD risk was in the study populations. There was also evidence relating to the diagnostic effectiveness of lower radiation CCTA.

The new evidence for CCTA together with clinical feedback may potentially impact on the current guideline recommendations relating to the use of CCTA for the diagnosis of CAD in patients with stable chest pain, particularly the level of CAD risk at which to undertake CCTA. Currently the guideline only recommends 64-slice (or above) CT coronary angiography in people who have an estimated likelihood of CAD of 10-29% and have a calcium score of 1-400. For people with an estimated likelihood of CAD of 10-29% and a calcium score over 400, invasive coronary angiography is recommended. Non-invasive functional imaging is recommended for people who have an estimated likelihood of CAD of 30-60%, or for people who have an estimated likelihood of 61–90% and for whom

National Guideline Centre.

2016

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	 percutaneous or surgical revascularisation, and there was a reduction in the time to diagnosis and costs of care compared to non-CCTA patients. A meta-analysis35 (n=3300) was identified which compared image quality, diagnostic accuracy, and radiation dose of prospectively triggered CCTA with retrospectively gated CTA in patients with suspected or known CAD. The results indicated that the image quality and diagnostic accuracy of both types of CTA were similarly high, but with lower radiation doses provided by prospectively triggered coronary CTA. The findings of a systematic review and meta-analysis36 indicated that prospective ECG gating CCTA had high positive and negative predictive values (94% and 99% respectively) for the diagnosis of significant coronary stenosis. The authors concluded that the use of CCTA with prospective ECG gating 	patients, and neither the European nor the US guidelines recommend invasive coronary angiography for patients with high probability of disease. One GDG member suggested that the right test to use in lower risk groups is individualised and does not fit into a risk profile. As such, most health care professionals will determine the right diagnostic approach on a patient by patient basis. There is also a concern that the time needed to organise tests, such as nuclear scans and CT angiography is longer and may leave some high risk patients waiting for too long.	coronary revascularisation is not being considered or invasive coronary angiography is not clinically appropriate. Invasive coronary angiography is recommended for people who have an estimated likelihood of 61–90% and for whom coronary revascularisation is being considered and invasive coronary angiography is clinically appropriate. Functional stress testing The GDG found that the diagnostic performance for diagnosing CAD did not support the use of one functional imaging test in preference to another and they concluded that the tests were generally comparable and any could be used. The new evidence from the 4 year surveillance review relating to functional imaging generally supports this conclusion and is therefore consistent with the guideline recommendation which states: When offering non-invasive functional imaging for myocardial ischaemia use: myocardial perfusion scintigraphy with single photon emission computed tomography (MPS with SPECT) or stress echocardiography or first-pass contrast-enhanced magnetic resonance (MR) perfusion or

National Guideline Centre. 2016

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	 allows for a reduced radiation exposure without a sacrifice in diagnostic efficacy in a population with high disease prevalence. A pilot RCT37 (n=180) found that CCTA was associated with increased revascularisation, lower costs and lower effective radiation dose compared with myocardial perfusion single-photon emission (MPS) CT in patients presenting with stable chest pain and suspected CAD. CTA and MPS resulted in comparable improvements in angina-specific health status. A systematic review38 was identified which compared 64-slice CCTA and coronary angiography (CA). Ten studies, including 1188 patients with angina with suspected or known CAD, were included in the review. At a patient level, 64-slice CCTA had positive predictive values ranging from 86-97% and negative predictive values of 76.9-100%. The authors concluded that the findings supported the use of 64- 		MR imaging for stress-induced wall motion abnormalities.

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	slice CCTA as a non-invasive alternative to CA for standalone diagnosis of significant stenosis in patients with angina.		
	The results of a systematic review and meta-analysis39 (n=3,539) indicated that "triple rule-out" computed tomography (TRO CT) had high sensitivity and specificity for diagnosing CAD, although with greater radiation exposure and contrast exposure compared to non-TRO CT.		
	A systematic review40 was identified which assessed the clinical effectiveness and cost- effectiveness of new-generation computed tomography (NGCCT) for diagnosing CAD in patients who are difficult to image using 64-slice computed tomography (e.g. obese patients, patients with high or irregular heartbeats and patients who have high levels of coronary calcium or a previous stent or bypass graft). The results indicated that NGCCT had good diagnostic accuracy for diagnosing CAD in difficult-to-image patients.		

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	 An NGCCT only strategy was most cost-effective in patients with suspected CAD, whereas invasive coronary angiography after a positive NGCCT was the most cost-effective strategy in patients with known CAD. Functional stress testing A meta-analysis41 (n=761) reported that stress perfusion cardiac MRI had a high sensitivity and specificity (89.1% and 84.9% respectively) for diagnosing flow-limiting obstructive CAD. The results of two RCTs42,43 suggested that stress real-time myocardial contrast echocardiography (RTMCE) increased the detection of CAD compared to conventional stress echocardiography. The results of a meta-analysis44 (n=13304) suggested that compared to exercise tolerance testing, stress imaging with MPI and stress echocardiography were the most accurate at stratifying 		

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	 years of age with known or suspected CAD. A systematic review45 was identified which found that referral bias reduced the sensitivity and increased the specificity of exercise echocardiography and MPI for CAD. The authors concluded that further research was needed to assess the ability of these and other tests to rule-in rather than rule-out CAD. The results of a meta-analysis46 (n=11,862) found that Positron emission tomography (PET) had higher mean sensitivity than SPECT (92.6% v 88.3%) for diagnosing >50% stenosis in patients with known or suspected CAD. A second systematic review and meta-analysis47 indicated that rubidium (Rb)-82 PET provided more accurate diagnosis of obstructive CAD in comparison to SPECT. However, the review was limited by heterogeneity among study populations and referral bias in some studies. Finally, the results of a meta- 		

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	analysis48 indicated that SPECT demonstrated moderate accuracy in diagnosing functional stenotic CAD, with a sensitivity and specificity of 77% and 77% respectively.		
	The results of a meta-analysis49 suggested that cardiac magnetic resonance (CMR) had higher sensitivity for the detection of obstructive CAD than SPECT.		
	A systematic review and meta- analysis50 was identified which aimed to assess the diagnostic accuracy of CMR imaging assessing myocardial viability in patients with chronic left ventricular (LV) dysfunction due to CAD. The review included 24 studies including 698 patients, evaluating myocardial viability using three techniques. Of the techniques assessed, Contrast delayed enhancement CMR had the highest sensitivity (95%) for predicting improved segmental LV contractile function after revascularisation, and low-dose dobutamine had the highest		

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	specificity (91%). The authors concluded that integrating the two methods would increase accuracy in evaluating patients with chronic LV dysfunction.		
	An RCT51 was identified which assessed the effect of provider- directed imaging stress testing in lower-risk chest pain patients presenting to the emergency department. Patients were randomised to receive a CMR stress test (n=60) or a provider- selected stress test (n=60) (e.g. stress echo, CMR, cardiac catheterisation, nuclear, and coronary CT). The results of the study indicated that the median cost was higher for those receiving the CMR mandated test, with no differences in other outcomes between the two groups. A systematic review and meta- analysis52 examining the diagnostic accuracy of magnetocardiography (MCG) reported that MCG had a sensitivity of 83% and a specificity		

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	However, the authors reported that there was significant heterogeneity present in all meta- analyses. A systematic review and meta-		
	analysis53 was identified which assessed the efficacy of Tissue Doppler imaging (TDI) in the diagnosis of CAD. The results showed that among CAD patients, TDI was associated with a decrease in the maximum systolic velocity at rest, and a decrease in maximum early diastolic velocity and maximum late diastolic velocity post stress. The authors concluded that TDI may have a role in the evaluation of CAD.		
	Coronary angiography An RCT134 (n=223) was identified which assessed the impact on early complications of a simultaneous injection of trinitroglycerin (TNG) with contrast agent during angiography. The study found that frequency of nausea, coronary artery spasm and chest pain were lower in the group which received TNG with		

Conclusions from the 2-year surveillance review (2012)
Research recommendations
95-RR1: Is multislice CT coronary ang

giography a cost-effective first-line test for ruling out obstructive CAD in people with suspected troponin-negative 95-RR1: Is multislice acute coronary syndromes?

GDG

No evidence identified.

95-RR2: What is the effectiveness and cost effectiveness of new, high-sensitivity troponin assay methods and other new cardiac biomarkers in low, medium, and high risk people with acute chest pain?

Through a focused literature search, 27 studies77-94 were identified. The new evidence indicated that high sensitive troponins are more effective than conventional cardiac troponins in the early diagnosis of acute myocardial infarction and ACS.

A further four studies95-98 were identified which indicated that copeptin, together with high sensitive troponin, improves diagnostic performance in early diagnosis of patients with suspected MI.

It was considered that the new evidence relating to high-sensitive troponin and copeptin could potentially impact on the current recommendations in the guideline.

The results of an RCT105 (n=542) suggested that a rapid diagnostic pathway (including Thrombolysis in Myocardial Infarction score, electrocardiography and 0- and 2hour troponin tests) increased the proportion of patients with chest pain discharged within 6 hours compared to a standard-care diagnostic pathway (including troponin test on arrival at hospital, prolonged observation, and a second troponin test 6-12 hours after onset of pain) for the assessment of patients with acute chest pain consistent with ACS.

Is there any new

this conclusion?

group.

evidence/intelligence identified during this 4-year surveillance review (2014) that may change

contrast agent than in the control

No new evidence identified.

An RCT106 was identified which assessed changes in contemporary sensitive troponin I (Tnl) levels in 7,863 patients after At both the 2-year and 4-year review points, clinical feedback was provided which identified that there is new evidence relating to highly sensitive troponin assays for testing patients with suspected ACS. Feedback suggested that the new troponin assays are now increasingly used and have reduced the timescales from symptom onset to results from 10-12 hours to 3-6 hours.

Clinical feedback from the

None identified through GDG

questionnaire.

NICE currently has no plans to update MTG4. Feedback from the Newcastle and York External Assessment Centre has indicated that that the claimed benefits of the copeptin assay have been superseded

The clinical evidence for the following biomarkers was assessed as part of a review guestion in the guideline: troponin I, troponin T, creatine kinase (CK), creatine kinase-MB (CKMB), creatine kinase-MB isoforms (CKMB isoforms) and myoglobin. An additional research recommendation was made with the aim of investigating newer more sensitive troponin assays which may offer advantages over previous assays in terms of diagnostic accuracy, and allow exclusion of MI earlier than the 12 hour time frame currently required. The research recommendation also sought to assess other proposed biomarkers compared to the best available troponin assavs.

Conclusion of this 4-year surveillance

No relevant evidence identified.

review (2014)

At the 2-year surveillance review, it was considered that the evidence relating to

National Guideline Centre.

2016

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
Six more studies99-104 were identified which looked at other biomarkers for ACS, including amino terminal pro-B-type natriuretic peptide, unbound free fatty acids, high-sensitivity C-reactive protein, pentraxin 3 and serum ischemia modified albumin. These were just single studies and it was therefore considered that more evidence would be required to support these findings before consideration for inclusion in the guideline.	MI or unstable angina. The findings indicated that both baseline Tnl levels and increases in Tnl levels after 1 year were linked with an increased risk of CHD death and myocardial infarction. A second study, a systematic review and meta- analysis107 including 4 studies (n=2033), also found that elevated high-sensitivity troponin (hs-Tn) were associated with an increased risk of mortality. It is unlikely that this new evidence will impact on current recommendations. New Diagnostics guidance, published in October 2014, reviewed the clinical and cost- effectiveness of three types of high-sensitive troponin assay (Elecsys Troponin T high- sensitive, ARCHITECT STAT High Sensitive Troponin-I and AccuTnI+3 assays) compared to standard troponin testing over 10– 12 hours. The guidance recommends the Elecsys Troponin T high-sensitive assay and ARCHITECT STAT High Sensitive Troponin-I assay as options for the	by high-sensitivity troponin assays in terms of faster diagnosis of MI.	high sensitive troponins compared to the conventional cardiac troponins to diagnose ACS in patients with acute chest pain could potentially impact on the current guideline recommendations. The new Diagnostics guidance reviewed the clinical and cost-effectiveness of high- sensitive troponins compared to standard troponin testing over 10–12 hours, and recommended the Elecsys Troponin T high-sensitive assay and ARCHITECT STAT High Sensitive Troponin-I assay as options for the early rule out of non-ST- segment-elevation myocardial infarction (NSTEMI) in people presenting to an emergency department with chest pain and suspected ACS. The assays are recommended for use with 'early rule-our protocols', which typically include a blood sample for cardiac troponin I or T taken at initial assessment in an emergency department and a second blood sample taken after 3 hours. Currently CG95 only recommends: Take a blood sample for troponin I or T measurement on initial assessment in hospital. These are the preferred biochemical markers to diagnose acute MI; and take a second blood sample for troponin I or T measurement 10–12 hours after the onset of symptoms. The evidence identified at the 2 and 4 year surveillance

Chest pain of recent onset CG95 Surveillance review decision

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	 early rule out of non-ST-segment- elevation myocardial infarction (NSTEMI) in people presenting to an emergency department with chest pain and suspected ACS. The assays are recommended for use with 'early rule-out protocols', which typically include a blood sample for cardiac troponin I or T taken at initial assessment in an emergency department and a second blood sample taken after 3 hours. The results of a meta-analysis108 indicated that circulating miRNAs, particularly miR-499 and miR- 133a, had good diagnostic accuracy for myocardial infarction. A systematic review and meta- analysis109 (n=941) was identified which assessed the early diagnostic performance of glycogen phosphorylase isoenzyme BB (GPBB) in patients with suspected AMI. The results of the meta-analysis found that GPBB had a sensitivity of 0.854 and specificity of 0.767, although there was high heterogeneity 		reviews, together with the Diagnostics Guidance and clinical feedback, indicate that high sensitive troponins are effective in the diagnosis of acute MI and ACS, and therefore may impact on the current recommendations in the guideline. Evidence was identified at the 2-year surveillance review regarding the improved diagnostic performance of copeptin together with high sensitive troponin in patients with MI. It was considered that this evidence could potentially impact on the current guideline recommendations. However, MTG4, which was published in June 2011, reviewed the evidence for copeptin assay including two studies considered at the 2 year surveillance review. It found that whilst the assay showed potential to reduce the time taken to rule out MI when used in combination with cardiac troponin testing, there was insufficient evidence on its use in clinical practice to support the case for routine adoption in the NHS and recommended that further research be undertaken in the UK clinical setting to compare the BRAHMS copeptin assay in combination with cardiac troponin testing for ruling out MI. Further

Chest pain of recent onset CG95 Surveillance review decision

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	across the included studies. The authors concluded that GPBB does not currently provide efficient diagnosis of AMI when used as a stand-alone test. Two systematic reviews and meta- analyses110,111 were identified which found that the addition of heart-type fatty acid binding protein (H-FABP) to troponin increased sensitivity but decreased specificity compared to troponin alone for the diagnosis of MI. MTG4 (NICE medical technologies guidance), published in June 2011, was identified through the intelligence gathering search for the guideline. MTG4 stated that the BRAHMS copeptin assay shows potential to reduce the time taken to rule out myocardial infarction in patients presenting with acute chest pain, when used in combination with cardiac troponin testing. However, it stated that there is currently insufficient evidence on its use in clinical practice to support the case for		 evidence relating to copeptin was identified at the 4 year surveillance review which also showed that copeptin and troponin combined had increased sensitivity for diagnosing MI. NICE currently has no plans to update MTG4 and feedback has indicated that that the claimed benefits of the copeptin assay have been superseded by high-sensitivity troponin assays in terms of faster diagnosis of MI. Evidence was also identified in relation to other biomarkers, including heart-type fatty acid binding protein which increased the sensitivity of troponin compared to troponin alone, and miRNAs which had good diagnostic accuracy for MI. In summary, the evidence and clinical feedback relating to high sensitive troponins and other biomarkers for MI, suggest that there is potentially new evidence in this area which should be considered for inclusion in the guideline.

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	routine adoption of the BRAHMS copeptin assay in the NHS and recommended that further research be undertaken in the UK clinical setting to compare the BRAHMS copeptin assay in combination with cardiac troponin testing against sequential cardiac troponin testing for ruling out MI. As part of the evidence base for this guidance, two studies considered at the previous surveillance review (Keller et al., 2010; Reichlin et al., 2009) were considered. Through the literature search for the 4-year surveillance review, two systematic reviews112,113 were identified which published after MTG4. The studies found that copeptin and troponin combined improved sensitivity for the diagnosis of acute MI compared with troponin alone.		
95-RR3: In what circumstances should symptoms?	telephone advice be given to people of	calling with chest pain? Is the appro	opriateness influenced by age, sex or
No evidence identified.	An RCT135 (n=1944) was identified which tested an educational intervention to reduce pre-hospital delay in patients with	None identified through GDG questionnaire.	The purpose of the research recommendation was to develop a robust system for giving appropriate telephone advice to people with chest pain. The

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
	ACS. All patients received usual in-hospital care. Those in the intervention group also received an individualised education session using motivational techniques which was reinforced a month later by telephone. The findings of the study indicated that the intervention reduced the pre- hospital median delay time compared to the control group, and that those who received the intervention reported their symptoms more promptly.		guideline stated that research should be conducted to clarify if an emergency response in all circumstances is appropriate, or if there are identifiable factors such as age, sex, or associated symptoms that would allow a modified response and a more appropriate use of resources. The new evidence suggests that an educational intervention, including follow up by telephone, may reduce the time taken for an individual to seek help for potential ACS. However, the evidence does not clarify the appropriate circumstances in which telephone advice should be given. Therefor it is unlikely that the new evidence will impact on the current guideline recommendations.
95-RR4: Can a national registry of people presenting with suspected angina be established to allow cohort analysis of treatments, investigations and outcomes in this group?			
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-RR5: What is the clinical and cost effectiveness of multislice CT coronary angiography compared with functional testing in the diagnosis of angina in a population of people with stable chest pain who have a moderate (30–60%) pre-test likelihood of CAD?			
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.
95-RR6: How should information about the diagnostic pathway and the likely outcomes, risks and benefits, with and without treatment, be most effectively presented to particular groups of people, defined by age, ethnicity and sex?			

Chest pain of recent onset CG95 Surveillance review decision

Conclusions from the 2-year surveillance review (2012)	Is there any new evidence/intelligence identified during this 4-year surveillance review (2014) that may change this conclusion?	Clinical feedback from the GDG	Conclusion of this 4-year surveillance review (2014)
No evidence identified.	No new evidence identified.	None identified through GDG questionnaire.	No relevant evidence identified.

A.2 References

- 1. Genders TSS, Steyerberg EW, Hunink MGM et al. (2012) Prediction model to estimate presence of coronary artery disease: Retrospective pooled analysis of existing cohorts. BMJ (Online).344 (7862), 2012.Article Number: e3485.Date of Publication: 23 Jun 2012.
- 2. Nehme Z, Boyle MJ, and Brown T. (2013) Diagnostic accuracy of prehospital clinical prediction models to identify short-term outcomes in patients with acute coronary syndromes: a systematic review. [Review]. Journal of Emergency Medicine 44:946-954.
- 3. Haasenritter J, Stanze D, Widera G et al. (2012) Does the patient with chest pain have a coronary heart disease? Diagnostic value of single symptoms and signs--a meta-analysis. [Review]. Croatian Medical Journal 53:432-441.
- 4. Banerjee A, Newman DR, Van den Bruel A et al. (2012) Diagnostic accuracy of exercise stress testing for coronary artery disease: a systematic review and meta-analysis of prospective studies. [Review]. International Journal of Clinical Practice 66:477-492.
- 5. Adil M, Hafizullah M, Jan H et al. (2011) Diagnostic yield of stress echocardiography in coronary artery disease patients. Journal of Postgraduate Medical Institute.25 (4) (pp 331-337), 2011.Date of Publication: 2011. 331-337.
- 6. Yoshitani H, Takeuchi M, Mor-Avi V et al. (2009) Comparative diagnostic accuracy of multiplane and multislice three-dimensional dobutamine stress echocardiography in the diagnosis of coronary artery disease. Journal of the American Society of Echocardiography 22:437-442.
- 7. Arnold JR, Karamitsos TD, Pegg TJ et al. (2010) Adenosine stress myocardial contrast echocardiography for the detection of coronary artery disease: a comparison with coronary angiography and cardiac magnetic resonance. Jacc: Cardiovascular Imaging 3:934-943.
- 8. Kirschbaum SW, Nieman K, Springeling T et al. (24-6-2011) Non-invasive diagnostic workup of patients with suspected stable angina by combined computed tomography coronary angiography and magnetic resonance perfusion imaging. Circulation Journal 75:1678-1684.
- 9. Abdelmoneim SS, Dhoble A, Bernier M et al. (2009) Quantitative myocardial contrast echocardiography during pharmacological stress for diagnosis of coronary artery disease: a systematic review and meta-analysis of diagnostic accuracy studies. [Review] [33 refs]. European Journal of Echocardiography 10:813-825.

- 10. Greulich S, Bruder O, Parker M et al. (2012) Comparison of exercise electrocardiography and stress perfusion CMR for the detection of coronary artery disease in women. Journal of Cardiovascular Magnetic Resonance 14:36.
- 11.Parkka JP, Koskenvuo JW, Kervinen H et al. (2010) Diagnostic performance of cardiac magnetic resonance imaging in coronary artery disease. Clinical Physiology & Functional Imaging 30:89-97.
- 12.Kato S, Kitagawa K, Ishida N et al. (14-9-2010) Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. Journal of the American College of Cardiology 56:983-991.
- 13.de Mello RA, Nacif MS, Dos Santos AA et al. (2012) Diagnostic performance of combined cardiac MRI for detection of coronary artery disease. European Journal of Radiology 81:1782-1789.
- 14. Hamon M, Fau G, Nee G et al. (2010) Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. [Review] [51 refs]. Journal of Cardiovascular Magnetic Resonance 12:29.
- 15. Chattranukulchai P, Tumkosit M, Cholteesupachai J et al. (2010) Diagnostic accuracy of combined dipyridamole stress perfusion and delayed enhancement cardiovascular magnetic resonance imaging for detection of coronary artery disease. Asian Biomedicine.4 (1) (pp 19-25), 2010. Date of Publication: February 2010. 19-25.
- 16.Gaibazzi N, Rigo F, and Reverberi C. (2010) Detection of coronary artery disease by combined assessment of wall motion, myocardial perfusion and coronary flow reserve: a multiparametric contrast stress-echocardiography study. Journal of the American Society of Echocardiography 23:1242-1250.
- 17.Alessandri N, Di MA, Rondoni G et al. (2009) Heart imaging: the accuracy of the 64-MSCT in the detection of coronary artery disease. European Review for Medical & Pharmacological Sciences 13:163-171.
- 18. Amemiya S and Takao H. (2009) Computed tomographic coronary angiography for diagnosing stable coronary artery disease A cost-utility and costeffectiveness analysis. Circulation Journal.73 (7) (pp 1263-1270), 2009. Date of Publication: July 2009. 1263-1270.
- 19.Arbab-Zadeh A, Miller JM, Rochitte CE et al. (24-1-2012) Diagnostic accuracy of computed tomography coronary angiography according to pre-test probability of coronary artery disease and severity of coronary arterial calcification. The CORE-64 (Coronary Artery Evaluation Using 64-Row Multidetector Computed Tomography Angiography) International Multicenter Study. Journal of the American College of Cardiology 59:379-387.
- 20.Chao SP, Law WY, Kuo CJ et al. (2010) The diagnostic accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease. European Heart Journal 31:1916-1923.
- 21. Cheneau E, Vahdat B, Bernard L et al. (2011) Routine use of coronary computed tomography as initial diagnostic test for angina pectoris. Archives of cardiovascular diseases 104:29-34.
- 22.de Graaf FR, Schuijf JD, van Velzen JE et al. (2010) Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. European Heart Journal 31:1908-1915.
- 23.Mohammadzadeh A, Shabestari AA, Mohammadzadeh M et al. (2012) Diagnostic performance of multislice CT coronary angiography in the assessment of significant coronary artery disease. Acta Medica Iranica 50:31-36.

- 24.Nieman K, Galema T, Weustink A et al. (2009) Computed tomography versus exercise electrocardiography in patients with stable chest complaints: realworld experiences from a fast-track chest pain clinic. Heart 95:1669-1675.
- 25.Selcoki Y, Yilmaz OC, Kankilic MN et al. (2010) Diagnostic accuracy of 64-slice computed tomography in patients with suspected or proven coronary artery disease. Turk Kardiyoloji Dernegi Arsivi 38:95-100.
- 26.Guo SL, Guo YM, Zhai YN et al. (2011) Diagnostic accuracy of first generation dual-source computed tomography in the assessment of coronary artery disease: a meta-analysis from 24 studies. [Review]. The International Journal of Cardiovascular Imaging 27:755-771.
- 27.Genders TS, Pugliese F, Mollet NR et al. (2010) Incremental value of the CT coronary calcium score for the prediction of coronary artery disease. European Radiology 20:2331-2340.
- 28.Salavati A, Radmanesh F, Heidari K et al. (2012) Dual-source computed tomography angiography for diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. [Review]. Journal of cardiovascular computed tomography 6:78-90.
- 29.Guner LA, Karabacak NI, Cakir T et al. (2010) Comparison of diagnostic performances of three different software packages in detecting coronary artery disease. European Journal of Nuclear Medicine & Molecular Imaging 37:2070-2078.
- 30.Al MM, Sun Z, and Lenzo N. (2011) Diagnostic value of SPECT, PET and PET/CT in the diagnosis of coronary artery disease: A systematic review. Biomedical Imaging & Intervention Journal 7:e9.
- 31.Jaarsma C, Leiner T, Bekkers SC et al. (8-5-2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. Journal of the American College of Cardiology 59:1719-1728.
- 32.De Jong MC, Genders TS, van Geuns RJ et al. (2012) Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. European Radiology 22:1881-1895.
- 33.Gorenoi V, Schonermark MP, and Hagen A. (2012) CT coronary angiography vs. invasive coronary angiography in CHD. GMS Health Technology Assessment 8:Doc02.
- 34.D'Ascenzo F, Cerrato E, Biondi-Zoccai G et al. (2013) Coronary computed tomographic angiography for detection of coronary artery disease in patients presenting to the emergency department with chest pain: a meta-analysis of randomized clinical trials. European heart journal cardiovascular Imaging 14:782-789.
- 35.Menke J, Unterberg-Buchwald C, Staab W et al. (2013) Head-to-head comparison of prospectively triggered vs retrospectively gated coronary computed tomography angiography: Meta-analysis of diagnostic accuracy, image quality, and radiation dose. American Heart Journal 165:154.
- 36.Sun Z and Ng K-H. (2012) Diagnostic value of coronary CT angiography with prospective ECG-gating in the diagnosis of coronary artery disease: A systematic review and meta-analysis. International Journal of Cardiovascular Imaging 28:2109-2119.
- 37.Min JK, Koduru S, Dunning AM et al. (2012) Coronary CT angiography versus myocardial perfusion imaging for near-term quality of life, cost and radiation exposure: a prospective multicenter randomized pilot trial. Journal of cardiovascular computed tomography 6:274-283.

- 38.Powell H and Cosson P. (2013) Comparison of 64-slice computed tomography angiography and coronary angiography for the detection and assessment of coronary artery disease in patients with angina: A systematic review. Radiography 19:168-175.
- 39. Ayaram D, Bellolio MF, Murad MH et al. (2013) Triple rule-out computed tomographic angiography for chest pain: a diagnostic systematic review and meta-analysis. [Review]. Academic Emergency Medicine 20:861-871.
- 40.Westwood M, Al M, Burgers L et al. (2013) A systematic review and economic evaluation of newgeneration computed tomography scanners for imaging in coronary artery disease and congenital heart disease: Somatom definition flash, Aquilion ONE, Brilliance ICT and Discovery CT750 HD. Health Technology Assessment 17:1-243.
- 41.Desai RR and Jha S. (2013) Diagnostic performance of cardiac stress perfusion mri in the detection of coronary artery disease using fractional flow reserve as the reference standard: A meta-Analysis. American Journal of Roentgenology 201:W245-W252.
- 42.Porter TR, Smith LM, Wu J et al. (2013) Patient outcome following 2 different stress imaging approaches: A prospective randomized comparison. Journal of the American College of Cardiology 61:2446-2455.
- 43.Thomas D, Xie F, Smith LM et al. (2012) Prospective randomized comparison of conventional stress echocardiography and real-time perfusion stress echocardiography in detecting significant coronary artery disease. Journal of the American Society of Echocardiography 25:1207-1214.
- 44.Rai M, Baker WL, Parker MW et al. (2012) Meta-analysis of optimal risk stratification in patients >65 years of age. American Journal of Cardiology 110:1092-1099.
- 45.Ladapo JA, Blecker S, Elashoff MR et al. (2013) Clinical implications of referral bias in the diagnostic performance of exercise testing for coronary artery disease. Journal of the American Heart Association 2:e000505.
- 46.Parker MW, Iskandar A, Limone B et al. (2012) Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: A bivariate meta-analysis. Circulation: Cardiovascular Imaging 5:700-707.
- 47.Mc Ardle BA, Dowsley TF, Dekemp RA et al. (30-10-2012) Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta-analysis. [Review]. Journal of the American College of Cardiology 60:1828-1837.
- 48.Zhou T, Yang L-F, Zhai J-L et al. (2014) SPECT myocardial perfusion versus fractional flow reserve for evaluation of functional ischemia: A meta analysis. European Journal of Radiology 83:951-956.
- 49.Chen L, Wang X, Bao J et al. (2014) Direct comparison of cardiovascular magnetic resonance and single-photon emission computed tomography for detection of coronary artery disease: A meta-analysis. PLoS ONE 9.
- 50.Romero J, Xue X, Gonzalez W et al. (2012) CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. [Review]. Jacc: Cardiovascular Imaging 5:494-508.
- 51. Miller CD, Hoekstra JW, Lefebvre C et al. (2012) Provider-directed imaging stress testing reduces health care expenditures in lower-risk chest pain patients presenting to the emergency department. SO: Circulation.Cardiovascular imaging 5:111-118.

- 52.Agarwal R, Saini A, Alyousef T et al. (2012) Magnetocardiography for the diagnosis of coronary artery disease: a systematic review and meta-analysis. [Review]. Annals of Noninvasive Electrocardiology 17:291-298.
- 53.Agarwal R, Gosain P, Kirkpatrick JN et al. (2012) Tissue Doppler imaging for diagnosis of coronary artery disease: A systematic review and meta-analysis. Cardiovascular Ultrasound 10.
- 54.Langdorf MI, Wei E, Ghobadi A et al. (2010) Echocardiography to supplement stress electrocardiography in emergency department chest pain patients. The Western Journal of Emergency Medicine 11:379-383.
- 55.Hermann LK, Weingart SD, Duvall WL et al. (2009) The limited utility of routine cardiac stress testing in emergency department chest pain patients younger than 40 years. Annals of Emergency Medicine 54:12-16.
- 56.Lim SH, Anantharaman V, Sundram F et al. (2013) Stress myocardial perfusion imaging for the evaluation and triage of chest pain in the emergency department: A randomized controlled trial. SO: Journal of nuclear cardiology 20:1002-1012.
- 57. Miller CD, Case LD, Little WC et al. (2013) Stress CMR reduces revascularization, hospital readmission, and recurrent cardiac testing in intermediate-risk patients with acute chest pain. Jacc: Cardiovascular Imaging 6:785-794.
- 58.Romero J, Kahan J, Kelesidis I et al. (2013) CMR imaging for the evaluation of myocardial stunning after acute myocardial infarction: A meta-analysis of prospective trials. European heart journal cardiovascular Imaging 14:1080-1091.
- 59.Takakuwa KM, Keith SW, Estepa AT et al. (2011) A meta-analysis of 64-section coronary CT angiography findings for predicting 30-day major adverse cardiac events in patients presenting with symptoms suggestive of acute coronary syndrome. Academic Radiology 18:1522-1528.
- 60.Athappan G, Habib M, Ponniah T et al. (28-5-2010) Multi-detector computerized tomography angiography for evaluation of acute chest pain--a meta analysis and systematic review of literature. [Review] [44 refs]. International Journal of Cardiology 141:132-140.
- 61.Samad Z, Hakeem A, Mahmood SS et al. (2012) A meta-analysis and systematic review of computed tomography angiography as a diagnostic triage tool for patients with chest pain presenting to the emergency department
- 62.539. Journal of Nuclear Cardiology.19 (2) (pp 364-376), 2012. Date of Publication: April 2012. 364-376.
- 63.Branch KR, Bresnahan BW, Veenstra DL et al. (2012) Economic outcome of cardiac CT-based evaluation and standard of care for suspected acute coronary syndrome in the emergency department: a decision analytic model. Academic Radiology 19:265-273.
- 64. Chow BJ, Joseph P, Yam Y et al. (15-8-2010) Usefulness of computed tomographic coronary angiography in patients with acute chest pain with and without high-risk features. American Journal of Cardiology 106:463-469.
- 65.Fazel P, Peterman MA, and Schussler JM. (15-8-2009) Three-year outcomes and cost analysis in patients receiving 64-slice computed tomographic coronary angiography for chest pain. American Journal of Cardiology 104:498-500.
- 66.Goldstein JA, Chinnaiyan KM, Abidov A et al. (27-9-2011) The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. Journal of the American College of Cardiology 58:1414-1422.

- 67.Hoffmann U, Bamberg F, Chae CU et al. (2009) Coronary Computed Tomography Angiography for Early Triage of Patients With Acute Chest Pain. The ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) Trial. Journal of the American College of Cardiology.53 (18) (pp 1642-1650), 2009.Date of Publication: 05 May 2009. 1642-1650.
- 68.Hoffmann U, Truong QA, Schoenfeld DA et al. (26-7-2012) Coronary CT angiography versus standard evaluation in acute chest pain. New England Journal of Medicine 367:299-308.
- 69.Kim J, Lee H, Song S et al. (2010) Efficacy and safety of the computed tomography coronary angiography based approach for patients with acute chest pain at an emergency department: one month clinical follow-up study. Journal of Korean Medical Science 25:466-471.
- 70.Maffei E, Seitun S, Martini C et al. (2010) CT coronary angiography and exercise ECG in a population with chest pain and low-to-intermediate pre-test likelihood of coronary artery disease. Heart 96:1973-1979.
- 71.Ueno K, Anzai T, Jinzaki M et al. (2009) Diagnostic capacity of 64-slice multidetector computed tomography for acute coronary syndrome in patients presenting with acute chest pain. Cardiology 112:211-218.
- 72.van Velzen JE, de Graaf FR, Kroft LJ et al. (2012) Performance and efficacy of 320-row computed tomography coronary angiography in patients presenting with acute chest pain: results from a clinical registry. The International Journal of Cardiovascular Imaging 28:865-876.
- 73.Litt HI, Gatsonis C, Snyder B et al. (12-4-2012) CT angiography for safe discharge of patients with possible acute coronary syndromes. New England Journal of Medicine 366:1393-1403.
- 74. Truong QA, Hayden D, Woodard PK et al. (25-6-2013) Sex differences in the effectiveness of early coronary computed tomographic angiography compared with standard emergency department evaluation for acute chest pain: the rule-out myocardial infarction with Computer-Assisted Tomography (ROMICAT)-II Trial. Circulation 127:2494-2502.
- 75.Hulten E, Pickett C, Bittencourt MS et al. (26-2-2013) Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. Journal of the American College of Cardiology 61:880-892.
- 76.Linde JJ, Kofoed KF, Sorgaard M et al. (2013) Cardiac computed tomography guided treatment strategy in patients with recent acute-onset chest pain: Results from the randomised, controlled trial: CArdiac cT in the treatment of acute CHest pain (CATCH). SO: International journal of cardiology 168:5257-5262.
- 77.Krissak R, Henzler T, Prechel A et al. (2012) Triple-rule-out dual-source CT angiography of patients with acute chest pain: dose reduction potential of 100 kV scanning. European Journal of Radiology 81:3691-3696.
- 78.Aldous SJ, Florkowski CM, Crozier IG et al. (2011) Comparison of high sensitivity and contemporary troponin assays for the early detection of acute myocardial infarction in the emergency department. Annals of Clinical Biochemistry 48:3-8.
- 79. Christ M, Popp S, Pohlmann H et al. (2010) Implementation of high sensitivity cardiac troponin T measurement in the emergency department. American Journal of Medicine 123:1134-1142.

- 80.Cuda G, Lentini M, Gallo L et al. (2012) High sensitive troponin T in individuals with chest pain of presumed ischemic origin. Frontiers in Bioscience 4:2322-2327.
- 81.Eggers KM, Venge P, and Lindahl B. (11-7-2012) High-sensitive cardiac troponin T outperforms novel diagnostic biomarkers in patients with acute chest pain. Clinica Chimica Acta 413:1135-1140.
- 82.Freund Y, Chenevier-Gobeaux C, Bonnet P et al. (2011) High-sensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction. Critical Care (London, England) 15:R147.
- 83.Giannitsis E, Becker M, Kurz K et al. (2010) High-sensitivity cardiac troponin T for early prediction of evolving non-ST-segment elevation myocardial infarction in patients with suspected acute coronary syndrome and negative troponin results on admission. Clinical Chemistry 56:642-650.
- 84.Keller T, Zeller T, Peetz D et al. (27-8-2009) Sensitive troponin I assay in early diagnosis of acute myocardial infarction. New England Journal of Medicine 361:868-877.
- 85.Khan DA, Sharif MS, and Khan FA. (2011) Diagnostic performance of high-sensitivity troponin T, myeloperoxidase, and pregnancy-associated plasma protein A assays for triage of patients with acute myocardial infarction. Korean Journal Of Laboratory Medicine 31:172-178.
- 86.Kurz K, Giannitsis E, Becker M et al. (2011) Comparison of the new high sensitive cardiac troponin T with myoglobin, h-FABP and cTnT for early identification of myocardial necrosis in the acute coronary syndrome. Clinical Research in Cardiology 100:209-215.
- 87.Lindahl B, Venge P, and James S. (2010) The new high-sensitivity cardiac troponin T assay improves risk assessment in acute coronary syndromes.[Erratum appears in Am Heart J. 2011 Feb;161(2):425]. American Heart Journal 160:224-229.
- 88.Melki D, Lind S, Agewall S et al. (2011) Diagnostic value of high sensitive troponin T in chest pain patients with no persistent ST-elevations. Scandinavian Cardiovascular Journal.45 (4) (pp 198-204), 2011.Date of Publication: August 2011. 198-204.
- 89. Pracon R, Kruk M, Jakubczak B et al. (2012) Superior early diagnostic performance of a sensitive cardiac troponin assay as compared to a standard troponin test in the diagnosis of acute myocardial infarction. Kardiologia Polska 70:131-138.
- 90.Reichlin T, Hochholzer W, Bassetti S et al. (27-8-2009) Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. New England Journal of Medicine 361:858-867.
- 91.Reiter M, Twerenbold R, Reichlin T et al. (2011) Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. European Heart Journal 32:1379-1389.
- 92.Saenger AK, Beyrau R, Braun S et al. (11-4-2011) Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clinica Chimica Acta 412:748-754.
- 93.Sanchis J, Bardaji A, Bosch X et al. (2012) Usefulness of high-sensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage. American Heart Journal 164:194-200.
- 94.Weber M, Bazzino O, Navarro Estrada JL et al. (2011) Improved diagnostic and prognostic performance of a new high-sensitive troponin T assay in patients with acute coronary syndrome. American Heart Journal 162:81-88.

- 95.Body R, Carley S, McDowell G et al. (20-9-2011) Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a highsensitivity assay. Journal of the American College of Cardiology 58:1332-1339.
- 96.Reichlin T, Hochholzer W, Stelzig C et al. (30-6-2009) Incremental value of copeptin for rapid rule out of acute myocardial infarction. Journal of the American College of Cardiology 54:60-68.
- 97.Keller T, Tzikas S, Zeller T et al. (11-5-2010) Copeptin improves early diagnosis of acute myocardial infarction. Journal of the American College of Cardiology 55:2096-2106.
- 98. Giannitsis E, Kehayova T, Vafaie M et al. (2011) Combined testing of high-sensitivity troponin T and copeptin on presentation at prespecified cutoffs improves rapid rule-out of non-ST-segment elevation myocardial infarction. Clinical Chemistry 57:1452-1455.
- 99. Giavarina D, Carta M, Fortunato A et al. (2011) Copeptin and high sensitive troponin for a rapid rule out of acute myocardial infarction? Clinical Laboratory 57:725-730.
- 100. Bhardwaj A, Truong QA, Peacock WF et al. (2011) A multicenter comparison of established and emerging cardiac biomarkers for the diagnostic evaluation of chest pain in the emergency department. American Heart Journal 162:276-282.
- 101. Diercks DB, Kirk JD, Naser S et al. (2011) Value of high-sensitivity C-reactive protein in low risk chest pain observation unit patients. International Journal of Emergency Medicine 4:37.
- 102. Hjortshoj S, Venge P, and Ravkilde J. (30-1-2011) Clinical performance of a new point-of-care cardiac troponin I assay compared to three laboratory troponin assays. Clinica Chimica Acta 412:370-375.
- 103. Kume N, Mitsuoka H, Hayashida K et al. (2011) Pentraxin 3 as a biomarker for acute coronary syndrome: comparison with biomarkers for cardiac damage. Journal of Cardiology 58:38-45.
- 104. Takhshid MA, Kojuri J, Tabei SMB et al. (2010) Early diagnosis of acute coronary syndrome with sensitive troponin I and ischemia modified albumin. Iranian Cardiovascular Research Journal.4 (4) (pp 144-151), 2010.Date of Publication: December 15, 2010. 144-151.
- 105. Truong QA, Bayley J, Hoffmann U et al. (2012) Multi-marker strategy of natriuretic peptide with either conventional or high-sensitivity troponin-T for acute coronary syndrome diagnosis in emergency department patients with chest pain: from the "rule out myocardial infarction using computer assisted tomography" (ROMICAT) trial. American Heart Journal 163:972-979.
- 106. Than M, Aldous S, Lord SJ et al. (2014) A 2-hour diagnostic protocol for possible cardiac chest pain in the emergency department: a randomized clinical trial. JAMA Internal Medicine 174:51-58.
- 107. White HD, Tonkin A, Simes J et al. (4-2-2014) Association of contemporary sensitive troponin I levels at baseline and change at 1 year with longterm coronary events following myocardial infarction or unstable angina: results from the LIPID Study (Long-Term Intervention With Pravastatin in Ischaemic Disease). Journal of the American College of Cardiology 63:345-354.
- 108. Chatterjee S, Kim J, Dahhan A et al. (2013) Use of high-sensitivity troponin assays predicts mortality in patients with normal conventional troponin assays on admission Insights from a meta-analysis. Clinical Cardiology 36:649-653.

- 109. Cheng C, Wang Q, You W et al. (2014) MiRNAs as biomarkers of myocardial infarction: A meta-analysis. PLoS ONE 9.
- 110. Lippi G, Mattiuzzi C, Comelli I et al. (2013) Glycogen phosphorylase isoenzyme BB in the diagnosis of acute myocardial infarction: a meta-analysis. Biochemia Medica 23:78-82.
- 111. Carroll C, Al KM, Stevens JW et al. (2013) Heart-type fatty acid binding protein as an early marker for myocardial infarction: systematic review and meta-analysis. [Review]. Emergency Medicine Journal 30:280-286.
- 112. Lippi G, Mattiuzzi C, and Cervellin G. (2013) Critical review and meta-analysis on the combination of heart-type fatty acid binding protein (H-FABP) and troponin for early diagnosis of acute myocardial infarction. [Review]. Clinical Biochemistry 46:26-30.
- 113. Lipinski MJ, Escarcega RO, D'Ascenzo F et al. (1-5-2014) A systematic review and collaborative meta-analysis to determine the incremental value of copeptin for rapid rule-out of acute myocardial infarction. [Review]. American Journal of Cardiology 113:1581-1591.
- 114. Raskovalova T, Twerenbold R, Collinson PO et al. (2014) Diagnostic accuracy of combined cardiac troponin and copeptin assessment for early ruleout of myocardial infarction: a systematic review and meta-analysis. European Heart Journal Acute Cardiovascular Care 3:18-27.
- 115. Hess EP, Knoedler MA, Shah ND et al. (2012) The chest pain choice decision aid: a randomized trial. Circulation Cardiovascular:251-259.
- 116. Hess EP, Agarwal D, Chandra S et al. (13-7-2010) Diagnostic accuracy of the TIMI risk score in patients with chest pain in the emergency department: a meta-analysis. CMAJ Canadian Medical Association Journal 182:1039-1044.
- 117. Steurer J, Held U, Schmid D et al. (2010) Clinical value of diagnostic instruments for ruling out acute coronary syndrome in patients with chest pain: a systematic review. [Review]. Emergency Medicine Journal 27:896-902.
- 118. Body R, Carley S, Wibberley C et al. (2010) The value of symptoms and signs in the emergent diagnosis of acute coronary syndromes. Resuscitation 81:281-286.
- 119. de WC, Cadeddu C, Gualano MR et al. (2012) Telemedicine for the reduction of myocardial infarction mortality: a systematic review and a metaanalysis of published studies. [Review]. Telemedicine Journal & E-Health 18:323-328.
- 120. Sequist TD, Morong SM, Marston A et al. (2012) Electronic risk alerts to improve primary care management of chest pain: a randomized, controlled trial. Journal of General Internal Medicine 27:438-444.
- 121. Kline JA, Jones AE, Shapiro NI et al. (2014) Multicenter, randomized trial of quantitative pretest probability to reduce unnecessary medical radiation exposure in emergency department patients with chest pain and dyspnea. Circulation Cardiovascular:66-73.
- 122. Pelter MM, Riegel B, McKinley S et al. (2012) Are there symptom differences in patients with coronary artery disease presenting to the ED ultimately diagnosed with or without ACS? SO: American journal of emergency medicine 30:1822-1828.
- 123. Leisy PJ, Coeytaux RR, Wagner GS et al. (2013) ECG-based signal analysis technologies for evaluating patients with acute coronary syndrome: a systematic review. [Review]. Journal of Electrocardiology 46:92-97.

- 124. Tulder R, Roth D, Weiser C et al. (2012) An electrocardiogram technician improves in-hospital first medical contact-to-electrocardiogram times: a cluster randomized controlled interventional trial. SO: American journal of emergency medicine 30:1729-1736.
- 125. Cabello JB, Burls A, Emparanza JI et al. (2013) Oxygen therapy for acute myocardial infarction. [Review][Update of Cochrane Database Syst Rev. 2010;(6):CD007160; PMID: 20556775]. Cochrane Database of Systematic Reviews 8:CD007160.
- 126. Ranchord AM, Argyle R, Beynon R et al. (2012) High-concentration versus titrated oxygen therapy in ST-elevation myocardial infarction: a pilot randomized controlled trial. SO: American heart journal 163:168-175.
- 127. Sundstrom BW, Bang A, Karlsson T et al. (2013) Anxiolytics in patients suffering a suspected acute coronary syndrome: Multi-centre randomised controlled trial in Emergency Medical Service. SO: International journal of cardiology 168:3580-3587.
- 128. Selker HP, Beshansky JR, Sheehan PR et al. (2012) Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. SO: JAMA 307:1925-1933.
- 129. Collinson P, Goodacre S, Gaze D et al. (2012) Very early diagnosis of chest pain by point-of-care testing: comparison of the diagnostic efficiency of a panel of cardiac biomarkers compared with troponin measurement alone in the RATPAC trial. Heart 98:312-318.
- 130. Apple FS, Smith SW, Pearce LA et al. (2009) Assessment of the multiple-biomarker approach for diagnosis of myocardial infarction in patients presenting with symptoms suggestive of acute coronary syndrome. Clinical Chemistry 55:93-100.
- 131. Fitzgerald P, Goodacre SW, Cross E et al. (2011) Cost-effectiveness of point-of-care biomarker assessment for suspected myocardial infarction: the randomized assessment of treatment using panel Assay of cardiac markers (RATPAC) trial. Academic Emergency Medicine 18:488-495.
- 132. Bradburn M, Goodacre SW, Fitzgerald P et al. (2012) Interhospital variation in the RATPAC trial (Randomised Assessment of Treatment using Panel Assay of Cardiac markers). SO: Emergency medicine journal 29:233-238.
- 133. Bruins Slot MH, van der Heijden GJ, Stelpstra SD et al. (15-10-2013) Point-of-care tests in suspected acute myocardial infarction: a systematic review. International Journal of Cardiology 168:5355-5362.
- 134. Rafeh NA, Castellanos MR, Khoueiry G et al. (2012) Association between coronary artery disease diagnosed by coronary angiography and breast arterial calcifications on mammography: Meta-analysis of the data. Journal of Women's Health 21:1053-1058.
- 135. Heidari R, Sadeghi M, Sanei H et al. (2012) The effects of trinitroglycerin injection on early complications of angiography. ARYA Atherosclerosis 8:50-53.
- 136. Mooney M, McKee G, Fealy G et al. (2014) A randomized controlled trial to reduce prehospital delay time in patients with acute coronary syndrome (ACS). SO: Journal of emergency medicine 46:495-506.

Appendix B: Committee members and technical teams

B.1 Acute chest pain update [2016]

B.1.1 Core committee members

Name	Role
Jonathan Mant (Chair)	Professor of Primary Care Research, University of Cambridge
Peter Bolton	Lay Member
Liz Clark	Lay Member
Stephen Hoole	Consultant Interventional Cardiologist, Papworth Hospital NHS Foundation Trust, Cambridge
Anita McSorley	Consultant Physician Acute Medicine, University Hospital South Manchester
Sarah Mounsey	Cardiac Advanced Nurse Practitioner, Kettering General Hospital
Naveen Mudalagiri	Consultant Cardiologist and Interventionalist, Medway Maritime NHS Foundation Trust & Guy's and St Thomas' NHS Foundation Trust & East Kent University Hospitals NHS Trust
Charles Peebles	Consultant Radiologist, University Hospital Southampton
Carl Roobottom	Consultant Radiologist, Derriford Hospital, Plymouth
Graham Stiff	General Practitioner, Newbury
Neil Swanson	Consultant Cardiologist, James Cook University Hospital, Middlesbrough
Paul Wallman	Consultant Emergency Physician, Pennine Acute Hospitals NHS Trust, Greater Manchester

B.1.2 NGC technical team

Name	Role
Katie Broomfield	Document Editor/Process Assistant
Angela Cooper	Senior Research Fellow
Alexander Haines	Senior Health Economist
Samantha Jones	Project Manager
Kate Kelley	Operations Director
Lauren Ramjee	Health Economist
Ashwini Sreekanta	Research Fellow
Sharon Swain	Senior Research Fellow
Ruth Wong	Information Scientist (until May 2016)

B.2 Stable chest pain update [2016]

B.2.1 Core committee members

Name	Role
Damien Longson (Chair)	Consultant Liaison Psychiatrist, Manchester Mental Health and Social Care Trust
Catherine Briggs (until	GP Principal, Bracondale Medical Centre, Stockport

Name	Role
February 2016)	
John Cape	Director of Psychological Therapies Programme, University College London
Alun Davies (until February 2016)	Professor of Vascular Surgery and Honorary Consultant Surgeon, Charing Cross & St Mary's Hospital & Imperial College NHS Trust
Alison Eastwood	Professor, Centre for Reviews and Dissemination, University of York
Sarah Fishburn	Lay Member
Jim Gray	Consultant Medical Microbiologist, The Birmingham Children's Hospital NHS Foundation Trust
Kath Nuttall (until November 2015)	Director, Lancashire & South Cumbria Cancer Network (- April 2013)
Tilly Pillay	Consultant Neonatologist, Staffordshire, Shropshire and Black Country Newborn Network, Royal Wolverhampton Hospitals Trust
Nick Screaton	Radiologist, Papworth Hospital NHS Foundation Trust
Lindsay Smith	Principal in General Medical Practice, Somerset
Philippa Williams	Lay Member
Sophie Wilne	Paediatric Oncologist, Nottingham Children's Hospital

B.2.2 Topic experts

Name	Role
Ivan Benett	GPwSI
Rick Body	Consultant in Emergency Medicine
Brian Hanrahan (until May 2015	Lay member
Andrew Kelion	Cardiologist
Carl Roobottom	Radiologist
Adam Timmis	Cardiologist

B.2.3 Clinical guidelines update team

Name	Role
Cheryl Hookway	Technical Analyst (until December 2015)
Nicki Mead	Technical Analyst (December 2015 onwards)
Paul Crosland	Health Economist
Emma Banks	Co-ordinator
Hugh McGuire	Technical Advisor (December 2015 onwards)
Jane Birch	Project Manager (July – September 2015)
Kathryn Hopkins	Technical Analyst Quality Assurance (September – December 2015), Technical Analyst (December 2015 onwards)
Lorraine Taylor	Associate Director (September 2015 onwards)
Nick Lowe	Administrator (until January 2016)
Nicole Elliott	Associate Director (until September 2015)
Phil Alderson	Clinical Advisor
Rebecca Parsons	Project manager (until June 2015)
Susannah Moon	Programme Manager (July 2015 onwards)
Toni Tan	Technical Advisor (until September 2015)

B.3 2010 guideline

B.3.1 Core committee members

Name	Role
Professor Adam Timmis (Chair)	Professor of Clinical Cardiology, Barts and the London Queen Mary's School of Medicine and Dentistry, London
Dr Jane Skinner (Clinical Advisor)	Consultant Community Cardiologist, Royal Victoria Infirmary, Newcastle Upon Tyne
Dr Philip Adams	Cardiologist Consultant, Royal Victoria Infirmary, Newcastle Upon Tyne
Dr John Ashcroft	General Practitioner, Old Station Surgery, Ilkeston, Derbyshire
Ms Liz Clark	Patient Representative
Dr Richard Coulden	Consultant Cardiothoracic Radiologist, Glenfield Hospital, Leicester
Professor Harry Hemingway	Public Health Physician Epidemiologist, ELC Medical School, London
Mrs Cathryn James	Clinical Pathways Advisor/Emergency Care Practitioner, Yorkshire Ambulance Services AS HQ, Wakefield
Ms Heather Jarman	Consultant Nurse in Emergency Care, St Georges Healthcare NHS Trust, London
Dr Jason Kendall	Consultant in Emergency Medicine, Frenchay Hospital, Bristol
Mr Peter Lewis	Chief Clinical Physiologist, Prince Charles Hospital, Merthyr, Tedfyl, Wales
Dr Kiran Patel	Consultant Cardiologist, Lyndon, West Bromwick, West Midlands
Professor Liam Smeeth	Professor of Clinical Epidemiology, London School of Hygiene and Tropical Medicine, London
Mr John Taylor	Patient Representative

B.3.2 Topic experts

Name	Role
Dr Paul Collinson	Consultant in Chemical Pathology and Head of Vascular Risk Management, St George's Hospital, London
Dr Dorothy Frizelle	Clinical Health Psychologist, Department of Clinical Psychology, University of Hull, Hull
Professor Steve Goodacre	Professor of Emergency Medicine, Medical Care Research Unit, Sheffield
Dr Marcus Hardbord	Consultant Physician & Gastroenterologist, Chelsea & Westminster Hospital, London
Ms Helen Williams	Consultant Pharmacist for Cardiovascular Disease, Southwark Health and Social Care

B.3.3 NGC technical team

Name	Role		
Nancy Turnbull	Guideline Lead		
Angela Cooper	Senior Health Service Research Fellow		
Katrina Sparrow	Health Services Research Fellow		
Neill Calvert	Head of Health Economics		
Laura Sawyer	Health Economist		
David Hill	Project Manager		
Marian Cotterell	Information Scientist (until January 2009)		

Acknowledgements 2010

The development of this guideline was greatly assisted by the following people:

We gratefully acknowledge the contributions of Beth Shaw as the guideline lead during the scoping phase, Meeta Kathoria for project managing the guideline through the scoping and development phase, Anne Morgan for her work on cost-effectiveness and clinical evidence reviews and Steve Goodacre for information and guidance regarding his published health economic analysis. Thanks to the team from Aberdeen for sharing their short term cost-effectiveness model, which assisted in the development of other cost-effectiveness model developed for this Guideline. Thanks also to Norma O'Flynn for her continued advice during the guideline's development. This guideline should also address Gill Ritchie and Vanessa Nunes for their help and advice with regard to the clinical and cost-effectiveness reviews. In addition, thanks also to Phil Alderson and Joanne Lord for their guidance on NICE related issues. We gratefully acknowledge administrative help from Tamara Diaz and secretarial support from Lauren Redrup. Finally we are also very grateful to all those who advised the development team and GDG and so contributed to the guideline process.

Acknowledgements 2016

The development of this guideline was greatly assisted by the following people:

- Elisabetta Fenu, Health Economics Lead
- Jason Kendall, Consultant in Emergency Medicine, Southmead Hospital, Bristol
- Carlos Sharpin, Joint Head of Information Science/Associate Director

Appendix C: Declarations of interest

The September 2014 version of the NICE code of practice for declaring and dealing with conflicts of interest policy was applied to this guideline.

Jonathan Mant (Chair)				
GC meeting	Declaration of interest	Classification	Action taken	
First GC meeting 20/01/16	Received a fee from BMS for interview on atrial fibrillation.	Non-specific personal financial	Declared and participated	
	Consultancy work for Expert- 24: Communications company that manage a health website that provides information on life expectancy.	Non-specific personal financial	Declared and participated	
	Holds grants as chief investigator awarded by NIHR and Stroke Association/British Heart Foundation.	Non-specific non-personal financial	Declared and participated	
	Brother works for Quintiles.	Non-specific personal family	Declared and participated	
Second GC meeting 09/03/16	Running a trial funded by the Stroke Association and the British Heart Foundation. Ferrer provided the interventional drug at no charge.	Non-specific non-personal financial	Declared and participated	
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A	
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A	
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A	
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A	

Jonathan Mant (Chair)

Peter Bolton (Lay Member)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	None.	N/A	N/A
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC	No change to existing	N/A	N/A

GC meeting	Declaration of interest	Classification	Action taken
meeting 21/04/16	declarations.		
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Liz Clark (Lay Member)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	None.	N/A	N/A
Second GC meeting 09/03/16	Lay member of the Scot-Heart Steering Committee reviewing the role of multi-detector computed tomography at rapid access chest pain clinic. No payment was received.	Non-specific personal non- financial	Declared and participated
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Stephen Hoole (Consultant Interventional Cardiologist)

•	•		
GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	Received speaker fee honoraria from AstraZeneca (Ticagrelor).	Non-specific personal financial	Declared and participated
	Received speaker fee honoraria from Abbott Vascular (Bioresorbable scaffolds).	Non-specific personal financial	Declared and participated
	Received professional (proctoring) fees from Abbott Vascular.	Non-specific personal financial	Declared and participated
	Received research grant support from AstraZeneca (Ticagrelor In STEMI).	Non-specific personal financial	Declared and participated

GC meeting	Declaration of interest	Classification	Action taken
	Received research grant support from Gore Medical (PFO closure).	Non-specific personal financial	Declared and participated
	Received travel grants from Boston Scientific and Abbott Vascular to lecture and present at cardiology meetings.	Reasonable travel expenses	Declared and participated
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 18/05/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Anita McSorley (Consultant Physician Acute Medicine)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	None.	N/A	N/A
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Sarah Mounsey (Cardiac Advance Nurse Practitioner)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	MSc dissertation on high sensitivity troponin triple test. This study has been used as a pilot for an unfunded larger	Specific personal non- financial	Declared and participated

GC meeting	Declaration of interest	Classification	Action taken
	study being undertaken by the medical registrar in the same department. Sarah doesn't have any involvement in this larger study.		
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Naveen Mudalagiri (Consultant Cardiologist and Interventionalist)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	None.	N/A	N/A
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Charles Peebles (Consultant Radiologist)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	Received £800 payment for lecture seminars on the use of cardiac imaging and MR equipment (not diagnosis).	Non-specific personal financial	Declared and participated
	Sponsorship to the department from contrast companies (Medtronic, Bayer	Specific non-personal financial	Declared and participated

GC meeting	Declaration of interest	Classification	Action taken
	and Gurvee) for MRI departmental course.		
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Carl Roobottom (Consultant Radiologist)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	Involved in providing lectures on a CT accreditation course run by GE for nearly 10 years which is based in the Peninsula Radiology Academy in Plymouth. Takes annual leave to deliver the course and is paid a lecture fee (via a separate company called ATC). The course is non-vendor specific and was designed to ensure high standards of CT reporting in the UK. Declared this interest when involved in the CG95 and DG3 NICE guidance and it was not felt to be an issue as recommendations on CT are non-vendor-specific. No pending publications on acute chest pain or associations with any manufacturers of Tn assays.	Non-specific personal financial	Declared and participated
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting	No change to existing declarations.	N/A	N/A

GC meeting	Declaration of interest	Classification	Action taken
11/04/16			
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Graham Stiff (General Practitioner)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	None.	N/A	N/A
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Neil Swanson (Consultant Radiologist)

GC meetingDeclaration of interestClassificationAction takenFirst GC meeting 20/01/16Occasionally responded to market research surveys that relate to personal opinions on the management of some acute chest pain conditions. In a year, this is estimated to be under £100. No payments/sponsorships received from any industry directly involved in the management of any cardiac conditions.Non-specific personal financialDeclared and participatedMoney is paid to Neil's department from industry for the employment of clinical fellows, but he is not involved in that and does not know how much money is paid. He is not involved in the selection ofNon-specific non-personal financialDeclared and participated						
meeting 20/01/16market research surveys that relate to personal opinions on the management of some acute chest pain conditions. In a year, this is estimated to be under £100. No payments/sponsorships received from any industry directly involved in the management of any cardiac conditions.financialMoney is paid to Neil's department from industry for the employment of clinical fellows, but he is not involved in that and does not know how much money is paid. He is not involved in the selection ofNon-specific non-personal financialDeclared and participated	GC meeting	Declaration of interest	Classification	Action taken		
department from industry for the employment of clinical fellows, but he is not involved in that and does not know how much money is paid. He is not involved in the selection of	meeting	market research surveys that relate to personal opinions on the management of some acute chest pain conditions. In a year, this is estimated to be under £100. No payments/sponsorships received from any industry directly involved in the management of any cardiac		Declared and participated		
		department from industry for the employment of clinical fellows, but he is not involved in that and does not know how much money is paid. He is not	financial			
Money is paid to Neil's Specific non-personal Declared and participated		Money is paid to Neil's	Specific non-personal	Declared and participated		

GC meeting	Declaration of interest	Classification	Action taken
	research department for research trials from a variety of companies which have a commercial interest in the treatments for acute chest pain. None of this money is paid to /spent by Neil. He is site principal investigator for a clinical trial (Re dual) sponsored by the makers of dabigatran. This trial recruits patients with acute chest pain (for example due to non ST elevation MI). Money is paid to the department for each patient recruited. Neil has no control over that money or how it is spent (mostly to pay for retention of research nurses). He does not know the exact amount but think it will be in the order of £20,000/year.	financial	
	Unpaid member of the British Cardiovascular Society Guidelines committee.	Specific non-personal financial	Declared and participated
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Paul Wallman (Consultant Emergency Physician)

GC meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	None.	N/A	N/A
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A

GC meeting	Declaration of interest	Classification	Action taken
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

NGC team

GDG meeting	Declaration of interest	Classification	Action taken
First GC meeting 20/01/16	In receipt of NICE commissions.	N/A	N/A
Second GC meeting 09/03/16	No change to existing declarations.	N/A	N/A
Third GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Fourth GC meeting 21/04/16	No change to existing declarations.	N/A	N/A
Fifth GC meeting 11/04/16	No change to existing declarations.	N/A	N/A
Sixth GC meeting 05/08/16	No change to existing declarations.	N/A	N/A

Appendix D: Clinical review protocols

D.1 High sensitivity cardiac troponins

Table 1: Re	view protocol: High sensitivity troponins – test and treat
Component	Description
Rationale	The chest pain of recent onset (acute) guideline (CG95) was reviewed in 2014 as part of NICE's routine surveillance programme to decide whether the guideline requires updating. The surveillance programme identified new evidence on the use of highly sensitive troponins compared to the conventional cardiac troponins to diagnose ACS in patients with acute chest pain. High-sensitivity cardiac troponin (hs-cTn) assays may allow rapid rule-out of AMI (acute myocardial infarction) and avoidance of unnecessary hospital admissions and anxiety. Ruling in an ACS in a timely manner is also a high priority, as early intervention in patients with ACS has been shown to lead to better outcomes.
Review question	In low, medium and high risk people under investigation for acute chest pain of suspected cardiac origin, what is the clinical and cost-effectiveness of high-sensitivity troponin assay methods compared to standard cardiac troponins to identify/rapidly rule-out NSTEMI/unstable angina and to improve patient outcomes?
Objectives	To evaluate the clinical and cost-effectiveness of high-sensitivity troponin assay methods compared to conventional cardiac troponins in diagnosing/rapid rule out of NSTEMI/unstable angina.
Population and target condition	 Target condition and presentation: Adults (age ≥18 years) presenting with acute chest pain/discomfort of suspected cardiac origin. Acute chest pain is defined as 'pain, discomfort or pressure in the chest, epigastrium, neck, jaw, or upper limb without an apparent non-cardiac source⁷⁷ attributed to a suspected, but not confirmed AMI.' Strata (as defined by study): High risk people Medium risk people Low risk people
Index diagnostic test + treatment	 <u>High-sensitivity cardiac troponin (hs-cTn) assays:</u> The recommended definition of a hs-cTn assay uses 2 criteria: The total imprecision, coefficient of variation (CV), of the assay should be ≤10% at the 99th percentile value of a healthy reference population. The limit of detection (LoD) of the assay should be such as to allow measurable concentrations to be attainable for at least 50% (ideally >95%) of healthy individuals
Comparator index diagnostic tests + treatment or treatment alone (no test)	 Tn T or I measurement on presentation and 10–12 hours after the onset of symptoms any other hs-cTn test, as specified above, or no comparators no test.
Outcomes	 Efficacy outcomes: all-cause mortality during 30 days and 1 year follow-up period (or closest time point) cardiovascular mortality during 30 days and 1 year follow-up period (or closest time point) myocardial infarction during 30 day follow-up period percutaneous coronary intervention (PCI) during 30-day follow-up period coronary artery bypass graft (CABG) during 30-day follow-up period

	 hospitalisation during 30-day follow-up period for cardiac causes (or closest time point)
	• hospitalisation during 30-day follow-up for non-cardiac causes (or closest time point)
	 patient satisfaction or HRQoL measures at one year
	 incidence of MACE (major adverse cardiac events [cardiac death, non-fatal AMI, revascularisation or hospitalisation for myocardial ischaemia]) during follow-up period.
	Process outcomes:
	• time to discharge
	 early discharge (≤4 hours after initial presentation) without MACE during follow-up
	 re-attendance at or re-admission to hospital during follow-up
	 referral rates for invasive coronary angiography and/or coronary revascularisation
	 repeat testing/additional testing.
	Secondary accuracy outcomes:
	sensitivity/specificity and other test accuracy measures.
Study design	Test-and-treat RCTs (CCTs will be considered if no RCTs are identified), systematic reviews of test-and-treat RCTs
Exclusions to	Studies not fulfilling the inclusion criteria will be excluded. A full list of reasons for
consider	exclusions will be given in the appendix. Exclusions to consider:
	studies which do not contain a concurrent control group
	• studies with population of traumatic chest injury without cardiac symptoms
	 studies with population in whom the cause of their chest pain/discomfort is known to be related to another condition, without cardiac symptoms
	studies from non-OECD countries.
	Other exclusions to consider:
	 the test does not lead directly to treatment, for example triage tests – consider including but assess risk of bias and indirectness
	 there are different treatments for the 2 randomised groups
	 not all patients in the trial are followed up regardless of test results (that is, including those that were not treated) – consider including but assess risk of bias
	• may exclude comparisons of the index test and treat versus the reference standard and treat.
Search Strategy	The search strategy will be based on intervention (high-sensitivity Tn assays) and target condition
	• The databases to be searched are:
	 Medline, Embase, The Cochrane Library
	• Date limits for search:
	\circ no date cut-off
	Language: English only
Review Strategy	Data synthesis:
	For the effectiveness data:
	 Data synthesis of RCT data. Meta-analysis where appropriate will be conducted.
	Stratification – groups that cannot be combined:
	Analyses will be conducted separately for each of the three hs-cTn assays. Analyses will
	be stratified according to whether the study evaluated:

• target condition
 timing of collection of blood sample for testing
 the threshold used to define a positive hs-cTn result.
For timing and threshold, stratified analysis will be conducted for all timepoints for which sufficient data are available.
• <u>risk stratification</u> : low, moderate and high pre-test probability of disease compared with each other if data allows. Pre-probability of disease (determined by clinical judgement based on cardiovascular risk factors, type of chest pain, physical findings and ECG abnormalities).
Subgroup analysis and investigation of heterogeneity:
In the event of significant heterogeneity, we plan to explore possible causes by looking at the characteristics of the included studies. Possible sources of heterogeneity in this review may include:
 age ≥70 years compared with age ≤70 years; <40 years versus ≥40 years
 patients with pre-existing CAD at baseline compared with patients without pre- existing CAD
 without previous AMI compared with pre-existing AMI
 mixed populations compared with those that excluded patients with STEMI
 time from symptom onset to presentation <3 hours compared with >3 hours
 time from symptom onset to presentation <6 hours compared with >6 hours
renal function
• gender
• age
• ethnicity
socioeconomic status
• people with disabilities.
Are there any equality issues to consider?
• see above
 variation in access to diagnostic testing.
Quality assessment:
• The methodological quality of each RCT or CCT will be assessed using the Evibase checklist and GRADE.
MIDs
Any reduction in mortality was clinically important. A 25% reduction or increase was
used for all other outcomes. A 5% change in adverse events was seen as clinically important.

Table 2: Review protocol: High sensitivity troponins – diagnostic accuracy	Table 2:	Review p	rotocol: High	sensitivity tro	oponins – c	diagnostic accurac	ÿ
--	----------	----------	---------------	-----------------	-------------	--------------------	---

Component	Description
Rationale	The chest pain of recent onset (acute) guideline (CG95) was reviewed in 2014 as part of NICE's routine surveillance programme to decide whether the guideline requires updating. The surveillance programme identified new evidence on the use of highly sensitive troponins compared to the conventional cardiac troponins to diagnose ACS in patients with acute chest pain. High-sensitivity cardiac troponin (hs-cTn) assays may allow rapid rule-out of AMI (acute myocardial infarction) and avoidance of unnecessary hospital admissions and anxiety. Ruling in an ACS in a timely manner is also a high

	priority, as early intervention in patient with ACS has been shown to lead to better outcomes.
Review question	In low, medium and high risk people under investigation for acute chest pain of suspected cardiac origin, what is the accuracy of high-sensitivity troponin assay to identify NSTEMI/unstable angina?
Objectives	To evaluate the accuracy of high-sensitivity troponin assays in diagnosing NSTEMI/unstable angina.
Study design	 cross-sectional studies and cohort studies (including both retrospective and prospective analyses), and systematic reviews of diagnostic cohort studies case-control studies to be included only if no other evidence is identified.
Population [with target condition]	Target condition and presentation: Adults (age ≥18 years) presenting with acute chest pain/discomfort of suspected cardiac origin. Acute chest pain is defined as 'pain, discomfort or pressure in the chest, epigastrium, neck, jaw, or upper limb without an apparent non-cardiac source ⁷⁷ attributed to a suspected, but not confirmed AMI.'
	Include studies that compare different risks and studies that report accuracy for different risk stratifications. • High risk • Medium risk
	 Low risk For papers which do not report TIMI, GRACE or other validated risk tool scores we will map prevalence to the risks reported in TIMI.
Setting	Emergency department and other hospital settings (for example coronary care unit)
Index tests	 <u>High-sensitivity cardiac troponin (hs-cTn) assays:</u> The recommended definition of a hs-cTn assay uses 2 criteria: The total imprecision, coefficient of variation (CV), of the assay should be ≤10% at the 99th percentile value of a healthy reference population. The limit of detection (LoD) of the assay should be such as to allow measurable concentrations to be attainable for at least 50% (ideally >95%) of healthy individuals.
Reference standards	Composite reference standard on the contemporary universal definition of myocardial infarction. ⁶⁸¹ Reference assays used to diagnose myocardial necrosis, for example: • serial high sensitivity troponin assays
	 standard troponin T or I assays or a combination of them
Statistical	Test accuracy:
measures	• 2 x 2 tables (the numbers of TP, FN, FP and TN test results)
	 sensitivity, specificity, positive likelihood ratios, negative likelihood ratios
Other exclusions	Studies not fulfilling the inclusion criteria will be excluded. A full list of reasons for exclusions will be given in the appendix. For example:
	 studies which do not contain a concurrent control group
	 studies which do not contain a concurrent control group studies with population of traumatic chest injury without cardiac symptoms
	 studies with population in whom the cause of their chest pain/discomfort is known to be related to another condition, without cardiac symptoms (for example gastro- oesophageal reflux, panic disorder, cocaine-associated chest pain)
	 studies evaluating prognosis only and not reporting diagnostic accuracy studies from non-OECD countries
	 studies from non-OECD countries studies published prior to 1999
	 studies published prior to 1999 studies including patients with STEMI and where then results are not reported separately.
Search strategy	The search strategy will be based on intervention (high-sensitivity Tn assays) and target

	condition .
	The databases to be searched are:
	 Medline, Embase, The Cochrane Library
	Date limits for search:
	 studies published before 1999
	 Language: English language only
Review strategy	Data synthesis:
	 Priority will be given to results as presented by AUCs (discriminatory analysis) and results of multivariate analysis (OR or RRs [95% CI]).
	<u>Stratification</u> – groups that cannot be combined:
	Analyses will be conducted separately for each hs-cTn assay. Analyses will be stratified according to whether the study evaluated:
	target condition
	 timing of collection of blood sample for testing
	 the threshold used to define a positive hs-cTn result.
	For timing and threshold stratified analysis will be conducted for all timepoints for which sufficient data is available.
	• <u>risk stratification</u> : low, moderate and high pre-test probability of disease compared with each other if data allows. Pre-probability of disease (determined by clinical judgement based on cardiovascular risk factors, type of chest pain, physical findings and ECG abnormalities).
	Subgroups where diagnostic tests may be more or less accurate – to investigate heterogeneity:
	In the event of significant heterogeneity, we plan to explore possible causes by looking at the characteristics of the included studies. Possible sources of heterogeneity in this review may include:
	 age <70 years compared with age ≥70 years; <40 years versus ≥40 years
	 patients with pre-existing CAD at baseline compared with patients without pre- existing CAD
	 without previous AMI compared with pre-existing AMI
	 low to moderate pre-test probability of disease compared with high pre-test probability of disease (determined by clinical judgement based on cardiovascular risk factors, type of chest pain, physical findings and ECG abnormalities)
	 mixed populations compared with those that excluded patients with STEMI
	 time from symptom onset to presentation <3 hours compared with >3 hours
	 time from symptom onset to presentation <6 hours compared with >6 hours
	renal function
	• diabetes
	• obesity
	• gender
	• ethnicity
	socioeconomic status
	people with disabilities.
	Are there any equality issues to consider?

- see above
- variation in access to diagnostic testing.

Appraisal of methodological quality:

The methodological quality of included DTA studies will be assessed using the QUADAS-2 checklist (per target condition).

D.2 Non-invasive imaging for the identification of people with NSTEMI/unstable angina

NSTEM	l/unstable angina
Component	Description
Review question	In people under investigation for acute chest pain of suspected cardiac origin, what is the clinical and cost-effectiveness of non-invasive imaging compared to standard practice, when each is followed by the appropriate treatment for NSTEMI/unstable angina, in order to improve patient outcomes?
Rationale	The chest pain of recent onset guideline published in March 2010 (CG95) was reviewed in 2014 as part of NICE's routine surveillance programme to decide whether the guideline required updating. New evidence identified suggested that non-invasive cardiac imaging, including stress myocardial perfusion imaging, stress cardiac magnetic resonance imaging and multi-detector computed tomography, may afford early identification of people with NSTEMI/unstable angina in people presenting with acute chest pain and uncertain diagnosis following ECG and troponin testing. Currently the guideline recommends a chest X-ray to help exclude other causes of chest pain, and early chest computed tomography should only be considered to rule out other diagnoses. The new evidence relating to non-invasive cardiac imaging may potentially impact on these recommendations.
Objectives	To evaluate the clinical effectiveness of non-invasive imaging when followed up by treatment for NSTEMI/unstable angina.
Population and target condition	 All adults (age ≥18 years) with acute chest pain/discomfort of suspected cardiac origin under investigation for NSTEMI/unstable angina, who have had initial triage including: clinical history signs and symptoms assessment physical examination ECG high sensitivity troponin I or T, or standard sensitivity troponin I or T.
Index diagnostic tests + treatment	Index diagnostic tests: • coronary computed tomography angiography (coronary CT) • multi-detector CT (MDCT) (≥64-slice CT scanner) • dual X-ray source MDCT • myocardial perfusion scintigraphy (MPS): • single photon emission CT (SPECT) • positron emission tomography (PET) • cardiac magnetic resonance imaging (cardiac MRI) • stress perfusion cardiac MRI • echocardiography • resting • stress. Treatment:

Table 3: Review protocol: Non-invasive imaging for the identification of people with NSTEMI/unstable angina

standard practice

	To include: • aspirin • ticagrelor/clopidogrel • beta blocker • ACE inhibitor • statin • anticoagulant, for example fondaparinux, low molecular weight heparin, prasugrel • revascularisation where warranted.
Comparator	Comparator: • standard practice to include • aspirin • ticagrelor/clopidogrel • beta blocker • ACE inhibitor • statin • anticoagulant, for example fondaparinux, low molecular weight heparin, prasugrel revascularisation where warranted. • one index test versus a second index test.
Outcomes	Efficacy outcomes: • all-cause mortality at 30-day and 1-year follow-up (or closest time point) • cardiovascular mortality at 30-day and 1 year follow-up (or closest time point) • myocardial infarction at 30-day follow-up • percutaneous coronary intervention (PCI) at 30-day follow-up • coronary artery bypass graft (CABG) at 30-day follow-up • hospitalisation at 30-day follow-up for cardiac causes (or closest time point) • hospitalisation at 30-day follow-up for non-cardiac causes (or closest time point) • hospitalisation at 30-day follow-up for non-cardiac causes (or closest time point) • quality of life at one year • adverse events related to index non-invasive test at 30 days • adverse events related to treatment: major bleeding at 30 days. Process outcomes: • number of people receiving treatment • length of hospital stay. Secondary accuracy outcomes: • sensitivity/specificity and other test accuracy measures.
Study design	RCTs
Exclusions	 studies with population of traumatic chest injury without cardiac symptoms studies with population in whom the cause of their chest pain/discomfort is known to be related to another condition, without cardiac symptoms, for example gastro-oesophageal reflux, panic disorder, cocaine-associated chest pain studies where there are different treatments for the 2 randomised groups studies conducted in developing countries studies published prior to 1999.
Search Strategy	 The search strategy will be based on intervention (non-invasive tests listed) and target condition. The databases to be searched are: Medline, Embase, The Cochrane Library

Component	Description
	Language: English only
Review Strategy	Stratification – population groups that cannot be combined:
	low risk of CAD
	intermediate risk of CAD
	high risk of CAD
	 risk stratification based on pre-test likelihood of CAD determined by cardiovascular risk factors, signs and symptoms, and clinical examination.
	Stratification – prior investigations:
	standard troponin I or T
	high sensitivity troponin I or T.
	Subgroups (where diagnostic tests may be more or less accurate – to investigate
	heterogeneity):
	 In the event of significant heterogeneity, we plan to explore possible causes by looking at the characteristics of the various included studies. Possible sources of heterogeneity in this review may include:
	 o age, for example <70 years versus ≥70 years, ≤40 years versus >40 years
	o diabetes
	◦ ethnicity
	o gender
	\circ impaired renal function
	o obesity
	 people with disabilities
	$_{\odot}$ pre-existing CAD compared with no prior history of CAD.
	Equality issues
	access to diagnostic testing.
	Appraisal of methodological quality
	 The methodological quality of each study will be assessed using NICE checklists and
	the quality of the evidence will be assessed by GRADE for each outcome.
	Synthesis of data
	Meta-analysis will be conducted where appropriate.
	Extraction of data to include (where available):
	• timing of non-invasive test
	• troponin I or T test results
	• information on population risk of CAD.
	MIDs: Any different in mortality was clinically important, a 25% reduction or increase for all other outcomes. A 10% increase in adverse events was clinically important.

D.3 Diagnostic test accuracy of non-invasive imaging for the identification of people with NSTEMI/unstable angina

Table 4:Review protocol: Diagnostic test accuracy of non-invasive imaging for the identification
of people with NSTEMI/unstable angina

Review question	In people under investigation for acute chest pain of suspected cardiac origin are non-invasive imaging tests more accurate compared to standard practice to identify whether NSTEMI/unstable angina is present, as indicated by the reference standard?
Rationale	The chest pain of recent onset (acute) guideline published in March 2010 (CG95) was reviewed in 2014 as part of NICE's routine surveillance programme to decide whether the guideline required updating. New evidence identified suggested that non-invasive cardiac imaging, including stress myocardial perfusion imaging, stress cardiac magnetic resonance imaging and multidetector computed tomography, may afford early identification of people with NSTEMI/unstable angina in people presenting with acute chest pain and uncertain diagnosis following ECG and troponin testing. Currently the guideline recommends a chest X-ray to help exclude other causes of chest pain, and early chest computed tomography should only be considered to rule out other diagnoses. The new evidence relating to non-invasive cardiac imaging may potentially impact on these recommendations.
Objective	To evaluate the accuracy of non-invasive imaging tests in diagnosing NSTEMI/unstable angina.
Study design	 cross-sectional studies and cohort studies (including both retrospective and prospective analyses) case-control studies to be included only if no other evidence is identified.
Population	 All adults (age ≥18 years) with acute chest pain/discomfort of suspected cardiac origin under investigation for NSTEMI/unstable angina, and have had initial triage including: clinical history signs and symptoms assessment physical examination ECG high sensitivity troponin I or T, or standard sensitivity troponin I or T.
Settings	Emergency department and other hospital settings (for example coronary care unit)
Index tests	 coronary computed tomography angiography (coronary CT) multidetector CT (MDCT) (≥64-slice CT scanner) dual X-ray source MDCT myocardial perfusion scintigraphy (MPS): single photon emission CT (SPECT) positron emission tomography (PET) cardiac magnetic resonance imaging (cardiac MRI) stress perfusion cardiac MRI echocardiography resting stress
Comparator test	 standard practice To include: aspirin ticagrelor/clopidogrel beta blocker ACE inhibitor statin anticoagulant, for example fondaparinux, low molecular weight heparin, prasugrel revascularisation where warranted one index test versus a second index test

Reference standard(s)	 coronary angiography ACS (NSTEMI/unstable angina) as defined by the American College of Cardiology/American Heart Association Guidelines ACS (NSTEMI/unstable angina) as defined by European Society of Cardiology Guidelines
Statistical measures	 2×2 tables specificity sensitivity ROC curve or area under curve (AUC) positive predictive value negative predictive value positive likelihood ratio negative likelihood ratio
Other exclusions	 studies with population of traumatic chest injury without cardiac symptoms studies with population in whom the cause of their chest pain/discomfort is known to be related to another condition, without cardiac symptoms, for example gastro-oesophageal reflux, panic disorder, cocaine-associated chest pain studies conducted in developing countries studies published prior to 1999.
Search strategy	 The search strategy will be based on intervention (non-invasive tests listed) and target condition . The databases to be searched are: Medline, Embase, The Cochrane Library Language: English only
Review strategy	 Stratification – population groups that cannot be combined: ≤10% prevalence of NSTEMI and/or unstable angina >10% to 20% prevalence of NSTEMI and/or unstable angina >20% to 50% prevalence of NSTEMI and/or unstable angina >50% prevalence of NSTEMI and/or unstable angina o risk stratification based on prevalence of NSTEMI and/or unstable angina o risk stratification based on prevalence of NSTEMI and/or unstable angina o risk stratification based on prevalence of NSTEMI and/or unstable angina o risk stratification based on prevalence of NSTEMI and/or unstable angina o risk stratification based on prevalence of NSTEMI and/or unstable angina in individual study population Stratification – prior investigations: standard troponin I or T high sensitivity troponin I or T. Subgroups (where diagnostic tests may be more or less accurate – to investigate heterogeneity): In the event of significant heterogeneity, we plan to explore possible causes by looking at the characteristics of the various included studies. Possible sources of heterogeneity in this review may include: o age, for example <70 years versus ≥70 years, ≤40 years versus >40 years o diabetes o ethnicity o gender o impaired renal function o obesity o people with disabilities o pre-existing CAD compared with no prior history of CAD.

Equality issues
access to diagnostic testing.
Appraisal of methodological quality:
 The methodological quality of each study will be assessed using the QUADAS-2 checklist (per target condition).
Synthesis of data:
• Diagnostic meta-analysis will be conducted where appropriate using hierarchical methods.
Extraction of data to include (where available):
timing of non-invasive test
troponin I or T test results
 information on population risk of CAD.

D.4 Prediction models/tools for people with stable chest pain of suspected cardiac origin

	Details	Protocol refinements
Review Question	What is the accuracy, clinical utility and cost effectiveness of clinical prediction models/tools (clinical history, cardiovascular risk factors, physical examination) in evaluating people with stable chest pain of suspected cardiac origin?	None
Objectives	Diagnosis of stable chest pain involves clinical assessment, including assessment of pre-test probability of having coronary artery disease (CAD). New evidence relating to a revised version of the Diamond and Forrester model was identified during surveillance. This revised model may have an impact on the recommended diagnostic pathways, based on a person's estimated likelihood of CAD.	None
Type of Review	Diagnostic prediction	None
Language	English only	None
Study Design	Diagnostic prediction studies (cross-sectional)	Ideally studies will be prospective (with consecutive enrolment). Studies where probability scores are calculated retrospectively from the patient record will be included.
Status	Full text only	None
Population	Adults presenting with stable chest pain/discomfort of suspected cardiac origin (CAD)	Include: Suspected CAD - even if the study does not specifically

	Details	Protocol refinements
		mention chest pain.
		Exclude: Known CAD (any part of study population) excluded.
Predictors / risk factors	a) clinical history, <i>or</i> b) cardiovascular risk factors, <i>or</i> c) physical examination, <i>or</i> any combination of a) b) or c).	Include: Any clinical factors if the information is likely to be available at a typical index clinic visit.
Reference standard	Coronary angiography (CA) <i>or</i> Computed tomography coronary angiography (CTCA)	Include: Computed tomography coronary angiography (CTCA) in order to include studies in potentially more diverse and therefore generalisable populations
Outcomes	ROC curve - AUC (c-statistic, c-index) Sensitivity and specificity	CAD is the clinical outcome of interest.
Other criteria for inclusion / exclusion of studies	 Exclusions: Population children, adults with acute chest pain, adults with chest pain not suspected to be of cardiac origin. Methodology: studies assessing prospective or retrospective <i>longterm</i> accuracy of a prediction model / tool (including cohort and case-control studies) conference abstracts will be excluded. animal studies will be excluded. 	None
Search strategies	Sources will include: Medline, Medline in Process, Embase, Cochrane CDSR, CENTRAL, DARE and HTA. (Legacy records will be retrieved from DARE). Economic searches will include Medline, Medline in Process, Embase, NHS EED and HTA, with economic evaluations and quality of life filters applied. Note: in the actual search we will still need to search for (a), (b) and (c) per original question, but we will only include studies on models that incorporated some or all of these, but not studies on individual risk factors only.	Date limit: studies published from 2009 onwards. An adaptation of the Duke Clinical Score had been selected by the original guideline development group, on the basis of the best available evidence, for inclusion in NICE CG95 (2010). The remit of this update was to identify evidence for models with better predictive ability in contemporary patient cohorts published since the

	Details	Protocol refinements
		previous review.
Review	Selection of papers:	
strategies	i) Selection based on titles and abstracts	
U	A full double-sifting of titles and abstracts will not be	
	conducted due to the nature of the review question	
	(narrow question with clearly defined straightforward	
	inclusion and exclusion criteria).	
	ii) Selection based on full papers	
	A full double-selecting of full papers for inclusion/exclusion	
	will not be conducted due to the nature of the review	
	question (as mentioned above).	
	Uncertainties around study inclusion/exclusion will be	
	discussed with the technical adviser.	
	Other mechanisme will be in place for OA.	
	Other mechanisms will be in place for QA: - The committee will be sent the list of included and	
	excluded studies prior to the committee meeting,	
	and the committee will be requested to cross check	
	whether any studies have been excluded	
	inappropriately, and whether there are any relevant studies they have known of which haven't been	
	picked up by the searches.	
	Data extraction and appraisal:	
	Data on all included studies will be extracted into evidence	
	tables.	
	Measurements of accuracy as stated in 'Outcomes' will be	
	reported and summarised in evidence statements.	
	Depending on the study designs used for the clinical	
	predicting model/tool in the included studies, the	
	following will be used to appraise the quality of the	
	evidence i) Hayden's (QUIPS) checklist; ii) QUADAS-2	
	checklist; iii) GRADE for diagnostic test accuracy question.	
	Where included data are appropriate and homogenous,	
	bivariate model of meta-analysis will be conducted,	
	depending on the nature and suitability of the data identified.	
	inclution.	

D.5 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

	Final Protocol	Refinements
Review Question	In people with stable chest pain of suspected cardiac origin, what is the accuracy, clinical	None

	Final Protocol	Refinements
	utility and cost effectiveness of:	
	a. non-invasive diagnostic tests	
	b. invasive diagnostic testsc. calcium scoring	
Objectives	-	None
Objectives	For people in whom stable angina cannot be diagnosed or excluded by clinical assessment	None
	alone, non-invasive and invasive testing may be	
	carried out. The type of testing undertaken depends on the estimated likelihood of	
	coronary artery disease (CAD). Once such test	
	used is coronary computed tomographic	
	angiography (CCTA). The surveillance review specifically highlighted new evidence around	
	the role of CCTA. Whilst this diagnostic test was	
	the focus of the surveillance review, it was	
	agreed that all modalities in this section required updating, including functional testing.	
Type of	Diagnostic	None
Review	Jugnostie	None
Language	English only	None
· · · · · · · · · · · · · · · · · · ·	Test-and-Treat RCTs, cross-sectional studies, (as recommended in Cochrane DTA Handbook and	
U U	QUADAS-2).	Retrospective studies excluded.
		Interval between index and reference
Status	Full text only	None
Population	Adults presenting with stable chest	Include:
	pain/discomfort of recent onset of suspected	Suspected CAD - even if the study does
	cardiac origin	not specifically mention chest pain.
		Pre-study Screening tests as part of
		undergo subsequent index/reference
		findings were recruited).
		b. Other screening tests for inducible
		Exclude:
		population) excluded.
		Sub group populations (e.g. purely
		women or diabetics).
		(LBBB) and Cardiac syndrome X
Index tests	Anatomic Tests (stenosis/vessel flow)	A minimum specification (64-slice CT)
	1. Coronary angiography	was applied for index tests 2 and 3.
	computed tomographic angiography (CCTA),	Stress echo was split into two tests (4a
Status Status Population	Test-and-Treat RCTs, cross-sectional studies, (as recommended in Cochrane DTA Handbook and QUADAS-2). Full text only Adults presenting with stable chest pain/discomfort of recent onset of suspected cardiac origin Anatomic Tests (stenosis/vessel flow) 1. Coronary angiography 2. CT a. Coronary angiography (CTCA) / Coronary	Prospective studies (ideally with consecutive enrolment). Retrospective studies excluded. Interval between index and reference tests not to exceed 3 months. No minimum sample size. None Include: Suspected CAD - even if the study does not specifically mention chest pain. Pre-study Screening tests as part of inclusion: a. ECG – only include if all participants undergo subsequent index/reference tests. (i.e. exclude studies where only people with either normal or abnormal findings were recruited). b. Other screening tests for inducible ischemia such as stress tests (protocol index tests or otherwise) – as above. Exclude: Known CAD (any part of study population) excluded. Sub group populations (e.g. purely women or diabetics). Populations Left bundle branch block (LBBB) and Cardiac syndrome X A minimum specification (64-slice CT)

	Final Protocol	Refinements
	b. multi-slice CT (MSCT)	Perfusion and 4b Wall motion)
	c. new generation cardiac computed tomography (NGCCT) (excluding Aquilion ONE, Brilliance iCT, Discovery CT750 HD and Somatom Definition Flashas these are covered in NICE Diagnosic Guidance – <u>DG3</u>	Studies performing SPECT using planar imaging and obsolete cameras known as gamma cameras will not be included.
	 Calcium scoring Functional Tests (myocardial ischaemia/wall motion) Stress echocardiography Stress magnetic resonance imaging (MRI) (Stress Cardiac MR (CMR) for wall motion Stress MRI (Stress CMR) for perfusion imaging, Myocardial perfusion scintigraphy (MPS) using positron emission tomography (PET) or SPECT (single photon emission computed tomography). CT Fractional flow reserve CTFFR CT myocardial perfusion Positron emission tomography (PET) scan 	The following tests do not fall within the specified index tests of interest therefore are not included: MR Angiography (MRA) Magnetocardiography Electron Beam CT (EBCT) Intravascular ultrasound (IVUS) Cardiogoniometry and cardiokymography Gadolinium diethylene triamine pentaacetic acid enhanced multidetector CT (MDCT) 2D echo without stress MRI without stress
Comparato r/ Reference test	Coronary angiography (at all percentage stenosis levels, reported separately to include 50% and 70% stenosis). In the unlikely case of coronary angiography as the index test ((1) above), studies evaluating any other reference standards will be included.	None
Outcomes/ Statistical reporting	Diagnostic accuracy measurements for example sensitivity, specificity, likelihood ratios, ROC curves.	CAD is the clinical outcome of interest. Only include studies that provide per patient analysis (per vessel or per segment analysis only - exclude). Included studies must have all four numbers for 2x2 table OR enough data to be able to back calculate. Adverse events/side effects to be documented as outcomes of interest.
Other criteria for inclusion / exclusion of studies	Exclusion Criteria: Children, adults with acute chest pain, adults with chest pain not suspected to be of cardiac origin, cohort studies, case- control studies and case series/case reports, conference abstracts. Animal studies will be excluded from the search results.	As stated beside each individual protocol parameter
Review strategies	*Databases for searches will include: Medline, Medline in Process, Embase, Cochrane CDSR, CENTRAL, DARE and HTA. *No date limit will be set. *Economic searches will include Medline, Medline in Process, Embase, NHS EED and HTA, with economic evaluations and quality of life filters applied. (Legacy records will be retrieved from NHS EED). *Data on all included studies will be extracted into evidence tables *A list of excluded studies will be provided	Based on presentation of interim results and summary ROC curves, it was decided that these were not useful as individual studies had different thresholds for diagnosing CAD (according to diagnostic test) and 95% Cls could not be easily evaluated. ROC curves are thus not produced in the full results. Forest plots are provided.

Final Protocol	Refinements
following sifting of the database	
*Test accuracy measurements as stated in	
'Outcomes' will be reported and summarised in	
evidence statements.	
*QUADAS-2 and GRADE for DTA studies will be	
used to appraise and present the evidence.	
*Where data is appropriate and homogenous,	
bivariate model of meta-analysis or just the	
summary of ROC curves will be conducted,	
depending on the quality and suitability of the	
included data.	
*Where appropriate and if with sufficient data,	
latent class analysis may be conducted.	

Appendix E: Health economic review protocol

High sensitivity cardiac troponins and non-invasive imaging for **E.1** people with acute chest pain

lealth economic review protocol		
All questions – health economic evidence		
To identify economic evaluations relevant to any of the review questions.		
 Populations, interventions and comparators must be as specified in the individual review protocol above. 		
• Studies must be of a relevant economic study design (cost-utility analysis, cost-effectiveness analysis, cost-benefit analysis, cost-consequences analysis, comparative cost analysis).		
 Studies must not be a letter, editorial or commentary, or a review of economic evaluations. (Recent reviews will be ordered although not reviewed. The bibliographies will be checked for relevant studies, which will then be ordered.) 		
• Unpublished reports will not be considered unless submitted as part of a call for evidence.		
• Studies must be in English.		
An economic study search will be undertaken using population-specific terms and an economic study filter – see Appendix G [in the Full guideline].		
Studies not meeting any of the search criteria above will be excluded. Studies published before 1999, abstract-only studies and studies from non-OECD countries or the USA will also be excluded.		
Each remaining study will be assessed for applicability and methodological limitations using the NICE economic evaluation checklist which can be found in Appendix G of the NICE guidelines manual (2012). ⁵²⁸		
Inclusion and exclusion criteria		
• If a study is rated as both 'Directly applicable' and with 'Minor limitations' then it will be included in the guideline. An economic evidence table will be completed and it will be included in the economic evidence profile.		
• If a study is rated as either 'Not applicable' or with 'Very serious limitations' then it will usually be excluded from the guideline. If it is excluded then an economic evidence table will not be completed and it will not be included in the economic evidence profile.		
• If a study is rated as 'Partially applicable', with 'Potentially serious limitations' or both then there is discretion over whether it should be included.		
Where there is discretion		
The health economist will make a decision based on the relative applicability and quality of the available evidence for that question, in discussion with the GDG if required. The ultimate aim is to include studies that are helpful for decision-making in the context of the guideline and the current NHS setting. If several studies are considered of sufficiently high applicability and methodological quality that they could all be included, then the health economist, in discussion with the GDG if required, may decide to include only the most applicable studies and to selectively exclude the remaining studies. All studies excluded on the basis of applicability or methodological limitations will be listed with explanation as excluded economic studies in Appendix M.		

Table 5: Health economic review protocol

The health economist will be guided by the following hierarchies.

Setting:

- UK NHS (most applicable).
- OECD countries with predominantly public health insurance systems (for example, France, Germany, Sweden).
- OECD countries with predominantly private health insurance systems (for example, Switzerland).
- Studies set in non-OECD countries or in the USA will have been excluded before being assessed for applicability and methodological limitations.

Economic study type:

- Cost-utility analysis (most applicable).
- Other type of full economic evaluation (cost-benefit analysis, cost-effectiveness analysis, cost-consequences analysis).
- Comparative cost analysis.
- Non-comparative cost analyses including cost-of-illness studies will have been excluded before being assessed for applicability and methodological limitations.

Year of analysis:

- The more recent the study, the more applicable it will be.
- Studies published in 1999 or later but that depend on unit costs and resource data entirely or predominantly from before 1999 will be rated as 'Not applicable'.
- Studies published before 1999 will have been excluded before being assessed for applicability and methodological limitations.

Quality and relevance of effectiveness data used in the economic analysis:

• The more closely the effectiveness data used in the economic analysis matches with the outcomes of the studies included in the clinical review the more useful the analysis will be for decision-making in the guideline.

E.2 Prediction models/tools for people with stable chest pain of suspected cardiac origin

Databases that were searched, together with the number of articles retrieved from each database are shown in **Table 6**. The search strategy is shown in **Table 7**. The same strategy was translated for the other databases listed.

Economics	Version/files	No. retrieved
MEDLINE (Ovid)	Ovid MEDLINE(R) 1946 to May Week 5 2015	876
MEDLINE in Process (Ovid)	Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations <june 05, 2015></june 	72
Embase (Ovid)	Embase 1974 to 2015 Week 23	1,098
NHS Economic Evaluation Database (NHS EED) (legacy database)	NHS Economic Evaluation Database : Issue 2 of 4, April 2015	71
Health Technology Assessment (HTA Database)	Health Technology Assessment Database : Issue 2 of 4, April 2015	10

Table 6: Economic search summary, review question 2

Table 7: Economic search strategy, review question 2 Database: Ovid MEDLINE(R) 1946 to May Week 5 2015

Database: Ovid MEDLINE(R) 1946 to May Week 5 2015

Strategy used:

- 1 Chest Pain/ (9758)
- 2 Angina Pectoris/ (30764)
- 3 Angina, Stable/ (525)
- 4 Microvascular Angina/ (897)
- 5 (angina* or stenocardia* or angor pectoris or cardiac syndrome x).tw. (45873)
- 6 ((chest* or thorax* or thorac*) adj4 (pain* or discomfort or distress or ache*)).tw. (27541)
- 7 *Coronary Artery Disease/ (33356)
- 8 (coronary adj (arterioscleros?s or atheroscleros?s or artery or arteries) adj disease*).tw. (59315)
- 9 or/1-8 (148735)
- 10 *Risk Assessment/ (19703)
- 11 *Risk Factors/ (933)
- 12 *Medical-History Taking/ (4496)
- 13 *Physical Examination/ (9804)
- 14 *Risk/ (2863)
- 15 (history adj tak*).tw. (3766)
- 16 (pretest* adj (probab* or likel*)).tw. (1124)
- 17 (risk* adj4 assess*).tw. (71618)
- 18 cardiovascular risk factor*.tw. (22412)
- 19 ((physic* or clinic*) adj4 exam*).tw. (131375)
- 20 ((medic* or famil* or patient* or clinic*) adj histor*).tw. (81863)
- 21 (probab* adj4 disease*).tw. (8806)
- 22 Framingham*.tw. (6233)
- 23 clinic* predict*.tw. (4973)
- 24 or/10-23 (339545)
- 25 9 and 24 (10899)
- 26 Economics/ (26627)
- 27 exp "Costs and Cost Analysis"/ (188408)
- 28 Economics, Dental/ (1861)
- 29 exp Economics, Hospital/ (20315)
- 30 exp Economics, Medical/ (13560)
- 31 Economics, Nursing/ (3916)
- 32 Economics, Pharmaceutical/ (2575)
- 33 Budgets/ (9975)
- 34 exp Models, Economic/ (10822)
- 35 Markov Chains/ (10515)
- 36 Monte Carlo Method/ (21209)
- 37 Decision Trees/ (9121)
- 38 econom\$.tw. (163542)
- 39 cba.tw. (8880)
- 40 cea.tw. (16777)
- 41 cua.tw. (810)
- 42 markov\$.tw. (12338)
- 43 (monte adj carlo).tw. (21954)
- 44 (decision adj3 (tree\$ or analys\$)).tw. (8769)
- 45 (cost or costs or costing\$ or costly or costed).tw. (321094)
- 46 (price\$ or pricing\$).tw. (24015)

Database: Ovid MEDLINE(R) 1946 to May Week 5 2015

- 47 budget\$.tw. (17871)
- 48 expenditure\$.tw. (36429)
- 49 (value adj3 (money or monetary)).tw. (1399)
- 50 (pharmacoeconomic\$ or (pharmaco adj economic\$)).tw. (2909)
- 51 or/26-50 (680372)
- 52 "Quality of Life"/ (126536)
- 53 quality of life.tw. (146811)
- 54 "Value of Life"/ (5449)
- 55 Quality-Adjusted Life Years/ (7615)
- 56 quality adjusted life.tw. (6427)
- 57 (qaly\$ or qald\$ or qale\$ or qtime\$).tw. (5284)
- 58 disability adjusted life.tw. (1288)
- 59 daly\$.tw. (1259)
- 60 Health Status Indicators/ (20598)
- 61 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or shortform thirtysix or short form thirty six).tw. (16076)
- 62 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw. (1033)

63 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw. (2845)

64 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw. (21)

65 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw. (336)

- 66 (euroqol or euro qol or eq5d or eq 5d).tw. (4232)
- 67 (qol or hql or hqol or hrqol).tw. (26394)
- 68 (hye or hyes).tw. (54)
- 69 health\$ year\$ equivalent\$.tw. (38)
- 70 utilit\$.tw. (117996)
- 71 (hui or hui1 or hui2 or hui3).tw. (889)
- 72 disutili\$.tw. (230)
- 73 rosser.tw. (71)
- 74 quality of wellbeing.tw. (5)
- 75 quality of well-being.tw. (339)
- 76 qwb.tw. (175)
- 77 willingness to pay.tw. (2388)
- 78 standard gamble\$.tw. (667)
- 79 time trade off.tw. (771)
- 80 time tradeoff.tw. (208)
- 81 tto.tw. (616)
- 82 or/52-81 (336071)
- 83 51 or 82 (970758)
- 84 25 and 83 (985)
- 85 Animals/ not Humans/ (3961836)
- 86 84 not 85 (984)
- 87 limit 86 to english language (876)

E.3 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

Databases that were searched, together with the number of articles retrieved from each database are shown in **Table 8**. The search strategy is shown in **Table 9**. The same strategy was translated for the other databases listed.

Table 8: Economic search summary, review question 1

Table 6. Economic scarch sammary, review question r		
Databases	Version/files	No. retrieved
NHS EED	Issue 2 of 4, April 2015	105
HTA database (CRD, Ovid, Wiley)*	Issue 2 of 4, April 2015	55
MEDLINE (Ovid)	1946 to May Week 4 2015	1573
MEDLINE In-Process (Ovid)	June 01, 2015	120
EMBASE (Ovid)	1980 to 2015 Week 22	1870

Table 9: Economic search strategy, review question 1

Database: Medline

Database: Ovid MEDLINE(R) <1946 to May Week 4 2015>

Search Strategy:

- 1 Chest Pain/ (9730)
- 2 Angina Pectoris/ (30752)
- 3 Angina, Stable/ (516)
- 4 Microvascular Angina/ (895)
- 5 (angina* or stenocardia* or angor pectoris or cardiac syndrome x).tw. (45820)
- 6 ((chest* or thorax* or thorac*) adj4 (pain* or discomfort or distress or ache*)).tw. (27486)
- 7 *Coronary Artery Disease/ (33182)
- 8 (coronary adj (arterioscleros?s or atheroscleros?s or artery or arteries) adj disease*).tw. (59156)
- 9 or/1-8 (148375)
- 10 *Echocardiography, stress/ (1383)
- 11 (Echocardiograph* adj4 (stress* or dobutamine)).tw. (4257)
- 12 *Tomography, Emission-Computed, Single-Photon/ (13073)
- 13 *Tomography, Emission-Computed/ or *Tomography, X-Ray Computed/ (103628)
- 14 *Positron-Emission Tomography/ (18903)
- 15 ((single photon or single-photon) adj2 emission*).tw. (14556)
- 16 ((positron-emission or positron emission) adj tomography).tw. (34443)
- 17 (pet adj scan*).tw. (6678)
- 18 *Myocardial Perfusion Imaging/ (1834)
- 19 (Myocardial adj (scintigraph* or perfusion*)).tw. (12481)
- 20 ((thallium or sestamibi or tetrofosmin or technetium) adj2 SPECT).tw. (1402)
- 21 *Magnetic Resonance Imaging/ (111904)
- 22 ((cardiac or stress) adj2 magnetic adj2 resonance adj2 imag*).tw. (2956)
- 23 ("cardiac MR" or CMR).tw. (4276)
- 24 (stress adj3 perfusion*).tw. (1741)
- 25 ((Multi-slice or Multi slice) adj CT).tw. (374)
- 26 ("new generation" adj4 tomograph*).tw. (36)
- 27 (fractional adj flow adj reserve).tw. (861)
- 28 (coronary adj2 computed adj2 tomographic adj2 angiograph*).tw. (475)

Database: Medline

- 29 (MSCT or MRI or CCTA or CTCA or NGCCT or SPECT or PET or MPS or CTFFR).tw. (209179)
- 30 (stress adj2 (ECG or EKG or electrocardiogra* or electrokardiogra*)).tw. (959)
- 31 *Coronary Angiography/ (14675)
- 32 (coronary adj angiograph*).tw. (22911)
- 33 ((CAC or calcium) adj scor*).tw. (2114)
- 34 or/10-33 (399634)
- 35 9 and 34 (26412)
- 36 animals/ not humans/ (3949562)
- 37 35 not 36 (26206)
- 38 limit 37 to english language (22327)
- 39 "Sensitivity and Specificity"/ (288138)
- 40 (sensitivity or specificity or accuracy).tw. (867523)
- 41 "Predictive Value of Tests"/ (151548)
- 42 (predictive adj1 value*).tw. (68155)
- 43 (roc adj1 curve*).tw. (15220)
- 44 (false adj2 (positiv* or negativ*)).tw. (55656)
- 45 (observer adj variation*).tw. (938)
- 46 (likelihood adj1 ratio*).tw. (8877)
- 47 Diagnosis, Differential/ (389089)
- 48 Likelihood Functions/ (17932)
- 49 exp Diagnostic Errors/ (98004)
- 50 or/39-49 (1602513)
- 51 38 and 50 (8495)
- 52 Economics/ (26620)
- 53 exp "Costs and Cost Analysis"/ (187989)
- 54 Economics, Dental/ (1860)
- 55 exp Economics, Hospital/ (20278)
- 56 exp Economics, Medical/ (13556)
- 57 Economics, Nursing/ (3915)
- 58 Economics, Pharmaceutical/ (2572)
- 59 Budgets/ (9966)
- 60 exp Models, Economic/ (10775)
- 61 Markov Chains/ (10471)
- 62 Monte Carlo Method/ (21020)
- 63 Decision Trees/ (9104)
- 64 econom\$.tw. (163059)
- 65 cba.tw. (8856)
- 66 cea.tw. (16732)
- 67 cua.tw. (809)
- 68 markov\$.tw. (12267)
- 69 (monte adj carlo).tw. (21755)
- 70 (decision adj3 (tree\$ or analys\$)).tw. (8730)
- 71 (cost or costs or costing\$ or costly or costed).tw. (319967)
- 72 (price\$ or pricing\$).tw. (23945)
- 73 budget\$.tw. (17839)
- 74 expenditure\$.tw. (36290)
- 75 (value adj3 (money or monetary)).tw. (1389)
- 76 (pharmacoeconomic\$ or (pharmaco adj economic\$)).tw. (2902)
- 77 or/52-76 (678225)

Database: Medline

- 78 "Quality of Life"/ (126016)
- 79 quality of life.tw. (146144)
- 80 "Value of Life"/ (5442)
- 81 Quality-Adjusted Life Years/ (7565)
- 82 quality adjusted life.tw. (6378)
- 83 (qaly\$ or qald\$ or qale\$ or qtime\$).tw. (5249)
- 84 disability adjusted life.tw. (1279)
- 85 daly\$.tw. (1250)
- 86 Health Status Indicators/ (20553)
- 87 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or shortform thirtysix or short form thirty six).tw. (16024)
- 88 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw. (1023)
- 89 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw. (2823)
- 90 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw. (21)

91 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw. (336)

- 92 (euroqol or euro qol or eq5d or eq 5d).tw. (4203)
- 93 (qol or hql or hqol or hrqol).tw. (26260)
- 94 (hye or hyes).tw. (54)
- 95 health\$ year\$ equivalent\$.tw. (38)
- 96 utilit\$.tw. (117236)
- 97 (hui or hui1 or hui2 or hui3).tw. (888)
- 98 disutili\$.tw. (228)
- 99 rosser.tw. (71)
- 100 quality of wellbeing.tw. (5)
- 101 quality of well-being.tw. (337)
- 102 qwb.tw. (175)
- 103 willingness to pay.tw. (2376)
- 104 standard gamble\$.tw. (665)
- 105 time trade off.tw. (768)
- 106 time tradeoff.tw. (208)
- 107 tto.tw. (615)
- 108 or/78-107 (334461)
- 109 77 or 108 (967208)
- 110 38 and 109 (1573)

Appendix F: Clinical study selection

F.1 High sensitivity cardiac troponins

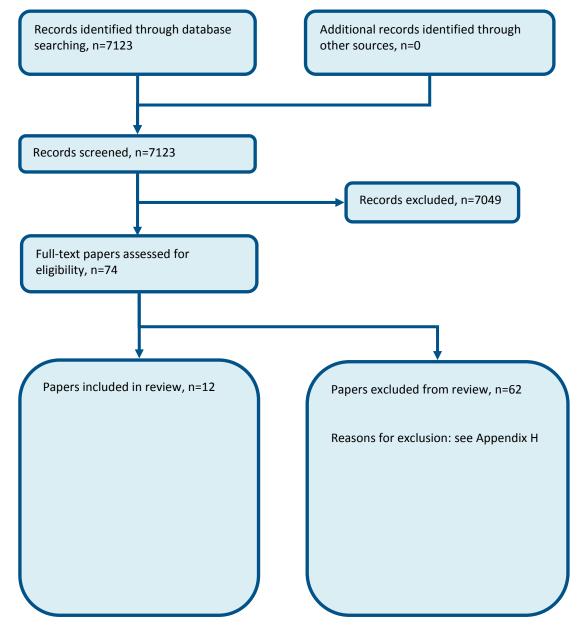
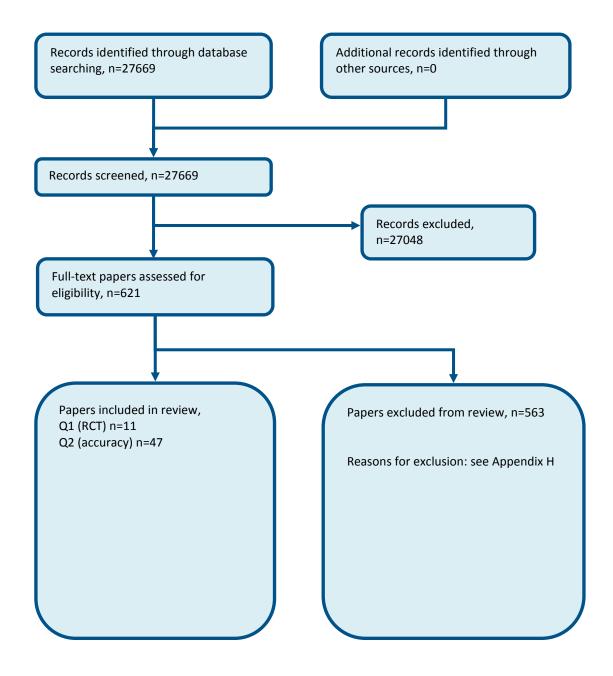



Figure 1: Flow chart of clinical study selection for the review of high sensitivity troponins

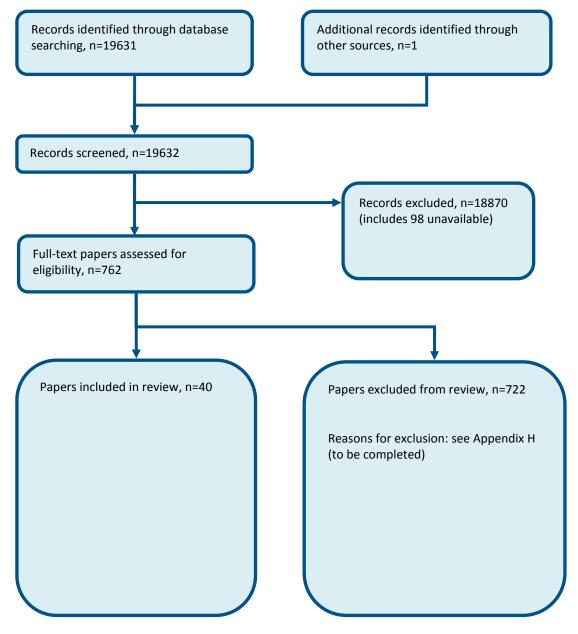
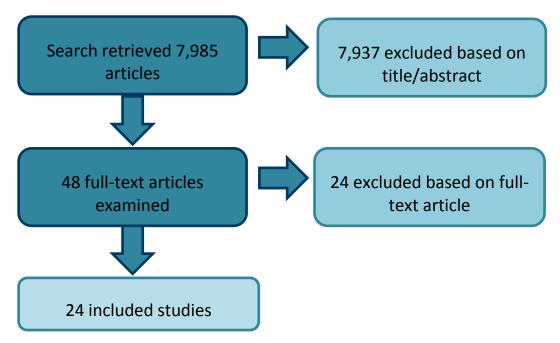
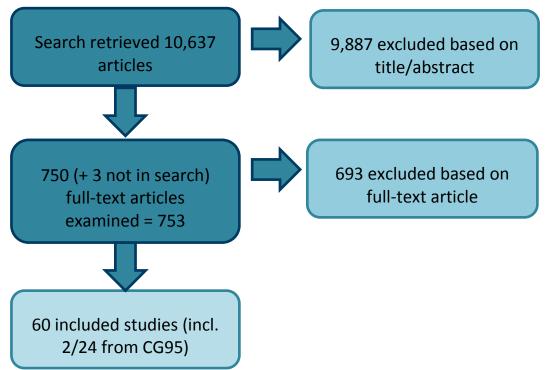
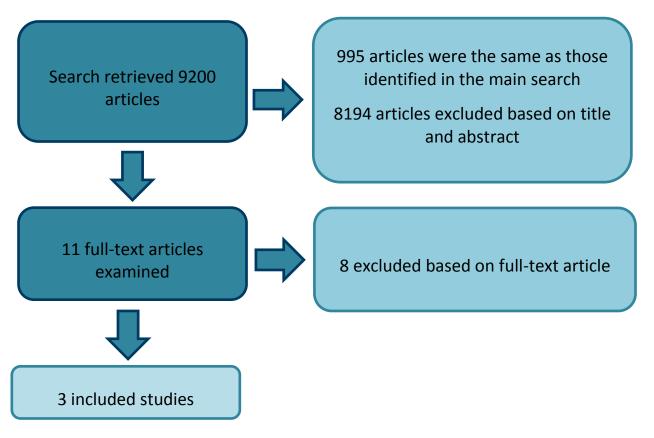

F.2 Non-invasive imaging for the identification of people with NSTEMI/unstable angina

Figure 2: Flow chart of clinical study selection for the review of non-invasive imaging for the identification of people with NSTEMI/unstable angina

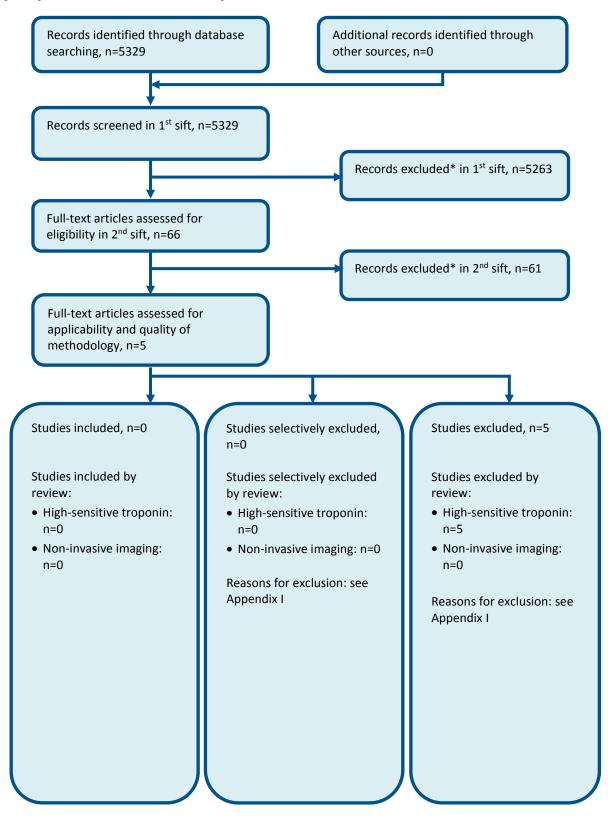


F.3 Diagnostic test accuracy of non-invasive imaging for the identification of people with NSTEMI/unstable angina

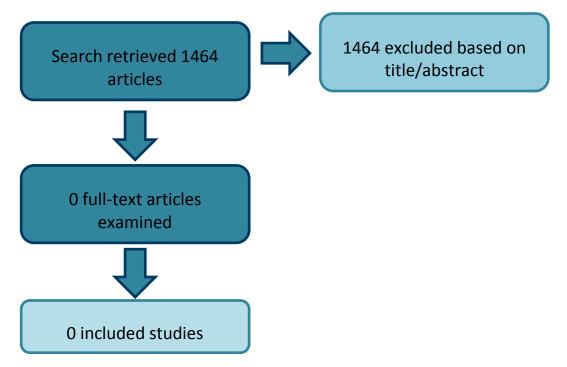

Figure 3: Flow chart of clinical study selection for the review of non-invasive imaging for the identification of people with NSTEMI/unstable angina


F.4 Prediction models/tools for people with stable chest pain of suspected cardiac origin

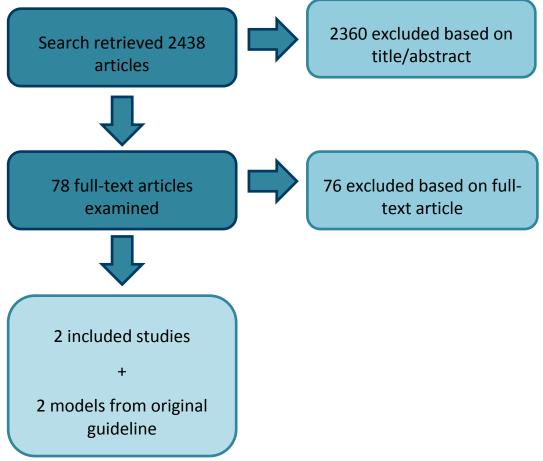
F.5 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin



F.6 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin - supplementary test and treat randomised controlled trials review



Appendix G: Health economic study selection


G.1 High sensitivity cardiac troponins and non-invasive imaging for people with acute chest pain

G.2 Prediction models/tools for people with stable chest pain of suspected cardiac origin

G.3 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

Appendix H: Literature search strategies

H.1 Acute chest pain

H.1.1 Contents

Introduction	Search methodology
Section H.1.2	Population search strategy
H.1.2.1	Standard acute chest pain population
	This population was used for all search questions unless stated
Section F.3	Study filter search terms
H.1.3.1	Excluded study designs and publication types
H.1.3.2	Randomised controlled trials (RCT)
H.1.3.3	Systematic reviews (SR)
H.1.3.4	Health economic studies (HE)
H.1.3.5	Diagnostic test accuracy studies (DIAG)
Section H.1.4	Searches for specific questions with intervention
H.1.4.1	Non-invasive testing
H.1.4.2	High-sensitivity troponins
Section H.1.5	Health economics search terms
H.1.5.1	Health economic reviews

Search strategies used for the acute chest pain guideline are outlined below and were run in accordance with the methodology in the NICE guidelines manual (2014).⁵²⁷ All searches were run up to 10 May 2016 unless otherwise stated. Any studies added to the databases after this date (even those published prior to this date) were not included unless specifically stated in the text. Electronic, ahead of print or 'online early' publications are not routinely searched for. Where possible searches were limited to retrieve material published in English.

Table 10: Database date parameters

Database	Dates searched
Medline	1946 – 10 May 2016
Embase	1974 – 10 May 2016
The Cochrane Library	Cochrane Reviews to 2016 Issue 4 of 12
	CENTRAL to 2015 Issue 2 of 12
	DARE to 2016 Issue 4 of 4
	HTA to 2016 Issue 2 of 4
	NHSEED to 2015 Issue 2 of 4

Searches for the **clinical reviews** were run in Medline (OVID), Embase (OVID) and the Cochrane Library (Wiley).

Searches for **intervention and diagnostic studies** were usually constructed using a PICO format where population (P) terms were combined with Intervention (I) and sometimes Comparison (C) terms. An intervention can be a drug, a procedure or a diagnostic test. Outcomes (O) are rarely used in search strategies for interventions. Search filters were also added to the search where appropriate.

Searches for the health economic reviews were run in Medline, Embase, the NHS Economic Evaluations Database (NHS EED) and the Health Technology Assessment (HTA). NHS EED and HTA databases are hosted by the Centre for Research and Dissemination (CRD).

For Medline and Embase an economic filter (instead of a study type filter) was added to the same clinical search strategy.

H.1.2 Population search strategies

H.1.2.1 Standard acute chest pain population

Medline search terms

1.	exp Chest Pain/
2.	chest pain.ti,ab.
3.	exp Angina Pectoris/
4.	angina.ti,ab.
5.	((unstable or acute) adj3 coronary).ti,ab.
6.	acute coronary syndrome*.ti,ab.
7.	exp Myocardial Infarction/
8.	(acute adj3 (heart or myocardial) adj (infarct* or ischaemi* or ischemi*)).ti,ab.
9.	(coronary adj (heart or arter*) adj (disease or syndrome*)).ti,ab.
10.	or/1-9

Embase search terms

1.	exp Thorax Pain/
2.	chest pain.ti,ab.
3.	exp Angina Pectoris/
4.	angina.ti,ab.
5.	((unstable or acute) adj3 coronary).ti,ab.
6.	acute coronary syndrome*.ti,ab.
7.	exp Heart Infarction/
8.	(acute adj3 (heart or myocardial) adj (infarct* or ischaemi* or ischemi*)).ti,ab.
9.	exp Coronary Artery Disease/
10.	(coronary adj (heart or arter*) adj (disease or syndrome*)).ti,ab.
11.	or/1-10

Cochrane search terms

	March de excitate en [Chart Dein] e en la de ell'tresse
#1.	MeSH descriptor: [Chest Pain] explode all trees
#2.	chest pain:ti,ab
#3.	MeSH descriptor: [Angina Pectoris] explode all trees
#4.	angina:ti,ab
#5.	((unstable or acute) next/3 coronary):ti,ab
#6.	acute coronary syndrome:ti,ab
#7.	MeSH descriptor: [Myocardial Infarction] explode all trees
#8.	(acute next/3 (heart or myocardial) next (infarct* or ischaemi* or ischemi*)):ti,ab
#9.	(coronary next (heart or arter*) next (disease or syndrome*)):ti,ab
#10.	620-#9

CRD search terms

#1.	MeSH DESCRIPTOR Chest Pain EXPLODE ALL TREES
#2.	MeSH DESCRIPTOR Angina Pectoris EXPLODE ALL TREES
#3.	(angina)
#4.	((unstable or acute) ADJ3 (chest pain or coronary))
#5.	(acute coronary syndrome)
#6.	MeSH DESCRIPTOR myocardial infarction EXPLODE ALL TREES
#7.	(acute ADJ3 (heart or myocardial) ADJ (infarct* or ischaemi* or ischemi*))
#8.	(coronary ADJ (heart or arter*) ADJ (disease or syndrome*))
#9.	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8

H.1.3 Study filter search terms

H.1.3.1 Excluded study designs and publication types

The following study designs and publication types were removed from retrieved results using the NOT operator.

Medline search terms

1.	letter/
2.	editorial/
3.	news/
4.	exp historical article/
5.	anecdotes as topic/
6.	comment/
7.	case report/
8.	(letter or comment*).ti.
9.	or/1-8
10.	randomized controlled trial/ or random*.ti,ab.
11.	9 not 10
12.	animals/ not humans/
13.	exp animals, laboratory/
14.	exp animal experimentation/
15.	exp models, animal/
16.	exp rodentia/
17.	(rat or rats or mouse or mice).ti.
18.	or/11-17

Embase search terms

1.	letter.pt. or letter/
2.	note.pt.
3.	editorial.pt.
4.	case report/ or case study/
5.	(letter or comment*).ti.
6.	or/1-5
7.	randomized controlled trial/ or random*.ti,ab.
8.	6 not 7
9.	animal/ not human/

10.	nonhuman/
11.	exp animal experiment/
12.	exp experimental animal/
13.	animal model/
14.	exp rodent/
15.	(rat or rats or mouse or mice).ti.
16.	or/8-15

H.1.3.2 Randomised controlled trials (RCT)

Medline search terms

1.	randomized controlled trial.pt.
2.	controlled clinical trial.pt.
3.	randomi#ed.ti,ab.
4.	placebo.ab.
5.	randomly.ab.ti
6.	clinical trials as topic.sh.
7.	trial.ti.
8.	or/1-7

Embase search terms

1.	random*.ti,ab.
2.	factorial*.ti,ab.
3.	(crossover* or cross over*).ti,ab.
4.	((doubl* or singl*) adj blind*).ti,ab.
5.	(assign* or allocat* or volunteer* or placebo*).ti,ab.
6.	crossover procedure/
7.	single blind procedure/
8.	randomized controlled trial/
9.	double blind procedure/
10.	or/1-9

H.1.3.3 Systematic reviews (SR)

Medline search terms

1.	meta-analysis/
2.	meta-analysis as topic/
3.	(meta analy* or metanaly* or metaanaly*).ti,ab.
4.	((systematic* or evidence*) adj3 (review* or overview*)).ti,ab.
5.	(reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.
6.	(search strategy or search criteria or systematic search or study selection or data extraction).ab.
7.	(search* adj4 literature).ab.
8.	(medline or pubmed or cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or science citation index or bids or cancerlit).ab.
9.	cochrane.jw.
10.	((multiple treatment* or indirect or mixed) adj2 comparison*).ti,ab.
11.	or/1-10

Embase search terms

1.	systematic review/		
2.	meta-analysis/		
3.	(meta analy* or metanaly* or metaanaly*).ti,ab.		
4.	((systematic or evidence) adj3 (review* or overview*)).ti,ab.		
5.	(reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.		
6.	(search strategy or search criteria or systematic search or study selection or data extraction).ab.		
7.	(search* adj4 literature).ab.		
8.	(medline or pubmed or cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or science citation index or bids or cancerlit).ab.		
9.	cochrane.jw.		
10.	((multiple treatment* or indirect or mixed) adj2 comparison*).ti,ab.		
11.	or/1-10		

H.1.3.4 Health economic studies (HE)

Medline search terms

Wicunic s			
1.	economics/		
2.	value of life/		
3.	exp "costs and cost analysis"/		
4.	exp economics, hospital/		
5.	exp economics, medical/		
6.	economics, nursing/		
7.	economics, pharmaceutical/		
8.	exp "fees and charges"/		
9.	exp budgets/		
10.	budget*.ti,ab.		
11.	cost*.ti.		
12.	(economic* or pharmaco?economic*).ti.		
13.	(price* or pricing*).ti,ab.		
14.	(cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.		
15.	(financ* or fee or fees).ti,ab.		
16.	(value adj2 (money or monetary)).ti,ab.		
17.	or/1-16		

Embase search terms

Embase set			
1.	health economics/		
2.	exp economic evaluation/		
3.	exp health care cost/		
4.	exp fee/		
5.	budget/		
6.	funding/		
7.	budget*.ti,ab.		
8.	cost*.ti.		
9.	(economic* or pharmaco?economic*).ti.		
10.	(price* or pricing*).ti,ab.		
11.	(cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.		

12.	(financ* or fee or fees).ti,ab.
13.	(value adj2 (money or monetary)).ti,ab.
14.	or/1-13

H.1.3.5 Diagnostic test accuracy studies (DIAG)

Medline search terms

1.	exp "sensitivity and specificity"/	
2.	(sensitivity or specificity).ti,ab.	
3.	((pre test or pretest or post test) adj probability).ti,ab.	
4.	(predictive value* or ppv or npv).ti,ab.	
5.	likelihood ratio*.ti,ab.	
6.	likelihood function/	
7.	(roc curve* or auc).ti,ab.	
8.	(diagnos* adj3 (performance* or accurac* or utilit* or value* or efficien* or effectiveness)).ti,ab.	
9.	gold standard.ab.	
10.	or/1-9	

Embase search terms

1.	exp "sensitivity and specificity"/	
2.	(sensitivity or specificity).ti,ab.	
3.	((pre test or pretest or post test) adj probability).ti,ab.	
4.	(predictive value* or ppv or npv).ti,ab.	
5.	likelihood ratio*.ti,ab.	
6.	(roc curve* or auc).ti,ab.	
7.	(diagnos* adj3 (performance* or accurac* or utilit* or value* or efficien* or effectiveness)).ti,ab.	
8.	diagnostic accuracy/	
9.	diagnostic test accuracy study/	
10.	gold standard.ab.	
11.	or/1-10	

H.1.4 Searches for specific questions

H.1.4.1 Non-invasive testing

• In people under investigation for acute chest pain of suspected cardiac origin, what is the clinical and cost-effectiveness of non-invasive imaging compared to standard practice, when each is followed by the appropriate treatment for NSTEMI/unstable angina, in order to improve patient outcomes?

Medline so	earch terms
------------	-------------

1.	Standard population [H.1.2.1]
2.	Excluded study designs and publication types [H.1.3.1]
3.	1 not 2
4.	Limit 3 to English language
5.	Echocardiography, Stress/
6.	((echocardiogra* or echo) adj3 (stress or resting or nonstress or 2d or 2 dimension* or two

7. 8. 9. 10. 11.	dimension* or contrast)).ti,ab. (cardiac adj3 stress).ti,ab. Exercise Test/ ((exercise or treadmill or bicycle or stress) adj3 test*).ti,ab. ((physical or chemical or pharmacolog* or nuclear) adj2 stress).ti,ab. exp magnetic resonance imaging/ magnet* resonance.ti,ab.
8. 9. 10.	Exercise Test/ ((exercise or treadmill or bicycle or stress) adj3 test*).ti,ab. ((physical or chemical or pharmacolog* or nuclear) adj2 stress).ti,ab. exp magnetic resonance imaging/ magnet* resonance.ti,ab.
9. 10.	((exercise or treadmill or bicycle or stress) adj3 test*).ti,ab.((physical or chemical or pharmacolog* or nuclear) adj2 stress).ti,ab.exp magnetic resonance imaging/magnet* resonance.ti,ab.
10.	((physical or chemical or pharmacolog* or nuclear) adj2 stress).ti,ab. exp magnetic resonance imaging/ magnet* resonance.ti,ab.
	exp magnetic resonance imaging/ magnet* resonance.ti,ab.
	magnet* resonance.ti,ab.
12.	
13.	(MR*1 or NMR*1 or cmr* or (magnet* adj3 (tomogra* or imag* or scan* or perfusion or angiograph*))).ti,ab.
14.	exp Chest Pain/ri [Radionuclide Imaging]
15.	Myocardial Perfusion Imaging/
16.	(myocardial adj2 (perfusion or scintigraphy)).ti,ab.
17.	((myocardial or mp or mps) adj3 (imag* or scan*)).ti,ab.
18.	exp Positron-Emission Tomography/
19.	((photon or positron) adj3 (emission or tomograph*)).ti,ab.
20.	(spect or mpi or pet or petscan*).ti,ab.
21.	Tomography, X-Ray Computed/
22.	((x-ray or radiograph* or compute*) adj3 tomograph*).ti,ab.
23.	Coronary Angiography/
24.	(compute* or ct or tomograph*).ti,ab.
25.	49 and 50
26.	((compute* or ct or tomograph*) adj3 angiograph*).ti,ab.
27.	Multidetector Computed Tomography/
28.	((multislice or multi slice or multisection or multidetect*) adj2 (ct or compute* or tomograph*)).ti,ab.
29.	('64' adj3 (scan* or ct or compute* or tomograph*)).ti,ab.
30.	((heart or cardiac or myocardial or imag* or scan* or diagnos*) adj2 (ct or cat)).ti,ab.
31.	(cta or ccta or tro-cta or msct).ti,ab.
32.	or/5-22,25-31
33.	4 and 31
34.	Study filters RCT [H.1.3.2] or SR [H.1.3.3] or DIAG [H.1.3.5]
35.	33 and 34
	Date parameters: 1999 - 10 May 2016

Embase search terms

1.	Standard population [H.1.2.1]
2.	Excluded study designs and publication types [H.1.3.1]
3.	1 not 2
4.	Limit 3 to English language
5.	exercise electrocardiography/
6.	((echocardiogra* or echo) adj3 (stress or resting or nonstress or 2d or 2 dimension* or two dimension* or contrast)).ti,ab.
7.	(cardiac adj3 stress).ti,ab.
8.	exercise test/
9.	((exercise or treadmill or bicycle or stress) adj3 test*).ti,ab.
10.	((physical or chemical or pharmacolog* or nuclear) adj2 stress).ti,ab.

exp nuclear magnetic resonance imaging/
magnet* resonance.ti,ab.
(MR*1 or NMR*1 or cmr* or (magnet* adj3 (tomogra* or imag* or scan* or perfusion or angiograph*))).ti,ab.
myocardial perfusion imaging/
(myocardial adj2 (perfusion or scintigraphy)).ti,ab.
((myocardial or mp or mps) adj3 (imag* or scan* or stress)).ti,ab.
exp positron emission tomography/
((photon or positron) adj3 (emission or tomograph*)).ti,ab.
(spect or mpi or pet or petscan*).ti,ab.
tomography/
((x-ray or radiograph* or compute*) adj3 tomograph*).ti,ab.
angiocardiography/
(ct or computer* or tomograph*).ti,ab.
47 and 48
((compute* or ct or tomograph*) adj2 angiograph*).ti,ab.
multidetector computed tomography/
((multislice or multi slice or multisection or multidetect*) adj2 (ct or computer* or tomograph*)).ti,ab.
('64' adj3 (scan* or ct or compute* or tomograph*)).ti,ab.
((heart or cardiac or myocardial or imag* or scan* or diagnos*) adj2 (ct or cat)).ti,ab.
(cta or ccta or tro-cta or msct).ti,ab.
or/5-21,24-30
4 and 31
Study filters RCT [H.1.3.2] or SR [H.1.3.3] or DIAG [H.1.3.5]
32 and 33
Date parameters: 1999 - 10 May 2016

Cochrane search terms

cocinan	
#1.	Standard population [H.1.2.1]
#2.	MeSH descriptor: [Echocardiography, Stress] this term only
#3.	((echocardiogra* or echo) next/3 (stress or resting or nonstress or 2d or 2 dimension* or two dimension* or contrast)):ti,ab
#4.	(cardiac next/3 stress):ti,ab
#5.	MeSH descriptor: [Exercise Test] this term only
#6.	((exercise or treadmill or bicycle or stress) next/3 test*):ti,ab
#7.	((physical or chemical or pharmacolog* or nuclear) next/2 stress):ti,ab
#8.	MeSH descriptor: [Magnetic Resonance Imaging] explode all trees
#9.	magnet* resonance:ti,ab
#10.	MRI or MRS or NMRI or cmr*:ti,ab
#11.	(magnet* next/3 (tomogra* or imag* or scan* or perfusion or angiograph*)):ti,ab
#12.	MeSH descriptor: [Chest Pain] explode all trees and with qualifier(s): [Radionuclide imaging - RI]
#13.	MeSH descriptor: [Myocardial Perfusion Imaging] this term only
#14.	(myocardial next/2 (perfusion or scintigraphy)):ti,ab
#15.	((myocardial or mp or mps) next/3 (imag* or scan* or stress)):ti,ab

#16.	MeSH descriptor: [Positron-Emission Tomography] this term only
#17.	((photon or positron) next/3 (emission or tomograph*)):ti,ab
#18.	(spect or mpi or pet or petscan*):ti,ab
#19.	MeSH descriptor: [Tomography, X-Ray] explode all trees
#20.	((x-ray or radiograph* or compute*) next/3 tomograph*):ti,ab
#21.	MeSH descriptor: [Coronary Angiography] this term only
#22.	(compute* or ct or tomograph*):ti,ab
#23.	#21 and #22
#24.	((compute* or ct or tomograph*) next/2 angiograph*):ti,ab
#25.	MeSH descriptor: [Multidetector Computed Tomography] this term only
#26.	((multislice or multi slice or multisection or multidetect*) next/2 (ct or compute* or tomograph*)):ti,ab
#27.	((heart or cardiac or myocardial or imag* or scan* or diagnos*) next/2 (ct or cat)):ti,ab
#28.	(cta or ccta or tro-cta or msct):ti,ab
#29.	{or #2-#20, #23-#28}
#30.	#1 and #29
	Date parameters: 1999 – 10 May 2016

H.1.4.2 High-sensitivity troponins

• In low, medium and high risk people under investigation for acute chest pain of suspected cardiac origin, what is the accuracy of high-sensitivity troponin assay methods compared to conventional cardiac troponins to identify/rapidly rule out NSTEMI/unstable angina compared to standard cardiac troponins?

Medline search terms

wieunne			
1.	Standard population [H.1.2.1]		
2.	Excluded study designs and publication types [H.1.3.1]		
3.	1 not 2		
4.	Limit 3 to English language		
5.	Troponin/		
6.	troponin i/ or troponin t/		
7.	(sensitiv [*] or hs or early or initial or rapid or present [*] or ultra or high performance or ultrasensitive).ti,ab.		
8.	(5 or 6) and 7		
9.	((troponin* or tnt or ctnt or tropt or trop t or tni or ctni or tropl or trop I) adj2 (sensitiv* or hs or early or initial or rapid or present* or ultra or high performance or ultrasensitive)).ti,ab.		
10.	(troponin* adj5 (architect or elecsys or accutni or accu-tni or access or unicel)).ti,ab.		
11.	(hs?tnt or hs-?tnt or tnt-hs or tnths or ctnths or ctnt-hs).ti,ab.		
12.	(hs?tni or hs-?tni or tni-hs or tnihs or ctnihs or ctni-hs or ctni-ultra or accutni or accu-tni).ti,ab.		
13.	Myoglobin/		
14.	(myoglobin* adj5 (analys* or analyze* or test* or investigat* or evaluat* or examin* or check* or assess* or measur* or diagnos* or identif* or verif* or assay or biological marker* or biomarker* or bio marker*)).ti,ab.		
15.	Creatine Kinase/		
16.	(creatine kinase* adj5 (analys* or analyze* or test* or investigat* or evaluat* or examin* or check* or assess* or measur* or diagnos* or identif* or verif* or assay or biological marker* or biomarker* or bio marker*)).ti,ab.		
17.	Creatine Kinase, MB Form/		

18.	(ck mb* or ck 2 or (mb* adj3 (isoenzyme* or enzyme* or isoform*))).ti,ab.
19.	or/8-18
20.	4 and 19
21.	Study filters RCT [H.1.3.2] or SR [H.1.3.3] or DIAG [H.1.3.5]
22.	20 and 21

Embase search terms

1.	Standard population [H.1.2.1]
2.	Excluded study designs and publication types [H.1.3.1]
3.	1 not 2
4.	Limit 3 to English language
5.	troponin/
6.	troponin c/ or troponin t/
7.	(sensitiv [*] or hs or early or initial or rapid or present [*] or ultra or high performance or ultrasensitive).ti,ab.
8.	(5 or 6) and 7
9.	((troponin* or tnt or ctnt or tropt or trop t or tni or ctni or tropl or trop I) adj2 (sensitiv* or hs or early or initial or rapid or present* or ultra or high performance or ultrasensitive)).ti,ab.
10.	(troponin* adj5 (architect or elecsys or accutni or accu-tni or access or unicel)).ti,ab.
11.	(hs?tnt or hs-?tnt or tnt-hs or tnths or ctnths or ctnt-hs).ti,ab.
12.	(hs?tni or hs-?tni or tni-hs or tnihs or ctnihs or ctni-hs or ctni-ultra or accutni or accu-tni).ti,ab.
13.	myoglobin/
14.	(myoglobin* adj5 (analys* or analyze* or test* or investigat* or evaluat* or examin* or check* or assess* or measur* or diagnos* or identif* or verif* or assay or biological marker* or biomarker* or bio marker*)).ti,ab.
15.	creatine kinase/
16.	(creatine kinase* adj5 (analys* or analyze* or test* or investigat* or evaluat* or examin* or check* or assess* or measur* or diagnos* or identif* or verif* or assay or biological marker* or biomarker* or bio marker*)).ti,ab.
17.	creatine kinase MB/
18.	(ck mb* or ck 2 or (mb* adj3 (isoenzyme* or enzyme* or isoform*))).ti,ab.
19.	or/8-18
20.	4 and 19
21.	Study filters RCT [H.1.3.2] or SR [H.1.3.3] or DIAG [H.1.3.5]
22.	20 and 21

Cochrane search terms

#1.	Standard population [H.1.2.1]	
#2.	MeSH descriptor: [Troponin] explode all trees	
#3.	MeSH descriptor: [Troponin I] this term only	
#4.	MeSH descriptor: [Troponin T] this term only	
#5.	(sensitiv* or hs or early or initial or rapid or present* or ultra or high performance or ultrasensitive):ti,ab,kw	
#6.	(#2 or #3 or #4) and #5	
#7.	((troponin* or tnt or ctnt or tropt or trop t or tni or ctni or tropl or trop I) near/2 (sensitiv* or hs or early or initial or rapid or present* or ultra or high performance or ultrasensitive)):ti,ab,kw	
#8.	(troponin* near/5 (architect or elecsys or accutni or accu-tni or access or unicel)):ti,ab,kw	

#9.	(hs*tnt or hs-*tnt or tnt-hs or tnths or ctnths or ctnt-hs):ti,ab,kw
#10.	(hs*tni or hs-*tni or tni-hs or tnihs or ctnihs or ctni-hs or ctni-ultra or accutni or accu- tni):ti,ab,kw
#11.	MeSH descriptor: [Myoglobin] this term only
#12.	(myoglobin* near/5 (analys* or analyze* or test* or investigat* or evaluat* or examin* or check* or assess* or measur* or diagnos* or identif* or verif* or assay or biological marker* or biomarker* or bio marker*)):ti,ab,kw
#13.	MeSH descriptor: [Creatine Kinase] this term only
#14.	(creatine kinase* near/5 (analys* or analyze* or test* or investigat* or evaluat* or examin* or check* or assess* or measur* or diagnos* or identif* or verif* or assay or biological marker* or biomarker* or bio marker*)):ti,ab,kw
#15.	MeSH descriptor: [Creatine Kinase, MB Form] this term only
#16.	(ck mb* or ck 2 or (mb* near/3 (isoenzyme* or enzyme* or isoform*))):ti,ab,kw
#17.	44-#16
#18.	#1 and #17

H.1.5 Health economics search terms

H.1.5.1 Health economic (HE) reviews

Economic searches were conducted in Medline, Embase and CRD databases.

Medline & Embase search terms

1.	Standard population [H.1.2.1]	
2.	Excluded study designs and publication types [H.1.3.1]	
3.	1 not 2	
4.	Limit 3 to English language	
5.	Study filter HE (H.1.3.4)	
6.	4 and 5	
	Date parameters: March 2009 – 10 May 2016	

CRD search terms

#1.	Standard population [H.1.2.1]
	Date parameters: Inception to 10 May 2015

H.2 Stable chest pain

H.2.1 Prediction models/tools for people with stable chest pain of suspected cardiac origin

Databases that were searched, together with the number of articles retrieved from each database are shown in table 6. The search strategy is shown in table 7.

Databases	Date searched	Version/files	No. retrieved
MEDLINE (Ovid)	25/11/2015	Ovid MEDLINE(R) 1946 to November Week 2 2015	4,285
MEDLINE In-Process (Ovid)	25/11/2015	Ovid MEDLINE(R) In-Process & Other Non-	515

Table 11: Clinical search summary

Databases	Date searched	Version/files	No. retrieved
		Indexed Citations <november 2015="" 24,=""></november>	
Embase (Ovid)	25/11/2015	Embase <1974 to 2015 Week 47>	4,983
Cochrane Database of Systematic Reviews (CDSR)	26/11/2015	Cochrane Database of Systematic Reviews : Issue 11 of 12, November 2015	83
Cochrane Central Register of Controlled Trials (CENTRAL)	26/11/2015	Cochrane Central Register of Controlled Trials : Issue 10 of 12, October 2015	1,516
Database of Abstracts of Reviews of Effect (DARE)	26/11/2015	Database of Abstracts of Reviews of Effect : Issue 2 of 4, April 2015	81
Health Technology Assessment (HTA Database)	26/11/2015	Health Technology Assessment Database : Issue 4 of 4, October 2015	4
PubMed	25/11/2015	-	912

The MEDLINE search strategy is presented below. This was translated for use in all of the other databases listed. The aim of the search was to identify evidence for the clinical question being asked.

The PubMed translation consisted of an abbreviated strategy run at the end of the process designed to capture references that had not yet appeared in the Medline in Process database.

Table 12: Clinical search terms

Line	e number/Search term/Number retrieved
1	Chest Pain/ (10195)
2	Angina Pectoris/ (31364)
3	Angina, Stable/ (593)
4	Microvascular Angina/ (920)
5	(angina* or stenocardia* or angor pectoris or cardiac syndrome x).tw. (46911)
6	((chest* or thorax* or thorac*) adj4 (pain* or discomfort or distress or ache*)).tw. (28562)
7	*Coronary Artery Disease/ (35245)
8	(coronary adj (arterioscleros?s or atheroscleros?s or artery or arteries) adj disease*).tw. (61335)
9	or/1-8 (153833)
10	*Risk Assessment/ (20773)
11	*Risk Factors/ (968)
12	*Medical-History Taking/ (4613)
13	*Physical Examination/ (10186)
14	*Risk/ (2965)
15	(history adj tak*).tw. (3907)
16	(pretest* adj (probab* or likel*)).tw. (1176)
17	(risk* adj4 assess*).tw. (76129)
18	cardiovascular risk factor*.tw. (23581)
19	((physic* or clinic*) adj4 exam*).tw. (137040)
20	((medic* or famil* or patient* or clinic*) adj histor*).tw. (85616)

- 21 (probab* adj4 disease*).tw. (9104)
- 22 Framingham*.tw. (6555)
- 23 clinic* predict*.tw. (5265)

Line number/Search term/Number retrieved

- 24 or/10-23 (355981)
- 25 9 and 24 (11361)
- 26 Animals/ not Humans/ (4055381)
- 27 25 not 26 (11336)
- 28 limit 27 to english language (9869)
- 29 limit 28 to ed=20090101-20151125 (4285)

H.2.2 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

Databases that were searched, together with the number of articles retrieved from each database are shown in Table 13. The search strategy is shown in Table 14. The same strategy was translated for the other databases listed.

Database	Date searched	Number retrieved
CDSR (Wiley)	21/05/2015	1
Database of Abstracts of Reviews of Effects – DARE (Wiley)	21/05/2015	59
HTA database (Wiley)	21/05/2015	5
CENTRAL (Wiley)	21/05/2015	658
MEDLINE (Ovid)	21/05/2015	8484
MEDLINE (Ovid) Additional search to cover missing Medline records between January and October 2015	19/10/2015	12
MEDLINE In-Process (Ovid)	21/05/2015	297
EMBASE (Ovid)	21/05/2015	9058
PubMed	03/06/2015	124

Table 13: Clinical search summary

The MEDLINE search strategy is presented below. This was translated for use in all of the other databases listed. The aim of the search was to identify evidence for the clinical question being asked.

The PubMed translation consisted of an abbreviated strategy run at the end of the process designed to capture references that had not yet appeared in the Medline in Process database.

Table 14: Clinical search terms

Line number/Search term/Number retrieved

- 1 Chest Pain/ (9704)
- 2 Angina Pectoris/ (30738)
- 3 Angina, Stable/ (513)
- 4 Microvascular Angina/ (894)
- 5 (angina* or stenocardia* or angor pectoris or cardiac syndrome x).tw. (45788)
- 6 ((chest* or thorax* or thorac*) adj4 (pain* or discomfort or distress or ache*)).tw. (27441)
- 7 *Coronary Artery Disease/ (33104)
- 8 (coronary adj (arterioscleros?s or atheroscleros?s or artery or arteries) adj disease*).tw. (59084)
- 9 or/1-8 (148196)
- 10 *Echocardiography, stress/ (1378)
- 11 (Echocardiograph* adj4 (stress* or dobutamine)).tw. (4251)
- 12 *Tomography, Emission-Computed, Single-Photon/ (13061)
- 13 *Tomography, Emission-Computed/ or *Tomography, X-Ray Computed/ (103454)
- 14 *Positron-Emission Tomography/ (18848)
- 15 ((single photon or single-photon) adj2 emission*).tw. (14546)
- 16 ((positron-emission or positron emission) adj tomography).tw. (34398)
- 17 (pet adj scan*).tw. (6670)
- 18 *Myocardial Perfusion Imaging/ (1828)
- 19 (Myocardial adj (scintigraph* or perfusion*)).tw. (12467)
- 20 ((thallium or sestamibi or tetrofosmin or technetium) adj2 SPECT).tw. (1402)
- 21 *Magnetic Resonance Imaging/ (111714)
- 22 ((cardiac or stress) adj2 magnetic adj2 resonance adj2 imag*).tw. (2950)
- 23 ("cardiac MR" or CMR).tw. (4268)
- 24 (stress adj3 perfusion*).tw. (1736)
- 25 ((Multi-slice or Multi slice) adj CT).tw. (374)
- 26 ("new generation" adj4 tomograph*).tw. (36)
- 27 (fractional adj flow adj reserve).tw. (859)
- 28 (coronary adj2 computed adj2 tomographic adj2 angiograph*).tw. (474)
- 29 (MSCT or MRI or CCTA or CTCA or NGCCT or SPECT or PET or MPS or CTFFR).tw. (208754)
- 30 (stress adj2 (ECG or EKG or electrocardiogra* or electrokardiogra*)).tw. (957)
- 31 *Coronary Angiography/ (14643)
- 32 (coronary adj angiograph*).tw. (22871)

Line number/Search term/Number retrieved

- 33 ((CAC or calcium) adj scor*).tw. (2109)
- 34 or/10-33 (398920)
- 35 9 and 34 (26371)
- 36 animals/ not humans/ (3947089)
- 37 35 not 36 (26165)
- 38 limit 37 to english language (22297)
- 39 "Sensitivity and Specificity"/ (287798)
- 40 (sensitivity or specificity or accuracy).tw. (866529)
- 41 "Predictive Value of Tests"/ (151270)
- 42 (predictive adj1 value*).tw. (68061)
- 43 (roc adj1 curve*).tw. (15164)
- 44 (false adj2 (positiv* or negativ*)).tw. (55601)
- 45 (observer adj variation*).tw. (938)
- 46 (likelihood adj1 ratio*).tw. (8859)
- 47 Diagnosis, Differential/ (388741)
- 48 Likelihood Functions/ (17912)
- 49 exp Diagnostic Errors/ (97914)
- 50 or/39-49 (1600741)
- 51 38 and 50 (8484)

H.2.3 Non-invasive diagnostic tests, invasive diagnostic tests and calicium scoring in people with stable chest pain of suspected cardiac origin – supplementary test and treat randomised controlled trials search

Databases that were searched, together with the number of articles retrieved from each database are shown in Table 13. The search strategy is shown in Table 14. The same strategy was translated for the other databases listed.

Database	Date searched	Number retrieved
MEDLINE (Ovid)	24/02/2016	5,608 (+251)
MEDLINE In-Process (Ovid)	24/02/2016	134
Embase (Ovid)	24/02/2016	4,909
Cochrane Database of Systematic Reviews (CDSR)	24/02/2016	6

Table 15: Clinical search summary

Database	Date searched	Number retrieved
Cochrane Central Register of Controlled Trials (CENTRAL)	24/02/2016	3,119
Database of Abstracts of Reviews of Effect (DARE)	24/02/2016	113
Health Technology Assessment (HTA Database)	24/02/2016	58

The MEDLINE search strategy is presented below. This was translated for use in all of the other databases listed. The aim of the search was to identify evidence for the clinical question being asked.

The PubMed translation consisted of an abbreviated strategy run at the end of the process designed to capture references that had not yet appeared in the Medline in Process database.

Table 16: Clinical search terms

Lin	e number/Search term/Number retrieved
1	Chest Pain/ (10469)
2	Angina Pectoris/ (31376)
3	Angina, Stable/ (621)
4	Microvascular Angina/ (918)
5	(angina* or stenocardia* or angor pectoris or cardiac syndrome x).tw. (46631)
6	((chest* or thorax* or thorac*) adj4 (pain* or discomfort or distress or ache*)).tw. (28316)
7	*Coronary Artery Disease/ (37212)
8	(coronary adj (arterioscleros?s or atheroscleros?s or artery or arteries) adj disease*).tw. (60888)
9	or/1-8 (154405)
10	*Echocardiography, stress/ (1454)
11	(Echocardiograph* adj4 (stress* or dobutamine)).tw. (4362)
12	*Tomography, Emission-Computed, Single-Photon/ (13414)
13	*Tomography, Emission-Computed/ or *Tomography, X-Ray Computed/ (107998)
14	*Positron-Emission Tomography/ (20362)
15	((single photon or single-photon) adj2 emission*).tw. (14844)
16	((positron-emission or positron emission) adj tomography).tw. (35629)
17	(pet adj scan*).tw. (6816)
18	*Myocardial Perfusion Imaging/ (1989)
19	(Myocardial adj (scintigraph* or perfusion*)).tw. (12721)
20	((thallium or sestamibi or tetrofosmin or technetium) adj2 SPECT).tw. (1416)

21 *Magnetic Resonance Imaging/ (115537)

Line number/Search term/Number retrieved

- 22 ((cardiac or stress) adj2 magnetic adj2 resonance adj2 imag*).tw. (3184)
- 23 ("cardiac MR" or CMR).tw. (4551)
- 24 (stress adj3 perfusion*).tw. (1770)
- 25 ((Multi-slice or Multi slice) adj CT).tw. (385)
- 26 ("new generation" adj4 tomograph*).tw. (38)
- 27 (fractional adj flow adj reserve).tw. (974)
- 28 (coronary adj2 computed adj2 tomographic adj2 angiograph*).tw. (508)
- 29 (MSCT or MRI or CCTA or CTCA or NGCCT or SPECT or PET or MPS or CTFFR).tw. (218079)
- 30 (stress adj2 (ECG or EKG or electrocardiogra* or electrokardiogra*)).tw. (969)
- 31 *Coronary Angiography/ (15341)
- 32 (coronary adj angiograph*).tw. (23541)
- 33 ((CAC or calcium) adj scor*).tw. (2238)
- 34 or/10-33 (415267)
- 35 9 and 34 (27278)
- 36 animals/ not humans/ (4154861)
- 37 35 not 36 (27075)
- 38 limit 37 to english language (23138)
- 39 Randomized Controlled Trial.pt. (406217)
- 40 Controlled Clinical Trial.pt. (90055)
- 41 Clinical Trial.pt. (496612)
- 42 exp Clinical Trials as Topic/ (287467)
- 43 Placebos/ (33017)
- 44 Random Allocation/ (85417)
- 45 Double-Blind Method/ (132981)
- 46 Single-Blind Method/ (21293)
- 47 Cross-Over Studies/ (37183)
- 48 ((random\$ or control\$ or clinical\$) adj3 (trial\$ or stud\$)).tw. (797809)
- 49 (random\$ adj3 allocat\$).tw. (22413)
- 50 placebo\$.tw. (160059)
- 51 ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj (blind\$ or mask\$)).tw. (130117)
- 52 (crossover\$ or (cross adj over\$)).tw. (59727)
- 53 or/39-52 (1466709)

Line number/Search term/Number retrieved

- 54 animals/ not humans/ (4154861)
- 55 53 not 54 (1365632)
- 56 Meta-Analysis.pt. (61300)
- 57 Meta-Analysis as Topic/ (14478)
- 58 Review.pt. (2007715)
- 59 exp Review Literature as Topic/ (8358)
- 60 (metaanaly\$ or metanaly\$ or (meta adj3 analy\$)).tw. (72449)
- 61 (review\$ or overview\$).ti. (295382)
- 62 (systematic\$ adj5 (review\$ or overview\$)).tw. (67938)
- 63 ((quantitative\$ or qualitative\$) adj5 (review\$ or overview\$)).tw. (4981)
- 64 ((studies or trial\$) adj2 (review\$ or overview\$)).tw. (27292)
- 65 (integrat\$ adj3 (research or review\$ or literature)).tw. (6137)
- 66 (pool\$ adj2 (analy\$ or data)).tw. (15992)
- 67 (handsearch\$ or (hand adj3 search\$)).tw. (5804)
- 68 (manual\$ adj3 search\$).tw. (3484)
- 69 or/56-68 (2181002)
- 70 animals/ not humans/ (4154861)
- 71 69 not 70 (2041729)
- 72 55 or 71 (3150571)
- 73 38 and 72 (5859)
- 74 limit 73 to ed=20150522-20160224 (251)
- 75 73 not 74 (5608)

Appendix I: Clinical evidence tables

I.1 High sensitivity cardiac troponins

Study	Aldous 2011, 2012 ^{45,46}
Study type	Cohort
Number of studies (number of participants	n=939
Country and setting	New Zealand
Funding	Non-industry funded
Duration of study	November 2007–December 2010
Age, gender, ethnicity	Median age (IQR): 65 (56, 76) Male (%): 60 White (%): 89 Previous CAD (%): 52 Previous family history (%): 60 Previous revascularisation (%): 30 Diabetes (%): 17 Smoking (%): 61 Hypertension (%): 61 Dyslipidaemia (%): 58 Median BMI (IQR): 28(25, 31) Median (IQR) time to presentation (hours): 6.3 (3.3, 13.3)
Patient characteristics	Inclusion criteria: Adults (≥18 years) with symptoms suggestive of cardiac ischemia (acute chest, epigastric, neck, jaw or arm pain or

Study	Aldous 2011, 2012 ^{45,46}
	discomfort or pressure without an apparent non-cardiac source)
	Exclusion criteria:
	ST-segment elevation on ECG; unable to provide informed consent; would not be available to follow-up
Index test	Roche Elecsys hs-cTnT LOD: 5
	99 th centile: 14 Coefficient of variation: <10% at 13
Reference standard	AMI was diagnosed if there was a rise and/or fall of the cTnl (≥20)% with ≥1 value at the 99 th percentile
	Conventional troponins were measured using Abbott Diagnostics TnI (LoD 10 ng/I, 99 th centile 28 ng/I, CV <10% at 32 ng/I, decision threshold 30 ng/I)
	Timing: On presentation, and at 2 hours and 6–12 hours
Target condition	NSTEMI
Results:	
<u>2012</u>	
Threshold: 14	
Timing: On presentation	
ТР	181
FP	134
FN	24
TN	600
Sensitivity%	83
Specificity%	82

Study	Aldous 2011, 2012 ^{45,46}	
Threshold: 5		
Timing: On presentation		
ТР	192	
FP	305	
FN	13	
TN	429	
Sensitivity%	93	
Specificity%	58	
Threshold: 3		
Timing: On presentation		
ТР	9196	
FP	383	
FN	9	
TN	351	
Sensitivity%	95	
Specificity%	48	
. ,		
Threshold: 14		
Timing: 2 hours		
ТР	189	
FP	149	
FN	16	
TN	585	

Study	Aldous 2011, 2012 ^{45,46}
Sensitivity%	92
Specificity%	80
Threshold: 5	
Timing: 2 hours	
ТР	196
FP	340
FN	9
TN	394
Sensitivity%	95
Specificity%	54
Threshold: 3	
Timing: 2 hours	
ТР	201
FP	424
FN	4
TN	310
Constitute 10/	98
Sensitivity%	42
Specificity%	42
2011	
Threshold: Peak 14	
Timing: 0-2 hours	

Study	Aldous 2011, 2012 ^{45,46}
ТР	189
FP	149
FN	11
TN	590
Sensitivity%	94
Specificity%	80
Threshold: Peak 14 and change 20%	
Timing: 0-2 hours	
ТР	99
FP	43
FN	101
TN	696
Sensitivity%	50
Specificity%	94
Threshold: Peak 14 and change 20%	
Timing: 0-2 hours	
ТР	195
FP	260
FN	5
TN	479
Sensitivity%	97
Specificity%	65

Study	Aldous 2011, 2012 ^{45,46}
General limitations (according to QUADAS-2)	Patient flow and timing, patient selection and reference standard

Study	Borna 2016 ¹⁶¹
Study type	Cohort
Number of studies (number of participants	n=477
Country and setting	Sweden
Funding	Non-industry
Duration of study	Not stated
Age, gender, ethnicity	Median (IQR) age: 82 (77–85) Male (%): 53 White (%): NR Previous CAD (%): 59 Previous family history (%): NR Previous revascularisation (%):47 Diabetes (%): 24 Smoking (%): NR

Study	Borna 2016 ¹⁶¹
	Hypertension (%): 59
	Dyslipidaemia (%): 48
	Mean (SD) BMI: NR
	Time to presentation: NR
Patient characteristics	Inclusion criteria: All patients ≥75 years with chest pain suspicious of ACS if they were admitted to the ED or the medical observation unit.
	Exclusion criteria: Patients identified as low risk and discharged home from the ED.
	STEMI patients
Index test	The HScTnT analyses were performed with the use of the Elecsys 2010 system (Roche) with a limit of detection of 2 ng/l, a 99 th percentile cut-off of 14 ng/l, and a coefficient of variation of less than 10 at 13 ng/l
Reference standard	AMI was diagnosed according to the joint European Society of Cardiology/American College of Cardiology/
	American Heart Association/World Heart Federation Task Force. In addition, all diagnoses and ECGs were reviewed by 2 cardiologists. In patients with a HScTnT >14 ng/l, a 20% rise or fall was considered sufficient for an AMI diagnosis together with a clinical course suggestive of ACS.
Target condition	NSTEMI

	2 224 5161	
Study	Borna 2016 ¹⁶¹	
Results:		
Threshold: 14		
Timing: On presentation		
ТР	117	
FP	198	
FN	12	
TN	150	
Sensitivity%	91	
Specificity%	43	
Threshold: 14		
Timing: 3-4h		
ТР	129	
FP	212	
FN	0	
TN	136	
Sensitivity%	100	
Specificity%	39	
Threshold: 20		
Timing: 3-4hours		
ТР	200	
FP	143	
FN	9	
TN	205	

Study	Borna 2016 ¹⁶¹
Sensitivity%	93
Specificity%	59
Threshold: 30	
Timing: 3-4hours	
ТР	116
FP	87
FN	13
TN	261
Sensitivity%	90
Specificity%	75
General limitations (according to	Patient flow and timing and reference standard
QUADAS-2)	

Study	Collinson 2013 ²²⁸
Study type	UK
Number of studies (number of participants	n=850
Country and setting	UK
Funding	Non-industry
Duration of study	Not stated
Age, gender, ethnicity	Median age (IQR): 54 (44, 64) Male (%): 60

Study	Collinson 2013 ²²⁸
	Previous AMI (%): 40
	Previous family history (%):
	Previous revascularisation (%): 1
	Diabetes (%): 8
	Smoking (%): 28
	Hypertension (%): 35
	Dyslipidaemia (%): 24
Patient characteristics	Patients presenting to the ED with chest pain due to suspected, but not, proven AMI.
	Exclusion criteria:
	ECG changes diagnostic for AMI or high risk ACS (>1 mm ST deviation, or >3 mm inverted T waves); known CAD with prolonged (>1 hour) or recurrent typical cardiac-type pain; proven or suspected serious non-cardiac pathology (for example PE); co-morbidity or social problems requiring hospital admission even if AMI ruled out; obvious non-cardiac cause of chest pain (for example pneumothorax or muscular pain); presentation >12 hours after most significant episode of pain.
Index test	Roche Elecsys hs-cTnT
	LOD: 3
	99 th Centile: 14
	Coefficient of variation: <10% at30 ng/l
Reference standard	The universal definition of myocardial infarction was used to categorise patients into those with or
	without an AMI utilising clinical, ECG, trial and local laboratory-derived cardiac troponin values and
	troponin measurements subsequently performed in the trial central laboratory on the admission and
	90 minute samples using the Siemens Ultra assay as the predicate troponin method.
	Patients were classified as having an AMI on the basis of appropriate clinical features, electrocardiographic changes and the presence of a rise in troponin level above the diagnostic discriminant of the relevant assay in use locally and no alternative clinical cause of a troponin rise. Patients with a troponin rise consistent with an AMI and a final diagnosis of ACS or an AMI were classified as having an AMI. Patients with no troponin rise consistent with an AMI and a final diagnosis that was neither ACS nor an AMI were classified as not having an AMI. Patients with a final

Study	Collinson 2013 ²²⁸
	diagnosis of ACS or an AMI but no troponin rise were assessed by a single reviewer blind to treatment group who reviewed the initial and next-day ECG and categorised these patients as having an AMI only if an ECG showed ST-segment elevation and coronary reperfusion was performed. Patients with a troponin rise and a final diagnosis other than ACS or an AMI were assessed by 2 reviewers blinded to treatment group who reviewed case details and decided whether or not an AMI was the most likely diagnosis. Disagreements were resolved by discussion and patients classified as having an AMI or not. All patients with a cTnI (measured on the Siemens Ultra assay) exceeding the 99 th percentile or a troponin measurement from the local laboratory exceeding the 99 th percentile were reviewed and the final diagnosis confirmed.
Target condition	NSTEMI
Results: Threshold: 14 Timing: On presentation	
ТР	57
FP	43
FN	11
TN	736
Sensitivity%	79
Specificity%	96
Threshold: Peak 14	
Timing: On presentation and at 1.5 hours	
	57
ТР	43
FP	11
FN	736

Study	Collinson 2013 ²²⁸
TN	
	83
Sensitivity%	94
Specificity%	
General limitations (according to	Patient flow and timing, patient selection and reference standard
QUADAS-2)	

Study	Eggers 2012 ^{256,268,329}	
Study type	Cohort	
Number of studies (number of participants	n=360	
Country and setting	Sweden	
Funding	Non-industry funded	
Duration of study	May 2000 (FAST II), October 2002 (FASTER I) – March 2001 (FAST II), August 2003 (FASTER I)	
Age, gender, ethnicity	Male (%): 66 Previous AMI (%): 38 Previous revascularisation (%): 18 Diabetes (%): 18 Smoking (%): 18 Hypertension (%): 43 Dyslipidaemia (%): 38	

Eggers 2012 ^{256,268,329}	Che
Delay <4 hours (%): 40	Chest pain of re Clinical evidence
Inclusion criteria:	in of iden
Chest pain with ≥15 minute duration within the last 24 hours (FAST II-study), or the last 8 hours (FASTER I-study). Analysis restricted to patients with symptom onset <8 hours.	f recent once tables
Exclusion criteria:	nt c les
ST-segment elevation on the admission 12-lead ECG leading to immediate reperfusion therapy or its consideration was used as exclusion criterion.	onset s
Roche Elecsys hs-cTnT	
LOD: 3	
99 th centile: 14	
Coefficient of variation: <10% at 13	
Diagnosis was made based on the ESC/ACC consensus document.	
cTnI (Stratus CS, Siemens Healthcare Diagnostics, Deerfield, IL, USA). Non-STEMI defined as: cTnI above the 99 th percentile of 0.07 µg/l at least at one measurement together with a \geq 20% rise and/or fall and an absolute change \geq 0.05 µg/l within 24 hours. To allow for the calculation of relative changes, cTnI was set to 0.02 µg/l (that is, a concentration below the lowest level of detection) when reported as 0.00 or 0.01 µg/l. Timing: eight time points during the first 24 hours following enrolment.	

Patients with typical angina pain at rest in combination with ST-segment depression but not fulfilling biochemical

criteria for non-STEMI were considered to suffer from unstable angina.

NSTEMI

Patient characteristics Inclusion crit Chest pain w Analysis rest Exclusion crit ST-segment used as exclu Index test Roche Elecsy LOD: 3 99th centile: Coefficient o Reference standard Diagnosis wa cTnI (Stratus percentile of µg/l within 2 below the lov

Target condition

Study

	E 2010756 768 379
Study	Eggers 2012 ^{256,268,329}
Results:	
Threshold: 14	
Timing: On presentation	
ТР	101
FP	59
FN	27
TN	173
Sensitivity%	79
Specificity%	74
Threshold: 45.7	
Timing: On presentation	
ТР	65
FP	11
FN	63
TN	221
Sensitivity%	51
Specificity%	95
General limitations (according to	Patient selection, reference standard, flow and timing, patient selection and reference standard
QUADAS-2)	

Study	Freund
Study type	Cohort

Study	Freund	
Number of studies (number of participants	317	
Country and setting	France	
Funding	Industry	
Duration of study	1 year 5 months	
Age, gender, ethnicity	Mean (SD) age: 56 (17) Male (%): 64 White (%): NR Previous CAD (%): 22 Previous family history (%): 30 Previous revascularisation (%):NR Diabetes (%): 12 Smoking (%): 38 Hypertension (%): 34 Dyslipidaemia (%): 33 Mean (SD) BMI: NR	
Patient characteristics	August 2005–January 2007 Inclusion criteria: Consecutive hospital outpatients (>18 years of age) who presented to the ED with chest pain suggestive of ACS with the onset or peak occurring within the previous 6 hours. No STEMI included in the sub-group extracted. Exclusion: Chronic Kidney Disease requiring dialysis.	
Index test	cTnI (Siemens Healthcare Diagnostica Inc., NewaRK, USA or Access analyser Beckman Coulter Inc., Brea, USA). Threshold for Siemens assay 140 ng/l, CV ≤10%	

Study	Freund		
	Threshold for Beckman assay 60 ng/l, CV 10%		
	Timing: On presentation and at 3–9 hours if needed		
Reference standard AMI was diagnosed according to the joint European Society of Cardiology/American College of Cardiolog Heart Association/World Heart Federation Task Force redefinition of MI guidelines. Diagnosis of AMI reincrease above the 10% coefficient of variation (CV) value associated with at least one of the following ischaemia, new ST-T changes or a new Q wave on an electrocardiogram, imaging of new loss of viable in normal cTnI on admission. Unstable angina was diagnosed in patients with constant normal cTnI levels clinical symptoms consistent with ACS. cTnI (Siemens Healthcare Diagnostica Inc., NewaRK, USA or Access analyser Beckman Coulter Inc., Breat Threshold for Siemens assay 140 ng/l, CV ≤10% Threshold for Beckman assay 60 ng/l, CV 10%			
	Timing: On presentation and at 3–9 hours if needed		
Target condition	NSTEMI		
Results: Low pre-test probability Threshold: 14 Timing: On presentation	22		
ТР	12		
FP	1		
FN	24		
TN			
Sensitivity%	89 (70–97)		
Specificity%	85 (79–89)		
General limitations (according to QUADAS-2)	Patient selection and reference standard		

Study

Study type	Cohort
Number of studies (number of participants	n=724
Country and setting	Country: Switzerland, Spain, USA and Germany
Funding	Non-industry funded
Duration of study	Date recruited: April 2006–April 2008
Age, gender, ethnicity	Median age (IQR): 63 (50–75) Male (%): 66 Previous AMI (%): 25 Previous CAD (%): 35 Previous revascularisation (%): 28 Impaired rental function (GFR <60 ml/minute): 12 Diabetes (%): 16 Smoker (current) (%): 25 Hypertension (%): 61 Dyslipidaemia (%): 43 Median BMI (IQR): 26 (24–29)
Patient characteristics	 Inclusion criteria: Consecutive adults presenting to the ED with symptoms suggestive of AMI at rest or minor exertion within the last 12 hours. Exclusion criteria: Positive troponin test prior to presentation, cardiogenic shock, terminal kidney failure requiring dialysis, or anaemia requiring transfusion.
Index test	Roche Elecsys hs-cTnT LOD: 2 ng/l 99 th centile: 14 ng/l

Hochholzer 2011³²⁹

Hochholzer 2011 ³²⁹
Coefficient of variation: <10% at 13 ng/l
Joint ESC, ACC, AHA and WHF ^(a) Conventional troponins were measured using Roche cTnT 4 th generation assay (CV <10% at 35 ng/l), Beckman Coulter Accu cTnI (CV <10% at 60 ng/l), or Abbott Axsym cTnI ADV (CV <10% at 160 ng/l). A positive test was defined as change ≥30% of 99 th centile or 10% CV level, within 6–9 hours. Timing: On presentation and at 6–9 hours. Final diagnoses were adjudicated by 2 independent cardiologists blind to hsTnT results. Where there was disagreement a third cardiologist was consulted.
NSTEMI
90 177 3 454

	Accu cTnI (CV <10% at 60 ng/l), or Abbott Axsym cTnI ADV (CV <10% at 160 ng/l). A positive test was defined as change \geq 30% of 99 th centile or 10% CV level, within 6–9 Timing: On presentation and at 6–9 hours. Final diagnoses were adjudicated by 2 independent cardiologists blind to hsTnT results a third cardiologist was consulted.
Target condition	<u>NSTEMI</u>
Results:	
On presentation, 11 ng/L	
ТР	90
FP	177
FN	3
TN	454
Sensitivity (95% CI)	96 (90, 99)
Specificity (95% CI)	72 (68, 75)
General limitations (according to QUADAS-2)	Flow and timing and patient selection

Study	Irfan 2013 ³⁵⁰
Study type	
Number of studies (number of participants	n=830

Study

Reference standard

Study	Irfan 2013 ³⁵⁰
Country and setting	Country: Switzerland, Spain, USA and Germany
Funding	Industry and non-industry funded
Duration of study	Date recruited: April 2006–June 2009
Age, gender, ethnicity	Median age (IQR): 64 (51–75) Male (%): 67 Previous AMI (%): 25 Previous CAD (%): 36 Renal insufficiency (%): 11 Diabetes (%): 20 Hypertension (%): 64 Hypercholesterolemia (%): 47 Median BMI (IQR): 26 (24–30)
Patient characteristics	Inclusion criteria: Consecutive adults presenting to the ED with symptoms suggestive of AMI (for example acute chest pain, angina pectoris) within an onset or peak within the last 12 hours. Exclusion criteria: Acute trauma and terminal kidney failure requiring dialysis.
Index test	Roche Elecsys hs-cTnT LOD: 3 ng/l 99 th centile: 14 ng/l Coefficient of variation: <10% at 13 ng/l Beckman Coulter hs-cTnI LOD: 2 ng/l 99 th centile: 9 ng/l Coefficient of variation: lower than 99 th centile

Study	Irfan 2013 ³⁵⁰
Reference standard	Joint ESC, ACC, AHA and WHF ^(a) Conventional troponins were measured using Roche cTnT 4 th generation assay (CV <10% at 35 ng/l), Beckman Coulter Accu cTnI (CV <10% at 60 ng/l), or Abbott Axsym cTnI ADV (CV <10% at 160 ng/l). A positive test was defined as change ≥30% of 99 th centile or 10% CV level, within 6–9 hours. Timing: On presentation and at 6–9 hours. Final diagnoses were adjudicated by 2 independent cardiologists blind to hsTnT results. Where there was disagreement a third cardiologist was consulted.
Target condition	NSTEMI
Results:	
<u>On presentation and at 1 hour,</u> Δ17% ng/L	
ТР	65
FP	202
FN	43
TN	520
Sensitivity (95% Cl)	60 (51, 69)
Specificity (95% Cl)	72 (69, 75)
<u>On presentation and at 1 hour,</u> $\Delta 27\%$ ng/L	
ТР	68
FP	245
FN	40
TN	477
Sensitivity (95% CI)	63 (53, 71)

Study	Irfan 2013 ³⁵⁰
Specificity (95% CI)	66 (63, 69)
General limitations (according to QUADAS-2)	Flow and timing and patient selection

Study	Kurz ³⁹⁹
Study type	Cohort
Number of studies (number of participants	94
Country and setting	Germany
Funding	Industry supplied assays
Duration of study	May 2008–December 2008 7 months
Age, gender, ethnicity	Mean (SD) age: 65.6 (10.8) Male (%): 71.3 White (%): NR Previous CAD (%): 50 Previous family history (%): 31.9 Previous revascularisation (%): CABG -17

Study	Kurz ³⁹⁹
	Diabetes (%): 30.9
	Smoking (%): 22.3
	Hypertension (%): 77.7
	Dyslipidaemia (%): 64.9
	Mean (SD) BMI: 28.1 (4.1)
Patient characteristics	Inclusion criteria:
	Consecutively, patients with symptoms suggestive of ACS admitted to the chest pain unit.
	Exclusion criteria:
	Patients with ST-segment elevation.
Index test	All laboratory measurements on the new high sensitive cardiac troponin T assay (TnThs) were performed in the research laboratory of Roche Diagnostics in Penzberg, Germany.
Reference standard	Unstable angina and non-ST-segment elevation myocardial infarction (non-STEMI) were diagnosed using the joint European Society of Cardiology/American College of Cardiology/American Heart Association/World Heart Federation Task Force redefinition of myocardial infarction guidelines. Patients with cTnT concentrations at presentation below the 10% CV diagnostic cut-off (0.03 lg/l) received a final diagnosis of unstable angina or evolving non-STEMI depending on the presence of an elevated cTnT concentration in at least one of the consecutive samples collected within 24 hours after index event.
Target condition	

Study	Kurz ³⁹⁹
Results:	
Threshold: 9.5	
Timing: On presentation	
ТР	38
FP	11
FN	8
TN	27
Sensitivity%	82 (69–90)
Specificity%	77 (63–86)
Threshold: 14	
Timing: On presentation	
ТР	16
FP	7
FN	10
TN	14
Sensitivity%	61 (42–77)
Specificity%	77 (60–88)
Threshold: 14	
Timing: 3hours of presentation	
ТР	
FP	26
FN	7
TN	0

Study	Kurz ³⁹⁹
	23
Sensitivity%	98 (84–100)
Specificity%	76 (58–87)
Threshold: 14 and 20% change	
Timing: On presentation and within	
3 hours	
ТР	11
FP	27
FN	15
TN	3
Sensitivity%	43 (26–61)
Specificity%	11 (4–72)
General limitations (according to QUADAS-2)	Patient selection, patient selection and reference standard

Study	Melki 2011 ⁴⁷⁶
Study type	Cohort
Number of studies (number of participants	n=233
Country and setting	Sweden

Study	Melki 2011 ⁴⁷⁶
Funding	Industry and non-industry funded
Duration of study	August 2006–January 2008
Age, gender, ethnicity	 Median age (IQR): 65 (55, 76) Male (%): 67 Previous AMI (%): 30 Previous revascularisation (%): 21 Diabetes (%): 23 Smoking (%): 17 Hypertension (%): 50 Mean symptom onset (95% CI/range/IQR, hours): 5 (3, 8)
Patient characteristics	Inclusion criteria: Patients admitted to a coronary care unit with chest pain or other symptoms suggestive of ACS within 12 hours of admission. Exclusion criteria: Patients with persistent ST-segment elevation.
Index test	Roche Elecsys hs-cTnT LOD: 2 99 th centile: 14 Coefficient of variation: <10% at 13
Reference standard	An acute MI was defined using the universal definition. Conventional troponin Roche 4 th generation TnT (LoD 10 ng/l, 10% CV at 35 ng/l), or Beckman Coulter Access AccuTnI (LoD 10 ng/l, 99 th centile 40 ng/l, CV <10% at 60 ng/l) Timing: On presentation and 9–12 hours later. Final diagnosis determined by the individual cardiologist, then adjudicated by 2 independent evaluators; all three were blinded to hs-TnT results.

Study	Melki 2011 ⁴⁷⁶
Target condition	
Results:	
Threshold: 14	
Timing: On presentation	
ТР	112
FP	21
FN	2
TN	98
Sensitivity%	98
Specificity%	82
Threshold: 14	
Timing: 2 hours	
ТР	114
FP	25
FN	0
TN	94
Sensitivity%	100
Specificity%	79
General limitations (according to QUADAS-2)	Patient selection

Study

Reichlin (2011)⁵⁷¹

Study	Reichlin (2011) ⁵⁷¹
Study type	Cohort
Number of studies (number of participants	n= 590
Country and setting	Country: Switzerland, Spain, USA and Germany
Funding	Industry and non-industry
Duration of study	Date recruited: April 2006–June 2009
Age, gender, ethnicity	Median age (IQR): 64 (51–67) Male (%): 67 Previous AMI (%): 25 Previous CAD (%): 37 Diabetes (%): 22 Smoker (current and past) (%): 60 Hypertension (%): 64 Hypercholesterolemia (%): 47 Median BMI (IQR): 27 (24–30)
Patient characteristics	Inclusion criteria: Consecutive adults presenting

Funding	Industry and non-industry
Duration of study	Date recruited: April 2006–June 2009
Age, gender, ethnicity	Median age (IQR): 64 (51–67) Male (%): 67 Previous AMI (%): 25 Previous CAD (%): 37 Diabetes (%): 22 Smoker (current and past) (%): 60 Hypertension (%): 64 Hypercholesterolemia (%): 47 Median BMI (IQR): 27 (24–30)
Patient characteristics	Inclusion criteria: Consecutive adults presenting to the ED with symptoms suggestive of AMI (for example acute chest pain, angina pectoris) within an onset or peak within the last 12 hours. Exclusion criteria: Terminal kidney failure requiring dialysis.
Index test	Roche Elecsys hs-cTnT LOD: 3 99 th centile: 14 Coefficient of variation: <10% at 13
Reference standard	Joint ESC, ACC, AHA and WHF ^(a) Conventional troponins were measured using Roche cTnT 4 th generation assay (CV <10% at 35 ng/l), Beckman Coulter Accu cTnI (CV <10% at 60 ng/l), or Abbott Axsym cTnI ADV (CV <10% at 160 ng/l).

National Guideline Centre. 2016

Study	Reichlin (2011) ⁵⁷¹
	A positive test was defined as change ≥30% of 99 th centile or 10% CV level, within 6–9 hours.
	Timing: On presentation and at 6–9 hours.
	Final diagnoses were adjudicated by 2 independent cardiologists blind to hsTnT results. Where there was disagreement
	a third cardiologist was consulted.
Target condition	NSTEMI
Results:	
On presentation and at 2 hours,	
<u>Δ 30% ng/L</u>	
ТР	43
FP	84
FN	24
TN	439
Sensitivity (95% Cl)	64 (52, 74)
Specificity (95% CI)	84 (80, 87)
General limitations (according to	Flow and timing and patient selection
QUADAS-2)	

Study	Santalo (2013) ⁵⁹⁸
Study type	Cohort
Number of studies (number of participants	n=358
Country and setting	Spain
Funding	Industry

Study	Santalo (2013) ⁵⁹⁸
Duration of study	Not reported
Age, gender, ethnicity	Mean age (range): 69 (27, 93) Male (%): 68 Previous CAD (%): 35 Diabetes (%): 26 Hypertension (%): 62 Presentation within 3 hours: 46.2%
Patient characteristics	Date recruited: NR Country: Spain Inclusion criteria: Adults (>18 years) described as presenting with acute coronary syndromes and symptom duration ≥5 minutes; population included 174 people with a final diagnosis of non-acute coronary syndromes. Exclusion criteria: ST-segment elevation; new left bundle branch block; pre-admission thrombolytic therapy; defibrillation or cardioversion before sampling; pregnancy; renal failure requiring dialysis; unstable angina within 2 months; CABG within 3 months.
Index test	Roche Elecsys hs-cTnT LOD: NR 99 th centile: 14 Coefficient of variation: <10% at 9.3
Reference standard	National Academy of Clinical Biochemistry and International Federation of Clinical Chemistry Committee ^(b) Roche cTnT; NSTEMI was defined as cTnT >10 ng/L and ∆cTnT >20% Timing: 30 minutes after arrival and at 2,4 and 6–8 hours or until discharge. Final diagnosis was made by an adjudication committee.
Target condition	NSTEMI

Study	Santalo (2013) ⁵⁹⁸
Results:	
On presentation, 14ng/L	
ТР	71
FP	80
FN	8
TN	199
Sensitivity (95% Cl)	89 (81, 94)
Specificity (95% CI)	71 (66, 76)
On presentation and at 2, 4 and 6-8	
<u>hours or until discharge, Δ 20% ng/L</u>	
ТР	79
FP	94
FN	0
TN	185
Sensitivity (95% CI)	99 (94, 100)
Specificity (95% CI)	66 (61, 72)
General limitations (according to	Reference standard
QUADAS-2)	

Study	Sebbane 2013 ⁶²¹
Study type	

Study	Sebbane 2013 ⁶²¹
Number of studies (number of participants	n=248
Country and setting	France
Funding	Industry
Duration of study	December 2009–November 2011
Age, gender, ethnicity	Median age (IQR): 61 (48, 75) Male (%): 63
Patient characteristics	Inclusion criteria: Adults presenting to the ED with chest pain of recent onset (within 12 hours of presentation). Exclusion criteria: Traumatic causes of chest pain. STEMI was defined by the persistent elevation of the ST segment of at least 1 mm in 2 contiguous ECG leads or by the presence of a new left bundle-branch block with positive cardiac enzyme results. Patients with STEMI were excluded from the analysis for our review.
Index test	Roche Elecsys hs-cTnT LOD: 5 99 th centile: 14 Coefficient of variation: <10% at 13
Reference standard	 Diagnosis if acute MI was made on using the universal definition. Patients with clinical signs and symptoms consistent with acute ischemia associated with ECG changes and/or at least 1 positive cTnl result together with a rise or fall within the last 6 hours of admission were categorised as having an AMI. cTnl measured using the Access2 analyser (Access Immunosystem, Beckman Instruments, France). The LoD was <10 ng/l and the decision threshold was 40 ng/l. Timing: Conventional cardiac troponin (cTnl) on presentation, 6 hours later and beyond as needed. Two independent emergency department physicians, blinded to hs-cTnT results.

Study	Sebbane 2013 ⁶²¹
Target condition	NSTEMI
Results:	
Threshold: 14	
Timing: On presentation or taken pre-hospital	
ТР	19
FP	25
FN	6
TN	142
Sensitivity%	75
Specificity%	85
Threshold: 18	
Timing: On presentation or pre- hospital	
	19
ТР	17
FP	6
FN	150
TN	
	75
Sensitivity%	90
Specificity%	
	Patient selection, flow and timing and reference standard
General limitations (according to QUADAS-2)	

I.2 Non-invasive imaging for the identification of people with NSTEMI/unstable angina

Study	ACRIN-PA 2012 ⁴³⁰
Study type	RCT (patient randomised; parallel)
Number of studies (number of participants)	1 (n=1370)
Countries and setting	Conducted in USA; setting: 5 sites
Line of therapy	2 nd line
Duration of study	Intervention time: index hospital length of stay median (IQR), h, MDCT 18.0 (7.6 to 27.2), standard practice 24.8 (19.2 to 30.5)
	Follow-up at 30 days
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: negative ECG and low risk on TIMI risk score
Stratum	Level of risk: Low (TIMI risk score ≤2)
Subgroup analysis within study	Not applicable
Inclusion criteria	Aged ≥30 years with signs or symptoms that were consistent with possible ACS, no acute ischemia on initial ECG, Thrombolysis in Myocardial Infarction TIMI risk score of 0 to 2.
Exclusion criteria	Symptoms clearly non-cardiac in origin, co-existing condition that necessitated admission, normal findings on MDCT or invasive angiography in the previous year, or had contraindications to MDCT.
Recruitment/selection of patients	July 2009–November 2011
Age, gender and ethnicity	Age – mean (SD): 49 (13) MDCT group versus 50 (10) standard practice group. Gender (M:F): 49%/51%. Ethnicity: MDCT group versus standard practice group (%): White 40 versus 35, Black 58 versus 62, American Indian or Alaska Indian 1 versus 1, Native Hawaiian or other Pacific Islander >1 versus 0, Unknown 1 versus 1.

National Guideline Centre. 2016

Further population details	MDCT group versus standard practice group (%): diabetes 14 versus 14, hypertension 51 versus 50, smokers 32 ver 34, history of MI 1 versus 1, hypercholesterolemia 27 versus 26.			
	Timing of non-invasive test: not reported			
Extra comments	Troponin I or T test results: not reported			
	Length of index hospital length of stay median (IQ	R). h. MDCT 18.0 (7	7.6 to 27.2). standard	practice 24.8 (19.2 to 3
	Hospitalisation or admission at to observation unit			
	MDCT: 458/908 (50)			
	Standard practice: 357/462 (77)			
	ECG findings at presentation and TIMI risk score			
	Characteristic	MDCT n=908	Standard	
			practice n= 462	
	Electrocardiographic findings at presentation:			
	n (%)			
	Normal	584 (64)	299 (65)	
	Non-specific	208 (23)	111 (24)	
	Early repolarization	23 (3)	14 (3)	
	Non-diagnostic abnormalities	68 (7)	24 (5)	
	Ischaemia			
	Known to have been present previously	11 (1)	6 (1)	
	Not known to have been present previously	10 (1)	7 (2)	
	ST elevation consistent with previous acute	2 (<1)	0	
	myocardial infarction			
	Other or unknown	1 (<1)	1 (<1)	
	TIMI risk score: n (%)			
	0	461 (51)	234 (51)	
	1	325 (36)	166 (36)	
	≥2	122 (13)	62 (13)	

Indirectness of population

No indirectness

Interventions	(n=908) Intervention 1: MDCT.		
	(n=462) Intervention 2: Standard practice.		
Funding	Commonwealth of Pennsylvania Department of Health and the American College of Radiology Imaging Network Foundation		
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: MDCT VERSUS STANDARD PRACTICE Protocol outcome 1: Cardiovascular mortality at 30-day follow-up MDCT 0/908, Standard practice 0/462: Risk of bias: Low; Indirectness of outcome: No indirectness Protocol outcome 2: Myocardial infarction at 30-day follow-up			
MDCT 10/908, Standard practice 5/462: Risk o	f bias: Low; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	All-cause mortality at 30-day and 1-year follow-up, cardiovascular mortality at 1 year follow-up, PCI at 30-day follow-up, CABG at 30-day follow-up, hospitalisation at 30-day follow-up for cardiac causes, hospitalisation at 30-day follow-up for non-cardiac causes, quality of life, adverse events related to related to index non-invasive test, major bleeding.		

Study	BEACON 2016 ²⁴⁴
Study type	RCT (patient randomised; parallel)
Number of studies (number of participants)	1 (n=500)
Countries and setting	Conducted in The Netherlands; setting: 2 university and 5 community hospitals and primary care
Line of therapy	2 nd line
Duration of study	Median (IQR) duration hospitalisation index visit, h : MDCT 6.3 (4.8 to 11.1) versus standard practice 6.3 (4.5 to 25.5)
	Median (IQR) time to diagnosis from randomisation, h: MDCT 3.4 (2.3 to 14.8) versus standard practice 15.0 (7.3 to 20.2)

	Primary care follow-up: 30 day
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: clinical history and examination, ECG and cardiac biomarkers
Stratum	Low risk
Subgroup analysis within study	Not applicable
Inclusion criteria	Acute chest pain or symptoms suggestive of ACS warranting further diagnostic evaluation, aged ≥30 years with a maximum age of 75 years for men and 80 years for women.
Exclusion criteria	Symptoms clearly of non-cardiac origin or a co-existing condition already necessitating hospital admission, history of CAD, clinical need for urgent invasive coronary angiography, clinical instability, serum troponin levels above 3 times the upper limit of the 99 th percentile of the local assay, impaired renal function (estimated glomerular filtration rate <60% of age-corrected normal values), pregnancy, known allergy to iodinated contrast agent, severe arrhythmias, and body mass index >40 kg/m ² .
Recruitment/selection of patients	July 2011–January 2014
Age, gender and ethnicity	Age – mean (SD), years: MDCT group 55 (10); standard practice group 53 (9). Gender (M: F%): MDCT group 51/49, Standard practice group 55/45. Ethnicity: not reported.
Further population details	Baseline characteristics: MDCT group versus standard practice group, %: diabetes 12 versus 13, hypertension 17 versus 17, hypercholesterolemia 10 versus 14, family history of CAD 45 versus 39, smoker 37 versus 31. Prior randomisation ED investigations: ECG and blood analysis including high sensitivity troponin.
Extra comments	Timing of MDCT: immediately after initial clinical work-up in ED after randomisation. Troponin I or T test results: MDCT versus standard practice (ONLINE TABLE). Length of stay from ED presentation to admission or discharge, median (IQR), h: MDCT group: 5.3 4.0 to 7 versus standard practice group: 4.7 (3.4 to 6.4) Hospitalisation at index visit, n/total, %: MDCT: 109/1126 (9.7%) Standard practice: 55/564 (9.8%), risk difference = -0.1 (95%CI -3.2 to 2.8)

Madiation during follow up n (%) and TIMI and CP/	VCE rick coord	
Mediation during follow-up, n (%) and TIMI and GRACE risk score MDCT n=250 Standard practice			
		n=250	
Statin	65 (26)	51 (20)	
Aspirin	48 (19)	35 (14)	
Beta-blocker	41 (16)	40 (16)	
ACE inhibitor	29 (12)	29 (12)	
Angiotensin-receptor blocker	18 (7)	17 (7)	
Calcium-channel blocker	18 (7)	19 (8)	
Diuretic agent	36 (14)	23 (9)	
Oral antidiabetic agent	22 (9)	24 (10)	
TIMI risk score, n			
0	74	83	
1	84	91	
≥2	92	76	
GRACE risk score, n (%)			
Low	211 (84)	208 (83)	
Intermediate	31 (12)	39 (16)	
High	8 (3)	3 (1)	

	Discharge admission, diagnostic				
		MDCT n=250	Standard care n=250	-	
	Discharge status Discharge from emergency department	159 (65)	144 (59)		
	Admitted to hospital	86 (35)	101 (41)		
	Exercise ECG at index visit	23 (9)	130 (53)		
	Exercise <30 days	32 (13)	143 (58)		
	SPECT at index visit	2 (1)	7 (3)		
	SPECT <30 days	2 (1)	16 (7)		
	MRI at index	1 (0)	1 (0)		
	MRI <30 days	1 (0)	3 (1)		
	MDCT after index visit	1 (0)	2 (1)		
	Outpatient diagnostic testing <30 days	10 (4)	26 (11)		
ndirectness of population	No indirectness				
nterventions	(n=245) Intervention 1: 64-slice of	r higher MDCT imm	ediately in ED after random	isation. Follow-up: 30 days	
	MDCT angiography criteria: positi	MDCT angiography criteria: positive criteria ≥50% stenosis in one or more coronary arteries			
	• .	r assessment, hospi	tal admission, non-invasive	isions regarding further testing, tests, and referral to invasive coronary agement of NSTEMI. Follow-up: 30 day	
unding	The Erasmus University Medical C	entre			

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: NON-INVASIVE IMAGING (MDCT) VERSUS STANDARD PRACTICE

Protocol outcome 1: All-cause mortality at 30 days

Group 1 Non-invasive imaging: 0/245, Group 2 Standard practice: 0/245; Risk of bias: Low; Indirectness of outcome: No indirectness

National Guideline Centre. 2016

Protocol outcome 2: PCI at 30 days Group 1 Non-invasive imaging: 22/245, Group 2 Standard practice: 13/245; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 3: CABG at 30 days Group 1 Non-invasive imaging: 0/245, Group 2 Standard practice: 4/245; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study All-cause mortality at 1 year, CVD mortality at 30 days and 1 year, PCI at 30 days, CABG at 30 days, re-admission to hospital for non-cardiac causes at 30 day, adverse events due to index test at 30 days, adverse events due to medication (major bleeding) at 30 days, quality of life.

