Interventional procedure overview of venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

Contents

The condition, current treatments, unmet need and the procedure	3
Clinical assessment tools	3
Outcome measures	4
Evidence summary	4
Population and studies description	4
Procedure technique	26
Efficacy	26
Safety	31
Validity and generalisability	39
Ongoing trials	40
Related NICE guidance	40
Interventional procedures	40
NICE guidelines	40
Professional societies	40
Company engagement	41
References	41
Appendix A: Methods and literature search strategy	43
Methods and literature search strategy	43
Inclusion criteria	57
Appendix B: Other relevant studies	59

IP 1071/2 [IPGXXX] **CONFIDENTIAL UNTIL PUBLISHED**

Table 1 Abbreviations

Abbreviation	Definition		
ADHF	Acute decompensated heart failure		
AMI	Acute myocardial infarction		
BP	Blood pressure		
CABG	Coronary-artery bypass grafting		
CI	Confidence interval		
CNS	Central nervous system		
CPC	Cerebral Performance Category		
CPR	Cardiopulmonary resuscitation		
CS	Cardiogenic shock		
CV	Cardiovascular		
dMCS	Durable mechanical circulatory support		
ECLS	Extracorporeal life support		
ECPR	Extracorporeal cardiopulmonary resuscitation		
EEG	Electroencephalogram		
ELSO	Extracorporeal Life Support Organization		
HF	Heart failure		
HR	Hazard ratio		
HRQoL	Health related quality of life		
HTx	Heart Transplant		
IABP	Intra-aortic balloon pump		
ICU	Intensive care unit		
IHCA	In hospital cardiac arrest		
INTERMACS	Interagency Registry for Mechanically Assisted Circulatory Support		
IP-1	INTERMACS profile 1		
IQR	Interquartile range		
ITT	Intention to treat		
LV	Left ventricular		
LVAD	Left ventricular assist device		
LVEF	Left ventricular ejection fraction		
MAP	Mean arterial pressure		
MCS	Mechanical circulatory device		
MI	Myocardial infarction		
NSTEMI	Non-ST-elevation myocardial infarction		
OHCA	out of hospital cardiac arrest		

PCI	Percutaneous coronary intervention
RR	Relative risk
SCAI	Society for cardiovascular angiography and interventions
SD	Standard deviation
STEMI	ST-elevation myocardial infarction
VA ECMO	Venoarterial extracorporeal membrane oxygenation
VAD	ventricular assist device
VTE	Venous thromboembolism

The condition, current practice, unmet need and procedure

Information about the procedure, condition, current practice and unmet need is available in section 2 and 3 of <u>NICE's interventional procedures consultation</u> document on VA ECMO for severe acute heart failure in adults.

Clinical assessment tools

Some studies assessed people with acute heart failure using assessment tools:

- INTERMACS profile (IP): this is a 7-profile categorisation for people with advanced heart failure, ranging from IP-1 as the most critical, to IP-7 as the least critical. IP-1 (critical cardiogenic shock), IP-2 (progressive decline on inotropes), IP-3 (stable but inotrope dependent), IP-4 (resting symptoms on oral therapy at home), IP-5 (exertion intolerant), IP-6 (exertion limited), IP-7 (placeholder living comfortably with meaningful activity limited to mild physical exertion).
- Society for Cardiovascular Angiography and Interventions (SCAI) SHOCK
 classification: this is a 5-category classification (A to E) that indicate the
 severity of cardiogenic shock. A (haemodynamically stable patient not
 experiencing symptoms of CS, but at risk for its development), B (clinical
 evidence of haemodynamic instability without evidence of hypoperfusion), C

(clinical evidence of hypoperfusion that requires pharmacologic or mechanical support), D (clinical evidence of shock that worsens or fails to improve despite therapy escalation), E (refractory shock or actual/impending circulatory collapse).

Outcome measures

The main outcomes included survival or mortality. Some studies evaluated neurological outcomes. The measures used are detailed in the following paragraphs.

Cerebral performance categories (CPC): this is a 5-category measure used to assess neurological outcome. Categories 1 (good cerebral performance: conscious, alert, capable of normal life) and 2 (moderate cerebral disability: conscious, alert, sufficient cerebral function for activities of daily life) are considered to show a good neurological outcome. Categories 3 (severe cerebral disability), 4 (coma/vegetative state) and 5 (certified brain death) are considered to be a poor neurological outcome.

Evidence summary

Population and studies description

This interventional procedure overview is focused on acute HF. Two additional overviews have been developed focusing on VA ECMO in post cardiotomy and as extracorporeal cardiopulmonary resuscitation (ECPR). Some of the evidence includes a mix of indications and has been presented in more than one overview.

This overview is based on approximately 32,000 people from 4 systematic reviews (Elsaeidy 2024, Sohail 2022, Alba 2021, Vishram-Nielsen 2023), 3 randomised controlled trials (Thiele 2023, Banning 2023, Ostadal 2023), 1 retrospective registry study (Olson 2020) and 1 single centre retrospective IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

IP 1071/2 [IPGXXX] CONFIDENTIAL UNTIL PUBLISHED

study (Cheng 2019). The 3 randomised controlled trials (Thiele 2023, Banning 2023, Ostadal 2023) were also included in the Elsaeidy 2024 systematic review. There were 15 overlaps accounting for 11,766 people in primary studies included across 3 systematic reviews (Sohail 2022, Alba 2021, Vishram-Nielsen 2023). This is a rapid review of the literature, and a flow chart of the complete selection process is shown in figure 1. This overview presents 9 studies as the key evidence in fable 2 and fable 3, and lists 30 other relevant studies in appendix B, fable 5.

All randomised controlled trials included in the key evidence, and those included in the systematic review by Elsaeidy (2024), were conducted in Europe (Thiele 2023, Banning 2023, Ostadal 2023). The 3 systematic reviews of observational studies included in the key evidence included studies from Asia, Australia, Europe, North America and South America (Sohail 2022, Alba 2021, Vishram-Nielsen 2023). The included registry study used data from the Extracorporeal Life Support Organization (ELSO) which collates data worldwide (Olson 2020). The single centre retrospective study was conducted in the US (Cheng 2019).

Most key evidence studies included people with cardiogenic shock (CS). Of the key studies including people with CS, 2 systematic reviews and 2 randomised controlled trials specifically included people with CS complicating acute myocardial infarction (AMI) (Sohail 2022, Elsaeidy 2024, Banning 2023, Thiele 2023). 1 systematic review included people receiving VA ECMO for fulminant myocarditis (Vishram-Nielsen 2023), and 1 registry study included people receiving VA ECMO for peripartum cardiomyopathy (Olson 2020).

The systematic review by Elsaeidy (2024) included 4 randomised controlled trials including 611 people. Three of these are reported separately in the key evidence (Thiele 2023, Banning 2023, Ostadal 2023), the other study being a pilot study preceding the randomised controlled trial by Ostadal (2023). Half of the studies

were deemed to have an overall low risk of bias, and 2 had some concerns of bias overall about deviations from the intended intervention and outcome measurement (Thiele 2023) and about the selection of the reported results (Ostadal 2023). The comparator in all trials was standard medical therapy, however 1 trial also allowed later cross-over of patients to VA ECMO if they continued to be haemodynamically unstable. The mean age of people included in the studies ranged from 60 to 68 years, and the proportion of males ranged from 73 to 95%. All studies reported outcomes at 30 days and 2 studies reported outcomes at 1 year follow-up.

The randomised controlled trial reported by Thiele (2023), which was also included in the Elsaeidy (2024) systematic review, compared VA ECMO to standard medical therapy alone in 417 adults with CS complicating AMI. Two thirds of people included presented with ST-segment elevation myocardial infarction (STEMI). All trial participants received early revascularisation ahead of the intervention. Intraaortic balloon pump (IABP) was permitted as an escalation therapy, and although the trial protocol forbade any cross-over, VA ECMO was initiated in 26 people in the control group (12.5%). The median age was 62 years and 81% of the population were male. Trial outcomes were reported at 30 days.

The randomised controlled trial reported by Banning (2023), which was also included in the Elsaeidy (2024) systematic review, compared early peripheral VA ECMO to standard medical therapy alone in 35 adults with CS complicating AMI. Due to the impact of the COVID-19 pandemic, the trial was stopped before completion of recruitment. The median age was 67 years and 81% of the population were male. Trial outcomes were reported at 30 days and 1 year follow-up.

The randomised controlled trial reported by Ostadal (2023), which was also included in the Elsaeidy (2024) systematic review, compared immediate VA

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

© NICE 2025. All rights reserved. Subject to Notice of rights.

IP 1071/2 [IPGXXX] CONFIDENTIAL UNTIL PUBLISHED

ECMO to early conservative therapy in 117 adults with rapidly deteriorating or severe CS. The most common cause of CS in both arms was STEMI (50%) followed by decompensation of chronic heart failure (23%). The study permitted cross-over from the control group, to receive VA ECMO in the case of worsening haemodynamic stability. 39% of the control group required downstream VA ECMO therapy. The median age was 67 years and 74% of the population were male. Trial outcomes were reported at 30 days.

The systematic review by Sohail (2022) included 72 observational studies reporting on 10,276 adults who had VA ECMO for CS complicating AMI. The median concomitant IABP use across the included studies was 70%. The median age was 60 years and 78% of the population were male. Meta-analyses of the studies pooled short-term outcomes from studies with follow-ups of 7 days, 30 days and hospital discharge.

The systematic review by Alba (2021) included 306 observational studies reporting on 29,289 people with CS of any aetiology. The largest number of studies reported on people with CS after cardiac arrest (ECPR), CS complicating AMI, and postcardiotomy cardiogenic shock. Risk of bias across studies was considered low in 219 (72%), moderate in 81 (26%), and high in 6 (2%) studies. The age of people included in the studies ranged from 47 to 61 years, and 22% to 59% of the population were female. Meta-analyses of the studies pooled short-term outcomes from studies with follow-ups of 30 days and hospital discharge.

The single-centre retrospective study conducted in the US by Cheng (2019) included 149 people who survived VA ECMO (n=118) or CentriMag VAD (n=31) support as a bridge to recovery. The most common indication for ECMO intervention was postcardiotomy CS (36%), followed by allograft failure (27%), AMI (24%) and acute decompensated heart failure (ADHF) (14%). The median

IP 1071/2 [IPGXXX] CONFIDENTIAL UNTIL PUBLISHED

age was 59 years and 68% of the population were male. The median follow-up time was 306 days (IQR: 59 to 916 days).

The systematic review by Vishram-Nielsen (2023) included 54 observational studies reporting on 2,388 people with fulminant myocarditis. The median age was 41 years and 50% of the population were male. Meta-analyses of the studies pooled short-term outcomes from studies with follow-ups of 30 days and hospital discharge.

The retrospective ELSO registry study by Olson (2020) reported outcomes for people with peripartum cardiomyopathy treated with VA ECMO. The median age was 31 years and 42% were of white ethnicity. Outcomes were reported for follow-up period until hospital discharge.

Table 2 presents study details.

