National Institute for Health and Care Excellence

Draft for consultation

Abdominal aortic aneurysm: diagnosis and management

Evidence review T: Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

NICE guideline <number>
Evidence reviews

May 2018

Draft for Consultation

Commissioned by the National Institute for Health and Care Excellence

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© NICE [2018]. All rights reserved. Subject to Notice of rights.

ISBN:

Contents

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms	6
Review question	
Introduction	
PICO table	
Methods and process	
Clinical evidence	
Summary of clinical studies included in the evidence review	7
Quality assessment of clinical studies included in the evidence review	9
Economic evidence	9
Summary of studies included in the economic evidence review	9
Economic model	11
Evidence statements	16
Recommendations	18
Rationale and impact	18
The committee's discussion of the evidence	19
Appendices	23
Appendix A – Review protocol	23
Review protocol for assessing the effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aort	
Annuardix D. Literatura coerab atratagias	
Appendix B – Literature search strategies	
Clinical search literature search strategy	
Health Economics literature search strategy	
Appendix C – Clinical evidence study selection	
Cochrane systematic review study selection	
Complex EVAR versus open surgery study selection	
Appendix D – Clinical evidence tables	
Appendix E – Forest plots	
Short-term mortality (30-day and in-hospital)	
Mortality at 1 year	
Major complications at 30 days	
Stroke at 30 days	
Renal complications at 30 days	
Cardiac complications at 30 days	
Bowel ischaemia at 30 days	
Amputation at 30 daysReoperation at 30 days	
INCONCIATION AL DU MAYS	44

Appendix F – GRADE tables	45
Mortality45	
Major complications	46
Specific complications	47
Need for reintervention	49
Quality of life	50
Length of stay	51
Appendix G – Economic evidence study selection	52
Appendix H – Economic evidence tables	53
Appendix J – Excluded studies	55
Clinical studies	55
Economic studies	56
Appendix K – Research recommendation	60
Appendix L – Glossary	62

Effectiveness of endovascular aneurysm

2 repair compared with open surgical repair

3 of ruptured abdominal aortic aneurysms

4 Review question

- 5 What is the effectiveness of EVAR compared to open repair surgery in repairing ruptured
- 6 abdominal aortic aneurysms?

7 Introduction

- 8 This review question aims to assess the advantages and disadvantages of emergency
- 9 endovascular aneurysm repair in comparison with conventional open surgical repair for the
- 10 treatment of ruptured abdominal aortic aneurysms (AAAs). Furthermore, this question aims
- 11 to explore the subgroup effects of various patient characteristics, leading to more tailored
- 12 recommendations.

13 PICO table

14 Table 1: Inclusion criteria

Parameter	Inclusion criteria
Population	People undergoing surgery for a ruptured AAA Subgroups: fitness for surgery, age, sex, comorbidities (including cardiovascular disease, renal disease, COPD, obesity), ethnicity
Interventions	Emergency standard (on-IFU) EVAR for infrarenal and juxtarenal AAAs Emergency complex EVAR for infrarenal, juxtarenal and suprarenal AAAs, including: fenestrated EVAR EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Non-surgical management
Comparators	Each other
Outcomes	Mortality/survival Peri- and post-operative complications Successful exclusion of the aneurysm, aneurysm rupture, or further aneurysm growth Need for reintervention Quality of life Resource use, including length of hospital or intensive care stay, and costs

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

16 Methods and process

- 17 This evidence review was developed using the methods and process described in
- 18 <u>Developing NICE guidelines: the manual</u>. Methods specific to this review question are
- 19 described in the review protocol in appendix A.
- 20 Declarations of interest were recorded according to NICE's 2014 conflicts of interest policy.
- 21 A recent update of a Cochrane systematic review (Badger et al. 2017) comparing EVAR and
- 22 open surgical repair of ruptured infrarenal AAAs was identified as a source of randomised
- controlled trials (RCTs) relevant to this review question. Data were extracted from the
- 24 systematic review, and individual RCTs within it, to compare the efficacy of emergency
- 25 EVAR with that of open surgical repair of ruptured infrarenal aneurysms. Since the Cochrane
- 26 systematic review did not consider complex aneurysm anatomies (such as juxtarenal and
- 27 suprarenal type IV aneurysms) a supplementary literature search was performed. Non-
- 28 randomised comparative studies, and prospective cohort studies comparing EVAR and open
- 29 surgical repair of ruptured complex AAAs were included.
- 30 Studies were excluded if they:
- were not in English
- were not full reports of the study (for example, published only as an abstract)
- were not peer-reviewed.

34 Clinical evidence

35 Included studies

36 Standard EVAR

- 37 In relation to standard EVAR, searches for the initial 2014 Cochrane review and the 2017
- 38 update yielded a total of 365 abstracts. Of these, 21 were identified as being potentially
- relevant. Following full-text review 4 RCTs (published across 16 publications) were included.
- 40 An update literature search was performed and provided by Cochrane, in December 2017.
- 41 The search yielded a total of 296 abstracts. None of which were identified as potentially
- 42 relevant.

43 Complex EVAR

- 44 Since the Cochrane systematic review did not include complex aneurysms, a supplementary
- 45 literature search was conducted by NICE in August 2017. The search yielded 2,220
- 46 abstracts. Of these, 9 studies were identified as being potentially relevant. Following full-text
- 47 review none of these studies were included. An update search was conducted by NICE in
- 48 December 2017. The search yielded 191 abstracts; of which, none of which were considered
- 49 relevant.

50 Excluded studies

- 51 The list of papers excluded at full-text review, with reasons, is given in Appendix J –
- 52 Excluded studies.

53 Summary of clinical studies included in the evidence review

A summary of the included studies is provided in the table below.

Table 2: Included studies

Study	Details
Badger S, Bedenis R, Blair PH et al.	Study design: systematic review
(2017) Endovascular treatment for	Location: UK
ruptured abdominal aortic aneurysm.	Population: patients with ruptured AAA
Cochrane Database Syst	Sample size: 4 RCTs including 868 participants
Rev;(5):CD005261. doi: 10.1002/14651858.CD005261.pub4	Follow-up: 30 days, 6 months and 1 year
10.1002/14051658.CD005261.pub4	Intervention: EVAR using any type of endovascular device
	Comparators: open surgical repair
	Outcomes: endoleak; complications and mortality at 30-
	day, 6-month and 1-year follow-up; quality of life
AJAX trial (results reported in multiple publications)	Study design: multicentre, non-blinded, randomised controlled trial
publications)	Location: Netherlands
	Population: patients with ruptured infrarenal AAA
	Sample size: 116; 85.3% male
	Follow-up: 6 months
	Intervention: EVAR
	Comparators: Open surgical repair
	Outcomes: All-cause mortality, severe complications,
	length of hospital and ICU stay, duration of
	intubation/ventilation and occurrence of endoleaks
ECAR trial (results reported in multiple publications)	Study design: multicentre, non-blinded, randomised controlled trial
	Location: France
	Population: patients with ruptured aorto-iliac AAA
	Sample size: 107; 90.7% male
	Follow-up: Up to 1 year
	Intervention: EVAR
	Comparators: Open surgical repair
	Outcomes: All-cause mortality, postoperative morbidity (cardiac, pulmonary, digestive, renal, and neurological), length of stay in ICU and complications.
Hinchcliffe 2006 trial (results reported	Study design: single centre, non-blinded, randomised
in multiple publications)	controlled trial
	Location: UK
	Population: patients with ruptured infrarenal AAA
	Sample size: 32; 75% male
	Follow-up: 30 days
	Intervention: EVAR
	Comparators: Open surgical repair
	Outcomes: 30-day mortality and complications
IMPROVE trial (results reported in multiple publications)	Study design: multicentre, non-blinded, randomised controlled trial
,	Location: UK and Canada
	Population: patients with a ruptured AAA or ruptured aorto- iliac aneurysm
	Sample size: 613; 78.3% male
	Follow-up: mean of 4.9 years
	Intervention: EVAR
	Comparators: Open surgical repair

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Study	Details
	Outcomes: All-cause mortality, costs, cost-effectiveness, and the need for re-intervention

56 See appendix D for full evidence tables.

57 Quality assessment of clinical studies included in the evidence review

- 58 See appendix F for full GRADE tables, highlighting the quality of evidence from the included
- 59 studies.

60 Economic evidence

61 Included studies

- A systematic review of economic literature was conducted jointly for all review questions in
- this guideline by applying standard health economic filters to a clinical search for AAA (see
- Appendix B). A total of 5,173 studies was identified. The studies were reviewed to identify
- 65 economic evaluations in the form of cost-utility analyses exploring the costs and effects of
- 66 emergency procedures to repair ruptured AAA. Studies that met the eligibility criteria were
- assessed using the quality appraisal criteria as outlined in the Guidelines Manual (2014).
- 68 Following an initial review of titles and abstracts, the full texts of 46 studies were retrieved for
- 69 detailed consideration. Following full-text review, 5 of the 46 studies were judged to be
- 70 potentially applicable cost–utility analyses for emergency AAA repair. Three of the 5 studies
- 71 were excluded because they were judged to be subject to very serious limitations.
- An update search was conducted in December 2017, to identify any relevant cost–utility
- analyses that had been published during guideline development. This search returned 814
- 74 studies. Following review of titles and abstracts, the full texts of 8 studies were retrieved for
- detailed consideration. Two were determined to be potentially applicable. One of these
- 76 (Powell et al. 2017) was an analysis of the IMPROVE trial, using more recent data than
- another IMPROVE analysis that was identified by the original search (Powell et al. 2015).
- 78 The earlier study was therefore excluded. The other potentially relevant study from the
- 79 update search was excluded as it had very serious limitations. A total of 2 studies was
- 80 therefore included as economic evidence for emergency repair of ruptured AAA.

81 Excluded studies

- 82 Studies that were excluded after full-text review, and reasons for exclusion, are provided in
- 83 Appendix J Excluded studies.

84 Summary of studies included in the economic evidence review

85 Kapma et al. (2014)

- 86 Kapma et al. performed a cost-utility analysis alongside the AJAX trial, an RCT comparing
- 87 EVAR with open surgical repair for the repair of 116 ruptured AAAs conducted in 2 centres in
- the Netherlands. No extrapolation beyond the 6-month data was conducted. Hospital
- 89 resource use data collected in AJAX included primary procedure, reintervention and
- 90 subsequent care resources, costed at 2010 prices. The EQ-5D questionnaire was used to
- 91 elicit health-related quality of life data, with general population quality of life assumed to
- 92 prevail prior to aneurysm rupture. Bootstrapping was performed to characterise uncertainty in
- the estimates of incremental costs and QALYs, generating 25,000 samples.

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

- 94 Base-case results found that EVAR patients typically accrued 0.026 additional QALYs than
- 95 open surgical repair patients, though, at a 95% confidence level, the data were consistent
- 96 with no difference. EVAR was €10,189 more expensive than open surgical repair in terms of
- 97 total costs, mainly due to the primary procedure cost and a higher incidence of subsequent
- 98 hospital resource use. The ICER for EVAR was €391,885 per QALY gained, with a
- 99 probability of less than 25% that the true ICER is under €80,000. Results were not sensitive
- 100 to scenario analyses. The primary limitation of this analysis is its short time horizon.
- 101 Additionally, the AJAX study is a relatively small trial, with its results based on 57 EVAR
- 102 patients and 59 open surgical repair patients.

Table 3: Kapma et al. (2014) cost-utility model results

	Tot	Total Incremental		ICER	
Randomised group	Costs (€)	QALYs	Costs (€)	QALYs	(€/QALY)
OSR	31,616	0.298			
EVAR	41,350	0.324	10,189	0.026	391,885

Key: EVAR, endovascular aneurysm repair; ICER, incremental cost-effectiveness ratio; OSR: open surgical repair; QALYs, quality-adjusted life years.

Powell et al. (2017)

103

104

105 A within-trial cost—utility analysis was also undertaken for the IMPROVE study (Powell et al., 106 2017), a pragmatic trial randomising people with suspected ruptured AAAs to either open 107 surgical repair or a strategy in which EVAR was used for anatomically suitable AAAs (and

- 108 OSR used if EVAR was not possible). This was the only UK economic evaluation identified
- 109 that was informed by trial-based effectiveness evidence for ruptured AAA repair. Resource-
- 110 use data included the primary procedure and subsequent use of critical, specialist or routine
- 111 care, including staff time, costed using standard UK sources (2011–12 prices). The EQ-5D-112
- 3L questionnaire was used to elicit quality of life data, with elective repair baseline quality of
- 113 life assumed to prevail prior to AAA rupture. Bootstrapping was performed to characterise
- 114 uncertainty in the estimates of incremental costs and QALYs.

115 Base-case results suggest that participants randomised to the 'EVAR if possible' strategy

- 116 typically accrued 0.166 additional QALYs than open surgical repair at 3 years. The mean
- 117 total cost of EVAR study subjects was lower than open surgical repair, due to fewer days
- 118 spent in critical care and a lower incidence of transfer to a different hospital. EVAR was
- 119 therefore found to dominate open surgical repair, with more than a 90% likelihood of being
- 120 cost effective if QALYs are valued at £20.000 each. This result was found to be robust to a
- 121 number of sensitivity analyses around costs and how the trial data were analysed (e.g.
- 122 unadjusted vs. adjusted for baseline variables, and adjusting for compliance to the
- 123 randomised intervention). Like the Kapma et al. (2014) analysis, the study is limited by its
- 124 relatively short time horizon. It is based on 3-year data from the IMPROVE study with no
- 125 extrapolation, though 6-year Kaplan-Meier plots are presented, depicting a higher mortality
- 126 rate for trial participants who were randomised to EVAR than those randomised to open
- 127 surgical repair beyond 3 years.

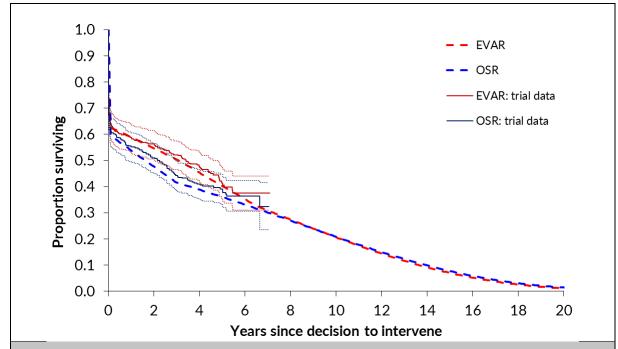
Table 4: Powell et al. (2017) cost-utility analysis results

	To	otal	Incre	mental		Probability	
Randomised group	Costs (£)	QALYs	Costs (£)	QALYs	ICER (£/QALY)	ICER <£20K/QALY	
EVAR where possible	16,878	1.41					
OSR	19,483	0.97	-2,605	0.166	EVAR dominates	>90%	

Key: EVAR, endovascular aneurysm repair; ICER, incremental cost-effectiveness ratio; OSR: open surgical repair; QALYs, quality-adjusted life years.