Study	CATCH 2013 ⁴²⁶		
Study type	RCT (patient randomised; parallel)		
Number of studies (number of participants)	1 (n=600)		
Countries and setting	Conducted in Denmark; setting: Hvid	dovre University Hospita	l and primary care
Line of therapy	2 nd line		
Duration of study	Median (IQR) duration hospitalisation index visit, h: not applicable		
	Median (IQR) time to diagnosis from	n randomisation, h: not a	pplicable
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: clinical history, risk factors (structured interview), physical examination, ECG and cardiac biomarkers		
Stratum	Level of risk: Low determined by physician base on risk factor profile, clinical evaluation, ECG and troponin findings		
	Pre-test risk according to Diamond and Forrester		
		MDCT n=285	Standard practice n=291
	Pre-test risk, mean ± SD	44 (15.4)	36 (12.4)

	Pre-test risk group Low, n (%) Intermediate, n (%) High, n (%)	35 (12.3) 110 (38.6) 140 (49.1)	34 (11.7) 116 (39.9) 141 (48.5)	
Subgroup analysis within study	Not applicable			
Inclusion criteria	Suspicion of NSTEMI in ED, but with without recurrence of chest pain. T evaluation, based on the risk factor discharge, eligible participants com participants were randomised.	reating physician found c profile, symptom descrip	linical indication for further non- ption and an overall clinical asses	-invasive, outpatient, cardiac ssment. Following hospital
Exclusion criteria	New diagnostic ECG changes with S contiguous leads, increased levels contraception, patients with geogra known allergy to iodinated contras could explain the chest pain, prior	of plasma-troponins, age aphical residence or ment t agents, serum creatining	<18 years, women of childbearin al or physical conditions that co	g age, not using approved uld complicate follow-up,
Recruitment/selection of patients	Consecutive from January 2010–Ja	nuary 2013		
Age, gender and ethnicity	Age – mean (SD), years: MDCT grou 56.5/43.5; standard practice group			r (M: F %): MDCT group
Further population details	Baseline characteristics MDCT grou versus 36.4, hyperlipidaemia 41.1 v versus 60.0. Prior randomisation ED investigatio	versus 34.7, family history	of CAD 24.2 versus 26.1, smoke	r (active or former) 60.4
Extra comments	Timing of MDCT: following discharg	ge from ED		

	Medication use during follow-up: not r	Medication use during follow-up: not reported			
Indirectness of population	No indirectness				
Interventions	(n=299) Intervention 1: 320-slice MDCT	(participants assign	ed within 1 week of ED discharg	ge). Follow-up 120 days.	
	MDCT angiography criteria: positive cri	teria >50% stenosis i	in left main artery or ≥70% in ot	her large artery.	
	Participants with coronary stenosis bet based on an integrated evaluation of co clinical presentation.		-	-	
	of ischaemia on exercise bicycle ECG w test (participants not able to reach at le Participants with reversible perfusion c	(n=301) Intervention 2: Standard practice (participants assigned within 1 week of ED discharge). Participants with signs of ischaemia on exercise bicycle ECG were referred for invasive coronary angiography. Participants with a non-diagnostic test (participants not able to reach at least 85% of expected heart rate) were referred for SPECT examination. Participants with reversible perfusion defects on SPECT or non-diagnostic test results (intolerance to dipyridamol, technical failure or supranormal liver uptake) were referred for invasive coronary angiography.			
	All patients underwent both MSCT and functional test (bicycle exercise-ECG and/or MPI) in addition to a clinical evaluation to ensure blinding of patients and clinical staff until completion of tests, MDCT results remained blinde standard practice group.				
	Functional test results				
		MSCT n=285	Standard practice n=291		
	n	285	291		
	Exercise bicycle stress ECG, n (%)	213 (75)	221 (76)		
	Positive for ischaemia, n (%)	16 (8)	14 (6)		
	Based on: ECG only	7 (44)	5 (36)		
	-ECG + chest pain	5 (31)	8 (57)		
	-Chest pain only	4 (25)	1 (7)		
	Non diagnostic, n (%)	19 (9)	15 (7)		
	Normal, n (%)	178 (84)	192 (87)		
	SPECT, n (%)	64 (22)	63 (22)		

14 (22)

15 (24)

Reversible defects, n (%)

Line of therapy

Funding	Danish Heart Foundation, John and Birthe Meyer Foundation, the AP Møller and Chastine Mc-Kinney Møller Foundation and the Toyota Foundation.
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: NON-INVASIVE IMAGING (MDCT) VERSUS STANDARD PRACTICE
Protocol outcome 1: Cardiac mortality at 120 da Group 1 Non-invasive imaging: 0/285, Group 2 S	ys tandard practice: 1/291; Risk of bias: High; Indirectness of outcome: No indirectness
Protocol outcome 2: MI at 120 days Group 1 Non-invasive imaging: 0/285, Group 2 S	tandard practice: 3/291; Risk of bias: High; Indirectness of outcome: No indirectness
Protocol outcome 3: Hospitalisation due to cardi Group 1 Non-invasive imaging: 7/285, Group 2 S	iac causes tandard practice: 11/291; Risk of bias: High; Indirectness of outcome: No indirectness
Protocol outcomes not reported by the study	Length of hospital stay (not applicable), all-cause mortality at 1 year, CVD mortality at 30 days and 1 year, PCI at 30 days, CABG at 30 days, re-admission to hospital for cardiac causes at 30 days, re-admission to hospital for non-cardiac causes at 30 days, adverse events due to index test at 30 days, adverse events due to medication (major bleeding) at 30 days, quality of life.
Study	CT-COMPARE ³¹⁸
Study type	RCT (patient randomised; parallel) n=562
Number of studies (number of participants)	1 (n=562)
Countries and setting	Conducted in Australia; setting: hospital and primary care

50 (78)

8 (3)

48 (76)

7 (2)

No reversible defects, n (%)

2nd line

No functional stress performed, n (%)

Duration of study	Hospital stay, h : MDCT 13.5 h (95%Cl 11.2 to 15.7) versus standard practice 20.7 (95%Cl 17.9 to 23.1)
	Follow-up at 30 days and 1 year
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: ECG no evidence of ischaemia, negative troponin
Stratum	Level of risk: Intermediate risk CAD according to Cardiac Society of Australia and New Zealand guidelines, TIMI risk score >4
Subgroup analysis within study	Not applicable
Inclusion criteria	Males ≥30 and females ≥40 years of age presenting to ED with acute undifferentiated chest pain, intermediate probability of coronary artery disease according to Cardiac Society of Australia and New Zealand guidelines, initial 12-lead ECG without evidence of acute ischaemia, TIMI risk score <4, negative first serum sensitive troponin-I with a 99 th centile at 0.04 ng/ml (Access 2 immunoassay, Beckman-Coulter).
Exclusion criteria	Previous diagnosis of CAD, confirmed pregnancy or lactating female, history of severe reactive airway disease or current exacerbation allergy or contraindication to iodinated contrast or beta-blockade medications, current atrial fibrillation, renal impairment (eGFR <50 ml/minute using the MDRD equation).
Recruitment/selection of patients	January 2010–2011
Age, gender and ethnicity	Age – mean (SD), years: MDCT group 52.2 (10.7); Standard practice group 52.3 (9.8). Gender (M: F %): MDCT group 59/41, Standard practice group 59/42. Ethnicity: not reported.
Further population details	Baseline characteristics MDCT group versus standard practice group, %: diabetes 7 versus 6, hypertension 31 versus 31, hyperlipidaemia 25 versus 24, family history of CAD 33 versus 33, smoker 24 versus 23. Prior ED investigations: ECG and troponin.
Extra comments	Timing of MDCT/exercise ECG: not reported Troponin I or T test results: not reported MDCT: not reported Follow-up medication not reported
Indirectness of population	No indirectness

Interventions	 (n=322) Intervention 1: MDCT. MDCT angiography criteria: moderate stenosis, 50 to 69%, severe stenosis >70% (n=240) Intervention 2: Exercise ECG Discharge home: no evidence of ischaemia on ECG
Funding	Queensland Emergency Medicine Research Foundation, the Smart Futures Fellowship Early Career Grant, The Washington-Queensland Trans-Pacific Fellowship fund, National Center for Research Resources (component of the National Institutes of Health [NIH] and NIH Roadmap for Medical Research)
Protocol outcome 1: All-cause mortality at 30 da Group MDCT: 0/322, Group 2 Exercise ECG: 0/24 Protocol outcome 2: All-cause mortality at 1 yea	40; Risk of bias: High; Indirectness of outcome: No indirectness
Protocol outcomes not reported by the study	CVD mortality at 30 days and 1 year, PCI at 30 days, CABG at 30 days, re-admission to hospital for cardiac causes at 30 days, re-admission to hospital for non-cardiac causes at 30 days, adverse events due to index test at 30 days, adverse events due to medication (major bleeding) at 30 days.
Study	CT-STAT 2011 ³⁰⁰

Study	CI-SIAI 2011-55
Study type	RCT (patient randomised; parallel)
Number of studies (number of participants)	1 (n=699)
Countries and setting	Conducted in USA; setting: 11 university and 5 community hospital sites
Line of therapy	2 nd line

Duration of study	Median (IQR) hospitalisation index visit, h: not reported Median (IQR) time to diagnosis from randomisation, h: MDCT 2.9 (2.1 to 4.0) versus SPECT 15.0 (4.2 to 19.0) Follow-up: in-hospital
Method of assessment of guideline condition	Adequate method of assessment/diagnosis
Stratum	Level of risk: Low, determined by TIMI risk score. TIMI risk score, mean (SD): MDCT group versus SPECT group, 0.99 (0.84) versus 1.04 (0.7)
Subgroup analysis within study	Not applicable
Inclusion criteria	Chest pain suspicious for angina based on an ED physician's history taking and physical examination, age ≥25 years, time from onset of chest pain to presentation ≤12 hours, time from ED presentation to randomization ≤12 hours, normal or non-diagnostic rest ECG at the time of enrolment without ECG evidence of ischaemia (that is, ST-segment elevation or depression ≥1 mm in 2 or more contiguous leads, and/or T-wave inversion ≥2 mm), TIMI risk score ≤4 for unstable angina or NSTEMI.
Exclusion criteria	Attending physician clinical decision for immediate invasive evaluation, electrographic evidence of ischaemia, including acute NSTEMI or STEMI with ST segment elevation or depression equal to or greater than 1 mm in two or more contiguous leads, and/or T wave inversion greater than or equal to 2 mm, positive cardiac biomarkers (troponin, CK, and/or CK-MB) compatible with AMI on initial laboratory testing, based on site standard laboratory values, presence of pre-existing CAD, including prior MI, prior angiographic evidence of significant CAD (≥25% stenosis), history of CABG, renal insufficiency (creatinine greater than 1.5 mg/dl) or renal failure requiring dialysis, atrial fibrillation or other markedly irregular rhythm, psychological unsuitability or extreme claustrophobia, pregnancy or unknown pregnancy status, clinical instability including cardiogenic shock, hypotension (systolic blood pressure <90 mmHg), refractory hypertension (systolic blood pressure >180 mmHg on therapy), sustained ventricular or atrial arrhythmia requiring intravenous medications, known allergy to iodine or iodinated contrast, inability to tolerate beta-blocker medication, iodinated contrast administration or x-ray scan within the past 48 hours, use of any erectile dysfunction medications, BMI ≥39 kg/m ² , use of biguanides in past 48 hours.
Recruitment/selection of patients	June 2007–November 2008

Age, gender and ethnicity	Age – mean (SD), years: MDCT group 50 (10); SPECT 50 (10). Gender (M:F %): MDCT group 45.2/44.8, SPECT 47/53. Ethnicity: not reported.
Further population details	Baseline characteristics MDCT group versus SPECT, %: diabetes 5.5 versus 8.3, hypertension 35.5 versus 38.8, dyslipidemia 31.0 versus 36.1, family history of CAD 30.8 versus 30.0, smoker 25.2 versus 19.5. Prior ED investigations: physician's history taking and physical examination ECG, cardiac biomarkers.
Extra comments	Timing of MDCT: not reported Timing of SPECT: not reported Troponin I or T test results: not reported Follow-up medication: not reported MDCT: 262/297 (88.2%) discharged home within 6 hours SPECT: index testing was normal or probably normal in 304/338 (89.9%), 271 of 301 (89.1%) were discharged home within 6 hours
Indirectness of population	No indirectness
Interventions	(n=361) Intervention 1: 64- to 320-slice MDCT. Participants with coronary arterial stenoses 0% to 25% and/or calcium score <100 Agatston units were eligible for discharge. Participants with stenoses >70% were referred for invasive coronary angiography. Participants with intermediate lesions (stenosis 26% to 70% or calcium score >100 Agatston units) or uninterpretable scans were recommended to cross over for a rest-stress MPI.
	MDCT angiography criteria: categories used: 0=no stenosis; 1=1% to 25% stenosis; 2=26% to 50% stenosis; 3=51% to 70% stenosis; 4=71% to 99% stenosis; and 5=total occlusion.
	Discharge home: coronary arterial narrowings >25% or calcium score over 100 Agatston U
	Referral for invasive angiography: stenosis >70%
	Referral for further testing: intermediate lesions (stenosis 26% to 70% or calcium score over 100 Agatston U) or non- diagnostic scans (for example severe coronary calcifications, excessive motion artifact, or poor contrast-to-noise signals)
	(n=338) Intervention 2: Resting SPECT or stress SPECT if results were normal (standard exercise treadmill or pharmacologic (adenosine or dipyridamole)
	SPECT criteria: classified as normal, probably normal, equivocal, probably abnormal and abnormal, on basis of stress/rest perfusion imaging and functional data as well as haemodynamic response to stress, including symptoms

	(typical angina pectoris during exercise), ECG response (>1 mm flat or downsloping ST-segment depression 80 ms after the J point, >1 mm of ST-segment elevation 80 ms after the J point, or sustained ventricular tachycardia), exercise duration when applicable, and blood pressure response.		
Funding	Bayer Pharmaceuticals		
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: MDCT VERSUS SPECT 1: All-cause mortality during index visit (30 day outcome)			
	s of bias: High; Indirectness of outcome: No indirectness		
.	Protocol outcome 2: MI during index visit (30 day outcome) Group 1 MDCT: 1/361, Group 2 MPS: 5/338; Risk of bias: High; Indirectness of outcome: No indirectness		
Protocol outcome 2: PCI during index visit (30 day outcome) Group 1 MDCT: 9/361, Group 2 MPS: 8/338; Risk of bias: High; Indirectness of outcome: No indirectness			
Protocol outcome 2: CABG during index visit (30 day outcome) Group 1 MDCT: 4/361, Group 2 MPS: 0/338; Risk of bias: High; Indirectness of outcome: No indirectness			
Protocol outcomes not reported by the study	CVD mortality at 30 days and 1 year, re-admission to hospital for cardiac causes at 30 days, re-admission to hospital for non-cardiac causes at 30 days, adverse events due to medication (major bleeding) at 30 days, quality of life.		
Study	Goldstein 2007		
Study type	RCT (patient randomised; parallel)		
Number of studies (number of participants)	1 (n=197)		

Line of therapy	2 nd line
Duration of study	Median (IQR) duration hospitalisation index visit, h: not reported Median (IQR) time to diagnosis from randomisation, h: MDCT 3.4 (2.3 to 14.8) versus standard practice 15.0 (7.3 to 20.2)
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: clinical history and examination, ECG and cardiac biomarkers
Stratum	 Level of risk: Low, (physician reference to (a) L. Goldman, E.F. Cook, P.A. Johnson, D.A. Brand, G.W. Rouan, T.H. Lee. Prediction of the need for intensive care in patients who come to emergency departments with acute chest pain, N Engl J Med, 334 (1996), pp. 1498–1504; (b) B.M. Reilly, A.T. Evans, J.J. Schaider, et al. Impact of a clinical decision rule on hospital triage of patients with suspected acute cardiac ischemia in the emergency department. JAMA, 288 (2002), pp. 342–350). TIMI risk score, mean (SD): MDCT group versus standard practice group, 1.24 (0.8) versus 1.33 (0.8). Goldman Riley criteria of very low risk: MDCT group very low, 100%; standard practice group very low risk 100%.
Subgroup analysis within study	Not applicable
Inclusion criteria	Chest pain or angina equivalent symptoms compatible with ischaemia during the past 12 hours, age ≥25 years, and a prediction of a low risk of infarction and/or complications according to established criteria.
Exclusion criteria	Known coronary artery disease, ECG diagnostic of cardiac ischaemia and/or infarction (significant Q waves, ST-segment deviations >0.5 mm, or T-wave inversion), elevated serum biomarkers including creatine kinase-MB, myoglobin, and/or cardiac troponin I on initial and 4-hour testing, previously known cardiomyopathy (with estimated ejection fraction ≤45%), contraindication to iodinated contrast and/or beta-blocking drugs; atrial fibrillation or markedly irregular rhythm, body mass index ≥39 kg/m ² ; renal insufficiency (creatinine ≥1.5 mg/dI), CT imaging or contrast administration within the past 48 hours.
Recruitment/selection of patients	March 2005–September 2005
Age, gender and ethnicity	Age – mean (SD), years: MDCT group 48 (11); standard practice group 51 (12). Gender (M:F %): MDCT group 43/57, standard practice group 56/48. Ethnicity: not reported.

Further population details	Baseline characteristics: MDCT group versus standard practice group, %: diabetes 8.2 versus 12.2, hypertension 39 versus 38, hyperlipidaemia 34 versus 38, family history of CAD 40 versus 44, smoker 15 versus 20. Prior randomisation ED investigations: Time 0-hour and 4-hour electrocardiograms and serum biomarkers.
Extra comments	Timing of MDCT: not reported Troponin I or T test results: not reported MDCT: Admitted 8 (straight to invasive coronary angiography), discharge 67, repeat testing/further tests 24 (SPECT: 3 admitted for angiography, 21 discharge), admitted not requiring treatment (false positives) 1 Standard practice: Admitted 3 (straight to invasive coronary angiography), discharge 95, repeat testing/further tests none, admitted not requiring treatment (false positives) 2
Indirectness of population	No indirectness
Interventions	 (n=99) Intervention 1: 64-slice MDCT. MDCT angiography criteria: maximal luminal diameter stenosis according to a qualitative severity scale: 0=no stenosis, 1=1% to 25% stenosis, 2=26% to 50%, 3=51% to 70%, 4=71% to 99%, and 5=total occlusion. Discharge home: coronary arterial narrowings >25% or calcium score over 100 Agatston U Referral for invasive angiography: stenosis >70% Referral for further testing: intermediate lesions (stenosis 26% -70% or calcium score over 100 Agatston U) or non-diagnostic scans (for example severe coronary calcifications, excessive motion artifact, or poor contrast-to-noise signals) Follow-up: 6 months. Medication/care during follow-up: not reported. (n=98) Intervention 2: Standard practice; serial ECG and cardiac biomarkers (creatine kinase-MB, troponin I, and myoglobin; Advia Centaur assay, Bayer Healthcare, Tarrytown, New York) at 4 and 8 hours after their baseline studies. Cardiac biomarker results were classified as abnormal for: creatine kinase-MB >5 ng/ml, troponin I ≥1.5 ng/ml, and myoglobin ≥98 ng/ml. Standard same-day rest-stress SPECT.
	SPECT angiography criteria: categorized according to standard criteria (1) symptoms (typical angina pectoris during

	single-SPECT perfusion defects with qualitative and semiquantitative visual analysis and a standard 17-segment model. Nuclear SPECT categorized as: (1) definitely normal, (2) probably normal, (3) probably abnormal, or (4) definitely abnormal.	
	Discharge home: normal serial electrocardiograms, cardiac biomarkers, and stress test	
	Referral for invasive angiography: electrocardiogram (ECG) abnormalities, elevated biomarkers, or abnormal nuclear stress studies	
	Follow-up: 6 months. Medication/care during follow-up: not reported.	
Funding	Minestrelli Advanced Cardiac Research Imaging	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: NON-INVASIVE IMAGING (MDCT) VERSUS STANDARD PRACTICE Protocol outcome 1: All-cause mortality in-hospital Group 1 Non-invasive imaging: 0/99, Group 2 Standard practice: 0/98; Risk of bias: High; Indirectness of outcome: No indirectness Protocol outcome 2: MI in-hospital Group 1 Non-invasive imaging: 0/99, Group 2 Standard practice: 0/98; Risk of bias: High; Indirectness of outcome: No indirectness Protocol outcome 3: PCI in-hospital Group 1 Non-invasive imaging: 3/99, Group 2 Standard practice: 1/98; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcome 3: CABG in-hospital Group 1 Non-invasive imaging: 2/99, Group 2 Sta	andard practice: 0/98; Risk of bias: Very high, High, Low; Indirectness of outcome: No indirectness	
Protocol outcome 4: Index test complications Group 1 Non-invasive imaging: 0/99, Group 2 Sta	andard practice: 0/99; Risk of bias: High; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	CVD mortality at 30 days and 1 year, PCI at 30 days, CABG at 30 days, re-admission to hospital for cardiac causes at 30 days, re-admission to hospital for non-cardiac causes at 30 days, adverse events due to medication (major bleeding) at	

exercise); (2) electrocardiographic response (>1 mm flat or downsloping ST-segment depression 80 minutes after the J

point or >1 mm of ST-segment elevation 80 minutes after the J point or sustained ventricular tachycardia); and (3)

30 days, quality of life.

Study	Lim 2013 ⁴²¹
Study type	RCT (patient randomised; parallel)
Number of studies (number of participants)	1 (n=1508)
Countries and setting	Conducted in Singapore; setting: single centre, general hospital and primary care
Line of therapy	2 nd line
Duration of study	Intervention time: index hospital length of stay not reported Follow-up at 30 days and 1 year
Method of assessment of guideline condition	Adequate method of assessment/diagnosis
Stratum	Level of risk: not reported
Subgroup analysis within study	Not applicable
Inclusion criteria	Negative findings during first 6 hour monitoring, initial 12-lead ECG non-diagnostic for myocardial ischemia or AMI (defined as new Q waves, ST elevation or depression greater than 1 mm or 0.1 mV in two or more contiguous leads). No lower age limit for participants with coronary risk factors such as diabetes mellitus, otherwise aged ≥25 years. Protocol in first 6 hours prior to randomisation: continuous ECG monitoring, 12-lead ECG, creatine kinase-MB isoenzyme (Elecsys CK-MB STAT) and troponin T (3 rd generation Elecsys Troponin T STAT) testing at 0, 3 and 6 hours.
Exclusion criteria	Congestive cardiac failure or hypotension associated with chest pain, unequivocal non-cardiac chest pain based on clinical assessment, or a clinical syndrome of persistent chest pain consistent with unstable angina, including patients with a past history of proven CAD, whose current chest pain was more severe or frequent than previous angina episodes.
Recruitment/selection of patients	August 2000–May 2002
Age, gender and ethnicity	Age – mean (SD): 52.02 (12.43) stress SPECT group versus 51.8 (12.8) standard practice group. Gender (M:F): 61%/49%. Ethnicity: stress SPECT group versus standard practice group (%): Chinese 70.0 versus 68.3, Malay 10.5 versus 12.7, Indian 17.8 versus 17.3, others 1.6 versus 1.8.
Further population details	Stress SPECT group versus standard practice group (%): diabetes 17.9 versus 17.9, hypertension 43.2 versus 39.3, smokers 33.0 versus 30.74, history of MI 1.0 versus 1.6, history of CAD 4.1 versus 4.4.

Extra comments	Timing of non-invasive test: not reported Troponin I or T test results: not reported Length of stay: not reported Hospitalisation during index visit: not reported	
Indirectness of population	No indirectness	
Interventions	(n=1004) Intervention 1: SPECT performed 30 minutes of exercise stress or 1 hour after pharmacological stress. (n=504) Intervention 2: Standard practice.	
Funding	National Medical Research Council, Ministry of Health, Singapore	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: STRESS SPECT VERSUS STANDARD PRACTICE Protocol outcome 1: Cardiac death at 30-day follow-up Stress SPECT 0/1004, Standard practice 0/504: Risk of bias: Very High; Indirectness of outcome: No indirectness Protocol outcome 1: Cardiac death at 1-year follow-up		
Stress SPECT 3/1004, Standard practice 0/504: Risk of bias: Very High; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	All-cause mortality at 30-day and 1-year follow-up, myocardial infarction at 30-day follow-up, percutaneous coronary intervention at 30-day follow-up, coronary artery bypass graft at 30-day follow-up, hospitalisation at 30-day follow-up for cardiac causes, hospitalisation at 30-day follow-up for non-cardiac causes, quality of life, adverse events related to related to index non-invasive test, major bleeding, length of hospital stay, quality of life.	

Study	Miller 2013 ⁴⁸⁶
Study type	RCT (patient randomised; parallel)
Number of studies (number of participants)	1 (n=105)
Countries and setting	Conducted in the USA: setting: 1 site, tertiary care hospital
Line of therapy	2 nd line
Duration of study	Follow up at 90 days
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: excludes +ECGs and raised initial troponin I level. Clinical impression or TIMI risk score ≥2.
Stratum	Level of risk: mixed: Low <2, medium 2 to 5, high >5 on the TIMI score. Author classes it as a non-low risk study population.
Subgroup analysis within study	Not applicable
Inclusion criteria	Intermediate or high probability for experiencing acute coronary syndrome (ED care provider's clinical impression or a Thromobolysis in Myocardial Infarction risk score ≥2, aged 21 years or older, symptoms of possible ACS, care provider impression that inpatient evaluation was required and ability to be discharged if cardiac disease was excluded.
Exclusion criteria	Initial increased troponin I level, new ST-segment elevation (≥1 mV) or depression (≥2 mV), inability to lie flat, systolic blood pressure <90 mmHg, contraindications to MRI, refusal of follow-up procedures, terminal diagnosis with less than 3 months to live, pregnancy, renal insufficiency, chronic liver disease, or a history of heart, liver or kidney transplant.
Recruitment/selection of patients	Not reported
Age, gender and ethnicity	OU-CMR versus standard practice group: age, CO CMR median (IQR); 54 (45–91) versus 59 (40–76), gender (M/F): 53% versus 55%, ethnicity: White race 56% versus 70%.
Further population details	OU-CMR versus standard practice group (%): diabetes 31 versus 30, hypertension 71 versus 85, history of MI 17 versus 30, hypercholesterolemia NR, hyperlipidemia 63 versus 74
Extra comments	Timing of non-invasive test (MRI): Cardiac imaging was performed in 91% of usual care and in all patients in OU MRI. Median time to completion in usual care 22h (IQR 19 to 26 h) and in (timing of first test) OU MRI 21 h (16 to 23 h) Troponin I or T test results: Not reported Length of index hospital length of stay OU MRI versus usual care, median (IQR): 21 (15 to 25) versus 26 (23 to 45) Hospitalisation or admission to an observation unit at index visit, n/total, %: reported as hospitalization (transfer to an

ECG and risk stratification characteristics	Cardiac MRI group n=53	Standard care group (inpatient care) n=52
Normal	29 (56)	34 (64)
Non-specific ST-T wave changes	8 (15)	12 (23)
Early repolarization only	1 (2)	1 (2)
Abnormal but not diagnostic of ischaemia	6 (12)	3 (53)
Infarction or ischaemia known to be old	6 (12)	1 (2)
Infarction or ischaemia not known to be old	2 (4)	3 (6)
Suggestive of acute MI	0 (0)	0 (0)
TIMI risk score		
0	1 (2)	1 (2)
1	2 (4)	8 (15)
2	29 (56)	21 (40)
3	17 (33)	19 (36)

	4	52(4)	3 (6)
	5	1 (2)	1 (2)
Indirectness of population	No indirectness.		
Interventions	(n=52) Intervention 1: Cardiac MRI (n=53) Intervention 2: Standard care (inpatient care)		
Funding	Funded by the Translational Science Institute of Wake Forest University School of Medicine and the National Heart, Lung and Blood Institute.		
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CARDIAC MRI VERSUS STANDARD PRACTICE Protocol outcome 1: All-cause mortality Cardiac MRI 0/52, Standard practice 0/53: Risk of bias: Low; Indirectness of outcome: No indirectness			
Protocol outcomes not reported by the study	hospitalisation at 30-day follow-up for o	cardiovascular mortality at 30 days and a cardiac causes, hospitalisation at 30-day ad to related to index non-invasive test, a	follow-up for non-cardiac causes, quality

major bleeding.

Study	Miller 2010 ⁴⁸⁷
Study type	RCT (patient randomised; parallel)
Number of studies (number of participants)	1 (n=110)
Countries and setting	Conducted in the USA: setting: 1 site, tertiary care hospital
Line of therapy	2 nd line
Duration of study	Intervention time: length of hospital stay (Median, IQR): 29.9 (26.7–35.7) inpatient care, 25.7 (20.7–31.3) observation care unit cardiac MRI (OU-CMR)
	Follow up at 30 days
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: excludes +ECGs and raised initial troponin I level. Clinical impression or TIMI risk score ≥2.
Stratum	Level of risk: mixed: low <2, medium 2 to 5, high >5 on the TIMI score. Author classes it as a non-low risk study population.
Subgroup analysis within study	Not applicable
Inclusion criteria	Intermediate or high probability for experiencing acute coronary syndrome (ED care provider's clinical impression or a Thromobolysis in Myocardial Infarction risk score ≥2, aged 18 years or older, symptoms of possible ACS, care provider impression that inpatient evaluation was required and ability to be discharged if cardiac disease was excluded).
Exclusion criteria	Initial increased troponin I level, new ST-segment elevation (≥1 mV) or depression (≥ 2 mV), inability to lie flat, systolic blood pressure <90 mmHg, contraindications to MRI, refusal of follow-up procedures, terminal diagnosis with less than 3 months to live, pregnancy, renal insufficiency, chronic liver disease, or a history of heart, liver or kidney transplant.
Recruitment/selection of patients	January 2008–March 2009
Age, gender and ethnicity	OU-CMR versus standard practice group: age, median (IQR); 55 (48–61) versus 57 (47–64), gender (M/F): 47%:53% versus 53%:47%, ethnicity: White race; 66% versus 70%.
Further population details	OU-CMR versus standard practice group (%): diabetes 38 versus 40, hypertension 68 versus 75, smokers 34 versus 32, history of MI 15 versus 26, hypercholesterolemia NR, hyperlipidemia 74 versus 77

Extra comments	 Timing of non-invasive test (MRI): stress cardiac MRI testing in 92%, with testing occurring in a median 53 minutes (IQR: 44-58 minutes) Troponin I or T test results: not reported Length of index hospital length of stay, median (IQR): 29.9 (26.7–35.7) Inpatient care, 25.7 (20.7–31.3) observation care unit cardiac MRI (OU-CMR) Hospitalisation or admission to an observation unit at index visit, n/total, %: reported as hospitalization (transfer to an inpatient bed): 21% versus 95% Note: four patients had MRI ordered but wasn't completed (leaving against medical advice, troponin level increase, VT 			
	before testing and car provider discretion), 3 MRI's were stopped (vomiting, patient request, tachycardia with adenosine infusion).			
	ECG and risk stratification characteristics	Cardiac MRI group n=53	Standard care group (inpatient care) n=57	
	Normal	25 (47)	24 (42)	
	Non-specific ST-T wave changes	17 (32)	22 (39)	
	Early repolarization only	0 (0)	1 (2)	
	Abnormal but not diagnostic of ischaemia	4 (8)	3 (5)	
	Infarction or ischaemia known to be old	3 (6)	3 (5)	
	Infarction or ischaemia not known to be old	4 (8)	4 (7)	
	Suggestive of acute MI	0 (0)	0 (0)	

TIMI risk score

National Guideline Centre. 2016

	0	1 (2)	1 (2)	
	1	8 (15)	10 (18)	
	2	22 (42)	18 (32)	
	3	16 (30)	17 (30)	
	4	5 (9)	11 (19)	
	5	1 (2)	0 (0)	
Indirectness of population	No indirectness.			
Interventions	(n=53) Intervention 1: Cardiac MRI			
	(n=57) Intervention 2: Standard care (inpatient care)			
Funding	Funded by the Translational Science Institute of Wake Forest University School of Medicine. Author received research support from Biosite, Schering-Plough, Siemens and Heartscape Technologies Inc, consultant for Molecular Insight, speaker for SanofiAventis (indirect sponsor of a CME event), other author had research support from Heartscape Technologies Inc.			
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CARDIAC MRI VERSUS STANDARD PRACTICE				
Protocol outcome 1: Cardiovascular mortality at 30-day follow-up Cardiac MRI 0/53, Standard practice 0/57: Risk of bias: Low; Indirectness of outcome: No indirectness				
Protocol outcome 2: Non-fatal MI at 30-day follow-up				
Cardiac MRI 1/53, Standard practice 1/57: Risk of bias: Low; Indirectness of outcome: No indirectness				
Protocol outcome 3: PCI at 30-day follow-up				
Cardiac MRI 1/53, Standard practice 5/57: Risk of bias: Low; Indirectness of outcome: No indirectness				
Protocol outcome 4: CABG at 30-day follow-up				
Cardiac MRI 1/53, Standard practice 0/57: Risk of bias: Low; Indirectness of outcome: No indirectness				

Protocol outcomes not reported by the study	All-cause mortality at 30-day and 1-year follow-up, cardiovascular mortality at 1 year, hospitalisation at 30-day follow-up for cardiac causes, hospitalisation at 30-day follow-up for non-cardiac causes, quality of life, adverse events related to related to index non-invasive test, adverse events related to treatment: major bleeding.

Study	ROMICAT-II ^{333,334}
Study type	RCT (patient randomised; parallel)
Number of studies (number of participants)	1 study (n=1000), 2 papers
Countries and setting	Multicentre; setting: 9 hospitals in the United States (7 sites had a chest pain observation unit and 2 admitting patients to the internal medicine floor).
Line of therapy	2 nd line
Duration of study	Intervention time: index hospital length of stay; mean +/-SD, median (IQR), hours. CCTA 23.2+/-37.0, 8,6 (6.4–27.6), Standard practice 30.8 +/-28.0, 26.7 (21.40.6).
	Follow up at 28 days.
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: without ischaemic ECG changes or elevated initial troponin
Stratum	Level of risk: mixed. The number of cardiovascular risk factors were 0 or 1, 2 or 3 or \geq 4. The authors class it as an intermediate risk population.
Subgroup analysis within study	Not applicable
Inclusion criteria	40–74 years old, presented to the ED with chest pain (or the angina equivalent) of at least 5 minutes' duration within 24 hours before presentation in the ED, were in sinus rhythm, and warranted further risk stratification to rule out acute coronary syndromes, as determined by an attending physician in the ED. Able to provide written informed consent, able to hold their breath for at least 10s.
Exclusion criteria	History of known coronary artery disease, new diagnostic ischaemic changes on the initial ECG, an initial troponin level in excess of the 99 th percentile of the local assay, impaired renal function (creatinine level, >1.5 mg per decilitre [132.6µmol per litre], haemodynamic or clinical instability, known allergy to an iodinated contrast agent, a BMI >40 or currently symptomatic asthma. Documented or self-reported cocaine use within the past 48 hours, on metformin therapy and unable/unwilling to discontinue for 48 hours after CT scan, contraindication to beta blockers (taking daily anti-asthmatic medication)- only applies to patients with a HR>65 beats/minute at sites using a non-dual source CT scanner. No telephone or cell phone number (preventing follow up), with a positive pregnancy test.
Recruitment/selection of patients	23 April 2010–30 January 2012
Age, gender and ethnicity	Age – mean (SD): 54 (8) CCTA group versus 54 (8) standard practice group. Gender (M/F): 52%:48% versus 54%:46%. Ethnicity %; Black: 28% versus 28%, White; 66% versus 66%, Asian; 4% versus 3%, Other; 2% versus 4%, Non-Hispanic; 87% versus 85%.

Further population details	CCTA group versus standard practice group (%): diabetes;17 versus 17, hypertension; 54 versus 54, smokers (former or current); 50 versus 49, history of MI- not reported; family history of premature coronary disease; 50 versus 49, hypercholesterolemia; not reported. Dyslipidemia; 46 versus 45. Prior medication: aspirin; 23 versus 23, beta-blocker; 18 versus 16, statin; 28 versus 30.			
Extra comments	Troponin I or T test results: not re Length of index hospital length o 30.8 +/- 28.0, 26.7 (21.4–30.6) st Hospitalisation or admission to o	Timing of non-invasive test: not reported Troponin I or T test results: not reported Length of index hospital length of stay ITT: Mean +/- SD, median (IQR); 23.2 +/-37.0, 8.6 (6.4–27.6) CCTA group versus 30.8 +/- 28.0, 26.7 (21.4–30.6) standard care group Hospitalisation or admission to observation unit at index visit: 30% CCTA versus 60% standard practice group for admission to observation unit, 21% versus 25% for admission to hospital. ECG findings/TIMI scores		
	Cardiovascular risk factors	CCTA (n=501)	Standard practice group (n=499)	
	0 or 1	36	38	
	2 or 3	54	52	
	≥ 4	10	10	
Indirectness of population	No indirectness.			
Interventions	(n=501) Intervention 1: CCTA	(n=501) Intervention 1: CCTA		
	(n=499) Intervention 2: Standard	practice		
Funding	Study was funded by the NHLBI U01HL092040. Author received support from NIH grants.			
RESULTS (NUMBERS ANALYSED) AND RISK FO BIAS FOR COMPARISON: CCTA VERSUS STANDARD PRACTICE				
Protocol outcome1: All-cause mortality at 28-day follow-up				
CCTA 0/501, Standard care group 0/499: Risk of bias: Low; Indirectness of outcome: No indirectness				

	Protocol outcome 2: Non-fatal MI at 28-day follow-up		
	CCTA 1/501, Standard care group 4/499: Risk of bias: Low; Indirectness of outcome: No indirectness		
	Protocol outcome 3: PCI at 28-day follow-up		
	CCTA 5/501, Standard care group 3/499: Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcome 4: CABG at 28-day follow-up CCTA 1/501, Standard care group 1/499: Risk of bias: Low; Indirectness of outcome: No indirectness		pias: Low; Indirectness of outcome: No indirectness	
	Protocol outcomes not reported by the study	All-cause mortality at 1-year follow-up, cardiovascular mortality at 30 days and 1 year, hospitalisation at 30-day follow- up for cardiac causes, hospitalisation at 30-day follow-up for non-cardiac causes, quality of life, adverse events related to related to index non-invasive test, adverse events related to treatment: major bleeding.	

I.3 Diagnostic test accuracy of non-invasive imaging for the identification of people with NSTEMI/unstable angina

I.3.1 Multi-detector CT

Study	ACRIN PA 2012 ⁴³⁰
Study type	Cohort
Number of studies (number of participants	n=667
Country and setting	USA
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age: 49 Male (%): 49

Study	ACRIN PA 2012 ⁴³⁰
	White (%): 40
	Diabetes (%): 14
	Smoking (%): 32
	Hypertension (%): 51
Patient characteristics	Inclusion criteria: patients presenting with possible acute coronary syndrome
	Exclusion criteria: symptoms of non-cardiac origin
Index test	64-slice MDCT (≥50% stenosis of the LM, LAD, LF, or artery, or first order branch)
Reference standard	ICA: 5% (≥70% stenosis)
	MACE at 30-days: 95% (cardiac death, acute MI, ACS)
Target condition	ACS
Results:	
ТР	28
FP	9
FN	0
TN	640
Sensitivity%	1.00
Specificity%	0.99

Study	Beigel 2009 ¹²⁵
Study type	Cohort
Number of studies (number of participants	n=308

Study	Beigel 2009 ¹²⁵
Country and setting	Israel
Funding	Non-industry funded
Duration of study	Not reported
Age, gender, ethnicity	Mean age (SD): 54 (12) Male (%): 73% White (%): NR Diabetes (%): 24 Smoking (%): NR Hypertension (%): 52
Patient characteristics	Inclusion criteria: patients presenting to ED and subsequently referred to a chest pain unit Exclusion criteria: high risk probability of ACS and increased troponin
Index test	64-slice MDCT (>50% stenosis)
Reference standard	ICA: 7% (NR) MACE at 5 months (repeat cardiac chest pain, ICA, PCI, ACS, death)
Target condition	ACS
Results:	
ТР	13
FP	13
FN	0
TN	302
Sensitivity%	1.00
Specificity%	0.99

Study	Chang 2008 ²⁰⁴
Study type	Cohort
Number of studies (number of participants	n=123
Country and setting	Korea
Funding	Non-industry funded
Duration of study	May 2006–February 2007
Age, gender, ethnicity	Mean age (SD): 57 (14) Male (%): 61 White (%): NR Diabetes (%): NR Smoking (%): 17 Hypertension (%): NR Dyslipidaemia (%): 29
Patient characteristics	Inclusion criteria: People over 18 years with acute chest pain Exclusion criteria: NR
Index test	64-slice MDCT (≥50%)
Reference standard	ACC/AHA guideline for ACS: 51%
Target condition	ACS
Results: High risk TP FP	99 10
FN	1
TN	17

Study	Chang 2008 ²⁰⁴
Sensitivity%	99
Specificity%	100
Intermediate risk	
ТР	20
FP	2
FN	0
TN	33
Sensitivity%	100
Specificity%	94
Low risk	
ТР	5
FP	0
FN	0
TN	48
Sensitivity%	100
Specificity%	100

Study	Christiaens 2012 ²²⁷
Study type	Cohort
Number of studies (number of participants	n=175
Country and setting	France

Study	Christiaens 2012 ²²⁷
Funding	Non-industry funded
Duration of study	October 2007–2009
Age, gender, ethnicity	Mean age (SD): 60 (8) Male (%): 71 White (%): NR Diabetes (%): 22 Smoking (%): 44 Hypertension (%): 546
Patient characteristics	Inclusion criteria: patients with symptoms suggested of ACS Exclusion criteria: elevated troponin, new diagnostic ECG changes
Index test	64-slice MDCT (≥50% stenosis)
Reference standard	ICA: 19% (≥50%) MACE at 6 months: 81% (CVD events)
Target condition	ACS
Results:	
ТР	28
FP	3
FN TN	0 136
Sensitivity%	1.0
Specificity%	0.98

Study	CT-Compare 2014 ³¹⁸
Study type	Cohort
Number of studies (number of participants	n=322
Country and setting	USA
Funding	Non-industry funded
Duration of study	January 2010–April 2011
Age, gender, ethnicity	Mean age (SD): 52.2 (10.7) Male (%): 59 White (%): NR Diabetes (%): 7 Smoking (%): 24 Hypertension (%): 31 Dyslipidaemia (%): 25
Patient characteristics	Inclusion criteria: male patients older than 30 and females older than 40 years with an intermediate probability of coronary artery disease. No evidence of ischaemia on ECG and normal troponin. Exclusion criteria: not reported.
Index test	Exercise ECG
Reference standard	ACS using case report forms based on Cardiac Society of Australia and New Zealand guidelines
Target condition	ACS
Results:	
ТР	32
FP	8
FN	0
TN	213

CT-Compare 2014 ³¹⁸
100
96

Study	Gallagher 2007 ²⁷⁶
Study type	Cohort
Number of studies (number of participants	n=85
Country and setting	USA
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age: 50 Male (%): 61 White (%): NR Diabetes (%): 4 Smoking (%): 11 Hypertension (%): 15
Patient characteristics	Inclusion criteria: patients presenting to ED with acute chest pain Exclusion criteria: positive for cardiac markers or ECG changes
Index test	64-slice MDCT (>50% stenosis and CAC>400)
Reference standard	ICA: 12% (>70% stenosis) MACE at 30 days: 88% (cardiac death, non-fatal MI or unstable angina)

Study	Gallagher 2007 ²⁷⁶
Target condition	ACS
Results:	
ТР	6
FP	6
FN	1
TN	72
Sensitivity% Specificity%	1.0
Specificity%	0.92

Study	Goldstein 2007 ³⁰¹
Study type	Cohort
Number of studies (number of participants	n=99
Country and setting	USA
Funding	Non-industry funded
Duration of study	March–September 2005
Age, gender, ethnicity	 Mean age (SD): ACP 50 (14) ACS negative 49 (10) Male (%): ACP 71 ACP negative 51 White (%): NR Diabetes (%): ACP 14 ACP negative 9 Smoking (%): ACP 57 ACP negative 23 Hypertension (%): ACP 57 ACP negative 35 Dyslipidaemia (%): ACP 29 ACP negative 27

Study	Goldstein 2007 ³⁰¹
Patient characteristics	Inclusion criteria: patients with acute chest pain deemed to be low risk Exclusion criteria: known CAD or ECG changes
Index test	64-slice MDCT (>70% stenosis)
Reference standard	ICA: 14% (NR) MACE at 30 days: 86% (cardiac death, non-fatal MI or unstable angina)
Target condition	ACS
Results:	
ТР	8
FP	3
FN	0
TN	88
Sensitivity%	88
Specificity%	86

Study	Hascoët 2012 ³²³
Study type	Cohort
Number of studies (number of participants	n=123
Country and setting	France
Funding	Non-industry funded
Duration of study	April 2008–September 2009

Study	Hascoët 2012 ³²³
Age, gender, ethnicity	Mean age (SD): 50.9 (13.8) Male (%): 89 White (%): NR Diabetes (%): 13 Smoking (%): 55.3 Hypertension (%): 33.3
Patient characteristics	Inclusion criteria: low to intermediate risk patients presenting with acute chest pain to ED Exclusion criteria: high risk patients including ECG changes and increased troponin
Index test	64-slice MDCT(≥50%)
Reference standard	ICA: 24% (≥50%) MACE at median (IQR) 15 (7–19) months (CV death, MI, revascularisation): 76%
Target condition	ACS
Results: TP FP FN TN Sensitivity%	10 19 0 94 1.00
Specificity%	0.83

Study

Hollander 2007³³⁶

Study	Hollander 2007 ³³⁶
Study type	Cohort
Number of studies (number of participants	n=54
Country and setting	USA
Funding	Non-industry funded
Duration of study	January 2005–June2006
Age, gender, ethnicity	Mean age (SD): 46.5 (8.5) Male (%): 71 White: 22 Diabetes (%): NR Smoking (%): NR Hypertension (%): NR Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: Patients older than 30 years presenting with chest pain and who received an ECG and angiography Exclusion criteria: not reported.
Index test	ICA: 15% (≥50% stenosis) MACE: 85% (cardiac death or non-fatal MI) at 30 days
Reference standard	≤10% Normal or non-specific ECG, negative cardiac biomarkers
Target condition	ACS
Results:	
ТР	2
FP	4
FN	0
TN	48

Study	Hollander 2007 ³³⁶
Sensitivity%	100
Sensitivity% Specificity%	92

Study	Hollander 2009 ³³⁵
Study type	Cohort
Number of studies (number of participants	n=519
Country and setting	USA
Funding	Non-industry funded
Duration of study	Jan 2005–October 2007
Age, gender, ethnicity	Mean age (SD): 47 (8.9) Male (%): 44 White (%): 26 Diabetes (%): 14 Smoking (%): NR Hypertension (%): 44
Patient characteristics	Inclusion criteria: patients presenting to the ED with acute chest pain requiring an ECG Exclusion criteria: chest pain of non-cardiac origin
Index test	64-slice MDCT (≥50% stenosis)
Reference standard	ICA:3% (≥50% stenosis)
	MACE at 30 days: 97% (cardiac death or non-fatal MI)
Target condition	ACS
Results:	

Study	Hollander 2009 ³³⁵	
ТР	7	
FP	47	
FN	0	
TN	508	
Sensitivity%	1.00	
Sensitivity% Specificity%	0.92	

Study	Johnson 2007 ³⁶⁰
Study type	Cohort
Number of studies (number of participants	n=55
Country and setting	Germany
Funding	Non-industry funded
Duration of study	July 2004–March 2005
Age, gender, ethnicity	Mean age (SD): 67 (10) Male (%): 70% Diabetes (%): NR Smoking (%): NR Hypertension (%): NR
Patient characteristics	Inclusion criteria: patients referred to a cardiologist with unclear origin of chest pain Exclusion criteria: NR

Study	Johnson 2007 ³⁶⁰
Index test	64-slice MDCT (>50% stenosis)
Reference standard	ICA:100%
	(>50% stenosis)
Target condition	ACS
Results:	
ТР	16
FP	3
FN	1
TN	35
Sensitivity%	0.94
Specificity%	0.92

Study	Meijboom 2008 ⁴⁷¹
Study type	Cohort
Number of studies (number of participants	n=127
Country and setting	The Netherlands
Funding	Non-industry funded
Duration of study	12 months
Age, gender, ethnicity	Mean age: 59 Male (%): 37 Diabetes (%): 4

Study	Meijboom 2008 ⁴⁷¹
	Smoking (%): 20
	Hypertension (%): 26
Patient characteristics	Inclusion criteria: unstable angina, negative ECG and troponin; NTEMI, negative ECG raised troponin
	Exclusion criteria: not reported.
Index test	64-slice MDCT (≥50% stenosis)
Reference standard	ICA:100%
	(≥50% stenosis)
Target condition	ACS
Results:	
TP	16
FP	4
FN	0
TN	8
Sensitivity%	100
Specificity%	99

Study	ROMICAT 2009 ³³¹
Study type	Cohort
Number of studies (number of participants	n=368
Country and setting	USA

Study	ROMICAT 2009 ³³¹
Funding	Non-industry funded
Duration of study	May 2005–2007
Age, gender, ethnicity	Mean age (SD): 52.7 (12) Male (%): 61 White (%): 85 Diabetes (%): 11 Smoking (%): 49 Hypertension (%): 39
Patient characteristics	Inclusion criteria: patients with chest pain Exclusion criteria: history of CAD, ECG changes
Index test	64-slice MDCT (>50% stenosis)
Reference standard	ACS Acute MI developed positive troponin during serial testing at 6 hours or 9 hours after presentation UA according to the ACC/ AHA and ESC guidelines
Target condition	ACS
Results: TP FP FN	24 44 7
TN	293
Sensitivity% Specificity%	100 87

ROMICAT 2009³³¹

Study	ROMICAT-II 2008 ^{333,334}
Study type	Cohort
Number of studies (number of participants	n=501
Country and setting	USA
Funding	Non-industry funded
Duration of study	April 2010–Janurary 2012
Age, gender, ethnicity	Mean age (SD): 54.2 (8) Male (%): 43.2 White (%): 66 Diabetes (%): No ACS 104 ACS 16.1 Smoking (%): No ACS 26.1 ACS 16.1 Hypertension (%): No ACS 37.1 No ACS 64.5 Dyslipidaemia (%): No ACS 34.7 No ACS 58.1
Patient characteristics	Inclusion criteria: people with at least 5 minutes of chest pain, <75 but older than 40, in sinus rhythm and able to hold their breath for 10 s Exclusion criteria: diagnostic ECG changes, history of coronary artery disease, elevated troponins
Index test	ICA: 6% (>50% stenosis) MACE at 28 days: 4% (CVD events)
Reference standard	≤10% No ischaemic changes on ECG, initial troponin negative
Target condition	ACS

National Guideline Centre. 2016

Study	ROMICAT-II 2008 ^{333,334}	
Results:		
ТР	19	
FP	1	
FN	3	
TN	297	
Sensitivity%	0.86	
Sensitivity% Specificity%	1.0	

	Rubinstein 2007 ⁵⁸⁴
Study	
Study type	Cohort
Number of studies (number of participants	n=58
Country and setting	Israel
Funding	Non-industry funded
Duration of study	15 months
Age, gender, ethnicity	Mean age (SD): 56 (10) Male (%): 69 White (%): NR Diabetes (%): 21 Smoking (%): 38 Hypertension (%): Dyslipidaemia (%): 57
Patient characteristics	Inclusion criteria: patients with suspected ACS

Study	Rubinstein 2007 ⁵⁸⁴
Study	Exclusion criteria: not reported.
Index test	64-slice MDCT (≥50% stenosis)
Reference standard	ICA: 74% (≥50% stenosis) SPECT: 26% (perfusion defects indicative of myocardial ischaemia)
Target condition	ACS
Results:	
ТР	24
FP	3
FN	0
TN	35
Sensitivity%	100
Specificity%	92

	Ueno 2009 ⁶⁹⁹
Study	
Study type	Cohort
Number of studies (number of participants	n=36
Country and setting	Japan
Funding	Non-industry funded
Duration of study	February 2005–March 2006

	Ueno 2009 ⁶⁹⁹
Study	
Age, gender, ethnicity	Mean age: 67 Diabetes (%): 30 Smoking (%): 36
	Hypertension (%): 8
Patient characteristics	Inclusion criteria: patients with chest pain suggestive of cardiac Exclusion criteria: presence of ECG changes
Index test	64-slice MDCT (>50% stenosis)
Reference standard	ACC/AHA guideline for ACS: 100%
Target condition	ACS
Results:	
ТР	11
FP	4
FN	1
TN	20
Sensitivity%	92
Specificity%	83

	van Velzen 2012 ⁷¹⁰
Study	
Study type	Cohort
Number of studies (number of participants	n=106

	van Velzen 2012 ⁷¹⁰
Study	
Country and setting	The Netherlands
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): 57 (10) Male (%): 67 White (%): Diabetes (%): 16 Smoking (%): NR Hypertension (%): 52 Dyslipidaemia (%): 39
Patient characteristics	Inclusion criteria: patients with acute chest pain Exclusion criteria: included studies list and previous CABG
Index test	320-slice MDCT (≥50% stenosis)
Reference standard	ICA:100% (≥50% stenosis)
Target condition	ACS
Results: TP FP FN TN	55 4 0 26
Sensitivity% Specificity%	1.0 1.0

Study	von Ziegler 2014 ⁷²¹
Study type	Cohort
Number of studies (number of participants	n=134
Country and setting	Germany
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age: 71.2 (6.4) Male (%): NR White (%): NR Diabetes (%): 33 Smoking (%): 33 Hypertension (%): 54
Patient characteristics	Inclusion criteria: patients with acute chest pain of possible cardiac origin Exclusion criteria: ECG changes and abnormal troponin
Index test	64-slice MDCT (>50% stenosis)
Reference standard	ICA:100% (≥50% stenosis)
Target condition	ACS
Results:	
ТР	81
FP	3
FN	5
TN	45

Study	von Ziegler 2014 ⁷²¹
Sensitivity%	94
Sensitivity% Specificity%	94

I.3.2 Dual source CT

Study	Hansen 2010 ³²¹
Study type	Cohort
Number of studies (number of participants	n=89
Country and setting	Australia
Funding	Non-industry funded
Duration of study	October 2007-July 2008
Age, gender, ethnicity	Mean age (SD): 56.3 (8.6) Male (%): 63 White (%): NR Diabetes (%): 8 Smoking (%): 44 Hypertension (%): 39 Dyslipidaemia (%): 42
Patient characteristics	Inclusion criteria: patients presenting to ED with chest pain with an unclear diagnosis and whose ECGs showed no evidence of ischaemia and with normal troponin. Exclusion criteria: not reported.
Index test	DSCT (>50% stenosis)

National Guideline Centre. 2016

Study	Hansen 2010 ³²¹
Reference standard	CA: 100% (>70% stenosis)
Target condition	ACS
Results:	
ТР	3
FP	1
FN	0
TN	86
Sensitivity%	99
Specificity%	100

Study	Johnson 2008 ³⁵⁹
Study type	Cohort
Number of studies (number of participants	n=2007
Country and setting	Germany
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Median age (IQR): 64 (59–67) Male (%): NR White (%): NR Diabetes (%): NR Smoking (%): NR Hypertension (%): NR

Study	Johnson 2008 ³⁵⁹
	Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain
	Exclusion criteria: included positive ECG and troponin test
Index test	DSCT (>50% stenosis)
Reference standard	ICA: 100% (>50% stenosis)
Target condition	ACS
Results:	
ТР	15
FP	4
FN	0
TN	90
Sensitivity%	100
Specificity%	96

I.3.3 SPECT

Study	Beigel 2009 ¹²⁵
Study type	Cohort
Number of studies (number of participants	n=322
Country and setting	Israel

Study	Beigel 2009 ¹²⁵
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): 57 (12) Male (%): 73 White (%): NR Diabetes (%): 24 Smoking (%): 38 Hypertension (%): 52 Dyslipidaemia (%): 65
Patient characteristics	Inclusion criteria: patients with chest pain aged over 20 years Exclusion criteria: high risk probability for acute coronary syndrome, ECG changes and abnormal troponins
Index test	Stress SPECT (ischaemia and angina pain and/or decrease in SBP >10 mmHg)
Reference standard	ICA: 7% (NR) MACE at 5 months (repeat cardiac chest pain, ICA, PCI, ACS, death)
Target condition	ACS
Results:	
ТР	18
FP	14
FN	12
TN	291
Sensitivity%	60
Specificity%	95

Study

Study	Conti 2001 ²³⁰
Study type	Cohort
Number of studies (number of participants	n=80
Country and setting	Italy
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): M 58.2 (8.7), F 71.3 (8.9) Male (%): NR Diabetes (%): NR Smoking (%): NR Hypertension (%): NR Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain lasting greater than 5 minutes and occurring less than 24 hours before presentation, non-diagnostic ECG, age >30 years, normal troponin and chest X-ray. Exclusion criteria: previous history if angina and documented coronary artery disease.
Index test	SPECT (perfusion)
Reference standard	ICA (≥50% stenosis) and/or acute MI during hospital stay acute MI: 31% MACE at 6 months: 69% (sudden death or ischaemic cardiac events)

Beigel 2009¹²⁵

Study	Conti 2001 ²³⁰
Target condition	ACS
Results:	
ТР	16
FP	16
FN	1
TN	47
Sensitivity% Specificity%	94
Specificity%	75

Study	Conti 2005 ²³³
Study type	Cohort
Number of studies (number of participants	n=503
Country and setting	Italy
Funding	Non-industry funded
Duration of study	2000–2002
Age, gender, ethnicity	Mean age (SD): 59.5 (12.3) Male (%): NR White (%): NR Diabetes (%): 7 Smoking (%): 27 Hypertension (%): 30 Dyslipidaemia (%): NR

National Guideline Centre, 2016

Study	Conti 2005 ²³³
Patient characteristics	Inclusion criteria: patients with chest pain with normal ECG and troponins Exclusion criteria: NR
Index test	Stress SPECT (perfusion defects and abnormal wall motion)
Reference standard	ICA: 30% (≥50% stenosis) MACE at 30 days 6 months: 70% (sudden death, non-fatal MI, PCI, CABG readmission for chest pain, significant stenosis [>50%])
Target condition	ACS
Results:	
ТР	81
FP	70
FN	13
TN	339
Sensitivity%	86
Specificity%	83

Study	Conti 2011 ²³⁰
Study type	Cohort
Number of studies (number of participants	n=1089
Country and setting	Italy

Study	Conti 2011 ²³⁰
Funding	Non-industry funded
Duration of study	2001–2010
Age, gender, ethnicity	Mean age: 64: Male (%): NR White (%): NR Diabetes (%): 13 Smoking (%): 17 Hypertension (%): NR Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain Exclusion criteria: patients with normal ECG and troponins
Index test	Stress SPECT (perfusion defects)
Reference standard	ICA (≥50% stenosis) MACE at 6 months: 69% (sudden death or ischaemic cardiac events)
Target condition	ACS
Results:	
ТР	155
FP	121
FN	23
TN	790
Sensitivity%	87
Specificity%	87

Study	Forberg 2009 ²⁶⁷
Study type	Cohort
Number of studies (number of participants	n=40
Country and setting	Sweden
Funding	Non-industry funded
Duration of study	2002–2006
Age, gender, ethnicity	Mean age (SD): 55 (2) Male (%): 50 White (%): NR Diabetes (%): 5 Smoking (%): 27 Hypertension (%): 22 Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain suspicious of acute coronary syndrome Exclusion criteria: NR
Index test	Rest SPECT (perfusion defects)
Reference standard	ACS defined from ACC/AHA and ESC guidelines
Target condition	ACS
Results:	
ТР	2
FP	11

Study	Forberg 2009 ²⁶⁷
FN	0
TN	27
Sensitivity% Specificity%	100
Specificity%	71

Study	Gallagher 2007 ²⁷⁶
Study type	Cohort
Number of studies (number of participants	n=85
Country and setting	
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	 Mean age (SD): ACS 50 (14) ACS negative 49 (10) Male (%): ACS 71 ACS negative 51 White (%): NR Diabetes (%): ACS 14 ACS negative 9 Smoking (%): ACS 57 ACS negative 23 Hypertension (%): ACS 57 ACS negative 35 Dyslipidaemia (%): ACS 29 ACS negative 27
Patient characteristics	Inclusion criteria: people with acute chest pain Exclusion criteria: diagnostic ECG, elevated troponins and known coronary artery disease
Index test	Stress SPECT (perfusion defect)
Reference standard	ICA: 12% (>70% stenosis) MACE at 30 days: 88% (cardiac death, non-fatal MI or unstable angina)

Study	Gallagher 2007 ²⁷⁶	
Target condition	ACS	
Results:		
ТР	5	
FP	8	
FN	2	
TN	70	
Sensitivity%	71	
Specificity%	90	

Study	Vogel-Claussen 2009 ⁷¹⁸
Study type	Cohort
Number of studies (number of participants	n=31
Country and setting	USA
Funding	Non-industry funded
Duration of study	12 months
Age, gender, ethnicity	Mean age (SD): 56.3 (13.2) Male (%): 50 White (%): NR Diabetes (%): 56 Smoking (%): 67

Study	Vogel-Claussen 2009 ⁷¹⁸
	Hypertension (%): 78
Patient characteristics	Inclusion criteria: patients with chest pain, negative ECG and cardiac enzymes
	Exclusion criteria: NR
Index test	Stress SPECT (perfusion defects)
Reference standard	ICA: 12% (≥70% stenosis): 4/31
	256-slice MDCT: 1/31(≥70% stenosis)
	MACE at mean (SD) 14 (4.7) months: 69% (all-cause mortality, MI, stroke)
Target condition	ACS
Results:	
TP	2
FP	2
FN	2
TN	23
Sensitivity%	60
Specificity%	95

Study	Atar 2000 ⁹⁹
Study type	Cohort
Number of studies (number of participants	n=54

Study	Atar 2000 ⁹⁹
Country and setting	USA
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): 64 (10) Male (%): 61 White (%): NR Diabetes (%): 35 Smoking (%): 35 Hypertension (%): 63 Dyslipidaemia (%): 63
Patient characteristics	Inclusion criteria: new onset chest pain, negative troponin and ECG Exclusion criteria: atrial fibrillation
Index test	Pacing stress ECHO (New or worsened WMA)
Reference standard	ICA: 100% (≥75%)
Target condition	ACS
Results:	
ТР	36
FP	2
FN	2
TN	13
Sensitivity%	95
Specificity%	87

Study	Bedetti 2008 ¹²⁴
Study type	Cohort
Number of studies (number of participants	n=546
Country and setting	Italy
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Median age (IQR): NR Male (%): NR White (%): NR Diabetes (%): NR Smoking (%): NR Hypertension (%): NR Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with acute chest pain Exclusion criteria: NR
Index test	Stress ECHO (New or worsened WMA)
Reference standard	ICA: 8% (≥50% stenosis) MACE at 13 months: 92% (cardiac death, non-fatal MI)
Target condition	ACS
Results:	

Bedetti 2008 ¹²⁴	
44	
6	
2	
494	
96	
99	
	44 6 2 494 96

Study	Bholasingh 2003 ¹⁴⁵
Study type	Cohort
Number of studies (number of participants	n=377
Country and setting	Holland
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD) 56 (12) Male (%): 58 White (%): NR Diabetes (%): 10 Smoking (%): 37 Hypertension (%): 38 Dyslipidaemia (%): 35
Patient characteristics	Inclusion criteria: patients with chest pain (maximum 6 hours duration) with a non-diagnostic ECG

Study	Bholasingh 2003 ¹⁴⁵
	Exclusion criteria: history of cardiac problems
Index test	Stress ECHO (New WMA)
Reference standard	ICA: 7% (≥50% stenosis) MACE at 30 days: 93% (cardiac death, non-fatal MI, unstable angina, PCI, CABG)
Target condition	ACS
Results:	
ТР	11
FP	14
FN	15
TN	337
Sensitivity%	42
Specificity%	96

Study	Buchsbaum 1999
Study type	Cohort
Number of studies (number of participants	n=145
Country and setting	USA
Funding	Non-industry funded
Duration of study	NR

Study	Buchsbaum 1999
Age, gender, ethnicity	Mean age (SD): 47 (9) Male (%): 56 White (%): NR Diabetes (%): 3 Smoking (%): 52 Hypertension (%): 26 Dyslipidaemia (%): 20
Patient characteristics	Inclusion criteria: low risk patients 30 years or older with a normal ECG and no prior history of coronary artery disease Exclusion criteria: NR
Index test	Stress ECHO (New WMA)
Reference standard	ICA:5% (≥50% stenosis) MACE at 6 months: 95%
Target condition	ACS
Results:	
TP	11
FP	14
FN TN	15 337
Sensitivity%	42
Specificity%	96

Study	Conti 2005 ²³³
Study type	Cohort
Number of studies (number of participants	n=503
Country and setting	Italy
Funding	Non-industry funded
Duration of study	2000–2002
Age, gender, ethnicity	Mean age (SD): 59.5 (12.3) Male (%): NR White (%): NR Diabetes (%): 7 Smoking (%): 27 Hypertension (%): 30 Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain with normal ECG and troponins Exclusion criteria: NR
Index test	Stress SPECT (perfusion defects and abnormal wall motion)
Reference standard	ICA: 30% (≥50% stenosis) MACE at 30 days 6 months: 70% (sudden death, non-fatal MI, PCI, CABG readmission for chest pain, significant stenosis [>50%])
Target condition	ACS
Results:	
ТР	880
FP	19
FN	14

Study	Conti 2005 ²³³
TN	390
Sensitivity%	85
Sensitivity% Specificity%	95

Study	Conti 2015 ²²⁹
Study type	Cohort
Number of studies (number of participants	n=188
Country and setting	Italy
Funding	Non-industry funded
Duration of study	January–December 2013
Age, gender, ethnicity	Mean age (SD): 59.2 (16.4) Male (%): 68 White (%): NR Diabetes (%): 13 Smoking (%): 25 Hypertension (%): 50 Dyslipidaemia (%): 30
Patient characteristics	Inclusion criteria: patients with chest pain consistent with angina with normal ECG and troponins Exclusion criteria: positive ECG and abnormal troponins
Index test	Stress SPECT Stress ECHO (New WMA)

Study	Conti 2015 ²²⁹
Reference standard	ICA (≥50% stenosis)
	MACE at 3 months (ACS, CV death, revascularisation)
Target condition	ACS
Results:	
ТР	12
FP	6
FN	8
TN	162
Sensitivity%	60
Specificity%	96

Study	Gaibazzi 2011 ²⁷¹
Study type	Cohort
Number of studies (number of participants	n=92
Country and setting	Italy
Funding	Non-industry funded
Duration of study	2008
Age, gender, ethnicity	Mean age (SD): 62 (12) Male (%): 62 White (%): NR Diabetes (%): 50

Study	Gaibazzi 2011 ²⁷¹
	Smoking (%): 18
	Hypertension (%): 50
	Dyslipidaemia (%): 7
Patient characteristics	Inclusion criteria: patients with chest pain and normal ECG
	Exclusion criteria: included severe reduced ventricular ejection fraction
Index test	Stress ECHO (New WMA)
Reference standard	ICA: 71% (≥50% stenosis)
	MACE at 6 months (cardiac death, non-fatal MI, revascularisation)
Target condition	ACS
Results:	
ТР	15
FP	6
FN	18
TN	8
Sensitivity%	45
Specificity%	57

Study	Iglesias-Garriz 2005 ³⁴⁷
Study type	Cohort
Number of studies (number of participants	n=78

Study	Iglesias-Garriz 2005 ³⁴⁷
Country and setting	Spain
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): 67 (8) Male (%): 76 White (%): NR Diabetes (%): 35 Smoking (%): 24 Hypertension (%): 55 Dyslipidaemia (%): 55
Patient characteristics	Inclusion criteria: 18 years or older, non-traumatic chest pain of suggested ischaemic nature and no history of coronary artery disease Exclusion criteria: Known history of ischaemic disease
Index test	Stress ECHO (≥2 adjacent segments of WMA)
Reference standard	ICA: 100% (>% stenosis)
Target condition	ACS
Results:	
ТР	44
FP	7
FN	15
TN	13
Sensitivity%	75
Specificity%	65

Study	Innocenti 2012
Study type	Cohort
Number of studies (number of participants	n=434
Country and setting	2013
Funding	Non-industry funded
Duration of study	June 2008–May 2011
Age, gender, ethnicity	Mean age (SD): 67 (12) Male (%): 58 White (%): NR Diabetes (%): 15 Smoking (%): 62 Hypertension (%): 62 Dyslipidaemia (%): 41
Patient characteristics	Inclusion criteria: spontaneous chest pain, non-cardiac chest pain Exclusion criteria: NR
Index test	Stress ECHO (New WMA)
Reference standard	ICA:23% (≥50% stenosis)
	MACE: at 6 months: 77% (cardiac death, non-fatal ACS, revascularisation)
Target condition	ACS
Results:	
ТР	80
FP	26

Iglesias-Garriz 2005³⁴⁷

Study

Study	Innocenti 2012
FN	9
TN	319
Sensitivity%	90
Sensitivity% Specificity%	82

Study	Tsutsui 2005 ⁶⁹⁵
Study type	Cohort
Number of studies (number of participants	n=158
Country and setting	USA
Funding	Non-industry funded
Duration of study	January 2000–May 2003
Age, gender, ethnicity	Mean age (SD): 61 (13) Male (%): 50 White (%): NR Diabetes (%): 11 Smoking (%): 43 Hypertension (%): 73 Dyslipidaemia (%): 59
Patient characteristics	Inclusion criteria: people with chest pain or a possible cardiac origin with normal troponin Exclusion criteria: STEMI
Index test	Stress ECHO (≥2 adjacent segments of WMA)
Reference standard	ICA: 39% (>50% stenosis)

National Guideline Centre. 2016

Study	Tsutsui 2005 ⁶⁹⁵
	MACE at 6 months: 46% (cardiac death, non-fatal MI, UA, revascularisation)
Target condition	ACS
Results:	
ТР	30
FP	20
FN	18
TN	90
Sensitivity%	63
Specificity%	82

1.3.5

MRI	
Study	Kwong 2003 ⁴⁰⁰
Study type	Cohort
Number of studies (number of participants	n=161
Country and setting	USA
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): ACS 68 (13) No ACS 57 (14) Male (%): ACS 60 No ACS 57 White (%): NR Diabetes (%): ACS 28 No ACS 10 Smoking (%): ACS 48 No ACS 39

Study	Kwong 2003 ⁴⁰⁰
	Hypertension (%): ACS 56 No ACS 43
	Dyslipidaemia (%): ACS 64 No ACS 47
Patient characteristics	Inclusion criteria: People with chest pain 30 minutes or greater compatible with myocardial infarction
	Exclusion criteria: STEMI
Index test	MRI (regional wall abnormality or delayed hyper-enhancement)
Reference standard	ACC/AHA guideline for ACS: 14%
Target condition	ACS
Results:	
ТР	29
FP	19
FN	3
TN	114
Sensitivity%	89
Specificity%	86

Study	Miller 2010
Study type	Cohort
Number of studies (number of participants	n=53
Country and setting	USA
Funding	Non-industry funded
Duration of study	NR

Study	Miller 2010
Age, gender, ethnicity	Median age (IQR): 55 (48–61) Male (%): 47 White (%): 66 Diabetes (%): 38 Smoking (%): 34 Hypertension (%): 68 Dyslipidaemia (%): 74
Patient characteristics	Inclusion criteria: people 18 years or older and symptoms of possible acute coronary syndrome Exclusion criteria: increased troponin and STEMI
Index test	Stress MRI (wall motion- perfusion- abnormalities, delayed enhancement)
Reference standard	ACS defined as one of the following: acute MI, ischaemia leading to revascularisation, death likely related to ischaemia, discharge diagnosis of definite/probable UA or inducible ischaemia on stress test
Target condition	ACS
Results:	
ТР	1
FP	5
FN	0
TN	43
Sensitivity%	100
Specificity%	90

Study

Vogel- Claussen 2009⁷¹⁸

Study	Vogel- Claussen 2009 ⁷¹⁸
Study type	Cohort
Number of studies (number of participants	n=31
Country and setting	USA
Funding	Non-industry funded
Duration of study	12 months
Age, gender, ethnicity	Mean age (SD): 56.3 (13.2) Male (%): 56 White (%): NR Diabetes (%): 33 Smoking (%): 67 Hypertension (%): 78 Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: people with chest pain with negative cardiac enzymes Exclusion criteria: NR
Index test	Stress MRI (reversible regional perfusion deficit in a coronary artery territory lasting for >6 heart beats)
Reference standard	ICA: 12% (≥70% stenosis): 4/31 256-slice MDCT: 1/31(≥70% stenosis) MACE at mean (SD) 14 (4.7) months: 69% (all-cause mortality, MI, stroke)
Target condition	ACS
Results:	
TP FP	5 1
	÷

Study	Vogel- Claussen 2009 ⁷¹⁸
FN	0
TN	25
Sensitivity%	100
Sensitivity% Specificity%	96

I.3.6 Exercise ECG

Study	Amsterdam2002 ⁷²
Study type	Cohort
Number of studies (number of participants	n=765
Country and setting	USA
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): M 49 (12) W 52 (11) Male (%): 45 White (%): NR Diabetes (%): NR Smoking (%): NR Hypertension (%): NR Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients who underwent immediate stress testing with non-traumatic chest pain of suspected cardiac origin but low clinical risk

Study	Amsterdam2002 ⁷²
	Exclusion criteria: previous coronary artery disease, abnormal ECG or serum markers
Index test	Exercise ECG (exercise-induced ST-segment alterations)
Reference standard	ICA: 7% (NR) Stress MPS: 9% (NR) Stress ECHO: 3% (NR) MACE at 30 days: 84% (cardiac death, non-fatal MI, non-invasive imaging test showing CAD)
Target condition	ACS
Results:	
ТР	33
FP	9
FN	2
TN	638
Sensitivity%	84
Specificity%	87

Study	Bennett 2013 ¹³³
Study type	Cohort
Number of studies (number of participants	n=196
Country and setting	UK
Funding	Non-industry funded
Duration of study	NR

Study	Bennett 2013 ¹³³
Age, gender, ethnicity	Mean age: 56 Male (%): NR White (%): NR Diabetes (%): Nr Smoking (%): NR Hypertension (%): NR Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain of suspected cardiac origin without elevated troponins Exclusion criteria: NR
Index test	Exercise ECG
Reference standard	ICA: 18% (NR) Readmission for chest pain at 12 months: 82%
Target condition	ACS
Results:	
ТР	16
FP	18
FN	7
TN	168
Sensitivity%	70
Specificity%	90

Study	CT-Compare 2014 ³¹⁸
Study type	Cohort
Number of studies (number of participants	N=240
Country and setting	USA
Funding	Non-industry funded
³¹⁸ Duration of study	
Age, gender, ethnicity	Mean age (SD): 52.3 (9.8) Male (%): 58 White (%): NR Diabetes (%): 6 Smoking (%): 23 Hypertension (%): 31 Dyslipidaemia (%): 24
Patient characteristics	Inclusion criteria: male patients older than 30 and females older than 40 years with an intermediate probability of coronary artery disease. No evidence of ischaemia on ECG and normal troponin. Exclusion criteria: not reported.
Index test	Exercise ECG
Reference standard	ACS using case report forms based on Cardiac Society of Australia and New Zealand guidelines
Target condition	ACS
Results:	
ТР	4
FP	22
FN	1
TN	213

Study	CT-Compare 2014 ³¹⁸
Sensitivity%	80
Sensitivity% Specificity%	91

Study	Conti 2001 ²³⁰
Study type	Cohort
Number of studies (number of participants	n=151 (low) n=80 (intermediate)
Country and setting	Italy
Funding	Non-industry funded
Duration of study	NR
Age, gender, ethnicity	Mean age (SD): M 57.4 (12.1) F 59.9 (10.7) Male (%): NR White (%): NR Diabetes (%): NR Smoking (%): NR Hypertension (%): NR Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain lasting greater than 5 minutes and occurring less than 24 hours before presentation, non-diagnostic ECG, age >30 years, normal troponin and chest X-ray Exclusion criteria: previous history of angina and documented coronary artery disease

Study	Conti 2001 ²³⁰
Index test	SPECT (perfusion)
Reference standard	ICA (≥50% stenosis) and/or acute MI during hospital stay acute MI: 31%
	MACE at 6 months: 69% (sudden death or ischaemic cardiac events)
Target condition	ACS
Results:	
ТР	18
FP	22
FN	1
TN	110
Sensitivity%	95
Specificity%	83

Study	Gaibazzi 2011 ²⁷¹
Study type	Cohort
Number of studies (number of participants	n=151
Country and setting	Italy
Funding	Non-industry funded
Duration of study	2008
Age, gender, ethnicity	Mean age (SD): NR Male (%): NR

Study	Gaibazzi 2011 ²⁷¹
	White (%): NR
	Diabetes (%): NR
	Smoking (%): NR
	Hypertension (%): NR
	Dyslipidaemia (%): NR
Patient characteristics	Inclusion criteria: patients with chest pain and normal ECG
	Exclusion criteria: included severe reduced ventricular ejection fraction
Index test	Stress ECHO (New WMA)
Reference standard	$ICA \cdot 719$ (NEO9/ stangetic)
Reference standard	ICA: 71% (≥50% stenosis)
	MACE at 6 months (cardiac death, non-fatal MI, revascularisation)
Target condition	ACS
Results:	
ТР	15
FP	6
FN	8
TN	18
Sensitivity%	65
Specificity%	75

I.4 Prediction models/tools for people with stable chest pain of suspected cardiac origin

Caselli C, et al. (2015a) HDL cholesterol, leptin and interlukin-6 predict high risk coronary anatomy assessed by CT angiography in patients with stable chest pain. Atherosclerosis 241: 55-61.		
Cross-sectional		
To determine whether specific bio-humoral markers of inflammation and metabolism are predictors of high risk coronary artery anatomy, as estimated by the CTA risk score, in patients with stable angina-like symptoms and intermediate pre-test probability of CAD enrolled in the EVINCI (Evaluation of INtegrated Cardiac Imaging for the detection and characterization of ischemic heart disease) study.		
Inclusion:		
- Stable chest pain or equivalent symptom	S	
- Intermediate probability of CAD		
Exclusion:		
 Acute coronary syndrome 		
- Known CAD		
 Left ventricular ejection fraction <35% 		
- Significant heart valve disease		
 Contradiction to stress imaging 		
Patient characteristics:		
	n=429	
Demographics		
Age in years – mean (sd)	60.3 (8.3)	
Male – n (%)	268 (62.5)	
Cardiovascular risk factors – n (%)		
Family history of CAD	149 (34.7)	
	angiography in patients with stable chest pain Cross-sectional To determine whether specific bio-humoral maartery anatomy, as estimated by the CTA risk scoprobability of CAD enrolled in the EVINCI (Evaluation) ischemic heart disease) study. Inclusion: - Stable chest pain or equivalent symptom - Intermediate probability of CAD Exclusion: - Acute coronary syndrome - Known CAD - Left ventricular ejection fraction <35%	angiography in patients with stable chest pain. Atherosclerosis 241: 55-61. Cross-sectional To determine whether specific bio-humoral markers of inflammation and metabolism a artery anatomy, as estimated by the CTA risk score, in patients with stable angina-like s probability of CAD enrolled in the EVINCI (Evaluation of INtegrated Cardiac Imaging for t ischemic heart disease) study. Inclusion: - - Stable chest pain or equivalent symptoms - Intermediate probability of CAD Exclusion: - Acute coronary syndrome - Known CAD - Left ventricular ejection fraction <35%

В

Bibliographic reference	Caselli C, et al. (2015a) HDL cholesterol, leptin ar		omy assessed by CT
	angiography in patients with stable chest pain. A	theroscierosis 241: 55-61.	
	Diabetes mellitus	105 (24.5)	
	Hypertension	263 (61.3)	
	Hypercholesterolemia	250 (58.3)	
	Obesity	94 (21.9)	
	Smoking within the last year	108 (25.2)	
	Symptoms		
	Typical angina	102 (23.8)	
	Atypical / non-anginal chest pain	327 (76.2)	
	Medication		
	None	65 (15.2)	
	Beta-blockers	172 (40.1)	
	Calcium antagonists	50 (11.7)	
	ARBs/ACE Inhibitors	190 (44.3)	
	Diuretics	73 (17.0)	
	Nitrates	45 (10.5)	
	Anti-thrombotics	256 (59.7)	
	Oral antidiabetics/Insulin	82 19.1)	
	Statins	230 (53.6)	

ARB = Angiotensin Receptor Blockers; ACE = Angiotensin Converting Enzyme

<u>Distribution of CAD on CTCA</u> – n (%) Normal: 98 (23) Non-obstructive CAD (<50% stenosis): 181 (42) Obstructive CAD (50-70%): 90 (21) Severe CAD (>70%): 60 (14)

Bibliographic reference	Caselli C, et al. (2015a) HDL cholesterol, leptin and interlukin-6 predict high risk coronary anatomy assessed by CT angiography in patients with stable chest pain. Atherosclerosis 241: 55-61.
	Diagnosis of CAD at invasive coronary angiography ¹ – n (%): 133 (31.0)
Number of patients	N = 429 patients
Probability score / model	Assessed the comparative discrimination ability of 3 models to predict low and high CTA risk score (using 7 as a cut-off value):
	1. Bio-humoral model
	Derived from 17 biomarkers associated with inflammation and metabolism.
	Final model included three biomarkers which independently predicted CTA score in multivariate analyses: - HDL cholesterol
	- Leptin
	- Interleukin-6
	(model adjusted for age, sex, presence of diabetes and hypertension)
	Median CTA risk score: 10.25 (0.0 – 20.01)
	2. Framingham risk score (no further description)
	Median Framingham Risk Score (25 – 75 percentiles): 10 (6.7 – 17)
	3. Euro-SCORE – data not extracted
	Data from Euro-SCORE website shows model included following variables: Age; Gender; Diabetes; NYHA class; CCS class 4 angina; Renal impairment (creatinine clearance); LV function; Extracardiac arteriopathy ; Recent MI; Poor mobility; Pulmonary hypertension; Previous cardiac surgery; Chronic lung disease; Active endocarditis
	Median Euro-SCORE (25 – 75 percentiles): 2.5 (1.1 – 4.8)
Reference standard (or Gold	CTA risk score
standard)	Based on analysis of CTCA images.
	Score consists of three weight factors for each segment of the coronary tree:

Bibliographic reference	Caselli C, et al. (2015a) HDL cholesterol, leptin and inte angiography in patients with stable chest pain. Athero	erlukin-6 predict high risk coronary anatomy assessed by CT	
	angiography in patients with stable thest pain. Athero	Scier 0315 241. 55-01.	
	(i) a stenosis severity weight factor		
	(ii) a stenosis location weight factor		
	(iii) a weight factor for plaque composition.		
	All three weight factors are multiplied to calculate the s all segment scores.	segment score. The risk score for each patient is calculated by	adding
	CTA risk score correlated highly with Agatston CAC scor	e computed according to standard methods.	
Time between testing & treatment	Not stated.		
Length of follow-up	Study period not specified.		
Location	14 European centres		
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve		
	Reference: CTA risk score using 7 as cut-off threshold for	or low vs high risk coronary anatomy	
		AUC (95% Cls)	
	Framingham Risk Score	0.63 (0.58 to 0.68)	
	Bio-humoral model	0.81 (0.77 to 0.85)	
	Sensitivity / specificity		
	No data provided		
Source of funding	Supported by a grant from the European Union FP7-CP-	FP506 2007 project (grant agreement no. 222315, EVINCI stud	dy)
Comments	Study limitations		

Bibliographic reference	Caselli C, et al. (2015a) HDL cholesterol, leptin and interlukin-6 predict high risk coronary anatomy assessed by CT angiography in patients with stable chest pain. Atherosclerosis 241: 55-61.
	Biohumoral model not validated in independent cohort from that used to develop the model so data were not extracted for evidence appraisal.
	Euro-SCORE was developed to predict mortality from cardiac surgery and has not been validated to assess probability of CAD in populations with stable chest pain except in this study, so data were not extracted for evidence appraisal.
	QUADAS-2
	1A - Not clear if analysis was prospective or patients were consecutively enrolled: UNCLEAR
	1B – Patients were all 'intermediate probability of CAD' - HIGH
	2A – LOW (FRS)
	2B – LOW (FRS)
	3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR
	3B - LOW
	4 - LOW

¹ All patients enrolled in this study had CTCA and cardiac stress imaging; invasive CA undertaken only if at least one of these tests was positive.

Bibliographic reference	Caselli et al. (2015b) A new integrated clinical-biohumoral model to predict functionally significant coronary artery disease in patients with chronic chest pain. Canadian Journal of Cardiology 31: 709-716.
Study type	Cross-sectional
Aim	To assess the incremental value of circulating biomarkers over the Genders model to predict functionally significant CAD in patients with chronic chest pain and intermediate pre-test probability of CAD enrolled in the EVINCI (Evaluation of INtegrated Cardiac Imaging for the detection and characterization of ischemic heart disease) study ¹ .
Patient characteristics	Inclusion: - Stable chest pain or equivalent symptoms - Intermediate probability of CAD - Adequate quality of blood samples for biomarker analysis

Bibliographic reference	Caselli et al. (2015b) A new integrated clinical-biohumoral model to predict functionally significant coronary artery disease in patients with chronic chest pain. Canadian Journal of Cardiology 31: 709-716.	
	Exclusion:	
	- Acute coronary syndrome	
	- Known CAD	
	- Left ventricular ejection fraction <35%	
	- Significant heart valve disease	
	- Cardiomyopathy	
	- Contradiction to stress imaging	
	Patient characteristics:	
	n=527	
	Demographics	

	n=527
Demographics	
Age in years – mean (sd)	60.4(8.9)
Male – n (%)	323 (61.3)
Cardiovascular risk factors – n (%)	
Family history of CAD	186 (35.3)
Diabetes mellitus	138 (26.2)
Hypertension	332 (63.0)
Hypercholesterolemia	313 (59.4)
Obesity	123 (23.3)
Smoking within the last year	128 (24.3)
Symptoms	
Typical angina	134 (25.4)
Atypical / non-anginal chest pain	393 (74.6)

Anatomic CAD(>50% stenosis) - n (%): 166 (32.7)

8111 I. C	
Bibliographic reference	Caselli et al. (2015b) A new integrated clinical-biohumoral model to predict functionally significant coronary artery disease in patients with chronic chest pain. Canadian Journal of Cardiology 31: 709-716.
Number of patients	N=527 patients
Probability score / model	1. Updated D-F (Genders) model (updated Diamond and Forrester model validated by Genders et al. 2011)
	Clinical model incorporating the following three clinical variables:
	- Male sex
	- Age
	- Type of chest pain (typical / atypical/ non-anginal)
	2. Bio-humoral model 2 (3 variables)
	Derived from various biohumoral variables; final model comprised three biohumoral variables which independently
	predicted functionally significant CAD in multivariate analyses:
	- HDL cholesterol
	- Aspartate aminotransferase (AST)
	- High-sensitivity C-reactive protein (hs-CRP)
	3.EVINCI model (Integrated clinical & bio-humoral model 2)
	Integrated model including the above three biohumoral variables and the three clinical variables: male sex, age and type of chest pain (typical / atypical/ non-anginal)
	EVINCI model was validated in a separate independent cohort (n=186 consecutive patients hospitalised for suspected CAD between Jan 2000 – Oct 2005). Data on patient characteristics for this sample were not retrieved.
Reference standard (or Gold standard)	Evidence of <u>functionally significant CAD</u> at stress imaging (plus invasive coronary angiography in subsample) Defined as 1 of the following 3 findings:
	 > 50% stenosis of the left main coronary artery or the proximal left anterior descending (LAD) artery, left circumflex (LCx) artery, or right coronary artery (RCA), associated with severe ischemia on stress imaging. Myocardial ischemia was considered severe if it involved >10% of the left ventricular myocardium, as documented by a summed difference score at stress MPI or by a segmental difference score at stress WMI.

Bibliographic reference	Caselli et al. (2015b) A new integrated clinical-biohumoral model to predict functionally significant coronary artery disease in patients with chronic chest pain. Canadian Journal of Cardiology 31: 709-716.				
	 2. > 50% stenosis of the left main coronary artery or proximal LAD artery(or both), LCx artery, or RCA, associated with a FFR < 0.80. 3. > 90% stenosis of the left main coronary artery or proximal LAD artery, or both. 				
Time between testing & treatment	Not stated.				
Length of follow-up	Study period not specified.				
Location	14 European centres				
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve Reference: Functionally significant CAD (see definition in Reference Standard section above)				d section above)
				AUC (95% C	Cls ²)
		Updated D-F (Genders) model		0.58 (0.50 to	0.66)
		Bio-humoral model 2		0.68 (0.62 to	0.74)
		EVINCI model – development co	ohort	0.70 (0.64 to	0.76)
		EVINCI model – validation cohor	rt (n=186)	0.72 (0.64 to	0.80)
	Sensitivity and specificity 1. 2x2 table Genders' model				
	Threshold = 15% probability of CAD				1
		Updated D-F (Genders) model	CAD+	CAD-	
		≥15%	51	235	
		<15%	29	212	

Bibliographic reference	Caselli et al. (2015b) A new integrated clinical-biohumoral model to predict functionally significant coronary artery disease in patients with chronic chest pain. Canadian Journal of Cardiology 31: 709-716.					
	2. 2x2 table EVINCI (integrated clinical and biohumoral) model					
	Threshold = 15% probability of CAD					
	EVINCI model	CAD+	CAD-			
	≥15%	52	174			
	<15%	28	273			
		Sensitivity (95% Cls ¹)	Specificity (95% Cls ¹)			
	Updated D-F (Genders) model	63.8% (82.8 to 73.4)	47.4% (42.8 to 52.1)			
	EVINCI model	65.0% (54.1 to 74.5)	61.1% (56.5 to 65.5)			
Source of funding Comments	Supported by a grant from the European Union FP7-CP-FP506 2007 project (grant agreement no. 222315, EVINCI study) Study limitations					
	 Biohumoral model 2 not validated for evidence appraisal 1A - Not clear if analysis was prosp <u>QUADAS-2</u> 1B - Patients were all 'intermediat 2A - LOW 2B - Updated D-F (Genders) model 2B - EVINCI model: Requires inform 3A - Not clear if results were interpresented and the second se	ective or patients were e probability of CAD' - H : LOW nation from blood assa preted without knowled ionally significant CAD (consecutively enrolled: HGH ys that is unlikely to be a ge of probability scores , determined either by <u>st</u>	available at a typical index clinic visit: HIGH / patient clinical data: UNCLEAR <u>ress test or stress test <i>and</i> CA</u>): UNCLEAR		

National Guideline Centre. 2016

¹ All patients enrolled in this study had cardiac stress imaging (and CTCA); invasive CA undertaken only if at least one of these tests was positive ² 95% CIs calculated by reviewer from reported standard errors

Bibliographic reference	Cetin et al. (2014) Prediction of coronary artery disease severity using CHADS ₂ and CHA ₂ DS ₂ -VASc scores and a newly defined CHA ₂ DS ₂ -VASc-HS score. American Journal of Cardiology 113: 950-956.					
Study type	Cross-sectional					
Aim	To investigate whether three risk scores, CHADS ₂ , CHA ₂ DS ₂ -VASc and CHA ₂ DS ₂ -VASc-HS, can be used to predict CAD severity.					
Patient characteristics	Consecutive patients admitted for diagnostic of	ents admitted for diagnostic coronary angiography (CA).				
	 Inclusion: Referred from outpatients for CA for symptoms suggestive of CAD and/or abnormal exercise electrocardiographic testing or myocardial perfusion imaging test. 					
	Exclusion:					
	- Acute coronary syndrome	- Acute coronary syndrome				
	- Acute heart failure					
	- Acute ischaemic stroke or transient ischaemic attack (TIA)					
	- Previous coronary artery bypass surgery					
	- Previous percutaneous coronary intervention					
	Patient Characteristics:					
		n=407				
	Demographics					
	Age in years – mean (sd)	61.0 (10.0)	1			
	Male – n (%)	294 (72.2)				
	Cardiovascular risk factors – n (%)	Cardiovascular risk factors – n (%)				
	Family history of CAD	90 (22.1)	1			

Diabetes mellitus

Hypertension Hyperlipidaemia 119 (29.2)

247 (60.7)

149 (36.6)

National Guideline Centre. 2016

aphic reference	Cetin et al. (2014) Prediction of coronary artery disease severity using CHADS ₂ and CHA ₂ DS ₂ -VASc scores and a newly defined CHA ₂ DS ₂ -VASc-HS score. American Journal of Cardiology 113: 950-956.					
	Smoke	er		119 (29.2)		
r of patients	N=407					
ility score / model	Authors 1. CHAD: Calculate diabetes 2. CHA2E A modifit Extends t and fema 3. CHA2E The CHA	Note: CHADS ₂ was developed as a clinical predictor of the risk of stroke in patients with nonvalvular atrial fibrillation. Authors propose it can be used for predicting CAD severity as it includes similar risk factors. 1. CHADS₂ Calculated by assigning 1 point each for the presence of chronic heart failure, hypertension, age ≥75 years, and presence of diabetes mellitus, and assigning 2 points for history of stroke or TIA. Maximum total score = 6 points 2. CHA₂DS₂-VASc A modification of the CHADS ₂ score (provides better risk stratification of low-risk patients). Extends the latter by including additional common stroke risk factors including vascular disease (V), age 65 to 74 years (A), and female gender (as a sex category [Sc]). Maximum total score = 9 points 3. CHA₂DS₂-VASc-HS score The CHA ₂ DS ₂ -VASc-HS score comprises hyperlipidaemia and smoking in addition to the components of the CHA ₂ DS ₂ -VASc score and male gender instead of female gender (see below). Maximum total score = 11 points				
	С	Congestive heart failure	1 point			
	н	Hypertension	1 point			
	A ₂	Age >75 yrs	2 points			
	D	Diabetes mellitus	1 point			
	S ₂	Previous stroke or TIA	2 points			

1 point

1 point

1 point

Bibliogra

Number

Probabili

۷

А

 S_{c}

Vascular disease

Sex category (male gender)

Age 65-74 yrs

Bibliographic reference		t al. (2014) Prediction of co l CHA ₂ DS ₂ -VASc-HS score. A		everity using CHADS ₂ and CHA ₂ DS ₂ -VASc scores and a newly diology 113: 950-956.	
	н	Hyperlipidaemia	1 point		
	S	Smoker	1 point		
	All scor	es calculated by two experie	enced cardiologists follo	wing CA, without knowledge of patients' CAD status.	
Reference standard (or Gold standard)	Corona	ry Angiography (CA)			
	Using J	udkins technique.			
	Angiog	rams were evaluated by 2 ex	xperienced cardiologists	who assessed Gensini score, independent of risk factor scoring.	
	CAD pro			iel enten :	
	-	Significant CAD = \geq 50% stenosis in at least 1 major epicardial artery			
	Wulti-v	Multi-vessel disease = ≥50% stenosis in at least 2 major epicardial coronary arteries.			
	CAD sev	•			
	the cor 50%, 4	onary angiogram by assignir	ng a severity score to ea o 90%, 16 for 91% to 99	ary arteries. Gensini score was calculated for each patient from ch coronary stenosis as 1 for 1% to 25% narrowing, 2 for 26% to %, and 32 for a completely occluded artery. The score is then oronary artery.	
Time between testing & treatment	Not sta	ted.			
Length of follow-up	Study p	eriod not specified.			
Location	Turkey	(single centre)			
Diagnostic accuracy measures (2 x 2 table)	Area ur	nder the ROC curve			
	Referer	nce (i): Significant CAD = ≥50	0% stenosis in at least 1	vessel	

Bibliographic reference		Cetin et al. (2014) Prediction of coronary artery disease severity using CHADS ₂ and CHA ₂ DS ₂ -VASc scores and a newly defined CHA ₂ DS ₂ -VASc-HS score. American Journal of Cardiology 113: 950-956.		
		AUC (95% Cls)		
	CHADS₂	0.69 (0.64 to 0.73)		
	CHA2DS2-VASc	0.65 (0.60 to 0.70)		
	CHA2DS2-VASc-HS score	0.76 (0.72 to 0.80)		
	Reference (ii): Multi-vessel disease = ≥50%	6 stenosis in at least 2 major epicardial corona	ry arteries	
		AUC (95% Cls)	-	
	CHADS ₂	0.72 (0.68 to 0.76)		
	CHA ₂ DS ₂ -VASc	0.68 (0.63 to 0.72)	_	
	CHA ₂ DS ₂ -VASc-HS score	0.80 (0.76 to 0.84)		
	Sensitivity and specificity Data reported only for CAD severity (as m	easured by Gensini score) not CAD presence.		
Source of funding	Not stated.			
Comments		l validated to predict stroke in patients with n ith stable chest pain except this study, so data	•	

Bibliographic reference	Chen Z.W, et al. (2014) Validation of a novel clinical prediction score for severe coronary artery diseases before elective coronary angiography. PLoS ONE, 9: e94493-	
Study type	Cross-sectional	
Aim	To develop a novel risk scoring system to guide early invasive coronary angiography in angina patients	
	using analysis of clinical risk factors, electrocardiography (ECG), and echocardiography and compare the performance of this	

Bibliographic reference	Chen Z.W, et al. (2014) Validation of a novel clinical prediction score for severe coronary artery diseases before elective coronary angiography. PLoS ONE, 9: e94493-			
	system with that of the Diamond-Forrester score for prediction of (AD and severe CAD.		
Patient characteristics	Consecutive patients admitted for diagnostic coronary angiography (CA).			
	Inclusion:			
	- Patients with exertional chest tightness / chest pain referred	for elective coronary angiography		
	- Age 30-70 years (subsample selected for comparison with Di	amond and Forrester score)		
	 Providing a complete clinical history 			
	- Normal pre-procedural troponin T (below the 10% coefficien	t of variation value, <0.03 ng/mL)		
	 Normal creatine kinase, <23 U/L 			
	Exclusion:			
	- Previously undergone CA or CTCA			
	- Acute coronary syndrome			
	- Evidence of elevated cardiac troponin T (≥0.03 ng/mL) or creatine kinase (≥23 U/L) before CA			
	- Evidence of heart failure			
	- Cardiomyopathy			
	- Congenital heart disease / heart valve disease			
	- Recent surgery or trauma			
	- Presence of active chronic inflammation, renal failure, dysfunction of haematological and immunological systems,			
	carcinoma, or a condition treated with immunosuppressive agents.			
	Patient Characteristics:			
		n=551		
	Demographics			
	Age in years – mean (sd)	63.8 (9.7)		
	Male – n (%)	379 (68.8)		
	Cardiovascular risk factors – n (%)			

Dibligger bis of success	Chan 7 W. et al. (2014) Validation of a neural distant and initial and initial			
Bibliographic reference	Chen Z.W, et al. (2014) Validation of a novel clinical prediction score for secondary angiography. PLoS ONE, 9: e94493-	evere coronary arto	ery diseases bero	ore elective
	Hypertension	309 (70.8)	1	
	Diabetes	170 (30.9)		
	Hyperlipidaemia	169 (30.7)		
	Aortic valve calcification (AVC on echocardiography)	189 (34.3)		
	Symptoms – n (%)			
	Typical angina	190 (50.4)		
	Atypical angina	132 (35.0)		
	Non-specific chest pain	55 (14.6)		
	Diagnosis of CAD – n (%): 440 (79.8)			
Number of patients	N=551 (first consecutively enrolled patients comprised development cohor patients comprised validation cohort (n=204)	t (n=347); subseque	ent consecutively	enrolled
Probability score / model	1. Severe Predicting Score (SPS)			
	Derived from multivariate analysis incorporating risk factors, clinical variab testing.	les and results of EC	CG and echocard	iography
	Blood biochemistry was analysed prior to coronary angiography.			
	ECG undertaken on admission – abnormal ECG defined as Q waves in multi	ple leads, ST-T-wav	e	
	inversions, left/right bundle-branch blockage, or left ventricular hypertroph	ıy.		
	Echocardiography performed using Philips IE33 instrument (Philips, Nether		•	
	ventricular EF and aortic valve calcification (AVC) were detected. Observers results of coronary angiography.	who made the dia	gnosis of AVC we	ere blind to
	SPS calculated as follows:			
	Risk factor	Range	Single score	
	Aortic valve calcification (AVC) - identified from echocardiography	Yes	3	
	Abnormal ECG	Yes	3	

Bibliographic reference	Chen Z.W, et al. (2014) Validation of a novel clinical prediction score f coronary angiography. PLoS ONE, 9: e94493-	or severe coronary a	rtery diseases before election	
	Diabetes	Yes	2	
	Male	Yes	2	
	Hyperlipidaemia	Yes	2	
	LDL-C (mmol/L)	<1.8	0	
		1.8 to 2.2	1	
		≥2.2	2	
	HDL-C (mmol/L)	≥1.2	0	
		1.0 to 1.2	1	
		<1.0	2	
	Age (years)	<65	0	
		≥65	2	
	Severe Predicting Score (SPS) – total maximum score		18	
	SPS score – mean (sd): 7.43 (3.33) 2. Diamond and Forrester model (n=377 patients 30-69yrs) Based on age, sex and type of chest pain Diamond and Forrester score – mean (sd): 68.3 (27.3)			
Reference standard (or Gold standard)	Coronary angiography (CA) Significant CAD defined as ≥ 50% stenosis in at least one of the coronary arteries.			
	Severity of CAD evaluated by Gensini score - grades narrowing of the lu occlusion; 4, 51%-75% occlusion; 8,76%-90% occlusion; 16, 91%-99% oc multiplied by a factor accounting for the importance of the lesion posit as a Gensini score ≥20 (approximately equal to one stenosed lesion of 7 artery).	cclusion; and 32, total ion in the coronary ar	l occlusion. This score is terial tree. Severe CAD defi	

	Chen Z.W, et al. (2014) Validation of a novel clinical prediction coronary angiography. PLoS ONE, 9: e94493-	on score for severe coror	nary artery diseases before elective
Time between testing & treatment	Not clear		
Length of follow-up	Study period: October 2011 to September 2012		
Location	China (one centre)		
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve Reference (i): Significant CAD = ≥50% stenosis in at least 1 ves	rol	
		AUC ¹	7
	SPS score (validation cohort, n=204)	0.710	-
	Diamond and Forrester score (n=377 patients aged 30-69yrs)	0.727	_
	Reference (ii): Severe CAD = Gensini score ≥20 (approximately descending artery).	/ equal to ≥70% stenosis	in the proximal left anterior
		y equal to ≥70% stenosis AUC ¹	in the proximal left anterior
		•	in the proximal left anterior
	descending artery). Diamond and Forrester score (n=377 patients aged	AUC ¹	in the proximal left anterior
Source of funding	descending artery). Diamond and Forrester score (n=377 patients aged 30-69yrs) Sensitivity and specificity	AUC ¹ 0.639 na (Grant Nos: 81200146, GQN12), New Teacher Fou	, 30901383 and 30671998), undation of Ministry of Education

Bibliographic reference	Chen Z.W, et al. (2014) Validation of a novel clinical prediction score for severe coronary artery diseases before elective coronary angiography. PLoS ONE, 9: e94493-
	QUADAS-2
	1A - LOW
	1B – Patients were all referred for CA - HIGH
	2A - LOW
	2B - D-F model: LOW
	2B – SPS model: Requires information from ECG and echocardiography that is unlikely to be available at a typical index clinic visit: HIGH
	3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR
	3B – LOW
	4 - LOW

¹ 95% CIs for AUC (or p-value for comparison) not reported

Bibliographic reference	Dharampal A, et al. (2013) Restriction of the referral of patients with stable angina for CT coronary angiography by clinical evaluation and calcium score: impact on clinical decision-making. European Radiology 23: 2676-2686.
Study type	Retrospective cross-sectional
Aim	To evaluate the additional value of the calcium score (CaSc) to clinical evaluation in symptomatically stable patients with suspected CAD in order to restrict referral for CT coronary angiography (CTCA) by reducing the number of patients with an intermediate probability of CAD.
Patient characteristics	Patients who had undergone diagnostic evaluation with unenhanced computed tomography (CT) and coronary angiography (CA), or CTCA in the absence of CA, between 2004-2011.
	Inclusion:
	- Symptomatically stable patients with suspected CAD
	 Referred by cardiologist for CTCA because of chest pain symptoms, or referred for CA and asked to participate in a CTCA study
	Exclusion:
	- Pregnancy

ohic reference	Dharampal A, et al. (2013) Restriction of the referral of patients with stable angina evaluation and calcium score: impact on clinical decision-making. European Radiolo	
	- Iodine allergy	
	 Impaired kidney function (serum creatinine >120 μmol/l) 	
	 History of percutaneous coronary intervention, coronary artery bypass surgery absence of CA 	r, MI or non-diagnostic CTCA i
	Patient Characteristics:	
		n=1,975
	Demographics	
	Age in years – mean (sd)	59.0 (11.0)
	Male – n (%)	1,155 (58.5)
	Cardiovascular risk factors – n (%)	
	Family history of CVD (first- or second-degree relatives with premature CAD in men aged <55 years and in women aged <60 years old)	918 (46.5)
	Diabetes mellitus (treatment with oral medication or insulin)	316 (16.0)
	Hypertension (BP 140/90 mmHg or treatment for hypertension)	979 (49.6)
	Hypercholesterolaemia (total cholesterol > 180 mg/dl or treatment for high cholesterol)	1081 (54.7)
	Current smoker	525 (26.6)
	BMI (kg/m²) – mean (sd)	27 (4.5)
	Chest pain typicality – n (%)	
	Typical angina	705 (35.7)
	Atypical angina	810 (26.6)
	Non-anginal chest pain	455 (23.0)
	Clinical variables	

В

Bibliographic reference	Dharampal A, et al. (2013) Restriction of the referral of patients with stable ang	
	evaluation and calcium score: impact on clinical decision-making. European Rad	diology 23: 2676-2686.
	ECG	
	 Pathological Q-waves – n (%) 	136 (6.9)
	- ST-T-wave changes – n (%)	571 (28.9)
	- Calcium score – median [IQR]	71 [0 - 383]
Number of patients	N=1,975 patients	
Probability score / model	1. Clinical evaluation (model 1)	
	Based on male gender, age, chest pain typicality, cardiac risk factors and ECG.	
	2. Clinical evaluation plus CT coronary calcium score (model 2)	
	Clinical evaluation score as above, combined with total calcium score calculated	using the Agatston method by dedicated
	software (Syngo Calcium Scoring, Siemens) applied to CT imaging (64-slice single	-source, 64-slice dual source, or 128-slice
	dual source CT system).	
Reference standard (or Gold standard)	Coronary angiography (CA) or computed tomography coronary angiography (CTC	.A)
standardy	CA	
	Images were assessed by each coronary segment for presence of luminal stenosi	is in two orthogonal planas. Evaluated by
	one experienced cardiologist blinded to CT results. Where segments scored >209	e
	quantified using a validated algorithm (CAASII, Maastricht, The Netherlands) by a	
	СТСА	
	Underwent ECG-gated CTCA. Coronary segments analysed using modified 17-seg	ment AHA classification. All CTs were
	interpreted by two radiologists with >3 years' experience in cardiac imaging who	were blinded to all other tests. Inter-
	observer disagreement resolved by consensus.	
	Obstructive CAD = at least one lesion ≥50% diameter lumen reduction	
Time between testing & treatment	Not clear	

Bibliographic reference	Dharampal A, et al. (2013) Restriction of the referral of patients with stable angina for CT coronary angiography by clinical evaluation and calcium score: impact on clinical decision-making. European Radiology 23: 2676-2686.			
Length of follow-up	Retrospectively assessed records of patients who underwent clinical investigation between 2004 and 2011.			
Location	The Netherlands (single centre)			
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve			
	Reference: Obstructive CAD = at least one lesion ≥50% diameter lumen re	duction		
		AUC (95%Cls)		
	Clinical evaluation model 1	0.80 (0.78 to 0.82)		
	Clinical evaluation plus CT coronary calcium score model 2 0.89 (0.87 to 0.90) Sensitivity and specificity Not reported.			
Source of funding	Not reported			
Comments	Study limitations The models reported were not validated in an independent cohort from that used to develop the models, so data were not extracted for evidence appraisal.			

Bibliographic reference	Gaibazzi, N. et al (2015) Differential incremental value of ultrasound carotid intima-media thickness, carotid plaque, and cardiac calcium to predict angiographic coronary artery. European Heart Journal –Cardiovascular Imaging Sep 10. pii: jev222. [E-pub ahead of print]
Study type	Prospective cross-sectional
Aim	To assess the discrimination values of the Framingham Risk Score (FRS) and Diagnostic Imaging for Coronary Artery Disease (DICAD) score for presence of CAD, then test whether carotid intima-media thickness (cIMT), carotid plaques (cPL) and echocardiographic cardiac calcium score (eCS) have incremental discriminatory and reclassification predictive value for CAD in subjects undergoing coronary angiography, specifically depending on their low, intermediate, or high class of clinical risk.
Patient characteristics	Patients undergoing coronary angiography (CA) for suspected CAD between June 2012 and July 2013.

Bibliographic reference	Gaibazzi, N. et al (2015) Differential incremental value cardiac calcium to predict angiographic coronary arte jev222. [E-pub ahead of print]		
	Inclusion:		
	 Any type of chest pain of recent onset in patient subject) stress test for ischaemia. 	s with risk factors and/or a positive (or inconclusive in a	a high-risk
	Exclusion:		
	- Known CAD		
	- Previous acute coronary syndrome or coronary revascularisation		
	- Known cardiomyopathy or reduced (50%) left ventricular ejection fraction (LVEF)		
	- More than mild valvular disease		
	- Atrial fibrillation or other sustained arrhythmias		
	- Pregnancy/lactation		
	- Technically poor acoustic window.		
	Patient Characteristics:		
		n=445	
	Demographics		

	n=445
Demographics	
Age in years – mean (sd)	64.6 (11.0)
Male – n (%)	280 (62.9)
Cardiovascular risk factors – n (%)	
Family history of CVD	238 (53.4)
Diabetes mellitus	123 (27.6)
Hypertension	325 (73.0)
Current smoker	252 (56.6)
BMI (kg/m ²) – mean (sd)	26.3 (4.0)
LDL-cholesterol (mg/dL) – mean (sd)	114.3 (39.3)
HDL-cholesterol (mg/dL) – mean (sd)	43.4 (11.1)

Bibliographic reference	Gaibazzi, N. et al (2015) Differential incremental value of ultrasou		· · · · · · · · · · · · · · · · · · ·
	cardiac calcium to predict angiographic coronary artery. Europea jev222. [E-pub ahead of print]	n Heart Journal –Cardio	Svascular imaging Sep 10. pli:
	Symptoms		
	No breakdown reported		
	Ultrasound assessments		
	Carotid intima-media thickness (cIMT) (um) – mean (sd)	744.8 (161.2)	
	Carotid plaques (cPL) (at least 1>1.5mm) – n (%)	253 (56.9)	
	Echocardiographic calcium score (eCS) – median [IQR]	2 [1-3]	
		- ()	
Number of patients	N=445		
Probability score / model	1. Framingham Risk Score (FRS)		
	Derived according to Expert Panel on Detection, Evaluation, and Tr	reatment of High Blood	Cholesterol in Adults (Adult
	Treatment Pane IIII) – includes: age, gender, total cholesterol, HDL	cholesterol, systolic blo	ood pressure (and also whether the
	patient is treated or not for hypertension), smoking status.		
	FRS <10 – n (%): 140 (31.5)		
	FRS 10-20 – n (%): 148 (33.3)		
	FRS >20 – n (%): 157 (35.3)		
	2. Diagnostic Imaging for Coronary Artery Disease (DICAD) score		
	DICAD score calculated according to the extended clinical prediction	on model by Genders et	t al (2012)
	Includes: age, gender, typicality of chest pain, diabetes, hypertensi	-	
	calcium score.		
	DICAD <10.35 – n (%): 147 (33.0)		
	DICAD 10.35-23.8 – n (%): 147 (33.0)		
	DICAD >23.8 – N (%): 151 (33.9)		
	Other non-validated models		
	FRS + transthoracic echocardiographic parameters		

Bibliographic reference	Gaibazzi, N. et al (2015) Differential incremental value of ultrasound carotid intima-media thickness, carotid plaque, and cardiac calcium to predict angiographic coronary artery. European Heart Journal –Cardiovascular Imaging Sep 10. pii: jev222. [E-pub ahead of print]
	3. FRS + Echocardiographic calcium score (eCS)
	Standard transthoracic echocardiography was used for quantification of cardiac morphology and function in each patient. A final eCS was derived by consensus of two readers in each study site as the sum of all identified cardiac calcific deposits and was in the range from 0 (no calcium visible) to 8 (extensive cardiac and ascending aorta calcified deposits).
	FRS + carotid ultrasound parameters
	4. FRS + Carotid intima-media thickness (cIMT)
	Vascular examination was performed after the echocardiographic exam, switching to the 7.5-MHz linear probe and vascular pre-set.
	Carotid intima-media thickness (cIMT) was measured in both common carotid arteries. cIMT data were measured automatically at the far wall of the common carotid artery by radio frequency echo tracking software (QIMT, Esaote). Inter- and intra-operator reliability were assessed.
	5. FRS + Carotid plaques (cPL) To define the presence of cPL (both the common and in the internal carotid arteries were bilaterally scanned), at least two of the following criteria were required: a cIMTof >1.5 mm, change in the carotid wall surface contour, or focal change in the carotid wall echogenicity.
Reference standard (or Gold standard)	Coronary angiography (CA)
	Performed by the standard Judkins technique within 1 week of study enrolment (after ultrasound study was acquired).
	Obstructive CAD was primarily defined as stenosis > 50% in any major epicardial coronary artery, although the alternative cut-off of >70% stenosis was also tested.
	Angiograms were graded by visual of the physician performing the diagnostic procedure in each centre(on-site reading), who was blinded to all non-invasive data specific to the study.
Time between testing & treatment	Not specified.

Bibliographic reference	Gaibazzi, N. et al (2015) Differential incremental value of ultrasound carotid intima-media thickness, carotid plaque, and cardiac calcium to predict angiographic coronary artery. European Heart Journal –Cardiovascular Imaging Sep 10. pii: jev222. [E-pub ahead of print]
Length of follow-up	Study period: June 2012 to July 2013.
Location	Italy (8 centres)
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve Comparison: FRS vs DICAD

Reference (i) CAD = >50% stenosis

	AUC (95% Cls)
FRS	0.669 (0.618 to 0.720)
DICAD	0.673 (0.621 to 0.725)

Reference (ii) CAD = >70% stenosis

	AUC (95% Cls)
FRS	0.653 (0.598 to 0.707)
DICAD	0.669 (0.615 to 0.723)

Sensitivity and specificity

No data reported.

Comparison: FRS vs FRS+cIMT

Reference: CAD = >50% stenosis

	AUC (95% Cls)
FRS	0.669 (0.618 to 0.720)
FRS+cIMT	0.680 (not reported)
p-value for comparison	p=0.33

Sensitivity and specificity

liographic reference		ental value of ultrasound carotid intima-media thi onary artery. European Heart Journal –Cardiovasc	
	No data reported.		
	Comparison: FRS vs FRS+cPL		
	Reference: CAD = >50% stenosis		
		AUC (95% Cls)	
	FRS	0.669 (0.618 to 0.720)	
	FRS+cPL	0.730 (0.681 to 0.780)	
	p-value for comparison	p=0.001	
	Sensitivity and specificity No data reported. Comparison: FRS vs FRS+eCS		
	No data reported.	ALIC (95% CIs)	
	No data reported. <u>Comparison: FRS vs FRS+eCS</u> Reference: CAD = >50% stenosis	AUC (95% Cls)	
	No data reported. <u>Comparison: FRS vs FRS+eCS</u> Reference: CAD = >50% stenosis FRS	0.669 (0.618 to 0.720)	
	No data reported. <u>Comparison: FRS vs FRS+eCS</u> Reference: CAD = >50% stenosis FRS FRS FRS+eCS		
	No data reported. <u>Comparison: FRS vs FRS+eCS</u> Reference: CAD = >50% stenosis FRS	0.669 (0.618 to 0.720) 0.728 (0.681 to 0.776)	

and

Bibliographic reference		remental value of ultrasound carotid intima-me coronary artery. European Heart Journal –Carc	
		AUC (95% CIs)	
	FRS+cPL	0.730 (0.681 to 0.780)	
	FRS+cPL+eCS	0.763 (0.717 to 0.809)	
	p-value for comparison	p=0.007	
	<u>Comparison: FRS+eCS vs FRS+cPL+eCS</u> Reference: CAD = >50% stenosis		
		AUC (95% Cls)	
	FRS+eCS	0.728 (0.681 to 0.776)	
	FRS+cPL+eCS	0.763 (0.717 to 0.809)	
	p-value for comparison	p=0.009	
	due to non-significant difference in the c 2. 50% stenosis level chosen as primary of	ssment of incremental discriminatory benefit of discrimination yield of the two clinical scores and definition for CAD in comparisons between FRS sults between >50% and >70% thresholds when	d more widespread use of the FRS. and models including additional
Source of funding	Study not financially supported, but Esac centres for study duration.	ote Spa (Florence-Italy) freely supported their ul	trasound systems to participating
Comments	Study limitations		

Models combining FRS with added echocardiographic and ultrasound parameters were not validated in a separate patient

Bibliographic reference	Gaibazzi, N. et al (2015) Differential incremental value of ultrasound carotid intima-media thickness, carotid plaque, and cardiac calcium to predict angiographic coronary artery. European Heart Journal –Cardiovascular Imaging Sep 10. pii: jev222. [E-pub ahead of print]
	sample, so these data were not extracted for evidence appraisal.
	QUADAS-2:
	1A – Unclear if patients were consecutively enrolled: UNCLEAR
	1B – All patients were referred for CA; some had abnormal prior stress test: HIGH
	2A - LOW
	2B – FRS: LOW
	2B – DICAD requires information from CT calcium score which is not applicable to pre-test probability assessment at an index clinic visit: HIGH
	3A - LOW
	3B – LOW
	4 - LOW

¹ <Insert Note here>

Bibliographic reference	Genders, T. et al. (2010) Incremental value of the CT coronary calcium score for the prediction of coronary artery disease. European Radiology, 20: 2331-2340.
Study type	Cross-sectional
Aim	To validate 5 previously published clinical prediction models and determine the incremental value of CT calcium score for the prediction of prevalent obstructive CAD in patients with new onset stable typical or atypical angina.
Patient characteristics	 Study population was derived from a larger study evaluating CTCA. All patients were referred for conventional coronary angiography (CA) based on their presentation or functional testing, and underwent CTCA within a week before CA. Inclusion: Patients with chest pain suggestive of stable angina and suspected of having CAD Sinus heart rhythm and ability to hold breath for 15 seconds
	 Sinds heart mythin and ability to hold breath for 15 seconds Exclusion: Acute coronary syndrome or history of myocardial infarction

Bibliographic reference	Genders, T. et al. (2010) Incremental value of the CT coronary calcium score for the prediction of coronary artery disease.		
	European Radiology, 20: 2331-2340.		
	 History of percutaneous coronary intervention or coronary bypass surge 	ry	
	 Impaired renal function (serum creatinine >120 μmol/L) 		
	- Known iodine intolerance		
	Patient Characteristics:		
		n=254	
	Demographics		
	Age in years – mean (sd)	59 (11)	
	Male – n (%)	171 (67)	
	Cardiovascular risk factors – n (%)		
	Family history	126 (50)	
	Diabetes (plasma glucose ≥126 mg/dL or 7.0 mmol)	32 (13)	
	Hypertension	140 (55)	
	Past or current smoker	63 (25)	
	BMI (kg/m ²) – mean (sd)	27 (4)	
	Dyslipidaemia (serum cholesterol >200 mg/dL or 5.18 mmol/L	136 (54)	
	Symptoms – n (%)		
	Typical chest pain	118 (46)	
	Clinical assessments		
	Calcium score (measured according to Agatston) – mean (sd)	346 (572)	
	Median calcium score	138	
	CAD on coronary angiography – n (%)	123 (48)	
Number of patients	N=254		
Probability score / model	CT calcium scoring		
	Metoprolol (100 mg, Selokeen, AstraZeneca, London, UK) was administered or	ally 1 h before CT in patients	

Bibliographic reference	Genders, T. et al. (2010) Incremental value of the CT coronary calcium score for the prediction of coronary artery disease. European Radiology, 20: 2331-2340.
	with heart rates >65 beats per minute. A 64-slice single source CT system (Sensation 64; Siemens, Germany) was used to
	acquire standard spiral low-dose and ECG gated coronary calcium CT images.
	One observer (with more than 3 years' experience), blinded to the CA and clinical data, measured the coronary calcium by the Agatston method using dedicated software (syngo Calcium Scoring VE31H, Siemens, Germany).
	the Agatston method using dedicated software (syngo Calcium Sconing VESTR, Siemens, Germany).
	Five prediction models were identified from the literature and validated using the dataset:
	1. Diamond and Forrester 1979 (+CTCS)
	Includes age, sex and type of chest pain.
	2. Pryor et al. 1993 [aka Duke Clinical Score] (+CTCS)
	Includes age, sex, type of chest pain, smoking, dyslipidaemia, diabetes and the interaction between age and smoking, age
	and dyslipidaemia, sex and smoking, and age and sex.
	3. Morise et al. 1994 (+CTCS)
	Includes age, sex and type of chest pain, dyslipidaemia and diabetes.
	4. Morise et al. 1997 (+CTCS)
	Includes age, sex, type of chest pain, smoking, dyslipidaemia, diabetes, oestrogen status, hypertension, family history, obesity, BMI and the interaction between dyslipidaemia and family history.
	5. Shaw et al. 1998 (+CTCS) – data not extracted.
	The original paper shows this is a combined model incorporating age, sex, typical chest pain, smoking, dyslipidaemia and diabetes with data from exercise stress testing (which is outside the remit of this review) so data were not extracted
Reference standard (or Gold	Coronary angiography (CA)
standard)	Coronary segments were assessed on CA following a 17-segment modified American Heart Association (AHA)
	classification model by a single observer (with more than 10 years' experience), who was blinded to the CT and clinical data.
	Significant CAD defined as mean luminal narrowing ≥50%.
	Validated quantitative coronary angiography software (CAAS II, Pie Medical, Maastricht, the Netherlands) was used.

Bibliographic reference	Genders, T. et al. (2010) Incremental value of the CT coronary calcium score for the prediction of coronary artery disease. European Radiology, 20: 2331-2340.		
Time between testing & treatment	Not clear		
Length of follow-up	Main study enrolled patients over 24-month period.		
Location	The Netherlands (single centre)		
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve		
	Reference: Significant CAD = ≥50% stenosis in at least 1	vessel (present/absent) on CA	
		AUC (95% Cls)	p-value for comparison
	Diamond and Forrester	0.798 (0.742 to 0.854)	
	Diamond and Forrester + CTCS	0.890 (0.851 to 0.930)	p<0.001
	Pryor et al. 1993	0.838 (0.789 to 0.887)	
	Pryor et al. 1993 + CTCS	0.901 (0.863 to 0.938)	p<0.001
	Morise et al. 1994	0.831 (0.780 to 0.881)	
	Morise et al. 1994 + CTCS	0.899 (0.861 to 0.937)	p<0.01
	Morise et al. 1997	0.840 (0.792 to 0.889)	
	Morise et al. 1997 + CTCS	0.898 (0.859 to 0.936)	p<0.001
	Sensitivity and specificity Data not reported.		
Source of funding	Funded by the Health Care Efficiency Research grant (number 945–04–263) from the Netherlands Organisation for Health Research and Development, and by internal funding through a Health Care Efficiency grant from the Erasmus University Medical Center, Rotterdam.		
Comments	Study limitations: Prediction models that included CTCS were not validate evidence appraisal. QUADAS-2:	d in a separate patient sample, s	so these data were not extracted for

ediction of coronary artery disease.			

Bibliographic reference	Genders, T. et al. [The CAD consortium] (2011) A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. European Heart Journal 32: 1316-1330.		
Study type	Prospective cross-sectional		
Aim	To study the validity of the Diamond and Forrester model for estimating the probability of CAD, to update the model using recently collected data, and extend the model for patients beyond 70 years, using data from contemporary cohorts.		
Patient characteristics	 recently collected data, and extend the model for patients beyond 70 years, using data from contemporary cohorts. Inclusion: Patients with chest pain suggestive of stable angina Underwent coronary angiography Exclusion: acute coronary syndrome or unstable chest pain history of myocardial infarction or previous revascularisation (percutaneous coronary intervention or coronary arter bypass graft surgery) Patient Characteristics: 		ntion or coronary artery
		n=2,2721	
	Demographics		
	Age in years – mean (sd)	62.3 (10.4)	

Genders, T. et al. (2010) Incremental value of the CT coronary calcium score for the pro-

1B – All patients were referred for CA; some had prior abnormal functional test: HIGH

1A - Not clear if patients were consecutively enrolled: UNCLEAR

2A - D-F, Duke Clinical Score, Morise 1994, Morise 1997: all LOW 2B – D-F, Duke Clinical Score, Morise 1994, Morise 1997: all LOW

European Radiology, 20: 2331-2340.

3A - LOW 3B – LOW 4 - LOW

Bibliographic reference

Bibliographic reference	Genders, T. et al. [The CAD consortium] (2011) A clinical prediction rule for the di	agnosis of coronary artery disease:	
	validation, updating, and extension. European Heart Journal 32: 1316-1330.		
	Male – n (%)	1,527 (67.2)	
	Symptoms – n (%)		
	Typical chest pain	1,204 (53.0)	
	Atypical chest pain	607 (26.7)	
	Non-specific chest pain	461 (20.3)	
	Clinical assessments		
	CAD on coronary angiography	1,325 (58.3)	
	Note: Typical chest pain defined as having (i) substernal chest pain or discomfort, the emotional stress and (iii) relieved by rest and/or nitroglycerine.	hat is (ii) provoked by exertion or	
	Atypical chest pain defined as having two of the before-mentioned criteria.		
	If one or none of the criteria was present, the patient was classified as having non-specific chest pain.		
Number of patients	N=2,260		
Probability score / model	1. Diamond-Forrester model		
	Includes: age, sex and type of chest pain		
	Originally developed to be applicable only in patients aged 30-69 years, so validati patients aged 30-69 (n=1683; 68.9% male, 55.7% with obstructive CAD on CA).	on was restricted to a subsample of	
	2. Updated and extended Diamond-Forrester model		
	Updated D-F model, including patients below 30 and above 69 years of age.		
	Updated model was extended to include a random effect intercept allowing for lik different hospitals, and a random effect around the coefficient for type of chest pa diagnosis across hospitals.		
	Validation of the updated model was done in an independent registry dataset of u subsequently underwent CTCA (all) or CA (subset).	nselected outpatients (n=454) who all	
Reference standard (or Gold	Coronary angiography (CA)		

bliographic reference	Genders,T. et al. [The CAD consortium] (2011) A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. European Heart Journal 32: 1316-1330.		
andard)	Performed at each hospital according to local protocols; interpretation of CA was allowed by both visual and quantitative assessment. Statistical analyses adjusted for hospital.		
	Obstructive CAD = ≥50% stenosis in one or more vessels		
ne between testing & eatment	Not clear.		
ngth of follow-up	Duration of study not reported.		
cation	10 countries (14 hospitals) across Europe and North America		
agnostic accuracy measures x 2 table)	Area under the ROC curve		
	Reference: Obstructive CAD = ≥50% stenosis in one or more vessels		
		AUC (95% Cls)	
	Diamond-Forrester (validation sample n=1,683 ²)	0.78 (0.76 to 0.81)	
	- adjusting for hospital	0.81 (0.79 to 0.83)	
	Updated Diamond-Forrester (n=2,660 development cohort – data not extracted)	0.79 (0.77 to 0.81)	
	 extended to allow for heterogeneity in CAD prevalence and classification of chest pain across hospitals 	0.82 (0.80 to 0.84)	
	Updated D-F (n=454, external validation sample)	0.76 (0.71 to 0.81)	
	Sensitivity and specificity		
urse of funding	Data not reported for 2x2 table		
urce of funding	Not reported		
omments	QUADAS-2:		
	1A – Not clear if consecutive patients were assessed: UNCLEAR		

Bib

stai

Tim trea Len

Dia (2 x

Sou Con

Bibliographic reference	Genders, T. et al. [The CAD consortium] (2011) A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. European Heart Journal 32: 1316-1330.
	1B – Updated D-F (validation cohort): LOW
	2A - LOW
	2B – D-F: LOW; Updated D-F: LOW
	3A – D-F: Not clear if results were interpreted without knowledge of probability scores: UNCLEAR
	3A - Updated D-F (validation cohort): Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR
	3B – LOW
	4 - LOW

¹ Sample (n=2,272) includes 12 patients excluded from analyses due to missing data. This sample was used to validate the original D-F model (restricted to those aged 30-69yrs) and develop updated D-F model. Validation of the updated model was done in an independent registry dataset of unselected outpatients (n=454 who subsequently underwent CTCA or CA)

Bibliographic reference	Genders, T. et al. [The CAD Consortium] (2012) Prediction model to estimate presence of coronar retrospective pooled analysis of existing cohorts. BMJ 344: e3485-	y artery disease:	
Study type	Cross-sectional		
Aim	To develop prediction models that better estimate the pre-test probability of CAD in low prevalence determine the incremental diagnostic value of exercise electrocardiography and the coronary calci		
Patient characteristics	Inclusion:		
	- Patients presenting with stable chest pain		
	- Referred for catheter based or CT based coronary angiography		
	Exclusion:		
	- Acute coronary syndrome or unstable chest pain		
	 History of myocardial infarction or previous revascularisation (percutaneous coronary intervention or coronary artery bypass graft surgery) 		
	Patient Characteristics:		
	n=4,426	1	

Bibliographic reference	Genders, T. et al. [The CAD Consortium] (2012) Prediction model to estimate prese retrospective pooled analysis of existing cohorts. BMJ 344: e3485-	ence of coronary ar
	Demographics	
	Age in years – mean (sd)	57.2 (12)
	Male – n (%)	2406 (54)
	Cardiovascular risk factors – n (%)	
	Family history of CAD (in 1st degree male relative <55yrs or female <65yrs)	1720 (44)
	Previous cerebrovascular disease (carotid artery disease, stroke or TIA)	78 (3)
	Previous renal artery disease	43 (1)
	Previous peripheral artery disease	79 (2)
	Diabetes (plasma glucose ≥7.0 mmol or treatment with diet / medication)	622 (15)
	Hypertension (BP ≥140/90 mmHg or use of hypertensive treatment)	2475 (58)
	Past or current smoker	1231 (29)
	BMI (kg/m2) – mean (median)	28 (27)
	Dyslipidaemia (serum cholesterol >200 mg/dL or 5.18 mmol/L	2194 (52)
	Symptoms – n (%)	
	- Typical chest pain	759 (17)
	- Atypical chest pain	2699 (61)
	- Non-specific chest pain	966 (22)
	Clinical assessments	
	Exercise ECG (n=1612) – n (%)	671 (42)
	- Normal	443 (27)
	- Abnormal	498 (31)
	- Non-diagnostic	
	Coronary calcium (Agatston) scores (n=4009) – n (%)	1777 (44)
	0	402 (10)

Bibliographic reference	Genders, T. et al. [The CAD Consortium] (2012) Prediction model to estimate preserver retrospective pooled analysis of existing cohorts. BMJ 344: e3485-	nce of coronary artery disease:
	0 to <10	749 (19)
	10 to <100	606 (15)
	100 to <400	475 (12)
	≥400	
	CTCA results (n=4287) – n (%)	3232 (75)
	No obstructive CAD	505 (12)
	Moderate CAD (50-70% stenosis)	550 (13)
	Severe CAD (≥70% stenosis, or ≥50% left main stenosis)	
	Coronary angiography results (n=848) – n (%)	406 (48)
	No obstructive CAD	177 (21)
	Moderate CAD (50-70% stenosis)	265 (31)
	Severe CAD (≥70% stenosis, or ≥50% left main stenosis)	
Number of patients	N=4,426 (subsample of patients in low prevalence setting (=10 hospitals) used for va	lidating prediction models)
Probability score / model	1. Duke clinical score	
	Based on age, sex, smoking, diabetes, history of MI, symptoms of angina pectoris, hypercholesterolemia, and ECG changes to calculate pre-test probability of at least one coronary artery stenosis ≥75% lumen diameter reduction at CA.	
	New prediction models:	
	All clinical variables are known to be associated with coronary artery disease so were	e entered simultaneously in a
	multivariable, random effects, logistic regression model that included hospital as a random effect to account for clustering of patients within hospitals. Non-significant predictors with small effects (that is, odds ratio <1.01) were omitted.	
	2. Basic model (updated Diamond and Forrester, Genders et al. 2011)	
	Includes: age, sex, symptoms, and setting	

Bibliographic reference	Genders, T. et al. [The CAD Consortium] (2012) Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ 344: e3485-
	3. Clinical model As above, with additional risk factor variables: diabetes, hypertension, dyslipidaemia, smoking, and body mass index
	3. Extended model (DICAD) Includes all variables in the clinical model with the addition of coronary calcium score. Note that exercise ECG was included in the multivariate analysis to derive the model but as it was not a significant independent predictor it was excluded from the final model.
	Note: For model development, a dummy 'setting' variable was included to account for differences in patient selection based on referrals to catheter based coronary angiography versus CT based coronary angiography. Coded '0' (low prevalence setting) if a patient came from a database created by selecting patients who underwent CTCA (of whom only a proportion went on to undergo catheter based CA); coded '1' (high prevalence setting) if the patient came from a database that was created selecting patients who underwent catheter based CA (of whom a proportion also underwent the CT based procedure).
	Models were tested in 'low prevalence' populations (data from 10 hospitals) for whom best diagnostic management should be determined based on an estimated pre-test probability (by contrast, all patients in high prevalence setting had a clinical indication for catheter based CA so pre-test probability not relevant).
Reference standard (or Gold standard)	Coronary angiography (CA) or imputed data from computed tomography coronary angiography (CTCA) and other predictors. <u>Note</u> : Only a minority of patients underwent catheter based CA so data were imputed using data from CTCA and other predictor variables (n=3615 (64%) values imputed for catheter based CA) Correlation between results of CA and CTCA in 1609 patients who underwent both was good; <i>r</i> = 0.72). Significant obstructive coronary artery disease = at least one vessel with at least 50% diameter stenosis found on catheter based coronary angiography.
Time between testing &	Not clear (retrospective analysis)

del to es 3485-	stimate presence of coronary a	rtery disease:
vessel wi	th at least 50% diameter stenos	is
	AUC (95% Cls)	
	0.78 (0.76 to 0.81)	
cross-	0.77	
	0.79	
dures	0.88	

Bibliographic reference	Genders, T. et al. [The CAD Consortium] (2012) Prediction model to e retrospective pooled analysis of existing cohorts. BMJ 344: e3485-	stimate presence of coronary artery disease:		
treatment				
Length of follow-up	Study duration not reported.			
Location	11 countries (18 centres)			
Diagnostic accuracy measures (2 x 2 table)	Area under ROC curve Reference: obstructive coronary artery disease = at least one vessel with at least 50% diameter stenosis found on catheter based coronary angiography			
	N=4,426 patients in low prevalence datasets (10 hospitals)	AUC (95% Cls)		
	Duke clinical score	0.78 (0.76 to 0.81)		
	Basic model (updated Diamond and Forrester) – mean of cross-validation procedures	0.77		
	Clinical model – mean of cross-validation procedures	0.79		
	Extended model (DICAD) – mean of cross-validation procedures	0.88		
	Sensitivity and specificity Not reported.			
Source of funding	Not reported.			
Comments	Study limitations:QUADAS-2:1A - Not clear if patients were consecutively enrolled: UNCLEAR1B - Patients all referred for CTCA (not developed for 'high prevalence'2A - LOW2B - Duke Clinical Score: LOW2B - Updated D-F: LOW2B - Clinical model: LOW2B - DICAD requires information from CT calcium score which is not all index clinic visit: HIGH3A - Not clear if results were interpreted without knowledge of probability3B - LOW	pplicable to pre-test probability assessment at an		

Bibliographic reference	Genders, T. et al. [The CAD Consortium] (2012) Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ 344: e3485-
	4 - LOW
1 Number of potients with evolution	

¹ Number of patients with available data varies

Bibliographic reference	Hong,S. et al. (2012) Assessing coronary disease in symptomatic women by the Morise score. Journal of Women's Health 21: 843-850.				
Study type	Retrospective cross-sectional				
Aim	To evaluate the predictive value of the Morise score for the diagnosis pf CAD, as determined by computed tomography coronary angiography (CTCA), in symptomatic women without a history of CAD, comparing the results with the Diamond-Forrester risk assessment.				
Patient characteristics	Inclusion: - Consecutive women who underwent CTCA examination for chest pain				
	 Exclusion: Prior history of CAD Cardiac catheterisation (with or without percutaneous intervention), or coronary artery bypass graft surgery (CABG High calcium scores in proximal arteries precluding CTCA (Agatston > 400) Patient Characteristics: 				
	n=140				
	Demographics				
	Age in years – mean (sd) 64 (11)				
	Male – n (%) 0				
	Cardiovascular risk factors – n (%)				
	Hypertension 71 (51)				
	Diabetes 23 (16)				
	Hyperlipidaemia 90 (64)				
	Past or current smoker	21 (15)			

National Guideline Centre. 2016

Bibliographic reference	Hong,S. et al. (2012) Asse 21: 843-850.	ssing coronary disease i	n symptomatic wome	n by the Morise sco	re. Journal of Women's Healt
	Positive family history			59 (4	12)
	Oestrogen status ¹				
	- Positive (premen	opausal)		6 (4	1)
	- Negative (postmo	enopausal)		124 (89)
	- Unknown			10 (7)
	Symptoms – n (%)				
	- Atypical			102 (73)
	- Typical			29 (2	
	- Non-cardiac			9 (6	5)
	Clinical assessments				
	CT calcium score – med	ian [IQR]		5 [0-2	77]
	Non-obstructive CAD: 73 (Obstructive CAD: 22 (16)	521			
Number of patients	N=140 (n=100 for Diamon	d and Forrester analysis)			
Probability score / model	1. Morise et al. 1997 scor	2			_
	Age	>65 years	50-65 years	<50 years	
		9 points	6 points	3 points	
	Symptoms	Typical angina	Atypical angina	Non-anginal	
		5 points	3 points	1 point	
	Oestrogen status	Positive	Negative	Unknown	
		-3 points	+3 points	0 point	
	Diabetes	Yes	No		
		2 points	0 Points		

Bibliographic reference	Hong,S. et al. (2012) Assessing coronary disease in symptomatic women by the Morise score. Journal of Women's Health 21: 843-850.					
			history, obesity (BMI , smoking (any history)	1 point (e	ach)	
	Risk fac	tor stratification:	Low = 0-8 points; Interme	ediate = 9-15 points; Higł	n = 16-24 points.	
		ond and Forreste	er			
		ed as follows:				
	Age	Gender	Typical / definite angina	Atypical / definite angina	Non-anginal chest pain	t Asymptomatic
	30-3	9 Women	Intermediate	Very low	Very low	Very low
	40-4	9 Women	Intermediate	Low	Very low	Very low
	50-5	9 Women	Intermediate	Intermediate	Low	Very low
	60-6	9 Women	High	Intermediate	Intermediate	Low
	Note: 4	0/140 patients we	ere not included for Diam	ond and Forrester risk st	ratification as they we	ere >69 years.
Reference standard (or Gold standard)	Compu	ted tomography o	oronary angiography (CTC	CA)		
Stanuaru)	was cor and an Images CAD. Th	analysed by diffe e coronary artery		t CT scan was initially per hreshold value of 130 Ho ns. Women with calcium segments based on a mo	formed to evaluate co punsfield units to delin scores >0 were classe pdified AHA classificat	ed as having evidence of
		-	ssified into one of three g n score and no evidence c			

Hong,S. et al. (2012) Assessing coronary disease in symptomatic women by the Morise score. Journal of Women's Health 21: 843-850.
 Non-obtrusive CAD = calcified, mixed or non-calcified plaque with <50% luminal narrowing
 Obstructive CAD = calcified, mixed or non-calcified plaque with ≥50% narrowing in one segment.
Not clear (retrospective study)
Patients underwent CTCA during study period: January 2007 to September 2008.
USA (single centre)

Diagnostic accuracy measures Area under the ROC curve (2 x 2 table)

Bibliographic reference

Time between testing &

Length of follow-up

treatment

Location

Reference: Obstructive CAD = calcified, mixed or non-calcified plaque with \geq 50% narrowing in one segment.

	AUC ²
Morise	0.771
Diamond and Forrester	0.61
p-value for comparison	p<0.001

Sensitivity and specificity³

USA (single centre)

(i) Morise: 'Positive' for obstructive CAD (≥50% stenosis) = high / intermediate probability score; negative for CAD = low probability score

	CAD on CTCA	No CAD on CTCA
Morise +ve	95 (TP)	38 (FP)
Morise –ve	0 (FN)	7 (TN)

Sensitivity: 100 (95%Cls 96.1 to 100.0); Specificity: 15.6 (95%Cls 7.7 to 28.8)

(ii) Diamond and Forrester: : 'Positive' for obstructive CAD (≥50% stenosis) = high / intermediate probability score; negative for CAD = low/ very low probability score

Bibliographic reference	Hong, S. et al. (2012) Assessing coronary disease in symptomatic women by the Morise score. Journal of Women's Health 21: 843-850.				
	CAD on CTCA No CAD on CTCA				
	Diamond and Forrester +ve 59 (TP) 34 (FP)				
	Diamond and Forrester –ve 2 (FN) 5 (TN)				
	Sensitivity: 96.7 (95%Cls 88.8 to 99.1); Specificity: 12.8 (95%Cls 5.6 to 26.7)				
Source of funding	Not reported				
Comments	Study limitations: QUADAS-2:				
	1A – LOW				
	1B – Restricted study population (women only) who were referred for CTCA: HIGH				
	2A - LOW				
	2B – D-F: LOW				
	2B – MORISE 1997: LOW				
	3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR				
	3B – LOW				
	4 - LOW				

¹ Menopausal status not routinely documented on intake forms: in women without documented date of last period, status was based on age (≥51yrs classified as postmenopausal, <45yrs classified as premenopausal; 45-50yrs classified as unknown oestrogen status)
 ² 95%Cls not reported for AUCs
 ³ Calculated from reported data by reviewer

Bibliographic reference	Hwang,Y. (2010) Coronary heart disease risk assessment and characterization of coronary artery disease using coronary CT angiography: comparison of asymptomatic and symptomatic groups. Clinical Radiology 65: 601-608.
Study type	Cross-sectional
Aim	To evaluate the presence of coronary artery disease (CAD) in relation to risk of coronary heart disease (CHD) and assess plaque characteristics from coronary computed tomography (CT) angiography in asymptomatic and symptomatic patients.
Patient characteristics	Inclusion: - patients who underwent CTCA for general health evaluation, or for atypical or non-anginal chest pain

National Guideline Centre. 2016

rence	Hwang,Y. (2010) Coronary heart disease risk assessment and characterization of coronary artery disease using coronary CT angiography: comparison of asymptomatic and symptomatic groups. Clinical Radiology 65: 601-608.			
	Exclusion:			
	- incomplete medical record required for the assessment o	f CHD risk		
	- non-diagnostic image quality obtained from CTCA			
	 presence of typical anginal chest pain 			
	- a history of CHD			
	Note: Data are extracted for symptomatic subgroup with atypical or non-anginal chest pain only, not those patients who were asymptomatic and underwent CTCA for general health evaluation.			
	Atypical chest pain was defined as having two of the following three features and non-anginal chest pain was defined as having only one of these characteristics:			
	(i) typical substernal chest pain			
	(ii) exacerbation by physical or emotional stress			
	(iii) relieved by nitrates and /or resting less than10min.			
	Patient characteristics			
		n=252		
	Demographics			
	Age in years – mean (sd)	59.1 (11.7)		
	Male – n (%)	145 (58)		
	Cardiovascular risk factors – n (%)			

	n=252
Demographics	
Age in years – mean (sd)	59.1 (11.7)
Male – n (%)	145 (58)
Cardiovascular risk factors – n (%)	
Hypertension	84 (33)
Diabetes	77 (31)
Smoking	96 (38)
Positive family history	16 (6)
Cholesterol (mg/dl) – mean (sd)	185.5 (43.5)
LDL (mg/dl) – mean (sd)	102.4 (34.7)
HDL (mg/dl) – mean (sd)	50 (13.7)

Bib

Bibliographic reference	Hwang,Y. (2010) Coronary heart disease risk assessment and characterization of coronary artery disease using coronary CT angiography: comparison of asymptomatic and symptomatic groups. Clinical Radiology 65: 601-608.			
	Triglycerides (mg/dl) – median [IQR]	111 [75.5 - 158.5]		
	· · · · · · · · · · · · · · · · · · ·			
Number of patients	N=252 (symptomatic subgroup)			
Probability score / model	el Framingham Risk Score Includes: age, gender, total cholesterol, HDL cholesterol, systolic blood pressure (and also whether the patient is treated or not for hypertension), smoking status. Applied retrospectively based on patient records.			
	High risk (CHD risk equivalents or a 10-year risk >20%) – n (%): 87 (35)			
	Moderate risk (> 2 risk factors and a 10-year risk ≤20%) – n (%): 90 (36)			
	Low risk (0-1 risk factor) – n (%): 75 (30)			
Reference standard (or Gold	Gold CTCA			
standard)	Performed using a 64-section MDCT (SOMATOM Sensation64 Siemens Medical Solutions, Germany).			
	Images analysed by two experienced radiologists using dedicated coronary software (Leonardo, Siemens Medical System, Germany). Coronary arterial segments were investigated for the presence and characteristics of coronary plaques.			
	Participants classified into three subgroups:			
	(1) non-calcified: participants with only non-calcified plaques			
	(2) mixed; participants with mixed plaques			
	(3) calcified; participants with only calcified plaques.			
	Plaque densities > 130 HU were classified as calcified and the corc Agatston scoring system.	onary calcium score (CCS) was calculated according to the		
	Degree of stenosis was classified as significant if the patient had > than 50% of the diameter of the longitudinal image affected.			
	The segment with the worst stenosis was evaluated in patients wi	un multiple lesions.		

Dibliographic reference	Unione V (2010) Concerning hours discourse with account	ant and sharestaring tion of some		
Bibliographic reference	Hwang,Y. (2010) Coronary heart disease risk assessment and characterization of coronary artery disease using coronary CT angiography: comparison of asymptomatic and symptomatic groups. Clinical Radiology 65: 601-608.			
Time between testing & treatment	Not clear (retrospective analysis).			
Length of follow-up	Patients underwent CTCA between January 2006 and July 2008.			
Location	Korea (single centre)			
Diagnostic accuracy measures (2 x 2 table)	Area under ROC curve			
	Reference: Significant CAD = stenosis of >70% area of t	he cross-sectional image or >509	% diameter of the longitudinal image	
	Framingham Risk Score	AUC (95% Cls) ¹	_	
	All symptomatic patients (n=252)	0.708	_	
	Men (n=145)	0.692		
	- ≥45 years (n=127)	0.598		
	- <45 years (n=18)	0.453	_	
	Women (n=39)	0.805		
	- ≥55 years (n=23)	0.758		
	- <55 years (n=16)	_ 2	_	
	Risk groups			
	- High risk (n=87)	0.646		
	- Medium risk (n=90)	0.613		
	- Low risk (n=75)	0.715		
	Sensitivity and specificity CAD presence (symptomatic patients) = FRS cut-off value 11.50 Sensitivity 82.6%; specificity 47.4%			
Source of funding	Not reported.			
Comments	Study limitations: QUADAS-2:			

Bibliographic reference	Hwang,Y. (2010) Coronary heart disease risk assessment and characterization of coronary artery disease using coronary CT angiography: comparison of asymptomatic and symptomatic groups. Clinical Radiology 65: 601-608.
	1A – Not clear if consecutive patients were assessed; patients with typical angina chest pain were excluded: HIGH
	1B – Patients were all referred for CTCA; those with typical angina chest pain were excluded: HIGH
	2A - LOW
	2B - LOW
	3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR
	3B – LOW
	4 - LOW

¹ 95%Cls not reported for AUCs
 ² ROC curve could not be analysed because of absence of CAD in this subgroup.

Bibliographic reference	Jensen J, et al. (2012) Risk stratification of patients suspected of models. Atherosclerosis 220: 557-562.	coronary artery disease: comp	arison of five different	
Study type	Cross-sectional			
Aim	To compare the performance of five risk models (Diamond–Forres new model designated COronary Risk SCORE (CORSCORE) in pred with chest pain suggestive of stable angina pectoris.	•		
Patient characteristics	Inclusion:			
	- Consecutive patients with chest pain indicative of CAD referred for CA			
	 Exclusion: Unstable angina Previous percutaneous coronary intervention or coronary a Patient characteristics	artery bypass grafting		
		n=633		
	Demographics			

Bibliographic reference	Jensen J, et al. (2012) Risk stratification of patients suspect models. Atherosclerosis 220: 557-562.	ed of coronary artery disease: comparison of five	different
	Age in years – mean (sd)	63.1 (11.4)	
	Male – n (%)	336 (53.1)	
	Cardiovascular risk factors – n (%)		
	Medically treated hypertension	382 (60.3)	
	Diabetes	107 (16.9)	
	Smoking	410 (64.8)	
	Positive family history	317 (50.1)	
	History of myocardial infarction	26 (4.1)	
	Medically treated hypercholesterolaemia	363 (57.3)	
	Negative oestrogen status (women only)	221 (34.9)	
	Body mass index (kg/m ²) – mean (sd)	27.3 (4.4)	
	Symptoms – n (%)		
	CCS Angina class	1.6 (0.9)	
	Clinical assessments – n (%)		
	ST-depression on ECG	9 (1.4)	
	Q-wave on ECG	35 (5.5)	
	Note: CCS angina - as classified by the Canadian Cardiovascu (1) only angina on considerable exertion (2) daily activities are only slightly hampered by angina (3) daily activities are considerably hampered by angina (4) no activities performed without angina. Significant CAD on CA – n (%): 216 (34.1)	lar Society:	
Number of patients	N=633 (= cohort II sample in which the 5 models were comp	ared) ¹	
Probability score / model	1. Diamond and Forrester		

Bibliographic reference	Jensen J, et al. (2012) Risk stratification of patients suspected of coronary artery disease: comparison of five different models. Atherosclerosis 220: 557-562.
	Uses age, sex, and typicality of chest pain symptoms to calculate likelihood of significant coronary artery stenosis >50% in patients 30-69 (but applied to wider age range in present study)
	2. Updated Diamond and Forrester Updated risk model (as modified by Genders et al. 2011) extended to include patients >69 years.
	3. Duke clinical score Based on age, sex, smoking, diabetes, history of MI, symptoms of angina pectoris, hypercholesterolemia, and ECG changes to calculate pre-test probability of at least one coronary artery stenosis ≥75% lumen diameter reduction at CA.
	 4. Morise 1997 score Based on sex, age, smoking, diabetes, symptoms of angina pectoris, hypercholesterolemia, hypertension, family history of CAD, BMI, obesity (defined as BMI >27), and oestrogen status. Calculates the pre-test probability of stenosis at CAG >50% in one or more coronary arteries.
	 5. CORSCORE Model derived from multivariate regression analyses of data from cohort I. Comprised information on age, sex, smoking, history of myocardial infarction, angina class, medically treated hypercholesterolemia, and medically treated hypertension. The model calculates the probability of at least one coronary artery stenosis >50% at CAG. Model was validated in cohort II and compared with the other prediction models detailed above.
Reference standard (or Gold standard)	Coronary angiography Performed with Philips Allura Xper FD10 or Philips Integris Allura (Philips Healthcare, the Netherlands) using standard technique. A minimum of 5 projections of the left coronary artery and at least 2 projections of the right coronary artery were used.
	The coronary angiograms were read by two cardiologists not blinded to clinical data.
	Significant CAD was defined as stenosis (lumen area diameter reduction ≥50%) in one or more coronary arteries using eye- balling or automatic quantitative standard technique.

Bibliographic reference	Jensen J, et al. (2012) Risk stratification of patients suspected of coronary artery disease: comparison of five different models. Atherosclerosis 220: 557-562.						
Time between testing & treatment	Not clear.						
Length of follow-up	Analysed data for patients referred for C	CA betwe	en Jul	y 2004 and	April 2010		
Location	Denmark (single centre)						
Diagnostic accuracy measures (2 x 2 table)	Area under ROC curve Reference: Significant CAD = stenosis ≥5						
		AUC ²			alue for con		
			D-F	U D-F	DU	МО	со
	Diamond-Forrester (D-F)	0.642		p<0.001	p<0.001	p=0.049	p=0.001
	Updated Diamond Forrester (U D-F)	0.714			p=0.680	p=0.36	p=0.480
	Duke (DU)	0.718				p=0.320	p=0.560
	Morise (MO)	0.681					p=0.024
	CORSCORE (CO)	0.727					
	Sensitivity and specificity Not reported.						
Source of funding	None						
Comments	Study limitations: QUADAS-2:						
	1A – LOW						
	1B – All patients had been referred for C	A - HIGH	ł				
	2A – all models: LOW	·					
	2B – all models: LOW						
	3A – States that angiograms were interp 3B – LOW	oreted by	cardi	ologists no	t blinded to	patients' o	clinical dat
	4 - LOW						

· ·	Jensen J, et al. (2012) Risk stratification of patients suspected of coronary artery disease: comparison of five different models. Atherosclerosis 220: 557-562.

¹ Data for Cohort I (retrospective sample of n=4,781 patients used to develop the CORESCORE model) were not extracted. ² 95%Cls not reported for AUCs

Bibliographic reference	Kotecha D, et al. (2010) Contemporary predictors of coronary artery disease in patients referred for angiography. European Journal of Cardiovascular Prevention & Rehabilitation. 17: 280-288.					
Study type	Cross-sectional					
Aim	To assess the ability of risk scores, conventional risk factors, high-sensitivity C-reactive protein (hs-CRP) and B-type natriuretic peptide (BNP) to predict the presence, extent and severity of angiographic coronary disease.					
Patient characteristics	Inclusion: Consecutive patients attending elective diagnostic coronary angiography Exclusion: Precipitating coronary event (acute coronary syndrome or MI) Heart transplantation Patient characteristics:					
		N=539]			
	Demographics					
	Age in years – mean (sd)	64.7 (10.9)				
	Male – n (%)					
	Cardiovascular risk factors – n (%)					
	Family history of premature CVD	187 (34.7)				
	Diabetes	118 (21.9)				
	Current smoker	88 (16.3)				

phic reference	Kotecha D, et al. (2010) Contemporary predictors of contemporary predictors of contemporary prevention & Reh	
	Regular exercise	207 (38.4)
	Prior CVD	302 (56.0)
	Prior revascularisation	113 (21.0)
	Peripheral vascular disease	52 (9.7)
	Body mass index (kg/m ²) – mean (sd)	28.7 (5.2)
	Symptoms – n (%)	
	Chest pain	410 (76.1)
	Dyspnoea	342 (63.5)
	Clinical assessments – mean (sd)	
	Systolic BP (mmHg)	143.9 (20.8)
	Diastolic BP (mmHg)	79.5 (10.3)
	Pulse pressure (mmHg)	64.5 (18.1)
	Total cholesterol (mmol/l)	4.60 (1.12)
	HDL-cholesterol (mmol/l)	1.22 (0.34)
	Glomerular filtration rate (GFR) (ml/min per 1.73 m ²) 83.4 (23.2)
	BNP (pg/ml)	40 (73)
	High sensitivity CRP – n (%)	267 (49.6)
	Medication – n (%)	
	Aspirin	384 (71.2)
	Clopidogrel	81 (15.0)
	Beta-blockers	243 (45.1)
	Calcium channel blockers	122 (22.6)
	Nitrates	89 (16.5)
	Statins	334 (62.0)

Obstructive CAD on CA – n (%): 328 (60.9)

Bi

Bibliographic reference	Kotecha D, et al. (2010) Contemporary predictors of coronary artery disease in patients referred for angiography. European Journal of Cardiovascular Prevention & Rehabilitation. 17: 280-288.
Number of patients	N=539
Probability score / model	1. Framingham risk score
	Includes: age, gender, total cholesterol, HDL cholesterol, systolic blood pressure, whether the patient is treated or not for hypertension, smoking status. Gives an estimate of 10-year absolute event risk of total coronary disease, including angina, recognized and unrecognized MI and coronary deaths.
	Mean 10-year risk (sd): 14.0 (9.1)
	2. SCORE
	Includes: age, gender, total cholesterol, systolic blood pressure, smoking status. High-risk formula used based on total cholesterol; multiplication factor of two for diabetic men and four for diabetic women.
	Developed to predict 10-year fatal CVD risk
	Mean 10-year risk (sd): 13.2 (15.1).
	3. Conventional risk factors model
	Multivariate model included the following pre-specified variables:
	Age, sex, diabetes, chest pain, prior CVD, BMI, pulse pressure, glomerular filtration rate (GFR), total cholesterol, LV impairment.
	4. Conventional risk factors + hs-CRP and BNP model
	As above, but with the addition of the biomarkers high-sensitivity C-reactive protein (hs-CRP) and B-type natriuretic peptide (BNP).
	Note: multivariate analyses adjusted for medication usage.
Reference standard (or Gold standard)	Coronary angiography (CA)
	All participants underwent routine coronary angiography as per local guidelines. Random sample of 10% of angiograms at each centre were reviewed by two experienced, blinded operators to evaluate consistency.

Bibliographic reference	Kotecha D, et al. (2010) Contemporary predictors of coronary artery disease in patients referred for angiography. European Journal of Cardiovascular Prevention & Rehabilitation. 17: 280-288.					
	Obstructive CAD defined as one or more stenosis of	>50% in a nati	ve major epica	ardial artery o	r main tributar	γ.
Fime between testing & treatment	Not clear (prospective analysis)					
Length of follow-up	Eligible patients were recruited from 2006 to 2008.					
ocation	Australia (3 centres)					
Diagnostic accuracy measures 2 x 2 table)	Area under ROC curve Reference: Obstructive CAD = >50% stenosis in a na	tive major enic	ardial artery o	or main tributa		
		AUC ¹			comparison	
			FRS	SCORE	Risk	Risk +
	Framingham risk score (FRS)	0.739		p=0.185	p<0.001	p<0.001
	SCORE – high risk formula	0.754			p<0.001	p<0.001
	Conventional risk factors model (Risk)	0.826				p=0.286
	Conventional risk factors + hs-CRP and BNP (Risk +)	0.829				
	Sensitivity and specificity Comparative data are reported but with insufficient model's sensitivity and specificity.	information re	egarding what	threshold leve	els were used t	to assess ea
Source of funding	Supported by the Monash Centre of Cardiovascular the Royal Brompton and Harefield NHS Trust Clinica from IM Medical Ltd., Melbourne (a supplier of card	ll Trials and Eva	luation Unit, I	ondon and ar		-
Comments	Study limitations: Model based on conventional risk factors (with or w patients to that used to derive the models, so data QUADAS-2:			•	•	oarate samp

Bibliographic reference	Kotecha D, et al. (2010) Contemporary predictors of coronary artery disease in patients referred for angiography. European Journal of Cardiovascular Prevention & Rehabilitation. 17: 280-288.
	1A – LOW
	1B – All patients had been referred for CA: HIGH
	2A – all models: LOW
	2B – all models: LOW
	3A – Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR
	3B – LOW
	4 - LOW

¹ 95%CIs not reported for AUCs

Bibliographic reference	Kumamaru K, et al. (2014) Overestimation of pretest probability of coronary artery disease by Duke clinical score in patients undergoing coronary CT angiography in a Japanese population. Journal of Cardiovascular Computed Tomography 8: 198-204.				
Study type	Cross-sectional				
Aim	To test the hypothesis that the Duke Clinical Score (DCS) overestimates the CAD probability when applied to patients evaluated with CT coronary angiography (CTCA) and compute an adjustment of the calculated DCS to apply to this population.				
Patient characteristics	 Complete information to enable calculation of Duke Clinica Exclusion: Inadequate CTCA study 	 Inclusion: Consecutive, symptomatic patients with no known CAD, suspected of having CAD, who underwent CTCA Complete information to enable calculation of Duke Clinical Score Exclusion: Inadequate CTCA study Incomplete information to enable calculation of Duke Clinical Score 			
	Demographics	N=3,996			
	Age in years – mean (sd)	66.4 (11.6)			

Bibliographic reference	Kumamaru K, et al. (2014) Overestimation of pretest probab patients undergoing coronary CT angiography in a Japanese 8: 198-204.	ility of coronary artery disease by Duke clinical score in population. Journal of Cardiovascular Computed Tomography
	Male – n (%)	1986 (49.7)
	Cardiovascular risk factors – n (%)	1980 (49.7)
	Family history of premature CVD	1083 (27.1)
	Diabetes	699 (17.5)
	Smoking	699 (17.5)
	Body mass index (kg/m ²) – mean (sd)	23.7 (3.5)
	Dyslipidaemia	2853 (71.4)
	Hypertension	2350 (58.8)
	History of cerebral infarction	220 (5.5)
	Symptoms – n (%)	
	- Typical chest pain	1343 (33.6)
	- Atypical chest pain	2406 (60.2)
	- Non-anginal chest pain	248 (6.2)
	Clinical assessments	
	Total calcium score – mean (sd)	188.1 (501.6)
	CAD on CTCA – n (%)	931 (23.3)
	CAD on CA	707 (17.7)
Number of estimate	to enable calculation of Duke Clinical Score were younger and	
Number of patients	N=3996 with complete information for Duke Clinical Score ca validation cohort, n=1207)	Iculation (randomly divided into training cohort, n=2789 and
Probability score / model	Duke Clinical score	
	Calculated using original DCS (Pryor et al. 1983, 1993).	
	Based on age, sex, type of chest pain, smoking status, cholest	erol, diabetes, hypertension

Bibliographic reference	Kumamaru K, et al. (2014) Overestimation of pretest probability of coronary artery disease by Duke clinical score in patients undergoing coronary CT angiography in a Japanese population. Journal of Cardiovascular Computed Tomography 8: 198-204.			
Reference standard (or Gold standard)	Computed tomography coronary angiography CTCA or Coronary angiography (CA)			
	(1) Computed tomography coronary angiography (CTCA) – all patients			
	Performed using either a 64-detector or 320-detector row CT			
	-			
	Coronary calcium scoring: Coronary artery calcium scoring pe	rformed using the Agatsto	n method.	
	A calcified lesion was defined as >3 contiguous voxels with at	tenuation of at least 130 H	ounsfield units.	
	(2) Coronary angiography (CA), n=994 (21.1%)			
	Performed based on CTCA finding and clinical assessment. Undertaken within 2 weeks of CTCA.			
	Coronary stenosis was evaluated by 2 imagers (blinded to clinical information) by consensus reading. CTCA and CA images			
	were interpreted separately without knowledge of the other	exam.		
	Coronary system divided into AHA 16 segment models.			
	Significant CAD = >50% stenosis in the diameter of at least 1 s	egment.		
Time between testing &	Not clear (retrospective analysis)			
treatment			2	
Length of follow-up	Consecutive patients referred for CTCA were recruited between Feb 2009 and April 2013.			
Location	Japan (single centre)			
Diagnostic accuracy measures (2 x 2 table)	(i) CTCA			
	Reference: significant CAD on CTCA = at least 1 segment had :	>50% stenosis in the diam	eter	
		AUC ²		

Bibliographic reference	Kumamaru K, et al. (2014) Overestimation of pretest probab patients undergoing coronary CT angiography in a Japanese 8: 198-204.			
	Duke clinical score (validation cohort, n=1,207)	0.706		
	(ii) CA (n=929 patient subgroup with at least 1 significant stenosis on CTCA images and full data for calculating DCS) Reference: significant CAD on CA = at least 1 segment had >50% stenosis in the diameter			
	AUC ²			
	Duke clinical score	0.586		
Source of funding	Data not reported.			
Comments	Study Limitations			
	QUADAS-2:			
	1A – excluded patients who had incomplete information to enable calculation of Duke Clinical Score were younger and had a			
	lower incidence of typical chest pain: HIGH			
	1B – All patients had been referred for CTCA: UNCLEAR 2A - LOW			
	2B - LOW			
	3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR			
	3B – LOW			
	4 - LOW			

Bibliographic reference	Park et al. (2011) Clinical significance of framingham risk score, flow-mediated dilation and pulse wave velocity in patients with stable angina, Circulation Journal, 75, 1177-1183			
Study type	Cross-sectional			
Aim	To evaluate the age-adjusted Framingham risk score (AFRS), flow-mediated dilation (FMD) and brachial-ankle pulse wave velocity (baPWV) for the prediction of the coronary heart disease (CHD) in patients with stable angina.			
Patient characteristics	Inclusion:			
	Consecutive patients aged >30 and <75 years, to undergo coronary angiography (CAG)	Consecutive patients aged >30 and <75 years, had stable angina pectoris by history taking or stress test, and were scheduled to undergo coronary angiography (CAG)		
	Exclusion:			
	 History of acute coronary syndrome, significant valvular heart disease (more than moderate degree), left ventricular dysfunction (left ventricular ejection fraction <55%), ankle-brachial index (ABI) <0.9, atrial fibrillation, chronic kidney disease, or an inability to follow the protocol. Patient characteristics: 			
		N = 138		
	Age (yrs)	59±7		
	Sex 72/138 male			
Diabetes 42 (30%)				
	Hypertension 89 (64%			
	Current smoking	43 (31%)		
	Family history of coronary heart disease19 (14%)			

25.0±3.4

130±15

76±9

202±42

Body mass index (kg/m2)

Total cholesterol (mg/dl)

Systolic blood pressure (mmHg)

Diastolic blood pressure (mmHg)

Bibliographic reference	Park et al. (2011) Clinical significance of fr with stable angina, Circulation Journal, 75		ilation and pulse wave velocity in patients
	Coronary heart disease*	71 (51%)	
	Flow-mediated dilation (%)	9.9±4.4	
	Aspirin	102 (74%)	
	Statin	36 (26%)	
	β-blocker	70 (51%)	
	ACEI/ARB	53 (38%)	
	Nitrate	15 (11%)	
	Calcium channel blocker	34 (25%)	
	* Defined as a lumen diameter stenosis >50% in	>—1 major coronary artery	
Number of patients Probability score / model	N = 138		
	Age- adjusted Framingham risk score (AFRS): divides the participant's Framingham risk score by the estimated average risk of the same age group, thus providing the relative risk of the 10-year CHD. In patients who had been treated for dyslipidemia prior to the study, previous data was used (total cholesterol and HDL cholesterol) before initiation of dyslipidemia therapy.		
	Brachial-ankle pulse wave velocity (baPWV):		
	The baPWV was measured using a volume-plethysmographic apparatus. Cuffs were connected to both plethysmographic and oscillometric sensors, with placement around both arms and ankles while the participant remained in the supine position. The distance between sampling points of baPWV was calculated automatically according to the height of the patient. In this study, the left side baPWV was used for the analyses.		
	Flow-mediated dilation (FMD): An experienced vascular sonographer who using a Vivid 7 ultrasound system with a 12 of the left radial artery (RA) was used for th measured from 2-dimensional gray scale lo forearm up to 220 mmHg for 5 min. After of were taken at 7 points, and the maximal ar	2-MHz linear array transducer. A landma ne ultrasound measurement location. T ongitudinal images. Subsequently, a bloc suff release, the RA diameter was measu	ark 10 cm above the proximal wrist crease he baseline diameter of the RA was od pressure cuff was inflated at the ured at 1, 2 and 3 min. Measurements

Bibliographic reference	Park et al. (2011) Clinical significance of framingham risk score, flow-mediated dilation and pulse wave velocity in patients
	with stable angina, Circulation Journal, 75, 1177-1183
	was used for further analysis.
	Least squares linear regression was used to evaluate the association between the AFRS and FMD with baPWV. Multivariate logistic regression analysis was performed to assess independent risk predictors for significant CHD.
Reference standard (or Gold	Coronary angiography (CAG). CHD was defined as lumen diameter stenosis >50% in 1 ≥ major coronary artery
standard)	as determined by CAG. The CAG was interpreted by 1 cardiologist who was blinded to patients' clinical data.
Time between testing & treatment	Not reported
Length of follow-up	Not reported.
Location	Korea (single centre)
Diagnostic accuracy measures (2 x 2 table)	The area under the ROC curves for the prediction of CHD:
	AFRS = 0.863 (95%CI 0.800–0.927)
	FMD = 0.726 (95%Cl 0.643–0.809),
	baPWV = 0.694 (95%Cl 0.605–0.784)
	The area under the ROC curves for:
	AFRS plus iFMD = 0.864 (95%Cl 0.801–0.927)
	AFRS plus baPWV = 0.863 (95%Cl 0.801–0.926)
	AFRS plus iFMD plus baPWV = 0.863 (95%Cl 0.798–0.925)
Source of funding	Not reported.
Comments	Study limitations:
	Brachial-ankle pulse wave velocity (baPWV) and flow-mediated dilation (FMD) are single tests and not multivariate models, so data were not extracted for quality appraisal. Models combining AFRS with either or both these test parameters were not validated in a separate patients sample, so data were not extracted for quality appraisal.
	<u>QUADAS-2</u> : 1A – LOW
	1B – Restricted age population (30-75yrs), all patients were referred for CA: HIGH
	2A – AFRS: LOW

Bibliographic reference	Park et al. (2011) Clinical significance of framingham risk score, flow-mediated dilation and pulse wave velocity in patients with stable angina, Circulation Journal, 75, 1177-1183
	2B - LOW
	3A - LOW
	3B - LOW
	4 - LOW

Bibliographic reference	Pickett et al. (2013) Accuracy of traditional age, gender and symptom based pre-test estimation of angiographically significant coronary artery disease in patients referred for coronary computed tomographic angiography, American Journal of Cardiology, 112, 208-211.		
Study type	Cross-sectional		
Aim	To compare the expected prevalence of angiographically significant CAD predicted by DF classification with the observed prevalence of angiographically significant CAD inpatients clinically referred for 64 CCTA.		
Patient characteristics	Inclusion criteria:		
	Consecutive patients referred for CTCA. Atypical angina was most common symptom prompting referral (63%)		
	Angina was symptoms of chest pain were classified as non-anginal, atypical angina or typical angina. Typical angina was		
	defined as:		
	1) Substernal location		
	2) Occurs with exertion or emotional stress		
	3) Is consistently relieved with rest or nitroglycerin.		
	Atypical angina was defined by having 2 of the aforementioned criteria, and chest pain possessing <2 of the criteria was defined as nonanginal.		
	Exclusion criteria:		
	None reported.		
	Patient characteristics:		
	N = 1027		

Bibliographic reference	Pickett et al. (2013) Accuracy of traditional age, g		
	significant coronary artery disease in patients refo Journal of Cardiology, 112, 208-211.	erred for coronary computed tomographic	c angiography, American
	Age (yrs)	50±12	
	Sex	606 male	
	Diabetes mellitus	112 (10%)	
	Hyperlipidaemia (patient identified or treated)	562 (51%)	
	Smokers	135 (12%)	
	Family history of premature coronary heart disease	290 (26%)	
	Body mass index (kg/m2)	29±5	
	Hypertension	562 (51%)	
	Total cholesterol (mg/dl)	190±38	
	Low-density lipoprotein cholesterol (mg/dl)	116 ± 33	
	High-density lipoprotein cholesterol (mg/dl)	53±21	
Number of patients	N = 1027		
Probability score / model	Diamond and Forrester (DF) classification.		
	Morise score (1997): incorporates age, risk factors	and DF criteria symptoms.	
Reference standard (or Gold	64-slice CCTA.		
standard)	Each CCTA examination was performed on the same 64-slice scanner All scans were jointly interpreted by a cardiologist and radiologist who reached consensus. Maximal epicardial vessel luminal stenosis was visually estimated, with patients categorized as having (1) normal coronary arteries, (2) non-obstructive CAD (<50% stenosis), or (3) 50% visual luminal stenosis in > 1 epicardial coronary artery segment > 1.5 mm in diameter (angiographically significant CAD).		
Time between testing & treatment	Not reported.		
Length of follow-up	Patients were referred for CTCA between July 2000	– December 2010	
Location	USA (one centre).		
Diagnostic accuracy measures (2 x 2 table)	For the prediction of any angiographically significa to 0.78) on receiver-operating characteristic curve		r the curve of 0.72 (95% Cl 0.66

Bibliographic reference	Pickett et al. (2013) Accuracy of traditional age, gender and symptom based pre-test estimation of angiographically significant coronary artery disease in patients referred for coronary computed tomographic angiography, American Journal of Cardiology, 112, 208-211.
	Incorporating standard cardiovascular risk factors using the Morise score for the prediction of angiographically significant CAD, the area under the curve was 0.68 (95% CI 0.63 to 0.74), whereas age alone had an area under the curve of 0.69 (95% confidence interval 0.63 to 0.75).
Source of funding	Not reported.
Comments	Study limitations:
	QUADAS-2
	1A - LOW
	1B – All patients were referred for CTCA: UNCLEAR
	2A – all models: LOW
	2B – all models: LOW
	3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR
	3B - LOW
	4 - LOW

Bibliographic reference	Rademaker et al. (2014) Comparison of different cardiac risk scores for coronary artery disease in symptomatic women: do female-specific risk factors matter?, European Journal of Preventive Cardiology, 21, 1443-1450
Study type	Cross-sectional
Aim	To compare the accuracy of several widely used cardiac risk assessment scores in predicting the likelihood of obstructive coronary artery disease (CAD) on CT coronary angiography (CTCA) in symptomatic women and to explore which female-specific risk factors were independent predictors of obstructive CAD on CTCA and whether adding these risk factors to pretest probability scores would improve their predictive value.
Patient characteristics	Inclusion criteria Consecutive female patients referred for CTCA for evaluation for presence of significant CAD.

iographic reference	Rademaker et al. (2014) Comparison of differe	nt cardiac risk scores for coronary artery	y disease in symptomatic women:
	do female-specific risk factors matter?, Europe	an Journal of Preventive Cardiology, 21,	, 1443-1450
	- Prior history of CAD (e.g previous myoo		
	- Had absolute or relative contraindication	ons for CCTA such as:	
	 Significant severe arrhythmia 		
	 Pregnancy 		
	 Renal insufficiency 		
	 Known allergy to iodinated co 	ntrast material.	
	Patient characteristics:		
		N = 178	
	Age (yrs)	59 ± 9 (29 ≤ 50 yrs)	
	BMI (kg/m²)	26 ± 4	
	Risk factors for CAD		
	Diabetes mellitus type 2	23 (13%)	
	Hypercholesterolaemia	63 (35%)	
	Hypertension	76 (43%)	
	Obesity (BMI > 27 kg/m ²)	56 (32%)	
	Current or former smoker	76 (43%)	
	Family history of CAD	102 (57%)	
	Symptoms		
	Typical chest pain	34 (20%)	
	Atypical chest pain	70 (39%)	
	Non-specific chest pain	70 (39%)	
	Asymptomatic	4 (2%)	
	Female-related factors		
	Number of pregnancies	2.2 ± 1.4	
	Number of children	1.8 ± 1.2	

Biblic

Bibliographic reference	Rademaker et al. (2014) Comparison of different cardiac risk scores for coronary artery disease in symptomatic women: do female-specific risk factors matter?, European Journal of Preventive Cardiology, 21, 1443-1450		
	Pregnancy-related hypertension	32 (18%)	
	Gestational diabetes	8 (4.5%)	
	Pre-eclampsia	13 (7.3%)	
	Oophorectomy	28 (15.7%)	
	Hysterectomy	53 (29.8%)	
	Hormone replacement therapy	34 (19.1%)	
	Oestrogen positive	50 (28.1%)	
	Oestrogen negative	128 (71.9%)	
Number of patients	N = 178		
Probability score / model	• Diamond and Forrester (DF) – based on ag	e, sex and symptoms of angina pectoris	
	 Updated Diamond and Forrester – by Genders et al 2011, extended the predictive effects of age, sex and type of chest pain based on a contemporary cohort and using modern statistical methods. Low risk < 30%, intermediate 30 – 70%. 		
	 Morise score – sex, age, tobacco use, diabetes mellitus, symptoms of angina pectoris, hypertension, family history, hyperlipidaemia, obesity and oestrogen status. 		
	 Duke clinical score – sex, age, tobacco use, diabetes mellitus, history of myocardial infarction, symptoms of angina pectoris, cholesterol concentration and ECG changes. 		
Reference standard (or Gold standard)	CT scan with determination of calcium scoring followed by CCTA on a 64-slice CT scanner. Oral and/or intravenous metoprolol was administered as needed to achieve a stable heart rate of 65 bpm. A standard scanning protocol was applied. Images were interpreted and scored on a four point scale: - Normal (no stenosis) - Non-obstructive CAD (0 to < 50% diameter stenosis) - Obstructive CAD (≥ 50% luminal narrowing) - Non-diagnostic (severe artefacts that impaired adequate grading of all coronary vessels).		
Time between testing & treatment	Not reported.		
Length of follow-up	June 2006 – October 2010		

Bibliographic reference	Rademaker et al. (2014) Comparison of different cardiac risk scores for coronary artery disease in symptomatic women: do female-specific risk factors matter?, European Journal of Preventive Cardiology, 21, 1443-1450
Location	Netherlands
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve:
	Updated Diamond and Forrester + gestational diabetes mellitus (GDM) + Oestrogen status: 0.71 (95% CI: 0.63 – 0.77) Compared to DF p<0.001
	Compared to Duke score p<0.01.
	Morise score: 0.67 (95% CI: 0.60 – 0.74)
	Compared to DF p<0.02
	Updated Diamond and Forrester (Genders et al 2011): 0.61 (95% CI: 0.53 – 0.68)
	Duke clinical score: 0.59 (95% CI: 0.51 – 0.66)
	D-F: 0.56 (95% CI: 0.49 – 0.64)
Source of funding	No funding received for research.
Comments	Study limitations:
	Model developed by combining Updated D-F score with additional female-specific risk factors was not validated in a
	separate patient sample, so these data were not extracted for evidence appraisal.
	<u>QUADAS-2</u> 1A - LOW
	1B – Restricted study population (women only) who were referred for CTCA: HIGH
	2A – all models: LOW
	2B – all models: LOW
	3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR
	3B - LOW
	4 - LOW

Bibliographic reference	Rosenberg et al., PREDICT (Personalized Risk Evaluation and Diagnosis in the Coronary Tree) Investigators (2010) Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Annals of Internal Medicine, 153, 425-434
Study type	Cross-sectional
Aim	To validate a previously developed 23-gene expression-based classifier for diagnosis of obstructive CAD in non-diabetic patients.
Patient characteristics	Inclusion criteria:
	Subjects referred for diagnostic coronary angiography were eligible with a history of chest pain, suspected anginal- equivalent symptoms, or a high risk of CAD, and no known prior myocardial infarction (MI), revascularization, or obstructive CAD.
	Exclusion criteria:
	Diabetes
	If at catheterization, they had acute MI, high risk unstable angina, severe non-coronary heart disease (congestive heart failure, cardiomyopathy or valve disease), systemic infectious or inflammatory conditions, or were taking immunosuppressive or chemotherapeutic agents.
	Patient characteristics:
	N = 526 (validation cohort only; data for development cohort not extracted n=640)
Number of patients	N = 1343 divided into independent algorithm development (694) and validation (649) cohorts.
Probability score / model	An algorithm specifically relating non-diabetic patient CAD status to expression levels consisting of 23 genes, grouped in the 6 terms, 4 sex-independent and 2 sex-specific age functions.
	Gene expression algorithm: Prior to coronary angiography, venous blood samples were collected. Automated RNA purification from whole blood samples using the Agencourt RNAdvance system, cDNA synthesis, and RT-PCR were performed. All PCR reactions were run in triplicate and median values used for analysis. The gene expression algorithm was developed with obstructive CAD defined by QCA as ≥50% stenosis in >1 major coronary artery, corresponding approximately to 65–70% stenosis based on clinical angiographic read. The algorithm was locked prior to the validation study. Raw algorithm scores were computed from median expression values for the 23 algorithm genes, age and sex as described (Appendix 3) and used in all statistical analyses; scores were linearly transformed to a 0–40 scale for ease of reporting.

Bibliographic reference	Rosenberg et al., PREDICT (Personalized Risk Evaluation and Diagnosis in the Coronary Tree) Investigators (2010) Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Annals of Internal Medicine, 153, 425-434
	<u>The Diamond-Forrester (D–F) risk score</u> comprised of age, sex, and chest pain type, was prospectively chosen to evaluate the added value of the gene expression score to clinical factors. D–F classifications of chest pain type (typical angina, atypical angina and nonanginal chest pain) were assigned based on subject interviews and D-F scores assigned.
Reference standard (or Gold standard)	Coronary angiograms were analysed by computer-assisted QCA. Trained technicians, blinded to clinical and gene expression data, visually identified all lesions >10% diameter stenosis (DS) in vessels with diameter >1.5mm. Technicians traced the vessel lumen across the lesion between the nearest proximal and distal non-diseased locations. The minimal lumen diameter (MLD), reference lumen diameter (RLD = average diameter of normal segments proximal and distal of lesion) and %DS (%DS = (1 - MLD/RLD) x 100) were then calculated. Patients with CAD = \geq 50% stenosis
Time between testing & treatment	Not reported
Length of follow-up	Patient enrolled between July 2007 - April 2009
Location	USA (39 centres; part of PREDICT study)
Diagnostic accuracy measures	Area under the curve (standard error)
(2 x 2 table)	The prospectively defined primary endpoint was the ROC curve area for algorithm score prediction of disease status. Data were available for 525 of the validation cohort patients.
	ROC curves were estimated for the:
	a) <u>D-F risk score</u> : AUC 0.66 (95% CI: 061 to 0.71 ¹)
	b) a <u>combined model of algorithm score and D–F risk score</u> (validation cohort): AUC 0.72 (95% CI: 0.68 to 0.76)
	Sensitivity, specificity: Sensitivity and specificity were calculated for a score threshold of 14.75, corresponding to a disease likelihood of 20% from the validation set data. At this threshold, sensitivity = 85% and specificity = 43%.
Source of funding	CardioDx, Inc
Comments	Study limitations:

Bibliographic reference	Rosenberg et al., PREDICT (Personalized Risk Evaluation and Diagnosis in the Coronary Tree) Investigators (2010) Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Annals of Internal Medicine, 153, 425-434
	QUADAS-2:
	1A – Not clear if patients were consecutively enrolled: UNCLEAR
	1B - Restricted study population (patients with diabetes were excluded) who were referred for CA: HIGH
	2A – all models: LOW
	2B – D-F: LOW
	2B – D-F + gene expression algorithm: Requires information from genetic testing of blood sample that would not be available at a typical index clinic visit: HIGH
	3A - LOW
	3B - LOW
	4 - LOW

¹ 95% CIs calculated by the reviewer from standard error

Bibliographic reference	Shmilovich et al. (2014) Incremental value of diagonal earlobe crease to the Diamond-Forrester classification in estimating the probability of significant coronary artery disease determined by computed tomographic angiography, American Journal of Cardiology, 114, 1670-1675.
Study type	Cross-sectional
Aim	To evaluate whether the addition of a diagonal earlobe crease (DELC) enhances the predictive ability of D-F to detect coronary artery disease >50 % stenosis (CAD50) by coronary computed tomographic angiography (CTA).
Patient characteristics	 Inclusion criteria Consecutive patients who underwent coronary CTA at hospital. After a clinical history, patients were dichotomously divided into those having chest pain or not. For those with chest pain, typical angina pectoris was rigidly defined as: (1) substernal, jaw, or arm pressure-like pain, (2) induced by exertion, and (3) resolved with rest or use of nitroglycerin. Only data for patients with chest pain are extracted, as per review protocol.
	A history of CAD (myocardial infarction, coronary stenting, and previous bypass surgery) and if an expert reader did not

Bibliographic reference	Shmilovich et al. (2014) Incremental value of diagonal earlobe crease to the Diamond-Forrester classification in estimating the probability of significant coronary artery disease determined by computed tomographic angiography, American Journal of Cardiology, 114, 1670-1675.		
	consider the coronary CTA image qual	ity to be good or excellent.	
	Patient characteristics		
		Chest pain cohort(N = 199)	
	DELC	143 (72%)	
	Age (yrs)	61±14	
	Sex	105 (53%)	
	Diabetes mellitus	38 (19%)	
	Hypertension	114 (57%)	
	Smokers	74 (37%)	
	CAD family history	60 (30%)	
	Total cholesterol (mg/dL)	168 ± 40	
	Glucose (mg/dL)	95 ± 30	
	CAD: coronary artery disease; DELC: diago	onal ear lobe crease;	
Number of patients	N = 199 patients with chest pain (of 43	30 who underwent CTCA)	
Probability score / model	Diamond Forrester (DF):		
	The pre-test probability of CAD50 was calculated using the original DF table of probabilities (generating a "DF probability") and treated as a categorical variable. Patients with "intermediate" or "high" DF probability were considered suspected of having CAD50.		
	Diagonal ear lobe crease (DELC):		
		from the tragus across the lobule to the	before coronary CTA. A DELC was defined as a rear edge of the auricle of the ear, not related

Bibliographic reference	Shmilovich et al. (2014) Incremental value of diagonal earlobe crease to the Diamond-Forrester classification in estimating the probability of significant coronary artery disease determined by computed tomographic angiography, American Journal of Cardiology, 114, 1670-1675.			
Reference standard (or Gold standard)	Coronary CTA: Performed on all patients using SOMATOM Definition dual-source scanner (Siemens Medical Systems, Germany). Image interpretation was performed by 2 American Heart Association level-3 expert readers, blinded to presence or absence of DELC, using the modified AHA 15 segment coronary artery tree model. Discrepancies resolved by consensus.			
Time between testing & treatment	Not reported.			
Length of follow-up	Consecutive patients attending CTCA over 9 month period were enrolled.			
Location	USA (single centre)			
Diagnostic accuracy measures				
(2 x 2 table)		DF	DF+DELC	
		Patients with chest pain (n = 199)	Patients with chest pain (n = 199)	
	Sensitivity	97%	91%	
	Specificity	20%	41%	

1.21

0.15

0.59

1.54

0.22

0.66

Sensitivity and specificity 2X2 table

Patients with chest pain n = 199

Positive likelihood ratio

Negative likelihood ratio

Area under the curve

Diamond-Forrester – Reference CAD= ≥50% stenosis

D-F model	CAD+	CAD-
Intermediate / high probability	33	132
Low probability	1	33

Bibliographic reference	Shmilovich et al. (2014) Incremental value of diagonal earlobe crease to the Diamond-Forrester classification in estimating the probability of significant coronary artery disease determined by computed tomographic angiography, American Journal of Cardiology, 114, 1670-1675.
	Sensitivity: 97.1 (95% CI 85.1 to 99.5) Specificity: 20.0 (95% CI: 14.6 to 26.8)
Source of funding	Fellowship from American Physicians Fellowship for Medicine in Israel, Boston, MA.
Comments	Study limitations: Model developed by combining D-F score and diagonal earlobe crease was not validated in a separate cohort, so those data were not extracted for evidence appraisal. QUADAS-2 1A - LOW 1B - Patients had all been referred for CTCA: UNCLEAR 2A - D-F: LOW 2B - D-F: LOW 3A - Not clear if results were interpreted without knowledge of probability scores / patient clinical data: UNCLEAR 3B - LOW 4 - LOW

Bibliographic reference	Versteylen et al. (2011) Comparison of Framingham, PROCAM, SCORE, and Diamond Forrester to predict coronary atherosclerosis and cardiovascular events, Journal of Nuclear Cardiology, 18, 904-911.	
Study type	Cross-sectional	
Aim	To study the most commonly used risk profiling algorithms in their ability to predict for (1) CAD on CCTA, and (2) for major adverse cardiovascular events, in patients presenting with chest pain at the cardiology outpatient clinic.	
Patient characteristics	Patients presenting with chest pain in one outpatient clinic.	
	Inclusion criteria	

liographic reference	Versteylen et al. (2011) Comparison of Framingham, PROCAM, SCORE, and Diamond Forrester to predict corona atherosclerosis and cardiovascular events, Journal of Nuclear Cardiology, 18, 904-911.		
	A recent history of cardiac (a) typical chest pain; a diagnostic CCTA scan (with seven or more interpretable coronary segments).		
	Exclusion criteria		
	Unstable angina, previous myocardial infarct pregnancy, and renal failure.	on, previous revascularization, hemodynamic inst	tability, contrast allergy,
	Patient characteristics		
		N = 1296	
	Age (yrs)	56 ±11	
	Sex	606 female (46.8%)	
	BMI (kg/m ²)	27 ± 5	
	Active smokers	316 (24.4)	
	Diabetes mellitus	102 (7.9)	
	Positive family history	522 (40.3)	
	Systolic blood pressure (mmHg)	142 ± 19	
	Typical chest pain	169 (13)	
	Glucose (mg/dL)	104 ± 24	
	Creatinin (mg/dL)	1.1 ± 0.2	
	Total cholesterol (mg/dL)	209 ± 46	
	Clinical risk scores		
	Framingham	21 ± 16	
	PROCAM	12 ± 13	
	SCORE	4 ± 4	
	Diamond Forrester	42 ± 26	

Bibl

Bibliographic reference	Versteylen et al. (2011) Comparison of Framingh atherosclerosis and cardiovascular events, Journ	nam, PROCAM, SCORE, and Diamond Forrester to nal of Nuclear Cardiology, 18, 904-911.	predict coronary	
	CAD on CCTA			
	No CAD	490 (37.8)		
	Insignificant CAD (< 50% stenosis)	489 (37.7)		
	Significant CAD (≥ C50% stenosis)	317 (24.5)		
Number of patients	N = 1296			
Probability score / model Diamond Forrester score: The probability of having significant CAD was calculated using the Diamond Forrester score and type of chest pain, which was classified as typical, atypical or				
	non-anginal. The commonly used classification cu	it-offs of 30% and 70% were used. A score below 3	0%	
	was considered low, 30%-70% intermediate and	> 70% high risk of having significant CAD.		
	Framingham risk score: A multivariable risk function that predicts 10-year risk of developing cardiovascular disease et (coronary heart disease, stroke, peripheral artery disease or heart failure). The sex-specific scores incorporate age, to high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetic status score below 10% is considered low, 10%-20% intermediate, and >20% high 10-year risk of cardiovascular events.			
	cardiac death) for 10 years. The calibrated risk sc	followed up for acute coronary events (myocardial ore included; age, LDL cholesterol, smoking, HDL cl infarction, diabetes mellitus, and triglycerides. A s % high 10-year risk of coronary events.	nolesterol, systolic blood	
	SCORE risk score: The SCORE predicts 10-year risk on fatal cardiovascular disease resulted in a model which included gender, age, systolic blood pressure, total cholesterol, and smoking. A score of 0%-4% was considered low, 5%-9% intermediate, and C10% high risk of cardiovascular death in 10 years.			
Reference standard (or Gold	CCTA was performed using a 64-slice CT scanner.			
standard)	All CCTA scans were independently analysed by t	wo experienced cardiologists, both blinded for pati	ent details.	

Bibliographic reference	Versteylen et al. (2011) Comparison of Framingham, PROCAM, SCORE, and Diamond Forrester to predict coronary atherosclerosis and cardiovascular events, Journal of Nuclear Cardiology, 18, 904-911.			
	Disagreements discussed and agreed by consensus. AHA 16-segment coronary artery tree classification used, assessing images using Cardiac Comprehensive Analysis software (Philips Healthcare). Degree of stenosis was evaluated visually and classified as insignificant (no lesions, or one or more lesions with luminal stenosis of <50%), or significant (one or more lesions with luminal stenosis of ≥50%).			
Time between testing & treatment	Not reported.			
Length of follow-up	Mean 19 \pm 9 months between December 2007 and June 2010,			
Location	The Netherlands (one centre)			
Diagnostic accuracy measures (2 x 2 table)	AUC for prediction of any coronary lesion:			
	FRS: 0.74 (95% CI: 0.72 - 0.77)			
	SCORE : 0.72 (95% CI: 0.70 - 0.75) (both FRS and SCORE significantly higher than PROCAM, $p \le 0.03$)			
	PROCAM : 0.70 (95% CI: 0.67 - 0.73) (significantly higher than D-F, p < 0.01)			
	Diamond Forrester: 0.65 (95% CI: 0.62 - 0.68).			
	AUC for prediction of significant CAD stenosis (≥50% lesion)			
	FRS: 0.68 (95% CI: 0.64 - 0.72)			
	SCORE : 0.69 (95% CI: 0.65 - 0.72) (both FRS and SCORE significantly higher than PROCAM, $p \le 0.001$)			
	PROCAM: 0.64 (95% CI: 0.61 - 0.68) (marginally higher than D-F, p < 0.05)			
	Diamond Forrester: 0.65 (95% Cl: 0.61 - 0.68)			
Source of funding	None reported			
Comments	Study limitations:			
	QUADAS-2:			
	1A – Not clear if consecutive patients were enrolled: UNCLEAR			
	1B - Patients had all been referred for CTCA: UNCLEAR			
	2A – all models: LOW			

	Clinical evidence tables	Chest pain of recent onset
--	--------------------------	----------------------------

Bibliographic reference	Versteylen et al. (2011) Comparison of Framingham, PROCAM, SCORE, and Diamond Forrester to predict coronary atherosclerosis and cardiovascular events, Journal of Nuclear Cardiology, 18, 904-911.
	2B – all models: LOW
	3A - LOW
	3B - LOW
	4 - LOW

Bibliographic reference		mond-Forrester method and Duke Clinical Score to predict obstructive coronary angiography, American Journal of Cardiology, 109, 998-1004.			
Study type	Cross-sectional				
Aim	To evaluate the ability of the Diamond and Forrester method (DFM) and the Duke Clinical Score (DCS) to predict obstructive coronary artery disease (CAD) on coronary computed tomographic angiography (CCTA) and the effect of these different risk scores on the appropriateness level using the 2010 Appropriate Use Criteria.				
Patient characteristics	Inclusion criteria				
	Consecutive symptomatic patients who pre-	esented for CCTA for evaluation of CAD.			
	Exclusion criteria None reported Patient characteristics				
		N = 114			
	Age (yrs) 56.3 ±13 Sex 59 men (52%) Diabetes mellitus 17 (15%)				
	Hypertension 65 (57%)				
	Current smokers 14 (12%)				
	Previous myocardial infarction 5 (4%)				

Bibliographic reference		mond-Forrester method and Duke Clinical Score to angiography, American Journal of Cardiology, 109,		
	Patient symptoms			
	Nonanginal chest pain	42 (37%)		
	Atypical angina	46 (37%)		
	Typical angina	26 (23%)		
Number of patients	N = 114			
Probability score / model	Diamond and Forrester:			
	Established in a combination of symptoma sex, chest pain type. Developed to predict	tic patients referred for invasive angiography and a ≥50% stenosis.	utopsy studies; includes: age,	
	Patients categorised as having low (10%), intermediate (10% to 90%), or high (>90%) risk of obstructive CAD (defined as 50% luminal stenosis). Duke Clinical Score (DCS) Established and validated in symptomatic patients referred for invasive angiography, includes: chest pain type; age; sex previous MI (with or without Q waves); smoking; hyperlipidaemia; diabetes; ST-T wave changes (ECG). Developed to previous ST-T wave changes (ECG).			
	 <u>Note</u>: ECG information was not available for all patients so information regarding Q waves and ST-segment deviation on the included in the calculation of the DCS. Patients classified using the DCS as having low (< 30%), intermediate (30% - 70%) or high (> 70%) risk of obstructive CA (defines as > 70% luminal stenosis). 			
Reference standard (or Gold standard)		phy (CCTA) performed on the Definition dual-sourced by the greatest stenosis identified among all eval		
	Normal – absence of plaque and no lumina	al stenosis		
	Mild to moderate (non-obstructive) CAD –	estimated stenosis ,70%		

Bibliographic reference	Wasfy et al. (2012) Comparison of the Diamond-Forrester method and Duke Clinical Score to predict obstructive coronary artery disease by computed tomographic angiography, American Journal of Cardiology, 109, 998-1004.
	Mild disease defines as stenosis estimated as < 40%
	Moderate disease defined as stenosis estimated as \geq 40% but \leq 70%
	Significant (obstructive) CAD – estimated stenosis ≥ 70%.
	Primary indication for each CCTA was determined by several sources:
	- Patient questionnaire
	- Radiology order entry system
	- Electronic medical records
	Two physicians who were unaware of CCTA results assigned each examinations primary indication and each study was categorized as appropriate, inappropriate or uncertain using the 2010 Appropriate Use Criteria.
Time between testing & treatment	Not reported.
Length of follow-up	Patients referred for CTCA between March 2008 – July 2008
Location	USA (one centre)
Diagnostic accuracy measures	Diagnostic accuracy (area under the ROC curve) for identifying obstructive CAD:
(2 x 2 table)	DFM: 0.69
	DCS = 0.80
Source of funding	None reported.
Comments	Study limitations:
	QUADAS-2
	1A - LOW
	1B – All patients had been referred for CTCA: UNCLEAR
	2A – both models: LOW
	2B – both models: LOW
	3A – Patient clinical data and medical history were available to those performing and interpreting scans: HIGH
	3B - LOW
	4 - LOW

ographic reference		Winther et al. (2016) Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. International Journal of Cardiovascular Imaging, -, 2015			
y type	Cross-sectional				
	To evaluate the diagnostic and coronary artery calciu		ADscore) to detect CAD and compa	re it to clinical risk stratification	
ent characteristics	Inclusion criteria				
		Patients referred for CCTA or invasive coronary angiography (ICA) as part of their evaluation of suspected obstructive CAD. Inclusions: symptoms suggestive of angina pectoris and age > 18 yrs.			
	Exclusion criteria				
		or acute coronary syndrome. arr	hythmia including atrial fibrillation	and tachycardia higher than 85	
	bpm, known diastolic cardiac murmur, left ventricle ejection fraction <50 %, previous thoracic and cardiac surgery, severe chronic obstructive lung disease or asthma with inability to perform a breath hold for 8 s, active treatment for cancer or organ transplantation, and pregnancy.				
	Based on the results of the	Patient characteristics 109 (48 %) patients were referred to CCTA and 119 (52 %) to ICA. Based on the results of the CCTA and ICA, the patients were grouped into non-CAD (n = 124), non-obstructive CAD (n = 41), and obstructive CAD (n = 63)			
	Of those who had obstructive CAD: 11 (70%) had 1-vessel disease, 12 (22%) had 2-vessel disease and 5 (8%) had 3- disease or left main.				
		Non CAD (N = 124),	Non-obstructive CAD (N = 41)	Obstructive CAD (N = 63)	
	Age	58.9 ± 11.1	64.5 ± 9.4	65.3 ± 9.2	
	Gender (Male)	51 (41 %)	22 (54 %)	48 (76 %)	
	BMI	27.4 ± 4.5	25.2 ± 2.8	26.6 ± 4.0	

Bibl

Stuc Aim

Pati

hic reference				oronary stenosis induced turbulent ational Journal of Cardiovascular
	Systolic blood pressure	137 ± 19	145 ± 20	143 ± 18
	Diastolic	81 ± 10	82 ± 12	82 ± 11
	Smoking			
	Actively	28 (23 %)	8 (20 %)	11 (17 %)
	Previous	41 (33 %)	13 (32 %)	37 (59 %)
	None	54 (44 %)	19 (46 %)	15 (24 %)
	Total cholesterol	5.1 ± 1.1	5.1 ± 1.2	5.0 ± 1.1
	Diabetes	8 (6 %)	4 (10 %)	9 (14 %)
	Previous percutaneous coronary intervention	1 (1 %)	5 (12 %)	17 (27 %)
	Diamond–Forrester score, mean	25 ± 17	34 ± 21	51 ± 22
	Diamond–Forrester risk categories			
	Very low,<10 %	27 (22 %)	1 (2 %)	1 (2 %)
	Low, ≥ 10 to < 30 %	56 (45 %)	20 (49 %)	14 (22 %)
	Moderate, ≥ 30 to <60 %	34 (27 %)	13 (32 %)	21 (33 %)
	High, ≥ 60 %	7 (6 %)	7 (17 %)	27 (43 %)
	Cardiac imaging characteristics			
	Left ventricle ejection fraction by echo	61 ±4	60 ±4	60 ± 3
	Coronary artery calcium score, mean	64 ± 147	414 ± 465	1130 ± 1293
	Coronary artery calcium score groups = 0	70 (57 %)	2 (5 %)	2 (3 %)
	Coronary artery calcium	47 (38 %)	22 (54 %)	23 (38 %)

Bibli

Bibliographic reference	Winther et al. (2016) Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. International Journal of Cardiovascular					
	Imaging, -, 2015					
	score groups > 0 and < 400					
	Coronary artery calcium score groups ≥ 400	6 (5 %)	17 (42 %)	36 (59 %)		
Number of patients	N = 228, N = 109 referred to CCTA and N = 119 referred to ICA					
Probability score / model	CAD-score recording and algorithm:					
	An acoustic sensor with an optimized computerized algorithm and recording principle. The acoustic sensor system recording site is the fourth left intercostal space. The automatic algorithm identifies acoustic properties of the diastolic heart sound statistically related to CAD. Updated Diamond-Forrester score (no detail provided, Genders 2011 cited.) Coronary artery calcium score (CACS) (no detail provided)					
Reference standard (or Gold	Coronary computed tomography (CCTA)					
standard)	Computed tomography scans were acquired using a dual source multidetector scanner. All included patients underwent a non-enhanced scan from which CACS were calculated with the Agatston method. Patients referred for CCTA subsequently underwent a contrast-enhanced scan with prospective electrocardiogram gating and dose modulation in the systolic or diastolic phases depending on heart rate. All coronary segments were analysed according to standard clinical practice with the use of commercially available software.					
	The stenosis severity was obtained in the following manner:					
	no stenosis: 0 % diameter reduction; mild to moderate stenosis: 1–49 % diameter reduction; and severe stenosis: 50–100 % diameter reduction.					
	Abnormal CCTA results were defined as a segment with a diameter greater than 2 mm and a more than 50 % reduction in luminal diameter.					
	Invasive coronary angiography	1				
		ard techniques in a clinical set		a reference diameter larger than ctive or obstructive).		
Time between testing &	Not reported.					

Bibliographic reference	Winther et al. (2016) Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. International Journal of Cardiovascular
	Imaging, -, 2015
treatment	
Length of follow-up	Not reported.
Location	Denmark
Diagnostic accuracy measures (2 x 2 table)	Diagnostic accuracy of obstructive CAD vs non-obstructive CAD.
	CAD-score = 0.72 (CI 0.65 – 0.79)
	Updated Diamond- Forrester = 0.79 (Cl 0.72 – 0.86 %)
	CAD-score + Diamond-Forrester = 0.82 (CI 0.76 – 0.88) higher compared to both standalone CAD-score (p<0.01) and the Diamond-Forrester score (p<0.05) and no difference compared to CACS alone (p = 0.28)
	CAD-score + Diamond-Forrester with CACS = AUC: 0.87 (CI 0.82 – 0.92)
Source of funding	Danish National Business Innovation Fund and Acarix A/S.
Comments	Study limitations:
	Single tests (e.g. acoustic CAD-score) were outside the remit of this review of clinical prediction models. The models developed to combine this test variable (and coronary artery calcium score) with the Diamond –Forrester prediction score were not validated in a separate cohort, so data were not extracted for evidence appraisal. <u>QUADAS-2:</u>
	1A - LOW
	1B – All patients were scheduled for CTCA (and Ca scoring, plus CA if prior tests were abnormal): UNCLEAR
	2A - LOW
	2B - LOW
	3A – Not clear if reference standard was interpreted without knowledge of patients' probability scores / clinical data: UNCLEAR
	3B - LOW
	4 - LOW

Bibliographic reference	Yalcin et al. (2012) Cardiovascular risk sco	ores for coronary atherosclerosis, Ac	ta Cardiologica, 67, 557-563.
Study type	Cross-sectional		
Aim	To compare frequently used cardiovascular risk scores in predicting the presence of coronary artery disease (CAD) and 3-vessel disease.		
Patient characteristics	characteristics Inclusion criteria		
	Patients who had diagnostic coronary ang	iography.	
	Exclusion criteria Previous coronary bypass surgery, previou coronary artery disease, valvular heart dis vasculitis, aortic aneurysm and arrhythmia Patient characteristics	ease, cardiomyopathy, peripheral ar	on, acute coronary syndrome, left main tery disease or other vascular diseases such as
		Men (N = 218)	Women (N = 132)
	Age (yrs)	58±14	62 ± 10
	BMI (kg/m²)	26 ± 4	27 ± 5
	Systolic blood pressure (mm Hg)	143 ± 25	148 ± 23
	Diastolic blood pressure (mm Hg)	80 ± 9	81 ± 10
	Smoking	101 (46%)	12 (9%)
	Family history	51 (23%)	30 (23%)
	Hypertension	123 (56%)	96 (73%)
	Diabetes mellitus	43 (20%)	51 (39%)
	Total cholesterol (mmol/L)	4.9 ± 1.2	5.1 ± 1.0
	NI 250		
Number of patients	N = 350		

Probability score / model

Framingham risk score (**FRS**) and **PROCAM**: categorised into 3 groups based on risk percentages (low, < 10%; intermediate 10% - 20% and high > 20%).

