National Institute for Health and Care Excellence

Draft for consultation

1

Venous thromboembolic diseases: diagnosis, management and thrombophilia testing

[F] What factors determine the optimum duration of pharmacological treatment for DVT or PE in people with a VTE?

NICE guideline CG144 Evidence reviews November 2019

Draft for Consultation

This evidence review was developed by the Guideline Updates Team

1

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© NICE 2019. All rights reserved. Subject to Notice of rights.

ISBN:

Contents

Predicting VTE-recurrence and major bleeding	6
Review question	6
Introduction	6
PICO table	6
Methods and process	7
Clinical evidence	8
Summary of clinical studies included in the evidence review	9
Quality assessment of clinical studies included in the evidence review	22
Economic evidence	22
Evidence statements	22
The committee's discussion of the evidence	30
Appendices	38
Appendix A – Review protocols	38
Review protocol: What factors determine the optimum duration of pharmacological treatment for DVT or PE in people with an VTE?	38
Appendix B – Methods	43
Priority screening	43
Incorporating published systematic reviews	43
Prognostic test accuracy evidence	45
Interpretation of prognostic accuracy measures	45
Quality assessment	46
Methods for combining prognostic test accuracy evidence	46
Modified GRADE for prognostic test accuracy evidence	47
Publication bias	48
Evidence statements for likelihood ratios	48
Other prognostic evidence	48
Methods for combining hazard ratios or odds ratios	48
Evidence statements for hazard ratios and odds ratios	49
Methods for combining c-statistics	50
Evidence statements for c-statistics	50
Appendix C – Literature search strategies	51
Appendix D – Clinical evidence study selection	54
Appendix E – Clinical evidence tables	55
Appendix F – Forest plots	120
Sensitivity, specificity and LRs	120
C-statistics	135
Appendix G – GRADE tables	138
Tools to predict VTE-recurrence	138

Major bleeding	141
Appendix H – Economic evidence study selection	161
Appendix I – Excluded studies	162
Clinical studies (main search)	162
Clinical studies (search update)	175
Appendix J – References	176
Included studies	176
Excluded studies (main search)	178
Excluded studies (search update)	190
Other references	190
Appendix K – Research recommendations	192
Research recommendation 1	192
Research recommendation 2	194

1 2

Predicting VTE-recurrence and major 1 bleeding 2

3 Review question

4 What factors determine the optimum duration of pharmacological treatment for DVT

5 or PE in people with a VTE?

6 Introduction

- 7 The aim of long term anticoagulant treatment is to prevent VTE recurrence. However,
- 8 extended duration treatment is accompanied by an increased bleeding risk. There is
- uncertainty about which factors influence a person's risk of bleeding and of VTE-9
- 10 recurrence, and uncertainty about which factors should be taken into account when
- 11 considering the duration of treatment. Several risk tools (composites of multiple risk
- factors) have been developed that aim to provide an estimated risk of recurrence or 12
- bleeding in individual patients. These tools could help to identify candidates for 13
- 14 longer term anticoagulant treatment (those with a high recurrence risk, weighed
- 15 against the risk of bleeding).
- This review examines the ability of these tools to predict VTE recurrence in people 16
- 17 who have been treated for at least 3 months for VTE and have now discontinued
- 18 treatment, and to predict major bleeding in people currently receiving anticoagulant
- treatment for VTE. 19

20 PICO table

- See Table 1 for a summary of the review protocol, which is presented in full in 21
- 22 2

23

24

See <u>Table 1</u> for a sum appendix A.	mary of the review protocol, which is presented in full in
Table 1 PICO table for bleeding	r the prediction of risk of VTE recurrence and major
Population	Adults (18+ years) who have had VTE
	For studies predicting VTE recurrence, participants must have previously received a course of anticoagulant treatment, but not be receiving anticoagulant treatment for the duration of follow up.
	For studies predicting major bleeding participants must be receiving anticoagulant treatment for the duration of follow up.
Intervention	Any risk tool using multiple predictors to predict the risk of VTE recurrence following cessation of anticoagulant treatment. For example: DASH, HERD002, Vienna.
	Any risk tool using multiple predictors to predict the risk of major bleeding during anticoagulant treatment. For example: HAS-BLED, VTE-BLEED.
Outcomes	 Recurrence of VTE or Major bleeding

Model performance measures	For each outcome, prognostic accuracy measures will be reported where available, for example:
	Odds ratios/hazard ratios
	Model fit (e.g. r squared)
	 Sensitivity, specificity, positive and negative predictive values.

1 Methods and process

- 2 This evidence review was developed using the methods and process described in
- 3 <u>developing NICE guidelines: the manual (2014)</u>. Methods specific to this review
- 4 question are described in the review protocol in appendix B.
- 5 Additional methodological issues were as follows:
- Prognostic model studies can be divided into three groups (derivation studies without external validation, derivation studies with external validation, and external validation studies for existing models that may or may not include updating the original model). For this review, data from validation studies was prioritised, where available, over data from derivation studies. However, where derivation studies were the only studies available for a given model these were extracted, and this was noted in the evidence tables and evidence statements.
- For sensitivity/specificity outcome measures, a high risk score was defined as 13 positive and low risk score as negative. For example, a low risk person who goes 14 on to experience an event (recurrence or bleeding) was classified as a false 15 16 negative, and a person with a high risk score that did not experience an event 17 was classified as false positive. However, many risk tools gave three levels of risk: low, moderate and high. To enable estimation of sensitivity and specificity, 18 19 three level tools were merged into two levels: high versus moderate/low risk 20 (moderate and low risk merged) or high/moderate versus low risk (moderate and 21 high risk merged). Both of these comparisons were reported in the GRADE tables 22 for each three level tools for which sensitivity and specificity were estimable.
- Studies predicting major bleeding were excluded if the study included major
 bleeding events that occurred off-treatment. Conversely, studies predicting VTE recurrence were excluded if the study included recurrences that occurred on treatment.
- Since the risk tool assessed in Nieto 2013 was not clearly named and was based on data from the RIETE database, we have named the tool RIETE 2. This tool was designed to predict fatal bleeding, but was included in this review because the study also presented results for major bleeding.

Declarations of interest were recorded according to <u>NICE's 2018 conflicts of interest</u>
 <u>policy</u>.

33 Protocol deviation

Priority screening was not used for this review. All references returned by the searchwere screened at title and abstract level.

1 Clinical evidence

2 Included studies

- 3 This review was conducted as part of a larger update of the <u>2012 NICE VTE</u>
- 4 <u>guideline (CG144).</u> A systematic literature search for prognostic studies and
- 5 systematic reviews (SRs) of prognostic studies was conducted and returned 11,220
- 6 references (see appendix C for the literature search strategy). Based on title and
- 7 abstract, 11,066 references were excluded, and 154 references were ordered for
- 8 screening on full text. Systematic reviews were used as an additional source of
- 9 primary studies and were then excluded.
- 10 Of the 154 references screened as full texts, 21 references met the inclusion criteria
- specified in the review protocol for this question (appendix A). The clinical evidence
- 12 study selection is presented as a diagram in appendix D.
- 13 A second set of searches was conducted at the end of the guideline development
- 14 process for all updated review questions using the original search strategies, to
- 15 capture papers published whilst the guideline was being developed. These searches
- 16 returned 6,272 references in total for all the questions included in the update, and
- 17 these were screened on title and abstract. Seven references were screened at full
- 18 text and 2 additional relevant references were included for this review question.

19 Excluded studies

- 20 See Appendix I for a list of references for excluded studies, with reasons for
- 21 exclusion and appendix J for the full references.

1 Summary of clinical studies included in the evidence review

2 This review identified a number of trials validating prediction tools that aim to predict VTE-recurrence (following stopping anticoagulant therapy)

3 or major bleeding (whilst receiving treatment). There is a high degree of heterogeneity in the studies included in this review: various different

4 risk tools are used; several tools consider the same risk factors, however there are differences between studies in how these are measured,

5 defined and coded (e.g. some continuous variables such as D-dimer are either left as continuous or transformed into a dichotomous variable).

6 Tools investigated in this review for their ability to predict VTE-recurrence are listed in Table 2, outlining how the tools are scored and

7 interpreted, and which studies evaluated each tool; details on the accompanying studies are listed in <u>Table 4</u>. Tools investigated for predicting

8 major bleeding can be found in <u>Table 3</u>, with the accompanying studies in <u>Table 5</u>. Derivation studies were only included if there were no

9 corresponding validation studies.

10 See appendix E for full evidence tables and appendix J for the full references.

11 Table 2 Tools to predict VTE-recurrence

ΤοοΙ	Studies evaluation this tool	Score	Interpretation	Key prediction time point	Derivation or validation study
DASH	Tosetto (2017)	Abnormal D-dimer (measured ~1 months after stopping anticoagulation): 2 points Age <50 years: 1 point Male sex: 1 point Hormone use at VTE onset (if female): -2 points	Low risk: 0-1 point High risk: 2+ points	12, 24, 60 months	External validation study
DAMOVES	Franco (2016)	Age, Sex, Obesity (yes vs. no), Abnormal D-dimer (yes, no, not performed), factor VIII count, genetic thrombophilia (yes vs. no), varicose veins (yes vs. no)	Figure 2 in study (Nomogram for the risk of recurrence)	Not time-point specific	Derivation and internal validation study
HERDOO2	Rodger (2017)	Male sex: 2 points one of more of: hyperpigmentation, edema or redness of the leg: 1 point VIDAS D-dimer 250 µg/L: 1 point Obesity (body mass index 30 or more): 1 point	Low risk: 0-1 points High risk: 2+ points	12 months	External validation study

ΤοοΙ	Studies evaluation this tool	Score	Interpretation	Key prediction time point	Derivation or validation study
		Age 65 year or older: 1 point			
VIENNA	Marcucci (2015)	Considers D-dimer (as a continuous variable), age and index VTE location (distal DVT versus proximal DVT/PE)	Online calculator	12, 60 months	External validation study
Dynamic VIENNA	Eichinger (2014)	Same as above but adjusted to account for time since discontinuing anticoagulation (baseline, 3, 9, 12 and 15 months).	Online calculator	12, 60 months	Modified validation study

1 Table 3 Tools to predict major bleeding

Tool	Included studies	Score	Interpretation	Derivation or validation study
ACCP	Palareti (2018) Poli (2013) Riva (2014)	age 66–75 year: 1 point age > 75 years: 2 points previous major bleeding: 1 point cancer (active): 1 point metastatic cancer: 1 point renal failure (CrCl < 30–60 mL min-1): 1 point liver failure (reported in the history): 1 point thrombocytopenia (< 100 000): 1 point previous stroke/TIA: 1 point diabetes anemia (Hb < 10): 1 point antiplatelet therapy: 1 point poor anticoagulant control (time spent in the therapeutic range < 60%): 1 point comorbidity recent surgery (within 3 months from index event): 1 point	Low risk: 0 Moderate risk: 1 High risk: 2+	External validation studies
		previous stroke/TIA: 1 point diabetes anemia (Hb < 10): 1 point antiplatelet therapy: 1 point poor anticoagulant control (time spent in the therapeutic range < 60%): 1 point		

ΤοοΙ	Included studies	Score	Interpretation	Derivation or validation study
		non-steroidal anti-inflammatory drugs use: 1 point		
ATRIA	Klok (2016) Poli (2013) Riva (2014)	Anemia: 3 points severe renal disease (GFR < 30 mL min-1 or dialysis-dependent): 3 points 75 years+: 2 points previous bleed: 1 point hypertension: 1 point	Low risk: 0-3 points Moderate risk: 4 points High risk: 5-10 points	External validation studies
EPIPHANY index	Carmona- Bayonas (2017)	Final model contained 6 variables: the Hestia-like CDR variable (any risk factor present vs none), ECOG-PS (o2 vs X2), oxygen saturation (o90 vs X90%), presence of PE-specific symptoms, previous tumour response evaluation (tumour progression, unknown, or not evaluated vs others), and prior surgical resection of primary tumour	Decision tree model	Derivation and internal validation study
HAS-BLED	Brown (2018) Klok (2016) Kooiman (2015) Kresoja (2019) Poli (2013) Riva (2014)	 >160 mmHg systolic: 1 point Abnormal liver function (history of cirrhosis, or bilirubin > 2x the upper limit of normal in association with aspartate aminotransferase/alanine aminotransferase/ alkaline phosphatase levels > 3x the upper limit of normal): 1 point Abnormal renal function (on dialysis, a history of kidney transplantation, or serum creatinine values > 200 µmol/L): 1 point Stroke: 1 point Bleeding history or predisposition: 1 point Liable INR (time within therapeutic range < 60%): 1 point Age 65 years+: 1 point Drug use (platelet inhibitors or NSAIDS): 1 point Alcohol abuse (>8 units/week): 1 point 	Low risk: 0 points Moderate risk: 1-2 points High risk 3+ points	External validation studies

ΤοοΙ	Included studies	Score	Interpretation	Derivation or validation study
HEMORR2A GES	Klok (2016) Poli (2013) Riva (2014)	Hepatic or renal disease: 1 point Ethanol abuse: 1 point Malignancy: 1 point Age 75 years plus: 1 point Reduced platelet count or function: 1 point Prior bleeding: 2 points Hypertension: 1 point Anemia: 1 point Genetic factors (CYP2C9 single-nucleotide polymorphisms): 1 point Excessive fall risk: 1 point Prior stroke/TIA: 1 point	Low risk: 0-1 points Moderate risk: 2-3 points High risk >3 points	External validation studies
Kearon score	Scherz (2013) Seiler (2017) Kearon (2019)	Previous stroke: 1 point Previous peptic ulcer disease: 1 point Previous gastrointestinal bleeding: 1 point Renal impairment: 1 point Anemia: 1 point Thrombocytopenia: 1 point Liver disease: 1 point Diabetes mellitus: 1 point Use of antiplatelet therapy: 1 point Age 65 years+: 1 point	Low: 0–1 points Intermediate: 2–3 points High: 4+	External validation study
Kuijer score	Klok (2016) Kuijer (1999) Sherz (2013) Piovella (2014) Riva (2014) Seiler (2017) Zhang (2019)	Age >60 years: 1.6 points Female sex: 1.3 points Malignancy: 2.2 points	Low risk = 0 points Moderate risk = 1-2 points High risk = 3+ points	External validation studies

ΤοοΙ	Included studies	Score	Interpretation	Derivation or validation study
Modified Ottawa Score (MOS)	Alatri (2017)	Female sex: 1 point Lung cancer: 1 point Prior VTE: 1 point Localized cancer without metastasis (stages 1 and 2 for solid tumors): -1 point Breast cancer: -1 point	Low: -1 or fewer points Intermediate: 0 points High 1+ points	External validation study
Nieuwenhuis score	Zhang (2019)	WHO grade 1: 1 point WHO grade 2: 1 point History of bleeding diathesis: 2 point Recent trauma (<2 months) or surgery: 1 point Body surfacy area <2m ² : 1 point	Low risk: 0-2 points Moderaterisk:3-4 points High risk: >5	External validation study
Outpatient bleeding risk index (OBRI)	Poli (2013) Scherz (2013) Riva (2014) Piovella (2014) Seiler (2017)	Age 65 years+: 1 point Previous stroke: 1 point GI bleeding in the last 2 weeks: 1 point Recent MI, anemia (hematocrit <30%) or renal insufficiency (creatinine >1.5mg/dI): 1 point Creatinine >1.5mg dL-1: 1 point diabetes mellitus: 1 point	Low risk: 0 points Moderate risk: 1-2 points High risk: 3+ points	External validation studies
RIETE 1	Klok (2016) Poli (2013) Ruiz-Gimenez (2008) Scherz (2013) Riva (2014) Piovella (2014) Seiler (2017) Zhang (2019)	Recent bleeding: 2 points Abnormal renal function (Creatinine levels >1.2 mg/dl): 1.5 points Anemia: 1.5 points Age >75 years: 1 point Active malignancy: 1 point PE diagnosis: 1 point	Low risk: 0 points Moderate risk: 1-4 points High risk >4 points	External validation study

ΤοοΙ	Included studies	Score	Interpretation	Derivation or validation study
RIETE 2	Nieto (2013)	Age >75 years: 1 point Metastatic cancer: 2 point Immobility \ge 4 days: 1 point Recent major bleeding: 1.5 points Abnormal prothrombin time: 1 point CrCl b 30 ml/min: 1 point Platelet Count <100 × 10^9/L: 1 point Anemia: 1 point Distal DVT: -1 point	Low risk: <1.5 points Moderate risk: 1.5 – 4.0 points High risk: >4.0 points	External validation study
Seiler score	Seiler (2017)	Previous major bleeding Active cancer Low physical activity Anemia Thrombocytopenia Antiplatelet drugs or NSAIDs Poor INR control	Low risk: 0-1 point Moderate risk:2-3 points High risk: 4+ points	Derivation and internal validation study
Shireman score	Riva (2014)	Age \geq 70 years: 0.49 points Female gender: 0.32 points Remote bleeding: 0.58 points Recent bleeding: 0.62 points Alcohol/drug abuse: 0.71 points Diabetes: 0.27 points Anaemia (Ht < 30%): 0.86 points Antiplatelet use: 0.32 points	Low risk: ≤1.07 points Moderate: >1.07 and <2.19 points High: ≥2.19 points	External validation study
VTE-BLEED	Klok (2017) Klok (2018) Kresoja (2019)	Active cancer: 2 points Male with uncontrolled arterial hypertension: 1 points Anaemia: 1.5 points History of bleeding: 1.5 points Age ≥60 years old: 1.5 points Renal dysfunction: 1.5 points	Low risk: 0-1 high risk: 2+	External validation studies

1 Table 4 Study characteristics (VTE-recurrence)

Author (year)	Sample	Mean age (SD)	Demographic information	Tool(s) investigated	Duration
Eichinger (2014)	553	53.4 years *median age, mean not stated	 Location: Austria 39.6% female 16.1% distal DVT, 38.5% proximal DVT, 45.4% PE with or without DVT Median duration of AC treatment: 6.7 months 	Dynamic VIENNA (internal validation only)	Median 68 months.
Franco (2016)	398	61.0 years *median, mean not stated	 Location: Spain 45.5% female 67.8% PE. 20.8% proximal DVT. 11.3% distal DVT Median duration of AC treatment: 7.0 months 	DAMOVES (internal validation only)	Median 21.3 months
Marcucci (2015)	904	68 years *median age, mean not stated.	 Location: Austria 39.5% female 32.2% PE with or without DVT, 66.5% proximal DVT, 1.3% distal DVT 13.6 % recurrent VTE 	VIENNA tool	Median 22 months (25th, 75th percentiles: 14 months, 29 months)
Rodger (2017)	934	54.4 (SD 16.7) years.	 Location: 7 countries 44% female 40% index DVT only, 39% index PE only, 21% both 48.9% D-dimer over 250 UG/L 37.2% obesity (over 30 BMI) 	HERDOO2 tool	1-year

Tosetto (2017)	827	55.3 (SD17.5) years	•	Location: Italy 47.8% female Mean duration of prior AC treatment 13 months Hormone therapy at time of index VTE: 43.0%	DASH	Median 25.2 months
-------------------	-----	---------------------------	---	---	------	--------------------

1 Table 5 Study characteristics (major bleeding)

Author (year)	Sample	Mean age (SD)	Demographic information	Tool(s) investigated	Duration
Alatri (2017)	383	68 (14) years	 All participants had active cancer and VTE. Location: Switzerland 44.9% metastatic disease 60.8% curative treatment plan 12.5% lung cancer 11.2% breast cancer 55.1% localised cancer 18.8% had a prior VTE 13.6% renal failure 25.6% chemotherapy 9.1% radiotherapy 	MOS	90 days (on-treatment only)
Brown (2018)	132,280	63.7% aged 18-64 12.7% aged 65-74 23.6% aged 75 years or older	 Location: USA 56% female 44.5 % hypertension 7.7% renal disease 5.7 % liver disease 11.7% had bleeding history 	HAS-BLED	Outcomes reported at 30, 60, 90 and 180 days (on-treatment only)

Carmona- Bayonas (2017)	1,075	64 (12) years	 Participants had acute PE and active cancer Location: Spain 54.2% female 11.7% breast cancer 25.3% lung cancer 11.9% COPD 5.2% chronic CVD 	EPIPHANY index (internal validation)	15 days
Klok (2016)	448	64 (17) years	 Participants had acute PE Location: Germany 55% female 51% unprovoked 30% had a prior VTE 59% hypertension 6.7% known renal insufficiency 2.5% known liver disease 1.6% bleeding history 18% active cancer 18 % chronic heart failure 	 HAS-BLED RIETE score 1 Kuijer score HEMORR2HAGES ATRIA score 	30 days
Klok (2017)	8,240	55.8 (16) years	 All participants were part of the HOKUSAI-VTE trial Location: 37 countries 40% PE and DVT, 60% DVT only 26% arterial hypertension 11% renal dysfunction 1% history of bleeding 2.5% active cancer 	VTE-BLEED	12 months (on-treatment only)
Klok (2018)	3653	60 (17) years	 Participants had DVT Location: 21 countries 90% DVT only; 9.8% both DVT and PE 	VTE-BLEED	At least 12 months or until they died. (on-treatment only)

			 46% female 11% active cancer Mean systolic blood pressure 137 mm HG (SD19), 2179 participant had missing data. first eGFR reading <30 ml/min: 1.4% 30-50 ml/min: 5.0% 50 ml/min or greater 58% 1601 participants missing 		
Kooiman (2015)	537	PE patients: 60.8 years DVT: 57.8 years	 Location: The Netherlands 41.5% PE, 58.5% DVT 31% hypertension 3.5% bleeding history 11.2% NSAIDS/ antiplatelet 	HAS-BLED	6 months (on-treatment only)
Kresoja (2019)	522	69 (IQR 56-78)	 Study predicts in-hospital major bleeding in people with PE. 53% female 62% unprovoked PE 12% prior VTE 3.7% liver disease 4.7% bleeding history 17% active cancer 16% chronic heart failure 	VTE-BLEED HAS-BLED	During in hospital treatment
Kuijer (1999)	780	60 (17) years	Included derivation, internal validation and external validation: Only external validation study was extracted as other had <250 participants • 75% DVT 25% PE • 49% female	Kuijer score	3 months (on-treatment only)
Nieto (2013)	15,206	35% over 75 years of age	Location: 12 countries51% female	RIETE score 2	3 months (on-treatment only)

		*Mean not given	 51% Bilateral PE; 3.8% bilateral DVT; 11% Distal DVT 55% anemia 2.5% low platelet count 7.4% abnormal propthrombin time 7.4% CrCl <30 ml/min 		
Palareti (2018)	2,263	67 (IQR 51 - 77) years *Median; mean value not given	 Location: Italy 48.7% female 56.6% DVT only; 20.9% DVT + PE; 20.3% isolated PE 68.2% unprovoked VTE 25.7% had CrCI<30-60 mL min-1 2.9% had history of liver failure 0.5% NSAID use 4.0% antiplatelet use 3.5% Anemia 7.7 % active cancer 	ACCP	Median 12 months (on- treatment only)
Piovella (2014)	8,576	66 (18) years	 Location: Spain, France, Italy, Israel, Argentina 52% female 	RIETE 1 Kuijer OBRI	90 days
Poli (2013)	1078	84 years (range 80-89 Mean age (SD)) * median, mean not given	 All participants were >80 years of age Location: Italy 62.8% female 62.9% hypertension 5.1% NSAIDS/antiplatelet use 10.1% active cancer 	• HAS-BLED • OBRI • HEMORR₂HAGES • ATRIA • ACCP • RIETE 1	Mean 1.83 years (on-treatment only)
Riva (2013)	681	median 63 (IQR 46-74) years	Location: Italy43% PE	• HAS-BLED • OBRI • HEMORR₂HAGES	1 year or until treatment stopped: Mean 8.8 months (on-treatment only)

			 76% lower extremity DVT 5% upper extermity DVT 1.6% superficial vein thrombosis only. 58% unprovoked VTE 2.0% severe renal failure 	• ATRIA • ACCP • RIETE 1 • Kuijer score	
Ruiz- Gimenez (2008)	6,572	66 (SD17) years	 Demographic information on validation study only (see appendix E for information on derivation study) Location: Spain, France, Italy, Israel, Argentina 50% female 32% Anemia 20% active cancer 28% inpatients 12% recent surgery 24% immobility 1.4% recent major bleeding 2.5% with platelet count <100,000/mm3 14% with abnormal creatinine levels 	RIETE score 1	90 days (on-treatment only)
Scherz (2013)	663	75 (65-97) years *Median and range, mean not given	 All participants were ≥ 65 years Location: Switzerland 45.4% female 32.4% DVT only, 13.7% DVT+PE, 53.8% PE only. 17.8% had renal impairment 2.0 % liver disease 3.8% previous major bleed 32.3% used platelet inhibitors 38.3% Anemia 14.6 % active cancer 	 RIETE score 1 Kuijer score Kearon score OBRI 	90 days (on-treatment only)

Seiler (2017)	743	75 years (IQR 70-81) *Median and range, mean not given	 Participants were ≥65 years plus All participants had received 3 months AC at time of assessment. Location: Switzerland 47% female 18.3% arterial hypertension 7.3% renal disease 0.4% liver disease 3.6% bleeding history 3.1% active cancer 	 RIETE score 1 Kuijer score Kearon score OBRI Seiler score (internal validation only) 	Up to 36 months of extended treatment
Zhang (2019)	578	65 years (IQR 53-74) *Median and range, mean not given	 PE-only 49.5% female 7.8% bleeding history 1.7% NSAIDS/ antiplatelet use 12.4% active cancer 	 RIETE score 1 Kuijer score Kearon score Nieuwenhuis score 	3 months

1 Quality assessment of clinical studies included in the evidence review

- 2 See evidence tables in appendix E for quality assessment of individual studies, appendix F
- 3 for forest plots and appendix G for GRADE tables. Please refer to the evidence statement
- 4 section for an overall summary of the evidence.

5 Economic evidence

- 6 A systematic search was carried out for this review question to identify relevant economic
- analyses. This search returned 2,535 records, all of which were excluded on title and 7 8
- abstract.
- 9 An additional search was conducted at the end of the guideline development process to
- capture economic evidence published while the guideline was being developed. This was 10
- conducted as a single re run search covering all guestions in the guideline. This search 11
- 12 returned 2,013 records in total, all of which were excluded on title and abstract for this review
- 13 question.
- 14 Therefore, no published cost-effectiveness studies were included in this review and this
- 15 question was not prioritised for *de novo* economic modelling.

16 Evidence statements

- 17 The format of the evidence statements is explained in appendix B. Evidence statements are
- 18 presented for each tool in turn and are based on likelihood ratios, c-statistics and hazard or
- 19 odds ratios.

20 Tools to predict VTE-recurrence

21 Evidence from external validation studies

22 DASH

23 Low to moderate quality evidence from one study with 827 participants found the DASH tool

24 had adequate classification accuracy in predicting VTE recurrence in all participants (C-

- 25 statistic = 0.65), poor classification accuracy in those participants over 65 years of age (C-
- 26 statistic= 0.54), and **good** classification accuracy in those participants 65 years of age or
- 27 vounger (C-statistic= 0.72).
- 28 HERDOO2
- 29 Low quality evidence from one study with 914 participants found that a **low risk** classification indicated a **slight** decrease in the probability of a recurrent VTE (LR-= 0.61 [0.42, 0.89]) and 30 a high risk classification indicated a slight increase in the probability of a recurrent VTE 31
- 32 (LR+=1.74 [1.34, 2.27]).
- 33 VIENNA
- 34 Low to moderate quality evidence from one study with 904 participants found the VIENNA
- 35 tool had adequate classification accuracy in predicting VTE recurrence in all participants (C-
- statistic = 0.63) and **poor** classification accuracy in those participants 65 years of age and 36
- 37 younger (C-statistic = 0.59).

1 Evidence from internal validation studies (or modified tools)

2 DAMOVES

3 Moderate quality evidence from one internal validation study with 398 participants found that

4 a low risk classification indicated a large decrease in the probability of a recurrent VTE (LR-

5 =0.11 [0.05, 0.25]) and a high risk classification indicated a large increase in the probability

6 of a recurrent VTE (LR+=5.04 [3.96, 6.43]).

7 Dynamic VIENNA (time modified VIENNA tool)

8 Moderate quality evidence from one internal derivation study with 553 participants found the

9 dynamic VIENNA tool had **adequate** classification accuracy in predicting VTE recurrence in

10 all participants, when assessed 3 weeks (C-statistic = 0.63), 3 months (AUC= 0.61) and 9

11 months (C-statistic = 0.61) after discontinuing anticoagulation, and **poor** classification

12 accuracy in predicting VTÉ recurrence when assessed 15 months after stopping

13 anticoagulation (C-statistic = 0.58).

14 Tools to predict major bleeding

15 Evidence from external validation studies (or models with optimised thresholds)

16 *ACCP*

17 The ACCP tool had **poor** classification accuracy for predicting major bleeding up to 12

18 months, overall (C-statistic = 0.57 (0.49, 0.64, very-low quality evidence from two studies

19 with 2,994 participants) and specifically in people aged 80 years or older (C-statistic = 0.55

20 [0.45, 0.64], based on very low quality evidence from one study with 1,078 participants).

21 ATRIA

At 30 days of treatment, very low to low quality evidence from one study with 448 participants found that:

- a **low risk** classification was associated with a **slight decrease** in the probability of major bleeding (LR-= 0.68 [0.44, 1.06]) and a **low-moderate risk** classification was associated with a **slight decrease** in the probability of a major bleeding (LR-= 0.94 [0.75, 1.18])
- a moderate-high risk classification was associated with a slight increase in the
 probability of major bleeding (LR+=1.89 [1.19, 3.02]) and a high risk classification was
 associated with a slight increase in the probability of a major bleeding (LR+=1.34 [0.54,
 3.31])
- The ATRIA tool had **poor** classification accuracy for predicting major bleeding up to 12 months, overall (C-statistic = 0.47 [0.31, 0.63], very low quality evidence from one study with 681 participants) and specifically in people aged 80 years or older (C-statistic = 0.58 [0.48, 0.67], very low quality evidence from one study with 1,078 participants).
- 35 Two-level optimised threshold ATRIA
- 36 At 30 days of treatment, very low to low quality evidence from one study with 448 participants

37 that used an optimised threshold ATRIA tool found that a **low risk** classification was

associated with a **slight decrease** in the probability of a major bleeding (LR-= 0.53 [0.25,

1.13]) and a **high risk** classification was associated with a **slight increase** in the probability

40 of major bleeding (LR+=1.43 [1.09, 1.87]).

1 HAS-BLED

- At 30 days of treatment, very low to low quality evidence from one study with 448
 participants found that:
- a low- moderate risk classification was associated with a slight increase in the
 probability of major bleeding (LR-= 1.17 [0.72, 1.89]), and a low risk classification was
 associated with a large decrease in the probability of major bleeding (LR-=0.14 [0.01,
 2.26])
- a moderate-high risk classification was associated with a slight increase in the
 probability of a major bleeding (LR+=1.17 [1.12, 1.22]) and a high risk classification was
 associated with a slight decrease in the probability of major bleeding (LR+=0.90 [0.62, 1.30])
- Up to 6 months of treatment, very low to low quality evidence from one study with 537
 participants found that:
- a low-moderate risk classification (using the standard 3+ cut-off) was associated with a
 slight decrease in the probability of major bleeding (LR-= 0.52 [0.27, 1.00]) and a low moderate classification (using a modified cut off of 4+ points) was associated with a
 slight decrease in the probability of major bleeding (LR-= 0.84 [0.63, 1.11])
- a high risk classification (using the standard 3+ cut-off) was associated with a moderate
 increase in the probability of major bleeding (LR+=4.22 [2.35, 7.56]) and a high
 classification (using a modified cut off of 4+ points) was associated with a large
 increase in the probability of major bleeding (LR+=7.97 [2.02, 31.45])

The HAS-BLED tool had a **poor** classification accuracy for prediction major bleeding during in hospital stay (C-statistic = 0.58 [0.48, 0.69], very low quality evidence from one study with 522 participants), **good** classification accuracy up to 6 months (C-statistic = 0.71 (0.70, 0.72, moderate quality evidence from two studies with 132,817 participants) and **adequate** classification accuracy up to 12 months (C-statistic = 0.60 [0.45, 0.75], very-low quality evidence from one study with 681 participants).

28 In people with cancer, the HAS-BLED tool had **adequate** classification accuracy for

29 predicting major bleeding (C-statistic = 0.69 [0.67, 0.71], low quality evidence from one study

30 with 24,915 participants) and in people aged 80 years or older, it had **poor** classification

- accuracy (C-statistic = 0.55 [0.46, 0.64], based on very low quality evidence from one study
 with 1,078 participants).
- Very low quality evidence from one study with 522 participants could not differentiate rates
 of major bleeding during hospital stay in people with low compared to high classification
 accuracies (OR of 1.10 [0.40, 2.90]).
- 36 Moderate quality evidence from one study with 132,280 participants found the HAS-BLED
- high risk group (category 4) had an **increased risk** of major bleeding (HR of 1.71 [1.44,
- 38 2.04]) compared to category 3.

Low quality evidence from one study with 537 participants found the HAS-BLED high risk group had an **increased risk** of major bleeding using a cut-off of 3+ points (HR of 8.7 [2.7, 28.4]) and using a cut-off of 4+ points (HR of 10.8 [2.3, 50.0]) compared to the moderate/low risk group.

43 Moderate quality evidence from one study with 24,915 people with cancer found the HAS-

BLED high risk group (category 4) had an increased risk of major bleeding (HR 1.66 [1.26,
2.20]) compared to category 3.

1 *HEMORR₂HAGES*

- At 30 days of treatment, very low quality evidence from one study with 448 participants found
 that:
- a low risk classification was associated with a slight decrease in the probability of major
 bleeding (LR-= 0.75 [0.38, 1.47]) and a low-moderate risk classification was associated
 with a slight decrease in the probability of major bleeding (LR-= 0.99 [0.82, 1.19])
- a moderate-high risk classification was associated with a slight increase in the
 probability of major bleeding (LR+=1.17 [0.87, 1.58]) and a high risk classification was
 associated with a slight increase in the probability of major bleeding (LR+=1.07 [0.37, 3.12])

The HEMORR2HAGES tool had **poor** classification accuracy for predicting major bleeding up to 12 months, overall (C-statistic = 0.51 [0.32, 0.70], very low quality evidence from one study with 681 participants) and **adequate** classification accuracy specifically in people aged 80 years or older (C-statistic = 0.60 [0.50, 0.70], for predicting major bleeding based on very low quality evidence from one study with 1,078 participants).

16 Two-level optimised threshold HEMORR₂HAGES

At 30 days of treatment, very low quality evidence from one study with 448 participants that used an optimised threshold HEMORR₂HAGES tool found that a **low risk** classification was associated with a **slight decrease** in the probability of a major bleeding (LR-= 0.60 [0.35, 1.03]) and a **high risk** classification was associated with a **slight increase** in the probability

- 21 of major bleeding (LR+=1.81 [1.23, 2.65]).
- 22 Kearon score

At 3 months of treatment, very low to low quality evidence from one study with 663

24 participants 65 years of age or older found that a **low-moderate risk** classification was

associated with a slight decrease in the probability of major bleeding (LR-= 0.95 [0.78,

1.15]) and a **moderate-high risk** classification was associated with a **slight increase** in the

- 27 probability of major bleeding (LR+=1.26 [0.61, 2.61]).
- 28 In participants aged 65 years or older, the Kearon tool had:
- poor classification accuracy in predicting major bleeding (C-statistic = 0.59 [0.55, 0.63]), at 3 months based on low quality evidence from one study with 663 participants
- poor classification accuracy in predicting major bleeding at 3 months (C-statistic = 0.54
 [0.38, 0.69]), 6 months (C-statistic = 0.55 [0.43, 0.67]), 12 months (C-statistic = 0.58
 [0.49, 0.67]), 24 months (C-statistic = 0.57 [0.50, 0.64]) and at 36 months (C-statistic = 0.59 [0.52, 0.66]) based on moderate quality evidence from one study with 743
 participants who had already received 3 months of anticoagulation
- At 3 months of treatment, very low quality evidence from one study with 537 participants found the kearon score to have **good** classification accuracy in predicting major bleeding (Cstatistic = 0.75 [0.60, 0.89]).
- 39 Kuijer score
- 40 At 30 days of treatment:

a low-moderate risk classification was associated with a slight decrease in the probability of major bleeding (LR-= 0.94 [0.75, 1.18]) and a low risk classification was

associated with a **slight decrease** in the probability of major bleeding (LR-= 0.73 [0.19, 2.76], very low to low quality evidence from one study with 448 participants).

