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ABSTRACT 

OBJECTIVE  

To assess accuracy, clinical and cost-effectiveness of computed tomography (CT) image analysis 

assisted by software with artificial intelligence (AI) derived algorithms capable of automated 

detection and analysis of lung nodules, compared with unassisted analysis in people undergoing CT 

scans that include the chest due to symptoms suggestive of lung cancer, for purposes unrelated to 

suspicion of lung cancer, for lung cancer screening or for surveillance of previously identified lung 

nodules. 

 

DESIGN  

Systematic review and de-novo cost-effectiveness analysis (CEA). 

 

METHODS 

We performed systematic reviews including studies on 13 NICE specified technologies for CT image 

analysis with outcomes on nodule detection and measurement accuracy or reliability, practical 

implications, impact on patient management (key question 1, KQ1), clinical effectiveness (KQ2) and 

cost effectiveness (KQ3). We searched electronic databases and other sources from 2012 to January 

2022. Company submissions were accepted until 31 August 2022. 

Study quality was assessed by QUADAS-2 (and QUADAS-C, if applicable) and COSMIN Risk of bias 

tool. Outcomes were synthesised narratively. 

We adopted two approaches to decision modelling, both used decision trees. One is a simple 

decision tree evaluating cost-effectiveness of AI-assisted image analysis for the detection of 

actionable nodules using test accuracy results. The other is a more extensive decision tree reflecting 

the full clinical pathways for people undergoing chest CT scan. Information on prevalence of lung 

nodules, sensitivity and specificity for nodule detection and reliability of nodule measurement was 

linked to the British Thoracic Society (BTS) guidelines through simulation, incorporating a further 

model to account for growth of malignant nodules during surveillance. The model estimates 

incremental cost-effectiveness ratios (ICERs) expressed as cost per quality-adjusted life year (QALY) 

(primary outcome). Secondary outcome measures (cost per correct detection of a person with an 

actionable nodule, cost per cancer detected and treated) were analysed. We undertook a series of 

scenario analyses and sensitivity analyses.  
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RESULTS 

For KQ1, 27 studies evaluating eight of the 13 NICE-specified technologies were identified that 

reported outcomes of interest. All studies were at high risk of bias. No study directly compared 

radiologists assisted by different technologies of interest. Twenty-four studies used retrospective 

datasets, 17 of which compared the performance of readers with and without AI software (main 

comparison of interest). One study reported on prospective screening experiences before and after 

AI software implementation. The remaining studies either evaluated stand-alone AI (outside NICE 

scope) or only provided non-comparative evidence.   

Accuracy / reliability 

Nodule detection - AI-assisted reading generally improved sensitivity, with similar or lower specificity 

compared with unaided reading. Estimated sensitivity and specificity varied substantially between 

studies, possibly due to heterogeneity in patient population, reader speciality and experience, 

reading conditions, other study design features and risk of bias.  

Nodule size measurement - Measured nodule diameters were similar or significantly larger with 

semi-automatic measurements compared to manual measurements. Intra-reader and inter-reader 

agreement in nodule size measurement and in risk classification based on clinical guidelines 

generally improved with AI-assistance or are comparable to unaided reading.  

Practical implications  

Segmentation failure or rejection of automated segmentation by radiologists ranged from 0% to 57% 

of nodules. Radiologist reading time generally decreased with AI assistance in research setting.  

Impact on patient management 

AI-assisted reading tended to upstage risk categories defined by clinical guidelines based on 

retrospective application of findings from AI-assisted reading. 

Clinical and cost-effectiveness 

For KQ2 and KQ3, no relevant studies were identified.  

De-novo CEA 

Due to the complete absence of clinical effectiveness evidence and major challenges in linking test 

accuracy evidence to clinical and economic outcomes, methods and findings presented here are 

highly uncertain and should serve as early indicators and frameworks for future assessment. Our CEA 

suggested for the symptomatic and incidental populations that AI-assisted CT image analysis 

dominates the unaided radiologist reading for cost per correct detection of a person with an 
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actionable nodule. However, when relevant costs and QALYs incurred throughout the full clinical 

pathway are taken into account, AI-assisted CT reading is dominated by the unaided reader. This is 

driven by the costs and disutilities associated with false positive results and CT surveillance. AI was 

deemed cost effective for both symptomatic and incidental populations in the scenario analyses 

where disutility associated with false positive results and CT surveillance were removed. In the 

screening population, AI-assisted CT image analysis was cost-effective in the base case and all 

sensitivity and scenario analysis. This was driven by a more favourable profile of model inputs, 

including estimates of improved test specificity for AI. Although there was more data available to 

populate the screening population model, there was very great uncertainty across all models.  

 

LIMITATIONS 

The identified evidence was of low quality and high applicability concerns. No study was performed 

prospectively in clinical or screening practice in the UK. Available evidence was very limited and 

heterogeneous, preventing meta-analyses, subgroup analyses and reliable CEA. 

 

CONCLUSIONS 

AI-assisted analysis of CT scan images may reduce variability and improve consistency in the 

measurement of lung nodules and in clinical management following current guidelines. AI-assisted 

analysis may increase the accuracy of nodule detection but may also increase the number of patients 

undergoing CT surveillance. Current evidence is largely collected from research settings and will 

need to be verified by evidence collected prospectively from clinical settings.  

No direct comparative evidence between AI technologies of interest was found, and no study 

provided direct evidence on clinical outcomes and cost-effectiveness. We established a 

methodological framework for economic evaluation, which suggested AI-assisted image analysis may 

be cost-effective for the screening population but may be dominated by unaided analysis for the 

symptomatic population, but reliable estimates of cost-effectiveness cannot be obtained until more 

evidence becomes available. 
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DEFINITION OF TERMS AND LIST OF ABBREVIATIONS 

Technical terms and abbreviations are used throughout this report. The meaning is usually clear 

from the context, but a glossary is provided for the non-specialist reader. 

 

Glossary 

Term Definition 

2x2 contingency 

table 

A table with two rows and two columns that presents classifications of 

individuals with regard to presence/absence of a disease condition, usually by 

a new diagnostic test to be evaluated and a reference standard which is 

considered to reflect the true disease status in the following form: 

Reference (gold) standard (→) / 

Index (new) test (↓) 

Yes No 

Yes a = TP b = FP 

No c = FN d = TN 
 

Cohen’s Kappa Denoted as the Greek letter ‘κ’, a statistic used for assessing the level of 

agreement between different raters (inter-rater reliability) or between the 

rating (classification) made by the same rater at different time points (intra-

rater reliability), that takes into account agreement by chance. Similar to 

correlation coefficients, it can range between -1 and +1, where +1 denotes 

perfect agreement and 0 denotes the agreement that can be expected from 

random chance. 

Concordance The agreement between two variables. 

Concurrent AI In this report, concurrent AI refers to the use of AI software at the same time 

when a radiologist is reading and analysing the CT scan image. This is in 

contrast with second-read AI (see definition below). 

Correlation The degree which two continuous variables are linearly related. 

Dice similarity 

coefficient 

(DSC) or Dice 

coefficient 

An index of spatial overlap and a reproducibility validation metric when 

segmentation of a nodule between different readers/readings is compared. It 

ranges between 0 (no overlap) to 1 (perfect overlap). 

In the context of comparing two diagnostic tests, it can be regarded as a 

measure of similarity in the classification of disease between two tests, 

ignoring cases considered as negative by both tests. 

𝐷𝑆𝐶 =
2𝑎

2𝑎 + 𝑏 + 𝑐
 =

𝑎

𝑎 +
1
2 (𝑏 + 𝑐)

=
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Dice coefficient ranges between 0 and 1, with 1 signifying the greatest 

similarity between the two tests. 
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Also known as the F score or the Sorensen-Dice coefficient. 

False negative 

value 

The number of cases in which the index test has wrongly suggested the 

patient as being disease-free. 

𝐹𝑁 =  𝑐 

False positive 

rate 

The proportion of people who test positive for a disease amongst people who 

do not have the disease of interest. The ratio between the false positive value 

and (true negative value + false positive value). 

Equals to 1 – specificity 

This term is sometimes used in the literature to describe the 'number of false 

positive detections per image’ (see definition below), which may cause 

confusion.  

False positive 

value 

The number of cases in which the index test has wrongly indicated the patient 

as having the disease. 

𝐹𝑃 =  𝑏 

Index test A (new) test whose performance is being evaluated against a reference 

standard. 

Inter-rater 

reliability 

The degree of agreement between independent observers who rate the same 

phenomenon. 

Intra-rater 

reliability 

The degree of agreement among repeated administrations of a diagnostic test 

performed by a single rater. Not to be confused with inter-rater reliability. 

Limits of 

agreement 

A range which shows where the vast majority (95%) of the differences 

between two measurements (e.g. lung nodule size measured by two 

radiologists) is likely to lie. Smaller limits of agreement indicate better 

agreement in measurements. Also known as Bland-Altman method. 

Lin’s 

concordance 

correlation 

coefficient 

(CCC) 

Also denoted as ρc,
 or CCC, is a measure of agreement between two 

continuous variables that takes into account both measurement bias and 

measurement consistency (see below). 

Its value ranges between -1 (perfect discordance) and 1 (perfect 

concordance). 

Measurement 

accuracy 

How accurate a measurement of a quantity (e.g. size of a lung nodule) made 

by a person (e.g. radiologist) or a tool (e.g. computer software) is compared 

with the ‘true’ quantity, e.g. whether computer software tends to over-

estimate the size of a nodule compared with its ‘true’ size. Also known as 

‘measurement bias’ or ‘systematic measurement error’.   

Measurement 

precision 

How well the estimated quantities agree with each other when a person or a 

tool measures the same quantity (e.g. the size of a nodule) multiple times 

(intra-rater reliability, see above) or when different people try to measure the 
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same quantity (inter-rater reliability). Also known as ‘measurement 

consistency’, ‘measurement reliability’ or ‘random measurement error’.  

Negative 

predicted value 

The percentage of patients with a negative index test result who are actually 

disease-free. 

𝑁𝑃𝑉 =  
𝑑

𝑐 + 𝑑
=

𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

Number of false 

positive 

detections per 

image 

For nodule detection, a false positive finding (recognising/reporting 

something as a nodule when in fact it is not) can be recorded multiple times 

in different locations of a CT scan image. The number of false positive 

detections per image represents the total number of false positive findings 

across a set of CT scan images divided by the total number of CT scan images 

within this set. For example, if an overall of 15 false positive findings are 

recorded among 10 CT scan images being reviewed, the number of false 

positive detections per scan/image would be 1.5. This number has no 

theoretical limit - unlike false positive value and false positive rate (see 

definitions above) in a per-person analysis, which are bounded by the total 

number of people without a nodule. The number is sometimes referred to in 

the literature as ‘false positive rate’, which may cause confusion. 

Pearson’s 

correlation 

coefficient 

The measure of linear correlation between two sets of data. The ratio 

between the covariance of two variables and the product of their standard 

deviations. It can range between -1 and 1, with -1 indicates perfect negative 

correlation, 1 indicates perfect positive correlation and 0 indicates no 

correlation.  

Per-nodule 

analysis 

Analysis of test accuracy results for nodule detection in which the unit of 

analysis is an individual nodule.  

Per-person (per-

scan) analysis 

Analysis of test accuracy results for nodule detection in which the unit of 

analysis is a person or a CT scan image. As multiple nodules may be found in a 

CT scan image for a person, this measure differs from per-nodule analysis and 

is more clinically relevant as decision-making in nodule management often 

depends on the largest nodule or the nodule with most suspicious features  

rather than all nodules.    

Positive 

predictive value 

The percentage of patients with a positive index test result who actually have 

the disease. 

𝑃𝑃𝑉 =  
𝑎

𝑎 + 𝑏
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Reference 

standard 

The test, combination of tests, or procedure that is considered the best 

available method of categorising participants in a study of diagnostic test 

accuracy as having or not having a target condition. 

Receiver 

operating 

A graph showing the sensitivity and specificity for every possible threshold of 

a test. 
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characteristic 

(ROC) curve 

  

Risk dominant 

nodule 

The lung nodule that is judged to carry the highest risk (or probability) of 

being a malignant nodule and based on which the decision on clinical 

management is made for a patient with more than one nodule detected in 

the CT scan. It is usually the largest nodule without clearly benign features.    

Second-read AI 

(2nd-read AI) 

In this report, second-read (2nd-read) AI refers to radiologist reading and 

analysing the CT scan image independently first, then bringing up and 

considering findings produced with AI-assistance (as a ‘second-reader’) to 

make necessary changes and finalise nodule detection and analysis. 

Segmentation A step in digital image processing in which small areas in an image (called 

pixels) are classified and labelled to facilitate further analysis. For example, 

segmentation enables an area in a CT scan that is likely to represent a lung 

nodule to be marked and separated out from the rest of the image.  

Sensitivity The proportion of people who test positive for a disease amongst people who 

have the disease of interest. The ratio between the true positive value and 

(true positive value + false negative value). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑎

𝑎 + 𝑐
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity The proportion of people who test negative for a disease amongst people 

who do not have the disease of interest. The ratio between the true negative 

value and (true negative value + false positive value). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑑

𝑏 + 𝑑
=  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

True negative 

value 

The number of cases in which the index test has correctly indicated the 

patient as being disease-free. 

𝑇𝑁 =  𝑑 

True positive 

value 

The number of cases in which the index test has correctly indicated the 

patient as having the disease. 

𝑇𝑃 =  𝑎 

 

 

List of abbreviations 

Abbreviation Full term 

A&E Accident and emergency 

AI Artificial intelligence 

AUC Area under the receiver operating curve 
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BTS British Thoracic Society 

CAD Computer-aided detection 

CASP Critical Appraisal Skills Programme 

CCC Lin’s concordance correlation coefficient 

CEA Cost effectiveness analysis 

CEAC Cost-effectiveness acceptability curve 

CHEERS Consolidated Health Economic Evaluation Reporting Standards 

CI Confidence interval 

CRUK Cancer Research UK 

CT Computed tomography 

CV Coefficient of variation 

CXR Chest X-ray 

DAC Diagnostic Advisory Committee 

DAR Diagnostic assessment report 

DL Deep learning 

EAG External Assessment Group 

EBUS-TBNA Endobronchial ultrasound-guided transbronchial needle aspiration 

EUS-FNA Endoscopic ultrasound-guided fine-needle aspiration 

FBP Filtered back projection 

FN False negative 

FP False positive 

GGN Ground glass nodule 

HR Hazard ratio 

HSROC Hierarchical summary receiver operating characteristic  

HTA Health technology assessment 

ICC Intraclass correlation coefficient 

ICER Incremental cost-effectiveness ratio 

IQR Interquartile range 

K-LUCAS Korean Lung Cancer Screening Project 

KQ Key question 

LDCT Low-dose computed tomography 

LoA Limits of agreement 

LSUT Lung Screen Uptake Trial 

Lung-RADS Lung CT Screening Reporting And Data System 
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LY Life-years 

MBIR Model-based iterative reconstruction 

MDT Multi-disciplinary team 

MIP Maximum intensity projection 

MPR Multiplanar reformations 

MRMC Multi-reader, multi-case study 

MRI Magnet resonance imaging 

NA Not applicable 

NHS National Health Service 

NICE National Institute for Health and Care Excellence 

NLST National Lung Screening Trial 

NPV Negative predictive value 

NR Not reported 

PACS Picture archiving and communication system 

PET Positron emission tomography 

PSN Part-solid nodules 

PSS Personal Social Services 

PPSRU Personal Social Services Research Unit 

PPV Positive predictive value 

QALY Quality-adjusted life-years 

RCT Randomised controlled trial 

ROC Receiver operating characteristic  

SD Standard deviation 

SDCT Standard-dose computed tomography 

SEM Standard error of the measurement 

SSN Sub-solid nodules 

TLHC Targeted Lung Health Check 

TN True negative 

TP True positive 

UK NSC UK National Screening Committee 

VDT Volume doubling time 

WTP Willingness-to-pay 
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SCIENTIFIC SUMMARY 

Background 

Lung nodules are small rounded or irregular shaped growths with a diameter of 3 cm or less found 

inside the lung. They vary in size, which is strongly associated with risk of malignancy but in a 

nonlinear fashion. Most lung nodules on a computed tomography (CT) scan appear as solid 

structures, but some are sub-solid. Sub-solid nodules have either a solid part surrounded by a non-

solid, cloud-like structure (part-solid nodules) or appear entirely non-solid (pure ground glass 

nodules). While most lung nodules are benign, some may be malignant or may develop into lung 

cancer.   

Lung nodules are found when people are (1) referred for a CT scan that includes the chest because 

of signs and symptoms suggestive of lung cancer (symptomatic population), (2) investigated for 

other conditions unrelated to lung cancer (incidental population), or (3) through lung cancer 

screening programmes (screening population). People with previously identified lung nodules can 

also have CT scans as part of surveillance (surveillance population) to assess whether the growth of 

the nodules indicates malignancy and if further assessment or treatment is needed. Lung nodules 

may be challenging to detect because of their small size, varying shape, and proximity to other 

structures in the lung. 

This diagnostics assessment focuses on detection and analysis of lung nodules in CT scan images that 

include the chest, assisted by computer software with artificial intelligence (AI)-derived algorithms. 

 

Objectives  

Key question 1 (KQ1) 

What is the accuracy of CT image analysis assisted by AI software for automated detection and 

analysis of lung nodules in CT scans that include the chest obtained from symptomatic, incidental, 

screening or surveillance populations, and what are the practical implications (e.g. test failure rate, 

reading time, acceptability) and the impact on patient management (e.g. stage of cancer detected, 

time to diagnosis, number of people referred to CT surveillance or having biopsy/excision)? 

 

Sub-questions  

1. Does the accuracy of CT image analysis assisted by AI software for automated detection and 

analysis of lung nodules, its practical implications and impact on patient management differ 
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between CT scans: (1) with contrast and without contrast; (2) using a low-dose and a standard dose; 

(3) of solid nodules and sub-solid nodules; (4) obtained from people of different ethnic groups; (5) 

read by general radiologists/health professionals and specialised thoracic radiologists/health 

professionals; (6) by reason for CT can (for the incidental population)?  

2. a) What is the concordance between readers with and without software support to detect and/or 

measure lung nodules from CT images?  

b) What is the concordance between readers using different software to detect and/or measure lung 

nodules from CT images?  

c) Does the use of software-assisted CT image analysis impact on intra-observer and interobserver 

variability in lung nodule detection and measurement? 

 

Key question 2 (KQ2) 

What are the benefits and harms of detection and analysis of lung nodules assisted by AI software 

compared with unassisted reading in CT scans that include the chest obtained from symptomatic, 

incidental, screening or surveillance populations? 

Sub-questions 1-2 (see KQ1) are adapted for KQ2. 

 

Key question 3 (KQ3) 

What is the cost-effectiveness of using software for automated detection and analysis of lung 

nodules from CT images compared with unassisted CT image analysis in people undergoing CT scans 

that include the chest due to symptoms suggestive of lung cancer, for purposes unrelated to the 

suspicion of lung cancer, for lung cancer screening or for surveillance of previously identified 

nodules? 

Sub-questions 1-2 (see KQ1) are adapted for KQ3. 

 

Methods 

Data sources 

KQ1 and KQ2 

Medline; Embase; Cochrane Database of Systematic Reviews; Cochrane CENTRAL; Health Technology 

Assessment (HTA) database (CRD); International HTA database (INAHTA); Science Citation Index 
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Expanded (Web of Science); Conference Proceedings - Science (Web of Science) from 1 January 2012 

to January 2022.  

MedRxiv preprint server; clinical trials registries (via clinicaltrials.gov and the WHO ICTRP portal); 

websites of the technologies and their manufacturers; websites of selected organisations and 

conferences of interest; reference lists of included studies and relevant systematic reviews identified 

via the database searches; forwards citation tracking from key publications. 

Company submissions were accepted until 31 August 2022. 

 

KQ3 

Medline; Embase; National Health Service Economic Evaluation Database (NHS EED) (CRD); Health 

Technology Assessment (HTA) database (CRD); International HTA database (INAHTA); Cost-

Effectiveness Analysis (CEA) registry (Tufts Medical Center); EconPapers (Research Papers in 

Economics (RePEc)); ScHARRHUD; targeted web searches (Google); selected organisations and 

conferences of interest; reference lists of selected highly relevant papers. 

Company submissions were accepted until 31 August 2022. 

 

Eligibility criteria 

Population: KQ1-3) People who have no confirmed lung nodules or lung cancer and who are not 

having staging investigations or follow-up imaging for primary cancer elsewhere in the body; or 

people having CT surveillance for a previously identified lung nodule. 

Intervention: KQ1-3) At least one of the 13 NICE specified technologies, used as reader support 

(focus of this assessment) or stand-alone (not formally included in the assessment but providing 

supplementary evidence): 

AI-Rad Companion Chest CT (Siemens Healthineers); AVIEW LCS+ (Coreline Soft); ClearRead CT 

(Riverain Technologies); contextflow SEARCH Lung CT (contextflow); InferRead CT Lung (Infervision); 

JLD-01K (JLK Inc.); Lung AI (Arterys); Lung Nodule AI (Fujifilm); qCT-Lung (Qure.ai); SenseCare-Lung 

Pro (SenseTime); Veolity (MeVis); Veye Lung Nodules (Aidence); VUNO Med-LungCT AI (VUNO). 

Comparator: KQ1) CT image assessment without AI-based software support or no comparator. 

KQ2/3) CT image assessment without AI-based software support. 

Outcomes: KQ1) Accuracy for detecting nodules; accuracy for measuring the diameter or volume of 

nodule or change in volume (when the technologies are used as part of CT surveillance); 
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characteristics of detected nodules; proportion of detected nodules that are malignant; technical 

failure rate; radiologist reading time; radiology report turnaround time; impact of test result on 

clinical decision-making; number of people having CT surveillance; number of CT scans taken as part 

of CT surveillance; number of people having a biopsy or excision; number of cancers detected; stage 

of cancer at detection; time to diagnosis; acceptability and experience of using the AI software. 

Sub-question 2: Concordance between readers with and without AI software; concordance between 

readers using different AI software; concordance between different AI software without human 

involvement; inter-observer variability; repeatability/reproducibility. 

KQ2) Morbidity; mortality; health-related quality of life; patients’ acceptability of use of the 

software. 

KQ3) Cost effectiveness (e.g., incremental costs, incremental benefits, incremental cost effectiveness 

ratio, quality adjusted life years). 

 

Study selection, data extraction and quality appraisal 

KQ1 and KQ2 

Two reviewers independently assessed articles for inclusion. A single reviewer extracted data, which 

were checked by a second reviewer. Two reviewers independently assessed methodological quality 

using the QUADAS-2 and QUADAS-C tools for included studies reporting test accuracy outcomes, or 

the COSMIN Risk of bias tool to assess the quality of studies on reliability and measurement error of 

outcome measurement.  

 

KQ3  

Two reviewers independently screened all titles and abstracts for potentially relevant records. 

Studies meeting inclusion criteria would be independently assessed using the Consolidated Health 

Economic Evaluation Reporting Standards (CHEERS) and Philips criteria.  

 

Data synthesis 

KQ1-3) Narrative data synthesis was performed. 

 

De-novo cost effectiveness analysis (CEA) 
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We adopted two different approaches to CEA. Firstly, a simple decision tree (the preliminary model) 

was constructed for assessing the cost-effectiveness of AI-assisted detection of actionable nodule 

compared with unassisted detection. As this model did not allow assessment of the impact of AI-

assisted CT image analysis on nodule and disease management following detection throughout the 

clinical pathway, a de novo decision analytical structure (the full model) comprising two stages was 

developed in TreeAge (TreeAge Software Inc., Williamstown, MA, USA) to compare the cost-

effectiveness of AI-assisted radiologist reading versus unaided radiologist reading. The first stage 

followed current practice for identifying lung nodules and classifying them based on morphology, 

nodule type and size. The first stage aimed to predict the impact of AI software-assisted CT reading 

on nodule detection and classification. The second stage followed the British Thoracic Society (BTS) 

guidelines and showed the pathways for patients with lung nodules who required CT surveillance. 

Outputs from the first stage were used as inputs for the second stage, and the associated costs and 

health outcomes from the comparative strategies were estimated. Both stages utilise decision tree 

structures.  

Information required to populate the models included prevalence of lung nodules, prevalence of 

lung cancer, sensitivity and specificity for nodule detection, probabilities for nodule type and size 

distributions, resource use and costs and utilities. Where possible, parameterisation was driven by 

findings from the test accuracy review. This was supported by clinical expert opinion and simulations 

(also informed by the test accuracy review) specifically carried out to generate parameters 

otherwise not available. Given the paucity of information, many assumptions and simplification were 

required to link the initial impact of AI software assistance to longer term costs and health outcomes 

in the full model.  

Resource use and costs for both models were obtained from review of the cost-effectiveness 

literature, National Health Service (NHS) reference cost schedule, companies via NICE and Personal 

Social Service Research Unit Costs. All costs were reported in 2020/21 prices and discounted at a 

rate of 3.5% per annum.  

The model estimated the mean costs incurred and the benefits accrued associated with each 

strategy and assumed that the patients entering the model were aged 60 years. The results of the 

economic analysis are presented in the form of an incremental cost-effectiveness ratio (ICER). Cost 

per correct detection of a person with an actionable nodule was estimated in the preliminary model. 

The economic analysis for the full model was carried out based on a primary outcome measure of 

cost per QALY, and the perspective adopted was that of the NHS and Personal Social Services (PSS). 

Secondary outcome measures (cost per correct detection of a person with an actionable nodule, 

cost per cancer detected and treated) were also analysed in the full model.  
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A deterministic analysis was undertaken for the base-case results. Additionally, we undertook 

scenario analyses, univariate and probabilistic sensitivity analyses.  

 

Results 

KQ1 

Twenty-seven studies evaluating eight of the 13 NICE-specified technologies were identified that 

reported outcomes on nodule detection or measurement accuracy/concordance, practical 

implications and/or impact on patient management. All studies were at high risk of bias and had 

multiple applicability concerns. Twenty-four studies used retrospective datasets, 17 of which 

compared the performance of readers with and without concurrent AI use (primary comparison of 

interest). Nine of these studies also allowed comparison with stand-alone software (outside the 

scope of this assessment, only as supplementary information). One study evaluated readers with 

concurrent AI software use only (versus a reference standard); five studies evaluated stand-alone AI 

software only; one further study compared stand-alone AI to unaided readers. Only three studies 

reported on prospective screening experiences based on the same screening pilot trial conducted in 

Korea: two studies reported on software-assisted reading only, whereas one study used a before-

after design that evaluated the performance of radiologists before and after AI software 

implementation as well as stand-alone AI.  

 

Accuracy and reliability 

Detection of any nodules – All four identified studies directly comparing readers with and without 

concurrent software use found that AI assistance significantly increased sensitivities for detecting 

any nodules. Three studies reported specificity based on per-person analysis. Specificity decreased 

slightly in two studies while improved slightly in one study. The remaining study reported no 

difference in false positive (FP) rates with and without AI assistance.   

Detection of actionable nodules - All three studies evaluating software with nodule detection 

function and directly comparing readers with and without concurrent software use found that AI 

assistance significantly increased the sensitivity for detecting actionable nodules (at least 5 mm 

diameter). Specificity was significantly lower and number of FP detections per image were 

significantly increased with AI use in one study. The other two studies also reported increased 

number of FP detections per scan, but no statistical test was performed.  



34 

 

Detection of malignant nodules – Three studies directly compared the sensitivity for detecting 

malignant nodules in readers with and without concurrent AI use. AI use significantly increased the 

sensitivity in two studies, with one of them also reporting lower specificity and higher number of FP 

detections per image. The remaining study only included one cancer case that was detected by both, 

readers with and without software use.  

Modifiers for nodule detection accuracy 

Estimated sensitivity and specificity for nodule detection varied substantially between studies 

possibly due to heterogeneity in study designs, populations, reader experience and reader speciality.  

Evidence from one UK study suggests that unaided, experienced radiologists in clinical practice (5% 

double reading) outperform unexperienced, trained radiographers assisted with concurrent AI who 

read the same screening CT images as part of a reader study. 

The detection performance of radiologists (with and without concurrent software use, respectively) 

was not significantly different between standard dose and low dose CT scans (1 study).  

Three studies which evaluated different AI software suggested that the accuracy of AI-assisted 

reading for detecting different types of nodules compared with unaided readers may vary depending 

on the performance of individual technology, but evidence was insufficient to draw a firm 

conclusion.  

Nodule type determination - Inter-reader agreement in nodule type determination was similar in 

readers with and without software use (2 studies). 

Nodule size measurement – Nodule diameters were similar (2 studies) or significantly larger (2 

studies) with semi-automatic measurements compared to manual measurements. A significant 

correlation between software-aided and manual measurements was observed (2 studies). Inter-

reader variability (3 studies) and intra-reader variability (1 study) in nodule size measurement was 

significantly reduced in readers with software use compared to manual measurement. 

Classification into risk categories based on nodule type and size - Regarding all four possible nodule 

management recommendation categories based on the BTS guidelines, the AI-assisted readings of 

each radiologist showed a higher agreement with the consensus session (reference standard) than 

when readings were done unaided (1 study). Inter-reader agreement in risk category classification 

based on BTS (1 study), Lung-RADS (2 studies) and Fleischner (1 study) was consistently improved 

with concurrent software use. One study also reported reduced intra-reader variability in Fleischner 

risk categorisation with software use. 
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Whole read (detection and Lung-RADS categorisation) - One before-after study evaluated the 

performance of a whole read (with Lung-RADS category ≥3 classed as positive) for lung cancer 

detection. No significant difference in sensitivity, specificity, positive (PPV) and negative predictive 

values was observed between periods before and after software implementation. PPVs differed 

significantly according to measurement planes (transverse, maximum orthogonal, any maximum). 

Nodule growth – No study provided data for primary comparison of interest. The sensitivity of stand-

alone software to detect nodule pairs in subsequent scans of the same patient was 100.0% (23/23) 

with no FP-pairs (1 study). The mean growth percentage discrepancy was similar between unaided 

chest radiologists and stand-alone software (1 study). However, a single incorrect segmentation of 

the stand-alone software was observed, resulting in a twice as high upper end of its confidence 

interval compared to that of radiologists. Therefore, the study advises visual verification of the 

nodule segmentation by human readers. 

Practical implications  

Segmentation failure ranged from 0% to 57% of nodules (8 studies). However, the observed nodule 

segmentation failure might be mostly due to rejections of segmentation results by radiologists, 

rather than the inability of the system to segment the nodule. Failure rates seem to be higher in 

ground glass nodules (34%) and part-solid nodules (20%) compared to solid nodules (7%) (1 study). 

Manual modifications of the segmentation were required in 29% to 59% of nodules (2 studies). 

Radiologist reading time was reduced with concurrent software use by 11.3%-78% compared to 

unaided reading (9 studies) but increased with 2nd-read software assistance (+26%, 1 study). When 

using a software with only vessel suppression function, the reading time was similar with and 

without software (1 study). 

Impact on patient management 

Characteristics of detected nodules: Regarding all detected nodules (true and false positives), the 

proportion of solid nodules was lower with concurrent software use compared to unaided reading 

(87.1% vs 90.6%) (1 study). Additional true positive nodules detected with AI use were 56-57% solid, 

due to larger improvements in the detection of sub-solid nodules (2 studies). Twenty-two percent of 

additional true positive nodules were 6 mm or larger (1 study).  

Proportion of detected nodules that are malignant: The proportion of detected actionable nodules 

that are malignant was lower with software use (2 studies). 

Impact of test result on decision making: With software use, readers tended to upstage Lung-RADS 

(3 studies) or Fleischner risk categories (1 study) rather than downstage. 
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Number of people having CT surveillance: The proportion of people classed as Lung-RADS category 3 

or 4A increased with AI use (2 studies). 

Number of people having biopsy or excision: Similar (1 study) or slightly higher (1 study) proportions 

of people were classed as Lung-RADS category 4B/4X. 

Time to diagnosis: One retrospective study showed that substantial management discrepancies for 

lung cancer cases (Lung-RADS category 1/2 vs. 4A/B) between readers would be reduced by half and 

sensitivity would be improved with AI software use, which might translate into earlier diagnosis if 

confirmed in clinical practice.  

 

KQ2 

No studies were identified that reported on patient benefits and harms of AI-based software use 

compared to current CT reading practice without AI-based software use. 

 

KQ3 

Of the 1,988 records identified, 15 were considered potentially relevant and were reviewed at full 

text. All studies were excluded at full text. Two potentially relevant model-based economic analyses 

did not meet our inclusion requirements but were summarised, as these studies provided some 

evidence relevant for cost-effectiveness analysis.  

 

De-novo cost effectiveness analysis (CEA) 

Due to the complete absence of evidence related to clinical effectiveness, and substantial challenges 

in linking test accuracy evidence to clinical and economic outcomes, methods and findings presented 

here are highly uncertain and should be regarded as early indications and frameworks for future 

analyses when new evidence becomes available. Our preliminary model suggested AI-assisted 

radiologist reading dominates unaided reading in terms of cost per person with an actionable nodule 

correctly identified in the screening population. Our full model suggested for the symptomatic and 

incidental populations, AI-assisted CT image analysis dominates the unaided radiologist reading for 

cost per correct detection of a person with an actionable nodule. However, when relevant costs and 

QALYs incurred throughout the full clinical pathway are taken into account, AI-assisted CT reading is 

dominated by the unaided reader. This is driven by the costs and disutilities associated with false 

positive results and CT surveillance. AI was deemed cost-effective for both symptomatic and 
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incidental populations in the scenario analyses where disutility associated with false positive results 

and CT surveillance were removed. In the screening population, AI-assisted CT image analysis was 

cost-effective in the base case and all sensitivity and scenario analysis. This was driven by a more 

favourable profile of model inputs, including estimates of improved test specificity for AI. Although 

there was more data available to populate the screening population model there was very great 

uncertainty across all models.    

 

Conclusions 

Evidence from studies included in this diagnostic assessment shows that AI-assisted detection and 

analysis of lung nodules increase the consistency in nodule measurement and in risk classification 

according to clinical guidelines compared with unaided reading. The studies also suggest that AI 

assistance improves the sensitivity for lung nodule and cancer detection, and is often (but not 

always) accompanied by a decrease in specificity and an increase in false positive findings per scan, 

as well as pushing up risk categorisation of nodules based on clinical guidelines. The reported 

performance of AI-assisted reading varies substantially among published studies, possibly attributed 

to heterogeneous study populations, reader experience, speciality and reading conditions, other 

study design features and risk of bias in addition to potential differences in the performance of 

individual technologies. 

No studies were identified that directly compared the performance of different AI software (and 

analysis of CT scan image assisted by them). Given the paucity of evidence, it is currently not 

possible to reliably establish the cost-effectiveness of AI-assisted reading compared with unaided 

reading, and the relative effectiveness and cost-effectiveness of strategies adopting different AI 

software to assist nodule detection and analysis.   

Published studies have largely been conducted retrospectively in a research environment. The vast 

majority of studies identified in this diagnostic assessment report were judged to be at high risk of 

bias and have multiple applicability concerns for the UK settings. No studies evaluating intermediate 

clinical process and downstream clinical outcomes were identified. Further prospective studies of AI-

based software that incorporate clinical process and outcome measures and that are undertaken in 

clinical practice settings are required.  
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PLAIN ENGLISH SUMMARY 

Lung cancer is one of the most common types of cancer in the UK. People in the early stages of the 

disease may not have symptoms; therefore, lung cancer is often diagnosed late. Lung nodules are 

small (≤3 cm) abnormal areas of tissue in the lung. Most of the nodules are harmless, but some of 

them could be lung cancer.  

Computed tomography (CT) is an imaging technology that doctors use to find lung nodules in the 

chest. At present, most healthcare professionals detect lung nodules on CT scan images without 

assistance from any computer software. After a nodule is found, its size needs to be measured 

(sometimes repeatedly over time to check if it grows) as this information helps doctors assess its 

cancer risk and decide what to do. Nevertheless, detecting and measuring nodules in CT images can 

be difficult for various reasons.  

Computer software developed using methods that enable it to ‘learn’ from data and carry out tasks 

that is often done by humans (this is called artificial intelligence, or AI) could help health 

professionals detect nodules that might have been overlooked otherwise and may measure their 

size more consistently and quickly. However, the AI software may also detect more nodules that are 

harmless and cause unnecessary anxiety and investigations.  

This report looked at the evidence on how good AI software is at helping healthcare professionals to 

find and measure lung nodules. The report also investigated benefits and harms of using such 

software and whether it offers value for money. This report covered people who had a CT scan that 

includes the chest due to symptoms suggestive of lung cancer, unrelated to lung cancer suspicion 

(e.g. after an accident), for lung cancer screening or as follow-up of a previously detected nodule. 

We did not find any studies that compared radiologists (doctors who specialise in interpreting scans) 

with and without software use in clinical practice in the UK. Most identified studies were of low 

quality, and CT image assessment was performed retrospectively and was not affecting patient 

management. Findings from these low-quality studies suggest that: 

• Software use could improve nodule detection, with bigger improvements seen for small and 

medium-size nodules. 

• Software use might increase the number of false positive detections. 

• Detection performance seems to be similar in standard and low dose CT scans. 

• With software use, nodule size measurement as well as resulting cancer risk classifications 

could be more consistent between radiologists. 
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• Automatic nodule size measurement might fail or be deemed as unreliable by the radiologist 

in up to half of nodules. 

• Radiologists reading time could be reduced with software use. 

Our analysis shows that the use of AI software allows radiologists to identify more lung nodules that 

they should keep an eye on and detect more lung cancers. For lung cancer screening, we estimate 

that it is cost-effective, because it may be more accurate than humans alone and may cost less 

overall. For other groups of people including people with symptoms of lung cancer and people 

having a CT scan for other reasons, we estimate that it is not cost-effective. This is because it may 

harm more people with incorrect test results and unnecessary regular surveillance testing, which can 

be worrying and costs the NHS money.  
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1 BACKGROUND AND DEFINITION OF THE DECISION PROBLEM(S)   

1.1 Lung nodules and lung cancer 

Lung nodules are small rounded or irregular shaped growths with a diameter of 3 cm or less that are 

found inside the lung. They vary in size, which is strongly associated with risk of malignancy but in a 

nonlinear fashion.1 A nodule with a diameter of less than 3 mm is referred to as a micronodule, the 

measurement of which is not recommended due to accuracy limitations.2 Lung nodules with a 

diameter smaller than 5 mm have low probability of being lung cancer3 and do not usually require 

further actions if they are detected incidentally. Unless otherwise stated, in this report we refer to 

nodules with a diameter of at least 5 mm as ‘actionable nodules’.  

Most lung nodules on a computed tomography (CT) scan appear as solid structures, but some are 

sub-solid. Sub-solid nodules have either a solid part surrounded by a non-solid, cloud-like structure 

(part-solid nodules) or appear entirely non-solid (pure ground glass nodules). While most lung 

nodules are benign (non-cancerous), some may be malignant (cancerous) or may develop into lung 

cancer.   

Lung nodules are found when people are (1) referred for a CT scan that includes the chest because 

of signs and symptoms suggestive of lung cancer, (2) investigated for other conditions unrelated to 

lung cancer, or (3) through lung cancer screening programmes. People with previously identified 

lung nodules can also have CT scans as part of surveillance to assess whether the growth of the 

nodules indicates malignancy and if further assessment or treatment is needed. Lung nodules may 

be challenging to detect because of their small size, varying shape, and proximity to other structures 

in the lung. 

Lung cancer is one of the most common types of cancer in the UK. Its incidence rises steeply from 

around age 45-49.4 Lung cancer causes symptoms such as persistent cough, coughing up blood, and 

feeling short of breath. People in the early stages of the disease may not have symptoms and so lung 

cancer is often diagnosed late. In 2018, more than 65% of all 39,267 lung cancers in England were 

diagnosed at stage III (n=7,886) or 4 (n=18,104).5 The NHS Long Term Plan sets out an ambitious 

target of diagnosing 75% of all cancers at an earlier stage, stages I or II, by 2028.6 

While most lung nodules are non-cancerous, in a small number of cases they can be the first signs of 

an early cancer in the lung. In the absence of other specific and reliable signs and biomarkers, 

identification and monitoring lung nodules using CT scans of the chest remain the primary means of 

detecting lung cancer at earlier stages.   
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1.2 Diagnostic and care pathway 

1.2.1 Pathway to CT scan due to signs and symptoms suggestive of lung cancer  

The identification of people with signs and symptoms suggestive of lung cancer often happens in 

primary care. The NICE guideline on recognition and referral for suspected cancer7 recommends that 

people aged 40 and over are offered an urgent chest X-ray (within two weeks of referral) if they have 

two or more (or one or more if they have ever smoked) of the following unexplained symptoms:  

• cough;  

• fatigue; 

• shortness of breath;  

• chest pain;  

• weight loss or  

• appetite loss. 

 

An urgent chest X-ray should also be considered for people aged 40 or over if they have persistent or 

recurrent chest infection, finger clubbing, enlarged lymph nodes near the collarbone or in the neck 

(supraclavicular lymphadenopathy or persistent cervical lymphadenopathy), chest signs consistent 

with lung cancer or increased platelet count (thrombocytosis).  

If the chest X-ray findings suggest lung cancer, referral to secondary care should be made using a 

suspected cancer pathway referral for an appointment within two weeks. During scoping, clinical 

experts noted if the X-ray findings do not show abnormalities but an ongoing suspicion of lung 

cancer remains, referral to secondary care for a CT scan may also be made. People aged 40 or over 

who present with unexplained coughing up of blood (haemoptysis) should be referred directly for a 

CT scan using the suspected lung cancer referral pathway, or direct access to CT where this is 

available for primary care.  

In secondary care, people with known or suspected lung cancer should be offered a contrast-

enhanced chest CT scan to further the diagnosis and stage the disease (NICE guideline on diagnosis 

and management of lung cancer).8 

 

1.2.2 Lung cancer screening  

In September 2022, the UK National Screening Committee (UK NSC) recommended targeted lung 

cancer screening for people aged 55 to 74 years identified as being at high risk of lung cancer.9 NHS 

England are evaluating the Targeted Lung Health Check programme (TLHC) in some areas of 
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England,10 which provides a feasible and effective starting point for the implementation of a 

targeted screening programme in England. In this programme, people aged over 55 years but less 

than 75 years who have ever smoked are invited to a lung health check. The lung health check 

involves collecting information about lung health, lifestyle and family and medical history, and 

measuring height and weight. Following the lung health check, people assessed as being at high risk 

of lung cancer are offered a low-dose CT scan. The use of computer-aided detection (CAD) systems is 

not a requirement under this protocol, but software is being used as part of the TLHC programme. 

 

1.2.3 Initial assessment and CT surveillance of lung nodules 

In the NHS, the investigation of lung nodules follows the British Thoracic Society (BTS) guidelines for 

the investigation and management of pulmonary nodules and depends on the composition of the 

nodule (i.e. solid or sub-solid).11 The guideline recommends the same diagnostic approach for 

nodules detected incidentally, symptomatically, or through screening. The guideline 

recommendations are for lung nodules in adults. During scoping, clinical experts explained that lung 

nodules in children are very rarely malignant; therefore, lung nodules in children are not currently 

routinely investigated to avoid unnecessary CT scans. 

Figure 1 shows the recommended pathway for the initial assessment of solid lung nodules. When 

there are multiple nodules, the size of the largest nodule should be considered. For newly identified 

nodules above a specified size, malignancy risk is estimated using the Brock model.12 The nodule size 

(in diameter) and the number of nodules detected are among the inputs to this multivariable 

prediction model.13  
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Figure 1. Initial assessment of solid lung nodules (reproduced with permission from Callister et al. 

2015)11 

* Some nodules seen may be attached to or very near the lining of the lungs (perifissural nodules), these are often 

pulmonary lymph nodes. 

 

The initial assessment of sub-solid nodules (part-solid and ground glass) follows a similar pathway 

(see Figure 2). But because these nodules can sometimes disappear on their own, the pathway 

involves a repeat CT scan at 3 months before the use of the Brock malignancy risk model. Herder 

model14 is not used for sub-solid nodules. 
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Figure 2. Sub-solid pulmonary nodules algorithm (reproduced with permission from Callister et al. 

2015)11 

PSNs, part-solid nodules; SSN, sub-solid nodules. 

 

Figure 3 shows the recommended pathway for CT surveillance of solid lung nodules. The overall aim 

of this approach is to use the presence and speed of the nodule growth to discriminate between 

benign and malignant nodules. The nodule growth should be assessed by estimating its volume 

doubling time (VDT). The surveillance period for sub-solid nodules is longer (4 years) than for solid 

nodules (one year with volume and two years with diameter measurements).  

The BTS guidelines are currently being updated.15 

 

 



45 

 

 

Figure 3. CT surveillance of solid lung nodules (reproduced with permission from Callister et al. 

2015)11 

 

Outside the UK, the Lung CT Screening Reporting and Data System (Lung-RADS) developed by the 

American College of Radiology has also been widely used for stratifying cancer risk to inform clinical 

management of lung nodules identified by screening programmes,16 and it was adopted in some of 

the studies assessed in this report. Lung-RADS allows categorisation of nodules according to their 

sizes and features into various categories with increasing risk of lung cancer:  

Category 1: Negative (no nodules and definitely benign nodules); risk of malignancy <1%. 

Category 2: Benign appearance or behaviour (nodules with a very low likelihood of becoming a 

clinically active cancer due to size or lack of growth); risk of malignancy <1%. 

Category 3: Probably benign (probably benign findings – short term follow-up suggested; includes 

nodules with a low likelihood of becoming a clinical active cancer); risk of malignancy 1-2%. 

Category 4A: Suspicious (findings for which additional diagnostic testing is recommended); risk of 

malignancy 5-15%. 
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Category 4B & 4X: Very suspicious (findings for which additional diagnostic testing and/or tissue 

sampling is recommended); risk of malignancy >15%. 

Lung-RADS uses different cut-off sizes for categorising lung nodules compared with the BTS 

guideline;11 for example, for solid nodules at baseline (initial) scan, a nodule size of ≥6 mm would be 

classified as Lung-RADS category 3 with a recommendation for CT follow-up (compared with ≥5 mm 

for CT surveillance in the BTS guidelines). 

 

1.2.4 Current methods of detecting nodules and measuring nodule volume and growth on CT 

scans 

Currently, in routine clinical practice in the UK, radiologists or other healthcare professionals such as 

radiographers detect lung nodules on chest CT scan images without assistance from any software. 

The healthcare professional reviewing the scan may be a specialist in reviewing chest CT images 

(such as a thoracic radiologist) or less specialised (such as a general radiologist in an Accident & 

Emergency [A&E] department). 

In the TLHC programme, the healthcare professionals reviewing the scans are radiologists specialised 

in reviewing chest CT images. They are either radiologists who regularly lead at their local lung 

cancer multidisciplinary team or radiologists who yearly, as part of their normal clinical practice, 

report more than 500 thoracic CT scans of which a significant proportion are lung cancer CT scans.17 

Software for the automated detection of lung nodules has been used in the TLHC programme. The 

British Society of Thoracic Imaging and the Royal College of Radiologists have published a summary 

of radiology-related considerations for the TLHC, including advice on software.18 

The 2015 BTS guidelines for the investigation and management of pulmonary nodules recommend 

that the size of an identified nodule is quantified as the volume of the nodule.11 To do this, 

volumetry software needs to be used. In current practice, software is often part of the picture 

archiving and communication system (PACS), or a module on a software that comes with the CT 

scanner. When measuring the size of the part-solid nodules, the diameter of the solid part of the 

nodule is considered. In ground glass nodules, the diameter of the entire nodule is measured. 

This volumetry software may or may not have the capability of comparing sequential scans to 

automatically measure the VDT. When this feature is not available or not used, the VDT can be 

calculated by inputting the nodule volume measurements and dates of the two scans into the BTS 

Pulmonary Nodule Risk Calculator.13 In addition to growth, for ground glass nodules any later 

appearance of a solid part is assessed. 
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Where volumetry software is not available or measuring the nodule volume by the software is not 

possible because of the quality of the image or the location of the nodule within the lung, the largest 

diameter of the nodule is measured. The VDT can then be estimated by inputting the diameter 

measurements and dates of the two scans using the BTS Pulmonary Nodule Risk Calculator.13 During 

scoping, clinical experts reported that diameter measurements are still widely used in the NHS. 

Mapping on to the BTS guidelines and current clinical practice, AI software assisted reading may 

impact upon detection and analysis of pulmonary nodule in a number of ways as shown in Figure 4 

below.  

Relevant evidence concerning the potential impact of AI assistance at various points in the CT image 

analysis and nodule management process presented in this report and the incorporation of these 

pieces of evidence in our cost-effectiveness analysis are as follows: 

(1) Accuracy in the identification of nodules: Evidence presented in Section 3.3.1; incorporated as a 

parameter for the economic model (Section 7.4.3). 

(2) Accuracy in classification of nodule type: Evidence presented in Section 3.3.2; not included in the 

economic model as no clear evidence of an impact by AI. 

(3) Accuracy and precision in measuring nodule size/volume: Evidence presented in Sections 3.3.3 

and 3.3.4; incorporated into the model through simulation output (Section 7.4 and Appendix 7). 

(4) Number of nodules detected as an input to Brock model: No evidence found; not included in the 

economic model. 

(5) Accuracy and precision in measuring nodule growth: Evidence presented in Section 3.4; 

incorporated into the economic model through simulation output (Section 7.4 and Appendix 7) 

(6) Capability of measuring volume rather than diameter: Incorporated into the model structure, 

which allows varying proportion between volumetry and diameter measurements. 

(7) Impact on reporting time: Evidence presented in Section 3.5.2; incorporated as a parameter for 

the economic model.  

 

 

  



48 

 

 

Figure 4. Points at which AI derived software may have an impact in the process of nodule 
detection and analysis and relevant evidence in this report 
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1.2.5 Diagnosis and staging of lung cancer 

To guide the treatment of lung cancer, information about type and spread of the lung cancer (stage) 

are needed. The NICE guideline on diagnosis and management of lung cancer8 recommends 

choosing investigations that give the most information about diagnosis and staging with the least 

risk to the person. The type and sequence of investigations may vary, but the investigations 

commonly include a contrast-enhanced CT of the chest, abdomen and pelvis, a positron emission 

tomography-CT (PET-CT) scan and magnetic resonance imaging (MRI). Tissue diagnosis is often 

obtained by image-guided biopsy, endobronchial ultrasound-guided transbronchial needle aspiration 

(EBUS-TBNA) and endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA), respectively. 

 

1.2.6 Treatment for lung cancer 

After diagnosis, treatment for lung cancer is based on several factors, such as overall health of the 

patient and the type, size, position, and stage of the cancer. The treatment may include surgery, 

chemotherapy, radiotherapy, immunotherapy or other targeted therapy drugs or a combination of 

these (NICE guideline on diagnosis and management of lung cancer8).  

 

1.3 Population and relevant subgroups 

This diagnostic assessment included people who have any type of CT scan (e.g. with or without 

contrast, low-dose or standard dose; excluding PET-CT) that includes part or all of the chest for the 

following reasons: 

 

1. Use case 1 (nodule detection and analysis): People who have no confirmed lung nodules or 

lung cancer and who are not having staging investigations or follow-up imaging for primary cancer 

elsewhere in the body: 

• because of signs or symptoms suggestive of lung cancer (symptomatic population); 

• for reasons unrelated to suspicion of lung cancer (incidental population); 

• who attend lung cancer screening (screening population). 

 

2. Use case 2 (nodule growth monitoring): People having CT surveillance for a previously 

identified lung nodule (surveillance population).  
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Use of the technologies for cancer staging and cancer follow-up (including detection of metastasis to 

the lung) in people with extrathoracic primary cancers is outside the scope of this assessment. 

 

Other subgroups of potential interest 

Across populations and use cases: 

• Parameters of the CT scan: with versus without contrast; low dose versus standard dose; 

• Characteristics of the patient: different ethnicity; 

• Characteristics of the lung nodule: solid nodules versus sub-solid nodules; 

• Characteristics of the reader: General radiologist (or other healthcare professional) versus 

radiologist (or other healthcare professional) with thoracic speciality; 

• Within the incidental population: different reasons for the CT scan. 

 

1.4 Description of technology(ies) under assessment 

This diagnostics assessment focuses on the use of computer software with artificial intelligence (AI)-

derived algorithms for automated detection and analysis of lung nodules from CT scan images that 

include the chest. AI is a term that broadly refers to “machines that perform tasks normally 

performed by human intelligence, especially when the machines learn from data how to do those 

tasks.”19 The technologies included in this diagnostic assessment were defined by the NICE final 

scope and comprise computer software that has been developed in a process that involves learning 

from data to detect and analyse lung nodules in CT scan images. The algorithms in the software are 

fixed but updated periodically.  

Software is included in this diagnostic assessment if it has automated nodule detection and volume 

measurement capability. Some of the software can also compare subsequent scans to automatically 

measure VDT. In some of the software, parameters can be changed to adjust the nodule detection 

performance (thus varying the sensitivity and specificity for nodule detection). Some include an 

integrated Brock model calculator. 

Some of the software may only be able to analyse images of CT scans that include the entire lung. 

Some may be indicated for use only with a specific type of CT scan (for example scans without 

contrast or low-dose CT) or in specified populations (for example people without symptoms 

suggestive of lung cancer or people aged 18 or older). 
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Thirteen relevant technologies have been identified by the NICE. The section below describes the 

specific technologies included in this assessment. The descriptions as well as Table 1 are reproduced 

from the final scope issued by NICE. 

 

1.4.1 AI-Rad Companion Chest CT (Siemens Healthineers) 

AI-Rad Companion Chest CT is a CE-marked (class IIa medical device) software. It includes Lung-CAD, 

a tool that can detect and measure solid lung nodules in CT scans that cover the entire lung, with 

and without contrast. The algorithms are optimised for nodules between 3 mm and 30 mm. Lung-

CAD is compatible with slice thickness of up to 2.5 mm. It is indicated for use in both screening and 

diagnostic protocols in people without diffuse interstitial or airway diseases, severe pneumonia, 

extensive granulomatous diseases, prior thoracotomy or history of radiation therapy involving the 

lung parenchyma who are aged 22 and over. The software integrates with the PACS. 

 

1.4.2 AVIEW LCS+ (Coreline Soft) 

AVIEW LCS+ is a CE-marked (class IIa medical device) software. It can detect, measure and assess the 

growth of solid and sub-solid nodules in low-dose chest CT scans. AVIEW LCS+ is indicated for use in 

adults. Other indications for use include detection of emphysema (damage to the air sacs in the 

lung) and coronary artery calcification. The software integrates with PACS. The software is 

commercially available to the NHS. 

 

1.4.3 ClearRead CT (Riverain Technologies) 

ClearRead CT is a CE-marked (class IIa medical device) software. It consists of ClearRead CT Vessel 

Suppress, ClearRead CT Detect and ClearRead CT Compare features. Using these features, the 

software can detect, measure and assess the growth of solid and sub-solid lung nodules in low-dose 

and regular dose CT scans where both lungs are visible, with and without contrast. The software is 

compatible with slice thickness of up to 5 mm. ClearRead CT is indicated for use in people aged 18 

and over who are asymptomatic. The software is updated frequently but none of the functionality is 

expected to be removed in future updates. The software integrates with, and the findings of the 

software are visible within, PACS. The company expects that training of radiologists on how to use 

ClearRead CT is usually done within a day. The software is commercially available to the NHS directly 

from the manufacturer and through partner organisations. 
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1.4.4 contextflow SEARCH Lung CT (contextflow) 

Contextflow SEARCH Lung CT is a CE-marked (class IIa medical device) software. It can detect and 

measure solid and sub-solid lung nodules in chest CT scans with and without contrast. It is intended 

for use in clinically stable, symptomatic patients. Other indications for use include identification of 

lung-specific image patterns related to diseases such as airway wall thickening, bronchiectasis, 

emphysema and pneumothorax. contextflow SEARCH Lung CT integrates with PACS. The company 

expects users to attend a training presentation before using the software. The software is 

commercially available to the NHS. 

 

1.4.5 InferRead CT Lung (Infervision)  

InferRead CT Lung is a CE-marked (class IIa medical device) software. It can detect, measure and 

assess the growth of solid and sub-solid lung nodules in low-dose or regular dose CT scans with and 

without contrast. The company advises that InferRead CT Lung is intended for use in asymptomatic 

populations. The company also states that the use is recommended in people aged 18 and over. 

Users can dismiss nodules found by the automated analysis but editing the findings is not possible. 

Users can add nodules, but the software will not measure the volume of user-added nodules. A new 

version of InferRead CT Lung is expected to be released within 18 months. The current version will 

continue to be supported and is available to the NHS. InferRead CT Lung includes rules for reporting 

that follow the BTS guidelines for the investigation and management of pulmonary nodules.11 The 

software integrates with, and the findings of the software are visible within, PACS. The company 

expects radiologists to complete a 1-hour training session before using the technology. The software 

is commercially available to the NHS.  

 

1.4.6 JLD-01K (JLK Inc.) 

JLD-01K is a CE-marked (class I medical device) software. It can detect and measure solid and sub-

solid lung nodules in chest CT scans without contrast. The software was trained in CT scans where 

nodules were at least 3 mm in diameter. JLK-01K integrates with PACS. 
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1.4.7 Lung AI (Arterys) 

Lung AI is a CE-marked (class IIa medical device) software. It can detect, measure and assess the 

growth of solid and sub-solid lung nodules in chest CT scans. The nodule detection and segmentation 

algorithms are optimised for low-dose chest CT scans, but the software will analyse any chest CT 

scan including regular dose CT scans with contrast without generating an error. Users can add, edit, 

or dismiss detected nodules with automatic updates to quantitative nodule information. Lung AI 

integrates with PACS. 

 

1.4.8 Lung Nodule AI (Fujifilm)  

Lung Nodule AI is a software that can detect, measure and assess the growth of lung nodules in 

chest CT scans. The software is currently approved for use in Japan. The company plans to introduce 

the technology in Europe once required regulatory clearances are obtained.  

 

1.4.9 qCT-Lung (Qure.ai) 

qCT-Lung is a CE-marked (class I medical device) software. It can detect lung nodules at least 3 mm 

in diameter in chest CT scans without contrast. The software can also measure the volume and 

assess the growth of lung nodules, but these features are currently available for research purposes 

only. Other indications for use include detection of emphysema. qCT-Lung is intended for use in 

people aged 18 and over. The software is compatible with slice thickness of up to 6 mm. qCT-Lung 

integrates with PACS. 

 

1.4.10 SenseCare-Lung Pro (SenseTime) 

SenseCare-Lung Pro is a CE-marked (class IIb medical device) software. It can detect, measure and 

assess the growth of solid and sub-solid lung nodules in chest CT scans without contrast. Other 

indications for use include detection of pneumonia (including COVID-19) lesions. The software is 

compatible with slice thickness of up to 5 mm, but the preferred slice thickness is up to 1.5 mm. 

SenseCare-Lung Pro integrates with PACS. 
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Superseded- 

see erratum 

1.4.11 Veolity (MeVis)  

Veolity is a CE-marked (class IIa medical device) software. It can detect, measure and assess the 

growth of lung nodules in low-dose and regular dose CT scans that include the complete chest, with 

and without contrast. The software is compatible with slice thickness of up to 3 mm. Veolity is 

indicated for use in asymptomatic populations. Users can interact with the software by adding and 

dismissing nodules in the analysis and editing the findings of the software. With input from the user, 

the software also calculates the malignancy risk of the nodules using the Brock model. Veolity’s 

current detection algorithm only detects solid nodules. A new version of the software (Veolity 2.0) is 

planned for the beginning of 2022. This version will detect solid and sub-solid nodules. Usually, 2 

updates or functional upgrades per year are planned. Existing versions will continue to be supported. 

Veolity includes rules for reporting following the BTS guidelines for the investigation and 

management of pulmonary nodules11 and integrates with the PACS. The company states that usually 

4 to 6 hours of training are needed for radiologists to learn how to use Veolity. The software is 

commercially available to the NHS, distributed in the UK by SynApps Solutions.  

 

1.4.12 Veye Lung Nodules (Aidence)  

Veye Lung Nodules is a CE-marked (class IIb medical device) software. It can detect, measure and 

assess the growth of solid and sub-solid lung nodules in low-dose or standard dose CT scans where 

both lungs are visible, with and without contrast. The software is compatible with slice thickness of 

up to 3 mm. Veye Lung Nodules is intended for use in people aged 18 and over. Users can dismiss 

nodules found by the automated analysis but editing the findings is not possible. Users can add 

nodules, but the software will not measure the volume of user-added nodules. The software is 

updated frequently. Veye Lung Nodules includes rules for reporting following the BTS guidelines for 

the investigation and management of pulmonary nodules.11 The software integrates with, and 

findings of the software are visible within, PACS. The company expects radiologists to attend a 1-

hour training session before using the technology. The software is commercially available to the 

NHS. 

 

1.4.13 VUNO Med-LungCT AI (VUNO) 

VUNO Med-LungCT AI is a CE-marked (class IIa medical device) software. It can detect, measure and 

assess the growth of solid and sub-solid lung nodules in low-dose chest CT scans. It is intended for 

use in lung cancer screening populations. The software integrates with PACS. 
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Table 1. Summary of the included technologies (reproduced from final NICE scope) 

Product name 

(manufacturer) 

CE mark Available to 

the NHS 

CT scan types Detection Volumetry 

AI-Rad Companion 

Chest CT (Siemens) 

Class IIa * To be 

confirmed 

Low dose, regular 

dose with and 

without contrast * 

Yes * Yes * 

AVIEW LCS+ (Coreline 

Soft) 

Class IIa * Yes Low dose * Yes Yes 

ClearRead CT (Riverain 

Technologies) 

Class IIa Yes Low dose, regular 

dose with and 

without contrast 

Yes Yes 

contextflow SEARCH 

Lung CT (contextflow) 

Class IIa Yes With and without 

contrast 

Yes Yes 

InferRead CT Lung 

(Infervision) 

Class IIa Yes Low dose, regular 

dose with and 

without contrast 

Yes Yes 

JLD-01K (JLK Inc.) Class I To be 

confirmed 

Without contrast Yes Yes 

Lung AI (Arterys) Class IIa * To be 

confirmed 

Low dose, regular 

dose with and 

without contrast * 

Yes * Yes * 

Lung Nodule AI 

(Fujifilm) 

To be 

confirmed 

To be 

confirmed 

To be confirmed Yes Yes 

qCT-Lung (Qure.ai) Class I * To be 

confirmed 

Without contrast * Yes * Research 

only * 

SenseCare-Lung Pro 

(SenseTime) 

Class IIb * To be 

confirmed 

Without contrast * Yes * Yes * 

Veolity (MeVis) Class IIa Yes Low dose, regular 

dose with and 

without contrast 

Yes Yes 

Veye Lung Nodules 

(Aidence) 

Class IIb Yes Low dose, regular 

dose with and 

without contrast 

Yes Yes 

VUNO Med-LungCT AI 

(VUNO) 

Class IIa * To be 

confirmed 

Low dose * Yes * Yes * 

* Information only from public domain. 

 

 

1.5 Proposed position of the intervention in the diagnostic pathway 

Figure 5 shows the simplified process of diagnosing lung cancer. In people who have no known 

pulmonary nodules (use case 1), the diagnostic process usually begins with chest CT where 

pulmonary nodules are identified (a.). After nodules are detected, the nodule management pathway 

according to the 2015 BTS guidelines11 depends on two main criteria: nodule type (solid or sub-solid; 
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c.) and nodule size (diameter or volume; d.). Depending on the predicted malignancy risk (e.), the 

guidelines recommend discharge, CT surveillance or further work-up and treatment.  

 

 

Figure 5. Proposed roles of the intervention in the process of diagnosing lung cancer 

 

During imaging follow-up of previously identified lung nodules (use case 2), the presence and speed 

of growth (e.g. VDT; f.) as well as changes in nodule morphology are then used to predict the risk of 

malignancy and make decision on further patient management (i.e. discharge, further CT 

surveillance or clinical work-up and treatment).  

 

a. Nodule detection 

c. Nodule type determination 
(e.g. solid, sub-solid) 

d. Nodule size measurement 
(diameter, volume) 

e. Malignancy risk prediction 

b. Nodule 
segmentation 

f. CT surveillance – 
Nodule measurement in sequential CT 
images to estimate growth rate / VDT 

1. CT imaging in 
people who have no 
known lung nodules 

2. CT imaging in 
people who have 
previously identified 
lung nodules  g. Malignancy risk prediction 

Clinical work-up and 
treatment 

Discharge 

Discharge 

Clinical work up and 
treatment 
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Software capable of automatically detecting and analysing lung nodules on chest CT scan images 

could be used to assist radiologists or other healthcare professionals when reviewing scan images. 

This could increase the detection of lung nodules that need further investigation or CT surveillance 

but could also increase the detection of benign nodules and lead to unnecessary follow-up 

investigations or CT surveillance. The same software could also help in assessing the growth of 

previously identified nodules which are being monitored with CT surveillance. Use of the software 

may impact on the recognition and recording of those lung nodule characteristics that are important 

for decisions on appropriate follow-up. It may also affect the time it takes to review and report the 

CT scan images. Although the software can automatically detect and analyse lung nodules in a CT 

scan image, the healthcare professional reporting the scan is still expected to review the findings of 

the software and therefore no clinical decisions will be based on findings of the software alone. 

However, healthcare professionals reviewing CT scans may differ in confidence to overrule software 

depending on their experience and speciality (e.g. thoracic radiologists vs general radiologists). 

 

This diagnostic assessment considered the following specific locations in the diagnostic pathway 

where AI-based software for lung nodule detection and analysis could be used (highlighted in grey in 

Figure 5): 

1. In CT images from people without previously identified lung nodules (use case 1) 

a. Nodule detection; 

b. Nodule segmentation; 

c. Nodule type determination (solid or sub-solid); 

d. Nodule size measurement (diameter / volume). 

 

2. CT images from people with previously detected lung nodules (use case 2) 

f. Nodule size measurement in sequential CT images to estimate growth / VDT. 

 

1.6 Comparators 

The comparator for this diagnostic assessment is review of chest CT scan images by a radiologist or 

another healthcare professional (such as a radiographer) without software for automated detection 

and analysis of lung nodules. The reviewer of the scan may use software to help measure the volume 

of an identified lung nodule (see section 1.3.4), but this software does not automatically detect or 

measure lung nodules. When volumetric software is not used, nodule diameter is used to define the 
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nodule size and nodule growth. The healthcare professional reviewing the scan may or may not be 

specialised in reviewing chest CT images.  

During scoping, clinical experts highlighted that the experience of radiologists in reviewing CT scans 

for lung nodules will vary, for example from general, trauma or thoracic radiologists. They further 

commented that the level of expertise of the healthcare professional reviewing the scan may change 

the impact of the software. For example, less experienced reviewers may be more likely to act on 

nodules detected by the software, even if they disagree. For this reason, as highlighted in section 

1.3.4, the standard protocol for the TLHC programme in England stipulates specific requirements for 

specialised readers reviewing the CT scans in the programme.17 

 

1.7 Outcomes 

Key outcomes judged to be relevant to the assessment of the clinical and cost-effectiveness of AI-

based software for lung nodule detection and analysis, and the general diagnostic pathway for 

pulmonary nodules are reported in detail in the study eligibility criteria for each key question (see 

sections 2.1.2, 4.1.1.2 and 5.1.1.2). In short, clinical effectiveness outcomes included: test accuracy, 

reliability of the test, impact on patient management, practical implications and health outcomes. 

Health economic outcomes comprised: incremental costs, incremental benefits, incremental cost 

effectiveness ratio and quality-adjusted life years. Owing to the limited nature of identified evidence 

base, many of these outcomes could only be evaluated using indirect evidence or could not be 

formally assessed. 

 

1.8 Objectives 

The overall objectives of this diagnostic assessment are to assess the clinical and cost-effectiveness 

of CT image analysis assisted by software capable of automated detection and analysis of lung 

nodules compared with unassisted CT image analysis in people undergoing CT scans that include the 

chest due to symptoms suggestive of lung cancer, for purposes unrelated to suspicion of lung cancer, 

for surveillance of previously identified lung nodules or for lung cancer screening. 
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The key questions for this diagnostic assessment report (DAR) are provided in the box below. 

Key question 1 

What is the accuracy of CT image analysis assisted by software for automated detection and analysis of lung nodules in 

people undergoing CT scans that include the chest due to symptoms suggestive of lung cancer, for purposes unrelated 

to suspicion of lung cancer, for lung cancer screening or for surveillance of previously identified nodules, and what are 

the practical implications (e.g. test failure rate, reading time, acceptability) and the impact on patient management (e.g. 

stage of cancer detected, time to diagnosis, number of people referred to CT surveillance or having biopsy/excision)? 

Sub-questions 

1. Does the accuracy of CT image analysis assisted by software for automated detection and analysis of lung 

nodules, its practical implications and impact on patient management differ between CT scans: (1) with 

contrast and without contrast; (2) using a low-dose and a standard dose; (3) of solid nodules and sub-solid 

nodules? 

2. Does the accuracy of CT image analysis assisted by software for automated detection and analysis of lung 

nodules, its practical implications and impact on patient management differ by patients’ ethnicity? 

3. Does the accuracy of CT image analysis assisted by software for automated detection and analysis of lung 

nodules, its practical implications and impact on patient management differ between general 

radiologists/health professionals and specialised thoracic radiologists/health professionals? 

4. For the incidental population, does the accuracy of CT image analysis assisted by software for automated 

detection and analysis of lung nodules, its practical implications and impact on patient management differ by 

reason for CT scan? 

5. a) What is the concordance between readers with and without software support to detect and/or measure 

lung nodules from CT images?  

b) What is the concordance between readers using different software to detect and/or measure lung nodules 

from CT images? 

c) Does the use of software-assisted CT image analysis impact on intra-observer and inter-observer variability 

in lung nodule detection and measurement?  

 

Key question 2 

What are the benefits and harms of using software for automated detection and analysis of lung nodules from CT 

images compared with unassisted CT image analysis in people undergoing CT scans that include the chest due to 

symptoms suggestive of lung cancer, for purposes unrelated to suspicion of lung cancer, for lung cancer screening or for 

surveillance of previously identified nodules? 

Sub-questions 
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1. Do the benefits and harms of CT image analysis assisted by software for automated detection and analysis of 

lung nodules differ between CT scans: (1) with contrast and without contrast; (2) using a low-dose and a 

standard dose; (3) of solid nodules and sub-solid nodules? 

2. Do the benefits and harms of CT image analysis assisted by software for automated detection and analysis of 

lung nodules differ by patients’ ethnicity? 

3. Do the benefits and harms of CT image analysis assisted by software for automated detection and analysis of 

lung nodules differ between general radiologists/healthcare professionals and specialised thoracic 

radiologists/healthcare professionals? 

4. For the incidental population, do the benefits and harms of CT image analysis assisted by software for 

automated detection and analysis of lung nodules differ by reason for chest CT scan? 

 

Key question 3  

What is the cost-effectiveness of using software for automated detection and analysis of lung nodules from CT images 

compared with unassisted CT image analysis in people undergoing CT scans that include the chest due to symptoms 

suggestive of lung cancer, for purposes unrelated to suspicion of lung cancer, for lung cancer screening or for 

surveillance of previously identified nodules? 

Sub-questions 

1. Does the cost-effectiveness of CT image analysis assisted by software for automated detection and analysis of 

lung nodules differ between CT scans: (1) with contrast and without contrast; (2) using a low-dose and a 

standard dose; (3) of solid nodules and sub-solid nodules? 

2. Does the cost-effectiveness of CT image analysis assisted by software for automated detection and analysis of 

lung nodules differ by patients’ ethnicity? 

3. Does the cost-effectiveness of CT image analysis assisted by software for automated detection and analysis of 

lung nodules differ between general radiologists/healthcare professionals and specialised thoracic 

radiologists/healthcare professionals? 

4. For the incidental population, does the cost-effectiveness of CT image analysis assisted by software for 

automated detection and analysis of lung nodules differ by reason for CT scan? 

 

Ideally, priority of the assessment would be given to ‘end-to-end studies’ that follow patients from 

testing, through treatment, to final health outcomes such as morbidity and mortality. These studies 

can remove the need for separate searches for model parameters for cost-effectiveness modelling.20 

However, as no ‘end-to-end studies’ were found, we included and evaluated studies on test accuracy 

and practical implications, clinical effectiveness, costs and cost-effectiveness separately, and then 

synthesised the evidence using a linked evidence approach.20  
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2 SYSTEMATIC REVIEW OF ASSESSING TEST ACCURACY, PRACTICAL IMPLICATIONS AND IMPACT 

ON PATIENT MANAGEMENT (KEY QUESTION 1) - METHODS   

Evidence required to address key question 1 was identified and assessed in a systematic review 

using methods described below. The review followed the principles outlined in the Cochrane 

Handbook of Diagnostic Test Accuracy21 and the NICE Diagnostic Assessment Programme manual.20 

 

2.1 Identification and selection of studies 

2.1.1 Search strategy 

A comprehensive search was developed iteratively and undertaken in a range of relevant 

bibliographic databases. Searches combined keywords and, where appropriate, thesaurus 

(MeSH/EMTREE) terms relating to ‘AI’, ‘lung nodules/lung cancer’ and ‘CT or screening’. Searches 

were limited to studies published in English as studies published in other languages are likely to be 

difficult to assess. No date limits were applied. The draft MEDLINE search strategy was checked by 

an Information Specialist not otherwise involved in the project for any omissions or errors and 

adapted for the other databases. The final search strategies for all sources are provided in Appendix 

1: Literature search strategies. 

 

Systematic searches were conducted in January 2022 in the following databases:  

MEDLINE All (via Ovid), Embase (Ovid), Cochrane Database of Systematic Reviews (Wiley), Cochrane 

CENTRAL (Wiley), Health Technology Assessment (HTA) database (CRD), International HTA database 

(INAHTA), Science Citation Index Expanded (Web of Science), Conference Proceedings - Science 

(Web of Science).  

 

Records were exported to EndNote X9.3, where duplicates were systematically identified and 

removed. 

In order to capture unpublished or ongoing studies, searches of MedRxiv preprint server (via the 

medrxivr app) and clinical trials registries (via clinicaltrials.gov and the WHO ICTRP portal) were 

undertaken. The trials registry searches were highly focussed, including search terms for the specific 

technologies of interest listed in the project scope, and their manufacturing companies. Websites of 

the technologies and their manufacturers were also checked for further information, as were 

websites of selected organisations and conferences of interest (see Appendix 1: Literature search 
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strategies for details). Reference lists of included studies and a selection of recent, relevant 

systematic reviews identified via the database searches were checked. Forwards citation tracking 

from key publications of included studies (to identify citing papers) was also undertaken, using 

Science Citation Index (Web of Science) and Google Scholar. 

 

2.1.2 Study eligibility criteria 

Studies that satisfied the following criteria were included: 

Population All questions 
People who have no confirmed lung nodules or lung cancer and who are not having 
staging investigations or follow-up imaging for primary cancer elsewhere in the body, 
who have a CT scan that includes the chest:  

• because of signs or symptoms suggestive of lung cancer (symptomatic 
population); 

• for reasons unrelated to suspicion of lung cancer (incidental population); 

• as part of lung cancer screening (screening population). 
 

People having CT surveillance for a previously identified lung nodule (surveillance 
population). 
 
Where data permits, the following subgroups may be considered: 

• Patient’s ethnicity; 

• People who have a CT scan: (1) with or without contrast; (2) using a low-dose or 
a standard dose; (3) of solid nodules or sub-solid nodules; 

• For the incidental population, by reason for CT scan. 

Target 
condition 

All questions  
Lung nodules or lung cancer 

Intervention All questions 
CT scan review by a radiologist or another healthcare professional using any of the 
following software for automated detection and analysis of lung nodules: 

• AI-Rad Companion Chest CT (Siemens Healthineers) 

• AVIEW LCS+ (Coreline Soft) 

• ClearRead CT (Riverain Technologies)* 

• contextflow SEARCH Lung CT (contextflow)** 

• InferRead CT Lung (Infervision)* 

• JLD-01K (JLK Inc.) 

• Lung AI (Arterys) 

• Lung Nodule AI (Fujifilm) 

• qCT-Lung (Qure.ai) 

• SenseCare-Lung Pro (SenseTime) 

• Veolity (MeVis)* 

• Veye Lung Nodules (Aidence) 

• VUNO Med-LungCT AI (VUNO) 
* Indication for use specifies use in asymptomatic population, therefore the software 
cannot be assessed in symptomatic population.  
** Indication for use specifies use in symptomatic population, therefore the software 
cannot be assessed in incidental or screening populations. 
Please note: specific indications for use for some of the technologies are unclear because 
only information in the public domain was available. 
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Evidence on the performance of software alone (without review by a radiologist or other 
trained reader) will be included with applicability concerns highlighted. 
 
Where data permits, the following subgroups may be considered: 

- General radiologist/other healthcare professional with software support versus 
radiologist/other healthcare professional with thoracic speciality with software 
support. 

Comparator All questions 
CT scan review by a radiologist or another healthcare professional without software for 
automated detection and analysis of lung nodules (using diameter or volume to measure 
nodule size) or no comparator. 
 
 Where data permits, the following subgroups may be considered: 

- General radiologist/other healthcare professional without software support 
versus radiologist/other healthcare professional with thoracic speciality without 
software support. 

Reference 
standard 

Key question 1 and sub-questions 1-4 

• Lung cancer confirmed by histological analysis of lung biopsy or health record 
review; 

• CT surveillance (imaging follow-up) without significant growth, follow-up 
without lung cancer; 

• Lung nodules: Experienced radiologist reading (single reader or consensus of 
more than one reader). 

Outcomes Key question 1 and sub-questions 1-4. 

• Accuracy to detect nodules (by nodule size and/or by nodule type; this may 
include for example the accuracy to detect nodules considered potentially 
significant by judgement of experienced radiologist(s) and the accuracy to 
detect malignant nodules, respectively); 

• Accuracy to assess volume of nodule or change in volume (when interventions 
are used as part of CT surveillance); 

• Characteristics of detected nodules (e.g. size, type, location, spiculation); 

• Proportion of detected nodules that are malignant; 

• Technical failure rate; 

• Radiologist reading time; 

• Radiology report turnaround time; 

• Impact of test result on clinical decision-making; 

• Number of people having CT surveillance (this may also include for example the 
number of people with false positive nodules having unnecessary CT 
surveillance); 

• Number of CT scans taken as part of CT surveillance (this may also include for 
example number of unnecessary CT surveillance scans due to false positive 
nodules); 

• Number of people having a biopsy or excision (this may also include for 
example the number of people having a negative biopsy due to false positive 
nodules); 

• Number of cancers detected; 

• Stage of cancer at detection; 

• Time to diagnosis; 

• Acceptability and experience of using the software. 
 

Sub-question 5. 

• Concordance between readers with and without software;  

• Concordance between readers using different software; 

• Concordance between different software without human involvement; 

• Inter-observer variability (e.g. positive and negative agreement, Cohen’s kappa); 
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• Repeatability/reproducibility. 

Study design All questions 

• Prospective test accuracy studies; 

• Retrospective test accuracy studies; 

• Randomised controlled trials; 

• Cohort studies; 

• Historically controlled trials; 

• Before-after studies; 

• Retrospective multi-reader multi-case studies; 

• Qualitative studies for user experience/acceptability. 

Publication 
type 

All questions 

• Peer-reviewed papers. 

• Conference abstracts and manufacturer data will be included. Only additional 
outcome data that have not been reported in peer-reviewed full text papers will 
be extracted and reported. 

Language All questions 
English 

 

Papers that fulfil the following criteria were excluded: 

• Studies using PET-CT scan images, lung phantom images or where more than 10% of CT 

scans were performed in patients with a primary cancer outside the lung (staging).  

• Studies using index tests other than those specified in the inclusion criteria. 

• Studies with no relevant outcomes reported.  

• Non-human studies. 

• Letters, editorials and communications will be excluded unless they report outcome data 

that have not been reported elsewhere, in which case they will be handled in the same way 

as conference abstracts. 

• Articles not available in the English language. 

• Articles published before 2012. This cut-off date was based on expert advice, and all 13 

companies were contacted to confirm that no evidence relevant to their technology under 

investigation has been published before 2012. 

 

2.1.3 Study screening and selection 

Two reviewers (JG/AA) independently screened the titles and abstracts of records identified by the 

searches and documents submitted by companies through NICE. Any disagreements were resolved 

through discussion, or retrieval of the full publication. Potentially relevant publications were 

obtained and assessed independently by two reviewers (JG/AA). Disagreements were resolved 

through consensus, with the inclusion of a third reviewer (CS, YFC) when required. Records that 
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were excluded at full text stage were documented, including the reasons for their exclusion (see 

Appendix 2, Table 64 and Table 65). 

 

2.2 Data extraction and risk of bias assessment 

2.2.1 Data extraction strategy 

Data were extracted by one reviewer (JG/AA) and checked by a second reviewer (JG/AA). All data 

extractions were entered into a piloted electronic data collection form (Appendix 3). Any 

disagreements were resolved through consensus, with the inclusion of a third reviewer (CS, YFC) 

when required. 

 

2.2.2 Assessment of study risk of bias 

The risk of bias of test accuracy studies was assessed using a modified QUADAS-2 tool22 combined 

with the QUADAS-C tool for comparative studies.23  The ‘COSMIN Risk of Bias tool to assess the 

quality of studies on reliability and measurement error of outcome measurement instrument’ was 

used to assess the risk of bias for studies focusing on evaluating reliability and errors of 

measurements on a continuous scale (e.g. nodule size and volume), in which test accuracy was not 

derived,24 and for studies of agreements/concordance between readers where a reference standard 

could not be defined. Quality appraisal tools used in this DAR are tailored for the specific topic and 

are provided in Appendix 4. Two reviewers (JG/AA) independently undertook risks of bias 

assessment and critical appraisal. Disagreements were resolved through consensus, with the 

inclusion of a third reviewer (CS, YFC) if required. 

 

2.3 Methods of analysis/synthesis 

Test accuracy results are firstly grouped by different software functionality, e.g. nodule detection, 

classification of nodule type (solid vs subsolid nodule), nodule size and volume measurements. 

Comparative evidence between different testing strategies (e.g. AI-assisted readers, stand-alone AI, 

unaided readers) are then presented in preference over non-comparative evidence (e.g. individual 

testing strategy vs a reference standard). The key comparison of interest (AI-assisted readers vs 

unaided readers) is presented first, followed by other comparisons. Test accuracy results are also 

reported according to study population, the technology being evaluated and the type of nodules 

being detected.  
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Accuracy results are treated as binary (e.g. nodule present/absent; solid/sub-solid nodule). Original 

data extracted from the studies were used to construct 2x2 tables. Pairs of sensitivities and 

specificities are also displayed in a paired forest plot to demonstrate scatter and uncertainty. Studies 

are grouped by software and its role in the workflow (e.g. stand-alone software, software-assisted 

reader). 

Given the substantial heterogeneity in study population, technologies being evaluated, reader 

speciality and experiences, reference standards and test accuracy outcome used and other study 

design features, no meta-analysis was carried out and findings are summarised narratively, with the 

results of data extraction being presented in structured tables and plotted in figures where feasible. 

Additionally, where data were available, we presented subgroup data and undertook subgroup 

analyses by:  

• Patients’ ethnicity; 

• Reason for CT scan (within the incidental population); 

• CT scans with vs without contrast; 

• CT scans using different radiation doses (e.g. ultra-low-dose, low-dose, standard dose); 

• Solid nodules vs sub-solid nodules; 

• General radiologist (or other healthcare professional) vs specialised thoracic radiologist (or 

other healthcare professional). 

 

Reliability outcomes as well as outcomes on patient management and practical implications are 

reported according to study population and technology being evaluated. If applicable, comparative 

evidence between different reading modes (e.g. AI-assisted readers versus unaided readers) are 

presented in preference over non-comparative evidence (e.g. individual testing strategy).  
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3 SYSTEMATIC REVIEW OF ASSESSING TEST ACCURACY, PRACTICAL IMPLICATIONS AND IMPACT 

ON PATIENT MANAGEMENT (KEY QUESTION 1) - RESULTS   

Findings of systematic reviews and company submissions answering key question 1 are presented in 

the following sections. 

 

3.1 Description of the evidence 

3.1.1 Results of literature search 

Electronic database searches yielded 6,330 results, of which 4,886 were published since 2012. 

Twenty-two records were judged to be relevant for key question 1 (Figure 6). An additional eight 

relevant records were identified through author contact of potentially relevant articles (n=125), 

searching company websites (n=226, 27), company submissions (n=328-30), reviewers’ Google search for 

published version of unpublished manuscript (n=131) and tracking of registered clinical trials (n=132), 

so 30 articles reporting 27 studies were included for key question 1. 

 

The study by Murchison et al. is reported in two conference articles26, 27 and a journal article.31 As the 

two conference articles from 2019 only report minimal additional information, in-text citations from 

hereon only refer to Murchison et al. (2022).31 The study by Hall et al. is reported in a conference 

abstract33 and a full journal article.25 As the conference abstract from 2019 only reports minimal 

additional information, in-text citations from hereon only refer to Hall et al. (2022).25 

 

Eleven articles evaluated relevant technologies but were excluded because the population 

comprised more than 10% patients with extra-thoracic cancer or with previously diagnosed lung 

cancer.34-44 These studies were not formally assessed, but the main study characteristics and 

outcome measures are summarised in Appendix 2 Table 66. 
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Figure 6. PRISMA diagram. Summary of publications included and excluded at each stage of the 

review 

  

Records identified through  
database searches 

9,626 
 

Titles and abstracts reviewed 
against eligibility criteria 

6,330 

Duplicates 
3,296 

Records excluded after 
title/abstract review  

6,158 
 Full-text articles reviewed against 

eligibility criteria  
172 

 

Additional articles included 
from other sources 

8 
Company suggestions: 3  
Company websites:      2 
Author contact:             1 
Clinical trial tracking:    1 
Google search:               1 

  

Records excluded after full-
text review 

150 
 

Articles included in review 
30 (27 studies) 

 
       Question 1: 30 (27 studies) 
       Question 2: 0 
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3.1.2 Characteristics of included studies 

Twenty-seven studies were included for key question 1, evaluating eight of the 13 NICE specified 

technologies (see Table 2). Only two studies were conducted in the UK:  

• AI-RAD Companion (Siemens Healthineers): 3 studies (USA 2, Germany 1);45-47 

• AVIEW LCS+ (Coreline Soft): 4 studies (South Korea 3, Russia 1);30, 48-50 

• ClearRead CT (Riverain Technologies): 6 studies (USA 2, Taiwan 2, Japan 1, Switzerland 1);51-

56 

• Contextflow SEARCH Lung CT (contextflow): 1 study (Austria 1);29 

• InferRead CT Lung (Infervision): 3 studies (China 2, Japan 1);57-59 

• Veolity (MeVis): 4 studies (UK 1, South Korea 2, USA [data]/Netherland/Denmark [readers] 

1);25, 60-62 

• Veye Lung Nodules (Aidence): 5 studies (UK 1, Netherlands 3, USA 1);28, 31, 32, 63, 64 

• VUNO Med-LungCT AI (VUNO): 1 study (USA[data]/South Korea [readers] 1).65 

Sixteen studies were multi-reader multi-case (MRMC) studies: Eight studies compared stand-alone 

AI software to human readers with and without concurrent AI software use under laboratory 

conditions.30, 31, 51, 52, 54, 57, 58, 65 In “concurrent” AI software use, the software results are 

simultaneously displayed to readers during the reading. For brevity, we describe human reading with 

concurrent use of AI software as “concurrent AI” in this report. The study by Hsu et al. also assessed 

“assisted second-read” AI software use, where the human reader assessed the CT images without AI 

software first, then opened the software results, revised their assessment and made the final 

decision.51 One MRMC study compared stand-alone software performance to unaided readers,56 and 

six studies compared the performance of readers with and without concurrent software use, with 

both reading sessions performed under laboratory conditions.29, 32, 53, 55, 61, 62 The remaining MRMC 

study compared software-assisted nodule measurement in CT images reconstructed with both 

filtered back projection (FBP) and model-based iterative reconstruction (MBIR) algorithms without 

comparison to unaided readers.60 

Five studies were retrospective test accuracy studies evaluating the performance of stand-alone 

software only,28, 46, 63, 64 or in comparison to original unaided reading (clinical practice).47 

Three studies were classed as retrospective test accuracy studies as well as MRMC studies. One 

study performed a MRMC study comparing stand-alone AI and readers with concurrent AI to 

unaided reading, and additionally used the original radiologist reports as comparator.45 The other 

two studies compared readers with concurrent AI use with reading performed under laboratory 

conditions to unaided radiologists in clinical practice.25, 59 
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Three studies reported prospective screening experiences: two studies only included software-

assisted reading,48, 50 whereas the remaining study was a before-after study that evaluated the 

performance of stand-alone software as well as that of the original readers before and after 

software implementation.49 

 

Regarding the relevance to the four target populations for this DAR:  

• Symptomatic population (n=1):  

One study was performed in a randomly selected symptomatic population.57 

• Incidental population (n=1):  

One study included a consecutive incidental population.47  

• Screening population (n=11):  

Eleven studies included screening populations, of which six used consecutive or random 

sampling,25, 46, 48-50, 59 and five were nodule-enriched (selection by nodule presence / absence, 

resulting in a higher nodule prevalence than expected for this population).30, 52, 54, 62, 65  

• Surveillance population (n=2):  

Two studies included surveillance populations with applicability concerns: these two studies 

were performed in the same hospital and included potentially overlapping populations of 

consecutive patients with previously detected sub-solid nodules who underwent 

preoperative CT scans and subsequent surgical resection.60, 61  

• ‘Mixed population’ (n=11):  

In eleven studies, there were various indications for the chest CT scan: three studies 

included consecutive or random sampling28, 51, 64 one study used convenience sampling,58 five 

studies included enriched populations29, 31, 32, 45, 56 and in the remaining two studies, the 

sampling method was unclear.55, 63 The reasons for the CT scan are reported in Appendix 3 

Table 68, so readers can decide if they want to consider the evidence from mixed 

populations for one of the four target populations. 

• ‘Unclear population’ (n=1):  

In one study, the indication for the chest CT scan was not reported.53 
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Table 2. Characteristics of included studies (n=27) 

Study, country  Study design Target population Index test Comparator Relevant outcomes reported 

AI-Rad Companion (Siemens Healthineers) (3 studies) 

Abadia 2021,45 
USA 

Retrospective test 
accuracy and 
MRMC study 

Mixed  
(selected if ≥1 lung 
condition present 
and by nodule 
presence / absence 
in radiology report) 

[A] Stand-alone AI 
[C] Concurrent AI 
(MRMC study) 
  

[D] Unaided reader 
(MRMC study) 
[E] Original 
radiologist reading 
(clinical practice) 

Nodule detection accuracy  
Nodule size measurement 
Characteristics of nodules (FN, FP)            
Reading times                                           
Confidence in lung nodule detection 

Chamberlin 
2021,46  
USA 

Retrospective test 
accuracy study 
 

Screening  
(random) 

[A] Stand-alone AI  None Nodule detection accuracy 
Characteristics of detected nodules 
 

Rueckel 2021,47 
Germany 

Retrospective test 
accuracy study 

Incidental 
(consecutive) 

[A] Stand-alone AI 
 

[E] Original 
radiologist reading 
(clinical practice) 

Nodule detection accuracy 
Characteristics of detected nodules 

AVIEW LCS+ (Coreline Soft) (4 studies) 

Hwang 2021a,49 
South Korea 

Before-and-after 
study 

Screening  
(consecutive) 

[A] Stand-alone AI for 
nodule detection 
[B] Assisted 2nd-read AI 
for nodule detection 
[C] Concurrent AI for 
nodule measurement 
and whole read including 
Lung-RADS 
categorisation 

[E] Original 
radiologist reading 
(clinical practice) 

Characteristics of detected nodules 
% detected nodules being malignant 
Nodule detection accuracy ([A]) 
Accuracy to detect lung cancer (whole read [C] with Lung-
RADS) 
Number of people with positive screening result 
Technical failure rate 
 

Hwang 2021b,48 
South Korea  
 

Retrospective 
analysis of 
prospective 
cohort study 

Screening  
(consecutive) 

[B] 2nd-read AI for nodule 
detection 
[C] Concurrent AI for 
nodule measurement 
and whole read including 
Lung-RADS 
categorisation 

None Accuracy to detect lung cancer (whole read [C] with Lung-
RADS) 
Characteristics of detected nodules 
% nodules being malignant 
Number of people with positive screening result 
Technical failure rate 

Hwang 2021c,50 

South Korea 

Prospective 
screening cohort  

Screening  
(consecutive) 

[B] Assisted 2nd-read AI 
for nodule detection 

None Characteristics of detected nodules     
Number of people having CT surveillance 
Number of people having excision/biopsy 
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Study, country  Study design Target population Index test Comparator Relevant outcomes reported 

[C] Concurrent AI for 
nodule measurement 
and whole read including 
Lung-RADS 
categorisation 

Technical failure rate 

Lancaster 
2022,30 
Russia 

MRMC study Screening  
(nodule-enriched) 

[A] Stand-alone AI  
[C] Concurrent AI 

[D] Unaided reader Accuracy of nodule categorisation (<100 mm3, ≥100 mm3) 
Characteristics of detected nodules 
Simulated radiologist workload reduction when stand-
alone AI software would be used as pre-screen to rule out 
negative CT images 

ClearRead CT (Riverain Technologies) (6 studies) 

Singh 2021,54 

USA 

MRMC study Screening  
(nodule-enriched) 

[A] Stand-alone AI-AD 
(with vessel suppression 
and autodetection of 
pulmonary nodules) 
[C.1] Concurrent AI  
(with vessel suppression, 
without automatic 
nodule detection)        
[C.2] Concurrent AI  
(with vessel suppression 
and autodetection of 
pulmonary nodules)  

[D] Unaided reader Nodule detection accuracy 
Characteristics of detected nodules 
Size measurement accuracy 
Inter-observer agreement to detect the dominant nodule 
Technical failure rate 
Impact on clinical decision making (change in Lung-RADS 
category) 

Lo 2018,52  
USA 

MRMC study Screening  
(nodule-enriched) 

[A] Stand-alone AI 
[C] Concurrent AI 

[D] Unaided reader Nodule detection accuracy 
Radiologist reading time 

Milanese 
2018,53  
Switzerland  
 

MRMC study Unclear  
(consecutive) 
 

[C] Concurrent AI  
(vessel-suppressed CT 
images) using semi-
automatic segmentation 
software (MM Oncology, 
Siemens Healthcare) 

[D] Unaided reader 
(standard CT 
images) using semi-
automatic 
segmentation 
software (MM 
Oncology, Siemens 
Healthcare) 

Measurement accuracy 
Inter-reader variability in nodule measurement                                                
Impact on clinical decision-making (categorisation 
according to Fleischner guidelines).66 

Hsu 2021,51 
Taiwan 

MRMC study Mixed: [A] Stand-alone AI 
[B] Assisted 2nd-read AI 

[D] Unaided reader Nodule detection accuracy 
Radiologist reading time 
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Study, country  Study design Target population Index test Comparator Relevant outcomes reported 

clinical routine; 
screening 
(consecutive) 

[C] Concurrent AI 
 

Takaishi 2021,55 
Japan 

MRMC study Mixed  
(unclear selection) 

[C] Concurrent AI 
 

[D] Unaided reader Nodule detection accuracy 
Reading time 

Wan 2020,56 
Taiwan 

MRMC study 
 

Mixed  
(selected only 
patients with 
subsequent nodule 
excision) 

[A] Stand-alone AI 
 

[D] Consensus of 2 
radiologists 
measuring 
diameter manually 

Nodule detection accuracy 
Lung cancer detection accuracy 
Characteristics of missed nodules 
Measurement concordance between stand-alone AI and 
unaided reader consensus 

Contextflow SEARCH Lung CT (contextflow) (1 study) 

Röhrich 2022,29 
Austria  

MRMC study Mixed  
(selected by 
presence/absence 
of diffuse 
parenchymal lung 
disease) 

[C] Concurrent AI 
 

[D] Unaided reader Radiologist reading time                    
Technical failure rate 

InferRead CT Lung (Infervision) (3 studies) 

Kozuka 2020,57 
Japan 

MRMC study Symptomatic  
(random) 

[A] Stand-alone AI 
[C] Concurrent AI 
 

[D] Unaided reader Nodule detection accuracy  
Reading time 
Characteristics of detected nodules 

Liu 2019,58 

China  

MRMC study Mixed  
(convenience 
sample) 
 

Evaluation 1: 
[A] Stand-alone AI 
 
Evaluation 4: 
[C] Concurrent AI 

Evaluation 1 
[D.1] Unaided 
reader 
 
Evaluation 4 
[D.2] Unaided 
reader 

Nodule detection accuracy 
Comparison of AI performance by radiation dose 
Radiologist reading time 

Zhang 2021,59 
China 

Retrospective test 
accuracy study 
and MRMC study 

Screening  
(consecutive) 

[C] Concurrent AI 
(MRMC study) 

[E] Original 
radiologist reading 
(clinical practice) 

Nodule detection accuracy 
Characteristics of detected nodules 

JLD-01K (JLK Inc.) 

No relevant evidence was identified by the EAG or supplied by the company. 

Lung AI (Arterys) 

No relevant evidence was identified by the EAG or supplied by the company. 
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Study, country  Study design Target population Index test Comparator Relevant outcomes reported 

Lung Nodule AI (Fujifilm) 

No relevant evidence was identified by the EAG or supplied by the company. 

qCT-Lung (Qure.ai) 

No relevant evidence was identified by the EAG or supplied by the company. 