Bibliographic reference	Yalcin et al. (2012) Cardiovascular risk scores for coronary atherosclerosis, Acta Cardiologica, 67, 557-563.
	Modified FRS (MFRS): the diabetic patients were evaluated in the high risk group differently than the FRS. SCORE : 2 different scales were developed based on the total cholesterol (low and high-risk regions). In this tool, patients were categorised to 3 different risk groups according to risk levels (low < 5%, intermediate 5 – 8%, high > 8%.
Reference standard (or Gold standard)	Coronary angiography was performed using standard methods. Studies were examined independently by 2 experienced invasive cardiologists. The patients without any angiographic evidence of coronary atherosclerosis with normal contrast filling and clearance were grouped as normal coronary artery group. The coronary artery disease (CAD) group included patients with angiographic evidence of atherosclerotic lesions that were clearly seen, regardless of degree of stenosis. Major CAD included disease with > 50% stenosis in any epicardial artery or any side branch of > 2.5 mm that supplied a large portion of the myocardium and all other atherosclerotic lesions were accepted as not clinically relevant. The severity of CAD was assessed by the number of diseased vessels in the major CAD group. Results for prediction of CAD refer to all patients with CAD, both clinically important and not relevant.
Time between testing & treatment	Not reported
Length of follow-up	Patients who had CA between January 2006 – January 2007
Location	Turkey
Diagnostic accuracy measures (2 x 2 table)	Area under the ROC curve: CAD FRS: 0.76 (95% CI: 0.69 – 0.82) MFRS: 0.73 (95% CI: 0.67 – 0.79) PROCAM score: 0.69 (95% CI: 0.62 – 0.75) SCORE (High risk regions): 0.65 (95% CI: 0.59 – 0.72) SCORE (low risk regions): 0.58 (95% CI: 0.51 – 0.66) 3-vessel disease
	FRS : 0.74 (95% CI: 0.60 – 0.77)

National Guideline Centre. 2016

Bibliographic reference	Yalcin et al. (2012) Cardiovascular risk scores for coronary atherosclerosis, Acta Cardiologica, 67, 557-563.				
	· · · · · · · · · · · · · · · · · · ·	MFRS: 0.65 (95% CI: 0.56 – 0.74)			
	PROCAM score: 0.68 (95% CI: 0.60	,			
	SCORE (High risk regions): 0.70 (95				
	SCORE (low risk regions): 0.61 (959	% CI: 0.51 – 0.71)			
	Sensitivity and specificity	Sensitivity and specificity			
	The threshold for all probability	The threshold for all probability scores was CAD = 'high risk' category (vs. 'intermediate/low risk' = no CAD)			
		Sensitivity (95% Cl)	Specificity (95% CI)		
	CAD	CAD			
	FRS	42 (41 – 43)	91 (90 – 92)		
	MFRS	46 (45 – 47)	74 (73 – 75)		
	PROCAM	29 (28 – 30)	95 (94 – 96)		
	SCORE (High risk regions)	19 (18 – 20)	97 (96 – 98)		
	SCORE (low risk regions):	3 (1 – 5)	100 (98 – 100)		
	<u>3-vessel disease</u>				
	FRS	58 (57– 59)	74 (73 – 75)		
	MFRS	53 (52 – 54)	63 (62 – 64)		
	PROCAM	35 (34 – 36)	91 (89 – 91)		
	SCORE (High risk regions)	31 (30 – 32)	90 (89 – 91)		
	SCORE (low risk regions):	8 (7 – 9)	99 (98 – 100)		
ource of funding	None reported.				
omments	Study limitations:				
	QUADAS-2:				
	IA - LOW				
	1B – Chest pain not reported; all pa	1B – Chest pain not reported; all patients had been referred for diagnostic CA: HIGH			
	2A –all models: LOW				
	2B – all models: LOW				

Bibliographic reference	Yalcin et al. (2012) Cardiovascular risk scores for coronary atherosclerosis, Acta Cardiologica, 67, 557-563.
	3A - Not clear if reference standard was interpreted without knowledge of patients' probability scores / clinical data:
	UNCLEAR
	3B - LOW
	4 - LOW

liographic reference	Yang et al. (2015) A Clinical model to identify patients with high-risk coronary artery disease, JACC: Cardiovascular Imaging 8: 427-434.			
dy type	Cross-sectional			
	To develop a clinical model that ider	To develop a clinical model that identifies patients with and without high risk coronary artery disease (CAD).		
ient characteristics	Inclusion criteria:			
	Consecutive patients referred to cor	onary CTA for suspected CAD were inclu	uded in the study.	
	Patients with documented CAD or a congenital heart disease were exclude Patient characteristics (see reference standard for definition)	ded from the analysis.	ry revascularisation, cardiac transplantation and	
	Validation cohort (N=7,333)	High-risk CAD (N = 349)		
			Non High-risk CAD (N = 6984)	
	Mean age, yrs	63 ± 10.3	Non High-risk CAD (N = 6984) 57 ± 11.7	
	Mean age, yrs Mean BMI, kg/m ²			
		63 ± 10.3	57 ± 11.7	
	Mean BMI, kg/m ²	63 ± 10.3 27 ± 4.9	57 ± 11.7 28.8 ± 7.0	
	Mean BMI, kg/m ² Male	63 ± 10.3 27 ± 4.9 242 (69.3)	57 ± 11.7 28.8 ± 7.0 3671 (52.6)	
	Mean BMI, kg/m ² Male Hypertension	63 ± 10.3 27 ± 4.9 242 (69.3) 241 (69.1)	57 ± 11.7 28.8 ± 7.0 3671 (52.6) 3799 (54.4)	

National Guideline Centre. 2016

Bib

Stud Aim Pati

Bibliographic reference	Yang et al. (2015) A Clinical model to identify patients with high-risk coronary artery disease, JACC: Cardiovascular Imaging 8: 427-434.		
	PVD history	14 (4.0)	217 (3.1)
	Symptoms		
	Asymptomatic	103 (29.5)	2316 (33.2)
	Atypical	155 (44.4)	3509 (50.2)
	Typical	91 (26.1)	1159 (16.6)
	Family history of CAD	98 (28.1)	2752 (39.4)
Number of patients	N = 7,333 (validation cohort)		
Probability score / model	HRA score (novel clinical prediction mod	el)	
	Derived from multivariable logistic regression in derivation cohort (n=24,251), applying a scoring system developed by assigning points for each variable demonstrated by the FRS. Model includes age, sex, diabetes, hyperlipidaemia, hypertension, current smoking, chest pain symptoms, family history of CAD, peripheral vascular disease. Validated in separate cohort (n=7,333). 3 risk categories: Low (≤7 points), intermediate (8 to 17points), and high (≥18 points). Updated D-F (Genders) Applied to derivation cohort (n=24,251) for the purpose of comparison with the new HRA model.		
Reference standard (or Gold standard)	CCTA: single or dual-source 64-slice CT scanners. Coronary artery diameter stenosis was graded using a 4-point score (normal or mild, 50%; moderate 50% - 69% or severe ≥ 70%).		
	-	ing to presence and absence of high-risk C or 2-vessel disease (≥70%) involving the p	
Time between testing & treatment	Not reported.		
Length of follow-up	Patients referred for CTCA between 2005	– 2009 were enrolled.	
Location	Data from CONFIRM registry (12 sites acr	oss 6 countries: US, Canada, Austria, Gern	nany, Italy, Switzerland, Korea)
Diagnostic accuracy measures	Area under the curve:		

Bibliographic reference	Yang et al. (2015) A Clinical model to identify patients with high-risk coronary artery disease, JACC: Cardiovascular Imaging 8: 427-434.
(2 x 2 table)	Reference: presence of <u>high-risk CAD</u> = as left main coronary artery stenosis (\geq 50%), 3-vessel disease (\geq 70%) or 2-vessel disease (\geq 70%) involving the proximal left anterior descending artery
	1. HRA model: 0.71 (95% CI: 0.69 – 0.74) (validation cohort)
	2. Updated D-F (Genders) model: 0.64 (95% CI 062 to 0.67) (derivation cohort)
Source of funding	None reported
Comments	Study limitations:
	1A – Not clear if patients were consecutively enrolled: UNCLEAR
	1B – All patients had been referred for CTCA: UNCLEAR
	2A – all models: LOW
	2B – all models: LOW
	3A - 3A - Not clear if reference standard was interpreted without knowledge of patients' probability scores / clinical data:
	UNCLEAR
	3B - LOW
	4 - LOW

- I.5 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin
 - H.4.1 Computer tomography cardiac angiography (CTCA)

Bibliographic reference	Author: Budoff et al
	Diagnostic Performance of 64-Multidetector Row Coronary Computed Tomographic Angiography for Evaluation of
	Coronary Artery Stenosis in Individuals Without Known Coronary Artery Disease. Results from the prospective
	multicentre ACCURACY (assessment by Coronary Computed Tomographic angiography of Individuals Undergoing Invasive
	Coronary Angiography) Trial.

	Year: 2008
/ type	Cross-sectional
	To evaluate the diagnostic accuracy of electrocardiographically gated 64-multidetector row coronary computed tomograph angiography (CCTA) in individuals without known coronary artery disease (CAD).
nt characteristics	Prospectively evaluated patients with chest pain being clinically referred for non-emergent invasive coronary invasive coronary angiography, screened for below criteria.
	Inclusion
	≥18 years
	Typical or atypical chest pain
	Being referred for non-emergent ICA
	Exclusion
	Known allergy to contract
	Baseline renal insufficiency
	Irregular heart rhythm
	Resting hear rate >100bpm
	Resting systolic BP <100mmHG
	Contraindication to beta-blocker, calcium-channel blocker or nitroglycerin
	Pregnancy
	Known history of CAD (prior MI, percutaneous transluminal coronary angioplasty or intracoronary stent or coronary artery bypass surgery).
	Patient Characteristics, mean (SD) or n (%)
	Age 57 (10)
	Male 136 (59%)
	BMI 31.4kg/m ² (6.2)
	Diabetes 55 (24%)
	Hypertension 154 (67%)
	Hyperlipidaemia 157 (68.3%)
	Family history CAD 169 (74%)

Stud Aim

Patie

	Smoker 128 (56%)
	Obesity 90 (39%)
	Sedentary lifestyle 78 (34%)
Number of patients	230 (245 originally enrolled but 15 either did not complete or opted out of either CCTA or ICA and were excluded)
Index test	СТСА
	All scans were 64-multidetector scanners and patients were in sinus rhythm at the time of the scan. Those with HR>65bmp were given oral beta-blockers. All patients were scanned regardless of whether target HR was achieved. 10-20ml contrast was administered after 0.4mg nitro-glycerine sublingually. 80ml iodinated contrast was injected during CCTA acquisition.
	Retrospective ECG gated helical contrast enhanced CCTA was performed with scan initiation 20mm above level of the left main artery to 20mm below the inferior myocardial apex. Radiation reduction algorithms using ECG modulation were used which reduce radiation exposure (mA) during systole and end-systole. Once complete, multiphasic reconstruction of the CCTA scan was performed.
	Images were interpreted separately by 3 separate readers blinded to patient data and other test results, using a 3-D image analysis workstation. Readers were permitted to use any or all of the reconstruction algorithms, including 2-D and 3-D maximal intensity projection, multi-planar reform, cross-sectional analysis and volume-rendered technique. Arteries were scored using a 15-segment AHA coronary artery classification.
	For each segment, visual estimations of luminal stenosis were recorded as:
	No stenosis, 1-29%, 30-49%, 50-69%, 70-99% and 100% stenosis.
	For artery segments considered to be non-evaluable, stenosis severity was assigned based on the outcome of the most adjacent proximal and identifiable segment.
	Degree of coronary artery stenosis identified by CCTA was assigned based on consensus identified narrowing of the artery lumen at thresholds of 50% or 70% stenosis.
Reference standard (or Gold standard)	Coronary angiography Performed using standard trans-femoral arterial catherisation. Minimum 8 projections were obtained. All images were interpreted by an independent reader blinded to all patient data and test results. AHA tree model was used and were judged at having significant stenosis at 2 levels (≥50% and ≥70% luminal narrowing).

Time between testing &	Not specified
treatment	
Length of follow-up	Not specified
Location	16 centres in the US.
Diagnostic accuracy measures	
(2 x 2 table)	TP FP FN TN SENS% SPEC%
	CTCA 50% 54 29 3 144* 95.0 83.0
	CTCA 70% 30 34 2 164* 94.0 83.0
	*Back calculations done by reviewer
	Side Effects/Adverse Events: 1 patient had a coronary artery dissection during ICA.
Source of funding	Not mentioned
Comments	Study Limitations
	1A – Prospective but does not specify consecutive enrolment UNCLEAR
	1B – HIGH – patients were recruited on the basis of referral for coronary angiography (higher prevalence population)
	2A – LOW
	2B – LOW
	3A – LOW
	3B – LOW
	4 – UNCLEAR the time between tests and the study duration were not specified.

Bibliographic reference	Author: Cademartiri et al	
	Diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low-to-intermediate risk	
	Year: 2007	
Study type	Cross-sectional	
Aim	To evaluate the diagnostic accuracy of 64-slice computed tomography coronary angiography (MSCT-CA) for detecting significant stenosis (≥50% lumen reduction) in a population of patients at low to intermediate risk.	
Patient characteristics	Patients scheduled for coronary angiography were recruited with a low-to intermediate cardiovascular risk, atypical (26/72)	

	No history of percutaneous angioplasty or surgical bypass grafting
	Able to hold breath for at least 12s
	Exclusions
	Absolute contraindications to IV contrast material (known allergy, thyroid disorders or renal insufficiency).
	Patient Characteristics
	Men/women 38/34
	Age (mean(SD)) 53.9 (8.0)
	n(%)
	Hypertension 4 (5.6)
	Hypercholesterolaemia 18 (25.0)
	Diabetes 0
	Smoking 9 (12.5)
	Family history of ACS 12 (16.7)
	Obesity (BMI ≥30kg/m ²) 22 (30.6)
	Distribution of atherosclerosis n(%)
	No stenosis 51 (71)
	Single-vessel disease 13 (18)
	Two-vessel disease 6(8)
	Three-vessel disease 1(1)
	Multi-vessel disease 7 (10)
Number of patients	72
Index test	64 slice CT (MSCTA)
	Patients with HR >65bpm were given 100mg of metoprolol tartrate 45 mins prior.
	32x2 slices per rotation. Slice thickness 3mm.

or typical (exertional angina) (46/72) chest pain and positive, doubtful or inconclusive stress ECG.

Inclusion Sinus rhythm

based reconstructions were performed. All scans were independently analysed by two observers blinded to coronary angiography results. All visualised segr	ECG	
based reconstructions were performed. All scans were independently analysed by two observers blinded to coronary angiography results. All visualised segr	ECG	
	Bolus tracking technique was used to optimise opacification of the arteries and data acquired at a single acquisition. ECG based reconstructions were performed.	
	All scans were independently analysed by two observers blinded to coronary angiography results. All visualised segments were considered assessable for the presence of significant stenosis. Image quality was assessed as good, adequate or poor.	
Reference standard (or Gold Coronary angiography	Coronary angiography	
standard) A single observer blinded to MSCTA results identified coronary segments using 17 segment classification modified from classifications. All segments were included.	om AHA	
<50%, normal or with wall irregularities were classed as non-significantly stenotic.		
≥50% lumen reduction was classed as significantly stenotic.		
Time between testing & Within 2 weeks treatment		
Length of follow-up Duration March 2005 and March 2006	Duration March 2005 and March 2006	
Location Italy	Italy	
Diagnostic accuracy measures (2 x 2 table)Per patient analysis:	Per patient analysis:	
TP FP FN TN SENS% SPEC%		
64slice CT 20 1 0 51 100.0 98.1		
No scans were excluded due to scan failure or inadequate image quality. No segment was excluded from analysis du size.	No scans were excluded due to scan failure or inadequate image quality. No segment was excluded from analysis due to size.	
No procedural problems or adverse events reported.	No procedural problems or adverse events reported.	
Source of funding Not mentioned		
Study Limitations		
Comments 1A – LOW		
1B – HIGH only included people with low-intermediate cardiovascular risk. Unclear if inclusion was based on referra	l for	
coronary angiography.		
2A – LOW		
2B – LOW		

3A – LOW
3B – LOW
4 – LOW

Bibliographic reference	Author: Cardemartiri et al 64-Slice computed tomography coronary angiography: diagnostic accuracy in the real world Year: 2008	
Study type	Cross sectional	
Aim	To evaluate the diagnostic accuracy of 64-slice CTCA compared to conventional coronary angiography for the detection of significant coronary artery stenosis in the real clinical world.	
Patient characteristics	Inclusion	
	 Suspected coronary artery disease (atypical chest pain and stable angina pectoris) 	
	 In sinus rhythm without history of percutaneous angioplasty or bypass surgery who were able to breath hold for at least 12 seconds. 	
	Exclusion	
	- Acute coronary syndrome	
	 Absolute contraindications for IV administration of iodine containing contrast (known allergy, kidney failure, or thyroid disorder). 	
	Other characteristics	
	Age in years, mean (SD): 63.4+/- 10.2years.	
	Gender: 92 men, 52 women.	
	Symptoms:	
	Stable angina 32 (22%)	
	Atypical chest pain 85 (59%)	
	Silent ischaemia 28 (19%)	
	Cardiovascular risk factors:	
	Hypertension 76 (52%)	
	Hypercholesterolemia 58 (33%)	
	Diabetes 56 (39%)	

Bibliographic reference	Author: Cardemartiri et al 64-Slice computed tomography coronary angiography: diagnostic accuracy in the real world Year: 2008 Cigarette smoking 19 (13%) Family history 61 (42%) Obesity (BMI≥30kg/m²) 5 (3%) Calcium score (Agatston Score): mean ±SD (range) 235.3±392.8 (0-2,265)	
	75 patients had an ECG stress test. Positive results in 21 patients, negative in 54. Tests was equivocal or the test could not be performed in the remaining 59.	
Number of patients	145	
Index test	Patient preparation – those with HR >65bpm without specific contraindications received 5mg IV dose of beta-blockers (atenolol). In addition in the absence of contraindications, patients received 5mg sublingual dose of nitrate.	
	 64-slice computed tomography coronary angiography (CTCA) – corresponds to test 2a in review protocol CT scanner: Sensation 64, Siemens 	
	 Prior to the angiography scan a preliminary scan was performed in all patients without the IV administration of iodinated contrast material with the aim of quantifying coronary calcification Scan data obtained during a single breath hold of 10-12s 	
	 Scans analysed by an observer with 5yrs experience and UNAWARE of CA findings. 	
	- Coronary segments analysed using AHA modified 17-segment classification	
	 Classification of segments were (i) not significantly stenotic (normal or with wall irregularities or noncritical stenosis <50%) or (ii) significantly stenotic (stenosis ≥50%). 	
Reference standard (or Gold	Conventional coronary angiography (CCA)	
standard)	- CCA was performed 2 weeks after the CTCA with a conventional technique.	
	 Operator was not blinded to the data and images from the CTCA scan. 	
	 Coronary segments were identified by the operator using visual evaluation according to the AHA modified 17- segment classification. All segments without diameter limits were included. 	
	 Classification of segments were (i) not significantly stenotic (normal or with wall irregularities or noncritical stenosis <70%) or (ii) significantly stenotic (stenosis ≥70%) using conventional classifications and guidelines. 	

I	Bibliographic reference	Author: Cardemartiri et al 64-Slice computed tomography coronary angiography: diagnostic accuracy in the real world Year: 2008	
	Time between testing & treatment	2 weeks after index test.	
l	Length of follow-up	Study dates January – June 2005	
l	Location	Italy	
	Diagnostic accuracy measures (2 x 2 table)	Accuracy of CTCA to detect significant stenosis defined as ≥50% for CTCA and ≥70% for CA. (patient based analysis reported only)	

Analysis based on all 134 patients (11 patients results were excluded due to poor scan quality).

TP 82; TN:29; FP: 21; FN: 2*

Sensitivity % (95%CI):	97.6 (91-99)
Specificity % (95%CI):	79.6 (70-86)
PPV % (95%CI):	58.0 (43-71)
NPV % (95%CI):	93.5 (78-99)
LR+ (95%CI):	2.32 (1.67-3.22)
LR- (95%CI):	0.041 (0.01-0.16)

Analysis based on HR<70bm (107 patients)

TP69; TN 19; FP:18; FN:1*

Sensitivity % (95%CI):	98.6 (92-99)
Specificity % (95%CI):	79.3 (69-87)
PPV % (95%CI):	51.4 (34-68)
NPV % (95%CI):	95.0 (75-99)
LR+ (95%CI):	2.02 (1.45-2.82)
LR- (95%CI):	0.027 (0.003-0.19)

Bibliographic reference	Author: Cardemartiri et al	Author: Cardemartiri et al	
	64-Slice computed tomog	64-Slice computed tomography coronary angiography: diagnostic accuracy in the real world	
	Year: 2008		
	Analysis based on HR<65b	Analysis based on HR<65bmp (89 patients)	
	TP 59; TN:14; FP: 15; FN: 1	*	
	Sensitivity % (95%Cl):	98.3 (91-99)	
	Specificity % (95%CI):	79.7 (68-99)	
	PPV % (95%CI):	48.3 (29-67)	
	NPV % (95%CI):	93.3 (68-99)	
	LR+ (95%CI):	1.9 (1.33-2.7)	
	LR- (95%CI):	0.034 (0.004-0.24)	
	Analysis based on HR>70b	pm Ca score ≤10 (41 patients)	
	TP 29; TN:8; FP:4; FN:0*		
	Sensitivity % (95%Cl):	100 (88-100)	
	Specificity % (95%CI):	87.9 (71-96)	
	PPV % (95%CI):	66.7 (34-90)	
	NPV % (95%CI):	100 (63-100)	
	LR+ (95%CI):	2.99 (1.34-6.67)	
	LR- (95%CI):	0 (0-NaN)	
	No mention of any adverse events.		
Source of funding	Supported by the National the Swiss National Science	Centre for Competence in Research, Computer Aided and Image Guided Medical interventions of Foundation	
Comments	Statistical methods		
		nostic accuracy of CTCA on a segment-based, a vessel-based and on a patient-based analysis were ne latter, of the total patients (n=134), 84 (62.2%) displayed at least one at least one significant	

Year: 2008 - Values were calculated for entire population for each analysis level - Cls calculated with binomial expansion.	
Study limitations (as assessed using QUADAS-2 checklist)	
1A. No evidence of consecutive enrolment. UNCLEAR	
1B. Suspected CAD with breakdown of numbers with chest pain. Unclear if patients recruited on basis of referral for coronary angiography or not. UNCLEAR	
2A. Unclear why significant stenosis levels were different according to index and reference test.	
2B. LOW	
3A. Reference standard results interpreted with knowledge of CTCA results. HIGH	
3B. LOW	
4. LOW	

Bibliographic reference	Author: Carrascosa et al Accuracy of low-dose prospectively gated axial coronary CT angiography for the assessment of coronary artery stenosis in patients with stable heart rate Year: 2010
Study type	Cross-sectional
Aim	To assess diagnostic accuracy of a low dose, prospectively gated axial cardiac CT angiography protocol for the evaluation of patients with suspected coronary artery disease (CAD).
Patient characteristics	50 consecutive patients (out of an initially screened 59) referred for diagnostic invasive coronary angiography (ICA) with a stable HR <60BPM after beta blocker administration were prospectively enrolled in a single centre study.
	Exclusion criteria
	<18yrs old
	Weight >100kg
	Pregnancy

P

Allergy to contrast dye Unstable angina or presence of congestive heart failure.

9 patients were excluded due to previous coronary bypass surgery (n=3), PCI within 3 months (n=2) or elevated serum creatinine (n=2).

	Patient Characteristics
	Age (y) mean (SD), (range). 62.4 (12.5) (34-88)
	Female/male, n 17/33
	BMI kg/m ² mean (SD), (range). 27.7 (3.4) (21.1-40.1)
	Reasons for CCTA n(%)
	Chest pain 41 (82)
	Suspected CAD 9 (18)
	Coronary risk factors n(%)
	Hypertension 33 (66)
	Dyslipidaemia 27 (54)
	Smoker 7 (14)
	Diabetes mellitus 4 (8)
	Obese (BMI >30kg/m ²) 11 (22)
	Family history of CAD 12 (24)
	Pre-test probability of significant CAD n(%)
	High (>70%) 31 (62)
	Intermediate (30-70%) 13 (26)
	Low (<30%) 6 (12)
	Pre-scan hr/BPM mean (SD) 0.84 (0.2)
ts	50
	64-row multi-detector CT scanner (Brilliance, Philips Healthcare).

Pre-scan HR>60bpm given 50-100mg metoprolol orally (night before and 1hr before). Propranolol was also given if still >60bpm at time of examination. All patients received 2.5mg isosorbide dinitrate sublingually 2 mins prior to scan.

Number of patient

Index test

National Guideline Centre, 2016

	Similar contrast injection (iobitridol 350mg/mL IV at 5-6mL/s followed by saline flush into antecubital vein) protocol used for axial and helical CT acquisitions, adjusted for body weight.				
	Prospectively gated axial scanning mode triggered at 75% of cardiac cycle.				
	If this was determined to be non diagnostic due to poor image quality a standard retrospectively gated helical examination without ECG gated tube current modulation was performed immediately after the axial scan.				
	Dedicated cardiac adaptive multicycle algorithms were used. Both axial and helical CT data were reconstructed with standard convolution Kernel and overlapping slice thickness of 0.9mm.				
	A modified 17-segment AHA model was used. All segments with diameter of ≥1.5mm at origin were included.				
	Two observers independently assessed the image quality with a 4-point scale. Evaluable segments were assessed by both readers for presence or absence of significant coronary stenosis, determined as diameter narrowing >50%. Non evaluable segments were considered as positive findings for diagnostic purposes.				
Reference standard (or Gold	Coronary angiography				
standard)	Coronary angiography Conventional CA performed using standard technique. The minimum lumen diameter and both a proximal and distal normal				
,	reference diameters were determined for each segment to assess the amount of luminal narrowing. This value was				
	reported percentage of diameter stenosis. Once the two view results were averaged a diameter stenosis of >50% was				
	defined as significant coronary stenosis.				
Time between testing & treatment	Mean (SD) 14 (4) days (range, 7-22 days).				
Length of follow-up	Duration of study July to December 2008				
	Duration of study July to December 2008.				
Location	Buenos Aires, Argentina.				
Diagnostic accuracy measures (2 x 2 table)	Prospectively gated was successfully performed in 46/50 patients.				
	Patient based analysis				
	TP FP FN TN SENS% SPEC%				
	Evaluable segments (n=47) 26 3 0 18 100 86				
	All segments* (n=50) 26 6 0 18 100 75				
	*(censoring non-evaluable segments as positive)				
	No adverse reactions to contrast or premeds was observed.				

Source of funding	One of the authors is an employee of Philips Healthcare. Funding is not mentioned.		
Comments	Study Limitations		
	1A – LOW		
	1B – HIGH – patients recruited on basis of referral for coronary angiography (high prevalence population)		
	2A – LOW		
	2B – LOW		
	3A – LOW		
	3B – LOW		
	4 – LOW		

Bibliographic reference	Author: Chen et al The effect of calcium score on the diagnostic accuracy of coronary computed tomography angiography Year: 2011
Study type	Cross sectional
Aim	To assess the effect of coronary calcium score (CS) on the diagnostic accuracy of detecting coronary artery disease using multi-detector CT angiography (MDCTA) (64-slice) compared to coronary angiography.
Patient characteristics	Inclusion 119 consecutive, symptomatic patients with chest pain or chest discomfort referred for cardiac CT including CS and coronary angiography. Exclusion Contraindications to CTA (allergy to iodinated contrast material or beta-blockers, renal insufficiency, HR >100bpm, AF or arrhythmia and haemodynamic instability. 6 patients were excluded to prolonged time interval (>90 days) between MDCTA and CA. Other Age (y) mean 62.3 (range 37-87) Males 92/113 BMI mean 25.5kg/m ² (range 17.6-35.4) Calcium Scores (n)

Bibliographic reference	Author: Chen et al The effect of calcium score on the diagnostic accuracy of coronary computed tomography angiography
	Year: 2011 0 = 18 1 to 100 = 18 101-400 = 27 >400 = 50.
Number of patients	113
Index test	 Preparation Oral dose of 10-40mg propranolol was administered 30-60mins prior to the scan if HR ≥65bpm. Alternatively 500µg/kg esmolol was administered under ECG monitoring. 5mins prior, sublingual nitro-glycerine (0.3mg) was administered to optimize visualization of small coronary vessels.
	 MDCTA All patients underwent 64-row MDCT scanner (Aquilion 64, Toshiba). Retrospective ECG gating and timing bolus were used to determine scan start times. Weight/gender radiation dose of 12-15mSv were given with a maximum dose of 20mSv for the combination of calcium scoring and coronary CTA exam. For vascular enhancement, a bolus of contrast (80-100mls at 4-5ml/s) was administered IV via antecubital vein followed by saline chasing. Multiple temporal phases of the cardiac cycle were set for ECG gated retrospective reconstructions. Datasets with least residual motion were selected for evaluation.
	Calcium scoring was performed with the use of prospective ECG gating. Assessment involved use of Vitrea software/workstation. Agatston scoring system was used (see above). Two radiologists blinded to reference standard results independently evaluated all calcium scoring and CTA images. Arteries were divided into segments per AHA classification.
	All coronary arteries greater than 2mm in diameter were evaluated for presence of significant (≥50%) diameter reduction/stenosis.
Reference standard (or Gold standard)	Coronary Angiography 2 experienced cardiologists scored all coronary segments using quantitative CCA algorithm (Integris BH3000). Severity of

Author: Chen et al			
The effect of calcium score on the diagnostic accuracy of coronary computed tomography angiography			
Year: 2011			
stenosis was quantified in two orthogonal views. Significant stenosis was defined as luminal diameter reduction ≥50%.			
Within 90 days (mean 9.6 days)			
Duration of study - 2 years and 9 months.			
Taiwan			
Results are reported for overall CTCA only as calcium scoring was not evaluated as a diagnostic test.			
CTCA Overall (Index test 2)			
TP FN FP TP * Sens% Spec%			
CTCA Overall 76 7 4 26* 95.0 78.8			
No mention of any adverse events.			
Supported by a grant from the National Science Council			
Study limitations:			
1a. LOW			
1b. All patients had chest pain however patients recruited on basis of referral for coronary angiography. HIGH			
2a. LOW			
2b. LOW			
3a. LOW			
3b. LOW			
4. LOW			

*= calculated by reviewer

bliographic reference	Author: Donati et al
0.1	Coronary artery disease: Which degree of coronary artery stenosis is indicative of ischemia?
	Year: 2011
udy type	Cross sectional
m	To prospectively determine the best cut-off value of stenosis degree for low-dose computed tomography coronary angiography (CTCA) to predict the hemodynamic significance of coronary artery stenoses compared to catheter angiography (CA) using a cardiac magnetic resonance based approach as standard of reference.
atient characteristics	Inclusion
	Patients with suspected CAD undergoing elective CA (all patients had stable angina or atypical chest pain).
	Exclusion
	Previous percutaneous coronary intervention or coronary artery bypass surgery.
	Exclusion for low dose CTCA
	Impaired renal function, known hypersensitivity to contrast medium and arrhythmia.
	Scanning with prospective ECG triggering was not performed in patients with heart rates >70bpm.
	<i>Excluded from CMR</i> if presented with any contraindications to adenosine (second or third degree AV block, sick sinus syndrome, symptomatic bradycardia, severe asthma or obstructive pulmonary disease) or to MR (implanted electronic devices, metallic foreign bodies in the eye, severe claustrophobia and others according to manufacturer's recommendations.
	Other n (%)
	Men 46 (88),
	Age, years (mean, SD) 64 ±10 (range 41-77)
	BMI kg/m ² (mean, SD) 24 ±8
	BMI >25 kg/m ² 32 (62)
	Cardiovascular risk factors
	Hypertension 37 (71)
	Nicotine abuse 16 (31)
	Hyperlipidaemia 36 (69)
	Diabetes 10 (19)

Bi

St Ai

Pa

Bibliographic reference	Author: Donati et al			
	Coronary artery disease: Which degree of coronary artery stenosis is indicative of ischemia?			
	Year: 2011			
	Family history 8 (15)			
	Symptoms			
	Atypical angina 9 (17)			
	Typical angina 24 (46)			
	Pre-test probability of CAD (as determined by Diamond and Forrester 1979 criteria based on age, gender and			
	symptomatic status. Cut offs <13.4% = low, >87.2% = High. All those between these values = intermediate probability)			
	Low 20 (39)			
	Intermediate 10 (19)			
	High 22 (42)			
Number of patients	70 patients screened. After exclusions 52 patients were included.			
Index test	CTCA with 64-Slice dual source CT scanner (Somatom Definition, Siemens)			
	Performed using prospective ECG triggering.			
	2.5mg dose of sublingual isosorbide dinitrate was given to all patients. Iopromide contrast used (1mL/kg body weight) (dual head power injector) controlled by bolus-tracking.			
	Images were reconstructed with a slice thickness of 0.6mm and all were transferred to an external workstation.			
	Low-dose CTCA analysis was performed by two independent radiologists blinded to all patient data.			
	All segments with diameter ≥1mm at origin were included. Vessel segments distal to occlusions were excluded from analysis. Segments were defined according to AHA scheme. First each segment was rated for image quality as diagnostic or non-diagnostic. Grading of stenosis was made quantitatively using an electronic calliper tool and categorized into a decimal scale in 10% steps from 0-100% diameter stenosis.			
	NB Data for CMR is not reported here as it was not compared to coronary angiography as the reference standard.			
Reference standard (or Gold	Coronary angiography			
standard)	Evaluated by an experienced observer blinded to patient data. Artery division as above. Automated edge-detection system was used. Significant coronary stenosis was defined as narrowing of the artery of >50%.			
Time between testing & treatment	Unclear (CMR and CTCA were performed on same day).			
Length of follow-up	Study duration not specified			
Location	Unclear Switzerland or USA			

Bibliographic reference	Author: Donati et al			
	Coronary artery disease: Which degree of coronary artery stenosis is indicative of ischemia?			
	Year: 2011			
Diagnostic accuracy measures (2 x 2 table)	Low dose CTCA vs CA TP 32, FP 2, FN 0, TN 18* Sensitivity %(95%Cl) 100 (89-100) Specificity %(95%Cl) 90 (68-99) * calculated by reviewer Of a total of 832 coronary segments in 156 main coronary arteries were analysed. Of these, 812 (98%) segments were included into the analysis. Image quality was diagnostic in 50/52 patients. Analysis was complete on all 52 patients (unclear how treated).			
	No mention of any adverse events.			
Source of funding	Not mentioned			
Comments	 Study limitations: 1A - Prospective but does not specifically state consecutive enrolment. UNCLEAR 1B - Suspected CAD population with typical angina or atypical chest pain. Patients recruited based on referral for coronary angiography. HIGH. 2A - LOW 2B - LOW 3A - LOW 3B - LOW 4 - Unclear interval between tests. Unclear how the 2 non diagnostic image quality results were classified. Overall UNCLEAR 			

Bibliographic reference	Author: Herzog et al		
	Does Two-Segment Image Reconstruction at 64-Section CT Coronary Angiography Improve Image Quality and Diagnostic Accuracy?		
	Year: 2007		
Study type	Cross-sectional		

Section multi-detector CT coronary angiography by using conventional coronary angiography as the reference standard.Patient characteristicsInclusion Referred to department of Cardiology between time period below for evaluation of suspected CAD. Stable condition (stable symptoms, vital signs and results of monitored ECG). Patients with contraindications to β-blockers were eligible for participation in the study but no β-blockers were used in such individuals.Exclusion Unstable symptoms, vital signs or ECG results Creatinine level of >2.0mg/dL Potential pregnancy Known allergy to iodinated contrast material.Number of patients40 consecutive					
Referred to department of Cardiology between time period below for evaluation of suspected CAD. Stable condition (stable symptoms, vital signs and results of monitored ECG). Patients with contraindications to β-blockers were eligible for participation in the study but no β-blockers were used in such individuals. Exclusion Unstable symptoms, vital signs or ECG results Creatinine level of >2.0mg/dL Potential pregnancy Known allergy to iodinated contrast material.Number of patients0 Consecutive Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutive Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac software reconstruction allogrithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardioxscular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less	Aim				
Stable condition (stable symptoms, vital signs and results of monitored ECG). Patients with contraindications to β-blockers were eligible for participation in the study but no β-blockers were used in such individuals.Exclusion Unstable symptoms, vital signs or ECG results Creatinine level of >2.0mg/dL Potential pregnancy Known allergy to iodinated contrast material.Number of patients0ther characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less	Patient characteristics	Inclusion			
Patients with contraindications to β-blockers were eligible for participation in the study but no β-blockers were used in such individuals.Exclusion Unstable symptoms, vital signs or ECG results Creatinine level of >2.0mg/dL Potential pregnancy Known allergy to iodinated contrast material.Other characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed witce - once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary antery stensis was measured using a semi-automated stensis measuring tool classified as No stensis 49% or less		Referred to department of Cardiology between time period below for evaluation of suspected CAD.			
Individuals.ExclusionUnstable symptoms, vital signs or ECG results Creatinine level of >2.0mg/dL Potential pregnancy Known allergy to iodinated contrast material.Other characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam.Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed with the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results.Coronary artery stensis was measured using a semi-automated stensis measuring tool classified as No stensis 49% or less		Stable condition (stable symptoms, vital signs and results of monitored ECG).			
Unstable symptoms, vital signs or ECG results Creatinine level of >2.0mg/dL Potential pregnancy Known allergy to iodinated contrast material.Other characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>655pm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less					
Creatinine level of >2.0mg/dL Potential pregnancy Known allergy to iodinated contrast material.Other characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary ratery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less		Exclusion			
Potential pregnancy Known allergy to iodinated contrast material.Other characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less		Unstable symptoms, vital signs or ECG results			
Known allergy to iodinated contrast material.Other characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>655bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less		Creatinine level of >2.0mg/dL			
Other characteristics Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex test40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less		Potential pregnancy			
Men 22, Women 18. Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less		Known allergy to iodinated contrast material.			
Age, mean (SD) 61 (8). Range 49-73).Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less		Other characteristics			
Number of patients40 consecutiveIndex testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64. Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less					
Index testCTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64.Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam.Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author.Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results.Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less		Age, mean (SD) 61 (8). Range 49-73).			
 Patients with average heart rates (>65bpm) (n=32) received up to two IV injections of 5mg of metoprolol immediately before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less 	Number of patients	40 consecutive			
 before the exam. Scans were acquired with simultaneous recording of patient's ECG signal to allow image reconstruction (on basis of retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less 	Index test	CTCA (protocol index test 2a) performed with 64-section scanner, Somatom Sensation 64.			
 retrospective ECG gating). Performed by one author. Each data set was reconstructed twice – once using a single-segment and once using a two-segment adaptive cardiac volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less 					
 volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including coronary angiography results. Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as No stenosis 49% or less 					
No stenosis 49% or less		volume reconstruction algorithm (provided within the standard cardiac software package of CT scanner). Both data sets were independently analysed by two experienced cardiovascular radiologists who were unaware of patient data including			
		Coronary artery stenosis was measured using a semi-automated stenosis measuring tool classified as			
Stenosis 50-69%,		No stenosis 49% or less			
		Stenosis 50-69%,			

	Stenosis 70-99%, or total occlusion			
Reference standard (or Gold	Coronary Angiography			
standard)		Idkin technique and three experie	nced cardiologists reached consensus on findings	
	Results obtained using Judkin technique and three experienced cardiologists reached consensus on findings. Quantitative grading of stenosis was performed using a stenosis grading tool with automatic distance and scale calibration.			
			g	
Time between testing &	Not reported			
treatment				
Length of follow-up	Study period October 20	04 and July 2005		
Location	USA			
Diagnostic accuracy measures (2 x 2 table)	64-Section CT Angiography for grading stenosis (Protocol test 2a). Per patient analysis only reported.			
	Per-patient basis			
	61–87 beats per minute (n= 40) (TP 16, TN 21, FP 0, FN 3)*			
		Single segment reconstruction	Two-segment reconstruction	
	Accuracy	92.5 (79.6, 98.4) [37/40]	97.5 (86.8, 99.9) [39/40]	
	Sensitivity	100 (79.4, 100) [16/16]	100 (79.4, 100) [16/16]	
	Specificity	87.5 (67.6, 97.3) [21/24]	95.8 (78.9, 99.9) [23/24]	
	Positive predictive value	84.2 (60.2, 96.6) [16/19]	94.1 (71.3, 99.8) [16/17]	
	Negative predictive value 100 (83.9, 100) [21/21] 100 (85.2, 100) [23/23]			
	80–82 beats per minute	* (n= 6) (TP 4, TN 2, FP 0, FN 0)*		
	· ·	100 (54.1, 100) [6/6]	100 (54.1, 100) [6/6]	
	Sensitivity	100 (39.8, 100) [4/4]	100 (39.8, 100) [4/4]	
	Specificity	100 (15.8, 100) [2/2]	100 (15.8, 100) [2/2]	
	Positive predictive value		100 (39.8, 100) [4/4]	
	Negative predictive value	e 100 (15.8, 100) [2/2]	100 (15.8, 100) [2/2]	
	No mention of any adver	se events.		
Source of funding	Study supported by rese	arch grants provided by Siemens N	Aedical Solutions, Bracco Diagnostics and Medrad. One author is	
	a medical consultant to S	Siemens and Bracco, one is a medi	cal consultant to Bracco and another is an employee of Siemens.	
	The authors who are not	employees or consultants for eith	er company providing support had control of the data and	

	information submitted for publication.
Comments	Statistical evaluation
	Accuracy, sensitivity, specificity and positive and negative predictive values were calculated for detection of stenosis of >50%.
	Study Limitations
	1A – LOW
	1B – UNCLEAR (suspected CAD population – no reports of chest pain numbers). Unclear if patients recruited on basis of referral for coronary angiography.
	2A – LOW
	2B – LOW
	3A – LOW
	3B – LOW
	4 – UNCLEAR interval between tests. Overall LOW

Bibliographic reference	Author: Herzog et al Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience Year: 2008
Study type	Cross-sectional
Aim	To evaluate the accuracy of low-dose computed tomography coronary angiography (CTCA) using prospective ECG-triggering for the assessment of coronary artery disease (CAD).
Patient characteristics	Of 112 consecutive patients referred for coronary angiography , 70 patients were deemed to ineligible due to known significant CAD. 4 of the remaining 42 patients refused to give consent and 8 were excluded due to allergy to iodinated contrast (n=1), nephropathy (n=4), non-sinus rhythm (n=3).
Number of patients	30 patients referred for coronary angiography for Dyspnoea (n=3) typical angina pectoris (n=9) atypical chest pain (n=10) pathological exercise test or ECG (n=11).

352

	Patient characteristics Mean age (SD) 59 (10) Female/male 11/19 Mean BMI kg/m ² (SD) 27.0 (2.9)
Index test	 MSCTA (64 slice Lightspeed CT scanner) All patients received 2.5mg isosorbide dintrate sublingually 2 mins prior to scan. IV metoprolol was given to achieve HR <65bpm. 80mL iodixanol was administered at 5mL/s followed by 50mL saline injected into antecubital vein. Bolus tracking was performed with a region of interest placed in the ascending aorta and image acquisition was started 4s after signal density reached ~120 Hounsfield units. Prospective ECG triggering was performed. Images were reconstructed with slice thickness of 0.6mm. Coronary arteries were segmented as suggested by the AHA. (16-segments). Two readers assessed overall image quality on a four point scale (scores 1-3 were considered diagnostic, score 4 non diagnostic) and assessed all arteries for presence of haemodynamically significant stenoses, defined as narrowing of the luminal diameter ≥50%.
Reference standard (or Gold standard)	Coronary angiography Performed using standard techniques by an experienced observer blinded to CTCA results. Images were assessed using the same segment model and were assessed with automated edge-detection system. Coronary arteries with diameter of at least 1.5mm were included and those vessels distal to complete occlusions. Each vessel was scored as being normal or significantly stenosed (defined as diameter reduction of ≥50%).
Time between testing & treatment	Not specified
Length of follow-up	Study duration not specified
Location	Zurich, Switzerland
Diagnostic accuracy measures (2 x 2 table)	Patient based analysis TP FP FN TN SENS% SPEC% MSCTA 18 2 0 10 100.0 83.3
	16 segments in 4/30 patients were non diagnostic and considered false positive. 2/4 patients were re-categorised as true positives as they had correctly identified lesions in other segments.

	No mention of any adverse events.
Source of funding	Supported by a grant from the Swiss National Science Foundation and by the Zurich Centre for Integrative Human Physiology.
Comments	Study Limitations
	1A – LOW
	1B – Population suspected CAD with breakdown including numbers with typical and atypical angina. Patients recruited on basis of referral for coronary angiography HIGH.
	2A – LOW
	2B – LOW
	3A – LOW
	3B – LOW
	4 – Timing between tests not specified. UNCLEAR.

Bibliographic reference	Author: Herzog et al First head-to-head comparison of effective radiation dose from low-dose 64-slice CT with prospective ECG-triggering versus invasive coronary angiography. Year: 2009
Study type	Cross-sectional
Aim	To compare effective radiation dose of low-dose 64-slice CTCA using prospective ECG-triggering versus diagnostic invasive coronary angiography (CA).
Patient characteristics	74 patients were consecutively screened for known CAD. 9 refused to consent. Of the 65 enrolled patients 14 were deemed ineligible due to renal insufficiency (n=8), allergy to iodinated contrast (n=3), non-sinus rhythm (n=12) Pre-test probabilities were estimated using the Duke clinical score.
	All patients were referred for elective invasive CA because of suspected CAD with the following symptoms: Dyspnoea (n=9) Typical angina pectoris (n=7) Atypical chest pain (n=19)

	Pathological exercise test or ECG (n=14)
	Other patient characteristics
	Age, y (mean (SD) 62 (8.4) (range 42-82)
	Male/Female 29/13.
	On beta blockers n=13
	BMI (mean (SD)) kg/m ² 26.9 (4.4) (RANGE 18.6-44.9)
Number of patients	42 (different to patients included in previously reported studies including Herzog et al 2008)
Index test	CTCA with prospective ECG triggering using Lightspeed 64 slice CT scanner.
	All patients received 2.5mg isosorbide dinitrate sublingually 2 mins prior to scan.
	IV metoprolol was given if necessary to achieve HR <65bpm.
	For CTCA 80mls of iodixanol was given at 5/ml/s followed by 50ml saline via antecubital vein. Bolus tracking performed with
	region of interest in ascending aorta. Image acquisition 4 seconds after signal density reached threshold of ~120 Hounsfield units.
	Images were reconstructed with a slice thickness of 0.6mm and transferred to an external workstation.
	Coronary arteries were segmented as per AHA 16 segment suggestion. All segments with diameter of min 1.5mm at their
	origin were included. All non-evaluable segments classified the whole vessel as not evaluative which was censored as
	positive and included in the final analysis. Two experienced readers assessed all coronary vessels for presence of
	haemodynamically significant stenoses, defined as narrowing of the coronary luminal diameter ≥50%.
Reference standard (or Gold	Coronary Angiography
standard)	Performed via femoral artery using routine procedure. An experienced observer blinded to results from CTCA evaluated the
	angiograms. Each vessel was scored as being normal or significantly stenosed (defined as diameter reduction of ≥50%).
Time between testing &	Same day
treatment	
Length of follow-up	Study duration not specified
Location	Zurich, Switzerland.
Diagnostic accuracy measures	Patient based analysis
(2 x 2 table)	TP FP FN TN SENS% SPEC%
	CTCA Per patient (overall) 23 2 0 17 100.0 89.5
	low pre-test probability 3 1 0 3 100.0 75.0
	Intermediate pre-test probability 13 0 0 9 100.0 100.0

	High pre-test probability 7 1 0 5 100.0 83.3	
	551/567 segments were considered diagnostic, thus 16 segments (2.8%) were considered non-diagnostic and considered positive. No mention of any adverse events.	ed as
Source of funding	Supported by a grant from the Swiss National Science Foundation and by the Zurich Centre for Integrative Human Physiology.	
Comments	Study Limitations	
	1A – LOW	
	1B – Patients recruited on basis of referral for coronary angiography (high prevalence population) HIGH	
	2A – LOW	
	2B – LOW	
	3A – LOW	
	3B – LOW	
	4 – Study duration not specified. Authors note that population is different to previously reported studies. LOW.	

Bibliographic reference	Author: Meng et al Effect of Heart Rate and coronary calcification on the diagnostic accuracy of the dual source CT coronary angiography in patients with suspected coronary artery disease Year: 2009
Study type	Cross-sectional
Aim	To evaluate the diagnostic accuracy of dual-source computed tomography (DSCT) coronary angiography, with a particular focus on the effect of heart rate and calcifications.
Patient characteristics	
	Inclusion
	Patients with suspected CAD were enrolled between dates stated below.
	Exclusion
	Allergy to iodine-containing contrast medium, thyroid disorder, renal insufficiency, pregnancy, hemodynamic instability and

	previous stent deployment or bypass surgery. People with high heart rates were included into this study.
	Patient characteristics Age (y) mean (SD) 63(9) Gender (M/F) 68/41 N(%) Diabetes 15 (14) 75 (69) Smoking 46 (42) Dyslipidaemia 86 (79) Mean BMI (kg/m ²) 26.9 (3.3)
Number of patients	109
Index test	 Dual Source CT (Somatom Definition, Siemens) – 64 slice. No beta blockers will administered irrespective of individual heart rate. ECG monitoring was performed. A contrast enhanced DSCT for a coronary angiography was performed and controlled by bolus tracking. A continuous injection of iohexol 80ml was administered continuously antecutibtally followed by saline flush. Region of interest was placed in the aortic root and imagine acquisition began 5 seconds after the predetermined threshold of 80 Hounsfield units was attained. A mono-segment reconstruction algorithm was used for image reconstruction. Slice thickness 0.75mm. Datasets were transferred to an offsite workstation with Syngo cardiac processing software. Maximum intensity projections and 3D volume rendering technique reconstructions were created for visualisation and analysis of the data. All data sets were independently analysed by 2 blinded observers.
Reference standard (or Gold standard)	Coronary angiography Performed according to Judkin's technique. Coronary segments were classified according to AHA guidelines. Stenosis severity was evaluated using quantitative analysis software. A reduction in minimal lumen diameter >50% compared to proximal reference was defined as significant stenosis. All vessels >1.5mm were analysed. Angiograms were judged by one experienced cardiologist not involved in data read-out of DSCT.
Time between testing & treatment	1-30 days (mean (SD)) 10 (8)
Length of follow-up	Duration November 2006 and November 2007
Location	China

Diagnostic accuracy measures (2 x 2 table)	Both tests successfully administered in all patients with no complications. Average heart rate during scanning 71.8 (13.2), range 50-115bpm.
(
	1558 segments were imaged by ICA. Of these 25 were not evaluated by DSCT due to poor image quality.
	Overall per patient analysis
	TP FP FN TN SENS% SPEC%
	64slice DSCT 83 5 2 19 98 79
Source of funding	Not mentioned
Comments	Study Limitations
	1A – Enrolment not specified as consecutive UNCLEAR
	1B – suspected CAD population with no breakdown. Unclear if patients were recruited on basis of referral for coronary
	angiography. UNCLEAR
	2A – LOW
	2B – LOW
	3A – LOW
	3B – LOW
	4 – LOW

Bibliographic reference	Author: Muhlenbrusch et al Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients Year: 2007
Study type	Cross-sectional
Aim	To determine the value of 64 slice cardiac CTA for detection of significant coronary artery disease in a population of symptomatic patients.
Patient characteristics	51 consecutive patients with symptoms of coronary artery disease already scheduled for conventional coronary angiography.
	Screening medical examination

	Exercise stress tests, Framingham risk assessment and blood profile.
	Decision on further work up was made based on their profile and history with e.g. a positive stress tests or typical symptoms of CAD combined with a high risk profile being indications for invasive coronary angiography.
	18 patients were excluded for fulfilling one of the below
	Exclusion criteria
	Previous coronary stent placement (n=9)
	Bypass graft surgery (n=5)
	Presence of tachyarrhythmias, AF and other irregular heart rhythms (n=4)
	Documented renal insufficiency (n=3)
	Inability to hold breath for at least 15 seconds (n=2)
	Known allergy to iodine contrast material. (n=1)
	Patient Characteristics
	Male/Female 39/12
	Mean age (y) 58.5 (7.9)
Number of patients	51
Index test	64-slice MDCT scanner (Somatom Sensation 64)
	All patients with resting HR>70bpm received 50-100mg of metoprolol 1-2hrs prior to test. ECG monitoring was performed. Contrast material was administered via the right cubital vein. Scan delay was determined using bolus tracking. When a threshold of 120 Hounsfield units was reached in the ascending aorta at the level of the origin of the coronary arteries, a delay of 5 seconds was applied before the scan was initiated. 80ml of non-ionic contrast material at 4mls/s was injected followed by a saline chaser bolus of 50ml. Patient dose was calculated using CT-Expo. Version 1.4.
	Images were reconstructed from the raw data with slice thickness of 0.75mm. All images were analysed by an experienced radiologist, blinded to the CCA findings. 15 segments were identified based on established AHA criteria. Each segment was classified as 0=smoothly delineated vessel wall, 1=vessel wall abnormalities but no stenosis \geq 70% and 2=significant lumen narrowing of \geq 70% compared to pre and post stenotic vessel lumen by visual estimation. Segments that were absent, not opacified or poor image quality or heavily calcified were excluded from further analysis.
Reference standard (or Gold	Coronary angiography
standard)	Performed using digital flat panel fluoroscopy via femoral artery. 80ml of non-ionic contrast administered. Minimum 6 orthogonal views obtained. Images interpreted by experienced, blinded cardiologists. Assessment of diameter stenosis was by visual estimation with lumen narrowing of ≥70% being considered as significant.

National Guideline Centre. 2016

adiation dose was
on, true absence of

Time between testing &

treatment	Wear (5D) 2.4 (5.2) days							
Length of follow-up	Duration not specified							
Location	Germany							
Diagnostic accuracy measures (2 x 2 table)	CTA was performed without complications in all 51 patients. Mean HR (SD) 61 (7.7)bpm. Effective radiation dose was 13.6(13.2)mSv and 17.3(2.6)mSV for male/female patients.							
	Of 765 segments, 39 were excluded from further analysis due to heavy calcification, non-opacification, true absence of vessel, segment not visible.							
		ТР	FP	FN	TN	SENS%	SPEC%	
	64slice CT	44	3	1	3	97.8	50.0	
Source of funding	Not mentioned							
Comments	Study Limitations							
	1A – LOW (missing segments, does this indicate previous surgery?)							
	1B – Symptoms of CAD not specified (no breakdown of numbers with chest pain). High risk population. HIGH							
	2A – LOW							
	2B – LOW							
	3A – LOW							
	3B – LOW							
	4 – LOW							

Mean (SD) 2.4 (3.2) days

Bibliographic reference	Author: Nazeri et al Impact of calcification on diagnostic accuracy of 64-slice spiral computed tomography for detecting coronary artery disease: a single centre experience Year: 2009
Study type	Cross sectional
Aim	To investigate the influence of calcification on the accuracy of 64-slice computed tomography for identification of significant coronary artery disease
Patient characteristics	Inclusion

Bibliographic reference	Author: Nazeri et al
	Impact of calcification on diagnostic accuracy of 64-slice spiral computed tomography for detecting coronary artery
	disease: a single centre experience
	Year: 2009
	 Patient scheduled for conventional coronary angiography because of suspected CAD
	Exclusion
	 Previous allergic reaction to iodine contrast media
	 Renal insufficiency (serum creatinine level >1.5mg/dl)
	 Inability to comply with breath-hold commands
	 Contraindication to administration of beta-blocker drugs
	- Atrial fibrillation
	- Hemodynamic instability
	 History of previous stenting or coronary artery bypass surgery
	- Instory of previous stenting of colonary artery bypass surgery
	Other characteristics
	Age in years, mean (SD): 58 (11)
	Male, n (%) 126 (75)
	Body mass index, kg/m ² , mean (SD) 25.7 (4.2)
	Family history of CAD, n (%) 118 (70)
	Smoker, n (%) 114 (68)
	Hypertension, n (%) 98 (58)
	Hyperlipidaemia, n (%) 142 (84.5)
	Diabetes, n (%) 61 (36)
	Heart rate during scanning in beats per minute, mean (SD) 62 (11)
Number of patients	186 referred, 168 met inclusion criteria
Index test	1. 64-slice CT (MSCT) – corresponds to test 2b in review protocol
	- Somatom Sensation 64, Siemens
	2. Calcium scoring – corresponds to test 3 in review protocol

Bibliographic reference	Author: Nazeri et al		
	Impact of calcification on diagnostic accuracy of 64-slice spiral computed tomography for detecting coronary artery		
	disease: a single centre experience		
	Year: 2009		
	- Patients were ranked by total calcium score which was expressed in Agatston units		
	Both above tests were analysed by 2 investigators who were blinded to both the clinical and angiographic results		
Reference standard (or Gold	Conventional invasive angiography		
standard)	 Performed according to standard techniques 		
	 Angiograms evaluated by cardiologist blinded to the MSCT findings 		
	 Significant stenosis defined as diameter ≥50% 		
Time between testing & treatment	Index test and reference standard performed within a 3 day interval.		
Length of follow-up	Study dates September 2006 to May 2007		
Location	Iran		
Diagnostic accuracy measures (2 x 2 table)	Accuracy of 64-slice CT coronary angiography for detecting significant stenosis defined as lumen narrowing of >50% (patient based analysis)		
	TP: 120; TN: 41; FP: 5; FN: 2		
	Sensitivity (95%Cl): 98.4% (93.6 to 99.7)		
	Specificity (95%CI): 89.1% (75.6 to 95.9)		
	*Confidence intervals calculated by analyst based on data reported in the article		
	The following data are extracted but not used in analysis since it does not treat calcium score as a diagnostic test.		
	Accuracy of 64-slice CT for detecting significant stenosis according to calcium score		
	a) calcium score 0 to 100 (n=99)		
	TP: 72; TN: 25; FP: 2; FN:0		
	Sensitivity (95%CI)*: 100% (94.9 to 100)		
	Specificity (95%CI)*: 92.6% (76.6 to 97.9)		

Bibliographic reference	Author: Nazeri et al
	Impact of calcification on diagnostic accuracy of 64-slice spiral computed tomography for detecting coronary artery
	disease: a single centre experience
	Year: 2009
	b) calcium score 101 to 418 (n=45)
	TP: 31; TN: 13; FP: 1; FN: 0
	Sensitivity (95%CI)*: 100% (89.0 to 100.0)
	Specificity (95%CI)*: 92.9% (68.5 to 98.7)
	a) calcium score 419 to 8420 (n=24)
	TP: 17; TN: 3; FP: 2; FN: 2
	Sensitivity (95%CI)*: 89.5% (68.6 to 97.1)
	Specificity (95%CI)*: 60.0% (23.1 to 88.2)
	*Confidence intervals calculated by analyst based on data reported in the article.
	CTA was performed without complications.
Source of funding	Not reported
Comments	Statistical methods
	Diagnostic accuracy of 64-slice CT in the detecting of significant stenosis was expressed as sensitivity, specificity, positive
	predictive value and negative predictive values along with 95% CIs.
	Study limitations (as assessed using QUADAS-2 checklist)
	1a. LOW
	1b. HIGH – suspected CAD, no other details given. Patients recruited based on referral for coronary angiography.
	2a. LOW
	2b. LOW
	3a. LOW
	3b. LOW 4. LOW
	4. LUVV

oliographic reference	Author: Nieman et al
	Computed tomography versus exercise electrocardiography in patients with stable chest complaints: real-world experiences from a fast-track chest pain clinic
	Year: 2009
ıdy type	Cross-sectional
n	To compare the diagnostic performance of CT angiography and exercise electrocardiography in a symptomatic population with a low intermediate prevalence of coronary artery disease (CAD).
tient characteristics	471 consecutive ambulatory patients with stable chest pain complaints and no history of CAD were evaluated at the 1 day chest pain clinic.
	Patients had a low-intermediate prevalence of coronary artery disease (CAD) (>5% probability)
	Exclusions
	Contraindications to CTA (pregnancy, known allergy to iodine contrast media, impaired kidney function).
	Patient characteristics are only reported on the 471 patients, not the 98 included in the diagnostic test accuracy evaluation.
	Patient Characteristics
	Age (y) mean (SD) 56 (10)
	Female/Male 227/244
	Risk profile n(%)
	Nicotine abuse 138 (29)
	Hypertension 233 (49)
	Diabetes 68 (14)
	Dyslipidaemia 280 (59)
	Family history of CVD 214 (45) History of vascular disease 31 (7)
	Chest Pain profile
	Typical angina 146 (31)
	Atypical angina 251 (53)
	Non-anginal chest pain 74 (16)

Bil

Stu Air

Ра

	Pre-test probability % (mean, SD) 52 (28)		
Number of patients	98 patients (of the 471, whereby invasive coronary angiography was clinically driven)		
Index test	CT angiography (Siemens 64 slice dual-source scanner).		
	Prospective ECG triggering was used.		
	70-100ml bolus was injected at 5.0-5.5ml/s through a peripheral vein in the arm followed by 40ml saline. Bolus tracking was performed to synchronise data acquisition with contrast enhancement. A dose of sublingual nitroglycerin was given just before the scan. No additional beta blockers were administered. Retrospective ECG gated image reconstruction was performed using a slice thickness of 0.75mm. Vessels were quantitatively scored as significantly stenosed (>50% diameter narrowing), less than significantly stenosed (<50%) or normal.		
Reference standard (or Gold standard)	Coronary angiography Standard technique used. Semiautomatic quantification of luminal obstruction was performed by an independent, blinded observer. Maximum lumen diameter stenosis ≥50 was considered moderate and ≥70% was considered severely stenosed.		
Time between testing & treatment	Not reported		
Length of follow-up	Duration September 2006-December 2008		
Location	Tertiary hospital, Holland		
Diagnostic accuracy measures (2 x 2 table)	64 Slice CTCA CTA could not be performed on 16/471 patients but data not provided for eventual 98 included patients.		
	Patient based analysis		
	TP FP FN TN SENS% SPEC%		
	CTCA 53 26 2 15 96.4 36.6		
	Data are not reported for exercise ECG as this was not a protocol index test.		
	No mention of any adverse events.		
Source of funding	Not mentioned		
Comments	Study Limitations 1A – 98 patients out of initial sample of 471 had the reference standard as it was "clinically driven". Discussion states the		

test was not available to the majority of patients "without non-invasive evidence of severe CAD". Inappropriate exclusion. HIGH
1B –Low and intermediate risk included only HIGH.
2A – LOW
2B – LOW
3A – LOW
3B – LOW
4 – timing between tests was not specified. UNCLEAR.

Bibliographic reference	Author: Overhus et al	
	Comparison of Usefulness of Exercise Testing Versus Coronary Computed Tomographic Angiography for Evaluation of	
	Patients Suspected of Having Coronary Artery Disease	
	Year: 2010	
Study type	Cross sectional	
Aim	To investigate the diagnostic performance of exercise testing using a diagnostic definition according to the ST-segment changes or the development of angina pectoris, ST-segment changes, and hemodynamic variables compared to CTCA.	
Patient characteristics	Inclusion	
	- Patients referred for invasive coronary angiography (CAG) because of suspected CAD	
	Exclusion	
	- Known allergy to iodine contrast media	
	- Renal insufficiency	
	- Clinical instability (Canadian Cardiovascular society class IV, New York Heart Assoc. class IV, or systolic BP	
	<95mmHg)	
	- Inadequate scanner capacity	
	- Pregnancy	
	For patients scheduled for CTA with 64 slice scanner	
	- Atrial fibrillation	
	 Irregular heart rate or baseline HR ≥65BPM and 	
	- Contraindication to administration of beta-blocker drugs	

Bibliographic reference Author: Overhus et al Comparison of Usefulness of Exercise Testing Versus Coronary Computed Tomographic Angiography for Evaluation of Patients Suspected of Having Coronary Artery Disease Year: 2010 - Hemodynamic instability - History of previous stenting or coronary artery bypass surgery Other baseline characteristics Age in years, mean (SD): 61 (9) Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m², (4)
Patients Suspected of Having Coronary Artery Disease Year: 2010 - Hemodynamic instability - History of previous stenting or coronary artery bypass surgery Other baseline characteristics Age in years, mean (SD): 61 (9) Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m², (4)
Year: 2010 - Hemodynamic instability - History of previous stenting or coronary artery bypass surgery Other baseline characteristics Age in years, mean (SD): 61 (9) Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m², (4)
 History of previous stenting or coronary artery bypass surgery Other baseline characteristics Age in years, mean (SD): 61 (9) Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m², (4)
Other baseline characteristics Age in years, mean (SD): 61 (9) Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m ² , (4)
Age in years, mean (SD): 61 (9) Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m ² , (4)
Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m ² , (4)
Male, n (%) 50 (50) Body mass index, mean (SD) 27kg/m ² , (4)
Family history of premature CAD, n (%) 53 (53
Hypertension n(%) 50 (50)
Hypercholesterolaemia n(%) 69(69)
Smoker n(%) 52 (52)
Diabetes mellitus 3 (3)
Non-angina pectoris n(%) 35(35)
Atypical angina pectoris n(%) 26(26)
Typical angina pectoris n(%) 39(39)
(Typical angina pectoris was defined as substernal discomfort or chest pain provoked by physical exercise or emotional stress and relieved by rest or nitroglycerin. The presence of 2 of these characteristics defined atypical angina and the presence of 1 defined non-anginal chest pain).
Number of patients 100
Index test 64-slice CTA or dual -source CTA – corresponds to test 2a in review protocol
All patients received 0.25mg nitroglycerin 5 mins prior to CTA.
An initial non enhanced scan was performed for calcium scoring. (Quantified using Agatston Score).
64 slice CTA (Siemens Sensation)

Bibliographic reference	Author: Overhus et al Comparison of Usefulness of Exercise Testing Versus Coronary Computed Tomographic Angiography for Evaluation of Patients Suspected of Having Coronary Artery Disease Year: 2010	
	Performed on first 51 patients. Before 64-slice CTA patients with a resting HR OF ≥65bpm received 50mg metoprolol orally and if necessary additional IV preparation was given to lower HR further. CTA was performed regardless of achieved HR.	
	Dual-source CTA (Siemens Definition) (No further technical information provided) Performed on next 49 patients β-Blockers were not routinely administered before CTA using dual-source CTA.	
Reference standard (or Gold standard)	 Coronary angiography Performed according to standard techniques Standardized projections were acquired and intracoronary nitroglycerin was administered if coronary lumen reduction was detected. Angiograms evaluated by 2 experienced observers blinded to the MSCT findings. Consensus readings were performed in the event of any discrepancies. Coronary segments were identified using modified 16-segment classification model. Significant stenosis defined as diameter ≥50% 	
Time between testing & treatment	Reference standard performed followed by Index test within 1 week and before any interventional treatment.	
Length of follow-up	Study dates August 2006 – November 2007	
Location	Denmark	
Diagnostic accuracy measures (2 x 2 table)	Only the results of the diagnostic accuracy for CTCA were relevant to the protocol thus these results only are reported. Accuracy CTCA (both scanner types combined) for detecting significant stenosis defined as lumen narrowing of ≥50% (intention to diagnose results reported) N= 100 (5 patients with inconclusive tests included) TP:28 TN:57; FP: 14; FN: 1 Sensitivity %(95%CI): 97 (82-100)	
	Specificity% (95%CI): 80 (69-89)	

giography for Evaluation of	Chest pain of Clinical eviden
	Chest pain of recent onset Clinical evidence tables

Bibliographic reference

Author: Overhus et al

	Comparison of Usefulness of Exercise Testing Versus Coronary Computed Tomographic Angiography for Evaluation of
	Patients Suspected of Having Coronary Artery Disease
	Year: 2010
	PPV %(95%CI): 67 (51-80)
	NPV %(95%CI): 98 (91-100)
	Coronary artery calcium score, median (IQR) 23 (0-189).
	26 patients had a calcium score of zero.
	Pre-test probabilities of significant CAD
	LOW – 10 (10%)
	INTERMEDIATE – 55 (55%)
	HIGH – 35 (35%)
	No mention of any adverse events.
Source of funding	Not reported
Comments	Statistical methods
	Diagnostic accuracy of 64-slice CT in the detecting of significant stenosis was expressed as sensitivity, specificity, positive predictive value and negative predictive values along with 95% CIs.
	Study limitations (as assessed using QUADAS-2 checklist)
	1A. Of a consecutively enrolled sample (211), only those that could complete exercising testing (ECG) were included in the final study (n=100). UNCLEAR
	1B. Patients recruited on basis of referral for coronary angiography. HIGH
	2A. 2 different scanners used for index test. LOW
	2B. LOW
	3A. LOW
	3B. LOW
	4. LOW

Bibliographic reference	Author: Piers et al		
	Computed tomographic angiography or conventional coronary angiography in therapeutic decision-making		
	Year: 2009		
Study type	Cross-sectional		
Aim	To evaluate non-invasive angiography using dual-source computed tomography (CT) for the determination of the most appropriate therapeutic strategy in patients with suspected coronary artery disease (CAD).		
Patient characteristics	60 consecutive patients scheduled for elective coronary angiography.		
	Inclusion		
	Over 50 years of age, selected for elective coronary angiography.		
	Exclusion		
	Acute coronary syndrome (i.e. ST-segment elevation and non ST-segment evaluation myocardial infarction) were not included.		
	Known iodine allergy, severe renal insufficiency, hyperthyroidism, arrhythmias, unstable clinical condition, inability to follow breath-hold commands, previous PCI or CABG.		
	Characteristics		
	Age (mean, range) 64 (57-70)		
	Male 51 (85%		
	Risk Factors n (%)		
	Hypertension 45 (75%)		
	Hypercholesterolaemia 46 (77%)		
	Smoker 28 (47%)		
	Diabetes mellitus 15 (25%)		
	Family history of CAD 34 (57%)		
	Obesity 11 (18%)		
	10 year risk of CVD (%) 10 (6-13)		
Number of patients	60		

Index test	Dual source computed tomography	
	Retrospective ECG triggered DSCT angiogram was performed with contrast enhancement. Iomeprol was administered via antecubital vein (followed by saline bolus). Bolus triggering was used. Sublingual nitroglycerin (0.4mg) was given just before scan. Mean effective radiation dose was 7.3mSv. Images were reconstructed with 0.6mm slice thickness. 16 segments of the coronary artery were evaluated according to AHA model. Operators were blinded to coronary angiography results. Patients were considered as positive for the presence of significant CAD if there was a significant stenosis in any artery.	
Reference standard (or Gold	Coronary angiography	
standard)	Routine invasive CAG via the femoral or radial artery was performed and images evaluated by 2 independent, blinded cardiologists. For both imaging modalities, all evaluable segments were classified as normal (smooth borders) as having non-significant disease (luminal irregularities resulting in narrowing <50%) or as having significant stenosis (luminal narrowing ≥50%).	
Time between testing & treatment	Within 1 month	
Length of follow-up	May 2006 to May 2007 (although due to machine failure inclusion was not possible during a total period of 4 months).	
Location	The Netherlands	
Diagnostic accuracy measures (2 x 2 table)	Dual source CT (Siemens Definition)	
	TP FP FN TN SENS% SPEC%	
	CTCA (dual source) 38 12 0 10 100.0 45.5	
	No mention of any adverse events.	
Source of funding	Not mentioned	
Comments	Study Limitations	
	1A – HIGH Lack of clarity of inclusion/exclusion criteria relating to population characteristics. Unclear if known CAD were excluded.	
	1B – HIGH. Suspected CAD, no other detail and patients recruited based on being referred for coronary angiography.	
	2A – LOW	
	2B – LOW	
	3A – LOW	

Bibliographic reference	Author: Pontone et al
	Coronary Artery Disease: Diagnostic Accuracy of CT Coronary Angiography – A comparison of High and Standard Spatial
	Resolution Scanning
	Year: 2014
Study type	Cross-sectional
Aim	To compare the image quality, evaluability, diagnostic accuracy and radiation exposure of high-spatial resolution (HR) CT with standard spatial resolution (SR) CT 64 section imaging in patients at high risk of coronary artery disease (CAD) by using invasive coronary angiography (ICA) as the reference method.
Patient characteristics	210 consecutive patients at high risk for CAD who were scheduled for ICA were randomly assigned for study with SR (n=99) or HR (n=98) coronary CT angiography before they underwent ICA.
	NB As the study protocol excluded new generation scanners, including the Discover 750CT used here as the HR scanner, only the data from the SR scanner is included.
	Exclusion criteria
	Contraindications to contrast agents or impaired renal function, inability to sustain a breath hold, pregnancy, HR >65 BPM despite IV beta blockade treatment during CTCA or cardiac arrhythmias, previous history of PCI or CABG, BMI >35kg/m ²
	No patient characteristics provided
Number of patients	99-8= 91
Index test	СТСА
	Spatial resolution 0.6mm.
	If resting HR>65bpm before scan, metoprolol was administered IV. 8 patients were excluded in whom this was not achieved. 90ml contrast medium (Iomeron 400mg/ml) was given via antecubital vein at 5ml/sec followed by 50ml saline solution. Scan was performed according to bolus tracking technique. Prospective ECG triggering was performed and a post-processing an iterative algorithm was used.
	Images were reconstructed independently by two experienced, blinded radiologists. Image segmentation was performed based on AHA segmentation method. Images were rated for image quality on a scale of 1-4. Stenosis was classified

3B – LOW

4 – LOW

	according to the following percentage categories.
	0=0% luminal stenosis
	1=1-24%
	2=25-49%
	3=50-69%
	4=70-99%
	5=100%
Reference standard (or Gold	Coronary Angiography
standard)	Was performed using standard techniques and same classification system as above. Quantification of the severity of
	coronary stenosis included the following. Minimum diameter and reference diameter for all stenosis and the percentage of
	stenosis was derived according to following formula: $D_{ref} - D_{min})/D_{ref} \cdot 100$, where D_{ref} is the reference diameter and D_{min} is the minimum diameter. The severity of luminal stenosis was graded using the same semi-quantitative score as above. 50%
	stenosis was used as the cut-off off.
Time between testing &	Within 7 days
treatment	
Length of follow-up	Duration : January 2010 to September 2010
Location	Italy
Diagnostic accuracy measures	64 slice CTCA (Light Speed VCT XTe)
(2 x 2 table)	of since creat (Light Speed Ver Are)
(,	TP FP FN TN SENS% SPEC%
	CTCA all segments * 78 8 0 5 100.0 38.5
	CTCA diagnostic segments 78 7 0 6 100.0 46.2
	*censored non-evaluable segments classed as positive results
	No mention of any adverse events.
Source of funding	Not mentioned
Comments	Study Limitations
	1A – Population not well defined. Unclear if known CAD excluded. HIGH.
	1B – HIGH. High risk (of CAD) patients made up the study population. Patients were recruited on basis of referral for
	coronary angiography.

Chest pain of recent onset Clinical evidence tables

Bibliographic reference	Author: Pugliese et al
	Diagnostic performance of coronary CT Angiography by Using Different Generations of Multi-section Scanners
	Year: 2008
Study type	Cross-sectional
Aim	To retrospectively compare sensitivity and specificity of four generations of multi-detector CT scanners for diagnosing significant (≥50%) coronary artery stenosis with quantitative conventional coronary angiography as the reference standard.
Patient characteristics	A total of 204 patients with stable angina pectoris or atypical chest pain underwent coronary multi-detector CT angiography.
	The first 51 consecutive patients examined with each scanner were included in four equally sized groups.
	Exclusion criteria
	Patients with bypass grafts and coronary stents were excluded.
	Patient characteristics (64-Section scanner group only)
	Age (y) mean (SD) 59 (11)
	Men/women 39/12
	Cardiovascular risk factors mean (SD)
	Obesity 14 (27)
	Smoking 14 (27)
	Hypertension 16 (31)
	Cholesterol >200mg/dL 25 (49)
	Diabetes mellitus 7 (14)
	Family History 12 (24)
	No of risk factors mean (SD)

2A – LOW

2B – LOW 3A – LOW 3B – LOW 4 – LOW

B

	0– 11 (22)
	1 – 7 (14)
	2 – 16 (31)
	≥3 - 17 (33)
Number of patients	51 (in the 64 slice CTCA group)
Index test	CTCA (Somatom Sensation 64, Siemens)
	Metoprolol 100mg was given to patients with HR >65bpm (unless contraindicated).
	Independent review of the scans was performed by two experienced, blinded readers.
	Scan thickness 0.6mm (32 x 2 detectors). All image evaluation was performed on an offline workstation. 17-segment AHA classifications. Image quality was rated as good, adequate or poor or non -valuable.
	Images were reconstructed using mono-segmental ECG gating and multi-planar reconstruction. Blood vessels of 2mm or larger were considered.
Reference standard (or Gold	Coronary Angiography
standard)	One experienced, blinded observer identified coronary artery segments using 17-segment modified AHA classification.
	Stenoses were evaluated and classified as significant if the mean luminal narrowing was 50% or greater using a validated quantification algorithm.
Time between testing & treatment	Mean (SD) 7 days (3)
Length of follow-up	Duration of recruitment for the study group of interest May 2004 – March 2006. (Study started in February 2000)
Location	Rotterdam, The Netherlands
	64 slice CTCA
Diagnostic accuracy measures (2 x 2 table)	
	Patient based analysis (including all segments*)
	TP FP FN TN SENS% SPEC%
	CTCA 38 0 0 13 100.0 100.0
	*No segments were judged as unevaluable.
	No mention of any adverse events.
Source of funding	Not mentioned. All study authors reported no financial relationship to disclose.

Comments	Study Limitations
	1A – Does not state whether known CAD were excluded. HIGH
	1B – No breakdown of patient characteristics relating to symptoms/chest pain. Study population included patients referred for coronary angiography who would have higher prevalence of disease. HIGH
	2A – LOW
	2B – LOW
	3A – LOW
	3B – LOW
	4 – LOW

Bibliographic reference	Author: Raff et al
	Diagnostic Accuracy of Noninvasive Coronary Angiography Using 64-slice Spiral Computed Tomography
	Year: 2005
Study type	Cross sectional
Aim	To evaluate the diagnostic accuracy of multi-slice CT coronary angiography using a new 64 slice scanner.
Patient characteristics	Inclusion
	Consecutive patients scheduled for elective invasive coronary angiography for suspected CAD.
	Exclusion
	Irregular HR, at risk patients for iodinated contrast (congestive heart failure, dye allergy, elevated serum creatinine) or contraindications to beta-blocking drugs.
	(14 additional patients were screened but met exclusion criteria and were thus not enrolled).
	Other
	Age (y) mean (SD) 59 (11) range (22-81)
	Males 53/70 (73%)
	Calcium score, Mean (SD) 326 (472) (Agatston Units)
Number of patients	70
Index test	MSCT (Index test 2)

ographic reference	Author: Raff et al
	Diagnostic Accuracy of Noninvasive Coronary Angiography Using 64-slice Spiral Computed Tomography
	Year: 2005
	Patients not already on beta-blocking drugs received 100mg atenolol for HR > 65bpm or 50mg for HR 51-64bpm 1hr befor MSCT imaging. HR, ECG and BP were monitored and IV metoprolol (5-30mg) was administered to achieve a target heart rate <65bpm. (No patient excluded due to HR above target).
	Sublingual nitroglycerin 0.4mg was given 1 min before image acquisition.
	64 slice scanner used (Sensation 64, Siemens).
	Patients were given initial bolus timing single-slice scan using 10ml of contrast and 40ml saline chaser then a 100ml dose contrast via antecubital vein at 5ml/s in order to obtain a contrast enhanced scan.
	Estimated radiation was 13mSv for men and 18mSv for women.
	ECG gated data sets were reconstructed automatically at 65% and 35% of R-R cycle length. Additional reconstruction windows were constructed after examination of datasets if motion artefacts were present.
	MSCT angiograms were analysed on a 3D workstation by 2 observers blinded to results of the reference standard. 15 segment AHA model was employed.
	Lesions were classified as
	0= no stenosis,
	1= 1% to 25% stenosis
	2= 26% to 50% stenosis
	3= 51% to 75% stenosis
	4= 75% to 99% stenosis
	5 = total occlusion
	Patients were classified as positive for the presence of significant coronary artery disease if there was a stenosis of >50% i any artery.
	Calcium Scoring
	Scores analysed using SYNGO software using Agatston units and were rated as
	0 = not calcified
	1 = calcium present, no image impairment
	2 = calcium covering <50% of lumen
	3 = calcium covering >50% of lumen in all planes including in cross section.

Bi

Bibliographic reference	Author: Raff et al
	Diagnostic Accuracy of Noninvasive Coronary Angiography Using 64-slice Spiral Computed Tomography Year: 2005
Reference standard (or Gold standard)	Coronary Angiography Evaluated by a single observe blinded to MSCT results. Segmental disease analysed in same 15 segment model described above. Severity of stenosis was classified in each segment using maximum luminal diameter and lesions were classified using an automated edge-detection system.
Time between testing & treatment	Within 30 days
Length of follow-up	Study period September 2004 – February 2005.
Location	Michigan, USA
Diagnostic accuracy measures (2 x 2 table)	Per patient analysis only
	MSCT only (n=70)
	TP 38, FP 3, FN 2, TN 27
	Sensitivity 95%, Specificity 90%, PPV 93%, NPV 93%
	Calcium Scoring (using MSCT) (NB the following data are extracted but not used in analysis as calcium scoring is not used as a diagnostic test).
	Score 0-100 (n=35)
	TP 15, FP 1, FN 1, TN 18
	Sensitivity 94%, Specificity 95%, PPV 94%, NPV 95%
	Score 101-400 (n=17)
	TP 9, FP 1, FN 1, TN 7 Sensitivity 100%, Specificity 88%, PPV 90% NPV 100%
	Score 401-1,804 (n=18)
	TP 14, FP 1, FN 1, TN 2
	Sensitivity 93%, Specificity 67%, PPV 93%, PPV 67%
	No mention of any adverse events.

Chest pain of recent onset Clinical evidence tables

Bibliographic reference	Author: Raff et al Diagnostic Accuracy of Noninvasive Coronary Angiography Using 64-slice Spiral Computed Tomography Year: 2005
Source of funding	Supported by the Ministrelli Cardiovascular Research Fund.
Comments	Study limitations:
	1a. LOW
	1b. Patients were all suspected to have CAD with no breakdown of numbers with chest pain. Patients were recruited into study on basis of referral to coronary angiography. HIGH
	2a. LOW
	2b. LOW
	3a. LOW
	3b. LOW
	4. LOW

Bibliographic reference	Author: Rixe et al 2009 Detection of Relevant Coronary Artery Disease Using Dual-Source Computed Tomography in a High Probability Patient Series – Comparison with Invasive Angiography Year: 2009
Study type	Cross sectional
Aim	To assess the feasibility of dual-source CT (DSCT) for the detection of relevant coronary artery stenoses in a cohort of 76 patients with clinically suspected coronary artery disease (CAD).
Patient characteristics	76 consecutive patients referred for invasive coronary angiography due to suspected CAD were included. Clinical signs of CAD included typical chest pain in 50 patients (65.8%), positive stress testing in 15 (19.7%) and both indicators in 11 (14.5%). Positive stress test was not mandatory for inclusion in the study. Other inclusion criteria
	Stable clinical condition Absence of a contraindication for administration of iodinated contrast agents

Nat		Exclusion criteria
tion		CABG, prior stent implantation
ial o		AF
National Guideline Centre. 2016		Clinical characteristics
ne		HR>65/>70BPM (n) 36/24
Cer		Mean (SD) HR (BPM) 68 (9) (
ntre		Mean Agatston score 100 (56
. 20		Male gender 57 (62%)
016		Mean (SD) $age(y)$ 65 (10)
		Diabetes mellitus 21 (28) Arterial hypertension 64 (84)
		Hypercholesterolemia 45 (59
		Family history of CAD 21 (28)
		Smoking 9 (12%)
ω		Obesity 33 (43%)
80		
	Number of patients	76
	Index test	DSCT (Siemens Somatom De
		Heart rate modulation was n
		0.8mg isosorbide dinitrate w 50ml of isotonic saline, both maximum enhancement in t
		ECG gated current modulation image reconstruction was per were assessed by 2 experient

Refere

standard)

Exclusion criteria

CABG, prior stent implantation, valve prosthesis and cardiac pacemakers. AF

(range 49-85) 560) (range 0-2,650) 4%) 59%) 8%)

ber of patients	76
x test	DSCT (Siemens Somatom Definition) 64 Slice
	Heart rate modulation was not performed but 45 patients were on continuous beta blocker medication.
	0.8mg isosorbide dinitrate was given sublingually immediately before scanning. 10ml of iopamidole contrast followed by 50ml of isotonic saline, both at 5ml/s was administered via antecubital vein using a tests bolus approach to establish maximum enhancement in the ascending aorta. 60ml of contrast was then injected at 5ml/s followed by 50ml saline. ECG gated current modulation and automatic radiation exposure control was used in all patients. Retrospective ECG gated image reconstruction was performed. Slice thickness 0.6mm. Data were transferred to an offline workstation and images were assessed by 2 experienced, blinded investigators. Segments were defined using AHA/ACC 16 segment model. Segments <1.5mm in diameter were excluded and all segments were classified as evaluable or unevaluable and assessed for presence of stenoses >50% lumen reduction as well as for the presence of occlusions.
rence standard (or Gold	Coronary angiography

Standard technique used by an experienced, blinded observer. Quantitative evaluation was performed using an offline workstation using AHA 16 segment coronary model. Coronary segments with a diameter of <1.5mm were excluded from

	analysis and a reduction of >50% of the luminal diameter compared with the reference diameter was considered a significant stenosis.						
Time between testing & treatment	24-48 hou	urs					
Length of follow-up	Duration	2 month	S				
Location	Germany						
Diagnostic accuracy measures (2 x 2 table)	64 slice d	ual sour	ce CT an	giograp	ohy		
		ТР	FP	FN	ΤN	SENS%	% SPEC%
	DSCTA	40	6	0	30%	100	0 83.3
	-		classed a	as uneva	aluable a	and were	re estimated as having significant stenosis. 1072/1080 segments were
	evaluable	•					
	*Back cal	culated b	oy reviev	ver			
	No compl	ications	from CT	A were	observe	d.	
Source of funding	Not ment	ioned					
Comments	Study Lim	nitations					
	1A – LOW	1					
		-					hose with chest pain was provided but all patients were recruited due to prevalence of disease.
	2A – LOW	1					
	2B – LOW	1					
	3A – LOW	1					
	3B – LOW	1					
	4 – LOW						

Bibliographic reference	Author: Ropers et al
	Usefulness of Multidetector Row Spiral Computed Tomography With 64- X 0.6mm Collimation and 330-ms Rotation for

	the Noninvasive Detection of Significant Coronary Artery Stenoses
	Year: 2006
Study type	Cross sectional
Aim	To analyse the accuracy of 64 slice MDCTA for the detection of significant coronary artery stenosis compared with quantitative coronary angiography.
Patient characteristics	84 patients had been referred to the study institution for a first invasive coronary angiography due to suspected CAD.
	Exclusion criteria
	Acute coronary syndromes, contraindications to administration of contrast agent, cardiac arrhythmias, possible pregnancy, or an unstable clinical situation.
	Clinical characteristics
	Men/Women 52/32
	Age years (SD) 58 (10), range 35-77
	BMI (kg/m ²) 29 (5) (range 22-44)
	No of coronary arteries narrowed
	1 - 16 (19%)
	2 - 8 (10%)
	3 - 2 (2%)
Number of estimate	
Number of patients	84
Index test	MSCT 64 Slice (Sensation 64, Siemens)
	Patients with HR >60bpm received 100mg of atenolol orally 1 hour before scanning. If remained >60 at time of scanning, up to 4 doses of 5mg metoprolol were administered IV to lower HR. In Addition all patients received 0.8mg isosorbide dinitrate sublingually immediately before scanning.
	Contrast agent time was determined using a bolus injection of 10ml of contrast agent. A total of 65ml of contrast agent was administered at a rate of 5ml/s followed by 50ml saline. ECG gated tube current modulation was used in all patients.
	Average radiation doses were determined to be 7.45mSv for men and 10.24mSv for women.
	Slice thickness (overlapping axial cross-sectional images) were reconstructed with a medium-sharp convolution kernel.
	All data sets were evaluated on an off-line image analysis workstation by 1 experienced, blinded observer.
	MDCTdata were evaluated for the presence of coronary artery stenosis within 17 coronary artery segments (per modified

	AHA model). First each segment was judged to be evaluable or non evaluable. The former were visually assessed for the presence or absence of significant stenosis which was defined as a diameter increase of ≥50%.		
Reference standard (or Gold	Coronary angiography		
standard)	Performed 1-3 days after MDCT		
	Standard projections were obtained after intracoronary injection of 0.2mg of isosorbide dinitrate and evaluated offline by		
	an independent observer using angiographic software. Segments with a diameter <1.5mm were excluded. Lesions with a luminal decrease of ≥50% in all other vessels were considered to represent significant stenosis.		
Time between testing &	1-3 days		
treatment			
Length of follow-up	Study duration not specified		
Location	Germany		
Diagnostic accuracy measures (2 x 2 table)	26/84 patients had CAD according to ICA.		
	64 slice dual source CT angiography		
	TP FP FN TN SENS% SPEC%		
	MSCTA 25 5 1 50 96.2 90.9		
	MDCT was performed in all patients without complications. 45/1128 segments were unevaluable.		
Source of funding	Not mentioned		
Comments	Study Limitations		
	1A – Consecutive enrolment not specified - UNCLEAR		
	1B – Suspected CAD population with no breakdown, recruitment carried out via referral for coronary angiography HIGH		
	2A – LOW		
	2B – LOW		
	3A – LOW		
	3B – LOW		
	4 – LOW		

Bibliographic reference	Author: Sheikh et al
	Accuracy of 64-Multidetector-row Computed Tomography in the Diagnosis of Coronary Artery Disease
	Year: 2009
Study type	Cross sectional
Aim	To assess the accuracy of 64-multidetector-row computed tomography coronary angiography (CTA) in the diagnosis of coronary artery disease (CAD).
Patient characteristics	Patients with suspected CAD referred for coronary angiography were given the option of CTA prior to coronary angiography.
	Exclusion Criteria
	AF
	High baseline heart rate (>70BPM) with contraindication to beta-blockade, known allergic reaction to iodinated contrast agents, renal insufficiency, severe chronic congestive heart failure and any previous percutaneous coronary intervention or CABG.
	Patients with HR>70BPM were prescribed 50-100mg oral metoprolol to keep the HR <60.
	Patient characteristics
	Male/Female 60/13.
	Age (y) mean (SD) 60 (9). Range (32-67).
	Allergies 4 (5.5%)
	Diabetes Mellitus 38 (52.1%)
	Hypertension 39 (53.4%)
	Hyperlipidaemia 65 (89%)
	Smoking 37 (50.7%)
	Peripheral vascular disease 3 (4.10)
Number of patients	73
Index test	64-slice CT scanner.
	100-120ml contrast medium followed by 50-60ml or normal saline was injected through and arm vein at 4-5mls/s using a dual injector. 20mls contrast was injected at ascending aortic level. All data sets were reconstructed using retrospective ECG gating.

Reference standard (or Gold standard)	 Coronary angiography (CCA). Interventional radiologists evaluated reconstructed images for both the CTA and the CCA using visual estimation. Accessibility of segments and arteries was recorded and for the accessible areas, presence of significant stenosis (≥50% reduction lumen diameter) was determined. (Segments per modified AHA criteria were used). Disagreement between the two reporters was resolved by consensus. Interventional cardiologist blinded to the results of CTA performed the CCA within 1 month. Visual inspection led to recording of degree of stenosis. A significant lesion was defined as 50% or more reduction in lumen diameter. 92 patients underwent CTA. Of these 5 were considered non-diagnostic. The remaining 87 were considered diagnostic but 		
	14 patients subsequently refused to undergo CCA.		
Time between testing & treatment	Within 1 month.		
Length of follow-up	Duration of study not specified		
Location	Kuwait		
Diagnostic accuracy measures (2 x 2 table)	Patient based analyses		
	TP FP FN TN SENS% SPEC%		
	MSCTA 48 1 3 21 95.0 96.0		
	No mention of adverse events.		
Source of funding	Supported by a Kuwait university research grant.		
Comments	 Study Limitations 1A – Unclear if patients were consecutively approached for inclusion UNCLEAR 1B – suspected CAD with no breakdown of numbers with chest pain. Patients recruited into study after referral for coronary angiography – high prevalence group. HIGH 2A – LOW 		

Clinical evidence tables	Chest pain of recent onset
--------------------------	----------------------------

2B – LOW
3A – LOW
3B – LOW
4 – LOW

Bibliographic reference	Author: Swailam et al Multi-slice computed tomography@ Can it adequately rule out left main coronary disease in patients with an intermediate probability of coronary artery disease? Year: 2010 Cross-sectional
Aim	To explore the diagnostic accuracy of MSCT angiography for the detection of significant stenosis of the left main coronary artery (LMCA) in a series of patients with an intermediate pre-test likelihood of CAD, based on an intention to diagnose analysis.
Patient characteristics	 30 consecutive patients were prospectively enrolled who were referred to the catheter laboratories to undergo elective invasive coronary angiography for suspected CAD. Patients were considered for inclusion if they had Ischemic-type chest pain or other symptoms suggestive of myocardial ischemia in the absence of a positive stress test or with an equivocal stress test for myocardial ischemia, or Asymptomatic patients with a positive stress test Exclusion History of CAD as defined by significant coronary artery stenosis shown in prior coronary angiogram, prior MI, prior PCI, prior CABG. AF Allergies to iodinated contrast material. Patient Characteristics Age (y) Mean (SD) 52.6 (6.3) Nucleic Difference (SD) 52.6 (6.3)
	Males 24 (80%) Diabetes 12 (50%)

	Hypertension 26 (86.7%)			
	Smoking 19 (63.3%)			
	Dyslipidaemia 15 (50%)			
	Mean (SD) Agatston score 227 (688)			
Number of patients	30			
Index test	MSCT – 64 Slice scanner (Aquilion 64).			
	80-120mL contrast (Iopromide) was injected into antecubital vein followed by 50ml saline chaser both injected at rate of 5mL/s.			
	Automated detection of peak enhancement in the aortic root was used to time the scan. Imagining was performed with breath held in inspiration and under retrospective ECG gating. In patients with HR>65 BPM beta blockers were given (unless contraindicated). Slice thickness 0.5mm.			
	All data were evaluated on remote workstation by two experienced, blinded, independent investigators. A semiautomatic tool was used for the assessment of severity of LMCA stenosis on curved multi-planar reformations and cross-sections orthogonal to the vessel. Significant stenosis of the LMCA was defined by at least 50% luminal diameter obstruction.			
Reference standard (or Gold	Invasive Coronary angiography			
standard)	Standard technique used. Data retrospectively analysed by a single expert, independent interventionist, blinded to all other data. No intracoronary pharmacologic agents were given. Significant stenosis of the LMCA was defined as at least 50% luminal diameter obstruction seen in two different projections. An automated edge detection system was applied to determine lesion severity.			
Time between testing & treatment	Within 1 week.			
Length of follow-up	Duration March – August 2007			
Location	Cairo, Egypt			
Diagnostic accuracy measures (2 x 2 table)	Based on diagnostic criteria of LMA only. (Numbers were reported for other arteries in isolation but no per patient analysis was reported overall).			
	TP FP FN TN SENS% SPEC%			
	MSCTA 3 1 0 26 100 96.3			
	NISCIA 5 I 0 20 IU0 90.5			

	According to an intention to diagnose based analysis, arteries with inconclusive segments were considered as significantly diseased. No patient reported any adverse events during either procedure.
Source of funding	Not mentioned
Comments	Study Limitations 1A – LOW 1B – HIGH. Included people only with intermediate pre-test probability for CAD and included some asymptomatic patients with a positive stress test only. Breakdown of numbers with chest pain is not provided. Patients recruited on basis of referral for coronary angiography. 2A – LOW 2B – LOW 3A – LOW 3B – LOW 4 – LOW

Bibliographic reference	Author: van Werkhoven et al		
	Diagnostic Accuracy of 64-slice multi-slice Computed Tomographic Coronary Angiography in Patients with an Intermediate Pre-test Likelihood for Coronary Artery Disease		
	Year: 2009		
Study type	Cross sectional		
Aim	To determine the diagnostic accuracy of CTA in patients without known coronary artery disease with an intermediate pre- test likelihood.		
Patient characteristics	Prospective recruitment of patients who had an intermediate pre-test likelihood of CAD who had been referred for invasive diagnostic coronary angiography.		
	Exclusion criteria		
	Cardiac arrhythmias		

Renal insufficiency

Known hypersensitivity to iodine contrast media

National Guideline Centre, 2016

	Pregnancy
	Cardiac event in period between the two investigations
	Patient characteristics
	Men/women 37/24
	Age (y) mean (SD) 57 (9) (Range 35-75)
	HR mean (SD) 58 (8) (Range 41-78)
	Average calcium score (SD) 198 (323) (Range 0-1,505)
	Beta blockers n(%) 37 (61)
	Diabetes 15 (25%)
	Hypertension 38 (62%)
	Hypercholesterolaemia 38 (62%)
	Current smoker 20 (33%)
	BMI ≥30kg/m² 14 (23%)
	Non angina chest pain 8 (13%)
	Atypical angina pectoris 50 (82%)
	Typical angina pectoris 3 (5%)
Number of patients	61
Index test	MSCTA – 64 Slice (Lightspeed VR 64, GE Healthcare)
	HR and BP were monitored before each scan.
	In the absence of contraindications, patients with a HR >65BPM were given beta blockers (50-100 metoprolol orally or 5- 10mg IV).
	Non-enhanced ECG gated scan was performed to measure coronary calcium score and to determine the start and end positions of the helical scan. A bolus of 80mls iomeprol was injected at 5ml/s followed by 40ml saline flush. The helical scan was automatically triggered using a bolus tracking technique when the attenuation level in the region of interest reached the predefined threshold.
	Data sets were reconstructed from the retrospectively gated raw data with an effective slice thickness of 0.625mm. Post scan processing was performed on a dedicated workstation . Coronary arteries were divided into modified-AHA 17 segment classifications. All studies were interpreted by 2 experienced, blinded observers. Image quality was assessed as good, average and poor. Next the presence of significant stenosis (≥50% luminal narrowing) was evaluated using multi-planar reconstructions and maximum intensity projections.

Reference standard (or Gold standard)	Invasive coronary angiography Performed using standard techniques and angiograms were evaluated by a blinded observer using offline quantitative software. Arteries were evaluated according to above segment model and quantitative angiography was performed in lesions with >30% luminal narrowing on visual assessment. Obstructive CAD was defined as luminal narrowing of ≥50%.			
Time between testing & treatment	Within 14 days			
Length of follow-up	Duration not specified			
Location	The Netherlands			
Diagnostic accuracy measures (2 x 2 table)	Patient based analysis			
	TP FP FN TN SENS% SPEC%			
	MSCTA 16 5 0 40 100 89			
	No patient level results were excluded from the per patient analysis. (885/920 segments were evaluable, thus 35 segments were not included in the per segment analysis). No mention of any adverse events.			
Source of funding	Dr van Werkhoven was financially supported by a research grant from The Netherlands Society of Cardiology. Dr Boogers was supported by a grant from the Dutch Heart Foundation and Dr Bax received various research grants including one from GE Healthcare.			
Comments	Study Limitations1A - UNCLEAR - unclear if known CAD was excluded (not specified).1B - HIGH - Only includes people with intermediate pre-test probability who had been referred for invasive diagnostic coronary angiography.2A - LOW2B - LOW3A - LOW3B - LOW4 - LOW			

H.4.2 Calcium Scoring

Bibliographic reference	Author: Budoff MJ et al		
	Diagnostic accuracy of coronary artery calcium for obstructive disease: results from the accuracy trial		
	Year: 2013		
Study type	Cross sectional		
Aim	To assess whether the coronary artery calcium scores obtained with 64 multi-detector CT (MDCT) has the same high sensitivity and negative predictive value to prior electron beam tomography (EBT) data. The diagnostic accuracy of coronary artery calcium by 64 row CT to detect obstructive coronary stenosis compared to quantitative coronary angiography was evaluated.		
Patient characteristics	Inclusion		
	- ≥18 years of age		
	- Experienced typical or atypical chest pain		
	- Being referred for non-emergent invasive coronary angiography		
	Exclusion		
	Not reported		
	Other characteristics		
	Mean age in years (SD) 57 (10)		
	Gender, % males 59.1		
Number of patients	N=230		
Index test	1. Calcium scoring determined by 64 row CT – corresponds to tests 2 and 3 on review protocol		
	- All CCTA scans performed with a 64 detector row Lightspeed VCT scanner		
	- 2.5 mm slice thickness		
	Agatston scoring system used.		
Reference standard (or Gold	Selective invasive coronary angiography		
standard)	- Performed by standard transfemoral arterial catheterisation		
	- Images interpreted without knowledge of index test results		

Bibliographic reference	Author: Budoff MJ et al		
	Diagnostic accuracy of coronary artery calcium for obstructive disease: results from the accuracy trial		
	Year: 2013		
	- Significant stenosis defined as ≥50% luminal narrowing of the coronary artery diameter		
Time between testing & treatment	Index tests were performed 'prior' to conventional invasive coronary angiography – unclear what rough time interval was.		
Length of follow-up	Study dates not reported	I	
Location	USA		
Diagnostic accuracy measures (2 x 2 table)	1. Accuracy of coronary artery calcium (CAC) by 64-row CT compared to coronary angiography to detect stenosis (per patient analysis)		
	Coronary artery calcium >0		
	TP: 56; FP: 101; TN: 1; FN:		
	Sensitivity (95%CI)*:	98.2 (90.7 to 99.7)	
	Specificity (95%CI)*:	41.6 (34.5 to 49.1)	
	Coronary artery calcium >	>100	
	TP: 50; FP: 50; TN: 123; FN	N: 7	
	Sensitivity (95%CI)*:	87.7 (76.8 to 93.9)	
	Specificity (95%CI)*:	71.1 (63.9 to 77.3)	
	Coronary artery calcium >400		
	TP: 34; FP: 20; TN: 153; FN	N: 23	
	Sensitivity (95%CI)*:	59.6 (46.7 to 71.4)	
	Specificity (95%CI)*:	88.4 (82.8 to 92.4)	
	No mention of any advers	se events.	
Source of funding	Not reported		
Comments	Statistical methods		

Bibliographic reference	Author: Budoff MJ et al Diagnostic accuracy of coronary artery calcium for obstructive disease: results from the accuracy trial Year: 2013
	Standard 2x2s for various calcium scores
	Study limitations (as assessed using QUADAS-2)
	1a. HIGH – consecutive recruitment not reported, exclusion criteria not reported
	1b. HIGH – patients recruited on basis or referral for coronary angiography (higher prevalence population)
	2a. UNCLEAR – unclear if index test results interpreted without knowledge of reference standard results
	2b. LOW
	3a. LOW
	3b. LOW
	4. LOW

Bibliographic reference	Author: Javadrashid et al Diagnostic efficacy of coronary calcium score in the assessment of significant coronary artery stenosis. Year: 2009
Study type	Case control
Aim	To evaluate the diagnostic accuracy of coronary artery calcium score (CCS) to detect significant stenosis in coronary arteries in symptomatic patients.
Patient characteristics	Inclusion Symptomatic patients with suspected CAD referred for conventional coronary angiography to the University Hospital of Tabriz. Exclusion Previous percutaneous angioplasty, surgical revascularisation, valve replacement, pacemaker implantation and cardiac arrhythmia. Strong evidence for the existence of non-cardiac chest pain. Renal impairment (serum creatinine level above normal range). Allergy to IV contrast materials.

Bibliographic reference	Author: Javadrashid et al		
	Diagnostic efficacy of coronary calcium score in the assessment of significant coronary artery stenosis. Year: 2009		
	Other		
	Age (mean (SD) 58 (10)		
	Male gender n(%) 102 (65)		
	Risk factors: n(%)		
	Hypertension 67 (42)		
	Dyslipidaemia 47 (30		
	Diabetes 36 (23)		
	Smoking 29 (18) Family history of CAD 16 (10)		
	Distribution of CAD by conventional coronary angiography n(%)		
	None 36 (23)		
	One vessel 41(26)		
	Two vessels 44 (28)		
	Three vessels 37 (24)		
	(total with CAD = 122)		
Number of patients	158 consecutive patients.		
Index test	Multi-detector computed tomography (MDCT)		
	Somatom 64 (Siemens).		
	The best quality images were obtained from datasets reconstructed with retrospective ECG gating. The Agatston algorithm was used and total CCS was the sum of the scores from all coronary arteries.		
	Scanned slice thickness – 3mm.		
Reference standard (or Gold	Coronary angiography. Performed by the same independent cardiologist using digital fluorography system (Siemens Axiom		
standard)	Artis) using a femoral approach.		
	Measurements involved the right coronary artery (RCA), left main (LM), left anterior descending (LAD) and left circumflex (LCX) coronary arteries. Stenosis ≥50% of the main coronary arteries on conventional angiography (as the reference		
	(Lex) corolary arteries. Stehosis 250% of the main corollary arteries on conventional anglography (as the reference		

Chest pain of recent onset Clinical evidence tables

Bibliographic reference	Author: Javadrashid et al	
	Diagnostic efficacy of coronary calcium score in the assessment of significant coronary artery stenosis.	
	Year: 2009	
	standard) was considered significant.	
Time between testing &	Time delay between tests did not exceed 24hrs.	
treatment		
Length of follow-up	Study duration September 2008 to September 2009.	
Location	Tabriz, Iran.	
Diagnostic accuracy measures	122/158 patients had CAD according to reference standard.	
(2 x 2 table)		
	ALIC and 95%CI for diagnostic accuracy of CCS of each coronary artery for diagnosing steposis in this individual artery	

AUC and 95%CI for diagnostic accuracy of CCS of each coronary artery for diagnosing stenosis in this individual artery.

	AUC for Coronary Calcium Score of individual artery (95% Cl)	AUC for total CCS (95% CI)
RCA	0.8 (0.71-0.88)	0.74 (0.65-0.82)
LM	0.72 (0.38-1.06)	0.50 (0.20-0.81)
LAD	0.73 (0.62-0.82)	0.66 (0.56-0.76)
LCX	0.76 (0.67-0.85)	0.78 (0.69-0.85)
OVERALL (At least one artery)	n/a	0.83 (0.74-0.92)

Analysis of ROC curves for CCS in each coronary artery to establish optimal cut-off value for diagnosing significant stenosis in that artery.

	Optimal cut off point	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
RCA	3.1	75.0	73.1	68.8	79.4
LM	7.7	66.7	82.2	66.6	82.7
LAD	9.5	70.9	66.7	78.6	58.5
LCX	4.5	73.9	69.2	58.6	83.3
Overall (at least one artery using CCS cut off value	n/a	86%	71%	NR	NR

Bibliographic reference	Author: Javadrashid et al					
	Diagnostic efficacy of coronary calcium score in the assessment of significant coronary artery stenosis. Year: 2009					
	of ≥7.7)					
	Overall (all arteries) Data for CCS ≥7 - TP 105, FP 10, TN 26, FN 17.*					
	No mention of any adverse events.					
Source of funding	Not mentioned					
Comments	Statistical analysis: Calcium score cut-offs values for the presence of significant stenosis was set using ROC curves and the related area under the curve (AUC) was provided.					
	Study limitations:					
	1a. LOW					
	1b. did not explicitly state proportion of population with chest pain. Patients recruited on basis of positive referral for coronary angiography. HIGH					
	2a. Unclear if results were interpreted without knowledge of reference test (order of tests unclear). UNCLEAR 2b. LOW					
	3a. Unclear if results were interpreted without knowledge of index test (order of tests unclear). UNCLEAR					
	3b. LOW					
* 1 1 1 1 1	4. LOW					

*calculated by reviewer

Bibliographic reference	Author: von Ziegler et al Distribution of coronary calcifications in patients with suspected coronary heart disease Year: 2014
Study type	Cross sectional
Aim	To characterize the coronary calcium distribution in this particular patient population and to establish a possible clinical implication using calcium scoring (CS) for the diagnosis of CHD
Patient characteristics	Prospective study

Acute coronary syndrome including MI Unstable angina Positive troponin in blood testing Unstable clinical condition Known CHD (prior stent implantation procedure or CABG) <18 years Pregnancy **Patient characteristics** Mean age (y) (SD) 60.5 (12.4) (RANGE 18-95) No risk factors 696 (16.8%) Hypertension 3199 (77.3%) Diabetes 612 (14.8) Hypolipoproteinaemia 2025 (49.0%) FH 1682 (40.7%) Current smoking 1249 (30.2%) Mean no. of risk factors 2.1 Chest Pain symptoms Typical/atypical 3756 (90.8%) Non angina 381 (9.2%) Mean Diamond and Forrester Score 42.4 (11.8)

Eligibility / inclusion criteria:

indication for ICA.

Exclusion criteria

8177 consecutive patients were screened. 2,849 patients refused to participate. 313 had an aggravation of symptoms

Typical/atypical or non-angina chest pain and/or signs of myocardial ischemia in non-invasive stress tests and thus a clinical

leading to exclusion, In 878 scheduling was impossible. This left a total of 4,137 patients.

Number of patients

4,137

397

National Guideline Centre, 2016

dex test	Coronary calciu	m scree	ning (CS)							
	protocol. ECG tr were transferee	iggered do a deo 30 Houn	images we dicated wo sfield units	re acquir rkstation in >4 adj	ed. 40, 3 for CS ev acent pix	mm thic aluation els. For	k slices . Calcifi quantifi	were obta cations w ication of	ained cov vere auto CS the A	ion mode according to a standardized vering the whole heart and all images matically defined as lesions with gatston method was applied. All
ference standard (or Gold	Invasive Corona	ry Angio	graphy							
andard)	analysis in ≥epic	Judkin's technique was used. Significant CHD was defined as luminal stenosis ≥50% stenosis in quantitative coronary analysis in ≥epicardial vessel. Decisions for coronary intervention in the case of obstructive CHD (≥70% stenosis) was made by the examiner who was blinded to the CS results.								
me between testing & eatment	All within 30 day	s but 82	% were wi	thin 4 day	ys and 91	% within	10 day	S.		
ngth of follow-up	Duration June 20)05 – Ju	ne 2011							
cation	Germany (single	-centre)								
agnostic accuracy measures x 2 table)	Patient based ar	Patient based analysis								
	2089/4137 patie	2089/4137 patients had ≥50% stenosis and 732/4137 patients had ≥70% stenosis based on ICA.								
		Steno	sis % TP	FP	FN	TN *	SENS%	SPEC%		
	CCS score >0		50	2068	2747	21	343	8 99.0	55.6	
	CCS score >10		50	1917	1753	172	4432	91.8	71.7	
	0.00	50	1474	1062	615	5123	70.6	82.8		
	CCS score >100	50					E 4 0	87.6		
	CCS score >100 CCS score >400		1134	768	955	5417	54.3	87.0		
			1134 70	723	4357	5417 9	318	5 98.7	42.2	
	CCS score >400		-					5 98.7	42.2 96.7	53.8
	CCS score >400 CCS score >0 CCS score >10 CCS score >100	50	70 70 658	723 708 1911	4357 3485 74	9 24 5631	318 405 1	5 98.7 57 89.9		53.8
	CCS score >400 CCS score >0 CCS score >10	50	70 70	723 708	4357 3485	9 24	318 405 1	5 98.7 57	96.7	53.8
	CCS score >400 CCS score >0 CCS score >10 CCS score >100	50 70 70	70 70 658 618	723 708 1911	4357 3485 74	9 24 5631	318 405 1	5 98.7 57 89.9	96.7	53.8

Ind

Ref star

Tim trea

Len Loc

Dia (2 x

Source of funding	Not mentioned
Comments	Study Limitations
	1A – LOW
	1B – While positive stress test did form part of the inclusion criteria, 100% of study population had chest pain. Patients
	recruited based on referral for invasive coronary angiography. HIGH
	2A – LOW
	2B – LOW
	3A – LOW
	3B – LOW
	4 – LOW

H.4.3 Stress Echocardiography

Bibliographic reference	Author: Hennessy et al Dobutamine stress echocardiography for the assessment of patients without history or electrocardiographic evidence of myocardial infarction. Journal of Noninvasive Cardiology 2: 7-11. Year: 1998
Study type	Cross sectional
Aim	To assess the value of dobutamine stress echocardiography (DSE) for diagnosing coronary artery disease in patients with no prior history or ECG evidence of MI
Patient characteristics	Inclusion: - Undergoing coronary angiography (CA) for detection of CAD - No ECG evidence or prior history of MI
	Exclusion: - Unstable angina - Valvular heart disease - Cardiac arrhythmia - Uncontrolled hypertension (>160/110mm Hg)

Bibliographic reference	Author: Hennessy et al Dobutamine stress echocardiography for the assessment of patients without history or electrocardiographic evidence of myocardial infarction. Journal of Noninvasive Cardiology 2: 7-11. Year: 1998				
	Other characteristics:				
		N=157			
	Age in years - mean (SD)	59 (11)			
	Gender: male/female, n (%)	101/56 (64% male)			
	Hypertension – n (%)	62 (39%)			
	Diabetes– n (%)				
	- Insulin	18 (11.5%)			
	- Oral hypoglycaemic	10 (6%)			
	- Diet-controlled	3 (2%)			
	Hypercholesterolemia– n (%)	53 (34%)			
	Smoker– n (%)				
	- Current	19 (12%)			
	- Quitter	77 (49%)			
	- Never	61 (39%)			
	Family history – n (%)	70 (45%)			
	Angina – n (%)				
	- Typical	72 (49%)			
	- Atypical	49 (31%)			
	- Noncardiac	6 (4%)			
	- None	30 (19%)			
Number of patients	157 patients				
Index test	Dobutamine stress echocardiography				
	- Beta-blockers withheld for 24hrs prior to DS	E examination			
	- 2D baseline images obtained in parasternal	long and short axes, and in apical four- and two-chamber views			
	- Graded dobutamine infused at 10, 20 and 4	0μg/kg/min, each for 3 mins			

Bibliographic reference	Author: Hennessy et al					
	Dobutamine stress echocardiography for the assessment of patients without history or electrocardiographic evidence of					
	myocardial infarction. Journal of Noninvasive Cardiology 2: 7-11. Year: 1998					
		to EQualka/min if hoor	t rate recogness was inadequated atroning (1mg) administered	thoroaftar if		
	response was still		t rate response was inadequate; atropine (1mg) administered	therealter, ii		
	- Metoprolol and gl	ycerol trinitrate given a	s needed			
	 Online analysis system 	stem (Nova Microsonics	pre-vue) used to acquire and store digital echocardiographs			
			o facilitate resting, low, medium and peak infusion compariso			
		es of left ventricle (LV) v akinetic, 4=dyskinetic, 5	vere divided into 16 segments, each scored for wall motion: 1	= normal,		
		-	and dividing by number of segments evaluated			
			ed as deterioration in score by 1 grade in two segments comp	ared with		
	baseline	,				
	- DSEs were analysed and scored offline by two independent assessors blind to other investigative findings					
Reference standard (or Gold standard)	Coronary angiography					
stanuaruj	Performed using Judkins		er stenosis of the three major epicardial vessels or branches			
	-	•	nd to other investigative findings			
Time between testing &	Index test performed wi					
treatment						
Length of follow-up	Dates of study not reported					
Location	UK (single centre)					
Diagnostic accuracy measures	Dobutamine stress echo	ocardiography*				
(2 x 2 table)		CAD present on CA	CAD absent on CA			
	+ve index test result	86 (TP)	17 (FP)			
	-ve index test result	24 (FN)	30 (TN)			
	Sensitivity 78%; specifici	ty 64%; PPV 84%; NPV 5	6%			

Bibliographic reference	Author: Hennessy et al Dobutamine stress echocardiography for the assessment of patients without history or electrocardiographic evidence of myocardial infarction. Journal of Noninvasive Cardiology 2: 7-11. Year: 1998
	Tests were terminated in cases of intolerable symptoms, severe hypertension, substantial increase in systolic BP, tachycardia. (Numbers not reported).
Source of funding	Not reported
Comments	Study limitations: 1a. Unclear if patients were enrolled consecutively – UNCLEAR 1b. Patients recruited on basis of referral for coronary angiography HIGH 2a. LOW 2b. LOW 3a. LOW 3b. LOW 4. LOW

Bibliographic reference	Author: Hoffman et al Comparative Evaluation of bicycle and Dobutamine Stress Echocardiography with perfusion Scintigraphy and Bicycle electrocardiogram for Identification of Coronary Artery Disease. Year: 1993
Study type	Cross-sectional
Aim	To compare the accuracy of exercise ECG, exercise echocardiography, dobutamine stress echocardiography and ^{99m} Tc-MIBI for detecting CAD.
Patient characteristics	Inclusion Prospective patients without prior Q-wave myocardial infarction referred for evaluation of suspected CAD. Exclusion

National Guideline Centre. 2016

Dibliggenhis reference	Author: Hoffman et al				
Bibliographic reference	Author: Hoffman et al Comparative Evaluation of bicycle and Dobutamine Stress Echocardiography with perfusion Scintigraphy and Bicycle				
	electrocardiogram for Identification of Coronary Artery Disease.				
	Year: 1993				
	Other				
	Male/Female 51/15				
	Mean age (y) (SD) 57 (10)				
Number of patients	66				
Index test	Medication (types not specified) was discontinued 24 hours before examination.				
	Exercise stress Echo (Index test 4)				
	Patients performed symptom-limited bicycle exercise with ECG and BP monitoring.				
	Before exercising resting sequences were acquired with the patient in the parasternal short- and long-axis and apical 4- and				
	2-chamber views with the patient in the left lateral decubitus position and images were digitized.				
	Exercise was continued until 85% of expected maximal HR was achieved but stopped in cases of exhaustion, development of severe angina, significant electrocardiographic changes, serious arrhythmia or hypotension.				
	Recording was completed within 60 seconds of exercise termination for each of the 4 views.				
Reference standard (or Gold	Coronary angiography				
standard)	Judkins technique was applied. Interpretation by angiographers blinded to other clinical data. CAD was defined as luminal				
	area stenosis of >70% in at least 1 major artery branch. Two orthogonal planes were used to measure the luminal area narrowing. Measurements were performed manually with calipers.				
Time between testing &	Within 2 weeks				
treatment					
Length of follow-up	Study duration not specified				
Location	Germany				
Diagnostic accuracy measures	Post exercise echocardiography showed insufficient endocardial border definition in 6/66 patients, but data for all 66				
(2 x 2 table)	patients were included.				
	TP* FP* FN* TN * Sens% Spec%				
	Exercise Echo (4) 40 2 10 14 80.0 87.0				

Bibliographic reference	Author: Hoffman et al
	Comparative Evaluation of bicycle and Dobutamine Stress Echocardiography with perfusion Scintigraphy and Bicycle
	electrocardiogram for Identification of Coronary Artery Disease.
	Year: 1993
	*calculated by reviewer from sensitivity, specificity, total sample size (66) and number with gold standard test (50)
	No mention of serious adverse events relating to ICA or numbers of adverse events in relation to exercise echo.
Source of funding	Not mentioned
Comments	While dobutamine stress echo and MIBI-SPECT were also carried out on 64/66 and 55/64 patients respectively, the corresponding numbers of those with and without by coronary angiography were not provided therefore it was not possible to back calculate the 2x2 data and the results for these tests are not reported.
	Study limitations:
	1a. Prospective enrolment but no mention of consecutive, no exclusion criteria stated HIGH
	1b. Patients all had suspected CAD but no breakdowns with chest pain provided. Patients were recruited on basis of referral for coronary angiography. HIGH
	2a. diagnostic thresholds not specified and unclear how those patients with insufficient border definition were classified. HIGH
	2b. LOW
	3a. Degree of stenosis measured manually with calipers. LOW
	3b. LOW
	4. LOW

Bibliographic reference	Author: Marangelli et al Detection of coronary artery disease by digital stress echocardiography: comparison of exercise, transesophageal atrial pacing and dipyridamole echocardiography. Year: 1994
Study type	Cross-sectional
Aim	To assess and compare the diagnostic potential of exercise, trans-esophageal atrial pacing and dipyridamole echocardiography in a clinical setting

Bibliographic reference	Author: Marangelli et al Detection of coronary artery disease by digital stress echocardiography: comparison of exercise, transesophageal atrial pacing and dipyridamole echocardiography. Year: 1994
Patient characteristics	Inclusion: - suspected CAD scheduled for CA evaluation of chest pain - underwent routine exercise echocardiography
	 Exclusion: Valvular heart disease; congenital heart disease, cardiomyopathies Previous history of MI Left ventricular wall motion abnormalities in baseline conditions Patients with technically inadequate resting echo images to assess left ventricular wall motion Other characteristics: Age in years (n=82) – mean (SD) 68 (8) Gender (n=82) – m/f (%) 69/13 (84% male)
Number of patients	 104 consecutive patients met inclusion/exclusion 82 (79%) agreed to undergo both transesophageal atrial pacing and dipyridamole echocardiography 60 (58%) included in final analyses (all patients who had usable results on all three index tests) 44 (42%) overall patient exclusions from analysis sample. Exclusion reasons as follows: Exercise (exclusions n=24): 4 due to musculoskeletal diseases 16 echo images were not interpretable 4 submaximal exercise yielded non-diagnostic results Dipyridamole echocardiography (exclusions n=3) 2 due to difficulties finding superficial veins for drug infusion 1 due to inadequate imaging Transesophageal atrial pacing (exclusions n=19) 9 unable to tolerate transesophageal catheter or electrical stimulation of oesophagus

bliographic reference	Author: Marangelli et al			
	Detection of coronary artery disease by digital stress echocardiography: comparison of exercise, transesophageal atrial pacing and dipyridamole echocardiography.			
	Year: 1994			
	- 7 difficulty obtaining stable atrial capture			
	- 3 appearance of 2 nd degree Luciani-Wenckebach atrioventricular block at suboptimal heart rates			
dex test	Exercise stress			
	- Echo performed using standard equipment (Hewlet Packard Sonos 1000).			
	- Digital and video imaging of both apical (four-chamber, two-chamber and long-axis views) and tomographic planes			
	 After echo at rest, patients exercised on treadmill (DelMar E17 and Cardioovit CS12/M, Excel software, Schiller) according to the Bruce protocol 			
	 Echocardiographic recording repeated post-exercise using same views as baseline, within first 2 minutes of stress interruption (95% within first minute) 			
	- Images also stored in quad screen format for rest vs. stress comparisons			
	Transesophageal atrial pacing (TAP)			
	- Bipolar catheter connected to transesophageal atrial stimulator (Arzco model 7A)			
	 Starting at 100bpm, heart rate was increased every 2 minutes by 10 beats/min until chest pain or severe wall abnormalities appeared or maximal step of 150bpm for 5 min was completed 			
	 Apical and tomographic planes (two- and four-chamber and long-axis) and precordial long or short-axis images recorded before and throughout TAP 			
	Dipyridamole echocardiography			
	- After baseline echocardiographic examination (apical two- and four-chamber, long-axis) and precordial long or short- axis dipyridamole was infused at 0.56mg/kg body weight in 4 mins			
	- Echo examination started immediately after start of infusion and continued throughout			
	- If by 8 minutes after start of infusion no ECG or echocardiographic wall motion abnormalities appeared, a second dose of 0.28mg/kg in 2 mins was administered			
	 Digital baseline images were visualised throughout and compared with stress wall motion images with videotape recording at 4 min intervals 			
	- Patients were monitored for 20 mins after end of drug infusion			

Bi

In

Bibliographic reference	Author: Marangelli et al			
	Detection of coronary artery disease by digital stress echocardiography: comparison of exercise, transesophageal atrial			
	pacing and dipyridamole echocardiography. Year: 1994			
		nitrates administered et	and of tast whore pase	
	- Ammophymne or r	intrates auministered et	end of test where neces	SSdfy
	All stress procedures per	formed after adequate v	withdrawal of all cardioa	active drugs.
	Interpretation:			
	• •			perienced observer independent of the person uding previous tests and ECG findings)
	 Left ventricular wall divided into 16 myocardial segments; wall motion score assigned to each (according to American Society of Echocardiography guidelines) 			
	- Positive test define	ed as onset of left ventri	cular wall motion abnor	rmalities
Reference standard (or Gold	Coronary angiography (CA)			
standard)	CAD defined as lumen narrowing ≥75% of one or more major epicardial vessels.			
	Multiple projections of coronary arteries obtained using Judkins technique.			
	Coronary vessels visually assessed by one experienced observer			
Time between testing & treatment	Dipyridamole and transesophageal atrial pacing echocardiography were scheduled to be performed in a random sequence at the same time on 2 consecutive days; 1 to 3 days before CA.			
Length of follow-up	Study dates: November 1991 to January 1993.			
Location	Italy (single centre)			
Diagnostic accuracy measures	(a) Exercise 2D echo (n=	60)*		
(2 x 2 table)		CAD present on CA	CAD absent on CA	
	+ve index test result	31 (TP)	3 (FP)	
	-ve index test result	4 (FN)	22 (TN)	
	Sensitivity 89%; specificity 88%			
	(b) Transesophageal atri	al pacing 2D echocardio	graphy (n=60)*	
		CAD present on CA	CAD absent on CA	

Bibliographic reference	Author: Marangelli et al Detection of coronary artery disease by digital stress echocardiography: comparison of exercise, transesophageal atrial pacing and dipyridamole echocardiography. Year: 1994 +ve index test result 29 (TP) 6 (FP) -ve index test result 6 (FN) 19 (TN) Sensitivity 83%; specificity 76%			
	(c) Dipyridamole 2D ech	CAD present on CA	CAD absent on CA	1
	+ve index test result	15 (TP)	2 (FP)	
	-ve index test result	20 (FN)	23 (TN)	
	to stop angina, ST depre No mention of adverse e	line required to stop cep ession or severe wall mot	ion abnormalities.	required nitroglycerine and n=2 required IV nitrates
Source of funding	Not reported			
Comments	Only 60 patients (58%) were included in analyses due to exclusions for various test- and non-test specific reasons (see 'Number of patients' above). All patients being assessed for chest pain, but limited reporting of other study sample characteristics Study limitations: 1a. LOW 1b.Patients recruited to study on basis of referral for coronary angiography HIGH 2a. LOW 2b. LOW 3a. Not clear if observer assessing CA results was independent of the one who interpreted index tests - HIGH 3b. LOW 4. LOW			

Author: Mazaika

Bibliographic refer

Dibliographic reference	Uses and limitations of high dose dipyridamole stress echocardiography for evaluation of coronary artery disease.
	Year: 1991
Study type	Cross-sectional
Aim	To establish the sensitivity and specificity, safety and efficacy of high dose dipyridamole stress echocardiography in the detection of CAD and to compare these results with dipyridamole stress electrocardiography (ECG) and exercise.
Patient characteristics	Inclusion:
	- Patients referred for coronary angiography for suspected CAD
	Exclusion:
	- Cardiac failure
	- Unstable angina
	- Bronchospasm
	- Left bundle branch block
	 - ≥1mm ST segment deviation from isoelectric on the baseline ECG
	Other characteristics:
	Age in years (n=55) – mean (SD) 55 (9)
	Gender (n=55) – m/f (%) 41/14 (75% male)
Number of patients	58 patients screened for inclusion
	55 included in analyses
	3 exclusions due to inadequate baseline imaging
Index test	High dose dipyridamole stress echocardiography
	- Antianginal medication and caffeine avoided prior to examination
	- After collection of baseline cross-sectional echocardiographic data, iv dipyridamole (0.6mg/kg) was infused over 5
	mins, followed by a 5 minute interval, then a further 0.4mg/kg infusion over 5 minutes
	- Continuous cross-sectional echocardiography conducted for up to 30 mins after administration of dipyridamole

Bibliographic reference	Author: Mazeika et al			
	Uses and limitations of high dose dipyridamole stress echocardiography for evaluation of coronary artery disease.			
	Year: 1991			
	 Parasternal long- and short-axis views and the apical four- and two-chamber views obtained; images recorded on videotape for analysis 			
	 Image analysis: Performed blind from video playback by two experienced observers – disagreements resolved by consensus 11 segment (Hammersmith Hospital) model of left ventricle applied to analysis of wall motion Echocardiograms read baseline and peak stress; each segment graded as normal / hyperkinetic / hypokinetic / akinetic 			
	/ dyskinetic	read baseline and peak s	tress; each segment gra	lded as normal / hyperkinetic / hypokinetic / akinetic
			-	otion compared with baseline, or
	(b) worsening asynergy (hypokinesis in any segment at baseline deteriorating to akinesis or dyskinesis with dipyridamole stress)			
Reference standard (or Gold	Coronary angiography (CA)		
standard)		Diagnostic C imaging syst	tem and Judkins' techni	que (multiple views).
		other results by a single		
	 CAD defined as ≥70% reduction in diameter of a major epicardial vessel 			
Time between testing & treatment	Mean of 17 days (SD 10) between CA and index test			
Length of follow-up	Study dates not reported	Study dates not reported		
Location	UK (single centre)			
Diagnostic accuracy measures (2 x 2 table)	High dose dipyridamole stress echocardiography			
		CAD present on CA	CAD absent on CA	
	+ve index test result	16	1	
	-ve index test result	24	14	
	Sensitivity 40%; specifici	ty 93%; PPV 94%; NPV 37	7%	

Bibliographic reference	Author: Mazeika et al Uses and limitations of high dose dipyridamole stress echocardiography for evaluation of coronary artery disease. Year: 1991
	Serious Adverse events: 1 cardiac arrest. Other Side effects: chest pain n=27, headache n=17, dizziness n=9, dyspnoea n=5, nausea n=5, arrhythmia n=4, hypotension with syncope n=2, vomiting n=1. No mention of adverse events in relation to ICA.
Source of funding	CORDA (heart charity)
Comments	Study limitations:1a. Not clear if patients were consecutively enrolled - UNCLEAR1b. 'Suspected CAD' study population (does not mention chest pain or give further clinical characteristics). Patients recruited on basis of referral for coronary angiography. HIGH2a. LOW2b. LOW3b. LOW3b. LOW4. LOW

Bibliographic reference	Author: Miszalski-Jamka et al Quantitative myocardial contrast supine bicycle stress echocardiography for detection of coronary artery disease Year: 2012
Study type	Cross-sectional
Aim	To determine the feasibility and accuracy of quantitative supine bicycle stress myocardial contrast echocardiography (MCE), and assess its incremental benefit over 2D echocardiography for detection of CAD.
Patient characteristics	Inclusion: - Suspected CAD and scheduled for coronary angiography

raphic reference	Author: Miszalski-Jamka et al Quantitative myocardial contrast supine bicycle stres	s echocardiography for detection of coron	ary artery disease
	Year: 2012		
	Exclusion:		
	- Known CAD including prior MI		
	- Poor acoustic window		
	 Contraindications to exercise testing 		
	- Contraindications to SonoVue (sulphur hexafluo	ride microbubbles for contrast imaging; Bra	icco, Milan)
	Other sharestaristics		
	Other characteristics: Age in years – mean (SD) 57 (12)		
	Gender – m/f (%) $47/14$ (77% male)		
	Background treatment (n=61), n (%):		
	- beta-blockers 44 (72%)		
	- angiotensin converting enzyme inhibitors 38 (62	%)	
	- calcium blockers 11 (18%)		
	- nitrates 15 (25%)		
	- statins 36 (59%)		
		n=61	
	Hypertension – n (%)	39 (64%)	
	Diabetes mellitus – n (%)	4 (7%)	
	Hypercholesterolemia – n (%)	51 (84%)	
	Cigarette smoking - n (%)	25 (41%)	
	Family history of CAD– n (%)	41 (67%)	
	Angina pectoris – n (%)	32 (53%)	
	BMI > 25 (kg/m2)	33 (54%)	
	Exertional dyspnoea	23 (38%)	

Bi

National Guideline Centre.	Bibliographic reference	Author: Miszalski-Jamka et al Quantitative myocardial contrast supine bicycle stress echocardiography for detection of coronary artery disease				
onal		Year: 2012				
Gu		NYHA class 1	16 (26%)			
ideli		NYHA class 2	29 (48%)			
ine	Number of patients	61 consecutive patients		-		
Cen	Index test	Supine Bicycle Stress MCE:				
tre		- Using Sonos 5500 (Philips Medical Systems, MA, USA)				
. 2016		- Antianginal medications not discontinued before exercise test.				
16		 Initial workload set at 50 W and increased in 25-W increments every 2 minutes until endpoints achieved, in accordance with AHA/ACC guidelines. 				
		- After obtaining peak-stress 2DE images, peak-stress MCE was acquired.				
		 Following termination of exercise, each subject remained supine on bicycle and another MCE was performed when subject's heart rate returned to pre-exercise value. 				
		Myocardial Contrast Echocardiography:				
		- Using low power imaging in apical four-chamber, two-chamber, and long-axis views				
		 SonoVue (Bracco) contrast agent administered via infusion pump (BR-INF100; Bracco, Geneva): initial bolus over 15 seconds then infusion at rate of 1.6 ml/min (adjusted to provide uniform myocardial contrast opacif without attenuation) 				
		 After reaching a steady state of myocardial contrast opacification, consecutive 5–10 high power frames (rindex 1.5) emitted to disrupt contrast within myocardium Subsequently, mechanical index switched back to low power to visualize myocardial contrast replenishmeters 				
		- Imaging sequences of at least 15 cardiac cycles (including stead	ly state, flash frames, ar	nd replenishment) were stored		

MCE assessment - Qualitative:

digitally for each apical view at peak exercise and post-stress.

- MCE sequences assessed offline for presence and location of WMAs (left ventricular opacification [LVO] component) and/or perfusion abnormalities (myocardial perfusion component) by 2 independent, experienced viewers blinded to other investigations and clinical data.

Bibliographic reference	Author: Miszalski-Jamka et al
	Quantitative myocardial contrast supine bicycle stress echocardiography for detection of coronary artery disease
	Year: 2012
	Wall motion abnormalities (WMAs)
	- Used a 17-segment model of left ventricle, and segments were assigned to coronary artery territories
	- WMAs scored as follows: (1) normal, (2) hypokinetic, (3) akinetic, (4) dyskinetic
	 Positive test result = increase in score from rest to stress in at least one segment.
	Perfusion abnormalities
	 Myocardial perfusion assessed in terms of contrast opacification and/or replenishment (uninterpretable segments excluded from analysis)
	 Contrast opacification of interpretable segments graded using a 3-point scale: 1 – normal, 2 – reduced, or 3 – none, based on relative assessment (in comparison with the best opacified segment)
	 Segmental replenishment evaluated in terms of number of heart cycles required to refill a segment after microbubb destruction.
	 A perfusion defect was considered present if peak-stress myocardial contrast opacification was graded as reduced o none and/or peak-stress contrast replenishment exceeded 3 cardiac cycles
	 Perfusion defects were defined as reversible when myocardial contrast opacification score was higher at peak-stress than at post-stress and/or when difference between peak-stress and post-stress contrast replenishment exceeded 0 cardiac cycles
	- A reversible perfusion defect in 1 segment was considered to indicate ischemia.
	- Cut-off values for replenishment analysis were determined in previous study using ROC and reference intervals analysis.
	Quantitative MCE Analysis:
	 Myocardial blood flow quantified using dedicated software (QLAB; Philips Medical Systems, Bothell, WA, USA) by an independent experienced observer blinded to other investigations and clinical data
	 MCE sequences were analysed in end systolic frames starting in frame immediately after the flash and including subsequent cardiac cycles, manually placing and tracking regions of interest within the myocardium of each left ventricular segment with careful exclusion of epicardial and endocardial borders
	 MCE intensity data in each left ventricular segment were automatically fitted to the monoexponential function y = A – exp(-ßt)] + C, where A represents the peak plateau signal intensity, ß is the rate of signal increase, and C the offset

Bibliographic reference	Author: Miszalski-Jamka	a et al		
	Quantitative myocardial contrast supine bicycle stress echocardiography for detection of coronary artery disease			
	Year: 2012 for signal intensity	(intercent at origin of r	enlenishment curve). Cu	urves not fitting the monoexponential function were
	considered uninte	· · •		
	 An index of myocardial blood flow was calculated as the product of A and ß. The A, ß, and Aß were expressed as average values of all segments in individual coronary artery territories. The A, ß, and Aß reserves were calculated as the ratio of peak stress to baseline values, respectively. ROC curves were used to determine the best cut-off values to identify ischemia. 			
Reference standard (or Gold	Coronary angiography			
standard)	CAD defined as stenosis of \geq 50% diameter			
	Performed by an experienced interventional cardiologist blinded to clinical and echocardiographic results			
	Undertaken with CAAS software (CAAS II; Pie Medical Imaging, Maastricht)			
Quantitative analysis - measurements expressed as % of diameter narrowing with the nearest normal-a reference			wing with the nearest normal-appearing region as a	
Time between testing & treatment	CA performed within 15	CA performed within 15 days of index test		
Length of follow-up	Study dates not reported			
Location	Poland (single centre)	Poland (single centre)		
Diagnostic accuracy measures	(a) Exercise myocardial contrast echo (MCE) - left ventricular opacification (LVO) analysis*			
(2 x 2 table)		CAD present on CA	CAD absent on CA	
	+ve index test result	32 (TP)	4 (FP)	
	-ve index test result	9 (FN)	16 (TN)	
	Sensitivity: 78%; specificity 80%			
				shaia*
	(b) Exercise myocardial contrast echo (MCE) - qualitative perfusion analysis*			
	+ve index test result	CAD present on CA 35 (TP)	4 (FP)	-
	-ve index test result	6 (FN)	16 (TN)	-
	Sensitivity 85%; specifici		TO (114)	
	Sensitivity 65%, specifici	LY 0070		

National Guideline Centre. 2016

	Author Microlaki Jowak	a at al			
Bibliographic reference	Author: Miszalski-Jamka et al Quantitative myocardial contrast supine bicycle stress echocardiography for detection of coronary artery disease Year: 2012 (c) Exercise myocardial contrast echo (MCE) - quantitative (Aß reserve) perfusion analysis*				
		CAD present on CA	CAD absent on CA		
	+ve index test result	38 (TP)	4 (FP)		
	-ve index test result	3 (FN)	16 (TN)		
	Sensitivity 93%; specificity 80%				
	Above results all for ≥50% stenosis.				
	Sensitivity only reported for ≥70% stenosis 89%, 89% and 94% respectively (unable to back calculate 2x2 table). No mention of side effects/adverse events.				
Source of funding	Not reported				
Comments	Study limitations:1a. LOW1b. Patients recruited of2a. LOW2b. LOW3a. LOW3b. LOW4. LOW	n basis of referral for co	ronary angiography HIGI	Н	

Dishographic reference	Author: Nixdorff et al. Head-to-head comparison of dobutamine stress echocardiography and cardiac computed tomography for the detection of significant coronary artery disease. Year: 2008
------------------------	---

	Author: Nixdorff et al.
Bibliographic reference	Author: Nixdorn et al. Head-to-head comparison of dobutamine stress echocardiography and cardiac computed tomography for the detection of significant coronary artery disease. Year: 2008
Study type	Cross-sectional
Aim	To compare the validity of dobutamine stress echocardiography (DSE) versus electron beam cardiac computed tomography (EBCT)* versus both together in a prospective study design to detect significant coronary artery disease
	*note: EBCT data not extracted as outside the remit of this review
Patient characteristics	Inclusion: - suspected CAD - admitted for elective, invasive coronary angiography as primary diagnostic procedure - stable, regional clinical condition - normal global left ventricular function in echocardiography
	 Exclusion: previous myocardial infarction, coronary intervention, or surgery severe arterial hypertension severe arrhythmia, atrial fibrillation, valve disease, contraindications to iv dobutamine or X-ray contrast
	Other characteristics: Mean age in years 62 Gender – m/f (%): 47/32 (60% male)
Number of patients	 79 consecutive patients 71 patients (90%) included in final analyses 8 exclusions due to technical issues (images not evaluable): atrial flutter during DSE (n=1)

Bibliographic reference	Author: Nixdorff et al.				
	Head-to-head comparison of dobutamine stress echocardiography and cardiac computed tomography for the detection of significant coronary artery disease.				
	Year: 2008				
	- suboptimal heart rate in DSE (n=2)				
	 developed limited echogenicity in DSE (n=2) 				
	- limited compliance in DSE (n=1)				
	 experienced respiratory artefacts in EBCT (n=2) 				
Index test	Dobutamine stress echocardiography				
	 Performed with HP Sonos 5500 (Philips, The Netherlands) 				
	- Dobutamine infusion: 5–40µg/kg/min (plus 0.25–1.0 mg atropine if necessary) as per standard protocol				
	- All echocardiographic images digitized and displayed as continuous cine loops using quad-screen display for review of				
	pre-, low, and high dose, as well as post-dobutamine infusion steps				
	Assessment and interpretation:				
	- Observers blind to other investigations				
	- Regional wall motion analysed according to 16-segment model of the American Society of Echocardiography				
	 A positive finding for significant CAD was defined by induced wall motion abnormalities in ≥1 segment 				
Reference standard (or Gold	Coronary angiography (CA)				
standard)	Quantitative CA using QuantCOr.QCA V 2.0 (Pie Medical Imaging, Maastricht, The Netherlands)				
	Observer blinded to the noninvasive tests				
	Significant CAD defined as coronary diameter reduction of ≥70% in at least 2 projections (NHLBI class II)				
Time between testing &	CA within 1-3 days of index test				
treatment					
Length of follow-up	Study dates not reported				
Location	Not reported (study authors from Germany, Italy and Belgium)				
Diagnostic accuracy measures	Dobutamine stress echocardiography (n=71)*				
(2 x 2 table)	CAD present on CA CAD absent on CA				

Bibliographic reference	Author: Nixdorff et al. Head-to-head comparison of dobutamine stress echocardiography and cardiac computed tomography for the detection of significant coronary artery disease. Year: 2008			
	+ve index test result	23 (TP)	6 (FP)	
	-ve index test result	10 (FN)	32 (TN)	
	Sensitivity 70%; specifici	Sensitivity 70%; specificity 84%; PPV 79%; NPV 76%		
		Side effects: atrial flutter n=6, No mention of adverse events in relation to ICA.		
Source of funding		Supported by grants from the ELAN-Program, University of Erlangen, Germany		
Comments	Study limitations: 1a. LOW 1b Not clear whether pa	Study limitations: 1a. LOW 1b Not clear whether patients have chest pain ('suspected CAD' but no further clinical breakdown and limited reporting of other patient characteristics). Patients recruited on basis of referral for coronary angiography. HIGH. 2a. LOW 2b. LOW 3a. LOW 3b. LOW		

Bibliographic reference	Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, et al. (2010) Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: a practical approach. Journal of the American Society of Echocardiography 23: 1103-1108.
Study type	Cross-sectional
Aim	To investigate whether diastolic dyssynchrony imaging is useful for the objective interpretation of dobutamine stress echocardiography

Bibliographic reference	-	M, et al. (2010) Objective interpretation of dobutamir g: a practical approach. Journal of the American Societ			
Patient characteristics	Inclusion:				
	 referred for dobutamine stress echocardiogram 	phy for suspected CAD			
	 agreed to undergo coronary angiography 				
	Exclusion:				
	 abnormal echocardiographic results at rest (w restrictive cardiomyopathies, left ventricular h 	all motion abnormalities, significant valvular diseases, d	ilated o		
	 previous MI, coronary angioplasty or bypass g 				
	- atrial fibrillation or flutter	in the second			
	 pacemaker implantation 				
	- left bundle branch block				
	- congestive heart failure				
	Other characteristics:	n=59			
	Mean age in years (SD)	64 (11)			
	Gender – m/f, (%)	39/20 (66% male)			
	Hypertension	46 (78%)			
	Dyslipidaemia	36 (61%)			
	Hyperuricemia	10 (17%)			
	Diabetes mellitus	27 (46%)			
	Current smoker	22 (37%)			
	Medication:				
	- beta-blockers	8 (14%)			
	- Ca antagonists	27 (46%)			
	- nitrates	23 (39%)			

Bibliographic reference	Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, et al. (2010) Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: a practical approach. Journal of the American Society of Echocardiography 23: 1103-1108.
	59 patients included in analysis 3 exclusions due to inadequate ultrasound images
Index test	Dobutamine stress echocardiography Standard dobutamine stress echo protocol used: - Dobutamine given in 3 min increments from 10-40µg/kg/min - Up to 2mg atropine given, as needed, to achieve 85% of age-predicted maximum heart rate Routine echocardiography and colour-coded tissue Doppler imaging (TDI): - Using Aplio SSA-770A (Toshiba, Japan) with 3.6NHz transducer - Performed in standard apical planes, including four- and two-chamber and long-axis views - TDI images digitally recorded at both rest and peak dobutamine Two methods of analysis were compared: (i) Classic wall motion analysis: - Assessed by expert blinded to clinical and angiographic data - Regional wall motion score obtained for each segment of standard 16 segment model (myocardial performance classed as: normal, mildly hypokinetic, severely hypokinetic, akinetic, dyskinetic) - Positive test indicated by new or worsening wall motion abnormalities with stress (ii) Diastolic dyssynchrony imaging: - Utilised the stored digital TDI images at rest and peak stress and software developed by study team - Software provides a measure of post-systolic shortening: delay of the displacement peak from the end-systole is colour coded from green (no delay) to red (delay greater than selected time window) - Positive test indicated when the part of the left ventricle was segmentally colour-coded red - Assessed intra-observer agreement (97% n=30); inter-observer agreemen
Reference standard (or Gold standard)	Coronary angiography (CA) Quantitative CA using an automated edge detection system (CASS; Pie Medical Imaging BV, Maastricht)

Bibliographic reference	Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, et al. (2010) Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: a practical approach. Journal of the American Society of Echocardiography 23: 1103-1108.				
	Performed by independe	ent expert cardiologist bl	inded to other investiga	tions and clinical data	
	Significant CAD defined a	as >50% maximal lumina	l stenosis in any plane		
Time between testing &	CA performed within 3 weeks of dobutamine stress echocardiography				
treatment					
Length of follow-up	Study dates: May 2006 to July 2008				
Location	Japan (single centre)				
Diagnostic accuracy measures	(i) Dobutamine stress echocardiography – analysis by diastolic dyssynchrony imaging at peak dobutamine stress, with				
(2 x 2 table)	time window of 80msec used as cut-off value (n=59)*				
		CAD present on CA	CAD absent on CA		
		00 (TD)	= (==)	1	

Chest pain of recent onset Clinical evidence tables

	CAD present on CA	CAD absent on CA
+ve index test result	33 (TP)	5 (FP)
-ve index test result	4 (FN)	17 (TN)

Sensitivity 89%; specificity 77%; PPV 79%; NPV 81%

(ii) Dobutamine stress echocardiography – classic wall motion analysis (n=59)*

	CAD present on CA	CAD absent on CA
+ve index test result	26 (TP)	3 (FP)
-ve index test result	11 (FN)	19 (TN)

Sensitivity 70%; specificity 86%; PPV 87%; NPV 62%

*=calculated by reviewer

No serious adverse events associated with dobutamine infusion.

CP and early termination n=7, wall motion abnormalities n=4, intolerable heart pounding n=10.

No mention of any adverse events with ICA.

Chest pain of recent onset Clinical evidence tables

Bibliographic reference	Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, et al. (2010) Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: a practical approach. Journal of the American Society of Echocardiography 23: 1103-1108.
Source of funding	Not reported
Comments	Study limitations:1a. LOW1b. Patient population are 'suspected CAD' but chest pain is not reported as a symptom at baseline - UNCLEAR2a. LOW2b. LOW3a. Not clear if analysis by diastolic dyssynchrony imaging was performed blind to results of angiographic testing and classic wall motion analysis of stress echo (which it was also being compared with) - UNCLEAR3b. LOW4. LOW

Bibliographic reference	Author: Parodi et al High dose dipyridamole myocardial imaging: simultaneous sestamibi scintigraphy and two-dimensional echocardiography in the detection and evaluation of coronary artery disease. Year: 1999
Study type	Cross sectional
Aim	To compare the relative accuracy of high-dose dipyridamole stress imaging with 2D-Echo and sestamibi perfusion scintigraphy in detecting coronary artery disease.
Patient characteristics	Inclusion Prospective patients with history of chest pain on effort. Exclusion No previous MI, clear ECG signs of previous MI, unstable angina, heart failure, severe hypertension, valvular or other cardiac diseases, aged >70 years or taking methylxantines were not included. Previous PCI, CAGG.

National Guideline Centre. 2016

Bibliographic reference	Author: Parodi et al High dose dipyridamole myocardial imaging: simultaneous sestamibi scintigraphy and two-dimensional echocardiography in the detection and evaluation of coronary artery disease. Year: 1999
	Other Men/Women 81/20. Mean age (y) (SD) 55 (9)
Number of patients	101
Index test	Calcium antagonists and nitrates were withdrawn 24 hrs before each tests. In patients receiving beta-blockers, therapy was discontinued 48hrs before tests.
	Patients underwent MCE and SPECT however only the results of MCE are reported here. This is because this study population was part of previously published work (Parodi et al 1991) whereby identical results for SPECT are reported. See separate evidence table for this study.
	Echo IV dipyridamole 0.56mg/kg/min over 4 mins (low dose) was administered the morning after an overnight fast (plus avoidance of caffeine for min 3hrs prior to test). ECG and BP monitoring took place. The test was interrupted if there was down sloping ST segment depression or if there was angina-like chest pain. In the absence of signs or symptoms of ischaemia, after a 4 min interval, an additional dose of 0.28mg/kg dipyridamole was given over 2 mins.
	 Echos continually regarded during stress test and up to 15mins after. Appearance of wall motion abnormalities or extension of resting dissynergies were identified on multiple views. The studies were then analysed by to independent observers blinded to other test results. LV was divided into 13 segments (adapted American Soc. Of Echocardiography) to match nuclear segmentation and scored as follows. Wall motion was graded as 1=normal/hyperkinetic, 2=hypokinetic, 3=akinetic, 4=dyskinetic. The test was considered positive for myocardial ischemia in the presence of transient wall motion abnormalities. A wall motion index was derived by summing the total scores from all segments and dividing by number of interpretable segments. Each score was expressed as a percentage of maximal possible score.
Reference standard (or Gold standard)	Coronary Angiography Multiple projections and biplane contrast using Judkins or Sones technique. Anatomy was evaluated quantitatively by two experienced, independent observers in each centre, blinded to all other test/clinical data. Disagreement was resolved by consensus. Coronary artery stenosis was considered significant in the presence of luminal diameter narrowing of >50%

Bibliographic reference	Author: Parodi et al				
	High dose dipyridamole myocardial imaging: simultaneous sestamibi scintigraphy and two-dimensional echocardiography in the detection and evaluation of coronary artery disease.				
	Year: 1999 (visual assessment).				
	Duke scoring system was also used to evaluate number of diseased vessels, location of diseased vessels and involvement of				
	the left anterior descending coronary artery. (0-100 scale 0=no disease 100=most severe disease).				
Time between testing &	Within 3 weeks.				
treatment					
Length of follow-up	Study duration not reported				
Location	7 centres, Italy.				
Diagnostic accuracy measures	21 patients had non-significant lesions and 80 had significant lesions. (37 had single, 19 double and 24 triple vessel disease).				
(2 x 2 table)					
	TP FP FN TN * Sens% Spec%				
	dipyridamole stress echo 62 5 18 16 78.0 76.0				
	No serious adverse events after low or high dose dipyridamole.				
	Minor side effects: headache, flushing, nausea (52 and 57%)				
	No mention of adverse events associated with ICA.				
Source of funding	No mention				
Comments	Study limitations:				
	1a. People aged >70 were excluded. Valid limitation? UNCLEAR				
	1b. All had history of typical chest pain. Unclear whether patients were recruited on basis of referral for coronary				
	angiography. UNCLEAR.				
	2a. Carried out in 7 institutions with documented variability in quality control of echocardiography procedures/readings. UNCLEAR				
	2b. LOW				
	3a. LOW				
	3b. LOW				

Bibliographic reference	Author: Parodi et al
	High dose dipyridamole myocardial imaging: simultaneous sestamibi scintigraphy and two-dimensional echocardiography in the detection and evaluation of coronary artery disease.
	Year: 1999
	4. LOW

Bibliographic reference	Author: San Roman et al . Dipyridamole and Dobutamine-atropine Stress Echocardiography in the Diagnosis of Coronary Artery disease Year: 1996
Study type	Cross-sectional
Aim	To compare the usefulness of dipyridamole echocardiography, dobutamine-atropine echocardiography, and exercise stress testing in the diagnosis of coronary artery disease and to analyse the agreement among the tests.
Patient characteristics	Consecutively enrolled patents Men 57, Women 45 with mean (SD) age 64 (11) years Admitted to the hospital for evaluation of chest pain and had no previous diagnosis of CAD.
	 Exclusion: Previous MI, proven CAD, cardiac failure, angina uncontrolled with medical treatment, congential or valvular disease and cardiomyopathy. Other characteristics Chest pain on exertion n=25, at rest in 61 and both on exertion and at rest in 16. Patients were receiving antianginal treatment when indicated by their referring physicians (21 beta-blockers, 35 on calcium)
	antagonists and 55 on no treatment).
Number of patients	102
Index test	 (a) Dipyridamole echocardiography – (index test 4b) Dipyridamole was infused 0.84mg/kg over 5 mins. IV aminophylline was given when myocardial ischemia developed. Nitroglycerin was administered if needed. (b) Dobutamine echocardiography – (index test 4b)

Bibliographic reference	Author: San Roman et al . Dipyridamole and Dobutamine-atropine Stress Echocardiography in the Diagnosis of Coronary Artery disease Year: 1996
	Dobutamine was administered IV at 10mcg/kg/min and was increased at 10mcg increments up to max 40mcg/kg/min which was maintained for 6 mins. 1mg atropine was infused when the test result was still negative and HR was under 85% of age- gender-predicted max. HR. Propranolol (0.5-1.0mg IV) was given if a positive response appeared.
	Infusions of both the above medications were immediately interrupted if areas of transient asynergy, severe hypertension, severe hypotension or sustained ventricular arrhythmias developed.
	2D Echocardiographic monitoring was performed during and up to 10 mins after dipyridamole or dobutamine drug infusion. New wall motion abnormalities were sought.
	BP and 12 lead-ECG were obtained every 3mins.
	All studies were evaluated by 2 independent and experienced reviewers who were blinded to patients' clinical data.
	Segmentation was carried out according to American Society Echocardiography recommendations. Wall motion was graded as normal, mild hypokinesia, severe hypokinesia, akinesia and dyskinesia. A test result was considered positive when areas of transient asynergy were visualized in one or more segments that were absent or of lesser degree in the baseline examination. The absence of hyperkinesia in response to dobutamine infusion was not interpreted as a positive result.
Reference standard (or Gold	Coronary Angiography
standard)	Carried out on all patients using Judkin's technique. Coronary angiograms were evaluated by hand-held electronic calipers. Significant coronary stenosis was considered when at least 50% reduction in the luminal diameter in 1 or more of the major vessels or the main branches was present.
Time between testing & treatment	Maximum of 7 days, performed in random order.
Length of follow-up	Study duration not specified.
Location	Madrid, Spain.
Diagnostic accuracy measures (2 x 2 table)	Per patient analysis.
	63 patients had significant CAD.

Bibliographic reference	Author: San Roman et al . Dipyridamole and Dobutamine-atropine Stress Echocardiography in the Diagnosis of Coronary Artery disease								
	Year: 1996								
		ТР	FP	FN	TN *	Sens%	Spec%		
	Dipyridamole	49		1	14	38	77.0	97.0	
	Dobutamine-atopine	4	9	2	14	37	77.0	95.0	
	No cardiac events occ	urred	betw	een tes	ts.				
(7 50 M	(7% vs 2%). During de severe hypotension a	The incidence of major complications was slightly higher during dobutamine-atropine testing compared with dipyridamole (7% vs 2%). During dobutamine-atropine, one patient had left-sided heart failure, 2 needed pharmacologic support due to severe hypotension and 2 developed a sustained ventricular tachycardia. 2 Patients had increased systolic arterial pressure. Minor side effects with both drugs were palpitations, headache, nausea, vomiting, flushing (dipyridamole 37%, dobutamine-atropine 35%)							
Source of funding	Not reported								
Comments	Study limitations:								
	1a. LOW								
	1b. UNCLEAR whethe	r recru	uitmer	nt was k	based on	referral f	or coronar	ry angiography.	
	2a. LOW								
	2b. LOW								
	3a. LOW								
	3b. LOW								
	4. LOW								

Bibliographic reference	Author: Severi et al
	Diagnostic and Prognostic Value of Dipyridamole Echocardiography in Patients With Suspected Coronary Artery Disease. Comparison with Exercise Electocardiography. Year: 1993

Bibliographic reference	Author: Severi et alDiagnostic and Prognostic Value of Dipyridamole Echocardiography in Patients With Suspected Coronary Artery Disease.Comparison with Exercise Electocardiography.Year: 1993
Study type	Cross sectional
Aim	To assess the relative diagnostic and prognostic accuracies of high dose dipyridamole echocardiography.
Patient characteristics	1,049 inpatients without previous bypass surgery admitted to coronary clinic between 1986 and June 1991 for coronary angiographic evaluation because of chest discomfort were initially considered.
	Inclusion criteria
	History of chest pain, off antianginal therapy for at least 2 days (1 week for beta blockers), no previous myocardial infarction and/or obvious regional left ventricular dyssynergy of contraction at baseline and acceptable acoustic window under resting conditions.
	Exclusion
	Unequivocal history of previous MI or ECG evidence of previous transmural MI, unstable angina, need to continue antianginal or xanthine meds, inability to exercise adequately or hypertension or presence of ECG alterations preventing interpretation of the ECG, technically poor acoustic window at baseline and presence of an obvious regional dyssenergy detected by 2D echo under resting conditions.
	Clinical characteristics
	Age, Y (mean (SD)) 55 (4.1)
	Sex male/female 307/122
	Family history of IHD (no (%)) 194 (45)
	Smoking 238 (55)
	Cholesterol 66 (15)
	Diabetes 44(10
	Obesity 63(14)
	Hypertension 124 (28)
	Canadian Angina class
	1 - 65(15)

Bibliographic reference	Author: Severi et al
	Diagnostic and Prognostic Value of Dipyridamole Echocardiography in Patients With Suspected Coronary Artery Disease.
	Comparison with Exercise Electocardiography.
	Year: 1993
	2 – 237 (55)
	3 – 127 (29)
	4
	Clearly typical angina 132 (30)
	Abnormal resting ECG 138 (32)
Number of patients	429
Index test	Dipyridamole echo (performed within one week of coronary angiography)
	2D with 12 lead ECG monitoring performed in combination with a dipyridamole infusion 0.56mg/kg over 4 mins. Followed by 4 mins of no dose then 0.28mg/kg in 2 mins. Echocardiograms were obtained during and up to 10 mins after dipyridamole.
	Wall motion score index was derived by the summation of individual segment scores divided by the number of interpreted
	segments (score 1= hyperkinesis; score 2=hypokinetic, marked reduction in endocardial motion, score 3=akinetic, virtual
	absence of inward motion or score 4=dyskinetic, paradoxical wall motion away from left ventricular center in systole).
	Inadequately visualised segments were not scored.
Reference standard (or Gold	Coronary angiography
standard)	Judkins or Sones technique. A vessel was considered to have significant obstruction if its diameter was narrowed by ≥75%
	with respect to the prestenotic tract (50% for left main). Two independent observers who were blind to results of index
	tests.
Time between testing &	Within 1 week
treatment	
Length of follow-up	Study duration 1986 and June 1991
Location	Italy
Diagnostic accuracy measures	TP FP FN TN * Sens% Spec%
(2 x 2 table)	Dipyridamole echo 185 18 62 165 75.0 90.0
	No major side effects reported for index test or reference standard.

Bibliographic reference	Author: Severi et al
	Diagnostic and Prognostic Value of Dipyridamole Echocardiography in Patients With Suspected Coronary Artery Disease. Comparison with Exercise Electocardiography.
	Year: 1993
	3 patients were unable to tolerate the higher dose of dipyridamole but their results were still included in the analysis.
	Minor side effects, excessive tachycardia and palpitations n=1, hypotension and symptomatic bradycardia n=2.
Source of funding	Not mentioned
Comments	Study limitations:
	1a. appears prospective but consecutive sample not specifically mentioned. Known CAD not clearly part of exclusion criteria. HIGH
	1b. Patients recruited on basis of referral for coronary angiography HIGH.
	2a. LOW
	2b. LOW
	3a. LOW
	3b. LOW
	4. LOW

Bibliographic reference	Author: Shaikh et al Feasibility, safety and accuracy of regadenoson-atropine (REGAT) stress echocardiography for the diagnosis of coronary artery disease: an angiographic correlative study. Year: 2014			
Study type	Cross-sectional			
Aim	To study the feasibility, safety, and accuracy for CAD detection of the REGAT stress echocardiography protocol (regadenoson (REG) plus adjunctive atropine (AT) to achieve adequate chronotropy in addition to vasodilator stress), using coronary angiography (CA) as the gold standard.			
Patient characteristics	Inclusion: - aged ≥18 years old with suspected CAD - scheduled for a clinically indicated cardiac catheterization (with or without a prior functional stress imaging study)			

Bibliographic reference	Author: Shaikh et al					
	Feasibility, safety and accuracy of regadenoson-atropine (REGAT) stress echocardiography for the diagnosis of coronary					
	artery disease: an angiographic correlative study.					
	Year: 2014					
	Exclusion:					
	 history of acute MI, unstable angina, prior percutaneous coronary intervention in last 3 months, non-sinus rhythm left bundle branch block, electronic paced rhythm, or bypass surgery 					
	 typical listed contraindications to REG and AT 					
	- patients with bronchospastic lung disease					
	Other characteristics:					
	Age in years – mean (SD): 61 (7)					
	Gender – m/f (%): 26/19 (58% male)					
	Body Surface Area (m2) – mean (SD): 2.04 (0.23)					
	Dyslipidaemia – n/N (%): 40/45 (89%)					
	Hypertension n/N (%): 31/45 (69%)					
	Diabetes n/N (%): 16/45 (36%)					
	Family history of CAD– n/N (%): 29/45 (64%)					
	Smoker– n/N (%): 6/45 (13%)					
	History of stroke– n/N (%): 2/45 (4%)					
	History of CHF– n/N (%): 1/45 (2%)					
	Background treatment– n/N (%)					
	- Aspirin use 36/45 (80%)					
	- Statin use 31/45 (69%)					
	- Beta blocker use 29/45 (64%)					
	- Ace inhibitor or angiotensin receptor blocker use 21/45 (47%)					
	Background diagnostics – n/N (%)					
	 Prior exercise stress echocardiogram 17/45 (38%) 					
	- Prior pharmacologic MPI 7/45 (16%)					
	- Prior dobutamine stress echocardiogram 7/45(16%)					

Bibliographic reference	Author: Shaikh et al Feasibility, safety and accuracy of regadenoson-atropine (REGAT) stress echocardiography for the diagnosis of coronary artery disease: an angiographic correlative study. Year: 2014 - Prior exercise MPI 5/45 (11%)
	 Prior treadmill ECG 2/45 (4%) Prior regadenoson PET stress 1/45 (2%) Total number of prior positive stress tests 30/45 (67%)
Number of patients	 45 patients Note: 54/1596 consecutive patients (3.4%) met study inclusion/exclusion criteria and were initially enrolled; 9 subsequent exclusions due to: severe hypertension (1) increased pulmonary artery pressure (1) tachycardia (1) admitted for syncope day of scan (1) glaucoma (2) withdrew consent (3)
Index test	 Stress echocardiography using regadenoson (REG) plus atropine (AT) drug protocol Standard echocardiographic imaging planes were performed at rest using Acuson Sequia C512 (Siemens Medical Solutions, Malvern, USA). All patients required to stop beta-blockers and nitrates at least 24hr prior to study. Atropine (AT) used as follows: 5 initial patients: 0.25mg doses cumulative to 2mg; 4 patients (to test safety): 0.5 boluses to total of 2mg; 36 patients: 1mg bolus x 2 After administration of 2mg AT, a single iv bolus dose of 400µg of regadenoson (REG) over 10 seconds was given followed by a saline flush

Bibliographic reference	Author: Shaikh et al			
				ss echocardiography for the diagnosis of coronary
	artery disease: an angio Year: 2014	graphic correlative stud	y.	
	 Standard stress ec obtained 30-40 se Additional images Recovery images c 	conds later for side-by-si	ide digital comparison t REGAT to document any e was around 100bpm	iews and parasternal long and short axis windows) o rest images y new changes not noted in initial imaging.
	(disagreements re - Analysed off-line c - Standard 16-segm	solved by consensus) on a digital workstation (ent model used for left v	Syngo Dynamics, Sieme ventricular wall motion	readers blinded to clinical and angiographic data ens Medical Solution, Malvern, USA) and wall motion score index normality seen in 2 or more adjacent myocardial
Reference standard (or Gold standard)	Coronary angiography (CAD defined as >70% lur	-	onary vessel or >50% let	ft main stenosis.
Time between testing &	All patients had CA withi	n 7 days of index test.		
treatment	If CA was performed on s	same day, there was a m	inimum recovery perio	d of one hour after REGAT prior to CA.
	Images assessed qualitat	ively by independent an	giographer blinded to c	linical and echo data.
Length of follow-up	Study dates: October 200	09 and January 2012		
Location	USA (single centre)			
Diagnostic accuracy measures (2 x 2 table)	Stress echocardiography	y using regadenoson (RE	G) plus atropine (AT)*	
		CAD present on CA	CAD absent on CA	
	+ve index test result	14 (TP)	3 (FP)	

Bibliographic reference	Author: Shaikh et al Feasibility, safety and accuracy of regadenoson-atropine (REGAT) stress echocardiography for the diagnosis of coronary artery disease: an angiographic correlative study. Year: 2014
	-ve index test result 9 (FN) 19 (TN)
	Sensitivity 60.9%; specificity 86.4% Safety analysis: dry mouth n=28, shortness of breath n=27, headache n=20, dizziness n=18, chest pain n=13, flushing n=9, blurry vision n=2, aminophylline use n=9, MI/death n=0. No mention of adverse events associated with ICA.
Source of funding	Astellas Pharma US, Inc.
Comments	Study terminated early due to slow recruitment (intended to recruit 110 patients) Only 30% of tested patients achieved target heart rate – may have affected sensitivity A study author receives research grants from funders (Astellas Pharma US, Inc)
	 Study limitations: 1a. Patient recruitment was not consecutive; high number of patients refused to participate due to burden of testing or unwillingness to undergo a previously untested combination of agents (REG + AT); high proportion of study sample (67%) had positive prior tests – HIGH 1b. Unclear population applicability – 'suspected CAD'; no symptom breakdown given; chest pain not mentioned as a criterion. Patients recruited on basis of referral for coronary angiography. HIGH. 2a. LOW 2b. LOW
	3a. LOW 3b. LOW
	4. LOW

*=calculated by reviewer

H.4.4 Cardiac magnetic resonance (perfusion)

Bibliographic reference	Author: Kawase et al Assessment of Coronary Artery Disease with Nicorandil Stress Magnetic Resonance Imaging Year: 2004
Study type	Cross sectional
Aim	To evaluate the diagnostic accuracy of nicorandil stress perfusion MRI in detecting significant coronary stenosis in patients with suspected CAD.
Patient characteristics	Inclusion Consecutive patients who underwent coronary angiography for assessment of coronary artery disease. Exclusion History of MI, atrial fibrillation, ventricular extra-systole or contraindications to MR examination (claustrophobia, artificial pacemaker). Other Male/Female 29/21 Mean age (SD) 66.5 (11.7)
Number of patients	50
Index test	Stress MRI 1.5tesla (Philips) scanner used. Perfusion was assessed with a multi-slice turbo field echo with multi shot echo-planar- imaging. Immediately after a bolus dose of 0.1mg/kg of nicorandil diluted to 1mg/ml with physiological saline was intravenously injected for 5 seconds, breath-held dynamic MR image acquisition was initiated while 0.1ml gadolinium based contrast material was injected into the antecubital vein at 4ml/s. Breath-hold was from the start of the image acquisition for as long as possible. Cine images of cardiac function were obtained. After 10 minutes (to allow for clearance of contrast agent) the perfusion scan at rest was repeated. Images were evaluated by two readers blinded to other imaging results and clinical history. Rest and stress perfusion images were compared to differential low enhancement caused by coronary artery stenosis from artifacts. Segments showing reduced peak signal intensity or delayed wash-in when stressed by not at rest were regarded as pathological. Coronary artery territories were defined according to AHA guidelines.
Reference standard (or Gold standard)	Coronary angiography Performed in left and right coronary arteries according to standard Judkins technique.

Bibliographic reference	Author: Kawase et al Assessment of Coronary Artery Disease with Nicorandil Stress Magnetic Resonance Imaging
	Year: 2004
	Quantitative analysis of coronary angiograms was carried out using CMS analysis software. Luminal diameter of stenosed artery showing maximal severity was measured at end diastole. Significant CAD was defined as 70% or more of lumen diameter stenosis.
Time between testing & treatment	Within 1 week
Length of follow-up	Study duration / dates not reported
Location	Osaka, Japan
Diagnostic accuracy measures	Stress perfusion MRI (nicorandil)
(2 x 2 table)	TP 31, FN 1, FP 2, TN 16
	Sensitivity 93.4% Specificity 94.1%
	No adverse effects during nicorandil stress in any patients.
Source of funding	Not mentioned
Comments	Study limitations
	1a. LOW
	1b. No mention of chest pain in the recruited patients (only suspected CAD). Patients recruited on basis of referral for
	coronary angiography. HIGH
	2a. LOW
	2b. LOW
	3a. LOW
	3b. LOW
	4. LOW

Bibliographic reference	Author: Klein et al.
	Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in
	patients with suspected coronary artery disease. Journal of Cardiovascular Magnetic Resonance 10: 4554
	Year: 2008
Study type	Cross sectional
Aim	To assess the feasibility and diagnostic accuracy of CMR stress/res adenosine perfusion, infarct imaging and coronary angiography and their combination for the detection of significant stenosis in patients with suspected CAD scheduled for invasive coronary angiography.
Patient characteristics	Inclusion
	Consecutive patients with suspected CAD who were referred for invasive coronary angiography were prospectively included.
	Exclusion
	Contraindications for CMR, known myocardial infarction, atrial fibrillation, unstable angina, Av block, obstructive lung
	disease or claustrophobia.
	Other
	Age 60 (10) (37-78)
	BMI kg/m ² mean (SD) 27.6 (4.1)
	N (%)
	Typical angina 30 (56) (significantly more people with angina in the group who had CAD) Atypical angina 15 (28)
	Dyspnoea on exertion 21 (39) (significantly fewer people with dyspnoea in the group who had CAD)
	Diabetes 12 (22)
	Hypertension 37 (69) (significantly more people with hypertension in the group who had CAD)
	Smoker 18 (33)
	Hypercholesterolaemia 41 (76)
	Family history 17 (31)
	Pathological ECG 17 (31)
Number of patients	54
Index test	MRI (CMR)

	Author: Klein et al.
Bibliographic reference	Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. Journal of Cardiovascular Magnetic Resonance 10: 4554 Year: 2008
	Supine position. 1.5Tesla Philips scanner. A sufficient number of strictly transversal slices (120-140) were obtained to cover the whole heart.
	For the visual assessment of coronary artery stenosis quality was graded as excellent, good, moderate or non-diagnostic. The latter were not included in the analysis.
	For the final results only vessels with a diameter ≥2mm (suitable for revascularisation) were included.
	PERF – first pass stress perfusion – gating window 6mm. 1 saturation per pulse per slice, 2 short axis slices/heart beat) was begun after 3 minutes of IV adenosine infusion (140µg/min/kg body weight. After 10mins, rest perfusion (0.05mmol/kg GD-BOPTA) was performed, followed by additional 0.1mmol/kg.
	Late Gadolinium enhancement (LGE) was imaged in short axis and the standard long axis views after 10 minutes using an inversion recovery 3D turbo-gradient-echo-technique.
	A perfusion defect was graded visually as sub-endocardial (<75%) or transmural (≥75%). Any regional stress induced defect or LGE in any segment was considered positive.
	All CMR images were evaluated visually on ViewForum using 16 segment model by 2 experienced observers blinded to the other tests results.
	For the combination of tests, a patient was classified as having CAD if any of the tests was positive.
Reference standard (or Gold	Coronary angiography
standard)	Two experienced interventional cardiologists visually evaluated the cardiograms. They were blinded to the results of the other tests. A haemodynamically significant coronary stenosis was defined as >50% luminal narrowing.
Time between testing & treatment	Within 24 hours
Length of follow-up	Duration not specified.
Location	Hamburg, Germany
Diagnostic accuracy measures (2 x 2 table)	26/54 had significant CAD.
	5 patients were not included in PERF analysis (not performed in 3 patients due to possible aortic stenosis not previously known or dyspnoea and analysis could not be performed in 2 due to non-diagnostic image quality).

Bibliographic reference	Author: Klein et al. Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. Journal of Cardiovascular Magnetic Resonance 10: 4554 Year: 2008
	8 patients were not included in MRCA due to non-diagnostic images.
	CMR/PERF (n=49)
	TP 20, FP 3, FN 3, TN 23*
	Sensitivity and specificity 87% and 88% respectively. (Accuracy 88%).
	CMR with LGE (n=54)
	TP 13, FP 1, FN 13, TN 27*.
	Sensitivity and specificity 50% and 96% respectively. (Accuracy 88%).
	MR Coronary Angiography (MRCA) (n=46)
	TP 20, FP 11, FN 2, TN 13*
	Sensitivity and specificity 91% and 54% respectively. (Accuracy 70%).
	PERF/LGE (n=51)
	TP 22, FP 3, FN 3, TN 23*
	Sensitivity and specificity 88% and 88% respectively. (Accuracy 88%).
	PERF/LGE/MRCA (n=51)
	TP 24, FP 10, FN 2, TN 15*
	Sensitivity and specificity 92% and 60% respectively. (Accuracy 75%).
	Adverse events/side effects: Severe dyspnoea during adenosine n=2.
	No mention of adverse events associated with ICA.
Source of funding	Not mentioned but one competing interest – One author is an employee of Philips Medical Systems.
Comments	Study limitations:

Bibliographic reference	Author: Klein et al. Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. Journal of Cardiovascular Magnetic Resonance 10: 4554 Year: 2008
	 1a. LOW 1b. Patients with suspected CAD with breakdown by symptoms. Patients were recruited on basis of referral for coronary angiography. HIGH 2a. LOW 2b. LOW 3b. LOW 3b. LOW 4. All patients had reference tests but not all patients had all index tests/data suitable for analysis, however reasons were clearly stated and did not exceed 20% of total population. LOW
*=calculated by reviewer	

*=calculated by reviewer

Bibliographic reference	Author: Klem et al Improved Detection of Coronary Artery Disease by Stress Perfusion with Cardiovascular Magnetic Resonance With the Use of Delayed Enhancement Infarction Imaging Year: 2006
Study type	Cross-sectional
Aim	To devise and test a predefined visual interpretation algorithm that combines cardiovascular magnetic resonance3 (CMR) data from perfusion and infarction imaging for the diagnosis of coronary artery disease (CAD).
Patient characteristics	Inclusion Consecutive patients with suspected CAD referred for elective coronary angiography screened for enrolment 3 days/week. Exclusion People with known CAD, previous MI or revascularization procedures.
	MRI related (e.g. pacemaker). Adenosine related (AV block).

iographic reference	Author: Klem et al Improved Detection of Coronary Artery Disease by Stress Perfusion with Cardiovascular Magnetic Resonance With the Use of Delayed Enhancement Infarction Imaging Year: 2006
	Other
	Age (y) Mean (SD) 58 (11.5)
	Number of risk factors 2.3 (1.1)
	N (%)
	Male gender 45 (49)
	CAD risk factors
	Diabetes 21 (23)
	Hypertension 59 (64)
	Cigarette smoker 36 (39)
	Hypercholesterolaemia 50 (54)
	Family history of CAD 47 (52)
	Typical angina 31 (34) (Rose questionnaire) Numbers with other types of chest pain not reported
	Medications
	Statins 35 (38)
	Beta-blockers 30 (33)
	Aspirin 51 (55)
	ACE inhibitors 40 (43)
	Indication for angiography
	Positive stress nuclear study 44 (48)
	Positive stress echo study 19 (21)
	Positive treadmill ECG study 7 (8)
	Clinical symptoms 22 (24)
	Framingham risk score, triglycerides and fasting glucose were all significantly higher in the CAD vs non CAD groups (p=0,008, 0.04 and 0.03 respectively)

8 people did not undergo CMR.

Bibl

Bibliographic reference	Author: Klem et alImproved Detection of Coronary Artery Disease by Stress Perfusion with Cardiovascular Magnetic Resonance With the Use of Delayed Enhancement Infarction Imaging Year: 20063 = CMR related (did not fit into scanner (1), ECG cable malfunctioned (1), Unavailable scanner software (1). 5 = Non CMR related (consumed caffeine that morning (1), withdrew consent (1), IV access could not be obtained (1), contrast injection pump failure (1), adenosine-induced dyspnoea (1).
Number of patients	92 (100 patients enrolled, 8 excluded)
Index test	 Index test 6 (CMR) Interpretation algorithm (including perfusion CMR (PERF) and Delayed enhancement (DE)-CMR) PERF only Adenosine gadolinium first-pass imaging for stress perfusion DE-CMR only Signal to noise ratio Preparation: Blood samples were drawn after overnight fast for glucose, lipid profile and hsCRP. 12 lead ECG was performed and scored for Q waves and bundle-branch block. 1.5Tesla scanner was used. Adenosine was infused 140µg/kg/min under ECG and continuous BP monitoring. Perfusion sequence was then applied. Gadolinium contrast (0.065mmol/kg) followed by saline flush was infuse via antecubital vein. Breath-holding stated from the appearance of contrast in the right ventricular cavity. Once the gadolinium bolus had transited the LV myocardium, adenosine was stopped and imaging completed 10-15s later. 4-5 short axis slices were obtained per heartbeat with a saturation-recovery, gradient echo sequence. Smins after rest perfusion, DE-CMR was performed with a segment inversion-recovery technique. Scans were analysed by two observes, blinded to angiography results. Regional parameters were assessed with a 17 segment model. For perfusion images these were scored with a 4-point scale (0=normal, 1=probably normal, 2=probably abnormal, 3=definitely abnormal).
	CAD n= 37 patients. No CAD n=55.
Reference standard (or Gold standard)	 Coronary angiography Performed using standard techniques. Operators blinded to CMR results. Luminal narrowing estimated visually. In cases of disagreement, quantitative analysis was performed. Significant CAD was defined as ≥70% narrowing of the luminal diameter

Bibliographic reference	Author: Klem et al							
	Improved Detection of Coronary Artery Disease by Stress Perfusion with Cardiovascular Magnetic Resonance With the							
	Use of Delayed Enhancement Infarction Imaging Year: 2006							
	of at least one major epicardial artery $\geq 50^{\circ}$	% narr	owing o	f the left	main art	erv		
	of at least one major epicardiar artery 250	, o nant	5 Wing 0		inani art			
	To tests the accuracy of the interpretation algorithm for each individual coronary lesion, the readers also evaluated the level of stenosis for each segment of the 17-segment model, the artery perfusing that segment and the maximum level of stenosis.							
Time between testing & treatment	Within 24 hours							
Length of follow-up	Duration January 2003 and January 2004.							
Location	North Carolina, USA							
Diagnostic accuracy measures	Index Test 6 (different variants)	ТР	FP	FN	TN *	Sens% Spe	c%	
(2 x 2 table)	≥70% stenosis/≥50% LMA PERF+DE-CMR	33	7	4	48	89.2	87.3	
	≥70% stenosis/≥50% LMA PERF only		31	23	6	32	83.8	58.2
	≥70% stenosis/≥50% LMA DE-CMR only	18	1	19	54	48.6	98.2	
	≥60% stenosis/≥50% LMA PERF+DE-CMR	33	7	6	46	92.8	86.8	
	≥60% stenosis/≥50% LMA PERF only		33	21	6	32	84.6	60.4
	≥60% stenosis/≥50% LMA DE-CMR only	18	1	21	52	46.2	98.1	
	≥50% stenosis/≥50% LMA PERF+DE-CMR	34	6	10	42	77.3	87.5	
	≥50% stenosis/≥50% LMA PERF only		36	18	8	30	81.8	62.5
	≥50% stenosis/≥50% LMA DE-CMR only	18	1	26	47	40.9	97.9	
	Side Effects/Adverse events: Severe adence	sine dy	/spnoea	a n=1.				
	No mention of adverse events in relation t	o ICA.						
Source of funding	Not mentioned							
Comments	Study limitations:							
	1a. LOW							

Bibliographic reference	Author: Klem et al Improved Detection of Coronary Artery Disease by Stress Perfusion with Cardiovascular Magnetic Resonance With the Use of Delayed Enhancement Infarction Imaging Year: 2006
	 1b. Population suspected CAD (34% had typical angina symptoms) but indications for angiography reveal that majority of patients (total of 77%) had received a previous positive stress tests. Also patients recruited on basis of referral for coronary angiography. HIGH 2a. LOW 2b. LOW 3a. LOW 3b.LOW 4. LOW

*=calculated by reviewer

Bibliographic reference	Author: Krittayaphong et al Myocardial perfusion cardiac magnetic resonance for the diagnosis of coronary artery disease: do we need rest images? Year: 2009
Study type	Cross sectional
Aim	To determine the accuracy of visual assessment and myocardial perfusion reserve index (MPRI) in the diagnosis of CAD and the accuracy of analysis based on rest-stress and stress images (from CMR) comparing to coronary angiography.
Patient characteristics	Inclusion Over 30 yrs old Referred for coronary angiography for suspected CAD
	Exclusion Contraindications to CMR such as pacemaker or implantable defibrillator implantation, history of claustrophobia or allergy to gadolinium History of MI History of revascularisation. Need for urgent revascularisation

Bibliographic reference	Author: Krittayaphong et al Myocardial perfusion cardiac magnetic resonance for the diagnosis of coronary artery disease: do we need rest images? Year: 2009
	Clinical unstable condition
	Other Mean age 61.3 (SD 11.7) years. Male 38 (58%) Diabetes 18 (27%) Systemic hypertension 41 (62%) Cigarette smoking 4 (7%) Hypercholesterolaemia 41 (62%) History of heart failure 6 (9%) Chest pain 34 (52%) Medications: beta-blockers 32, calcium antagonists 11, nitrate 18, aspirin or clopidogrel 43, ACEI/ARB 34, statin 39.
Number of patients	66 (total screened n=78, 12 met at least one of exclusion criteria).
Index test	 CMR (Adenosine stress CMR) Gyroscan NT Intera 1.5 tesla Philips scanner. Medications that might influence myocardial perfusion were withheld for at least five half-lives prior to the perfusion study. CMR was started with gradient echo technique. All analyses (semi-quantitative) were performed by two readers with any disagreement solved by the third reader. All experienced readers. Segmentation of each slice was performed according to the recommendation of the AHA with the exclusion of segment 17 (most apical part) from the analysis. Analysis of MPRI – signal intensity was determined for all dynamics and segments. Cut off value of 1.2 was applied based on ROC analysis in a pilot group of 20 patients. If the value was ≤1.2 (calculated for all segments) the segment was classed as ischemic. The test was considered abnormal when at least one segment was found to be ischemic. Analysis by visual assessment – myocardial ischemia defined as a perfusion delay for at least five consecutive phases in at least one myocardial segment during peak myocardial enhancement.
Reference standard (or Gold	Coronary angiography

Bibliographic reference	Author: Krittayaphong et al			
	Myocardial perfusion cardiac magnetic resonance for the diagnosis of coronary artery disease: do we need rest images?			
	Year: 2009			
standard)	Left-sided cardiac catheterisation and coronary angiography by the Judkins technique. Coronary stenosis was filmed in the centre of the field from multiple projections. Reduction of luminal diameter of each lesion was reported as a percentage. Significant CAD was defined as 50% or more reduction.			
Time between testing & treatment	Within one week (CMR first)			
Length of follow-up	Time period of study not specified			
Location	Thailand			
Diagnostic accuracy measures	es 38/66 patients diagnosed with CAD. MPRI and Stress analysis only reported (per study protocol).			
(2 x 2 table)				
		MPRI (CMR)*	Visual method (Stress)	
	ТР	34	33	
	TN	22	21	
	FP	6	7	
	FN	4	5	
	Sensitivity (%, 95% Cl)	89.5 (79.5, 95.9)	86.8 (72.7, 94.3)	
	Specificity (%, 95% Cl)	78.6 (60.5, 89.5)	75 (56.6, 87.3)	
PPV (%, 95% Cl) 85 (70.9, 92.9) 82.5 (68.1, 91.3)				
	NPV (%, 95% CI)	84.6 (66.5, 93.9)	80.8 (62.1, 91.5)	

*Data used in analysis

Prevalence of CAD

Accuracy

No mention of any side effects or adverse events for either test.

Source of funding

Study funded by the research fund of Her Majesty Cardiac Centre, Siriraj Hospital. Bangkok, Thailand.

84.8 (74.3, 91.6)

57.6

81.8 (70.9, 89.3)

57.6

Bibliographic reference	Author: Krittayaphong et al Myocardial perfusion cardiac magnetic resonance for the diagnosis of coronary artery disease: do we need rest images? Year: 2009
Comments	Study limitations
	1a. UNCLEAR if consecutive screening/enrolment – UNCLEAR
	1b. Not all patients had chest pain (52%) and 6 patients had history of heart failure. Patients were recruited on basis of referral for coronary angiography. HIGH
	2a. LOW
	2b. LOW
	3a. LOW
	3b. LOW
	4. LOW

H.4.5 Myocardial perfusion scintigraphy (MPS) SPECT/PET

Bibliographic reference	Author: Budoff et al
	Comparison of Exercise Electron Beam Computed Tomography and Sestamibi in the Evaluation of Coronary Artery
	Disease.
	Year: 1998
Study type	DTA Cross-sectional study
Aim	To compare the sensitivity and specificity of 2 different imaging modalities using a single exercise protocol for the detection
	of obstructive CAD.
Patient characteristics	Inclusion criteria:
	Patients undergoing routine cardiac catheterization for the diagnosis of chest pain.
	Exclusion criteria:
	• Patients with previous revascularization, recent myocardial infarction (≤3 months), and valvular or congenital heart
	disease.
	• Patients unable to exercise, those with a creatinine kinase level elevated ≥ 2 times normal or with known contrast
	allergies.

448

Bibliographic reference	Author: Budoff et al
	Comparison of Exercise Electron Beam Computed Tomography and Sestamibi in the Evaluation of Coronary Artery Disease.
	Year: 1998
	Medication:
	Not reported.
Number of patients	Total = 33
	Gender: male = 19; female = 14
	Mean age = 55 (SD: 9, range 30 to 73) years old
Index test	Stress technetium-99m (Tc-99m) Sestamibi single photon emission computed tomography (SPECT)
	Tc-99m isonitrile (20 to 25 mCi) was injected at peak exercise stress in all patients, and images were obtained 60 to 90
	minutes later. A second injection of 20 mCi of sestamibi was given 1 to 2 days after the stress studies for imaging at rest.
	Threshold: Areas of significant hypo-perfusion were defined as those volume elements within the computer defined
	myocardium in each slice that fell below 45% of the maximum counts in the ventricle. Two SPECT scans were then
	interpreted using visual assessments of regional abnormalities.
	Blinding: Reversible perfusion defects were evaluated by 2 nuclear medicine specialists; disagreements were resolved by
	consensus with a third investigator. All investigators were blinded to the results of the angiogram.
Reference standard (or Gold	Coronary arteriography
standard)	Threshold for stenosis: ≥50% narrowing of luminal diameter of at least one coronary vessel.
	The coronary angiograms were analysed by an experienced reader blinded to the results of the single-photon emission
	computed tomography (SPECT).
Time between testing &	Time flow between index test and reference standard = within 4 weeks.
treatment	
Length of follow-up	Not reported.
Location	Harbor-UCLA Medical Center, Torrance, California, US.
Diagnostic accuracy measures	Total = 33
(2 x 2 table)	TP = 12; FP = 5; FN = 4; TN = 12

Bibliographic reference	Author: Budoff et al Comparison of Exercise Electron Beam Computed Tomography and Sestamibi in the Evaluation of Coronary Artery
	Disease.
	Year: 1998
	Sensitivity = 75% (95%CI: 50.5-89.8%) Specificity = 71% (95%CI: 46.9-86.7%); Prevalence = 70%
	Note: 2x2 was back calculated by the reviewer.
	No mention of adverse events.
Source of funding	Not reported.
Comments	Study limitations (QUADAS-2):
	1a. (yes/yes) = LOW
	1b. Patients recruited on basis of referral for coronary angiography = High
	2a. (yes/yes) = LOW
	2b. LOW
	3a. (yes/yes) = LOW
	3b. LOW
	4. (yes/yes/yes) = LOW

Bibliographic reference	Author: Budoff et al Cardiac CT angiography and nuclear myocardial perfusion imaging – a comparison in detecting significant coronary artery disease Year: 2007
Study type	Cross sectional
Aim	To compare the accuracy of cardiac CT angiography (CTA) and coronary artery calcification (CAC) with myocardial perfusion imaging (MPI) using conventional catheter angiography as the gold standard for assessing significant stenosis of the coronary arteries
Patient characteristics	Inclusion
	 Symptomatic outpatients with exertional angina or dyspnoea scheduled for cardiac catheterisation CTA to be done within 1 month of coronary angiographic studies

Bibliographic reference	Author: Budoff et al
	Cardiac CT angiography and nuclear myocardial perfusion imaging – a comparison in detecting significant coronary artery
	disease Year: 2007
	 Normal baseline electrocardiography without left bundle branch block, resting ST segment or T wave changes At least 85% of the maximum and distant heart acts achieved during transition for the segment of T wave changes
	 At least 85% of the maximum predicted heart rate achieved during treadmill ECG No bistory of conditional predicted heart rate achieved during treadmill ECG
	 No history of cardiac valve replacement, coronary stenting procedures or coronary artery bypass grafting before the completion of all testing methods
	Exclusion
	- Renal insufficiency
	- Refusal to participate
	- Known allergy to iodinated contrast
	- Lack of diagnostic cardiac catheterisation
	Other characteristics
	Age in years, mean (SD) 54 (9)
	Gender, % males 70
	Breakdown of number of participants with chest pain not reported
Number of patients	n=30
Index test	1. Cardiac CT angiography – corresponds to test 2a on review protocol however 2x2 results were not reported and used non-protocol version of CTCA (electron beam).
	2. Myocardial perfusion imaging – corresponds to test 7 on review protocol
	- MPI (SPECT) images acquired 60 to 120 minutes after injection of 99mTc sestamibi using a large field of view, dual headed gamma camera equipped with a high resolution collimator
Potoronco standard (or Gold	
Reference standard (or Gold standard)	- Blinded to index test results
	- Significant CAD defined as >50% left main artery stenosis or >70% stenosis in any other epicardial vessel
Time between testing 9	
Time between testing & treatment	MPI and CTA performed before coronary angiography in all cases. CTA studies were done within 1 month of the coronary angiographic studies.
	and bio Braking stratest

Bibliographic reference	Author: Budoff et al
	Cardiac CT angiography and nuclear myocardial perfusion imaging – a comparison in detecting significant coronary artery disease Year: 2007
Length of follow-up	Study dates not reported
Location	USA
Diagnostic accuracy measures (2 x 2 table)	1. Accuracy of myocardial perfusion imaging to detect significant CAD defined as >50% left main artery stenosis or >70% stenosis in any other epicardial vessel TP: 17; FP: 2; TN: 7; FN:4 Sensitivity (95%CI)*: 81.0 (60.0 to 92.3) Specificity (95%CI)*: 77.8 (45.3 to 93.7) *Calculated by analyst based on data reported in article
	No mention of adverse events in either test.
Source of funding	Not reported
Comments	Study limitations (as assessed using QUADAS-2 checklist)1a. UNCLEAR – consecutive recruitment not reported1b. Patients recruited based on referral for coronary angiography HIGH.2a. LOW2b. LOW3a. LOW3b. LOW4. LOW

Bibliographic reference	Author: Cramer et al SPECT versus planar 99m-Tc-sestamibi myocardial scintigraphy: comparison of accuracy and impact on patient management in chronic ischemic heart disease. Year: 1997
Churchurchurch	
Study type	DTA Cross-sectional study
Aim	To compare the extent and localisation of planar and SPECT perfusion defects and to relate the scintigraphic findings to its impact on patient treatment.
Patient characteristics	Inclusion:
	• Patients referred for the evaluation of chest pain who required coronary arteriography.
	Exclusion:
	Not reported.
	N 4 a disastin u
	Medication:
Number of units at	Not reported.
Number of patients	Total = 78
	Gender: male = 50; female = 28 Mean age = 58 (range) 28 to 74) wears old
	Mean age = 58 (range: 28 to 74) years old
Index test	Myocardial perfusion scintigraphy (SPECT)
	SPECT imaging was performed with a GE-400 AT tomographic camera equipped with a low energy general purpose collimator. Energy discrimination was provided by a 15% window centred over the 140 keV photopeak of 99m-Tcsestamibi. Imaging began 60 mins after the dipyridamole low level exercise protocol, and 60 mins after the injection at rest. Resting studies and the dipyridamole 99m-Tcsestamibi studies were either performed on a separate day, using 740-920 MBq (20-25 mCi) for each injection. Or a one day rest-stress protocol using 260 MBq (7mCi) 99m-Tc-sestamibi for the rest study.
	Threshold: An image was considered abnormal if there was a decrease of uptake in any of the segments on at least 2 consecutive slices.

Dibliggenerabie auforence	
Bibliographic reference	Author: Cramer et al
	SPECT versus planar 99m-Tc-sestamibi myocardial scintigraphy: comparison of accuracy and impact on patient management in chronic ischemic heart disease.
	Year: 1997
	Blinding: No mention of blinding.
Reference standard (or Gold	Coronary arteriography
standard)	Threshold for stenosis: ≥50% narrowing of luminal diameter of at least one coronary vessel.
	The coronary angiograms were analysed by 2 cardiologists independently, disagreement was resolved by an independent
	third interpreter.
Time between testing &	Time flow between index test and reference standard = within 3 months
treatment	
Length of follow-up	Varied between 1 week to 11 months.
Location	The Netherlands.
Diagnostic accuracy measures	Total = 78
(2 x 2 table)	TP = 55; FP = 2; FN = 12; TN = 9
	Sensitivity = 82.1% (95%CI: 71.3 to 89.4%); Specificity = 81.8% (95%CI: 52.3 to 94.9%); Prevalence = 90%
	Note: 2x2 was back calculated by the reviewer.
	No serious adverse events reported for either test.
	Minor events associated with index test: headache n=2, vertigo n=1, aminophylline requirement n=24, nitroglycerine
	sublingual n=3.
Source of funding	Not reported.
Comments	Study limitations (QUADAS-2):
	1a. (yes/yes/unclear) = LOW [very limited information on inclusion criteria and no information on exclusion criteria].
	1b. HIGH [no information on exclusion criteria, baseline unclear]. Patients recruited on basis of referral for coronary
	angiography.
	2a. (no/yes) = HIGH [no mention of blinding].
	2b. LOW
	3a. (yes/no) = HIGH [no mention of blinding].

Bibliographic reference	Author: Cramer et al SPECT versus planar 99m-Tc-sestamibi myocardial scintigraphy: comparison of accuracy and impact on patient management in chronic ischemic heart disease. Year: 1997
	3b. LOW 4. (yes/yes/yes) = LOW

Bibliographic reference	Author: Fleming et al Using quantitative coronary arteriography to redefine SPECT sensitivity and specificity. Year: 1992
Study type	DTA Cross-sectional study
Aim	To determine the accuracy of SPECT in diagnosing CAD.
Patient characteristics	 Inclusion: Patients suspected of having CAD.
	 <u>Exclusion:</u> History of cardiomyopathy, severe valvular disease, unstable angina, recent MI, morbid obesity, pregnant. <u>Medication:</u> Not reported.
Number of patients	Total = 44 Gender: male = 27; female = 17 Mean age = 56.6 (SD: 11.2) years old
Index test	Thallium SPECT or Teboroxime SPECT GE 400 AC Starcam, 64x64 Matrix Hanning Filter multipurpose collimator. Thallium SPECT: 3mCi dose, with exercise continued for one minute, then redistribution 4 hours later. With 40 seconds/image acquisition.

Bibliographic reference	Author: Fleming et al
	Using quantitative coronary arteriography to redefine SPECT sensitivity and specificity.
	Year: 1992
	Teboroxime SPECT: Tebo dose was 20-25 mCi, exercise stopped immediately after injection, rest study with the same dose as stress 1 hour later. With 15 seconds/image acquisition.
	Threshold: Perfusion was scored on 0 to 5 (0 = normal, 5 = sever defects). Averaged values from 2 observers ranging from 0 to 2 were reported as not significant for perfusion abnormalities.
	Blinding: Images were analysed by 2 observers blinded to clinical and CA data.
Reference standard (or Gold	Coronary arteriography
standard)	Threshold for stenosis: ≥50% narrowing of luminal diameter of at least one coronary vessel.
	The coronary angiograms were analysed by a DEC VAX 11/780 computer and Tektronics 4207 graphics computer.
Time between testing & treatment	Time flow between index test and reference standard = Not reported.
Length of follow-up	Not reported
Location	Houston, US.
Diagnostic accuracy measures	Total = 44
(2 x 2 table)	TP = 29; FP = 4; FN = 3; TN = 8
	Sensitivity = 90.6% (95%CI: 75.8 to 96.8%); Specificity = 66.7% (95%CI: 39.1 to 86.2%); Prevalence = 70%
	Note: 2x2 was back calculated by the reviewer.
	Minor effects: Angina (43%) relieved by nitroglycerin. 48% demonstrated significant ST segment changes during or after exercise.
	No mention of adverse events in relation to ICA.
Source of funding	Not reported.
Comments	Study limitations (QUADAS-2):
	1a. (unclear/yes/unclear) = HIGH [very limited information on inclusion/exclusion criteria, unclear whether consecutive].

Bibliographic reference	Author: Fleming et al Using quantitative coronary arteriography to redefine SPECT sensitivity and specificity. Year: 1992
	1b. HIGH [limited information on inclusion/exclusion criteria, baseline unclear].
	2a. (yes/yes) = LOW
	2b. UNCLEAR [the index tests were a mixture of thallium SPECT and Teboroxime SPECT, cannot separate out the data for the 2 different index tests].
	3a. (unclear/unclear) = HIGH [computer system was used for CA, unclear the validity of interpretation].
	3b. LOW
	4. (unclear/yes/yes) = LOW

Bibliographic reference	Author: Kaminek M et al Diagnosis of high risk patients with multivessel coronary artery disease by combined cardiac gated SPET imaging and coronary calcium score Year: 2015
Study type	Cross sectional
Aim	To investigate coronary artery calcium (CAC) as an adjunct to gated single photon emission tomography (G-SPET) in the detection of multi-vessel coronary artery disease.
Patient characteristics	Inclusion - High risk patients referred for cardiac gated single photon emission tomography (GSPET) Exclusion - Known CAD - Myocardial infarction - Coronary revascularisation Other characteristics Gender male/female, n (%) 123 (75) / 60 (37) Age in years, mean (SD) 61 (12) Diabetes mellitus, n (%) 26 (16)

Bibliographic reference	Author: Kaminek M et al Diagnosis of high risk patients with multivessel coronary artery disease by combined cardiac gated SPET imaging and coronary calcium score Year: 2015
	Chronic renal failure treated by dialysis, n (%) 26 (16) Left ventricular dilatation, n(%) 41 (25)
Number of patients	N=164
Index test	 Coronary artery calcium scoring – corresponds to test 3 on review protocol Gated single photon emission tomography (GSPET) – corresponds to test 7 on review protocol
Reference standard (or Gold standard)	Coronary angiography - Details not reported
Time between testing & treatment	Timing of tests not reported
Length of follow-up	Study dates not reported
Location	Czech Republic
Diagnostic accuracy measures (2 x 2 table)	1. Accuracy of gated SPET to detect CAD defined as ≥50% stenosis of epicardial coronary arteries or their major branch
	TP:98; TN:39; FP:14; FN:13
	Sensitivity (95%CI)*: 88.3 (81.0 to 93.0)
	Specificity (95%CI)*: 73.6 (60.4 to 83.6)
	 Calcium scoring Insufficient data to back calculate 2x2 table for calcium scoring alone. Sensitivity of 81% (60/84) only reported with perfusion plus function plus calcium score of >1000). No specificity reported. No mention of adverse events with either test.
Source of funding	European Regional Development Fund Project
Comments	Statistical methods Standard 2x2 data reported in text for GSPET.

Bibliographic reference	Author: Kaminek M et al Diagnosis of high risk patients with multivessel coronary artery disease by combined cardiac gated SPET imaging and coronary calcium score Year: 2015
	Study limitations (as assessed using QUADAS-2 checklist)
	1a. UNCLEAR – consecutive recruitment not reported
	1b. HIGH – high risk patients, chest pain not reported
	2a. HIGH – unclear if index test results were interpreted without knowledge of reference standard results
	2b. LOW
	3a. HIGH – reference standard details not reported and unclear if results were interpreted without knowledge of index test results
	3b. UNCLEAR – reference standard details not reported
	4. LOW – timing of tests not reported

Bibliographic reference	Author: Yao et al Comparison of 99m-Tc-methoxyisobutylisonitrile myocardial single photon emission computed tomography and electron bean computed tomography for detecting coronary artery disease in patients with no myocardial infarction. Year: 2004
Study type	DTA Cross-sectional study
Aim	To compare SPECT with EBCT in detection of CAD in patients with no MI.
Patient characteristics	Inclusion:
	Patients with suspected CAD who underwent coronary angiography.
	With no history of myocardial infarction.
	Exclusion:
	Not reported.
	Medication:
	Not reported.

Bibliographic reference	Author: Yao et al
	Comparison of 99m-Tc-methoxyisobutylisonitrile myocardial single photon emission computed tomography and electron
	bean computed tomography for detecting coronary artery disease in patients with no myocardial infarction.
	Year: 2004
Number of patients	Total = 73
	Mean age = 52.62 (SD: 10.59)
	24 patients ≤45 years old; 49 patients >45 years old.
Index test	Stress-rest 99m-Tc-MIBI myocardial SPECT
	At the peak of exercise, 20 mCi 99m-Tc-MIBI was injected IV and the exercise was continued for one more minute. Myocardial SPECT was performed 75 mins later, and a rest myocardial SPECT was performed 90 mins after 20mGi 99m-Tc- MIBI was injected. Myocardial SPECT acquisition was carried out with a GE Starcam 4000 SPECT system that was equipped with low energy, high resolution and parallel-hole collimator.
	Threshold: Segment with <70% maximal count density on 2 or more continuous slices at 2-axis view was considered abnormal.
	Blinding: 2 experienced nuclear medicine physicians, who did not know the results of CA, analysed SPECT images together.
Reference standard (or Gold	Coronary arteriography
standard)	Threshold for stenosis: ≥50% narrowing of luminal diameter of at least one coronary vessel.
	The coronary angiograms were analysed by 2 cardiologists.
Time between testing & treatment	Time flow between index test and reference standard = Not reported.
Length of follow-up	Not reported.
Location	Beijing Hospital, Beijing, China.
Diagnostic accuracy measures	Total = 73
(2 x 2 table)	TP = 28; FP = 3; FN = 7; TN = 35
	Sensitivity = 80.0% (95%CI: 64.1 to 90.0%); Specificity = 92.1% (95%CI: 79.2 to 97.3%); Prevalence = 50%
	Note: 2x2 was back calculated by the reviewer.
	No mention of any adverse events associated with either test.
Source of funding	Not reported.

Bibliographic reference	Author: Yao et al Comparison of 99m-Tc-methoxyisobutylisonitrile myocardial single photon emission computed tomography and electron bean computed tomography for detecting coronary artery disease in patients with no myocardial infarction. Year: 2004
Comments	 Study limitations (QUADAS-2): 1a. (yes/yes/unclear) = LOW [very limited information on inclusion criteria and no information on exclusion criteria]. 1b. HIGH [no information on exclusion criteria, baseline unclear]. 2a. (yes/yes) = LOW 2b. LOW 3a. (yes/yes) = LOW 3b. LOW 4. (unclear/yes/yes/yes) = UNCLEAR [no information on time flow].

H.4.6 Studies reporting multiple index tests and/or combined analyses

Bibliographic reference	Author: Arnold et al, 2010 Adenosine Stress Myocardial Contrast Echocardiography for the Detection of Coronary Artery Disease. A comparison with coronary angiography and cardiac magnetic resonance. Year: 2010
Study type	Cross-sectional
Aim	To evaluate the accuracy of adenosine myocardial contrast echocardiography (MCE) in diagnosing coronary artery disease (CAD).
Patient characteristics	 Inclusion Prospectively recruited adults referred to regional tertiary centre for elective diagnostic angiography as part of routine clinical care for further investigation of exertional chest pain. (Suspected CAD). Exclusion Recent MI (within 7 days). Contraindications to CMR or adenosine, gadolinium and sulphur hexafluoride.