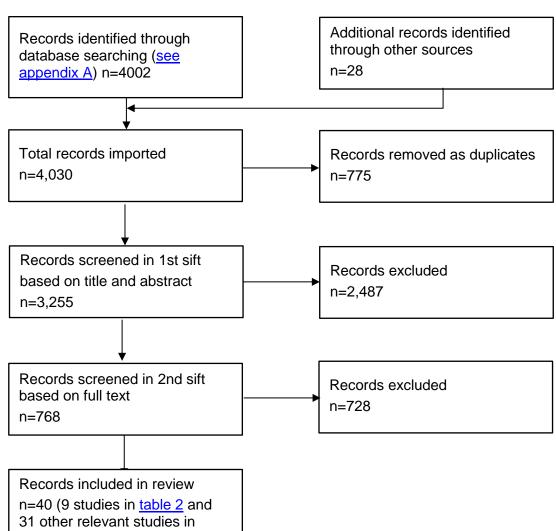


Figure 1 Flow chart of study selection

appendix B, table 5)

Table 2 Study details

Study no.	First author, date country	Characteristics of people in the study (as reported by the study)	Study design	Inclusion criteria	Intervention	Follow up
1	Elsaeidy, 2024 Belgium, Czech Republic, Germany, Latvia, Norway, Slovenia Spain, UK	n=611 Mean age ranged from 60 to 68 years Males: 80% (range 73% to 95%) Type of MI: STEMI (range 0 to 61.9%) NSTEMI (range 6.7% to 61.9%)	Systematic review and meta-analysis of 4 RCTs (Banning, 2023; Thiele, 2023; Ostadal, 2023, Lackermair, 2021) Search date: Sept 2023 All open label RCTs	RCTs that investigate the efficacy and safety of ECMO compared to standard care in managing CS-complicating AMI patients.	Intervention: immediate VA ECMO Comparator: usual medical therapy alone	30 days (4 studies) 1 year (2 studies)

Study First author, date country	Characteristics of people in the study (as reported by the study)	Study design	Inclusion criteria	Intervention	Follow up
Thiele, 2023, Germany Slovenia ELCS-SHOCK	n=417 (ECLS n=209) Median age (years) Standard=63 ECLS=62 Male (%) Standard=81.2 ECLS=81.3 Median LVEF on admission Standard=30% ECLS=30% Two thirds of patients presented with ST-segment elevation myocardial infarction. 77.7% patients underwent CPR before randomisation. PCI was performed in 96.6% patients.	Randomised controlled trial, open label. Randomisation was done by means of a web-based system with the use of randomly changing blocks and stratification according to the trial site.	Patients aged between 18 and 80 with CS-complicating AMI and planned early revascularisation by either PCI or coronary-artery bypass grafting (CABG) CS defined as stage C, D, or E of the SCAI criteria. Excluded were people who had undergone CPR for more than 45 minutes before randomisation or who had a mechanical cause of CS or severe peripheral-artery disease precluding the insertion of cannulae.	 Intervention: ECLS plus usual medical therapy Comparator: usual medical therapy alone ECLS was not initiated in 17 patients in the ECLS group (8.1%), including in 4 patients who died before initiation. ECLS was initiated in 26 patients in the control group (12.5%), including 22 patients within 24 hours after randomisation and 4 patients thereafter. IABP was permitted as escalation therapy for the control group. 	30 days

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

Study no.	First author, date country	Characteristics of people in the study (as reported by the study)	Study design	Inclusion criteria	Intervention	Follow up
3	Banning, 2023, Belgium, Germany, Latvia, Norway, Spain, UK EURO SHOCK	n=35 (VA ECMO n=17) Median age (years) Standard=67 ECMO=68 Male (%) Standard=89% ECMO=81% Median LVEF on admission Standard=25% ECMO=20%	Randomised controlled trial, open label. Randomisation was carried out using a web-based randomisation system stratified by out-of-hospital cardiac arrest (OHCA). Due to the impact of the COVID-19 pandemic, the trial was stopped before completion of recruitment.	People presenting with CS-complicating AMI and who had had attempted/successful primary PCI (PPCI) of the culprit lesion were enrolled if there was persistent CS 30 mins after the procedure. CS defined as BP <90 mmHg or maintained above 90 mmHg with the addition of vasopressor or inotropic support, with evidence of hypoperfusion.	 Intervention: Immediate PCI + early peripheral VA ECMO and standard care (pharmacological support). Comparator: Immediate PCI + standard care (pharmacological support). IABP was permitted as escalation therapy for the control group, or for left ventricular unloading in the VA ECMO group. 5 patients randomised to ECMO did not receive ECMO. 	30 days, 1 year
4	Ostadal, 2023 Czech Republic	n=117 (ECMO n=58) Median age (years)	Randomised controlled trial, open label.	People over 18 with rapidly deteriorating or severe CS.	Intervention: Immediate VA ECMO	30 days

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

Study no.	First author, date country	Characteristics of people in the study (as reported by the study)	Study design	Inclusion criteria	Intervention	Follow up
	ECMO- CS	 Standard= 65 (58 to 71) ECMO= 67 (60 to 74) Male (%) Standard= 72.9 ECMO= 74.1 The most common cause of CS in both arms was STEMI (50.4%) followed by decompensation of chronic heart failure (23.1%). 	An automated, web-based system was used for randomisation with permuted blocks, with stratification according to the type of cardiogenic shock (rapidly deteriorating or severe), and the trial centre.	Rapidly deteriorating CS defined as SCAI stage D to E Severe CS defined as SCAI stage D	Comparator: early conservative therapy 39% of the conservative therapy group required downstream "bailout" VA ECMO therapy in case of hemodynamic worsening.	
5	Sohail, 2022, Asia, Australia, Europe, North America	n=10,276 Median age (years)=60 (IQR 56.35 to 63.94) Male % = 78%	Systematic review and meta-analysis of 72 studies. Search date: August 2020	Adults (over 18 years) receiving VA ECMO for CS complicating AMI.	 Intervention: VA ECMO Median concomitant IABP use = 70% (IQR 35.1 to 86) 	Short term mortality (7, 30 days, discharge)

Study no.	First author, date country	Characteristics of people in the study (as reported by the study)	Study design	Inclusion criteria	Intervention	Follow up
6	Alba, 2021 Europe, Asia, North America, South America, Australia	n=29,289 Age (years): Range 47 to 61 Female %: Range 22 to 59 Indication ECPR: 7,814 (113 cohorts) Post-AMI: 7,774 (80 cohorts) Postcardiotomy: 8,231 (64 cohorts) Post-HTx: 771 (25 cohorts) Heart failure: 3,567 (33 cohorts) Myocarditis: 906 (13 cohorts) Pulmonary embolism: 221 (10 cohorts)	Systematic review and meta-analysis of 306 observational studies. Search date: June 2019	Adults (aged 18 and over) with CS of any aetiology, with VA ECMO implantation.	Intervention: VA ECMO Concomitant IABP: Range 20 to 67%	30 day or discharge

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

Study no.	First author, date country	Characteristics of people in the study (as reported by the study)	Study design	Inclusion criteria	Intervention	Follow up
7	Cheng, 2019 US	n=149 (ECMO n=118) Median age (years)=59 (51-67) Male=67.8% Aetiology: AMI: 24.2% Acute decompensated HF: 14.4% Postcardiotomy CS: 35.6% Allograft failure: 26.8%	Single centre retrospective study (26-bed ICU) Search date: 2010 to 2016	People who survived VA ECMO or CentriMag VAD support as a short-term MCS as bridge to recovery.	Intervention: VA ECMO (n=118)	Median 306 days (IQR 58.925 to 916.75)
8	Vishram- Nielsen, 2023 Asia, Australia, Europe, North America	n=2,388 Median age (years) = 41 (IQR 37 to 47) Male % = 50%	Systematic review and meta-analysis of 54 retrospective studies. Search date: July 2020	Adult (aged 18 and over) patients with fulminant myocarditis , evaluating short-term mortality after VA ECMO implantation.	Intervention: VA ECMO	30 day, hospital discharge

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

Study no.	First author, date country	Characteristics of people in the study (as reported by the study)	Study design	Inclusion criteria	Intervention	Follow up
9	Olson, 2020 Worldwide	n=88 Median age (years): 31.1 (IQR 25.4 to 35.2)	Retrospective ELSO registry study Search date: 2007 to 2019	People with peripartum cardiomyopathy treated with ECMO.	Intervention: VA ECMO	Hospital discharge

Table 3 Study outcomes

First author, date	Efficacy outcomes	Safety outcomes
Elsaeidy,	Pooled 30-day mortality (4 trials)	Pooled bleeding events (4 trials)
2024	• VA ECMO: 45.9% (140/305)	• VA ECMO: 25.2% (76/302)
	• Control: 48.4% (148/306)	• Control: 11.8% (36/306)
	RR 0.95, 95% CI: 0.80 to 1.12; p=0.54, I ² =0%	RR 2.14, 95% CI: 1.49 to 3.07; p<0.0001, I ² =0%
		Pooled acute kidney injury/RRT (3 trials)
	Pooled 30-day reinfarction (3 trials)	• VA ECMO: 8.9% (25/281)
	• VA ECMO: 1.6% (4/244)	• Control: 14.0% (40/285)
	• Control: 2.0% (5/247) RR 0.87, 95% CI: 0.25 to 3.04; p=0.83,	RR 0.65, 95% CI: 0.41 to 1.04; p=0.07, I ² =0%
	I ² =0%	Pooled stroke (4 trials)
		• VA ECMO: 4.0% (12/302)
		• Control: 3.6% (11/306)
		RR 1.14, 95% CI: 0.52 to 2.49; p=0.75, I ² =18%

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

First author, date	Efficacy outcomes	Safety outcomes
		Pooled sepsis (4 trials)
		VA ECMO: 17.7% (54/305)
		• Control: 16.7% (51/306)
		RR 1.07, 95% CI: 0.77 to 1.48; p=0.85, I ² =0%
		Pooled pneumonia (2 trials)
		VA ECMO: 24.0% (18/75)
		• Control: 24.7% (19/77)
		RR 0.97, 95% CI: 0.57 to 1.65; p=0.90, I ² =0%
Thiele,	Death from any cause at 30 days	Moderate or severe bleeding:
2023	• ECLS: 47.8% (100/209)	• ECLS: 23.4% (49/209)
	• Control: 49.0% (102/208)	Control: 9.6% (20/208)
ECLS- SHOCK	RR 0.98, 95% CI: 0.80 to 1.19; p=0.81	RR 2.44, 95% CI: 1.50 to 3.95.
	Myocardial reinfarction	Poor neurological outcome (CPC 3 or 4)
	• ECLS: 1% (2/209)	• ECLS: 24.8% (27/109)
	• Control: 1% (2/208)	• Control: 22.6% (24/106)
	RR 1.00, 95% Cl: 0.07 to 12.72	RR 1.03, 95% CI: 0.88 to 1.19
	Rehospitalisation for congestive heart failure within 30 days	Peripheral ischaemic vascular complications warranting surgical or interventional therapy
	• ECLS: 1.4% (3/209)	• ECLS: 11% (23/209)
	• Control: 1% (2/208)	• Control: 3.8% (8/208)
	RR 1.49, 95% CI: 0.24 to 13.61	RR 2.86, 95% CI: 1.31 to 6.25.
	Subgroup analysis death from any cause	Renal replacement therapy
	30 days by age	• ECLS: 8.1% (17/209)
	<65 years	• Control: 13.9% (29/208)
	• ECLS: 40.3% (50/124)	RR 0.58, 95% CI: 0.33 to 1.03
	• Control: 36.6% (41/112)	

First author, date	Efficacy outcomes	Safety outcomes
	RR 1.06, 95% CI: 0.87 to 1.30 ≥65 years • ECLS: 58.8% (50/85) • Control: 63.5% (61/96) RR 0.88, 95% CI: 0.61 to 1.28	Stroke or systemic embolisation ECLS: 3.8% (8/209) Control: 2.9% (6/208) RR 1.33, 95% Cl: 0.47 to 3.76. Repeat vascularisation ECLS: 8.6% (18/209) Control: 10.6% (22/208) RR 0.81, 95% Cl: 0.45 to 1.47
Banning, 2023	 30-day all-cause mortality ECMO: 43.8% (7/17) Standard therapy: 61.1% (11/18) HR 0.56, 95% CI: 0.21 to 1.45; p=0.22 HR 0.40, 95% CI: 0.13 to 1.26; p=0.105 (astreated analysis) 1 year all-cause mortality ECMO: 51.8% (8/17) Standard therapy: 81.5% (14/18) HR 0.52, 95% CI: 0.21 to 1.26; p=0.14 1 year readmission for heart failure ECMO: 8.0% (1/17) Standard therapy: 6.9% (1/18) HR 1.19, 95% CI: 0.11 to 13.22; p=0.89) HRQoL at 30 days EQ-5D-3L summary 	Complications (ITT analysis) All-cause death: ECMO: 50% (7/14), Standard therapy: 72% (13/18) CV death: ECMO: 14% (2/14), Standard therapy: 33% (6/18) Stroke: ECMO: 0% (0/14), Standard therapy: 11% (2/18) Ischaemic stroke: ECMO: 0% (0/14), Standard therapy: 11% (2/18) Recurrent MI: ECMO: 0% (0/14), Standard therapy: 11% (2/18) Major bleeding: ECMO: 36% (5/14), Standard therapy: 6% (1/18) Escalation to non-VAECMO device for refractory shock ECMO: 0% (0/5), Standard therapy:17% (1/6) Escalation to VA ECMO: Standard therapy: 6% (1/18) Any vascular complications: ECMO: 21% (3/14), Standard therapy: 0 (0/18) Acute kidney injury: ECMO: 29% (4/14), Standard therapy:44% (8/18) Failure of discharge from primary admission: ECMO: 57% (8/14), Standard therapy:83% (15/18)
	index (median [IQR]) ECMO: 0.667 (0.326 to 1.00)	 ECMO: 9 events (6 patients [35.29%]) Standard therapy: 13 events (5 patients [27.78%]) Cardiac events