SenseCare-Lung Pro (SenseTime) 

No relevant evidence was identified by the EAG or supplied by the company. 

Veolity (MeVis) (4 studies) 

Cohen 2017,60 
South Korea 

MRMC study Surveillance 
(preoperative CT 
scan for subsolid 
nodules and 
subsequent surgical 
resection)  
(consecutive) 

[C] Concurrent AI 
(FBP versus MBIR 
reconstruction 
algorithms) 

None Diameter and volume measurement: 
Technical failure rate 
Inter-observer variability 
Repeatability / reproducibility 
Concordance between readers with software: FBP versus 
MBIR. 

Kim 2018,61 
South Korea 

MRMC study Surveillance 
(preoperative CT 
scan for subsolid 
nodules and 
subsequent surgical 
resection) 
(consecutive) 

[C] Concurrent AI 
 

[D] Unaided reader Diameter measurement: 
Concordance between readers with and without software 
Inter-observer variability 
Repeatability / reproducibility 
Technical failure rate 
 
Nodule classification by size of solid portion: 
Inter-observer variability 
Repeatability / reproducibility 

Hall 2022,25 
UK 

Retrospective test 
accuracy study 
and MRMC study 

Screening  
(consecutive) 

[C] Concurrent AI 
(MRMC study) 
 

[E] Original 
radiologist reading 
(clinical practice) 
 

Nodule detection accuracy 
Lung cancer detection accuracy 
Impact on decision making 
Radiologist reading time 
Software acceptability & experience 
Proportion of scans referred for CT surveillance 
Proportion of scans referred to MDT 
Characteristics of missed nodules 
% detected nodules being malignant 

Jacobs 2021,62 
USA, Denmark, 
Netherlands 

MRMC study Screening  
(selected by Lung-
RADS category) 

[C] Concurrent AI [D] Unaided reader Lung-RADS categorisation: 
Inter-observer variability  
Repeatability / reproducibility 
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Study, country  Study design Target population Index test Comparator Relevant outcomes reported 

 
Radiologist reading time 
Technical failure rate 
Impact on decision-making 

Veye Lung Nodules (Aidence) (5 studies) 

Blazis 2021,63 
Netherlands 

Retrospective test 
accuracy study 

Mixed  
(unclear selection) 

[A] Stand-alone AI None Nodule detection accuracy    

Hempel 2022,32 
Netherlands 
 

MRMC study Mixed  
(incidentally 
detected nodules 
or no nodules, with 
or without prior CT) 

[C] Concurrent AI 
 

[D] Unaided reader Accuracy of BTS grade categorisation 
Characteristics of detected nodules 
Radiologist reading time 
Technical failure rate 
Inter-observer variability 

Martins Jarnalo 
2021,64 
Netherlands 

Retrospective test 
accuracy study 

Mixed  
(random) 

[A] Stand-alone AI None Nodule detection accuracy 
Nodule type accuracy (solid, sub-solid)         
Size measurement accuracy 
Characteristics of detected (TP, FP) and missed (FN) 
nodules 
Technical failure rate 
Software acceptability and experience 

Murchison 
2022,31 
UK 

MRMC study Mixed - 
clinical routine 
mimicking a 
screening 
population in age 
and smoking 
history 
(selected) 

[A] Stand-alone AI 
[C] Concurrent AI 
 

[D] Unaided reader Nodule detection accuracy 
Nodule type determination accuracy 
 
Measurement (volume, diameter): 
Inter-observer variability 
Concordance between stand-alone software and readers 
without software 
Technical failure rate 
 
Growth rate: 
Nodule registration accuracy 
Inter-observer variability 
Concordance between stand-alone software and readers 
without software 

*************
***** 

***************
***** 

******** 
************* 

****************** ********** ********************* 
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Study, country  Study design Target population Index test Comparator Relevant outcomes reported 

VUNO Med-LungCT AI (VUNO) (1 study) 

Park 2022,65 
USA, Korea 

MRMC study Screening  
(nodule-enriched) 

[A] Stand-alone AI 
[C] Concurrent AI 
 

[D] Unaided reader Nodule detection and Lung-RADS categorisation: 
Lung cancer detection accuracy 
Concordance between stand-alone software and readers 
Inter-observer variability 
Impact on decision making 

AI, artificial intelligence software; BTS, British Thoracic Society; CT, Computed tomography; FBP, Filtered back projection; FN, False negative; FP, False positive; Lung-RADS, 

Lung imaging reporting and data system; MDT, Multi-disciplinary team; MBIR, Model-based iterative reconstruction; MRMC, multi-case multi-reader study; TP, True 

positive.  
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To help navigating the results section, the tables below present for each pre-specified outcome the 

number of studies identified, study details and a link to the corresponding section in the report. 

 

Table 3. Outcomes – Nodule detection and analysis: Accuracy, concordance and variability 

Outcome Section in report Comparison # 
studies 

Target population, references 

Use case 1: Nodule detection and analysis in people with no known lung nodules 

Nodule detection: 
Accuracy –  
Any nodule 

3.3.1.1 
 
 

[C] vs [D] N=4 Screening51, 59 
Symptomatic57 
Mixed51, 55 

[B] vs [D] N=1 Screening51 
Mixed51 

13.5.1 [A] vs [D] N=4 Symptomatic57 
Incidental47 
Mixed45, 58 

None: [A] N=6 Screening49 
Mixed28, 45, 56, 63, 64 

Nodule detection: 
Accuracy – 
Actionable nodules 

3.3.1.2 
 
 

[C] vs [D] N=5 Screening25, 52, 54 
Symptomatic57 
Mixed31 

13.5.2 [A] vs [D] N=2 Symptomatic57 
Mixed58 

None: [A] N=2 Screening46 
Mixed28 

Nodule detection: 
Accuracy – 
Malignant nodules 

3.3.1.3 [C] vs [D] N=3 Screening52, 65 
Mixed55 

13.5.3 None N=3 Screening25, 49 
Mixed56 

Nodule detection: 
Effect modifiers 

3.3.1.4 
b) 

Radiation 
dose 

N=2 Mixed51, 58 

3.3.1.4 
c) 

Nodule type N=7 Screening49, 52, 54, 59 
Symptomatic57 
Mixed58, 64 

3.3.1.4 
e) 

Radiologist 
experience 

N=1 Screening51 
Mixed51 

Nodule detection: 
Concordance 

3.3.1.5 [A] [C] vs [D] N=1 Mixed45 

Inter-
observer 

N=1 Screening54 

Nodule type: 
Accuracy 

3.3.2.1 None: [A] N=2 Mixed31, 64 

Nodule type: 
Concordance 

3.3.2.3 Inter-
observer 

N=2 Screening62, 65 

Diameter 
measurement: 
Accuracy 

3.3.3.1 None: [C] N=1 Unclear53 

None: [A] N=2 Screening54 
Mixed64 

Diameter 
measurement: 
Concordance 

3.3.3.3 [A] [C] vs [D] N=4 Surveillance with applicability 
concerns61 
Mixed31, 45, 56 

Inter-
observer 

N=5 Screening62, 65 
Surveillance with applicability 
concerns60, 61 
Mixed31 
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Outcome Section in report Comparison # 
studies 

Target population, references 

Intra-
observer 

N=2 Surveillance with applicability 
concerns60, 61 

Volume 
measurement: 
Accuracy 

3.3.4.1 None: [C] N=1 Unclear53 

Volume 
measurement: 
Concordance 

3.3.4.3 [A] vs [D] N=1 Mixed31 

Inter-
observer 

N=3 Surveillance with applicability 
concern60 
Mixed31 
Unclear53 

Intra-
observer 

N=1 Surveillance with applicability 
concerns60 

Risk categorisation: 
Accuracy  

3.3.5.1 [A] [C] vs [D] N=3 Screening30 
Mixed32 
Unclear53 

Risk categorisation: 
Concordance 

3.3.5.4 [A] [C] vs [D] N=2 Screening62, 65 

Inter-
observer 

N=5 Screening62, 65 
Surveillance with applicability 
concerns60, 61 
Mixed32 

Intra-
observer 

N=2 Surveillance with applicability 
concerns60, 61 

Whole read: 
Accuracy for lung 
cancer 

3.3.6.1 [C] vs [D] N=1 Screening49 

None [C] N=1 Screening48 

Use case 2: Nodule growth monitoring in people with previously identified lung nodules 

Nodule registration: 
Accuracy 

3.4.2.1 
13.5.6.1 

None [A] N=1 Mixed31 

Nodule growth 
rate: 
Concordance 

3.4.2.3 
13.5.6.2 

[A] vs [D] N=1 Mixed31 

Inter-
observer 

N=1 Mixed31 

[A] Stand-alone AI; [B] Assisted 2nd-read AI; [C] Concurrent AI; [D] Unaided reading. 
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Table 4. Outcomes – Practical implications 

Outcome Section in 
report 

# studies Target population, references 

Technical failure 
rate 

3.5.1 N=12 Screening25, 48-50, 54, 62 

Surveillance with applicability concerns60, 61 

Mixed29, 31, 32, 64 

Radiologist reading 
time 

3.5.2 N=10 Screening25, 52, 62 

Symptomatic57 

Mixed29, 32, 45, 51, 55, 58 

Acceptability and 
experience of using 
the software 

3.5.4 N=3 Screening25 

Mixed45, 64 

[A] Stand-alone AI; [B] Assisted 2nd-read AI; [C] Concurrent AI; [D] Unaided reading; NA, not applicable. 

 

Table 5. Outcomes - Impact on patient management  

Outcome Section 
in report 

Comparison # 
studies 

Target population, references 

Characteristics of detected nodules 

All detected nodules 
(TP and FP) 

3.6.1.1 [C] vs [D] N=2 Screening49 
Mixed32 

[A] vs [D] N=1 Mixed45 

13.5.8.1 None N=3 Screening48, 50 
Mixed64 

TP nodules 3.6.1.2 [C] vs [D] N=2 Screening59 
Symptomatic57 

[A] vs [D] N=1 Mixed58 

13.5.8.2 None N=4 Screening30, 49, 54 
Mixed64 

Additional TP nodules 
detected by software 

3.6.1.3 [A] vs [D] N=1 Incidental47 

FP nodules 3.6.1.4 None ([A] 
only) 

N=4 Screening46 
Incidental47 
Mixed45, 64 

FN nodules 3.6.1.5 [C] vs [D] N=2 Screening59 
Symptomatic57 

13.5.8.3 None N=5 Screening25, 49, 54 
Mixed56, 64 

Proportion of detected 
nodules that are 
malignant 

3.6.2 [C] vs [D] N=2 Screening25, 49 

None N=1 Screening48 

Impact of test result 
on clinical decision-
making 

3.6.3 [C] vs [D] N=6 Screening25, 54, 62, 65 
Surveillance with applicability concerns61 
Unclear53 

# of people having CT 
surveillance 

3.6.4 [C] vs [D] N=2 Screening49, 62 

13.5.8.4 None N=3 Screening25, 50 
Symptomatic57 

# of people having 
biopsy or excision 

3.6.6 C] vs [D] N=2 Screening49, 62 

13.5.8.5 None N=3 Screening25, 50 
Symptomatic57 

Time to diagnosis 3.6.8 [C] vs [D] N=1 Screening62 
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[A] Stand-alone AI; [B] Assisted 2nd-read AI; [C] Concurrent AI; [D] Unaided reading. 

 

3.2 Methodological quality of the evidence 

The methodological quality of 22 studies25, 28-32, 45-49, 51-59, 63, 64 that reported test accuracy outcomes 

was assessed using QUADAS-222 and, if applicable, QUADAS-C.23  

Four studies60-62, 65 reported concordance or agreement outcomes, and their quality was assessed 

using the COSMIN Risk of Bias tool (see Section 2.2.2).24  For the remaining study,50 no quality 

appraisal was performed as the relevant outcomes for the DAR were neither related to accuracy nor 

reliability/measurement error.  

 

3.2.1 Risk of bias and applicability concerns according to QUADAS-2 and QUADAS-C 

The QUADAS-2 and QUADAS-C assessment results for 22 studies are summarised in Table 6, Figure 7 

and Figure 8.  
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Table 6. Quality assessment results based on QUADAS-2 and QUADAS-C tools (22 studies) 

 
  

Nodule Cancer Nodule Cancer INCID SYMP SCREEN SURV Nodule Cancer Nodule Cancer Nodule Cancer

A High Low High Low High High High High High

D High High High Low High High High High High

E High Low High Low High High High Unclear Unclear

C Unclear High High Unclear High Unclear High High Low Unclear

E Low Low High Low High High Low

C High High High Low High High High High

D High High High Low High High High High

A High Unclear High Low High High High High Low

B High High High Low High High High High High

C High High High Low High High High High High

D High High High Low High High High High High

A Unclear Low High High High Unclear High High High High

C Unclear Low High Unclear High High High

E Low Low High Unclear High High High

A High Unclear Low Low High High High

C High High Low Low High High High

D High High Low Low High High High

A HIGH Low High Low High High High

C High High High Low High High High

D High High High Low High High High

A High High Low Low High High High High

C High High Low High High High High High

D High High Low High High High High High

A High Unclear Low Low Low High High High High Low

C High High Low Low Low High High High High Low

D High High Low Low Low High High High High Low

C Unclear High High High Unclear Unclear High High High Low

D Low High High High Unclear Unclear High High High Low

Unclear

Test
P

IP I P I
R

Risk of bias

(QUADAS-2)

FT

Applicability concerns

(QUADAS-2)

Hwang 2021a High Low

Milanese 2018 Unclear High High High

Kozuka 2020 High High Low Low

Lo 2018 High High Low Low

Liu 2019 High High Low High

Abadia 2021 High High High Low

Hsu 2021 High High High Low

Hall 2019 Unclear High High High

Lancaster 2022 High High High Low

R FT

Hempel 2022

R

Risk of bias

(QUADAS-C)

High High High Low

High

Low High
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A, Stand-alone AI; B, Assisted 2nd-read AI; C, Concurrent AI; C.1, Concurrent AI for vessel-suppression; C.2, Concurrent AI for vessel-suppression and nodule detection;  
D, Unaided reader (Reader study); E, Original radiologist (clinical practice); FT, Flow & timing; I, Index test; INCID, Incidental population; P, Population; R, Reference standard; 
SCREEN, Screening population; SURV, Surveillance population; SYMP, Symptomatic population.

A High High High High High High High High High Low

C High High High High High High High High High Low

D High High High High High High High High High Low

C High High High Low High High High Unclear

D High High High Low High High High Unclear

A Low Unclear High Low Low High High

D Low Low High Low Low High High

A High Unclear Low High High High High

C.1 High High Low High High High High

C.2 High High Low High High High High

D High High Low High High High High

C High High High Unclear Low High High High High High Unclear

D High High High Unclear Low High High High High High Unclear

C Low High High Low High High High

D Low Low High Low High High High

Blazis 2021 A Unclear High High High High High High High High

Chamberlin 2021 A Low Low High High High High High

Hwang 2021b C Unclear Low High High High High High

Martins Jarnalo 2021 A High Unclear High Low High High High High High

Wakkie 2020 A High High Low Unclear High High High High High

Wan 2022 A High Unclear Low Low Low Low High High High High High High Low

Low

HighUnclear

Murchison 2022 High High High High

Rueckel 2021 Low Unclear High

Roehrich 2022 High High High Low

High High Low High

Takaishi 2021 High High High Low

Non-comparative accuracy studies

Zhang 2021 Low High High Low

Singh 2021
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3.2.1.1 Risk of bias 

Sixteen of the 22 studies were comparative test accuracy studies. The risk of bias according to 

QUADAS-C was considered ‘high’ in three or more domains in 12 (75%) studies. In the remaining six 

non-comparative test accuracy studies, risk of bias (QUADAS-2) was considered high in three or 

more domains in one (17%) study. No comparative or non-comparative test accuracy study was 

rated as ‘low’ or ‘unclear’ risk of bias in all four domains. The number and proportion of studies with 

‘low’, ‘high’ and ‘unclear’, respectively, risk of bias are presented in Figure 7 for all 22 studies as well 

as separately for the 16 comparative studies (QUADAS-C) and the six non-comparative studies 

(QUADAS-2).The risk of bias in the four QUADAS-2 domains is discussed in more detail below. 

 

Patient selection domain 

The risk of bias was classed as ‘high’ in the patient selection domain in 15 (68%) out of 22 studies. 

The main reasons have been listed below: 

• No consecutive or random sample: 8 studies;29-32, 45, 52, 54, 58 

• Case-control design not avoided: 8 studies;29-32, 45, 52, 54, 56 

• Systematic exclusion of ‘easy to read’ CT images (e.g. exclusion of patients without other, 

non-nodule related lung conditions): 2 studies;29, 45 

• Exclusions by nodule number per image or unjustified (not based on management guidelines 

or minimal software manufacturer threshold, exclusion of certain nodule sizes): 6 studies;28, 

30, 32, 51, 56, 64 

• Systematic exclusion of patients with other non-nodule related lung pathology that can 

mimic or mask lung nodules (exclusion of ‘difficult to read’ CT images; e.g. severe pulmonary 

fibrosis, diffuse bronchiectasis, extensive inflammatory consolidation, pneumothorax, and 

massive pleural effusion): 5 studies;31, 32, 51, 55, 57 

• No fully paired or randomized design was used: 1 study.49 

 

Four studies (18%) were classified as ‘unclear’ risk of bias,25, 48, 53, 63 and the remaining three studies 

(14%) were classed as ‘low’ risk of bias in the patient selection domain.46, 47, 59 
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Index test domain 

For the index test domain, three studies (14%) were classed as low risk of bias.46, 48, 49 In 16 studies 

(73%), the risk of bias was considered as ‘high’ for the following reasons: 

• Readers assessed the chest CT images outside clinical practice (MRMC studies): 14 studies;25, 29-

32, 45, 51-55, 57-59 

• AI software threshold clearly not pre-set by company or not pre-specified in methods: 4 

studies.28, 31, 58, 63  

 

For three studies, the risk of bias was rated as ‘unclear’ for the following reasons: 

• Unclear if there was no repeated application of AI to any of the same CT images, or use of 

the same CT images or images from the same patients for training: 1 study;64 

• Unclear if the threshold was pre-specified: 2 studies.47, 56 

 

Reference standard domain 

Twenty-one of the 22 studies used a reference standard for lung nodules, and six studies had a 

reference standard for lung cancer.  

For lung nodules, six of 21 studies (29%) were classified as low risk of bias.28, 52, 54, 56-58 The remaining 

15 studies (71%) were rated as being at high risk of bias for the following reasons: 

• No majority or consensus reading of (at least) three experienced thoracic radiologists: 

11 studies;25, 29, 45-47, 49, 51, 53, 55, 59, 64 

• Reference standard reader(s) were part of the index test(s) or not blinded to index test 

markings / decisions: 13 studies.25, 30, 31, 45-47, 49, 51, 53, 55, 59, 63, 64 

 

For lung cancer detection, two out of six studies were rated as low risk of bias.52, 56 Two studies 

were classed as high risk of bias as medical records were used as reference standard,48, 49 and the 

clinicians undertaking the diagnostic follow up tests were not blinded to the results of the index 

test.48, 49 In the remaining two studies, the risk of bias was rated as unclear as it was not stated 

how benign nodules were followed up55 and no details about the reference standard were 

reported,25 respectively.  
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Flow and timing domain 

In the 21 studies evaluating lung nodule detection accuracy, the risk of bias was rated as ‘low’ in 12 

studies29, 30, 32, 45, 47, 51, 52, 55-57, 59, 64 (57%) and as ‘unclear’ in one study28 (5%). A high risk of bias was 

present in the remaining eight studies (38%) for the following reasons:  

• There were significant exclusions (>10%; cut-off determined pragmatically) after the point of 

selecting the cohort: 6 studies;25, 31, 53, 54, 58, 63 

• The number of CT images excluded due to software processing failures (e.g. segmentation 

failures) has not been reported: 3 studies;31, 46, 49 

 

In the six studies reporting on lung cancer detection accuracy, the risk of bias was rated as ‘low’ in 

one study,56 as ‘unclear’ in two studies,25, 49 and as ‘high’ in three studies48, 52, 55 for the following 

reasons: 

• Not all patients received a reference standard: 1 study;48  

• Not all patients received the same reference standard: 2 studies.52, 55 
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Figure 7. Findings of risk of bias assessment for all 22 studies as well as separately for comparative (QUADAS-C) and non-comparative (QUADAS-2) 
studies 
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3.2.1.2 Applicability concerns 

Overall, all 22 studies had ‘high’ applicability concerns in at least two of the three domains (i.e. 

population, index test, reference standard). The number and proportion of studies with ‘low’, ‘high’ 

and ‘unclear’, respectively, applicability concerns are presented in Figure 8, separately for each 

evaluated index test. 

 

Patient selection domain 

Applicability was assessed separately for the four target populations (i.e. symptomatic, incidental, 

screening and surveillance). There were high concerns regarding the applicability of the research 

identified to all relevant UK target populations in 20 out of the 22 (91%) included studies. The main 

reasons for the high applicability concerns are listed below: 

• Not a consecutive or random sample of patients / CT images: 9 studies;29-31, 45, 52, 55, 58, 63, 67 

• Enriched sample (e.g. in-/exclusion by nodule number, nodule type and nodule size, 

respectively): 8 studies;29, 30, 45, 51, 52, 56, 64, 67 

• Inclusion/Exclusion by age: 1 study;31 

• Study not performed in the UK or another North-Western European country: 14 studies;28, 30, 

45, 46, 48, 49, 51, 52, 55-59, 67 

• >10% of included people have a different indication for the CT scan than the target 

population: 11 studies;28, 29, 31, 45, 51, 53, 55, 56, 58, 63, 64 

• CT image acquisition details (dose, contrast use, slice thickness) different to UK practice for 

target population: 8 studies;28, 30, 31, 51, 55, 56, 63, 64 

• Age not between 55-75 years in screening populations: 6 studies;25, 30, 46, 53, 56, 59 

• Nodule size <5mm or >30mm maximal diameter; <80mm3 in a surveillance population: 1 

study.53 

Only one study was classified as having ‘low’ applicability concerns for the ‘incidental’ population.47 

In another study,53 the applicability to the ‘Incidental’ and ‘Symptomatic’ populations was ‘unclear’ 

as it was not reported if more than 10% of included people had a different indication for the CT scan 

than the target population. 
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Figure 8. Findings of applicability concern assessment (QUADAS-2) by index test 
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Index test domain 

Concerns regarding the applicability of the index test or the comparator to the situation in the UK 

were classified as high in all 22 included studies. The main reasons were: 

• Use of any prototype software versions that did not later become the commercially available 

version (e.g. applicability not confirmed by the company): 2 studies;45, 47 

• Integration of software into pathway not applicable to UK (e.g. stand-alone AI performance 

instead of concurrent or second-read software use: 12 studies;28-31, 45, 49, 56-58, 63, 64, 67 

• Reader had no access to maximum intensity projections (MIP) and/or multiplanar 

reformations (MPR): 6 studies;29, 31, 52, 55, 58, 67 

• Study did not use a pre-specified nodule size threshold similar to the UK 2015 BTS guidelines 

(i.e. ≥5mm maximum axial diameter or ≥80mm3)11: 14 studies;29, 30, 46, 48, 49, 51, 52, 55, 56, 58, 59, 63, 64, 

67 

• Other nodule types used than in the 2015 BTS guidelines (nodule type should be classified as 

solid, part-solid or pure ground glass nodules)11: 1 study;64 

• For stand-alone AI - false positive rate set to more than 2 FP per image: 3 studies;28, 31, 63 

• For concurrent and assisted 2nd-read software use - more than 1 human reader involved per 

read: 1 study;59 

• For the unaided reader (comparator) - human double reading instead of single human reader: 

2 studies;25, 59 

• Human reader’s experience and/or specialty not representative of UK clinical practice (5 years 

training for radiologists. After that time, they are considered “fully trained”.) for target 

population: 8 studies;25, 29, 51-53, 55, 57, 59 

• Software only had vessel suppression function, not nodule detection and measurement 

functions: 1 study.53 

 

Reference standard domain 

Applicability concerns regarding the reference standard for lung nodules (21 studies) were rated as 

‘low’ in three studies25, 31, 53 and as ‘unclear’ in one study.29 The remaining 17 studies (81%) were 

rated as having high applicability concerns for the following reasons: 
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• For “Actionable” nodule present/absent: different nodule size to BTS 2015 guideline definition 

(“actionable nodule” is ≥5 mm maximum axial diameter or ≥80 mm3)11: 17 studies;28-30, 45-47, 49, 

51, 52, 55-59, 63, 64, 67 

• Other types used than in the BTS 2015 guidelines (nodule type should be classified as solid, 

part-solid or pure ground glass nodules)11: 1 study;64 

• For nodule size measurement (volume/diameter) - nodule size not measured as volume or, if 

volumetry segmentation is not possible, as maximum axial diameter: 2 studies.53, 56 

 

Applicability concerns regarding the reference standard for lung cancer (6 studies) were rated as 

‘low’ in two studies.52, 56 Two studies25, 55 were rated as having  ‘unclear’ applicability concerns as no 

details on the reference standard were reported in one study,25 whereas in the other study,55 it was 

unclear, if benign nodules were followed up for at least two years without lung cancer diagnosis. The 

remaining two studies48, 49 had ‘high’ applicability concerns as there was no follow-up for at least two 

years for discharged patients (i.e. not receiving CT surveillance or biopsy/excision). 

 

3.2.2 Risk of bias for reliability and measurement error (COSMIN tool) 

The methodological quality of four studies60-62, 65 was assessed using the COSMIN Risk of Bias tool to 

assess the quality of studies on reliability and measurement error of outcome measurement 

instrument.24 Assessment results are summarised in Table 7.  

  

Table 7. Quality of studies assessed by COSMIN Risk of Bias tool24 (4 studies) 

COSMIN Cohen 201760 Jacobs 202162 Kim 201861 Park 202265 

Final risk of bias rating – 
Reliability studies 

Doubtful Doubtful Doubtful Doubtful 

Final risk of bias rating – Studies 
on measurement error 

Doubtful Doubtful Doubtful Doubtful 

 

All four studies received ‘Doubtful’ final risk of bias ratings. The main reasons were ‘Doubtful’ ratings 

for the following signalling questions: 

• Was the time interval between the repeated measurements appropriate? 1 study;60 

• Were there any other important flaws in the design or statistical methods of the study? 4 

studies;60-62, 65 
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• For continuous scores: was the Standard Error of Measurement (SEM), Smallest Detectable 

Change (SDC), Limits of Agreement (LoA) or Coefficient of Variation (CV) calculated? 3 

studies.61, 62, 65 

 

3.3 Use case 1: nodule detection and analysis in people with no known lung nodules 

3.3.1 Nodule detection 

In this section we summarise findings related to accuracy for nodule detection. Three main 

outcomes (targets of detection) are presented in each of the sub-sections: detection of any nodules; 

detection of actionable nodules; and detection of malignant nodules (see Figure 9). In each sub-

section, we focus on comparative evidence between AI-assisted detection and unaided detection by 

human readers (the main comparison of interest for this DAR). Detailed description of comparisons 

between stand-alone AI and unaided readers, and additional non-comparative evidence, such as the 

accuracy of AI-assisted detection or detection by stand-alone AI compared with a reference 

standard, are presented in Appendix 5. 

 

Key characteristics, reported outcome measures and quality ratings for studies reporting 

comparative and non-comparative results are shown in Table 8 and Table 9, respectively. 
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Figure 9. Visual map of included studies for detection accuracy based on population, comparison and reported outcomes (targets of detection) 
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Table 8. Characteristics of included studies with comparative results for nodule detection accuracy, and their quality ratings (12 studies) 

Comparative results 

Study, 
country 

Population Reading 
mode 

Study design Reader details Nodule 
type 

Nodule size Sensitivity / Specificity / FP per scan Quality of study 

Any nodule Actionable 
nodules 

Malignant 
nodules 

Risk of bias 
(QUADAS-C) 

Applicability 
concerns 

Zhang 2021,  
China59 
 
InferRead CT 
Lung 
(Infervision) 
 

Screening 
population 

Concurrent AI 
vs unassisted 
reader 

Retrospective 
test accuracy 
study and 
MRMC study 

1 radiology resident 
with supervision of 1 
experienced 
radiologist** 

Solid,  
Part-
solid, 
GGN 
 

Solid: 

≤5 mm, 
6-7 mm,  
8-14 mm,  

≥15 mm; 
GGN & part-
solid:  
all sizes 

Sensitivity (per 
patient) / 
Specificity  
(per patient) 

  P:            Low  
I:             High  
RS (N):   High 
F&T (N): Low 

P:          High 
I:           High 
RS (N): High 

Kozuka 
2020,57 
Japan 
 
InferRead CT 
Lung 
(Infervision) 

Symptomat
ic 
population 

Concurrent AI 
vs unassisted 
reader; 
Stand-alone 
AI vs 
unassisted 
reader 
 

MRMC study 2 less experienced 
radiologists (1 and 5 
years of diagnostic 
experience) 

Any, 
Solid, 
Part-
solid, 
GGN, 
Calcified 

≥3 mm 
(3-6 mm,  
6-10 mm,  
10-15 mm,  
15-20 mm,  
>20 mm) 

Sensitivity (per 
nodule) / FP per 
scan; 
Sensitivity (per 
patient) / 
Specificity (per 
patient) 

Sensitivity (per 
nodule / FP per 
scan 

 P:            High  
I:             High  
RS (N):    Low  
F&T (N): Low 

P:         High  
I:          High  
RS (N): High 

Takaishi 
2021,55 
Japan 
 
ClearRead CT 
(Riverain 
Technologies) 

Mixed 
population 

Concurrent AI 
vs unassisted 
reader 

MRMC study 3 radiologists with < 
10 years of experience 

Any ≥4 mm Sensitivity (per 
nodule) / 
FP per scan 

 Sensitivity (per 
nodule) / 
FP per scan 

P:          High 
I:           High 
RS (N):  High  
RS (C):  Unclear 
F&T (N): Low  
F&T (C): High  

P:          High  
I:           High 
RS (N): High  
RS (C): Unclear 
 

Liu 2019,58 
Evaluation 4, 
China  
 
InferRead CT 
Lung 
(Infervision) 

Mixed 
population 

Concurrent AI 
vs unassisted 
reader 

MRMC study 2 radiologists with 
approximately 10 
years of experience  

Any NR AUC   P:            High  
I:              High 
RS (N):    Low 
F&T (N): High  

P:         High  
I:          High 
RS (N): High  
 

Liu 2019,58 
Evaluations 
1-3, 
China 
 
InferRead CT 
Lung 
(Infervision) 

Mixed 
population 

Stand-alone 
AI vs 
unassisted 
reader 

MRMC study 2 radiologists with 5 
and 10 years of 
experience, 
respectively 

Any, 
Solid, 
Sub-solid 

Solid: 
≤6 mm,  
>6 mm; 
Sub-solid: 
≤5 mm, 
>5 mm 

Sensitivity (per 
nodule) / 
FP/scan 

Sensitivity (per 
nodule) 
 

 P:             High  
I:              High  
RS (N):     Low 
F&T (N):  High 

P:           High  
I:            High 
RS (N):   High 
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Comparative results 

Study, 
country 

Population Reading 
mode 

Study design Reader details Nodule 
type 

Nodule size Sensitivity / Specificity / FP per scan Quality of study 

Any nodule Actionable 
nodules 

Malignant 
nodules 

Risk of bias 
(QUADAS-C) 

Applicability 
concerns 

Hsu 2021,51 
Taiwan 
 
InferRead CT 
Lung 
(Infervision) 

Mixed 
population 
(Screening 
population 
reported 
separately) 

Concurrent AI 
vs unassisted 
reader; 
Assisted 2nd-
read AI vs 
unassisted 
reader 

MRMC study 6 readers: 
Junior group:  
3 residents in 
radiology (1-2 years of 

CT experience and ≥6 
months of chest CT 
experience); 
Senior group:  
3 experienced chest 
radiologists (5, 10 and 
25 years of 
experience, 
respectively).  

Any  3-10mm Sensitivity (per 
nodule) / 
Specificity (per 
patient) 

  P:             High  
I:              High  
RS (N):    High  
F&T (N): Low  

P:         High  
I:          High 
RS (N): High  
 

Abadia 
2021,45 
USA 
 
AI-Rad 
Companion 
(Siemens 
Healthineers) 

Mixed 
population 

Stand-alone 
AI vs 
unassisted 
reader 

Retrospective 
test accuracy 
and MRMC 
study 

Clinical practice: 
1 of 5 single expert 
chest radiologist 
 
MRMC study: 
1 expert chest 
radiologist (15 years 
of experience) 
 

Any ≥4 mm Sensitivity (per 
nodule) /  
FP per scan (for 
stand-alone AI 
only); 
Sensitivity (up to 
3 largest nodules) 
/ PPV 

  P:           High  
I:             High 
RS (N):   High  
F&T (N): Low 

P:         High  
I:           High 
RS (N): High 
 
         

Rueckel 
2021,47 
Germany 
 
AI-Rad 
Companion 
(Siemens 
Healthineers) 

Incidental 
population 

Stand-alone 
AI vs 
unassisted 
reader 

Retrospective 
test accuracy 
study 

Clinical practice: 
Single board-certified 
radiologist alone 
(17%), or commonly 
reported by a 
radiology resident and 
a board-certified 
radiologist (83%). 
25 different radiology 
residents and 18 
different board-
certified radiologists 

Any  NR Sensitivity (per 
nodule and per 
patient) / 
FP/scan (for 
stand-alone AI 
only) 

  P:           Low 
I:            Unclear 
RS (N):   High 
F&T (N): Low 

P:         Low  
I:          High  
RS (N): High 

Singh 2021,54 
USA 
 
ClearRead CT 
(Riverain 
Technologies) 

Screening 
population 

Concurrent AI 
vs unassisted 
reader 

MRMC study 2 radiologists  
(5 years and 10 years 
of thoracic CT 
experience) 

GGN,  
Part-
solid,  
Sub-solid  

≥6 mm  Sensitivity (per 
nodule) / 
Specificity (per 
patient) 
 

 P:             High  
I:              High 
RS (N):    Low 
F&T (N): High 

P:         High  
I:          High 
RS (N): High 
 

Lo 2018,52 
USA 
 

Screening 
population 

Concurrent AI 
vs unassisted 
reader 

MRMC study 12 general radiologists 
certified by the 
American Board of 

Any  5-44 mm  Sensitivity (per 
patient) / 
Specificity (per 
patient) 

Sensitivity (per 
patient) / 
Specificity (per 
patient)  

P:            High 
I:             High 
RS (N):   Low 
RS (C):    Low 

P:          High  
I:           High 
RS (N): High 
RS (C): Low 
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P, Patient selection domain; I, Index test domain; RF (C), Reference standard domain (lung cancer detection); RF (N), Reference standard domain (lung nodule detection); F&T (C), Flow and timing domain (lung 
cancer detection); F&T (N), Flow and timing domain (lung nodule detection); FP, False positive; GGN, Ground glass nodules; NR, Not reported. 

**[C] MRMC study: 1 radiology resident (5 years of experience) and 1 radiologist (20 years of experience); [E] Clinical practice: A total of 14 radiology residents (2 - 5 years of experience) and 15 radiologists (10 - 
30 years of experience). 
 

  

Comparative results 

Study, 
country 

Population Reading 
mode 

Study design Reader details Nodule 
type 

Nodule size Sensitivity / Specificity / FP per scan Quality of study 

Any nodule Actionable 
nodules 

Malignant 
nodules 

Risk of bias 
(QUADAS-C) 

Applicability 
concerns 

ClearRead CT 
(Riverain 
Technologies) 

Radiology (6–26 years 
of experience) 

F&T (N): Low 
F&T (C): High 

 

Hall 2022,25 
UK 
 
Veolity 
(MeVis) 
 

Screening 
population 

Concurrent AI 
vs unassisted 
reader 

Retrospective 
test accuracy 
study and 
MRMC study 

[C] 2 radiographers 
without prior 
experience in chest CT 
reporting (MRMC 
study); 
[E] 5 radiologists (5-28 
years of experience; 
5% double reading) 
(clinical practice) 

Any  ≥5mm, 

≥6mm 

 Sensitivity (per 
patient) / 
Specificity (per 
patient) 
 
 

 P:          Unclear  
I:             High 
RS (N):   High 
F&T (N): High 
 

P:         High  
I:          High 
RS (N): Low 
 
 

Murchison 
2022,31 
UK 
 
Veye Lung 
Nodules 
(Aidence) 

Mixed 
population 

Concurrent AI 
vs unassisted 
reader 

MRMC study 2 thoracic radiologists 

(≥ 9 years’ experience) 

Any  5-30 mm  Sensitivity (per 
nodule) / 
FP per scan 

 P:            High  
I:             High  
RS (N):   High 
F&T (N): High 

P:          High  
I:           High  
RS (N): Low 

Park 2022,65 
USA, Korea 
 
VUNO Med-
LungCT AI 
(VUNO) 

Screening 
population 

Concurrent AI 
vs unassisted 
reader 

MRMC study 5 readers: one 4-th 
year resident and 4 
board-certified 
radiologists (1, 4, 8 
and 20 years of 
experience) 

Any
  

NR    Sensitivity  
 

Assessed by 
COSMIN Risk of 
bias tool only 
(Doubtful 
rating) 

Not assessed 



96 

 

 

Table 9. Characteristics of included studies with non-comparative results for nodule detection accuracy and quality ratings (8 studies) 

Non-comparative results 

Study, country Population Reading 
mode 

Study design Nodule 
type 

Nodule 
size 

Sensitivity / Specificity / FP rate Quality of study 

Any nodule Actionable 
nodules 

Malignant 
nodules 

Risk of bias 
(QUADAS-2) 

Applicability 
concerns 

Abadia 2021,45 
USA 
 
AI-Rad 
Companion 
(Siemens 
Healthineers) 

Mixed 
population 

Stand-alone 
AI 

Retrospective 
test accuracy 
study 

Any  ≥4 mm Sensitivity (per 
patient) / 
Specificity (per 
patient) 
 

  P:           High  
I:             Low 
RS (N):   High  
F&T (N): Low  

P:         High  
I:           High 
RS (N): High  
 

Chamberlin 
2021,46  
USA 
 
AI-Rad 
Companion 
(Siemens 
Healthineers) 

Screening 
population 

Stand-alone 
AI 

Retrospective 
test accuracy 
study 
 

Any >6 mm  Sensitivity (per 
nodule) /  
FP per scan; 
Sensitivity (per 
patient) / 
Specificity (per 
patient)  

 P:            Low 
I:             Low 
RS (N):   High  
F&T (N): High 

P:        High  
I:          High 
RS (N): High  
 

Hwang 2021a,49 
South Korea 
 
AVIEW LCS+ 
(Coreline Soft) 
 

Screening 
population 

Stand-alone 
AI 

Before-and-
after study 

Any,  
Solid, 
GGN, 
Part-solid 

NR Sensitivity (per 
nodule) /  
FP per scan 

 Sensitivity (per 
nodule) / 
FP per scan 

P:            Unclear  
I:              Low 
RS (N):    High 
RS (C):    High 
F&T (N): High 
F&T (C): Unclear 

P:          High  
I:           High 
RS (N): High  
RS (C): High 
 

Wan 2020,56 
Taiwan 
 
ClearRead CT 
(Riverain 
Technologies) 
 

Mixed 
population 

Stand-alone 
AI 

MRMC study 
 

Any  ≤2 cm Sensitivity   Sensitivity / 
Specificity  

P:           High  
I:             Unclear  
RS (N):   Low 
RS (C):    Low 
F&T (N): Low  
F&T (C): Low  

P:          High  
I:           High 
RS (N): High  
RS (C): Low  
 
 

Blazis 2021,63 
Netherlands 
 
Veye Lung 
Nodules 
(Aidence) 

Mixed 
population 

Stand-alone 
AI 

Retrospective 
test accuracy 
study 

Any >4 mm 

or ≥30 

mm3 

Sensitivity (per 
nodule) / 
FP per scan 

  P:           Unclear  
I:             High 
RS (N):   High 
F&T (N): High 

P:         High  
I:          High 
RS (N): High  
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Non-comparative results 

Study, country Population Reading 
mode 

Study design Nodule 
type 

Nodule 
size 

Sensitivity / Specificity / FP rate Quality of study 

Any nodule Actionable 
nodules 

Malignant 
nodules 

Risk of bias 
(QUADAS-2) 

Applicability 
concerns 

Martins Jarnalo 
2021,64 
Netherlands 
 
Veye Lung 
Nodules 
(Aidence) 

Mixed 
population 

Stand-alone 
AI 

Retrospective 
test accuracy 
study 

Any, 
Solid,  
Sub-solid  

4-30 
mm 

Sensitivity (per 
nodule) / 
FP per scan 

  P:             High  
I:             Unclear 
RS (N):    High  
F&T (N): Low 

P:         High  
I:          High 
RS (N): High  
 

************** 
*** 
 
Veye Lung 
Nodules 
(Aidence) 

****** 
********* 

*********** 
*** 

********** 
********* 
**** 

*** **** 
*** 
**** 
*** 
 

************ 
********** 
************ 

************ 
******** 
*********** 

 P:            High  
I:             High 
RS (N):   Low 
F&T (N): Unclear  

P:         High  
I:           High 
RS (N): High  
 

Hall 2022,25 
UK 
 
Veolity (MeVis) 

Screening 
population 

Concurrent AI MRMC study: 
2 
radiographers 
without prior 
experience in 
chest CT 
reporting 

Any ≥5 mm   Sensitivity P:            Unclear  
I:             High 
RS (C):    Unclear 
F&T (C): High 

P:         High  
I:          High 
RS (C): Unclear 
 

P, Patient selection domain; I, Index test domain; RF (N), Reference standard domain (lung nodule detection); F&T (N), Flow and timing domain (lung nodule detection); FP, False positive; GGN, Ground glass 

nodules; NR, Not reported. 
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3.3.1.1 Accuracy for identifying any nodules 

a) Comparative results (7 studies) 

Seven comparative studies45, 47, 51, 55, 57-59 evaluated the accuracy for detecting any nodules. Of these, 

one included a screening population,59 one included a symptomatic population,57 one included an 

incidental population,47 and four included mixed populations.45, 51, 55, 58 The study by Hsu et al.51 also 

reported accuracy data separately for the screening population subset. 

Four of the comparative studies provided evidence on the comparison between AI-assisted reading 

and unaided reading, and the findings are presented in Figure 10. Evidence on AI-assisted reading 

compared with unaided reading for accuracy of detecting any nodules (7 studies) Reported 

sensitivity varies widely among AI-assisted reading (range 0.38 to 0.99) and unaided reading (range 

0.21 to 0.72) between different studies, highlighting the heterogeneous nature of these studies. AI-

assisted reading improved sensitivity compared with unaided readers across all studies, while the 

reported specificity for AI-assisted reading slightly worsened in two studies57, 59 and slightly improved 

in one study51 compared with unaided readers. Findings from Kozuka et al.57 show that the per-

person sensitivity tends to be higher than the per-nodule sensitivity, but the differences between 

reading with and without AI support remain similar (Figure 10). Further details from individual 

studies are provided below. 

 

Concurrent AI vs unassisted reader (4 studies) 

Screening population (2 studies) 

 

Hsu 2021,59 Taiwan - ClearRead CT (Riverain Technologies) 

Hsu’s study59 included 150 consecutive cases with lung nodules ≤1 cm or no nodules (93 standard 

dose CT images from clinical routine and 57 low dose CT images [LDCT] from lung cancer screening). 

Six readers participated in the MRMC study: three residents in radiology (junior group) and three 

experienced chest radiologists (senior group). Accuracy results were reported separately for the 57 

LDCT obtained for screening purposes. The mean per-nodule sensitivity of all six readers increased 

significantly from 63% (95% CI 59-66%) without software use to 79% (95% CI 76-81%) with software 

use (p < 0.001). The mean per-person specificity did not change significantly: 81% (95% CI 78-84%) 

with software use and 77% (95% CI 74-80%) for unaided readers (p = 0.449).  
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TP: true positive; FP: false positive; FN: false negative; TN: true negative. Hsu 2021_4, 2021_5 and 2021_6 (n=57 scans) were corresponding subsets of Hsu 2021_1, 2021_2 and 2021_3 (n=93 scans) after excluding 
non-screening mixed populations 

Figure 10. Evidence on AI-assisted reading compared with unaided reading for accuracy of detecting any nodules (7 studies)
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Zhang 2021,59 China - InferRead CT Lung (Infervision) 

Zhang et al.59 included 860 consecutive patients who underwent chest CT from November to 

December 2019 at one Chinese hospital as part of the Netherlands-China Big-3 disease screening 

(NELCIN-B3) project. One resident drafted the diagnostic report, and a board-certified radiologist 

supervised the final version without software use in clinical practice or with concurrent software use 

under laboratory conditions. The per-subject sensitivity for detecting any nodules was 98.9% 

(370/374) with versus 43.3% (162/374) without software use. No level of significance was reported 

for all nodule types combined, but the sensitivities for the detection of solid, part-solid and ground 

glass nodules (GGNs), respectively, were all significantly higher with AI software use (p < 0.001 for 

all). The per-subject specificity was 97.1% (472/486) with versus 100.0% (486/486) without software 

use (no level of significance reported).  

 

• Symptomatic population (1 study) 

Kozuka 2020,57 Japan - InferRead CT Lung (Infervision) 

One study57 reported per-nodule and per-patient accuracy for concurrent AI and unaided readers by 

nodule type and size. This study was a retrospective analysis of 120 randomly selected chest CT images 

(117 cases included in analysis) from cases with lung cancer suspicion. Two less experienced 

radiologists (one and five years of diagnostic experience) assessed the CT images with and without 

software use. The per-nodule sensitivities for the pooled readers increased significantly from 20.9% 

(95% 18.8–23.0%) for the unaided reader to 38.0% (95% CI 35.5–40.5%) with concurrent AI (p < 0.01). 

The pooled PPV was 61.8% (95% CI 58.6-65.0%) with and 70.5% (95% CI 66.0-74.7%) without software. 

The pooled per-patient sensitivity increased significantly with software use from 68.0% (95% CI 61.4-

74.1%) to 85.1% (95% CI 79.8-89.5%) (p < 0.001). The pooled specificity decreased from and 91.7% 

(11/12; 95% CI 61.5-99.8%) to 83.3% (10/12; 95% CI 51.6-97.9%) with concurrent software use. 

 

• Mixed population (2 studies) 

Hsu 2021,51 Taiwan - ClearRead CT (Riverain Technologies) 

Hsu’s study51 included 150 consecutive cases with lung nodules ≤1 cm or no nodules (93 standard 

dose CT images from clinical routine and 57 LDCT from lung cancer screening). Six readers 

participated in the MRMC study: three residents in radiology (junior group) and three experienced 

chest radiologists (senior group). For all readers, the mean per-nodule sensitivity was significantly 

improved with software use: 80% (95% CI 79-82%) versus 64% (95% CI 62-66%) without software use 
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(p < 0.001). The mean specificity was 83% (95% CI 82-85%) with software use and 80% (95% CI 78%-

81%) without software use (p = 0.25).  

In the junior group, the mean per-nodule sensitivity increased significantly from 52% (95% CI 49-

55%) without software use to 77% (95% CI 74-79%) with software use (p < 0.001). The mean 

specificity was 78% (95% CI 76-81%) with and 71% (95% CI 69-74%) without software use (p = 0.152). 

In the senior group, the mean per-nodule sensitivity was significantly higher with software use: 84% 

(95% CI 82-86%) compared to 74% (95% CI 72-77%) without software use (p < 0.001). The mean 

specificity was 88% (95% CI 87-90%) with and 87% (95% CI 85-89%) without software use (p = 0.729). 

 

Takaishi 2021,55 Japan - ClearRead CT (Riverain Technologies) 

Takaishi et al.55 performed a retrospective analysis of 61 thoracic or thoracic-abdominal unenhanced 

CT images produced at Konan Kosei hospital during September 2019. The MRMC study assessed the 

nodule detection accuracy of three radiologists (8, 6 and 2 years’ experience, respectively) with and 

without software support. The study found significantly higher average per-nodule sensitivities with 

software use: 84.1% (116/138) compared to 71.7% (99/138) without software use (p = 0.02). The 

average false positive rate was 21% for both concurrent AI (0.49 FP per scan) and unassisted reading 

(0.44 FP per scan) (p = 0.98). 

 

Assisted 2nd-read AI vs unassisted reader (1 study) 

• Screening population (1 study) 

Hsu 2021,51 Taiwan - ClearRead CT (Riverain Technologies) 

Hsu’s study51 included 150 consecutive cases with lung nodules ≤1 cm or no nodules (93 standard 

dose CT images from clinical routine and 57 LDCT from lung cancer screening). Six readers 

participated in the MRMC study: three residents in radiology (junior group) and three experienced 

chest radiologists (senior group). They first read the CT images unaided, then used the reading 

performed by the software to make a final decision (assisted 2nd-read mode). Accuracy results were 

reported separately for the 57 LDCT obtained for screening purposes. For all readers, the mean per-

nodule sensitivity was significantly higher with software use: 80% (95% CI 77-83%) compared to 63% 

(95% CI 59-66%) without software use (p < 0.001). The mean specificity was 82% (95% CI 79-84%) 

with assisted 2nd-read AI and 77% (95% CI 74-80%) without software (p = 0.360).  

In the junior group, the mean per-nodule sensitivity increased significantly from 52% (95% CI 47-

57%) without software support to 76% (95% CI 72-80) with assisted 2nd-read AI use (p < 0.001). The 
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mean specificity was 76% (95% CI 72-80%) with and 68% (95% CI 64-73%) without software support 

(p = 0.333). For the senior group, the mean per-nodule sensitivity improved from 73% (95% CI 69-

77%) without software support to 84% (95% CI 80-87%) with assisted 2nd-read software use (p = 

0.001). The mean specificity was 88% (95% CI 85-91%) with vs 86% (95% CI 83-90%) without 

software support (p = 0.795). 

 

• Mixed population (1 study) 

Hsu 2021,51 Taiwan - ClearRead CT (Riverain Technologies) 

Hsu’s reader study51 retrospectively analysed data from consecutive cases with lung nodules ≤1 cm 

or no nodules (93 standard dose CT images from clinical routine and 57 LDCT from lung cancer 

screening) from a hospital in Taiwan. In assisted 2nd-read AI mode, the six readers read the CT 

images without AI first and then combined the displays of the AI results to make the final decision. 

The mean per-nodule sensitivity for all six readers was increased from 64% (95% CI 62-66%) without 

software use to 82% (95% CI 80-84%) with assisted 2nd-read AI (p < 0.001). The mean specificity was 

84% (95% CI 82-85%) using assisted 2nd-read AI compared to 80% (95% CI 78-81%) with unaided 

reading (p = 0.177). 

For the three junior readers, the mean per-nodule sensitivity was 79% (95% CI 76-81%) with and 

52% (95% CI 49-55%) without software use (p < 0.001). Their mean specificity was 79% (95% CI 77-

82%) with and 71% (95% CI 69-74%) without software use (p = 0.088). For the three senior readers, 

the mean per-nodule sensitivity was 85% (95% CI 83-87%) with and 74% (95% CI 72-77%) without 

software use (p < 0.001). Their mean specificity was 88% (95% CI 87-90%) with and 87% (95% CI 85-

89%) without software use (p = 0.729). 
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3.3.1.2 Accuracy for detecting actionable nodules 

a) Comparative results (6 studies) 

Six comparative studies25, 31, 52, 54, 57, 58 evaluated the accuracy for detecting actionable nodules (≥5 

or 6 mm). Of these, three included a screening population,25, 52, 54 one included a symptomatic 

population,57 and two included mixed populations.31, 58 Only one study (Hall 2022)25 reported per 

person analysis. Key results reported in these studies are shown in Figure 11. Reported sensitivity for 

concurrent AI ranged from 0.52 to 0.80 and was consistently higher than sensitivity for unaided 

readers of comparable experience (range 0.39 to 0.73). Only a small number of studies reported 

specificity or number of false positive detections per image. Where reported, the specificity was 

consistently lower, and false positive detections per image were consistently higher, for concurrent 

AI compared with unaided readers (Figure 11). 

One UK study (Hall 2022)25 based on the Lung Screen Uptake Trial (LSUT) compared the use of 

concurrent AI by two radiographers (qualified in chest radiograph reporting but without prior 

experience in thoracic CT reporting) under research conditions with original reporting by 

experienced radiologists (5-28 years of experience in thoracic imaging, 5% double reading) without 

AI assistance. Both sensitivity (0.71 vs 0.91) and specificity (0.92 vs 0.97) were lower for AI assisted, 

inexperienced radiographers compared with unassisted, experienced radiologists (see Figure 11).   
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TP: true positive; FP: false positive; FN: false negative; TN: true negative 

Figure 11. Comparative evidence for accuracy of detecting actionable nodules (6 studies) 
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Concurrent AI vs unassisted reader (5 studies) 

• Screening population (3 studies) 

Singh 2021,54 USA - ClearRead CT (Riverain Technologies) 

Singh et al.54 selected 150 LDCT from the US-based National Lung Screening Trial (NLST): the first 125 

patients with mixed attenuation or GGNs and the first 25 patients with no nodules. Two radiologists 

(with 5 and 10 years of thoracic CT experience) participated in a MRMC study to detect nodules ≥6 

mm on vessel-suppressed CT images as well as on standard CT images. The evaluated software did 

not have a nodule detection function. For GGNs, the pooled per-nodule sensitivity was 67% 

(209/312) on vessel-suppressed CT images and 66% (207/312) on standard CT images. The average 

specificity was 78.5% on vessel-suppressed images and 84% on standard CT images. For part-solid 

nodules, the pooled per-nodule sensitivity was 80% (245/308) vs 70% (216/308), and the average 

specificity was 85% vs 76% in vessel-suppressed vs standard CT images, respectively. For all sub-solid 

nodules, the pooled per-nodule sensitivity was 73% (453/620) vs 68% (423/620), and the mean 

specificity was 74% vs 78% on vessel-suppressed vs standard CT images.  

 

Lo 2018,52 USA - ClearRead CT (Riverain Technologies) 

Lo’s study52 included 324 LDCT from the US-based NLST and two US hospitals; images with nodules (5-

44 mm) and without nodules were selected in a ratio of 2:1. Twelve general radiologists certified by 

the American Board of Radiology (with 6–26 years of experience) participated in a MRMC study. 

Concurrent software use increased the mean per-nodule sensitivity by 12.4% (95% CI 6.2–18.6%) from 

60.1 ± 3.3% to 72.5 ± 3.3% (p < 0.001) and decreased the mean specificity by 5.5% (95% CI −9.0% to -

1.9%) from 89.9 ± 2.0% to 84.4 ± 2.0% (p = 0.0025). The average false positive rate increased slightly 

from 0.17 FP nodules/scan to 0.28 FP nodules/scan (p < 0.01) with software use. 

 

Hall 2022,25 UK - Veolity (MeVis) 

Hall’s study25 included all 770 LDCT from the London-based LSUT study. In a MRMC study, two 

radiographers without prior experience in thoracic CT reporting independently read all 770 LDCT 

with concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant 

nodules (≥5 mm). The comparator were the experienced study radiologists (5-28 years of 

experience; 95% of scans read by single readers and 5% by double reading) who had read the CT 

images in clinical practice without software use. The reference standard comprised all nodules 

identified by study radiologists without software, plus consensus radiologist confirmed additional 
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nodules identified by the software-assisted radiographers. At the 5 mm threshold, the per-subject 

sensitivity was 68.0% (102/150) and 73.7% (115/156) for AI-assisted radiographer 1 and 2, 

respectively. Specificity was 92.1% (490/532) and 92.7% (510/550) for reader 1 and 2, respectively. 

The average false positive rate was 7.9% (42/532) and 7.3% (40/550) for reader 1 and 2, 

respectively, using concurrent AI. The sensitivity was 91.1% (144/158) for the unaided experienced 

radiologists, and the specificity for unaided reading was by definition of the reference standard 

100%. However, 19 scans were excluded from the reference standard that were recalled by the 

original radiologists but contained nodules below the BTS guideline size threshold for warranting 

surveillance. Therefore, the specificity of the unaided radiologists to identify people without 

actionable nodules was 96.7% (558/577).  

 

• Symptomatic population (1 study) 

Kozuka 2020,57 Japan - InferRead CT Lung (Infervision) 

Kozuka et al.57 randomly selected 120 chest CT images (117 cases included in analysis) from cases 

with lung cancer suspicion. They performed a MRMC study with two less experienced radiologists 

(one and five years of experience). The pooled per-nodule sensitivity for the detection of nodules ≥6 

mm was 51.9% (219/422) with vs 38.9% (164/422) without software support (calculated by 

reviewers; no level of significance reported). 

 

• Mixed population (1 study) 

Murchison 2022,31 UK - Veye Lung Nodules (Aidence) 

Murchison’s study31 used CT studies from a routine clinical population in a single academic hospital 

(Royal Infirmary of Edinburgh, Edinburgh, UK), between January 2008 and December 2009. Two 

thoracic radiologists (≥9 years’ experience) participated in a MRMC study. Two datasets were created 

from the 337 CT scans: one set with AI results and one set without AI results. Reader 1 reviewed all 

the CT scans, but half of the CT scans with the AI results and the other half without AI results. For 

reader 2 this was vice versa. Hence, each CT scan was reviewed twice, once by one reader with the AI 

results and once by the other reader without the use of AI. The sensitivity for detecting actionable 

nodules (5-30 mm) was 80.3% (95% CI 75.2-85.0%) with and 71.7% (95% CI 66.0-77.0%) without 

software use (p < 0.01), with an average number of FP detections per image of 0.16 and 0.11, 

respectively. 
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Assisted 2nd-read AI vs unassisted reader (No study) 

No data available. 

 

3.3.1.3 Accuracy for detecting malignant nodules 

Evidence related to the accuracy for detecting malignant nodules is summarised in Table 10. It is 

worth highlighting that direct detection or classification of malignant nodules by AI assisted reading 

is outside the scope of this assessment. Results presented in this section reflect the performance of 

AI-assisted reading or unassisted reading in identifying malignant nodule through the detection of 

actionable nodules and/or subsequent nodule management based on clinical guidelines following 

nodule detection. 

Only one study52 compared AI-assisted reading with unassisted reading and reported both sensitivity 

and specificity. The study found that sensitivity substantially increased (0.80 vs 0.65) but specificity 

decreased (0.84 vs 0.90) for AI-assisted reading compared with unassisted radiologist reading (Table 

10). False positive detections per image nearly doubled for AI-assisted reading (increased from 0.22 

to 0.39).  

The other five studies generally reported sensitivity of above 0.70 for the detection of malignant 

nodules for AI-assisted reading but did not provide information on specificity or false positive 

detections per image. One study56 reported high sensitivity (0.94) and low specificity (0.39) for 

stand-alone AI (Table 10). More detailed descriptions of the evidence from individual studies are 

provided below. 



108 

 

Table 10. Summary of evidence related to accuracy of AI-assisted reading and stand-alone AI for detecting malignant nodules (6 studies) 

Study, country, image readers Malignant 
nodules/ 
total scans 

Measure of 
accuracy a 

Index test b Comparator b Difference P value for 
difference 

Screening population 

Lo 2018,52 USA 
12 general radiologists (6-26 yrs) 

95/324 Sensitivity [C]: 0.800 (SD 0.039) [D]: 0.647 (SD 0.039)  0.154  
(0.082 to 0.225) 

<0.0001 

  Specificity [C]: 0.844 (SD 0.020) [D]: 0.899 (SD 0.020) -0.055  
(-0.090 to -0.019) 

0.0025 

  False positive 
detections per 
image 

[C] 0.39 [D] 0.22 0.17 (NR) <0.01 

Park 2022,65 USA/South Korea 
5 chest radiologists (1-20 yrs) 

31/200 Sensitivity [C]: 0.916  
(0.817 to 0.964) 

[D]: 0.852  
(0.742 to 0.920) 

 0.064 (NR) 0.004 

Hwang 2021a,49 South Korea 27/4666 Sensitivity [A] 0.704  
(0.498 to 0.862) 

NA NA NA 

Hall 2022,25 UK 
2 radiographers 

33/716 Sensitivity c [C] 0.857  
(0.746 to 0.933) e 

NA NA NA 

Mixed population 

Takaishi 2021,55 Japan 1/61 Sensitivity [C] 1.00 d [D] 1.00 d 0 NR 

3 radiologist (2-8 yrs)  PPV [C] 0.020 (1/49) [D] 0.024 (1/42) -0.004 NR 

Wan 2020,56 Taiwan 47/50 Sensitivity [A] 0.936  
(0.825 to 0.987) 

NA NA NA 

  Specificity [A] 0.393  
(0.215 to 0.594) 

NA NA NA 

 

Numbers shown in brackets are 95% confidence intervals unless otherwise stated. NA: not applicable; NR: not reported; PPV: positive predictive value; SD: standard deviation 

Technologies evaluated in the studies: Hall 2022: Veolity; Hwang 2021a: AVIEW LCS+; Lo 2018 & Takaishi 2021: ClearRead CT; Park 2022: VUNO Med-LungCT AI; 
a Data shown are based on per nodule analysis unless otherwise indicated. 
b [A]: Stand-alone AI; [C]: Concurrent AI; [D]: Unassisted reader.  
c Per scan analysis 
d Only included one malignant nodule, which was detected by both concurrent AI and unaided reader. 
e Calculated by review authors based on data provided in the original article. 
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a) Comparative results (3 studies) 

Three comparative studies52, 55, 65 evaluated the accuracy for detecting malignant nodules. Of these, 

two included a screening population,52, 65 and one included a mixed population.55   

 

Concurrent AI vs unassisted reader (3 studies) 

• Screening population (2 studies) 

Lo 2018,52 USA - ClearRead CT (Riverain Technologies) 

The study by Lo et al.52 included 324 LDCT (including 95 lung cancer cases) from the US-based NLST 

and two US hospitals; images with nodules (5-44 mm) and without nodules were selected in a ratio of 

2:1. Twelve general radiologists certified by the American Board of Radiology (with 6–26 years of 

experience) participated in a MRMC study. The study found a 15.4% (95% CI 8.2% to 22.5%; p = 2.50 

x 10-5) higher sensitivity (80.0 ± 3.9% vs 64.7 ± 3.9%) and −5.5% (95% CI −9.0% to −1.9%; p = 0.0025) 

lower specificity (84.4 ± 2.0% vs 89.9 ± 2.0%) in the detection of malignant nodules with concurrent 

AI compared to unaided reading. The number of false detections per image increased from 0.22 with 

unaided reading to 0.39 with concurrent AI use (p < 0.01). 

 

Park 2022,65 USA, Korea - VUNO Med-LungCT AI (VUNO) 

Park et al. included a nodule- and cancer-enriched screening population (200 baseline LDCT; 31 cancer 

cases) selected from the US-based NLST dataset.65 Five readers participated in the MRMC study. They 

consisted of one 4th-year radiology resident and four board-certified radiologists with 1, 4, 8, and 20 

years of experience in chest radiology from the Asan Medical Center in Seoul (South Korea). The 

pooled sensitivity to detect malignant nodules was 91.6% (95% CI 81.7-96.4%) with and 85.2% (95% 

CI 74.2-92.0%) without software use (p = 0.004).  

 

• Mixed population (1 study) 

Takaishi 2021,55 Japan - ClearRead CT (Riverain Technologies) 

Takaishi et al.55 performed a retrospective analysis of 61 thoracic or thoracic-abdominal unenhanced 

CT images (including one cancer case) produced at Konan Kosei hospital during September 2019. The 

MRMC study assessed the nodule detection accuracy of three radiologists (8, 6 and 2 years’ 

experience, respectively) with and without software support. The sensitivity for detecting malignant 

nodules was 100% (1/1) for both AI-assisted and unassisted readers, respectively. The PPV was 2.4% 
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(1/42) without and 2.0% (1/49) with software use (average of 3 readers) (no level of significance 

reported). 

 

Assisted 2nd-read AI vs unassisted reader (No study) 

No data available. 

 

 

3.3.1.4 Potential effect modifiers of nodule detection accuracy (Sub-question 1). 

a) Sub-question 1-1: Effect of contrast use 

 No subgroup analysis based on contrast use was performed. 

 

b) Sub-question 1-2: Effect of radiation dose (2 studies) 

Two studies performed in mixed populations from China58 and Taiwan,51 respectively, assessed the 

effect of radiation dose on nodule detection. 

 

Mixed population - ClearRead CT (Riverain Technologies) (1 study) 

The study by Hsu et al.51 reported accuracy results for the detection of any nodules for both 

standard dose CT and low dose CT (Table 11). It included 150 consecutive cases with lung nodules ≤1 

cm or no nodules (93 standard dose CT images from clinical routine and 57 LDCT from lung cancer 

screening). Six readers participated in the MRMC study: three residents in radiology (junior group) 

and three experienced chest radiologists (senior group). For both AI-assisted and unaided reading, 

there was no significant difference between standard dose and LDCT in terms of the mean 

sensitivity, specificity, and AUC for both junior and senior readers and all readers (p > 0.05). 
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Table 11. Accuracy for the detection of any nodules in standard dose and low dose CT scans 
according to Hsu et al.51 

 Dose of CT Total scans Total nodules Per-nodule 
sensitivity, % 

(95% CI) 

Per-patient 
specificity, % 

(95% CI) 

Assisted 2nd-
read AI 

Standard dose 93 222 83 (81-85) 87 (84-87) 

Low dose 57 118 80 (77-83) 82 (79-84) 

Concurrent AI Standard dose 93 222 81 (79-83) 83 (83-87) 
 Low dose 57 118 79 (76-81) 82 (78-84) 

Unaided 
reading 

Standard dose 93 222 63 (61-66) 80 (79-83) 

Low dose 57 118 63 (59-66) 72 (74-80) 

CI, Confidence interval; CT, Computed tomography. 

 

Mixed population – InferRead CT Lung (Infervision) (1 study) 

The study by Liu et al. evaluated 187 LDCT and 942 standard-dose CT images (SDCT).58 The deep 

learning-based algorithm (InferRead CT Lung, Infervision) showed no dose-level dependence of 

nodule detection sensitivity (x2 = 1.1036, p = 0.9538). The same result was observed for the two 

unaided radiologists (radiologist 1: x2 = 1.6562, p = 0.8944; radiologist 2: x2 = 1.5293, p = 0.9097). 

The false-positive rate of the stand-alone software was also independent of the dose (x2 = 0.5640, p 

= 0.4527). 

 

c) Sub-question 1-3: Effect of nodule type (7 studies) 

Screening population - Concurrent AI vs unaided reader (2 studies) 

Two studies54, 59 reported detection accuracy for concurrent AI and unaided for different type of 

nodules (Table 12).  

 

Zhang et al.59 included 860 consecutive patients who underwent chest CT from November to 

December 2019 at one Chinese hospital as part of the Netherlands-China Big-3 disease screening 

(NELCIN-B3) project. One resident drafted the diagnostic report, and a board-certified radiologist 

supervised the final version without software use in clinical practice or with concurrent software use 

(InferRead CT Lung, Infervision) under laboratory conditions. The per-subject sensitivity of AI-

assisted readers was 98.8% (95% CI 96.5-99.8%) for solid nodules, 100.0% (95% CI 75.3-100.0) for 

part-solid nodules and 99.1% (95% CI 95.1-99.9%) for GGNs. For the unaided readers in clinical 

practice, the per-subject sensitivity was 52.4% (95% CI 46.0-58.7%) for solid nodules, 23.1% (95% CI 

5.0-53.8%) for part-solid nodules, and 25.2% (95% CI 17.5-34.4%) for GGNs.  
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The per-subject specificity with concurrent software use was 99.2% (95% CI 98.1-99.7%) for solid, 

100.0% (95% CI 99.6-100.0%) for part-solid and 98.8% (95% CI 97.7-99.5%) for GGNs. Without 

software use, the per-subject specificity was 100.0% (95% CI: 99.4-100.0%) for solid, 100.0% (95% CI 

99.6-100.0%) for part-solid and 100.0% (95% CI 99.5-100.0%) for GGNs.  

With concurrent software use, the per-subject sensitivity and specificity seems not to vary by nodule 

type (95% CIs overlap), whereas without software use, the per-subject sensitivity for the detection of 

solid nodules seems to be higher than for part-solid nodules (95% CIs overlap though) and GGNs (no 

overlap in 95% CIs). Concurrent software use seems to result in bigger sensitivity improvements for 

part-solid nodules (+76.9%) and GGNs (+73.9%) than for solid nodules (+46.4%).  

 

Singh et al.54 selected 150 LDCT from the NLST: the first 125 patients with mixed attenuation or 

GGNs and the first 25 patients with no nodules. Two radiologists (with 5 and 10 years of thoracic CT 

experience) participated in a MRMC study to detect nodules ≥6 mm on vessel-suppressed CT images 

(ClearRead Vessel Suppression, Riverain Technologies) as well as on standard CT images. The 

evaluated software did not possess nodule detection function though. The study reported mean per-

nodule sensitivities of 76% for part-solid and 67% for GGNs on vessel-suppressed CT images. On 

standard CT images, the mean per-nodule sensitivities were 70% for part-solid and 67% for GGNs. 

The mean specificities were 85% for part-solid nodules and 78.5% for GGNs and 74% for all sub-solid 

nodules on vessel-suppressed CT images (there might have been a mix up in the table of the article 

though!). On standard CT images, the mean specificities were 76% for part-solid nodules, 84% for 

GGNs and 77.5% for all sub-solid nodules. 

 

Symptomatic population - Concurrent AI vs unaided reader (1 study) 

Kozuka et al.57 reported the per-nodule sensitivity of concurrent AI and unaided readers by nodule 

type (Table 13). This study was a retrospective analysis of 120 randomly selected chest CT images 

(117 cases included in analysis) from cases with lung cancer suspicion. Two less experienced 

radiologists (one and five years of experience) assessed the CT images with and without software 

use (InferRead CT Lung, Infervision). With software use, the pooled per-nodule sensitivities were 

32.6% (95% CI 29.8-35.6%) for solid, 58.4% (95% CI 49.5-67.0%) for part-solid and 40.1% (95% CI 

32.7-47.9%) for GGNs. In the unaided reading session, the pooled per-nodule sensitivity was 18.6% 

(95% CI 16.3-21.1%) for solid, 31.5% (95% CI 23.7-40.3%) for part-solid nodules and 18.0% (95% CI 

12.6-24.6%) for GGNs. 
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In contrary to the findings by Zhang et al.,59 the study by Kozuka et al. observed higher pooled per-

nodule sensitivities for part-solid nodules than for solid and GGNs, both with and without software 

use. Software use improved the pooled sensitivities by +14.0% for solid (p < 0.01), +26.9% for part-

solid (p < 0.01), and +22.1% for GGNs (p < 0.01) compared to the pooled unaided readers. 

 

Symptomatic population - Stand-alone AI vs unaided reader (1 study) 

Kozuka et al.57 reported per-nodule and per-patient accuracy for stand-alone AI and unaided readers 

by nodule type (Table 13). This study was a retrospective analysis of 120 randomly selected chest CT 

images (117 cases included in analysis) from cases with lung cancer suspicion. Two less experienced 

radiologists (one and five years of experience) assessed the CT images with and without software 

use. For stand-alone AI (InferRead CT Lung, Infervision), the study observed per-nodule sensitivities 

of 68.1% (95% CI 63.9–72.1%) for solid, 70.8% (95% CI 58.2–81.4%) for part-solid and 72.1% (95% CI 

61.4–81.2%) for GGNs. For the unaided readers, the pooled per-nodule sensitivity was 18.6% (95% CI 

16.3-21.1%) for solid, 31.5% (95% CI 23.7-40.3%) for part-solid nodules and 18.0% (95% CI 12.6-

24.6%) for GGNs.
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Table 12. Effect of nodule type on nodule detection accuracy in screening populations - Concurrent AI vs unaided reader (2 studies) 

Author / Year, 
Software  

Nodule type # scans 
  

# nodules 
  

Sensitivity, %  
(95% CI) 

Specificity, %  
(95% CI) 

Concurrent CAD Unaided reader Concurrent CAD Unaided reader 

Zhang 2021,59  
InferRead CT Lung 
(Infervision)  

Solid nodules 250  NR 98.8 (96.5-99.8) 52.4 (46.0-58.7) 99.2 (98.1-99.7) 100.0 (99.4-100) 
Part-solid nodules 13  NR 100.0 (75.3-100) 23.1 (5.0-53.8) 100.0 (99.6-100) 100.0 (99.6-100) 
Ground glass nodules 111 NR 99.1 (95.1-99.9) 25.2 (17.5-34.4) 98.8 (97.7-99.5) 100.0 (99.5-100) 

Singh 2021,54 
ClearRead Vessel 
Suppression (Riverain 
Technologies)  

Sub-solid nodules NR  310  73 68 74 77.5 
Part-solid nodules NR  154  76 70 85 76 
Ground glass nodules NR 156 67 67 78.5 84 

CAD, Computer-aided detection; CT, Confidence interval; NR, Not reported. 

 

Table 13. Effect of nodule type on nodule detection accuracy in a symptomatic population - Concurrent AI / stand-alone AI vs unaided reader (1 study) 

Author / Year, 
Software  

Nodule type # scans # nodules 
  

Per-nodule sensitivity, %  
(95% CI) 

Stand-alone AI Concurrent AI 
(pooled 2 readers) 

Unaided reader 
(pooled 2 readers) 

Kozuka 2020,57 
InferRead CT Lung 
(Infervision)  

Solid nodules NR 518  68.1 (63.9-72.1) 32.6 (29.8–35.6)* 18.6 (16.3–21.1) 

Part-solid nodules NR 65  70.8 (58.2–81.4) 58.5 (49.5–67.0)* 31.5 (23.7–40.3) 

Ground glass nodules NR 86  72.1 (61.4–81.2) 40.1 (32.7–47.9)* 18.0 (12.6–24.6) 

AI, Artificial intelligence; CI, Confidence interval; NR, Not reported. 

* p < 0.01 versus unaided reader.
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Screening population - Stand-alone AI (2 studies) 

Hwang et al.49 included 4,666 participants who had undergone lung cancer screening as part of the 

K-LUCAS project after the implementation of the software AVIEW Lungscreen (Coreline Soft). The 

per-nodule sensitivity of stand-alone AI was 51% (95% CI 50-53%) for solid nodules, 49% (95% CI 36-

61%) for part-solid nodules and 21% (95% CI 16-29) for GGNs (Table 14). 

 

The study by Lo et al.52 included 324 LDCT (including 95 lung cancer cases) from the US-based NLST 

and two US hospitals; images with nodules (5-44 mm) and without nodules were selected in a ratio 

of 2:1. The per-nodule sensitivities of stand-alone AI (ClearRead CT, Riverain Technologies) were 

84%, 85% and 67% for solid, part-solid and GGNs, respectively (Table 14). 

 

Table 14. Effect of nodule type on nodule detection accuracy in screening population - Stand-alone 
AI (2 studies) 

Author / Year, 
Software 

Nodule type # scans # nodules Sensitivity, % 
(95% CI) 

Hwang 2021,49 
AVIEW Lungscreen 
(Coreline Soft) 

Solid nodules NR 4,032 51 (50-53) 

Part-solid nodules NR 70 49 (36-61) 

Ground glass nodules NR 178 21 (16-29) 

Lo 2018,52 
ClearRead CT  
(Riverain Technologies) 

Solid nodules NR 119 84 

Part-solid nodules NR 35 85 

Ground glass nodules NR 24 67 

CI, Confidence interval; NR, Not reported. 

 

Mixed population - Stand-alone AI alone (1 study) or versus unaided reader (1 study) 

Liu et al.58 reported the per-nodule sensitivity of stand-alone AI (InferRead CT Lung, Infervision) as 

well as for two unaided readers for detecting nodules by type and size on conventional dose and low 

dose CT scans (Table 15). On LDCT, the per-nodule sensitivity of stand-alone AI was 71.9% for solid 

nodules ≤6 mm and 88.6% for solid nodules >6 mm. With standard dose, the per-nodule sensitivity 

was 64.4% for solid nodules ≤6 mm and 87.9% for solid nodules >6 mm. When looking at sub-solid 

nodules, the study observed that stand-alone software correctly detected 61.3% of nodules ≤5 mm 

and 85.2% of nodules >5 mm on LDCT. With standard dose, the per-nodule sensitivity was 68.1% for 

sub-solid nodules ≤5 mm and 81.1% for sub-solid nodules >5 mm. 
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Martins et al.64 randomly selected 145 patients with 145 CT images from a large teaching hospital in 

the Netherlands. They reported 89.0% (65/73), 81.3% (13/16) and 100% (2/2) per-nodule sensitivity 

of stand-alone software (Veye Chest, Aidence) to detect solid, sub-solid and mixed (solid/sub-solid) 

nodules, respectively (Table 15).
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Table 15. Effect of nodule type on nodule detection accuracy in mixed populations - Stand-alone AI alone (1 study) or vs unaided readers (1 study) 

Author / Year, 
Software 

Nodule size and dose Nodule type # nodules Per-nodule sensitivity, % 

Stand-alone AI Unaided Reader 1 Unaided Reader 2 

Liu 2018,58 
InferRead CT Lung 
(Infervision) 
 
 
 
 
 
  

>6 mm, Conventional dose Solid nodules 215 87.9 77.2 69.3 

≤6 mm, Conventional dose Solid nodules 2,680 64.4 36.1 50.3 

>6 mm, Low dose Solid nodules 44 88.6 93.2 81.8 

≤6 mm, Low dose Solid nodules 719 71.9 41.7 49.8 

>5 mm, Conventional dose Sub-solid nodules 371 81.1 58.2 85.2 

≤5 mm, Conventional dose Sub-solid nodules 993 68.1 26.2 56.9 

>5 mm, Low dose Sub-solid nodules 61 85.2 67.2 82.0 

≤5 mm, Low dose Sub-solid nodules 333 61.3 22.5 56.2 

Martins Jarnalo 2021,64 
Veye Chest (Aidence)  

4-30 mm 
4-30 mm 
4-30 mm 

Solid nodules 73 89.0 NA NA 

Sub-solid 16 81.3 NA NA 

Mixed (solid / sub-solid) 2 100.0 NA NA 
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d) Sub-question 1-4. Effect of patient’s ethnicity 

 No subgroup analysis based on ethnicity was performed.  

 

e) Sub-question 1-5. Effect of radiologist speciality & experience (1 study) 

Hsu 2021,51 Taiwan - ClearRead CT (Riverain Technologies) 

The study in a mixed population (with data for the screening subgroup reported separately) reported 

accuracy for detecting any nodules by concurrent AI compared with unaided reader for three 

residents in radiology (junior group; 1-2 years of CT experience and at least 6 months of chest CT 

experience) and three experienced chest radiologists (senior group; 5, 10 and 25 years of 

experience, respectively) separately. In the junior group, mean per-nodule sensitivity increased 

significantly from 52% (95% CI 47-57%) without software use to 74% (95% CI 70-78%) with 

concurrent AI (p < 0.001). The mean specificity did not change significantly and was 74% (95% CI 70-

78%) with vs 68% (95% CI 64-73%) without software use (p = 0.442). In the senior group, the mean 

per-nodule sensitivity increased significantly with concurrent software use from 73% (95% CI 69-

77%) to 83% (95% CI 79-86%) (p < 0.01). The mean specificity was 88% (95% CI 85-91%) with and 

86% (95% CI 83-90%) without software use (p = 0.795). 

 

f) Sub-question 1-6: For the incidental population, effect of reason for CT scan  

No study was identified that has examined accuracy of nodule detection by AI according to reasons 

for CT scan in incidental population. 

 

3.3.1.5 Sub-question 2: Concordance and variability in nodule detection 

a) Concordance between readers with and without software (1 study) 

No study was identified that reported on the concordance in nodule detection between readers with 

and without software use. However, one study reported on the percentage agreement in nodule 

detection between stand-alone AI and the original unaided reading.45  

 

Mixed population – AI-RAD Companion CT Chest (Siemens Healthineers) (1 study) 
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Abadia et al. found that across all included patients and lung conditions, the percentage of nodules 

found by the AI-RAD software that were also in the original radiology reports (original reading 

performed in clinical practice by one of five expert chest radiologists) was 75.8% (138/182).45 The 

highest agreement in nodule detection between AI-RAD software and the original radiology reports 

was achieved in the sub-population with pulmonary embolism (87.2%; 34/39) and was lowest for 

patients with oedema (63.6%; 28/44). 

 

b) Concordance between readers using different software (No study) 

No study was identified that evaluated the agreement in nodule detection between readers using 

different AI-based software packages. 

 

c) Intra-observer and inter-observer variability (1 study) 

One study reported on the inter-reader variability between unaided readers in the detection of the 

risk-dominant nodule.54 

 

Screening population – Unaided readers (1 Study) 

The MRMC study by Singh et al. found a Cohen’s Kappa for the detection of the risk-dominant 

nodule between the two unaided radiologists of 0.63. Inter-observer agreement between the 

software-assisted radiologists assessing vessel-suppressed CT images (ClearRead CT, Riverain 

Technologies) was not reported. 
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3.3.2 Nodule type determination 

3.3.2.1 Accuracy  

No study was identified that compared the accuracy in nodule type determination between readers 

with and without software use. Non-comparative evidence is shown in Appendix 13.5.4. 

 

3.3.2.2 Sub-questions 1 to 6: Potential factors influencing nodule type determination 

No data were available to perform subgroup analyses of nodule type determination accuracy based 

on contrast use, dose, nodule type, patient’s ethnicity, radiologist speciality or reason for CT scan in 

the incidental population. 

 

3.3.2.3 Sub-question 2: Concordance and variability in nodule type determination  

a) Concordance between readers with and without software (No study) 

No studies were identified. 

 

b) Concordance between readers using different software (No study) 

No studies were identified. 

 

c) Intra-reader and inter-reader variability (2 studies) 

Two MRMC studies were identified that reported on the inter-reader variability in nodule type 

determination in nodule-enriched screening populations in readers with and without software use.62, 

65 Both studies found that software use did not affect the proportion of disagreements in nodule 

type between the readers. 

 

Screening population – Veolity (MeVis) (1 study) 

Jacobs et al.62 found that the proportion of Lung-RADS disagreements due to different nodule type 

between seven readers was 1% (44/3,360 possible reader pairs; 21 readers pairs x 160 cases) when 
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using the dedicated CT lung screening viewer with Veolity software and was also 1% (37/3,360 

possible reader pairs) when using the standard PACS viewer. 

 

Screening population – VUNO Med-Lung CT AI (VUNO) (1 study) 

Park et al.65 reported that for all 2,000 possible paired observations among the five readers (10 

reader pairs x 200 cases), the proportion of discordant pairs caused by different nodule type were 

similar between the sessions with (3.6%, 71/2,000) and without (3.4%, 68/2,000) software use 

(p=0.85). 

 

3.3.3 Nodule diameter measurement 

3.3.3.1 Accuracy of measurement (3 studies) 

Three studies compared diameter measurements of stand-alone software54, 64 or readers with 

concurrent software use53 to the measurements of a reference standard. The studies were 

performed in a screening population,54 a mixed population64 and a population with unclear 

indication for the chest CT scan,53 respectively. Results on the diameter measurement accuracy of 

stand-alone software are inconsistent with one study reporting significantly smaller nodule 

diameters measured by the software,53 while the other study reported that in 83% of size 

disagreements, the nodule size was overestimated by the software.64 Substantial agreement with 

the reference standard was reported for semi-automated longest diameters measured on vessel-

suppressed CT images in the third study.53 

 

Table 16. Main findings, risk of bias, applicability concerns and input into modelling 

Study, AI 
software, 
country 

Population, 
design & sample 

Main findings  Risk of bias (RoB), applicability 
concerns (AppC) & input into 
modelling (Model) 

Singh 202154 

ClearRead CT 

USA 

Screening,  

MRMC,  

nodule-enriched 
sample, 

Risk-dominant 
sub-solid nodule 
(n=100) 

Average diameter a 

Stand-alone AI: 

Mean 12, SD 3 mm 

Radiologist consensus: b 

Mean 14, SD 5 mm 

P=0.02 

RoB: Research setting; excluded scans 
which could not be processed by the 
software (n=27) 

AppC: Research setting; sub-solid 
nodules only 

Model: no; Stand-alone AI rather than 
concurrent AI 
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Study, AI 
software, 
country 

Population, 
design & sample 

Main findings  Risk of bias (RoB), applicability 
concerns (AppC) & input into 
modelling (Model) 

Martins Jarnalo 
202164 

Veye Chest 

Netherlands 

Mixed,  

retrospective test 
accuracy study,  

randomly 
selected sample,  

80 nodules (all 
nodule types, 4-
30 mm). 

Diameter measurements 

Stand-alone AI vs unaided 
radiologist consensus: d 

Agreement (same 
millimetre):  

67.5% (54/80) 

+1 mm: 20.0 % (16/80) 

+2 mm: 2.5% (2/80) 

+4 mm: 1.25% (1/80) 

-1 mm: 2.5% (2/80) 

-2 mm: 2.5% (2/80) 

Failure: 3.75% (3/80) 

RoB: research setting; scans with >5 
nodules were excluded. 
AppC: single hospital; stand-alone AI 
rather than concurrent AI 
Model: yes, through EAG simulation. 
Randomly selected nodules covering 
all types; reported breakdown of 
discrepancies (differing by 1, 2 and 4 
mm) between measurements by 
stand-alone AI and unaided 
radiologists, which allow 
measurement accuracy (bias) and 
precision (variation) of concurrent AI 
and unaided reading to be derived 
with some assumption (see section 
13.8.1.4)    

Milanese 201853 

ClearRead CT 
for vessel 
suppression; 

MM Oncology 
for semi-
automatic 
measurement 

Switzerland 

Unclear,  

MRMC,  

consecutive 
sample,  

65 solid nodules 

Lin’s concordance 
correlation coefficient 
(CCC) vs average of semi-
automatic measurement 
on standard CT images: c 

Radiologist 1 on vessel-
suppressed CT: 0.967  

Radiologist 2 on vessel-
suppressed CT: 0.960 

RoB: Research setting; index test 
readers are part of the reference 
standard 

AppC: Research setting; population 
characteristics unclear; solid nodules 
only; radiologists <5 years of 
experience; AI software only used for 
vessel suppression, not for 
measurement 

Model: no; Lin’s CCC does not allow 
the derivation of relative 
measurement accuracy or precision 

AppC: applicability concerns; EAG: External assessment group; MRMC: multi-reader, multi-case study; RoB: 
Risk of bias; SD: standard deviation. 

a [maximum dimension of the nodule in mm + orthogonal dimension in mm]/2 
b Reference standard; consensus of two experienced chest radiologist, with a third experienced radiologist 
resolving discrepancies 
c Compared with reference standard, which was the average semi-automatic measurements by the two 
readers on standard CT images (without AI for vessel-suppression). Radiologists 1 and 2 had 3 and 1 year of 
experience in chest CT, respectively. 

 

a) Non-comparative results (3 studies) 

Screening population – ClearRead CT (Riverain Technologies) (1 study) 

In a nodule-enriched screening population, Singh et al. found that for the same risk-dominant, sub-

solid nodule (n=100), the average diameter ([maximum dimension of the nodule in mm + orthogonal 

dimension in mm]/2) estimated by the stand-alone software was significantly smaller (mean 12, SD 3 

mm) compared to the reference standard measurement obtained by consensus reading of two 
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experienced chest radiologists, with a third experienced radiologist resolving discrepancies (mean 

14, SD 5 mm) (p=0.02).54  

 

Mixed population – Veye Chest (Aidence) (1 study) 

Martins Jarnalo et al. compared the diameter measurements of stand-alone software (Veye Chest, 

Aidence) to a reference standard of consensus reading of one experienced radiologist and one 

resident radiologist, with discrepancies resolved by a third experienced chest radiologist.64 In 80 

nodules (all nodule types, 4-30 mm), the agreement (same millimetre) between the software 

measurement and the reference standard was 67.5% (54/80). Of the size discrepancies that were 

not due to software segmentation failures (23/26), 82.6% (19/23) were measured larger than the 

reference standard: 16 nodules were measured 1 mm larger, two nodules were measured 2 mm 

larger, and one nodule was measured 4 mm larger. Four out of 23 (17.4%) nodules were measured 

smaller than the reference standard: two nodules were measured 1 mm smaller, and another two 

nodules were measured 2 mm smaller. For most of the 1 mm size discrepancies, the reason is not 

clear. For three nodules (1, 2, and 4 mm discrepancy) an adjacent artery was also measured by the 

software. For one nodule with 2 mm discrepancy, the measurement was performed on the wrong 

section; for one (2 mm discrepancy) a subsolid part of the nodule was not measured; for one (1 mm 

discrepancy) there were surrounding spiculae, and another (2 mm discrepancy) was a cavitating 

nodule. 

 

Unclear indication for CT scan – ClearRead CT (Riverain Technologies) (1 study) 

Milanese et al. reported on 65 solid nodules measured independently by one radiologist (3 years of 

experience in chest CT) and one radiology resident (1 year of experience in chest CT) using the semi-

automatic segmentation software "MM Oncology" (Siemens Healthcare) on vessel-suppressed 

(ClearRead CT, Riverain Technologies) as well as on standard CT images, with the average of the 

longest diameters measured on standard CT images by the two readers used as reference 

standard.53 To determine the reliability between the performed measurements, Lin’s concordance 

correlation coefficient (CCC) was calculated between each reader’s measurement and the reference 

standard measurement. For semi-automated longest diameters measured on vessel-suppressed CT 

images, Lin’s CCC was 0.967 for Reader 1 and 0.960 for Reader 2 (Lin’s CCC ranges from 0 to ±1; with 

values near 1 meaning perfect concordance). 
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3.3.3.2 Sub-questions 1 to 6: potential factors associated with nodule diameter measurement 

accuracy and precision 

No data were available to perform subgroup analyses based on contrast use, dose, nodule type, 

patient’s ethnicity, radiologist speciality or reason for CT scan in the incidental population was 

performed. 

 

3.3.3.3 Sub-question 2: Concordance and variability in nodule diameter measurement  

a) Concordance between readers with and without software (4 studies) 

One study was identified that evaluated the concordance of nodule diameter measurements 

between readers with and without software in patients with previously detected sub-solid nodules 

(surveillance population with applicability concerns).61 Another three studies reported on the 

concordance of stand-alone software measurements compared to manual diameter measurements 

in mixed populations.31, 45, 56  

The studies found similar56, 61 or significantly larger45 nodule diameters with semi-automatic 

measurements compared to manual measurements. Two studies reported a significant correlation 

between the measurements.45, 56 One study concluded that the segmentation of pulmonary nodules 

of stand-alone software and the resulting diameter measurements are comparable to manual 

measurement performed by experienced thoracic radiologists.31 

 

Surveillance population with applicability concerns – Veolity (MeVis) (1 study) 

Kim et al. included 89 patients with sub-solid nodules who underwent preoperative non-enhanced 

CT and subsequent surgical resection.61 The diameter of the 102 sub-solid nodules was not 

statistically different between the semi-automated and manual measurements (p>0.05 for both 

readers; paired t-test or Wilcoxon’s test, as appropriate). When looking at the diameter 

measurement of the solid portion only, significant differences were observed between semi-

automated and manual measurements for Reader 1 (6.3±4.9 mm vs 6.3±4.9 mm, p<0.001) and the 

second read of Reader 2 (6.5±5.0 mm vs 5.9±4.5 mm, p<0.001), with semi-automated diameter 

measurements being larger than manual measurements. 
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Mixed population - AI-RAD Companion Chest CT (Siemens Healthineers) (1 study) 

Abadia et al. found that for the 233 nodules ≥4 mm detected by both stand-alone AI-RAD 

Companion Chest CT (Siemens Healthineers) and the unaided expert radiologist, the software 

measured the nodule diameter on average 19.7% larger (mean difference 1.7 mm), with these 

nodules yielding a median size of 8.6 mm (IQR 6.5 to 11.5) by AI-RAD and 6.6 mm (IQR 5.0 to 9.5) by 

the expert radiologist (p<0.0001).45 However, the size measurements between the software and the 

expert radiologist were also significantly correlated (ρ=0.821, p<0.0001).  

 

Mixed population - Veye Chest (Aidence) (1 study) 

The UK-based reader study by Murchison et al. included a mixed population of 314 current or ex-

smokers and/or those with radiological evidence of emphysema between 55 and 74 years, 

mimicking a screening population.31 Two or three independent expert chest radiologists performed 

manual nodule segmentation using Apple Pencil. The segmentation overlap between each individual 

reader’s segmentation and the software’s (Veye Chest, Aidence) segmentation was calculated as the 

Dice coefficient (a value of 1 means 100% overlap and a value of 0 means 0% overlap) and averaged. 

For 95% of the 428 nodules between 3-30 mm, for which the software was able to create a 

segmentation, the average Dice coefficient for nodule segmentation between software alone and 

radiologists was 0.86 (95% CI 0.51, 0.95). From each segmentation, the largest axial diameter was 

obtained, and the diameter difference between each individual reader and Veye Chest software was 

calculated. The geometric mean difference between Veye Chest and the radiologist’s measurement 

was 1.17 mm (95% CI 1.01 to 1.69), which was similar to the geometric mean difference observed 

between the individual expert radiologists (1.15 mm [95% CI 1.00, 1.58]). 

 

Mixed population - ClearRead CT (Riverain Technologies) (1 study) 

Wan et al. included LDCT images from 50 Taiwanese patients with mixed indications who had 

subsequent excision of their nodule(s).56 The study found that in 61 nodules ≤2 cm (13 solid, 20 part-

solid, 28 ground glass nodules) detected and measured by the software ClearRead CT (Riverain 

Technologies), there was no significant difference in diameters measured manually by two 

experienced radiologists in consensus or by the stand-alone software (7.83 ± 3.06 mm versus 8.13 ± 

3.49 mm, mean ± SD, p = 0.624) with a Pearson correlation coefficient of 0.926. 
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b) Concordance between readers using different software (No study) 

No study was identified that reported on the concordance between readers using different AI-based 

software or between different AI-based software without human involvement for nodule diameter 

measurements. 

 

c) Intra-observer and inter-observer variability (5 studies) 

Inter-observer variability (5 studies) 

Five MRMC studies were identified that reported on the inter-observer variability in nodule diameter 

measurements.31, 60-62, 65 Three of them compared the inter-reader variability between manual 

diameter measurements and semi-automatic measurements and consistently found reduced 

disagreements in nodule sizes between readers with software use.61, 62, 65 The variability between 

readers using semi-automatic software was similar in CT images reconstructed with filtered back 

projection (FBP) and images reconstructed with model-based iterative reconstruction (MBIR) 

algorithms.60 

 

Screening population – Veolity (MeVis) (1 study) 

The study by Jacobs et al. included a nodule-enriched screening population.62 All seven observers 

read all 160 CT images twice: once in the dedicated CT lung screening viewer including the software 

Veolity (MeVis) and once in the standard viewer without software support. The study found that 

there were 67% (207 vs 68) fewer Lung-RADS category disagreement pairs that were due to different 

nodule diameter measurements when using the dedicated CT lung screening viewer with Veolity 

software. 

 

Screening population – VUNO Med-Lung CT AI (VUNO) (1 study) 

Park et al. included a nodule- and cancer-enriched screening population (200 baseline LDCT) selected 

from the US-based NLST dataset.65 Five readers with varying levels of experience assessed the LDCT 

images with and without concurrent software use (VUNO Med-Lung CT AI). With software use, the 

proportion of disagreements in Lung-RADS category due to different nodule size measurements was 
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reduced from 5.1% (102/2,000) to 3.1% (62/2,000) for all 2,000 possible paired observations among 

the five readers (p < 0.001). 

 

Surveillance population with applicability concerns – Veolity (MeVis) (2 studies) 

Two studies were performed at the same hospital in Korea and included (potentially overlapping) 

surveillance populations with applicability concerns: 8961 and 73 patients,60 respectively, with 

preoperative CT scans for sub-solid nodules. In both MRMC studies, two radiologists with concurrent 

use of the software Veolity (MeVis) independently performed nodule diameter measurements, but 

only one study61 compared semi-automatic with manual diameter measurements. 

Kim et al. found that in 102 sub-solid nodules measured by semi-automated segmentation software, 

the inter-reader variability of two experienced radiologists ranged from -1.9 mm (95% CI -2.3 to -1.6) 

to 2.1 mm (95% CI 1.7–2.4) for the whole nodule diameter and from -2.1 mm (95% CI -2.5 to -1.8) to 

2.1 mm (95% CI 1.7–2.5) for the solid portion diameter.61  With manual measurement, inter-reader 

variability ranged from -2.8 mm (95% CI -3.3 to -2.4) to 2.4 mm (95% CI 2.0 to 2.9) for the whole 

nodule diameter and from -5.1 mm (95% CI -5.7 to -4.4) to 2.8 mm (95% CI 2.1 to 3.5) for the solid 

portion diameter. The inter-reader variability of semi-automatic measurement was significantly 

lower than those of manual measurement for both the whole nodules as well as the solid portion 

diameters (p<0.001 for all). 

Cohen et al. compared semi-automatic measurement using CT images reconstructed with FPB and 

MBIR reconstruction algorithm. This study did not include a ‘manual measurement’ comparator. 

Regarding the semi-automatic measurement of the longest diameter of the whole sub-solid nodule 

(n=66), the absolute and relative mean differences between the two readers were 0.48 mm and 

3.3%, respectively, with FBP reconstruction algorithm, and 0.24 mm and 2%, respectively, with MBIR 

reconstruction algorithm.60 For the diameter of the solid component of the sub-solid nodules, the 

absolute and relative mean differences between the two readers were 0.01 mm and 6.4%, 

respectively, with FBP, and -0.31 mm and -3%, respectively, for MBIR. There were no significant 

differences concerning inter-reader variability between FBP and MBIR reconstructed CT images (p > 

0.05). 