461

	Clinical evidence tables	Chest pain of recent onset
--	--------------------------	----------------------------

Bibliographic reference	Author: Arnold et al, 2010
	Adenosine Stress Myocardial Contrast Echocardiography for the Detection of Coronary Artery Disease. A comparison
	with coronary angiography and cardiac magnetic resonance.
	Year: 2010
	Baseline Clinical Characteristics (n=62) n (%)
	Men 40 (65)
	Smoker 6 (10)
	Ex-smoker 20 (32)
	Hypertension 33 (53)
	Hypercholesterolaemia 35 (57)
	Diabetes mellitus 11 (18)
	Family history of CAD 22 (36)
	Mean (SD)
	BMI (kg/m ²) 28 (5)
	Age (y) 64 (9)
Number of patients	65 (from total of 99 consecutive patients screened) were elected to participate.
	2 patients did not undergo CMR due to claustrophobia and 1 patient withdrew consent. 62 patients completed both scans.
Index test	MCE and CMR taken on same day in random order.
	Patients were asked to avoid caffeine 24hrs before exams but routine angina medications were continued.
	Myocardial Contrast Echo (MCE) – Index test 4
	Sulfur hexafluoride was infused at 0.7ml/min and adjusted in 0.1-ml/min steps to achieve optimum myocardial
	opacification. Images were acquired once "steady state" was reached. Stress images were obtained after infusion of
	adenosine (140µg/kg/min for 4mins or less if angina was induced or if perfusion/wall motion abnormalities became
	apparent. Images were obtained sequentially at ~1min intervals. Patients were monitored throughout by ECG, sphygmomantometry and pulse oximetry.
	Scans were interpreted in random order by a single observer blinded to the CMR/angiography results and clinical
	information. Assessment of wall motion and perfusion was performed using 17-segment AHA model. For wall motion
	assessment, standard segmental scoring was performed (1=normal, 2=hypokinesis, 3=akinesis, 4=dyskinesis) with
	documentation of progression of wall motion abnormality during stress. For perfusion assessment, rest and images were
	displayed side by side. A perfusion defect was defined as a decrease in contrast relative to another region with comparable

Bibliographic reference	Author: Arnold et al, 2010
	Adenosine Stress Myocardial Contrast Echocardiography for the Detection of Coronary Artery Disease. A comparison
	with coronary angiography and cardiac magnetic resonance.
	Year: 2010 image quality. Perfusion defects were considered artifactual if there were attenuation defects, contrast shadowing or artifacts from external shadowing. Inducible ischemia was defined as a stress perfusion defect appearing more extensive than at rest, or progressional of wall motion abnormality. Diagnosis of CAD was determined by the presence of 1) resting akinesis, 2) reversible wall motion abnormalities or 3) perfusion defects (fixed or reversible). For the identification of disease location, a positive diagnosis was determined by the presence of perfusion/wall motion abnormality in any segment ascribed to a coronary artery. The overall diagnosis of CAD on a per patient basis was determined by the presence of any abnormal segment. Cardiac Magnetic Resonance (CMR) – Index test 6 3T Siemens machine used. Patients were monitored continuously (as above). After 4 mins of adenosine (or less if angina induced) a bolus of 0.05-mmol/kg gadolinium based contrast was given followed by 15mls normal saline. First pass of contrast - Images were acquired every cardiac cycle using ECG-gated T1 weighted fast gradient echo sequence with generalized auto-calibrating partially parallel acquisitions reconstructions. Breath holding was requested during imaging (as long as possible in end expiration). After 20mins the same sequence was repeated without adenosine for resting perfusion. For late gadolinium enhancement (LGE) imaging, further bolus of gadoliamide was given and imagines were acquired (inversion time was adjusted to obtain optimal nulling of non-infarcted myocardium. Scans were visually interpreted by a single blinded reader with assessment of resting wall motion, LGE and perfusion. Perfusion and LGE data were subsequently combined according to an algorithm described elsewhere. (Klem et al).
	No description of perfusion assessment provided. Wall motional scoring performed using scoring system described above. For LGE assessment, segments were graded as normal or abnormal. Diagnosis of CAD was determined on segmental basis by the presence of either perfusion abnormalities or LGE.
Reference standard (or Gold standard)	Coronary angiography was carried out with 2 weeks using standard techniques. Images were obtained in multiple projections, avoiding overlap of side branches and foreshortening of relevant coronary stenoses. Vessel diameters were measured using computer-assisted quantification method. Significant CAD was defined angiographically as ≥50% stenosis in any epicardial coronary artery/branch with diameter ≥2mm.
Time between testing & treatment	Within 2 weeks

Bibliographic reference	Author: Arnold et al, 2010	:-1.6		F - L -				
	Adenosine Stress Myocard with coronary angiography					-	ection of	of Coronary Artery Disease. A comparison
	Year: 2010							
Length of follow-up	Study period not specified							
Location	Unclear. Authors in multipl	e loca	tions (UK, Aust	ralia, Pol	and)		
Diagnostic accuracy measures (2 x 2 table)	41/62 patients had angiogra	41/62 patients had angiographically defined stenosis ≥50% and 29/62 had ≥70% stenosis)						
	MCE – no exclusions due to inadequate imagine. 1 perfusion image was suboptimal. CMR – no images excluded.							
		ТР	FP	FN	TN *	Sens% Spe	c%	
	MCE (overall) ≥50%	35	5	6	16	85.0	76.0	
	MCE (overall) ≥70%		12	1	21	97.0	64.0	
	Individual techniques:							
	perfusion ≥50%		31	4	10	17	76.0	81.0
	perfusion ≥70%		26	9	3	24	90.0	73.0
	Stress wall motion	≥50%	25	3	16	18	61.0	86.0
	Stress wall motion ≥	≥70%	22	6	7	27	76.0	82.0
	CMR Overall (≥50%)	37	4	4	17	90.0	81.0	
	CMR Overall (≥70%)		13	1	20	97.0	61.0	
	Individual techniques:							
	Perfusion ≥50%	39	8	2	13	95.0	62.0	
	Perfusion ≥70%	2	918	0	15	100.0	45.0	
	LGE-CMR combined ≥50%	6 18	1	23	20	44.0	95.0	
	LGE-CMR combined ≥70%	6 14	5	15	28	48.0	85.0	
	No significant adverse even	ts occi	urred	during ei	ther scar	۱.		

National Guideline Centre. 2016

Bibliographic reference	Author: Arnold et al, 2010
	Adenosine Stress Myocardial Contrast Echocardiography for the Detection of Coronary Artery Disease. A comparison with coronary angiography and cardiac magnetic resonance.
	Year: 2010
	*back calculations by reviewer
Source of funding	The study was supported by the British Heart Foundation, the UK MRC and the Oxford Partnership Comprehensive Biomedical research Centre with funding from the DoH NIHR Biomedical Research Centres funding Scheme. One author received research funds and has served on the Speakers' Bureau for Philips.
Comments	Study limitations (as assessed using QUADAS-2 checklist)
	1a. UNCLEAR (although patients could have had higher risk of disease being referred to a tertiary centre?) Exclusion criteria is scant.
	1b. HIGH population, suspected CAD with no breakdown of numbers with chest pain AND patients recruited based on referral for coronary angiography.
	2a. LOW
	2b. LOW
	3a. LOW
	3b. LOW
	4. LOW

Bibliographic reference	Author: Bettencourt N et al Incremental value of an integrated adenosine stress rest MDCT perfusion protocol for detection of obstructive coronary artery disease Year: 2011			
Study type	Cross sectional			
Aim	To provide validation data on stress rest CTP protocols as additive tools to improve the accuracy of multidetector computed tomography (MDCT) for coronary artery disease in symptomatic patients			
Patient characteristics	 Inclusion Referred to cardiology clinic due to clinical suspicion of CAD. 156 patients screened. >40 years Symptoms compatible with CAD (22% with chest pain, 20% with typical angina, 50% with atypical angina and 8% 			

Bibliographic reference	Author: Bettencourt N et al				
	Incremental value of an integrated adenosine stress rest MDCT perfusion protocol for detection of obstructive coronary				
	artery disease				
	Year: 2011				
	with dyspnoea on exertion/fatigue)				
	- At least one of the following: 2 or more risk factors or a positive/inconclusive treadmill test				
	Exclusion				
	- Known CAD				
	- Atrial fibrillation				
	- Asthma				
	- Renal insufficiency				
	- Known allergy to contrast media				
	Other characteristics				
	Mean age in years (SD) 62 (8)				
	% males 66				
	Hypercholesterolemia, n (%) 70 (78)				
	Hypertension, n (%) 66 (73)				
	Diabetes, n (%) 33 (37)				
	Smoking history, n (%) 31 (34)				
	Family history of CAD, n (%) 20 (22)				
Number of patients	N=90				
Index test	1. Multidetector computed tomography (MDCT) – corresponds to test 2 on review protocol				
	- MDCT scanner Somatom Sensation 64, Siemens				
	- Blinded to results of reference standard test				
	2. Myocardial perfusion imaging – corresponds to test 9 on review protocol				
	- Multiphase reconstructions from the retrospective stress acquisition and a single phase reconstruction from the rest				
	acquisition were obtained using the same parameters as the MDCT scan but with an extra smooth filter.				
	- Readers blinded to MDCT and coronary angiography results				

Bibliographic reference	Author: Bettencourt N et al Incremental value of an integrated adenosine stress rest MDCT perfusion protocol for detection of obstructive coronary artery disease Year: 2011				
	 3. Calcium scoring – corresponds to test 3 on review protocol (data not used in analysis since calcium scoring not used as a diagnostic test) - Image reconstruction of the calcium score acquisition was performed using an effective slice thickness of 3mm. coronary calcification was reported as the mean Agatston score. 4. Integrated protocol including MDCT and myocardial perfusion imaging 				
Reference standard (or Gold standard)	X-ray coronary angiography - Performed by standard techniques - Blinded to index test results				
Time between testing & treatment	Days from CT to coronary angiography, mean (SD): 5.1 (5.99)				
Length of follow-up	17 month period, February 2010 to June 2011				
Location	Portugal				
Diagnostic accuracy measures (2 x 2 table)	<u>50% stenosis (patient based analyses)</u> 1. Accuracy of <u>MDCT alone</u> (index test 2) in detecting significant coronary artery disease (stenosis ≥50%)				
	TP: 47; TN: 30; FP: 12; FN: 1				
	Sensitivity (95%CI)*: 97.9 (89.1 to 99.6)				
	Specificity (95%CI)*: 71.4 (56.4 to 82.8)				
	2. Accuracy of <u>myocardial perfusion imaging alone</u> (index test 9) in detecting significant coronary artery disease (stenosis ≥50%) TP: 26; TN: 42; FP:0; FN: 22 Sensitivity (95%Cl)*: 54.2 (40.3 to 67.4)				
	Specificity (95%CI)*: 100.0 (91.6 to 100.0)				

e Author: Bettencourt N et al					
Incremental value of an i artery disease	Incremental value of an integrated adenosine stress rest MDCT perfusion protocol for detection of obstructive coronary artery disease				
Year: 2011					
3. Accuracy of integrated ≥50%)	l protocol (MDCT+MPI, Index	TESTS 2+9) in detecting significant coronary artery disease (stenosis			
TP: 40; TN: 41; FP: 1; FN:	8				
Sensitivity (95%CI)*:	83.3 (70.4 to 91.3)				
Specificity (95%CI)*:	97.6 (87.7 to 99.6)				
70% stenosis (patient bas	<u>sed analysis)</u>				
4. Accuracy of MDCT alor	<u>ne (index test 2)</u> in detecting	significant coronary artery disease (stenosis ≥70%)			
TP: 38; TN: 35; FP: 17: FN	: 0	_			
Sensitivity (95%CI)*:	100.0 (90.8 to 100.0)				
Specificity (95%CI)*:	67.3 (53.8 to 78.5)				
	Incremental value of an artery disease Year: 2011 3. Accuracy of integrated ≥50%) TP: 40; TN: 41; FP: 1; FN: Sensitivity (95%CI)*: Specificity (95%CI)*: 70% stenosis (patient base) 4. Accuracy of MDCT aloon TP: 38; TN: 35; FP: 17: FN Sensitivity (95%CI)*:	Incremental value of an integrated adenosine stress reartery disease Year: 2011 3. Accuracy of integrated protocol (MDCT+MPI, Index ≥50%) TP: 40; TN: 41; FP: 1; FN: 8 Sensitivity (95%CI)*: 83.3 (70.4 to 91.3) Specificity (95%CI)*: 97.6 (87.7 to 99.6) 70% stenosis (patient based analysis) 4. Accuracy of MDCT alone (index test 2) in detecting a TP: 38; TN: 35; FP: 17: FN: 0 Sensitivity (95%CI)*: 100.0 (90.8 to 100.0)			

5. Accuracy of <u>myocardial perfusion imaging alone (index test 9)</u> in detecting significant coronary artery disease (stenosis ≥70%)

TP: 25; TN: 51; FP: 1; FN: 13

Sensitivity (95%CI)*:	65.8 (49.9 to 78.8)
Specificity (95%CI)*:	98.1 (89.9 to 99.7)

6. Accuracy of integrated protocol (index tests 2+9) in detecting significant coronary artery disease (stenosis ≥70%)

TP: 36 TN: 49 FP: 3 FN: 2

Sensitivity (95%CI)*:	94.7 (82.7 to 98.5)
Specificity (95%CI)*:	94.2 (84.4 to 98.0)

B

Bibliographic reference	Author: Bettencourt N e Incremental value of an artery disease Year: 2011		s rest MDCT perfusion protocol for detection of obstructive coronary
	diagnostic accuracy of ca	alcium scoring alone.	the analysis as they are based on sub populations and not on coronary artery disease (stenosis ≥50%) in those with calcium score
	TP: 16; TN: 27; FP: 6; FN:	1	
	Sensitivity (95%CI)*:	94.1 (73.0 to 99.0)	
	Specificity (95%CI)*:	81.8 (65.6 to 91.4)	

8. Accuracy of myocardial perfusion imaging alone in detecting significant coronary artery disease (stenosis ≥50%) in those with calcium score <400

TP: 11; TN: 33; FP: 0; FN: 6

Sensitivity (95%CI)*:	64.7 (41.3 to 82.7)
Specificity (95%CI)*:	100.0 (89.6 to 100.0)

9. Accuracy of integrated protocol in detecting significant coronary artery disease (stenosis ≥50%) in those with calcium score <400

TP: 15; TN: 32; FP: 1; FN: 2

Sensitivity (95%CI)*:	88.2 (65.7 to 96.7)
Specificity (95%CI)*:	97.0 (84.7 to 99.5)

10. Accuracy of MDCT alone in detecting significant coronary artery disease (stenosis ≥50%) in those with calcium score >400

TP: 31; TN: 3; FP: 6; FN: 0

Sensitivity (95%CI)*:	100.0 (89.0 to 100.0)
Specificity (95%CI)*:	33.3 (12.1 to 64.6)

Bibliographic reference	Author: Bettencourt N et al
	Incremental value of an integrated adenosine stress rest MDCT perfusion protocol for detection of obstructive coronary artery disease Year: 2011
	11. Accuracy of myocardial perfusion imaging alone in detecting significant coronary artery disease (stenosis ≥50%) in

those with calcium score >400

TP: 15; TN: 9; FP: 0; FN: 16

Sensitivity (95%CI)*:	48.4 (32.0 to 65.2)
Specificity (95%CI)*:	100.0 (70.1 to 100.0)

12. Accuracy of integrated protocol in detecting significant coronary artery disease (stenosis ≥50%) in those with calcium score >400

TP: 25; TN: 9; FP:0; FN: 6

Sensitivity (95%CI)*:	80.6 (63.7 to 90.8)
Specificity (95%CI)*:	100.0 (70.1 to 100.0)

13. Accuracy of MDCT alone in detecting significant coronary artery disease (stenosis ≥70%) in those with calcium score <400

TP: 13; TN: 29; FP: 8; FN: 0

Sensitivity (95%CI)*:	100.0 (77.2 to 100.0)
Specificity (95%CI)*:	78.4 (62.8 to 88.6)

14. Accuracy of myocardial perfusion imaging alone in detecting significant coronary artery disease (stenosis ≥70%) in those with calcium score <400

TP: 10; TN: 36; FP: 1; FN: 3

Sensitivity (95%CI)*:	76.9 (49.7 to 91.8)
Specificity (95%CI)*:	97.3 (86.2 to 99.5)

15. Accuracy of integrated protocol in detecting significant coronary artery disease (stenosis ≥70%) in those with calcium

Bibliographic reference

16. Accuracy of MDCT alone in detecting significant coronary artery disease (stenosis ≥70%) in those with calcium score >400

Incremental value of an integrated adenosine stress rest MDCT perfusion protocol for detection of obstructive coronary

TP: 25; TN: 6; FP: 9; FN:0

TP: 13; TN: 35; FP:2; FN:0 Sensitivity (95%CI)*:

Specificity (95%CI)*:

Author: Bettencourt N et al

artery disease Year: 2011 score <400

Sensitivity (95%CI)*:	100.0 (86.7 to 100.0)
Specificity (95%CI)*:	40.0 (19.8 to 64.3)

100.0 (77.2 to 100.0)

94.6 (82.3 to 98.5)

17. Accuracy of myocardial perfusion imaging alone in detecting significant coronary artery disease (stenosis ≥70%) in those with calcium score >400

TP: 15; TN: 15; FP: 0; FN: 10

Sensitivity (95%CI)*:	60.0 (40.7 to 76.6)
Specificity (95%CI)*:	100.0 (79.6 to 100.0)

18. Accuracy of integrated protocol in detecting significant coronary artery disease (stenosis ≥70%) in those with calcium score >400

TP: 23; TN: 14; FP: 1; FN: 2

Sensitivity (95%CI)*:	92.0 (75.0 to 97.8)
Specificity (95%CI)*:	93.3 (70.2 to 98.8)

No adverse events experienced after any test.

Source of funding	Not reported
Comments	Statistical methods

Bibliographic reference	Author: Bettencourt N et al Incremental value of an integrated adenosine stress rest MDCT perfusion protocol for detection of obstructive coronary artery disease Year: 2011
	Diagnostic accuracy calculated using standard 2x2. All non-evaluable coronary segments in MDCT were coded as being positive for CAD.
	Study limitations (as assessed using QUADAS-2 checklist)
	1a. LOW
	1b. HIGH - all had an intermediate or high pre-test probability of CAD according to the modified Diamond Forrester score. Unclear whether patient selection was based on referral for coronary angiography.
	2a. LOW
	2b. LOW
	3a. LOW
	3b. LOW
	4. LOW

Bibliographic reference	Author: Di Bello et al Simultaneous dobutamine stress echocardiography and dobutamine scintigraphy (^{99m} Tc-MIBI-SPET) for assessment of coronary artery disease Year: 1996a
Study type	Cross-sectional
Aim	To evaluate the presence and extent of CAD between simultaneous dobutamine stress echocardiography (DSE) and ^{99m} Tc- MIBI-SPET (DMS) compared to coronary angiography.
Patient characteristics	Inclusion
	Consecutive patients with typical or atypical chest pain referred for evaluation of the presence of CAD.
	Good acoustic window to basal echocardiographic examination.
	Not on digitalis therapy.
	Exclusion
	120 patients during the study period were excluded due to:

Bibliographic reference	Author: Di Bello et al
	Simultaneous dobutamine stress echocardiography and dobutamine scintigraphy (^{99m} Tc-MIBI-SPET) for assessment of
	coronary artery disease
	Year: 1996a
	Prior MI, history of EKG documentation, other cardiac diseases, severe arterial hypertension, unstable angina, previous CABG, left BBB, WPW syndrome and left ventricular hypertrophy.
	Other
	Male 33 (73%)
	Age (y) mean (SD) 53 (7)
	Angina (positivity) mean (SD) 7 (16)
	EKG exercise (positive) n=25 (56%)
	Pre-test probability of disease (Diamond's algorithm using age, gender, clinical symptoms and results of EKG stress test*) 45.6% (12.7)
	*All studied patients underwent a preliminary EKG exercise stress test
Number of patients	45
Index test	Dobutamine Stress Echo (Index test 4)
	Dobutamine infused IV to antecubital cannula during continuous 2D-Echo with EKG and BP monitoring (maximum of
	40mcg/kg/min) adding atropine in patients not achieving 85% of max. predicted HR. Metoprolol was used to reverse the effects if they persisted. Test end points were the achievement of target HR, development of severe ischaemia (increasing angina, extensive worsening wall motion abnormality, ST-segment sift) or the occurrence of intolerable side effects.
	Echo was performed at risk and stress with Sonos 1000.
	All echocardiograms were separately reviewed and consensus achieved by two independent, experienced observers, blinded to all other test results.
	Systolic wall thickening and inward wall motion were evaluated visually. A worsening wall motion abnormality after pharmacological stress was considered to reflect an ischaemic response.
	^{99m} Tc-MIBI-SPET (Index test 7)
	Within one minute before the end of the dobutamine echocardiographic stress test, 740MBq of ^{99m} Tc-MIBI-SPET was infused. The stress MIBI SPET imaging was acquired one hour after stress. Single photon emission computed tomographic images were obtained with a rotating gamma camera. 32 views were collected.

Bibliographic reference	Author: Di Bello et al Simultaneous dobutamine s coronary artery disease Year: 1996a	stress	echoca	ardiogra	aphy and	d dobuta	mine	scintigr	aphy (^{99m} Tc	-MIBI-SPE	ET) for ass	essment of	f
	Images were interpreted qu Uptake of radio tracer was v at least two or more segmen	risuall			•	•							est in
Reference standard (or Gold standard)	Coronary Angiography Performed using Judkins tec experienced angiographers, Coronary stenosis was consi descending artery, left circu	blind dered	ed to o I signifi	ther tes cant if t	ts result he vesse	ts. el diamet	er wa	s narrov	wed >50% ir	n the left r		·	erior
Time between testing & treatment	Within 2 weeks												
Length of follow-up	6 month duration												
Location	Pisa, Italy.												
Diagnostic accuracy measures (2 x 2 table)	Index tests 4 and 7	ТР	FP	FN	TN *	Sens%	Spec ⁹	%					
	Stress ECHO (dobutamine) (4)	33	2	5	5		86.0	76.0				
	MIBI-SPECT (7)	33	1	5	6	86	.0	87.0					
	No major complications asso Minor complications: isolate					cular con	ntracti	ons n=1	LO, increased	d angina 1	L5%, ST-se	gment shif	it 8%.
Source of funding	Not mentioned												
Comments	Study limitations:												
	1a. LOW												
	1b. Patients all had chest pa UNCLEAR	in. Ur	nclear v	vhether	r patient	s were re	ecruite	ed base	d on referra	l for coroi	nary angio	igraphy.	
	2a. diagnostic thresholds no	t spec	ified. H	ligh									
	2b. LOW												

	Clinical evidence tables	Chest pain of recent onset
--	--------------------------	----------------------------

Bibliographic reference	Author: Di Bello et al
	Simultaneous dobutamine stress echocardiography and dobutamine scintigraphy (^{99m} Tc-MIBI-SPET) for assessment of coronary artery disease
	Year: 1996a
	3a. LOW
	3b. LOW
	4. LOW
*=calculated by reviewer	

Bibliographic reference	Author: Di Bello et <i>al</i> Incremental diagnostic value of dobutamine stress echocardiography and dobutamine scintigraphy (technetium 99m- labeled sestamibi single-photon emission computed tomography) for assessment of presence and extent of coronary artery disease. Year: 1996b
Study type	Cross Sectional
Aim	To compare dobutamine stress echo (DSE) and myocardial scintigraphy (DMS) during dobutamine stress testing, performed by a single-photon emission computed tomographic (SPECT) approach for a better comparison with echo and ^{99m} Tc-labeled sestamibi scintigraphy.
Patient characteristics	 Inclusion Consecutive patients with typical or atypical chest pain referred for the evaluation of the presence of CAD. Only patients with a good acoustic window were included for basal echocardiographic examination. Exclusion ECG documentation of prior MI, other cardiac diseases, severe arterial hypertension, unstable angina, previous CABG, LBBB, Wolff-Parkinson-White syndrome and left ventricular hypertrophy. Other All patients had typical angina. 13% of patients also showed atypical angina. Mean (SD) Pre-test probability of disease using (Diamond's algorithm) was 45.6% (12.7). Male n(%) 33 (73)

ographic reference	Author: Di Bello et <i>al</i>
	Incremental diagnostic value of dobutamine stress echocardiography and dobutamine scintigraphy (technetium 99m- labeled sestamibi single-photon emission computed tomography) for assessment of presence and extent of coronary artery disease. Year: 1996b
	Age (y) mean (SD) 53 (7)
per of patients	45
(test	All patients underwent preliminary ECG exercise test and simultaneous echocardiographic scintigraphic dobutamine stress testing.
	No patient was on digitalis. Adequate pharmacological washout was obtained before each diagnostic procedure.
	DSE
	Performed during continuous 2-D echo with 12-lead ECG and BP monitoring.
	Dobutamine infused IV via antecubital vein up to a max. 140µg/kg/min with addition of atropine in patients not achieving 85% of max. predicted HR.
	Metropolol was used to reverse effects of dobutamine or atropine when they persisted.
	Test end points – achievement of target HR, development of severe ischaemia, ST segment shift or intolerable side effects. Echo performed at rest and stress with a Sonos 1000.
	Echocardiograms were reviewed by two independent, experienced observers blinded to other test results.
	16 segment system was used and segmental wall motion score index was obtained in both rest and stress using 4 point scale. 0=normal wall motion, 1=hypokinetic, 2=akinetic, 3=dyskinetic wall motion. A worsening wall motion abnormality after stress was considered to reflect an ischemic response. Ischaemia score was calculated from the difference between rest/stress scores.
	DMS
	Within 1 min before end of the DSE test, 740MBq ^{99m} Tc-MIBI was infused IV. Stress SPECT imaging was acquired 1 hour after stress.
	Images were obtained with a two-headed rotating gamma camera. 32 views were collected. A series of transaxial slices were reconstructed from the raw data.
	Qualitative interpretation of the images was performed by two experienced observes blinded to other test results.
	Uptake of the radiotracer was assess visually and a 4 point scale used. 0=normal uptake, 1=decreased uptake, 2=severely decreased uptake and 3=absence of uptake.

Biblic

Num Index

Bibliographic reference	Author: Di Bello et <i>al</i> Incremental diagnostic value of dobutamine stress echocardiography and dobutamine scintigraphy (technetium 99m- labeled sestamibi single-photon emission computed tomography) for assessment of presence and extent of coronary artery disease. Year: 1996b						
	Ischaemia was defined as perfusion defect during exercise that partially or totally resolved at rest in at least two contiguous segments. A score index was generated from the difference between rest and stress indexes. No major complications reported. ST segment shift occurred in 8% of patients and increasing angina in 15%. 15% received atropine. Isolated premature atrial or ventricular contractions occurred in 22%, breathlessness, nausea, palpitation and dizziness rarely occurred and did not reach a level requiring interruption of the test.						
Reference standard (or Gold standard)	Coronary Angiography Judkins technique used. Multiple views were obtained. All arteriograms were high quality and interpreted independently by two experienced, blinded angiographers. Differences in opinion obtained by consensus. Coronary artery stenosis was considered significant if vessel diameter was narrowed >50% in left main artery, left anterior descending artery, left circumflex artery and the right coronary artery.						
Time between testing & treatment	Within 2 weeks.						
Length of follow-up	Study duration not mentioned						
Location	Pisa, Italy						
Diagnostic accuracy measures	7 patients had normal vessels, 19 had one vessel disease and 19 had multi-vessel disease. (Total 38 with disease).						
(2 x 2 table)	TP FP FN TN * Sens% Spec%						
	Echo (4) 29 6 9 6 76 86						
	SPECT (7) 33 1 5 6 87 86 *=calculated by reviewer						
	No major complications reported. Minor events: isolated premature atrial or ventricular contractions n=10, increased angina 15%, ST-segment shift 8%.						
Source of funding	Not mentioned						
Comments	Study limitations:						

Bibliographic reference	Author: Di Bello et <i>al</i> Incremental diagnostic value of dobutamine stress echocardiography and dobutamine scintigraphy (technetium 99m- labeled sestamibi single-photon emission computed tomography) for assessment of presence and extent of coronary artery disease. Year: 1996b
	 1a. LOW 1b. All patients had chest pain and only 13% were atypical. Unclear whether patients were selected based on referral for angiography. UNCLEAR 2a. LOW 2b. LOW 3a. LOW 3b. LOW 4. Study duration unclear but design was prospective and consecutive. LOW

Bibliographic reference	Author: Fujitaka K et al Combined analysis of multislice computed tomography coronary angiography and stress-rest myocardial perfusion imaging in detecting patients with significant proximal coronary artery stenosis Year: 2009
Study type	Cross sectional
Aim	To evaluate the diagnostic accuracy of detecting patients with proximal coronary artery disease for coronary intervention by combined analysis of multislice computed tomography (MSCT) coronary angiography (CAG) and stress-rest myocardial perfusion imaging (MPI)
Patient characteristics	 Inclusion Typical or atypical chest pain suggestive of coronary artery disease who underwent MSCT-CAG, stress-rest MPI and CAG within 4 weeks Exclusion Atrial fibrillation Impaired renal function Known intolerance of iodinated contrast agent

Bibliographic reference	Author: Fujitaka K et al
	Combined analysis of multislice computed tomography coronary angiography and stress-rest myocardial perfusion
	imaging in detecting patients with significant proximal coronary artery stenosis
	Year: 2009
	 Acute myocardial infarction or unstable angina within 48 hours
	- Coronary artery bypass grafts
	Other characteristics
	Age in years, mean (SD) 70 (11)
	Gender, n male/female 80/45
	Height in cm, mean (SD) 159 (8)
	Weight in kg, mean (SD) 61 (12)
	Diabetes mellitus, n (%) 44 (35)
	Hypertension, n (%) 110 (88)
	Hypercholesterolemia, n (%) 58 (46)
Number of patients	N=125
Index test	1. Multislice computed tomography (MSCT) – corresponds to test 2b in review protocol
	- 64 slice MSCT scanner, parameters were 64 x 0.6mm collimation
	- Blinded to reference standard results
	2. MSCT and myocardial perfusion imaging (MPI) combined - tests 2b and 7a in review protocol
	- MSCT-CAG performed first followed by stress rest MPI before CAG
	- Blinded to reference standard results
Reference standard (or Gold	Invasive coronary angiography
Reference standard (or Gold standard)	 Assessed by 2 observers blinded to the MSCT results
standard)	 Assessed by 2 observers blinded to the MSCT results Significant stenosis defined as ≥75%
· · · · · · · · · · · · · · · · · · ·	 Assessed by 2 observers blinded to the MSCT results
standard) Time between testing &	 Assessed by 2 observers blinded to the MSCT results Significant stenosis defined as ≥75%

Bibliographic reference	Author: Fujitaka K et al	
	Combined analysis of multislice computed tomography coronary angiography and stress-rest myocardial perfusion	
	imaging in detecting patients with significant proximal coronary artery stenosis	
	Year: 2009	
Diagnostic accuracy measures	1. Accuracy of MSCT (Index 2) to detect significant stenosis ≥75%	
(2 x 2 table)	TP: 50; TN: 50; FP: 24; FN: 1	
	Sensitivity (95%Cl)*: 98% (89.7 to 99.7)	
	Specificity (95%CI)*: 67.6% (56.3 to 77.1)	
	*Confidence intervals calculated by analyst based on data reported in the article	
	2. Accuracy of MSCT and MPI (index tests 2 + 9) combined to detect significant stenosis ≥75%	
	TP: 48; TN: 70; FP: 4; FN: 3	
	Sensitivity (95%Cl)*: 94.1% (84.1 to 98.0)	
	Specificity (95%CI)*: 94.6% (86.9 to 97.9)	
	*Confidence intervals and likelihood ratios calculated by analyst based on data reported in the article	
	No adverse events reported.	
Source of funding	Not reported	
Comments	Statistical methods	
	Accuracy measures calculated using standard 2x2.	
	Study limitations (as assessed using QUADAS-2 checklist)	
	1a. LOW	
	1b.Unclear whether patients recruited on basis of referral for coronary angiography UNCLEAR.	
	2a. LOW	
	2b. LOW	
	3a. LOW	
	3b. LOW	
	4. LOW	

Bibliographic reference	Author: Marwick et al Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy or both? Year: 1993
Study type	Cross sectional
Aim	To examine the efficacy of dobutamine stress two-dimensional echocardiography and perfusion scintigraphy for the detection of coronary artery disease in routine practice.
Patient characteristics	Inclusion Patients presenting for diagnostic coronary angiography prospectively recruited. Exclusion History of ECG evidence of previous myocardial infarction. Unstable angina, malignant arrhythmias, cardiomyopathy, severe valvular disease or severe hypertension (>200mmHg systolic >120mmHg diastolic)
	Other Men 156, Women 61 Age (y) mean (SD) 58 (10). Typical angina present n% 142 (65). Remaining 75 patients had symptoms sufficiently suggestive of coronary artery disease to warrant coronary angiography. Pre-test probability (calculated on basis of age, gender and the clinical history) High (>80%) 46 Intermediate (20-80%) 131 Low (<20%) 40. Mean overall (SD) 54% (28)
Number of patients	217
Index test	Dobutamine stress echo (Index test 4) Undertaken during admission for cardiac catheterisation. Although advised to avoid anti-anginal therapy on the day of the test, 42 took beta-adrenoreceptor antagonists and 55 took nitrates or calcium antagonists or both. The protocol was performed as planned in these situations to correspond to the

Bibliographic reference	Author: Fujitaka K et al
	Combined analysis of multislice computed tomography coronary angiography and stress-rest myocardial perfusion imaging in detecting patients with significant proximal coronary artery stenosis Year: 2009
	equivalent clinical circumstance.
	Pts were routinely prepared, a rest ECG and echo were performed and IV access was secured and dobutamine was infused (3-min dose increments from 5-40µg/kg) under continuous ECG and echocardiographic monitoring.
	The test was concluded after achievement of peak dose or earlier if patient developed severe ischemia (severe angina or severe impairment of left ventricular function) or intolerable side effects.
	Technetium-99m methoxyisobutly nitrile (sestamibi) was injected 1 to 2 mins before conclusion of infusion except where severe side effects necessitated termination of the test.
	Perfusion Scintigraphy (Index tests 7)
	Performed 1 to 2 hours after the injection of technetium-99m sestamibi.
	Data were acquired over 180 degrees using a large field, single-crystal camera and high resolution collimator. Trans-axial images were obtained by back-projection then reoriented into short-axis and vertical and horizontal long-axis views.
	Results were interpreted by experienced observers who had no knowledge of the echo or angiographic characteristics of the patients.
	Same assumptions were made about the coronary artery distributions. An analogous defect extent score was derived by expressing the number of abnormal segments as a percent of the total. Regions were then interpreted as showing normal perfusion, a stress induced perfusion defect or a fixed perfusion defect.
Reference standard (or Gold standard)	Coronary angiography performed using Judkins technique in all patients. All films were read by experienced observers. Quantification of coronary stenosis was performed using manual tracing and measurement using a technique previously validated with computer assisted quantitative angiography.
	Significant disease was defined as >50% stenosis in a major epicardial coronary artery (present in 142 patients, of whom 68 had single-vessel disease (defined by >50% stenoses confined to one coronary artery or its major branches or both).
	66 patients had no significant disease (normal arteries)
	9 patients had <50% stenoses (considered to be without CAD).
Time between testing & treatment	All tests performed "during admission". Exact times not reported.
Length of follow-up	12 month period (dates not specified)

Bibliographic reference	Author: Fujitaka K et alCombined analysis of multislice computed tomography coronary angiography and stress-rest myocardial perfusion imaging in detecting patients with significant proximal coronary artery stenosis Year: 2009Brussels, Belgium.Stress Echo
(2 x 2 table)	TP 102, TN 62, FP 13, FN 40 Sensitivity 72%, Specificity 83% Mibi-SPECT
	TP 108, TN 50, FP 25, FN 34 Sensitivity 76%, Specificity 67%
	The accuracy of predicting CAD in the high probability group and the absence of disease in the low probability group were 120/139 (86%) for echo and 99/110 (90%) for scintigraphy. Side effects
	Significant side effects were experienced by 84 patients (39%) and the test was terminated before peak dose in 64 patients (29%).
	Hypotension 36 (of which asymptomatic in 32), arrhythmias (8) hypertension (9), dyspnea (7), vagal reactions (2) and anxiety (2). (2). The high incidence of side effects was attributable in part to inclusion of ischemia as an end point only in the presence of
	severe angina or extensive LVF. Milder ischemia was present in 33/64 before the onset of SEs so 31 patients had a non- diagnostic echo due to submaximal stress.
Source of funding	Not mentioned
Comments	 Study limitations: 1a. Unclear if consecutive enrolment although prospective with clear inclusion/exclusion. UNCLEAR. 1b. All had typical angina/suspected CAD. Patients were recruited on basis of referral for coronary angiography HIGH 2a. 31 patients had a non-diagnostic echo and 64 patients did not complete due to side effects HIGH 2b. LOW 3a. LOW

Bibliographic reference	Author: Fujitaka K et al Combined analysis of multislice computed tomography coronary angiography and stress-rest myocardial perfusion imaging in detecting patients with significant proximal coronary artery stenosis Year: 2009
	3b.LOW
	4. LOW. All patients were included in the analysis by test and breakdowns reported for combined tests.

Chest pain of recent onset Clinical evidence tables

Bibliographic reference	Author: Nagel et al Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high dose dobutamine stress MRI Year: 1999	
Study type	Cross sectional	
Aim	To compare echocardiography and magnetic resonance imaging for the detection of stress-induced wall motion abnormalities in patients with suspected coronary artery disease.	
Patient characteristics	Inclusion	
	- Patients with suspected coronary artery disease	
	 Exclusion Patients with ECG signs History of previous myocardial infarction Unstable angina pectoris (Braunwald classification III) Arterial hypertension (>220/120mm Hg) Dilated or obstructive cardiomyopathy Ejection fraction <20% Atrial flutter or fibrillation Ventricular premature beats Significant valvular disease class ≥II Patients receiving B-blockers (to ensure an adequate heart rate response to dobutamine) 	
	Other characteristics	
	Gender, n male/female 147/61	

Bibliographic reference	Author: Nagel et al	
	Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high dose dobutamine stress MRI	
	Year: 1999	
	Age in years, mean (SD) 60 (9)	
	Body weight in kg, mean (SD) 66 (34)	
Number of patients	208 enrolled; 22 patients excluded from dobutamine stress echo group (DSE) due to insufficient image quality (n=18) and inadequate maximal heart rate (n=4); 22 patients excluded from dobutamine stress magnetic resonance imaging group (DSMR) due to insufficient image quality (n=3); inadequate maximal heart rate n=2); severe obesity (n=5); claustrophobia (n=11) and contraindication e.g.: metallic implants (n=1).	
	Therefore a total of 186 in each group however for comparison, analysis included the 172 patients in whom DSE and DSMR were obtained in a joint population.	
Index test	1. Dobutamine stress echocardiography (DSE) – corresponds to index test 4b on review protocol	
	2. Dobutamine stress magnetic resonance imaging (DSMR) – corresponds to index test 5 on review protocol	
	 Both echocardiographic and MR images were displayed as continuous cineloops by use of a quadscreen display for review with a 16-segment model 	
	- Images were evaluated by 2 experienced observers blinded to the results of any of other techniques	
	- Calcium antagonists and nitrates were stopped 24 hours before stress examinations	
Reference standard (or Gold	Biplane coronary angiography	
standard)	 Angiograms were reviewed and interpreted by 2 experienced investigators blinded to the results of the non- invasive tests 	
	 Coronary artery disease defined as a 50% narrowing of the luminal diameter with respect to pre-stenotic segment diameters in at least 1 major epicardial coronary artery or a major branch of 1 of these vessel distributions 	
Time between testing & treatment	Angiography performed within 14 days after DSE and within 24 hours after DSMR in all patients.	
Length of follow-up	Study dates not reported	
Location	Germany	
Diagnostic accuracy measures (2 x 2 table)	1. Accuracy of dobutamine stress echocardiography (index test 4b) to detect coronary artery disease defined as a 50% narrowing of the luminal diameter (patient based analysis)	
	TP: 81; TN: 44; FP: 19 FN: 28	
	Sensitivity (95%CI)*: 74.3 (65.4 to 81.6)	

ibliographic reference	Author: Nagel et al				
	Noninvasive diagnosis of	Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high dose dobutamine stress MRI			
	Year: 1999	Year: 1999			
	Specificity (95%CI)*:	69.8 (57.6 to 79.8)			
	*Confidence intervals cal	culated by analyst based on d	ata reported in the article		
		ne stress magnetic resonance uminal diameter (patient bas	e imaging (index test 5) to detect coronary artery disease defined as		
	TP: 94; TN: 54 FP: 9 FN: 1				
	Sensitivity (95%CI)*:	86.2 (78.5 to 91.5)			
	Specificity (95%CI)*:	85.7 (75.0 to 92.3)	-		
		culated by analyst based on d	ata reported in the article		
	No mention of adverse ev	vents.			
ource of funding	Not reported				
omments	Statistical methods				
	Diagnostic accuracy meas	sures were evaluated accordin	ng to standard definitions and compared between groups.		
	Study limitations (as asse	essed using QUADAS-2 check	list)		
	1a. LOW				
	1b. UNCLEAR – suspected coronary angiography.	d CAD but unclear how many l	nad chest pain. Unclear if patients recruited based on referral for		
	2a. LOW				
	2b. LOW				
	3a. LOW				
	3b. LOW				
	4. LOW				

Bibliographic reference	Author: San Roman et al. Selection of the optimal stress test for the diagnosis of coronary artery disease .		
	Year: 1998		
Study type	Cross-sectional		
Aim	To compare the value and limitations of exercise stress testing, two types of pharmacological stress echocardiography (dipyridamole and dobutamine) and MIBI-SPECT scintigraphy during dobutamine infusion in the diagnosis of coronary ar disease		
Patient characteristics	Inclusion:		
	- Typical chest pain with no previous history of CAD		
	Exclusion:		
	 Previous: MI; revascularisation; positive stress test; angiographically-proven CAD; 		
	- Q wave on ECG;		
	- Unstable angina not controlled by treatment,		
	- Cardiac failure		
	- Congenital or valvular heart disease, or cardiomyopathy		
	Other characteristics		
	Age in years - mean (SD): 64 (10)		
	Age >70 years – n/N (%) 30/102 (29.4%)		
	Gender: male/female, n (%): 50/52 (49% male)		
	Chest pain – n/N (%)		
	- On exertion only: 14/102 (14%)		
	- At rest only: 53/102 (52%)		
	- Both: 35/102 (34%)		
	Background treatment – n/N (%)		
	- Beta-blockers: 9/102 (9%)		
	 Calcium antagonists: 25/102 (25%) Both beta-blockers and calcium antagonists: 9/102 (9%) 		
	 Both beta-blockers and calcium antagonists: 9/102 (9%) None: 59/102 (58%) 		
	- NOILE, 33/ 102 (30/0)		

Bibliographic reference	Author: San Roman et al. Selection of the optimal stress test for the diagnosis of coronary artery disease .
	Year: 1998
	Note: short-acting nitrates given as necessary; sustained release nitrates not used
Number of patients	102 consecutive patients
Index test	(a) Dipyridamole echocardiography – (index test 4b)
	Drug infusion protocol:
	Weighted dose of dipyridamole (0.84mg/kg) infused over 6 mins. In cases where myocardial ischaemia developed, this was reversed with iv aminophylline (240mg over 1-3 mins) and glycerol tri-nitrate if necessary.
	Echocardiographic examination:
	Cross-sectional (2D) echocardiography performed during dipyridamole infusion and up to 10mins after stopping. Used commercially available machines.
	Obtained parasternal long and short-axis views and apical four and two chamber views to look for new wall motion abnormalities. For analysis, the left ventricle was divided into 7 segments. Segmental wall motion at baseline exam was studied qualitatively and graded as: normal / mild hypokinesia / severe hypokinesia / akinesia / dyskinesia.
	A positive response was defined as the appearance of areas of transient asynergy that were absent or of lesser degree before the drug infusion. (Note: development of dyskinesia in a previously akinetic segment was not considered a positive response but a mechanical effect).
	(b) Dobutamine echocardiography – (index test 4b)
	Drug infusion protocol:
	Dobutamine initially injected at dose of 10µg/kg/min, with subsequent increments of 10µg/kg/min every 3 minutes up to a total dose 40µg/kg/min, which was then maintained for 6 minutes.
	Atropine (1mg) was infused if the test was still negative at that point and 85% of max predicted heart rate had not been reached.
	IV propranolol (0.5-1mg) was given if a positive response appeared.
	IV glycerol trinitrate was infused when needed.

Bibliographic reference	Author: San Roman et al. Selection of the optimal stress test for the diagnosis of coronary artery disease . Year: 1998
	Echocardiographic examination:
	Cross-sectional (2D) echocardiography performed during dipyridamole infusion and up to 10mins after stopping. Used commercially available machines.
	Obtained parasternal long and short-axis views and apical four and two chamber views to look for new wall motion abnormalities. For analysis, the left ventricle was divided into 7 segments. Segmental wall motion at baseline exam was studied qualitatively and graded as: normal / mild hypokinesia / severe hypokinesia / akinesia / dyskinesia.
	A positive response was defined as the appearance of areas of transient asynergy that were absent or of lesser degree before the drug infusion. (Note: development of dyskinesia in a previously akinetic segment was not considered a positive response but a mechanical effect).
	(c) MIBI-SPECT (technetium-99m methoxyisobutyl nitrile single photon emission computed tomography) scintigraphy – (index test 7)
	Drug infusion protocol:
	Technetium-99m methoxyisobutyl nitrile (MIBI; 20 mCi) was injected one minute before cessation of the dobutamine infusion (see (b) above).
	SPECT study:
	Tomographic imaging (using Siemens Orbiter gamma camera with high resolution collimator) was performed 1 hour after injection of technetium-99m methoxyisobutyl nitrile.
	Resting examination was done on a different day with a 2 nd dose.
	32 views collected using a 64x64 acquisition matrix for 35 seconds each over 180 degrees, from 45 degrees left posterior to 45 degrees right anterior oblique projections.
	Images were reconstructed using back projection with Butterworth filter.
	Same segmentation was used as for echocardiography to aid comparison.
	Regions were classified as having: normal perfusion / a stress-induced perfusion defect / fixed perfusion defect with both types of defect considered positive responses for presence of CAD.
	Notes:

Bibliographic reference	Author: San Roman et Selection of the optim Year: 1998		diagnosis of coronary artery disease .
	diastolic BP > depression > 3 - All tests were sought in case	120mm Hg; sustained 3mm or elevation > 2r analysed by 2 indepe ss of disagreement (di	rmination of dipyridamole or dobutamine infusion were: systolic BP >220mg Hg; d ventricular arrhythmias; symptomatic hypotension; severe angina; ST mm. endent observers blind to clinical data and other test results. Third opinion ipyridamole echo: 2 cases; dobutamine echo : 3 cases; scintigraphy: 2 cases) ex test in the review protocol so data are not extracted for this test
Reference standard (or Gold standard)	Coronary arteriograph Significant CAD defined		n luminal diameter in one or more major vessels or main branches
Time between testing & treatment	CA performed after all index tests undertaken (on different days in random order) within 7 day period.		
Length of follow-up	Study dates not report	ed	
Location	Spain (2 university tert	iary care centres)	
Diagnostic accuracy measures	(a) Dipyridamole echocardiography (includes 10 patients with left bundle branch block (LBBB))		
(2 x 2 table)		CAD present on CA	CAD absent on CA
	+ve index test result	54 (TP)	2 (FP)
	-ve index test result	12 (FN)	34 (TP)
	(b) Dobutamine echoc	ardiography (includes	s 10 patients with left bundle branch block (LBBB))
		CAD present on CA	CAD absent on CA
	+ve index test result	52 (TP)	4 (FP)
	-ve index test result	14 (FN)	32 (TN)

Author: San Roman et al. Selection of the optimal stress test for the diagnosis of coronary artery disease . Year: 1998			
(c) MIBI-SPECT (exclud	es 10 patients with le	ft bundle branch blo	ck (LBBB))
	CAD present on CA	CAD absent on CA	
+ve index test result	54 (TP)	9 (FP)	
-ve index test result	8 (FN)	21 (TN)	
Major adverse events included left heart failure with dobutamine n=1 and dipyridamole n=1. Severe hypotension (n=2 with each drug), Severe hypertension (3 with dobutamine and none with dipyridamiole) and sustained tachycardia (n=2 with dobutamine and none with dipyridamole). Minor events: palpitations, headache, flushing or nausea (n=36) during dipyridamole and n=35 during dobutamine.			
Not reported			
Study limitations: 1a. LOW			
1b. 10% of patients had LBBB – they were included in study samples for dipyridamole and dobutamine echocardiography, but excluded from MIBI-SPECT testing and comparison analyses (due to known limitations of the technique in such patients (unclear if LBBB was known prior to testing). HIGH			
2a. LOW			
2b. LOW			

Chest pain of recent onset Clinical evidence tables

3a. LOW 3b. LOW 4. LOW

Bibliographic reference

Source of funding

Comments

Bibliographic reference	Author: Santoro et al		
Dishographic reference	Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography as first line examination for chest pain in patients without history of coronary artery disease		
	Year: 1998		
Study type	Cross sectional study		
Aim	To evaluate the accuracy of exercise stress testing, dipyridamole and dobutamine stress echocardiography (DIP-ECHO, DOB- ECHO) and dipyridamole and dobutamine technetium 99m sestamibi tomography (DIP-MIBI, DOB-MIBI) for the detection of coronary artery disease in patients evaluated for the first time because of chest pain.		
Patient characteristics	Inclusion		
	 Chest pain of suspected coronary cause (typical for angina pectoris in 10 (17%) patients and atypical in remaining 50 patients) 		
	Exclusion		
	- Patients with documented CAD		
	- Known angina pectoris		
	- Previous myocardial infarction		
	- Other cardiac disease including rhythm disturbances, valvular heart disease and cardiomyopathy		
	- Abnormal baseline electrocardiograms (such as those with non isoelectric rest ST segment),		
	 Abnormal baseline echocardiograms (such as those with left ventricular hypertrophy or segmental wall motion abnormalities) 		
	- Inability to exercise adequately		
	- Contraindications to exercise or dipyridamole or dobutamine administration and poor acoustic window		
	Other characteristics		
	Baseline characteristics e.g.: age, gender not reported		
Number of patients	N=60		
Index test	1. Dipyridamole and dobutamine stress echo (DIP-ECHO, DOB-ECHO) – (index test 4b)		
	- Commercially available equipment (Aloka SSD 870; 2.5 to 3.5 MHz transducers) was used to record images - Normal response to stress was defined as the preservation of the normal wall motion pattern present at rest or the		

Bibliographic reference	Author: Santoro et al Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography as first line examination for chest pain in patients without history of coronary artery disease Year: 1998		
	development of homogeneous hyperkinesia. - The response to stress was considered abnormal when segmental deterioration of thickening or wall motion (hypokinesia: reduced thickening and wall motion; akinesia: near or total absence of thickening and wall motion; dyskinesia: endocardial excursion away from the lumen and systolic thinning) developed		
	 2. Dipyridamole and dobutamine technetium 99m sestamibi tomography (DIP-MIBI, DOB-MIBI) – single photon emission computed tomography – (Index test 7) - Tomography was collected 60 minutes after technetium 99m sestamibi injection. - An Elscint Apex SP4 gamma camera equipped with an ultrahigh resolution collimator with a 20% 		
	window centered at the 140 keV photopeak of technetium 99m was used.		
Reference standard (or Gold standard)	 Coronary angiography Performed in multiple views with Judkins or Sones techniques Degree of lumen narrowing visually estimated with the aid of calipers Stenosis graded as follows: not significant <70%; moderate: 70 to 89% and severe; >90%. 		
Time between testing & treatment	 Exercise stress testing (not of interest to this question) was usually the first test performed. Dipyridamole and dobutamine stresses were performed in random order on the following 2 days. Coronary angiography was performed according to the study protocol within 15 days of exercise testing. 		
Length of follow-up	Study dates not reported		
Location	Italy		
Diagnostic accuracy measures (2 x 2 table)	1. Accuracy of DIP-ECHO (Index test 4b) in detecting significant stenosis defined as >70% TP: 18; FP: 1; TN: 26; FN: 15 Sensitivity (95%CI)*: 54.5% (36 to 72) Specificity (95%CI)*: 96.3% (81 to 100) *Calculated by analyst based on data reported in the article		
	2. Accuracy of DOB-ECHO (Index test 4b) in detecting significant stenosis defined as >70%		

Bibliographic reference		ion of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography In for chest pain in patients without history of coronary artery disease		
	TP: 20; FP: 1; TN: 26; FN:	TP: 20; FP: 1; TN: 26; FN: 13		
	Sensitivity (95%CI)*:	60.6% (42 to 77)		
	Specificity (95%CI)*:	96.3% (81 to 100)		
	*Calculated by analyst ba	based on data reported in the article		
		(Index test 7) in detecting significant stenosis defined as >70%		
	TP: 32; FP: 3; TN: 24; FN:			
	Sensitivity (95%CI)*:	97% (84.7 to 99.5)		
	Specificity (95%CI)*:	88.9% (71.9 to 96.1)		
	*Calculated by analyst ba	based on data reported in the article		
		IIBI (Index test 7) in detecting significant stenosis defined as >70%		
		TP: 30; FP: 5; TN: 22; FN: 3		
	Sensitivity (95%CI)*:	90.9% (76.4 to 96.9)		
	Specificity (95%CI)*:	81.5% (63.3 to 91.8)		
	*Calculated by analyst ba	pased on data reported in the article		
	-	s reported. Minor events: dobutamine was terminated before peak dose because of frequent		
	ventricular ectopic beats	s (n=2), ventricular tachycardia (n=1), vomiting and hypotension (n=1).		
Source of funding	Not reported	Not reported		
Comments	Statistical methods			
	Standard 2x2 tables used	d to calculate accuracy measures		
		sed using QUADAS-2 checklist)		
		1a. UNCLEAR – consecutive recruitment not reported, baseline characteristics not reported		
	10. Suspected CAD with	chest pain of suspected coronary cause. LOW		

	Chest pain of recent onset Clinical evidence tables
--	--

Bibliographic reference	Author: Santoro et al	
	Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography as first line examination for chest pain in patients without history of coronary artery disease	
	Year: 1998	
	2a. LOW	
	2b. LOW	
	3a. UNCLEAR - unclear if reference standard results were interpreted without knowledge of index test results	
	3b. LOW	
	4. LOW	

Bibliographic reference	Author: Schepis et al Added value of Coronary Artery Calcium Score as an Adjunt to Gated SPECT for the Evaluation of Coronary Artery Disease in an Intermediate-Risk Population. Year: 2007
Study type	Cross-sectional
Aim	To investigate the added value of the CAC score as an adjunct to gated SPECT for the assessment of CAD in an intermediate risk population.
Patient characteristics	119 patients prospectively recruited who were scheduled for elective coronary angiography because of suspected CAD. 77fulfilled inclusion criteria.InclusionNo previously known CADTypical or atypical chest pain, dyspnoea or signs of myocardial ischemia on a resting ECG or bicycle stress test;Intermediate risk (10-20%) (determined on the basis of Framingham Heart Study 10-y CAD risk score.Clinically stable condition.Men 45, women 32Age (mean (SD)) 66(9), range 42-82.Clinical characteristics

Bibliographic reference	Author: Schepis et al
	Added value of Coronary Artery Calcium Score as an Adjunt to Gated SPECT for the Evaluation of Coronary Artery Disease
	in an Intermediate-Risk Population.
	Year: 2007
	BMI (mean (SD)) 27kg/m ² (4)
	Arterial hypertension 56 (73)
	Diabetes melitus 14 (18)
	Current smoker 27 (35)
	Typical angina 26 (34)
	Atypical angina 18 (23)
	Asymptomatic 16 (21)
	Framingham Heart study risk score 13 (5)
	Total cholesterol (mmol/L) 5.0 (1.1).
Number of patients	77
Index test	Gated SPECT (Index Test 7)
	1-d stress-rest MPI protocol with doses of 350MBq of 99mTC-tetrofosmin, respectively. Patients were instructed to refrain from caffeine (12hrs), nitrates (24hrs) and beta blockers for 48hrs before the study.
	Stress induced using adenosine 0.14mg/kg/min.
	Data acquisition performed using hybrid SPECT/CT dual head camera. SPECT images were reconstructed with an iterative ordered subsets expectation maximisation algorithm. A low-dose CT scan for attenuation correction was performed. ECG gating was performed at rest.
	Semi-quantitative visual interpretation of the attenuation corrected stress and rest images was performed by consensus of 2 experienced cardiologists unaware of results of both other tests. Segments were scored for radiotracer uptake with a 5-point score (0=normal, 1=equivocal, 2=moderately reduced, 3=severely reduced and 4=absent). Fixed perfusion defects and reversible defects were considered abnormal findings. The extent of reversible defects was categorised as mild (\leq 5%), moderate (>5 and \leq 10%) or large (>10%). Mild or moderate fixed perfusion defects were not considered to be abnormal if there was normal segmental contraction or thickening.
	Categorization scale was 1=definitely normal, 2=probably normal, 3=equivocal, 4=possibly abnormal and 5=definitely abnormal.
	Calcium Scoring (Index test 3)

Bibliographic reference	Author: Schepis et al		
	Added value of Coronary Artery Calcium Score as an Adjunt to Gated SPECT for the Evaluation of Coronary Artery Disease in an Intermediate-Risk Population.		
	Year: 2007		
	A non-enhanced ECG-gated scan was obtained using 64 slice CT scanner. Estimated radiation dose 1-3mSv.		
	Patients with heart rate of >65bpm were given metoprolol at 5-20mg IV prior to CT scan.		
	Image reconstruction was performed at 55% of the R-R interval, with a non-overlapping slice thickness of 3mm. Total calcium burden was measured manually by planimetry according to Agatston scoring algorithm. People were categorised as follows. ≤10 = minimal or insignificant CAC, 11-100 (mild CAC), 101-400 (moderate CAC), 401-1000 (severe CAC) and >1000 (extensive CAC).		
	CAC score threshold was determined as the cut-off that on ROC analysis resulted in the best sensitivity for the detection of significant CAD with an associated specificity of >90%. This score was used to evaluate the diagnostic performance of SPECT alone and of SPECT combined with CAC score for the prediction of significant CAD. The cut off score was >709.		
Reference standard (or Gold	Coronary angiography Coronary arteries were subdivided into 15 segments (AHA guidelines). Segments were classified as normal, as having non-obstructive disease (<50% stenosis) or as having significant stenosis. Stenosis was evaluated in 2 different views and significant CAD was defined as the presence of at least one coronary vessel stenosis of 50% or greater in major epicardial coronary vessel.		
standard)			
Time between testing & treatment	Within 2 weeks. Mean time 7(14) and 4(14) days for coronary angiography and CT and gated SPECT respectively.		
Length of follow-up	Study period not specified		
Location	Zurich, Switzerland		
Diagnostic accuracy measures (2 x 2 table)	42/77 patients had CAD (4 had stenosis level of 50-75% and 38 had stenosis level of >75%).		
	Overall, CAC was deemed accessible in 304/308 coronary arteries in 77 patients. 4 vessels were affected by motion artifacts and were excluded.		
	TP FP FN TN Sens% Spec%		
	SPECT (Index test 7) 32 3 10 32 76 91		
	SPECT plus CAC score (Index tests 3 & 7 combined) 36 5 6 30 86 86 (CAC score threshold >709)		

Bibliographic reference	Author: Schepis et al Added value of Coronary Artery Calcium Score as an Adjunt to Gated SPECT for the Evaluation of Coronary Artery Disease in an Intermediate-Risk Population. Year: 2007
	No mention of adverse events associated with any test.
Source of funding	One author was supported by a grant from the Swiss National Science Foundation.
Comments	Study limitations:1a. UNCLEAR unclear if enrolment was consecutive1b. HIGH 21% were asymptomatic, all patients were intermediate risk of CAD according to Framingham Scores. Patients were recruited into study based on referral for coronary angiography.2a. LOW2b. LOW3a. LOW3b. LOW4. LOW although the time period of the study was not specified

Bibliographic reference	Author: Senior et al Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: Comparison of myocardial contrast echocardiography with ^{99mT} c single-photon emission computed tomography Year: 2004
Study type	Cross sectional
Aim	To test the hypothesis that MCE is superior to SPECT for the detection of CAD.
Patient characteristics	 Inclusion Adults with chest pain but without a history of prior MI or resting regional dysfunction on echocardiography scheduled for diagnostic angiography who were then screened for pre-test probability of CAD. People with a medium probability were selected for enrolment into the study. Exclusion Previous CABG, valvular disease, cardiomyopathy, atrial fibrillation and contraindications for dipyridamole.

Bibliographic reference	Author: Senior et al
	Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: Comparison of myocardial contrast echocardiography with ^{99mT} c single-photon emission computed tomography Year: 2004
	Prior MI or abnormal regional function at rest (as assessed with echo).
	Other Pre-test probability of CAD (mean (SD) 64% (26) Age (y) 47-61 (median 61) Male (%) 45 (82) Diabetes (%) 5 (9) Hypertension (%) 22 (40) Hyperlipidaemia (%) 19 (35) Type of Chest pain (%) Typical 18 (33) Atypical 26 (47) Noncardiac 11 (20) ≥3 risk factors 22 (40)
Number of patients	55
Index test	 Echocardiography (Index test 4b) was performed continuously during dipyridamole infusion and for 5-10mins after its completion. (0.56mg/kg over 4mins, followed 4mins later by 0.28mg/kg over 2mins). Patients who had angina or wall motion abnormalities after the first dose were not given the second dose. When necessary, intolerable symptoms were reversed with 50-100mg of intravenous aminophylline. Patients were asked to abstain from caffeine and methylxanthines for at least 12 hours and beta blockers for 24 hours before the test. 3 standard apical views using pulse inversion (HDI5000, Phillips Ultrasound). 5 frames acquired (digitally) at each pulse interval. Sonazoid contrast agent was used (0.01ml/kg/min starting 3mins after completion of dipyridamole infusion and just after radio isotope.
	SPECT (Index test 7)

Bibliographic reference	Author: Senior et al Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: Comparison of myocardial contrast echocardiography with ^{99mT} c single-photon emission computed
	tomography Year: 2004
	Performed 1-2 hours after IV ^{99m} TC-tetrofosomin (600MBq) using multi-head cameras. 32 projections were acquired and tomograms reconstructed in the vertical and horizontal long and short axis planes.
	16 and 17 segment model was used for MCE and SPECT respectively. Rest and stress images were viewed side by side by independent and blinded observers.
	ECHO Normal replenishment (of the ultrasound beam after microbubble destruction) at rest that did not fill in approximately 1 second after dipyridamole was considered to be presence of a reversible perfusion defect
	On SPECT a perfusion defect was considered to be fixed when its relative magnitude was unchanged between rest and stress. All fixed and reversible defects were considered to be abnormal.
Reference standard (or Gold	Coronary Angiography
standard)	No details about the technique used to carry out.
	CAD defined as >50% luminal diameter narrowing of ≥1 major epicardial arteries or their major branches.
	If an artery had >1 stenosis the most severe one was used for definition purposes in both anterior and posterior circulations. Multi-vessel disease was determined to be present when both circulation systems had >50% luminal narrowing.
Time between testing & treatment	Within 4 weeks.
Length of follow-up	Study duration not mentioned
Location	3 centres in Europe (including UK and Germany)
Diagnostic accuracy measures (2 x 2 table)	12 patients had no CAD. 43 patients had CAD (of which, 11 had multi-vessel CAD).
	TP FP FN TN * Sens% Spec%
	Echo stenosis >50% 36 5 7 7 83.0 58.0
	SPECT stenosis >50% 21 1 22 11 49.0 92.0
	Echo stenosis >75% 36 1 7 11 83.0 88.0 SPECT stenosics 75% 24 4 22 4 6<
	SPECT stenosis >75% 21 4 22 8 49.0 64.0

Bibliographic reference	Author: Senior et al
	Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial
	infarction: Comparison of myocardial contrast echocardiography with ^{99mT} c single-photon emission computed
	tomography
	Year: 2004
	No mention of adverse events associated with any test.
Source of funding	Supported by a grant from Amersham Health UK and in part by grants from the National Institutes of
	Health, Bethesda, Md.
Comments	Study limitations:
	1a. Design described as prospective but it is not stated whether enrolment was consecutive. UNCLEAR
	1b. Population all had chest pain. 67% had atypical or non-cardiac chest pain. Only people with medium pre-test probability
	for CAD were selected. Patients were selected for recruitment based on referral for coronary angiography. HIGH
	2a. LOW
	2b. LOW
	3a. Unclear if operator of the reference standard test was blinded to the index test results. UNCLEAR
	3b. LOW
	4. LOW

Bibliographic reference	Author: Stolzmann et al Combining cardiac magnetic resonance and computed tomography coronary calcium scoring: added value for the assessment of morphological coronary disease? Year: 2011
Study type	Cross sectional
Aim	To investigate the added value of calcium scoring as adjunct to cardiac magnetic resonance (CMR) for the diagnosis of coronary artery disease (in comparison to coronary angiography).
Patient characteristics	Inclusion Consecutive patients referred to coronary angiography with an intermediate risk of having CAD based on the Diamond and Forrester criteria.

Bibliographic reference	Author: Stolzmann et al
	Combining cardiac magnetic resonance and computed tomography coronary calcium scoring: added value for the assessment of morphological coronary disease?
	Year: 2011
	Exclusions
	Contraindications for adenosine (second or third AV-block, sick sinus syndrome, symptomatic bradycardia, severe asthma or obstructive pulmonary disease n=4) or MRI (implanted electronic devices, metallic foreign bodies in the eye, severe claustrophobia and other according to local regulations/manufacturer recommendations, n=1).
	Other
	Male 52 (87%), Female 8 (13%).
	Age y (mean(SD)) 64 (10) (range 41-85)
	BMI (kg/m ²) 27.4 (4.3)
	Obesity 17 (28%)
	Cardiovascular risk factors n(%)
	Hypertension 46 (77)
	Nicotine abuse 20 (33)
	Hyperlipidaemia 43 (72)
	Family history 11 (18)
	Diabetes 9 (15)
	Symptoms n(%)
	Non anginal pain or no chest pain 21 (35)
	Atypical angina 13 (22)
	Typical angina 26 (43)
Number of patients	65-5 = 60
Index test	CMR (Index test 6)
	Performed using 1.5Tesla magnetic resonance system using standardized protocols. All data were acquired using breath hold in end inspiration and standardized 17 segment AHA model. Pharmacological stress using adenosine was applied at 140µg/min/kg over 3 mins under ECG, oxygen-saturation and BP monitoring. Gadobutrolum was injected 2.5mins after the start of the adenosine and with the acquisition of perfusion CMR images. Contrast media was administered (0.1mmol/kg) at 5mls/second followed by saline flush. 10 mins later a second bolus was given and rest perfusion images were obtained with

Bibliographic reference	Author: Stolzmann et al
	Combining cardiac magnetic resonance and computed tomography coronary calcium scoring: added value for the assessment of morphological coronary disease?
	Year: 2011
	same orientation /positioning as the stress images.
	Saturation recovery gradient-echo pulse sequence used. Slice thickness 10mm.
	10 mins after rest perfusion late gadolinium enhancement (LGE) images were acquired.
	All images were evaluated using ViewForum (Philips) by two experienced readers blinded to results of other tests.
	Segmental perfusion and LGE was scored with a 4 point scale (0=definitely normal, 1=probably normal, 2=probably pathological, 3=definitely pathological). A score of 2 or 3 was considered abnormal. (pathological was defined as either reduced peak signal intensity or delayed wash-in during stress/vs rest).
	Calcium Scoring (Index test 3)
	All CTs performed on Somatom Definition scanner (Siemens). A non-contrast enhanced scan was performed for CS and data were acquired using prospective ECG triggering. Estimated effective radiation dose 1.1±0.3mSV.
	Image reconstruction was performed using a mon-segment mode with non-overlapping slice thickness of 3mm.
	Calcifications were semi-automatically quantified with scoring software by a single blinded experienced operator using the Agatston method. On the basis of Agatston score patients were classified into 5 categories.
	1. $\leq 10 = no \text{ or minimal calcifications}$
	2. 10 to 100 = mild
	3. 101 to 400 = moderate
	4. 401 to 1000 = severe
	5. >1000 = extensive.
	CS-related risk was stratified using age and gender related percentiles.
	Patients with a CS >75 th percentile were classified to be at high risk.
Reference standard (or Gold	Coronary angiography
standard)	Angiograms were obtained in at least 2 orthogonal projections according to standard techniques and were evaluated by two experienced readers blinded to results of the index tests. QCA analysis software was used. Arteries were divided into 15 segments per the AHA scheme. An average of the 2 results was taken to obtain the overall percentage stenosis. ≥50% narrowing was considered as morphological stenosis.

Bibliographic reference	Author: Stolzmann et al
Second april of the terror of the	Combining cardiac magnetic resonance and computed tomography coronary calcium scoring: added value for the assessment of morphological coronary disease?
	Year: 2011
	36/60 patients had stenosis.
Time between testing & treatment	Same day
Length of follow-up	Not specified
Location	Zurich, Switzerland.
Diagnostic accuracy measures (2 x 2 table)	CMR TP 28, FP 3, FN 8, TN 21* Sensitivity (%(95%Cl) 78% (63-93), Specificity 88 (72-100), PPV 90 (78-100), NPV (54-90. Accuracy 92 (71-92) Combined CMR and CT calcium scoring TP 32, FP 4, FN 4, TN 20* Sensitivity (%(95% Cl) 89 (77-97), Specificity 83 (66-100), PPV 89 (77-100), NPV 83 (66-100). Accuracy 87 (77-96). No mention of any adverse events associated with any test.
Source of funding	Not mentioned
Comments	Study limitations:1a. LOW1b. HIGH 35% had no angina pain or no chest pain, all patients were intermediate risk of CAD. Patients were recruited on basis of referral for coronary angiography.2a. LOW2b. LOW3a. LOW3b. LOW3b. LOW4. LOW although the time period of the study was not specified this should not in itself significantly increase the risk of bias

Bibliographic reference	Author: Thomassen et al Hybrid CT angiography and quantitative 15O-water PET for assessment of coronary artery disease: comparison with quantitative coronary angiography Year: 2013
Study type	Cross sectional
Aim	To examine the diagnostic performance of 64-slice CT angiography (CTA) alone, quantitative 15O-water positron emission tomography (PET) alone and hybrid PET/CTA using quantitative coronary angiography (QCA) obtained by invasive coronary angiography (ICA) as reference, and further to determine cut-off values of absolute myocardial blood flow (MBF) yielding the best diagnostic performance
Patient characteristics	Inclusion - Outpatients scheduled for ICA because of suspected stable angina pectoris Exclusion - Known CAD - Arrhythmia - Dysregulated diabetes - Impaired renal function - Allergy to iodine - Severe asthma or chronic obstructive pulmonary disease - Inability to cooperate Other characteristics Gender, male/female, n (%) 23 (52)/21 (48) Age (years), mean ± SD 66±9 Diabetes mellitus, n (%)7 (16) Hypertension, n (%)29 (66) Smoker or ex-smoker, n (%)30 (68)
	Hypercholesterolaemia, n (%)26 (59) Family history, n (%)21 (48)
Number of patients	N=44

Bibliographic reference	Author: Thomassen et al
	Hybrid CT angiography and quantitative 15O-water PET for assessment of coronary artery disease: comparison with quantitative coronary angiography
	Year: 2013
Index test	1. 64-slice CT angiography (CTA) alone – corresponds to test 2b on review protocol
	- Patients were examined using hybrid PET/64-slice CT scanners (GE Discovery VCT XT or GE Discovery RX) with the Agatston score obtained from the CT scan
	- Stenoses were graded visually considering stenoses of ≥50 % as significant. If CTA was non diagnostic in one or more segments in a vessel, the vessel was considered significantly stenosed, because most non diagnostic CTA was a result of heavy calcification.
	- In symptomatic patients, heavy calcification is associated with increasing probability of having an angiographically significant stenosis
	2. Quantitative 150-water positron emission tomography (PET) alone – corresponds to test 7 on review protocol
	- A low-dose CT transmission scan was acquired for attenuation Correction
	- Data were reconstructed with a 50-cm field of view, a matrix size of 512×512 (pixel size 0.98 mm) and a slice thickness 3.75 mm, using filtered back-projection and a standard GE CT noise filter
	3. Hybrid PET/CTA
	- Quantitative PET images were fused with CTA images on a GE ADW 4.3 or 4.4 workstation (CardIQ Fusion) to provide a 3-D volumetric model.
	- The analysis was conducted with full access to the PET and CTA datasets.
	- All CTA stenoses of ≥50 % were tested for 'haemodynamic significance': if the downstream vascular
	territory was hypoperfused during hyperaemia as judged by PET (<2.5 ml/min/g), the stenosis was categorized as 'haemodynamically significant'.
	 Vessels with 0 – 50 % stenosis on CTA were reanalysed if the corresponding vascular territory had impaired MBF by PET and a final decision was made as to whether a stenosis/occlusion was present
Reference standard (or Gold	Invasive coronary angiography
standard)	- Siemens HICOR catheterization equipment (Siemens Medical System, Inc., Erlangen, Germany) was used for standard ICA in two planes
	- A diameter reduction of 50 % or more indicated an 'angiographically significant' stenosis. In vessels with multiple stenoses, only the most severe stenosis was evaluated.
Time between testing &	Invasive coronary angiography was scheduled for the day after the index tests

Bibliographic reference	Author: Thomassen et al Hybrid CT angiography and quantitative 15O-water PET for assessment of coronary artery disease: comparison with quantitative coronary angiography Year: 2013		
treatment			
Length of follow-up	Study dates not reported		
Location	Denmark		
Diagnostic accuracy measures (2 x 2 table)	TP: 20; TN: 14; FP: 8; FN: 2		
	Sensitivity (95%CI)*:	90.9 (72.2 to 97.5)	
	Specificity (95%CI)*:	63.6 (43.0 to 80.3)	
	TP: 20; TN: 19; FP: 3; FN: 2 Sensitivity (95%CI)*: Specificity (95%CI)*: 3. Accuracy of CTA/PET (in TP: 20; TN: 22; FP: 0; FN: 2	91 (72-97) 86 (67-95) Index tests 2 and 7) in detecting significant stenosis/hypoperfusion (per patient analysis)	
	Sensitivity (95%CI)*:	90.9 (72.2 to 97.5)	
	Specificity (95%CI)*:	100.0 (85.1 to 100.0)	
	No adverse events were re	ported and no cardiac events occurred between tests.	
Source of funding	Not reported		
Comments	Statistical methods		
	Accuracy measures calcula Study limitations (as asses		

National Guideline Centre. 2016

Bibliographic reference	Author: Thomassen et al Hybrid CT angiography and quantitative 15O-water PET for assessment of coronary artery disease: comparison with quantitative coronary angiography Year: 2013
	 1a. UNCLEAR – consecutive recruitment not reported 1b. Patients recruited on basis of referral for coronary angiography HIGH 2a. LOW 2b. LOW 3a. LOW 3b. LOW 4. LOW

I.6 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin – supplementary test and treat randomised controlled trial review

Bibliographic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391
Study type	RCT, open-label, parallel-group (randomisation used minimisation to ensure balance between groups for certain characteristics)
Aim	To assess the effect of CTCA on the diagnosis, management and outcome of patients referred to the cardiology clinic with suspected angina
Patient characteristics	 12 cardiology chest pain clinics across Scotland, November 2010 to September 2014 Inclusion; 18 to 85yrs, referred by a primary care physician to a cardiology chest pain clinic with stable suspected angina due to coronary heart disease Exclusion; inability to undergo CT scanning, renal failure, major allergy to contrast media, pregnancy acute coronary syndrome within 3 months

Bibliographic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391				
	Baseline;				
		Standard care and CTCA	Standard care		
	Male	1162 (56%)	1163 (56%)		
	Age	57.1±9.7	57.0±9.7		
	Previous CHD	186 (9%)	186 (9%)		
	Previous CVD	91 (4%)	48 (2%)		
	Previous PVD	36 (2%)	17 (1%)		
	Typical angina symptoms	737 (36%)	725 (35%)		
	Atypical angina symptoms	502 (24%)	486 (23%)		
	Non-anginal symptoms	833 (40%)	859 (41%)		
	Normal ECG	1757 (85%)	1735 (84%)		
	Abnormal ECG	292 (14%)	316 (15%)		
	Baseline diagnosis of CHD	982 (47%)	956 (46%)		
	Baseline diagnosis of angina due to CHD	742 (36%)	743 (36%)		
	Predicted 10yr CHD risk	18±11%	17±12%		
Number of Patients	N=4146				
Intervention	N=2073				
	Standard care and CTCA;				
	 64 row detector scanner (Brilliance 64, Philips Medical Systems, Netherlands and Biograph mCT, Siemens, Germany) and 320 detector row scanner (Aquilion ONE, Toshiba Medical Systems, Japan) at 3 imaging sites 				
	 CT coronary angiograms assessed by ≥ 	2 accredited assessor	S		
Comparison	N=2073				
	Standard care				
Length of follow up	6weeks for primary outcome				

Chest pain of recent onset Clinical evidence tables

liographic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391
ation	UK
tcomes measures and ect size	Obstructive coronary artery disease – defined as luminal stenosis >70% in ≥1 major epicardial vessel or >50% in the left main stem Luminal cross-sectional area stenosis; normal (<10%), mild non-obstructive (10-49%), moderate non-obstructive (50-70%),
	obstructive (>70%)
	Primary outcome;
	 Proportion of patients diagnosed with angina secondary to coronary heart disease at 6weeks Long term outcomes;
	 Death, myocardial infarction, coronary revascularisation procedures, admittance to hospital for chest pain episodes, cerebrovascular disease, peripheral vascular disease – identified with data from the Information and Statistics Division of the NHS Scotland and confirmed by health records
	Missing data;
	N=295/2073 defaulted or did not complete scan;
	 Less likely to have atypical angina; N=58 (23%) vs N=686 (39%), p<0.0001
	 Less likely to have a diagnosis of angina; N=50 (20%) vs N=692 (38%), p<0.0001
	CTCA findings;
	- Normal; N=654 (37%)
	 Evidence of CHD; N=1124 (63%), of these non-obstructive CHD; N=672 (38%), obstructive CHD; N=452 (25%) Opinion of clinicians reporting CTCA the CTCA finding of evidence of CHD increased the certainty (RR 3.76, 95%CI 3.61 to 3.89, p<0.0001) and reduced the frequency of (RR 0.78, 95%CI 0.70 to 0.86, p<0.0001) the diagnosis of angina due to coronary heart disease
	Reported by attending clinician; compared with standard care CTCA increased the certainty (RR 2.56, 95%CI 2.33 to 2.79, p<0.0001) and increased the frequency of (RR 1.09, 95%CI 1.02 to 1.17, p=0.0172) the diagnosis of angina due to coronary heart disease at 6weeks
	For the primary endpoint this was an increased certainty (RR 1.79, 95%Cl 1.62 to 1.96, p<0.0001) and had no effect on

Bibl

Loca Outo effe

		015) CT coronary angio abel, parallel-group, m		ith suspected angina due to c	oronary he
	frequency (RR 0.93, 95%CI 0.85 to 1.02, p=0.1289) of the diagnosis of angina due to coronary heart disease Overall 6week diagnosis of CHD changed in 27% of those having CTCA compared with 1% with standard care alone.				
		ed by comparing yes/nc	•	••	
(frequency of diag	(frequency of diagnosis was compared between yes/probable and unlikely/no)				
Improvements in	angina stability;				
		õweeks 44±28, baseline	62±24,p<0.001		
- Standard	care group (N=	651); at 6weeks 44±28,	baseline 62±21,p<0.0	001	
Improvements in	angina frequenc	Σγ;			
- CTCA gro	up (N=655); at 6	5weeks 68±22, baseline	79±23,p<0.0001		
- Standard	care group (N=	653); at 6weeks 68±22,	baseline 80±23,p<0.0	0001	
No differences in	the improvemer	nts in angina stability an	d frequency betweer	n the groups	
	Adverse events related to CTCA, N=31 (2%);				
	 N=13 contrast reactions, N=7 contrast extravasations, N=4 vasovagal, N=4 headaches, N=3 other 				
- All AEs w	- All AEs were self-limiting with no cases of anaphylaxis or renal failure				
Clinical outcomes	(other outcome	es reported, not extracte	ed in this FT).		
	(other outcome	Standard care and	Standard care,	HR (95%CI)	P value
		CTCA, N=2073	N=2073		
CHD death, MI a	nd stroke	31 (1.5%)	48 (2.3%)	0.644 (0.410 to 1.012	0.0561
Non-fatal MI		22 (1.1%)	35 (1.7%)	0.627 (0.367 to 1.069)	0.0862
Non-fatal stroke		5 (0.1%)	7 (0.2%)	0.727 (0.228 to 2.315)	0.5900
Cardiovascular o	eath	4 (0.2%)	7 (0.3%)	0.574 (0.167 to 1.971)	0.3776
Coronary revasc	ularisation	233 (11.2%)	201 (9.7%)	1.198 (0.992 to 1.448)	0.0611
		247 (11.9%)	264 (12.7%)	0.928 (0.780 to 1.104)	0.3993

Bibl

Bibliographic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391
Source of funding	The Chief Scientist Office of the Scottish Government Health and Social Care Directorates, with supplementary awards from Edinburgh and Lothian's health Foundation Trust and the Heart Diseases Research Fund
Comments	For 80% power, 2-seided p of 0.05, aimed to recruit 2069 to detect an absolute change of 4% in the diagnosis of angina.

Bibliographic reference	Douglas PS, Hoffmann U, Patel MR, et al. (2015) Outcomes of anatomical versus functional testing for coronary artery disease. NEJM 372: 1291-1300 PROMISE study				
Study type	RCT (stratified by study site and according to the choice of the intended functional test if they were assigned to that study group)				
Aim	To assess compare health outcomes in patients who presented with new symptoms suggestive of CAD who were assigned to anatomical testing with CTA or functional testing				
Patient characteristics	anatomical testing with CTA or functional testing 193 sites in North America, July 2010 to September 2013 Inclusion; - symptomatic outpatients without diagnosed CAD whose physicians believed that non-urgent, noninvasive cardiovascular testing was necessary for evaluation of suspected CAD - >54years (men), >64 years (female) or 45 to 54years (male) or 50 to 64years (female) with ≥1 cardiac risk factor (diabetes, peripheral artery disease, cerebrovascular disease, current/past tobacco use, hypertension, dyslipidaemia) Exclusion; - unstable haemodynamic status or arrhythmias that required urgent evaluation for suspected acute coronary syndrome, a history of CAD or evaluation for CAD in the previous 12months, clinically significant congenital, valvular or cardiomyopathic heart disease Baseline; CTA, N=4996 Functional testing,				

Bibliographic reference	Douglas PS, Hoffmann U, Patel MR, et al. (2015) Outcom	nes of anatomical versus fu	unctional testing for corona				
	disease. NEJM 372: 1291-1300						
	PROMISE study						
	Mean age	60.7±8.3	60.9±8.3				
	Female	2595 (51.9%)	2675 (53.4%)				
	Primary presenting symptom – chest pain	3673/4992 (73.6%)	3599/5004 (71.9%)				
	Primary presenting symptom – dysnoea on exertion	712/4992 (46.3%)	778/5004 (15.5%)				
	Primary presenting symptom – other	607/4992 (45.2%)	627/5004 (12.5%)				
	Typical angina	590 (11.8%)	576 (11.5%)				
	Atypical angina	3873 (77.5%)	3900 (77.9%)				
	Nonanginal pain	533 (10.7%)	531 (10.6%)				
Number of Patients	N=10003						
ntervention	N=4996						
	Anatomical testing; - contrast enhanced CTRA, 64-slice or greater multidetector CT scanner						
Comparison	N=5007						
	Functional testing;						
	- Exercise ECG, exercise or pharmacologic nuclear stress testing and stress echocardiography						
Number of Patients	N=10003						
ntervention	N=4996						
	Anatomical testing and CTA;						
	- N=4686, 93.8% had CTA as first test						
	- N=4589, 97.9% had CTA	- N=4589, 97.9% had CTA					
	- N=97, 2.1% had CAC scoring only						
	- N=310, 6.2% did not have CTA as first test						
	- N=154, 49.7% had other test as first te						
	- N=9, 2.9% had catheterisation						
	- N=104, 33.5% had nuclear stre	 N=104, 33.5% had nuclear stress imaging 					

Bibliographic reference	Douglas PS, Hoffmann U, Patel MR, et al. (2015) Outcomes of anatomical versus functional testing for coronary artery				
	disease. NEJM 372: 1291-1300 PROMISE study				
	- N=27, 8.7% had stress echocardiography				
	- N=14, 4.5% had exercise ECG				
	- N=156, 50.3% did not have test				
Comparison	N=5007				
	Functional testing strategy;				
	 N=4692, 93.7% had functional test as first test 				
	 N=3159, 67.3% had nuclear stress imaging 				
	 N=1056, 22.5% had stress echocardiography 				
	- N=477, 10.2% had exercise ECG				
	- N=315, 6.3% did not have functional test as a first test				
	 N=67, 21.3% had other test as first test 				
	- N=20, 6.3% had catheterisation				
	- N=47, 14.9% had CTA or CAC scoring				
	- N=246, 78.1% did not have test				
	 N=2, 0.6% had test before randomisation 				
Length of follow up	60days at study sites, 6month intervals via phone or mail for a minimum of 1year				
Location	USA				
Outcomes measures and					
effect size	Primary endpoint;				
	 composite of major cardiovascular events (included death from any cause, MI, hospitalisation for unstable angina, and major complication of cardiovascular procedures or diagnostic testing (stroke, major bleeding, renal failure, or anaphylaxis)) 				
	Secondary endpoints;				
	 Composite of the primary endpoint or invasive catheterisation showing no obstructive CAD, other combinations of the components of the primary endpoint, invasive cardiac catheterisation showing no obstructive CAD, cumulative radiation exposure (latter 2 endpoints determined at 90 days) 				

Bibliographic reference	Douglas PS, Hoffmann U, Patel MR, et al. (2015) Outcomes of anatomical versus functional testing for coronary artery disease. NEJM 372: 1291-1300 PROMISE study							
	Clinical end point;	CTA, N=4996	Functional testing,	Adjusted HR (95%CI)	P value			
	Primary composite end point	164	N=5007 151	1.04 (0.83 to 1.29	0.75			
	Death from any cause Nonfatal MI	74 30	75 40					
	Hospitalisation for unstable angina	61	41					
	Major procedural complication Primary end point plus catheterisation, showing no obstructive CAD	4 332	5 353	0.91 (0.78 to 1.06)	0.22			
	Death or nonfatal MI	104	112	0.88 (0.67 to 1.15)	0.35			
	Death, nonfatal MI, or hospitalisation for unstable angina	162	148	1.04 (0.84 to 1.31)	0.70			
	During the first 12months of follow-up; - Primary composite end point; N=88 (CTA	group), N=9	1 (functional to	esting group), HR 0.94 (0	.70 to 1.26), p=0.68			
Source of funding	National Heart, Lung and Blood Institute							
Comments	10000wold provide 90% power to detect a relative 2.5years, significance of 0.05. ITT analysis	e reduction o	of 20% in the p	rimary endpoint, assumi	ng event rate of 8% a	it		

Bibliographic reference	McKavanagh, P., Lusk, L. et al. (2015) A comparison of cardiac computerized tomography and exercise stress electrocardiogram test for the investigation of stable chest pain: the clinical results of the CAPP randomized prospective trial. European Heart Journal – Cardiovascular Imaging 16: 441-448
Study type	Test and treat randomised controlled trial

McKavanagh, P., Lusk, L. et al. (2015) A comparison of cardiac computerized tomography and exercise stress electrocardiogram test for the investigation of stable chest pain: the clinical results of the CAPP randomized prospective trial. European Heart Journal – Cardiovascular Imaging 16: 441-448						
To determine the symptomatic and prognostic differences resulting from a novel diagnostic pathway based on cardiac computerized tomography coronary angiography (CTCA) compared with the traditional exercise stress electrocardiography test (EST) in stable chest pain patients.						
 Inclusion criteria Referred to rapid access clinics with symptoms of stable chest pain (defined as troponin negative without symptoms of unstable angina) Referred by primary care physicians or non-cardiologists. Exclusion criteria Contraindications to exercise stress testing or CTCA. 						
	СТСА	EST				
Age (mean, sd)	57.8 (10.0)	58.9 (10.2)				
Number male	138/243	131/245				
Pre-test probability of CAD (Diamond + Forrester: low/medium/high)	101/53/76	107/62/76				
Character of chest pain (non angina/atypical/typical)	143/16/84	156/20/68				
500 patients in total randomised						
	СТСА	EST				
Randomised	250	250				
Baseline measures	245	242				
3 months follow up	226	224				
12 months follow up	210	202				
	To determine the symptomatic and progracomputerized tomography coronary angle test (EST) in stable chest pain patients. Inclusion criteria - Referred to rapid access clinics words of unstable angina) - Referred by primary care physicity Exclusion criteria - - Contraindications to exercise struct Baseline characteristics - Age (mean, sd) Number male Pre-test probability of CAD (Diamond + Forrester: low/medium/high) Character of chest pain (non angina/atypical/typical) 500 patients in total randomised Randomised Baseline measures 3 months follow up	To determine the symptomatic and prognostic differences resulting fr computerized tomography coronary angiography (CTCA) compared w test (EST) in stable chest pain patients. Inclusion criteria - Referred to rapid access clinics with symptoms of stable chest of unstable angina) - Referred by primary care physicians or non-cardiologists. Exclusion criteria - - Contraindications to exercise stress testing or CTCA. Baseline characteristics CTCA Age (mean, sd) 57.8 (10.0) Number male 138/243 Pre-test probability of CAD (Diamond + Forrester: low/medium/high) 101/53/76 Character of chest pain (non angina/atypical/typical) 143/16/84 500 patients in total randomised 250 Baseline measures 245 3 months follow up 226				

iographic reference	McKavanagh, P., Lusk, L. et al. (2015) A comparison of cardiac computerized tomography and exercise stress electrocardiogram test for the investigation of stable chest pain: the clinical results of the CAPP randomized prospective trial. European Heart Journal – Cardiovascular Imaging 16: 441-448					
	considered significant.					
nparison	•	.	ual blood pressure monitoring. Results Fox et al. 2006 Guidelines on management			
gth of follow up	12 months					
ation	Rapid access chest clinics in Northern Irel	and				
comes measures and	Diagnosis and management					
ect size		СТСА	EST			
	Number of additional tests ordered before final diagnosis	72	128			
	Final diagnosis with significant CAD	70/243 (28.8%)	33/245 (13.5%)			
	Management: (CABG/PCI/medical/no intervention)	8/29/99/107	7/12/35/191			
	Hospital re-attendance (12 months follo	w up)				
		СТСА	EST			
	A&E visit leading to admission (0/1/2)	241/2/0	232/10/3			
	A&E visit total (0/1/2/3/4)	235/8/0/0/0	223/16/3/2/1			

217/24/2/0

Quality of life (Seattle angina questionnaire - disease specific quality of life)

Cardiology outpatient visit (0/1/2/3)

	Difference between CTCA and EST				
	Change from baseline to 3 months Change from baseline to 12 months				
	(mean, 95%Cl, p value)	(mean, 95%Cl, p value)			
Physical limitation	20.54 (24.3 to 3.3) 0.779	0.33 (24.3 to 5.0) 0.889			

199/38/6/2

Biblio

Com

Lengt Locat Outco effec

Bibliographic reference	McKavanagh, P., Lusk, L. et al. (2015) A comparison of cardiac computerized tomography and exercise stress electrocardiogram test for the investigation of stable chest pain: the clinical results of the CAPP randomized prospective trial. European Heart Journal – Cardiovascular Imaging 16: 441-448						
	Angina stability 211.1 (217.4 to 24.8) 0.001 26.8 (212.8 to 20.7) 0.028						
	Angina frequency	22.7 (26.8 to 1.3) 0.184	21.9 (26.0 to 2.2) 0.365				
	Treatment satisfaction	22.1 (25.3 to 1.2) 0.213	21.4 (25.2 to 2.3) 0.446				
	Quality of life	25.7 (210.3 to 21.2) 0.014	24.9 (29.6 to 20.19) 0.041				
Source of funding	South Eastern Health and Social C	Care Trust and Northern Ireland Cardiovascul	ar network				
Comments	Inclusion of multiple types of chest pain limits applicability. Population was largely low risk of CAD at baseline, according to diamond and forrester score.						
	Exercise stress electrocardiograph relevance of comparator is questi		ostic strategy for patients with suspected CAD, so				

Bibliographic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391							
Study type	RCT, open-label, parallel-group (randomisation used minimisation to ensure balance between groups for certain characteristics)							
Aim	To assess the effect of CTCA on the diagnosis, management and outcome of patients referred to the cardiology clinic with suspected angina							
Patient characteristics	 12 cardiology chest pain clinics across Scotland, November 2010 to September 2014 Inclusion; 18 to 85yrs, referred by a primary care physician to a cardiology chest pain clinic with stable suspected angina due to coronary heart disease Exclusion; inability to undergo CT scanning, renal failure, major allergy to contrast media, pregnancy acute coronary syndrome within 3months 							
	Standard care Standard care							

Bibliographic reference	The SCOT-HEART investigators (2015) CT corona			
	disease (SCOT-HEART): an open-label, parallel-g	and CTCA	trial. The Lancet 385:	2383-2391
	Male	1162 (56%)	1163 (56%)	-
	Age	57.1±9.7	57.0±9.7	
	Previous CHD	186 (9%)	186 (9%)	
	Previous CVD	91 (4%)	48 (2%)	
	Previous PVD	36 (2%)	17 (1%)	-
	Typical angina symptoms	737 (36%)	725 (35%)	
	Atypical angina symptoms	502 (24%)	486 (23%)	
	Non-anginal symptoms	833 (40%)	859 (41%)	
	Normal ECG	1757 (85%)	1735 (84%)	
	Abnormal ECG	292 (14%)	316 (15%)	
	Baseline diagnosis of CHD	982 (47%)	956 (46%)	
	Baseline diagnosis of angina due to CHD	742 (36%)	743 (36%)	
	Predicted 10yr CHD risk	18±11%	17±12%	
Number of Patients	N=4146			
Intervention	N=2073			
	Standard care and CTCA;			
	 64 row detector scanner (Brilliance 64, F and 320 detector row scanner (Aquilion 		-	• • • • • • • • • • • • • • • • • • • •
	 CT coronary angiograms assessed by ≥2 			
Comparison	N=2073			
	Standard care			
Length of follow up	6weeks for primary outcome			
Location	UK			
Outcomes measures and	Obstructive coronary artery disease – defined as	luminal stenosis >7	70% in ≥1 major epica	rdial vessel or >50% in the left main

Chest pain of recent onset Clinical evidence tables

graphic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391
t size	stem
	Luminal cross-sectional area stenosis; normal (<10%), mild non-obstructive (10-49%), moderate non-obstructive (50-70%), obstructive (>70%)
	Primary outcome;
	- Proportion of patients diagnosed with angina secondary to coronary heart disease at 6weeks
	Long term outcomes;
	 Death, myocardial infarction, coronary revascularisation procedures, admittance to hospital for chest pain episode cerebrovascular disease, peripheral vascular disease – identified with data from the Information and Statistics Division of the NHS Scotland and confirmed by health records
	Missing data;
	N=295/2073 defaulted or did not complete scan;
	- Less likely to have atypical angina; N=58 (23%) vs N=686 (39%), p<0.0001
	- Less likely to have a diagnosis of angina; N=50 (20%) vs N=692 (38%), p<0.0001
	CTCA findings;
	- Normal; N=654 (37%)
	- Evidence of CHD; N=1124 (63%), of these non-obstructive CHD; N=672 (38%), obstructive CHD; N=452 (25%)
	Opinion of clinicians reporting CTCA the CTCA finding of evidence of CHD increased the certainty (RR 3.76, 95%Cl 3.61 to 3. p<0.0001) and reduced the frequency of (RR 0.78, 95%Cl 0.70 to 0.86, p<0.0001) the diagnosis of angina due to coronary heart disease
	Reported by attending clinician; compared with standard care CTCA increased the certainty (RR 2.56, 95%CI 2.33 to 2.79, p<0.0001) and increased the frequency of (RR 1.09, 95%CI 1.02 to 1.17, p=0.0172) the diagnosis of angina due to coronary heart disease at 6 weeks
	For the primary endpoint this was an increased certainty (RR 1.79, 95%Cl 1.62 to 1.96, p<0.0001) and had no effect on frequency (RR 0.93, 95%Cl 0.85 to 1.02, p=0.1289) of the diagnosis of angina due to coronary heart disease
	Overall 6 week diagnosis of CHD changed in 27% of those having CTCA compared with 1% with standard care alone.

Bi

ef

hic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391						
	(certainty of diagnosis was asses (frequency of diagnosis was com		•	• •			
	 Standard care group (National content of the standard care group (National conten of the standard care group (National content of the standard	6weeks 44±28, baseline =651); at 6weeks 44±28, acy; 6weeks 68±22, baseline =653); at 6weeks 68±22, ents in angina stability an N=31 (2%);	baseline 62±21,p<0.0 79±23,p<0.0001 baseline 80±23,p<0.0 d frequency betweer	0001			
	- All AEs were self-limiting	g with no cases of anaph	ylaxis or renal failure				
	- All AEs were self-limiting			HR (95%CI)	P value		
		es reported, not extracte Standard care and	ed in this ET);		P value 0.0561		
	Clinical outcomes (other outcom	es reported, not extracte Standard care and CTCA, N=2073	ed in this ET); Standard care, N=2073	HR (95%CI)			
	Clinical outcomes (other outcom CHD death, MI and stroke	es reported, not extracte Standard care and CTCA, N=2073 31 (1.5%)	ed in this ET); Standard care, N=2073 48 (2.3%)	HR (95%CI) 0.644 (0.410 to 1.012	0.0561		
	Clinical outcomes (other outcom CHD death, MI and stroke Non-fatal MI	es reported, not extracte Standard care and CTCA, N=2073 31 (1.5%) 22 (1.1%)	ed in this ET); Standard care, N=2073 48 (2.3%) 35 (1.7%)	HR (95%CI) 0.644 (0.410 to 1.012 0.627 (0.367 to 1.069)	0.0561		
	Clinical outcomes (other outcom CHD death, MI and stroke Non-fatal MI Non-fatal stroke	es reported, not extracte Standard care and CTCA, N=2073 31 (1.5%) 22 (1.1%) 5 (0.1%)	ed in this ET); Standard care, N=2073 48 (2.3%) 35 (1.7%) 7 (0.2%)	HR (95%Cl) 0.644 (0.410 to 1.012 0.627 (0.367 to 1.069) 0.727 (0.228 to 2.315)	0.0561 0.0862 0.5900		

Bib

Bibliographic reference	The SCOT-HEART investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. The Lancet 385: 2383-2391
Source of funding	The Chief Scientist Office of the Scottish Government Health and Social Care Directorates, with supplementary awards from Edinburgh and Lothian's health Foundation Trust and the Heart Diseases Research Fund
Comments	For 80% power, 2-seided p of 0.05, aimed to recruit 2069 to detect an absolute change of 4% in the diagnosis of angina.

Chest pain of recent onset Clinical evidence tables

Appendix J: QUADAS-2 Quality Assessment Summary

J.1 Prediction models/tools for people with stable chest pain of suspected cardiac origin

Study	Model	Risk of bias	Risk of bias			GRADE	Applicability	concerns		GRADE
		Patient selection 1a	Index test 2a	Reference standard 3a	Flow and timing 4a	Risk of bias	Patient selection 1b	Index test 2b	Reference standard 3b	Indirectnes S
Caselli 2015a	FRS	UNCLEAR	LOW	UNCLEAR	LOW	S	HIGH	LOW	LOW	S
Caselli 2015b	Updated D-F (Genders)	UNCLEAR	LOW	UNCLEAR	UNCLEAR	VS	HIGH	LOW	UNCLEAR	S
	EVINCI	UNCLEAR	LOW	UNCLEAR	UNCLEAR	VS	HIGH	HIGH	UNCLEAR	VS
Chen 2014	D-F	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	SPS	LOW	LOW	UNCLEAR	LOW	NS	HIGH	HIGH	LOW	VS
Gaibazzi 2015	FRS	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
	DICAD	UNCLEAR	LOW	LOW	LOW	NS	HIGH	HIGH	LOW	VS
Genders 2010	D-F	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
	Duke Clinical Score	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
	Morise 1994	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
	Morise 1997	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Genders 2011	D-F	UNCLEAR	LOW	UNCLEAR	LOW	S	HIGH	LOW	LOW	S
	Updated D-F (Genders)	UNCLEAR	LOW	UNCLEAR	LOW	S	LOW	LOW	LOW	NS
Genders 2012	Duke Clinical Score	UNCLEAR	LOW	UNCLEAR	LOW	S	UNCLEAR	LOW	LOW	NS
	Updated D-F (Genders)	UNCLEAR	LOW	UNCLEAR	LOW	S	UNCLEAR	LOW	LOW	NS

National Guideline Centre, 2016

Study	Model	Risk of bias				GRADE	Applicability	concerns		GRADE
	Clinical model (Genders + risk factors)	UNCLEAR	LOW	UNCLEAR	LOW	S	UNCLEAR	LOW	LOW	NS
	DICAD	UNCLEAR	LOW	UNCLEAR	LOW	S	UNCLEAR	HIGH	LOW	VS
Hong 2012	Morise 1997	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	D-F	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
Hwang 2010	FRS	HIGH	LOW	UNCLEAR	LOW	S	HIGH	LOW	LOW	S
Jensen 2012	D-F	LOW	LOW	HIGH	LOW	S	HIGH	LOW	LOW	S
	Updated D-F (Genders)	LOW	LOW	HIGH	LOW	S	HIGH	LOW	LOW	S
	Duke Clinical Score	LOW	LOW	HIGH	LOW	S	HIGH	LOW	LOW	S
	Morise 1997	LOW	LOW	HIGH	LOW	S	HIGH	LOW	LOW	S
	CORSCORE	LOW	LOW	HIGH	LOW	S	HIGH	LOW	LOW	S
Kotecha 2010	FRS	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	SCORE- high risk	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
Kumamaru 2014	Duke Clinical Score	HIGH	LOW	UNCLEAR	LOW	S	UNCLEAR	LOW	LOW	NS
Park 2011	Age-adjusted FRS (AFRS)	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Pickett 2013	D-F	LOW	LOW	UNCLEAR	LOW	NS	UNCLEAR	LOW	LOW	NS
	Morise 1997	LOW	LOW	UNCLEAR	LOW	NS	UNCLEAR	LOW	LOW	NS
Rademaker 2014	D-F	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	Duke Clinical Score	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	Updated D-F (Genders)	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	Morise 1997	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
Rosenberg	D-F	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S

Study	Model	Risk of bias				GRADE	Applicability	concerns		GRADE
2010										
	Combined D-F + gene expression algorithm	UNCELAR	LOW	LOW	LOW	NS	HIGH	HIGH	LOW	VS
Shmilovich 2014	D-F	LOW	LOW	UNCLEAR	LOW	NS	UNCLEAR	LOW	LOW	NS
Versteylen 2011	D-F	UNCLEAR	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS
	FRS	UNCLEAR	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS
	PROCAM	UNCLEAR	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS
	SCORE	UNCLEAR	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS
Wasfy 2012	D-F	LOW	LOW	HIGH	LOW	S	UNCLEAR	LOW	LOW	NS
	Duke Clinical Score	LOW	LOW	HIGH	LOW	S	UNCLEAR	LOW	LOW	NS
Winther 2016	Update D-F (Genders)	LOW	LOW	UNCLEAR	LOW	NS	UNCLEAR	LOW	LOW	NS
Yalcin 2012	FRS	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	Modified FRS (mFRS)	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	PROCAM	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	SCORE- high risk	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
	SCORE- low risk	LOW	LOW	UNCLEAR	LOW	NS	HIGH	LOW	LOW	S
Yang 2015	Update D-F (Genders)	UNCLEAR	LOW	UNCLEAR	LOW	S	UNCELAR	LOW	LOW	NS
	HRA score	UNCLEAR	LOW	UNCLEAR	LOW	S	UNCELAR	LOW	LOW	NS

J.1 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

Table 17: QUADAS-2 Quality assessment ratings for risk of bias and applicability with corresponding GRADE quality ratings

Risk of bias		Applicability concerns	
QUADAS 2	Overall	QUADAS 2	Overall

				Risk of bias			Applicability concerns				
		QUADAS 2				Overall	QUADAS 2			Overall	
Study	Index test(s)	Patient selection 1a	Index test 2a	Reference standard 3a	Flow and timing 4		Patient selection 1b	Index test 2b	Reference standard 3b		
Arnold et al 2010	4a, 4b, 4a+4b	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S	
Bettencourt et al 2011	2,9, 2+9	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S	
Budoff et al 1998	7	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S	
Budoff et al 2007	7	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S	
Budoff et al 2008	2	UNCLEAR	LOW	LOW	UNCLEAR	S	HIGH	LOW	LOW	S	
Budoff et al 2013	2, 3	HIGH	UNCLEAR	LOW	LOW	S	HIGH	LOW	LOW	S	
Cadimartiri et al 2007	2	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S	
Cadimartiri et al 2008	2	UNCLEAR	UNCLEAR	HIGH	LOW	VS	UNCLEAR	LOW	LOW	NS	
Carrascosa et al 2010	2	LOW	LOW	LOW	LOW	NS	LOW	HIGH	LOW	S	
Chen et al 2011	2	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S	
Cramer et al 1997	7	LOW	HIGH	HIGH	LOW	VS	HIGH	LOW	LOW	S	
Di Bello et al 1996a	4b,7	LOW	HIGH	LOW	LOW	S	UNCLEAR	LOW	LOW	NS	
Di Bello et al 1996b	4b,7	LOW	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS	
Donati et al 2010	2	UNCLEAR	LOW	LOW	UNCLEAR	S	HIGH	LOW	LOW	S	
Fleming et al 1992	7	HIGH	LOW	HIGH	LOW	VS	HIGH	UNCLEAR	LOW	S	
Fujitaka et al 2009	2, 2+7	LOW	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS	
Hennessy et al 1998	4b	UNCLEAR	LOW	LOW	LOW	NS	LOW	HIGH*	LOW	S	
Herzog et al 2007	2	LOW	LOW	LOW	UNCLEAR	NS	UNCLEAR	LOW	LOW	NS	
Herzog et al 2008	2	LOW	LOW	LOW	UNCLEAR	NS	HIGH	LOW	LOW	S	
Herzog et al 2009	2	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S	
Hoffmann et al 1993	4b	HIGH	HIGH	LOW	LOW	VS	HIGH	LOW	LOW	S	
Javadrashid et al 2009	3	LOW	UNCLEAR	UNCLEAR	LOW	S	HIGH	LOW	LOW	S	

				Risk of bias			Applicability concerns			
		QUADAS 2				Overall	QUADAS 2			Overall
Kaminek et al 2015	7	UNCLEAR	HIGH	HIGH	LOW	VS	HIGH	LOW	UNCLEAR	S
Kawase et al 2004	6	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Klein et at 2008	6	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Klem et al 2006	6	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Krittayaphong et al 2009	6	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Marangelli et al 1994	4b	LOW	LOW	HIGH	LOW	S	HIGH	LOW	LOW	S
Marwick et al 1993	4b,7	UNCLEAR	HIGH	LOW	LOW	S	HIGH	LOW	LOW	S
Mazeika et al 1991	4b	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Meng et al 2009	2	UNCLEAR	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS
Miszalaski-Jamka et al 2012	4a	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Muhlenbruch et al 2007	2	HIGH	LOW	LOW	UNCLEAR	S	HIGH	LOW	LOW	S
Nagel et al 1999	4b, 5	LOW	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS
Nazeri et al 2009	2	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Nieman et al 2009	2	HIGH	LOW	LOW	UNCLEAR	S	HIGH	LOW	LOW	S
Nixdorff et al 2008	4b	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Onishi et al 2010	4a	LOW	LOW	UNCLEAR	LOW	NS	UNCLEAR	LOW	LOW	NS
Overhus et al 2010	2	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Parodi et al 1999	4b	UNCLEAR	UNCLEAR	LOW	LOW	S	UNCLEAR	LOW	LOW	NS
Piers et al 2008	2	HIGH	LOW	LOW	LOW	S	HIGH	LOW	LOW	S
Pontone et al 2014	2	HIGH	LOW	LOW	LOW	S	HIGH	LOW	LOW	S
Pugliese et al 2008	2	HIGH	LOW	LOW	LOW	S	HIGH	LOW	LOW	S
Raff et al 2005	2	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Ropers et al 2006	2	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Rixe et al 2009	2	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
San Roman et al 1996	4b	LOW	LOW	LOW	LOW	NS	UNCLEAR	LOW	LOW	NS

				Risk of bias				Applicability	y concerns	
		QUADAS 2				Overall	QUADAS 2			Overall
San Roman et al 1998	4b,7	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Santoro et al 1998	4b, 7	UNCLEAR	LOW	UNCLEAR	LOW	S	LOW	LOW	LOW	NS
Schepis et al 2007	7, 3+7	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Senior et al 2004	4b, 7	UNCLEAR	LOW	UNCLEAR	LOW	S	HIGH	LOW	LOW	S
Severi et al 1993	4b	HIGH	LOW	LOW	LOW	S	HIGH	LOW	LOW	S
Shaikh et al 2014	4b	HIGH	LOW	LOW	LOW	S	HIGH	LOW	LOW	S
Sheikh et al 2009	2	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Stolzmann et al 2011	6, 3+6	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Swailam et al 2010	2	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Thomassen et al 2013	2,7,2+7	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Van Werkhoven et al 2010	2	UNCLEAR	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Von Ziegler 2014	3	LOW	LOW	LOW	LOW	NS	HIGH	LOW	LOW	S
Yao et al 2004	7	LOW	LOW	LOW	UNCLEAR	NS	HIGH	LOW	LOW	S

Chest pain of recent onset

Appendix K: GRADE tables

K.1 High sensitivity cardiac troponins

None.

K.2 Non-invasive imaging for the identification of people with NSTEMI/unstable angina

Table 18: Clinical evidence profile: MDCT versus standard practice at 30 days follow-up

			Quality as	sessment			No of patien	ts		Effect	– Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	MDCT versus standard management 30- day	Control	Relative (95% Cl)	Absolute	Quanty	Importance
All-cause	emortality		I	I						I		
3	Randomised trials	Serious ¹	No serious inconsistency		No serious imprecision	None	0/845 (0%)	0/842 (0%)	Not pooled	Not pooled	MODERATE	CRITICAL
Cardiova	scular mortali	ity	1	1	1	<u> </u>		I		L		
2	Randomised trials	Serious ¹	No serious inconsistency	No serious indirectness	Very serious ²	None	0/1193 (0%)	1/853 (0.12%)	RR 0.46 (0.02 to 11.17)	1 fewer per 1000 (from 1 fewer to 12 more)	VERY LOW	CRITICAL
мі			1	I	I			1		L		
3	Randomised trials	Serious ¹	No serious inconsistency	No serious indirectness	Very serious ²	None	11/1694 (0.65%)	12/1252 (0.96%)	RR 0.58 (0.25 to 1.38)	4 fewer per 1000 (from 7 fewer to 4 more)	VERY LOW	CRITICAL

National Guideline Centre. 2016

3	Randomised trials		No serious inconsistency	No serious indirectness	Serious ²	None	52/845 (6.2%)	31/842 (3.7%)	RR 1.67 (1.08 to 2.58)	25 more per 1000 (from 3 more to 58 more)	LOW	CRITICAI
CABG		1				l	1	<u> </u>		I		
3	Randomised trials		No serious inconsistency	No serious indirectness	Very serious ²	None	7/845 (0.83%)	8/842 (0.95%)	RR 0.89 (0.34 to 2.29)	1 fewer per 1000 (from 6 fewer to 12 more)	VERY LOW	CRITICAL
Readmis	ssion due to ca	irdiac cau	ses					-				
1		· · ·	No serious inconsistency	No serious indirectness	Very serious ²	None	7/285 (2.5%)	11/291 (3.8%)	RR 0.65 (0.25 to 1.64)	13 fewer per 1000 (from 28 fewer to 24 more)	VERY LOW	CRITICAL

^aDowngraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ^bDowngraded by 1 increment if the confidence interval crossed 1 MID or by 2 increments if the confidence interval crossed both MIDs

Table 19: Clinical evidence profile: MDCT versus SPECT at 30 days follow-up

			Quality as	sessment			No of patie	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	MDCT versus SPECT 30-day	Control	Relative (95% Cl)	Absolute	quanty	
All-cause	mortality	•	•	•	·	•		•				
	Randomised trials	Very serious ¹	No serious inconsistency	No serious indirectness	No serious imprecision	None	0/361 (0%)	0/338 (0%)	Not pooled	Not pooled	LOW	CRITICAL
МІ												
	Randomised trials	Very serious ¹	No serious inconsistency	No serious indirectness	Very serious ²	None	1/361 (0.28%)	5/338 (1.5%)	RR 0.19 (0.02 to 1.58)	12 fewer per 1000 (from 14 fewer to 9 more)	VERY LOW	CRITICAL
PCI		•	•	•		•		•				
	Randomised trials	Very serious ¹	No serious inconsistency	No serious indirectness	Very serious ²	None	9/361 (2.5%)	8/338 (2.4%)	RR 1.05 (0.41 to 2.66)	1 more per 1000 (from 14 fewer to 39 more)	VERY LOW	CRITICAL
CABG												
	Randomised trials	Very serious¹	No serious inconsistency	No serious indirectness	Very serious ²	None	4/361 (1.1%)	0/338 (0%)	RR 8.52 (0.46 to 158.88)	-	VERY LOW	CRITICAL

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ²Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 20: Clinical evidence profile: MDCT versus exercise ECG at 30 days follow-up

			Quality ass	sessment			No of patients		Eff	ect	Quality	Importance
No of studies	Design Inconsistency Indirectness Imprecision						MDCT versus Exercise ECG 30-day	Control	Relative (95% Cl)	Absolute		
All-cause n	nortality OR											
		- ,			No serious imprecision	None	0/322 (0%)	0/240 (0%)	Not pooled	Not pooled	LOW	CRITICAL

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 21: Clinical evidence profile: MDCT versus exercise ECG at 1 year follow-up

			Quality asse	essment			No of patie	ents				
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Exercise ECG 1 Cont		Relative (95% Cl)	Absolute	Quality	Importance
All-cause	mortality											
		· · ·			Very serious²	None	2/322 (0.62%)	1/240 (0.42%)	RR 1.49 (0.13 to 15.55)	2 more per 1000 (from 4 fewer to 61 more)	VERY LOW	CRITICAL

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ²Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

			Quality asse	essment			No of patients			Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	SPECT versus standard management 30-day	Control	Relative (95% Cl)	Absolute	Quality	
All-cause	mortality	<u> </u>			<u> </u>							
1	Randomised trials	Very serious¹	No serious inconsistency	No serious indirectness	Very serious²	None	4/1215 (0.33%)	2/1260 (0.16%)	OR 2.08 (0.38 to 11.36)	2 more per 1000 (from 1 fewer to 16 more)	VERY LOW	CRITICAL
PCI	1		I	1		I	I		<u> </u>		<u> </u>	
1	Randomised trials	Very serious¹	No serious inconsistency	No serious indirectness	Very serious²	None	46/1215 (3.8%)	50/1260 (4%)	RR 0.95 (0.64 to 1.41)	2 fewer per 1000 (from 14 fewer to 16 more)	VERY LOW	CRITICAL
CABG		<u> </u>	1		<u> </u>		I				<u> </u>	
1	Randomised trials	Very serious ¹	No serious inconsistency	No serious indirectness	Serious ²	None	18/1215 (1.5%)	30/1260 (2.4%)	RR 0.63 (0.35 to 1.11)	9 fewer per 1000 (from 15 fewer to 3 more)	VERY LOW	CRITICAL

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ²Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 23: Clinical evidence profile: Stress SPECT versus standard practice at 30 days follow-up

Quality assessment	No of patients	Effect	QualityI	Importance	
--------------------	----------------	--------	----------	------------	--

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Stress SPECT versus standard management 30-day	Control	Relative (95% Cl)	Absolute		
Cardiac m	ortality						-					
	Randomised trials				No serious imprecision	None	0/1004 (0%)	0/504 (0%)	Not pooled	Not pooled	LOW	CRITICAL

Chest pain of recent onset GRADE tables

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 24: Clinical evidence profile: Stress SPECT versus standard practice at 1 year follow-up

	Quality assessment						No of patients	Effec	t	Quality	Importance	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Stress SPECT versus standard management 1 year	Control	Relative (95% Cl)	Absolute	-	•
Cardiac m	ortality											
1	Randomised trials			No serious indirectness	Very serious²	None	3/1004 (0.3%)	0/504 (0%)	RR 3.53 (0.18 to 68.4)	-	VERY LOW	CRITICAL

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ²Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 25: Clinical evidence profile: Stress MRI versus standard practice at 30 days follow-up

				Quality ass	sessment			No of patients			Effect	Quality	Importance
No	of	Design	Risk of	Inconsistency	Indirectness	Imprecision	Other	Stress MRI versus standard management	Control	Relative	Absolute		

studies		bias				considerations	30-day		(95% CI)			
All-cause	mortality											
		,	No serious inconsistency	No serious indirectness	No serious imprecision	None	0/52 (0%)	0/53 (0%)	Not pooled	Not pooled	LOW	CRITICAL
CV morta	lity											
		5		No serious indirectness	No serious imprecision	None	0/57 (0%)	0/53 (0%)	Not pooled	Not pooled	LOW	CRITICAL
мі												
		,		No serious indirectness	Very serious ²	None	1/57 (1.8%)	1/53 (1.9%)	RR 1.02 (0.06 to 12.89)	0 more per 1000 (from 18 fewer to 224 more)	VERY LOW	CRITICAL
PCI												
		-	No serious inconsistency	No serious indirectness	Very serious ²	None	0/57 (0%)	1/53 (1.9%)	RR 0.33 (0.01 to 7.34)	13 fewer per 1000 (from 19 fewer to 120 more)	VERY LOW	CRITICAL
CABG												
				No serious indirectness	Very serious ²	None	5/57 (8.8%)	1/53 (1.9%)	RR 5.09 (0.62 to 25.65)	77 more per 1000 (from 7 fewer to 465 more)	VERY LOW	CRITICAL

Natio		Stress te	sting adverse	events
National Guideline		1	Randomised trials	Very serious ¹
			led by 1 increme led by 1 increme	-
Centre, 2016	К.З	Diagr angin	nostic te Ia	st ac

Stress te	esting adverse	events									
1	Randomised trials	,		No serious imprecision	None	0/57 (0%)	0/53 (0%)	Not pooled	Not pooled	LOW	CRITICAL

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ²Downgraded by 1 increment if the confidence interval crossed 1 MID or by 2 increments if the confidence interval crossed both MIDs

K.3 Diagnostic test accuracy of non-invasive imaging for the identification of people with NSTEMI/unstable angina

None.

K.4 Prediction models/tools for people with stable chest pain of suspected cardiac origin

K.4.1 Reference standard: coronary angiography (CA) – 50% stenosis

Number of studies Model: Dian	Number of participants nond–Forrester	Risk of bias	Indirectness	Inconsistency	Imprecision	Area under the ROC curve Study c-statistic (95% Cl)	Area under the ROC curve Median [range]	GRADE quality
51	3473	No serious	Serious ²	n/a	Very serious ³	0.73 (not reported) 0.80 (0.74 to 0.85) 0.81 (0.79 to 0.83) 0.64 (not reported) 0.66 (0.61 to 0.71)	Median = 0.73 [range: 0.64 to 0.81]	VERY LOW

Number of studies	Number of participants ningham Risk Sco	s Risk of bias	Indirectness	Inconsistency	Imprecision	Area under the ROC curve Study c-statistic (95% CI)	Area under the ROC curve Median [range]	GRADE quality
3 ⁴	1334	No serious	Serious ⁵	n/a	Serious ⁶	0.67 (0.62 to 0.72) 0.74 (not reported) 0.76 (0.69 to 0.82)	Median = 0.74 [range: 0.67 to 0.76]	LOW
Model: Age-	adjusted Framing	gham Risk Score	2					
17	138	No serious	Serious ⁸	n/a	No serious	0.86 (95% CI: 0.80 to 0.93)	n/a	MODERATE
Model: Mod	lified Framinghan	n Risk Score						
1 ⁹	350	No serious	Serious ⁸	n/a	Serious ⁶	0.73 (95% CI: 0.67 to 0.79)	n/a	LOW
Model: Duk	e Clinical Score							
4 ¹⁰	6242	Serious ¹¹	No serious	n/a	Very serious ³	0.84 (0.79 to 0.89) 0.78 (0.76 to 0.81) 0.72 (not reported) 0.59 (not reported)	Median = 0.75, [range: 0.59 to 0.84]	VERY LOW
Model: Upd	ated Diamond-Fo	rrester (Gende	rs)					
312	5287	Serious ¹³	No serious	n/a	No Serious	0.77 (not reported) 0.71 (not reported)	Median = 0.77, [range: 0.71 to 0.79]	MODERATE

Number of studies	Number of participants	Risk of bias	Indirectness	Inconsistency	Imprecision	Area under the ROC curve Study c-statistic (95% Cl) 0.79 (0.72 to 0.86)	Area under the ROC curve Median [range]	GRADE quality
Model: Mor	ise 1997							
2 ¹⁴	887	No serious	Serious ¹⁵	n/a	Very serious ³	0.84 (0.79 to 0.89) 0.68 (not reported)	Median = 0.76 [range: 0.68 to 0.84]	VERY LOW
Model: SCO	RE (– high risk reg	gions)						
2 ¹⁶	889	No serious	Serious ¹⁵	n/a	Serious ⁶	0.75 (not reported) 0.65 (0.59 to 0.72)	Median = 0.70 [range: 0.65 to 0.75]	LOW
Model: Diag	nostic Imaging fo	or Coronary Arte	ery Disease (DICA	D)				
217	4871	No serious	Very serious ¹⁸	n/a	Very serious ³	0.67 (0.62 to 0.73) 0.88 (not reported)	Median = 0.78 [range: 0.67 to 0.88]	VERY LOW
Model: PRO	САМ							
1 ¹⁹	350	No serious	Serious ²⁰	n/a	Serious ⁶	0.69 (0.62 to 0.75)	n/a	LOW
Model: Mor	ise 1994							
1 ²¹	254	No serious	Serious ²⁰	n/a	Serious ⁶	0.83 (0.78 to 0.88)	n/a	LOW
Model: COR	SCORE							
122	633	Serious ²³	Serious ²⁰	n/a	Serious ²⁴	0.73 (not reported)	n/a	VERY LOW
Model: Seve	ere Predicting Sco	ore (SPS)						
1 ²⁵	204	No serious	Very serious ²⁶	n/a	Serious ²⁴	0.71 (not reported)	n/a	VERY LOW
Model: Com	bined Diamond-I	Forrester and G	ene algorithm sco	ore				

Number of studies	Number of participants	Risk of bias	Indirectness	Inconsistency	Imprecision	Area under the ROC curve Study c-statistic (95% CI)	Area under the ROC curve Median [range]	GRADE quality
1 ²⁷	525	No serious	Very serious ²⁶	n/a	Serious ⁶	0.72 (0.68 to 0.76)	n/a	VERY LOW
Model: Upd	lated Diamond-Fo	orrester (Gende	rs) + risk factors [Clinical model]				
1 ²⁸	4426	Serious ²³	No serious	n/a	Serious ²⁴	0.79 (not reported)	n/a	LOW
9 Yalcin 2012 10 Genders 20: 11 3/4 contribu 12 Genders 20: 13 2/3 contribu 14 Genders 20:	s downgraded by or 10, Genders 2012, J uting studies had se 12, Jensen 2012, Wi uting studies had se 10, Jensen 2012 uting studies had se	ensen 2012, Kuma rious risk of bias is inther 2016 rious risk of bias is	armaru 2014 ssues according to C ssues according to C	QUADAS-2 checklist QUADAS-2 checklist	(See appendix H.	2)		

24 Evidence was downgraded by one as imprecision not calculable
25 Chen 2014
26 Study had very serious applicability issues according to QUADAS-2 checklist (See appendix H.2)
27 Rosenberg 2010
28 Genders 2012

K.4.2 Reference standard: Computed tomography coronary angiography (CTCA) – 50% stenosis

Number of studies Model: Diar	Number of participants nond–Forrester(original)	Indirectness	Inconsistency	Imprecision	Area under the ROC curve Study c-statistic (95% CI)	Area under the ROC curve Median [range]	GRADE quality			
51	2800	No serious	No serious	n/a	Serious ²	0.61 (not reported) 0.72 (0.66 to 0.78) 0.56 (0.49 to 0.64) 0.59 (not reported) 0.65 (0.61 to 0.68)	Median = 0.61 [range: 0.56 to 0.72]	MODERATE			
Model: Framingham Risk Score											
2 ³	1548	No serious	No serious	n/a	Serious ²	0.71 (not reported) 0.68 (0.64 to 0.72)	Median = 0.69 [range: 0.68 to 0.71]	MODERATE			
Model: Duk	e Clinical Score										
24	1385	Serious⁵	No serious	n/a	Serious ²	0.71 (not reported) 0.59 (0.51 to 0.66)	Median = 0.65 [range: 0.59 to 0.71]	LOW			
Model: Updated Diamond-Forrester (Genders)											
2 ⁶	632	Serious ⁷	No serious	n/a	Serious ²	0.76 (0.71 to 0.81) 0.61 (0.53 to 0.68)	Median = 0.69 [range: 0.61 to 0.76]	LOW			

Number of studies	Number of participants	Risk of bias	Indirectness	Inconsistency	Imprecision	Area under the ROC curve Study c-statistic (95% CI)	Area under the ROC curve Median [range]	GRADE quality		
Model: Morise 1997										
3 ⁸	1345	No serious	Serious ⁹	n/a	Serious ²	0.77 (not reported) 0.68 (0.63 to 0.74) 0.67 (0.60 to 0.74)	Median = 0.68 [range: 0.67 to 0.77]	LOW		
Model: SCO	RE									
1 ¹⁰	1296	No serious	No serious	n/a	Serious ²	0.69 (0.65 to 0.72)	n/a	MODERATE		
Model: PRO	САМ									
1 ¹⁰		No serious	No serious	n/a	No serious	0.64 (0.61 to 0.68)	n/a	HIGH		
2 Evidence dow 3 Hwang 2010,	ickett 2013, Radem ngraded 1 level as A Versteylen 2011 014, Rademaker 20	AUC range crosses								

5 Largest study (Kumarmaru 2014) had serious risk of bias issues according to QUADAS-2 checklist (See appendix H.2)

6 Genders 2011, Rademaker 2014

7 Largest study (Genders 2011) had serious risk of bias issues according to QUADAS-2 checklist (See appendix H.2)

8 Hong 2012, Pickett 2013, Rademaker 2014

9 2/3 studies had serious risk of applicability issues according to QUADAS-2 checklist (See appendix H.2) 10 Versteylen 2011

K.5 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

Number of studies	Number of participants	Risk of bias	Indirectness	Inconsistency	Imprecision	ТР	FP	FN	TN	Sensitivity (%) (95% CI)	Specificity (%) (95% Cl)	GRADE quality
Index test 2: CTCA -	50% stenosis											
25 ¹	2058	NS	S ²	VS ³	NS	1072	208	26	752	0.96 (0.94 to 0.97)	0.79 (0.72 to 0.84)	VERY LOW
Index test 2: CTCA -	70% stenosis											
34	371	S ⁵	S ⁶	VS ⁷	S ⁸	112	54	3	202	0.96 (0.88 to 0.99)	0.72 (0.55 to 0.85)	VERY LOW
Index test 3: Calcium	scoring – 50% s	stenosis	s, Thres	hold: 0	Hounst	field un	its					
2 ⁹	8504	NS	S ¹⁰	VS ¹¹	S ¹²	2124	2848	22	3510	0.99 (0.97 to 0.99)	0.49 (0.36 to 0.63)	VERY LOW
Index test 3: Calcium	scoring – 50% s	stenosis	s, Thres	hold: 4	00 Hou	nsfield	units					
2 ¹³	8504	NS	S ¹⁴	NS	NS	1168	788	978	5570	0.54 (0.52 to 0.57)	0.88 (0.87 to 0.88)	MODERATE
Index test 3: Calcium	scoring – 70% s	stenosis	s, Thres	hold: 0	Houns	field un	its					
1 ¹⁵	8274	NS	S ¹⁶	N/A	NS	723	4357	9	3185	0.99 (0.98 to 0.99)	0.42 (0.41 to 0.43)	MODERATE
Index test 3: Calcium	scoring – 70% s	stenosis	s, Thres	hold: 4	00 Hou	nsfield	units					
1 ¹⁷	8274	NS	S ¹⁸	N/A	NS	618	1226	114	6316	0.84 (0.82 to 0.87)	0.84 (0.83 to 0.85)	MODERATE
Index test 4a: Stress	echocardiograp	hy, perf	usion -	- 50% st	tenosis							
3 ¹⁹	182	NS	S ²⁰	NS	NS	99	13	20	50	0.84 (0.76 to 0.90)	0.79 (0.69 to 0.86)	MODERATE
Index test 4a: Stress	echocardiograp	hy, perf	usion –	- 70% st	tenosis							

Number of studies	Number of participants	Risk of bias	Indirectness	Inconsistency	Imprecision	ТР	FP	FN	TN	Sensitivity (%) (95% CI)	Specificity (%) (95% Cl)	GRADE quality
1 ²¹	62	NS	S ²²	N/A	S ²³	26	9	3	24	0.90 (0.73 to 0.98)	0.73 (0.54 to 0.87)	LOW
Index test 4b: Stress	echocardiograp	hy, wal	motior	n <mark>– 50</mark> %	stenos	is, Stre	ss metł	nod: va	sodilata	ition		
5 ²⁴	422	NS	S ²⁵	VS ²⁶	S ²⁷	226	16	67	113	0.77 (0.69 to 0.83)	0.86 (0.68 to 0.95)	VERY LOW
Index test 4b: Stress	echocardiograp	hy, wal	motior	n <mark>– 50</mark> %	stenos	is, Stre	ss meth	nod: he	art rate	modification		
8 ²⁸	899	NS	NS	S ²⁹	NS	458	61	145	235	0.76 (0.72 to 0.79)	0.81 (0.71 to 0.88)	MODERATE
Index test 4b: Stress	echocardiograp	hy, wal	motior	ı <mark>– 70</mark> %	stenos	is, Stre	ss meth	nod: va	sodilata	tion		
7 ³⁰	767	S ³¹	NS	VS ³²	S ³³	306	32	144	285	0.64 (0.49 to 0.76)	0.90 (0.86 to 0.93)	VERY LOW
Index test 4b: Stress	echocardiograp	hy, wal	motior	<mark>ו – 70</mark> %	stenos	is, Stre	ss metł	nod: he	art rate	modification		
4 ³⁴	257	S ³⁵	S ³⁶	S ³⁷	S ³⁸	114	12	37	94	0.75 (0.62 to 0.85)	0.88 (0.79 to 0.93)	VERY LOW
Index test 5: Cardiac	magnetic reson	ance, w	all moti	on – 50	% sten	osis						
1 ³⁹	172	NS	NS	N/A	NS	94	9	15	54	0.86 (0.78 to 0.92)	0.86 (0.75 to 0.93)	HIGH
Index test 6: Cardiac	magnetic reson	ance, p	erfusior	<mark>ו – 50</mark> %	stenos	is						
540	331	NS	S ⁴¹	NS	NS	155	22	29	125	0.84 (0.76 to 0.90)	0.85 (0.77 to 0.90)	MODERATE
Index test 6: Cardiac	magnetic reson	ance, p	e <mark>rfus</mark> ior	<mark>ו – 70%</mark> – ו	stenos	is						
3 ⁴²	204	NS	S ⁴³	VS ⁴⁴	S ⁴⁵	92	21	7	84	0.93 (0.84 to 0.97)	0.81 (0.56 to 0.93)	VERY LOW
Index test 7a: Myoca	rdial Perfusion S	Scintigra	aphy, Sl	PECT –	50% st	enosis						
11 ⁴⁶	923	S ⁴⁷	S ⁴⁸	VS49	NS	503	68	123	229	0.81 (0.74 to	0.78 (0.70 to	VERY LOW

Number of studies	Number of participants	Risk of bias	Indirectness	Inconsistency	Imprecision	ТР	FP	FN	TN	Sensitivity (%) (95% Cl)	Specificity (%) (95% Cl)	GRADE quality
										0.86)	0.85)	
Index test 7a: Myoca	ardial Perfusion	Scintigr	aphy, S	PECT –	70% st	enosis						
3 ⁵⁰	145	S ⁵¹	S ⁵²	VS ⁵³	VS ⁵⁴	68	11	29	37	0.76 (0.44 to 0.93)	0.76 (0.58 to 0.88)	VERY LOW
Index test 7b: Myoca	ardial Perfusion	Scintigr	aphy, P	ET – 70	% sten	osis						
1 ⁵⁵	44	NS	S ⁵⁶	N/A	S ⁵⁷	20	3	2	19	0.91 (0.71 to 0.99)	0.86 (0.65 to 0.97)	LOW
Index test 9: CT Per	fusion – 50% ste	nosis										
1 ⁵⁸	90	NS	S ⁵⁹	N/A	S ⁶⁰	26	0	22	42	0.54 (0.39 to 0.69)	1.00 (0.92 to 1.00)	LOW
Index test 9: CT Per	fusion – 70% ste	nosis										
1 ⁶¹	90	NS	S ⁶²	N/A	S ⁶³	25	1	13	51	0.66 (0.49 to 0.80)	0.98 (0.90 to 1.00)	LOW

GRADE tables

hest pain of

recent onset

1. Bettencourt 2011, Budoff 2008, Cademartiri 2007, Cademartiri 2008, Carrascosa 2010, Chen et al 201, Donati 2007, Fujitaka 2009, Herzog 2007, Herzog 2008, Herzog 2009, Meng 2009, Nazeri 2009, Nieman 2009, Overhus 2010, Piers 2008, Pontone 2014, Pugliese 2008, Raff 2005, Rixe 2009, Ropers 2006, Sheikh 2009, Swailam 2010, Thomassen 2013, van Werkhoven 2010

2. 21/25 of contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)

3. *I*² value for specificity (80%) indicates very substantial unexplained heterogeneity

4. Bettencourt 2011, Budoff 2008, Muhlenbruch 2007

5. 2/3 of contributing trials had serious risk of bias issues according to QUADAS-2 checklist (see Table 17)

6. 3/3 of contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)

7. I² value for specificity (79.2%) indicates very substantial unexplained heterogeneity

8. Confidence intervals for specificity exceed 20% range

9. Budoff 2013, von Zeigler 2014

10. 2/2 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)

11. I² value for specificity (92.1%) indicates very substantial unexplained heterogeneity

12. Confidence intervals for specificity exceed 20% range

13. Budoff 2013, von Zeigler 2014

- 14. 2/2 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 15. von Zeigler 2014
- 16. Contributing trial had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 17. von Zeigler 2014
- 18. Contributing trial had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 19. Arnold 2010, Miszalski-Jamka 2012, Onishi 2010
- 20. 3/3 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 21. Arnold 2010
- 22. Contributing trial had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 23. Confidence intervals for sensitivity and specificity exceed 20% range
- 24. Arnold 2010, Parodi 1999, San Roman 1996, San Roman 1998, Senior 2004
- 25. 3/5 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 26. I² value for specificity (76.6%) indicates very substantial unexplained heterogeneity
- 27. Confidence intervals for sensitivity and specificity exceed 20% range
- 28. Di Bello 1996a, Di Bello 1996b, Hennessy 1998, Marwick 1993, Nagel 1999, Onishi 2010, San Roman 1998, San Roman 1996
- 29. I² value for specificity (64.6%) indicates substantial unexplained heterogeneity
- 30. Arnold 2010, Marangelli 1994, Mazeika 1991, Santoro 1998, Senior 2004, Severi 1993, Shaikh 2013
- 31. 5/7 contributing trials had serious risk of bias issues according to QUADAS-2 checklist (see Table 17)
- 32. I² value for sensitivity (84.6%) indicates very substantial unexplained heterogeneity
- 33. Confidence intervals for sensitivity exceeds 20% range
- 34. Marangelli 1994, Nixdorff 2007, Santoro 1998, Hoffman 1993
- 35.3/4 contributing trials had serious or very serious risk of bias issues according to QUADAS-2 checklist (see Table 17)
- 36. 3/4 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 37. I² value for sensitivity (64.0%) indicates substantial unexplained heterogeneity
- 38. Confidence intervals for sensitivity exceeds 20% range
- 39. Nagel 1999
- 40. Arnold 2010, Klein 2008, Klem 2006, Krittayaphong 2009, Stolzmann 2011
- 41. 5/5 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 42. Arnold 2010, Klem 2006, Kawase 2004
- 43. 3/3 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 44. I² value for specificity (82.9%) indicates very substantial unexplained heterogeneity
- 45. Confidence intervals for specificity exceeds 20% range
- 46. Budoff 1998, Cramer 1997, Di Bello 1996a, Di Bello 1996b, Fleming 1992, Kaminek 2015, Marwick 1993, San Roman 1998, Schepis 2007, Senior 2004, Yao 2004
- 47. 6/11 contributing trials had serious or very serious risk of bias issues according to QUADAS-2 checklist (see Table 17)
- 48. 9/11 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 49. I² value for sensitivity (75.0%) indicates very substantial unexplained heterogeneity
- 50. Budoff 2007, Santoro 1998, Senior 2004
- 51. 2/3 contributing trials had serious risk of bias issues according to QUADAS-2 checklist (see Table 17)
- 52. 2/3 contributing trials had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 53. I² value for sensisitivity (88.4%) indicates very substantial unexplained heterogeneity

National Guideline Centre, 2016

- 54. Confidence intervals for sensitivity exceeds 40% range. Confidence intervals for specificity exceeds 20% range
- 55. Thomassen 2013
- 56. Contributing trial had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 57. Confidence intervals for specificity exceeds 20% range
- 58. Bettencourt 2011
- 59. Contributing trial had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 60. Confidence intervals for sensitivity exceeds 20% range
- 61. Bettencourt 2011
- 62. Contributing trial had serious applicability issues according to QUADAS-2 checklist (see Table 17)
- 63. Confidence intervals for sensitivity exceeds 20% range

Modified GRADE profile – Combined analyses – CTCA + Myocardial Perfusion Scintigraphy (Index tests 2+7)

Study ID	N	Risk of bias	Indirectness	Imprecision	Inconsistency	ТР	FP	FN	TN	Sensitivity (%) (95% Cl)	Specificity (%) (95% Cl)	GRADE quality
50% Stenosis												
C Chest pain, combination of	types (t	typical,	atypica	l or nor	n-cardia	ic)						
Fujitaka et al 2009	125	NS	NS	S ³	N/A	48	4	3	70	0.94 (0.84, 0.99)	0.95 (0.87, 0.99)	MODERATE
Thomassen et al 2013	44	NS	S ²	S ³	N/A	20	0	2	22	0.91 (0.71, 0.99)	1.00 (0.85, 1.00)	LOW

Quality ratings

(NS) No serious risk

(S) Serious

- 1. Risk of bias: 2/4 QUADAS-2 domains rated as UNCLEAR or at least 1 rated as HIGH
- 2. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with at least 1 UNCLEAR
- 3. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 20%

(VS) Very Serious

- 4. Risk of bias: 3/4 or more QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with 2 UNCLEAR, or 2 or more rated as HIGH
- 5. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with 2 UNCLEAR, or 2 or more rated as HIGH
- 6. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 40%

Modified GRADE profile – Combined analyses – CTCA + CT Perfusion (Index tests 2+9)

Study ID	N	Risk of bias	SC 1	Imprecision	Inconsistency	ТР	FP	FN	TN	Sensitivity (%) (95% Cl)	Specificity (%) (95% Cl)	GRADE quality
50% Stenosis												
B Suspected CAD (with break	down)											
Bettencourt et al 2011	90	NS	S ²	S ³	N/A	40	1	8	41	0.83 (0.70, 0.93)	0.98 (0.87, 1.00)	LOW
70% Stenosis												
B Suspected CAD (with break	down)											
Bettencourt et al 2011	90	NS	S ²	NS	N/A	36	3	2	49	0.95 (0.82, 0.99)	0.94 (0.84, 0.99)	MODERATE

Quality ratings

(NS) No serious risk

(S) Serious

1. Risk of bias: 2/4 QUADAS-2 domains rated as UNCLEAR or at least 1 rated as HIGH

2. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with at least 1 UNCLEAR

3. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 20%

(VS) Very Serious

4. Risk of bias: 3/4 or more QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with 2 UNCLEAR, or 2 or more rated as HIGH

5. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with 2 UNCLEAR, or 2 or more rated as HIGH

6. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 40%

Modified GRADE profile – Combined analyses –Calcium Scoring and Stress CMR (Index tests 3+6)

•					•			•		,		
Study ID	n	Risk of bias	Indirectness	Imprecision	Inconsistency	ТР	FP	FN	TN	Sensitivity (%) (95% Cl)	Specificity (%) (95% Cl)	GRADE quality
50% Stenosis												

Study ID	n	Risk of bias	ect	Imprecision	Inconsistency	ТР	FP	FN	TN	Sensitivity (%) (95% Cl)	Specificity (%) (95% Cl)	GRADE quality
B Suspected CAD (with break	(down)											
Stolzmann et al 2011	60	NS	S ²	S ³	N/A	32	4	4	20	0.89 (0.74, 0.97)	0.83 (0.63, 0.95)	LOW
<u>Quality ratings</u> (NS) No serious risk												

(NS) No serious risk

(S) Serious

- 1. Risk of bias: 2/4 QUADAS-2 domains rated as UNCLEAR or at least 1 rated as HIGH
- 2. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with at least 1 UNCLEAR
- 3. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 20%

(VS) Very Serious

- 4. Risk of bias: 3/4 or more QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with 2 UNCLEAR, or 2 or more rated as HIGH
- 5. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with 2 UNCLEAR, or 2 or more rated as HIGH
- 6. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 40%

Modified GRADE profile – Combined analyses –Calcium Scoring and Myocardial Perfusion Scintigraphy (SPECT) (Index tests 3+7)

Study ID	n	Risk of bias	Indirectness	ecisior	Inconsistency		FP	FN	TN	Sensitivity (%) (95% Cl)	Specificity (%) (95% CI)	GRADE quality
50% Stenosis												
B Suspected CAD (with brea	kdown)											
Schepis et al 2007	77	NS	S ²	S ³	N/A	36	5	6	30	0.86 (0.71, 0.95)	0.86 (0.70, 0.95)	LOW

<u>Quality ratings</u>

(NS) No serious risk

(S) Serious

1. Risk of bias: 2/4 QUADAS-2 domains rated as UNCLEAR or at least 1 rated as HIGH

2. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with at least 1 UNCLEAR

3. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 20%

Modified GRADE profile – Combined analyses – Stress Echo Perfusion+Wall motion (Index tests 4a+4b)

Study ID	n	Risk of bias	Indirectness	Imprecision	Inconsistency	ТР	FP	FN	TN	Sensitivity (%) (95% CI)	Specificity (%) (95% CI)	GRADE quality
50% Stenosis												
A Suspected CAD (No breakd	own of	numbe	rs with	chest p	ain)							
Arnold et al 2010	62	NS	S ²	S ³	N/A	35	5	6	16	0.85 (0.71, 0.94)	0.76 (0.53, 0.92)	LOW
70% Stenosis												
A Suspected CAD (No breakd	own of	numbe	rs with	chest p	ain)							
Arnold et al 2010	62	NS	S ²	S ³	N/A	28	12	1	21	0.97 (0.82, 1.00)	0.64 (0.45, 0.80)	LOW
<u>Quality ratings</u> (NS) No serious risk												

(S) Serious

4. Risk of bias: 2/4 QUADAS-2 domains rated as UNCLEAR or at least 1 rated as HIGH

5. Indirectness: 2/3 QUADAS-2 domains rated as UNCLEAR or 1 rated as HIGH with at least 1 UNCLEAR

6. Imprecision: 95% CIs for either Sensitivity or Specificity exceeds a range of 20%

(VS) Very Serious

Appendix L: Economic evidence tables

L.1 High sensitivity cardiac troponins for people with acute chest pain

None.

L.2 Non-invasive imaging for people with acute chest pain

None.

L.3 Prediction models/tools for people with stable chest pain of suspected cardiac origin None.

L.4 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

These are the full evidence tables for included economic studies. The studies are presented in reverse chronological order (latest to oldest).

Table 26:		
Bibliographic reference		tersen,Steffen E., Pugliese,Francesca, Dastidar,Amardeep G., Fleischmann,Kirsten E., Nieman,Koen, Hunink,M.G.M., The egy for patients with stable chest pain: a cost-effectiveness analysis, Annals of Internal Medicine. 162, 474-484, 2015
Evaluation design		
	Interventions	4 main diagnostic pathways were analysed in this study:
		Coronary CT angiography (CCTA)
		Cardiac stress imaging (CSI)
		Coronary CT angiography with positive results followed by cardiac stress imaging
		Direct catheter-based coronary angiography (CAG)
		The CCTA, CSI and CCTA with positive results followed by CSI pathways were analysed as both conservative and invasive diagnostic work-ups (see Other Comments field below). There are 3 alternatives for CSI: cardiac stress MRI, stress single-photon emission CT, and stress echocardiography. Therefore, there were 16 individual diagnostic strategies compared in this analysis, including no imaging.
		137. No imaging
		Conservative diagnostic work-ups:
		138. Stress echocardiography (ECHO)
		139. Coronary computed tomography angiograph (CCTA)
		140. Coronary computed tomography angiography and stress echocardiography if CCTA positive (CCTA+ECHO)
		141. Coronary computed tomography angiography and single-photon emission computed tomography if CCTA

National Guideline Centre. 2016

Bibliographic reference	Genders, Tessa S.S., Petersen, Steffen E., Pugliese, Francesca, Dastidar, Amardeep G., Fleischmann, Kirsten E., Nieman, Koen, Hunink, M.G.M., The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis, Annals of Internal Medicine. 162, 474-484, 2015
	positive (CCTA+SPECT)
	142. Coronary computed tomography angiography and cardiac magnetic resonance imaging if CCTA positive (CCTA+CMR)
	143. Single-photon emission computed tomography (SPECT)
	144. Cardiac magnetic resonance imaging (CMR)
	Invasive diagnostic work-ups:
	145. Stress echocardiography (ECHO-i)
	146. Coronary computed tomography angiography (CCTA-i)
	147. Coronary computed tomography angiography and stress echocardiography if CCTA positive (CCTA+ECHO-i)
	148. Coronary computed tomography angiography and single-photon emission computed tomography if CCTA positive (CCTA+SPECT-i)
	149. Coronary computed tomography angiography + cardiac magnetic resonance imaging if CCTA positive (CCTA+CMR-i)
	150. Single-photon emission computed tomography (SPECT-i)
	151. Cardiac magnetic resonance imaging (CMR-i)
	And:
	152. Direct catheter-based coronary angiography (CAG)
	The following figure shows the range of possible diagnostic pathways. It has been sourced from the original article.

Bibliographic reference		sen,Steffen E., Pugliese,Francesca, Dastidar,Amardeep G., Fleischmann,Kirsten E., Nieman,Koen, Hunink,M.G.M., The for patients with stable chest pain: a cost-effectiveness analysis, Annals of Internal Medicine. 162, 474-484, 2015
		No imaging CCTA CONTROL CON
	Base-line cohort characteristics	 60-year-old people with stable chest pain and a low to intermediate "preimaging" probability of CAD (defined as ≥50% stenosis) based on clinical characteristics and laboratory testing, regardless of whether they had undergone previous exercise electrocardiogram 30% probability of CAD Without history of CAD, percutaneous coronary intervention, or coronary artery bypass graft surgery Eligible for cardiac imaging
	Type of Analysis	Cost-utility analysis
	Structure	Microsimulation, decision tree for diagnostic outcomes, state-transition model for lifetime prognosis
	Cycle length	1 year
	Time horizon	Lifetime

Bibliographic reference		n,Steffen E., Pugliese,Francesca, Dastidar,Amardeep G., Fleischmann,Kirsten E., Nieman,Koen, Hunink,M.G.M., The r patients with stable chest pain: a cost-effectiveness analysis, Annals of Internal Medicine. 162, 474-484, 2015
	Perspective	Health care
	Country	United Kingdom, United States and the Netherlands (only UK reported here)
	Currency unit	f
	Cost year	2011
	Discounting	3.5%
	Other comments	All strategies were analysed as both conservative and invasive diagnostic work-ups.
		• In the invasive diagnostic work-up, people with moderate CAD on coronary CT angiography (≥50% stenosis in ≥1 vessel, regardless of severity) and patients with inducible ischaemia on cardiac stress imaging (regardless of severity) were referred for catheter-based coronary angiography.
		• In the conservative diagnostic work-up, patients with moderate CAD on coronary CT angiography or mild inducible ischaemia on cardiac stress imaging received optimal medical treatment without referral to catheter-based coronary angiography.
		Treatment and prognosis:
		Normal coronary arteries, mild CAD, moderate CAD without ischaemia: risk factor management
		Mild ischaemia and moderate to severe CAD: optimal medical treatment
		Severe CAD and severe ischaemia: percutaneous coronary intervention
		3-vessel or left main coronary stenosis: Coronary artery bypass graft surgery
		Key assumptions:
		• Sensitivity applied equally to moderate CAD, severe CAD and 3-vessel disease or left main coronary disease
		Conditional independence with regard to the sensitivity and specificity for CCTA and CSI
		• For CTCA and CSI, it was assumed that false positive results only showed mild CAD and mild inducible ischaemia respectively
		• Did not differentiate between the presence of perfusion defects and wall-motion abnormalities (both manifestations of inducible ischaemia)
		Harmful effects of radiation exposure were not modelled but cumulative lifetime radiation exposure was reported
		Rates of major adverse cardiac events were calculated separately for first year and all subsequent years

oliographic ference		rsen,Steffen E., Pugliese,Francesca, D y for patients with stable chest pain: a			
		Software used: DATA Pro 2009	Suite (TreeAge Pro)		
sults (base case)	60 year old men with a p	pre-test probability of 30%			
	Test	Cost (£)	QALYs	ICER (£/QALY)	
	No imaging	1577	11.55	-	
	ЕСНО	2717	11.77	5000	
	CCTA+ECHO	2763	11.78	7000	
	ECHO-i	2789	11.78	Extended dominance	
	CCTA+SPECT	2832	11.78	Dominated	
	CCTA+ECHO-i	2853	11.78	32,000	
	ССТА	2859	11.77	Dominated	
	CCTA+CMR	2893	11.78	Dominated	
	CCTA+SPECT-i	2920	11.78	Dominated	
	CCTA+CMR-i	2986	11.78	Dominated	
	CCTA-i	2988	11.78	Dominated	
	SPECT	3085	11.76	Dominated	
	SPECT-i	3091	11.78	Dominated	
	CMR	3143	11.76	Dominated	
	CMR-i	3186	11.78	Dominated	
	CAG	3341	11.77	Dominated	

Study author's conclusion: For UK men, the preferred strategy was optimal medical therapy without catheter-based coronary angiography if coronary CT angiography found only moderate CAD or stress imaging induced only mild ischaemia. In these strategies, stress echocardiography was consistently more effective and less expensive than other stress imaging tests.

60 year old **women** with a pre-test probability of 30%

Test	Cost (£)	QALYs	ICER (£/QALY)
------	----------	-------	---------------

Bib

refe

Res

Bibliographic reference		rsen,Steffen E., Pugliese,Francesca, D y for patients with stable chest pain: a	· · · · · · · · · · · · · · · · · · ·		
	No imaging	1687	11.85	-	
	ECHO	2844	12.08	5000	
	CCTA+ECHO	2881	12.08	7000	
	ECHO-i	2900	12.06	8000	
	CCTA+SPECT	2952	12.08	Dominated	
	CCTA+ECHO-i	2964	12.09	53,000	
	CCTA	2984	12.07	Dominated	
	CCTA+CMR	3012	12.08	Dominated	
	CCTA+SPECT-i	3031	12.09	Dominated	
	CCTA+CMR-i	3096	12.09	Dominated	
	CCTA-i	3098	12.08	Dominated	
	SPECT-i	3200	12.08	Dominated	
	SPECT	3231	12.06	Dominated	
	CMR	3277	12.07	Dominated	
	CMR-i	3295	12.08	Dominated	
	CAG	3450	12.08	Dominated	
	-	n: For UK women, the optimal strategy ed mild or moderate ischaemia.	y was stress echocardiography f	ollowed by catheter-based coronary	angiography if
Data sources					
	Base-line data	Severity of disease based on CT	CA and CAG data from the auth	ors' hospital:	
		Normal coronary arteries: 40	%		
		• Mild CAD: 30%			
		Moderate CAD (assumed)			
		 No inducible ischaemia: 12 	%		
		 Mild inducible ischaemia: 6 	%		
		• Severe CAD (assumed)			
		 Mild inducible ischaemia: 2 	%		
		 Severe inducible ischaemia 	: 4%		

Bibliographic reference		Steffen E., Pugliese,Francesca, Dastidar,Amardeep G., Fleischmann,Kirsten E., Nieman,Koen, Hunink,M.G.M., The patients with stable chest pain: a cost-effectiveness analysis, Annals of Internal Medicine. 162, 474-484, 2015
		3-vessel disease or left main coronary stenosis (assumed)
		 Mild inducible ischaemia: 2%
		 Severe inducible ischaemia: 4%
		Rates of major adverse cardiac events:
		• 3-vessel disease or left main coronary stenosis: CABG group from one RCT (SYNTAX trial)
		• Suspected or mild inducible ischaemia and moderate to severe CAD (treated with optimal medical treatment) and patients with severe CAD and severe inducible ischaemia (treated with PCI): optimal medical treatment and PCI groups of one RCT (COURAGE trial)
		Risk of death from non-cardiac causes based on UK mortality rates, Office for National Statistics
	Effectiveness data	Mean diagnostic accuracy, all from meta-analyses in published literature:
		CCTA sensitivity: 0.98
		CCTA specificity: 0.89
		CMR sensitivity: 0.89
		CMR specificity: 0.76
		SPECT sensitivity: 0.88
		• SPECT specificity: 0.61
		ECHO sensitivity: 0.79
		• ECHO specificity: 0.87
		CAG sensitivity: 1
		CAG specificity: 1
		Mortality:
		CCTA: 0.0006 (literature)
		CMR: 0.01 (assumed)
		• SPECT: 0.01 (assumed)
		• ECHO: 0.01 (assumed)
		• CAG: 0.11 (literature)
		Periprocedural myocardial infarction (%):
		CCTA: nil

Bibliographic reference		Petersen,Steffen E., Pugliese,Francesca, Dastidar,Amardeep G., Fleischmann,Kirsten E., Nieman,Koen, Hunink,M.G.M., The tegy for patients with stable chest pain: a cost-effectiveness analysis, Annals of Internal Medicine. 162, 474-484, 2015
		CMR: nil
		• SPECT: nil
		• ECHO: nil
		• CAG: 0.05
	Cost data	Mean cost of diagnostic tests from NHS National Reference Costs:
		• CCTA: £286
		• CMR: £548
		• SPECT: £343
		• ECHO: £236
		• CAG: £1,052
		Mean cost of other interventions:
		• CABG: £7,318
		Myocardial infarction: £5,195
		 Percutaneous coronary intervention: £3,676
		• Fractional flow reserve: £460
		Drug costs from Drug Tariff November 2011
		Annual medication use from the literature
	Utility data	EQ-5D reference values based on US general population preferences from the literature
		Disutility due to tests (all assumed):
		• CCTA: 0.0005
		• CMR: 0.00075
		• SPECT: 0.00075
		• ECHO: 0.00075
		• CAG: 0.005

Bibliographic reference Uncertainty	Genders, Tessa S.S., Peters optimal imaging strategy										
Uncertainty	One-way sensitivity analysis	 Corona probab Above t effectiv 	ry CT angio ility was 30 his thresho e.	alysed at pre graphy was c % or less for old, stress ech es optimal str	cost effecti men and 1 nocardiogr	ve as a triage 10% for wom	e test befoi en.	e stress ech	ocardiogra		
		10%		30%		50%		70%		90%	
		Strategy	ICER	Strategy	ICER	Strategy	ICER	Strategy	ICER	Strategy	ICER
		CCTA+EC HO	£9000	ECHO	£5000	ECHO	£4000	ECHO	£4000	ECHO	£4000
		CCTA+EC HO-i	£20,000	CCTA+EC HO	£7000	ECHO-i	£19,000	ECHO-i	£30,000	ECHO-i	£47,000
		-		CCTA+EC HO-i	£32,000	CCTA+EC HO-i	£51,000	CCTA+EC HO-i	£300,000	-	-
		Women (bo	ld text indi	cates optima	I strategy)	:					
		10%		30%		50%		70%		90%	
		Strategy	ICER	Strategy	ICER	Strategy	ICER	Strategy	ICER	Strategy	ICER
		CCTA+EC HO	£8000	ECHO	£5000	ECHO	£4000	ECHO	£4000	ECHO	£4000
		CCTA+EC HO-i	£12,000	CCTA+EC⊦ O	£7000	ECHO-i	£15,000	ECHO-i	£23,000	ECHO-i	£30,0 00
		-	-	ECHO-i	£8000	CCTA+ECH O-i	f £462,00 0	CCTA+ECH O-i	£394,00 0	CCTA+ECH O-i	£181, 000
		-	-	CCTA+ECH O-i	£53,000) -	-	-	-	-	-
				vity to 0.70 (f HO-i as the o	•	•	ity to 0.80	(from 0.87) c	of stress ec	hocardiograp	ohy

Bibliographic reference		,Steffen E., Pugliese,Francesca, Dastidar,Amardeep G., Fleischmann,Kirsten E., Nieman,Koen, Hunink,M.G.M., The patients with stable chest pain: a cost-effectiveness analysis, Annals of Internal Medicine. 162, 474-484, 2015
		• Decreasing the cost of cardiac stress MRI from £548 to £200 does not change the conclusion.
	Probabilistic sensitivity analysis	Conducted but only credible intervals for mean cost and QALYs provided
Applicability	Directly Applicable	
	• EQ-5D reference values ba	sed on US general population preferences, rather than UK general population preferences
Limitations	Minor Limitations	
Conflicts	Nil. Funding provided by nati	onal health care organisations and charities.
Acronyms		

ICER: incremental cost-effectiveness ratio; QALY: quality-adjusted life year

Bibliographic reference		line Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset rt of suspected cardiac origin. NICE Clinical Guideline 95
Evaluation		
design	Interventions	People only move on to subsequent tests if they test positive or indeterminate. Calcium scoring is obtained using a 64-slice CT scanner. ¹
		1. Exercise electrocardiogram, then MPS with SPECT, then coronary angiography (ECG+MPS+CA)
		2. Exercise electrocardiogram, then CT coronary angiography, then coronary angiography (ECG+CT+CA)
		3. Exercise electrocardiogram, then coronary angiography (ECG+CA)
		4. MPS with SPECT, then coronary angiography (MPS+CA)
		5. CT coronary angiography, then coronary angiography (CT+CA)
		6. Coronary angiography (CA)

Bibliographic	CG95 Model 1	
reference		ne Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset of suspected cardiac origin. NICE Clinical Guideline 95
		7. Exercise electrocardiogram, then CT coronary angiography (ECG+CT)
		8. CT coronary angiography (CT)
		9. Calcium scoring, then CT coronary angiography (CaScore+CT)
		10. Calcium scoring, then CT coronary angiography, then coronary angiography (CaScore+CT+CA)
		Only the results for diagnostic strategies that do not involve an exercise electrocardiogram are reported here. Exercise electrocardiogram was an excluded test in the review protocol.
	Base-line cohort characteristics	Not applicable
	Type of Analysis	Cost-effectiveness analysis
	Structure	Decision tree
	Cycle length	Not applicable
	Time horizon	Not applicable – short term diagnostic model
	Perspective	NHS and Personal Social Services
	Country	UK
	Currency unit	£
	Cost year	Not specified
	Discounting	Not applicable
	Other comments	Key assumptions: Invasive coronary angiography is the gold standard with 100% diagnostic sensitivity and specificity
		Software: Microsoft Excel

Bibliographic	CG95 Model 1							
reference	National Clinical G	uideline Centre for omfort of suspected				f recent onset: as	sessment and diag	nosis of recent onset
Results	From the study aut	thors:						
		that Ca-CT, calcium s umber of false positi			giography, is th	e least cost option	n at all levels of CAE) prevalence but gives a
	 At 5% CAD preva more expensive. 	llence, Ca-CT-CA has	a favourable increr	nental cost effe	ctiveness. CT-C	A and CA only, the	ough more effective	e, are considerably
	 At 20% CAD prev most costly. 	alence, the move to	o Ca-CT-CA is likely t	o be considered	l cost-effective	as is the further n	nove to CT-CA. CA is	s the most effective and
		antial decrease in th	•			•	•	itives are more than in this high prevalence
					5%			
	Strategy	Total cost	% accurately diagnosed	False positives	5% False negatives	Total deaths	CAD negative deaths	•
	<mark>Strategy</mark> Ca-CT	Total cost £164,211			False	Total deaths 0.01	-	
			diagnosed	positives	False negatives		deaths	correct diagnosis
	Ca-CT	£164,211	diagnosed 92.66%	positives 59.3	False negatives 14.1	0.01	deaths 0.01	- Dominated
	Ca-CT CT	£164,211 £223,000	diagnosed 92.66% 88.78%	positives 59.3 102.4	False negatives 14.1 9.8	0.01 0.02	deaths 0.01 0.02	correct diagnosis - Dominated
	Ca-CT CT Ca-CT-CA	£164,211 £223,000 £254,407	diagnosed 92.66% 88.78% 98.58%	positives 59.3 102.4 0	False negatives 14.1 9.8 14.1	0.01 0.02 0.03	deaths 0.01 0.02 0.02	correct diagnosis - Dominated £1,524
	Ca-CT CT Ca-CT-CA CT-CA	£164,211 £223,000 £254,407 £343,367	diagnosed 92.66% 88.78% 98.58% 99.02%	positives 59.3 102.4 0 0	False negatives 14.1 9.8 14.1 9.8 14.1	0.01 0.02 0.03 0.04	deaths 0.01 0.02 0.02 0.04	correct diagnosis - Dominated £1,524 £2,817
	Ca-CT CT Ca-CT-CA CT-CA CT-CA MPS-CA	£164,211 £223,000 £254,407 £343,367 £651,597	diagnosed 92.66% 88.78% 98.58% 99.02% 99.33%	positives 59.3 102.4 0 0 0 0 0 0	False negatives 14.1 9.8 14.1 9.8 6.6	0.01 0.02 0.03 0.04 0.13	deaths 0.01 0.02 0.02 0.04 0.12	correct diagnosis - Dominated £1,524 £2,817 Extended-dominated
	Ca-CT CT Ca-CT-CA CT-CA CT-CA MPS-CA	£164,211 £223,000 £254,407 £343,367 £651,597	diagnosed 92.66% 88.78% 98.58% 99.02% 99.33%	positives 59.3 102.4 0 0 0 0 0 0	False negatives 14.1 9.8 14.1 9.8 6.6 0	0.01 0.02 0.03 0.04 0.13	deaths 0.01 0.02 0.02 0.04 0.12	correct diagnosis Dominated £1,524 £2,817 Extended-dominated £52,774
	Ca-CT CT Ca-CT-CA CT-CA CT-CA MPS-CA CA	£164,211 £223,000 £254,407 £343,367 £651,597 £850,000	diagnosed 92.66% 88.78% 98.58% 99.02% 99.33% 99.98% % accurately	positives 59.3 102.4 0 0 0 0 0 0 0 0 0 59.3 102.4 0 0 0 0 False	False False negatives 14.1 9.8 14.1 9.8 14.1 9.8 6.6 0 0 20% False	0.01 0.02 0.03 0.04 0.13 0.2	deaths 0.01 0.02 0.02 0.04 0.12 0.19	correct diagnosis Dominated £1,524 £2,817 Extended-dominated

Bibliographic reference		Guideline Centre for A Comfort of suspected (f recent onset: as	sessment and diag	nosis of recent onset
	Ca-CT-CA	£341,282	94.34%	0	56.5	0.05	0.02	£3,458
	CT-CA	£429,581	96.07%	0	39.2	0.07	0.03	£5,104
	MPS-CA	£711,519	97.35%	0	26.3	0.15	0.1	Extended-dominated
	CA	£850,000	99.98%	0	0	0.2	0.16	£10,752
					40%			
	Strategy	Total cost	% accurately diagnosed	False positives	False	Total deaths	CAD negative	Incremental cost per
			alaghosea	positives	negatives	Total deaths	deaths	correct diagnosis
	Ca-CT	£175,516	84.95%	37.4	113.1	0.01	0 O	correct diagnosis
	Ca-CT CT		-		_			correct diagnosis - Extended-dominated
		£175,516	84.95%	37.4	113.1	0.01	0	
	СТ	£175,516 £223,000	84.95% 85.69%	37.4 64.7	113.1 78.4	0.01 0.02	0 0.01	- Extended-dominated
	CT Ca-CT-CA	£175,516 £223,000 £457,116	84.95% 85.69% 88.69%	37.4 64.7 0	113.1 78.4 113.1	0.01 0.02 0.08	0 0.01 0.01	Extended-dominated Extended-dominated

60%							
Strategy	Total cost	% accurately diagnosed	False positives	False negatives	Total deaths	CAD negative deaths	Incremental cost per correct diagnosis
Ca-CT	£181,976	80.54%	24.9	169.6	0.01	0	-
СТ	£223,000	83.93%	43.1	117.6	0.02	0.01	£1,210
Ca-CT-CA	£572,950	83.03%	0	169.6	0.1	0.01	Dominated
CT-CA	£659,486	88.23%	0	117.6	0.12	0.02	Extended-dominated
CA	£850,000	99.98%	0	0	0.2	0.08	£3,907
MPS-CA	£871,311	92.09%	0	79	0.19	0.05	Dominated

National Guideline Centre. 2016

Bibliographic reference		CG95 Model 1 National Clinical Guideline Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. NICE Clinical Guideline 95						
		80%						
	Strategy	Total cost	% accurately diagnosed	False positives	False negatives	Total deaths	CAD negative deaths	Incremental cost per correct diagnosis
	Ca-CT	£188,436	76.14%	12.5	226.1	0.01	0	-
	СТ	£223,000	82.16%	21.6	156.8	0.02	0	£574
	Ca-CT-CA	£688,784	77.37%	0	226.1	0.13	0	Dominated
	CT-CA	£774,439	84.31%	0	156.8	0.15	0.01	Extended-dominated
	CA	£850,000	99.98%	0	0	0.2	0.04	£3,519
	MPS-CA	£951,207	89.45%	0	105.3	0.2	0.03	Dominated

Base-line data	
Effectiveness data	MPS with SPECT
	• Sensitivity: 86% (2008 HTA)
	• Specificity: 64% (2008 HTA)
	• Indeterminacy: 6% (2008 HTA)
	• Mortality risk: 0.005% (2008 HTA)
	Calcium scoring (>0) with MSCT
	• Sensitivity: 89% (one clinical trial using 4-slice CT)
	• Specificity: 43% (one clinical trial using 4-slice CT)
	Indeterminacy: 2% (literature)
	Mortality risk: 0% (literature)
	64-slice CT coronary angiography
	• Sensitivity: 80% (expert opinion based on CAD threshold of 70% stenosis)
	• Specificity: 89% (2008 HTA)

National Guideline Centre, 2016

Bibliographic reference	CG95 Model 1 National Clinical Guideline Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. NICE Clinical Guideline 95					
		Indeterminacy: 2% (2008 HTA)				
		Mortality risk: 0.001% (expert opinion, due to contrast)				
		Invasive coronary angiography				
		Sensitivity: 100% (assumed)				
		Specificity: 100% (assumed)				
		Indeterminacy: 0% (assumed)				
		Mortality risk: 0.020% (expert opinion)				
	Cost data	• MPS with SPECT: £293 (2008 HTA)				
		• Calcium scoring: £103 (expert opinion based on half the cost of CTCA)				
		• 64-slice CT coronary angiography: £206 (2008 HTA)				
		• 64-slice CT coronary angiography after calcium scoring: £103 (expert opinion)				
		 Invasive coronary angiography: £850 (assumed; average of various sources) 				
	Utility data	Not applicable				
Uncertainty						
	One-way sensitivity	• Reducing the specificity of 64-slice CT coronary angiography to 67% from 89%:				
	analysis	 At 5% CAD prevalence, Ca-CT-CA is still likely to be cost-effective although with a higher ICER than base case 				
		 At 20% CAD prevalence, the ICER for Ca-CT-CA compared with Ca-CT is lower than the base case because the number of correct diagnoses is higher 				
		 At 40% CAD prevalence and above, the most cost-effective strategy is still sending all patients directly for invasive coronary angiography 				
		 Increasing the calcium score threshold from >0 to >100, the sensitivity of calcium scoring decreases to 72% but the specificity increases to 81% 				
		• Ca-CT remains the least cost option at all levels of CAD prevalence but Ca-CT-CA is less cost effective compared to the base case.				
		• At 5% CAD prevalence, Ca-CT-CA is still likely to be cost effective with an increased ICER of £2183				
		• At 20% CAD prevalence, Ca-CT-CA is ruled out due to extended dominance so CT-CA is likely to be the cost effective option with an ICER of \$4764 compared with Ca-CT.				

chest	t pain or discomfort of	 Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset suspected cardiac origin. NICE Clinical Guideline 95 At 40% CAD prevalence and greater, the strategy of sending all patients directly to invasive CA is still likely to be cost effective. 			
	babilistic sensitivity alysis	Not done			
Applicability Parti	ially Applicable				
	per correct diagnosis. This makes decision-making difficult compared to NICE's reference case of cost per QALY. Very Serious Limitations				
	 Some important parameters were based on GDG expert opinion. This includes the sensitivity of CTCA, the cost of calcium scoring and the mortality 				
	risk of invasive coronary angiography.				
	 Only the diagnostic timeframe has been modelled. No attempt has been made to extend the model to account for resource and health implications beyond this. 				
Conflicts Pleas	se refer to the conflict o	f interest declarations for CG95			
Acronyms CER: incremental cost-ef	ffectiveness ratio: QALY	: quality-adjusted life year			

 Bibliographic
 CG95 Model 2

 reference
 National Clinical Guideline Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset

 chest pain or discomfort of suspected cardiac origin. NICE Clinical Guideline 95

Bibliographic reference	CG95 Model 2 National Clinical Guideline Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. NICE Clinical Guideline 95				
Evaluation					
design	Interventions	First line functional testing with MPS-SPECT			
	Comparators	First line anatomical testing with invasive coronary angiography			
	Base-line cohort characteristics	People presenting with stable chest pain with a moderate (20 to 60%) pre-test likelihood of CAD			
	Type of Analysis	Cost effectiveness analysis			
	Structure	Decision tree			
	Cycle length	Not applicable			
	Time horizon	Instantaneous			
	Perspective	NHS and PSS			
	Country	UK			
	Currency unit	f			
	Cost year	Not specified			
	Discounting	Not applicable			
	Other comments	 Key assumptions: Patients with an equivocal invasive coronary angiography are assumed to have a second line functional test using MPS-SPECT 			

Bibliographic reference	CG95 Model 2 National Clinical Guideline Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. NICE Clinical Guideline 95					
Results						
	Comparison	MPS-SPECT vs. CA				
	Cost	Total cost for 1000 patients:				
		• MPS-SPECT: £344,000				
		• CA: £850,000				
	Effects	Correct diagnosis:				
		• MPS-SPECT: 76.5%				
		• CA: 100%				
	Incremental cost effectiveness ratio	£21,549 per correct diagnosis				
	Conclusion	From study authors: Assuming a WTP threshold of £20,000, and given that we have presented an optimistic scenario for invasive coronary angiography our model indicates that it looks unlikely that use of first line coronary angiography for the modelled scenario is cost-effective with first line functional testing.				
Data sources						
	Base-line data	Not applicable				
	Effectiveness data	MPS-SPECT				
		Indeterminate results: 6% (2008 HTA)				
		• Death: 0%				
		• Sensitivity: 86%				
		• Specificity: 64%				
		Coronary angiography				
		• Sensitivity: 100% (assumed)				
		• Specificity: 100% (assumed)				
		• Death: 0.02%				
		Indeterminate result: 0%				
	Cost data	• MPS-SPECT: £293 (2008 HTA)				
		Invasive coronary angiography: £850 (2008 HTA)				

Bibliographic	CG95 Model 2				
reference	National Clinical Guideline C	entre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset			
	chest pain or discomfort of s	suspected cardiac origin. NICE Clinical Guideline 95			
	Utility data	Not applicable			
l la controlinda :					
Uncertainty					
	One-way sensitivity	• Assuming a threshold of £20,000 per correct diagnosis, the pre-test likelihood of CAD is varied from 20% to 50% to			
	analysis	find the level of equivocal invasive coronary angiography results that results in indifference between strategies. Assuming a population prevalence of 40%, invasive coronary angiography would have to be 100% sensitive and			
		specific and have an equivocal result rate of less than 0.6% before it is likely to be considered cost-effective			
		compared with first line functional testing using MPS with SPECT.			
		Replacing CA with 64-slice CT angiography:			
		 Based on the inputs from CG95 Model 1, 64-slice CT coronary angiography costs less than first line functional 			
		testing using MPS with SPECT and produces a great proportion of accurately diagnosed patients.			
	Probabilistic sensitivity	Not undertaken			
	analysis				
Applicability	Partially Applicable				
Apprecisincy					
	• Only two diagnostic nathw	ays are compared in this analysis. CTCA replaced MPS-SPECT in a sensitivity analysis.			
	, , ,				
	-	ented by the number of correctly diagnosed patients. There is no known threshold for cost effectiveness in terms of cost makes decision-making difficult compared to NICE's reference case of cost per OALY.			
	per correct diagnosis. This makes decision-making difficult compared to NICE's reference case of cost per QALY.				

Bibliographic reference	CG95 Model 2 National Clinical Guideline Centre for Acute and Chronic Conditions. 2010. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. NICE Clinical Guideline 95				
Limitations	Very Serious Limitations				
	• Only the diagnostic timeframe has been modelled. No attempt has been made to extend the model to account for resource and health implications beyond this.				
Conflicts	Please refer to the conflicts of interest in CG95.				
Acronyms ICER: incremental	Acronyms CER: incremental cost-effectiveness ratio; QALY: quality-adjusted life year				

Bibliographic reference	Hernandez,Rodolfo, Vale,Luke, The value of myocardial perfusion scintigraphy in the diagnosis and management of angina and myocardial infarction: a probabilistic economic analysis, Medical decision making : an international journal of the Society for Medical Decision Making, 27, 772-788, 2007			
Evaluation				
design	Interventions	11. Stress ECG, followed by SPECT if stress ECG positive or indeterminate, followed by coronary angiography if SPECT positive-high risk-result or indeterminate		
		12. Stress ECG, followed by coronary angiography if stress ECG positive or indeterminate		
		13. SPECT, followed by coronary angiography if SPECT positive-high risk-result or indeterminate (SPECT)		
		14. Coronary angiography (invasive test as first option) (CA)		
		Only the results for strategies that do not include stress ECG, strategies 3 and 4, are reported here because stress ECG was excluded from the clinical review protocol.		
	Base-line cohort characteristics	60 years old		
	Type of Analysis	Cost-utility analysis		
	Structure	Short term diagnostic decision tree; long term consequences Markov model		
	Cycle length	1 year		

Bibliographic reference	Hernandez,Rodolfo, Vale,Luke, The value of myocardial perfusion scintigraphy in the diagnosis and management of angina and myocardial infarction: a probabilistic economic analysis, Medical decision making : an international journal of the Society for Medical Decision Making, 27, 772-788, 2007				
	Time horizon	25 years			
	Perspective NHS				
	Country	UK			
	Currency unit	y unit £			
	Cost year 2002				
	Discounting	6% costs; 1.5% health outcomes			
	Other comments	 Key assumptions: All survivors are correctly diagnosed after a maximum of 10 years either as a result of additional diagnostic tests or a nonfatal MI. This assumption reflects the believe that at-risk individuals would face other opportunities over time, such as regular health checks, in which they may receive a correct diagnosis. Software: Excel for short term diagnostic decision tree; Data 4.0 for long term consequences Markov model 			

Results

Bold indicates optimal strategy based on a cost-effectiveness threshold of £20,000/QALY.