- a high risk classification was associated with a slight increase in the probability of
 major bleeding (LR+=1.35 [0.54, 3.31]) and a moderate-high risk classification was
 associated with a slight increase in the probability of major bleeding (LR+=1.04 [0.90,
 1.21], very low to low quality evidence from one study with 448 participants).
- 7 At 3 months of treatment:
- a low risk classification was associated with a large decrease in the probability of major
 bleeding (LR- 0.15 [0.04, 0.58], based on very low quality evidence from two studies with
 9,497 participants).
- a low-moderate risk classification was associated with a slight decrease in the
 probability of major bleeding, overall (LR-= 0.81 [0.47, 1.39], very-low quality evidence
 from two studies with 9,497 participants) and a slight increase specifically in people
 aged 65 years or older (LR-= 1.04 [0.91, 1.19], low quality evidence from one study with
 663 participants).
- a moderate-high risk classification was associated with a slight increase in the
 probability of major bleeding (LR+ 1.15 [1.10, 1.20], low quality evidence from two studies
 with 9,497 participants).
- a high risk classification was associated with a slight increase in the probability of major bleeding, overall (LR+=1.59 [0.46, 5.55], very low quality evidence from two studies with 9,497 participants) and a slight decrease specifically in people aged 65 years or older (LR+=0.76 [0.26, 2.27], very low quality evidence from one study with 663 participants.

The kuijer score had **poor** classification accuracy in predicting major bleeding at 3 months,
overall (C-statistic = 0.57 [0.44, 0.68], very low quality evidence from one study with 537
participants) and specifically in people aged 65 years or older (C-statistic = 0.49 [0.45, 0.52],
moderate quality evidence from one study with 663 participants), and at 12 months (Cstatistic = 0.51 [0.32, 0.70], very low quality evidence from one study with 681 participants).

In people aged 65 years or older who had already received 3 months of anticoagulation, the kuijer score had **adequate** classification accuracy in predicting major bleeding at 3 months (C-statistic = 0.67 [0.54, 0.81]) and 6 months (C-statistic = 0.61 [0.50, 0.72]), and to have **poor** classification accuracy at 12 months (C-statistic = 0.57 [0.48, 0.66]), 24 months (Cstatistic = 0.57 [0.50, 0.64]) and at 36 months (C-statistic = 0.57 [0.50, 0.64]). Based on low to moderate quality evidence from one study with 743 participants

35 Two-level optimised threshold Kuijer score

At 30 days of treatment, very low quality evidence from one study with 448 participants that used an optimised threshold Kuijer tool found that a **low risk** classification was associated with a **slight decrease** in the probability of a major bleeding (LR-= 0.66 [0.36, 1.21]) and a **high risk** classification was associated with a **slight** increase in the probability of major bleeding (LR+=1.38 [0.98, 1.93]).

41 Modified Ottawa Score (MOS)

42 In people with cancer-associated VTE at 3 months of treatment, a **low risk** classification was

43 associated with a **slight decrease** in the probability of major bleeding (LR-= 1.00 [0.72,

1.40]) and a **high risk** classification was associated with a **slight decrease** in the probability

45 of major bleeding (LR+=0.99 [0.43, 2.31]), based on very low to low quality evidence from

46 one study with 383 participants.

1 Nieuwenhuis score

- 2 At 3 months of treatment, very low quality evidence from one study with 537 participants
- 3 found the Nieuwenhuis score to have **poor** classification accuracy in predicting major
- 4 bleeding (C-statistic = 0.59 [0.41, 0.74]).
- 5 Outpatient bleeding risk index (OBRI)
- At 3 months of treatment, moderate quality evidence from one study with 8,717 participantsfound that:
- a low-moderate risk classification was associated with a slight decrease in the probability of major bleeding (LR-= 0.96 [0.91, 1.02]) and a low risk classification was associated with a moderate decrease in the probability of major bleeding (LR-= 0.36 [0.19, 0.69])
- a high risk classification was associated with a slight increase in the probability of
 major bleeding (LR+=1.77 [1.00, 3.43]) and a moderate-high risk classification was
 associated with a slight increase in the probability of major bleeding (LR+=1.24 [1.15,
 1.33]).
- 16 At 3 months of treatment in people of 65 years of age or older, very low to low quality
- 17 evidence from one study with 663 participants found that a **low-moderate** risk classification
- 18 was associated with a **slight decrease** in the probability of major bleeding (LR-= 1.00 [0.90,

19 1.11]) and a **high risk** classification was associated with a **slight increase** in the probability

- 20 of major bleeding (LR+=1.03 [0.26, 4.04]).
- At 12 months of treatment, very low quality evidence from one study with 681 participants found the OBRI tool had **poor** classification accuracy in predicting major bleeding (C-statistic = 0.59 [0.42, 0.76]).
- At 3 months of treatment in people of 65 years of age or older, moderate quality evidence from one study with 663 participants found the OBRI tool had **poor** classification accuracy in
- 26 predicting major bleeding (C-statistic = 0.54 [0.50, 0.58]).
- 27 In people aged 65 years or older and who have already received 3 months of

anticoagulation, moderate to high quality evidence from one study with 743 participants

found the OBRI tool had **poor** classification accuracy in predicting major bleeding at 3

- 30 months (C-statistic = 0.54 [0.43, 0.65]), 6 months (C-statistic = 0.51 [0.42, 0.60]), 12 months 31 (C-statistic = 0.52 [0.44, 0.60]), 24 months (C-statistic = 0.52 [0.46, 0.59]) and at 36 months
- (C-statistic = 0.52 [0.44, 0.60]), 24 months (C-statistic = 0.52 [0.46, 0.59]) and <math>(C-statistic = 0.53 [0.47, 0.59])
- 32 (C-statistic = 0.53 [0.47, 0.59])

In people aged 80 years or older, very low quality evidence from one study with 1,078
 participants found the OBRI had **poor** classification accuracy in predicting major bleeding (C statistic = 0.58 [0.49, 0.67]).

- 36 *RIETE 1*
- 37 At 30 days of treatment:
- a low-moderate risk classification was associated with a slight decrease in the
 probability of major bleeding (LR-= 1.00 [0.86, 1.16], low quality evidence from one study
 with 448 participants)
- a **high risk** classification was associated with a **slight increase** in the probability of a
- major bleeding (LR+=1.04 [0.27, 3.98], very low quality evidence from one study with 448
 participants

- 1 At 3 months of treatment:
- a low risk classification was associated with a large decrease in the probability of major
 bleeding based on low quality evidence from two studies with 15,289 participants (LR-=
 0.13 [0.01, 1.79]).
- a low-moderate risk classification was associate with a slight decrease in the
 probability of major bleeding, overall (LR-= 0.91 [0.86, 0.96], moderate quality evidence
 from two studies with 15,289 participants) and specifically in people aged 65 years or
 older (LR-= 0.94 [0.81, 1.10], low quality evidence from one study with 663 participants.
- a moderate-high risk classification was associated with a slight increase in the
 probability of a major bleeding based on moderate quality evidence from two studies with
 15,289 participants (LR+= 1.15 [0.97, 1.37]).
- a high risk classification was associated with a moderate increase in the probability of a major bleeding, overall (LR+=2.27 [1.62, 3.17], low quality evidence from two studies with 15,289 participants) and a slight increase a slight increase specifically in people aged 65 years or older (LR+=1.59 [0.62, 4.08], very low quality evidence from one study with 663 participants)
- The RIETE 1 score had **poor** classification accuracy in predicting major bleeding at 3 months
 of treatment, overall (C-statistic = 0.56 [0.45, 0.71], very low quality evidence from one study
 with 537 participants) and **adequate** classification accuracy specifically in people aged 65
 years or older (C-statistic = 0.60 [0.56, 0.64], low quality evidence from one study with 663
 participants). At 12 months, it had **poor** classification accuracy (C-statistic = 0.54 [0.38,
 0.71], very low quality evidence from one study with 681 participants.
- In people aged 65 years or older who had already received 3 months of anticoagulation
 treatment, the RIETE 1 tool had **poor** classification accuracy in predicting major bleeding at
 months (C-statistic = 0.59 [0.45, 0.72]) and 6 months (C-statistic = 0.59 [0.48, 0.70]), and **adequate** classification accuracy at 12 months (C-statistic = 0.63 [0.54, 0.72]), 24 months
 (C-statistic = 0.62 [0.55, 0.69]) and at 36 months (C-statistic = 0.63 [0.56, 0.70]) (low to
 moderate quality evidence from one study with 743 participants.
- In people aged 80 years or older, the RIETE 1 tool had adequate classification accuracy in
 predicting major bleeding (C-statistic = 0.61 [0.51, 0.71], very low quality evidence from one
 study with 1,078 participants).
- 32 Two-level optimised threshold RIETE 1

At 30 days of treatment, a **low risk** classification was associated with a **slight decrease** in the probability of a recurrent VTE (LR-= 0.59 [0.30, 1.16]) and a **high risk** classification associated a **slight increase** in the probability of major bleeding (LR+=1.42 [1.05, 1.92], very low to low quality evidence from one internal validation study with 448 participants).

- 37 *RIETE 2*
- 38 At 3 months of treatment:
- a low risk classification was associated with a moderate decrease in the probability of fatal bleeding (LR-= 0.30 [0.17, 0.52], moderate quality evidence from one study with 15,206 participants).
- a low-moderate risk classification was associated with a slight decrease in the
 probability of fatal bleeding (LR-= 0.92 [0.85, 1.01], moderate quality evidence from one
 study with 15,206 participants).

- a moderate-high risk classification was associated with a moderate increase in the
 probability of fatal bleeding (LR+=2.26 [1.98, 2.58], moderate quality evidence from one
 study with 15,206 participants).
- a high risk classification was associated with a moderate increase in the probability of fatal bleeding (LR+=4.27 [1.85, 9.90], moderate quality evidence from one study with 15,206 participants).
- At 3 months of treatment, moderate quality evidence from one study with 15,206 participants found the RIETE 2 tool had **good** classification accuracy in predicting **major bleeding** (C-
- statistic = 0.72 [0.69, 0.75]) and **fatal bleeding** (C-statistic= 0.78 [0.72, 0.83]).
- 10 Shireman score

At 3 months of treatment, Shireman tool had **adequate** classification accuracy in predicting major bleeding (C-statistic = 0.63 [0.45, 0.81], very low quality evidence from one study with 681 participants.

- 14 VTE-BLEED
- 15 In-hospital treatment for PE:
- a low risk classification was associated with a moderate decrease in the probability of
 major bleeding (LR-= 0.26 [0.07, 0.97], very low quality evidence from one study with 522
 participants).
- a high risk classification was associated with a slight increase in the probability of a major bleeding (LR+=1.55 [1.29, 1.86], low quality evidence from one study with 522 participants).
- After up to 12 months of treatment in people who had already received 30 days of anticoagulation:
- a low risk classification was associated with a slight decrease in the probability of major
 bleeding (LR-= 0.57 [0.45, 0.72], low quality evidence from two studies with 12,249
 participants).
- a high risk classification was associated with a slight increase in the probability of a
 major bleeding (LR+=1.96 [1.50, 2.56], low quality evidence from two studies with 12,249
 participants.
- 30 During in-hospital treatment for PE, VTE-BLEED had **good** classification accuracy in
- predicting major bleeding based on very low quality evidence from one study with 522
 participants (C-statistic = 0.69 [0.58, 0.80].
- After up to 12 months of treatment in people who had already received 30 days of

anticoagulation, VTE-BLEED had adequate classification accuracy in predicting major
 bleeding (C-statistic = 0.67 [0.62, 0.71], low quality evidence from two studies with 12,687

- 36 participants).
- People scoring ≥2 compared to <2 using VTE-BLEED had an increased risk of major
 bleeding during in-hospital treatment for PE (1.30 [1.00, 1.70], Low quality evidence from one
 study with 522 participants.
- 40 People who had already received 30 days of anticoagulant treatment scoring ≥2 on VTE-
- 41 BLEED had an increased risk of major bleeding compared to those with a score of under 2
- 42 (HR 2.30 [1.10,4.50]). In these people, there was a per point increase OR 1.40 (1.10, 1.60).
- 43 When the population was restricted to people with unprovoked VTE, the test **could not**
- 44 **detect a difference** in risk of major bleeding between groups (HR 1.70 ([0.69, 4.40]). In Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

- 1 these people, there was a per point increase OR 1.30 (1.00, 1.70) (Based on very low to low
- 2 quality evidence from one study with 4,447 participants).

3 Evidence from internal validation studies

4 EPIPHANY index

- 5 At 15 days in people with cancer, a low risk classification was associated with a large
- 6 **decrease** in the probability of major bleeding (LR-= 0.19 [0.06, 0.57]) and a **high risk**
- 7 classification was associated with a **slight increase** in the probability of major bleeding
- 8 (LR+=1.34 [1.24, 1.45])(very low to low quality evidence from one internal validation study
- 9 with 1,075 participants)

10 Seiler score

- 11 In people aged 65 years or older who had already received 3 months of anticoagulation
- 12 treatment the Seiler score had **good** classification accuracy in predicting major bleeding at 3
- 13 months (C-statistic = 0.75 [0.61, 0.88]) and **adequate** classification accuracy at 6 months (C-
- 14 statistic = 0.69 [0.58, 0.79]), 12 months (C-statistic = 0.68 [0.60, 0.76]), 24 months (C-statistic
- 15 = 0.67 [0.60, 0.73] and at 36 months (C-statistic = 0.68 [0.61, 0.74]) (very low to low quality
- 16 evidence from one internal validation study with 743 participants).

17 Economic evidence statements

18 No relevant economic evidence was identified for this review question.

19 The committee's discussion of the evidence

20 Interpreting the evidence

21 The outcomes that matter most

22 The included studies reported data on sensitivity/specificity and likelihood ratios; C-statistics; 23 odds ratios and hazard ratios. The committee agreed that, since this review is looking at the 24 risk of VTE recurrence and of major bleeding, the most useful outcome measure was that of 25 likelihood ratios. These give a measure of the size of increased or decreased probability of 26 having an event in the future following a positive of negative test result and therefore indicate 27 how useful the prediction tools will be for decision making. C-statistics were also thought to 28 be useful as they allow for easier comparison of overall diagnostic accuracy between 29 prediction tools (as they are reported using a single estimate, however these are less useful 30 in the context of this review question as they do not differentiate between FP and FN. As FP and FN results have different clinical outcomes, it is important that these are considered 31 32 separately. The committee noted that for two level tests (such as VTE-BLEED), likelihood ratios are particularly useful but for tests with 3 (or more) levels (such as HAS-BLED) there is 33 34 a greater difficulty in interpreting likelihood ratio data as the different levels must be groups into two levels (a negative and a positive group) and this involves grouping the results in 35 36 ways not intended by the tests. In these cases, it is useful to have additional measures of diagnostic accuracy (such as c-statistics). 37

- 38 Treatment for VTE can be divided into several stages: immediate treatment upon diagnosis
- 39 followed by initial treatment that lasts several months and then extended treatment.
- 40 Following initial treatment, the committee agreed that it was important to review the
- 41 individual's risk of VTE recurrence before deciding to offer them extended treatment.
- 42 However, there is a trade-off between managing the risk of VTE recurrence if treatment is

- 1 discontinued and that of major bleeding if treatment is continued. The committee discussed
- 2 the different consequences of TP, TN, FP and FN results in this decision-making process.

3 VTE-Recurrence

4 VTE-recurrence is a key outcome for people with VTE because it negatively impacts quality 5 of life, is potentially fatal and can lead to other harmful conditions such as post-thrombotic 6 syndrome and chronic thromboembolic pulmonary hypertension.

- 7 The committee agreed that:
- TPs will be correctly identified as being at high risk of VTE recurrence and will be offered continued anticoagulant treatment to prevent this happening. They will be at risk of major bleeding due to the anticoagulation treatment.
- TNs will be correctly identified as being at low risk of a VTE recurrence and could
 potentially come off anticoagulation medication, thus avoiding unnecessary treatment that
 could lead to major bleeding.
- FPs will be incorrectly identified as being at high risk of VTE recurrence and will be offered unnecessary treatment which exposes them to an increased risk of major bleeding.
- FNs will be incorrectly identified as low risk of VTE recurrence and could potentially come off anticoagulation medication. This could lead to an increase in the numbers of people with VTE recurrence and may have serious consequences for their health (as discussed above). However, the risk of major bleeding would be decreased if the person came off the anticoagulation medication.
- 21 The committee agreed that it was most important to avoid FN results as the lack of treatment 22 could lead to VTE recurrence and this is potentially fatal. However, the committee noted that 23 recurrent PE is more immediately dangerous than recurrent DVT due to the risk of death. 24 However, recurrent DVT is still of crucial importance as this leads to morbidities and can lead 25 to a PE. A person with a recurrent VTE event will typically require anticoagulation treatment 26 again. The committee agreed that it was also important to minimise FP results as these 27 people would be exposed to an increased risk of major bleeding (which may cause death or 28 severe morbidity).

29 Major bleeding

Major bleeding is another key outcome for people with VTE as it can also be fatal or seriously disabling, particularly when it is intracranial. In addition, major bleeding has deleterious effects on quality of life and may result in an individual stopping treatment, exposing them to a risk of VTE-recurrence.

34 The committee agreed that:

- TPs will be correctly identified as being at high risk of major bleeding and may be able to avoid long term anticoagulant treatment (depending on their risk of VTE recurrence) and thus avoid a major bleed. If they need to remain on anticoagulants due to a high risk of VTE recurrence they could receive additional monitoring for major bleeding.
- TNs will be correctly identified as being at low risk of a major bleeding and can receive
 extended treatment for VTE if this is indicated based on their risk of VTE recurrence. The
 extended anticoagulant treatment may reduce their risk of recurrence.
- FPs will be incorrectly identified as being at high risk of major bleeding, which is likely to
 be stressful for the individual with VTE. If they are also at high risk of VTE recurrence this
- 44 may result in a difficult decision for the clinician and person with VTE. In addition, if the
- 45 person with VTE stops taking the anticoagulant treatment due to the perceived high risk of
- 46 major bleeding this could result in that individual having an increased risk of VTE-Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

1 recurrence, which poses a major threat to health. If they remain on treatment they could

2 receive additional, unnecessary monitoring for major bleeding, which as well as being

3 stressful for the person with VTE, could use up resources that could be better used

- elsewhere. However, if the person with VTE has a low risk of VTE recurrence, the
 cessation of treatment may not be problematic.
- FNs will be incorrectly identified as low risk of major bleeding and may be offered
- extended treatment (depending on their risk of VTE recurrence). This could lead them to
 experience a major bleed, which can lead to death or extreme morbidity.

9 The committee agreed that FNs and FPs are both problematic, but they agreed that in the 10 case of major bleeding, a FP diagnosis could lead to the worst outcome for the person with

11 VTE.

12 The quality of the evidence

This review included studies attempting to predict an individual's risk of recurrence (if they 13 14 were to stop treatment) and risk of major bleeding (if they were to continue treatment) using 15 risk assessment tools. Studies reporting prognostic risk tools can be divided into derivation, 16 derivation with internal validation, external validation and model modification studies). The 17 committee agreed that it was appropriate to exclude derivation studies from this review in 18 cases where an external validation study was available for a given tool because derivation studies have higher risk of bias due to the model being developed based on a particular 19 20 dataset. As a result, the evidence from external validation studies (or validation data from 21 within derivation studies) was prioritised. However, where validation studies were not 22 available, the committee agreed that looking at derivation studies was potentially informative 23 although they noted that there was more uncertainty around the performance of tools that 24 had not been externally validated (e.g. Seiler score, EPIPHANY index) in a random sample 25 of people with VTE. The committee agreed that due to the high risk of bias, no 26 recommendations could made be supporting the use of tools that had not been externally 27 validated, although these tools could be the subject of research recommendations.

The committee discussed the very low quality of the body of evidence. In particular, they commented on the fact that many of the studies involved retrospective reviews of registry

30 databases and that this poses a risk of bias due to the potential for misreporting / miss-

31 recording information on predictor variables and outcomes.

The committee agreed with the decision to apply GRADE to likelihood ratios (as opposed to sensitivity/specificity outcomes) as they considered these more useful in the context of prediction as outcomes can be easily classified into groups according to strength (how much a positive or negative result changes the likelihood of experiencing the event in the future).

36 VTE-recurrence

- 37 The committee were concerned that only single studies were available for each tool
- 38 predicting VTE-recurrence. Additionally, they noted that the studies assessing tools that
- 39 predict VTE-recurrence limited participants to those with unprovoked VTE. These individuals

40 are at an increased risk of recurrence compared to those with provoked VTE as the latter's

41 risk drops once the provoking risk factor is removed.

42 The quality of the evidence was mainly moderate due to issues with risk of bias of included

43 studies or the lack of a confidence interval to accompany c-statistic results. There was limited

44 data available that could be used to calculate sensitivity and specificity and the bulk of the

- 45 data was presented as C-statistics, which do not allow differentiation between the numbers
- of misclassified people (FP and FN). However, the committee agreed that FNs were at
 greater risk of adverse outcomes (see discussion above). Additionally, the lack of c-statistic
 - 7 greater risk of adverse outcomes (see discussion above). Additionally, the lack of c-statistic Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

1 CIs meant that there was uncertainty surrounding these point estimates.

2 Major bleeding

3 The committee agreed that a major bleeding risk tool would be used to assess the risk of 4 major bleeding in an individual were they continue anticoagulation treatment (typically after 3 5 months initial treatment) because at the initial treatment phase the risk of major bleeding 6 would be less than the risk of VTE if no treatment was offered. However, the majority of 7 included studies looked at the risk of major bleeding in treatment naïve individuals (or 8 individuals beginning anticoagulation for an index VTE). Only one study (Seiler, 2017) 9 assessed the prognostic accuracy of tools in participants who have already received at least 10 3 months anticoagulation. The committee agreed that although this data is not ideal as the 11 risk of major bleeding could decrease over time, it was unlikely that the tool would perform 12 differently in detecting that risk and agreed with the inclusion of these studies in the evidence 13 base.

Bleeding risk was mainly related to treatment on VKA, however some of the later trials had a
subgroup of their study population receiving DOACs. The committee agreed that although
the bleeding risk was not the same for VKAs and DOACs, this should not affect the predictive
accuracy of the tools, particularly in the long term as the risk of major bleeding stabilises.

18 The committee noted that many risk tools for predicting major bleeding divided people into 19 low, moderate and high risk groups and that this was problematic when it came to calculating 20 2x2 tables to determine sensitivity, specificity and likelihood ratios. The committee agreed 21 with the approach taken to convert three level tools into two levels by combining the 22 moderate group with either the low or high risk group and presenting the results for both 23 combinations. The committee were concerned that this approach may violate the original 24 intention of the model, but they agreed that this method was preferable to other options (such 25 as optimised two-level cut-offs) and the results at the extremes of the test (for people in high 26 or low risk groups) could provide information about the risks of stopping or continuing 27 treatment.

28 The committee agreed that the RIETE 2 paper on fatal bleeds was appropriate to include and

discuss, considering fatal bleeds as a sub-category of major bleeds, and taking into account

30 that the study also included a c-statistic for major bleeding.

31 Benefits and harms

32 This review aimed to identify the optimum duration of treatment for people with VTE. Initially, 33 the balance of benefits and harms weighs heavily in favour of anticoagulant treatment, due to 34 the high risk of VTE progression. At later time points (after 3 months or more of treatment), 35 the trade-off between benefits and harms becomes more uncertain and the need for 36 secondary prevention must be balanced against the risk of bleeding associated with 37 continued treatment. The committee agreed that it was important to discuss the benefits and 38 harms of treatment with the person with VTE after the initial treatment phase because of the 39 decreased certainty in the benefit of treatment over the risks of major bleeding. They noted that it was important to involve the person with VTE in the decision-making process in 40 41 general, but especially in cases where the risk of VTE recurrence and major bleeding were 42 similar and patient preference was more likely to be the deciding factor.

In addition to major bleeding, a person undergoing anticoagulation may experience clinically
relevant non-major bleeding, which can be distressing and have an impact upon quality of
life. This risk, and the attitude of the person with VTE towards risk in general should also be
taken into account when making joint decisions about continued treatment. The committee
stressed the importance of not presupposing that the default option was continued treatment.

1 committee wrote a recommendation for this discussion to take place after 3 months of initial 2 anticoagulant treatment. This conversation might involve the use of decision aids to ensure

3 that the person with VTE is able to understand the risks and benefits associated with

4 extended treatment and that they can make an informed decision about continuing or

5 stopping.

6 The committee noted that people with an unprovoked VTE are at higher risk of recurrence 7 compared to those with a provoking risk factor whose risk of recurrence subsides when the 8 provoking factor is removed. The committee agreed that because of this lower risk of 9 recurrence, people with provoked VTE could come off anticoagulation completely if they had 10 a simple disease course. They wrote a recommendation to reflect this. They also 11 recommended that these people should be provided with written information about what to 12 do and who to contact if they experience important signs/symptoms. The committee agreed that this was important to ensure that people stopping treatment are as confident as possible 13 14 in their ability to identify and act on any developments and that they have a specific port of 15 call for any concerns they have. In contrast, people with unprovoked VTE have a higher risk 16 of recurrence and are more likely to continue treatment, but this decision requires 17 consideration of bleeding risk and individual preferences as well as the risk of recurrence.

18 The committee were aware of a systematic review with a meta-analysis suggesting a 10% 19 risk of VTE-recurrence in the first year after stopping treatment, increasing to 16% at 2 years, 20 25% at 5 years and 36% at 10 years in people with unprovoked VTE (Khan, 2017). This 21 study also identified that around 4% of recurrent events resulted in death. This work provided 22 additional support for their decision to recommend that there is a discussion around 23 continuing treatment for people with unprovoked VTE beyond 3 months due to their 24 increased risk of recurrence. In addition, they agreed that if the person with unprovoked VTE 25 had a low risk of bleeding then it was advisable for them to remain on treatment.

26 The committee discussed how the risk of VTE recurrence and major bleeding could be 27 determined for the individual. The committee noted that, with the exception of DASH in 28 people aged 65 years or younger, all of the tools for VTE recurrence had poor to adequate 29 classification accuracy, poor discrimination based on likelihood ratios or lacked external 30 validation. The committee were concerned with quality of the evidence for current tools 31 aimed at predicting VTE-recurrence, specifically c-statistics lacking confidence intervals and 32 the limited numbers of studies. Additionally, the committee noted that use of HERDOO2 in 33 clinical practice would be limited to women as men are automatically classified as high risk. 34 The committee noted that many of the major bleeding prediction tools had poor classification 35 accuracy or poor likelihood ratios (indicating slight changes in probability of major bleeding) 36 and were able to rule out the use of many tools as a result. Finally, for both types of 37 prognostic tool it was unclear whether the risk tools performed better than clinician 38 judgement.

The committee agreed that there was a potential for harm associated with recommending the use of prediction tools that are not sufficiently validated or prognostically accurate. Taking these issues into account, the committee included a recommendation to make it clear that the tools should not be used in isolation, but rather as part of a discussion that involved clinician judgement of risk of recurrence and major bleeding if they are to be used at all.

The committee noted that the diagnostic accuracy evidence for DASH was only in the form on c-statistics. For all age groups together, the test had adequate classification accuracy and in people aged over 65 years specifically it was poor, but the committee noted that for people who are 65 years of age or younger it had good classification accuracy. However, the committee were again concerned with the quality of this evidence because it was of lowmoderate quality from a single study and there were no reported confidence intervals for the

1 C-statistic estimate, leaving uncertainty surrounding the imprecision of the estimate.

Based on these issues the committee did not recommend that DASH be used routinely to
help assess the risk of VTE recurrence. However, the committee agreed that in people aged
65 years or younger who want to avoid long-term anticoagulation treatment DASH could
provide additional information to clinician judgment to help people with VTE make an

6 informed decision whether to stop or continue treatment. The committee agreed that there

7 was no benefit in using the test in people with VTE who wished to continue treatment.

8 The committee agreed that if a risk tool was to be used for people in this age group DASH
9 was the best option and made a weaker recommendation to reflect this (based on low to
10 moderate quality evidence). They did not recommend this tool for people over 65 years old

11 because the classification accuracy was poor in this age group.

The committee also noted that various individual factors are important for predicting VTE recurrence, including whether the index event was provoked or unprovoked, and age and sex. However, the committee noted that a much larger number of individual characteristics may be important in the context of predicting the risk of recurrence (or major bleeding) and that these may not be captured well in a prediction tool.

17 Of all of the tools examined that aim to predict risk of major bleeding, the committee

identified HAS-BLED as having potential clinical utility under certain conditions. A score of 4+
has a likelihood ratio indicating a large increase in the probability of a major bleed whereas a
score of 3+ was associated with a moderate increase in risk; the tool had good classification
accuracy up to 6 months and the risk of bleeding was 8.7 times higher in high versus
moderate/low risk groups (HR 8.7 [2.7, 28.4]). The committee also discussed the evidence
base for HAS-BLED, noting that it consisted of with one study (Brown 2018) presenting data

on over 100,000 participants.

Due to the risk of VTE recurrence associated with stopping anticoagulation, the committee felt that a tool should only be recommended if it could identify those at a particularly high or low risk of bleeding accurately and that recommending a HAS-BLED score of 4+ would provide enough certainty to warrant stopping anticoagulation. They noted that if this risk was modifiable (for example, if the person was frail and at risk of falls) then it would be important to address these issues to try to remove this additional risk before reassessing overall risk of bleeding.

32 For an explanation of the rationale behind the recommendations for the choice of

anticoagulant to use for extended treatment, including the use of aspirin, see the benefits

34 and harms section of the evidence review for pharmacological treatment of VTE (chapter D).

The committee agreed that it was also important to revisit the discussion about bleeding risk and any decision to continue treatment in the future, especially if there were any changes in health state and wrote a recommendation reflecting this point.

38 The committee noted that studies predicting VTE-recurrence were conducted in separate 39 populations to those predicting major bleeding. The committee agreed that in practice it 40 would be helpful to have a tool capable of predicting the risk of both events in a given 41 individual. Additionally, the committee noted that the risk of major bleeding was typically 42 assessed at the point of beginning initial therapy, however for the purpose of this review and 43 the decision faced by clinicians and people with VTE, risk after 3 months treatment is more 44 directly applicable. Based on these discussions, the committee made a research 45 recommendation for a combined tool to be designed that could predict both an individual's 46 risk of recurrence were they to stop treatment **and** risk of bleeding were they to continue. 47 This tool would ideally provide a score that corresponds to a clinical decision (continue or

stop anticoagulation) allowing the individual with VTE to be treated accordingly. They agreed that tool should be validated externally to ensure that it is able to predict risk accurately in a separate group of people to the derivation cohort. The committee also recommended that the tool should be tested after 3 months and in the longer term to ensure that it had utility for decision making at both of these times (see <u>research recommendation 1</u> in appendix K for

6 more details.

7 Cost effectiveness and resource use

8 No economic evidence was identified to inform the cost effectiveness of using different tools 9 to predict the risk of VTE-recurrence or bleeding. The committee noted that in current practice, clinicians are likely to consider factors such as age and sex when assessing a 10 11 person's risk of VTE-recurrence. The use of the DASH score would require a D-dimer test 12 approximately 1 month after stopping anticoagulation, which may be associated with an 13 additional cost if not already part of routine follow-up. The HAS-BLED prognostic score is 14 based on information that is likely to already be available as part of a person's clinical history 15 or routine care and therefore the use of this tool to assess bleeding risk is unlikely to be 16 associated with additional costs.

17 Other than the time and information requirements associated with the administration of risk prediction tools, the main economic implications of using them depend on the accuracy of the 18 tools for informing optimal treatment decisions. For VTE-recurrence, correctly identifying TNs 19 20 would potentially lead to cost savings if people with a low risk of recurrence are able to safely 21 stop taking anticoagulation medication whereas people who are incorrectly identified as FNs 22 and stop anticoagulation medication will incur costs in the event of a recurrence. People who 23 are incorrectly identified as FPs and continue to be treated with anticoagulation medication 24 not only incur the costs of long-term treatment but are also at an increased risk of bleeding. 25 The use of the HAS-BLED score to identify people who are at a high risk of major bleeding 26 could lead to additional costs associated with more frequent monitoring or treatments to 27 address modifiable risk factors (such as prescribing proton pump inhibitors to reduce the risk of gastrointestinal bleeds) but these may be offset by cost savings from reductions in major 28 29 bleeds.

30 Other factors the committee took into account

The committee noted that existing tools for major bleeding and VTE recurrence had poor classification accuracy in older populations. For example, various major bleeding tools were validated in populations of people 65 years or older and typically had poor classification accuracy. This would limit the use of existing tools in this age group.

35 The committee agreed that it was difficult to assess the usefulness of existing prediction tools 36 in clinical practice because none of the trials identified during this review also assessed clinician judgement. They noted that in future updates of this review it would be useful to 37 38 include clinician judgment as a comparator and specifically look for information concerning this because they reasoned that although existing tools (and any new tools) may not have 39 40 very high prognostic accuracy, they are still likely to be useful in the decision-making process if they have greater prognostic accuracy then clinician judgement alone. Taking this into 41 42 account, the committee made a second research recommendation to test the newly 43 developed combined tool for assessing VTE recurrence and major bleeding (see research 44 recommendation 1) against clinician judgement. It was intended that this recommendation would only be conducted after the new tool had been externally validated. The committee 45 46 envisioned that the new tool could be tested against clinician judgment using a prospective

- 1 cohort study or test and treat RCT (see <u>research recommendation 2</u> in appendix K for more
- 2 details).

Appendices

2 Appendix A – Review protocols

3 Review protocol: What factors determine the optimum duration of

- 4 pharmacological treatment for DVT or PE in people with an VTE?
- 5

Field (based on PRISMA-P)	Content
Review question	What factors determine the optimum duration of pharmacological treatment for DVT or PE in people with VTE?
Type of review question	Prognostic
Objective of the review	It was identified during scoping that there is varying practice as to how long a person who has had a VTE should receive anticoagulant medication.
	The aim of this review is to determine the factors that should be weighed up when considering whether to extend anticoagulation treatment.
Eligibility criteria – population	Adults (18+ years) who have had VTE For studies predicting VTE recurrence, participants must have previously received a course of anticoagulant treatment, but not be receiving anticoagulant treatment for the duration of follow up. For studies predicting major bleeding, participants must be receiving anticoagulant treatment for the duration of follow up. Analysis will be stratified according to first/recurrent VTE if data is available.
Eligibility criteria – prognostic factor(s)	 Prognostic factors: Any risk tool using multiple predictors to predict the risk of VTE recurrence following

Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

	 cessation of anticoagulant treatment. For example: DASH, HERD002, Vienna. Any risk tool using multiple predictors to predict the risk of major bleeding during anticoagulant treatment. For example: HAS- BLED, VTE-BLEED
Outcomes of interest	Recurrence of VTEMajor bleeding
Outcome measures	 For each outcome, prognostic accuracy measures will be reported where available, for example: Odds ratios/hazard ratios Model fit (e.g. r squared) Sensitivity, specificity, positive and negative predictive values.
Eligibility criteria – study design	Prospective or retrospective observational cohorts will be included for evaluation of risk prediction tools. If a review of individual risk factors is undertaken, only prospective studies will be included. Studies must have a minimum sample size of 250.
Other inclusion exclusion	English language only.
criteria	Case-control studies will be excluded.
	 If a review of individual risk factors is carried out, studies reporting univariate analysis only will be excluded.
	• Retrospective studies will be excluded if a review of individual risk factors is undertaken.
	• Studies with a sample size of fewer than 250 will be excluded.
Proposed sensitivity/sub- group analysis, or meta- regression	None

Selection process – duplicate screening/selection/analysis	10% of the abstracts were reviewed by two reviewers, with any disagreements resolved by discussion or, if necessary, a third independent reviewer. If meaningful disagreements were found between the different reviewers, a further 10% of the abstracts were reviewed by two reviewers, with this process continued until agreement is achieved between the two reviewers. From this point, the remaining abstracts will be screened by a single reviewer. This review made use of the priority screening functionality with the EPPI-reviewer systematic reviewing software. See Appendix B for more details.	
Data management (software)	See Appendix B	
Information sources – databases and dates	 Sources to be searched Clinical searches - Medline, Medline in Process, PubMed, Embase, Cochrane CDSR, CENTRAL, DARE (legacy records) and HTA. MHRA Drug Alerts Economic searches - Medline, Medline in Process, PubMed, Embase, NHS EED (legacy records) and HTA, with economic evaluations and quality of life filters applied. Supplementary search techniques None identified Limits Studies reported in English Study design RCT, SR and Observational filter will be applied (as agreed) Animal studies will be excluded from the search results Conference abstract / letters will be excluded from the search results 	
Identify if an update	This is a new question for the update of CG144, therefore no date limit to be applied to searches.	