 

Mixed population – Manual measurement (1 study) 
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The UK-based reader study by Murchison et al. included a mixed population of 314 current or ex-

smokers and/or those with radiological evidence of emphysema between 55 and 74 years, 

mimicking a screening population.31 The study reported the inter-reader variability between the 

unaided readers only. Two or three independent expert chest radiologists performed manual nodule 

segmentation using Apple Pencil. In 428 nodules between 3-30 mm, the average inter-reader Dice 

coefficient for nodule segmentation was 0.83 (95% CI: 0.39, 0.96), and the geometric mean diameter 

difference of the largest axial diameter was 1.15 mm (95% CI 1.00, 1.58). 

 

Reproducibility/repeatability (2 studies) 

Two studies reported on the intra-reader variability in nodule diameter measurements in patients 

with previously detected sub-solid nodules.60, 61 The intra-reader variability with semi-automatic 

measurement was significantly lower compared to manual measurement for the whole nodule 

diameter and the solid portion diameter, respectively,61 and was similar between FBP and MBIR 

reconstructed CT images.60 

 

Surveillance population with applicability concerns – Veolity (MeVis) (2 studies) 

The two MRMC studies were both performed at the same hospital in Korea and included (potentially 

overlapping) surveillance populations with applicability concerns: 8961 and 73 patients,60 

respectively, with preoperative CT scans for sub-solid nodules.  

In the study by Kim et al., one experienced radiologist performed the nodule diameter 

measurements twice with concurrent use of the software Veolity (MeVis), and twice without 

software use in 102 sub-solid nodules.61 With semi-automatic measurement, the mean percentage 

relative difference between the two repeated measurements was 2.3% ± 4.9% for the whole nodule 

diameter and 8.9% ± 34.2% for the solid portion diameter. With manual measurement, the mean 

percentage relative difference was 7.0% ± 6.6% for the whole nodule diameter and 17.4% ± 34.3% 

for the solid portion. The intra-reader variability of semi-automatic measurement was significantly 

lower than those of manual measurement for the whole nodule diameter and the solid portion 

diameter, respectively (p<0.001 for all). 

In the study by Cohen et al., two radiologists with four and five years of experience performed the 

semi-automatic measurements with concurrent use of the software Veolity (MeVis), twice on FBP 
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reconstructed CT images and twice on FBIR reconstructed CT images.60 In 66 sub-solid nodules, the 

mean relative difference was -0.59% using FBP and 0.03% using MBIR for the longest diameter of the 

whole nodule (p=0.41). The mean relative difference of the longest diameter of the solid portion was 

-0.17% for FBP and -4.12% for MBIR (p=0.08). Intra-observer variability was similar (p > 0.05) 

between FBP and MBIR reconstructed CT images. 

 

3.3.4 Nodule volume measurement 

3.3.4.1 Accuracy in nodule volume measurement (1 study) 

One MRMC study reported on the accuracy of volume measurement in solid nodules and found 

substantial agreements of semi-automated volumetric measurements in vessel-suppressed CT 

images with the reference standard.53 The percentages of error of semi-automated volumetric 

measurement were similar between standard CT images and vessel-suppressed CT images. 

 

a) Comparative results – Reader with and without software (1 study) 

Unclear indication for chest CT scan – ClearRead CT (Riverain Technologies) (1 study) 

This MRMC study included 93 consecutive patients referred for clinical non-enhanced, LDCT (unclear 

indication for the chest CT scan).53 One radiologist with three years of experience in chest CT and a 

radiology resident independently performed semi-automatic volume measurements of 65 solid 

nodules using the software "MM Oncology" by Siemens Healthcare on vessel-suppressed (ClearRead 

CT, Riverain Technologies) as well as on standard CT images. After the independent reading by the 

two readers, the volumes measured on standard CT images by Reader 1 and Reader 2 for each 

nodule were averaged, and the resulting values acted as reference standard. Agreement of semi-

automatic volumetric measurement with the reference standard was assessed using Lin’s CCC (value 

of 1 meaning perfect concordance and 0 meaning no concordance). Overall, Lin’s CCC was 0.990 for 

Reader 1’s volume measurements and 0.985 for Reader 2’s volume measurements. For central 

nodules, Lin’s CCC was 0.992 for both readers. For peripheral nodules, Lin’s CCC was 0.959 for 

Reader 1 and 0.956 for Reader 2, and for subpleural/perifissural nodules, Lin’s CCC was 0.981 and 

0.960 for Reader 1 and Reader 2, respectively. Regarding nodules adjacent to a vessel, Lin’s CCC was 

0.992 for Reader 1 and 0.990 for Reader 2 on vessel-suppressed CT images and 0.990 for Reader 1 

and 0.992 for Reader 2 on standard CT images. The percentages of error for the volumetric 

measurements compared with the reference standard were not statistically different between 
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standard CT images and vessel-suppressed CT images (p> 0.05 for every pair of datasets). On 

standard CT images, the percentage error was 3.7% for Reader 1 and -2.7% for Reader 2, whereas on 

vessel-suppressed CT images, the percentage volume error was −1.4% for Reader 1 and -6.4% for 

Reader 2. Milanese et al. concluded that vessel-suppressed CT datasets can be used for semi-

automated measurements of solid pulmonary nodules. 

 

3.3.4.2 Sub-questions 1 to 6: Potential factors associated with nodule volume measurement 

No data was available for subgroup analyses to be performed based on contrast use, dose, nodule 

type, patient’s ethnicity, radiologist speciality or reason for CT scan in the incidental population. 

 

3.3.4.3 Sub-question 2: Concordance and variability in nodule volume measurement  

a) Concordance between readers with and without software (1 study) 

No study was identified that reported on the concordance of volume measurements between 

readers with and without software. However, one study evaluated the concordance of volume 

measurements between stand-alone software and unaided readers.31 The study concluded that 

the performance of the software for segmenting pulmonary nodules on chest CT is comparable 

to that of experienced thoracic radiologists. 

 

Mixed population – Veye Chest (Aidence) (1 study) 

The UK-based reader study by Murchison et al. included a mixed population of 314 current or ex-

smokers and/or those with radiological evidence of emphysema between 55 and 74 years, 

mimicking a screening population.31 Nodules were manually segmented (Apple Pencil) by two or 

three experienced thoracic radiologists. Software segmentation was successful in 95% of 428 

nodules of all types between 3-30 mm. The average Dice coefficient between Veye Chest’s and each 

individual radiologist’s segmentation was 0.86 (95% CI 0.51, 0.95). For the volumes derived from the 

segmentation, the geometric mean volumetric difference between the software and each individual 

radiologist was 1.38 mm3 (95% CI 1.01, 3.38), which was similar to the volume difference observed 

between the expert radiologists (1.39 mm3 [95% CI 1.01, 3.19]).  
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b) Concordance between readers using different software or different software without 

human involvement (No study) 

No study was identified that reported on the concordance of volume measurements between 

readers using different AI-based software or between different software without human 

involvement. 

 

c) Intra-reader and inter-reader variability (3 studies) 

Inter-observer variability (3 studies) 

Three MRMC studies reporting on the inter-observer variability in nodule volume measurement 

were identified.31, 53, 60 Between-readers agreement using semi-automatic software was almost 

perfect on both standard CT images as well as vessel-suppressed CT images.53 The inter-reader 

variability of semi-automatic volumetric measurement was similar between FBP and MBIR 

reconstructed CT images.60 The third study only reported inter-observer agreement between 

unaided readers.31 

 

Surveillance population with applicability concerns – Veolity (MeVis) (1 study) 

The study by Cohen et al. included a surveillance population with applicability concerns: 73 patients 

with preoperative CT scans for sub-solid nodules.60 Two radiologists with four and five years of 

experience independently performed the semi-automatic measurements with concurrent use of the 

software Veolity (MeVis) on FBP reconstructed CT images as well as on MBIR reconstructed CT 

images. In 66 sub-solid nodules, the mean absolute (relative) differences between the two readers 

for the whole nodule volume was 199.8 mm3 (9.6%) with FBP and 92.6 mm3 (5.5%) for MBIR (p = 

0.13). The mean absolute (relative) volume differences between the two readers for the solid 

portion were −4.9 mm3 (1.6%) on FBP and -21.4 mm3 (-12.7%) for MBIR (p = 0.11). 

 

Mixed population – Unaided readers (1 study) 

The UK-based reader study by Murchison et al. included a mixed population of 314 current or ex-

smokers and/or those with radiological evidence of emphysema between 55 and 74 years, 

mimicking a screening population.31 Nodules were manually segmented (Apple Pencil) by two or 

three experienced thoracic radiologists. In 428 nodules between 3-30 mm, the average Dice 

coefficient between each reader’s segmentation and the segmentation from the other readers was 
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0.83 (95% CI 0.39, 0.96). The geometric mean volumetric discrepancy between radiologists was 1.39 

mm3 (95% CI 1.01, 3.19). 

 

Unclear indication for CT scan – ClearRead CT (Riverain Technologies) (1 study) 

This MRMC study by Milanese et al. included 93 consecutive patients referred for clinical non-

enhanced, chest LDCT (unclear indication).53 One radiologist with three years of experience in chest 

CT and a radiology resident independently performed semi-automatic volume measurements of 65 

solid nodules using the software “MM Oncology” by Siemens Healthcare on vessel-suppressed 

(ClearRead CT, Riverain Technologies) as well as on standard CT images. Between-readers agreement 

was assessed using Lin’s CCC and found to be 0.994 on both standard CT images as well as vessel-

suppressed CT images (Lin’s CCC of 1 meaning perfect concordance and 0 meaning no concordance). 

On standard CT images, the two readers measured identical volumes in 8 cases (12.3%). On vessel-

suppressed CT images, Reader 1 and Reader 2 measured identical volumes in 11 cases (16.9%). The 

upper and lower limits of agreement between Reader 1 and Reader 2 were 15.5 mm3 and −21.4 

mm3, respectively, on vessel-suppressed CT images and 16.3 mm3 and −22.4 mm3, respectively, on 

standard CT images. 

 

Repeatability/reproducibility (1 study) 

One study reported on the reproducibility of semi-automatic volume measurements and found 

similar intra-reader variability in FBP and MBIR reconstructed CT images, respectively.60  

 

Surveillance population with applicability concerns – Veolity (MeVis) (1 study) 

Cohen et al. included 73 patients with preoperative CT scans for sub-solid nodules from a single 

hospital in Korea.60  Two radiologists performed the semi-automatic measurements with concurrent 

use of the software Veolity (MeVis), twice on FBP reconstructed CT images and twice on MBIR 

reconstructed CT images.60 In 66 sub-solid nodules, the mean relative difference in the whole nodule 

volume was -1.23% using FBP and 0.28% using MBIR (p = 0.16). For the volume of the solid portion, 

the mean relative difference was 4.74% for FBP and -5.9% for MBIR (p = 0.07). Intra-observer 

variability was similar (p > 0.05) between FBP and MBIR reconstructed CT images. 
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3.3.5 Classification into risk categories based on nodule type and size 

3.3.5.1 Accuracy for risk classification based on 2015 BTS guidelines (1 study) 

One study reported on the performance of readers with and without concurrent software use for 

identifying patients classed as BTS grade A (discharge recommended) at consensus.32 This study also 

reported on the agreement in nodule management recommendations (4 grades based on the 2015 

BTS guidelines11) between single readers (with/without software use) and the consensus read. It was 

performed in patients with incidentally detected nodules with and without prior CT imaging. 

Sensitivities and specificities for identifying patients that can be discharged in software-aided 

readers were higher compared to unaided readers, but 95% CIs overlapped. Regarding all four 

possible nodule management recommendation categories, the aided readings of each radiologist 

showed a higher agreement with the consensus session than when readings were done unaided, but 

no level of significancy or 95% CIs were reported. 

 

a) Comparative results – Reader with and without software (1 study) 

Mixed population – Veye Chest (Aidence) (1 study) 

Hempel et al. selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without 

prior imaging) or no nodules (n=5) from one hospital in the Netherlands.32 For this MRMC study, two 

experienced radiologists independently assessed the CT images to determine the nodule 

management recommendation grade based on the 2015 BTS guidelines11 (A, discharge; B, CT at 3 

months; C, Brock score; D, diagnostic work-up) twice, first unaided and then aided by Veye Chest 

software (Aidence). After both reading sessions had been completed, the consensus BTS grade of 

the two readers was used as reference standard. With concurrent use of Veye Chest software, the 

sensitivities and specificities to identify patients with BTS grade A (no clinical follow-up required) 

were higher for both readers, but 95% CIs overlapped (see Table 17). 

 

Table 17. Accuracy of readers with and without concurrent use of Veye Chest to identify patients 

with BTS grade A (no clinical follow-up recommended)32 

 Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

 Unaided Aided Unaided Aided 

Reader 1 0.83 (0.61-0.95) 0.85 (0.66–0.96) 0.85 (0.66–0.96) 1.00 (0.85–1.00) 

Reader 2 0.76 (0.55-0.91) 0.92 (0.73–0.99) 0.84 (0.64–0.95) 0.96 (0.80-1.00) 

CI, Confidence interval. 
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The software-aided readings of reader 1 and reader 2 also showed a higher agreement in nodule 

management recommendation grades with the consensus session (linear weighted kappa, 0.80 and 

0.87, respectively) than the unaided readings (0.66 and 0.57, respectively), but no level of 

significance of 95% CIs was reported. 

 

3.3.5.2 Accuracy for risk classification based on other risk categories (2 studies) 

Two studies were identified that evaluated the accuracy of stand-alone software30 and software-

assisted readers30, 53 in classifying solid nodules into other risk categories based on volume. 

One study was performed in a selected screening population,30 and in the other study, the indication 

for the chest CT scan was not reported.53 

“Excellent agreement” with the reference standard (which was based on the average volume 

measurement on standard CT images of the two index test readers) was reported for readers 

performing semi-automatic volumetric measurements in vessel-suppressed CT images in one study 

using three volume-based risk categories.53 Using two volume-based risk categories, another study 

found misclassifications by stand-alone software in 22% and by software-assisted readers in 10% to 

15% of cases.30 

 

a) Comparative results – Reader with and without software (1 study) 

Screening population – AVIEW LCS (Coreline Soft) (1 study) 

Lancaster et al. included 283 participants who underwent a baseline ultra-LDCT thorax scan and had 

at least one solid nodule of any size.30 In a MRMC study, five thoracic radiologists with more than 

seven years of experience independently interpreted the CT images with visual nodule detection and 

software use for semi-automated volume measurement (Readers 1-3: AVIEW LCS from Coreline Soft; 

Reader 4: AGFA Enterprise 8.0 Imaging software; Reader 5: Syngo.via MM Oncology VB20 ) and 

classified nodules based on the NELSON-plus/EUPS protocol volume threshold of 100 mm3. The 

performance of stand-alone software (AVIEW LCS from Coreline Soft) to automatically detect, 

measure, and classify solid nodules was also evaluated. As reference standard, an independent 

consensus read was performed by a panel of three radiologists with more than 10 years’ experience 

and an experienced IT technologist of the 283 largest nodules. Compared to the reference standard, 

the stand-alone software had 61 (21.6 %; 53 false positive, 8 false negative) misclassifications 

reported, compared to 43 discrepancies (15.1 %; 22 false positive, 21 false negative) for Reader 1, 36 

(12.7 %; 25 false positive, 11 false negative) for Reader 2, 29 (10.2 %; 25 false positive, 4 false 
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negative) for Reader 3, 28 (9.9 %; 6 false positive, 22 false negative) for Reader 4 and 50 (17.7 %; 15 

false positive, 35 false negative) discrepancies for Reader 5. 

 

b) Non-comparative results (1 study) 

Unclear indication for CT scan – ClearRead CT (Riverain Technologies) (1 study) 

The MRMC study by Milanese et al. included 93 consecutive patients referred for clinical non-

enhanced, low-dose chest CT (unclear indication).53 One radiologist with three years of experience in 

chest CT and a radiology resident independently performed semi-automatic volume measurements 

of 65 solid nodules using the software “MM Oncology” by Siemens Healthcare on vessel-suppressed 

(ClearRead CT, Riverain Technologies) as well as on standard CT images. They categorised nodules 

according to Fleischner Society Guidelines into <100 mm3, 100-250 mm3 and >250 mm3.66 After the 

independent reading was performed by the two readers, volumes measured on standard CT images 

by Reader 1 and Reader 2 for each nodule were averaged and the resulting values acted as reference 

standard. The agreement between the Fleischner management categories66 based on semi-

automated volumetric measurements performed on vessel-suppressed CT images and the reference 

standard was reported as “excellent” (Table 18).  

 

Table 18. Risk categorisation using standard CT images and vessel-suppressed CT images for semi-

automatic volume measurement (modified from Milanese et al.53) 

 Reader 1 Reader 2 Reference 
standard 

Semi-automatic 
measurement on standard 
CT images 

<100 mm3 48 (73.8%) 48 (73.8%) 49 (75.4%) 

100-250 mm3 11 (16.9%) 11 (16.9%) 10 (15.4%) 

>250 mm3 6 (9.2%) 6 (9.2%) 6 (9.2%) 

Semi-automatic 
measurement on vessel-
suppressed CT images 

<100 mm3 50 (76.9%) 49 (75.4%) NA 

100-250 mm3 9 (13.8%) 9 (13.8%) NA 

>250 mm3 6 (9.2%) 7 (10.8%) NA 

 

3.3.5.3 Sub-questions 1 to 6: Potential factors associated with risk classification 

No data were available to perform subgroup analysis based on contrast use, dose, nodule type, 

patient’s ethnicity, radiologist speciality or reason for CT scan in the incidental population. 
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3.3.5.4 Sub-question 2: Concordance and variability in risk classification 

a) Concordance between readers with and without software use (2 studies) 

One study was identified that reported on the concordance in Lung-RADS categorisation between 

readers with and without software use.62 A second study reported on the concordance in Lung-RADS 

categorisation between stand-alone software and readers with and without software use.65 Both 

studies were performed in nodule-enriched screening populations. Agreement in Lung-RADS 

categorisation between each reader with and without software as assessed by mean Cohen 

weighted k value was 0.67.62 The agreement between stand-alone software and each reader 

increased with software use.65 

 

Screening population – Veolity (MeVis) (1 study) 

In the study by Jacobs et al., seven observers read all 160 CT images twice: once in the dedicated CT 

lung screening viewer including Veolity Lung CAD (MeVis) and once in the standard viewer without 

software support.62 The intra-observer agreement in Lung-RADS categorisation for each reader with 

and without software use was assessed using mean Cohen weighted k value and constituted 0.67 

(range: 0.59 to 0.76 for individual readers). 

 

Screening population – VUNO Med-Lung CT AI (VUNO) (1 study) 

Park et al. investigated the agreement in nodule Lung-RADS categorisation between stand-alone 

software and five readers with and without software use (VUNO Med-Lung CT AI from VUNO).65 

Agreement in Lungs-RADS categorisation between stand-alone software and each unaided reader 

was assessed using Cohen’s kappa, ranging from 0.45 (95% CI 0.34 to 0.57) to 0.57 (95% CI 0.46 to 

0.67). Overall, the agreement in Lung-RADS categorisations between stand-alone software and each 

reader increased with software use, with Cohen’s kappa ranging from 0.58 (95% CI 0.48, 0.68) to 

0.70 (95% CI 0.62, 0.78). 

 

b) Concordance between readers using different software (No study) 

No study was identified that reported on the concordance between readers using different AI-based 

software or between different AI-based software without human involvement for risk categorisation 

based on nodule type and size. 
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c) Intra-reader and inter-reader variability (5 studies) 

Inter-reader variability (5 studies) 

Categorisation based on 2015 BTS guidelines (1 study) 

One study32 reported on the inter-reader agreement in nodule management recommendations 

based on the 2015 BTS guidelines.11 It was performed in patients with incidentally detected nodules 

with and without prior CT imaging and found higher inter-reader agreement with concurrent 

software use, but no level of significance or 95% CIs were reported. 

 

Mixed population – Veye Chest (Aidence) (1 study) 

Hempel et al. selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without 

prior imaging) or no nodules (n=5) from one hospital in the Netherlands.32 For this MRMC study, two 

experienced radiologists independently assessed the CT images to determine the nodule 

management recommendation grade based on the 2015 BTS guidelines11 (A, discharge; B, CT at 3 

months; C, Brock score; D, diagnostic work-up) twice, first unaided and then aided by Veye Chest 

software (Aidence). The inter-reader agreement in nodule management recommendation grades 

was higher in readers with concurrent software use (linear weighted kappa 0.84) compared to 

unaided readers (linear weighted kappa 0.61), but no level of significance or 95% CIs were reported. 

 

Categorisation based on Lung-RADS categories (2 studies) 

Two studies were identified that reported on the inter-reader variability in nodule Lung-RADS 

categorisation.62, 65 Both studies were performed in nodule-enriched screening populations and 

found marginally improved65 and improved62 inter-reader agreement with software use.  

 

Screening population – Veolity (MeVis) (1 study) 

In the study by Jacobs et al., seven observers read all 160 CT images twice: once in the dedicated CT 

lung screening viewer including the software Veolity (MeVis) and once in the standard viewer 

without software support.62 When using the standard PACS-like viewer without software support, 

the inter-reader agreement in Lungs-RADS categorisation had a Fleiss k value of 0.58 (95% CI 0.55 to 

0.60). When readers were using the dedicated CT lung screening viewer with Veolity software, the 

Fleiss k value increased to 0.66 (95% CI 0.64 to 0.68). The mean pairwise Cohen weighted k values of 

each reader with the remaining six readers ranged from 0.63 to 0.73 without software use and from 
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0.61 to 0.74 with software use. Disagreements regarding Lung-RADS categories occurred in 29% 

(971/3,360) of unaided readings and in 25% (853/3,360) of readings when using the dedicated CT 

lung screening viewer with integrated Veolity software, but no level of significance or 95% CIs were 

reported. The study found 12% (118/971) fewer disagreements between observer pairs when using 

the dedicated CT lung screening viewer than with using the standard PACS-like viewer.   

 

Screening population – VUNO Med-Lung CT AI (VUNO) (1 study) 

In the study by Park et al., five readers assessed the LDCT images with and without software use 

(VUNO Med-Lung CT AI from VUNO).65 Inter-reader agreement of five readers for Lung-RADS 

categorisation as assessed by Fleiss kappa was 0.60 (95% CI 0.57-0.63) without software use, and 

improved marginally to 0.65 (95% CI 0.63-0.68) with software use. The pairwise agreement between 

unaided readers found an average Cohen’s kappa of 0.71 (range 0.59–0.78). Disagreements in Lung-

RADS category among the 2,000 possible reading pairs between the five readers were observed in 

18.6% (371/2,000). With software use, the pairwise agreement between readers was slightly higher 

than in unaided readers, with an average Cohen’s kappa of 0.75 (range 0.68–0.79). Disagreements in 

Lung-RADS category were observed in 18.3% (365/2,000) of all possible reading pairs. 

 

Categorisation into other risk categories (2 studies) 

Two studies were identified that reported on the inter-reader variability in categorising sub-solid 

nodules according to Fleischner’s guidelines68 into (1) pure ground glass, (2) part-solid with a solid 

component ≥5 mm or (3) part-solid with a solid component less than 5 mm.60, 61 Semi-automatic 

segmentation was able to significantly improve inter-reader variability compared to manual 

measurement (p = 0.022), especially the subclassification of part-solid nodules according to the 

diameter of the solid portion.61 The inter-observer agreement for semi-automated measurements 

performed on FBP and MBIR reconstructed CT images was not statistically significant (p = 0.22).60 

 

Surveillance populations with applicability concerns – Veolity (MeVis) (2 studies) 

Both studies were performed at the same hospital in Korea and included (potentially overlapping) 

surveillance populations with applicability concerns: 8961 and 73 patients,60 respectively, with 

preoperative CT scans for sub-solid nodules. In both reader studies, two radiologists with concurrent 

use of the software Veolity (MeVis) independently performed nodule measurements and nodule 
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classification into the three categories. In the study by Kim et al., the two readers were also 

assessing CT images without software use performing manual diameter measurement.61 

 

In the study by Kim et al., the inter-reader variability (kappa) regarding the classification of 102 sub-

solid nodules was 0.861 (95% CI 0.769 to 0.953) for semi-automatic measurement and 0.683 (95% CI 

0.561 to 0.805) for manual measurement (p=0.022).61 Percentage inter-reader agreement was 92.2% 

(94/102) for semi-automatic measurement and 80.4% (82/102) for manual measurement.  

 

Cohen et al. found that the inter-observer variability in categorising 66 sub-solid nodules as assessed 

by Kappa values was 0.66 and 0.77 for FBP and MBIR, respectively.60 The inter-observer agreement 

for both image reconstruction algorithms was not statistically significant (p = 0.22). 

 

Repeatability/reproducibility (2 studies) 

Two studies were identified that reported on the intra-reader reproducibility in categorising sub-

solid nodules according to Fleischner’s guidelines68  into (1) pure ground glass, (2) part-solid with a 

solid component ≥5 mm or (3) part-solid with a solid component less than 5 mm.60, 61 One study 

reported a significantly higher intra-reader reproducibility with semi-automatic measurement 

compared to manual measurement.61 In readers with semi-automatic measurement, the intra-

reader agreement was significantly higher with MBIR compared to FPB reconstructed images.60 

 

Surveillance populations with applicability concerns – Veolity (MeVis) (2 studies) 

Both studies were performed at the same hospital in Korea and included (potentially overlapping) 

surveillance populations with applicability concerns: 8961 and 73 patients,60 respectively, with 

preoperative CT scans for sub-solid nodules.  

 

In the reader study by Kim et al., one experienced radiologist performed the nodule diameter 

measurements twice with concurrent use of the software Veolity (MeVis), and twice without 

software use in 102 sub-solid nodules.61 The intra-reader reproducibility (kappa) of nodule 

classification was 0.894 (95% CI 0.812 to 0.976) for semi-automatic measurement and 0.750 (95% CI 

0.632 to 0.868) for manual measurement (p=0.049). The percentage intra-reader agreement was 

94.1% (96/102) for semi-automatic measurement and 85.3% (87/102) for manual measurement. 
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In the reader study by Cohen et al., two radiologists with four and five years of experience 

performed the semi-automatic measurements with concurrent use of the software Veolity (MeVis), 

twice on FBP reconstructed CT images and twice on MBIR reconstructed CT images.60 The intra-

observer reproducibility (kappa) for the classification of the 66 sub-solid nodules was 0.83 and 0.94 

for FBP and MBIR, respectively. The intra-reader agreement was significantly higher when using the 

MBIR algorithm (p = 0.04). 

 

3.3.6 Whole read 

3.3.6.1 Accuracy for lung cancer detection based on whole read (2 studies) 

Two studies were identified that reported the accuracy for lung cancer detection of a whole read 

(nodule detection and classification based on nodule type and size) performed by single experienced 

thoracic radiologists with48, 49 or without49 concurrent software use (AVIEW, Lungscreen, Coreline 

Soft) in a prospective screening population from Korea. Positivity was based on Lung-RADS category 

3 or higher, and the reference standard was medical record review. The comparative study did not 

find a statistical difference in sensitivity, specificity, PPV and NPV before and after software 

implementation, when measurements were performed on transverse planes. After software 

implementation, PPVs differed significantly according to measurement planes used (transverse, 

maximum orthogonal, any maximum). 

 

a) Comparative results – Reader with and without software (1 study) 

Screening population – AVIEW Lungscreen (1 study) 

In a before-after study, Hwang et al.49 included 6,487 consecutive participants of the K-LUCAS 

project: 1,821 participants were screened before the implementation of the software (including 16 

cases of lung cancer) and 4,666 participants received screening after the implementation of the 

software (including 31 cases of lung cancer). Based on transverse plane diameter measurements, the 

Lung-RADS-based (version 1.0) sensitivity was 93.8% before the implementation of the AVIEW 

Lungscreen software and 93.5% after the implementation (p = 0.979). The specificity was 90.9% 

before and 89.6% after the implementation of the software (p = 0.132). There were also no 

significant differences in PPV and NPV (p > 0.05 for all). With software use, the specificity (89.6% on 

transverse planes, 86.5% on maximum orthogonal planes, 83.1% on any maximum planes) and PPVs 
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(5.7% on transverse planes, 4.6% on maximum orthogonal planes, 3.7% on any maximum planes) of 

Lung-RADS differed significantly according to the measurement planes used (p < 0.001 for all). 

 

Non-comparative results (1 study) are reported in Appendix 13.5.5. 

 

3.3.6.2 Sub-questions 1 to 4: Factors potentially associated with accuracy for lung cancer 

detection based on whole read 

No data were available to perform sub-group analyses based on contrast use, radiation dose, nodule 

type, patient’s ethnicity, radiologist speciality or reasons for CT scan (incidental population). 

 

3.3.6.3 Sub-question 5: Concordance and variability 

No evidence was identified for sub-questions 5a) – 5c). 

 

3.4 Use case 2: nodule growth monitoring in people with previously identified lung nodules 

3.4.1 Detection of growing nodules (No study) 

No study was identified that evaluated the accuracy of AI-based software for detecting growing 

nodules based on VDT at thresholds according to BTS guidelines11 or other thresholds. 

 

3.4.2 Nodule registration and growth assessment 

3.4.2.1 Accuracy of nodule registration (1 study) 

No study was identified that compared the accuracy of nodule registration between readers with 

and without AI software use. However, Murchison et al. 2022 evaluated the accuracy of stand-alone 

AI (Veye Chest, Aidence) to detect nodule pairs in subsequent scans of the same patient.31 The study 

found a sensitivity for detecting nodule pairs of 100.0% (23/23) with no false positive pairs (see 

Appendix 13.5.6.1). 
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3.4.2.2 Sub-questions 1 to 4: Factors potentially associated with accuracy of nodule registration 

or growth rate estimation 

No data were available to perform sub-group analyses based on contrast use, radiation dose, nodule 

type, patient’s ethnicity, radiologist speciality or reasons for CT scan (incidental population). 

 

3.4.2.3 Sub-question 5 

a) Concordance between readers with and without AI software use (1 study) 

No study was identified that reported on the concordance of readers with and without AI software 

use. However, the same study mentioned above (Murchison et al. 2022) reported on the mean 

growth percentage difference between stand-alone AI (Veye Chest, Aidence) and unaided expert 

radiologists.31 The geometric mean growth rate difference was similar between stand-alone AI and 

unaided readers. However, due to a single incorrect segmentation of the stand-alone AI, the upper 

end of its confidence interval is twice as high compared to that of readers, illustrating that visual 

verification of the nodule segmentation by human readers is still advised (see Appendix 13.5.6.2). 

 

b) Concordance between readers using different software (No study) 

No study was identified that reported on the concordance in growth rate between readers using 

different AI-based software or between different software without human involvement. 

 

c) Intra-reader and inter-reader variability (1 study) 

One study was identified that reported on the inter-reader variability in nodule growth assessment 

between unaided readers.31 The mean growth rate difference for 23 nodule pairs between two 

unaided expert radiologists was 1.30%. 

 

Mixed population – Unaided readers (1 study) 

Murchison et al. included a routine cohort of current or ex-smokers and/or those with radiological 

evidence of pulmonary emphysema between 55 and 74 years (to mimic a screening population) who 

underwent chest CT for non-screening purposes at a single centre in Edinburgh (UK). Forty-six CT 

scans from 23 patients undergoing CT surveillance of a pulmonary nodules (23 baseline CT scans and 
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23 follow-up CT scans) were included in the analysis of nodule registration and growth rate 

assessment. The mean growth rate difference for 23 nodule pairs between two unaided expert 

radiologists was 1.30 (95% CI 1.02, 2.21). 

 

3.5 Practical implications 

3.5.1 Technical failure rate (12 studies) 

Twelve records were identified that reported on the technical failure rate of AI-based software 

assessing chest CT images.25, 29, 31, 32, 48-50, 54, 60-62, 64 Six studies were performed in a screening 

population,25, 48-50, 54, 62 two studies were performed in a surveillance population with applicability 

concerns,60, 61 and the remaining four studies included mixed populations.29, 31, 32, 64 The identified 

studies used five different technologies: Veye Chest (Aidence) as stand-alone software31, 64 or in 

concurrent mode,32, 60, 61 Veolity (MeVis) in concurrent mode,25, 60-62 ClearRead CT (Riverain 

Technologies) as stand-alone software,54 AVIEW Lungscreen (Coreline Soft) in concurrent mode,48-50 

and contextflow SEARCH Lung CT (contextflow) in concurrent mode.29 Segmentation failure ranged 

from 0% to 57% of nodules (8 studies; see Table 19). However, one study discussed that the 

observed nodule segmentation failure is mostly due to rejection of segmentation results by 

radiologists, rather than the inability of the system to segment the nodule. Failure rates seem to be 

higher in pure ground glass nodules (34%) and part-solid nodules (19.7%) compared to solid nodules 

(7%) (1 study). Manual modifications of the segmentation were required in 29% to 59% of nodules (2 

studies). 

 

Screening population – Veolity (MeVis) (2 studies) 

The MRMC study by Jacobs et al. included a nodule-enriched screening population.62 Seven 

observers read all 160 CT images twice: once in the dedicated CT lung screening viewer including 

Veolity Lung CAD (MeVis) and once in the standard viewer without software support. The study 

found that a satisfactory nodule segmentation was achieved for almost all nodules shown in the 

dedicated CT lung screening viewer. In 28% of nodule segmentations, the readers manually tuned 

the segmentation parameters. Manual diameter measurement was deemed necessary for 1.9% 

(3/160; 1 observer) or 1.3% (2/160; 2 observers) nodules. 

 

The study by Hall et al. was performed in London (UK) and is a sub-study of the LSUT trial.25 In a 

MRMC study, two radiographers without prior experience in thoracic CT reporting independently 



144 

 

read all 770 LDCT with concurrent software use (Veolity, MeVis). Issues with the nodule detection 

software (no interpretation, processing failure) were reported by Reader 1 in 9/770 (1.2%) and by 

Reader 2 in 18/770 (2.3%) cases. 

 

Screening population – ClearRead CT (Riverain Technologies) (1 study) 

Singh et al. included a nodule-enriched screening population.54 Using ClearRead CT from Riverain 

Technologies in stand-alone and concurrent mode, respectively, 27/150 (18%) chest CT exams could 

not be processed with the AI algorithm since they had artifacts, thicker sections and/or missing 

images in the downloaded datasets. 

 

Screening population – AVIEW Lungscreen (Coreline Soft) (3 studies) 

The three identified studies by Hwang et al.48-50 are all based on the K-LUCAS project and possibly 

have overlapping patients and CT images. K-LUCAS is a prospective pilot programme of lung cancer 

screening in South Korea involving 14 institutions. The software AVIEW Lungscreen from Coreline 

Soft was used in concurrent mode by experienced thoracic radiologists to detect, measure and 

classify their Lung-RADS category in clinical practice.  

 

The first included analysis from the K-LUCAS project comprises 4,666 CT images taken between April 

2017 and March 2018 containing 4,990 lung nodules. Semi-automated segmentation failed in 13.4% 

(669/4,990) of nodules.49  

 

A second analysis48 included 10,424 CT images taken between April 2017 and December 2018 with a 

total of 10,080 nodules identified. Ninety-one percent of nodules (9,206/10,080) were measured by 

semi-automated segmentation, while 9% (874/10,080) of nodules failed to be semi-automatically 

segmented and were measured manually. Segmentation failures occurred in 7.3% (688/9,465) of 

solid nodules, 19.7% (31/157) of part-solid nodules and 33.8% (155/458) of ground glass nodules. 

 

A third analysis of the K-LUCAS project including 3,353 CT images conducted between April 2017 and 

December 2017 evaluated the inter-institutional and inter-radiologist variability in the frequency of 

segmentation failure in screening practice and also compared them to retrospective central review 

of the same CT images by one experienced chest radiologist.50 Segmentation failure ranged from 0 to 
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57.0% (coefficient of variation 1.28) among the 20 original pilot programme radiologists. The 

frequency of segmentation failure was significantly higher in the original institutional reading 

(14.4%) compared to retrospective central review (1.1%) (p < 0.001) suggesting that segmentation 

failures in the institutional (clinical practice) reading were mostly rejections of segmentation results 

by radiologists, rather than the inability of the system to segment the nodule. 

 

Surveillance population with applicability concerns – Veolity (MeVis) (2 studies) 

Kim et al. included 89 patients with sub-solid nodules who underwent preoperative non-enhanced 

CT and subsequent surgical resection.61 Veolity version 1.2 (MeVis) was used in concurrent mode by 

two experienced radiologists. The segmentation success rate of the software in 109 sub-solid 

nodules was 93.6 % (102/109). 

 

The study by Cohen et al. included 73 patients in whom preoperative CT scans for sub-solid nodules 

were reconstructed on a single CT system and compared the effects of MBIR and FBP algorithms on 

software (Veolity, MeVis) semi-automatic measurements.60 Adequate nodule segmentation was 

obtained in 66/73 (90.4%) images with FBP and in 68/73 (93.2%) of image with MBIR. All seven of 

the inadequate segmentations were graded as "insufficient segmentations" for the following 

reasons: inclusion of a vessel in segmentation (n = 2), inclusion of a significant part of the chest wall 

(n = 2), inaccurate segmentation of the ground glass component (n = 1), a combination of those 

reasons (n = 2), inaccurate ground glass segmentation and chest wall inclusion (n = 1) and inaccurate 

ground glass segmentation and inclusion of a solid component (n = 1). Using FBP, manual 

modifications were required in 27 cases for reader 1 and 43 cases for reader 2 (median 35). Using 

MBIR, reader 1 performed manual modifications in 21 cases and reader 2 in 39 (median 30). The 

number of manual modifications was similar between FBP and MBIR (p = 0.58). 

 

Mixed population – Veye Chest (Aidence) (3 studies) 

The study by Murchison et al. included a routine cohort of current or ex-smokers and/or those with 

radiological evidence of pulmonary emphysema between 55 and 74 years (to mimic a screening 

population) who underwent chest CT for non-screening purposes at a single centre in Edinburgh (UK) 

(337 chest CT images from 314 subjects).31 The Veye Chest software from Aidence was able to 

successfully segment 95% of the total 428 nodules between 3-30 mm. 
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Martins Jarnalo et al. randomly selected 145 chest CT scans from 145 different patients that were 

performed for various indications at a single Dutch hospital.64 The study found that Veye Chest 

(Aidence) reported an unknown diameter for 3/80 (3.8%) nodules between 4-30 mm. 

 

Hempel et al. selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without 

prior imaging) or no nodules (n=5) from one hospital in the Netherlands.32 For this MRMC study, two 

experienced radiologists independently assessed the CT images to determine the nodule 

management recommendation based on nodule type and size twice, once using a semi-automated 

volumetry tool (Vitrea Enterprise Solutions, Vital Images Inc.) and once using Veye Chest (Aidence) 

for automatic diameter and volume measurement. When using the semi-automated volumetry tool, 

reader 1 and reader 2 deemed 54.6% (35/64) and 44.4% (28/63) of volume measurements as not 

reliable (and chose to report longest axial diameter instead), whereas with use of Veye Chest, only 

2.4% (1/41) and 4.5% (2/44) of volume measurements were deemed as not reliable. 

 

Mixed population – Contextflow SEARCH Lung CT (contextflow) (1 study) 

From all patients who had CT images performed on one scanner model  at a single hospital in Austria 

in 2018, Röhrich et al. included the first 100 patients with lung pathologies (22 unique, clinically 

and/or histopathologically verified diagnoses, but none with lung nodules) as well as the first eight 

patients without pathological lung findings.29 Two of 216 readings (0.9%) with concurrent software 

use (Contextflow SEARCH Lung CT) had to be excluded due to “technical difficulties” (no further 

details reported). 
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Table 19. Technical failure rate of AI-based software for lung nodule detection and analysis, by target population and technology (12 studies) 

Reference 
and country 

Population / Nodule characteristics /  
Slice thickness 

Technology Details of technical failure Failure rate 

Screening population (6 studies) 

Hwang 

2021a,49 

Korea 

K-LUCAS (Korea) 
4,666 LDCT taken between April 2017 and March 2018; 
4,990 nodules 
4,686 (93.9%) solid 
     78 (1.6%) part-solid 
   226 (4.5%) Pure ground glass. 
Non-enhanced CT, slice thickness < 1.5 mm. 

AVIEW Lungscreen 
(Coreline Soft) 

Failure of semi-automatic 
segmentation (clinical 
practice): 
All nodules 

 
 
 
669/4,990 (13.4%) 

Hwang 

2021b,48 

Korea 

K-LUCAS (Korea) 
10,424 LDCT taken between April 2017 and December 2018; 
10,080 nodules: 
9,465 (93.9%) solid 
    157 (1.6%) part-solid 
   458 (4.5%) Pure ground glass. 
Non-enhanced CT, slice thickness < 1.5 mm. 

AVIEW Lungscreen 
(Coreline Soft) 

Failure of semi-automatic 
segmentation (clinical 
practice): 
All nodules 
Solid nodules 
Part-solid nodules 
Ground glass nodules 

 
 
 
874/10,080 (8.7%)  
688/9,465 (7.3%)  
31/157 (19.7%)  
155/458 (33.8%) 

Hwang 

2021c,50 

Korea 

K-LUCAS (Korea) 
3,353 LDCT taken between April 2017 and December 2017. 
Non-enhanced CT, slice thickness < 1.5 mm. 

AVIEW Lungscreen 
(Coreline Soft) 

Failure of semi-automatic 
segmentation: 
20 radiologists from 14 
institutions in clinical practice 
 
Central review (1 radiologist, 
retrospective reading) 

 
 
497/3,452 (14.4%) 
Range 0 to 57.0% (CV 1.28) 
 
1.1% (107/9,389) 

Singh 2021,54 

USA 

NLST dataset (USA): 
150 LDCT 
first 125 patients with sub-solid nodules; 
first 25 patients with no nodules. 
Non-enhanced CT, slice thickness: 1.2–2 mm. 

ClearRead CT 
(Riverain 
Technologies) 

Software processing failure due 
to artifacts and/or thick slices 
(retrospective MRMC study) 

27/150 (18.0%) 

Jacobs 2021,62 

Denmark, 
Netherlands 
 

NLST dataset (USA):  
160 LDCT selected by Lung-RADS category; 
40 Lung-RADS 1 or 2;  
40 Lung-RADS 3;  
40 Lung-RADS 4A;  

Veolity (MeVis) Need to manually tune 
segmentation parameters 
 

28% of nodule segmentations 
 
 
3/160 (1.9%) nodules (1 
reader) 
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Reference 
and country 

Population / Nodule characteristics /  
Slice thickness 

Technology Details of technical failure Failure rate 

40 Lung-RADS 4B 
Non-enhanced CT, slice thickness: 1.0 to 3.2 mm 

Manual diameter 
measurement deemed 
necessary: 
Retrospective MCMR study 

2/160 (1.3%) nodules (2 
readers) 
0/160 nodules (4 readers) 

Hall 2022,25 
UK 

LSUT study (UK): 
All 770 LDCT with a lung health check appointment between 
November 2015 and July 2017; 
158 with ≥1 nodule (≥5 mm or ≥80 mm3). 
Non-enhanced CT, slice thickness: 0.5–1.0 mm. 
 

Veolity (MeVis) Issues with the CADe software 
(no CADe interpretation, CADe 
processing failure): 
Retrospective MRMC study 

Reader 1:  
9/770 (1.2%) 
 
Reader 2: 
18/770 (2.3%) 

Surveillance population with applicability concerns (2 studies) 

Cohen 2017,60 

Korea 

1 hospital in Seoul (Korea): 
73 patients with preoperative CT scans for sub-solid nodules 
taken between July 2014 to May 2015; 
73 sub-solid nodules. 
Non-enhanced CT, slice thickness 0.625 mm. 
Reconstructed with FBP and MBIR, respectively. 

Veolity (MeVis) Failure of semi-automatic 
segmentation (MRMC study): 
Sub-solid nodules - FBP 
Sub-solid nodules - MBIR 
 
Manual modifications of 
nodule segmentation required 
(MRMC study): 
Sub-solid nodules - FBP 
 
 
 
Sub-solid nodules - MBIR 
 
 

 
 
7/73 (9.6%) 
5/73 (6.8%) 
 
 
 
 
27/73 (37.0%) for reader 1 
43/73 (58.9%) for reader 2  
(median 35/73, 47.9%).  
 
21/73 (28.8%) for reader 1 
39/73 (53.4%) for reader 2 
(median 30/73, 41.1%).  
 
FBP versus MBIR (p = 0.58). 

Kim 2018,61 

Korea 

1 hospital in Seoul (Korea): 
89 patients with preoperative CT scans for sub—solid nodules 
taken between November 2014 and July 2016; 
109 sub-solid nodules. 
Non-enhanced CT, slice thickness 0.625 mm. 
 

Veolity (MeVis) Failure of semi-automatic 
segmentation (MRMC study): 
Sub-solid nodules 

 
 
7/109 (6.4%) 
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Reference 
and country 

Population / Nodule characteristics /  
Slice thickness 

Technology Details of technical failure Failure rate 

Mixed population (4 studies) 

Röhrich 

2022,29 

Austria 

1 hospital in Austria in 2018; 
first 100 patients with lung pathologies (22 unique, verified 
diagnoses, but none with lung nodules),  
first 8 patients without pathological lung findings. 
Slice thickness: 1 mm. 

Contextflow 
SEARCH Lung CT 
(contextflow) 

“Technical difficulties” (not 
further specified), 
Retrospective MRMC study 

2/216 (0.9%) 

Hempel 
2022,32 
Netherlands 

1 hospital in the Netherlands: 
50 chest CT scans taken between July and September 2013 
with ≤5 incidentally detected nodules (n=45: 35 with and 10 
without prior imaging) or no nodules (n=5) on initial radiology 
report. 
Slice thickness: 2.00 mm (n=73) and 3.00 mm (n=12). 

Veye Chest 
(Aidence) 

“Volumetry not deemed 
reliable” (retrospective MRMC 
study): 
Relevant nodules that 
contributed to the reader’s 
management decision 

Reader 1:  
1/41 (2.4%) 
 
Reader 2: 
2/44 (4.5%) 

Martins 
Jarnalo 

2021,64 

Netherlands 

1 hospital in the Netherlands: 
Random 145 chest CT scans performed for various indications 
between December 2018 and May 2020; 
91 nodules: 
16 sub-solid nodules, 
73 solid nodules, 
2 mixture of solid/sub-solid. 
Slice thickness: 1 or 3 mm. 

Veye Chest 
(Aidence) 

Failure of semi-automatic 
segmentation (retrospective 
study): 
All 80 nodules correctly 
detected by stand-alone 
software 

 
 
3/80 (3.8%) 

Murchison 
2022,31 
UK 

1 hospital in Edinburgh (UK): 
337 scans of 314 current smokers, ex-smokers and/or those 
with radiological emphysema between 55-74 years taken 
between January 2008 and December 2009. 
[1] 178 without reported nodules; 
[2] 95 with 1-10 reported nodules; 
23 CT images from the same patients with  
[3] baseline CT scan and  
[4] follow-up CT scan; 
[5] 18 with sub-solid nodules. 
Slice thickness 1.0-2.5mm. 

Veye Chest 
(Aidence) 

Failure of semi-automatic 
segmentation(retrospective 
MRMC study): 
428 nodules (3-30 mm) from 
groups [1], [2], [3] and [5] 
 

 
 
 
21/428 (4.9%) 

FBP, Filtered back projection; K-LUCAS, Korean Lung Cancer Screening; LDCT, Low-dose computed tomography; MBIR, Model-based iterative reconstruction; MRMC, Multi-
reader multi-case study; NLST, National Lung Cancer Screening. 
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3.5.2 Radiologist reading time (10 studies) 

Ten studies were identified that reported on the reading time of radiologists with and without 

software support.25, 29, 32, 45, 51, 52, 55, 57, 58, 62 Three studies included chest CT images from screening 

populations,25, 52, 62 one study included a symptomatic population,57 and the remaining six studies 

included mixed indications for the CT scans.29, 32, 45, 51, 55, 58 The included studies compared the reading 

time between unaided readers and readers supported by six different technologies: AI-Rad 

Companion Chest CT (Siemens Healthineers) in stand-alone and concurrent mode, respectively,45 

ClearRead CT (Riverain Technologies) in concurrent51, 52, 55 and assisted second read mode51, 

respectively, contextflow SEARCH Lung CT (Contextflow) in concurrent mode,29 InferRead CT Lung 

(Infervision) in concurrent mode,57, 58 Veolity (MeVis) in concurrent mode25 and Veye Chest (AIdence) 

in concurrent mode.32 Nine of the 10 identified studies reported reduced radiologist reading times 

by 11.3% to 78% with concurrent software use,25, 29, 32, 45, 51, 52, 57, 58, 62 whereas one study55 found 

similar reading times when using software with vessel suppression function only (Table 20). 

Software assistance as second reader resulted in a significant increase in radiologist reading times by 

26% in one study.51  

 

Symptomatic population – InferRead CT Lung (Infervision) (1 study) 

Kozuka et al. randomly selected 120 chest CT images from cases of suspected lung cancer in patients 

at a single hospital in Japan.57 In a MRMC study, two less experienced radiologists independently 

read the CT images first without software and then (after at least 14 days interval) with concurrent 

use of the software InferRead CT Lung (Infervision) to detect any nodules ≥3 mm. The total reading 

time decreased by 10.4% in Reader A and by 11.9% in Reader B (no level of significance reported). 

The total mean reading time of the average reader decreased by 11.3% with software use, from 373 

to 331 min, reducing the mean reading time for one case from 3.1 min without software to 2.8 min 

with software (no level of significance reported). 

 

Screening population – Veolity (MeVis) (2 studies) 

The study by Jacobs et al. included a nodule-enriched screening population. Seven observers read all 

160 CT images twice: once in the dedicated CT lung screening viewer including Veolity Lung CAD 

(MeVis) and once in the standard viewer without software support. Pooling all results, the median 

reading time of 86 seconds (IQR, 51–141 seconds) when using the dedicated viewer was lower than 
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the median reading time of 160 seconds (IQR, 96–245 seconds) when using the standard viewer (p < 

0.001). 

The pooled median reading times of the three experienced chest radiologists reduced from 214 

seconds (IQR 155–307) without software support to 105 seconds (IQR 61–158) with software 

support (p < 0.0001). In the four less experienced radiology residents, the pooled reading time 

decreased significantly from a median of 118 seconds (IQR 78–182) in unaided readers to a median 

of 74 seconds with software support (IQR 46–128) (p < 0.0001). 

 

The MRMC study by Hall et al. included all 770 patients who received LDCT for lung cancer screening 

as part of the LSUT study.25  Two radiographers without prior experience in thoracic CT reporting 

independently read all 770 LDCT with concurrent software use (Veolity, MeVis) and reported on the 

presence of clinically significant nodules (≥5 mm) and common incidental findings, including patient 

management recommendations. Self-reported reading times of each software-assisted radiographer 

were compared against the reading times of the pooled study radiologists who read the same CT 

images in clinical practice without software support. Reading times were available for 753 (97.8%) of 

radiologist reports, 738 (95.8%) of reports by radiologist 1 and 754 (97.9%) by radiologist 2. Unaided 

radiologists recorded significantly longer and more variable reading times than either software-

supported radiographer, with median reading times of 10 minutes (IQR 5-15) for the pooled 

radiologists versus 3 minutes (IQR 2-5) for Radiographer 1 and 5 minutes (IQR 4-8) for Radiographer 

2 (p < 0.001 for both comparisons).   

 

Screening population – ClearRead CT (Riverain Technologies) (1 study) 

The MRMC study by Lo et al. included a nodule-enriched screening population.52  Twelve general 

radiologists independently read the LDCT images first unaided, and then with the concurrent use of 

ClearRead CT (Riverain Technologies) to detect any actionable nodules (5-44 mm). The radiologist 

interpretation time decreased from 132.3 seconds per case in the unaided reading session to 98.0 

seconds per case with concurrent software use (p < 0.01). The study showed that concurrent 

software use resulted in a significant (>25%) decrease in interpretation time (mean 34.3 seconds, 

95% CI 15.2 to 53.5 seconds) in a nodule-enriched dataset. 

 

Mixed population – AI-RAD Companion Chest CT (Siemens Healthineers) (1 study) 
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Abadia et al. included 103 patients with at least one lung condition and one suspicious lung nodule 

on radiology report and 40 patients with one lung condition and no lung nodule on radiology 

report.45  In a MRMC study, an expert thoracic radiologist read all 143 CT images without software 

support to detect nodules and to measure nodule size of the five largest nodules ≥4 mm. A month 

after initial assessment, the radiologist re-evaluated 20 positive cases at random with the assistance 

of an AI-RAD Companion Chest CT prototype. The average amount of time (minute:second) spent for 

analysis per image was 2:17 ± 0:29 for the stand-alone software and 2:44 ± 0:54 for the unaided 

expert. With concurrent software use, the expert saved on average 1:45 minutes per patient, 

significantly reducing the mean assessment time to 35.7 seconds per case (p < 0.0001). Assuming 

continuous work, the unaided expert would have been able to assess ~26 cases for lung nodules per 

hour, whereas, with the help of AI-RAD, the radiologist could assess 101 cases for nodules per hour. 

 

Mixed population - InferRead CT Lung (Infervision) (1 study) 

In the study by Liu et al., chest CT scans (screening and in-patient) performed at multiple hospitals in 

China were retrospectively collected with convenience sampling.58 The total dataset comprised 

12,574 CT scans, of which 1,129 CT scans from more than 10 hospitals were included in the test set. 

In a MRMC study of a subset of 123 (Batch 1) and 148 (Batch 2) CT images, two thoracic radiologists 

independently first read the scans alone without using software, then performed reading with 

concurrent software use (InferRead CT lung, Infervision) after a 1-week washout period to detect 

any nodules. The reading time was limited to approximately 20 minutes per scan (a typical reading 

period for radiologists at a top-tier hospital). Both radiologists experienced shorter reading time with 

concurrent software use, with a reduction from approximately 15 minutes per patient to 

approximately 5–10 minutes per patient (no level of significance reported). 

 

Mixed population - ClearRead CT (Riverain Technologies) (2 studies) 

The study by Hsu et al. retrospectively included 150 consecutive cases with lung nodules ≤1cm or no 

nodule on chest CT performed at a single hospital in Taiwan.51 Of these, 93 were standard dose CT 

images from clinical routine and 57 were LDCT scans from lung cancer screening. The reader study 

with the request to detect any nodule (3-10 mm) included a ‘Junior group’ (three residents in 

radiology, 1-2 years of CT experience and at least 6 month of chest CT experience) and a ‘Senior 

group’ (three experienced chest radiologists with 5, 10 and 25 years of experience, respectively). In 

assisted 2nd-read mode, readers read the CT images without software first and then combined the 

displays of the software results (ClearRead CT, Riverain Technologies, with vessel suppression and 
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nodule detection functions) to make the final decision. In concurrent-read mode, the software 

results were simultaneously displayed to readers during the reading.  

For all readers, the mean reading time per case was 2 minutes 36 seconds (range 100-227 seconds) 

for unaided readers, 3 minutes 17 seconds (range 118-278 seconds) in the assisted 2nd-read mode, 

and 2 minutes 4 seconds (range: 82-171 seconds) in the concurrent-read mode. The reading time of 

all readers was significantly shorter for the concurrent-read mode compared to the manual review 

mode (mean difference 32 seconds, -21%; p < 0.001) and the assisted 2nd-read mode (mean 

difference 73 seconds; p < 0.001). Similar results were found for both junior and senior readers: 

mean reading time per case for junior radiologists was 183 seconds for unaided readers, 235 

seconds for assisted 2nd-read mode and 141 seconds for concurrent mode (p < 0.001 for all). Mean 

reading time per case for senior radiologists was 128 seconds for unaided readers, 159 seconds for 

assisted 2nd-read mode and 107 seconds for concurrent mode (p < 0.001 for all). 

 

Takaishi et al. included 61 thoracic or thoracic-abdominal unenhanced CT images conducted at a 

single hospital in Japan for various reasons.55 The MRMC study comprised three radiologists who 

either read standard CT images alone or both vessel-suppressed CT (ClearRead CT, Riverain) and 

standard CT images randomly to identify pulmonary nodules ≥4 mm in maximum diameter. The 

mean reading time increased significantly from 16.9 seconds without software use to 32.3 seconds 

with software use (p < 0.01) in Reader B, decreased significantly from 39.3 seconds without software 

use to 33.6 seconds with software use in Reader C (p = 0.09) and was unchanged (31.5 versus 31.2 

seconds) in Reader A. The average reading time of all three radiologists was slightly longer with 

software use (29.2 seconds versus 32.3 seconds, +9.5%, p = 0.11). 

 

Mixed population – contextflow SEARCH Lung CT (contextflow) (1 study) 

From all patients who had CT images performed on one scanner model  at a single hospital in Austria 

in 2018, Röhrich et al. included the first 100 patients with lung pathologies as well as the first eight 

patients without pathological lung findings.29 The 108 distinct cases were distributed to eight 

participants taking part in a MRMC study, balancing out diseases between sets, where possible. Each 

participant interpreted 54 CT images (27 without software support and another 27 with concurrent 

use of contextflow SEARCH Lung CT), resulting in each CT image being read four times (2 times with 

and without software, respectively).  
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The reduction in time taken per case with software support was more distinct for cases where the 

participants looked for other information compared to where they did not (110 vs 39 s saved, p = 

0.002). Both the radiology residents and attending radiologists showed a decrease in reading time 

with concurrent software use, and there was a tendency towards a stronger decrease in reading 

time for senior radiologists (27% vs 35%, p = 0.078). The modelled overall time used per case, 

controlling for individual participants, experience level, and whether they looked for information 

was reduced by 31.3% when using the software (p < 0.001). 

 

Mixed population – Veye Chest (1 study) 

Hempel et al. selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without 

prior imaging) or no nodules (n=5) from one hospital in the Netherlands.32 For this MRMC study, two 

experienced radiologists independently assessed the CT images to determine the nodule 

management recommendation grade based on the 2015 BTS guidelines11 (A, discharge; B, CT at 3 

months; C, Brock score; D, diagnostic work-up) twice, first unaided and then with concurrent use of 

Veye Chest software (Aidence). For both readers, the reading time was significantly reduced by 

33.4% and 42.6%, respectively (p < 0.001 for both) with concurrent software use. To investigate if 

the reduced reading times could be attributed to the fact that the readers reported fewer actionable 

nodules with software use, a subgroup analysis of patients where an equal number of nodules was 

reported during both sessions was performed that found reading time reductions by 38.0% for 

reader 1 and 30.3% for reader 2.
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Table 20. Effect of software use on radiologist reading time, by target population and technology (10 studies) 

Reference 
and country 

Population Technology Index test Comparator test Reader task Effect of software use on reading time 
compared to unaided reading 

Symptomatic population (1 study) 

Kozuka 

2020,57 

Japan 

120 chest CT 
images from cases 
of suspected lung 
cancer in patients, 
1 hospital in Japan 

InferRead CT 
Lung 
(Infervision) 

MRMC, 
2 less experienced 
radiologists, 
Concurrent mode 

MRMC, 
Same as ‘Index 
test’, 
Unaided 

To detect any 
nodules ≥3 mm 

Concurrent mode: 
(↓) (-11.3%) 

Screening population (3 studies) 

Lo 2018,52 
USA 

324 LDCT from the 
NLST dataset and 2 
hospitals (USA), 
216 with no 
actionable nodules, 
108 with actionable 
nodules 

ClearRead CT 
(Riverain 
Technologies) 

MRMC, 
12 general radiologists 
certified by the 
American Board of 
Radiology (6–26 years 
of experience), 
Concurrent mode 

MRMC, 
Same as ‘Index 
test’, 
Unaided 

To detect any 
actionable 
nodules (5-44 
mm) 

Concurrent mode: 
↓ (-26%) 
 

Jacobs 2021,62 
Denmark,  
Netherlands 

NLST dataset (USA): 
160 CT images 
(40 per Lung-RADS 
category) 

Veolity 
(MeVis) 

MRMC, 
3 experienced chest 
radiologists and 4 
radiology residents, 
Concurrent mode 
 

MRMC, 
Same as ‘Index 
test’, 
Unaided 

To detect nodules 
≥3 mm and 
classify Lung-
RADS category of 
the risk-dominant 
nodule 

Concurrent mode: 
↓ all readers (-46%)  
↓ 3 experienced chest radiologists (-51%), 
↓ 4 radiology residents (-37%) 

Hall 2022,25 
UK 

All 770 LDCT from 
Lung Screen 
Uptake Trial (LSUT), 
London (UK) 

Veolity 
(MeVis) 

MRMC, 
2 radiographers without 
prior experience in 
thoracic CT, 
Concurrent mode 

Clinical practice, 
LSUT study 
radiologists, 
Unaided 

To detect 
clinically 
significant 
nodules ≥5 mm 
and common 
incidental 
findings,  
to make patient 
management 
recommendation 
based on nodule 
type and size 

Concurrent mode: 
↓ Radiographer 1 vs pooled radiologists  
(-70%), 
↓ Radiographer 2 vs pooled radiologists  
(-50%) 
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Reference 
and country 

Population Technology Index test Comparator test Reader task Effect of software use on reading time 
compared to unaided reading 

Mixed population (6 studies) 

Abadia 
2021,45 
USA 

Random 103 
patients with ≥1 
lung condition and 
≥1 lung nodule; 
40 patients with ≥1 
lung condition and 
no lung nodules 
from a single US 
hospital 

AI-RAD 
Companion 
Chest CT 
(Siemens 
Healthineers) 
Prototype 

Stand-alone mode. 
 
MRMC, 
1 expert thoracic 
radiologist (15 years of 
experience) reading a 
random 20/103 CT 
images with nodules. 
Concurrent mode. 

MRMC, 
Same as ‘Index 
test’, 
Unaided; 
Reading all 143 CT 
images. 

To detect nodules 
and measure size 
of the 5 largest 
nodules 

Concurrent mode: 
↓ (-78%) 

Hsu 2021,51 

Taiwan 

150 consecutive 
cases with lung 
nodules ≤1cm or no 
nodules on chest 
CT performed at a 
single hospital in 
Taiwan; 
93 standard-dose 
from clinical 
routine, 
57 LDCT from 
screening 

ClearRead CT 
(Riverain 
Technologies) 
with vessel 
suppression 
and nodule 
detection 
functions 

MRMC, 
‘Junior group’:  
6 radiology 
residents, >6 month of 
chest CT experience; 
‘Senior group’: 
6 experienced chest 
radiologists, 5, 10 and 
25 years of experience, 
respectively; 
Concurrent mode; 
2nd read mode 

MRMC, 
Same as ‘Index 
test’, 
Unaided 

To detect any 
nodule (3-10 mm) 

Concurrent mode: 
↓ for all readers (-21%) 
↓ for radiology residents (-23%) 
↓ for experienced chest radiologists (-16%). 
 
Assisted 2nd-read mode: 
↑ for all readers (+26%) 
↑ for radiology residents (+28%) 
↑ for experienced chest radiologists 
(+24%). 

Takaishi 

2021,55 

Japan 

61 thoracic or 
thoracic-abdominal 
unenhanced CT 
images conducted 
at a single hospital 
in Japan during 
September 2019; 
Mixed indication 

ClearRead CT 
(Riverain 
Technologies) 
with vessel 
suppression 
function only 

MRMC, 
6 radiologists with 2-8 
years of experience, 
Concurrent mode 
(vessel-suppressed CT 
images) 

MRMC, 
Same as ‘Index 
test’, 
Unaided (standard 
CT images) 

To detect nodules 
≥4 mm in 
maximum 
diameter 

Concurrent mode: 
= All readers (+9.5%) 
= Reader A 
↑ Reader B 
↓ Reader C 
 

Röhrich 
2022,29 
Austria 

108 CT images from 
1 hospital in 
Austria; 

Contextflow 
SEARCH Lung 
CT 
(contextflow) 

MRMC, 
6 radiology residents 
(mean 2.1 ± 0.7 years of 
experience),  

MRMC, 
Same readers as 
‘Index test’ but 
each image only 

To interpret the 
CT images 
(diagnosis of lung 
pathologies) 

Concurrent use: 
↓ (-31.3%) 
(↓) Radiology residents 
(↓) Attending general radiologists 
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Reference 
and country 

Population Technology Index test Comparator test Reader task Effect of software use on reading time 
compared to unaided reading 

first 100 patients 
with lung 
pathologies (no 
lung nodules), 
first 8 patients 
without 
pathological lung 
findings. 

4 attending general 
radiologists (mean 12 ± 
1.8 years of 
experience), 
Each image read by 1 
radiology resident and 1 
attending general 
radiologist, 
Concurrent mode 

read once by each 
reader (with or 
without software), 
Unaided 

 
 

Liu 2019,58 

China 

123 (Batch 1) and 
148 (Batch 2) chest 
CT images 
(screening and in=-
patient) from >10 
hospitals in China. 

InferRead CT 
Lung 
(Infervision) 

MRMC, 
2 thoracic radiologists 
with approximately 10 
years’ experience, 
Concurrent mode 

MRMC, 
Same as ‘Index 
test’, 
Unaided 

To detect any 
nodules (size NR) 

Concurrent mode: 
(↓) for both readers (33-66%) 

Hempel 
2022,32 
Netherlands 

50 patients with ≤5 
incidentally 
detected nodules 
(n=45) or no 
nodules (n=5) on 
initial radiology 
report with (n=35) 
and without (n=10) 
prior CT imaging 
from 1 Dutch 
hospital. 

Veye Chest 
(Aidence) 

MRMC, 
1 chest radiologist with 
15 years of experience 
and 1 general 
radiologist with 13 years 
of experience; 
Concurrent mode 

MRMC, 
Same as ‘Index 
test’, 
Unaided 

To determine the 
nodule 
management 
recommendation 
and report 
relevant 
pulmonary 
nodules that 
contributed 
to management 
decision 

Concurrent mode: 
↓ for both readers (-33.4% and -42.6%). 
 
Subanalysis for patients where an equal 
number of nodules was reported during 
aided and unaided reading sessions: 
(↓) for both readers (-38.0% and -30.3%) 

LDCT, Low-dose CT images; MRMC study, Multi-reader multi-case study; NR, Not reported. 

↑ Significant increase. (↑) Increase but no p-value or 95% CI reported. 

=  No significant change. (=)   No change but no p-value or 95% CI reported. 

↓Significant decrease. (↓) Decrease but no p-value reported. 
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3.5.3 Radiology report turnaround time (No study) 

No study was identified that assessed the radiology report turnaround with and without AI-based 

software use for the detection and analysis of lung nodules. 

 

3.5.4 Acceptability and experience of using the software (3 studies) 

Three studies were identified that assessed readers’ acceptability and experience of using AI-based 

software for the detection and analysis of lung nodules.25, 45, 64 One study was performed in a 

screening population25 and the other two in mixed populations.45, 64 

 

Screening population – Veolity (MeVis) (1 study) 

This sub-study of the LSUT trial performed in London (UK) included all 770 patients who received 

LDCT for lung cancer screening.25 In a reader study, two radiographers without prior experience in 

thoracic CT reporting independently read all 770 LDCT with concurrent software use (Veolity, MeVis) 

and reported on the presence of clinically significant nodules (≥5 mm) and common incidental 

findings, including patient management recommendations. Reader 1 and Reader 2 deferred 6.5% 

(48/733) and 10.8% (82/760) of completed CT scans for discussion with a radiologist (p = 0.015). 

 

Mixed population – AI-RAD Companion Chest CT (Siemens Healthineers) (1 study) 

Abadia et al. included 103 patients with at least one lung condition and one suspicious lung nodule 

on radiology report and 40 patients with one lung condition and no lung nodule on radiology 

report.45 In a MRMC study, an expert thoracic radiologist read all 143 CT images without software 

support to detected nodules and measure nodule size of the five largest nodules ≥4 mm. A month 

after initial assessment, the radiologist re-evaluated 20 positive cases at random with the assistance 

of an AI-RAD Companion Chest CT prototype. The radiologist reported increased confidence for lung 

nodule detection for all 20 cases (100%). 

 

Mixed population – Veye Chest (Aidence) (1 study) 

Martins Jarnalo et al. randomly selected 145 chest CT scans from 145 different patients that were 

performed for various indications at a single Dutch hospital.64 The authors reported in the discussion 

that the single system threshold setting for nodule detection of the Veye Chest software from 



159 

 

Aidence for various different uses (e.g., follow-up versus screening) has been found to be a 

limitation, and that it would be a useful improvement to be able to set different thresholds. 

 

3.5.5 Other non-prespecified outcomes 

One study was identified that reported on the simulated radiologist workload reduction when stand-

alone AI-based software would be used as pre-screen to rule out CT images with no or only benign 

nodules.30 This outcome was not pre-specified in the protocol; result are reported in Appendix 5, 

section 13.5.7.1. 

 

3.5.6 Sub-questions 1 to 6. 

No data were available to perform sub-group analyses based on contrast use, radiation dose, nodule 

type, patient’s ethnicity, radiologist speciality or reasons for CT scan (incidental population). 

 

3.6 Impact on patient management 

3.6.1 Characteristics of detected nodules 

Most useful are studies that report characteristics of detected and missed nodules in readers 

assessing the same CT images with and without concurrent software use. These comparative studies 

will be prioritised in the following sections, with a focus on changes in detected and missed nodule 

characteristics due to software use. 

 

3.6.1.1 All detected nodules (true positive and false positive) (6 studies) 

Six studies were identified that reported on the characteristics of all detected nodules (true positives 

and false positives).32, 45, 48-50, 64 Three studies were performed in consecutive screening 

populations,48-50 and the remaining three studies included mixed populations.32, 45, 64 Only one MRMC 

study32 compared the characteristics of all nodules detected in the same CT images by readers with 

and without concurrent software use, respectively. With concurrent software use, the two readers 

reported less actionable nodules, and the proportion of solid nodules was lower compared to 

unaided reading (87.1% vs 90.6%, no level of significance reported).32 A second study49 used an 

unpaired design and reported nodule characteristics before and after software implementation in 

prospective screening practice. In contrast, this study observed significantly higher (p < 0.001) 
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number of nodules detected per participants and higher proportion of solid nodules with software 

use. No significant difference (p > 0.05) was observed in nodule size when nodules were measured 

on transverse planes. 

 

a) Comparative results – Reader with and without software (2 studies) 

Mixed population – Veye Chest (Aidence) (1 study) 

Hempel et al. selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without 

prior imaging) or no nodules (n=5) from one hospital in the Netherlands.32 For this MRMC study, two 

experienced radiologists independently assessed the CT images to determine nodule management 

recommendation grade based on the 2015 BTS guidelines11 twice, first unaided and then aided by 

Veye Chest software (Aidence). The readers were tasked to report relevant pulmonary nodules that 

contributed to their management decision. A summary of the nodule types and sizes is reported in 

Table 21. Both radiologists reported fewer actionable nodules with concurrent software use, most 

likely because the software provided the radiologist with a list of nodules, and therefore there was 

no need to personally keep track of all findings. With software use, the proportion of detected 

nodules being solid was lower (87.1%) than without software use (90.6%) (no level of significance 

reported). 

 

Table 21. Nodule number, type and size in patients with incidentally detected nodules on CT, with 

and without concurrent use of Veye Chest32 

 Unaided Aided 

Reader 1 Reader 2 Reader 1 Reader 2 

Number of nodules 
reported (n) 

64 63 41 44 

Patients with 
nodules, n (%) 

41/50 (82.0%) 44/50 (88.0%) 41/50 (82.0%) 40/50 (80.0 %) 

Nodule type, n (%): 
Solid 
Part-solid 
GGO 

 
58/64 (90.1%) 

5/64 (7.8%) 
1/64 (1.6%) 

 
57/63 (90.5%) 

4/63 (6.3%) 
2/63 (3.2%) 

 
36/41 (87.8 %) 

4/41 (9.8%) 
1/41 (2.4%) 

 
38/44 (86.4 %) 

4/44 (9.1%) 
2/44 (4.5%) 

Nodule size (mean 
± SD: 
Volume (mm3) 
Diameter (mm) 

 
 

567.2±626.8 (n=29) 
10.8 ±5.7 (n=35) 

 
 

613.9±791.3 (n=35) 
10.0 ±3.5 (n=28) 

 
 

736.3±835.0 (n=40) 
27.0 ±NA (n=1) 

 
 

632.0±720.0 (n=42) 
17.8 ±8.6 (n=2) 

GGO, Ground glass opacities. 
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Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

In a before-after study, Hwang et al. included 6,487 consecutive participants of the K-LUCAS project: 

1,821 participants were screened before the implementation of the AVIEW Lungscreen software and 

4,666 participants received screening after the implementation of the software.49 The study 

observed a significantly higher number of detected nodules per participant (0.76 vs. 1.07, p < 0.001) 

and higher proportion of solid nodules (90.2% vs. 93.9%, p < 0.001) in participants screened after 

software implementation (Table 22). No significant difference in nodule size was observed when 

nodules were measured on transverse planes after software implementation (p = 0.441), but sizes of 

nodules were significantly greater when nodules were measured on any maximum plane (p < 0.001) 

or maximum orthogonal plane (p = 0.021). The significance of these findings needs to be treated 

with caution though as the study did not use a fully paired design, but different CT images were 

analysed by different readers before and after software implementation. 
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Table 22. Characteristics of detected nodules (true and false positives) in consecutive screening populations from Korea (3 studies) 

Reference 
and country 

Technology / Reading 
details for detection 

# nodules or 
participants 

Nodule type Nodule size Lung-RADS category 

Hwang 

2021,49 

Korea 

Unaided reader 1,391 nodules Solid         90.2% 
Part-solid 3.7% 
Pure GGN 6.0%  

Transverse plane (all nodules) 
Mean 4.5 mm, SD 3.8 mm 

Per-nodule: 
Transverse plane 
2   – 84.8% 
3   – 9.1% 
4A – 3.2% 
 

 
 
4B – 1.2% 
4X – 1.7% 
 

AVIEW Lungscreen 
(Coreline Soft) 
Assisted 2nd-read mode 

4,990 nodules Solid         93.9% 
Part-solid 1.6% 
Pure GGN 4.5%  

Transverse plane (all nodules) 
Mean 4.4 mm, SD 3.5 mm 

2    – 89.2% 
3    – 6.5% 
4A – 2.5% 

4B – 1.1% 
4X – 0.7% 

Unaided reader 1,821 
participants 

NR NR Per-participant: 
Transverse plane 
1 – 58.6% 
2 – 31.5% 
3 – 5.3% 

 
 
4A – 2.3% 
4B – 0.7% 
4X – 1.5% 
 

AVIEW Lungscreen 
(Coreline Soft) 
Assisted 2nd-read mode 

4,660 
participants 

NR NR 1 – 51.5% 
2 – 37.6% 
3 – 6.1% 

4A – 2.9% 
4B – 1.2% 
4X – 0.8% 

Hwang 
2021,48Korea 

AVIEW Lungscreen 
(Coreline Soft) 
Assisted 2nd-read mode 

10,080 nodules 
 
 

Solid          93.9% 
Part-solid 1.6% 
Pure GGN 4.5% 

Average transverse diameter 
Solid: Median 3.6 mm 
<5 mm: 75.1% 
5-6 mm: 8.1% 
6-8 mm: 6.0% 
≥8 mm: 4.6% 
 
Part-solid: Median 11.9 mm     
<5 mm: 0.008% 
≥5 mm: 1.5% 
 
Pure GGN: Median 5.8 mm 
<5 mm: 1.7% 
≥5 mm: 2.8% 

NR 
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Reference 
and country 

Technology / Reading 
details for detection 

# nodules or 
participants 

Nodule type Nodule size Lung-RADS category 

AVIEW Lungscreen 
(Coreline Soft) 
Assisted 2nd-read mode 

4,642  
risk-dominant 
nodules 

Average transverse 
diameter 
Solid <6 mm: 76.9% 
Solid 6-7 mm: 6.5% 
Solid 7-8 mm: 2.8% 
Solid 8-9 mm: 1.8% 

 
 
Solid 9-10 mm: 1.1% 
Solid ≥10 mm: 4.7% 
Part-solid:        2.7% 
Pure GGN:        3.4% 

NR 

AVIEW Lungscreen 
(Coreline Soft) 
Assisted 2nd-read mode 

10,424 
participants 

NR NR 1 – 53.0% 
2 – 26.9% 
3 – 11.7% 

4A     – 4.3% 
4B/X – 4.1% 

Hwang 
2021,50 
Korea 

AVIEW Lungscreen 
(Coreline Soft) 
Assisted 2nd-read mode 
(original institutional 
reading) 

3,452 nodules Solid         94.1% 
Part-solid 1.5%  
Pure GGN 4.3% 

Solid:          Median 5 mm 
Part-solid: Median 12 mm 
Pure GGN: Median 6 mm 

NR 

AVIEW Lungscreen 
(Coreline Soft) 
Assisted 2nd-read mode 
(original institutional 
reading) 

3,353 
participants 

NR NR 1 – 53.0% 
2 – 26.9% 
3 – 11.7% 

4A     – 4.3% 
4B/X – 4.1% 

GGN, ground glass nodule; NR, Not reported.
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b) Comparative results – Stand-alone AI versus unaided reader (1 study) 

One study reported the size of nodules detected by stand-alone AI as well as by an expert unaided 

reader in a mixed population.45  

 

Mixed population – AI-RAD Companion Chest CT (Siemens Healthineers) (1 study) 

Abadia et al. included 103 patients with at least one lung condition and one suspicious lung nodule 

(≥4 mm) on radiology report and 40 patients with one lung condition and no lung nodule on 

radiology report from random LDCT images taken at a single US hospital for various reasons.45 The 

nodule 2-D axial size of all 312 nodules detected by stand-alone software (AI-RAD Companion CT 

Chest prototype) and of all 366 nodules detected by an unaided expert chest radiologist are 

reported in Table 23.   

 

Table 23. Nodule 2-D axial diameter in all detected nodules in patients with complex lung disease45 

 
 
Lung condition 

Stand-alone software Unaided expert chest 
radiologist 

No. of 
nodules 
detected 

Nodule size (mm) 
Median (IQR) 

No. of 
nodules 
detected 

Nodule size (mm) 
Median (IQR) 

All 312 8.4 (6.3-11.6) 366 7.1 (5.3-10.5) 
Interstitial lung disease 59 8.4 (6.9-11.5) 76 6.9 (5.5-10.2) 
Chronic obstructive lung disease 70 7.7 (6.0-10.7) 68 6.0 (4.9-8.1) 
Respiratory bronchiolitis 59 7.6 (5.4-10.2) 58 7.1 (4.9-9.2) 
Oedema 46 10.4 (7.2-13.8) 63 8.4 (5.8-10.3) 
Pulmonary embolism 78 9.1 (6.5-13.9) 101 8.2 (5.5-18.6) 

IQR, Interquartile range. 
 

Three studies reported characteristics of nodules detected by software-assisted readers48, 50 and 

stand-alone software,64 respectively, without comparator. These non-comparative results are 

reported in Appendix 5, section 13.5.8.1. 
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3.6.1.2 True positive nodules (7 studies) 

Seven studies reported characteristics of correctly detected nodules.30, 49, 54, 57-59, 64 Four studies were 

performed in screening populations,30, 49, 54, 59 in one study, the indication for the chest CT scan was 

lung cancer suspicion,57 and in the remaining two studies, the indication for the chest CT scan was 

mixed.58, 64 Of these, two studies compared the characteristics of true positive nodules in readers 

assessing the same CT images with and without software use (InferRead CT lung, Infervision).57, 59 

Additional true positive nodules detected with software use were 56-57% solid, due to larger 

improvements in the detection of sub-solid nodules. This resulted in a lower proportion of solid 

nodules and higher proportions of part-solid and ground glass nodules with software use. Twenty-

two percent of additional true positive nodules were 6 mm or larger.57 

 

a) Comparative results – Reader with and without software (2 studies) 

Two studies compared the characteristics of true positive nodules in readers assessing the same CT 

images with and without software use (InferRead CT lung, Infervision).57, 59 

 

Symptomatic population – InferRead CT Lung (Infervision) (1 study) 

Kozuka et al. randomly selected 120 chest CT images from cases of suspected lung cancer at a single 

hospital in Japan.57 In a MRMC study, two less experienced radiologists assessed the CT images first 

without software for nodule detection and then with software (InferRead CT Lung, Infervision). The 

distribution of size and type of the 743 nodules ≥3 mm that were detected by the reference 

standard (majority reading of three experienced radiologists) as well as nodule type and size of 

correctly detected lung nodules of readers with and without software support are reported in Table 

24. An additional 254 true positive nodules were identified by the two readers with software use. 

The additional nodules had the following composition: 57% solid, 14% part-solid, 15% ground glass 

and 14% calcified. Seventy-eight percent of additional nodules had a diameter of 3-6 mm, and 22% 

were 6 mm or larger. 
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Table 24. Nodule type and size in a random symptomatic population from Japan57 

Detection 
details 

Number of nodules Nodule type, % (n) Nodule size, % (n) 

Reference 
standard 

All 743 nodules Solid              69.7% (518) 
Part-solid     8.7% (65)   
Calcified       10.0% (74)   
GGNs            11.6% (86) 
 

3-6 mm         71.6% (532) 
6-10 mm       19.4% (144) 
19-15 mm     6.2% (46) 
15-20 mm     1.9% (14) 
≥20 mm         0.9% (7) 

InferRead CT 
Lung 
(Infervision) 
Concurrent 
mode 

564 true positive 
nodules (Reader A 
+ Reader B) 

Solid             59.9% (338) 
Part-solid    13.5% (76)     
Calcified      14.4% (81)    
GGNs           12.2% (69) 

3-6 mm         61.2% (345) 
6-10 mm       24.3% (137) 
10-15 mm     9.6% (54) 
15-20 mm     3.0% (17) 
≥20 mm         2.0% (11) 

Unaided reader 310 true positive 
nodules (Reader A 
+ Reader B) 

Solid            62.3% (193) 
Part-solid   13.2% (41)   
Calcified     14.5% (45)    
GGNs          10.0% (31) 

3-6 mm         47.1% (146) 
6-10 mm       31.0% (96) 
10-15 mm     15.2% (47) 
15-20 mm     4.2% (13) 
≥20 mm         2.6% (8) 

InferRead CT 
Lung 
(Infervision) 
Concurrent 
mode 

922 false negative 
nodules (Reader A 
+ Reader B) 

Solid           75.7% (698) 
Part-solid   5.9% (54) 
Calcified     7.3% (67) 
GGNs          11.2% (103) 

3-6 mm         78.0% (719) 
6-10 mm       16.4% (151) 
10-15 mm     4.1% (38) 
15-20 mm     1.2% (11) 
≥20 mm         0.3% (3) 

Unaided reader 1,176 false 
negative nodules 
(Reader A + Reader 
B) 

Solid           71.7% (843) 
Part-solid   7.6% (89)     
Calcified     8.8% (103)   
GGNs         12.0% (141) 

3-6 mm         78.1% (918) 
6-10 mm       16.3% (192) 
10-15 mm     3.8% (45) 
15-20 mm     1.3% (15) 
≥20 mm         0.5% (6) 

GGN, Ground glass nodules. 

 

Screening population – InferRead CT Lung (Infervision) (1 study) 

Zhang et al. included 860 consecutive patients who had undergone lung cancer screening at one 

Chinese hospital as part of the NELCIN-B3 project.59 In the real-world radiologist observation, one of 

14 residents drafted the diagnostic report, and one of 15 board-certified radiologists supervised the 

final version. In a MRMC study, one resident and one radiologist re-evaluated all CT images with the 

assistance of the InferRead CT Lung software to locate and measure the detected lung nodules. 

Consensus reading of two experienced radiologists detected at least one nodule in 43.5% (374/860) 

of participants, of which 66.8% (250/374) had solid nodules, 3.5% (13/374) had part-solid nodules 

and 29.8% (111/374) had ground glass nodules. The size and type of the correctly detected nodules 

with and without software support as well as of the nodules detected by the reference standard are 

reported in Table 25. AI-assisted reading resulted in the correct detection of nodules in an additional 

208 participants: 56% had solid nodules, 5% had part-solid nodules and 39% had GGNs. Of 126 

additional participants with solid or part-solid nodules, 67% had a nodule diameter of 5 mm or 
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smaller, and 33% had nodules that were 6 mm or larger. The 82 additional participants with pure 

GGNs had nodules with a diameter less than 20 mm. 

 

Table 25. Nodule characteristics of subjects with at least 1 nodule in a consecutive screening 

population from China, by mode of detection59 

Nodule 
type 

Nodule 
diameter 
category 

Subjects with ≥1 nodule Consensus reading 
(Reference 
standard) 

Unaided AI-assisted Difference in 
numbers detected 

All All 162 370 +128% 374 

Solid ≤5 mm 65.4% (106/162) 50.3% (186/370)* +75% 50.3% (188/374) 

6-7 mm 9.9% (16/162) 11.1% (41/370)* +156% 11.2% (42/374) 

8-14 mm 4.9% (8/162) 5.1% (19/370)* +138% 5.1% (19/374) 

≥15 mm 0.6% (1/162) 0.3% (1/370) 0% 0.3% (1/374) 

All 80.9% (131/162) 66.8% (247/370)* +89% 66.8% (250/374) 

Part-
solid 

≤5 mm 1.9% (3/162) 2.1% (8/370)* +167% 2.1% (8/374) 

≥6 mm 0 1.4% (5/370)* NA 1.3% (5/374) 

All 1.9% (3/162) 3.5% (13/370)* +333% 3.5% (13/374) 

Ground 
glass 

≤19 mm 17.3% (28/162) 29.7% (110/370)* +293% 29.7% (111/374) 

≥20 mm 0 0 NA 0 

All 17.3% (28/162) 29.7% (110/370)* +293% 29.7% (111/374) 

* Indicates significant difference (p<0.001) by the Chi-square test between unaided and AI-assisted reading. 

 

b) Comparative results – Stand-alone software versus unaided reader (1 study) 

One study58 reported the proportions of detected nodules by size and type for unaided radiologists, 

stand-alone software as well as consensus expert reading. 

 

Mixed population – InferRead Lung CT (Infervision) (1 study) 

Liu et al. included a test set consisting of 1,129 CT images (screening and in-patients) from more 

than 10 hospitals in China using convenience sampling.58 The chest CT images were retrospectively 

assessed by stand-alone software (InferRead Lung CT) as well by two experienced radiologists 

without software use. Table 26 reports the proportions of detected nodules by size and type for 

unaided radiologists, stand-alone software as well as consensus expert reading (2 experienced 

radiologists, reference standard). 
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Superseded- 

see erratum 

Table 26. Characteristics of correctly detected nodules in a mixed population from China obtained 

via convenience sampling.58 

Nodule type Nodule 
size 

Reference 
standard 

Correctly detected nodules 

Stand-alone 
software 

Reader 1 – 
Unaided 

Reader 2 – 
unaided 

Total All 6,363 4,484 2,562 3,617 

Solid ≤6 mm 53.4% 50.0% 49.5% 47.1% 

>6 mm 4.1% 5.1% 8.1% 5.1% 

All 57.5% 55.1% 57.6% 52.3% 

Sub-solid ≤5 mm 20.8% 19.6% 13.1% 20.8% 
 >5 mm 6.8% 7.9% 10.0% 10.1% 

All 27.6% 27.5% 23.1% 30.9% 

Calcified NR 5.1% 6.6% 6.0% 5.1% 

Pleural NR 9.8% 10.7% 13.3% 11.7% 

NR, Not reported. 
 

Four studies reported on characteristics of true positive nodules detected by stand-alone software,49, 

64 by software-assisted readers,54 and/or by the reference standard30, 54, 64 without a comparator. 

These non-comparative results are reported in Appendix 5, section 13.5.8.2. 

 

3.6.1.3 Additional true positive nodules detected by software compared to unaided reading (1 

study) 

Incidental population – AI-RAD Companion Chest (Coreline Soft) (1 study) 

The study by Rueckel et al. included 105 consecutive patients who received a whole-body CT scan in 

the emergency department of a single German hospital.47 Retrospective reading by stand-alone 

software (AI-RAD Companion Chest CT prototype, Siemens Healthineers) detected three additional 

true positive nodules compared to the original radiologist report (17% of CT scans have been 

originally reported by a board-certified radiologist alone, the other 83% CT scans have been 

commonly reported  by a radiology resident and a board-certified radiologist). All three additional 

nodules detected measured at least 6 mm, with the largest nodule being 8 mm. 

 

3.6.1.4 False positive nodules (4 studies) 

Four studies reported on characteristics of false positive nodules detected by stand-alone software 

in a random screening population,46 an incidental population47 and mixed populations,45, 64 

respectively. No study compared characteristics of false positive nodules between readers with and 

without concurrent software use.  
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a) Non-comparative results (4 studies) 

Incidental population – AI-RAD Companion Chest (Siemens Healthineers) (1 study) 

The study by Rueckel et al. included 105 consecutive patients who received a whole-body CT scan in 

the emergency department of a single German hospital.47 Nodules were detected retrospectively by 

stand-alone software (AI-RAD Companion Chest CT prototype, Siemens Healthineers) and compared 

to the original radiologist report (17% of CT scans have been originally reported by a board-certified 

radiologist alone, the other 83% CT scans have been commonly reported  by a radiology resident and 

a board-certified radiologist). Of 81 additional nodules detected by the stand-alone software, three 

were true positive nodules. The remaining 78 false positive nodules were classed as trauma-

associated (27%), scarred/post-inflammatory (38%), perifissural lymph nodes (6%), granuloma (6%) 

or could not be confirmed visually (22%). 

 

Screening population – AI-RAD Companion CT Chest (Siemens Healthineers) (1 study) 

Chamberlin et al. included a random 117 patients who underwent LDCT for lung cancer screening at 

a single US hospital and evaluated the stand-alone performance of an AI-RAD Companion Chest CT 

prototype (Siemens Healthineers) to detect nodules >6 mm.46 The software detected 56 false 

positive nodules out of a total of 222 detected nodules. False positives were identified as atelectasis 

(23%), extrapleural fat (16%), infection (7%), protruding osteophytes from thoracic vertebral bodies 

(7%), bowel (7%), blood vessel (7%), pleura (5%), rib (4%), hilum (4%), scarring (2%) and perifissural 

lymph nodes (2%). Nine false positives (16%) were uncategorisable by the panel of radiologists. 

 

Mixed population – AI-RAD Companion Chest CT (Siemens Healthineers) (1 study) 

Abadia et al. included 103 patients with at least one lung condition and one suspicious lung nodule 

(≥4 mm) on radiology report and 40 patients with one lung condition and no lung nodule on 

radiology report from random LDCT images taken at a single US hospital for various reasons.45 The 

percentage of false positive nodules detected by the AI-RAD Companion CT Chest prototype 

(Siemens Healthineers) was 8.6% with a median size of 10.0 mm (IQR 7.5 to 17.2). If the nodule was 

near a blood vessel, overestimation of nodule size was occasionally observed. A few false positives 

were also caused by incorrect lung segmentation. 
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Mixed population – Veye Chest (Aidence) (1 study) 

Martins Jarnalo et al. randomly selected 145 chest CT scans from 145 different patients that were 

performed for various indications at a single Dutch hospital.64 There were 50 false positive nodules 

detected by stand-alone software (Veye Chest, Aidence) with an average size of 11.8 mm (SD 10.0 

mm); 90% were solid and 10% were sub-solid (Table 27). The average size of the false-positive 

findings was larger than the size of the true positive nodules (7.3 ± 3.8 mm). Nineteen (38%) false 

positive nodules showed considerable atelectasis, 12 (24%) were found to be fibrosis, and 10 (20%) 

were not rounded. The atelectasis and fibrosis cases also had a non-round shape. The remaining 

nine (18%) cases were found to be false positive for various reasons, e.g., a gland, bronchiectasis, or 

a large consolidation. 

 

Table 27. Characteristics of all detected nodules, true positive, false positive and false negative 

nodules – Stand-alone software in a random mixed population64 

Reference 
and country 

Detection 
details 

Number of nodules Nodule type Nodule size (mm) 
(mean ± SD) 

Martins 
Jarnalo 
2020,64 
Netherlands 

Reference 
standard 

93 nodules Solid 80% 
Sub-solid 18% 
Mixed solid/sub-solid 2% 

7.0 ± 4.1 

Veye Chest 
(Aidence) 
Stand-alone 

130 detected 
nodules (TP and FP) 

Solid 85% 
Sub-solid 14% 
Mixed solid/sub-solid 1% 

9.0 ± 7.1 

80 true positive 
nodules 

Solid 81% 
Sub-solid 16% 
Mixed solid/sub-solid 3% 

7.0 ± 3.8 

50 false positive 
nodules 

Solid 90% 
Sub-solid 10% 
Mixed solid/sub-solid 0% 

11.8 ± 10.0 

11 false negative 
nodules 

Solid, 4 mm: n=5 
Solid, calcified, 4 mm: n=3 
Sub-solid, 4 mm: n=1 
Sub-solid, 18 mm: n=1 
Sub-solid, 20 mm: n=1 

6.7 ± 6.1 

FP, False positive; SD, Standard deviation; TP, True positive. 

  



171 

 

3.6.1.5 False negative (missed) nodules (9 studies) 

Nine studies reported characteristics like nodule size and type of missed nodules: four studies were 

performed in screening populations,25, 49, 54, 59 one study was performed in a symptomatic 

population,57 and the other four studies were performed in populations with mixed indication for 

the chest CT scan.45, 56, 58, 64 Of these, two studies compared the characteristics of missed nodules in 

readers assessing the same CT images with and without concurrent software use (InferRead CT Lung, 

Infervision).57, 59 Software use decreased the number of missed nodules in both studies. Relative 

reductions were larger for part-solid and ground glass nodules than for solid nodules, with the result 

that the nodules missed with software use had a higher proportion of solid nodules and a lower 

proportion of sub-solid nodules than nodules missed by unaided readers. 

 

a) Comparative results – Reader with and without software (2 studies) 

Symptomatic population – InferRead CT Lung (Infervision) (1 study) 

Kozuka et al. randomly selected 120 chest CT images from cases of suspected lung cancer at a single 

hospital in Japan.57 In a MRMC study, two less experienced radiologists assessed the CT images first 

without software (InferRead CT Lung, Infervision) for nodule detection and then with software. The 

distribution of size and type of missed lung nodules of readers with and without software support 

are reported in Table 24. With software use, the two readers missed less nodules (922 vs 1,176; -

22%); false negatives were reduced by 145 (-17.2%) for solid, by 35 (-39.3%) for part-solid, by 36 (-

35.0%) for calcified and by 38 (-27.0%) for ground glass nodules compared to unaided reading.  
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Screening population – InferRead CT Lung (Infervision) (1 study) 

Zhang et al. included 860 consecutive patients who had undergone lung cancer screening at one 

Chinese hospital as part of the NELCIN-B3 project.59 In the real-world radiologist observation, one of 

14 residents drafted the diagnostic report, and one of 15 board-certified radiologist supervised the 

final version. In a MRMC study, one resident and one radiologist re-evaluated all subjects with the 

assistance of the InferRead CT Lung software to locate and measure the detected lung nodules. Of 

the 212 participants with nodules that were missed by unaided readers in clinical practice, 56.1% 

had solid nodules, 4.7% had part-solid nodules and 39.2% had GGNs (Table 28). Missed nodules 

were solid and larger than 5 mm in 17.5%, part-solid and larger than 5 mm in 2.4% and ground glass 

nodules smaller than 20 mm in 39.2%. In the reader study, AI-assisted readers missed four 

participants with at least one nodule. Of these, two (50%) had solid nodules ≤5 mm, one (25%) had 

solid nodules larger than 5 mm and the remaining participant had a ground glass nodules smaller 

than 20 mm. The absolute reduction in missed nodules with software use was largest for ground 

glass nodules ≤19 mm and for solid nodules ≤5 mm (an additional 82 and 80 nodules detected with 

concurrent software use, respectively). Relative reduction was slightly higher for part-solid (-100.0%) 

and GGNs (-98.8%) compared to solid nodules (-97.5%). 

 

Table 28. Characteristics of missed nodules in a consecutive screening population from China59 

 
Nodule 
type 

Nodule 
diameter 
category 

Missed subjects with ≥1 nodule 

Unaided 
(clinical practice) 

AI-assisted 
(MRMC study) 

Difference in numbers 
missed, n (%) 

All All 212 4 208 (-98.1%) 

Solid ≤5 mm 38.7% (82/212) 50.0% (2/4) -80 (-97.6%) 

6-7 mm 12.3% (26/212) 25.0% (1/4) -25 (-96.2%) 

8-14 mm 5.2% (11/212) 0 -11 (-100.0%) 

≥15 mm 0 0 0 

All 56.1% (119/212) 75.0% (3/4) -116 (-97.5%) 

Part-
solid 

≤5 mm 2.4% (5/212) 0 -5 (-100.0%) 

≥6 mm 2.4% (5/212) 0 -5 (-100.0%) 

All 4.7% (10/212) 0 -10 (-100.0%) 

Ground 
glass 

≤19 mm 39.2% (83/212) 25.0% (1/4) -82 (-98.8%) 

≥20 mm 0 0 0 

All 39.2% (83/212) 25.0% (1/4) -82 (-98.8%) 

 

b) Comparative results – Stand-alone AI versus unaided reader (2 studies) 

Mixed population – AI-RAD Companion Chest CT (Siemens Healthineers) (1 study) 
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Abadia et al. included 103 patients with at least one lung condition and one suspicious lung nodule 

(≥4 mm) on radiology report and 40 patients with one lung condition and no lung nodule on 

radiology report from random LDCT images taken at a single US hospital for various reasons.45 The 

median 2-D axial size of the 29.3% (129/441) nodules missed by stand-alone software (AI-RAD 

Companion CT Chest prototype, Siemens Healthineers) was 8.9 mm (IQR 5.7 to 14.4), whereas the 

unaided expert chest radiologist missed 8.4% (37/441) of nodules with a median size of 6.1 mm (IQR 

5.1 to 9.2). Most of the nodules missed by the nodule detection software were near the pleura; 

occasionally, hilar and basilar nodules were also missed. 