Strategy	Total cost	Total QALYs	Incremental cost	Incremental QALYs	ICER		
	CAD Prevalence 10.5% (base case)						
SPECT-CA	5529	12.532	-	-	-		
CA	5929	12.541	400	0.009	£44,444/QALY		
CAD Prevalence 30%							
SPECT-CA	6155	11.798	-	-	-		
CA	6484	11.84	329	0.042	£7833/QALY		
	CAD Prevalence 50%						
SPECT-CA	6797	11.045	-	-	-		
CA	7053	11.121	256	0.076	£3368/QALY		
		CAD	Prevalence 85%				

Bibliographic reference				graphy in the diagnosis a an international journal o		ngina and myocardial dical Decision Making, 27,							
	SPECT-CA	7921	9.726	-	-	-							
	СА	8049	9.862	128	0.136	£941/QALY							
	CA to SPECT-CA might b strategies would be mo analysis suggests that th frontier described by th	e considered worthwhile re efficient than reliance ne CG-CA strategy is high e CEACs. The coronary ar	when the prevalence o on a strategy of ECG-CA ly unlikely to be the mos ngiography option is mo	CAD is below 30%. A com only at these levels of pre	bination of ECG-SPEC evalence of disease. Pr not form part of the c optimal at high levels	robabilistic sensitivity cost-effectiveness efficiency							
Data sources													
	Base-line data Prevalence of coronary heart disease from British Heart Foundation statistics Risk of MI: Low risk and false positives: 2.5% (1999 study) Untreated medium risk and false-negative medium risk: 5% (1999 study) High risk and false-negative high risk: 9% (1999 study) Proportion nonfatal MI: 55.16% (2000 study) 												
	Effectiveness data	Transition probal • SPECT: • Sensitivity: 0 • Specificity: 0 • Indeterminad • Mortality risl • Coronary angio • Sensitivity: 1 • Specificity: 1 • Mortality risl	.83 .59 cy: 0.09 k: 0.00005 ography: (assumed) (assumed)	ity and specificity, from 20	004 HTA / systematic	review							
	Cost data		1 (1997 study from the li	terature)									

Bibliographic reference		,Luke, The value of myocardial perfusion scintigraphy in the diagnosis and management of angina and myocardial economic analysis, Medical decision making : an international journal of the Society for Medical Decision Making, 27,
		Coronary angiography: £1309.55 (1997 study from the literature)
		Medical management: £311 (2004 HTA)
		Myocardial infarction: (£1122 NHS reference costs 2001-02)
		• Percutaneous transluminal coronary angiography: £1993.74 (study from literature)
		• Coronary artery bypass graft: £4397 (NHS reference costs 2001-02)
	Utility data	• EQ-5D from 1999 study from the literature:
		o Low risk: 0.87
		○ Medium risk: 0.81
		○ High risk: 0.67
		Adjustment for revascularisation or MI: 0.1 (assumed)
Uncertainty		
	One-way sensitivity	Nine different sensitivity analyses conducted but only narrative reporting of results provided.
	analysis	• SA1, reducing the time horizon:
		○ ICERs increase
		• SA2, modify the period in which false negatives are correctly rediagnosed:
		 ○ Not reported
		• SA3, higher values for ECG indeterminacy (30% vs. 18%) and lower values for SPECT indeterminacy (2% vs. 9%):
		 SPECT strategies more likely to be considered cost effective
		• SA4 and SA6, using alternative costs
		 Results of the analysis were insensitive to alternative cost data
		SA5, subgroup analysis restricted to women
		 More favourable to SPECT-based strategies
		• SA7, additional two strategies involving ECHO
		 ECHO-SPECT-CA: at 10.5% CAD prevalence, it dominates ECG-SPECT and ECG-SPECT
		 ECHO-CA: dominated both ECG-CA and SPECT-CA
		SA8, lower levels of CAD prevalence
		\circ up to 1%, ECG-SPECT-CA dominated all others

Bibliographic reference		ike, The value of myocardial perfusion scintigraphy in the diagnosis and management of angina and myocardial conomic analysis, Medical decision making : an international journal of the Society for Medical Decision Making, 27,
		 1-4%, SPECT-based strategies dominated non-SPECT-based strategies
		○ 5%: only SPECT-CA dominated CA
		 SA9, changes considered in the probability distributions for sensitivity and specificity
	Probabilistic sensitivity	Yes. Interpretation of CEACs:
	analysis	• At a CAD prevalence of 10.5%, SPECT-CA has a 90% likelihood of being the optimal strategy.
		• At 30% CAD prevalence, SPECT-CA is most optimal up to a threshold of £20,000 per QALY when CA takes over.
		• For higher levels of CAD prevalence and thresholds over £10,000 per QALY, coronary angiography is the optimal strategy.
Applicability	Partially Applicable	
	• 2002 costs are unlikely to	accurately represent costs currently experienced in 2015
		tic strategies are compared, SPECT vs. CA. Another two strategies involving stress ECG were compared in the study but Ided in the review protocol.
Limitations	Potentially serious Limitation	ons
	Missing relevant compara	tors
	• Different discount rate to	the NICE reference case
Conflicts	No. Funded by NICE, NHS an	d the Scottish Executive Health Department
Acronyms	Loost offectiveness ratio: OALX	

ICER: incremental cost-effectiveness ratio; QALY: quality-adjusted life year

Appendix M: Evidence synthesis

M.1 Acute chest pain

- M.1.1 High sensitivity cardiac troponins
- M.1.1.1 Coupled sensitivity and specificity forest plots

Figure 4: Low risk 0 hours

Study	ΤР	FP	FN	TN	Threshold (ng/L)	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Collinson 2013 14 0h	53	33	14	733	14.0	98.0	62.0	0.79 [0.67, 0.88]	0.96 [0.94, 0.97]		
Freund 2011 14 0h	20	36	2	202	14.0	99.0	36.0	0.91 [0.71, 0.99]			

Figure 5: Low risk change 0-1.5 hours

Study	TP	FP	FN	TN	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Collinson 2013 p14 0-1.5h	57	43	11	736	99.0	57.0	0.84 [0.73, 0.92]	0.94 [0.93, 0.96]		⊢ + + +
									0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 6: Moderate risk 0 hours

Study	ΤР	FP	FN	TN	Threshold (ng/L)	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hochholzer 2011 11 0h	90	177	з	454	11.0	99.0	34.0	0.97 [0.91, 0.99]	0.72 [0.68, 0.75]	-	
Sebbane 2013 14 0h	19	25	6	142	14.0	96.0	43.0	0.76 [0.55, 0.91]	0.85 [0.79, 0.90]		-
Sebbane 2013 18 0h	19	17	6	150	18.0	96.0	53.0	0.76 [0.55, 0.91]	0.90 [0.84, 0.94]		
										0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 7: Moderate risk – older adults 0 hours

 Study
 TP
 FP
 FN
 TN
 Threshold (ng/L)
 NPV
 PPV
 Sensitivity (95% Cl)
 Specificity (95% Cl)

Figure 8: Moderate risk – older adults 3-4 hours

Study	TP	FP	FN	ΤN	Threshold (ng/L)	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Borna 2016	129	212	0	136	14.0	99.0	40.0	1.00 [0.97, 1.00]	0.39 [0.34, 0.44]	-	+
b Borna 2016	120	143	9	205	20.0	96.0	46.0	0.93 [0.87, 0.97]	0.59 [0.54, 0.64]	-	+
c Borna 2016	116	87	13	261	30.0	95.0	57.0	0.90 [0.83, 0.95]	0.75 [0.70, 0.79]		
										0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 9: Moderate risk change score 0-3 hours

Study	TP	FP	FN	TN	Threshold (ng/L)	% change	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Irfan 2013 14 17% change 0-1h	65	202	43	520	14.0	17.0	92.0	24.0	0.60 [0.50, 0.69]	0.72 [0.69, 0.75]		•
Reichlin 2011 14 30% change 0-2h	43	84	24	439	14.0	27.0	95.0	35.0	0.64 [0.52, 0.76]	0.84 [0.81, 0.87]		•
Irfan 2013 14 27% change 0-1h	68	245	40	477	14.0	30.0	92.0	22.0	0.63 [0.53, 0.72]	0.66 [0.62, 0.70]		
											0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 10: High risk 0 hours

Study	ТР	FP	FN	τN	Threshold (ng/L)	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
e Aldous 2012 3 0h	196	383	9	351	3.0	98.0	34.0	0.96 [0.92, 0.98]	0.48 [0.44, 0.52]	-	
c Aldous 2012 5 0h	192	305	13	429	5.0	97.0	39.0	0.94 [0.89, 0.97]	0.58 [0.55, 0.62]	•	•
Kurz 2010 9.5 0h	38	11	8	37	9.5	82.0	78.0	0.83 [0.69, 0.92]	0.77 [0.63, 0.88]		
a Aldous 2012 14 0h	181	134	24	600	14.0	96.0	57.0	0.88 [0.83, 0.92]	0.82 [0.79, 0.84]	-	
Eggers 2012 14 0h	101	59	27	173	14.0	87.0	63.0	0.79 [0.71, 0.86]	0.75 [0.68, 0.80]		-
g Melki 2011 14 0h	112	21	2	98	14.0	98.0	84.0	0.98 [0.94, 1.00]	0.82 [0.74, 0.89]	-	
m Kurz 2010 14 0h	16	7	10	24	14.0	71.0	70.0	0.62 [0.41, 0.80]	0.77 [0.59, 0.90]		
Santalo 2013 14 0h	71	80	8	199	14.0	96.0	47.0	0.90 [0.81, 0.96]	0.71 [0.66, 0.77]	-	-
Eggers 2012 45.7 0h	65	11	63	221	45.7	77.0	86.0	0.51 [0.42, 0.60]	0.95 [0.92, 0.98]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 11: High risk 2 hours

Study	ТР	FP	FN	TN	Threshold (ng/L)	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
b Aldous 2012 14 2h	189	149	16	585	14.0	97.0	56.0	0.92 [0.88, 0.95]	0.80 [0.77, 0.83]	-	-
h Melki 2011 14 2h	114	25	0	94	14.0		82.0	1.00 [0.97, 1.00]	0.79 [0.71, 0.86]	-	
d Aldous 2012 5 2h	196	340	9	394	5.0	98.0	37.0	0.96 [0.92, 0.98]	0.54 [0.50, 0.57]	-	-
f Aldous 2012 3 2h	201	424	4	310	3.0	99.0	32.0	0.98 [0.95, 0.99]			0 0.2 0.4 0.6 0.8 1

Figure 12: High risk 3 hours

Study	TP	FP	FN	ΤN	NPV PPV	Sensitivity (95% CI)	Specificity (95% CI) Sensitivity (95% CI)	Specificity (95% CI)
n Kurz 2010 14 3h	26	7	0	23	79.0	1.00 [0.87, 1.00]		0 0.2 0.4 0.6 0.8 1

Figure 13: High risk change 0-8 hours

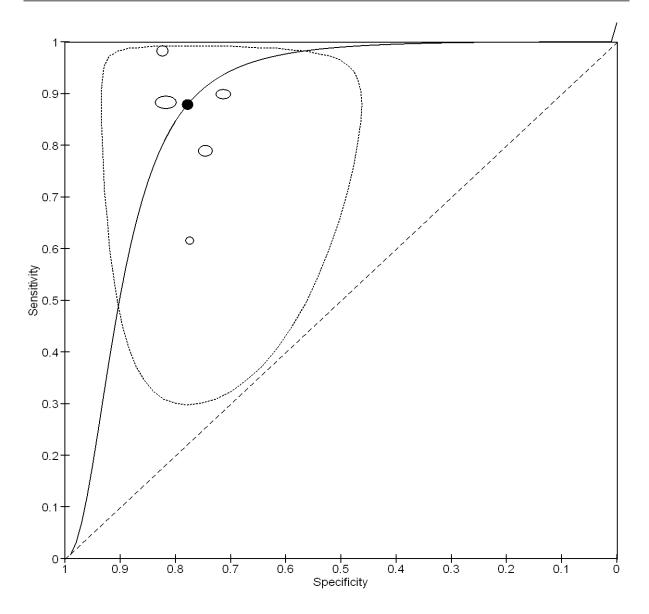

Study	TP	FP	FN	τN	Threshold (ng/L)	% change	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Aldous 2011 14 and 20% change 0-2h	99	43	101	696	14.0	20.0	87.0	70.0	0.49 [0.42, 0.57]	0.94 [0.92, 0.96]	-	•
Aldous 2011 14 or 20% change 0-2h	195	260	5	479	14.0	20.0	99.0	43.0	0.97 [0.94, 0.99]	0.65 [0.61, 0.68]		
Kurz 2010 14 20% change 0-3h	11	27	15	з	14.0	20.0	17.0	29.0	0.42 [0.23, 0.63]	0.10 [0.02, 0.27]		
Santalo 2013 20% change 0+2+4+6-8h	79	94	0	185	14.0	20.0		46.0	1.00 [0.95, 1.00]		0 0.2 0.4 0.6 0.8 1	

Figure 14: High risk – serial measurements

Study	ТР	FP	FN	TN	Threshold (ng/L)	NPV	PPV	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
a Aldous 2012 14 0h	181	134	24	600	14.0	96.0	57.0	0.88 [0.83, 0.92]	0.82 [0.79, 0.84]	-	-
b Aldous 2012 14 2h	189	149	16	585	14.0	97.0	56.0	0.92 [0.88, 0.95]	0.80 [0.77, 0.83]	•	•
c Aldous 2012 5 0h	192	305	13	429	5.0	97.0	39.0	0.94 [0.89, 0.97]	0.58 [0.55, 0.62]	-	•
d Aldous 2012 5 2h	196	340	9	394	5.0	98.0	37.0	0.96 [0.92, 0.98]	0.54 [0.50, 0.57]	-	-
e Aldous 2012 3 0h	196	383	9	351	3.0	98.0	34.0	0.96 [0.92, 0.98]	0.48 [0.44, 0.52]	-	-
f Aldous 2012 3 2h	201	424	4	310	3.0	99.0	32.0	0.98 [0.95, 0.99]	0.42 [0.39, 0.46]	•	-
g Melki 2011 14 0h	112	21	2	98	14.0	98.0	84.0	0.98 [0.94, 1.00]	0.82 [0.74, 0.89]	-	-
h Melki 2011 14 2h	114	25	0	94	14.0		82.0	1.00 [0.97, 1.00]	0.79 [0.71, 0.86]	•	
i Santalo 2013 0h	63	25	16	254	14.0	94.0	72.0	0.80 [0.69, 0.88]	0.91 [0.87, 0.94]		•
j Santalo 2013 change 20%2h	72	27	7	252		97.0	72.0	0.91 [0.83, 0.96]	0.90 [0.86, 0.94]	-	-
k Santalo 2013 change 20% 4h	78	30	1	249		100.0	72.0	0.99 [0.93, 1.00]	0.89 [0.85, 0.93]	-	-
I Santalo 2013 change 20% 6-8h	79	38	0	241			68.0	1.00 [0.95, 1.00]	0.86 [0.82, 0.90]	-	-
m Kurz 2010 14 0h	16	7	10	24	14.0	71.0	70.0	0.62 [0.41, 0.80]	0.77 [0.59, 0.90]		
n Kurz 2010 14 3h	26	7	0	23	14.0		79.0	1.00 [0.87, 1.00]	0.77 [0.58, 0.90]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

M.1.1.2 ROC curves

Figure 15: Imprecision and confidence regions – high risk threshold 14 0 hours

M.1.2 Non-invasive imaging for the identification of people with NSTEMI/unstable angina

M.1.2.1 MDCT versus standard practice at 30 days follow-up

Figure 16: MDCT versus standard practice in people with suspected NSTEMI/unstable angina: allcause mortality

	MDC	Standard	l care	Risk Ratio			Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-	H, Fixed, 95%	6 CI	
BEACON 2016 at 30-day follow-up	0	245	0	245		Not estimable					
Goldstein 2007 in-hospital follow-up	0	99	0	98		Not estimable					
ROMICAT-II 2012 28-day follow-up	0	501	0	499		Not estimable					
Total (95% CI)		845		842		Not estimable					
Total events	0		0								
Heterogeneity: Not applicable							0.01	0.1		10	100
Test for overall effect: Not applicable							0.01	Favours N	IDCT Favou	urs standard o	

Figure 17: MDCT versus standard practice in people with suspected NSTEMI/unstable angina: CV mortality

	MDC	т	Standard	care		Peto Odds Ratio		Peto Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% Cl	1	Peto,	Fixed, 95	% CI		
ACRIN-PA 2012 30-day follow-up	0	908	0	462		Not estimable		_				
CATCH 2013 at 120-day follow-up	0	285	1	391	100.0%	0.18 [0.00, 9.39]						
Total (95% CI)		1193		853	100.0%	0.18 [0.00, 9.39]						
Total events	0		1									
Heterogeneity: Not applicable Test for overall effect: Z = 0.85 (P = 0.3	39)						0.005	0.1 Favours MD	1 ICT Favo	10 purs standar	200 d care	

Figure 18: MDCT versus standard practice in people with suspected NSTEMI/unstable angina: nonfatal MI

	MDC	т	Standard care Risk Ratio						Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-	H, Fixed, 95	% CI		
ACRIN-PA 2012 30-day follow-up	10	908	5	462	47.0%	1.02 [0.35, 2.96]						
CATCH 2013 at 120-day follow-up	0	285	3	291	24.6%	0.15 [0.01, 2.81]	←	-				
ROMICAT-II 2012 28-day follow-up	1	501	4	499	28.4%	0.25 [0.03, 2.22]	-	•				
Total (95% CI)		1694		1252	100.0%	0.58 [0.25, 1.38]		•				
Total events	11		12									
Heterogeneity: Chi ² = 2.47, df = 2 (P = 0.29); l ² = 19%												
Test for overall effect: Z = 1.23 (P = 0.22)							0.01	0.1 Favours N	ו IDCT Favo	10 urs standard	100 care	

Figure 19: MDCT versus standard practice in people with suspected NSTEMI/unstable angina: PCI

	MDCT			MDCT			care		Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-H, Fi	xed, 95%	CI				
BEACON 2016 at 30-day follow-up	22	245	13	245	41.9%	1.69 [0.87, 3.28]			+					
Goldstein 2007 in-hospital follow-up	3	99	1	98	3.2%	2.97 [0.31, 28.06]					-			
ROMICAT-II 2012 28-day follow-up	27	501	17	499	54.9%	1.58 [0.87, 2.87]			+					
Total (95% CI)		845		842	100.0%	1.67 [1.08, 2.58]			•					
Total events	52		31											
Heterogeneity: Chi ² = 0.29, df = 2 (P = 0.87); l ² = 0%									+					
Test for overall effect: Z = 2.33 (P = 0.	02)						0.01	0.1 Favours MDC	1 T Favour	10 rs standard o	100 care			

Figure 20: MDCT versus standard practice in people with suspected NSTEMI/unstable angina: CABG

	MDC	т	Standard	care		Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M	H, Fixed, 95%	6 CI	
BEACON 2016 at 30-day follow-up	0	245	4	245	49.9%	0.11 [0.01, 2.05]	•				
Goldstein 2007 in-hospital follow-up	2	99	0	98	5.6%	4.95 [0.24, 101.80]		-		•	
ROMICAT-II 2012 28-day follow-up	5	501	4	499	44.5%	1.25 [0.34, 4.61]				_	
Total (95% CI)		845		842	100.0%	0.89 [0.34, 2.29]			\bullet		
Total events	7		8								
Heterogeneity: Chi ² = 3.45, df = 2 (P =	= 0.18); l² =	= 42%					—				
Test for overall effect: Z = 0.25 (P = 0	.80)						0.01	0.1 Favours I	1 MDCT Favou	10 Irs standard	100 care

Figure 21: MDCT versus standard practice in people with suspected NSTEMI/unstable angina: Readmission due to cardiac causes

	MDC	т	Standard	care		Risk Ratio			Risk Ratio	I	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-	H, Fixed, 95	% CI	
CATCH 2013 at 120-day follow-up	7	285	11	291	100.0%	0.65 [0.26, 1.65]		-			
Total (95% CI)		285		291	100.0%	0.65 [0.26, 1.65]		•			
Total events	7		11								
Heterogeneity: Not applicable							0.01	0.1	1	10	100
Test for overall effect: Z = 0.91 (P = 0.3	37)							Favours I	MDCT Favo	ours standard	care

M.1.2.2 MDCT versus SPECT at 30 days follow-up

Figure 22: MDCT versus SPECT in people with suspected NSTEMI/unstable angina: all-cause mortality

	MDC	т	SPEC	т		Risk Ratio		Ri	sk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, F	ixed, 95%	CI	
CT-STAT 2011 in-hospital follow-up	0	361	0	338		Not estimable					
Total (95% CI)		361		338		Not estimable					
Total events	0		0								
Heterogeneity: Not applicable Test for overall effect: Not applicable							0.01	0.1	1	10	100
rest for overall effect. Not applicable								Favours MDC	T Favour	s SPECT	

Figure 23: MDCT versus SPECT in people with suspected NSTEMI/unstable angina: non-fatal MI

	MDC	т	SPEC	т		Peto Odds Ratio		Peto	Odds Rat	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI		Peto, F	ixed, 95%	% CI	
CT-STAT 2011 in-hospital follow-up	1	361	5	338	100.0%	0.24 [0.05, 1.22]			+		
Total (95% CI)		361		338	100.0%	0.24 [0.05, 1.22]					
Total events	1		5								
Heterogeneity: Not applicable							0.05	0.2		5	20
Test for overall effect: $Z = 1.72$ (P = 0.09	9)						0.05	Favours MDC	T Favo	urs SPECT	20

Figure 24: MDCT versus SPECT in people with suspected NSTEMI/unstable angina: PCI

	MDC	т	SPEC	т		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fi	xed, 95%	% CI	
CT-STAT 2011 in-hospital follow-up	9	361	8	338	100.0%	1.05 [0.41, 2.70]		_			
Total (95% CI)		361		338	100.0%	1.05 [0.41, 2.70]		-	\bullet		
Total events	9		8								
Heterogeneity: Not applicable								0.1	1	10	100
Test for overall effect: Z = 0.11 (P = 0.9	1)						0.01	0.1 Favours MDC	T Favo	10 urs SPECT	100

Figure 25: MDCT versus SPECT in people with suspected NSTEMI/unstable angina: CABG

	MDC	т	SPEC	т		Peto Odds Ratio		Peto	Odds Ratio	o	
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI		Peto,	Fixed, 95%	CI	
CT-STAT 2011 in-hospital follow-up	4	361	0	338	100.0%	6.99 [0.98, 49.89]					
Total (95% CI)		361		338	100.0%	6.99 [0.98, 49.89]					
Total events	4		0								
Heterogeneity: Not applicable Test for overall effect: Z = 1.94 (P = 0.0	5)						0.01	0.1 Favours MD	1 CT Favour	10 s SPECT	100

M.1.2.3 MDCT versus exercise ECG at 30 days follow-up

Figure 26: MDCT versus exercise ECG in people with suspected NSTEMI/unstable angina: all-cause mortality

	MDC	т	Evercise	ECG	G Risk Ratio			Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		М-Н,	ixed, 95% (
CT-COMPARE 2014 30-day follow-up	0	322	0	240		Not estimable					
Total (95% CI)		322		240		Not estimable					
Total events	0		0								
Heterogeneity: Not applicable							0.01	0.1	1		100
Test for overall effect: Not applicable							0.01	Favours MD	CT Favours	exercise	

M.1.2.4 MDCT versus exercise ECG at 1 year follow-up

Figure 27: MDCT versus exercise ECG in people with suspected NSTEMI/unstable angina: all-cause mortality

-	MDC	т	Exercise	ECG		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fixed, 95% CI
CT-COMPARE 2014 1-year follow-up	2	322	1	240	100.0%	1.49 [0.14, 16.34]		
Total (95% CI)		322		240	100.0%	1.49 [0.14, 16.34]		
Total events	2		1					
Heterogeneity: Not applicable Test for overall effect: Z = 0.33 (P = 0.74)						0.01	0.1 1 10 100 Favours MDCT Favours exercise ECG

M.1.2.5 Resting SPECT versus standard practice at 30 days follow-up

Figure 28: Resting SPECT versus standard practice in people with suspected NSTEMI/unstable angina: all-cause mortality

	SPEC	т	Standard	l care		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-I	H, Fixed, 95%	6 CI	
Udelson 2002 30-day follow-up	4	1215	2	1260	100.0%	2.07 [0.38, 11.30]					
Total (95% CI)		1215		1260	100.0%	2.07 [0.38, 11.30]					
Total events	4		2								
Heterogeneity: Not applicable							0.01	0.1		10	100
Test for overall effect: Z = 0.84 (F	9 = 0.40)						0.01		PECT Favou		

Figure 29: Resting SPECT versus standard practice in people with suspected NSTEMI/unstable angina: PCI

	SPEC	т	Standard	care		Risk Ratio		R	isk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		М-Н,	Fixed, 95%	CI	
Udelson 2002 30-day follow-up	46	1215	50	1260	100.0%	0.95 [0.64, 1.41]			-		
Total (95% CI)		1215		1260	100.0%	0.95 [0.64, 1.41]			•		
Total events	46		50								
Heterogeneity: Not applicable											400
Test for overall effect: Z = 0.23 (F	P = 0.81)						0.01	0.1 Favours SPE	T CT Favou	10 rs standard c	100 are

Figure 30: Resting SPECT versus standard practice in people with suspected NSTEMI/unstable angina: CABG

	SPEC	т	Standard	l care		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H	l, Fixed, 95%	CI	
Udelson 2002 30-day follow-up	18	1215	30	1260	100.0%	0.62 [0.35, 1.11]					
Total (95% CI)		1215		1260	100.0%	0.62 [0.35, 1.11]			◆		
Total events	18		30								
Heterogeneity: Not applicable											
Test for overall effect: Z = 1.61 (F	9 = 0.11)						0.01	0.1 Favours SF	PECT Favours	10 s standard o	100 care

M.1.2.6 Stress SPECT versus standard practice at 30 days follow-up

Figure 31: Stress SPECT versus standard practice in people with suspected NSTEMI/unstable angina: cardiac mortality

	Stress S	PECT	Standard	care		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fix	ed, 95% Cl	
Lim 2013 30-day follow-up	0	1004	0	504		Not estimable				
Total (95% CI)		1004		504		Not estimable				
Total events	0		0							
Heterogeneity: Not applicabl	le									
Test for overall effect: Not ap	oplicable						0.01	0.1 Favours stress SPECT	1 10 Favours standard of	100 are

M.1.2.7 Stress SPECT versus standard practice at 1 year follow-up

Figure 32: Stress SPECT versus standard practice in people with suspected NSTEMI/unstable angina: cardiac mortality

•												
	Stress SI	PECT	Standard	l care		Risk Ratio			Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C			M-H, Fix	ed, 95% Cl		
Lim 2013 1-year follow-up	3	1004	0	504	100.0%	3.52 [0.18, 67.96]		_				
Total (95% CI)		1004		504	100.0%	3.52 [0.18, 67.96]		-				
Total events	3		Ō									
Heterogeneity: Not applicabl	le									1		
Test for overall effect: Z = 0.	.83 (P = 0.4	1)					0.01	0.1 Favours stress	SPECT	1 Favours st	10 andard car	100 e

M.1.2.8 Stress MRI versus standard practice at 30 days follow-up

Figure 33: Stress MRI versus standard practice in people with suspected NSTEMI/unstable angina: all-cause mortality

	Stress	MRI	Standard	l care		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fix	ed, 95% Cl	
Miller 2013 90-day follow-up	0	52	0	53		Not estimable				
Total (95% CI)		52		53		Not estimable				
Total events	0		0							
Heterogeneity: Not applicable Test for overall effect: Not appli	cable						0.01	0.1 Favours stress MRI	1 10 Favours standard ca	100 re

Figure 34: Stress MRI versus standard practice in people with suspected NSTEMI/unstable angina: cardiac mortality

	Stress	MRI	Standard	care		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	ed, 95% Cl	
Miller 2010 30-day follow-up	0	53	0	57		Not estimable				
Total (95% CI)		53		57		Not estimable				
Total events	0		0							
Heterogeneity: Not applicable							0.01	0.1	 1 10	100
Test for overall effect: Not appl	icable							Favours stress MRI	Favours standard	

Figure 35: Stress MRI versus standard practice in people with suspected NSTEMI/unstable angina: non-fatal MI

	Stress			Standard care		Peto Odds Ratio	Peto Oc	lds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI	Peto, Fix	ed, 95% Cl	
Miller 2010 30-day follow-up	1	53	1	57	100.0%	1.08 [0.07, 17.46]			
Total (95% CI)		53		57	100.0%	1.08 [0.07, 17.46]			
Total events	1		1						
Heterogeneity: Not applicable						H			400
Test for overall effect: Z = 0.05	(P = 0.96)				0.	.01 0.1 Favours stress MRI	1 10 Favours standard care	100 e

Figure 36: Stress MRI versus standard practice in people with suspected NSTEMI/unstable angina: PCI

	Stress	MRI	Standard	care		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fi	xed, 95% Cl		
Miller 2010 30-day follow-up	1	53	5	57	100.0%	0.22 [0.03, 1.78]					
Total (95% CI)		53		57	100.0%	0.22 [0.03, 1.78]					
Total events	1		5								
Heterogeneity: Not applicable							H		-		
Test for overall effect: Z = 1.42	(P = 0.15)					0.01	0.1 Favours stress MR	1 I Favours s	10 tandard car	100 re

Figure 37: Stress MRI versus standard practice in people with suspected NSTEMI/unstable angina: CABG

	Stress I	MRI	Standard	l care		Peto Odds Ratio			Peto Odd	ls Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI			Peto, Fixe	d, 95% CI	
Miller 2010 30-day follow-up	1	53	0	57	100.0%	7.97 [0.16, 402.62]					
Total (95% CI)		53		57	100.0%	7.97 [0.16, 402.62]					
Total events	1		0								
Heterogeneity: Not applicable Test for overall effect: Z = 1.04	(P = 0.30)					0.01	0.1 Favours	1 stress MRI	1 Favours stand	

Figure 38: Stress MRI versus standard practice in people with suspected NSTEMI/unstable angina: Stress testing adverse events

	Stress	MRI	Standard	l care		Risk Ratio			Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fixe	ed, 95% Cl		
Miller 2013 90-day follow-up	0	52	0	53		Not estimable						
Total (95% CI)		52		53		Not estimable						
Total events	0		0									
Heterogeneity: Not applicable											<u>,</u>	400
Test for overall effect: Not appli	cable						0.01	0. ⁻ Favour	s stress MRI	1 10 Favours stand		100

M.1.3 Diagnostic test accuracy of non-invasive imaging for the identification of people with NSTEMI/unstable angina

M.1.3.1 Coupled sensitivity and specificity forest plots: MDCT

Figure 39: MDCT in populations with prevalence of NSTEMI and/or UA of ≤10%

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI) S	Sensitivity (95% CI)	Specificity (95% CI)
ACRIN-PA 2012	28	9	0	640	1.00 [0.88, 1.00]	0.99 [0.97, 0.99]		•
Beigel 2009	13	13	0	302	1.00 [0.75, 1.00]	0.96 [0.93, 0.98]		-
Gallagher 2007	6	6	1	72	0.86 [0.42, 1.00]	0.92 [0.84, 0.97]	_	
Goldstein 2007	8	3	0	88	1.00 [0.63, 1.00]	0.97 [0.91, 0.99]		-
Hascoet 2012	10	19	0	94	1.00 [0.69, 1.00]	0.83 [0.75, 0.90]		
Hollander 2007	2	4	0	48	1.00 [0.16, 1.00]	0.92 [0.81, 0.98]		
Hollander 2009	7	47	0	508	1.00 [0.59, 1.00]	0.92 [0.89, 0.94]		•
ROMICAT 2009	24	44	7	293	0.77 [0.59, 0.90]	0.87 [0.83, 0.90]		-
ROMICAT-II 2012	19	1	3	297	0.86 [0.65, 0.97]	1.00 [0.98, 1.00] 0	0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 40: MDCT in populations with prevalence of NSTEMI and/or UA between >10% to 20%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI) Sensitivity (95%	CI)	Specificity (95% CI)
Chang 2008	5	0	0	48	1.00 [0.48, 1.00]	1.00 [0.93, 1.00]	-	-
Christiaens 2012	28	3	0	136	1.00 [0.88, 1.00]	0.98 [0.94, 1.00]		•
CT-COMPARE 2014	32	8	0	213	1.00 [0.89, 1.00]	0.96 [0.93, 0.98]	_	
						0 0.2 0.4 0.6 0.8	1	0 0.2 0.4 0.6 0.8 1

Figure 41: MDCT in populations with prevalence of NSTEMI and/or UA between >20% to 50%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Chang 2008	20	2	0	33	1.00 [0.83, 1.00]	0.94 [0.81, 0.99]		
Johnson 2007	16	3	1	35	0.94 [0.71, 1.00]	0.92 [0.79, 0.98]		
Rubinshtein 2007	24	3	0	35	1.00 [0.86, 1.00]	0.92 [0.79, 0.98]		
Ueno 2009	11	4	1	20	0.92 [0.62, 1.00]	0.83 [0.63, 0.95]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 42: MDCT in populations with prevalence of NSTEMI and/or UA of >50%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Chang 2008	16	4	0	8	1.00 [0.79, 1.00]	0.67 [0.35, 0.90]		· · · · · · · · · · · · · · · · · · ·
Meijboom 2008	99	10	1	17	0.99 [0.95, 1.00]	0.63 [0.42, 0.81]	-	
van Velzen 2012	55	4	0	26	1.00 [0.94, 1.00]	0.87 [0.69, 0.96]	-	·
von Ziegler 2014	81	3	5	45	0.94 [0.87, 0.98]	0.94 [0.83, 0.99] (0 0.2 0.4 0.6 0.8 1

M.1.3.2 Coupled sensitivity and specificity forest plots: DSCT

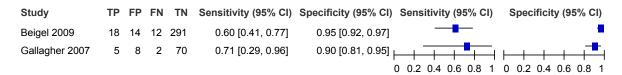
Figure 43: DSCT in populations with prevalence of NSTEMI and/or UA of ≤10%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sens	sitivit	y (95%	% C	I)	Spe	cifici	ity (9	5% C	:I)
Johnson 2008	15	4	0	90	1.00 [0.78, 1.00]	0.96 [0.89, 0.99]				-	-					
						(0 0.2	0.4	0.6 0). 8	1	0 0.	2 0.4	0.6	0.8	1

Figure 44: DSCT in populations with prevalence of NSTEMI and/or UA of between >10% and 20%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Se	nsitivi	ty (9	5% C	:I)	S	pec	ificit	y (9	5% C	;1)
Hansen 2010	3	1	0	86	1.00 [0.29, 1.00]	0.99 [0.94, 1.00]		•	•							•	
						(0 (.2 0.4	0.6	0.8	1	0	0.2	0.4	0.6	0.8	1

M.1.3.3 Coupled sensitivity and specificity forest plots: resting and stress SPECT


Figure 45: Resting SPECT in populations with prevalence of NSTEMI and/or UA of ≤10%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sens	sitivity	95% C	CI)	Spec	ificit	y (95	5% C	I)
Forberg 2009	2	11	0	27	1.00 [0.16, 1.00]	0.71 [0.54, 0.85]				_	\vdash			+	-
						(0.2	0.4 0.	6 0.8	1	0 0.2	0.4	0.6	0.8	1

Figure 46: Resting SPECT in populations with prevalence of NSTEMI and/or UA between >20% to 50%

Study	TP	FP	FN [·]	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Conti 2001	16	16	1	47	0.94 [0.71, 1.00]	0.75 [0.62, 0.85]		
						(0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 47: Stress SPECT in populations with prevalence of NSTEMI and/or UA of ≤10%

Figure 48: Stress SPECT in in populations with prevalence of NSTEMI and/or UA of >10% to 20%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Conti 2001	18	22	1	110	0.95 [0.74, 1.00]	0.83 [0.76, 0.89]		-
Conti 2005	81	70	13	339	0.86 [0.78, 0.92]	0.83 [0.79, 0.86]	-	•
Conti 2011	155	121	23	790	0.87 [0.81, 0.92]	0.87 [0.84, 0.89]	-	•
Vogel-Claussen 2009	2	2	2	23	0.50 [0.07, 0.93]	0.92 [0.74, 0.99]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

M.1.3.4 Coupled sensitivity and specificity forest plots: stress echocardiography

Figure 49: Stress echocardiography in populations with prevalence of NSTEMI and/or UA of ≤10%

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bedetti 2005	44	6	2	494	0.96 [0.85, 0.99]	0.99 [0.97, 1.00]		•
Bholasingh 2003	11	14	15	337	0.42 [0.23, 0.63]	0.96 [0.93, 0.98]		
Buchsbaum 2001	3	4	1	137	0.75 [0.19, 0.99]	0.97 [0.93, 0.99]		<u> </u>
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 50: Stress echocardiography in populations with prevalence of NSTEMI and/or UA between >10% to 20%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Conti 2005	80	19	14	390	0.85 [0.76, 0.92]	0.95 [0.93, 0.97]		•
Conti 2015	12	6	8	162	0.60 [0.36, 0.81]	0.96 [0.92, 0.99]		
						(0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 51: Stress echocardiography in in populations with prevalence of NSTEMI and/or UA between >20% to 50%

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Innocenti 2013	80	26	9	319	0.90 [0.82, 0.95]	0.92 [0.89, 0.95]	-	
Tsutsui 2005	30	20	18	90	0.63 [0.47, 0.76]	0.82 [0.73, 0.89]		
						(0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 52: Stress echocardiography in in populations with prevalence of NSTEMI and/or UA of >50%

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Atar 2000	36	2	2	13	0.95 [0.82, 0.99]	0.87 [0.60, 0.98]		
Gaibazzi 2009	15	6	18	8	0.45 [0.28, 0.64]	0.57 [0.29, 0.82]		
Iglesias-Garriz 2005	44	7	15	13	0.75 [0.62, 0.85]	0.65 [0.41, 0.85]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

M.1.3.5 Coupled sensitivity and specificity forest plots: rest and stress MRI

Figure 53: Rest MRI in populations with prevalence of NSTEMI and/or UA between >10% to 20%

Figure 54: Stress MRI in populations with prevalence of NSTEMI and/or UA of ≤10%

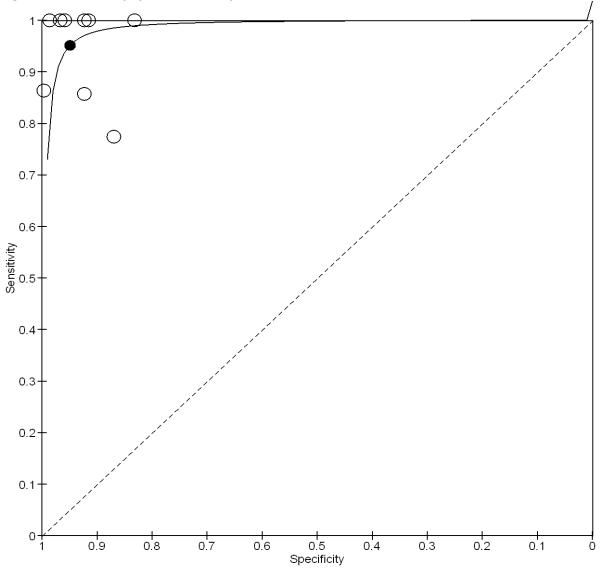
Figure 55: Stress MRI in populations with prevalence of NSTEMI and/or UA between >10% to 20%

Vogel-Claussen 2009 5 1 0 25 1.00 [0.48, 1.00] 0.96 [0.80, 1	 	0.4 0.6		 	

M.1.3.6 Coupled sensitivity and specificity forest plots: Exercise ECG

Figure 56: Exercise ECG in populations with prevalence of NSTEMI and/or UA of ≤10%

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI) Ser	nsitivity (95% CI)	Specificity (95% CI)
Amsterdam 2002	33	92	2	638	0.94 [0.81, 0.99]	0.87 [0.85, 0.90]	-	
CT-COMPARE 2014	4	22	1	213	0.80 [0.28, 0.99]	0.91 [0.86, 0.94]		<u> </u>
						0 0.	2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1


Figure 57: Exercise ECG in populations with prevalence of NSTEMI and/or UA between >10% to 20%

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bennett 2013	16	18	7	168	0.70 [0.47, 0.87]	0.90 [0.85, 0.94]		-
Conti 2001	5	7	13	126	0.28 [0.10, 0.53]	0.95 [0.89, 0.98]	8	
						(0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 58: Exercise ECG in populations with prevalence of NSTEMI and/or UA of >50%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gaibazzi 2011	15	6	8	18	0.65 [0.43, 0.84]			0 0.2 0.4 0.6 0.8 1

M.1.3.7 ROC curves: MDCT

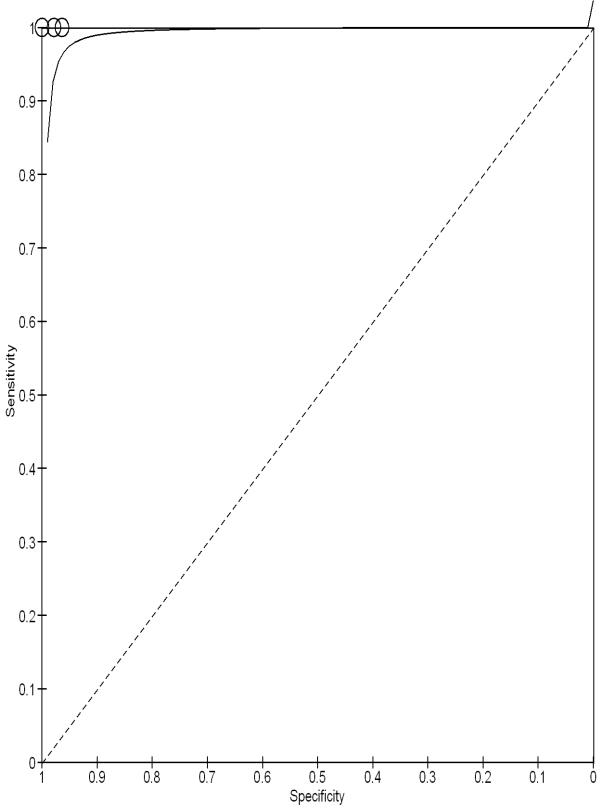


Figure 60: MDCT in populations with prevalence of NSTEMI or UA of >10% to 20%

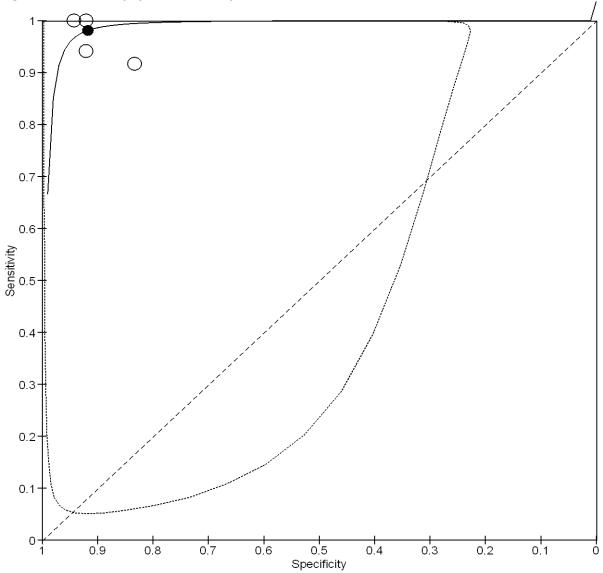


Figure 61: MDCT in populations with prevalence of NSTEMI or UA of between > 20% to 50%

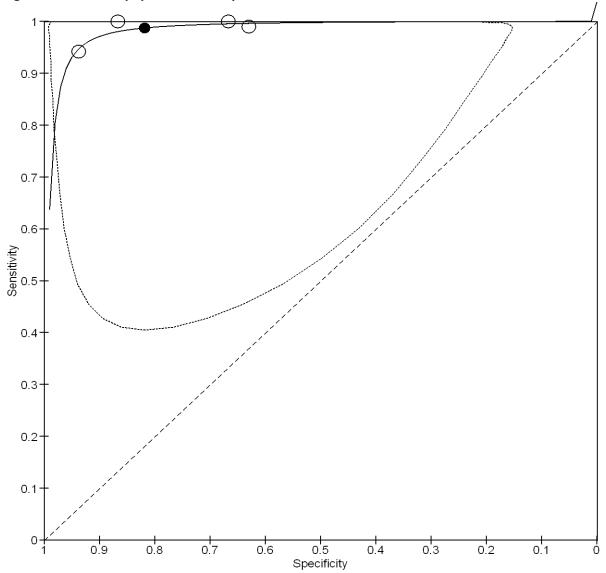
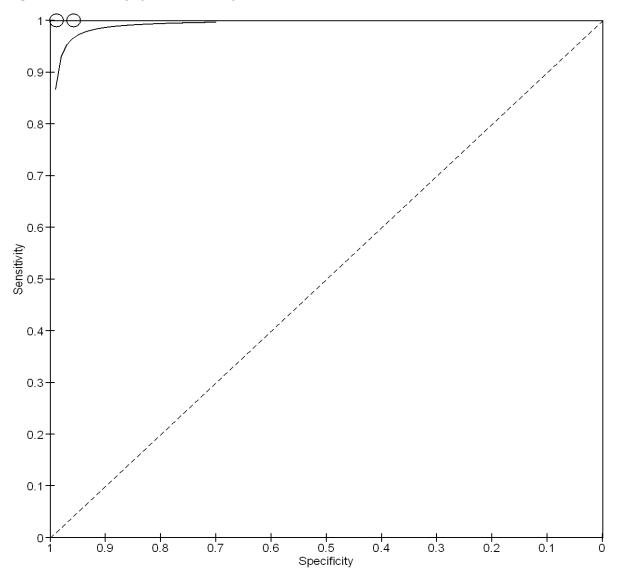
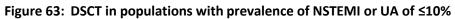




Figure 62: MDCT in populations with prevalence of NSTEMI or UA of>50%

M.1.3.8 ROC curves: DSCT

M.1.3.9 ROC curves: Resting and stress SPECT

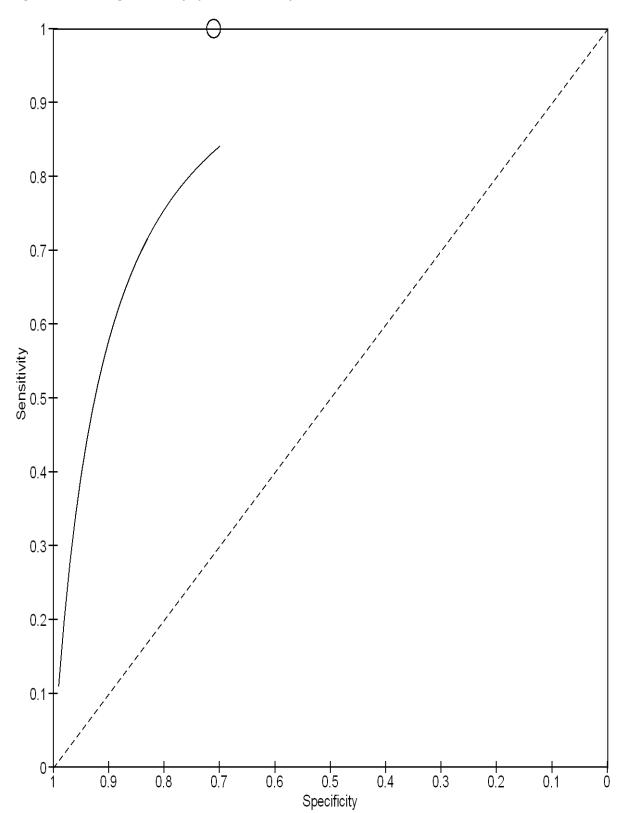
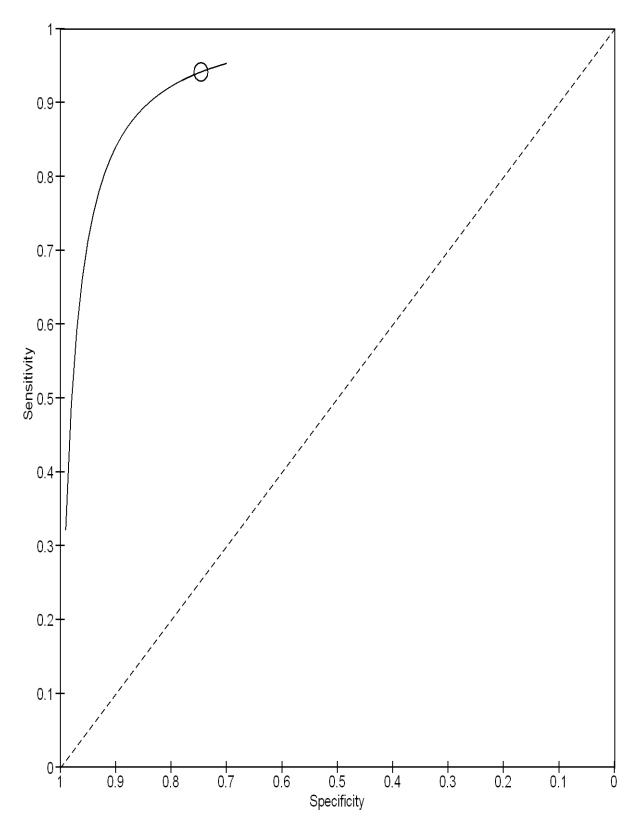



Figure 64: Resting SPECT in populations with prevalence of NSTEMI or UA of ≤10%

Figure 65: Resting SPECT in populations with prevalence of NSTEMI or UA between >20% and 50%

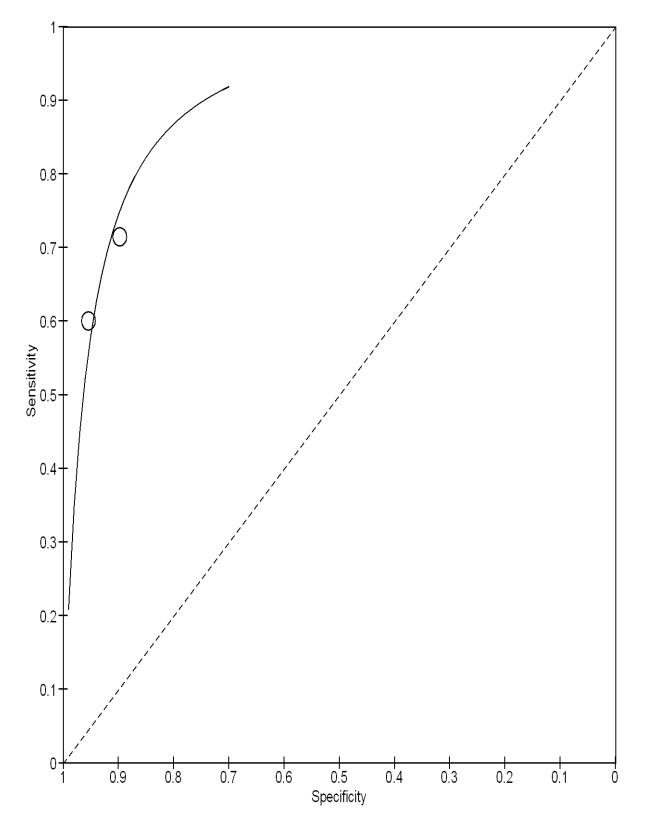
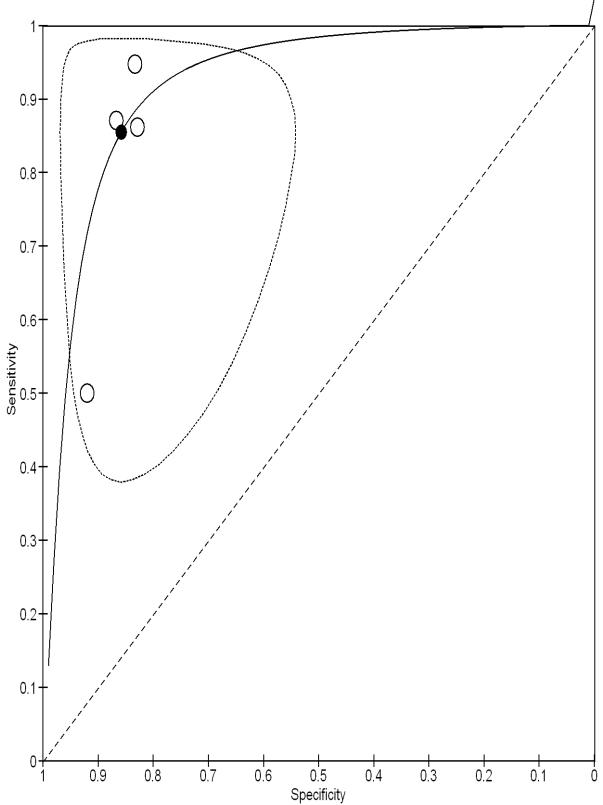
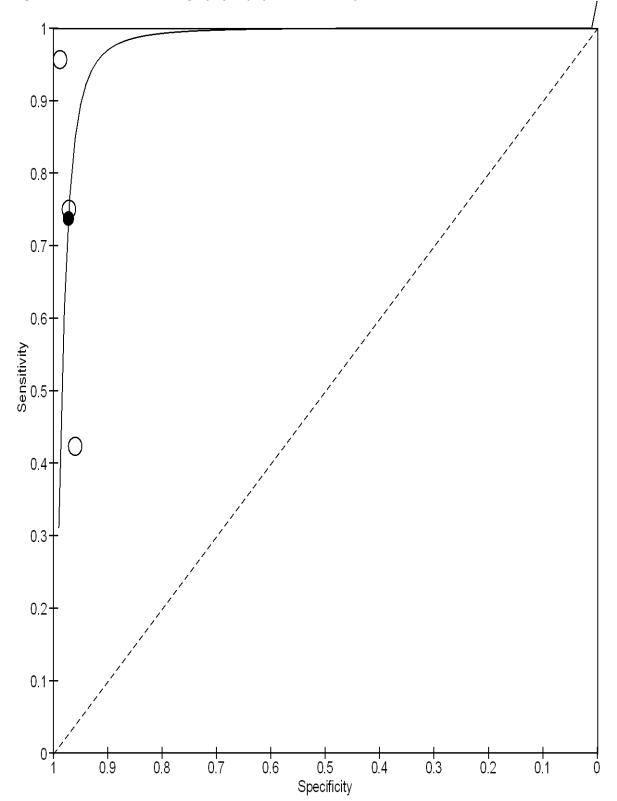
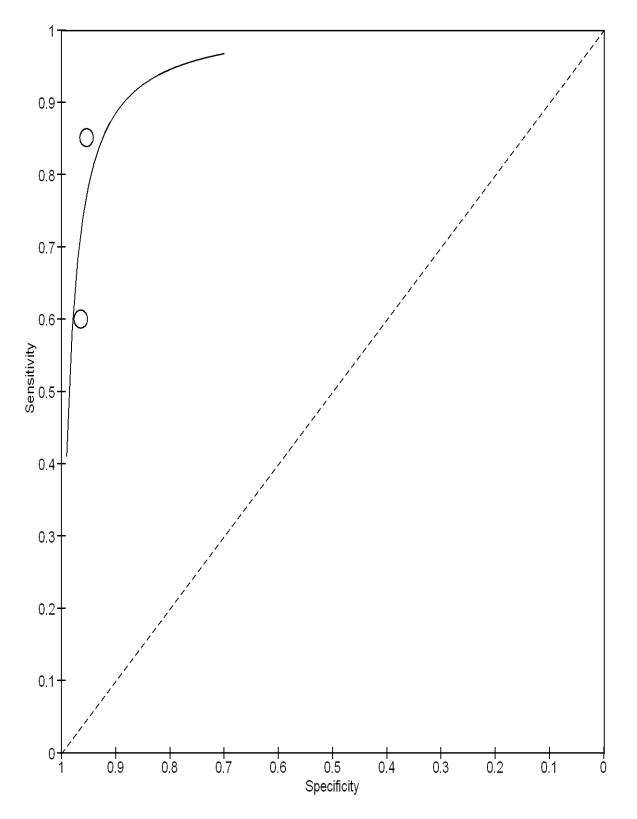
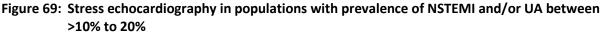
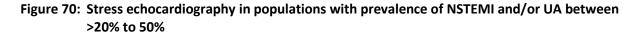


Figure 66: Stress SPECT in populations with prevalence of NSTEMI or UA


Figure 67: Stress SPECT in populations with prevalence of NSTEMI or UA


M.1.3.10 ROC curves: Stress echocardiography

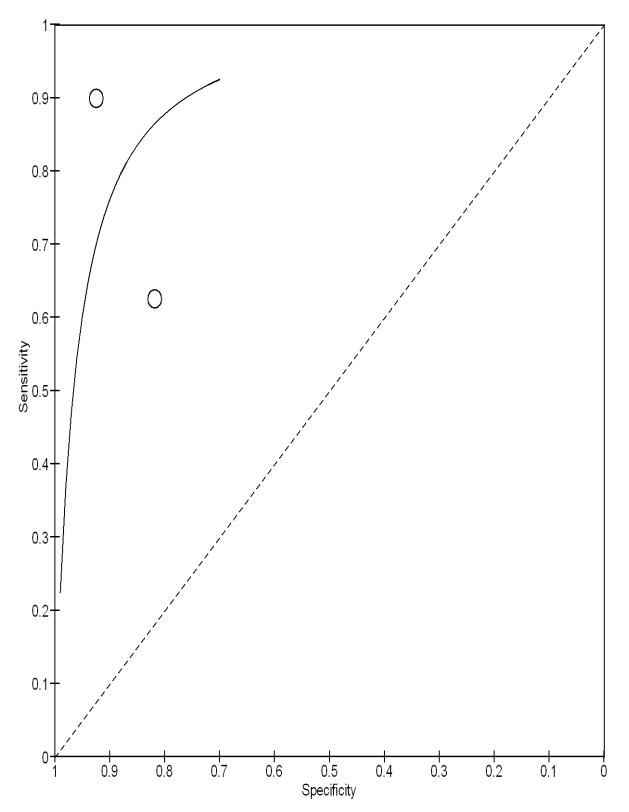


Figure 68: Stress echocardiography in populations with prevalence of NSTEMI and/or UA ≤10%

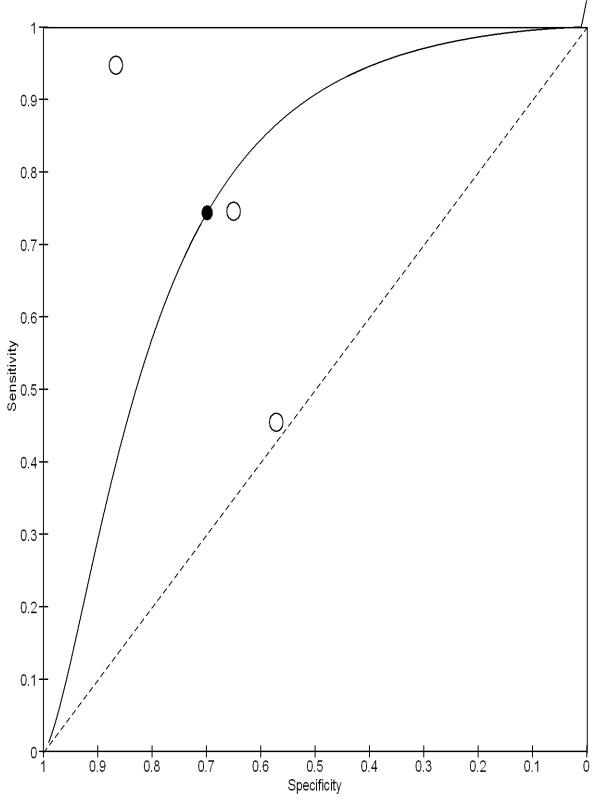


Figure 71: Stress echocardiography in populations with prevalence of NSTEMI and/or UA of >50%

M.1.3.11 ROC curves: Resting and stress MRI

Figure 72: Rest MRI in populations with prevalence of NSTEMI and/or UA between >10% to 20%

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Kwong 2003	25	19	3	114	0.89 [0.72, 0.98]			
						(0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

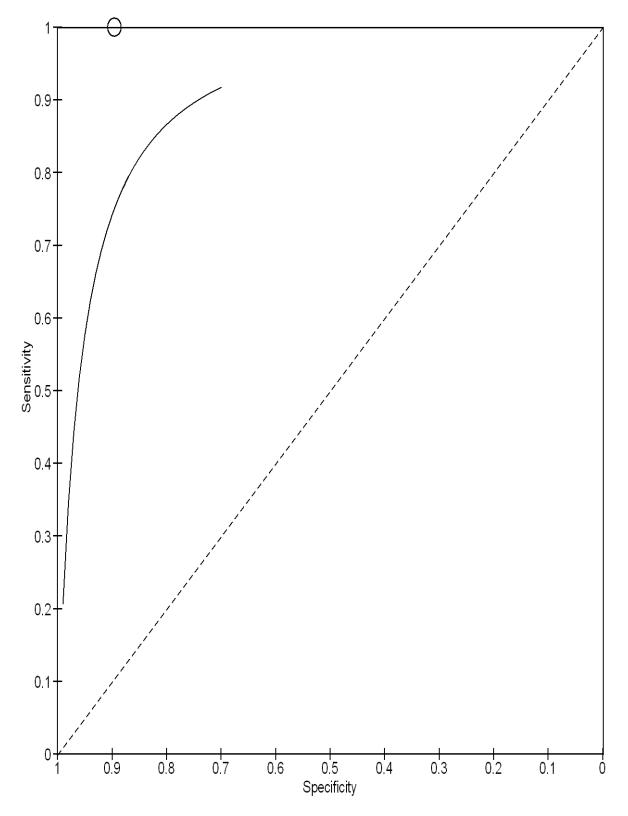
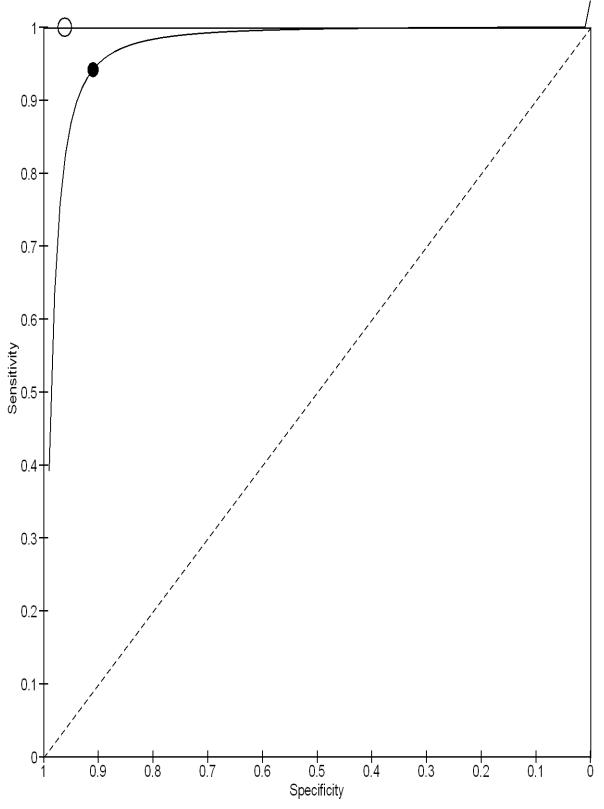
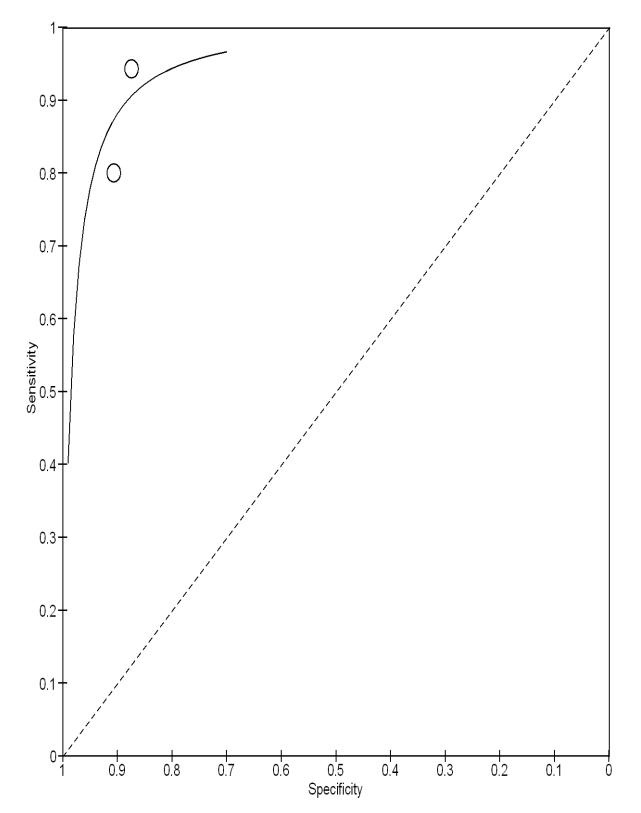
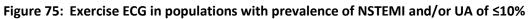
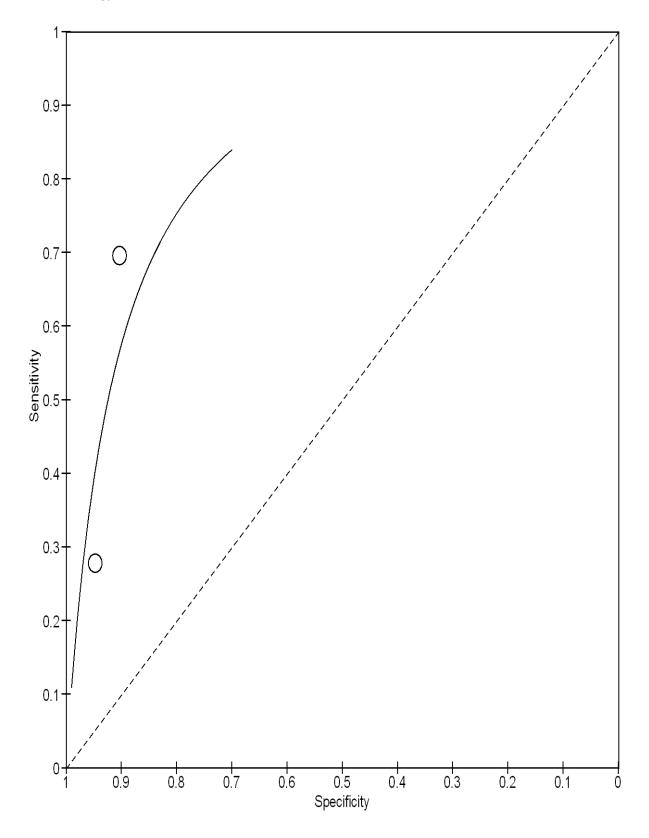
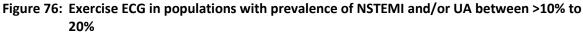


Figure 73: Stress MRI in populations with prevalence of NSTEMI and/or UA of ≤10%


Figure 74: Stress MRI in populations with prevalence of NSTEMI and/or UA between >10% to 20%

M.1.3.12 ROC curves: Exercise ECG

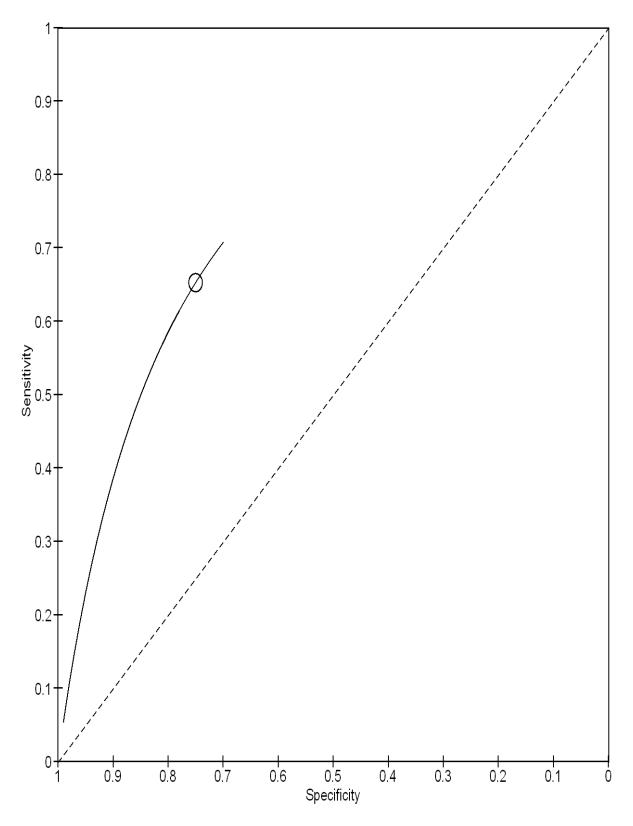


Figure 77: Exercise ECG in populations with prevalence of NSTEMI and/or UA >50%

National Guideline Centre. 2016 Stable chest pain Mational Guideline Centre. 2016 Table 27: Summary of example.

2.1 Prediction models/tools for people with stable chest pain of suspected cardiac origin

Table 27:	Summary of evidence	for the five most commonly	y evaluated probability models
-----------	---------------------	----------------------------	--------------------------------

	≥5	0% stenosis on	CA		≥50	≥50% stenosis on CTCA			
Model									
	Lowest AUC	Median AUC	Highest AUC	GRADE	Lowest AUC	Median AUC	Highest AUC	GRADE	
				(n studies, N patients)				(n studies, N patients)	
Diamond-Forrester (original)	0.64	0.73	0.81	VERY LOW	0.56	0.61	0.72	MOD	
				(5 <i>,</i> N=3473)				(5 <i>,</i> N=2800)	
Framingham Risk Score	0.67	0.74	0.76	LOW	0.68	0.69	0.71	MOD	
				(3, N=1334)				(2, N=1548)	
Duke Clinical Score	0.59	0.75	0.84	VERY LOW	0.59	0.65	0.71	LOW	
				(4 <i>,</i> N=6242)				(2, N=1385)	
Updated Diamond-Forrester (Genders)	0.71	0.77	0.79	MOD	0.61	0.69	0.76	LOW	
				(3 <i>,</i> N=5287)				(2, N=632)	
Morise 1997	0.68	0.76	0.84	VERY LOW	0.67	0.68	0.77	LOW	
				(2, N=887)				(3, N=1345)	

M.2.2 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

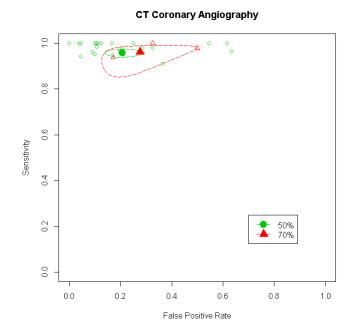
Forest plots:

Stenosis level: Indicates the stenosis level (50% or 70%) used to diagnose coronary artery disease using invasive coronary angiography (the reference standard).

Population Categories: A=Suspected CAD with no breakdown of numbers with chest pain, B=Suspected CAD with breakdown of numbers with chest pain, C=Chest pain (combination of types), D=Typical chest pain of suspected cardiac origin.

Meta-analysis plots:

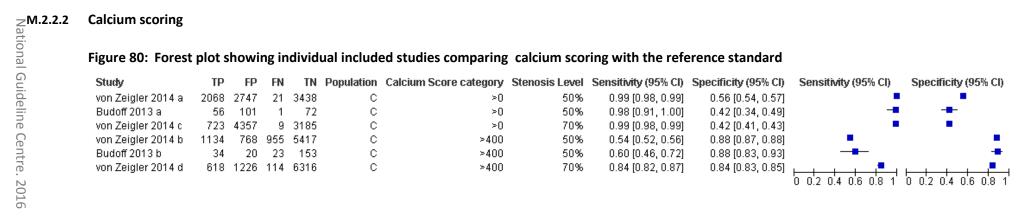
Sensitivity and false positive rate (1-specificity) are plotted on the x and y axes, respectively.


Filled symbols indicate the overall summary estimate from either a meta-analysis, or single study. Open symbols indicate individual studies contributing to a meta-analysis.

Dashed lines indicate the 95% confidence region for sensitivity and specificity when meta-analysis was conducted (note that in cases where summary estimates correspond to a single study, this region is omitted).

M.2.2.1 National Guideline Centre, 2016 Computer tomography cardiac angiography (CTCA)

Figure 78: Forest plot showing individual included studies comparing CTCA with the reference standard


Study	TP	FP	FN	TN	Stenosis level	Population	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% CI)
Herzog 2007	16	3	0	21	50%	A	1.00 [0.79, 1.00]	0.88 [0.68, 0.97]		
Meng 2009	83	5	2	19	50%	A	0.98 [0.92, 1.00]	0.79 [0.58, 0.93]	-	
Nazeri 2009	120	5	2	41	50%	A	0.98 [0.94, 1.00]	0.89 [0.76, 0.96]		
Piers 2008	38	12	0	10	50%	A	1.00 [0.91, 1.00]	0.45 [0.24, 0.68]		
Pontone 2014	78	8	0	5	50%	A	1.00 [0.95, 1.00]	0.38 [0.14, 0.68]	-	
Pugliese 2008	38	0	0	13	50%	A	1.00 [0.91, 1.00]	1.00 [0.75, 1.00]		
Raff 2005	38	3	2	27	50%	A	0.95 [0.83, 0.99]	0.90 [0.73, 0.98]		
Rixe 2009	40	6	0	30	50%	A	1.00 [0.91, 1.00]	0.83 [0.67, 0.94]		
Ropers 2006	25	- 5	1	50	50%	A	0.96 [0.80, 1.00]	0.91 [0.80, 0.97]		-
Swailam 2010	3	1	0	26	50%	A	1.00 [0.29, 1.00]	0.96 [0.81, 1.00]		
Cademartiri 2008	82	21	2	29	50%	В	0.98 [0.92, 1.00]	0.58 [0.43, 0.72]	-	
Carrascosa 2010	26	6	0	18	50%	В	1.00 [0.87, 1.00]	0.75 [0.53, 0.90]		
Herzog 2008	18	2	0	10	50%	В	1.00 [0.81, 1.00]	0.83 [0.52, 0.98]		
Herzog 2009	23	2	0	17	50%	В	1.00 [0.85, 1.00]	0.89 [0.67, 0.99]		
Overhus 2010	28	14	1	57	50%	В	0.97 [0.82, 1.00]	0.80 [0.69, 0.89]		
Bettencourt 2011a	47	12	1	30	50%	С	0.98 [0.89, 1.00]	0.71 [0.55, 0.84]		
Budoff 2008 a	54	29	3	144	50%	С	0.95 [0.85, 0.99]	0.83 [0.77, 0.88]	-+	+
Cademartiri 2007	20	1	0	21	50%	С	1.00 [0.83, 1.00]	0.95 [0.77, 1.00]		
Chen et al 2011	76	- 7	- 4	26	50%	С	0.95 [0.88, 0.99]	0.79 [0.61, 0.91]		
Donati 2007	32	2	0	18	50%	С	1.00 [0.89, 1.00]	0.90 [0.68, 0.99]		
Fujitaka 2009	50	24	1	50	50%	С	0.98 [0.90, 1.00]	0.68 [0.56, 0.78]		
Nieman 2009	53	26	2	15	50%	С	0.96 [0.87, 1.00]	0.37 [0.22, 0.53]		
Sheikh 2009	48	1	3	21	50%	С	0.94 [0.84, 0.99]	0.95 [0.77, 1.00]		
Thomassen 2013	20	8	2	14	50%	С	0.91 [0.71, 0.99]	0.64 [0.41, 0.83]		
van Werkhoven 2010	16	- 5	0	40	50%	С	1.00 [0.79, 1.00]	0.89 [0.76, 0.96]		
Muhlenbruch 2007	44	3	1	3	70%	A	0.98 [0.88, 1.00]	0.50 [0.12, 0.88]		
Bettencourt 2011b	38	17	0	35	70%	С	1.00 [0.91, 1.00]	0.67 [0.53, 0.80]		
Budoff 2008 b	30	34	2	164	70%	С	0.94 [0.79, 0.99]	0.83 [0.77, 0.88]		

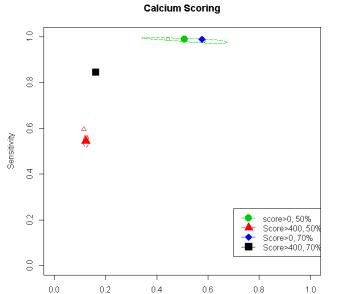


Figure 79: Meta-analysis results for computer tomography cardiac angiography (CTCA)

Calcium scoring

Figure 80: Forest plot showing individual included studies comparing calcium scoring with the reference standard

False Positive Rate

Figure 81: Meta-analysis results for calcium scoring

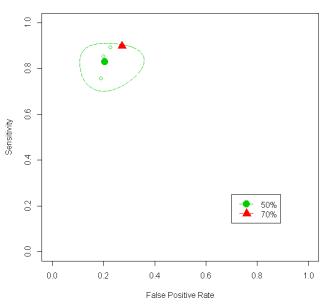
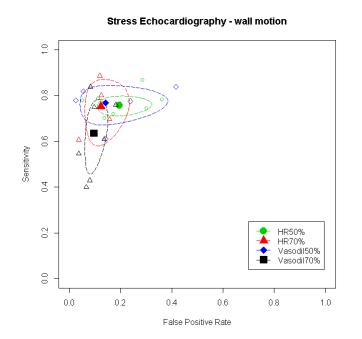


Figure 82: Forest plot showing individual included studies comparing stress echocardiography (perfusion) with the reference standard

Study	TP	FP	FN	TN	Method of stress	Population	Stenosis level	Sensitivity (95% Cl)	Specificity (95% Cl)	Sensitivity (95% CI)	Specificity (95% Cl)
Arnold 2010 a	31	4	10	17	Adenosine	А	50%	0.76 [0.60, 0.88]	0.81 [0.58, 0.95]		
Onishi 2010	33	5	- 4	17	Dobutamine	А	50%	0.89 [0.75, 0.97]	0.77 [0.55, 0.92]		
Miszalski-Jamka 2012	35	4	6	16	Exercise	В	50%	0.85 [0.71, 0.94]	0.80 [0.56, 0.94]		
Arnold 2010 b	26	9	3	24	Adenosine	A	70%	0.90 [0.73, 0.98]	0.73 [0.54, 0.87]		

Figure 83: Meta-analysis results for stress echocardiography (perfusion)


Stress Echocardiography - Perfusion

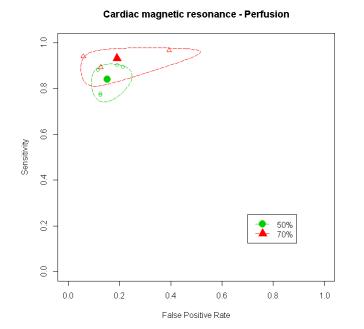
National Guideline Centre. 2016

Figure 84: Forest plot showing individual included studies comparing stress echocardiography (wall motion) with the reference standard

Study	TP	FP	FN	TN	Population	Stenosis level	Stress method	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% CI)
Arnold 2010 a	25	3	16	18	A	50%	Adenosine	0.61 [0.45, 0.76]	0.86 [0.64, 0.97]		
Arnold 2010 b	22	6	- 7	27	A	70%	Adenosine	0.76 [0.56, 0.90]	0.82 [0.65, 0.93]		
Senior 2004 a	36	5	- 7	7	С	50%	Dipyridamole	0.84 [0.69, 0.93]	0.58 [0.28, 0.85]		
San Roman 1998 a	54	2	12	34	D	50%	Dipyridamole	0.82 [0.70, 0.90]	0.94 [0.81, 0.99]		
San Roman 1996 a	49	1	14	38	D	50%	Dipyridamole	0.78 [0.66, 0.87]	0.97 [0.87, 1.00]		
Parodi 1999	62	5	18	16	D	50%	Dipyridamole	0.78 [0.67, 0.86]	0.76 [0.53, 0.92]		
Mazeika 1991	16	1	24	14	A	70%	Dipyridamole	0.40 [0.25, 0.57]	0.93 [0.68, 1.00]		
Severi 1993	185	18	62	165	С	70%	Dipyridamole	0.75 [0.69, 0.80]	0.90 [0.85, 0.94]	-	-
Senior 2004 b	36	1	- 7	11	С	70%	Dipyridamole	0.84 [0.69, 0.93]	0.92 [0.62, 1.00]		
Santoro 1998 a	18	1	15	26	С	70%	Dipyridamole	0.55 [0.36, 0.72]	0.96 [0.81, 1.00]		
Marangelli 1994 a	15	2	20	23	С	70%	Dipyridamole	0.43 [0.26, 0.61]	0.92 [0.74, 0.99]		
Onishi 2010	26	3	11	19	A	50%	Dobutamine	0.70 [0.53, 0.84]	0.86 [0.65, 0.97]		
Nagel 1999	81	19	28	44	A	50%	Dobutamine	0.74 [0.65, 0.82]	0.70 [0.57, 0.81]		
Marwick 1993	102	13	40	62	В	50%	Dobutamine	0.72 [0.64, 0.79]	0.83 [0.72, 0.90]	-	
Di Bello 1996(i)	33	2	5	5	С	50%	Dobutamine	0.87 [0.72, 0.96]	0.71 [0.29, 0.96]		
Di Bello 1996(ii)	29	1	9	6	С	50%	Dobutamine	0.76 [0.60, 0.89]	0.86 [0.42, 1.00]		_
Hennessy 1998	86	17	24	30	С	50%	Dobutamine	0.78 [0.69, 0.85]	0.64 [0.49, 0.77]	-	
San Roman 1998 b	52	4	14	32	D	50%	Dobutamine	0.79 [0.67, 0.88]	0.89 [0.74, 0.97]		
Nixdorff 2007	23	6	10	32	A	70%	Dobutamine	0.70 [0.51, 0.84]	0.84 [0.69, 0.94]		
Santoro 1998 b	20	1	13	26	С	70%	Dobutamine	0.61 [0.42, 0.77]	0.96 [0.81, 1.00]		
San Roman 1996 b	49	2	14	37	D	50%	Dobutmine-Adenosine	0.78 [0.66, 0.87]	0.95 [0.83, 0.99]		
Hoffman 1993	40	2	10	14	A	70%	Exercise	0.80 [0.66, 0.90]	0.88 [0.62, 0.98]		
Marangelli 1994 b	31	3	4	22	С	70%	Exercise	0.89 [0.73, 0.97]	0.88 [0.69, 0.97]		
Shaikh 2013	14	3	9	19	А	70%	Regardenoson/atropine	0.61 [0.39, 0.80]	0.86 [0.65, 0.97]	0 0.2 0.4 0.6 0.8 1	

Figure 85: Meta-analysis results for stress echocardiography (wall motion)

M.2.2.5 Cardiac magnetic resonance (CMR) (wall motion)


Figure 86: Forest plot showing individual included studies comparing cardiac magnetic resonance (wall motion) with the reference standard

Study	TP	FP	FN	TN	Population	Stenosis level	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% Cl)	Specificity (95% CI)
Nagel 1999	94	9	15	54	А	50%	0.86 [0.78, 0.92]	0.86 [0.75, 0.93]		

6 Cardiac magnetic resonance (CMR) (perfusion)

Figure 87: Forest plot showing individual included studies comparing cardiac magnetic resonance (perfusion) with the reference standard

Study	ΤР	FP	FN	TN	Stenosis level	Population	Specific test	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% Cl)	Specificity (95% Cl)
Klem 2006 e	36	18	8	30	50%	А	Perfusion	0.82 [0.67, 0.92]	0.63 [0.47, 0.76]		
Arnold 2010 c	39	8	2	13	50%	A	Perfusion	0.95 [0.83, 0.99]	0.62 [0.38, 0.82]		
Klein 2008 a	20	3	3	23	50%	В	Perfusion	0.87 [0.66, 0.97]	0.88 [0.70, 0.98]		
Stolzmann 2011	28	3	8	21	50%	В	Perfusion	0.78 [0.61, 0.90]	0.88 [0.68, 0.97]		
Krittayaphong 2009	34	6	4	22	50%	В	Perfusion	0.89 [0.75, 0.97]	0.79 [0.59, 0.92]		
Kawase 2004	31	1	2	16	70%	A	Perfusion	0.94 [0.80, 0.99]	0.94 [0.71, 1.00]		
Klem 2006 b	31	23	6	32	70%	A	Perfusion	0.84 [0.68, 0.94]	0.58 [0.44, 0.71]		
Arnold 2010 d	29	18	0	15	70%	A	Perfusion	1.00 [0.88, 1.00]	0.45 [0.28, 0.64]		
Klem 2006 d	34	6	10	42	50%	A	Perf+ DE	0.77 [0.62, 0.89]	0.88 [0.75, 0.95]		
Arnold 2010 a	37	4	4	17	50%	А	Perf+ DE	0.90 [0.77, 0.97]	0.81 [0.58, 0.95]		
Klein 2008 c	22	3	3	23	50%	В	Perf+ DE	0.88 [0.69, 0.97]	0.88 [0.70, 0.98]		
Klem 2006 a	33	7	4	48	70%	A	Perf+ DE	0.89 [0.75, 0.97]	0.87 [0.76, 0.95]		
Arnold 2010 b	28	13	1	20	70%	А	Perf+ DE	0.97 [0.82, 1.00]	0.61 [0.42, 0.77]		
Klem 2006 f	18	1	26	47	50%	А	Delayed enhancement (DE)	0.41 [0.26, 0.57]	0.98 [0.89, 1.00]		
Arnold 2010 e	18	1	23	20	50%	А	Delayed enhancement (DE)	0.44 [0.28, 0.60]	0.95 [0.76, 1.00]		
Klein 2008 b	13	1	13	27	50%	В	Delayed enhancement (DE)	0.50 [0.30, 0.70]	0.96 [0.82, 1.00]		
Klem 2006 c	18	1	19	54	70%	А	Delayed enhancement (DE)	0.49 [0.32, 0.66]	0.98 [0.90, 1.00]		
Arnold 2010 f	14	5	15	28	70%	А	Delayed enhancement (DE)	0.48 [0.29, 0.67]	0.85 [0.68, 0.95]		

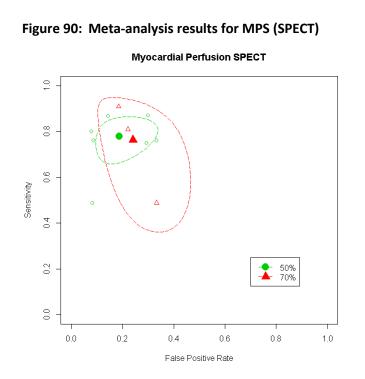


Figure 88: Meta-analysis results for cardiac magnetic resonance (perfusion)

Figure 89: Forest plot showing individual included studies comparing MPS (SPECT) with the reference standard

Study	TP	FP	FN	TN	Stenosis level	Population	Stress method	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% CI)	Specificity (95% Cl)
Schepis 2007	32	3	10	32	50%	В	Adenosine	0.76 [0.61, 0.88]	0.91 [0.77, 0.98]		
Kaminek 2015	98	14	13	39	50%	А	DipryidORExercise	0.88 [0.81, 0.94]	0.74 [0.60, 0.85]	-	
Cramer 1997	55	2	12	9	50%	D	Dipyrid+Exercise	0.82 [0.71, 0.90]	0.82 [0.48, 0.98]		
Fleming 1992	29	4	3	8	50%	А	Dipyridamole	0.91 [0.75, 0.98]	0.67 [0.35, 0.90]		
Senior 2004 a	21	1	22	11	50%	С	Dipyridamole	0.49 [0.33, 0.65]	0.92 [0.62, 1.00]		
Santoro 1998 a	32	3	1	24	70%	С	Dipyridamole	0.97 [0.84, 1.00]	0.89 [0.71, 0.98]		
Senior 2004 b	21	- 4	22	8	70%	С	Dipyridamole	0.49 [0.33, 0.65]	0.67 [0.35, 0.90]		
Di Bello 1996i	33	1	5	6	50%	С	Dobutamine	0.87 [0.72, 0.96]	0.86 [0.42, 1.00]		
Di Bello 1996ii	33	1	5	6	50%	С	Dobutamine	0.87 [0.72, 0.96]	0.86 [0.42, 1.00]		
Marwick 1993	108	25	34	50	50%	В	Dobutamine	0.76 [0.68, 0.83]	0.67 [0.55, 0.77]		
Santoro 1998 b	30	5	3	22	70%	С	Dobutamine	0.91 [0.76, 0.98]	0.81 [0.62, 0.94]		
Budoff 1998	12	5	4	12	50%	С	Exercise (bicycle)	0.75 [0.48, 0.93]	0.71 [0.44, 0.90]		
San Roman 1998	54	9	8	21	50%	D	Exercise (treadmill)	0.87 [0.76, 0.94]	0.70 [0.51, 0.85]		
Yao 2004	28	3	- 7	35	50%	А	Exercise (treadmill)	0.80 [0.63, 0.92]	0.92 [0.79, 0.98]		
Budoff 2007	17	2	4	7	70%	А	Exercise (treadmill)	0.81 [0.58, 0.95]	0.78 [0.40, 0.97]		

Chest pain of recent onset

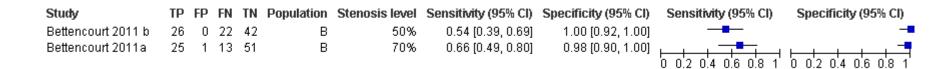

M.2.2.8 Myocardial perfusion scintigraphy (MPS) (PET)

Figure 91: Forest plot showing individual included studies comparing MPS (PET) with the reference standard

Study	TP	FP	FN	TN	Stenosis level	Population	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% Cl)	Specificity (95% CI)
Thomassen 2013	20	3	2	19	70%	С	0.91 [0.71, 0.99]	0.86 [0.65, 0.97]		

2.9 Computer tomography (CT) perfusion

Figure 92: Forest plot showing individual included studies comparing CT perfusion with the reference standard

$\stackrel{\circ}{\underset{\sim}{\boxtimes}}$ M.2.2.10 Combined analyses (CTCA and MPS SPECT)

Figure 93: Forest plot showing individual included studies comparing a combined analysis of CTCA and MPS (SPECT) with the reference standard

Study	TP	FP	FN	TN	Population	Stenosis Level	MPS type	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% CI)
Fujitaka 2009	48	4	3	70	С	50%	SPECT	0.94 [0.84, 0.99]	0.95 [0.87, 0.99]		-
Thomassen 2013	20	0	2	22	С	50%	PET	0.91 [0.71, 0.99]	1.00 [0.85, 1.00]		

M.2.2.11 Combined analyses (CTCA and CT perfusion) Figure 94: Forest plot showing individual inc Study TP FP FN TN Populat Bettencourt 2011 a 40 1 8 41 Bettencourt 2011 b 36 3 2 49 2016 2016 2016 10 10

Figure 94: Forest plot showing individual included studies comparing a combined analysis of CTCA and CT perfusion with the reference standard

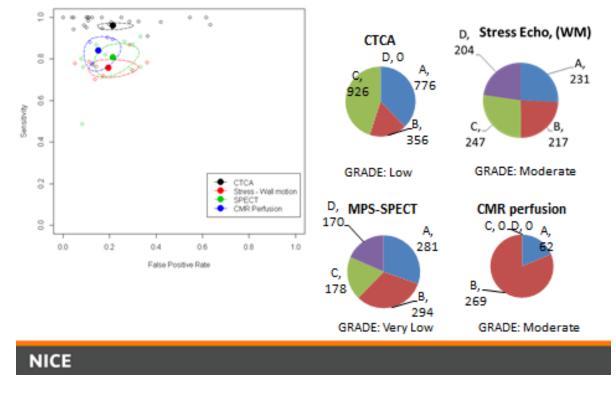
Study	TP	FP	FN	TN	Population	Stenosis Level	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% CI)	Specificity (95% Cl)
Bettencourt 2011 a	40	1	8	41	В	50%	0.83 [0.70, 0.93]	0.98 [0.87, 1.00]		
Bettencourt 2011 b	36	3	2	49	В	70%	0.95 [0.82, 0.99]	0.94 [0.84, 0.99]		

M.2.2.12 Combined analyses (Calcium scoring and CMR perfusion)

Figure 95: Forest plot showing individual included studies comparing a combined analysis of calcium scoring and CMR perfusion with the reference standard

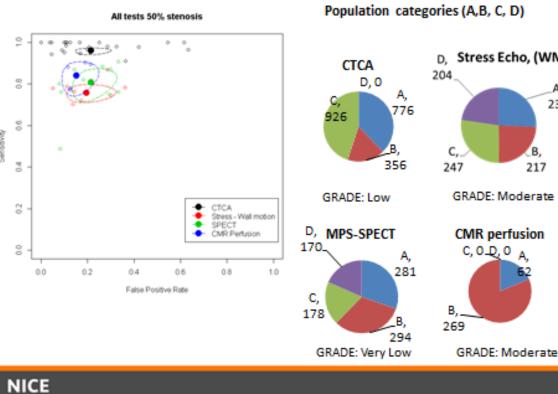
Study	TP	FP	FN	TN	Population	Stenosis Level	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% Cl)
Stolzmann 2011	32	4	4	20	В	50%	0.89 [0.74, 0.97]	0.83 [0.63, 0.95]		
									0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

M.2.2.13 Combined analyses (Calcium scoring and MPS SPECT)


Figure 96: Forest plot showing individual included studies comparing a combined analysis of calcium scoring and MPS (SPECT) with the reference standard

Study	TP	FP	FN	TN	Population	Stenosis Level	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% CI)	Specificity (95% CI)
Schepis 2007	36	5	6	30	В	50%	0.86 [0.71, 0.95]	0.86 [0.70, 0.95]		

14 Combined analysis (Stress echocardiography - perfusion and wall motion)


Figure 97: Forest plot showing individual included studies comparing a combined analysis of stress echocardiography (wall motion and perfusion) with the reference standard

Study	TP	FP	FN	TN	Population	Stenosis Level	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% Cl)
Arnold 2010 a	35	5	6	16	А	50%	0.85 [0.71, 0.94]	0.76 [0.53, 0.92]		
Arnold 2010 b	28	12	1	21	A	70%	0.97 [0.82, 1.00]	0.64 [0.45, 0.80]		

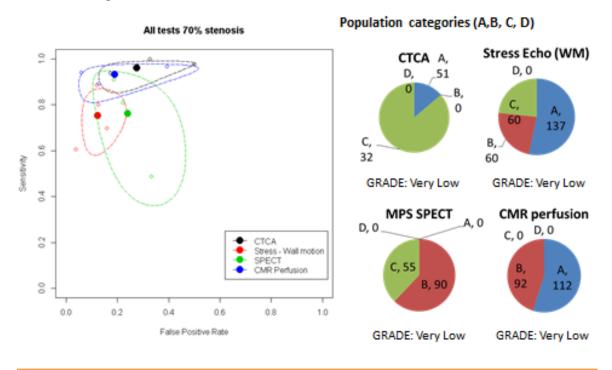

Summary meta-analyses comparing the four diagnostic testing strategies included in the economic model

Figure 98: Summary meta-analysis – 50% stenosis level (slide presented to committee)

Summary – 50% stenosis

Figure 99: Summary meta-analysis - 70% stenosis level (slide presented to committee)

Summary - 70% stenosis

NICE

Appendix N: Excluded clinical studies

N.1 High sensitivity cardiac troponins

Table 28: Studies excluded from the clinical review

Table 28: Studies excluded fro	
Reference	Reason for exclusion
Aldous 2012 ⁴⁵	STEMI patients not reported separately
Apple 2009 ⁸⁷	Incorrect biomarker
Bahrmann 2012 ¹⁰²	Population does not match protocol. Patients 70 years over admitted to the ED but not necessarily with acute chest pain or related symptoms.
Balmelli 2013 ¹⁰⁴	Unclear reference standard. AUC data only.
Bhardwaj 2011 ¹⁴³	Index test does not match protocol
Bialek 2015 ¹⁴⁷	Population does not match protocol
Biener 2015 ¹⁴⁸	No diagnostic accuracy data reported.
Biener 2013 ¹⁴⁹	Index test does not match protocol
Body 2011 ¹⁵⁶	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
Bradburn 2011 ¹⁶⁴	Post hoc analysis looking at inter-hospital variation in outcomes
Bruins Slot (2008) ¹⁷⁴	Primary care population
Bruins Slot (2010) ¹⁷⁶	Incorrect biomarker
Bruins Slot 2013 ¹⁷⁵	Index test does not match protocol
Buccelletti 2012 ¹⁷⁷	Reference standard does not match protocol
Carroll 2013 ¹⁹⁴	Incorrect biomarker
Ceriani 2012 ¹⁹⁷	Editorial
Chenevier-Gobeaux 2013 ²¹⁵	Not primary study. Primary study included (Freund).
Cheng 2014 ²¹⁷	Index test does not match protocol
Christ 2010 ²²⁶	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
Cuda 2012 ²³⁷	Case control study
Cullen 2013 ²³⁸	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
De Winter 2000 ²⁴¹	Incorrect biomarker
Diercks 2011 ²⁴⁷	Incorrect biomarker
Dierecks 2011 ²⁴⁹	Incorrect biomarker
Drexler 2012 ³¹⁶	No data presented to calculate 2 x 2 table
Duchenne 2014 ²⁵²	Index test does not match protocol
Fitzgeral 2011 ²⁶⁶	No clinical data to calculate 2 x 2 table
Giannitis 2010 ²⁹⁵	Population does not match protocol
Giannitsis 2011 ²⁹⁶	Unclear reference standard and index test
Giavarina 2011 ²⁹⁷	Index test does not match protocol
Gimenez 2013 ⁵⁸³	2 x 2 table cannot be calculated
Haaf 2011 ³¹⁶	NSTEMI patients not reported separately
Hammerer-Lercher 2013 ³¹⁹	Population does not match protocol
Hoeller 2013 ³³⁰	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported

Reference	Reason for exclusion
	separately.
Hjorthshoj 2010 ³²⁸	Incorrect reference standard
Inoue 2011 ³⁴⁹	STEMI and NSTEMI patients included. Diagnostic accuracy of NSTEMI reported separately but unclear whether the total number of patients was used to calculated sensitivity and specificity (2 x 2 could not be calculated).
Keller 2009 ³⁷³	Incorrect biomarker
Keller 2009 ³⁷⁵	Index test does not match protocol
Keller 2010 ³⁷³	Incorrect biomarker
Keller 2011 ³⁷⁴	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
Khan 2011 ³⁷⁶	Reference standard does not match protocol
Kume 2011 ³⁹⁷	Incorrect biomarker
Kurz 2011 ³⁹⁹	2 x 2 table could not be calculated
Lindahl 2010 ⁴²⁵	No diagnostic accuracy data
Limon 2014 ⁴²²	Index test does not match protocol
Lippi 2012 ⁴²⁹	Incorrect biomarker
Lippi 2013 ⁴²⁸	Meta analysis checked for included studies
Lipinski 2014 ⁴²⁷	Index test does not match protocol
Lotze 2011 ⁴³⁶	Reference standard does not match protocol
Normann 2012 ⁵³⁹	Reference standard does not state that the universal definition of myocardial infarction/ACA/ECS criteria was used
Olivieri 2012 ⁵⁴²	Index test does not match protocol
Pyati 2015 ⁵⁶⁶	Index test does not match protocol
Pracon ⁵⁶³	Index test does not match protocol
Potocki 2012 562	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
Raskovalova 2013 ⁵⁶⁷	Index test does not match protocol
Reichlin 2009 ⁵⁷⁰	Incorrect biomarker
Reichlin 2009 ⁵⁶⁹	NSTEMI patients not reported separately
Reichlin 2012 ⁵⁷²	Reference standard does not match protocol
Reiter 2011 ⁵⁷⁵	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
Reiter 2012 ⁵⁷⁴	NSTEMI patients not reported separately
Reiter 2012 ⁵⁷⁶	Incorrect biomarker
Sanchis 2012 ⁵⁹⁷	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
Saenger 2010 ⁵⁹²	NSTEMI not presented separately
Shah 2015 ⁶²⁸	Inappropriate reference standard. Only predictive values presented.
Shah 2015 ⁶²⁹	Abstract
Shah 2013 ⁶²⁷	Review
Shah 2015 ⁶²⁶	Includes STEMI patients. Results of STEMI and NSTEMI/UA not reported separately.
Shah 2014 ⁶²⁹	No diagnostic accuracy data
Than 2014 ⁶⁷⁵	RCT comparing a diagnostic protocol with a standard care protocol

Reference	Reason for exclusion
Thelin 2013 ⁶⁷⁷	STEMI and NSTEMI patients included. Diagnostic accuracy of NSTEMI reported separately but unclear whether the total number of patients was used to calculated sensitivity and specificity (2 x 2 could not be calculated).
Tomonga 2011683	Primary care population
Truong 2012 ⁶⁸⁵	Index test does not match protocol
Volz 2012 ⁷¹⁹	Incorrect biomarker
Weber 2011 ⁷²⁷	Population does not match protocol
White 2014 ⁷³⁵	No diagnostic accuracy data
Zhang 2015 ⁷⁴⁹	Index test does not match protocol

N.2 Non-invasive imaging for the identification of people with NSTEMI/unstable angina

Reference	Reason for exclusion
A, 2013 ¹⁸	Wrong diagnostic intervention
Abbasi, 2014 ¹	Wrong population
Abbott, 2000 ²	Wrong study type
Abbott, 2003 ³	Wrong study type
Abd, 2015 ⁴	Wrong study type
Abdelmoneim, 2009 ⁷	Wrong study type
Abdelmoneim, 2011 ⁸	Wrong population
Abdelmoneim, 2010 ⁹	Wrong population
Abdelmoneim, 2010 ¹⁰	Wrong population
Abdelmoneim, 2009 ¹¹	Wrong population
Abdelmoneim, 2009 ¹²	Wrong population
Abdelmoneim, 2015 ¹³	Wrong diagnostic comparison
Abdel-Rahman, 2015 ⁵	Wrong population
Abdel-Salam, 2015 ⁶	Wrong diagnostic intervention
Abdool, 2014 ¹⁴	Wrong population
Abdulla, 2007 ¹⁵	Wrong population
Abdulla, 2012 ¹⁶	Wrong intervention
Abraham, 2010 ¹⁷	Wrong study type
Abramson, 2000 ¹⁹	Wrong population
Achenbach, 2010 ²⁰	Wrong study type
Achenbach, 2001 ²¹	Wrong population
Achenbach, 1998 ²²	Wrong diagnostic intervention
Achenbach, 2008 ²³	Wrong population
Adams, 2007 ²⁴	Wrong population
Adil, 2011 ²⁵	Wrong population
Agarwal, 2012 ²⁶	Wrong population

Table 29: Studies excluded from the clinical review

Reference	Reason for exclusion
Aggarwal, 2015 ²⁷	Wrong population
Aggeli, 2011 ²⁸	Wrong population
Aggeli, 2007 ²⁹	Wrong population
Ahmad, 2001 ³⁰	Wrong population
Ahmadvazir, 2014 ³¹	Wrong population
Ahn, 2011 ³²	Wrong diagnostic intervention
Ahn, 2013 ³³	Wrong population
Aidi, 2014 ³⁴	Wrong population
Akbar, 2010 ³⁵	No data of interest
Akram, 2008 ³⁶	Wrong diagnostic intervention
Al Moudi, 2011 ⁴²	Wrong population
Al Moudi, 2014 ⁴³	Wrong diagnostic comparison
Aldweib, 2013 ⁴⁷	Wrong population
Alessandri, 2009 ⁴⁸	Wrong population
Alexanderson, 2004 ⁴⁹	Wrong population
Alexanderson, 2006 ⁵⁰	Wrong diagnostic intervention
Alexanderson Rosas, 2010 ⁵¹	Wrong intervention
Alexopoulos, 2005 ⁵²	Wrong diagnostic intervention
Ali, 2007 ⁵³	Wrong population
AlJaroudi, 2013 ⁵⁴	Wrong population
Alkadhi, 200855	Wrong population
Alkadhi, 2010 ⁵⁶	Wrong diagnostic intervention
Al-Kaylani, 2002 ³⁷	Wrong diagnostic evaluation
Allajbeu, 2014 ⁵⁷	Wrong population
Al-Mallah, 2011 ³⁸	Wrong study type
Al-Mallah, 2014 ³⁹	Wrong population
Almeida, 2002 ⁵⁸	Wrong population
Almoudi, 2012 ⁵⁹	Wrong diagnostic intervention
Alqaisi, 2008 ⁶⁰	Wrong population
al-Saadi, 2002 ⁴⁰	Wrong population
Al-Saadi, 2000 ⁴¹	Wrong population
Altinmakas, 2000 ⁶¹	Wrong population
Altiok, 2013 ⁶²	Wrong diagnostic comparison
Altiok, 2012 ⁶³	Wrong diagnostic comparison
Altiok, 2014 ⁶⁴	Wrong diagnostic comparison
Altun, 2005 ⁶⁵	Wrong population
Altunkeser, 2002 ⁶⁶	Wrong population
Alunni, 2015 ⁶⁷	Wrong diagnostic intervention
Alvarez Tamargo, 2008 ⁶⁸	Wrong diagnostic intervention
Amanuma, 2015 ⁶⁹	Wrong population
American College of, 2006 ⁷⁰	Wrong study type
Amit, 2014 ⁷¹	Wrong study type
Anagnostopoulos, 201373	Wrong study type

Anand, 2003 ⁷⁴ Wrong study typeAnantharam, 2009 ⁷⁵ No available dataAnders, 2013 ⁷⁶ Wrong populationAndrade, 2009 ⁷⁸ Wrong populationAndrade, 2009 ⁷⁸ Wrong populationAndrasy, 2011 ⁷⁹ Wrong populationAndreini, 2016 ⁸⁰ Wrong study type (report)Andreini, 2010 ⁸¹ Wrong populationAnnuar, 2008 ⁸² Wrong populationAnonymous, 1997 ³⁴⁶ Wrong populationAnonymous, 2009 ²³⁶ Wrong study typeAntony, 2011 ⁸³ Wrong study typeAntony, 2013 ⁸⁴ Wrong populationAnyar, 2013 ⁸⁴ Wrong populationAyagi, 1998 ⁸⁵ Wrong populationAraba-Zadeh, 2011 ⁸⁹ Wrong populationArbab-Zadeh, 2011 ⁸⁹ Wrong populationArnol, 2012 ⁹¹ Wrong populationArnol, 2013 ⁹³ Wrong populationArnol, 2013 ⁹⁴ Wrong populationArnol, 2013 ⁹³ Wrong populationArnol, 2013 ⁹⁴ Wrong populationArsanjani, 2013 ⁹⁴ Wrong populationArsanjani, 2013 ⁹⁵ Wrong population
Anders, 201376Wrong populationAndrade, 200978Wrong populationAndrassy, 201179Wrong populationAndreini, 201680Wrong study type (report)Andreini, 201081Wrong populationAndreini, 200882Wrong populationAnonymous, 1997346Wrong populationAnonymous, 2009236Wrong study typeAntony, 201183Wrong study typeAntony, 201183Wrong study typeAnwar, 201384Wrong populationApstolopoulos, 201286Wrong populationArbab-Zadeh, 201189Wrong populationArbab-Zadeh, 201189Wrong populationArgulian, 201490Wrong populationArgulian, 201490Wrong populationArbab-Zadeh, 201189Wrong populationArbab-Zadeh, 201189Wrong populationArnold, 2019291Wrong populationArnold, 201939Wrong populationArnold, 201393Wrong populationArsanjani, 201394Wrong populationArsanjani, 201394Wrong population
Anders, 201376Wrong populationAndrade, 200978Wrong populationAndrassy, 201179Wrong populationAndreini, 201680Wrong study type (report)Andreini, 201081Wrong populationAndreini, 200882Wrong populationAnonymous, 1997346Wrong populationAnonymous, 2009236Wrong study typeAntony, 201183Wrong study typeAntony, 201183Wrong study typeAnwar, 201384Wrong populationApstolopoulos, 201286Wrong populationArbab-Zadeh, 201189Wrong populationArbab-Zadeh, 201189Wrong populationArgulian, 201490Wrong populationArgulian, 201490Wrong populationArbab-Zadeh, 201189Wrong populationArbab-Zadeh, 201189Wrong populationArnold, 2019291Wrong populationArnold, 201939Wrong populationArnold, 201393Wrong populationArsanjani, 201394Wrong populationArsanjani, 201394Wrong population
Andrade, 200978Wrong populationAndrassy, 201179Wrong populationAndreini, 201680Wrong study type (report)Andreini, 201081Wrong populationAnnuar, 200882Wrong populationAnonymous, 1997346Wrong populationAnonymous, 2009236Wrong study typeAntony, 201183Wrong study typeAntwar, 201384Wrong study typeAnwar, 201384Wrong populationApstolopoulos, 201286Wrong populationArbab-Zadeh, 201188Wrong populationArbab-Zadeh, 201189Wrong populationArrold, 201291Wrong populationArnold, 201092Wrong populationArnold, 201092Wrong populationArsanjani, 201393Wrong study typeArsanjani, 201394Wrong populationArsanjani, 201394Wrong population<
Andrassy, 2011 ⁷⁹ Wrong populationAndreini, 2016 ⁸⁰ Wrong study type (report)Andreini, 2010 ⁸¹ Wrong populationAnnuar, 2008 ⁸² Wrong populationAnonymous, 1997 ³⁴⁶ Wrong populationAnonymous, 2009 ²³⁶ Wrong study typeAnonymous, 2015 ²³⁵ Wrong study typeAntony, 2011 ⁸³ Wrong study typeAnwar, 2013 ⁸⁴ Wrong populationAoyagi, 1998 ⁸⁵ Wrong populationApostolopoulos, 2012 ⁸⁶ Wrong populationArbab-Zadeh, 2013 ⁸⁸ Wrong populationArbab-Zadeh, 2011 ⁸⁹ Wrong interventionArnold, 2012 ⁹¹ Wrong study typeArnold, 2019 ²² Wrong study typeArnold, 2019 ²³ Wrong study typeArnold, 2019 ²⁴ Wrong populationArsanjani, 2013 ⁹³ Wrong population
Andreini, 2016 ⁸⁰ Wrong study type (report)Andreini, 2010 ⁸¹ Wrong populationAnnuar, 2008 ⁸² Wrong populationAnonymous, 1997 ³⁴⁶ Wrong populationAnonymous, 2009 ²³⁶ Wrong study typeAnonymous, 2015 ²³⁵ Wrong study typeAntony, 2011 ⁸³ Wrong study typeAntony, 2013 ⁸⁴ Wrong populationAoyagi, 1998 ⁸⁵ Wrong populationArbab-Zadeh, 2015 ⁸⁸ Wrong populationArbab-Zadeh, 2011 ⁸⁹ Wrong populationArbab-Zadeh, 2011 ⁸⁹ Wrong populationArnold, 2012 ⁹¹ Wrong populationArnold, 2010 ⁹² Wrong study typeArsanjani, 2013 ⁹³ Wrong study typeArsanjani, 2013 ⁹⁴ Wrong population
Andreini, 2010 ⁸¹ Wrong populationAnnuar, 2008 ⁸² Wrong populationAnonymous, 1997 ³⁴⁶ Wrong populationAnonymous, 2009 ²³⁶ Wrong study typeAnonymous, 2015 ²³⁵ Wrong study typeAntony, 2011 ⁸³ Wrong study typeAntony, 2011 ⁸³ Wrong populationAoyagi, 1998 ⁸⁵ Wrong populationApostolopoulos, 2012 ⁸⁶ Wrong populationArbab-Zadeh, 2015 ⁸⁸ Wrong populationArbab-Zadeh, 2011 ⁸⁹ Wrong populationArgulian, 2014 ⁹⁰ Wrong populationArnold, 2010 ⁹² Wrong populationArsanjani, 2013 ⁹³ Wrong study typeArsanjani, 2013 ⁹⁴ Wrong population
Annuar, 200882Wrong populationAnonymous, 1997346Wrong populationAnonymous, 2009236Wrong study typeAnonymous, 2015235Wrong study typeAntony, 201183Wrong study typeAnwar, 201384Wrong populationAoyagi, 199855Wrong populationApostolopoulos, 201286Wrong populationArbab-Zadeh, 201588Wrong populationArbab-Zadeh, 201189Wrong populationArnold, 201291Wrong populationArnold, 201291Wrong populationArnold, 201393Wrong study typeArsanjani, 201394Wrong population
Anonymous, 1997 ³⁴⁶ Wrong populationAnonymous, 2009 ²³⁶ Wrong study typeAnonymous, 2015 ²³⁵ Wrong study typeAntony, 2011 ⁸³ Wrong study typeAnwar, 2013 ⁸⁴ Wrong populationAoyagi, 1998 ⁸⁵ Wrong populationApostolopoulos, 2012 ⁸⁶ Wrong populationArbab-Zadeh, 2015 ⁸⁸ Wrong populationArgulian, 2014 ⁹⁰ Wrong interventionArnold, 2019 ²¹ Wrong study typeArnold, 2019 ²² Wrong populationArsanjani, 2013 ⁹³ Wrong study typeArsanjani, 2013 ⁹⁴ Wrong population
Anonymous, 2009236Wrong study typeAnonymous, 2015235Wrong study typeAntony, 201183Wrong study typeAnwar, 201384Wrong populationAoyagi, 199885Wrong populationApostolopoulos, 201286Wrong populationArbab-Zadeh, 201588Wrong populationArbab-Zadeh, 201189Wrong populationArgulian, 201490Wrong populationArnold, 201291Wrong populationArnold, 201393Wrong study typeArsanjani, 201394Wrong population
Anonymous, 2015235Wrong study typeAntony, 201183Wrong study typeAnwar, 201384Wrong populationAoyagi, 199885Wrong populationApostolopoulos, 201286Wrong populationArbab-Zadeh, 201588Wrong populationArgulian, 201490Wrong interventionArnold, 201291Wrong study typeArnold, 201992Wrong study typeArsanjani, 201393Wrong study typeArsanjani, 201394Wrong study type
Antony, 201183Wrong study typeAnwar, 201384Wrong populationAoyagi, 199885Wrong populationApostolopoulos, 201286Wrong populationArbab-Zadeh, 201588Wrong populationArbab-Zadeh, 201189Wrong interventionArgulian, 201490Wrong study typeArnold, 201291Wrong study typeArsanjani, 201393Wrong study typeArsanjani, 201394Wrong spoulation
Anwar, 2013 ⁸⁴ Wrong populationAoyagi, 1998 ⁸⁵ Wrong populationApostolopoulos, 2012 ⁸⁶ Wrong populationArbab-Zadeh, 2015 ⁸⁸ Wrong populationArbab-Zadeh, 2011 ⁸⁹ Wrong interventionArgulian, 2014 ⁹⁰ Wrong populationArnold, 2012 ⁹¹ Wrong study typeArnold, 2010 ⁹² Wrong study typeArsanjani, 2013 ⁹³ Wrong study typeArsanjani, 2013 ⁹⁴ Wrong population
Aoyagi, 1998Wrong populationApostolopoulos, 2012Wrong populationArbab-Zadeh, 2015Wrong populationArbab-Zadeh, 2011Wrong interventionArgulian, 2014Wrong populationArnold, 2012Wrong study typeArnold, 2010Wrong study typeArsanjani, 2013Wrong study typeArsanjani, 2013Wrong population
Apostolopoulos, 201286Wrong populationArbab-Zadeh, 201588Wrong populationArbab-Zadeh, 201189Wrong interventionArgulian, 201490Wrong populationArnold, 201291Wrong study typeArnold, 201092Wrong study typeArsanjani, 201393Wrong study typeArsanjani, 201394Wrong population
Arbab-Zadeh, 201588Wrong populationArbab-Zadeh, 201189Wrong interventionArgulian, 201490Wrong populationArnold, 201291Wrong study typeArnold, 201092Wrong populationArsanjani, 201393Wrong study typeArsanjani, 201394Wrong population
Argulian, 201490Wrong populationArnold, 201291Wrong study typeArnold, 201092Wrong populationArsanjani, 201393Wrong study typeArsanjani, 201394Wrong population
Arnold, 2012 ⁹¹ Wrong study typeArnold, 2010 ⁹² Wrong populationArsanjani, 2013 ⁹³ Wrong study typeArsanjani, 2013 ⁹⁴ Wrong population
Arnold, 201092Wrong populationArsanjani, 201393Wrong study typeArsanjani, 201394Wrong population
Arsanjani, 201393Wrong study typeArsanjani, 201394Wrong population
Arsanjani, 201393Wrong study typeArsanjani, 201394Wrong population
Arsaniani 2013 ⁹⁵ Wrong study type
with Study type
Arumugam, 2013 ⁹⁶ Wrong study type
Asferg, 2012 ⁹⁷ Wrong population
Asher, 2015 ⁹⁸ Wrong intervention
Atar, 2000 ⁹⁹ Wrong intervention
Athappan, 2010 ¹⁰⁰ Different risk categories to protocol and date cut-off May 2008
Babar Imran, 2003 ¹⁰¹ Wrong population
Balaravi, 2006 ¹⁰³ Wrong analysis and wrong population (prognostic)
Bamberg, 2008 ¹⁰⁵ Wrong study type (substudy)
Bamberg, 2014 ¹⁰⁶ Wrong population
Bamberg, 2009 ¹⁰⁷ Wrong study type (ROMICAT substudy)
Banerjee, 2012 ¹⁰⁸ Wrong study type
Bangalore, 2007 ¹⁰⁹ Wrong population
Bangalore, 2005 ¹¹⁰ Wrong population
Barbirato, 2009 ¹¹¹ Not English language
Barletta, 1999 ¹¹² Wrong population
Barmeyer, 2008 ¹¹³ Wrong population
Barraclough, 2015 ¹¹⁴ Wrong study type
Baszko, 2001 ¹¹⁵ Wrong population
Bateman, 2009 ¹¹⁶ Wrong population
Bateman, 2006 ¹¹⁷ Wrong population

Reference	Reason for exclusion
Bauer, 2010 ¹¹⁸	Wrong population
Bauernfeind, 2011 ¹¹⁹	Not topic of interest – prognostic
Beck, 2002 ¹²⁰	Wrong population
Becker, 2007 ¹²¹	Wrong population
Becker, 2001 ¹²²	Wrong population
Becker, 2012 ¹²³	Wrong study type
Bekler, 2014 ¹²⁶	No available data
Belardinelli, 2014 ¹²⁷	Wrong diagnostic comparison
Ben Bouallegue, 2015 ¹²⁸	Wrong population
Benchimol, 2000 ¹²⁹	Wrong population
Benedek, 2013 ¹³⁰	Wrong population and wrong study type
Benedek, 2014 ¹³¹	Wrong study type
Benkiran, 2015 ¹³²	Wrong population
Berdahl, 2013 ¹³⁴	Wrong study type
Bergeron, 2004 ¹³⁵	Wrong population
Beslic, 2011 ¹³⁶	Wrong population
Bettencourt, 2013 ¹³⁷	Wrong population
Bettencourt, 2013 ¹³⁸	Wrong population
Bettencourt, 2013 ¹³⁹	Wrong population and setting
Bettencourt, 2013 ¹⁴⁰	Wrong population
Better, 2012 ¹⁴¹	Developing countries
Beule, 2010 ¹⁴²	Wrong study type
Bholasingh, 2003 ¹⁴⁴	Wrong study type
Biagini, 2006 ¹⁴⁶	Wrong population
Biglands, 2015 ¹⁵⁰	Wrong study type
Bischoff, 2012 ¹⁵¹	Wrong population
Blankstein, 2012 ¹⁵²	Wrong study type
Blinder, 2005 ¹⁵³	No DTA data available
Blomstrand, 2004 ¹⁵⁴	Wrong population
BlueCross BlueShield Association, 2011 ¹⁵⁵	Wrong study type
Bogaert, 2015 ¹⁵⁷	Wrong study type
Boglioli, 2001 ¹⁵⁸	Wrong study type
Boiten, 2012 ¹⁵⁹	Wrong population
Bom, 2015 ¹⁶⁰	Wrong population
Boussel, 2008 ¹⁶²	Wrong population
Bouzas-Mosquera, 2015 ¹⁶³	Wrong population
Branch, 2012 ¹⁶⁵	Wrong study type
Branch, 2013 ¹⁶⁶	Wrong diagnostic intervention
Branch, 2013 ¹⁶⁷	Wrong population
Brodoefel, 2008 ¹⁶⁸	Wrong population
Brodoefel, 2008 ¹⁶⁹	Wrong population
Brodoefel, 2008 ¹⁷⁰	Wrong population

Reference	Reason for exclusion
Brodov, 2015 ¹⁷¹	Wrong population
Brogsitter, 2005 ¹⁷²	Wrong study type
Brown, 2008 ¹⁷³	MACE events only
Bucerius, 2007 ¹⁷⁸	Wrong population
Buckert, 2013 ¹⁷⁹	Wrong population
Budge, 2011 ¹⁸⁰	Wrong study type
Budoff, 2003 ¹⁸¹	Wrong population
Budoff, 2013 ¹⁸²	Wrong population
Budoff, 2007 ¹⁸³	Wrong population
Burris, 2015 ¹⁸⁴	Wrong diagnostic intervention
Busch, 2011 ¹⁸⁵	Wrong population
Cabeda, 2015 ¹⁸⁶	Wrong population
Cademartiri, 2008 ¹⁸⁷	Wrong population
Cademartiri, 2007 ¹⁸⁸	Wrong population
Candell-Riera, 2007 ¹⁹⁰	Wrong population
Candell-Riera, 2004 ¹⁹¹	Wrong population
Carlsson, 2013 ¹⁹²	Wrong population
Carrinho, 2004 ¹⁹³	Wrong population
Caymaz, 2000 ¹⁹⁵	Wrong population
Celik, 2011 ¹⁹⁶	Wrong study type
Chammas, 2002 ¹⁹⁸	Wrong population
Chan, 2003 ¹⁹⁹	Wrong population
Chandra, 2001 ²⁰⁰	Wrong study type
Chandraratna, 2012 ²⁰¹	Wrong population
Chandraratna, 2012 ²⁰²	Wrong diagnostic interventions
Chang, 2008 ²⁰³	Wrong study type
Chang, 2008 ²⁰⁴	Wrong population
Chao, 2010 ²⁰⁵	Wrong population
Chaosuwannakit, 2012 ²⁰⁶	Wrong population
Cheezum, 2014 ²⁰⁷	Wrong study type
Chen, 2013 ²⁰⁸	Wrong population
Chen, 1999 ²⁰⁹	Wrong population
Chen, 2014 ²¹⁰	Wrong population
Chen, 2001 ²¹¹	Wrong population
Chen, 2012 ²¹²	Wrong population
Chen, 2011 ²¹³	Wrong diagnostic intervention
Chen, 2010 ²¹⁴	Wrong diagnostic intervention
Cheng, 2007 ²¹⁶	Wrong population and study type; no usable data
Cheng, 2013 ²¹⁸	Wrong study type; no usable data
Cheng, 2013 ²¹⁹	Developing country
Cheng, 2000 ²²⁰	Wrong population
Cheng, 2010 ²²¹	Wrong population
Chiou, 2004 ²²²	Wrong population

Reference	Reason for exclusion
Chiu, 2003 ²²³	Wrong diagnostic intervention
Choo, 2013 ²²⁴	Wrong population
Chow, 2007 ²²⁵	Wrong population
Conti, 2010 ²³¹	Wrong study type
Conti, 2010 ²³²	Wrong study type
Conti, 2008 ²³⁴	Wrong population
Cury, 2013 ²³⁹	Wrong diagnostic intervention
Dall Armellina, 2011 ²⁴⁰	Wrong study type
Dedic, 2013 ²⁴²	Insufficient method details (systematic review)
Dedic, 2014 ²⁴³	Wrong population
Dedic, 2013 ²⁴⁵	Wrong diagnostic intervention
Department of Science and Technology - Brazilian Health Technology Assessment General Coordination (DECIT-CGATS), 2008 ²⁴⁶	Wrong study type
Diercks, 2013 ²⁴⁸	Wrong diagnostic intervention
Dodd, 2008 ²⁵⁰	Wrong study type Wrong study type
Dorgelo, 2005 ²⁵¹	Wrong diagnostic intervention
Durand, 2009 ²⁵³	Wrong study type
Duvall, 2014 ²⁵⁴	Wrong intervention
Edmond, 2002 ²⁵⁵	Wrong study type
Einstein, 2015 ²⁵⁷	Wrong population
Estrada, 2006 ²⁵⁸	Wrong diagnostic intervention
Fanaroff, 2015 ²⁵⁹	Not diagnostic intervention
Ferencik, 2012 ²⁶⁰	Secondary analysis - ROMICAT
Ferencik, 2012 ²⁶¹	Wrong study type
Fernandez-Friera, 2011 ²⁶²	Wrong diagnostic intervention
Fesmire, 2012 ²⁶³	Wrong diagnostic intervention
Fesmire, 2002 ²⁶⁴	Wrong intervention
Fesmire, 2001 ²⁶⁵	Wrong reference standard
Gaemperli, 2009 ²⁶⁹	Wrong population
Gaemperli, 2007 ²⁷⁰	Wrong population
Gaibazzi, 2009 ²⁷²	Wrong population
Gaibazzi, 2010 ²⁷³	Wrong population
Gaibazzi, 2010 ²⁷⁴	Wrong population
Galassi, 2000 ²⁷⁵	Wrong population
Gao, 2011 ²⁷⁷	Wrong population
Gargiulo, 2013 ²⁷⁸	Wrong study type
Gargiulo, 2011 ²⁷⁹	Wrong population
Garrido, 2005 ²⁸⁰	Wrong study type
Gaudio, 2005 ²⁸¹	Wrong population
Gayed, 2010 ²⁸²	Wrong population
Gebker, 2012 ²⁸³	Wrong population
Gebker, 2008 ²⁸⁴	Wrong population

Reference	Reason for exclusion
Geleijnse, 2000 ²⁸⁵	Wrong study type
Genders, 2013 ²⁸⁶	Wrong population
Gentile, 2001 ²⁸⁷	Wrong population
George, 2009 ²⁸⁸	Wrong population
George, 2012 ²⁸⁹	Wrong population
George, 2014 ²⁹⁰	Wrong population
Gerbaud, 2012 ²⁹¹	Wrong population
Gerber, 2005 ²⁹²	Wrong population
Ghoshhajra, 2012 ²⁹³	Wrong population
Ghostine, 2006 ²⁹⁴	Wrong population
Girzadas, 2009 ²⁹⁸	Wrong diagnostic intervention
Goldenberg, 2012 ²⁹⁹	Wrong diagnostic intervention
Gonzalez, 2013 ³⁰²	Not English language
Gonzalez, 2005 ³⁰³	Wrong population
Goodacre, 2005 ³⁰⁴	Wrong intervention
Gouya, 2009 ³⁰⁶	Wrong population
Graf, 2007 ³⁰⁷	Wrong population
Greenslade, 2015 ³⁰⁸	Mixed population (MI and ACS)
Greenwood, 2014 ³⁰⁹	Wrong population
Greif, 2013 ³¹⁰	Wrong population
Greulich, 2012 ³¹¹	Wrong population
Greupner, 2012 ³¹²	Wrong population
Groothuis, 2012 ³¹³	Wrong population
Guo, 2011 ³¹⁴	Wrong population (CAD)
Gupta, 2013 ³¹⁵	Wrong population
Haberl, 2005 ³¹⁷	Wrong population
Han, 2013 ³²⁰	Developing country
Hansen, 2010 ³²¹	Wrong study type
Hartlage, 2012 ³²²	Wrong study type
Heitner, 2014 ³²⁴	Wrong population
Hermann, 2009 ³²⁵	No discernible data
Heuschmid, 2007 ³²⁶	Wrong population
Heydari, 2011 ³²⁷	Wrong diagnostic intervention
Hoffmann, 2006 ³³²	Wrong diagnostic intervention
Holubkov, 2002 ³³⁷	Wrong population
Hou, 2014 ³³⁸	Wrong population
Hsu, 2008 ³³⁹	Developing country
Hulten, 2013 ³⁴⁰	Wrong population
Husmann, 2008 ³⁴¹	Wrong population
Husmann, 2009 ³⁴²	Wrong population
Husmann, 2008 ³⁴³	Wrong population
Husmann, 2008 ³⁴⁴	Wrong population (CAD)
Hwang, 2014 ³⁴⁵	Wrong population

Reference	Reason for exclusion
Imran, 2006 ³⁴⁸	Wrong population
investigators, 2015 ⁶²⁰	Wrong population
Isoda, 1999 ³⁵¹	Wrong population
lyengar, 2016 ³⁵²	Wrong population
Jahnke, 2007 ³⁵³	Wrong study type
Jahnke, 2004 ³⁵⁴	Wrong population
Jang, 2011 ³⁵⁵	Wrong population
Januzzi, 2010 ³⁵⁶	Wrong intervention
Jeetley, 2006 ³⁵⁷	Wrong study type
Jimenez-Hoyuela Garcia, 2006 ³⁵⁸	Wrong reference standard
Jug, 2012 ³⁶¹	Wrong study type
Kadokami, 2012 ³⁶²	Wrong population
Kajander, 2010 ³⁶³	Wrong population
Kaminek, 2001 ³⁶⁴	Wrong population
Kamiya, 2014 ³⁶⁵	Wrong population
Kang, 2005 ³⁶⁶	Wrong intervention
Kang, 1999 ³⁶⁷	Wrong population
Karacavus, 2015 ³⁶⁸	Unclear follow-up
Kaul, 2004 ³⁶⁹	Wrong study type
Kawai, 2004 ³⁷⁰	Wrong population
Kawecki, 2015 ³⁷¹	Wrong population
Keijer, 2000 ³⁷²	Wrong population
Kim, 2008 ³⁷⁷	Wrong population
Kim, 2014 ³⁷⁸	Wrong population
Kim, 2001 ³⁷⁹	Wrong population
Kim, 1999 ³⁸⁰	Wrong population
Kim, 2006 ³⁸¹	Wrong population
Kirisli, 2014 ³⁸²	Wrong population
Kitagawa, 2008 ³⁸³	Wrong population
Klem, 2008 ³⁸⁴	Wrong population
Klumpp, 2015 ³⁸⁵	Wrong intervention
Klumpp, 2010 ³⁸⁶	Wrong population
Ko, 2012 ³⁸⁷	Wrong population
Ko, 2012 ³⁸⁸	Wrong population
Ko, 2014 ³⁸⁹	Wrong population
Ko, 2014 ³⁹⁰	Wrong population
Koide, 2001 ³⁹¹	Wrong population
Kontos, 2008 ³⁹²	Wrong study type
Kontos, 1999 ³⁹³	Wrong population
Kontos, 2002 ³⁹⁴	Wrong population
Koo, 2011 ³⁹⁵	Wrong population
Krittayaphong, 2003 ³⁹⁶	Wrong population
Kunimasa, 2009 ³⁹⁸	Wrong population

Reference	Reason for exclusion
Langdorf, 2010 ⁴⁰¹	No data of relevance
Langer, 2009 ⁴⁰²	Wrong population
Laudon, 2010 ⁴⁰³	Wrong diagnostic intervention
Laudon, 1999 ⁴⁰⁴	Wrong diagnostic intervention
Layritz, 2014 ⁴⁰⁵	Wrong population
Lazoura, 2011 ⁴⁰⁶	Wrong population
Leber, 2007 ⁴⁰⁷	Wrong population
Leber, 2004 ⁴⁰⁸	Wrong population
Leber, 2003 ⁴⁰⁹	Wrong diagnostic intervention
Lee, 2012 ⁴¹⁰	Wrong study type
Lee, 2001 ⁴¹¹	Wrong population
Lehmkuhl, 2011 ⁴¹²	Wrong population
Lei, 2013 ⁴¹³	Wrong population
Lemos, 2014 ⁴¹⁴	Wrong population
Leschka, 2005 ⁴¹⁵	Wrong population
Leschka, 2009 ⁴¹⁶	Wrong population
Leurent, 2011 ⁴¹⁷	Wrong population
Li, 2011 ⁴¹⁸	Wrong population
Li, 2012 ⁴¹⁹	Wrong population
Li, 2014 ⁴²⁰	Wrong population
Lin, 2010 ⁴²³	Wrong study type
Lin, 2008 ⁴²⁴	Wrong study type
Litt, 2012 ⁴³⁰	Wrong study type
Litt, 2015 ⁴³¹	Wrong population
Lo, 2011 ⁴³²	Wrong study type
Lockie, 2011 ⁴³³	Wrong population
Loimaala, 1999 ⁴³⁴	Wrong population
Loimaala, 1999 ⁴³⁵	Wrong study type
Lowenstein, 2003 ⁴³⁷	Wrong study type
Lu, 2011 ⁴³⁸	Wrong population
Machida, 2015 ⁴³⁹	Wrong study type
Macor, 2003 ⁴⁴⁰	Wrong population
Maffei, 2012 ⁴⁴¹	Wrong population
Maffei, 2011 ⁴⁴²	Wrong population
Maffei, 2012 ⁴⁴³	Wrong population
Maffei, 2011 ⁴⁴⁴	Wrong population
Maffei, 2010 ⁴⁴⁵	Wrong population
Maffei, 2010 ⁴⁴⁶	Wrong population
Maffei, 2010 ⁴⁴⁷	Wrong population
Magalhaes, 2011 ⁴⁴⁸	Wrong population
Magalhaes, 2015 ⁴⁴⁹	Wrong population
Mahajan, 2010 ⁴⁵⁰	Wrong population
Maintz, 2007 ⁴⁵¹	Wrong diagnostic intervention

Reference	Reason for exclusion
Majstorov, 2005 ⁴⁵²	Wrong population
Makaryus, 2014 ⁴⁵³	Wrong population
Malago, 2010 ⁴⁵⁴	Wrong population
Malago, 2012 ⁴⁵⁵	Wrong population
Malago, 2013 ⁴⁵⁶	Wrong population
Maltagliati, 2000 ⁴⁵⁷	Wrong population
Manini, 2009 ⁴⁵⁸	Wrong diagnostic intervention
Manka, 2012 ⁴⁵⁹	Wrong diagnostic intervention
Manka, 2015 ⁴⁶⁰	Wrong population
Mannan, 2014 ⁴⁶¹	Wrong population
Maret, 2008 ⁴⁶²	Wrong diagnostic intervention
Markman Filho, 2006 ⁴⁶³	Wrong diagnostic intervention; prognostic only
Martuscelli, 2004464	Wrong diagnostic intervention
Mas-Stachurska, 2015 ⁴⁶⁵	Wrong population
Mastrobuoni, 2009 ⁴⁶⁶	Wrong population
Matsuda, 2015 ⁴⁶⁷	Wrong diagnostic intervention
Matsumoto, 2006 ⁴⁶⁸	Wrong population
Matsunari, 2005 ⁴⁶⁹	Wrong population
Mc Ardle, 2012 ⁴⁷⁰	Wrong diagnostic intervention
Meijboom, 2007 ⁴⁷²	Wrong population
Meijs, 2010 ⁴⁷³	Wrong study type
Meinel, 2014 ⁴⁷⁴	Wrong diagnostic intervention
Meintjes, 2016 ⁴⁷⁵	Wrong study intervention
Mendoza-Rodriguez, 2009477	Wrong population
Meng, 2009 ⁴⁷⁸	Wrong diagnostic intervention
Menon, 2009 ⁴⁷⁹	Wrong population
Merkle, 2010 ⁴⁸⁰	Wrong population
Meurin, 2015 ⁴⁸¹	Wrong population
Meyer, 2012 ⁴⁸²	Wrong population
Meyer, 2013 ⁴⁸³	Wrong diagnostic intervention
Midiri, 2015 ⁴⁸⁴	Wrong study type
Mieres, 2007 ⁴⁸⁵	Wrong population
Miller, 2008 ⁴⁸⁸	Wrong population
Miller, 2009 ⁴⁸⁹	Wrong study type
Miller, 2010 ⁴⁹⁰	Wrong population
Miller, 2002 ⁴⁹¹	Wrong population
Miszalski-Jamka, 2006 ⁴⁹²	Wrong population
Mohammadzadeh, 2012 ⁴⁹³	Wrong population
Moir, 2004 ⁴⁹⁴	Wrong population
Mollet, 2011 ⁴⁹⁵	Wrong population
Mollet, 2005 ⁴⁹⁶	Wrong population
Moon, 2011 ⁴⁹⁷	Wrong population
Moon, 2013 ⁴⁹⁸	Wrong population

Reference	Reason for exclusion
Moon, 2005 ⁴⁹⁹	Wrong population
Moralidis, 2007 ⁵⁰⁰	Wrong diagnostic intervention
Moralidis, 2010 ⁵⁰¹	Wrong study type
Mordi, 2014 ⁵⁰²	Wrong population
Mordini, 2014 ⁵⁰³	Wrong population
Morise, 2000 ⁵⁰⁴	Wrong population
Morton, 2012 ⁵⁰⁵	Wrong population
Moscariello, 2012 ⁵⁰⁶	Wrong population
Motevalli, 2014 ⁵⁰⁷	Developing country
Motoyama, 2013 ⁵⁰⁸	Wrong population
Motoyasu, 2003 ⁵⁰⁹	Wrong population
Muhlenbruch, 2007 ⁵¹²	Wrong population
Muscholl, 2002 ⁵¹³	Wrong reference standard
Musto, 2007 ⁵¹⁴	Wrong population
Nabi, 2010 ⁵¹⁵	Wrong diagnostic intervention
Nagao, 2009 ⁵¹⁶	Wrong population
Nagao, 2009 ⁵¹⁷	Wrong population
Nagori, 2014 ⁵¹⁸	Developing country
Nair, 2012 ⁵¹⁹	Wrong population
Nakazato, 2012 ⁵²⁰	Wrong population
Nakazato, 2015 ⁵²¹	Wrong population
Nakazato, 2010 ⁵²²	Wrong population
Nasis, 2013 ⁵²³	Wrong population
Nasis, 2010 ⁵²⁴	Wrong population
National Horizon Scanning Centre (NHSC), 2007 ⁵²⁶	Wrong study type
National Horizon Scanning Centre (NHSC), 2007 ⁵²⁵	Wrong study type
Nedeljkovic, 2006 ⁵²⁹	Wrong population
Neefjes, 2013 ⁵³⁰	Wrong population
Neglia, 2015 ⁵³¹	Wrong population
NHSC, 2006 ⁵³³	Wrong study type
Nicol, 2008 ⁵³⁴	Wrong population
Nicol, 2008 ⁵³⁵	Wrong population
Nieman, 2009 ⁵³⁶	Wrong population
Nieman, 2002 ⁵³⁷	Wrong population
Nikolaou, 2006 ⁵³⁸	Wrong population
Ogino, 2015 ⁵⁴⁰	Wrong population
Olivetti, 2006 ⁵⁴¹	Wrong diagnostic intervention
Olszowska, 2003 ⁵⁴³	Wrong population
Oncel, 2007 ⁵⁴⁴	Wrong population
Oncel, 2007 ⁵⁴⁵	Wrong population
Ovrehus, 2010 ⁵⁴⁶	Wrong population
Palagi, 2003 ⁵⁴⁷	Wrong study type

Reference	Reason for exclusion
Palumbo, 2009 ⁵⁴⁸	Wrong population
Parato, 2010 ⁵⁴⁹	Wrong population
Park, 2007 ⁵⁵⁰	Wrong population
Parker, 2015 ⁵⁵¹	Wrong population
Parker, 2012 ⁵⁵²	Wrong population
Patsilinakos, 1999 ⁵⁵³	Wrong population
Pavlovic, 2010554	Wrong population
Pelliccia, 2013 ⁵⁵⁵	Wrong population
Pereira, 2013 ⁵⁵⁶	Wrong population
Pilz, 2010 ⁵⁵⁷	Wrong population
Plein, 2004 ⁵⁵⁸	Wrong population
Ponte, 2014 ⁵⁵⁹	Wrong population
Pontone, 2009 ⁵⁶⁰	Wrong population
Pontone, 2007 ⁵⁶¹	Wrong population
Previtali, 1999 ⁵⁶⁴	Wrong population
Pursnani, 2015 ⁵⁶⁵	Wrong population
Rastgou, 2012 ⁵⁶⁸	Wrong population and developing country
Reinsch, 2012 ⁵⁷³	Wrong population
Rieber, 2006 ⁵⁷⁷	Wrong population
Rieber, 2004 ⁵⁷⁸	Wrong population
Rispler, 2011 ⁵⁷⁹	Wrong population
Rispler, 2007 ⁵⁸⁰	Wrong population
Rollan, 2002 ⁵⁸¹	Wrong population
Ronderos, 2002 ⁵⁸²	Wrong diagnostic intervention
Rubinshtein, 2007 ⁵⁸⁵	Wrong population
Rubinshtein, 2009 ⁵⁸⁶	Wrong population
Ruzsics, 2008 ⁵⁸⁷	Wrong population
Ruzsics, 2009 ⁵⁸⁸	Wrong population
Saad, 2011 ⁵⁸⁹	Wrong population
Saba, 2015 ⁵⁹⁰	Wrong population
Sabharwal, 2007 ⁵⁹¹	Wrong population
Sajjadieh, 2013 ⁵⁹³	Wrong population
Sakakura, 2006 ⁵⁹⁴	Wrong population
Sakuma, 2005 ⁵⁹⁵	Wrong population
Sampson, 2007 ⁵⁹⁶	Wrong population
Santana, 2009 ⁵⁹⁹	Wrong population
Santana, 2000 ⁶⁰⁰	Wrong population
Santos, 2013 ⁶⁰¹	Wrong population
Sara, 2014 ⁶⁰²	Wrong population
Sardanelli, 2000 ⁶⁰³	Wrong population
Sato, 2005 ⁶⁰⁴	Wrong reference standard
Sato, 2003 ⁶⁰⁵	Wrong population
Schaap, 2013 ⁶⁰⁶	Wrong population

Reference	Reason for exclusion
Scheffel, 2008 ⁶⁰⁷	Wrong population
Scheffel, 2010 ⁶⁰⁸	Wrong population
Schepis, 2007 ⁶⁰⁹	Wrong population
Schertler, 2009 ⁶¹⁰	Wrong diagnostic intervention
Schlosser, 2004 ⁶¹¹	Wrong diagnostic intervention
Schroeder, 2005 ⁶¹²	Wrong population
Schuijf, 2005 ⁶¹³	Wrong diagnostic test
Schuijf, 2006 ⁶¹⁴	Wrong population
Schwartz, 2003 ⁶¹⁵	Wrong population
Schwitter, 2001 ⁶¹⁶	Wrong population
Schwitter, 2008 ⁶¹⁷	Wrong population
Schwitter, 2012 ⁶¹⁸	Wrong population
Schwitter, 2013 ⁶¹⁹	Wrong population
Scotland, 2005 ⁵³²	Wrong study type
Sehovic, 2013 ⁶²²	Wrong population
Selcoki, 2010 ⁶²³	Wrong population
Senior, 2004 ⁶²⁴	Wrong population
Shabestari, 2007 ⁶²⁵	Wrong population
Shaheen, 1998 ⁶³⁰	Wrong population
Shariat, 2014 ⁶³¹	Wrong population
Sharma, 2012 ⁶³²	Wrong population
Sharma, 2015 ⁶³³	Wrong population
Shavelle, 2000 ⁶³⁴	Wrong population
Sheikh, 2009 ⁶³⁵	Wrong population
Sheth, 2008 ⁶³⁶	Wrong population
Shi, 2004 ⁶³⁷	Wrong population
Shin, 2009 ⁶³⁸	Wrong population
Shivalkar, 2007 ⁶³⁹	Wrong population
Shouker, 2012 ⁶⁴⁰	Wrong population
Shuman, 2008 ⁶⁴¹	Wrong population
Shuman, 2009 ⁶⁴²	Wrong diagnostic intervention
Shuman, 2010 ⁶⁴³	Wrong population
Siriapisith, 2008 ⁶⁴⁴	Wrong diagnostic test comparison
Sirol, 2009 ⁶⁴⁵	Wrong population
Slim, 2012 ⁶⁴⁶	Wrong population
Smart, 2000 ⁶⁴⁷	Wrong population
Smart, 2000 ⁶⁴⁸	Wrong population
So, 2005 ⁶⁴⁹	Wrong population
Sommer, 2005 ⁶⁵⁰	Wrong population
Soon, 2007 ⁶⁵¹	Wrong diagnostic intervention
Staniak, 2013 ⁶⁵²	Wrong diagnostic intervention
Stolzmann, 2011 ⁶⁵³	Wrong population
Stolzmann, 2011 ⁶⁵⁴	Wrong population

Reference	Reason for exclusion
Sun, 2013 ⁶⁵⁵	Wrong population
Sun, 2015 ⁶⁵⁶	Wrong population
Sun, 2010 ⁶⁵⁷	Wrong population
Suratkal, 2003658	Wrong population
Takahashi, 2004 ⁶⁵⁹	Wrong diagnostic intervention
Takakuwa, 2008 ⁶⁶⁰	Wrong study type
Takakuwa, 2011 ⁶⁶¹	No diagnostic data
Takase, 2004 ⁶⁶²	Wrong population
Takeuchi, 1999 ⁶⁶³	Wrong population
Takx, 2015 ⁶⁶⁴	Wrong population
Tan, 2007 ⁶⁶⁵	Insufficient data
Tanaka, 2008666	Wrong assessment (plaque rupture)
Tanaka, 2008 ⁶⁶⁷	Wrong diagnostic intervention
Tanaka, 2007 ⁶⁶⁸	Wrong diagnostic intervention
Tanami, 2014 ⁶⁶⁹	Wrong population
Tandogan, 2001 ⁶⁷⁰	Wrong population
Tandogan, 2001 ⁶⁷¹	Wrong population
Tardif, 2002 ⁶⁷²	Wrong population
Tas, 2013 ⁶⁷³	Wrong population
Ten Kate, 2013 ⁶⁷⁴	Wrong population
The Swedish Council on Health Technology Assessment, 2011 ⁶⁷⁶	Wrong study type
Thilo, 2011 ⁶⁷⁸	Wrong population
Thompson, 2015 ⁶⁸⁰	Wrong diagnostic intervention
Tomizawa, 2014 ⁶⁸²	Wrong diagnostic intervention
Treuth, 2001 ⁶⁸⁴	Wrong population
Truong, 2013 ⁶⁸⁶	No data of interest
Truong, 2015 ⁶⁸⁷	Wrong study type
Trzaska, 2013 ⁶⁸⁸	Wrong study type
Tsai, 2007 ⁶⁸⁹	Wrong diagnostic intervention
Tsai, 2014 ⁶⁹⁰	Wrong setting
Tsai, 2002 ⁶⁹¹	Wrong population
Tsang, 2012 ⁶⁹²	Wrong population
Tsougos, 2008 ⁶⁹³	Wrong population
Tsougos, 2012 ⁶⁹⁴	Wrong population
Turkvatan, 2008 ⁶⁹⁶	Wrong diagnostic intervention
Turnipseed, 2009 ⁶⁹⁷	Wrong study type
Uebleis, 2012 ⁶⁹⁸	Wrong population
Ueno, 2003 ⁷⁰⁰	Wrong population
Ulimoen, 2008 ⁷⁰¹	Wrong population
Underwood, 1999 ⁷⁰²	Wrong study type
Underwood, 2004 ⁷⁰³	Wrong study type
Utsunomiya, 2015 ⁷⁰⁴	Wrong population

Reference	Reason for exclusion
Valenta, 2014 ⁷⁰⁶	Wrong population
van der Wall, 2015 ⁷⁰⁷	Wrong study type
Van Geuns, 1999 ⁷⁰⁸	Wrong population
Van Mieghem, 2007 ⁷⁰⁹	Wrong population
van Velzen, 2011 ⁷¹¹	Wrong population
van Werkhoven, 2010 ⁷¹²	Wrong population
Vashist, 2007 ⁷¹³	Wrong population
Vavere, 2011 ⁷¹⁴	Wrong diagnostic intervention
Verna, 2000 ⁷¹⁵	Wrong population
Vigna, 2001 ⁷¹⁶	Wrong population
Vijayakrishnan, 2012 ⁷¹⁷	Unclear population
von Ziegler, 2012 ⁷²⁰	Wrong population
Wagdi, 2010 ⁷²²	Wrong population
Walker, 2013 ⁷²³	Wrong study type
Wang, 2011 ⁷²⁴	Wrong population
Wang, 2011 ⁷²⁵	Wrong population
Watkins, 2007 ⁷²⁶	Wrong diagnostic intervention
Wehrschuetz, 2010 ⁷²⁸	Wrong population
Weinsaft, 2007 ⁷²⁹	Wrong population
Weustink, 2007 ⁷³¹	Wrong population
Weustink, 2010 ⁷³²	Wrong study type
Weustink, 2012 ⁷³³	Wrong population
White, 2005 ⁷³⁴	Wrong diagnostic intervention
Wierzbowska-Drabik, 2014736	Wrong population
Wilson, 2011 ⁷³⁷	Wrong study type
Winchester, 2015 ⁷³⁸	Unclear analysis
Winchester, 2013 ⁷³⁹	Wrong study type
Winchester, 2012 ⁷⁴⁰	Wrong population
Xu, 2010 ⁷⁴¹	Wrong population
Yamada, 2004 ⁷⁴²	Wrong population
Yang, 2015 ⁷⁴³	Wrong population
Yerramasu, 2014 ⁷⁴⁴	Wrong population
Zaag-Loonen, 2006 ⁷⁴⁵	Wrong population
Zancaner, 2012 ⁷⁴⁶	Wrong study type
Zeb, 2014 ⁷⁴⁷	Wrong study type
Zeb, 2012 ⁷⁴⁸	Wrong study type
Zhang, 2010 ⁷⁵⁰	Wrong population
Zhang, 2004 ⁷⁵¹	Developing country
Zhao, 2011 ⁷⁵²	Wrong study type
Zorga, 2012 ⁷⁵³	Wrong study type
Zwank, 2015 ⁷⁵⁴	Wrong study type

N.3 Diagnostic test accuracy of non-invasive imaging for the identification of people with NSTEMI/unstable angina

Reference	Reason for exclusion
A, 2013 ¹⁸	Wrong diagnostic intervention
Abbasi, 2014 ¹	Wrong population
Abbott, 2000 ²	Wrong study type
Abbott, 2003 ³	Wrong study type
Abd, 2015 ⁴	Wrong study type
Abdelmoneim, 2009 ⁷	Wrong study type
Abdelmoneim, 2011 ⁸	Wrong population
Abdelmoneim, 2010 ⁹	Wrong population
Abdelmoneim, 2010 ¹⁰	Wrong population
Abdelmoneim, 2009 ¹¹	Wrong population
Abdelmoneim, 2009 ¹²	Wrong population
Abdelmoneim, 2015 ¹³	Wrong diagnostic comparison
Abdel-Rahman, 2015⁵	Wrong population
Abdel-Salam, 2015 ⁶	Wrong diagnostic intervention
Abdool, 2014 ¹⁴	Wrong population
Abdulla, 2007 ¹⁵	Wrong population
Abdulla, 2012 ¹⁶	Wrong intervention
Abraham, 2010 ¹⁷	Wrong study type
Abramson, 2000 ¹⁹	Wrong population
Achenbach, 2010 ²⁰	Wrong study type
Achenbach, 2001 ²¹	Wrong population
Achenbach, 1998 ²²	Wrong diagnostic intervention
Achenbach, 2008 ²³	Wrong population
Adams, 2007 ²⁴	Wrong population
Adil, 2011 ²⁵	Wrong population
Agarwal, 2012 ²⁶	Wrong population
Aggarwal, 2015 ²⁷	Wrong population
Aggeli, 2011 ²⁸	Wrong population
Aggeli, 2007 ²⁹	Wrong population
Ahmad, 2001 ³⁰	Wrong population
Ahmadvazir, 2014 ³¹	Wrong population
Ahn, 2011 ³²	Wrong diagnostic intervention
Ahn, 2013 ³³	Wrong population
Aidi, 2014 ³⁴	Wrong population
Akbar, 2010 ³⁵	No data of interest
Akram, 2008 ³⁶	Wrong diagnostic intervention
Al Moudi, 2011 ⁴²	Wrong population
Al Moudi, 2014 ⁴³	Wrong diagnostic comparison
Aldweib, 2013 ⁴⁷	Wrong population
Alessandri, 2009 ⁴⁸	Wrong population
Alexanderson, 2004 ⁴⁹	Wrong population

Reference	Reason for exclusion
Alexanderson, 2006 ⁵⁰	Wrong diagnostic intervention
Alexanderson Rosas, 2010 ⁵¹	Wrong intervention
Alexopoulos, 2005 ⁵²	Wrong diagnostic intervention
Ali, 2007 ⁵³	Wrong population
AlJaroudi, 2013 ⁵⁴	Wrong population
Alkadhi, 2008 ⁵⁵	Wrong population
Alkadhi, 2010 ⁵⁶	Wrong diagnostic intervention
Al-Kaylani, 2002 ³⁷	Wrong diagnostic evaluation
Allajbeu, 2014 ⁵⁷	Wrong population
Al-Mallah, 2011 ³⁸	Wrong study type
Al-Mallah, 2014 ³⁹	Wrong population
Almeida, 2002 ⁵⁸	Wrong population
Almoudi, 2012 ⁵⁹	Wrong diagnostic intervention
Alqaisi, 2008 ⁶⁰	Wrong population
al-Saadi, 2002 ⁴⁰	Wrong population
Al-Saadi, 2000 ⁴¹	Wrong population
Altinmakas, 2000 ⁶¹	Wrong population
Altiok, 2013 ⁶²	Wrong diagnostic comparison
Altiok, 2012 ⁶³	Wrong diagnostic comparison
Altiok, 2014 ⁶⁴	Wrong diagnostic comparison
Altun, 2005 ⁶⁵	Wrong population
Altunkeser, 2002 ⁶⁶	Wrong population
Alunni, 2015 ⁶⁷	Wrong diagnostic intervention
Alvarez Tamargo, 200868	Wrong diagnostic intervention
Amanuma, 2015 ⁶⁹	Wrong population
American College of, 2006 ⁷⁰	Wrong study type
Amit, 2014 ⁷¹	Wrong study type
Anagnostopoulos, 201373	Wrong study type
Anand, 2003 ⁷⁴	Wrong study type
Anantharam, 2009 ⁷⁵	No available data
Anders, 2013 ⁷⁶	Wrong population
Andrade, 2009 ⁷⁸	Wrong population
Andrassy, 2011 ⁷⁹	Wrong population
Andreini, 2016 ⁸⁰	Wrong study type (report)
Andreini, 2010 ⁸¹	Wrong population
Annuar, 2008 ⁸²	Wrong population
Anonymous, 1997 ³⁴⁶	Wrong population
Anonymous, 2009 ²³⁶	Wrong study type
Anonymous, 2015 ²³⁵	Wrong study type
Antony, 2011 ⁸³	Wrong study type
Anwar, 2013 ⁸⁴	Wrong population
Aoyagi, 1998 ⁸⁵	Wrong population
Apostolopoulos, 2012 ⁸⁶	Wrong population

Reference	Reason for exclusion
Arbab-Zadeh, 2015 ⁸⁸	Wrong population
Arbab-Zadeh, 2011 ⁸⁹	Wrong intervention
Argulian, 2014 ⁹⁰	Wrong population
Arnold, 2012 ⁹¹	Wrong study type
Arnold, 2010 ⁹²	Wrong population
Arsanjani, 201393	Wrong study type
Arsanjani, 2013 ⁹⁴	Wrong population
Arsanjani, 2013 ⁹⁵	Wrong study type
Arumugam, 2013 ⁹⁶	Wrong study type
Asferg, 2012 ⁹⁷	Wrong population
Asher, 2015 ⁹⁸	Wrong intervention
Atar, 2000 ⁹⁹	Wrong intervention
Athappan, 2010 ¹⁰⁰	Different risk categories to protocol and date cut-off May 2008
Babar Imran, 2003 ¹⁰¹	Wrong population
Balaravi, 2006 ¹⁰³	Wrong analysis and wrong population (prognostic)
Bamberg, 2008 ¹⁰⁵	Wrong study type (substudy)
Bamberg, 2014 ¹⁰⁶	Wrong population
Bamberg, 2009 ¹⁰⁷	Wrong study type (ROMICAT substudy)
Banerjee, 2012 ¹⁰⁸	Wrong study type
Bangalore, 2007 ¹⁰⁹	Wrong population
Bangalore, 2005 ¹¹⁰	Wrong population
Barbirato, 2009 ¹¹¹	Not English language
Barletta, 1999 ¹¹²	Wrong population
Barmeyer, 2008 ¹¹³	Wrong population
Barraclough, 2015 ¹¹⁴	Wrong study type
Baszko, 2001 ¹¹⁵	Wrong population
Bateman, 2009 ¹¹⁶	Wrong population
Bateman, 2006 ¹¹⁷	Wrong population
Bauer, 2010 ¹¹⁸	Wrong population
Bauernfeind, 2011 ¹¹⁹	Not topic of interest – prognostic
Beck, 2002 ¹²⁰	Wrong population
Becker, 2007 ¹²¹	Wrong population
Becker, 2001 ¹²²	Wrong population
Becker, 2012 ¹²³	Wrong study type
Bekler, 2014 ¹²⁶	No available data
Belardinelli, 2014 ¹²⁷	Wrong diagnostic comparison
Ben Bouallegue, 2015 ¹²⁸	Wrong population
Benchimol, 2000 ¹²⁹	Wrong population
Benedek, 2013 ¹³⁰	Wrong population and wrong study type
Benedek, 2014 ¹³¹	Wrong study type
Benkiran, 2015 ¹³²	Wrong population
Berdahl, 2013 ¹³⁴	Wrong study type
Bergeron, 2004 ¹³⁵	Wrong population

Reference	Reason for exclusion
Beslic, 2011 ¹³⁶	Wrong population
Bettencourt, 2013 ¹³⁷	Wrong population
Bettencourt, 2013 ¹³⁸	Wrong population
Bettencourt, 2013 ¹³⁹	Wrong population and setting
Bettencourt, 2013 ¹⁴⁰	Wrong population
Better, 2012 ¹⁴¹	Developing countries
Beule, 2010 ¹⁴²	Wrong study type
Bholasingh, 2003 ¹⁴⁴	Wrong study type
Biagini, 2006 ¹⁴⁶	Wrong population
Biglands, 2015 ¹⁵⁰	Wrong study type
Bischoff, 2012 ¹⁵¹	Wrong population
Blankstein, 2012 ¹⁵²	Wrong study type
Blinder, 2005 ¹⁵³	No DTA data available
Blomstrand, 2004 ¹⁵⁴	Wrong population
BlueCross BlueShield Association, 2011 ¹⁵⁵	Wrong study type
Bogaert, 2015 ¹⁵⁷	Wrong study type
Boglioli, 2001 ¹⁵⁸	Wrong study type
Boiten, 2012 ¹⁵⁹	Wrong population
Bom, 2015 ¹⁶⁰	Wrong population
Boussel, 2008 ¹⁶²	Wrong population
Bouzas-Mosquera, 2015 ¹⁶³	Wrong population
Branch, 2012 ¹⁶⁵	Wrong study type
Branch, 2013 ¹⁶⁶	Wrong diagnostic intervention
Branch, 2013 ¹⁶⁷	Wrong population
Brodoefel, 2008 ¹⁶⁸	Wrong population
Brodoefel, 2008 ¹⁶⁹	Wrong population
Brodoefel, 2008 ¹⁷⁰	Wrong population
Brodov, 2015 ¹⁷¹	Wrong population
Brogsitter, 2005 ¹⁷²	Wrong study type
Brown, 2008 ¹⁷³	MACE events only
Bucerius, 2007 ¹⁷⁸	Wrong population
Buckert, 2013 ¹⁷⁹	Wrong population
Budge, 2011 ¹⁸⁰	Wrong study type
Budoff, 2003 ¹⁸¹	Wrong population
Budoff, 2013 ¹⁸²	Wrong population
Budoff, 2007 ¹⁸³	Wrong population
Burris, 2015 ¹⁸⁴	Wrong diagnostic intervention
Busch, 2011 ¹⁸⁵	Wrong population
Cabeda, 2015 ¹⁸⁶	Wrong population
Cademartiri, 2008 ¹⁸⁷	Wrong population
Cademartiri, 2007 ¹⁸⁸	Wrong population
Candell-Riera, 2007 ¹⁹⁰	Wrong population

Reference	Reason for exclusion
Candell-Riera, 2004 ¹⁹¹	Wrong population
Carlsson, 2013 ¹⁹²	Wrong population
Carrinho, 2004 ¹⁹³	Wrong population
Caymaz, 2000 ¹⁹⁵	Wrong population
Celik, 2011 ¹⁹⁶	Wrong study type
Chammas, 2002 ¹⁹⁸	Wrong population
Chan, 2003 ¹⁹⁹	Wrong population
Chandra, 2001 ²⁰⁰	Wrong study type
Chandraratna, 2012 ²⁰¹	Wrong population
Chandraratna, 2012 ²⁰²	Wrong diagnostic interventions
Chang, 2008 ²⁰³	Wrong study type
Chang, 2008 ²⁰⁴	Wrong population
Chao, 2010 ²⁰⁵	Wrong population
Chaosuwannakit, 2012 ²⁰⁶	Wrong population
Cheezum, 2014 ²⁰⁷	Wrong study type
Chen, 2013 ²⁰⁸	Wrong population
Chen, 1999 ²⁰⁹	Wrong population
Chen, 2014 ²¹⁰	Wrong population
Chen, 2001 ²¹¹	Wrong population
Chen, 2012 ²¹²	Wrong population
Chen, 2011 ²¹³	Wrong diagnostic intervention
Chen, 2010 ²¹⁴	Wrong diagnostic intervention
Cheng, 2007 ²¹⁶	Wrong population and study type; no usable data
Cheng, 2013 ²¹⁸	Wrong study type; no usable data
Cheng, 2013 ²¹⁹	Developing country
Cheng, 2000 ²²⁰	Wrong population
Cheng, 2010 ²²¹	Wrong population
Chiou, 2004 ²²²	Wrong population
Chiu, 2003 ²²³	Wrong diagnostic intervention
Choo, 2013 ²²⁴	Wrong population
Chow, 2007 ²²⁵	Wrong population
Conti, 2010 ²³¹	Wrong study type
Conti, 2010 ²³²	Wrong study type
Conti, 2008 ²³⁴	Wrong population
Cury, 2013 ²³⁹	Wrong diagnostic intervention
Dall Armellina, 2011 ²⁴⁰	Wrong study type
Dedic, 2013 ²⁴²	Insufficient method details (systematic review)
Dedic, 2014 ²⁴³	Wrong population
Dedic, 2013 ²⁴⁵	Wrong diagnostic intervention
Department of Science and Technology - Brazilian Health Technology Assessment General Coordination (DECIT-CGATS), 2008 ²⁴⁶	Wrong study type
Diercks, 2013 ²⁴⁸	Wrong diagnostic intervention

Reference	Reason for exclusion
Dodd, 2008 ²⁵⁰	Wrong study type Wrong study type
Dorgelo, 2005 ²⁵¹	Wrong diagnostic intervention
Durand, 2009 ²⁵³	Wrong study type
Duvall, 2014 ²⁵⁴	Wrong intervention
Edmond, 2002 ²⁵⁵	Wrong study type
Einstein, 2015 ²⁵⁷	Wrong population
Estrada, 2006 ²⁵⁸	Wrong diagnostic intervention
Fanaroff, 2015 ²⁵⁹	Not diagnostic intervention
	Secondary analysis - ROMICAT
Ferencik, 2012 ²⁶¹	Wrong study type
	Wrong diagnostic intervention
	Wrong diagnostic intervention
Fesmire, 2002 ²⁶⁴	Wrong intervention
Fesmire, 2001 ²⁶⁵	Wrong reference standard
Gaemperli, 2009 ²⁶⁹	Wrong population
	Wrong population
Galassi, 2000 ²⁷⁵	Wrong population
	Wrong population
	Wrong study type
Gargiulo, 2011 ²⁷⁹	Wrong population
Garrido, 2005 ²⁸⁰	Wrong study type
Gaudio, 2005 ²⁸¹	Wrong population
Gayed, 2010 ²⁸²	Wrong population
Gebker, 2012 ²⁸³	Wrong population
Gebker, 2008 ²⁸⁴	Wrong population
Geleijnse, 2000 ²⁸⁵	Wrong study type
Genders, 2013 ²⁸⁶	Wrong population
Gentile, 2001 ²⁸⁷	Wrong population
George, 2009 ²⁸⁸	Wrong population
George, 2012 ²⁸⁹	Wrong population
George, 2014 ²⁹⁰	Wrong population
Gerbaud, 2012 ²⁹¹	Wrong population
Gerber, 2005 ²⁹²	Wrong population
Ghoshhajra, 2012 ²⁹³	Wrong population
Ghostine, 2006 ²⁹⁴	Wrong population
Girzadas, 2009 ²⁹⁸	Wrong diagnostic intervention
Goldenberg, 2012 ²⁹⁹	Wrong diagnostic intervention
Gonzalez, 2013 ³⁰²	Not English language
Gonzalez, 2005 ³⁰³	Wrong population
Goodacre, 2005 ³⁰⁴	Wrong intervention

Reference	Reason for exclusion
Gouya, 2009 ³⁰⁶	Wrong population
Graf, 2007 ³⁰⁷	Wrong population
Greenslade, 2015 ³⁰⁸	Mixed population (MI and ACS)
Greenwood, 2014 ³⁰⁹	Wrong population
Greif, 2013 ³¹⁰	Wrong population
Greulich, 2012 ³¹¹	Wrong population
Greupner, 2012 ³¹²	Wrong population
Groothuis, 2012 ³¹³	Wrong population
Guo, 2011 ³¹⁴	Wrong population (CAD)
Gupta, 2013 ³¹⁵	Wrong population
Haberl, 2005 ³¹⁷	Wrong population
Han, 2013 ³²⁰	Developing country
Hansen, 2010 ³²¹	Wrong study type
Hartlage, 2012 ³²²	Wrong study type
Heitner, 2014 ³²⁴	Wrong population
Hermann, 2009 ³²⁵	No discernible data
Heuschmid, 2007 ³²⁶	Wrong population
Heydari, 2011 ³²⁷	Wrong diagnostic intervention
Hoffmann, 2006 ³³²	Wrong diagnostic intervention
Holubkov, 2002 ³³⁷	Wrong population
Hou, 2014 ³³⁸	Wrong population
Hsu, 2008 ³³⁹	Developing country
Hulten, 2013 ³⁴⁰	Wrong population
Husmann, 2008 ³⁴¹	Wrong population
Husmann, 2009 ³⁴²	Wrong population
Husmann, 2008 ³⁴³	Wrong population
Husmann, 2008 ³⁴⁴	Wrong population (CAD)
Hwang, 2014 ³⁴⁵	Wrong population
Imran, 2006 ³⁴⁸	Wrong population
investigators, 2015 ⁶²⁰	Wrong population
Isoda, 1999 ³⁵¹	Wrong population
lyengar, 2016 ³⁵²	Wrong population
Jahnke, 2007 ³⁵³	Wrong study type
Jahnke, 2004 ³⁵⁴	Wrong population
Jang, 2011 ³⁵⁵	Wrong population
Januzzi, 2010 ³⁵⁶	Wrong intervention
Jeetley, 2006 ³⁵⁷	Wrong study type
Jimenez-Hoyuela Garcia, 2006 ³⁵⁸	Wrong reference standard
Jug, 2012 ³⁶¹	Wrong study type
Kadokami, 2012 ³⁶²	Wrong population
Kajander, 2010 ³⁶³	Wrong population
Kaminek, 2001 ³⁶⁴	Wrong population
Kamiya, 2014 ³⁶⁵	Wrong population

Reference	Reason for exclusion
Kang, 2005 ³⁶⁶	Wrong intervention
Kang, 1999 ³⁶⁷	Wrong population
Karacavus, 2015 ³⁶⁸	Unclear follow-up
Kaul, 2004 ³⁶⁹	Wrong study type
Kawai, 2004 ³⁷⁰	Wrong population
Kawecki, 2015 ³⁷¹	Wrong population
Keijer, 2000 ³⁷²	Wrong population
Kim, 2008 ³⁷⁷	Wrong population
Kim, 2014 ³⁷⁸	Wrong population
Kim, 2001 ³⁷⁹	Wrong population
Kim, 1999 ³⁸⁰	Wrong population
Kim, 2006 ³⁸¹	Wrong population
Kirisli, 2014 ³⁸²	Wrong population
Kitagawa, 2008 ³⁸³	Wrong population
Klem, 2008 ³⁸⁴	Wrong population
Klumpp, 2015 ³⁸⁵	Wrong intervention
Klumpp, 2010 ³⁸⁶	Wrong population
Ko, 2012 ³⁸⁷	Wrong population
Ko, 2012 ³⁸⁸	Wrong population
Ko, 2014 ³⁸⁹	Wrong population
Ko, 2014 ³⁹⁰	Wrong population
Koide, 2001 ³⁹¹	Wrong population
Kontos, 2008 ³⁹²	Wrong study type
Kontos, 1999 ³⁹³	Wrong population
Kontos, 2002 ³⁹⁴	Wrong population
Koo, 2011 ³⁹⁵	Wrong population
Krittayaphong, 2003 ³⁹⁶	Wrong population
Kunimasa, 2009 ³⁹⁸	Wrong population
Langdorf, 2010 ⁴⁰¹	No data of relevance
Langer, 2009 ⁴⁰²	Wrong population
Laudon, 2010 ⁴⁰³	Wrong diagnostic intervention
Laudon, 1999 ⁴⁰⁴	Wrong diagnostic intervention
Layritz, 2014 ⁴⁰⁵	Wrong population
Lazoura, 2011 ⁴⁰⁶	Wrong population
Leber, 2007 ⁴⁰⁷	Wrong population
Leber, 2004 ⁴⁰⁸	Wrong population
Leber, 2003 ⁴⁰⁹	Wrong diagnostic intervention
Lee, 2012 ⁴¹⁰	Wrong study type
Lee, 2001 ⁴¹¹	Wrong population
Lehmkuhl, 2011 ⁴¹²	Wrong population
Lei, 2013 ⁴¹³	Wrong population
Lemos, 2014 ⁴¹⁴	Wrong population
Leschka, 2005 ⁴¹⁵	Wrong population

Reference	Reason for exclusion
Leschka, 2009 ⁴¹⁶	Wrong population
Leurent, 2011 ⁴¹⁷	Wrong population
Li, 2011 ⁴¹⁸	Wrong population
Li, 2012 ⁴¹⁹	Wrong population
Li, 2014 ⁴²⁰	Wrong population
Lin, 2010 ⁴²³	Wrong study type
Lin, 2008 ⁴²⁴	Wrong study type
Litt, 2012 ⁴³⁰	Wrong study type
Litt, 2015 ⁴³¹	Wrong population
Lo, 2011 ⁴³²	Wrong study type
Lockie, 2011 ⁴³³	Wrong population
Loimaala, 1999 ⁴³⁴	Wrong population
Loimaala, 1999 ⁴³⁵	Wrong study type
Lowenstein, 2003 ⁴³⁷	Wrong study type
Lu, 2011 ⁴³⁸	Wrong population
Machida, 2015 ⁴³⁹	Wrong study type
Macor, 2003 ⁴⁴⁰	Wrong population
Maffei, 2012 ⁴⁴¹	Wrong population
Maffei, 2011 ⁴⁴²	Wrong population
Maffei, 2012 ⁴⁴³	Wrong population
Maffei, 2011 ⁴⁴⁴	Wrong population
Maffei, 2010 ⁴⁴⁵	Wrong population
Maffei, 2010 ⁴⁴⁶	Wrong population
Maffei, 2010 ⁴⁴⁷	Wrong population
Magalhaes, 2011 ⁴⁴⁸	Wrong population
Magalhaes, 2015 ⁴⁴⁹	Wrong population
Mahajan, 2010 ⁴⁵⁰	Wrong population
Maintz, 2007 ⁴⁵¹	Wrong diagnostic intervention
Majstorov, 2005 ⁴⁵²	Wrong population
Makaryus, 2014 ⁴⁵³	Wrong population
Malago, 2010 ⁴⁵⁴	Wrong population
Malago, 2012 ⁴⁵⁵	Wrong population
Malago, 2013 ⁴⁵⁶	Wrong population
Maltagliati, 2000 ⁴⁵⁷	Wrong population
Manini, 2009 ⁴⁵⁸	Wrong diagnostic intervention
Manka, 2012 ⁴⁵⁹	Wrong diagnostic intervention
Manka, 2015 ⁴⁶⁰	Wrong population
Mannan, 2014 ⁴⁶¹	Wrong population
Maret, 2008 ⁴⁶²	Wrong diagnostic intervention
Markman Filho, 2006 ⁴⁶³	Wrong diagnostic intervention; prognostic only
Martuscelli, 2004 ⁴⁶⁴	Wrong diagnostic intervention
Mas-Stachurska, 2015 ⁴⁶⁵	Wrong population
Mastrobuoni, 2009 ⁴⁶⁶	Wrong population

Reference	Reason for exclusion
Matsuda, 2015 ⁴⁶⁷	Wrong diagnostic intervention
Matsumoto, 2006 ⁴⁶⁸	Wrong population
Matsunari, 2005 ⁴⁶⁹	Wrong population
Mc Ardle, 2012 ⁴⁷⁰	Wrong diagnostic intervention
Meijboom, 2007 ⁴⁷²	Wrong population
Meijs, 2010 ⁴⁷³	Wrong study type
Meinel, 2014 ⁴⁷⁴	Wrong diagnostic intervention
Meintjes, 2016 ⁴⁷⁵	Wrong study intervention
Mendoza-Rodriguez, 2009477	Wrong population
Meng, 2009 ⁴⁷⁸	Wrong diagnostic intervention
Menon, 2009 ⁴⁷⁹	Wrong population
Merkle, 2010 ⁴⁸⁰	Wrong population
Meurin, 2015 ⁴⁸¹	Wrong population
Meyer, 2012 ⁴⁸²	Wrong population
Meyer, 2013 ⁴⁸³	Wrong diagnostic intervention
Midiri, 2015 ⁴⁸⁴	Wrong study type
Mieres, 2007 ⁴⁸⁵	Wrong population
Miller, 2008 ⁴⁸⁸	Wrong population
Miller, 2009 ⁴⁸⁹	Wrong study type
Miller, 2010 ⁴⁹⁰	Wrong population
Miller, 2002 ⁴⁹¹	Wrong population
Miszalski-Jamka, 2006 ⁴⁹²	Wrong population
Mohammadzadeh, 2012 ⁴⁹³	Wrong population
Moir, 2004 ⁴⁹⁴	Wrong population
Mollet, 2011 ⁴⁹⁵	Wrong population
Mollet, 2005 ⁴⁹⁶	Wrong population
Moon, 2011 ⁴⁹⁷	Wrong population
Moon, 2013 ⁴⁹⁸	Wrong population
Moon, 2005 ⁴⁹⁹	Wrong population
Moralidis, 2007 ⁵⁰⁰	Wrong diagnostic intervention
Moralidis, 2010 ⁵⁰¹	Wrong study type
Mordi, 2014 ⁵⁰²	Wrong population
Mordini, 2014 ⁵⁰³	Wrong population
Morise, 2000 ⁵⁰⁴	Wrong population
Morton, 2012 ⁵⁰⁵	Wrong population
Moscariello, 2012 ⁵⁰⁶	Wrong population
Motevalli, 2014 ⁵⁰⁷	Developing country
Motoyama, 2013 ⁵⁰⁸	Wrong population
Motoyasu, 2003 ⁵⁰⁹	Wrong population
Muhlenbruch, 2007 ⁵¹²	Wrong population
Muscholl, 2002 ⁵¹³	Wrong reference standard
Musto, 2007 ⁵¹⁴	Wrong population
Nabi, 2010 ⁵¹⁵	Wrong diagnostic intervention

Reference	Reason for exclusion
Nagao, 2009 ⁵¹⁶	Wrong population
Nagao, 2009 ⁵¹⁷	Wrong population
Nagori, 2014 ⁵¹⁸	Developing country
Nair, 2012 ⁵¹⁹	Wrong population
Nakazato, 2012 ⁵²⁰	Wrong population
Nakazato, 2015 ⁵²¹	Wrong population
Nakazato, 2010 ⁵²²	Wrong population
Nasis, 2013 ⁵²³	Wrong population
Nasis, 2010 ⁵²⁴	Wrong population
National Horizon Scanning Centre (NHSC), 2007 ⁵²⁶	Wrong study type
National Horizon Scanning Centre (NHSC), 2007 ⁵²⁵	Wrong study type
Nedeljkovic, 2006 ⁵²⁹	Wrong population
Neefjes, 2013 ⁵³⁰	Wrong population
Neglia, 2015 ⁵³¹	Wrong population
NHSC, 2006 ⁵³³	Wrong study type
Nicol, 2008 ⁵³⁴	Wrong population
Nicol, 2008 ⁵³⁵	Wrong population
Nieman, 2009 ⁵³⁶	Wrong population
Nieman, 2002 ⁵³⁷	Wrong population
Nikolaou, 2006 ⁵³⁸	Wrong population
Ogino, 2015 ⁵⁴⁰	Wrong population
Olivetti, 2006 ⁵⁴¹	Wrong diagnostic intervention
Olszowska, 2003 ⁵⁴³	Wrong population
Oncel, 2007 ⁵⁴⁴	Wrong population
Oncel, 2007 ⁵⁴⁵	Wrong population
Ovrehus, 2010 ⁵⁴⁶	Wrong population
Palagi, 2003 ⁵⁴⁷	Wrong study type
Palumbo, 2009 ⁵⁴⁸	Wrong population
Parato, 2010 ⁵⁴⁹	Wrong population
Park, 2007 ⁵⁵⁰	Wrong population
Parker, 2015 ⁵⁵¹	Wrong population
Parker, 2012 ⁵⁵²	Wrong population
Patsilinakos, 1999553	Wrong population
Pavlovic, 2010 ⁵⁵⁴	Wrong population
Pelliccia, 2013 ⁵⁵⁵	Wrong population
Pereira, 2013556	Wrong population
Pilz, 2010 ⁵⁵⁷	Wrong population
Plein, 2004 ⁵⁵⁸	Wrong population
Ponte, 2014 ⁵⁵⁹	Wrong population
Pontone, 2009 ⁵⁶⁰	Wrong population
Pontone, 2007 ⁵⁶¹	Wrong population
Previtali, 1999 ⁵⁶⁴	Wrong population

Reference	Reason for exclusion
Pursnani, 2015565	Wrong population
Rastgou, 2012 ⁵⁶⁸	Wrong population and developing country
Reinsch, 2012 ⁵⁷³	Wrong population
Rieber, 2006 ⁵⁷⁷	Wrong population
Rieber, 2004 ⁵⁷⁸	Wrong population
Rispler, 2011 ⁵⁷⁹	Wrong population
Rispler, 2007 ⁵⁸⁰	Wrong population
Rollan, 2002 ⁵⁸¹	Wrong population
Ronderos, 2002 ⁵⁸²	Wrong diagnostic intervention
Rubinshtein, 2007 ⁵⁸⁵	Wrong population
Rubinshtein, 2009 ⁵⁸⁶	Wrong population
Ruzsics, 2008 ⁵⁸⁷	Wrong population
Ruzsics, 2009 ⁵⁸⁸	Wrong population
Saad, 2011 ⁵⁸⁹	Wrong population
Saba, 2015 ⁵⁹⁰	Wrong population
Sabharwal, 2007 ⁵⁹¹	Wrong population
Sajjadieh, 2013 ⁵⁹³	Wrong population
Sakakura, 2006 ⁵⁹⁴	Wrong population
Sakuma, 2005 ⁵⁹⁵	Wrong population
Sampson, 2007 ⁵⁹⁶	Wrong population
Santana, 2009 ⁵⁹⁹	Wrong population
Santana, 2000 ⁶⁰⁰	Wrong population
Santos, 2013 ⁶⁰¹	Wrong population
Sara, 2014 ⁶⁰²	Wrong population
Sardanelli, 2000 ⁶⁰³	Wrong population
Sato, 2005 ⁶⁰⁴	Wrong reference standard
Sato, 2003 ⁶⁰⁵	Wrong population
Schaap, 2013 ⁶⁰⁶	Wrong population
Scheffel, 2008 ⁶⁰⁷	Wrong population
Scheffel, 2010 ⁶⁰⁸	Wrong population
Schepis, 2007 ⁶⁰⁹	Wrong population
Schertler, 2009 ⁶¹⁰	Wrong diagnostic intervention
Schlosser, 2004 ⁶¹¹	Wrong diagnostic intervention
Schroeder, 2005 ⁶¹²	Wrong population
Schuijf, 2005 ⁶¹³	Wrong diagnostic test
Schuijf, 2006 ⁶¹⁴	Wrong population
Schwartz, 2003 ⁶¹⁵	Wrong population
Schwitter, 2001 ⁶¹⁶	Wrong population
Schwitter, 2008 ⁶¹⁷	Wrong population
Schwitter, 2012 ⁶¹⁸	Wrong population
Schwitter, 2013 ⁶¹⁹	Wrong population
Scotland, 2005 ⁵³²	Wrong study type
Sehovic, 2013 ⁶²²	Wrong population

Reference	Reason for exclusion
Selcoki, 2010 ⁶²³	Wrong population
Senior, 2004 ⁶²⁴	Wrong population
Shabestari, 2007 ⁶²⁵	Wrong population
Shaheen, 1998 ⁶³⁰	Wrong population
Shariat, 2014 ⁶³¹	Wrong population
Sharma, 2012 ⁶³²	Wrong population
Sharma, 2015 ⁶³³	Wrong population
Shavelle, 2000 ⁶³⁴	Wrong population
Sheikh, 2009 ⁶³⁵	Wrong population
Sheth, 2008 ⁶³⁶	Wrong population
Shi, 2004 ⁶³⁷	Wrong population
Shin, 2009 ⁶³⁸	Wrong population
Shivalkar, 2007 ⁶³⁹	Wrong population
Shouker, 2012 ⁶⁴⁰	Wrong population
Shuman, 2008 ⁶⁴¹	Wrong population
Shuman, 2009 ⁶⁴²	Wrong diagnostic intervention
Shuman, 2010 ⁶⁴³	Wrong population
Siriapisith, 2008 ⁶⁴⁴	Wrong diagnostic test comparison
Sirol, 2009 ⁶⁴⁵	Wrong population
Slim, 2012 ⁶⁴⁶	Wrong population
Smart, 2000 ⁶⁴⁷	Wrong population
Smart, 2000 ⁶⁴⁸	Wrong population
So, 2005 ⁶⁴⁹	Wrong population
Sommer, 2005 ⁶⁵⁰	Wrong population
Soon, 2007 ⁶⁵¹	Wrong diagnostic intervention
Staniak, 2013 ⁶⁵²	Wrong diagnostic intervention
Stolzmann, 2011 ⁶⁵³	Wrong population
Stolzmann, 2011 ⁶⁵⁴	Wrong population
Sun, 2013 ⁶⁵⁵	Wrong population
Sun, 2015 ⁶⁵⁶	Wrong population
Sun, 2010 ⁶⁵⁷	Wrong population
Suratkal, 2003658	Wrong population
Takahashi, 2004 ⁶⁵⁹	Wrong diagnostic intervention
Takakuwa, 2008 ⁶⁶⁰	Wrong study type
Takakuwa, 2011 ⁶⁶¹	No diagnostic data
Takase, 2004 ⁶⁶²	Wrong population
Takeuchi, 1999 ⁶⁶³	Wrong population
Takx, 2015 ⁶⁶⁴	Wrong population
Tan, 2007 ⁶⁶⁵	Insufficient data
Tanaka, 2008666	Wrong assessment (plaque rupture)
Tanaka, 2008 ⁶⁶⁷	Wrong diagnostic intervention
Tanaka, 2007 ⁶⁶⁸	Wrong diagnostic intervention
Tanami, 2014 ⁶⁶⁹	Wrong population

Tandogan, 2001 ⁴⁷¹ Wrong populationTandogan, 2001 ⁴⁷¹ Wrong populationTardif, 2002 ⁴⁷² Wrong populationTarka, 2013 ⁷⁷⁴ Wrong populationThe Kate, 2013 ⁷⁷⁴ Wrong populationThe Kate, 2013 ⁷⁷⁴ Wrong populationThe Saessement, 2011 ⁴⁷⁵⁷ Wrong diagnostic interventionThompson, 2015 ⁴⁸⁶¹ Wrong diagnostic interventionTomizawa, 2014 ⁴⁹²⁰ Wrong diagnostic interventionTruung, 2013 ⁴⁹⁴¹ Wrong study typeTruung, 2013 ⁴⁹⁵² Wrong study typeTrusta, 2013 ⁴⁹⁶⁴ Wrong study typeTrasia, 2013 ⁴⁹⁶⁴ Wrong study typeTsai, 2002 ⁹⁶¹ Wrong populationTsai, 2002 ⁹⁶¹ Wrong populationTurung, 2015 ⁹⁷² Wrong populationTurung 2012 ⁶⁹⁴ Wrong populationTurung 2012 ⁶⁹⁴ Wrong populationTurung 2012 ⁶⁹⁴ Wrong populationTurung 2012 ⁶⁹⁴ Wrong populationUnderwood, 1999 ⁷⁹² Wrong populationUnderwood, 2004 ⁷⁹³ Wrong populationUnderwood, 2004 ⁷⁹³ Wrong populationVander X014 ⁷⁹⁴ Wrong population <t< th=""><th>Reference</th><th>Reason for exclusion</th></t<>	Reference	Reason for exclusion
Tardif, 2002 ⁹⁷² Wrong populationTas, 2013 ⁹⁷⁴ Wrong populationTen Kat, 2013 ⁹⁷⁴ Wrong study typeTen Kat, 2013 ⁹⁷⁴ Wrong study typeThe Sweids Kouncil on HealthWrong diagnostic interventionThompson, 2015 ⁶⁶⁰ Wrong diagnostic interventionTomizawa, 2014 ⁸⁸² Wrong gopulationTruung, 2013 ⁹⁸⁶ No data of interestTruung, 2013 ⁹⁸⁶ No data of interestTruung, 2013 ⁹⁸⁶ Wrong study typeTasia, 2001 ⁸⁸⁶ Wrong gopulationTasia, 2014 ⁸⁸² Wrong gopulationTasia, 2014 ⁸⁸³ Wrong gopulationTasia, 2013 ⁶⁸⁶ Wrong gopulationTasia, 2013 ⁶⁸⁶ Wrong gopulationTasia, 2014 ⁸⁹³ Wrong populationTasia, 2012 ⁸⁹⁴ Wrong populationTasia, 2012 ⁸⁹⁴ Wrong populationTasia, 2012 ⁸⁹⁵ Wrong populationTurung, 2012 ⁸⁹⁴ Wrong populationTurung, 2012 ⁸⁹⁴ Wrong populationTurung, 2012 ⁸⁹⁴ Wrong populationUselles, 2012 ⁸⁹⁴ Wrong populationUnderwood, 2004 ⁸⁹⁴ Wrong populationUnderwood, 1999 ⁹⁹⁴ Wrong populationUlinnoen, 2008 ⁸⁹⁵ Wrong populationUlistonnity, 2015 ⁷⁹⁴ Wrong populationVan Gus, 1999 ⁹⁹⁴⁰ Wrong populationVan Gus, 1999 ⁹⁹⁴⁰ Wrong populationVan Gus, 1999 ⁹⁷⁴¹ Wrong populationVan Merkhoven, 2017 ¹⁷⁴ Wrong populationVan Kit, 2007 ¹⁷⁴¹ Wrong populationVan Kit, 2007 ¹⁷⁴⁴ Wrong population	Tandogan, 2001 ⁶⁷⁰	Wrong population
Tardif, 2002 ⁹⁷² Wrong populationTas, 2013 ⁹⁷⁴ Wrong populationTen Kat, 2013 ⁹⁷⁴ Wrong study typeTen Kat, 2013 ⁹⁷⁴ Wrong study typeThe Sweids Kouncil on HealthWrong diagnostic interventionThompson, 2015 ⁶⁶⁰ Wrong diagnostic interventionTomizawa, 2014 ⁸⁸² Wrong gopulationTruung, 2013 ⁹⁸⁶ No data of interestTruung, 2013 ⁹⁸⁶ No data of interestTruung, 2013 ⁹⁸⁶ Wrong study typeTasia, 2001 ⁸⁸⁶ Wrong gopulationTasia, 2014 ⁸⁸² Wrong gopulationTasia, 2014 ⁸⁸³ Wrong gopulationTasia, 2013 ⁶⁸⁶ Wrong gopulationTasia, 2013 ⁶⁸⁶ Wrong gopulationTasia, 2014 ⁸⁹³ Wrong populationTasia, 2012 ⁸⁹⁴ Wrong populationTasia, 2012 ⁸⁹⁴ Wrong populationTasia, 2012 ⁸⁹⁵ Wrong populationTurung, 2012 ⁸⁹⁴ Wrong populationTurung, 2012 ⁸⁹⁴ Wrong populationTurung, 2012 ⁸⁹⁴ Wrong populationUselles, 2012 ⁸⁹⁴ Wrong populationUnderwood, 2004 ⁸⁹⁴ Wrong populationUnderwood, 1999 ⁹⁹⁴ Wrong populationUlinnoen, 2008 ⁸⁹⁵ Wrong populationUlistonnity, 2015 ⁷⁹⁴ Wrong populationVan Gus, 1999 ⁹⁹⁴⁰ Wrong populationVan Gus, 1999 ⁹⁹⁴⁰ Wrong populationVan Gus, 1999 ⁹⁷⁴¹ Wrong populationVan Merkhoven, 2017 ¹⁷⁴ Wrong populationVan Kit, 2007 ¹⁷⁴¹ Wrong populationVan Kit, 2007 ¹⁷⁴⁴ Wrong population	Tandogan, 2001 ⁶⁷¹	Wrong population
Ten Kate, 2013Wrong populationThe Swedish Council on Health Technology Assessment, 2011Wrong study typeThilo, 2011Wrong diagnostic interventionThilo, 2011Wrong diagnostic interventionTomizawa, 2014Wrong populationTreuth, 2001Wrong diagnostic interventionTruong, 2013Wrong study typeTraska, 2013Wrong study typeTraska, 2013Wrong study typeTraska, 2013Wrong study typeTsai, 2007Wrong study typeTsai, 2007Wrong study typeTsai, 2002Wrong study typeTsai, 2002Wrong spulationTsai, 2012Wrong populationTsai, 2012Wrong populationTsai, 2012Wrong populationTsai, 2012Wrong populationTurkyata, 2008Wrong populationTurkyata, 2008Wrong spulationTurkyata, 2009Wrong spulationTurkyata, 2009Wrong spulationUebleis, 2012Wrong spulationUnderwood, 2004Wrong spulationUnderwood, 2004Wrong spulationUnderwood, 2004Wrong spulationVanderw, 2015Wrong populationVanderw, 2015Wrong populationVanderw, 2017Wrong populationVan Mieghem,	Tardif, 2002 ⁶⁷²	Wrong population
Ten Kate, 2013*74Wrong populationThe Swedish Council on Health Technology Assessment, 2011*76Wrong study typeThilo, 2011*78Wrong diagnostic interventionThompson, 2015*80Wrong diagnostic interventionTomizawa, 2014*81Wrong populationTreuth, 2001*84Wrong study typeTreuth, 2001*84Wrong study typeTraska, 2013*87Wrong study typeTraska, 2013*88Wrong study typeTraska, 2013*89Wrong study typeTsai, 2007***Wrong study typeTsai, 2002***Wrong spulationTsai, 2012***Wrong populationTsai, 2012***Wrong populationTsai, 2012***Wrong populationTsai, 2012***Wrong populationTsai, 2012***Wrong populationTsai, 202***Wrong populationTurkyata, 2008***Wrong populationTurkyata, 2008***Wrong study typeUebleis, 2012***Wrong study typeUebleis, 2012***Wrong study typeUlimon, 2008***Wrong study typeUlimon, 2008***Wrong study typeUlimon, 2008***Wrong study typeUlatanoWrong study typeUnderwood, 1999***Wrong study typeVan der Wall, 2015***Wrong populationVan der Wall, 2015***Wrong populationVan der Wall, 2015***Wrong study typeUnderwood, 1999***Wrong study typeVan der Wall, 2015***Wrong study typeVan der Wall, 2015***Wrong study typeVan der Wall, 2015**		
The Swedish Council on Health Technology Assessment, 2011 ⁶⁷⁶ Wrong spulationThilo, 2011 ⁶⁷⁸ Wrong diagnostic interventionTomizawa, 2014 ⁵⁸² Wrong diagnostic interventionTreuth, 2001 ⁶⁴⁴ Wrong spulationTruung, 2013 ⁸⁸⁶ No data of interestTruung, 2013 ⁸⁸⁷ Wrong study typeTraska, 2014 ⁵⁸² Wrong study typeTraska, 2014 ⁵⁸² Wrong study typeTraska, 2013 ⁸⁸⁴ Wrong study typeTasi, 2013 ⁸⁸⁵ Wrong study typeTasi, 2013 ⁸⁸⁶ Wrong study typeTasi, 2012 ⁹⁸¹ Wrong populationTasi, 2012 ⁹⁸² Wrong populationTsougos, 2018 ⁶⁸³ Wrong populationTurkvatan, 2008 ⁶⁹³ Wrong populationTurkvatan, 2008 ⁶⁹³ Wrong populationTurkvatan, 2008 ⁶⁹³ Wrong populationTurkvatan, 2008 ⁶⁹⁴ Wrong populationUeblei, 2012 ⁶⁸⁴ Wrong populationUnderwood, 1999 ⁷⁹⁷² Wrong study typeUlimoen, 2008 ⁷⁹¹ Wrong populationUnderwood, 1999 ⁷⁹²⁴ Wrong populationUnderwood, 2004 ⁷⁹³ Wrong populationValenta, 2014 ⁷⁹⁴ Wrong populationValenta, 2014 ⁷⁹⁵ Wrong populationValenta, 2014 ⁷⁹⁴ Wrong populationValenta, 2014 ⁷⁹⁴ Wrong populationValenta, 2014 ⁷⁹⁵ Wrong populationValenta, 2014 ⁷⁹⁴ Wrong populationValenta, 2014 ⁷⁹⁴ Wrong populationVan Geuns, 1999 ⁷⁹⁸ Wrong populationVan Kehoven, 2017 ¹²¹ Wrong populationV	Ten Kate, 2013 ⁶⁷⁴	Wrong population
Thilo, 2011Wrong populationThompson, 2015Wrong diagnostic interventionTomizava, 2014Wrong diagnostic interventionTreuth, 2001Wrong populationTruong, 2013No data of interestTruong, 2013Wrong study typeTraska, 2013Wrong study typeTraska, 2013Wrong diagnostic interventionTsai, 2007Wrong gopulationTsai, 2007Wrong populationTsai, 2004Wrong populationTsaid, 2004Wrong populationTsang, 2012Wrong populationTsang, 2012Wrong diagnostic interventionTuruhyzed, 2008Wrong gopulationTuruhyzed, 2008Wrong gopulationTuruhyzed, 2008Wrong gopulationTuruhyzed, 2008Wrong gopulationUebleis, 2012Wrong populationUnderwood, 1999Wrong study typeUnderwood, 1999Wrong study typeUnderwood, 2004Wrong study typeUnderwood, 2004Wrong study typeValenta, 2013Wrong spulationValenta, 2014Wrong spulationUnderwood, 1999Wrong study typeUnderwood, 1999Wrong study typeValenta, 2014Wrong spulationValenta, 2014Wrong populationValenta, 2014Wrong populationValenta, 2014Wrong populationValenta, 2014Wrong populationValenta, 2014Wrong populationVan de Wall, 2015Wrong populationVan de Wall, 2015Wrong populationVar de Val		Wrong study type
Thompson, 2015 ⁴⁸⁰ Wrong diagnostic interventionTomizawa, 2014 ⁴⁸² Wrong diagnostic interventionTreuth, 2001 ⁶⁸⁴ Wrong populationTruung, 2015 ⁶⁸⁷ Wrong study typeTraska, 2013 ⁸⁸⁸ Wrong study typeTsai, 2013 ⁸⁸⁹ Wrong study typeTsai, 2013 ⁸⁸⁹ Wrong populationTsai, 2012 ⁶⁹² Wrong populationTsai, 2012 ⁶⁹³ Wrong populationTsougo, 2008 ⁶⁹³ Wrong populationTsougo, 2008 ⁶⁹³ Wrong populationTurunipseed, 2009 ⁶⁹⁷⁷ Wrong populationTurnipseed, 2009 ⁶⁹⁷⁷ Wrong populationUebleis, 2012 ⁶⁹⁸ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUurunipseed, 2009 ⁶⁹⁷⁷ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong study typeUsonomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁵ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationValenta, 2017 ¹⁷¹ Wrong populationVan Velzen, 2017 ¹⁷¹ Wrong populationVan Welzen, 2017 ¹⁷¹ Wrong populationVan Velzen, 2017 ¹⁷¹ Wrong populationVan Velzen, 2017 ¹⁷¹ Wrong populationVan Velzen, 2017 ¹⁷¹ Wrong populationVaring populationWrong populationVaring populationWrong populationVaring populationWrong popula		
Tomizawa, 2014482Wrong diagnostic interventionTreuth, 2001684Wrong populationTruong, 201588No data of interestTruong, 201588Wrong study typeTrzaska, 201388Wrong study typeTraska, 201388Wrong study typeTsal, 200589Wrong populationTsal, 201290Wrong populationTsougos, 200893Wrong populationTsougos, 200893Wrong populationTurunjseed, 2009693Wrong populationTurunjseed, 2009693Wrong populationTurunjseed, 2009693Wrong populationUurhavan, 2008794Wrong populationUurhavan, 2008795Wrong populationUurhavan, 2008796Wrong populationUurhavan, 2008797Wrong populationUlimon, 2008798Wrong populationUlimon, 2008799Wrong populationUlimon, 2008791Wrong populationUlarenxood, 1999792Wrong study typeUlarenxood, 2004793Wrong populationValenta, 2014796Wrong populationValenta, 2014796Wrong populationValenta, 2014796Wrong populationVan der Wall, 2015797Wrong populationVan Velzen, 2011714Wrong populationVan Werkove, 2010712Wrong populationVan Velzen, 2011714Wrong populationVan Velzen, 2011714Wrong populationVarenz, 2001715Wrong populationVarenz, 2001716Wrong populationVarenz, 20017174Wrong populationVarenz, 2001718Wrong population <t< td=""><td></td><td>Wrong population</td></t<>		Wrong population
Treuth, 2001 ⁶⁸⁴ Wrong populationTruong, 2013 ⁶⁸⁶ No data of interestTruong, 2015 ⁶⁸⁷ Wrong study typeTrzaska, 2013 ⁶⁸⁸ Wrong study typeTrzaska, 2014 ⁶⁹⁰ Wrong diagnostic interventionTsai, 2002 ⁶⁹¹ Wrong populationTsang, 2012 ⁶⁹² Wrong populationTsougos, 2008 ⁶⁹³ Wrong populationTuruhystan, 2008 ⁶⁹⁶ Wrong populationTuruhystan, 2008 ⁶⁹⁶ Wrong populationTuruhystan, 2008 ⁶⁹⁷⁰ Wrong populationUlimoen, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2003 ⁷⁰¹ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong populationUlimoen, 2008 ⁷⁰³ Wrong populationVand gapostic typeWrong populationUnderwood, 2004 ⁷⁰³ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationValenta, 2017 ⁷⁰⁴ Wrong populationValenta, 2017 ⁷⁰⁵ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Weghen, 2007 ⁷¹³ Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVarer, 2011 ⁷¹⁴ Wrong populationVarer, 2011 ⁷¹⁴ Wrong populationVigayaKishan, 2012 ⁷¹⁷ Unclear populationVigayaKishan, 2012 ⁷¹⁷ Unclear populationVigayaKishan, 2012 ⁷¹⁷ Wrong populationVigayaKishan, 2012 ⁷¹⁷ Wrong populationVigayaKishan, 2012 ⁷¹⁷ Wrong populationVigayaKishan,		Wrong diagnostic intervention
Truong, 2013 ⁶⁸⁶ No data of interestTruong, 2015 ⁶⁸⁷ Wrong study typeTrzaska, 2013 ⁶⁸⁸ Wrong study typeTsai, 2007 ⁶⁸⁹ Wrong diagnostic interventionTsai, 2002 ⁶⁸¹ Wrong populationTsai, 2012 ⁶⁹² Wrong populationTsougos, 2012 ⁶⁹² Wrong populationTurkyatan, 2008 ⁶⁹³ Wrong populationTurkyatan, 2008 ⁶⁹⁵ Wrong populationTurkyatan, 2008 ⁶⁹⁵ Wrong populationTurkyatan, 2008 ⁶⁹⁶ Wrong populationTurkyatan, 2008 ⁶⁹⁶ Wrong populationTurkyatan, 2008 ⁶⁹⁶ Wrong populationUkbeis, 2012 ⁶⁹⁸ Wrong populationUnderwood, 1999 ⁷⁰² Wrong populationUlimoen, 2008 ⁷⁰³ Wrong populationUnderwood, 1999 ⁷⁰² Wrong populationUsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVavere, 2011 ⁷¹⁴ Wrong population	Tomizawa, 2014 ⁶⁸²	Wrong diagnostic intervention
Truong, 2015 ⁸⁸⁷ Wrong study typeTrzaska, 2013 ⁶⁸⁸ Wrong study typeTsai, 2007 ⁶⁸⁹ Wrong diagnostic interventionTsai, 2014 ⁸⁹⁰ Wrong settingTsai, 2002 ⁶⁹¹ Wrong populationTsang, 2012 ⁶⁹² Wrong populationTsougos, 2008 ⁶⁹³ Wrong populationTurkyatan, 2008 ⁹⁹⁶ Wrong populationTurkyatan, 2008 ⁹⁹⁶ Wrong populationTurkyatan, 2008 ⁹⁹⁶ Wrong diagnostic interventionUurbatan, 2008 ⁹⁹⁶ Wrong spulationUurbatan, 2008 ⁹⁹⁶ Wrong populationUurbatan, 2008 ⁹⁹⁶ Wrong populationUurbatan, 2008 ⁹⁹⁷⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong populationUnderwood, 2004 ⁷⁰³ Wrong populationUsunomiya, 2015 ⁷⁰⁷ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Verkhoven, 2010 ⁷¹² Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVan Verkhoven, 2010 ⁷¹² Wrong populationVavere, 2011 ⁷¹⁴ Wrong population <trr<td>Vavere, 2011⁷¹⁴Vaver</trr<td>	Treuth, 2001 ⁶⁸⁴	Wrong population
Trzaska, 2013 ⁶⁸⁸ Wrong study typeTsai, 2007 ⁶⁸⁹ Wrong diagnostic interventionTsai, 2014 ⁶⁹⁰ Wrong populationTsai, 2012 ⁶⁹¹ Wrong populationTsang, 2012 ⁶⁹³ Wrong populationTsougos, 2008 ⁶⁹³ Wrong populationTsougos, 2012 ⁶⁹⁴ Wrong populationTurkvatan, 2008 ⁶⁹⁶ Wrong study typeUebleis, 2012 ⁶⁹⁸ Wrong study typeUebleis, 2012 ⁶⁹⁸ Wrong populationTurnipseed, 2009 ⁶⁹⁷ Wrong study typeUebleis, 2012 ⁶⁹⁸ Wrong populationUnoro, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong study typeUtsunomiya, 2015 ⁷⁰⁴ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationValenta, 2014 ⁷¹⁶ Wrong populationVan Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Varong populationVan Geuns, 1999 ⁷⁰⁸ Varong populationVan Geuns, 1999 ⁷⁰⁸ Varong populationVan Verlan, 2007 ¹⁷¹ Varong populationVan Verlan, 2007 ¹⁷¹⁴ Varong populationVan Verlan, 2007 ¹⁷¹⁴ Varong populationVan Verlan, 2007 ¹⁷¹⁴ Varong populationVarong populationVarenc, 2011 ⁷¹⁴ Wrong populationVarenc, 2011 ⁷¹⁴ Wrong populationVarenc, 2011 ⁷¹⁴ Wrong populationVarenc, 2011 ⁷¹⁴ Wrong populationVarenc, 2011 ⁷¹⁶ Wrong populationViga, 2001 ⁷¹⁶ Wrong populationViga, 2001 ⁷¹⁶ Wrong population <td>Truong, 2013⁶⁸⁶</td> <td>No data of interest</td>	Truong, 2013 ⁶⁸⁶	No data of interest
Tsai, 2007 ⁸⁸⁹ Wrong diagnostic interventionTsai, 2014 ⁶⁸⁰ Wrong settingTsai, 2012 ⁶⁹¹ Wrong populationTsang, 2012 ⁶⁹² Wrong populationTsougos, 2008 ⁶⁹³ Wrong populationTsougos, 2012 ⁶⁹⁴ Wrong populationTurkvatan, 2008 ⁶⁹⁶ Wrong populationTurkvatan, 2008 ⁶⁹⁷ Wrong gopulationTurkvatan, 2008 ⁶⁹⁷ Wrong gopulationUrbiesed, 2009 ⁶⁹⁷ Wrong populationUnderwood, 1099 ⁷⁰² Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong study typeUnderwood, 1999 ⁷⁰³ Wrong study typeUtsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁸ Wrong populationValenta, 2017 ⁷⁰⁹ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Wrong populationWrong study typeVan Werkhoven, 2010 ⁷¹² Wrong populationVavere, 2011 ⁷¹⁴ Wrong populationVarong 2002 ⁷¹³ Wrong populationVavere, 2011 ⁷¹⁴ Wrong populationVarong 2001 ⁷¹⁵ Wrong populationVajakrishnan, 2012 ⁷¹⁷ Unclear populationVijayakrishnan, 2012 ⁷¹² Wrong populationVijayakrishnan, 2012 ⁷¹² Wrong populationVagia, 2010 ⁷¹²⁴ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Unclear p	Truong, 2015 ⁶⁸⁷	Wrong study type
Tsai, 2014 ⁶⁹⁰ Wrong settingTsai, 2002 ⁶⁹¹ Wrong populationTsang, 2012 ⁶⁹² Wrong populationTsougos, 2008 ⁶⁹³ Wrong populationTsougos, 2012 ⁶⁹⁴ Wrong populationTurkvatan, 2008 ⁶⁹⁶ Wrong diagnostic interventionTurnipseed, 2009 ⁶⁹⁷ Wrong populationUebleis, 2012 ⁶⁹⁸ Wrong populationUlimoen, 2003 ⁷⁰⁰ Wrong populationUnderwood, 1999 ⁷⁰² Wrong populationUnderwood, 2004 ⁷⁰³ Wrong study typeUsunmiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Har, 2015 ⁷⁰⁷ Wrong populationVan der Wall, 2015 ⁷⁰⁷ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Kelzen, 2010 ⁷¹¹ Wrong populationVan Kelzen, 2010 ⁷¹² Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Kelzen, 2010 ⁷¹¹ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Giagnostic interventionWrong populationVan Giagnostic interventionWrong populationVarere, 2011 ⁷¹⁴ Wrong populationVarere, 2011 ⁷¹⁵ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2012 ⁷¹⁷⁰ Wrong populationVigna, 2012 ⁷²⁰ Wrong populationVarere, 2012 ⁷²⁰ W	Trzaska, 2013 ⁶⁸⁸	Wrong study type
Tsai, 2002 ⁶⁹¹ Wrong populationTsang, 2012 ⁶⁹² Wrong populationTsougos, 2008 ⁶⁹³ Wrong populationTsougos, 2012 ⁶⁹⁴ Wrong populationTurkvatan, 2008 ⁶⁹⁶ Wrong diagnostic interventionTurnipseed, 2009 ⁶⁹⁷ Wrong study typeUebleis, 2012 ⁶⁹⁸ Wrong populationUeno, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong populationUnderwood, 2004 ⁷⁰³ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationValenta, 2014 ⁷⁰⁷⁹ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Meghem, 2007 ⁷⁰⁹ Wrong populationVan Nieghem, 2007 ⁷⁰⁹ Wrong populationVan Study typeWrong populationVan Nieghem, 2007 ⁷¹³ Wrong populationVan Study 2015 ⁷¹⁴ Wrong populationVan Sey, 2011 ⁷¹⁴ Wrong populationVashist, 2007 ⁷¹³ Wrong populationVarere, 2011 ⁷¹⁴ Wrong populationVarere, 2011 ⁷¹⁴ Wrong populationVarere, 2011 ⁷¹⁴ Wrong populationVarere, 2011 ⁷¹⁶ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Unclear populationVijayakrishnan, 2012 ⁷¹⁷ Wrong populationVarere, 2011 ⁷¹⁶ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Wrong populationVijayakrishnan, 2012 ⁷¹⁷⁰ Wrong populationVijayakrishnan, 2012	Tsai, 2007 ⁶⁸⁹	Wrong diagnostic intervention
Tsang, 2012 ⁶⁹² Wrong populationTsougos, 2008 ⁶⁹³ Wrong populationTsougos, 2012 ⁶⁹⁴ Wrong populationTurkvatan, 2008 ⁶⁹⁵ Wrong diagnostic interventionTurnipseed, 2009 ⁶⁹⁷ Wrong populationUebleis, 2012 ⁵⁹⁸ Wrong populationUlimoen, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong study typeUnderwood, 1999 ⁷⁰² Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Velzen, 2010 ⁷¹¹ Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVareng, 2001 ⁷¹³ Wrong populationVareng, 2001 ⁷¹⁴ Wrong populationVareng, 2001 ⁷¹⁵ Wrong populationVareng, 2001 ⁷¹⁶ Wrong populationVareng, 2001 ⁷¹⁵ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2001 ⁷¹⁷² Unclear populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2001 ⁷¹⁷⁴ Wrong populationVareng, 2001 ⁷¹⁶ Wrong populationVareng, 2001 ⁷¹⁶ Wrong populationVareng, 2001 ⁷¹⁶ Wrong populationVareng, 2001 ⁷¹⁷⁴ Wrong populationVareng, 2001 ⁷¹⁷⁴ Wrong populationVareng, 2001 ⁷¹⁶ Wrong population<	Tsai, 2014 ⁶⁹⁰	Wrong setting
Tsougos, 2008Wrong populationTsougos, 2012Wrong populationTurkvatan, 2008Wrong diagnostic interventionTurnipseed, 2009Wrong study typeUebleis, 2012Wrong populationUeno, 2003Wrong populationUlimoen, 2008Wrong populationUnderwood, 1999Wrong study typeUnderwood, 2004Wrong study typeUsunomiya, 2015Wrong study typeUsunomiya, 2015Wrong study typeValenta, 2014Wrong populationValenta, 2014Wrong populationValenta, 2014Wrong study typeVan Geuns, 1999Wrong study typeVan Mieghem, 2007Wrong spopulationVan Verkhoven, 2010Wrong populationVan Verkhoven, 2010Wrong populationVarenz, 2017Wrong population <td>Tsai, 2002⁶⁹¹</td> <td>Wrong population</td>	Tsai, 2002 ⁶⁹¹	Wrong population
Tsougos, 2012 ⁶⁹⁴ Wrong populationTurkvatan, 2008 ⁶⁹⁵ Wrong diagnostic interventionTurnipseed, 2009 ⁶⁹⁷ Wrong study typeUebleis, 2012 ⁶⁹⁸ Wrong populationUeno, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationVan der Wall, 2015 ⁷⁰⁷ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Velzen, 2010 ⁷¹¹¹ Wrong populationVan Werkhoven, 2010 ⁷¹²⁴ Wrong populationVavere, 2011 ⁷¹⁴ Wrong populationVavere, 2011 ⁷¹⁴ Wrong populationVaren, 2000 ⁷¹⁵ Wrong populationVirong populationWrong populationVavere, 2011 ⁷¹⁴ Wrong populationVaren, 2000 ⁷¹⁵ Wrong populationVirong populationWrong populationVirong populationWrong populationVirong populationWrong populationVavere, 2011 ⁷¹⁴ Wrong populationVavere, 2011 ⁷¹⁵ Wrong populationVirong 2002 ⁷¹⁶ Wrong populationVirong 2002 ⁷¹⁶ Wrong populationVirong 2002 ⁷¹⁷⁶ Wrong population <t< td=""><td>Tsang, 2012⁶⁹²</td><td>Wrong population</td></t<>	Tsang, 2012 ⁶⁹²	Wrong population
Turkvatan, 2008 ⁶⁹⁶ Wrong diagnostic interventionTurnipseed, 2009 ⁶⁹⁷ Wrong study typeUebleis, 2012 ⁶⁹⁸ Wrong populationUeno, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUtsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁵ Wrong study typeValenta, 2014 ⁷⁰⁶ Wrong populationvan der Wall, 2015 ⁷⁰⁷ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationvan Velzen, 2011 ⁷¹¹ Wrong populationvan Velzen, 2011 ⁷¹⁴ Wrong populationvan Velzen, 2011 ⁷¹⁴ Wrong populationVashist, 2007 ⁷¹³ Wrong populationVarer, 2011 ⁷¹⁴ Wrong populationVarer, 2011 ⁷¹⁴ Wrong populationVing apopulationWrong populationVing populationWrong populationVarer, 2011 ⁷¹⁴ Wrong populationVarer, 2011 ⁷¹⁴ Wrong populationVing apopulationWrong populationVing apopulationWrong populationVing apopulationWrong populationVing apopulationWrong populationVarer, 2011 ⁷¹⁴ Wrong populationVing apopulationWrong populationVing apopulationWrong populationVing apopulationWrong populationVing apopulationWrong populationVing apopulationWrong populationVing apopulationWrong populationVing apopulati	Tsougos, 2008 ⁶⁹³	Wrong population
Turnipseed, 2009 ⁶⁹⁷ Wrong study typeUebleis, 2012 ⁶⁹⁸ Wrong populationUeno, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUstunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationVan Ge uns, 1999 ⁷⁰⁸ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Velzen, 2017 ⁷¹⁹ Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVan Werkhoven, 2010 ⁷¹² Wrong populationVaran QuitanWrong populationVan Stist, 2007 ⁷¹³ Wrong populationVaran 2000 ⁷¹⁵ Wrong populationVaran 2001 ⁷¹⁶ Wrong populationVaran 2001 ⁷¹⁶ Wrong populationVaran 2000 ⁷¹⁵ Wrong populationVaran 2001 ⁷¹⁶ Wrong populationVaran 2001 ⁷¹⁶ Wrong populationVaran 2001 ⁷¹⁶ Wrong populationVaran 2001 ⁷¹⁷⁰ Wrong populationViga, 2001 ⁷¹⁸ Wrong populationViga, 2001 ⁷¹⁶ Wrong populationViga 2001 ⁷¹⁷⁰ Unclear populationViga 2011 ⁷¹⁷⁰ Wrong populationViga 2011 ⁷¹⁷⁰ Wrong populationViga 2011 ⁷¹⁸ Wrong populationViga 2011 ⁷²⁰ Wrong populationViga 2010 ⁷²¹⁷⁰ Wrong populationVaran 2010 ⁷²¹⁷⁰ Wrong populationViga 2010 ⁷²² Wrong populationViga 2010 ⁷²³ Wrong population<	Tsougos, 2012 ⁶⁹⁴	Wrong population
Uebleis, 2012 ⁶⁹⁸ Wrong populationUeno, 2003 ⁷⁰⁰ Wrong populationUlimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUtsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Mieghem, 2007 ⁷⁰⁹ Wrong populationVan Velzen, 2011 ⁷¹¹ Wrong populationVan Velzen, 2010 ⁷¹² Wrong populationVarong populationWrong populationVarong populationWrong populationVarong populationWrong populationVan Staty 2007 ⁷¹³ Wrong populationVarong populationWrong populationVarong populationWrong populationVaren, 2010 ⁷¹⁴ Wrong populationViang populationWrong populationViang populationWrong populationViang 2001 ⁷¹⁶ Wrong populationViang 2001 ⁷¹⁶ Wrong populationVigayakrishnan, 2012 ⁷¹⁷ Unclear populationViang 2001 ⁷¹⁶ Wrong populationViang 2001 ⁷¹² Wrong populationViang 2001 ⁷¹² Wrong populationViang 2001 ⁷¹² Wrong populationViang 2001 ⁷¹⁴ Wrong populationViang 2001 ⁷¹⁵ Wrong populationViang 2001 ⁷¹⁶ Wrong populationViang 2001 ⁷¹⁷² Wrong populationViang 2001 ⁷¹⁸ Wrong populationViang 2001 ⁷¹⁹ Wrong populationViang 2001 ⁷¹⁹ Wrong populat	Turkvatan, 2008 ⁶⁹⁶	Wrong diagnostic intervention
Ueno, 2003700Wrong populationUlinoen, 2008701Wrong populationUnderwood, 1999702Wrong study typeUnderwood, 2004703Wrong study typeUtsunomiya, 2015704Wrong populationValenta, 2014706Wrong populationvan der Wall, 2015707Wrong study typeVan Geuns, 1999708Wrong populationvan Velzen, 20007709Wrong populationvan Velzen, 2011711Wrong populationvan Werkhoven, 2010712Wrong populationVashist, 2007713Wrong populationVarer, 2011714Wrong populationVigna, 2001715Wrong populationVigna, 2001716Wrong populationVigna, 2001717Wrong populationVigna, 2001718Wrong populationVigna, 2001719Wrong populationVigna, 2001716Wrong populationVigna, 2001715Wrong populationVigna, 2001716Wrong populationVigna, 2001717Unclear populationVigna, 2001718Wrong populationVigna, 2001716Wrong populationVigna, 2001716Wrong populationVigna, 2001716Wrong populationVigna, 2001716Wrong populationVigna, 2001716Wrong populationVigna, 2001716Wrong populationVigna, 2001717Unclear populationVigna, 2001720Wrong populationVigna, 2001721Wrong populationVigna, 2001722Wrong populationVigna, 2001723Wrong populationVigna, 2001724Wrong population<	Turnipseed, 2009 ⁶⁹⁷	Wrong study type
Ulimoen, 2008 ⁷⁰¹ Wrong populationUnderwood, 1999 ⁷⁰² Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUtsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationvan der Wall, 2015 ⁷⁰⁷ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Velzen, 2007 ⁷⁰⁹ Wrong populationvan Velzen, 2011 ⁷¹¹ Wrong populationvan Werkhoven, 2010 ⁷¹² Wrong populationVashist, 2007 ⁷¹³ Wrong populationVaree, 2011 ⁷¹⁴ Wrong populationVigna, 2001 ⁷¹⁵ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2001 ⁷¹⁷ Unclear populationVigna, 2011 ⁷¹⁷ Wrong populationVigna, 2011 ⁷¹⁸ Wrong populationVigna, 2001 ⁷¹⁹ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2001 ⁷¹⁷ Unclear populationVigna, 2001 ⁷¹⁸ Wrong populationVigna, 2011 ⁷¹⁷ Unclear populationVigna, 2011 ⁷¹⁷ Wrong populationVigna, 2011 ⁷¹⁸ Wrong populationVigna, 2011 ⁷²⁰ Wrong populationWrong populationWrong populationWigna, 2010 ⁷²² Wrong populationWardi, 2010 ⁷²³ Wrong populationWardi, 2010 ⁷²⁴ Wrong populationWardi, 2011 ⁷²³ Wrong populationWardi, 2011 ⁷²⁴ Wrong populationWardi, 2011 ⁷²⁵ Wrong populationWardi, 2011 ⁷²⁶ Wrong populationWardi, 2011 ⁷²⁷ Wron	Uebleis, 2012 ⁶⁹⁸	Wrong population
Underwood, 1999 ⁷⁰² Wrong study typeUnderwood, 2004 ⁷⁰³ Wrong study typeUtsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationvan der Wall, 2015 ⁷⁰⁷ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Mieghem, 2007 ⁷⁰⁹ Wrong populationvan Velzen, 2011 ⁷¹¹ Wrong populationvan Werkhoven, 2010 ⁷¹² Wrong populationVavere, 2011 ⁷¹⁴ Wrong populationVavere, 2011 ⁷¹⁴ Wrong populationVarer, 2007 ⁷¹⁵ Wrong populationVigna, 2007 ⁷¹⁶ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2012 ⁷²⁰ Wrong populationVang populationWrong populationVigna, 2017 ⁷¹³ Wrong populationVigna, 2017 ⁷¹⁴ Wrong populationVigna, 2007 ⁷¹⁵ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVigna, 2012 ⁷¹⁷ Unclear populationVigakrishnan, 2012 ⁷¹⁷ Wrong populationWagdi, 2010 ⁷²² Wrong populationWagdi, 2010 ⁷²² Wrong population	Ueno, 2003 ⁷⁰⁰	Wrong population
Underwood, 2004 ⁷⁰³ Wrong study typeUtsunomiya, 2015 ⁷⁰⁴ Wrong populationValenta, 2014 ⁷⁰⁶ Wrong populationvan der Wall, 2015 ⁷⁰⁷ Wrong study typeVan Geuns, 1999 ⁷⁰⁸ Wrong populationVan Mieghem, 2007 ⁷⁰⁹ Wrong populationvan Velzen, 2011 ⁷¹¹ Wrong populationvan Werkhoven, 2010 ⁷¹² Wrong populationVashist, 2007 ⁷¹³ Wrong populationVarere, 2011 ⁷¹⁴ Wrong populationVarere, 2001 ⁷¹⁵ Wrong diagnostic interventionVigna, 2001 ⁷¹⁶ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Unclear populationVadel, 2010 ⁷²² Wrong populationWadi, 2010 ⁷²² Wrong populationWagdi, 2010 ⁷²² Wrong population	Ulimoen, 2008 ⁷⁰¹	Wrong population
Utsunomiya, 2015704Wrong populationValenta, 2014706Wrong populationvan der Wall, 2015707Wrong study typeVan Geuns, 1999708Wrong populationVan Mieghem, 2007709Wrong populationvan Velzen, 2011711Wrong populationvan Werkhoven, 2010712Wrong populationVashist, 2007713Wrong populationVavere, 2011714Wrong populationVaren, 2000715Wrong populationVigna, 2001716Wrong populationVigna, 2001717Unclear populationVigna, 2012720Wrong populationWagdi, 2010722Wrong populationWagdi, 2010722Wrong population	Underwood, 1999 ⁷⁰²	Wrong study type
Valenta, 2014Wrong populationVan der Wall, 2015Wrong study typeVan Geuns, 1999Wrong populationVan Mieghem, 2007Wrong populationVan Velzen, 2011Wrong populationvan Verkhoven, 2010Wrong populationVashist, 2007Wrong populationVashist, 2007Wrong populationVarog populationWrong populationVashist, 2007Wrong populationVarena, 2011Wrong populationVigna, 2001Wrong populationVigna, 2001Wrong populationVigna, 2001Wrong populationVigna, 2012Wrong populationVigna, 2012Wrong populationWrong populationWrong populationWigna, 2012Wrong populationWrong populationWrong populationWigna, 2012Wrong populationWrong populationWrong populationWagdi, 2010Wrong populationWagdi, 2010Wrong populationWang populationWrong pop	Underwood, 2004 ⁷⁰³	Wrong study type
van der Wall, 2015Wrong study typeVan Geuns, 1999Wrong populationVan Mieghem, 2007Wrong populationvan Velzen, 2011Wrong populationvan Velzen, 2010Wrong populationvan Werkhoven, 2010Wrong populationVashist, 2007Wrong populationVavere, 2011Wrong populationVavere, 2011Wrong populationVavere, 2011Wrong populationVigna, 2007Wrong populationVigna, 2001Wrong populationVigna, 2001Wrong populationVigayakrishnan, 2012Wrong populationWrong populationWrong populationWagdi, 2010Wrong populationWagdi, 2010Wrong populationWagdi, 2013Wrong populationWrong sopulationWrong population	Utsunomiya, 2015 ⁷⁰⁴	Wrong population
Van Geuns, 1999 ⁷⁰⁸ Wrong populationVan Mieghem, 2007 ⁷⁰⁹ Wrong populationvan Velzen, 2011 ⁷¹¹ Wrong populationvan Werkhoven, 2010 ⁷¹² Wrong populationVashist, 2007 ⁷¹³ Wrong populationVavere, 2011 ⁷¹⁴ Wrong diagnostic interventionVerna, 2000 ⁷¹⁵ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Unclear populationVijayakrishnan, 2012 ⁷²⁰ Wrong populationWang JouloWrong populationWagdi, 2010 ⁷²² Wrong populationWagdi, 2013 ⁷²³ Wrong population	Valenta, 2014 ⁷⁰⁶	Wrong population
Van Mieghem, 2007 ⁷⁰⁹ Wrong populationvan Velzen, 2011 ⁷¹¹ Wrong populationvan Werkhoven, 2010 ⁷¹² Wrong populationVashist, 2007 ⁷¹³ Wrong populationVavere, 2011 ⁷¹⁴ Wrong diagnostic interventionVerna, 2000 ⁷¹⁵ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Unclear populationViagdi, 2010 ⁷²² Wrong populationWagdi, 2010 ⁷²² Wrong populationWagdi, 2013 ⁷²³ Wrong population	van der Wall, 2015 ⁷⁰⁷	Wrong study type
van Velzen, 2011 ⁷¹¹ Wrong populationvan Werkhoven, 2010 ⁷¹² Wrong populationVashist, 2007 ⁷¹³ Wrong populationVavere, 2011 ⁷¹⁴ Wrong diagnostic interventionVerna, 2000 ⁷¹⁵ Wrong populationVigna, 2001 ⁷¹⁶ Wrong populationVijayakrishnan, 2012 ⁷¹⁷ Unclear populationvon Ziegler, 2012 ⁷²⁰ Wrong populationWagdi, 2010 ⁷²² Wrong populationWagker, 2013 ⁷²³ Wrong study type	Van Geuns, 1999 ⁷⁰⁸	Wrong population
van Werkhoven, 2010712Wrong populationVashist, 2007713Wrong populationVavere, 2011714Wrong diagnostic interventionVerna, 2000715Wrong populationVigna, 2001716Wrong populationVijayakrishnan, 2012717Unclear populationvon Ziegler, 2012720Wrong populationWagdi, 2010722Wrong populationWalker, 2013723Wrong study type	Van Mieghem, 2007 ⁷⁰⁹	Wrong population
Vashist, 2007Wrong populationVavere, 2011Wrong diagnostic interventionVerna, 2000Wrong populationVigna, 2001Wrong populationVigna, 2012Unclear populationVijayakrishnan, 2012Wrong populationVon Ziegler, 2012Wrong populationWagdi, 2010Wrong populationWagdi, 2010Wrong populationWagker, 2013Wrong population	van Velzen, 2011 ⁷¹¹	Wrong population
Vavere, 2011714Wrong diagnostic interventionVerna, 2000715Wrong populationVigna, 2001716Wrong populationVijayakrishnan, 2012717Unclear populationvon Ziegler, 2012720Wrong populationWagdi, 2010722Wrong populationWalker, 2013723Wrong study type	van Werkhoven, 2010 ⁷¹²	Wrong population
Verna, 2000715Wrong populationVigna, 2001716Wrong populationVijayakrishnan, 2012717Unclear populationvon Ziegler, 2012720Wrong populationWagdi, 2010722Wrong populationWalker, 2013723Wrong study type	Vashist, 2007 ⁷¹³	Wrong population
Vigna, 2001716Wrong populationVijayakrishnan, 2012717Unclear populationvon Ziegler, 2012720Wrong populationWagdi, 2010722Wrong populationWalker, 2013723Wrong study type	Vavere, 2011 ⁷¹⁴	Wrong diagnostic intervention
Vijayakrishnan, 2012717Unclear populationvon Ziegler, 2012720Wrong populationWagdi, 2010722Wrong populationWalker, 2013723Wrong study type	Verna, 2000 ⁷¹⁵	Wrong population
von Ziegler, 2012720Wrong populationWagdi, 2010722Wrong populationWalker, 2013723Wrong study type	Vigna, 2001 ⁷¹⁶	Wrong population
Wagdi, 2010722Wrong populationWalker, 2013723Wrong study type	Vijayakrishnan, 2012 ⁷¹⁷	Unclear population
Walker, 2013 ⁷²³ Wrong study type	von Ziegler, 2012 ⁷²⁰	Wrong population
	Wagdi, 2010 ⁷²²	Wrong population
Wang, 2011 ⁷²⁴ Wrong population	Walker, 2013 ⁷²³	Wrong study type
	Wang, 2011 ⁷²⁴	Wrong population

Vang, 2011 ⁷²⁵ Vatkins, 2007 ⁷²⁶	Wrong population Wrong diagnostic intervention Wrong population
•	
	Wrong population
Vehrschuetz, 2010 ⁷²⁸	wrong population
Veinsaft, 2007 ⁷²⁹	Wrong population
Veustink, 2007 ⁷³¹	Wrong population
Veustink, 2010 ⁷³²	Wrong study type
Veustink, 2012 ⁷³³	Wrong population
White, 2005 ⁷³⁴	Wrong diagnostic intervention
Vierzbowska-Drabik, 2014 ⁷³⁶	Wrong population
Vilson, 2011 ⁷³⁷	Wrong study type
Vinchester, 2015 ⁷³⁸	Unclear analysis
Vinchester, 2013 ⁷³⁹	Wrong study type
Vinchester, 2012 ⁷⁴⁰	Wrong population
Ku, 2010 ⁷⁴¹	Wrong population
'amada, 2004 ⁷⁴²	Wrong population
'ang, 2015 ⁷⁴³	Wrong population
'erramasu, 2014 ⁷⁴⁴	Wrong population
aag-Loonen, 2006 ⁷⁴⁵	Wrong population
ancaner, 2012 ⁷⁴⁶	Wrong study type
eb, 2014 ⁷⁴⁷	Wrong study type
eb, 2012 ⁷⁴⁸	Wrong study type
'hang, 2010 ⁷⁵⁰	Wrong population
'hang, 2004 ⁷⁵¹	Developing country
'hao, 2011 ⁷⁵²	Wrong study type
Corga, 2012 ⁷⁵³	Wrong study type
wank, 2015 ⁷⁵⁴	Wrong study type

N.4 Prediction models/tools for people with stable chest pain of suspected cardiac origin

Reference	Reason for exclusion
de Araujo Goncalves P, Garcia-Garcia H.M, Dores H, Carvalho M.S, Jeronimo Sousa P, et al. (2013) Coronary computed tomography angiography- adapted Leaman score as a tool to noninvasively quantify total coronary atherosclerotic burden, The International Journal of Cardiovascular Imaging, 29, 1575-1584.	Incorrect population (prior stress or CT testing, or pre- operative CAD assessment).
Dores H, de Araujo Goncalves P, Ferreira A.M, Carvalho M, Sousa P, et al. (2015) Performance of traditional risk factors in identifying a higher than expected coronary atherosclerotic burden, Revista Portuguesa de Cardiologia, 34, 247-253.	Incorrect population - majority of patients had failed prior stress test.
Doukky R, Shih M.J, Rahaby M, Alyousef T, Abusin S, et al. (2013) A simple validated clinical tool to predict the absence of coronary artery disease in patients with systolic heart failure of unclear etiology, American Journal of Cardiology, 112, 1165-1170.	Incorrect population – systolic heart failure.