First author, date	Efficacy outcomes	Safety outcomes
	Standard therapy: 0.765 (0.739 to 0.790)	 ECMO: 5 (29.41%); cardiac arrest (1), cardiac tamponade (2), ventricular tachycardia (2), LV thrombus (1). Standard therapy: 4 (22.2%); cardiac arrest (1), ventricular arrythmia (2), AV block (1), atrial fibrillation (1). Respiratory and Thoracic events ECMO: 1 (5.88%); pulmonary embolism Standard therapy: 2 (11.11%); aspiration pneumonia (1), thoracic haemorrhage (1) Infection and infestation ECMO: 1 (5.88%); post procedural sepsis Standard therapy: 2 (11.11%); Septic shock (1), Acinetobacter infection (1) Gastrointestinal disorders ECMO: 0 (0%), Standard therapy: 1 (5.56%); intestinal ischemia Hepatobiliary disorders ECMO: 0 (0%), Standard therapy: 1 (5.56%); liver injury VA ECMO related syndromes ECMO: 1 (5.88%); harlequin syndrome, Standard therapy: 0 (0%) Surgical procedures ECMO: 0 (0%), Standard therapy: 1 (5.56%); heart transplant Vascular disorders ECMO: 0 (0%), Standard therapy: 1 (5.56%); Peripheral ischemia
Ostadal, 2023	Death from any cause, implantation of another MCS device, resuscitated cardiac arrest at 30 days ECMO: 63.8% (37/58) Control: 71.2% (42/59) Risk difference -7.4, 95% CI: -24.3 to 9.5 HR 0.721, 95% CI: 0.463 to 1.123	Resuscitated cardiac arrest

First author, date	Efficacy outcomes	Safety outcomes
	All-cause mortality at 30 days	Control: 61.0% (36/59)
	• ECMO: 50.0% (29/58)	Risk difference -0.7, 95% CI: -18.4 to 17.0; p=0.941
	• Control: 47.5% (28/59)	Bleeding
	Risk difference 2.5, 95% CI: -15.6 to 20.7	• ECMO: 31.0% (18/58)
	HR 1.110, 95% CI: 0.660 to 1.866	• Control: 20.3% (12/59)
		Risk difference 10.7, 95% CI: -5.0 to 26.4; p=0.185
	Implantation of another MCS device at 30	Leg ischaemia
	days	• ECMO: 13.8% (8/58)
	• ECMO: 17.2% (10/58)	• Control: 5.1% (3/59)
	• Control: 42.4% (25/59)	Risk difference 8.7, 95% CI: -1.8 to 19.2; p=0.107
	Risk difference -25.1, 95% CI: -41.1 to -9.2	Stroke
	HR 0.380, 95% CI: 0.182 to 0.793	• ECMO: 5.2% (3/58)
		• Control: 0% (0/59)
	Discharged home at 30 days	Risk difference 5.2, 95% CI: -0.5 to 10.9; p=0.119
	• ECMO: 12.1% (7/58)	Pneumonia
	• Control: 11.9% (7/59)	• ECMO: 31.0% (18/58)
		Control: 30.5% (18/59)
	Good neurological status at 30 days (CPC	Risk difference 0.5, 95% CI: -16.2 to 17.3; p=0.951
	1)	Sepsis
	• ECMO: 24.1% (14/58)	• ECMO: 39.7% (23/58)
	• Control: 27.1% (16/59)	Control: 39.0% (23/59)
		Risk difference 0.7, 95% CI: -17.0 to 18.4; p=0.941
		Technical complications
		• ECMO: 1.7% (1/58)
		• Control: 0% (0/59)
		Risk difference 1.7, 95% CI: -1.6 to 5.1; p=0.496
Sohail,	Pooled short-term mortality (7 day, 30 day	ECMO Complications (median [IQR])
2022	and in-hospital)	Infection: 18.0% (11.8 to 43.0)
	Meta-analysis 72 studies (n=10,276)	Limb ischaemia: 9.2% (7.6 to 15.0)

First author, date	Efficacy outcomes	Safety outcomes
	 58% (95% CI: 54 to 61%), I²=88% Subgroup analysis short-term mortality by age Meta-analysis 6 studies (n=497) Age >60 years: OR 4.58 (95% CI: 2.71 to 7.72) 	 Renal failure: 39.9% (29.5 to 49.8) VTE: 4.7% (3.3 to 6.8) Hypoxic brain injury: 11.6% (10.1 to 20.8) Multi-organ failure: 36.9% (16.4 to 41.7) Stroke/ICH: 10.5% (5.0 to 16.7) Bleeding/vascular complications: 27.5% (19.0 to 35.4)
Alba, 2021	 Pooled short-term mortality (30 day and in-hospital) Overall: 61% (95% CI 59 to 63) 306 studies n=29,289 ECPR OHCA: 76% (95% CI 69 to 82), I²=94%, 41 studies n=2,974 ECPR IHCA: 64% (95% CI 59 to 69), I²=81%, 46 studies n=2,987 Post AMI: 60% (95% CI 59 to 64), I²=87%, 80 studies n=7,774 Postcardiotomy: 59% (95% CI 56 to 63), I²=87%, 64 studies n=8,231 AHF: 53% (95% CI 46 to 59), I²=89%, 33 studies n=3,567 PE: 52% (95% CI 38 to 66), I²=75%, 10 studies n=221 Myocarditis: 40% (95% CI 33 to 46), I²=65%, 13 studies n=906 Post-HTx: 35% (95% CI 29 to 42), I²=64%, 25 studies n=771 Probability of HTx 	No safety outcomes were reported

First author, date	Efficacy outcomes	Safety outcomes
	Meta-analysis	
	AHF: 13.1%, 95% CI: 5.5 to 23.7, 16 studies	
	Myocarditis: 4.5%, 95% CI: 0.3 to 11.7, 5 studies	
	Post AMI: 2.8%, 95% CI: 0.8 to 5.5, 19 studies	
	 Postcardiotomy: 0.4%, 95% CI: 0.0 to 1.1, 34 studies 	
	Post-HTx: 0.0%, 95% CI: 0.0 to 0.5, 5 studies	
	PE: 0.0%, 95% CI: 0.0 to 22.8, 1 study	
	Probability of VAD	
	Meta-analysis	
	AHF: 29.0%, 95% CI: 17.3 to 42.1, 17 studies	
	Post AMI: 9.0%, 95% CI: 4.2 to 15.1, 22 studies	
	Post-HTx: 2.4%, 95% CI: 0.0 to 6.8, 5 studies	
	Myocarditis: 2.3%, 95% CI: 0.2 to 5.6, 5 studies	
	 <u>Postcardiotomy</u>: 0.8%, 95% CI: 0.2 to 1.8, 35 studies 	
	• <u>PE</u> : 0.0%, 95% CI: 0.0–22.8, 1 study	
Cheng,	Survival to discharge	Mortality after hospital discharge
2019	• 29.7% (149/502)	• 14.1% (21/149)

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

First author, date	Efficacy outcomes	Safety outcomes
	Overall survival rate (Kaplan-Meier analysis probability at 3-years) after hospital discharge • All: 76.7% Freedom-from-event rate including death or heart replacement therapy (Kaplan-Meier analysis probability at 3-years) after hospital discharge • All: 74.2% • ADHF: 100% • Postcardiotomy CS: 85.5% • Allograft failure: 74.2% • AMI: 40.4% (p<0.001)	Cause of death during follow-up period Sudden death or unknown cause: 9/21 Heart failure related: 4/21 Sepsis:4/21 Chronic rejection: 3/21 Stroke: 1/21
Vishram- Nielsen, 2023	Pooled short-term mortality (30 days or during hospitalisation) Meta-analysis 50 studies (n=2,470) 34.68% (95% CI: 29.16 to 40.39), I²=69% Pooled short-term mortality (death on ECMO) Meta-analysis 36 studies (n=945) 27.03% (95% CI: 20.98 to 33.48), I²=67% Pooled VAD implantation after VA ECMO Meta-analysis 22 studies (n=628) 2.23% (95% CI: 0.13 to 5.85), I²=67%	Pooled neurological events Meta-analysis 8 studies (n=375) • 7.40% (95% CI: 3.25 to 12.60), I²=30% Pooled infections Meta-analysis 8 studies (n=323) • 34.83% (95% CI: 15.80 to 56.34), I²=79% Pooled limb ischaemia Meta-analysis 6 studies (n=161) • 16.65% (95% CI: 5.78 to 30.65), I²=69% Pooled blood transfusions Meta-analysis 2 studies (n=63) • 54.71% (95% CI: 0.00 to 100.00), I²=96%

First author, date	Efficacy outcomes	Safety outcomes
		Pooled liver failure
	Pooled probability of HTx after VA ECMO	Meta-analysis 2 studies (n=63)
	Meta-analysis 23 studies (n=635)	• 5.62% (95% CI: 0.41 to 14.20), I ² =0%
	3.71% (95% CI: 0.47 to 8.76), I ² =72%	Pooled ventricular tachycardia or fibrillation
		Meta-analysis 4 studies (n=270)
		• 22.57% (95% CI: 2.73 to 50.96), I ² =84%
		Pooled 3 rd degree atrioventricular block
		Meta-analysis 3 studies (n=215)
		• 30.46% (95% CI: 0.00 to 78.46), I ² =93%
		Pooled bleeding
		Meta-analysis 6 studies (n=152)
		• 40.32% (95% CI: 22.89 to 58.92), I ² =76%
		Pooled dialysis
		Meta-analysis 6 studies (n=327)
		35.22% (95% CI: 11.90 to 62.35), I ² =89%
Olson,	Survival to hospital discharge	Cardiovascular complications
2020	• 63.6% (56/88)	• 47.6% (30/63); cardiac arrythmia (12), hypertension requiring
	ECMO weaning with expected recovery	vasodilators (2), myocardial stun by echocardiogram (2), Inotropes
	• 61.4% (54/88)	on ECLS (26).
	ECMO weaning to HTx or VAD	Haemorrhagic complications
	_	• 49.2% (31/63); cannulation site bleeding (16), disseminated
	• 10.2% (9/88)	intravascular coagulation (2), GI haemorrhage (7), Haemolysis (4),
		surgical site bleeding (13).
		Infectious complications
		• 7.9% (5/63); culture proven infection (5), white blood cell count
		<1,500/µl (2)
		Mechanical complications
		• 33% (21/63); cannula problems (6), circuit clots (13), pump malfunction (1)
		Metabolic complications

First author, date	Efficacy outcomes	Safety outcomes
		 11.1% (7/63); hyperglycaemia >240 mg/dl (2), hyperbilirubinemia (6), pH<7.20 (2) Neurological complications 14.3% (9/63); seizures by EEG (2), CNS infarction (3), CNS haemorrhage (5) Pulmonary complications 9.5% (6); Pneumothorax requiring treatment (3), pulmonary haemorrhage (3) Renal complications 38.1% (24); renal replacement (16), creatinine elevation (12) Limb complications
		7.9% (5); limb ischaemia (3), limb fasciotomy (2)

Procedure technique

Of the 10 studies, none detailed the ECMO device or combination of devices used. ECMO was started before percutaneous coronary intervention (PCI) in one randomised controlled trial of people with CS complicating AMI (Thiele 2023) but was started within 6 hours of randomisation in people who had already undergone PCI in another (Banning 2023). Left ventricular (LV) venting strategies were detailed in 6 studies (Thiele 2023, Banning 2023, Ostadal 2023, Sohail 2022, Alba 2021, Vishram-Neilsen 2023); 2 RCTs had a predefined criteria for LV venting and permitted insertion of an intra-aortic balloon pump (IABP) or Impella device (Thiele 2023, Banning 2023), another randomised controlled trial permitted LV unloading but strategies were left to the discretion of physicians at participating centres (Ostadal 2023). The median concomitant use of IABP reported in systematic reviews was 70% (Sohail 2022), 20 to 67% (Alba 2021) and 60% (Vishram-Neilsen 2023). Of the 10 studies, 6 detailed the median length of time on ECMO (Thiele 2023, Sohail 2022, Alba 2021, Cheng 2019, Vishram-Neilsen 2023, Olson 2020), which ranged from 2.7 days (Thiele 2023) to 10.5 days (Cheng 2019).