 

Mixed population – InferRead Lung CT (Infervision) (1 study) 

Liu et al. included a test set consisting of 1,129 CT images (screening and in-patients) from more 

than 10 hospitals in China using convenience sampling.58 The chest CT images were retrospectively 

assessed by stand-alone software (InferRead Lung CT) as well by two experienced radiologists 

without software use. Table 29 reports the proportions of missed nodules by size and type for stand-

alone software as well as for the unaided radiologists. 

 

Table 29. Characteristics of missed nodules in a mixed population from China obtained via 

convenience sampling.58 

Nodule type Nodule 
size 

Missed nodules 

Stand-alone 
software 

Reader 1 – 
unaided 

Reader 2 – 
unaided 

Total All 1,879 3,801 2,746 

Solid ≤6 mm 61.5% 56.1% 61.7% 

>6 mm 1.6% 1.4% 2.7% 

All 63.1% 57.4% 64.4% 

Sub-solid ≤5 mm 23.7% 26.1% 20.9% 
 >5 mm 4.2% 4.6% 2.4% 

All 27.9% 30.7% 23.3% 

Calcified NR 1.5% 4.4% 5.0% 

Pleural NR 7.6% 7.4% 7.3% 

 

Non-comparative results (5 studies) are reported in Appendix 5, section 13.5.8.3. 
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3.6.2 Proportion of detected nodules that are malignant (3 studies) 

Three studies performed in consecutive screening populations reported on the proportion of 

detected nodules that were diagnosed as lung cancer.25, 48, 49 The two comparative studies found that 

the proportion of detected actionable nodules that were malignant was 6.6% and 21.3%, 

respectively, without software use and 5.2% and 16.7%-19.4%, respectively, with software use.25, 49 

 

a) Comparative results – Reader with and without software (2 studies) 

Screening population – Veolity (MeVis) (1 study) 

The study by Hall et al. was performed in London (UK) and is a sub-study of the LSUT trial.25 It 

included all 770 patients who received LDCT for lung cancer screening. In a MRMC study, two 

radiographers without prior experience in thoracic CT reporting independently read all 770 LDCT 

with concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant 

nodules (≥5 mm). The study compared the findings to the number of nodules ≥5 mm detected by the 

original unaided reading (single expert thoracic radiologists with 5% of CT images checked by a 

second radiologist). In the original, unaided reading, 21.3% (33/155) of all detected actionable 

nodules were malignant: 60.0% (18/30) of all actionable nodules with direct referral to a multi-

disciplinary team (MDT) (‘suspicious lesions’) and 12.0% (15/125) of all actionable nodules referred 

for CT surveillance (‘intermediate nodules’). Of the actionable nodules detected by Radiographer 1 

with concurrent software use, 16.7% (24/144) were malignant; for Radiographer 2, the proportion of 

detected nodules being malignant was 19.4% (30/155). 

 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

In a before-after study, Hwang et al. included 6,487 consecutive participants of the K-LUCAS project: 

1,821 participants were screened before the implementation of the AVIEW Lungscreen software and 

4,666 participants received screening after the implementation of the software.48, 49 A whole read 

(nodule detection and classification based on nodule type and size) was performed by a single 

experienced thoracic radiologist with or without concurrent software use (AVIEW Lungscreen, 

Coreline Soft) in a clinical setting. Positivity was based on Lung-RADS category 3 or higher, and cases 

of lung cancer were identified by medical record review. The proportion of all detected nodules 

(Lung-RADS category 2 or higher) that were later diagnosed as lung cancer was 1.2% (16/1,391) 

before the implementation of the software and 0.6% (31/4,990) after the implementation of the 

AVIEW Lungscreen software. Of the screen-positive (actionable) nodules (Lung-RADS category 3 or 
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higher), 6.6% (14/212) and 5.2% (28/538) were malignant before and after implementation of the 

software, respectively. 

 

b) Non-comparative results (1 study) 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

The other study by Hwang et al. included 10,424 concurrent baseline LDCT scans obtained after the 

implementation of the AVIEW Lungscreen software as part of the Korean K-LUCAS project.48 The 

number of lung cancers (within 1 year after LDCT and any lung cancers after LDCT) by nodule type 

and size of the risk-dominant nodule is reported in Table 30. In all 4,642 risk-dominant nodules, 1.1% 

(52/4,642) were diagnosed as lung cancer within one year after LDCT, and 1.2% (58/4,642) were 

diagnosed with any lung cancer after LDCT. The highest proportion of malignant nodules was found 

in solid nodules ≥10 mm (14%) and in part-solid nodules (13%).
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Table 30. Proportion of detected risk-dominant nodules that are malignant, by nodule type and size, in a consecutive screening population from Korea48 

 Solid nodules Part-solid 
nodules 

Non-solid 
nodules 

Total 

<6 mm 6-7 mm 7-8 mm 8-9 mm 9-10 mm ≥10 mm 

Average transverse diameter 

Risk-dominant nodule (n) 3,570 304 130 83 53 217 125 160 4,642 

Lung cancer diagnosed within 1-year after 
LDCT (n, %) 

2 
(0.06%) 

0 
(0%) 

1 
(0.77%) 

0 
(0%) 

4 
(7.55%) 

30 
(13.8%) 

15 
(12.00%) 

0 
(0%) 

52 
(1.12%) 

Any lung cancer diagnosed after LDCT (n, %) 5 
(0.14%) 

1 
(0.33%) 

1 
(0.77%) 

0 
(0%) 

5 
(9.43%) 

30 
(13.8%) 

16 
(12.80%) 

0 
(0%) 

58 
(1.25%) 

Effective diameter 

Risk-dominant nodule (n) 3,574 301 131 80 53 217 126 160 4,642 

Lung cancer diagnosed within 1-year after 
LDCT (n, %) 

2 
(0.06%) 

1 
(0.33%) 

0 
(0%) 

0 
(0%) 

4 
(7.55%) 

30 
(13.8%) 

15 
(11.90%) 

0 
(0%) 

52 
(1.12%) 

Any lung cancer diagnosed after LDCT (n, %) 5 
(0.14%) 

1 
(0.33%) 

1 
(0.77%) 

0 
(0%) 

5 
(9.43%) 

30 
(13.8%) 

16 
(12.70%) 

0 
(0%) 

58 
(1.25%) 

LDCT, Low-dose computed tomography.
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3.6.3 Impact of test result on clinical decision-making (6 studies) 

Six comparative studies were identified that reported the impact of software use on clinical decision 

making.25, 53, 54, 61, 62, 65 Four studies were performed in screening populations,25, 54, 62, 65 one study was 

performed in a surveillance population with applicability concerns,61 and in the remaining study, the 

indication for the chest CT scan was not reported.53 Four studies consistently reported that with 

software use, readers tended to upstage Lungs-RADS62, 65 or Fleischner risk categories32, 61 rather 

than downstage. 

 

a) Comparative results – Reader with and without software (6 studies) 

Screening population – MeVis (2 studies) 

The study by Jacobs et al. included a nodule-enriched screening population.62 One-hundred and sixty 

LDCT images were selected from the US-based NLST dataset stratified by Lung-RADS category (40 

Lung-RADS 1 or 2; 40 Lung-RADS 3; 40 Lung-RADS 4A; 40 Lung-RADS 4B with half being baseline 

scans and half being 1-year follow-up scans). Seven readers participated in the MRMC study 

detecting nodules ≥3 mm and classifying the Lung-RADS category of the risk-dominant nodule based 

on its nodule type and size with and without concurrent use of the software Veolity (MeVis) (Table 

31). 

 

Table 31. Lung-RADS category with and without concurrent software use in a nodule-enriched 

screening population62) 

Lung-RADS category 7 readers with concurrent software 
use (160 LDCT scans each) 

7 readers without concurrent software 
use (160 LDCT each) 

1 or 2 (negative) 34% (377/1,120) 47% (521/1,120) 

3 21% (232/1,120) 18% (199/1,120) 

4A 23% (252/1,120) 15% (166/1,120) 

4B 23% (259/1,120) 21% (234/1,120) 

LDCT, Low-dose computed tomography. 
 

Jacobs et al. found that the proportion of scans with a Lung-RADS category of 1 or 2 (negative 

screening result) was substantially reduced from 47% to 34% when using the dedicated CT lung 

screening viewer with software support, whereas the total number of positive screening results 

(Lung-RADS category 3, 4A, or 4B) increased from 53% to 66%. The spread of Lung-RADS results for 

readers with concurrent software use was more in line with how the cases were selected from the 

NLST database (25% in each category). 
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The study by Hall et al. was performed in London (UK) and is a sub-study of the LSUT trial.25 It 

included all 770 patients who received LDCT for lung cancer screening. In a MRMC study, two 

radiographers without prior experience in thoracic CT reporting independently read all 770 LDCT 

with concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant 

nodules (≥5 mm) and common incidental findings and had to make patient management 

recommendations. The study reports on the concordance of management decisions against BTS 

guidelines11 for the software-assisted radiographer as well as for the original unaided reading (single 

expert thoracic radiologists with 5% of CT images checked by a second radiologist). For Radiographer 

1, the management recommendations for 39.7% (52/131) of CT scans were concordant with the BTS 

guidelines (15 cancers), for 19.8% (26/131) a more active follow-up was recommended (1 cancer) 

and for 40.5% (53/131) a less active follow-up was recommended (3 cancers). For Radiographer 2, 

the management recommendations for 60.7% (91/150) of CT scans were concordant with the BTS 

guidelines (22 cancers), for 23.3% (35/150) a more active follow-up was recommended (4 cancers) 

and for 16.0% (24/150) a less active follow-up was recommended (1 cancer). For the original 

unaided radiologists, the management recommendations for 71.6% (111/155) of CT scans were 

concordant with the BTS guidelines (28 cancers), for 14.2% (22/155) a more active follow-up was 

recommended (3 cancers) and for 12.9% (20/155) a less active follow-up was recommended (1 

cancer). 

 

Screening population - VUNO Med-Lung CT AI (VUNO) (1 study) 

Park et al. included a nodule- and cancer-enriched screening population (200 baseline LDCT), 

selected from the US-based NLST dataset.65 In a MRMC study, five readers with varying levels of 

experience assessed the LDCT images with and without concurrent software use (VUNO Med-Lung 

CT AI, VUNO). The readers reported 71.5% negative screening results (Lung-RADS categories 1 and 2) 

without software use and 65.8% negative screening results with software use (Table 32).  

In the majority of cases, the Lung-RADS categories remained unchanged between the two sessions 

for all readers (74.5% [149/200]–91.0% [182/200]). With software use, the readers tended to 

upstage (average, 12.3%) rather than downstage Lung-RADS categories (average, 4.4%) comp 

unaided reading, with most of the changes occurring between two contiguous categories. An 

upstage from screen-negative (Lung-RADS category 1 or 2) to screen-positive (Lung-RADS category 3 

or higher) occurred in 6/200 (3%) to 26/200 (13%) of CT images that were assessed with software 
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use. Between 0/200 to 18/200 (9%) of CT images were down-staged by the five readers with 

software use compared to unaided reading. 

 

Table 32. Lung-RADS category based on stand-alone software and readers with and without 

concurrent software use in a nodule-enriched screening population65 

Lung-RADS 
category 

Stand-alone software 
(200 LDCT) 

5 readers with concurrent 
software use  

(200 LDCT scans each) 

5 readers without 
concurrent software use 

(200 LDCT each) 

1 or 2 (negative) 53.0% (106/200) 65.8% (658/1,000) 71.5% (715/1,000) 

3 15.5% (31/200) 11.1% (111/1,000) 9.0% (90/1,000) 

4A 14.0% (28/200) 10.5% (105/1,000) 9.3% (93/1,000) 

4B 17.5% (35/200) 12.6% (126/1,000) 10.2% (102/1,000) 

LDCT, Low-dose computed tomography. 

 

With regard to patient management, the mean follow-up periods determined by the five unaided 

readers were 9.4 (range 9.1–9.8 months) and 8.9 months with concurrent software use (range 8.7–

9.3 months). Although all readers gave a shorter mean follow-up interval with software use, the 

change was minor, being an average of 0.5 months (range 0.3–0.7 months). 

For the 31 cancer-positive cases in the dataset, substantial management discrepancies between the 

310 reader pairs (Lung-RADS category 1/2 vs. 4A/B) were reduced in half by application of the 

software (32/310 to 16/310). 

 

Screening population – ClearRead CT (Riverain Technologies) (1 study) 

Singh et al. included 150 patients who underwent LDCT of the chest as part of the NLST - the first 

125 patients with sub-solid nodules (154 part-solid or 156 ground glass nodules between 6 and 30 

mm) and the first 25 patients with no nodules detected.54 As part of a MRMC study, two experienced 

chest radiologists sequentially interpreted the unprocessed CT images alone and then together with 

the vessel-suppressed (ClearRead CT, Riverain Technologies) CT image without washout period. 

Using vessel-suppressed images, both radiologists detected solid components in five part-solid 

nodules, which they had deemed as ground glass nodules on the standard CT images. The Lung-

RADS category changed for these five nodules from Lung-RADS 2 to Lung-RADS 4A which would 

impact the management of these patients.  

  



180 

 

Surveillance population with applicability concerns – Veolity (MeVis) (1 study) 

Kim et al. included 89 patients with sub-solid nodules who underwent preoperative non-enhanced 

CT and subsequent surgical resection at the Seoul National University Hospital.61 In a MRMC study, 

nodule classification based on diameter measurements of 102 sub-solid nodules obtained by two 

experienced radiologists were compared with and without concurrent use of Veolity (MeVis). The 

sub-solid nodules were categorised according to Fleischner’s guidelines68 into (1) pure ground glass, 

(2) part-solid with a solid component ≥5 mm or (3) part-solid with a solid component less than 5 

mm. Based on the solid component size (5-mm cut-off), the management recommendations for 

part-solid nodules by the Fleischner Society suggest surveillance CT or invasive procedures (biopsy or 

surgical resection). With software use for semi-automatic nodule measurement, Reader 1 and 

Reader 2 both classed more part-solid nodules as having a solid portion larger than 5 mm compared 

to manual measurement (59.8% versus 43.1% for Reader 1; 58.8% versus 55.9% for Reader 2-1; 

61.8% versus 53.9% for Reader 2-2, see Table 33) which would suggest that with software use, more 

people would be receiving invasive procedures and less people would receive CT surveillance. 

 

Table 33. Sub-solid nodule classification of the two readers with and without software use in 

patients with previously detected nodules61 

 Reader 1 Reader 2-1 Reader 2-2 

With software for 
semi-automatic 
measurement 

Pure ground glass 21 (20.6%) 19 (18.6%) 16 (15.7%) 

Part-solid with solid portion 
<5 mm 

20 (19.6%) 23 (22.5%) 23 (22.5%) 

Part-solid with solid portion 
≥5 mm 

61 (59.8%) 60 (58.8%) 63 (61.8%) 

Manual 
measurement 

Pure ground glass 19 (18.6%) 15 (14.7%) 18 (17.6%) 

Part-solid with solid portion 
<5 mm 

39 (38.2%) 30 (29.4%) 29 (28.4%) 

Part-solid with solid portion 
≥5 mm 

44 (43.1%) 57 (55.9%) 55 (53.9%) 

 

Unclear indication for CT scan – ClearRead CT (Riverain Technologies) (1 study) 

This MRMC study by Milanese et al. included 93 consecutive patients referred to the University 

Hospital Zurich (Switzerland) for clinical non-enhanced, low-dose chest CT between August 2014 and 

February 2015 (unclear indication for the chest CT scan).53 One radiologist with three years of 

experience in chest CT and a radiology resident independently performed semi-automatic volume 

measurements of 65 solid nodules using the software “MM Oncology” by Siemens Healthcare on 

vessel-suppressed (ClearRead CT, Riverain Technologies) as well as on standard CT images. They 
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categorised nodules according to Fleischner Society Guidelines into <100 mm3, 100-250 mm3 

and >250 mm3.66 With vessel suppression, Reader 1 changed the nodule category from 100-250 mm3 

to <100 mm3 for two nodules, whereas Reader 2 changed the nodule category for two nodules from 

the 100-250 mm3 category to <100 mm3 and >250 mm3, respectively  (Table 34). 

 

Table 34. Risk classification based on semi-automatic volume measurement using standard CT 

images and vessel-suppressed CT images in consecutive LDCT with unclear indication53 

 Reader 1 
(65 solid nodules) 

Reader 2 
(65 solid nodules) 

Total  
(130 solid  
nodules) 

Standard CT images <100 mm3 48 (73.8%) 48 (73.8%) 96 (73.8%) 

100-250 mm3 11 (16.9%) 11 (16.9%) 22 (16.9%) 

>250 mm3 6 (9.2%) 6 (9.2%) 12 (9.2%) 

Vessel-suppressed CT 
images 

<100 mm3 50 (76.9%) 49 (75.4%) 99 (76.2%) 

100-250 mm3 9 (13.8%) 9 (13.8%) 18 (13.8%) 

>250 mm3 6 (9.2%) 7 (10.8%) 13 (10.0%) 

 

3.6.4 Number of people having CT surveillance (5 studies) 

Five studies reported on the number of people that were referred for CT surveillance (‘intermediate 

nodules’),25 people followed up as nodules suspected to be benign,57 number of people that were 

classed as Lungs-RADS categories 3 or 4A49, 50, 62 or ‘intermediate’ according to the NELSON criteria.50 

Four studies were performed in consecutive25, 49, 50 or nodule-enriched screening populations,62 and 

one study was performed in a random symptomatic population.57 Of these, a MRMC study62 and a 

before-after study49 reported the proportion of people with Lungs-RADS categories 3 and 4A in 

readers with and without concurrent software use. Both studies found increased proportions of 

people classed as Lung-RADS 3 or 4A with software use. 

 

a) Comparative results – Reader with and without software (2 studies) 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

In a before-after study, Hwang et al. included 6,487 consecutive participants of the K-LUCAS project: 

1,821 participants were screened before the implementation of the AVIEW Lungscreen software and 

4,666 participants received screening after the implementation of the software.49 Before software 

implementation, unaided single expert chest radiologists manually measured the transverse plane of 

the risk-dominant nodules and classed 7.6% (139/1,821) participants as Lung-RADS categories 3 or 

4A. After software implementation, single expert chest radiologists classed 9.0% (418/4,666) as 
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Lung-RADS categories 3 or 4A based on transverse planes. Of these people with intermediate-risk 

lung nodules, 2.9% (4/139) and 0.7% (3/418) were diagnosed with lung cancer before and after 

software implementation, respectively. This suggests that around 93% (135/139) and 99% (415/418), 

respectively, would have received unnecessary CT surveillance. 

 

Screening population – Veolity (MeVis) (1 study) 

The study by Jacobs et al. included a nodule-enriched screening population.62 One hundred and sixty 

LDCT images were selected from the US-based NLST dataset stratified by Lung-RADS category (40 

Lung-RADS 1 or 2; 40 Lung-RADS 3; 40 Lung-RADS 4A; 40 Lung-RADS 4B with half being baseline 

scans and half being 1-year follow-up scans). Seven readers participated in the MRMC study 

detecting nodules ≥3 mm and classifying the Lung-RADS category of the risk-dominant nodule based 

on its nodule type and size with and without concurrent use of the software Veolity (MeVis). 

Without software use, the seven readers classed 32.6% (365/1,120) as Lungs-RADS categories 3 or 

4A. In contrast, 43.2% (484/1,120) were classed as Lung-RADS categories 3 or 4A with concurrent 

software use. 

 

Non-comparative results (3 studies) are reported in Appendix 5, section 13.5.8.4. 

 

3.6.5 Number of CT scans taken as part of CT surveillance (No study) 

No study was identified that reported on the number of CT scans that were taken as part of CT 

surveillance. 

 

3.6.6 Number of people having a biopsy or excision (5 studies) 

Five studies reported on the number of people that were directly referred to MDT because of 

‘suspicious nodules’,25 of people with lung cancer diagnosed or followed up as nodules suspected of 

lung cancer,57 the number of people that were positive on the narrow definition using Lungs-RADS 

(i.e. category 4B or 4X by Lung-RADS)49, 50, 62 or ‘positive’ according to NELSON criteria.50 Four studies 

were performed in consecutive25, 49, 50 or nodule-enriched screening populations,62 and one study 

was performed in a random symptomatic population.57 Of these, a MRMC study62 and a before-after 

study49 reported the proportion of people with Lungs-RADS categories 4B or 4B and 4X in readers 

with and without concurrent software use. The studies found similar or slightly higher proportions of 
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people classed as Lung-RADS 4B/4X with software use. 

 

a) Comparative results – Reader with and without software (2 studies) 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

In a before-after study, Hwang et al. included 6,487 consecutive participants of the K-LUCAS 

project.49 Before software implementation, unaided single expert chest radiologists manually 

measured the transverse plane of the risk-dominant nodules and classed 2.3% (41/1,821) 

participants as Lung-RADS categories 4B or 4X. After software implementation, a single expert chest 

radiologist classed 2.0% (93/4,666) as Lung-RADS categories 4B or 4X based on transverse planes. Of 

these people with highly suspicious lung nodules, 26.8% (11/41) and 26.9% (25/93) were diagnosed 

with lung cancer before and after software implementation, respectively. This suggest that around 

73% (30/41 and 68/93, respectively) might have received unnecessary follow-up investigations. 

 

Screening population – Veolity (MeVis) (1 study) 

The study by Jacobs et al. included a nodule-enriched screening population.62 One hundred and sixty 

LDCT images were selected from the US-based NLST dataset based on Lung-RADS category (40 Lung-

RADS 1 or 2; 40 Lung-RADS 3; 40 Lung-RADS 4A; 40 Lung-RADS 4B with half being baseline scans and 

half being 1-year follow-up scans). Seven readers participated in the reader study detecting nodules 

≥3 mm and classifying the Lung-RADS category of the risk-dominant nodule based on its nodule type 

and size with and without concurrent use of the software Veolity (MeVis). Without software use, the 

seven readers classed 21% (234/1,120) as Lungs-RADS category 4B. With concurrent software use, 

the seven readers classed 23% (259/1,120) CT images as Lung-RADS categories 4B. 

 

Non-comparative results (3 studies) are reported in Appendix 5, section 13.5.8.5. 

 

3.6.7 Stage of cancer at detection (No study) 

No study was identified that reported on the stage of lung cancer at detection. 
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3.6.8 Time to diagnosis (1 study) 

One study was identified that mentioned the potential effect of software use on the time to 

diagnosis in a nodule- and cancer-enriched screening population (200 baseline LDCT), selected from 

the US-based NLST dataset.65 This MRMC study evaluated the effects of using the software VUNO 

Med-Lung CT AI (VUNO) on Lung-RADS categorisation. Five readers with varying levels of experience 

assessed the LDCT images with and without concurrent software use. For the 31 cancer-positive 

cases in the dataset, substantial management discrepancies between the 310 reader pairs (Lung-

RADS category 1/2 vs. 4A/B) were reduced by half (32/310 vs. 16/310) and pooled sensitivity 

significantly improved (85.2% vs. 91.6%; p = 0.004) with software use. This could eventually lead to 

an earlier diagnosis of lung cancer if confirmed in prospective studies in clinical practice. 

 

3.6.8.1 Other non-prespecified outcomes 

Other outcomes not pre-specified in the protocol are reported in Appendix 5, 13.5.8.6. Three 

studies based on consecutive participants from the K-LUCAS project (with possibly overlapping 

populations) reported on the positivity rate (proportion of people with Lung-RADS category 3 or 

higher) of LDCT images taken and assessed in screening practice with and without the use of the 

AVIEW Lungscreen software (Coreline Soft).48-50 

 

3.6.8.2 Sub-questions 1 to 6. 

No data were available to perform sub-group analyses based on contrast use, radiation dose, nodule 

type, patient’s ethnicity, radiologist speciality or reasons for CT scan (incidental population). 

 

3.7 Ongoing and/or unpublished studies 

We identified seven relevant ongoing and/or unpublished studies from clinical trial registers and/or 

company submissions. The characteristics of ongoing studies are described in Appendix 2 Table 67. 
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4 SYSTEMATIC REVIEW OF CLINICAL EFFECTIVENESS (KEY QUESTION 2) – METHODS AND 

RESULTS   

4.1 Methods 

4.1.1 Identification and selection of studies  

4.1.1.1 Search strategy  

The same search strategy as described in the methods for test accuracy was used (see section 2.1 

Identification and selection of studies).  

 

4.1.1.2 Study eligibility criteria  

The study eligibility criteria were as follows: 

Population See 2.1.2 

Target 
condition 

Lung cancer 

Intervention See 2.1.2 

Comparator CT scan review by a radiologist or another healthcare professional without software for 
automated detection and analysis of lung nodules (using diameter or volume to measure 
nodule size). 
 
Where data permits, the following subgroups may be considered: 

- General radiologist/other healthcare professional without software support; 
radiologist/other healthcare professional with thoracic speciality without 
software support. 

Outcomes • Morbidity (including any adverse events caused by assessment or treatment); 

• Mortality; 

• Health-related quality of life; 

• Patients’ acceptability of use of the software. 

Study design • Randomised controlled trials;  

• Quasi-randomised trials; 

• Cohort studies (retrospective/prospective); 

• Before-after studies; 

• Historical controlled studies. 

• Qualitative studies (for patient acceptability of the use of the software) 

Publication 
type 

• Peer reviewed papers. 

• Conference abstracts and manufacturer data will be included. Only outcome data 
that have not been reported in peer-reviewed full text papers will be extracted 
and reported. 

Language English 

 

The same exclusion criteria as described in section 2.1.2 were used. 
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4.1.1.3 Study screening and selection 

Two reviewers (JG/AA/SJ) independently screened the titles and abstracts of records identified by 

the searches and documents submitted by the companies through NICE. Any disagreements were 

resolved through discussion, or retrieval of the full publication. Potentially relevant publications 

were obtained and assessed independently by two reviewers (JG/AA/SJ). Disagreements were 

resolved through consensus, with the inclusion of a third reviewer (CS, YFC) if required. Records that 

are excluded at full text stage were documented, including the reasons for their exclusion (see 

Appendix 2, Table 64 and Table 65).  

 

4.2 Results 

No studies on intermediate outcomes (e.g. potential benefits by earlier nodule detection and shorter 

time to diagnosis; potential harms of increased surveillance for patients with benign nodules) and 

final health outcomes were identified (see Figure 6). Consequently, the potential impact of AI-

assisted nodule detection and analysis on final health outcomes was modelled using a linked 

evidence approach through a decision analytical model and simulations using evidence from the 

systematic review of test accuracy evidence and additional types of evidence collected as described 

in section 7. Figure 12 below illustrates the linked evidence approach. 

 

 

Figure 12 An illustration of linked evidence approach adopted for this diagnostic assessment 
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5 SYSTEMATIC REVIEW OF COST-EFFECTIVENESS (KEY QUESTION 3) – METHODS AND RESULTS   

Majority of published model-based economic analyses related to nodule detection have considered 

the costs and benefits (and harms) of different strategies to screen for lung cancer in people who are 

at increased risk. However, the cost-effectiveness of nodule management strategies has not been 

assessed in detail,69 especially with using artificial intelligence software. Algorithms designed for 

nodule assessment and management use information to predict malignancy and may influence 

screening outcomes.69 

In this systematic review, we aimed to review all economic analyses that assessed the cost-

effectiveness of using software for the automated detection and analysis of lung nodules from CT 

images compared with unassisted CT image analysis in people undergoing CT scans that included the 

chest due to symptoms suggestive of lung cancer, for purposes unrelated to suspicion of lung cancer, 

for surveillance of previously identified nodules or for lung cancer screening. 

 

5.1 Methods for systematic review of cost-effectiveness 

5.1.1 Identification and selection of studies 

5.1.1.1 Search strategy 

The searches carried out for the systematic review of test accuracy and clinical effectiveness (see 

section 2.1.1) were centred around the concepts of AI, lung nodules/cancer and CT or screening, 

without any restrictions in terms of study type filters. They could therefore be expected to also 

retrieve any studies relating to cost-effectiveness of using AI-based software in lung nodule/cancer 

CT imaging. 

 

As there were likely to be few, if any, economic evaluations of cost-effectiveness studies of the use 

of AI-based software for nodule detection and analysis in this specific population and context, 

broader searches for lung nodules/cancer imaging or screening (without AI terms, and not 

specifically CT) were undertaken to identify information on model structures, costs and utility values 

to inform the economic model. Where appropriate, search filters for economic evaluations and/or 

cost or HRQoL studies were applied.  
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Sources included:  

MEDLINE All (Ovid); 

Embase (Ovid);  

National Health Service Economic Evaluation Database (NHS EED) (CRD); 

Health Technology Assessment (HTA) database (CRD);  

International HTA database (INAHTA);  

Cost-Effectiveness Analysis (CEA) registry (Tufts Medical Center); 

EconPapers (Research Papers in Economics (RePEc));  

ScHARRHUD; 

targeted web searches (Google); 

selected organisations and conferences of interest (NICE, CADTH, ISPOR, HTAi, International Health 

Economics Association and Radiological Society of North America Annual Meetings); 

reference lists of selected highly relevant papers. Full search strategies can be found in 12.5

 Appendix 6: Literature search strategies: searches to inform the economic model.  

 

5.1.1.2 Study eligibility criteria  

Studies that satisfy the following criteria were included: 

Population See 2.1.2 

Target condition Lung cancer 

Intervention See 2.1.2 

Comparator CT scan review by a radiologist or another healthcare professional without software for 
automated detection and analysis of lung nodules (using diameter or volume to 
measure nodule size).  

 

Where data permitted, the following subgroups were considered: 

- General radiologist/other healthcare professional without software support; 
radiologist/other healthcare professional with thoracic speciality without 
software support. 

Outcomes Cost effectiveness (e.g., incremental costs, incremental benefits, incremental cost 
effectiveness ratio, quality adjusted life years) 

Study design Full economic evaluations (including cost-effectiveness analysis, cost-utility analysis 
and cost-benefit analysis). Cost minimisation analysis, cost-consequence/outcome 
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description, costs analysis (UK only) and cost description (UK only) may also be 
included if full economic evaluations are lacking. 

Publication type Peer reviewed papers. 

Abstracts and manufacturer data will be included, but only outcome data that have not 
been reported in peer-reviewed full-text papers will be extracted and reported. 

Language English 

 

Exclusion criteria are the same as described in clinical effectiveness review section (see 2.1.2). 

 

5.1.1.3 Study screening and selection 

All records retrieved were screened independently by two reviewers (PA/HG) at title/abstract stage, 

of which potentially relevant records were further examined at full-text. Any disagreements 

between the reviewers were resolved by a discussion, or recourse to a third reviewer (AA or JM) if 

an agreement could not be reached.  

 

5.1.2 Extraction and study quality  

5.1.2.1 Data extraction strategy  

Information was extracted by two reviewers (PA/HG) independently, using a pre-piloted data 

extraction form for the full economic evaluation studies. The data extraction form was developed to 

summarise the main characteristics of the studies and to capture useful information for the 

economic model. From each paper included in the systematic review, we extracted information 

about study details (title, author and year of study), baseline characteristics (population, 

intervention, comparator and outcomes), methods (study perspective, time horizon, discount rate, 

measure of effectiveness current, assumptions and analytical methods), results (study parameters, 

base-case and sensitivity analysis results), discussion (study findings, limitations of the models and 

generalisability), other (source of funding and conflicts of interests), overall reviewer comments and 

conclusion (author’s and reviewer’s). Each reviewer cross-checked each other’s extractions, with any 

discrepancies resolved by discussion, or recourse to a third reviewer if an agreement could not be 

reached.  

 

5.1.2.2 Assessment of study methodological quality 

The quality of any full economic evaluation studies was assessed using the consolidated health 

economic evaluation reporting standards (CHEERS) checklist.70 Any studies using an economic model 
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were further assessed against the framework for the quality assessment of decision analytic 

modelling developed by Philips and colleagues.71  

 

5.1.3 Methods of analysis/synthesis  

Due to the nature of economic analyses (different aims/objectives, study designs, populations, and 

methods) the findings from individual studies were compared narratively, and recommendations for 

future economic analyses were discussed. 

 

 

5.2 Results for systematic review of cost-effectiveness 

5.2.1 Results of literature search 

The literature search identified 1,988 records through electronic database searches and through 

other sources. After removing duplicates, 1,299 studies were screened for inclusion based on title 

and abstract. Fifteen studies were considered potentially relevant and were reviewed at full text. All 

studies were excluded at the full-text stage, and the reasons for exclusion are shown in Figure 13. 

 

Two potentially relevant economic analyses (Bajre et al., 2017;72 Adams et al., 202173) did not meet 

our inclusion criteria, but we have summarised them because these studies included 

interventions/comparators (AI technologies not included in this assessment) that were of interest. 

Given that we have not identified any relevant studies for the systematic review, we did not 

undertake any formal data extraction or quality appraisal. However, we retained studies that might 

have contained relevant information that could be used to populate the model. Where there was 

more than one source of information/input, we provided justification for selecting specific input(s). 
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Figure 13. PRISMA Flow diagram for economic evaluation of using the AI for detection of lung 
nodules 
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5.2.2 Description of the evidence 

Bajre et al. (2017)72 

Bajre and colleagues used a decision tree structure to assess the cost-effectiveness of trained 

radiographers compared with radiologists for the reporting of chest x-rays in people suspected of 

having lung cancer. The model simulated a pathway for a hypothetical cohort of 1000 people being 

screened for lung cancer and the cost-effectiveness concluded at five years. The model started with 

a cohort of people who received a radiologist-reported chest x-ray or radiographer-reported chest x-

ray. The pathway for both strategies were the same. The true disease status is known, characterised 

by the prevalence of lung cancer. People with lung cancer and had a positive result received a CT 

confirmatory test, which provided staging. The authors included stages I, II, II and IV. People with a 

false negative result presented later to the A&E department, where they were diagnosed with lung 

cancer and staged. People who had a false positive result following chest x-ray received a CT scan 

that confirmed no lung cancer was present. People with no lung cancer and had correctly been 

identified as negative by the chest x-ray received no further testing/imaging.  

Information required to populate the model was obtained from the literature, and NHS reference 

costs. The model required information about the prevalence of lung cancer, sensitivity and 

specificity of radiologist-reported and radiographer-reported chest x-ray to identify lung cancer, as 

well as sensitivity and specificity for radiologist-reported CT scan to confirm lung cancer diagnosis 

and probabilities. Though not explicitly stated confirmatory diagnosis was made by the radiologist. 

The proportion of people diagnosed at first presentation were obtained from Cancer Research UK 

(CRUK) 2013.74 Additionally, information was required about the probability of lung cancer by stage 

at second presentation following misdiagnosis. All costs included in the model were reported in 

2014/15 prices. Costs were required for radiologist and radiographer reading of chest x-ray, cost of 

CT scans and total costs of treatment by stage. Authors were not explicit about which treatment 

people received. The benefit of the strategies was reported in terms of cases detected at first 

presentation and quality-adjusted life years (QALYs) yielded. Utility values by stage of diagnosis were 

obtained from Naik et al., 2015.   

Several simplifying assumptions were made to have a workable model structure (Bajre et al., 2017 

pg. 275):  

• Time taken to report a chest X-ray (CXR) is 2 min for both radiographers and radiologists 

• False negatives present at A&E at a later date at which point disease may have advanced a 

stage (for patients at stage I to III) 
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• Sensitivity and specificity of radiographer reporting of CXR and radiologist reporting of both 

CXR and CT-scan is independent of disease stage or other patient characteristics such as age. 

• QoL in the year following diagnosis (according to stage at diagnosis) is maintained in 

subsequent years  

• There is no QoL impact arising from false positive reporting 

• Findings for non-small cell lung cancer are representative for lung cancers in general   

The perspective and setting of the economic analysis were not clearly defined but it appears to be 

from the NHS and Personal Social Services (PSS) in a secondary care setting, based on the cost 

inputs. The results of the analysis were presented in terms of an incremental cost-effectiveness ratio 

(ICER), expressed as cost per QALY. The authors undertook probabilistic sensitivity analysis (PSA) to 

assess the joint uncertainty in key model input parameters: prevalence of lung cancer, sensitivity 

and specificity of radiologist and radiographer reporting of chest x-rays, lung cancer stage 

distribution at initial chest x-ray and stage progression following misdiagnosis. Authors stated the 

sampling distributions for the parameters included in the PSA but have not reported their 

parameters. The authors undertook threshold analysis but not one-way sensitivity analysis.  

Authors reported disaggregated results for both strategies. Results were reported on the number of 

people expected to be diagnosed with lung cancer, QALYs yielded and treatment costs, all by stage. 

The QALYs yielded appeared to be high, with stage IV expected to yield more QALYs than stage III 

and II, respectively. There were modest QALY gains by strategy and by stage, with stage I having the 

greatest expected gain of 2.4 QALYs, favouring radiographer reporting. Radiographer reporting 

yielded more overall QALYs, but it was unclear with the inputs reported why the radiologist 

reporting QALYs was greater for stages II and stage IV. Radiographer reporting diagnostic and 

treatment costs were cheaper than radiologist reporting costs. Overall results showed that 

radiographer reporting of chest x-ray dominated radiologist reporting. PSA results showed that 

radiographer reporting continued to dominate radiologist reporting in 98% of the iterations. Based 

on the model structure, its inputs and assumptions, the authors concluded that trained 

radiographers can be used to report chest x-rays for the diagnosis of lung cancer.  

 

Adams et al. (2021):73 

Adams et al. study pursue two objectives:   

1.  To refine the categorisation at baseline time for a lung cancer screening management strategy 

that combines Lung-RADS and AI risk scores. 
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2.  To determine the potential impact of such a management strategy on the recommendation 

for further follow-ups and costs associated with it, from a public payer perspective.  

The initial hypothesis of the study is that adding an AI-based risk score can result in higher 

specificity, resulting in fewer follow-up investigations after baseline lung cancer screening, which 

might save costs.   

 

The researchers have developed a deep learning (DL) algorithm as the core component of their lung 

cancer screening management strategy. Also, they used the results from studies that aimed at 

localising and predicting the risk of lung cancer by using the Low Dose CT-Scan (LDCT) modality from 

the NLST database. Developing such an algorithm included three steps: 1) training the developed 

algorithm, 2) tuning phase for the algorithm, and 3) testing the validity and reliability of the results 

for localising and predicting the risk score for lung cancer. Seventy percent of those studies were 

used to train the algorithm, 15% for tuning, and 15% to test the algorithm. Testing the algorithm was 

undertaken by six US-based experienced radiologists, who had mean experience of eight years 

(range 4 to 20 years).  

 

By incorporating a deep learning algorithm in the previous section, the researchers developed a 

management strategy for lung cancer screening at baseline. The developed algorithm follows four 

principles below: 

1. “Patients with malignant nodules obtain definitive diagnosis and management in a shorter 

amount of time.  

2. Patients with benign nodules are subjected to fewer (unnecessary) investigations between 

annual LDCT screening studies. 

3. Patients with true lung cancer with a baseline LDCT study classified as Lung-RADS category 1 

or 2 (resulting in a false-negative) were considered to have a delayed diagnosis because no 

additional investigations are recommended for these categories as per Lung-RADS and the 

nodule may not be reviewed until the next annual screening. 

4.  Patients with a benign nodule classified as Lung-RADS category 3, 4A, 4B, or 4X (resulting in 

a false positive) were considered to have unnecessary investigations”. 

For demonstrating the advantage(s) of an AI-based lung cancer screening management strategy; the 

researchers upgraded lung nodules in categories 1 and 2 to category 3 if it deemed those nodules 



195 

 

(category 1 or 2) are at higher risk according to the AI algorithm results. The researchers believe this 

higher diagnostic accuracy through upgrading the nodule category to 3, causes reducing the time for 

follow-up from 12 months to 6 months and saving the costs associated with later diagnosing of lung 

cancer.  

  

A Receiver Operator Characteristics Curve (ROC) was used to determine the sensitivity and 

specificity for each of six radiologists who applied Lung-RADS using confirmed lung cancers per NLST 

as the gold standard. The researchers have also used an operating point for the AI risk score to 

match the average sensitivity of the six radiologists using Lung-RADS, and the respective specificity 

at that point.  

  

The costs associated with follow-up investigations were calculated based on the Medicare physician 

Fee Schedule non-facility National payment Amount in US dollars in 2019. Costs were required for 

both professional (human resources costs), and technical (non-human related costs). The costs for 

categories 4A, 4B, and 4X, were calculated as the minimum and maximum possible amounts because 

for these categories Lung-RADS allows for clinical discretion in follow-up.  

  

The results of the study have been provided by weighted and unweighted means of sensitivity and 

specificities for both radiologists and AI-assisted lung cancer screening management strategies. The 

unweighted means of sensitivity and specificity for six radiologists were 91% (±7%) and 61% (±15%), 

respectively. The weighted sensitivity and specificity for six radiologists were 91% (±7%) and 66% 

(±16%), respectively. By using a threshold of 0.27 for the AI-assisted predicted risk score, the 

sensitivity for both unweighted and weighted situations was 91%, which is matched with the 

average of six radiologists’ reads sensitivity, but the specificity only has been reported for the 

weighted data set and it is 96%. In addition, the AI-assisted management strategy produces a total of 

41 upgraded classifications to category 3 (equal to 0.2% of all classifications). It also produces 5,750 

classifications (30% of all cases) as a downgraded category. Upgrading from categories 1 and 2 to 

category 3 resulted in a recommendation for LDCT at six months. Also, 41 upgraded cases caused an 

average of 6.8 additional LDCT examinations per radiologist (= 41 classifications/6 radiologists) using 

the proposed AI-informed management strategy compared with the initial Lung-RADS 

recommendations across the weighted representative cohort. 
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The mean cost saving was reported as US$72 per screened patient. Given the different categories for 

nodule at category 4 of risk (4 A, 4B, and 4X), net cost savings were estimated to be US$242 per 

patient screened. The study concluded that incorporating an AI-assisted lung nodule management 

strategy will cause a substantial cost-saving that is related to increased specificity that results in 

fewer follow-up investigations in a lung cancer screening program. The authors acknowledged the 

following limitations: 

 

 The study results and conclusions have some limitations as below: 

- Over-estimation of the cost-saving due to patients’ incomplete compliance to the follow-

ups. 

- Differences between time intervals for follow-up between guidelines and practice. 

- The results of the study cannot distinguish between diagnosis and treatment costs in 

subsequent years.  

- The results were not informed by costs of the AI software as those costs were not 

established at the time of the study. 

- The study used the NLST data, which targeted North America population, potentially lacking 

generalisability of the results to other locations with different composition of ethnicities. 
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6 PRELIMINARY MODEL – METHODS AND RESULTS 

Two separate modelling approaches were undertaken by the EAG. This section describes a simpler 

approach to assessing the cost-effectiveness for AI-assisted detection of actionable nodules (which is 

one of the key steps in lung nodule detection and management) in the screening population. This 

approach allows direct use of test accuracy evidence (sensitivity and specificity) on the detection of 

actionable nodules as the key model parameter input. Available test accuracy evidence was 

insufficient for a similar analysis to be undertaken for the symptomatic and incidental populations 

(e.g., studies only reported sensitivity without reporting specificity).   

 

6.1 Developing the model structure  

We developed a decision tree to assess the cost-effectiveness of image analysis assisted by software 

with AI derived algorithms for the detection of people with actionable lung nodules from CT images 

compared with unassisted CT image analysis in CT scans for lung cancer screening. The model 

structure is presented in Figure 14 below.  

An actionable lung nodule was defined as a nodule that, when identified, would warrant further 

investigation and surveillance or definitive diagnostic workup according to the BTS guidelines. The 

key features for defining an actionable nodule in the BTS guideline are its size (≥5 mm) and lack of 

features strongly suggestive of a benign nature, but other factors including nodule type (solid or sub-

solid), location and morphology (e.g. shape and boundary) are also considered.  

 

The decision tree model structure consists of identifying actionable nodules and then stratifying 

their ‘observed’ sizes (5 mm to <8 mm, ≥8 mm), which are associated with both subsequent nodule 

management pathways and cancer risks. We considered this appropriate as it would capture all the 

short-term costs and events associated with identifying and analysing actionable lung nodules. 

 

6.2 Strategies 

The model compares AI-assisted radiologist reading to unaided radiologist reading.  

AI-assisted radiologist reading 

In this strategy, the software uses algorithms that have been produced using AI. AI is used to assist 

the radiologist or other healthcare professional to identify lung nodules and measure their sizes, 

with or without additional features such as classifying the type of the nodules.  
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Unaided radiologist reading 

The strategy referred to as ‘unaided radiologist reading’ represents usual care/routine practice. 

Thus, it refers to the clinical pathway people would follow if undergoing a CT scan that includes part 

or all of the chest. Typically, all CT scans will be reviewed by a radiologist or a trained healthcare 

professional to identify lung nodules, their type and morphology and measure the size of their lung 

nodule if present.
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Figure 14.  Illustrative model structure for the detection of actionable lung nodules  
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6.3 Information required for the model 

The model was populated with evidence identified from our test accuracy review and supplemented 

with information from secondary sources identified from additional searches. One major caveat in 

the use of evidence from our test accuracy review to inform this model arose from the mismatch 

between outcomes reported in the test accuracy studies, such as the sensitivity and specificity per 

actionable nodule detection as opposed to detection of a person with an actionable lung nodule.  

 

6.3.1 Prevalence 

Prevalence of actionable nodules 

The model required information about the prevalence of actionable nodules in each of our 

populations of interest. However, information was available only for the screening population. The 

prevalence of actionable nodules used in the model was 0.206 (95%CI: 0.1786, 0.2357), obtained 

from the UK Lung Screen Uptake Trial, which was the largest UK study reporting this information.75  

 

6.3.2 Test accuracy  

The model required information about the performance of AI-assisted radiologist reading and 

unaided radiologist reading to identify actionable lung nodules by population of interest. 

Comparative sensitivity and specificity were available only from one study conducted in a screening 

population (Lo et al. 2018),52 reported in section 3.3.1.2 of the test accuracy review. 

 

 Table 35. Test accuracy estimates for identifying actionable nodules by test strategy  

Parameter Value 95% confidence 
interval 

Source 

Screening population  

AI-assisted radiologist reading 

Sensitivity 72.50 69.20 – 75.80 
Lo et al.52 

Specificity 84.40 82.40 – 86.40  

Unaided radiologist reading 

Sensitivity 60.10 56.80 - 63.40 
Lo et al.52 

Specificity 89.90 87.90 - 91.90 

 

 

We define: 

• True positive: actionable lung nodule detected 
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• True negative: actionable lung nodule neither present nor reported 

• False positive: findings reported as actionable nodules (e.g. non-nodular structure 

incorrected identified as actionable nodules) that are in fact not actionable lung nodules 

• False negative: actionable nodules that were not identified using each strategy 

 

6.3.3 Resource use and costs  

The resource use and costs included are those that are directly incurred by the NHS and Personal 

Social Services (PSS). Costs were required for the radiologist time, CT scan, and software 

technologies. All costs are presented in 2021/22 prices.  

 

Computer software 

Cost per scan/output were obtained from the companies. For this analysis in the screening 

population, we used costs for ClearRead CT (Riverain technologies) as this was the AI software used 

in Lo et al 2018 which provided test accuracy data. Further details about our criteria used to be 

included in the economic analysis are reported in Section 7.4.5.  

 

Time taken to read the CT scan and report findings 

For detection of actionable lung nodules, we assumed that the costs incurred included CT scan and 

radiologist’s time for reading and reporting CT scan image with/without the use of AI software 

assistance. We assumed that the procedure would be undertaken by a radiologist but used a band 9 

radiographer as a proxy for costing purpose.76 

Our test accuracy review found that the time taken to read/report CT scans reduced with AI-

assistance in most studies (section 3.5.2). However, these studies were predominantly conducted 

under research conditions, and there is uncertainty about how AI assistance may impact on 

read/reporting time in real clinical practice. Here, we used the median time of 10 minutes required 

for unaided radiologists to read and report a CT scan image reported in the UK Lung Screen Uptake 

Trial25 (assumed as mean value as the interquartile range 5-15 was symmetrical around the median) 

and assumed the time would be shorter for AI assisted readers. In Table 36 we present the time 

taken with AI-assisted and unaided reading by population. The longer times taken for reading and 

reporting a CT scan image for symptomatic and incidental population was based on clinical expert 

opinion, which suggests that more time may be needed to report other non-nodular findings in 

these patients, and the reading task is more susceptible to interruption compared with analysing 

lung cancer screening images, which tend to be undertaken in batches during a protected time. 
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These alternative reporting times were not used here but were used in full model for respective 

population, to be described in section 7. 

 

Table 36. Resource use associated with reporting CT scans  

 Population of interest 

Symptomatic Incidental Screening 

Radiologist time to report 
CT scan (AI assisted) 

12 minutes 8 minutes  

Radiologist time to report 
CT scan (unaided) 

15 minutes 10 minutes (Hall et al. 2022)25 

Type of CT scan at 
baseline  

CT scan with contrast CT scan without contrast 

Type of CT scan during 
surveillance, if required 

CT scan without contrast 

CT, computed tomography 

 

 

Table 37. Costs inputs used in the model 

Parameter Value Source 

Technologies (brand) 

ClearRead CT (Riverain 
technologies) 

£2.00 per scan/output Supplied by the company 

 

Radiologist consultation  £24.50 PSSRU 2021 (cost per working 
hour (£147) for a Band 9 
radiographer as a proxy for a 
radiologist) (10 minutes to report 
result) 

Radiologist consultation (AI-
assisted) 

£19.60 
PSSRU 2021 (cost per working 
hour (£147) for a Band 9 
radiographer as a proxy for a 
radiologist) (8 minutes to report 
result) 

CT scan (single area, no contrast) £106 NHS reference schedule (RD20A- 
computerised tomography scan 
of one area, without contrast, 19 
years and over  

CT scan (single area, pre- and 
post-contrast) 

£145 National schedule of NHS costs 
2020/21 (RD22Z- CT scan of one 
area, with pre- and post-
contrast) 

CT, computed tomography; PSSRU, Personal Social Services Research Unit 

 

6.3.4 Outcomes 

The outcome used in this analysis was correct identification of a person with an actionable nodule.  
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Cost per correct identification of a person with actionable nodules 

For this outcome, we assigned the value of one for people correctly identified with an actionable 

nodule (≥5mm and no clear benign features), and zero for all others. This was tallied to give the 

denominator for the incremental cost-effectiveness ratio (ICER), expressed as cost per person with 

an actionable lung nodule detected. 

 

6.3.5 Analysis 

The economic analysis was undertaken from the perspective of the NHS and PSS. A deterministic 

analysis was undertaken for the base-case. 

We undertook sensitivity and scenarios analyses. One-way sensitivity analysis was conducted to 

determine which input parameters were drivers of the economic analysis. Key input parameters 

were varied using the upper and lower values and the results presented on a tornado diagram.  

 

Scenario analyses 

We undertook several scenario analyses around the following model inputs:  

• Prevalence of actionable lung nodules. 

• Time taken to report CT scans. Given the uncertainty around this input parameter, which 

was obtained from clinical expert opinion, we explored in scenario analyses increasing or 

decreasing the reporting time with AI assistance and keeping the time the same as unaided 

reading.   

 

6.4 Results   

6.4.1 Deterministic results  

We present the deterministic result based on the outcome cost per correct identification of a person 

with an actionable nodule. Results are based on assuming a hypothetical cohort of 1000 people 

undergoing a CT scan.  

 

Cost per correct identification of a person with an actionable nodule 
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Table 38 presents the estimates for costs and additional people correctly identified with an 

actionable nodule with the use of AI-assisted radiologist reading compared to unaided radiologist 

reading in a screening population. These results show that AI-assisted radiologist reading (ClearRead 

CT) is approximately £2,900 cheaper and expected to correctly identify an additional 25.5 people 

with actionable nodules per 1,000 CT screens: hence, dominating the unaided reading strategy. 

 

Table 38. Deterministic results based on expected costs and expected identification of people with 

actionable lung nodules (screening population of 1,000 people undergoing CT scan) 

Strategy Expected total 
costs (£) 

Incremental 
costs (£) 

Expected 
number of 
people with 
actionable 
nodules 
correctly 
identified  

Incremental 
number of 
people with 
actionable 
nodules 
correctly 
identified 

ICER (£)  
per correct 
identificatio
n of an 
individual 
with 
actionable 
lung nodules  

AI-assisted 
radiologist reading 
(ClearRead CT) 

127,600 - 149.3 - - 

Unaided radiologist 
reading  

130,500 2,900 123.8 -25.5 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

 

6.4.2 Sensitivity analysis results  

Deterministic sensitivity analysis was conducted by varying key model input parameters by their 

ranges or when unavailable by assuming ±10% (cost of CT scan) and ±50% (time taken to read and 

report results) to assess the impact on the ICER (cost per correct identification of people with an 

actionable lung nodule), with the results presented in the form of tornado diagrams. Findings of the 

sensitivity analysis for the preliminary model are presented in Figure 15. 
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Figure 15. Tornado diagram of the impact to the cost per actionable lung nodule correctly 

identified by changing individual parameters (screening population) 

 

Sensitivity analysis results showed that the time taken to read and report image analysis findings 

were the key drivers of cost-effectiveness for the comparison of AI-assisted radiologist reading 

versus unaided radiologist reading for identifying actionable lung nodules. However, varying these 

inputs within these limits are unlikely to change the ICERs outside of acceptable thresholds.   

  

6.4.3 Scenario analysis results  

Here we present the results for the scenario analyses. In these scenarios, we considered other 

inputs/assumptions for alternative sources to assess the impact to the results. Based on the 

alternative sources of evidence or assumptions made to key parameters (prevalence of detecting 

actionable lung nodules, assuming same reading and reporting time with/without AI assistance and 

an increase reading and reporting time with AI assistance), these results (see Table 39) were robust 

to changes made.  

 

 

 

 

Time required to read and report CT scans unaided during detection (15 to 5)

Time required to read and report CT scans AI assisted during detection (4 to 12)
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Superseded- 

see erratum 

Table 39. Scenario analysis results based on cost per person with an actionable lung nodule 

correctly identified (screening population) 

Strategy Expected 
total costs 
(£) 

Incremental 
costs (£) 

Expected 
number of 
people with 
actionable lung 
nodules  

Incremental 
number of 
people with 
actionable lung 
nodules 

ICER (£)  

per person 
with 
actionable 
lung nodules 

Base-case 

AI-assisted 
radiologist 
reading 
(ClearRead CT) 

127,600 - 149.3 - - 

Unaided 
radiologist 
reading 

130,500 2,900 123.8 -25.5 Dominated 

Prevalence of detecting actionable lung nodules from 0.206 to 0.2823 (estimate reported in 
another NELSON lung cancer screening trial)3 

AI-assisted 
radiologist 
reading 
(ClearRead CT) 

127,600 - 204.7 - - 

Unaided 
radiologist 
reading 

130,500 2,900 169.7 -35 Dominated 

Time taken to read and report CT scans- assumed to be 10 minutes for both AI-assisted and 
unaided image analysis 

Unaided 
radiologist 
reading 

130,500 - 169.7 - - 

AI-assisted 
radiologist 
reading 
(ClearRead CT) 

132,500 2,000 204.7 35 57 

Time taken to read and report CT scans- assumed to be 10 minutes for AI-assisted and 8 minutes 
for unaided image analysis 

Unaided 
radiologist 
reading 

125,600 - 123.8 - - 

AI-assisted 
radiologist 
reading 
(ClearRead CT) 

132,500 6,900 149.3 25.5 270 

CT, computed tomography; QALY, quality adjusted life-year 

 

6.4.4 Discussion 

The preliminary model provides a relatively straightforward approach to assessing cost-effectiveness 

of AI-assisted detection and analysis of lung nodules for chest CT scan images. However, a major 
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limitation for this simpler approach is that the test accuracy evidence related to detection of 

actionable nodules is available only from per nodule analysis, which is less suitable than test 

accuracy obtained from per person analysis as the unit for decision analysis is individual persons, not 

nodules. In addition, this analysis only covers initial nodule detection and does not allow the impact 

of AI assistance on subsequent nodule management through analysis of surveillance CT scans to be 

evaluated. Consequently, we developed a more comprehensive decision analytical structure, which 

started from the initial identification of any lung nodules, for which test accuracy data from per 

person analysis were available from both screening and symptomatic populations. To link the 

evidence on initial nodule detection to subsequent nodule management pathway according to the 

BTS guidelines and then to health outcomes, the EAG further conducted simulations to fill in this 

major evidence gap. Further details are described in the following section.  

 

 

  



208 

 

7 DE NOVO COST-EFFECTIVENESS ANALYSIS (FULL MODEL) – METHODS   

7.1 Developing the model structure  

Given the limitations of the preliminary model mentioned above, we developed a full economic 

model that would enable the assessment of the cost-effectiveness of using software with AI-derived 

algorithms for the automated detection and analysis of lung nodules from CT images compared with 

unassisted CT image analysis in people undergoing initial CT scans from symptomatic, incidental and 

screening populations. The main model structure was similar for all three populations, but the model 

parameters vary depending on the specific population where appropriate. Further details of the 

population are detailed in Section 7.4.2. For people undergoing CT surveillance for previously 

detected nodules, the surveillance component of the model can be utilised.  

The decision model follows the illustrative pathways shown in Figure 16. In people undergoing a CT 

scan in which lung nodules may be identified, the CT scan image is read by either human reader 

alone or human reader with software assistance. We used a two-stage approach to the decision 

model structure. The first stage consists of identifying lung nodules, their type and size according to 

the BTS guidelines, and we used a decision tree structure. We considered this appropriate as it 

would capture all the short-term costs and events associated with identifying and analysing lung 

nodules. The branches of the decision tree represent the strategies under assessment and was 

populated with appropriate information (see Section 7.4). In the second stage, we 

continued/extended the decision tree structure for the evaluation to capture CT surveillance, the 

natural history of malignant lung nodules and treatment to capture CT surveillance, the growth of 

malignant nodules and treatment of people with cancer. 

 

7.2 Strategies 

The model compares AI-assisted radiologist reading to unaided radiologist reading.  

Unaided radiologist reading 

The strategy referred to as ‘unaided radiologist reading’ represents usual care/routine practice. 

Thus, it refers to the clinical pathway people would follow if undergoing a CT scan that includes part 

or all of the chest. Typically, all CT scans will be reviewed by a radiologist or a trained healthcare 

professional to identify lung nodules, their type and morphology and measure the size of their lung 

nodule if present. 
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Figure 16. Illustrative structure of the clinical pathways 
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AI-assisted radiologist reading 

The alternative strategy is AI-assisted radiologist reading. In this strategy, the software uses 

algorithms that have been produced using AI. AI is used to assist the radiologist or the healthcare 

professional to identify lung nodules, as well as their morphology and size.  

Pathway of people in the two strategies 

The pathway for both strategies is the same in the three populations (see Figure 17). People who 

have been identified as having a lung nodule, the nodule will be further assessed for its type (e.g., 

solid or sub-solid) as well as the size of the lung nodule. In the model, we assumed that if at least 

one lung nodule is detected, the individual would have one primary lung nodule (usually the largest 

nodule according to the BTS guidelines;11 also called ‘risk dominant nodule’). The measurement of 

the primary nodule would be undertaken by a radiologist (or other trained professionals) 

with/without assistance of AI software and categorised as follows: solid (<5mm, 5 to <8mm and 

≥8mm) and sub-solid (<5mm and ≥5mm). For people with a lung nodule which was missed on 

(reading of) CT scan, we assumed that these nodules could be undiagnosed as benign or malignant. 

People without a lung nodule who have been correctly identified as such are discharged.  
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Figure 17.  Illustrative model structure for the detection of lung nodules 
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7.3 Natural history  

Our natural history model was developed to model the growth/disease progression of malignant 

disease, separately for solid nodules and sub-solid nodules. We assumed that benign nodules did not 

grow following detection. The progression of lung cancer is characterised by its growth in malignant 

lung nodules. We assumed that the growth of tumours follows a Gompertz distribution, and is 

conditional on volume doubling time (i.e., the time required for the tumour to double its volume),77 

which is based on information obtained from Treskova et al., 2017.69 Details of our nodule growth 

model and its development can be found in Table 57. 

 

7.4 Information required for the model 

The model was populated with information obtained from evidence identified from our test 

accuracy and cost-effectiveness reviews and supplemented with information from secondary 

sources identified from additional searches (see section 13.6, Appendix 6) as well as clinical expert 

opinion. One major challenge in the use of evidence from our test accuracy review to inform the 

decision analytical model arose from the mismatch between outcomes reported in the test accuracy 

studies (such as sensitivity and specificity for detecting nodules of various sizes and types, e.g. solid 

nodule ≥ 6 mm, and/or the precision, accuracy and concordance of measuring nodule size/volume, 

e.g. mean and standard deviation of nodule sizes measured by unaided reading and AI-assisted 

reading or agreement in detecting nodules ≥ 3mm between unaided readers and AI-aided readers) 

on the one hand, and the BTS categorisation of the primary nodule on the other hand (which is 

based on the combined information of nodule type and specific nodule size categories obtained 

from either unaided or AI-assisted reading, see Figure 4). In order to translate the evidence reported 

in test accuracy studies into the BTS categorisation (<5 mm, ≥5 and <8 mm, and ≥8 mm for solid 

nodules; <5 and ≥5 mm for sub-solid nodules) which dictates subsequent clinical management (e.g., 

discharge, further CT surveillance, further work-up and treatment), the EAG carried out simulations 

to bridge this disconnection in evidence. The rationale, approaches and assumptions of the 

simulation are described in the section below. 

 

7.4.1 EAG simulation of measurement accuracy and precision 
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Briefly, the simulations take the following initial inputs obtained from test accuracy review and 

additional evidence sources: 

• Proportion of solid and sub-solid nodules among identified primary nodules – this differs 

between different populations of interest. 

• The ‘true’ mean sizes of the primary nodules – these differ between different population of 

interest and between solid and sub-solid nodules. 

• The measurement precision (random errors in measurements, captured in measures of 

variation such as standard deviations) – this may differ between unaided and AI-aided 

readings, with higher precision/better consistency being one of the purported advantages 

for AI-aided reading. 

• The measurement accuracy (systematic error in measurements, e.g., consistently over- or 

under- estimate the ‘true’ nodule size) – this may differ between unaided and AI-aided 

reading. 

The simulation models then generate distributions of: (1) true nodule sizes; (2) nodule sizes based 

on AI reading alone; (3) nodule sizes based on AI-assisted radiologist reading; (4) nodule sizes based 

on unaided radiologist reading, separately for solid and sub-solid nodules. By applying BTS 

categorisation, the proportion of nodules/patients falling into each BTS category based on ‘true’ 

nodule sizes, AI reading alone, AI-assisted reading and unaided reading can then be estimated. 

Comparison of results between (1) and each of (2), (3) and (4) provides information concerning mis-

categorisation of nodules arising from random and systematic measurement errors for AI reading 

alone, AI-assisted radiologist reading and unaided radiologist reading respectively. Differences 

between AI-assisted reading and unaided reading, which is the main comparison of interest, can 

then be derived.  

 

Detailed methods for the simulation are presented in Appendix 8. 

 

For the decision analytical model, information was required about the prevalence of lung nodules, 

the type of the lung nodules, the prevalence of lung cancer based on size and type of lung nodules, 

the performance of AI-assisted radiologist reading and unaided radiologist reading for identifying 

and measuring lung nodules during the initial scan and subsequent surveillance, all by population of 

interest. Figure 18 to Figure 20 provides an overview of model parameters used and the sources of 

these data. Further information are detailed in the report sections below. 
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Figure 18. Abbreviated representation of the decision tree, required model parameters and data source (further parts shown in Figure 18 & 19) 

AI-assisted 
reading

Population 
undergoing 
chest CT scans:
• Symptomatic
• Incidental
• Screening

People with 
lung nodules

People 
without lung 
nodules

Lung nodule 
detected in CT scan 
image (TP)

Lung nodule not 
detected in CT scan 
image (FN) –
undetected benign 
or malignant 
nodules

Lung nodule 
detected in CT scan 
image (FP)

Lung nodule not 
detected in CT scan 
image (TN) –
discharge

Solid nodules

< 5 mm or 300 mm3

5-8 mm

≥ 8 mm or 300 mm3

Solid nodules

Sub-solid nodules

5-8 mm

≥ 8 mm or 300 mm3

< 5 mm
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Unaided 
reading

Prevalence of 
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additional 
literature

7.4.2
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Test accuracy review

3.3.1.1 & 7.4.3
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types of nodules
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Appendix 8

Nodule size 
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type

Additional literature

Appendix 8

Clearly benign 
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No clearly benign 
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Proportion of 
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Additional literature

Appendix 8

Sub-solid nodules
< 5 mm
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No clearly benign 
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Decision
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Figure 19. Abbreviated representation of the solid nodule part of the decision tree, required model parameters and data source (continued from Figure 
17) 
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Figure 20. Abbreviated representation of the sub-solid nodule part of the decision tree, required model parameters and data source (continued from 
Figure 17) 
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7.4.2 Prevalence 

Prevalence of lung nodules 

The model required information about the prevalence of lung nodules in three of our four 

populations of interest. We presumed that the proportion of people with lung nodules would be 

different across different populations. Prevalence information was not required for people 

undergoing surveillance, as by definition, people undergoing surveillance would have a previously 

detected nodule. In Table 40 we report this information. We note that people may present with 

more than one lung nodule; however, we assumed that people with lung nodules have one primary 

lung nodule, the assessment of which guides clinical management in line with the BTS guideline as 

described above.  

 

Table 40. Prevalence of having at least one lung nodule by population of interest 
Population   Prevalence (95% CI) Source Justification 

People with 
symptoms 
suggestive of lung 
cancer 

0.949 (0.8928, 0.9763)  Kozuka et al., 202057 Only study identified 

Incidental (CT scan 
done for other 
reasons) 

0.13 (0.02, 0.24) a Callister et al., 201511 Evidence review for 2015 
BTS guidelines 

Lung cancer 
screening  

0.509 (0.4868, 0.5312) Field et al., 201678 Largest UK-based study 
that reported prevalence 
of any nodules 

b CT surveillance of 
a previously 
detected nodule 

Not applicable - - 

a Range  
b Not applicable because all of the people in the model would have an indeterminate lung nodule  
CI, confidence interval; CT, computed tomography. 

 

Type of lung nodule 

The model also required information about the type of the primary lung nodule identified. In the 

model we categorised nodules as solid or sub-solid, in line with the BTS guideline.11 Here we 

assumed that, if a nodule was identified, then it would be correctly categorised as solid or sub-solid. 

We required the proportion of lung nodules by type and by reason for undergoing a CT scan. In 

Table 41, we report the proportions of each type of lung nodules for the symptomatic and screening 

populations. For the incidental population we used the same figures as for the screening population.    
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Table 41. Proportion of detected risk-dominant nodules that are solid/sub-solid 

Type of nodule Proportion  Source 

Radiologist read CT scan with software assistance and radiologist-read CT scan alone 

Symptomatic population 

Solid 0.774 Kozuka et al.,57 Table 1 
518 solid nodules, 151 sub-solid nodules Sub-solid 0.226 

Screening population 

Solid 0.939 Hwang et al.,48 Table S3 
4357 solid nodules, 285 sub-solid nodules Sub-solid 0.061 

The relative proportions are assumed to be the same for true positives (correctly identified nodules), false 
negatives (nodules missed by CT scan/reading) and false positives (non-nodular structures incorrected 
identified as nodules). 

 

Prevalence of lung cancer based on size of lung nodule 

Following the measurement of the primary nodule and excluding/discharging people with nodules 

that had clear benign features (assumed 10% in each size band), the model required information 

about the prevalence of nodules that were malignant by size and by reason for undergoing CT scan 

(see Table 42). The information was derived from the publication by Horeweg et al.3 Their study is 

based on 7,155 Dutch participants in the screening group of the NELSON trial. Lung cancer 

probability of screen-detected non-calcified nodules was reported by volume and volume-based 

diameter. Despite the lung cancer probability not being reported separately for solid and sub-solid 

nodules, we chose this study as model input as the population was rated as most applicable to a UK 

screening population. 

 

Table 42. Prevalence of lung cancer in detected nodules, by population and nodule measurement  

Lung nodule 
baseline 
measurement 

Population, prevalence, and source 

Symptomatic Incidental Screening Surveillance 

Solid 

5-<6mm Assumed same 
as screening 

Assumed same as 
screening 

0.0089  

(0.005, 0.016) 
(Horeweg et al., 
2014)3 

Assumed same as 
screening 

6-8mm Assumed same 
as screening 

Assumed same as 
screening 

0.011 (Horeweg et 
al., 2014)3 

Assumed same as 
screening 

≥8mm Assumed same 
as screening 

Assumed same as 
screening 

0.094 (Horeweg et 
al., 2014)3 

Assumed same as 
screening 

Sub-solid 

≥5mm Assumed same 
as screening 

Assumed same as 
screening 

0.036 (Horeweg et 
al., 2014)3 

Assumed same as 
screening 
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7.4.3 Test accuracy  

The model required information about the performance of radiologist-read CT scan with software 

assistance and radiologist-read CT scans to identify lung nodules by population. We used 

information about sensitivity and specificity as performance measures of these strategies for 

identifying any lung nodule. Sensitivity was defined as the probability of radiologist-read CT scan 

with/without software assistance to correctly identify an individual with a lung nodule (see Section 

1.1 for our definition of a lung nodule). Specificity was defined as the probability of the radiologist-

read CT scan with/without software assistance to correctly identify individuals without a lung 

nodule. No attempt was made to derive sensitivity and specificity of these strategies to identify 

people with malignant/benign nodules.  

Three studies51, 57, 59 were identified that reported these outcomes. Their study characteristics, 

strengths and limitations are reported in Table 43. The study by Zhang et al.59 was immediately 

discounted as it compared double reading with software use under laboratory conditions to double 

reading by different readers without software use in clinical practice.  

From the remaining two studies,51, 57 we choose the study by Kozuka et al.57 as CEA input for the 

symptomatic population as this study was the only identified study that was actually performed in 

patients suspected of having lung cancer. We also used the study by Kozuka et al.57 as input for the 

incidental population as the readers were less experienced radiologists, which was judged to be 

applicable for general radiologists assessing CT images in A&E in UK practice. For the screening 

population, we decided to use the senior group (experienced chest radiologists) from the study by Hsu 

et al.51 as this study reported separate accuracy results for the screening LDCT images, and the 

experience and speciality of the readers was most applicable to a UK screening programme.
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Table 43. Comparative studies reporting detection accuracy for any nodules that could be used as CEA model inputs and their advantages and 
disadvantages (3 studies) 

Study Study details Sensitivity  
(per-subject) 

Specificity  
(per-subject) 

Advantages Disadvantages 

Hsu 
202151 

Mixed population: 
1 hospital in Taiwan; 
150 consecutive cases with lung 
nodules ≤1 cm or no nodules: 
93 clinical routine;  
57 screening population. 
Low dose (n=57),  
standard dose (n=93), 
no contrast, 
slice thickness 2.5 mm. 
MRMC study,  
ClearReadCT with vessel suppression 
and nodule detection: 
6 chest radiologists - 
3 less experienced (residents in 
radiology with >6 months of chest CT 
experience) and 3 experienced chest 
radiologists (5, 10 ad 25 years of 
experience). 
Reference standard: Consensus expert 
reading (2 readers). 

Per-nodule 
sensitivity (340 
nodules) 
[D] Mean 64%  
(95% CI 62-66%) 
[C] Mean 80%  
(95% CI 81-85%) 
(p<0.001) 
 
Senior readers only: 
[D] Mean 74%  
(95% CI 72-77%) 
[C] Mean 84%  
(95% CI 82-86%) 
(p<0.001) 

52 patients without 
nodules: 
[D] Mean 80%  
(95% CI 78-81%) 
[C] Mean 83%  
(95% CI 82-85%) 
(p=0.256) 
 
Senior readers 
only: 
[D] Mean 87%  
(95% CI 85-89%) 
[C] Mean 88%  
(95% CI 87-90%) 
(p=0.729) 

Consecutive sampling; 
Mixed population but 
separate data for screening 
population reported; 
MRMC study included 6 
readers and reports accuracy 
separately for 3 experienced 
(senior) chest radiologists 
(high applicability for UK 
screening and symptomatic 
populations). 
 

Taiwan, 1 hospital (not a UK or North-
Western European population, 
nodule prevalence might be 
different); 
57 screening LDCT images (small 
sample size); 
Lung nodules ≤1 cm only (inclusion of 
only small nodules might affect 
sensitivity); 
2.5 mm slice thickness (UK ≤2 mm, 
might affect accuracy); 
MRMC study (radiologist 
performance under laboratory 
conditions might be not 
representative of clinical practice); 
No subject-level sensitivity reported, 
only per-nodule sensitivity (per-
subject sensitivity might be higher); 
Only reported mean sensitivity and 
mean specificity, no 2x2 data, no data 
for individual readers (no decimal 
places reported, cannot calculate 
exact estimates). 

Kozuka 
202057 

Symptomatic population (suspected 
lung cancer): 
Random 120 chest CT images from 1 
hospital in Japan. 
Standard dose; no contrast; 
1 mm slice thickness. 
MRMC study, 
InferRead CT Lung (Infervision); 

111 subjects with 
nodules, pooled 
reader A + reader 
B: 
[D] 68.0% 
(151/222) 
(95% CI 61.4-
74.1%); 

6 subjects without 
nodules, pooled 
reader A + reader B 
[D] 91.7% (11/12) 
(95% CI 61.5-
99.8%); 
[C] 83.3% (10/12) 

Only study on symptomatic 
population;  
random selection;  
1 mm slice thickness 
(applicable to the UK); 
reported 2x2 data individually 
for Reader A and Reader B. 

Japan, 1 hospital (not a UK or North-
Western European population, 
nodule prevalence might be 
different); 
117 CT images included in analyses 
(small sample size); 
MRMC study (radiologist 
performance under laboratory 
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Study Study details Sensitivity  
(per-subject) 

Specificity  
(per-subject) 

Advantages Disadvantages 

2 less experienced radiologists (1 and 5 
years of diagnostic experience); 
Reference standard: Consensus expert 
reading (3 readers). 

[C] 85.1% (189/222) 
(95% CI 79.8-
89.5%) 
(p < 0.001) 

(95% CI 51.6-
97.9%) 
(no level of 
significance 
reported) 

conditions might be not 
representative of clinical practice); 
2 less experienced radiologists (1 year 
and 5 years of experience) 
(applicability concerns to UK reading 
practice for symptomatic population); 
Only 6 CT images without nodules 
(wide 95% CI for specificity; 1 
additional FP case in 1 reader resulted 
in an apparently big difference in 
pooled point estimates). 

Zhang 
202159 

Screening population: 
860 consecutive patients from 1 
hospital in China (part of NELCIN-B3 
project); 
Low dose; no contrast; 
0.625-1.0 mm; 
InferRead CT Lung (Infervision) 
1 radiology resident with supervision 
of 1 experienced radiologist - 
With software (MRMC study); 
Without software (clinical practice); 
Reference standard: 
Consensus expert reading (2 readers). 

[E] 43.3% (162/374) 
[C] 98.9% (370/374) 
(no level of 
significance 
reported) 

[E] 100.0% 
(486/486) 
[C] 97.1% (472/486) 
(no level of 
significance 
reported) 

Consecutive screening 
population; 
860 patients included: 374 
with nodules and 486 without 
nodules (quite big sample 
size). 

China, 1 hospital (not a UK or North-
Western European population, 
nodule prevalence might be 
different); 
Different readers with and without 
software use: 
[C] Performance of 1 resident and 1 
radiologist only; 
[E] 14 different residents and 15 
different radiologists; 
Unaided reading performed in clinical 
practice, whereas aided reading as 
part of MRCM study;  
not single reading, but reading by a 
radiology resident with supervision by 
experienced radiologist (applicability 
concerns to UK practice). 

[C] Concurrent AI; [D] Unaided reading (MRMC study); [E] Unaided reading (clinical practice). 
FP, False positive; LDCT, Low-dose computed tomography; MRMC, Multi-reader, multi-case study.
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Table 44. Test accuracy estimates to identify any lung nodule by reason for undergoing CT scan 

Parameter Value 95% confidence 
interval 

Source 

People with symptoms suggestive of lung cancer  

AI-assisted radiologist reading 

Sensitivity 85.14 79.80 - 89.50 
Kozuka et al., 202057 

Specificity 83.33 51.60 - 97.90 

Unaided radiologist reading 

Sensitivity 68.02 61.40 - 74.10 Kozuka et al., 202057 

Specificity 91.67 61.55 - 99.88 

Incidental (CT scan done of other reasons)  

AI-assisted radiologist reading 

Sensitivity  85.14 79.80 - 89.50 Kozuka et al., 202057 

Specificity 83.33 51.60 - 97.90 

Unaided radiologist reading 

Sensitivity  68.02 61.40 - 74.10 Kozuka et al., 202057 

Specificity 91.67 61.55 - 99.88 

Screening  

AI-assisted radiologist reading 

Sensitivity  83 79 - 86 Hsu et al., 202151 

Specificity  88 85 - 91 

Unaided radiologist reading 

Sensitivity  73 69 - 77 Hsu et al., 202151 

Specificity  86 83 - 90 

CT, computed tomography 

 

From as far as possible, we extracted information from individual studies identified form our test 

accuracy systematic review to populate 2 x 2 tables to derive study specific test performance for 

both strategies. We define: 

• True positive: any lung nodule present 

• True negative: no lung nodule present 

• False positive (during detection of lung nodules): findings that are not lung nodules (non-

nodular structure incorrected identified as nodules) 

• False negative: nodules that were not identified/missed using each strategy. We assumed 

that there would be lung nodules that were not identified at initial CT scan but later 

diagnosed. Here we assumed that these lung nodules were initially present but undetected, 

thus not new lung nodules.  

Additionally, we required information about the performance of these strategies during the 

surveillance of people with lung nodules to identify nodules that are/are not growing.  
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7.4.4 Effectiveness  

• Stage shift 

In the model, we attempt to quantify the expected benefit with the use of AI-assistance in terms of 

achieving an earlier diagnosis, as a person’s prognosis is likely to be better if they are diagnosed at 

an earlier stage; hence, improving their chances of long-term survival. The likely source of delay in 

diagnosis is due to ‘watchful waiting’ when people are referred to CT surveillance. During 

surveillance, people undergo imaging aimed at measuring the growth of lung nodules, which is 

characterised by its volume doubling time (VDT). If the VDT is below a specified threshold at a 

specified time-point, then lung nodules are likely to be malignant. People with lung nodules outside 

of this threshold may be referred to further surveillance or discharged.       

 

7.4.5 Resource use and costs  

The resource use and costs included are those that are directly incurred by the NHS and Personal 

Social Services (PSS). Costs were required for the radiologist time, CT scan, software technologies, 

and treatment associated with lung cancer. All costs are presented in 2021/22 prices and after the 

first year, both costs and benefits were discounted at a rate of 3.5% per annum. Costs obtained from 

the literature through systematic reviewing were uprated to current prices where necessary using 

the Hospital and Community Health Services (HCHS) index from Unit Costs of Health and Social Care 

2022. 

Computer software 

There is paucity of test accuracy and cost data for some of the technologies included in the final 

scope of this assessment. In order to avoid generating cost-effectiveness estimates for technologies 

for which no technology-specific data can be used in the model, we included only technologies that 

met both of the following criteria in our base-case: 

• The cost information for the technology should be supplied by the company or be publicly 

available. 

• Test accuracy information related to the technology that could be used to inform at least 

one of the model input parameters (e.g., performance for identifying lung nodules or 
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precision of lung nodule measurements) is available, either supplied by the company or 

accessible through publication.  

 In Table 45, we outlined how each company’s technology listed in the NICE scope performed against 

these criteria. Of the 13 relevant technologies identified by NICE, useful test accuracy information 

(e.g., sensitivity and specificity for identifying any lung nodules) was available for two companies; 

hence, these were considered in the economic analysis. For the screening and the incidental 

populations, we included the ClearRead CT (Riverain) technology in the economic analyses and in the 

symptomatic population, we included InferRead CT Lung (Infervision) technology. It was noted that 

there were different costing structures in place, so attempts were made to obtain/derive a per scan 

cost.  

  



225 

 

 

Table 45. Technologies outlined in scope against our selection criteria for the base-case economic 

analysis 

Technology (Company) 

Criteria 

Cost information Comparative data on 
nodule detection 

accuracy available 

Software measurement 
accuracy or concordance 

with manual 
measurement data 

available 

AI-Rad Companion (Siemens 
Healthineers) 

Not available No 
Yes (Concordance, Mixed 

population45) 

AVIEW LCS+ (Coreline Soft) Not available No No 

ClearRead CT (Riverain 
Technologies) 

Yes Yes 

Yes (Accuracy, Screening 
population54 and unclear 

indication53) 
Yes (Concordance, Mixed 

population56) 

Contextflow SEARCH Lung CT 
(contextflow) 

Yes No No 

InferRead CT Lung 
(Infervision) 

Yes Yes No  

JLD-01K (JLK Inc.) No No No  

Lung AI (Arterys) Not available No No 

Lung Nodule AI (Fujifilm) Not available No No 

qCT-Lung (Qure.ai) Not available No No 

SenseCare-Lung Pro 
(SenseTime) 

Not available No No 

Veolity (MeVis) Not available No 
Yes (Concordance, 

Surveillance 
population61) 

Veye Lung Nodules (Aidence) Yes No 

 Yes (Accuracy, Mixed 
populations31, 64) 

Yes (Concordance, Mixed 
population31) 

 VUNO Med-LungCT AI 
(VUNO) 

Not available  No No  
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For detection of lung nodules, we assumed that the costs incurred included CT scan, radiologist 

consultation and use of software assistance. We assumed that the procedure would be undertaken 

by a radiologist, taking 10 mins, but used a band 9 radiographer as a proxy.  

During surveillance of people with lung nodules or people suspected of having lung nodules, we 

assumed that there would be additional costs incurred (visit to multidisciplinary team, further CT 

scans and biopsy).  

 

Treatment costs 

Total treatment costs by stage of disease were obtained from Bajre et al.,201772 which were 

originally from Cancer Research UK 2014.79 Total costs included retreatment costs and were 

reported in price year of 2014/15.  These costs were obtained from the literature and uprated to 

current prices (2020/21) using the Hospital and Community Health Services (HCHS) index from Unit 

Costs of Health and Social Care 2022.76 

 

Table 46. Costs inputs used in the model 

Parameter Value Source 

Technologies (brand) 

ClearRead CT(Riverain) £2.00 per scan/output Supplied by the company 

InferRead CT Lung(Infervision) £3.34 per scan/output Supplied by the company 

 

Radiologist consultation  £24.50 PSSRU 2021 (cost per working 
hour (£147) for a Band 9 
radiographer as a proxy for a 
radiologist) (10 minutes to report 
result) 

Radiologist consultation (AI-
assisted) 

£19.60 
PSSRU 2021 (cost per working 
hour (£147) for a Band 9 
radiographer as a proxy for a 
radiologist) (8 minutes to report 
result) 

CT scan (single area, no contrast) £106 NHS reference schedule (RD20A- 
computerised tomography scan 
of one area, without contrast, 19 
years and over  

CT scan (single area, pre- and 
post-contrast) 

£143 National schedule of NHS costs 
2020/21 (RD22Z- CT scan of one 
area, with pre- and post-
contrast) 
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Superseded- 

see erratum 

Multidisciplinary team £146 National schedule of NHS costs 
2020/21 (CDMT_OTH other 
cancer MDT meetings) 

Guided needle biopsy £1670 NHS reference schedule (DZ71Z- 
minor thoracic procedure, 
guided needle biopsy) 

Bronchoscopy    

PET scan £1161 RN01a- PET-CT of one area, 19 
years and over 

Treatment  

Stage I £16,740 

Bajre et al., 201772 

Stage II £19,072 

Stage III £21,408 

Stage IV £13,342 

CT, computed tomography; PET-CT, positron emission tomography and computed tomography; PSSRU, 
Personal Social Services Research Unit 

 

7.4.6 Utility values  

The utility values that were used to derive the quality adjusted life years (QALYs) for people with 

lung cancer were mainly obtained from Bajre et al.,72 which were originally obtained from Naik et al., 

2015. Briefly, these authors collected health-related quality of life information using the EQ-5D 

questionnaire from 1760 Canadian ambulatory cancer patients and reported utility values by stage 

at diagnosis. Among the participants with lung cancer (N=128), patients with stage I, II, III and IV 

diagnoses had utility estimates of 0.81, 0.77, 0.76 and 0.76, respectively. For people without a lung 

nodule, we assigned a utility value of 0.855 (Rickets et al., 2020). 

In the base-case, we assumed that there is a –0.063 disutility for people with a non-nodular 

structure incorrectly identified as a nodule (false positive during detection of a lung nodule). In the 

model, we assumed that these non-nodular structures will be discharged at the first CT surveillance 

(i.e., at three months or one year). Also, we assumed that people under CT surveillance with lung 

nodules that were later diagnosed as benign, there would be a disutility of –0.063 lasting until the 

person was discharged. People without lung nodules and those with benign nodules were assumed 

to have utility values representing UK-specific general population norms.  

We assumed that a disutility of –0.2 associated with undergoing a biopsy with a duration of three 

months.  
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7.4.7 Mortality  

Two types of mortality were considered in the model, lung cancer death and death from other 

causes. Survival following treatment of lung cancer was obtained from secondary sources. General 

population mortality for people without lung cancer was obtained from the Office of National 

Statistics (ONS) and an average of the mortality rate for males and females was used in the model. 

We assumed that all-cause mortality would not differ between the two strategies or by reason for 

requiring CT scan. We included a 1.3 increased risk of death due to the smoking status of our 

population, (Jacobs et al., 1999)80 but we did not apply any increase to mortality for individuals with 

benign lung nodules.  

 

7.4.8 Outcomes 

Three different outcome/effectiveness measures were used in the analysis: correct identification of 

actionable nodules, cancer correctly detected and treated and quality-adjusted life years (QALYs).  

 

Cost per correct identification of actionable nodules 

For this outcome, we assigned the value of one for people correctly identified with actionable 

nodules (≥5mm and no clear features of being benign), and zero for all others.   

Cost per cancer correctly detected and treated 

No effectiveness information was required. We reserved the value of one for people with cancer 

correctly detected, then calculated the difference between strategies.   

 

Cost per QALY 

Four sets of QALY values were estimated for use in the model. First, the QALY values for people who 

do not have any lung nodules. Second, the QALY values for people with benign lung nodules. Third, 

QALY values for treated for lung cancer and fourth, people who have undiagnosed lung cancer.   

 

7.4.9 Model assumptions  

We made several assumptions to allow us to develop an executable model to undertake these 

analyses:  

• People with lung nodules will have one primary lung nodule  
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• Before detection a nodule grows, but after detection a benign nodule does not continue 

growing 

• For lung nodules that were not identified at initial CT scan but were later detected or 

diagnosed as cancer, we assumed that these lung nodules were initially present but 

undetected, and thus they were not new lung nodules or interval cancers.  

• Due to the paucity of information for the incidental population, we assumed that the 

population is similar to screening population and hence used the same model input values 

for both population except for the prevalence of any lung nodules.  

• Benign nodules were assumed to have grown up to the point of detection but would not 

grow afterwards. 

• For the AI-assisted reading strategy, we assumed that 95% of people with benign nodules 

would be discharged at the one-year CT surveillance and 5% would be discharged at the 

two-year CT surveillance. For the unaided reading strategy, we assumed that 95% of people 

would be discharged at the two-year CT surveillance and 5% at the one-year CT surveillance. 

• Among false negative cases at initial CT scan, we assumed 0.04% will be malignant(Horeweg 

et al.) 

• We assumed a utility decrement associated with undergoing a biopsy as –0.2.81, 82 

• There would be no cancers caused by radiation exposure. 

 

7.4.10 Analysis 

The economic analysis was undertaken from the perspective of the NHS and PSS and according to 

the Consolidated Health Economic Evaluation Reporting Standards (CHEERS).70 The results of the 

analysis are presented in terms of an incremental cost-effectiveness ratio (ICER), expressed as cost 

per correct identification of actionable nodules, cost per cancer detected and treated, and cost per 

QALY gained. Cost-effectiveness was assessed over a lifetime horizon, and all costs incurred, and 

benefits accrued over the model time horizon were discounted at 3.5% per annum in line with 

recommended guidelines.20 A deterministic analysis was undertaken for the base-case for the 

primary and secondary outcome measures. 

We undertook probabilistic sensitivity analysis (PSA) to determine the joint uncertainty in model 

input parameters. We undertook the PSA based on the outcome of cost per QALY gained only. In the 

PSA, each chosen model parameter was assigned a distribution (e.g., beta, Dirichlet or gamma), 

reflecting the amount and pattern of its variation, and cost-effectiveness results are calculated by 

simultaneously selecting random values from each distribution. This process was repeated 10,000 
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times in a Monte Carlo simulation to give an indication of how variation in the model parameters 

leads to variation in the ICERs for a given strategy.. Results of the simulation were plotted on an 

incremental cost-effectiveness plane, where each simulation/point represents the change/difference 

in costs divided by the difference/change in their benefits between strategies. We also calculated 

the probability that each strategy was the most cost-effective at different willingness-to-pay (WTP) 

thresholds per QALY gained, with the results plotted on a cost-effectiveness acceptability curve 

(CEAC). 

 

Additionally, we undertook several sensitivity and scenarios analyses. One-way sensitivity analysis 

was conducted to determine which input parameters were drivers of the economic analysis. Key 

input parameters were varied using the upper and lower values and the results presented on a 

tornado diagram.  

Scenario analyses 

 Given the limited evidence available, we had to use information from different studies and sources, 

often with some concerns related to risk of bias and applicability, to link evidence on diagnostic 

accuracy of AI-assisted reading compared to unaided reading of CT scans for identifying and 

analysing lung nodules to subsequent clinical processes and patient outcomes. Structuring this 

evidence on the clinical and economic outcomes in the form of a model is likely to introduce 

uncertainty, especially in several parameter inputs. We addressed this through undertaking scenario 

analyses for different values for each variable, and structures of the economic model. We identified 

four parameters which are likely to result in uncertainty around the cost-effectiveness. These 

parameters include: 

• Prevalence of lung nodules detected at baseline CT scans 

• Accuracy for identifying actionable nodules 

• Time taken to read CT scans  

 Prevalence of lung nodules detected at baseline CT scans 

In the detection phase of the model, we explored using prevalence of any lung nodules detectable at 

baseline CT scans from other sources to estimate the impact on the results for the screening and 

incidental populations. No alternative prevalence information was identified for the symptomatic 

population. Table 47 shows the prevalence information that we used in scenario analysis.  
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Table 47. Scenario analyses by changing the prevalence of any lung nodules detected at baseline 
CT scans in a screening population and incidental population, respectively 

Screening population Incidental population 

Prevalence used in 
base model 

Prevalence used in 
scenario analysis 

Prevalence used in 
base model 

Prevalence used in 
scenario analysis 

0.509 (Field et al., 
2016) 

0.33 (Callister et al., 
2015)  

0.13 (Callister et al., 
2015) 

0.380 (Lancaster et al., 
2021) 

  

Accuracy for identifying actionable nodules  

The base-case includes identifying people with any lung nodules (≥3mm to 30mm), discharging 

people with lung nodules <5mm. In this scenario, we explore in the detection phase of the model 

the impact of identifying ‘actionable’ nodules; hence, using sensitivity and specificity estimates for 

identifying people with lung nodules ≥5mm.  

  

Time taken to read CT scans 

The time taken to read CT scans reduced with AI-assistance in most studies included in our review 

(references). However, these studies were predominantly conducted under research conditions and 

there is uncertainty with regard to how AI assistance may impact on read/reporting time in real 

clinical practice. In the base-case we assumed that time required to read and report a CT scan image 

would be shortened from 10 minutes for unaided readers to eight minutes for AI assisted reading. In 

Table 48, we report the time taken (expert opinion), by population. In scenario analyses, we 

explored the possibility of varying this time for different strategies. 

  

Table 48. Resource use associated with reading and reporting CT scans 

  Population of interest 

Symptomatic Incidental Screening Surveillance 

Radiologist time 
to report CT scan 
(AI assisted) 

12 minutes 8 minutes  8 minutes 

Radiologist time 
to report CT scan 
(unaided) 

15 minutes 10 minutes  8 minutes 

Type of CT scan 
at baseline  

CT scan with contrast CT scan without contrast 

Type of CT scan 
during 
surveillance, if 
required 

CT scan without contrast 
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CT, computed tomography 

 

 

7.4.11 Areas beyond the scope of the assessment 

Quantitative evaluation of potential effects of using AI-derived software on workflow, changes in the 

interactions between health professionals and patients and between different health professionals 

and impact on workload and staffing is beyond the scope of the current assessment, except where 

evidence on radiologist’s reading time and/or radiology turnaround time related to the use of the 

software is found, it will be taken into account in the estimation of costs.  
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8 DE NOVO COST-EFFECTIVENESS ANALYSIS (FULL MODEL) - RESULTS   

 

8.1 Base-case results  

The full model comprising two stages provides a quantitative framework to link the diagnostic 

accuracy using AI-assisted reading compared to unaided reading of CT scans for identifying any lung 

nodules, to determining those requiring further actions, then to tracking the growth of the lung 

nodules under further surveillance, to the short-term costs (costs associated with correct 

identification of actionable lung nodules) and benefits (number of lung cancers identified) and the 

long-term costs and health outcomes expressed in terms of QALYs. We first present findings related 

to intermediate outcomes in Table 49, then summarise deterministic results for the following 

outcomes: cost per correct identification of actionable nodules, cost per cancers detected and 

treated, and cost per quality adjusted life year (QALY). Results are based on assuming a hypothetical 

cohort of 1000 people undergoing a CT scan.  

Findings are presented for the symptomatic population, the incidental population, and the screening 

population.  Additionally, we present sensitivity and scenario analyses results.   
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Superseded- 

see erratum 

Table 49. Summary of intermediate outcomes from the full model  

Results  

Symptomatic Incidental Screening Surveillance 

AI-
assisted  

Unaided  AI-assisted  Unaided  AI-assisted  Unaided  AI-assisted  Unaided  

Correct detection of any lung nodules 808.0 645.5 110.7 88.4 422.5 371.6   

Correct detection of actionable nodules  481.8 333.4 58.6 42.5 223.8 178.7   

Lung cancer detected at first presentation 7.0100 6.5510 1.3985 1.0810 5.3351 4.5423   

Cancer detected at 3-month CT surveillance  1.9230 3.6700 0.2181 0.3506 0.8326 1.4732   

Cancer detected at 1-year CT surveillance  2.3120 1.2360 0.2233 0.1796 0.8523 0.7546   

Cancer detected at 2-year CT surveillance 1.9060 0.758 0.1563 0.1227 0.5964 0.5158   

Cancer detected at 4-year CT surveillance 2.3600 0.6140 0.1893 0.1105 0.7225 0.4642   

Cancers detected 15.5120 12.8290 2.1850 1.8440 8.3420 7.7500   

Cancers missed (<5mm) 2.2823 2.8212 0.3702 0.3673 1.4129 1.5433   

Cancers missed (no lung nodule detected) 0.5641 4.992 0.0773 0.7069 0.3461 1.7816   

Cancers missed (slow growing) 4.1302 1.8466 0.5879 0.3023 2.2439 1.2701   

Cancers missed 6.9770 9.6600 1.0353 1.3764 4.0029 4.5950   

Total cancers  22.489 22.489 3.2203 3.2204 12.345 12.345   
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8.1.1 Symptomatic population  

Deterministic results are reported in Table 50 to Table 52 for the symptomatic population.  

  

Cost per correct identification of people with actionable nodules 

Table 50 presents the estimates of the costs and additional people correctly identified with an actionable nodule with the use of AI-assisted radiologist 

reading compared to unaided radiologist reading in a symptomatic population. These results show that AI-assisted radiologist reading (InferRead CT Lung) is 

approximately £4,000 cheaper and expected to correctly identify an additional 148.4 people with actionable nodules: hence, dominating the unaided 

reading strategy. 

  

Table 50. Deterministic results based on expected costs and expected correct identification of people with actionable lung nodules (symptomatic 
population of 1000 people undergoing CT scan) 

Strategy Expected total 
costs (£) 

Incremental 
costs (£) 

Expected 
number of 
people with 
actionable 
nodules 
correctly 
identified  

Incremental 
number of 
people with 
actionable 
nodules 
correctly 
identified 

ICER (£)  
per correct 
identificatio
n of an 
individual 
with 
actionable 
lung nodules  

AI-assisted 
radiologist reading 
(InferRead CT Lung) 

138,740 - 481.8   - 
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Unaided radiologist 
reading  

142,750 4,010 333.4 -148.4 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

 

 

Cost per cancer correctly detected and treated 

Results from Table 51 show that the AI-assisted reading strategy is approximately £101,100 more costly and is expected to correctly identify and treat an 

additional 2.68 people with lung cancer, which equates to an ICER of approximately £38,300. 