Reference	Reason for exclusion
Gencer B, Vaucher P, Herzig L, Verdon F, Ruffieux C et al. (2010) Ruling out coronary heart disease in primary care patients with chest pain: a clinical prediction score, BMC Medicine, 8, 9-,	Incorrect population - not limited to stable / suspected CAD-related chest pain.
George J, Jack D, Mackle G, Callaghan T.S, Wei L, et al. (2012) High sensitivity troponin T provides useful prognostic information in non-acute chest pain. QJM, 105, 159-166.	Incorrect population - patients pre-selected as intermediate/high probability using Diamond & Forrester.
Haasenritter J, Bosner S, Vaucher P, Herzig L, Heinzel-Gutenbrunner M, et al. (2012). Ruling out coronary heart disease in primary care: external validation of a clinical prediction rule. British Journal of General Practice, 62, e415-e421.	Incorrect study type and reference standard - prognostic study using 6 month delayed-type reference (only some patients underwent standard diagnostic testing).
Haybar H, Assareh A, Ghotbi Y, Torabizadeh M, Bozorgmanesh M. (2013) Incremental diagnostic value of circulating pentraxin in patients with intermediate risk of coronary artery disease. Heart, 99: 640-648.	Incorrect population - all patients were 'intermediate risk' as determined by prior stress testing.
Johnson K, Dowe D (2010) The detection of any coronary calcium outperforms Framingham risk score as a first step in screening for coronary atherosclerosis. AJR American Journal of Roentgenology, 194, 1235-1243.	Incorrect population - patients were previously screened, underwent diagnostic testing or had non- chest pain symptoms.
Kreatsoulas C, Natarajan M, Khatun R, Velianou J, Anand S. (2010) Identifying women with severe angiographic coronary disease, Journal of Internal Medicine, 268, 66-74.	Incorrect population (30% had no angina-type symptoms) and outcomes (odds ratios only).
Lappe J, Grodin J, Wu Y, Bott-Silverman C, Cho L. (2015) Prevalence and prediction of obstructive coronary artery disease in patients referred for valvular heart surgery, American Journal of Cardiology, 116, 280-285.	Incorrect population (pre- operative valvular heart surgery).
Leem J, Koh E, Jang J, Woo C, Oh J, et al. (2015) Serum total bilirubin levels provide additive risk information over the Framingham Risk Score for identifying asymptomatic diabetic patients at higher risk for coronary artery stenosis. Diabetes & Metabolism Journal, 39, 414-423.	Incorrect population - asymptomatic patients with diabetes (chest pain / angina were exclusion criteria).
Lo M, Bonthala N, Holper E, Banks K, Murphy S, et al. (2013) A risk score for predicting coronary artery disease in women with angina pectoris and abnormal stress test finding. American Journal of Cardiology, 111, 781-785.	Incorrect population - females who had failed prior stress testing.
Mair J, Jaffe A (2014) Biomarker tests for risk assessment in coronary artery disease: will they change clinical practice? Molecular Diagnosis & Therapy, 18, 5-15.	Study type - general overview of clinical area (biomarkers for CAD risk assessment).

Reference	Reason for exclusion
Munakata R, Otsuka T, Uchiyama S, Shimura T, Kurihara O, (2015) Volume elastic modulus of the brachial artery and coronary artery stenosis in patients with suspected stable coronary artery disease. Heart Vessels [ePub ahead of print].	Incorrect population - majority had prior stress testing.
Nucifora G, Schuijf J, van Werkhoven J, Jukema J, Djaberi R (2009) Prevalence of coronary artery disease across the Framingham risk categories: coronary artery calcium scoring and MSCT coronary angiography. Journal of Nuclear Cardiology, 16, 368-375.	Incorrect population - only patients who were asymptomatic / atypical angina / non-cardiac chest pain.
Okwuosa T, Mallikethi-Reddy S, Lloyd Jones D. (2014) Strategies for treating lipids for prevention: Risk stratification models with and without imaging. Best Practice and Research: Clinical Endocrinology and Metabolism 28, 295- 307.	Incorrect study type – overview of clinical area.
Paredes S, Rocha T, de Carvalho P, Henriques J, Morais J, Ferreira J. (2015) Integration of different risk assessment tools to improve stratification of patients with coronary artery disease. Medical and Biological Engineering and Computing, 53, 1069-1083.	Incorrect study type - theoretical modelling applied to incorrect population data (patients with ACS).
Pietka I, Sakowicz A , Pietrucha T, Cichocka-Radwan A, Lelonek M. (2014) Usefulness of Reynolds Risk Score in men with stable angina, Central European Journal of Medicine, 9, 21-27.	Incorrect outcome data (odds ratios only).
Rovai D, Neglia D, Lorenzoni V, Caselli C, Knuuti J, Underwood S (2015) EVINCI,Study,I. Limitations of chest pain categorization models to predict coronary artery disease. American Journal of Cardiology, 116, 504-507.	Incorrect outcome data (global chi-square only).
Sayin M, Cetiner M, Karabag T, Akpinar I, Sayin E, Kurcer, M, Dogan S, Aydin M (2014) Framingham risk score and severity of coronary artery disease, Herz, 39, 638-643.	Incorrect population - patients had undergone prior testing.
Van der Meer M, Backus B, van der Graaf Y, Cramer M, Appelman Y, et al. (2015) The diagnostic value of clinical symptoms in women and men presenting with chest pain at the emergency department, a prospective cohort study. PLos ONE, 10, e0116431-	Incorrect population – patients with non-stable chest pain presenting to emergency department.
Wessler B, Yh L, Kramer W, Cangelosi M, Raman G, Lutz J, Kent D. (2015) Clinical prediction models for cardiovascular disease: Tufts predictive analytics and comparative effectiveness clinical prediction model database, Circulation: Cardiovascular Quality and Outcomes.8 368-375.	Incorrect study type - describes a database of different types of clinical predication model for cardiovascular disease, but no data on accuracy of individual models is given.
Yayan J (2014) Weak prediction power of the Framingham Risk Score for coronary artery disease in nonagenarians, PLoS ONE, 9: e113044.	Incorrect population and study type - retrospective case-control study of patients over 90yrs.
Yeh J-S, Lin F-Y, Kao Y-T, Tsao N-W, Hsieh M-H, et al. (2013) Diagnostic value of coronary artery plaque detected on computed tomography	Incorrect population - asymptomatic healthy adults

Reference

coronary artery angiography in healthy adults with zero to low calcium scores. Journal of Experimental and Clinical Medicine, 5: 222-226.

Reason for exclusion

who had undergone prior calcium testing and were having CTCA as part of general screening.

N.5 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

Author	Reason for exclusion
Abdulla,J., Abildstrom,S.Z., Gotzsche,O., Christensen,E., Kober,L., Torp-Pedersen,C., 64-Multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: A systematic review and meta-analysis, European Heart JournalEur.Heart J., 28, 3042-3050, 2007	Population (Included patients with known disease)
Abdulla, Jawdat, Pedersen, Kasper S., Budoff, Matthew, Kofoed, Klaus F., Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: a systematic review and meta-analysis, The international journal of cardiovascular imaging Int J Cardiovasc Imaging, 28, 943-953, 2012	Population (included patients with known CAD)
Abdulla, Jawdat, Sivertsen, Jacob, Kofoed, Klaus Fuglsang, Alkadhi, Hatem, Labounty, Troy, Abildstrom, Steen Z., Kober, Lars, Christensen, Erik, Torp-Pedersen, Christian, Evaluation of aortic valve stenosis by cardiac multislice computed tomography compared with echocardiography: a systematic review and meta- analysis, The Journal of heart valve disease J Heart Valve Dis, 18, 634-643, 2009	Population (insufficient description of population included)
Abidov,A., Gallagher,M.J., Chinnaiyan,K.M., Mehta,L.S., Wegner,J.H., Raff,G.L., Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial, Journal of Nuclear CardiologyJ.Nucl.Cardiol., 16, 701-713, 2009	Population (included patients with previous inconclusive stress imagining tests)
Abitbol,Elsa, Monin,Jean Luc, Garot,Jerome, Monchi,Mehrane, Russel,Stephanie, Duval,Anne Marie, Gueret,Pascal, Relationship between the ischemic threshold at the onset of wall-motion abnormality on semisupine exercise echocardiography and the extent of coronary artery disease, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 17, 121-125, 2004	Mixed population - includes known CAD.
Achenbach,S., Moshage,W., Ropers,D., Nossen,J., Daniel,W.G., Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions, The New England journal of medicine N Engl J Med, 339, 1964- 1971, 1998	Non protocol index test (Electron Beam CT)
Achenbach,S., Ropers,U., Kuettner,A., Anders,K., Pflederer,T., Komatsu,S., Bautz,W., Daniel,W.G., Ropers,D., Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease, JACC.Cardiovascular imaging JACC Cardiovasc Imaging, 1, 177-186, 2008	Study design: not all patients had same test

Author	Reason for exclusion
Achenbach,Stephan, Goroll,Tobias, Seltmann,Martin, Pflederer,Tobias, Anders,Katharina, Ropers,Dieter, Daniel,Werner G., Uder,Michael, Lell,Michael, Marwan,Mohamed, Detection of coronary artery stenoses by low-dose, prospectively ECG- triggered, high-pitch spiral coronary CT angiography, JACC.Cardiovascular imagingJACC Cardiovasc Imaging, 4, 328-337, 2011	New Generation CT scanner (non protocol/DG3).
Adams,George L., Trimble,Mark A., Brosnan,Rhoda B., Russo,Cheryl A., Rusband,Dan, Honeycutt,Emily F., Shaw,Linda K., Hurwitz,Lynn M., Turkington,Timothy G., Hanson,Michael W., Pagnanelli,Robert A., Borges-Neto,Salvador, Evaluation of combined cardiac positron emission tomography and coronary computed tomography angiography for the detection of coronary artery disease, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 29, 593-598, 2008	Not all participants had both index test and reference standard
Adil,M., Hafizullah,M., Jan,H., Paracha,M.M., Qazi,S., Diagnostic yield of stress echocardiography in coronary artery disease patients, Journal of Postgraduate Medical InstituteJ.Postgrad.Med.Inst., 25, 331-337, 2011	Mixed population - includes known CAD
Afridi,I., Quinones,M.A., Zoghbi,W.A., Cheirif,J., Dobutamine stress echocardiography: sensitivity, specificity, and predictive value for future cardiac events, American Heart JournalAm.Heart J., 127, 1510-1515, 1994	Population (included patients with known CAD)
Agati,L., Renzi,M., Sciomer,S., Vizza,D.C., Voci,P., Penco,M., Fedele,F., Dagianti,A., Transesophageal dipyridamole echocardiography for diagnosis of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 19, 765- 770, 1992	Mixed population - includes studies with prior MI.
Agatston,A.S., Janowitz,W.R., Hildner,F.J., Zusmer,N.R., Viamonte,M.Jr, Detrano,R., Quantification of coronary artery calcium using ultrafast computed tomography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 15, 827-832, 1990	Population (mixed - included patients with known CAD)
Aggeli,C., Felekos,I., Roussakis,G., Kazazaki,C., Lagoudakou,S., Pietri,P., Tousoulis,D., Pitsavos,C., Stefanadis,C., Value of real-time three-dimensional adenosine stress contrast echocardiography in patients with known or suspected coronary artery disease, European Journal of EchocardiographyEur.J.Echocardiogr., 12, 648- 655, 2011	Mixed population - includes known CAD.
Aggeli,Constadina, Giannopoulos,Georgios, Misovoulos,Platon, Roussakis,George, Christoforatou,Euaggelia, Kokkinakis,Christos, Brili,Stela, Stefanadis,Christodoulos, Real-time three-dimensional dobutamine stress echocardiography for coronary artery disease diagnosis: validation with coronary angiography, Heart (British Cardiac Society), 93, 672-675, 2007	Per-vessel analysis only.
Ahmad,M., Dubiel,J.P., Haibach,H., Cold pressor thallium-201 myocardial scintigraphy in the diagnosis of coronary artery disease, The American journal of cardiologyAm J Cardiol, 50, 1253- 1257, 1982	Population (included patients with known disease - possible bypass surgery candidates)
Akalin,Erdal Nihat, Yaylali,Olga, Kirac,Fatma Suna, Yuksel,Dogangun, Kilic,Mustafa, The Role of Myocardial Perfusion Gated SPECT Study in Women with Coronary Artery Disease: A Correlative Study, Molecular imaging and radionuclide therapyMol Imaging Radionucl Ther, 21, 69-74, 2012	Study in women only (non protocol sub group).

Author	Reason for exclusion
Akhtar,M., Vakharia,K.T., Mishell,J., Gera,A., Ports,T.A., Yeghiazarians,Y., Michaels,A.D., Randomized study of the safety and clinical utility of rotational vs. standard coronary angiography using a flat-panel detector, Catheterization and cardiovascular interventionsCatheter Cardiovasc Interv, 66, 43-49, 2005	Non protocol index test
Akram,Kamran, O'Donnell,Robert E., King,Spencer, Superko,H.Robert, Agatston,Arthur, Voros,Szilard, Influence of symptomatic status on the prevalence of obstructive coronary artery disease in patients with zero calcium score, Atherosclerosis, 203, 533-537, 2009	Population (included patients who were asymptomatic)
Akram,Kamran, Voros,Szilard, Absolute coronary artery calcium scores are superior to MESA percentile rank in predicting obstructive coronary artery disease, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 24, 743-749, 2008	Design (retrospective)
Al Moudi,M., Sun,Z., Lenzo,N., Diagnostic value of SPECT, PET and PET/CT in the diagnosis of coronary artery disease: A systematic review, Biomedical Imaging and Intervention JournalBiomed.Imaging Intervent.J, 7, e9-, 2011	Mixed population - includes patients with confirmed CAD
Al Moudi, Mansour, Sun, Zhong Hua, Diagnostic value of (18)F-FDG PET in the assessment of myocardial viability in coronary artery disease: A comparative study with (99m)Tc SPECT and echocardiography, Journal of geriatric cardiology 11, 229-236, 2014	Mixed population - includes known CAD
Alazraki,N.P., Krawczynska,E.G., DePuey,E.G., Ziffer,J.A., Vansant,J.P., Pettigrew,R.I., Taylor,A., King,S.B., Garcia,E.V., Reproducibility of thallium-201 exercise SPECT studies, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 35, 1237-1244, 1994	Mixed population - predominantly known CAD.
Alberto,Conti, Margherita,Luzzi, Cristina,Nanna, Chiara,Gallini, Egidio,Costanzo, Luca,Vaggelli, Luigi,Padeletti, Gian,Franco Gensini, Effectiveness of nuclear scan strategy in low-risk chest pain patients: novel insights from the real world, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 32, 1223-1230, 2011	Population (indirect - not all patients had both tests)
Alessandri,N., Di Matteo,A., Rondoni,G., Petrassi,M., Tufani,F., Ferrari,R., Laghi,A., Heart imaging: the accuracy of the 64-MSCT in the detection of coronary artery disease, European Review for Medical and Pharmacological SciencesEur.Rev.Med.Pharmacol.Sci., 13, 163-171, 2009	Population (unclear)
Alexopoulos, Dimitrios, Toulgaridis, Theodoros, Davlouros, Periklis, Christodoulou, John, Stathopoulos, Christos, Hahalis, George, Coronary calcium detected by digital cinefluoroscopy and coronary artery disease in patients undergoing coronary arteriography: effects of age and sex, International journal of cardiologyInt.J.Cardiol., 87, 159-166, 2003	Reference standard (non protocol) Population (included patients with known CAD)
Alkadhi,H., Stolzmann,P., Desbiolles,L., Baumueller,S., Goetti,R., Plass,A., Scheffel,H., Feuchtner,G., Falk,V., Marincek,B., Leschka,S., Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and- shoot mode, Heart (British Cardiac Society), 96, 933-938, 2010	Non protocol new generation scanner (Definition Flash) (DG3)
Allman,K.C., Berry,J., Sucharski,L.A., Stafford,K.A., Petry,N.A., Wysor,W., Schwaiger,M., Determination of extent and location of coronary artery disease in patients without prior myocardial infarction by thallium-201 tomography with pharmacologic stress,	Study design: retrospective

Author	Reason for exclusion
Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 33, 2067-2073, 1992	
Almasi,Alireza, Pouraliakbar,Hamidreza, Sedghian,Ahmad, Karimi,Mohammad Ali, Firouzi,Ata, Tehrai,Mahmood, The value of coronary artery calcium score assessed by dual-source computed tomography coronary angiography for predicting presence and severity of coronary artery disease, Polish journal of radiology / Polish Medical Society of Radiology, 79, 169-174, 2014	Non protocol new generation scanner used.
Altinmakas,S., Dagdeviren,B., Turkmen,M., Gursurer,M., Say,B., Tezel,T., Ersek,B., Usefulness of pulse-wave Doppler tissue sampling and dobutamine stress echocardiography for identification of false positive inferior wall defects in SPECT, Japanese Heart JournalJpn.Heart J., 41, 141-152, 2000	Mixed population - includes known CAD.
Amadei,G., Patruno,M., Baggioni,G.F., Dipyridamole echocardiography detection of coronary artery disease in aortic stenosis, Cardiovascular ImagingCARDIOVASC.IMAGING, 8, 331- 333, 1996	Not available via British Library or Royal Society of Medicine
Amanullah,A.M., Kiat,H., Friedman,J.D., Berman,D.S., Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: diagnostic efficacy in detection of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 27, 803- 809, 1996	Mixed population - includes prior MI
Anwar,Ashraf M., Accuracy of two-dimensional speckle tracking echocardiography for the detection of significant coronary stenosis, Journal of Cardiovascular UltrasoundJ.Cardiovasc.Ultrasound, 21, 177-182, 2013	2D echo without stress is not a protocol index test
Aoyagi,K., Inoue,T., Yamauchi,Y., Iwasaki,T., Endo,K., Does myocardial thallium-201 SPECT combined with electron beam computed tomography improve the detectability of coronary artery disease?comparative study of diagnostic accuracy, Annals of Nuclear MedicineAnn.Nucl.Med., 12, 197-204, 1998	Mixed population - includes known CAD.
Arbab-Zadeh, Armin, Miller, Julie M., Rochitte, Carlos E., Dewey, Marc, Niinuma, Hiroyuki, Gottlieb, Ilan, Paul, Narinder, Clouse, Melvin E., Shapiro, Edward P., Hoe, John, Lardo, Albert C., Bush, David E., de Roos, Albert, Cox, Christopher, Brinker, Jeffrey, Lima, Joao A.C., Diagnostic accuracy of computed tomography coronary angiography according to pre-test probability of coronary artery disease and severity of coronary arterial calcification. The CORE-64 (Coronary Artery Evaluation Using 64-Row Multidetector Computed Tomography Angiography) International Multicenter Study, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 59, 379-387, 2012	Mixed population - includes known disease
Arsanjani,R., Nakazato,R., Shalev,A., Gomez,M., Gransar,H., Leipsic,J., Berman,D., Min,J., Sinai,C., Diagnostic accuracy, image quality and patient comfort for coronary CT angiography performed using low versus high iodine content contrast: A prospective multicenter randomized controlled trial, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 61, E1104-, 2013	Conference abstract.
Arsanjani,Reza, Xu,Yuan, Dey,Damini, Fish,Matthews, Dorbala,Sharmila, Hayes,Sean, Berman,Daniel, Germano,Guido, Slomka,Piotr, Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 54, 549-555,	Study design: case control study

Author	Reason for exclusion
2013	
Atar,D., Ali,S., Steensgaard-Hansen,F., Saunamaki,K., Ramanujam,P.S., Egeblad,H., Haunso,S., The diagnostic value of exercise echocardiography in ischemic heart disease in relation to quantitative coronary arteriography, International Journal of Cardiac ImagingInt J Card Imaging, 11, 1-7, 1995	Population (unclear - only referred for CA, could be due to many reasons)
Avakian,S.D., Grinberg,M., Meneguetti,J.C., Ramires,J.A., Mansur,A.P., SPECT dipyridamole scintigraphy for detecting coronary artery disease in patients with isolated severe aortic stenosis, International journal of cardiologyInt.J.Cardiol., 81, 21-27, 2001	Population (indirect/specific)
Aviram,Galit, Finkelstein,Ariel, Herz,Itzhak, Lessick,Jonathan, Miller,Hylton, Graif,Moshe, Keren,Gad, Clinical value of 16-slice multi-detector CT compared to invasive coronary angiography, International Journal of Cardiovascular InterventionsInt.J.Cardiovasc.Interventions, 7, 21-28, 2005	16 Slice scanner (minimum 64 slice)
Ayaram,David, Bellolio,M.Fernanda, Murad,M.Hassan, Laack,Torrey A., Sadosty,Annie T., Erwin,Patricia J., Hollander,Judd E., Montori,Victor M., Stiell,Ian G., Hess,Erik P., Triple rule-out computed tomographic angiography for chest pain: a diagnostic systematic review and meta-analysis, Academic emergency medicine : official journal of the Society for Academic Emergency MedicineAcad Emerg Med, 20, 861-871, 2013	Mixed population - includes known CAD
Azzarelli,S., Galassi,A.R., Foti,R., Mammana,C., Musumeci,S., Giuffrida,G., Tamburino,C., Accuracy of 99mTc-tetrofosmin myocardial tomography in the evaluation of coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 6, 183-189, 1999	Population (included patients with known CAD)
Babar,Imran M., Aleem,Khan M., Naeem,Aslam M., Irfanullah,J., Diagnosis of coronary artery disease by stress echocardiography and perfusion scintigraphy, Journal of the College of Physicians and Surgeons PakistanJ.Coll.Phys.Surg.Pak., 13, 465-470, 2003	Included studies were on mixed populations (included known CAD)
Baer,F.M., Voth,E., Theissen,P., Schneider,C.A., Schicha,H., Sechtem,U., Coronary artery disease: findings with GRE MR imaging and Tc-99m-methoxyisobutyl-isonitrile SPECT during simultaneous dobutamine stress, Radiology, 193, 203-209, 1994	Non protocol reference standard
Banerjee,A., Newman,D.R., Van Den Bruel,A., Heneghan,C., Diagnostic accuracy of exercise stress testing for coronary artery disease: a systematic review and meta-analysis of prospective studies, International Journal of Clinical PracticeInt.J.Clin.Pract., 66, 477-492, 2012	mixed populations included
Banerjee,S.K., Haque,K.M.H.S., Sharma,A.K., Ahmed,C.M., Iqbal,A.T.M., Nisa,L., Role of exercise tolerance test (ETT) and gated single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI) in predicting severity of ischemia in patients with chest pain, Bangladesh Medical Research Council BulletinBangladesh Med.Res.Counc.Bull., 31, 27-35, 2005	Population (included patients with known CAD)
Barone-Rochette, Gilles, Leclere, Melanie, Calizzano, Alex, Vautrin, Estelle, Celine, Gallazzini Crepin, Broisat, Alexis, Ghezzi, Catherine, Baguet, Jean Philippe, Machecourt, Jacques, Vanzetto, Gerald, Fagret, Daniel, Stress thallium-201/rest technetium-99m sequential dual-isotope high-speed myocardial perfusion imaging validation versus invasive coronary angiography,	Design (non consecutive)

Author	Reason for exclusion
Journal of Nuclear Cardiology, 22, 513-522, 2015	
Bartunek, J., Marwick, T.H., Rodrigues, A.C.T., Vincent, M., Van, Schuerbeeck E., Sys, S.U., de, Bruyne B., Dobutamine-induced wall motion abnormalities: Correlations with myocardial fractional flow reserve and quantitative coronary angiography, Journal of the American College of Cardiology, 27, 1429-1436, 1996	Pre-selected population with known single vessel disease
Baumgart,D., Schmermund,A., Goerge,G., Haude,M., Ge,J., Adamzik,M., Sehnert,C., Altmaier,K., Groenemeyer,D., Seibel,R., Erbel,R., Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis, Journal of the American College of Cardiology, 30, 57-64, 1997	Non protocol index tests (Electron Beam CT with Intracoronary ultrasound)
Bayrak,Fatih, Guneysu,Tahsin, Gemici,Gokmen, Sevinc,Deniz, Mutlu,Bulent, Aytaclar,Semih, Degertekin,Muzaffer, Diagnostic performance of 64-slice computed tomography coronary angiography to detect significant coronary artery stenosis, Acta CardiologicaActa Cardiol., 63, 11-17, 2008	Mixed population, includes MI/Unstable angina
Becker, Alexander, Leber, Alexander, White, Carl W., Becker, Christoph, Reiser, Maximilian F., Knez, Andreas, Multislice computed tomography for determination of coronary artery disease in a symptomatic patient population, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 23, 361- 367, 2007	Design (non consecutive enrolment)
Becker, Christoph R., Knez, Andreas, Leber, Alexander, Treede, Hendrik, Ohnesorge, B., Schoepf, U.Joseph, Reiser, Maximilian F., Detection of coronary artery stenoses with multislice helical CT angiography, Journal of Computer Assisted Tomography J. Comput. Assisted Tomogr., 26, 750-755, 2002	Population (indirect)
Beleslin,B.D., Ostojic,M., Stepanovic,J., Djordjevic-Dikic,A., Stojkovic,S., Nedeljkovic,M., Stankovic,G., Petrasinovic,Z., Gojkovic,L., Vasiljevic-Pokrajcic,Z., Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests, Circulation, 90, 1168-1176, 1994	Mixed population - includes previous MI.
Benjelloun,L., Benjelloun,H., Laudet,M., Itti,R., Discriminant analysis of thallium-201 myocardial scintigrams, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 6, 149-157, 1985	Population (unclear - don't know what they have been referred to CA for)
Benoit,T., Vivegnis,D., Lahiri,A., Itti,R., Braat,S., Rigo,P., Tomographic myocardial imaging with technetium-99m tetrofosmin. Comparison with tetrofosmin and thallium planar imaging and with angiography, European Heart JournalEur.Heart J., 17, 635-642, 1996	Study design (open label) and mixed population (includes known CAD)
Berman,D.S., Kiat,H., Friedman,J.D., Wang,F.P., Van Train,K., Matzer,L., Maddahi,J., Germano,G., Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 22, 1455-1464, 1993	Mixed population - includes previous MI.
Berry, E., Kelly, S., Hutton, J., Harris, K.M., Roderick, P., Boyce, J.C., Cullingworth, J., Gathercole, L., O'Connor, P.J., Smith, M.A., A systematic literature review of spiral and electron beam computed tomography: With particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease, Health Technology AssessmentHealth Technol.Assess., 3, iii-118,	Non protocol index tests (Electron Beam CT)

Author	Reason for exclusion
1999	
Bettencourt,Nuno, Chiribiri,Amedeo, Schuster,Andreas, Ferreira,Nuno, Sampaio,Francisco, Pires-Morais,Gustavo, Santos,Lino, Melica,Bruno, Rodrigues,Alberto, Braga,Pedro, Azevedo,Luis, Teixeira,Madalena, Leite-Moreira,Adelino, Silva- Cardoso,Jose, Nagel,Eike, Gama,Vasco, Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease, Journal of the American College of Cardiology, 61, 1099-1107, 2013	Non protocol reference standard (FFR)
Bettencourt,Nuno, Ferreira,Nuno Dias, Leite,Daniel, Carvalho,Monica, Ferreira,Wilson da Silva, Schuster,Andreas, Chiribiri,Amedeo, Leite-Moreira,Adelino, Silva-Cardoso,Jose, Nagel,Eike, Gama,Vasco, CAD detection in patients with intermediate-high pre-test probability: low-dose CT delayed enhancement detects ischemic myocardial scar with moderate accuracy but does not improve performance of a stress-rest CT perfusion protocol, JACC Cardiovascular imaging, 6, 1062-1071, 2013	Non protocol reference standard (FFR)
Bettencourt,Nuno, Ferreira,Nuno, Chiribiri,Amedeo, Schuster,Andreas, Sampaio,Francisco, Santos,Lino, Melica,Bruno, Rodrigues,Alberto, Braga,Pedro, Teixeira,Madalena, Leite- Moreira,Adelino, Silva-Cardoso,Jose, Portugal,Pedro, Gama,Vasco, Nagel,Eike, Additive value of magnetic resonance coronary angiography in a comprehensive cardiac magnetic resonance stress-rest protocol for detection of functionally significant coronary artery disease: a pilot study, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 6, 730-738, 2013	Non protocol reference standard
Bjornstad,K., Aakhus,S., Hatle,L., Comparison of digital dipyridamole stress echocardiography and upright bicycle stress echocardiography for identification of coronary artery stenosis, Cardiology, 86, 514-520, 1995	Population (included patients with known disease)
Blinder,George, Benhorin,Jesaia, Koukoui,Daniel, Zimam,Roman, Hiller,Nurith, The value of electrocardiography-gated multi-slice computed tomography in the evaluation of patients with chest pain, The Israel Medical Association journal : IMAJIsr Med Assoc J, 7, 419-423, 2005	Includes known CAD
Bogaert,J., Kuzo,R., Dymarkowski,S., Beckers,R., Piessens,J., Rademakers,F.E., Coronary artery imaging with real-time navigator three-dimensional turbo-field-echo MR coronary angiography: Initial experience, Radiology, 226, 707-716, 2003	Non protocol reference test.
Boomsma,M.M., Niemeyer,M.G., Van Der Wall,E.E., van Eck- Smit,B.L., Zwinderman,A.H., Boomsma,J.H., Pauwels,E.K., Tc-99m tetrofosmin myocardial SPECT perfusion imaging: comparison of rest-stress and stress-rest protocols, International Journal of Cardiac ImagingInt J Card Imaging, 14, 105-111, 1998	Population (included patients with known and suspected CAD and patients with previous MI)
Bordeleau,Edith, Lamonde,Alexandre, Prenovault,Julie, Belblidia,Assia, Cote,Gilles, Lesperance,Jacques, Soulez,Gilles, Chartrand-Lefebvre,Carl, Accuracy and rate of coronary artery segment visualization with CT angiography for the non-invasive detection of coronary artery stenoses, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 23, 771-780, 2007	Design (retrospective)
Borges-Neto,S., Mahmarian,J.J., Jain,A., Roberts,R., Verani,M.S., Quantitative thallium-201 single photon emission computed	Mixed population - includes known CAD.

Author	Reason for exclusion
tomography after oral dipyridamole for assessing the presence, anatomic location and severity of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 11, 962- 969, 1988	
Boshchenko,Alla A., Vrublevsky,Alexander V., Karpov,Rostislav S., Transthoracic echocardiography in the detection of chronic total coronary artery occlusion, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of CardiologyEur J Echocardiogr, 10, 62-68, 2009	Non protocol index test (Echo without stress)
Botvinick,E.H., Shames,D.M., Gershengorn,K.M., Carlsson,E., Ratshin,R.A., Parmley,W.W., Myocardial stress perfusion scintigraphy with rubidium-81 versus stress electrocardiography, The American journal of cardiologyAm J Cardiol, 39, 364-371, 1977	Obsolete (planar) imaging technique. Exclude on TE advice.
Breen,J.F., Sheedy II,P.F., Schwartz,R.S., Stanson,A.W., Kaufmann,R.B., Moll,P.P., Rumberger,J.A., Coronary artery calcification detected with ultrafast CT as an indication of coronary artery disease. Work in progress, Radiology, 185, 435-439, 1992	Mixed population
Broderick,L.S., Shemesh,J., Wilensky,R.L., Eckert,G.J., Zhou,X., Torres,W.E., Balk,M.A., Rogers,W.J., Conces,D.J.J., Kopecky,K.K., Measurement of coronary artery calcium with dual-slice helical CT compared with coronary angiography: evaluation of CT scoring methods, interobserver variations, and reproducibility, AJR.American journal of roentgenologyAJR Am J Roentgenol, 167, 439-444, 1996	Does not answer research question - Testing results of specific old and new algorithms
Budoff,M.J., Georgiou,D., Brody,A., Agatston,A.S., Kennedy,J., Wolfkiel,C., Stanford,W., Shields,P., Lewis,R.J., Janowitz,W.R., Rich,S., Brundage,B.H., Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study, Circulation, 93, 898-904, 1996	Mixed population - includes known CAD
Budoff,M.J., Oudiz,R.J., Zalace,C.P., Bakhsheshi,H., Goldberg,S.L., French,W.J., Rami,T.G., Brundage,B.H., Intravenous three- dimensional coronary angiography using contrast enhanced electron beam computed tomography, The American journal of cardiologyAm J Cardiol, 83, 840-845, 1999	Non protocol index test
Budoff,Matthew J., Achenbach,Stephan, Duerinckx,Andre, Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 42, 1867-1878, 2003	Study design - Review (non systematic)
Budoff,Matthew J., Lu,Bin, Shinbane,Jerold S., Chen,Lynn, Child,Janis, Carson,Sivi, Mao,SongShou, Methodology for improved detection of coronary stenoses with computed tomographic angiography, American Heart JournalAm.Heart J., 148, 1085-1090, 2004	Non protocol index test
Bunce, Nicholas H., Reyes, Eliana, Keegan, Jennifer, Bunce, Catey, Davies, Simon W., Lorenz, Christine H., Pennell, Dudley J., Combined coronary and perfusion cardiovascular magnetic resonance for the assessment of coronary artery stenosis, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic ResonanceJ Cardiovasc Magn Reson, 6, 527-539, 2004	Time flow (too long between tests)
Cademartiri,F., Runza,G., Marano,R., Luccichenti,G., Gualerzi,M., Brambilla,L., Galia,M., Krestin,G.P., Coruzzi,P., Midiri,M., Belgrano,M., Diagnostic accuracy of 16-row multislice CT	Not available via British Library or Royal Society of Medicine

Author	
Author angiography in the evaluation of coronary segments, La Radiologia	Reason for exclusion
medicaRadiol Med, 109, 91-97, 2005	
Cademartiri,Filippo, Maffei,Erica, Palumbo,Anselmo Alessandro, Malago,Roberto, La Grutta,Ludovico, Meiijboom,W.Bob, Aldrovandi,Annachiara, Fusaro,Michele, Vignali,Luigi, Menozzi,Alberto, Brambilla,Valerio, Coruzzi,Paolo, Midiri,Massimo, Kirchin,Miles A., Mollet,Nico R.A., Krestin,Gabriel P., Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography, European RadiologyEur.Radiol., 18, 576- 583, 2008	Population (included patients with known CAD)
Cademartiri, Filippo, Marano, Riccardo, Luccichenti, Giacomo, Mollet, Nico, Runza, Giuseppe, Galia, Massimo, Belgrano, Manuel, Gualerzi, Massimo, Brambilla, Lorenzo, Coruzzi, Paolo, Midiri, Massimo, Image assessment with multislice CT coronary angiography, La Radiologia medica Radiol Med, 109, 198-207, 2005	Not available via British Library or Royal Society of Medicine
Cademartiri,Filippo, Mollet,Nico, Lemos,Pedro A., McFadden,Eugene P., Marano,Riccardo, Baks,Timo, Stijnen,Theo, de Feyter,Pim J., Krestin,Gabriel P., Standard versus user- interactive assessment of significant coronary stenoses with multislice computed tomography coronary angiography, The American journal of cardiologyAm J Cardiol, 94, 1590-1593, 2004	16 slice CT (minimum 64 slice)
Caiati,Carlo, Lepera,Mario Erminio, Carretta,Domenico, Santoro,Daniela, Favale,Stefano, Head-to-head comparison of peak upright bicycle and post-treadmill echocardiography in detecting coronary artery disease: a randomized, single-blind crossover study, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 26, 1434-1443, 2013	Mixed population - includes known CAD.
Caldwell,J.H., Hamilton,G.W., Sorensen,S.G., The detection of coronary artery disease with radionuclide techniques: A comparison of rest-exercise thallium imaging and ejection fraction response, Circulation, 61, 610-619, 1980	Mixed population - includes known CAD.
Callister TQ, Cooil B, Raya SP et al. (1998) Coronary artery disease: Imoproved reproducibility of Calcium Scoring with an Electron- Beam CT Volumetric method. Radiology. 208:807-814.	Non protocol index test.
Carmo, Miguel Mota, Ferreira, Teresa, Quininha, Jorge, Ferreira, Jose, Non-invasive coronary artery evaluation with multidetector computed tomography, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of CardiologyRev Port Cardiol, 24, 667-679, 2005	Mixed population - includes previous CABG.
Carrascosa,Patricia Marina, Capunay,Carlos Maria, Parodi,Juan Carlos, Padilla,Lucio Tiburcio, Johnson,Peter, Carrascosa,Jorge Manuel, Chandra,Shalabh, Smith,Dava, Belardi,Jorge, General utilities of multislice tomography in the cardiac field, Herz, 28, 44- 51, 2003	Population (included patients with known CAD)
Carrascosa, Patricia, Capunay, Carlos, Bettinotti, Marcelo, Goldsmit, Alejandro, Deviggiano, Alejandro, Carrascosa, Jorge, Garcia, Mario J., Feasibility of gadolinium-diethylene triamine pentaacetic acid enhanced multidetector computed tomography for the evaluation of coronary artery disease, Journal of Cardiovascular Computed TomographyJ.Cardiovasc.Comput.Tomogr., 1, 86-94, 2007	Mixed population - includes known CAD

Author	Reason for exclusion
Carrascosa,Patricia, Capunay,Carlos, Deviggiano,Alejandro, Bettinotti,Marcelo, Goldsmit,Alejandro, Tajer,Carlos, Carrascosa,Jorge, Garcia,Mario J., Feasibility of 64-slice gadolinium-enhanced cardiac CT for the evaluation of obstructive coronary artery disease, Heart (British Cardiac Society), 96, 1543- 1549, 2010	Includes known CAD
Carrascosa,Patricia, Deviggiano,Alejandro, Capunay,Carlos, De Zan,Macarena C., Goldsmit,Alejandro, Rodriguez-Granillo,Gaston A., Effect of intracycle motion correction algorithm on image quality and diagnostic performance of computed tomography coronary angiography in patients with suspected coronary artery disease, Academic RadiologyAcad.Radiol., 22, 81-86, 2015	New Generation Scanner used (Discovery 750)- covered by DG3
Carrascosa,Patricia, Merletti,Pablo Garcia, Capunay,Carlos, Goldsmit,Alejandro, Bettinotti,Marcelo, Carrascosa,Jorge, New approach to noninvasive coronary angiography by multidetector computed tomography: initial experience using gadolinium, Journal of Computer Assisted TomographyJ.Comput.Assisted Tomogr., 31, 441-443, 2007	Population (included patients with known CAD)
Carstensen,S., Host,U., Saunamaki,K., Kelbaek,H., Quantitative analysis of dobutamine-atropine stress echocardiography by fractional area change, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of CardiologyEur J Echocardiogr, 3, 220-228, 2002	Mixed population - includes known CAD
Caymaz,O., Fak,A.S., Tezcan,H., Inanir,S., Toprak,A., Tokay,S., Turoglu,T., Oktay,A., Correlation of myocardial fractional flow reserve with thallium-201 SPECT imaging in intermediate-severity coronary artery lesions, The Journal of invasive cardiologyJ Invasive Cardiol, 12, 345-350, 2000	Unclear which test was reference standard
Celutkiene, Jelena, Zakarkaite, Diana, Skorniakov, Viktor, Zvironaite, Vida, Grabauskiene, Virginija, Burca, Jelizaveta, Ciparyte, Laura, Laucevicius, Aleksandras, Quantitative approach using multiple single parameters versus visual assessment in dobutamine stress echocardiography, Cardiovascular ultrasoundCardiovasc Ultrasound, 10, 31-, 2012	Mixed population - includes known CAD.
Cerci,Rodrigo, Vavere,Andrea L., Miller,Julie M., Yoneyama,Kihei, Rochitte,Carlos E., Dewey,Marc, Niinuma,Hiroyuki, Clouse,Melvin E., Laham,Roger, Bush,David E., Shapiro,Edward P., Lardo,Albert C., Cox,Christopher, Brinker,Jeffrey, Lima,Joao A.C., Arbab- Zadeh,Armin, Patterns of coronary arterial lesion calcification by a novel, cross-sectional CT angiographic assessment, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 29, 1619-1627, 2013	Mixed population - includes known CAD.
Chammas,Elie, Yatim,Ahmad, Hage,Chadi, Sokhn,Kozhaya, Tarcha,Walid, Ghanem,Georges, Evaluation of Tc-99m tetrofosmin scan for coronary artery disease diagnosis, Asian cardiovascular & thoracic annals, 10, 244-247, 2002	Population (included patients with known or suspected CAD)
Chandraratna,P.A., Kuznetsov,V.A., Mohar,D.S., Sidarous,P.F., Scheutz,J., Krinochkin,D.V., Pak,Y.A., Mohar,P., Arawgoda,U., Comparison of squatting stress echocardiography and dobutamine stress echocardiography for the diagnosis of coronary artery disease, Echocardiography (Mount Kisco, N.Y.), 29, 695-699, 2012	Reference standard (unclear)
Chao,Shu Ping, Law,Wai Yip, Kuo,Chu Jen, Hung,Huei Fong, Cheng,Jun Jack, Lo,Huey Ming, Shyu,Kou Gi, The diagnostic	New generation scanner used (as per protocol exclusions)

Author	Reason for exclusion
accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease, European Heart JournalEur.Heart J., 31, 1916-1923, 2010	
Chaosuwannakit,Narumol, Kiatchoosakun,Songsak, Makarawate,Pattarapong, Diagnostic accuracy of 128-row multidetector computed tomography coronary angiography in the diagnosis of significant coronary artery stenosis, Journal of the Medical Association of Thailand = Chotmaihet thangphaetJ Med Assoc Thai, 95, 1548-1555, 2012	Design (retrospective)
Chen,Gui Bing, Wu,Hua, He,Xiao Jiang, Huang,Jin Xiong, Yu,Dan, Xu,Wei Yi, Yu,Hao, Adenosine stress thallium-201 myocardial perfusion imaging for detecting coronary artery disease at an early stage, Journal of X-ray science and technologyJ Xray Sci Technol, 21, 317-322, 2013	No threshold given for CAD with CA
Chen,Hong wei, Fang,Xiang ming, Hu,Xiao yun, Bao,Jian, Hu,Chun hong, Chen,Yin, Yang,Zhen yu, Alexander,Lerner, Wu,Xiao qing, Efficacy of dual-source CT coronary angiography in evaluating coronary stenosis: initial experience, Clinical ImagingClin.Imaging, 34, 165-171, 2010	Design (retrospective)
Chen,L.C., Ding,P.Y., Chen,J.W., Wu,M.H., Liu,J.C., Lan,G.Y., Chern,M.S., Chang,C.Y., Chang,M.S., Coronary artery calcium determined by electron beam computed tomography for predicting angiographic coronary artery disease in moderate- to high-risk Chinese patients, Cardiology, 95, 183-189, 2001	Non protocol index test (EBCT)
Chen,ML., Chao,IM., Chen,CH., Wu,HH., Chen,PL., Liu,SM., Chen,P.H., Diagnostic accuracy and safety of dipyridamole Thallium-201 single photon emission computed tomography in coronary artery disease, Acta Cardiologica SinicaActa Cardiol.Sin., 12, 126-133, 1996	Population (mixed)
Chen,Yan, Han,Ping, Liang,Bo, Liang,Huimin, Lei,Ziqiao, Tian,Zhiliang, Feng,Gansheng, Xiao,Jie, Comparative study on 16- slice CT coronary angiography vs conventional coronary angiographya report of 38 cases, Journal of Huazhong University of Science and Technology.Medical sciences = Hua zhong ke ji da xue xue bao.Yi xue Ying De wen ban = Huazhong ke ji daxue xuebao.Yixue Yingdewen banJ Huazhong Univ Sci Technolog Med Sci, 28, 110-113, 2008	Design (retrospective)
Chen,Zhiyong, Duan,Qing, Xue,Xunjing, Chen,Lianglong, Ye,Wenbin, Jin,Lixin, Sun,Bin, Noninvasive detection of coronary artery stenoses with contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T, Cardiology, 117, 284- 290, 2010	Non protocol index test
Cheng,Adrian S.H., Pegg,Tammy J., Karamitsos,Theodoros D., Searle,Nick, Jerosch-Herold,Michael, Choudhury,Robin P., Banning,Adrian P., Neubauer,Stefan, Robson,Matthew D., Selvanayagam,Joseph B., Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 49, 2440-2449, 2007	Mixed population - includes known CAD.
Cheng,L., Jing,S., Zhang,Y., A comparison study between CT angiography with 64-multislice spiral computed tomography and selective X-ray coronary angiography, Experimental and Therapeutic MedicineExp.Ther.Med., 5, 969-971, 2013	Study design - case control.

Author	Reason for exclusion
Cheng,L., Jing,S., Zhang,Y., A comparison study between CT angiography with 64-multislice spiral computed tomography and selective X-ray coronary angiography, Experimental and Therapeutic MedicineExp.Ther.Med., 5, 969-971, 2013	Study design - case control
Cheng, Liuquan, Gao, Yuangui, Guaricci, Andrea I., Mulukutla, Suresh, Sun, Wei, Sheng, Fugeng, Foo, Thomas K., Prince, Martin R., Wang, Yi, Breath-hold 3D steady-state free precession coronary MRA compared with conventional X-ray coronary angiography, Journal of magnetic resonance imaging : JMRIJ Magn Reson Imaging, 23, 669-673, 2006	Non protocol index test
Cheng, Liuquan, Ma, Lin, Schoenhagen, Paul, Ye, Huiyi, Lou, Xin, Gao, Yuangui, Zhao, Xihai, Wang, Xinjiang, Dong, Wei, Comparison of three-dimensional volume-targeted thin-slab FIESTA magnetic resonance angiography and 64-multidetector computed tomographic angiography for the identification of proximal coronary stenosis, International journal of cardiologyInt.J.Cardiol., 167, 2969-2976, 2013	No per patient analysis reported
Chiou,Kuan Rau, Huang,Wei Chun, Lin,Shoa Lin, Hsieh,Pu Lin, Liu,Chun Peng, Tsay,Daw Guey, Chiang,Hung Ting, Real-time dobutamine stress myocardial contrast echocardiography for detecting coronary artery disease: correlating abnormal wall motion and disturbed perfusion, The Canadian journal of cardiologyCan J Cardiol, 20, 1237-1243, 2004	Includes known CAD
Cho,Hyun Ok, Nam,Chang Wook, Cho,Yun Kyeong, Yoon,Hyuck Jun, Park,Hyoung Seob, Kim,Hyungseop, Chung,In Sung, Doh,Joon Hyung, Koo,Bon Kwon, Hyun,Dae Woo, Hur,Seung Ho, Kim,Yoon Nyun, Kim,Kwon Bae, Characteristics of function-anatomy mismatch in patients with coronary artery disease, Korean Circulation JournalKorean Circ.J., 44, 394-399, 2014	Mixed population - includes people with known coronary lesions
Choi, Jin Oh, Cho, Sung Won, Song, Young Bin, Cho, Soo Jin, Song, Bong Gun, Lee, Sang Chol, Park, Seung Woo, Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of CardiologyEur J Echocardiogr, 10, 695-701, 2009	Non protocol index test (2D echo without stress)
Chow,B.J.W., Freeman,M.R., Bowen,J.M., Levin,L., Hopkins,R.B., Provost,Y., Tarride,JE., Dennie,C., Cohen,E.A., Marcuzzi,D., Iwanochko,R., Moody,A.R., Paul,N., Parker,J.D., O'Reilly,D.J., Xie,F., Goeree,R., Ontario multidetector computed tomographic coronary angiography study: Field evaluation of diagnostic accuracy, Archives of Internal MedicineArch.Intern.Med., 171, 1021-1029, 2011	Mixed population. Includes known valve disease/congenital heart disease.
Chow,Benjamin J.W., Abraham,Arun, Wells,George A., Chen,Li, Ruddy,Terrence D., Yam,Yeung, Govas,Nayia, Galbraith,Phoebe Diane, Dennie,Carole, Beanlands,Rob S., Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 2, 16- 23, 2009	Study design - retrospective
Chow,Benjamin J.W., Dennie,Carole, Hoffmann,Udo, So,Derek, de Kemp,Robert A., Ruddy,Terrence D., Beanlands,Rob S., Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with	Mixed population - includes known disease.

Author	Reason for exclusion
anatomical coronary artery disease, The Canadian journal of cardiologyCan J Cardiol, 23, 801-807, 2007	
Chow,Benjamin J.W., Kass,Malek, Gagne,Owen, Chen,Li, Yam,Yeung, Dick,Alexander, Wells,George A., Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow?, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 57, 1280-1288, 2011	Study design - retrospective
Chowdhury,F.U., Vaidyanathan,S., Bould,M., Marsh,J., Trickett,C., Dodds,K., Clark,T.P.R., Sapsford,R.J., Dickinson,C.J., Patel,C.N., Thorley,P.J., Rapid-acquisition myocardial perfusion scintigraphy (MPS) on a novel gamma camera using multipinhole collimation and miniaturized cadmium-zinc-telluride (CZT) detectors: prognostic value and diagnostic accuracy in a 'real-world' nuclear cardiology service, European Heart Journal Cardiovascular ImagingEur.Heart J.Cardiovasc.Imaging, 15, 275-283, 2014	Study Design - retrospective
Christensen, Henrik Wulff, Haghfelt, Torben, Vach, Werner, Johansen, Allan, Hoilund-Carlsen, Poul Flemming, Observer reproducibility and validity of systems for clinical classification of angina pectoris: comparison with radionuclide imaging and coronary angiography, Clinical Physiology and Functional ImagingClin. Physiol. Funct. Imaging, 26, 26-31, 2006	Population (included patients with known CAD)
Chua,SK., Hung,HF., Cheng,JJ., Tseng,MT., Law,WY., Kuo,C J., Chiu,CZ., Chang,CM., Lee,SH., Lo,HM., Lin,SC., Liou,JY., Shyu,KG., Diagnostic performance of 64-versus 256-slice computed tomography coronary angiography compared with conventional coronary angiography in patients with suspected coronary artery disease, Acta Cardiologica SinicaActa Cardiol.Sin., 29, 151-159, 2013	Study design - retrospective. Protocol exclusion (New generation scanner used).
Chung,W.Y., Choi,B.J., Lim,S.H., Matsuo,Y., Lennon,R.J., Gulati,R., Sandhu,G.S., Holmes,D.R.,Jr., Rihal,C.S., Lerman,A., Three dimensional quantitative coronary angiography can detect reliably ischemic coronary lesions based on fractional flow reserve, J Korean Med Sci, 30, 716-724, 2015	Non protocol index
Ciavolella,M., Tomai,F., Vicchio,D., Ruscitti,G., Giannitti,C., Scali,D., Schad,N., Reale,A., Single-day combined evaluation of regional myocardial perfusion and function at rest and peak exercise with 99mTc-MIBI in patients with coronary artery disease, International Journal of Cardiac ImagingInt J Card Imaging, 9, 299-311, 1993	Population (included patients with known CAD)
Cohen,J.L., Chan,K.L., Jaarsma,W., Bach,D.S., Muller,D.W.M., Starling,M.R., Armstrong,W.F., Arbutamine echocardiography: Efficacy and safety of a new pharmacologic stress agent to induce myocardial ischemia and detect coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 26, 1168- 1175, 1995	Mixed population - includes known CAD.
Cohen,J.L., Greene,T.O., Ottenweller,J., Binenbaum,S.Z., Wilchfort,S.D., Kim,C.S., Dobutamine digital echocardiography for detecting coronary artery disease, The American journal of cardiologyAm J Cardiol, 67, 1311-1318, 1991	Includes known CAD.
Cohen,J.L., Ottenweller,J.E., George,A.K., Duvvuri,S., Comparison of dobutamine and exercise echocardiography for detecting coronary artery disease, The American journal of cardiologyAm J Cardiol, 72, 1226-1231, 1993	Population (included patients with previous MI)
Conti, Alberto, Mariannini, Yuri, Canuti, Erica, Petrova, Tetyana,	Mixed population - includes acute

Author	Reason for exclusion
Innocenti, Francesca, Zanobetti, Maurizio, Gallini, Chiara,	chest pain
Costanzo, Egidio, Nuclear scan strategy and outcomes in chest pain patients value of stress testing with dipyridamole or adenosine, World journal of nuclear medicineWorld j.nucl.med., 13, 94-101, 2014	
Cramer, M.J., Verzijlbergen, J.F., Niemeyer, M.G., Van Der Wall, E.E., Zwinderman, A.H., Ascoop, C.A., Pauwels, E.K., 99Tcm-sestamibi SPECT with combined dipyridamole and exercise stress in coronary artery disease, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 15, 554-559, 1994	Population (included patients with previous MI)
Cramer,M.J., Verzijlbergen,J.F., Van Der Wall,E.E., Vermeersch,P.H., Niemeyer,M.G., Zwinderman,A.H., Ascoop,C.A., Pauwels,E.K., Comparison of adenosine and high-dose dipyridamole both combined with low-level exercise stress for 99Tcm-MIBI SPET myocardial perfusion imaging, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 17, 97-104, 1996	Population (included patients with previous MI)
Cramer, M.J., Verzijlbergen, J.F., Wall, E.E., Niemeyer, M.G., Zwinderman, A.H., Ascoop, C.A., Pauwels, E.J., Head-to-head comparison between technetium-99m-sestamibi and thallium-201 tomographic imaging for the detection of coronary artery disease using combined dipyridamole-exercise stress, Coronary Artery DiseaseCoron.Artery Dis., 5, 787-791, 1994	Population (included patients with previous MI)
Cury,Ricardo C., Cattani,Cesar A.M., Gabure,Luiz A.G., Racy,Douglas J., de Gois,Jose M., Siebert,Uwe, Lima,Sergio S., Brady,Thomas J., Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease, Radiology, 240, 39-45, 2006	Mixed population - includes previous MI.
Cury,Roberto C., Magalhaes,Tiago A., Borges,Anna C., Shiozaki,Afonso A., Lemos,Pedro A., Junior,Jose Soares, Meneghetti,Jose Claudio, Cury,Ricardo C., Rochitte,Carlos E., Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease, The American journal of cardiologyAm J Cardiol, 106, 310-315, 2010	Only participants with positive SPECT were included
Cwajg,J., Xie,F., O'Leary,E., Kricsfeld,D., Dittrich,H., Porter,T.R., Detection of angiographically significant coronary artery disease with accelerated intermittent imaging after intravenous administration of ultrasound contrast material, American Heart JournalAm.Heart J., 139, 675-683, 2000	Design (retrospective)
Daghighi,M.H., Javadrashid,R., Ghaffari,S., Sadighi,A., Pourlssa,M., Abdkarimi,M.H., Ghorashi,S., Nezami,N., 64-Slice multidetector computed tomographic angiography and invasive coronary angiography in diagnosis of significant coronary artery stenosis, Journal of Surgical RadiologyJ.Surg.Radiol., 3, 204-209, 2012	Population (all patients had CAD signs/symptoms. 50% stable angina. 15% atypical chest pain)
Danad,Ibrahim, Raijmakers,Pieter G., Appelman,Yolande E., Harms,Hendrik J., de Haan,Stefan, van den Oever,Mijntje L.P., Heymans,Martijn W., Tulevski,Igor I., van Kuijk,Cornelis, Hoekstra,Otto S., Lammertsma,Adriaan A., Lubberink,Mark, van Rossum,Albert C., Knaapen,Paul, Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 54, 55-63, 2013	Non protocol reference standard
Danad, Ibrahim, Raijmakers, Pieter G., Harms, Hendrik J.,	Reference standard (non protocol)

Author	Reason for exclusion
Heymans, Martijn W., van Royen, Niels, Lubberink, Mark,	
Boellaard,Ronald, van Rossum,Albert C., Lammertsma,Adriaan A., Knaapen,Paul, Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [150]H20 PET study, European Heart JournalEur.Heart J., 35, 2094-2105, 2014	
Danad, Ibrahim, Uusitalo, Valtteri, Kero, Tanja, Saraste, Antti, Raijmakers, Pieter G., Lammertsma, Adriaan A., Heymans, Martijn W., Kajander, Sami A., Pietila, Mikko, James, Stefan, Sorensen, Jens, Knaapen, Paul, Knuuti, Juhani, Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 64, 1464-1475, 2014	Analysis (missing data) Reference standard (non protocol)
Danias,Peter G., Roussakis,Arkadios, Ioannidis,John P.A., Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 44, 1867-1876, 2004	Population (included patients with known disease)
Dart,J., Yuda,S., Cain,P., Case,C., Marwick,T.H., Use of myocardial backscatter as a quantitative tool for dobutamine echocardiography: Feasibility, response to ischemia and accuracy compared with coronary angiography, International Journal of Cardiovascular ImagingInt.J.Card.Imaging, 18, 325-336, 2002	Population (included patients with known CAD)
Davin,Laurent, Lancellotti,Patrizio, Bruyere,Pierre Julien, Gach,Olivier, Pierard,Luc, Legrand,Victor, Diagnostic accuracy of computed tomography coronary angiography in routine practice, Acta CardiologicaActa Cardiol., 62, 339-344, 2007	CT scanner 16 slice only
de Graaf,Fleur R., Schuijf,Joanne D., van Velzen,Joella E., Boogers,Mark J., Kroft,Lucia J., de Roos,Albert, Reiber,Johannes H.C., Sieders,Allard, Spano,Fabrizio, Jukema,J.Wouter, Schalij,Martin J., van der Wall,Ernst E., Bax,Jeroen J., Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis, Investigative RadiologyInvest.Radiol., 45, 331-340, 2010	Index test overlaps with DG3 (New Generation Scanner)
de Graaf,Fleur R., Schuijf,Joanne D., van Velzen,Joella E., Kroft,Lucia J., de Roos,Albert, Reiber,Johannes H.C., Boersma,Eric, Schalij,Martin J., Spano,Fabrizio, Jukema,J.Wouter, van der Wall,Ernst E., Bax,Jeroen J., Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease, European Heart JournalEur.Heart J., 31, 1908-1915, 2010	Mixed population - includes known CAD. New Generation scanner used (protocol exclusion).
de Jong, Marcus C., Genders, Tessa S.S., van Geuns, Robert Jan, Moelker, Adriaan, Hunink, M.G.M., Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis, European Radiology Eur. Radiol., 22, 1881-1895, 2012	Mixed populations - includes known CAD.
de Mello,Ricardo Andrade Fernades, Nacif,Marcelo Souto, dos Santos,Alair Augusto Sarmet, Cury,Ricardo Caldeira, Rochitte,Carlos Eduardo, Marchiori,Edson, Diagnostic performance of combined cardiac MRI for detection of coronary artery disease, European Journal of RadiologyEur.J.Radiol., 81, 1782-1789, 2012	Design (retrospective)
Dedic,Admir, Rossi,A., Ten Kate,G.J.R., Neefjes,L.A., Galema,T.W., Moelker,A., Van Domburg,R.T., Schultz,C.J., Mollet,N.R., De	Mixed population - includes known disease.

Author	Reason for exclusion
Feyter, P.J., Nieman, K., First-line evaluation of coronary artery	
disease with coronary calcium scanning or exercise electrocardiography, International journal of cardiologyInt.J.Cardiol., 163, 190-195, 2013	
Deetjen,Anja G., Conradi,Guido, Mollmann,Susanne, Ekinci,Okan, Weber,Michael, Nef,Holger, Mollmann,Helge, Hamm,Christian W., Dill,Thorsten, Diagnostic value of the 16-detector row multislice spiral computed tomography for the detection of coronary artery stenosis in comparison to invasive coronary angiography, Clinical CardiologyClin.Cardiol., 30, 118-123, 2007	Mixed population. Includes known disease.
Delgado,Carlos, Vazquez,Maria, Oca,Roque, Vilar,Manuel, Trinidad,Carmen, Sanmartin,Marcelo, Myocardial ischemia evaluation with dual-source computed tomography: comparison with magnetic resonance imaging, Revista espanola de cardiologia (English ed.)Rev Esp Cardiol (Engl), 66, 864-870, 2013	Index test overlaps with DG3 (New Generation Scanner) Population (only included patients with positive stress tests)
Dendukuri,N., Chiu,K., Brophy,J.M., Validity of electron beam computed tomography for coronary artery disease: Asystematic review and meta-analysis, BMC MedicineBMC Med., 5, -, 2007	Non protocol index test (EBCT)
Detrano,R., Gianrossi,R., Mulvihill,D., Lehmann,K., Dubach,P., Colombo,A., Froelicher,V., Exercise-induced ST segment depression in the diagnosis of multivessel coronary disease: a meta analysis, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 14, 1501-1508, 1989	Non protocol index test
Dewey,M., Schnapauff,D., Laule,M., Lembcke,A., Borges,A.C., Rutsch,W., Hamm,B., Rogalla,P., Multislice CT coronary angiography: Evaluation of an automatic vessel detection tool, RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden VerfahrenRoFo Fortschr.Geb.Rontgenstr.Bildgebenden Verfahren, 176, 478-483, 2004	Index test overlaps with DG3 (New Generation Scanner)
Dewey, Marc, Dubel, Hans Peter, Schink, Tania, Baumann, Gert, Hamm, Bernd, Head-to-head comparison of multislice computed tomography and exercise electrocardiography for diagnosis of coronary artery disease, European Heart JournalEur. Heart J., 28, 2485-2490, 2007	CT scanner specification - 16 slice only.
Dewey,Marc, Teige,Florian, Rutsch,Wolfgang, Schink,Tania, Hamm,Bernd, CT coronary angiography: influence of different cardiac reconstruction intervals on image quality and diagnostic accuracy, European Journal of RadiologyEur.J.Radiol., 67, 92-99, 2008	16 Slice scanner (minimum 64 slice)
Dewey, Marc, Teige, Florian, Schnapauff, Dirk, Laule, Michael, Borges, Adrian C., Wernecke, Klaus Dieter, Schink, Tania, Baumann, Gert, Rutsch, Wolfgang, Rogalla, Patrik, Taupitz, Matthias, Hamm, Bernd, Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging, Annals of Internal MedicineANN.INTERN.MED., 145, 407- 415, 2006	Only participants with positive stress test were included
Dewey,Marc, Zimmermann,Elke, Deissenrieder,Florian, Laule,Michael, Dubel,Hans Peter, Schlattmann,Peter, Knebel,Fabian, Rutsch,Wolfgang, Hamm,Bernd, Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to- head pilot investigation, Circulation, 120, 867-875, 2009	New generation scanner used (protocol exclusion)

Author	Reason for exclusion
Dharampal,Anoeshka S., Papadopoulou,Stella L., Rossi,Alexia, Meijboom,W.Bob, Weustink,Annick, Dijkshoorn,Marcel, Nieman,Koen, Boersma,Eric H., de Feijter,Pim J., Krestin,Gabriel P., Diagnostic performance of computed tomography coronary angiography to detect and exclude left main and/or three-vessel coronary artery disease, European RadiologyEur.Radiol., 23, 2934- 2943, 2013	Index test overlaps with DG3 (New Generation Scanner)
Di Bello,V., Gori,E., Bellina,C.R., Parodi,O., Molea,N., Santoro,G., Mariani,G., Conti,U., Magagnini,E., Marzullo,P., Incremental diagnostic value of dipyridamole echocardiography and exercise thallium 201 scintigraphy in the assessment of presence and extent of coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 1, 372-381, 1994	Analysis (missing data)
Di Tanna,Gian Luca, Berti,Elena, Stivanello,Elisa, Cademartiri,Filippo, Achenbach,Stephan, Camerlingo,Maria Domenica, Grilli,Roberto, Informative value of clinical research on multislice computed tomography in the diagnosis of coronary artery disease: A systematic review, International journal of cardiologyInt.J.Cardiol., 130, 386-404, 2008	Population (included patients with known CAD)
Dikkers,R., Willems,T.P., Piers,L.H., de Jonge,G.J., Tio,R.A., van der Zaag-Loonen,H.J., van Ooijen,P.M.A., Zijlstra,F., Oudkerk,M., Coronary revascularization treatment based on dual-source computed tomography, European RadiologyEur.Radiol., 18, 1800- 1808, 2008	Not relevant
Djordjevic-Dikic,A.D., Ostojic,M.C., Beleslin,B.D., Stepanovic,J., Petrasinovic,Z., Babic,R., Stojkovic,S.M., Stankovic,G., Nedeljkovic,M., Nedeljkovic,I., Kanjuh,V., High dose adenosine stress echocardiography for noninvasive detection of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 28, 1689-1695, 1996	Mixed population: Includes patients with previous MI
Donati,O.F., Alkadhi,H., Scheffel,H., Kuehnel,C., Hennemuth,A., Wyss,C., Azemaj,N., Plass,A., Kozerke,S., Falk,V., Leschka,S., Stolzmann,P., 3D fusion of functional cardiac magnetic resonance imaging and computed tomography coronary angiography: accuracy and added clinical value, Investigative RadiologyInvest.Radiol., 46, 331-340, 2011	Population (included patients with known stenoses)
Donati,Olivio F., Scheffel,Hans, Stolzmann,Paul, Baumuller,Stephan, Plass,Andre, Leschka,Sebastian, Alkadhi,Hatem, Combined cardiac CT and MRI for the comprehensive workup of hemodynamically relevant coronary stenoses, AJR.American journal of roentgenologyAJR Am J Roentgenol, 194, 920-926, 2010	Includes known CAD
Dong,Shaohong, Liang,Xu, Zhang,Shaoweng, Zhai,Lihua, Hu,Xuesong, Xia,Lingqiong, Wang,Zengying, Yang,Chunyu, Yuan,Nuanrong, Assessment of coronary artery disease with second harmonic myocardial perfusion contrast echocardiography, Chinese medical journalChin.Med.J., 115, 837-841, 2002	Population (included patients with known CAD)
Duvall,W.Lane, Sweeny,Joseph M., Croft,Lori B., Barghash,Maya H., Kulkarni,Nitin K., Guma,Krista A., Henzlova,Milena J., Comparison of high efficiency CZT SPECT MPI to coronary angiography, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 18, 595-604, 2011	Design (retrospective) Population (included patients with known CAD)
Duvall,W.Lane, Sweeny,Joseph M., Croft,Lori B., Ginsberg,Eric,	Retrospective design

Austral	Dessen for evolution
Author Guma,Krista A., Henzlova,Milena J., Reduced stress dose with rapid	Reason for exclusion
acquisition CZT SPECT MPI in a non-obese clinical population: comparison to coronary angiography, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 19, 19-27, 2012	
Einstein AJ, Henzlova MJ, Rajagopalan S. (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 298 (3): 317-323.	Not revelvant
Elhendy,A., Geleijnse,M.L., Van Domburg,R.T., Nierop,P.R., Poldermans,D., Bax,J.J., Tencate,F.J., Nosir,Y.F., Ibrahim,M.M., Roelandt,J.R., Gender differences in the accuracy of dobutamine stress echocardiography for the diagnosis of coronary artery disease, The American journal of cardiologyAm J Cardiol, 80, 1414- 1418, 1997	Subgroup analysis only
Elhendy,Abdou, O'Leary,Edward L., Xie,Feng, McGrain,Anna C., Anderson,James R., Porter,Thomas R., Comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 44, 2185-2191, 2004	Includes known CAD
Engman,M.L., An update on EBCT (Ultrafast CT) scans for coronary artery disease, Journal of insurance medicine (New York, N.Y.), 30, 175-179, 1998	Non protocol index test
Epstein,M., Gin,K., Sterns,L., Pollick,C., Dobutamine stress echocardiography: initial experience of a Canadian centre, The Canadian journal of cardiologyCan J Cardiol, 8, 273-279, 1992	Population (included patients with known or suspected CAD)
Erdogan,Nihan, Akar,Nihal, Vural,Murat, Canbay,Alper, Kayhan,Tugba, Sahin,Deniz, Diker,Erdem, Aydogdu,Sinan, Diagnostic value of 16-slice multidetector computed tomography in symptomatic patients with suspected significant obstructive coronary artery disease, Heart and VesselsHeart Vessels, 21, 278- 284, 2006	16 slice CT Scanner only
Eroglu,Elif, D'hooge,Jan, Herbots,Lieven, Thijs,Daisy, Dubois,Christophe, Sinnaeve,Peter, Dens,Joseph, Vanhaecke,Johan, Rademakers,Frank, Comparison of real-time tri- plane and conventional 2D dobutamine stress echocardiography for the assessment of coronary artery disease, European Heart JournalEur.Heart J., 27, 1719-1724, 2006	Includes known CAD.
Evaluation of coronary arterial stenoses using 2D magnetic resonance coronary angiography, Minim.Invasive Ther Allied.Technol, 11, 7-15, 2002	Non protocol index test
Fagret,D., Marie,P.Y., Brunotte,F., Giganti,M., Le Guludec,D., Bertrand,A., Wolf,J.E., Piffanelli,A., Chossat,F., Bekhechi,D., Myocardial perfusion imaging with technetium-99m-Tc NOET: comparison with thallium-201 and coronary angiography, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 36, 936-943, 1995	Mixed population, includes patients with prior MI
Faisal,A.W., Abid,A.R., Azhar,M., Exercise Tolerance Test: a comparison between true positive and false positive test results, Journal of Ayub Medical College, AbbottabadJ Ayub Med Coll Abbottabad, 19, 71-74, 2007	Non protocol index test
Feldman,C., Vitola,D., Schiavo,N., Detection of coronary artery disease based on the calcification index obtained by helical	Includes known CAD/acute chest pain.

Author	Reason for exclusion
computed tomography, Arquivos Brasileiros de CardiologiaArq.Bras.Cardiol., 75, 471-480, 2000	
Fiechter, Michael, Ghadri, Jelena R., Gebhard, Catherine, Fuchs, Tobias A., Pazhenkottil, Aju P., Nkoulou, Rene N., Herzog, Bernhard A., Wyss, Christophe A., Gaemperli, Oliver, Kaufmann, Philipp A., Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 53, 1230-1234, 2012	Includes known CAD
Fiechter, Michael, Ghadri, Jelena R., Kuest, Silke M., Pazhenkottil, Aju P., Wolfrum, Mathias, Nkoulou, Rene N., Goetti, Robert, Gaemperli, Oliver, Kaufmann, Philipp A., Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography, European Journal of Nuclear Medicine and Molecular ImagingEur. J. Nucl. Med. Mol. Imaging, 38, 2025-2030, 2011	Population (included patients with known CAD)
Fine, Jeffrey J., Hopkins, Christie B., Hall, Patrick A.X., Delphia, Robert E., Attebery, Timothy W., Newton, F. Carter, Noninvasive coronary angiography: agreement of multi-slice spiral computed tomography and selective catheter angiography, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 20, 549-552, 2004	Analysis (missing data)
Fine, Jeffrey J., Hopkins, Christie B., Ruff, Nicol, Newton, F. Carter, Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease, The American journal of cardiologyAm J Cardiol, 97, 173-174, 2006	Population (included patients with known CAD)
Fleischmann,K.E., Hunink,M.G., Kuntz,K.M., Douglas,P.S., Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance, JAMA, 280, 913-920, 1998	Includes known CAD
Fleming,R.M., Harrington,G.M., FHRWW Stress SPECT Protocol Reduces Radioactive Dosage and Increases Ischemia Detection, ANZ Nuclear MedicineANZ Nucl.Med., 41, 24-32, 2010	Population (included patients with suspected CAD) Reference standard (unclear)
Fleming,R.M., Rose,C.H., Feldmann,K.M., Comparing a high-dose dipyridamole SPECT imaging protocol with dobutamine and exercise stress testing protocols, Angiology, 46, 547-556, 1995	Analysis (missing data)
Forster,Stefan, Rieber,Johannes, Ubleis,Christopher, Weiss,Mayo, Bartenstein,Peter, Cumming,Paul, Klauss,Volker, Hacker,Marcus, Tc-99m sestamibi single photon emission computed tomography for guiding percutaneous coronary intervention in patients with multivessel disease: a comparison with quantitative coronary angiography and fractional flow reserve, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 26, 203-213, 2010	Not relevant
Freeman,M.R., Konstantinou,C., Barr,A., Greyson,N.D., Clinical comparison of 180-degree and 360-degree data collection of technetium 99m sestamibi SPECT for detection of coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 5, 14-18, 1998	Design (retrospective)
Froelicher,V.F., Lehmann,K.G., Thomas,R., Goldman,S., Morrison,D., Edson,R., Lavori,P., Myers,J., Dennis,C., Shabetai,R., Do,D., Froning,J., The electrocardiographic exercise test in a population with reduced workup bias: diagnostic performance,	Non protocol index test

Author	Reason for exclusion
computerized interpretation, and multivariable prediction. Veterans Affairs Cooperative Study in Health Services #016 (QUEXTA) Study Group. Quantitative Exercise Testing and Angiography, Annals of Internal MedicineANN.INTERN.MED., 128, 965-974, 1998	
Frohwein,S., Klein,J.L., Lane,A., Taylor,W.R., Transesophageal dobutamine stress echocardiography in the evaluation of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 25, 823-829, 1995	Population (all male and included patients with previous MI)
Fukuoka,S., Maeno,M., Nakagawa,S., Fukunaga,T., Yamada,H., Eto,T., Feasibility of myocardial dual-isotope perfusion imaging combined with gated single photon emission tomography for assessing coronary artery disease, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 23, 19-29, 2002	Population (included patients with a history of MI)
Futamatsu,Hideki, Klassen,Chris, Pilla,Marco, Wilke,Norbert, Angiolillo,Dominick J., Smalheiser,Stuart, Siuciak,Alan, Suzuki,Nobuaki, Bass,Theodore A., Costa,Marco A., Diagnostic accuracy of quantitative cardiac MRI evaluation compared to stress single-photon-emission computed tomography, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 24, 293-299, 2008	Design (retrospective)
Futamatsu,Hideki, Wilke,Norbert, Klassen,Chris, Shoemaker,Steven, Angiolillo,Dominick J., Siuciak,Alan, Morikawa- Futamatsu,Kino, Suzuki,Nobuaki, von Ziegler,Franz, Bass,Theodore A., Costa,Marco A., Evaluation of cardiac magnetic resonance imaging parameters to detect anatomically and hemodynamically significant coronary artery disease, American Heart JournalAm.Heart J., 154, 298-305, 2007	Analysis (missing data)
Gaemperli,Oliver, Husmann,Lars, Schepis,Tiziano, Koepfli,Pascal, Valenta,Ines, Jenni,Walter, Alkadhi,Hatem, Luscher,Thomas F., Kaufmann,Philipp A., Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization?, European Heart JournalEur.Heart J., 30, 2921-2929, 2009	Includes patients with known CAD
Gaibazzi,Nicola, Rigo,Fausto, Reverberi,Claudio, Detection of coronary artery disease by combined assessment of wall motion, myocardial perfusion and coronary flow reserve: a multiparametric contrast stress-echocardiography study, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 23, 1242-1250, 2010	Includes known CAD
Gaibazzi,Nicola, Rigo,Fausto, Squeri,Angelo, Ugo,Fabrizio, Reverberi,Claudio, Incremental value of contrast myocardial perfusion to detect intermediate versus severe coronary artery stenosis during stress-echocardiography, Cardiovascular ultrasoundCardiovasc Ultrasound, 8, 16-, 2010	Mixed population, includes previous MI
Galanti,G., Sciagra,R., Comeglio,M., Taddei,T., Bonechi,F., Giusti,F., Malfanti,P., Bisi,G., Diagnostic accuracy of peak exercise echocardiography in coronary artery disease: comparison with thallium-201 myocardial scintigraphy, American Heart JournalAm.Heart J., 122, 1609-1616, 1991	Population (included patients with known CAD
Gang,S., Min,L., Li,L., Guo-Ying,L., Lin,X., Qun,J., Hua,Z., Evaluation of CT coronary artery angiography with 320-row detector CT in a high-risk population, The British journal of radiologyBr J Radiol, 85,	New generation scanner (protocol exclusion)

Author	Reason for exclusion
562-570, 2012	
Garcia, Mario J., Lessick, Jonathan, Hoffmann, Martin H.K., CATSCAN, Study, I, Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis, JAMA, 296, 403-411, 2006	Population includes people with previous MI
Gaudio,C., Mirabelli,F., Alessandra,L., Nguyen,B.L., Di Michele,S., Corsi,F., Tanzilli,G., Mancone,M., Pannarale,G., Francone,M., Carbone,I., Catalano,C., Passariello,R., Fedele,F., Noninvasive assessment of coronary artery stenoses by multidetector-row spiral computed tomography: comparison with conventional angiography, European Review for Medical and Pharmacological SciencesEur.Rev.Med.Pharmacol.Sci., 9, 13-21, 2005	4 slice scanner (minimum 64 slice)
Gaudio, C., Pelliccia, F., Evangelista, A., Tanzilli, G., Paravati, V., Pannarale, G., Pannitteri, G., Barilla, F., Greco, C., Franzoni, F., Speziale, G., Pasceri, V., 320-row computed tomography coronary angiography vs. conventional coronary angiography in patients with suspected coronary artery disease: A systematic review and meta-analysis, International journal of cardiologyInt.J.Cardiol., 168, 1562-1564, 2013	Index test overlaps with DG3 (New Generation Scanner)
Gaudio,C., Tanzilli,G., Vittore,A., Arca,M., Barilla,F., Di Michele,S., Minardi,G., Fedele,F., Lombardi,M., Donato,L., Detection of coronary artery stenoses using breath-hold magnetic resonance coronary angiography. Comparison with conventional x-ray angiography, European Review for Medical and Pharmacological SciencesEur.Rev.Med.Pharmacol.Sci., 8, 121-128, 2004	Non protocol index test
Gaur,Sara, Achenbach,Stephan, Leipsic,Jonathon, Mauri,Laura, Bezerra,Hiram G., Jensen,Jesper Moller, Botker,Hans Erik, Lassen,Jens Flensted, Norgaard,Bjarne Linde, Rationale and design of the HeartFlowNXT (HeartFlow analysis of coronary blood flow using CT angiography: NeXt sTeps) study, Journal of Cardiovascular Computed TomographyJ.Cardiovasc.Comput.Tomogr., 7, 279-288, 2013	Non protocol reference test
Gaur,Sara, Bezerra,Hiram G., Lassen,Jens F., Christiansen,Evald H., Tanaka,Kentaro, Jensen,Jesper M., Oldroyd,Keith G., Leipsic,Jonathon, Achenbach,Stephan, Kaltoft,Anne K., Botker,Hans Erik, Norgaard,Bjarne L., Fractional flow reserve derived from coronary CT angiography: variation of repeated analyses, Journal of Cardiovascular Computed TomographyJ.Cardiovasc.Comput.Tomogr., 8, 307-314, 2014	Non protocol reference test
Gebhard,C., Fuchs,T.A., Stehli,J., et al (2015) Coronary dominance and prognosis in patients undergoing coronary computed tomographic angiography: results from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An International Multicenter) registry Eur Heart J Cardiovasc Imaging	Includes known CAD.
Gebker,R., Jahnke,C., Hucko,T., Manka,R., Mirelis,J.G., Hamdan,A., Schnackenburg,B., Fleck,E., Paetsch,I., Dobutamine stress magnetic resonance imaging for the detection of coronary artery disease in women, Heart (British Cardiac Society), 96, 616-620, 2010	Study on women only
Gebker,R., Jahnke,C., Manka,R., Frick,M., Hucko,T., Kozerke,S., Schnackenburg,B., Fleck,E., Paetsch,I., High spatial resolution myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance using k-t SENSE, International journal of cardiologyInt.J.Cardiol., 158, 411-416, 2012	Population (included patients with known CAD)

Author	Reason for exclusion
Gebker,Rolf, Frick,M., Jahnke,C., Berger,A., Schneeweis,C., Manka,R., Kelle,S., Klein,C., Schnackenburg,B., Fleck,E., Paetsch,I., Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 28, 89-97, 2012	Population (included patients with known CAD)
Gebker,Rolf, Jahnke,Cosima, Manka,Robert, Hamdan,Ashraf, Schnackenburg,Bernhard, Fleck,Eckart, Paetsch,Ingo, Additional value of myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of coronary artery disease, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 1, 122- 130, 2008	Includes known CAD
Gebker,Rolf, Jahnke,Cosima, Paetsch,Ingo, Schnackenburg,Bernhard, Kozerke,Sebastian, Bornstedt,Axel, Fleck,Eckart, Nagel,Eike, MR myocardial perfusion imaging with k- space and time broad-use linear acquisition speed-up technique: feasibility study, Radiology, 245, 863-871, 2007	Includes known CAD
Geleijnse, M.L., Elhendy, A., Fioretti, P.M., Roelandt, J.R., Dobutamine stress myocardial perfusion imaging, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 36, 2017-2027, 2000	Unclear if mixed population within individual studies. Includes studies that performed planar imaging (obsolete as per topic experts)
Geleijnse, Marcel L., Krenning, Boudewijn J., Soliman, Osama I.I., Nemes, Attila, Galema, Tjebbe W., Ten Cate, Folkert J., Dobutamine stress echocardiography for the detection of coronary artery disease in women, The American journal of cardiology Am J Cardiol, 99, 714-717, 2007	Population (women only)
Genders,Tessa S.S., Steyerberg,Ewout W., Alkadhi,Hatem, Leschka,Sebastian, Desbiolles,Lotus, Nieman,Koen, Galema,Tjebbe W., Meijboom,W.Bob, Mollet,Nico R., de Feyter,Pim J., Cademartiri,Filippo, Maffei,Erica, Dewey,Marc, Zimmermann,Elke, Laule,Michael, Pugliese,Francesca, Barbagallo,Rossella, Sinitsyn,Valentin, Bogaert,Jan, Goetschalckx,Kaatje, Schoepf,U.Joseph, Rowe,Garrett W., Schuijf,Joanne D., Bax,Jeroen J., de Graaf,Fleur R., Knuuti,Juhani, Kajander,Sami, van Mieghem,Carlos A.G., Meijs,Matthijs F.L., Cramer,Maarten J., Gopalan,Deepa, Feuchtner,Gudrun, Friedrich,Guy, Krestin,Gabriel P., Hunink,M.G.M., CAD Consortium, A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension, European Heart JournalEur.Heart J., 32, 1316-1330, 2011	Not relevant for this review question
Genovesi, Dario, Giorgetti, Assuero, Gimelli, Alessia, Kusch, Annette, D'Aragona Tagliavia, Irene, Casagranda, Mirta, Cannizzaro, Giorgio, Giubbini, Raffaele, Bertagna, Francesco, Fagioli, Giorgio, Rossi, Massimiliano, Romeo, Annadina, Bertolaccini, Pietro, Bonini, Rita, Marzullo, Paolo, Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study, European Journal of Nuclear Medicine and Molecular ImagingEur.J.Nucl.Med.Mol.Imaging, 38, 1890-1898, 2011	Population (all patients had known CAD)
George,Richard T., Mehra,Vishal C., Chen,Marcus Y., Kitagawa,Kakuya, Arbab-Zadeh,Armin, Miller,Julie M., Matheson,Matthew B., Vavere,Andrea L., Kofoed,Klaus F., Rochitte,Carlos E., Dewey,Marc, Yaw,Tan S., Niinuma,Hiroyuki, Brenner,Winfried, Cox,Christopher, Clouse,Melvin E., Lima,Joao	Mixed population - includes known disease

Author	Reason for exclusion
A.C., Di Carli, Marcelo, Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study, Radiology, 272, 407-416, 2014	
Gerber,Bernhard L., Coche,Emmanuel, Pasquet,Agnes, Ketelslegers,Etienne, Vancraeynest,David, Grandin,Cecile, Van Beers,Bernard E., Vanoverschelde,Jean Louis, Coronary artery stenosis: direct comparison of four-section multi-detector row CT and 3D navigator MR imaging for detectioninitial results, Radiology, 234, 98-108, 2005	No per patient analysis (Per-segment analysis only).
Gokdeniz, Tayyar, Kalaycioglu, Ezgi, Aykan, Ahmet Cagri, Boyaci, Faruk, Turan, Turhan, Gul, Ilker, Cavusoglu, Gokhan, Dursun, Ihsan, Value of coronary artery calcium score to predict severity or complexity of coronary artery disease, Arquivos Brasileiros de Cardiologia Arq. Bras. Cardiol., 102, 120-127, 2014	Entire population had known CAD
Gonzalez,P., Massardo,T., Jofre,M.J., Yovanovich,J., Prat,H., Munoz,A., Arriagada,M., Anzoategui,W., Carmona,A.R., 201Tl myocardial SPECT detects significant coronary artery disease between 50% and 75% angiogram stenosis, Revista Espanola de Medicina NuclearRev.Esp.Med.Nucl., 24, 305-311, 2005	Population (included patients with previous MI. Documented post test rather than in baseline characteristics)
Goto,Kenji, Takebayashi,Hideo, Kihara,Yasuki, Yamane,Hiroki, Hagikura,Arata, Morimoto,Yoshimasa, Kikuta,Yuetsu, Sato,Katsumasa, Taniguchi,Masahito, Hiramatsu,Shigeki, Haruta,Seiichi, Impact of combined supine and prone myocardial perfusion imaging using an ultrafast cardiac gamma camera for detection of inferolateral coronary artery disease, International journal of cardiologyInt.J.Cardiol., 174, 313-317, 2014	Population (included patients with previous MI/PCI)
Gottlieb,Ilan, Miller,Julie M., Arbab-Zadeh,Armin, Dewey,Marc, Clouse,Melvin E., Sara,Leonardo, Niinuma,Hiroyuki, Bush,David E., Paul,Narinder, Vavere,Andrea L., Texter,John, Brinker,Jeffery, Lima,Joao A.C., Rochitte,Carlos E., The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 55, 627-634, 2010	Duplicate population reported in a newer study. Retrospective data selection.
Greenwood,J.P., Maredia,N., Younger,J.F., Brown,J.M., Nixon,J., Everett,C.C., Bijsterveld,P., Ridgway,J.P., Radjenovic,A., Dickinson,C.J., Ball,S.G., Plein,S., Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial, Lancet, 379, 453-460, 2012	Includes known CAD
Groothuis, Jan G.J., Beek, Aernout M., Meijerink, Martijn R., Brinckman, Stijn L., Heymans, Martijn W., van Kuijk, Cornelis, van Rossum, Albert C., Positive predictive value of computed tomography coronary angiography in clinical practice, International journal of cardiologyInt.J.Cardiol., 156, 315-319, 2012	Excluded participants selected on the basis of positive CTCA
Groothuis, Jan G.J., Kremers, Frans P.P.J., Beek, Aernout M., Brinckman, Stijn L., Tuinenburg, Alvin C., Jerosch-Herold, Michael, van Rossum, Albert C., Hofman, Mark B.M., Comparison of dual to single contrast bolus magnetic resonance myocardial perfusion imaging for detection of significant coronary artery disease, Journal of magnetic resonance imaging : JMRIJ Magn Reson Imaging, 32, 88-93, 2010	Analysis (missing data)
Grosse, C., Globits, S., Hergan, K., Forty-slice spiral computed	Population (included patients with

Author	Reason for exclusion
tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population, Acta radiologica (Stockholm, Sweden : 1987), 48, 36-44, 2007	known CAD)
Gueret,P., Deux,J.F., Bonello,L., Sarran,A., Tron,C., Christiaens,L., Dacher,J.N., Bertrand,D., Leborgne,L., Renard,C., Caussin,C., Cluzel,P., Helft,G., Crochet,D., Vernhet-Kovacsik,H., Chabbert,V., Ferrari,E., Gilard,M., Willoteaux,S., Furber,A., Barone-Rochette,G., Jankowski,A., Douek,P., Mousseaux,E., Sirol,M., Niarra,R., Chatellier,G., Laissy,J.P., Diagnostic performance of computed tomography coronary angiography (from the Prospective National Multicenter Multivendor EVASCAN Study), American Journal of CardiologyAm.J.Cardiol., 111, 471-478, 2013	Population (included patients with known CAD)
Guerra,U.P., Giacomuzzi,F., Di Gregorio,F., Bax,J.J., Slavich,G.A., Fioretti,P.M., Gated Tc-99m sestamibi SPECT versus stress-rest SPECT in detecting coronary artery disease: correlation with coronary angiography in patients without myocardial infarction, Clinical Nuclear MedicineClin.Nucl.Med., 24, 921-926, 1999	Population (included patients with known CAD)
Gunalp,B., Dokumaci,B., Uyan,C., Vardareli,E., Isik,E., Bayhan,H., Ozguven,M., Ozturk,E., Value of dobutamine technetium-99m- sestamibi SPECT and echocardiography in the detection of coronary artery disease compared with coronary angiography, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 34, 889-894, 1993	Design (unclear)
Guo,Shun Lin, Guo,You Min, Zhai,Ya Nan, Ma,Bin, Wang,Ping, Yang,Ke Hu, Diagnostic accuracy of first generation dual-source computed tomography in the assessment of coronary artery disease: a meta-analysis from 24 studies, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 27, 755-771, 2011	Population (included patients with known CAD)
 Haberl, R., Becker, A., Leber, A., Knez, A., Becker, C., Lang, C., Bruning, R., Reiser, M., Steinbeck, G., Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 37, 451-457, 2001 	Non protocol index test (EBCT)
Haberl,Ralph, Tittus,Janine, Bohme,Eike, Czernik,Andreas, Richartz,Barbara Maria, Buck,Jurgen, Steinbigler,Peter, Multislice spiral computed tomographic angiography of coronary arteries in patients with suspected coronary artery disease: an effective filter before catheter angiography?, American Heart JournalAm.Heart J., 149, 1112-1119, 2005	4 slice scanner (minimum 64)
Halon, David A., Gaspar, Tamar, Adawi, Salim, Rubinshtein, Ronen, Schliamser, Jorge E., Peled, Nathan, Lewis, Basil S., Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography, Cardiology, 108, 200-209, 2007	mixed population: includes known CAD
Hamirani,Yasmin S., Isma'eel,Hussain, Larijani,Vahid, Drury,Paul, Lim,Wayland, Bevinal,Manzoor, Saeed,Anila, Ahmadi,Nasser, Karlsberg,Ronald P., Budoff,Matthew J., The diagnostic accuracy of 64-detector cardiac computed tomography compared with stress nuclear imaging in patients undergoing invasive cardiac catheterization, Journal of Computer Assisted TomographyJ.Comput.Assisted Tomogr., 34, 645-651, 2010	Population (included patients with a history of CAD)

Author	Reason for exclusion
Hamon,Michele, Biondi-Zoccai,Giuseppe G.L., Malagutti,Patrizia, Agostoni,Pierfrancesco, Morello,Remy, Valgimigli,Marco, Hamon,Martial, Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 48, 1896-1910, 2006	Populations of included studies included known CAD
Hamon, Michele, Fau, Georges, Nee, Guillaume, Ehtisham, Javed, Morello, Remy, Hamon, Martial, Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic ResonanceJ Cardiovasc Magn Reson, 12, 29-, 2010	Mixed populations within included studies (known CAD)
Hamon, Michele, Morello, Remy, Riddell, John W., Hamon, Martial, Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiographymeta- analysis, Radiology, 245, 720-731, 2007	Includes known CAD
Han,Shu Chen, Fang,Ching Chang, Chen,Yi, Chen,Chi Liang, Wang,Shih Pu, Coronary computed tomography angiographya promising imaging modality in diagnosing coronary artery disease, Journal of the Chinese Medical Association : JCMAJ Chin Med Assoc, 71, 241-246, 2008	Non protocol population (asymptomatic self-referred patients)
Haramati,Linda B., Levsky,Jeffrey M., Jain,Vineet R., Altman,Erik J., Spindola-Franco,Hugo, Bobra,Shalini, Doddamani,Sanjay, Travin,Mark I., CT angiography for evaluation of coronary artery disease in inner-city outpatients: an initial prospective comparison with stress myocardial perfusion imaging, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 25, 303-313, 2009	Population (only those with positive SPECT had reference standard)
Hausleiter, J., Meyer, T., Hadamitzky, M., Zankl, M., Gerein, P., Dörrler, K., Kastrati, A., Martinoff, S., Schömig, A., Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial, European Heart JournalEur.Heart J., 28, 3034-3041, 2007	CT Scanner spec - used 16 slice scanner (64 slice) but data grouped together.
He,Z.X., Iskandrian,A.S., Gupta,N.C., Verani,M.S., Assessing coronary artery disease with dipyridamole technetium-99m- tetrofosmin SPECT: a multicenter trial, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 38, 44-48, 1997	Includes known CAD
Health, Quality Ontario, 64-slice computed tomographic angiography for the diagnosis of intermediate risk coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-44, 2010	Population (included patients with known CAD
Health,Quality Ontario, Cardiac magnetic resonance imaging for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-38, 2010	Included mixed population
Health,Quality Ontario, Functional cardiac magnetic resonance imaging (MRI) in the assessment of myocardial viability and perfusion: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 3, 1-82, 2003	Non protocol index test

Author	Reason for exclusion
Health, Quality Ontario, Magnetic resonance imaging (MRI) for the assessment of myocardial viability: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt. Health Technol. Assess. Ser., 10, 1-45, 2010	Population (include patients with known CAD specifically)
Health, Quality Ontario, Multi-detector computed tomography angiography for coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 5, 1-57, 2005	Population (included patients with positive stress) Design (not all studies included report consecutive enrolment)
Health, Quality Ontario, Multidetector computed tomography for coronary artery disease screening in asymptomatic populations: evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 7, 1-56, 2007	Population (included asymptomatic patients)
Health, Quality Ontario, Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt. Health Technol. Assess. Ser., 10, 1-80, 2010	Non protocol reference standard
Health,Quality Ontario, Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 5, 1-167, 2005	Non protocol reference standard and Population (included patients with know CAD
Health,Quality Ontario, Single photon emission computed tomography for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-64, 2010	Population (included patients with previous MI)
Health,Quality Ontario, Stress echocardiography for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario health technology assessment seriesOnt Health Technol Assess Ser, 10, 1-61, 2010	Population (included patients with previous MI)
Health,Quality Ontario, Stress echocardiography with contrast for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-59, 2010	Included non protocol study designs (retrospective)
Hecht,H.S., DeBord,L., Shaw,R., Chin,H., Dunlap,R., Ryan,C., Myler,R.K., Supine bicycle stress echocardiography versus tomographic thallium-201 exercise imaging for the detection of coronary artery disease, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 6, 177-185, 1993	Population (included patients with previous MI/CABG/angioplasty)
Hecht,H.S., DeBord,L., Sotomayor,N., Shaw,R., Dunlap,R., Ryan,C., Supine bicycle stress echocardiography: peak exercise imaging is superior to postexercise imaging, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 6, 265-271, 1993	Population (included patients with previous MI)
Heijenbrok-Kal, Majanka H., Fleischmann, Kirsten E., Hunink, M.G.M., Stress echocardiography, stress single-photon- emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance, American Heart JournalAm.Heart J., 154, 415-423, 2007	Population (included patients with previous MI
Heinicke,N., Benesch,B., Kaiser,T., Debl,K., Segmuller,M., Schonberger,J., Marienhagen,J., Eilles,C., Riegger,G.A.J., Holmer,S., Luchner,A., Mechanisms of regional wall motion abnormalities in contrast-enhanced dobutamine stress echocardiography, Clinical	Population (included patients with known CAD)

Author	Reason for exclusion
research in cardiology : official journal of the German Cardiac	
Society, 95, 650-656, 2006	
Hell,M.M., Dey,D., Marwan,M., Achenbach,S., Schmid,J., Schuhbaeck,A., Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography, Eur J Radiol, -, 2015	Non protocol reference test
Hennessy,T.G., Codd,M.B., Hennessy,M.S., Kane,G., McCarthy,C., McCann,H.A., Sugrue,D.D., Comparison of dobutamine stress echocardiography and treadmill exercise electrocardiography for detection of coronary artery disease, Coronary Artery DiseaseCoron.Artery Dis., 8, 689-695, 1997	Population (included patients with a history of MI)
Hennessy,T.G., Codd,M.B., McCarthy,C., Kane,G., McCann,H.A., Sugrue,D.D., Dobutamine stress echocardiography in the detection of coronary artery disease in a clinical practice setting, International journal of cardiologyInt.J.Cardiol., 62, 55-62, 1997	Population (included patients with previous MI)
Hennessy,T.G., Siobhan Hennessy,M., Codd,M.B., Kane,G., McCarthy,C., McCann,H.A., Sugrue,D.D., Detection of coronary artery disease using dobutamine stress echocardiography in patients with an abnormal resting electrocardiograph, International journal of cardiologyInt.J.Cardiol., 64, 293-298, 1998	Population (included patients with previous MI)
Heo,J., Powers,J., Iskandrian,A.E., Exercise-rest same-day SPECT sestamibi imaging to detect coronary artery disease, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 38, 200-203, 1997	Population (not all participants had reference standard and insufficiently described)
Herbst,C.P., Du Theron,T.H., Van,Aswegen A., Kleynhans,P.H.T., Otto,A.C., Minnaar,P.C., A comparison of the clinical relevance of thallium-201 and technetium-99m-methoxyisobutyl-isonitrile for the evaluation of myocardial blood flow, South African Medical JournalS.AFR.MED.J., 78, 277-280, 1990	Population (some participants selected based on inconclusive coronary angiography)
Herzog,B.A., Wyss,C.A., Husmann,L., Gaemperli,O., Valenta,I., Treyer,V., Landmesser,U., Kaufmann,P.A., First head-to-head comparison of effective radiation dose from low-dose 64-slice CT with prospective ECG-triggering versus invasive coronary angiography, Heart (British Cardiac Society), 95, 1656-1661, 2009	4 slice scanner (minimum 64 slice)
Herzog,Bernhard A., Husmann,Lars, Buechel,Ronny R., Pazhenkottil,Aju P., Burger,Irene A., Valenta,Ines, Altorfer,Ulrich, Wolfrum,Mathias, Nkoulou,Rene N., Ghadri,Jelena R., Wyss,Christophe A., Kaufmann,Philipp A., Rapid cardiac hybrid imaging with minimized radiation dose for accurate non-invasive assessment of ischemic coronary artery disease, International journal of cardiologyInt.J.Cardiol., 153, 10-13, 2011	Outcome (analysis done on predicting revascularisation not CAD)
Herzog, Christopher, Zwerner, Peter L., Doll, Josh R., Nielsen, Christopher D., Nguyen, Shaun A., Savino, Giancarlo, Vogl, Thomas J., Costello, Philip, Schoepf, U. Joseph, Significant coronary artery stenosis: comparison on per-patient and per- vessel or per-segment basis at 64-section CT angiography, Radiology, 244, 112-120, 2007	Population (atypical CP specifically)
Heussel,C.P., Voigtlaender,T., Kauczor,H., Braun,M., Meyer,J., Thelen,M., Detection of coronary artery calcifications predicting coronary heart disease: comparison of fluoroscopy and spiral CT, European RadiologyEur.Radiol., 8, 1016-1024, 1998	Population (included patients with post angioplasty or aortic valve disorder)
Heydari,Bobak, Leipsic,Jonathon, Mancini,G.B.J., Min,James K., Labounty,Troy, Taylor,C., Freue,Gabriela V.C., Heilbron,Brett,	Index test overlaps with DG3 (New Generation Scanner)

Author	Reason for exclusion
Diagnostic performance of high-definition coronary computed tomography angiography performed with multiple radiation dose reduction strategies, The Canadian journal of cardiologyCan J Cardiol, 27, 606-612, 2011	
Hida,Satoshi, Chikamori,Taishiro, Tanaka,Hirokazu, Usui,Yasuhiro, Igarashi,Yuko, Nagao,Tadashi, Yamashina,Akira, Diagnostic value of left ventricular function after stress and at rest in the detection of multivessel coronary artery disease as assessed by electrocardiogram-gated SPECT, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 14, 68-74, 2007	Population (included patients with known CAD)
Ho,FM., Huang,PJ., Liau,CS., Lee,FK., Chieng,PU., Su,CT., Lee,YT., Dobutamine stress echocardiography compared with dipyridamole thallium-201 single-photon emission computed tomography in detecting coronary artery disease, European Heart JournalEur.Heart J., 16, 570-575, 1995	Population (included patients with previous MI)
Hoffmann,Martin H.K., Shi,Heshui, Schmitz,Bernd L., Schmid,Florian T., Lieberknecht,Michael, Schulze,Ralph, Ludwig,Bernd, Kroschel,Ulf, Jahnke,Norbert, Haerer,Winfried, Brambs,Hans Juergen, Aschoff,Andrik J., Noninvasive coronary angiography with multislice computed tomography, JAMA, 293, 2471-2478, 2005	Population (included patients with recurrent symptoms after PCI)
Hoffmann,R., Lethen,H., Kuhl,H., Lepper,W., Hanrath,P., Extent and severity of test positivity during dobutamine stress echocardiography. Influence on the predictive value for coronary artery disease, European Heart JournalEur.Heart J., 20, 1485-1492, 1999	Population (included patients with known CAD)
Hoffmann,Udo, Moselewski,Fabian, Cury,Ricardo C., Ferencik,Maros, Jang,Ik Kyung, Diaz,Larry J., Abbara,Suhny, Brady,Thomas J., Achenbach,Stephan, Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis, Circulation, 110, 2638-2643, 2004	16 slice scanner (minimum 64 slice)
Hoilund-Carlsen, Poul Flemming, Johansen, Allan, Christensen, Henrik Wulff, Pedersen, Lise Toffner, Johnk, Ida Karina, Vach, Werner, Haghfelt, Torben, Usefulness of the exercise electrocardiogram in diagnosing ischemic or coronary heart disease in patients with chest pain, The American journal of cardiology Am J Cardiol, 95, 96-99, 2005	Population (included patients with a mix of different types of chest pain)
Holmstrom, Miia, Vesterinen, Paula, Hanninen, Helena, Sillanpaa, Mikko A., Kivisto, Sari, Lauerma, Kirsi, Noninvasive analysis of coronary artery disease with combination of MDCT and functional MRI, Academic RadiologyAcad.Radiol., 13, 177-185, 2006	Population (included patients with known CAD)
Hong,Y.J., Kim,S.J., Lee,S.M., Min,P.K., Yoon,Y.W., Lee,B.K., Kim,T.H., Low-dose coronary computed tomography angiography using prospective ECG-triggering compared to invasive coronary angiography, International Journal of Cardiovascular ImagingInt.J.Card.Imaging, 27, 425-431, 2011	Population (included patients with known CAD)
Hou,Yang, Ma,Yue, Fan,Weipeng, Wang,Yuke, Yu,Mei, Vembar,Mani, Guo,Qiyong, Diagnostic accuracy of low-dose 256- slice multi-detector coronary CT angiography using iterative reconstruction in patients with suspected coronary artery disease,	Index test overlaps with DG3 (New Generation Scanner)

Author	Reason for exclusion
European RadiologyEur.Radiol., 24, 3-11, 2014	
Hozumi,T., Akasaka,T., Yoshida,K., Yoshikawa,J., Noninvasive estimation of coronary flow reserve by transthoracic Doppler echocardiography with a high-frequency transducer, Journal of CardiologyJ.Cardiol., 37 Suppl 1, 43-50, 2001	Population (included patients with known CAD)
Hozumi,T., Yoshida,K., Ogata,Y., Akasaka,T., Asami,Y., Takagi,T., Morioka,S., Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography, Circulation, 97, 1557-1562, 1998	Reference standard (non protocol)
Hsu,Chien Chin, Chen,Yu Wen, Hao,Chi Long, Chong,Jun Ted, Lee,Chun I., Tan,Hau Tong, Wu,Ming Sheng, Wu,Jung Chou, Comparison of automated 4D-MSPECT and visual analysis for evaluating myocardial perfusion in coronary artery disease, The Kaohsiung journal of medical sciencesKaohsiung J Med Sci, 24, 445-452, 2008	Population (included patients with known CAD)
Huang,P.J., Ho,Y.L., Wu,C.C., Chao,C.L., Chen,M.F., Chieng,P.U., Lee,Y.T., Simultaneous dobutamine stress echocardiography and thallium-201 perfusion imaging for the detection of coronary artery disease, Cardiology, 88, 556-562, 1997	Population (included patients with previous MI)
Huang,R., Li,F., Zhao,Z., Liu,B., Ou,X., Tian,R., Li,L., Hybrid SPECT/CT for attenuation correction of stress myocardial perfusion imaging, Clinical Nuclear MedicineClin.Nucl.Med., 36, 344-349, 2011	Design (retrospective)
Huber, Armin, Sourbron, Steven, Klauss, Volker, Schaefer, Julia, Bauner, Kerstin Ulrike, Schweyer, Michael, Reiser, Maximilian, Rummeny, Ernst, Rieber, Johannes, Magnetic resonance perfusion of the myocardium: semiquantitative and quantitative evaluation in comparison with coronary angiography and fractional flow reserve, Investigative Radiology Invest. Radiol., 47, 332-338, 2012	Mixed population - includes prior MI
Hung, Guang Uei, Lee, Kung Wei, Chen, Ching Pei, Yang, Kuang Tao, Lin, Wan Yu, Worsening of left ventricular ejection fraction induced by dipyridamole on TI-201 gated myocardial perfusion imaging predicts significant coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 13, 225-232, 2006	Design (retrospective)
Husmann,L., Wiegand,M., Valenta,I., Gaemperli,O., Schepis,T., Siegrist,P.T., Namdar,M., Wyss,C.A., Alkadhi,H., Kaufmann,P.A., Diagnostic accuracy of myocardial perfusion imaging with single photon emission computed tomography and positron emission tomography: A comparison with coronary angiography, International Journal of Cardiovascular ImagingInt.J.Card.Imaging, 24, 511-518, 2008	Population (included patients with known CAD)
Husmann,Lars, Herzog,Bernhard A., Burger,Irene A., Buechel,Ronny R., Pazhenkottil,Aju P., von Schulthess,Patrick, Wyss,Christophe A., Gaemperli,Oliver, Landmesser,Ulf, Kaufmann,Philipp A., Usefulness of additional coronary calcium scoring in low-dose CT coronary angiography with prospective ECG-triggering impact on total effective radiation dose and diagnostic accuracy, Academic RadiologyAcad.Radiol., 17, 201-206, 2010	Population (included patients with known CAD)
Husmann,Lars, Schepis,Tiziano, Scheffel,Hans, Gaemperli,Oliver, Leschka,Sebastian, Valenta,Ines, Koepfli,Pascal, Desbiolles,Lotus, Stolzmann,Paul, Marincek,Borut, Alkadhi,Hatem, Kaufmann,Philipp A., Comparison of diagnostic accuracy of 64-slice computed	Population (16 patients included had coronary angiograph to rule out CAD pre-operatively)

Author	Reason for exclusion
tomography coronary angiography in patients with low, intermediate, and high cardiovascular risk, Academic RadiologyAcad.Radiol., 15, 452-461, 2008	
Husser,Oliver, Bodi,Vicente, Sanchis,Juan, Mainar,Luis, Nunez,Julio, Lopez-Lereu,Maria P., Monmeneu,Jose V., Ruiz,Vicente, Rumiz,Eva, Moratal,David, Chorro,Francisco J., Llacer,Angel, Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease, Revista Espanola de CardiologiaRev.Esp.Cardiol., 62, 383-391, 2009	Design (retrospective)
Hwang,Hui Jeong, Lee,Hyae Min, Yang,In Ho, Lee,Jung Lok, Pak,Hyun Young, Park,Chang Bum, Jin,Eun Sun, Cho,Jin Man, Kim,Chong Jin, Sohn,II Suk, The value of assessing myocardial deformation at recovery after dobutamine stress echocardiography, Journal of Cardiovascular UltrasoundJ.Cardiovasc.Ultrasound, 22, 127-133, 2014	Reference standard not consistently ICA
Ibrahim,O., Oteh,M., Anwar,I.R., Che Hassan,H.H., Choor,C.K., Hamzaini,A.H., Rahman,M.M., Calcium score of coronary artery stratifies the risk of obstructive coronary artery diseases, La Clinica terapeuticaClin Ter, 164, 391-395, 2013	Population (presumed history of ACS)
Imran, Muhammad B., Palinkas, Attila, Picano, Eugenio, Head-to- head comparison of dipyridamole echocardiography and stress perfusion scintigraphy for the detection of coronary artery disease: a meta-analysis. Comparison between stress echo and scintigraphy, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 19, 23-28, 2003	Population (included patients with known CAD)
Imran,Muhammad Babar, Khan,Muhammad Aleem, Aslam,Muhammad Naseem, Irfanullah,Javaid, Diagnosis of coronary artery disease by stress echocardiography and perfusion scintigraphy, Journal of the College of Physicians and Surgeons Pakistan : JCPSPJ Coll Physicians Surg Pak, 13, 465-470, 2003	Population (individual studies included patients with known CAD)
Inoue,S., Mitsunami,K., Kinoshita,M., Comparison of electron beam computed tomography and exercise electrocardiography in detecting coronary artery disease in the elderly. [Japanese], Japanese Journal of GeriatricsJPN.J.GERIATR., 35, 626-630, 1998	Non protocol index test (EBCT). Full text in Japanese only.
Ioannidis, J.P.A., Trikalinos, T.A., Danias, P.G., Electrocardiogram- gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: A meta-analysis, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 39, 2059- 2068, 2002	Outcome is not a diagnosis of CAD
Irmer, M., Reuland, P., Huonker, M., Berg, A., Keul, J., Combined physical and pharmacological stress for diagnosis of coronary heart disease. Comparison of stress-echo and myocardial scintigraphy, Cardiovascular ImagingCARDIOVASC.IMAGING, 8, 85-87, 1996	Population (included patients with known
Iskandrian,A.S., Heo,J., Kong,B., Lyons,E., Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 14, 1477-1486, 1989	Population (not all patients had c.angio/reference standard) Time flow up to 6 months
Iskandrian,A.S., Mintz,G.S., Croll,M.N., Exercise thallium-201 myocardial scintigraphy: Advantages and limitations, Cardiology, 65, 136-152, 1980	Analysis (missing data)

Author	Reason for exclusion
Jahnke,Cosima, Paetsch,Ingo, Nehrke,Kay, Schnackenburg,Bernhard, Gebker,Rolf, Fleck,Eckart, Nagel,Eike, Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance, European Heart JournalEur.Heart J., 26, 2313-2319, 2005	Reference standard (non protocol)
Jahnke,Cosima, Paetsch,Ingo, Schnackenburg,Bernhard, Bornstedt,Axel, Gebker,Rolf, Fleck,Eckart, Nagel,Eike, Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique, Radiology, 232, 669-676, 2004	Reference standard (non protocol)
Jahnke,Cosima, Paetsch,Ingo, Schnackenburg,Bernhard, Gebker,Rolf, Kohler,Uwe, Bornstedt,Axel, Fleck,Eckart, Nagel,Eike, Comparison of radial and Cartesian imaging techniques for MR coronary angiography, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic ResonanceJ Cardiovasc Magn Reson, 6, 865-875, 2004	Non protocol index test
Janne d'Othee,Bertrand, Siebert,Uwe, Cury,Ricardo, Jadvar,Hossein, Dunn,Edward J., Hoffmann,Udo, A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease, European Journal of RadiologyEur.J.Radiol., 65, 449-461, 2008	Unclear population (? whether known CAD) Non protocol index test (EBCT)
Jeetley, Paramjit, Hickman, Michael, Kamp, Otto, Lang, Roberto M., Thomas, James D., Vannan, Mani A., Vanoverschelde, Jean Louis, van der Wouw, Poll A., Senior, Roxy, Myocardial contrast echocardiography for the detection of coronary artery stenosis: a prospective multicenter study in comparison with single-photon emission computed tomography, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 47, 141-145, 2006	Population (included patients with known CAD)
Jenkins,S.M.M., Johnston,N., Hawkins,N.M., Messow,C.M., Shand,J., Hogg,K.J., Eteiba,H., Mckillop,G., Goodfield,N.E.R., McConnachie,A., Dunn,F.G., Limited clinical utility of CT coronary angiography in a district hospital setting, QJM : monthly journal of the Association of Physicians, 104, 49-57, 2011	40 slice scanner (minimum 64 slice)
Jiang,B., Wang,J., Lv,X., Cai,W., Dual-source CT versus single-source 64-section CT angiography for coronary artery disease: A meta- analysis, Clinical RadiologyClin.Radiol., 69, 861-869, 2014	Reference standard (unclear)
Jimenez-Navarro, M., Alonso-Briales, J.H., Hernandez Garcia, M.J., Rodriguez Bailon, I., Gomez-Doblas, J.J., de Teresa Galvan, E., Measurement of fractional flow reserve to assess moderately severe coronary lesions: correlation with dobutamine stress echocardiography, Journal of Interventional Cardiology J. Intervent. Cardiol., 14, 499-504, 2001	Population (included patients with unstable angina)
Jogiya,Roy, Kozerke,Sebastian, Morton,Geraint, De Silva,Kalpa, Redwood,Simon, Perera,Divaka, Nagel,Eike, Plein,Sven, Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 60, 756-765, 2012	Non protocol reference test
Johansen,A., Høilund-Carlsen,P.F., Christensen,H.W., Vach,W., Jørgensen,H.B., Veje,A., Haghfelt,T., Diagnostic accuracy of myocardial perfusion imaging in a study population without post- test referral bias, Journal of Nuclear CardiologyJ.Nucl.Cardiol., 12,	Population (included patients with known CAD)

Author	Reason for exclusion
530-537, 2005	
Johri, Amer M., Chitty, David W., Matangi, Murray, Malik, Paul, Mousavi, Parvin, Day, Andrew, Gravett, Matthew, Simpson, Chris, Can carotid bulb plaque assessment rule out significant coronary artery disease? A comparison of plaque quantification by two- and three-dimensional ultrasound, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 26, 86-95, 2013	non protocol index test
Josephson,M.A., Brown,B.G., Hecht,H.S., Hopkins,J., Pierce,C.D., Petersen,R.B., Noninvasive detection and localization of coronary stenoses in patients: comparison of resting dipyridamole and exercise thallium-201 myocardial perfusion imaging, American Heart JournalAm.Heart J., 103, 1008-1018, 1982	Population (included patients with previous MI)
Joutsiniemi,Esa, Saraste,Antti, Pietila,Mikko, Maki,Maija, Kajander,Sami, Ukkonen,Heikki, Airaksinen,Juhani, Knuuti,Juhani, Absolute flow or myocardial flow reserve for the detection of significant coronary artery disease?, European Heart Journal Cardiovascular ImagingEur.Heart J.Cardiovasc.Imaging, 15, 659- 665, 2014	Reference standard (non protocol)
Joutsiniemi,Esa, Saraste,Antti, Pietila,Mikko, Ukkonen,Heikki, Kajander,Sami, Maki,Maija, Koskenvuo,Juha, Airaksinen,Juhani, Hartiala,Jaakko, Saraste,Markku, Knuuti,Juhani, Resting coronary flow velocity in the functional evaluation of coronary artery stenosis: study on sequential use of computed tomography angiography and transthoracic Doppler echocardiography, European Heart Journal Cardiovascular ImagingEur.Heart J.Cardiovasc.Imaging, 13, 79-85, 2012	Reference standard (non protocol)
Kaiser, Christoph, Bremerich, Jens, Haller, Sabine, Brunner-La Rocca, Hans Peter, Bongartz, Georg, Pfisterer, Matthias, Buser, Peter, Limited diagnostic yield of non-invasive coronary angiography by 16-slice multi-detector spiral computed tomography in routine patients referred for evaluation of coronary artery disease, European Heart JournalEur. Heart J., 26, 1987-1992, 2005	Population (included patients with known CAD)
Kajander,S., Joutsiniemi,E., Saraste,M., Pietila,M., Ukkonen,H., Saraste,A., Sipila,H.T., Teras,M., Maki,M., Airaksinen,J., Hartiala,J., Knuuti,J., Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease, Circulation, 122, 603-613, 2010	Reference standard (non protocol)
Kajander,Sami A., Joutsiniemi,Esa, Saraste,Markku, Pietila,Mikko, Ukkonen,Heikki, Saraste,Antti, Sipila,Hannu T., Teras,Mika, Maki,Maija, Airaksinen,Juhani, Hartiala,Jaakko, Knuuti,Juhani, Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 4, 678- 684, 2011	Non protocol reference test
Kajinami,K., Seki,H., Takekoshi,N., Mabuchi,H., Coronary calcification and coronary atherosclerosis: site by site comparative morphologic study of electron beam computed tomography and coronary angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 29, 1549-1556, 1997	Reference standard (non protocol)
Kakuta,Kentaro, Dohi,Kaoru, Yamada,Tomomi, Yamanaka,Takashi, Kawamura,Masaki, Nakamori,Shiro, Nakajima,Hiroshi, Tanigawa,Takashi, Onishi,Katsuya, Yamada,Norikazu,	Index test overlaps with DG3 (New Generation Scanner)

Author	Reason for exclusion
Nakamura, Mashio, Ito, Masaaki, Detection of coronary artery disease using coronary flow velocity reserve by transthoracic Doppler echocardiography versus multidetector computed tomography coronary angiography: influence of calcium score, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 27, 775-785, 2014	
Kan, Jing, Gao, Xiaofei, Sandeep, Kumar Gami, Xu, Haimei, Zhao, Yingying, Chen, Shaoliang, Chen, Feng, Comparison of two and three dimensional quantitative coronary angiography to intravascular ultrasound in the assessment of left main coronary artery bifurcation lesions, Chinese medical journalChin.Med.J., 127, 1012-1021, 2014	Conference abstract only
Kang,Koung Mi, Choi,Sang II, Chun,Eun Ju, Kim,Jeong A., Youn,Tae Jin, Choi,Dong Ju, Coronary vasospastic angina: assessment by multidetector CT coronary angiography, Korean Journal of RadiologyKor.J.Radiol., 13, 27-33, 2012	Not relevant Design (retrospective)
Karagiannis,Stefanos E., Bax,Jeroen J., Elhendy,Abdou, Feringa,Herman H.H., Cokkinos,Dennis V., van Domburg,Ron, Simoons,Maarten, Poldermans,Daniel, Enhanced sensitivity of dobutamine stress echocardiography by observing wall motion abnormalities during the recovery phase after acute beta-blocker administration, The American journal of cardiologyAm J Cardiol, 97, 462-465, 2006	Population (included patients with known or suspected CAD)
Kataoka,Yu, Nakatani,Satoshi, Tanaka,Norio, Kanzaki,Hideaki, Yasuda,Satoshi, Morii,Isao, Kawamura,Atsushi, Miyazaki,Shunichi, Kitakaze,Masafumi, Role of transthoracic Doppler-determined coronary flow reserve in patients with chest pain, Circulation journal : official journal of the Japanese Circulation SocietyCirc J, 71, 891-896, 2007	Population (included patients with previous MI)
Katayama,Takuji, Ogata,Nobuhiko, Tsuruya,Yoshio, Diagnostic accuracy of supine and prone thallium-201 stress myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in inferior wall of left ventricle, Annals of Nuclear MedicineAnn.Nucl.Med., 22, 317-321, 2008	Design (flawed)
Kato,Shingo, Kitagawa,Kakuya, Ishida,Nanaka, Ishida,Masaki, Nagata,Motonori, Ichikawa,Yasutaka, Katahira,Kazuhiro, Matsumoto,Yuji, Seo,Koji, Ochiai,Reiji, Kobayashi,Yasuyuki, Sakuma,Hajime, Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 56, 983-991, 2010	Reference standard (non protocol)
Kaufmann,R.B., Peyser,P.A., Sheedy,P.F., Rumberger,J.A., Schwartz,R.S., Quantification of coronary artery calcium by electron beam computed tomography for determination of severity of angiographic coronary artery disease in younger patients, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 25, 626-632, 1995	Population (included patients with known CAD) Non protocol index test
Kawaji,T., Shiomi,H., Morimoto,T., Nishikawa,R., Yano,M., Higami,H., Tazaki,J., Imai,M., Saito,N., Makiyama,T., Shizuta,S., Ono,K., Kimura,T., Noninvasive Detection of Functional Myocardial Ischemia: Multifunction Cardiogram Evaluation in Diagnosis of Functional Coronary Ischemia Study (MED-FIT), Ann Noninvasive Electrocardiol, -, 2015	Non protocol index test

Author	Reason for exclusion
Kefer,J., Coche,E., Legros,G., Pasquet,A., Grandin,C., Beers,B.E., Vanoverschelde,J.L., Gerber,B.L., Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 46, 92-100, 2005	Mixed/indirect population (1. Pre surgical exclusion of CAD and 2. Had positive stress test)
Khan,Razi, Rawal,Sapna, Eisenberg,Mark J., Transitioning from 16- slice to 64-slice multidetector computed tomography for the assessment of coronary artery disease: are we really making progress?, The Canadian journal of cardiologyCan J Cardiol, 25, 533-542, 2009	Population (included patients with post stent/CABG)
Khattar,R.S., Senior,R., Lahiri,A., Assessment of myocardial perfusion and contractile function by inotropic stress Tc-99m sestamibi SPECT imaging and echocardiography for optimal detection of multivessel coronary artery disease, Heart (British Cardiac Society), 79, 274-280, 1998	Population (included patients with previous MI)
Khorsand,A., Haddad,M., Graf,S., Moertl,D., Sochor,H., Porenta,G., Automated assessment of dipyridamole 201Tl myocardial SPECT perfusion scintigraphy by case-based reasoning, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 42, 189-193, 2001	study design - Restrospective
Khorsand, Aliasghar, Graf, Senta, Sochor, Heinz, Schuster, Ernst, Porenta, Gerold, Automated assessment of myocardial SPECT perfusion scintigraphy: a comparison of different approaches of case-based reasoning, Artificial Intelligence in MedicineArtif.Intell.Med., 40, 103-113, 2007	Retrospective design. Population unclear.
Kim,C., Kwok,Y.S., Heagerty,P., Redberg,R., Pharmacologic stress testing for coronary disease diagnosis: A meta-analysis, American Heart JournalAm.Heart J., 142, 934-944, 2001	Population (included patients with known CAD)
Kim,S.M., Choi,J.H., Chang,S.A., Choe,Y.H., Additional value of adenosine-stress dynamic CT myocardial perfusion imaging in the reclassification of severity of coronary artery stenosis at coronary CT angiography, Clinical RadiologyClin.Radiol., 68, e659-e668, 2013	Population (included patients with previous MI)
Kim,W.Y., Danias,P.G., Stuber,M., Flamm,S.D., Plein,S., Nagel,E., Langerak,S.E., Weber,O.M., Pedersen,E.M., Schmidt,M., Botnar,R.M., Manning,W.J., Coronary magnetic resonance angiography for the detection of coronary stenoses, The New England journal of medicineN Engl J Med, 345, 1863-1869, 2001	Non protocol index test
Kitamura A, Kobayashi t, Ueda K et al. (2005) Evaluation of coronary artery calcification by multi-detector computed tomography for the detection of coronary artery stenosis in Japenese Patients. J Eipdemiol. 15(5):187-193.	Mixed population. Includes known CAD.
Klumpp,B., Hoevelborn,T., Fenchel,M., Stauder,N.I., Kramer,U., May,A., Gawaz,M.P., Claussen,C.D., Miller,S., Magnetic resonance myocardial perfusion imaging-First experience at 3.0T, European Journal of RadiologyEur.J.Radiol., 69, 165-172, 2009	Population (included patients with known or suspected CAD)
Klumpp,B., Miller,S., Seeger,A., May,A.E., Gawaz,M.P., Claussen,C.D., Kramer,U., Is the diagnostic yield of myocardial stress perfusion MRI impaired by three-vessel coronary artery disease?, Acta RadiologicaActa Radiol., 56, 143-151, 2014	Population (included patients with known CAD)
Klumpp,Bernhard D., Seeger,Achim, Doesch,Christina, Doering,Joerg, Hoevelborn,Tobias, Kramer,Ulrich, Fenchel,Michael, Gawaz,Meinrad P., Claussen,Claus D., Miller,Stephan, High	Population (included patients with known CAD)

Author	Reason for exclusion
resolution myocardial magnetic resonance stress perfusion imaging at 3 T using a 1 M contrast agent, European RadiologyEur.Radiol., 20, 533-541, 2010	Reason for exclusion
Klumpp,Bernhard, Miller,S., Seeger,A., May,A.E., Gawaz,M.P., Claussen,C.D., Kramer,U., Is the diagnostic yield of myocardial stress perfusion MRI impaired by three-vessel coronary artery disease?, Acta radiologica (Stockholm, Sweden : 1987), 56, 143- 151, 2015	Population (included patients with known or suspected CAD)
Ko,Brian S., Wong,Dennis T.L., Cameron,James D., Leong,Darryl P., Leung,Michael, Meredith,Ian T., Nerlekar,Nitesh, Antonis,Paul, Crossett,Marcus, Troupis,John, Harper,Richard, Malaiapan,Yuvaraj, Seneviratne,Sujith K., 320-row CT coronary angiography predicts freedom from revascularisation and acts as a gatekeeper to defer invasive angiography in stable coronary artery disease: a fractional flow reserve-correlated study, European RadiologyEur.Radiol., 24, 738-747, 2014	Not relevant Index test overlaps with DG3 (New Generation Scanner)
Kong,Eun Jung, Cho,Ihn Ho, Chun,Kyung Ah, Clinical usefulness of combinatorial protocol with stress only myocardial perfusion SPECT, CTA and SPECT/CTA 3-dimensional fusion image, Annals of Nuclear MedicineAnn.Nucl.Med., 25, 387-395, 2011	Design (retrospective)
Konieczynska, Malgorzata, Tracz, Wieslawa, Pasowicz, Mieczyslaw, Przewlocki, Tadeusz, Use of coronary calcium score in the assessment of atherosclerotic lesions in coronary arteries, Kardiologia PolskaKardiol.Pol., 64, 1073-1, 2006	Population (included patients with previous MI)
Koo,Bon Kwon, Erglis,Andrejs, Doh,Joon Hyung, Daniels,David V., Jegere,Sanda, Kim,Hyo Soo, Dunning,Allison, Defrance,Tony, Lansky,Alexandra, Leipsic,Jonathan, Min,James K., Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER- FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 58, 1989-1997, 2011	Reference standard (non protocol)
Korkeila, P., Hietanen, E., Parviainen, S., Virkki, R., Hartiala, J., Exercise thallium-201 scintigraphy in the localization of myocardial ischaemia, Clinical physiology (Oxford, England)Clin Physiol, 9, 555- 565, 1989	Design (retrospective)
Korosoglou, Grigorios, Mueller, Dirk, Lehrke, Stephanie, Steen, Henning, Hosch, Waldemar, Heye, Tobias, Kauczor, Hans Ulrich, Giannitsis, Evangelos, Katus, Hugo A., Quantitative assessment of stenosis severity and atherosclerotic plaque composition using 256-slice computed tomography, European Radiology Eur. Radiol., 20, 1841-1850, 2010	Index test overlaps with DG3 (New Generation Scanner)
Kowatsch,Ingrid, Tsutsui,Jeane M., Osorio,Altamiro F.F., Uchida,Augusto H., Machiori,Gilberto G.A., Lopes,Marden L., Cesar,Luiz A.M., Ramires,Jose Antonio, Mathias,Wilson Jr, Head-to- head comparison of dobutamine and adenosine stress real-time myocardial perfusion echocardiography for the detection of coronary artery disease, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 20, 1109-1117, 2007	Population (included patients with known or suspected CAD)
Krenning,Boudewijn J., Nemes,Attila, Soliman,Osama I.I., Vletter,Wim B., Voormolen,Marco M., Bosch,Johan G., Ten	Population (included patients with known CAD)

Author	Reason for exclusion
Cate,Folkert J., Roelandt,Jos R.T.C., Geleijnse,Marcel L., Contrast- enhanced three-dimensional dobutamine stress echocardiography: between Scylla and Charybdis?, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of CardiologyEur J Echocardiogr, 9, 757-760, 2008	
Krittayaphong,Rungroj, Mahanonda,Nithi, Kangkagate,Charuwan, Nakyen,Supaporn, Tanapibunpon,Prajak, Chaithiraphan,Suphachai, Accuracy of magnetic resonance imaging in the diagnosis of coronary artery disease, Journal of the Medical Association of Thailand = Chotmaihet thangphaetJ Med Assoc Thai, 86 Suppl 1, S59-S66, 2003	Reference standard (non protocol)
Kuettner,A., Beck,T., Drosch,T., Kettering,K., Heuschmid,M., Burgstahler,C., Claussen,C.D., Kopp,A.F., Schroeder,S., Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution, Heart (British Cardiac Society), 91, 938-941, 2005	Population (included patients with known CAD)
Kuettner,Axel, Beck,Torsten, Drosch,Tanja, Kettering,Klaus, Heuschmid,Martin, Burgstahler,Christof, Claussen,Claus D., Kopp,Andreas F., Schroeder,Stephen, Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 45, 123- 127, 2005	16 slice scanner (minimum 64 slice)
Kuettner,Axel, Trabold,Tobias, Schroeder,Stephen, Feyer,Anja, Beck,Torsten, Brueckner,Ariane, Heuschmid,Martin, Burgstahler,Christof, Kopp,Andreas F., Claussen,Claus D., Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 44, 1230-1237, 2004	Population (unclear)
Kunimasa,Taeko, Sato,Yuichi, Matsumoto,Naoya, Chiku,Masaaki, Tani,Shigemasa, Kasama,Shu, Kunimoto,Satoshi, Yoda,Shunichi, Saito,Satoshi, Nagao,Ken, Detection of coronary artery disease by free-breathing, whole heart coronary magnetic resonance angiography: our initial experience, Heart and VesselsHeart Vessels, 24, 429-433, 2009	Reference standard (non protocol)
Kurata,Akira, Kawaguchi,Naoto, Kido,Teruhito, Inoue,Katsuji, Suzuki,Jun, Ogimoto,Akiyoshi, Funada,Jun ichi, Higaki,Jitsuo, Miyagawa,Masao, Vembar,Mani, Mochizuki,Teruhito, Qualitative and quantitative assessment of adenosine triphosphate stress whole-heart dynamic myocardial perfusion imaging using 256-slice computed tomography, PLoS ONE, 8, e83950-, 2013	Index test overlaps with DG3 (New Generation Scanner)
Kwok,Y., Kim,C., Grady,D., Segal,M., Redberg,R., Meta-analysis of exercise testing to detect coronary artery disease in women, The American journal of cardiologyAm J Cardiol, 83, 660-666, 1999	Population (women only)
Labounty,Troy M., Kim,Robert J., Lin,Fay Y., Budoff,Matthew J., Weinsaft,Jonathan W., Min,James K., Diagnostic accuracy of coronary computed tomography angiography as interpreted on a mobile handheld phone device, JACC.Cardiovascular imagingJACC Cardiovasc Imaging, 3, 482-490, 2010	Discussed with Topic Experts(too specific)
LaManna,M.M., Mohama,R., Slavich,I.L., Lumia,F.J., Cha,S.D., Rambaran,N., Maranhao,V., Intravenous adenosine (adenoscan)	Population (unclear)

Author	Reason for exclusion
versus exercise in the noninvasive assessment of coronary artery disease by SPECT, Clinical Nuclear MedicineClin.Nucl.Med., 15, 804-805, 1990	
Lambertz,H., Kreis,A., Trumper,H., Hanrath,P., Simultaneous transesophageal atrial pacing and transesophageal two- dimensional echocardiography: a new method of stress echocardiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 16, 1143-1153, 1990	Population (included patients with previous MI
Lau,George T., Ridley,Lloyd J., Schieb,Max C., Brieger,David B., Freedman,S Benedict, Wong,Louise A., Lo,Sing Kai, Kritharides,Leonard, Coronary artery stenoses: detection with calcium scoring, CT angiography, and both methods combined, Radiology, 235, 415-422, 2005	4 scanner slices (minimum 64 slice)
Laudon,D.A., Behrenbeck,T.R., Wood,C.M., Bailey,K.R., Callahan,C.M., Breen,J.F., Vukov,L.F., Computed tomographic coronary artery calcium assessment for evaluating chest pain in the emergency department: long-term outcome of a prospective blind study, Mayo Clinic ProceedingsMAYO CLIN.PROC., 85, 314- 322, 2010	CAD is not the outcome reported
Layritz, Christian, Schmid, Jasmin, Achenbach, Stephan, Ulzheimer, Stefan, Wuest, Wolfgang, May, Matthias, Ropers, Dieter, Klinghammer, Lutz, Daniel, Werner G., Pflederer, Tobias, Lell, Michael, Accuracy of prospectively ECG-triggered very low- dose coronary dual-source CT angiography using iterative reconstruction for the detection of coronary artery stenosis: comparison with invasive catheterization, European Heart Journal Cardiovascular Imaging Eur. Heart J. Cardiovasc. Imaging, 15, 1238- 1245, 2014	New generation scanner used (protocol exclusion)
Leber,Alexander W., Johnson,Thorsten, Becker,Alexander, von Ziegler,Franz, Tittus,Janine, Nikolaou,Konstantin, Reiser,Maximilian, Steinbeck,Gerhard, Becker,Christoph R., Knez,Andreas, Diagnostic accuracy of dual-source multi-slice CT- coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease, European Heart JournalEur.Heart J., 28, 2354-2360, 2007	Only patients with negative/unequivocal pre-study sress tests were included.
Leber,Alexander W., Knez,Andreas, von Ziegler,Franz, Becker,Alexander, Nikolaou,Konstantin, Paul,Stephan, Wintersperger,Bernd, Reiser,Maximilian, Becker,Christoph R., Steinbeck,Gerhard, Boekstegers,Peter, Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 46, 147-154, 2005	Population (included patients with previous angioplasty having scans prior to catheterization)
Lee, Jung S., Lee, Jun S., Kim, Seong Jang, Kim, In Ju, Kim, Yong Ki, Choo, Ki S., Comparison of gated blood pool SPECT and spiral multidetector computed tomography in the assessment of right ventricular functional parameters: validation with first-pass radionuclide angiography, Annals of Nuclear MedicineAnn.Nucl.Med., 21, 159-166, 2007	Not relevant
Lei,Ziqiao, Gu,Jin, Fu,Qing, Shi,Heshui, Xu,Haibo, Han,Ping, Yu,Jianming, The diagnostic evaluation of dual-source CT (DSCT) in the diagnosis of coronary artery stenoses, Pakistan Journal of Medical SciencesPak.J.Med.Sci., 29, 107-111, 2013	Design (retrospective)

Author	Reason for exclusion
Leipsic, Jonathon, Yang, Tae Hyun, Thompson, Angus, Koo, Bo Kwon, Mancini, G.B.J., Taylor, Carolyn, Budoff, Matthew J., Park, Hyung Bok, Berman, Daniel S., Min, James K., CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study, AJR. American journal of roentgenology AJR Am J Roentgenol, 202, 989-994, 2014	Population (included patients with known CAD)
Leschka,S., Scheffel,H., Desbiolles,L., Plass,A., Gaemperli,O., Stolzmann,P., Genoni,M., Luescher,T., Marincek,B., Kaufmann,P., Alkadhi,H., Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease, Heart (British Cardiac Society), 94, 1154-1161, 2008	Includes known CAD
Leschka,Sebastian, Alkadhi,Hatem, Plass,Andre, Desbiolles,Lotus, Grunenfelder,Jurg, Marincek,Borut, Wildermuth,Simon, Accuracy of MSCT coronary angiography with 64-slice technology: first experience, European Heart JournalEur.Heart J., 26, 1482-1487, 2005	Population (included patients having c.angio prior to CABG)
Li,Dong ye, Liang,Li, Xu,Tong da, Zhang,Hui, Pan,De feng, Chen,Jun hong, Chen,Jing, Wang,Xiao ping, The value of quantitative real- time myocardial contrast echocardiography for detection of angiographically significant coronary artery disease, Clinical CardiologyClin.Cardiol., 36, 468-474, 2013	No patient level analysis (segment level only)
Li,Jian Ming, Shi,Rong Fang, Zhang,Li Ren, Li,Ting, Dong,Zhi, Combined CT angiography and SPECT myocardial perfusion imaging for the detection of functionally relevant coronary stenoses, Molecular Medicine ReportsMol.Med.Rep., 7, 1391- 1396, 2013	Population (included patients with known CAD)
Li,Min, Du,Xiang Min, Jin,Zhi Tao, Peng,Zhao Hui, Ding,Juan, Li,Li, The diagnostic performance of coronary artery angiography with 64-MSCT and post 64-MSCT: systematic review and meta-analysis, PLoS ONE, 9, e84937-, 2014	Population (included patients with known CAD) Index test overlaps with DG3 (New Generation Scanner)
Li,S., Ni,Q., Wu,H., Peng,L., Dong,R., Chen,L., Liu,J., Diagnostic accuracy of 320-slice computed tomography angiography for detection of coronary artery stenosis: meta-analysis (Structured abstract), International journal of cardiologyInt.J.Cardiol., 168, 2699-2705, 2013	Included mix population studies
Li,Suhua, Ni,Qiongqiong, Wu,Huilan, Peng,Long, Dong,Ruimin, Chen,Lin, Liu,Jinlai, Diagnostic accuracy of 320-slice computed tomography angiography for detection of coronary artery stenosis: meta-analysis, International journal of cardiologyInt.J.Cardiol., 168, 2699-2705, 2013	Includes mixed population studies
Lim,M.C.L., Wong,T.W., Yaneza,L.O., De Larrazabal,C., Lau,J.K., Boey,H.K., Non-invasive detection of significant coronary artery disease with multi-section computed tomography angiography in patients with suspected coronary artery disease, Clinical RadiologyClin.Radiol., 61, 174-180, 2006	40 slice scanner (minimum 64 slice)
Lin,C.J., Hsu,J.C., Lai,Y.J., Wang,K.L., Lee,J.Y., Li,A.H., Chu,S.H., Diagnostic accuracy of dual-source CT coronary angiography in a population unselected for degree of coronary artery calcification and without heart rate modification, Clinical RadiologyClin.Radiol., 65, 109-117, 2010	Design (retrospective)
Lipiec, Piotr, Wejner-Mik, Paulina, Krzeminska-Pakula, Maria,	Population (included patients with

Author	Reason for exclusion
Kusmierek,Jacek, Plachcinska,Anna, Szuminski,Remigiusz, Kapusta,Anna, Kasprzak,Jaroslaw D., Gated 99mTc-MIBI single- photon emission computed tomography for the evaluation of left ventricular ejection fraction: comparison with three-dimensional echocardiography, Annals of Nuclear MedicineAnn.Nucl.Med., 22, 723-726, 2008	known CAD)
Liu,X.J., Wang,X.B., Gao,R.L., Lu,P., Wang,Y.Q., Clinical evaluation of 99Tcm-MIBI SPECT in the assessment of coronary artery disease, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 13, 776-779, 1992	Population (included patients with known CAD)
Lu,Bin, Lu,Jin Guo, Sun,Ming Li, Hou,Zhi Hui, Chen,Xiong Biao, Tang,Xiang, Wu,Run Ze, Johnson,Laura, Qiao,Shu bin, Yang,Yue Jin, Jiang,Shi Liang, Comparison of diagnostic accuracy and radiation dose between prospective triggering and retrospective gated coronary angiography by dual-source computed tomography, The American journal of cardiologyAm J Cardiol, 107, 1278-1284, 2011	Design (retrospective)
Lu,Bin, Shavelle,David M., Mao,SongShou, Chen,Lynn, Child,Janis, Carson,Sivi, Budoff,Matthew J., Improved accuracy of noninvasive electron beam coronary angiography, Investigative RadiologyInvest.Radiol., 39, 73-79, 2004	Non protocol index test
Luotolahti, M., Saraste, M., Hartiala, J., Exercise echocardiography in the diagnosis of coronary artery disease, Annals of MedicineANN.MED., 28, 73-77, 1996	Population (included patients with suspected CAD
Ma,Heng, Yang,Jun, Liu,Jing, Ge,Lan, An,Jing, Tang,Qing, Li,Han, Zhang,Yu, Chen,David, Wang,Yong, Liu,Jiabin, Liang,Zhigang, Lin,Kai, Jin,Lixin, Bi,Xiaoming, Li,Kuncheng, Li,Debiao, Myocardial perfusion magnetic resonance imaging using sliding-window conjugate-gradient highly constrained back-projection reconstruction for detection of coronary artery disease, The American journal of cardiologyAm J Cardiol, 109, 1137-1141, 2012	Discuss with Topic Experts (too highly specific to reflect current practice)
Madaj,Paul, Gopal,Ambarish, Hamirani,Yasmin, Zeb,Irfan, Elamir,Sameh, Budoff,Matthew, The degree of stenosis on cardiac catheterization compared to calcified coronary segments on multi- detector row cardiac computed tomography MDCT, Academic RadiologyAcad.Radiol., 17, 1001-1005, 2010	Outcome/analysis not performed on CAD(types of calcification)
Madhok,Rajneesh, Aggarwal,Abhinav, Comparison of 128-Slice Dual Source CT Coronary Angiography with Invasive Coronary Angiography, Journal of clinical and diagnostic research : JCDRJ Clin Diagn Res, 8, RC08-RC11, 2014	Index test overlaps with DG3 (New Generation Scanner)
Maffei,E., Martini,C., Rossi,A., Mollet,N., Lario,C., Castiglione Morelli,M., Clemente,A., Gentile,G., Arcadi,T., Seitun,S., Catalano,O., Aldrovandi,A., Cademartiri,F., Diagnostic accuracy of second-generation dual-source computed tomography coronary angiography with iterative reconstructions: a real-world experience, La Radiologia medicaRadiol Med, 117, 725-738, 2012	Index test overlaps with DG3 (New Generation Scanner)
Maffei,E., Martini,C., Tedeschi,C., Spagnolo,P., Zuccarelli,A., Arcadi,T., Guaricci,A., Seitun,S., Weustink,A., Mollet,N., Cademartiri,F., Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data on the comparison between male and female population, La Radiologia medicaRadiol Med, 117, 6-18, 2012	Population (included patients with ACS)
Maffei,E., Palumbo,A., Martini,C., Meijboom,W., Tedeschi,C., Spagnolo,P., Zuccarelli,A., Weustink,A., Torri,T., Mollet,N.,	Population (included patients with

Author	Reason for exclusion
Seitun,S., Krestin,G.P., Cademartiri,F., Diagnostic accuracy of 64- slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data and review of multicentre trials, La Radiologia medicaRadiol Med, 115, 368-384, 2010	ACS)
Maffei,E., Palumbo,A., Martini,C., Ugo,F., Lina,D., Aldrovandi,A., Reverberi,C., Manca,C., Ardissino,D., Crisi,G., Cademartiri,F., Diagnostic accuracy of computed tomography coronary angiography in a high risk symptomatic population, Acta bio- medica, 81, 47-53, 2010	Population (included patients with ACS)
Mahmarian, J.J., Boyce, T.M., Goldberg, R.K., Cocanougher, M.K., Roberts, R., Verani, M.S., Quantitative exercise thallium-201 single photon emission computed tomography for the enhanced diagnosis of ischemic heart disease, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 15, 318-329, 1990	Population (included patients with known CAD)
Mahnken,A.H., Wildberger,J.E., Sinha,A.M., Dedden,K., Stanzel,S., Hoffmann,R., Schmitz-Rode,T., Gunther,R.W., Value of 3D-volume rendering in the assessment of coronary arteries with retrospectively ECG-gated multislice spiral CT, Acta radiologica (Stockholm, SwedenActa Radiol, 44, 302-309, 2003	Study design/mixed population
Mahnken,Andreas H., Wein,Berthold B., Sinha,Anil M., Gunther,Rolf W., Wildberger,Joachim E., Value of conventional chest radiography for the detection of coronary calcifications: comparison with MSCT, European Journal of RadiologyEur.J.Radiol., 69, 510-516, 2009	Design (retrospective)
Maintz, David, Aepfelbacher, Franz C., Kissinger, Kraig V., Botnar, Rene M., Danias, Peter G., Heindel, Walter, Manning, Warren J., Stuber, Matthias, Coronary MR angiography: comparison of quantitative and qualitative data from four techniques, AJR. American journal of roentgenology AJR Am J Roentgenol, 182, 515-521, 2004	Non protocol index test
Mairesse, G.H., Marwick, T.H., Vanoverschelde, J.L., Baudhuin, T., Wijns, W., Melin, J.A., Detry, J.M., How accurate is dobutamine stress electrocardiography for detection of coronary artery disease? Comparison with two-dimensional echocardiography and technetium-99m methoxyl isobutyl isonitrile (mibi) perfusion scintigraphy, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 24, 920-927, 1994	Reference standard (non protocol)
Makaryus,Amgad N., Henry,Sonia, Loewinger,Lee, Makaryus,John N., Boxt,Lawrence, Multi-Detector Coronary CT Imaging for the Identification of Coronary Artery Stenoses in a "Real-World" Population, Clinical Medicine Insights.CardiologyClin Med Insights Cardiol, 8, 13-22, 2014	Population (selected on basis of CTCA results)
Malago,R., Pezzato,A., Barbiani,C., Alfonsi,U., D'Onofrio,M., Tavella,D., Benussi,P., Pozzi Mucelli,R., Role of coronary angiography MDCT in the clinical setting: changes in diagnostic workup in the real world, La Radiologia medicaRadiol Med, 117, 939-952, 2012	Includes known disease
Manka,Robert, Wissmann,Lukas, Gebker,Rolf, Jogiya,Roy, Motwani,Manish, Frick,Michael, Reinartz,Sebastian, Schnackenburg,Bernhard, Niemann,Markus, Gotschy,Alexander, Kuhl,Christiane, Nagel,Eike, Fleck,Eckart, Marx,Nikolaus, Luescher,Thomas F., Plein,Sven, Kozerke,Sebastian, Multicenter evaluation of dynamic three-dimensional magnetic resonance	Non protocol reference test

Author	Reason for exclusion
myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 8, -, 2015	
Mannan, M., Bashar, M.A., Mohammad, J., Jahan, M.U., Momenuzzaman, N.A.M., Haque, M.A., Comparison of coronary CT angiography with conventional coronary angiography in the diagnosis of coronary artery disease, Bangladesh Medical Research Council BulletinBangladesh Med.Res.Counc.Bull., 40, 31-35, 2014	Population not defined.
Mao,S., Budoff,M.J., Oudiz,R.J., Bakhsheshi,H., Wang,S., Brundage,B.H., Effect of exercise on left and right ventricular ejection fraction and wall motion, International journal of cardiologyInt.J.Cardiol., 71, 23-31, 1999	Non protocol index test
Maret, Eva, Engvall, Jan, Nylander, Eva, Ohlsson, Jan, Feasibility and diagnostic power of transthoracic coronary Doppler for coronary flow velocity reserve in patients referred for myocardial perfusion imaging, Cardiovascular ultrasoundCardiovasc Ultrasound, 6, 12-, 2008	Reference standard (non protocol)
Martuscelli, Eugenio, Razzini, Cinzia, D'Eliseo, Alessia, Marchei, Massimo, Pisani, Eliana, Romeo, Francesco, Limitations of four-slice multirow detector computed tomography in the detection of coronary stenosis, Italian heart journal : official journal of the Italian Federation of Cardiology, 5, 127-131, 2004	4 slice scanner (minimum 64 slice)
Martuscelli,Eugenio, Romagnoli,Andrea, D'Eliseo,Alessia, Razzini,Cinzia, Tomassini,Marco, Sperandio,Massimiliano, Simonetti,Giovanni, Romeo,Francesco, Accuracy of thin-slice computed tomography in the detection of coronary stenoses, European Heart JournalEur.Heart J., 25, 1043-1048, 2004	16 slice CT (minimum 64slice)
Maruyama, Takao, Takada, Masanori, Hasuike, Toshiaki, Yoshikawa, Atsushi, Namimatsu, Eiji, Yoshizumi, Tohru, Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography: comparison with retrospective electrocardiogram- gated helical scan, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 52, 1450-1455, 2008	Population (those being followed up after PCI)
Masuda,Y., Naito,S., Aoyagi,Y., Yamada,Z., Uda,T., Morooka,N., Watanabe,S., Inagaki,Y., Coronary artery calcification detected by CT: clinical significance and angiographic correlates, Angiology, 41, 1037-1047, 1990	Includes known CAD
Mathias,Wilson Jr, Tsutsui,Jeane M., Andrade,Jose L., Kowatsch,Ingrid, Lemos,Pedro A., Leal,Samira M.B., Khandheria,Bijoy K., Ramires,Jose F., Value of rapid beta-blocker injection at peak dobutamine-atropine stress echocardiography for detection of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 41, 1583-1589, 2003	Population (included patients with known CAD)
Matsuda,J., Miyamoto,N., Ikushima,I., Takenaga,M., Koiwaya,Y., Eto,T., Stress technetium-99m tetrofosmin myocardial scintigraphy: a new one-hour protocol for the detection of coronary artery disease, Journal of CardiologyJ.Cardiol., 32, 219- 226, 1998	Reference standard (unclear)
Matsuo,Shinro, Nakamura,Yasuyuki, Matsumoto,Tetsuya, Nakae,Ichiro, Nagatani,Yukihiro, Takazakura,Ryutaro, Takahashi,Masashi, Murata,Kiyoshi, Horie,Minoru, Visual assessment of coronary artery stenosis with	Index test overlaps with DG3 (New Generation Scanner)

Author	Reason for exclusion
electrocardiographically-gated multislice computed tomography,	
The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 20, 61-66, 2004	
Mazeika,P.K., Nadazdin,A., Oakley,C.M., Dobutamine stress echocardiography for detection and assessment of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 19, 1203-1211, 1992	Mixed population: Includes patients with previous MI. Analysis (missing data)
Mc Ardle,Brian A., Dowsley,Taylor F., deKemp,Robert A., Wells,George A., Beanlands,Rob S., Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta- analysis, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 60, 1828-1837, 2012	Population (included patients known or suspected CAD)
McCarthy,Richard M., Deshpande,Vibhas S., Beohar,Nirat, Meyers,Sheridan N., Shea,Steven M., Green,Jordin D., Liu,Xin, Bi,Xiaoming, Pereles,F.Scott, Finn,John Paul, Davidson,Charles J., Carr,James C., Li,Debiao, Three-dimensional breathhold magnetization-prepared TrueFISP: a pilot study for magnetic resonance imaging of the coronary artery disease, Investigative RadiologyInvest.Radiol., 42, 665-670, 2007	non protocol index test
McKavanagh,Peter, Lusk,Lisa, Ball,Peter A., Trinick,Tom R., Duly,Ellie, Walls,Gerard M., Orr,Clare, Harbinson,Mark T., Donnelly,Patrick M., A comparison of Diamond Forrester and coronary calcium scores as gatekeepers for investigations of stable chest pain, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 29, 1547-1555, 2013	Not relevant to the question
Meijboom,W.Bob, Meijs,Matthijs F.L., Schuijf,Joanne D., Cramer,Maarten J., Mollet,Nico R., van Mieghem,Carlos A.G., Nieman,Koen, van Werkhoven,Jacob M., Pundziute,Gabija, Weustink,Annick C., de Vos,Alexander M., Pugliese,Francesca, Rensing,Benno, Jukema,J.Wouter, Bax,Jeroen J., Prokop,Mathias, Doevendans,Pieter A., Hunink,Myriam G.M., Krestin,Gabriel P., de Feyter,Pim J., Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 52, 2135-2144, 2008	Population (included patients with ACS)
Meijboom,W.Bob, van Mieghem,Carlos A.G., Mollet,Nico R., Pugliese,Francesca, Weustink,Annick C., van Pelt,Niels, Cademartiri,Filippo, Nieman,Koen, Boersma,Eric, de Jaegere,Peter, Krestin,Gabriel P., de Feyter,Pim J., 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 50, 1469- 1475, 2007	Population (included patients with ACS)
Meijboom,W.Bob, van Mieghem,Carlos A.G., van Pelt,Niels, Weustink,Annick, Pugliese,Francesca, Mollet,Nico R., Boersma,Eric, Regar,Eveline, van Geuns,Robert J., de Jaegere,Peter J., Serruys,Patrick W., Krestin,Gabriel P., de Feyter,Pim J., Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 52, 636-643, 2008	Reference standard (non protocol)

Author	Reason for exclusion
Aution	Used obsolete image acquisition
Melendez,L.J., Driedger,A.A., Salcedo,J.R., et al. (1979) Exercise electrocardiography and myocardial perfusion imaging in the diagnosis of coronary artery disease: preliminary report. Canadian journal of surgery.Journal canadien de chirurgieCan J Surg: 22 p.334-336	equipment
Melin,J.A., Piret,L.J., and Vanbutsele,R.J.M. (1981) Diagnostic value of exercise electrocardiography and thallium myocardial scintigraphy in patients without previous myocardial infarction: A Bayesian approach. Circulation: 63 p.1019-1024	Used obsolete image acquisition equipment
Memmola,C., Iliceto,S., Rizzon,P., Detection of proximal stenosis of left coronary artery by digital transesophageal echocardiography: feasibility, sensitivity, and specificity, Journal of the American Society of EchocardiographyJ.Am.Soc.Echocardiogr., 6, 149-157, 1993	Non protocol index test
Mendelson,M.A., Spies,S.M., Spies,W.G., Abi-Mansour,P., Fintel,D.J., Usefulness of single-photon emission computed tomography of thallium-201 uptake after dipyridamole infusion for detection of coronary artery disease, The American journal of cardiologyAm J Cardiol, 69, 1150-1155, 1992	Population (included patients with known or suspected CAD and patients with previous MI)
Menke,J., Kowalski,J., Diagnostic accuracy and utility of coronary CT angiography with consideration of unevaluable results: A systematic review and multivariate Bayesian random-effects meta- analysis with intention to diagnose, Eur Radiol, -, 2015	Population (included patients with known or suspected CAD)
Meyer, Mathias, Henzler, Thomas, Fink, Christian, Vliegenthart, Rozemarijn, Barraza, J. Michael Jr, Nance, John W.J., Apfaltrer, Paul, Schoenberg, Stefan O., Wasser, Klaus, Impact of coronary calcium score on the prevalence of coronary artery stenosis on dual source CT coronary angiography in caucasian patients with an intermediate risk, Academic Radiology Acad. Radiol., 19, 1316-1323, 2012	Design (retrospective) Index test overlaps with DG3 (New Generation Scanner)
Michael,T.A.D., Rao,G., Balasingam,S., Accuracy and usefulness of atrial pacing in conjunction with transesophageal echocardiography in the detection of cardiac ischemia (a comparative study with scintigraphic tomography and coronary arteriography), American Journal of CardiologyAm.J.Cardiol., 75, 563-567, 1995	Design (non consecutive) Population (mixed)
Miller,D.D., Younis,L.T., Chaitman,B.R., Stratmann,H., Diagnostic accuracy of dipyridamole technetium 99m-labeled sestamibi myocardial tomography for detection of coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 4, 18-24, 1997	Population (included patients with previous MI)
Miller, J.M., Rochitte, C.E., Dewey, M., Keyhani, S., Cardiac computed tomography-not ready for prime time, Journal of Clinical Outcomes Management J.Clin.Outcomes Manage., 16, 18-19, 2009	Abstract only
Miller, Julie M., Rochitte, Carlos E., Dewey, Marc, Arbab- Zadeh, Armin, Niinuma, Hiroyuki, Gottlieb, Ilan, Paul, Narinder, Clouse, Melvin E., Shapiro, Edward P., Hoe, John, Lardo, Albert C., Bush, David E., de Roos, Albert, Cox, Christopher, Brinker, Jeffery,	Population (included patients with previous MI

Author	Reason for exclusion
Lima, Joao A.C., Diagnostic performance of coronary angiography by 64-row CT, The New England journal of medicineN Engl J Med, 359, 2324-2336, 2008	
Min,James K., Arsanjani,Reza, Kurabayashi,Sachio, Andreini,Daniele, Pontone,Gianluca, Choi,Byung Wook, Chang,Hyuk Jae, Lu,Bin, Narula,Jagat, Karimi,Afshin, Roobottom,Carl, Gomez,Millie, Berman,Daniel S., Cury,Ricardo C., Villines,Todd, Kang,Joon, Leipsic,Jonathon, Rationale and design of the ViCTORY (Validation of an Intracycle CT Motion CORrection Algorithm for Diagnostic AccuracY) trial, Journal of Cardiovascular Computed TomographyJ.Cardiovasc.Comput.Tomogr., 7, 200-206, 2013	Rationale and design of study only. No results.
Min,James K., Berman,Daniel S., Budoff,Matthew J., Jaffer,Farouc A., Leipsic,Jonathon, Leon,Martin B., Mancini,G.B.J., Mauri,Laura, Schwartz,Robert S., Shaw,Leslee J., Rationale and design of the DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic AngiOgraphy) study, Journal of Cardiovascular Computed TomographyJ.Cardiovasc.Comput.Tomogr., 5, 301-309, 2011	Reference standard (non protocol)
Minoves,M., Garcia,A., Magrina,J., Pavia,J., Herranz,R., Setoain,J., Evaluation of myocardial perfusion defects by means of "bull's eye" images, Clinical CardiologyClin.Cardiol., 16, 16-22, 1993	known CAD population
Mir-Akbari,H., Ripsweden,J., Jensen,J., Pichler,P., Sylven,C., Cederlund,K., Ruck,A., Limitations of 64-detector-row computed tomography coronary angiography: calcium and motion but not short experience, Acta radiologica (Stockholm, Sweden : 1987), 50, 174-180, 2009	Population (included patients with previous MI or PCI)
Miszalski-Jamka, Tomasz, Kuntz-Hehner, Stefanie, Schmidt, Harald, Hammerstingl, Christoph, Tiemann, Klaus, Ghanem, Alexander, Troatz, Clemens, Luderitz, Berndt, Omran, Heyder, Real time myocardial contrast echocardiography during supine bicycle stress and continuous infusion of contrast agent. Cutoff values for myocardial contrast replenishment discriminating abnormal myocardial perfusion, Echocardiography (Mount Kisco, N.Y.), 24, 638-648, 2007	Discussed with Topic Experts (validation of highly specific methods - not mainstream)
Mitsutake,Ryoko, Niimura,Hideya, Miura,Shin Ichiro, Zhang,Bo, Iwata,Atsushi, Nishikawa,Hiroaki, Kawamura,Akira, Kumagai,Koichiro, Shirai,Kazuyuki, Matsunaga,Akira, Saku,Keijiro, Clinical significance of the coronary calcification score by multidetector row computed tomography for the evaluation of coronary stenosis in Japanese patients, Circulation journal : official journal of the Japanese Circulation SocietyCirc J, 70, 1122-1127, 2006	Population (included asymptomatic patients)
Mollet,Nico R., Cademartiri,Filippo, Krestin,Gabriel P., McFadden,Eugene P., Arampatzis,Chourmouzios A., Serruys,Patrick W., de Feyter,Pim J., Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 45, 128-132, 2005	16 slice scanner (minimum 64 slice)
Montz,R., Perez-Castejon,M.J., Jurado,J.A., Martin-Comin,J., Esplugues,E., Salgado,L., Ventosa,A., Cantinho,G., Sa,E.P., Fonseca,A.T., Vieira,M.R., Technetium-99m tetrofosmin rest/stress myocardial SPET with a same-day 2-hour protocol: comparison with coronary angiography. A Spanish-Portuguese multicentre	Population (included patients with known or suspected CAD)

Author	Reason for exclusion
clinical trial, European Journal of Nuclear	
MedicineEUR.J.NUCL.MED., 23, 639-647, 1996	
Moon,Jae Youn, Chung,Namsik, Choi,Byoung Wook, Choe,Kyu Ok, Seo,Hye Sun, Ko,Young Guk, Kang,Seok Min, Ha,Jong Won, Rim,Se Joong, Jang,Yangsoo, Shim,Won Heum, Cho,Seung Yun, The utility of multi-detector row spiral CT for detection of coronary artery stenoses, Yonsei Medical JournalYonsei Med.J., 46, 86-94, 2005	16 slice scanner (minimum 64 slice)
Moon,Jun Sung, Yoon,Ji Sung, Won,Kyu Chang, Cho,Ihn Ho, Lee,Hyoung Woo, Diagnostic Accuracy of 64-Slice MDCT Coronary Angiography for the Assessment of Coronary Artery Disease in Korean Patients with Type 2 Diabetes, Diabetes & metabolism journalDiabetes Metab J, 37, 54-62, 2013	Population (included patients with Type 2 Diabetes)
Mordini,Federico E., Haddad,Tariq, Hsu,Li Yueh, Kellman,Peter, Lowrey,Tracy B., Aletras,Anthony H., Bandettini,W.Patricia, Arai,Andrew E., Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment, JACC.Cardiovascular imagingJACC Cardiovasc Imaging, 7, 14-22, 2014	Population (included patients with known CAD
Morgan-Hughes,G.J., Marshall,A.J., Roobottom,C.A., Multislice computed tomographic coronary angiography: Experience in a UK Centre, Clinical RadiologyClin.Radiol., 58, 378-383, 2003	Population (unclear - emailed author - not replied)
Morgan-Hughes,G.J., Roobottom,C.A., Owens,P.E., Marshall,A.J., Highly accurate coronary angiography with submillimetre, 16 slice computed tomography, Heart (British Cardiac Society), 91, 308- 313, 2005	16 slice scanner (minimum 64 slice)
Morise,A.P., An incremental evaluation of the diagnostic value of thallium single-photon emission computed tomographic imaging and lung/heart ratio concerning both the presence and extent of coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 2, 238-245, 1995	Design (correlation study not DTA study)
Morton,Geraint, Chiribiri,Amedeo, Ishida,Masaki, Hussain,Shazia T., Schuster,Andreas, Indermuehle,Andreas, Perera,Divaka, Knuuti,Juhani, Baker,Stacey, Hedstrom,Erik, Schleyer,Paul, O'Doherty,Michael, Barrington,Sally, Nagel,Eike, Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 60, 1546-1555, 2012	Population (included patients with known CAD)
Morton,K.A., Alazraki,N.P., Taylor,A.T., Datz,F.L., SPECT thallium- 201 scintigraphy for the detection of left-ventricular aneurysm, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 28, 168-172, 1987	Not relevant
Mosalla,S.MM., Tavakoli,H., Gholamrezanezhad,A., A study of demographic and clinical features of patients referred to the nuclear medicine department of a military hospital for myocardial perfusion scintigraphy, Iranian Journal of Nuclear MedicineIran.J.Nucl.Med., 17, 34-40, 2009	Not all participants received reference standard
Motwani,Manish, Fairbairn,Timothy A., Larghat,Abdulghani, Mather,Adam N., Biglands,John D., Radjenovic,Aleksandra, Greenwood,John P., Plein,Sven, Systolic versus diastolic acquisition in myocardial perfusion MR imaging, Radiology, 262, 816-823,	Population (unclear - included patients with MI)

Author	Reason for exclusion
Author 2012	
Motwani, Manish, Maredia, Neil, Fairbairn, Timothy A., Kozerke, Sebastian, Radjenovic, Aleksandra, Greenwood, John P., Plein, Sven, High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 5, 306-313, 2012	Population (20% of patients had previous MI or PCI)
Mowatt,G., Cook,J.A., Hillis,G.S., Walker,S., Fraser,C., Jia,X., Waugh,N., 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis, Heart (British Cardiac Society), 94, 1386- 1393, 2008	Population (included patients with known CAD)
Mowatt,G., Cummins,E., Waugh,N., Walker,S., Cook,J., Jia,X., Hillis,G.S., Fraser,C., Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease, Health technology assessment (Winchester, England)Health Technol Assess, 12, iii- 143, 2008	Population (included patients with known CAD)
Mowatt,G., Vale,L., Brazzelli,M., Hernandez,R., Murray,A., Scott,N., Fraser,C., McKenzie,L., Gemmell,H., Hillis,G., Metcalfe,M., Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction, Health technology assessment (Winchester, England)Health Technol Assess, 8, iii-207, 2004	Population (included patients with previous MI)
Naganuma,Toru, Latib,Azeem, Costopoulos,Charis, Takagi,Kensuke, Naim,Charbel, Sato,Katsumasa, Miyazaki,Tadashi, Kawaguchi,Masanori, Panoulas,Vasileios F., Basavarajaiah,Sandeep, Figini,Filippo, Chieffo,Alaide, Montorfano,Matteo, Carlino,Mauro, Colombo,Antonio, The role of intravascular ultrasound and quantitative angiography in the functional assessment of intermediate coronary lesions: correlation with fractional flow reserve, Cardiovascular revascularization medicine : including molecular interventionsCardiovasc Revasc Med, 15, 3-7, 2014	Population (included patients with previous PCI or CABG)
Nakamura,Ayako, Momose,Mitsuru, Kondo,Chisato, Nakajima,Takatomo, Kusakabe,Kiyoko, Hagiwara,Nobuhisa, Ability of 201Tl and 123I-BMIPP mismatch to diagnose myocardial ischemia in patients with suspected coronary artery disease, Annals of Nuclear MedicineAnn.Nucl.Med., 23, 793-798, 2009	Design (retrospective)
Nakamura, M., Takeda, K., Ichihara, T., Motomura, N., Shimizu, H., Saito, Y., Nomura, Y., Isaka, N., Konishi, T., Nakano, T., Feasibility of simultaneous stress 99mTc-sestamibi/rest 201Tl dual-isotope myocardial perfusion SPECT in the detection of coronary artery disease, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 40, 895-903, 1999	Population (included patients with previous MI)
Nakazato,Ryo, Berman,Daniel S., Dey,Damini, Le Meunier,Ludovic, Hayes,Sean W., Fermin,Jimmy S., Cheng,Victor Y., Thomson,Louise E.J., Friedman,John D., Germano,Guido, Slomka,Piotr J., Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: normal limits and correlation with invasive coronary angiography, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 19, 265-	Time flow (too long between tests)

Author	Reason for exclusion
276, 2012	
Nakazato,Ryo, Tamarappoo,Balaji K., Kang,Xingping, Wolak,Arik, Kite,Faith, Hayes,Sean W., Thomson,Louise E.J., Friedman,John D., Berman,Daniel S., Slomka,Piotr J., Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 51, 1724-1731, 2010	Analysis (missing data) Time flow (too long between tests)
Nallamothu,B.K., Saint,S., Bielak,L.F., Sonnad,S.S., Peyser,P.A., Rubenfire,M., Fendrick,A.M., Electron-beam computed tomography in the diagnosis of coronary artery disease: a meta- analysis, Archives of Internal MedicineArch.Intern.Med., 161, 833- 838, 2001	EBCT non protocol index test
Nallamothu,N., Ghods,M., Heo,J., Iskandrian,A.S., Comparison of thallium-201 single-photon emission computed tomography and electrocardiographic response during exercise in patients with normal rest electrocardiographic results, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 25, 830-836, 1995	Design (retrospective)
Namdar, Mehdi, Hany, Thomas F., Koepfli, Pascal, Siegrist, Patrick T., Burger, Cyrill, Wyss, Christophe A., Luscher, Thomas F., von Schulthess, Gustav K., Kaufmann, Philipp A., Integrated PET/CT for the assessment of coronary artery disease: a feasibility study, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 46, 930-935, 2005	Population (included patients with known CAD)
Nandalur, Kiran R., Dwamena, Ben A., Choudhri, Asim F., Nandalur, Mohan R., Carlos, Ruth C., Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis, Journal of the American College of Cardiology J. Am. Coll. Cardiol., 50, 1343-1353, 2007	Population (included patients with known CAD)
Nandalur,Kiran R., Dwamena,Ben A., Choudhri,Asim F., Nandalur,Sirisha R., Reddy,Priya, Carlos,Ruth C., Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis, Academic RadiologyAcad.Radiol., 15, 444-451, 2008	Population (included patients with known CAD)
Naser,Nabil, Buksa,Marko, Sokolovic,Sekib, Hodzic,Enisa, The role of dobutamine stress echocardiography in detecting coronary artery disease compared with coronary angiography, Medicinski arhivMed Arh, 65, 140-144, 2011	Design (retrospective)
Nasis,Arthur, Ko,Brian S., Leung,Michael C., Antonis,Paul R., Nandurkar,Dee, Wong,Dennis T., Kyi,Leo, Cameron,James D., Troupis,John M., Meredith,Ian T., Seneviratne,Sujith K., Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography: pilot study, European RadiologyEur.Radiol., 23, 1812- 1821, 2013	Index test overlaps with DG3 (New Generation Scanner)
Nasis,Arthur, Leung,Michael C., Antonis,Paul R., Cameron,James D., Lehman,Sam J., Hope,Sarah A., Crossett,Marcus P., Troupis,John M., Meredith,Ian T., Seneviratne,Sujith K., Diagnostic accuracy of noninvasive coronary angiography with 320-detector row computed tomography, The American journal of cardiologyAm J Cardiol, 106, 1429-1435, 2010	Design (retrospective) Index test overlaps with DG3 (New Generation Scanner)
Nau,G., Albertal,M., Cura,F., Padilla,L., Candiello,A., Torrent,F., Peralta,S., Belardi,J., Efficacy and safety of dual-axis rotational coronary angiography versus conventional angiography, Revista	Includes known CAD

Author	Reason for exclusion
Argentina de CardiologiaRev.Argent.Cardiol., 80, 280-285, 2012	
Naya,Masanao, Murthy,Venkatesh L., Taqueti,Viviany R., Foster,Court, Klein,Josh, Garber,Mariya, Dorbala,Sharmila, Hainer,Jon, Blankstein,Ron, Resnic,Frederick, Di Carli,Marcelo F., Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 55, 248-255, 2014	Analysis (missing data)
Nedeljkovic,I., Ostojic,M., Beleslin,B., Djordjevic-Dikic,A., Stepanovic,J., Nedeljkovic,M., Stojkovic,S., Stankovic,G., Saponjski,J., Petrasinovic,Z., Giga,V., Mitrovic,P., Comparison of exercise, dobutamine-atropine and dipyridamole-atropine stress echocardiography in detecting coronary artery disease, Cardiovascular ultrasoundCardiovasc Ultrasound, 4, 22-, 2006	Population (included patients with known CAD)
Neefjes,L.A., Rossi,A., Genders,T.S., Nieman,K., Papadopoulou,S.L., Dharampal,A.S., Schultz,C.J., Weustink,A.C., Dijkshoorn,M.L., Kate,G.J., Dedic,A., Straten,M., Cademartiri,F., Hunink,M.G., Krestin,G.P., Feyter,P.J., Mollet,N.R., Diagnostic accuracy of 128- slice dual-source CT coronary angiography: a randomized comparison of different acquisition protocols, European RadiologyEur.Radiol., 23, 614-622, 2013	Index test overlaps with DG3 (New Generation Scanner)
Neglia, Danilo, Rovai, Daniele, Caselli, Chiara, Pietila, Mikko, Teresinska, Anna, Aguade-Bruix, Santiago, Pizzi, Maria Nazarena, Todiere, Giancarlo, Gimelli, Alessia, Schroeder, Stephen, Drosch, Tanja, Poddighe, Rosa, Casolo, Giancarlo, Anagnostopoulos, Constantinos, Pugliese, Francesca, Rouzet, Francois, Le Guludec, Dominique, Cappelli, Francesco, Valente, Serafina, Gensini, Gian Franco, Zawaideh, Camilla, Capitanio, Selene, Sambuceti, Gianmario, Marsico, Fabio, Perrone Filardi, Pasquale, Fernandez-Golfin, Covadonga, Rincon, Luis M., Graner, Frank P., de Graaf, Michiel A., Fiechter, Michael, Stehli, Julia, Gaemperli, Oliver, Reyes, Eliana, Nkomo, Sandy, Maki, Maija, Lorenzoni, Valentina, Turchetti, Giuseppe, Carpeggiani, Clara, Marinelli, Martina, Puzzuoli, Stefano, Mangione, Maurizio, Marcheschi, Paolo, Mariani, Fabio, Giannessi, Daniela, Nekolla, Stephan, Lombardi, Massimo, Sicari, Rosa, Scholte, Arthur J.H.A., Zamorano, Jose L., Kaufmann, Philipp A., Underwood, S Richard, Knuuti, Juhani, EVINCI, Study, I, Detection of significant coronary artery disease by noninvasive anatomical and functional imaging, Circulation. Cardiovascular imagingCirc Cardiovasc Imaging, 8, -, 2015	Design (population was people who had abnormal primary test)
Ng,Arnold C.T., Sitges,Marta, Pham,Phuong N., Tran,Da T., Delgado,Victoria, Bertini,Matteo, Nucifora,Gaetano, Vidaic,Jane, Allman,Christine, Holman,Eduard R., Bax,Jeroen J., Leung,Dominic Y., Incremental value of 2-dimensional speckle tracking strain imaging to wall motion analysis for detection of coronary artery disease in patients undergoing dobutamine stress echocardiography, American Heart JournalAm.Heart J., 158, 836- 844, 2009	Design (retrospective) Time flow (too long between tests)
Nguyen,T., Heo,J., Ogilby,J.D., Iskandrian,A.S., Single photon emission computed tomography with Thallium-201 during adenosine-induced coronary hyperemia: Correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 16, 1375-1383, 1990	Population (included patients with known CAD)

Author	Reason for exclusion
Nieman,Koen, Cademartiri,Filippo, Lemos,Pedro A., Raaijmakers,Rolf, Pattynama,Peter M.T., de Feyter,Pim J., Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography, Circulation, 106, 2051- 2054, 2002	16 slice scanner (minimum 64 slice)
Nieman,Koen, Rensing,Benno J., van Geuns,Robert Jan, Munne,Arie, Ligthart,Jurgen M.R., Pattynama,Peter M.T., Krestin,Gabriel P., Serruys,Patrick W., de Feyter,Pim J., Usefulness of multislice computed tomography for detecting obstructive coronary artery disease, The American journal of cardiologyAm J Cardiol, 89, 913-918, 2002	Insufficient CT scanner specification (4 slice)
Nikolaou,Konstantin, Rist,Carsten, Wintersperger,Bernd J., Jakobs,Tobias F., van Gessel,Roland, Kirchin,Miles A., Knez,Andreas, von Ziegler,Franz, Reiser,Maximilian F., Becker,Christoph R., Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease, AJR.American journal of roentgenologyAJR Am J Roentgenol, 186, 1659-1668, 2006	Population (included unknown patients with CAD and non cardiac CIP)
Nishida, Chikako, Okajima, Kaoru, Kudo, Takashi, Yamamoto, Takashi, Hattori, Ryuichi, Nishimura, Yasumasa, The relationship between coronary artery calcification detected by non-gated multi-detector CT in patients with suspected ischemic heart disease and myocardial ischemia detected by thallium exercise stress testing, Annals of Nuclear MedicineAnn.Nucl.Med., 19, 647-653, 2005	Population (included patients with suspected lung disease)
Norgaard,Bjarne L., Leipsic,Jonathon, Gaur,Sara, Seneviratne,Sujith, Ko,Brian S., Ito,Hiroshi, Jensen,Jesper M., Mauri,Laura, De Bruyne,Bernard, Bezerra,Hiram, Osawa,Kazuhiro, Marwan,Mohamed, Naber,Christoph, Erglis,Andrejs, Park,Seung Jung, Christiansen,Evald H., Kaltoft,Anne, Lassen,Jens F., Botker,Hans Erik, Achenbach,Stephan, NXT Trial Study Group, Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps), Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 63, 1145- 1155, 2014	Reference standard (non protocol)
Norris,L.P., Stewart,R.E., Jain,A., Hibner,C.S., Chaudhuri,T.K., Zabalgoitia,M., Biplane transesophageal pacing echocardiography compared with dipyridamole thallium-201 single-photon emission computed tomography in detecting coronary artery disease, American Heart JournalAm.Heart J., 126, 676-685, 1993	Population (included patients with previous MI)
Ogilby,J.D., Iskandrian,A.S., Untereker,W.J., Heo,J., Nguyen,T.N., Mercuro,J., Effect of intravenous adenosine infusion on myocardial perfusion and function. Hemodynamic/angiographic and scintigraphic study, Circulation, 86, 887-895, 1992	Design (non consecutive)
O'Hara,M.J., Lahiri,A., Whittington,J.R., Detection of high-risk coronary artery disease by thallium imaging, British Heart JournalBR.HEART J., 53, 616-623, 1985	Population (included patients with known CAD)
Ollendorf, Daniel A., Kuba, Michelle, Pearson, Steven D., The diagnostic performance of multi-slice coronary computed tomographic angiography: a systematic review, Journal of General Internal MedicineJ.Gen.Intern.Med., 26, 307-316, 2011	Population (included patients with acute chest pain
Olszowska, Maria, Kostkiewicz, Magdalena, Tracz, Wieslawa, Przewlocki, Tadeusz, Assessment of myocardial perfusion in	Analysis (missing data)

Author	Reason for exclusion
patients with coronary artery disease. Comparison of myocardial	
contrast echocardiography and 99mTc MIBI single photon emission computed tomography, International journal of cardiologyInt.J.Cardiol., 90, 49-55, 2003	
Oncel,Dilek, Oncel,Guray, Turkoglu,Ipek, Accuracy of MR coronary angiography in the evaluation of coronary artery stenosis, Diagnostic and interventional radiology (Ankara, Turkey)Diagn Interv Radiol, 14, 153-158, 2008	Reference standard (non protocol)
Ong, Tiong Kiam, Chin, Sze Piaw, Liew, Chee Khoon, Chan, Wei Ling, Seyfarth, M. Tobias, Liew, Houng Bang, Rapaee, Annuar, Fong, Yean Yip Alan, Ang, Choon Kiat, Sim, Kui Hian, Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification, American Heart Journal Am. Heart J., 151, 1323-1326, 2006	Population (included patients with IHD already)
O'Rourke,R.A., Brundage,B.H., Froelicher,V.F., Greenland,P., Grundy,S.M., Hachamovitch,R., Pohost,G.M., Shaw,L.J., Weintraub,W.S., Winters,W.L.J., American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 36, 326-340, 2000	Non protocol index test
Osawa,Kazuhiro, Miyoshi,Toru, Koyama,Yasushi, Hashimoto,Katsushi, Sato,Shuhei, Nakamura,Kazufumi, Nishii,Nobuhiro, Kohno,Kunihisa, Morita,Hiroshi, Kanazawa,Susumu, Ito,Hiroshi, Additional diagnostic value of first- pass myocardial perfusion imaging without stress when combined with 64-row detector coronary CT angiography in patients with coronary artery disease, Heart (British Cardiac Society), 100, 1008- 1015, 2014	Index test overlaps with DG3 (New Generation Scanner)
Ostojic, M., Picano, E., Beleslin, B., Dordjevic-Dikic, A., Distante, A., Stepanovic, J., Reisenhofer, B., Babic, R., Stojkovic, S., Nedeljkovic, M., Dipyridamole-dobutamine echocardiography: a novel test for the detection of milder forms of coronary artery disease, Journal of the American College of Cardiology J. Am. Coll. Cardiol., 23, 1115-1122, 1994	Population (included patients with previous MI)
Ozdemir,K., Kisacik,H.L., Oguzhan,A., Durmaz,T., Altunkeser,B.B., Altinyay,E., Kir,M., Korkmaz,S., Kutuk,E., Goksel,S., Comparison of exercise stress testing with dobutamine stress echocardiography and radionuclide ventriculography for diagnosis of coronary artery disease, Japanese Heart JournalJpn.Heart J., 40, 715-727, 1999	Population (included patients with previous MI)
Paech, Daniel C., Weston, Adele R., A systematic review of the clinical effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of suspected coronary artery disease, BMC cardiovascular disordersBMC Cardiovasc Disord, 11, 32-, 2011	Design (2 studies were retrospective, not all recruitment was consecutive) Index test overlaps with DG3 (New Generation Scanner)
Paijitprapaporn,Patcharee, Jongjirasiri,Sutipong, Tangpagasit,Laorporn, Laothamatas,Jiraporn, Reungratanaamporn,Ongkarn, Mahanonda,Nithi, Accuracy of sixteen-slice CT scanners in detected coronary artery disease, Journal of the Medical Association of Thailand = Chotmaihet thangphaetJ Med Assoc Thai, 89, 72-80, 2006	16 slice scanner (64 slice minimum)
Palmas,W., Friedman,J.D., Diamond,G.A., Silber,H., Kiat,H., Berman,D.S., Incremental value of simultaneous assessment of	Population (included patients with previous MI)

Author	Reason for exclusion
myocardial function and perfusion with technetium-99m sestamibi for prediction of extent of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 25, 1024-1031, 1995	
Palmieri,Vittorio, Pezzullo,Salvatore, Arezzi,Emma, D'Andrea,Claudia, Cassese,Salvatore, Martino,Stefania, Celentano,Aldo, Cycle-ergometry stress testing and use of chronotropic reserve adjustment of ST depression for identification of significant coronary artery disease in clinical practice, International journal of cardiologyInt.J.Cardiol., 127, 390- 392, 2008	Reference standard (non protocol)
Palumbo,Anselmo Alessandro, Maffei,Erica, Martini,Chiara, Tarantini,Giuseppe, Di Tanna,Gian Luca, Berti,Elena, Grilli,Roberto, Casolo,Giancarlo, Brambilla,Valerio, Cerrato,Marcella, Rotondo,Antonio, Weustink,Annick C., Mollet,Nico R.A., Cademartiri,Filippo, Coronary calcium score as gatekeeper for 64- slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis, European RadiologyEur.Radiol., 19, 2127-2135, 2009	Population (included patients with unstable angina
Pan,C.J., Qian,N., Wang,T., Tang,X.Q., Xue,Y.J., Adaptive prospective ECG-triggered sequence coronary angiography in dual- source CT without heart rate control: Image quality and diagnostic performance, Exp Ther Med, 5, 636-642, 2013	Population (included patients with known CAD)
Panmethis,Melissa, Wangsuphachart,Somjai, Rerkpattanapipat,Pairoj, Srimahachota,Suphot, Buddhari,Wacin, Kitsukjit,Weeranuch, Detection of coronary stenoses in chronic stable angina by multi-detector CT coronary angiography, Journal of the Medical Association of Thailand = Chotmaihet thangphaetJ Med Assoc Thai, 90, 1573-1580, 2007	Population (included patients with chronic angina) Reference standard unclear)
Park,J.W., Leithauser,B., Vrsansky,M., Jung,F., Dobutamine stress magnetocardiography for the detection of significant coronary artery stenoses - a prospective study in comparison with simultaneous 12-lead electrocardiography, Clinical Hemorheology and MicrocirculationClin.Hemorheol.Microcirc., 39, 21-32, 2008	Reference standard (non protocol)
Park,Jai Wun, Shin,Eun Seok, Ann,Soe Hee, Godde,Martin, Park,Lea Song, Brachmann,Johannes, Vidal-Lopez,Silvia, Wierzbinski,Jan, Lam,Yat Yin, Jung,Friedrich, Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease, Clinical Hemorheology and MicrocirculationClin.Hemorheol.Microcirc., 59, 267-281, 2015	Reference standard (non protocol)
Parodi,O., Marcassa,C., Casucci,R., et al. (1991) Accuracy and safety of technetium-99m hexakis 2-methoxy-2-isobutyl isonitrile (Sestamibi) myocardial scintigraphy with high dose dipyridamole test in patients with effort angina pectoris: a multicenter study. Italian Group of Nuclear Cardiology. Journal of the American College of CardiologyJ.Am.Coll.Cardiol. 18 p.1439-1444	Non-protocol index test (planar imaging)
Patsilinakos,S.P., Kranidis,A.I., Antonelis,I.P., Filippatos,G., Houssianakou,I.K., Zamanis,N.I., Sioras,E., Tsiotika,T., Kardaras,F., Anthopoulos,L.P., Detection of coronary artery disease in patients with severe aortic stenosis with noninvasive methods, Angiology, 50, 309-317, 1999	non protocol population
Pauliks,Linda B., Vogel,Michael, Madler,Christoph F., Williams,R.Ian, Payne,Nicola, Redington,Andrew N., Fraser,Alan G., Regional response of myocardial acceleration during isovolumic	Analysis (missing data)

Author	Reason for exclusion
contraction during dobutamine stress echocardiography: a color tissue Doppler study and comparison with angiocardiographic findings, Echocardiography (Mount Kisco, N.Y.), 22, 797-808, 2005	
Pazhenkottil,Aju P., Herzog,Bernhard A., Husmann,Lars, Buechel,Ronny R., Burger,Irene A., Valenta,Ines, Landmesser,Ulf, Wyss,Christophe A., Kaufmann,Philipp A., Non-invasive assessment of coronary artery disease with CT coronary angiography and SPECT: a novel dose-saving fast-track algorithm, European Journal of Nuclear Medicine and Molecular ImagingEur.J.Nucl.Med.Mol.Imaging, 37, 522-527, 2010	Not all patients received the reference standard
Peace,R.A., Staff,R.T., Gemmell,H.G., Mckiddie,F.I., Metcalfe,M.J., Automatic detection of coronary artery disease in myocardial perfusion SPECT using image registration and voxel to voxel statistical comparisons, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 23, 785-794, 2002	Population (included patients with known or suspected CAD)
Pelgrim,G.J., Dorrius,M., Xie,X., den Dekker,M.A., Schoepf,U.J., Henzler,T., Oudkerk,M., Vliegenthart,R., The dream of a one-stop- shop: Meta-analysis on myocardial perfusion CT, Eur J Radiol, -, 2015	Included non protocol reference test
Pelliccia, F., Pasceri, V., Evangelista, A., Pergolini, A., Barilla, F., Viceconte, N., Tanzilli, G., Schiariti, M., Greco, C., Gaudio, C., Diagnostic accuracy of 320-row computed tomography as compared with invasive coronary angiography in unselected, consecutive patients with suspected coronary artery disease, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 29, 443-452, 2013	Article retracted
Pennell,D.J., Underwood,S.R., Swanton,R.H., Walker,J.M., Ell,P.J., Dobutamine thallium myocardial perfusion tomography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 18, 1471- 1479, 1991	Population (included patients with known or suspected CAD)
Pereira, Eulalia, Bettencourt, Nuno, Ferreira, Nuno, Schuster, Andreas, Chiribiri, Amedeo, Primo, Joao, Teixeira, Madalena, Simoes, Lino, Leite-Moreira, Adelino, Silva- Cardoso, Jose, Gama, Vasco, Nagel, Eike, Incremental value of adenosine stress cardiac magnetic resonance in coronary artery disease detection, International journal of cardiologyInt.J.Cardiol., 168, 4160-4167, 2013	Reference standard (different)
Petcherski,Oleg, Gaspar,Tamar, Halon,David A., Peled,Nathan, Jaffe,Ronen, Molnar,Ron, Lewis,Basil S., Rubinshtein,Ronen, Diagnostic accuracy of 256-row computed tomographic angiography for detection of obstructive coronary artery disease using invasive quantitative coronary angiography as reference standard, The American journal of cardiologyAm J Cardiol, 111, 510-515, 2013	Design (retrospective)
Peteiro,J., Monserrat,L., Perez,R., Vazquez,E., Vazquez,J.M., Castro-Beiras,A., Accuracy of peak treadmill exercise echocardiography to detect multivessel coronary artery disease: comparison with post-exercise echocardiography, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of CardiologyEur J Echocardiogr, 4, 182-190, 2003	Design (retrospective)
Peteiro,Jesus, Bouzas-Mosquera,Alberto, Estevez,Rodrigo, Pazos,Pablo, Pineiro,Miriam, Castro-Beiras,Alfonso, Head-to-head comparison of peak supine bicycle exercise echocardiography and	includes known CAD

Author	Reason for exclusion
treadmill exercise echocardiography at peak and at post-exercise for the detection of coronary artery disease, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 25, 319-326, 2012	
 Picano, E., Parodi, O., Lattanzi, F., Sambuceti, G., Andrade, M.J., Marzullo, P., Giorgetti, A., Salvadori, P., Marzilli, M., Distante, A., Assessment of anatomic and physiological severity of single-vessel coronary artery lesions by dipyridamole echocardiography. Comparison with positron emission tomography and quantitative arteriography, Circulation, 89, 753-761, 1994 	Population (included hospital inpatients with no details on reason for admission)
Picano, E., Parodi, O., Lattanzi, F., Sambucetti, G., Masini, M., Marzullo, P., Distante, A., L'Abbate, A., Comparison of dipyridamole- echocardiography test and exercise thallium-201 scanning for diagnosis of coronary artery disease, American Journal of Noninvasive Cardiology AM.J.NONINVASIVE CARDIOL., 3, 85-92, 1989	Population (included patients with previous MI)
Picano,E., Pingitore,A., Conti,U., Kozakova,M., Boem,A., Cabani,E., Ciuti,M., Distante,A., L'Abbate,A., Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography, European Heart JournalEur.Heart J., 14, 1216-1222, 1993	Population (insufficient population characteristics)
Pijls,N.H., De Bruyne,B., Peels,K., Van Der Voort,P.H., Bonnier,H.J., Bartunek,J.Koolen, Koolen,J.J., Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses, The New England journal of medicineN Engl J Med, 334, 1703-1708, 1996	Reference standard (non protocol)
Pilz, Guenter, Eierle, Susanne, Heer, Tobias, Klos, Markus, Ali, Eman, Scheck, Roland, Wild, Michael, Bernhardt, Peter, Hoefling, Berthold, Negative predictive value of normal adenosine-stress cardiac MRI in the assessment of coronary artery disease and correlation with semiquantitative perfusion analysis, Journal of magnetic resonance imaging : JMRIJ Magn Reson Imaging, 32, 615-621, 2010	Population (included patients with known or suspected CAD)
Pirelli,S., Massa,D., Faletra,F., Piccalo,G., De,Vita C., Danzi,G.B., Campolo,L., Exercise electrocardiography versus dipyridamole echocardiography testing in coronary angioplasty. Early functional evaluation and prediction of angina recurrence, Circulation, 83, III- 42, 1991	Population (recruited patients after angioplasty)
Pizzuto, Francesco, Voci, Paolo, Bartolomucci, Francesco, Puddu, Paolo Emilio, Strippoli, Giovanni, Broglia, Laura, Rossi, Plinio, Usefulness of coronary flow reserve measured by echocardiography to improve the identification of significant left anterior descending coronary artery stenosis assessed by multidetector computed tomography, The American journal of cardiology Am J Cardiol, 104, 657-664, 2009	Non protocol index test
Plank,Fabian, Friedrich,Guy, Dichtl,Wolfgang, Klauser,Andrea, Jaschke,Werner, Franz,Wolfgang Michael, Feuchtner,Gudrun, The diagnostic and prognostic value of coronary CT angiography in asymptomatic high-risk patients: a cohort study, Open heart, 1, e000096-, 2014	Population (included asymptomatic patients)
Plass,Andre, Azemaj,Naim, Scheffel,Hans, Desbiolles,Lotus, Alkadhi,Hatem, Genoni,Michele, Falk,Volkmar, Grunenfelder,Jurg, Accuracy of dual-source computed tomography coronary angiography: evaluation with a standardised protocol for cardiac	Includes known CAD

Author	Reason for exclusion
surgeons, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic SurgeryEur J Cardiothorac Surg, 36, 1011-1017, 2009	
Plass, Andre, Grunenfelder, Jurg, Leschka, Sebastian, Alkadhi, Hatem, Eberli, Franz R., Wildermuth, Simon, Zund, Gregor, Genoni, Michele, Coronary artery imaging with 64-slice computed tomography from cardiac surgical perspective, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio- thoracic SurgeryEur J Cardiothorac Surg, 30, 109-116, 2006	Design (case/control)
Plein,Sven, Kozerke,Sebastian, Suerder,Daniel, Luescher,Thomas F., Greenwood,John P., Boesiger,Peter, Schwitter,Juerg, High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease, European Heart JournalEur.Heart J., 29, 2148-2155, 2008	Population (included patients with known or suspected CAD)
Ponte, Marta, Bettencourt, Nuno, Pereira, Eulalia, Ferreira, Nuno Dias, Chiribiri, Amedeo, Schuster, Andreas, Albuquerque, Anibal, Gama, Vasco, Nagel, Eike, Anatomical versus functional assessment of coronary artery disease: direct comparison of computed tomography coronary angiography and magnetic resonance myocardial perfusion imaging in patients with intermediate pre- test probability, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 30, 1589-1597, 2014	Reference standard (non protocol)
Pontone,G., Andreini,D., Quaglia,C., Ballerini,G., Nobili,E., Pepi,M., Accuracy of multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease, Clinical RadiologyClin.Radiol., 62, 978-985, 2007	Population (included patients with known CAD)
Pontone, Gianluca, Andreini, Daniele, Ballerini, Giovanni, Nobili, Enrica, Pepi, Mauro, Diagnostic work-up of unselected patients with suspected coronary artery disease: complementary role of multidetector computed tomography, symptoms and electrocardiogram stress test, Coronary Artery DiseaseCoron.Artery Dis., 18, 265-274, 2007	Population (included patients with known CAD)
Pontone,Gianluca, Andreini,Daniele, Bartorelli,Antonio L., Bertella,Erika, Mushtaq,Saima, Annoni,Andrea, Formenti,Alberto, Chiappa,Luisa, Cortinovis,Sarah, Baggiano,Andrea, Conte,Edoardo, Bovis,Francesca, Veglia,Fabrizio, Foti,Claudia, Ballerini,Giovanni, Fiorentini,Cesare, Pepi,Mauro, Radiation dose and diagnostic accuracy of multidetector computed tomography for the detection of significant coronary artery stenoses: a meta-analysis, International journal of cardiologyInt.J.Cardiol., 160, 155-164, 2012	Design (retrospective) Population (described as patients with history of coronary revascularisation)
Post,J.C., Van Rossum,A.C., Hofman,M.B., Valk,J., Visser,C.A., Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison with conventional coronary angiography, AJR.American journal of roentgenologyAJR Am J Roentgenol, 166, 1399-1404, 1996	Reference standard (non protocol)
Postel,Thomas, Frick,Matthias, Feuchtner,Gudrun, Alber,Hannes, Zwick,Ralf, Suessenbacher,Alois, Mallouhi,Ammar, Friedrich,Guy, Pachinger,Otmar, Nedden,Dieter Zur, Weidinger,Franz, Role of 16- multidetector computed tomography in the assessment of coronary artery stenoses: A prospective study of consecutive patients, Experimental and Clinical CardiologyExp.Clin.Cardiol., 12, 149-152, 2007	16 slice scanner (minimum 64 slices)
Pozzoli, M.M., Fioretti, P.M., Salustri, A., Reijs, A.E., Roelandt, J.R.,	Population (included patients with

Author	Reason for exclusion
Exercise echocardiography and technetium-99m MIBI single- photon emission computed tomography in the detection of coronary artery disease, American Journal of CardiologyAm.J.Cardiol., 67, 350-355, 1991	previous MI)
Prakash,A., Ahlawat,K., Kaul,U.A., Tyagi,S., Aggarwal,B., Rajan,S., Kathuria,S., Accuracy of 64-slice CT coronary angiography: Our initial experience, Indian Heart JournalIndian Heart J., 60, 287-295, 2008	No patient level analysis provided
Pundziute,Gabija, Schuijf,Joanne D., Jukema,J.Wouter, Lamb,Hildo J., de Roos,Albert, van der Wall,Ernst E., Bax,Jeroen J., Impact of coronary calcium score on diagnostic accuracy of multislice computed tomography coronary angiography for detection of coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 14, 36-43, 2007	Population (included patients with known CAD)
Qian,Zhen, Anderson,Hunt, Marvasty,Idean, Akram,Kamran, Vazquez,Gustavo, Rinehart,Sarah, Voros,Szilard, Lesion- and vessel-specific coronary artery calcium scores are superior to whole-heart Agatston and volume scores in the diagnosis of obstructive coronary artery disease, Journal of Cardiovascular Computed TomographyJ.Cardiovasc.Comput.Tomogr., 4, 391-399, 2010	Design (retrospective)
Quinones,M.A., Verani,M.S., Haichin,R.M., Mahmarian,J.J., Suarez,J., Zoghbi,W.A., Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients, Circulation, 85, 1026-1031, 1992	Population (included patients with known or suspected CAD)
Rambaldi,R., Poldermans,D., Fioretti,P.M., Ten Cate,F.J., Vletter,W.B., Bax,J.J., Roelandt,J.R., Usefulness of pulse-wave Doppler tissue sampling and dobutamine stress echocardiography for the diagnosis of right coronary artery narrowing, The American journal of cardiologyAm J Cardiol, 81, 1411-1415, 1998	Population (included patients with previous MI)
Ramos, Vitor, Bettencourt, Nuno, Silva, Jennifer, Ferreira, Nuno, Chiribiri, Amedeo, Schuster, Andreas, Leite-Moreira, Adelino, Silva- Cardoso, Jose, Nagel, Eike, Gama, Vasco, Noninvasive anatomical and functional assessment of coronary artery disease, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of CardiologyRev Port Cardiol, 34, 223-232, 2015	Reference standard (non protocol)
Ravipati,Gautham, Aronow,Wilbert S., Lai,Hoang, Shao,John, DeLuca,Albert J., Weiss,Melvin B., Pucillo,Anthony L., Kalapatapu,Kumar, Monsen,Craig E., Belkin,Robert N., Comparison of sensitivity, specificity, positive predictive value, and negative predictive value of stress testing versus 64-multislice coronary computed tomography angiography in predicting obstructive coronary artery disease diagnosed by coronary angiography, The American journal of cardiologyAm J Cardiol, 101, 774-775, 2008	Population (included patients with known CAD)
Redberg,R.F., Sobol,Y., Chou,T.M., Malloy,M., Kumar,S., Botvinick,E., Kane,J., Adenosine-induced coronary vasodilation during transesophageal Doppler echocardiography. Rapid and safe measurement of coronary flow reserve ratio can predict significant left anterior descending coronary stenosis, Circulation, 92, 190- 196, 1995	Population (unclear) Part of separate treatment study

Author	Reason for exclusion
Regenfus, M., Ropers, D., Achenbach, S., Kessler, W., Laub, G., Daniel, W.G., Moshage, W., Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath- hold magnetic resonance coronary angiography, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 36, 44-50, 2000	Non protocol index test
Regenfus, Matthias, Ropers, Dieter, Achenbach, Stephan, Schlundt, Christian, Kessler, Winfried, Laub, Gerhard, Moshage, Werner, Daniel, Werner G., Comparison of contrast- enhanced breath-hold and free-breathing respiratory-gated imaging in three-dimensional magnetic resonance coronary angiography, The American journal of cardiology Am J Cardiol, 90, 725-730, 2002	Non protocol index test
Renker, Matthias, Schoepf, U. Joseph, Wang, Rui, Meinel, Felix G., Rier, Jeremy D., Bayer, Richard R., Mollmann, Helge, Hamm, Christian W., Steinberg, Daniel H., Baumann, Stefan, Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve, The American journal of cardiology Am J Cardiol, 114, 1303-1308, 2014	Non protocol reference standard
Rensing,B.J., Bongaerts,A., van Geuns,R.J., van Ooijen,P., Oudkerk,M., De Feyter,P.J., Intravenous coronary angiography by electron beam computed tomography: a clinical evaluation, Circulation, 98, 2509-2512, 1998	Reference standard (non protocol)
Rief,M., Stenzel,F., Kranz,A., Schlattmann,P., Dewey,M., Time efficiency and diagnostic accuracy of new automated myocardial perfusion analysis software in 320-row CT cardiac imaging, Korean Journal of RadiologyKor.J.Radiol., 14, 21-29, 2013	Population (included patients with known CAD) Index test overlaps with DG3 (New Generation Scanner)
Rief, Matthias, Kranz, Anisha, Hartmann, Lisa, Roehle, Robert, Laule, Michael, Dewey, Marc, Computer-aided CT coronary artery stenosis detection: comparison with human reading and quantitative coronary angiography, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 30, 1621-1627, 2014	Population (included patients with known and suspected CAD)
Rigo,Fausto, Richieri,Margherita, Pasanisi,Emilio, Cutaia,Valeria, Zanella,Carlo, Della Valentina,Patrizia, Di Pede,Francesco, Raviele,Antonio, Picano,Eugenio, Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography, The American journal of cardiologyAm J Cardiol, 91, 269-273, 2003	Analysis (raw data did not add up)
Rijlaarsdam-Hermsen,D., Kuijpers,D., van Dijkman,P.R.M., Diagnostic and prognostic value of absence of coronary artery calcification in patients with stable chest symptoms, Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart FoundationNeth Heart J, 19, 223-228, 2011	Not relevant - prognostic study
Ripsweden, Jonaz, Brismar, Torkel B., Holm, Jon, Melinder, Annika, Mir-Akbari, Habib, Nilsson, Tage, Nyman, Ulf, Rasmussen, Elsbeth, Ruck, Andreas, Cederlund, Kerstin, Impact on image quality and radiation exposure in coronary CT angiography: 100 kVp versus 120 kVp, Acta radiologica (Stockholm, Sweden : 1987), 51, 903- 909, 2010	Population (included patients with known or suspected CAD)
Rispler,Shmuel, Keidar,Zohar, Ghersin,Eduard, Roguin,Ariel, Soil,Adrian, Dragu,Robert, Litmanovich,Diana, Frenkel,Alex, Aronson,Doron, Engel,Ahuva, Beyar,Rafael, Israel,Ora, Integrated	Population (included patients with previous MI)