Efficacy

Survival

Survival was reported in 2 retrospective studies (Cheng 2019, Olson 2020). The retrospective study of 88 people with peripartum cardiomyopathy reported a rate of survival to hospital discharge of 64% (Olson 2020). In the randomised controlled trial of 117 people with CS complicating AMI, 12% of people in both the ECMO group and the control group had been discharged home at 30 days (Ostadal 2023).

In the single centre retrospective study, 30% (149 of 502) of people having VA ECMO survived to discharge (Cheng 2019). Of these survivors, the Kaplan-Meier estimate of survival at 3 years was 74% in the overall population but was statistically significantly lower (p<0.001) in people with AMI (40%) compared to those with ADHF (100%), postcardiotomy (86%), allograft failure (74%) (Cheng 2019).

Short-term mortality

Short-term mortality was reported in 7 studies, 4 of which included mortality at 30 days and 3 systematic reviews which pooled mortality results at 30 days and hospital discharge.

In the systematic review of 611 people with CS complicating AMI across 4 randomised controlled trials, the pooled 30-day mortality was 46% for those who had VA ECMO, compared to 48% in the control group. The relative risk (RR) was 0.95 (95% CI: 0.80 to 1.12; p=0.54, I²=0%) (Elsaeidy 2024).

In the randomised controlled trial of 417 people with CS complicating AMI, 47% of people who had ECMO and 49% of people in the control group reported death from any cause at 30 days. The RR was 0.98 (95% CI: 0.80 to 1.19; p=0.81; Thiele 2023). In the randomised controlled trial of 117 people with CS complicating AMI, all-cause mortality at 30 days was 50% in the ECMO group compared to 48% in the control group. The risk difference was 2.5 (95% CI -15.6 to 20.7) and HR 1.11 (95% CI 0.66 to 1.87) (Ostadal 2023). In the randomised controlled trial of 35 people with CS complicating AMI, 30-day all-cause mortality was 44% for those who had ECMO compared to 61% for those who had standard therapy. The hazard ratio (HR) was 0.56 (95% CI: 0.21 to 1.45; p=0.22). At 1 year follow-up, all-cause mortality was 52% in people who had ECMO, and 82% in those who had standard therapy (HR 0.52, 95% CI 0.21 to 1.26, p=0.14; Banning 2023). In the systematic review of 72 studies of CS complicating AMI,

IP 1071/2 [IPGXXX] CONFIDENTIAL UNTIL PUBLISHED

the pooled short-term mortality (30-day and in-hospital) was 58% (95% CI: 54 to 61%), I²=88% (Sohail 2022).

In a subgroup analysis by age in the randomised controlled trial of 417 people with CS complicating AMI, the 30-day all-cause mortality rate for those who had ECMO was 40% in those under 65 years, and 59% in those over 65 years (Thiele 2023). In a subgroup analysis by age in the systematic review of CS complicating AMI, age greater than 60 years was associated with increased mortality OR 4.58 (95% CI: 2.71 to 7.72; Sohail 2022).

In the systematic review of 306 studies of CS of any aetiology, the pooled overall short-term mortality (30-day and in-hospital) was 61% (95% CI 59 to 63) (Alba 2021). Pooled short-term mortality by CS aetiology subgroup, showed the highest mortality was in people with ECPR for out of hospital cardiac arrest (OHCA) (76%; 95% CI 69 to 82%, I²=94%, 41 studies). This was followed by ECPR for in hospital CA (IHCA) at 64% (95% CI 59 to 69, I²=81%, 46 studies), post-AMI at 60% (95% CI 59 to 64, I²=87%, 80 studies), postcardiotomy at 59% (95% CI 56 to 63, I²=87%, 64 studies). Pooled short-term mortality for people with acute decompensated heart failure (ADHF) was 53% (95% CI 46 to 59, I²=89%, 33 studies), 52% in people with pulmonary embolism (95% CI 38 to 66, I²=75%, 10 studies). It was lowest in people with myocarditis at 40% (95% CI 33 to 46), I^2 =65%, 13 studies) and after heart transplant 35% (95% CI 29 to 42, I^2 =64%, 25 studies). Using multivariate meta regression analysis, differences in short-term mortality across aetiologies remained statistically significant (p<0.01) after adjusting for population age, sex, and recruitment timeframe. Univariate metaregression analysis stratified by aetiology also showed a 7% to 9% increase in mortality per 10-year increase in cohort's age (Alba 2021).

In the systematic review of 54 studies in people with fulminant myocarditis, the pooled short-term mortality (30-day and in-hospital) was 35% (95% CI: 29 to 40,

 I^2 =69%, 50 studies). The pooled short-term mortality from 36 studies looking at death on ECMO was 27% (95% CI: 21 to 34, I^2 =67%; Vishram-Nielsen 2023).

In the single centre retrospective study of 149 people who had survived VA ECMO explantation, 14% died after hospital discharge (median follow-up 306 days) (Cheng 2019).

Bridged to heart transplant

The proportion of people who had a heart transplant after ECMO treatment was reported in 3 systematic reviews and 1 registry study. In the systematic review of 306 studies in people on ECMO for CS of any aetiology, meta-analyses demonstrated the probability of having a heart transplant was higher in people with heart failure (13%), compared to those with myocarditis (5%), AMI (3%), and postcardiotomy CS (less than 1%; Alba 2021). In the systematic review of people with fulminant myocarditis, the pooled probability of heart transplant in a meta-analysis of 23 studies was 4% (95% CI: 0.47 to 8.76, I²=72%; Vishal-Nielsen 2023). In the registry study of 88 people with peripartum cardiomyopathy, 10% were weaned from ECMO to either heart transplant or a VAD (Olson, 2020).

Bridged to long term device

The proportion of people receiving a ventricular assist device (VAD) after ECMO treatment was reported in 2 systematic reviews and 2 registry studies. In the systematic review of 306 studies in people on ECMO for CS, meta-analyses demonstrated the probability of receiving a VAD was higher in people with heart failure (29%), compared to those with AMI (9%), myocarditis (5%), heart transplant (2%) and postcardiotomy (1%; Alba 2021). In the systematic review of people with fulminant myocarditis, the pooled probability of heart transplant in a meta-analysis of 22 studies was 2% (95% CI: 0.47 to 8.76, I²=72%; Vishal-Nielsen 2023). In the registry study of 88 people with peripartum cardiomyopathy, 10% were weaned from ECMO to either heart transplant or a VAD (Olson, 2020). IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

Reinfarction

In the systematic review of 4 randomised controlled trials for people with CS complicating AMI, pooled 30-day reinfarction rate was 2% in both the VA ECMO and control group (RR 0.87, 95% CI: 0.25 to 3.04; p=0.83, I²=0%) (Elsaeidy 2024). In the randomised controlled trial of 417 people with CS complicating AMI, both intervention and control groups reported myocardial reinfarction rates of 1% (Thiele, 2023).

Rehospitalisation for heart failure

Two randomised controlled trials reported on the number of people who were readmitted to hospital because of heart failure. In the randomised controlled trial of 417 people with CS complicating AMI, 1% of people in both the ECMO group and control group were re-hospitalised within 30 days because of heart failure (Thiele, 2023). The randomised controlled trial of 35 people with CS complicating AMI reported a readmission rate for heart failure of 8% in the ECMO group and 7% in the standard therapy group at 1 year follow-up (Banning 2023).

Quality of life

One randomised controlled trial reported quality of life at 30 days using the EQ-5D-3L questionnaire, however few completed the questionnaire in both the standard therapy (n=2) and VA ECMO (n=4) groups. Among the respondents, the median summary index score for those on ECMO was 0.667 (0.326 to 1.00), and 0.765 (0.739 to 0.790) for those on standard therapy. In the standard therapy group, there were no reported problems with mobility, self-care, or usual activities at 30 days, while half of the respondents from the VA ECMO group reported some difficulties in these domains at 30 days (Banning, 2023).

Safety

Bleeding

In the systematic review of 4 randomised controlled trials, the pooled bleeding event rate was 25% (76 out of 302) in the ECMO group compared to 12% (36 out of 306) in the control group (RR 2.14, 95% CI: 1.49 to 3.07; p<0.0001, I²=0%; Elsaeidy 2024). Moderate or severe bleeding was reported in 23% (49 out of 209) of people on ECMO compared to 12% (20 out of 208) of people in the control group (RR 2.44, 95% CI: 1.50 to 3.95) in the randomised controlled trial of 417 people with CS complicating AMI (Thiele 2023). Major bleeding was reported in 36% (5 out of 14) of people on ECMO and 6% (1 out of 18) of people in the control group in the randomised controlled trial of 35 people with CS complicating AMI (Banning 2023). Bleeding complications were reported in 31% (18 out of 58) of people on ECMO compared to 20% (12 out of 59) of the control group in the randomised controlled trial of 177 people with CS complicating AMI (Ostadal 2023). Pooled bleeding/vascular complication rates were 28% (19.0 to 35.4) in the systematic review of 72 studies with CS complicating AMI (Sohail, 2022).

A pooled bleeding event rate of 40% (95% CI: 22.89 to 58.92, I²=76%) was reported in a meta-analysis of 6 studies in the systematic review of people with fulminant myocarditis on ECMO (Vishram-Nielsen 2023).

Bleeding complications were reported in 49% (31 out of 88) of people on ECMO with peripartum cardiomyopathy. Cannulation site bleeds were reported in 16 out of 88 people and surgical site bleeds in 13 out of 88 people (Olson 2020).

Renal replacement therapy or acute kidney injury

In the systematic review of 4 randomised controlled trials, the pooled acute kidney injury or RRT event rate was 9% (25 out of 281) in the ECMO group compared to 14% (40 out of 285) in the control group (RR 0.65, 95% CI: 0.41 to

1.04; p=0.07, I²=0%; Elsaeidy 2024). RRT was reported in 8% (17 out of 209) of people on ECMO compared to 14% (29 out of 208) of people in the control group (RR 0.58, 95% CI: 0.33 to 1.03) in the randomised controlled trial of 417 people with CS complicating AMI (Thiele 2023). Acute kidney injury was reported in 29% (4 out of 14) of people on ECMO and 44% (8 out of 18) of people in the control group in the randomised controlled trial of 35 people with CS complicating AMI (Banning 2023). Pooled renal failure rates were 40% (16.4 to 41.7) in the systematic review of 72 studies with CS complicating AMI (Sohail, 2022).

A pooled RRT event rate of 35% (95% CI: 11.90 to 62.35, I²=89%) was reported in a meta-analysis of 6 studies in the systematic review of people with fulminant myocarditis on ECMO (Vishram-Nielsen 2023).

Renal complications were reported in 38% (24 out of 88) people on ECMO with peripartum cardiomyopathy. RRT was reported in 16 out of 88 people (Olson 2020).

Stroke

In the systematic review of 4 randomised controlled trials, the pooled stroke event rate was 4% in both ECMO and control groups (12 out of 302 and 11 out of 306) (RR 1.14, 95% CI: 0.52 to 2.49; p=0.75, I²=18%; Elsaeidy 2024). Stroke or systemic embolisation was reported in 4% (8 out of 209) of people on ECMO and 3% (6 out of 208) of people in the control group (RR 1.33, 95% CI: 0.47 to 3.76) in the RCT of 417 people with CS complicating AMI (Thiele 2023). Stroke was not reported in any people on ECMO (0 out of 14) but in 11% (2 out of 18) of people in the control group in the randomised controlled trial of 35 people with CS complicating AMI (Banning 2023). Conversely, in the randomised controlled trial of 177 people with CS complicating AMI, stroke was reported in 5% (3 out of 58) of people on ECMO and none in the control group in the (Ostadal 2023).

IP 1071/2 [IPGXXX] CONFIDENTIAL UNTIL PUBLISHED

Pooled stroke rates were 11% (5.0 to 16.7) in the systematic review of 72 studies with CS complicating AMI (Sohail 2022).

A pooled neurological event rate of 7% (95% CI: 3.25 to 12.60, I²=30%) was reported in a meta-analysis of 8 studies in the systematic review of people with fulminant myocarditis on ECMO (Vishram-Nielsen 2023).

Neurological complications were reported in 14% (9 out of 88) of people on ECMO with peripartum cardiomyopathy. CNS infarction was reported in 3 out of 88 people, and CNS haemorrhage in 5 out of 88 people (Olson 2020).

Of the 21 people who died after hospital discharge (median follow-up 306 days) in the single centre retrospective study of people who had initially survived VA ECMO explantation, 1 cause of death was reported as due to stroke (Cheng 2019).