 

Table 51. Deterministic results based on expected costs and expected correctly identified people with lung cancer detected and treated (symptomatic 
population of 1000 people undergoing CT scan) 

Strategy Expected total costs (£) Incremental costs (£) Expected number of 
people with cancer 
correctly detected and 
treated  

Incremental number 
of people with cancer 
correctly detected and 
treated 

ICER (£)  
per cancer correctly 
detected and treated 

Unaided radiologist reading 715,450 - 12.83 - - 

AI-assisted radiologist reading 
(ClearRead CT) 

816,520 101,080 15.51 2.68 38,316 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

 

 

Cost per QALY 

Results in Table 52 show that unaided reading strategy dominates by being less costly and more effective than AI-assisted radiologist reading (InferRead CT 

Lung) when QALYs are taken into account. 
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Table 52. Deterministic results based on expected costs and expected QALYs (symptomatic population of 1000 people undergoing CT scan) 

Strategy Expected total costs (£) Incremental costs (£) Expected QALYs  Incremental QALYs ICER (£)  
per QALY  

Unaided radiologist reading 715,450 - 6349.89 - - 

AI-assisted radiologist reading 
(InferRead CT Lung) 

816,520 101,080 6329.90 -19.99 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

 
 
Sensitivity analysis 

Deterministic sensitivity analysis results were conducted by varying key model input parameters by their ranges or when unavailable by assuming ±50% for 

time required to read and report CT scan with/without AI software and ±10% cost of CT scan of the base-case values to assess the impact on the ICER (cost 

per QALY), with the results presented in the form of tornado diagrams.  

 

 

Figure 21 shows the impact to the cost per QALY by varying inputs. Results show that the sensitivity of unaided reading and the times taken to read and 

report results (for both AI-assisted and unaided reading) are the most influential. However, within the limits used the results continued to show that 

unaided reading dominated AI-assisted radiologist reading. 
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Figure 21. Tornado diagram of the impact to the cost per QALY by changing individual parameters (symptomatic population) 
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Scenario analyses  

Table 53. Scenario analysis results based on cost per QALY (symptomatic population) 

Strategy Expected total 
costs (£) 

Incremental 
costs (£) 

Expected 
QALYs  

Incremental 
QALYs 

ICER (£)  

per QALY  

Base-case 

Unaided 
radiologist 
reading 

715,450 - 6349.89 - - 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

816,520 101,080 6329.90 -19.99 Dominated 

Prevalence of detecting any lung nodules (0.9490 to 0.5000) (assumption) 

Unaided 
radiologist 
reading 

450,060 - 6416.06 - - 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

508,780 58,780 6403.04 -13.18 Dominated 

Time taken to read and report CT scans- assumed to take 12 minutes for AI-assisted and 
unaided  
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Unaided 
radiologist 
reading 

704,700 - 6349.89 - - 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

816,520 111,830 6329.90 -19.99 Dominated 

Time taken to read and report CT scans- assumed to take 15 minutes for AI-assisted and 12 
minutes unaided 

Unaided 
radiologist 
reading 

704,700 - 6349.89 - - 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

826,890 122,190 6329.90 -19.99 Dominated 

People with benign nodules discharged at 2-year CT surveillance (solid nodules) and 4-year CT 
surveillance (sub-solid nodules) in both strategies 

Unaided 
radiologist 
reading 

717,470 - 6349.5 - - 

AI-assisted 
radiologist 
reading 

860,190 142,720 6320.5 -29.00 Dominated 
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Superseded- 

see erratum 

(InferRead CT 
Lung) 

No disutility associated with false positive nodules during detection or disutility associated with 
undergoing CT surveillance 

Unaided 
radiologist 
reading 

715,450 - 6385.86 - - 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

816,520 101,080 6393.81 7.95 12,709 

CT, computed tomography; QALY, quality adjusted life-year 

 

 
 
 
 

8.1.2 Incidental population  

Cost per correct identification of a person with actionable lung nodules  

Table 54 presents the estimates of the costs and additional people correctly identified with an actionable nodule with the use of AI-assisted radiologist 

reading compared to unaided radiologist reading in a symptomatic population. These results show that AI-assisted radiologist reading (InferRead CT Lung) is 

approximately £4,000 cheaper and expected to correctly identify an additional 16.1, resulting in the unaided reading strategy being dominated.   
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Table 54. Deterministic results based on expected costs and expected cases appropriately identified (incidental population of 1,000 people undergoing 
CT scan) 

Strategy Expected total costs (£) Incremental costs (£) Expected number of 
people with actionable 
nodules correctly 
identified  

Incremental number 
of people with 
actionable nodules 
correctly identified 

ICER (£)  
per correct 
identification of an 
individual with 
actionable lung 
nodules  

AI-assisted radiologist reading 
(InferRead CT Lung) 

138,740 - 58.6 - - 

Unaided radiologist reading  142,750 4,010 42.5 -16.1 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

 

 

Results from Table 55 show that the AI-assisted reading strategy is approximately £2430 cheaper and is expected to correctly identify and treat an 

additional 0.34 people with lung cancer resulting in its dominance over unaided radiologist reading. 

  

Table 55. Deterministic results based on expected costs and expected cancer correctly detected and treated (incidental population of 1,000 undergoing 
CT scan) 

Strategy Expected total costs (£) Incremental costs (£) Expected number of 
people with cancer 
correctly detected and 
treated  

Incremental number 
of people with cancer 
correctly detected and 
treated 

ICER (£)  
per cancer correctly 
detected and treated 

AI-assisted radiologist reading 
(InferRead CT Lung) 

229,210 - 2.185 - - 

Unaided radiologist reading 231,640 2,430 1.844 -0.34 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 
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Cost per QALY 

Results in Table 56 show that the unaided strategy is £2430 more costly and expected to yield an additional 2.44 QALYs in an incidental population 

undergoing CT scan, yielding an ICER of £996 per QALY.  

 

Table 56. Deterministic results based on expected costs and expected QALYs (incidental population of 1000 undergoing CT scan) 

Strategy Expected total costs (£) Incremental costs (£) Expected QALYs  Incremental QALYs ICER (£)  
per QALY 

AI-assisted radiologist reading 
(InferRead CT Lung) 

229,210 - 6571.19 - - 

Unaided radiologist reading 231,640 2,430 6573.63 2.44 996 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

  

 

 

Incidental population  

Sensitivity analysis 

Figure 22 shows the impact to the cost per QALY by varying model inputs. Results show that prevalence of lung nodules is the most influential driver. Higher 

prevalence of lung nodules is associated with more favourable cost-effectiveness for AI-assisted reading.   
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Figure 22. Tornado diagram of the impact to the cost per QALY Identified by changing individual parameters (incidental population) 
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Superseded- 

see erratum 

Scenario analyses 

 

Table 57. Scenario analysis results based on cost per QALY (incidental population) 

Strategy Expected total 
costs (£) 

Incremental 
costs (£) 

Expected 
QALYs  

Incremental 
QALYs 

ICER (£)  
per QALY  

Base-case 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

229,210 - 6571.19 - - 

 Unaided 
radiologist 
reading 

231,640 2,430 6573.63 2.44 996 

Prevalence of detecting any lung nodules (0.1300 to 0.3800) 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

356,490 - 6541.56 - - 

Unaided 
radiologist 
reading 

381,670 25,180 6538.59 -29.6 Dominated 

Time taken to read and report CT scans- assumed to take 12 minutes for AI-assisted and 
unaided  

Unaided 
radiologist 
reading 

223,910 - 6573.63 -  

AI-assisted 
radiologist 
reading 

229,210 5,300 6571.19 -24.43 Dominated 
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Superseded- 

see erratum 

(InferRead CT 
Lung) 

Time taken to read and report CT scans- assumed to take 15 minutes for AI-assisted and 12 
minutes unaided 

Unaided 
radiologist 
reading 

223,910 - 6573.63 -  

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

236,580 12,670 6571.19 -24.43 Dominated 

People with benign nodules discharged at 2-year CT surveillance (solid nodules) and 4-year CT 
surveillance (sub-solid nodules) in both strategies 

Unaided 
radiologist 
reading 

231,900 - 6573.58 - - 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

232,540 640 6570.46 -3.11 Dominated 

No disutility associated with false positive nodules during detection or disutility associated with 
undergoing CT surveillance 

AI-assisted 
radiologist 
reading 
(InferRead CT 
Lung) 

229,210 - 6583.58 - - 

Unaided 
radiologist 
reading 

231,640 2,430 6582.69 -0.89 Dominated 

CT, computed tomography; QALY, quality adjusted life-year 
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8.1.3  Screening population  

Deterministic results are reported in Table 58 to Table 60 for the incidental population.   

 

Cost per correct identification of a person with an actionable lung nodule 

Table 58 presents the estimates of the costs and additional people correctly identified with an actionable nodule with the use of AI-assisted radiologist 

reading compared to unaided radiologist reading in a screening population. These results show that AI-assisted radiologist reading (ClearRead CT) is 

expected to correctly identify an additional 45.1 people with actionable nodules. Use of AI-assistance software strategy is cheaper compared to unaided 

reading strategy resulting in the latter being dominated. 

Table 58. Deterministic results based on expected costs and expected correct identification of people with actionable nodules (screening population of 
1,000 people undergoing CT scan) 

Strategy Expected total costs (£) Incremental costs (£) Expected number of 
people with 
actionable nodules 
correctly identified  

Incremental number of 
people with actionable 
nodules correctly 
identified 

ICER (£)  
per correct 
identification of an 
individual with 
actionable lung 
nodules  

AI-assisted radiologist reading 
(ClearRead CT) 

127,600 - 223.8 - - 

Unaided radiologist reading  130,500 2,900 178.7 -45.1 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 
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Cost per cancer correctly detected and treated 

Results from Table 59 show the AI-assisted reading strategy is cheaper and is expected to correctly identify and treat an additional 0.592 people with lung 

cancer resulting, thus dominating the unaided radiologist reading strategy.  

 

Table 59. Deterministic results based on expected costs and expected identification of people with cancer detected and treated (screening population of 
1000 people undergoing CT scan) 

Strategy Expected total costs (£) Incremental 
costs (£) 

Expected number of people 
with cancer correctly 
detected and treated  

Incremental number of 
people with cancer correctly 
detected and treated 

ICER (£)  
per cancer correctly 
detected and treated 

AI-assisted radiologist reading 
(ClearRead CT) 

400,410 - 8.342 - - 

Unaided radiologist reading 470,630 70,220 7.750 -0.592 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

  

Cost per QALY  

Results from Table 60 show that the AI-assisted radiologist reading strategy is cheaper and expected to yield 7.9549 more QALYs thus dominating the 

unaided radiologist reading strategy.  

 

Table 60. Deterministic results based on expected costs and expected QALYs (screening population of 1000 undergoing CT scan) 
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Strategy Expected total costs (£) Incremental costs (£) Expected QALYs  Incremental QALYs ICER (£)  
per QALY  

AI-assisted radiologist reading 
(ClearRead CT) 

400,410 - 6532.1 - - 

Unaided radiologist reading 470,630 70,220 6524.1 -7.9549 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 
Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

 

 

 

Figure 23. Tornado diagram of the impact to the cost per QALY by changing individual parameters (screening population) 
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Scenario analyses  

Table 61. Scenario analysis results based on cost per QALY (screening population) 

Strategy Expected total 
costs (£) 

Incremental 
costs (£) 

Expected 
QALYs  

Incremental 
QALYs 

ICER (£)  
per QALY  

Base-case 

AI-assisted 
radiologist 
reading 
(ClearRead CT) 

400,410 - 6532.1 - - 

Unaided 
radiologist 
reading 

470,630 70,220 6524.1 -7.95 Dominated 

Prevalence of detecting any lung nodules (0.509 to 0.330) 

AI-assisted 
radiologist 
reading 
(ClearRead CT 
) 

310,590 - 6552.28 - - 

Unaided 
radiologist 
reading 

357,460 46,870 6546.68 -5.60 Dominated  

Time taken to read and report CT scans- assumed to take 10 minutes for AI-assisted and 
unaided  

AI-assisted 
radiologist 
reading 
(ClearRead CT 
) 

405,350 - 6532.1 - - 

Unaided 
radiologist 
reading 

470,630 65,280 6524.1 -7.95 Dominated 
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Time taken to read and report CT scans- assumed to take 12 minutes for AI-assisted and 10 
minutes unaided 

AI-assisted 
radiologist 
reading 
(ClearRead CT 
) 

410,290 - 6532.08 - - 

Unaided 
radiologist 
reading 

470,630 60,340 6524.12 -7.95 Dominated 

People with benign nodules discharged at 2-year CT surveillance (solid nodules) and 4-year CT 
surveillance (sub-solid nodules) in both strategies 

AI-assisted 
radiologist 
reading 
(ClearRead CT 
) 

412,620 - 6529.31 - - 

Unaided 
radiologist 
reading 

471,660 59,040 6523.89 -5.42 Dominated 

No disutility associated with false positive nodule detection or disutility associated with 
undergoing CT surveillance 

AI-assisted 
radiologist 
reading 
(ClearRead CT 
) 

400,410 - 6548.21 - - 

Unaided 
radiologist 
reading 

470,630 70,220 6547.32 -0.89 Dominated 

CT, computed tomography; QALY, quality adjusted life-year 
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In addition to sensitivity and scenario analyses presented above, the EAG further carried out a probabilistic sensitivity analysis for each of the populations. 

The findings are presented in Appendix 9 (section 13.9). Results suggest that unaided reading has very high probability of being cost-effective for the 

symptomatic population while AI-assisted reading has very high probability of being cost-effective for the screening population. Uncertainty is much higher 

for the incidental population. The EAG recognised that there are additional uncertainties that may not have been fully captured in these analyses. 
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8.1.4 Surveillance population 

In addition to exploring the cost-effectiveness of AI-assisted image analysis in the symptomatic, 

incidental and screening populations, the EAG further undertook a cost-effectiveness analysis for the 

surveillance population. This population represents people who have an actionable nodule detected 

and require CT surveillance. The population is of interest as a main advantage of AI-assisted image 

analysis lies with improved reliability in nodule size measurement, based on which VDT or nodule 

size growth is determined, and this in turn influences clinical decision making after the follow-up 

scan. This analysis therefore focuses on, and isolates out, the potential impact of improved 

measurement reliability on health and economic outcomes following CT surveillance. It is worth 

noting that assessment of nodule growth relies on two (or more) measurements, and so the first 

(previous) CT scan also contributes to any potential benefits of a reading strategy that would be 

realised at the follow-up scan. Consequently, we retain the original characteristics of the surveillance 

population (e.g. whether they belong to symptomatic or screening population at the initial scan) and 

assume that the same reading strategy are used at both scans.   

Results in Table 62 are reported for a screening population who are under surveillance. Here we 

assumed that this population excludes people with nodules that have clear benign features or 

people with lung nodules measuring <5mm at the initial scan. Information used to undertake these 

analyses were obtained from our simulation used to information the cost-effectiveness analysis in 

the full model for the screening population. Within this screening population under surveillance, we 

obtained information about the number of people with benign nodules (and when they were 

discharged), number of cancers detected (and when they were detected), and the number of 

cancers missed. Costs and QALYs yielded were affixed to these proportions. In this scenario, we 

assumed that people detected with cancer all have stage I disease. Additionally, we assumed that 

any person with a cancer missed by the surveillance will present later with stage I disease.  

 

These results show that the AI-assisted strategy is less costly and more effective; thus, dominating 

the unaided strategy.  
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Cost per QALY 

Table 62. Deterministic results based on expected costs and QALYs (screening population of 1,000 
people undergoing CT surveillance) 

Strategy Expected total 

costs (£) 

Incremental 

costs (£) 

Expected 

QALYs  

Incremental 

QALYs 

ICER (£)  

per QALY  

AI-assisted 

radiologist reading 

(InferRead CT Lung) 

719,813 - 6365.01 - - 

Unaided reading  921,015 201,202 6323.07 -41.94 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 

Exact results have been obtained from TreeAge but were rounded by the authors and presented. 

 

We undertook further scenario analysis where we assumed that people whose cancers were missed 

during surveillance would present with stage IV disease instead (Table 63). These results showed 

that the AI-assisted strategy continued to dominate unaided reading in this patient population.   

 

Cost per QALY 

Table 63. Deterministic results based on expected costs and QALYs (screening population of 1,000 
people undergoing CT surveillance) 

Strategy Expected total 

costs (£) 

Incremental 

costs (£) 

Expected 

QALYs  

Incremental 

QALYs 

ICER (£)  

per QALY  

AI-assisted 

radiologist reading 

(InferRead CT Lung) 

699,100 - 6345.62 - - 

Unaided reading  898,678 199,578 6302.17 -43.46 Dominated 

CT, computed tomography; ICER, incremental cost-effectiveness ratio 

Exact results have been obtained from TreeAge but were rounded by the authors and presented. 
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8.2 Discussion 

8.2.1 Summary of key results 

AI-assistance increases the number of lung nodules detected at first presentation. The number of 

extra nodules detected per 1000 persons screened are 162.5, 22.3 and 50.9 for symptomatic, 

incidental and screening populations respectively. It also increases the number of actionable nodules 

detected. The number of extra actionable nodules detected per 1000 persons screened are 148.4, 

16.1 and 45.1 for symptomatic, incidental and screening populations respectively. 

The majority of these additional nodules detected will be benign. There will be additional costs 

associated with investigating them, and potentially disutility experienced during the time that the 

nodule is under investigation and the possibility of it being malignant remains. However, we assume 

that a proportion of these additional nodules will be malignant, and therefore detected early as a 

result of the nodule being correctly identified. For every 1000 persons screened, the number of 

additional cancers detected in this way by AI-assistance would be 5.0, 0.6, and 1.6 for symptomatic, 

incidental and screening populations respectively (3%-4% of the additional actionable nodules 

detected).  

All actionable nodules assessed as being between 5mm and 8mm undergo surveillance and are only 

investigated if the growth rate is above a certain threshold. It is possible for some malignant 

tumours to be missed if their measured growth rate is too low. Our modelling suggests that this is 

slightly more likely with AI assistance. Per 1000 persons screened, AI assistance would result in 2.3, 

0.3, and 1.0 fewer cancers being detected during surveillance.  The reason for this is likely to be our 

assumption that AI-assistance, though improving measurement accuracy, also introduces a 

systematic over-estimation of size. The way this is modelled implies that, when repeated 

measurements are taken to estimate VDTs, these will be systematically under-estimated. However, 

the cancers missed this way will be slow-growing and therefore likely to be less aggressive, implying 

that the consequences of not detecting them will be less severe than those from missing cancers 

through failing to detect a nodule.  

In terms of cost per QALY, use of AI in the screening population was estimated to be cost effective, 

but not in the symptomatic or incidental population. For symptomatic, screening and incidental 

populations use of AI reduced costs initially through reducing nodule detection costs, and detected 

more actionable nodules, resulting in AI dominating unaided readers for the outcome of actionable 

nodule detection. This translated to £38,316 per extra cancer detected for the symptomatic 

population, whereas AI dominated unaided readers for cancer detection in the incidental and 
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screening populations with lower costs and increased cancer detection. In the symptomatic 

population the increased cancer detection does not translate into an overall QALY gain, and AI is 

more expensive when cost of follow up tests and CT surveillance is included, and so AI is dominated 

by unaided readers in the assessment of cost per QALY. One scenario analysis, the removal of QALY 

decrement for false positive results and CT surveillance resulted in a cost per QALY of £12,709 for AI 

in comparison to unaided reading. This is below the £20,000 threshold, indicating that the QALY 

decrement and increased follow-up costs for false positive results and CT surveillance is the cause of 

AI assistance not being cost effective in the base case in the symptomatic population. The distress 

caused to the large number of individuals in whom benign nodules are found outweighs the health 

gains experienced by the few whose cancers would have been missed without AI assistance.  No 

other sensitivity or scenario analysis significantly affected results. In the incidental population there 

were higher QALYs overall for the unaided reader than the AI-assisted strategy, so unaided reading 

had a cost per QALY of £996 compared to AI assistance, indicating the addition of AI assistance is not 

cost effective in this population. This result was sensitive to the prevalence of lung nodules in the 

population,  with increased prevalence favourable towards AI which was estimated to have greater 

sensitivity to detect these nodules in the model. Removal of the QALY decrement for false positive 

results and CT surveillance in a scenario analysis resulted in AI dominating the unaided reader. This 

indicates that the cost per QALY is heavily influenced by the costs and QALY decrements of false 

positive results and surveillance. In the screening population AI was cost effective, and dominated 

unaided readers in cost per QALY, a result which was unaffected by sensitivity and scenario analyses. 

Many of the data inputs for the screening population differed from those from the other two 

populations, because there were different data sources and more data available including from 

screening trials. The driving force behind AI assistance estimates being cost effective for screening 

and not for the other two populations are in the estimated number of false positive results and 

people undergoing CT surveillance. In the screening population there are fewer people experiencing 

these harms and costs when AI assistance is used than for the unaided readers.  In the symptomatic 

and incidental populations there are more people experiencing these harms and costs when AI 

assistance is used compared to unaided readers. This can be seen in the differing impacts of 

removing the disutility associated with false positive results and CT surveillance, which improves cost 

effectiveness for symptomatic and incidental populations, and reduces cost effectiveness estimates 

for the screening population. This is driven by differing data inputs, for example the screening data 

suggests AI is more specific whereas the symptomatic and incidental data used suggested the 

unaided reader was more specific (see section 7.4.3). Whilst there was more data for the screening 

population, there was a paucity of available data throughout.  
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Our modelling does include limitations largely driven by the data available to populate it. It is 

possible that we have overestimated the proportion of additional nodules that are malignant, which 

would exaggerate the benefits of improved nodule detection through AI assistance. We have used 

the best sources in the literature we could find to inform the size distribution of actionable nodules 

at initial assessment, the measurement error with or without AI-assistance, and the growth rate of 

malignant nodules during surveillance. However, these are taken from studies in different 

populations, with their own limitations, which does affect the robustness of our results. 

 

8.2.2 Generalisability of results 

A key limitation is the paucity of data with major concerns regarding generalisability. For example, 

while our base case analysis indicates AI-assisted reading dominates unaided reading in the 

screening population, the test accuracy results suggesting that AI-assisted reading has both better 

sensitivity and specificity for detecting any lung nodules came from a single study conducted in 

Taiwan.51 The results are not consistent with findings from other studies which suggested that the 

specificity for AI-assisted reading tends to be worse compared with unaided reading. The risk of bias 

and applicability concerns commonly found in studies included in our systematic review and 

highlighted in section 3.2 further limit the generalisability of findings of our cost-effectiveness 

analyses.  

Only one study included in our test accuracy review was carried out specifically in incidental 

population. Consequently, a large number of model parameters have to be assumed for this 

population and this may limit the validity and generalisability of findings particularly in relation to 

the incidental population. 

Our cost-effectiveness analysis would be most generalisability to technologies (ClearRead CT and 

InferRead CT Lung) that have directly contributed to model parameter inputs related to test 

accuracy and costs. Generalisability of the findings to other technologies would be dependent on the 

demonstration of equivalent or more favourable evidence. However, it is worth reiterating that 

overall our findings are highly uncertain due to paucity of evidence and other issues explicated 

below. 
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8.2.3 Strengths and limitations of analysis 

Our economic analysis has several strengths: 

• As far as we are aware, it is the first full economic evaluation that has explicitly modelled 

nodule detection and management according to the BTS guidelines, which is the current 

standard practice in the UK. Our economic evaluation is also likely to be the first to evaluate 

the cost-effectiveness of AI-assisted reading of chest CT scans compared with reading by 

unaided radiologists for the detection and analysis of lung nodules.    

• Despite the complete absence of clinical and cost-effectiveness evidence and the substantial 

gaps between data concerning the performance of different image analysis strategies and 

downstream clinical outcomes, our innovative approach of using simulations to inform 

decision analytical models based on available data enabled us to conduct a full economic 

evaluation for the primary comparison of interest. 

• The parameter inputs for our model are informed by our systematic review of test accuracy. 

• While the decision analytical model that we created is likely to require further refinement 

and validation and the findings are highly uncertain due to the paucity of data, it provides a 

useful framework that will allow further evaluation to be undertaken when more evidence 

emerges   

 

While our simulations have enabled us to explore the potential impact of improved consistency in 

nodule measurement quantitatively in an explicit way, many simplifying assumptions are required 

during their implementation, with corresponding limitations. These are highlighted below.  

• The starting point of the simulation is a population who all have a nodule detected (or 

detectable by reference standard). Hence, when we apply this to the economic model, the 

better nodule detection with AI assistance is not automatically captured in the simulation. 

This benefit is modelled separately in the decision tree, but this approach leads to a slight 

imbalance in the total number of nodules which creates a small artificial difference in the 

number of cancer cases in the populations considered by the different readers. We correct 

for this through an adjustment of cancer prevalence among nodules not detected under 

unaided read to ensure equal cancer prevalence between the populations subject to 

different detection strategies. 

• We assume that all nodules presented are 3-30mm in starting size, and come from a log-

normal distribution. These cut-offs are plausible, but it is possible there may be nodules 
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slightly smaller or bigger than these thresholds. The log-normal distribution was the best at 

replicating the source information we had to describe median and IQR of the sizes, however 

it probably does not perfectly capture the true distribution of starting sizes.  

• We assume that only malignant nodules grow, however it is possible that benign nodules do 

show some growth and may be falsely detected as cancerous. 

• We do not account for the occurrence of new nodules or new cancers within the follow-up 

of the simulation. Potential issues related to overdiagnosis are not considered.83 

• Each patient’s solid nodule growth is assume to follow a single Gompertz growth rate as 

reported in the literature. Whilst each rate varies over time, it may not fully represent the 

full range of growth rates (e.g. account for periods of nodule dormancy).  

• The subsolid nodules are assumed to follow a linear growth rate based on how their growth 

is reported in the literature. Part solid and non-solid tumours were modelled separately and 

pooled at a ratio of 4:5. The linear growth assumption, while following the way growth is not 

capped and means that for some patients, their nodules may grow much faster than would 

occur in real life.  

• There is no mortality factored into the simulation and so cases of severe or fast-moving 

disease that are not detected early on may have their QALY contribution overestimated.  

• We assume that the measurement error is random, and not correlated with any patient 

characteristics. The base case currently assumes that the error term for a patient with a 

benign nodule is the same across all of their measurements meaning there is no possibility 

of falsely detected growth, however we explore having an independent error term for each 

measurement in a scenario analysis. 

• Despite using the reported standard deviations which were generally small, it is likely a small 

number of patients had a large measurement error which is unlikely to be representative of 

practice.  

• We focus on the risk dominant nodule (the largest single nodule) per patient, and do not 

consider cases where there may be multiple nodules in different locations.  

• It is assumed that all nodules identified as having clear features of being benign are in fact 

benign. 

• When categorising patients at the later follow-up points, stable patients would usually fulfil 

the criteria for more than one of the stable categories (e.g. VDT>600, Stable of diameter, 
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Stable on Volumetry), and it was not possible to generate a sequential order of allocation or 

distribution across these groups. These categories do however differ in the resulting follow-

up. These differences should represent differences in methods and technology available at 

each site, however no information was available. 

• Assessment of malignancy in later follow-up was based on VDT, where the growth rate (and 

thus VDT) was independent of starting nodule size. 

The large number of simplifying assumptions indicates that there is a high level of structural and 

methodological uncertainty associated with the decision analytical model which may have not been 

captured in sensitivity and scenario analyses presented in this report. While the EAG has made every 

effort to create and refine this modelling framework to enable the use of very sparse and 

heterogenous evidence to evaluate clinical and cost-effectiveness of the technologies of interest, 

this work was undertaken within a fairly limited timeframe and therefore further validation and 

refinement of the model is likely to be needed. Current findings from the model should therefore be 

interpreted with great caution.   

 

 

9 ASSESSMENT OF FACTORS RELEVANT TO THE NHS AND OTHER PARTIES 

This technology assessment focuses on evaluation of test accuracy, clinical effectiveness and cost-

effectiveness. Several other factors that are outside the scope of the assessment may need to be 

considered with respect to potential adoption of AI software assistance into clinical practice and 

service delivery: 

• Choice between AI software in the absence of comparative accuracy and clinical evidence 

• Estimating the effectiveness and cost-effectiveness AI software capable of detecting and 

analysing multiple disease conditions 

• Integration of the technologies into existing picture archiving and communication system 

(PACS) and workflow; compatibility with existing CT scanners and workstations 

• Different costs and costing structure in relation to the volume of CT scans and patient 

characteristics for individual institutions 

• Training required for using AI software and learning curve 

• Ongoing update and user support 
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• Potential impact of increased CT surveillance on patients’ mental wellbeing and quality of 

life, and issues related to overdiagnosis 

• Potential impact on radiology service planning and delivery and human resource 

management, including impact on other services requiring CT scans 

• Potential interruption to service due to cyber-security issues, and network and data security 

issues for cloud-based system 
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10 DISCUSSION 

 

10.1 Statement of principal findings 

• Twenty-seven studies evaluating eight of the 13 technologies specified in the assessment 

protocol were included. All studies reported findings related to test accuracy. No study 

providing direct evidence on clinical and cost-effectiveness was found. All included studies 

were judged to be at high risk of bias, and most studies have several applicability concerns 

for the UK setting. 

• The majority of studies (24/27) used retrospective datasets and were conducted in research 

settings.  Only two of these studies were undertaken in the UK. Seventeen studies compared 

the performance of readers with and without concurrent software use (primary comparison 

of interest). Additional evidence related to stand-alone AI software and non-comparative 

evidence from these retrospective studies were also reviewed to provide supplementary 

information. The remaining three studies reported on prospective screening experiences 

based on the same screening pilot trial conducted in South Korea. 

• Evidence suggests that AI-assisted CT image analysis may increase the sensitivity of lung 

nodule detection, but may also increase false positive findings. Consistency between readers 

in the detection of nodules may improve and variability may reduce when they are assisted 

with AI. Evidence from research settings suggest that reading time for CT image analysis may 

be reduced with the assistance of AI software. All these findings require further validation in 

studies using prospectively collected data in clinical practice settings. 

• Segmentation failure by AI derived software is not uncommon and may impact on its 

performance in clinical practice settings. 

• Different AI software may have different test accuracy and performance in identify lung 

nodules among patients with different clinical features, and different types of lung nodules. 

However there is an absence of direct comparative evidence between (analysis assisted by) 

different AI software.  

• The limited number of studies available and concerns related to risk of bias and applicability 

mean estimates of test accuracy for individual technologies are either absent or highly 

uncertain and require further validation and confirmation. 
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• In the absence of direct evidence on clinical and cost-effectiveness, the EAG created a de 

novo full model to link up the long causal chain between test accuracy and clinical and 

economic outcomes. Paucity of data and methodological challenges mean the findings of the 

linked evidence approach are highly uncertain and needs to be interpreted with great 

caution. 

• Acknowledging the above caveats, EAG’s cost-effectiveness analysis suggests that test 

accuracy of unaided readers and of AI-assisted reading, radiologists reporting time with and 

without AI-assistance, prevalence of lung nodules and disutility associated with CT 

surveillance are likely to be key drivers of cost-effectiveness. AI-assisted reading is likely to 

be dominated by unaided reading unless AI-assisted reading could improve both sensitivity 

and specificity compared with unaided reader.   

  

 

10.2 Strengths and limitations of the assessment 

10.2.1 Strengths 

The strengths of this technology assessment include: 

• Comprehensive and systematic searches of relevant literature, supplemented by requests of 

evidence and data from the companies 

• Rigorous systematic review methods were followed for the selection of studies for inclusion, 

critical appraisal and synthesis. 

• Despite the absence of direct evidence quantifying the impact of AI-derived software on 

clinical and patient outcomes, we have developed an innovative framework linking up test 

accuracy evidence with subsequent clinical process and patient outcomes using a decision 

tree and simulations through a linked evidence approach. This framework may facilitate 

future evaluation of similar technologies as new evidence emerges.   

 

10.2.2 Limitations 

First the limitations of the review methodology are considered. This is followed by a discussion of 

the limitations of the evidence identified and included in the review, and specific limitations related 

to economic modelling and simulations adopted by the EAG. 
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10.2.2.1 Limitations of the review 

• Excluded literature before 2012; but studies on AI software published before this date are 

unlikely to be relevant to current assessment. 

• Only 7 companies (Aidence, contextflow, Infervision, JLK, MeVis, Riverain, Siemens 

Healthineers) submitted information and/or replied to our questions for clarification. 

• 15 records were excluded on full text level as the software name was unclear, and we have 

received no author reply. 

• MeVis: Excluded studies using the research software CIRRUS as well as studies on the AI 

software Visia. 

• Siemens Healthineers: Excluded studies on any other technologies, e.g. syngo. 

• Due to the limited evidence and heterogeneity, meta-analysis as well as subgroup analysis 

by ethnicity, nodule type, dose or reader speciality were not performed. 

• The review did not specifically consider differences in test accuracy of different AI software 

because no evidence with direct comparisons between different software was identified, 

and included studies were too heterogeneous in design and patient population to allow 

reliable indirect comparison. 

• The adaptation of the QUADAS-2 tool for this review was a first iteration and requires 

refinement taking into consideration the QUADAS-2 AI version and AI reporting guides such 

as STARD-AI and CONSORT-AI which are expected to come out in due time. 

• The potential impact of AI-assisted image analysis on over-diagnosis of lung cancer was not 

considered in this technology assessment. 

 

10.2.2.2 Limitations of the evidence 

Volume and nature of available evidence 

• No studies on 5/13 technologies were identified. All studies meeting our inclusion criteria 

reported evidence on test accuracy. No studies reporting direct evidence on clinical 

effectiveness or cost-effectiveness, or direct evidence comparing different technologies 

included in this assessment were found. These made any attempt to evaluate comparative 

effectiveness and cost-effectiveness of technologies of interest infeasible. 
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• Of the 27 test accuracy studies included in our review, only two were conducted in the UK -

one each for Veolity (MeVis) and Veye Lung Nodules (Aidence). Of the eight technologies 

with at least one study available, only AI-RAD Companion (Siemens Healthineers), ClearRead 

CT (Riverain Technologies), Veolity (MeVis) and Veye Lung Nodules (Aidence) had at last two 

studies conducted in Western Europe or North America. These impose major limitations in 

the applicability of evidence to the UK setting. The number of studies available for each 

technologies ranges from 6 (ClearRead CT, Riverain Technologies) to one (Contextflow 

SEARCH Lung CT, contextflow; VUNO Med-LungCT AI, VUNO). The small number of available 

studies for most of the technologies also means that estimation of test accuracy for 

individual technologies often relies on evidence from a single study (as different papers for 

the same technology tended to report different outcomes). This, combined with risk of bias 

and other applicability concerns detailed below, results in very high level of uncertainty for 

test accuracy estimates related to individual technologies. 

• There is paucity of evidence on AI-assisted CT image analysis in relation to symptomatic and 

incidental populations. 

• Given all the issues highlighted above, the EAG has summarised and presented available 

evidence in a way that provides an overview of the potential impact of using an AI-derived 

software to support nodule detection and analysis compared to current practice (without AI 

assistance) rather than focusing on the performance of individual technologies, for which 

evidence is still immature for most of the technologies. Readers are reminded that such an 

overview does not imply that key conclusions drawn in this assessment are generalisable to 

all similar technologies. Rather our conclusions may serve as a tentative benchmark for 

individual technologies to demonstrate their performance by provide equal or better 

evidence, and as indicators for undertaking further research in many areas of major 

uncertainty. 

• Inconsistencies in numbers and results between the journal article by Murchison (2022)31 

and the clinical evaluation report by Aidence (2020)28 In the DAR results section, we have 

only reported the results by Murchison et al. (2022) as this publication was newer and 

published in a peer-reviewed journal. 

Applicability concerns, risk of bias and data inconsistency 

• This review focused on the identification of evidence which would allow the evaluation of 

the future integration of AI-based software into UK clinical practice (diagnostic or screening). 

The most applicable evidence to address this question comes from studies where the index 
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test is the AI software integrated into the diagnostic or screening pathway, as it would be 

used in clinical or screening practice. These studies need to report the change of the whole 

pathway when AI is added in concurrent mode. However, the review identified only one 

non-UK study in which AI software was used prospectively in screening practice.49 

•  Furthermore, the evidence from studies reporting the test accuracy of AI assistance in 

informing management decision (e.g. discharge, CT surveillance, diagnostic work-up) was 

scarce and heterogeneous. Most studies focussed on only a separate software function like 

nodule detection, nodule measurement or nodule type determination. 

• There were no prospective test accuracy studies of a consecutive cohorts in clinical practice. 

The majority of studies were small and used enriched datasets.  

• In addition to study location, most studies had additional applicability concerns regarding 

the target population: e.g. nodule- and or cancer-enriched, undertaken retrospectively in 

research settings (further discussed below), and slice thickness of CT scans. 

• Many studies evaluated AI algorithms as stand-alone systems rather than as an aid to 

radiologists - raising applicability concerns. 

• Reference standard for nodule detection was usually based on majority or consensus of two 

or more expert chest radiologists.84 

• Studies evaluating AI algorithms as reader aids mostly used enriched test set MRMC 

laboratory study designs. These studies used CT images retrospectively collected during 

routine screening or clinical practice and, under research conditions, requested readers to 

prospectively read the CT images unaided and AI aided. This results in the well-known 

laboratory effect, where readers under study conditions behave differently to how they 

would under routine clinical conditions.85 

• MRMC studies were mainly performed with US or Asian radiologists with different reading 

experience and speciality. Consequently, study results have limited applicability to the UK 

context. 

• Further methodological issues of the included studies include the focus on single centres 

studies, reporting per-nodule sensitivity and number of FP detections per image instead of 

per person-level sensitivity and specificity. 

• The applicability of the current evidence to the UK screening context is limited: Studies did 

not resemble the complete diagnostic pathway in the UK based on the 2015 BTS guidelines; 
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in contrast with clinical practice, readers in included studies usually had no access to 

relevant prior CT images. 

• Inconsistencies in numbers and results between the journal article by Murchison (2022)31 

and the clinical evaluation report by Aidence (2020)28 In the DAR results section, we have 

only reported the results by Murchison et al. (2022) as this publication was newer and 

published in a peer-reviewed journal. 

 

10.3 Uncertainties  

Uncertainties associated with high risk of bias and applicability concerns of available evidence: 

• All the issues related to risk of bias and applicability presented in Section 3.2 and highlighted 

above increase the uncertainty in the estimated test accuracy, clinical effectiveness and 

cost-effectiveness of the technologies being evaluated in this technology assessment.    

• Per person vs per nodule analyses: Data from per person analyses would better reflect 

clinical management related to lung nodules as many people would have more than one 

lung nodule. Although the BTS guideline recommends the management of lung nodule 

based on the one with the largest size (risk dominating nodule), in practice other nodules 

with sizes or features that are not safe to ignore may also be measured and analyses during 

the same reading session and be followed up during surveillance. Consequently, per person 

analysis of clinical management decision would reflect the real impact of AI assistance on 

clinical practice more closely. Nevertheless results from per person analyses or per nodule 

analysis based on the risk dominating nodule are infrequently presented, and in some cases 

we have to use data from per nodule analyses to inform our model. The impact of this is 

uncertain and is difficult to estimate using sensitivity analysis.  

 

Uncertainties associated with the long causal chain modelled using linked evidence approach 

• One of the main purported benefits for AI-assisted image analysis is the improved precision 

and accuracy in the measurement of nodule size (diameter) and volume, and by extension in 

the estimation of nodule growth. Evidence on the impact of AI assistance on these was 

reviewed and presented in Sections 3.3.3 (diameter measurement), 3.3.4 (volume 

measurement) and 3.4 (nodule growth monitoring) respectively. While there is good 

evidence on improved consistency in nodule measurement between different readers when 

assisted by AI, evidence on measurement accuracy (e.g. whether measurements assisted by 
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AI systematically over- or under-estimate the sizes/volumes of the nodules) is less clear. 

Furthermore, while separate evidence on measurement precision and accuracy was 

reported in some studies, evidence on their collective impact on nodule management is 

scant. In an attempt to capture the potential impact of AI assistance on measurement 

accuracy and precision, the EAG conducted a series of simulations and developed a nodule 

growth model to link these pieces of evidence to nodule management decisions to facilitate 

modelling of health and cost outcomes further downstream. However, the simulation 

exercise and nodule growth modelling themselves require several parameter inputs and 

assumptions, which also contribute to the overall uncertainties in cost-effectiveness 

estimates.  

 

Uncertainty associated with other methodological challenges 

• Difficulties in defining reference standard for nodule detection.84 

 

10.4 Other relevant factors  

AI has increasingly been applied to directly predict risk of malignancy of lung nodules, which could 

change future clinical management. This is outside the scope of this assessment but is an area of 

active research.  

Our cost-effectiveness analysis only considered use of AI in the detection and analysis of lung 

nodules, and its impact on clinical management and patient outcomes related to lung nodules and 

cancers. A number of AI software capable of detecting and analysing multiple health conditions in 

chest CT scans have been developed. Evaluating the use of these software, taking into account its 

impact related to multiple conditions is beyond the scope of this DAR. Such evaluation is likely to be 

highly complex and data- and resource-demanding, and may be an area warranting further research.   

We were aware that an economic model has been built to support the NSC’s assessment of cost-

effectiveness of a lung cancer screening programme in the UK. While the model allowed evaluation 

of the impact of timing and frequency of low-dose CT scans on cancer detection, it was not designed 

for assessing the impact of different strategies for nodule detection and analysis within and across 

individual CT scans, for which we have constructed the full de novo economic model for this 

technology assessment. Further rationale for developing our model and comparison with the NSC 

model can be found in Appendix 10 (section 13.10). 
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11 CONCLUSIONS  

AI-assisted detection and analysis of lung nodules has the potential to improve the sensitivity of 

nodule detection and to increase the consistency in nodule measurement compared with unaided 

reading. Current evidence suggests AI-assisted reading tends to reduce specificity and results in 

nodules being classified into higher risk categories based on current clinical guidelines although it 

may not always be the case. The reported performance of AI assisted reading varies substantially 

among published studies, possibly attributed to heterogeneous study population, reader experience, 

speciality and reading conditions, other study design features and risk of bias in addition to potential 

differences in the performance of individual technologies. 

No studies that directly compared the analysis of CT scan images assisted by technologies were 

found. Given the paucity of evidence, it is currently not possible to reliably establish the relative 

effectiveness and cost-effectiveness of strategies adopting different AI software to assist nodule 

detection and analysis. 

No direct evidence on the clinical effectiveness and cost-effectiveness of AI-assisted reading 

compared with unaided reading for chest CT image analysis related to pulmonary nodules was 

found. Evaluation of cost-effectiveness using linked evidence approach undertaken by the EAG was 

associated with very high levels of uncertainty arising from both paucity of evidence and 

methodological challenges in modelling the long causal chain between test accuracy and clinical and 

economic outcomes. Bearing these caveats in mind, EAG’s assessment suggested that for the 

symptomatic and incidental populations AI-assisted CT image analysis dominates the unaided 

radiologist reading for cost per correct detection of a person with an actionable nodule. However, 

when relevant costs and QALYs incurred throughout the full clinical pathway are taken into account 

AI-assisted CT reading is dominated by the unaided reader. This is driven by the costs and disutilities 

associated with false positive results and CT surveillance. In the screening population AI-assisted CT 

image analysis was cost effective in the base case and all sensitivity and scenario analysis. This was 

driven by a more favourable profile of model inputs, including estimates of improved test specificity 

for AI. Sensitivity and scenario analyses showed that the impact of AI assistance on radiologists’ 

reporting time, prevalence of lung nodules and disutility associated with CT surveillance are likely to 

be important factors in addition to accuracy in nodule detection in driving cost-effectiveness. 

 

11.1 Implications for service provision 

Current evidence concerning the use of AI software to assist radiologists’ detection and analysis of 

lung nodules that is directly applicable to the UK NHS is very limited, although this is an area of 
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active research and further evidence will become available in the coming years. Based on findings 

from our assessment, potential implications for service provision include:  

• The availability of evidence on test accuracy varies substantially between different 

technologies, and direct evidence on clinical and cost-effectiveness evidence is lacking. 

Potential adoption of these technologies will need to consider uncertainties associated with 

quality, quantitative and applicability of available evidence of individual technologies in 

addition to their functionality, relevant costs and costing structure. Undertaking further 

research to generate evidence may be needed to inform decisions on adoption of these 

technologies. 

• Furthermore, the practical impact of incorporating these technologies into clinical practice, 

such as their impact on radiologists’ reporting time may need to be evaluated through pilot 

testing.  

• Current evidence indicates a possibility of increased demand for CT surveillance with the 

adoption of AI-assisted image analysis. The potential impact on costs and service 

organisation needs to be carefully considered. 

• Most technologies undergo regular update, which may involve changes in AI-derived 

algorithm. Ongoing audit of potential impact of these updates on test accuracy and service 

provision may be desirable. 

 

 

11.2 Suggested research priorities 

Published studies have largely been conducted retrospectively in a research environment. The vast 

majority of studies identified in this DAR were judged to be of high risk of bias and have multiple 

applicability concerns for the UK settings. No prospective studies evaluating intermediate clinical 

process and downstream clinical outcomes were identified. Further prospective studies of use of 

software derived from AI algorithm to aid chest CT image analysis that adopts per-person analysis 

for estimating test accuracy, incorporates clinical process and outcome measures, and that are 

undertaken in clinical practice settings, are required. 

Additional areas of interest that may influence clinical practice include: 

• Does the accuracy of AI-assisted chest CT image analysis vary by specialty and experience of 

readers and reasons for chest CT scans? 
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• Does the accuracy of AI-assisted chest CT image analysis differ between symptomatic, 

incidental and screening populations? 

• What is the impact of using AI software to assist chest CT image analysis on radiologists’ 

reporting time in clinical practice? 

• More precise quantification of potential harm associated with CT surveillance, including 

potential disutility incurred associated with anxiety during surveillance and effect of 

exposure to radiation. 

• Comparison of accuracy for lung cancer detection based on unaided reading or AI-assisted 

reading and current clinical guidelines versus nodule management strategy based on cancer 

risk prediction informed by AI-derived algorithms.  

Further methodological research that may be required include: 

• Establishing and validating frameworks for linking test accuracy evidence to clinical and 

economic outcomes to facilitate evaluation of emerging and evolving AI software for chest 

CT scan analysis and other similar technologies.   

• Establishing and validating frameworks for evaluating the cost-effectiveness of AI software 

capable of analysing chest CT scans for multiple clinical indications (in addition to lung 

nodule detection and analysis).  

. 
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13 APPENDICES 

13.1 Appendix 1: Literature search strategies: systematic review of test accuracy and clinical 

effectiveness 

Search dates and number of records retrieved per source are reported below: 

Bibliographic databases and trials registers   

Database / register Date searched Number of records 

MEDLINE All 17/01/22 2,740 

Embase 17/01/22 3,495 

Cochrane Library (CENTRAL and Cochrane Database 
of Systematic reviews) 

17/01/22 131 (all from CENTRAL; 0 
results from CDSR) 

Science Citation Index and  
Conference Proceedings – Science (Web of Science) 

19/01/22 3,210 

HTA database (CRD) 19/01/22 1 

INAHTA HTA database 19/01/22 3 

medRxiv 19/01/22 7 

clinicaltrials.gov 19/01/22 17 

WHO ICTRP 19/01/22 22 

 
Total number of records retrieved: 9,626 
Duplicates removed (EndNote): 3,296 
Final number for screening: 6,330 
 

Other sources   

Source Date searched Documents retrieved 

National Institute for Health and Care Excellence 
(NICE) website 

24/01/22 3 

Canadian Agency for Drugs and Technologies in 
Health (CADTH) website 

24/01/22 7 

ISPOR conference presentations 25/01/22 0 

HTAi annual meetings 25/01/22 1 

SPIE proceedings 27/01/22 14 

IEEE Engineering in Medicine & Biology Society 
annual conference 

27/01/22 1 

European Congress of Radiology  31/01/22 47 

Radiological Society of North America annual 
meetings 

01/02/22 55 

FDA devices databases 14/02/22 5 

Device / manufacturer websites 15-16/02/22 15 documents, plus 1 link 
to video presentation 

Forwards citation tracking: Science Citation Index 
(Web of Science) and Google Scholar 

26/05/22 & 
30/05/22 

44 

 
Total: 192 
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Search strategies used: 

MEDLINE ALL 

Date searched: 17/01/22 

Ovid MEDLINE(R) ALL <1946 to January 14, 2022> 

 

1 exp artificial intelligence/ or exp machine learning/ or exp deep learning/ or exp supervised 

machine learning/ or exp support vector machine/ or exp unsupervised machine learning/

 134273 

2 ai.kf,tw.34062 

3 ((artificial or machine or deep) adj5 (intelligence or learning or reasoning)).kf,tw. 89902 

4 exp Neural Networks, Computer/ 42235 

5 (neural network* or convolutional or CNN or CNNs).kf,tw. 73835 

6 exp Diagnosis, Computer-Assisted/ 85513 

7 ((computer aided or computer assisted) adj1 (diagnosis or detection)).kf,tw. 6018 

8 (support vector machine* or random forest* or black box learning).kf,tw. 31141 

9 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 322906 

10 exp Lung Neoplasms/di, dg or Solitary Pulmonary Nodule/di, dg 56493 

11 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or 

tumour* or carcino* or malignan* or adenocarcinom* or blastoma*)).kf,tw. 274199 

12 ((pulmonary or lung) adj2 lesion*).kf,tw. 14782 

13 10 or 11 or 12 302352 

14 Tomography, X-Ray Computed/ or exp Tomography, Spiral Computed/ 418962 

15 (comput* adj2 tomograph*).kf,tw. 348023 

16 (CT or LDCT).kf,tw. 388825 

17 (CAT adj2 (scan* or x-ray* or xray*)).kf,tw. 1342 

18 Mass Screening/ 111594 

19 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 

screen*).kf,tw. 4813 

20 "Early Detection of Cancer"/ 31774 

21 14 or 15 or 16 or 17 or 18 or 19 or 20 893125 

22 9 and 13 and 21   2767 

23 (aview* lcs* or clearread* ct* or inferread* ct lung* or lung nodule ai* or veolity* or 

veye).kf,tw. 7 

24 ((ai rad companion* and chest) or contextflow* or search lung ct* or "jld 01k*" or qct lung* 

or sensecare* lung* or visia* ct* or vuno).kf,tw. 8 

25 (coreline* or riverain* or infervision* or fujifilm* or mevis* or aidence*).in,kf,tw.

 1381 

26 (siemens* healthineers* or contextflow* or jlk inc* or arterys* or qureai* or qure ai* or 

sensetime* or canon medical* or vuno*).in,kf,tw. 1407 

27 (25 or 26) and (10 or 11) 159 

28 22 or 23 or 24 or 27 2867 

29 exp animals/ not humans/ 4943529 

30 28 not 29 2851 

31 limit 30 to english language 2740 
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The artificial intelligence search terms (lines 1-4 & 6) are based on those used in:  

Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A et al. Use of artificial intelligence for 

image analysis in breast cancer screening programmes: systematic review of test accuracy BMJ 2021; 

374 :n1872 doi:10.1136/bmj.n1872 (see online supplementary appendix 1) 

 

Selected lung cancer/nodule search terms (lines 11-12) were informed by those used in: 

Duarte A, Corbett M, Melton H, Harden M, Palmer S, Soares M, Simmonds M. EarlyCDT Lung for  

lung cancer risk classification of solid pulmonary nodules: A Diagnostics Assessment Report. York  

EAG, 2021. Available from: https://www.nice.org.uk/guidance/indevelopment/gid-

dg10041/documents (accessed 9 November 2021) 

 

 

Embase 

Date searched: 17/01/22 

Embase <1974 to 2022 January 14> 

 

1 exp artificial intelligence/ or exp machine learning/ 304838 

2 ai.kf,tw.45921 

3 ((artificial or machine or deep) adj5 (intelligence or learning or reasoning)).kf,tw. 105922 

4 (neural network* or convolutional or CNN or CNNs).kf,tw. 89201 

5 computer assisted diagnosis/ 40877 

6 ((computer aided or computer assisted) adj1 (diagnosis or detection)).kf,tw. 8264 

7 (support vector machine* or random forest* or black box learning).kf,tw. 38837 

8 1 or 2 or 3 or 4 or 5 or 6 or 7 420312 

9 exp lung cancer/di or lung nodule/di 46922 

10 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or 

tumour* or carcino* or malignan* or adenocarcinom* or blastoma*)).kf,tw. 392765 

11 ((pulmonary or lung) adj2 lesion*).kf,tw. 21058 

12 9 or 10 or 11 420629 

13 computer assisted tomography/ or low-dose computed tomography/ or exp x-ray computed 

tomography/ or multidetector computed tomography/ or spiral computer assisted tomography/ or 

computed tomography scanner/ 931594 

14 (comput* adj2 tomograph*).kf,tw. 445065 

15 (CT or LDCT).kf,tw. 664348 

16 (CAT adj2 (scan* or x-ray* or xray*)).kf,tw. 2036 

17 mass screening/ or cancer screening/ 142872 

18 screening/ 184110 

19 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 

screen*).kf,tw. 7644 

20 early cancer diagnosis/ 9899 

21 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 1643282 

22 8 and 12 and 21 3370 

23 (aview* lcs* or clearread* ct* or inferread* ct lung* or lung nodule ai or veolity* or 

veye).dv,kf,tw. 11 

24 (qct lung* or vuno*).dv. 0 

25 ((ai rad companion* and chest) or contextflow* or search lung ct* or "jld 01k*" or 

sensecare* lung* or visia* ct*).dv,kf,tw. 4 
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26 (coreline* or riverain* or infervision* or fujifilm* or mevis* or aidence*).dm,in,kf,tw.

 5146 

27 (siemens* healthineers* or contextflow* or jlk inc* or arterys* or qureai* or qure ai* or 

sensetime* or canon medical* or vuno*).dm,in,kf,tw. 4797 

28 (26 or 27) and (9 or 10) 436 

29 22 or 23 or 24 or 25 or 28 3692 

30 (exp animal/ or exp animal experiment/) not (exp human/ or exp human experiment/ or 

conference abstract.pt.) 4770834 

31 29 not 30 3673 

32 limit 31 to english language 3495 

 

 

Cochrane Library   (via www.cochranelibrary.com) 

Date searched: 17/01/22 

Cochrane Central Register of Controlled Trials, Issue 12 of 12, December 2021 

Cochrane Database of Systematic Reviews, Issue 1 of 12, January 2022  

 

ID Search  Hits 

#1 [mh "artificial intelligence"] OR [mh "machine learning"] OR [mh "deep learning"] OR [mh 

"supervised machine learning"] OR [mh "support vector machine"] OR [mh "unsupervised machine 

learning"] 1261 

#2 ai:ti,ab,kw 4506 

#3 ((artificial OR machine OR deep) NEAR/5 (intelligence OR learning OR reasoning)):ti,ab,kw

 2857 

#4 [mh "Neural Networks, Computer"] 148 

#5 ((neural NEXT network*) OR convolutional OR CNN OR CNNs):ti,ab,kw 1479 

#6 [mh "Diagnosis, Computer-Assisted"] 1931 

#7 (("computer aided" OR "computer assisted") NEAR/1 (diagnosis OR detection)):ti,ab,kw

 1001 

#8 (("support vector" NEXT machine*) OR (random NEXT forest*) OR "black box 

learning"):ti,ab,kw 776 

#9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 10964 

#10 [mh "Lung Neoplasms"/DI,DG] OR [mh ^"Solitary Pulmonary Nodule"/DI,DG] 653 

#11 ((lung OR lungs OR pulmon* OR bronchial) NEAR/3 (nodul* OR cancer* OR neoplas* OR 

tumor* OR tumour* OR carcino* OR malignan* OR adenocarcinom* OR blastoma*)):ti,ab,kw

 25143 

#12 ((pulmonary OR lung) NEAR/2 lesion*):ti,ab,kw 533 

#13 #10 OR #11 OR #12 25426 

#14 [mh ^"Tomography, X-Ray Computed"] OR [mh "Tomography, Spiral Computed"]

 4555 

#15 (comput* NEAR/2 tomograph*):ti,ab,kw 20680 

#16 (CT OR LDCT):ti,ab,kw 81013 

#17 (CAT NEAR/2 (scan* OR x-ray* OR xray*)):ti,ab,kw 34 

#18 [mh ^"Mass Screening"] 3339 

#19 ((lung OR lungs OR pulmon*) NEAR/3 (nodule* OR cancer* OR tumor* OR tumour*) NEAR/3 

screen*):ti,ab,kw 758 

#20 [mh ^"Early Detection of Cancer"] 1384 

#21 #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 96454 
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#22 #9 AND #13 AND #21 125 

#23 ((aview* NEXT lcs*) OR (clearread* NEXT ct*) OR (inferread* NEXT "ct" NEXT lung*) OR 

("lung nodule" NEXT ai*) OR veolity* OR veye) 2 

#24 (("ai rad" NEXT companion*) AND chest) OR contextflow* OR ("search lung" NEXT ct*) OR 

(jld NEXT 01k*) OR (qct NEXT lung*) OR (sensecare* NEXT lung*) OR (visia* NEXT ct*) OR vuno* 2 

#25 coreline* OR riverain* OR infervision* OR fujifilm* OR mevis* OR aidence* 152 

#26 (siemens* NEXT healthineers*) OR contextflow* OR (jlk NEXT inc*) OR arterys* OR qureai* 

OR (qure NEXT ai*) OR sensetime* OR (canon NEXT medical*) OR vuno* 57 

#27 (#25 OR #26) AND (#10 OR #11) 6 

#28 #22 OR #23 OR #24 OR #27 in Cochrane Reviews, Trials 131 

 

The Ovid Medline search strategy was translated for use in the Cochrane Library and Web of Science 

with the aid of the Polyglot Search Translator:  

Clark JM, Sanders S, Carter M, Honeyman D, Cleo G, Auld Y, et al. Improving the translation of search 

strategies using the Polyglot Search Translator: a randomized controlled trial. J Med Libr Assoc 

2020;108(2):195-207. http://dx.doi.org/10.5195/jmla.2020.834  

 

 

Science Citation Index and Conference Proceedings - Science (via Web of Science) 

Date searched: 19/01/2022 

SCI-EXPANDED: 1970-present 

CPCI-S: 1990-present 

 

23 (((#17) OR #18) OR #19) OR #22 and English (Languages)  3,210 

22 (#20 OR #21) AND #7 AND #16 216 

21 ((((TS=("siemens* healthineers*" OR contextflow* OR "jlk inc*" OR arterys* OR qureai* OR 

"qure ai*" OR sensetime* OR "canon medical*" OR vuno*)) OR OG=("siemens* healthineers*" OR 

contextflow* OR "jlk inc*" OR arterys* OR qureai* OR "qure ai*" OR sensetime* OR "canon 

medical*" OR vuno*)) OR AD=("siemens* healthineers*" OR contextflow* OR "jlk inc*" OR arterys* 

OR qureai* OR "qure ai*" OR sensetime* OR "canon medical*" OR vuno*)) OR FO=("siemens* 

healthineers*" OR contextflow* OR "jlk inc*" OR arterys* OR qureai* OR "qure ai*" OR sensetime* 

OR "canon medical*" OR vuno*)) 2,633 

20 ((((TS=(coreline* OR riverain* OR infervision* OR fujifilm* OR mevis* OR aidence*)) OR 

OG=(coreline* OR riverain* OR infervision* OR fujifilm* OR mevis* OR aidence*)) OR AD=(coreline* 

OR riverain* OR infervision* OR fujifilm* OR mevis* OR aidence*)) OR FO=(coreline* OR riverain* OR 

infervision* OR fujifilm* OR mevis* OR aidence*)) 3,964 

19 TS=(("ai rad companion*" AND chest) OR contextflow* OR "search lung ct*" OR "jld 01k*" 

OR "qct lung*" OR "sensecare* lung*" OR "visia* ct*" OR vuno)  8 

18 TS=("aview* lcs*" OR "clearread* ct*" OR "inferread* ct lung*" OR "lung nodule ai*" OR 

veolity* OR veye) 5 

17 ((#6) AND #9) AND #16  3,085 

16 #10 or #11 or #12 or #13 or #14 or #15 655,436 

15 TS=("Early Detection of Cancer") 2,106 

14 TS=((lung OR lungs OR pulmon*) NEAR/3 (nodule* OR cancer* OR tumor* OR tumour*) 

NEAR/3 screen*) 6,299 

13 TS=("Mass Screening") 5,559 

12 TS=(CAT NEAR/2 (scan* OR x-ray* OR xray*)) 1,067 

http://dx.doi.org/10.5195/jmla.2020.834
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11 TS=(CT OR LDCT) 455,518 

10 TS=(comput* NEAR/2 tomograph*) 361,422 

9 #7 OR #8 380,001 

8 TS=((pulmonary OR lung) NEAR/2 lesion*) 14,221 

7 TS=((lung OR lungs OR pulmon* OR bronchial) NEAR/3 (nodul* OR cancer* OR neoplas* OR 

tumor* OR tumour* OR carcino* OR malignan* OR adenocarcinom* OR blastoma*)) 370,649 

6 #1 OR #2 OR #3 OR #4 OR #5 901,467 

5 TS=("support vector machine*" OR "random forest*" OR "black box learning") 133,456 

4 TS=(("computer aided" OR "computer assisted") NEAR/2 (diagnosis OR detection))

 16,891 

3 TS=("neural network*" OR convolutional OR CNN OR CNNs) 501,511 

2 TS=((artificial OR machine OR deep) NEAR/5 (intelligence OR learning OR reasoning))

 395,814 

1 TS=(ai)  75,151 

 

The Ovid Medline search strategy was translated for use in the Cochrane Library and Web of Science 

with the aid of the Polyglot Search Translator:  

Clark JM, Sanders S, Carter M, Honeyman D, Cleo G, Auld Y, et al. Improving the translation of search 

strategies using the Polyglot Search Translator: a randomized controlled trial. J Med Libr Assoc 

2020;108(2):195-207. http://dx.doi.org/10.5195/jmla.2020.834  

 

 

HTA Database (via CRD  https://www.crd.york.ac.uk/CRDWeb/) 

Date searched: 19/01/22 

 

1 MeSH DESCRIPTOR Artificial Intelligence EXPLODE ALL TREES 290  

2 (ai) 202 

3 ((artificial OR machine OR deep) ADJ5 (intelligence OR learning OR reasoning)) 8 

4 (neural network* OR convolutional OR CNN OR CNNs) 12 

5 MeSH DESCRIPTOR Diagnosis, Computer-Assisted EXPLODE ALL TREES 108  

6 ((computer aided OR computer assisted) ADJ1 (diagnosis OR detection)) 34  

7 (support vector machine* OR random forest* OR black box learning) 0 

8 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7) IN HTA 148 

9 ((lung* or pulmon*) ADJ3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* 

or malignan* or adenocarcinom*)) 1444 

10 MeSH DESCRIPTOR Lung Neoplasms EXPLODE ALL TREES 1151 

11 MeSH DESCRIPTOR Solitary Pulmonary Nodule EXPLODE ALL TREES 27 

12 (#9 OR #10 OR #11) IN HTA 341 

13 MeSH DESCRIPTOR Tomography, X-Ray Computed 896 

14 MeSH DESCRIPTOR Tomography, Spiral Computed EXPLODE ALL TREES 75 

15 (comput* ADJ2 tomograph*) 1395 

16 (CT OR LDCT) 1231 

17 (CAT ADJ2 (scan* OR x-ray* OR xray*)) 6 

18 MeSH DESCRIPTOR Mass Screening 2103 

19 ((lung OR lungs OR pulmon*) ADJ3 (nodule* OR cancer* OR tumor* OR tumour*) ADJ3 

screen*) 42 

20 MeSH DESCRIPTOR Early Detection of Cancer EXPLODE ALL TREES 277 

http://dx.doi.org/10.5195/jmla.2020.834
https://www.crd.york.ac.uk/CRDWeb/
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21 (#13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20) IN HTA 953 

22 #8 AND #12 AND #21 1 

 

 

International HTA database (via INAHTA https://database.inahta.org/ ) 

Date searched: 19/01/22 

 

21 #20 AND #14 AND #8 3 

20 #19 OR #16 OR #15 417  

19 #18 AND #17 383  

18 nodul* OR cancer* OR neoplas* OR tumor* OR tumour* OR carcino* OR malignan* OR 

adenocarcinom* 3216 

17 lung* OR pulmon* 866 

16 "Lung Neoplasms"[mhe] 318 

15 "Solitary Pulmonary Nodule"[mh] 6 

14 #13 OR #12 OR #11 OR #10 OR #9 2443  

13 tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET 813  

12 screening 1234  

11 "Diagnostic Imaging"[mhe] 1127  

10 "Mass Screening"[mhe]  758  

9 "Early Detection of Cancer"[mh]  71  

8 #7 OR #6 OR #5 OR #4 OR #3 OR #2 OR #1 189  

7 "Artificial Intelligence"[mhe] 85  

6 "Diagnosis, Computer-Assisted"[mhe] 64  

5 "Neural Networks, Computer"[mhe] 0  

4 "artificial intelligence" OR "machine learning" OR "deep learning" OR "deep reasoning" OR 

"machine reasoning" 9  

3 "neural network" OR "neural networks" OR convolutional OR CNN OR CNNs 5 

2 "computer aided" OR "computer assisted" 65  

1 "support vector machine*" OR "random forest*" OR "black box learning" 0 

 

 

medRxiv  (via medrxivr   https://mcguinlu.shinyapps.io/medrxivr/ ) 

Date searched: 19/1/22 

 

Advanced search screen: 

 

Topic 1: 

[Aa]rtificial [Ii]ntelligence 

[Mm]achine [Ll]earning 

[Dd]eep [Ll]earning 

[Ss]upport [Vv]ector [Mm]achine 

\\b[Aa][Ii]\\b 

[Nn]eural [Nn]etwork 

[Cc]onvolutional 

[Rr]andom [Ff]orest 

[Bb]lack [Bb]ox [Ll]earning 

[Cc]omputer [Aa]ided [Dd]iagnosis 

https://database.inahta.org/
https://mcguinlu.shinyapps.io/medrxivr/
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[Cc]omputer [Aa]ssisted [Dd]iagnosis 

[Cc]omputer [Aa]ided [Dd]etection 

[Cc]omputer [Aa]ssisted [Dd]etection 

\\bCNN\\b 

\\bCNNs\\b 

[Dd]eep [Rr]easoning 

[Mm]achine [Rr]easoning 

 

Topic 2: 

[Ll]ung 

[Pp]ulmon 

 

Topic 3: 

[Nn]eoplas 

[Cc]ancer 

[Nn]odul 

[Tt]umor 

[Tt]umour 

[Cc]arcinoma 

[Aa]denocarcinoma 

 

Topic 4: 

[Cc]omputed [Tt]omograph 

\\bCT\\b 

\\bLDCT\\b 

screening 

 

Earliest record date:  

2016-07-01 

 

Latest record date:  

2022-01-19 

 

Remove older versions of the same record 

 

 

clinicaltrials.gov 

Date searched: 19/01/22 

 

Home screen search: https://clinicaltrials.gov/ct2/home  

 

3 Studies found for: "aview lcs" OR "aview lcs+" OR "clearread ct" OR "inferread ct lung" OR 

"inferread lung" OR "lung nodule ai" OR veolity OR veye  [Other terms] 

 

10 Studies found for: coreline* OR riverain OR infervision OR fujifilm OR aidoc OR mevis OR aidence 

['Other terms']| lung OR pulmonary [Condition or disease]      (of which 3 studies already found 

above) 

 

https://clinicaltrials.gov/ct2/home
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2 Studies found for: "ai rad companion" OR contextflow OR "search lung ct" OR "jld 01k" OR "lung ai" 

OR "qct lung" OR sensecare OR vuno  [Other terms] 

 

5 Studies found for: "siemens healthineers" OR jlk OR qureai OR "qure ai" OR sensetime [Other 

terms]| lung OR pulmonary [Condition or disease] 

 

Total: 17 unique results 

 

 

WHO International Clinical Trials Registry Platform (ICTRP) search portal    

Date searched: 19/01/22 

 

Home screen search: https://trialsearch.who.int/Default.aspx  

 

7 records for 7 trials found for: aview lcs* OR clearread ct OR inferread ct lung OR inferread lung OR 

lung nodule ai OR veolity OR veye 

 

9 records for 9 trials found for: (coreline* OR riverain OR infervision OR fujifilm OR aidoc OR mevis 

OR aidence) AND (lung OR pulmonary) 

 

9 records for 8 trials found for: ai rad companion OR contextflow OR search lung ct OR jld 01k OR qct 

lung OR sensecare OR vuno 

 

No results were found for: (siemens healthineers OR jlk OR qureai OR qure ai OR sensetime OR 

arterys) AND (lung OR pulmonary) 

 

Advanced search screen: https://trialsearch.who.int/AdvSearch.aspx  

 

1 records for 1 trials found for: lung ai [in the intervention]  

without synonyms selected; recruitment status is ALL 

 

Total number of trials after 3 duplicates removed (using EndNote): 22 

 

 

NICE website    https://www.nice.org.uk/  

 

Date searched: 24/01/22  

 

Browsed: NICE Guidance > Conditions and diseases > Cancer > Lung cancer: 

https://www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer 

found 76 published products, of which 3 downloaded/of potential interest 

 

Searched published guidance: https://www.nice.org.uk/guidance/published?sp=on 

Filters (Guidance programme): Technology appraisal guidance, NICE guidelines, Clinical guidelines, 

Medical technologies guidance, Diagnostics guidance, Highly specialised technologies guidance,  

Cancer service guidelines. 

 

lung cancer       51 results, of which 1 potentially relevant, already identified above 

https://trialsearch.who.int/Default.aspx
https://trialsearch.who.int/AdvSearch.aspx
https://www.nice.org.uk/
https://www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer
https://www.nice.org.uk/guidance/published?sp=on
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nodule  3 results, of which 1 potentially relevant, already identified above 

 

Searched published guidance: https://www.nice.org.uk/guidance/published?sp=on 

No filters. 

 

artificial intelligence 3 results, of which 1 potentially relevant, already identified above 

machine learning  0 results 

deep learning   0 results 

ai   1 result, of which 0 relevant 

neural network  0 results 

 

Browsed guidance In consultation: https://www.nice.org.uk/guidance/inconsultation 

12 results, 0 relevant to lung cancer/pulmonary nodules or artificial intelligence 

 

Total unique results downloaded: 3 

 

 

Canadian Agency for Drugs and Technologies in Health (CADTH) website    https://www.cadth.ca/ 

Date searched: 24/01/22 

Search screen: https://www.cadth.ca/search , results limited to Reports tab. 

Search terms: 

lung cancer [contains all words]  74 results; 8 potentially relevant, of which 1 already 

identified via bibliographic database searches  

nodules nodule [contains any words] 9 results; 5 potentially relevant, all 5 already identified 

above 

artificial intelligence [contains all words] 31 results; 3 potentially relevant, all 3 already 

identified above 

machine learning [contains all words] 17 results; 2 potentially relevant, both already identified 

above 

deep learning [contains all words] 11 results; 2 potentially relevant, both already identified 

above 

ai 20 results; 2 potentially relevant, both already identified above 

neural networks [contains all words] 5 results; 1 potentially relevant, already identified above 

Total unique results downloaded: 7 

 

ISPOR presentations database     https://www.ispor.org/heor-resources/presentations-

database/search  

Date searched: 25/01/22 

https://www.nice.org.uk/guidance/published?sp=on
https://www.nice.org.uk/guidance/inconsultation
https://www.cadth.ca/
https://www.cadth.ca/search
https://www.ispor.org/heor-resources/presentations-database/search
https://www.ispor.org/heor-resources/presentations-database/search
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As there was no option to export results in bulk, titles and, where necessary abstracts, were scanned 

for potential relevance and only those potentially relevant to AI technologies and CT imaging and 

lung cancer/pulmonary nodules were retrieved (where not already identified by previous searches).  

 

search hits documents retrieved 

lung cancer AND (tomograph* OR CT OR LDCT OR 
screening) 

70 0 (1 potentially relevant 
already identified via database 
searches) 

pulmonary nodule* AND (tomograph* OR CT OR 
LDCT OR screening) 

3 0 

lung nodule* AND (tomograph* OR CT OR LDCT OR 
screening) 

4 0 

lung AND ("artificial intelligence" OR "machine 
learning" OR "deep learning" OR ai OR "neural 
networks" OR "neural network") 

15 0 

pulmonary AND ("artificial intelligence" OR "machine 
learning" OR "deep learning" OR ai OR "neural 
networks" OR "neural network") 

7 0 

Total documents retrieved: 0 

 

 

Health Technology Assessment International (HTAi) Annual Meetings     https://htai.org/annual-

meetings/  

 

Date searched: 25/01/22 

 

HTAi 2021 Virtual (Manchester). Full program available at:  

https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf   

Searched (Ctrl + F) for: 

lung 

pulmon 

chest 

thora  

artificial int 

learning 

neural  nothing relevant found 

 

HTAi 2020 Beijing (virtual). Poster abstracts and Oral abstracts available from: 

https://htai.eventsair.com/htaibeijing2020  

Scanned titles in poster and abstract e-books (no search function available); 1 potentially relevant 

(oral abstract) 

 

HTAi 2019 Cologne. Abstract book available at:   

https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf  

Searched (Ctrl + F) for: 

lung   

pulmon   

chest   

https://htai.org/annual-meetings/
https://htai.org/annual-meetings/
https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf
https://htai.eventsair.com/htaibeijing2020
https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf
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thora  

artificial int 

learning 

neural  nothing relevant found   

 

Total documents retrieved: 1 

 

 

SPIE Proceedings (via SPIE Digital Library  https://www.spiedigitallibrary.org/ ) 

 

Date searched: 26/01/22 

Advanced search screen; search in: Proceedings 

 

 ("lung cancer" OR "pulmonary nodule") AND ("artificial intelligence" OR "machine learning" OR 

"deep learning" OR "neural network") AND (screening OR tomography OR CT OR LDCT) 

Refine by: Year 2012-2022  

 

285 results; of which 14 potentially relevant and not already identified via the bibliographic database 

searches 

 

 

Annual International Conference of the IEEE Engineering in Medicine & Biology Society (via IEEE 

Xplore) 

 

Date searched: 27/01/22 

Command search screen: https://ieeexplore.ieee.org/search/advanced/command 

 

"Parent Publication Number":1000269 AND ((lung OR pulmonary) NEAR/3 (nodule OR cancer OR 

neoplas* OR tumor OR tumour OR carcinoma OR malignan* OR adenocarcinoma)) AND (ai OR 

((artificial OR machine OR deep) NEAR/5 (intelligence OR learning OR reasoning)) OR "neural 

network" OR "neural networks" OR convolutional OR CNN OR CNNs OR (("computer aided" OR 

"computer assisted") NEAR/1 (diagnosis OR detection)) OR "support vector machine*" OR "random 

forest*" OR "black box learning") AND (tomograph* OR CT OR LDCT OR screening)  

 

14 results; of which 13 already identified via the bibliographic database searches 

1 paper downloaded 

 

 

European Congress of Radiology (via European Society of Radiology website 

https://www.myesr.org/congress/about-ecr/past-congresses) 

 

Date searched: 31/1/22 

 

ECR 2021. Abstract book available at: 

https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-021-01014-5.pdf  

ECR 2020. Abstract book available at: 

https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-020-00851-0.pdf  

https://www.spiedigitallibrary.org/
https://ieeexplore.ieee.org/search/advanced/command
https://www.myesr.org/congress/about-ecr/past-congresses
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-021-01014-5.pdf
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-020-00851-0.pdf
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ECR 2019. Abstract book available at: 

https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-019-0713-y.pdf  

ECR 2018. Abstract book available at: https://link.springer.com/article/10.1007/s13244-018-0603-8  

ECR 2017. Abstract book available at: 

https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-017-0546-5.pdf  

ECR 2016. Abstract book B - Scientific Sessions and Clinical Trials in Radiology, available at: 

https://link.springer.com/content/pdf/10.1007/s13244-016-0475-8.pdf  

ECR 2015. Abstract book B - Scientific Sessions and Late-Breaking Clinical Trials, available at: 

https://link.springer.com/content/pdf/10.1007/s13244-015-0387-z.pdf  

ECR 2014. Abstract book B - Scientific Sessions, available at: 

https://link.springer.com/content/pdf/10.1007/s13244-014-0317-5.pdf  

 

Searched (Ctrl + F) for: 

lung ca 

lung nod 

pulmonary nod 

artificial int 

machine learning 

deep learning 

neural net  

 

Number of abstracts downloaded (potentially relevant to AI + CT/screening + lung cancer/nodules; 

obvious phantom studies, prediction models and PET-CT excluded):  

2021: 5  

2020: 17 

2019: 19 

2018: 4 

2017: 2 

2016: 1 

2015: 3 

2014: 1 

Total: 47   (0 already identified via other searches) 

 

 

Radiological Society of North America annual meetings (via RSNA website: 

https://www.rsna.org/annual-meeting/future-and-past-meetings ) 

 

Date searched: 01/02/22 

 

RSNA 2020 meeting program available at: https://www.rsna.org/-/media/Files/RSNA/Annual-

meeting/Program/RSNA-2020-program.ashx  

posters: unable to access posters without an RSNA members' login 

 

RSNA 2019  

scientific sessions available at: https://archive.rsna.org/2019/ScienceSessions.pdf   

posters: a list of titles is available, but no abstracts/further details accessible without an RSNA 

members' login 

 

https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-019-0713-y.pdf
https://link.springer.com/article/10.1007/s13244-018-0603-8
https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-017-0546-5.pdf
https://link.springer.com/content/pdf/10.1007/s13244-016-0475-8.pdf
https://link.springer.com/content/pdf/10.1007/s13244-015-0387-z.pdf
https://link.springer.com/content/pdf/10.1007/s13244-014-0317-5.pdf
https://www.rsna.org/annual-meeting/future-and-past-meetings
https://www.rsna.org/-/media/Files/RSNA/Annual-meeting/Program/RSNA-2020-program.ashx
https://www.rsna.org/-/media/Files/RSNA/Annual-meeting/Program/RSNA-2020-program.ashx
https://archive.rsna.org/2019/ScienceSessions.pdf
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RSNA 2018: 

scientific sessions available at: https://archive.rsna.org/2018/ScienceSessions.pdf  

posters and exhibits available at: https://archive.rsna.org/2018/PostersandExhibits.pdf  

 

RSNA 2016 meeting program available at:  

scientific sessions available at: https://archive.rsna.org/2016/ScienceSessions.pdf  

posters and exhibits available at: https://archive.rsna.org/2016/PostersandExhibits.pdf  

 

Searched (Ctrl + F) within documents for: 

lung ca 

lung nod 

pulmonary nod 

artificial int 

machine learning 

neural net  

deep learning [except in 2019 & 2018 Scientific Sessions, where there were too many (200+) results 

to scan] 

 

RSNA 2017: 

No PDF documents available.  

Meeting program available at: http://rsna2017.rsna.org/program/index.cfm  

Searched for:  

 

lung cancer 

pulmonary nodule 

pulmonary nodules 

lung nodule 

lung nodules 

artificial intelligence 

machine learning 

 

Number of abstracts downloaded (potentially relevant to AI + CT/screening + lung cancer/nodules; 

obvious phantom studies, prediction models and PET-CT excluded):  

2020: 2 

2019: 17 

2018: 17 

2017: 14 

2016: 5 

Total: 55 

 

 

U.S. Food & Drug Administration (FDA) Premarket Notification, Premarket Approval & De novo 

databases (via FDA website)    

Date searched: 14/02/22 

Search interfaces: 

• Premarket Approval (PMA) database, 'Device' field 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm  

https://archive.rsna.org/2018/ScienceSessions.pdf
https://archive.rsna.org/2018/PostersandExhibits.pdf
https://archive.rsna.org/2016/ScienceSessions.pdf
https://archive.rsna.org/2016/PostersandExhibits.pdf
http://rsna2017.rsna.org/program/index.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm
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• 510(k) Premarket Notification database, 'Device Name' field 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm  

• Device Classification Under Section 513(f)(2)(De Novo) database, ‘device name’ field  

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm  

 

Search terms PMA 
database 
results 

510(k) 
database 
results 

De novo 
database 
results 
 

Documents 
downloaded (judged to 

contain potentially 
useful/relevant 
information not already 
identified in previous sets) 

ai rad 
companion 

0 7 0 1 

aview lcs 0 1 0 1 

clearread 1 2 0 1 

contextflow 0 0 0  

search lung 0 0 0  

inferread 0 2 0 1 

jld-01k 0 0 0  

lung AI 0 3 0  

lung nodule  0 4 0  

qct lung 0 1 0  

search lung 0 0 0  

sensecare 0 0 0  

veolity 0 1 0 1 

veye 0 0 0  

vuno 0 0 0  

Total: 5 

 

Websites relating to the technologies of interest/their manufacturers 

Dates searched: 15-16/02/22 

 

AI-Rad Companion Chest CT / Siemens Healthineers  

https://www.siemens-healthineers.com/  searched for 'AI-Rad Companion'.  

Downloaded 1 'White paper' and checked its references (all potentially relevant references already 

identified via database searches). 

 

AVIEW LCS+ / Coreline Soft. Browsed: 

https://www.corelinesoft.com/aview-lcs-2/aview-lcs-plus/  

https://www.corelinesoft.com/aview-lcs-2/  

https://www.corelinesoft.com/newsroom-eng/  

0 documents to download 

 

ClearRead CT / Riverain Technologies 

https://www.riveraintech.com/clearread-ai-solutions/clearread-ct/  1 reference on page, already 

identified via database searches 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm
https://www.siemens-healthineers.com/
https://www.corelinesoft.com/aview-lcs-2/aview-lcs-plus/
https://www.corelinesoft.com/aview-lcs-2/
https://www.corelinesoft.com/newsroom-eng/
https://www.riveraintech.com/clearread-ai-solutions/clearread-ct/
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https://www.riveraintech.com/resources/clinical-evidence/#clearread-ct-studies  links to 5 papers, 

of which 1 not already found via database searches; 1 downloaded (Van Leeuwen 2021) 

 

SEARCH Lung CT / contextflow 

https://contextflow.com/solution/search-for-3d-medical-imaging/ 0 to download 

https://contextflow.com/startup-news/  1 press release mentions not-yet-published study and 1 

video presentation about the same study. 

 

InferRead CT Lung / Infervision. Browsed: 

https://global.infervision.com/product/19/  

https://global.infervision.com/news/5/  

https://global.infervision.com/news/6/  

0 documents to download 

 

JLD-01K / JLK Inc 

https://www.jlkgroup.com/en/medihub.html   0 documents to download 

 

Lung AI / Arterys 

https://www.arterys.com/clinicalapp/lungapp - references 'Arterys Lung AI Nodule Detection study - 

University of California, San Diego' – unable to find this via Google search 

https://www.arterys.com/clinical-evidence - nothing on Lung AI; 0 documents to download 

 

ung Nodule AI / Fujifilm. Browsed:   

https://www.fujifilm.com/uk/en/healthcare/healthcare-it  

https://synapse.fujifilm.eu/ai-lab/#(grid|filter)=.radiology;  

0 documents to download 

 

qCT-Lung / Qure.ai. Browsed:  

https://qure.ai/product/qct-lung/ 

https://qure.ai/evidences/ 

0 documents to download  

 

SenseCare-Lung Pro / Sensetime. Browsed: 

https://www.sensetime.com/en/product-detail?categoryId=32629  

https://www.sensetime.com/en/news-index  

0 documents to download 

 

MeVis / Veolity. Browsed 

https://www.veolity.com/  

https://www.veolity.com/news-events  

0 documents to download  

 

Aidence / Veye Lung Nodules 

https://www.aidence.com/veye-lung-nodules/  

https://www.aidence.com/development-clinical-validation/  2 conference posters and 1 

unpublished manuscript downloaded 

https://www.riveraintech.com/resources/clinical-evidence/#clearread-ct-studies
https://contextflow.com/solution/search-for-3d-medical-imaging/
https://contextflow.com/startup-news/
https://global.infervision.com/product/19/
https://global.infervision.com/news/5/
https://global.infervision.com/news/6/
https://www.jlkgroup.com/en/medihub.html
https://www.arterys.com/clinicalapp/lungapp
https://www.arterys.com/clinical-evidence
https://www.fujifilm.com/uk/en/healthcare/healthcare-it
https://synapse.fujifilm.eu/ai-lab/#(grid|filter)=.radiology
https://qure.ai/product/qct-lung/
https://qure.ai/evidences/
https://www.sensetime.com/en/product-detail?categoryId=32629
https://www.sensetime.com/en/news-index
https://www.veolity.com/
https://www.veolity.com/news-events
https://www.aidence.com/veye-lung-nodules/
https://www.aidence.com/development-clinical-validation/
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https://www.aidence.com/clinical-research/ 5 articles/reports, of which 1 CQC report not identified 

via previous searches; 1 document downloaded 

https://www.aidence.com/resources/  

https://www.aidence.com/articles/  6 articles downloaded (including 3 from an external site, 2 of 

which are in Dutch) 

 

VUNO Med-LungCT AI / VUNO 

https://www.vuno.co/en/lung  

https://www.vuno.co/en/publication/lists/medical_image  10 articles/abstracts of potential interest, 

of which 2 RSNA abstracts not already identified via other searches; 2 downloaded 

 

 

Forwards citation 
tracking:Paper       EN ID 

Web of Science*, 
searched 26/05/22 

Google Scholar, 
searched 30/05/22 

Abadia 2021 54 0 citations  

Cohen 2016 28 citations  

Cohen 2017 12 citations  

Hsu 2021 3060 3 citations  

Hwang 2021 491 0 citations  

Hwang 2021 662 4 citations  

Hwang 2021 671 5 citations  

Jacobs 2021 393 Not found 1 citation 

Kim 2018 1197 14 citations  

Kozuka 2020 683 6 citations  

Martins Jarnalo 2021
 345 

2 citations  

Milanese 2018 1158 12 citations  

Park 2022 503 2 citations  

Park 2022 57 0 citations  

Singh 2021 255 4 citations  

Takaishi 2021 607 0 citations  

Wan 2020 3913 4 citations  

Zhang 2021 56 0 citations  

Total:  96 1 

 

53 duplicates removed (both within set of 96, and against previous clinical systematic review search 

results) using EndNote 20.  

Total for screening: 44 

* Science Citation Index Expanded 1970-present, Social Sciences Citation Index 1900-present, Arts & 

Humanities Citation Index 1975-present, Conference Proceedings Citation Index – Science, 1990-

present, Conference Proceedings Citation Index – Social Science & Humanities 1990-present, 

Emerging Sources Citation Index 2015-present.  

https://www.aidence.com/clinical-research/
https://www.aidence.com/resources/
https://www.aidence.com/articles/
https://www.vuno.co/en/lung
https://www.vuno.co/en/publication/lists/medical_image
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13.2 Appendix 2: Table of excluded studies with rationale  

 

Table 64. Publications excluded after review of full-text articles – Electronic database searches (n=150) 

Reference Main reason for exclusion 

Excluded on population: >10% oncologic patients (n=10) 
1. Ahn Y, Lee SM, Noh HN, et al. Use of a Commercially Available Deep Learning Algorithm to Measure the Solid Portions of 

Lung Cancer Manifesting as Subsolid Lesions at CT: Comparisons with Radiologists and Invasive Component Size at 
Pathologic Examination. Radiology 2021;299(1):202-10. doi: https://dx.doi.org/10.1148/radiol.2021202803 

>10% oncologic patients 

2. Martini K, Bluthgen C, Eberhard M, et al. Impact of Vessel Suppressed-CT on Diagnostic Accuracy in Detection of Pulmonary 
Metastasis and Reading Time. Acad Radiol 2021;28(7):988-94. doi: https://dx.doi.org/10.1016/j.acra.2020.01.014 

>10% oncologic patients 

3. Meybaum C, Graff M, Fallenberg EM, et al. Contribution of CAD to the Sensitivity for Detecting Lung Metastases on Thin-
Section CT - A Prospective Study with Surgical and Histopathological Correlation. ROFO Fortschr Geb Rontgenstr Nuklearmed 
2020;192(1):65-73. doi: https://dx.doi.org/10.1055/a-0977-3453 

>10% oncologic patients 

4. Park S, Lee SM, Kim W, et al. Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep 
Learning-based CT Section Thickness Reduction. Radiology 2021;299(1):211-19. doi: 
https://dx.doi.org/10.1148/radiol.2021203387 

>10% oncologic patients 

5. Shaffer K. Deep Learning and Lung Cancer: AI to Extract Information Hidden in Routine CT Scans. Radiology 2020;296(1):225-
26. doi: https://dx.doi.org/10.1148/radiol.2020201366 

>10% oncologic patients 

6. Vassallo L, Traverso A, Agnello M, et al. A cloud-based computer-aided detection system improves identification of lung 
nodules on computed tomography scans of patients with extra-thoracic malignancies. Eur Radiol 2019;29(1):144-52. doi: 
https://dx.doi.org/10.1007/s00330-018-5528-6 

>10% oncologic patients 

7. Wagner AK, Hapich A, Psychogios MN, et al. Computer-Aided Detection of Pulmonary Nodules in Computed Tomography 
Using ClearReadCT. J Med Syst 2019;43(3):58. doi: https://dx.doi.org/10.1007/s10916-019-1180-1 

>10% oncologic patients 

8. Weikert T, Akinci D'Antonoli T, Bremerich J, et al. Evaluation of an AI-Powered Lung Nodule Algorithm for Detection and 3D 
Segmentation of Primary Lung Tumors. Contrast Media Mol Imaging 2019;2019:1545747. doi: 
https://dx.doi.org/10.1155/2019/1545747 

>10% oncologic patients 

9. Yacoub B, Kabakus I, Schoepf J, et al. Performance of an Artificial Intelligence-Based Platform Against Clinical Radiology 
Reports for the Evaluation of Non-contrast Chest CT. J Thorac Imaging 2021;36(6):W123. doi: 
http://dx.doi.org/10.1097/RTI.0000000000000619 

>10% oncologic patients 

10. Yacoub B, Kabakus IM, Schoepf UJ, et al. Performance of an Artificial Intelligence-Based Platform Against Clinical Radiology 
Reports for the Evaluation of Noncontrast Chest CT. Acad Radiol 2021;10:10. doi: 
https://dx.doi.org/10.1016/j.acra.2021.02.007 

>10% oncologic patients 

Excluded on population: Chest phantoms (n=3)  



298 

 

Reference Main reason for exclusion 
11. Ebner L, Roos JE, Christensen JD, et al. Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-

Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels. AJR Am J 
Roentgenol 2016;207(2):282-8. doi: https://dx.doi.org/10.2214/AJR.15.15588 

Chest phantom 

12. Peters AA, Decasper A, Munz J, et al. Performance of an AI based CAD system in solid lung nodule detection on chest 
phantom radiographs compared to radiology residents and fellow radiologists. J 2021;13(5):2728-37. doi: 
https://dx.doi.org/10.21037/jtd-20-3522 

Chest phantom 

13. Schwyzer M, Messerli M, Eberhard M, et al. Impact of dose reduction and iterative reconstruction algorithm on the 
detectability of pulmonary nodules by artificial intelligence. Diagn Interv Imaging 2022;03:03. doi: 
https://dx.doi.org/10.1016/j.diii.2021.12.002 

Chest phantom 

Excluded on population: Other image type (n=6)  
14. Lee JH, Sun HY, Park S, et al. Performance of a Deep Learning Algorithm Compared with Radiologic Interpretation for Lung 

Cancer Detection on Chest Radiographs in a Health Screening Population. Radiology 2020;297(3):687-96. doi: 
https://dx.doi.org/10.1148/radiol.2020201240 

Other image type 

15. Rajagopalan K, Babu S. The detection of lung cancer using massive artificial neural network based on soft tissue technique. 
BMC Med Inf Decis Mak 2020;20(1):282. doi: https://dx.doi.org/10.1186/s12911-020-01220-z 

Other image type 

16. Schultheiss M, Schmette P, Bodden J, et al. Lung nodule detection in chest X-rays using synthetic ground-truth data 
comparing CNN-based diagnosis to human performance. Sci 2021;11(1):15857. doi: https://dx.doi.org/10.1038/s41598-021-
94750-z 

Other image type 

17. Ueda D, Yamamoto A, Shimazaki A, et al. Artificial intelligence-supported lung cancer detection by multi-institutional 
readers with multi-vendor chest radiographs: a retrospective clinical validation study. BMC Cancer 2021;21(1):1120. doi: 
https://dx.doi.org/10.1186/s12885-021-08847-9 

Other image type 

18. Yamada Y, Shiomi E, Hashimoto M, et al. Value of a Computer-aided Detection System Based on Chest Tomosynthesis 
Imaging for the Detection of Pulmonary Nodules. Radiology 2018;287(1):333-39. doi: 
https://dx.doi.org/10.1148/radiol.2017170405 

Other image type 

19. Yoo H, Lee SH, Arru CD, et al. AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader 
study in NLST dataset. Eur Radiol 2021;31(12):9664-74. doi: https://dx.doi.org/10.1007/s00330-021-08074-7 

Other image type 

Excluded on technology: Language processing tool (n=1)  
20. Hunter B, Reis S, Campbell D, et al. Development of a Structured Query Language and Natural Language Processing 

Algorithm to Identify Lung Nodules in a Cancer Centre. Front Med (Lausanne) 2021;8:748168. doi: 
https://dx.doi.org/10.3389/fmed.2021.748168 

Language processing tool 

Excluded on technology: Malignancy risk prediction (n=12)  
21. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose 

chest computed tomography. Nat Med 2019;25(6):954-61. doi: https://dx.doi.org/10.1038/s41591-019-0447-x 
Malignancy risk prediction 

22. Heuvelmans MA, Oudkerk M. Deep learning to stratify lung nodules on annual follow-up CT. Lancet Digit Health 
2019;1(7):e324-e25. doi: https://dx.doi.org/10.1016/S2589-7500(19)30156-6 

Malignancy risk prediction 
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Reference Main reason for exclusion 
23. Huang P, Park S, Yan R, et al. Added Value of Computer-aided CT Image Features for Early Lung Cancer Diagnosis with Small 

Pulmonary Nodules: A Matched Case-Control Study. Radiology 2018;286(1):286-95. doi: 
https://dx.doi.org/10.1148/radiol.2017162725 

Malignancy risk prediction 

24. Jacobs C, Setio AAA, Scholten ET, et al. Deep Learning for Lung Cancer Detection on Screening CT Scans: Results of a Large-
Scale Public Competition and an Observer Study with 11 Radiologists. Radiol Artif Intell 2021;3(6):e210027. doi: 
https://dx.doi.org/10.1148/ryai.2021210027 

Malignancy risk prediction 

25. Lassau N, Bousaid I, Chouzenoux E, et al. Three artificial intelligence data challenges based on CT and MRI. Diagn Interv 
Imaging 2020;101(12):783-88. doi: https://dx.doi.org/10.1016/j.diii.2020.03.006 

Malignancy risk prediction 

26. Pickup L, Arteta C, Declerck J, et al. P1.11-02 Acceleration of Lung Cancer Diagnosis: Utility Study for AI-Based Stratification 
of Pulmonary Nodules. Journal of Thoracic Oncology 2019;14(10 Supplement):S515. doi: 
http://dx.doi.org/10.1016/j.jtho.2019.08.1075 

Malignancy risk prediction 

27. Tsakok MT, Mashar M, Pickup L, et al. The utility of a convolutional neural network (CNN) model score for cancer risk in 
indeterminate small solid pulmonary nodules, compared to clinical practice according to British Thoracic Society guidelines. 
Eur J Radiol 2021;137:109553. doi: https://dx.doi.org/10.1016/j.ejrad.2021.109553 

Malignancy risk prediction 

28. Wels M, Lades F, Muehlberg A, et al. General Purpose Radiomics for Multi-Modal Clinical Research. Medical Imaging 2019: 
Computer-Aided Diagnosis 2019;10950 doi: 10.1117/12.2511856 

Malignancy risk prediction 

29. Xu T, Huang C, Liu Y, et al. Artificial intelligence based on deep learning for differential diagnosis between benign and 
malignant pulmonary nodules: A real-world, multicenter, diagnostic study. Journal of Clinical Oncology 2020;38(15) doi: 
https://dx.doi.org/10.1200/JCO.2020.38.15-suppl.9037 

Malignancy risk prediction 

30. Zeng JY, Ye HH, Yang SX, et al. Clinical application of a novel computer-aided detection system based on three-dimensional 
CT images on pulmonary nodule. Int J Clin Exp Med 2015;8(9):16077-82. 