Author contacts	https://www.nice.org.uk/guidance/indevelopment/ gid-ng10087
Highlight if amendment to previous protocol	For details please see section 4.5 of Developing NICE guidelines: the manual
Search strategy – for one database	For details please see appendix C of the evidence review
Data collection process – forms/duplicate	A standardised evidence table format will be used, and published as appendix E (clinical evidence tables) or I (economic evidence tables, where relevant) of the evidence review.
Data items – define all variables to be collected	For details please see evidence tables in appendix E (clinical evidence tables) or I (economic evidence tables, where relevant) of the evidence review.
Methods for assessing bias at outcome/study level	See appendix B
Criteria for quantitative synthesis (where suitable)	See appendix B
Methods for analysis – combining studies and exploring (in)consistency	See appendix B
Meta-bias assessment – publication bias, selective reporting bias	See appendix B
Assessment of confidence in cumulative evidence	See appendix B
Rationale/context – Current management	For details please see the introduction to the evidence review.
Describe contributions of authors and guarantor	A multidisciplinary committee developed the guideline. The committee was convened by the NICE Guidelines Updates Team and chaired by Susan Bewley in line with section 3 of Developing NICE guidelines: the manual.
	Staff from the NICE Guidelines Updates Team undertook systematic literature searches, appraised the evidence, conducted meta-analysis

	and cost-effectiveness analysis where appropriate, and drafted the guideline in collaboration with the committee. For details please see the methods section of the evidence review.
Sources of funding/support	The NICE Guideline Updates Team is an internal team within NICE.
Name of sponsor	The NICE Guideline Updates Team is an internal team within NICE.
Roles of sponsor	The NICE Guideline Updates Team is an internal team within NICE.

1

1 Appendix B – Methods

2 Priority screening

- 3 The reviews undertaken for this guideline all made use of the priority screening functionality
- 4 with the EPPI-reviewer systematic reviewing software. This uses a machine learning
- 5 algorithm (specifically, an SGD classifier) to take information on features (1, 2 and 3 word
- 6 blocks) in the titles and abstract of papers marked as being 'includes' or 'excludes' during the
- 7 title and abstract screening process, and re-orders the remaining records from most likely to
- 8 least likely to be an include, based on that algorithm. This re-ordering of the remaining
- 9 records occurs every time 25 additional records have been screened.

10 Research is currently ongoing as to what are the appropriate thresholds where reviewing of 11 abstract can be stopped, assuming a defined threshold for the proportion of relevant papers 12 it is acceptable to miss on primary screening. As a conservative approach until that research 13 has been completed, the following rules were adopted during the production of this guideline:

- In every review, at least 50% of the identified abstract (or 1,000 records, if that is a
 - In every review, at least 50% of
 greater number) were always as
- greater number) were always screened.
 After this point, screening was only terminated if a pre-specified threshold was met for a number of abstracts being screened without a single new include being identified.
- 18 This threshold was set according to the expected proportion of includes in the review 19 (with reviews with a lower proportion of includes needing a higher number of papers 20 without an identified study to justify termination), and was always a minimum of 250.
- A random 10% sample of the studies remaining in the database were additionally
 screened, to check if a substantial number of relevant studies were not being
 correctly classified by the algorithm, with the full database being screened if concerns
 were identified.
- As an additional check to ensure this approach did not miss relevant studies, the included
- 26 studies lists of included systematic reviews were searched to identify any papers not
- 27 identified through the primary search.

28 Incorporating published systematic reviews

29 For all review questions where a literature search was undertaken looking for a particular

30 study design, systematic reviews containing studies of that design were also included. All

31 included studies from those systematic reviews were screened to identify any additional

32 relevant primary studies not found as part of the initial search.

33 Quality assessment

- Individual systematic reviews were quality assessed using the ROBIS tool, with eachclassified into one of the following three groups:
- High quality It is unlikely that additional relevant and important data would be identified
 from primary studies compared to that reported in the review, and unlikely that any
 relevant and important studies have been missed by the review.
- 38 relevant and important studies have been missed by the review.
- Moderate quality It is possible that additional relevant and important data would be
 identified from primary studies compared to that reported in the review, but unlikely that
 any relevant and important studies have been missed by the review.

Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT

(November 2019)

- Low quality It is possible that relevant and important studies have been missed by the review.
- 3 Each individual systematic review was also classified into one of three groups for its
- applicability as a source of data, based on how closely the review matches the specified
 review protocol in the guideline. Studies were rated as follows:
- Fully applicable The identified review fully covers the review protocol in the guideline.
- Partially applicable The identified review fully covers a discrete subsection of the review protocol in the guideline.
- Not applicable The identified review, despite including studies relevant to the review
- 10 question, does not fully cover any discrete subsection of the review protocol in the 11 guideline.

12 Using systematic reviews as a source of data

13 If systematic reviews were identified as being sufficiently applicable and high quality, and 14 were identified sufficiently early in the review process, they were used as the primary source of data, rather than extracting information from primary studies. The extent to which this was 15 16 done depended on the quality and applicability of the review, as defined in Table 6. When systematic reviews were used as a source of primary data, any unpublished or additional 17 18 data included in the review which is not in the primary studies was also included. Data from these systematic reviews was then quality assessed and presented in GRADE tables as 19 20 described below, in the same way as if data had been extracted from primary studies. In 21 questions where data was extracted from both systematic reviews and primary studies, these 22 were cross-referenced to ensure none of the data had been double counted through this 23 process.

Quality	Applicability	Use of systematic review
High	Fully applicable	Data from the published systematic review were used instead of undertaking a new literature search or data analysis. Searches were only done to cover the period of time since the search date of the review.
High	Partially applicable	Data from the published systematic review were used instead of undertaking a new literature search and data analysis for the relevant subsection of the protocol. For this section, searches were only done to cover the period of time since the search date of the review. For other sections not covered by the systematic review, searches were undertaken as normal.
Moderate	Fully applicable	Details of included studies were used instead of undertaking a new literature search. Full-text papers of included studies were still retrieved for the purposes of data analysis. Searches were only done to cover the period of time since the search date of the review.
Moderate	Partially applicable	Details of included studies were used instead of undertaking a new literature search for the relevant subsection of the protocol. For this section, searches were only done to cover the period of time since the search date of the review. For other sections not covered by the systematic review, searches were undertaken as normal.

24 Table 6 Criteria for using systematic reviews as a source of data

1 Prognostic test accuracy evidence

2 In this guideline, prognostic test accuracy data are classified as any data in which a feature –

3 be it a symptom, a risk factor, a test result or the output of some algorithm that combines

4 many such features – is observed in some people who go on to develop the condition of

5 interest and some people who do not. Such data either explicitly provide, or can be

6 manipulated to generate, a 2x2 classification of true positives and false negatives (in people 7 who, according to the reference standard, truly develop the condition) and false positives and

who, according to the reference standard, truly develop the condition) and false positives and
true negatives (in people who, according to the reference standard, do not). This category

9 would include studies classed as prediction models under the TRIPOD statement, provided

10 the data were reported a 2x2 classification data.

11 The 'raw' 2x2 data can be summarised in a variety of ways. Those that were used for 12 decision making in this guideline are as follows:

- Positive likelihood ratios describe how many times more likely positive features are in people who develop the condition compared to people who do not. Values greater than 1 indicate that a positive result makes the condition more likely.
- 16 LR⁺ = (TP/[TP+FN])/(FP/[FP+TN])
- Negative likelihood ratios describe how many times less likely negative features are in people who develop the condition compared to people who do not. Values less than 1 indicate that a negative result makes the condition less likely.

$$20 \qquad \circ \ \mathsf{LR}^{-} = (\mathsf{FN}/[\mathsf{TP}+\mathsf{FN}])/(\mathsf{TN}/[\mathsf{FP}+\mathsf{TN}])$$

- **Sensitivity** is the probability that the feature will be positive in a person who goes on to develop the condition.
- 23 \circ sensitivity = TP/(TP+FN)
- **Specificity** is the probability that the feature will be negative in a person who does not go on to develop the condition.

26 \circ specificity = TN/(FP+TN)

27 Interpretation of prognostic accuracy measures

28 Clinical decision thresholds were chosen by the committee to correspond to the likelihood

29 ratio above (for positive likelihood ratios) or below (for negative likelihood ratios) which a

30 diagnostic test was accurate enough to be recommended. The following schema, adapted

from the suggestions of Jaeschke et al. (1994), was used inform these discussions.

Value of likelihood ratio	Interpretation	
LR ≤ 0.1	Very large decrease in probability of disease	
0.1 < LR ≤ 0.2	Large decrease in probability of disease	
0.2 < LR ≤ 0.5	Moderate decrease in probability of disease	
0.5 < LR ≤ 1.0	Slight decrease in probability of disease	
1.0 < LR < 2.0	Slight increase in probability of disease	
2.0 ≤ LR < 5.0	Moderate increase in probability of disease	
5.0 ≤ LR < 10.0	Large increase in probability of disease	
LR ≥ 10.0	Very large increase in probability of disease	

32 Table 7: Interpretation of likelihood ratios

The schema above has the effect of setting a minimal important difference for positive likelihoods ratio at 2, and a corresponding minimal important difference for negative

- 1 likelihood ratios at 0.5. Likelihood ratios (whether positive or negative) falling between these
- 2 thresholds were judged to indicate no meaningful change in the probability of disease.

3 Quality assessment

- 4 Individual studies were quality assessed using the PROBAST tool, which contains five
- 5 domains: participant selection, predictors, outcome, sample size and participant flow,
- 6 analysis. Each individual study was classified into one of the following two groups:
- Low risk of bias Evidence of non-serious bias in zero or one domain.
- Moderate risk of bias Evidence of non-serious bias in two domains only, or serious bias
 in one domain only.
- High risk of bias Evidence of bias in at least three domains, or of serious bias in at least two domains.
- 12 Each individual study was also classified into one of three groups for directness, based on if
- 13 there were concerns about the population, predictive features and/or reference standard in
- the study and how directly these variables could address the specified review question.
- 15 Studies were rated as follows:
- Direct No important deviations from the protocol in population, predictive feature and/or reference standard.
- 18 Partially indirect Important deviations from the protocol in one of the population,
- 19 predictive feature and/or reference standard.
- Indirect Important deviations from the protocol in at least two of the population,
- 21 predictive feature and/or reference standard.

22 Methods for combining prognostic test accuracy evidence

- 23 Where applicable, prognostic test accuracy syntheses were stratified by:
- Presenting symptomatology (features shared by all participants in the study, but not all people in the full relevant clinical population).
- The length of time between the measurement of the predictive feature and the final outcome.
- The reference standard used for categorising true positives.

Where five or more studies were available for all included strata, a bivariate model was fitted using the mada package in R v3.4.0, which accounts for the correlations between positive and negative likelihood ratios, and between sensitivities and specificities. Where sufficient data were not available (2-4 studies), separate independent pooling was performed for positive likelihood ratios, negative likelihood ratios, sensitivity and specificity, using Microsoft Excel. This approach is likely to somewhat underestimate test accuracy (see Deeks 2001).

- Random-effects models (der Simonian and Laird) were fitted for all syntheses, due to the
 expected level of between study heterogeneity in prognostic reviews.
- In any meta-analyses where some (but not all) of the data came from studies at high risk of
 bias, a sensitivity analysis was conducted, excluding those studies from the analysis. Results
 from both the full and restricted meta-analyses are reported. Similarly, in any meta-analyses
 where some (but not all) of the data came from indirect studies, a sensitivity analysis was
 conducted, excluding those studies from the analysis.

1 Modified GRADE for prognostic test accuracy evidence

- 2 GRADE has not been developed for use with prognostic test accuracy studies; therefore a
- 3 modified approach was applied using the GRADE framework. GRADE assessments were
- 4 only undertaken for positive and negative likelihood ratios, as the MIDs used to assess
- 5 imprecision were based on these outcomes.

9

- 6 Cross-sectional and cohort studies were initially rated as high-quality evidence if well
- 7 conducted, and then downgraded according to the standard GRADE criteria (risk of bias,
- 8 inconsistency, imprecision and indirectness) as detailed in Table 8 below.

Table 8: Rationale for downgrading quality of evidence for prognostic questions		
GRADE criteria	Reasons for downgrading quality	
Risk of bias	Not serious: If less than 33.3% of the weight in a meta-analysis came from studies at moderate or high risk of bias, the overall outcome was not downgraded.	
	Serious: If greater than 33.3% of the weight in a meta-analysis came from studies at moderate or high risk of bias, the outcome was downgraded one level.	
	Very serious: If greater than 33.3% of the weight in a meta-analysis came from studies at high risk of bias, the outcome was downgraded two levels.	
	Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between studies at high and low risk of bias.	
Indirectness	Not serious: If less than 33.3% of the weight in a meta-analysis came from partially indirect or indirect studies, the overall outcome was not downgraded. Serious: If greater than 33.3% of the weight in a meta-analysis came from partially indirect or indirect studies, the outcome was downgraded one level. Very serious: If greater than 33.3% of the weight in a meta-analysis came from indirect studies, the outcome was downgraded one level.	
	Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between direct and indirect studies.	
Inconsistency	Concerns about inconsistency of effects across studies, occurring when there is unexplained variability in the treatment effect demonstrated across studies (heterogeneity), after appropriate pre-specified subgroup analyses have been conducted. This was assessed using the l ² statistic.	
	N/A: Inconsistency was marked as not applicable if data on the outcome was only available from one study.	
	Not serious: If the l^2 was less than 33.3%, the outcome was not downgraded. Serious: If the l^2 was between 33.3% and 66.7%, the outcome was	
	downgraded one level. Very serious: If the I ² was greater than 66.7%, the outcome was downgraded two levels.	
	Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between studies with the smallest and largest effect sizes.	
Imprecision	If the 95% confidence interval for positive or negative likelihood ratios crossed the decision threshold for recommending a test the outcome was downgraded 1 level. If the 95% confidence interval crossed 1 (the likelihood ratio corresponding to no diagnostic utility), the outcome was downgraded 2 levels as suffering from very serious imprecision. For information on how decision	

GRADE criteria	Reasons for downgrading quality
	thresholds were determined, see the section on interpretation of prognostic
	accuracy measures.
	Outcomes meeting the criteria for downgrading above were not downgraded if the confidence interval was sufficiently narrow that the upper and lower bounds would correspond to clinically equivalent scenarios.

- The quality of evidence for each outcome was upgraded if either of the following conditions 1
- 2 were met:
- 3 Data showing an effect size sufficiently large that it cannot be explained by confounding 4 alone.
- 5 Data where all plausible residual confounding is likely to increase our confidence in the 6 effect estimate.

7 Publication bias

- 8 Where 10 or more studies were included as part of a single meta-analysis, a funnel plot was
- 9 produced to graphically assess the potential for publication bias.

10 Evidence statements for likelihood ratios

- 11 Evidence statements were written for positive and negative likelihood ratios and indicate the
- 12 magnitude of effect on the probability of experiencing an recurrent event or a major bleed
- (based on the categories in Table 7) associated with a positive test result or a negative test 13

14 result with a quality rating for each finding.

Other prognostic evidence 15

16 Other prognostic studies were also included if they reported outcomes of c-statistics, hazard 17 ratios or model fit statistics. These studies were also quality assessed using the PROBAST

18 checklist, as in the prognostic test accuracy section above.

19 Methods for combining hazard ratios or odds ratios

20 Where appropriate, hazard ratios were pooled using the inverse-variance method. Adjusted hazard ratios from multivariate models were only pooled if the same set of predictor variables 21 22 were used across multiple studies and they were on the same scale. For hazard ratios, a 23 range of (0.8, 1.25) was used to assess imprecision in the absence of a more clinically 24 meaningful MID. Where meta-analysis was possible risk of bias and indirectness were 25 assessed as detailed in Table 8 for other prognostic evidence.

- 26 In the absence of hazard ratio data that could be meta-analysed, data was pooled to obtain 27 single GRADE ratings per index using the following decision rules:
- 28 1. Risk of bias and indirectness were assessed at the individual study level because 29 there were only single studies for each outcome and test. If multiple studies had been 30 included in each outcome then these would have been calculated using the % weight 31 based on sample size.
- 32 2. Imprecision:

35

- 33 a. In cases where a single or multiple per point increase hazard ratios are 34
 - presented, the level of imprecision is calculated for each study using the MID of 0.8, 1.25.

1 2 3 4 5 6 7		In cases where several hazard are presented compared to a reference category then the most extreme category is assessed using the MID and a single pooled estimate is determined as in 2a. If the reference categories are in opposite directions then the high reference category data is reversed (1/value) and then included in the analysis as before. In cases where there is a mix of data then the imprecision is calculated for each study and then merged based on population weight as in 2a.
8	3. Incons	sistency:
9		For a single study this is judged to be not applicable (N/A).
10	b.	For multiple studies with single HRs this is judged using I ² calculated using
11		Review Manager v5.3 and assessed following the rules in <u>Table 8</u> .
12	С.	For multiple studies with the same reference category, inconsistency was
13		assessing the I ² value for the pooled studies and then following the rules in
14		Table 8.
15	d.	If hazard ratio data for a single index was reported in several ways (per point
16		increase, with reference to high and/or low categories) then inconsistency for
17		this outcome was determined to be serious as the results were not
18		comparable.
19	In the absenc	e of odds ratio data that could be meta-analysed, data was pooled to obtain
20		E ratings per index using the following decision rules:
	U	
21		f bias and indirectness were assessed at the individual study level because
22		were only single studies for each outcome and test.
23	2. Incons	sistency was not applicable as there was only one study per line of the GRADE

table.

Imprecision was assessed by determining whether the 95% CI crossed the line of no effect. If this was the case the outcome was downgraded once. If the study had less

27 than 500 participants then the outcome was downgraded another level.

28 Evidence statements for hazard ratios and odds ratios

29 For hazard ratio data, evidence statements were divided into 4 groups as follows:

Situations where the data are only consistent, at a 95% confidence level, with an effect in one direction (i.e. one that is 'statistically significant'), and the magnitude of that effect is most likely to meet or exceed the MID (i.e. the point estimate is not in the zone of equivalence). In such cases, we state that the evidence showed that there is an effect.

Situations where the data are only consistent, at a 95% confidence level, with an effect in one direction (i.e. one that is 'statistically significant'), but the magnitude of that effect is most likely to be less than the MID (i.e. the point estimate is in the zone of equivalence).
In such cases, we state that the evidence showed there is an effect, but it is less than the defined MID.

- Situations where the confidence limits are smaller than the MIDs in both directions. In such cases, we state that the evidence demonstrates that there is no meaningful difference.
- In all other cases, we state that the evidence could not differentiate between the comparators.
- 44 For odds ratio data, evidence statements are divided into 2 groups as follows:
- We state that the evidence showed that there is an effect if the 95% CI does not cross the
 line of no effect.
- The evidence could not differentiate between comparators if the 95% CI crosses the line Venous thromboembolic diseases: diagnosis, management and thrombophilia
 of testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

1 no effect.

2 Methods for combining c-statistics

- 3 C-statistics were assessed in a similar manner to likelihood ratios using the categories in
- 4 <u>Table 9</u> below.

5 **Table 9 Interpretation of c-statistics**

Value of c-statistic	Interpretation
c-statistic <0.6	Poor classification accuracy
$0.6 \le c$ -statistic < 0.7	Adequate classification accuracy
$0.7 \le c$ -statistic < 0.8	Good classification accuracy
0.8 ≤ c-statistic <0.9	Excellent classification accuracy
$0.9 \le c$ -statistic < 1.0	Outstanding classification accuracy

6 Where there were 2 or more studies reporting c-statistics with 95% CIs for the same tests,

7 meta-analyses were carried out using the metamisc package in R v3.4.0, which confines the

8 analysis results to between 0 and 1 matching the limited range of values that c-statistics can

9 take. i-squared value were calculated from a univariate meta-analysis using the metafor

- 10 package in R v3.4.0. Random effects meta-analysis was used when the l² was 50% or 11 greater.
- A modified version of GRADE was carried out to assess the quality of the meta-analysed c statistics as follows:
- Imprecision the 95% CI boundaries were examined and if they crossed 2 categories of test classification accuracy then the study was downgraded once (imprecision rated as serious); if the boundaries crossed 3 categories then the study was downgraded twice (very serious imprecision).
- Risk of bias, inconsistency and indirectness were assessed as detailed in <u>Table 8</u> for other prognostic evidence.

20 Evidence statements for c-statistics

21 Evidence statements were written for c-statistics to indicate the prognostic classification

accuracy of each test (in according the categories in <u>Table 9</u>), the quality of the evidence and

23 the number of studies and participants.

1 Appendix C – Literature search strategies

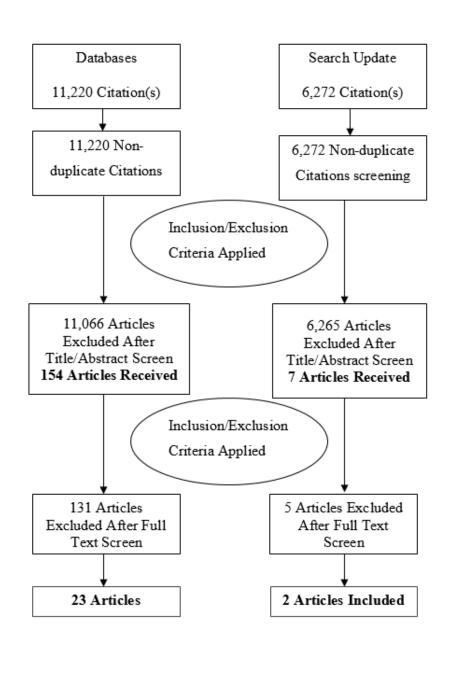
- 2 Searches were carried out in Medline, Medline in Process, Medline epub ahead of print,
- 3 Embase, (all via the Ovid platform) DARE, CDSR and CENTRAL (via the Wiley platform) on
- 4 22^{nd} and 23^{rd} October 2018 and re run on 4^{th} April 2019.
- 5 The Medline strategy is presented below,

6

- 7 1 Venous Thrombosis/
- 8 2 (phlegmasia adj2 dolens).tw.
- 9 3 (thrombo* adj2 (vein* or venous)).tw.
- 10 4 (venous adj stasis).tw.
- 11 5 (dvt or vte).tw.
- 12 6 Venous Thromboembolism/ or Embolism, paradoxical/
- 13 7 exp pulmonary embolism/
- 14 8 ((pulmonary or lung) adj4 (embol* or thromboembo* or microembol*)).tw.
- 15 9 (pulmonary adj infarction).tw.
- 16 10 ^{or}/1-9
- 17 11 ((risk* or predict* or decision*) adj2 (tool* or score* or model* or calculat* or rule* or
- 18 algorithm*)).tw.
- 19 12 predictive value of tests/
- 20 13 algorithms/
- 21 14 decision support techniques/
- 22 15 risk assessment/mt
- 23 16 statistical models/
- 24 17 Decision Making, Computer Assisted/
- 25 18 Proportional Hazards models/
- 26 19 or/12-18
- 27 20 Recurrence/
- 28 21 (recur* or reoccur* or repeat* or reappear* or relapse* or return* or repetit*).tw.
- 29 22 anticoagulants/
- 30 23 (anticoagulant* or anti coagulant*).tw.
- 31 24 hemorrhage/
- 32 25 (hemorrhag* or haemorrhag* or bleed*).tw.
- 33 26 or/20-25
- 34 27 19 and 26
- 35 28 10 and (11 or 27)
- 36 29 (HAS-BLED or VTE-BLEED or DASH or HERDOO2 or Vienna).tw.
- 37 30 10 and (28 or 29)
- 38 31 animals) not humans/
- 39 32 30 not 31
- 40 33 limit 32 to english language/
- 41
- 42 Searches to identify economic evidence were run on 30th October 2018 in Medline, Medline
- 43 in Process, Embase, Econlit (Ovid platform) and NHS EED and the Health Technology
- 44 Database (Wiley platform). Economic evaluation and Quality of Life filters were attached to
- the above strategy for Medline and Embase databases. A single search to identify economic

evidence across all questions was re run on 9th April 2019. The Medline version of the filtersis displayed below.

2	1	Economics/
3	2	exp "Costs and Cost Analysis"/
4	3	Economics, Dental/
5	4	exp Economics, Hospital/
6	5	exp Economics, Medical/
7	6	Economics, Nursing/
8	7	Economics, Pharmaceutical/
9	8	Budgets/
10	9	exp Models, Economic/
11	10	Markov Chains/
12	11	Monte Carlo Method/
13	12	Decision Trees/
14	13	econom\$.tw.
15	14	cba.tw.
16	15	cea.tw.
17	16	cua.tw.
18	17	markov\$.tw.
19	18	(monte adj carlo).tw.


- 20 19 (decision adj3 (tree\$ or analys\$)).tw.
 21 20 (cost or costs or costing\$ or costly or costed).tw.
- 22 21 (price\$ or pricing\$).tw.
- 23 22 budget\$.tw.
- 24 23 expenditure\$.tw.
- 25 24 (value adj3 (money or monetary)).tw.
- 26 25 (pharmacoeconomic\$ or (pharmaco adj economic\$)).tw.
- 27 26 or/1-25

1 Quality of Life

2		
3	1	"Quality of Life"/
4	2	quality of life.tw.
5	3	"Value of Life"/
6	4	Quality-Adjusted Life Years/
7	5	quality adjusted life.tw.
8	6	(qaly\$ or qald\$ or qale\$ or qtime\$).tw.
9	7	disability adjusted life.tw.
10	8	daly\$.tw.
11	9	Health Status Indicators/ (22343)
12	10	(sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or
13		shortform thirtysix or shortform thirty six or short form thirtysix or short form thirty
14		six).tw.
15	11	(sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short
16 17	12	form six).tw.
18	12	(sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw.
19	13	(sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or
20	10	shortform sixteen or short form sixteen).tw.
21	14	(sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or
22		shortform twenty or short form twenty).tw.
23	15	(euroqol or euro qol or eq5d or eq 5d).tw.
24	16	(qol or hql or hqol or hrqol).tw.
25	17	(hye or hyes).tw.
26	18	health\$ year\$ equivalent\$.tw.
27	19	utilit\$.tw.
28	20	(hui or hui1 or hui2 or hui3).tw.
29	21	disutili\$.tw.
30	22	rosser.tw.
31	23	quality of wellbeing.tw.
32	24	quality of well-being.tw.
33	25	qwb.tw.
34 25	26	willingness to pay.tw.
35	27	standard gamble\$.tw.
36 37	28 29	time trade off.tw. time tradeoff.tw.
38	30	tto.tw.
39	31	or/1-30
00	01	
40		
41		
-		

1 Appendix D – Clinical evidence study selection

2

3 4

1 Appendix E – Clinical evidence tables

Author (year)	Title	Study details	Quality assessment
Author (year) Alatri (2017)	Title The Modified Ottawa Score and Clinical Events in Hospitalized Patients with Cancer-Associated Thrombosis from the Swiss VTE Registry	Study details Study type • Retrospective analysis of a prospective cohort Study details • Study location Switzerland • Study setting SWIVTER registry - containing data on VTE patients in 11 acute care hospitals in Switzerland. • Study dates November 2012 - February 2015 • Duration of follow-up 90 days • Sources of funding study was funded by the International Society on Thrombosis and Haemostasis (ISTH) 2007 Presidential Fund, Geneva, Sanofi-Aventis (Suisse) SA, Vernier; Bayer (Schweiz) AG, Zurich; Pfizer AG, Zurich; and Bristol-Myers Squibb AG, Cham, Switzerland. Inclusion criteria • VTE • active cancer Sample characteristics • Sample size 383 participants • Mean age (SD) 68 (SD14) years • VTE characteristics 65% received initial therapy with LMWH 33% received inital	Quality assessment Participant selection • Low risk of bias Predictors • Low risk of bias Identified retrospectively using database records, however predictors used in model were unlikely to have been recorded erroneously/not reported. Outcome • Low risk of bias Sample size and participant flow • High risk of bias Low number of participants with the event poses a risk of biased estimations of the model's predictive utility. Analysis • High risk of bias Adjustments performed for VTE-recurrence, but not major bleeding (with only the latter being extracted in this review due to the former not meeting the criteria for inclusion). Only the % experiencing the outcome was reported with no mention of model fit. Overall risk of bias • Moderate VTE-recurrence outcomes were adjusted for potentially confounding variables however major-bleeding outcomes were likely not adjusted. Additionally there were a low number of participants experiencing the event.

Author (year) Title Study details therapy with UFH 2% rec • % recurrent VTE 18.8% had a prior VTE • % hypertension	Quality assessment ed initial therapy with DOAC Directness
40.7% • % renal disease 13.6% renal failure • % active cancer 100%; 44.9% metastatic plan; 12.5% had lung car 55.1% active cancer • % chronic lung disease 15.7% • % chronic heart failure 18.5%; 7.8% had history • % life expectancy <6 m 26.9% • % chemotherapy/radiotl 25.6% chemotherapy 9.1 Prognostic factor(s) • MOS score Female sex: 1 point Lung cancer: 1 point Prior VTE: 1 point	• Directly applicable ease; 60.8% curative treatment ; 11.2% had breast cancer; troke/TIA is ipy adiohtherapy tastasis (stages 1 and 2 for solid

Author (year)	Title	Study details	Quality assessment
		International Society on Thrombosis and Haemostasis (ISTH) criteria as fatal bleeding, and/or symptomatic bleeding in a critical area or organ, such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular or pericardial, or intramuscular with compartment syndrome, and/or bleeding causing a fall in hemoglobin level of 2 g/dL or more, or leading to transfusion of two or more units of whole blood or red cells" Outcome measures • Sensitivity/specificity/Likelihood ratios 2x2 table possible	
Brown (2018)	Risk Stratification for Bleeding Complications in Patients With Venous Thromboembolism: Application of the HAS- BLED Bleeding Score During the First 6 Months of Anticoagulant Treatment	 Study type Retrospective cohort study Validation study using retrospective claims database Study details Study location USA Study setting Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases containing data on around 40million people from over 160 large employers in the USA Study dates database searched between 2010 to 2014; patients had to be diagnosed between January 1, 2010 and November 31, 2013 *Likely a typo and actually December Duration of follow-up up to 180 days Inclusion criteria VTE The date of the first qualifying diagnosis of VTE was defined as the index date, requiring that the diagnosis was in the primary position on an inpatient hospital record. VTE was 	 Participant selection High risk of bias Participants were identified using a claims database and therefore there is variability in how the index VTE or the major bleeding event was diagnosed and recorded. Predictors High risk of bias Study used a claims database and identified the presence of HAS-BLED predictors using ICD-9 codes, which therefore has the potential for poor reporting / recording. Outcome Low risk of bias Sample size and participant flow Low risk of bias Analysis Low risk of bias

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study details identified by International Classification of Disease, 9th revision (ICD-9) codes based on previously validated coding algorithms Exclusion criteria • <18 years	Quality assessment Overall risk of bias • Moderate This was a retrospective review using a claims database with potential for poor reporting/recording of outcome event and predictor variables. Directness • Directly applicable
1/	la na mala a sua la a lla alla a sua di la	agnosis, management and thrombophilia testing; ovidence	

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study details Abnormal renal function (on dialysis, a history of kidney transplantation, or serum creatinine values > 200 µmol/L): 1 point Stroke: 1 point Bleeding history or predisposition: 1 point Liable INR (time within therapeutic range < 60%): 1 point	Quality assessment

Author (year)	Title	Study details	Quality assessment
		Outcome measures • C-statistics C-indices (95% CI) for Cox PH and competing risks models, • HR Incremental Cause-Specific and Sub-Distribution Hazard Ratios Comparing HAS-BLED Scores Risk of Bleeding Events	
Carmona- Bayonas (2017)	Predicting serious complications in patients with cancer and pulmonary embolism using decision tree modelling: the EPIPHANY Index	Study type • Retrospective analysis of a prospective cohort Derivation study Study details • Study location Spain • Study setting 14 Spanish hospital taking part in the EPIPHANY registry • Study dates 2004 - 2015 Inclusion criteria • Acute PE cancer-associated PE, with PE diagnosed by objective imaging (CT angiography scans, high probability scintigraphy, or CT scheduled to assess tumour response or for other reasons). In case of multiple events, only one was considered to be the index PE, defined as the evaluable PE closest to the time of recruitment. The remaining PEs in the same patient were considered 'previous history' if they took place prior to the index PE, or 'recurrence', if subsequent to it. • active cancer withdrawn from the study if the PE had occurred more than 1 month prior to the diagnosis of cancer, or if more than 1 month had elapsed since completing adjuvant chemotherapy. Patients were also excluded if they had not received anticoagulant therapy without justification according to	Participant selection • Low risk of bias Predictors • High risk of bias Derivation study and therefore predictors were selected based upon relationship with outcome. Outcome • Low risk of bias Sample size and participant flow • High risk of bias <10 events per predictor originally entered into the model. Analysis • Low risk of bias Univariate analyses were (likely) performed however the final model took into consideration the weighting of each of the final variables with the outcome and potential interactions between the variables. Additionally the account for overfitting: "To cope with the overfitting and instability inherent to the decision tree, a 10-fold cross-validation procedure was applied. Thus, the data were randomly divided into 10 equal subsets. Trees were systematically built in 9 of those partitions (training subsets) and then tested in the remaining group (testing subset)."