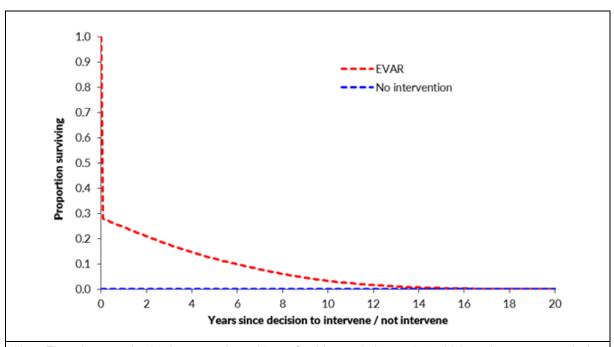
129 Economic model

- 130 The effectiveness of EVAR compared with open surgical repair for the repair of ruptured
- 131 AAAs was identified as an area of priority for new economic analysis. New clinical evidence
- has become available since the existing technology appraisal (TA 167) was published,
- particularly the IMPROVE trial, in the UK setting, and the European AJAX and ECAR trials. A
- new economic model was therefore developed to support decision-making in this area.


135 Methods

- The model took a state-transition structure, from the point at which an individual arrives at
- hospital with a ruptured AAA. The analysis perspective on costs was those incurred by the
- NHS and Personal Social Services (PSS), and the perspective on outcomes was the direct
- health effects for people using AAA services. Two distinct populations were modelled: (1)
- those for whom open surgical repair is a suitable intervention, comparing EVAR with open
- surgical repair; and (2) those for whom open surgical repair is not a suitable intervention.
- because their operative risk is considered to be too high, comparing EVAR with no
- intervention. The main outcomes were incremental costs and QALYs, and the resulting
- 144 ICER. The model time horizon was the lifetime of the patient (to a maximum age of 100),
- from a baseline cohort age of 76 years, composed of 1-month cycles. All outcomes were
- 146 discounted by 3.5% per year (Developing NICE guidelines 2014).
- 147 First, modelled patients were at risk of perioperative (30-day) death, for 1 cycle. In the base-
- case model, this was informed by the National Vascular Registry (2016) data on open
- surgical repair for ruptured AAA (40.4%), representing a current snapshot of UK practice
- outcomes. The relative perioperative mortality rate with EVAR was informed by a Cochrane
- 151 systematic review of emergency AAA repair trials (odds ratio: 0.88; Sweeting et al. 2017),
- leading to an estimated perioperative mortality of 37.4%. In the population for whom open
- surgical repair is an unsuitable intervention, there is no directly relevant randomised
- surgical repair is an unsultable intervention, there is no directly relevant randomised
- 154 comparative data to inform EVAR perioperative mortality. To do so, the 30-day EVAR
- mortality rates in the EVAR-2 trial (open repair not suitable) and the EVAR-1 trial (open
- repair suitable) were compared, and the difference between them was used to estimate an
- 157 'unfit for OSR' mortality effect. The model applies this effect to the IMPROVE EVAR 30-day
- mortality rate, thereby estimating a mortality rate associated with emergency EVAR in people
- for whom OSR is not suitable. For this population, a strategy of 'no intervention' is associated
- with a 100% mortality rate.
- 161 Surviving patients move into the post-perioperative survival phase of the model, capturing
- their long-term mortality hazard after surviving the AAA repair procedure and full 30-day
- perioperative period. Long-term survival outcomes were informed by the IMPROVE trial, for
- which anonymised patient-level survival data were obtained. General population mortality
- rates were calibrated to post-perioperative mortality, on the OSR arm of IMPROVE, using a
- piecewise hazard ratio to produce a curve that fits the data accurately. Beyond the 7-year

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms


IMPROVE data, projecting the relative effect produces a notable long-term survival benefit from OSR; however, the true difference in long-term survival is not known. In the base case, therefore, at the point at which the IMPROVE follow-up data is exhausted, the hazard ratio between EVAR and OSR is informed by the more-mature post-perioperative data in the elective setting (see Evidence review K). Throughout the model, patients are at risk of complications leading to reintervention, informed by the IMPROVE trial.

In order to explore subgroup effects, the model was configured so that both perioperative and long-term survival estimates could be influenced by effect modifiers; in particular, age, AAA diameter and sex were tested by logistic regression analysis using the IMPROVE data. For perioperative mortality, age was a significant predictor of death. Being female was a significant predictor of death with open surgical repair, while females were less likely than males to experience perioperative death with EVAR. For post-perioperative mortality, multivariable Cox regressions using the IMPROVE dataset found EVAR to be associated with improved survival for up to 3 years, while being female was associated with worse survival beyond 3 years. The effect of age was implicitly captured in this by our use calibrated of general population survival data. Base case overall survival curves are presented in Figure 1 and Figure 2.

Note: The survival profiles used in the model may appear somewhat to underpredict survival in the IMPROVE trial; however this does not occur. The visible differences are explained by the use of UK registry data and multiple RCTs (as meta-analysed in the Cochrane review) to inform perioperative survival, and the calibration of general population survival to the OSR arm of IMPROVE (with different baseline characteristics to the entire IMPROVE cohort). A figure presenting the high accuracy of fit to the data when these intentional deviations are removed is provided in the separate health economics appendix.

Figure 1: Base-case overall survival profile – population for who open surgical repair is an option, versus IMPROVE trial data

Note: There is no randomised comparative evidence for this population against which our base-case survival profiles can be validated. The guideline committee advised that it is reasonable to assume that an untreated rupture will be fatal in 100% of cases.

Figure 2: Base-case overall survival profile – population for whom open surgical repair is not an option, versus EVAR-2 trial data

Complex aneurysms were not simulated for the emergency repair of ruptured AAA (unlike elective, unruptured cases; see Evidence review K). This is because complex grafts, which usually need to be custom-made for the individual, are less likely to be option for emergency AAA repair. Additionally, there is an absence of clinical evidence for emergency repair outcomes in the complex population.

Resource use was obtained from the published IMPROVE data (Powell et al. 2015; Powell et al. 2017), to which up-to-date national unit costs were applied. The cost of an EVAR graft was obtained from NHS Trusts by members of the guideline development committee. No costs were assumed to be incurred by a strategy of 'no intervention'. Quality of life was primarily informed by the published IMPROVE 3-year EQ-5D data, supplemented by decrements for complications identified by informal searches. In the IMPROVE study, the EVAR arm can be interpreted as an 'EVAR if possible' arm; EVAR was used where it was determined to be anatomically suitable (infrarenal) by CT scan, and 40% of participants randomised to it went on to receive open surgical repair instead. Its resource use and quality-of-life data reflect this, as does its survival data, and therefore much of our model. Our analysis should therefore be interpreted as comparing a world that permits emergency EVAR, where anatomically appropriate, with a world in which EVAR is not permitted at all (i.e. 'open surgical repair only' or 'no intervention' only).

208 Results

In the base-case model, in a cohort for whom open surgical repair is a suitable option, a strategy that uses EVAR where possible was found to have an ICER of £5,699 per QALY gained (Table 5) compared with open surgical repair. Probabilistic sensitivity analysis showed that its ICER was £20,000 per QALY gained or better in 80% of 1,000 model iterations (Figure 3). The only individual parameters that reversed this result were the perioperative mortality odds ratio and post-perioperative mortality hazard ratios; if they were

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

at the 95% confidence limits that most favoured open surgical repair, unlikely based on the available evidence, then the EVAR strategy would not be cost effective. The ICER in women was £3,465, and in men was £8,611; this difference reflects the significantly higher perioperative mortality rate among women with open surgical repair. In men, the strategy that permits EVAR had an ICER below £20,000 at ages 71 and above (Figure 4). It was cost-effective at all ages (50 to 100) in women, to such an extent that it is cost-effective, on

average, in a population that matches the IMPROVE cohort.

In the population for whom open surgical repair is not a suitable option, an EVAR strategy was compared with offering no AAA repair (with a 100% mortality rate). The ICER was found to be £25,514 per QALY gained (Table 6). For this population, the NICE 'end of life criteria' are applicable: life expectancy without intervention is less than 24 months; intervention is expected to produce at least 3 additional months of life; and the expected patient population is small. In probabilistic sensitivity analysis, 23% of iterations had an EVAR ICER below £20,000, while 95% were below £50,000 (Figure 3). The only parameter that caused the ICER to exceed £50,000 per QALY gained was age; namely, in men aged 84 or over, and in women aged 85 or over, due to the high risk of perioperative death and limited long-term survival thereafter (Figure 5).

For detailed results, sensitivity analyses and discussion, including limitations and comparison with published analyses, please see the separate health economics appendix.

Table 5: NICE cost-utility model results, population for whom open surgical repair is an option

_	Tot	al	Incren	nental	ICER
Freatment strategy	Costs (£)	QALYs	Costs (£)	QALYs	(£/QALY)
OSR only	£25,422	2.734			
EVAR where possible	£27,063	3.022	£1,641	0.288	£5,699

Key: EVAR, endovascular aneurysm repair; ICER, incremental cost-effectiveness ratio; OSR: open surgical repair; QALYs, quality-adjusted life years.

Table 6: NICE cost-utility model results, population for whom open surgical repair is not an option

	Tota	al	Increm	ICER		
Treatment strategy	Costs (£)	QALYs	Costs (£)	QALYs	(£/QALY)	
No intervention	£0	0				
EVAR where possible	£19,640	0.770	£19,640	0.770	£25,514	

Key: EVAR, endovascular aneurysm repair; ICER, incremental cost-effectiveness ratio; QALYs, quality-adjusted life years.

239

240

242

243

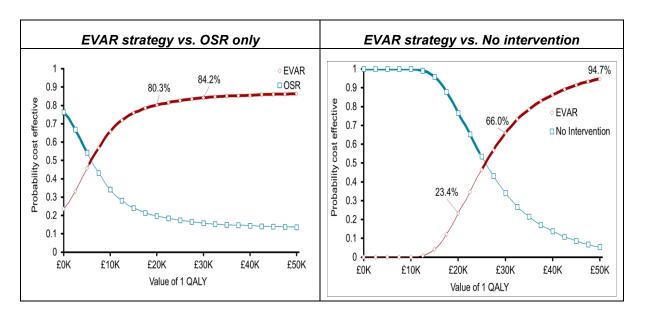


Figure 3: Cost-effectiveness acceptability results from 5,000 probabilistic sensitivity analysis runs

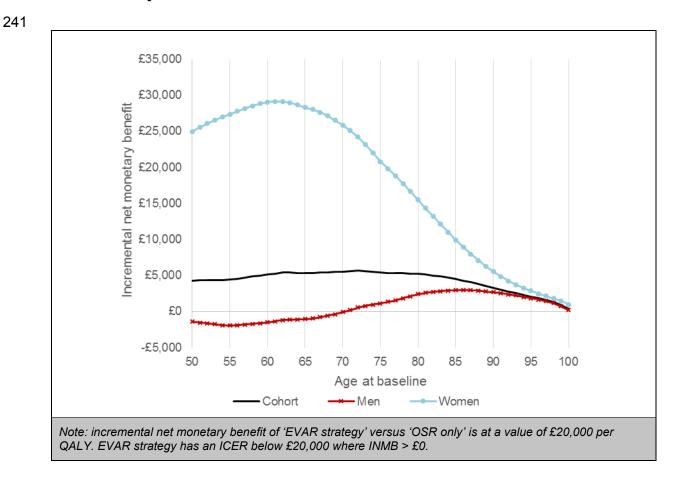


Figure 4: Incremental net monetary benefit of EVAR strategy compared with open surgical repair by cohort sex and baseline age, at £20,000 per QALY

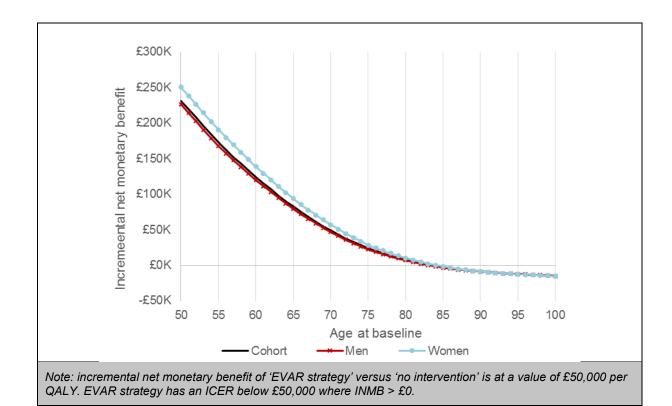


Figure 5: Incremental net monetary benefit of EVAR strategy compared with 'no intervention' in people for whom open surgical repair is not a suitable option, by cohort sex and baseline age, at £50,000 per QALY

248 Evidence statements

249 Clinical evidence

245

246

247

252

253254

255256

257

258 259

260261

262263

264

265

266267

268

269

250 Ruptured infrarenal AAA

- All-cause mortality:
 - Perioperative mortality (30-day or in-hospital mortality) cannot be differentiated between emergency EVAR and open repair (moderate-quality evidence from 4 RCTs, including 868 people).
 - All-cause mortality is lower with emergency EVAR than open repair at 3–36 months (moderate-quality evidence from 1 RCT including 613 people).
 - All-cause mortality cannot be differentiated between emergency EVAR and open repair at 0–6 months (low-quality evidence from 1 RCT including 116 people), 0–1 year (moderate-quality evidence from 2 RCTs including 718 people) and a mean follow-up of 0–4.9 years (moderate-quality evidence from 1 RCT including 613 people).
 - Moderate-quality evidence from 1 RCT, including 613 people with ruptured AAAs, could
 not differentiate AAA-related mortality rates between patients treated by emergency EVAR
 and those treated by open repair at a mean follow-up of 4.9 years.
 - Low-quality evidence from 2 RCTs, including up to 223 people with ruptured AAAs, could not differentiate major complication rates between patients treated by emergency EVAR and those treated by open repair at 30-day and 1-year follow-up.
 - Low-quality evidence from 2 RCTs, including up to 223 people with ruptured AAAs, reported lower rates of bowel ischaemia in patients treated by emergency EVAR compared to those treated by open repair at 30-day follow-up. Very low- to low-quality

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

- evidence from 4 RCTs, including up to 255 people with ruptured AAAs, could not differentiate rates of myocardial infarction, stroke, renal complications, cardiac complications, respiratory failure, spinal cord ischaemia, and amputation between patients treated by emergency EVAR and those treated by open repair at 30-day follow-up.
- Moderate-quality evidence from 1 RCT, including up to 223 people with ruptured AAAs, reported lower renal complication rates in patients treated by emergency EVAR compared to those treated by open repair at 6-month follow-up. Low-quality evidence from 1 RCT, including to 106 people with ruptured AAAs, could not differentiate rates of stroke, cardiac complications, bowel ischaemia, spinal cord ischaemia, and amputation between patients treated by emergency EVAR and those treated by open repair at 6-month follow-up.
- Low-quality evidence from 3 RCTs, including up to 613 people with ruptured AAAs, could not differentiate reintervention rates between patients treated by emergency EVAR compared with those treated by open repair at 30-day, 6-month and 3-year follow-up.
- High-quality evidence from 1 RCT, including 317 people with ruptured AAAs, reported better quality of life outcomes (measured by EQ-5D scores) in patients treated by emergency EVAR compared with those treated by open repair at 3-month follow-up. Moderate-quality evidence from the same trial could not differentiate EQ-5D scores between groups at 1-year and 3-year follow-up.
- Moderate-quality evidence from 3 RCTs, including up to 255 people with ruptured AAAs,
 could not differentiate length of stay in intensive care and length of hospital stay between
 patients treated by emergency EVAR and those treated by open repair.
- 291 Ruptured complex AAA
- No evidence was identified comparing the efficacy of EVAR with open surgical repair of ruptured complex AAA.