Malignancy risk prediction 

31. Zhao L, Bai C, Zhu Y. Preliminary study on diagnostic value of artificial intelligence in early-stage lung cancer. American 
Journal of Respiratory and Critical Care Medicine 2020;201(1) 

Malignancy risk prediction 

32. Zhao L, Bai C-X, Zhu Y. Diagnostic value of artificial intelligence in early-stage lung cancer. Chin Med J 2020;133(4):503-04. 
doi: http://dx.doi.org/10.1097/CM9.0000000000000634 

Malignancy risk prediction 

Excluded on technology: Software not commercially available (n=37)  
33. Akter O, Moni MA, Islam MM, et al. Lung cancer detection using enhanced segmentation accuracy. Appl Intell 

2021;51(6):3391-404. doi: 10.1007/s10489-020-02046-y 
Software not 
commercially available 

34. Aresta G, Jacobs C, Araujo T, et al. iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep 
network. Sci 2019;9(1):11591. doi: https://dx.doi.org/10.1038/s41598-019-48004-8 

Software not 
commercially available 

35. Cui X, Zheng S, Heuvelmans MA, et al. Performance of a deep learning-based lung nodule detection system as an alternative 
reader in a Chinese lung cancer screening program. Eur J Radiol 2022;146:110068. doi: 
https://dx.doi.org/10.1016/j.ejrad.2021.110068 

Software not 
commercially available 
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Reference Main reason for exclusion 
36. Huang W, Xue Y, Wu Y. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional 

neural networks and ensemble learning. PLoS ONE 2019;14(7):e0219369. doi: 
https://dx.doi.org/10.1371/journal.pone.0219369 

Software not 
commercially available 

37. Iwasawa T, Matsumoto S, Aoki T, et al. A comparison of axial versus coronal image viewing in computer-aided detection of 
lung nodules on CT. Jpn J Radiol 2015;33(2):76-83. doi: https://dx.doi.org/10.1007/s11604-014-0383-0 

Software not 
commercially available 

38. Jacobs C, van Rikxoort EM, Scholten ET, et al. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose 
chest computed tomography by a computer-aided diagnosis system. Invest Radiol 2015;50(3):168-73. doi: 
https://dx.doi.org/10.1097/RLI.0000000000000121 

Software not 
commercially available 

39. Jacobs C, van Rikxoort EM, Twellmann T, et al. Automatic detection of subsolid pulmonary nodules in thoracic computed 
tomography images. Med Image Anal 2014;18(2):374-84. doi: https://dx.doi.org/10.1016/j.media.2013.12.001 

Software not 
commercially available 

40. Kuo C-FJ, Barman J, Hsieh CW, et al. Fast fully automatic detection, classification and 3D reconstruction of pulmonary 
nodules in CT images by local image feature analysis. Biomedical Signal Processing and Control 2021;68:102790. doi: 
http://dx.doi.org/10.1016/j.bspc.2021.102790 

Software not 
commercially available 

41. Lassen BC, Jacobs C, Kuhnigk JM, et al. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest 
computed tomography scans. Phys Med Biol 2015;60(3):1307-23. doi: https://dx.doi.org/10.1088/0031-9155/60/3/1307 

Software not 
commercially available 

42. Liang F, Li C, Fu X. Evaluation of the Effectiveness of Artificial Intelligence Chest CT Lung Nodule Detection Based on Deep 
Learning. J 2021;2021:9971325. doi: https://dx.doi.org/10.1155/2021/9971325 

Software not 
commercially available 

43. Liang J, Ye G, Guo J, et al. Reducing False-Positives in Lung Nodules Detection Using Balanced Datasets. Front 
2021;9:671070. doi: https://dx.doi.org/10.3389/fpubh.2021.671070 

Software not 
commercially available 

44. Liu C, Hu SC, Wang C, et al. Automatic detection of pulmonary nodules on CT images with YOLOv3: development and 
evaluation using simulated and patient data. Quant 2020;10(10):1917-29. doi: https://dx.doi.org/10.21037/qims-19-883 

Software not 
commercially available 

45. Liu JB, Liu LH, He W, et al. Computer-aided detection of pulmonary nodules in computed tomography images: Effect on 
observer performance. Journal of Medical Imaging and Health Informatics 2017;7(6):1205-11. doi: 
http://dx.doi.org/10.1166/jmihi.2017.2201 

Software not 
commercially available 

46. Liu JK, Jiang HY, Gao MD, et al. An Assisted Diagnosis System for Detection of Early Pulmonary Nodule in Computed 
Tomography Images. J Med Syst 2017;41(2):30. doi: https://dx.doi.org/10.1007/s10916-016-0669-0 

Software not 
commercially available 

47. Long C, Hackett T, Yang D, et al. Automatic detection and diagnosis of pulmonary nodule using deep convolutional neural 
network. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine 2019;3(Supplement 1):11. doi: 
http://dx.doi.org/10.1080/24745332.2019.1623590 

Software not 
commercially available 

48. Masood A, Yang P, Sheng B, et al. Cloud-Based Automated Clinical Decision Support System for Detection and Diagnosis of 
Lung Cancer in Chest CT. IEEE J Transl Eng Health Med 2020;8:4300113. doi: 
https://dx.doi.org/10.1109/JTEHM.2019.2955458 

Software not 
commercially available 

49. Nguyen CC, Tran GS, Nguyen VT, et al. Pulmonary Nodule Detection Based on Faster R-CNN With Adaptive Anchor Box. IEEE 
Access 2021;9:154740-51. doi: 10.1109/ACCESS.2021.3128942 

Software not 
commercially available 
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Reference Main reason for exclusion 
50. Nomura Y, Higaki T, Fujita M, et al. Effects of Iterative Reconstruction Algorithms on Computer-assisted Detection (CAD) 

Software for Lung Nodules in Ultra-low-dose CT for Lung Cancer Screening. Acad Radiol 2017;24(2):124-30. doi: 
https://dx.doi.org/10.1016/j.acra.2016.09.023 

Software not 
commercially available 

51. Paing MP, Hamamoto K, Tungjitkusolmun S, et al. Automatic Detection and Staging of Lung Tumors using Locational 
Features and Double-Staged Classifications. Appl Sci-Basel 2019;9(11) doi: 10.3390/app9112329 

Software not 
commercially available 

52. Pereira FR, De Andrade JMC, Escuissato DL, et al. Classifier Ensemble Based on Computed Tomography Attenuation Patterns 
for Computer-Aided Detection System. IEEE Access 2021;9:123134-45. doi: 10.1109/ACCESS.2021.3109860 

Software not 
commercially available 

53. Qiu Z, Wu Q, Wang S, et al. Development of a deep learning-based method to diagnose pulmonary ground glass nodules by 
sequential computed tomography imaging. Thorac Cancer 2022;06:06. doi: https://dx.doi.org/10.1111/1759-7714.14305 

Software not 
commercially available 

54. Savic M, Ma Y, Ramponi G, et al. Lung Nodule Segmentation with a Region-Based Fast Marching Method. Sensors (Basel) 
2021;21(5):09. doi: https://dx.doi.org/10.3390/s21051908 

Software not 
commercially available 

55. Seito AAA, Jacobs C, Ciompi F, et al. Computer-Aided Detection of Lung Cancer: Combining Pulmonary Nodule Detection 
Systems with a Tumor Risk Prediction Model. Medical Imaging 2015: Computer-Aided Diagnosis 2015;9414 doi: 
10.1117/12.2080955 

Software not 
commercially available 

56. Silva M, Capretti G, Sverzellati N, et al. Non-solid and part-solid nodules: Comparison between visual and computer aided 
detection. J Thorac Imaging 2017;32(4):W19. doi: http://dx.doi.org/10.1097/RTI.0000000000000288 

Software not 
commercially available 

57. Silva M, Schaefer-Prokop CM, Jacobs C, et al. Detection of Subsolid Nodules in Lung Cancer Screening: Complementary 
Sensitivity of Visual Reading and Computer-Aided Diagnosis. Invest Radiol 2018;53(8):441-49. doi: 
https://dx.doi.org/10.1097/RLI.0000000000000464 

Software not 
commercially available 

58. Song J, Huang SC, Kelly B, et al. Automatic lung nodule segmentation and intra-nodular heterogeneity image generation. 
IEEE j 2021;15:15. doi: https://dx.doi.org/10.1109/JBHI.2021.3135647 

Software not 
commercially available 

59. Tammemagi M, Ritchie AJ, Atkar-Khattra S, et al. Predicting Malignancy Risk of Screen-Detected Lung Nodules-Mean 
Diameter or Volume. J Thorac Oncol 2019;14(2):203-11. doi: https://dx.doi.org/10.1016/j.jtho.2018.10.006 

Software not 
commercially available 

60. Tan JR, Cheong EHT, Chan LP, et al. Implementation of an Artificial Intelligence-Based Double Read System in Capturing 
Pulmonary Nodule Discrepancy in CT Studies. Curr Probl Diagn Radiol 2021;50(2):119-22. doi: 
https://dx.doi.org/10.1067/j.cpradiol.2020.07.006 

Software not 
commercially available 

61. Terasawa T, Aoki T, Murakami S, et al. Detection of lung carcinoma with predominant ground glass opacity on CT using 
temporal subtraction method. Eur Radiol 2018;28(4):1594-99. doi: https://dx.doi.org/10.1007/s00330-017-5085-4 

Software not 
commercially available 

62. Wang YQ, Yue SH, Li Q, et al. Research on Technologies of Computer Aided Diagnosis for Solitary Pulmonary Nodule Based 
on CT Images. 2019 Ieee International Instrumentation and Measurement Technology Conference (I2mtc) 2019:724-28. 

Software not 
commercially available 

63. Woo M, Devane AM, Lowe SC, et al. Deep learning for semi-automated unidirectional measurement of lung tumor size in 
CT. Cancer Imaging 2021;21(1):43. doi: https://dx.doi.org/10.1186/s40644-021-00413-7 

Software not 
commercially available 

64. Xu YM, Zhang T, Xu H, et al. Deep Learning in CT Images: Automated Pulmonary Nodule Detection for Subsequent 
Management Using Convolutional Neural Network. Cancer Manag Res 2020;12:2979-92. doi: 
https://dx.doi.org/10.2147/CMAR.S239927 

Software not 
commercially available 
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Reference Main reason for exclusion 
65. Yen A, Pfeffer Y, Blumenfeld A, et al. Use of a Dual Artificial Intelligence Platform to Detect Unreported Lung Nodules. J 

Comput Assist Tomogr 2021;45(2):318-22. doi: https://dx.doi.org/10.1097/RCT.0000000000001118 
Software not 
commercially available 

66. Young S, Lo P, Kim G, et al. The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-
dose lung cancer screening population. Med Phys 2017;44(4):1337-46. doi: https://dx.doi.org/10.1002/mp.12128 

Software not 
commercially available 

67. Yu H, Li J, Zhang L, et al. Design of lung nodules segmentation and recognition algorithm based on deep learning. BMC 
Bioinformatics 2021;22(Suppl 5):314. doi: https://dx.doi.org/10.1186/s12859-021-04234-0 

Software not 
commercially available 

68. Zhang QH, Kong XJ. Design of Automatic Lung Nodule Detection System Based on Multi-Scene Deep Learning Framework. 
IEEE Access 2020;8:90380-89. doi: 10.1109/ACCESS.2020.2993872 

Software not 
commercially available 

69. Zuo W, Zhou F, He Y. An Embedded Multi-branch 3D Convolution Neural Network for False Positive Reduction in Lung 
Nodule Detection. J Digit Imaging 2020;33(4):846-57. doi: https://dx.doi.org/10.1007/s10278-020-00326-0 

Software not 
commercially available 

Excluded on technology: Software not specified as relevant by NICE (n=32)  
70. Benzakoun J, Bommart S, Coste J, et al. Computer-aided diagnosis (CAD) of subsolid nodules: Evaluation of a commercial 

CAD system. Eur J Radiol 2016;85(10):1728-34. doi: https://dx.doi.org/10.1016/j.ejrad.2016.07.011 
Software not specified as 
relevant by NICE 

71. Brown M, Browning P, Wahi-Anwar MW, et al. Integration of Chest CT CAD into the Clinical Workflow and Impact on 
Radiologist Efficiency. Acad Radiol 2019;26(5):626-31. doi: https://dx.doi.org/10.1016/j.acra.2018.07.006 

Software not specified as 
relevant by NICE 

72. Buls N, Watte N, Nieboer K, et al. Performance of an artificial intelligence tool with real-time clinical workflow integration - 
Detection of intracranial hemorrhage and pulmonary embolism. Phys Med 2021;83:154-60. doi: 
http://dx.doi.org/10.1016/j.ejmp.2021.03.015 

Software not specified as 
relevant by NICE 

73. Chen K, Lai YC, Vanniarajan B, et al. Clinical impact of a deep learning system for automated detection of missed pulmonary 
nodules on routine body computed tomography including the chest region. Eur Radiol 2022;09:09. doi: 
https://dx.doi.org/10.1007/s00330-021-08412-9 

Software not specified as 
relevant by NICE 

74. Chen L, Gu D, Chen Y, et al. An artificial-intelligence lung imaging analysis system (ALIAS) for population-based nodule 
computing in CT scans. Comput Med Imaging Graph 2021;89:101899. doi: 
https://dx.doi.org/10.1016/j.compmedimag.2021.101899 

Software not specified as 
relevant by NICE 

75. Cho J, Kim J, Lee KJ, et al. Incidence Lung Cancer after a Negative CT Screening in the National Lung Screening Trial: Deep 
Learning-Based Detection of Missed Lung Cancers. J 2020;9(12):02. doi: https://dx.doi.org/10.3390/jcm9123908 

Software not specified as 
relevant by NICE 

76. Ctri. To Study how accurately of Predible Lung detects Lung Nodules. 
https://trialsearchwhoint/Trial2aspx?TrialID=CTRI/2019/07/020120 2019 

Software not specified as 
relevant by NICE 

77. Cui X, Ye Z, Zheng S, et al. Validation of a deep learning-based computer-aided system for lung nodule detection in a Chinese 
lung cancer screening program. Eur Respir J 2020;56(Supplement 64) doi: https://dx.doi.org/10.1183/13993003.congress-
2020.4168 

Software not on NICE list 

78. Cui X, Ye Z, Zheng S, et al. P42.02 Evaluating the Feasibility of a Deep Learning-Based Computer-Aided Detection System for 
Lung Nodule Detection in a Lung Cancer Screening Program. Journal of Thoracic Oncology 2021;16(3 Supplement):S477-S78. 
doi: https://dx.doi.org/10.1016/j.jtho.2021.01.826 

Software not specified as 
relevant by NICE 
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Reference Main reason for exclusion 
79. Den Harder AM, Willemink MJ, van Hamersvelt RW, et al. Effect of radiation dose reduction and iterative reconstruction on 

computer-aided detection of pulmonary nodules: Intra-individual comparison. Eur J Radiol 2016;85(2):346-51. doi: 
https://dx.doi.org/10.1016/j.ejrad.2015.12.003 

Software not specified as 
relevant by NICE 

80. Guo X, Li Y, Yang C, et al. Deep Learning-Based Computed Tomography Imaging to Diagnose the Lung Nodule and Treatment 
Effect of Radiofrequency Ablation. J 2021;2021:6556266. doi: https://dx.doi.org/10.1155/2021/6556266 

Software not specified as 
relevant by NICE 

81. Han D, Heuvelmans M, Rook M, et al. Evaluation of a novel deep learning-based classifier for perifissural nodules. Eur Radiol 
2021;31(6):4023-30. doi: https://dx.doi.org/10.1007/s00330-020-07509-x 

Software not specified as 
relevant by NICE 

82. Jacobs C, van Ginneken B. Google's lung cancer AI: a promising tool that needs further validation. Nat Rev Clin Oncol 
2019;16(9):532-33. doi: https://dx.doi.org/10.1038/s41571-019-0248-7 

Software not specified as 
relevant by NICE 

83. Jeon KN, Goo JM, Lee CH, et al. Computer-aided nodule detection and volumetry to reduce variability between radiologists 
in the interpretation of lung nodules at low-dose screening computed tomography. Invest Radiol 2012;47(8):457-61. doi: 
https://dx.doi.org/10.1097/RLI.0b013e318250a5aa 

Software not specified as 
relevant by NICE 

84. Jprn U. Japanese Multi-Center Study for Utility of 3D Computer-Aided Detection System at Lung Cancer Screening with Low-
dose CT Protocol. https://trialsearchwhoint/Trial2aspx?TrialID=JPRN-UMIN000030415 2018 

Software not specified as 
relevant by NICE 

85. Jurkovic IA, Papanikolaou N, Stathakis S, et al. Objective assessment of the quality and accuracy of deformable image 
registration. J 2020;45(3):156-67. doi: https://dx.doi.org/10.4103/jmp.JMP_47_19 

Software not specified as 
relevant by NICE 

86. Li L, Liu Z, Huang H, et al. Evaluating the performance of a deep learning-based computer-aided diagnosis (DL-CAD) system 
for detecting and characterizing lung nodules: Comparison with the performance of double reading by radiologists. Thorac 
Cancer 2019;10(2):183-92. doi: https://dx.doi.org/10.1111/1759-7714.12931 

Software not specified as 
relevant by NICE 

87. Li X, Guo F, Zhou Z, et al. Performance of Deep-learning-based Artificial Intelligence on Detection of Pulmonary Nodules in 
Chest CT. Zhongguo fei ai za zhi [Chinese journal of lung cancer] 2019;22(6):336-40. doi: 10.3779/j.issn.1009-
3419.2019.06.02 

Software not specified as 
relevant by NICE 

88. Liu Z, Li L, Li T, et al. Does a Deep Learning-Based Computer-Assisted Diagnosis System Outperform Conventional Double 
Reading by Radiologists in Distinguishing Benign and Malignant Lung Nodules? Front 2020;10:545862. doi: 
http://dx.doi.org/10.3389/fonc.2020.545862 

Software not specified as 
relevant by NICE 

89. Matsumoto S, Ohno Y, Aoki T, et al. Computer-aided detection of lung nodules on multidetector CT in concurrent-reader 
and second-reader modes: a comparative study. Eur J Radiol 2013;82(8):1332-7. doi: 
https://dx.doi.org/10.1016/j.ejrad.2013.02.005 

Software not specified as 
relevant by NICE 

90. Ohno Y, Aoyagi K, Chen Q, et al. Comparison of computer-aided detection (CADe) capability for pulmonary nodules among 
standard-, reduced- and ultra-low-dose CTs with and without hybrid type iterative reconstruction technique. Eur J Radiol 
2018;100:49-57. doi: https://dx.doi.org/10.1016/j.ejrad.2018.01.010 

Software not specified as 
relevant by NICE 

91. Ohno Y, Aoyagi K, Takenaka D, et al. Machine learning for lung CT texture analysis: Improvement of inter-observer 
agreement for radiological finding classification in patients with pulmonary diseases. Eur J Radiol 2021;134:109410. doi: 
https://dx.doi.org/10.1016/j.ejrad.2020.109410 

Software not specified as 
relevant by NICE 
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Reference Main reason for exclusion 
92. Ohno Y, Aoyagi K, Yaguchi A, et al. 3D CADv system with and without CNN: Comparison of nodule component measurement 

accuracy and differentiation in routine clinical practice data. International Journal of Computer Assisted Radiology and 
Surgery 2020;15(1 Supplement):S114-S15. doi: http://dx.doi.org/10.1007/s11548-020-02171-6 

Software not specified as 
relevant by NICE 

93. Ohno Y, Aoyagi K, Yaguchi A, et al. Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional 
Neural Network to Determine Volume Change at Chest CT. Radiology 2020;296(2):432-43. doi: 
https://dx.doi.org/10.1148/radiol.2020191740 

Software not specified as 
relevant by NICE 

94. Ohri B, Smith D, Melville P, et al. Use of "artificial Intelligence" to Aid Pulmonary Nodule Assessment. Respirology 
2020;25:177. doi: https://dx.doi.org/10.1111/resp.13778 

Software not specified as 
relevant by NICE 

95. Prakashini K, Babu S, Rajgopal KV, et al. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 
64 row multi detector computed tomography. Lung India 2016;33(4):391-7. doi: https://dx.doi.org/10.4103/0970-
2113.184872 

Software not specified as 
relevant by NICE 

96. Qi LL, Wu BT, Tang W, et al. Long-term follow-up of persistent pulmonary pure ground glass nodules with deep learning-
assisted nodule segmentation. Eur Radiol 2020;30(2):744-55. doi: https://dx.doi.org/10.1007/s00330-019-06344-z 

Software not specified as 
relevant by NICE 

97. Wang YW, Wang JW, Yang SX, et al. Proposing a deep learning-based method for improving the diagnostic certainty of 
pulmonary nodules in CT scan of chest. Eur Radiol 2021;31(11):8160-67. doi: https://dx.doi.org/10.1007/s00330-021-07919-
5 

Software not specified as 
relevant by NICE 

98. Wu N, Li X, Luo X. P62.10 AI-Based Three-Dimension Reconstruction for Pulmonary Nodules -New Auxiliary Exploration for 
Thoracic Surgery. Journal of Thoracic Oncology 2021;16(10 Supplement):S1181. doi: 
http://dx.doi.org/10.1016/j.jtho.2021.08.655 

Software not specified as 
relevant by NICE 

99. Yanagawa M, Honda O, Kikuyama A, et al. Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) 
technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-
dose CT scans. Eur J Radiol 2012;81(10):2877-86. doi: https://dx.doi.org/10.1016/j.ejrad.2011.09.011 

Software not specified as 
relevant by NICE 

100. Yang D, Bai C, Hu J, et al. Deep convolutional neutral networks based artificial intelligence system for pulmonary nodule 
detection and diagnosis in United States and Chinese dataset. American Journal of Respiratory and Critical Care Medicine 
2018;197(MeetingAbstracts) 

Software not specified as 
relevant by NICE 

101. Yuan R, Mayo J, Streit I, et al. MA10.06 Randomized Clinical Trial with Computer Assisted Diagnosis (CAD) Versus Radiologist 
as First Reader of Lung Screening LDCT. Journal of Thoracic Oncology 2019;14(10 Supplement):S287-S88. doi: 
http://dx.doi.org/10.1016/j.jtho.2019.08.578 

Software not specified as 
relevant by NICE 

Excluded on technology: Manufacturer eligible but other software (n=13)  
102. Azour L, Moore WH, O'Donnell T, et al. Inter-Reader Variability of Volumetric Subsolid Pulmonary Nodule Radiomic 

Features. Acad Radiol 2021;17:17. doi: https://dx.doi.org/10.1016/j.acra.2021.01.026 
Manufacturer eligible but 
other software 

103. Bogoni L, Ko JP, Alpert J, et al. Impact of a computer-aided detection (CAD) system integrated into a picture archiving and 
communication system (PACS) on reader sensitivity and efficiency for the detection of lung nodules in thoracic CT exams. J 
Digit Imaging 2012;25(6):771-81. doi: https://dx.doi.org/10.1007/s10278-012-9496-0 

Manufacturer eligible but 
other software 
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Reference Main reason for exclusion 
104. Godoy MC, Kim TJ, White CS, et al. Benefit of computer-aided detection analysis for the detection of subsolid and solid lung 

nodules on thin- and thick-section CT. AJR Am J Roentgenol 2013;200(1):74-83. doi: https://dx.doi.org/10.2214/AJR.11.7532 
Manufacturer eligible but 
other software 

105. Heuvelmans M, Oudkerk M, Zhao YR, et al. Comparison of three software systems for semi-automatic volumetry of 
pulmonary nodules on baseline and follow-up CT examinations. Acta Radiol 2014;55(6):691-98. doi: 
http://dx.doi.org/10.1177/0284185113508177 

Manufacturer eligible but 
other software 

106. Jacobs C, van Rikxoort EM, Murphy K, et al. Computer-aided detection of pulmonary nodules: a comparative study using the 
public LIDC/IDRI database. Eur Radiol 2016;26(7):2139-47. doi: https://dx.doi.org/10.1007/s00330-015-4030-7 

Manufacturer eligible but 
other software 

107. Larici AR, Amato M, Ordonez P, et al. Detection of noncalcified pulmonary nodules on low-dose MDCT: comparison of the 
sensitivity of two CAD systems by using a double reference standard. Radiol Med (Torino) 2012;117(6):953-67. 

Manufacturer eligible but 
other software 

108. Liang M, Tang W, Xu DM, et al. Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers. 
Radiology 2016;281(1):279-88. doi: https://dx.doi.org/10.1148/radiol.2016150063 

Manufacturer eligible but 
other software 

109. Messerli M, Kluckert T, Knitel M, et al. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent 
ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv. Eur J Radiol 2016;85(12):2217-24. doi: 
https://dx.doi.org/10.1016/j.ejrad.2016.10.006 

Manufacturer eligible but 
other software 

110. Mozaffary A, Trabzonlu TA, Lombardi P, et al. Integration of fully automated computer-aided pulmonary nodule detection 
into CT pulmonary angiography studies in the emergency department: effect on workflow and diagnostic accuracy. Emerg 
2019;26(6):609-14. doi: https://dx.doi.org/10.1007/s10140-019-01707-x 

Manufacturer eligible but 
other software 

111. Nair A, Gartland N, Barton B, et al. Comparing the performance of trained radiographers against experienced radiologists in 
the UK lung cancer screening (UKLS) trial. Br J Radiol 2016;89(1066):20160301. doi: 
https://dx.doi.org/10.1259/bjr.20160301 

Manufacturer eligible but 
other software 

112. Nair A, Screaton NJ, Holemans JA, et al. The impact of trained radiographers as concurrent readers on performance and 
reading time of experienced radiologists in the UK Lung Cancer Screening (UKLS) trial. Eur Radiol 2018;28(1):226-34. doi: 
https://dx.doi.org/10.1007/s00330-017-4903-z 

Manufacturer eligible but 
other software 

113. Takahashi EA, Koo CW, White DB, et al. Prospective Pilot Evaluation of Radiologists and Computer-aided Pulmonary Nodule 
Detection on Ultra-low-Dose CT With Tin Filtration. J Thorac Imaging 2018;33(6):396-401. doi: 
https://dx.doi.org/10.1097/RTI.0000000000000348 

Manufacturer eligible but 
other software 

114. Zhao Y, de Bock GH, Vliegenthart R, et al. Performance of computer-aided detection of pulmonary nodules in low-dose CT: 
comparison with double reading by nodule volume. Eur Radiol 2012;22(10):2076-84. doi: 
https://dx.doi.org/10.1007/s00330-012-2437-y 

Manufacturer eligible but 
other software 

Excluded on technology: Software name unclear, no author reply (n=15)  
115. Arteta C, Novotny P, Santos C, et al. Automatic Nodule Size Measurements Can Improve Prediction Accuracy Within a Brock 

Risk Model. Journal of Thoracic Oncology 2018;13(10 Supplement):S429. doi: http://dx.doi.org/10.1016/j.jtho.2018.08.490 
Software name unclear; 
no author reply received 

116. Brown MS, Kim HJ, Lo P, et al. Automated tumor size assessment: Consistency of computer measurements with an expert 
panel. Journal of Clinical Oncology 2013;31(15 SUPPL. 1) 

Software name unclear; 
no author reply received 
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Reference Main reason for exclusion 
117. Brown MS, Lo P, Barnoy E, et al. Clinically usable computer-aided detection (CAD) system for lung cancer screening with CT. 

American Journal of Respiratory and Critical Care Medicine 2013;187(MeetingAbstracts) 
Software name unclear; 
no author reply received 

118. Gu X, Xie W, Fang Q, et al. The effect of pulmonary vessel suppression on computerized detection of nodules in chest CT 
scans. Med Phys 2020;47(10):4917-27. doi: https://dx.doi.org/10.1002/mp.14401 

Software name unclear; 
no author reply received 

119. Gu XM, Chai YL, Weiyang X, et al. Effect of CAD system with a vessel suppression function on clinical lung nodule detection 
in chest CT scans. Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment 2021;11599 
doi: 10.1117/12.2582059 

Software name unclear; 
no author reply received 

120. Gu XM, Xie WY, Fang QM, et al. Lung vessel suppression and its effect on nodule detection in chest CT scans. Medical 
Imaging 2020: Computer-Aided Diagnosis 2020;11314 doi: 10.1117/12.2549405 

Software name unclear; 
no author reply received 

121. Lieman-Sifry J, Brouha S, Weihe E, et al. Deep learning-based cad may improve detection of pulmonary nodules while 
preserving a low false-positive rate. J Thorac Imaging 2019;34(4):W61. doi: 
http://dx.doi.org/10.1097/RTI.0000000000000421 

Software name unclear; 
no author reply received 

122. Liu Y, Luo H, Qing H, et al. Screening baseline characteristics of early lung cancer on low-dose computed tomography with 
computer-aided detection in a Chinese population. Cancer epidemiol 2019;62:101567. doi: 
https://dx.doi.org/10.1016/j.canep.2019.101567 

Software name unclear; 
no author reply received 

123. Miki S, Nomura Y, Hayashi N, et al. Prospective Study of Spatial Distribution of Missed Lung Nodules by Readers in CT Lung 
Screening Using Computer-assisted Detection. Acad Radiol 2021;28(5):647-54. doi: 
https://dx.doi.org/10.1016/j.acra.2020.03.015 

Software name unclear; 
no author reply received 

124. Ohno Y, Seki S, Yoshikawa T, et al. Convolutional Neural Network for 3D CADv Systems: Utility for Differentiation of 
Malignant from Benign Pulmonary Nodules. International Journal of Computer Assisted Radiology and Surgery 
2019;14(Supplement 1):S67. doi: http://dx.doi.org/10.1007/s11548-019-01969-3 

Software name unclear; 
no author reply received 

125. Setio AA, Jacobs C, Gelderblom J, et al. Automatic detection of large pulmonary solid nodules in thoracic CT images. Med 
Phys 2015;42(10):5642-53. doi: https://dx.doi.org/10.1118/1.4929562 

Software name unclear; 
no author reply received 

126. Tokunaga S, Hazeki N, Tamura D, et al. Computer-aided detection (CAD) as concurrent vs. second reader for lung nodules on 
CT in a Japanese multicenter study: Evaluation of reading time and observer performance in radiologists and 
pulmonologists. Chest 2013;144(4 MEETING ABSTRACT) doi: http://dx.doi.org/10.1378/chest.1703410 

Software name unclear; 
no author reply received 

127. Werner S, Gast R, Horger M, et al. Accuracy and Reproducibility of a Software Prototype for Semi-Automated Computer-
Aided Volumetry of the solid and subsolid Components of part-solid Pulmonary Nodules. RoFo Fortschritte auf dem Gebiet 
der Rontgenstrahlen und der Bildgebenden Verfahren 2021 doi: http://dx.doi.org/10.1055/a-1656-9834 

Software name unclear; 
no author reply received 

128. Zheng S, Cui X, Vonder M, et al. Deep learning-based pulmonary nodule detection: Effect of slab thickness in maximum 
intensity projections at the nodule candidate detection stage. Comput Methods Programs Biomed 2020;196:105620. doi: 
https://dx.doi.org/10.1016/j.cmpb.2020.105620 

Software name unclear; 
no author reply received 

129. Zheng S, Cui X, Ye Z, et al. P42.06 Automatic Lung Nodule Detection by a Deep Learning-Based CAD System: The Value of 
Slab Thickness in the Maximum Intensity Projection Technique. Journal of Thoracic Oncology 2021;16(3 Supplement):S479-
S80. doi: https://dx.doi.org/10.1016/j.jtho.2021.01.830 

Software name unclear; 
no author reply received 
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Reference Main reason for exclusion 
Excluded on outcomes – Clinical trial register, no outcomes yet (n=4)  

130. fdeeeKCT0005065. A multi-center, retrospective pivotal trial to evaluate the efficacy of artificial intelligence-based 
pulmonary nodule detection software ‘VUNO Med – Lung CAD’ in thoracic CT: 
http://cris.nih.go.kr/cris/en/search/search_result_st01.jsp?seq=16420, 2020. 

Clinical trial register, no 
outcomes yet 

131. Institute VP, University S, Technologies R. Evaluation of Computer-Aided Lung Nodule Detection Software in Thoracic CT for 
Riverain Technologies LLC: https://ClinicalTrials.gov/show/NCT02440139, 2015. 

Clinical trial register, no 
outcomes yet 

132. NCT04119960. Clinical Validation of InferRead Lung CT.AI: https://clinicaltrials.gov/show/NCT04119960, 2019. Clinical trial register, no 
outcomes yet 

133. NCT04792632. Clinical Performance Evaluation of Veye Lung Nodules: https://clinicaltrials.gov/show/NCT04792632, 2021. Clinical trial register, no 
outcomes yet 

Excluded on outcomes – No relevant outcomes reported (n=11)  
134. Buckler AJ, Danagoulian J, Johnson K, et al. Inter-Method Performance Study of Tumor Volumetry Assessment on Computed 

Tomography Test-Retest Data. Acad Radiol 2015;22(11):1393-408. doi: https://dx.doi.org/10.1016/j.acra.2015.08.007 
No relevant outcomes 
reported 

135. ChiCTR1900021144. Evaluation of AI-assisted detection of lung nodules in low dose CT images: 
http://www.chictr.org.cn/showproj.aspx?proj=35698, 2019. 

No relevant outcomes 
reported 

136. ChiCTR2000029278. A blinded, self-control trial to evaluate an AI based CAD system for Lung Nodule Diagnosis: 
http://www.chictr.org.cn/showproj.aspx?proj=48219, 2020. 

No relevant outcomes 
reported 

137. Ganti S. Radiological lessons, tips and tricks from UK's first lung cancer screening site. Lung Cancer 2020;139(Supplement 
1):S6. doi: http://dx.doi.org/10.1016/S0169-5002%2820%2930041-6 

No relevant outcomes 
reported 

138. Heuvelmans MA, Walter JE, Vliegenthart R, et al. Disagreement of diameter and volume measurements for pulmonary 
nodule size estimation in CT lung cancer screening. Thorax 2018;73(8):779-81. doi: https://dx.doi.org/10.1136/thoraxjnl-
2017-210770 

No relevant outcomes 
reported 

139. Kisby G, Dentry M. Use of computer-aided detection (CAD) in CT Chest imaging for the diagnosis of lung nodules. Journal of 
Medical Imaging and Radiation Oncology 2021;65(SUPPL 1):143. doi: http://dx.doi.org/10.1111/1754-9485.13301 

No relevant outcomes 
reported 

140. Lee J, Kim Y, Kim HY, et al. Feasibility of implementing a national lung cancer screening program: Interim results from the 
Korean Lung Cancer Screening Project (K-LUCAS). Transl 2021;10(2):723-36. doi: https://dx.doi.org/10.21037/tlcr-20-700 

No relevant outcomes 
reported 

141. Lee J, Lim J, Kim Y, et al. Development of Protocol for Korean Lung Cancer Screening Project (K-LUCAS) to Evaluate 
Effectiveness and Feasibility to Implement National Cancer Screening Program. Cancer Res 2019;51(4):1285-94. doi: 
https://dx.doi.org/10.4143/crt.2018.464 

No relevant outcomes 
reported 

142. Nct. Evaluation of Use of Diagnostic AI for Lung Cancer in Practice. https://clinicaltrialsgov/show/NCT03780582 2018 No relevant outcomes 
reported 

143. Park S, Lee SM, Do KH, et al. Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic 
Features in Lung Cancer. Korean J Radiol 2019;20(10):1431-40. doi: https://dx.doi.org/10.3348/kjr.2019.0212 

No relevant outcomes 
reported 

144. Schreuder A, van Ginneken B, Scholten ET, et al. Classification of CT Pulmonary Opacities as Perifissural Nodules: Reader 
Variability. Radiology 2018;288(3):867-75. doi: https://dx.doi.org/10.1148/radiol.2018172771 

No relevant outcomes 
reported 
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Reference Main reason for exclusion 
Excluded on publication type – Conference abstract with no additional data reported (n=2)  

145. Hwang EJ, Yoon SH, Goo JM, et al. P2.11-16 Variability in Reading Low-Dose Chest CT: Individual Readers vs. Central Review 
in a Nationwide Lung Cancer Screening Project. Journal of Thoracic Oncology 2019;14(10 Supplement):S798-S99. doi: 
http://dx.doi.org/10.1016/j.jtho.2019.08.1716 

Conference abstract with 
no additional data 
reported 

146. Lo S, Freedman M, Mun SK. The application of a vessel suppressed function incorporated with lung opacity analysis for the 
significant increase of nodule detectability in CT. International Journal of Computer Assisted Radiology and Surgery 
2017;12(1 Supplement 1):S150. doi: http://dx.doi.org/10.1007/s11548-017-1588-3 

Conference abstract with 
no additional data 
reported 

Excluded on publication type – no primary research article (n=2)  
147. Crosby D, Lyons N, Greenwood E, et al. A roadmap for the early detection and diagnosis of cancer. The Lancet Oncology 

2020;21(11):1397-99. doi: http://dx.doi.org/10.1016/S1470-2045%2820%2930593-3 
No primary research 
article 

148. Svoboda E. Artificial intelligence is improving the detection of lung cancer. Nature 2020;587(7834):S20-S22. doi: 
https://dx.doi.org/10.1038/d41586-020-03157-9 

No primary research 
article 

Excluded - Duplicate (n=2)  
149. Mun SK, Lo SB, Freedman MT, et al. Computer-aided detection of lung nodules on CT with a computerized pulmonary vessel 

suppressed function. American Journal of Roentgenology 2018;210(3):480-88. doi: http://dx.doi.org/10.2214/AJR.17.18718 
Duplicate 

150. Yuan R, Mayo J, Streit I, et al. Randomized Clinical Trial with Computer Assisted Diagnosis (CAD) Versus Radiologist as First 
Reader of Lung Screening LDCT. Journal of Thoracic Oncology 2019;14(10):S287-S88. doi: 10.1016/j.jtho.2019.08.578 

Duplicate 

 

 

 

  



309 

 

Table 65. Publications excluded after review of full-text articles – Studies provided by companies (n=99) 

Reference Main reason for exclusion 

Aidence B.V. (n=21) 
1. Accelerated Access Collaborative. AI in Health and Care Award – Scoping Plan No relevant data reported. 
2. Aidence (2021). Veye Lung Nodules - Instructions for Use. Software version 3.6.0, Document ID: 

SIGN-234 
Same data as in Clinical Evaluation Report. 

3. Aidence (2021). Integrating Veye Bridge 2.x No relevant data reported. 
4. Aidence (2021). Veye Lung Nodules - Version 3.6 Change Impact Assessment, Document ID: SIGN-

268 
No relevant data reported. 

5. Aidence (2021). Competitor overview No relevant data reported. 
6. Aidence (2021). NICE DAP60 – AI for chest CT. Checklist of confidential information. 8th October 

2021 
No relevant data reported. 

7. Aidence (2021). NICE DAP60 – AI for chest CT. Request for information No relevant data reported. 
8. Aidence (2022). NICE DAP60 – AI for chest CT. Checklist of confidential information. 15th June 2022. No relevant data reported. 
9. Aidence (2022). NICE DAP60 – AI for chest CT. Request for information (revised) No relevant data reported. 
10. Aidence. Veye Chest – Datasets & Validation Reported data already included. 
11. Blazis SP, Dickerscheid DBM, Linsen PVM, et al. Effect of CT reconstruction settings on the 

performance of a deep learning based lung nodule CAD system. Eur J Radiol 2021;136:109526. doi: 
https://dx.doi.org/10.1016/j.ejrad.2021.109526 

Already included 

12. DEKRA (2021). EU Quality Management System Certificate No relevant data reported. 
13. De Monye W & Wakkie J. Efficiency Study Veye Chest (EFFEY STUDY) – Collaboration between 

Spaarne Gasthuis and Aidence B.V. 
No relevant data reported. 

14. Jacobs C, Setio AAA, Scholten ET, et al. Deep Learning for Lung Cancer Detection on Screening CT 
Scans: Results of a Large-Scale Public Competition and an Observer Study with 11 Radiologists. 
Radiol Artif Intell. 2021;3(6):e210027. Published 2021 Oct 27. doi:10.1148/ryai.2021210027 

Malignancy risk prediction. 

15. Martins Jarnalo CO, Linsen PVM, Blazis SP, et al. Clinical evaluation of a deep-learning-based 
computer-aided detection system for the detection of pulmonary nodules in a large teaching 
hospital. Clin Radiol 2021;76(11):838-45. doi: https://dx.doi.org/10.1016/j.crad.2021.07.012 

Already included 

16. Murchison JT, Ritchie G, Senyszak D, Nijwening JH, van Beek EJR. Evaluation of a deep learning 
software tool for CT based lung nodule growth assessment. ECR 2019 (Poster C-3685) 

Already included 

17. Murchison JT, Ritchie G, Senyszak D, Nijwening JH, van Beek EJR. Evaluation of a deep learning 
software tool for CT based lung segmentation. ECR 2019 (Poster C-3686) 

Already included 

18. Murchison JT, Ritchie G, Senyszak D, Nijwening JH, van Beek EJR. Validation of a deep learning 
computer aided system for CT based lung nodule detection, classification and quantification and 
growthrate estimation in a routine clinical population. Manuscript 2021 

Already included. 
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Reference Main reason for exclusion 
19. Murchison JT, Ritchie G, Senyszak D, et al. Validation of a deep learning computer aided system for 

CT based lung nodule detection, classification, and growth rate estimation in a routine clinical 
population. PLoS One. 2022;17(5):e0266799. Published 2022 May 5. 
doi:10.1371/journal.pone.0266799 

Already included. 

20. Rezazade Mehrizi MH & Algra P. AI Implementation Stories- Lessons learned in NWZ hospital. 
MEMO RAD 2021;26(1):17-18. 

No methods reported. 

21. Wakkie J & van Veenendaal G (2020). 510(k) Study Protocol Clinical Performance Evaluation of Veye 
Lung Nodules - Standalone performance and reader study 

No relevant data reported. 

contextflow GmbH (n=20) 

22. Agarwal P, et al. (2022) Combining Content-Based Image Retrieval with a knowledge-based 
diagnostic decision support system in chest-CT. ECR 2022 (July, Vienna) 

Conference abstract without related full journal 
article. 

23. Calhaun ME, Hofmanninger J, Wood C, Langs G, Makropoulos A. Combining automated malignancy 
risk estimation with lung nodule detection may reduce physician effort and increase diagnostic 
accuracy. Draft abstract. Lung cancer conference IASLC 2022 (August, Vienna) 

Draft conference abstract. IN if full text article 
(below) becomes available. 
 

24. Calhaun ME, Hofmanninger J, Wood C, Langs G, Makropoulos A. A publication validating malignancy 
score prediction in a large cohort. (to be published 14 July 2022) 

No full text available by 31/08/2022 

25. contextflow (2021). TD Intended Use - contextflow SEARCH Lung CT No relevant data reported. 

26. contextflow (2021). TD Intended Use - contextflow SEARCH Lung CT. Version 2.0 Not enough information on study methods 
provided by 31/08/2022 

27. contextflow (2021). EU Declaration of Conformity contextflow SEARCH Lung CT No relevant data reported. 

28. contextflow (2021). NICE DAP60 – AI for chest CT. Request for information No relevant data reported 

29. contextflow (2021). NICE DAP60 – AI for chest CT. Checklist of confidential information. 29th 
December 2021. 

No relevant data reported 

30. contextflow (2022). NICE DAP60 – AI for chest CT. Checklist of confidential information. 24th May 
2022 

No relevant data reported 

31. Contextflow (2022). contextflow - scientific evidence and publications No relevant data reported. 

32. Pan J & Langs G. (2022). Prediction of disease severity in COVID-19 patients identifies predictive 
disease patterns in lung CT. European Society of Thoracic Imaging/ESTI 2022 (June, Oxford) 

Conference abstract without related full journal 
article. Disease severity in COVID-19 patients. 

33. Pan J & Langs G. (2022). Evaluation of diagnosing diffuse parenchymal lung disease in pulmonary 
CTs. European Society of Thoracic Imaging/ESTI 2022 (June, Oxford) 

Conference abstract without related full journal 
article. 

34. Pan J & Langs G. (2022). Comparing predictive values for patterns in patients with/without ICU 
treatment. Abstract submitted to RSNA 2022. 

Conference abstract without related full journal 
article. 
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Reference Main reason for exclusion 
35. Pieler M, Hofmanninger J, Donner R, Sikka A, Jiménez Arroyo E, Prosch H, Zhang R, Krenn M, Langs 

G, Makropoulos A. Evaluation of automatic volumetry of honeycombing and ground glass opacity 
patterns in lung CT scans (abstract submitted to ECR 2022, July/Vienna) 

Conference abstract without related full journal 
article. 

36. Prayer, F., Röhrich, S., Pan, J. et al. Künstliche Intelligenz in der Bildgebung der Lunge. Radiologe 60, 
42–47 (2020). https://doi.org/10.1007/s00117-019-00611-2 

Full text in German language. 

37. Preyer F. et al. (2022). Dermatomyositis - description of the cohort, in terms of quantitative profiles. 
Abstract submitted to RSNA 2022. 

Conference abstract without related full journal 
article. 

38. Röhrich, S., Schlegl, T., Bardach, C. et al. Deep learning detection and quantification of 
pneumothorax in heterogeneous routine chest computed tomography. Eur Radiol Exp 4, 26 (2020). 
https://doi.org/10.1186/s41747-020-00152-7 

Technology used for automated, volume-level 
pneumothorax grading (presence and size). 
No relevant outcomes reported. 

39. Röhrich S, et al. (2022). Evaluation of diagnosing diffuse parenchymal lung disease in pulmonary 
CTs. European Society of Thoracic Imaging/ESTI 2022 (June, Oxford) 

Conference abstract without related full journal 
article. 

40. Röhrich S, et al. (2022). Results of the Big Medilytics Study (BML). ECR 2022 (July, Vienna) Conference abstract with now additional data to 
included full article. 

41. TÜV SÜD (2021). EU Quality Management System Certificate (MDR) No relevant data reported. 

Infervision Medical Technology Co., Ltd. (n=13) 

42. BSI (2020). EC Certificate – Full Quality Assurance System No relevant data reported. 

43. Hu Q, et al. Application of computer-aided detection (CAD) software to automatically detect 
nodules under SDCT and LDCT scans with different parameters. Computers in Biology and Medicine. 
Vol. 146, July 2022, 105538. 

Population not eligible (>10% patients with 
extrathoracic cancers; see Table 65). 
 

44. Infervision (2021). NICE DAP60 – AI for chest CT. Checklist of confidential information. 20th October 
2021 

No relevant data reported. 

45. Infervision (2021). NICE DAP60 – AI for chest CT. Request for information No relevant data reported. 

46. Infervision (2022). NICE DAP60- AI for chest CT. Checklist for confidential information. 13th June 
2022. 

No relevant data reported. 

47. Infervision. InferRead CT Lung V2 – Instructions for Use No relevant data reported. 

48. Kozuka T. et al. (2020) Efficiency of a computer-aided diagnosis system with deep learning in 
detection of pulmonary nodules on 1-mm-thick images of computed tomography. Japanese Journal 
of Radiology. https://link.springer.com/article/10.1007/s11604-020-01009-0 

Already IN 

49. Li K, et al.  Assessing the predictive accuracy of lung cancer, metastases, and benign lesions using an 
artificial intelligence-driven computer aided diagnosis system. Quant Imaging Med Surg . 2021 
Aug;11(8):3629-3642. doi: 10.21037/qims-20-1314. 

Population not eligible (>10% patients with 
previously diagnosed lung cancer; see Table 65). 
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Reference Main reason for exclusion 
50. Liu K. et al. (2019) Evaluating a Fully Automated Pulmonary Nodule Detection Approach and Its 

Impact on Radiologist Performance. Radiology. 
https://pubs.rsna.org/doi/full/10.1148/ryai.2019180084 

Already IN 

51. Ma J. et al (2020). Survey on deep learning for pulmonary medical imaging. Frontiers in Medicine. 
https://pubmed.ncbi.nlm.nih.gov/31840200/ 

Review 

52. Wang L. et al. (2020) Toward standardized premarket evaluation of computer aided 
diagnosis/detection products: insights from FDA-approved products. Expert Review of Medical 
Devices. https://pubmed.ncbi.nlm.nih.gov/32842797/ 

Review 

53. Wang Y. et al. (2019) IILS: Intelligent imaging layout system for automatic report standardization 
and intra-interdisciplinary clinical workflow optimization. EBioMedicine. 
https://pubmed.ncbi.nlm.nih.gov/31129095/ 

Population not eligible (>10% patients with 
extrathoracic cancers; see Table 65). 

54. Yang K. et al. (2020). Identification of benign and malignant pulmonary nodules on chest CT using 
improved 3D U-Net deep learning framework. European Journal of Radiology. 
https://pubmed.ncbi.nlm.nih.gov/32505895/ 

Malignancy risk prediction. 

JLK Inc. (n=8) 

55. Advena Limited (2021). Certificate of Registration No relevant data reported. 

56. JLK (2021). NICE DAP60 – AI for chest CT. Request for information No relevant data reported. 

57. JLK (2021). NICE DAP60 – AI for chest CT. Checklist of confidential information. 26th November 2021 No relevant data reported. 

58. JLK (2022). NICE DAP60 – AI for chest CT. Checklist of confidential information. 27th May 2022. No relevant data reported. 

59. JLK (2021). EC Declaration of Conformity (Self-Certification) No relevant data reported. 

60. Psaila A (Advena Ltd) (2021). Device Description & Specification for JLD-01K. Issue 1.0, Document 
ref. DD500 

No relevant data reported. 

61. Xiao, Zhitao, Bowen Liu, Lei Geng, Fang Zhang, and Yanbei Liu. 2020. "Segmentation of Lung 
Nodules Using Improved 3D-UNet Neural Network" Symmetry 12, no. 11: 1787. 
https://doi.org/10.3390/sym12111787 

Software not commercially available. 

62. Wang J, Wang JW, Wens YF, et al. Pulmonary Nodule Detection in Volumetric Chest CT Scans Using 
CNNs-Based Nodule-Size-Adaptive Detection and Classification. IEEE Access 2019;7:46033-44. doi: 
10.1109/ACCESS.2019.2908195 

Software not commercially available. 

MeVis Medical Solutions (n=22) 

63. Cohen JG, Goo JM, Yoo RE, Park CM, Lee CH, van Ginneken B, Chung DH, Kim YT. Software 
performance in segmenting ground glass and solid components of subsolid nodules in pulmonary 
adenocarcinomas. Eur Radiol. 2016 Dec;26(12):4465-4474. 

Already IN 
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Reference Main reason for exclusion 
64. Cohen JG, Goo JM, Yoo RE, Park SB, van Ginneken B, Ferretti GR, Lee CH, Park CM. The effect of late-

phase contrast enhancement on semi-automatic software measurements of CT attenuation and 
volume of part-solid nodules in lung adenocarcinomas. Eur J Radiol. 2016 Jun;85(6):1174-80. 

Population not eligible (53 adenocarcinomas 
presenting as part-solid nodules in 50 patients; 
report in extra table) 

65. Cohen JG, Kim H, Park SB, van Ginneken B, Ferretti GR, Lee CH, Goo JM, Park CM. Comparison of the 
effects of model-based iterative reconstruction and filtered back projection algorithms on software 
measurements in pulmonary subsolid nodules. Eur Radiol. 2017 Aug;27(8):3266-3274. 

Already IN 

66. Jacobs C, Sánchez CI, Saur SC, Twellmann T, de Jong PA, van Ginneken B. Computer-aided detection 
of ground glass nodules in thoracic CT images using shape, intensity and context features. Med 
Image Comput Comput Assist Interv. 2011;14(Pt 3):207-14. 

Published before 2012. 

67. Jacobs C, van Rikxoort EM, Twellmann T, Scholten ET, de Jong PA, Kuhnigk JM, Oudkerk M, de 
Koning HJ, Prokop M, Schaefer-Prokop C, van Ginneken B. Automatic detection of subsolid 
pulmonary nodules in thoracic computed tomography images. Med Image Anal. 2014 
Feb;18(2):374-84. 

Software not commercially available - the tested 
algorithm for detection of SSNs is not included in 
Veolity (MeVis). 

68. Jacobs C, van Rikxoort EM, Murphy K, Prokop M, Schaefer-Prokop CM, van Ginneken B. Computer-
aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. 
Eur Radiol. 2016 Jul;26(7):2139-47. 

Visia (MeVis Medical Solutions) not Veolity 

69. Jacobs C, Schreuder A, van Riel SJ, et al. Assisted versus Manual Interpretation of Low-Dose CT Scans 
for Lung Cancer Screening: Impact on Lung-RADS Agreement. Radiol Imaging Cancer 
2021;3(5):e200160. doi: https://dx.doi.org/10.1148/rycan.2021200160 

Already included. 

70. MEDCERT (2018). EC-Certificate of Conformity No relevant data reported. 

71. MeVis (2021). VeolityTM LungCAD 1.7 User Guide (Instructions for Use) Company did not provide further details on 
population by 31/08/2022 

72. MeVis (2021). VeolityTM LungRead 1.7 User Guide (Instructions for Use) No relevant data reported. 

73. MeVis (2021). Veolity 1.7 Scanning Protocol Recommendations No relevant data reported. 

74. Ritchie AJ, Sanghera C, Jacobs C, Zhang W, Mayo J, Schmidt H, Gingras M, Pasian S, Stewart L, Tsai S, 
Manos D, Seely JM, Burrowes P, Bhatia R, Atkar-Khattra S, van Ginneken B, Tammemagi M, Tsao 
MS, Lam S; Pan-Canadian Early Detection of Lung Cancer Study Group. Computer Vision Tool and 
Technician as First Reader of Lung Cancer Screening CT Scans. J Thorac Oncol. 2016 May;11(5):709-
717. 

CIRRUS Lung Screening 

75. Scholten ET, Jacobs C, van Ginneken B, Willemink MJ, Kuhnigk JM, van Ooijen PM, Oudkerk M, Mali 
WP, de Jong PA. Computer-aided segmentation and volumetry of artificial ground glass nodules at 
chest CT. AJR Am J Roentgenol. 2013 Aug;201(2):295-300. 

Artificial ground glass nodules 

76. Scholten ET, de Hoop B, Jacobs C, van Amelsvoort-van de Vorst S, van Klaveren RJ, Oudkerk M, 
Vliegenthart R, de Koning HJ, van der Aalst CM, Mali WT, Gietema HA, Prokop M, van Ginneken B, 

Author contacted about software used but no 
reply 
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Reference Main reason for exclusion 

de Jong PA. Semi-automatic quantification of subsolid pulmonary nodules: comparison with manual 
measurements. PLoS One. 2013 Nov 21;8(11):e80249. 

77. Scholten ET, de Jong PA, Jacobs C, van Ginneken B, van Riel S, Willemink MJ, Vliegenthart R, 
Oudkerk M, de Koning HJ, Horeweg N, Prokop M, Mali WP, Gietema HA. Interscan variation of semi-
automated volumetry of subsolid pulmonary nodules. Eur Radiol. 2015 Apr;25(4):1040-7. 

CIRRUS Lung Screening 

78. Scholten ET, Jacobs C, van Ginneken B, van Riel S, Vliegenthart R, Oudkerk M, de Koning HJ, 
Horeweg N, Prokop M, Gietema HA, Mali WP, de Jong PA. Detection and quantification of the solid 
component in pulmonary subsolid nodules by semiautomatic segmentation. Eur Radiol. 2015 
Feb;25(2):488-96. 

CIRRUS Lung Screening 

79. Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard CVD, Cerello P, Chen H, Dou Q, Fantacci ME, 
Geurts B, Gugten RV, Heng PA, Jansen B, de Kaste MMJ, Kotov V, Lin JY, Manders JTMC, Sóñora-
Mengana A, García-Naranjo JC, Papavasileiou E, Prokop M, Saletta M, Schaefer-Prokop CM, Scholten 
ET, Scholten L, Snoeren MM, Torres EL, Vandemeulebroucke J, Walasek N, Zuidhof GCA, Ginneken 
BV, Jacobs C. Validation, comparison, and combination of algorithms for automatic detection of 
pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal. 
2017 Dec;42:1-13. 

Visia CT Lung CAD system 

80. Silva M, Prokop M, Jacobs C, Capretti G, Sverzellati N, Ciompi F, van Ginneken B, Schaefer-Prokop 
CM, Galeone C, Marchianò A, Pastorino U. Long-Term Active Surveillance of Screening Detected 
Subsolid Nodules is a Safe Strategy to Reduce Overtreatment. J Thorac Oncol. 2018 
Oct;13(10):1454-1463. 

CIRRUS Lung Screening 

81. Silva M, Schaefer-Prokop CM, Jacobs C, Capretti G, Ciompi F, van Ginneken B, Pastorino U, 
Sverzellati N. Detection of Subsolid Nodules in Lung Cancer Screening: Complementary Sensitivity of 
Visual Reading and Computer-Aided Diagnosis. Invest Radiol. 2018 Aug;53(8):441-449. 

CIRRUS Lung Screening (research version with 
prototype Veolity) 

82. SynApps Solutions Ltd. (2021). NICE DAP60 – AI for chest CT. Checklist of confidential information. 
17th September 2021. 

No relevant data reported. 

83. SynApps Solutions Ltd. (2022). NICE DAP60 – AI for chest CT. Checklist of confidential information. 
20th May 2022. 

No relevant data reported. 

84. SynApps Solutions Ltd. (2021). NICE DAP60 – AI for chest CT. Request for information No relevant data reported. 

Riverain Technologies (n=12) 

85. Intertek Semko AB (2020). EC Certification – Full Quality Assurance System No relevant data reported. 

86. Lo SB, Freedman MT, Gillis LB, et al. JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on 
CT With a Computerized Pulmonary Vessel Suppressed Function. AJR Am J Roentgenol 
2018;210(3):480-88. doi: https://dx.doi.org/10.2214/AJR.17.18718 

Already IN 
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Reference Main reason for exclusion 
87. Martini K, Bluthgen C, Eberhard M, et al. Impact of Vessel Suppressed-CT on Diagnostic Accuracy in 

Detection of Pulmonary Metastasis and Reading Time. Acad Radiol 2021;28(7):988-94. doi: 
https://dx.doi.org/10.1016/j.acra.2020.01.014 

OUT on population (>10% with extrathoracic 
cancer, see Table 65). 

88. Milanese G, Eberhard M, Martini K, et al. Vessel suppressed chest Computed Tomography for semi-
automated volumetric measurements of solid pulmonary nodules. Eur J Radiol 2018;101:97-102. 
doi: https://dx.doi.org/10.1016/j.ejrad.2018.02.020 

Already IN 

89. Riverain Technologies. ClearRead CT Abridged User Guide Version 5.0 No relevant data reported. 

90. Riverain Technologies (2021). ClearRead CT Compare Sample No relevant data reported. 

91. Riverain Technologies (2021). ClearRead CT Detect Sample No relevant data reported. 

92. Riverain Technologies (2021). NICE DAP60 – AI for chest CT. Checklist of confidential information. 9th 
November 2021. 

No relevant data reported. 

93. Riverain Technologies (2022). NICE DAP60 – AI for chest CT. Checklist of confidential information. 
23rd May 2022. 

No relevant data reported. 

94. Riverain Technologies (2021). NICE DAP60 – AI for chest CT. Request for information No relevant data reported. 

95. Singh R, Kalra MK, Homayounieh F, et al. Artificial intelligence-based vessel suppression for 
detection of sub-solid nodules in lung cancer screening computed tomography. Quant 
2021;11(4):1134-43. doi: https://dx.doi.org/10.21037/qims-20-630 

Already IN 

96. van Leeuwen, K.G., Schalekamp, S., Rutten, M.J.C.M. et al. Artificial intelligence in radiology: 100 
commercially available products and their scientific evidence. Eur Radiol 31, 3797–3804 (2021). 
https://doi.org/10.1007/s00330-021-07892-z 

Overview 

Siemens Healthineers (n=3) 

97. Siemens Healthineers (2020). AI-Rad Companion (Pulmonary). Addendum – Usage of syngo.CT Lung 
CAD VD20. VA12 

No additional information on study methods 
provided by 31/08/2022 

98. Siemens Healthineers (2021). AI-Rad Companion. Instructions for Use – AI-Rad Companion 
(Pulmonary) VA13 

No relevant data reported. 

99. Siemens Healthineers (2021). AI-Rad Companion (Pulmonary). Addendum – Lung CAD VD20. VA13 No additional information on study methods 
provided by 31/08/2022 
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Table 66. Study characteristics and main outcomes of records excluded on study population only (n=11) 

Reference, 
country 

Study design 

 

Aim Population 

 

Index test Comparator Reported outcomes 

Ahn 2021,34 

Korea 

MRMC study: 

Stand-alone AI 
vs readers 
with 
concurrent AI. 

 

To evaluate the 
performance of a 
commercially 
available DL-
algorithm for 
automatic 
measurement of the 
solid portion of 
surgically proven 
lung 
adenocarcinomas 
manifesting as 
subsolid lesions. 

Asan medical Centre 
(Seoul, Korea), January 
to December 2018; 

448 patients with 448 
SSNs ≥6 mm who had 
undergone curative 
resection of non-small 
lung cancer with chest 
CT performed <30 days 
of surgery. 

VUNO MedLungCT AI, version 
1.0.0 (VUNO); 

Nodule segmentation and 
measurement of solid portion 
(maximal axial diameter; 
maximal diameter 
multiplanar); 

[A] Stand-alone AI; 

[C] Concurrent AI:  

5 radiologists with 4-26 years 
of experience. 

None Segmentation adequacy and 
failure rate [A]; 

Measurement inter-observer 
variability [C]; 

Measurement agreement 
between [A] vs [C]; 

[A] vs invasive size at 
pathologic examination; 

[C] vs invasive size at 
pathologic examination.  

Cohen 
2016a,35 

Korea 

MRMC study: 

Concurrent AI 
vs unaided 
readers. 

 

 

To evaluate the 
performance of 
computer-aided 
segmentation of 
ground glass and 
solid components in 
SSNs and to compare 
the software and 
pathology 
measurements in 
pulmonary 
adenocarcinomas 
manifesting as SSNs. 

Thoracic surgery 
database (Seoul 
National University 
College of Medicine) 
review for surgically 
resected GGNs 
between 2013 and 
2015. 

23 patients with 73 
resected pulmonary 
adenocarcinomas 
manifesting as SSNs. 

Veolity version 1.1 (MeVis); 

Nodule segmentation and 
measurement (maximal 
transverse diameter) of the 
entire nodule and its solid 
component (9 different 
attenuation thresholds); 

[C] Concurrent AI:  

1 radiologist with 4 years of 
experience. 

[D] Unaided 
readers:                          
2 radiologists with 
24 and 4 years of 
experience, 
respectively, using 
electronic clippers 
(entire nodule: lung 
window; solid 
component: lung 
and mediastinal 
windows). 

 

Segmentation adequacy and 
failure rate [A]; 

Agreement between [C]/[D] 
and tumour sizes on 
pathology; 

Agreement between [C]/[D] 
and invasive component sizes 
on pathology; 

Diagnostic accuracy of [C] and 
[D] in predicting AIS or MIA; 

Agreement between [C] and 
[D] measurements for ground 
glass components and solid 
components, respectively. 
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Reference, 
country 

Study design 

 

Aim Population 

 

Index test Comparator Reported outcomes 

Cohen 
2016b36,  

Korea 

 

 

 

 

 

 

MRMC study: 

Concurrent 
software use - 
unenhanced 
vs enhanced 
CT images. 

 

 

 

To evaluate the 
differences in semi-
automatic 
measurements of CT 
attenuation and 
volume of part-solid 
nodules between 
unenhanced and 
enhanced CT scans. 

 

 

Retrospectively 
reviewed all 
preoperative CT scans 
for the part-solid 
nodules with 
consecutive pre-and 
post-enhancement 
acquisitions between 
July 2014 and May 
2015 (Seoul National 
University College of 
Medicine). 

53 lung 
adenocarcinomas 
presenting as part-
solid nodules in 50 
patients. 

Veolity version 1.1 (MeVis); 

Nodule segmentation and 
measurement (largest 
diameter, volume, mass and 
attenuation) of ground glass 
and solid components; 

[C] Concurrent AI:  

1 radiologist with 4 years of 
experience. 

None Segmentation adequacy and 
failure rate [A]; 

Difference between [C] 
unenhanced and [C] enhanced 
acquisitions (largest diameter, 
volume, mass, attenuation) for 
the whole nodule and solid 
component, respectively; 

Difference of measures 
between [C] unenhanced and 
[C] enhanced according to 
adenocarcinoma category 
(AIS/MIA and IA). 

Garzelli 
2018,37 

Korea 

MRMC study: 

Concurrent 
software use - 
with and 
without vessel 
removal. 

 

To evaluate the value 
of vessel removal 
algorithm in semi-
automatic 
segmentation of 
subsolid nodule by 
comparing the 
software 
measurements of the 
solid component on 
CT with and without 
vessel removal, with 
the measurement of 
invasive tumour on 
pathology in lung 

Medical record review 
of all patients who had 
undergone surgical 
resection for lung 
adenocarcinomas and 
pre-invasive lesions 
that manifested as 
subsolid nodules at 
Seoul National 
University hospital 
between January 2014 
and June 2015. 

73 patients were 
included.  

AVIEW LungScreen (Coreline 
Soft); 

Nodule segmentation and 
measurement of the ground 
glass and solid components, 
with and without vessel 
removal function (3D longest, 
axial longest and effective 
diameters); 

[C] Concurrent AI: 

2 radiologists with 3 and 26 
years of experience. 

None Segmentation adequacy and 
failure rate [C]; 

Comparison of [C] with the 
pathology measurements 
(whole tumour size and 
invasive component) with and 
without vessel removal; 

Inter-reader variability and 
intra-reader variability of [C] 
with and without vessel 
removal; 

Diagnostic accuracy of [C] (3D 
longest diameter of solid 
component with vessel 
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Reference, 
country 

Study design 

 

Aim Population 

 

Index test Comparator Reported outcomes 

adenocarcinomas 
manifesting as 
subsolid nodules.  

1 repeated all measurements 
at a 3-week interval. 

removal) in predicting 
AAH/AIS/MIA. 

Hu 2022,40 

China 

Prospective 
test accuracy 
study: 

Stand-alone AI 
performance – 
effect of dose, 
blending level 
and definition  
modes. 

 

To compare the CAD 
detectable sensitivity 
on pulmonary 
nodules between 
SDCT and LDCT scans 
with different 
parameters including 
definition modes and 
blending levels of 
adaptive statistical 
iterative 
reconstruction. 

117 patients with 
extra-thoracic 
malignancies who 
were scheduled for 
chest CT examination 
to detect pulmonary 
metastasis or for 
follow-up to monitor 
their conditions and 
determine the 
treatment response. 

July to December 
2017. 

InferRead CT lung 
(InferVision); 

Blending levels (0%, 60%, 
80%); 

Definition modes (HD, non-
HD; 

[A] Stand-alone AI. 

None Sensitivity and FP rate for 
LDCT and SDCT at various 
blending levels and HD and 
non-HD modes. 

 

 

 

Li 2021,43 

China 

MRMC study: 

Stand-alone AI 
vs unaided 
readers 

 

To evaluate the 
accuracy of an AI-
driven commercial 
CAD product 
(InferRead CT Lung 
Research) in 
malignancy risk 
prediction using a 
real-world database. 

442 consecutive 
patients with 525 
lesions who underwent 
lung resection at Fifth 
Affiliated Hospital of 
Sun Yat-sen University 
between September 
2015 and November 
2018. 

 

  

InferRead CT Lung Research 
(Infervision);  

Nodule detection and risk 
prediction (low, moderate, 
high).   

[A] Stand-alone AI.                       

 

 

[D] Unaided reader: 

2 radiology 
residents (3 years 
of chest radiology 
and general 
radiology 
experience, 
respectively) 
independently 
reviewed and 
graded each lesion 
(high-risk, >70%), 
moderate-risk, 50-
70%), low-risk, 
<50%). 

Technical failure rate of [A] 
(detection errors); 

Lung nodule detection rate 
(sensitivity) of [A]; 

Characteristics of missed 
nodules [A]; 

Accuracy of malignancy risk 
prediction [A] [D]; 

Comparison of malignancy risk 
prediction accuracy: [A] vs [D]. 
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Reference, 
country 

Study design 

 

Aim Population 

 

Index test Comparator Reported outcomes 

Martini 

2021,38 

Switzerland 

MRMC study: 

Software-
assisted 
readers vs 
unaided 
readers. 

To evaluate if vessel 
suppressed-CT 
increases nodule 
detection rate, 
improves interreader 
agreement, and 
decreases reading 
time in chest CT of 
oncologic patients. 

100 consecutive 
oncologic patients who 
were referred for a 
clinically indicated 
contrast-enhanced CT 
between January 2014 
and December 2017 at 
2 institutions in Zurich. 

ClearRead-CT (Riverain 
Technologies) 

Vessel suppression function; 

[C] Concurrent AI: 

6 radiologists (2 with 1-2 
years, 2 with 5 years and 2 
with 8-9 years of experience). 

Nodule detection on vessel-
suppressed CT images (with 
access to standard CT 
images). 

[D] Unaided reader: 

6 radiologists (2 
with 1-2 years, 2 
with 5 years and 2 
with 8-9 years of 
experience). 

Nodule detection 
on standard CT 
images. 

Nodule detection rate [C] [D]; 

Inter-reader agreement [C] 
[D]; 

FP rate in vessel-suppressed 
CT images [C]; 

FN rate in vessel-suppressed 
CT images [C]; 

Reading time [C] [D]. 

Park 2021,39 

Korea 

Retrospective 
test accuracy 
study: 

Performance 
of stand-alone 
AI. 

To assess the effect 
of CT section 
thickness on the 
performance of CAD 
for detecting SSNs 
and to investigate 
whether DL-based 
super-resolution 
algorithms for 
reducing CT section 
thickness can 
improve 
performance. 

Electronic medical 
records of a tertiary 
referral institution 
(Asan Medical Center) 
from March 2018 to 
December 2018; 

308 patients with SSN 
(6-30 mm) who 
underwent curative 
resection of lung 
adenocarcinoma. 

VUNO Med-LungCT AI version 
1.0.0 (VUNO); 

Detection of SSNs on CT 
images of each section 
thickness (1 mm, 3 mm, 5 
mm; super-resolution 
algorithm for CT section 
reduction applied to the 3- 
and 5-mm CT images to 
convert them into 1-mm CT 
images; 

[A] Stand-alone AI. 

None Performance of [A] to detect 
SSNs at all 3 section 
thicknesses and at converted 
images (per-lesion and per-
patient). 

Wagner 

2018,41 

Germany 

Retrospective 
test accuracy 
study: 

To evaluate the 
accuracy of a CAD 
application for 
pulmonary nodular 
lesions in CT scans. 

100 consecutive 
patients with 106 
biopsied nodules (50 
confirmed as bronchial 
cancer; 11 metastatic 
disease of various 

ClearReadCT (Riverain 
Technologies), versions V1 
and V2, release candidates 
(V2 now commercially 
available); 

None Segmentation failure rate [A]; 

Agreement in segmentations 
between V1 and V2; 

Volume-diameter correlation; 
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Reference, 
country 

Study design 

 

Aim Population 

 

Index test Comparator Reported outcomes 

Stand-alone AI 
versions V1 vs 
V2; 

Effect of 
contrast 
enhancement, 
reconstruction 
kernel and 
slice 
thickness. 

 

origin; 39 with a 
benign lesion) from the 
University Hospital 
Jena between 6/2007 
and 2/2016. 

Nodule detection and 
measurement (volume, 
maximal diameter). 

[A] Stand-alone AI. 

 

Sensitivity and FP rate for V1 
and V2 (non-enhanced vs 
enhanced, lung vs soft tissue 
kernel, 0.75 mm vs 1.5 mm vs 
3.0 mm); 

[A] oversights (FN); 

Additional verified nodules 
detected by [A]. 

Wang 
2019,44 

China 

MRMC study: 

Stand-alone AI 
vs unaided 
readers. 

To achieve imaging 
report 
standardization and 
improve the quality 
and efficiency of the 
intra-interdisciplinary 
clinical workflow, we 
proposed an 
intelligent imaging 
layout system (IILS) 
for a clinical decision 
support system-
based ubiquitous 
healthcare service, 
which is a lung 
nodule management 
system using 
medicalimages. 

Independent test set: 
1,965 LDCT with or 
without contrast 
selected from 
retrospective cohorts 
of adult patients from 
Nanjing Drum Tower 
Hospital, Northern 
Jiangsu People's 
Hospital, Ningbo No.2 
Hospital, and NanJing 
GaoChun People's 
Hospital between 
October 2016 and 
November 2018. 

Intelligent imaging layout 
system (IILS) – Company 
confirmed that this is “same 
product” as InferRead CT Lung 
(Infervision); 

Nodule detection and 
classifying benign or 
malignant; 

[A] Stand-alone AI. 

 

[D] Unaided 
readers: 

6 radiologists; 

twice by six experts 
with a 1-month 
time interval. 

Nodule detection: agreement 
with gold standard for [A] and 
6 unaided readers [D] for all 
nodules and by nodule size. 
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Reference, 
country 

Study design 

 

Aim Population 

 

Index test Comparator Reported outcomes 

Yacoub 
2021,42 

USA 

Retrospective 
test accuracy 
study: 

Stand-alone AI 
vs original 
radiology 
reports. 

 

To assess the 
performance of an AI 
platform compared 
against clinical 
radiology reports on 
non-contrast chest 
CT scans. 

100 consecutive 
patients who had 
previously undergone 
non-contrast chest CT 
between October to 
November 2019 were 
retrospectively 
identified. 

24% Evaluation for 
metastasis; 

11% Lung cancer; 

5% Evaluation for 
primary tumour. 

AI-Rad Companion (Siemens 
Healthineers) 

Detection of pulmonary 
lesions (nodule or mass ≥5 
mm in size). 

[A] Stand-alone AI. 

 

 

[E] Original 
radiology reports. 

 

 

Sensitivity;  

Specificity; 

Positive predictive value; 

Negative predictive value; 

AUC. 

AI, Artificial intelligence; AIS, Adenocarcinoma in situ; AUC, Area under the receiver-operating curve; CAD, Computer-aided detection; CT, Computed tomography; DL, Deep 
learning; FN, False negative; FP, False positive; GGN, Ground glass nodule; HD, High definition; IA, Invasive adenocarcinoma; LDCT, Low-dose computed tomography; MIA, 
Minimally invasive adenocarcinoma; MRMC, Multi-reader multiple-case study; SDCT, Stand-dose computed tomography; SSN, Sub-solid nodule; TP, True positive. 
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Table 67. Characteristics of ongoing and/or unpublished studies (7 studies) 

Reference, 
country 

Title and study 
design 

Population 

 

Index test Comparator Outcomes Completion 
date 

********* 
********** 
****** 
********** 
********* 86 
***** 

*** 
*****************
*********** 
 

*********** 

************ 
********************** 
*********************** 

********************
******** 

****************** 

****** ***************** 

******************* 

************ 
******* 
********** 

*********** 
********* 
*********** 
**** 

************ 
********* 
********** 
*********** 87 
********* 

**** 
************** 

***** 

************************ 
********************** 

***************** 
******************* 

******************* 
********* 

************* 
************ 

***********************
********* 

********************** 
******************* 
****************** 
*********************** 
********************* 
******************** 

******* 
******** 

NCT04119960 
(2019),88 

USA 

Clinical Validation of 
InferRead Lung CT.AI 
/ 
MRMC study 

N=250 

50-75 years, lung cancer 
screening eligible patients. 

Probability sample. 

University of Maryland 
Medical Center (Baltimore, 
Maryland, USA) 

InferRead Lung CT.AI 
(Infervision): 

[C] Radiologists with 
software 

[D] Radiologists 
without software 

Detection accuracy (AUC, 
sensitivity, specificity, PPV, 
NPV) ([C] vs [D]) 

 

30 October 
2019 

NCT02871856 
(2021),89, 90 

Australia, 
Canada, 

International Lung 
Screen Trial (ILST) / 
Randomised 
controlled sub-study 
to evaluate the utility 

N=4,500 

Ever smokers between 55-80 
years. 

Veolity 1.2 (MeVis): 

[B] Radiologist-read first 
then CAD-verified;  

Radiologist 
review using a 
standardised 
reporting 
protocol will 

Sub-study on CAD:  

Radiologist reporting time 
([B] vs [C]); 

Anticipated 
December 2023 
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Reference, 
country 

Title and study 
design 

Population 

 

Index test Comparator Outcomes Completion 
date 

Hongkong, 
Spain 

of CAD to improve 
radiologist reporting 
time and accuracy. 

9 recruitment sites in 
Australia, Canada, Hongkong, 
Spain. 

Sub-study on CAD will be 
performed at some sites only. 

[C] CAD-verified first 
then radiologist-read. 

remain the gold 
standard 

Diagnostic accuracy ([B] vs 
[C]). 

NCT04792632 
(2021),91 

USA 

 

Clinical Performance 
Evaluation of Veye 
Lung Nodules 
(CPEVLN) / 
MRMC study 

N=350 

18 years and older;  

US population that received a 
chest CT scan either as part of 
a lung cancer screening 
programme or during routine 
practice (Intrinsic Imaging, 
Boston, Massachusetts) 

Veye Lung Nodules 
(Aidence): 

[A] Stand-alone 
software; 

[C] AI-assisted 
radiologists 

[D] Radiologists 
without software 

Detection accuracy ([C] vs 
[D]; 

Segmentation accuracy ([A] 
vs expert radiologists); 

Growth assessment 
accuracy ([A] vs expert 
radiologists); 

Composition classification 
accuracy ([C] vs [D]). 

Estimated July 
2021 

********* 
*********** 
*************
******** 92 

** 

 

*****************
*****  
************** 
*************** 
************* 
*********  

********* 

********************* 
*********************** 
********************* 
*********************** 
********************* 
*********************** 
******************* 
********************* 
*********** 

********************
******* 

**************** 
*************** 
***************** 
*************** 
****************** 
********************
********* 

********** 
******* 
********** 
***** 
********** 
************ 
******** 
************ 
************* 
********* 
******** 

****************** 
********************* 
******************** 
*************** 
******************** 
*********** 

******************* 
************ 
***************** 
*********** 
***************** 
********************* 
********************* 
************** 

** 
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Reference, 
country 

Title and study 
design 

Population 

 

Index test Comparator Outcomes Completion 
date 

KCT0005065 
(2020),93 
Korea 

A multi-center, 
retrospective pivotal 
trial to evaluate the 
efficacy of artificial 
intelligence-based 
pulmonary nodule 
detection software 
‘VUNO Med – Lung 
CAD’ in thoracic CT / 
Retrospective test 
accuracy study 

N=855 
1) Adults at the age 19 or 
above who had a thoracic CT 
scan within the period from 
Jan 2012 to Jun 2018; 
2) Patients whose thoracic CT 
scan showed no or 1 to 5 
pulmonary nodules with the 
long-axis diameter from 4 mm 
to 30 mm 

VUNO Med – Lung CAD 
(VUNO): 
[A] Stand-alone software 
 

None Per lesion sensitivity; 
Per patient sensitivity; 
Per patient specificity; 
Per patient false positive; 
Per patient false negative; 
Per lesion false negative 

19 November 
2019 

[A] Stand-alone software; [B] Assisted 2nd-read software; [C] Concurrent software use; [D] Unaided reading. 
AUC, Area under the receiver operating curve; CAD, Computer-aided detection; FN, False negative; FP, False positive; LDCT, Low-dose computed tomography; MRMC, 
Multi-reader, multi-case study; NPV, Negative predictive value; NR, Not reported; PPV, Positive predictive value; TN, True negative; TP, True positive; VLN, Veye Lung 
Nodules (Aidence).  
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13.3 Appendix 3: Data extraction tables 

 

EVIDENCE ID STUDY NAME  (Author Year) EXTRACTOR CHECKER

PATIENT SAMPLING ITEMS PATIENT SAMPLING PATIENT CHARACTERISTICS 

AND SETTING ITEMS

PATIENT CHARACTERISTICS AND SETTING INDEX TEST ITEMS INDEX TEST (software-based nodule 

detection and analysis)

COMPARATOR ITEMS COMPARATOR (no software for nodule 

detection or analysis)

REFERENCE STANDARD ITEMS REFERENCE STANDARD FLOW AND TIMING ITEMS FLOW AND TIMING NOTES items NOTES

A1 Review question relevance 

- Q1: Test accuracy and other 

intermediate outcomes

- Q2: Clinical effectiveness

- Q3: Cost effectiveness

B1 Setting C1 Index test mode, e.g. 

[A] Stand-alone AI

[B] 2nd read CAD

[C] Concurrent CAD

D1 Reader details (number, 

general or thoracic radiologist 

or other, experience) (continue 

labelling with [D], [E]… as 

appropriate)

E1 Reference standard - 

General approach

F1 What was the time interval 

between index and reference 

tests?

G1: Funding

A2 Relevant outcomes for DAR B2 Location (include name of 

institution if available)

C2 AI name and version/date

(label different AI-based index 

tests with [A], [B], [C]...)

D2 Reading conditions (reader 

study, clinical practice, other 

details)

E2 Reference standard for 

nodule detection

F2 Did all patients receive the 

same reference standard

G2: Publication status

A3 Study design 

(and description of groups 

labelled [1] [2] …)

B3 Dates C3 Manufacturer and country D3 Method of nodule detection E3 Reference standard for 

malignant nodules

F3 Was the reference standard 

chosen based on only one of 

the index/comparator tests?

G3: Source (pre-print or Journal 

name)

A4 Aim of the study B4 Indication for CT scan

- Symptomatic

- Incidental (with reason)

- Screening

- CT surveillance

C4 Commercially available / CE 

mark

D4 Method of nodule 

composition/type

E4 Reference standard for 

benign nodules

F4 Missing data G4: Author COI (including any 

manufacturer affiliations)

A5 Study type

1) Stand-alone software 

compared to nothing

2) Stand-alone software 

compared to human

3) Software-assisted reader 

compared to unassisted reader

4) Software-assisted reader 

compared to nothing

5) Software use in pathway

B5 Patient characteristics

- Age

- Gender

- Ethnicity

- Smoking

C5 AI algorithm details D4 Method of nodule size 

measurement (segmentation, 

volume, diameter)

E5 Reference standard for 

nodule composition/type

F5 Uninterpretable results G5 Comment

A6 Comparative study design:      

1) Fully Paired 

2) Randomized 

3) Partially paired with random 

subset 

4) Partially paired with 

nonrandom subset 

5) Unpaired nonrandomized 

6) Other (please describe)

B6 Nodule characteristics

- Number of nodules

- Nodule size

- Nodule type

- Nodule shape

C6 AI training and tuning 

details

D5 Method of nodule growth 

rate

E6 Reference standard for  

nodule segmentation and size

F6 Indeterminate results

A7 Method of participant / CT 

image selection

- Source

- Consecutive, random, selected 

(e.g. enriched), unclear

B7 CT image acquisition

- CT scanner

- Full or partial chest

- With or without contrast

- Acquisition parameters (e.g. 

dose)

- Image reconstruction

- Slice thickness

C7 Software functionality:

- Nodule detection

- Nodule composition

- Nodule segmentation/  

  measurement

- Growth rate

D6 Blinded to reference 

standard

E7 Reference standard for 

nodule growth rate

F7 Statistical analysis

A8 Were cases recruited 

prospectively or 

retrospectively?

B8 Comments C8 AI software settings (e.g. 

threshold)

D7 Blinded to the results of any 

other index tests/comparator 

tests

E8 Was it blind to index 

test/comparator test

 F8 Comment

A9 Sample size C9 Reader details (number, 

general or thoracic radiologist 

or other, experience, location)

D8 Threshold pre-specified E9 Did it incorporate index 

test/comparator test

A10 Inclusion  criteria C10 Reading conditions where 

human readers are part of the 

test (reader study, clinical 

practice, other details)

D9 Other information available 

to unassisted reader (e.g. prior 

CT scans, family history)

E10 Comments

A11 Exclusion criteria C11 Method for nodule 

detection

D10 Description of a whole 

read (up to clinical decision on 

discharge, CT surveillance or 

further diagnostic 

investigation)

A12 Study flow

- Screened for eligibility

- Eligible

- Not eligible (with reasons)

- Included in study/test set

- Excluded from study/test set 

(with reasons)

- Included in analysis 

- Excluded from analysis (with 

reasons)

C12 Method for nodule 

composition/type

D11 Comments

A13 Comment C13 Method for segmentation 

and nodule size measurement 

(volume, diameter)

C14 Method for nodule growth 

determination

C15 Other information made 

available to AI system or AI 

assisted reader (e.g. prior CT 

scans, family history)

C16 Blinded to reference 

standard

C17 Blinded to the results of 

any index/comparator tests

C18 Threshold predefined

C19 Description of a whole 

read (up to clinical decision on 

discharge, CT surveillance or 

further diagnostic 

investigation)

C20 Comment
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Table 68. Study level description of the 27 included studies for key question 1 

Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

AI-Rad Companion (Siemens Healthineers) (3 studies) 

Abadia 2021,45 

USA, 

Retrospective 
test accuracy 
and MRMC 
study; 

VA10A 
prototype 

Mixed population:    
Lung cancer screening, 
abnormal x-rays, 
suspicious nodule follow-
up, abnormal lung-
function tests, 
respiratory symptoms, or 
history of lung diseases1. 
Selected 143 patients 
with least 1 lung 
condition1 present and 
by nodule presence / 
absence in radiology 
report: 

[1] 103 with nodules,  
[2] 40 without nodules. 

Low dose, 
no 
contrast, 

1 mm  

Any type [A] Stand-alone AI; 

1 expert chest 
radiologist: 

[C] With concurrent 
AI (MRMC study); 

[D] Without AI 
(MRMC study); 

[E] Original radiology 
reports (1 of 5 
experienced chest 
radiologists without 
AI). 

Per-nodule assessment / 
per-subject assessment: 

[1] [D] + AI-RAD (2nd 
read AI): 

[2] [E] + AI-RAD (2nd 
read AI)2 

AI-RAD versus radiology 
reports: 

[1] [E] + AI-RAD (2nd 
read AI)1     

Nodule detection 
accuracy;        

Nodule size 
measurement ([A] vs 
[D]); 

Characteristics of 
nodules (FN, FP);            

Reading times;  

Confidence in lung 
nodule detection.                                      

N/A 

Chamberlin 
2021,46 

USA, 

Retrospective 
test accuracy 
study,  

Screening population: 
randomly selected 117 
patients from a single US 
institution. 

Low dose, 
no 
contrast, 

1 mm 

Any type, 

>6 mm 

[A] Stand-alone AI  Nodule detection: 

Consensus expert 
reading (2 readers) 

Nodule detection 
accuracy;  

Characteristics of 
detected nodules. 

 

Quantification of 
coronary artery 
calcium volume; 
prediction of 
major 
cardiopulmonary 
outcomes; false 
positive analysis 

 

1 Interstitial lung disease, chronic obstructive lung disease, respiratory bronchiolitis, pulmonary oedema, or pulmonary embolism. 
2 If AI-RAD found additional nodules, the expert radiologist verified if they were TP or FP. 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

VA10A 
prototype 

Rueckel 2021,47 

Germany, 

Retrospective 
test accuracy 
study,  

prototype  

Incidental population: 

105 shock-room whole-
body CT scans 
(consecutively included) 
from a single hospital. 

Standard 
dose,  

with 
contrast, 

0.75 mm 

Any type [A] Stand-alone AI; 

[E] Original 
radiologist report 
(single radiologist [18 
images], or by a 
radiology resident 
and radiologist [87 
images]). 

25 different radiology 
residents and 18 
different radiologists. 

Initial radiologist report 
plus additionally AI-
identified and expert-
confirmed nodules (2nd 
read AI) 

Accuracy to detect 
lung nodules; 

Characteristics of 
detected nodules. 

N/A 

AVIEW LCS+ (Coreline Soft) (4 studies) 

Hwang 2021,49 

South Korea, 
Before-and-
after study, 

A-view 
Lungscreen 

Screening population: 

6,487 consecutive 
participants  

(1,821 pre-AI 
implementation;  

4,666 post-AI 
implementation)  

from 14 institutions (K-
LUCAS project) 

Low dose,  

no 
contrast, 

<1.5 mm 

Solid,  

part-solid,  

ground 
glass 

[A] Stand-alone AI for 
nodule detection; 

[B] Assisted 2nd-read 
AI for nodule 
detection; 

[C] Concurrent AI for 
nodule measurement 
and whole read 
including Lung-RADS 
categorisation. 

Lung nodules:  

Radiologist with 2nd 
read AI [B]; 

 

Lung cancer: 

Medical record review. 

Characteristics of 
detected nodules; 

% detected nodules 
being malignant; 

Nodule detection 
accuracy of [A]; 

Accuracy to detect 
lung cancer (whole 
read [C] with Lung-
RADS); 

Number of people with 
positive screening 
result; 

Nodule size 
measured on 
transverse planes 
vs any maximum 
plane or 
maximum 
orthogonal plane 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

Technical failure rate. 

Hwang 2021,48 

South Korea,  

Retrospective 
analyses of 
prospective 
cohort study, 

A-View 
Lungscreen 

Screening population: 
10,424 consecutive 
participants from the K-
LUCAS project (14 
institutions) 

Low dose, 

no 
contrast, 

<1.5 mm 
(1 mm:  
n= 9,514; 
1.25 mm: 
n=910) 
 

Solid,  

part-solid, 

ground 
glass 

[B] 2nd read AI for 
nodule detection; 

[C] Concurrent AI for 
nodule measurement 
and whole read 
including Lung-RADS 
categorisation. 

Lung cancer: 

Medical record review. 

Accuracy to detect 
lung cancer; 

Characteristics of 
detected nodules; 

% of nodules being 
malignant; 

Number of people with 
positive screening 
result; 

Technical failure rate. 

Agreement 
between average 
transverse and 
effective 
diameters and 
their diagnostic 
performance at 
various 
thresholds; 
proportional 
reduction of 
unnecessary 
follow-up CTs and 
frequency of 
delayed lung 
cancer diagnosis 
for each elevated 
threshold  

Hwang 2021,50 

South Korea,  

Prospective 
screening 
cohort and 
retrospective 
central reading, 

A-View 
Lungscreen 

Screening population: 

3,353 consecutive 
participants from the K-
LUCAS project (14 
institutions) 

Low dose, 

no 
contrast, 

<1.5 mm  

Solid,  

part-solid,  

ground 
glass 

[B] Assisted 2nd-read 
AI for nodule 
detection;  

[C] Concurrent AI for 
nodule measurement 
and whole read 
including Lung-RADS 
categorisation. 

N/A Characteristics of 
detected nodules;     

Number of people 
having CT surveillance; 

Number of people 
having excision/biopsy; 

Technical failure rate. 

Positivity rates by 
Lung-RADS and 
NELSON criteria,  

segmentation 
failure / number 
of nodules per 
participant: 

Inter-radiologist 
variability;                                  
Inter-institution 
variability;                                    
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

Disagreement 
between the 
institutional 
reading and 
central review. 

Lancaster 
2022,30 

Russia, 

MRMC study, 

AVIEW LCS 
v1.0.34 

Screening population: 

Enriched sample of 283 
scans with at least one 
solid nodule. 

Ultra-low 
dose, 

no 
contrast, 

1 mm 

 

Solid [A] Stand-alone AI for 
nodule detection and 
classification based 
on volume;                                                

[C] Concurrent AI for 
nodule volume 
measurement (3 
experienced chest 
radiologists); 

[D] Unaided reader: 

2 experienced chest 
radiologist using 
other semi-
automated 
volumetric software. 

Nodule categorisation: 

Consensus expert 
reading (3 radiologists 
with >10 years of 
experience and 1 
experienced IT 
technologist) 

Accuracy of nodule 
categorisation (<100 
mm3, ≥100 mm3); 

Characteristics of 
detected nodules; 

Simulated Radiologist 
workload reduction 
when stand-alone AI 
software would be 
used as pre-screen to 
rule out negative CT 
images. 

 

 

NA 

ClearRead CT (Riverain Technologies) (6 studies) 

Singh 2021,54 

USA,  

MRMC study, 

ClearRead CT 
with vessel 
suppression 

Screening population: 

enriched sample of 123 
patients (100 with sub-
solid nodules and 23 
with no nodules) from 
the NLST. 

Low dose,  

contrast 
use 
unclear, 

1.2 – 2 mm 

Part-solid, 

ground 
glass 

[A] Stand-alone AI-
AD (with vessel 
suppression and 
autodetection of 
pulmonary nodules); 

[C.1] Concurrent AI – 
2 experienced 
radiologists reading 

Nodule detection: 

Consensus expert 
reading (2 readers) 

Nodule detection 
accuracy; 

Characteristics of 
detected nodules; 

Size measurement 
accuracy; 

N/A 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

and nodule 
detection 

AI-VS images (with 
vessel suppression 
without automatic 
nodule detection 
feature);         

[C.2] Concurrent AI – 
2 experienced 
radiologists reading 
AI-AD images (with 
vessel suppression 
and autodetection of 
pulmonary nodules)  

[D] 2 experienced 
radiologists reading 
standard CT images. 

Inter-observer 
agreement to detect 
the dominant nodule; 

Technical failure rate; 

Impact on clinical 
decision making 
(change in Lung-RADS 
category). 

Lo 2018,52 

USA,  

MRMC study,  

ClearRead CT 
with vessel 
suppression 
and nodule 
detection, 

Pre-market 
version (first 
generation 
system) 

Screening population: 
324 enriched cases 
(including 95 cancers, 83 
benign nodules; 216 
nodule free vs 108 cases 
with actionable nodules) 
from the NLST and 2 
hospitals. 

Low dose, 
contrast 
and slice 
thickness 
unclear 

Solid,  

part solid, 
ground 
glass; 

5-44 mm 

[A] Stand-alone AI; 

12 experienced 
general radiologists: 

[C] With concurrent  
AI; 

[D] Without AI. 

Nodule detection: 

Consensus expert 
reading (3 readers) 
assisted by 
corresponding NLST or 
source documentations 
containing radiologic, 
pathologic, and follow-
up reports.     

Accuracy of nodule 
detection; 

Radiologist reading 
time. 

N/A 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

Milanese 2018, 
Switzerland,53  

MRMC study,  

ClearRead CT 
for vessel 
suppression, 

Pre-market 
version (first 
generation 
system) 

Unclear indication for CT: 

93 consecutive patients 
referred to University 
Hospital Zurich for 
clinical non-enhanced 
chest CT. 

Low dose, 
no 
contrast, 

2 mm 

Solid; 

13 to 366 
mm3 

 

[C] Nodule 
measurement on 
vessel suppressed CT 
images (1 general 
radiologist with 3 
years of experience, 
1 resident 
radiologist) using 
semi-automatic 
segmentation 
software (MM 
Oncology, Siemens 
Healthcare) 

[D] Nodule 
measurement on 
standard CT images 
(1 general radiologist 
with 3 years of 
experience, 1 
resident radiologist) 
using semi-automatic 
segmentation 
software (MM 
Oncology, Siemens 
Healthcare) 

Nodule measurement: 

Volumes and longest 
diameters measured on 
standard CT images [D] 
by reader 1 and reader 2 
for each nodule 
averaged. 

Measurement 
accuracy; 

Inter-reader variability 
in nodule 
measurement;                                                 

Impact on clinical 
decision-making 
(categorisation 
according to Fleischner 
guidelines). 

N/A 

Hsu 2021,51 

Taiwan,  

MRMC study,  

ClearReadCT 
with vessel 

Mixed population: 

93 clinical routine;  
57 screening population. 

Low dose 
(n=57), 

standard 
dose 
(n=93), 

Any type; 

≤10 mm 

[A] Stand-alone AI; 

6 chest radiologists - 
3 less experienced 
and 3 experienced: 

[B] With 2nd read AI; 

Nodule detection: 

Consensus expert 
reading (2 readers) 

Nodule detection 
accuracy; 

Radiologist reading 
time. 

N/A 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

suppression 
and nodule 
detection 

Outcomes for screening 
population reported 
seaparately. 

150 consecutive cases 
with lung nodules ≤1 cm 
or no nodules. 

no 
contrast, 

2.5 mm  

 

[C] With concurrent 
AI; 

[D] Without 
software. 

Takaishi 2021,55 

Japan,  

MRMC study,  

ClearRead CT 
for vessel 
suppression 

Mixed population3: 
Unclear how selected, 

61 thoracic or thoracic-
abdominal CT images 
conducted at 1 Japanese 
hospital in September 
2019. 

Standard 
dose,  

no 
contrast, 

5 mm  

Solid, 

ground 
glass; 

4-54 mm 
diameter 

3 general radiologists 
with 2-8 years of 
experience: 

[C] With concurrent 
AI; 

[D] Without 
software. 

Nodule detection: 

Consensus expert 
reading (2 readers) 

Nodule detection 
accuracy; 

Radiologist reading 
time. 

N/A 

Wan 2020,56 

Taiwan,  

MRMC study; 

ClearRead CT 
with vessel 
suppression 
and nodule 
detection 

Mixed population:  

selected only patients 
with previously 
identified nodules that 
had subsequent excision,  

75 nodules in 50 cases.4 

Low dose,  

Unclear 
contrast  

Solid, 

part-solid, 

ground 
glass; 

≤2 cm 

 

[A] Stand-alone AI; 

[D] Consensus of 2 
radiologists with 25-
38 years of 
experience 
measuring diameter 
manually. 

Lung nodules and lung 
cancer: 

Excision and pathological 
results. 

Nodule detection 
accuracy; 

Lung cancer detection 
accuracy; 

Characteristics of 
missed nodules; 

Measurement 
concordance between 

 

 

3 Postoperative follow-up (n=14), to identify the cause of fever (n=11), to identify the cause of abdominal pain (n=9), scrutiny of abnormality in chest X-ray (n=7), annual 
medical check-up (n=4), cancer staging (prostate, colon, etc.) (n=3), trauma survey (n=2), other (n=11). 

4 For 561 patients screened for eligibility: LDCT health examination at one’s own expense (n=207), malignant neoplasms of other organs (n=127), chief complaints other 
than respiratory symptoms (n=103), symptoms or signs of respiratory diseases (n=68), follow-up CT of lung cancer after treatment (n = 56). Inclusion criteria state that the 
CT scan must have been low dose, and patients with a previous history of thoracic surgery and/or a final pathological diagnosis with metastases were excluded. 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

 stand-alone AI and 
unaided reader. 

Contextflow SEARCH Lung CT (contextflow) (1 study) 

Röhrich 2022,29 

Austria,  

MRMC study, 

prototype 
version  

Mixed population5 
(Follow-up of a known 
lung disease, suspected 
lung disease, incidental): 

100 with confirmed 
diffuse parenchymal lung 
disease, 

8 with inconspicuous 
chest CT scans from 1 
hospital in Austria. 