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study details international clinical practice guidelines Sample characteristics Sample size 1075 %female 54.2% Mean age (SD) 64 (SD12) years % active cancer 100% 11.7% breast cancer 25.3% lung cancer % chronic heart failure 5.2% had chronic CVD % ECOG-PS status 2+ 47.1% % COPD 11.9% Prognostic factor(s) • EPIPHANY index Final model contained 6 variables: the Hestia-like CDR variable (any risk factor present vs none), ECOG-PS (o2 vs X2), oxygen saturation (o90 vs X90%), presence of PE-specific symptoms, previous tumour response evaluation (tumour progression, unknown, or not evaluated vs others), and prior surgical resection of primary tumour Outcome of interest • major bleeding Episodes in a critical location (intracranial, intraspinal, intraocular, retroperitoneal, or pericardial) associated with death; bleeding with hemoglobin levels of >2 g/dL, or bleeding requiring two units of packed red blood cells. Outcome measures • sensitivity/specificity/Likelihood ratios	Quality assessment Overall risk of bias • Moderate Derivation study retrospectively assessed using prospective data. A low event-per-predictor ratio suggests a risk of a biased estimation of the models predictive utility. Directness • Partially directly applicable Only included participants with cancer-associated PE and participants were excluded if PE occurred >1 months prior to cancer diagnosis or if >1 month had elapsed since completing adjuvant chemotherapy.
		· · ·	

Author (year)	Title	Study details	Quality assessment
Eichinger (2014)	D-dimer levels over time and the risk of recurrent venous thromboembolism: an update of the Vienna prediction model	 Study type Prospective cohort study analysis of a prospective study in which the original VIENNA model is tested again and expanded using measurements taken at 3 months after discontinuation of anticoagulation treatment to give a risk score at this point in time as well as the initial risk score given immediately following AC cessation. Study details Study location Austria Study setting 4 thrombosis centres in Vienna Study dates participants were enrolled between January 2000 and August 2008 Duration of follow-up followed for a median of 68 months. Venous blood was collected into 1/10 volume of trisodium citrate 0.11 mmol/L and was immediately centrifuged for 20 minutes at 2000g. The plasma was stored at -80 degrees C. baseline, that is, 3 weeks after discontinuation of vitamin K antagonists at the time when the prothrombin time had normalized, determination of antithrombin, protein C, and protein S, diagnosis of a lupus anticoagulant, and screening for factor V Leiden and for prothrombin G20210A were performed according to standard protocols. D-Dimer was determined by ELISA (Asserachrom D-Dimer, Boehringer Mannheim, Germany). Patients were seen 3 weeks (baseline) and 3, 9, 15, and 24 months after discontinuation of vitamin K antagonists. At these times blood for D-dimer measurement was obtained. Sources of funding This study was supported by the Oesterreichische Nationalbank (Jubil€aumsfonds) and the Medizinisch- 	Participant selection • High risk of bias Unclear whether participants were selected from the same pool as Eichinger 2010 (the original derivation study), therefore sample may be the same or have considerable overlap with original derivation study. Predictors • Low risk of bias Outcome • Low risk of bias Although technically a derivation study, the base model (VIENNA) was derived in a previous study (EICHINGER, 2010) and was tested here at different time points following AC discontinuation. Sample size and participant flow • Low risk of bias Overall risk of bias Overall risk of bias • Low

Author (year)	Title	Study details	Quality assessment
		Wissenschaftlicher Fonds des B€urgermeisters der Bundeshauptstadt Wien. The sponsors had no role in the design and conduct of the study; in the collection, management, analysis, or interpretation of the data; or in the preparation, review, or approval of the manuscript.	
		 Inclusion criteria VTE Patients with VTE provoked by surgery, trauma, pregnancy, or female hormone intake, with a natural inhibitor deficiency, the lupus anticoagulant, or cancer were excluded. Diagnosis of DVT was established by a positive finding on venography or colour duplex sonography. The diagnosis of PE was confirmed by spiral computed tomography or ventilation–perfusion scanning. Patients with both symptomatic PE and DVT were classified as having a PE. Also excluded patients with VTE provoked by a transient risk factor, as their recurrence risk is low and extended anticoagulation is not justified. received prior anticoagulation 3 months 	
		Sample characteristics • Sample size 553 participants • %female 39.6% • Mean age (SD) 53.4 years old *median age, mean not given • VTE characteristics distal DVT:16.1% proximal DVT: 38.5% PE with or without DVT in 45.4%. • % recurrent VTE 26.8% had recurrent VTE • average duration of AC treatment	

Author (year)	Title	Study details	Quality assessment
		median 6.7 months Prognostic factor(s) • VIENNA tool modified calculator available at: http://www.meduniwien.ac.at/user/georg.heinze/dvpm/	
		Outcome of interest • recurrent VTE The end point of the study was recurrent symptomatic DVT confirmed by venography or colour duplex sonography (in case of proximal thrombosis of the contralateral leg) or recurrent symptomatic PE, confirmed by ventilation–perfusion scanning and/or spiral computed tomography.	
Franco (2016)	A risk score for prediction of recurrence in patients with unprovoked venous thromboembolism (DAMOVES)	Study type • Prospective cohort study Study details • Study location Spain • Study setting departments of Internal Medicine at two centres in Spain • Study dates March 2004 to August 2013 • Duration of follow-up median 21.3 months Inclusion criteria • VTE "first unprovoked VTE who had been treated with oral anticoagulants for at least 3months were included." "Diagnosis of DVT was established by a positive finding on venography or colour duplex sonography. The diagnosis of PE was confirmed either by ventilation-perfusion scanning or by spiral computed tomography. Patients with symptomatic	 Participant selection Low risk of bias Predictors High risk of bias Derivation study therefore risk factors were entered into the model based on relationship with the outcome. Outcome Low risk of bias Sample size and participant flow Low risk of bias moderate number of events per predictor (9.29) Analysis Low risk of bias Model fit statistics were not investigated. "To validate the risk model we used an internal validation procedure based on bootstrap cross-validation in the following way: a new sample

Author (year)	Title	Study details	Quality assessment
		PE and DVT were classified as having a PE. All patients received low-molecular-weight heparin at therapeutic doses followed by acenocoumarol (target INR 2–3) for at least 3months. Patients entered the study at the time of discontinuation of oral anticoagulation."	of 398 subjects was created by randomly drawing (with replacement) a subject from those of the original cohort and the recurrence rate is estimated in the new dataset (thus, although statistically very unlikely, it is theoretically possible that a new sample formed by 1000 replication of the same subject could be created).
		• <18 years	Overall risk of bias
		• previous provoked VTE "Patients were excluded if they had VTE provoked by active cancer, surgery, trauma, immobility, previous hospitalization or pregnancy and the puerperium. VTE that occurred in association with hormonal therapy or a thrombophilic blood abnormality (protein C, protein S or antithrombin deficiency, homozygous factor V Leiden mutation, homozygous prothrombin G20210A mutation, anticardiolipin antibodies or lupus anticoagulant) were also excluded."	 Moderate Derivation study. Model fit statistics were not investigated however internal validation using bootstrapping was conducted. Directness Directly applicable
		Sample characteristics	
		• Sample size 398	
		• %female 45.5%	
		• Mean age (SD) 61.0 years *median, mean not given	
		• VTE characteristics 67.8% PE 20.8% proximal DVT 11.3% distal DVT 7.0 months median AC therapy.	
		Prognostic factor(s) • DAMOVES	
		Age, Sex, Obesity (yes vs. no), Abnormal D-dimer (yes, no, not performed), factor VIII count, genetic thrombosphilia (yes vs. no), varicose veins (yes vs. no) *Some variables are entered as continuous data and	

Author (year)	Title	Study details	Quality assessment
		therefore an online tool is required for points. Outcome of interest • recurrent VTE The end point of the study was recurrent symptomatic DVT by venography or colour duplex sonography or recurrent symptomatic PE confirmed by ventilation-perfusion scanning and/or spiral computed tomography. Outcome measures • OR • sensitivity/specificity/Likelihood ratios • AUC	
Kresoja (2019)	Prediction and prognostic importance of in-hospital major bleeding in a real-world cohort of patients with pulmonary embolism	Study type • Prospective cohort study Study details • Study location Germany • Study setting University of Gottingen Heart Centre • Study dates September 2008 to November 2016 Inclusion criteria • Acute PE confirmed by CTPA or VQ scan and to be treated with AC Exclusion criteria • <18 years • incomplete follow-up data • received thrombolysis treatment or was included in the PEITHO study, AMPLIFY study. • Included more than once in the study database (initial PE only was taken for this study)	 Participant selection Low risk of bias prospective cohort study Predictors Low risk of bias Patients were recruited prospective however calculation of risk scores was done retrospectively, missing data was considered to be normal, and it is unclear how many participants had missing data. Outcome Low risk of bias Sample size and participant flow High risk of bias Low number of participants with the event. Analysis Low risk of bias

Author (year)	Title	Study details	Quality assessment
		 Treatment with surgical embolectomy or interventional approaches subsegmental PE and other acute cardiac, respiratory or inflammatory disease responsible for symptoms and hemodynamic status on admission. Sample characteristics Sample size 522 %female 53% Mean age (SD) median 69 (IQR 56-78) years VTE characteristics 62% unprovoked PE % recurrent VTE 12% had a prior VTE % liver disease 3.7% known liver disease % bleeding history 4.7% % active cancer 17% % chronic heart failure 16% Prognostic factor(s) HAS-BLED >160 mmHg systolic blood pressure: 1 point Abnormal liver function (history of cirrhosis, or bilirubin > 2x the upper limit of normal in association with aspartate aminotransferase/alanine aminotransferase/ alkaline phosphatase levels > 3x the upper limit of normal): 1 point 	Overall risk of bias • Moderate Low number of participants experienced the event and scores were calculated retrospectively. Directness • Partially directly applicable Prediction is limited to short term, in-hospital major bleeding.

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study detailsAbnormal renal function (on dialysis, a history of kidney transplantation, or serum creatinine values > 200 μmol/L): 1 pointStroke: 1 pointBleeding history or predisposition: 1 point Liable INR (time within therapeutic range < 60%): 1 pointAge 65 years+: 1 point Drug use (platelet inhibitors or NSAIDS): 1 point Alcohol abuse (>8 units/week): 1 point	Quality assessment
		Low risk: 0 points	
		Moderate risk: 1-2 points	
		High risk 3+ points	
		 VTE-BLEED Active cancer: 2 points Male with uncontrolled arterial hypertension: 1 points Anaemia: 1.5 points History of bleeding: 1.5 points Age ≥60 years old: 1.5 points Renal dysfunction: 1.5 points 	
		Low risk: 0-1	
		High risk: 2+	
		Outcome of interest • major bleeding	
		Defined using Control of Anticoagulation Subcommitteee of the international Society on Thrombosis and Hemostasis	

Author (year)	Title	Study details	Quality assessment
		Outcome measures sensitivity/specificity/Likelihood ratios AUC 	
Klok (2016)	Performance of five different bleeding-prediction scores in patients with acute pulmonary embolism	Study type • Prospective cohort study Study details • Study location Germany • Study setting University of Gottingen Heart Centre • Study dates October 2005 - July 2014 Inclusion criteria • Acute PE confirmed by CTPA or VQ scan and to be treated with VKA Exclusion criteria • <18 years Sample characteristics • Sample size 665; 448 with >30 days data • %female 55% • Mean age (SD) 64 (SD 17) years • VTE characteristics 51% unprovoked VTE • % recurrent VTE 30% had a prior VTE • % hypertension 59% • % renal disease	Participant selection • Low risk of bias prospective cohort study Predictors • Low risk of bias calculated prospectively. However, HEMORR2HAGES outcomes specifically were marked down as checks were not made for the presence of CYP 2C9 single-nucleotide polymorphisms which constitute a part of this tool. Outcome • Low risk of bias primary endpoint of study Sample size and participant flow • High risk of bias Low number of participants with the event. Analysis • Low risk of bias • Moderate Low number of participants experienced the event. Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study details 6.7% known renal insufficiency • % liver disease 2.5% known liver disease • % bleeding history 1.6% • % active cancer 18% • % chronic heart failure 18% Prognostic factor(s) • HAS-BLED >160 mmHg systolic blood pressure: 1 point Abnormal liver function (history of cirrhosis, or bilirubin > 2x the upper limit of normal in association with aspartate aminotransferase/alanine aminotransferase/ alkaline phosphatase levels > 3x the upper limit of normal): 1 point Abnormal renal function (on dialysis, a history of kidney transplantation, or serum creatinine values > 200 µmol/L): 1 point Stroke: 1 point	Quality assessment
		Age 65 years+: 1 point Drug use (platelet inhibitors or NSAIDS): 1 point Alcohol abuse (>8 units/week): 1 point	
		Low risk: 0 points Moderate risk: 1-2 points High risk 3+ points	
		RIETE score 1	

Author (year)	Title	Study details	Quality assessment
		Recent bleeding: 2 points	
		Abnormal renal function (Creatinine levels >1.2	
		mg/dl): 1.5 points	
		Anemia: 1.5 points	
		Age >75 years: 1 point	
		Active malignancy: 1 point	
		PE diagnosis: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-4 points	
		High risk >4 points	
		• Kuijer score	
		Age >60 years: 1.6 points	
		Female sex: 1.3 points	
		Malignancy: 2.2 points	
		Low risk = 0 points Moderate risk = 1-2 points High	
		risk = 3+ points	
		• HEMORR2HAGES	
		Hepatic or renal disease: 1 point	
		Ethanol abuse: 1 point	
		Malignancy: 1 point	
		Age 75 years plus: 1 point	
		Reduced platelet count or function: 1 point	
		Prior bleeding: 2 points	
		Hypertension: 1 point	
		Anemia: 1 point	
		Genetic factors (CYP2C9 single-nucleotide	
		polymorphisms): 1 point Excessive fall risk: 1 point	

Author (year)	Title	Study details	Quality assessment
		Prior stroke/TIA: 1 point	
		Low risk: 0-1 points	
		Moderate risk: 2-3 points	
		High risk >3 points	
		ATRIA score	
		Anemia: 3 points	
		severe renal disease (GFR < 30 mL min-1 or dialysis-dependent): 3 points	
		75 years+: 2 points	
		previous bleed: 1 point	
		hypertension: 1 point	
		Low risk: 0.2 points	
		Low risk: 0-3 points Moderate risk: 4 points	
		High risk: 5-10 points	
		Outcome of interest	
		• major bleeding	
		Defined using Control of Anticoagulation Subcommitteee of the international Society on Thrombosis and Hemostasis	
		Outcome measures	
		 sensitivity/specificity/Likelihood ratios 	
Klok (2017)	External validation of the	Study type	Participant selection
	VTE-BLEED score for predicting major bleeding in	Retrospective analysis of a prospective cohort	Low risk of bias
	stable anticoagulated	using data from the HOKUSAI-VTE	
	patients with venous		
	thromboembolism	Study details	
		Study location	
		,	

Author (year)	Title	Study details	Quality assessment
		37 countries	Predictors
		Study setting	 Low risk of bias
		439 centres	
		Study dates	
		The Hokusai-VTE study was between January 28, 2010,	Outcome
		and October 31, 2012	• High risk of bias
		Duration of follow-up	only bleeding events occurring after 30 days of treatment
		12 months	were counted. However, it was also noted that only bleeds
			occurring "on-treatment" were considered
		Inclusion criteria	
		• VTE	Sample size and participant flow
		enrolled in HOKUSAI-VTE trial	Low risk of bias
		Inclusion criteria • ≥18 years • Objectively confirmed	
		symptomatic DVT or PE Exclusion criteria •	
		Contraindication(s) for study drugs • Creatinine clearance	Analysis
		<30ml/min • Active cancer with long-term LMWH treatment	Low risk of bias
		planned • Other indication requiring long-term	
		anticoagulation • received therapeutic doses of any heparin	
		for >48 hours, prior randomization or had one dose of VKA	Overall risk of bias
		Continued to receive aspirin for >100mg daily or received	Moderate
		dual platelet therapy	only included bleeding events after the first 30 days of
			treatment.
		Sample characteristics	
		Sample size	Directness
		8,240	Directly applicable
		• Mean age (SD)	
		55.8 (16) years	
		• VTE characteristics	
		40% PE and DVT 60% DVT only	
		• % hypertension	

Author (year)	Title	Study details	Quality assessment
		26% arterial hypertension	
		• % renal disease	
		11% renal dysfunction	
		% bleeding history	
		1% history of bleeding	
		• % active cancer	
		2.5% active cancer	
		Prognostic factor(s)	
		• VTE-BLEED	
		Active cancer: 2 points	
		Male with uncontrolled arterial hypertension: 1 points	
		Anaemia: 1.5 points	
		History of bleeding: 1.5 points	
		Age ≥60 years old: 1.5 points	
		Renal dysfunction: 1.5 points	
		Low risk: 0-1	
		High risk: 2+	
		Cancer: diagnosed within 6 months before diagnosis of	
		venous thromboembolism (VTE) (excluding basal-cell or squamous-cell carcinoma of the skin), recently recurrent or	
		progressive cancer or any cancer that required anti-cancer	
		treatment within 6 months before the VTE was diagnosed.	
		Hypertension: defined as systolic blood pressure \geq 140 mmHg at baseline.	
		Anemia: Haemoglobin <130 g/l in men or <120 g/l in women.	
		History of bleeding: Including prior major or non-major	
		clinically relevant bleeding event, rectal bleeding, frequent nose bleeding, or haematuria.	

Author (year)	Title	Study details	Quality assessment
		Renal dysfunction: An estimated glomerular filtration rate (eGRF) <60 ml/min defined the presence of renal dysfunction: eGRF was calculated at baseline with the Cockcroft-Gault formula, which include serum creatinine, age, and body weight.	
		Outcome of interest • Major bleeding Bleeding was defined as major if it was overt and was associated with a decrease in haemoglobin of 2 g per decilitre or more, or required a transfusion of two or more units of blood, occurred in a critical site (i. e. intracranial, intraspinal, intraocular, pericardial, intra-articular, intramuscular with compartment syndrome, retroperitoneal), or contributed to death, based on the on the criteria of the International Society on Thrombosis and Hemostasis (ISTH) (12). All bleeding events were adjudicated by the independent Clinical Events Committee whose members were unaware of the treatment assignment. Only bleeds occurring on-treatment and after the first 30 days following randomisation were considered. Only bleed	
		Outcome measures • C-statistics • OR • sensitivity/specificity/Likelihood ratios	
Klok (2018)	Predictive value of venous thromboembolism (VTE)- BLEED to predict major bleeding and other adverse events in a practice-based	Study type • Prospective cohort study Study details	Participant selection • High risk of bias participants were excluded if they died, had a VTE recurrence or a major bleed in the first 30 days. There is a particularly high risk of bleeding in the first 30 days and this

Author (year)	Title	Study details	Quality assessment
Author (year)	Title cohort of patients with VTE: results of the XALIA study	 Study location: 21 countries Duration of follow-up Patients were followed for at least 12 months or until they died. Study dates June 2012 - March 2014 Inclusion criteria DVT DVT was confirmed according to current diagnostic standards. Exclusion criteria <18 years did not use AC treatment beyond first 30 days those switching drug early those switching drug early those who received a vitamin K antagonist for 1–14 days or parenteral anticoagulation for 3–14 days before they were switched to rivaroxaban ('early switchers')	Quality assessment censoring may bias predictive estimates. Predictors • Low risk of bias Outcome • Low risk of bias All outcome events were adjudicated by the independent Clinical Events Committee whose members were unaware of the treatment assignment. Sample size and participant flow • Low risk of bias Analysis • High risk of bias over 30% of participants had missing data for haemoglobin, systolic blood pressure and eGFR, each. Furthermore there were only 39 major bleeding events reported which poses a risk of wrongly estimating the models predictive ability
		Sample characteristics • Sample size 4457; 804 received lowered dose after 30 day period and were excluded from sensitivity analysis which included remaining 3653 participants. • %female 46%	 risk of wrongly estimating the models predictive ability Overall risk of bias High participants with events in the first 30 days were excluded and there was a large amount of missing data for predictor variables of the model.
		 VTE characteristics DVT only; 90% DVT + PE: 9.8% active cancer 11% average duration of AC treatment participants were treated with either rivaroxaban or conventional anticoagulation therapy, starting with a course of parenteral anticoagulants, usually followed by a vitamin K antagonist. The decision to treat a patient with rivaroxaban or conventional anticoagulants was at the attending physician's discretion. 	Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
		 % hypertension Mean systolic blood pressure 137 mmHG (SD19), 2179 participant had missing data. haemoglobin mean 140 g/l. 1731 had missing data. first eGFR reading <30 ml/min: 1.4% 30-50 ml/min: 5.0% 50 ml/min or greater 58% 1601 participants missing 	
		Prognostic factor(s) • VTE-BLEED Active cancer: 2 points Male with uncontrolled arterial hypertension: 1 points Anaemia: 1.5 points History of bleeding: 1.5 points Age ≥60 years old: 1.5 points Renal dysfunction: 1.5 points	
		Low risk: 0-1 High risk: 2+ Cancer: diagnosed within 6 months before diagnosis of venous thromboembolism (VTE) (excluding basal-cell or squamous-cell carcinoma of the skin), recently recurrent or progressive cancer or any cancer that required anti-cancer	
		treatment within 6 months before the VTE was diagnosed. Hypertension: defined as systolic blood pressure ≥140 mmHg at baseline. Anemia: Haemoglobin <130 g/l in men or <120 g/l in women. History of bleeding: Including prior major or non-major clinically relevant bleeding event, rectal bleeding, frequent nose bleeding, or haematuria. Renal dysfunction: An estimated glomerular filtration rate (eGRF) <60 ml/min defined the presence of renal	

Author (year)	Title	Study details	Quality assessment
		dysfunction: eGRF was calculated at baseline with the Cockcroft-Gault formula, which include serum creatinine, age, and body weight. Outcome of interest	
		• major bleeding Major bleeding was defined as overt bleeding associated with a decrease in haemoglobin of 20 g/l or more, or requiring a transfusion of two or more units of blood (or red blood cell concentrates), occurred in a critical site (i.e. intracranial, intraspinal, intraocular, pericardial, intra-articular, intramuscular with compartment syndrome, retroperitoneal), or contributed to death, based on the on the criteria of the International Society on Thrombosis and Haemostasis (ISTH) (Schulman & Kearon, 2005). Only treatment-emergent events, i.e. events occurring up to 2 days after terminating active anticoagulant treatment, were included in this post-hoc analysis.	
		Outcome measures • C-statistics • HR crude and adjusted HR for score of 2+ • OR Crude and adjusted OR for 1-point score increase • sensitivity/specificity/Likelihood ratios 2x2 table possible	
Kooiman (2015)	The HAS-BLED Score Identifies Patients with Acute Venous Thromboembolism at High Risk of Major Bleeding Complications during the First Six Months of Anticoagulant Treatment	Study type • Retrospective cohort study Study details • Study location The Netherlands • Study setting Medical records from two sources (i.e. the three hospitals	Participant selection • High risk of bias retrospective chart review Predictors • High risk of bias The medical records of 388 of 537 patients lacked information on one or more items of the HAS-BLED score,

Author (year)	Title	Study details	Quality assessment
		and the Leiden anticoagulation clinic) were searched for information on patient characteristics at baseline, INR-values, major bleeding complications, and items on the HAS-BLED score. • Study dates starting VKA treatment between 2006 and 2007 • Duration of follow-up 180 days (6 months); median follow-up 179 days Inclusion criteria • VTE VTE diagnosis was objectified by computed tomographypulmonary angiography or ultrasound. Sample characteristics • Sample size 537 • %female • Mean age (SD) PE patients: 60.8 years DVT: 57.8 years • VTE characteristics 41.5% PE 58.5% DVT • % hypertension 31% • % renal disease PE patients: 3.6% DVT patients: 1.0% • % liver disease 1.0% • % bleeding history 3.5% • % NSAIDS/ antiplatelet use 11.2% Prognostic factor(s) • HAS-BLED >160 mmHg systolic blood pressure: 1 point	most frequently on alcohol use (331/537 patients). Outcome • Low risk of bias Participants were censored if they discontinued treatment. Sample size and participant flow • Low risk of bias Analysis • High risk of bias Low event rate suggests that the study was underpowered to estimate predictive validity of risk tool Overall risk of bias • High Retrospective study with a low event rate and missing data for one or more predictors for many participants Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
		Abnormal liver function (history of cirrhosis, or bilirubin > 2x the upper limit of normal in association with aspartate aminotransferase/alanine aminotransferase/ alkaline phosphatase levels > 3x the upper limit of normal): 1 point Abnormal renal function (on dialysis, a history of kidney transplantation, or serum creatinine values > 200 µmol/L): 1 point Stroke: 1 point Bleeding history or predisposition: 1 point Liable INR (time within therapeutic range < 60%): 1 point	
		Age 65 years+: 1 point	
		Drug use (platelet inhibitors or NSAIDS): 1 point Alcohol abuse (>8 units/week): 1 point	
		Low risk: 0 points Moderate risk: 1-2 points	
		High risk 3+ points	
		Items were assessed at time of diagnosis of acute VTE, except for labile INR.	
		Laboratory measurements on renal and liver function were recorded up to six months prior to diagnosis of acute VTE, with a preference for the values closest to the day of VTE diagnosis. Missing variables on the HAS-BLED score were scored as normal.	
		Outcome of interest • major bleeding The primary outcome was the occurrence of major bleeding events, defined by the International Society of Thrombosis and Hemostasis (ISTH) criteria; i.e. fatal bleeding; bleeding causing a drop in hemoglobin of at least 1.24 mmol/L; or requiring transfusion of at least 2 units of whole blood or red cells; or symptomatic bleeding in a critical organ or area (i.e.	

Author (year)	Title	Study details	Quality assessment
		intracranial, intraocular, intraspinal, retroperitoneal, intra- articular, pericardial or intramuscular with accompanying compartment syndrome).	
		Outcome measures • HR • sensitivity/specificity/Likelihood ratios	
Kuijer (1999)	Prediction of the risk of bleeding during anticoagulant treatment for venous thromboembolism	Study type • Retrospective analysis of a prospective cohort This study included a derviation, internal validation and validation study, only the validation study (Performed on a separate participant group) was extracted as the former did not meet the PICO (sample size <250 participants), risk of bias was adjusted for this underpowering of initial model. Study details • Study setting Data for the present analysis were derived from the database of the Columbus Investigators study • Study dates The recruitment of patients began in November 1994 and ended in October 1995. The follow-up of the patients was completed in February 1996 • Follow-up 3 months	 Participant selection High risk of bias taken from an RCT comparing different types of anticoagulants for which bleeding risk is not comparable Predictors Low risk of bias Outcome Low risk of bias Outcomes were assessed by an independent adjudication committee that was unaware of treatment allocation. Sample size and participant flow High risk of bias both the derivation (<10 events per predictor) and validation cohorts were very underpowered (<100 events)
		Inclusion criteria • VTE in the Columbus investigators study !consecutive patients with objectively confirmed VTE were randomly allocated to	Analysis • High risk of bias AC used was not controlled for and model fit was not assessed.
		receive an initial treatment with either subcutaneous low- molecular-weight heparin, reviparin sodium (Clivarin; Knoll AG, Ludwigshafen, Germany), 175 anti-factor Xa U/kg twice daily, or continuous intravenous unfractionated heparin with dose adjustments according to activated partial	Overall risk of bias • High Participants were recruited from an RCT comparing RCT drugs for bleeding risk, drug used was not controlled for in

del. Model and validation were very underpowered vents.
pplicable

Author (year)	Title	Study details	Quality assessment
		intracranial, or if it warranted permanent discontinuation of treatment Outcome measures • sensitivity/specificity/Likelihood ratios 2x2 table possible	
Marcucci (2015)	Risk of recurrence after a first unprovoked venous thromboembolism: external validation of the Vienna Prediction Model with pooled individual patient data	Study type • Prospective cohort study validation model using data from 5 prospective studies (independent of the original VIENNA derivation cohort) Study details • Study location * secondary analysis of 5 prospective cohort studies • Study dates studies published between 2003 and 2013 • Duration of follow-up The overall median post anticoagulation follow-up was 22 months (25th, 75th percentiles: 14 months, 29 months) Inclusion criteria • VTE treated for at least 3 months Exclusion criteria • patient specific exclusion criteria missing or insufficient data for VIENNA model to be applied; • study specific exclusion criteria original VIENNA studies; Not a prospective cohort study; Sample characteristics • Sample size 904 • %female 39.5% female	Participant selection • High risk of bias secondary analysis of 5 studies varying in publication time from 2003 to 2013. Unclear variance / heterogeneity of prediction tool between the different cohorts. Predictors • Low risk of bias Outcome • Low risk of bias Sample size and participant flow • Low risk of bias Overall risk of bias • Low risk of bias Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
		 Mean age (SD) 68 years *median age, mean not given. 59% aged over 65 years. VTE characteristics 32.2% PE with or without DVT 66.5% proximal DVT 1.3% distal DVT % recurrent VTE 13.6% Prognostic factor(s) VIENNA tool Considers D-dimer (as a continuous variable), age and index VTE location (distal DVT versus proximal DVT/PE) Outcome of interest recurrent VTE All outcome events were objectively confirmed by compression ultrasound, lung scanning, or computed tomography. 	
Nieto (2013)	Validation of a score for predicting fatal bleeding in patients receiving anticoagulation for venous thromboembolism	Study type • Retrospective analysis of a prospective cohort analysis using the RIETE registry (observational registry of consecutive VTE patients) Study details • Study location 12 countries (Spain, Italy, France, Israel, Portugal, Germany, Switzerland, Czech Republic, Macedonia, United States, Brazil and Ecuador) • Study setting analysis of RIETE registry • Study dates from database's inception (2001) to December 2011 • Duration of follow-up After discharge, all patients were followed-up for up to 3	Participant selection • Low risk of bias retrospective analysis however the data of RIETE was collected prospectively. Predictors • Low risk of bias Outcome • Low risk of bias Sample size and participant flow • Low risk of bias

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study details months in the outpatient clinic. During each visit, any signs or symptoms suggesting either DVT or PE recurrences or bleeding complications were noted. Most outcomes were classified as reported by the clinical centers. Inclusion criteria • VTE RIETE included consecutive patients with symptomatic, acute deep vein thrombosis (DVT) or pulmonary embolism (PE), confirmed by objective tests (contrast venography or ultrasonography for suspected DVT; pulmonary angiography, lung scintigraphy, or helical computed tomography scan for suspected PE) Exclusion criteria • Did not receive AC therapy • participating in a trial with a blinded therapy • included in prior derivation study Sample characteristics • Sample size 15,206 • %female 51% female • Mean age (SD) 35% over 75 years of age *mean age not given • VTE characteristics PE: 51% Bilateral DVT: 3.8% Distal DVT 11% • Anemia 55% • Low platelet count 2.5% • abnormal prothrombin time	Quality assessment Analysis • Low risk of bias however the event rate for fatal bleeding specifically is quite low and runs the risk of a biased estimate of predicitve ability. Overall risk of bias • Low Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
		 7.4% Prognostic factor(s) RIETE score 2 Immobility ≥4 days: defined as non-surgical patients who were confined to bed with bathroom privileges for ≥4 days in the 2-months prior to VTE diagnosis Recent major bleeding: major bleeding less than 30 days before VTE diagnosis Anemia: defined as hemoglobin b13 g/dL in men or b12 g/dL in women. Outcome of interest major bleeding Major bleeding was defined as an overt bleed that required a transfusion of 2 or more units of blood, was retroperitoneal, spinal or intracranial, or was fatal. The causes of death were assigned by their attending physicians. Fatal bleeding any death occurring within 7 days of a major bleeding episode, in the absence of an alternative cause of death. Outcome measures C-statistics for both fatal and all major bleeding sensitivity/specificity/Likelihood ratios for fatal bleeding alone 	
Palareti (2018)	The American College of Chest Physician score to assess the risk of bleeding during anticoagulation in patients with venous thromboembolism	Study type • Retrospective analysis of a prospective cohort The START2 Register is an observational, multicentre, dynamic cohort study that enrolled adults (aged at least 18 years) who started anticoagulation therapy, whatever the	Participant selection • Low risk of bias Predictors • Unclear risk of bias unclear whether weighting was same as original model,

Author (year)	Title	Study details	Quality assessment
		drug and dosage used.	limited reporting of missing data.
		Study details • Study location Italy • Study setting START2 register • Study dates database inception until July 2017 • Duration of follow-up database inception until July 2017; median follow-up 12 months Inclusion criteria • VTE first DVT episode of the lower limb and/or PE, taking anticoagulation therapy but for no more than 30 days at time of enrolment. A small number (n = 49) of the patients were treated for recurrent superficial vein thrombosis, a potential indication for extended anticoagulation according to the Italian Federation of Anticoagulation Clinics, and they were also included in the study. • expected follow-up of at least 12 months Exclusion criteria • <18 years Sample characteristics • Sample size 2,263 • %female 48.7% female • Mean age (SD) 67 (IQR 51 - 77) years *Median; mean value not given 29.3% >75 years • VTE characteristics	Outcome • Low risk of bias All documented bleeding events were reviewed centrally by an independent committee blinded to patients' characteristics and to other variables. Sample size and participant flow • High risk of bias low event rate for major bleeding suggests a risk of the model's predictive utility being wrongly estimated. Analysis • Low risk of bias Overall risk of bias • Moderate unclear reporting on missing data for predictor variable and low event rate. Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	 56.6% DVT only 20.9% DVT + PE 20.3% isolated PE 68.2% unprovoked VTE % renal disease 25.7% had CrCl<30-60 mL min-1 % liver disease 2.9% had history of liver failure % NSAIDS/ antiplatelet use 0.5% NSAID use 4.0% antiplatelet use Anemia 3.5% % active cancer 7.7% Prognostic factor(s) ACCP age 66–75 year: 1 point age > 75 years: 2 points previous major bleeding: 1 point cancer (active) : 1 point metastatic cancer: 1 point renal failure (reported in the history) : 1 point liver failure (reported in the history) : 1 point thrombocytopenia (< 100 000) : 1 point previous stroke/TIA: 1 point diabetes anemia (Hb < 10) : 1 point antiplatelet therapy: 1 point poor anticoagulant control (time spent in the therapeutic range < 60%): 1 point comorbidity recent surgery (within 3 months from index 	Quality assessment
		event) : 1 point frequent falls (≥ 2 in the last year) : 1 point alcohol abuse (reported in the history) : 1 point	
		non-steroidal anti-inflammatory drugs use : 1 point	

Author (year)	Title	Study details	Quality assessment
		Low risk: 0 Moderate risk: 1 High risk: 2+ Outcome of interest • major bleeding MB was defined according to the International Society on Thrombosis and Haemostasis criteria [14]) as: fatal, symptomatic in a critical organ (intracranial, intraspinal, intraocular, retroperitoneal, intraarticular, intramuscular with compartment syndrome, pericardial), or causing a fall in the hemoglobin level of at least 2 g/dl or leading to transfusion of at least two units of whole blood or red cells. Outcome measures • sensitivity/specificity/Likelihood ratios 2x2 tables available. • C-statistics Extracted for overall predictive classification and not for low, moderate and high risk individually.	
Piovella (2014)	Comparison of four scores to predict major bleeding in patients receiving anticoagulation for venous thromboembolism: findings from the RIETE registry	 Study type Retrospective analysis of a prospective cohort Study details Study Location Spain, France, Italy, Israel, Argentina 	 Participant selection Low risk of bias Predictors Low risk of bias High risk for RIETE 1 tool as there is potential that it is being validated using the same same as it was derived

Author (year)	Title	Study details	Quality assessment
		 Study setting Data from the RIETE registry. Duration of follow-up 90 days 	from. Outcome • Low risk of bias
		Inclusion criteria • VTE • At least 3 months follow-up • receiving treatment for VTE • data available for all variables of tools assessed	Sample size and participant flow • Low risk of bias
			Analysis • Low risk of bias
		Sample characteristics	
		 Sample size 8,576 %female 52% 	Overall risk of bias • Low
		• Mean age (SD) <i>66 (SD 18) years</i>	Directness • Directly applicable
		Prognostic factor(s) • RIETE score 1 • Kuijer score • Outpatient bleeding risk index	
		Outcome of interest • major bleeding Bleeding was defined as major if it was clinically overt and pageosis management and thrombophilis testing; evidence	

Author (year)	Title	Study details	Quality assessment
		associated with a need for transfusion of two units or more of red blood cells, if it was retroperitoneal or intracranial, if it warranted permanent discontinuation of treatment, or it was fatal. Final classification was based on the full consensus of this committee.	
		Outcome measures • C-statistics • sensitivity/specificity/Likelihood ratios *Note that sensitivity/specificity and likelihood ratios were calculated from the raw data rather than using the accuracy data provided in the paper.	
Poli (2013)	The predictive ability of bleeding risk stratification models in very old patients on vitamin K antagonist treatment for venous thromboembolism: Results of the prospective collaborative EPICA study	 Study type Retrospective analysis of a prospective cohort Study details Study location Italy Study setting Twenty-seven centres affiliated to the Italian Federation of Anticoagulation Clinics participated in the EPICA Study, which prospectively followed 4093 very elderly patients who started vitamin K antagonist (VKA) treatment after the age of 80 years for either atrial fibrillation (AF) or VTE. Inclusion criteria VTE over 80 years of age receiving treatment for VTE unclear whether participants are receiving AC prophylaxis or treatment. 	 Participant selection High risk of bias Participants were selected from a VTE and/or atrial fibrillation trial, with only the VTE participants retained. It is unclear how long these participants have been on treatment at the point of enrolment. Predictors Unclear risk of bias unclear whether any data were missing Outcome Low risk of bias Sample size and participant flow High risk of bias low number of events suggests that study risks biased estimated of tools' predictive values.

Author (year)	Title	Study details	Quality assessment
		Sample characteristics • Sample size 1,078 • %female 62.8% female • Mean age (SD) 84 years (range 80-89) * median, mean not given • % hypertension 62.9% • % NSAIDS/ antiplatelet use 5.1% • % active cancer 10.1% Prognostic factor(s) • HAS-BLED >160 mmHg systolic blood pressure: 1 point Abnormal liver function (history of cirrhosis, or bilirubin > 2x the upper limit of normal in association with aspartate aminotransferase/alanine aminotransferase/ alkaline phosphatase levels > 3x the upper limit of normal): 1 point Abnormal renal function (on dialysis, a history of kidney transplantation, or serum creatinine values > 200 μmol/L): 1 point Stroke: 1 point Bleeding history or predisposition: 1 point Liable INR (time within therapeutic range < 60%): 1 point Age 65 years+: 1 point Drug use (platelet inhibitors or NSAIDS): 1 point Alcohol abuse (>8 units/week): 1 point	Analysis • Low risk of bias Overall risk of bias • High Unclear length of AC time at point of enrolment and low event rate poses risk of wrongly estimating the predictive utility of models Directness • Partially directly applicable study suggests that participants were receiving secondary prevention for VTE, it is likely that participants had already received treatment at point of enrolment.