Author	Reason for exclusion
single-photon emission computed tomography and computed	
tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 49, 1059-1067, 2007	
Ritchie, J.L., Trobaugh, G.B., Hamilton, G.W., Gould, K.L., Narahara, K.A., Murray, J.A., Williams, D.L., Myocardial imaging with thallium-201 at rest and during exercise. Comparison with coronary arteriography and resting and stress electrocardiography, Circulation, 56, 66-71, 1977	Population (included patients with known CAD)
Rocha-Filho, Jose A., Blankstein, Ron, Shturman, Leonid D., Bezerra, Hiram G., Okada, David R., Rogers, Ian S., Ghoshhajra, Brian, Hoffmann, Udo, Feuchtner, Gudrun, Mamuya, Wilfred S., Brady, Thomas J., Cury, Ricardo C., Incremental value of adenosine- induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography, Radiology, 254, 410-419, 2010	Population (included patients with prior MI)
Rochitte,Carlos E., George,Richard T., Chen,Marcus Y., Arbab- Zadeh,Armin, Dewey,Marc, Miller,Julie M., Niinuma,Hiroyuki, Yoshioka,Kunihiro, Kitagawa,Kakuya, Nakamori,Shiro, Laham,Roger, Vavere,Andrea L., Cerci,Rodrigo J., Mehra,Vishal C., Nomura,Cesar, Kofoed,Klaus F., Jinzaki,Masahiro, Kuribayashi,Sachio, de Roos,Albert, Laule,Michael, Tan,Swee Yaw, Hoe,John, Paul,Narinder, Rybicki,Frank J., Brinker,Jeffery A., Arai,Andrew E., Cox,Christopher, Clouse,Melvin E., Di Carli,Marcelo F., Lima,Joao A.C., Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study, European Heart JournalEur.Heart J., 35, 1120- 1130, 2014	Population (included patients with known CAD)
Rodevand,Olaf, Hogalmen,Geir, Gudim,Lars Petter, Indrebo,Tor, Molstad,Per, Vandvik,Per Olav, Limited usefulness of non-invasive coronary angiography with 16-detector multislice computer tomography at a community hospital, Scandinavian cardiovascular journal : SCJScand Cardiovasc J, 40, 76-82, 2006	16 slice scanner (64 slice minimum)
Rossi,Alexia, Dharampal,Anoeshka, Wragg,Andrew, Davies,L.Ceri, van Geuns,Robert Jan, Anagnostopoulos,Costantinos, Klotz,Ernst, Kitslaar,Pieter, Broersen,Alexander, Mathur,Anthony, Nieman,Koen, Hunink,M.G.M., de Feyter,Pim J., Petersen,Steffen E., Pugliese,Francesca, Diagnostic performance of hyperaemic myocardial blood flow index obtained by dynamic computed tomography: does it predict functionally significant coronary lesions?, European Heart Journal Cardiovascular ImagingEur.Heart J.Cardiovasc.Imaging, 15, 85-94, 2014	Index test overlaps with DG3 (New Generation Scanner)
Rubinshtein,Ronen, Halon,David A., Gaspar,Tamar, Schliamser,Jorge E., Yaniv,Nisan, Ammar,Ronny, Flugelman,Moshe Y., Peled,Nathan, Lewis,Basil S., Usefulness of 64-slice multidetector computed tomography in diagnostic triage of patients with chest pain and negative or nondiagnostic exercise treadmill test result, The American journal of cardiologyAm J Cardiol, 99, 925-929, 2007	Design (retrospective)
Rumberger, J.A., Sheedy, P.F., Breen, J.F., Schwartz, R.S., Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 29, 1542-	EBCT non protocol index test

Author	Reason for exclusion
1548, 1997	
Ryan,T., Armstrong,W.F., Feigenbaum,H., Prospective evaluation of the left main coronary artery using digital two-dimensional echocardiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 7, 807-812, 1986	Non protocol index test
Sait Dogan, Mehmet, Yilmaz, Erkan, Dogan, Sumeyra, Akdeniz, Bahri, Baris, Nezihi, Eomete, Uygar, Iyilikci, Leyla, Evaluation of myocardial ischemia in coronary artery disease with cardiac MR perfusion method: comparison with the results of catheter or CT angiography, Medicinski glasnik : official publication of the Medical Association of Zenica-Doboj Canton, Bosnia and HerzegovinaMed.glas.Ljek.komore Zenicko-doboj.kantona, 10, 63- 69, 2013	Non protocol reference test
Sajjadieh,Amirreza, Hekmatnia,Ali, Keivani,Maryam, Asoodeh,Abdollah, Pourmoghaddas,Masoud, Sanei,Hamid, Diagnostic performance of 64-row coronary CT angiography in detecting significant stenosis as compared with conventional invasive coronary angiography, ARYA AtherosclerosisArya Atheroscler., 9, 157-163, 2013	Design (non consecutive)
Sakuma,Hajime, Ichikawa,Yasutaka, Chino,Shuji, Hirano,Tadanori, Makino,Katsutoshi, Takeda,Kan, Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 48, 1946-1950, 2006	Reference standard (non protocol)
Sakuma,Hajime, Ichikawa,Yasutaka, Suzawa,Naohisa, Hirano,Tadanori, Makino,Katsutoshi, Koyama,Nozomu, Van Cauteren,Marc, Takeda,Kan, Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography, Radiology, 237, 316-321, 2005	Reference standard (non protocol)
Sakuma,Hajime, Suzawa,Naohisa, Ichikawa,Yasutaka, Makino,Katsutoshi, Hirano,Tadanori, Kitagawa,Kakuya, Takeda,Kan, Diagnostic accuracy of stress first-pass contrast- enhanced myocardial perfusion MRI compared with stress myocardial perfusion scintigraphy, AJR.American journal of roentgenologyAJR Am J Roentgenol, 185, 95-102, 2005	Design (retrospective)
Salerno, Michael, Taylor, Angela, Yang, Yang, Kuruvilla, Sujith, Ragosta, Michael, Meyer, Craig H., Kramer, Christopher M., Adenosine stress cardiovascular magnetic resonance with variable- density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation, Circulation. Cardiovascular imaging Circ Cardiovasc Imaging, 7, 639-646, 2014	Population (included patients with known CAD)
Salustri,A., Fioretti,P.M., McNeill,A.J., Pozzoli,M.M., Roelandt,J.R., Pharmacological stress echocardiography in the diagnosis of coronary artery disease and myocardial ischaemia: a comparison between dobutamine and dipyridamole, European Heart JournalEur.Heart J., 13, 1356-1362, 1992	Population (included patients with known or suspected CAD and patients with pervious MI)
Salustri,A., Fioretti,P.M., Pozzoli,M.M., McNeill,A.J., Roelandt,J.R., Dobutamine stress echocardiography: its role in the diagnosis of coronary artery disease, European Heart JournalEur.Heart J., 13, 70-77, 1992	Population (included patients with previous MI)
Saner,H.E., Olson,J., Daniel,J.A., Jorgensen,C.R., Homans,D.C., Lange,H.W., Cook,A.A., Gobel,F.L., Exercise two-dimensional echocardiography in patients with ischemic heart disease, Journal of Cardiovascular	Population (can't tease out those with previous MI)

Author	Reason for exclusion
UltrasonographyJ.CARDIOVASC.ULTRASONOGRAPHY, 6, 193-201, 1987	
Santana,Cesar A., Garcia,Ernest V., Faber,Tracy L., Sirineni,Gopi K.R., Esteves,Fabio P., Sanyal,Rupan, Halkar,Raghuveer, Ornelas,Mario, Verdes,Liudmila, Lerakis,Stamatios, Ramos,Julie J., Aguade-Bruix,Santiago, Cuellar,Hugo, Candell-Riera,Jaume, Raggi,Paolo, Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 16, 201- 211, 2009	Population (included patients with prior MI and PCI)
Santana-Boado,C., Candell-Riera,J., Castell-Conesa,J., Aguade- Bruix,S., Garcia-Burillo,A., Canela,T., Gonzalez,J.M., Cortadellas,J., Ortega,D., Soler-Soler,J., Diagnostic accuracy of technetium-99m- MIBI myocardial SPECT in women and men, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 39, 751-755, 1998	Population (included patients with proven CAD)
Sarwar, Ammar, Shaw, Leslee J., Shapiro, Michael D., Blankstein, Ron, Hoffmann, Udo, Hoffman, Udo, Cury, Ricardo C., Abbara, Suhny, Brady, Thomas J., Budoff, Matthew J., Blumenthal, Roger S., Nasir, Khurram, Diagnostic and prognostic value of absence of coronary artery calcification, JACC. Cardiovascular imaging JACC Cardiovasc Imaging, 2, 675-688, 2009	Mixed populations in included studies (including self referral)
Sato,Akira, Nozato,Toshihiro, Hikita,Hiroyuki, Miyazaki,Shinsuke, Takahashi,Yoshihide, Kuwahara,Taishi, Takahashi,Atsushi, Hiroe,Michiaki, Aonuma,Kazutaka, Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 17, 19-26, 2010	Includes only people with negative pre-study stress tests.
Sato,Yuichi, Matsumoto,Naoya, Kato,Masahiko, Inoue,Fumio, Horie,Toshiyuki, Kusama,Junji, Yoshimura,Akihiro, Imazeki,Takako, Fukui,Takahiro, Furuhashi,Satoru, Takahashi,Motoichiro, Kanmatsuse,Katsuo, Noninvasive assessment of coronary artery disease by multislice spiral computed tomography using a new retrospectively ECG-gated image reconstruction technique, Circulation journal : official journal of the Japanese Circulation SocietyCirc J, 67, 401-405, 2003	Mixed population: included acute phase
Sawada,S.G., Segar,D.S., Ryan,T., Brown,S.E., Dohan,A.M., Williams,R., Fineberg,N.S., Armstrong,W.F., Feigenbaum,H., Echocardiographic detection of coronary artery disease during dobutamine infusion, Circulation, 83, 1605-1614, 1991	Design (retrospective)
Schaap, Jeroen, de Groot, Joris A.H., Nieman, Koen, Meijboom, W.Bob, Boekholdt, S Matthijs, Kauling, Robert M., Post, Martijn C., Van der Heyden, Jan A., de Kroon, Thom L., Rensing, Benno J.W.M., Moons, Karel G.M., Verzijlbergen, J.Fred, Added value of hybrid myocardial perfusion SPECT and CT coronary angiography in the diagnosis of coronary artery disease, European Heart Journal Cardiovascular Imaging Eur. Heart J.Cardiovasc. Imaging, 15, 1281-1288, 2014	Non protocol reference test
Schaap,Jeroen, Kauling,Robert M., Boekholdt,S Matthijs, Nieman,Koen, Meijboom,W.Bob, Post,Martijn C., Van der Heyden,Jan A., de Kroon,Thom L., van Es,H.Wouter, Rensing,Benno	Non protocol reference standard

Author	Reason for exclusion
J., Verzijlbergen, J. Fred, Incremental diagnostic accuracy of hybrid SPECT/CT coronary angiography in a population with an intermediate to high pre-test likelihood of coronary artery disease, European Heart Journal Cardiovascular ImagingEur.Heart J.Cardiovasc.Imaging, 14, 642-649, 2013	
Schaap, Jeroen, Kauling, Robert M., Boekholdt, S Matthijs, Post, Martijn C., Van der Heyden, Jan A., de Kroon, Thom L., van Es, H.Wouter, Rensing, Benno J.W.M., Verzijlbergen, J.Fred, Usefulness of coronary calcium scoring to myocardial perfusion SPECT in the diagnosis of coronary artery disease in a predominantly high risk population, The international journal of cardiovascular imaging Int J Cardiovasc Imaging, 29, 677-684, 2013	Reference standard (non protocol)
Scherhag,A., Pfleger,S., Haase,K.K., Sueselbeck,T., Borggrefe,M., Diagnostic value of stress echocardiography for the detection of restenosis after PTCA, International journal of cardiologyInt.J.Cardiol., 98, 191-197, 2005	Not relevant
Schlattmann,Peter, Schuetz,Georg M., Dewey,Marc, Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis, European RadiologyEur.Radiol., 21, 1904-1913, 2011	Population (inadequate detail on study population)
Schlosser, T., Mohrs, O.K., Magedanz, A., Nowak, B., Voigtlander, T., Barkhausen, J., Schmermund, A., Noninvasive coronary angiography using 64-detector-row computed tomography in patients with a low to moderate pretest probability of significant coronary artery disease, Acta radiologica (Stockholm, Sweden : 1987), 48, 300-307, 2007	Population (included patients with known hypertensive heart disease)
Schmermund,A., Bailey,K.R., Rumberger,J.A., Reed,J.E., Sheedy,P.F., Schwartz,R.S., An algorithm for noninvasive identification of angiographic three-vessel and/or left main coronary artery disease in symptomatic patients on the basis of cardiac risk and electron-beam computed tomographic calcium scores, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 33, 444-452, 1999	EBCT not protocol index test
Schmermund,A., Baumgart,D., Sack,S., Mohlenkamp,S., Gronemeyer,D., Seibel,R., Erbel,R., Assessment of coronary calcification by electron-beam computed tomography in symptomatic patients with normal, abnormal or equivocal exercise stress test, European Heart JournalEur.Heart J., 21, 1674-1682, 2000	EBCT not protocol index test
Schnapauff,D., Teige,F., Hamm,B., Dewey,M., Comparison between the image quality of multisegment and halfscan reconstructions of non-invasive CT coronary angiography, The British journal of radiologyBr J Radiol, 82, 969-975, 2009	16 slice CT (minimum 64 slice)
Schnapauff,Dirk, Dubel,Hans Peter, Scholze,Jurgen, Baumann,Gert, Hamm,Bernd, Dewey,Marc, Multislice computed tomography: angiographic emulation versus standard assessment for detection of coronary stenoses, European RadiologyEur.Radiol., 17, 1858- 1864, 2007	16 slice scanner (minimum 64 slice)
Schuetz,G.M., Schlattmann,P., Dewey,M., Use of 3x2 tables with an intention to diagnose approach to assess clinical performance of diagnostic tests: meta-analytical evaluation of coronary CT angiography studies, BMJBMJ (Online), 345, -, 2012	Study design: not a diagnostic study.
Schuijf,Joanne D., Bax,Jeroen J., Shaw,Leslee J., de Roos,Albert, Lamb,Hildo J., van der Wall,Ernst E., Wijns,William, Meta-analysis	Population (included patients with

Author	Reason for exclusion
of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography, American Heart JournalAm.Heart J., 151, 404-411, 2006	known or suspected CAD)
Schuijf,Joanne D., Pundziute,Gabija, Jukema,J.Wouter, Lamb,Hildo J., van der Hoeven,Bas L., de Roos,Albert, van der Wall,Ernst E., Bax,Jeroen J., Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease, The American journal of cardiologyAm J Cardiol, 98, 145-148, 2006	Population (included patients with previous MI)
Schwartz,Leonard, Overgaard,Christopher B., The accuracy of noninvasive stress myocardial imaging for detecting coronary artery disease in clinical practice, Hospital practice (1995), 38, 14- 18, 2010	Not available via British Library or Royal Society of Medicine
Schwitter, J., Wacker, C.M., Rossum, A.C., Lombardi, M., Al-Saadi, N., Ahlstrom, H., Dill, T., Larsson, H.B., Flamm, S.D., Marquardt, M., Johansson, L., MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial, European Heart JournalEur.Heart J., 29, 480-489, 2008	Population (unclear inclusion criteria, included patients with history of MI
Schwitter, J., Wacker, C.M., Wilke, N., Al-Saadi, N., Sauer, E., Huettle, K., Schönberg, S.O., Debl, K., Strohm, O., Ahlstrom, H., Dill, T., Hoebel, N., Simor, T., Superior diagnostic performance of perfusion- cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial), Journal of Cardiovascular Magnetic ResonanceJ.Cardiovasc.Magn.Reson., 14, 61-, 2012	Reference standard (non protocol)
Schwitter, Juerg, Wacker, Christian M., Wilke, Norbert, Al- Saadi, Nidal, Sauer, Ekkehart, Huettle, Kalman, Schonberg, Stefan O., Luchner, Andreas, Strohm, Oliver, Ahlstrom, Hakan, Dill, Thorsten, Hoebel, Nadja, Simor, Tamas, MR-IMPACT, Investigators, MR- IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial, European Heart JournalEur.Heart J., 34, 775-781, 2013	Includes mixed population
Sciagra,R., Zoccarato,O., Bisi,G., Pupi,A., Decreased [99mTc]Sestamibi uptake with dobutamine versus dipyridamole stress, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of RadiopharmaceuticaQ J Nucl Med Mol Imaging, 53, 671-677, 2009	Analysis: cannot calculate 2x2 table for per patient analysis (no specificity reported).
Seese,B., Moshage,W., Achenbach,S., Bachmann,K., Kirchgeorg,M., Possibilities of electron beam tomography in noninvasive diagnosis of coronary artery disease: A comparison between quantity of coronary calcification and angiographic findings, International Journal of AngiologyInt.J.Angiol., 6, 124-129, 1997	Reference standard (non protocol)
Segar,D.S., Brown,S.E., Sawada,S.G., Ryan,T., Feigenbaum,H., Dobutamine stress echocardiography: correlation with coronary	Non protocol population

Author	Reason for exclusion
lesion severity as determined by quantitative angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 19, 1197- 1202, 1992	
Sehovic,S., Diagnostic capabilities of 64 slice CT coronography compared to classic in coronary disease detection, Acta Informatica MedicaActa Inform.Med., 21, 208-210, 2013	Analysis : insufficient data to back calculate 2x2 table
Senior,Roxy, Monaghan,Mark, Main,Michael L., Zamorano,Jose L., Tiemann,Klaus, Agati,Luciano, Weissman,Neil J., Klein,Allan L., Marwick,Thomas H., Ahmad,Masood, DeMaria,Anthony N., Zabalgoitia,Miguel, Becher,Harald, Kaul,Sanjiv, Udelson,James E., Wackers,Frans J., Walovitch,Richard C., Picard,Michael H., and,R.A.M.P., Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of CardiologyEur J Echocardiogr, 10, 26-35, 2009	Mixed population (known CAD). Non protocol study design.
Senior, Roxy, Moreo, Antonella, Gaibazzi, Nicola, Agati, Luciano, Tiemann, Klaus, Shivalkar, Bharati, von Bardeleben, Stephan, Galiuto, Leonarda, Lardoux, Herve, Trocino, Giuseppe, Carrio, Ignasi, Le Guludec, Dominique, Sambuceti, Gianmario, Becher, Harald, Colonna, Paolo, Ten Cate, Folkert, Bramucci, Ezio, Cohen, Ariel, Bezante, Gianpaolo, Aggeli, Costantina, Kasprzak, Jaroslaw D., Comparison of sulfur hexafluoride microbubble (SonoVue)- enhanced myocardial contrast echocardiography with gated single-photon emission computed tomography for detection of significant coronary artery disease: a large European multicenter study, Journal of the American College of Cardiology J. Am. Coll. Cardiol., 62, 1353-1361, 2013	Mixed population (includes known disease)
Shahzad, Rahil, Kirisli, Hortense, Metz, Coert, Tang, Hui, Schaap, Michiel, van Vliet, Lucas, Niessen, Wiro, van Walsum, Theo, Automatic segmentation, detection and quantification of coronary artery stenoses on CTA, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 29, 1847-1859, 2013	Design (retrospective)
Shapiro, Michael D., Butler, Javed, Rieber, Johannes, Sheth, Tej N., Cury, Ricardo C., Ferencik, Maros, Nichols, John H., Goehler, Alexander, Abbara, Suhny, Pena, Antonio J., Brady, Thomas J., Hoffmann, Udo, Analytic approaches to establish the diagnostic accuracy of coronary computed tomography angiography as a tool for clinical decision making, The American journal of cardiology Am J Cardiol, 99, 1122-1127, 2007	Population (included patients with a history of CAD)
Sharir,T., Bacher-Stier,C., Dhar,S., Lewin,H.C., Miranda,R., Friedman,J.D., Germano,G., Berman,D.S., Identification of severe and extensive coronary artery disease by postexercise regional wall motion abnormalities in Tc-99m sestamibi gated single- photon emission computed tomography, The American journal of cardiologyAm J Cardiol, 86, 1171-1175, 2000	Population (unclear)
Sharma,Punit, Patel,Chetan D., Karunanithi,Sellam, Maharjan,Sagar, Malhotra,Arun, Comparative accuracy of CT attenuation-corrected and non-attenuation-corrected SPECT myocardial perfusion imaging, Clinical Nuclear MedicineClin.Nucl.Med., 37, 332-338, 2012	Design (retrospective) Population (included patients with known/suspected CAD)
Shavelle,D.M., Budoff,M.J., LaMont,D.H., Shavelle,R.M., Kennedy,J.M., Brundage,B.H., Exercise testing and electron beam	Non protocol index test

Author	Reason for exclusion
computed tomography in the evaluation of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 36, 32-38, 2000	
Shelley,S., Indirani,M., Sathyamurthy,I., Subramanian,K., Priti,N., Harshad,K., Padma,D., Correlation of myocardial perfusion SPECT with invasive and computed tomography coronary angiogram, Indian Heart JournalIndian Heart J., 64, 43-49, 2012	Not all participants received the reference standard. Per artery analysis only.
Shelley,S., Sathyamurthy,I., Madhavan, Subramanyan,K., Najeeb,O.M., Ramachandran,P., Adenosine myocardial SPECTits efficacy and safety and correlation with coronary angiogram, The Journal of the Association of Physicians of India, 51, 557-560, 2003	Population (included patients with previous MI. Not all patients had c.angio)
Sheth,Tej, Amlani,Shoaib, Ellins,Mary Lou, Mehta,Shamir, Velianou,James, Cappelli,Gail, Yang,Sean, Natarajan,Madhu, Computed tomographic coronary angiographic assessment of high- risk coronary anatomy in patients with suspected coronary artery disease and intermediate pretest probability, American Heart JournalAm.Heart J., 155, 918-923, 2008	Population (included patients with previous MI but no proportion reported)
Shi,Heshui, Aschoff,Andrik J., Brambs,Hans Juergen, Hoffmann,Martin H.K., Multislice CT imaging of anomalous coronary arteries, European RadiologyEur.Radiol., 14, 2172-2181, 2004	Population (included patients with suspected CAD or patients with PCI)
Shin, John H., Pokharna, Hemlata K., Williams, Kim A., Mehta, Rupa, Ward, R. Parker, SPECT myocardial perfusion imaging with prone- only acquisitions: correlation with coronary angiography, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology J Nucl Cardiol, 16, 590-596, 2009	Not all participants received reference standard
Shrivastava,Sameer, Agrawal,Vinayak, Kasliwal,Ravi R., Jangid,Dhanraj R., Sen,Ashok, Verma,Atul, Trehan,Naresh, Coronary calcium and coronary artery disease: an Indian perspective, Indian Heart JournalIndian Heart J., 55, 344-348, 2003	single slice scanner (minimum 64 slice)
Sicari,Rosa, Pingitore,Alessandro, Aquaro,Giovanni, Pasanisi,Emilio G., Lombardi,Massimo, Picano,Eugenio, Cardiac functional stress imaging: a sequential approach with stress echo and cardiovascular magnetic resonance, Cardiovascular ultrasoundCardiovasc Ultrasound, 5, 47-, 2007	Mixed population (includes known CAD)
Sirol,Marc, Sanz,Javier, Henry,Patrick, Rymer,Roland, Leber,Alexander, Evaluation of 64-slice MDCT in the real world of cardiology: a comparison with conventional coronary angiography, Archives of Cardiovascular DiseasesArch Cardiovasc Dis, 102, 433- 439, 2009	Includes known CAD
Slavin,A., Meyer,T.E., A comparison of dipyridamole and exercise stress using technetium-99m sestamibi myocardial perfusion imaging, Cardiovascular Journal of Southern AfricaCARDIOVASC.J.SOUTH.AFR., 5, 208-213, 1994	Outcomes not diagnosis of CAD
Slomka,P.J., Diaz-Zamudio,M., Dey,D., Motwani,M., Brodov,Y., Choi,D., Hayes,S., Thomson,L., Friedman,J., Germano,G., Berman,D., Automatic registration of misaligned CT attenuation correction maps in Rb-82 PET/CT improves detection of angiographically significant coronary artery disease, J Nucl Cardiol, -, 2015	Design (retrospective)
Slomka,Piotr J., Cheng,Victor Y., Dey,Damini, Woo,Jonghye, Ramesh,Amit, Van Kriekinge,Serge, Suzuki,Yasuzuki, Elad,Yaron, Karlsberg,Ronald, Berman,Daniel S., Germano,Guido, Quantitative	Design (retrospective)

Author	Reason for exclusion
analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 50, 1621-1630, 2009	
 Smart,S.C., Bhatia,A., Hellman,R., Stoiber,T., Krasnow,A., Collier,B.D., Sagar,K.B., Dobutamine-atropine stress echocardiography and dipyridamole sestamibi scintigraphy for the detection of coronary artery disease: limitations and concordance, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 36, 1265-1273, 2000 	Population (included patients with known CAD)
Smedsrud, Marit Kristine, Sarvari, Sebastian, Haugaa, Kristina H., Gjesdal, Ola, Orn, Stein, Aaberge, Lars, Smiseth, Otto A., Edvardsen, Thor, Duration of myocardial early systolic lengthening predicts the presence of significant coronary artery disease, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 60, 1086-1093, 2012	Non protocol index test (Echo without stress)
Soman,P., Khattar,R., Lahiri,A., Senior,R., Superiority of arbutamine over dipyridamole for the stress echocardiographic assessment of coronary artery disease and reversible ischaemia, Journal of Noninvasive CardiologyJ.Noninvasive Cardiol., 2, 24-30, 1998	Time flow (too long between tests)
Soman,P., Khattar,R., Senior,R., Lahiri,A., Inotropic stress with arbutamine is superior to vasodilator stress with dipyridamole for the detection of reversible ischemia with Tc-99m sestamibi single- photon emission computed tomography, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 4, 364-371, 1997	Mixed population (includes previous MI). >3months between index/reference tests.
Song,J.K., Lee,S.J., Kang,D.H., Cheong,S.S., Hong,M.K., Kim,J.J., Park,S.W., Park,S.J., Ergonovine echocardiography as a screening test for diagnosis of vasospastic angina before coronary angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 27, 1156-1161, 1996	Not relevant
Soon,K.H., Chaitowitz,I., Cox,N., MacGregor,L., Eccleston,D., Bell,K.W., Kelly,A.M., Lim,Y.L., Diagnostic accuracy of 16-slice CT coronary angiography in the evaluation of coronary artery disease, Australasian RadiologyAustralas.Radiol., 51, 365-369, 2007	Design (retrospective)
Sozzi,F.B., Poldermans,D., Bax,J.J., Boersma,E., Vletter,W.B., Elhendy,A., Borghetti,A., Roelandt,J.R., Second harmonic imaging improves sensitivity of dobutamine stress echocardiography for the diagnosis of coronary artery disease, American Heart JournalAm.Heart J., 142, 153-159, 2001	Population (included patients with previous MI)
Stehli,Julia, Fuchs,Tobias A., Bull,Sacha, Clerc,Olivier F., Possner,Mathias, Buechel,Ronny R., Gaemperli,Oliver, Kaufmann,Philipp A., Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 64, 772-780, 2014	Population (mixed)
Stein,Paul D., Beemath,Afzal, Kayali,Fadi, Skaf,Elias, Sanchez,Julia, Olson,Ronald E., Multidetector computed tomography for the diagnosis of coronary artery disease: a systematic review, The American journal of medicineAm J Med, 119, 203-216, 2006	Population (some studies included patients with known CAD)
Stein,Paul D., Yaekoub,Abdo Y., Matta,Fadi, Sostman,H.Dirk, 64- slice CT for diagnosis of coronary artery disease: a systematic review, The American journal of medicineAm J Med, 121, 715-725,	Population (included patients with known CAD)

A	Baaran fan andreiten
Author 2008	Reason for exclusion
Stoddard, M.F., Prince, C.R., Morris, G.T., Coronary flow reserve assessment by dobutamine transesophageal Doppler echocardiography, Journal of the American College of Cardiology J.Am.Coll.Cardiol., 25, 325-332, 1995	Non protocol index tests
Stolzmann,Paul, Donati,Olivio F., Desbiolles,Lotus, Kozerke,Sebastian, Hoffmann,Udo, Alkadhi,Hatem, Scheffel,Hans, Coronary artery plaques and myocardial ischaemia, European RadiologyEur.Radiol., 21, 1628-1634, 2011	Index test overlaps with DG3 (New Generation Scanner)
Stolzmann, Paul, Goetti, Robert, Baumueller, Stephan, Plass, Andre, Falk, Volkmar, Scheffel, Hans, Feuchtner, Gudrun, Marincek, Borut, Alkadhi, Hatem, Leschka, Sebastian, Prospective and retrospective ECG-gating for CT coronary angiography perform similarly accurate at low heart rates, European Journal of RadiologyEur. J. Radiol., 79, 85-91, 2011	Design (prospective vs retrospective ECG gating)
Stolzmann,Paul, Scheffel,Hans, Leschka,Sebastian, Plass,Andre, Baumuller,Stephan, Marincek,Borut, Alkadhi,Hatem, Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering, AJR.American journal of roentgenologyAJR Am J Roentgenol, 191, 1684-1689, 2008	Population (mixed - included patients having routine (pre surgical) procedure (known CAD)
Stuijfzand,W.J., Uusitalo,V., Kero,T., Danad,I., Rijnierse,M.T., Saraste,A., Raijmakers,P.G., Lammertsma,A.A., Harms,H.J., Heymans,M.W., Huisman,M.C., Marques,K.M., Kajander,S.A., Pietila,M., Sorensen,J., Van,Royen N., Knuuti,J., Knaapen,P., Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease, Circulation: Cardiovascular ImagingCirc.Cardiovasc.Imaging, 8, -, 2014	Non protocol reference standards
Stuijfzand, Wijnand J., Uusitalo, Valtteri, Kero, Tanja, Danad, Ibrahim, Rijnierse, Mischa T., Saraste, Antti, Raijmakers, Pieter G., Lammertsma, Adriaan A., Harms, Hans J., Heymans, Martijn W., Huisman, Marc C., Marques, Koen M., Kajander, Sami A., Pietila, Mikko, Sorensen, Jens, van Royen, Niels, Knuuti, Juhani, Knaapen, Paul, Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease, Circulation. Cardiovascular imagingCirc Cardiovasc Imaging, 8, -, 2015	Design (retrospective)
Sun,Ming Li, Lu,Bin, Wu,Run Ze, Johnson,Laura, Han,Lei, Liu,Gang, Yu,Fang Fang, Hou,Zhi Hui, Gao,Yang, Wang,Hong Yu, Jiang,Shiliang, Yang,Yue Jin, Qiao,Shu bin, Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG- triggering on different heart rate patients, European RadiologyEur.Radiol., 21, 1635-1642, 2011	Design (retrospective)
Sun,Z., Lin,C., Diagnostic value of 320-slice coronary CT angiography in coronary artery disease: A systematic review and meta-analysis, Current Medical Imaging ReviewsCurr.Med.Imaging Rev., 10, 272-280, 2014	Index test overlaps with DG3 (New Generation Scanner)
Sun,Zhonghua, Jiang,Wen, Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta- analysis, European Journal of RadiologyEur.J.Radiol., 60, 279-286, 2006	Population (unclear) Design (retrospective)
Sun,Zhonghua, Lin,Chenghsun, Davidson,Robert, Dong,Chiauhuei,	Design (retrospective) Population

Author	Reason for exclusion
Liao,Yunchan, Diagnostic value of 64-slice CT angiography in	(included patients with known CAD)
coronary artery disease: a systematic review, European Journal of RadiologyEur.J.Radiol., 67, 78-84, 2008	,
Sundram,F.X., Lam,L.K., Ang,E.S., Goh,A.S., Johan,A., Tan,A.T., Chia,B.L., Tomographic thallium-201 stress scintigraphy in the evaluation of coronary artery disease, Annals of the Academy of Medicine, SingaporeAnn.Acad.Med.Singap., 15, 471-475, 1986	Population (included patients with angina pain, post CABG pain and post MI pain)
Sylven,C., Hagerman,I., Ylen,M., Nyquist,O., Nowak,J., Variance ECG detection of coronary artery diseasea comparison with exercise stress test and myocardial scintigraphy, Clinical CardiologyClin.Cardiol., 17, 132-140, 1994	Reference standard (non protocol)
Takahashi,N., Tamaki,N., Tadamura,E., Kawamoto,M., Torizuka,T., Yonekura,Y., Okuda,K., Nohara,R., Sasayama,S., Konishi,J., Combined assessment of regional perfusion and wall motion in patients with coronary artery disease with technetium 99m tetrofosmin, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 1, 29-38, 1994	Reference standard (non protocol)
Takeishi,Y., Takahashi,N., Fujiwara,S., Atsumi,H., Takahashi,K., Tomoike,H., Myocardial tomography with technetium-99m- tetrofosmin during intravenous infusion of adenosine triphosphate, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 39, 582-586, 1998	Population included prior MI
Takx,R.A.P., Blomberg,B.A., Aidi,H.E., Habets,J., De Jong,P.A., Nagel,E., Hoffmann,U., Leiner,T., Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis, Circulation: Cardiovascular ImagingCirc.Cardiovasc.Imaging, 8, -, 2014	Non protocol reference standard
Takx,Richard A.P., Blomberg,Bjorn A., El Aidi,Hamza, Habets,Jesse, de Jong,Pim A., Nagel,Eike, Hoffmann,Udo, Leiner,Tim, Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta- analysis, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 8, -, 2015	Non protocol reference standard
Tamaki,N., Yonekura,Y., Mukai,T., Fujita,T., Nohara,R., Kadota,K., Kambara,H., Kawai,C., Torizuka,K., Ishii,Y., Segmental analysis of stress thallium myocardial emission tomography for localization of coronary artery disease, European Journal of Nuclear MedicineEUR.J.NUCL.MED., 9, 99-105, 1984	Population (included patients with previous MI)
Teferici,D., Qirko,S., Petrela,E., Bara,P., Diagnostic value of 2D strain imaging in patients with suspected coronary artery disease, Macedonian Journal of Medical SciencesMaced.J.Med.Sci., 7, 46- 50, 2014	Non protocol index test Population (included patients with suspected ACS)
Thiele,Holger, Plein,Sven, Breeuwer,Marcel, Ridgway,John P., Higgins,David, Thorley,Penelope J., Schuler,Gerhard, Sivananthan,Mohan U., Color-encoded semiautomatic analysis of multi-slice first-pass magnetic resonance perfusion: comparison to tetrofosmin single photon emission computed tomography perfusion and X-ray angiography, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 20, 371-377, 2004	Population (included patients with known CAD)
Thomas,D., Xie,F., Smith,L.M., O'Leary,E., Smith,K., Olson,J., Nalty,K., Hess,R., Graham,M., Therrien,S., Porter,T.R., Prospective randomized comparison of conventional stress echocardiography	Population (not everyone - only a small proportion with positive index

Author	Reason for exclusion
and real-time perfusion stress echocardiography in detecting significant coronary artery disease, Journal of the American Society of EchocardiographyJ.Am.Soc.Echocardiogr., 25, 1207-1214, 2012	test will get CA)
Tian,J., Zhang,G., Wang,X., Cui,J., Xiao,J., Exercise echocardiography: feasibility and value for detection of coronary artery disease, Chinese medical journalChin.Med.J., 109, 381-384, 1996	Population mixed. Includes known CAD.
Timins,M.E., Pinsk,R., Sider,L., Bear,G., The functional significance of calcification of coronary arteries as detected on CT, Journal of Thoracic ImagingJ.Thorac.Imaging, 7, 79-82, 1991	Design (retrospective)
Toledo, Eran, Jacobs, Lawrence D., Lodato, Joseph A., DeCara, Jeanne M., Coon, Patrick, Mor-Avi, Victor, Lang, Roberto M., Quantitative diagnosis of stress-induced myocardial ischemia using analysis of contrast echocardiographic parametric perfusion images, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of CardiologyEur J Echocardiogr, 7, 217-225, 2006	Not relevant
Tolstrup,Kirsten, Madsen,Bo E., Ruiz,Jose A., Greenwood,Stephen D., Camacho,Judeen, Siegel,Robert J., Gertzen,H.Caroline, Park,Jai Wun, Smars,Peter A., Non-invasive resting magnetocardiographic imaging for the rapid detection of ischemia in subjects presenting with chest pain, Cardiology, 106, 270-276, 2006	Reference standard (non protocol)
Tonino,P.A., Fearon,W.F., Bruyne,B., Oldroyd,K.G., Leesar,M.A., Ver Lee,P.N., Maccarthy,P.A., Van't Veer,M., Pijls,N.H., Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 55, 2816-2821, 2010	Not relevant. Population includes known CAD
Treuth,M.G., Reyes,G.A., He,Z.X., Cwajg,E., Mahmarian,J.J., Verani,M.S., Tolerance and diagnostic accuracy of an abbreviated adenosine infusion for myocardial scintigraphy: a randomized, prospective study, Journal of Nuclear CardiologyJ.Nucl.Cardiol., 8, 548-554, 2001	Population (included patients with a history of CAD)
Trippi,J.A., Lee,K.S., Kopp,G., Nelson,D.R., Yee,K.G., Cordell,W.H., Dobutamine stress tele-echocardiography for evaluation of emergency department patients with chest pain, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 30, 627-632, 1997	Non protocol population.
Truong,Q.A., Knaapen,P., Pontone,G., Andreini,D., Leipsic,J., Carrascosa,P., Lu,B., Branch,K., Raman,S., Bloom,S., Min,J.K., Rationale and design of the dual-energy computed tomography for ischemia determination compared to "gold standard" non-invasive and invasive techniques (DECIDE-Gold): A multicenter international efficacy diagnostic study of rest-stress dual-energy computed tomography angiography with perfusion, J Nucl Cardiol, -, 2014	Non protocol reference test
Tsai,Jui Peng, Yun,Chun Ho, Wu,Tung Hsin, Yen,Chih Hsuan, Hou,Charles Jia-Yin, Kuo,Jen Yuan, Hung,Chung Lieh, A meta- analysis comparing SPECT with PET for the assessment of myocardial viability in patients with coronary artery disease, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 35, 947- 954, 2014	Non protocol reference test
Turkvatan,A., Biyikoglu,S.F., Buyukbayraktar,F., Olcer,T., Cumhur,T., Duru,E., Clinical value of 16-slice multidetector	16 slice scanner (64 slice minimum)

Austral	Dessen for evolution
Author computed tomography in symptomatic patients with suspected	Reason for exclusion
computed tomography in symptomatic patients with suspected coronary artery disease, Acta radiologica (Stockholm, Sweden : 1987), 49, 400-408, 2008	
Uchiyama, T., Fujibayashi, Y., Sato, Y., Sakamaki, T., Kajiwara, N., Clinical application of echocardiographic imaging to diagnosis of coronary artery disease, Japanese Circulation Journal JPN.CIRC.J., 54, 309-315, 1990	Reference standard (unclear) Design (correlation study rather than DTA)
Ugolini,P., Pressacco,J., Lesperance,J., Berry,C., L'Allier,P.L., Ibrahim,R., Gregoire,J., Ouellet,R., Heinonen,T., Levesque,S., Guertin,Marie Claude, Tardif,Jean Claude, Evaluation of coronary atheroma by 64-slice multidetector computed tomography: Comparison with intravascular ultrasound and angiography, The Canadian journal of cardiologyCan J Cardiol, 25, 641-647, 2009	Includes known CAD
Utsunomiya,H., Hidaka,T., Masada,K., Shimonaga,T., Higaki,T., Iwasaki,T., Mitsuba,N., Ishibashi,K., Kurisu,S., Kihara,Y., Value of Resting Echocardiographic Findings and Dobutamine Stress Echocardiography for Diagnosing Myocardial Ischemia in Patients with Suspected Angina Pectoris, Echocardiography, -, 2015	Non protocol reference test
Vallejo, E., Acevedo, C., Varela, S., Alburez, J.C., Bialostozky, D., Assessment of myocardial perfusion tomography photon emission computed individual (SPECT) Cardiac usefulness of stress-only protocol, Gaceta Medica de MexicoGac.Med.Mex., 148, 6-13, 2012	Full article not in english
Van Lingen, R., Kakani, N., Veitch, A., Manghat, N.E., Roobottom, C.A., Morgan-Hughes, G.J., Prognostic and accuracy data of multidetector CT coronary angiography in an established clinical service, Clinical RadiologyClin.Radiol., 64, 601-607, 2009	Population (included patients with known CAD) Design (retrospective)
van Mieghem, Carlos A.G., Thury, Attila, Meijboom, Willem B., Cademartiri, Filippo, Mollet, Nico R., Weustink, Annick C., Sianos, Georgios, de Jaegere, Peter P.T., Serruys, Patrick W., de Feyter, Pim, Detection and characterization of coronary bifurcation lesions with 64-slice computed tomography coronary angiography, European Heart JournalEur. Heart J., 28, 1968-1976, 2007	Population (included patients with post CABG
Van Rugge,F.P., Van Der Wall,E.E., de Roos,A., Bruschke,A.V., Dobutamine stress magnetic resonance imaging for detection of coronary artery disease, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 22, 431-439, 1993	Includes previous MI
Van Train,K.F., Garcia,E.V., Maddahi,J., Areeda,J., Cooke,C.D., Kiat,H., Silagan,G., Folks,R., Friedman,J., Matzer,L., Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 35, 609-618, 1994	Includes mixed population
Van Train,K.F., Maddahi,J., Berman,D.S., Kiat,H., Areeda,J., Prigent,F., Friedman,J., Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 31, 1168-1179, 1990	Includes prior MI
van Velzen, Joella E., Schuijf, Joanne D., de Graaf, Fleur R., Boersma, Eric, Pundziute, Gabija, Spano, Fabrizio, Boogers, Mark J., Schalij, Martin J., Kroft, Lucia J., de Roos, Albert, Jukema, J. Wouter, van der Wall, Ernst E., Bax, Jeroen J., Diagnostic performance of non-invasive multidetector computed tomography coronary angiography to detect coronary artery disease using different endpoints: detection of significant stenosis vs. detection of	New generation scanner (protocol exclusion)

AuthorReason for exclusionAuthor altherosclerosis, European Heart JournalEur.Heart J., 32, 637-645, 2011Reason for exclusionVanhoenacker, Piet K., Heljenbrok-Kal,Majanka H., Van Heste,Ruben, Decramer,Isabel, Van Hoe,Leven R., Wijns, William, Hunink,M. G.M., Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta- analysis, fadiology, 244, 419-428, 2007Non standard method of calcium scenery. Andrea L., Araba-Zadeh,Armin, Rochitte,Carlos E., Dewey,Marc, Nimuma,Hiroyuk, Gottileb, Ilan, Couse,Melvin E., Bush,David E., Hoe,John W.M., de Roos,Albert, Cox,Christopher, Lina,Jaoa A.C., Miller,Julie M., Coronary artery stenoses: accuracy of 64-detector ow C1 angiography in sugments with mild, moderate, or severe calification-a subanalysis of the CORE-64 trial, Radiology, 261, 100-108, 2011Population (included patients with Mild and post CA8G)Verani,M.S., Mahmarian,J.J., Hixson,J.D., Boyce,T.M., Staudacher,R.A., Diagnosis of coronary artery disease by controlled scintigraphy in patients unable to exercise, Circulation, 82, 80-87, 1990Population (included patients with previous Mil)Verzilbergen,J.F., Cramer,M.J., Niemeyer,M.G., Ascoop,C.A., Van Der Wall,E.E., Plauwels,E.K., 90Tcm-SESTAMIBI for planar myocardial perfusion imaging: not as ideal as the physical properties, Nuclear Medicine CommunicationsNUCLMED.COMMUN, 12, 381-391, 1991Population (included patients with known disease/stenosis)Viral,B.R., Buvat,I., Darcour,J., Migneco,O., Desvignes,P., Baudouy,M., Bussier,E., Impact of attenuation correction by simultaneous emission througes, Journal of nuclear medicine: official publication, Society of Nuclear Medicinel UN Inded, 40, 1301-1309, 1999Aluelar Medicinel Succuracy in coronary artery disease using		
2011 Vankoenacker,Piet K., Heijenbrok-Kal,Majanka H., Van Population (included patients with kets,Ruben, Decramer,Isabel, Van Hoe,Lieven R., Wijns,Willam, Hunink,M.G.M., Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis, Radiology, 244, 419-428, 2007 Population (included patients with known CAD) Vavere,Andrea L., Arbab-Zadeh,Armin, Rochitte,Carlos E., Dewey,Marc, Niiuma,Hiroyuki, Gottlieb,Jlan, Clouse,Melvin E., Bush,David E., Hoe,John W.M., de Roos,Albert, Cox,Christopher, Lima,Joao A.C., Miller,Julie M., Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calcification – subanalysis of the CORE-64 trial, Radiology, 261, 100-108, 2011 Non standard method of calcium scoring (excluded on topic expert advice). Yerani,M.S., Mahmarian,J.J., Hixson,J.D., Boyce,T.M., Staudacher,R.A., Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise, Circulation, 82, 80-87, 1990 Population (included patients with MI and post CABG) Verzijlbergen,J.F., Cramer,M.J., Niemeyer,M.G., Ascoop,C.A., Van previous MI) Population (included patients with MILE, E., Pauwels,E.K., Omparison of technetium-90m sestamibil left ventricular wall motion and perfusion studies with the hilipest accuracy in predicting coronary artery disease, European Journal of Nuclear Medicine CMLM, M.G., Jassob,C.A., Van per Mall,E.E., Newels,E.K., Settopean Journal of Nuclear Medicine of variables with the highest accuracy in predicting coronary artery disease, European Journal of Nuclear Medicine CMLM, M.G., Jassob, S.P., Jossob, Jasso Population (included patients with withe wethick and the setesting)		Reason for exclusion
Heste, Ruben, Decramer, Isabel, Van Hoe, Lieven R., Wijns, William, Hunink, M.G.M., Diagnostic performance of multidetector CT analysis, Radiology, 244, 419-428, 2007known CAD)Vavere, Andrea L., Arbab-Zadeh, Armin, Rochitte, Carlos E., Dewey, Marc, Niinuma, Hiroyuki, Gottlieb, Ilan, Clouse, Melvin E., Bush, David E., Hoe, John W.M., de Roos, Albert, Cox, Christopher, Lima, Joao AC, Miller, Julie M., Coronary artery stenses: a curacru of 64-detector row CT angiography in segments with mild, moderate, or severe calificationa subanalysis of the CORE-64 trial, Radiology, 261, 100-108, 2011Non standard method of calcium scoring (excluded on topic expert advice).Verail, M.S., Mahmarian, J.J., Hixson, J.D., Boyce, T.M., Staudacher, R.A., Diagnosis of coronary artery disease by controlled scintigraphy in patients unable to exercise, Circulation, 82, 80-87, 1990Population (included patients with Previous MI)Verzijlbergen, J.F., Cramer, M.J., Niemeyer, M.G., Ascoop, C.A., Van Der Wall, E.E., Pauwels, E.K., 99Tcm-STSTAMIBI for planar myocardial perfusion imaging; not as ideal as the physical properties, Nuclear Medicine CommunicationsNUCLMED.COMMUN, 12, 381-391, 1991Population (included patients with previous MI)Verzijlbergen, J.F., Zwinderman, A.H., Ascoop, C.A., Van Der Wall, E.E., Nemeyer, M.G., Pauwels, E.K., Omparison of technetium-99m sestamibi left ventricular wall motion and perfusion studies with the highest accuracy in predicting coronary artery disease, European Journal of Nuclear Medicine ULN. NUCL MED. 23, 550-559, 1996Study design : retrospective Baudouy, M., Bussiere, F., Impact of attenuation correction by simultaneous emission (transmission tomography on visual assessment of 2011T myocardial perfusion images, Journal of nuclear medicine : official publication, So		
Vavere,Andrea L., Arbab-Zadeh,Armin, Rochitte,Carlos E., Dewey,Marc, Niinuma,Hiroyuki, Gottlieb,Ilan, Clouse,Melvin E., Bush,David E., Hoe,John W.M., de Roos,Albert, Cox,Christopher, Lima,Joao A.C., Miller,Julie M., Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calificationa subanalysis of the CORE-64 trial, Radiology, 261, 100-108, 2011Non standard method of calcium scoring (excluded on topic expert advice).Verani,M.S., Mahmarian,J.J., Hixson,J.D., Boyce,T.M., Staudacher,R.A., Diagnosis of coronary artery disease by controlled scintigraphy in patients unable to exercise, Circulation, 82, 80-87, 1990Population (included patients with MI and post CABG)Verzilbergen,J.F., Cramer,M.J., Niemeyer,M.G., Ascoop,C.A., Van Der Wall,E.E., Pauwels,E.K., 99Tem-SESTAMIBI for planar myocardial perfusion imaging; not as ideal as the physical properties, Nuclear Medicine CommunicationsNUCL.MED.COMMUN, 12, 381-391, 1991Population (included patients with horound dise with thailium-201 perfusion studies with thailium-201 perfusion imaging: in search of technetium-99m sestamibi left ventricular wall motion and perfusion studies with thailibert accuracy in predicting coronary artery disease, European Journal of Nuclear Medicinel UNUCL.MED, 23, 550-559, 1996Population (included patients with winsula assessment of 2011 myocardial perfusion images, Journal of nuclear medicine : official publication, Society of Nuclear Medicinel Nucl Med, 40, 1301-1309, 1996Study design : retrospective Minuma session of calies thallium stress testing compared with coronary angiography in patients without exclusions for suboptimal exercise or cardioactive medications, Clinical Nuclear Medicinel Nucl Med, 11, 688-691, 1986Mixed population - includes previous angi	Heste, Ruben, Decramer, Isabel, Van Hoe, Lieven R., Wijns, William, Hunink, M.G.M., Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-	
Dewey, Marc, Niinuma, Hiroyuki, Gottlieb, Ilan, Clouse, Melvin E., Bush, David E., Hoe, John W.M., de Roos, Albert, Cox, Christopher, Itima, Joao A.C., Miller, Julie M., Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calcificationa subanalysis of the CORE-64Social Science advice).Verani, M.S., Mahmarian, J.J., Hixson, J.D., Boyce, T.M., Staudacher, R.A., Diagnosis of coronary artery disease by controlled 		
Staudacher,R.A., Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise, Circulation, 82, 80-87, 1990Mi and post CABG)Verzijlbergen,J.F., Cramer,M.J., Niemeyer,M.G., Ascoop,C.A., Van Der Wall,E.E., Pauwels,E.K., 99Tcm-SESTAMIBI for planar myocardial perfusion imaging; not as ideal as the physical properties, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 12, 381-391, 1991Population (included patients with previous MI)Verzijlbergen,J.F., Zwinderman,A.H., Ascoop,C.A., Van Der Wall,E.E., Niemeyer,M.G., Pauwels,E.K., Comparison of technetium-99m sestamibi left vertricular wall motion and perfusion studies with thallium-201 perfusion imaging: in search of the combination of variables with the highest accuracy in predicting coronary artery disease, European Journal of Nuclear MedicineEURJ.NUCL.MED. 23, 550-559, 1996Study design : retrospective Baudouy,M., Bussiere,F., Impact of attenuation correction by simultaneous emission/transmission tomography on visual assessment of 201TI myocardial perfusion images, Journal of nuclear medicine : official publication, Society of Nuclear MedicineClin.Nucl.Med, 40, 1301-1309, 1999Population (not all participants could perform exercise testing)Vogel,R., Indermuhle,A., Meier,P., Seiler,C., Quantitative stress echocardiography in patients without exclusions for suboptimal exercise or cardioactive medications, Clinical Nuclear MedicineClin.Nucl.Med, 11, 688-691, 1986Mixed population - includes previous anginaVogel,R., Meyer,M., Fink,C., Schoepf,U.J., Schonberg,S.O., Henzler,T., Predictive value of zero calcium score and low-end perceritiles for the presence of significant coronary artery disease, RoFo in stable patients with suspected coronary artery di	Dewey,Marc, Niinuma,Hiroyuki, Gottlieb,Ilan, Clouse,Melvin E., Bush,David E., Hoe,John W.M., de Roos,Albert, Cox,Christopher, Lima,Joao A.C., Miller,Julie M., Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calcificationa subanalysis of the CORE-64	scoring (excluded on topic expert
Der Wall,E.E., Pauwels,E.K., 99Tcm-SESTAMIBI for planar myocardial perfusion imaging; not as ideal as the physical properties, Nuclear Medicine CommunicationSNUCL.MED.COMMUN., 12, 381-391, 1991previous MI)Verzijlbergen,J.F., Zwinderman,A.H., Ascoop,C.A., Van Der Wall,E.E., Niemeyer,M.G., Pauwels,E.K., Comparison of technetium-99m sestamibi left ventricular wall motion and perfusion studies with thallium-201 perfusion imaging: in search of the combination of variables with the highest accuracy in predicting coronary artery disease, European Journal of Nuclear MedicineEUR.J.NUCL.MED., 23, 550-559, 1996Population (included patients with known disease/stenosis)Vidal,R., Buvat,I., Darcourt,J., Migneco,O., Desvignes,P., Baudouy,M., Bussiere,F., Impact of attenuation correction by simultaneous emission/transmission tomography on visual 	Staudacher, R.A., Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise, Circulation, 82, 80-87,	
Wall, E. E., Niemeyer, M.G., Pauwels, E.K., Comparison of technetium-99m sestamibi left ventricular wall motion and perfusion studies with thallium-201 perfusion imaging: in search of the combination of variables with the highest accuracy in predicting coronary artery disease, European Journal of Nuclear MedicineEUR.J.NUCL.MED., 23, 550-559, 1996known disease/stenosis)Vidal, R., Buvat, I., Darcourt, J., Migneco, O., Desvignes, P., Baudouy, M., Bussiere, F., Impact of attenuation correction by simultaneous emission/transmission tomography on visual assessment of 201Tl myocardial perfusion images, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl. Med., 11, 688-691, 1999Study design : retrospective Population (not all participants could perform exercise testing)Vincent, N.R., Denis, L., Exercise thallium stress testing compared with coronary angiography in patients without exclusions for suboptimal exercise or cardioactive medications, Clinical Nuclear MedicineClin.Nucl.Med., 11, 688-691, 1986Mixed population - includes previous anginaVogel, R., Indermuhle, A., Meier, P., Seiler, C., Quantitative stress echocardiography in coronary artery disease using contrast-based myocardial blood flow measurements: prospective comparison with coronary angiography, Heart (British Cardiac Society), 95, 377-384, 2009Mixed populationVogel, N., Meyer, M., Fink, C., Schoepf, U.J., Schonberg, S.O., Henzler, T., Predictive value of zero calcium score and low-end percentiles for the presence of significant coronary artery stenosis in stable patients with suspected coronary artery stenosis rotacium ges, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und derMixed population	Der Wall,E.E., Pauwels,E.K., 99Tcm-SESTAMIBI for planar myocardial perfusion imaging; not as ideal as the physical properties, Nuclear Medicine	
Baudouy,M., Bussiere,F., Impact of attenuation correction by simultaneous emission/transmission tomography on visual assessment of 201Tl myocardial perfusion images, Journal of nuclear medicine : official publication, Society of Nuclear MedicineJ Nucl Med, 40, 1301-1309, 1999Population (not all participants could perform exercise total participants could perform exercise testing)Vincent,N.R., Denis,L., Exercise thallium stress testing compared 	Wall,E.E., Niemeyer,M.G., Pauwels,E.K., Comparison of technetium-99m sestamibi left ventricular wall motion and perfusion studies with thallium-201 perfusion imaging: in search of the combination of variables with the highest accuracy in predicting coronary artery disease, European Journal of Nuclear	
 with coronary angiography in patients without exclusions for suboptimal exercise or cardioactive medications, Clinical Nuclear MedicineClin.Nucl.Med., 11, 688-691, 1986 Vogel, R., Indermuhle, A., Meier, P., Seiler, C., Quantitative stress echocardiography in coronary artery disease using contrast-based myocardial blood flow measurements: prospective comparison with coronary angiography, Heart (British Cardiac Society), 95, 377-384, 2009 Vogler, N., Meyer, M., Fink, C., Schoepf, U.J., Schonberg, S.O., Henzler, T., Predictive value of zero calcium score and low-end percentiles for the presence of significant coronary artery stenosis in stable patients with suspected coronary artery disease, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der 	Baudouy,M., Bussiere,F., Impact of attenuation correction by simultaneous emission/transmission tomography on visual assessment of 201Tl myocardial perfusion images, Journal of nuclear medicine : official publication, Society of Nuclear	Study design : retrospective
 echocardiography in coronary artery disease using contrast-based myocardial blood flow measurements: prospective comparison with coronary angiography, Heart (British Cardiac Society), 95, 377-384, 2009 Vogler, N., Meyer, M., Fink, C., Schoepf, U.J., Schonberg, S.O., Henzler, T., Predictive value of zero calcium score and low-end percentiles for the presence of significant coronary artery stenosis in stable patients with suspected coronary artery disease, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der 	with coronary angiography in patients without exclusions for suboptimal exercise or cardioactive medications, Clinical Nuclear	
Henzler,T., Predictive value of zero calcium score and low-end percentiles for the presence of significant coronary artery stenosis in stable patients with suspected coronary artery disease, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der	echocardiography in coronary artery disease using contrast-based myocardial blood flow measurements: prospective comparison with coronary angiography, Heart (British Cardiac Society), 95,	
NuklearmedizinROFO Fortschr Geb Rontgenstr Nuklearmed, 185, 726-732, 2013	Henzler, T., Predictive value of zero calcium score and low-end percentiles for the presence of significant coronary artery stenosis in stable patients with suspected coronary artery disease, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der NuklearmedizinROFO Fortschr Geb Rontgenstr Nuklearmed, 185,	Mixed population
von Ballmoos, Moritz Wyler, Haring, Bernhard, Juillerat, Pascal, Design (included retrospective	von Ballmoos, Moritz Wyler, Haring, Bernhard, Juillerat, Pascal,	Design (included retrospective

Author	Reason for exclusion
Alkadhi, Hatem, Meta-analysis: diagnostic performance of low-	studies)
radiation-dose coronary computed tomography angiography, Annals of Internal MedicineANN.INTERN.MED., 154, 413-420, 2011	
von Ziegler,Franz, Schenzle,Jan, Schiessl,Stephan, Greif,Martin, Helbig,Susanne, Tittus,Janine, Becker,Christoph, Becker,Alexander, Use of multi-slice computed tomography in patients with chest- pain submitted to the emergency department, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 30, 145- 153, 2014	Acute chest pain population
Voros,S., Rinehart,S., Vazquez-Figueroa,J.G., Kalynych,A., Karmpaliotis,D., Qian,Z., Joshi,P.H., Anderson,H., Murrieta,L., Wilmer,C., Carlson,H., Ballard,W., Brown,C., Prospective, head-to- head comparison of quantitative coronary angiography, quantitative computed tomography angiography, and intravascular ultrasound for the prediction of hemodynamic significance in intermediate and severe lesions, using fractional flow reserve as reference standard (from the ATLANTA i and II Study), American Journal of CardiologyAm.J.Cardiol., 113, 23-29, 2014	Non protocol reference standard
Wagner, Moritz, Rosler, Roberta, Lembcke, Alexander, Butler, Craig, Dewey, Marc, Laule, Michael, Huppertz, Alexander, Schwenke, Carsten, Warmuth, Carsten, Rief, Matthias, Hamm, Bernd, Taupitz, Matthias, Whole-heart coronary magnetic resonance angiography at 1.5 Tesla: does a blood-pool contrast agent improve diagnostic accuracy?, Investigative RadiologyInvest.Radiol., 46, 152-159, 2011	Non protocol index test
Walcher, Thomas, Ikuye, Katharina, Rottbauer, Wolfgang, Wohrle, Jochen, Bernhardt, Peter, Is contrast-enhanced cardiac magnetic resonance imaging at 3 T superior to 1.5 T for detection of coronary artery disease?, The international journal of cardiovascular imaging Int J Cardiovasc Imaging, 29, 355-361, 2013	Not possible to back calculate 2x2 table.
Walcher, Thomas, Manzke, Robert, Hombach, Vinzenz, Rottbauer, Wolfgang, Wohrle, Jochen, Bernhardt, Peter, Myocardial perfusion reserve assessed by T2-prepared steady-state free precession blood oxygen level-dependent magnetic resonance imaging in comparison to fractional flow reserve, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 5, 580- 586, 2012	Non protocol reference test
Wang,Rui, Yu,Wei, Wang,Yongmei, He,Yi, Yang,Lin, Bi,Tao, Jiao,Jian, Wang,Qian, Chi,Liquan, Yu,Yang, Zhang,Zhaoqi, Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 27, 647-656, 2011	Population (included patients with known CAD)
Warner,M.F., Pippin,J.J., DiSciascio,G., Paulsen,W.H., Arrowood,J.A., Tatum,J.L., Goudreau,E., Vetrovec,G.W., Assessment of thallium scintigraphy and echocardiography during dobutamine infusion for the detection of coronary artery disease, Catheterization and cardiovascular diagnosisCathet Cardiovasc Diagn, 29, 122-127, 1993	Population (included patients with known CAD)
Watanabe,N., Akasaka,T., Yamaura,Y., Akiyama,M., Koyama,Y., Kamiyama,N., Neishi,Y., Kaji,S., Saito,Y., Yoshida,K., Noninvasive detection of total occlusion of the left anterior descending	Non protocol index test

Author	Reason for exclusion
coronary artery with transthoracic Doppler echocardiography,	
Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 38, 1328-1332, 2001	
Watanabe,S., Ajisaka,R., Masuoka,T., Iida,K., Sugishita,Y., Ito,I., Takeda,T., Toyama,H., Akisada,M., Isoproterenol stress thallium scintigraphy for detecting coronary artery disease, Journal of CardiologyJ.Cardiol., 19, 657-665, 1989	Design (retrospective)
Watkins,Matthew W., Hesse,Barbara, Green,Curtis E., Greenberg,Neil L., Manning,Michael, Chaudhry,Eram, Dauerman,Harold L., Garcia,Mario J., Detection of coronary artery stenosis using 40-channel computed tomography with multi- segment reconstruction, The American journal of cardiologyAm J Cardiol, 99, 175-181, 2007	Population (included patients with known or suspected CAD)
Watkins,Stuart, McGeoch,Ross, Lyne,Jonathan, Steedman,Tracey, Good,Richard, McLaughlin,Mairi Jean, Cunningham,Tony, Bezlyak,Vladimir, Ford,Ian, Dargie,Henry J., Oldroyd,Keith G., Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease, Circulation, 120, 2207-2213, 2009	Non protocol reference standard
Wehrschuetz,M., Wehrschuetz,E., Schuchlenz,H., Schaffler,G., Accuracy of MSCT Coronary Angiography with 64 Row CT Scanner- Facing the Facts, Clinical Medicine Insights.CardiologyClin Med Insights Cardiol, 4, 15-22, 2010	Retrospective study design
Weidemann,F., Jung,P., Hoyer,C., Broscheit,J., Voelker,W., Ertl,G., Stork,S., Angermann,C.E., Strotmann,J.M., Assessment of the contractile reserve in patients with intermediate coronary lesions: A strain rate imaging study validated by invasive myocardial fractional flow reserve, European Heart JournalEur.Heart J., 28, 1425-1432, 2007	Not relevant
Weustink,A.C., Neefjes,L.A., Rossi,A., Meijboom,W.B., Nieman,K., Capuano,E., Boersma,E., Mollet,N.R., Krestin,G.P., De Feyter,P.J., Diagnostic performance of exercise bicycle testing and single- photon emission computed tomography: comparison with 64-slice computed tomography coronary angiography, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 28, 675- 684, 2012	Patients recruited on basis of results of initial stress test
Weustink,Annick C., Mollet,Nico R., Neefjes,Lisan A., Meijboom,W.Bob, Galema,Tjebbe W., van Mieghem,Carlos A., Kyrzopoulous,Stamatis, Eu,Rick Neoh, Nieman,Koen, Cademartiri,Filippo, van Geuns,Robert Jan, Boersma,Eric, Krestin,Gabriel P., de Feyter,Pim J., Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease, Annals of Internal MedicineANN.INTERN.MED., 152, 630-639, 2010	Not all patients had reference standard
Weustink,Annick C., Mollet,Nico R., Neefjes,Lisan A., van Straten,Marcel, Neoh,Eurick, Kyrzopoulos,Stamatis, Meijboom,Bob Willem, Van Mieghem,Carlos, Cademartiri,Filippo, de Feyter,Pim J., Krestin,Gabriel P., Preserved diagnostic performance of dual- source CT coronary angiography with reduced radiation exposure and cancer risk, Radiology, 252, 53-60, 2009	Mixed population - includes patients with unstable chest pain
Wexler L, Brundage B, Crouse J et al (1996) Coronary Artery Calcification: pathophysiology epidemiology, imaging methods and clinical implications. Circulation: 94:1175-1192.	Study design. Review article.
Williams,K.A., Schuster,R.A., Williams,K.A., Schneider,C.M., Pokharna,H.K., Correct spatial normalization of myocardial	Population (included patients with

Author	Reason for exclusion
perfusion SPECT improves detection of multivessel coronary artery	known CAD) Design (retrospective)
disease, Journal of Nuclear CardiologyJ.Nucl.Cardiol., 10, 353-360, 2003	
Wittlinger, Thomas, Martinovic, Ivo, Moosdorf, Rainer, Moritz, Anton, Imaging of calcified coronary arteries with multislice computed tomography, Asian cardiovascular & thoracic annals, 14, 321-327, 2006	Population (only patients with inconclusive ECG at intermediate CAD risk)
Wittlinger, Thomas, Voigtlander, Thomas, Rohr, Martin, Meyer, Jurgen, Thelen, Martin, Kreitner, Karl Friedrich, Kalden, Peter, Magnetic resonance imaging of coronary artery occlusions in the navigator technique, The international journal of cardiovascular imaging Int J Cardiovasc Imaging, 18, 203-205, 2002	non protocol index test
Wolak,Arik, Slomka,Piotr J., Fish,Mathews B., Lorenzo,Santiago, Acampa,Wanda, Berman,Daniel S., Germano,Guido, Quantitative myocardial-perfusion SPECT: comparison of three state-of-the-art software packages, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 15, 27-34, 2008	Not all participants had reference standard
Wolff,S.D., Schwitter,J., Coulden,R., Friedrich,M.G., Bluemke,D.A., Biederman,R.W., Martin,E.T., Lansky,A.J., Kashanian,F., Foo,T.K., Licato,P.E., Comeau,C.R., Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study, Circulation, 110, 732-737, 2004	Non protocol index test Population (included patients with known CAD)
Wong, Dennis T.L., Ko, Brian S., Cameron, James D., Nerlekar, Nitesh, Leung, Michael C.H., Malaiapan, Yuvaraj, Crossett, Marcus, Leong, Darryl P., Worthley, Stephen G., Troupis, John, Meredith, Ian T., Seneviratne, Sujith K., Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 61, 1271-1279, 2013	Non protocol reference standard
Wu,C.C., Ho,Y.L., Kao,S.L., Chen,W.J., Lee,C.M., Chen,M.F., Liau,C.S., Lee,Y.T., Dobutamine stress echocardiography for detecting coronary artery disease, Cardiology, 87, 244-249, 1996	Mixed population - includes people with previous MI
Wu,Ming Che, Chin,Kun Chou, Lin,Ku Hung, Chiu,Nan Tsing, Diagnostic efficacy of a low-dose 32-projection SPECT 99mTc- sestamibi myocardial perfusion imaging protocol in routine practice, Nuclear Medicine CommunicationsNUCL.MED.COMMUN., 30, 140-147, 2009	Population (not all patients had c.angio)
Wu,YW., Lin,LC., Tseng,WK., Liu,YB., Kao,HL., Lin,MS., Huang,HC., Wang,SY., Horng,HE., Yang,HC., Wu,CC., QTcheterogeneity in rest magnetocardiography is sensitive to detect coronary artery disease: In comparison with stress myocardial perfusion imaging, Acta Cardiologica SinicaActa Cardiol.Sin., 30, 445-454, 2014	Includes known CAD
Xu,Lei, Sun,Zhonghua, Virtual intravascular endoscopy visualization of calcified coronary plaques: a novel approach of identifying plaque features for more accurate assessment of coronary lumen stenosis, MedicineMedicine (GBR), 94, e805-, 2015	Non protocol index test
Xu,Yi, Tang,Lijun, Zhu,Xiaomei, Xu,Hai, Tang,Jinhua, Yang,Zhijian, Wang,Liansheng, Wang,Dehang, Comparison of dual-source CT coronary angiography and conventional coronary angiography for detecting coronary artery disease, The international journal of	Index test overlaps with DG3 (New Generation Scanner)

Author	Reason for exclusion
cardiovascular imagingInt J Cardiovasc Imaging, 26 Suppl 1, 75-81, 2010	
Yamada, T., Sawada, T., Yamano, T., Azuma, A., Nakagawa, M., Evaluation of coronary arterial stenoses using 2D magnetic resonance coronary angiography, Minimally Invasive Therapy and Allied Technologies Minimally Invasive Ther. Allied Technol., 11, 7- 15, 2002	Non protocol index test
Yang,Carina W., Carr,James C., Francois,Christopher J., Shea,Steven M., Deshpande,Vibhas S., Meyers,Sheridan N., Beohar,Nirat, Finn,J.Paul, Li,Debiao, Coronary magnetic resonance angiography using magnetization-prepared contrast-enhanced breath-hold volume-targeted imaging (MPCE-VCATS), Investigative RadiologyInvest.Radiol., 41, 639-644, 2006	Non protocol index test
Yang,D.H., Kim,Y.H., Roh,J.H., Kang,J.W., Han,D., Jung,J., Kim,N., Lee,J.B., Ahn,J.M., Lee,J.Y., Park,D.W., Kang,S.J., Lee,S.W., Lee,C.W., Park,S.W., Park,S.J., Lim,T.H., Stress Myocardial Perfusion CT in Patients Suspected of Having Coronary Artery Disease: Visual and Quantitative Analysis-Validation by Using Fractional Flow Reserve, Radiology, 141126-, 2015	Index test overlaps with DG3 (New Generation Scanner)
Yang,Linfeng, Zhou,Tao, Zhang,Ruijie, Xu,Lin, Peng,Zhaohui, Ding,Juan, Wang,Sen, Li,Min, Sun,Gang, Meta-analysis: diagnostic accuracy of coronary CT angiography with prospective ECG gating based on step-and-shoot, Flash and volume modes for detection of coronary artery disease, European RadiologyEur.Radiol., 24, 2345- 2352, 2014	New generation scanners used in included studies. Populations not described.
Yang,Phillip C., Meyer,Craig H., Terashima,Masahiro, Kaji,Shuichiro, McConnell,Michael V., Macovski,A., Pauly,John M., Nishimura,Dwight G., Hu,Bob S., Spiral magnetic resonance coronary angiography with rapid real-time localization, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 41, 1134- 1141, 2003	Non protocol index test
Yang,Qi, Li,Kuncheng, Liu,Xin, Bi,Xiaoming, Liu,Zhi, An,Jing, Zhang,Al, Jerecic,Renate, Li,Debiao, Contrast-enhanced whole- heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 54, 69-76, 2009	Non protocol index test
Yang,Qi, Li,Kuncheng, Liu,Xin, Du,Xiangying, Bi,Xiaoming, Huang,Feng, Jerecic,Renate, Liu,Zhi, An,Jing, Xu,Dong, Zheng,Hairong, Fan,Zhaoyang, Li,Debiao, 3.0T whole-heart coronary magnetic resonance angiography performed with 32- channel cardiac coils: a single-center experience, Circulation.Cardiovascular imagingCirc Cardiovasc Imaging, 5, 573- 579, 2012	Non protocol index test
Yao,Z., Liu,X.J., Shi,R., Dai,R., Zhang,S., Liu,Y., Li,S., Tian,Y., Zhang,X., A comparison of 99mTc-MIBI myocardial SPET with electron beam computed tomography in the assessment of coronary artery disease, European Journal of Nuclear MedicineEUR.J.NUCL.MED., 24, 1115-1120, 1997	Population (included patients with history of chest pain
Yerramasu,Ajay, Lahiri,Avijit, Venuraju,Shreenidhi, Dumo,Alain, Lipkin,David, Underwood,S Richard, Rakhit,Roby D., Patel,Deven J., Diagnostic role of coronary calcium scoring in the rapid access chest pain clinic: prospective evaluation of NICE guidance, European Heart Journal Cardiovascular ImagingEur.Heart	Not all patients received reference standard

Author	Reason for exclusion
J.Cardiovasc.Imaging, 15, 886-892, 2014	
Yonezawa, Masato, Nagata, Motonori, Kitagawa, Kakuya, Kato, Shingo, Yoon, Yeonyee, Nakajima, Hiroshi, Nakamori, Shiro, Sakuma, Hajime, Hatakenaka, Masamitsu, Honda, Hiroshi, Quantitative analysis of 1.5-T whole-heart coronary MR angiograms obtained with 32-channel cardiac coils: a comparison with conventional quantitative coronary angiography, Radiology, 271, 356-364, 2014	Non protocol index test
Yoon,Yeonyee E., Choi,Jin Ho, Kim,Ji Hyun, Park,Kyung Woo, Doh,Joon Hyung, Kim,Yong Jin, Koo,Bon Kwon, Min,James K., Erglis,Andrejs, Gwon,Hyeon Cheol, Choe,Yeon Hyeon, Choi,Dong Ju, Kim,Hyo Soo, Oh,Byung Hee, Park,Young Bae, Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve, JACC.Cardiovascular imagingJACC Cardiovasc Imaging, 5, 1088-1096, 2012	Population (included patients with known CAD) Non protocol reference test
Yoshitani,Hidetoshi, Takeuchi,Masaaki, Mor-Avi,Victor, Otsuji,Yutaka, Hozumi,Takeshi, Yoshiyama,Minoru, Comparative diagnostic accuracy of multiplane and multislice three-dimensional dobutamine stress echocardiography in the diagnosis of coronary artery disease, Journal of the American Society of Echocardiography : official publication of the American Society of EchocardiographyJ Am Soc Echocardiogr, 22, 437-442, 2009	Population (included patients with known or suspected CAD)
Yun, Hong, Jin, Hang, Yang, Shan, Huang, Dong, Chen, Zhang Wei, Zeng, Meng su, Coronary artery angiography and myocardial viability imaging: a 3.0-T contrast-enhanced magnetic resonance coronary artery angiography with Gd-BOPTA, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 30, 99- 108, 2014	Population (included patients with previous MI)
Zaag-Loonen,H.J., Dikkers,R., de Bock,G.H., Oudkerk,M., The clinical value of a negative multi-detector computed tomographic angiography in patients suspected of coronary artery disease: A meta-analysis, European RadiologyEur.Radiol., 16, 2748-2756, 2006	Insufficient scanner slices (all studies <64 slice)
Zhang,Long Jiang, Wu,Sheng Yong, Wang,Jing, Lu,Ying, Zhang,Zhuo Li, Jiang,Shi Sen, Zhou,Chang sheng, Lu,Guang ming, Diagnostic accuracy of dual-source CT coronary angiography: The effect of average heart rate, heart rate variability, and calcium score in a clinical perspective, Acta radiologica (Stockholm, Sweden : 1987), 51, 727-740, 2010	Mixed population - includes people with unstable CAD.
Zhang,T., Luo,Z., Wang,D., Han,D., Bai,J., Meng,X., Shen,B., Radiation dose in coronary artery angiography with 320-detector row CT and its diagnostic accuracy: comparison with 64-detector row CT, Minerva medicaMinerva Med, 102, 249-259, 2011	Mixed population includes people with decompensated heart failure.
Zhao,R.P., Hao,Z.R., Song,Z.J., Diagnostic value of Flash dual-source CT coronary artery imaging combined with dual-energy myocardial perfusion imaging for coronary heart disease, Exp Ther Med, 7, 865-868, 2014	Population known CAD and New generation scanner used
Zheng,Xiao Zhi, Yang,Bin, Wu,Jing, Comparison of the efficacy of conventional echocardiographic parameters in the diagnosis of significant coronary artery stenosis, Iranian journal of radiology : a quarterly journal published by the Iranian Radiological	Non protocol index test Population (included patients with known CAD)

Author	Reason for exclusion
SocietyIran.j.radiol., 12, e11405-, 2015	
Zhou, Tao, Yang, Lin Feng, Zhai, Ji Liang, Li, Jiang, Wang, Qi Meng, Zhang, Rui Jie, Wang, Sen, Peng, Zhao Hui, Li, Min, Sun, Gang, SPECT myocardial perfusion versus fractional flow reserve for evaluation of functional ischemia: a meta analysis, European Journal of Radiology Eur. J. Radiol., 83, 951-956, 2014	Reference standard (non protocol)

K.5 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin - supplementary test and treat randomised controlled trials review

Study	Reason for Exclusion
Cury,R.C., Kitt,T.M., Feaheny,K., Blankstein,R., Ghoshhajra,B.B., Budoff,M.J., Leipsic,J., Min,J.K., Akin,J., George,R.T., A randomized, multicenter, multivendor study of myocardial perfusion imaging with regadenoson CT perfusion vs single photon emission CT, Journal of cardiovascular computed tomography, 9, 103-112, 2015	Incorrect population: part of the population had known coronary artery disease on trial entry. Also did not report effectiveness outcomes.
Douglas,P.S., Hoffmann,U., Lee,K.L., Mark,D.B., Al- Khalidi,H.R., Anstrom,K., Dolor,R.J., Kosinski,A., Krucoff,M.W., Mudrick,D.W., Patel,M.R., Picard,M.H., Udelson,J.E., Velazquez,E.J., Cooper,L., PROMISE,Investigators, PROspective Multicenter Imaging Study for Evaluation of chest pain: rationale and design of the PROMISE trial, American Heart Journal, 167, 796-803, 2014	Trial protocol only.
McKavanagh,P., Lusk,L., Ball,P.A., Trinick,T., Duly,E., Walls,G., Verghis,R., Agus,A., Harbinson,M., Donnelly,P.M., The 1 year clinical results of the CAPP study, European Heart Journal.Conference: European Society of Cardiology, ESC Congress 2013 Amsterdam Netherlands.Conference Start: 20130831 Conference End: 20130904.Conference Publication: (var.pagings).34 (pp 320-321), 2013.Date of Publication: August 201, 320-321, 2013	Conference abstract
McKavanagh,P., Lusk,L.I.S.A., Ball,P.A., Trinick,T.R., Duly,E., Walls,G., Orr,C., Harbinson,M.T., Donnelly,P.M., Cardiac ct for the assessment of pain and plaque: The 90 day results of a randomised control trial, European Heart Journal Cardiovascular Imaging.Conference: 16th Annual Meeting of the European Association of Echocardiography, EUROECHO 2012 Athens Greece.Conference Start: 20121205 Conference End: 20121208.Conference Publication: (var.pagings).13 (pp, i114-, 2012	Conference abstract
Sabharwal,N.K., Stoykova,B., Taneja,A.K., Lahiri,A., A randomized trial of exercise treadmill ECG versus stress SPECT myocardial perfusion imaging as an initial diagnostic strategy in stable patients with chest pain and suspected CAD: cost analysis.[Erratum appears in J Nucl Cardiol. 2007	Does not report effectiveness outcomes (test and treat RCT, but only reports costs for each strategy)

Study	Reason for Exclusion
May-Jun;14(3):414], Journal of Nuclear Cardiology, 14, 174-186, 2007	
Schwitter, J., Wacker, C.M., Wilke, N., Al-Saadi, N., Sauer, E., Huettle, K., Schonberg, S.O., Debl, K., Strohm, O., Ahlstrom, H., Dill, T., Hoebel, N., Simor, T., MR-IMPACT, investigators, Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial), Journal of Cardiovascular Magnetic Resonance, 14, 61-, 2012	Not a test and treat RCT: participants were not randomised to diagnostic strategy
Thom,H., West,N.E., Hughes,V., Dyer,M., Buxton,M., Sharples,L.D., Jackson,C.H., Crean,A.M., CECaT study group, Cost-effectiveness of initial stress cardiovascular MR, stress SPECT or stress echocardiography as a gate-keeper test, compared with upfront invasive coronary angiography in the investigation and management of patients with stable chest pain: mid-term outcomes from the CECaT randomised controlled trial, BMJ Open, 4, e003419-, 2014	Participants had to have a positive exercise stress test (indicative of CAD) for inclusion.
Zacharias,K., Shah,B., Pabla,J., Ahmed,A., Gurunathan,S., Senior,R., Exercise echo has superior cost efficacy compared to exercise ECG for the diagnosis of coronary artery disease in patients with new suspected angina: A randomised prospective study, European Heart Journal, 35, 117-118, 2014	Conference abstract.

Appendix O: Excluded health economic studies

0.1 High sensitivity cardiac troponins

Reference	Reason for exclusion
Vaidya, 2014 ⁷⁰⁵	This study was assessed as not applicable as the population was not stratified into low, medium and high risk groups therefore the results would not aid the guideline committee in deciding how to recommend high-sensitivity troponin for different risk groups.
Thokala, 2012 ⁶⁷⁹	This study was assessed as not applicable as the population was not stratified into low, medium and high risk groups therefore the results would not aid the guideline committee in deciding how to recommend high-sensitivity troponin for different risk groups.
CADTH, 2012 ¹⁸⁹	This study was assessed as not applicable as the population was not stratified into low, medium and high risk groups therefore the results would not aid the guideline committee in deciding how to recommend high-sensitivity troponin for different risk groups.
Westwood, 2015 ⁷³⁰	This study was assessed as not applicable as the population was not stratified into low, medium and high risk groups therefore the results would not aid the guideline committee in deciding how to recommend high-sensitivity troponin for different risk groups.
Goodacre, 2013 ³⁰⁵	This study was assessed as not applicable as the population was not stratified into low, medium and high risk groups therefore the results would not aid the guideline committee in deciding how to recommend high-sensitivity troponin for different risk groups.

Table 30: Studies excluded from the health economic review

O.2 Non-invasive imaging for the identification of people with NSTEMI/unstable angina

None.

O.3 Diagnostic test accuracy of non-invasive imaging for the identification of people with NSTEMI/unstable angina

None.

O.4 Prediction models/tools for people with stable chest pain of suspected cardiac origin

None.

O.5 Non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin

Study	Reason for Exclusion
Myocardial perfusion scintigraphy for the diagnosis and management of	Refers to NICE TA73 which was
angina and myocardial infarction (Structured abstract), Health Technology	superseded by NICE CG95

Study	Reason for Exclusion	
Assessment Database, 25-, 2003		
The use of multislice computed tomography angiography (CTA) for the diagnosis of coronary artery disease (Structured abstract), Health Technology Assessment Database, 2-, 2005	Narrative review only	
Amemiya, Shiori, Takao, Hidemasa, Computed tomographic coronary angiography for diagnosing stable coronary artery disease: a cost-utility and cost-effectiveness analysis, Circulation journal : official journal of the Japanese Circulation SocietyCirc J, 73, 1263-1270, 2009	Selectively excluded - more applicable studies with UK costs have been included	
Bedetti,Gigliola, Pasanisi,Emilio Maria, Pizzi,Carmine, Turchetti,Giuseppe, Lore,Cosimo, Economic analysis including long-term risks and costs of alternative diagnostic strategies to evaluate patients with chest pain, Cardiovascular ultrasoundCardiovasc Ultrasound, 6, 21-, 2008	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included	
Boldt, Julia, Leber, Alexander W., Bonaventura, Klaus, Sohns, Christian, Stula, Martin, Huppertz, Alexander, Haverkamp, Wilhelm, Dorenkamp, Marc, Cost-effectiveness of cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary artery disease in Germany, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic ResonanceJ Cardiovasc Magn Reson, 15, 30-, 2013	Selectively excluded - more applicable studies with UK costs have been included	
Brabandt,H., Camberlin,C., Cleemput,I., 64-slice computed tomography imaging of coronary arteries in patients suspected for coronary artery disease (Structured abstract), Health Technology Assessment Database, -, 2008	Systematic review only	
Cheezum, Michael K., Hulten, Edward A., Taylor, Allen J., Gibbs, Barnett T., Hinds, Sidney R., Feuerstein, Irwin M., Stack, Aaron L., Villines, Todd C., Cardiac CT angiography compared with myocardial perfusion stress testing on downstream resource utilization, Journal of cardiovascular computed tomographyJ Cardiovasc Comput Tomogr, 5, 101-109, 2011	US Cost analysis only	
Chinnaiyan,Kavitha M., Raff,Gilbert L., Ananthasubramaniam,Karthik, Coronary CT angiography after stress testing: an efficient use of resources? Implications of the Advanced Cardiovascular Imaging Consortium (ACIC) results, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 19, 649-657, 2012	Editorial	
Darlington, M., Gueret, P., Laissy, J.P., Pierucci, A.F., Maoulida, H., Quelen, C., Niarra, R., Chatellier, G., Durand-Zaleski, I., Cost-effectiveness of computed tomography coronary angiography versus conventional invasive coronary angiography (Provisional abstract), European Journal of Health EconomicsEur. J. Health Econ., -, 2014	Selectively excluded - more applicable studies with UK costs and health benefits represented by QALYs have been included	
Demir,Ozan M., Bashir,Abdullah, Marshall,Kathy, Douglas,Martina, Wasan,Balvinder, Plein,Sven, Alfakih,Khaled, Comparison of clinical efficacy and cost of a cardiac imaging strategy versus a traditional exercise test strategy for the investigation of patients with suspected stable coronary artery disease, The American journal of cardiologyAm J Cardiol, 115, 1631-1635, 2015	Excluded diagnostic strategy - exercise tolerance test as comparator	
Dewey,Marc, Hamm,Bernd, Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease, European RadiologyEur.Radiol., 17, 1301-1309, 2007	Selectively excluded - more applicable studies with UK costs and health effects represented by QALYs have been included	
Dorenkamp,Marc, Bonaventura,Klaus, Sohns,Christian, Becker,Christoph R., Leber,Alexander W., Direct costs and cost-effectiveness of dual-source	Selectively excluded - more appropriate studies with UK	

Study	Reason for Exclusion
computed tomography and invasive coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease, Heart (British Cardiac Society), 98, 460-467, 2012	costs and health benefits represented by QALYs have been included
Fearon,William F., Bornschein,Bernhard, Tonino,Pim A.L., Gothe,Raffaella M., Bruyne,Bernard De, Pijls,Nico H.J., Siebert,Uwe, Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) Study Investigators, Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease, Circulation, 122, 2545-2550, 2010	Excluded population - known CAD
Fearon,William F., Shilane,David, Pijls,Nico H.J., Boothroyd,Derek B., Tonino,Pim A.L., Barbato,Emanuele, Juni,Peter, De Bruyne,Bernard, Hlatky,Mark A., Fractional Flow Reserve Versus Angiography for Multivessel Evaluation, Cost-effectiveness of percutaneous coronary intervention in patients with stable coronary artery disease and abnormal fractional flow reserve, Circulation, 128, 1335-1340, 2013	Excluded population with known CAD
Fearon,William F., Yeung,Alan C., Lee,David P., Yock,Paul G., Heidenreich,Paul A., Cost-effectiveness of measuring fractional flow reserve to guide coronary interventions, American Heart JournalAm.Heart J., 145, 882-887, 2003	Excluded population with known CAD
Ferreira, Antonio Miguel, Marques, Hugo, Goncalves, Pedro Araujo, Cardim, Nuno, Cost-effectiveness of different diagnostic strategies in suspected stable coronary artery disease in Portugal, Arquivos Brasileiros de Cardiologia Arq. Bras. Cardiol., 102, 391-402, 2014	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included
Genders, Tessa S.S., Ferket, Bart S., Dedic, Admir, Galema, Tjebbe W., Mollet, Nico R.A., de Feyter, Pim J., Fleischmann, Kirsten E., Nieman, Koen, Hunink, M.G.M., Coronary computed tomography versus exercise testing in patients with stable chest pain: comparative effectiveness and costs, International journal of cardiology Int.J. Cardiol., 167, 1268-1275, 2013	Excluded diagnostic strategy
Genders, Tessa S.S., Meijboom, W.Bob, Meijs, Matthijs F.L., Schuijf, Joanne D., Mollet, Nico R., Weustink, Annick C., Pugliese, Francesca, Bax, Jeroen J., Cramer, Maarten J., Krestin, Gabriel P., de Feyter, Pim J., Hunink, M.G.M., CT coronary angiography in patients suspected of having coronary artery disease: decision making from various perspectives in the face of uncertainty, Radiology, 253, 734-744, 2009	Superseded by Genders et al. 2015 (included)
Ghosh,Anjan, Qasim,Asif, Woollcombe,Kate, Mechery,Anthony, Cost implications of implementing NICE guideline on chest pain in rapid access chest pain clinics: an audit and cost analysis, Journal of public health (Oxford, England)J Public Health (Oxf), 34, 397-402, 2012	Cost analysis only
Goeree,Ron, Blackhouse,Gord, Bowen,James M., O'Reilly,Daria, Sutherland,Simone, Hopkins,Robert, Chow,Benjamin, Freeman,Michael, Provost,Yves, Dennie,Carole, Cohen,Eric, Marcuzzi,Dan, Iwanochko,Robert, Moody,Alan, Paul,Narinder, Parker,John D., Cost- effectiveness of 64-slice CT angiography compared to conventional coronary angiography based on a coverage with evidence development study in Ontario, Expert review of pharmacoeconomics & outcomes researchExpert rev.pharmacoecon.outcomes res., 13, 675-690, 2013	Selectively excluded - a more applicable study with UK costs has been included
Hachamovitch, Rory, Johnson, James R., Hlatky, Mark A., Cantagallo, Lisa, Johnson, Barbara H., Coughlan, Martha, Hainer, Jon, Gierbolini, Jeselle, Di Carli, Marcelo F., SPARC, Investigators, The study of myocardial perfusion and coronary anatomy imaging roles in CAD (SPARC): design, rationale, and baseline patient characteristics of a prospective, multicenter observational registry comparing PET, SPECT, and CTA for resource utilization and clinical outcomes, Journal of nuclear cardiology : official	Study protocol only

Study	Reason for Exclusion	
publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 16, 935-948, 2009		
Halpern,Ethan J., Fischman,David, Savage,Michael P., Koka,Anish R., DeCaro,Matthew, Levin,David C., Decision analytic model for evaluation of suspected coronary disease with stress testing and coronary CT angiography, Academic RadiologyAcad.Radiol., 17, 577-586, 2010	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included	
Health, Quality Ontario, Functional cardiac magnetic resonance imaging (MRI) in the assessment of myocardial viability and perfusion: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 3, 1-82, 2003	Systematic review only	
Health,Quality Ontario, Multi-detector computed tomography angiography for coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 5, 1-57, 2005	Systematic review only	
Health,Quality Ontario, Stress echocardiography for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario health technology assessment seriesOnt Health Technol Assess Ser, 10, 1-61, 2010	Systematic review only	
Health,Quality Ontario, Single photon emission computed tomography for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-64, 2010	Systematic review only	
Health, Quality Ontario, Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt. Health Technol. Assess. Ser., 10, 1-80, 2010	Systematic review only	
Health,Quality Ontario, Magnetic resonance imaging (MRI) for the assessment of myocardial viability: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-45, 2010	Systematic review only	
Health,Quality Ontario, Cardiac magnetic resonance imaging for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-38, 2010	Systematic review only	
Health, Quality Ontario, 64-slice computed tomographic angiography for the diagnosis of intermediate risk coronary artery disease: an evidence- based analysis, Ontario Health Technology Assessment SeriesOnt. Health Technol. Assess. Ser., 10, 1-44, 2010	Systematic review only	
Health, Quality Ontario, Stress echocardiography with contrast for the diagnosis of coronary artery disease: an evidence-based analysis, Ontario Health Technology Assessment SeriesOnt.Health Technol.Assess.Ser., 10, 1-59, 2010	Systematic review only	
Hlatky,Mark A., Saxena,Akshay, Koo,Bon Kwon, Erglis,Andrejs, Zarins,Christopher K., Min,James K., Projected costs and consequences of computed tomography-determined fractional flow reserve, Clinical CardiologyClin.Cardiol., 36, 743-748, 2013	US based cost analysis only	
Hlatky,Mark A., Shilane,David, Hachamovitch,Rory, Dicarli,Marcelo F., SPARC,Investigators, Economic outcomes in the Study of Myocardial Perfusion and Coronary Anatomy Imaging Roles in Coronary Artery Disease registry: the SPARC Study, Journal of the American College of CardiologyJ.Am.Coll.Cardiol., 63, 1002-1008, 2014	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included	
Iwata,Kunihiro, Ogasawara,Katsuhiko, Comparison of the cost-	Selectively excluded - more	

Study	Reason for Exclusion	
effectiveness of stress myocardial perfusion MRI and SPECT in patients with suspected coronary artery disease, Radiological Physics and TechnologyRadiol.Phys.Technol., 6, 28-34, 2013	appropriate studies with UK costs and health benefits represented by QALYs have been included	
Kelly,D., Cole,S., Rossiter,F., Mallinson,K., Smith,A., Simpson,I., Implementation of the new NICE guidelines for stable chest pain: Likely impact on chest pain services in the UK, British Journal of CardiologyBr.J.Cardiol., 18, 185-188, 2011	No health outcomes	
Khare,Rahul K., Courtney,D.Mark, Powell,Emilie S., Venkatesh,Arjun K., Lee,Todd A., Sixty-four-slice computed tomography of the coronary arteries: cost-effectiveness analysis of patients presenting to the emergency department with low-risk chest pain, Academic emergency medicine : official journal of the Society for Academic Emergency MedicineAcad Emerg Med, 15, 623-632, 2008	Selectively excluded - more applicable studies with UK costs have been included	
Kreisz,Florian P., Merlin,Tracy, Moss,John, Atherton,John, Hiller,Janet E., Gericke,Christian A., The pre-test risk stratified cost-effectiveness of 64- slice computed tomography coronary angiography in the detection of significant obstructive coronary artery disease in patients otherwise referred to invasive coronary angiography, Heart, lung & circulation, 18, 200-207, 2009	Selectively excluded - more applicable studies with UK costs have been included	
Ladapo, Joseph A., Jaffer, Farouc A., Hoffmann, Udo, Thomson, Carey C., Bamberg, Fabian, Dec, William, Cutler, David M., Weinstein, Milton C., Gazelle, G.Scott, Clinical outcomes and cost-effectiveness of coronary computed tomography angiography in the evaluation of patients with chest pain, Journal of the American College of Cardiology J Am Coll Cardiol, 54, 2409-2422, 2009	Selectively excluded - more applicable studies with UK costs have been included	
Lakic,Dragana, Bogavac-Stanojevic,Natasa, Jelic-Ivanovic,Zorana, Kotur- Stevuljevic,Jelena, Spasic,Slavica, Kos,Mitja, A multimarker approach for the prediction of coronary artery disease: cost-effectiveness analysis, Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research, 13, 770-777, 2010	Excluded diagnostic strategies	
Lee, Dong Soo, Jang, Myoung Jin, Cheon, Gi Jeong, Chung, June Key, Lee, Myung Chul, Comparison of the cost-effectiveness of stress myocardial SPECT and stress echocardiography in suspected coronary artery disease considering the prognostic value of false-negative results, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology J Nucl Cardiol, 9, 515-522, 2002	Selectively excluded - more appropriate studies with UK costs have been included	
Lee,H.J., Kim,Y.J., Ahn,J., Jang,E.J., Choi,J.E., Park,S., Song,H., Shim,J., Cha,M.J., Shon,D.W., Kim,H.K., Jang,H.J., Jung,H.W., Yoon,C.H., Kim,D.H., Lee,S.P., Lee,H., Pang,J.C., The clinical usefulness and cost-effectiveness of CT coronary angiography for the diagnosis of ischemic heart disease in patients with chest pain (Structured abstract), Health Technology Assessment Database, -, 2012	Chinese	
Malago,Roberto, Pezzato,Andrea, Barbiani,Camilla, Tavella,Domenico, Vallerio,Paola, Pasini,Anna Fratta, Cominacini,Luciano, Mucelli,Roberto Pozzi, Role of MDCT coronary angiography in the clinical setting: economic implications, La Radiologia medicaRadiol Med, 118, 1294-1308, 2013	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included	
McKavanagh,Peter, Lusk,Lisa, Ball,Peter A., Trinick,Tom R., Duly,Ellie, Walls,Gerard M., Orr,Clare, Harbinson,Mark T., Donnelly,Patrick M., A comparison of Diamond Forrester and coronary calcium scores as gatekeepers for investigations of stable chest pain, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 29, 1547-1555, 2013	Comparison of clinical prediction tools rather than diagnostic strategies	

Study	Reason for Exclusion
Menon,Madhav, Lesser,John R., Hara,Hidehiko, Birkett,Richard, Knickelbine,Thomas, Longe,Terry, Flygenring,Bjorn, Henry,Jason, Schwartz,Robert, Multidetector CT coronary angiography for patient triage to invasive coronary angiography: Performance and cost in ambulatory patients with equivocal or suspected inaccurate noninvasive stress tests, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 73, 497- 502, 2009	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included
Merhige,M.E., Breen,W.J., Shelton,V., Houston,T., D'Arcy,B.J., Perna,A.F., Impact of myocardial perfusion imaging with PET and 82Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management, Journal of Nuclear MedicineJ.NUCL.MED., 48, 1069-1076, 2007	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included
Meyer, Mathias, Nance, John W.J., Schoepf, U.Joseph, Moscariello, Antonio, Weininger, Markus, Rowe, Garrett W., Ruzsics, Balazs, Kang, Doo Kyoung, Chiaramida, Salvatore A., Schoenberg, Stefan O., Fink, Christian, Henzler, Thomas, Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease, European Journal of Radiology Eur. J. Radiol., 81, 3719-3725, 2012	Excluded population with known CAD
Min,James K., Gilmore,Amanda, Budoff,Matthew J., Berman,Daniel S., O'Day,Ken, Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease, Radiology, 254, 801-808, 2010	Selectively excluded - more applicable studies with UK costs have been included
Min,James K., Kang,Ning, Shaw,Leslee J., Devereux,Richard B., Robinson,Matthew, Lin,Fay, Legorreta,Antonio P., Gilmore,Amanda, Costs and clinical outcomes after coronary multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial perfusion SPECT, Radiology, 249, 62-70, 2008	US cost analysis only
Min,James K., Shaw,Leslee J., Berman,Daniel S., Gilmore,Amanda, Kang,Ning, Costs and clinical outcomes in individuals without known coronary artery disease undergoing coronary computed tomographic angiography from an analysis of Medicare category III transaction codes, The American journal of cardiologyAm J Cardiol, 102, 672-678, 2008	US cost analysis only
Moschetti,Karine, Favre,David, Pinget,Christophe, Pilz,Guenter, Petersen,Steffen E., Wagner,Anja, Wasserfallen,Jean Blaise, Schwitter,Juerg J., Comparative cost-effectiveness analyses of cardiovascular magnetic resonance and coronary angiography combined with fractional flow reserve for the diagnosis of coronary artery disease, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic ResonanceJ Cardiovasc Magn Reson, 16, 13-, 2014	Excluded diagnostic test - invasive angiography with fractional flow reserve is the comparator
Moschetti,Karine, Muzzarelli,Stefano, Pinget,Christophe, Wagner,Anja, Pilz,Gunther, Wasserfallen,Jean Blaise, Schulz-Menger,Jeanette, Nothnagel,Detle, Dill,Torsten, Frank,Herbert, Lombardi,Massimo, Bruder,Oliver, Mahrholdt,Heiko, Schwitter,Jurg, Cost evaluation of cardiovascular magnetic resonance versus coronary angiography for the diagnostic work-up of coronary artery disease: application of the European Cardiovascular Magnetic Resonance registry data to the German, United Kingdom, Swiss, and United States health care systems, Journal of cardiovascular Magnetic Resonance : official journal of the Society for Cardiovascular Magnetic ResonanceJ Cardiovasc Magn Reson, 14, 35-, 2012	Cost analysis only
Mowatt,G., Cummins,E., Waugh,N., Walker,S., Cook,J., Jia,X., Hillis,G.S.,	Superseded by CG95

Study	Reason for Exclusion
Fraser, C., Systematic review of the clinical effectiveness and cost- effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease, Health technology assessment (Winchester, England)Health Technol Assess, 12, iii-143, 2008	
Mowatt,G., Vale,L., Brazzelli,M., Hernandez,R., Murray,A., Scott,N., Fraser,C., McKenzie,L., Gemmell,H., Hillis,G., Metcalfe,M., Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction, Health technology assessment (Winchester, England)Health Technol Assess, 8, iii-207, 2004	Superseded by Hernandez and Vale 2007
Mundy,L., Hiller,J.E., Merlin,T., Computed tomography coronary angiography for the detection of coronary artery disease (Structured abstract), Health Technology Assessment Database, -, 2006	Narrative review only
Nance,John William Jr, Bamberg,Fabian, Schoepf,U.Joseph, Coronary computed tomography angiography in patients with chronic chest pain: systematic review of evidence base and cost-effectiveness, Journal of Thoracic ImagingJ.Thorac.Imaging, 27, 277-288, 2012	Systematic review only
Nielsen,Lene H., Olsen,Jens, Markenvard,John, Jensen,Jesper M., Norgaard,Bjarne L., Effects on costs of frontline diagnostic evaluation in patients suspected of angina: coronary computed tomography angiography vs. conventional ischaemia testing, European heart journal cardiovascular ImagingEur Heart J Cardiovasc Imaging, 14, 449-455, 2013	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included
O'Malley,Patrick G., Greenberg,Bruce A., Taylor,Allen J., Cost- effectiveness of using electron beam computed tomography to identify patients at risk for clinical coronary artery disease, American heart journalAm Heart J, 148, 106-113, 2004	Excluded diagnostic strategy
Park,Gyung Min, Kim,Seon Ha, Jo,Min Woo, Her,Sung Ho, Han,Seungbong, Ahn,Jung Min, Park,Duk Woo, Kang,Soo Jin, Lee,Seung Whan, Kim,Young Hak, Lee,Cheol Whan, Kim,Beom Jun, Koh,Jung Min, Kim,Hong Kyu, Choe,Jaewon, Park,Seong Wook, Park,Seung Jung, Clinical impact and cost-effectiveness of coronary computed tomography angiography or exercise electrocardiogram in individuals without known cardiovascular disease, MedicineMedicine (Baltimore), 94, e917-, 2015	Excluded population - asymptomatic individuals presenting for general health checkups
Petrov, George, Kelle, Sebastian, Fleck, Eckart, Wellnhofer, Ernst, Incremental cost-effectiveness of dobutamine stress cardiac magnetic resonance imaging in patients at intermediate risk for coronary artery disease, Clinical research in cardiology : official journal of the German Cardiac Society Clin.res.cardiol., 104, 401-409, 2015	Selectively excluded - more applicable studies with UK costs and health benefits represented by QALYs have been included
Phelps,Charles E., O'Sullivan,Amy K., Ladapo,Joseph A., Weinstein,Milton C., Leahy,Kevin, Douglas,Pamela S., Cost effectiveness of a gene expression score and myocardial perfusion imaging for diagnosis of coronary artery disease, American Heart JournalAm.Heart J., 167, 697- 706, 2014	Excluded diagnostic strategy
Pilz,Guenter, Patel,Pankaj A., Fell,Ulrich, Ladapo,Joseph A., Rizzo,John A., Fang,Hai, Gunnarsson,Candace, Heer,Tobias, Hoefling,Berthold, Adenosine-stress cardiac magnetic resonance imaging in suspected coronary artery disease: a net cost analysis and reimbursement implications, The international journal of cardiovascular imagingInt J Cardiovasc Imaging, 27, 113-121, 2011	German cost analysis only
Powell,Emilie S., Patterson,Brian W., Venkatesh,Arjun K., Khare,Rahul K., Cost-effectiveness of a novel indication of computed tomography of the coronary arteries, Critical Pathways in CardiologyCrit.Pathways Cardiol.,	Excluded population - chest pain patients with indeterminate or positive stress

Study	Reason for Exclusion		
11, 20-25, 2012	test results		
Priest,Virginia L., Scuffham,Paul A., Hachamovitch,Rory, Marwick,Thomas H., Cost-effectiveness of coronary computed tomography and cardiac stress imaging in the emergency department: a decision analytic model comparing diagnostic strategies for chest pain in patients at low risk of acute coronary syndromes, JACC.Cardiovascular imagingJACC Cardiovasc Imaging, 4, 549-556, 2011	Selectively excluded - more applicable studies with UK costs have been included		
Raman,Vivek, McWilliams,Eric T.M., Holmberg,Stephen R.M., Miles,Ken, Economic analysis of the use of coronary calcium scoring as an alternative to stress ECG in the non-invasive diagnosis of coronary artery disease, European RadiologyEur.Radiol., 22, 579-587, 2012	Excluded diagnostic strategies - ECG; calcium scoring evidence based on studies using EBCT		
Sabharwal, Nikant K., Stoykova, Boyka, Taneja, Anil K., Lahiri, Avijit, A randomized trial of exercise treadmill ECG versus stress SPECT myocardial perfusion imaging as an initial diagnostic strategy in stable patients with chest pain and suspected CAD: cost analysis, Journal of nuclear cardiology : official publication of the American Society of Nuclear CardiologyJ Nucl Cardiol, 14, 174-186, 2007	Cost analysis only		
Sharples,L., Hughes,V., Crean,A., Dyer,M., Buxton,M., Goldsmith,K., Stone,D., Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECaT trial, Health technology assessment (Winchester, England)Health Technol Assess, 11, iii-115, 2007Excluded population with known CAD			
Shaw,L., Cost-effectiveness of myocardial perfusion scintigraphy SPECT versus other modalities, British Journal of CardiologyBr.J.Cardiol., 12, S8-S10, 2005	Narrative review only		
Stacul,F., Sironi,D., Grisi,G., Belgrano,M., Salvi,A., Cova,M., 64-Slice CT coronary angiography versus conventional coronary angiography: activity-based cost analysis, La Radiologia medicaRadiol Med (Torino), 114, 239-252, 2009	Selectively excluded - more appropriate studies with UK costs and health benefits represented by QALYs have been included		
Thom,Howard, West,Nicholas E.J., Hughes,Vikki, Dyer,Matthew, Buxton,Martin, Sharples,Linda D., Jackson,Christopher H., Crean,Andrew M., CECaT study group, Cost-effectiveness of initial stress cardiovascular MR, stress SPECT or stress echocardiography as a gate-keeper test, compared with upfront invasive coronary angiography in the investigation and management of patients with stable chest pain: mid-term outcomes from the CECaT randomised controlled trial, BMJ open, 4, e003419-, 2014	Excluded population - includes known CAD		
van der Wall,E.E., Cost analysis favours SPECT over PET and CTA for evaluation of coronary artery disease: the SPARC study, Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart FoundationNeth Heart J, 22, 257-258, 2014	Editorial		
van Waardhuizen,C.N., Langhout,M., Ly,F., Braun,L., Genders,T.S.S., Petersen,S.E., Fleischmann,K.E., Nieman,K., Hunink,M.G.M., Diagnostic Performance and Comparative Cost-Effectiveness of Non-invasive Imaging Tests in Patients Presenting with Chronic Stable Chest Pain with Suspected Coronary Artery Disease: A Systematic Overview, Current Cardiology ReportsCurr.Cardiol.Rep., 16, 1-14, 2014	German		
van Waardhuizen,Claudia N., Langhout,Marieke, Ly,Felisia, Braun,Loes, Genders,Tessa S.S., Petersen,Steffen E., Fleischmann,Kirsten E., Nieman,Koen, Hunink,M.G.M., Diagnostic performance and comparative cost-effectiveness of non-invasive imaging tests in patients presenting with chronic stable chest pain with suspected coronary artery disease: a systematic overview, Current cardiology reportsCurr Cardiol Rep, 16, 537-	Systematic review only		

Study	Reason for Exclusion
, 2014	
Villines,Todd C., Min,James K., Comparing outcomes and costs following cardiovascular imaging: a SPARCbut further illumination is needed, Journal of the American College of CardiologyJ Am Coll Cardiol, 63, 1009- 1010, 2014	Editorial
Walker,Simon, Girardin,Francois, McKenna,Claire, Ball,Stephen G., Nixon,Jane, Plein,Sven, Greenwood,John P., Sculpher,Mark, Cost- effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE- MARC study, Heart (British Cardiac Society), 99, 873-881, 2013	Excluded population - CE-MARC study excluded from the clinical review due to included population with known CAD
Westwood,M., Al,M., Burgers,L., Redekop,K., Lhachimi,S., Armstrong,N., Raatz,H., Misso,K., Severens,J., Kleijnen,J., A systematic review and economic evaluation of new-generation computed tomography scanners for imaging in coronary artery disease and congenital heart disease: Somatom Definition Flash, Aquilion ONE, Brilliance iCT and Discovery CT750 HD, Health technology assessment (Winchester, England)Health Technol Assess, 17, 1-243, 2013	Excluded population (this is the HTA for NICE DG3)
Zeb,Irfan, Abbas,Naeem, Nasir,Khurram, Budoff,Matthew J., Coronary computed tomography as a cost-effective test strategy for coronary artery disease assessment - a systematic review, Atherosclerosis, 234, 426-435, 2014	Systematic review only

Appendix P: Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

P.1 Introduction

Various tests are available to diagnose coronary artery disease in people with stable chest pain of suspected cardiac origin in whom coronary artery disease cannot be diagnosed or excluded by clinical assessment alone. The tests can be used alone or in combination and they vary in diagnostic accuracy, cost and risk of complications. A cost-effectiveness analysis was undertaken to determine the most cost-effective diagnostic strategy by combining evidence on these characteristics in a single decision-making framework.

Descriptions of individual tests are contained earlier in this document.

The clinical evidence review for review question1 identified a large amount of evidence on the included index tests. Meta-analyses were carried out for some of the tests and these have been used to inform the parameters on diagnostic accuracy used in the economic model.

P.2 Methods

P.2.1 Model overview

A decision tree was developed to compare the diagnostic outcomes of 16 strategies. The strategies were based on a single test or combination of tests. For each diagnostic strategy, the proportions of patients correctly identified with coronary artery disease (true positives (TP)), incorrectly diagnosed as having coronary artery disease (false positives (FP)), correctly diagnosed without coronary artery disease (true negatives (TN)), and incorrectly diagnosed as not having coronary artery disease (false positives (FP)), correctly diagnosed without coronary artery disease (false negatives (FN)), were calculated. The model identified the proportion of people as TP, FN, TN, or FP depending on the sensitivity and specificity of the individual tests based on the results of the meta-analyses, combined with the pre-test likelihood of the person having coronary artery disease. In practice the pre-test likelihood of disease would be informed by clinician assessment of clinical history, including the use of a clinical prediction tool (as per review question 2). In the economic model, the pre-test likelihood was taken as given for each subpopulation. The risk of mortality and non-fatal complications as a result of testing was also included.

The committee had extensive discussions on the advantages, disadvantages and feasibility of long term modelling compared with short term modelling. The committee decided that a short term model was more appropriate for this update for the following reasons.

1. The original guideline, CG95, provides recommendations for the diagnosis of coronary artery disease. It does not cover symptom or risk management once the cause of chest pain is known. The effectiveness of alternative treatment options is critical to the structure and parameterisation of long

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

term modelling. Therefore, non-systematic methods using evidence outside the update would need to be used. While this is often the case in economic models, it is one of the limitations to long term modelling in this instance.

2. The preliminary results of the short term model clearly favour CTCA as a first line test for all subpopulations of pre-test likelihood and long term modelling would not have altered this conclusion.

3. The committee could not clearly define the future treatment pathways that false positives would experience. It was determined that the uncertainty this would introduce to the model was greater than the uncertainty that remains by not undertaking long term modelling.

4. Similar uncertainty exists around the future treatment pathways for false negatives, true positives and true negatives.

5. The recommendations that result from long term modelling are not expected to be different from those that are derived from short term modelling. Because of the uncertainty involved, it is unlikely that the addition of long term modelling would have altered the recommendations the committee was able to make regarding second line testing.

This presented a number of challenges for the committee in interpreting the results of the economic model. The main challenge was that results were reported in terms of cost per correct diagnosis but NICE does not have a cost-effectiveness threshold for this measure.

P.2.2 Diagnostic strategies

The following diagnostic strategies were compared in the model. The '+' sign indicates that the second test follows a positive first test result. The '-' sign indicates the second test follows a negative first test result.

1. ICA (ICA only)

This strategy involves invasive coronary angiography (ICA) only. Test results can either be positive and the person has CAD (TP) or negative and the person does not have CAD (TN). Regardless of whether the person has CAD, there is a risk of death or other complication due to ICA. FP and FN are not possible in this pathway because of the assumption that ICA has perfect sensitivity and specificity.

2. CTCA (CTCA only)

Computed tomography coronary angiography (CTCA) yields positive or negative results. People with a positive result either do have CAD (TP) or do not (FP). People with negative CTCA results either do have CAD (FN) or do not have CAD (TN). Fatal and non-fatal adverse reactions are possible.

3. CTCA+ICA (CTCA followed by ICA for positive CTCA results)

In this strategy, people with a positive CTCA result go on to have ICA to confirm their diagnosis and follow the same path as specified in strategy 1. FP CTCA results are subsequently correctly identified as not having CAD by ICA and there is no possibility of FP results by the end of this strategy. People with negative CTCA results undergo no further testing as they have been identified as not having CAD. However, some of these people will in fact have CAD and recorded by the model as FN. The potential for adverse events during testing are treated in a similar manner as strategy 1 and 2.

4. CTCA+SPECT (CTCA followed by SPECT for positive CTCA results)

In this strategy, people with a positive CTCA result go on to have myocardial perfusion scintigraphy with single photon emission computed tomography (MPS SPECT). Some of these people will have CAD (TP) and MPS SPECT is used to confirm this diagnosis. Some people with a positive CTCA result will not have CAD and MPS SPECT will serve to correct the positive CTCA result. However, not all FP CTCA results will be picked up by MPS SPECT and there is the potential for FP results following MPS SPECT at the end of the pathway. That is, SPECT can incorrectly confirm the incorrect CTCA result. Fatal and non-fatal adverse reactions are possible during MPS SPECT as a result of inducing stress on the heart. People with negative CTCA results undergo no further testing. Some of these people will in fact have CAD that is missed (FN).

5. CTCA+ECHO (CTCA followed by ECHO for positive CTCA results)

This strategy follows the same methodology as strategy 4 but with stress echocardiography (ECHO) used as the method of functional testing rather than MPS SPECT. Fatal and non-fatal adverse reactions are possible during ECHO as a result of inducing stress on the heart. Both FP and FN are possible with this strategy.

6. CTCA+CMR (CTCA followed by CMR for positive CTCA results)

This strategy follows the same methodology as strategy 4 but with stress echocardiography (ECHO) used as the method of functional testing rather than MPS SPECT. Fatal and non-fatal adverse reactions are possible during CMR as a result of inducing stress on the heart. Both FP and FN are possible with this strategy.

7. SPECT+ICA (SPECT followed by ICA for positive SPECT results)

People with a positive MPS SPECT result go on to have ICA to confirm their diagnosis. Because some of the positive MPS SPECT results will be FP, ICA will correctly diagnose these people as not having CAD and does so with 100% accuracy. People with negative MPS SPECT results undergo no further testing but some of these people will in fact have CAD (FN). FP results are not possible by the end of this strategy.

8. ECHO+ICA (ECHO followed by ICA for positive ECHO results)

This strategy is the same as strategy 7 but with ECHO as the functional test rather than SPECT.

9. CMR+ICA (CMR followed by ICA for positive CMR results)

This strategy is the same as strategy 7 but with CMR as the functional test rather than SPECT.

10. SPECT+CTCA (SPECT followed by CTCA for positive CTCA results)

This strategy is similar to strategy 4 but with functional testing using MPS SPECT first and CTCA for any positive MPS SPECT results. Both FP and FN results are possible at the end of this strategy.

11. ECHO+CTCA (ECHO followed by CTCA for positive ECHO results)

This strategy is the same as strategy 10 but with ECHO as the functional test rather than SPECT.

12. CMR+CTCA (CMR followed by CTCA for positive CMR results)

This strategy is the same as strategy 10 but with CMR as the functional test rather than SPECT.

13. CTCA-SPECT (CTCA followed by SPECT for negative CTCA results)

The purpose of strategies 13, 14 and 15 is to investigate whether conducting functional testing after negative CTCA results is a cost effective means of reducing the number false positive findings.

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

14. CTCA-ECHO (CTCA followed by ECHO for negative CTCA results)

This strategy is the same as strategy 13 but with ECHO as the functional test.

15. CTCA-CMR (CTCA followed by CMR for negative CTCA results)

This strategy is the same as strategy 13 but with CMR as the functional test.

16. No testing

There are no strategies that involve functional testing only as the topic experts advised this would not occur in practice. CT calcium scoring is not included in any strategies because the topic experts advised it is very rare this would be carried out in isolation from a full CTCA in practice.

P.2.3 Population

The target population consisted of people with a 10% to 90% pre-test likelihood of having coronary artery disease. CG95 recommends considering non-cardiac causes of chest pain for people with an estimated pre-test likelihood of less than 10%. For people with an estimated likelihood of CAD greater than 90%, treatment is administered according to CG126, Management of Stable Angina. These two populations are outside the scope of this guideline update.

Within the 10% to 90% pre-test likelihood target population, there are 3 subpopulations specified by the original guideline:

- 10-29% pre-test likelihood of CAD
- 30-60% pre-test likelihood of CAD
- 61-90% pre-test likelihood of CAD

The base case modelled 3 scenarios of pre-test likelihoods based on the midway points of 20%, 45% and 75%.

The age and sex of the population were inconsequential in the short term model because the diagnostic accuracies of the tests were the same regardless of age or sex.

P.2.4 Time horizon, perspective and discount rate

Due to reasons listed above, the time horizon of the short term model is effectively instantaneous. The length of time it takes to conduct each test was taken into account in the cost of each test.

An NHS & PSS perspective was adopted for costs. The perspective of the person with stable chest pain was adopted for health benefits.

Discounting was not applied due to the short time horizon.

P.2.5 Model structure

The decision tree structure calculates the overall probability of certain outcomes occurring (for example, a correct diagnosis) by multiplying the combined probabilities along each branch. The structure of the decision tree is provided in Figure 100 to Figure 106. Figure 100 shows the root node and the 16 strategies that are being compared in the model. Figure 101 is the subtree for the strategy based on ICA only. Figure 102 is the subtree for the strategy based on CTCA only. Figure 103 specifies the strategy that starts with CTCA and follows with ICA for any positive CTCA results. This structure serves as the basis for strategies 7, 8 and 9 that start with a non-invasive test followed by

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

ICA for any positive non-invasive tests. **Figure 104** presents the structure for strategy 4, CTCA+SPECT. This structure serves as the basis for any other strategy that involves two non-invasive tests with the second test followed a positive first test, namely strategies 5, 6, 10, 11 and 12. **Figure 105** presents the structure of strategies with 2 tests where the second test occurs after a negative first test, strategies 13, 14 and 15. Please see section 0.2.1 for an overview of the model and 0.2.2 for a description of each of the diagnostic strategies.

P.2.6 Outcomes

The model calculated the following outcomes for each strategy:

- Proportion of correct diagnoses
- Expected cost
- True positives
- False negatives
- True negatives
- False positives
- Deaths

• Non-fatal complications (for example, myocardial infarction, ventricular arrhythmia, transient ischaemic attack, severe bronchospasm, severe chest pain)

• Number of times a second test correctly or incorrectly overrules the results of a first test

Due to the time horizon of the model, health benefits were not measured in terms of quality adjusted life years (QALYs). This was due to the limitations of long term modelling as noted above. Decision-making was based on cost per correct diagnosis but there is no threshold for cost per correct diagnosis. Preliminary model results suggested that the combined high sensitivity and low cost of CTCA helped to simplify decision-making under these circumstances.

The main metric used to assess cost effectiveness is the incremental cost-effectiveness ratio (ICER). The ICER is calculated by dividing the difference in costs by the difference in effectiveness. In this case effectiveness is measured by the proportion of correct diagnoses which means the ICER is reported in terms of cost per correct diagnosis. If costs are lower and effectiveness is higher, the option is said to dominate and an ICER is not calculated. If costs are higher and effectiveness is lower, the option is said to be dominated, an ICER is not calculated and an alternative should be recommended. When there are more than 2 comparators options must be ranked in order of increasing cost and options ruled out by dominance or extended dominance before calculating the ICERs excluding these options. An option is dominated and ruled out if another intervention is less costly and more effective.

P.2.7 Uncertainty

One-way sensitivity analysis was carried out on the following parameters.

• SA1: Separate meta-analyses were carried out based on a stenosis threshold of 70%. These results were used in a sensitivity analysis in the economic model.

• SA2: The cost of CTCA was increased to determine the threshold level where CTCA was no longer the lowest cost per correct diagnosis.

Chest pain of recent onset Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Probabilistic sensitivity analysis, where the joint uncertainty of several parameters is taken into account concurrently, was conducted. This was applied to the parameters for sensitivity and specificity for all tests, and the cost of each test.

P.2.8 Validation

The model was developed in consultation with the standing committee core members and topic experts. Model structure, inputs and results were presented to and discussed with the committee for clinical validation and interpretation. The model was peer reviewed by a second experienced health economist.

P.2.9 Assumptions

The following assumptions were made and validated by the committee.

• The sensitivity and specificity of the tests were independent of the pre-test likelihood of disease.

• Conditional independence was assumed due to a lack of data identified in the clinical review on conditional dependence of concurrent diagnostic tests. Conditional dependence of test sensitivities occurs when the second test has different sensitivities for people with the condition that have a positive first test result compared with people that have a negative first test result.

• In diagnostic strategies with 2 tests the result of the second test had precedence over the first. Where the 2 tests disagreed, the diagnosis was made based on the results of the second test. The second test confirmed the correct result of the first, incorrectly confirmed the result of the first, correctly overruled the result of the first, or incorrectly overruled the result of the first. The number of times each occurred has been reported below.

• Any death or non-fatal complication resulted in no diagnosis regardless of whether it was the only, first or second test in the diagnostic pathway.

• Indeterminate test results were not possible. This assumption was made because insufficient data was identified in the clinical review to incorporate this as a separate pathway in the model. Topic experts advised that they try not to produce indeterminate results in clinical practice.

• Sensitivity and specificity of tests did not vary with age or sex.

• ICA had perfect diagnostic accuracy. That is, it had 100% sensitivity and 100% specificity. This was consistent with its use as a gold standard in the clinical evidence review and subsequent meta-analyses.

• People in the model were administered a clinical prediction tool as part of their clinical assessment prior to entering the model. The pre-test likelihood is given and fixed for each subpopulation.

• All people are eligible to undergo all types of testing.

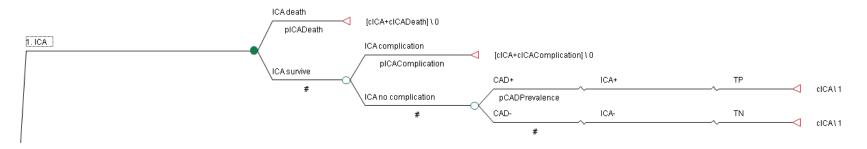
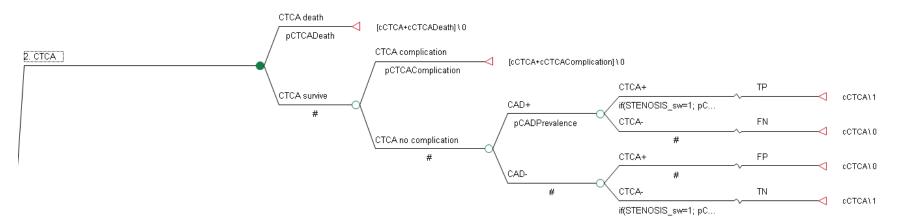

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 100: Model structure, root node with 16 strategies, strategy subtrees collapsed



Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 101: Model structure, strategy 1, ICA

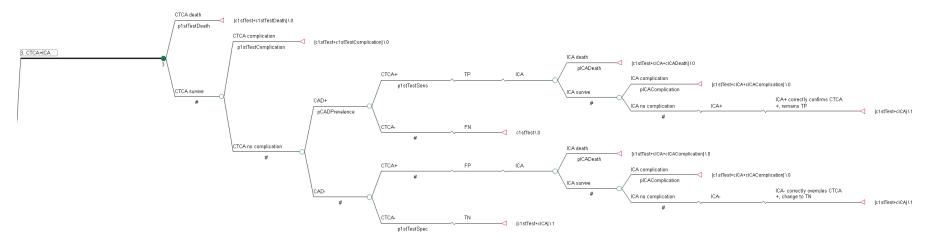
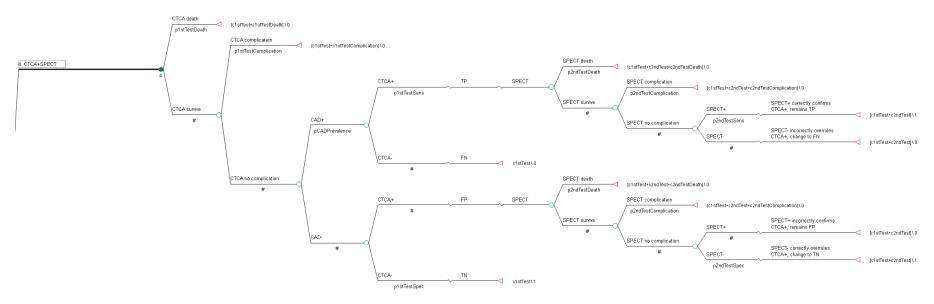


Figure 102: Model structure, strategy 2, CTCA



Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 103: Model structure, strategy 3, CTCA+ICA

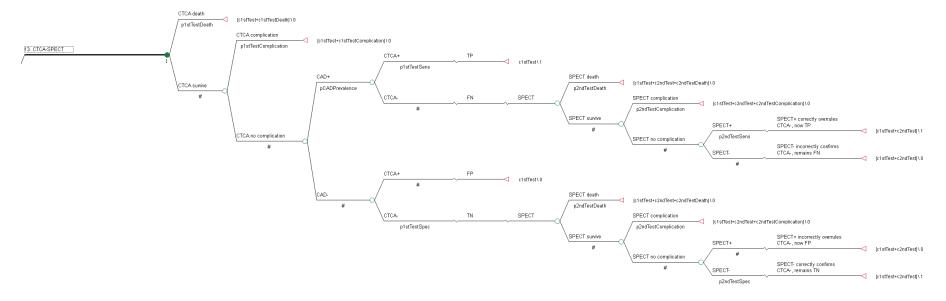


Figure 104: Model structure, strategy 4, CTCA+SPECT

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 105: Model structure, strategy 13, CTCA-SPECT

Figure 106: Model structure, strategy 16, no testing

P.3 Model inputs

P.3.1 Diagnostic accuracy

For the clinical evidence review, meta-analysis was conducted for some of the tests depending on the appropriateness of doing so on a case-by-case basis. The results of these meta-analyses were incorporated into the economic model. Coincidentally, meta-analysis was conducted for all tests that were included in the economic model. Table 31 details how evidence synthesis was conducted for each of the index tests in the clinical review and whether these results were incorporated into the economic model.

Index test (number indicates) index test number in clinical review, not economic model strategy)	Subgroup analysis	os for	Number of studies	Synthesis method	Included in economic model	Diagnostic strategies in economic model this test appears in
Index test 1. Invasive Coronary Angiography (ICA)	Not applicable		0	Not applicable	Yes	1. ICA 3. CTCA+ICA 7. SPECT+ICA 8. ECHO+ICA 9. CMR+ICA
Index test 2. Computed	50% sten.		25	Meta- analysis	Base case	2. CTCA 3. CTCA+ICA
Tomography Coronary Angiography (CTCA)	70% sten		3	Meta- analysis	Sensitivity analysis 1	4. CTCA+SPECT 5. CTCA+ECHO 6. CTCA+CMR 10. SPECT+CTCA 11. ECHO+CTCA 12. CMR+CTCA 13. CTCA-SPECT 14. CTCA-ECHO 15. CTCA-CMR
Index test 3. Calcium Score	50% sten.	Threshold: 0	2	Meta- analysis	No	Not applicable
		Threshold: 400	2	Meta- analysis	No	
	70% sten.	Threshold: 0	1	Single study	No	
		Threshold: 400	1	Single study	No	
Index test 4a. Stress	50% sten.		3	Meta- analysis	No	Not applicable
Echocardiography (perfusion)	70% sten.		1	Single study	No	
Index test 4b. Stress	50% sten.	Stress method:	5	Meta- analysis	No	5. CTCA+ECHO

 Table 31:
 Index test evidence synthesis methods and inclusion in economic model

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

suspected cardiac origin)								
Index test								
(number indicates index test								
number in clinical								
review, not			Number		Included in	Diagnostic strategies		
economic model	Subgroup	os for	of	Synthesis	economic	in economic model		
strategy)	analysis		studies	method	model	this test appears in		
Echocardiography (Wall motion)		vasodilatat ion				8. ECHO+ICA 11. ECHO+CTCA		
		Stress method: heart rate modificati on	8	Meta- analysis	Base case	14. CTCA-ECHO		
	70% sten.	Stress method: vasodilatat ion	7	Meta- analysis	No			
		Stress method: heart rate modificati on	4	Meta- analysis	Sensitivity analysis 1			
Index test 5. Cardiac Magnetic	50% sten.		1	Single study	No	Not applicable		
Resonance (CMR) (Wall Motion)	70% sten.		0	N/A	No			
Index test 6. CMR (perfusion)	50% sten.		5	Meta- analysis	Base case	6. CTCA+CMR 9. CMR+ICA		
	70% sten.		3	Meta- analysis	Sensitivity analysis 1	12. CMR+CTCA 15. CTCA-CMR		
Index test 7a. Myocardial	50% sten.		11	Meta- analysis	Base case	4. CTCA+SPECT 7. SPECT+ICA		
Perfusion Scintigraphy (MPS) (SPECT)	70% sten.		4	Meta- analysis	Sensitivity analysis 1	10. SPECT+CTCA 13. CTCA-SPECT		
Index test 7b.	50% sten. 70% sten.		0	N/A	No	Not applicable		
MPS (PET)			1	Single study	No			
Index test 8. CT Fractional Flow Reserve			0	N/A	No	Not applicable		
Index test 9. CT Perfusion	CT 50% sten. 70% sten.		1	Single study	No	Not applicable		
			1	Single study	No			

The parameters for sensitivity and specificity taken from the meta-analyses and used in the economic model are presented in Table 32.

				Distribution parameters for probabilistic sensitivity analysis		
Test	Mean sensitivity	Low 95% Cl	High 95% Cl	Distribution	alpha	beta
Sensitivity						
ICA	1	n/a	n/a	n/a	n/a	n/a
CTCA	0.959	0.944	0.970	beta	856.171	36.604
ECHO	0.756	0.720	0.789	beta	449.342	145.026
CMR	0.840	0.764	0.895	beta	100.250	19.095
SPECT	0.806	0.735	0.861	beta	121.178	29.167
Specificity						
ICA	1	n/a	n/a	n/a	n/a	n/a
CTCA	0.785	0.717	0.840	beta	133.782	36.641
ECHO	0.804	0.706	0.876	beta	66.562	16.227
CMR	0.846	0.772	0.899	beta	104.163	18.961
SPECT	0.784	0.698	0.852	beta	85.239	23.484

Table 32: Sensitivity and specificity parameters, base case, 50% stenosis threshold

P.3.2 Complications during testing

During a test there is a risk of death or non-fatal complication. Due to the variation in the type of complications that can occur, the model simply records the total probability of any non-fatal complication over the course of a strategy, rather than attempting to differentiate specific adverse effects. The effects of radiation exposure were not included due to the timeframe of the model.

	Tobability of adverse effect due to testing					
Test	Adverse effect	Probability per 10,000	Source			
ICA	Death	7.20	West R, Ellis G, Brooks N (2006) Complications of			
	Non-fatal complication	74.00	diagnostic cardiac catheterisation: results from a confidential inquiry into cardiac catheter complications. Heart 92:810-814			
CTCA	Death	0.09	Caro JJ, Trindade E, McGregor M (1991) The risks			
	high ana	of death and of severe nonfatal reactions with high- vs low-osmolality contrast media: a meta- analysis. American Journal of Roentgenology 156(4):825-32				
SPECT	Death	0.95	Lette J, Tatum JL, Fraser S et al. (1995) Safety of			
	Non-fatal complication	5.01	dipyridamole testing in 73,806 patients: the multicentre dipyridamole safety study. Journal of Nuclear Cardiology 2:3-17			
ECHO	Death	1.00	Expert advice			
	Non-fatal complication	19.93	Secknus M, Marwick TH (1997) Evolution of dobutamine echocardiography protocols and indications: safety and side effects in 3,011 studies over 5 years. Journal of the American College of Cardiology 29:1234-40			

Table 33: Probability of adverse effect due to testing

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Test	Adverse effect	Probability per 10,000	Source	
CMR	Death	0.95	Lette J, Tatum JL, Fraser S et al. (1995) Safety of	
	Non-fatal complication	5.01	dipyridamole testing in 73,806 patients: the multicentre dipyridamole safety study. Journal of Nuclear Cardiology 2:3-17	

P.3.3 Costs

The costs of tests are presented in Table 34. NHS reference costs were used for all tests except for CMR. The committee determined that the reference cost for CMR was not representative of its true cost. The Payment by Results tariff has been used rather than the reference cost because it is believed to better represent the cost of CMR. Table 35 provides the cost of non-fatal complications. These costs were fixed and not altered in the probabilistic sensitivity analysis. They were approximated by calculating the weighted average of individual complications and combining this with the likelihood of them occurring relative to other complications.

Gamma distribution

Table 34: Cost of tests

				parameters	
Test	Code, description	Source	Amount	alpha	Lambda
ICA	EY43A to EY43F, Standard cardiac catheterisation	NHS Reference Costs 2014-15, weighted average	£1684.71	16.000	0.009
СТСА	RD28Z, Complex computerised tomography scan	NHS Reference Costs 2014-15	£122.11	15.997	0.131
SPECT	RN21Z, Myocardial perfusion scan, stress only	NHS Reference Costs 2014-15	£367.29	16.001	0.044
ECHO	EY50Z, Complex echocardiogram	NHS Reference Costs 2014-15	£271.31	15.999	0.059
CMR	RA67Z, Cardiac magnetic resonance imaging scan, pre and post contrast	Enhanced Tariff Option 2015-16	£515.00	16.000	0.031

Table 35: Cost of non-fatal complications

Test	Amount	Source
ICA	£1,378.89	NHS reference costs 2014-15, weighted average of EB07A-E, AA22C-G, EY40A-D, EY41A-D, EB05A-C, AA29C-F, EB10A-E, EY42A-D, EY43A-F, with the cost of each proportioned according to how often complications occurred in West et al. 2006.
СТСА	£1,219.76	NHS reference costs 2014-15, weighted average of EB07A-E with the cost of each proportioned according to how often the complication occurred in Caro et al. 1991
SPECT	£1,554.18	NHS reference costs 2014-15, weighted average of EB10A-E, EB07A-E, with the cost of each proportioned according to how often the complications occurred in Lette et al. 1995
ECHO	£1,261.22	NHS reference costs 2014-15, weighted average of EB07A-E, EB04Z, EB08A-E, with the cost of each proportioned according to how often

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Test	Amount	Source
		complications occurred in Secknus et al. 1997
CMR	£1,554.18	NHS reference costs 2014-15, weighted average of EB10A-E, EB07A-E, AA29C-F, DZ19H-K, with the cost of each proportioned according to how often the complications occurred in Lette et al. 1995

P.3.4 SA1: 70% stenosis threshold

For the first sensitivity analysis the mean sensitivities and specificities were replaced with those from the secondary meta-analysis results based on a 70% stenosis threshold. The alternative sensitivities and specificities are provided in Table 36. The confidence intervals in this scenario are wider due to the smaller number of studies included in the meta-analyses.

			Distribution parameters for probabilistic sensitivity analysis			
Test	Mean sensitivity	Low 95% Cl	High 95% Cl	Distribution	alpha	beta
Sensitivity						
ICA	1	n/a	n/a	n/a	n/a	n/a
CTCA	0.960	0.884	0.987	beta	52.435	2.185
ECHO	0.752	0.617	0.851	beta	38.606	12.732
CMR	0.931	0.842	0.971	beta	54.295	4.024
SPECT	0.762	0.443	0.928	beta	8.266	2.582
Specificity						
ICA	1	n/a	n/a	n/a	n/a	n/a
CTCA	0.723	0.547	0.850	beta	23.512	9.008
ECHO	0.876	0.792	0.929	beta	77.028	10.904
CMR	0.809	0.559	0.934	beta	12.851	3.034
SPECT	0.758	0.583	0.876	beta	24.130	7.704

Table 36: Sensitivity and specificity of tests, 70% stenosis threshold

P.3.5 SA2: Cost of CTCA

The 2015-16 tariff for CTCA was similar to the NHS reference cost so the reference cost was used in the base case analysis. However, the committee expressed reservations about whether the reference cost for CTCA fully captured the true cost of the complex nature of CTCA so a threshold analysis was conducted to test the impact on results of varying the cost of CTCA.

P.3.6 SA3: Cost of CMR

The RA67Z tariff amount of £515 was used for CMR in the base case. This sensitivity analysis used the 2014-15 reference cost for RD10Z, Cardiac Magnetic Resonance Imaging Scan with pre and post contrast, £244.79, to match the source of the costs for other tests.

P.4 Results

The base case results are provided in Table 37. These are incremental results excluding dominated or extendedly dominated strategies (because dominated strategies have less correct diagnoses at a

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

higher cost). CTCA has the lowest cost per correct diagnosis for all subgroups. For the 20% pre-test likelihood subgroup, the addition of ECHO for any positive CTCA result increases the proportion of correct diagnoses (defined as (true positives + true negatives) / total patients) by 9.09% at an additional cost of £1,096 per correct diagnosis. Alternatively, the addition of CMR for any positive CTCA result increases the proportion of correct diagnoses by 2.37% at a cost of £3,707 per correct diagnosis relative to CTCA+ECHO. The strategy of ICA only increases the proportion of correct diagnoses by 5.77% at an additional cost of £23,983 relative to CTCA+CMR. There is no cost-effectiveness threshold for cost per correct diagnosis so the optimal strategy cannot be clearly identified because we do not know at what point the additional cost exceeds an acceptable opportunity cost.

For the 45% pre-test likelihood subpopulation, the addition of CMR for any positive CTCA result increases the proportion of correct diagnoses by 3.07% at an additional cost of £9,232 per correct diagnosis relative to CTCA only.

For the 75% pre-test likelihood subpopulation, all combination strategies are dominated compared with CTCA and ICA. The ICA strategy only compared with the CTCA only strategy increases the proportion of correct diagnoses by 7.67% at a cost of £20,507 per correct diagnosis.

Cost effectiveness planes are provided in Figure 107, Figure 108 and Figure 109. These figures plot the average cost vs. the average proportion of correct diagnoses for each strategy. Undominated strategies included in incremental analysis (Table 37) are connected by a line representing the cost-effectiveness frontier with dominated and extendedly dominated options appearing to the northwest of this line.

The results for all strategies, including those that are dominated, are provided in Table 38. This table reports the average cost and effect for all strategies compared to a common baseline, no testing, and whether they are dominated or not. Undominated strategies appear in both Table 37 and Table 38.

The probabilistic sensitivity analysis results were the same as the deterministic results.

20% pre-test likelihood						
Strategy	Cost	Proportion correctly diagnosed	Incremental cost	Incremental correct diagnosis	Incremental cost per correct diagnosis	
16. No testing	0.00	0.00%	-	-	-	
2. CTCA	122.49	81.95%	122.49	81.95%	£149	
5. CTCA+ECHO	222.07	91.04%	99.59	9.09%	£1,096	
6. CTCA+CMR	310.07	93.41%	88.00	2.37%	£3,707	
1. ICA	1,694.91	99.19%	1,384.84	5.77%	£23,983	
45% pre-test likeliho	ood					
Strategy	Cost	Proportion correctly diagnosed	Incremental cost	Incremental correct diagnosis	Incremental cost per correct diagnosis	
Strategy 16. No testing	Cost 0.00	correctly		correct	per correct	
		correctly diagnosed		correct diagnosis	per correct	
16. No testing	0.00	correctly diagnosed 0.00%	cost -	correct diagnosis	per correct diagnosis -	
16. No testing 2. CTCA	0.00 122.49	correctly diagnosed 0.00% 86.30%	cost - 122.49	correct diagnosis - 86.30%	per correct diagnosis - £142	

Table 37: Base case deterministic results, incremental cost effectiveness, undominated strategies only, 50% stenosis threshold

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

20% pre-test likelihood						
Strategy	Cost	Proportion correctly diagnosed	Incremental cost	Incremental correct diagnosis	Incremental cost per correct diagnosis	
16. No testing	0.00	0.00%	-	-	-	
2. CTCA	122.49	91.52%	122.49	91.52%	£134	
1. ICA	1,694.91	99.19%	1,572.42	7.67%	£20,507	

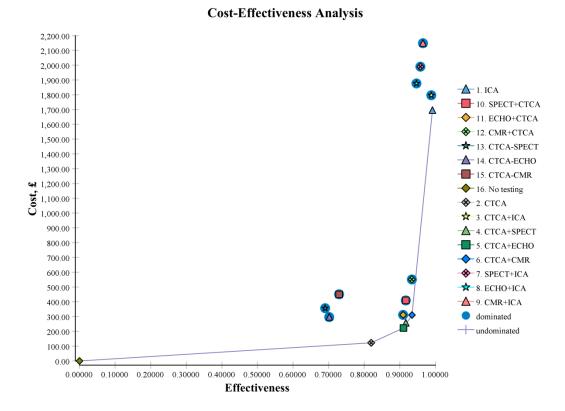
Table 38: Base case results, all strategies compared with no testing

20% pre-test likelihoo	d		-	
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	81.95%	£149	undominated
5. CTCA+ECHO	222.07	91.04%	£244	undominated
4. CTCA+SPECT	256.35	91.70%	£280	ext. dominated
14. CTCA-ECHO	296.64	70.16%	£423	abs. dominated
6. CTCA+CMR	310.07	93.41%	£332	undominated
11. ECHO+CTCA	311.47	90.93%	£343	abs. dominated
13. CTCA-SPECT	356.58	69.02%	£517	abs. dominated
10. SPECT+CTCA	408.96	91.68%	£446	abs. dominated
15. CTCA-CMR	450.52	72.94%	£618	abs. dominated
12. CMR+CTCA	550.91	93.40%	£590	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
3. CTCA+ICA	1,796.73	98.85%	£1,818	abs. dominated
8. ECHO+ICA	1,876.42	94.68%	£1,982	abs. dominated
7. SPECT+ICA	1,990.02	95.79%	£2,077	abs. dominated
9. CMR+ICA	2,148.70	96.51%	£2,226	abs. dominated
45% pre-test likelihoo	d			
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	86.30%	£142	undominated
14. CTCA-ECHO	245.72	79.16%	£310	abs. dominated
5. CTCA+ECHO	272.99	85.19%	£320	abs. dominated
13. CTCA-SPECT	288.14	78.45%	£367	abs. dominated
4. CTCA+SPECT	324.79	87.18%	£373	ext. dominated
11. ECHO+CTCA	328.58	85.12%	£386	abs. dominated
15. CTCA-CMR	354.62	81.18%	£437	abs. dominated
6. CTCA+CMR	405.97	89.37%	£454	undominated
10. SPECT+CTCA	427.01	87.16%	£490	abs. dominated
12. CMR+CTCA	571.90	89.36%	£640	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
8. ECHO+ICA	1,775.23	88.48%	£2,006	abs. dominated
3. CTCA+ICA	1,781.31	97.68%	£1,824	abs. dominated
7. SPECT+ICA	1,909.81	90.83%	£2,103	abs. dominated
9. CMR+ICA	2,083.06	92.37%	£2,255	abs. dominated
75% pre-test likelihoo	d			
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	91.52%	£134	undominated
14. CTCA-ECHO	184.63	89.96%	£205	abs. dominated
13. CTCA-SPECT	206.01	89.75%	£230	abs. dominated
15. CTCA-CMR	239.53	91.07%	£263	abs. dominated
5. CTCA+ECHO	334.09	78.17%	£427	abs. dominated
11. ECHO+CTCA	349.12	78.14%	£447	abs. dominated
4. CTCA+SPECT	406.91	81.75%	£498	abs. dominated
10. SPECT+CTCA	448.68	81.74%	£549	abs. dominated
6. CTCA+CMR	521.06	84.52%	£616	abs. dominated
12. CMR+CTCA	597.09	84.52%	£706	abs. dominated
8. ECHO+ICA	1,653.81	81.04%	£2,041	abs. dominated

1. ICA

1,694.91

£1,709


undominated

99.19%

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

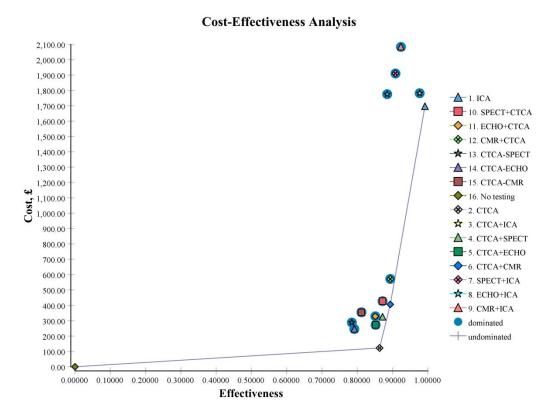

20% pre-test likelihood				
3. CTCA+ICA	1,762.81	96.27%	£1,831	abs. dominated
7. SPECT+ICA	1,813.56	84.87%	£2,137	abs. dominated
9. CMR+ICA	2,004.29	87.41%	£2,293	abs. dominated

Figure 107: Cost-effectiveness plane, base case analysis, 20% pre-test likelihood, 50% stenosis threshold

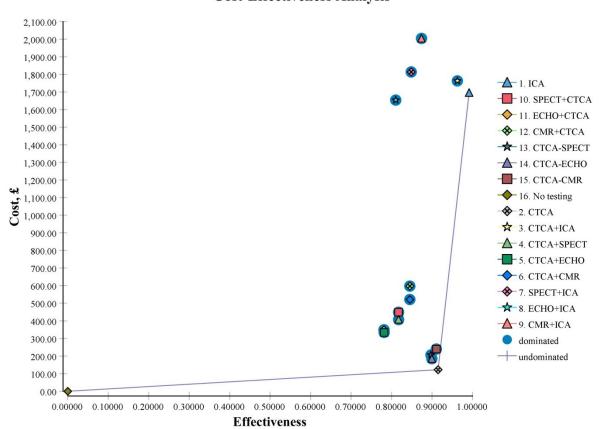

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 108: Cost-effectiveness plane, base case analysis, 45% pre-test likelihood, 50% stenosis threshold

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 109: Cost-effectiveness plane, base case analysis, 75% pre-test likelihood, 50% stenosis threshold

Cost-Effectiveness Analysis

P.4.1 Sensitivity analysis results

P.4.1.1 SA1: 70% stenosis threshold

Sensitivity analysis 1, where sensitivity and specificity are based on the 70% stenosis threshold, showed similar results to the base case.

Table 39: SA1, 70% stenosis threshold, incremental cost effectiveness results excluding dominated and extendedly dominated strategies

20% pre-test likelihood						
Strategy	Cost	Proportion correctly diagnosed	Incremental cost	Incremental correct diagnosis	Incremental cost per correct diagnosis	
16. No testing	0.00	0.00%	-	-	-	
2. CTCA	122.49	77.02%	122.49	77.02%	£159	
5. CTCA+ECHO	235.71	91.59%	113.22	14.58%	£777	
6. CTCA+CMR	335.75	93.59%	100.04	2.00%	£5,000	
1. ICA	1,694.91	99.19%	1,359.16	5.60%	£24,283	
45% pre-test likelihood						
Strategy	Cost	Proportion	Incremental	Incremental	Incremental cost	

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

		correctly diagnosed	cost	correct diagnosis	per correct diagnosis
16. No testing	0.00	0.00%	-	-	-
2. CTCA	122.49	82.94%	122.49	82.94%	£148
6. CTCA+CMR	423.79	92.25%	301.30	9.31%	£3,236
1. ICA	1,694.91	99.19%	1,271.12	6.94%	£18,316
75% pre-test likel	ihood				
Strategy	Cost	Proportion correctly diagnosed	Incremental cost	Incremental correct diagnosis	Incremental cost per correct diagnosis
16. No testing	0.00	0.00%	-	-	-
16. No testing 2. CTCA	0.00 122.49	0.00% 90.05%	- 122.49	- 90.05%	- £136

Table 40: SA1, 70% stenosis threshold, all strategies compared with no testing

20% pre-test likelihood				
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	77.02%	£159	undominated
5. CTCA+ECHO	235.71	91.59%	£257	undominated
4. CTCA+SPECT	274.67	89.22%	£308	abs. dominated
14. CTCA-ECHO	283.01	70.34%	£402	abs. dominated
11. ECHO+CTCA	304.33	91.49%	£333	abs. dominated
6. CTCA+CMR	335.75	93.59%	£359	undominated
13. CTCA-SPECT	338.25	63.61%	£532	abs. dominated
10. SPECT+CTCA	410.42	89.21%	£460	abs. dominated
15. CTCA-CMR	424.84	66.69%	£637	abs. dominated
12. CMR+CTCA	556.76	93.58%	£595	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
3. CTCA+ICA	1,797.62	98.83%	£1,819	abs. dominated
8. ECHO+ICA	1,874.42	94.65%	£1,980	abs. dominated
7. SPECT+ICA	1,975.35	94.90%	£2,081	abs. dominated
9. CMR+ICA	2,179.86	98.29%	£2,218	abs. dominated
45% pre-test likelihood				
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	82.94%	£148	undominated
14. CTCA-ECHO	236.27	79.29%	£298	abs. dominated
13. CTCA-SPECT	275.43	74.67%	£369	abs. dominated
5. CTCA+ECHO	282.45	85.47%	£330	ext. dominated
11. ECHO+CTCA	323.52	85.41%	£379	abs. dominated
15. CTCA-CMR	336.80	77.00%	£437	abs. dominated
4. CTCA+SPECT	337.50	84.18%	£401	abs. dominated
6. CTCA+CMR	423.79	92.25%	£459	undominated
10. SPECT+CTCA	426.34	84.17%	£507	abs. dominated
12. CMR+CTCA	579.40	92.24%	£628	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
8. ECHO+ICA	1,771.74	88.33%	£2,006	abs. dominated
3. CTCA+ICA	1,782.45	97.70%	£1,825	abs. dominated
7. SPECT+ICA	1,876.43	88.85%	£2,112	abs. dominated
9. CMR+ICA	2,152.65	96.41%	£2,233	abs. dominated
75% pre-test likelihood				
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	90.05%	£136	undominated
14. CTCA-ECHO	180.18	90.02%	£200	abs. dominated
13. CTCA-SPECT	200.03	87.95%	£227	abs. dominated
15. CTCA-CMR	231.15	89.38%	£259	abs. dominated

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

suspected cardiac of	18111/			
5. CTCA+ECHO	338.53	78.13%	£433	abs. dominated
11. ECHO+CTCA	346.55	78.10%	£444	abs. dominated
4. CTCA+SPECT	412.89	78.13%	£528	abs. dominated
10. SPECT+CTCA	445.43	78.12%	£570	abs. dominated
6. CTCA+CMR	529.44	90.64%	£584	ext. dominated
12. CMR+CTCA	606.58	90.63%	£669	abs. dominated
8. ECHO+ICA	1,648.53	80.76%	£2,041	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
7. SPECT+ICA	1,757.73	81.59%	£2,154	abs. dominated
3. CTCA+ICA	1,764.25	96.33%	£1,831	abs. dominated
9. CMR+ICA	2,120.00	94.16%	£2,251	abs. dominated

P.4.1.2 SA2: Cost of CTCA

Threshold analysis was conducted to identify at what cost the CTCA only strategy ceased to be the least cost per correct diagnosis option. The cost of CTCA would need to be at least £395 (from £122.11) before it would not be considered the lowest cost per correct diagnosis. EHCO+CTCA became the strategy with the lowest cost per correct diagnosis at figures above this point.

Subpopulation	Cost of CTCA at which CTCA only was no longer the least cost per correct diagnosis	Strategy that became the least cost per correct diagnosis
20%	£394.95	ECHO+CTCA
45%	£494.84	ECHO+CTCA
75%	£710.32	ECHO+CTCA

Table 41: SA2 results, threshold analysis of cost of CTCA, 50% stenosis threshold

P.4.1.3 SA3: Cost of CMR

The results for the sensitivity analysis where the cost of CMR was reduced to £244.79 from £515 are provided in Table 42. For a 20% pre-test likelihood, CTCA+ECHO became a dominated strategy and was excluded from the incremental analysis. The average cost of CTCA+CMR decreased to £211.80 from £310.07 and the incremental cost per correct diagnosis for CTCA+CMR decreased to £779 from £3,707. For a 45% pre-test likelihood, CTCA+ECHO was dominated and the incremental cost per correct diagnosis for CTCA+CMR decreased to £779 from £3,707. For a 45% pre-test likelihood, CTCA+ECHO was dominated and the incremental cost per correct diagnosis for CTCA+CMR decreased to £4,396 from £9,232 in the base case. For a 75% pre-test likelihood, CTCA+CMR was dominated in both the base case and SA3.

Table 42: SA3, reduced cost for CMR, incremental results, undominated strategies only, 50% stenosis threshold

20% pre-test likelihood						
Strategy	Cost	Proportion correctly diagnosed	Incremental cost	Incremental correct diagnosis	Incremental cost per correct diagnosis	
16. No testing	0.00	0.00%	-	-	-	
2. CTCA	122.49	81.95%	122.49	81.95%	£149	
6. CTCA+CMR	211.80	93.41%	89.31	11.46%	£779	
1. ICA	1,694.91	99.19%	1,483.11	5.77%	£25,685	
45% pre-test likeliho	45% pre-test likelihood					
Strategy	Cost	Proportion correctly diagnosed	Incremental cost	Incremental correct diagnosis	Incremental cost per correct diagnosis	
16. No testing	0.00	0.00%	-	-	-	

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

2. CTCA	122.49	86.30%	122.49	86.30%	£142
6. CTCA+CMR	257.46	89.37%	134.97	3.07%	£4,396
1. ICA	1,694.91	99.19%	1,437.45	9.82%	£14,645
75% pre-test likeliho	ood				
		Proportion		Incremental	Incremental cost
Strategy	Cost	correctly diagnosed	Incremental cost	correct diagnosis	per correct diagnosis
Strategy 16. No testing	Cost 0.00	correctly		correct	per correct
0,		correctly diagnosed	cost	correct	per correct diagnosis

Table 43: SA3, reduced cost of CMR, all strategies compared with no testing, 50% stenosis threshold

20% pre-test likelihood				
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	81.95%	£149	undominated
6. CTCA+CMR	211.80	93.41%	£227	undominated
5. CTCA+ECHO	222.07	91.04%	£244	abs. dominated
4. CTCA+SPECT	256.35	91.70%	£280	abs. dominated
15. CTCA-CMR	278.67	72.94%	£382	abs. dominated
12. CMR+CTCA	280.56	93.40%	£300	abs. dominated
14. CTCA-ECHO	296.64	70.16%	£423	abs. dominated
11. ECHO+CTCA	311.47	90.93%	£343	abs. dominated
13. CTCA-SPECT	356.58	69.02%	£517	abs. dominated
10. SPECT+CTCA	408.96	91.68%	£446	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
3. CTCA+ICA	1,796.73	98.85%	£1,818	abs. dominated
8. ECHO+ICA	1,876.42	94.68%	£1,982	abs. dominated
9. CMR+ICA	1,878.49	96.51%	£1,946	abs. dominated
7. SPECT+ICA	1,990.02	95.79%	£2,077	abs. dominated
45% pre-test likelihood				
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	86.30%	£142	undominated
15. CTCA-CMR	233.01	81.18%	£287	abs. dominated
14. CTCA-ECHO	245.72	79.16%	£310	abs. dominated
6. CTCA+CMR	257.46	89.37%	£288	undominated
5. CTCA+ECHO	272.99	85.19%	£320	abs. dominated
13. CTCA-SPECT	288.14	78.45%	£367	abs. dominated
12. CMR+CTCA	301.55	89.36%	£337	abs. dominated
4. CTCA+SPECT	324.79	87.18%	£373	abs. dominated
11. ECHO+CTCA	328.58	85.12%	£386	abs. dominated
10. SPECT+CTCA	427.01	87.16%	£490	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
8. ECHO+ICA	1,775.23	88.48%	£2,006	abs. dominated
3. CTCA+ICA	1,781.31	97.68%	£1,824	abs. dominated
9. CMR+ICA	1,812.85	92.37%	£1,963	abs. dominated
7. SPECT+ICA	1,909.81	90.83%	£2,103	abs. dominated
75% pre-test likelihood			,	
			Average cost per	
Strategy	Cost	Proportion correct diagnosis	correct diagnosis	Dominance
16. No testing	0.00	0.00%	£0	undominated
2. CTCA	122.49	91.52%	£134	undominated
15. CTCA-CMR	178.21	91.07%	£196	abs. dominated
14. CTCA-ECHO	184.63	89.96%	£205	abs. dominated
13. CTCA-SPECT	206.01	89.75%	£230	abs. dominated
6. CTCA+CMR	312.25	84.52%	£369	abs. dominated
12. CMR+CTCA	326.75	84.52%	£387	abs. dominated

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Suspected curate on	5/			
5. CTCA+ECHO	334.09	78.17%	£427	abs. dominated
11. ECHO+CTCA	349.12	78.14%	£447	abs. dominated
4. CTCA+SPECT	406.91	81.75%	£498	abs. dominated
10. SPECT+CTCA	448.68	81.74%	£549	abs. dominated
8. ECHO+ICA	1,653.81	81.04%	£2,041	abs. dominated
1. ICA	1,694.91	99.19%	£1,709	undominated
9. CMR+ICA	1,734.08	87.41%	£1,984	abs. dominated
3. CTCA+ICA	1,762.81	96.27%	£1,831	abs. dominated
7. SPECT+ICA	1,813.56	84.87%	£2,137	abs. dominated

P.4.1.4 Probabilistic sensitivity analysis

Probabilistic sensitivity analysis was conducted to take into account the joint uncertainty of multiple parameters at once using Monte Carlo simulation. Cost-effectiveness acceptability curves show the proportion of microsimulations that favour a particular strategy at varying values of the cost-effectiveness threshold in terms of cost per correct diagnosis. Figure 110, Figure 111 and Figure 112, present cost-effectiveness acceptability curves for the undominated strategies in the base case analysis. The ability of these graphs to contribute to decision making is limited because there is no threshold for cost per correct diagnosis. However, they do yield some usable information. For example, in Figure 110 for people with a 20% pre-test likelihood of disease, the likelihood that CTCA, CTCA+ECHO or CTCA+CMR are the most cost-effective strategies changes depending on the threshold within a band of £500 to £4,000 per correct diagnosis, highlighting the uncertainty and how close these strategies are for this subpopulation. In contrast, CTCA is clearly favoured for the 75% pre-test likelihood (Figure 112).

For the 20% pre-test likelihood subpopulation, CTCA accounted for the majority of lowest cost per correct diagnosis simulations up until around £1,250 per correct diagnosis when CTCA+ECHO became the most likely to be the lowest cost per correct diagnosis. CTCA+CMR was most likely to be the least cost per correct diagnosis at a cost effectiveness threshold above around £3,800.

For a 45% pre-test likelihood, CTCA remained the most likely to be the lowest cost per correct diagnosis up until a relatively high value around £9,000 when CTCA+CMR became the lowest cost per correct diagnosis.

For the 75% pre-test likelihood, CTCA remained 100% likely to be the lowest cost per correct diagnosis up to £10,000.

The probabilistic sensitivity analysis found that CTCA had the least cost per correct diagnosis for 100% of the simulations for all 3 subpopulations.

The scatterplots showing 1,000 microsimulations for each subpopulation are presented in Figure 113, Figure 114, and Figure 115.

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for noninvasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 110: Cost effectiveness acceptability curve, 20% pre-test likelihood, 50% stenosis threshold

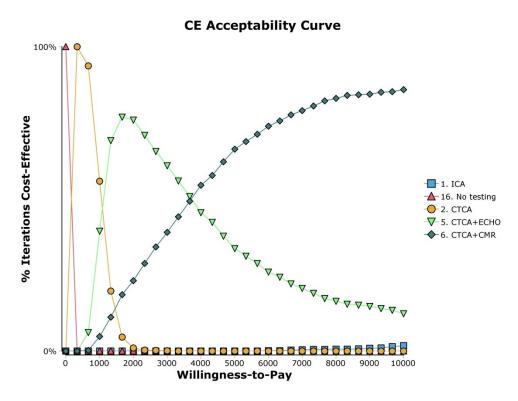
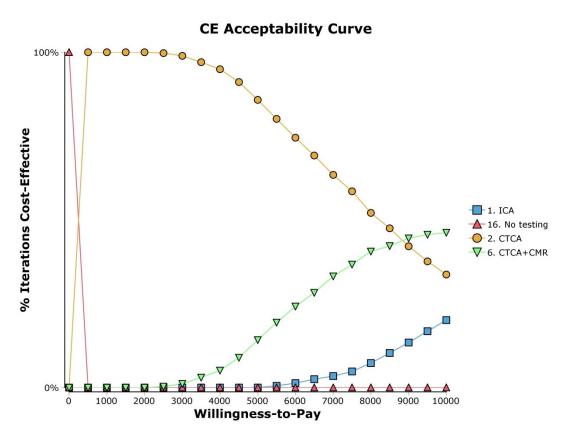
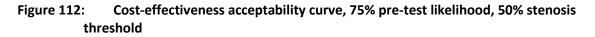
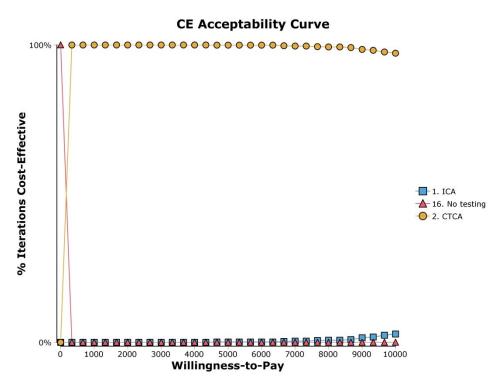
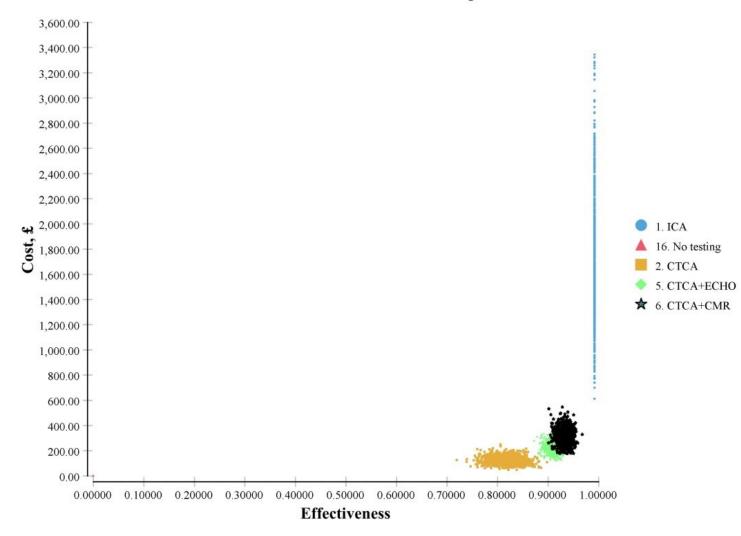
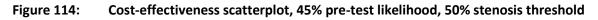
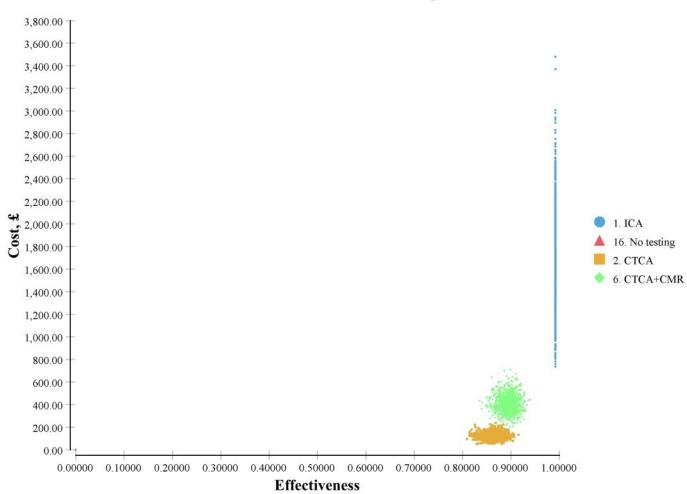





Figure 111: Cost-effectiveness acceptability curve, 45% pre-test likelihood, 50% stenosis threshold

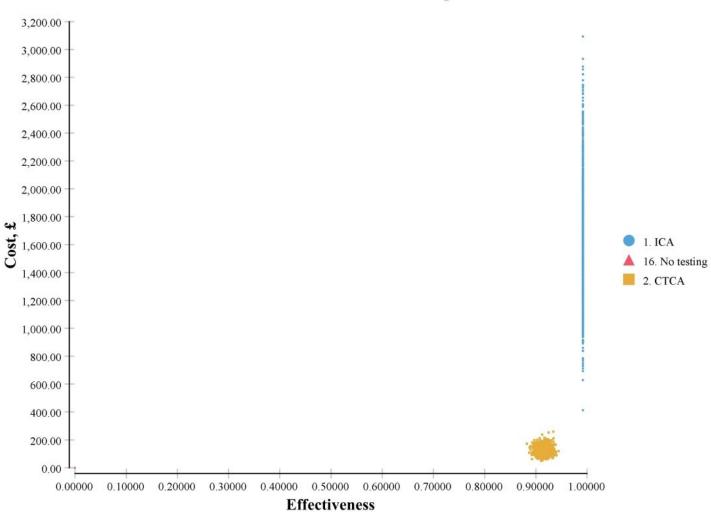





Figure 113: Cost-effectiveness scatterplot, 20% pre-test likelihood of CAD, 50% stenosis threshold

Cost-Effectiveness Scatterplot

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)



Cost-Effectiveness Scatterplot

Cost-effectiveness analysis of testing strategies to diagnose coronary artery disease (review question for non-invasive diagnostic tests, invasive diagnostic tests and calcium scoring in people with stable chest pain of suspected cardiac origin)

Figure 115: Cost-effectiveness scatterplot, 75% pre-test likelihood, 50% stenosis threshold

Cost-Effectiveness Scatterplot

P.4.1.51 Additional model outcomes

2 The number of deaths, non-fatal complications, false positives, false negatives, number of times the

3 second test correctly overruled the first, number of times the second test incorrectly overruled the

4 first, number of times the second test correctly confirmed the first, and number of times the second

5 test incorrectly confirmed the first are provided in Table 44, Table 45, and Table 46 for each of the

6 pre-test likelihood subgroups.

7 Strategies with ICA are the only ones that register a death. Deaths do occur in other strategies but at8 a probability less than 0.5 per 1,000.

9 The highest number of non-fatal complications occurred with ICA, followed by ECHO+ICA.

10 The number of true positives and true negatives are reflected in the summary results in terms of cost 11 per correct diagnosis.

12 The number of false positive results was 0 for the ICA strategy and strategies ending with ICA due to

the assumption of perfect diagnostic accuracy of ICA. Excluding strategies that involve a second testafter negative CTCA results (13, 14 and 15), CTCA had the highest number of false positive results.

15 Strategies that involved a combination of CTCA and functional testing had similar numbers of false

16 positive results. The number of false positive results decreased for all strategies as the pre-test

17 likelihood increased, as expected.

18 CTCA+ECHO and ECHO+CTCA had the highest number of false negative results closely followed by

19 SPECT+CTCA and CTCA+SPECT. Apart from ICA, CTCA-SPECT and CTCA-ECHO had the lowest number 20 of false negatives.

21 The number of times the second test correctly overruled the first occurred the most with the

22 CTCA+ICA and SPECT+ICA strategies. Apart from single test strategies, the least number of times the

23 second test overruled the first occurred with the strategies where functional testing was undertaken

24 following negative CTCA results.

25 The number of times the second test incorrectly overruled the first occurred the most in the

26 strategies where functional testing followed negative CTCA results (13, 14 and 15). Apart from the

27 strategies involving ICA, this occurred the least in strategies where CTCA followed positive functional28 tests (10, 11 and 12).

29

Strategy	Undominated	Deaths	Complications	True positives	False positives	True negatives	False negatives	Second test correctly overrules first	Second test incorrectly overrules first	Second test correctly confirms first	Second test incorrectly confirms first
1. ICA	yes	1	7	198	0	794	0	0	0	0	0
10. SPECT+CTCA		0	1	154	37	762	45	136	7	154	37
13. CTCA-SPECT		0	1	198	307	492	2	7	136	492	2
12. CMR+CTCA		0	1	161	26	773	39	97	7	161	26
11. ECHO+CTCA		0	2	145	34	765	55	123	6	145	34
6. CTCA+CMR	yes	0	0	161	26	773	39	145	31	161	26
15. CTCA-CMR		0	1	199	269	531	1	7	97	531	1
16. No testing	yes	0	0	0	0	0	0	0	0	0	0
2. CTCA	yes	0	0	192	172	628	8	0	0	0	0
3. CTCA+ICA		0	3	190	0	798	8	171	0	190	0
4. CTCA+SPECT		0	0	154	37	763	45	135	37	154	37
5. CTCA+ECHO	yes	0	1	145	34	766	55	138	47	145	34
14. CTCA-ECHO		0	2	198	295	504	2	6	123	504	2
7. SPECT+ICA		0	3	160	0	798	39	171	0	160	0
8. ECHO+ICA		0	4	150	0	797	49	155	0	150	0
9. CMR+ICA		0	3	167	0	799	32	122	0	167	0

Table 44: Additional model outcomes, 20% pre-test likelihood, 50% stenosis threshold, all figures per 1,000

Table 45: Additional model outcomes, 45% pre-test likelihood, 50% stenosis threshold, all figures per 1,000

Strategy	Undominated	Deaths	Complications	True positives	False positives	True negatives	False negatives	Second test correctly overrules first	Second test incorrectly overrules first	Second test correctly confirms first	Second test incorrectly confirms first
1. ICA	yes	1	7	446	0	546	0	0	0	0	0
10. SPECT+CTCA		0	1	348	26	524	102	93	15	348	26
15. CTCA-CMR		0	1	447	185	365	3	15	66	365	3
12. CMR+CTCA		0	1	362	18	531	87	66	15	362	18
5. CTCA+ECHO		0	1	325	23	526	123	95	105	325	23
14. CTCA-ECHO		0	1	445	203	346	4	14	84	346	4
11. ECHO+CTCA		0	2	325	23	526	123	84	14	325	23
16. No testing	yes	0	0	0	0	0	0	0	0	0	0
2. CTCA	yes	0	0	431	118	432	18	0	0	0	0
3. CTCA+ICA		0	4	428	0	549	18	117	0	428	0
4. CTCA+SPECT		0	1	348	26	524	102	93	84	348	26
13. CTCA-SPECT		0	1	446	211	338	4	15	93	338	4
6. CTCA+CMR	yes	0	1	362	18	532	87	100	69	362	18
7. SPECT+ICA		0	4	360	0	549	87	118	0	360	0
8. ECHO+ICA		0	5	337	0	548	110	107	0	337	0

National Guideline Centre. 2016

								Second test	Second test	Second test	Second test
				True	False	True	False	correctly	incorrectly	correctly	incorrectly
Strategy	Undominated	Deaths	Complications	positives	positives	negatives	negatives	overrules first	overrules first	confirms first	confirms first
9. CMR+ICA		0	4	375	0	549	72	84	0	375	0

 Table 46:
 Additional model outcomes, 75% pre-test likelihood, 50% stenosis threshold, all figures per 1,000

Strategy	Undominated	Deaths	Complications	True positives	False positives	True negatives	False negatives	Second test correctly overrules first	Second test incorrectly overrules first	Second test correctly confirms first	Second test incorrectly confirms first
1. ICA	yes	1	7	744	0	248	0	0	0	0	0
10. SPECT+CTCA		0	1	579	12	238	170	42	25	579	12
11. ECHO+CTCA		0	2	542	11	239	206	38	23	542	11
12. CMR+CTCA		0	1	604	8	242	146	30	26	604	8
13. CTCA-SPECT		0	0	744	96	154	6	25	42	154	6
14. CTCA-ECHO		0	1	742	92	157	7	23	38	157	7
15. CTCA-CMR		0	0	745	84	166	5	26	30	166	5
16. No testing	yes	0	0	0	0	0	0	0	0	0	0
2. CTCA	yes	0	0	719	54	196	31	0	0	0	0
3. CTCA+ICA		1	6	713	0	249	31	53	0	713	0
4. CTCA+SPECT		0	1	579	12	238	170	42	139	579	12
5. CTCA+ECHO		0	2	542	11	239	206	43	175	542	11
6. CTCA+CMR		0	1	604	8	242	146	45	115	604	8
7. SPECT+ICA		1	5	599	0	249	145	54	0	599	0
8. ECHO+ICA		0	7	561	0	249	183	49	0	561	0
9. CMR+ICA		1	5	625	0	250	120	38	0	625	0

P.5 Discussion

The testing strategy of CTCA only had the lowest cost per correct diagnosis for all population subgroups in both the base case and the sensitivity analysis based on a 70% stenosis threshold. The addition of functional testing following a positive CTCA result may be cost effective for lower pre-test likelihoods, but which specific functional test would be the most cost-effective cannot be determined without a cost-effectiveness threshold.

Functional testing following a positive CTCA is only beneficial in reducing the number of false positives at the expense of slightly increasing the rate of false negative results.

Although it is difficult to quantify (and therefore not explicitly included in the form of long term modelling), these results should be interpreted within the context of the implications for false negatives and false positives. The potential implications for false negatives include remaining symptomatic with stable chest pain, returning for additional appointments with their GP or cardiologist, further testing with the same or alternative tests which may include ICA, and the costs involved for each of these elements. Due to the ongoing chest pain symptoms, most people with false negative results would be expected to be correctly diagnosed within 12 months although this may take 2 to 3 years. The potential implications and costs for people with false positive test results are varied. Some people will be treated with medication and, because their symptoms were due to a non-cardiac, transient cause, their chest pain alleviates and the medication is assumed to have worked. Therefore, even though they don't have disease, they continue on taking this medication for many years. It is unclear whether this would have negative or positive health effects because most people of this age group have some level of atheroma. In other words, although a person may not have clinically significant CAD, the medicine may have a protective effect, benefit to both health and costs. Alternatively, the medicines may cause side effects, and a cost to the NHS, that otherwise did not need to occur because they don't have disease. Some people treated with medication would continue to experience chest pain because it is caused by something other than CAD. This could be gastrointestinal reflux or a musculoskeletal problem, for example. Because their symptoms continue, they would usually be correctly diagnosed within the space of a year. This may be via an ICA, but not necessarily. In addition to the ICA or other test, people would incur the cost of additional GP and cardiologist visits. There would be a small proportion of people that would experience complications during the ICA or other test. There could also be further complications of whatever it is they do have but this cannot be defined. Some people with false positive results would be sent for treatment with PCI or CABG. However, because ICA is always conducted prior to revascularisation, the only cost incurred would be the cost of an ICA, not the incorrect treatment with PCI or CABG. There would be a small proportion of people who experience complications during the ICA.

The analysis shows that functional testing is unlikely to be cost effective in the higher pre-test likelihood subpopulations. The committee advised that false negative outcomes are more important to avoid than false positives.

One of the strengths of this analysis is that the sensitivity and specificity parameters are based on the latest meta-analyses of all included tests conducted for the clinical evidence review for this update.

P.6 Limitations

The main limitation of this analysis is the lack of long term modelling. This would have provided an explicit trade-off between false positives and false negatives for each strategy and a cost per QALY enabling decision-makers to use NICE's cost-effectiveness threshold. However, the committee

determined that the future treatment pathways, particularly for false positives, were unclear and that given this uncertainty, the results of a long term model would be no less than the uncertainty inherent in the short term model. In addition, the short term model provides somewhat clear results that CTCA is the preferred first line test for all subpopulations.

Calculating results in terms of cost per correct diagnosis implies that false positives and false negatives are of equal value. However, the committee determined that false negative results were more important to prevent because it is important to identify and correctly diagnose disease where it exists. This limitation should be kept in mind when interpreting results.

The long term impacts of radiation exposure have not been included in the model. This is due to the time horizon and also topic expert advice that modern CT scanning uses such low levels of radiation that it would be inconsequential in the older age population to which this analysis applies.

The model assumed conditional independence for the second test. In clinical practice the results of the first test, and indeed the overall clinical history of the patient, would be taken into account when making a diagnosis. The clinical evidence review did not identify data that would have provided inputs for the model without this assumption.

P.7 Conclusion

This short term model shows that CTCA has the lowest cost per correct diagnosis for diagnosing coronary artery disease in people with stable chest pain of suspected cardiac origin. The strategies that involve the addition of functional testing after positive CTCA results may be cost effective in lower levels of pre-test likelihood. Clinicians should be aware that the utility of functional testing is to rule out false positive results in cases where doubt remains about a positive diagnosis following a CTCA.

Appendix Q: Unit costs

Relevant unit costs are provided below to aid consideration of cost effectiveness.

The sections below detail the costs borne by the NHS for introducing routine non-invasive coronary computerised tomographic angiography (CCTA) scanning at emergency department index visits into the diagnostic pathway of acute coronary syndrome for low risk people presenting with acute chest pain.

Evidence from the diagnostic review showed that CCTA has the highest diagnostic accuracy compared to the other non-invasive tests listed in the guideline protocol (apart from rest SPECT, however there is large uncertainty around the rest SPECT result). The costs in Table 47 show that CCTA also has the lowest unit cost per test, implying that it dominates the other tests in terms of cost-effectiveness (that is, it is more effective and less costly). The guideline committee therefore decided to focus the economic analysis on routine CCTA testing versus standard of care (SOC). Current standard of care after initial triage can include any of the non-invasive tests listed in the guideline protocol.

Item	Description	Source	Cost
ССТА	RD28Z, complex computerised tomography scan	NHS Reference Costs 2014-15	£122.11
Rest SPECT	RN20Z, myocardial perfusion scan	NHS Reference Costs 2014-15	£300.00
Stress SPECT	RN21Z, myocardial perfusion scan, stress only	NHS Reference Costs 2014-15	£367.29
ECHO	EY50Z, complex echocardiogram	NHS Reference Costs 2014-15	£271.31
CMR	RA67Z, cardiac magnetic resonance imaging scan, pre- and post-contrast	Enhanced Tariff Option 2015-16	£515.00
Exercise ECG	EY51Z, electrocardiogram monitoring or stress testing	NHS Reference Costs 2014-15	£153.00

Table 47: Unit costs of tests

The introduction of highly sensitive troponin assays has dramatically changed how people with acute chest pain are managed in UK emergency departments. Test results can be analysed a lot earlier than with the standard troponin assays, as they reach peak diagnostic accuracy in a significantly shorter time frame (4 hours compared to 12 hours). This allows for a more rapid discharge than was previously possible. For this reason, any studies conducted prior to the high-sensitivity troponin era were considered not applicable to current NHS practice. The clinical review found one test-and-treat study on CCTA that was relevant to the population, ²⁴⁴ which had been conducted after the introduction of high-sensitivity troponin assays.

The study was conducted in the Netherlands and compared 30-day outcomes of routine CCTA testing at ED index visits versus standard of care for low risk people presenting to the emergency department with acute chest pain or symptoms suggestive of acute coronary syndrome warranting further diagnostic investigation. ²⁴⁴ Standard care consisted of some CCTA testing, however this was

not routine. People in this group were more likely to receive an exercise ECG test. Some people in the routine CCTA group did not receive a CCTA as for some people the test could not be performed, for example for people with insufficient ability to hold their breath. The results found that CCTA and SOC clinical outcomes were equivalent. The study also gave a detailed breakdown of the resource use over 30 days for each arm of the trial which is given below. It concluded that the average cost per patient was lower in the CCTA group than the SOC group (£284 versus €431).^a

Resource use breakdown: 244

Average cost per patient in the CCTA group = [cost of initial ED evaluation] + [cost CCTA] + 0.13 * [cost XECG] + 0.01 * [cost SPECT] + 0.004 * [cost CMR] + 0.17 * [cost ICA] + 0.09 [cost PCI] + 0 * [cost CABG] + 0.05 [cost repeat ED evaluation] + 0.03 [repeat hospital admission] = **£284**

Average cost per patient in the SOC group = [cost of initial ED evaluation] + 0.58 * [cost XECG] + 0.07 * [cost SPECT] + 0.01 * [cost CMR] + 0.13 * [cost ICA] + 0.05 [cost PCI] + 0.02 * [cost CABG] + 0.08 [cost repeat ED evaluation] + 0.06 [repeat hospital admission] = **£431**

Cost minimisation analysis comparing CCTA to SOC

As results from the clinical review and the Netherlands study both reported that clinical outcomes are equivalent between CCTA and SOC, routine CCTA can only be considered cost-effective if it has equal or lower average costs per patient compared to SOC. To determine the cost-effectiveness of CCTA, a de novo cost minimisation analysis was conducted that was based on the resource use reported in the Netherlands study however unit costs from the UK NHS were applied. The unit costs that were included in the analysis are listed in Table 48.

Item	Code and Description	Source	Cost
ССТА	RD28Z, complex computerised tomography scan	NHS Reference Costs 2014-15	£122.11
Stress SPECT	RN21Z, myocardial perfusion scan, stress only	NHS Reference Costs 2014-15	£367.29
CMR	RA67Z, cardiac magnetic resonance imaging scan, pre- and post-contrast	Enhanced Tariff Option 2015-16	£515.00
Exercise ECG	EY51Z, electrocardiogram monitoring or stress testing	NHS Reference Costs 2014-15	£153.00
ICA	EY43A to EY43F, standard cardiac catheterisation with CC score 0-13+	NHS Reference Costs 2014-15, weighted average	£1,141.26
PCI	EY40A to EY41D, standard or complex percutaneous transluminal coronary angioplasty with CC score 0-12+	NHS Reference Costs 2014-15, weighted average	£2,242

Table 48: UK unit costs

^a Converted from Euros using OECD purchasing power parities (PPPs).

Item	Code and Description	Source	Cost
CABG	ED28A to ED28B, standard coronary artery bypass graft with CC score 0-10+	NHS Reference Costs 2014-15, weighted average	£7,303.00
ED visit (admitted)	VB09Z, emergency medicine, category 1 investigation with category 1-2 treatment	NHS Reference Costs 2014-15	£132.00
ED visit (non-admitted)	VB09Z, emergency medicine, category 1 investigation with category 1-2 treatment	NHS Reference Costs 2014-15	£107.00
Repeat hospital admission	EB10A to EB10E, actual or suspected myocardial infarction, with CC score 0-13+	NHS Reference Costs 2014-15, weighted average	£280.00

The analysis was split into 3 sections: cost of tests during index visit, cost of tests after index visit, and treatment and repeat admission costs. This was done in order to gain a better understanding of where costs are likely to occur.

Cost of tests during index visit

Table 49 gives details on the average costs of each test at the index visit per patient for both the CCTA and SOC groups. There were 245 people followed up in each group of the study, therefore the probabilities were estimated by dividing the number of tests reported to have been carried out during index visits by 245.

Test	Unit cost	Proportion ^b (n/total n)	Average cost per patient (unit cost * proportion)		
		ССТА	SOC	CCTA	SOC
ExECG	£153.00	0.09 (23/245)	0.53 (130/245)	£13.77	£81.09
ССТА	£122.11	0.971 (238/245)	0.004 (1/245)	£118.62	£0.49
SPECT	£367.29	0.008 (2/245)	0.03 (7/245)	£2.94	£11.02
CMR	£515.00	0.004 (1/245)	0.004 (1/245)	£2.06	£2.06
ICA (no PCI)	£1141.26	0.088 (21.52/245)(a)	0.059 (14.52/245) (a)	£100.43	£67.62
			Total	£237.82	£162.28

Table 49: Cost of tests during index visit per patient

(a) The NHS reference cost for a PCI is likely to include the cost of an ICA. The probability of requiring an ICA in each group was adjusted to only include those that received an ICA with no PCI, to ensure the cost of an ICA was not double counted.^c

Cost of tests after index visit

Table 50 gives details on the estimated average cost of each test after the index visit per person for both groups.

 ^b Proportions were sourced from the Netherlands study 244.
 EJ, Rensing BJ et al. Coronary CT Angiography for Suspected ACS in the Era of High-Sensitivity Troponins: Randomized Multicenter Study. Journal of the American College of Cardiology. 2016; 67(1):16-26.

^c Invasive coronary angiography (ICA), percutaneous coronary intervention (PCI).

Test	Unit cost	Proportion (n/total n)	Average cost per patient (unit cost * proportion)		
		ССТА	SOC	CCTA	SOC
ExECG	£153.00	0.036 (9/245)	0.052 (13/245)	£5.51	£7.96
ССТА	£122.11	0.004 (1/245)	0.008 (2/245)	£0.49	£0.98
SPECT	£367.29	0 (0/245)	0.036 (9/245)	0	£13.22
CMR	£515.00	0 (0/245)	0.008 (2/245)	0	£4.12
ICA (no PCI)	£1141.26	0.018 (4.41/245)(a)	0.014 (3.48/245)(a)	£20.54	£16.23
			Total	£26.54	£42.50

Table 50: Costs of tests after index visit

(a) The NHS reference cost for a PCI is likely to include the cost of an ICA. The probability of requiring an ICA in each group was adjusted to only include those that received an ICA with no PCI, to ensure the cost of an ICA was not double counted.

ICA (no PCI)

It is common for PCI treatment to happen directly after an ICA and within the same procedure, therefore the NHS reference cost for a PCI is likely to include the cost of an ICA within it. For this analysis, it was assumed that all the people that receive a PCI also receive an ICA within the same procedure, with the cost of both included in the PCI cost. However not everyone goes on to receive a PCI after an ICA. For this analysis the probability of requiring an ICA was calculated using only the ICAs that did not then go on to receive a PCI. This was done to avoid double counting the ICA cost for those that did go on to receive PCI treatment. To estimate the proportion of ICAs (with no PCIs) that occurred at and after the index visit, the same proportion was assumed as the total ICAs that occurred at and after the index visit reported in the study.

Costs of treatments and repeat admissions

Table 51 gives details on the average cost of treatments, repeat ED visits and hospital admissions per patient for both groups. These were calculated using the numbers reported in the study, UK costs and results from the test-and-treat clinical review.

				Average cost p	per patient
Test	Unit cost	Proportion (n/total n)		(unit cost * pr	oportion)
		ССТА	SOC	CCTA	SOC
ED visit non- admitted	£107.00	0.024 (6/245)	0.02 (5/245)	£2.57	£2.14
ED visit admitted	£132.00	0.029 (7/245)	0.057 (14/245)	£3.70	£7.52
Hospital admission	£280.00	0.029 (7/245)	0.057 (14/245)	£8.12	£15.95
PCI (inc. ICA)	£2242.00	0.0615(a)	0.0368(a) (31/842)	£137.84	£82.54
CABG	£7303.00	0.0085(a)	0.0095(a) (8/842)	£61.76	£69.39
			Total	£214.11	£177.55

Table 51: Costs of treatment and repeat admissions per patient

(a) Probabilities estimated using results from the test-and-treat clinical review.

Most probabilities in Table 51 were calculated from the Netherlands study results, except for the probabilities of requiring PCI or CABG treatment. These were estimated using the meta-analysed

results from the test-and-treat clinical review. The meta-analysed results were calculated from the results of three studies (including the Netherlands study) ²⁴⁴,^{301,334} on 1,687 people in total, therefore they are likely to be more accurate than the results of the Netherlands study alone. As the costs of these treatments are significantly more expensive than any other unit costs included in the analysis, it was considered more appropriate to use the meta-analysed results in order to reduce the level of bias in the average costs. In the Netherlands study, no one in the CCTA group received a CABG, but four people in the SOC group did. As the guideline committee felt that the probability of a patient receiving a CABG is not likely to be affected by whether they received a CCTA at their ED index visit or not, but instead determined by the underlying condition that they have, they believed using the original results would have led to an unfair bias in favour of CCTA.

Base case results

Table 52 shows the base case results of the cost minimisation analysis.

	SOC	ССТА
Test at index visit (Table 49)	£162.28	£237.82
Tests after index visit (Table 50)	£42.50	£26.54
Treatment and admissions (Table 51)	£177.55	£214.11
Total	£382.33	£478.47

Table 52: Base case results – average cost per patient

The results in Table 52 show that in a UK setting, the SOC group is estimated to have lower average costs over 30 days than the CCTA group: £382.33 compared to £478.47. This is the opposite result to the results reported in the Netherlands study, where the SOC group appeared to have higher average patient costs (£284 versus £430). The study reported that a reason for the CCTA group having lower costs was due to less outpatient testing occurring in that group. Although this is the case, the results above imply that the costs of tests after the index visit are relatively low in both groups. Significantly higher costs occur from the index visit tests and treatment and admissions.

The main explanation for why the results of our analysis conflicted with the results from the original study is that the Netherlands study only reported the median costs, not the mean costs. The distribution of costs in the study was extremely skewed as many people were discharged straight from the ED with low costs while a few people had very high costs due to expensive treatments. These high costs would not be captured in a median cost statistic. Another reason is that the costs used in the study were from the Netherlands not the UK, where there is likely to be some variation. Finally, the probabilities of requiring PCI or CABG treatment were taken from the clinical review and included the combined results of three studies.

Probabilistic analysis

To account for parameter uncertainty and to see how robust the base case results were to changes in resource use or costs, a probabilistic sensitivity analysis (PSA) was undertaken. The guideline committee acknowledged that NHS reference costs are average costs and that the costs of tests, treatments, ED visits and hospital admissions vary by different hospitals and geographically. They also acknowledged that most of the probabilities in the analysis were based on only one study that was not conducted in the UK; therefore they also have a degree of uncertainty and in reality will vary.

For the PSA, beta distributions were attached to all of the proportions and gamma distributions were attached to all of the costs. To define the distributions around the proportions, alpha and beta parameters were calculated from the events recorded in the study. To define the distributions around the costs, alpha and beta parameters were calculated from the interquartile ranges. For the costs that were calculated as weighted averages (for example the cost of a PCI treatment),

distributions were attached to each individual cost, and then new probabilistic weighted averages were calculated from the probabilistic costs. Ten-thousand simulations were run, each simulation simultaneously randomly selecting a value from each distribution and calculating the average cost results. Averages were then taken of the 10,000 simulation results to give the probabilistic results shown in Table 53.

Tuble 55. Trobublistic results (averages of 10,000 simulations) average cost per patient		
	SOC	ССТА
Test at index visit	£162.02	£237.64
Tests after index visit	£43.01	£26.80
Treatment	£177.50	£224.62
Total	£382 (CI £272, £493)	£489 (CI £286, £692)
Number of simulations with the lowest cost	8883 (88.83%)	1117 (11.17%)

Table 53: Pro	babilistic results (av	verages of 10,000 simulations)	– average cost per patient
---------------	------------------------	--------------------------------	----------------------------

The results in Table 53 show that the base case results are robust to changes in the parameter values. On average, the SOC group total costs were £382 compared to £489 for the CCTA group. The PSA results also show that for 8,883 (89%) of the 10,000 simulations, the SOC group had the lowest costs per person.

Economic considerations

Evidence from the literature suggests that routine CCTA for low to intermediate risk people with acute chest pain can lower costs by increasing emergency department discharge rates or decreasing hospital length of stay. ^{300,334,430} The studies that report these findings were conducted before the routine use of high-sensitivity troponin assays, therefore their results are not considered applicable to current UK practice. One study conducted after the introduction of high sensitivity Troponin ²⁴⁴ found that CCTA had lower median costs after 30 days than SOC. However, when UK costs were applied, more accurate estimates for the proportion of people that would require expensive treatments were used, and mean costs were reported, the CCTA group became the group with the highest average costs over 30 days. These results are robust to changes in parameter values.

The cost minimisation results suggest that CCTA is likely to be more costly than standard care and therefore not likely to be cost-effective for a low risk population; however the guideline committee acknowledged that it might be cost effective for other populations, for example an intermediate risk population.

Other considerations

The guideline committee acknowledged that the outcomes reported in the clinical review and in the Netherlands study were only 30-day outcomes and that no long-term health outcomes were reported. The cost minimisation analysis also only included costs that would occur over a 30-day time horizon. Although the guideline committee felt that 30 days may be long enough to capture all the important costs and outcomes, they were aware of the limitations a short time horizon has on the results.

The Netherlands study reported that the mean radiation dose in the CCTA group was higher than the SOC group (7.3 6.6 mSv versus 2.6 6.5 mSv). As 30-day outcomes are estimated to be equivalent and average costs are estimated to be higher with CCTA, it should be considered whether it is worth putting patients at increased risk through the use of CCTA testing.

Appendix R: How this guideline was updated

R.1 Recommendations to be deleted

Recommendation in 2010 guideline	Comment
Take a blood sample for troponin I or T measurement on initial assessment in hospital. These are the preferred biochemical markers to diagnose acute MI. (1.2.5.1)	Replaced by: Perform high sensitivity troponin test as recommended in the NICE diagnostics guidance on myocardial infarction (DG15) for people at high and moderate risk of MI. (1.2.5.2)
Take a second blood sample for troponin I or T measurement 10–12 hours after the onset of symptoms. (1.2.5.2)	Replaced by: Perform high sensitivity troponin test as recommended in the NICE diagnostics guidance on myocardial infarction (DG15) for people at high and moderate risk of MI. (1.2.5.2) Consider a single high sensitivity troponin test at presentation to rule out ACS in people at low risk of MI if the first troponin test is below the lower limit
	of detection. (1.2.5.2)
Novel cardiac biomarkers in people with acute chest pain (research recommendation 4.2)	Research question has been addressed by this 2016 update of CG95.

R.2 Amended recommendation wording (change to meaning)

Recommendation in 2010 guideline	Recommendation in current guideline	Reason for change
Take a resting 12-lead ECG and a blood sample for troponin I or T measurement (see section 1.2.5) on arrival in hospital. (1.2.4.1)	Take a resting 12-lead ECG and a blood sample for high-sensitivity troponin I or T measurement (see section 1.2.5) on arrival in hospital. (1.2.4.1)	Updated to clarify the use of high-sensitivity troponin testing.
Take into account the clinical presentation, the time from onset of symptoms and the resting 12-lead ECG findings when interpreting high sensitivity troponin measurements. (1.2.5.5)	When interpreting high-sensitivity troponin measurements, take into account: the clinical presentation the time from onset of symptoms the resting 12-lead ECG findings the pre-test probability of NSTEMI the length of time since the suspected ACS the probability of chronically elevated troponin levels in some people that 99th percentile thresholds for troponin I and T may differ between the sexes. (1.2.5.7)	Updated to clarify the use of high-sensitivity troponin testing.
When diagnosing MI, use the universal definition of myocardial infarction [2]. This is the detection of	When diagnosing MI, use the universal definition of myocardial infarction. This is the detection of rise	Updated reference to universal definition of MI and removal of the

	Recommendation in current	
Recommendation in 2010 guideline	guideline	Reason for change
rise and/or fall of cardiac biomarkers (preferably troponin) with at least one value above the 99th percentile of the upper reference limit, together with evidence of myocardial ischaemia with at least one of the following: • Symptoms of ischaemia • New or presumed new significant ST-segment-T wave(ST-T) changes or new left bundle branch block (LBBB) • Development of pathological Q waves in the ECG • Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality . • Identification of an intracoronary thrombus by angiography or autopsy (1.2.6.1)	 and/or fall of cardiac biomarkers values [preferably cardiac troponin (cTn)] with at least one value above the 99th percentile of the upper reference limit with at least one of the following: symptoms of ischaemia new or presumed new significant ST-segment-T wave(ST-T) changes or new left bundle branch block (LBBB) development of pathological Q waves in the ECG imaging evidence of new loss of viable myocardium or new regional wall motion abnormality identification of an intracoronary thrombus by angiography (1.2.6.1) 	reference to autopsy as a diagnostic criteria in this context.
Reassess people with chest pain without raised troponin levels (determined from appropriately timed samples) and no acute resting 12-lead ECG changes to determine whether their chest pain is likely to be cardiac. If myocardial ischaemia is suspected, follow the recommendations on stable chest pain in this guideline (see section 1.3). Use clinical judgement to decide on the timing of any further diagnostic investigations. (1.2.6.5)	Reassess people with chest pain without raised troponin levels and no acute resting 12-lead ECG changes to determine whether their chest pain is likely to be cardiac. If myocardial ischaemia is suspected, follow the recommendations on stable chest pain in this guideline (see section 1.3). Use clinical judgement to decide on the timing of any further diagnostic investigations. (1.2.6.5)	Amended to align with new recommendation 1.2.5.3 which suggests that a single test may be used for rule out.
Anginal pain is: constricting discomfort in the front of the chest, or in the neck, shoulders, jaw, or arms precipitated by physical exertion relieved by rest or GTN within about 5 minutes. Use clinical assessment and the typicality of anginal pain features listed below to estimate the likelihood of CAD (see table 1): Three of the features above are defined as typical angina. Two of the three features above are defined as atypical angina. One or none of the features above	Assess the typicality of chest pain as follows: Presence of three of the features below is defined as typical angina. Presence of two of the three features below is defined as atypical angina. Presence of one or none of the features below is defined as non- anginal chest pain. Anginal pain is: constricting discomfort in the front of the chest, or in the neck, shoulders, jaw, or arms precipitated by physical exertion relieved by rest or GTN within about 5 minutes. (1.3.3.1)	Amended to remove reference to estimate of likelihood of CAD and reorganised to clarify.

Recommendation in 2010 guideline	Recommendation in current guideline	Reason for change
are defined as non-anginal chest pain. (1.3.3.1)		
Consider investigating other causes of angina, such as hypertrophic cardiomyopathy, in people with typical angina-like chest pain and a low likelihood of CAD (estimated at less than 10%). (1.3.3.8)	Consider investigating other causes of angina, such as hypertrophic cardiomyopathy, in people with typical angina-like chest pain and a low likelihood of CAD. (1.3.3.6)	Amended to remove numerical estimate of CAD likelihood.
For people in whom stable angina cannot be diagnosed or excluded on the basis of the clinical assessment alone, take a resting 12-lead ECG as soon as possible after presentation. (1.3.3.12)	For people in whom stable angina cannot be excluded on the basis of the clinical assessment alone, take a resting 12-lead ECG as soon as possible after presentation. (1.3.3.10)	Amended to align with new recommendations 1.3.1.1 and 1.3.1.2 which indicate that stable angina can only be excluded by clinical assessment. Diagnosis needs additional testing.
For people with confirmed CAD (for example, previous MI, revascularisation, previous angiography) in whom stable angina cannot be diagnosed or excluded based on clinical assessment alone, see recommendation 1.3.4.4 about functional testing. (1.3.3.15)	For people with confirmed CAD (for example, previous MI, revascularisation, previous angiography) in whom stable angina cannot be excluded based on clinical assessment alone, see recommendation 1.3.4.4 about functional testing. (1.3.3.14)	Amended to align with new recommendations 1.3.1.1 and 1.3.1.2 which indicate that stable angina can only be excluded by clinical assessment. Diagnosis needs additional testing.
Include the typicality of anginal pain features and the estimate of CAD likelihood (see recommendation 1.3.3.16) in all requests for diagnostic investigations and in the person's notes. (1.3.4.1)	Include the typicality of anginal pain features (see recommendation 1.3.3.1) in all requests for diagnostic investigations and in the person's notes. (1.3.4.1)	Amended to remove reference to estimate of likelihood of CAD.

Appendix S: Sections from CG95 which have been updated

S.1 Methods chapter

S.1.1 Introduction

This chapter sets out in detail the methods used to generate the recommendations for clinical practice that are presented in the subsequent chapters of this guideline. The methods are in accordance with those set out by the Institute in 'The guidelines manual'. April 2007. London: National Institute for Health and Clinical Excellence. Available from: www.nice.org.uk/guidelinesmanual. The Guideline Development Process – an overview for

stakeholders, the public and the NHS describes how organisations can become involved in the development of a guideline.

S.1.2 Developing key clinical questions (KCQs)

The first step in the development of the guideline was to refine the guideline scope into a series of key clinical questions (KCQs). These KCQs formed the starting point for the subsequent review and as a guide to facilitate the development of recommendations by the Guideline Development Group (GDG).

The KCQs were developed by the GDG and with assistance from the methodology team. The KCQs were refined into specific evidence-based questions (EBQs) specifying interventions to search and outcomes to be searched for by the methodology team and these EBQs formed the basis of the literature searching, appraisal and synthesis.

The total list of KCQs identified is listed in Appendix C1. The development team, in liaison with the GDG, identified those KCQs where a full literature search and critical appraisal were essential.

S.1.3 Literature search strategy

Systematic literature searches are undertaken to identify published evidence to answer the clinical questions identified by the methodology team and the GDG. The information scientist developed search strategies for each question, with guidance from the GDG, using relevant MeSH (medical subject headings) or indexing terms, and free text terms. Searches were conducted between May 2007 and November 2008. Update searches for all questions were carried out in April 2009 identify any recently published evidence. Full details of the sources and databases searched and the strategies are available in Appendix C2.

An initial scoping search for published guidelines, systematic reviews, economic evaluations and ongoing research was carried out on the following databases or websites: National Library for Health (NLH) Guidelines Finder, National Guidelines Clearinghouse, National Institute for Health and Clinical Excellence (NICE) Guidelines, Scottish Intercollegiate Guidelines Network (SIGN), Canadian Medical Association (CMA) Infobase (Canadian guidelines), National Health and Medical Research Council (NHMRC) Clinical Practice Guidelines (Australian Guidelines), New Zealand Guidelines Group, Guidelines International Network (GIN), OMNI, Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effects (DARE) and Heath Technology Assessment Database (HTA), NHS Economic Evaluations Database (NHSEED), TRIP, Health Evidence Bulletin Wales, BMJ Clinical Evidence, DH Data, and King's Fund. For each clinical question the following bibliographic databases were searched from their inception to the latest date available: Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effects (DARE), Health Technology Database (HTA), MEDLINE, EMBASE, CINAHL, and CENTRAL (Cochrane Controlled Trials Register). When appropriate to the question PsycINFO and AMED were also searched.

The search strategies were developed in MEDLINE and then adapted for searching in other bibliographic databases. Methodological search filters designed to limit searches to systematic reviews or randomised controlled trials were used. These were developed by the Centre for Reviews and Dissemination (CRD) and The Cochrane Collaboration. For all other questions, no restriction was placed on study design.

The economic literature was identified by conducting searches in NHS Economic Evaluations Database (NHSEED) and in MEDLINE, EMBASE and CINAHL using an economics search strategy developed by ScHARR at the University of Sheffield.

Databases of the results of the searches for each question or topic area were created using the bibliographic management software Reference Manager.