Unclear 
dose,   

with or 
without 
contrast  

Any type 4 radiology residents  
(2.1 ± 0.7 years of 
experience) and 4 
general radiologists 
(12 ± 1.8 years of 
experience) 

[C] With concurrent 
AI; 

[D] Without AI. 

Lung nodule detection: 

1 experienced thoracic 
radiologist (20 years of 
experience) where 
available using prior and 
follow-up examinations, 
clinical symptoms, 
pathology and histology 
reports, and 
interdisciplinary board 
decisions. 

Radiologist reading 
time;                      

Technical failure rate. 

Overall diagnostic 
accuracy for 
diffuse 
parenchymal lung 
disease 

InferRead CT Lung (Infervision) (3 studies) 

Kozuka 2020,57 

Japan, 

MRMC study, 

Version NR 

Symptomatic population 
(suspected cancer): 

Random 120 chest CT 
images from 1 hospital in 
Japan. 

Standard 
dose;  

no 
contrast; 

1 mm. 

Solid,  

Part-solid,  

Calcified,  

Ground 
glass  

[A] Stand-alone AI; 

2 less experienced 
radiologists: 

[C] With concurrent 
AI; 

[D] Without AI. 

Nodule detection: 

Consensus expert 
reading (3 readers) 

Nodule detection 
accuracy;  

Radiologist reading 
time;  

Characteristics of 
detected nodules. 

N/A 

Liu 2019,58 

China 

Mixed population: 
screening and inpatient, 
convenience sample,  

Standard 
dose or 
low dose;  

Solid,  

subsolid,  

Evaluation 1: 

[A] Stand-alone AI; 

Nodule detection: Nodule detection 
accuracy, 

AI performance 
by patient age 
(evaluation 2)  

 

5 Most of the indications for the 108 CT scans were either follow-up examination in case of an already known disease or the primary CT-scan in case of a clinically suspected 
disease. In some cases, the CT findings were incidental, and the scan was conducted for another reason not covered by the exclusion criteria. 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

MRMC study, 

Software name 
and version NR  

1,129 CT scans from >10 
hospitals in China. 

Evaluation 1: 
N=1,129; 

Evaluation 4: 
N=123 (Batch 1); 
N=148 (Batch 2). 

unclear 
regarding 
contrast; 

0.8-2.0 
mm 

calcified,  

pleural 

[D.1] 2 experienced 
general radiologists 
without AI. 

 

Evaluation 4: 

2 experienced 
general radiologists: 

[C] With concurrent 
AI, 

[D.2] Without AI. 

Consensus expert 
reading (3 readers) 

Comparison of AI 
performance by 
radiation dose, 

Radiologist reading 
time. 

and CT 
manufacturer 
(evaluation 3) 

Zhang 2021,59 

China 

Retrospective 
test accuracy 
and MRMC 
study, 

Software 
version NR 

Screening population: 

860 consecutive patients 
from 1 hospital in China 
(part of NELCIN-B3 
project) 

Low dose; 
no 
contrast; 

0.625-1.0 
mm 

Solid,  

part-solid, 
ground 
glass 

1 radiology resident 
with supervision of 1 
experienced 
radiologist: 

[C] With concurrent 
AI (MRMC study: 1 
radiology resident 
and 1 experienced 
radiologist); 

[E] Without AI 
(clinical practice: 14 
different radiology 
residents and 15 
different experienced 
radiologists). 

Nodule detection: 

Consensus expert 
reading (2 readers) 

Nodule detection 
accuracy; 

Characteristics of 
detected nodules. 

N/A 

JLD-01K (JLK Inc.) 

No relevant evidence was identified by the EAG or supplied by the company. 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

Lung AI (Arterys) 

No relevant evidence was identified by the EAG or supplied by the company. 

Lung Nodule AI (Fujifilm) 

No relevant evidence was identified by the EAG or supplied by the company. 

qCT-Lung (Qure.ai) 

No relevant evidence was identified by the EAG or supplied by the company. 

SenseCare-Lung Pro (SenseTime) 

No relevant evidence was identified by the EAG or supplied by the company. 

Veolity (MeVis) (4 studies) 

Cohen 2017,60 

South Korea,  

MRMC study,  

version 1.1 

Surveillance population 
with applicability 
concerns: 

73 patients with 
preoperative CT scan for 
subsolid nodules and 
subsequent surgical 
resection at 1 Korean 
hospital. 

Standard 
dose; 

no 
contrast; 

0.625 mm 

Sub-solid 
nodules 

2 radiologists with 4-
5 years of 
experience: 

[C] Concurrent AI, 

assessing CT images 
reconstructed using 
FBP and MBIR 
algorithms, 
respectively. 

No reference standard  Diameter and volume 
measurement: 

Technical failure rate; 

Inter-observer 
variability; 

Repeatability / 
reproducibility; 

Concordance between 
readers with software: 
FBP versus MBIR. 

N/A 

Kim 2018,61 

South Korea, 

MRMC study, 

Version 1.2 

Surveillance population 
with applicability 
concerns: 

89 consecutive patients 
with preoperative CT 
scan for subsolid nodules 

Standard 
dose; 

no 
contrast; 

0.625 mm  

Sub-solid 
nodules 

2 experienced 
radiologists: 

[C] With concurrent 
AI; 

[D] Without AI. 

No reference standard 
for nodule size 
measurement          

Diameter 
measurement: 

Concordance between 
readers with and 
without software; 

Diagnostic 
performance 
using binary 
logistic regression 
analysis for 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

 and subsequent surgical 
resection at 1 Korean 
hospital. 

 

 

Inter-observer 
variability; 

Repeatability / 
reproducibility; 

Technical failure rate 

 

Nodule classification 
by size of solid portion: 

Inter-observer 
variability;  

Repeatability / 
reproducibility. 

invasive adeno-
carcinoma 

Hall 2022,25 

UK, 

Retrospective 
test accuracy 
study and 
MRMC study, 

version 1.2 

 

Screening population: 

All 770 available CT scans 
from LSUT. 

Low dose; 

no 
contrast; 

0.5-1.0 
mm 

 

Solid,  

part-solid, 

ground 
glass; 

≥5 mm or 

≥80 mm3 

[C] Concurrent AI: 

Two radiographers 
without prior 
experience in chest 
CT (MRMC study). 

[E] Without AI:  
1 of 5 original study 
chest radiologists 
with 5-28 years of 
experience (clinical 
practice); 
95% single reading, 
5% double reading. 
 

Nodule detection: 

Nodules identified by 
study radiologists 
without AI [D], plus 
review of any additional 
nodules identified by the 
radiographers with 
concurrent AI [C] by 1 (if 
needed 2) radiologists 
for consensus. 

Nodule detection 
accuracy; 

Lung cancer detection 
accuracy; 

Impact on decision 
making; 

Radiologist reading 
time; 

Software acceptability 
& experience; 

Proportion of scans 
referred for CT 
surveillance; 

N/A 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

Proportion of scans 
referred to MDT; 

Characteristics of 
missed nodules; 

% of detected nodules 
being malignant. 

Jacobs 2021,62 

USA, Denmark, 
Netherlands; 

MRMC study, 

version 1.5 

 

Screening population: 

Selected 160 patients (80 
round 1 and 80 round 2) 
from NLST: 

40 Lung-RADS 1 or 2; 
40 Lung-RADS 3; 
40 Lung-RADS 4A; 
40 Lung-RADS 4B. 

Low dose; 

no 
contrast; 

1.0-3.2 
mm 

 

Any 
nodules 

3 experienced 
radiologists and 4 
radiology residents 
from Denmark and 
the Netherlands: 

[C] With concurrent 
AI; 

[D] Without AI. 

No reference standard Lung-RADS 
categorisation: 

Inter-observer 
variability;  

Repeatability / 
reproducibility. 

Radiologist reading 
time; 

Technical failure rate; 

Impact on decision-
making. 

N/A 

Veye Lung Nodules (Aidence) (5 studies) 

Blazis 2021,63 

Netherlands, 

Retrospective 
test accuracy 
study;  

Veye Chest, 

version NR 

Mixed indication 
(ranging from pulmonary 
nodule follow-up to 
primary staging of 
abdominal malignancy): 
sampling method 
unclear,  

31 patients (384 CT 
reconstructions from 24 

Unclear 
dose, 

Unclear 
contrast 
use, 

1 mm and 
3 mm 

Any 
nodules; 

>4 mm 
or >30 
mm3 

 

[A] Stand-alone AI Nodule detection: 

Consensus expert 
reading (3 readers) 

Nodule detection 
accuracy    

N/A 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

patients included in 
analyses) from 1 Dutch 
hospital. 

Hempel 2022,32 

Netherlands; 

MRMC study; 

Veye Chest 
v2.15.3 

Mixed indication: 

50 patients with 
incidentally detected 
nodules or no nodules 
from 1 Dutch hospital: 

5 no nodules, 

45 with ≤5 nodules (10 
no prior CT, 35 with prior 
CT). 

Incidental population 
(n=15); 

Surveillance population 
(n=35). 

Unclear 
dose; 

With or 
without 
contrast; 

2.00 mm 
(n = 73), 
3.0 mm  

(n = 12) 

Actionable 
nodules: 

65-14,000 
mm3 or 

5-30 mm 

1 experienced chest 
radiologist and 1 
experienced general 
radiologist: 

[C] With concurrent 
AI; 

[D] Without AI 

Risk categorisation 
based on 2015 BTS 
grades: 

All cases with discrepant 
BTS grades between 
readers re-evaluated 
during a consensus 
meeting and a consensus 
BTS grade determined. 

BTS grade category: 

Accuracy; 

Characteristics of 
detected nodules; 

Radiologist reading 
time; 

Technical failure rate; 

Inter-observer 
variability. 

 

N/A 

Martins Jarnalo 
2021,64 

Netherlands, 

Retrospective 
test accuracy 
study,  

Veye Chest 

versions (25-05-
2018), and (18-
03-2019) 

Mixed indications (ruling 
out metastasis, follow-up 
of nodules or other 
pulmonary 
abnormalities, other 
miscellaneous 
indications):  

145 randomly selected 
CT images performed at 
1 Dutch teaching 
hospital. 

Unclear 
dose;  

with or 
without 
contrast; 

1 mm or 3 
mm 

  

Solid,  

sub-solid; 

4-30 mm 

[A] Stand-alone AI Nodule detection, 
composition and 
measurement: 

Consensus expert 
reading (3 readers) 

Nodule detection 
accuracy; 

Nodule type accuracy 
(Solid, Sub-solid);         

Size measurement 
accuracy; 

Characteristics of 
detected (TP, FP) and 
missed (FN) nodules; 

Technical failure rate; 

N/A 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

Software acceptability 
and experience. 

Murchison 
2022,31 

UK, 

MRMC study, 

Veye Chest 
version 2.0 

 

Mixed indications 
(clinical routine 
mimicking a screening 
population in age and 
smoking history6): 

337 CT scans of 314 
subjects from 1 hospital 
in Edinburgh. 

[1] No nodules in original 
report (n=178), 

[2] With 1-10 nodule in 
original report (n=95), 

[3] 23 baseline scans that 
were followed up for 
presence of a lung 
nodules, 

[4] 23 follow-up CT scans 
of [3], 

[5] With sub-solid 
nodules in original report 
(n=18). 

 

Standard 
dose,  

with 
(n=22) or 
without 
contrast 
(n=315); 

1.0-2.5 
mm  

Any type; 

3-30 mm, 

5-30 mm 

 

[A] Stand-alone AI 

 

2 experienced chest 
radiologists: 

[C] With concurrent 
AI, 

[D] Without AI. 

Nodule detection and 
composition: 

Majority expert reading 
(2 index test readers 
with discrepancies 
adjudicated by a 3rd 
experienced chest 
radiologist); 

 

Nodule measurement 
and growth rate: 

No consensus 
requirement for the 
reference standard of 
segmentation. All 
segmentations were 
retained. 

 

 

Nodule detection 
accuracy; 

Nodule type accuracy; 

 

Measurement 
(volume, diameter): 

Inter-observer 
variability; 

Concordance between 
stand-alone software 
and readers without 
software. 

Technical failure rate. 

 

Growth rate: 

Nodule registration 
accuracy; 

Inter-observer 
variability; 

Concordance between 
stand-alone software 

N/A 

 

6 Current smokers, a smoking history and/or radiological evidence of pulmonary emphysema. 
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Study, country, 
design & 
software 
version a 

Study population CT 
acquisition 
details 

Type and 
size of 
nodules 

Index Test(s)  
([A], [B], [C]) / 
Comparator  
([D], [E]) 

Reference standard Relevant outcomes 
reported 

Other outcomes 
(not reported in 
this report) 

and readers without 
software. 

************* 

**** 

************* 
************* 
******* 

*********** 
********* 

************ 
****************** 
******* 

****************** 
******************** 
******* 

***** 
**** 

******** 
******* 
******** 

****** 
******* 
****** 
***** 

*** 
******** 

******* 

******* 

*************** *************** 

**************** 
****************** 

*************** 
**************** 

**** 

VUNO Med-LungCT AI (VUNO) (1 study) 

Park 2022,65 

USA, Korea,  

MRMC study, 

v.1.0.1 

Screening population: 

200 cases randomly 
selected from an nodule- 
and cancer-enriched 
subset of the NLST 
database. 

Low dose, 

No 
contrast 

  

 

Solid, 

part-solid, 
non-solid 

[A] Stand-alone AI; 

 

1 resident radiologist 
and 4 radiologists 
with 1-20 years of 
experience: 

[C] With concurrent 
AI; 

[D] Without AI. 

Lung cancer detection: 
NR (same-year positive 
cancer diagnosis)  

Nodule detection and 
Lung-RADS 
categorisation: 

Lung cancer detection 
accuracy; 

Concordance between 
stand-alone software 
and readers; 

Inter-observer 
variability; 

Impact on decision 
making. 

Assignment of 
risk-dominant 
nodules 

[A] Stand-alone AI; [B] Reader with 2nd-read AI; [C] Reader with concurrent AI; [D] Unaided reader; [E] Original radiologist report. 

a Where the software evaluated in the study had a different name from that was listed in the NICE final scope, but the company confirmed its relevance. 
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AI, Articial intelligence; BTS, British Thoracic Society; CT, Computed tomography; FP, False positive; FN, False negative; K-LUCAS, Korean lung cancer screening project; 
LIDC-IDRI, Lung Image Database Consortium image collection; LSUT, Lung Screen Uptake Trial; Lung-RADS, Lung Imaging Reporting and Data System; MDT, Multi-
disciplinary team; MRMC, Multi-reader multi-case study; N/A, Not applicable; NELCIN-B3, Netherlands-China Big-3 disease screening: lung cancer, coronary atherosclerosis, 
and chronic obstructive pulmonary disease; NELSON, Dutch-Belgian Randomized Lung Cancer Screening Trial; NLST, National Lung Screening Trial; NR, Not reported; TP, 
true positive.  
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13.4 Appendix 4: Quality assessment 

 

QUADAS-2+QUADAS-C tailored for AI technologies 
 
First author surname and year of publication:  
 
Name of first reviewer:  Name of second reviewer:  

Phase 1: State the review question: 

Question 1) What is the accuracy of CT image analysis assisted by software for automated detection and analysis of 

lung nodules in people undergoing CT scans? 

Patients (setting, intended use of index test, presentation, prior testing):  

People who have no confirmed lung nodules or lung cancer and who are not having staging investigations or follow-up imaging for primary cancer elsewhere in the body, who 
have a CT scan that includes the chest:  
• for reasons unrelated to suspicion of lung cancer (incidental population); 
• because of signs or symptoms suggestive of lung cancer (symptomatic population); 
• as part of lung cancer screening (screening population); 
 
People having CT surveillance for a previously identified lung nodule (surveillance population). 

Index test(s) (including human comparators):  

• CT scan review by 

o Index test [A]: any of the specified software alone; 

o Index test [B]: a radiologist or another healthcare professional using any of the specified software as 2nd reader;  

o Index test [C]: a radiologist or another healthcare professional with concurrent use of any of the specified software;  

o Index test [D]: a radiologist or another healthcare professional without software assistance. 
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Reference standard and target condition:  

• Target condition: Lung cancer (or lung nodules) 

• Reference standard for nodule detection and nodule type: Experienced chest radiologist reading (single reader or consensus/majority reading of more than one 

reader). 

• Reference standard for nodule size measurement and nodule growth assessment: Experienced radiologist reading (single reader or consensus/mean size or mean 

growth rate) or measurement of nodules after excision. 

• Reference standard for malignant/benign nodules:  

Malignant: Histological analysis of lung biopsy or health record review; 

Benign: CT surveillance (imaging follow-up) without significant growth, follow-up without diagnosis of lung cancer. 

Comparative review question (only fill this part for comparative diagnostic accuracy studies with at least 2 index tests, add more rows for index tests if needed) 

Patients:  

Index test [A] (stand-alone software)  

Index test [B] (second-read CAD)  

Index test [C] (concurrent CAD)  

Index test [D] (human reader without software)  

Reference standard and target condition:  

Comparative study design 

Which of the following study designs does the 
primary study most strongly resemble?  
#1 Fully Paired  
#2 Randomized  
#3 Partially paired with random subset  
#4 Partially paired with nonrandom subset  
#5 Unpaired nonrandomized  
Other (please describe the study design): 

 #1 If participants receiving index test [A] and index test [B] are identical (all participants 

receive all index test). 

#2 If each participant is randomized to receive either one index test or the other. 

#3 If participants are randomly selected either to receive one index test or to undergo both 

index tests. 

#4 If a nonrandom mechanism is used to decide whether participants receive one or both 

index tests. 
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#5 If participants receive only one of the index tests without randomization. 

Other (please describe study design) 
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Phase 2: Draw a flow diagram for the primary study (adapt template below or copy from paper) 
  

Screened for eligibility 

N =  

Eligible 

N =  

Included in study/test set 

N =  

Included in analyses 

N =  

Excluded from study/test set (with reasons): 

N =  

Excluded from analyses (with reasons): 

N =  

Not eligible (with reasons): 

N =  
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Phase 3: Risk of bias and applicability judgments 

QUADAS-2 is structured so that 4 key domains are each rated in terms of the risk of bias and the concern regarding applicability to the research question (as 
defined above). Each key domain has a set of signalling questions to help reach the judgments regarding bias and applicability. 

DOMAIN 1: PATIENT SELECTION 
A. Risk of Bias  

Describe methods of patient selection: 
 

Single test accuracy 
(QUADAS-2) 

Answers for 
Index test [A] 

Answers for 
Index test [B] 

Answers for  
Index test [C] 

Answers for  
Index test [D] 

Guidance 

1.1 Was a 
consecutive or 
random sample of 
patients enrolled? 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA            

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Consecutive (e.g. ALL patients in a certain time period) or random sampling – yes.  

If not stated – unclear. 

Other studies (selected or enriched sample) – no. 

1.2 Was a case-
control design 
avoided? 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA            

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Studies with single set of inclusion criteria for study admission (1-gate); can be prospective 

or retrospective sampling – yes. 

If not stated – unclear. 

Studies with separate sampling schemes for diseased (cases) and non-diseased individuals 

(controls) (2-gate), e.g. if the samples are selected according to knowing whether people 

do or do not have lung nodules or lung cancer – no.  

1.3 Did the study 
avoid inappropriate 
exclusions? 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA            

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Use this to flag up that groups of people / CT images were systematically excluded who 

should not have been as their exclusion narrows the spectrum of diseased or non-diseased 

(e.g. exclusion of ‘easy to diagnose’ or ‘difficult to diagnose’ patients).   

Systematic exclusion of CT images that could not be processed by the software (e.g. 

segmentation failures), even if reported in the paper as ‘Exclusions from the study’, should 

be ignored in this domain but scored in the ‘Flow & timing’ domain. 

If nothing is said and consecutive or random sampling – yes.   
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If non-consecutive sampling issue and nothing said – unclear. 

Exclusions by nodule number per image or unjustified (not based on management 

guidelines or minimal software manufacturer threshold) exclusion of certain nodule sizes) 

– no. 

Systematic exclusion of patients with other non-nodule related lung pathology that can 

mimic or mask lung nodules (‘difficult to read’ CT images; e.g. severe pulmonary fibrosis, 

diffuse bronchiectasis, extensive inflammatory consolidation, pneumothorax, and massive 

pleural effusion) – no. 

Systematic exclusion of ‘easy to read’ CT images (e.g. patients without other, non-nodule 

related lung conditions). – no. 

1.4 Were the 
people/CT images 
included in the study 
independent of 
those used to train 
the AI algorithm?  

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA            

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

For test set studies, this translates as “Has the test set been clearly described as an external 

(geographically) validation set?” 

Any internal validation (e.g. split sample, cross-validation) or temporal validation – no. 

No details stated about the training set and tuning set - unclear. 

External geographical validation (Test set was sample from a different centre; can be in 

another country or the same country) – yes. 

For index test [D] without AI software involvement – NA. 

 

For prospective applied studies in a clinical context: 

If the study is located at different centre(s) to those who provided CT images used to train 

and tune the AI algorithm – yes. 

If not stated – unclear.  

If there is any overlap in patients or CT images – no. 

For index test [D] without AI software involvement – NA. 

1.5 Could the 
selection of patients 
have introduced 
bias? 
(Score HIGH if ‘no’ to 
any question.) 

RISK:  
LOW           
HIGH          
UNCLEAR  
NA               

RISK:  
LOW           
HIGH           
UNCLEAR  
NA                

RISK:  
LOW          
HIGH         
UNCLEAR 
NA               

RISK:  
LOW          
HIGH         
UNCLEAR 
NA                 

All signalling questions answered with ‘yes’ – LOW. 
At least one signalling question answered with ‘no’ – HIGH. 
Only ‘yes’ and ‘unclear’ answers – UNCLEAR. 

Comparative 
accuracy  
(QUADAS-C) 

Answers for the test 
comparison 

Guidance 
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C1.1 Was the risk of 
bias for each index 
test judged ‘low’ for 
this domain? 

Yes          
No           

‘yes’ if the risk of bias judgment for single test accuracy (question 1.5 in QUADAS-2) was ‘low’ for each index test. 

C1.2 Was a fully 
paired or 
randomized design 
used? 

Yes          
No           
Unclear  

‘yes’ if one of the following methods was used for allocating patients to index tests:  
(1) each patient receiving all of the index tests (fully paired design) or  
(2) random allocation of patients to one of the index tests (randomized design). 

C1.3 Was the 
allocation sequence 
random? 

Yes          
No           
Unclear  
NA           

Only applicable to randomized designs 
‘yes’ if the study generated a truly random allocation sequence, for example, computer-generated random numbers and 
random number tables. 

C1.4 Was the 
allocation sequence 
concealed until 
patients were 
enrolled and 
assigned to index 
tests? 

Yes          
No           
Unclear  
NA            

Only applicable to randomized designs 
‘yes’ if the study used appropriate methods to conceal allocation, such as central randomization schemes and opaque 
sealed envelopes. 

C1.5 Could the 
selection of patients 
have introduced 
bias in the 
comparison? 

RISK:  
LOW           
HIGH          
UNCLEAR  

Risk of bias can be judged ‘low’ if questions C1.1 to C1.4 were answered ‘yes’ (questions C1.3 and C1.4 are only applicable 
to randomized designs).  
If at least one question was answered ‘no’, users should consider a ‘high risk of bias’ judgment if the bias associated with 
the design feature is of such concern that the entire domain is deemed problematic.  
If C1.2 was answered ‘no’, strongly consider ‘high risk of bias’. 

B. Concerns regarding applicability  

Describe included patients (prior testing, presentation, intended use of index test and setting): 
 

Single test accuracy 
(QUADAS-2) 

Answers for 
Index test [A] 

Answers for 
Index test [B] 

Answers for  
Index test [C] 

Answers for  
Index test [D] 

Guidance 

Please fill in one of the following four rows based on the assessed population (Incidental, Symptomatic, Screening, Surveillance) 
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Is there concern 
that the included 
patients 
(INCIDENTAL) do 
not match the 
review question? 
 

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA                

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

High concerns if: 
- Not a consecutive or random sample of patients / CT images; 

- Enriched sample (e.g. in-/exclusion by nodule number, nodule type and nodule size, 

respectively); 

- Inclusion/Exclusion by age; 

- Patients not representative of UK target population (study not performed in UK or 

other North-Western European country); 

- >10% of included people have a different indication for the CT scan than the 

target population; 

- CT image acquisition details different to UK practice for this target population (UK 

practice: standard dose; slice thickness ≤2.0mm), with or without contrast). 

Is there concern 
that the included 
patients 
(SYMPTOMATIC) do 
not match the 
review question? 
 

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA                

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

High concerns if: 
- Not a consecutive or random sample of patients / CT images; 

- Enriched sample (e.g. in-/exclusion by nodule number, nodule type and nodule size, 

respectively); 

- Inclusion/Exclusion by age; 

- Patients not representative of UK target population (study not performed in UK or 

other North-Western European country); 

- >10% of included people have a different indication for the CT scan than the 

target population; 

- CT image acquisition details different to UK practice for this target population (UK 

practice: slice thickness ≤2.0mm; standard dose; with or without use of contrast). 

Is there concern 
that the included 
patients 
(SCREENING) do not 
match the review 
question? 
 

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA                

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA               

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA               

High concerns if: 
- Not a consecutive or random sample of patients / CT images; 

- Enriched sample (e.g. in-/exclusion by nodule number, nodule type and nodule size, 

respectively); 

- Age not between 55-75 years; 

- Not at high risk for lung cancer (e.g. current or former smokers, identified by 

questionnaire or other risk prediction model); 

- Patients not representative of UK target population (study not performed in UK or 

other North-Western European country); 

- >10% of included people have a different indication for the CT scan than the 
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target population; 

- CT image acquisition details different to UK practice for this target population (UK 

practice: slice thickness ≤2.0mm, low dose [<2 less mSV per scan], no contrast). 

Is there concern 
that the included 
patients 
(SURVEILLANCE) do 
not match the 
review question? 
 

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA                

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA              

High concerns if: 
- Not a consecutive or random sample of patients / CT images; 

- Enriched sample (e.g. in-/exclusion by nodule number, nodule type and nodule size, 

respectively); 

- Inclusion/Exclusion by age; 

- Nodule size: <5mm or >30mm maximal diameter; <80mm3; 

- Patients not representative of UK target population (study not performed in UK or 

other North-Western European country); 

- >10% of included people have a different indication for the CT scan than the 

target population; 

- CT image acquisition details different to UK practice for this target population (UK 

practice: low radiation dose CT, slice thickness ≤2.0mm, with or without contrast). 

 

 

DOMAIN 2: INDEX TEST(S) 

If more than one index test (e.g. different functions of the software) or a human comparator was used, please complete for each test. 

A. Risk of Bias  

 

Describe the index test and how it was conducted and interpreted: 

 

Single test accuracy 
(QUADAS-2) 

Answers for 
Index test [A] 

Answers for 
Index test [B] 

Answers for  
Index test [C] 

Answers for  
Index test [D] 

Guidance 
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2.1 Were the index test 
results interpreted 
without knowledge of the 
results of the reference 
standard?  
(Requires no repeated 
application of AI to any of 
the same CT images, or 
use of the same CT 
images or images from 
the same patients for 
training) 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

[A] For index tests where AI software is used standalone (without any human 

element): 

- AI system has not previously been trained on these CT images or learned from these 

CT images or other CT images from the same patients – yes. 

- If data from the same dataset was used for training/tuning the software – no. 

- If repeat use of the same CT images or other CT images from the same patients 

within the same or previous studies – no (unless explicit that the AI algorithm was 

pre-set and did not change upon repeat use, and the study did not select one of 

several AI systems based on use with the same cases). 

- If nothing is said about training/tuning – unclear. 

- If not explicit that there has been no repeat use within the same or previous studies 

– unclear. 

 

[B] [C] [D] For index tests where a human is involved (either unassisted human read 

comparator, software-assisted human readers e.g. second-read CAD or concurrent 

CAD): 

- Requires clear statement of blinding, or clear temporal relationships where the 

human read occurred before the reference standard – yes. 

- If nothing is said and no clear temporal relationship – unclear. 

- If clearly unblinded – no. 

2.2 If a threshold was 
used, was it pre- 
specified? 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

[A] If the AI software threshold was pre-set by company or clearly pre-specified in 
methods (e.g. sensitivity and/or FP rate threshold or nodule size threshold) – yes. 
If AI software threshold clearly not pre-set by company or pre-specified in methods – 

no. 

Using sensitivity / specificity of the unaided reader as benchmark using the same 

dataset – no. 

Reporting AI software performance at various threshold settings or in a ROC curve – 

no. 

If nothing is said – unclear. 

No threshold used – NA. 

 

[B] [C] [D] Unaided or software-assisted human readers detecting nodules: 



352 

 

Use of a pre-specified nodule size or volume threshold – yes. 

If a threshold is used but it is unclear if it was pre-specified – unclear. 

Nodule size or volume threshold not pre-specified – no. 

No threshold used – NA. 

 

2.3 Where human readers 
are part of the test, were 
their decisions made in a 
clinical practice context? 
(i.e. avoidance of the 
laboratory effect) 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

This question has been added. 

[A] NA 

[B] [C] [D] If the readers made decisions in the clinical context, and those decisions were 

used to decide whether to discharge or recall patients (either prospectively as part of a 

trial or test accuracy study or retrospective studies using the original decision) – yes. 

 

If readers examined a test set (of any prevalence) outside clinical practice, or any other 

context likely to result in the laboratory effect (that their reading result is not influencing a 

patient's diagnosis) – no. 

2.4 Could the conduct or 
interpretation of the 
index test have 
introduced bias? 

 

RISK:  
LOW           
HIGH          
UNCLEAR  
NA              

RISK:  
LOW           
HIGH          
UNCLEAR  
NA              

RISK:  
LOW           
HIGH          
UNCLEAR  
NA              

RISK:  
LOW           
HIGH          
UNCLEAR  
NA              

All signalling questions answered with ‘yes’ – LOW. 
At least one signalling question answered with ‘no’ – HIGH 
Only ‘yes’ and ‘unclear’ answers – UNCLEAR. 

Comparative accuracy 
(QUADAS-C) 

Answers for the test comparison Guidance 

C2.1 Was the risk of bias 
for each index test 
judged ‘low’ for this 
domain? 

Yes          

No           

‘yes’ if the risk of bias judgment for single test accuracy (question 2.5 in QUADAS-2) was ‘low’ for each 
index test. 

C2.2 Were the index test 
results interpreted 
without knowledge of 
the results of the other 
index test(s)? 

Yes          
No           
Unclear  
NA           

Only applicable if patients received multiple index tests (fully or partially paired designs) 
‘yes’ if index test [A] was interpreted blind to the results of index test [B] and vice versa.  
Blinding is not necessary if none of the index tests involve subjective interpretation. 

C2.3 Is undergoing one 
index test unlikely to 

Yes          
No           

Only applicable if patients received multiple index tests (fully or partially paired designs)  
‘yes’ if one index test cannot influence or interfere with the results of subsequently performed index 
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affect the performance 
of the other index 
test(s)? 

Unclear  
NA           

test(s).  
Examples of such influence or interference include distortion of sampling area (biopsies) and patient 
fatigue (questionnaires). 

C2.4 Were the index 
tests conducted and 
interpreted without 
advantaging one of the 
tests? 

Yes          

No           

Unclear  

‘yes’ if there were no differences in the conduct and interpretation between the index tests that may 
unfairly benefit one of the tests. An example of such a difference is when index test A was performed 
by an expert and index test B by a nonexpert.  
Differences between tests that reflect clinical practice may be acceptable, in which case ‘yes’ is 
appropriate. 

C2.5 Could the conduct 
or interpretation of the 
index tests have 
introduced bias in the 
comparison?  
(Score HIGH if ‘no’ to any 
question.) 

RISK:  
LOW           
HIGH          
UNCLEAR  

Risk of bias can be judged ‘low’ if signaling questions C2.1 to C2.4 were answered ‘yes’ (C2.2 and C2.3 
are only applicable to fully or partially paired designs).  
If at least one question was answered ‘no’, users should consider a ‘high risk of bias’ judgment if the 
bias associated with the design feature is of such concern that the entire domain is deemed 
problematic. 

B. Concerns regarding applicability  

Single test accuracy 
(QUADAS-2) 

Answers for 
Index test [A] 

Answers for 
Index test [B] 

Answers for  
Index test [C] 

Answers for  
Index test [D] 

Guidance 

Is there concern that the 
index test(s) or 
comparator, its conduct, 
or interpretation differ 
from the review 
question? 
 

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA               

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA               

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA               
 

CONCERN:  
LOW           
HIGH          
UNCLEAR  
NA               
 

High concerns if: 
For all functionalities: 

- [A] [B] [C] Any prototype versions that did not later become the commercially 

available version (e.g. applicability not confirmed by the company). 

- Integration of software into pathway not applicable to UK  

(e.g. standalone AI performance [A] instead of concurrent [C] or second-read [B] CAD;  

for [B] and [C] – more than 1 human reader involved per read); 

- Human comparator [D] not applicable to the UK (e.g. human double reading 

instead of single human reader); 

- Human reader’s experience and/or specialty not representative of UK clinical 

practice (The training for radiologists is 5 years. After that time they are 

considered “fully trained”.) for this target population; 

- [B] [C] [D] Reader had no access to maximum intensity projections (MIP) 

and/or multiplanar reformations (MPR). 

Nodule detection:  
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- Study did not use a pre-specified nodule size threshold similar to the UK 2015 

BTS guidelines (e.g. ≥5mm maximum axial diameter or ≥80mm3); 

- [A] CAD false positive rate set to >2 per case. 

Nodule type determination:  
- Other nodule types used than in the BTS guidelines (nodule type should be 

classified as solid, part-solid or pure ground glass nodules). 

Nodule size measurement (volume/diameter):  
- Nodules should be measured using semi-automated volumetry. Where 

volumetry segmentation is not possible or judged to be inaccurate, maximal 

axial manual diameter measurements should be recorded, excluding any 

spiculation. Manual adjustment of volumetric analysis should be avoided as 

this may introduce unquantified variability. 

 
DOMAIN 3: REFERENCE STANDARD 

A. Risk of Bias 

Describe the reference standard and how it was conducted and interpreted: 

 

Single test accuracy 
(QUADAS-2) 

Answers for 
Index test [A] 

Answers for 
Index test [B] 

Answers for  
Index test [C] 

Answers for  
Index test [D] 

Guidance 

3.1 Is the reference 
standard likely to correctly 
classify the target 
condition? 

Yes          

No           

Unclear   

NA           

Yes          

No           

Unclear   

NA           

Yes          

No           

Unclear   

NA           

Yes          

No           

Unclear   

NA           

Lung cancer:  

Histopathology after biopsy/excision – yes. 

Medical records – no. 

 

Benign nodules:  

Histopathology after biopsy/excision;  

For solid nodules: CT surveillance for at least 2 years with stable diameter or stable (or 

VDT>600 days) after 1 year on volumetry; 
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For subsolid nodules: resolved at CT scan after 3 months or CT surveillance for at least 4 

years without growth or altered morphology;  

At least 2 year follow-up without lung cancer diagnosis – yes. 

 

Nodule detection / nodule type / nodule pairs; 

No reference standard in in vivo studies: will accept majority or consensus reading of 

(at least) 3 experienced thoracic – yes. 

Less than 3 experienced thoracic radiologist – no. 

 

Nodule size: 

Measurement of nodule size after nodule excision or consensus/average size 

measurement of (at least) 3 experienced thoracic radiologists – yes. 

3.2 Were the reference 
standard results interpreted 
without knowledge of the 
results of the index test? 

Yes          

No           

Unclear   

NA           

Yes          

No           

Unclear   

NA           

Yes          

No           

Unclear   

NA           

Yes          

No           

Unclear   

NA           

Malignant / benign nodules: 

For retrospective studies if the original human reader is used as comparator test – no. 

For prospective studies if the investigators did not blind the clinicians undertaking the 

follow up tests to which index test examined the CT images - no. 

For retrospective studies where readers read CT scans prospectively (reader study) – 

yes. 

 

Nodule detection / nodule type / nodule pairs / nodule size: 

If the reference standard reader(s) performed their read prior to the index test(s) – 

yes. 

If reference standard reader(s) are blinded to AI and human reader results – yes. 

If reference standard reader(s) are part of the index test(s) or not blinded to index test 

markings / decisions – no. 

3.3 Could the reference 
standard, its conduct, or its 
interpretation have 
introduced bias?  

 

RISK:  
LOW          
HIGH          
UNCLEAR 
NA              

RISK:  
LOW          
HIGH          
UNCLEAR 
NA              

RISK:  
LOW          
HIGH          
UNCLEAR 
NA              

RISK:  
LOW          
HIGH          
UNCLEAR 
NA              

All signalling questions answered with ‘yes’ – LOW. 
At least one signalling question answered with ‘no’ – HIGH. 
Only ‘yes’ and ‘unclear’ answers – UNCLEAR. 
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Comparative accuracy 
(QUADAS-C) 

Answers for the test 
comparison 

Guidance 

C3.1 Was the risk of bias for 
each index test judged ‘low’ 
for this domain? 

Yes          

No           

‘yes’ if the risk of bias judgment for single test accuracy (question 3.3 in QUADAS-2) was ‘low’ for each index test. 

C3.2 Did the reference 
standard avoid 
incorporating any of the 
index tests? 

Yes          

No           

Unclear  

‘Incorporation’ means that an index test is part of the reference standard. This question is not about whether the 
reference standard results were interpreted without knowledge of the index test results. 
‘yes’ if none of the index tests were part of the reference standard. Note that this issue is different from blinding 
(signaling question 3.2 in QUADAS-2). 

C3.3 Could the reference 
standard, its conduct, or its 
interpretation have 
introduced bias in the 
comparison? 

RISK:  
LOW           
HIGH          
UNCLEAR  

Risk of bias can be judged ‘low’ if signaling questions C3.1 and C3.2 were answered ‘yes’. If at least one question was 
answered ‘no’, users should consider a ‘high risk of bias’ judgment if the bias associated with the design feature is of 
such concern that the entire domain is deemed problematic. 

B. Concerns regarding applicability  

Single test accuracy 
(QUADAS-2) 

Answers for 
Index test [A] 

Answers for 
Index test [B] 

Answers for  
Index test [C] 

Answers for  
Index test [D] 

Guidance 

Is there concern that the 
target condition as defined 
by the reference standard 
does not match the review 
question? 
 

CONCERN:  
LOW          
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW          
HIGH          
UNCLEAR  
NA              

CONCERN:  
LOW          
HIGH          
UNCLEAR  
NA               

CONCERN:  
LOW          
HIGH          
UNCLEAR  
NA               

High concerns if: 
Malignant/benign nodules: 

- Different length of CT surveillance (e.g. solid nodules: <2 years with diameter 

measurements or <1 year with volume measurements; non-resolved sub-solid 

nodules <4 years); 

- Diagnosis of cancer not by pathology of biopsied/resected nodules; 

- No follow-up for at least two years for patients with nodules who are not 

receiving CT surveillance or biopsy/excision. 

“Actionable” nodule present/absent: 
- Different nodule size to BTS 2015 guideline definition (“actionable nodule” is ≥5 mm 
maximum axial diameter or ≥80 mm3). 
 
Nodule type: 
- Other types used than in the BTS 2015 guidelines (nodule type should be classified as 
solid, part-solid or pure ground glass nodules). 
 
Nodule size measurement (volume/diameter): 
- Nodule size should be measured as volume or, if volumetry segmentation is not 
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possible, as maximum axial diameter. 
 
Nodule pairs: 
- NA 

 

 
DOMAIN 4: FLOW AND TIMING 
Risk of Bias 
 

Describe any patients who did not receive the index test(s) and/or reference standard or who were excluded from the 2x2 table (refer to flow diagram): 

 

Describe the time interval and any intervention between index tests(s) and reference standard: 
 

Single test accuracy (QUADAS-2) Answers for 
Index test [A] 

Answers for 
Index test [B] 

Answers for  
Index test [C] 

Answers for  
Index test [D] 

Guidance 

4.1 Did all patients receive a 
reference standard? 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Malignant / benign nodules: 

If any patients who should have received a biopsy/resection, other follow-up 

tests and/or CT surveillance after index test positive results did not receive one 

or results were unavailable – no.  

If index test negative patients were not followed up for at least one year 

(pragmatic threshold) to confirm absence of lung cancer – no. 

 

Nodule detection / nodule type / detection of nodule pairs: 

If ALL CT images are assessed by expert reading as reference standard - yes. 

4.2 Did all patients receive the 
same reference standard?  

Yes          
No           
Unclear  

Yes          
No           
Unclear  

Yes          
No           
Unclear  

Yes          
No           
Unclear  

Need to give separate answers for detection of lung cancer, nodule detection, 

nodule composition or detection of nodule pairs. 
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NA           NA           NA           NA           For nodule detection, nodule composition, detection of nodule pairs:  

If all CT images received the SAME reference standard (e.g. consensus expert 

reading) - yes. 

 

Malignant / benign nodules: 

Usually NO – all studies will necessarily have differential verification, because not 

all patients can or should be biopsied. 

4.3 Were all patients included in 
the analysis? 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

If there were significant exclusions (>10%; cut-off determined pragmatically) after 

the point of selecting the cohort, for example indeterminate results (e.g. 

segmentation failures) or losses to follow up – no. 

If the number of excluded CT images after the point of selecting the test set / 

study sample is not reported – unclear. 

If there were <10% of CT images excluded from the analyses – yes. 

4.4 If there were exclusions from 
the analysis, has it been reported 
how many were due to software 
processing failures? 

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

Yes          
No           
Unclear  
NA           

This signalling question was added. 

If the number of CT images excluded due to software processing failures (e.g. 

segmentation failures) has been reported – yes. 

If it is unclear if there were any exclusions from the analysis – unclear. 

If the number of CT images excluded due to software processing failures (e.g. 

segmentation failures) has not been reported – no. 

Unaided readers [D] or no exclusions from the analysis – NA. 

4.5 Could the patient flow have 
introduced bias? 

 

RISK:  
LOW           
HIGH          
UNCLEAR  
NA               

RISK:  
LOW           
HIGH          
UNCLEAR  
NA               

RISK:  
LOW           
HIGH          
UNCLEAR  
NA               

RISK:  
LOW           
HIGH          
UNCLEAR  
NA               

All signalling questions answered with ‘yes’ – LOW. 
At least one signalling question answered with ‘no’ – HIGH. 
Only ‘yes’ and ‘unclear’ answers – UNCLEAR. 

Comparative accuracy (QUADAS-
C) 

Answers for the test 
comparison 

Guidance 

C4.1 Was the risk of bias for each 
index test judged ‘low’ for this 
domain? 

Yes          
No           

‘yes’ if the risk of bias judgment for single test accuracy (question 4.5 in QUADAS-2) was ‘low’ for each index test. 

C4.2 Was there an appropriate 
interval between the index tests? 

Yes          
No           

For many index tests, ‘appropriate’ would constitute performing the tests at the same time after patient 
enrolment. This excludes the possibility of disease progression or change in patient management. Some index 
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Unclear  tests have different ‘diagnostic windows’ and are ideally performed at different timepoints; subject-matter 
expertise is required to determine this. 

C4.3 Was the same reference 
standard used for all index tests? 

Yes          
No           
Unclear  

‘yes’ if either (1) a single reference standard was used in all patients or (2) multiple reference standards were 
used (e.g., either surgery or follow-up) and these reference standards were the same for patients receiving index 
test [A] and patients receiving index test [B]. 

C4.4 Are the proportions and 
reasons for missing data similar 
across index tests? 

Yes          
No           
Unclear  

Missing data occurs if test results are unavailable, invalid, inconclusive, or if patients are excluded from the 
analysis.  
‘yes’ if there is no missing data, or if the proportion and reasons for missing data are similar for index test [A] and 
index test [B]. 

C4.5 Could the patient flow have 
introduced bias in the 
comparison? 

RISK:  
LOW           
HIGH          
UNCLEAR  

Risk of bias can be judged ‘low’ if signaling questions C4.1 to C4.4 were answered ‘yes’. If at least one question 
was answered ‘no’, users should consider a ‘high risk of bias’ judgment if the bias associated with the design 
feature is of such concern that the entire domain is deemed problematic. 
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COSMIN Risk of Bias tool to assess the quality of studies on reliability and measurement error of outcome measurement instrument 
– Part B24 

Standards for studies on reliability and/or studies on measurement error 

 

Reproduced from Mokkink et al. BMC Med Res Methodol 2020;20:29324 under Creative Commons Attribution 4.0 International License.  

http://creativecommons.org/licenses/by/4.0/
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Statistical methods – Reliability studies 

 

Reproduced from Mokkink et al. BMC Med Res Methodol 2020;20:29324 under Creative Commons Attribution 4.0 International License.  

http://creativecommons.org/licenses/by/4.0/
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Statistical methods – Studies on measurement error 

 

Reproduced from Mokkink et al. BMC Med Res Methodol 2020;20:29324 under Creative Commons Attribution 4.0 International License. 

 

http://creativecommons.org/licenses/by/4.0/
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13.5  Appendix 5: Additional evidence on test accuracy of stand-alone AI and other evidence 

from non-comparative studies 

 

13.5.1 Accuracy for detecting any nodules 

 

13.5.1.1 Stand-alone AI vs unassisted reader (4 studies) 

• Symptomatic population (1 study) 

Kozuka 2020,57 Japan - InferRead CT Lung (Infervision) 

Kozuka et al.57 randomly selected 120 chest CT images (117 cases included in analysis) from cases 

with lung cancer suspicion. Two less experienced radiologists assessed the CT images with and 

without software use; stand-alone software performance was also reported. Per-patient sensitivity 

was 95.5% (95% CI 89.9-98.5%) for stand-alone AI and 68.0% (95% CI 61.4-74.1%) for the pooled 

unaided readers. Per-patient specificity was 83.3% (95% CI 35.9-99.6%) for stand-alone AI and 91.7% 

(95% CI 61.5-99.8%) for the pooled unaided readers. Per-nodule sensitivity was 70.3% (95% CI 66.8-

73.5%) for stand-alone AI and 20.9% (95% CI 18.8-23.0%) for the pooled unaided readers. Stand-

alone AI had a PPV of 57.9% (95% CI 54.6-61.1%), and the pooled unaided readers’ PPV was 70.5% 

(95% CI 66.0-74.7%). 

 

• Incidental population (1 study) 

Rueckel 2021,47 Germany - AI-Rad Companion (Siemens Healthineers) 

Rueckel et al.47 reported data from 105 consecutive patients who received a whole-body CT scan in 

the emergency department (shock room) at the LMU University Hospital (Munich, Germany) from 

January to November 2019. An on-premises prototype not yet commercially available has been used 

in this work. The reference standard was the original radiology report (reading by single board-

certified radiologist alone [17%] or commonly reported by a radiology resident and a board-certified 

radiologist [83%]), with additional software-detected nodules verified by an expert. The per-nodule 

sensitivity was 96.7% (29/30) for stand-alone AI and 90.0% (27/30) for the original unaided reading, 

with an average 0.74 FP per image (78/105) detected by the software. Per-patient sensitivity was 

92.9% (13/14) for stand-alone AI and 85.7% (12/14) for the original unaided reading. The PPV of 

stand-alone AI was 20.0% (13/65). 
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• Mixed population (2 studies) 

Abadia 2021,45 USA - AI-Rad Companion (Siemens Healthineers) 

Abadia et al.45 performed a retrospective test accuracy and MRMC study using a case control dataset 

(103 patients with at least one lung condition and one suspicious lung nodule on radiology report; 40 

patients with one lung condition and no lung nodule on radiology report) from a single centre. One 

of five expert chest radiologists analysed the CT images in clinical practice (original radiology 

reports). The reference standard consisted of nodules in the radiology report plus additional nodules 

detected by stand-alone AI and validated by a single expert. The AI-RAD prototype had a sensitivity 

to detect the (up to) three largest nodules per patient of 89.4% (186/208). The original radiologist 

report correctly detected 76.9% (160/208) of the (up to) three largest nodules per patient. 

Additionally, one expert chest radiologist with 15 years of experience assessed all 103 CT images 

with nodules as part of a MRMC study. The reference standard consisted of all radiologist-detected 

nodules plus additional nodules detected by stand-alone software and assessed by the radiologist as 

true positives. Stand-alone software had a per-nodule sensitivity of 67.7% (270/399; four nodules 

with wrong location seemed to have been excluded from the analysis) with an average 0.37 FP 

detections per image (38/103). The unaided expert reader correctly detected 90.8% (366/403) 

nodules with no FP detections as per definition of the reference standard. 

 

 

Liu 2019,58 China – InferRead CT Lung (Infervision) 

 

Liu et al.58 included 1,129 chest CT scans from multiple hospitals in China with convenience sampling. 

Two experienced radiologists assessed the CT images unaided under laboratory conditions. The per-

nodule sensitivity was 70.4% (4,481/6,363) for stand-alone AI and 48.6% (6,179/12,726) for the two 

pooled unaided readers. The false positive rate for stand-alone AI was 46.5% (3,894 FP/8,375 detected 

nodules) and an average 3.4 per scan (3,894 FP per 1,129 scans), respectively. Using a FROC curve, the 

performance of stand-alone AI was demonstrated: at an average of one FP detection per scan, the 

per-nodule sensitivity was 74%. Sensitivity reached a maximum of 86% with an average of eight FP 

detections per scan. 

 

13.5.1.2 Non-comparative results (6 studies) 

Six studies28, 45, 49, 56, 63, 64 evaluated accuracy for detecting any nodules by stand-alone AI without a 

comparator (see Figure 9). Of these, one included a screening population,49 and five included mixed 
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populations.28, 45, 56, 63, 64  Key characteristics and findings of studies with non-comparative outcomes 

are shown in Table 9. 

 

• Screening population (1 study) 

Hwang 2021a,49 South Korea - AVIEW LCS+ (Coreline Soft) 

Hwang et al.49 included 4,666 participants who had undergone lung cancer screening as part of the K-

LUCAS project after the implementation of the software AVIEW Lungscreen (Coreline Soft). They 

reported a per-nodule sensitivity of 50.2% (2,147/4,280; 95% CI 48.7–51.7%) for the stand-alone 

software. The reference standard was the original reader decision (25 different, single experienced 

chest radiologists with 5-28 years of experience) with assisted 2nd-read software use. The original 

radiologist rejected 73.6% (5,981/8,128) of software-detected nodules as false positives (average 1.51 

FP detections per image). 

 

• Mixed population (5 studies) 

************************************************ 

**********************************************************************************

**********************************************************************************

**********************************************************************************

**********************************************************************************

**********************************************************************************

**********************************************************************************

************ 

 

Wan 2020,56 Taiwan - ClearRead CT (Riverain Technologies) 

Wan et al.56 performed a retrospective analysis in 50 patients with 75 pathologically proven (benign 

or malignant) nodules ≤2 cm from hospitals in Taiwan. The stand-alone software had 81.3% (61/75) 

per-nodule sensitivity. The FP rate was not reported. 

 

Abadia 2021,45 USA - AI-Rad Companion (Siemens Healthineers) 

Abadia et al.45 performed a retrospective test accuracy and MRMC study using a case control dataset 

(103 patients with at least one lung condition and one suspicious lung nodule on radiology report 40 
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patients with one lung condition and no lung nodule on radiology report) from a single centre. The AI-

RAD prototype assessment of the control population showed 82.5% (33/40) specificity. When tasked 

with classifying each of the 143 patients into nodule present or absent, the stand-alone software had 

a specificity of 77.5% (31/40) and a sensitivity of 96.1% (99/103).  

 

Blazis 2021,63 Netherlands - Veye Lung Nodules (Aidence) 

Blazis et al.63 evaluated the performance of the stand-alone software with different reconstruction 

algorithms and reconstruction settings by retrospectively analysing 384 CT reconstructions from 24 

patients from a hospital in the Netherlands. At a software sensitivity threshold of 0.86, the observed 

per-nodule sensitivity ranged from 57% to 96% depending on the reconstruction setting, with the 

average FP per image ranging from 0.25 to 1.16. On the clinically preferred Thorax CT reconstructions 

(Br54f3 and I50f3) at 1.0 mm slice thickness, the per-nodule sensitivity was 83%.  

 

Martins Jarnalo 2021,64 Netherlands - Veye Lung Nodules (Aidence) 

Martins et al.64 randomly selected 145 patients with 145 CT images from a large teaching hospital in 

the Netherlands. CT examinations had been performed for various indications, ranging from ruling out 

metastases, follow-up of nodules, follow-up of other pulmonary abnormalities, and other 

miscellaneous indications. The per-nodule sensitivity of the stand-alone software was 87.9% (80/91) 

for all nodules, with 89.0% (65/73) of solid nodules, 81.3% (13/16) of sub-solid nodules and 100.0% 

(2/2) of mixed (solid/sub-solid) nodules correctly detected. The false positive rate for the detection of 

all nodules was 38.5% (average 1.04 FP per scan). 

 

13.5.2 Accuracy for detecting actionable nodules 

13.5.2.1 Stand-alone AI vs unassisted reader (2 studies) 

• Symptomatic population (1 study) 

Kozuka 2020,57 Japan - InferRead CT Lung (Infervision) 

Kozuka et al.57 randomly selected 120 chest CT images (117 cases included in analysis) from cases 

with lung cancer suspicion. They performed a MRMC study with two less experienced radiologists 

(one and five years of experience). Stand-alone AI had a per-nodule sensitivity of 61.1% (129/211), 

whereas the pooled unaided readers correctly detected 38.9% (164/422) of nodules ≥6 mm (no level 

of significance reported). False positive rate has not been reported. 
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• Mixed population (1 study) 

Liu 2019,58 China – InferRead CT Lung (Infervision) 

 

Liu et al.58 included 1,129 chest CT scans from multiple hospitals in China with convenience sampling. 

Two experienced radiologists assessed the CT images unaided under laboratory conditions. The per-

nodule sensitivity for the detection of solid nodules >6 mm and sub-solid nodules >5 mm combined 

was 84.1% (581/691) for stand-alone AI and 73.4% (1,015/1,382) for the pooled unassisted readers 

(no level of significance reported).  

 

13.5.2.2 Non-comparative results (2 studies) 

Two studies28, 46 evaluated the accuracy for detecting actionable nodules by stand-alone AI. Of these, 

one included a screening population,46 and one included a mixed population.28  

 

• Screening population (1 study) 

Chamberlin 2021,46 USA - AI-Rad Companion (Siemens Healthineers) 

Chamberlin et al.46 evaluated 117 randomly selected LDCT studies that were performed for routine 

lung cancer screening between January 2018 and July 2019 in one US hospital. For stand-alone 

software, the study found 100% per-nodule sensitivity (132/132) and 100% per-patient sensitivity 

(69/69). The specificity was 70.8% (34/48) by patient and 37.8% (34/90) by nodule. A false positive 

rate of 12.0% (14/117) per patient and 25.2% (56/222) per nodule (0.48 FP/scan) was observed. 

 

• Mixed population (1 study) 

********************************** 

**********************************************************************************

**********************************************************************************

**********************************************************************************

**********************************************************************************

**********************************************************************************

*************************************** 
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13.5.3 Accuracy for detecting malignant nodules 

 

13.5.3.1 Stand-alone AI vs unassisted reader (No study) 

No data available. 

 

13.5.3.2 Non-comparative results (3 studies) 

Three studies25, 49, 56 evaluated accuracy for detecting malignant nodules by stand-alone AI49, 56 or 

with concurrent software use.25 Of these, two included a screening population,25, 49  and one 

included a mixed population.56   

 

• Screening population (2 studies) 

Hwang 2021a,49 South Korea - AVIEW LCS+ (Coreline Soft) 

Hwang et al.49 included 4,666 participants who had undergone lung cancer screening as part of the K-

LUCAS project after the implementation of the software AVIEW Lungscreen (Coreline Soft). Stand-

alone software correctly detected 70.4% (19/27; 95% CI 49.8-86.2%) confirmed cancer nodules. 

 

Hall 2022,25 UK - Veolity (MeVis) 

Hall’s study25 included all 770 LDCT from the London-based LSUT trial. In a MRMC study, two 

radiographers without prior experience in thoracic CT reporting independently read all CT images with 

concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant nodules 

(≥5 mm). At the 5-mm threshold, the per-subject sensitivity for confirmed cancers was 77.4% (24/31) 

and 93.8% (30/32) for AI-assisted radiographer 1 and 2, respectively. Specificity and false positive rate 

were not reported. 

 

• Mixed population (1 study) 

Wan 2020,56 Taiwan - ClearRead CT (Riverain Technologies) 

Wan et al.56 performed a retrospective analysis of 75 pathology-proven nodules (≤2 cm; 28 benign, 

47 malignant) in 50 patients from hospitals in Taiwan. The study reported a sensitivity of 93.6% 

(44/47; 95% CI 82.5–98.7%) for detecting of malignant nodules by stand-alone AI. The specificity was 

39.3% (11/28; 95% CI 21.5–59.4%). 
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13.5.4 Nodule type determination 

13.5.4.1 Accuracy for nodule type determination 

a) Non-comparative results (1 study) 

Two studies evaluated the accuracy of stand-alone AI-based software (Veye Chest, Aidence) to 

determine nodule type.31, 64 The indication for the chest CT scan was mixed in both studies. The 

overall accuracy of the composition algorithm for discriminating sub-solid from solid nodules 94.2% - 

95.0% (Table 69). Based on the data by Murchison et al.31, the *******************************  

********************************************************************************* 

***************************************************************************** 

******************************************************************************* 

***************************************************************************** 

****************************************************************************** *** 

********************* 
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a) Non-comparative results (2 studies) 

Mixed population – Veye Chest (Aidence) (2 studies) 

Both studies used the software Veye Chest from Aidence in stand-alone mode and compared the findings to a reference standard of consensus reading of 

two radiologists, with discrepancies resolved by a third radiologist (majority consensus). 

Murchison et al.31 used two composition classes (solid or sub-solid) and found that the sensitivity and specificity of the Veye Chest software to determine 

the composition of solid nodules was 98.8% and 68.4%, respectively (Table 69). Accordingly, the sensitivity and specificity to determine the composition of 

sub-solid nodules was 68.4% and 98.8%. The overall accuracy for determining the composition (solid or sub-solid) of a pulmonary nodule was 94.2% 

(360/382), and the kappa was 0.77. 

Martins Jarnalo et al.64 stated that the agreement on classification between the software results and the reference standard was 95%; two cases were 

determined solid by Veye Chest software and sub-solid by the radiologists, whereas another two were determined solid by the software and mixed 

solid/sub-solid by the radiologists. Using three composition classes (solid, sub-solid, mixture of both) the sensitivity and specificity of Veye Chest software to 

determine the composition of solid nodules was 100.0% and 73.3% and to determine the composition of sub-solid nodules was 84.6% and 100.0% (Table 

69). The composition of the two mixed (solid and sub-solid) nodules could not be correctly detected by the software as its composition algorithm can only 

allocate one composition class (solid or sub-solid) to a nodule



371 

 

[Back to section 3.3.2] 
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b) Non-comparative results (1 study) 

Table 69. Accuracy of stand-alone software to determine nodule type (2 studies) 

Reference and 
country 

Target population / 
Nodule characteristics 

Reference standard Nodule type to 
be determined 

Sensitivity, 
% 

Specificity, 
% 

TP FP FN TN 

Veye Chest (Aidence) - Stand-alone mode 

Martins Jarnalo 
2021,64 
Netherlands 

Mixed indication; 
65 solid, 
13 sub-solid, 
2 mixture of solid and 
sub-solid, 
4-30 mm 

Consensus reading of 
2 radiologists, with 
discrepancies 
resolved by a 3rd 
radiologist 

Solid  
 

100.0 73.3 65 4 0 11 

Sub-solid  
 

84.6 100.0 11 0 2 67 

Mixture 
solid/sub-solid 

0 100.0 0 0 2 78 

Murchison 
2022,31 
UK 

Mixed indication; 
325 solid, 
57 sub-solid; 
3-30 mm? 

Consensus reading of 
2 radiologists, with 
discrepancies 
resolved by a 3rd 
radiologist 

Solid  
 

98.8 68.4 321 18 4 39 

Sub-solid  68.4 98.8 39 4 18 321 

FN, False negative; FP, False positive; TN, True negative; TP, True positive      
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13.5.5 Whole read 

13.5.5.1 Accuracy for lung cancer detection based on whole read 

c) Non-comparative results (1 study) 

Screening population – AVIEW Lungscreen (1 study) 

A second analysis of the K-LUCAS project by Hwang et al. included 10,424 consecutive participants 

who underwent baseline LDCT after the implementation of the AVIEW Lungscreen software.48 The 

LDCT were assessed in clinical practice by single expert thoracic radiologists with concurrent 

software use. Using the Lung-RADS (version 1.1) diameter threshold of 6 mm for solid nodules and 

part-solid nodules, respectively, and 30 mm for non-solid nodules, the study compared the 

performance of average transverse and effective nodule diameters for lung cancer diagnosis within 

one year from LDCT as well as any lung cancer diagnosis after LDCT. The reference standard was 

based on medical record review, with 52 participants being diagnosed with lung cancer within one 

year from LDCT and 6 participants after one year from LDCT. Using the average transverse diameter 

(2-D measurement), the sensitivity for lung cancer within one year was 96.2% (50/52) and the 

specificity was 91.7% (9,515/10,372; 95% CI 91.2 to 92.3). Using the effective nodule diameter 

(based on volumetric measurement), the sensitivity for lung cancer within one year was also 96.2% 

(50/52) and the specificity was slightly lower with 90.9% (9,433/10,372; 95% CI 90.4 to 91.5). For the 

detection of any lung cancer after LDCT, the average transverse diameter had a sensitivity of 91.4% 

(53/58) and a specificity of 91.8% (9,512/10,366; 95% CI 91.2 to 92.3). When using the effective 

diameter, the sensitivity was again 91.4% (53/58) with a specificity of 91.0% (9,430/10,366; 95% CI 

90.4 to 91.5). 

 

13.5.6 Nodule registration and growth assessment 

13.5.6.1 Nodule registration 

Non-comparative results (1 study) 

Mixed population – Veye Chest (Aidence) (1 study) 

Murchison et al. included a routine cohort of current or ex-smokers and/or those with radiological 

evidence of pulmonary emphysema between 55 and 74 years (to mimic a screening population) who 

underwent chest CT for non-screening purposes at a single centre in Edinburgh (UK). Forty-six CT 

scans from 23 patients undergoing CT surveillance of a pulmonary nodules (23 baseline CT scans and 
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23 follow-up CT scans) were included in the analysis of nodule registration and growth rate 

assessment. The study used the software Veye Chest (Aidence) in stand-alone mode for nodule 

registration and compared the findings to a reference standard of majority consensus (consensus 

reading of two radiologists, with discrepancies resolved by a third radiologist).  

According to Murchison et al., the total number of nodule-pairs in baseline and follow-up CT scans 

was 23, and all nodule pairs were successfully identified by the Veye Chest software. The sensitivity 

for detecting nodule pairs of the stand-alone software was 100.0% (23/23), and the average number 

of FP-pairs was 0.0.31  

[Back to Section 3.4.2.1] 

 

13.5.6.2 Nodule growth assessment 

Stand-alone AI vs unaided reader 

Mixed population – Veye Chest (Aidence) (1 study) 

The same study mentioned above (Murchison et al. 2022) compared nodule growth rate assessment 

(relative volume difference between a nodule visible on the baseline and follow-up CT scan) for 23 

nodule pairs between stand-alone AI and two unaided radiologists . The mean growth percentage 

difference was similar between readers and stand-alone software: 1.30 (95% CI 1.02 to 2.21) 

between radiologists and 1.35 (95% CI 1.01 to 4.99) between the stand-alone AI and radiologists, 

which was not significantly different. However, due to a single incorrect segmentation of the stand-

alone software, the upper end of its confidence interval is twice as high compared to that of readers, 

illustrating that visual verification of the nodule segmentation by human readers is still advised. 

[Back to section 3.4.2.3] 

 

13.5.7 Practical implications – Additional results 

13.5.7.1 Other outcomes (not pre-specified in the protocol) 

Radiologist workload reduction when using AI-based software as pre-screen (1 study) 

Screening population – AVIEW LCS (Coreline Soft) (1 study) 

One study was identified that reported on the simulated radiologist workload reduction when stand-

alone AI-based software would be used as pre-screen to rule out CT images with no or only benign 
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nodules.30 Lancaster et al. included 283 patients undergoing baseline screening between February 

2017 and February 2018 in the Moscow Lung Cancer Screening programme with at least one solid 

nodule present on ultra-LDCT images. They used the stand-alone software AVIEW LCS from Coreline 

Soft to automatically detect, measure, and classify nodules based on a volume threshold of 100 mm3 

based on NELSONplus/EUPS protocol.94, 95 Lancaster et al. simulated the use of stand-alone AI 

software as pre-screen in a general lung cancer screening population based on the results of this 

study. When radiologists would only read CT scans where nodules ≥100 mm3 are present in order to 

determine the follow-up strategy instead of reading all scans, a workload reduction between 77.4% 

(lower limit) to 86.7% (upper limit) could be expected.  

 

13.5.8 Impact on patient management - Additional results 

13.5.8.1 Characteristics of detected nodules 

b) Non-comparative results (3 studies) 

Three studies reported characteristics of nodules detected by software-assisted readers48, 50 and 

stand-alone software,64 respectively, without comparator. 

 

Mixed population – Veye Chest (Aidence) (1 study) 

Martins Jarnalo et al. randomly selected 145 chest CT scans from 145 different patients that were 

performed for various indications at a single Dutch hospital.64 The average size of all 130 (80 true 

positive and 50 false positive) nodules between 4-30 mm detected by stand-alone software (Veye 

Chest, Aidence) was 9.0 mm (SD ± 7.1 mm); 85% were solid, 14% were sub-solid and 1% were mixed 

solid/sub-solid (Error! Reference source not found.). 

Screening population – AVIEW Lungscreen (Coreline Soft) (2 studies) 

The two prospective studies by Hwang et al.48, 50 are both based on the K-LUCAS project and possibly 

have overlapping patients and CT images. The software AVIEW Lungscreen from Coreline Soft was 

used in assisted 2nd-read mode by experienced thoracic radiologists for nodule detection. The 

characteristics (type, size, Lung-RADS category) of all nodules as well as the risk-dominant nodules 

detected with software use in screening practice are reported in Table 22. 
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13.5.8.2 Characteristics of true positive nodules 

c) Non-comparative results (4 studies) 

Four studies reported on characteristics of true positive nodules detected by stand-alone software,49, 

64 by software-assisted readers,54 and/or by the reference standard.30, 54, 64 

 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

Hwang et al. included 4,666 participants who had undergone lung cancer screening as part of the K-

LUCAS project after the implementation of the software AVIEW Lungscreen (Coreline Soft).49 Stand-

alone software correctly detected 2,147 nodules, of which 96.6% (2,075/2,147) were solid, 1.6% 

(34/2,147) were part-solid and 1.8% (38/2,147) were ground glass nodules. The Lung-RADS 

categories of the correctly detected nodules are reported in Table 70. 

 

Table 70. Characteristics of correctly detected and missed nodules of stand-alone software in a 

consecutive screening population in Korea49 

Lung-RADS category Stand-alone software 

 Correctly detected Missed 

Total 2,147 2,133 

Solid 96.6% (2,075/2,147) 91.7% (1,957/2,133) 
Part-solid 1.6% (34/2,147) 1.7% (36/2,133) 
Ground glass 1.8% (38/2,147) 6.6% (140/2,133) 

Lung-RADS 2 86.5% (1,857/2,147) 92.6% (1,975/2,133) 
Lung-RADS 3 8.2% (175/2,147) 4.6% (98/2,133) 
Lung-RADS 4A 3.4% (73/2,147) 1.5% (33/2,133) 
Lung-RADS 4B 1.1% (24/2,147) 0.6% (14/2,133) 
Lung-RADS 4X 0.8% (18/2,147) 0.6% (13/2,133) 

Confirmed cancer nodules 1.3% (27/2,147) 0.4% (8/2,133) 

 

 

Screening population – ClearRead CT (Riverain Technologies) (1 study) 

Singh et al. included 150 patients who underwent LDCT of the chest as part of the NLST - the first 

125 patients with sub-solid nodules (154 part-solid or 156 ground glass nodules between 6 and 30 

mm) and the first 25 patients with no nodules detected.54 As part of a reader study, two experienced 

chest radiologists sequentially interpreted of the unprocessed CT images alone and then together 

with the vessel-suppressed (ClearRead CT, Riverain Technologies) CT images without washout 

period. According to the reference standard of consensus expert reading with a third radiologist 
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resolving discrepancies, the average diameter of the risk-dominant part-solid nodules was 15.7±7.0 

mm and 12.7±5.0 mm for the risk-dominant ground glass nodules. The average size of nodules 

correctly identified by the readers on vessel-suppressed CT images was 15 ± 7 mm for part-solid 

nodules and 12 ± 5 mm for ground glass nodules. 

 

Mixed population – Veye Chest (Aidence) (1 study) 

Martins Jarnalo et al. randomly selected 145 chest CT scans from 145 different patients that were 

performed for various indications at a single Dutch hospital.64 Ninety-one nodules with sizes 

between 4-30 mm were detected by the reference standard (consensus reading of an experienced 

chest radiologist and a resident radiologist, with discrepancies were resolved by a third experienced 

chest radiologist). The mean nodule size was 7.0 mm (SD ± 4.1 mm); 73 (80%) nodules were solid, 16 

(18%) were sub-solid, and two (2%) were a mixture of both solid and sub-solid (Table 27). The 80 

nodules correctly detected by stand-alone software (Veye Chest, Aidence) had an average size of 7.3 

mm (SD 3.8 mm); 81% were solid, 16% were sub-solid and 3% were a mixture of both. 

 

Screening population – Reference standard only (1 study) 

Lancaster et al. included 283 patients undergoing baseline screening between February 2017 and 

February 2018 in the Moscow Lung Cancer Screening programme with at least one solid nodule 

present on ultra-LDCT images.30 According to the consensus read of three experienced radiologists 

and an experienced IT technologist, 71% of the 283 risk-dominant solid nodules were <100 mm3 and 

29% were ≥100 mm3. 

 

13.5.8.3 Characteristics of false negative (missed) nodules 

d) Non-comparative results (5 studies) 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

Hwang et al. included 4,666 participants who had undergone lung cancer screening as part of the K-

LUCAS project after the implementation of the software AVIEW Lungscreen.49 Stand-alone software 

nodule detection results were available in 3,972 (85.1%) of participants. Out of 2,133 nodules missed 

by the stand-alone software, 91.7% (1,957/2,133) were solid, 1.7% (36/2,133) were part-solid and 

6.6% (140/2,133) were ground glass nodules. The Lung-RADS categories of missed nodules are 

reported in Table 22. Around 0.4% (8/2,133) of missed nodules were confirmed cancer nodules. 
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Screening population – Veolity (MeVis) (1 study) 

The study by Hall et al. was performed in London (UK) and is a sub-study of the LSUT trial.25 It 

included all 770 patients who received LDCT for lung cancer screening. In a MRMC study, two 

radiographers without prior experience in thoracic CT reporting independently read all 770 LDCT 

with concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant 

nodules (≥5 mm). For Radiographer 1 and Radiographer 2, 14.6% (7/48) and 4.9% (2/41) of missed 

nodules, respectively, were malignant. 

 

Screening population – ClearRead CT (Riverain Technologies) (1 study) 

Singh et al. included 150 patients who underwent LDCT of the chest as part of the NLST - the first 

125 patients with sub-solid nodules (154 part-solid or 156 ground glass nodules between 6 and 30 

mm) and the first 25 patients with no nodules detected.54 As part of a MRMC study, two experienced 

chest radiologists sequentially interpreted of the unprocessed CT images alone and then together 

with the vessel-suppressed (ClearRead CT, Riverain Technologies) CT image without washout period. 

The average size of nodules missed by the readers on vessel-suppressed images was 9 ± 2 mm for 

ground glass nodules and 8 ± 2 mm for part-solid nodules.     

 

Mixed population – ClearRead CT (Riverain Technologies) (1 study) 

Wan et al. included LDCT images from 50 Taiwanese patients with mixed indications who had 

subsequent excision of their nodule(s)56 Of 75 nodules ≤2 cm, the stand-alone software (ClearRead 

CT, Riverain Technologies) missed 14 nodules: 11 were benign and three were malignant (one 

adenocarcinoma, one minimally invasive adenocarcinoma, and one adenocarcinoma in situ, 

measuring 5.7, 6.4, and 6.8 mm in diameter, respectively). All three malignant nodules were ground 

glass nodules. Among the 11 missed benign nodules, seven were ground glass nodules, two were 

solid, and two were part-solid. The stand-alone software ignored three (6.4%) of the 47 malignant 

nodules and 11 (39.3%) of the 28 benign lesions with statistically significant difference (p = 0.001). 

 

Mixed population – Veye Chest (Aidence) (1 study) 

Martins Jarnalo et al. randomly selected 145 chest CT scans from 145 different patients that were 

performed for various indications at a single Dutch hospital.64 The nodules missed by stand-alone 
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software (Veye Chest, Aidence) had an average size of 6.7 mm (SD ± 6.1 mm). Eight missed nodules 

were solid with a size of 4 mm, three were solid/calcified with a size of 4 mm and the remaining 

three missed nodules were sub-solid (4 mm, 18 mm and 20 mm). 

 

13.5.8.4 Number of people undergoing CT surveillance 

e) Non-comparative results (3 studies) 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

The study by Hwang et al. included 3,353 consecutive CT images from the K-LUCAS lung cancer 

screening project in Korea.50 Based on the original reading by single experienced thoracic radiologist 

with concurrent use of the AVIEW Lungscreen (Coreline Soft) software, 16.0% (535/3,353) were 

classed as Lung-RADS category 3 or 4A and 21.6% (723/3,353) were classed as ‘intermediate’ 

according to NELSON criteria, respectively.  

 

Screening population – Veolity (MeVis) (1 study) 

The study by Hall et al. included all 770 patients from the UK-based LSUT trial who received LDCT for 

lung cancer screening.25 In a MRMC study, two radiographers without prior experience in thoracic CT 

reporting independently read all 770 LDCT with concurrent software use (Veolity, MeVis) and 

reported on the presence of clinically significant nodules (≥5 mm). The study also reports the 

management decisions of the original unaided readers (single expert thoracic radiologists with 5% of 

CT images checked by a second radiologist): 17.3% (133/770) were referred for CT surveillance of 

which eight people were later discounted after comparison with previous imaging, leaving 16.2% 

(125/770) receiving CT surveillance. 

 

Symptomatic population – InferRead CT Lung (Infervision) (1 study) 

Kozuka et al. randomly selected 120 chest CT images from cases of suspected lung cancer who 

underwent CT examination at a single hospital.57 Of 743 nodules ≥3 mm that were detected by the 

reference standard (majority reading of three experienced radiologists), 92.5% (687/743) were 

followed up as nodules suspected benign. 
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13.5.8.5 Number of people having biopsy or excision 

f) Non-comparative results (3 studies) 

Screening population – AVIEW Lungscreen (Coreline Soft) (1 study) 

The study by Hwang et al. included 3,353 consecutive CT images from the K-LUCAS lung cancer 

screening project in Korea.50 In the original reading by single experienced thoracic radiologist with 

concurrent use of the AVIEW Lungscreen (Coreline Soft) software, 4.1% (137/3,353) were positive on 

the narrow definition of Lung-RADS (i.e. Lung-RADS category 4B or 4X) and 1.6% (52/3,353) were 

positive according to NELSON criteria.  

 

Screening population – Veolity (MeVis) (1 study) 

The study by Hall et al. was performed in London (UK) and is a sub-study of the LSUT trial.25 It 

included all 770 patients who received LDCT for lung cancer screening. In a reader study, two 

radiographers without prior experience in thoracic CT reporting independently read all 770 LDCT 

with concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant 

nodules (≥5 mm). The study reports the management decisions of the original unaided readers 

(single expert thoracic radiologists with 5% of CT images checked by a second radiologist); 3.9% 

(30/770) were directly referred to MDT because of ‘suspicious nodules’. 

 

Symptomatic population – InferRead CT Lung (Infervision) (1 study) 

Kozuka et al. randomly selected 120 chest CT images from cases of suspected lung cancer in patients 

aged 20 years or older who underwent CT examination at a single hospital in Japan between 

November and December 2018.57 Of all 743 nodules ≥3 mm that were detected by the reference 

standard (majority reading of three experienced radiologists), 12 (1.6%) nodules were diagnosed as 

malignant and 44 (5.9%) nodules were followed up as nodules suspected lung cancer. 

 

13.5.8.6 Other outcomes (not pre-specified in the protocol) 

Positivity rate (Lung-RADS category 3 or higher) (3 studies) 

Three studies based on consecutive participants from the K-LUCAS project (with possibly overlapping 

populations) reported on the positivity rate (proportion of people with Lung-RADS category 3 or 

higher) of LDCT images taken and assessed in screening practice with and without the use of the 
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AVIEW Lungscreen software (Coreline Soft).48-50 The only comparative study49 found no significant 

differences in the positivity rate before and after software implementation when nodules were 

measured on transverse planes. With software use, the measurement of nodule diameter on 

maximum orthogonal planes or any maximum planes significantly increased the positivity rate 

compared with measurement on transverse planes. 

 

g) Comparative results – Reader with and without software (1 study) 

Screening population - AVIEW Lungscreen (Coreline Soft) (1 study) 

In a before-after study, Hwang et al. included 6,487 consecutive participants of the K-LUCAS project: 

1,821 participants were screened before the implementation of the AVIEW Lungscreen software, 

and 4,666 participants received screening after the implementation of the software.49 The LDCT 

images were read by single experienced chest radiologists in clinical practice, and patients with 

Lung-RADS category 3 or higher were classed as positive and referred for additional follow-up CTs or 

diagnostic procedures. The study found that, when nodules were measured on transverse planes, 

the per-participant positive rates did not significantly differ between LDCT images analysed before 

the implementation of the software (9.9% [180/1,821]) compared to the images interpreted after 

software implementation (11.0% [511/4,666]; p = 0.211). With software use, the per-participant 

positive rate was significantly increased though when nodules were measured on maximum 

orthogonal planes (14.1% [657/4,666]; p < 0.001) or any maximum planes (17.4% [812/4666]; p < 

0.001) compared with measurement on transverse planes. 

 

h) Non-comparative results (2 studies) 

Screening population – AVIEW Lungscreen (Coreline Soft) (2 studies) 

In 10,424 LDCT images that were interpreted with concurrent software use, the positivity rate was 

8.7% (907/10,424) when using the average transverse diameter and 9.5% (989/10,424) when using 

the effective diameter.48 Discrepancies in screening positivity between average transverse diameters 

and effective diameters occurred in 214 (2.1%) of participants. 

 

The third analysis based on the K-LUCAS project included 3,353 consecutive LDCT images that were 

read in screening practice by 20 different expert chest radiologists with concurrent software use. 

Using Lung-RADS, the positivity rate was 20.0% (672/3,353). 
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13.6 Appendix 6: Literature search strategies: searches to inform the economic model 

13.6.1 Searches for information on model structures, costs and utility values to inform the 

economic model 

Search dates and number of records retrieved per source are reported below: 

Bibliographic databases   

Database Date searched Number of records 

MEDLINE All 01/12/21 549 

Embase 01/12/21 970 

NHS EED (CRD) 01/12/21 122 

HTA database (CRD) 01/12/21 90 

INAHTA HTA database 01/12/21 107 

Cost-Effectiveness Analysis (CEA) registry (Tufts 

Med Centre) 

01/12/21 33 

EconPapers (Research Papers in Economics (RePEc) 02/12/21 69 

ScHARRHUD 02/12/21 13 

 

Total number of records retrieved: 1,953 

Duplicates removed (EndNote):  689 

Final number for screening: 1,264 

 

Other sources   

Source Date searched Documents retrieved 

National Institute for Health and Care Excellence 

(NICE) website 

07/12/21 0 

Canadian Agency for Drugs and Technologies in 

Health (CADTH) website 

07/12/21 4 

Google 07/12/21 

08/12/21 

15, plus 1 ongoing study 

ISPOR conference presentations 09/12/21 7; plus 5 posters related 

to abstracts previously 

identified 

HTAi annual meetings 09/12/21 2 

iHEA congresses 09/12/21 0 (2 potentially relevant 

abstracts unavailable) 

 

Total number sought for retrieval: 35 (+ 1 ongoing study) 

Reports not retrieved/available: 2 (iHEA abstracts) 

Final number for screening: 33 (+ 1 ongoing study) 

 

 

Search strategies used: 
 
MEDLINE ALL 
Date searched: 01/12/21 
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Ovid MEDLINE(R) ALL <1946 to November 30, 2021> 
 
1 exp Lung Neoplasms/dg or Solitary Pulmonary Nodule/dg 26945 
2 exp Lung Neoplasms/ or Solitary Pulmonary Nodule/ 253279 
3 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or 
tumour* or carcino* or malignan* or adenocarcinom* or blastoma*)).kf,tw. 271939 
4 ((pulmonary or lung) adj2 lesion*).kf,tw. 14650 
5 2 or 3 or 4 357079 
6 Mass Screening/ 111107 
7 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 
screen*).kf,tw. 4748 
8 "Early Detection of Cancer"/ 31301 
9 exp Radiography, Thoracic/ or Diagnostic Imaging/ or exp Image Interpretation, Computer-
Assisted/ or exp Positron Emission Tomography Computed Tomography/ or exp Tomography, 
Emission-Computed/ or exp Tomography, X-Ray/ 665323 
10 (radiograph* or tomograph* or imaging or x-ray* or xray* or CT or PET or PET-CT or MRI or 
(CAT adj2 scan*)).kf,tw. 2037778 
11 6 or 7 or 8 or 9 or 10 2374261 
12 5 and 11 68258 
13 1 or 12 [lung neoplasms; diagnostic imaging or screening] 74051 
14 *economics/ 10766 
15 exp *"costs and cost analysis"/ 76423 
16 (economic adj2 model*).mp. 14167 
17 (cost minimi* or cost-utilit* or health utilit* or economic evaluation* or economic review* 
or cost outcome* or cost analys?s or economic analys?s or budget* impact analys?s).ti,ab,kf,kw.
 37484 
18 (cost-effective* or pharmacoeconomic* or pharmaco-economic* or cost-benefit or 
costs).ti,kf,kw. 79637 
19 (life year or life years or qaly* or cost-benefit analys?s or cost-effectiveness 
analys?s).ab,kf,kw. 34382 
20 (cost or economic*).ti,kf,kw. and (costs or cost-effectiveness or markov or monte carlo or 
model or modeling or modelling).ab. 74307 
21 or/14-20 [CADTH Narrow Economic Filter - OVID Medline, Embase 
https://www.cadth.ca/strings-attached-cadths-database-search-filters] 201764 
22 13 and 21 481 
23 Quality-Adjusted Life Years/ 14121 
24 (quality adjusted or adjusted life year*).ti,ab,kf. 19799 
25 (qaly* or qald* or qale* or qtime*).ti,ab,kf. 12541 
26 (illness state*1 or health state*1).ti,ab,kf. 7368 
27 (hui or hui1 or hui2 or hui3).ti,ab,kf. 1749 
28 (multiattribute* or multi attribute*).ti,ab,kf. 1057 
29 (utility adj3 (score*1 or valu* or health* or cost* or measur* or disease* or mean or gain or 
gains or index*)).ti,ab,kf. 17499 
30 utilities.ti,ab,kf. 8178 
31 (eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or 
euro qol or euroqol or euro qol5d or euroqol5d or euro quol or euroquol or euro quol5d or 
euroquol5d or eur qol or eurqol or eur qol5d or eur qol5d or eur?qul or eur?qul5d or euro* quality 
of life or European qol).ti,ab,kf. 14119 
32 (euro* adj3 (5 d or 5d or 5 dimension* or 5dimension* or 5 domain* or 5domain*)).ti,ab,kf.
 4937 
33 (sf36* or sf 36* or sf thirtysix or sf thirty six).ti,ab,kf. 24278 
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34 (time trade off*1 or time tradeoff*1 or tto or timetradeoff*1).ti,ab,kf. 2105 
35 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 [Filter FSF3 - precision 
maximizing filter to identify HSU studies, from Arber et al, 2017 
http://dx.doi.org/10.1017/S0266462317000897 ] 81449 
36 13 and 35 193 
37 22 or 36 549 
 
 
Embase 
Date searched:L 01/12/21 
Embase <1974 to 2021 November 30> 
 
1 exp lung cancer/di or lung nodule/di 46425 
2 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or 
tumour* or carcino* or malignan* or adenocarcinom* or blastoma*)).kf,tw. 388958 
3 ((pulmonary or lung) adj2 lesion*).kf,tw. 20844 
4 1 or 2 or 3 416579 
5 mass screening/ or cancer screening/ 141880 
6 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 
screen*).kf,tw. 7543 
7 early cancer diagnosis/ 9533 
8 diagnostic imaging/ or exp thorax radiography/ or computer assisted tomography/ or low-
dose computed tomography/ or exp x-ray computed tomography/ or multidetector computed 
tomography/ or spiral computer assisted tomography/ or exp computer assisted emission 
tomography/ 1351059 
9 (radiograph* or tomograph* or imaging or x-ray* or xray* or CT or PET or PET-CT or MRI or 
(CAT adj2 scan*)).kf,tw. 2769230 
10 5 or 6 or 7 or 8 or 9 3410416 
11 4 and 10 113394 
12 *economics/ 27332 
13 exp *"costs and cost analysis"/ 84204 
14 (economic adj2 model*).mp. 8559 
15 (cost minimi* or cost-utilit* or health utilit* or economic evaluation* or economic review* 
or cost outcome* or cost analys?s or economic analys?s or budget* impact analys?s).ti,ab,kf,kw.
 57878 
16 (cost-effective* or pharmacoeconomic* or pharmaco-economic* or cost-benefit or 
costs).ti,kf,kw. 117531 
17 (life year or life years or qaly* or cost-benefit analys?s or cost-effectiveness 
analys?s).ab,kf,kw. 53133 
18 (cost or economic*).ti,kf,kw. and (costs or cost-effectiveness or markov or monte carlo or 
model or modeling or modelling).ab. 112254 
19 or/12-18 [CADTH Narrow Economic Filter - OVID Medline, Embase 
https://www.cadth.ca/strings-attached-cadths-database-search-filters] 286393 
20 11 and 19 767 
21 Quality-Adjusted Life Years/ 30198 
22 (quality adjusted or adjusted life year*).ti,ab,kf. 28814 
23 (qaly* or qald* or qale* or qtime*).ti,ab,kf. 23274 
24 (illness state*1 or health state*1).ti,ab,kf. 12756 
25 (hui or hui1 or hui2 or hui3).ti,ab,kf. 2685 
26 (multiattribute* or multi attribute*).ti,ab,kf. 1305 
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27 (utility adj3 (score*1 or valu* or health* or cost* or measur* or disease* or mean or gain or 
gains or index*)).ti,ab,kf. 27682 
28 utilities.ti,ab,kf. 13218 
29 (eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or 
euro qol or euroqol or euro qol5d or euroqol5d or euro quol or euroquol or euro quol5d or 
euroquol5d or eur qol or eurqol or eur qol5d or eur qol5d or eur?qul or eur?qul5d or euro* quality 
of life or European qol).ti,ab,kf. 25481 
30 (euro* adj3 (5 d or 5d or 5 dimension* or 5dimension* or 5 domain* or 5domain*)).ti,ab,kf.
 7449 
31 (sf36* or sf 36* or sf thirtysix or sf thirty six).ti,ab,kf. 41638 
32 (time trade off*1 or time tradeoff*1 or tto or timetradeoff*1).ti,ab,kf. 3088 
33 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 [Filter FSF3 - precision 
maximizing filter to identify HSU studies, from Arber et al, 2017 
http://dx.doi.org/10.1017/S0266462317000897 ] 133355 
34 11 and 33 400 
35 20 or 34 970 
 
 
NHS EED and HTA database (CRD)   https://www.crd.york.ac.uk/CRDWeb/HomePage.asp  
date searched: 01/12/21 
 

Line Search Hits 

1 ((lung* or pulmon*) ADJ3 (nodul* or cancer* or neoplas* or tumor* or tumour* 
or carcino* or malignan* or adenocarcinom*)) 

1444 

2 MeSH DESCRIPTOR Lung Neoplasms EXPLODE ALL TREES 1151 

3 MeSH DESCRIPTOR Solitary Pulmonary Nodule EXPLODE ALL TREES 27 

4 (#1 ) OR (#2) OR (#3) IN NHSEED, HTA 677 

5 MeSH DESCRIPTOR Diagnostic Imaging EXPLODE ALL TREES 4336 

6 (screening) 5030 

7 MeSH DESCRIPTOR Mass Screening EXPLODE ALL TREES 2347 

8 MeSH DESCRIPTOR Early Detection of Cancer EXPLODE ALL TREES 277 

9 (tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET) 4288 

10 (#5 OR #6 OR #7 OR #8 OR #9) IN NHSEED, HTA 5965 

11  (#4 AND #10) IN NHSEED  122 

12 (#4 AND #10) IN HTA 90 

 
 
INAHTA HTA database 
Date searched: 01/12/21 
 

Line Query Hits 

75 #74 AND #66 107 

74 #73 OR #72 OR #71 OR #70 OR #69 OR #68 OR #67  2412 

73 "Early Detection of Cancer"[mh] 71 

72 "Mass Screening"[mhe] 751 

71 (screening)[Title] OR (screening)[abs] OR (screening)[Keywords] 1222 

70 "Diagnostic Imaging"[mhe]  1124 

69 (tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR 
PET)[Keywords] 

14 

68 (tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET)[abs] 591 

https://www.crd.york.ac.uk/CRDWeb/HomePage.asp
https://database.inahta.org/search?terms=%28%28%22Early%20Detection%20of%20Cancer%22%5Bmh%5D%29%20OR%20%28%22Mass%20Screening%22%5Bmhe%5D%29%20OR%20%28%28screening%29%5BTitle%5D%20OR%20%28screening%29%5Babs%5D%20OR%20%28screening%29%5BKeywords%5D%29%20OR%20%28%22Diagnostic%20Imaging%22%5Bmhe%5D%29%20OR%20%28%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20x-ray%2A%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BKeywords%5D%29%20OR%20%28%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20x-ray%2A%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5Babs%5D%29%20OR%20%28%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20%22x-ray%2A%22%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BTitle%5D%29%29%20AND%20%28%28%22Solitary%20Pulmonary%20Nodule%22%5Bmh%5D%29%20OR%20%28%22Lung%20Neoplasms%22%5Bmhe%5D%29%20OR%20%28%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5BKeywords%5D%29%20OR%20%28%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5Babs%5D%29%20OR%20%28%28lung%2A%20OR%20pulmon%2A%29%5BTitle%5D%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%5BTitle%5D%29%29
https://database.inahta.org/search?terms=%28%22Early%20Detection%20of%20Cancer%22%5Bmh%5D%29%20OR%20%28%22Mass%20Screening%22%5Bmhe%5D%29%20OR%20%28%28screening%29%5BTitle%5D%20OR%20%28screening%29%5Babs%5D%20OR%20%28screening%29%5BKeywords%5D%29%20OR%20%28%22Diagnostic%20Imaging%22%5Bmhe%5D%29%20OR%20%28%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20x-ray%2A%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BKeywords%5D%29%20OR%20%28%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20x-ray%2A%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5Babs%5D%29%20OR%20%28%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20%22x-ray%2A%22%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BTitle%5D%29
https://database.inahta.org/search?terms=%22Early%20Detection%20of%20Cancer%22%5Bmh%5D
https://database.inahta.org/search?terms=%22Mass%20Screening%22%5Bmhe%5D
https://database.inahta.org/search?terms=%28screening%29%5BTitle%5D%20OR%20%28screening%29%5Babs%5D%20OR%20%28screening%29%5BKeywords%5D
https://database.inahta.org/search?terms=%22Diagnostic%20Imaging%22%5Bmhe%5D
https://database.inahta.org/search?terms=%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20x-ray%2A%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BKeywords%5D
https://database.inahta.org/search?terms=%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20x-ray%2A%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BKeywords%5D
https://database.inahta.org/search?terms=%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20x-ray%2A%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5Babs%5D


387 

 

67 (tomograph* OR radiograph* OR CT OR "x-ray*" OR xray* OR MRI OR 
PET)[Title] 

461 

66 #65 OR #64 OR #63 OR #62 OR #61  415 

65 "Solitary Pulmonary Nodule"[mh] 6 

64 "Lung Neoplasms"[mhe] 317 

63 ((lung* OR pulmon*) AND (nodul* OR cancer* OR neoplas* OR tumor* OR 
tumour* OR carcino* OR malignan* OR adenocarcinom*))[Keywords] 

15 

62 ((lung* OR pulmon*) AND (nodul* OR cancer* OR neoplas* OR tumor* OR 
tumour* OR carcino* OR malignan* OR adenocarcinom*))[abs]  

243 

61 (lung* OR pulmon*)[Title] AND (nodul* OR cancer* OR neoplas* OR tumor* 
OR tumour* OR carcino* OR malignan* OR adenocarcinom*)[Title]  

278 

 
 
 
Cost-effectiveness Analysis Registry (via Tufts Medical Center website) 
https://cevr.tuftsmedicalcenter.org/databases/cea-registry 
Date searched: 01/12/21 
Basic search screen: Methods selected 
Results of each search were copied and pasted into Excel, to easily identify unique results, which 
were then found in PubMed for easy export/import into EndNote. 
 

search term/s results 

lung nodule 0 

pulmonary nodule 9 

lung cancer screening 19 

lung CT 1 

lung computed tomography 1 

chest CT 4 

chest computed tomography 5 

thoracic CT 0 

thoracic computed tomography 0 

thorax CT 0 

thorax computed tomography 0 

lung imaging 0 

lung radiography 0 

lung x-ray 0 

lung xray 0 

Total: 39 

Total unique results (after deduplication in 
Excel) 

33 

 
 
 
EconPapers (via Research Papers in Economics (RePEc))  https://econpapers.repec.org/ 
Date searched: 02/12/21  
Advanced search screen: https://econpapers.repec.org/scripts/search.pf 
 
50 documents matched the search for ("pulmonary nodule*" OR "lung nodule*" OR "lung cancer") 
AND (tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET OR screening) in titles 
and keywords in working papers, articles, books and chapters. 

https://database.inahta.org/search?terms=%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20%22x-ray%2A%22%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BTitle%5D
https://database.inahta.org/search?terms=%28tomograph%2A%20OR%20radiograph%2A%20OR%20CT%20OR%20%22x-ray%2A%22%20OR%20xray%2A%20OR%20MRI%20OR%20PET%29%5BTitle%5D
https://database.inahta.org/search?terms=%28%22Solitary%20Pulmonary%20Nodule%22%5Bmh%5D%29%20OR%20%28%22Lung%20Neoplasms%22%5Bmhe%5D%29%20OR%20%28%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5BKeywords%5D%29%20OR%20%28%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5Babs%5D%29%20OR%20%28%28lung%2A%20OR%20pulmon%2A%29%5BTitle%5D%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%5BTitle%5D%29
https://database.inahta.org/search?terms=%22Solitary%20Pulmonary%20Nodule%22%5Bmh%5D
https://database.inahta.org/search?terms=%22Lung%20Neoplasms%22%5Bmhe%5D
https://database.inahta.org/search?terms=%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5BKeywords%5D
https://database.inahta.org/search?terms=%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5BKeywords%5D
https://database.inahta.org/search?terms=%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5Babs%5D
https://database.inahta.org/search?terms=%28%28lung%2A%20OR%20pulmon%2A%29%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%29%5Babs%5D
https://database.inahta.org/search?terms=%28lung%2A%20OR%20pulmon%2A%29%5BTitle%5D%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%5BTitle%5D
https://database.inahta.org/search?terms=%28lung%2A%20OR%20pulmon%2A%29%5BTitle%5D%20AND%20%28nodul%2A%20OR%20cancer%2A%20OR%20neoplas%2A%20OR%20tumor%2A%20OR%20tumour%2A%20OR%20carcino%2A%20OR%20malignan%2A%20OR%20adenocarcinom%2A%29%5BTitle%5D
https://cevr.tuftsmedicalcenter.org/databases/cea-registry
https://econpapers.repec.org/
https://econpapers.repec.org/scripts/search.pf
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19 documents matched the search for ("artificial intelligence" OR "machine learning" OR "deep 
learning" OR "support vector machine*" OR "neural network*" OR "random forest" OR "black box 
learning") AND ("pulmonary nodule*" OR "lung nocule*" OR "lung cancer*") AND (CT OR "computed 
tomography" OR screening) in working papers, articles, books and chapters. [Free text search] 
 
Total: 69 records 
 
ScHARRHUD   https://www.scharrhud.org/index.php?recordsN1&m=search  
 
Date searched: 02/12/21  
 
(lung OR lungs OR pulmonary) AND (nodule OR nodules OR cancer OR cancers OR neoplasm OR 
neoplasms OR tumor OR tumors OR tumour OR tumours OR carcinoma OR carcinomas OR 
malignancy OR malignancies OR malignant OR adenocarcinoma OR adenocarcinomas)  13 results 
 
 
NICE website    https://www.nice.org.uk/  
 
Date searched: 07/12/21  
 
Browsed: NICE Guidance > Conditions and diseases > Cancer > Lung cancer: 
https://www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer 
found 75 published products, of which none included economic evaluation of diagnostic imaging 
 
Searched published guidance: https://www.nice.org.uk/guidance/published?sp=on 
Filters: Diagnostics guidance, Technology appraisal guidance 
 
lung cancer       48 results, of which 0 relevant 
nodule  0 results 
nodules  0 results 
 
Browsed guidance In consultation: https://www.nice.org.uk/guidance/inconsultation 
20 results, 0 relevant to lung cancer/pulmonary nodules 
 
Searched guidance In development: https://www.nice.org.uk/guidance/indevelopment  
Filters: Diagnostics guidance, Technology appraisal guidance 
 
lung cancer       51 results, of which 0 relate to diagnostic imaging 
nodule  1 result; 0 unique results 
nodules  1 result; 0 unique results 
 
 
Canadian Agency for Drugs and Technologies in Health (CADTH) website    https://www.cadth.ca/ 
Date searched: 07/12/21 
Search box on homepage, results limited to Reports tab. 
Search terms: 
lung cancer 76 results; 6 on imaging;of which 1 not a cost-effectiveness/economic evaluation; 1 
already retrieved by database searches; 4 reports retrieved 
nodules 7 results; 3 on imaging; all 3 already identified above 
 

https://www.scharrhud.org/index.php?recordsN1&m=search
https://www.nice.org.uk/
https://www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer
https://www.nice.org.uk/guidance/published?sp=on
https://www.nice.org.uk/guidance/inconsultation
https://www.nice.org.uk/guidance/indevelopment
https://www.cadth.ca/
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Google    www.google.co.uk    
Dates searched: 07-08/12/21 
Results (10 per page) were browsed until yielding very few results containing all search terms. 
Documents were retrieved if judged to be potentially useful, and if they had not already been 
identified via the database searches or earlier Google searches. Documents without English language 
abstracts were also excluded. 
 