294 Economic evidence

295 Published evidence

- 296 Ruptured infrarenal AAA
- One directly applicable cost—utility analysis with potentially serious limitations, based on data from the IMPROVE trial, found that a strategy of using EVAR where anatomically appropriate, otherwise open repair, was associated with QALY gains and lower costs compared with using open repair only, over 3 years, with at least a 90% probability of having an ICER of £20,000 per QALY gained or better.
- One partially applicable cost–utility analysis with potentially serious limitations, based on data from the AJAX trial, found that EVAR was associated with an ICER of €391,885 per QALY gained compared with open repair over 6 months.
- 305 Ruptured complex AAA
- No evidence was identified comparing the efficacy of EVAR with open surgical repair of ruptured complex AAA.

308 NICE model

One directly applicable cost—utility analysis with minor limitations found that allowing EVAR where anatomically suitable, otherwise using open repair, was associated with an ICER of £5,699 per QALY gained, compared with using open repair in all cases, in people for whom open repair is a suitable intervention, based on a cohort composed of 78% men with a mean age of 76. The ICER had a 80% probability of being lower than £20,000. This

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

- result was sensitive to sex: in men, EVAR had a net health benefit only at ages 71 and over; in women, EVAR had a net health benefit at all ages from 50 to 100.
- One directly applicable cost—utility analysis with minor limitations found that EVAR was associated with an ICER of £25,514 per QALY gained, compared with no surgical intervention, in people for whom open repair is not a suitable intervention, based on a cohort composed of 78% men with a mean age of 76. The ICER had a 23% probability of being £20,000 or lower, and a 95% probability of being £50,000 or lower. This result was sensitive to age: at ages above 84 in men, and 85 in women, the ICER for EVAR was higher than £50,000 per QALY gained.

323 Recommendations

- T1. Consider endovascular repair (EVAR) or open surgical repair for people with a ruptured infrarenal abdominal aortic aneurysm (AAA). Be aware that:
- EVAR provides more benefit than open surgical repair for most people, especially women and men over the age of 70.
- open surgical repair is likely to provide a better balance of benefits and harms in men under the age of 70.
- T2. Consider open surgical repair for people with a ruptured complex AAA.
- T3. Do not offer complex EVAR to people with a ruptured AAA if open surgical repair is
- 332 suitable, except as part of a randomised controlled trial comparing complex EVAR with open
- 333 surgical repair.

334 Research recommendation

- 335 RR10. What is the effectiveness and cost-effectiveness of complex EVAR versus open
- 336 surgical repair in people with a ruptured AAA for whom open surgery is a suitable option?

337 Rationale and impact

338 Why the committee made the recommendations

- The evidence showed that, compared with open surgical repair, a strategy that uses EVAR
- (where anatomically possible) to repair ruptured infrarenal AAAs provides a reasonable
- 341 balance of benefits and costs.
- 342 As the average cost-effectiveness results for EVAR were favourable, the committee
- 343 discussed whether they should recommend EVAR whenever it is possible. They decided not
- to, for 2 reasons.
- 345 Firstly, there is uncertainty in the evidence for EVAR. People who had EVAR for a ruptured
- 346 AAA were followed up for at most 7 years. People who had EVAR for an unruptured AAA
- were followed up for 15 years, and the committee noted that these data suggested that
- 348 EVAR may be worse than open surgical repair in the long run (see why the committee made
- the recommendations on repairing unruptured aneurysms). There are some signs that a
- 350 similar long-term pattern may develop in trials of ruptured AAA, so it is possible that longer-
- term data would show EVAR to be worse than open surgical repair for people with ruptured
- 352 AAA as well.
- 353 Secondly, there was evidence that the balance of benefits and costs of EVAR varies
- between different groups of people with ruptured AAA. In particular, women clearly have
- 355 better short-term survival after EVAR, whereas the evidence favours open surgical repair for

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

- younger men. Therefore, the committee recommended that either EVAR or open repair can be considered, and provided detail on the groups for which each approach is likely to be
- best. Complex EVAR is only recommended within the context of an RCT because there is
- currently no evidence to support it as an option for people with ruptured complex AAA.

360 Impact of the recommendations on practice

- 361 The recommendations will have little impact on current practice, as both standard EVAR and
- open surgery are currently offered to people with ruptured infrarenal AAA. In relation to
- 363 complex EVAR, the recommendation not to use it outside of randomised trials will limit the
- use of a technically complex and expensive procedure in people for whom open surgery is a
- 365 safe and suitable option.

366 The committee's discussion of the evidence

367 Interpreting the evidence

368 The outcomes that matter most

- The committee agreed that the outcomes that matter most are long-term survival, as well as
- a reduction in the need for reintervention. This is because committee members believed that,
- apart from the fundamental need for any intervention to increase the immediate chances of a
- person surviving a ruptured AAA, the intervention should also ensure that they live as long as
- possible and have the best quality of life possible following rupture.

374 The quality of the evidence

- 375 The committee had no serious concerns about the overall quality of the evidence retrieved
- 376 from literature searches but noted that no long-term data were available. All but 1 trial (ECAR
- trial) were considered to have a low risk of bias. The committee noted that the ECAR trial
- may have been prone to selection bias as patients were allocated to groups by week;
- 379 patients were treated by open repair during the first week and subsequent odd numbered
- weeks. The committee considered that this study did not sway the results of most meta-
- analyses because it was allocated a small weighting.
- 382 The committee noted that, from a clinician's point of view, the design of the IMPROVE RCT
- 383 could be considered confusing, as a large proportion of people with suspected ruptured AAA
- 384 who were randomised to the 'EVAR' arm actually underwent open repair (because their AAA
- was anatomically unsuitable for standard EVAR). However, it agreed that this design
- reflected the decision problem at a commissioning level that is, whether a service should
- offer emergency EVAR where possible and, therefore, it would not be appropriate to
- downgrade the evidence for providing a biased estimate of effect.
- 389 Although the review protocol outlined that data from the National Vascular Registry, and
- testimony from expert witnesses would be considered in this review question, no such
- 391 evidence was available to inform committee discussions.

392 Benefits and harms

- 393 The committee noted that medium-term follow up data from the IMPROVE trial indicated that
- 394 EVAR offered a significant survival benefit (lower mortality rates) between 3 months and 3
- years after surgery. However, no benefit was observed between EVAR and open surgery at
- the mean follow-up of 4.9 years. It was also noted that no differences in 3-year reintervention
- rates or quality of life (measured by EQ-5D scores) were observed between the groups.
- 398 Upon consideration of these data, the committee concluded that there was substantial

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

- uncertainty about the relative long-term benefits and harms of EVAR and open surgery. 400 When considering short-term outcomes, the committee noted that patients treated by EVAR 401 and open surgery were not significantly different in terms of 30-day mortality, reintervention 402 rates, and all complications apart from renal complications. The committee were surprised by 403 the results of the AJAX trial, which reported that fewer renal complications occurred in 404 patients treated by EVAR than those treated by open repair and agreed that this observation 405 was inconsistent with their own clinical experience. Upon consideration of the clinical 406 evidence, as a whole, the committee agreed that there was insufficient evidence 407 demonstrating that EVAR was superior to open surgery. As a result, the committee drafted a 408 recommendation highlighting that either approach could be considered for people with
- 409 ruptured infrarenal AAA whose anatomy made EVAR a suitable option for them. 410 In the absence of evidence relating to complex EVAR for ruptured AAA, the committee 411 discussed the potential for harm if patients who were suitable for open surgical repair were 412 offered complex EVAR instead. Committee members agreed that, compared with infrarenal 413 EVAR, complex EVAR is more technically demanding and less frequently available.
- 414 However, they were mindful that the potential benefit of EVAR had been shown when limited 415 to infrarenal cases, so it is plausible that an endovascular approach would prove to be 416 reasonable in some complex emergency cases. Therefore, while the committee were clear 417 that it would be inappropriate to recommend the use of complex EVAR as standard practice, 418 it agreed that it would be valuable to explore the benefits, harms and costs of the approach in
- 419 an RCT. This will ensure that data would be collected to inform future updates of the
- 420 quideline.

399

421 Cost effectiveness and resource use

- 422 The committee discussed the published cost-effectiveness evidence for the repair of ruptured 423 infrarenal AAA. It noted that a within-trial UK cost—utility analysis alongside the IMPROVE 424 trial found the pragmatic EVAR strategy to dominate an open surgical repair strategy over a 425 3-year period, whereas a partially applicable study in the Dutch setting determined that 426 EVAR was not cost-effective over a 6-month period. The committee agreed that the time 427 horizons of both analyses were too short to accurately reflect the cost-effectiveness of 428 EVAR, particularly because 6-year IMPROVE follow-up data have been published showing 429 that the EVAR survival benefit over the first 3 years is eroded thereafter. This trend suggests 430 that the long-term outcomes of EVAR relative to open surgical repair for ruptured AAA may 431 be similar to those observed in elective cases for unruptured AAA. The committee agreed 432 that the published evidence should be supplemented by new modelling, in particular to 433 capture the population for whom open surgical repair is not a suitable intervention, and 434 complex AAA repair, and the longer-term data from the IMPROVE trial. The committee 435 therefore considered evidence from the new economic model developed for this guideline.
- 436 The committee were satisfied with the modelling approach of: (1) using the UK National 437 Vascular Registry data to inform baseline perioperative mortality; (2) using a Cochrane meta-438 analysis of RCTs to inform relative perioperative mortality rates; (3) projecting long-term 439 survival by calibrating general population mortality to IMPROVE survival data, conditional on 440 surviving the intervention, and; (4) applying long-term relative survival estimates based on 441 mature elective repair data, from the point at which the IMPROVE follow-up expires. The 442 committee understood that the economic model evaluating the population for whom open 443 surgical repair is not a suitable option provides weaker evidence, as there is no RCT 444 evidence for emergency repair in this population, and it was therefore supplemented with 445 evidence from the EVAR-2 trial.
- 446 The committee discussed the appropriateness of using the IMPROVE trial to inform much of 447 the model; in particular, the fact that it is a pragmatic RCT, in which 40% of participants 448 randomised to the EVAR arm actually received open surgical repair. It agreed that this

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

- approach does not provide a direct comparison of EVAR with open surgical repair in the
- emergency repair population, but that it does provide a comparison of a strategy that permits
- EVAR if the AAA is anatomically suitable, and open repair if it is not, with one that uses open
- 452 surgical repair for all cases.
- The committee agreed that the new economic model provides evidence that, on average
- across a population of people for whom open surgical repair is a suitable option, a strategy
- 455 that permits EVAR where anatomically suitable otherwise open surgical repair is likely to
- be cost effective compared with using open repair in all cases. The base-case model results
- suggest that, for the average person, the EVAR strategy produces more QALYs than open
- 458 surgery, at an additional cost to the NHS and PSS that represents good value for money.
- The base-case ICER is £5,699 per QALY gained, with an 80% probability of this being less
- 460 than £20,000. This positive ICER reflects that the EVAR strategy was more costly, per
- person, than the open surgical repair strategy, whereas the published IMPROVE cost–utility
- 462 analysis estimated that EVAR was less costly than open repair. The committee understood
- 463 that this was because the NICE model used publicly available UK cost sources (alongside
- the published IMPROVE resource data), rather than the unit costs from the IMPROVE trial
- centres, and captured reintervention costs over a longer period. Results of the NICE model
- were sensitive to age and sex: the ICER is above £20,000 per QALY gained in men below
- 71 years old, but in women it remains £20,000 or better at all ages. This is primarily because
- of worse perioperative survival from open surgical repair in women. The committee agreed to
- reflect that EVAR may confer greater benefits in women in their recommendations.
- The ICER for EVAR compared with 'no intervention', in the population for whom open
- 471 surgical repair is not a suitable option, was £25,514 per QALY gained. The committee were
- 472 aware that the 'end of life criteria' may be applicable for this population: life expectancy
- 473 without intervention for a ruptured AAA is 0 years; EVAR is expected to gain more than 3
- 474 months of additional life (0.770 QALYs); and the population affected is likely to be small. The
- 475 committee therefore considered that the base-case ICER provided acceptable value for
- 476 money to the NHS and PSS, noting that the ICER had a 95% probability of being less than
- 477 £50,000 per QALY gained.
- 478 These results were sensitive to age, with the EVAR ICER exceeding £50,000 in men aged
- 479 84 or over, and women aged 85 or over; however, the committee advised that this represents
- only a small subgroup of the relevant population. The committee also agreed that if an older
- person has a ruptured AAA and open surgical repair is not a suitable option, but the person
- 482 is still deemed to be a candidate for emergency EVAR, then they are likely to be
- 483 systematically different to the 'average' individual captured by the model. In practice, if
- 484 emergency AAA repair is being considered then the treating clinician must believe that the
- person has a reasonable probability of surviving the procedure and life expectancy
- 486 thereafter. In this way, the committee advised that the model results in this population at
- older ages are less likely to reflect clinical reality, and that EVAR is more likely to be cost
- 488 effective at older ages than the model results suggest. The committee also agreed that there
- 489 may be some costs associated with choosing to provide 'no intervention' for people
- 490 presenting with ruptured aneurysms rather than the £0 applied in the model which would
- 491 reduce the ICER for EVAR at all ages.

492 Other factors the committee took into account

- 493 While the committee agreed that permitting EVAR for the emergency repair of ruptured
- 494 infrarenal AAAs is likely to be cost effective, based on the available evidence, it recognised
- 495 that there may be practical difficulties in implementing such a recommendation alongside the
- 496 more compelling evidence that EVAR is not cost effective for the elective repair of unruptured
- 497 AAA. In particular, the committee recognised that it may be difficult to retain EVAR capacity
- 498 and expertise for use in the relatively small number of infrarenal AAA ruptures seen in

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

practice, without being able to conduct EVAR relatively frequently in the elective setting. The committee agreed that there is no simple solution to this implementation difficulty and that the current evidence is clear that EVAR should be retained as a cost-effective option for emergency infrarenal AAA repair. However, the committee were clear that maintaining capacity to provide emergency EVAR is, on its own, an insufficient reason to offer elective EVAR, as the QALYs forgone by retaining elective EVAR would outweigh the QALYs saved by having it available in the emergency setting.