Neurological outcome

One randomised controlled trial reported on the proportion of people with a good neurological outcome at 30 days, assessed as category 1 using the Cerebral Performance Category (CPC 1). In the study of 117 people with CS complicating AMI, the proportion of people assessed as CPC 1 was 24% in the ECMO group compared to 27% in the control group (Ostadal 2023).

One randomised controlled trial reported on the proportion of people with a poor neurological outcome at 30 days, assessed as category 3 or 4 using the Cerebral Performance Category (CPC 3 or 4). In the study of 417 people with CS complicating AMI, the proportion of people assessed as CPC 3 or 4 was 25% (27 out of 109) in the ECMO group compared to 23% (24 out of 106) in the control group (Thiele 2023).

Sepsis

In the systematic review of 4 randomised controlled trials, the pooled sepsis event rate was 18% (54 out of 305) in the ECMO group compared to 17% (51 out of 306) in the control group (RR 1.07, 95% CI: 0.77 to 1.48; p=0.85, I²=0%; Elsaeidy 2024). Post-procedural sepsis was reported in 1 person on ECMO, and septic shock in 1 person in the control group in the randomised controlled trial of 35 people with CS complicating AMI (Banning 2023). Sepsis was reported in 40% (23 out of 58) of people on ECMO compared to 39% (23 out of 59) of the control group in the randomised controlled trial of 177 people with CS complicating AMI (risk difference 0.7, 95% CI: -17.0 to 18.4; p=0.941; Ostadal 2023).

Of the 21 people who died after hospital discharge (median follow-up 306 days) in the single centre retrospective study of people who had initially survived VA ECMO explantation, 4 causes of death were reported as due to sepsis (Cheng 2019).

Infection

The pooled median infection rate was 18% (11.8 to 43.0) in the systematic review of 72 studies with CS complicating AMI (Sohail 2022). A pooled infection event rate of 35% (95% CI: 15.80 to 56.34, I²=79%) was reported in a meta-analysis of 8 studies in the systematic review of people with fulminant myocarditis on ECMO (Vishram-Nielsen 2023). Infectious complications were reported in 8% (5 out of 88) of people on ECMO with peripartum cardiomyopathy. Culture proven infection was reported in 5 out of 88 people, and white blood cell count <1,500/µl in 2 out of 88 people (Olson 2020).

Pneumonia

In the systematic review of 2 randomised controlled trials, the pooled pneumonia event rate was 24% (18 out of 75) in the ECMO group compared to 25% (19 out of 77) in the control group (RR 0.97, 95% CI: 0.57 to 1.65; p=0.90, I²=0%; IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

Elsaeidy 2024). Pneumonia was reported in 31% (18 out of 58 and 18 out of 59) of people in both groups in the randomised controlled trial of 177 people with CS complicating AMI (risk difference 0.5, 95% CI: -16.2 to 17.3; p=0.951; Ostadal 2023).

Limb ischaemia

Peripheral ischaemic vascular complications were reported in 11% (23 out of 209) of people on ECMO compared to 4% (8 out of 208) of people in the control group (RR 2.86, 95% CI: 1.31 to 6.25) in the randomised controlled trial of 417 people with CS complicating AMI (Thiele 2023). Leg ischaemia was reported in 14% (8 out of 58) of people on ECMO compared to 5% (3 out of 59) of the control group in the randomised controlled trial of 177 people with CS complicating AMI (risk difference 8.7, 95% CI: -1.8 to 19.2; p=0.107; Ostadal 2023). Pooled limb ischaemia rates were 9% (7.6 to 15.0) in the systematic review of 72 studies with CS complicating AMI (Sohail 2022). The pooled limb ischaemia event rate of 17% (95% CI: 5.78 to 30.65, I²=69%) was reported in a meta-analysis of 6 studies in the systematic review of people with fulminant myocarditis on ECMO (Vishram-Nielsen 2023). Limb complications were reported in 8% (5 out of 88) of people on ECMO with peripartum cardiomyopathy. Limb ischaemia was reported in 3 out of 88 people, and limb fasciotomy in 2 out of 88 people (Olson 2020).

Cardiac complications

Cardiovascular death was reported in 14% (2 out of 14) of people in the ECMO group, and 33% (6 out of 18) of people in the control group in the randomised controlled trial of 35 people with CS complicating AMI (Banning 2023). The same study reported recurrent MI in 11% (2 out of 18) people in the control group, and none in the ECMO group. It also reported 5 serious cardiac adverse events in people who had ECMO compared to 4 in those who had standard therapy. These included cardiac arrest, cardiac tamponade, ventricular tachycardia, LV

IP 1071/2 [IPGXXX] CONFIDENTIAL UNTIL PUBLISHED

thrombus, AV block and atrial fibrillation (Banning 2023). Resuscitated cardiac arrest was reported in 10% (6 out of 58) of people in the ECMO group compared to 14% (8 out of 59) of the control group in the randomised controlled trial of 177 people with CS complicating AMI (risk difference -3.2, 95% CI: -15.0 to 8.5; Ostadal 2023).

A pooled ventricular tachycardia or fibrillation event rate of 23% (95% CI: 1.73 to 50.96; I²=84%) was reported in a meta-analysis of 4 studies in the systematic review of people with fulminant myocarditis who had ECMO. The same systematic review also reported a pooled rate of third degree atrioventricular block of 23% (95% CI: 0.00 to 78.46; I²=93%) from 3 studies (Vishram-Nielsen 2023).

Cardiovascular complications were reported in 48% (30 out of 88) of people on ECMO with peripartum cardiomyopathy. These included inotropes on ECMO, cardiac arrhythmia, hypertension requiring vasodilators and myocardial stun by echocardiogram (Olson 2020).

Of the 21 people who died after hospital discharge (median follow-up 306 days) in the single centre retrospective study of people who had initially survived VA ECMO explantation, 4 causes of death were reported as heart failure related (Cheng 2019).

Respiratory complications

The randomised controlled trial of 35 people with CS complicating AMI reported 1 serious respiratory adverse event in people on ECMO compared to 2 in those on standard therapy. These included pulmonary embolism, aspiration pneumonia and thoracic haemorrhage (Banning 2023).

Pulmonary complications were reported in 10% (9 out of 88) of people on ECMO with peripartum cardiomyopathy. This included pneumothorax requiring treatment and pulmonary haemorrhage (Olson 2020).

GI complications

The randomised controlled trial of 35 people with CS complicating AMI reported 1 serious gastrointestinal (GI) adverse event (intestinal ischaemia) in people on standard therapy (Banning 2023).

Hepatic complications

The randomised controlled trial of 35 people with CS complicating AMI reported 1 serious hepatobiliary adverse event (liver injury) in people on standard therapy (Banning 2023).

A pooled liver failure event rate of 6% (95% CI: 0.41 to 14.20; I²=0%) was reported in a meta-analysis of 2 studies in the systematic review of people with fulminant myocarditis on ECMO (Vishram-Nielsen 2023).

Technical complications

Technical complications were reported in 2% (1 out of 58) of people on ECMO compared to none in the control group in the randomised controlled trial of 177 people with CS complicating AMI (risk difference 1.7, 95% CI: -1.6 to 5.1; p=0.496; Ostadal 2023).

Mechanical complications were reported in 33% (21 out of 88) of people on ECMO with peripartum cardiomyopathy. These included cannula problems, circuit clots, and pump malfunctions (Olson 2020).

Anecdotal and theoretical adverse events

Expert advice was sought from consultants who have been nominated or ratified by their professional society or royal college. They were asked if they knew of IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

any other adverse events for this procedure that they had heard about (anecdotal), which were not reported in the literature. They were also asked if they thought there were other adverse events that might possibly occur, even if they had never happened (theoretical).

They listed the following anecdotal and theoretical adverse events:

- Left ventricle overloading
- Deep vein thrombosis
- Arteriovenous fistula
- Pseudoaneurysm
- Harlequin syndrome
- Haemolysis
- Intracerebral haemorrhage
- Major pulmonary bleed
- Failure to cannulate during cardiac arrest
- Malposition of the cannula
- Device clotting
- Air entrainment/embolus
- Embolism
- Oxygenator failure
- Consumption coagulopathy
- Acquired Von Willebrand syndrome
- Systemic inflammatory response syndrome (SIRS)
- Multi-organ failure including kidney, liver, and pancreas.

Sixteen professional expert questionnaires were submitted. Find full details of what the professional experts said about the procedure in the <u>specialist advice</u> <u>questionnaires for this procedure</u>.

Validity and generalisability

- Most of the studies included in the key evidence had a large number of participants from a variety of countries.
- Due to the impact of the COVID-19 pandemic, the Banning (2023) trial was stopped before completion of recruitment, and therefore had a small sample size (n=35). Olson (2020) study also included a relatively small population (n=88); however, this was the largest study sample identified for the postpartum cardiomyopathy indication.
- Follow-up for most studies were short, reporting key efficacy outcomes at 30 days, or at hospital discharge. One retrospective study reporting on ECMO as a bridge to recovery had a longer follow-up period (Cheng 2019).
- The systematic reviews included as key evidence pooled short-term mortality outcomes (30 day, hospital discharge) from included studies.
- CS can have many aetiologies with different risk profiles and outcomes. Most studies included in this review focus on CS complicating AMI, however other included studies report populations with mixed CS aetiologies.
 - People having ECMO for decompensated AHF, myocarditis, peri-partum cardiomyopathy may have better outcomes than people with AMI complicating CS.
- The randomised controlled trials included recruited participants with different classifications of CS; Thiele (2023) included those with SCAI classification C, which is considered much lower risk, than SCAI D and E, which were included in the Ostadal (2023) study.
- A large proportion of people in the control groups in the included randomised controlled trials were permitted other MCS such as IABP and Impella. In the IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

Ostadal (2023) trial there was also a large amount of cross-over of the control group to receive ECMO (39%).

Ongoing trials

- Assessment of ECMO in Acute Myocardial Infarction Cardiogenic Shock
 (ANCHOR) (NCT04184635); open label randomised controlled trial, France,
 n=400, completion October 2026.
- <u>Left Ventricular Unloading to Improve Outcome in Cardiogenic Shock Patients</u>
 on VA ECMO (UNLOAD ECMO) (NCT05577195), randomised controlled trial,
 Germany, n=198, completion December 2025.

Related NICE guidance

Interventional procedures

Extracorporeal membrane oxygenation (ECMO) for acute heart failure in adults (2014) NICE interventional procedures guidance [IPG 482]. (Recommendation: special arrangements).

NICE guidelines

Acute heart failure: diagnosis and management (2014 updated 2021) NICE guideline CG187 - At an early stage, the specialist should have a discussion with a centre providing mechanical circulatory support about: people with potentially reversible severe acute heart failure or people who are potential candidates for transplantation.

Professional societies

- The Intensive Care Society
- Society for Cardiothoracic Surgery in Great Britain & Ireland
- Royal College of Anaesthetists

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- Royal College of Surgeons
- Faculty of Intensive Care Medicine
- British Society for Heart Failure
- NHS Blood and Transplant
- British cardiovascular society
- European Extracorporeal Life Support Organisation

Company engagement

NICE asked companies who manufacture a device potentially relevant to this procedure for information on it. NICE received 2 completed submissions. These were considered by the interventional procedures technical team and any relevant points have been taken into consideration when preparing this overview.

References

- 1. Elsaeidy, Ahmed Saad, Taha, Amira Mohamed, Abuelazm, Mohamed et al. (2024) Efficacy and safety of extracorporeal membrane oxygenation for cardiogenic shock complicating myocardial infarction: a systematic review and meta-analysis. BMC cardiovascular disorders 24(1): 362
- Thiele, Holger, Zeymer, Uwe, Akin, Ibrahim et al. (2023) Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. The New England journal of medicine 389(14): 1286-1297
- 3. Banning, Amerjeet S, Sabate, Manel, Orban, Martin et al. (2023)
 Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: the multicentre, randomised EURO SHOCK trial. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 19(6): 482-492
- 4. Ostadal, P, Rokyta, R, Karasek, J et al. (2023) Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: results of the ECMO-CS Randomized Clinical Trial. Circulation 147(6): 454-464
- 5. Sohail, Shahmir, Fan, Eddy, Foroutan, Farid et al. (2022) Predictors of Mortality in Patients Treated with Veno-Arterial ECMO for Cardiogenic Shock Complicating Acute Myocardial Infarction: a Systematic Review and

- Meta-Analysis. Journal of cardiovascular translational research 15(2): 227-238
- 6. Alba, Ana C, Foroutan, Farid, Buchan, Tayler A et al. (2021) Mortality in patients with cardiogenic shock supported with VA ECMO: A systematic review and meta-analysis evaluating the impact of etiology on 29,289 patients. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 40(4): 260-268
- 7. Cheng, Yi-Tso, Garan, Arthur R, Sanchez, Joseph et al. (2019) Midterm Outcomes of Bridge-to-Recovery Patients After Short-Term Mechanical Circulatory Support. The Annals of thoracic surgery 108(2): 524-530
- 8. Vishram-Nielsen, Julie K K, Foroutan, Farid, Rizwan, Saima et al. (2023) Patients with fulminant myocarditis supported with veno-arterial extracorporeal membrane oxygenation: a systematic review and meta-analysis of short-term mortality and impact of risk factors. Heart failure reviews 28(2): 347-357
- 9. Olson, T L, O'Neil, E R, Ramanathan, K et al. (2020) Extracorporeal membrane oxygenation in peripartum cardiomyopathy: A review of the ELSO Registry. International journal of cardiology 311: 71-76

Appendix A: Methods and literature search strategy

Methods and literature search strategy

NICE has identified studies and reviews relevant to extracorporeal membrane oxygenation (ECMO) for acute heart failure in adults from the medical literature.