S.1.4 Identifying the evidence

After the search of titles and abstracts was undertaken, full papers were obtained if they appeared to address the KCQ. The highest level of evidence was sought. Systematic reviews were initially selected. Where systematic reviews had recently been published, the identification of further studies was not done. Where systematic reviews were not available, diagnostic cohort studies were selected for intervention KCQs, and cohort studies were selected for other KCQs. Surveys were not selected. Expert consensus was used when no studies were available that addressed the KCQ. Following a critical review of the full text paper, articles not relevant to the subject in question were excluded. Cohort and diagnostic studies were excluded if they were conducted on an inappropriate patient population. Diagnostic studies were excluded if the test being evaluated was not compared with a reference standard (that would confirm or refute the diagnosis), and if the test and the reference standard were not evaluated in all patients in the study. Diagnostic studies that did not provide test accuracy statistics (for example sensitivity, specificity) were also excluded.

S.1.5 Critical appraisal of the evidence

From the papers retrieved, the Senior Health Service Research Fellow (SHSRF) synthesised the evidence for each question or questions into a narrative summary. These form the basis of this guideline. Each study was critically appraised using the Institute's criteria for quality assessment and the information extracted for included studies is given in Appendix D. Background papers, for example those used to set the clinical scene in the narrative summaries, were referenced but not extracted.

S.1.6 Health economics

S.1.6.1 Health economic evidence reviews

A broad search of health economics literature was developed based on the original scoping search for the Guideline. The economic literature was identified by conducting searches in NHS Economic Evaluations Database (NHSEED) and also in MEDLINE, EMBASE and CINAHL using an economics search strategy developed by ScHARR at the University of Sheffield. Towards the end of the development of the Guideline, update searches were conducted to search for studies which had been published during the development phase of the Guideline. Databases of the results of the searches for each KCQ or topic area were created using the bibliographic management software Reference Manager™.

Identified titles and abstracts from the economic searches were reviewed by a health economist and full papers obtained as appropriate. Retrieved papers where then reviewed by a health economist, and considered for inclusion in the Guideline. No formal inclusion or exclusion criterion was applied a priori. Each paper was considered on its own merit, and in the context of availability of relevant published economic evaluations to inform the KCQs. All valid incremental cost-utility (QALY) analyses (including cost-consequence analyses where the incremental analyses could be calculated from the available study data), taking an NHS costing perspective, were included for all KCQs. In the absence of NHS based cost-utility analyses, incremental cost-effectiveness analyses using alternative outcome measures (for example the proportion of patients correctly diagnosed), were considered. For KCQs designated as high priority for economic evaluation (primarily investigations for diagnosis of stable and acute chest pain), if no UK based economic evaluations were found in the literature, then non-UK economic evaluations were considered for inclusion, if it was felt that they would inform the GDG's consideration of the cost-effectiveness for the KCQ under consideration (for example where there was dominance which was likely to be replicated in a UK based analysis).

The main reasons for exclusion were that the published study was not an economic evaluation, or that the study population did not meet the inclusion criteria for the review of clinical evidence, as set out in the NICE scope document and as agreed by the GDG. Reasons for exclusion for all requested papers were systematically recorded by the health economist using the reference manager database. A general descriptive overview of the included studies, their quality, and conclusions was presented and summarised in the form of a narrative review (see also Appendix E for the full extractions and reasons for exclusion).

S.1.6.2 Cost-effectiveness modelling

Having reviewed the health economics literature for this guideline, some de novo economic modelling was undertaken to supplement the available published economic analyses. A summary of the methods is provided here with details presented in Appendix F.

Firstly, with the cooperation of the developers of the model presented in the Mowatt 2008 HTA⁵¹⁰, we have replicated their short-term model for diagnosis of CAD. Outputs from the replicated model include short term costs of diagnosis, the 2*2 true, false, positive, negative matrix, and the incremental cost per correctly diagnosed patient. Only the short term cost of diagnosis was previously available from the data presented in the HTA. Both the original analysis presented in the HTA, and the new analysis produced using the replicated model found heavily in favour of 64-slice CT coronary angiography (for example dominance over MPS with SPECT). The GDG, however, had reservations about the existing model, primarily:

- Its relevance for diagnosis of angina (as opposed to coronary artery stenosis assessed by invasive coronary angiography)
- The high sensitivity of 64-slice CT coronary angiography
- Risk of radiation from 64-slice CT coronary angiography.

The latter two reservations were addressed by making revisions to model input assumptions, and by the addition of two new treatment arms respectively. The two new treatment arms explore the health economic impact of using calcium scoring as a pre-cursor to full CT scanning using 64-slice CT. That is, first line testing in the new treatment arm would be by calcium scoring. Patients testing positive or uncertain would then proceed to second line testing using full 64-slice CT coronary angiography. Patients with a negative calcium score would have no further testing, as per the existing model protocol. The difference in the two new treatment arms is inclusion, or exclusion, of invasive coronary angiography as confirmatory third line test.

Because the GDG believed that there was still a role for functional (as opposed to anatomical) testing in chest pain patient populations with moderate likelihood of CAD, a new economic model was built comparing first line functional testing using stress MPS with SPECT compared to first line anatomical testing using invasive coronary angiography. In a sensitivity analysis, invasive coronary angiography was substituted with 64-slice CT coronary angiography.

The economic evaluations presented in the Mowatt et al HTAs of 2004 and 2008, ^{510,511} did build "speculative" longer term cost per QALY Markov models. These models required speculative assumptions to be made about the re-presentations of false-negatives, which of the coronary arteries had significant stenosis, and how these would be treated, as well as the survival and health related quality of life assumptions that would result for treated patients. The results of the longer term model analysis presented in Mowatt 2008⁵¹⁰, indicated that the difference in QALY outcomes was less than one quarter of one percent. Also, results presented in the MPS HTA of 2004⁵¹¹ (tables 39 and 40) indicate that for all but the lowest CAD prevalence populations, the ICERs of the short term cost per proportion of cases correctly diagnosed and the speculative longer term costs per QALY, have similar values, indicating that the former might be a useful proxy for the latter. Based on the above, and because of the diagnostic scope of this guideline, the incremental economic analysis from our de novo models has been confined to the short term incremental cost per correct diagnosis. The GDG was consulted during the construction and interpretation of the model to ensure that appropriate assumptions, model structure, and data sources were used. The results of the de novo health economic analysis are presented in Chapter 5 of this Guideline with further detail of the results and methods presented in Appendix F.

S.1.7 Assigning levels to the evidence

The evidence levels and recommendation are based on the Institute's technical manual 'The guidelines manual'. April 2006. London: National Institute for Health and Clinical Excellence. Available from: www.nice.org.uk/guidelinesmanual. Evidence levels for included studies were assigned based upon details in Table 2.

Table 54	
Levels of evidence	<u>j</u>
Level of evidence	Type of evidence
1++	High-quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias
1+	Well-conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias
1-	Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias
2++	High-quality systematic reviews of case–control or cohort studies High-quality case–control or cohort studies with a very low risk of confounding, bias or chance and a high probability that the relationship is causal
2+	Well-conducted case-control or cohort studies with a low risk of confounding, bias or chance and a moderate probability that the relationship is causal
2–	Case–control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relationship is not causal
3	Non-analytical studies (for example, case reports, case series)
4	Expert opinion, formal consensus

S.1.8 Forming recommendations

In preparation for each meeting, the narrative and extractions for the questions being discussed were made available to the GDG one week before the scheduled GDG meeting. These documents were available on a closed intranet site and sent by post to those members who requested it.

GDG members were expected to have read the narratives and extractions before attending each meeting. The GDG discussed the evidence at the meeting and agreed evidence statements and recommendations. Any changes were made to the electronic version of the text on a laptop and projected onto a screen until the GDG were satisfied with these.

Recommendations were also documented in a care pathway which was reviewed regularly by the GDG.

All work from the meetings was posted on the closed intranet site following the meeting as a matter of record and for referral by the GDG members.

S.1.9 Areas without evidence and consensus methodology

The table of clinical questions in Appendix C1 indicates which questions were searched.

In cases where evidence was sparse, the GDG derived the recommendations via informal consensus methods, using extrapolated evidence where appropriate. All details of how the recommendations were derived can be seen in the 'Evidence to recommendations' section of each of the chapters.

S.1.10 Consultation

The guideline has been developed in accordance with the Institute's guideline development process. This has included allowing registered stakeholders the opportunity to comment on the scope of the guideline and the draft of the full and short form guideline. In addition, the draft was reviewed by an independent Guideline Review Panel (GRP) established by the Institute.

The comments made by the stakeholders, peer reviewers and the GRP were collated and presented for consideration by the GDG. All comments were considered systematically by the GDG and the development team responded to comments.

S.1.11 Relationship between the guideline and other national guidance

S.1.11.1 Related NICE Guidance

It was identified that this guideline intersected with the following NICE guidelines published or in development. Cross reference was made to the following guidance as appropriate.

Published

- Unstable angina and NSTEMI. NICE clinical guideline 94 (2010). Available from www.nice.org.uk/guidance/CG94
- Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. NICE clinical guideline 67 (2008). Available from www.nice.org.uk/guidance/CG67
- Secondary prevention in primary and secondary care for patients following a myocardial infarction. NICE clinical guideline 48 (2007). Available from www.nice.org.uk/CG48
- Hypertension: management of hypertension in adults in primary care. NICE clinical guideline 34 (2006). Available from www.nice.org.uk/CG34

- Statins for the prevention of cardiovascular events. NICE technology appraisal guidance 94 (2006). Available from www.nice.org.uk/TA94
- Anxiety (amended). NICE clinical guideline 22 (2007). Available from www.nice.org.uk/guidance/CG22
- Dyspepsia (amended). NICE clinical guideline 17 (2005). Available from www.nice.org.uk/guidance/CG17
- Myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. NICE technology appraisal guidance 73 (2003). Available from www.nice.org.uk/TA73

Under development

NICE is developing the following guidance (details available from www.nice.org.uk):

- The management of stable angina. NICE clinical guideline. Publication expected July 2011.
- Prevention of cardiovascular disease. NICE public health guideline. Publication date to be confirmed.

Appendix T: NICE technical team

T.1 Acute chest pain

Name	Role
Christine Carson	Guideline Lead
Phil Alderson	Clinical Advisor
Rachel O'Mahony	Technical Lead
Ross Maconachie	Health Economist
Ben Doak	Guideline Commissioning Manager
Helen Dickinson	Guideline Coordinator
Anne-Louise Clayton	Editor

T.2 Stable chest pain

Name	Role
Mark Baker	Clinical Advisor
Steven Barnes	Technical Lead
Christine Carson	Guideline Lead
Ann Louise Clayton	Editor
Jessica Fielding	Public Involvement Advisor
Rupert Franklin	Guideline Commissioning Manager (from November 2015)
Bhash Naidoo	Technical Lead (Health Economics)
Louise Shires	Guideline Commissioning Manager (to November 2015)
Trudie Willingham	Guideline Co-ordinator

Appendix U: References

- 1. Abbasi SA, Heydari B, Shah RV, Murthy VL, Zhang YY, Blankstein R et al. Risk stratification by regadenoson stress magnetic resonance imaging in patients with known or suspected coronary artery disease. American Journal of Cardiology. 2014; 114(8):1198-1203
- 2. Abbott BG, Jain D. Nuclear cardiology in the evaluation of acute chest pain in the emergency department. Echocardiography. 2000; 17(6 Pt 1):597-604
- 3. Abbott BG, Jain D. Impact of myocardial perfusion imaging on clinical management and the utilization of hospital resources in suspected acute coronary syndromes. Nuclear Medicine Communications. 2003; 24(10):1061-1069
- 4. Abd TT, George RT. Association of coronary plaque burden with fractional flow reserve: should we keep attempting to derive physiology from anatomy? Cardiovascular Diagnosis & Therapy. 2015; 5(1):67-70
- 5. Abdel-Rahman AS, Aly HI, Saleh MA, Ibrahim AS, Arafa HMH. Alternative technique using dual source CT imaging for assessment of myocardial perfusion. Egyptian Journal of Radiology and Nuclear Medicine. 2015; 46(2):339-354
- Abdel-Salam Z, El-Hammady W, Abdel-Sattar A, Nammas W. Left Atrial Volume Index at Peak Dobutamine Stress Echocardiography Predicts the Extent of Coronary Artery Disease in Patients with Normal Resting Wall Motion. Echocardiography. 2015; 32(11):1662-1669
- 7. Abdelmoneim S, Bernier M, Dhoble A, Moir S, Hagen ME, Ness S et al. Diagnostic accuracy of contrast echocardiography during adenosine stress for detection of abnormal myocardial perfusion:prospective comparison with single-photon emission computed tomography. European Heart Journal. 2009; 30:627
- 8. Abdelmoneim SS, Basu A, Bernier M, Dhoble A, Abdel-Kader SS, Pellikka PA et al. Detection of myocardial microvascular disease using contrast echocardiography during adenosine stress in type 2 diabetes mellitus: Prospective comparison with single-photon emission computed tomography. Diabetes and Vascular Disease Research. 2011; 8(4):254-261
- 9. Abdelmoneim SS, Bernier M, Dhoble A, Moir S, Hagen ME, Ness SA et al. Diagnostic accuracy of contrast echocardiography during adenosine stress for detection of abnormal myocardial perfusion: a prospective comparison with technetium-99 m sestamibi single-photon emission computed tomography. Heart and Vessels. 2010; 25(2):121-130
- 10. Abdelmoneim SS, Bernier M, Dhoble A, Moir S, Hagen ME, Ness SAC et al. Assessment of myocardial perfusion during adenosine stress using real time three-dimensional and two-dimensional myocardial contrast echocardiography: Comparison with single-photon emission computed tomography. Echocardiography. 2010; 27(4):421-429
- 11. Abdelmoneim SS, Dhoble A, Bernier M, Erwin PJ, Korosoglou G, Senior R et al. Quantitative myocardial contrast echocardiography during pharmacological stress for diagnosis of coronary artery disease: a systematic review and meta-analysis of diagnostic accuracy studies. European Journal of Echocardiography. 2009; 10(7):813-825
- Abdelmoneim SS, Dhoble A, Bernier M, Moir S, Hagen ME, Ness SA et al. Absolute myocardial blood flow determination using real-time myocardial contrast echocardiography during adenosine stress: comparison with single-photon emission computed tomography. Heart. 2009; 95(20):1662-1668

- 13. Abdelmoneim SS, Mulvagh SL, Xie F, O'Leary E, Adolphson M, Omer MA et al. Regadenoson Stress Real-Time Myocardial Perfusion Echocardiography for Detection of Coronary Artery Disease: Feasibility and Accuracy of Two Different Ultrasound Contrast Agents. Journal of the American Society of Echocardiography. 2015; 28(12):1393-1400
- 14. Abdool MA, Ashrafi R, Davies M, Raga S, Lewis-Jones H, Thwaite E et al. A UK cardiac centre experience of low-risk, stable chest pain patients with calcium score of zero. British Journal of Cardiology. 2014; 21(2):78
- 15. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 64-Multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: A systematic review and meta-analysis. European Heart Journal. 2007; 28(24):3042-3050
- 16. Abdulla J, Pedersen KS, Budoff M, Kofoed KF. Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: a systematic review and meta-analysis. The International Journal of Cardiovascular Imaging. 2012; 28(4):943-953
- 17. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrard L et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. Journal of Nuclear Medicine. 2010; 51(4):567-574
- 18. Abramowicz A, Daubert M, Malhotra V, Ferraro S, Ring J, Goldenberg R et al. Computer-aided analysis of 64-slice coronary computed tomography angiography: a comparison with manual interpretation. Heart International. 2013; 8(1):e2
- 19. Abramson BL, Ruddy TD, deKemp RA, Laramee LA, Marquis JF, Beanlands RS. Stress perfusion/metabolism imaging: a pilot study for a potential new approach to the diagnosis of coronary disease in women. Journal of Nuclear Cardiology. 2000; 7(3):205-212
- 20. Achenbach S, Daniel WG. Non-invasive imaging Cardiac imaging in the patient with chest pain: Coronary CT angiography. Heart. 2010; 96(15):1241-1246
- 21. Achenbach S, Giesler T, Ropers D, Ulzheimer S, Derlien H, Schulte C et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation. 2001; 103(21):2535-2538
- 22. Achenbach S, Moshage W, Ropers D, Nossen J, Daniel WG. Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions. New England Journal of Medicine. 1998; 339(27):1964-1971
- 23. Achenbach S, Ropers U, Kuettner A, Anders K, Pflederer T, Komatsu S et al. Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease. JACC: Cardiovascular Imaging. 2008; 1(2):177-186
- 24. Adams GL, Shaw LK, Tuttle RH, Hanson MW, Pagnanelli R, Borges-Neto S. Prediction of mortality in patients with coronary artery disease undergoing vasodilator stress testing: a comparison between 99mTc-tetrofosmin and 99mTc-sestamibi. Nuclear Medicine Communications. 2007; 28(6):457-463
- Adil M, Hafizullah M, Jan H, Paracha MM, Qazi S. Diagnostic yield of stress echocardiography in coronary artery disease patients. JPMI - Journal of Postgraduate Medical Institute. 2011; 25(4):331-337

- 26. Agarwal R, Gosain P, Kirkpatrick JN, Alyousef T, Doukky R, Singh G et al. Tissue Doppler imaging for diagnosis of coronary artery disease: a systematic review and meta-analysis. Cardiovascular Ultrasound. 2012; 10:47
- 27. Aggarwal NR, Drozdova A, Askew JW, 3rd, Kemp BJ, Chareonthaitawee P. Feasibility and diagnostic accuracy of exercise treadmill nitrogen-13 ammonia PET myocardial perfusion imaging of obese patients. Journal of Nuclear Cardiology. 2015; 22(6):1273-1280
- Aggeli C, Felekos I, Roussakis G, Kazazaki C, Lagoudakou S, Pietri P et al. Value of real-time three-dimensional adenosine stress contrast echocardiography in patients with known or suspected coronary artery disease. European Journal of Echocardiography. 2011; 12(9):648-655
- 29. Aggeli C, Giannopoulos G, Misovoulos P, Roussakis G, Christoforatou E, Kokkinakis C et al. Real-time three-dimensional dobutamine stress echocardiography for coronary artery disease diagnosis: validation with coronary angiography. Heart. 2007; 93(6):672-675
- 30. Ahmad M, Xie T, McCulloch M, Abreo G, Runge M. Real-time three-dimensional dobutamine stress echocardiography in assessment stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. Journal of the American College of Cardiology. 2001; 37(5):1303-1309
- 31. Ahmadvazir S, Zacharias K, Shah BN, Pabla JS, Senior R. Role of simultaneous carotid ultrasound in patients undergoing stress echocardiography for assessment of chest pain with no previous history of coronary artery disease. American Heart Journal. 2014; 168(2):229-236
- Ahn JM, Kang SJ, Mintz GS, Oh JH, Kim WJ, Lee JY et al. Validation of minimal luminal area measured by intravascular ultrasound for assessment of functionally significant coronary stenosis comparison with myocardial perfusion imaging. JACC: Cardiovascular Interventions. 2011; 4(6):665-671
- 33. Ahn SJ, Kang DK, Sun JS, Yoon MH. Accuracy and predictive value of coronary computed tomography angiography for the detection of obstructive coronary heart disease in patients with an Agatston calcium score above 400. Journal of Computer Assisted Tomography. 2013; 37(3):387-394
- 34. Aidi H, Adams A, Moons KG, Ruijter HM, Mali WP, Doevendans PA et al. Cardiac magnetic resonance imaging findings and the risk of cardiovascular events in patients with recent myocardial infarction or suspected or known coronary artery disease ? a systematic review of prognostic studies (Provisional abstract). Journal of the American College of Cardiology. 2014; 63(11):1031-1045
- 35. Akbar AM, Hameed S, Azhar M, Sheikh SS, Sattar A, Naveed T. Significance of chest pain without ST changes during exercise treadmill testing. Journal of Ayub Medical College, Abbottabad: JAMC. 2010; 22(2):146-151
- 36. Akram K, Voros S. Absolute coronary artery calcium scores are superior to MESA percentile rank in predicting obstructive coronary artery disease. The International Journal of Cardiovascular Imaging. 2008; 24(7):743-749
- 37. Al-Kaylani H, Britton KE, Beslic N, Canizales A. Can the estimation of ejection fraction during gated single photon emission computed tomography at rest add information to the cardiac perfusion study? Nuclear Medicine Communications. 2002; 23(9):899-906
- 38. Al-Mallah M, Achenbach S, Berman D, Budoff MJ, Cademartiri F, Callister T et al. Incremental prognostic value of coronary CT angiography over coronary calcium score in symptomatic patients with suspected coronary disease: Results from the CONFIRM registry (COronary CT

Angiography evaluation for clinical outcomes: An international multicenter registry). Circulation Conference: American Heart Association's Scientific Sessions. 2011; 124(21 SUPPL. 1)

- 39. Al-Mallah MH, Qureshi W, Lin FY, Achenbach S, Berman DS, Budoff MJ et al. Does coronary CT angiography improve risk stratification over coronary calcium scoring in symptomatic patients with suspected coronary artery disease? Results from the prospective multicenter international CONFIRM registry. European Heart Journal Cardiovascular Imaging. 2014; 15(3):267-274
- 40. al-Saadi N, Gross M, Paetsch I, Schnackenburg B, Bornstedt A, Fleck E et al. Dobutamine induced myocardial perfusion reserve index with cardiovascular MR in patients with coronary artery disease. Journal of Cardiovascular Magnetic Resonance. 2002; 4(4):471-480
- 41. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000; 101(12):1379-1383
- Al Moudi M, Sun Z, Lenzo N. Diagnostic value of SPECT, PET and PET/CT in the diagnosis of coronary artery disease: A systematic review. Biomedical Imaging & Intervention Journal. 2011; 7(2):e9
- 43. Al Moudi M, Sun ZH. Diagnostic value of (18)F-FDG PET in the assessment of myocardial viability in coronary artery disease: A comparative study with (99m)Tc SPECT and echocardiography. Journal of Geriatric Cardiology. 2014; 11(3):229-236
- 44. Aldous SJ, Florkowski CM, Crozier IG, Elliott J, George P, Lainchbury JG et al. Comparison of high sensitivity and contemporary troponin assays for the early detection of acute myocardial infarction in the emergency department. Annals of Clinical Biochemistry. 2011; 48(Pt:3):3-8
- 45. Aldous SJ, Florkowski CM, Crozier IG, Than MP. The performance of high sensitivity troponin for the diagnosis of acute myocardial infarction is underestimated. Clinical Chemistry and Laboratory Medicine. 2012; 50(4):727-729
- 46. Aldous SJ, Richards AM, Cullen L, Than MP. Early dynamic change in high-sensitivity cardiac troponin T in the investigation of acute myocardial infarction. Clinical Chemistry. 2011; 57(8):1154-1160
- 47. Aldweib N, Negishi K, Seicean S, Jaber WA, Hachamovitch R, Cerqueira M et al. Appropriate test selection for single-photon emission computed tomography imaging: association with clinical risk, posttest management, and outcomes. American Heart Journal. 2013; 166(3):581-588
- 48. Alessandri N, Di Matteo A, Rondoni G, Petrassi M, Tufani F, Ferrari R et al. Heart imaging: the accuracy of the 64-MSCT in the detection of coronary artery disease. European Review for Medical and Pharmacological Sciences. 2009; 13(3):163-171
- 49. Alexanderson E, Mannting F, Gomez-Martin D, Fermon S, Meave A. Technetium-99m-Sestamibi SPECT myocardial perfusion imaging in patients with complete left bundle branch block. Archives of Medical Research. 2004; 35(2):150-156
- 50. Alexanderson E, Ricalde A, Romero-Ibarra JL, Meave A. Comparison of 18FDG PET with thallium SPECT in the assessment of myocardial viability. A segmental model analysis. Archivos de Cardiología de México. 2006; 76(1):9-15

- 51. Alexanderson Rosas E, Slomka PJ, Garcia-Rojas L, Calleja R, Jacome R, Jimenez-Santos M et al. Functional Impact of Coronary Stenosis Observed on Coronary Computed Tomography Angiography: Comparison with ¹³N-Ammonia PET. Archives of Medical Research. 2010; 41(8):642-648
- 52. Alexopoulos D, Stathopoulos C, Kotrsaridis A, Chiladakis J, Hahalis G. Coronary artery calcium by digital cinefluoroscopy in patients with pain suggestive of an acute coronary syndrome. Clinical Cardiology. 2005; 28(2):81-84
- 53. Ali M, Mallick NH, Abid AR, Haq S, Ayub M. Significance of perfusion defects on dipyridamole thallium cardiac SPECT in patients with left bundle branch block. Journal of Ayub Medical College, Abbottabad: JAMC. 2007; 19(4):21-25
- 54. AlJaroudi WA, Alraies MC, Wazni O, Cerqueira MD, Jaber WA. Yield and diagnostic value of stress myocardial perfusion imaging in patients without known coronary artery disease presenting with syncope. Circulation Cardiovascular imaging. 2013; 6(3):384-391
- 55. Alkadhi H, Scheffel H, Desbiolles L, Gaemperli O, Stolzmann P, Plass A et al. Dual-source computed tomography coronary angiography: Influence of obesity, calcium load, and heart rate on diagnostic accuracy. European Heart Journal. 2008; 29(6):766-776
- 56. Alkadhi H, Stolzmann P, Desbiolles L, Baumueller S, Goetti R, Plass A et al. Low-dose, 128slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart. 2010; 96(12):933-938
- 57. Allajbeu I, Hajro E, Temali I, Cekrezi B, Preza K. The Role of CT Angiography of Coronaries in Early Diagnosis of Coronary Artery Plaques in Albanian People with No History of Cardiovascular Disease in Correlation with Traditional Risk Factors. Materia Sociomedica. 2014; 26(3):163-167
- Almeida AG, Mesquita Gabriel H, Coutinho CA, Sargento L, David C, Oliveira J et al. Myocardial perfusion and angioplasty. Comparison of myocardial contrast echocardiography and scintigraphy. [Portuguese, English]. Revista Portuguesa de Cardiologia. 2002; 21(7-8):859-868
- 59. Almoudi M, Sun ZH. A head-to-head comparison of the coronary calcium score by computed tomography with myocardial perfusion imaging in predicting coronary artery disease. Journal of Geriatric Cardiology. 2012; 9(4):349-354
- 60. Alqaisi F, Albadarin F, Jaffery Z, Tzogias L, Dawod M, Jacobsen G et al. Prognostic predictors and outcomes in patients with abnormal myocardial perfusion imaging and angiographically insignificant coronary artery disease. Journal of Nuclear Cardiology. 2008; 15(6):754-761
- 61. Altinmakas S, Dagdeviren B, Turkmen M, Gursurer M, Say B, Tezel T et al. Usefulness of pulse-wave Doppler tissue sampling and dobutamine stress echocardiography for identification of false positive inferior wall defects in SPECT. Japanese Heart Journal. 2000; 41(2):141-152
- 62. Altiok E, Neizel M, Tiemann S, Krass V, Becker M, Zwicker C et al. Layer-specific analysis of myocardial deformation for assessment of infarct transmurality: comparison of strainencoded cardiovascular magnetic resonance with 2D speckle tracking echocardiography. European Heart Journal Cardiovascular Imaging. 2013; 14(6):570-578
- 63. Altiok E, Neizel M, Tiemann S, Krass V, Kuhr K, Becker M et al. Quantitative analysis of endocardial and epicardial left ventricular myocardial deformation - Comparison of strainencoded cardiac magnetic resonance imaging with two-dimensional speckle-tracking

echocardiography. Journal of the American Society of Echocardiography. 2012; 25(11):1179-1188

- 64. Altiok E, Tiemann S, Becker M, Koos R, Zwicker C, Schroeder J et al. Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography for prediction of global and segmental functional changes after acute myocardial infarction: a comparison with late gadolinium enhancement cardiac magnetic resonance. Journal of the American Society of Echocardiography. 2014; 27(3):249-257
- 65. Altun A, Durmus-Altun G, Birsin A, Gultekin A, Tatli E, Ozbay G. Normalization of negative T waves in the chronic stage of Q wave anterior myocardial infarction as a predictor of myocardial viability. Cardiology. 2005; 103(2):73-78
- 66. Altunkeser BB, Ozdemir K, Ozdil H, Gok H, Aydin M. Value of the corrected QT interval dispersion obtained exercise electrocardiography in determining remote vessel disease in patients with healed Q-wave myocardial infarction. Annals of Noninvasive Electrocardiology. 2002; 7(3):228-233
- 67. Alunni G, Marra S, Meynet I, D'Amico M, Elisa P, Fanelli A et al. The beneficial effect of extracorporeal shockwave myocardial revascularization in patients with refractory angina. Cardiovascular Revascularization Medicine. 2015; 16(1):6-11
- 68. Alvarez Tamargo JA, Simarro Martin-Ambrosio E, Romero Tarin E, Martin Fernandez M, Hevia Nava S, Barriales Alvarez V et al. Angiographic correlates of the treadmill scores in non-high-risk patients with unstable angina. Cardiology. 2008; 109(1):1-9
- 69. Amanuma M, Kondo T, Sano T, Sekine T, Takayanagi T, Matsutani H et al. Subtraction coronary computed tomography in patients with severe calcification. International Journal of Cardiovascular Imaging. 2015; 31(8):1635-1642
- 70. American College of R, Society of Cardiovascular Computed T, Society for Cardiovascular Magnetic R, American Society of Nuclear C, North American Society for Cardiac I, Society for Cardiovascular A et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. A report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group. Journal of the American College of Radiology. 2006; 3(10):751-771
- 71. Amit G, Granot Y, Abboud S. Quantifying QRS changes during myocardial ischemia: Insights from high frequency electrocardiography. Journal of Electrocardiology. 2014; 47(4):505-511
- 72. Amsterdam EA, Kirk JD, Diercks DB, Lewis WR, Turnipseed SD. Immediate exercise testing to evaluate low-risk patients presenting to the emergency department with chest pain. Journal of the American College of Cardiology. 2002; 40(2):251-256
- Anagnostopoulos C, Georgakopoulos A, Pianou N, Nekolla SG. Assessment of myocardial perfusion and viability by positron emission tomography. International Journal of Cardiology. 2013; 167(5):1737-1749
- 74. Anand DV, Lahiri A. Myocardial perfusion imaging versus biochemical markers in acute coronary syndromes. Nuclear Medicine Communications. 2003; 24(10):1049-1054
- 75. Anantharam B, Chahal N, Chelliah R, Ramzy I, Gani F, Senior R. Safety of contrast in stress echocardiography in stable patients and in patients with suspected acute coronary syndrome but negative 12-hour troponin. American Journal of Cardiology. 2009; 104(1):14-18

- Anders K, Achenbach S, Petit I, Daniel WG, Uder M, Pflederer T. Accuracy of automated software-guided detection of significant coronary artery stenosis by CT angiography:
 Comparison with invasive catheterisation. European Radiology. 2013; 23(5):1218-1225
- 77. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey-Donald-E-Jr et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST- Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Journal of the American College of Cardiology. 2007; 50(7):e1-e157
- 78. Andrade JM, Gowdak LH, Giorgi MC, de Paula FJ, Kalil-Filho R, de Lima JJ et al. Cardiac MRI for detection of unrecognized myocardial infarction in patients with end-stage renal disease: comparison with ECG and scintigraphy. AJR American Journal of Roentgenology. 2009; 193(1):W25-32
- 79. Andrassy M, Volz HC, Riedle N, Gitsioudis G, Seidel C, Laohachewin D et al. HMGB1 as a predictor of infarct transmurality and functional recovery in patients with myocardial infarction. Journal of Internal Medicine. 2011; 270(3):245-253
- Andreini D, Martuscelli E, Guaricci AI, Carrabba N, Magnoni M, Tedeschi C et al. Clinical recommendations on Cardiac-CT in 2015: a position paper of the Working Group on Cardiac-CT and Nuclear Cardiology of the Italian Society of Cardiology. Journal of Cardiovascular Medicine. 2016; 17(2):73-84
- 81. Andreini D, Pontone G, Bartorelli AL, Agostoni P, Mushtaq S, Antonioli L et al. Comparison of the diagnostic performance of 64-slice computed tomography coronary angiography in diabetic and non-diabetic patients with suspected coronary artery disease. Cardiovascular Diabetology. 2010; 9:80
- 82. Annuar BR, Liew CK, Chin SP, Ong TK, Seyfarth MT, Chan WL et al. Assessment of global and regional left ventricular function using 64-slice multislice computed tomography and 2D echocardiography: A comparison with cardiac magnetic resonance. European Journal of Radiology. 2008; 65(1):112-119
- Antony R, Daghem M, McCann GP, Daghem S, Moon J, Pennell DJ et al. Cardiovascular magnetic resonance activity in the United Kingdom: a survey on behalf of the British Society of Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance. 2011; 13:57
- 84. Anwar AM. Accuracy of two-dimensional speckle tracking echocardiography for the detection of significant coronary stenosis. Journal of Cardiovascular Ultrasound. 2013; 21(4):177-182
- Aoyagi K, Inoue T, Yamauchi Y, Iwasaki T, Endo K. Does myocardial thallium-201 SPECT combined with electron beam computed tomography improve the detectability of coronary artery disease?--comparative study of diagnostic accuracy. Annals of Nuclear Medicine. 1998; 12(4):197-204
- 86. Apostolopoulos DJ, Davlouros P, Alexiou S, Patsouras N, Spyridonidis T, Vassilakos PJ et al. STsegment depression during vasodilator stress is of minor clinical importance in women with normal myocardial perfusion imaging and low or intermediate risk of coronary artery disease. European Journal of Nuclear Medicine and Molecular Imaging. 2012; 39(3):437-445

- 87. Apple FS, Smith SW, Pearce LA, Murakami MM. Assessment of the multiple-biomarker approach for diagnosis of myocardial infarction in patients presenting with symptoms suggestive of acute coronary syndrome. Clinical Chemistry. 2009; 55(1):93-100
- 88. Arbab-Zadeh A, Di Carli MF, Cerci R, George RT, Chen MY, Dewey M et al. Accuracy of Computed Tomographic Angiography and Single-Photon Emission Computed Tomography-Acquired Myocardial Perfusion Imaging for the Diagnosis of Coronary Artery Disease. Circulation Cardiovascular imaging. 2015; 8(10):e003533
- 89. Arbab-Zadeh A, Hoe J. Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications. JACC: Cardiovascular Imaging. 2011; 4(2):191-202
- 90. Argulian E, Agarwal V, Bangalore S, Chatterjee S, Makani H, Rozanski A et al. Meta-analysis of prognostic implications of dyspnea versus chest pain in patients referred for stress testing. American Journal of Cardiology. 2014; 113(3):559-564
- 91. Arnold JR, Karamitsos TD, Bhamra-Ariza P, Francis JM, Searle N, Robson MD et al. Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 tesla. Journal of the American College of Cardiology. 2012; 59(22):1954-1964
- 92. Arnold JR, Karamitsos TD, Pegg TJ, Francis JM, Olszewski R, Searle N et al. Adenosine stress myocardial contrast echocardiography for the detection of coronary artery disease: a comparison with coronary angiography and cardiac magnetic resonance. JACC: Cardiovascular Imaging. 2010; 3(9):934-943
- 93. Arsanjani R, Xu Y, Dey D, Fish M, Dorbala S, Hayes S et al. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. Journal of Nuclear Medicine. 2013; 54(4):549-555
- 94. Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. Journal of Nuclear Cardiology. 2013; 20(4):553-562
- 95. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M, Jr., Gerlach J et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. Journal of Nuclear Medicine. 2013; 54(2):221-228
- 96. Arumugam P, Tout D, Tonge C. Myocardial perfusion scintigraphy using rubidium-82 positron emission tomography. British Medical Bulletin. 2013; 107:87-100
- 97. Asferg C, Usinger L, Kristensen TS, Abdulla J. Accuracy of multi-slice computed tomography for measurement of left ventricular ejection fraction compared with cardiac magnetic resonance imaging and two-dimensional transthoracic echocardiography: a systematic review and meta-analysis. European Journal of Radiology. 2012; 81(5):e757-762
- 98. Asher E, Reuveni H, Shlomo N, Gerber Y, Beigel R, Narodetski M et al. Clinical outcomes and cost effectiveness of accelerated diagnostic protocol in a chest pain center compared with routine care of patients with chest pain http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0117 287&representation=PDF. PloS One. 2015; 10 (1) (no pagination)(0117287)
- Atar S, Nagai T, Cercek B, Naqvi TZ, Luo H, Siegel RJ. Pacing stress echocardiography: an alternative to pharmacologic stress testing. Journal of the American College of Cardiology. 2000; 36(6):1935-1941

- 100. Athappan G, Habib M, Ponniah T, Jeyaseelan L. Multi-detector computerized tomography angiography for evaluation of acute chest pain--a meta analysis and systematic review of literature. International Journal of Cardiology. 2010; 141(2):132-140
- 101. Babar Imran M, Aleem Khan M, Naeem Aslam M, Irfanullah J. Diagnosis of coronary artery disease by stress echocardiography and perfusion scintigraphy. Journal of the College of Physicians and Surgeons Pakistan. 2003; 13(8):465-470
- 102. Bahrmann P, Christ M, Bahrmann A, Rittger H, Heppner HJ, Achenbach S et al. A 3-hour diagnostic algorithm for non-ST-elevation myocardial infarction using high-sensitivity cardiac troponin T in unselected older patients presenting to the emergency department. Journal of the American Medical Directors Association. 2013; 14(6):409-416
- 103. Balaravi B, Miller TD, Hodge DO, Gibbons RJ. The value of stress single photon emission computed tomography in patients without known coronary artery disease presenting with dyspnea. American Heart Journal. 2006; 152(3):551-557
- 104. Balmelli C, Meune C, Twerenbold R, Reichlin T, Rieder S, Drexler B et al. Comparison of the performances of cardiac troponins, including sensitive assays, and copeptin in the diagnostic of acute myocardial infarction and long-term prognosis between women and men. American Heart Journal. 2013; 166(1):30-37
- 105. Bamberg F, Dannemann N, Shapiro MD, Seneviratne SK, Ferencik M, Butler J et al. Association between cardiovascular risk profiles and the presence and extent of different types of coronary atherosclerotic plaque as detected by multidetector computed tomography. Arteriosclerosis, Thrombosis & Vascular Biology. 2008; 28(3):568-574
- 106. Bamberg F, Marcus RP, Becker A, Hildebrandt K, Bauner K, Schwarz F et al. Dynamic myocardial CT perfusion imaging for evaluation of myocardial ischemia as determined by MR imaging. JACC: Cardiovascular Imaging. 2014; 7(3):267-277
- 107. Bamberg F, Truong QA, Blankstein R, Nasir K, Lee H, Rogers IS et al. Usefulness of age and gender in the early triage of patients with acute chest pain having cardiac computed tomographic angiography. American Journal of Cardiology. 2009; 104(9):1165-1170
- 108. Banerjee A, Newman DR, Van den Bruel A, Heneghan C. Diagnostic accuracy of exercise stress testing for coronary artery disease: a systematic review and meta-analysis of prospective studies. international journal for clinical practice. 2012; 66(5):477-492
- 109. Bangalore S, Gopinath D, Yao SS, Chaudhry FA. Risk stratification using stress echocardiography: incremental prognostic value over historic, clinical, and stress electrocardiographic variables across a wide spectrum of bayesian pretest probabilities for coronary artery disease. Journal of the American Society of Echocardiography. 2007; 20(3):244-252
- 110. Bangalore S, Yao SS, Chaudhry FA. Stress function index, a novel index for risk stratification and prognosis using stress echocardiography. Journal of the American Society of Echocardiography. 2005; 18(12):1335-1342
- 111. Barbirato GB, Azevedo JC, Felix RC, Correa PL, Volschan A, Viegas M et al. Use of resting myocardial scintigraphy during chest pain to exclude diagnosis of acute myocardial infarction. Arquivos Brasileiros de Cardiologia. 2009; 92(4):269-274
- 112. Barletta G, Gallini C, Del Bene R, Costanzo E, Fantini F. Simultaneous dobutamine stress echocardiography and 99mTc-tetrofosmin three-head single-photon emission computed tomography in patients with suspected coronary artery disease. Coronary Artery Disease. 1999; 10(7):479-487

- 113. Barmeyer AA, Stork A, Muellerleile K, Schofer AK, Tiburtius C, Koester R et al. Comparison of quantitative coronary angiography and first-pass perfusion magnetic resonance imaging for the detection of an impaired coronary perfusion in nonsevere coronary stenosis. Journal of Magnetic Resonance Imaging. 2008; 27(5):1005-1011
- 114. Barraclough K, Gale CP, Hall R. Assessment of chest pain in a low risk patient: Is the exercise tolerance test obsolete? BMJ (Online). 2015; 350 (no pagination)(h1905)
- 115. Baszko A, Ochotny R, Blaszyk K, Popiel M, Straburzynska-Migaj E, Cieslinski A et al. Correlation of ST-segment depression during ambulatory electrocardiographic monitoring with myocardial perfusion and left ventricular function. American Journal of Cardiology. 2001; 87(8):959-963; A953
- 116. Bateman TM, Heller GV, McGhie AI, Courter SA, Golub RA, Case JA et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. Journal of Nuclear Cardiology. 2009; 16(5):726-735
- 117. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. Journal of Nuclear Cardiology. 2006; 13(1):24-33
- 118. Bauer RW, Kerl JM, Fischer N, Burkhard T, Larson MC, Ackermann H et al. Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3-T MRI. AJR American Journal of Roentgenology. 2010; 195(3):639-646
- 119. Bauernfeind T, Preda I, Szakolczai K, Szucs E, Kiss RG, Simonyi G et al. Diagnostic value of the left atrial electrical potentials detected by body surface potential mapping in the prediction of coronary artery disease. International Journal of Cardiology. 2011; 150(3):315-318
- Beck E, Santillan O, Cecconi G, De Cicco A, Krasnov C. Dobutamine stress test specificity and sensitivity of continuous ST-segment monitoring in 12 simultaneous standard ECG leads. Revista Española de Cardiología. 2002; 55(6):616-621
- 121. Becker A, Leber A, White CW, Becker C, Reiser MF, Knez A. Multislice computed tomography for determination of coronary artery disease in a symptomatic patient population. The International Journal of Cardiovascular Imaging. 2007; 23(3):361-367
- 122. Becker CR, Kleffel T, Crispin A, Knez A, Young J, Schoepf UJ et al. Coronary artery calcium measurement: Agreement of multirow detector and electron beam CT. American Journal of Roentgenology. 2001; 176(5):1295-1298
- 123. Becker HCR. Cardiac computed tomography as a cost-effective approach for diagnosing coronary artery disease? Expert Review of Cardiovascular Therapy. 2012; 10(7):823-825
- 124. Bedetti G, Pasanisi EM, Pizzi C, Turchetti G, Lore C. Economic analysis including long-term risks and costs of alternative diagnostic strategies to evaluate patients with chest pain. Cardiovascular Ultrasound. 2008; 6:21
- 125. Beigel R, Oieru D, Goitein O, Chouraqui P, Konen E, Shamiss A et al. Usefulness of routine use of multidetector coronary computed tomography in the "fast track" evaluation of patients with acute chest pain. American Journal of Cardiology. 2009; 103(11):1481-1486
- 126. Bekler A, Altun B, Barutcu A, Temiz A, Gazi E, Erbag G et al. Electrocardiographic changes not related to coronary thrombus formation in non-st elevated acute coronary syndrome. Anatolian Journal of Clinical Investigation. 2014; 8(1):1-5

- 127. Belardinelli R, Lacalaprice F, Tiano L, Mucai A, Perna GP. Cardiopulmonary exercise testing is more accurate than ECG-stress testing in diagnosing myocardial ischemia in subjects with chest pain. International Journal of Cardiology. 2014; 174(2):337-342
- 128. Ben Bouallegue F, Roubille F, Lattuca B, Cung TT, Macia JC, Gervasoni R et al. SPECT Myocardial Perfusion Reserve in Patients with Multivessel Coronary Disease: Correlation with Angiographic Findings and Invasive Fractional Flow Reserve Measurements. Journal of Nuclear Medicine. 2015; 56(11):1712-1717
- 129. Benchimol D, Mazanof M, Dubroca B, Benchimol H, Bernard V, Couffinhal T et al. Detection of coronary stenoses by stress echocardiography using a previously implanted pacemaker for ventricular pacing: preliminary report of a new method. Clinical Cardiology. 2000; 23(11):842-848
- 130. Benedek T, Gyongyosi M, Benedek I. Multislice computed tomographic coronary angiography for quantitative assessment of culprit lesions in acute coronary syndromes. Canadian Journal of Cardiology. 2013; 29(3):364-371
- 131. Benedek T, Jako B, Benedek I. Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. International Heart Journal. 2014; 55(1):22-28
- 132. Benkiran M, Mariano-Goulart D, Bourdon A, Sibille L, Bouallegue FB. Is computed tomography attenuation correction more efficient than gated single photon emission computed tomography analysis in improving the diagnostic performance of myocardial perfusion imaging in patients with low prevalence of ischemic heart disease? Nuclear Medicine Communications. 2015; 36(1):69-77
- 133. Bennett P, Dyer P. Exercise stress test utility in patients with chest pain presumed to be of cardiac origin. Acute Medicine. 2013; 12(3):146-150
- Berdahl CT, Vermeulen MJ, Larson DB, Schull MJ. Emergency department computed tomography utilization in the United States and Canada. Annals of Emergency Medicine. 2013; 62(5):486-494.e483
- 135. Bergeron S, Ommen SR, Bailey KR, Oh JK, McCully RB, Pellikka PA. Exercise echocardiographic findings and outcome of patients referred for evaluation of dyspnea. Journal of the American College of Cardiology. 2004; 43(12):2242-2246
- 136. Beslic N, Kucukalic-Selimovic E. Comparison of the diagnostic capabilities of noninvasive methods for early detection of coronary artery disease. Medicinski Arhiv. 2011; 65(2):96-98
- 137. Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Duarte R et al. Cardiac magnetic resonance myocardial perfusion imaging for detection of functionally significant obstructive coronary artery disease: a prospective study. International Journal of Cardiology. 2013; 168(2):765-773
- 138. Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Pires-Morais G et al. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. Journal of the American College of Cardiology. 2013; 61(10):1099-1107
- 139. Bettencourt N, Ferreira N, Chiribiri A, Schuster A, Sampaio F, Santos L et al. Additive value of magnetic resonance coronary angiography in a comprehensive cardiac magnetic resonance stress-rest protocol for detection of functionally significant coronary artery disease: a pilot study. Circulation Cardiovascular imaging. 2013; 6(5):730-738

- 140. Bettencourt N, Ferreira ND, Leite D, Carvalho M, Ferreira Wda S, Schuster A et al. CAD detection in patients with intermediate-high pre-test probability: low-dose CT delayed enhancement detects ischemic myocardial scar with moderate accuracy but does not improve performance of a stress-rest CT perfusion protocol. JACC: Cardiovascular Imaging. 2013; 6(10):1062-1071
- 141. Better N, Karthikeyan G, Vitola J, Fatima A, Peix A, Novak MD et al. Performance of rest myocardial perfusion imaging in the management of acute chest pain in the emergency room in developing nations (PREMIER trial). Journal of Nuclear Cardiology. 2012; 19(6):1146-1153
- 142. Beule T, Vanhoenacker P, Booij M, Ardies L, Bladt O. Cost effectiveness of multi detector CT angiography of the coronary arteries for the diagnosis of suspected non-ST elevation acute coronary syndrome (NSTE-ACS) in the emergency department: mathematical analysis with a decision model (Structured abstract). Journal Belge de Radiologie. 2010; 93(6):285-291
- 143. Bhardwaj A, Truong QA, Peacock WF, Yeo KT, Storrow A, Thomas S et al. A multicenter comparison of established and emerging cardiac biomarkers for the diagnostic evaluation of chest pain in the emergency department. American Heart Journal. 2011; 162(2):276-282
- 144. Bholasingh R, Cornel JH, Kamp O, de Winter RJ, Heidenreich PA, Brandt RR et al. Dobutamine stress echocardiography is a valuable diagnostic test for predischarge risk assessment in low-risk chest pain patients. Evidence-Based Cardiovascular Medicine. 2003; 7(4):203-205
- 145. Bholasingh R, Cornel JH, Kamp O, van Straalen JP, Sanders GT, Tijssen JG et al. Prognostic value of predischarge dobutamine stress echocardiography in chest pain patients with a negative cardiac troponin T. Journal of the American College of Cardiology. 2003; 41(4):596-602
- 146. Biagini E, Shaw LJ, Poldermans D, Schinkel AF, Rizzello V, Elhendy A et al. Accuracy of noninvasive techniques for diagnosis of coronary artery disease and prediction of cardiac events in patients with left bundle branch block: a meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging. 2006; 33(12):1442-1451
- Bialek S, Gorko D, Zajkowska A, Koltowski L, Grabowski M, Stachurska A et al. Release kinetics of circulating miRNA-208a in the early phase of myocardial infarction. Kardiologia Polska. 2015; 73(8):613-619
- 148. Biener M, Mueller M, Vafaie M, Katus HA, Giannitsis E. Impact of leading presenting symptoms on the diagnostic performance of high-sensitivity cardiac troponin T and on outcomes in patients with suspected acute coronary syndrome. Clinical Chemistry. 2015; 61(5):744-751
- 149. Biener M, Mueller M, Vafaie M, Keller T, Blankenberg S, White HD et al. Comparison of a 3hour versus a 6-hour sampling-protocol using high-sensitivity cardiac troponin T for rule-out and rule-in of non-STEMI in an unselected emergency department population. International Journal of Cardiology. 2013; 167(4):1134-1140
- 150. Biglands JD, Magee DR, Sourbron SP, Plein S, Greenwood JP, Radjenovic A. Comparison of the Diagnostic Performance of Four Quantitative Myocardial Perfusion Estimation Methods Used in Cardiac MR Imaging: CE-MARC Substudy. Radiology. 2015; 275(2):393-402
- 151. Bischoff B, Kantert C, Meyer T, Hadamitzky M, Martinoff S, Schomig A et al. Cardiovascular risk assessment based on the quantification of coronary calcium in contrast-enhanced coronary computed tomography angiography. European Heart Journal Cardiovascular Imaging. 2012; 13(6):468-475

- 152. Blankstein R, Ahmed W, Bamberg F, Rogers IS, Schlett CL, Nasir K et al. Comparison of exercise treadmill testing with cardiac computed tomography angiography among patients presenting to the emergency room with chest pain: the Rule Out Myocardial Infarction Using Computer-Assisted Tomography (ROMICAT) study. Circulation Cardiovascular imaging. 2012; 5(2):233-242
- 153. Blinder G, Benhorin J, Koukoui D, Zimam R, Hiller N. The value of electrocardiography-gated multi-slice computed tomography in the evaluation of patients with chest pain. Israel Medical Association Journal: Imaj. 2005; 7(7):419-423
- 154. Blomstrand P, Maret E, Ohlsson J, Scheike M, Karlsson JE, Safstrom K et al. Pulsed tissue Doppler imaging for the detection of myocardial ischaemia, a comparison with myocardial perfusion SPECT. Clinical Physiology and Functional Imaging. 2004; 24(5):289-295
- 155. BlueCross BlueShield Association. Computed tomographic coronary angiography in the evaluation of patients with acute chest pain. Chicago IL. Blue Cross Blue Shield Association (BCBS), 2011. Available from: http://www.scct.org/advocacy/coverage/BCBSA_TEC_CCT.pdf
- 156. Body R, Carley S, McDowell G, Jaffe AS, France M, Cruickshank K et al. Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. Journal of the American College of Cardiology. 2011; 58(13):1332-1339
- 157. Bogaert J, Eitel I. Role of cardiovascular magnetic resonance in acute coronary syndrome. Global Cardiology Science and Practice. 2015; 2015 (2) (no pagination)(24)
- 158. Boglioli L, Taviloglu G, Minutillo J, DePasquale E, Lee K, Gleim GW et al. Effect of very early radionuclide perfusion imaging on hospital length of stay in patients presenting to the emergency department with chest pain. Cardiovascular Reviews and Reports. 2001; 22(1):33-36+45
- 159. Boiten HJ, Van Der Sijde JN, Ruitinga PR, Valkema R, Geleijnse ML, Sijbrands EJG et al. Longterm prognostic value of exercise technetium-99m tetrofosmin myocardial perfusion singlephoton emission computed tomography. Journal of Nuclear Cardiology. 2012; 19(5):907-913
- 160. Bom MJ, van der Zee PM, Cornel JH, van der Zant FM, Knol RJ. Diagnostic and Therapeutic Usefulness of Coronary Computed Tomography Angiography in Out-Clinic Patients Referred for Chest Pain. American Journal of Cardiology. 2015; 116(1):30-36
- 161. Borna C, Frostred KL, Ekelund U. Predictive role of high sensitivity troponin T within four hours from presentation of acute coronary syndrome in elderly patients. BMC Emergency Medicine. 2016; 16:1
- 162. Boussel L, Gamondes D, Staat P, Elicker BM, Revel D, Douek P. Acute chest pain with normal coronary angiogram: role of contrast-enhanced multidetector computed tomography in the differential diagnosis between myocarditis and myocardial infarction. Journal of Computer Assisted Tomography. 2008; 32(2):228-232
- 163. Bouzas-Mosquera A, Peteiro J, Broullon FJ, Alvarez-Garcia N, Rodriguez-Garrido JL, Mosquera VX et al. Incremental value of exercise echocardiography over exercise electrocardiography in a chest pain unit. European Journal of Internal Medicine. 2015; 26(9):720-725
- 164. Bradburn M, Goodacre SW, Fitzgerald P, Coats T, Gray A, Hassan T et al. Interhospital variation in the RATPAC trial (Randomised Assessment of Treatment using Panel Assay of Cardiac markers). Emergency Medicine Journal. 2012; 29(3):233-238
- 165. Branch KR, Bresnahan BW, Veenstra DL, Shuman WP, Weintraub WS, Busey JM et al. Economic outcome of cardiac CT-based evaluation and standard of care for suspected acute

coronary syndrome in the emergency department: a decision analytic model. Academic Radiology. 2012; 19(3):265-273

- 166. Branch KR, Busey J, Mitsumori LM, Strote J, Caldwell JH, Busch JH et al. Diagnostic performance of resting CT myocardial perfusion in patients with possible acute coronary syndrome. AJR American Journal of Roentgenology. 2013; 200(5):W450-457
- 167. Branch KR, Strote J, Shuman WP, Mitsumori LM, Busey JM, Rue T et al. Diagnostic accuracy and clinical outcomes of ECG-gated, whole chest CT in the emergency department. PLoS ONE [Electronic Resource]. 2013; 8(4):e61121
- 168. Brodoefel H, Burgstahler C, Tsiflikas I, Reimann A, Schroeder S, Claussen CD et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology. 2008; 247(2):346-355
- 169. Brodoefel H, Reimann A, Burgstahler C, Schumacher F, Herberts T, Tsiflikas I et al. Noninvasive coronary angiography using 64-slice spiral computed tomography in an unselected patient collective: effect of heart rate, heart rate variability and coronary calcifications on image quality and diagnostic accuracy. European Journal of Radiology. 2008; 66(1):134-141
- 170. Brodoefel H, Tsiflikas I, Burgstahler C, Reimann A, Thomas C, Schroeder S et al. Cardiac dualsource computed tomography: Effect of body mass index on image quality and diagnostic accuracy. Investigative Radiology. 2008; 43(10):712-718
- 171. Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD et al. Combined Quantitative Assessment of Myocardial Perfusion and Coronary Artery Calcium Score by Hybrid 82Rb PET/CT Improves Detection of Coronary Artery Disease. Journal of Nuclear Medicine. 2015; 56(9):1345-1350
- Brogsitter C, Gruning T, Weise R, Wielepp P, Lindner O, Korfer R et al. 18F-FDG PET for detecting myocardial viability: validation of 3D data acquisition. Journal of Nuclear Medicine. 2005; 46(1):19-24
- 173. Brown TL, Merrill J, Hill P, Bengel FM. Relationship of coronary calcium and myocardial perfusion in individuals with chest pain. Assessed by integrated rubidium-82 PET-CT. Nuclear-Medizin. 2008; 47(6):255-260
- Bruins Slot MH, van der Heijden GJ, Rutten FH, van der Spoel OP, Mast EG, Bredero AC et al. Heart-type Fatty acid-binding protein in Acute Myocardial infarction Evaluation (FAME): background and design of a diagnostic study in primary care. BMC Cardiovascular Disorders. 2008; 8:8
- 175. Bruins Slot MH, van der Heijden GJ, Stelpstra SD, Hoes AW, Rutten FH. Point-of-care tests in suspected acute myocardial infarction: a systematic review. International Journal of Cardiology. 2013; 168(6):5355-5362
- 176. Bruins Slot MHE, Reitsma JB, Rutten FH, Hoes AW, Van Der Heijden GJMG. Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction: A systematic review and meta-analysis. Heart. 2010; 96(24):1957-1963
- 177. Buccelletti F, Galiuto L, Marsiliani D, Iacomini P, Mattogno P, Carroccia A et al. Comparison of diagnostic accuracy between three different rules of interpreting high sensitivity troponin T results. Internal and Emergency Medicine. 2012; 7(4):365-370

- 178. Bucerius J, Joe AY, Lindstaedt I, Manka-Waluch A, Reichmann K, Ezziddin S et al. Single- vs. dual-head SPECT for detection of myocardial ischemia and viability in a large study population. Clinical Imaging. 2007; 31(4):228-233
- 179. Buckert D, Mariyadas M, Walcher T, Rasche V, Wohrle J, Rottbauer W et al. Angiographic validation of magnetic resonance assessment of myocardium at risk in non-ST-elevation myocardial infarction. The International Journal of Cardiovascular Imaging. 2013; 29(6):1295-1301
- 180. Budge LP, Salerno M. The role of cardiac magnetic resonance in the evaluation of patients presenting with suspected or confirmed acute coronary syndrome. Cardiology Research and Practice. 2011; 1 (1) (no pagination)(605785)
- 181. Budoff MJ, Achenbach S, Duerinckx A. Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. Journal of the American College of Cardiology. 2003; 42(11):1867-1878
- 182. Budoff MJ, Jollis JG, Dowe D, Min J, Group VCTS. Diagnostic accuracy of coronary artery calcium for obstructive disease: results from the ACCURACY trial. International Journal of Cardiology. 2013; 166(2):505-508
- 183. Budoff MJ, Rasouli ML, Shavelle DM, Gopal A, Gul KM, Mao SS et al. Cardiac CT angiography (CTA) and nuclear myocardial perfusion imaging (MPI)-a comparison in detecting significant coronary artery disease. Academic Radiology. 2007; 14(3):252-257
- 184. Burris AC, Boura JA, Raff GL, Chinnaiyan KM. Triple Rule Out Versus Coronary CT Angiography in Patients with Acute Chest Pain Results from the ACIC Consortium. JACC: Cardiovascular Imaging. 2015; 8(7):817-825
- 185. Busch JL, Alessio AM, Caldwell JH, Gupta M, Mao S, Kadakia J et al. Myocardial hypoenhancement on resting computed tomography angiography images accurately identifies myocardial hypoperfusion. Journal of Cardiovascular Computed Tomography. 2011; 5(6):412-420
- 186. Cabeda EV, Falcao AM, Soares J, Jr., Rochitte CE, Nomura CH, Avila LF et al. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block. Arquivos Brasileiros de Cardiologia. 2015; 105(6):614-624
- 187. Cademartiri F, Maffei E, Notarangelo F, Ugo F, Palumbo A, Lina D et al. 64-slice computed tomography coronary angiography: diagnostic accuracy in the real world. Radiologia Medica. 2008; 113(2):163-180
- 188. Cademartiri F, Maffei E, Palumbo A, Malago R, Alberghina F, Aldrovandi A et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low-to-intermediate risk. Radiologia Medica. 2007; 112(7):969-981
- 189. Cadth. Assessment of high sensitivity cardiac troponin T assay for the rapid diagnosis of acute coronary syndrome and acute myocardial infarction in the emergency room: a review of the clinical and economic evidence. Ottawa. 2012. Available from: http://www.ncbi.nlm.nih.gov/books/NBK168953/pdf/Bookshelf_NBK168953.pdf
- 190. Candell-Riera J, Oller-Martinez G, de Leon G, Castell-Conesa J, Aguade-Bruix S. Yield of early rest and stress myocardial perfusion single-photon emission computed tomography and electrocardiographic exercise test in patients with atypical chest pain, nondiagnostic electrocardiogram, and negative biochemical markers in the emergency department. American Journal of Cardiology. 2007; 99(12):1662-1666

- 191. Candell-Riera J, Oller-Martínez G, Pereztol-Valdés O, Castell-Conesa J, Aguadé-Bruix S, García-Alonso C et al. [Early myocardial perfusion gated-SPECT in patients with chest pain and nondiagnostic ECG in the emergency department]. Revista Española de Cardiología. 2004; 57(3):225-233
- 192. Carlsson M, Hedeer F, Engblom H, Arheden H. Head-to-head comparison of a 2-day myocardial perfusion gated SPECT protocol and cardiac magnetic resonance late gadolinium enhancement for the detection of myocardial infarction. Journal of Nuclear Cardiology. 2013; 20(5):797-803
- 193. Carrinho M, Moraes A, Morcerf F, Medeiros C, Castier M, Romeo LJ. Myocardial contrast echocardiography in patients with suspected or known coronary artery disease: comparison with myocardial nuclear scintigraphy. Arquivos Brasileiros de Cardiologia. 2004; 83(5):419-423; 414-418
- 194. Carroll C, Al KM, Stevens JW, Leaviss J, Goodacre S, Collinson PO et al. Heart-type fatty acid binding protein as an early marker for myocardial infarction: systematic review and metaanalysis. [Review]. Emergency Medicine Journal. 2013; 30(4):280-286
- 195. Caymaz O, Fak AS, Tezcan H, Inanir SS, Toprak A, Tokay S et al. Correlation of myocardial fractional flow reserve with thallium-201 SPECT imaging in intermediate-severity coronary artery lesions. Journal of Invasive Cardiology. 2000; 12(7):345-350
- 196. Celik A, Ozturk A, Ozbek K, Kadi H, Koc F, Ceyhan K et al. Heart rate variability and turbulence to determine true coronary artery disease in patients with ST segment depression without angina during exercise stress testing. Clinical & Investigative Medicine Medecine Clinique et Experimentale. 2011; 34(6):E349
- Ceriani E, Rusconi AM, Gruppo di Autoformazione M. Highly sensitive troponin and diagnostic accuracy in acute myocardial infarction. Internal and Emergency Medicine. 2012; 7(5):471-473
- 198. Chammas E, Yatim A, Hage C, Sokhn K, Tarcha W, Ghanem G. Evaluation of Tc-99m tetrofosmin scan for coronary artery disease diagnosis. Asian Cardiovascular & Thoracic Annals. 2002; 10(3):244-247
- 199. Chan GW, Sites FD, Shofer FS, Hollander JE. Impact of stress testing on 30-day cardiovascular outcomes for low-risk patients with chest pain admitted to floor telemetry beds. American Journal of Emergency Medicine. 2003; 21(4):282-287
- 200. Chandra A, Rudraiah L, Zalenski RJ. Stress testing for risk stratification of patients with low to moderate probability of acute cardiac ischemia. Emergency Medicine Clinics of North America. 2001; 19(1):87-103
- 201. Chandraratna PA, Kuznetsov VA, Mohar DS, Sidarous PF, Scheutz J, Krinochkin DV et al. Comparison of squatting stress echocardiography and dobutamine stress echocardiography for the diagnosis of coronary artery disease. Echocardiography. 2012; 29(6):695-699
- 202. Chandraratna PA, Mohar DS, Sidarous PF, Brar P, Miller J, Shah N et al. Evaluation of non-ST segment elevation acute chest pain syndromes with a novel low-profile continuous imaging ultrasound transducer. Echocardiography. 2012; 29(8):895-899
- 203. Chang AM, Shofer FS, Weiner MG, Synnestvedt MB, Litt HI, Baxt WG et al. Actual financial comparison of four strategies to evaluate patients with potential acute coronary syndromes. Academic Emergency Medicine. 2008; 15(7):649-655

- 204. Chang SA, Choi SI, Choi EK, Kim HK, Jung JW, Chun EJ et al. Usefulness of 64-slice multidetector computed tomography as an initial diagnostic approach in patients with acute chest pain. American Heart Journal. 2008; 156(2):375-383
- 205. Chao SP, Law WY, Kuo CJ, Hung HF, Cheng JJ, Lo HM et al. The diagnostic accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease. European Heart Journal. 2010; 31(15):1916-1923
- 206. Chaosuwannakit N, Kiatchoosakun S, Makarawate P. Diagnostic accuracy of 128-row multidetector computed tomography coronary angiography in the diagnosis of significant coronary artery stenosis. Journal of the Medical Association of Thailand. 2012; 95(12):1548-1555
- 207. Cheezum MK, Bittencourt MS, Hulten EA, Scirica BM, Villines TC, Blankstein R. Coronary computed tomographic angiography in the emergency room: state of the art. Expert Review of Cardiovascular Therapy. 2014; 12(2):241-253
- 208. Chen GB, Wu H, He XJ, Huang JX, Yu D, Xu WY et al. Adenosine stress thallium-201 myocardial perfusion imaging for detecting coronary artery disease at an early stage. Journal of X-Ray Science & Technology. 2013; 21(2):317-322
- 209. Chen JW, Hsu NW, Ting CT, Lee WL, Lin SJ, Chang MS. Clinical strategy for coronary microvascular dysfunction in patients with chest pain of unknown cause The role of treadmill exercise testing. Acta Cardiologica Sinica. 1999; 15(2):81-92
- 210. Chen L, Wang X, Bao J, Geng C, Xia Y, Wang J. Direct comparison of cardiovascular magnetic resonance and single-photon emission computed tomography for detection of coronary artery disease: a meta-analysis. PLoS ONE [Electronic Resource]. 2014; 9(2):e88402
- 211. Chen LC, Ding PY, Chen JW, Wu MH, Liu JC, Lan GY et al. Coronary artery calcium determined by electron beam computed tomography for predicting angiographic coronary artery disease in moderate- to high-risk Chinese patients. Cardiology. 2001; 95(4):183-189
- 212. Chen ML, Mo YH, Wang YC, Lo HS, Wang PC, Chao IM et al. 64-slice CT angiography for the detection of functionally significant coronary stenoses: comparison with stress myocardial perfusion imaging. British Journal of Radiology. 2012; 85(1012):368-376
- 213. Chen SJ, Kuo LT, Wang CH, Cherng WJ, Yang NI, Cheng CW. The diagnostic value of computed tomographic coronary angiography in patients with acute myocardial infarction versus stable angina pectoris: a preliminary report. Chang Gung Medical Journal. 2011; 34(3):268-277
- Chen Z, Duan Q, Xue X, Chen L, Ye W, Jin L et al. Noninvasive detection of coronary artery stenoses with contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T. Cardiology. 2010; 117(4):284-290
- 215. Chenevier-Gobeaux C, Meune C, Freund Y, Wahbi K, Claessens YE, Doumenc B et al. Influence of age and renal function on high-sensitivity cardiac troponin T diagnostic accuracy for the diagnosis of acute myocardial infarction. American Journal of Cardiology. 2013; 111(12):1701-1707
- 216. Cheng AS, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP et al. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. Journal of the American College of Cardiology. 2007; 49(25):2440-2449

- 217. Cheng C, Wang Q, You W, Chen M, Xia J. MiRNAs as biomarkers of myocardial infarction: A meta-analysis. PloS One. 2014; 9(2)
- 218. Cheng L, Jing S, Zhang Y. A comparison study between CT angiography with 64-multislice spiral computed tomography and selective X-ray coronary angiography. Experimental and Therapeutic Medicine. 2013; 5(3):969-971
- 219. Cheng L, Ma L, Schoenhagen P, Ye H, Lou X, Gao Y et al. Comparison of three-dimensional volume-targeted thin-slab FIESTA magnetic resonance angiography and 64-multidetector computed tomographic angiography for the identification of proximal coronary stenosis. International Journal of Cardiology. 2013; 167(6):2969-2976
- 220. Cheng SL, Agarwal P, Selvester RH, Ellestad MH. Significance of QT dispersion in exercise testing in patients with chest pain. Cardiovascular Reviews and Reports. 2000; 21(11):618-623
- 221. Cheng W, Zeng M, Arellano C, Mafori W, Goldin J, Krishnam M et al. Detection of myocardial perfusion abnormalities: standard dual-source coronary computed tomography angiography versus rest/stress technetium-99m single-photo emission CT. British Journal of Radiology. 2010; 83(992):652-660
- 222. Chiou KR, Huang WC, Lin SL, Hsieh PL, Liu CP, Tsay DG et al. Real-time dobutamine stress myocardial contrast echocardiography for detecting coronary artery disease: correlating abnormal wall motion and disturbed perfusion. Canadian Journal of Cardiology. 2004; 20(12):1237-1243
- 223. Chiu CW, So NM, Lam WW, Chan KY, Sanderson JE. Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology. 2003; 226(3):717-722
- 224. Choo KS, Hwangbo L, Kim JH, Park YH, Kim JS, Kim J et al. Adenosine-stress low-dose singlescan CT myocardial perfusion imaging using a 128-slice dual-source CT: a comparison with fractional flow reserve. Acta Radiologica. 2013; 54(4):389-395
- 225. Chow BJ, Dennie C, Hoffmann U, So D, de Kemp RA, Ruddy TD et al. Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. Canadian Journal of Cardiology. 2007; 23(10):801-807
- 226. Christ M, Popp S, Pohlmann H, Poravas M, Umarov D, Bach R et al. Implementation of high sensitivity cardiac troponin T measurement in the emergency department. American Journal of Medicine. 2010; 123(12):1134-1142
- 227. Christiaens L, Duchat F, Boudiaf M, Tasu JP, Fargeaudou Y, Ledref O et al. Impact of 64-slice coronary CT on the management of patients presenting with acute chest pain: results of a prospective two-centre study. European Radiology. 2012; 22(5):1050-1058
- 228. Collinson P, Gaze D, Goodacre S, Bradburn M. RATPAC CBE (Randomised Assessment of Treatment using Panel Assay of Cardiac markers - Contemporary Biomarker Evaluation). Health Technology Assessment. 2013; 17(15):1-17
- 229. Conti A, Alesi A, Aspesi G, Bigiarini S, Bianchi S, Angeli E et al. Comparison of exercise electrocardiogram and exercise echocardiography in intermediate-risk chest pain patients. American Journal of Emergency Medicine. 2015; 33(1):7-13
- 230. Conti A, Gallini C, Costanzo E, Ferri P, Matteini M, Paladini B et al. Early detection of myocardial ischaemia in the emergency department by rest or exercise (99m)Tc tracer

myocardial SPET in patients with chest pain and non-diagnostic ECG. European Journal of Nuclear Medicine. 2001; 28(12):1806-1810

- 231. Conti A, Luzzi M, Borchi N, Donati M, Viviani G, Boni V et al. Early predicition of myocardial ischaemia with adenosine stress perfusion imaging in patients presenting with chest pain. European Heart Journal. 2010; 31:576
- 232. Conti A, Luzzi M, Borchi N, Poggioni C, Zanobetti M, Vincidomini S et al. Adenosine stress perfusion imaging and prediction of myocardial ischemia in patients with hypertension and low-risk chest pain in the emergency setting. Journal of Hypertension. 2010; 28:e151
- 233. Conti A, Sammicheli L, Gallini C, Costanzo EN, Antoniucci D, Barletta G. Assessment of patients with low-risk chest pain in the emergency department: Head-to-head comparison of exercise stress echocardiography and exercise myocardial SPECT. American Heart Journal. 2005; 149(5):894-901
- 234. Conti A, Vanni S, Sammicheli L, Raveggi S, Camaiti A, Pieralli F et al. Yield of nuclear scan strategy in chest pain unit evaluation of special populations. Nuclear Medicine Communications. 2008; 29(12):1106-1112
- 235. Coronary computed tomographic angiography in clinical practice: State of the art. Radiologic Clinics of North America. 2015; 53(2):287-296
- 236. CT angiography outperforms stress testing in diagnosing coronary artery disease. Cardiovascular Journal of Africa. 2009; 20(3):191
- 237. Cuda G, Lentini M, Gallo L, Lucia FG, Giacinto CL, Mancuso S et al. High sensitive troponin T in individuals with chest pain of presumed ischemic origin. Frontiers in Bioscience. 2012; 4:2322-2327
- 238. Cullen L, Mueller C, Parsonage WA, Wildi K, Greenslade JH, Twerenbold R et al. Validation of high-sensitivity troponin I in a 2-hour diagnostic strategy to assess 30-day outcomes in emergency department patients with possible acute coronary syndrome. Journal of the American College of Cardiology. 2013; 62(14):1242-1249
- 239. Cury RC, Feuchtner GM, Batlle JC, Pena CS, Janowitz W, Katzen BT et al. Triage of patients presenting with chest pain to the emergency department: implementation of coronary CT angiography in a large urban health care system.[Erratum appears in AJR Am J Roentgenol. 2013 Mar;200(3):705]. AJR American Journal of Roentgenology. 2013; 200(1):57-65
- 240. Dall Armellina E, Choudhury RP. The role of cardiovascular magnetic resonance in patients with acute coronary syndromes. Progress in Cardiovascular Diseases. 2011; 54(3):230-239
- 241. de Winter RJ, Lijmer JG, Koster RW, Hoek FJ, Sanders GT. Diagnostic accuracy of myoglobin concentration for the early diagnosis of acute myocardial infarction. Annals of Emergency Medicine. 2000; 35(2):113-120
- 242. Dedic A, Genders TS, Nieman K, Hunink MG. Imaging strategies for acute chest pain in the emergency department. AJR American Journal of Roentgenology. 2013; 200(1):W26-38
- 243. Dedic A, Kurata A, Lubbers M, Meijboom WB, van Dalen B, Snelder S et al. Prognostic implications of non-culprit plaques in acute coronary syndrome: non-invasive assessment with coronary CT angiography. European Heart Journal Cardiovascular Imaging. 2014; 15(11):1231-1237

- 244. Dedic A, Lubbers MM, Schaap J, Lammers J, Lamfers EJ, Rensing BJ et al. Coronary CT Angiography for Suspected ACS in the Era of High-Sensitivity Troponins: Randomized Multicenter Study. Journal of the American College of Cardiology. 2016; 67(1):16-26
- 245. Dedic A, Ten Kate GJ, Neefjes LA, Rossi A, Dharampal A, Rood PP et al. Coronary CT angiography outperforms calcium imaging in the triage of acute coronary syndrome. International Journal of Cardiology. 2013; 167(4):1597-1602
- 246. Department of Science and Technology Brazilian Health Technology Assessment General Coordination (DECIT-CGATS). BRATS 04: Multiple-detector computed tomography for the diagnosis of coronary artery disease Brasilia. Department of Science and Technology -Brazilian Health Technology Assessment General Coordination (DECIT-CGATS), 2008.
- 247. Diercks DB, Kirk JD, Naser S, Turnipseed S, Amsterdam EA. Value of high-sensitivity C-reactive protein in low risk chest pain observation unit patients. International Journal of Emergency Medicine. 2011; 4:37
- 248. Diercks DB, Mumma BE, Frank Peacock W, Hollander JE, Safdar B, Mahler SA et al. Incremental value of objective cardiac testing in addition to physician impression and serial contemporary troponin measurements in women. Academic Emergency Medicine. 2013; 20(3):265-270
- 249. Diercks DB, Peacock WFt, Hollander JE, Singer AJ, Birkhahn R, Shapiro N et al. Diagnostic accuracy of a point-of-care troponin I assay for acute myocardial infarction within 3 hours after presentation in early presenters to the emergency department with chest pain. American Heart Journal. 2012; 163(1):74-80.e74
- 250. Dodd JD, Kalva S, Pena A, Bamberg F, Shapiro MD, Abbara S et al. Emergency cardiac CT for suspected acute coronary syndrome: qualitative and quantitative assessment of coronary, pulmonary, and aortic image quality. AJR American Journal of Roentgenology. 2008; 191(3):870-877
- 251. Dorgelo J, Willems TP, Geluk CA, van Ooijen PM, Zijlstra F, Oudkerk M. Multidetector computed tomography-guided treatment strategy in patients with non-ST elevation acute coronary syndromes: a pilot study. European Radiology. 2005; 15(4):708-713
- 252. Duchenne J, Mestres S, Dublanchet N, Combaret N, Marceau G, Caumon L et al. Diagnostic accuracy of copeptin sensitivity and specificity in patients with suspected non-ST-elevation myocardial infarction with troponin I below the 99th centile at presentation. BMJ Open. 2014; 4(3):e004449
- 253. Durand E, Delos A, Chaib A, Lepillier A, Beretti S, Collin M et al. Performance assessment of a chest pain unit: Preliminary 2-year experience in the European Georges Pompidou Hospital. Archives of Cardiovascular Diseases. 2009; 102(12):803-809
- Duvall WL, Levine E, Baber U, Croft LB, Sahni S, Sethi S et al. A simple scoring tool for the evaluation of patients in an emergency department chest pain unit. Connecticut Medicine. 2014; 78(8):465-474
- 255. Edmond JJ, French JK, Henny H, Belz LM, West T, Stewart R et al. Prospective evaluation of a chest pain pathway at Green Lane Hospital. New Zealand Medical Journal. 2002; 115(1158):U103
- 256. Eggers KM, Venge P, Lindahl B. High-sensitive cardiac troponin T outperforms novel diagnostic biomarkers in patients with acute chest pain. Clinica Chimica Acta. 2012; 413(13-14):1135-1140

- 257. Einstein AJ, Johnson LL, DeLuca AJ, Kontak AC, Groves DW, Stant J et al. Radiation dose and prognosis of ultra-low-dose stress-first myocardial perfusion SPECT in patients with chest pain using a high-efficiency camera. Journal of Nuclear Medicine. 2015; 56(4):545-551
- 258. Estrada JN, Rolandi F, Bansilal S, Averbuj P, Natale E, Zafar MU et al. Stress testing and troponin in unstable coronary syndromes: the status trial-clinical outcomes and resource use. American Heart Hospital Journal. 2006; 4(4):252-258; quiz 259-260
- 259. Fanaroff AC, Rymer JA, Goldstein SA, Simel DL, Newby LK. Does This Patient With Chest Pain Have Acute Coronary Syndrome?: The Rational Clinical Examination Systematic Review. JAMA. 2015; 314(18):1955-1965
- 260. Ferencik M, Schlett CL, Bamberg F, Truong QA, Nichols JH, Pena AJ et al. Comparison of traditional cardiovascular risk models and coronary atherosclerotic plaque as detected by computed tomography for prediction of acute coronary syndrome in patients with acute chest pain. Academic Emergency Medicine. 2012; 19(8):934-942
- 261. Ferencik M, Schlett CL, Ghoshhajra BB, Kriegel MF, Joshi SB, Maurovich-Horvat P et al. A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. American Journal of Cardiology. 2012; 110(2):183-189
- 262. Fernandez-Friera L, Garcia-Alvarez A, Bagheriannejad-Esfahani F, Malick W, Mirelis JG, Sawit ST et al. Diagnostic value of coronary artery calcium scoring in low-intermediate risk patients evaluated in the emergency department for acute coronary syndrome. American Journal of Cardiology. 2011; 107(1):17-23
- 263. Fesmire FM, Buchheit RC, Cao Y, Severance HW, Jang Y, Heath GW. Risk stratification in chest pain patients undergoing nuclear stress testing: the Erlanger Stress Score. Critical Pathways in Cardiology: A Journal of Evidence-Based Medicine. 2012; 11(4):171-176
- 264. Fesmire FM, Hughes AD, Fody EP, Jackson AP, Fesmire CE, Gilbert MA et al. The Erlanger chest pain evaluation protocol: a one-year experience with serial 12-lead ECG monitoring, two-hour delta serum marker measurements, and selective nuclear stress testing to identify and exclude acute coronary syndromes. Annals of Emergency Medicine. 2002; 40(6):584-594
- 265. Fesmire FM, Hughes AD, Stout PK, Wojcik JF, Wharton DR. Selective dual nuclear scanning in low-risk patients with chest pain to reliably identify and exclude acute coronary syndromes. Annals of Emergency Medicine. 2001; 38(3):207-215
- 266. Fitzgerald P, Goodacre SW, Cross E, Dixon S. Cost-effectiveness of point-of-care biomarker assessment for suspected myocardial infarction: the randomized assessment of treatment using panel Assay of cardiac markers (RATPAC) trial. Academic Emergency Medicine. 2011; 18(5):488-495
- 267. Forberg JL, Hilmersson CE, Carlsson M, Arheden H, Bjork J, Hjalte K et al. Negative predictive value and potential cost savings of acute nuclear myocardial perfusion imaging in low risk patients with suspected acute coronary syndrome: a prospective single blinded study. BMC Emergency Medicine. 2009; 9:12
- 268. Freund Y, Chenevier-Gobeaux C, Bonnet P, Claessens YE, Allo JC, Doumenc B et al. Highsensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction. Critical Care (London, England). 2011; 15(3):R147
- 269. Gaemperli O, Husmann L, Schepis T, Koepfli P, Valenta I, Jenni W et al. Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? European Heart Journal. 2009; 30(23):2921-2929

- 270. Gaemperli O, Schepis T, Koepfli P, Valenta I, Soyka J, Leschka S et al. Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. European Journal of Nuclear Medicine and Molecular Imaging. 2007; 34(8):1162-1171
- 271. Gaibazzi N, Reverberi C, Badano L. Usefulness of contrast stress-echocardiography or exercise-electrocardiography to predict long-term acute coronary syndromes in patients presenting with chest pain without electrocardiographic abnormalities or 12-hour troponin elevation. American Journal of Cardiology. 2011; 107(2):161-167
- 272. Gaibazzi N, Reverberi C, Squeri A, De Iaco G, Ardissino D, Gherli T. Contrast stress echocardiography for the diagnosis of coronary artery disease in patients with chest pain but without acute coronary syndrome: incremental value of myocardial perfusion. Journal of the American Society of Echocardiography. 2009; 22(4):404-410
- 273. Gaibazzi N, Rigo F, Reverberi C. Detection of coronary artery disease by combined assessment of wall motion, myocardial perfusion and coronary flow reserve: a multiparametric contrast stress-echocardiography study. Journal of the American Society of Echocardiography. 2010; 23(12):1242-1250
- 274. Gaibazzi N, Rigo F, Squeri A, Ugo F, Reverberi C. Incremental value of contrast myocardial perfusion to detect intermediate versus severe coronary artery stenosis during stress-echocardiography. Cardiovascular Ultrasound. 2010; 8:16
- 275. Galassi AR, Azzarelli S, Lupo L, Mammana C, Foti R, Tamburino C et al. Accuracy of exercise testing in the assessment of the severity of myocardial ischemia as determined by means of technetium-99m tetrofosmin SPECT scintigraphy. Journal of Nuclear Cardiology. 2000; 7(6):575-583
- 276. Gallagher MJ, Ross MA, Raff GL, Goldstein JA, O'Neill WW, O'neil B. The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Annals of Emergency Medicine. 2007; 49(2):125-136
- 277. Gao D, Ning N, Guo Y, Ning W, Niu X, Yang J. Computed tomography for detecting coronary artery plaques: a meta-analysis. Atherosclerosis. 2011; 219(2):603-609
- 278. Gargiulo P, Dellegrottaglie S, Bruzzese D, Savarese G, Scala O, Ruggiero D et al. The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis. Circulation Cardiovascular imaging. 2013; 6(4):574-582
- 279. Gargiulo P, Petretta M, Bruzzese D, Cuocolo A, Prastaro M, D'Amore C et al. Myocardial perfusion scintigraphy and echocardiography for detecting coronary artery disease in hypertensive patients: a meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging. 2011; 38(11):2040-2049
- 280. Garrido IP, Peteiro J, Garcia-Lara J, Montserrat L, Aldama G, Vazquez-Rodriguez JM et al. Prognostic value of exercise echocardiography in patients with diabetes mellitus and known or suspected coronary artery disease. American Journal of Cardiology. 2005; 96(1):9-12
- 281. Gaudio C, Mirabelli F, Alessandra L, Nguyen BL, Di Michele S, Corsi F et al. Noninvasive assessment of coronary artery stenoses by multidetector-row spiral computed tomography: comparison with conventional angiography. European Review for Medical and Pharmacological Sciences. 2005; 9(1):13-21

- 282. Gayed IW, Raslan OA, Bhosale PR, Perrier ND, Wei W, Gladish G. Significant coronary calcification detected using contrast-enhanced computed tomography: Is it an indication for further investigation? Clinical Nuclear Medicine. 2010; 35(6):404-408
- 283. Gebker R, Frick M, Jahnke C, Berger A, Schneeweis C, Manka R et al. Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease. The International Journal of Cardiovascular Imaging. 2012; 28(1):89-97
- 284. Gebker R, Jahnke C, Paetsch I, Kelle S, Schnackenburg B, Fleck E et al. Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease. radiolgoy. 2008; 247(1):57-63
- 285. Geleijnse ML, Elhendy A, Kasprzak JD, Rambaldi R, van Domburg RT, Cornel JH et al. Safety and prognostic value of early dobutamine-atropine stress echocardiography in patients with spontaneous chest pain and a non-diagnostic electrocardiogram. European Heart Journal. 2000; 21(5):397-406
- 286. Genders TS, Ferket BS, Dedic A, Galema TW, Mollet NR, de Feyter PJ et al. Coronary computed tomography versus exercise testing in patients with stable chest pain: comparative effectiveness and costs. International Journal of Cardiology. 2013; 167(4):1268-1275
- 287. Gentile R, Vitarelli A, Schillaci O, Lagana B, Gianni C, Rossi-Fanelli F et al. Diagnostic accuracy and prognostic implications of stress testing for coronary artery disease in the elderly. Italian Heart Journal: Official Journal of the Italian Federation of Cardiology. 2001; 2(7):539-545
- 288. George RT, Arbab-Zadeh A, Miller JM, Kitagawa K, Chang HJ, Bluemke DA et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circulation Cardiovascular imaging. 2009; 2(3):174-182
- 289. George RT, Arbab-Zadeh A, Miller JM, Vavere AL, Bengel FM, Lardo AC et al. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circulation Cardiovascular imaging. 2012; 5(3):333-340
- 290. George RT, Mehra VC, Chen MY, Kitagawa K, Arbab-Zadeh A, Miller JM et al. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study.[Erratum appears in Radiology. 2015 Feb;274(2):626; PMID: 25625749]. Radiology. 2014; 272(2):407-416
- 291. Gerbaud E, Harcaut E, Coste P, Erickson M, Lederlin M, Labeque JN et al. Cardiac magnetic resonance imaging for the diagnosis of patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. The International Journal of Cardiovascular Imaging. 2012; 28(4):783-794
- 292. Gerber BL, Coche E, Pasquet A, Ketelslegers E, Vancraeynest D, Grandin C et al. Coronary artery stenosis: direct comparison of four-section multi-detector row CT and 3D navigator MR imaging for detection--initial results. Radiology. 2005; 234(1):98-108
- 293. Ghoshhajra BB, Maurovich-Horvat P, Techasith T, Medina HM, Verdini D, Sidhu MS et al. Infarct detection with a comprehensive cardiac CT protocol. Journal of Cardiovascular Computed Tomography. 2012; 6(1):14-23

- 294. Ghostine S, Caussin C, Daoud B, Habis M, Perrier E, Pesenti-Rossi D et al. Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. Journal of the American College of Cardiology. 2006; 48(10):1929-1934
- 295. Giannitsis E, Becker M, Kurz K, Hess G, Zdunek D, Katus HA. High-sensitivity cardiac troponin T for early prediction of evolving non-ST-segment elevation myocardial infarction in patients with suspected acute coronary syndrome and negative troponin results on admission. Clinical Chemistry. 2010; 56(4):642-650
- 296. Giannitsis E, Kehayova T, Vafaie M, Katus HA. Combined testing of high-sensitivity troponin T and copeptin on presentation at prespecified cutoffs improves rapid rule-out of non-STsegment elevation myocardial infarction. Clinical Chemistry. 2011; 57(10):1452-1455
- 297. Giavarina D, Carta M, Fortunato A, Wratten ML, Hartmann O, Soffiati G. Copeptin and high sensitive troponin for a rapid rule out of acute myocardial infarction? Clinical Laboratory. 2011; 57(9-10):725-730
- 298. Girzadas M, Varga P, Dajani K. A single-center experience of detecting coronary anomalies on 64-slice computed tomography. Journal of Cardiovascular Medicine. 2009; 10(11):842-847
- 299. Goldenberg R, Eilot D, Begelman G, Walach E, Ben-Ishai E, Peled N. Computer-aided simple triage (CAST) for coronary CT angiography (CCTA). International Journal of Computer Assisted Radiology and Surgery. 2012; 7(6):819-827
- 300. Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. Journal of the American College of Cardiology. 2011; 58(14):1414-1422
- 301. Goldstein JA, Gallagher MJ, O'Neill WW, Ross MA, O'Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. Journal of the American College of Cardiology. 2007; 49(8):863-871
- 302. Gonzalez P, Dussaillant G, Gutierrez D, Berrocal I, Alay R, Otarola S. Single-photon emission computed tomography for the assessment of ventricular perfusion and function. Revista Medica de Chile. 2013; 141(9):1136-1142
- 303. Gonzalez P, Massardo T, Jofre MJ, Yovanovich J, Prat H, Munoz A et al. 201Tl myocardial SPECT detects significant coronary artery disease between 50% and 75% angiogram stenosis. Revista Española de Medicina Nuclear. 2005; 24(5):305-311
- 304. Goodacre S, Locker T, Arnold J, Angelini K, Morris F. Which diagnostic tests are most useful in a chest pain unit protocol? BMC Emergency Medicine. 2005; 5:6
- 305. Goodacre S, Thokala P, Carroll C, Stevens JW, Leaviss J, Al Khalaf M et al. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health technology assessment (Winchester, England). 2013; 17(1):v-vi, 1-188
- 306. Gouya H, Varenne O, Trinquart L, Touze E, Vignaux O, Spaulding C et al. Coronary artery stenosis in high-risk patients: 64-Section CT and coronary angiography Prospective study and analysis of discordance. Radiology. 2009; 252(2):377-385
- 307. Graf S, Khorsand A, Gwechenberger M, Novotny C, Kletter K, Sochor H et al. Typical chest pain and normal coronary angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. Journal of Nuclear Medicine. 2007; 48(2):175-181

- 308. Greenslade JH, Parsonage W, Ho A, Scott A, Dalton E, Hammett C et al. Utility of Routine Exercise Stress Testing among Intermediate Risk Chest Pain Patients Attending an Emergency Department. Heart, Lung & Circulation. 2015; 24(9):879-884
- 309. Greenwood JP, Motwani M, Maredia N, Brown JM, Everett CC, Nixon J et al. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation. 2014; 129(10):1129-1138
- 310. Greif M, von Ziegler F, Bamberg F, Tittus J, Schwarz F, D'Anastasi M et al. CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart. 2013; 99(14):1004-1011
- 311. Greulich S, Bruder O, Parker M, Schumm J, Grun S, Schneider S et al. Comparison of exercise electrocardiography and stress perfusion CMR for the detection of coronary artery disease in women. Journal of Cardiovascular Magnetic Resonance. 2012; 14:36
- 312. Greupner J, Zimmermann E, Grohmann A, Dubel HP, Althoff TF, Borges AC et al. Head-tohead comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging as the reference standard.[Erratum appears in J Am Coll Cardiol. 2012 Jul 31;60(5):481 Note: Althoff, Till [corrected to Althoff, Till F]]. Journal of the American College of Cardiology. 2012; 59(21):1897-1907
- Groothuis JG, Beek AM, Meijerink MR, Brinckman SL, Heymans MW, van Kuijk C et al.
 Positive predictive value of computed tomography coronary angiography in clinical practice.
 International Journal of Cardiology. 2012; 156(3):315-319
- 314. Guo SL, Guo YM, Zhai YN, Ma B, Wang P, Yang KH. Diagnostic accuracy of first generation dual-source computed tomography in the assessment of coronary artery disease: a metaanalysis from 24 studies. The International Journal of Cardiovascular Imaging. 2011; 27(6):755-771
- 315. Gupta M, Kadakia J, Jug B, Mao SS, Budoff MJ. Detection and quantification of myocardial perfusion defects by resting single-phase 64-slice cardiac computed tomography angiography compared with SPECT myocardial perfusion imaging. Coronary Artery Disease. 2013; 24(4):290-297
- 316. Haaf P, Drexler B, Reichlin T, Twerenbold R, Reiter M, Meissner J et al. High-sensitivity cardiac troponin in the distinction of acute myocardial infarction from acute cardiac noncoronary artery disease. Circulation. 2012; 126(1):31-40
- 317. Haberl R, Tittus J, Bohme E, Czernik A, Richartz BM, Buck J et al. Multislice spiral computed tomographic angiography of coronary arteries in patients with suspected coronary artery disease: an effective filter before catheter angiography? American Heart Journal. 2005; 149(6):1112-1119
- 318. Hamilton-Craig C, Fifoot A, Hansen M, Pincus M, Chan J, Walters DL et al. Diagnostic performance and cost of CT angiography versus stress ECG--a randomized prospective study of suspected acute coronary syndrome chest pain in the emergency department (CT-COMPARE). International Journal of Cardiology. 2014; 177(3):867-873
- 319. Hammerer-Lercher A, Ploner T, Neururer S, Schratzberger P, Griesmacher A, Pachinger O et al. High-sensitivity cardiac troponin T compared with standard troponin T testing on

emergency department admission: how much does it add in everyday clinical practice? Journal of the American Heart Association. 2013; 2(3):e000204

- 320. Han PP, Fang W, Tian YQ, Gao Y, Yang MF, Zhang XL et al. Comparison of coronary CT angiography and stress/rest myocardial perfusion SPECT imaging in a Chinese population. Clinical Nuclear Medicine. 2013; 38(10):798-804
- 321. Hansen M, Ginns J, Seneviratne S, Slaughter R, Premaranthe M, Samardhi H et al. The value of dual-source 64-slice CT coronary angiography in the assessment of patients presenting to an acute chest pain service. Heart, Lung & Circulation. 2010; 19(4):213-218
- 322. Hartlage G, Janik M, Anadiotis A, Veledar E, Oshinski J, Kremastinos D et al. Prognostic value of adenosine stress cardiovascular magnetic resonance and dobutamine stress echocardiography in patients with low-risk chest pain. The International Journal of Cardiovascular Imaging. 2012; 28(4):803-812
- 323. Hascoet S, Bongard V, Chabbert V, Marachet MA, Rousseau H, Charpentier S et al. Early triage of emergency department patients with acute coronary syndrome: contribution of 64slice computed tomography angiography. Archives of Cardiovascular Diseases. 2012; 105(6-7):338-346
- 324. Heitner JF, Klem I, Rasheed D, Chandra A, Kim HW, Van Assche LM et al. Stress cardiac MR imaging compared with stress echocardiography in the early evaluation of patients who present to the emergency department with intermediate-risk chest pain. Radiology. 2014; 271(1):56-64
- 325. Hermann LK, Weingart SD, Duvall WL, Henzlova MJ. The limited utility of routine cardiac stress testing in emergency department chest pain patients younger than 40 years. Annals of Emergency Medicine. 2009; 54(1):12-16
- 326. Heuschmid M, Burgstahler C, Reimann A, Brodoefel H, Mysal I, Haeberle E et al. Usefulness of noninvasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. American Journal of Cardiology. 2007; 100(4):587-592
- 327. Heydari B, Leipsic J, Mancini GB, Min JK, Labounty T, Taylor C et al. Diagnostic performance of high-definition coronary computed tomography angiography performed with multiple radiation dose reduction strategies. Canadian Journal of Cardiology. 2011; 27(5):606-612
- Hjortshoj S, Venge P, Ravkilde J. Clinical performance of a new point-of-care cardiac troponin I assay compared to three laboratory troponin assays. Clinica Chimica Acta. 2011; 412(3-4):370-375
- 329. Hochholzer W, Reichlin T, Stelzig C, Hochholzer K, Meissner J, Breidthardt T et al. Impact of soluble fms-like tyrosine kinase-1 and placental growth factor serum levels for risk stratification and early diagnosis in patients with suspected acute myocardial infarction. European Heart Journal. 2011; 32(3):326-335
- Hoeller R, Rubini Gimenez M, Reichlin T, Twerenbold R, Zellweger C, Moehring B et al.
 Normal presenting levels of high-sensitivity troponin and myocardial infarction. Heart. 2013; 99(21):1567-1572
- 331. Hoffmann U, Bamberg F, Chae CU, Nichols JH, Rogers IS, Seneviratne SK et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. Journal of the American College of Cardiology. 2009; 53(18):1642-1650

- 332. Hoffmann U, Pena AJ, Moselewski F, Ferencik M, Abbara S, Cury RC et al. MDCT in early triage of patients with acute chest pain. AJR American Journal of Roentgenology. 2006; 187(5):1240-1247
- 333. Hoffmann U, Truong QA, Fleg JL, Goehler A, Gazelle S, Wiviott S et al. Design of the rule out myocardial ischemia/infarction using computer assisted tomography: A multicenter randomized comparative effectiveness trial of cardiac computed tomography versus alternative triage strategies in patients with acute chest pain in the emergency department. American Heart Journal. 2012; 163(3):330-338.e331
- 334. Hoffmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT et al. Coronary CT angiography versus standard evaluation in acute chest pain. New England Journal of Medicine. 2012; 367(4):299-308
- 335. Hollander JE, Chang AM, Shofer FS, McCusker CM, Baxt WG, Litt HI. Coronary computed tomographic angiography for rapid discharge of low-risk patients with potential acute coronary syndromes. Annals of Emergency Medicine. 2009; 53(3):295-304
- 336. Hollander JE, Litt HI, Chase M, Brown AM, Kim W, Baxt WG. Computed tomography coronary angiography for rapid disposition of low-risk emergency department patients with chest pain syndromes. Academic Emergency Medicine. 2007; 14(2):112-116
- 337. Holubkov R, Pepine CJ, Rickens C, Reichek N, Rogers WJ, Sharaf BL et al. Electrocardiogram abnormalities predict angiographic coronary artery disease in women with chest pain: results from the NHLBI WISE Study. Clinical Cardiology. 2002; 25(12):553-558
- 338. Hou Y, Ma Y, Fan W, Wang Y, Yu M, Vembar M et al. Diagnostic accuracy of low-dose 256slice multi-detector coronary CT angiography using iterative reconstruction in patients with suspected coronary artery disease. European Radiology. 2014; 24(1):3-11
- Hsu CC, Chen YW, Hao CL, Chong JT, Lee CI, Tan HT et al. Comparison of automated 4D-MSPECT and visual analysis for evaluating myocardial perfusion in coronary artery disease. Kaohsiung Journal of Medical Sciences. 2008; 24(9):445-452
- 340. Hulten E, Villines TC, Cheezum MK, Berman DS, Dunning A, Achenbach S et al. Usefulness of coronary computed tomography angiography to predict mortality and myocardial infarction among Caucasian, African and East Asian ethnicities (from the CONFIRM [Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter] Registry). American Journal of Cardiology. 2013; 111(4):479-485
- 341. Husmann L, Gaemperli O, Schepis T, Scheffel H, Valenta I, Hoefflinghaus T et al. Accuracy of quantitative coronary angiography with computed tomography and its dependency on plaque composition. International Journal of Cardiovascular Imaging. 2008; 24(8):895-904
- 342. Husmann L, Herzog BA, Gaemperli O, Tatsugami F, Burkhard N, Valenta I et al. Diagnostic accuracy of computed tomography coronary angiography and evaluation of stress-only single-photon emission computed tomography/computed tomography hybrid imaging: comparison of prospective electrocardiogram-triggering vs. retrospective gating. European Heart Journal. 2009; 30(5):600-607
- 343. Husmann L, Scheffel H, Valenta I, Schepis T, Gaemperli O, Aepli U et al. Impact of hypertension on the diagnostic accuracy of coronary angiography with computed tomography. The International Journal of Cardiovascular Imaging. 2008; 24(7):763-770
- 344. Husmann L, Wiegand M, Valenta I, Gaemperli O, Schepis T, Siegrist PT et al. Diagnostic accuracy of myocardial perfusion imaging with single photon emission computed

tomography and positron emission tomography: A comparison with coronary angiography. International Journal of Cardiovascular Imaging. 2008; 24(5):511-518

- 345. Hwang IC, Kim YJ, Kim KH, Shin DH, Lee SP, Kim HK et al. Diagnostic yield of coronary angiography in patients with acute chest pain: role of noninvasive test. American Journal of Emergency Medicine. 2014; 32(1):1-6
- 346. Identifying acute ischemia in the ED: How useful are the available tests? Consultant. 1997; 37(6):1719-1720
- 347. Iglesias-Garriz I, Rodriguez MA, Garcia-Porrero E, Ereno F, Garrote C, Suarez G. Emergency nontraumatic chest pain: use of stress echocardiography to detect significant coronary artery stenosis. Journal of the American Society of Echocardiography. 2005; 18(11):1181-1186
- 348. Imran S, Ali L, Abid AR, Mohyuddin MT, Aziz ur R. Role of exercise stress testing in evaluation of patients presenting with chest pain. Journal of Postgraduate Medical Institute. 2006; 20(1):25-29
- 349. Inoue K, Suwa S, Ohta H, Itoh S, Maruyama S, Masuda N et al. Heart fatty acid-binding protein offers similar diagnostic performance to high-sensitivity troponin T in emergency room patients presenting with chest pain. Circulation Journal. 2011; 75(12):2813-2820
- 350. Irfan A, Reichlin T, Twerenbold R, Meister M, Moehring B, Wildi K et al. Early diagnosis of myocardial infarction using absolute and relative changes in cardiac troponin concentrations. American Journal of Medicine. 2013; 126(9):781-788.e782
- 351. Isoda H, Itagaki Y, Nomura N, Urushida T, Naitou A, Watanabe A et al. Usefulness of dual SPECT with Tc-99m pyrophosphate and Tl-201 to predict further events after acute myocardial infarction with single-vessel coronary artery disease. Clinical Nuclear Medicine. 1999; 24(4):227-231
- 352. Iyengar SS, Morgan-Hughes G, Ukoumunne O, Clayton B, Davies EJ, Nikolaou V et al. diagnostic accuracy of high-definition CT cononary angiograpgy in high-risk patients. Clinical Radiology. 2016; 71(2):151-158
- 353. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007; 115(13):1769-1776
- 354. Jahnke C, Paetsch I, Schnackenburg B, Gebker R, Kohler U, Bornstedt A et al. Comparison of radial and Cartesian imaging techniques for MR coronary angiography. Journal of Cardiovascular Magnetic Resonance. 2004; 6(4):865-875
- 355. Jang JY, Sohn IS, Kim JN, Park JH, Park CB, Jin ES et al. Treadmill exercise stress echocardiography in patients with no history of coronary artery disease: a single-center experience in korean population. Sunhwangi. 2011; 41(9):528-534
- 356. Januzzi JL, Jr., Bamberg F, Lee H, Truong QA, Nichols JH, Karakas M et al. High-sensitivity troponin T concentrations in acute chest pain patients evaluated with cardiac computed tomography. Circulation. 2010; 121(10):1227-1234
- 357. Jeetley P, Burden L, Senior R. Stress echocardiography is superior to exercise ECG in the risk stratification of patients presenting with acute chest pain with negative Troponin. European Journal of Echocardiography. 2006; 7(2):155-164
- 358. Jimenez-Hoyuela Garcia JM, Robledo Carmona J, Ortega Lozano S, Martinez del Valle Torres M, Delgado Garcia A, Gomez Doblas JJ. Myocardial perfusion scintigraphy in the emergency

department for the evaluation and triage of patients with chest pain and a non-diagnostic electrocardiogram. [Spanish, English]. Investigacion Cardiovascular. 2006; 9(1):7-18

- 359. Johnson TR, Nikolaou K, Becker A, Leber AW, Rist C, Wintersperger BJ et al. Dual-source CT for chest pain assessment. European Radiology. 2008; 18(4):773-780
- 360. Johnson TR, Nikolaou K, Wintersperger BJ, Knez A, Boekstegers P, Reiser MF et al. ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. AJR American Journal of Roentgenology. 2007; 188(1):76-82
- 361. Jug B, Gupta M, Papazian J, Li D, Tsang J, Bhatia H et al. Diagnostic performance of 64-slice multidetector coronary computed tomographic angiography in women. Journal of Nuclear Cardiology. 2012; 19(6):1154-1161
- 362. Kadokami T, Ando S, Momii H, Yoshida M, Narita S, Fukunaga T et al. Diagnostic performance of cardiac fusion images from myocardial perfusion imaging and multislice computed tomography coronary angiography for assessment of hemodynamically significant coronary artery lesions: an observational study. Nuclear Medicine Communications. 2012; 33(1):60-68
- 363. Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010; 122(6):603-613
- 364. Kaminek M, Myslivecek M, Husak V, Koranda P, Skvarilova M, Ostransky J et al. The accuracy of myocardial perfusion SPECT imaging in the evaluation of coronary artery disease in women and men. Nuclear Medicine Review. 2001; 4(2):69-72
- 365. Kamiya K, Sakakibara M, Asakawa N, Yamada S, Yoshitani T, Iwano H et al. Cardiac magnetic resonance performs better in the detection of functionally significant coronary artery stenosis compared to single-photon emission computed tomography and dobutamine stress echocardiography. Circulation Journal. 2014; 78(10):2468-2476
- 366. Kang DH, Kang SJ, Song JM, Choi KJ, Hong MK, Song JK et al. Efficacy of myocardial contrast echocardiography in the diagnosis and risk stratification of acute coronary syndrome. American Journal of Cardiology. 2005; 96(11):1498-1502
- 367. Kang X, Berman DS, Lewin H, Miranda R, Erel J, Friedman JD et al. Comparative ability of myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in patients with and without diabetes mellitus. American Heart Journal. 1999; 137(5):949-957
- 368. Karacavus S, Tutus A, Topsakal R, Kula M, Celik A, Abdulrezzak U et al. Evaluation of the diagnostic and prognostic use of gated myocardial perfusion single-photon emission computed tomography in patients with acute chest pain: comparison with the SYNTAX score. Nuclear Medicine Communications. 2015; 36(9):945-951
- 369. Kaul S, Senior R, Firschke C, Wang XQ, Lindner J, Villanueva FS et al. Incremental value of cardiac imaging in patients presenting to the emergency department with chest pain and without ST-segment elevation: a multicenter study. American Heart Journal. 2004; 148(1):129-136
- 370. Kawai Y, Morita K, Nozaki Y, Ohkusa T, Sakurai M, Tamaki N. Diagnostic value of ¹²³I-betamethyl-p-iodophenyl-pentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) in patients with chest pain - Comparison with reststress ^{99m}Tc-tetrofosmin SPECT and coronary angiography. Circulation Journal. 2004; 68(6):547-552

- 371. Kawecki D, Morawiec B, Monney P, Pellaton C, Wojciechowska C, Jojko J et al. Diagnostic contribution of cardiac magnetic resonance in patients with acute coronary syndrome and culprit-free angiograms. Medical Science Monitor. 2015; 21:171-180
- 372. Keijer JT, van Rossum AC, van Eenige MJ, Bax JJ, Visser FC, Teule JJ et al. Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: quantitative comparison with (201)Thallium-SPECT and coronary angiography. Journal of Magnetic Resonance Imaging. 2000; 11(6):607-615
- Keller T, Tzikas S, Zeller T, Czyz E, Lillpopp L, Ojeda FM et al. Copeptin improves early diagnosis of acute myocardial infarction. Journal of the American College of Cardiology. 2010; 55(19):2096-2106
- 374. Keller T, Zeller T, Ojeda F, Tzikas S, Lillpopp L, Sinning C et al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA. 2011; 306(24):2684-2693
- 375. Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. New England Journal of Medicine. 2009; 361(9):868-877
- 376. Khan DA, Sharif MS, Khan FA. Diagnostic performance of high-sensitivity troponin T, myeloperoxidase, and pregnancy-associated plasma protein A assays for triage of patients with acute myocardial infarction. Korean Journal of Laboratory Medicine. 2011; 31(3):172-178
- 377. Kim RJ, Albert TS, Wible JH, Elliott MD, Allen JC, Lee JC et al. Performance of delayedenhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation. 2008; 117(5):629-637
- 378. Kim SM, Chang SA, Shin W, Choe YH. Dual-energy CT perfusion during pharmacologic stress for the assessment of myocardial perfusion defects using a second-generation dual-source CT: a comparison with cardiac magnetic resonance imaging. Journal of Computer Assisted Tomography. 2014; 38(1):44-52
- 379. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. New England Journal of Medicine. 2001; 345(26):1863-1869
- 380. Kim Y, Goto H, Kobayashi K, Sawada Y, Miyake Y, Fujiwara G et al. A new method to evaluate ischemic heart disease: combined use of rest thallium-201 myocardial SPECT and Tc-99m exercise tetrofosmin first pass and myocardial SPECT. Annals of Nuclear Medicine. 1999; 13(3):147-153
- 381. Kim YJ, Seo JS, Choi BW, Choe KO, Jang Y, Ko YG. Feasibility and diagnostic accuracy of whole heart coronary MR angiography using free-breathing 3D balanced turbo-field-echo with SENSE and the half-fourier acquisition technique. Korean Journal of Radiology. 2006; 7(4):235-242
- 382. Kirisli HA, Gupta V, Shahzad R, Al Younis I, Dharampal A, Geuns RJ et al. Additional diagnostic value of integrated analysis of cardiac CTA and SPECT MPI using the SMARTVis system in patients with suspected coronary artery disease. Journal of Nuclear Medicine. 2014; 55(1):50-57
- 383. Kitagawa K, Sakuma H, Nagata M, Okuda S, Hirano M, Tanimoto A et al. Diagnostic accuracy of stress myocardial perfusion MRI and late gadolinium-enhanced MRI for detecting flow-

limiting coronary artery disease: a multicenter study. European Radiology. 2008; 18(12):2808-2816

- 384. Klem I, Greulich S, Heitner JF, Kim H, Vogelsberg H, Kispert EM et al. Value of cardiovascular magnetic resonance stress perfusion testing for the detection of coronary artery disease in women. JACC: Cardiovascular Imaging. 2008; 1(4):436-445
- 385. Klumpp B, Miller S, Seeger A, May AE, Gawaz MP, Claussen CD et al. Is the diagnostic yield of myocardial stress perfusion MRI impaired by three-vessel coronary artery disease? Acta Radiologica. 2015; 56(2):143-151
- 386. Klumpp BD, Seeger A, Doesch C, Doering J, Hoevelborn T, Kramer U et al. High resolution myocardial magnetic resonance stress perfusion imaging at 3 T using a 1 M contrast agent. European Radiology. 2010; 20(3):533-541
- 387. Ko BS, Cameron JD, Leung M, Meredith IT, Leong DP, Antonis PR et al. Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC: Cardiovascular Imaging. 2012; 5(11):1097-1111
- 388. Ko SM, Choi JW, Hwang HK, Song MG, Shin JK, Chee HK. Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR American Journal of Roentgenology. 2012; 198(3):512-520
- 389. Ko SM, Park JH, Hwang HK, Song MG. Direct comparison of stress- and rest-dual-energy computed tomography for detection of myocardial perfusion defect. The International Journal of Cardiovascular Imaging. 2014; 30 Suppl 1:41-53
- 390. Ko SM, Song MG, Chee HK, Hwang HK, Feuchtner GM, Min JK. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI. AJR American Journal of Roentgenology. 2014; 203(6):W605-613
- 391. Koide Y, Yotsukura M, Yoshino H, Ishikawa K. A new coronary artery disease index of treadmill exercise electrocardiograms based on the step-up diagnostic method. American Journal of Cardiology. 2001; 87(2):142-147
- 392. Kontos MC, Haney A, Ornato JP, Jesse RL, Tatum JL. Value of simultaneous functional assessment in association with acute rest perfusion imaging for predicting short- and longterm outcomes in emergency department patients with chest pain. Journal of Nuclear Cardiology. 2008; 15(6):774-782
- 393. Kontos MC, Jesse RL, Anderson FP, Schmidt KL, Ornato JP, Tatum JL. Comparison of myocardial perfusion imaging and cardiac troponin I in patients admitted to the emergency department with chest pain. Circulation. 1999; 99(16):2073-2078
- 394. Kontos MC, Kurdziel K, McQueen R, Arrowood JA, Jesse RL, Ornato JP et al. Comparison of 2dimensional echocardiography and myocardial perfusion imaging for diagnosing myocardial infarction in emergency department patients. American Heart Journal. 2002; 143(4):659-667
- 395. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. Journal of the American College of Cardiology. 2011; 58(19):1989-1997

- 396. Krittayaphong R, Mahanonda N, Kangkagate C, Nakyen S, Tanapibunpon P, Chaithiraphan S. Accuracy of magnetic resonance imaging in the diagnosis of coronary artery disease. Journal of the Medical Association of Thailand. 2003; 86 Suppl 1:S59-66
- 397. Kume N, Mitsuoka H, Hayashida K, Tanaka M. Pentraxin 3 as a biomarker for acute coronary syndrome: comparison with biomarkers for cardiac damage. Journal of Cardiology. 2011; 58(1):38-45
- 398. Kunimasa T, Sato Y, Matsumoto N, Chiku M, Tani S, Kasama S et al. Detection of coronary artery disease by free-breathing, whole heart coronary magnetic resonance angiography: our initial experience. Heart and Vessels. 2009; 24(6):429-433
- 399. Kurz K, Giannitsis E, Becker M, Hess G, Zdunek D, Katus HA. Comparison of the new high sensitive cardiac troponin T with myoglobin, h-FABP and cTnT for early identification of myocardial necrosis in the acute coronary syndrome. Clinical Research in Cardiology. 2011; 100(3):209-215
- 400. Kwong RY, Schussheim AE, Rekhraj S, Aletras AH, Geller N, Davis J et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation. 2003; 107(4):531-537
- 401. Langdorf MI, Wei E, Ghobadi A, Rudkin SE, Lotfipour S. Echocardiography to supplement stress electrocardiography in emergency department chest pain patients. The Western Journal of Emergency Medicine. 2010; 11(4):379-383
- 402. Langer C, Peterschroder A, Franzke K, Esdorn H, Korperich H, Meyer H et al. Noninvasive coronary angiography focusing on calcification: Multislice computed tomography compared with magnetic resonance imaging. Journal of Computer Assisted Tomography. 2009; 33(2):179-185
- 403. Laudon DA, Behrenbeck TR, Wood CM, Bailey KR, Callahan CM, Breen JF et al. Computed tomographic coronary artery calcium assessment for evaluating chest pain in the emergency department: long-term outcome of a prospective blind study. Mayo Clinic Proceedings. 2010; 85(4):314-322
- 404. Laudon DA, Vukov LF, Breen JF, Rumberger JA, Wollan PC, Sheedy PF, 2nd. Use of electronbeam computed tomography in the evaluation of chest pain patients in the emergency department. Annals of Emergency Medicine. 1999; 33(1):15-21
- 405. Layritz C, Schmid J, Achenbach S, Ulzheimer S, Wuest W, May M et al. Accuracy of prospectively ECG-triggered very low-dose coronary dual-source CT angiography using iterative reconstruction for the detection of coronary artery stenosis: comparison with invasive catheterization. European Heart Journal Cardiovascular Imaging. 2014; 15(11):1238-1245
- 406. Lazoura O, Vlychou M, Vassiou K, Kelekis A, Kanavou T, Thriskos P et al. 128-detector-row computed tomography coronary angiography assessing differences in morphology and distribution of atherosclerotic plaques between patients with and without pre-test probability of significant coronary artery disease. European Journal of Radiology. 2011; 77(1):123-130
- 407. Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K et al. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. European Heart Journal. 2007; 28(19):2354-2360
- 408. Leber AW, Knez A, Becker A, Becker C, Von Ziegler F, Nikolaou K et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition

of coronary atherosclerotic plaques: A comparative study with intracoronary ultrasound. Journal of the American College of Cardiology. 2004; 43(7):1241-1247

- 409. Leber AW, Knez A, Becker C, Becker A, White C, Thilo C et al. Non-invasive intravenous coronary angiography using electron beam tomography and multislice computed tomography. Heart. 2003; 89(6):633-639
- 410. Lee CP, Hoffmann U, Bamberg F, Brown DF, Chang Y, Swap C et al. Emergency physician estimates of the probability of acute coronary syndrome in a cohort of patients enrolled in a study of coronary computed tomographic angiography. CJEM Canadian Journal of Emergency Medical Care. 2012; 14(3):147-156
- 411. Lee DP, Fearon WF, Froelicher VF. Clinical utility of the exercise ECG in patients with diabetes and chest pain. Chest. 2001; 119(5):1576-1581
- 412. Lehmkuhl L, Herz F, Foldyna B, Nagel HD, Grothoff M, Nitzsche S et al. Diagnostic performance of prospectively ECG triggered versus retrospectively ECG gated 64-slice computed tomography coronary angiography in a heterogeneous patient population. European Journal of Radiology. 2011; 80(2):342-348
- Lei Z, Gu J, Fu Q, Shi H, Xu H, Han P et al. The diagnostic evaluation of dual-source CT (DSCT) in the diagnosis of coronary artery stenoses. Pakistan Journal of Medical Sciences. 2013; 29(1):107-111
- 414. Lemos AA, Pezzullo JC, Fasani P, Gullo M, Giannitto C, Lo Gullo R et al. Can the unenhanced phase be eliminated from dual-phase CT angiography for chest pain? Implications for diagnostic accuracy in acute aortic intramural hematoma. AJR American Journal of Roentgenology. 2014; 203(6):1171-1180
- 415. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. European Heart Journal. 2005; 26(15):1482-1487
- 416. Leschka S, Stolzmann P, Desbiolles L, Baumueller S, Goetti R, Schertler T et al. Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: First experience. European Radiology. 2009; 19(12):2896-2903
- 417. Leurent G, Langella B, Fougerou C, Lentz PA, Larralde A, Bedossa M et al. Diagnostic contributions of cardiac magnetic resonance imaging in patients presenting with elevated troponin, acute chest pain syndrome and unobstructed coronary arteries. Archives of Cardiovascular Diseases. 2011; 104(3):161-170
- 418. Li J, Li X, Wei M, Zhao H, Zheng M. Diagnostic accuracy of dual-source computed tomography in the detection of coronary chronic total occlusion:Comparison with invasive angiography. African Journal of Biotechnology. 2011; 10(19):3854-3858
- 419. Li JM, Li T, Shi RF, Zhang LR. Comparative Analysis between SPECT Myocardial Perfusion Imaging and CT Coronary Angiography for Diagnosis of Coronary Artery Disease. International Journal of Molecular Imaging. 2012; 2012:253475
- 420. Li M, Du XM, Jin ZT, Peng ZH, Ding J, Li L. The diagnostic performance of coronary artery angiography with 64-MSCT and post 64-MSCT: systematic review and meta-analysis. PLoS ONE [Electronic Resource]. 2014; 9(1):e84937
- 421. Lim SH, Anantharaman V, Sundram F, Chan EY, Ang ES, Yo SL et al. Stress myocardial perfusion imaging for the evaluation and triage of chest pain in the emergency department: A randomized controlled trial. Journal of Nuclear Cardiology. 2013; 20(6):1002-1012

- 422. Limon O, Atilla R, Oray NC, Limon G, Doylan O. Serial measurement of heart-type fatty acid binding protein for the rapid diagnosis of acute coronary syndromes in the emergency department. Hong Kong Journal of Emergency Medicine. 2014; 21(4):213-221
- 423. Lin CJ, Hsu JC, Lai YJ, Wang KL, Lee JY, Li AH et al. Diagnostic accuracy of dual-source CT coronary angiography in a population unselected for degree of coronary artery calcification and without heart rate modification. Clinical Radiology. 2010; 65(2):109-117
- 424. Lin F, Shaw LJ, Berman DS, Callister TQ, Weinsaft JW, Wong FJ et al. Multidetector computed tomography coronary artery plaque predictors of stress-induced myocardial ischemia by SPECT. Atherosclerosis. 2008; 197(2):700-709
- 425. Lindahl B, Venge P, James S. The new high-sensitivity cardiac troponin T assay improves risk assessment in acute coronary syndromes.[Erratum appears in Am Heart J. 2011 Feb;161(2):425]. American Heart Journal. 2010; 160(2):224-229
- 426. Linde JJ, Kofoed KF, Sorgaard M, Kelbaek H, Jensen GB, Nielsen WB et al. Cardiac computed tomography guided treatment strategy in patients with recent acute-onset chest pain: results from the randomised, controlled trial: CArdiac cT in the treatment of acute CHest pain (CATCH). International Journal of Cardiology. 2013; 168(6):5257-5262
- 427. Lipinski MJ, Escarcega RO, D'Ascenzo F, Magalhaes MA, Baker NC, Torguson R et al. A systematic review and collaborative meta-analysis to determine the incremental value of copeptin for rapid rule-out of acute myocardial infarction. [Review]. American Journal of Cardiology. 2014; 113(9):1581-1591
- 428. Lippi G, Mattiuzzi C, Cervellin G. Critical review and meta-analysis on the combination of heart-type fatty acid binding protein (H-FABP) and troponin for early diagnosis of acute myocardial infarction. [Review]. Clinical Biochemistry. 2013; 46(1-2):26-30
- 429. Lippi G, Mattiuzzi C, Comelli I, Cervellin G. Glycogen phosphorylase isoenzyme BB in the diagnosis of acute myocardial infarction: a meta-analysis. Biochemia Medica. 2013; 23(1):78-82
- 430. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. New England Journal of Medicine. 2012; 366(15):1393-1403
- 431. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW et al. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial
- CT angiography for safe discharge of patients with possible acute coronary syndromes. Lancet (London, England). 2015; 385(9985):2383-2391
- 432. Lo KY, Leung KF, Chu CM, Loke KL, Chan CK, Yue CS. Prognostic value of adenosine stress myocardial perfusion by cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease. QJM. 2011; 104(5):425-432
- 433. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve.[Erratum appears in J Am Coll Cardiol. 2011 Mar 29;57(13):1501]. Journal of the American College of Cardiology. 2011; 57(1):70-75

- 434. Loimaala A, Groundstroem K, Pasanen M, Oja P, Vuori I. Comparison of bicycle, heavy isometric, dipyridamole-atropine and dobutamine stress echocardiography for diagnosis of myocardial ischemia. American Journal of Cardiology. 1999; 84(12):1396-1400
- 435. Loimaala A, Groundstroem K, Pasanen M, Vuori I. Overall and segmental agreement of stress echocardiography. Echocardiography. 1999; 16(6):531-538
- 436. Lotze U, Lemm H, Heyer A, Muller K. Combined determination of highly sensitive troponin T and copeptin for early exclusion of acute myocardial infarction: first experience in an emergency department of a general hospital. Vascular Health & Risk Management. 2011; 7:509-515
- 437. Lowenstein J, Tiano C, Marquez G, Presti C, Quiroz C. Simultaneous Analysis of Wall Motion and Coronary Flow Reserve of the Left Anterior Descending Coronary Artery by Transthoracic Doppler Echocardiography during Dipyridamole Stress Echocardiography. Journal of the American Society of Echocardiography. 2003; 16(6):607-613
- 438. Lu B, Lu JG, Sun ML, Hou ZH, Chen XB, Tang X et al. Comparison of diagnostic accuracy and radiation dose between prospective triggering and retrospective gated coronary angiography by dual-source computed tomography. American Journal of Cardiology. 2011; 107(9):1278-1284
- 439. Machida H, Tanaka I, Fukui R, Shen Y, Ishikawa T, Tate E et al. Current and Novel Imaging Techniques in Coronary CT. Radiographics. 2015; 35(4):991-1010
- 440. Macor F, Cassin M, Pitzorno C, Dall'Armellina E, Carniel E, Marciano F et al. Usefulness of exercise test in selected patients coming to the emergency department for acute chest pain. Italian Heart Journal. 2003; 4(2):92-98
- 441. Maffei E, Martini C, Rossi A, Mollet N, Lario C, Castiglione Morelli M et al. Diagnostic accuracy of second-generation dual-source computed tomography coronary angiography with iterative reconstructions: a real-world experience. Radiologia Medica. 2012; 117(5):725-738
- 442. Maffei E, Martini C, Tedeschi C, Spagnolo P, Zuccarelli A, Arcadi T et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data on the impact of calcium score. La Radiologia Medica. 2011; 116(7):1000-1013
- 443. Maffei E, Martini C, Tedeschi C, Spagnolo P, Zuccarelli A, Arcadi T et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data on the comparison between male and female population. Radiologia Medica. 2012; 117(1):6-18
- 444. Maffei E, Martini C, Tedeschi C, Spagnolo P, Zuccarelli A, Arcadi T et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data in NSTEMI acute coronary syndrome and influence of gender and risk factors. Radiologia Medica. 2011; 116(7):1014-1026
- 445. Maffei E, Palumbo A, Martini C, Cuttone A, Ugo F, Emiliano E et al. Stress-ECG vs. CT coronary angiography for the diagnosis of coronary artery disease: a "real-world" experience. Radiologia Medica. 2010; 115(3):354-367
- 446. Maffei E, Palumbo A, Martini C, Notarangelo F, Sacco C, Ugo F et al. Predictive value of computed tomography coronary angiography for the evaluation of acute chest pain: single center preliminary experience. Acta Bio-Medica de l Ateneo Parmense. 2010; 81(3):157-164

- 447. Maffei E, Palumbo A, Martini C, Ugo F, Lina D, Aldrovandi A et al. Diagnostic accuracy of computed tomography coronary angiography in a high risk symptomatic population. Acta Bio-Medica de l Ateneo Parmense. 2010; 81(1):47-53
- 448. Magalhaes TA, Cury RC, Pereira AC, Moreira Vde M, Lemos PA, Kalil-Filho R et al. Additional value of dipyridamole stress myocardial perfusion by 64-row computed tomography in patients with coronary stents. Journal of Cardiovascular Computed Tomography. 2011; 5(6):449-458
- 449. Magalhaes TA, Kishi S, George RT, Arbab-Zadeh A, Vavere AL, Cox C et al. Combined coronary angiography and myocardial perfusion by computed tomography in the identification of flow-limiting stenosis - The CORE320 study: An integrated analysis of CT coronary angiography and myocardial perfusion. Journal of Cardiovascular Computed Tomography. 2015; 9(5):438-445
- 450. Mahajan N, Polavaram L, Vankayala H, Ference B, Wang Y, Ager J et al. Diagnostic accuracy of myocardial perfusion imaging and stress echocardiography for the diagnosis of left main and triple vessel coronary artery disease: a comparative meta-analysis. Heart. 2010; 96(12):956-966
- 451. Maintz D, Ozgun M, Hoffmeier A, Quante M, Fischbach R, Manning WJ et al. Whole-heart coronary magnetic resonance angiography: value for the detection of coronary artery stenoses in comparison to multislice computed tomography angiography. Acta Radiologica. 2007; 48(9):967-973
- 452. Majstorov V, Pop Gjorceva D, Vaskova O, Vavlukis M, Peovska I, Maksimovic J. Gender differences in detecting coronary artery disease with dipyridamole stress myocardial perfusion imaging using 99m-Tc sestamibi gated SPECT. Makedonska Akademija na Naukite i Umetnostite Oddelenie Za Bioloshki i Meditsinski Nauki Prilozi. 2005; 26(1):93-102
- 453. Makaryus AN, Henry S, Loewinger L, Makaryus JN, Boxt L. Multi-Detector Coronary CT Imaging for the Identification of Coronary Artery Stenoses in a "Real-World" Population. Clinical Medicine Insights Cardiology. 2014; 8(Suppl 4):13-22
- 454. Malago R, D'Onofrio M, Tavella D, Mantovani W, Brunelli S, Pezzato A et al. Diagnostic accuracy in coronary stenosis: Comparison between visual score and quantitative analysis (quantitative computed tomographic angiography) in coronary angiography by multidetector computed tomographycoronary angiography and quantitative analysis (quantitative coronary angiography) in conventional coronary angiography. Journal of Computer Assisted Tomography. 2010; 34(5):652-659
- 455. Malago R, Pezzato A, Barbiani C, Alfonsi U, D'Onofrio M, Tavella D et al. Role of coronary angiography MDCT in the clinical setting: changes in diagnostic workup in the real world. Radiologia Medica. 2012; 117(6):939-952
- 456. Malago R, Pezzato A, Barbiani C, Tavella D, Vallerio P, Pasini AF et al. Role of MDCT coronary angiography in the clinical setting: economic implications. Radiologia Medica. 2013; 118(8):1294-1308
- 457. Maltagliati A, Berti M, Muratori M, Tamborini G, Zavalloni D, Berna G et al. Exercise echocardiography versus exercise electrocardiography in the diagnosis of coronary artery disease in hypertension. American Journal of Hypertension. 2000; 13(7):796-801
- 458. Manini AF, Dannemann N, Brown DF, Butler J, Bamberg F, Nagurney JT et al. Limitations of risk score models in patients with acute chest pain. American Journal of Emergency Medicine. 2009; 27(1):43-48

- 459. Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J et al. Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. European Heart Journal. 2012; 33(16):2016-2024
- 460. Manka R, Wissmann L, Gebker R, Jogiya R, Motwani M, Frick M et al. Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve. Circulation Cardiovascular imaging. 2015; 8(5)
- 461. Mannan M, Bashar MA, Mohammad J, Jahan MU, Momenuzzaman NA, Haque MA. Comparison of coronary CT angiography with conventional coronary angiography in the diagnosis of coronary artery disease. Bangladesh Medical Research Council Bulletin. 2014; 40(1):31-35
- 462. Maret E, Engvall J, Nylander E, Ohlsson J. Feasibility and diagnostic power of transthoracic coronary Doppler for coronary flow velocity reserve in patients referred for myocardial perfusion imaging. Cardiovascular Ultrasound. 2008; 6:12
- 463. Markman Filho B, Almeida MC, Markman M, Chaves A, Moretti MA, Ramires JA et al. Stratifying the risk in unstable angina with dobutamine stress echocardiography. Arquivos Brasileiros de Cardiologia. 2006; 87(3):294-299
- 464. Martuscelli E, Romagnoli A, D'Eliseo A, Razzini C, Tomassini M, Sperandio M et al. Accuracy of thin-slice computed tomography in the detection of coronary stenoses. European Heart Journal. 2004; 25(12):1043-1048
- 465. Mas-Stachurska A, Miro O, Sitges M, de Caralt TM, Perea RJ, Lopez B et al. Exercise echocardiography and multidetector computed tomography for the evaluation of acute chest pain. Revista Española de Cardiología. 2015; 68(1):17-24
- 466. Mastrobuoni S, Bastarrika G, Ubilla M, Castano S, Azcarate P, Barrero EA et al. Dual-source ct coronary angiogram in heart transplant recipients in comparison with dobutamine stress echocardiography for detection of cardiac allograft vasculopathy. Transplantation. 2009; 87(4):587-590
- 467. Matsuda T, Kido T, Itoh T, Saeki H, Shigemi S, Watanabe K et al. Diagnostic accuracy of late iodine enhancement on cardiac computed tomography with a denoise filter for the evaluation of myocardial infarction. The International Journal of Cardiovascular Imaging. 2015; 31 Suppl 2:177-185
- 468. Matsumoto N, Sato Y, Suzuki Y, Yoda S, Kunimasa T, Kato M et al. Usefulness of rapid lowdose/high-dose 1-day 99mTc-sestamibi ECG-gated myocardial perfusion single-photon emission computed tomography. Circulation Journal. 2006; 70(12):1585-1589
- 469. Matsunari I, Kanayama S, Yoneyama T, Matsudaira M, Nakajima K, Taki J et al. Electrocardiographic-gated dual-isotope simultaneous acquisition SPECT using 18F-FDG and 99mTc-sestamibi to assess myocardial viability and function in a single study. European Journal of Nuclear Medicine and Molecular Imaging. 2005; 32(2):195-202
- 470. Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta-analysis. Journal of the American College of Cardiology. 2012; 60(18):1828-1837

- 471. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. Journal of the American College of Cardiology. 2008; 52(25):2135-2144
- 472. Meijboom WB, van Mieghem CA, Mollet NR, Pugliese F, Weustink AC, van Pelt N et al. 64slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. Journal of the American College of Cardiology. 2007; 50(15):1469-1475
- 473. Meijs MF, de Vries JJ, Rutten A, Budde RP, de Vos AM, Meijboom WB et al. Does slice thickness affect diagnostic performance of 64-slice CT coronary angiography in stable and unstable angina patients with a positive calcium score? Acta Radiologica. 2010; 51(4):427-430
- 474. Meinel FG, De Cecco CN, Schoepf UJ, Nance JW, Jr., Silverman JR, Flowers BA et al. Firstarterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014; 270(3):708-716
- 475. Meintjes M, Sathekge M, Makanjee CR, Dickson JC, Endozo R, Rheeder P et al. Comparison of rubidium-82 myocardial blood flow quantification with coronary calcium score for evaluation of coronary artery stenosis. Nuclear Medicine Communications. 2016; 37(2):197-206
- 476. Melki D, Lind S, Agewall S, Jernberg T. Diagnostic value of high sensitive troponin T in chest pain patients with no persistent ST-elevations. Scandinavian Cardiovascular Journal45 (4) (pp 198-204), 2011Date of Publication: August 2011. 2011; (4):198-204
- 477. Mendoza-Rodriguez V, Llerena LR, Llerena LD, Rodriguez L, Olivares E, Linares R et al.
 Ischemic heart disease diagnosed by 64 slice computed tomography coronary angiography.
 Internet Journal of Cardiology. 2009; 7(2)
- 478. Meng L, Cui L, Cheng Y, Wu X, Tang Y, Wang Y et al. Effect of heart rate and coronary calcification on the diagnostic accuracy of the dual-source CT coronary angiography in patients with suspected coronary artery disease. Korean Journal of Radiology. 2009; 10(4):347-354
- 479. Menon M, Lesser JR, Hara H, Birkett R, Knickelbine T, Longe T et al. Multidetector CT coronary angiography for patient triage to invasive coronary angiography: Performance and cost in ambulatory patients with equivocal or suspected inaccurate noninvasive stress tests. Catheterization and Cardiovascular Interventions. 2009; 73(4):497-502
- 480. Merkle N, Wohrle J, Nusser T, Grebe O, Spiess J, Torzewski J et al. Diagnostic performance of magnetic resonance first pass perfusion imaging is equally potent in female compared to male patients with coronary artery disease. Clinical Research in Cardiology. 2010; 99(1):21-28
- 481. Meurin P, Brandao Carreira V, Dumaine R, Shqueir A, Milleron O, Safar B et al. Incidence, diagnostic methods, and evolution of left ventricular thrombus in patients with anterior myocardial infarction and low left ventricular ejection fraction: a prospective multicenter study. American Heart Journal. 2015; 170(2):256-262
- 482. Meyer M, Henzler T, Fink C, Vliegenthart R, Barraza JM, Jr., Nance JW, Jr. et al. Impact of coronary calcium score on the prevalence of coronary artery stenosis on dual source CT coronary angiography in caucasian patients with an intermediate risk. Academic Radiology. 2012; 19(11):1316-1323
- 483. Meyer M, Schoepf UJ, Fink C, Goldenberg R, Apfaltrer P, Gruettner J et al. Diagnostic performance evaluation of a computer-aided simple triage system for coronary CT

angiography in patients with intermediate risk for acute coronary syndrome. Academic Radiology. 2013; 20(8):980-986

- 484. Midiri M, La Grutta L, Grassedonio E, Toia P, Guglielmi G. Non invasive imaging of myocardial infarction with computed tomography and magnetic resonance. Current Vascular Pharmacology. 2015; 13(1):64-77
- 485. Mieres JH, Makaryus AN, Cacciabaudo JM, Donaldson D, Green SJ, Heller GV et al. Value of electrocardiographically gated single-photon emission computed tomographic myocardial perfusion scintigraphy in a cohort of symptomatic postmenopausal women. American Journal of Cardiology. 2007; 99(8):1096-1099
- 486. Miller CD, Case LD, Little WC, Mahler SA, Burke GL, Harper EN et al. Stress CMR reduces revascularization, hospital readmission, and recurrent cardiac testing in intermediate-risk patients with acute chest pain. JACC: Cardiovascular Imaging. 2013; 6(7):785-794
- 487. Miller CD, Hwang W, Hoekstra JW, Case D, Lefebvre C, Blumstein H et al. Stress cardiac magnetic resonance imaging with observation unit care reduces cost for patients with emergent chest pain: a randomized trial. Annals of Emergency Medicine. 2010; 56(3):209-219.e202
- 488. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I et al. Diagnostic performance of coronary angiography by 64-row CT. New England Journal of Medicine. 2008; 359(22):2324-2336
- 489. Miller JM, Rochitte CE, Dewey M, Keyhani S. Cardiac computed tomography-not ready for prime time. Journal of Clinical Outcomes Management. 2009; 16(1):18-19
- 490. Miller JM, Rochitte CE, Dewey M, Niinuma H, Arbab-Zadeh A, Gottlieb I et al. Quantitative and diagnostic accuracy of 64-MDCTA for segmental coronary artery stenosis detection: Results from the core-64 multicenter international study. Journal of the American College of Cardiology. 2010; 55 (10 SUPPL 1):A80.E757
- 491. Miller TD, Hodge DO, Christian TF, Milavetz JJ, Bailey KR, Gibbons RJ. Effects of adjustment for referral bias on the sensitivity and specificity of single photon emission computed tomography for the diagnosis of coronary artery disease. American Journal of Medicine. 2002; 112(4):290-297
- 492. Miszalski-Jamka T, Kuntz-Hehner S, Schmidt H, Jost P, Luderitz B, Omran H. Diagnosis of ischaemic heart disease by myocardial contrast echocardiography during supine bicycle stress. Kardiologia Polska. 2006; 64(4):355-361
- 493. Mohammadzadeh A, Shabestari AA, Mohammadzadeh M, Mohammadzadeh MA, Kadivar S, Mohammadzadeh V et al. Diagnostic performance of multislice CT coronary angiography in the assessment of significant coronary artery disease. Acta Medica Iranica. 2012; 50(1):31-36
- 494. Moir S, Haluska BA, Jenkins C, Fathi R, Marwick TH. Incremental benefit of myocardial contrast to combined dipyridamole-exercise stress echocardiography for the assessment of coronary artery disease. Circulation. 2004; 110(9):1108-1113
- 495. Mollet N, Maffei E, Martini C, Weustink A, van Mieghem C, Baks T et al. Coronary plaque burden in patients with stable and unstable coronary artery disease using multislice CT coronary angiography. Radiologia Medica. 2011; 116(8):1174-1187
- 496. Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T et al. Highresolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112(15):2318-2323

- 497. Moon JH, Park EA, Lee W, Yin YH, Chung JW, Park JH et al. The diagnostic accuracy, image quality and radiation dose of 64-slice dual-source CT in daily practice: A single institution's experience. Korean Journal of Radiology. 2011; 12(3):308-318
- 498. Moon JS, Yoon JS, Won KC, Cho IH, Lee HW. Diagnostic Accuracy of 64-Slice MDCT Coronary Angiography for the Assessment of Coronary Artery Disease in Korean Patients with Type 2 Diabetes. Diabetes & Metabolism Journal. 2013; 37(1):54-62
- 499. Moon JY, Chung N, Choi BW, Choe KO, Seo HS, Ko YG et al. The utility of multi-detector row spiral CT for detection of coronary artery stenoses. Yonsei Medical Journal. 2005; 46(1):86-94
- 500. Moralidis E, Spyridonidis T, Arsos G, Anagnostopoulos C. Identification of advanced coronary artery disease with exercise myocardial perfusion imaging: the clinical value of a novel approach for assessing lung thallium-201 uptake. European Journal of Nuclear Medicine and Molecular Imaging. 2007; 34(4):573-583
- 501. Moralidis E, Spyridonidis T, Arsos G, Skeberis V, Anagnostopoulos C, Gavrielidis S. Resting electrocardiogram and stress myocardial perfusion imaging in the determination of left ventricular systolic function: an assessment enhancing the performance of gated SPET. Hellenic Journal of Nuclear Medicine. 2010; 13(2):118-126
- 502. Mordi I, Stanton T, Carrick D, McClure J, Oldroyd K, Berry C et al. Comprehensive dobutamine stress CMR versus echocardiography in LBBB and suspected coronary artery disease. JACC: Cardiovascular Imaging. 2014; 7(5):490-498
- 503. Mordini FE, Haddad T, Hsu LY, Kellman P, Lowrey TB, Aletras AH et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC: Cardiovascular Imaging. 2014; 7(1):14-22
- 504. Morise AP. Are the American College of Cardiology/American Heart Association guidelines for exercise testing for suspected coronary artery disease correct? Chest. 2000; 118(2):535-541
- 505. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. Journal of the American College of Cardiology. 2012; 60(16):1546-1555
- 506. Moscariello A, Vliegenthart R, Schoepf UJ, Nance JW, Jr., Zwerner PL, Meyer M et al. Coronary CT angiography versus conventional cardiac angiography for therapeutic decision making in patients with high likelihood of coronary artery disease. Radiology. 2012; 265(2):385-392
- 507. Motevalli M, Ghanaati H, Firouznia K, Kargar J, Aliyari Ghasabeh M, Shahriari M et al. Diagnostic efficacy of vessel specific coronary calcium score in detection of coronary artery stenosis. Iranian Red Crescent Medical Journal. 2014; 16(12):e26010
- 508. Motoyama S, Sarai M, Inoue K, Kawai H, Ito H, Harigaya H et al. Morphologic and functional assessment of coronary artery disease--potential application of computed tomography angiography and myocardial perfusion imaging. Circulation Journal. 2013; 77(2):411-417
- 509. Motoyasu M, Sakuma H, Ichikawa Y, Ishida N, Uemura S, Okinaka T et al. Prediction of regional functional recovery after acute myocardial infarction with low dose dobutamine stress cine MR imaging and contrast enhanced MR imaging. Journal of Cardiovascular Magnetic Resonance. 2003; 5(4):563-574

- 510. Mowatt G, Cummins E, Waugh N, Walker S, Cook J, Jia X et al. Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technology Assessment. 2009; 12(17):i-xi, 1-164
- 511. Mowatt G, Vale L, Brazzelli M, Hernandez R, Murray A, Scott N et al. Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technology Assessment. 2004; 8(30):iii-89
- 512. Muhlenbruch G, Seyfarth T, Soo CS, Pregalathan N, Mahnken AH. Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. European Radiology. 2007; 17(3):603-609
- 513. Muscholl MW, Oswald M, Mayer C, von Scheidt W. Prognostic value of 2D echocardiography in patients presenting with acute chest pain and non-diagnostic ECG for ST-elevation myocardial infarction. International Journal of Cardiology. 2002; 84(2-3):217-225
- Musto C, Simon P, Nicol E, Tanigawa J, Davies SW, Oldershaw PJ et al. 64-multislice computed tomography in consecutive patients with suspected or proven coronary artery disease: Initial single center experience. International Journal of Cardiology. 2007; 114(1):90-97
- 515. Nabi F, Chang SM, Pratt CM, Paranilam J, Peterson LE, Frias ME et al. Coronary artery calcium scoring in the emergency department: identifying which patients with chest pain can be safely discharged home. Annals of Emergency Medicine. 2010; 56(3):220-229
- 516. Nagao M, Matsuoka H, Kawakami H, Higashino H, Mochizuki T, Ohshita A et al. Detection of myocardial ischemia using 64-slice MDCT. Circulation Journal. 2009; 73(5):905-911
- 517. Nagao M, Matsuoka H, Kawakami H, Higashino H, Mochizuki T, Uemura M et al. Myocardial ischemia in acute coronary syndrome: assessment using 64-MDCT. American Journal of Roentgenology. 2009; 193(4):1097-1106
- 518. Nagori M, Narain VS, Saran RK, Dwivedi SK, Sethi R. Efficacy of multi-detector coronary computed tomography angiography in comparison with exercise electrocardiogram in the triage of patients of low risk acute chest pain. Indian Heart Journal. 2014; 66(4):435-442
- 519. Nair SU, Ahlberg AW, Mathur S, Katten DM, Polk DM, Heller GV. The clinical value of single photon emission computed tomography myocardial perfusion imaging in cardiac risk stratification of very elderly patients (>80 years) with suspected coronary artery disease. Journal of Nuclear Cardiology. 2012; 19(2):244-255
- 520. Nakazato R, Berman DS, Dey D, Le Meunier L, Hayes SW, Fermin JS et al. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: normal limits and correlation with invasive coronary angiography. Journal of Nuclear Cardiology. 2012; 19(2):265-276
- 521. Nakazato R, Slomka PJ, Fish M, Schwartz RG, Hayes SW, Thomson LE et al. Quantitative highefficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: results of a multi-center study. Journal of Nuclear Cardiology. 2015; 22(2):266-275
- 522. Nakazato R, Tamarappoo BK, Kang X, Wolak A, Kite F, Hayes SW et al. Quantitative uprightsupine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography. Journal of Nuclear Medicine. 2010; 51(11):1724-1731

- 523. Nasis A, Ko BS, Leung MC, Antonis PR, Nandurkar D, Wong DT et al. Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography: pilot study. European Radiology. 2013; 23(7):1812-1821
- 524. Nasis A, Leung MC, Antonis PR, Cameron JD, Lehman SJ, Hope SA et al. Diagnostic accuracy of noninvasive coronary angiography with 320-detector row computed tomography. American Journal of Cardiology. 2010; 106(10):1429-1435
- 525. National Horizon Scanning Centre (NHSC). Magnetic resonance angiography (MRA) imaging for the detection of coronary artery disease: horizon scanning technology briefing Birmingham. National Horizon Scanning Centre (NHSC), 2007.
- 526. National Horizon Scanning Centre (NHSC). Myocardial stress perfusion magnetic resonance imaging (MRI) assessment of myocardial blood flow in coronary artery disease: horizon scanning technology briefing Birmingham. National Horizon Scanning Centre (NHSC), 2007.
- 527. National Institute for Health and Care Excellence. Developing NICE guidelines: the manual. London. National Institute for Health and Care Excellence, 2014. Available from: http://www.nice.org.uk/article/PMG20/chapter/1%20Introduction%20and%20overview
- 528. National Institute for Health and Clinical Excellence. The guidelines manual. London. National Institute for Health and Clinical Excellence. 2012. Available from: http://www.nice.org.uk/article/pmg6/
- 529. Nedeljkovic I, Ostojic M, Beleslin B, Djordjevic-Dikic A, Stepanovic J, Nedeljkovic M et al. Comparison of exercise, dobutamine-atropine and dipyridamole-atropine stress echocardiography in detecting coronary artery disease. Cardiovascular Ultrasound. 2006; 4:22
- 530. Neefjes LA, Rossi A, Genders TSS, Nieman K, Papadopoulou SL, Dharampal AS et al. Diagnostic accuracy of 128-slice dual-source CT coronary angiography: A randomized comparison of different acquisition protocols. European Radiology. 2013; 23(3):614-622
- 531. Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, Aguade-Bruix S et al. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circulation Cardiovascular imaging. 2015; 8(3)
- 532. NHS Quality Improvement Scotland. The use of multislice computed tomography angiography (CTA) for the diagnosis of coronary artery disease Glasgow. NHS Quality Improvement Scotland (NHS QIS), 2005. Available from: http://www.healthcareimprovementscotland.org/our_work/technologies_and_medicines/e arlier_evidence_notes/evidence_note_9.aspx
- 533. NHSC. Computed tomography (CT) angiography for the diagnosis and management of coronary artery disease: horizon scanning technology briefing Birmingham. National Horizon Scanning Centre (NHSC), 2006.
- 534. Nicol ED, Stirrup J, Reyes E, Roughton M, Padley SP, Rubens MB et al. Comparison of 64-slice cardiac computed tomography with myocardial perfusion scintigraphy for assessment of global and regional myocardial function and infarction in patients with low to intermediate likelihood of coronary artery disease. Journal of Nuclear Cardiology. 2008; 15(4):497-502
- 535. Nicol ED, Stirrup J, Reyes E, Roughton M, Padley SP, Rubens MB et al. Sixty-four-slice computed tomography coronary angiography compared with myocardial perfusion scintigraphy for the diagnosis of functionally significant coronary stenoses in patients with a

low to intermediate likelihood of coronary artery disease. Journal of Nuclear Cardiology. 2008; 15(3):311-318

- 536. Nieman K, Galema TW, Neefjes LA, Weustink AC, Musters P, Moelker AD et al. Comparison of the value of coronary calcium detection to computed tomographic angiography and exercise testing in patients with chest pain. American Journal of Cardiology. 2009; 104(11):1499-1504
- 537. Nieman K, Rensing BJ, van Geuns RJ, Munne A, Ligthart JM, Pattynama PM et al. Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. American Journal of Cardiology. 2002; 89(8):913-918
- 538. Nikolaou K, Knez A, Rist C, Wintersperger BJ, Leber A, Johnson T et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. American Journal of Roentgenology. 2006; 187(1):111-117
- 539. Normann J, Mueller M, Biener M, Vafaie M, Katus HA, Giannitsis E. Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. American Heart Journal. 2012; 164(5):698-705.e694
- 540. Ogino Y, Horiguchi Y, Ueda T, Shiomori T, Kanna M, Kawaminami T et al. A myocardial perfusion imaging system using a multifocal collimator for detecting coronary artery disease: validation with invasive coronary angiography. Annals of Nuclear Medicine. 2015; 29(4):366-370
- 541. Olivetti L, Mazza G, Volpi D, Costa F, Ferrari O, Pirelli S. Multislice CT in emergency room management of patients with chest pain and medium-low probability of acute coronary syndrome. Radiologia Medica. 2006; 111(8):1054-1063
- 542. Olivieri F, Galeazzi R, Giavarina D, Testa R, Abbatecola AM, Ceka A et al. Aged-related increase of high sensitive Troponin T and its implication in acute myocardial infarction diagnosis of elderly patients. Mechanisms of Ageing and Development. 2012; 133(5):300-305
- 543. Olszowska M, Kostkiewicz M, Tracz W, Przewlocki T. Assessment of myocardial perfusion in patients with coronary artery disease. Comparison of myocardial contrast echocardiography and 99mTc MIBI single photon emission computed tomography. International Journal of Cardiology. 2003; 90(1):49-55
- 544. Oncel D, Oncel G, Karaca M. Coronary stent patency and in-stent restenosis: Determination with 64-section multidetector CT coronary angiography Initial experience. Radiology. 2007; 242(2):403-409
- 545. Oncel D, Oncel G, Tastan A, Tamci B. Detection of significant coronary artery stenosis with 64-section MDCT angiography. European Journal of Radiology. 2007; 62(3):394-405
- 546. Ovrehus KA, Munkholm H, Bottcher M, Botker HE, Norgaard BL. Coronary computed tomographic angiography in patients suspected of coronary artery disease: impact of observer experience on diagnostic performance and interobserver reproducibility. Journal of Cardiovascular Computed Tomography. 2010; 4(3):186-194
- 547. Palagi C, Mengozzi G, Rovai D, Volterrani D, Dell'Anna R, Giorgi D et al. Assessment of myocardial perfusion with intravenous contrast echocardiography: comparison with (99) Tc-tetrofosmin single photon emission computed tomography and dobutamine echocardiography. Echocardiography. 2003; 20(1):37-45
- 548. Palumbo AA, Maffei E, Martini C, Tarantini G, Di Tanna GL, Berti E et al. Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients

with chest pain: per-segment and per-patient analysis. European Radiology. 2009; 19(9):2127-2135

- 549. Parato VM, Mehta A, Delfino D, Amabili S, Partemi M, Grossi P et al. Resting echocardiography for the early detection of acute coronary syndromes in chest pain unit patients. Echocardiography. 2010; 27(6):597-602
- 550. Park TH, Tayan N, Takeda K, Jeon HK, Quinones MA, Zoghbi WA. Supine bicycle echocardiography improved diagnostic accuracy and physiologic assessment of coronary artery disease with the incorporation of intermediate stages of exercise. Journal of the American College of Cardiology. 2007; 50(19):1857-1863
- 551. Parker MW. Comparison of the Diagnostic Accuracy of PET and SPECT for Coronary Artery Disease. Current Cardiovascular Imaging Reports. 2015; 8(1):1-12
- 552. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circulation Cardiovascular imaging. 2012; 5(6):700-707
- 553. Patsilinakos SP, Kranidis AI, Antonelis IP, Filippatos G, Houssianakou IK, Zamanis NI et al. Detection of coronary artery disease in patients with severe aortic stenosis with noninvasive methods. Angiology. 1999; 50(4):309-317
- 554. Pavlovic S, Sobic-Saranovic D, Djordjevic-Dikic A, Beleslin B, Stepanovic J, Artiko V et al. Comparative utility of gated myocardial perfusion imaging and transthoracic coronary flow reserve for the assessment of coronary artery disease in patients with left bundle branch block. Nuclear Medicine Communications. 2010; 31(4):334-340
- 555. Pelliccia F, Pasceri V, Evangelista A, Pergolini A, Barilla F, Viceconte N et al. Diagnostic accuracy of 320-row computed tomography as compared with invasive coronary angiography in unselected, consecutive patients with suspected coronary artery disease.[Retraction in Int J Cardiovasc Imaging. 2014 Apr;30(4):833; PMID: 24671379]. The International Journal of Cardiovascular Imaging. 2013; 29(2):443-452
- 556. Pereira E, Bettencourt N, Ferreira N, Schuster A, Chiribiri A, Primo J et al. Incremental value of adenosine stress cardiac magnetic resonance in coronary artery disease detection. International Journal of Cardiology. 2013; 168(4):4160-4167
- 557. Pilz G, Eierle S, Heer T, Klos M, Ali E, Scheck R et al. Negative predictive value of normal adenosine-stress cardiac MRI in the assessment of coronary artery disease and correlation with semiquantitative perfusion analysis. Journal of Magnetic Resonance Imaging. 2010; 32(3):615-621
- 558. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. Journal of the American College of Cardiology. 2004; 44(11):2173-2181
- 559. Ponte M, Bettencourt N, Pereira E, Ferreira ND, Chiribiri A, Schuster A et al. Anatomical versus functional assessment of coronary artery disease: direct comparison of computed tomography coronary angiography and magnetic resonance myocardial perfusion imaging in patients with intermediate pre-test probability. The International Journal of Cardiovascular Imaging. 2014; 30(8):1589-1597
- 560. Pontone G, Andreini D, Bartorelli AL, Cortinovis S, Mushtaq S, Bertella E et al. Diagnostic Accuracy of Coronary Computed Tomography Angiography. A Comparison Between

Prospective and Retrospective Electrocardiogram Triggering. Journal of the American College of Cardiology. 2009; 54(4):346-355

- 561. Pontone G, Andreini D, Quaglia C, Ballerini G, Nobili E, Pepi M. Accuracy of multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease. Clinical Radiology. 2007; 62(10):978-985
- 562. Potocki M, Reichlin T, Thalmann S, Zellweger C, Twerenbold R, Reiter M et al. Diagnostic and prognostic impact of copeptin and high-sensitivity cardiac troponin T in patients with preexisting coronary artery disease and suspected acute myocardial infarction. Heart. 2012; 98(7):558-565
- 563. Pracon R, Kruk M, Jakubczak B, Demkow M, Bilinska ZT. Superior early diagnostic performance of a sensitive cardiac troponin assay as compared to a standard troponin test in the diagnosis of acute myocardial infarction. Kardiologia Polska. 2012; 70(2):131-138
- 564. Previtali M, Cannizzaro G, Lanzarini L, Calsamiglia G, Poli A, Fetiveau R. Comparison of dobutamine stress echocardiography and exercise stress Thallium-201 SPECT for detection of myocardial ischemia after acute myocardial infarction treated with thrombolysis. International Journal of Cardiac Imaging. 1999; 15(3):195-204
- 565. Pursnani A, Lee AM, Mayrhofer T, Ahmed W, Uthamalingam S, Ferencik M et al. Early resting myocardial computed tomography perfusion for the detection of acute coronary syndrome in patients with coronary artery disease. Circulation Cardiovascular imaging. 2015; 8(3):e002404
- 566. Pyati AK, Devaranavadagi BB, Sajjannar SL, Nikam SV, Shannawaz M, Sudharani. Heart-Type Fatty Acid Binding Protein: A Better Cardiac Biomarker than CK-MB and Myoglobin in the Early Diagnosis of Acute Myocardial Infarction. Journal of Clinical and Diagnostic Research JCDR. 2015; 9(10):BC08-11
- 567. Raskovalova T, Twerenbold R, Collinson PO, Keller T, Bouvaist H, Folli C et al. Diagnostic accuracy of combined cardiac troponin and copeptin assessment for early rule-out of myocardial infarction: a systematic review and meta-analysis. European Heart Journal Acute Cardiovascular Care. 2014; 3(1):18-27
- 568. Rastgou F, Bitarafan-Rajabi A, Farhzadi A, Yaghoobi N, Firoozabady H, Malek H et al. Diagnostic accuracy assessment of ST-segment displacements, chest pain and stress myocardial perfusion imaging exercise test in coronary stenosis compared with angiography findings. Iranian Heart Journal. 2012; 12(4):30-36
- 569. Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. New England Journal of Medicine. 2009; 361(9):858-867
- 570. Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, Morgenthaler NG et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. Journal of the American College of Cardiology. 2009; 54(1):60-68
- 571. Reichlin T, Irfan A, Twerenbold R, Reiter M, Hochholzer W, Burkhalter H et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation. 2011; 124(2):136-145
- 572. Reichlin T, Schindler C, Drexler B, Twerenbold R, Reiter M, Zellweger C et al. One-hour ruleout and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Archives of Internal Medicine. 2012; 172(16):1211-1218

- 573. Reinsch N, Mahabadi AA, Lehmann N, Mohlenkamp S, Hoefs C, Sievers B et al. Comparison of dual-source and electron-beam CT for the assessment of coronary artery calcium scoring. British Journal of Radiology. 2012; 85(1015):e300-e306
- 574. Reiter M, Twerenbold R, Reichlin T, Benz B, Haaf P, Meissner J et al. Early diagnosis of acute myocardial infarction in patients with pre-existing coronary artery disease using more sensitive cardiac troponin assays. European Heart Journal. 2012; 33(8):988-997
- 575. Reiter M, Twerenbold R, Reichlin T, Haaf P, Peter F, Meissner J et al. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. European Heart Journal. 2011; 32(11):1379-1389
- 576. Reiter M, Twerenbold R, Reichlin T, Mueller M, Hoeller R, Moehring B et al. Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction. Heart. 2013; 99(10):708-714
- 577. Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. European Heart Journal. 2006; 27(12):1465-1471
- 578. Rieber J, Jung P, Erhard I, Koenig A, Hacker M, Schiele TM et al. Comparison of pressure measurement, dobutamine contrast stress echocardiography and SPECT for the evaluation of intermediate coronary stenoses. The COMPRESS trial. International Journal of Cardiovascular Interventions. 2004; 6(3-4):142-147
- 579. Rispler S, Aronson D, Abadi S, Roguin A, Engel A, Beyar R et al. Integrated SPECT/CT for assessment of haemodynamically significant coronary artery lesions in patients with acute coronary syndrome. European Journal of Nuclear Medicine and Molecular Imaging. 2011; 38(10):1917-1925
- 580. Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. Journal of the American College of Cardiology. 2007; 49(10):1059-1067
- 581. Rollan MJ, San Roman JA, Vilacosta I, Ortega JR, Bratos JL. Dobutamine stress echocardiography in the diagnosis of coronary artery disease in women with chest pain: comparison with different noninvasive tests. Clinical Cardiology. 2002; 25(12):559-564
- 582. Ronderos RE, Boskis M, Chung N, Corneli DB, Escudero EM, Ha JW et al. Correlation between myocardial perfusion abnormalities detected with intermittent imaging using intravenous perfluorocarbon microbubbles and radioisotope imaging during high-dose dipyridamole stress echo. Clinical Cardiology. 2002; 25(3):103-111
- 583. Rubini Gimenez M, Hoeller R, Reichlin T, Zellweger C, Twerenbold R, Reiter M et al. Rapid rule out of acute myocardial infarction using undetectable levels of high-sensitivity cardiac troponin. International Journal of Cardiology. 2013; 168(4):3896-3901
- 584. Rubinshtein R, Halon DA, Gaspar T, Jaffe R, Karkabi B, Flugelman MY et al. Usefulness of 64slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation. 2007; 115(13):1762-1768
- 585. Rubinshtein R, Halon DA, Gaspar T, Schliamser JE, Yaniv N, Ammar R et al. Usefulness of 64slice multidetector computed tomography in diagnostic triage of patients with chest pain and

negative or nondiagnostic exercise treadmill test result. American Journal of Cardiology. 2007; 99(7):925-929

- 586. Rubinshtein R, Miller TD, Williamson EE, Kirsch J, Gibbons RJ, Primak AN et al. Detection of myocardial infarction by dual-source coronary computed tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart. 2009; 95(17):1419-1422
- 587. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. European Radiology. 2008; 18(11):2414-2424
- 588. Ruzsics B, Schwarz F, Schoepf UJ, Lee YS, Bastarrika G, Chiaramida SA et al. Comparison of Dual-Energy Computed Tomography of the Heart With Single Photon Emission Computed Tomography for Assessment of Coronary Artery Stenosis and of the Myocardial Blood Supply. American Journal of Cardiology. 2009; 104(3):318-326
- 589. Saad MAM, Azer HY. Dual-source CT coronary angiography: Diagnostic accuracy without the use of B blockers. Egyptian Journal of Radiology and Nuclear Medicine. 2011; 42(3-4):281-287
- 590. Saba L, Fellini F, De Filippo M. Diagnostic value of contrast-enhanced cardiac magnetic resonance in patients with acute coronary syndrome with normal coronary arteries. Japanese Journal of Radiology. 2015; 33(7):410-417
- 591. Sabharwal NK, Stoykova B, Taneja AK, Lahiri A. A randomized trial of exercise treadmill ECG versus stress SPECT myocardial perfusion imaging as an initial diagnostic strategy in stable patients with chest pain and suspected CAD: cost analysis.[Erratum appears in J Nucl Cardiol. 2007 May-Jun;14(3):414]. Journal of Nuclear Cardiology. 2007; 14(2):174-186
- 592. Saenger AK, Beyrau R, Braun S, Cooray R, Dolci A, Freidank H et al. Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clinica Chimica Acta. 2011; 412(9-10):748-754
- 593. Sajjadieh A, Hekmatnia A, Keivani M, Asoodeh A, Pourmoghaddas M, Sanei H. Diagnostic performance of 64-row coronary CT angiography in detecting significant stenosis as compared with conventional invasive coronary angiography. ARYA Atherosclerosis. 2013; 9(2):157-163
- 594. Sakakura K, Yasu T, Kobayashi Y, Katayama T, Sugawara Y, Funayama H et al. Noninvasive tissue characterization of coronary arterial plaque by 16-slice computed tomography in acute coronary syndrome. Angiology. 2006; 57(2):155-160
- 595. Sakuma H, Suzawa N, Ichikawa Y, Makino K, Hirano T, Kitagawa K et al. Diagnostic accuracy of stress first-pass contrast-enhanced myocardial perfusion MRI compared with stress myocardial perfusion scintigraphy. AJR American Journal of Roentgenology. 2005; 185(1):95-102
- 596. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. Journal of the American College of Cardiology. 2007; 49(10):1052-1058
- 597. Sanchis J, Bardaji A, Bosch X, Loma-Osorio P, Marin F, Sanchez PL et al. Usefulness of highsensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage. American Heart Journal. 2012; 164(2):194-200

- 598. Santalo M, Martin A, Velilla J, Povar J, Temboury F, Balaguer J et al. Using high-sensitivity troponin T: the importance of the proper gold standard. American Journal of Medicine. 2013; 126(8):709-717
- 599. Santana CA, Garcia EV, Faber TL, Sirineni GK, Esteves FP, Sanyal R et al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. Journal of Nuclear Cardiology. 2009; 16(2):201-211
- 600. Santana CA, Garcia EV, Vansant JP, Krawczynska EG, Folks RD, Cooke CD et al. Threedimensional color-modulated display of myocardial SPECT perfusion distributions accurately assesses coronary artery disease. Journal of Nuclear Medicine. 2000; 41(12):1941-1946
- 601. Santos MB, Ferreira AM, De Araujo Goncalves P, Raposo L, Teles RC, Almeida M et al. Diagnostic yield of current referral strategies for elective coronary angiography in suspected coronary artery disease - An analysis of the across registry. Revista Portuguesa de Cardiologia. 2013; 32(6):483-488
- 602. Sara L, Rochitte CE, Lemos PA, Niinuma H, Dewey M, Shapiro EP et al. Accuracy of multidetector computed tomography for detection of coronary artery stenosis in acute coronary syndrome compared with stable coronary disease: a CORE64 multicenter trial substudy. International Journal of Cardiology. 2014; 177(2):385-391
- 603. Sardanelli F, Molinari G, Zandrino F, Balbi M. Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology. 2000; 214(3):808-814
- 604. Sato Y, Matsumoto N, Ichikawa M, Kunimasa T, Iida K, Yoda S et al. Efficacy of multislice computed tomography for the detection of acute coronary syndrome in the emergency department. Circulation Journal. 2005; 69(9):1047-1051
- 605. Sato Y, Matsumoto N, Kato M, Inoue F, Horie T, Kusama J et al. Noninvasive assessment of coronary artery disease by multislice spiral computed tomography using a new retrospectively ECG-gated image reconstruction technique. Circulation Journal. 2003; 67(5):401-405
- 606. Schaap J, Kauling RM, Boekholdt SM, Post MC, Van der Heyden JA, de Kroon TL et al. Usefulness of coronary calcium scoring to myocardial perfusion SPECT in the diagnosis of coronary artery disease in a predominantly high risk population. The International Journal of Cardiovascular Imaging. 2013; 29(3):677-684
- 607. Scheffel H, Alkadhi H, Leschka S, Plass A, Desbiolles L, Guber I et al. Low-dose CT coronary angiography in the step-and-shoot mode: Diagnostic performance. Heart. 2008; 94(9):1132-1137
- 608. Scheffel H, Stolzmann P, Alkadhi H, Azemaj N, Plass A, Baumueller S et al. Low-dose CT and cardiac MR for the diagnosis of coronary artery disease: accuracy of single and combined approaches. The International Journal of Cardiovascular Imaging. 2010; 26(5):579-590
- 609. Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. Journal of Nuclear Medicine. 2007; 48(9):1424-1430
- 610. Schertler T, Frauenfelder T, Stolzmann P, Scheffel H, Desbiolles L, Marincek B et al. Triple rule-out CT in patients with suspicion of acute pulmonary embolism: findings and accuracy. Academic Radiology. 2009; 16(6):708-717

- 611. Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen J. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. Journal of the American College of Cardiology. 2004; 44(6):1224-1229
- 612. Schroeder S, Kuettner A, Beck T, Kopp AF, Herdeg C, Heuschmid M et al. Usefulness of noninvasive MSCT coronary angiography as first-line imaging technique in patients with chest pain: initial clinical experience. International Journal of Cardiology. 2005; 102(3):469-475
- 613. Schuijf JD, Bax JJ, Salm LP, Jukema JW, Lamb HJ, van der Wall EE et al. Noninvasive coronary imaging and assessment of left ventricular function using 16-slice computed tomography. American Journal of Cardiology. 2005; 95(5):571-574
- 614. Schuijf JD, Pundziute G, Jukema JW, Lamb HJ, van der Hoeven BL, de Roos A et al. Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. American Journal of Cardiology. 2006; 98(2):145-148
- 615. Schwartz JG, Johnson RB, Aepfelbacher FC, Parker JA, Chen L, Azar RR et al. Sensitivity, specificity and accuracy of stress SPECT myocardial perfusion imaging for detection of coronary artery disease in the distribution of first-order branch vessels, using an anatomical matching of angiographic and perfusion data. Nuclear Medicine Communications. 2003; 24(5):543-549
- 616. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001; 103(18):2230-2235
- 617. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. European Heart Journal. 2008; 29(4):480-489
- 618. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K et al. Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial). Journal of Cardiovascular Magnetic Resonance. 2012; 14:61
- 619. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. European Heart Journal. 2013; 34(10):775-781
- 620. Scot-Heart Investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial.[Erratum appears in Lancet. 2015 Jun 13;385(9985):2354; PMID: 26088642]. Lancet. 2015; 385(9985):2383-2391
- 621. Sebbane M, Lefebvre S, Kuster N, Jreige R, Jacques E, Badiou S et al. Early rule out of acute myocardial infarction in ED patients: value of combined high-sensitivity cardiac troponin T and ultrasensitive copeptin assays at admission. American Journal of Emergency Medicine. 2013; 31(9):1302-1308
- 622. Sehovic S. Diagnostic capabilities of 64 slice CT coronography compared to classic in coronary disease detection. Acta Informatica Medica. 2013; 21(3):208-210

- 623. Selcoki Y, Yilmaz OC, Kankilic MN, Akin K, Eryonucu B. Diagnostic accuracy of 64-slice computed tomography in patients with suspected or proven coronary artery disease. Turk Kardiyoloji Dernegi Arsivi. 2010; 38(2):95-100
- 624. Senior R, Lepper W, Pasquet A, Chung G, Hoffman R, Vanoverschelde JL et al. Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc single-photon emission computed tomography. American Heart Journal. 2004; 147(6):1100-1105
- 625. Shabestari AA, Abdi S, Akhlaghpoor S, Azadi M, Baharjoo H, Pajouh MD et al. Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. American Journal of Cardiology. 2007; 99(12):1656-1661
- 626. Shah AS, Griffiths M, Lee KK, McAllister DA, Hunter AL, Ferry AV et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study.[Erratum appears in BMJ. 2015;350:h626; PMID: 25646958]. BMJ. 2015; 350:g7873
- 627. Shah AS, Newby DE, Mills NL. High sensitivity cardiac troponin in patients with chest pain. BMJ. 2013; 347:f4222
- 628. Shah ASV, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD et al. {Recite using #1374} High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. The Lancet. 2015; 386(10012):2481-2488
- 629. Shah ASV, McAllister DA, Mills R, Lee KK, Churchhouse AMD, Fleming KM et al. Sensitive Troponin Assay and the Classification of Myocardial Infarction. American Journal of Medicine. 2015; 128(5):493-501
- 630. Shaheen J, Luria D, Klutstein MW, Rosenmann D, Tzivoni D. Diagnostic value of 12-lead electrocardiogram during dobutamine echocardiographic studies. American Heart Journal. 1998; 136(6):1061-1064
- 631. Shariat M, Thavendiranathan P, Nguyen E, Wintersperger B, Paul N, Rakowski H et al. Utility of coronary CT angiography in outpatients with hypertrophic cardiomyopathy presenting with angina symptoms. Journal of Cardiovascular Computed Tomography. 2014; 8(6):429-437
- 632. Sharma P, Patel CD, Karunanithi S, Maharjan S, Malhotra A. Comparative accuracy of CT attenuation-corrected and non-attenuation-corrected SPECT myocardial perfusion imaging. Clinical Nuclear Medicine. 2012; 37(4):332-338
- 633. Sharma RK, Arbab-Zadeh A, Kishi S, Chen MY, Magalhaes TA, George RT et al. Incremental diagnostic accuracy of computed tomography myocardial perfusion imaging over coronary angiography stratified by pre-test probability of coronary artery disease and severity of coronary artery calcification: The CORE320 study. International Journal of Cardiology. 2015; 201:570-577
- 634. Shavelle DM, Budoff MJ, LaMont DH, Shavelle RM, Kennedy JM, Brundage BH. Exercise testing and electron beam computed tomography in the evaluation of coronary artery disease. Journal of the American College of Cardiology. 2000; 36(1):32-38
- 635. Sheikh M, Ben-Nakhi A, Shukkur AM, Sinan T, Al-Rashdan I. Accuracy of 64-multidetector-row computed tomography in the diagnosis of coronary artery disease. Medical Principles and Practice. 2009; 18(4):323-328

- 636. Sheth T, Amlani S, Ellins ML, Mehta S, Velianou J, Cappelli G et al. Computed tomographic coronary angiographic assessment of high-risk coronary anatomy in patients with suspected coronary artery disease and intermediate pretest probability. American Heart Journal. 2008; 155(5):918-923
- 637. Shi H, Aschoff AJ, Brambs HJ, Hoffmann MH. Multislice CT imaging of anomalous coronary arteries. European Radiology. 2004; 14(12):2172-2181
- 638. Shin JH, Pokharna HK, Williams KA, Mehta R, Ward RP. SPECT myocardial perfusion imaging with prone-only acquisitions: correlation with coronary angiography. Journal of Nuclear Cardiology. 2009; 16(4):590-596
- 639. Shivalkar B, Goovaerts I, Salgado RA, Ozsarlak O, Bosmans J, Parizel PM et al. Multislice cardiac computed tomography in symptomatic middle-aged women. Annals of Medicine. 2007; 39(4):290-297
- 640. Shouker MAH, Yusuf El-Shazely MA, Abd El-Aziz MFM, Samak MF. CT angiography using dual source 64-MSCT versus catheter angiography in assessment of coronary atherosclerotic disease. Egyptian Journal of Radiology and Nuclear Medicine. 2012; 43(2):147-155
- 641. Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: Comparison of image quality and patient radiation dose. Radiology. 2008; 248(2):431-437
- 642. Shuman WP, Branch KR, May JM, Mitsumori LM, Strote JN, Warren BH et al. Whole-chest 64-MDCT of emergency department patients with nonspecific chest pain: Radiation dose and coronary artery image quality with prospective ECG triggering versus retrospective ECG gating. AJR American Journal of Roentgenology. 2009; 192(6):1662-1667
- 643. Shuman WP, May JM, Branch KR, Mitsumori LM, Strote JN, Green DE et al. Negative ECGgated cardiac CT in patients with low-to-moderate risk chest pain in the emergency department: 1-year follow-up. AJR American Journal of Roentgenology. 2010; 195(4):923-927
- 644. Siriapisith T, Wasinrat J. Comparison of image quality of coronary CT angiography between 16 and 64 slices MDCT. Journal of the Medical Association of Thailand. 2008; 91(3):364-371
- 645. Sirol M, Sanz J, Henry P, Rymer R, Leber A. Evaluation of 64-slice MDCT in the real world of cardiology: a comparison with conventional coronary angiography. Archives of Cardiovascular Diseases. 2009; 102(5):433-439
- 646. Slim J, Castillo-Rojas L, Hann M, Symons J, Martinho S, Sim J et al. Computed tomography coronary angiography versus stress myocardial perfusion imaging for risk stratification in patients with high occupational risk. Journal of Thoracic Imaging. 2012; 27(1):40-43
- 647. Smart SC, Bhatia A, Hellman R, Stoiber T, Krasnow A, Collier BD et al. Dobutamine-atropine stress echocardiography and dipyridamole sestamibi scintigraphy for the detection of coronary artery disease: limitations and concordance. Journal of the American College of Cardiology. 2000; 36(4):1265-1273
- 648. Smart SC, Knickelbine T, Malik F, Sagar KB. Dobutamine-atropine stress echocardiography for the detection of coronary artery disease in patients with left ventricular hypertrophy. Importance of chamber size and systolic wall stress. Circulation. 2000; 101(3):258-263
- 649. So NM, Lam WW, Li D, Chan AK, Sanderson JE, Metreweli C. Magnetic resonance coronary angiography with 3D TrueFISP: breath-hold versus respiratory gated imaging. British Journal of Radiology. 2005; 78(926):116-121

- 650. Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, Flacke S et al. Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology. 2005; 234(3):718-725
- 651. Soon KH, Chaitowitz I, Cox N, Macgregor L, Eccleston D, Bell KW et al. Diagnostic accuracy of 16-slice CT coronary angiography in the evaluation of coronary artery disease. Australasian Radiology. 2007; 51(4):365-369
- 652. Staniak HL, Bittencourt MS, Sharovsky R, Bensenor I, Olmos RD, Lotufo PA. Calcium score to evaluate chest pain in the emergency room. Arquivos Brasileiros de Cardiologia. 2013; 100(1):90-93
- 653. Stolzmann P, Alkadhi H, Scheffel H, Plass A, Leschka S, Falk V et al. Combining cardiac magnetic resonance and computed tomography coronary calcium scoring: added value for the assessment of morphological coronary disease? The International Journal of Cardiovascular Imaging. 2011; 27(7):969-977
- 654. Stolzmann P, Goetti R, Baumueller S, Plass A, Falk V, Scheffel H et al. Prospective and retrospective ECG-gating for CT coronary angiography perform similarly accurate at low heart rates. European Journal of Radiology. 2011; 79(1):85-91
- 655. Sun JL, Han R, Guo JH, Li XY, Ma XL, Wang CY. The diagnostic value of treadmill exercise test parameters for coronary artery disease. Cell Biochemistry and Biophysics. 2013; 65(1):69-76
- 656. Sun Y, Mao D, Lu F, Chen Y, Shi K, Qi L et al. Diagnosis of Dissection of the Coronary Artery Dissection by Multidetector Computed Tomography: A Comparative Study with Coronary Angiology. Journal of Computer Assisted Tomography. 2015; 39(4):572-577
- 657. Sun Z, Dimpudus FJ, Nugroho J, Adipranoto JD. CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study. European Journal of Radiology. 2010; 75(1):e112-119
- 658. Suratkal V, Shirke M, Lele RD. Treadmill ECG test combined with myocardial perfusion imaging for evaluation of coronary artery disease: analysis of 340 cases. Journal of the Association of Physicians of India. 2003; 51:561-564
- 659. Takahashi N, Inoue T, Oka T, Suzuki A, Kawano T, Uchino K et al. Diagnostic use of T2weighted inversion-recovery magnetic resonance imaging in acute coronary syndromes compared with 99mTc-Pyrophosphate, 123I-BMIPP and 201TICl single photon emission computed tomography. Circulation Journal. 2004; 68(11):1023-1029
- 660. Takakuwa KM, Halpern EJ. Evaluation of a "triple rule-out" coronary CT angiography protocol: use of 64-Section CT in low-to-moderate risk emergency department patients suspected of having acute coronary syndrome. Radiology. 2008; 248(2):438-446
- Takakuwa KM, Halpern EJ, Shofer FS. A time and imaging cost analysis of low-risk ED observation patients: a conservative 64-section computed tomography coronary angiography "triple rule-out" compared to nuclear stress test strategy. American Journal of Emergency Medicine. 2011; 29(2):187-195
- 662. Takase B, Nagata M, Kihara T, Kameyawa A, Noya K, Matsui T et al. Whole-heart dipyridamole stress first-pass myocardial perfusion MRI for the detection of coronary artery disease. Japanese Heart Journal. 2004; 45(3):475-486
- 663. Takeuchi M, Miura Y, Sonoda S, Kuroiwa A. Comparison of three different protocols for dobutamine stress echocardiography: Does the addition of atropine increase complications, and does it improve diagnostic accuracy? Echocardiography. 1999; 16(4):347-355

- 664. Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circulation Cardiovascular imaging. 2015; 8(1)
- 665. Tan KT, Reed D, Howe J, Challenor V, Gibson M, McGann G. CT vs conventional angiography in unselected patients with suspected coronary heart disease. International Journal of Cardiology. 2007; 121(1):125-126
- 666. Tanaka A, Shimada K, Yoshida K, Jissyo S, Tanaka H, Sakamoto M et al. Non-invasive assessment of plaque rupture by 64-slice multidetector computed tomography--comparison with intravascular ultrasound. Circulation Journal. 2008; 72(8):1276-1281
- 667. Tanaka H, Chikamori T, Hida S, Igarashi Y, Miyagi M, Ohtaki Y et al. The diagnostic utility of the Heston index in gated SPECT to detect multi-vessel coronary artery disease. Journal of Cardiology. 2008; 51(1):42-49
- 668. Tanaka H, Shimada K, Yoshida K, Jissho S, Yoshikawa J, Yoshiyama M. The simultaneous assessment of aortic valve area and coronary artery stenosis using 16-slice multidetector-row computed tomography in patients with aortic stenosis comparison with echocardiography. Circulation Journal. 2007; 71(10):1593-1598
- 669. Tanami Y, Miller JM, Vavere AL, Rochitte CE, Dewey M, Niinuma H et al. Nuclear stress perfusion imaging versus computed tomography coronary angiography for identifying patients with obstructive coronary artery disease as defined by conventional angiography: Insights from the core-64 multicenter study. Heart International. 2014; 9(1):1-6
- 670. Tandogan I, Yetkin E, Ileri M, Ortapamuk H, Yanik A, Cehreli S et al. Diagnosis of coronary artery disease with TI-201 SPECT in patients with left bundle branch block: importance of alternative interpretation approaches for left anterior descending coronary lesions. Angiology. 2001; 52(2):103-108
- 671. Tandogan I, Yetkin E, Yanik A, Ulusoy FV, Temizhan A, Cehreli S et al. Comparison of thallium-201 exercise SPECT and dobutamine stress echocardiography for diagnosis of coronary artery disease in patients with left bundle branch block. The International Journal of Cardiovascular Imaging. 2001; 17(5):339-345
- 672. Tardif JC, Dore A, Chan KL, Fagan S, Honos G, Marcotte F et al. Economic impact of contrast stress echocardiography on the diagnosis and initial treatment of patients with suspected coronary artery disease. Journal of the American Society of Echocardiography. 2002; 15(11):1335-1345
- 673. Tas MH, Aksakal E, Gurlertop Y, Simsek Z, Gundogdu F, Sevimli S et al. Assesment of myocardial ischemia by combination of tissue synchronisation imaging and dobutamine stress echocardiography. Korean Circulation Journal. 2013; 43(6):384-390
- 674. Ten Kate GJR, Caliskan K, Dedic A, Meijboom WB, Neefjes LA, Manintveld OC et al. Computed tomography coronary imaging as a gatekeeper for invasive coronary angiography in patients with newly diagnosed heart failure of unknown aetiology. European Journal of Heart Failure. 2013; 15(9):1028-1034
- 675. Than M, Aldous S, Lord SJ, Goodacre S, Frampton CM, Troughton R et al. A 2-hour diagnostic protocol for possible cardiac chest pain in the emergency department: a randomized clinical trial. JAMA Internal Medicine. 2014; 174(1):51-58
- 676. The Swedish Council on Health Technology Assessment. Computed tomography for suspected coronary artery disease Stockholm. Swedish Council on Technology Assessment in Health Care (SBU), 2011. Available from:

http://www.sbu.se/globalassets/publikationer/content0/3/computed_tomography_suspect ed_coronary_artery_disease_201103_webb.pdf

- 677. Thelin J, Borna C, Erlinge D, Ohlin B. The combination of high sensitivity troponin T and copeptin facilitates early rule-out of ACS: a prospective observational study. BMC Cardiovascular Disorders. 2013; 13:42
- 678. Thilo C, Gebregziabher M, Mayer FB, Berghaus TM, Zwerner PL, Schoepf UJ. Can Noncalcified Coronary Artery Plaques Be Detected on Non-contrast CT Calcium Scoring Studies? Academic Radiology. 2011; 18(7):858-865
- 679. Thokala P, Goodacre SW, Collinson PO, Stevens JW, Mills NL, Newby DE et al. Costeffectiveness of presentation versus delayed troponin testing for acute myocardial infarction. Heart. 2012; 98(20):1498-1503
- 680. Thompson AG, Raju R, Blanke P, Yang TH, Mancini GBJ, Budoff MJ et al. Diagnostic accuracy and discrimination of ischemia by fractional flow reserve CT using a clinical use rule: Results from the Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography study. Journal of Cardiovascular Computed Tomography. 2015; 9(2):120-128
- 681. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD et al. Third universal definition of myocardial infarction. Circulation. 2012; 126(16):2020-2035
- 682. Tomizawa N, Hayakawa Y, Nojo T, Nakamura S. Improving the diagnostic performance of the real world coronary computed tomography angiography including uninterpretable segments. International Journal of Cardiology. 2014; 176(3):975-979
- 683. Tomonaga Y, Gutzwiller F, Luscher TF, Riesen WF, Hug M, Diemand A et al. Diagnostic accuracy of point-of-care testing for acute coronary syndromes, heart failure and thromboembolic events in primary care: a cluster-randomised controlled trial. BMC Family Practice. 2011; 12:12
- 684. Treuth MG, Reyes GA, He ZX, Cwajg E, Mahmarian JJ, Verani MS. Tolerance and diagnostic accuracy of an abbreviated adenosine infusion for myocardial scintigraphy: a randomized, prospective study. Journal of Nuclear Cardiology. 2001; 8(5):548-554
- 685. Truong QA, Bayley J, Hoffmann U, Bamberg F, Schlett CL, Nagurney JT et al. Multi-marker strategy of natriuretic peptide with either conventional or high-sensitivity troponin-T for acute coronary syndrome diagnosis in emergency department patients with chest pain: from the "rule out myocardial infarction using computer assisted tomography" (ROMICAT) trial. American Heart Journal. 2012; 163(6):972-979
- 686. Truong QA, Hayden D, Woodard PK, Kirby R, Chou ET, Nagurney JT et al. Sex differences in the effectiveness of early coronary computed tomographic angiography compared with standard emergency department evaluation for acute chest pain: the rule-out myocardial infarction with Computer-Assisted Tomography (ROMICAT)-II Trial. Circulation. 2013; 127(25):2494-2502
- 687. Truong QA, Knaapen P, Pontone G, Andreini D, Leipsic J, Carrascosa P et al. Rationale and design of the dual-energy computed tomography for ischemia determination compared to "gold standard" non-invasive and invasive techniques (DECIDE-Gold): A multicenter international efficacy diagnostic study of rest-stress dual-energy computed tomography angiography with perfusion. Journal of Nuclear Cardiology. 2015; 22(5):1031-1040
- 688. Trzaska ZJ, Cohen MC. SPECT vs CT: CT is not the first line test for the diagnosis and prognosis of stable coronary artery disease. Journal of Nuclear Cardiology. 2013; 20(3):473-478

- 689. Tsai IC, Lee T, Lee WL, Tsao CR, Tsai WL, Chen MC et al. Use of 40-detector row computed tomography before catheter coronary angiography to select early conservative versus early invasive treatment for patients with low-risk acute coronary syndrome. Journal of Computer Assisted Tomography. 2007; 31(2):258-264
- 690. Tsai JP, Yun CH, Wu TH, Yen CH, Hou CJ, Kuo JY et al. A meta-analysis comparing SPECT with PET for the assessment of myocardial viability in patients with coronary artery disease. Nuclear Medicine Communications. 2014; 35(9):947-954
- 691. Tsai MF, Kao PF, Tzen KY. Improved diagnostic performance of thallium-201 myocardial perfusion scintigraphy in coronary artery disease: from planar to single photon emission computed tomography imaging. Chang Gung Medical Journal. 2002; 25(8):522-530
- 692. Tsang JC, Min JK, Lin FY, Shaw LJ, Budoff MJ. Sex comparison of diagnostic accuracy of 64multidetector row coronary computed tomographic angiography: results from the multicenter ACCURACY trial. Journal of Cardiovascular Computed Tomography. 2012; 6(4):246-251
- 693. Tsougos E, Panou F, Paraskevaidis I, Dagres N, Karatzas D, Kremastinos DT. Exercise-induced changes in E/E' ratio in patients with suspected coronary artery disease. Coronary Artery Disease. 2008; 19(6):405-411
- 694. Tsougos E, Paraskevaidis I, Dagres N, Varounis C, Panou F, Karatzas D et al. Detection of highburden coronary artery disease by exercise-induced changes of the E/E' ratio. The International Journal of Cardiovascular Imaging. 2012; 28(3):521-530
- 695. Tsutsui JM, Xie F, O'Leary EL, Elhendy A, Anderson JR, McGrain AC et al. Diagnostic accuracy and prognostic value of dobutamine stress myocardial contrast echocardiography in patients with suspected acute coronary syndromes. Echocardiography. 2005; 22(6):487-495
- 696. Turkvatan A, Biyikoglu SF, Buyukbayraktar F, Olcer T, Cumhur T, Duru E. Clinical value of 16slice multidetector computed tomography in symptomatic patients with suspected coronary artery disease. Acta Radiologica. 2008; 49(4):400-408
- 697. Turnipseed SD, Trythall WS, Diercks DB, Laurin EG, Kirk JD, Smith DS et al. Frequency of acute coronary syndrome in patients with normal electrocardiogram performed during presence or absence of chest pain. Academic Emergency Medicine. 2009; 16(6):495-499
- 698. Uebleis C, Groebner M, Von Ziegler F, Becker A, Rischpler C, Tegtmeyer R et al. Combined anatomical and functional imaging using coronary CT angiography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery. International Journal of Cardiovascular Imaging. 2012; 28(7):1763-1774
- 699. Ueno K, Anzai T, Jinzaki M, Yamada M, Kohno T, Kawamura A et al. Diagnostic capacity of 64slice multidetector computed tomography for acute coronary syndrome in patients presenting with acute chest pain. Cardiology. 2009; 112(3):211-218
- 700. Ueno Y, Nakamura Y, Kinoshita M, Fujita T, Sakamoto T, Okamura H. Noninvasive assessment of significant right coronary artery stenosis based on coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography. Echocardiography. 2003; 20(6):495-501
- 701. Ulimoen GR, Gjonnaess E, Atar D, Dahl T, Stranden E, Sandbaek G. Noninvasive coronary angiography with 64-channel multidetector computed tomography in patients with acute coronary syndrome. Acta Radiologica. 2008; 49(10):1140-1144

- 702. Underwood SR, Godman B, Salyani S, Ogle JR, Ell PJ. Economics of myocardial perfusion imaging in Europe--the EMPIRE Study. European Heart Journal. 1999; 20(2):157-166
- 703. Underwood SR, Shaw LJ, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint J et al. Myocardial perfusion scintigraphy and cost effectiveness of diagnosis and management of coronary heart disease. Heart. 2004; 90 Suppl 5:v34-36
- 704. Utsunomiya D, Oda S, Yuki H, Yamamuro M, Tsujita K, Funama Y et al. Evaluation of appropriateness of second-generation 320-row computed tomography for coronary artery disease. Springerplus. 2015; 4:109
- 705. Vaidya A, Severens JL, Bongaerts BW, Cleutjens KB, Nelemans PJ, Hofstra L et al. Highsensitive troponin T assay for the diagnosis of acute myocardial infarction: an economic evaluation. BMC Cardiovascular Disorders. 2014; 14:77
- 706. Valenta I, Quercioli A, Schindler TH. Diagnostic value of PET-measured longitudinal flow gradient for the identification of coronary artery disease. JACC: Cardiovascular Imaging. 2014; 7(4):387-396
- 707. van der Wall EE. The promise study: A clear promise for functional stress testing in patients with suspected coronary artery disease. Netherlands Heart Journal. 2015; 23(6):297-298
- 708. Van Geuns RJM, De Bruin HG, Rensing BJWM, Wielopolski PA, Hulshoff MD, Van Ooijen PMA et al. Magnetic resonance imaging of the coronary arteries: Clinical results from three dimensional evaluation of a respiratory gated technique. Heart. 1999; 82(4):515-519
- 709. Van Mieghem CAG, Thury A, Meijboom WB, Cademartiri F, Mollet NR, Weustink AC et al. Detection and characterization of coronary bifurcation lesions with 64-slice computed tomography coronary angiography. European Heart Journal. 2007; 28(16):1968-1976
- 710. van Velzen JE, de Graaf FR, Kroft LJ, de Roos A, Reiber JH, Bax JJ et al. Performance and efficacy of 320-row computed tomography coronary angiography in patients presenting with acute chest pain: results from a clinical registry. The International Journal of Cardiovascular Imaging. 2012; 28(4):865-876
- 711. van Velzen JE, Schuijf JD, de Graaf FR, Boersma E, Pundziute G, Spano F et al. Diagnostic performance of non-invasive multidetector computed tomography coronary angiography to detect coronary artery disease using different endpoints: detection of significant stenosis vs. detection of atherosclerosis. European Heart Journal. 2011; 32(5):637-645
- 712. van Werkhoven JM, Heijenbrok MW, Schuijf JD, Jukema JW, van der Wall EE, Schreur JH et al. Combined non-invasive anatomical and functional assessment with MSCT and MRI for the detection of significant coronary artery disease in patients with an intermediate pre-test likelihood. Heart. 2010; 96(6):425-431
- 713. Vashist A, Collins D, Prasad Y, Blum S, Heller EN. Does cardiac SPECT using attenuation and scatter correction accurately predict coronary artery disease in a minority women population? Medical Science Monitor. 2007; 13(9):CR386-390
- 714. Vavere AL, Arbab-Zadeh A, Rochitte CE, Dewey M, Niinuma H, Gottlieb I et al. Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calcification--a subanalysis of the CORE-64 trial. Radiology. 2011; 261(1):100-108
- 715. Verna E, Ceriani L, Giovanella L, Binaghi G, Garancini S. "False-positive" myocardial perfusion scintigraphy findings in patients with angiographically normal coronary arteries: insights from intravascular sonography studies. Journal of Nuclear Medicine. 2000; 41(12):1935-1940

- 716. Vigna C, Stanislao M, De Rito V, Russo A, Natali R, Santoro T et al. Dipyridamole stress echocardiography vs dipyridamole sestamibi scintigraphy for diagnosing coronary artery disease in left bundle-branch block. Chest. 2001; 120(5):1534-1539
- 717. Vijayakrishnan R, Ariyarajah V, Apiyasawat S, Spodick DH. Usefulness of diastolic time measured on electrocardiogram to improve sensitivity and specificity of exercise tolerance tests. American Journal of Cardiology. 2012; 109(2):174-179
- 718. Vogel-Claussen J, Skrok J, Dombroski D, Shea SM, Shapiro EP, Bohlman M et al. Comprehensive adenosine stress perfusion MRI defines the etiology of chest pain in the emergency room: Comparison with nuclear stress test. Journal of Magnetic Resonance Imaging. 2009; 30(4):753-762
- 719. Volz KA, McGillicuddy DC, Horowitz GL, Sanchez LD. Creatine kinase-MB does not add additional benefit to a negative troponin in the evaluation of chest pain. American Journal of Emergency Medicine. 2012; 30(1):188-190
- von Ziegler F, Brendel M, Uebleis C, Helbig S, Greif M, Ruemmler J et al. SPECT myocardial perfusion imaging as an adjunct to coronary calcium score for the detection of hemodynamically significant coronary artery stenosis. BMC Cardiovascular Disorders. 2012; 12 (no pagination)(116)
- 721. von Ziegler F, Schenzle J, Schiessl S, Greif M, Helbig S, Tittus J et al. Use of multi-slice computed tomography in patients with chest-pain submitted to the emergency department. The International Journal of Cardiovascular Imaging. 2014; 30(1):145-153
- Wagdi P, Alkadhi H. The impact of cardiac CT on the appropriate utilization of catheter coronary angiography. The International Journal of Cardiovascular Imaging. 2010; 26(3):333-344
- 723. Walker S, Girardin F, McKenna C, Ball SG, Nixon J, Plein S et al. Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart. 2013; 99(12):873-881
- 724. Wang Q, Qin J, Gai LY, Chen YD, Dong W, Guan ZW et al. A pilot study on diagnosis of coronary artery disease using computed tomography first-pass myocardial perfusion imaging at rest. Journal of Zhejiang University SCIENCE B. 2011; 12(6):485-491
- 725. Wang R, Yu W, Wang Y, He Y, Yang L, Bi T et al. Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. The International Journal of Cardiovascular Imaging. 2011; 27(5):647-656
- 726. Watkins MW, Hesse B, Green CE, Greenberg NL, Manning M, Chaudhry E et al. Detection of Coronary Artery Stenosis Using 40-Channel Computed Tomography With Multisegment Reconstruction. American Journal of Cardiology. 2007; 99(2):175-181
- 727. Weber M, Bazzino O, Navarro Estrada JL, de MR, Salzberg S, Fuselli JJ et al. Improved diagnostic and prognostic performance of a new high-sensitive troponin T assay in patients with acute coronary syndrome. American Heart Journal. 2011; 162(1):81-88
- Wehrschuetz M, Wehrschuetz E, Schuchlenz H, Schaffler G. Accuracy of MSCT coronary angiography with 64 row CT scanner - Facing the facts. Clinical Medicine Insights: Cardiology. 2010; 4:15-22

- 729. Weinsaft JW, Gade CL, Wong FJ, Kim HW, Min JK, Manoushagian SJ et al. Diagnostic impact of SPECT image display on assessment of obstructive coronary artery disease. Journal of Nuclear Cardiology. 2007; 14(5):659-668
- 730. Westwood M, van Asselt T, Ramaekers B, Whiting P, Thokala P, Joore M et al. High-sensitivity troponin assays for the early rule-out or diagnosis of acute myocardial infarction in people with acute chest pain: a systematic review and cost-effectiveness analysis. Health technology assessment (Winchester, England). 2015; 19(44):1-234
- 731. Weustink AC, Meijboom WB, Mollet NR, Otsuka M, Pugliese F, van Mieghem C et al. Reliable high-speed coronary computed tomography in symptomatic patients. Journal of the American College of Cardiology. 2007; 50(8):786-794
- 732. Weustink AC, Mollet NR, Neefjes LA, Meijboom WB, Galema TW, van Mieghem CA et al. Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Annals of Internal Medicine. 2010; 152(10):630-639
- 733. Weustink AC, Neefjes LA, Rossi A, Meijboom WB, Nieman K, Capuano E et al. Diagnostic performance of exercise bicycle testing and single-photon emission computed tomography: comparison with 64-slice computed tomography coronary angiography. The International Journal of Cardiovascular Imaging. 2012; 28(3):675-684
- 734. White CS, Kuo D, Kelemen M, Jain V, Musk A, Zaidi E et al. Chest pain evaluation in the emergency department: can MDCT provide a comprehensive evaluation? AJR American Journal of Roentgenology. 2005; 185(2):533-540
- 735. White HD, Tonkin A, Simes J, Stewart R, Mann K, Thompson P et al. Association of contemporary sensitive troponin I levels at baseline and change at 1 year with long-term coronary events following myocardial infarction or unstable angina: results from the LIPID Study (Long-Term Intervention With Pravastatin in Ischaemic Disease). Journal of the American College of Cardiology. 2014; 63(4):345-354
- 736. Wierzbowska-Drabik K, Roszczyk N, Sobczak M, Kurpesa M, Plonska-Gosciniak E, Kasprzak JD. Effect of sex on the diagnostic efficacy of dobutamine stress echocardiography with early atropine administration in the detection of coronary artery disease. Polskie Archiwum Medycyny Wewnetrznej. 2014; 124(3):105-113
- 737. Wilson SR, Min JK. The potential role for the use of cardiac computed tomography angiography for the acute chest pain patient in the emergency department. Journal of Nuclear Cardiology. 2011; 18(1):168-176
- 738. Winchester DE, Brandt J, Schmidt C, Allen B, Payton T, Amsterdam EA. Diagnostic yield of routine noninvasive cardiovascular testing in low-risk acute chest pain patients. American Journal of Cardiology. 2015; 116(2):204-207
- 739. Winchester DE, Jeffrey R, Schwarz J, Jois P. Comparing two strategies for emergency department chest pain patients: immediate computed tomography coronary angiography versus delayed outpatient treadmill testing. Critical Pathways in Cardiology: A Journal of Evidence-Based Medicine. 2013; 12(4):197-200
- 740. Winchester DE, Jois P, Kraft SM, Wymer DC, Hill JA. Immediate computed tomography coronary angiography versus delayed outpatient stress testing for detecting coronary artery disease in emergency department patients with chest pain. The International Journal of Cardiovascular Imaging. 2012; 28(3):667-674

- 741. Xu Y, Tang L, Zhu X, Xu H, Tang J, Yang Z et al. Comparison of dual-source CT coronary angiography and conventional coronary angiography for detecting coronary artery disease. The International Journal of Cardiovascular Imaging. 2010; 26 Suppl 1:75-81
- 742. Yamada AT, Soares J, Jr., Meneghetti JC, Araujo F, Ramires JA, Mansur AJ. Planar myocardial perfusion imaging for evaluation of patients with acute chest pain. International Journal of Cardiology. 2004; 97(3):447-453
- 743. Yang FB, Guo WL, Sheng M, Sun L, Ding YY, Xu QQ et al. Diagnostic accuracy of coronary angiography using 64-slice computed tomography in coronary artery disease. Saudi Medical Journal. 2015; 36(10):1156-1162
- 744. Yerramasu A, Lahiri A, Venuraju S, Dumo A, Lipkin D, Underwood SR et al. Diagnostic role of coronary calcium scoring in the rapid access chest pain clinic: prospective evaluation of NICE guidance. European Heart Journal Cardiovascular Imaging. 2014; 15(8):886-892
- 745. Zaag-Loonen HJ, Dikkers R, Bock GH, Oudkerk M. The clinical value of a negative multidetector computed tomographic angiography in patients suspected of coronary artery disease: a meta-analysis. European Radiology. 2006; 16(12):2748-2756
- 746. Zancaner LF, Villa AV, Trindade EM, Rocha RPS, Dantas RN, Cabeda EV et al. Diagnostic accuracy of 320 detector-row computed tomography for detection of significant coronary artery disease in the clinical routine. Echocardiography. 2012; 29 (2):261
- 747. Zeb I, Abbas N, Nasir K, Budoff MJ. Coronary computed tomography as a cost-effective test strategy for coronary artery disease assessment a systematic review. Atherosclerosis. 2014; 234(2):426-435
- Zeb I, Nasir K, Budoff M. Coronary computed tomography reduces downstream resource utilization and is cost-effective test strategy for coronary artery disease assessment A systematic review. Circulation Conference: American Heart Association. 2012; 126(21 SUPPL. 1)
- 749. Zhang L, Chen X, Su T, Li H, Huang Q, Wu D et al. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. Journal of Thoracic Disease. 2015; 7(3):303-308
- 750. Zhang LJ, Wu SY, Wang J, Lu Y, Zhang ZL, Jiang SS et al. Diagnostic accuracy of dual-source CT coronary angiography: The effect of average heart rate, heart rate variability, and calcium score in a clinical perspective. Acta Radiologica. 2010; 51(7):727-740
- 751. Zhang ZH, Jin ZY, Li DJ, Lin SB, Zhang SY, Kong LY et al. Non-invasive imaging of coronary artery with 16-slice spiral computed tomography. Chinese Medical Sciences Journal. 2004; 19(3):174-179
- 752. Zhao XJ, Li BQ, Ren JY, Chen H. Diagnostic accuracy and influence factors of mutislice ct in women versus men with suspected or proven coronary artery disease. Heart. 2011; 97:A141
- 753. Zorga P, Birkenfeld B, Listewnik MH, Piwowarska-Bilska H. Prognostic value of myocardial perfusion scintigraphy for patients suspected of and diagnosed with coronary artery disease. Nuclear Medicine Review. 2012; 15(1):14-21
- 754. Zwank MD, House CM, Isenberger KM, Quaday KA, Ziegenfuss JY, Moriarty KA et al. Early discharge with next day stress testing in low risk chest pain patients presenting to the emergency department is feasible. Annals of Emergency Medicine. 2015; 1):S18

Chest pain of recent onset