NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

Highly Specialised Technologies Evaluation

Elivaldogene autotemcel for treating cerebral adrenoleukodystrophy

Final scope

Final remit/evaluation objective

To evaluate the benefits and costs of elivaldogene autotemcel within its marketing authorisation for treating cerebral adrenoleukodystrophy (CALD) for national commissioning by NHS England.

Background

Adrenoleukodystrophy (ALD) is a rare X-linked metabolic disorder in which accumulation of saturated very-long-chain fatty acids (VLCFAs) results in diffuse and multifocal demyelination (when myelin is damaged) of the nervous system and adrenocortical insufficiency. In ALD, the gene (ABCD1) responsible for the breakdown of fatty acids is faulty, causing damage to the adrenal glands, myelin, brain cells and the rest of the body¹.

As the disorder is caused by a faulty gene from the X-chromosome it almost exclusively impacts upon males, as they only have one X-chromosome. Females can be affected, but the likelihood is much lower as the presence of another unaffected X-chromosome mitigates symptoms and damage. ALD affects around 1 in every 17,900 males worldwide², or 1 in every 21,000 births², although estimates vary.

Cerebral adrenoleukodystrophy (CALD) is the most common form of ALD (around 45% of cases)³, which usually affects male children and is characterised mainly by cerebral demyelination. Symptoms tend to present between the ages of 2 and 10⁴. When the myelin is damaged the nerves in the brain cannot work properly, and the person's functioning (such as reasoning, speech and mobility) are lost. ALD can be diagnosed after blood testing for high plasma concentrations of VLCFAs and additional blood tests may be done to confirm the ABCD1 gene mutation^{5,6}. However, close monitoring is needed for the diagnosis of CALD as its early clinical symptoms are often misdiagnosed⁴. Progression of CALD is fast, symptoms worsen over the course of several months/years, leading to total dependency and eventually death⁴.

Current treatment options for children with CALD are limited but can include stem cell transplantation, using either umbilical cord stem cells or bone marrow stem cells⁵. Stem cell transplant is considered in boys who have been diagnosed with the condition but in whom symptoms have not yet appeared, or if disease is not too advanced. Better outcomes are associated with stem cell transplants from matched and related donors⁷.

The technology

Elivaldogene autotemcel (eli-cel, Bluebird bio) is a viral vector which is used in gene therapy. Haematopoietic stem cells with the CD 34 marker are taken from the patient's bone marrow. The vector is used to insert a healthy version of the disease-causing gene (ABCD1) into the stem cells which are then grown in culture. They are administered back to the body after myeloablative treatment (radio or chemotherapy). This gene addition aims to allow the production of functional adrenoleukodystrophy protein (ALDP), to potentially prevent further neurodegeneration. It is administered intravenously.

Elivaldogene autotemcel does not currently have a marketing authorisation in the UK for treating CALD. It has been studied in clinical trials in males aged under 18 years who have active CALD and do not have a willing 10/10 human leukocyte antigen (HLA)-matched sibling donor.

Intervention(s)	Elivaldogene autotemcel
Population(s)	People aged under 18 years with early cerebral ALD without a 10/10 HLA-matched sibling donor
Comparators	Stem cell transplantBest supportive care
Outcomes	 The outcome measures to be considered include: proportion alive without major functional disabilities (MFDs)
	 change in neurological function time to subsequent allogeneic haematopoietic stem cell transplant
	 proportion who experience acute, chronic or worsening graft versus host disease (GVHD) overall survival
	 adverse effects of treatment health-related quality of life (for patients and carers)
Nature of the condition	 disease morbidity and patient clinical disability with current standard of care impact of the disease on carer's quality of life extent and nature of current treatment options
Clinical	 overall magnitude of health benefits to patients

Final scope for the evaluation of elivaldogene autotemcel for treating cerebral adrenoleukodystrophy Issue Date: August 2021

© National Institute for Health and Care Excellence [2021]. All rights reserved.

Effectiveness	and, when relevant, carers
	 heterogeneity of health benefits within the population
	 robustness of the current evidence and the contribution the guidance might make to strengthen it
Value for Money	 cost effectiveness using incremental cost per quality-adjusted life year
	 patient access schemes and other commercial agreements
	 the nature and extent of the resources needed to enable the new technology to be used
Impact of the technology beyond direct health benefits	 whether there are significant benefits other than health
	 whether a substantial proportion of the costs (savings) or benefits are incurred outside of the NHS and personal and social services
	 the potential for long-term benefits to the NHS of research and innovation
	 the impact of the technology on the overall delivery of the specialised service
	 staffing and infrastructure requirements, including training and planning for expertise.
Other considerations	 if evidence allows, the following subgroups will be considered: People for whom a matched unrelated donor is available People for whom a matched unrelated donor is not available
	 guidance will only be issued in accordance with the marketing authorisation.
	 guidance will take into account any Managed Access Arrangements
Related NICE recommendations and NICE Pathways	None
Related National Policy	NHS England (2018), <u>Manual for prescribed</u> <u>specialised services 2018/19</u> Chapter 100: Severe combined immunodeficiency and related disorders service (children) and Chapter 62: Highly specialist

Final scope for the evaluation of elivaldogene autotemcel for treating cerebral adrenoleukodystrophy Issue Date: August 2021 © National Institute for Health and Care Excellence [2021]. All rights reserved.

metabolic disorder services (adults and children)
Department of Health and Social Care (2018) <u>The UK</u> <u>Strategy for Rare Diseases. Second Progress Report</u> <u>from the UK Rare Diseases Policy Board</u>
NHS England (2017) <u>Commissioning Medicines for</u> <u>Children in Specialised Services</u>
Department of Health (2016) <u>The UK Strategy for</u> <u>Rare Diseases. Rare Diseases implementation plan</u> <u>for England</u>
NHS England (2018) <u>National Programmes of Care</u> and Clinical Reference Groups: E04. Paediatric <u>Neurosciences</u>
NHS England (2013) <u>2013/14 NHS standard contract</u> <u>for paediatric neurosciences- neurodisability</u> . Reference: E09/S/c
Department of Health, The NHS Outcomes Framework 2016/17, (2016). <u>https://www.gov.uk/government/publications/nhsoutcomes-framework-2016-to-2017</u>

References

- 1. ALEX, the leukodystrophy charity. <u>https://www.alextlc.org/what-is-a-leukodystrophy/the-different-leukodystrophies/adrenoleukodystrophy-ald/</u> (accessed October 2020)
- 2. Bezman L, Moser AB, Raymond GV et al. Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol. 2001 Apr;49(4):512-7.
- 3. Stop ALD Foundation. <u>http://www.stopald.org/what-is-ald/</u> (accessed October 2020)
- 4. Engelen M, Kemp S, Visser M et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis. 2012; 7: 51.
- 5. Great Ormond Street Hospital for Children <u>https://www.gosh.nhs.uk/conditions-and-treatments/conditions-we-</u> <u>treat/adrenoleukodystrophy</u> (accessed October 2020)

- 6. ALD Connect. <u>http://aldconnect.org/education-and-support/what-is-ald</u> (accessed October 2020)
- 7. Raymond GV, Aubourg P, Paker A, et al. Survival and Functional Outcomes in Boys with Cerebral Adrenoleukodystrophy with and without Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019 Mar;25(3):538-548.