The committee discussed the use of complex EVAR in the context of emergency AAA repair, noting that the new economic model had not captured this population, owing to the lack of clinical evidence. Complex EVAR is not typically used in the emergency setting, as shown by the IMPROVE study protocol. To repair a complex AAA, EVAR devices must be custom-designed for the individual and ordered in advance, and this is not possible in the emergency setting. The committee advised that complex emergency EVAR occasionally does happen in practice using physician-modified grafts or advanced adjunct to standard, infrarenal EVAR devices. The committee agreed that such practice is speculative, and saw no evidence to advise on the effectiveness or cost-effectiveness of this approach, compared with open surgical repair. The committee therefore decided to recommend complex emergency EVAR only within the context of an RCT.

Appendices

abdominal aortic aneurysms

519 Appendix A - Review protocol

- 520 Review protocol for assessing the effectiveness of endovascular aneurysm
- repair compared with open surgical repair of ruptured abdominal aortic
- 522 aneurysms

- univan joine	180	·· · · · · · · · · · · · · · · · · · ·		
Review question 23	abdominal aortic		ompared to open repair sur	gery in repairing ruptured
Objectives			ntages of emergency endova gical repair for the treatment of	
	To explore the sub recommendations		ous patient characteristics, lea	ading to more tailored
Type of review	Intervention			
Language	English			
Study design	i) Systematic revie	ews of study designs I	isted below	
	Randomised conti	rolled trials		
	Quasi-randomised	d controlled trials		
	Non-randomised of	controlled trials for cor	mparisons in people eligible fo	or complex EVAR only
	Prospective cohor	t studies for comparis	ons in people eligible for com	plex EVAR only
	ii) Analysis of UK	registry data (Nationa	l Vascular Registry)	
		Interventions		
		Standard (on-IFU)	Complex EVAR	
		EVAR	Off-IFU use of standard EVAR	Other complex EVAR
	Infrarenal	Systematic	Systematic reviews	Systematic reviews
		reviews	RCTs	RCTs
		RCTs	Quasi-RCTs	Quasi-RCTs
		Quasi-RCTs	Non-randomised controlled trials	Non-randomised controlled trials
			Prospective cohort	Prospective cohort studies
			studies	UK registry data (National
			UK registry data (National Vascular Registry)	Vascular Registry)
	Juxtarenal	Systematic	Systematic reviews	Systematic reviews
		reviews	RCTs	RCTs
		RCTs	Quasi-RCTs	Quasi-RCTs
		Quasi-RCTs	Non-randomised controlled trials	Non-randomised controlled trials
			Prospective cohort	Prospective cohort studies
			studies	UK registry data (National
			UK registry data (National Vascular Registry)	Vascular Registry)
	Suprarenal /	-	-	Systematic reviews
	'type IV'			RCTs
				Quasi-RCTs
				Non-randomised controlled trials
				Prospective cohort studies

DRAFT FOR CONSULTATION
Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Status Published papers only (full text) No date restrictions People undergoing surgery for a ruptured abdominal aortic aneurysm Subgroups: fitness for surgery, age, sex, comorbidities (including cardiovascular disease, r disease, COPD, obesity), ethnicity Intervention Emergency standard (on-IFU) EVAR for infrarenal and juxtarenal abdominal aortic aneuryse Emergency complex EVAR for infrarenal, juxtarenal and suprarenal abdominal aortic aneurincluding: fenestrated EVAR EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPs' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard Off-IFU use of standard complex EVAR	renal
No date restrictions People undergoing surgery for a ruptured abdominal aortic aneurysm Subgroups: fitness for surgery, age, sex, comorbidities (including cardiovascular disease, r disease, COPD, obesity), ethnicity Intervention Emergency standard (on-IFU) EVAR for infrarenal and juxtarenal abdominal aortic aneurys Emergency complex EVAR for infrarenal, juxtarenal and suprarenal abdominal aortic aneurincluding: fenestrated EVAR EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard (on-IFU) of standard EVAR EVAR EVAR EVAR	sms
Subgroups: fitness for surgery, age, sex, comorbidities (including cardiovascular disease, r disease, COPD, obesity), ethnicity Emergency standard (on-IFU) EVAR for infrarenal and juxtarenal abdominal aortic aneurys Emergency complex EVAR for infrarenal, juxtarenal and suprarenal abdominal aortic aneu including: fenestrated EVAR EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard Off-IFU use of standard evices of standard evices of standard evices	sms
Subgroups: fitness for surgery, age, sex, comorbidities (including cardiovascular disease, r disease, COPD, obesity), ethnicity Emergency standard (on-IFU) EVAR for infrarenal and juxtarenal abdominal aortic aneurys Emergency complex EVAR for infrarenal, juxtarenal and suprarenal abdominal aortic aneu including: fenestrated EVAR EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard Off-IFU use of standard evices of standard evices of standard evices	sms
Emergency complex EVAR for infrarenal, juxtarenal and suprarenal abdominal aortic aneu including: fenestrated EVAR EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard (on-IFU) of standard EVAR EVAR	
EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard (on-IFU) of standard complex EVAR EVAR	1
EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard (on-IFU) of standard complex EVAR]
branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard (on-IFU) use of standard complex EVAR]
'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard (on-IFU) use of standard EVAR EVAR EVAR Infrarenal \(\) \(\) \(\)]
infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices Open repair Summary: No surgery Open repair Standard (on-IFU) of standard complex EVAR EVAR]
Open repair Summary: No surgery Open repair Standard (on-IFU) of standard EVAR EVAR Infrarenal \(\) \(\) \(\)]
Summary: No surgery Open repair Standard (on-IFU) of standard EVAR EVAR Infrarenal \sqrt{ \sq \sq \sqrt{ \sqrt{ \sq \sqrt{ \sq \sq \sq \sq \sq \sq \sq \sq	7
No surgery No surgery Open repair Standard (on-IFU) of standard EVAR EVAR Infrarenal \sqrt{ \sqrt{]
Infrarenal Juxtarenal	
Juxtarenal / / / / / / / Suprarenal / / / / /	
Suprarenal /	_
	1
'type IV'	
Comparator Each other	_
Outcomes Mortality/survival	
Peri- and post-operative complications Successful exclusion of the aneurysm, aneurysm rupture, or further aneurysm growth Need for reintervention Quality of life Resource use, including length of hospital or intensive care stay, and costs	
Other criteria for inclusion / exclusion of studies Non-English language Abstract/non-published	
Baseline characteristics to be extracted in evidence tables Age Sex Size of aneurysm	
Comorbidities	
Search strategies See Appendix B	
Review strategies i) Appropriate NICE Methodology Checklists, depending on study designs, will be used as to appraise the quality of individual studies.	a guide
The update of Badger et al's 2014 Cochrane review (ongoing at the time of protocol develor comparing endovascular and open surgical repair of ruptured AAAs will be used as the RC evidence base for this review question	ppment) T
Data on all included studies will be extracted into evidence tables.	

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Review question 23	What is the effectiveness of EVAR compared to open repair surgery in repairing ruptured abdominal aortic aneurysms?
	Where statistically possible, a meta-analytic approach will be used to give an overall summary effect.
	All key findings from evidence will be presented in GRADE profiles.
	ii) Expert witnesses will attend a Committee meeting to answer questions from members of the Committee. They will be invited to present their evidence at a Committee meeting in the form of expert testimony based on a written paper.
	The Developer will write up the expert testimony and agree this with the witness after the meeting.
	i and ii) All key findings will be summarised in evidence statements.
Key papers	None identified.

523

525 Appendix B - Literature search strategies

526 Clinical search literature search strategy

527	Mai	in a	r	۸h	^^
7/1	IVIA	ın sı	ezik	CIN	es

- 528 Bibliographic databases searched for the guideline
- Cumulative Index to Nursing and Allied Health Literature CINAHL (EBSCO)
- Cochrane Database of Systematic Reviews CDSR (Wiley)
- Cochrane Central Register of Controlled Trials CENTRAL (Wiley)
- Database of Abstracts of Reviews of Effects DARE (Wiley)
- Health Technology Assessment Database HTA (Wiley)
- EMBASE (Ovid)
- MEDLINE (Ovid)
- MEDLINE Epub Ahead of Print (Ovid)
- MEDLINE In-Process (Ovid)

538 Identification of evidence for review questions

- The searches were conducted between November 2015 and October 2017 for 31 review
- questions (RQ). In collaboration with Cochrane, the evidence for several review questions
- was identified by an update of an existing Cochrane review. Review questions in this
- category are indicated below. Where review questions had a broader scope, supplement
- searches were undertaken by NICE.
- 544 Searches were re-run in December 2017.
- 545 Where appropriate, study design filters (either designed in-house or by McMaster) were used
- 546 to limit the retrieval to, for example, randomised controlled trials. Details of the study design
- 547 filters used can be found in section 4.

548 Search strategy review question 23

- Badger S, Bedenis R, Blair PH et al. (2017) Endovascular treatment for ruptured abdominal
- aortic aneurysm. Cochrane Database Syst Rev;(5):CD005261. doi:
- 551 10.1002/14651858.CD005261.pub4

552

Medline Strategy, searched 22nd June 2016 Search Strategy:

#1 MESH DESCRIPTOR Aneurysm, Ruptured EXPLODE ALL TREES

#2 MESH DESCRIPTOR Aneurysm, Dissecting

#3 MESH DESCRIPTOR Aorta EXPLODE ALL TREES WITH QUALIFIERS SU

#4 ((aneurysm* or abdom* or thoracoabdom* or thoraco-abdom* or aort*) near (ruptur* or tear or bleed* or trauma)):TI,AB,KY

#5 RAAA:TI.AB.KY

#6 #1 OR #2 OR #3 OR #4 OR #5

#7 MESH DESCRIPTOR Endovascular Procedures EXPLODE ALL TREES

#8 MESH DESCRIPTOR Stents EXPLODE ALL TREES

#9 MESH DESCRIPTOR Vascular Surgical Procedures

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Medline Strategy, searched 22nd June 2016 Search Strategy:

#10 MESH DESCRIPTOR Blood Vessel Prosthesis EXPLODE ALL TREES

#11 MESH DESCRIPTOR Blood Vessel Prosthesis Implantation EXPLODE ALL TREES

#12 endovasc*:TI,AB,KY

#13 endostent*:TI,AB,KY

#14 endoluminal:TI.AB.KY

#15 endoprosthe*:TI,AB,KY

#16 (graft or endograft*):TI,AB,KY

#17 percutaneous*:TI,AB,KY

#18 stent*:TI,AB,KY

#19 (Palmaz or Zenith or Dynalink or Hemobahn or Luminex* or Memotherm or Wallstent):TI,AB,KY

#20 (Viabahn or Nitinol or Intracoil or Tantalum):TI,AB,KY

#21 EVAR:TI,AB,KY

#22 EVRAR:TI,AB,KY

#23 TEVAR:TI,AB,KY

#24 #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18

OR #19 OR #20 OR #21 OR #22 OR #23

#25 #6 AND #24

#26 * NOT SR-PVD:CC AND 31/03/2014 TO 31/07/2016:DL

#27 #25 AND #26

553 Health Economics literature search strategy

554 Sources searched to identify economic evaluations

- NHS Economic Evaluation Database NHS EED (Wiley) last updated Dec 2014
- Health Technology Assessment Database HTA (Wiley) last updated Oct 2016
- Embase (Ovid)
- 558 MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)
- Search filters to retrieve economic evaluations and quality of life papers were appended to
- the population and intervention terms to identify relevant evidence. Searches were not
- undertaken for qualitative RQs. For social care topic questions additional terms were added.
- Searches were re-run in September 2017 where the filters were added to the population
- 564 terms.

565 Health economics search strategy

Medline Strategy

Economic evaluations

- 1 Economics/
- 2 exp "Costs and Cost Analysis"/
- 3 Economics, Dental/
- 4 exp Economics, Hospital/
- 5 exp Economics, Medical/
- 6 Economics, Nursing/
- 7 Economics, Pharmaceutical/
- 8 Budgets/

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

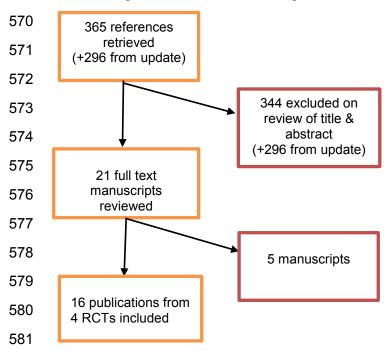
Medline Strategy

- 9 exp Models, Economic/
- 10 Markov Chains/
- 11 Monte Carlo Method/
- 12 Decision Trees/
- 13 econom*.tw.
- 14 cba.tw.
- 15 cea.tw.
- 16 cua.tw.
- 17 markov*.tw.
- 18 (monte adj carlo).tw.
- 19 (decision adj3 (tree* or analys*)).tw.
- 20 (cost or costs or costing* or costly or costed).tw.
- 21 (price* or pricing*).tw.
- 22 budget*.tw.
- 23 expenditure*.tw.
- 24 (value adj3 (money or monetary)).tw.
- 25 (pharmacoeconomic* or (pharmaco adj economic*)).tw.
- 26 or/1-25

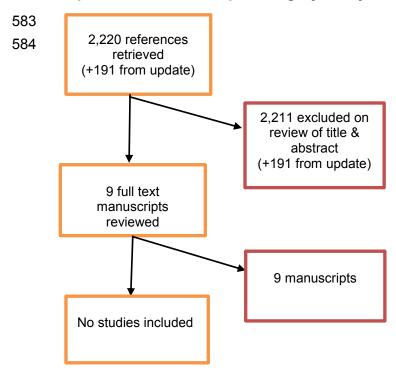
Quality of life

- 1 "Quality of Life"/
- 2 quality of life.tw.
- 3 "Value of Life"/
- 4 Quality-Adjusted Life Years/
- 5 quality adjusted life.tw.
- 6 (qaly* or qald* or qale* or qtime*).tw.
- 7 disability adjusted life.tw.
- 8 daly*.tw.
- 9 Health Status Indicators/
- 10 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or short form thirt
- 11 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw.
- 12 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw.
- 13 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw.
- 14 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw.
- 15 (eurogol or euro gol or eq5d or eq 5d).tw.
- 16 (gol or hgl or hgol or hrgol).tw.
- 17 (hye or hyes).tw.
- 18 health* year* equivalent*.tw.
- 19 utilit*.tw.
- 20 (hui or hui1 or hui2 or hui3).tw.
- 21 disutili*.tw.
- 22 rosser.tw.
- 23 quality of wellbeing.tw.
- 24 quality of well-being.tw.
- 25 qwb.tw.