Author (year)	Title	Study details	Quality assessment
		Moderate risk: 1-2 points	
		High risk 3+ points	
		• ACCP	
		age 66–75 year: 1 point	
		age > 75 years: 2 points	
		previous major bleeding: 1 point	
		cancer (active) : 1 point	
		metastatic cancer: 1 point renal failure (CrCl < 30–60 mL min-1) : 1 point	
		liver failure (reported in the history) : 1 point	
		thrombocytopenia (< 100 000) : 1 point	
		previous stroke/TIA: 1 point	
		diabetes anemia (Hb < 10) : 1 point	
		antiplatelet therapy: 1 point	
		poor anticoagulant control (time spent in the	
		therapeutic range < 60%): 1 point	
		comorbidity recent surgery (within 3 months from	
		index event) : 1 point	
		frequent falls (≥ 2 in the last year) : 1 point alcohol abuse (reported in the history) : 1 point	
		non-steroidal anti-inflammatory drugs use : 1 point	
		non-steroidaí anti-innanimatory drugs use . I point	
		Low risk: 0	
		Moderate risk: 1	
		High risk: 2+	
		RIETE score 1	
		Recent bleeding: 2 points	
		Abnormal renal function (Creatinine levels >1.2	
		mg/dl): 1.5 points	
		Anemia: 1.5 points	

Author (year)	Title	Study details	Quality assessment
		Age >75 years: 1 point	
		Active malignancy: 1 point	
		PE diagnosis: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-4 points	
		High risk >4 points	
		• OBRI	
		Age 65 years+: 1 point	
		Previous stroke: 1 point	
		GI bleeding in the last 2 weeks: 1 point	
		Recent MI, anemia (hematocrit <30%) or renal	
		insufficiency (creatinine >1.5mg/dl): 1 point	
		Creatinine >1.5mg dL-1: 1 point	
		diabetes mellitus: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-2 points	
		High risk: 3+ points	
		• HEMORR2HAGES	
		Hepatic or renal disease: 1 point	
		Ethanol abuse: 1 point	
		Malignancy: 1 point	
		Age 75 years plus: 1 point	
		Reduced platelet count or function: 1 point	
		Prior bleeding: 2 points	
		Hypertension: 1 point	
		Anemia: 1 point	
		Genetic factors (CYP2C9 single-nucleotide	
		polymorphisms): 1 point	

Author (year)	Title	Study details	Quality assessment
		Excessive fall risk: 1 point Prior stroke/TIA: 1 point	
		Low risk: 0-1 points Moderate risk: 2-3 points High risk >3 points	
		 ATRIA score Anemia: 3 points severe renal disease (GFR < 30 mL min-1 or dialysis-dependent): 3 points 75 years+: 2 points previous bleed: 1 point hypertension: 1 point Low risk: 0-3 points Moderate risk: 4 points High risk: 5-10 points 	
		Outcome of interest • major bleeding Outcome measures • C-statistics	
Riva (2014)	Poor predictive value of contemporary bleeding risk scores during long-term treatment of venous thromboembolism. A multicentre retrospective cohort study	Study type • Retrospective cohort study retrospective chart review of all patients with acute VTE referred to the Anticoagulation Clinics of five Italian hospitals	 Participant selection Low risk of bias Predictors High risk of bias retrospective chart review therefore there is the potential for

Author (year)	Title	Study details	Quality assessment
		Study details	unclear reporting (or misreporting) of the various variables
		Study location	used in the tools.
		Italy	
		Study setting	
		five Italian hospitals	Outcome
		Study dates	Low risk of bias
		January 2010 to August 2012	
		Duration of follow-up	
		Mean (SD) follow up was 8.82 (3.59) months	Sample size and participant flow
			High risk of bias
			very low number of participants with major bleeding events
		Inclusion criteria	(13) means that the study is underpowered to accurately
		• VTE	assess the predictive utility of the different tools.
		including pulmonary embolism (PE), lower-extremities	
		proximal or distal deep-vein thrombosis (DVT), upper-	
		extremities DVT, or extensive lower limbs superficial vein	Analysis
		thrombosis close to the sapheno-femoral junction.	 High risk of bias
		 receiving treatment for VTE 	purpose of the paper was to assess the composite of major
		on a course of treatment of at least 3 months	and clinically relevant non-major bleeding with limited
			reporting of major bleeding alone therefore key statistical
		Exclusion criteria	analyses (such as sensitivity and specificity) are missing for
		• <18 years	major bleeding alone.
		 Receiving treatment at time of index event 	
			Overall risk of bias
		Sample characteristics	• High
		• Sample size	Study was a retrospective chart review with a low number
		681	of participants with major bleeding and limited statistical
		• %female	analyses for major bleeding alone.
		52%	
		• Mean age (SD)	
		median 63 (IQR 46-74) years	

Author (year) Title	Study details	Quality assessment
Author (year) Title Image: state s	 VTE characteristics 43% PE, 76% lower extremity DVT; 5% upper extremity DVT; 1.6% superficial vein thrombosis only. 58% unprovoked VTE % renal disease 2.0% severe renal failure Anaemia 23.6% Prognostic factor(s) HAS-BLED >160 mmHg systolic blood pressure: 1 point Abnormal liver function (history of cirrhosis, or bilirubin > 2x the upper limit of normal in association with aspartate aminotransferase/alanine 	Quality assessment Directness • Directly applicable
	aminotransferase/ alkaline phosphatase levels > 3x the upper limit of normal): 1 point Abnormal renal function (on dialysis, a history of kidney transplantation, or serum creatinine values > 200 µmol/L): 1 point Stroke: 1 point Bleeding history or predisposition: 1 point Liable INR (time within therapeutic range < 60%): 1 point Age 65 years+: 1 point Drug use (platelet inhibitors or NSAIDS): 1 point Alcohol abuse (>8 units/week): 1 point Low risk: 0 points Moderate risk: 1-2 points High risk 3+ points	

Author (year)	Title	Study details	Quality assessment
		 ACCP age 66–75 year: 1 point age > 75 years: 2 points previous major bleeding: 1 point cancer (active) : 1 point metastatic cancer: 1 point renal failure (CrCl < 30–60 mL min-1) : 1 point liver failure (reported in the history) : 1 point thrombocytopenia (< 100 000) : 1 point previous stroke/TIA: 1 point diabetes anemia (Hb < 10) : 1 point antiplatelet therapy: 1 point poor anticoagulant control (time spent in the therapeutic range < 60%): 1 point comorbidity recent surgery (within 3 months from index event) : 1 point frequent falls (≥ 2 in the last year) : 1 point alcohol abuse (reported in the history) : 1 point 	
		Low risk: 0 Moderate risk: 1 High risk: 2+	
		 RIETE 1 Recent bleeding: 2 points Abnormal renal function (Creatinine levels >1.2 mg/dl): 1.5 points Anemia: 1.5 points Age >75 years: 1 point Active malignancy: 1 point 	

Author (year)	Title	Study details	Quality assessment
		PE diagnosis: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-4 points	
		High risk >4 points	
		• Kuijer score	
		Age >60 years: 1.6 points	
		Female sex: 1.3 points	
		Malignancy: 2.2 points	
		Low risk = 0 points	
		Moderate risk = 1-2 points	
		High risk = 3+ points	
		• OBRI	
		Age 65 years+: 1 point	
		Previous stroke: 1 point	
		GI bleeding in the last 2 weeks: 1 point	
		Recent MI, anemia (hematocrit <30%) or renal	
		insufficiency (creatinine >1.5mg/dl): 1 point	
		Creatinine >1.5mg dL-1: 1 point	
		diabetes mellitus: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-2 points	
		High risk: 3+ points	
		• HEMORR2HAGES	
		Hepatic or renal disease: 1 point	
		Ethanol abuse: 1 point	
		Malignancy: 1 point	

Author (year)	Title	Study details	Quality assessment
		Age 75 years plus: 1 point	
		Reduced platelet count or function: 1 point	
		Prior bleeding: 2 points	
		Hypertension: 1 point	
		Anemia: 1 point	
		Genetic factors (CYP2C9 single-nucleotide polymorphisms): 1 point	
		Excessive fall risk: 1 point	
		Prior stroke/TIA: 1 point	
		Low risk: 0-1 points	
		Moderate risk: 2-3 points	
		High risk >3 points	
		• ATRIA	
		Anemia: 3 points	
		severe renal disease (GFR < 30 mL min-1 or dialysis-dependent): 3 points	
		75 years+: 2 points	
		previous bleed: 1 point	
		hypertension: 1 point	
		Low risk: 0-3 points	
		Moderate risk: 4 points	
		High risk: 5-10 points	
		Outcome of interest	
		Major bleeding Me was defined according to the International Society on	
		MB was defined according to the International Society on Thrombosis and Haemostasis criteria (13), as:	
		Thombosis and Factilosiasis chiefia (13), as.	

Author (year)	Title	Study details	Quality assessment
		 Symptomatic bleeding in a critical organ (intracranial, intraspinal, intraocular, retroperitoneal, intraarticular, intramuscular with compartment syndrome, pericardial); Bleeding causing a fall in the haemoglobin level of at least 2 g/dl or leading to transfusion of at least two units of whole 	
		blood or red cells; • Fatal bleeding. Outcome measures • AUC	
Rodger (2017)	Validating the HERDOO2 rule to guide treatment duration for women with unprovoked venous thrombosis: multinational prospective cohort management study	 Study type Prospective cohort study prospective validation management study (high risk participants could be treated for extended duration) Study details Study location 7 countries Study setting 44 secondary or tertiary care centres in seven countries. Study dates Between November 2008 and February 2015 Duration of follow-up 1-year Patients were contacted by telephone or seen in person at six months (two weeks either way). High risk patients were also telephoned or seen in person at one year (two weeks either way), low risk patients were seen in person at 1 year (two weeks either way) Loss to follow-up 6 enrolled participants did not complete predictor factor evaluations Inclusion criteria VTE 	 Participant selection Low risk of bias Predictors Low risk of bias Low overall risk for this domain however note that measurements were taken prior to anticoagulant discontinuation due to this being a management study Outcome Low risk of bias Outcome adjudicators were not from the same institution as the study participant and therefore assessed blind to risk categorisation Sample size and participant flow High risk of bias Management study (looking at how the tool would be used in actual practice and patients treated accordingly) in which a large segment of those deemed at high risk continued treatment and are therefore not relevant to this review (for VTE-recurrence outcome).
	aranah a anah alia dia a a a a di	agnosis management and thrombophilia testing: evidence	

Author (year)	Title	Study details	Quality assessment
		first episode of major, symptomatic, objectively proved unprovoked VTE 5-12 months before enrolment in the absence of the following major VTE provoking factors: leg fracture or lower extremity plaster cast, immobilisation for more than three days, major surgery in the three months before the index VTE event, and no diagnosis of a malignancy in the past five years (with the exception of localised skin malignancy). Pregnancy associated VTE were not included. Index VTE associated with minor or weak risk factors such as travel, exogenous oestrogen, minor immobilisation, or minor surgery was considered unprovoked as it is unclear if the risk of recurrence in "weakly provoked" VTE is low enough to discontinue anticoagulants. • received prior anticoagulation Index VTE had to have been managed for 5-12 months with an appropriate anticoagulant treatment, including initial treatment with either unfractionated heparin, low molecular weight heparin, rivaroxaban, or apixaban, followed by 5-12 months of oral anticoagulant treatment with vitamin K antagonists (target international normalised ratio 2-3), dabigatran, rivaroxaban, apixaban, or edoxaban. Exclusion criteria • malignancy malignancy arising after diagnosis of index VTE but before enrolment were not eligible for inclusion. • unable or unwilling to give informed consent • <18 years • already discontinued AC therapy at point of enrolment • required ongoing AC • inaccessible for follow-up • planned exogenous oestrogen use Sample characteristics • Sample size 2785; 934 participants did not receive anticoagulation for	Overall risk of bias • Moderate This was a management study in which some high risk patients continued anticoagulation. Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
Autnor (year)		duration of study. 1851 received anticoagulation for duration of study • %female 44% female • Mean age (SD) 54.4 (SD 16.7) years. 30.5% over 65 years old • VTE characteristics 40% index DT only 39% index PE only 21% both • % abnormal D-dimer 48.9% over 250 UG/L • obesity (over 30 BMI) 37.2% Prognostic factor(s) • HERDOO2 tool Male sex: 2 points one of more of: hyperpigmentation, edema or redness of the leg: 1 point VIDAS D-dimer 250 µg/L: 1 point Obesity (body mass index 30 or more): 1 point Age 65 year or older: 1 point Low risk: 0-1 points High risk: 2+ points Outcome of interest	
		recurrent VTEmajor bleeding	
Ruiz-Gimenez (2008)	Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIETE Registry	Study type • Retrospective analysis of a prospective cohort derivation and validation study using prospective data from the RIETE register	Participant selection • Low risk of bias Predictors • Low risk of bias

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study details Study location Spain, France, Italy, Israel, Argentina • Study setting review of the RIETE register, containing data from multiple centres across multiple countries • Study dates database inception up until June 2007 • Duration of follow-up first 90 days of therapy Inclusion criteria • VTE symptomatic, acute deep vein thrombosis (DVT) or pulmonary embolism (PE), confirmed by objective tests (contrast venography or ultrasonography for suspected DVT; pulmonary angiography, lung scintigraphy, or helical computed tomography [CT] scan for suspected PE) Exclusion criteria • unable or unwilling to give informed consent • inaccessible for follow-up • participating in a trial with a blinded therapy Sample characteristics • Sample size derivation sample: 13,057 validation sample: 6,572 • %female derivation sample: 51% female validation sample: 50% female • Mean age (SD) derivation sample: 66 (SD17) years validation sample: 66 (SD17) years • VTE characteristics	Quality assessment however, missing data is not clearly reported. Outcome • Low risk of bias Sample size and participant flow • Low risk of bias Over 100 events in the validation cohort and over 10 events per predictor (used in univariate analysis) in the derivation model. Analysis • High risk of bias derivation sample used a univariate analysis to derive the model. Unclear whether the model attempted internal validation to test the model on the derivation data set. However, the original sample size was split into a derivation cohort (which was used to form the prediction model) and a validation cohort (for which the finalized model was applied). Overall risk of bias • Low Directness • Directly applicable
		derivation sample: 33% validation sample: 32%	

Author (year)	Title	Study details	Quality assessment
		 % active cancer derivation sample: 21% validation sample: 20% % inpatients derivation sample: 28% validation sample: 28% % recent surgery derivation sample: 13% validation sample: 12% % immobility derivation sample: 25% validation sample: 24% % recent major bleeding derivation sample: 1.6% validation sample: 1.4% % with platelet count <100,000/mm3 derivation sample: 2.3% validation sample: 2.5% % with abnormal creatinine levels derivation sample: 14% validation sample: 14% 	
		Prognostic factor(s) • RIETE score 1 • derivation risk factors investigated patient's baseline characteristics (gender, age >75years, body weight<70kg, inpatient vs. outpatient) VTE risk factors (previous VTE, Cancer, surgery, immobility for 4+ days in the 2 months prior to diagnosis). Underlying diseases (chronic lung disease, Chronic heart failure, recent major bleeding, Antiplatelet therapy, NSAIDs, Corticosteroid therapy). Laboratory tests (creatinine levels >1.2 mg/dl, platelet count <100,000/mm3, anemia) Clinically overt PE? Initial therapy (LMWH yes vs. no, LMWH mean dose, UFH yes vs. no, inferior vena cava filter?) Long-term therapy (LMWH yes vs. no, VKA yes vs. no)	
		Outcome of interest • Major bleeding Bleeding complications were classified as major if they were overt and required a transfusion of two units of blood or more, or were retroperitoneal, spinal or intracranial, or when	

Author (year)	Title	Study details	Quality assessment
		they were fatal.	
		Outcome measures sensitivity/specificity/Likelihood ratios 	
Seiler (2017)	Derivation and validation of a novel bleeding risk score for elderly patients with venous thromboembolism	Study type Retrospective analysis of a prospective cohort 	Participant selection Low risk of bias
	on extended anticoagulation	 Study details Study location <i>Switzerland</i> Study setting <i>data from the SWITCO65+ registry containing data from 5</i> <i>Swiss university and 4 high-volume non-university</i> 	Predictors • High risk of bias High risk for Seiler score alone as this was derived in this study. Low risk for other tools as these were validated here.
		hospitals. • Study dates September 2009 to December 2013 • Duration of follow-up	Outcome • Low risk of bias
		up to 36 months; median 28 months. Mean anticoagulation period of 16 months	Sample size and participant flow High risk of bias Validated tools: Low overall event rate (<100 participants with major bleeds)
		Inclusion criteria • VTE participants were excluded if they had thrombosis at a site other than lower limb, or if they had catheter related thrombosis • received prior anticoagulation	Seiler score: <10 events per variable (EPV) for the original derivation of the tool (3.9 EPV) however internal validation of the tool had an EPV closer to 10.
		already received 3 months anticoagulation • 65 years of age or older	Analysis Low risk of bias Seiler score derived using competing risk regression

Author (year)	Title	Study details	Quality assessment
		Exclusion criteria	considering 17 candidate predictor variables.
		 unable or unwilling to give informed consent 	
		 inaccessible for follow-up 	
		 Insufficient spoken German or French 	Overall risk of bias
			Moderate
			Derivation study. *low risk of bias for the tools validated in
		Sample characteristics	this study.
		Sample size	
		743	
		• %female	Directness
		47% female	Directly applicable
		• Mean age (SD)	
		Median age 75 years (IQR 70-81)	
		% hypertension	
		18.3% arterial hypertension	
		• % renal disease	
		7.3%	
		• % liver disease	
		0.4%	
		% bleeding history	
		3.6%	
		% active cancer	
		3.1%	
		Prognostic factor(s)	
		RIETE score 1	
		Recent bleeding: 2 points	
		Abnormal renal function (Creatinine levels >1.2	
		mg/dl): 1.5 points	
		Anemia: 1.5 points	

Author (year)	Title	Study details	Quality assessment
		Age >75 years: 1 point	
		Active malignancy: 1 point	
		PE diagnosis: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-4 points	
		High risk >4 points	
		• Kuijer score	
		Age >60 years: 1.6 points	
		Female sex: 1.3 points	
		Malignancy: 2.2 points	
		Low risk = 0 points	
		Moderate risk = 1-2 points	
		High risk = 3+ points	
		• OBRI	
		Age 65 years+: 1 point	
		Previous stroke: 1 point	
		GI bleeding in the last 2 weeks: 1 point	
		Recent MI, anemia (hematocrit <30%) or renal	
		insufficiency (creatinine >1.5mg/dl): 1 point	
		Creatinine >1.5mg dL-1: 1 point	
		diabetes mellitus: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-2 points	
		High risk: 3+ points	
		Kearon score	

Author (year) Title	Study details	Quality assessment
	Previous stroke: 1 point	
	Previous peptic ulcer disease: 1 point	
	Previous gastrointestinal bleeding: 1 point	
	Renal impairment: 1 point	
	Anemia: 1 point	
	Thrombocytopenia: 1 point	
	Liver disease: 1 point	
	Diabetes mellitus: 1 point	
	Use of antiplatelet therapy: 1 point	
	Age 65 years+: 1 point	
	Low: 0–1 points	
	Intermediate: 2–3 points	
	High: 4+	
	Sieler score	
	Previous major bleeding	
	Active cancer Low physical activity	
	Anemia	
	Thrombocytopenia	
	Antiplatelet drugs or NSAIDs	
	Poor INR control	
	Low risk: 0-1 point	
	Moderate risk:2-3 points	
	High risk: 4+ points	
	Outcome of interest	
	Major bleeding	
	Major bleeding was defined as fatal bleeding, symptomatic	
	bleeding into critical area or organ (intracranial, intraspinal,	
	intraocular, retroperitoneal, intraarticular, pericardial, or	

Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

Author (year)	Title	Study details	Quality assessment
		intramuscular with compartment syndrome), or bleeding causing a fall in hemoglobin level of at least 20 g/l or leading to transfusion of two or more units of whole blood or red cells. Outcome measures • C-statistics	
Scherz (2013)	Prospective, multicenter validation of prediction scores for major bleeding in elderly patients with venous thromboembolism	Study type • Retrospective analysis of a prospective cohort Study details • Study location Switzerland • Study setting 5 university and 4 non-university hospitals • Study dates September 2009 - June 2011 • Duration of follow-up 90 days Inclusion criteria • VTE "We defined DVT as the acute onset of leg pain or swelling plus incomplete compressibility of a venous segment on ultrasonography or an intraluminal filling defect on contrast venography [10]. Because the iliac vein and the inferior vena cava may be technically difficult to compress, an iliac/caval DVT was defined as abnormal duplex flow patterns compatible with thrombosis or an intraluminal filling defect on contrast computed tomography (CT) or magnetic resonance imaging venography [11]. Given that ultrasonography has a reduced sensitivity and specificity for a distal DVT, patients with a distal DVT were included only if the incompressible distal vein transverse diameter was at least 5 mm [12]. We	 Participant selection Low risk of bias Predictors High risk of bias Data on predictor variables was obtained retrospectively via chart review and therefore there is a risk of reporting/recording bias. Additionally, the database did not differentiate between stroke and TIA therefore the history of stroke, which is a variable in several tools, was expanded to include TIA. Outcome Low risk of bias blinded committee adjudicated all bleeding events Sample size and participant flow High risk of bias Low number of participants with the event therefore there is a risk of biased estimate of perdictive ability Analysis Low risk of bias Overall risk of bias Moderate

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Study details defined PE as the acute onset of dyspnea, chest pain or syncope coupled with a new high-probability ventilation/perfusion lung scan; a new contrast filling defect on spiral CT or pulmonary angiography; or the new documentation of a proximal DVT either by venous ultrasound or contrast venography [13,14]." • 65 years of age or older Exclusion criteria • unable or unwilling to give informed consent • inaccessible for follow-up • Thrombosis at a different site than the lower limb Or catheter related thrombosis • Insufficient spoken German or French Sample characteristics • Sample size 663 participants • %female 45.4% • Mean age (SD) 75 (65-97) years *Median and range, mean not given • VTE characteristics DVT only 32.4% DVT+PE 13.7% PE only 53.8% • % irver disease 2.0% • % bleeding history 3.8% previous major bleed • % NSAIDS/ antiplatelet use 32.3% • % active cancer	Quality assessment Retrospective chart review Directness • Directly applicable

Author (year)	Title	Study details	Quality assessment
		14.6%	
		Prognostic factor(s)	
		• RIETE score 1	
		Recent bleeding: 2 points	
		Abnormal renal function (Creatinine levels >1.2	
		mg/dl): 1.5 points	
		Anemia: 1.5 points	
		Age >75 years: 1 point	
		Active malignancy: 1 point	
		PE diagnosis: 1 point	
		Low risk 0 points	
		Low risk: 0 points Moderate risk: 1-4 points	
		High risk >4 points	
		Kuijer score	
		Age >60 years: 1.6 points	
		Female sex: 1.3 points	
		Malignancy: 2.2 points	
		Low risk = 0 points	
		Moderate risk = 1-2 points	
		High risk = 3+ points	
		• OBRI	
		Age 65 years+: 1 point	
		Previous stroke: 1 point	
		GI bleeding in the last 2 weeks: 1 point	

Author (year)	Title	Study details	Quality assessment
		Recent MI, anemia (hematocrit <30%) or renal	
		insufficiency (creatinine >1.5mg/dl): 1 point	
		Creatinine >1.5mg dL-1: 1 point	
		diabetes mellitus: 1 point	
		Low risk: 0 points	
		Moderate risk: 1-2 points	
		High risk: 3+ points	
		Kearon score	
		Previous stroke: 1 point	
		Previous peptic ulcer disease: 1 point	
		Previous gastrointestinal bleeding: 1 point	
		Renal impairment: 1 point	
		Anemia: 1 point	
		Thrombocytopenia: 1 point	
		Liver disease: 1 point	
		Diabetes mellitus: 1 point	
		Use of antiplatelet therapy: 1 point	
		Age 65 years+: 1 point	
		Low: 0–1 points	
		Intermediate: 2–3 points	
		High: 4+	
		Outcome of interest	
		• major bleeding	
		major bleeding in first 90 days following index event	
		Outcome measures	
		 sensitivity/specificity/Likelihood ratios 	

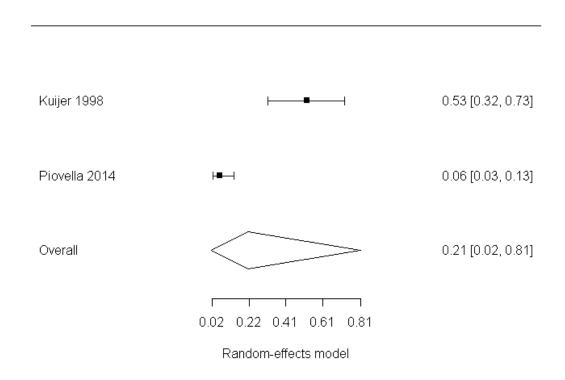
Author (year)	Title	Study details	Quality assessment
		• AUC	
Tosetto (2017)	External validation of the DASH prediction rule: a retrospective cohort study	 Study type Retrospective cohort study validation study Study details Study location Italy Study setting Thrombosis research italian partnership (TRIP) study group comprised of several thrombosis centres in italy. Duration of follow-up All TRIP centers regularly followed up their VTE patients with planned visits or telephone interviews for at least 2 years after their first VTE. time of D-dimer measurement and ended at the date of study closure (1 September 2016), or when the patient completed 2 years of follow-up. Inclusion criteria VTE unprovoked first VTE (either proximal deep vein thrombosis or pulmonary embolism), i.e. a VTE that occurred in the absence of a transient risk factor such as surgery, trauma, active cancer, immobilization, or pregnancy/puerperium. VTE that occurred in association with hormonal therapy (oral contraceptives or hormone replacement therapy) was also included, as this weak risk factor is a component of the DASH score. received prior anticoagulation must have received at least 3 months prior AC with a VKA or DOAC and not currently be receiving AC therapy at point of enrolment D-dimer measurement 20-40 days after stopping AC At least 3 months follow-up 	Participant selection • Low risk of bias study was retrospective however only those participants with an initial D-dimer record were assessed and information on other predictor variable was likely to be assessed correctly retrospectively Predictors • Low risk of bias unclear predictor assessments were made without knowledge of outcome data however as predictors were dichotomous and pre-recorded this is unlikely to have affected results Outcome • Low risk of bias unclear whether outcome was assessed without knowledge of predictor variables of interest to this review however measurement of outcome is objective and unlikely to have been influenced by knowledge of predictor variables. Overall risk of bias • Low

Author (year)	Title	Study details	Quality assessment
Author (year)	Title	Exclusion criteria • Known antithrombin deficiency • known antiphospholipid antibodies • resumed AC <2 weeks following D-dimer measurement Sample characteristics • Sample size 827 • %female 47.8% • Mean age (SD) 55.3 (SD17.5) years • VTE characteristics 100% recurrent VTE average duration of prior AC treatment 13 months • % abnormal D-dimer 21.8% • % recurrent VTE 12.1% • average duration of AC treatment with recurrent VTE event: mean 12.8 months without recurrent VTE event: mean 14.0 months	Quality assessment
		 average duration of AC treatment with recurrent VTE event: mean 12.8 months without 	
		Prognostic factor(s) Abnormal D=dimer (measured ~1 months after stopping anticoagulation): 2 points	
		Age <50 years: 1 point	
		Male sex: 1 point	

Author (year)	Title	Study details	Quality assessment
		Hormone use at VTE onset (if female): -2 points	
		Low risk: 0-1 point, high risk 2+ points	
		Outcome of interest • recurrent VTE Recurrent VTE was diagnosed in the presence of clinical symptoms objectively confirmed by compression ultrasound, pulmonary computed tomography scan, pulmonary angiography, or highprobability perfusion scintigraphy.	
Zhang (2019)	Comparison of prediction value of four bleeding risk	Study type Prospective cohort study 	Participant selection Low risk of bias
	scores for pulmonary embolism with anticoagulation: A real- world study in Chinese patients.	Study details • Study location China • Study setting Beijing Chao-Yang hospital • Study dates January 2009 - September 2013 • Duration of follow-up 90 days	Predictors • Low risk of bias Outcome • Low risk of bias Sample size and participant flow
		Inclusion criteria • PE Diagnosed with acute symptomatic PE	 High risk of bias Low number of participants with the event therefore there is a risk of biased estimate of predictive ability
		Exclusion criteria • Did not receive any anticoagulation • inaccessible for follow-up	Analysis • High risk of bias Risk scores used were 3-levels and it is unclear how this was translated into sensitivity/ specificity data (which requires 2 level input) as raw data is not given.
		Sample characteristics • Sample size 578 participants • %female	Overall risk of bias • Moderate

Author (year)	Title	Study details	Quality assessment
		 49.5% Mean age (SD) 65 (53-74) years *Median and range, mean not given % bleeding history 7.8% previous major bleed % NSAIDS/ antiplatelet use 1.7% used platelet inhibitors % active cancer 12.4% 	Low event rate and unclear reporting. Directness • Directly applicable
		Prognostic factor(s) • RIETE score 1 Recent bleeding: 2 points Abnormal renal function (Creatinine levels >1.2 mg/dl): 1.5 points Anemia: 1.5 points Age >75 years: 1 point Active malignancy: 1 point PE diagnosis: 1 point Low risk: 0 points Moderate risk: 1-4 points High risk >4 points • Kuijer score	
		Age >60 years: 1.6 points Female sex: 1.3 points Malignancy: 2.2 points Low risk = 0 points	

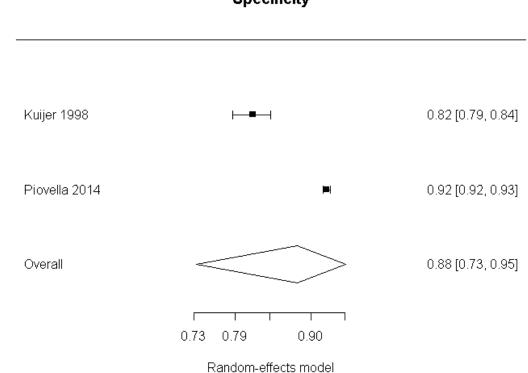
Author (year)	Title	Study details	Quality assessment
		Moderate risk = 1-2 points	
		High risk = 3+ points	
		Nieuwenkuiseen	
		Nieuwenhuis score WHO grade 1: 1 point	
		WHO grade 2: 1 point	
		History of bleeding diathesis: 2 point	
		Recent trauma (<2 months) or surgery: 1 point	
		Body surfacy area $< 2m^2$: 1 point	
		Low risk: 0-2 points	
		Moderate risk: 3-4 points	
		High risk: >5 points	
		Kearon score	
		Previous stroke: 1 point	
		Previous peptic ulcer disease: 1 point	
		Previous gastrointestinal bleeding: 1 point	
		Renal impairment: 1 point	
		Anemia: 1 point	
		Thrombocytopenia: 1 point	
		Liver disease: 1 point	
		Diabetes mellitus: 1 point	
		Use of antiplatelet therapy: 1 point	
		Age 65 years+: 1 point	
		Low: 0–1 points	
		Intermediate: 2–3 points	
		High: 4+	
		J. J	


Author (year)	Title	Study details	Quality assessment
		Outcome of interest • major bleeding major bleeding in first 90 days following index event Outcome measures • AUC	

1

1 Appendix F – Forest plots

2 Sensitivity, specificity and LRs


- 3 Kuijer score: High vs moderate/low
- 4 Figure 1: Sensitivity, Kuijer score: High vs moderate/low

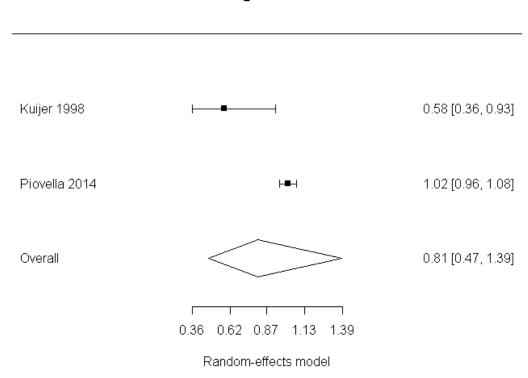
Sensitivity

5


1 Figure 2: Specificity, Kuijer score: High vs moderate/low

Specificity

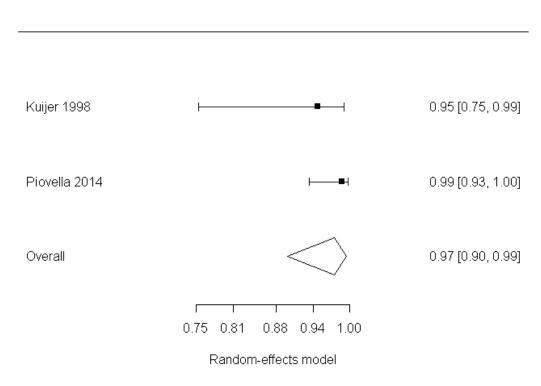
2


3 Figure 3: LR+, Kuijer score: High vs moderate/low

Positive LR

4

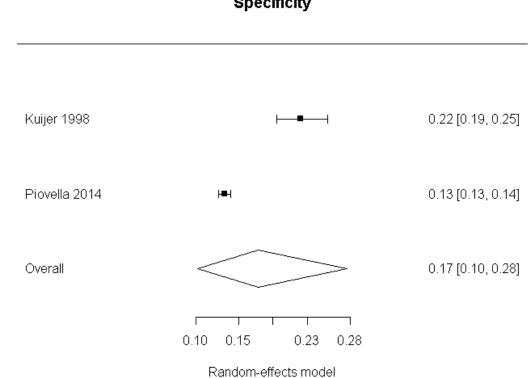
1 Figure 4: LR-, Kuijer score: High vs moderate/low



Negative LR

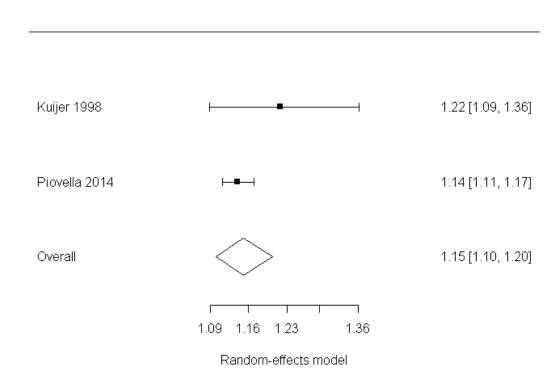
2

1 Kuijer score High/moderate vs low


2 Figure 5: Sensitivity, Kuijer score: High/moderate vs low

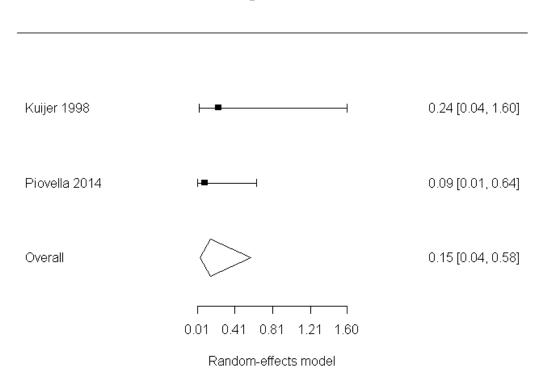
Sensitivity

3


1 Figure 6: Specificity, Kuijer score: High/moderate vs low

Specificity

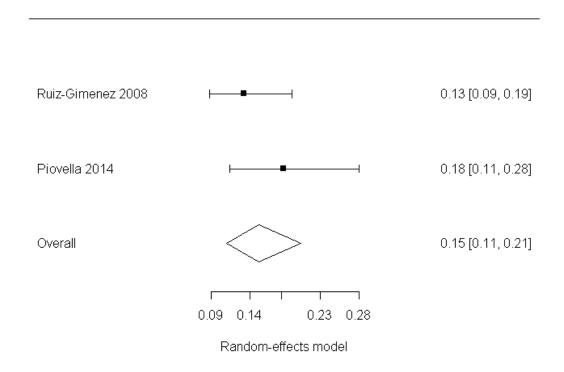
2


3 Figure 7: LR+, Kuijer score: High/moderate vs low

Positive LR

4

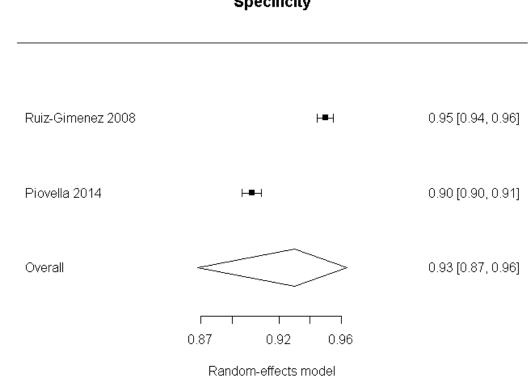
1 Figure 8: LR-, Kuijer score: High/moderate vs low