Search strategy design and peer review

This search report is informed by the <u>Preferred Reporting Items for Systematic</u> reviews and Meta-Analyses literature search extension (PRISMA-S).

A NICE information specialist ran the literature searches on 18th September 2024. See the <u>search strategy history</u> for the full search strategy for each database. Relevant published studies identified during consultation or resolution that are published after this date may also be considered for inclusion.

The principal search strategy was developed in MEDLINE ALL (Ovid interface). It was adapted for use in each of the databases listed in <u>table 4a</u>, taking into account the database's size, search functionality and subject coverage. The MEDLINE ALL strategy was quality assured by a NICE senior information specialist. All translated search strategies were peer reviewed to ensure their accuracy. The quality assurance and peer review procedures were adapted from the <u>Peer Review of Electronic Search Strategies (PRESS) 2015 evidence-based checklist</u>.

Review management

The search results were managed in EPPI-Reviewer version 5 (EPPI-R5). Duplicates were removed in EPPI-R5 using a 2-step process. First, automated deduplication was done using a high-value algorithm. Second, manual deduplication was used to assess low-probability matches. All decisions about inclusion, exclusion and deduplication were recorded and stored.

Limits and restrictions

The CENTRAL database search removed trial registry records and conference material. The Embase search excluded conference material. We excluded the following publication types in MEDLINE: letter or historical article or comment or editorial or news or case reports. We excluded letters and editorial from the Embase search. English language limits were applied to the search when possible in the database.

The search was limited from March 2013 to September 2024. The date limit was included to update searches undertaken for an earlier version of this guidance.

The limit to remove animal studies in the searches is standard NICE practice, which has been adapted from <u>Dickersin K, Scherer R, Lefebvre C (1994)</u>

<u>Systematic Reviews: Identifying relevant studies for systematic reviews. BMJ 309(6964): 1286.</u>

Main search

Table 4a Main search results

Database	Date searched	Database platform	Database segment or version	Number of results downloaded
Cochrane Central Register of Controlled Trials (CENTRAL)	18/08/24	Wiley	Issue 8 of 12, August 2024	410
Cochrane Database of Systematic Reviews (CDSR)	20/08/24	Wiley	Issue 9 of 12, September 2024	13
Embase	20/08/24	Ovid	1974 to 2024 September 17	2101
INAHTA International HTA Database	18/09/24	https://database.inahta.org/	-	24
MEDLINE ALL	18/09/24	Ovid	1946 to Sept 17, 2024	1454

[MEDLINE ALL] search strategy

- 1, Heart Failure/th, 29,868
- 2, Acute disease/th, 1,194
- 3,1 and 2,11
- 4, *Cardiomyopathies/th, 1,150

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- 5, *Shock cardiogenic/th, 2,135
- 6, Myocardial Stunning/th [Therapy], 155
- 7, Myocarditis/th [Therapy], 1,294
- 8, *Myocardial infarction/, 138,977
- 9, Out-of-Hospital Cardiac Arrest/th [Therapy], 5,734
- 10 , ((acute* or server*) adj (heart* or cardiac* or myocard* or cardio* or ventric*) adj (failur* or decompensation* or insufficient* or dysfunct* or stand* or still* or fault* or shock*)).ti,ab. , 9,513
- 11, Myocardit*.ti,ab., 21,440
- 12 , ((Postpartum* or post-parttum* or peripartum* or peri-partum*) adj cardiomyopath*).ti,ab. , 1,697
- 13, PPCM.ti,ab., 671
- 14, (myocard* adj (stun* or hibernat* or infract*)).ti,ab., 2,258
- 15, Primary Graft Dysfunction/th [Therapy], 99
- 16, (primary* adj graft* adj dysfunct*).ti,ab., 1,392
- 17, or/3-16, 182,062
- 18, *Cardiopulmonary Resuscitation/mt [Methods], 4,116
- 19, *Extracorporeal Membrane Oxygenation/, 13,895
- 20, ECMO.ti., 3,217
- 21, *Extracorporeal Circulation/mt [Methods], 1,090

 IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

- 22, (extracorp* adj circulat*).ti,ab., 8,596
- 23, (extracorp* adj ((cardiopulmon* adj resuscitat*) or CPR)).ti,ab., 1,229
- 24, ECPR.ti., 154
- 25, (Biomedicus adj pump*).ti,ab., 45
- 26, (Maquet* adj rotaflow*).ti,ab., 12
- 27, (jostra adj (pump* or rotaflow*)).ti,ab., 5
- 28, (levitronix adj (centrimag* or pump* or system* or oxygen*)).ti,ab., 54
- 29, (Medos adj (Hilite* or oxygen*)).ti,ab., 22
- 30, left ventricle assist device.ti,ab., 106
- 31, or/18-30, 28,477
- 32, 17 and 31, 2,725
- 33, animals/ not human/, 5,225,551
- 34, 32 not 33, 2,680
- 35, limit 34 to english language, 2,503
- 36, limit 35 to ed=20130331-20240930, 2,028
- 37 , limit 36 to (letter or historical article or comment or editorial or news or case reports) , 574
- 38, 36 not 37, 1,454

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

[Embase] search strategy

- 1, heart failure/th [Therapy], 15,752
- 2, acute disease/th [Therapy], 2,395
- 3,1 and 2,10
- 4, *cardiomyopathy/th [Therapy], 1,144
- 5, *cardiogenic shock/th [Therapy], 2,129
- 6, stunned heart muscle/th [Therapy], 53
- 7, myocarditis/th [Therapy], 864
- 8, *heart infarction/, 110,365
- 9, primary graft dysfunction/th [Therapy], 94
- 10, "out of hospital cardiac arrest"/th [Therapy], 3,862
- 11 , ((acute* or server*) adj (heart* or cardiac* or myocard* or cardio* or ventric*) adj (failur* or decompensation* or insufficient* or dysfunct* or stand* or still* or fault* or shock*)).ti,ab. , 17,537
- 12, Myocardit*.ti,ab., 31,093
- 13 , ((Postpartum* or post-parttum* or peripartum* or peri-partum*) adj cardiomyopath*).ti,ab. , 2,835
- 14, PPCM.tw., 1,261
- 15, (myocard* adj (stun* or hibernat* or infract*)).ti,ab., 3,555
- 16, (primary* adj graft* adj dysfunct*).tw., 3,009

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- 17, or/3-16, 173,201
- 18, *resuscitation/, 60,473
- 19, *extracorporeal oxygenation/, 16,545
- 20, ECMO.ti., 7,837
- 21, *extracorporeal circulation/, 9,094
- 22, (extracorp* adj circulat*).ti,ab., 9,683
- 23, (extracorp* adj ((cardiopulmon* adj resuscitat*) or CPR)).ti,ab., 1,851
- 24, ECPR.ti., 352
- 25, (Biomedicus adj pump*).ti,ab., 50
- 26, (Maquet* adj rotaflow*).ti,ab., 31
- 27, (jostra adj (pump* or rotaflow*)).ti,ab., 16
- 28, (levitronix adj (centrimag* or pump* or system* or oxygen*)).ti,ab., 150
- 29, (Medos adj (Hilite* or oxygen*)).ti,ab., 44
- 30, left ventricle assist device.ti,ab., 217
- 31, or/18-30, 96,434
- 32, 17 and 31, 5,350
- 33 , Nonhuman/ not Human/ , 5,532,522
- 34, 32 not 33, 5,275

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- 35, limit 34 to letter/ or (letter or editorial).pt., 2,165,352
- 36, 34 not 35, 4,904
- 37, limit 36 to dc=20130331-20240930, 3,599
- 38, limit 37 to english language, 3,481
- 39 , (conference abstract* or conference review or conference paper or conference proceeding).db,pt,su. , 6,020,541
- 40, 38 not 39, 2,101

Cochrane Library (CDSR) search strategy

- #1 MeSH descriptor: [Heart Failure] explode all trees and with qualifier(s):
- [therapy TH] 2591
- #2 MeSH descriptor: [Acute Disease] explode all trees and with qualifier(s):
- [therapy TH] 118
- #3 #1 and #2 0
- #4 MeSH descriptor: [Cardiomyopathies] explode all trees and with qualifier(s): [therapy TH] 248
- #5 MeSH descriptor: [Shock, Cardiogenic] explode all trees and with qualifier(s): [therapy TH] 177
- #6 MeSH descriptor: [Myocardial Stunning] explode all trees and with qualifier(s): [therapy TH] 3
- #7 MeSH descriptor: [Myocarditis] explode all trees and with qualifier(s): [therapy TH] 13

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- #8 MeSH descriptor: [Myocardial Infarction] explode all trees and with qualifier(s): [therapy TH] 3337
- #9 MeSH descriptor: [Primary Graft Dysfunction] explode all trees and with qualifier(s): [therapy TH] 3
- #10 MeSH descriptor: [Out-of-Hospital Cardiac Arrest] explode all trees and with qualifier(s): [therapy TH] 539
- #11 ((acute* or server*) near/1 (heart* or cardiac* or myocard* or cardio* or ventric*) near/1 (failur* or decompensation* or insufficient* or dysfunct* or stand* or still* or fault* or shock*)) 2663
- #12 Myocardit* 1421
- #13 (Postpartum* or post-partum* or peripartum* or peri-partum*) near/1 cardiomyopath* 47
- #14 PPCM39
- #15 (myocard* near/1 (stun* or hibernat* or infract*)) 342
- #16 (primary* near/1 graft* near dysfunct*) 146
- #17 #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #168646
- #18 MeSH descriptor: [Cardiopulmonary Resuscitation] this term only 1688
- #19 MeSH descriptor: [Extracorporeal Membrane Oxygenation] this term only 361
- #20 ECMO 1101

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- #21 MeSH descriptor: [Extracorporeal Circulation] this term only and with qualifier(s): [methods MT]120
- #22 (extracorp* near/1 circulat*) 1423
- #23 (extracorp* near/1 ((cardiopulmon* near resuscitat*) or CPR)) 71
- #24 ECPR 112
- #25 (Biomedicus near/1 pump*) 3
- #26 (Maguet* rotaflow*)3
- #27 jostra near/1 (pump* or rotaflow*) 1
- #28 (levitronix near/1 (centrimag* or pump* or system* or oxygen*)) 0
- #29 Medos near/1 (Hilite* or oxygen*) 0
- #30 left ventricle assist device 219
- #31 #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 or #28 or #29 or #304577
- #32 #17 AND #31 494
- #33 "conference":pt or (clinicaltrials or trialsearch):so 777352
- #34 #32 NOT #33 with Cochrane Library publication date Between Mar 2013 and Sep 2024, in Cochrane Reviews 13

[Cochrane Library CENTRAL)] search strategy

- #1 MeSH descriptor: [Heart Failure] explode all trees and with qualifier(s): [therapy TH] 2591
- #2 MeSH descriptor: [Acute Disease] explode all trees and with qualifier(s): [therapy TH] 118
- #3 #1 and #2 0
- #4 MeSH descriptor: [Cardiomyopathies] explode all trees and with qualifier(s): [therapy TH] 248
- #5 MeSH descriptor: [Shock, Cardiogenic] explode all trees and with qualifier(s): [therapy TH] 177
- #6 MeSH descriptor: [Myocardial Stunning] explode all trees and with qualifier(s): [therapy TH] 3
- #7 MeSH descriptor: [Myocarditis] explode all trees and with qualifier(s): [therapy TH] 13
- #8 MeSH descriptor: [Myocardial Infarction] explode all trees and with qualifier(s): [therapy TH] 3337
- #9 MeSH descriptor: [Primary Graft Dysfunction] explode all trees and with qualifier(s): [therapy TH] 3
- #10 MeSH descriptor: [Out-of-Hospital Cardiac Arrest] explode all trees and with qualifier(s): [therapy TH] 539
- #11 ((acute* or server*) near/1 (heart* or cardiac* or myocard* or cardio* or ventric*) near/1 (failur* or decompensation* or insufficient* or dysfunct* or stand* or still* or fault* or shock*)) 2663