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms


Medline Strategy

- 26 willingness to pay.tw.
- 27 standard gamble*.tw.
- 28 time trade off.tw.
- 29 time tradeoff.tw.
- 30 tto.tw.
- 31 or/1-30


566

568 Appendix C - Clinical evidence study selection

569 Cochrane systematic review study selection

582 Complex EVAR versus open surgery study selection

Appendix D – Clinical evidence tables

Full citation	Badger S, Bedenis R, Blair PH et al. (2017) Endovascular treatment for ruptured abdominal aortic aneurysm. Cochrane Database Syst Rev;(5):CD005261. doi: 10.1002/14651858.CD005261.pub4
Study details	Study type: systematic review Location: UK Aim(s): to assess the advantages and disadvantages of emergency endovascular aneurysm repair in comparison with conventional open surgical repair for the treatment of ruptured AAA. Study dates: literature searched for publications up to June 2016 Follow-up: 30 days, 6 months and 1 year Sources of funding: this study was supported by funding from the UK National Institute of Health Research (NIHR)
Participants	Population: patients with ruptured AAA diagnosed by computed tomography, angiography, magnetic resonance angiography, or objective acute symptoms suggestive of rupture of the aneurysm Sample size: 4 RCTs (AJAX, ECAR, IMPROVE, and Hinchliffe 2016 trials) including 868 participants Inclusion criteria: RCTs in which patients with a clinically or radiologically diagnosed ruptured AAA were randomly allocated to emergency EVAR or open surgical repair Exclusion criteria: not reported
Methods	This systematic review is an update of a systematic review published in 2014. Literature searches were performed on the Cochrane Central Register of Controlled trials and the Cochrane Vascular Specialised Register (constructed from weekly electronic searches of MEDLINE, Embase, CINAHL, and AMED databases. Additional searches were also performed on the World Health Organisation International Clinical Trials Registry, ClinicalTrials.gov website and the ISRCTN register. Bibliographies of included studies were reviewed to identify any additional studies that were relevant to the review question. Two independent reviewers were involved in study selection, data extraction, and risk of bias assessments. Any disagreements were resolved through discussion.
Intervention	EVAR using any type of endovascular device
Comparison	Open surgical repair
Outcomes measures	Endoleak; complications and mortality at 30-day, 6-month and 1-year follow-up; quality of life
Study Appraisal using AMSTAR	 Was an 'a priori' design provided? Yes Was there duplicate study selection and data extraction? Yes

DRAFT FOR CONSULTATION
Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Full citation	Badger S, Bedenis R, Blair PH et al. (2017) Endovascular treatment for ruptured abdominal aortic aneurysm. Cochrane Database Syst Rev;(5):CD005261. doi: 10.1002/14651858.CD005261.pub4
(Assessing the Methodological Quality of Systematic Reviews)	3. Was a comprehensive literature search performed? Yes
	4. Was the status of publication (i.e. grey literature) used as an inclusion criterion? Not explicitly stated; however authors state that conference proceedings and other grey literature sources were searched to identify relevant studies.
	5. Was a list of studies (included and excluded) provided? Yes
	6. Were the characteristics of the included studies provided? Yes
	7. Was the scientific quality of the included studies assessed and documented? Yes
	8. Was the scientific quality of the included studies used appropriately in formulating conclusions? Yes
	9. Were the methods used to combine the findings of studies appropriate? Yes
	10. Was the likelihood of publication bias assessed? Yes
	11. Was the conflict of interest included? Yes
	Directness: Directly applicable

Studies included in the systematic review by Badger et al.

Full citation	AJAX trial (results reported in multiple publications)
Study details	Study type: multicentre, non-blinded, randomised controlled trial Location: Netherlands Aim: to compare outcomes of EVAR with those of open repair in patients with a ruptured AAA Study dates: April 2004 to February 2011 Follow-up: 6 months Sources of funding: the study was partially funded by the Dutch Heart foundation
Participants	Population: patients with ruptured infrarenal AAA Sample size: 116; 85.3% male Inclusion criteria: people over 18 years with a clinical diagnosis of ruptured AAA accompanied by acute haemorrhage outside the aortic wall were included. Exclusion criteria: extension of the aneurysm to juxta- or suprarenal aorta, kidney transplant, horseshoe kidney, allergy to intravenous contrast, connective tissue disease, severe haemodynamic instability precluding computed tomography (CT) Baseline characteristics: Mean age: EVAR group, 74.9 years; Open surgery group, 74.5 years Sex: EVAR group, 86% male; Open surgery group, 85% male Mean aneurysm diameter: not reported Diabetes: EVAR group, 4%; Open surgery group, 17% Hypertension: EVAR group, 23%; Open surgery group, 32% Renal disease: EVAR group, 2%; Open surgery group, 3% Pulmonary disease: EVAR group, 12%; Open surgery group, 5% Cardiac disease: EVAR group, 28%; Open surgery group, 24%
Intervention	EVAR
Comparison	Open surgical repair
Outcomes measures	All-cause mortality, severe complications, length of hospital and ICU stay, duration of intubation/ventilation and occurrence of endoleaks
Risk of bias assessment (from	1. Random sequence generation (selection bias): Low risk – randomisation was performed generated by and independent clinical research unit that allocated participants to groups on a 1:1 basis using random block sizes of 4 or 6

DRAFT FOR CONSULTATION
Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Full citation	AJAX trial (results reported in multiple publications)
the Cochrane review)	2. Allocation concealment (selection bias): Low risk – Allocations were concealed using sequentially numbered opaque sealed envelopes
	3. Blinding of participants and personnel (performance bias): Low risk – it was not possible to blind participants but this was unlikely to bias results as objective outcomes were measured
	4. Blinding of outcome assessment (detection bias): Low risk – double database entry was performed; adjudication and safety committees were blinded
	5. Incomplete outcome data (attrition bias): Low risk – "All participants were accounted for in a CONSORT diagram; both treatment arms had similar dropout rates and reasons"
	6. Selective reporting (reporting bias): Low risk – All pre-specified outcomes were reported
	7. Other bias: Low risk – None
	Overall risk of bias: Low
	Directness: Directly applicable

Full citation	ECAR trial (results reported in multiple publications)
Study details	Study type: multicentre, non-blinded, randomised controlled trial Location: France Aim: to compare postoperative mortality between open surgical repair and EVAR for aorto-iliac abdominal aortic aneurysms in a homogeneous group of patients Study dates: 2008 to 2013 Follow-up: Up to 1 year Sources of funding: a grant obtained from the French Ministry of Health covered the cost of the study.
Participants	Population: patients with ruptured aorto-iliac AAA Sample size: 107; 90.7% male Inclusion criteria: patients with a CT confirmed ruptured aorto-iliac AAA with bleeding outside the aorto-iliac aneurysm wall were included. All patients had to be haemodynamically stable (systolic blood pressure >80mmHg unassisted by high-dose catacholamines) on arrival. Exclusion criteria: not reported Baseline characteristics: Mean age: EVAR group, 75.0 years; Open surgery group, 73.8 years Sex: EVAR group, 90.0% male; Open surgery group, 91.0% male Mean aneurysm diameter: not reported Comorbidities: not reported
Intervention	EVAR
Comparison	Open surgical repair
Outcomes measures	All-cause mortality, postoperative morbidity (cardiac, pulmonary, digestive, renal, and neurological), length of stay in ICU and complications.
Risk of bias assessment (from the Cochrane review)	 Random sequence generation (selection bias): High risk – No randomisation was performed. Patients were allocated to groups by week; patients were treated by open repair during the first week and subsequent odd numbered weeks. Allocation concealment (selection bias): High risk – Treatment assignment was based on weeks of the study. Blinding of participants and personnel (performance bias): Low risk – It was not possible to blind participants but this was unlikely to bias results as objective outcomes were measured Blinding of outcome assessment (detection bias): Low risk – Assessors were not blinded, but this is unlikely to affect outcomes

DRAFT FOR CONSULTATION
Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

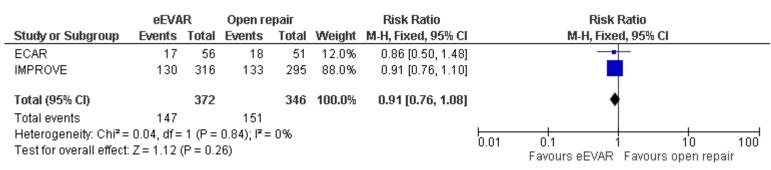
Full citation	ECAR trial (results reported in multiple publications)
	5. Incomplete outcome data (attrition bias): Low risk – All participants were accounted for; no participants were lost to follow-up
	6. Selective reporting (reporting bias):
	7. Other bias: All pre-specified outcomes were reported
	Overall risk of bias: Moderate
	Directness: Directly applicable

	Hinchcliffe 2006 trial (results reported in multiple publications)
Full citation	
Study details	Study type: single centre, non-blinded, randomised controlled trial Location: UK Aim: to test the hypothesis that EVAR can reduce the perioperative mortality associated with ruptured AAA compared with open repair Study dates: 1999 to 2004 Follow-up: 30 days Sources of funding: not reported
Participants	Population: patients with ruptured infrarenal AAA Sample size: 32; 75% male Inclusion criteria: patients with clinically and radiologically confirmed ruptured infrarenal AAA were included. Exclusion criteria: age <50 years, unconscious patients, allergy to radiological contrast, severe comorbidity that would preclude intensive care treatment following open repair; previous EVAR, women of childbearing potential not taking contraception and pregnant or lactating women Baseline characteristics: Mean age: EVAR group, 74 years; Open surgery group, 80 years Sex: EVAR group, 84% male; Open surgery group, 86% male Mean aneurysm diameter: not reported Ischaemic heart disease: EVAR group, 20%; Open surgery group, 29%

Full citation	Hinchcliffe 2006 trial (results reported in multiple publications)
	COPD: EVAR group, 0%; Open surgery group, 18% Peripheral vascular disease: EVAR group, 7%; Open surgery group, 12% Renal disease: EVAR group, 7%; Open surgery group, 12% Hypertension: EVAR group, 29%; Open surgery group, 47%
Intervention	EVAR
Comparison	Open surgical repair
Outcomes measures	30-day mortality and complications
Risk of bias assessment (from the Cochrane review)	 Random sequence generation (selection bias): Unclear risk – Authors did not explicitly state how randomisation was performed Allocation concealment (selection bias): Low risk – Randomisation was then performed from sealed opaque envelopes kept in the hospitals Accident and Emergency Department Blinding of participants and personnel (performance bias): Low risk – It was not possible to blind participants but this was unlikely to bias results as objective outcomes were measured Blinding of outcome assessment (detection bias): Low risk – Assessors were not blinded, but this is unlikely to affect outcomes Incomplete outcome data (attrition bias): Low risk – All participants were accounted for, with numbers of cross-overs and dropouts reported in detail Selective reporting (reporting bias): Low risk – most of the study protocol was outlined in the manuscript and all relevant outcomes were reported Other bias: Unclear risk – The study was underpowered; 32 of the required 100 participants recruited Overall risk of bias: Low Directness: Directly applicable

Full citation	IMPROVE trial (results reported in multiple publications)
Study details	Study type: multicentre, non-blinded, randomised controlled trial Location: UK and Canada Aim: to assess whether EVAR versus open repair reduces mortality for people with suspected RAAA Study dates: 2002 to 2008 Follow-up: mean of 4.9 years Sources of funding: This project was funded by the UK National Institute for Health Research Health Technology Assessment programme
Participants	Population: patients with a ruptured AAA or ruptured aorto-iliac aneurysm Sample size: 613; 78.3% male Inclusion criteria: people over 50 years with a clinical diagnosis of ruptured AAA or ruptured aorto-iliac aneurysm were included Exclusion criteria: previous aneurysm repair, rupture of an isolated internal iliac aneurysm, aorto-caval or aorto-enteric fistulae, connective tissue disorders, anatomical features precluded EVAR, no absolute requirements will be set for the study, proximal neck morphology with a diameter >32 mm or a length <10 mm, iliac artery diameters <8 mm and >22 mm Baseline characteristics: Mean age: EVAR group, 76.0 years; Open surgery group, 76.2 years Sex: EVAR group, 81% male; Open surgery group, 80% male Mean aneurysm diameter: not reported Comorbidities: not reported
Intervention	EVAR
Comparison	Open surgical repair
Outcomes measures	All-cause mortality, costs, cost-effectiveness, and the need for re-intervention
Risk of bias assessment (from the Cochrane review)	 Random sequence generation (selection bias): Low risk – An independent contractor performed telephone randomisation, assigning patients to groups on a 1:1 basis using computer-generated sequences Allocation concealment (selection bias): Low risk – An independent contractor provided telephone randomisation, with computer generated assignation of patients Blinding of participants and personnel (performance bias): Low risk – It was not possible to blind participants but this was unlikely to bias results as objective outcomes were measured

DRAFT FOR CONSULTATION
Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms


Full citation	IMPROVE trial (results reported in multiple publications)
	4. Blinding of outcome assessment (detection bias): Low risk – Data verification was performed centrally; it was unclear if there was blinding, but this was unlikely to influence outcomes
	5. Incomplete outcome data (attrition bias): Low risk – All participants were accounted for, with numbers and reasons for dropouts reported in detail
	6. Selective reporting (reporting bias): Low risk – All pre-specified outcomes were accounted for
	7. Other bias: Low risk – None
	Overall risk of bias: Low
	Directness: Directly applicable

Appendix E – Forest plots

Note: all data reported in GRADE tables relate to ruptured infrarenal AAA. No evidence comparing EVAR with open surgical repair of ruptured complex AAA were identified. Short-term mortality (30-day and in-hospital)

	eEVA	ıR	Open re	ераіг		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
AJAX	16	57	17	59	10.5%	0.97 [0.55, 1.74]	
ECAR	13	56	18	51	11.9%	0.66 [0.36, 1.20]	
Hinchliffe 2006	8	15	9	17	5.3%	1.01 [0.52, 1.93]	
IMPROVE	112	316	111	297	72.2%	0.95 [0.77, 1.17]	•
Total (95% CI)		444		424	100.0%	0.92 [0.77, 1.10]	•
Total events	149		155				
Heterogeneity: Chi²=	: 1.38, df=	3 (P =	$0.71); I^2 =$: 0%			
Test for overall effect	Z = 0.91	(P = 0.3)	36)				0.01 0.1 1 10 100 Favours eEVAR Favours open repair

Mortality at 1 year

Major complications at 30 days

	eEVA	ıR	Open re	ераіг		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI		
AJAX	18	57	22	59	42.5%	0.85 [0.51, 1.40]		-		
ECAR	25	56	28	51	57.5%	0.81 [0.55, 1.19]		-		
Total (95% CI)		113		110	100.0%	0.83 [0.61, 1.13]		•		
Total events	43		50							
Heterogeneity: Chi²=	0.02, df =	1 (P=	0.90); l² =	: 0%			0.01	01 1	10	100
Test for overall effect:	Z = 1.20	(P = 0.2)	?3)				0.01	Favours eEVAR Favours	open re	