Negative LR

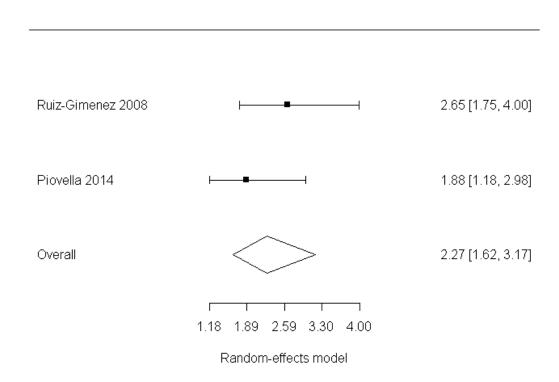
2

1 RIETE 1 High vs moderate/low


2 Figure 9: Sensitivity, RIETE 1: High vs moderate/low

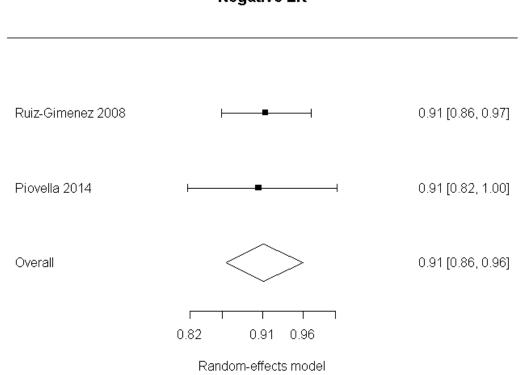
Sensitivity

3


1 Figure 10: Specificity, RIETE 1: High vs moderate/low

Specificity

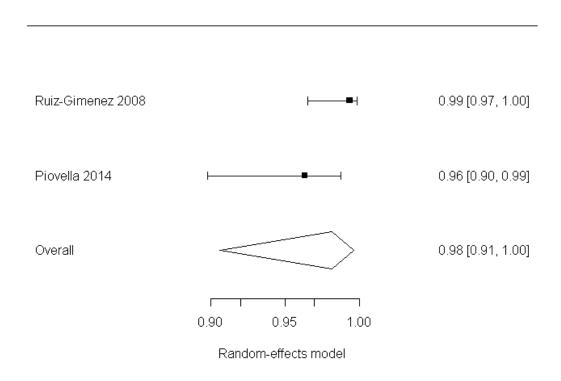
2


3 Figure 11: LR+, RIETE 1: High vs moderate/low

Positive LR

4

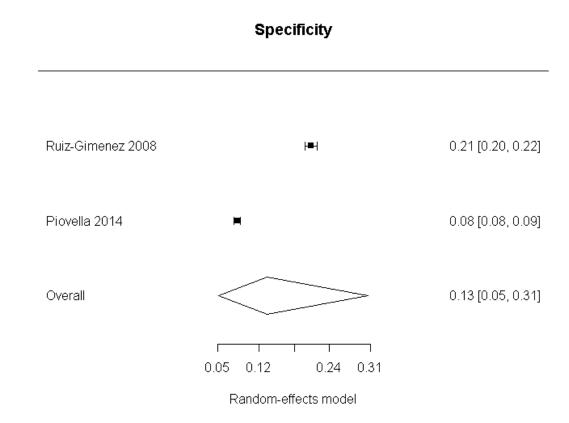
1 Figure 12: LR-, RIETE 1: High vs moderate/low



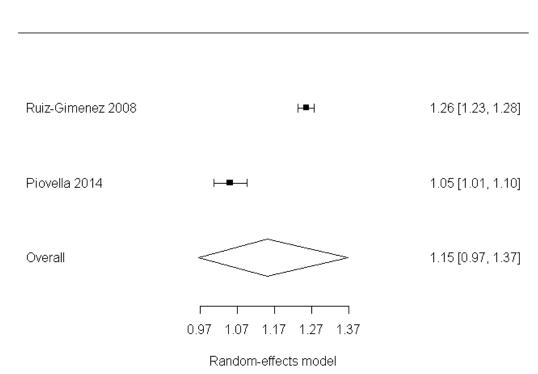
Negative LR

2

1 RIETE 1 High/moderate vs low

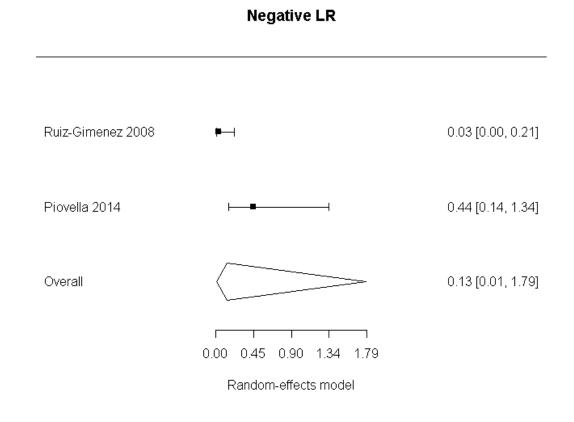

2 Figure 13: Sensitivity, RIETE 1: High/moderate vs low

Sensitivity


3

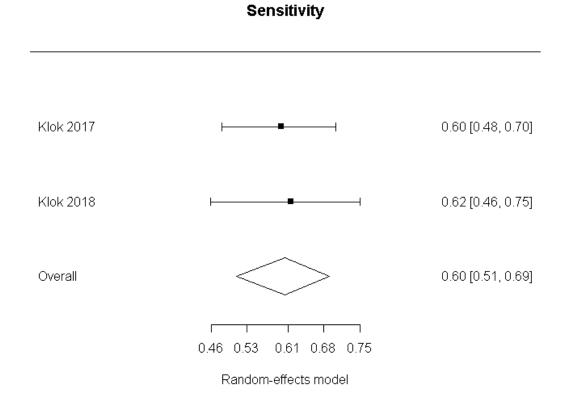
1 Figure 14: Specificity, RIETE 1: High/moderate vs low

2

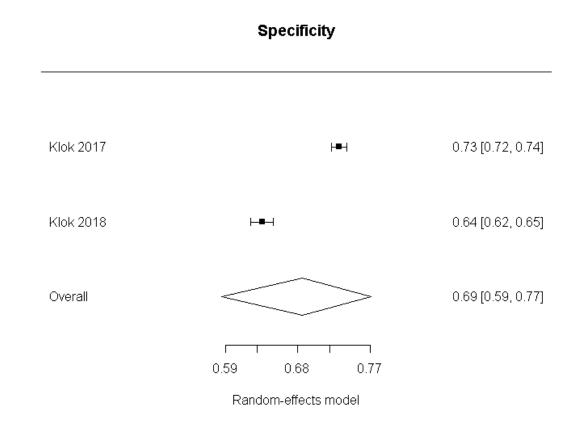

3 Figure 15: LR+, RIETE 1, High/moderate vs low

Positive LR

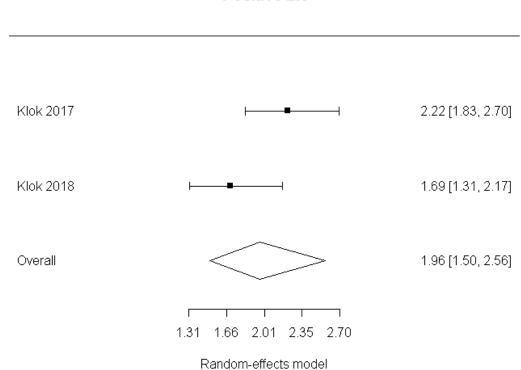
4


1 Figure 16: LR-, RIETE 1, High/moderate vs low

2


1 VTE BLEED

2 Figure 17: Sensitivity, VTE BLEED


3

1 Figure 18: Specificity, VTE BLEED

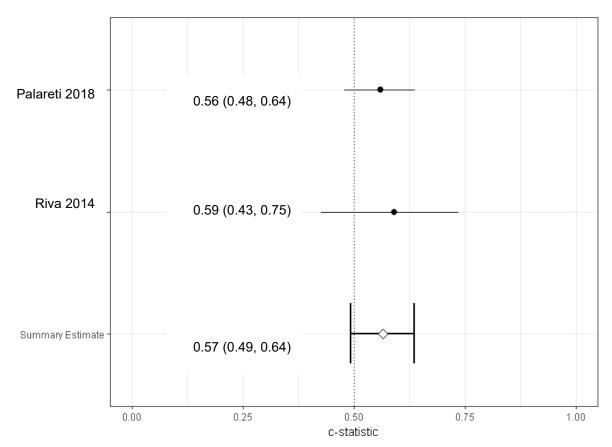
2

3 Figure 19: LR+, VTE BLEED

Positive LR

4

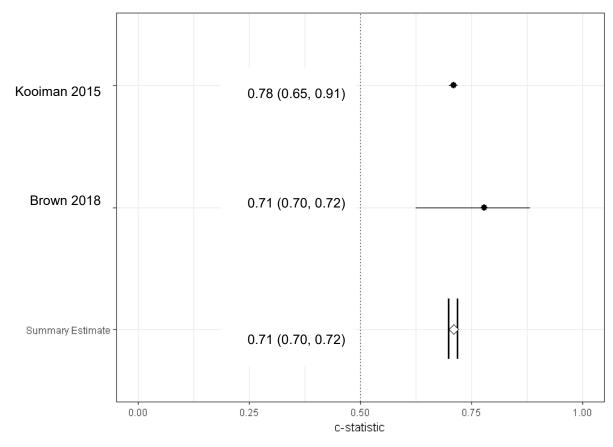
1 Figure 20: LR-, VTE BLEED


Negative LR		
Klok 2017	⊢	0.55 [0.42, 0.73]
Klok 2018	├────	0.60 [0.41, 0.90]
Overall	$\langle \rangle$	0.57 [0.45, 0.72]
	0.41 0.53 0.65 0.78 0.90	
	Random-effects model	

2

1 C-statistics

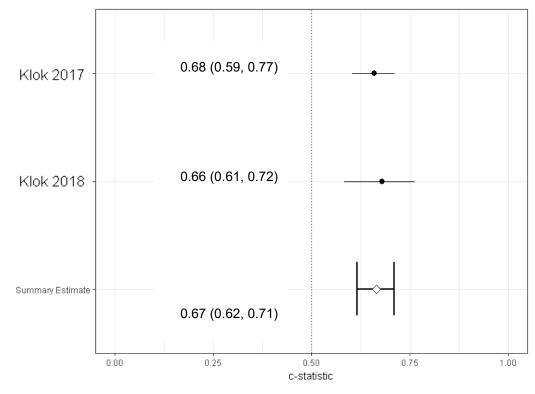
2 **ACCP**


3 Figure 21: Pooled C-statistic, ACCP

4 FE model, I²=0%

1 HAS-BLED

2 Figure 22: Pooled C-statistic, HAS-BLED


3

4 FE model, I²=9.8%%

1 VTE-BLEED

2 Figure 23: Pooled C-statistic, VTE BLEED

3

5 FE model, I²=0%

4

1 Appendix G – GRADE tables

2 Tools to predict VTE-recurrence

3 Test administered at point of discontinuation of anticoagulation treatment, \geq 3 months (depending on treatment).

4 Sensitivity, specificity and likelihood ratios

No. of studies	Study design	Sample size	Sensitivity (95%Cl)	Specificity (95%Cl)	Effect size (95%Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality		
HERDOO	IERDOO2 (follow-up 1 year post-treatment)											
1 (Rodger	Prospective manageme		•	914 0.60 (0.4 0.74)	0.60 (0.43, 0.74)	0.66 (0.63, 0.69)	LR+ 1.74 (1.34, 2.27)	Serious ¹	N/A	Not serious	Serious ²	Low
2017)) nt study				Serious ¹	N/A	Not serious	Serious ²	Low			
DAMOVE	S (internal val	idation stu	dy; follow-up	median 21.3	months)							
1 (Franco	1Prospective cohort3980.9(Francocohort0.9	0.91 (0.81, 0.82 (0.77, 0.96) 0.86)		LR+ 5.04 (3.96, 6.43)	Serious ¹	N/A	Not serious	Not serious	Moderate			
2016)					LR- 0.11 (0.05, 0.25)	Serious ¹	N/A	Not serious	Not serious	Moderate		

1. Study was at moderate risk of bias.

2. 95% confidence interval for likelihood ratio crosses one end of a defined MID interval – (0.5, 1 for negative likelihood ratios and 1, 2 for positive likelihood ratios)

1 C-statistics

No. of studies	Study design	Sample size	Effect size (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
DASH (follow-up me	edian 25.2 months)							
1 (Tosetto 2017)	Retrospective cohort study	827	0.65*	Not serious	N/A	Not serious	Serious ¹	Moderate
DASH (>65 years ol	d subgroup; follow-up m	edian 25.2 n	nonths)					
1 (Tosetto 2017)	Retrospective cohort study	315	0.54*	Not serious	N/A	Not serious	Very serious ²	Low
DASH (≤65 years ol	d subgroup; follow-up m	edian 25.2 m	nonths)					
1 (Tosetto 2017)	Retrospective cohort study	512	0.72*	Not serious	N/A	Not serious	Serious ¹	Moderate
VIENNA (follow-up	median 25.2 months)							
1 (Marcucci 2015)	Retrospective review of prospective cohort study	904	0.63*	Not serious	N/A	Not serious	Serious ¹	Moderate
VIENNA (≤65 years	old subgroup; follow-up	median 25.2	months)					
1 (Marcucci 2015)	Retrospective review of prospective cohort study	370	0.59*	Not serious	N/A	Not serious	Very serious ²	Low
Dynamic VIENNA (n	neasured 3 weeks after s	topping anti	icoagulation;	68 months follo	ow-up)			
1 (Eichinger 2014)	Prospective cohort study	553	0.63*	Not serious	N/A	Not serious	Serious ¹	Moderate
Dynamic VIENNA (n	neasured 3 months after	stopping an	ticoagulatior	n; 68 months fol	low-up)			
1 (Eichinger 2014)	Prospective cohort study	553	0.61*	Not serious	N/A	Not serious	Serious ¹	Moderate

No. of studies	Study design	Sample size	Effect size (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality					
Dynamic VIENNA (m	Dynamic VIENNA (measured 9 months after stopping anticoagulation; 68 months follow-up)												
1 (Eichinger 2014)	Prospective cohort study	553	0.61*	Not serious	N/A	Not serious	Serious ¹	Moderate					
Dynamic VIENNA (m	easured 15 months after	stopping ar	nticoagulatio	on; 68 months foll	ow-up)								
1 (Eichinger 2014)	Prospective cohort study	553	0.58*	Not serious	N/A	Not serious	Serious ¹	Moderate					
1. 95% CI not pr	ce interval not provided ovided however sample si ovided, and sample size is		D										

1

1 Major bleeding

- 2 The test is administered either at the point of index VTE diagnosis or beginning of anticoagulation therapy. All tools are used to predict major
- 3 bleeding risk apart from RIETE 2. This was designed to predict fatal bleeding, and results are presented for both major bleeding and fatal bleeding
- 4 where available.

5 Sensitivity, specificity and likelihood ratios

No. of studies	Study design	Sample size	Sensitivity (95%Cl)	Specificity (95%Cl)	Effect size (95%Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality		
ATRIA (H	ATRIA (High/moderate versus low risk) – 30 days											
1 (Klok 2016)		448	0.50 (0.27, 0.73)	0.74 (0.69, 0.77)	LR+ 1.89 (1.19, 3.02)	Serious ¹	N/A	Not serious	Serious ²	Low		
				LR- 0.68 (0.44, 1.06)	Serious ¹	N/A	Not serious	Very serious ³	Very low			
ATRIA (H	igh versus mo	derate/low	/ risk) – 30 da	ys								
1 (Klok 2016)	Retrospecti ve analysis of a	448	448	0.20 (0.06, 0.44)	0.85 (0.81, 0.88)	LR+ 1.34 (0.54, 3.31)	Serious ¹	N/A	Not serious	Very serious ³	Very low	
	prospective cohort study				LR- 0.94 (0.75, 1.18)	Serious ¹	N/A	Not serious	Serious ²	Low		
HAS-BLE	D (High/mode	rate versu	s low risk) – 3	0 days								
1 (Klok 2016)	Retrospecti ve analysis	448	0.98 (0.74, 1.00)	0.15 (0.12, 0.18)	LR+ 1.15 (1.07, 1.23)	Serious ¹	N/A	Not serious	Not serious ⁴	Moderate		

No. of studies	Study design	Sample size	Sensitivity (95%CI)	Specificity (95%CI)	Effect size (95%Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality	
	of a prospective cohort study				LR- 0.14 (0.01, 2.26)	Serious ¹	N/A	Not serious	Very serious ^{3,4}	Low	
HAS-BLE	D (High versu	s moderat	e/low risk) – 3	0 days							
1 (Klok 2016)	Retrospecti ve analysis	448	0.57 (0.35, 0.77)	0.37 (0.33, 0.42)	LR+ 0.90 (0.62, 1.30)	Serious ¹	N/A	Not serious	Serious ²	Low	
	of a prospective cohort study				LR- 1.17 (0.72, 1.89)	Serious ¹	N/A	Not serious	Serious ²	Low	
HAS-BLE	D (High risk [3+] versus	moderate/low	/ risk)* - up to	6 months (180	days)					
1 (Kooima	Retrospecti ve cohort			0.55 (0.24, 0.83)	0.87 (0.84, 0.90)	LR+ 4.22 (2.35, 7.56)	Very serious ⁶	N/A	Not serious	Not serious	Low
n 2015)	study				LR- 0.52 (0.27, 1.00)	Very serious ⁶	N/A	Not serious	Serious ²	Very low	
HAS-BLE	D (High risk [4	4+] versus	moderate/low	/ risk)** - up to	o 6 months (180) days)					
1 (Kooima	Retrospecti ve cohort	537	0.18 (0.02, 0.52)		LR+ 7.97 (2.02, 31.45)	Very serious ⁶	N/A	Not serious	Not serious	Low	
n 2015)	study				LR- 0.84 (0.63, 1.11)	Very serious ⁶	N/A	Not serious	Serious ²	Very low	
HEMORR	2HAGES (High	n/moderate	versus low r	isk) – 30 days							
1 (Klok 2016)	(Klok Retrospecti	analysis 0.88) a	analysis 0.88)	0.70 (0.46, 0.40 (0.36, 0.88) 0.45)	LR+ 1.17 (0.87, 1.58)	Very serious ⁷	N/A	Not serious	Serious ²	Very low	
					LR- 0.75 (0.38, 1.47)	Very serious ⁷	N/A	Not serious	Very serious ³	Very low	

No. of studies	Study design	Sample size	Sensitivity (95%CI)	Specificity (95%Cl)	Effect size (95%CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality	
	cohort study		()	()	()		,				
HEMORR	2HAGES (High	n versus m	oderate/low r	isk) – 30 days	i						
1 (Klok 2016)	Retrospecti ve analysis	448	0.15 (0.03, 0.38)	0.86 (0.82, 0.89)	LR+ 1.07 (0.37, 3.12)	Very serious ⁷	N/A	Not serious	Very serious ³	Very low	
	of a prospective cohort study				LR- 0.99 (0.82, 1.19)	Very serious ⁷	N/A	Not serious	Serious ²	Very low	
HEMORR	2HAGES (two	level-optin	nised model)	– 30 days							
1 (Klok 2016)	Retrospecti ve analysis of a	alysis ective	alysis 0.81) ective t	· · ·	0.67 (0.62, 0.71)	LR+ 1.81 (1.23, 2.65)	Very serious ⁸	N/A	Not serious	Serious ²	Very low
	prospective cohort study				LR- 0.60 (0.35, 1.03)	Very serious ⁸	N/A	Not serious	Very serious ³	Very low	
Kearon s	core (High ris	k versus n	on-high risk;	≥65 year olds	only)- 3 month	S					
1 (Scherz	Retrospecti ve cohort		0.21 (0.10, 0.40)	· •	LR+ 1.26 (0.61, 2.61)	Serious ¹	N/A	Not serious	Very serious ³	Very low	
2013)	study				LR- 0.95 (0.78, 1.15)	Serious ¹	N/A	Not serious	Serious ²	Low	
Kuijer sc	ore (High risk	versus mo	derate-low ris	sk) – 30 days							
1 (Klok 2016)	Retrospecti ve cohort	•	448 0.20 (0.06, 0.44)		LR+ 1.35 (0.54, 3.31)	Serious ¹	N/A	Not serious	Very serious ³	Very low	
	study				LR- 0.94 (0.75, 1.18)	Serious ¹	N/A	Not serious	Serious ²	Low	

No. of studies	Study design	Sample size	Sensitivity (95%CI)	Specificity (95%CI)	Effect size (95%Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Klok 2016)	Retrospecti ve cohort	448	0.90 (0.68, 0.99)	0.14 (0.11, 0.17)	LR+ 1.04 (0.90, 1.21)	Serious ¹	N/A	Not serious	Serious ²	Low
	study				LR- 0.73 (0.19, 2.76)	Serious ¹	N/A	Not serious	Very serious ³	Very low
Kuijer sc	ore (High risk	versus mo	derate/low ris	sk) – 3 months	s (Figure 1, Fig	ure 2, Figu	re 3 and Figure 4)		
2 (Kuijer 1998, Piovella	98, ovella	9,497	0.21 (0.02, 0.81)	0.88 (0.73, 0.95)	LR+ 1.59 (0.46, 5.55)	Very serious ¹	Very serious ¹⁰	Not serious	Very serious ³	Very low
2014)				LR- 0.81 (0.47, 1.39)	Very serious ¹	Serious ¹¹	Not serious	Very serious ³	Very low	
Kuijer sc	ore (high/mod	erate risk	versus low ris	k)- 3 months	(Figure 5, Figu	re 6, Figure	7 and Figure 8)			
2 (Kuijer 1998, Piovella	See above	9,497	0.97 (0.90, 0.99)	0.17 (0.10, 0.28)	LR+ 1.15 (1.10, 1.20)	Very serious ¹	Not serious	Not serious	Not serious	Low
2014)					LR- 0.15 (0.04, 0.58)	Very serious ¹	Not serious	Not serious	Serious ²	Very low
Kuijer sc	ore (High risk	versus mo	derate-low ris	sk; ≥65 year o	lds only) – 3 m	onths				
1 (Scherz	Retrospecti ve cohort	ohort	663 0.11 (0.04, 0.27)	0.86 (0.82, 0.88)	LR+ 0.76 (0.26, 2.27)	Serious ¹	N/A	Not serious	Very serious ³	Very low
2013)	013) study				LR- 1.04 (0.91, 1.19)	Serious ¹	N/A	Not serious	Serious ²	Low
Kuijer sc	ore (two level-	-optimised	model) - 30 da	ays						

No. of studies	Study design	Sample size	Sensitivity (95%Cl)	Specificity (95%Cl)	Effect size (95%Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Klok 2016)	Retrospecti ve analysis of a	448	0.65 (0.41, 0.85)	0.53 (0.48, 0.58)	LR+ 1.38 (0.98, 1.93)	Very serious ⁸	N/A	Not serious	Serious ²	Very low
	prospective cohort study				LR- 0.66 (0.36, 1.21)	Very serious ⁸	N/A	Not serious	Very serious ³	Very low
MOS (Cai	ncer patients o	only) – 3 m	onths (90 day	vs)						
1 (Altari 2017)	Retrospecti ve cohort	383	0.29 (0.08, 0.58)	0.71 (0.66, 0.76)	LR+ 0.99 (0.43, 2.31)	Serious ¹	N/A	Not serious	Very serious ³	Very low
	study				LR- 1.00 (0.72, 1.40)	Serious ¹	N/A	Not serious	Serious ²	Low
OBRI (Hig	gh risk versus	moderate	/low risk) – 3 i	months						
1 (Piovella	Retrospecti ve cohort	8,717	0.08 (0.05, 0.14)	0.96 (0.95, 0.96)	LR+ 1.77 (1.00, 3.43)	Not serious	N/A	Not serious	Serious ²	Moderate
2014)	study				LR- 0.96 (0.91, 1.02)	Not serious	N/A	Not serious	Serious ²	Moderate
OBRI (Hig	gh/moderate r	isk versus	low risk) – 3 i	months						
1 (Piovella	Retrospecti ve cohort	8,717	0.90 (0.82, 0.96)	0.27 (0.26, 0.28)	LR+ 1.24 (1.15, 1.33)	Not serious	N/A	Not serious	Not serious	High
2014)	study				LR- 0.36 (0.19, 0.69)	Not serious	N/A	Not serious	Serious ²	Moderate
OBRI (Hig	gh risk versus	moderate	/low risk; ≥65	year olds only	y) – 3 months					
1 (Scherz	Retrospecti ve cohort	663	0.07 (0.02, 0.23)	0.93 (0.91, 0.95)	LR+ 1.03 (0.26, 4.04)	Serious ¹	N/A	Not serious	Very serious ³	Very low
2013)	study				LR- 1.00 (0.90, 1.11)	Serious ¹	N/A	Not serious	Serious ²	Low

No. of studies	Study design	Sample size	Sensitivity (95%Cl)	Specificity (95%Cl)	Effect size (95%CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
RIETE 1 (•	noderate/lo	ow risk) – 30 d	. ,						
1 (Klok 2016)	Retrospecti ve analysis of a	448	0.10 (0.01, 0.32)	0.90 (0.87, 0.93)	LR+ 1.04 (0.27, 3.98)	Serious ¹	N/A	Not serious	Very serious ³	Very low
	prospective cohort study				LR- 1.00 (0.86, 1.16)	Serious ¹	N/A	Not serious	Serious ²	Low
RIETE 1 (High versus n	noderate/lo	ow risk) – 3 m	onths (Figure	9, Figure 10, F	igure 11 an	d Figure 12)			
2 (Ruiz- Gimenez 2008,	See above	15,289	0.15 (0.11, 0.21)	0.93 (0.87, 0.96)	LR+ 2.27 (1.62, 3.17)	Not serious	Serious ¹¹	Not serious	Serious ²	Low
Piovella 2014)					LR- 0.91 (0.86, 0.96)	Not serious	Not serious	Not serious	Not serious	High
RIETE 1 (High/moderat	e versus lo	ow risk) – 3 m	onths (Figure	13, Figure 14,	Figure 15 a	nd Figure 16)			
2 (Ruiz- Gimenez 2008,	See above	15,289	0.98 (0.91, 1.00)	0.13 (0.05, 0.31)	LR+ 1.15 (0.97, 1.37)	Not serious	Serious ¹¹	Not serious	Serious ²	Low
Piovella 2014)					LR- 0.13 (0.01, 1.79)	Not serious	Not serious	Not serious	Very serious ³	Low
RIETE 1 (High risk vers	us low-mo	oderate; ≥65 y	ear olds only)	– 3 months					
1 (Scherz	Retrospecti ve cohort	663	0.14 (0.06, 0.9	0.91 (0.89, 0.93)	LR+ 1.59 (0.62, 4.08)	Serious ¹	N/A	Not serious	Very serious ³	Very low
2013)	study				LR- 0.94 (0.81, 1.10)	Serious ¹	N/A	Not serious	Serious ²	Low

No. of studies	Study design	Sample size	Sensitivity (95%Cl)	Specificity (95%Cl)	Effect size (95%Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Klok 2016)	Retrospecti ve analysis of a	448	0.70 (0.46, 0.88)	0.51 (0.46, 0.56)	LR+ 1.42 (1.05, 1.92)	Very serious ⁸	N/A	Not serious	Not serious	Low
	prospective cohort study				LR- 0.59 (0.30, 1.16)	Very serious ⁸	N/A	Not serious	Very serious ³	Very low
RIETE 2 (High/moderate	e versus lo	ow risk; predie	cting fatal blee	eds)					
1 (Nieto 2013)	Retrospecti ve analysis	15,206	0.81 (0.67, 0.90)	0.64 (0.63, 0.65)	LR+ 2.26 (1.98, 2.58)	Not serious	N/A	Not serious	Serious ²	Moderate
	of a prospective cohort				LR- 0.30 (0.17, 0.52)	Not serious	N/A	Not serious	Serious ²	Moderate
RIETE 2 (High versus n	noderate/lo	ow risk; predie	cting fatal blee	eds)					
1 (Nieto 2013)	Retrospecti ve analysis	15,206	0.10 (0.03, 0.21)	0.98 (0.98, 0.98)	LR+ 4.27 (1.85, 9.90)	Not serious	N/A	Not serious	Serious ²	Moderate
	of a prospective cohort				LR- 0.92 (0.85, 1.01)	Not serious	N/A	Not serious	Serious ²	Moderate
VTE-BLE	ED – During ir	n-hospital	stay							
1 (Kresoja	Retrospecti ve analysis	522	0.89 (0.65, 0.97)	0.43 (0.38, 0.47)	LR+ 1.55 (1.29, 1.86)	Serious ¹	N/A	Serious ⁵	Not serious	Low
2019)	of a prospective cohort				LR- 0.26 (0.07, 0.97)	Serious ¹	N/A	Serious⁵	Serious ²	Very low
VTE-BLE	ED (after 30 da	ays of trea	tment)- up to	12 months (Fi	gure 17, Figure	18, Figure	e 19 and Figure 2	0)		
2	Retrospecti ve analysis of a	12,249	0.60 (0.51, 0.69)	0.69 (0.59, 0.77)	LR+ 1.96 (1.50, 2.56)	Very serious ¹ 2	Serious ¹¹	Not serious	Serious ²	Very low

No. of studies	Study design	Sample size	Sensitivity (95%Cl)	Specificity (95%Cl)	Effect size (95%Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
(Klok 2017, Klok 2018)	prospective cohort				LR- 0.57 (0.45, 0.72)	Very serious ¹ 2	Not serious	Not serious	Serious ²	Very low
EPIPHAN	Y index (inter	nal validati	ion study in c	ancer patients	s only) – 15 day	s				
1 (Carmon a-	Retrospecti ve analysis of a	1,075	0.94 (0.85, 0.99)	0.30 (0.27, 0.32)	LR+ 1.34 (1.24, 1.45)	Serious ¹	N/A	Not serious	Not serious	Moderate
Bayonas	prospective				LR- 0.19	Serious ¹	N/A	Not serious	Serious ²	Low

1. Study was at moderate risk of bias

cohort

study

- 2. 95% confidence interval for likelihood ratio crosses one end of a defined MID interval (0.5 or 1 for negative likelihood ratios and 1 or 2 for positive likelihood ratios)
- 3. 95% confidence interval for likelihood ratio crosses both sides of an MID (1 and either 0.5 or 2)
- 4. 0.5 added to TP, FP, TN and FN as previously had zero false negatives and therefore confidence intervals for negative likelihood ratio were not calculable.
- 5. Study was only partially applicable to the review question
- 6. Study was at high risk of bias
- 7. Data pertaining to the presence of CYP-2C9 gene was missing in this study, this was a variable of the HEMMOR₂HAGES tool.

(0.06, 0.57)

- 8. Study was at moderate risk of bias; however it was marked down once more for this result as the cut-off used was modified based on its relationship with the outcome variable.
- 9. Although study was at low risk of bias overall it was marked down for this tool as it is unclear whether this study re-sampled from the same participants used in the RIETE 1 derivation study.
- 10. 33.3% < I² < 66.6%
- 11. l² > 66.6%

2017)

12. >33.3% of studies were at high risk of bias.

1

1 c-statistics

lausucs								
No. of studies	Study design	Sample size	Effect size (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
ACCP- up to 12 mon	ths (Figure 21)							
2 (Palareti 2018 and Riva 2014)	Retrospective review of prospective cohort	2,944	0.57 (0.49, 0.64)	Serious ⁶	Not serious	Not serious	Very serious ⁴	Very low
ACCP ((≥ 80 years ol	d, continuous var	iable data)						
1 (Poli 2013)	Retrospective review of prospective cohort	1,078	0.55 (0.45, 0.64)	Very serious ³	N/A	Not serious	Serious ²	Very low
ATRIA- up to 12 mon	ths							
1 (Riva 2014)	Retrospective review	681	0.47 (0.31, 0.63)	Very serious ³	N/A	Not serious	Serious ²	Very low
ATRIA ((≥ 80 years o	ld, continuous va	riables data)						
1 (Poli 2013)	Retrospective review of prospective cohort	1,078	0.58 (0.48, 0.67)	Very serious ³	N/A	Not serious	Serious ²	Very low
HAS-BLED – during i	in-hospital stay							
1 (Kresoja 2019)	Retrospective review of prospective cohort	522	0.58 (0.48, 0.69)	Serious ¹	N/A	Serious ⁵	Very serious ⁴	Very low
HAS-BLED – up to 6	months (Figure 2	2)						

		0 and 1						
No. of studies	Study design	Sample size	Effect size (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
2 (Kooiman 2015, Brown 2018)	Retrospective cohort study	132,817	0.71 (0.70, 0.72)	Serious ¹	Not serious	Not serious	Not serious	Moderate
HAS-BLED (cancer	patients only) – up	to 6 months						
1 (Brown 2018)	Retrospective cohort study	24,915	0.69 (0.67, 0.71)	Serious ¹	N/A	Not serious	Serious ²	Low
HAS-BLED – up to 1	2 months							
1 (Riva 2014)	Retrospective cohort study	681	0.60 (0.45, 0.75)	Very serious ³	N/A	Not serious	Very serious ⁴	Very low
HAS-BLED ((≥ 80 ye	ars old, continuou	s variable da	ta)					
1 (Poli 2013)	Retrospective review of prospective cohort	1,078	0.55 (0.46, 0.64)	Very serious ³	N/A	Not serious	Serious ²	Very low
HEMMOR ₂ HAGES -	up to 12 months							
1 (Riva 2014)	Retrospective review	681	0.51 (0.32, 0.70)	Very serious ³	N/A	Not serious	Very serious ⁵	Very low
HEMMOR ₂ HAGES ((≥ 80 years old, cor	ntinuous vari	ables data)					
1 (Poli 2013)	Retrospective review of prospective cohort	1,078	0.60 (0.50, 0.70)	Very serious ³	N/A	Not serious	Very serious ⁴	Very low
Kearon score- 3 mo	nths							
1 (Zhang 2019)	Prospective review	539	0.75 (0.60, 0.89)	Serious ¹	N/A	Not serious	Very serious ⁴	Very low
Kearon score (≥ 65 g	years old)- 3 mont	าร						

No. of studies	Study design	Sample size	Effect size (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Scherz 2013)	Retrospective review of prospective cohort	663	0.59 (0.55, 0.63)	Serious ¹	N/A	Not serious	Serious ²	Low
Kearon score (≥ 65 ;	years old and alrea	ady received	3 months of e	extended durati	on treatment)- 3 mo	nths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.54 (0.38, 0.69)	Not serious	N/A	Not serious	Serious ²	Moderate
Kearon score (≥ 65 ;	years old and alrea	ady received	3 months of e	extended durati	on treatment)- 6 mo	nths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.55 (0.43, 0.67)	Not serious	N/A	Not serious	Serious ²	Moderate
Kearon score (≥ 65 ;	years old and alrea	ady received	3 months of e	extended durati	on treatment)- 12 m	onths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.58 (0.49, 0.67)	Not serious	N/A	Not serious	Serious ²	Moderate
Kearon score (≥ 65	years old and alrea	ady received	3 months of e	extended durati	on treatment)- 24 m	onths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.57 (0.50, 0.64)	Not serious	N/A	Not serious	Serious ²	Moderate

No. of studies	Study design	Sample size	Effect size (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.59 (0.52, 0.66)	Not serious	N/A	Not serious	Serious ²	Moderate
Kuijer score- 3 mor	nths							
1 (Zhang 2019)	Prospective review	539	0.57 (0.44, 0.68)	Serious ¹	N/A	Not serious	Very serious ⁴	Very low
Kuijer score- up to	12 months							
1 (Riva 2014)	Retrospective review	681	0.51 (0.32, 0.70)	Very serious ³	N/A	Not serious	Very serious ⁴	Very low
Kuijer score (≥ 65 y	ears old)– 3 month	s						
1 (Scherz 2013)	Retrospective review of prospective cohort	663	0.49 (0.45, 0.52)	Serious ¹	N/A	Not serious	Not serious	Moderate
Kuijer score (≥ 65 y	ears old and alread	ly received 3	3 months of ex	tended duratio	n treatment) – 3 mo	nths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.67 (0.54, 0.81)	Not serious	N/A	Not serious	Very serious ⁴	Low
Kuijer score (≥ 65 y	ears old and alread	ly received 3	3 months of ex	tended duratio	n treatment) – 6 mo	nths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.61 (0.50, 0.72)	Not serious	N/A	Not serious	Very serious ⁴	Low

		Sample	Effect size					
No. of studies	Study design	size	(95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.57 (0.48, 0.66)	Not serious	N/A	Not serious	Serious ²	Moderate
Kuijer score (≥ 65 y	ears old and alread	ly received 3	3 months of ex	tended duration	n treatment) – 24 m	onths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.57 (0.50, 0.64)	Not serious	N/A	Not serious	Serious ²	Moderate
Kuijer score (≥ 65 y	ears old and alread	ly received 3	3 months of ex	tended duration	n treatment) – 36 m	onths		
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.57 (0.50, 0.64)	Not serious	N/A	Not serious	Serious ²	Moderate
Nieuwenhuis score	- 3 months							
1 (Zhang 2019)	Prospective review	539	0.59 (0.41, 0.74)	Serious ¹	N/A	Not serious	Very serious ⁴	Very low
OBRI – up to 12 mo	onths							
1 (Riva 2014)	Retrospective review	681	0.59 (0.42, 0.76)	Very serious ³	N/A	Not serious	Very serious ⁴	Very low
OBRI (≥ 65 years ol	d)- 3 months							
1 (Scherz 2013)	Retrospective review of prospective cohort	663	0.54 (0.50, 0.58)	Serious ¹	N/A	Not serious	Not serious	Moderate