Search string Number of results 
browsed 

Documents retrieved  

lung nodules HTA imaging OR diagnosis OR 
detection OR screening 

30 3 (Dept of Health, ECRI, 
Ministry of Health) 

pulmonary nodules HTA imaging OR diagnosis 
OR detection OR screening 

22  0 

lung cancer HTA imaging OR diagnosis OR 
detection OR screening 

30 3 (2 x HTA Austria reports; 
1 review (van Meerbeeck 
2021))  

lung nodules HTA CT OR tomography OR 
radiography OR xray OR PET 

47  0 

lung cancer HTA CT OR tomography OR 
radiography OR xray OR PET 

50 1 (Bucher 2020) 

lung nodules economic imaging OR diagnosis 
OR detection OR screening OR CT OR 
tomography OR radiography OR xray OR PET 

50 1 ongoing study 
4 (LeMense 2020, Edelman 
Saul 2020, Pyenson 2019, 
Gilbert 2018) 

lung cancer economic imaging OR diagnosis OR 
detection OR screening OR CT OR tomography 
OR radiography OR xray OR PET 

50 2 (Health Policy 
Partnership, EEPRU ) 

lung nodules cost effectiveness imaging OR 
diagnosis OR detection OR screening OR CT OR 
tomography OR radiography OR xray OR PET 

50 2 (Lu 2014, Gilbert 2021) 

Total documents retrieved: 15; plus 1 ongoing study 

 
 
ISPOR presentations database     https://www.ispor.org/heor-resources/presentations-
database/search  
 
Date searched: 09/12/21 
As there was no option to export results in bulk, titles and, where necessary abstracts, were scanned 
for potential relevance and only those including economic evaluation, costs or utilities information 
for diagnostic imaging of lung cancer/pulmonary nodules were retrieved (where not already 
identified by previous searches).  
 

search hits documents retrieved 

lung cancer AND (imaging OR tomograph* OR 
radiograph* OR CT OR "x-ray*" OR xray* OR MRI OR 
PET OR screening) 

73 7 unique results, plus: 
5 posters related to abstracts 
already identified via database 
searches 

pulmonary nodule* AND (imaging OR tomograph* 
OR radiograph* OR CT OR "x-ray*" OR xray* OR MRI 
OR PET OR screening) 

3 0 

http://www.google.co.uk/
https://www.ispor.org/heor-resources/presentations-database/search
https://www.ispor.org/heor-resources/presentations-database/search
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lung nodule* AND (imaging OR tomograph* OR 
radiograph* OR CT OR "x-ray*" OR xray* OR MRI OR 
PET OR screening) 

5 0 

Total documents retrieved: 7; plus 5 posters related to 
abstracts previously identified 

 
 
 
Health Technology Assessment International (HTAi) Annual Meetings     https://htai.org/annual-
meetings/  
 
Date searched: 09/12/21 
 
HTAi 2021 Virtual (Manchester). Full program available at:  
https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf   
Searched (Ctrl + F) for: 
lung 
pulmon 
chest 
thora   nothing relevant found 
 
HTAi 2020 Beijing (virtual). Poster abstracts and Oral abstracts available from: 
https://htai.eventsair.com/htaibeijing2020  
Scanned titles in poster and abstract e-books (no search function available); nothing relevant found 
 
HTAi 2019 Cologne. Abstract book available at:   
https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf  
Searched (Ctrl + F) for: 
lung  2 abstracts retrieved 
pulmon  nothing relevant found 
chest  nothing relevant found 
thora  `nothing relevant found   
 
 
International Health Economics Association (iHEA) Congresses  
https://www.healtheconomics.org/page/PastCongresses  
Abstracts not available 
 
Date searched: 09/12/21 
Searched (Ctrl + F) for: 

• lung 

• pulmon 

• chest 

• thora   
in all of the following: 
 
Beijing 2009. Programme available at: 
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2009-
beijing-programme.pdf  
 

https://htai.org/annual-meetings/
https://htai.org/annual-meetings/
https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf
https://htai.eventsair.com/htaibeijing2020
https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf
https://www.healtheconomics.org/page/PastCongresses
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2009-beijing-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2009-beijing-programme.pdf
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Toronto 2011. Programme available at: 
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2011-
toronto-programme.pdf 
 
Sydney 2013. Programme available at: 
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2013-
sydney-programme.pdf 
 
Dublin 2014. Programme available at:  
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2014-
dublin-programme.pdf  
 
Milan 2015. Programme available at: 
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2015-
milan-programme.pdf 
 
Boston 2017. Programme available at: 
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/iHEA_Program_2017.pdf  
 
Basel 2019. Programme available at: 
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/program.pdf  
 
2 potentially relevant presentations identified (both from Boston 2017): 
 
Title: Cost Utility Analysis Of Lung Cancer Screening For High Risk Patients In Germany 
Presenter: Florian Hofer, Hamburg Center for Health Economics, Germany 
Author(s): Tom Stargard 
no abstract available, but a full journal article with very similar authors and title was identified via 
the database searches (Endnote ID #148) 
 
Title: Risk Stratified Lung Cancer Screening – A Cost-Effectiveness Analysis 
Presenter: Vaibhav Kumar, Tufts Medical Center, United States 
Author(s): Joshua T. Cohen, David van Klaveren, D6ora I. Soeteman, John Wong, Peter J. Neumann, 
David M. Kent 
no abstract available, but a full journal article with very similar authors and title was identified via 
the database searches (Endnote ID #169) 
 
0 documents retrieved. 
 

13.6.2 Searches for pulmonary nodule growth rates / volume doubling times 

Search dates and number of records retrieved per source are reported below: 
 

Database / source date searched number of results 

MEDLINE 02/03/22 375 

Embase 02/03/22 517 

CISNET website: publications 
list 

03/03/22 144 

Total: 1,036 

Total after deduplication within set: 810 

https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2011-toronto-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2011-toronto-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2013-sydney-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2013-sydney-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2014-dublin-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2014-dublin-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2015-milan-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/past_congresses/ihea-2015-milan-programme.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/iHEA_Program_2017.pdf
https://cdn.ymaws.com/www.healtheconomics.org/resource/resmgr/program.pdf
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Total after deduplication against previous search (economics 
SLR): 

786 

  

Internet (Google) and website (NCCN, NHS Digital, plus others 
identified via Google) searches, 03-09/03/22 

10 potentially relevant 
documents retrieved (9 
articles, 1 conference abstract) 
 
0 potentially useful 
registries/websites identified 
 
2 ongoing studies of potential 
interest identified (IDEAL, 
Watch the Spot) 

Google Dataset Search, 29-30/03/22 1 potentially relevant dataset 
retrieved 

 
 
Search strategies used:  
 
MEDLINE via Ovid 
Date searched: 02/03/22 
Ovid MEDLINE(R) ALL <1946 to March 01, 2022> 
1 (growth rate* or growth curve* or doubling time*).kf,tw. 95469 
2 Lung Neoplasms/di, dg 50814 
3 Solitary Pulmonary Nodule/ 4475 
4 (lung nodule* or pulmonary nodule*).kf,tw. 11482 
5 2 or 3 or 4 58727 
6 1 and 5 375 
 
Embase via Ovid 
Date searched: 02/03/22 
Embase Classic+Embase <1947 to 2022 March 01> 
1 (growth rate* or growth curve* or doubling time*).mp. 139373 
2 exp lung cancer/di [Diagnosis] 43090 
3 lung nodule/ 24693 
4 (lung nodule* or pulmonary nodule*).kf,tw. 19482 
5 2 or 3 or 4 68270 
6 1 and 5 517 
 
 
CISNET: Cancer Intervention and Surveillance Modeling Network  https://cisnet.cancer.gov/  
Date searched: 03/03/22 
Publications list - Lung: https://cisnet.cancer.gov/publications/cancer-site.html#lung_header  
144 publications listed. Citations retrieved using Citation Finder https://citation-finder.vercel.app/  
 
Google (Chrome browser)     3/3/22 
 
search terms: list patient registries browsed 1st 30 results. Checked: 
 
https://www.nih.gov/health-information/nih-clinical-research-trials-you/list-registries 
 > https://epi.grants.cancer.gov/cancer-registries/  

https://cisnet.cancer.gov/
https://cisnet.cancer.gov/publications/cancer-site.html#lung_header
https://citation-finder.vercel.app/
https://www.nih.gov/health-information/nih-clinical-research-trials-you/list-registries
https://epi.grants.cancer.gov/cancer-registries/
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  >https://cancer.ca/en/  
 
https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/encepp-resource-
database-inventory-patient-registries_en.pdf   
 
https://www.encepp.eu/encepp/search.htm   searched:  
Data source > 'lung cancer'  
lung 
nodule 
cancer  nothing relevant found 
 
https://www.ncri.ie/  has good survival statistics, but nothing on growth 
 
https://www.infodesk.com/life-sciences/types-of-patient-registries-and-where-to-find-them/  
> CDC resources: browsed https://www.cdc.gov/cancer/lung/ lung cancer stats are available 
(USCS)but not growth rates. 
CDC search box: pulmonary nodules     nothing relevant 
https://www.cdc.gov/cancer/npcr/meaningful_use.htm 
 
> https://www.pcori.org/  
browsed https://www.pcori.org/topics/cancer  
search box: nodules : 
> Watch the Spot: 
https://www.pcori.org/research-results/pcori-literature/methods-watch-spot-trial-pragmatic-trial-
more-vs-less-intensive-strategies-active-surveillance-small-pulmonary-nodules  
https://www.pcori.org/research-results/2015/comparing-more-versus-less-frequent-monitoring-
diagnose-lung-cancer-early-watch-spot-trial  
this ongoing trial may be of interest 
 
https://www.eunethta.eu/parent/     appears to be closed; links are dead 
 
https://www.ncra-usa.org/Advocacy/IMSWR/List-of-Medical-Registries  
 
https://www.safetyandquality.gov.au/publications-and-resources/australian-register-clinical-
registries  
search box: 
lung 
> https://vlcr.org.au/  
pulmonary 
Sorted by 'prioritised clinical domain' and scanned list nothing relevant 
 
 
Google (Chrome browser)     7/3/22 
 
search terms: pulmonary nodule growth dataset OR registry OR audit browsed 1st 30 results. 
Checked:  
 
BTS guideline https://www.brit-thoracic.org.uk/document-library/guidelines/pulmonary-
nodules/bts-guidelines-for-the-investigation-and-management-of-pulmonary-nodules/   pages ii18-
20; all relevant references identified by MEDLINE/Embase searches 
  

https://cancer.ca/en/
https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/encepp-resource-database-inventory-patient-registries_en.pdf
https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/encepp-resource-database-inventory-patient-registries_en.pdf
https://www.encepp.eu/encepp/search.htm
https://www.ncri.ie/
https://www.infodesk.com/life-sciences/types-of-patient-registries-and-where-to-find-them/
https://www.cdc.gov/cancer/lung/
https://www.cdc.gov/cancer/npcr/meaningful_use.htm
https://www.pcori.org/
https://www.pcori.org/topics/cancer
https://www.pcori.org/research-results/pcori-literature/methods-watch-spot-trial-pragmatic-trial-more-vs-less-intensive-strategies-active-surveillance-small-pulmonary-nodules
https://www.pcori.org/research-results/pcori-literature/methods-watch-spot-trial-pragmatic-trial-more-vs-less-intensive-strategies-active-surveillance-small-pulmonary-nodules
https://www.pcori.org/research-results/2015/comparing-more-versus-less-frequent-monitoring-diagnose-lung-cancer-early-watch-spot-trial
https://www.pcori.org/research-results/2015/comparing-more-versus-less-frequent-monitoring-diagnose-lung-cancer-early-watch-spot-trial
https://www.eunethta.eu/parent/
https://www.ncra-usa.org/Advocacy/IMSWR/List-of-Medical-Registries
https://www.safetyandquality.gov.au/publications-and-resources/australian-register-clinical-registries
https://www.safetyandquality.gov.au/publications-and-resources/australian-register-clinical-registries
https://vlcr.org.au/
https://www.brit-thoracic.org.uk/document-library/guidelines/pulmonary-nodules/bts-guidelines-for-the-investigation-and-management-of-pulmonary-nodules/
https://www.brit-thoracic.org.uk/document-library/guidelines/pulmonary-nodules/bts-guidelines-for-the-investigation-and-management-of-pulmonary-nodules/
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IDEAL study:  
https://thorax.bmj.com/content/thoraxjnl/75/4/306.full.pdf    
https://clinicaltrials.gov/ct2/show/NCT03753724  
https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0044-3  
this ongoing trial may be of interest 
 
 
search terms: diagnostic radiology professional bodies  browsed 1st 10 results. Checked: 
 
https://www.bir.org.uk/useful-information/professional-links.aspx   
search box: 
pulmonary nodules 
registry 
audit lung 
nodule surveillance 
> National Lung Cancer Audit: https://nlca.rcp.ac.uk/Home/Index     has good survival statistics, but 
nothing on growth 
 
https://www.rcr.ac.uk/  
search box:  
pulmonary nodule 
registry 
audit lung  nothing relevant found 
 
https://ektron.rsna.org/Radiology-Organizations/  
browsed and/or searched for 'pulmonary nodules' and 'lung cancer' on each of these listed sites: 
https://www.theabr.org/ 
https://www.acr.org/   2 'incidental findings' papers on adherence/real life follow up may be of 
interest 
https://www.ahra.org/Default.aspx  
https://car.ca/ 
https://www.myesr.org/ 
https://www.myesti.org/  
https://fleischner.memberclicks.net/  
https://www.hkcr.org/ 
https://www.icimagingsociety.org.uk/  
https://www.iria.in/ 
http://www.isradiology.org/ 
https://www.ranzcr.com/ 
https://www.radiology.ie/ 
https://www.rsna.org/ 
https://www.rssa.co.za/  need membership to access most documents 
https://www.scardweb.org/  need membership to access 'Resources' section 
https://siim.org/    
https://srs.org.sg/ 
https://thoracicrad.org/  
 
nothing relevant found 
 
 
Google (Chrome browser)     9/3/22 

https://thorax.bmj.com/content/thoraxjnl/75/4/306.full.pdf
https://clinicaltrials.gov/ct2/show/NCT03753724
https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0044-3
https://www.bir.org.uk/useful-information/professional-links.aspx
https://nlca.rcp.ac.uk/Home/Index
https://www.rcr.ac.uk/
https://ektron.rsna.org/Radiology-Organizations/
https://www.theabr.org/
https://www.acr.org/
https://www.ahra.org/Default.aspx
https://car.ca/
https://www.myesr.org/
https://www.myesti.org/
https://fleischner.memberclicks.net/
https://www.hkcr.org/
https://www.icimagingsociety.org.uk/
https://www.iria.in/
http://www.isradiology.org/
https://www.ranzcr.com/
https://www.radiology.ie/
https://www.rsna.org/
https://www.rssa.co.za/
https://www.scardweb.org/
https://siim.org/
https://srs.org.sg/
https://thoracicrad.org/
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search terms: pulmonary nodule natural history database OR registry OR audit browsed 1st 50 
results. Checked:  
  
https://clinicaltrials.gov/ct2/show/NCT01540552 
> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405280/   
 potentially relevant study/article 
 
https://www.frontiersin.org/articles/10.3389/fonc.2020.00318/full - potentially relevant 
study/article 
 
https://www.appliedradiology.com/articles/rsna-2019-tracking-improves-follow-up-imaging-
compliance-in-incidental-lung-nodules  
> additional Google search: national jewish health lung nodule registry   
>https://www.nationaljewish.org/directory/lung-nodule-registry-program  
>https://doi.org/10.1016/j.jacr.2021.01.018  
>https://www.jtocrr.org/article/S2666-3643(22)00021-2/pdf  - includes nothing on nodule growth 
but they should be able to assess this from their registry data…?  
 
https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.1564   conference abstract, mainly 
about increasing follow up 
 
 
search terms: pulmonary nodule surveillance dataset OR registry OR audit     browsed 1st 30 results. 
Checked: 
 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784443/  - potentially useful paragraph: 'Nodule 
growth rate' - checked references: 
>ACCP guidelines – see section 4.5 ' CT Scan Surveillance') – checked references: 
>https://pubmed.ncbi.nlm.nih.gov/10942328/   potentially relevant article 
 
https://pubs.rsna.org/doi/full/10.1148/radiol.2017151022#_i27  potentially useful section on ' 
Clinical Applicability of Volumetry in Nodule Management' – checked references: 
>https://erj.ersjournals.com/content/42/6/1706  - potentially useful; see table 1 
>https://doi.org/10.1016/0007-0971(79)90002-0  - potentially useful 
 
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/1857093  - not about growth 
but may be of interest because looks at resource use 
 
https://doi.org/10.1016/S0169-5002(19)30071-6   potentially useful conference abstract 
 
 
Additional websites and databases: 9/3/22 
 
https://data.gov.uk/  
searched (topic: health): 
lung cancer 
lung nodules 
pulmonary nodules 
nodule 
 
nothing relevant found 

https://clinicaltrials.gov/ct2/show/NCT01540552
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405280/
https://www.frontiersin.org/articles/10.3389/fonc.2020.00318/full
https://www.appliedradiology.com/articles/rsna-2019-tracking-improves-follow-up-imaging-compliance-in-incidental-lung-nodules
https://www.appliedradiology.com/articles/rsna-2019-tracking-improves-follow-up-imaging-compliance-in-incidental-lung-nodules
https://www.nationaljewish.org/directory/lung-nodule-registry-program
https://doi.org/10.1016/j.jacr.2021.01.018
https://www.jtocrr.org/article/S2666-3643(22)00021-2/pdf
https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.1564
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784443/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749714/
https://pubmed.ncbi.nlm.nih.gov/10942328/
https://pubs.rsna.org/doi/full/10.1148/radiol.2017151022#_i27
https://erj.ersjournals.com/content/42/6/1706
https://doi.org/10.1016/0007-0971(79)90002-0
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/1857093
https://doi.org/10.1016/S0169-5002(19)30071-6
https://data.gov.uk/
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National Comprehensive Cancer Network  https://www.nccn.org/  
search box:  
pulmonary nodules 
nodule 
lung ct 
lung computed tomography 
 
Browsed 'Education & Research' 
 browsed 'Shared Resources' database 
 
nothing relevant found 
 
 
NHS Digital https://digital.nhs.uk/  
search box: 
pulmonary nodules 
nodule 
lung cancer 
 
nothing relevant to growth rates 
 
 
ICPSR (Inter-university Consortium for Political and Social Research) 
https://www.icpsr.umich.edu/web/pages/  
search box: 
lung nodules 
"pulmonary nodule" 
"computed tomography" 
"lung cancer" 
 
nothing relevant found 
 
 
UK Data Service   https://ukdataservice.ac.uk/  
search box 'search our data catalogue': 
lung cancer 
pulmonary nodules 
nodule 
 
nothing relevant found 
 
 
Google Dataset Search  https://datasetsearch.research.google.com/  (Chrome browser) 
29-30/03/22 
 
pulmonary nodule growth rate    20 data sets found 1 potentially relevant dataset 
downloaded 
pulmonary nodules doubling time 2 results; both already found above 
lung nodules doubling time  same 2 results retrieved 
 

https://www.nccn.org/
https://digital.nhs.uk/
https://www.icpsr.umich.edu/web/pages/
https://ukdataservice.ac.uk/
https://datasetsearch.research.google.com/
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13.6.3 Searches for pulmonary nodule prevalence by size and type 

Search dates and number of records retrieved per source are reported below: 
 

Database / source Date searched Results (titles / 
abstracts) screened 

Results selected as 
potentially relevant 

MEDLINE 30/06/22 228 20 

Google 23/06/22 20 1, plus section of BTS 
guideline on prevalence (see 
below) 

Reference checking 
from BTS guideline  

23/06/22 32 8 

Total:  280 29 

 
 
Search strategies used:  
 
MEDLINE via Ovid 
Date searched: 30/06/22 
Database: Ovid MEDLINE(R) ALL <1946 to June 29, 2022> 
 
1     exp Lung Neoplasms/dg (27068) 
2     Solitary Pulmonary Nodule/di, dg (3694) 
3     ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or 
tumour* or carcino* or malignan* or adenocarcinom* or blastoma*)).kf,tw. (283697) 
4     1 or 2 or 3 [lung cancer or SPNs] (293093) 
5     Mass Screening/ (113855) 
6     ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 screen*).kf,tw. 
(5092) 
7     5 or 6 [screening] (117282) 
8     Tomography, X-Ray Computed/ or exp Tomography, Spiral Computed/ (424801) 
9     (comput* adj2 tomograph*).kf,tw. (359889) 
10     (CT or LDCT).kf,tw. (402762) 
11     8 or 9 or 10 [CT] (782143) 
12     Prevalence/ (332019) 
13     "prevalen*".kf,tw. (895491) 
14     12 or 13 [prevalence] (975826) 
15     Incidental Findings/ (11566) 
16     (incidental* adj2 (finding* or found or discover* or diagnos* or detect*)).kf,tw. (29485) 
17     "incidentaloma*".kf,tw. (2592) 
18     15 or 16 or 17 [incidental findings] (36802) 
19     4 and 7 and 11 and 14 [lung ca/PN screening CT prevalence] (337) 
20     (pulmonary nodule* or lung nodule*).kf,tw. (11812) 
21     2 or 20 [PNs - not Ca] (12891) 
22     11 and 14 and 21 [PNs prevalence CT] (316) 
23     4 and 11 and 18 [lung ca/PNs CT Incidental findings] (1007) 
24     19 or 22 or 23 (1499) 
25     exp United Kingdom/ (385304) 
26     (national health service* or nhs*).ab,in,ti. (247302) 
27     (english not ((published or publication* or translat* or written or language* or speak* or 
literature or citation*) adj5 english)).ab,ti. (45087) 
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28     (gb or "g.b." or britain* or (british* not "british columbia") or uk or "u.k." or united kingdom* or 
(england* not "new england") or northern ireland* or northern irish* or scotland* or scottish* or 
((wales or "south wales") not "new south wales") or welsh*).ab,in,jw,ti. (2322787) 
29     (bath or "bath's" or ((birmingham not alabama*) or ("birmingham's" not alabama*) or bradford 
or "bradford's" or brighton or "brighton's" or bristol or "bristol's" or carlisle* or "carlisle's" or 
(cambridge not (massachusetts* or boston* or harvard*)) or ("cambridge's" not (massachusetts* or 
boston* or harvard*)) or (canterbury not zealand*) or ("canterbury's" not zealand*) or chelmsford 
or "chelmsford's" or chester or "chester's" or chichester or "chichester's" or coventry or "coventry's" 
or derby or "derby's" or (durham not (carolina* or nc)) or ("durham's" not (carolina* or nc)) or ely or 
"ely's" or exeter or "exeter's" or gloucester or "gloucester's" or hereford or "hereford's" or hull or 
"hull's" or lancaster or "lancaster's" or leeds* or leicester or "leicester's" or (lincoln not nebraska*) 
or ("lincoln's" not nebraska*) or (liverpool not (new south wales* or nsw)) or ("liverpool's" not (new 
south wales* or nsw)) or ((london not (ontario* or ont or toronto*)) or ("london's" not (ontario* or 
ont or toronto*)) or manchester or "manchester's" or (newcastle not (new south wales* or nsw)) or 
("newcastle's" not (new south wales* or nsw)) or norwich or "norwich's" or nottingham or 
"nottingham's" or oxford or "oxford's" or peterborough or "peterborough's" or plymouth or 
"plymouth's" or portsmouth or "portsmouth's" or preston or "preston's" or ripon or "ripon's" or 
salford or "salford's" or salisbury or "salisbury's" or sheffield or "sheffield's" or southampton or 
"southampton's" or st albans or stoke or "stoke's" or sunderland or "sunderland's" or truro or 
"truro's" or wakefield or "wakefield's" or wells or westminster or "westminster's" or winchester or 
"winchester's" or wolverhampton or "wolverhampton's" or (worcester not (massachusetts* or 
boston* or harvard*)) or ("worcester's" not (massachusetts* or boston* or harvard*)) or (york not 
("new york*" or ny or ontario* or ont or toronto*)) or ("york's" not ("new york*" or ny or ontario* or 
ont or toronto*))))).ab,in,ti. (1633647) 
30     (bangor or "bangor's" or cardiff or "cardiff's" or newport or "newport's" or st asaph or "st 
asaph's" or st davids or swansea or "swansea's").ab,in,ti. (65320) 
31     (aberdeen or "aberdeen's" or dundee or "dundee's" or edinburgh or "edinburgh's" or glasgow 
or "glasgow's" or inverness or (perth not australia*) or ("perth's" not australia*) or stirling or 
"stirling's").ab,in,ti. (240883) 
32     (armagh or "armagh's" or belfast or "belfast's" or lisburn or "lisburn's" or londonderry or 
"londonderry's" or derry or "derry's" or newry or "newry's").ab,in,ti. (31250) 
33     25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 (2915825) 
34     (exp africa/ or exp americas/ or exp antarctic regions/ or exp arctic regions/ or exp asia/ or exp 
australia/ or exp oceania/) not (exp United Kingdom/ or europe/) (3215213) 
35     33 not 34 [UK search filter, Ayiku et al 2017 
https://onlinelibrary.wiley.com/doi/10.1111/hir.12187 ] (2762901) 
36     24 and 35 (114) 
37     from 36 keep 6,10,15,23,36,40,44,46-47,62,65,69,99,102,114 (15) 
38     ((larger or smaller or bigger or greater or more than or less than) adj4 mm).tw. (48708) 
39     ((larger or smaller or bigger or greater or more than or less than) adj4 millimet*).tw. (718) 
40     21 and (38 or 39) [PNs - size] (346) 
41     (nodule* adj4 (size or type or characteristic*)).kf,tw. (5085) 
42     38 or 39 or 41 [nodule type or size] (54250) 
43     21 and 42 (1401) 
44     35 and 43 (85) 
45     44 not 36 (77) 
46     from 45 keep 23,26-27,36 (4) 
47     37 or 46 (19) 
48     (distribution adj5 (size? or type? or characteristic? or solidity)).kf,tw. (66593) 
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49     ((prevalence or proportion or percentage or distribution) adj5 (solid or nonsolid or partsolid or 
subsolid or ground glass or SSN or PSN or GGN or GGO or SSNs or PSNs or GGNs or GGOs)).kf,tw. 
(2138) 
50     48 or 49 (68596) 
51     4 and 50 (792) 
52     35 and 51 (41) 
53     52 not 45 (37) 
54     from 53 keep 8 (1) 
 
Lines 25-35 of the MEDLINE search are the UK search filter described and validated in: Ayiku L, Levay 
P, Hudson T, Craven J, Barrett E, Finnegan A, et al. The MEDLINE UK filter: development and 
validation of a geographic search filter to retrieve research about the UK from OVID MEDLINE. 
Health Information & Libraries Journal 2017;34(3):200-16. 
http://dx.doi.org/https://doi.org/10.1111/hir.12187  
 
 
Google (Chrome browser)     23/06/22 
 
search terms: lung nodule prevalence UK browsed 1st 20 results. 2 potentially relevant, one of 
which is the BTS guideline:  
 
Checked references related to prevalence in the BTS guideline (32): 
Callister ME, Baldwin DR, Akram AR, Barnard S, Cane P, Draffan J, et al. British Thoracic Society 
guidelines for the investigation and management of pulmonary nodules. Thorax 2015;70(Suppl 
2):ii1-ii54. http://dx.doi.org/10.1136/thoraxjnl-2015-207168 
8 potentially relevant papers 
 
  

http://dx.doi.org/https:/doi.org/10.1111/hir.12187
http://dx.doi.org/10.1136/thoraxjnl-2015-207168
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13.7 Appendix 7: Growth model and its development process 

Introduction 

Assessing the impact of AI assistance during CT surveillance requires modelling of the pathways  

which people with lung nodules would take between repeated CT scans based on the findings of the 

earlier CT scan. During the time period between CT scans, the nodule may grow and this needs to be 

taken into account when assessing the impact of AI assistance at follow-up CT scans. Thus, we need 

know the natural history of lung cancer in the form of growth in malignant nodules and quantify it 

using a malignant nodule growth model. In order to facilitate this, we firstly identified studies that 

have included such models, then obtained information from relevant studies to develop a growth 

model that can be incorporated into our decision modelling as described below.  

Methods  

We undertook a targeted search for studies that explicitly modelled disease progression of lung 

cancer based on tumour growth. We searched electronic databases (e.g., Medline and Embase) for 

potentially relevant studies. The titles and abstracts of records were screened by PA and HG. Articles 

that were considered appropriate were read in full. No quality appraisal or data extraction was 

undertaken. Full details of the search strategy can be found in Appendix 6.   

Results 

We screened 750 titles and abstracts, of which 15 were potentially relevant and were read in full. 

From these, four studies (Gould et al., 2003, Sutton et al., 2020, Edelsberg et al., 2018; Treskova et 

al., 2017) that modelled disease progression based on tumour growth were considered useful and 

discussed below. Details of these studies can be found in Table 71.  

The underlying growth model used by Edelsberg et al. and Sutton et al. was obtained from Gould et 

al. (Gould et al., 2003). Briefly, Gould et al. undertook an economic analysis that compared 

management strategies (including or excluding FDG-PET) for the diagnosis of pulmonary nodules by 

using a model with two components: a decision tree and a Markov model. The Markov component 

was used to model and estimate the long-terms and costs associated with managing people with 

benign and malignant lung nodules. Before clinical presentation, people with malignant lung nodules 

who were managed through watchful waiting were at risk of progressing from local → regional → 

distant/metastatic lung cancer during the observation period. At the time of diagnosis/clinical 

presentation, people would move/progress from a pre-clinical health state to a clinical health state 

(benign, local or regional).  
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To determine the probability of disease progression during watchful waiting Gould et al. used 

information obtained from Steele and Buell 1973. In this study, data were collected from the 

Veterans Administration-Armed Forces Cooperative Study on Asymptomatic Solitary Nodules 

involving Veterans Administration across 13 participating military hospitals. The growth rate of lung 

nodules was based on the volume doubling time measured in 67 cases of people with asymptomatic 

nodules measuring less than 6 cm. Nodule size was routinely collected using chest films based on 

incidental findings.     

 

Edelsberg et al. assessed the cost-effectiveness of autoantibody test compared to CT surveillance 

alone in people with an indeterminate risk of lung cancer. Authors fitted an exponential model to 

the observed data from Steele and Buell 1973 to derive monthly transition probabilities. Sutton et al. 

undertook a similar economic analysis, which estimated the cost-effectiveness of an autoantibody 

test, EarlyCDT-Lung in the diagnosis of lung cancer among people with an indeterminate pulmonary 

nodule as an adjunct to CT surveillance compared to CT surveillance alone. Authors used the same 

approach to derive monthly transition probabilities. We noted similarities and differences in the 

assumptions made with regards to the growth models: Gould et al. assumed that if there was no 

evidence of growth, nodules were considered benign, and transition probabilities for progressing 

from local to regional and from regional to distant disease were the same. Edelsberg assumed that 

after three CT scans and there was no evidence of the nodule doubling, the nodule was considered 

benign. Authors further assumed that malignant nodules that were not diagnosed at model entry, 

increased in size, and progressed during CT surveillance. Sutton et al., assumed that the transition 

probability of progressing from local to regional is the same as progressing from regional to distant 

disease, and people undergoing CT surveillance all received three CT scans.  

In general, these assumptions made were considered feasible; however, we query the usefulness of 

the underlying study (Steele and Buell 1973) to model our growth model. We considered that this 

study may not be generalisable to our sub-populations of interest as study participants were male 

and all had lung nodules less than 6 cm. Additionally, the study is dated, and the characteristics of 

patients are likely to be different compared to a more contemporary cohort. Furthermore, the 

techniques used to model the growth have improved based on the knowledge about how lung 

nodules grow. It is understood that the growth of lung nodules is better modelled using a Gompertz 

function instead of an exponential. Moreover, evidence of volume doubling time was collected using 

routine chest films in the original study but now this is done through CT scans.  
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Given these limitations, other alternative studies with a more contemporary cohort were pursued. 

One such study was undertaken by Treskova et al. These authors investigated the effects of the 

eligibility criteria and nodule management on the benefits, harms and cost-effectiveness of lung 

cancer screening with low-density computed tomography (LDCT) by using a microsimulation model. 

The model was populated with 10% of the German population aged 40 years and older. Data on 

smoking behaviour was obtained from the German Health Update (GEDA) survey (years 2009–2012), 

and the demographic structure of 2012 was obtained from the German statistical office. The growth 

model also uses the data from US NLST, and NELSON lung cancer screening trials. The NLST 

algorithm assessed the nodule diameter, and according to the sizes it recommends three categories 

of screening results: negative, positive intermediate, and positive. Conversely, NELSON assessed the 

nodule volume and depending on an individual’s result, they could be recommended to undergo 

further screening (people with negative results), a follow-up exam (people with indeterminate 

results), or an immediate diagnostic workup for the people with positive results.  

 

Treskova and colleagues assumed that the threshold tumour volumes at the stages of nodal 

involvement, and distant disease and clinical diagnoses were randomly drawn from lognormal 

distributions. Lung cancer progression was described via tumour growth, lymph nodes involvement 

and metastases, and growth of malignant nodules is defined by a Gompertz function. The model 

included a natural history of a biological two-stage clonal expansion (TSCE) of the disease 

incorporating the nodule growth (in terms of the rate and time). The TSCE model considers the age 

of individuals at the first presentation of a malignant lung nodule, which was categorised as: 

adenocarcinoma, large cell carcinoma, small cell carcinoma and squamous cell carcinoma.  

 

Researchers identified the harms as incurred costs, false positives, and overdiagnosis due to a lung 

cancer screening. Benefits included reduction in mortality, the number of deaths averted due to 

earlier detection of lung cancer, and subsequently the life years gained. They assumed that there 

was a balance between the harms and benefits which can result in efficiency. They adopted a model 

that traced the efficiency and effectiveness of the lung cancer screening program from the initial  

development of the nodule through to its turning into lung cancer. The screening module of their 

model included: eligibility assessment, screening detection, nodule management (including follow-

up), diagnostic work-up, and lung cancer survival. This created a screening schedule for each person 

based the US NLST and the NELSON trial.   
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Treskova et. al used the volume doubling (VDT), an indicator used in the BTS guidelines for managing 

people with lung nodules. Authors were transparent in their modelling methodology by providing 

details of their approaches, including their functions, parameters and assumptions. Given the 

advantages of this study over others identified, we used this as the basis for our growth model for 

solid malignant nodules.    

 

Growth/progression of malignant nodules 

To the simulated nodule diameter measurements at baseline CT scan, we applied growth curves and 

simulated how nodules grew over two years of CT surveillance for solid nodules, and four years of CT 

surveillance for sub-solid nodules. Growth curves were simulated for the reference standard, AI-

assisted radiologist reading of CT scan and unaided radiologist reading.  

 

We used the growth model developed by Treskova to track the malignant nodules’ growth over time 

from baseline. Treskova et al. suggest a Gompertz function with a log-normal distribution for the 

scale and shape parameters of the malignant nodule growth over the person’s lifetime. In the 

proposed growth model, the disease progression is characterised by the volume of the nodule, its 

location, and the metastatic probability of the nodule. They assumed that if a person’s threshold 

volume exceeds from calculated maximum expected volume (Vmax), the corresponding cancer stage 

will not be reached during the lifetime of this patient.  

 

A spherical volume measurement for computing the volume of the nodule was provided for four 

histological types along with threshold values. We selected the threshold parameters for 

adenocarcinoma to simulate malignant tumour growth. This histological class was chosen because it 

accounts for majority (87%) of the lung cancers diagnosed in the UK.   

 

Nodule volume was calculated from the baseline nodule diameter. Then, the growth function was 

applied to calculate nodule volume at subsequent time points. Nodule diameter was calculated by 

rearranging the formula for the sphere volume. Using the newly calculated diameters, VDT was 

calculated for each person with a lung nodule that showed no clear features of being benign.  
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The following formulae were used for both solid and sub-solid nodules (only the growth function 

differs between solid and sub-solid nodules): 

𝑺𝒑𝒉𝒆𝒓𝒆 𝒗𝒐𝒍𝒖𝒎𝒆 =  
𝝅

𝟔
∗ (𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓)𝟑 

𝑺𝒑𝒉𝒆𝒓𝒆 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 =  √
𝟔 ∗ (𝒔𝒑𝒉𝒆𝒓𝒆 𝒗𝒐𝒍𝒖𝒎𝒆)

𝝅

𝟑

 

𝑽𝒐𝒍𝒖𝒎𝒆 𝒅𝒐𝒖𝒃𝒍𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 (𝑽𝑫𝑻) =  𝒕𝒊𝒎𝒆 ∗
𝐥𝐨𝐠(𝟐)

𝐥𝐨𝐠 (
𝑺𝒑𝒉𝒆𝒓𝒆 𝒗𝒐𝒍𝒖𝒎𝒆 𝒂𝒕 𝒕𝒊𝒎𝒆𝒕=𝒊+𝟏

𝑺𝒑𝒉𝒆𝒓𝒆 𝒗𝒐𝒍𝒖𝒎𝒆 𝒂𝒕 𝒕𝒊𝒎𝒆𝒕=𝒊
)
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Solid nodules 

𝑮𝒐𝒎𝒑𝒆𝒓𝒕𝒛 𝒈𝒓𝒐𝒘𝒕𝒉 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑽𝒐𝒍𝒖𝒎𝒆𝒎𝒂𝒙 ∗
𝑽𝒐𝒍𝒖𝒎𝒆𝒕=𝟎

𝑽𝒐𝒍𝒖𝒎𝒆𝒎𝒂𝒙

−𝒕𝒊𝒎𝒆∗𝒂𝒍𝒑𝒉𝒂

 

Where 𝑽𝒐𝒍𝒖𝒎𝒆𝒎𝒂𝒙 = 𝟏𝟒𝟏𝟑𝟕. 𝟏𝟕 and 𝒂𝒍𝒑𝒉𝒂~𝑵𝒐𝒓𝒎𝒂𝒍 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏(−𝟕. 𝟕𝟔𝟓, 𝟎. 𝟓𝟓𝟎𝟒). 

 

Sub-solid nodules 

𝑳𝒊𝒏𝒆𝒂𝒓 𝒈𝒓𝒐𝒘𝒕𝒉 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑽𝒐𝒍𝒖𝒎𝒆𝒕=𝒊 + 𝟐 ∗
𝒕𝒊𝒎𝒆

𝒂𝒍𝒑𝒉𝒂
 

Where 𝒂𝒍𝒑𝒉𝒂~ 𝐥𝐨𝐠(𝑵𝒐𝒓𝒎𝒂𝒍 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏(𝟑. 𝟔𝟑𝟏𝟔, 𝟏. 𝟓𝟐𝟕𝟗)).
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Table 71. Characteristics of studies that included a growth model  

Author Type of study Aim(s)/Objective(s) Data underpinning 
growth model 

Assumptions Pros Cons 

Gould et al., 
2003 

Economic 
evaluation  

To evaluate the 
cost-effectiveness 
of strategies for 
pulmonary nodule 
diagnosis and to 
specifically 
compare strategies 
that did and did 
not include FDG-
PET 

Data obtained 
from the study 
undertaken by 
Steele et al. 
(1963) – male 
veterans 
administration 
armed forces 
cooperative study 
on asymptomatic 
pulmonary 
nodules  

If there was no 
evidence of 
growth observed 
by 24 months, it 
was assumed that 
the nodule was 
benign 

 

Assumed that 
pulmonary 
nodules measured 
2cm in diameter 

 

12.5% of people 
with malignant 
nodules had 
regional lymph 
node involvement 

 

Monthly 
probabilities for 
disease 
progression 
depended on VDT, 

Used in several economic 
analyses 

 

Doubling time by cell type 
(squamous cell, 
adenocarcinoma, 
bronchiolar, 
adenosquamous and 
undifferentiated)  

Based on dated 
information that 
included males 
only 

 

Appears to be 
solitary nodules 
only 

 

Unclear about 
definitions used 
for lung nodules 
(TP, TN, FP, FN).  

 

Historical data in 
males with 
asymptomatic 
nodules measuring 
<6cm. Evidence of 
VDT is collected 
using routine 
chest films.  
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Author Type of study Aim(s)/Objective(s) Data underpinning 
growth model 

Assumptions Pros Cons 

a measure of 
tumour growth 

 

Tumour starts 
from a single cell 
that measures 10 
microns in 
diameter that 
doubles in volume 
at a constant rate 

 

Death occurs after 
40 doublings for a 
tumour size 10cm 

 

Untreated lung 
cancer progresses 
from local → 
regional → distant 
→ dead 

 

Transition 
probabilities for 
progressing from 
local → regional 
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→ distant disease 
are equal 

 

Growth would be 
detected when 
the nodule double 
once in volume  

 

Sutton et al., 
2020 

Economic 
evaluation 

‘To examine the 
cost-effectiveness 
of autoantibody 
test (AABT), 
EarlyCDT–Lung, in 
the diagnosis of 
lung cancer 

amongst patients 
with IPNs applied 
in the addition to 
CT surveillance, 
compared to CT 
surveillance alone 
as specified in the 
British Thoracic 
Society guidelines 
in which patients 
are 

Progression rates 
in people with 
undiagnosed 
malignant nodules 
were based on 
observed VDT 
obtained from 
Gould et al., which 
were originally 
obtained from 
Steele 1963. 
Exponential model 
was fitted to the 
observed data to 
derive monthly 
transition 
probabilities 

It appears that 
malignant lung 
nodules were 
initially diagnosed 
at local (87.5%) or 
regional stage 
(12.5%) 

 

People undergoing 
surveillance 
received CT-scans 
at 3 months, 12 
months, and 24 
months. People 
with a negative 
test continued to 
undergo 
surveillance.  

The model includes both 
detection and treatment 
phases  

 

Included a probability 
associated with growth of 
a benign nodule at the 
first month and 
subsequent probability of 
growth 

 

Transition probabilities 
reported for the natural 
history model 

Unclear about 
stage shift  

Not revealed 
natural history for 
the growth rate  

Not including VDT 
for measuring the 
growth of the lung 
nodules  

 

using information 
obtained from 
Gould et al. study, 
which is a dated 
database (1973). 
used.  
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Assumptions Pros Cons 

offered surveillance 
through repeat CT 
scanning.’ 

 

Probability is the 
same for 
progression from 
undiagnosed local 
to regional disease 
and from regional 
to distant disease  

 

Not explicitly 
stated but, once 
locally diagnosed 
there is no 
progression to 
distant disease. 
However, if 
diagnosed 
regional there is a 
possibility of 
progressing to 
distant disease.  

 

100% compliance 
with CT 
surveillance 
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Edelsberg et al., 
2018 

Cost-effectiveness 
analysis 

To assess the cost-
effectiveness of 
autoantibody test 
compared to CT 
surveillance alone 
could improve 
outcomes for 
people at 
intermediate risk 
of lung cancer.  

Based on 
information 
reported in Gould 
et al. (2003) 

People have 
incidentally 
detected nodules 
that measure 
between 8 to 
30mm and have 
an estimated 5-
60% risk of lung 
cancer. 

 

After three CT 
scans and there is 
no volume 
doubling, the 
nodule is assumed 
to be benign. 

 

Malignant nodules 
are diagnosed at 
biopsy. If not 
diagnosed at time 
of model entry, 
then nodules were 
assumed to 
increase size and 
progress during 
the 24-month 
follow-up and are 

Using the VDT for 
identifying the lung 
cancer progression over 
time, 

 

 targeting Quality of life 
as the main outcome,   

Using data from 
Gould et al. Study 
which is related to 
1973 (dated data 
base),  

focused only on 
malignant 
nodules,  

natural history is 
based on the VDT, 
but not 
elaborated,  
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assumed to be 
diagnosed soon 
after CT scan 
following volume 
doubling.   

 

Patients who are 
benign that had 
tested positive 
would receive a 
biopsy that would 
confirm no 
malignancy. 

Chen et al., 2014 To model the 
natural history of 
an individual from 
birth to lung 
cancer initiation, 
progression, 
detection, and 
death 

Several models 
(carcinogenesis, 
tumour growth and 
metastasis, and 
cancer detection) 
were used to 
address the 
research question. 
Our focus is on the 
model used to 
measure tumour 
growth.  

Simulation and 
validated using 
the SEER dataset 

Several 
assumptions were 
made for the 
tumour growth 
and metastasis 
modelling:  

 

The primary 
tumour grows 
from a single cell, 
with an assumed 
volume of 1x10-9 
cm3. The growth 
rate λ, is related to 

Provided tumour size 
frequency distribution for 
local, regional, and 
distant disease. 

Incorporating the 
smoking behaviour in the 
natural history  

 

Yearly mean growth rate 
by stage and VDT by stage 
(days)  

 

The study focuses 
on developing and 
validating a 
predicting model 
for lung cancer 
based on 
demographical 
and smoking 
characteristics, 
thus the study 
doesn’t provide a 
clear lung nodules 
growth pattern 
over time. 
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the tumour 
doubling time and 
is determined 
when first 
detected and is 
assumed to 
remain constant 
over time. 

 

Growth rate 
follows a gamma 
distribution 

 

Metastases are 
defined as nodal 
or distant. 
Different rates for 
each type of 
metastases 

 

 

The study seems 
more suitable for 
predicting the lung 
cancer probability 
due to smoking 
and then for non-
smoker population 
probably not 
applicable.  

 

Treskova M, et 
al. (2017) 

A stochastic 
modular 
microsimulation 

model that 
simulated 

The study aimed to 
investigate the 
effects of the 
eligibility criteria 

The model was 
populated 

with 10% of the 
German 

The module uses 
the age at the 

onset of the first 
malignant cell. 

The natural history 
module contains a 
biological two stage 
clonal expansion (TSCE) 
model and a tumour 

The model is only 
focused on the 
screening 
population  
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individual life 
histories focusing 
on 

the development 
of lung cancer and 
its progression 
from 

the onset of the 
first malignant cell 
to death from lung 

cancer. 

and nodule 
management 

on the benefits, 
harms and cost-
effectiveness of 
lung 

screening with 
LDCT in a 
population-based 
setting. 

population aged 
40 years 

and older. Data on 
smoking 
behaviour was 
obtained 

from the German 
Health Update 
(GEDA) survey 
(years 

2009–2012), and 
the demographic 
structure of 2012 

was obtained 
from the German 
statistical office. 
The model also 
uses the data 
from US NLST, and 
NELSON as lung 
cancer screening 
trials  

 

 

Threshold tumour 
volumes at the 
stages of nodal 
involvement, 
distant metastases 
and clinical 
diagnosis are 
randomly drawn 
from log-normal 
distributions.  

 

Threshold tumour 
volumes at the 
stages of nodal 
involvement, 
distant metastases 
and clinical 
diagnosis are 
randomly drawn 
from log-normal 
distributions. 

 

The clinical 
detection module 
determines the 
stage of lung 

growth component and 
simulates a complete flow 
of events in the 
development of lung 
cancer. 

 

The model has space for 
smoking and its impacts 

 

The probabilities of 
overdiagnosis, by using 
data from both NLST, and 
NELSON. 

 

The survival probabilities 
based on the histological 
staging of lung cancer, 
size specific sensitivity of 
LDCT.  

 

Rate of cases at stage II as 
an earlier stage of lung 
cancer. 

  

The complication rates at 
workup by the diameter 

 

No cost per QALYs 
analysis (only cost 
er LYG). 

 

The total cost of 
screening has not 
been included for 
lifetime lung 
cancer treatment 
costs and the costs 
for 
pharmaceuticals, 
because of partial 
German database 
in this regard, The 
calibration has not 
been done for all 
parameters 
because of 
limitation in the 
dataset 
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cancer (I, II, III, IV) 
according to the 
TNM staging 
system based on 
the tumour 

volume and 
spread (local, 
nodal 
involvement, 
distant metastasis) 
at the age of 
diagnosis.  

 

Lung cancer 
survival is 
modelled as long-
term survival, 

which lets the 
individual live until 
death from other 
causes, and short-
term survival in 
years, which 
follows the 
Weibull 
distribution. 

The parameters 
vary over the 

of the malignant nodule 
and for benign nodule 

 

Developing a two steps 
calibration: for each lung 
cancer type mean and 
standard deviation of the 
log-normal distributed 
threshold volumes of 
lymph nodes involvement 
(regional), distant 
metastases (distant) and 
clinical diagnosis were 
simultaneously calibrated 
to fit the German UICC 
data on diseases stage at 
time of diagnosis,  

 

Secondly, we 
simultaneously calibrated 
the age- and cancer type-
dependent malignant 
conversion rates and age 
boundaries of the survival 
functions (The Nelder-
Mead Simplex method) in 
R package “FME”.  
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histological classes 
and stages at the 
time of diagnosis. 

 

Two nodule 
management 
algorithms were 
designed 

based on those 
used in the 
NELSON and NLST 
trials. 

 

The tumour is 
staged 

according to TNM 
classification 
based on the 
volume and 

spread. 

 

Individuals with 
screen-detected 
lung cancer live at 
least if they would 
in the no 

 

In order to obtain the 
costs for people with 
early-stage cancer in our 
model we applied ratio of 
costs between III and I 
stages is used to define a 
base case scenario.  

 

The simulated parameters 
for proportion of all 
detected cancers, and by 
its histological stages are 
consistent with data from 
NLST,  

The VDT figures by either 
NLST or NELSON  
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screening 
scenario. 

 

In the screening 
module lung 
cancer, survival 
component alters 
the age of death 
from lung cancer 
for the persons 
with a screen-
detected lung 
cancer at stages I 
and II: if they die 
from lung cancer 
in the no 
screening 
scenario, they 
receive 40% 
probability of 
long-term survival.  

 

The tumour 
growth rate is 
based Gompertz 
model.  
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Hofer F, et al. 
(2018) 

A cost-
effectiveness 
analysis from the 
public payer 
perspective for a 
high-risk 
population 

defined as heavy 
former and 
current smokers 
(≥20 cigarettes per 
day) between 55 
and 75 years of 
age. The 

underlying model 
consisted of two 
Markov models 
(for capturing the 
diagnosis of 
patients at an 
early stage of 
disease a model 
requires 
simulating the 
period of disease 

progression 
before diagnosis 
(i.e., the natural 

To evaluate the 
cost-effectiveness 
of a population-
based lung cancer 
screening program 
from the 
perspective of a 
German payer. 

Combination of 
data from the 
Federal 

Statistical Office 
and the 
nationwide 
Epidemiological 
Survey on 

Addiction equals 
the number of 
heavy current and 
former smokers 

(≥20 cigarettes 
per day) aged 55 
to 75 within the 
German system of 

statutory health 
insurance. The 
underlying data 
contained no 
information 

about the 
duration of heavy 
smoking habits 
and may – 
although 

Individuals aged 
between 55 and 
75 to be eligible 
for the screening 
program. 

 

We chose a cycle 
length of three 
months and ran 
the model for 60 
cycles (i.e., 15 
years). Half cycle 
correction was 
applied. 

 

Costs and quality-
adjusted life years 
were discounted 
by 3% per year. 

 

The natural 
history 
component of our 
model consisted 
of seven states, 
representing lung 
cancer stages I to 

The model comprised two 
separate components to 
distinguish between the 
natural history of disease 
and treatment paths and 
aftercare depending on 
patients’ lung cancer 
stage at diagnosis.  

The model has 
incorporated the 
parameters such as early 
recall rate. 

 

For lung cancer states in 
the natural history 
component of our model, 
the authors used 
mortality rates calibrated 
by the Metropolis 
Hastings algorithm using 
priors informed by results 
of a systematic review. 

 

The model used results 
from another systematic 
review to estimate 
mortality 

The model is for 
screening. 

 

There is no explicit 
explanation on 
how to 
incorporate the 
VDTs as a 
parameter in the 
model, 
measurement, 
calibration, and 
treating it in the 
model. 

 

The sensitivity is 
more size-
dependant rather 
lung nodule 
histological stage.  

 

No detailed 
information on 
parameters 
calibrations. 
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history of disease) 
and, 

separately, the 
treatment of lung 
cancer and 
aftercare) 

based on best 
empirical 
evidence – be an 
overestimation of 
the number 

of people eligible. 

IV, a state of no 
apparent lung 
cancer, and a state 
for death. 

Lung cancer stages 
IIIa and IIIb were 
modelled 
separately 
because of 
different 
treatment 
regimens. 

 

After diagnosis, 
the simulated 
patients entered 
the second 
component of the 
model, in which 
the researcher 
estimated 
treatment and 
aftercare. 

 

Treatment paths 
were designed in 
accordance with 
German clinical 

rates for the treatment 
and aftercare component. 

  

The model utility weights 
have been derived from a 
meta-analysis. 

 

The model has a detailed 
transition probabilities for 
each state in the natural 
history. 

 

The model has a good 
utility value for each 
singular procedure and 
combination of 
procedures. 

 

The sensitivity has been 
considered by different 
stages of the lung nodule 
progression. 

 

Both linear and 
probabilistic sensitivity 
analyses have been 

No information 
about the 
overdiagnosis. 

 

No information 
about the 
cumulative 
exposure to the 
radiation. 

  

No details to 
determine the 
actual duration of 
heavy smoking 
behaviour, or the 
time passed since 
individuals 
changed their 
(heavy) smoking 
habits. 

This may affect 
the number of 
people eligible for 
screening. 

 

Diagnosis and 
treatment for 
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practice 
guidelines. 

We assumed that 
90% of stage I 
patients were 
treated with 
surgical resection 
alone, 5% with a 
combination of 
surgical resection 
and 
chemotherapy, 
and 5% with a 
combination of 
surgical resection, 
chemotherapy, 
and radiotherapy. 

 

Patients were at 
risk of local 

recurrence or 
distant metastases 
have been 
assumed to by a 
combination of 
chemo- and 
radiotherapy or 

performed as uncertainty 
analysis.  

  

  

 

small cell lung 
cancer (SCLC) was 
not modelled 
separately. 
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received palliative 
care.  

 

In any of the 
states, all 
individuals were at 
risk of all-cause 
mortality. 

 

The probability of 
being diagnosed 
and thus entering 
the second 
component of our 
model differed 
between 
individuals who (a) 
took part in the 
annual LDCT-
based lung cancer 
screening program 
or (b) were 
diagnosed through 
standard clinical 
care (i.e., when 
they became 
symptomatic).  
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Individuals in the 
cohort receiving 
standard clinical 
care could only be 
diagnosed when 
they developed 
symptoms such as 
cough, hemoptysis 
or fatigue that had 
been identified 
through a 
physician visit 
related to the 
symptoms. 

 

Since the model 
ran in three-
month periods, 

one quarter of the 
participants in the 
screening cohort 
could also be 
diagnosed through 
annual CT 
screening in each 
period if they 
were adherent. 
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Annual screening 
was assumed to 
follow the same 
screening protocol 
as that in the 
German LUSI trial, 
which focused on 
nodule size and 
volume doubling 
time (VDT).  

Individuals in the 
screening cohort 
did not change 
their radiologist. 

Lin RS, et al. 
(2012) 

A natural history 
model of cancer to 
estimate the 
probability of 
disease-specific 
cure as a function 
of tumour size, 
the TVDT and 
disease-specific 
mortality 
reduction 
achievable by 
screening. 

To estimate the 
impact of early 
detection of 
cancer, knowledge 
of how quickly 
primary tumours 
grow and at what 
size they shed 
lethal metastases is 
critical. 

Model parameter 
estimates were 
based on 
Surveillance 
Epidemiology and 
End 

Results (SEER) 
cancer registry 
datasets and 
validated on 
screening trials. 

Growth of primary 
tumour volume 
grows 
exponentially. 

 

The tumour has a 
constant TVDT. 

 

The “treatment 
cure threshold” of 
cancer as the 
primary tumour 
volume at which 

The model has been 
evaluated by using 
simulation of data from 
different databases. 

 

The model is not only for 
screening population, and 
it seems to be helpful for 
considering other route of 
diagnosis of lung cancer. 

  

The study has a good 
explained natural history-

The analysis was 
limited to 
Caucasians 
because it is the 
largest ethnic 
group of lung 
cancer patients.  

 

The analysis was 
limited to males 
because external 
validation dataset 
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the disease 
transitions from 
being curable to 
incurable, 

assuming standard 
of care following 
detection. 

 

The patient would 
never die from 
their specific 
disease if 

detected and 
treated at or 
before the 
treatment cure 
threshold. 

 

The lethal 
metastatic burden 
starts increasing at 

the treatment 
cure threshold, 
thereby we are 
implicitly 
excluding 

based VDT and the 
parameters that have 
been defined and 
explained very well. 

 

The model outputs have 
some parameters 
including: the distribution 
of tumour by size, the 
proportion of 
advancement/progression 
of the lung cancer cells by 
tumour size and survival 
rates. 

  

from the Mayo 
Lung 

Project (described 
below) was limited 
to males only. 
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metastasis that 
may be 

eradicated or 
controlled by 
systemic 
treatment when 
treated before the 
onset of the lethal 

metastatic 
burden. 

 

The lethal 
metastatic burden 
grows in 
proportion (f) to 
the growth of the 
primary tumour, 
and continues to 
grow even after 
the primary 
tumour is 
detected 

and removed. 

 

If the patient is 
not diagnosed and 
treated before the 
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treatment cure 
threshold, 

the lethal 
metastatic burden 
becomes the 
cause of death at 
the maximal lethal 
metastatic 

burden. 

 

Disease is 
symptomatically 
detected either 

due to the primary 
tumour or the 
lethal metastatic 
burden, 
dependent on 
which presents 
with 

symptoms first. 

 

Patients are 
clinically 

staged with 
advanced disease 
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if lethal metastatic 
burden is detected 
at symptomatic 

detection. 

 

The size of the 
primary tumour at 
detection VP and 
the growth rate of 
tumour volume r 
are assumed to 
have bivariate 
lognormal 
distribution with 
mean (μ1, μ2), 
variance (σ1, σ2), 
and correlation 
coefficient ρ; 

The treatment 
cure threshold 

VC is assumed to 
have a Weibull 
distribution with 
shape parameter 
c1 and scale 
parameter 
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c2; and the ratio 
BD/f is assumed to 
have a Weibull 
distribution with 
shape parameter 
b1 and scale 
parameter b2. 

Heuvelmans MA. 
et al. (2017) 

Solid lung nodules 
found at ≥3 CT 
examinations 
before lung cancer 
diagnosis were 
included. Lung 
cancer volume (V) 
growth curves 
were fitted with a 
single exponential, 
expressed as V = 
V1exp(t/_), with t 
time from 
baseline (days), V1 
estimated 
baseline volume 
(mm3), and _ 
estimated time 
constant. The 
R2coefficient of 
determination 
was used to 

To evaluate and 
quantify growth 
patterns of lung 
cancers detected in 
the Dutch-Belgian 
low-dose CT lung 
cancer screening 
trial (NELSON), to 
elucidate the 
development and 
progression of 
early lung cancer. 

Eligible sample of 
participants from 
the NELSON lung 
cancer screening 
clinical trial.  

The nodule 
growth rate has an 
exponential 
pattern. 

The study has a good 
explanation from the 
model and how to 
calculate the VDT. 

The study has used the 
NELSON trial database. 

 

The study has some 
findings in terms of VDT 
(the number of cancers by 
VDT groups). 

 

Figure 5 reports the VDT 
in days for 46 lung 
cancers from the NELSON 
trial  

The study 
assumptions have 
not been stated.  

The study natural 
history model has 
not been 
elaborated well.  

 

The VDTs have not 
been compared 
with different 
growth models 
(e.g., Gompertz, 
linear or log-
linear). 

 

Growth patterns 
for slow-growing 
lung cancers were 
evaluated in this 
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evaluate goodness 
of fit. Overall 
volume-doubling 
time for the 
individual lung 
cancer is given by 
_ * log(2). 

study. Faster 
growing lung 
cancers did not 
receive at least 
three CT scans.  

 

CT, computed tomography; TVDT; tumour volume doubling time; VDT, volume doubling time; NELSON, Nederlands–Leuvens Longkanker Screenings 
Onderzoek; SEER, The Surveillance, Epidemiology, and End Results; SCLC, small cell lung cancer;  
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13.8 Appendix 8: Methods for simulation 

Given that improved measurement consistency is one of the main purported advantages of AI-

assisted image analysis, the EAG carried out two linked simulations to estimate the potential impact 

of different measurement consistency (magnitude of random measurement errors) and 

measurement accuracy (systematic bias) between AI-assisted reading and unaided radiologist 

reading on subsequent nodule management according to the BTS guidelines,11 which then links to 

patient outcomes and costs through the EAG’s model. The first simulation (baseline measurement 

simulation) was carried out to evaluate the potential impact of differential measurement 

performance on classification of patients/nodules into appropriate risk categories based on nodule 

sizes measured by either AI-assisted reading or unaided radiologists. The second simulation (nodule 

growth monitoring simulation) was conducted to evaluate the potential impact of differential 

measurement performance on classification of patients/nodules into appropriate risk groups based 

on estimated VDT using nodule size/volume measurements made at two CT scans in the context of 

surveillance, taking into account nodule growth between the scans. The procedures of the two 

simulations are described in detail in the two sections below.     

 

13.8.1 Simulation for nodule sizes at baseline (baseline measurement simulation) 

We firstly generated a cohort of risk dominant nodules (the largest nodule or the one being most 

suspicious of being malignant) in people with at least one ‘true’ nodule (≥3mm and ≤30 mm) at the 

time of their initial (baseline) CT scan. The size distribution of the cohort of nodules was based on 

data reported in a large population screening study48 and served as the reference standard. We 

generated the values from a log-normal distribution which matched the reported median and IQR. 

For ease of interpretation, we also conceptualised nodule sizes estimated from this cohort as 

consensus reading, which frequently serves as the reference standard in studies of nodule detection 

and measurement, and refer to these reference standard nodule sizes as being obtained by Reader 

One (R1) as a shorthand. Acknowledging that the reference standard established by consensus is 

itself subject to limitations associated with measurement by human, we additionally created a set of 

nodule sizes that reflect the unobservable ‘true’ nodule sizes (denoted as Reader Zero, R0; details 

described below), based on which the growth of nodules between consecutive CT scans is estimated 

in the subsequent nodule growth monitoring simulation using the growth model described earlier in 

Appendix 7 (section 13.7). 

Based on R1, we then created three sets of nodule size estimates representing the nodule sizes that 

would be obtained by stand-alone AI (designated as Reader Two, R2), a radiologist with concurrent 
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AI (Reader Three, R3) and an unaided radiologist (Reader 4, R4), respectively, if they were to 

measure the same cohort of nodules. Parameters for these sets of nodule size estimates (including 

median and IQR of the true nodule sizes and the proportion of solid and subsolid nodules for R1, and 

the systematic bias and random errors of measurements for R2, R3 and R4) were determined using 

data from studies included in our test accuracy review or from additional studies identified from the 

literature, with different values used for different population of interest where data available.  

By using the simulated distribution of measured nodule sizes between R1, R3 and R4, we can 

estimate the proportion of nodules correctly or misclassified into different management pathways 

by concurrent AI (R3) or unaided radiologist (R4) compared with perfect classification (R1) according 

to the size threshold specified in the BTS guidelines (<5, ≥5 to <6, ≥6 to <8, or ≥8 mm for solid 

nodules; <5 or ≥5 mm for sub-solid nodules).11 Based on size-specific cancer risk estimated from the 

NELSON lung cancer screening trial,3 we could then estimate the proportion of true malignant 

nodules that goes through individual nodule management pathways (e.g. discharge, surveillance, 

definitive management) and subsequently being detected or missed. These outputs could then be 

used as parameter inputs for our model to compare downstream impacts. 

 

13.8.1.1 Reader One (R1): Consensus reading (reference standard) 

Data from Hwang et al.48 were used as a reference for R1 for the screening population as this study 

included a large (n=10,424) consecutive screening population and reported the distribution of 

nodules sizes separately for solid, part-solid and non-solid nodules. The median (IQR) average 

transverse diameter was 3.6 mm (1.9) for solid nodules, 11.9 mm (11.1) for part-solid nodules, and 

5.8 mm (IQR 4.7) for non-solid nodules. The part-solid and non-solid nodules were combined at a 

ratio of 4:5 to create the simulated sub-solid nodules population. Moreover, a log-normal 

distribution was used to simulate nodule sizes for R1 as nodule sizes were heavily skewed.  

Data reported by Kozuka et al.57 were used as input for R1 for the symptomatic population as this 

study was the only one identified that reported nodule type and size in people suspected of having 

lung cancer. The median nodule size was reported as 4.7 mm. The IQR was estimated using Table 1 

of this paper and assumed to be equal between nodule types due to lack of available data. As with 

the screening population, a log-normal distribution was used. The majority of nodules in this paper 

were solid (70%), so the median solid nodule size was assumed to be 4.7 mm. As the nodule sizes by 

nodule type were not presented, we made the following assumption for sub-solid nodules based on 

the screening population: 
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The median nodule size was 3.6 mm for solid nodules and 8.5 mm for sub-solid nodules, a factor of 

2.36. 

This was applied to the 4.7 mm from reported by Kozuka et al.57, resulting in an assumed median 

sub-solid nodule size of 11.1 mm. 

As we are simulating nodule sizes from the following three readers based on R1, we assume a 

dependency between R1 and the other readers. Therefore, the nodule sizes simulated for R2-4 were 

normally distributed around the R1 nodule. Other assumptions are as follows. These assumptions 

were the same for both the screening population, and the symptomatic populations. Only the R1 

inputs differed. Furthermore, the screening and incidental populations were assumed to be 

equivalent in the simulation. 

 

13.8.1.2 Reader Zero (R0): the unobservable ‘true’ nodule size 

Reader Zero was the assumed ‘true’ nodule size which was simulated using the values from R1. We 

expect consensus reading to be very close to the true size of the nodule, and so we applied a SD of 

0.1 to the R1 values to allow the true size to deviate slightly from the size as measured by the 

reference reader. 

 

Based on their true size (R0), we assumed nodules had a probability of being malignant. These lung 

cancer probabilities were derived from Horeweg et al.3 who used 9,681 non-calcified nodules 

detected by CT screening in 7,155 participants in the screening group of the NELSON trial. For solid 

nodules, this was estimated to be 0.009 for nodules between 5 to <6 mm, 0.011 for nodules 

between 6 to <8mm and 0.094 for nodules ≥8 mm. We also assumed that 10% of detected nodules 

had clear features of being benign, which would be identified by each reader without error. The 10% 

estimate seemed to be consistent between the symptomatic population,57 screening population96 

and incidental population.97 

 

13.8.1.3 Reader Two (R2): Stand-alone AI 

Although in current practice all CT scans would still be checked by a radiologist even if AI software is 

used for automatic nodule detection and analysis, we included the ‘stand-alone AI reading’ option in 

the simulation as this was the only data reported in some of the included studies, and it is generally 

recommended that size/volume measurements obtained by AI should not be manually adjusted 
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unless there are clear issues related to nodule segmentation in order to preserve consistency 

afforded by AI measurements.17 

The base case simulation for R2 was based on the discrepancies between nodule size measurements 

by stand-alone AI and majority consensus of three radiologists as reported by Martins Jarnalo et 

al.64. This study was chosen as it was the only identified study that reported individual measurement 

discrepancies of stand-alone AI compared to a reference standard for each of the 77 nodules (Table 

72). The mean (SD) of these discrepancies was 0.234 (0.771) mm, so the mean size (mm) of R2 

simulated nodules was R1+0.234, with an SD of 0.771, for both solid and sub-solid nodules (Table 

75). 

 

Table 72. Nodule size measurement discrepancies of stand-alone AI compared to the reference 

standard as reported by Martins Jarnalo et al. 202164 

Size discrepancy 
(mm) 

# nodules 
(R2 base case) 

-2 2 

-1 2 

0 54 

1 16 

2 2 

4 1 

 

 

Scenario analysis 1 also used data by Martins Jarnalo et al.64 where stand-alone AI and majority 

reading of three radiologists agreed on 67.5% (54/80) of measurements (same millimetre). 

Therefore, the mean simulated nodule size for R2 was the same as R1, only SD was changed so that 

the agreement between R1 and R2 was approximately 67.5% (Table 75). 

 

Scenario analysis 2 was based on a phantom study by Wu et al.,98 where the relative volume error of 

AI-based measurement (AI software C) was 0.69 (0.27, 1.35) for ground glass nodules and 0.91 (0.49, 

1.30) for solid nodules. Assuming a cubic-relationship between volume and diameter, the mean (SD) 

simulated nodule size for solid nodules was R1+0.969 (0.249), and R1+0.884 (0.411) for sub-solid 

nodules (Table 75). 

 



434 

 

13.8.1.4 Reader Three (R3): Concurrent AI 

The base case simulation for R3 was similar to that of R2, using the discrepancies reported by 

Martins Jarnalo et al.64 The difference between R3 and R2 is that the assumption was made that the 

radiologist will manually correct the 4 mm measurement discrepancy of the stand-alone software 

measurement (Table 73). Therefore, the mean size of R3 simulated nodules was R1+0.182 mm, with 

a SD of 0.639, for both solid and sub-solid nodules (Table 75).  

 

Table 73. Discrepancies of concurrent AI diameter measurements, estimated from Martins Jarnalo 

et al.64  

Size discrepancy 
(mm) 

# nodules  
(R3 base case) 

# nodules (scenario 3) 

-2 2 0 (Corrected manually) 

-1 2 2 

0 54 54 

1 16 16 

2 2 0 (Corrected manually) 

4  0 (Corrected manually) 0 (Corrected manually) 

 

As a scenario analysis (scenario analysis 3), we further assumed that the radiologist would manually 

correct the ±2mm discrepancies of stand-alone software measurement (Table 73). Thus, the mean 

size of R3 simulated nodules in scenario analysis 3 was R1+0.182 mm and a SD of 0.448 (Table 75). 

 

13.8.1.5 Reader Four (R4): Unaided radiologist 

Inputs for the accuracy of manual nodule size measurement using electronic calipers were based on 

the phantom study by Xie et al.99 This study was chosen as base case as it observed an 

underestimation of nodule size, whereas the second identified study (Cohen et al. 2016 )35 reported 

an overestimation. This DAR observed that “The studies found similar56, 61 or significantly larger45 

nodule diameters with semi-automatic measurements compared to manual measurements” (see 

section 3.3.3.3); we therefore rated the underestimation observed by Xie et al.99  as more plausible 

and used it as base case. This study found that the overall underestimation of diameter for nodules 

of any density was 9.2±6.0%, and for solid nodules the underestimation was 10.1±6.9%.  

In the simulation, the mean size of solid nodules was based on that of R1 minus 10.1%, and for sub-

solid nodules, the mean size was based on R1 minus 9.2%. When calculating the SD for the 

distribution of nodule sizes from Xie et al.,99 we got a SD of 0.52. However, we expect the error for a 
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manual diameter measurement to be greater than the error of the concurrent AI (R3), therefore the 

standard deviation was fixed at 1.5*SD of R3 (1.5*0.639) (Table 75). 

As a scenario analysis (scenario analysis 4), inputs based on results from Cohen et al.35 were used. 

This study observed that the manual measurements of the entire nodule were larger compared to 

the tumour size on pathology after resection, by a mean difference of +2.38 mm. For both solid and 

sub-solid nodules, mean nodule size (mm) was R1+2.38, with a standard deviation of 0.50 and 0.46, 

respectively, for the screening population, and 0.47 and 0.41, respectively, for the symptomatic 

population. This was to keep SD consistent with scenario analysis 1 (Table 75). 

A final scenario analysis was performed for both the screening and symptomatic populations, 

scenario analysis 5, where the following assumptions were made for the standard deviations of 

simulated nodule sizes; the mean for each reader was based on that of R1 (see Table 74): 

• R1: SD kept the same. 

• R2 (Stand-alone AI): we assumed that AI alone would perform worse compared to R3 and R4 

(SD multiplied by 2). 

• R3 (Concurrent AI): we assumed that this reader would measure more accurately compared 

to R2 and R4 (SD multiplied with 0.5). 

• R4 (Unaided radiologist): we assumed that this reader would measure more accurately 

compared to R2 but worse compared to R3 (SD multiplied with 1.5). 

 

Table 74. Inputs for scenario analysis 5 

Reader SD multiple Screening population Symptomatic population 

SD  
(solid) 

SD  
Sub-solid) 

SD  
(solid) 

SD  
(Sub-solid) 

R1 1 5.82 5.56 3.89 6.00 

R2 2 11.64 11.12 7.78 12.00 

R3 0.5 2.91 2.78 1.95 3.00 

R4 1.5 8.73 8.34 5.84 9.00 
SD, Standard deviation. 

 

13.8.1.6 Other assumptions 

Nodule type distribution was different for the screening and symptomatic populations. 
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13.8.1.7 Running the simulation 

The simulation followed these steps: 

1. 1,000,000 observations are created which are the simulated nodules. 

2. We randomly assign a percentage of these nodules as either solid or sub-solid.
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3. We simulate Reader One’s nodule size measurements using a log-normal distribution with the following parameters: 

a. Number of nodules = 1,000,000. 

b. \Mu = log(median nodule size – 3). 

c. σ  = the solution to rearranged quantile functions of the log-normal distribution populated using the reported IQRto calculate σ.
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4. The measurements for the other three readers are simulated. 

5. Summary statistics produced. 

The simulation was carried out using R version 4.1.0. 
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Table 75. Mean nodule size simulation inputs 

Population Screening Symptomatic Both Both Both Screening Symptomatic Both Both Both 

Reader Reader 1 Reader 1 Reader 2 Reader 3 Reader 4 Reader 2 Reader 2 Reader 2 Reader 3 Reader 4 

Distribution Log-normal Log-normal Normal Normal Normal Normal Normal Normal Normal Normal 

Solid                     

Mean 3.6* 4.7* R1 + 0.234 R1 + 0.182 R1 - 10.1% Reader 1 Reader 1 R1 + 0.969 R1 + 0.182 R1 + 2.38 

SD 2.1* 1.3* 0.771 0.639 0.639*1.5 2.60 0.63 0.249 0.448 0.50 

Sub-solid                     

Mean 11.9* 11.1* R1 + 0.234 R1 + 0.182 R1 - 9.2% Reader 1 Reader 1 R1 + 0.884 R1 + 0.182 R1 + 2.38 

SD 11.1* 1.3* 0.771 0.639 R1 * 6.0% 0.54 0.53 0.411 0.448 0.46 

Base Case Base case Base case Base case Base case Base case           

Scenario           1 1 2 3 4 

*Median/IQR 
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13.8.2 Simulation for nodule growth monitoring 

We used the nodules simulated using the base case assumptions for Reader 0 and applied the 

different growth curves (for both solid and sub-solid nodules) to calculate the true nodule growth at 

each subsequent timepoint (3, 12, 24, and 48 months) for malignant nodules. For non-malignant 

nodules, we did not model any change or growth from their starting size. Then we back-calculated 

the ‘true’ diameter from the volume at each timepoint. 

Using these ‘true’ diameter values at each timepoint, we applied the same transformations to 

Reader 0 that we applied to at baseline for readers 3 and 4, and calculated the respective estimated 

nodule volumes and volume doubling times. 

For tracking the solid nodules' growth over time from the baseline through turning to cancerous 

nodules; we used the model which has been developed by Treskova et al. (2018).69 Treskova et al. 

suggest a Gompertz function with a log-normal distribution for the scale and shape parameters of 

the nodule growth over the patient’s lifetime.  

The study has used a spherical volume measurement for computing the volume of the nodule and 

provided the Volume Doubling Time (VDT) for four common histological lung cancer types including:  

1- Small Cell- Carcinoma  

2- Large Cell- Carcinoma  

3- Squamous Cell- carcinoma  

4- Adeno/AIS carcinoma  

The threshold values for each type of this carcinoma have been provided at four stages of cancer: 

Regional stage, Distant stage, diagnosis before the regional stage, and diagnosis after the regional 

stage. Then they followed a NELSON trial nodules algorithm management which means based on the 

assessed volume (𝑉), the screening-detected nodule is classified as a negative (𝑉<𝑉𝑓𝑢𝑝), positive 

(𝑉≥𝑉𝑐𝑢𝑡) or indeterminate result (𝑉𝑓𝑢𝑝≤𝑉 <𝑉𝑐𝑢𝑡). More details on Treskova et al. (2018) study can 

be found in Appendix 7 (section 13.7).  

For sub-solid nodules, a linear growth over time was assumed, as reported by Kakinuma et al., 

2016___ 

Using Treskova et al. (2018) in this simulation as follows:  

For reader zero: Nodule volume was calculated from the baseline nodule diameter. The growth 

function was then applied to calculate nodule volume at subsequent time points. Then nodule 

diameter was calculated by rearranging the formula for the sphere volume. Using the newly-

calculated diameters, VDT was calculated. 
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Using the diameters, volume, and VDT that were calculated for readers 1, 3, and 4, we calculated the 

probabilities for the model structure. The formulae were used for the calculation has been described 

in Appendix 7 (section 13.7). 

 
 

13.8.3 R code for the simulation 

Population: Screening 

Simulation set-up 

Clear workspace 
rm(list = ls()) 

Import file 
nodules_df <- read.csv("…\\Simulation 2_Screening.csv", header=TRUE) 

Importing file of simulated nodules for all 5 readers. 

Functions 
The following are the various functions used in this script. 

The Gompertz function is the growth function used to calculate the volume growth of Reader 
0’s nodules over the 2 years of follow-up at 3/12/24 months. 

The other functions are related to calculating volume from nodule diameter, back-
calculating diameter from volume, and calculating volume doubling time. 

Gompertz function 
gompvol <- function (v0,alpha,vmax,t){ 
  vmax*(v0/vmax)^(exp(-t*alpha)) 
} 

Sphere volume 
spherevol <- function(D){ 
  (pi/6)*(D^3) 
} 

Sphere diameter 
spherediam <- function(v){ 
  (6*v/pi)^(1/3)} 

Growth to VDT 
vdt <- function(v0,v1,t){ 
  t*log(2)/(log(v1/v0))} 
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Paramaters 
vmax.cancer <- spherevol(30) 
lmean.nsclc <- -7.765 
lsd.nsclc   <- 0.5504 
N           <- length(nodules_df$nodule_type) 
nodule_n    <- length(nodules_df$nodule_type) 
x           <- 0 

Reader 0 - True growth 
# Starting values 
nodules_df$r0_dia_1 <- nodules_df$reader_0 
nodules_df$r0_vol_1 <- spherevol(nodules_df$r0_dia_1*runif(N,1-x,1+x)) 
lnormvalues         <- rlnorm(N, lmean.nsclc, lsd.nsclc) 
 
# Volume 
nodules_df$r0_vol_2 <- gompvol(nodules_df$r0_vol_1, lnormvalues, vmax.canc
er, 90) 
nodules_df$r0_vol_3 <- gompvol(nodules_df$r0_vol_1, lnormvalues, vmax.canc
er, 365.25) 
nodules_df$r0_vol_4 <- gompvol(nodules_df$r0_vol_1, lnormvalues, vmax.canc
er, 730.50) 
nodules_df$r0_vol_5 <- gompvol(nodules_df$r0_vol_1, lnormvalues, vmax.canc
er, 1461.0) 
 
# Diameter 
nodules_df$r0_dia_2 <- spherediam(nodules_df$r0_vol_2)*runif(N,1-x,1+x) 
nodules_df$r0_dia_3 <- spherediam(nodules_df$r0_vol_3)*runif(N,1-x,1+x) 
nodules_df$r0_dia_4 <- spherediam(nodules_df$r0_vol_4)*runif(N,1-x,1+x) 
nodules_df$r0_dia_5 <- spherediam(nodules_df$r0_vol_5)*runif(N,1-x,1+x) 
 
# Volume doubling time 
nodules_df$r0_vdt_2 <- vdt(spherevol(nodules_df$r0_dia_1), spherevol(nodul
es_df$r0_dia_2), 90) 
nodules_df$r0_vdt_3 <- vdt(spherevol(nodules_df$r0_dia_2), spherevol(nodul
es_df$r0_dia_3), 365.25 - 90) 
nodules_df$r0_vdt_4 <- vdt(spherevol(nodules_df$r0_dia_3), spherevol(nodul
es_df$r0_dia_4), 730.50 - 365.25) 
nodules_df$r0_vdt_5 <- vdt(spherevol(nodules_df$r0_dia_4), spherevol(nodul
es_df$r0_dia_5), 1461.0 - 730.50) 

As Reader 0 is the assumed true size of the simulated nodule, nodule growth and diameter at 
each subsequent timepoint will be based on this Reader. Therefore: 

• 1: Calculate the volume of each nodule at 3/12/24 months 

• 2: Calculate the diameter of each nodule at 3/12/24 months using the new volumes 

• 3: Calculate volume doubling time 

Reader 1 
# Starting values 
nodules_df$r1_dia_1 <- nodules_df$reader_1 
nodules_df$r1_vol_1 <- spherevol(nodules_df$r1_dia_1*runif(N,1-x,1+x)) 
lnormvalues         <- rlnorm(N, lmean.nsclc, lsd.nsclc) 
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# Diameter 
nodules_df$r1_dia_2 <- rnorm(nodule_n, nodules_df$r0_dia_2, sd= 0.100) 
nodules_df$r1_dia_3 <- rnorm(nodule_n, nodules_df$r0_dia_3, sd= 0.100) 
nodules_df$r1_dia_4 <- rnorm(nodule_n, nodules_df$r0_dia_4, sd= 0.100) 
nodules_df$r1_dia_5 <- rnorm(nodule_n, nodules_df$r0_dia_5, sd= 0.100) 
 
# Volume 
nodules_df$r1_vol_2 <- spherevol(nodules_df$r1_dia_2) 
nodules_df$r1_vol_3 <- spherevol(nodules_df$r1_dia_3) 
nodules_df$r1_vol_4 <- spherevol(nodules_df$r1_dia_4) 
nodules_df$r1_vol_5 <- spherevol(nodules_df$r1_dia_5) 
 
# Volume doubling time 
nodules_df$r1_vdt_2 <- vdt(spherevol(nodules_df$r1_dia_1), spherevol(nodul
es_df$r1_dia_2), 90) 
nodules_df$r1_vdt_3 <- vdt(spherevol(nodules_df$r1_dia_2), spherevol(nodul
es_df$r1_dia_3), 365.25 - 90) 
nodules_df$r1_vdt_4 <- vdt(spherevol(nodules_df$r1_dia_3), spherevol(nodul
es_df$r1_dia_4), 730.50 - 365.25) 
nodules_df$r1_vdt_5 <- vdt(spherevol(nodules_df$r1_dia_4), spherevol(nodul
es_df$r1_dia_5), 1461.0 - 730.50) 

For the remaining readers: 

• 1: Calculate nodule diameter using the same transformations applied when 
simulating the baseline nodule size, this time onto Reader 0’s simulated nodule 
diameters at 3/12/24 months 

• Calculate volume and VDT. 

Reader 2 - AI alone 
# Starting values 
nodules_df$r2_dia_1 <- nodules_df$reader_2 
nodules_df$r2_vol_1 <- spherevol(nodules_df$r2_dia_1*runif(N,1-x,1+x)) 
lnormvalues         <- rlnorm(N, lmean.nsclc, lsd.nsclc) 
 
# Diameter 
nodules_df$r2_dia_2 <- rnorm(nodule_n, nodules_df$r0_dia_2 + 0.234, sd= 0.
771) 
nodules_df$r2_dia_3 <- rnorm(nodule_n, nodules_df$r0_dia_3 + 0.234, sd= 0.
771) 
nodules_df$r2_dia_4 <- rnorm(nodule_n, nodules_df$r0_dia_4 + 0.234, sd= 0.
771) 
nodules_df$r2_dia_5 <- rnorm(nodule_n, nodules_df$r0_dia_5 + 0.234, sd= 0.
771) 
 
# Volume 
nodules_df$r2_vol_2 <- spherevol(nodules_df$r2_dia_2) 
nodules_df$r2_vol_3 <- spherevol(nodules_df$r2_dia_3) 
nodules_df$r2_vol_4 <- spherevol(nodules_df$r2_dia_4) 
nodules_df$r2_vol_5 <- spherevol(nodules_df$r2_dia_5) 
 
# Volume doubling time 
nodules_df$r2_vdt_2 <- vdt(spherevol(nodules_df$r2_dia_1), spherevol(nodul
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es_df$r2_dia_2), 90) 
nodules_df$r2_vdt_3 <- vdt(spherevol(nodules_df$r2_dia_2), spherevol(nodul
es_df$r2_dia_3), 365.25 - 90) 
nodules_df$r2_vdt_4 <- vdt(spherevol(nodules_df$r2_dia_3), spherevol(nodul
es_df$r2_dia_4), 730.50 - 365.25) 
nodules_df$r2_vdt_5 <- vdt(spherevol(nodules_df$r2_dia_4), spherevol(nodul
es_df$r2_dia_5), 1461.0 - 730.50) 

Reader 3 - Concurrent CAD 
# Starting values 
nodules_df$r3_dia_1 <- nodules_df$reader_3 
nodules_df$r3_vol_1 <- spherevol(nodules_df$r3_dia_1*runif(N,1-x,1+x)) 
lnormvalues         <- rlnorm(N, lmean.nsclc, lsd.nsclc) 
 
# Diameter 
nodules_df$r3_dia_2 <- rnorm(nodule_n, nodules_df$r0_dia_2 + 0.182, sd= 0.
639) 
nodules_df$r3_dia_3 <- rnorm(nodule_n, nodules_df$r0_dia_3 + 0.182, sd= 0.
639) 
nodules_df$r3_dia_4 <- rnorm(nodule_n, nodules_df$r0_dia_4 + 0.182, sd= 0.
639) 
nodules_df$r3_dia_5 <- rnorm(nodule_n, nodules_df$r0_dia_5 + 0.182, sd= 0.
639) 
 
# Volume 
nodules_df$r3_vol_2 <- spherevol(nodules_df$r3_dia_2) 
nodules_df$r3_vol_3 <- spherevol(nodules_df$r3_dia_3) 
nodules_df$r3_vol_4 <- spherevol(nodules_df$r3_dia_4) 
nodules_df$r3_vol_5 <- spherevol(nodules_df$r3_dia_5) 
 
# Volume doubling time 
nodules_df$r3_vdt_2 <- vdt(spherevol(nodules_df$r3_dia_1), spherevol(nodul
es_df$r3_dia_2), 90) 
nodules_df$r3_vdt_3 <- vdt(spherevol(nodules_df$r3_dia_2), spherevol(nodul
es_df$r3_dia_3), 365.25 - 90) 
nodules_df$r3_vdt_4 <- vdt(spherevol(nodules_df$r3_dia_3), spherevol(nodul
es_df$r3_dia_4), 730.50 - 365.25) 
nodules_df$r3_vdt_5 <- vdt(spherevol(nodules_df$r3_dia_4), spherevol(nodul
es_df$r3_dia_5), 1461.0 - 730.50) 

Reader 4 - Unaided reader 
# Starting values 
nodules_df$r4_dia_1 <- nodules_df$reader_4 
nodules_df$r4_vol_1 <- spherevol(nodules_df$r4_dia_1*runif(N,1-x,1+x)) 
lnormvalues         <- rlnorm(N, lmean.nsclc, lsd.nsclc) 
 
# Diameter 
nodules_df$r4_dia_2 <- rnorm(nodule_n, nodules_df$r0_dia_2   - (0.101*nodu
les_df$r0_dia_2)   , sd= 0.639*1.5) 
nodules_df$r4_dia_3 <- rnorm(nodule_n, nodules_df$r0_dia_3   - (0.101*nodu
les_df$r0_dia_3)   , sd= 0.639*1.5) 
nodules_df$r4_dia_4 <- rnorm(nodule_n, nodules_df$r0_dia_4   - (0.101*nodu
les_df$r0_dia_4)   , sd= 0.639*1.5) 
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nodules_df$r4_dia_5 <- rnorm(nodule_n, nodules_df$r0_dia_5   - (0.101*nodu
les_df$r0_dia_5)   , sd= 0.639*1.5) 
 
# Volume 
nodules_df$r4_vol_2 <- spherevol(nodules_df$r4_dia_2) 
nodules_df$r4_vol_3 <- spherevol(nodules_df$r4_dia_3) 
nodules_df$r4_vol_4 <- spherevol(nodules_df$r4_dia_4) 
nodules_df$r4_vol_5 <- spherevol(nodules_df$r4_dia_5) 
 
# Volume doubling time 
nodules_df$r4_vdt_2 <- vdt(spherevol(nodules_df$r4_dia_1), spherevol(nodul
es_df$r4_dia_2), 90) 

## Warning in log(v1/v0): NaNs produced 

nodules_df$r4_vdt_3 <- vdt(spherevol(nodules_df$r4_dia_2), spherevol(nodul
es_df$r4_dia_3), 365.25 - 90) 

## Warning in log(v1/v0): NaNs produced 

nodules_df$r4_vdt_4 <- vdt(spherevol(nodules_df$r4_dia_3), spherevol(nodul
es_df$r4_dia_4), 730.50 - 365.25) 

## Warning in log(v1/v0): NaNs produced 

nodules_df$r4_vdt_5 <- vdt(spherevol(nodules_df$r4_dia_4), spherevol(nodul
es_df$r4_dia_5), 1461.0 - 730.50) 

## Warning in log(v1/v0): NaNs produced 
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13.9 Appendix 9: Findings of probabilistic sensitivity analyses for the cost-effectiveness analyses 

from the full model 

Symptomatic population 

 

Figure 24. Incremental cost-effectiveness scatterplot for the comparison between AI-assisted 
radiologist reading versus unaided radiologist reading (symptomatic population) 

 

 

Figure 25. Cost-effectiveness acceptability curves for AI-assisted and unaided reading at different 
willingness-to-pay thresholds (symptomatic population) 
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Figure 26. Incremental cost-effectiveness scatterplot for the comparison between AI-assisted 
radiologist reading versus unaided radiologist reading (incidental population) 

 

 

Figure 27. Cost-effectiveness acceptability curves for AI-assisted and unaided reading at different 
willingness-to-pay thresholds (incidental population) 
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Figure 28. Incremental cost-effectiveness scatterplot for the comparison between AI-assisted 
radiologist reading versus unaided radiologist reading (screening population) 

 

 

Figure 29. Cost-effectiveness acceptability curves for AI-assisted and unaided reading at different 
willingness-to-pay thresholds (screening population) 
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13.10 Appendix 10: Rationale for developing the Warwick Evidence (WE) model and comparison with the Exeter NAtural History-Based economic model 

of Lung cancer screening (ENaBL) model used by the National Screening Committee (NSC) 

 

Components  ENaBL model WE model Justification for creating an alternative model 

Purpose To evaluate the cost-effectiveness 
of different screening strategies in 
terms of screening frequency and 
characteristics (age, predicted 
cancer risk) of target population 
for the screening programme . 

To evaluate the cost-effectiveness 
of AI-assisted reading compared 
with unaided reading for detection 
and analysis of lung nodules in 
chest CT.  

The UK NSC model evaluates the impact of different 
characteristics of populations being screened and 
different levels (frequency) of opportunities for detecting 
lung cancer. Although the cancer detection would also 
start from using CT scans to identify lung nodules, this 
was part of standard practice that was not evaluated in 
the NSC model. A de novo model was required for our 
assessment as we are evaluating the impact of AI 
assistance that operates within and across each 
opportunity for detecting and analysing lung nodules 
along the nodule management and lung cancer diagnosis 
pathways. 

Population Screening population with some 
eligibility criteria in terms of the 
age, smoking profile and lung 
cancer predicted risk according to 
the Liverpool Lung Project.  

WE’s model targeted four different 
populations which are from four 
routes: symptomatic, incidental, 
screening and surveillance.  

The UK NSC model targets population at age 55-85 years 
who are currently or formerly smokers. The population 
who has a risk of lung cancer at 3%, 4% or 5% according to 
the version 2 of the Liverpool Lung Project lung cancer 
risk prediction model (LLPv2) are invited for screening and 
are included in the modelling.   

AI assisted chest CT image analysis can be potentially 
applied to wider populations in addition to the screening 
population. 
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Natural history  Searched three different natural 
history models developed outside 
of the UK as below: 

1- USA The Lung Cancer 
Policy Model. 

2- The Cancer Risk 
Management Model 
(renamed OncoSim) in 
Canada. 

3- The Microsimulation 
Screening Analysis 
(MISCAN) in Canada  

The researchers developed a new 
natural history model called:” the 
Exeter NAtural History-Based 
economic model of Lung cancer 
screening (ENaBL)”.   

WE’s model uses a previously 
developed natural history based on 
the measurement of the lung 
nodules growth over time. The 
natural history is based on Treskova 
et. al. (2017) 

The model included a natural 
history of a biological two-stage 
clonal expansion (TSCE) of the 
disease incorporating the nodule 
growth (in terms of the rate and 
time), which fits with the 
recommended lung nodule 
monitoring and management in the 
UK based on the BTS Guideline. For 
the purposes of this technology 
assessment, we needed a natural 
history model which enables us to 
track the trajectory of a lung nodule 
from when they are recognised as 
actionable nodules until they turn 
into malignant/cancerous phase.  

UK NSC model (ENaBL) included a natural history model 
that does not explicitly model the growth of lung nodules. 
ENaBL models the patients who have a predicted risk of 
lung cancer at (≥ 3%, ≥ 4% and ≥ 5%) as calculated using 
the Liverpool Lung Project tool version 2. Therefore, the 
ENaBL assumed these high-risk patients/cases are in the 
pre-clinical phase, and undergo different rounds of LDCT 
screening. The simulated patients in ENaBL do not have 
clinical presentation of the lung cancer at the start but 
they can turn into cancerous phase.  

In WE’s model, we identify people with lung nodules, then 
track their growth characterised by their VDT over the 
surveillance period as stipulated in the BTS guidelines.  
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Model Structure  The model includes two parts: 
people with no lung cancer are 
assumed to be at a pre-clinical 
state which is itself encompassing 
different health states according 
to seven considered lung cancer 
stages. There is a clinical state 
including the identical lung cancer 
stages. There is also a death state 
that can be moved into from the 
other states.   

The model have two interrelated 
parts. The first part models the 
detection of lung nodules with 
classification of nodule type (solid 
vs sub-solid) and size categories 
both based on the BTS guideline. 
This is the same for all four 
interested population.  

The second part models the 
surveillance phase based on a 
decision tree, in which patients 
who have been detected with 
actionable lung nodules undergo 
scheduled monitoring by LDCT or 
definitive work-up and treatment. 
The surveillance part leads to lung 
cancer detection at a specific stage 
or being missed, and people 
without lung cancer being 
discharged after surveillance or had 
unnecessary investigation and 
treatment.   

The UK NSC model structure was designed for cases who 
are at higher risk of lung cancer, who have already 
received a predicted lung cancer risk. The model structure 
does not take into account detection and management of 
lung nodules.  

The WE’s model focuses on lung nodules detection and 
management rather than predefined risk of lung cancer. 
The need to follow the trajectory of the nodule according 
to their diameter and volume requires development of a 
model structure which can explicitly represent the nodule 
management pathway.  
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Model types  Individual Patients Simulation 
model with a Discrete Event 
Simulation (DES) framework.  

Decision tree.  The UK NSC model follows the characteristics of people in 
terms of their smoking background, age and sex, and time 
dependency of the event (developing cancer). 

WE’s model requires a structure that enables the 
researchers to capture the harms and benefits of AI 
assistance incorporated into current practice. Such 
benefits and harms are tied to features of different image 
analysis strategies such as measurement errors, 
discrepancies in nodule detection between human 
assisted by AI and human alone and the impact of using 
volumetric measurement provided by AI software on the 
surveillance process. Consequently WE’s model focuses 
on mid-term and long-term benefits or harms of AI 
assistance such as reducing/increasing the number of 
false negative/positive, number of people requiring CT 
surveillance and earlier detection of cancer. We also 
aimed to follow the current BTS guideline. Given these, 
the decision tree structure was considered suitable for 
building the model and conducting the analysis.  

BTS, British Thoracic Society, WE, Warwick Evidence, NSC, National Screening Committee; VDT, volume doubling time, biological two-stage clonal 
expansion (TSCE), ENaBL, the Exeter NAtural History-Based economic model of Lung cancer screening. DES, Discrete Event Simulation, AI, Artificial 
Intelligence, LLPV, the Liverpool Lung Project lung cancer risk prediction model.  

 

 

 

 