Myocardial infarction at 30 days

	eEVA	\R	Open re	ераіг		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
ECAR	2	56	1	51	69.0%	1.82 [0.17, 19.49]	
Hinchliffe 2006	1	15	0	17	31.0%	3.38 [0.15, 77.12]	-
Total (95% CI)		71		68	100.0%	2.30 [0.36, 14.93]	
Total events	3		1				
Heterogeneity: Chi²=	-	-		: 0%			0.01 0.1 1 10 100
Test for overall effect:	Z = 0.87	(P = 0.3)	38)				Favours eEVAR Favours open repair

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Stroke at 30 days

	eEVA	ıR	Open re	ераіг		Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	d, 95% CI		
AJAX	0	57	2	59	83.9%	0.21 [0.01, 4.22]					
Hinchliffe 2006	1	15	0	17	16.1%	3.38 [0.15, 77.12]			•		
Total (95% CI)		72		76	100.0%	0.72 [0.13, 4.10]					
Total events	1		2								
Heterogeneity: Chi²=	1.59, df=	1 (P=	0.21); l² =	: 37%			0.01	01	1	10	100
Test for overall effect:	Z = 0.38	(P = 0.7)	'1)				0.01	Favours eEVAR	r Favours op	en repa	

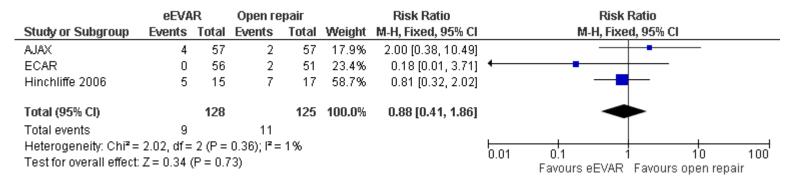
Renal complications at 30 days

	eEVA	R	Ореп ге	раіг		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl	
AJAX	6	57	18	59	37.2%	0.35 [0.15, 0.81]			
ECAR	6	56	2	51	26.5%	2.73 [0.58, 12.93]		 	-
Hinchliffe 2006	7	15	5	17	36.2%	1.59 [0.64, 3.96]		+	
Total (95% CI)		128		127	100.0%	1.04 [0.30, 3.63]			
Total events	19		25						
Heterogeneity: Tau² =	0.91; Ch	i = 8.3	5, df = 2 (F	P = 0.02	2); I² = 769	%	0.01	0.1 1 10	100
Test for overall effect:	Z = 0.06	(P = 0.9)	35)				0.01	Favours eEVAR Favours oper	

Cardiac complications at 30 days

	eEVA	ıR	Ореп ге	ераіг		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
AJAX	4	57	2	57	17.9%	2.00 [0.38, 10.49]		-	
ECAR	0	56	2	51	23.4%	0.18 [0.01, 3.71]	←	-	
Hinchliffe 2006	5	15	7	17	58.7%	0.81 [0.32, 2.02]			
Total (95% CI)		128		125	100.0%	0.88 [0.41, 1.86]		-	
Total events	9		11						
Heterogeneity: Chi²=	2.02, df=	2 (P =	0.36); ==	: 1%			0.01	01 1 10 1	00
Test for overall effect:	Z = 0.34	(P = 0.7)	'3)				0.01	Favours eEVAR Favours open repair	00

Bowel ischaemia at 30 days


	eEVA	R	Open re	ераіг		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
AJAX	2	57	5	59	29.9%	0.41 [0.08, 2.05]			
ECAR	5	56	11	51	70.1%	0.41 [0.15, 1.11]		-	
Total (95% CI)		113		110	100.0%	0.41 [0.18, 0.96]		•	
Total events	7		16						
Heterogeneity: Chi²= Test for overall effect:	•	•		: 0%			0.01	0.1 1 10 Favours eEVAR Favours open r	100 epair

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Amputation at 30 days

	eEVA	ıR	Open re	раіг		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
AJAX	0	57	3	59	56.8%	0.15 [0.01, 2.80]	
ECAR	0	56	2	51	43.2%	0.18 [0.01, 3.71]	•
Total (95% CI)		113		110	100.0%	0.16 [0.02, 1.34]	
Total events	0		5				
Heterogeneity: Chi² = Test for overall effect:		•		:0%			0.01 0.1 1 10 100 Favours eEVAR Favours open repair

Reoperation at 30 days

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Appendix F – GRADE tables

Note: all data reported in GRADE tables relate to ruptured infrarenal AAA. No evidence comparing EVAR with open surgical repair of ruptured complex AAA were identified.

Mortality

		Quality asse	ssment			No of patients Effect estimate			Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
All-cause Perio	perative mortality (30-	day or in-hospital	mortality); effect	sizes below 1 favo	our EVAR				
4 (AJAX, ECAR, IMPROVE & Hinchcliffe trials)	RCTs	Not serious	Not serious	Not serious	Serious ¹	444	424	RR 0.92 (0.77, 1.10)	Moderate
All-cause morta	lity at 6 months; effec	ct sizes below 1 fav	our EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Very serious ²	57	59	RR 0.92 (0.52, 1.62)	Low
All-cause morta	llity at 1 year; effect si	izes below 1 favou	r EVAR						
2 (IMPROVE & ECAR trials)	RCTs	Not serious	Not serious	Not serious	Serious ¹	372	346	RR 0.91 (0.76, 1.08)	Moderate
All-cause morta	lity between 3 months	s and 3 years; effe	ct sizes below 1	favour EVAR					
1 IMPROVE trial	RCT	Not serious	Not serious	N/A	Serious ¹	316	297	HR 0.57 (0.36, 0.90)	Moderate
All-cause morta	lity at mean follow-up	of 4.9 years; effec	t sizes below 1 f	avour EVAR					
1 IMPROVE trial	RCT	Not serious	Not serious	N/A	Serious ³	316	297	HR ^a 0.90 (0.73, 1.10)	Moderate
AAA-related mo	rtality at mean follow	-up of 4.9 years; et	fect sizes below	1 favour EVAR					
1 IMPROVE trial	RCT	Not serious	Not serious	N/A	Serious ³	316	297	HR ^a 0.88 (0.68, 1.15)	Moderate

a. Hazard ratios were reported adjusting for age, sex, Hardman index, and lowest systolic blood pressure.

^{1.} Confidence interval crosses one line of a defined minimum clinically important difference (RR MIDs of 0.8 and 1.25), downgrade 1 level.

^{2.} Confidence interval crosses two lines of a defined minimum clinically important difference (RR MIDs of 0.8 and 1.25), downgrade 2 levels.

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Quality assessment						No of patients		Effect estimate	Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
3. Non-significant result (95% confidence interval crosses the line of no effect), downgrade 1 level.									

Major complications

	Quality assessment						oatients	Effect estimate	Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
Major complicat	ions at 30 days; effec	t sizes below 1 fav	our EVAR						
2 (AJAX & ECAR trials)	RCT	Serious ¹	Not serious	Not serious	Serious ²	113	110	RR 0.83 (0.61, 1.13)	Low
Major complicat	ions at 1 year; effect	sizes below 1 favo	ur EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Very serious ³	57	59	RR 0.89 (0.55, 1.47)	Low

- 1. Method of randomisation was not reported a study (ECAR trial) which had a high weighting (over 33%) in the meta-analysis, downgrade 1 level
- 2. Confidence interval crosses one line of a defined minimum clinically important difference (RR MIDs of 0.8 and 1.25), downgrade 1 level.
- 3. Confidence interval crosses two lines of a defined minimum clinically important difference (RR MIDs of 0.8 and 1.25), downgrade 2 levels.

Specific complications

		Quality asse	essment			No of	patients	Effect estimate	Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
Endoleaks at fin	al follow-up								
3 (AJAX, ECAR & Hinchcliffe trials)	RCTs	Not serious	Not serious	Not serious	Very serious ¹	128	N/A	- 34.4% (44/128) Note: authors stated meta-analysis was not possible as endoleaks are only a result of EVAR.	Low
Myocardial infar	ction at 30 days; effe	ct sizes below 1 fa	vour EVAR						
2 (ECAR & Hinchcliffe trials)	RCTs	Serious ²	Not serious	Not serious	Very serious ³	71	68	RR 2.30 (0.36, 14.93)	Very low
Stroke at 30 day	s; effect sizes below	1 favour EVAR							
2 (AJAX, & Hinchcliffe trials)	RCTs	Not serious	Not serious	Not serious	Very serious ³	72	76	RR 0.72 (0.13, 4.10)	Low
Stroke at 6 mon	ths; effect sizes belo	w 1 favour EVAR							
1 AJAX trial	RCTs	Not serious	Not serious	N/A	Very serious ³	57	59	RR 0.21 (0.01, 4.22)	Low
Renal complicat	tions at 30 days; effe	ct sizes below 1 fa	vour EVAR						
3 (AJAX, ECAR & Hinchcliffe trials)	RCTs	Not serious	Not serious	Very serious ⁵	Very serious ³	128	127	RR 1.04 (0.30, 3.63)	Very low
Renal complicat	tions at 6 months; eff	ect sizes below 1 f	avour EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Serious ⁶	57	59	RR 0.35 (0.15, 0.81)	Moderate
Cardiac complic	ations at 30 days ; et	fect sizes below 1	favour EVAR						
3 (AJAX, ECAR & Hinchcliffe trials)	RCTs	Not serious	Not serious	Not serious	Very serious ³	128	125	RR 0.88 (0.41, 1.86)	Low
Cardiac complic	ations at 6 months;	effect sizes below	1 favour EVAR						

		Quality asse	essment			No of	patients	Effect estimate	Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
1 AJAX trial	RCT	Not serious	Not serious	N/A	Very serious ³	57	59	RR 1.67 (0.42, 6.65)	Low
Respiratory fail	ure at 30 days; effect	sizes below 1 favo	our EVAR						
1 Hinchliffe (2006)	RCT	Not serious	Not serious	N/A	Very serious ³	15	17	RR 3.38 (0.15, 77.12)	Low
Bowel ischaemi	ia at 30 days; effect s	izes below 1 favou	r EVAR						
2 (AJAX & ECAR trials)	RCTs	Serious ²	Not serious	Not serious	Serious ⁶	113	110	RR 0.41 (0.18, 0.96)	Low
Bowel ischaemi	ia at 6 months; effect	sizes below 1 favo	our EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Very serious ³	57	59	RR 0.41 (0.08, 2.05)	Low
Spinal cord isch	naemia at 30 days; eff	ect sizes below 1	favour EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Very serious ³	57	59	RR 3.10 (0.15, 74.64)	Low
Spinal cord isch	naemia at 6 months; e	effect sizes below	1 favour EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Very serious ³	57	59	RR 3.10 (0.15, 74.64)	Low
Amputation at 3	30 days; effect sizes b	elow 1 favour EVA	\R						
2 (AJAX & ECAR trials)	RCTs	Serious ²	Not serious	Not serious	Very serious ³	113	110	RR 0.16 (0.02, 1.34)	Very low
Amputation at 6	6 months; effect sizes	below 1 favour EV	/AR						
1 AJAX trial	RCT in Badger systematic review	Not serious	Not serious	N/A	Very serious ³	57	59	RR 0.15 (0.01, 2.80)	Low

^{1.} Effect sizes and measures of dispersion were not reported as meta-analysis was not possible, downgrade 2 levels.

- 4. \mbox{I}^2 value between 33.3% and 66.7%, downgrade 1 level.
- 5. I^2 value >66.7%, downgrade 2 levels.
- 6. Confidence interval crosses one line of a defined minimum clinically important difference (RR MIDs of 0.8 and 1.25), downgrade 1 level.

^{2.} Method of randomisation was not reported in a study (ECAR trial) which had a high weighting (over 33%) in the meta-analysis, downgrade 1 level

^{3.} Confidence interval crosses two lines of a defined minimum clinically important difference (RR MIDs of 0.8 and 1.25), downgrade 2 levels.

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Need for reintervention

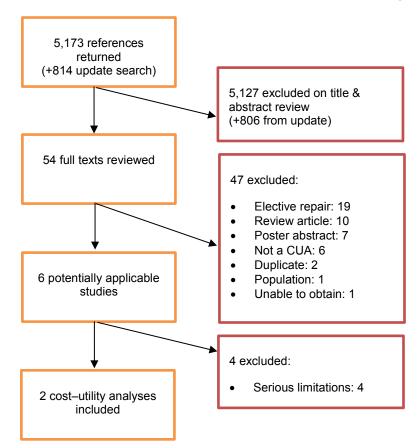
		Quality asse	ssment			No of	patients	Effect estimate	Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
Any reintervent	Any reintervention at 30 days; effect sizes below 1 favour EVAR								
3 (AJAX, ECAR & Hinchcliffe trials)	RCTs	Not serious	Not serious	Serious ¹	Very serious ²	128	125	RR 0.88 (0.41, 1.86)	Very low
Any reintervent	ion at 6 months; effec	t sizes below 1 fav	our EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Very serious ²	57	59	RR 1.21 (0.61, 2.38)	Low
Any reintervent	ion at 3 years; effect s	sizes below 1 favou	ır EVAR						
1 IMPROVE trial	RCT	Not serious	Not serious	N/A	Serious ³	316	297	HR ^a 1.04 (0.80, 1.35)	Moderate

- a. Hazard ratios were reported adjusting for age, sex, Hardman index, and lowest systolic blood pressure.
- 1. I² value > 40%, downgrade 1 level.
- 2. Confidence interval crosses one line of a defined minimum clinically important difference (RR MIDs of 0.8 and 1.25), downgrade 1 level.
- 3. Non-significant result (95% confidence interval crosses the line of no effect), downgrade 1 level.

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Quality of life

		Quality asse	ssment			No of	patients	Effect estimate	Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
SF-36 Physical	domain at 6 months;	effect sizes below	0 favour EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Serious ¹	29	27	MD 3.56 (-2.0, 9.0)	Moderate
SF-36 mental do	omain at 6 months; eff	fect sizes below 0	favour EVAR						
1 AJAX trial	RCT	Not serious	Not serious	N/A	Serious ¹	29	27	MD -5.25 (-11.0, 0)	Moderate
EQ-5D at 3 months; effect sizes below 0 favour EVAR									
1 IMPROVE trial	RCT	Not serious	Not serious	N/A	Not serious	167	150	MD 0.087 (0.017, 0.158)	High
EQ-5D at 12 mo	nths; effect sizes belo	ow 0 favour EVAR							
1 IMPROVE trial	RCT	Not serious	Not serious	N/A	Serious ¹	161	140	MD 0.068 (-0.004, 0.140)	Moderate
EQ-5D at 3 year	s; effect sizes below () favour EVAR							
1 IMPROVE trial	RCT	Not serious	Not serious	N/A	Serious ³	N=	262	MD 0.013 (-0.069, 0.096)	Moderate
1. Non-significa	1. Non-significant result (95% confidence interval crosses the line of no effect), downgrade 1 level.								


Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Length of stay

		Quality asse	ssment			No of patients		Effect estimate	Quality
No of studies	Design	Risk of bias	Indirectness	Inconsistency	Imprecision	EVAR	Open repair	Summary of results	
Length of stay i	n ICU (hours)								
1 AJAX trial	RCT	Not serious	Not serious	N/A	Serious ¹	57	59	AJAX diff in medians: 18 (Non-significant according to the Mann-Whitney test)	Moderate
Length of Hosp	ital stay (days)								
3 (AJAX, ECAR & Hinchcliffe trials)	RCT	Not serious	Not serious	Not serious	Serious ¹	128	127	AJAX diff in medians: 4 ECAR diff in medians: 2.8 (Both non-significant according to the Mann-Whitney or Wilcoxon rank test) Hinchliffe diff in medians: 2 (statistical significance not reported)	Moderate

Non-significant result, downgrade 1 level.

Appendix G – Economic evidence study selection

Appendix H – Economic evidence tables

Study, Population,			Results				
Country and Quality	Data Sources	Other Comments	Cost (€)	Effect (QALYs)	ICER (€)	Conclusions	Uncertainty
Kapma et al. (2014) Within-trial cost—utility analysis as part of the AJAX study. Netherlands. Partially applicable a Potentially serious limitations b,c,d	Effects: AJAX study (RCT comparing EVAR [n=57] with OSR [n=59] for rAAA). Costs: Hospital perspective. Primary procedure, perioperative and follow-up resource use from AJAX (1 centre). Costs from national sources and hospital records. Utilities: Derived from EQ-5D-3L questionnaire, administered 1, 3 & 12 months after intervention.	6-month time horizon (therefore outcomes not subjected to discounting). Price year 2010 (€). Missing EQ-5D data backwards imputed if possible (else LOCF). Trial data were bootstrapped (n=25,000) to characterise uncertainty in incremental costs and QALYs.	EVAR: 41,350 OSR: 31,616 Increment: 10,189 95% CI: [-2477, 24,506]	EVAR: 0.324 95% CI: [0.198, 0.445] OSR: 0.298 95% CI: [0.164, 0.433] Increment: 0.026	€391,885	'Treatment of rAAA using EVAR was not cost-effective compared with [OSR] in this study.'	Conclusions robust to cost scenarios and analysis based on age subgroups. EVAR may be costeffective if the device cost is 50% lower than the list price. EVAR ICER was €80,000 or less in fewer than 25% of bootstrap iterations.

Key: CI, confidence interval; EVAR, endovascular aneurysm repair; ICER, incremental cost-effectiveness ratio; LOCF, last observation carried forward; OSR, open surgical repair; QALY, quality-adjusted life year; rAAA, ruptured abdominal aortic aneurysm; RCT, randomised controlled trial.

- a. EVAR appears to have been conducted only where there was anatomical suitability, which is likely to mean infrarenal aneurysms.
- b. Relatively small study sample size (n=116).
- c. Short time horizon (6 months).
- d. Resource use and cost data only available from 1 of the 2 study hospitals.

Study, Population,			Results				
Country and Quality	Data Sources	Other Comments	Cost (£)	Effect (QALYs)	ICER	Conclusions	Uncertainty
Powell et al. (2017) Within-trial cost— utility analysis as part of the IMPROVE study: 3- year update. UK. Directly applicable Potentially serious limitations a,b	Effects: IMPROVE study (pragmatic trial comparing EVAR strategy [n=316] with OSR strategy [n=297] for rAAA). Costs: Primary procedure perioperative hospital care and follow-up care resource use from IMPROVE. Costs from standard UK sources (2012). Utilities: Derived from EQ-5D-3L questionnaire, administered in IMPROVE 3, 12 and 36 months after intervention (QALYs estimated by AUC).	3-year time horizon, outcomes discounted by 3.5% annually. Price year appears to be 2011-12, based on source data for unit costs. Primary analysis by randomised group (intention-to-treat). Missing data were imputed from available data from rAAA participants for whom repair was commenced, conditional on other, fully observable variables (e.g. age) Trial data were bootstrapped to characterise uncertainty in the estimated incremental costs and QALYs (number of simulations NR).	EVAR: 16,878 OSR: 19,483 Increment: -2605 95% CI: [-5966, 702]	EVAR: 1.14 OSR: 0.97 Increment: 0.166 95% CI: [0.022, 0.331]	EVAR dominant	'This mid-term follow- up provides convincing support for the benefits of an endovascular strategy (EVAR if morphologically feasible) versus open repair to treat patients with ruptured abdominal aortic aneurysm. At three years, the endovascular strategy offers an increase in QALYs, without an excess of reinterventions, and is cost effective.'	Results consistent when analysing only participants with confirmed AAA rupture, in an intention-to-treat analysis and when attempting to adjust for trial crossover (complier average causal effect analysis). EVAR ICER dominant in 88% of simulations, costeffective in over 90% of bootstrap simulations at all cost per QALY thresholds.

Key: AUC, area under the curve; CI, confidence interval; EVAR, endovascular aneurysm repair; ICER, incremental cost-effectiveness ratio; OSR, open surgical repair; PSA, probabilistic sensitivity analysis; QALY, quality-adjusted life year; rAAA, ruptured abdominal aortic aneurysm.

- a. Pragmatic trial (not truly randomised at the point of intervention), though an attempt to adjust for this crossover has been undertaken in sensitivity analysis.
- b. Short time horizon (3 years), despite longer-term survival data that indicate an acceleration of EVAR mortality beyond 3 years, almost converging with OSR at year 6. 3-year analysis duration is may censor lasting differences between interventions in readmission and reintervention rates.

Appendix J – Excluded studies

Clinical studies

ilicai Stud		
No.	Study	Reason for exclusion
1	Antoniou G A, Georgiadis G S, Antoniou S A et al. (2013) Endovascular repair for ruptured abdominal aortic aneurysm confers an early survival benefit over open repair. United States: Mosby Inc. (11830 Westline Industrial Drive, St. Louis MO 63146, United States)	Systematic review including studies that employed various study designs. Individual studies were assessed to determine if they met inclusion criteria for this review question.
2	Braithwaite B, Greenhalgh R M, Grieve R, Hassan et al. (2015) Endovascular strategy or open repair for ruptured abdominal aortic aneurysm: One-year outcomes from the IMPROVE randomized trial. European heart journal 36(31), 2061-2069-2069	Study is included in the Cochrane systematic review.
3	Desgranges P, Kobeiter H, Katsahian S, et al (2015) ECAR (Endovasculaire ou Chirurgie dans les Anevrysmes aorto-iliaques Rompus): A French Randomized Controlled Trial of Endovascular Versus Open Surgical Repair of Ruptured Aorto-iliac Aneurysms.:	Study is included in the Cochrane systematic review.
4	Improve trial, and investigators (2014) Observations from the IMPROVE trial concerning the clinical care of patients with ruptured abdominal aortic aneurysm. British journal of surgery 101, 216-224	Study is included in the Cochrane systematic review.
5	Powell J T, Sweeting M J, Thompson M et al. (2014) Endovascular or open repair strategy for ruptured abdominal aortic aneurysm: 30 day outcomes from IMPROVE randomised trial.	A more recent publication of this study was available and is included in the Cochrane systematic review.
6	Qin C, Chen L, and Xiao Y B (2014) Emergent endovascular vs. open surgery repair for ruptured abdominal aortic aneurysms: a meta-analysis.	Systematic review including studies that employed various study designs. Individual studies were assessed to determine if they met inclusion criteria for this review question.
7	Reimerink J J, Hoornweg L L, Vahl A C, et al. (2013) Endovascular repair versus open repair of ruptured abdominal aortic aneurysms: a multicenter randomized controlled trial. Annals of surgery 258(2), 248-256	Study is included in the Cochrane systematic review.
8	Sweeting M J, Balm R, Desgranges P, et al. (2015) Individual-patient meta- analysis of three randomized trials comparing endovascular versus open repair for ruptured abdominal aortic aneurysm.	Individual patient meta-analysis based on data from 3 RCTs. It is unclear whether a systematic approach was used to select and include the 3 studies. These studies have been included, in the Cochrane systematic review.

No.	Study	Reason for exclusion
9	van Beek , S C, Conijn A P, Koelemay M J et al. (2014) Editor's Choice - Endovascular Aneurysm Repair Versus Open Repair for Patients with a Ruptured Abdominal Aortic Aneurysm: a Systematic Review and Meta-analysis of Short-term Survival.	Systematic review including studies that employed various study designs. Individual studies were assessed to determine if they met inclusion criteria for this review question.

Economic studies

Study	Primary reason for exclusion
Selectively excluded	•
Hayes et al. (2010). Cost-effectiveness analysis of	
endovascular versus open surgical repair of acute abdominal	Very serious limitations
aortic aneurysms based on worldwide experience. J Endovasc	very serious ilmitations
Ther, 17: 174-82.	
Patel et al. (2000). The cost-effectiveness of repairing ruptured	Very serious limitations
abdominal aortic aneurysms. J Vasc Surg, 32: 247-57.	very serious infiltations
Powell et al. (2015). Endovascular strategy or open repair for	
ruptured abdominal aortic aneurysm: one-year outcomes from	Population (emergency repair)
the IMPROVE randomized trial. Eur Heart J, 35: 2061-9.	
Rollins et al. (2014). Mid-term cost-effectiveness analysis of	Vary agricus limitations
open and endovascular repair for ruptured abdominal aortic aneurysm. <i>Br J Surg</i> , 101: 225-31.	Very serious limitations
Takayama (2017). A Cost-Utility Analysis of Endovascular	
Aneurysm Repair for Abdominal Aortic Aneurysm. <i>Ann Vasc</i>	Very serious limitations
Dis, 10(3): 185-91.	very serious initiations
Excluded based on study selection criteria	
Armstrong et al. (2014). The use of fenestrated and branched	
endovascular aneurysm repair for juxtarenal and	Not a CUA
thoracoabdominal aneurysms: a systematic review and cost-	Not a COA
effectiveness analysis. HTA, 18(70).	
Badger et al. (2014). Endovascular treatment for ruptured	
abdominal aortic aneurysm (review). Cochrane Database of	Review article, no additional CUAs
Systematic Reviews, 7.	
Blackhouse et al. (2009). A cost-effectiveness model	
comparing endovascular repair to open surgical repair of	Population (elective repair)
abdominal aortic aneurysm in Canada. <i>Value in Health</i> , 12(2): 245-52.	
Bosch et al. (2002). Abdominal aortic aneurysms: cost-	Population (elective repair)
effectiveness of elective endovascular and open surgical	1 opulation (ciccuve repair)
repair. Radiology, 225(2): 337-44.	
Bowen et al. (2005). Systematic review and cost-effectiveness	Population (elective repair)
analysis of elective endovascular repair compared to open	, , ,
surgical repair of abdominal aortic aneurysms. Interim report.	
Ontario Ministry of Health & Long-term Care.	
Brown et al. (2012). The UK endovascular aneurysm repair	Population (elective repair)
(EVAR) trials: randomised trials of EVAR versus standard	
therapy. <i>HTA</i> , 16(9).	Dec 1: feet (1: efe e e e e e e e e e
Burgers et al. (2016). Cost-effectiveness of Elective	Population (elective repair)
Endovascular Aneurysm Repair Versus Open Surgical Repair	
of Abdominal Aortic Aneurysms. <i>Eur J Vasc Endovasc Surg</i> , 52: 29-40.	
Chambers et al. (2009). Endovascular stents for abdominal	Population (elective repair)
aortic aneurysms: a systematic review and economic model.	· · · · · · · · · · · · · · · · · · ·
HTA, 13(48).	
Epstein et al. (2008). Modelling the long-term cost-	
effectiveness of endovascular or open repair for abdominal	Population (elective repair)
aortic aneurysm. Br J Surg, 95: 183-90.	
Epstein et al. (2014). Long-term cost-effectiveness analysis of	Population (elective repair)
endovascular versus open repair for abdominal aortic	r opalation (cicotive repair)

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

aneurysm based on four randomized clinical trials. <i>Br J Surg</i> , 101(6): 623-31.	
Forbes et al. (2002). A cost-effectiveness analysis of standard versus endovascular abdominal aortic aneurysm repair. <i>J Can Chir</i> , 45(6): 420-4.	Not a CUA
Greenhalgh et al. (2005). Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial. <i>The Lancet</i> , 365(9458): 2179-86.	Not a CUA
Hynes et al. (2007). A prospective clinical, economic, and quality-of-life analysis comparing endovascular aneurysm repair (EVAR), open repair, and best medical treatment in high-risk patients with abdominal aortic aneurysms suitable for EVAR: The Irish patient trial. <i>J Endocasc Ther</i> , 14: 763-76.	Population (elective repair)
Jonk et al. (2007). Cost-effectiveness of abdominal aortic aneurysm repair: a systematic review. <i>Int J Tech Assess Health Care</i> , 23(2): 205-15.	Review article, no additional CUAs
Kapma et al. (2007). Emergency abdominal aortic aneurysm repair with a preferential endovascular strategy: mortality and cost-effectiveness analysis. <i>J Endovasc Ther</i> , 14: 777-84.	Not a CUA
Lederle. (2009). Repair of nonruptured abdominal aortic aneurysm: a systematic review of randomized trials. <i>Vascular</i> , 17: S71.	Poster abstract
Lederle et al. (2012). Cost-effectiveness at two years in the VA open versus endovascular repair trial. <i>Eur J Vasc Endovasc Surg</i> , 44: 543-8.	Population (elective repair)
Lederle et al. (2016). Long-term cost-effectiveness in the vetereans Affairs Open vs Endovascular Repair Study of aortic abdominal aneurysm: a randomised clinical trial. <i>JAMA Surg</i> , 151(12): 1139-1144.	Population (elective repair)
Luebke et al. (2014). Cost-effectiveness of endovascular versus open repair of acute complicated type B aortic dissections. <i>J Vasc Surg</i> , 59: 1247-55.	Population (thoracic aortic dissection)
Mandavia et al. (2015). The role of cost-effectiveness for vascular surgery service provision in the United Kingdom. <i>J Vasc Surg</i> , 61: 1331-9.	Review article, no additional CUAs
McCarron et al. (2013). The impact of using informative priors in a Bayesian cost-effectiveness analysis: an application of endovascular versus open surgical repair for abdominal aortic aneurysms in high-risk patients. <i>Med Decis Mak</i> , 33(3): 437-50.	Population (elective repair)
Medical Advisory Secretariat Ontario (2002). Endovascular repair of abdominal aortic aneurysm: an evidence-based analysis. <i>Ontario HTA Series</i> , 2(1).	Review article, no additional CUAs
Michaels et al. (2005). Cost-effectiveness of endovascular abdominal aortic aneurysm repair. <i>Br J Surg</i> , 92(8): 960-7.	Population (elective repair)
Michaels et al. (2014). Long-term cost-effectiveness analysis of endovascular versus open repair for abdominal aortic aneurysms based on four randomized clinical trials. <i>Br J Surg</i> , 101(6): 632.	Commentary, no additional CUAs
Patel et al. (1999). The cost-effectiveness of endovascular repair versus open surgical repair of abdominal aortic aneurysms: a decision analysis model. <i>J Vasc Surg</i> , 29(6): 958-72.	Population (elective repair)
Perras et al. (2009). Elective endovascular abdominal aortic aneurism repair versus open surgery: a review of the clinical and cost-effectiveness.	Review article, no additional CUAs
Prinssen et al. (2007). Cost-effectiveness of conventional and endovascular repair of abdominal aortic aneurysms: Results of a randomized trial. <i>J Vasc Surg</i> , 46: 883-90.	Population (elective repair)
Sala-Almonicil et al. (2017). Fenestrated and chimney endovascular aneurysm repair versus open surgery for complex abdominal aortic aneurysms. <i>J Cardiovasc Surg</i> , 58(6): 801-13.	Not a CUA.