No. of studies	Study design	Sample size	Effect size (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.54 (0.43, 0.65)	Not serious	N/A	Not serious	Serious ²	Moderate
OBRI (≥ 65 years ol	d and already recei	ved 3 month	s of extended	duration treat	nent)- 6 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.51 (0.42, 0.60)	Not serious	N/A	Not serious	Serious ²	Moderate
OBRI (≥ 65 years ol	d and already recei	ved 3 month	s of extended	duration treat	nent)- 12 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.52 (0.44, 0.60)	Not serious	N/A	Not serious	Serious ²	Moderate
OBRI (≥ 65 years ol	d and already recei	ved 3 month	s of extended	duration treat	ment)- 24 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.52 (0.46, 0.59)	Not serious	N/A	Not serious	Not serious	High
OBRI (≥ 65 years ol	d and already recei	ved 3 month	s of extended	duration treat	nent)- 36 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.53 (0.47, 0.59)	Not serious	N/A	Not serious	Not serious	High
OBRI (≥ 80 years ol	d, continuous varia	bles data)						

No. of studies	Study design	Sample size	Effect size (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Poli 2013)	Retrospective review of prospective cohort	1,078	0.58 (0.49, 0.67)	Very serious ³	N/A	Not serious	Serious ²	Very low
RIETE 1 - 3 months	;							
1 (Zhang 2019)	Prospective review	539	0.56 (0.45, 0.71)	Serious ¹	N/A	Not serious	Very serious ⁴	Very low
RIETE 1 (≥ 65 years	s old)- 3 months							
1 (Scherz 2013)	Retrospective review of prospective cohort	663	0.60 (0.56, 0.64)	Serious ¹	N/A	Not serious	Serious ²	Low
RIETE 1 (≥ 65 years	s old and already re	eceived 3 mo	nths of extend	ded duration tre	atment)- 3 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.59 (0.45, 0.72)	Not serious	N/A	Not serious	Very serious ⁴	Low
RIETE 1 (≥ 65 years	s old and already re	eceived 3 mo	nths of extend	ded duration tre	atment)- 6 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.59 (0.48, 0.70)	Not serious	N/A	Not serious	Very serious ⁴	Low
RIETE 1 (≥ 65 years	s old and already re	ceived 3 mo	nths of extend	ded duration tre	atment)- 12 months			
1 (Seiler 2017)	Retrospective review of	743	0.63 (0.54, 0.72)	Not serious	N/A	Not serious	Very serious ⁴	Low

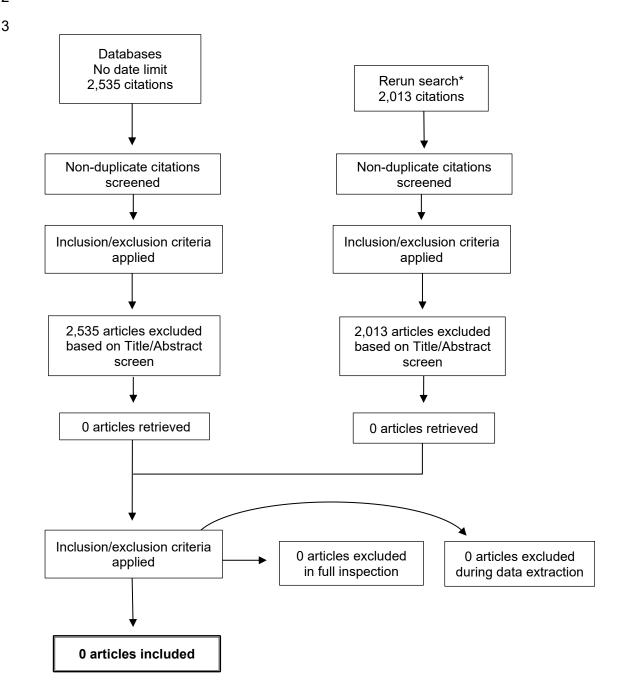
No. of studies	Study design	Sample size	Effect size (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
	prospective cohort							
RIETE 1 (≥ 65 years o	old and already re	ceived 3 mon	ths of extend	led duration tre	atment)- 24 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.62 (0.55, 0.69)	Not serious	N/A	Not serious	Serious ²	Moderate
RIETE 1 (≥ 65 years o	old and already re	ceived 3 mon	ths of extend	led duration tre	atment)- 36 months			
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.63 (0.56, 0.70)	Not serious	N/A	Not serious	Very serious ⁴	Low
RIETE 1 (continuous	variables) (≥ 80 y	ears old)						
1 (Poli 2013)	Retrospective review of prospective cohort	1,078	0.61 (0.51, 0.71)	Very serious ³	N/A	Not serious	Very serious ⁴	Very low
RIETE 1- up to 12 mo	onths							
1 (Riva 2014)	Retrospective review of prospective cohort	681	0.54 (0.38, 0.71)	Very serious ³	N/A	Not serious	Very serious ⁴	Very low
RIETE 2 – 3 months								
1 (Nieto 2013)	Retrospective review of	15,206	0.72 (0.69, 0.75)	Not serious	N/A	Not serious	Serious ²	Moderate

		Sample	Effect size					
No. of studies	Study design	size	(95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
	prospective cohort							
RIETE 2 (fatal bleeds	only)- 3 months							
1 (Nieto 2013)	Retrospective review of prospective cohort	15,206	0.78 (0.72, 0.83)	Not serious	N/A	Not serious	Serious ²	Moderate
Shireman score- up t	to 12 months							
1 (Riva 2014)	Retrospective review	681	0.63 (0.45, 0.81)	Very serious ³	N/A	Not serious	Very serious⁵	Very low
VTE-BLEED – during	in-hospital stay							
1 (Kresoja 2019)	Retrospective review of prospective cohort	522	0.69 (0.58, 0.80)	Serious ¹	N/A	Serious⁵	Very serious ⁴	Very low
VTE-BLEED (after 30	days of treatment	t)- up to 12 m	onths (Figure	e 23)				
2 (Klok 2017 and 2018)	Retrospective review of prospective cohort	12,687	0.67 (0.62, 0.71)	Serious ⁶	Not serious	Not serious	Serious ²	Low
Seiler score (internal	validation and in	participants	≥ 65 years ol	d that have alre	ady received 3 month	ns of extended dura	tion treatment) – 3	months
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.75 (0.61, 0.88)	Serious ¹	N/A	Not serious	Very serious ⁴	Very low
Seiler score (internal	validation and in	participants	≥ 65 years ol	d that have alre	ady received 3 month	ns of extended dura	tion treatment) – 6	months

No. of studies	Study design	Sample size	Effect size (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.69 (0.58, 0.79)	Serious ¹	N/A	Not serious	Very serious ⁴	Very low
Seiler score (inter	nal validation and in	participants	s ≥ 65 years ol	d and already r	eceived 3 months o	f extended duration	n treatment) – 12 m	onths
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.68 (0.60, 0.76)	Serious ¹	N/A	Not serious	Serious ²	Low
Seiler score (inter	nal validation and in	participants	s ≥ 65 years ol	d and already r	eceived 3 months o	f extended duration	n treatment) – 24 m	onths
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.67 (0.60, 0.73)	Serious ¹	N/A	Not serious	Serious ²	Low
Seiler score (inter	nal validation and in	participants	s ≥ 65 years ol	d and already r	eceived 3 months o	f extended duration	n treatment) – 36 m	onths
1 (Seiler 2017)	Retrospective review of prospective cohort	743	0.68 (0.61, 0.74)	Serious ¹	N/A	Not serious	Serious ²	Low
 Study was a 95% confide Study was a 95% confide 95% confide Study was a 	ence interval not prov at moderate risk of bia ence interval spans tv at high risk of bias ence interval spans th only partially applicab analysis weight comes	as vo categories iree or more le to the revie	of test effectiv categories of te w question.	est effectiveness				

1

1 Hazard ratios and odds ratios


No. of studies	Study design	Sample size	Effect size (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
HAS-BLED	– 180 days	I.						
1 (Brown 2018)	Retrospective cohort study	132,280	1 vs. 0: HR 1.34 (1.15, 1.56) 2 vs. 1: HR 1.31 (1.16, 1.49) 3 vs. 2: HR 1.22 (1.06, 1.39) 4+ vs. 3: HR 1.71 (1.44, 2.04)	Serious ¹	N/A	Not serious	Not serious	Moderate
1 (Kooiman 2015)	Retrospective cohort study	537	High versus moderate/low risk*: HR 8.7 (2.7, 28.4) High versus moderate/low risk**: HR 10.8 (2.3, 50.0)	Very serious ²	N/A	Not serious	Not serious	Low
HAS-BLED	(during in-hospit	al stay only)					
1 (Kresoja 2019)	Retrospective review of prospective cohort	522	3+ vs. 0-2: OR 1.10 (0.40, 2.90)	Serious ¹	N/A	Serious ⁴	Serious ³	Very low
HAS-BLED	(cancer patients	only)						
1 (Brown 2018)	Retrospective cohort study	24,915	1 vs. 0: HR 0.88 (0.67, 1.14) 2 vs. 1: HR 1.22 (0.99, 1.49) 3 vs. 2: HR 0.95 (0.77, 1.19) 4+ vs. 3: HR 1.66 (1.26, 2.20)	Serious ¹	N/A	Not serious	Not serious	Moderate
VTE-BLEED	(during in-hosp	ital stay onl	y)					
1 (Kresoja 2019)	Retrospective review of prospective cohort	522	2+ vs. 0-1: OR 3.70 (1.10, 13.00)	Serious ¹	N/A	Serious ⁴	Not serious	Low

No. of studies	Study design	Sample size	Effect size (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Klok 2018)	Retrospective review of prospective cohort	4,447	OR 1.40 (1.10,1.60)	Very serious ²	N/A	Not serious	Not serious	Low
VTE-BLEED	per 1 point incr	ease (after 3	30 days of treatment, adjusted fo	or type of anticoagu	ulant used; unpr	ovoked VTE pa	tients only)	
1 (Klok 2018)	Retrospective review of prospective cohort	2,856	OR 1.30 (1.00,1.70)	Very serious ²	N/A	Not serious	Not serious	Low
VTE-BLEED) (after 30 days o	f treatment,	adjusted for type of anticoagula	ant used)				
1 (Klok 2018)	Retrospective review of prospective cohort	4,447	VTE-BLEED ≥2 vs.<2: HR 2.30 (1.10,4.50)	Very serious ²	N/A	Not serious	Serious ⁵	Very low
VTE-BLEED) (after 30 days o	f treatment,	adjusted for type of anticoagula	ant used; unprovok	ed VTE patients	only)		
1 (Klok 2018)	Retrospective review of prospective cohort	2,856	VTE-BLEED ≥2 vs.<2: HR 1.70 (0.69, 4.40)	Very serious ²	N/A	Not serious	Very serious ⁶	Very low
**High ris chance of 1. Stud 2. Stud 3. 95% 4. Stud	sk classified as 4+ of major bleed) dy was at moderate dy was at high risk o confidence interv dy was only partial	points. This e risk of bias of bias val crosses th ly applicable		-		th the definition	of high risk in VT	ГЕ (7.3%

1

1 Appendix H – Economic evidence study selection

*Combined for all questions in the guideline

4

1 Appendix I – Excluded studies

2 Clinical studies (main search)

Short Title	Title	Reason for exclusion
Ahn (2013)	Validation of the clinical prediction rule for recurrent venous thromboembolism in cancer patients: the Ottawa score	 Participants were on anticoagulants during follow up VTE-recurrence prediction
Ahn (2017)	Prognostic Value of Treatment Setting in Patients with Cancer Having Pulmonary Embolism: Comparison with the Pulmonary Embolism Severity Index	• Study does not contain any relevant prognostic variables
Ahn (2018)	Validation of the EPIPHANY index for predicting risk of serious complications in cancer patients with incidental pulmonary embolism	 Study does not contain any relevant prognostic variables
Airaksinen (2010)	Usefulness of outpatient bleeding risk index to predict bleeding complications in patients with long-term oral anticoagulation undergoing coronary stenting	• Does not contain a population of people meeting the PICO
Alatri (2017)	Low discriminating power of the modified Ottawa risk score in a cohort of patients with active cancer and acute venous thromboembolism	Conference abstract
Albertsen (2018)	Risk of Recurrent Venous Thromboembolism: A Danish Nationwide Cohort Study	 Study did not include prognostic risk tool
Al-Ogaili (2018)	Risk assessment as a guide for the prevention of cancer- associated thromboembolism	• Review article but not a systematic review
Alper (2018)	Risk Stratification Model: Lower-Extremity Ultrasonography for Hospitalized Patients with Suspected Deep Vein Thrombosis	 Study does not contain any relevant prognostic variables Does not contain a population of people meeting the PICO
Angelini (2016)	A novel risk assessment model to predict venous thromboembolism (VTE) in cancer inpatients: the canclot score	• predicted outcome(s) not of relevance to this review
Astruc (2016)	External validation of the modified Ottawa score for risk	Conference abstract

Short Title	Title	Reason for exclusion
	stratification of recurrent cancer-associated thrombosis	
Aujesky (2005)	Derivation and validation of a prognostic model for pulmonary embolism	 predicted outcome(s) not of relevance to this review
Aujesky (2006)	Validation of a model to predict adverse outcomes in patients with pulmonary embolism	 predicted outcome(s) not of relevance to this review
Baglin (2004)	High risk of recurrent venous thromboembolism in men	• Participants were on anticoagulants during follow up
Banerjee (2014)	Composite risk scores and composite endpoints in the risk prediction of outcomes in anticoagulated patients with atrial fibrillation: The Loire Valley Atrial Fibrillation Project	• Does not contain a population of people meeting the PICO
Barco (2017)	Clinical course of patients with symptomatic isolated superficial vein thrombosis: the ICARO follow-up study	• Does not contain a population of people meeting the PICO
Barillari (2016)	Recurrence of venous thromboembolism in patients with recent gestational deep vein thrombosis or pulmonary embolism: Findings from the RIETE Registry	 individual risk factors only
Bateman (2017)	Correlation of the Caprini Score and Venous Thromboembolism Incidence Following Primary Total Joint Arthroplasty-Results of a Single-Institution Protocol	 Does not contain a population of people meeting the PICO
Bernaitis (2017)	A High HASBLED Score Identifies Poor Warfarin Control in Patients Treated for Non- Valvular Atrial Fibrillation in Australia and Singapore	• Does not contain a population of people meeting the PICO
Bertoletti (2011)	Prognostic value of the Geneva prediction rule in patients in whom pulmonary embolism is ruled out	 Does not contain a population of people meeting the PICO
Bertoletti (2013)	Prognostic value of the Geneva prediction rule in patients with pulmonary embolism	 Does not contain a population of people meeting the PICO
Bledsoe (2016)	Intermountain risk score strati pulmonary embolism severity index fies to better predict mortality across all classes	Conference abstract

Short Title	Title	Reason for exclusion
Bledsoe (2016)	Intermountain risk score is highly predictive of pulmonary embolism mortality	Conference abstract
Blondon (2018)	Comparative Performance of Clinical Risk Assessment Models for Hospital-Acquired Venous Thromboembolism in Medical Patients	 Does not contain a population of people meeting the PICO
Carpenter (2009)	Differentiating low-risk and no- risk PE patients: the PERC score	• Participants sample size less than 250
Chagnon (2002)	Comparison of two clinical prediction rules and implicit assessment among patients with suspected pulmonary embolism	• Does not contain a population of people meeting the PICO
Chai-Adisaksopha (2018)	Vitamin K Antagonists After 6 Months of Low-Molecular- Weight Heparin in Cancer Patients with Venous Thromboembolism	Study did not include prognostic risk tool
Chatterjee (2016)	HAS-BLED Versus ATRIA Risk Scores for Intracranial Hemorrhage in Patients Receiving Thrombolytics for Pulmonary Embolism	Conference abstract
Chee (2014)	Predictors of venous thromboembolism recurrence and bleeding among active cancer patients: a population- based cohort study	 predicted outcome(s) not of relevance to this review
Coleman (2015)	Validation of the multivariable In-hospital Mortality for PulmonAry embolism using Claims daTa (IMPACT) prediction rule within an all- payer inpatient administrative claims database	• predicted outcome(s) not of relevance to this review
Coleman (2016)	External validation of a multivariable claims-based rule for predicting in-hospital mortality and 30-day post- pulmonary embolism complications	 predicted outcome(s) not of relevance to this review
Dang (2018)	Predicting venous thromboembolism following laparoscopic bariatric surgery: development of the BariClot tool using the MBSAQIP database	• Does not contain a population of people meeting the PICO

Object Title	714	Dessen for and state
Short Title	Title	Reason for exclusion
de Bastos (2016)	Derivation of a risk assessment model for hospital-acquired venous thrombosis: the NAVAL score	• Does not contain a population of people meeting the PICO
Decousus (2011)	Factors at admission associated with bleeding risk in medical patients: findings from the IMPROVE investigators	 Does not contain a population of people meeting the PICO
Dentali (2015)	Rate and duration of hospitalization for deep vein thrombosis and pulmonary embolism in real-world clinical practice	• predicted outcome(s) not of relevance to this review
Desai (2016)	Utility of Inferior Vena Cava Filters in Severe Pulmonary Embolism, Catheter-directed Therapy in Massive and Submassive Pulmonary Embolism, and HAS-BLED Score to Determine Risk of Major Hemorrhage in Pulmonary Embolism	• Review article but not a systematic review
Development and validation (Janssen)	Development and validation of clinical prediction models: Marginal differences between logistic regression, penalized maximum likelihood estimation, and genetic programming	• No specific tool investigated the study explores the methods of validating
Donze (2008)	Prospective validation of the Pulmonary Embolism Severity Index. A clinical prognostic model for pulmonary embolism	 predicted outcome(s) not of relevance to this review
Eichinger (2010)	Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model	• Secondary paper of an included study
Elias (2016)	Prognostic models in acute pulmonary embolism: a systematic review and meta- analysis	Systematic review
Elias (2017)	Automating Venous Thromboembolism Risk Calculation Using Electronic Health Record Data upon Hospital Admission: The Automated Padua Prediction Score	• Does not contain a population of people meeting the PICO
Engelberger (2011)	Comparison of the diagnostic performance of the original and modified Wells score in inpatients and outpatients with	• Does not contain a population of people meeting the PICO

Short Title	Title	Reason for exclusion
	suspected deep vein thrombosis	
Ensor (2013)	Protocol for a systematic review of prognostic models for the recurrence of venous thromboembolism (VTE) following treatment for a first unprovoked VTE	Systematic review
Ensor (2016)	Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE	Systematic review
Erkens (2012)	Does the Pulmonary Embolism Severity Index accurately identify low risk patients eligible for outpatient treatment?	• Participants sample size less than 250
Ferrer (2013)	Validation of two clinical prognostic models in patients with acute symptomatic pulmonary embolism	 predicted outcome(s) not of relevance to this review
Franco (2017)	Predicting recurrence after a first unprovoked venous thromboembolism: Retrospective validation of the DAMOVES score	Duplicate reference
Galanaud (2012)	Superficial vein thrombosis and recurrent venous thromboembolism: a pooled analysis of two observational studies	 Individual risk factor and not risk tool assessed
Galanaud (2017)	Long-term risk of venous thromboembolism recurrence after isolated superficial vein thrombosis	 Does not contain a population of people meeting the PICO
Grant (2016)	Assessing the Caprini Score for Risk Assessment of Venous Thromboembolism in Hospitalized Medical Patients	 Does not contain a population of people meeting the PICO
Greene (2016)	Validation of Risk Assessment Models of Venous Thromboembolism in Hospitalized Medical Patients	 Does not contain a population of people meeting the PICO
Gruettner (2015)	Importance of Wells score and Geneva score for the evaluation of patients suspected of pulmonary embolism	• Diagnostic study and not predicting recurrence or major bleeding
Heit (2000)	Predictors of recurrence after deep vein thrombosis and	Study did not include prognostic risk tool

Short Title	Title	Reason for exclusion
	pulmonary embolism: a population-based cohort study	
Hendriksen (2015)	Diagnostic prediction models for suspected pulmonary embolism: systematic review and independent external validation in primary care	Systematic review
Hostler (2015)	Validation of the IMPROVE Bleeding Risk Score	• Does not contain a population of people meeting the PICO
Hostler (2016)	Validation of the International Medical Prevention Registry on Venous Thromboembolism Bleeding Risk Score	 Does not contain a population of people meeting the PICO
Hron (2006)	Prediction of recurrent venous thromboembolism by the activated partial thromboplastin time	 individual risk factors only
Janjua (2008)	Treatment of acute pulmonary embolism as outpatients or following early discharge - A systematic review	Systematic review
Janssen (2012)	Development and validation of clinical prediction models: marginal differences between logistic regression, penalized maximum likelihood estimation, and genetic programming	• Review article but not a systematic review
Jaquet (2018)	Prediction of short-term prognosis in elderly patients with acute pulmonary embolism: validation of the RIETE score	• predicted outcome(s) not of relevance to this review
Jimenez (2007)	Prognostic models for selecting patients with acute pulmonary embolism for initial outpatient therapy	 predicted outcome(s) not of relevance to this review
Jimenez (2010)	Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism	 predicted outcome(s) not of relevance to this review
Kilic (2014)	Prognostic role of simplified Pulmonary Embolism Severity Index and the European Society of Cardiology Prognostic Model in short- and long-term risk stratification in pulmonary embolism	• Participants sample size less than 250

Short Title	Title	Reason for exclusion
Kim (2017)	Utility of the simplified Wells and revised Geneva scores to exclude pulmonary embolism in femur fracture patients	 predicted outcome(s) not of relevance to this review
Kline (2018)	Utility of a Clinical Prediction Rule to Exclude Pulmonary Embolism Among Low-Risk Emergency Department Patients: Reason to PERC Up	• Review article but not a systematic review
Klok (2008)	Comparison of the revised Geneva score with the Wells rule for assessing clinical probability of pulmonary embolism	• Does not contain a population of people meeting the PICO
Kohn (2016)	External validation of the In- hospital Mortality for PulmonAry embolism using Claims daTa (IMPACT) multivariable prediction rule	 predicted outcome(s) not of relevance to this review
Kruger (2017)	HERDOO2 identified women at low risk for recurrence after 5 to 12 mo of anticoagulation for a first unprovoked VTE	Conference abstract
Kyrle (2012)	Clinical scores to predict recurrence risk of venous thromboembolism	• Review article but not a systematic review
Kyrle (2013)	Predicting the risk of recurrent venous thromboembolism. The Austrian study on recurrent venous thromboembolism (AUREC)	• Review article but not a systematic review
Lankeit (2012)	A strategy combining imaging and laboratory biomarkers in comparison with a simplified clinical score for risk stratification of patients with acute pulmonary embolism	 predicted outcome(s) not of relevance to this review
Lauber (2018)	Predictors and Outcomes of Recurrent Venous Thromboembolism in Elderly Patients	 Individual risk factor and not risk tool assessed
Lauque (2014)	Predictive value of the heart- type fatty acid-binding protein and the Pulmonary Embolism Severity Index in patients with acute pulmonary embolism in the emergency department	• Participants sample size less than 250
Le Moigne (2014)	Validation of the LEFt score, a newly proposed diagnostic tool for deep vein thrombosis in pregnant women	 Does not contain a population of people meeting the PICO

0 1 7 1		
Short Title	Title	Reason for exclusion
Li (2018)	Stratification of venous thromboembolism risk in burn patients by Caprini score	• Does not contain a population of people meeting the PICO
Lin (2014)	Incremental health care resource utilization and economic burden of venous thromboembolism recurrence from a U.S. payer perspective	Study did not include prognostic risk tool
Long-term risk of venous (2016)	Long-term risk of venous thrombosis after stopping anticoagulants for a first unprovoked event: a multi- national cohort	 Individual risk factor and not risk tool assessed
Louzada (2012)	Development of a clinical prediction rule for risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism	 Individual risk factor and not risk tool assessed
Madsen (2010)	PERC bleeding risk calculation and resultant test threshold may be inappropriate	 predicted outcome(s) not of relevance to this review
Maestre (2015)	Identification of Low-Risk Patients with Acute Symptomatic Pulmonary Embolism for Outpatient Therapy	 Individual risk factor and not risk tool assessed
Mansfield (2016)	Predictors of active cancer thromboembolic outcomes: validation of the Khorana score among patients with lung cancer	 Does not contain a population of people meeting the PICO
Mizuno (2015)	Pulmonary embolism severity index and simplified pulmonary embolism severity index risk scores are useful to predict mortality in Japanese patients with pulmonary embolism	 predicted outcome(s) not of relevance to this review
Molnar (2018)	Risk and complications of venous thromboembolism in dialysis patients	 Study was not investigating risk tools but a hopsital protocol
Moorehead (2017)	A Retrospective Cohort Analysis of Pharmacologic VTE Prophylaxis and Padua Prediction Score in Hospitalized Patients With Chronic Liver Disease	• Does not contain a population of people meeting the PICO
Moores (2013)	Changes in PESI scores predict mortality in intermediate-risk patients with acute pulmonary embolism	 predicted outcome(s) not of relevance to this review

Object THE		Provide the second sectors
Short Title	Title	Reason for exclusion
Mueller (2017)	HAS-BLED Predicts Warfarin Control in Australian Patients treated for Deep Vein Thrombosis	 predicted outcome(s) not of relevance to this review
Munoz (2018)	Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer	• Participants sample size less than 250 only 71 participants had VTE
Murthy (2018)	Ability of the Khorana score to predict recurrent thromboembolism in cancer patients with ischemic stroke	 Does not contain a population of people meeting the PICO
Nendaz (2004)	Validation of a risk score identifying patients with acute pulmonary embolism, who are at low risk of clinical adverse outcome	• Participants sample size less than 250
Nendaz (2014)	Multicentre validation of the Geneva Risk Score for hospitalised medical patients at risk of venous thromboembolism. Explicit ASsessment of Thromboembolic RIsk and Prophylaxis for Medical PATients in SwitzErland (ESTIMATE)	• Does not contain a population of people meeting the PICO
Nieto (2006)	Acute venous thromboembolism in patients with recent major bleeding. The influence of the site of bleeding and the time elapsed on outcome	 No specific tool investigated the study explores the methods of validating
Nieto (2010)	Fatal bleeding in patients receiving anticoagulant therapy for venous thromboembolism: findings from the RIETE registry	• Secondary paper of an included study
Ozsu (2014)	Combination and comparison of two models in prognosis of pulmonary embolism: results from TUrkey Pulmonary Embolism Group (TUPEG) study	• predicted outcome(s) not of relevance to this review
Paiva (2013)	Cardiovascular risk assessment of pulmonary embolism with the GRACE risk score	• Participants sample size less than 250
Pannucci (2012)	Assessment of postoperative venous thromboembolism risk in plastic surgery patients using	Comparison of two tools

Short Title	Title	Passan for avaluation
Short Title	Title	Reason for exclusion
	the 2005 and 2010 Caprini Risk score	
Parker (2018)	Risk stratification for the development of venous thromboembolism in hospitalized patients with cancer	• Does not contain a population of people meeting the PICO
Penaloza (2011)	Comparison of the Wells score with the simplified revised Geneva score for assessing pretest probability of pulmonary embolism	Comparison of two tools
Penaloza (2017)	Pulmonary embolism rule-out criteria (PERC) rule in European patients with low implicit clinical probability (PERCEPIC): a multicentre, prospective, observational study	• Not a peer-reviewed publication
Piovella (2014)	Comparison of four scores to predict major bleeding in patients receiving anticoagulation for venous thromboembolism: findings from the RIETE registry	Duplicate reference
Poli (2013)	Assessing recurrence risk following acute venous thromboembolism: use of algorithms	Letter to the editor
Poli (2013)	The predictive ability of bleeding risk stratification models in very old patients on vitamin K antagonist treatment for venous thromboembolism: results of the prospective collaborative EPICA study	Duplicate reference
Prandoni (2010)	Major bleeding as a predictor of mortality in patients with venous thromboembolism: Findings from the RIETE Registry	Letter to the editor
Rief (2018)	The HAS-BLED score is useful for the identification of venous thromboembolism patients with high risk for major bleeding complications: A prospective outpatient cohort study	 Study not reported in English
Rief (2018)	Calculation of HAS-BLED Score Is Useful for Early Identification of Venous Thromboembolism Patients at High Risk for Major Bleeding	 Study not reported in English

Short Title	Title	Reason for exclusion
onort nuc	Events: A Prospective Outpatients Cohort Study	
Rieken (2018)	Risk of Bleeding Versus Venous Thromboembolism in Urological Surgery-Finding the Right Balance Is Not Always Easy!	Letter to the editor
Robert-Ebadi (2010)	Differences in clinical presentation of pulmonary embolism in women and men	 Individual risk factor and not risk tool assessed
Rodger (2008)	Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy.	 Does not contain a population of people meeting the PICO
Rodger (2016)	Long-term risk of venous thrombosis after stopping anticoagulants for a first unprovoked event: A multi- national cohort	Study did not include prognostic risk tool
Rosenberg (2014)	External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system	• Does not contain a population of people meeting the PICO
Rosenberg (2016)	External validation of the IMPROVE Bleeding Risk Assessment Model in medical patients	 Does not contain a population of people meeting the PICO
Sam (2011)	The shock index and the simplified PESI for identification of low-risk patients with acute pulmonary embolism	• Comparison of two tools
Sanden (2017)	Venous thromboembolism and cancer risk	 Study did not include prognostic risk tool
Shen (2016)	Comparison of the Wells score with the revised Geneva score for assessing suspected pulmonary embolism: a systematic review and meta- analysis	Systematic review
Smith (2012)	Triple antithrombotic therapy following an acute coronary syndrome: Prevalence, outcomes and prognostic utility of the HAS-BLED score	• Does not contain a population of people meeting the PICO

Short Title	Title	Reason for exclusion
Spirk (2011)	Cardiac troponin testing and the simplified Pulmonary Embolism Severity Index. The SWIss Venous ThromboEmbolism Registry (SWIVTER)	Individual risk factor and not risk tool assessed
Squizzato (2012)	Prognostic clinical prediction rules to identify a low-risk pulmonary embolism: a systematic review and meta- analysis	Systematic review
Stoker (2016)	Managing risk after intracerebral hemorrhage in concomitant atrial fibrillation and cerebral amyloid angiopathy	• Review article but not a systematic review
Suarez (2008)	Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIETE Registry	Duplicate reference
Tan (2013)	Validation of the San Francisco Syncope Rule in two hospital emergency departments in an Asian population	 Does not contain a population of people meeting the PICO
Thomas (2014)	Bleeding risk prediction models in atrial fibrillation topical collection on invasive electrophysiology and pacing	• Review article but not a systematic review
Tosetto (2012)	Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH)	• Primary study
Touhami (2018)	Are the Wells Score and the Revised Geneva Score valuable for the diagnosis of pulmonary embolism in pregnancy?	• Participants sample size less than 250
Tritschler (2015)	Predicting recurrence after unprovoked venous thromboembolism: prospective validation of the updated Vienna Prediction Model	• Participants sample size less than 250
Trujillo-Santos (2015)	A prognostic score to identify low-risk outpatients with acute deep vein thrombosis in the lower limbs	Study did not include prognostic risk tool

Short Title	Title	Reason for exclusion
Tsu (2015)	Modified HAS-BLED score and risk of major bleeding in patients receiving dabigatran and rivaroxaban: A retrospective, case-control study	Participants sample size less than 250
van Es (2017)	Bleeding risk in patients with unprovoked venous thromboembolism: A critical appraisal of clinical prediction scores	Systematic review
van Es (2017)	Comparison of risk prediction scores for venous thromboembolism in cancer patients: a prospective cohort study	• Comparison of two tools
Vink (2003)	Individualized duration of oral anticoagulant therapy for deep vein thrombosis based on a decision model	Study did not include prognostic risk tool
Vuilleumier (2015)	Cardiac biomarkers and clinical scores for risk stratification in elderly patients with non-high- risk pulmonary embolism	Study did not include prognostic risk tool
Wells (2003)	The outpatient bleeding risk index: validation of a tool for predicting bleeding rates in patients treated for deep venous thrombosis and pulmonary embolism	• Participants sample size less than 250
Wells (2016)	Prediction of bleeding risk in patients on extended oral anticoagulation for venous thromboembolism	Conference abstract
Wicki (2000)	Predicting adverse outcome in patients with acute pulmonary embolism: a risk score	Comparison of two tools
Zhou (2012)	The prognostic value of pulmonary embolism severity index in acute pulmonary embolism: A meta-analysis	Systematic review
Zhou (2012)	Validation of the Caprini risk assessment model in Chinese hospitalized patients with venous thromboembolism	• Participants sample size less than 250

1

1 Clinical studies (search update)

Short Title	Title	Reason for exclusion
Alatri (2017	Low discriminating power of the modified Ottawa risk score in a cohort of patients with active cancer and acute venous thromboembolism	Abstract only
Dhanda (2018)	Low discriminating power of the modified Ottawa risk score in a cohort of patients with active cancer and acute venous thromboembolism	Outcome not of interest
Jaquet (2018)	Low discriminating power of the modified Ottawa risk score in a cohort of patients with active cancer and acute venous thromboembolism	Outcome not of interest
Palareti (2018)	The American College of Chest Physician score to assess the risk of bleeding during anticoagulation in patients with venous thromboembolism	• Reference already contained in main review
Wells (2019)	The value of sPESI for risk stratification in patients with pulmonary embolism	Outcome not of interest

2

1 Appendix J – References

2 Included studies

- 3 Alatri A, Mazzolai L, Kucher N, Aujesky D, Beer J H, Baldi T, Banyai M, Hayoz D, Kaeslin T,
- 4 Korte W, Escher R, Husmann M, Frauchiger B, Engelberger R P, Baumgartner I, and Spirk D
- 5 (2017) The Modified Ottawa Score and Clinical Events in Hospitalized Patients with Cancer-
- 6 Associated Thrombosis from the Swiss VTE Registry. Seminars in Thrombosis and
- 7 Hemostasis 43(8), 871-876
- 8 Brown J D, Goodin A J, Lip G Y. H, and Adams V R (2018) Risk Stratification for Bleeding
- 9 Complications in Patients With Venous Thromboembolism: Application of the HAS-BLED
- 10 Bleeding Score During the First 6 Months of Anticoagulant Treatment. Journal of the
- 11 American Heart Association 7(6), 07
- Carmona-Bayonas A, Jimenez-Fonseca P, Font C, Fenoy F, Otero R, Beato C, Plasencia J
 M, Biosca M, Sanchez M, Benegas M, Calvo-Temprano D, Varona D, Faez L, de la Haba , I ,
 Antonio M, Madridano O, Solis M P, Ramchandani A, Castanon E, Marchena P J, Martin M,
 Ayala de la Pena, F , and Vicente V (2017) Predicting serious complications in patients with
 cancer and pulmonary embolism using decision tree modelling: the EPIPHANY Index. British
- 17 Journal of Cancer 116(8), 994-1001
- 18 Eichinger S, Heinze G, and Kyrle P A (2014) D-dimer levels over time and the risk of
- recurrent venous thromboembolism: an update of the Vienna prediction model. Journal of the
 American Heart Association 3(1), e000467
- Franco Moreno, A I, Garcia Navarro, M J, Ortiz Sanchez, J, Martin Diaz, R M, Madronal
 Cerezo, E, de Ancos Aracil, C L, Cabello Clotet, N, Perales Fraile, I, Gimeno Garcia, S,
 Montero Hernandez, C, Zapatero Gaviria, A, Ruiz Giardin, and J M (2016) A risk score for
 prediction of recurrence in patients with unprovoked venous thromboembolism (DAMOVES).
 European Journal of Internal Medicine 29, 59-64
- Kresoja, K. P., Ebner, M., Rogge, N. I. J. et al. (2019) Prediction and prognostic importance
 of in-hospital major bleeding in a real-world cohort of patients with pulmonary embolism.
 International Journal of Cardiology 16: 16
- Klok F A, Niemann C, Dellas C, Hasenfus G, Konstantinides S, and Lankeit M (2016)
 Performance of five different bleeding-prediction scores in patients with acute pulmonary
 embolism. Journal of Thrombosis & Thrombolysis 41(2), 312-20
- 32 Klok F A, Barco S, and Konstantinides S V (2017) External validation of the VTE-BLEED
- 33 score for predicting major bleeding in stable anticoagulated patients with venous
- 34 thromboembolism. Thrombosis & Haemostasis 117(6), 1164-1170
- 35 Klok F A, Barco S, Turpie A G. G, Haas S, Kreutz R, Mantovani L G, Gebel M, Herpers M,
- 36 Bugge J P, Kostantinides S V, and Ageno W (2018) Predictive value of venous
- 37 thromboembolism (VTE)-BLEED to predict major bleeding and other adverse events in a
- 38 practice-based cohort of patients with VTE: results of the XALIA study. British Journal of
- 39 Haematology 19, 19
- Kooiman J, van Hagen , N , Iglesias Del Sol, A , Planken E V, Lip G Y, van der Meer , F J,
 Cannegieter S C, Klok F A, and Huisman M V (2015) The HAS-BLED Score Identifies

- 1 Patients with Acute Venous Thromboembolism at High Risk of Major Bleeding Complications
- during the First Six Months of Anticoagulant Treatment. PLoS ONE [Electronic Resource]
- 3 10(4), e0122520

Kuijer P M, Hutten B A, Prins M H, and Buller H R (1999) Prediction of the risk of bleeding
during anticoagulant treatment for venous thromboembolism. Archives of Internal Medicine
159(5), 457-60

Marcucci M, Iorio A, Douketis J D, Eichinger S, Tosetto A, Baglin T, Cushman M, Palareti G,
Poli D, Tait R C, and Kyrle P A (2015) Risk of recurrence after a first unprovoked venous
thromboembolism: external validation of the Vienna Prediction Model with pooled individual

10 patient data. Journal of Thrombosis & Haemostasis 13(5), 775-81

Nieto J A, Solano R, Trapero Iglesias, N, Ruiz-Gimenez N, Fernandez-Capitan C, Valero B,
 Tiberio G, Bura-Riviere A, Monreal M, and Investigators Riete (2013) Validation of a score for
 predicting fatal bleeding in patients receiving anticoagulation for venous thromboembolism.
 Thrombosis Research 132(2), 175-9

- 15 Palareti G, Antonucci E, Mastroiacovo D, Ageno W, Pengo V, Poli D, Testa S, Tosetto A, and
- 16 Prandoni P (2018) The American College of Chest Physician score to assess the risk of
- 17 bleeding during anticoagulation in patients with venous thromboembolism. Journal of
- 18 Thrombosis & Haemostasis 16(10), 1994-2002

Piovella, C., Dalla Valle, F., Trujillo-Santos, J., Pesavento, R., López, L., Font, L., ... & RIETE
investigators. (2014). Comparison of four scores to predict major bleeding in patients

receiving anticoagulation for venous thromboembolism: findings from the RIETE

registry. *Internal and emergency medicine*, *9*(8), 847-852.