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- #12 Myocardit* 1421
- #13 (Postpartum* or post-partum* or peri-partum*) near/1 cardiomyopath* 47
- #14 PPCM39
- #15 (myocard* near/1 (stun* or hibernat* or infract*)) 342
- #16 (primary* near/1 graft* near dysfunct*) 146
- #17 #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #168646
- #18 MeSH descriptor: [Cardiopulmonary Resuscitation] this term only 1688
- #19 MeSH descriptor: [Extracorporeal Membrane Oxygenation] this term only 361
- #20 ECMO 1101
- #21 MeSH descriptor: [Extracorporeal Circulation] this term only and with qualifier(s): [methods MT]120
- #22 (extracorp* near/1 circulat*) 1423
- #23 (extracorp* near/1 ((cardiopulmon* near resuscitat*) or CPR)) 71
- #24 ECPR 112
- #25 (Biomedicus near/1 pump*) 3
- #26 (Maguet* rotaflow*)3
- #27 jostra near/1 (pump* or rotaflow*) 1

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- #28 (levitronix near/1 (centrimag* or pump* or system* or oxygen*)) 0
- #29 Medos near/1 (Hilite* or oxygen*) 0
- #30 left ventricle assist device 219
- #31 #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 or #28 or #29 or #304577
- #32 #17 AND #31 494
- #33 "conference":pt or (clinicaltrials or trialsearch):so 777352
- #34 #32 NOT #33 with Cochrane Library publication date Between Mar 2013 and Sep 2024, in Trials 410

[INAHTA HTA Database] search strategy

- 1, "Heart Failure"[mh], 252
- 2, "Acute Disease"[mh], 46
- 3, #2 AND #1, 2
- 4, "Cardiomyopathies"[mh], 21
- 5, "Shock, Cardiogenic"[mh], 11
- 6, "Myocardial Stunning"[mh], 1
- 7, "Myocarditis"[mh], 1

IP overview: Venoarterial extracorporeal membrane oxygenation (VA ECMO) for acute heart failure

- 8, "Myocardial Infarction"[mh], 123
- 9, "Out-of-Hospital Cardiac Arrest"[mh], 10
- 10 , ((acute* or server*) and (heart* or cardiac* or myocard* or cardio* or ventric*) and (failur* or decompensation* or insufficient* or dysfunct* or stand* or still* or fault* or shock*)). , 149
- 11, Myocardit*, 5
- 12 , ((Postpartum* or post-parttum* or peripartum* or peri-partum*) AND cardiomyopath*) , 1
- 13, PPCM, 0
- 14, (myocard* and (stun* or hibernat* or infract*)), 2
- 15, "Primary Graft Dysfunction"[mh], 0
- 16, (primary* AND graft* AND dysfunct*)., 3
- 17 , #16 OR #15 OR #14 OR #13 OR #12 OR #11 OR #10 OR #9 OR #8 OR #7 OR #6 OR #5 OR #4 OR #3 , 291
- 18, "Cardiopulmonary Resuscitation"[mh], 23
- 19, "Extracorporeal Membrane Oxygenation"[mh], 29
- 20, ECMO, 31
- 21, "Extracorporeal Circulation"[mh], 9
- 22, (extracorp* AND circulat*)., 13
- 23, (extracorp* AND ((cardiopulmon* AND resuscitat*) or CPR)), 8

[©] NICE 2025. All rights reserved. Subject to Notice of rights.

- 24, ECPR, 4
- 25, (Biomedicus AND pump*)., 0
- 26, Maquet* and rotaflow*), 0
- 27, (jostra and (pump* or rotaflow*))., 0
- 28 , (levitronix AND (centrimag* or pump* or system* or oxygen*)). , 0
- 29, (Medos AND (Hilite* or oxygen*))., 0
- 30, left ventricle assist device, 3
- 31 , #30 OR #29 OR #28 OR #27 OR #26 OR #25 OR #24 OR #23 OR #22 OR #21 OR #20 OR #19 OR #18 , 74
- 32, #31 AND #17, 24

Inclusion criteria

The following inclusion criteria were applied to the abstracts identified by the literature search.

- Publication type: clinical studies were included with emphasis on identifying good quality studies. Abstracts were excluded if they did not report clinical outcomes. Reviews, editorials, and laboratory or animal studies, were also excluded and so were conference abstracts, because of the difficulty of appraising study methodology, unless they reported specific adverse events not available in the published literature.
- People with acute heart failure.
- Intervention or test: VA ECMO.
- Outcome: articles were retrieved if the abstract contained information relevant to the safety, efficacy, or both.

If selection criteria could not be determined from the abstracts the full paper was retrieved.

Potentially relevant studies not included in the main evidence summary are listed in Appendix B: Other relevant studies.

Find out more about how NICE selects the evidence for the committee.

Appendix B: Other relevant studies

Other potentially relevant studies that were not included in the main evidence summary (tables 2 and 3) are listed in table 5 below.

Case studies and observational studies with fewer than 100 people were excluded unless they included outcomes that were not frequently reported.

Table 5 additional studies identified

Study	Number of people and follow up	Direction of conclusions	Reason study was not included in main evidence summary
Briglio SE, Khanduja V, Lothan JD et al. (2024) Fulminant myocarditis and venoarterial extracorporeal membrane oxygenation: a systematic review. Cureus 16(2): e54711	Systematic review n=425 11 studies	Regarding short-term outcomes, one-year post-hospital survival rate ranged from 57.1% to 78% at discharge. For long-term health and survival, studies that recorded long-term survival ranged from 65% to 94.1%.	No meta- analysis.
Burgos LM, Seoane L, Diez M et al. (2023) Multiparameters associated to successful weaning from VA ECMO in adult patients with cardiogenic shock or cardiac arrest: Systematic review and meta-analysis. Annals of cardiac anaesthesia 26(1): 4-11	Systematic review and meta-analysis n=653 11 studies Follow-up: weaning, hospital discharge	Pooled VA ECMO successful weaning [patient survives 48 hours after ECMO explantation] was 45% (95% CI: 39 to 50%, I² 7%) and in-hospital mortality rate was 46.6% (95% CI: 33 to 60%; I² 36%).	Larger, more comprehensive systematic literature reviews and meta-analysis included. 5/11 studies in this SLR were included within the SLRs in the key evidence.
Carroll BJ, Shah RV, Murthy V et al. (2015) Clinical features and	Single centre retrospective study, US	Overall, 69 people (56%) were weaned from ECMO, with 48	More recent studies included.

outcomes in adults with cardiogenic shock supported by extracorporeal membrane oxygenation. The American journal of cardiology 116(10): 1624-30	n=123 (26 postcardiotomy [21%]) Follow-up: In- hospital	patients (39%) surviving to discharge.	
Cheng R, Hachamovitch R, Kittleson M et al. (2014) Clinical outcomes in fulminant myocarditis requiring extracorporeal membrane oxygenation: a weighted metaanalysis of 170 patients. Journal of cardiac failure 20(6): 400-6	Systematic review and meta-analysis n=170 6 studies	The pooled estimate rate of survival to hospital discharge was 66.9% (95% CI 59.4% to 73.7%). More than two-thirds of patients with FM and either cardiogenic shock and/or cardiac arrest survive to hospital discharge with ECMO.	More recent systematic reviews and meta-analyses included. 4/6 studies in this SLR were included within the SLRs in the key evidence.
Cheng R, Hachamovitch R, Kittleson M et al. (2014) Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1,866 adult patients. Annals of Thoracic Surgery 97(2): 610-616	Systematic review and meta-analysis n=1,866 20 studies Follow-up: Hospital discharge	Seventeen studies reported survival to hospital discharge, range: 20.8% to 65.4%.	More recent systematic reviews and meta-analyses included. 7/20 studies in this SLR were included within the SLRs in the key evidence.
Danial P, Olivier M-E, Brechot N et al. (2023) Association between shock etiology and 5- year outcomes after venoarterial extracorporeal membrane oxygenation. Journal of the American College of Cardiology 81(9): 897-909	Single centre retrospective study, US n=1,253 Follow-up: in- hospital, 5 years	In-hospital and 5-year survival rates were, respectively, 73.3% and 57.3% for primary graft failure, 58.6% and 54.0% for drug overdose, 53.2% and 45.3% for dilated cardiomyopathy, 51.6% and 50.0% for arrhythmic storm, 46.8% and 38.3% for massive pulmonary embolism, 44.4% and	Larger, more comprehensive systematic literature reviews and meta-analysis included.

		40 40/ for a	
		42.4% for sepsisinduced cardiogenic shock, 37.9% and 32.9% for fulminant myocarditis, 37.3% and 31.5% for acute myocardial infarction, 34.6% and 33.3% for postcardiotomy excluding primary graft failure, 25.7% and 22.8% for other/unknown aetiology, and 11.1% and 0.0% for refractory vasoplegia shock.	
Dangers L, Brechot N, Schmidt M et al. (2017) Extracorporeal membrane oxygenation for acute decompensated heart failure. Critical Care Medicine 45(8): 1359- 1366	Single centre retrospective study, France n=105 Follow-up: 1 year	Survival at 1 year was 42%, with 44% of the cohort receiving heart transplantation. Survival was considerably lower (17%) in people with a high pre-ECMO SOFA score (≥14), than those with SOFA score less than 7 (52%).	More recent studies from broader regions included.
Flecher E, Anselmi A, Corbineau H et al. (2014) Current aspects of extracorporeal membrane oxygenation in a tertiary referral centre: determinants of survival at follow-up. European Journal of Cardio-thoracic Surgery: official journal of the European Association for Cardio-thoracic Surgery 46(4): 665-671	Single centre retrospective study, France n=325 (postcardiotomy 29%) Follow-up: mean 84 days (SD: 86)	Overall in the VA group, weaning rates were 59%, survival at 30 th post implantation day was 44% and survival at the end of the follow-up was 41%.	More recent studies with outcomes split by aetiologies were included.
Hernandez-Montfort JA, Xie R, Ton VK et al. (2020) Longitudinal impact of temporary mechanical circulatory	Retrospective INTERMACS registry study. n=13,813 Follow-up:	INTERMACS Profile 1 to 3 patients with pre- implant ECMO had 82% survival at 1 month and 44% at 48	Registry studies with more relevant outcomes were included.

support on durable ventricular assist device outcomes: An IMACS registry propensity matched analysis. The Journal of Heart and Lung Transplantation: the official publication of the International Society for Heart Transplantation 39(2): 145-156	48 months	months. 22% people requiring ECMO needed biventricular support after dVAD.	
Lackermair K, Brunner S, Orban M et al. (2021) Outcome of patients treated with extracorporeal life support in cardiogenic shock complicating acute myocardial infarction: 1-year result from the ECLS-Shock study. Clinical Research in Cardiology: official journal of the German Cardiac Society 110(9): 1412-1420	Randomised controlled trial n=42 Follow-up: 12 months	12-month all-cause mortality was numerically lower, and favourable neurological outcome numerically higher in the ECLS arm compared to the no ECLS arm.	Pilot study, superseded by Thiele, 2023 ECLS-SHOCK study
Lee JH, Choi N, Kim YJ et al. (2021) Use of extracorporeal life support for heart transplantation: Key factors to improve outcome. Journal of Clinical Medicine 10(12): 2542	Single centre retrospective study, Korea. n=257 (100 ECLS) Follow-up: 30 days and 12 months after HTx	The 30-day mortality rate was 3.9% (9.2% in peripheral ECLS, 2.9% in central ECLS, and 1.9% in non-ECLS). The use of ECLS was not an independent predictor of 30-day and 1-year mortality (p = 0.248 and p = 0.882, respectively).	Larger, more comprehensive systematic literature reviews and meta-analysis included.
Lorusso R, Gelsomino S, Parise O et al. (2017) Venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock in elderly patients: trends	Retrospective ELSO registry study. n=5,408 (735 ≥70 years) Follow-up: hospital	Survival to hospital discharge for the entire adult cohort was 41.4%, with 30.5% (224/735) in the elderly patient group and 43.1% (2,016 of 4,673) in the younger patient	Larger, more comprehensive registry studies were included.