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Sousa et al. (2014). Cost-effectiveness of the endovascular repair of abdominal aortic aneurysm in Portugal. <i>Angiol Cir Vasc</i> , 10(2): 41-8.	Population (elective repair)
Stroupe et al. (2012). Cost-effectiveness of open versus endovascular repair of abdominal aortic aneurysm in the OVER trial. <i>J Vasc Surg</i> , 56: 901-10.	Duplicate of Lederle et al. (2012)
Silverstein et al. (2005). Abdominal aortic aneurysm (AAA): cost-effectiveness of screening, surveillance of intermediatesized AAA, and management of symptomatic AAA. <i>BUMC Proceedings</i> , 18: 345-67.	Review article, no additional CUAs
Sultan et al. (2009a). A prospective clinical and quality of life analysis of open repair (OR), endovascular repair (EVAR), and best medical treatment in high-risk patients: cost-effectiveness during global recession. <i>Vascular</i> , (17): S2.	Poster abstract
Sultan et al. (2009b). Five-year experience with EVAR without fenestration for juxtarenal AAA repair: clinical efficacy, reintervention rates, and cost-effectiveness. <i>Vascular</i> , 17: S74.	Not found
Sultan & Hynes (2010a). Five-year experience with pararenal endovascular aortic repair (PEVAR) without fenestration: clinical efficacy, reintervention rates & cost-effectiveness. <i>J Vasc Surg</i> , 51(6): S89.	Poster abstract
Sultan & Hynes (2010b). Five-year experience with pararenal endovascular aortic repair (PEVAR) without fenestration: clinical efficacy, reintervention rates & cost-effectiveness. <i>J Vasc Surg</i> , 51(4): 1068-9.	Poster abstract
Sultan & Hynes (2010c)	Poster abstract
Sultan & Hynes (2011a). Clinical efficacy and cost per quality- adjusted life years of pararenal endovascular aortic aneurysm repair compared with open surgical repair. <i>J Endovasc Ther</i> , 18: 181-96.	Population (elective repair)
Sultan & Hynes (2011b). A mid- to long-term experience of clinical efficacy and cost per quality-adjusted-life years with pararenal endovascular aortic repair (PEVAR) without fenestration for pararenal AAA compared with open surgical repair. <i>Cardiovasc Interv Radiol</i> , 3 (332/677).	Poster abstract
Sultan & Hynes (2012). Clinical efficacy and cost per quality-adjusted life years of para-renal endovascular aortic aneurysm repair compared with open surgical repair. <i>JACC</i> , 60(17): B38.	Poster abstract
Sweeting et al. (2015). Individual-patient meta-analysis of three	
randomized trials comparing endovascular versus open repair for ruptured abdominal aortic aneurysm. <i>Br J Surg</i> , 102: 1229-39.	Review article, no additional CUAs
Tarride et al. (2008). Cost-effectiveness analysis of elective endovascular repair compared with open surgical repair of abdominal aortic aneurysms for patients at a high surgical risk: A 1-year patient-level analysis conducted in Ontario, Canada. <i>J Vasc Surg</i> , 48: 779-87.	Population (elective repair)
Tarride et al. (2011). Should endovascular repair be reimbursed for low risk abdominal aortic aneurysm patients? Evidence from Ontario, Canada. <i>Int J Vasc Med</i> , 2011.	Not a CUA
Taylor et al. (2012). EVAR is now cost effective and should replace open surgery for all suitable patients: con. <i>Cardiovasc Interv Radiol</i> , 35: S48.	Review article, no additional CUAs
Tremont et al. (2016). Endovascular Repair for Ruptured Abdominal Aortic Aneurysms has Improved Outcomes Compared to Open Surgical Repair. Vasc Endovasc Surg, 50(3) 147-55.	Not a CUA
Van Bochove et al. (2016). Cost-effectiveness of open versus endovascular repair of abdominal aortic aneurysm. <i>J Vasc Surg</i> , 3: 827-38.	Population (elective repair)
Weinkauf et al. (2017). Open versus endovascular aneurysm repair trial review. <i>Surgery</i> , 162(5): 974-78.	Population (elective repair)
Wilt et al. (2006). Comparison of endovascular and open surgical repairs for abdominal aortic aneurysm. <i>Evid Rep Technol Assess</i> , 144: 1-113.	Review article, no additional CUAs

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Key: CUA, cost-utility analysis.

Appendix K – Research recommendation

Research recommendation	What is the effectiveness and cost-effectiveness of complex EVAR versus open surgical repair in people with a ruptured AAA for whom open surgery is a suitable option?
Population	People undergoing surgery for a ruptured abdominal aortic aneurysm Sub-grouped by: age, sex, comorbidities (including cardiovascular disease, renal disease, COPD, obesity) and ethnicity
Intervention(s)	 Emergency complex EVAR for infrarenal, juxtarenal and suprarenal abdominal aortic aneurysms, including: fenestrated EVAR EVAR with chimneys EVAR with snorkels branched grafts 'CHIMPS' (CHIMneys, Periscopes, Snorkels) infrarenal devices used for juxtarenal AAA – that is, off-IFU use of standard devices
Comparator(s)	Open surgical repair
Outcomes	 Mortality/survival Peri- and post-operative complications Successful exclusion of the aneurysm, aneurysm rupture, or further aneurysm growth Need for reintervention Quality of life Resource use, including length of hospital or intensive care stay, and costs
Study design	Randomised controlled trial

Potential criterion	Explanation
Importance to patients, service users or the population	EVAR is a widely performed non-invasive alternative to open surgical repair. However, it is more expensive and more difficult to perform. Although EVAR has been shown to produce comparable long-term outcomes to open surgical in people with ruptured infrarenal aneurysms, it is less clear whether these benefits are maintained in people with ruptured juxtarenal, suprarenal type IV, and branched infrarenal aneurysms. As a result, research is needed to identify how effective complex EVAR is in these populations.
Relevance to NICE guidance	High priority: it is currently not possible to make specific recommendations related to complex EVAR, other than to state that the procedure should not be performed on aneurysms that could be treated by open surgical repair, unless it is performed within the context of a randomised controlled trial.
Current evidence base	Randomised controlled trials have been performed to assess the efficacy of standard EVAR for unruptured or ruptured AAA, and complex EVAR of unruptured AAA. However, no RCTs have been performed to determine the efficacy of complex EVAR in people with ruptured juxtarenal, suprarenal type IV, and branched infrarenal aneurysms. In the absence of this type of evidence the committee recognised the potential for harm if patients who could receive open surgery were offered complex speculative EVAR for the wrong reasons. As a result, they agreed that complex EVAR should be performed in well-controlled environments, like that of an RCT to ensure that data will be collected to inform future updates of the guideline.
Equality	No specific equality concerns are relevant to this research recommendation.

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

Potential criterion	Explanation
Feasibility	There is a sufficiently large and well defined population available that randomised controlled trials in this area should be feasible.

Appendix L - Glossary

Abdominal Aortic Aneurysm (AAA)

A localised bulge in the abdominal aorta (the major blood vessel that supplies blood to the lower half of the body including the abdomen, pelvis and lower limbs) caused by weakening of the aortic wall. It is defined as an aortic diameter greater than 3 cm or a diameter more than 50% larger than the normal width of a healthy aorta. The clinical relevance of AAA is that the condition may lead to a life threatening rupture of the affected artery. Abdominal aortic aneurysms are generally characterised by their shape, size and cause:

- Infrarenal AAA: an aneurysm located in the lower segment of the abdominal aorta below the kidneys.
- Juxtarenal AAA: a type of infrarenal aneurysm that extends to, and sometimes, includes the lower margin of renal artery origins.
- Suprarenal AAA: an aneurysm involving the aorta below the diaphragm and above
 the renal arteries involving some or all of the visceral aortic segment and hence the
 origins of the renal, superior mesenteric, and celiac arteries, it may extend down to
 the aortic bifurcation.

Abdominal compartment syndrome

Abdominal compartment syndrome occurs when the pressure within the abdominal cavity increases above 20 mm Hg (intra-abdominal hypertension). In the context of a ruptured AAA this is due to the mass effect of a volume of blood within or behind the abdominal cavity. The increased abdominal pressure reduces blood flow to abdominal organs and impairs pulmonary, cardiovascular, renal, and gastro-intestinal function. This can cause multiple organ dysfunction and eventually lead to death.

Cardiopulmonary exercise testing

Cardiopulmonary Exercise Testing (CPET, sometimes also called CPX testing) is a non-invasive approach used to assess how the body performs before and during exercise. During CPET, the patient performs exercise on a stationary bicycle while breathing through a mouthpiece. Each breath is measured to assess the performance of the lungs and cardiovascular system. A heart tracing device (Electrocardiogram) will also record the hearts electrical activity before, during and after exercise.

Device migration

Migration can occur after device implantation when there is any movement or displacement of a stent-graft from its original position relative to the aorta or renal arteries. The risk of migration increases with time and can result in the loss of device fixation. Device migration may not need further treatment but should be monitored as it can lead to complications such as aneurysm rupture or endoleak.

Endoleak

An endoleak is the persistence of blood flow outside an endovascular stent - graft but within the aneurysm sac in which the graft is placed.

- Type I Perigraft (at the proximal or distal seal zones): This form of endoleak is caused by blood flowing into the aneurysm because of an incomplete or ineffective seal at either end of an endograft. The blood flow creates pressure within the sac and significantly increases the risk of sac enlargement and rupture. As a result, Type I endoleaks typically require urgent attention.
- Type II Retrograde or collateral (mesenteric, lumbar, renal accessory): These
 endoleaks are the most common type of endoleak. They occur when blood bleeds
 into the sac from small side branches of the aorta. They are generally considered
 benign because they are usually at low pressure and tend to resolve spontaneously
 over time without any need for intervention. Treatment of the endoleak is indicated if
 the aneurysm sac continues to expand.
- Type III Midgraft (fabric tear, graft dislocation, graft disintegration): These
 endoleaks occur when blood flows into the aneurysm sac through defects in the
 endograft (such as graft fractures, misaligned graft joints and holes in the graft fabric).
 Similarly to Type I endoleak, a Type III endoleak results in systemic blood pressure
 within the aneurysm sac that increases the risk of rupture. Therefore, Type III
 endoleaks typically require urgent attention.
- Type IV- Graft porosity: These endoleaks often occur soon after AAA repair and are
 associated with the porosity of certain graft materials. They are caused by blood
 flowing through the graft fabric into the aneurysm sac. They do not usually require
 treatment and tend to resolve within a few days of graft placement.
- Type V Endotension: A Type V endoleak is a phenomenon in which there is continued sac expansion without radiographic evidence of a leak site. It is a poorly understood abnormality. One theory that it is caused by pulsation of the graft wall, with transmission of the pulse wave through the aneurysm sac to the native aneurysm wall. Alternatively it may be due to intermittent leaks which are not apparent at imaging. It can be difficult to identify and treat any cause.

Endovascular aneurysm repair

Endovascular aneurysm repair (EVAR) is a technique that involves placing a stent –graft prosthesis within an aneurysm. The stent-graft is inserted through a small incision in the femoral artery in the groin, then delivered to the site of the aneurysm using catheters and guidewires and placed in position under X-ray guidance.

- Conventional EVAR refers to placement of an endovascular stent graft in an AAA where the anatomy of the aneurysm is such that the 'instructions for use' of that particular device are adhered to. Instructions for use define tolerances for AAA anatomy that the device manufacturer considers appropriate for that device. Common limitations on AAA anatomy are infrarenal neck length (usually >10mm), diameter (usually ≤30mm) and neck angle relative to the main body of the AAA
- Complex EVAR refers to a number of endovascular strategies that have been developed to address the challenges of aortic proximal neck fixation associated with complicated aneurysm anatomies like those seen in juxtarenal and suprarenal AAAs. These strategies include using conventional infrarenal aortic stent grafts outside their 'instructions for use', using physician-modified endografts, utilisation of customised

Effectiveness of endovascular aneurysm repair compared with open surgical repair of ruptured abdominal aortic aneurysms

fenestrated endografts, and employing snorkel or chimney approaches with parallel covered stents.

Goal directed therapy

Goal directed therapy refers to a method of fluid administration that relies on minimally invasive cardiac output monitoring to tailor fluid administration to a maximal cardiac output or other reliable markers of cardiac function such as stroke volume variation or pulse pressure variation.

Post processing technique

For the purpose of this review, a post-processing technique refers to a software package that is used to augment imaging obtained from CT scans, (which are conventionally presented as axial images), to provide additional 2- or 3-dimensional imaging and data relating to an aneurysm's, size, position and anatomy.

Permissive hypotension

Permissive hypotension (also known as hypotensive resuscitation and restrictive volume resuscitation) is a method of fluid administration commonly used in people with haemorrhage after trauma. The basic principle of the technique is to maintain haemostasis (the stopping of blood flow) by keeping a person's blood pressure within a lower than normal range. In theory, a lower blood pressure means that blood loss will be slower, and more easily controlled by the pressure of internal self-tamponade and clot formation.

Remote ischemic preconditioning

Remote ischemic preconditioning is a procedure that aims to reduce damage (ischaemic injury) that may occur from a restriction in the blood supply to tissues during surgery. The technique aims to trigger the body's natural protective functions. It is sometimes performed before surgery and involves repeated, temporary cessation of blood flow to a limb to create ischemia (lack of oxygen and glucose) in the tissue. In theory, this "conditioning" activates physiological pathways that render the heart muscle resistant to subsequent prolonged periods of ischaemia.

Tranexamic acid

Tranexamic acid is an antifibrinolytic agent (medication that promotes blood clotting) that can be used to prevent, stop or reduce unwanted bleeding. It is often used to reduce the need for blood transfusion in adults having surgery, in trauma and in massive obstetric haemorrhage.