in application and outcome from the Extracorporeal Life Support Organization (ELSO) Registry. Annals of Thoracic Surgery 104(1): 62-69	discharge	group (p<0.001). Elderly patients had a higher rate of multiorgan failure. At multivariable analysis age represented an independent negative predictor of in-hospital survival.	
Loungani RS, Fudim M, Ranney D et al. (2021) Contemporary use of venoarterial extracorporeal membrane oxygenation: insights from the multicenter RESCUE registry. Journal of cardiac failure 27(3): 327-337	Retrospective RESCUE registry study. n=723 Follow-up: hospital discharge	40% of the cohort survived to discharge, Mortality for ECMO following heart transplant (42.4%) and cardiomyopathy (59.3%) was less than those receiving ECMO for postcardiotomy CS (64%), AMI (60.7%).	Larger, more comprehensive registry studies were included.
Loyaga-Rendon RY, Boeve T, Tallaj J et al. (2020). Extracorporeal membrane oxygenation as a bridge to durable mechanical circulatory support: an analysis of the STS-INTERMACS Database. Circulation. Heart failure, 13(3), e006387.	Retrospective INTERMACS registry study. n=19,824 Follow-up: 2 years	In adult patients who received a durable MCS who were supported with and without VA ECMO, ECMO patients had inferior survival at 12 months (66%) than non-ECMO patients (75%; p<0.0001).	Registry studies with more relevant outcomes were included.
Mastoris I, Tonna JE, Hu J et al. (2022) Use of extracorporeal membrane oxygenation as bridge to replacement therapies in cardiogenic shock: insights from the Extracorporeal Life Support Organization. Circulation. Heart failure 15(1): e008777	Retrospective ELSO registry study n=401 Follow-up: unclear	All-cause hospital mortality was 28.9% for people who received ECMO prior to Heart transplant or LVAD. In those receiving LVAD mortality was 28.7% and heart transplant mortality was 29.1%.	Larger, more comprehensive registry studies were included.
Morrow DA and van Diepen S (2022) The extracorporeal	Randomised controlled trial	There was no significant difference between the two arms	Summary of ECMO-CS trial reported fully

membrane oxygenation in the therapy of cardiogenic shock (ECMO-CS) trial in perspective. European Heart Journal. Acute cardiovascular care 11(12): 933-935	n=117 Follow-up: 30 days	for all-cause death at 30 days.	in Ostadal, 2023
Movahed MR, Soltani MA, Hashemzadeh M (2024) In patients with cardiogenic shock, extracorporeal membrane oxygenation is associated with very high all-cause inpatient mortality rate. Journal of Clinical Medicine 13(12): 3607	Retrospective study of US National Inpatient Sample database. n=13,160	Total inpatient mortality 47.9% with ECMO. In a multivariate analysis adjusting for 47, ECMO utilisation remained highly associated with mortality (OR: 1.78, 95% CI: 1.6 to 1.9, p<0.001). Higher complications associated with the use of ECMO including bleeding, thromboembolic events, infections, and neurologic and vascular complications may contribute to higher mortality.	More comprehensive registry studies, which included CS aetiologies were included.
North M, Samara M, Eckman PM et al. (2022) Survivors of veno-arterial membrane oxygenation have good long-term quality of life. The International journal of artificial organs 45(10): 826-832	Single centre retrospective study, US n=178 surveys (87% VA ECMO) Follow-up: 9 months	Minnesota Living with Heart Failure Questionnaire (MLWHFQ) total scores improved over time (51.7 at 3 months, vs 37.7 at 6 months, vs 25.4 at greater than 9 months; p<0.01)	Larger registry studies with more relevant outcomes are included.
Nunez JI, Grandin EW, Reyes-Castro T et al. (2023) Outcomes with peripheral venoarterial extracorporeal membrane oxygenation for suspected acute myocarditis: 10-year experience from the Extracorporeal Life	Retrospective ELSO registry study n=850 Follow-up: Hospital discharge	During the study period, in-hospital mortality was 58.3% for all all-comers receiving VA ECMO compared with 34.9% for patients with myocarditis (<i>P</i> <0.001). 1.8% and 2.4% of patients were bridged	More comprehensive registry studies, which included more CS aetiologies were included.

Support Organization Registry. Circulation: Heart Failure 16(7): e010152		to heart transplant or LVAD respectively.	
Orbo MC, Karlsen SF, Pedersen EP et al. (2019) Health-related quality of life after extracorporeal membrane oxygenation: a single centre's experience. ESC heart failure 6(4): 701-710	Single centre retrospective study (Norway) n=74 (87% VA ECMO) Follow-up: Mean 6.5 years since ECMO	41% survival rate identified. 75% reported mental HRQoL (SF-36 Mental Component Summary, mean= 43, SD=5) or physical HRQL (SF-36 Physical Component Summary, mean=43, SD=4.5) within the normal range in comparison with agematched population data from national norms. All but one responder lived independently without any organized care, and 90% reported no problems related to basic self-care. Half of those in working age had returned to work after ECMO treatment. Responders reported some degree of restrictions in usual daily activities (40%), problems with mobility (35%), anxiety/depression (35%), or pain/ discomfort (55%). Improved HRQoL was significantly related to an extended time since ECMO treatment.	Larger registry studies with more relevant outcomes are included.
Ouweneel DM, Schotborgh JV, Limpens J et al. (2016) Extracorporeal life support during cardiac arrest and cardiogenic	Systematic review and meta-analysis n=3,333 (CA=3,098, CS after	In cardiac arrest, the use of ECLS was associated with an increased survival rate as well as an increase in favourable	More recent systematic reviews and meta-analyses included.

shock: a systematic review and meta- analysis. Intensive care medicine 42(12): 1922- 1934	AMI=235),13 studies Follow-up: 30 days	neurological outcome. In the setting of cardiogenic shock there was an increased survival with ECLS compared with IABP.	
Paddock S, Meng J, Johnson N, Chattopadhyay R et al. (2024) The impact of extracorporeal membrane oxygenation on mortality in patients with cardiogenic shock post-acute myocardial infarction: a systematic review and meta- analysis. European Heart Journal Open; 4(1)	Systematic review and meta-analysis n=1,622 11 studies Follow-up: 30 days, 12 months	Meta-analysis demonstrates no significant difference in 30-day all-cause mortality with VA-ECMO compared with standard medical therapy (OR 0.91; 95% CI 0.65 to 1.27). Qualitative synthesis of the observational studies showed that age, serum creatinine, serum lactate, and successful revascularization are independent predictors of mortality.	Meta-analysis includes same RCTs as Elsaeidy et al. study included in key evidence but does not include safety data.
Sahli SD, Kaserer A, Braun J et al. (2022) Predictors associated with mortality of extracorporeal life support therapy for acute heart failure: single-center experience with 679 patients. Journal of Thoracic Disease 14(6): 1960-1971	Single centre retrospective study, Switzerland n=679 (postcardiotomy n=215) Follow-up: Inhospital	In-hospital mortality significantly varied between ECLS indications: 70.7% (152/215) for postcardiotomy, 67.9% (108/159) for cardiopulmonary resuscitation, 47.0% (110/234) for refractory cardiogenic shock, and 9.9% (7/71) for lung transplantation and expansive thoracic surgery (P<0.001).	Larger studies split by CS aetiology were included.
Schmidt M, Burrell A, Roberts L et al. (2015) Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno- arterial-ECMO (SAVE)-	Retrospective ELSO registry study n=3,846 Follow-up: Hospital	1,601 (42%) patients were alive at hospital discharge. Chronic renal failure, longer duration of ventilation prior to ECMO initiation, pre-ECMO	More recent registry studies were included.

score. European heart journal, 36(33), 2246– 2256	discharge	organ failures, pre- ECMO cardiac arrest, congenital heart disease, lower pulse pressure, and lower serum bicarbonate were risk factors associated with mortality.	
Truby L, Mundy L, Kalesan B et al. (2015) Contemporary outcomes of venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock at a large tertiary care center. ASAIO journal (American Society for Artificial Internal Organs: 1992) 61(4): 403-9	Single centre retrospective study, US. n=179 (100 ECLS) Follow-up: 30 days and hospital discharge	Overall, 38.6% of patients survived to discharge and 44.7% of patients survived to 30 days. Myocardial recovery was achieved in 79.7% of survivors and 39.1% were transitioned to a more durable device.	Larger more recent registry studies were included.
Wang AS, Nemeth S, Vinogradsky A et al. (2022) Disparities in the treatment of cardiogenic shock: does sex matter?. European journal of cardio- thoracic surgery: official journal of the European Association for Cardio- thoracic Surgery 62(6)	Retrospective ELSO registry study n=9,888 (68% male) Follow-up: Hospital discharge	After propensity score matching, there was no difference in in-hospital mortality. Female patients were more likely to experience limb ischaemia, whereas males were more likely to receive renal replacement therapy and have longer hospital stays. Multivariable logistic regression confirmed sex was not independently associated with mortality.	Registry studies with more relevant outcomes are included.
Weiner L, Mazzeffi MA, Hines EQ et al. (2020) Clinical utility of venoarterial-	Retrospective ELSO registry study n=104	52.9% of the cases survived to discharge. VA ECMO significantly improved	Larger, more comprehensive registry studies were included.

extracorporeal membrane oxygenation (VA ECMO) in patients with drug-induced cardiogenic shock: a retrospective study of the Extracorporeal Life Support Organizations' ECMO case registry. Clinical toxicology (Philadelphia, Pa.) 58(7): 705-710	Follow-up: Hospital discharge	haemodynamics, acidaemia/ acidosis and ventilatory parameters. Nonsurvivors showed persistent acidaemia/ acidosis at 24 hours after VA ECMO cannulation compared to survivors. Renal replacement therapy (50.9%) and arrhythmia (26.3%) were the most frequently reported complications.	
Wilson-Smith AR, Bogdanova Y, Roydhouse S et al. (2019) Outcomes of venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock: systematic review and meta-analysis. Annals of cardiothoracic surgery, 8(1), 1–8.	Systematic review and meta-analysis n=17,515, 52 studies Follow-up: 5 years	Aggregated survival rates at 1, 2, 3, 4 and 5 years were 36.7%, 34.8%, 33.8%, 31.7% and 29.9%, respectively.	Larger, more recent SLRs for multi-aetiology CS included with more comprehensive outcomes.
Zaki HA, Yigit Y, Elgassim M et al. (2024) A systematic review and meta-analysis unveiling the pivotal role of extracorporeal membrane oxygenation (ECMO) in drug overdose treatment optimization. Bulletin of emergency and trauma, 12(3), 103–110.	Systematic review and meta-analysis n=694,10 studies Follow-up: Hospital discharge	The pooled analysis of ECMO in drug-overdosed/ poisoned people showed survival to hospital discharge rate of 65.6% (95% CI: 51.5% to 77.4%, p=0.030). However, the outcomes were highly heterogeneous (I²=83.47%), which could be attributed to the use of several medicines by different studies. ECMO was associated with a rate of adverse events of 23.1% (95% CI: 12.3%	Larger, more comprehensive systematic literature reviews and meta-analysis included.

		to 39.2%, p=0.002).	
Zavalichi MA, Nistor I, Nedelcu A-E et al. (2020) Extracorporeal membrane oxygenation in cardiogenic shock due to acute myocardial infarction: a systematic review. BioMed Research International 2020: 6126534	Systematic review and meta-analysis n=1,998, 9 studies Follow-up: hospital discharge, 12 months	Survival rate varied from 30.0% to 79.2% at discharge and from 23.2% to 36.1% at 12 months. Reported serious adverse events were gastrointestinal bleeding (3.6%) and peripheral complications (8.5%).	No meta- analysis included.
Zhigalov K, Sa MPBO, Safonov D et al. (2020) Clinical outcomes of venoarterial extracorporeal life support in 462 patients: Single-center experience. Artificial organs 44(6): 620-627	Single centre retrospective study, Germany n=462 (postcardiotomy n=357) Follow-up: In- hospital	Overall, the in-hospital survival rate was 26%. There was no statistically significant difference between the groups: 26.3% for PCS and 24.8% for non-PCS, respectively (p>0.05). Weaning from VA-ECLS was possible in 44.3% for PCS and in 29.5% for non-PCS (p=0.004).	Larger studies split by CS aetiology were included.