23 Poli D, Antonucci E, Cosmi B, Palareti G, Testa S, Paoletti O, Nante G, Pengo V, Carini U, 24 Guazzaloca G, Scortechini A R, Canafoglia L, Tomassetti S, Restifo D, Ciampa A, Pignatelli 25 P. Basili S. Saliola M, Di Gennaro , L , De Cristofaro , R , Ageno W, Caprioli M, Pedrini S, Orlandini F, Benedetti R, Ruocco L, Tiraferri E, Cappelli R, Piana A, Armani U, Porcu A, 26 27 Falco P, Da Col, P, Marongiu F, Barcellona D, Falanga A, Lerede T, Galbo L, Bucherini E, 28 Insana A, Masciocco L, and Pini F (2013) The predictive ability of bleeding risk stratification 29 models in very old patients on vitamin K antagonist treatment for venous thromboembolism: 30 Results of the prospective collaborative EPICA study. Journal of Thrombosis and 31 Haemostasis 11(6), 1053-1058

Riva N, Bellesini M, Di Minno , M N, Mumoli N, Pomero F, Franchini M, Fantoni C, Lupoli R,
Brondi B, Borretta V, Bonfanti C, Ageno W, and Dentali F (2014) Poor predictive value of
contemporary bleeding risk scores during long-term treatment of venous thromboembolism.
A multicentre retrospective cohort study. Thrombosis & Haemostasis 112(3), 511-21

Rodger M A, Le Gal , G , Anderson D R, Schmidt J, Pernod G, Kahn S R, Righini M, Mismetti
P, Kearon C, Meyer G, Elias A, Ramsay T, Ortel T L, Huisman M V, Kovacs M J, and
Investigators Reverse li Study (2017) Validating the HERDOO2 rule to guide treatment
duration for women with unprovoked venous thrombosis: multinational prospective cohort

- 40 management study. BMJ 356, j1065
- 41 Ruiz-Gimenez N, Suarez C, Gonzalez R, Nieto J A, Todoli J A, Samperiz A L, Monreal M,
- 42 and Investigators Riete (2008) Predictive variables for major bleeding events in patients
- 43 presenting with documented acute venous thromboembolism. Findings from the RIETE

44 Registry. Thrombosis & Haemostasis 100(1), 26-31

- 1 Scherz N, Mean M, Limacher A, Righini M, Jaeger K, Beer H J, Frauchiger B, Osterwalder J,
- 2 Kucher N, Matter C M, Banyai M, Angelillo-Scherrer A, Lammle B, Husmann M, Egloff M,
- 3 Aschwanden M, Bounameaux H, Cornuz J, Rodondi N, and Aujesky D (2013) Prospective,
- 4 multicenter validation of prediction scores for major bleeding in elderly patients with venous
- 5 thromboembolism. Journal of Thrombosis & Haemostasis 11(3), 435-43
- 6 Seiler E, Limacher A, Mean M, Beer H J, Osterwalder J, Frauchiger B, Righini M,
- 7 Aschwanden M, Matter C M, Banyai M, Kucher N, Staub D, Lammle B, Rodondi N,
- 8 Squizzato A, and Aujesky D (2017) Derivation and validation of a novel bleeding risk score
- 9 for elderly patients with venous thromboembolism on extended anticoagulation. Thrombosis
- 10 & Haemostasis 117(10), 1930-1936
- 11 Tosetto A, Testa S, Martinelli I, Poli D, Cosmi B, Lodigiani C, Ageno W, De Stefano , V,
- 12 Falanga A, Nichele I, Paoletti O, Bucciarelli P, Antonucci E, Legnani C, Banfi E, Dentali F,
- 13 Bartolomei F, Barcella L, and Palareti G (2017) External validation of the DASH prediction
- rule: a retrospective cohort study. Journal of Thrombosis & Haemostasis 15(10), 1963-1970
- 15 Zhang, Z., Lei, J., Zhai, Z. et al. (2019) Comparison of prediction value of four bleeding risk
- 16 scores for pulmonary embolism with anticoagulation: A real-world study in Chinese patients.
- 17 The clinical respiratory journal 13(3): 139-147

18 Excluded studies (main search)

- Ahn S, Lim K S, Lee Y S, and Lee J L. (2013). Validation of the clinical prediction rule for
- recurrent venous thromboembolism in cancer patients: the Ottawa score. Supportive Care in Cancer, 21(8), pp.2309-13.
- Ahn S, Lee Y S, Kim W Y, Lim K S, and Lee J L. (2017). Prognostic Value of Treatment
- 23 Setting in Patients with Cancer Having Pulmonary Embolism: Comparison with the
- Pulmonary Embolism Severity Index. Clinical and Applied Thrombosis/Hemostasis, 23(6),
 pp.615-621.
- Ahn S, Cooksley T, Banala S, Buffardi L, and Rice T W. (2018). Validation of the EPIPHANY index for predicting risk of serious complications in cancer patients with incidental pulmonary embolism. Supportive Care in Cancer, 26(10), pp.3601-3607.
- Airaksinen K E, Suurmunne H, Porela P, Niemela M, Vikman S, Puurunen M, Annala A P,
 Biancari F, and Karjalainen P P. (2010). Usefulness of outpatient bleeding risk index to
 predict bleeding complications in patients with long-term oral anticoagulation undergoing
- 32 coronary stenting. American Journal of Cardiology, 106(2), pp.175-9.
- Alatri A, Mazzolai L, Font C, Tafur A, Valle R, Marchena P J, Ballaz A, Tiraferri E, Font L,
 and Monreal M. (2017). Low discriminating power of the modified Ottawa risk score in a
 cohort of patients with active cancer and acute venous thromboembolism. Vasa European
 Journal of Vascular Medicine, 46 (Supplement 98), pp.20-21.
- Albertsen I E, Nielsen P B, Sogaard M, Goldhaber S Z, Overvad T F, Rasmussen L H, and
 Larsen T B. (2018). Risk of Recurrent Venous Thromboembolism: A Danish Nationwide
- Cohort Study. American Journal of Medicine, 131(9), pp.1067-1074.e4.
- 40 Al-Ogaili A, Fuentes H E, Tafur A J, and Caprini J. (2018). Risk assessment as a guide for
- the prevention of cancer-associated thromboembolism. International Angiology, 37(4),
 pp.269-276.
 - Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

- 1 Alper E C, Ip I K, Balthazar P, Piazza G, Goldhaber S Z, Benson C B, Lacson R, and
- 2 Khorasani R. (2018). Risk Stratification Model: Lower-Extremity Ultrasonography for
- 3 Hospitalized Patients with Suspected Deep Vein Thrombosis. Journal of General Internal 4 Modicine 33(1) pp 21 25
- 4 Medicine, 33(1), pp.21-25.

Angelini De, Greene Mt, Wietzke Jn, Flanders Sa, and Sood Sl. (2016). A novel risk
assessment model to predict venous thromboembolism (VTE) in cancer inpatients: the
canclot score. Blood. Conference: 58th annual meeting of the american society of
hematology, and ASH 2016. United states. Conference start: 20161203. Conference end:

- 9 20161206, 128(22) (no pagination), pp.
- Astruc N, Ianotto J C, Metges J P, Lacut K, and Delluc A. (2016). External validation of the modified Ottawa score for risk stratification of recurrent cancer-associated thrombosis.
- 12 European Journal of Internal Medicine, 36, pp.e11-e12.

Aujesky D, Obrosky D S, Stone R A, Auble T E, Perrier A, Cornuz J, Roy P M, and Fine M J.
(2005). Derivation and validation of a prognostic model for pulmonary embolism. American
Journal of Respiratory & Critical Care Medicine, 172(8), pp.1041-6.

Aujesky D, Roy P M, Le Manach, C P, Verschuren F, Meyer G, Obrosky D S, Stone R A,
Cornuz J, and Fine M J. (2006). Validation of a model to predict adverse outcomes in
patients with pulmonary embolism. European Heart Journal, 27(4), pp.476-81.

Baglin T, Luddington R, Brown K, and Baglin C. (2004). High risk of recurrent venous
thromboembolism in men. Journal of Thrombosis & Haemostasis, 2(12), pp.2152-5.

Banerjee A, Fauchier L, Bernard-Brunet A, Clementy N, and Lip G Y. H. (2014). Composite
risk scores and composite endpoints in the risk prediction of outcomes in anticoagulated
patients with atrial fibrillation: The Loire Valley Atrial Fibrillation Project. Thrombosis and
Haemostasis, 111(3), pp.549-556.

Barco S, Pomero F, Di Minno , M N D, Tamborini Permunian, E , Malato A, Pasca S, Barillari
G, Fenoglio L, Siragusa S, Di Minno , G , Ageno W, and Dentali F. (2017). Clinical course of
patients with symptomatic isolated superficial vein thrombosis: the ICARO follow-up study.
Journal of Thrombosis & Haemostasis, 15(11), pp.2176-2183.

Barillari G, Londero A P, Brenner B, Nauffal D, Munoz-Torrero J F. S, Del Molino , F ,
Moustafa F, Madridano O, Martin-Martos F, Monreal M, Decousus H, Prandoni P, Barba R,
Di Micco , P , Bertoletti L, Schellong S, Tzoran I, Reis A, Bosevski M, Bounameaux H, Maly
R, Wells P, and Papadakis M. (2016). Recurrence of venous thromboembolism in patients
with recent gestational deep vein thrombosis or pulmonary embolism: Findings from the
RIETE Registry. European Journal of Internal Medicine, 32, pp.53-59.

Bateman D K, Dow R W, Brzezinski A, Bar-Eli H Y, and Kayiaros S T. (2017). Correlation of
the Caprini Score and Venous Thromboembolism Incidence Following Primary Total Joint
Arthroplasty-Results of a Single-Institution Protocol. Journal of Arthroplasty, 32(12), pp.37353741.

- 39 Bernaitis N, Ching C K, Chen L, Hon J S, Teo S C, Badrick T, Davey A K, and Anoopkumar-
- 40 Dukie S. (2017). A High HASBLED Score Identifies Poor Warfarin Control in Patients
- 41 Treated for Non-Valvular Atrial Fibrillation in Australia and Singapore. Basic & Clinical
- 42 Pharmacology & Toxicology, 121(6), pp.499-504.

- 1 Bertoletti L, Le Gal , G , Aujesky D, Roy P M, Sanchez O, Verschuren F, Bounameaux H,
- 2 Perrier A, and Righini M. (2011). Prognostic value of the Geneva prediction rule in patients in
- 3 whom pulmonary embolism is ruled out. Journal of Internal Medicine, 269(4), pp.433-40.

Bertoletti L, Le Gal, G, Aujesky D, Sanchez O, Roy P M, Verschuren F, Bounameaux H,
Perrier A, and Righini M. (2013). Prognostic value of the Geneva prediction rule in patients
with pulmonary embolism. Thrombosis Research, 132(1), pp.32-6.

Bledsoe J, Aston V, and Horne B. (2016). Intermountain risk score strati pulmonary
embolism severity index fies to better predict mortality across all classes. Annals of
emergency medicine. Conference: american college of emergency physicians, and ACEP
2016 research forum. United states, 68(4 Supplement 1), pp.S54-s55.

- Bledsoe J, Aston V, and Horne B. (2016). Intermountain risk score is highly predictive of
 pulmonary embolism mortality. Annals of emergency medicine. Conference: american
 college of emergency physicians, and ACEP 2016 research forum. United states, 68(4
 Supplement 1), pp.S55-s56.
- 15 Blondon M, Spirk D, Kucher N, Aujesky D, Hayoz D, Beer J H, Husmann M, Frauchiger B,
- 16 Korte W, Wuillemin W A, Bounameaux H, Righini M, and Nendaz M. (2018). Comparative
- 17 Performance of Clinical Risk Assessment Models for Hospital-Acquired Venous
- 18 Thromboembolism in Medical Patients. Thrombosis & Haemostasis, 118(1), pp.82-89.

Carpenter C R, Keim S M, Seupaul R A, Pines J M, Best Evidence in Emergency Medicine
Investigator, and Group. (2009). Differentiating low-risk and no-risk PE patients: the PERC
score. Journal of Emergency Medicine, 36(3), pp.317-22.

Chagnon I, Bounameaux H, Aujesky D, Roy P M, Gourdier A L, Cornuz J, Perneger T, and
 Perrier A. (2002). Comparison of two clinical prediction rules and implicit assessment among
 patients with suspected pulmonary embolism. American Journal of Medicine, 113(4), pp.269 75.

26 Chai-Adisaksopha C, Iorio A, Crowther M A, Aibar M A, Arcelus J I, Ballaz A, Barba R, 27 Barron M, Barron-Andres B, Bascunana J, Blanco-Molina A, Bueso T, Calvo B, Canada G, Canas I, Casado I, Culla A, de Miguel , J , del Toro , J , Diaz-Peromingo J A, Falga C, 28 Fernandez-Capitan C, Font C, Font L, Gallego P, Garcia-Bragado F, Gomez V, Gonzalez J, 29 30 Grau E, Guil M, Guirado L, Gutierrez J, Hernandez G, Hernandez-Blasco L, Isern V, Jara-31 Palomares L, Jaras M J, Jimenez D, Lacruz B, Lecumberri R, Lobo J L, Lopez-Jimenez L, 32 Lopez-Reves R, Lopez-Saez J B, Lorente M A, Lorenzo A, Madridano O, Maestre A, 33 Manrique-Abos I, Marchena P J, Martin-Antoran J M, Martin-Martos F, Monreal M, Morales 34 M V, Morillo R, Nauffal D, Nieto J A, Nieto S, Nunez M J, Odriozola M, Otalora S, Otero R, 35 Pagan B, Pedrajas J M, Perez C, Peris M L, Pons I, Porras J A, Ramirez L, Riera A, Rivas A, Rodriguez C, Rodriguez-Davila M A, Rosa V, Ruiz-Gimenez N, Samperiz A, Sanchez R, 36 37 Sala M C, Sahuquillo J C, Sanz O, Soler S, Suarez-Gonzalez I, Surinach J M, Tiberio G, Tolosa C, Trujillo-Santos J, Uresandi F, Valero B, Valle R, Vela J, Vicente M P, Vidal G, 38 Vilella-Tomas V, Villalta J, Malfante P C, Vanassche T, Verhamme P, Wells P, Hirmerova J, 39 40 Maly R, Tomko T, Celis G, Salgado E, Sanchez G T, Bertoletti L, Bura-Riviere A, Farge-41 Bancel D, Hij A, Mahe I, Merah A, Quere I, Papadakis M, Braester A, Brenner B, Tzoran I, 42 Apollonio A, Barillari G, Bertone A, Bilora F, Bucherini E, Candelero G, Ciammaichella M, Di 43 Micco, P, Ferrazzi P, Grandone E, Lessiani G, Lodigiani C, Mastroiacovo D, Pace F, 44 Pesavento R, Pinelli M, Prandoni P, Rosa M, Rota L, Tiraferri E, Tonello D, Tufano A, 45 Venturelli U, Visona A, Zalunardo B, Drucka E, Kigitovica D, Skride A, Sousa M S, Bosevski 46 M, Zdraveska M, Bounameaux H, Mazzolai L, and Serrano J C. (2018). Vitamin K

- 1 Antagonists After 6 Months of Low-Molecular-Weight Heparin in Cancer Patients with 2 Venous Thromboembolism. American Journal of Medicine, 131(4), pp.430-437.
- 3 Chatterjee S, Lip G Y, and Giri J. (2016). HAS-BLED Versus ATRIA Risk Scores for
- Intracranial Hemorrhage in Patients Receiving Thrombolytics for Pulmonary Embolism.
 Journal of the American College of Cardiology, 67(24), pp.2904-5.

6 Chee C E, Ashrani A A, Marks R S, Petterson T M, Bailey K R, Melton L J, 3rd , and Heit J A.
7 (2014). Predictors of venous thromboembolism recurrence and bleeding among active
8 cancer patients: a population-based cohort study. Blood, 123(25), pp.3972-8.

- 9 Coleman C I, Kohn C G, Crivera C, Schein J R, and Peacock W F. (2015). Validation of the
- multivariable In-hospital Mortality for PulmonAry embolism using Claims daTa (IMPACT)
 prediction rule within an all-payer inpatient administrative claims database. BMJ Open, 5(10),
 pp.e009251.
- Coleman C I, Peacock W F, Fermann G J, Crivera C, Weeda E R, Hull M, DuCharme M,
 Becker L, and Schein J R. (2016). External validation of a multivariable claims-based rule for
 predicting in-hospital mortality and 30-day post-pulmonary embolism complications. BMC
 Health Services Research, 16(1), pp.610.
- Dang J T, Switzer N, Delisle M, Laffin M, Gill R, Birch D W, and Karmali S. (2018). Predicting
 venous thromboembolism following laparoscopic bariatric surgery: development of the
 BariClot tool using the MBSAQIP database. Surgical Endoscopy, 12, pp.12.
- de Bastos , M , Barreto S M, Caiafa J S, Boguchi T, Silva J L, and Rezende S M. (2016).
 Derivation of a risk assessment model for hospital-acquired venous thrombosis: the NAVAL
 score. Journal of Thrombosis & Thrombolysis, 41(4), pp.628-35.
- Decousus H, Tapson V F, Bergmann J F, Chong B H, Froehlich J B, Kakkar A K, Merli G J,
 Monreal M, Nakamura M, Pavanello R, Pini M, Piovella F, Spencer F A, Spyropoulos A C,
 Turpie A G, Zotz R B, Fitzgerald G, Anderson F A, and Investigators Improve. (2011).
 Factors at admission associated with bleeding risk in medical patients: findings from the
 IMPROVE investigators. Chest, 139(1), pp.69-79.
- Dentali F, Di Micco, G, Giorgi Pierfranceschi, M, Gussoni G, Barillari G, Amitrano M,
 Fontanella A, Lodigiani C, Guida A, Visona A, Monreal M, Di Micco, and P. (2015). Rate
 and duration of hospitalization for deep vein thrombosis and pulmonary embolism in realworld clinical practice. Annals of Medicine, 47(7), pp.546-54.
- Desai A K, Pang J, Aparnath M, and Ilowite J. (2016). Utility of Inferior Vena Cava Filters in
 Severe Pulmonary Embolism, Catheter-directed Therapy in Massive and Submassive
 Pulmonary Embolism, and HAS-BLED Score to Determine Risk of Major Hemorrhage in
 Pulmonary Embolism. American Journal of Respiratory & Critical Care Medicine, 193(11),
 pp.1301-3.
- Janssen K J. M, Siccama I, Vergouwe Y, Koffijberg E, Debray T P. A, Keijzer M, Grobbee D
 E, and Moons K G. M. (). Development and validation of clinical prediction models: Marginal
 differences between logistic regression, penalized maximum likelihood estimation, and
 genetic programming. Journal of Clinical Epidemiology., pp..
- Donze J, Le Gal, G, Fine M J, Roy P M, Sanchez O, Verschuren F, Cornuz J, Meyer G,
 Perrier A, Righini M, and Aujesky D. (2008). Prospective validation of the Pulmonary

Embolism Severity Index. A clinical prognostic model for pulmonary embolism. Thrombosis &
 Haemostasis, 100(5), pp.943-8.

Eichinger S, Heinze G, Jandeck L M, and Kyrle P A. (2010). Risk assessment of recurrence
in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna
prediction model. Circulation, 121(14), pp.1630-6.

- Elias A, Mallett S, Daoud-Elias M, Poggi J N, and Clarke M. (2016). Prognostic models in
 acute pulmonary embolism: a systematic review and meta-analysis. BMJ Open, 6(4),
 pp.e010324.
- 9 Elias P, Khanna R, Dudley A, Davies J, Jacolbia R, McArthur K, and Auerbach A D. (2017). 10 Automating Venous Thromboembolism Risk Calculation Using Electronic Health Record
- Automating Venous Thromboembolism Risk Calculation Using Electronic Health Record
 Data upon Hospital Admission: The Automated Padua Prediction Score. Journal of Hospital
 Medicine (Online), 12(4), pp.231-237.
- Engelberger R P, Aujesky D, Calanca L, Staeger P, Hugli O, and Mazzolai L. (2011).
 Comparison of the diagnostic performance of the original and modified Wells score in
- 15 inpatients and outpatients with suspected deep vein thrombosis. Thrombosis Research,
- 16 127(6), pp.535-9.
- Ensor J, Riley R D, Moore D, Bayliss S, Jowett S, and Fitzmaurice D A. (2013). Protocol for a
 systematic review of prognostic models for the recurrence of venous thromboembolism
 (VTE) following treatment for a first unprovoked VTE. Systematic Reviews, 2, pp.91.
- Ensor J, Riley R D, Moore D, Snell K I, Bayliss S, and Fitzmaurice D. (2016). Systematic
 review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of
 first unprovoked VTE. BMJ Open, 6(5), pp.e011190.
- Erkens P M, Gandara E, Wells P S, Shen A Y, Bose G, Le Gal , G , Rodger M, Prins M H,
 and Carrier M. (2012). Does the Pulmonary Embolism Severity Index accurately identify low
 risk patients eligible for outpatient treatment?. Thrombosis Research, 129(6), pp.710-4.
- Ferrer M, Morillo R, Elias T, Jara L, Garcia L, Nieto R, Sandoval E, Uresandi F, Otero R, and
 Jimenez D. (2013). Validation of two clinical prognostic models in patients with acute
 symptomatic pulmonary embolism. Archivos de Bronconeumologia, 49(10), pp.427-31.
- Franco Moreno, A I, Garcia Navarro, M J, Ortiz Sanchez, J, Ruiz Giardin, and J M. (2017).
 Predicting recurrence after a first unprovoked venous thromboembolism: Retrospective
 validation of the DAMOVES score. European Journal of Internal Medicine, 41, pp.e15-e16.
- 32 Galanaud J P, Bosson J L, Genty C, Presles E, Cucherat M, Sevestre M A, Quere I,
- 33 Decousus H, and Leizorovicz A. (2012). Superficial vein thrombosis and recurrent venous
- thromboembolism: a pooled analysis of two observational studies. Journal of Thrombosis &
 Haemostasis, 10(6), pp.1004-11.
- Galanaud J P, Sevestre M A, Pernod G, Kahn S R, Genty C, Terrisse H, Brisot D, Gillet J L,
 Quere I, and Bosson J L. (2017). Long-term risk of venous thromboembolism recurrence
 after isolated superficial vein thrombosis. Journal of Thrombosis & Haemostasis, 15(6),
- 39 pp.1123-1131.
- 40 Grant P J, Greene M T, Chopra V, Bernstein S J, Hofer T P, and Flanders S A. (2016).
- 41 Assessing the Caprini Score for Risk Assessment of Venous Thromboembolism in
- 42 Hospitalized Medical Patients. American Journal of Medicine, 129(5), pp.528-535.

- 1 Greene M T, Spyropoulos A C, Chopra V, Grant P J, Kaatz S, Bernstein S J, and Flanders S
- 2 A. (2016). Validation of Risk Assessment Models of Venous Thromboembolism in
- 3 Hospitalized Medical Patients. American Journal of Medicine, 129(9), pp.1001.e9-1001.e18.

Gruettner J, Walter T, Lang S, Meyer M, Apfaltrer P, Henzler T, and Viergutz T. (2015).
 Importance of Wells score and Geneva score for the evaluation of patients suspected of

6 pulmonary embolism. In Vivo, 29(2), pp.269-72.

Heit J A, Mohr D N, Silverstein M D, Petterson T M, O'Fallon W M, Melton L J, and 3rd.
 (2000). Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a

9 population-based cohort study. Archives of Internal Medicine, 160(6), pp.761-8.

10 Hendriksen J M, Geersing G J, Lucassen W A, Erkens P M, Stoffers H E, van Weert, H C,

- Buller H R, Hoes A W, and Moons K G. (2015). Diagnostic prediction models for suspected pulmonary embolism: systematic review and independent external validation in primary care.
- 13 BMJ, 351, pp.h4438.

Hostler D C, Marx E S, Moores L K, Petteys S, Hostler J M, Mitchell J D, Holley P R, Collen J
F, Foster B, and Holley A B. (2015). Validation of the IMPROVE Bleeding Risk Score. Chest,
23, pp.23.

17 Hostler D C, Marx E S, Moores L K, Petteys S K, Hostler J M, Mitchell J D, Holley P R,

Collen J F, Foster B E, and Holley A B. (2016). Validation of the International Medical
 Prevention Registry on Venous Thromboembolism Bleeding Risk Score. Chest, 149(2),

20 pp.372-9.

Hron G, Eichinger S, Weltermann A, Quehenberger P, Halbmayer W M, and Kyrle P A.

22 (2006). Prediction of recurrent venous thromboembolism by the activated partial

thromboplastin time. Journal of Thrombosis and Haemostasis, 4(4), pp.752-756.

Janjua M, Badshah A, Matta F, Danescu L G, Yaekoub A Y, and Stein P D. (2008).
Treatment of acute pulmonary embolism as outpatients or following early discharge - A
systematic review. Thrombosis and Haemostasis, 100(5), pp.756-761.

Janssen K J, Siccama I, Vergouwe Y, Koffijberg H, Debray T P, Keijzer M, Grobbee D E, and
Moons K G. (2012). Development and validation of clinical prediction models: marginal
differences between logistic regression, penalized maximum likelihood estimation, and
genetic programming. Journal of Clinical Epidemiology, 65(4), pp.404-12.

Jaquet E, Tritschler T, Stalder O, Limacher A, Mean M, Rodondi N, and Aujesky D. (2018).
Prediction of short-term prognosis in elderly patients with acute pulmonary embolism:
validation of the RIETE score. Journal of Thrombosis & Haemostasis, 16(7), pp.1313-1320.

Jimenez D, Yusen R D, Otero R, Uresandi F, Nauffal D, Laserna E, Conget F, Oribe M,
Cabezudo M A, and Diaz G. (2007). Prognostic models for selecting patients with acute
pulmonary embolism for initial outpatient therapy. Chest, 132(1), pp.24-30.

Jimenez D, Aujesky D, Moores L, Gomez V, Lobo J L, Uresandi F, Otero R, Monreal M,
Muriel A, Yusen R D, and Investigators Riete. (2010). Simplification of the pulmonary
embolism severity index for prognostication in patients with acute symptomatic pulmonary

40 embolism. Archives of Internal Medicine, 170(15), pp.1383-9.

Kilic T, Gunen H, Gulbas G, Hacievliyagil S S, and Ozer A. (2014). Prognostic role of
 simplified Pulmonary Embolism Severity Index and the European Society of Cardiology

Prognostic Model in short- and long-term risk stratification in pulmonary embolism. Pakistan
 Journal of Medical Sciences, 30(6), pp.1259-64.

3 Kim Y J, Choi D H, Lee E S, Ryoo S M, Ahn S, Sohn C H, Seo D W, Lim K S, and Kim W Y.

- 4 (2017). Utility of the simplified Wells and revised Geneva scores to exclude pulmonary
- 5 embolism in femur fracture patients. American Journal of Emergency Medicine, 35(8),
- 6 pp.1131-1135.
- Kline J A. (2018). Utility of a Clinical Prediction Rule to Exclude Pulmonary Embolism Among
 Low-Risk Emergency Department Patients: Reason to PERC Up. JAMA, 319(6), pp.551-553.

9 Klok F A, Kruisman E, Spaan J, Nijkeuter M, Righini M, Aujesky D, Roy P M, Perrier A, Le

Gal, G, and Huisman M V. (2008). Comparison of the revised Geneva score with the Wells
 rule for assessing clinical probability of pulmonary embolism. Journal of Thrombosis &

- 12 Haemostasis, 6(1), pp.40-4.
- Kohn C G, Peacock W F, Fermann G J, Bunz T J, Crivera C, Schein J R, and Coleman C I.
 (2016). External validation of the In-hospital Mortality for PulmonAry embolism using Claims
 daTa (IMPACT) multivariable prediction rule. International Journal of Clinical Practice, 70(1),
 pp.82-8.
- Kruger P, and Eikelboom J. (2017). HERDOO2 identified women at low risk for recurrence
 after 5 to 12 mo of anticoagulation for a first unprovoked VTE. Annals of Internal Medicine,
 167(6), pp.JC33.
- Kyrle P A, and Eichinger S. (2012). Clinical scores to predict recurrence risk of venous
 thromboembolism. Thrombosis & Haemostasis, 108(6), pp.1061-4.

Kyrle P A, and Eischer L. (2013). Predicting the risk of recurrent venous thromboembolism.
The Austrian study on recurrent venous thromboembolism (AUREC). Hamostaseologie,
33(3), pp.201-9.

Lankeit M, Gomez V, Wagner C, Aujesky D, Recio M, Briongos S, Moores C L. K, Yusen R

26 D, Konstantinides S, Jimenez D, Instituto Ramon y Cajal de Investigacion Sanitaria

27 Pulmonary Embol, and Group . (2012). A strategy combining imaging and laboratory

- biomarkers in comparison with a simplified clinical score for risk stratification of patients with acute pulmonary embolism. Chest, 141(4), pp.916-922.
- Lauber S, Limacher A, Tritschler T, Stalder O, Mean M, Righini M, Aschwanden M, Beer J H,
 Frauchiger B, Osterwalder J, Kucher N, Lammle B, Cornuz J, Angelillo-Scherrer A, Matter C
 M, Husmann M, Banyai M, Staub D, Mazzolai L, Hugli O, Rodondi N, and Aujesky D. (2018).
 Predictors and Outcomes of Recurrent Venous Thromboembolism in Elderly Patients.
- American Journal of Medicine, 131(6), pp.703.e7-703.e16.
- Lauque D, Maupas-Schwalm F, Bounes V, Juchet H, Bongard V, Roshdy A, Botella J M, and
 Charpentier S. (2014). Predictive value of the heart-type fatty acid-binding protein and the
 Pulmonary Embolism Severity Index in patients with acute pulmonary embolism in the
- 38 emergency department. Academic Emergency Medicine, 21(10), pp.1143-50.
- Le Moigne, E, Genty C, Meunier J, Arnoult A C, Righini M, Bressollette L, Bosson J L, Le Gal, G, and Investigators Optimev. (2014). Validation of the LEFt score, a newly proposed diagnostic tool for deep vein thrombosis in pregnant women. Thrombosis Research, 134(3), pp.664-7.
 - Venous thromboembolic diseases: diagnosis, management and thrombophilia testing: evidence review for predicting VTE-recurrence and major bleeding. DRAFT (November 2019)

1 Li Q, Ba T, Wang L F, Chen Q, Li F, and Xue Y. (2018). Stratification of venous 2 thromboembolism risk in burn patients by Caprini score. Burns, 22, pp.22.

3 Lin J, Lingohr-Smith M, and Kwong W J. (2014). Incremental health care resource utilization

and economic burden of venous thromboembolism recurrence from a U.S. payer
 perspective. Journal of Managed Care Pharmacy, 20(2), pp.174-86.

6 . (2016). Long-term risk of venous thrombosis after stopping anticoagulants for a first
7 unprovoked event: a multi-national cohort. Thrombosis research. 143 (pp 152-158), and
8 2016. Date of publication: 18 feb 2016., pp..

9 Louzada M L, Carrier M, Lazo-Langner A, Dao V, Kovacs M J, Ramsay T O, Rodger M A,

Zhang J, Lee A Y, Meyer G, and Wells P S. (2012). Development of a clinical prediction rule
 for risk stratification of recurrent venous thromboembolism in patients with cancer-associated
 venous thromboembolism. Circulation, 126(4), pp.448-54.

Madsen T E. (2010). PERC bleeding risk calculation and resultant test threshold may be
 inappropriate. Annals of Emergency Medicine, 56(5), pp.585-6; author reply 586-7.

Maestre A, Trujillo-Santos J, Riera-Mestre A, Jimenez D, Di Micco, P, Bascunana J, Vela J
R, Peris L, Malfante P C, Monreal M, and Investigators Riete. (2015). Identification of LowRisk Patients with Acute Symptomatic Pulmonary Embolism for Outpatient Therapy. Annals
of the American Thoracic Society, 12(8), pp.1122-9.

- 19 Mansfield A S, Tafur A J, Wang C E, Kourelis T V, Wysokinska E M, and Yang P. (2016).
- Predictors of active cancer thromboembolic outcomes: validation of the Khorana score
 among patients with lung cancer. Journal of Thrombosis and Haemostasis, 14(9), pp.1773-
- 22 1778.

23 Mizuno A, Yamamoto T, Tanabe Y, Obayashi T, Takayama M, Nagao K, and Tokyo C C. U.

Network Scientific Committee. (2015). Pulmonary embolism severity index and simplified
 pulmonary embolism severity index risk scores are useful to predict mortality in Japanese
 patients with pulmonary embolism. Circulation Journal, 79(4), pp.889-91.

- Molnar A O, Bota S E, McArthur E, Lam N N, Garg A X, Wald R, Zimmerman D, and Sood M
 M. (2018). Risk and complications of venous thromboembolism in dialysis patients.
- 29 Nephrology Dialysis Transplantation, 33(5), pp.874-880.
- Moorehead K J, Jeffres M N, and Mueller S W. (2017). A Retrospective Cohort Analysis of Pharmacologic VTE Prophylaxis and Padua Prediction Score in Hospitalized Patients With Chronic Liver Disease. Journal of Pharmacy Practice, 30(1), pp.58-63.
- 33 Moores L, Zamarro C, Gomez V, Aujesky D, Garcia L, Nieto R, Yusen R, Jimenez D,
- Instituto Ramon y Cajal de Investigacion Sanitaria Pulmonary Embol, and Group . (2013).

35 Changes in PESI scores predict mortality in intermediate-risk patients with acute pulmonary

- 36 embolism. European Respiratory Journal, 41(2), pp.354-9.
- 37 Mueller K, Bernaitis N, Badrick T, and Anoopkumar-Dukie S. (2017). HAS-BLED Predicts
- Warfarin Control in Australian Patients treated for Deep Vein Thrombosis. Basic & Clinical
 Pharmacology & Toxicology, 120(3), pp.299-302.
- Munoz Martin, A J, Ortega I, Font C, Pachon V, Castellon V, Martinez-Marin V, Salgado M,
 Martinez E, Calzas J, Ruperez A, Souto J C, Martin M, Salas E, and Soria J M. (2018).

1 Multivariable clinical-genetic risk model for predicting venous thromboembolic events in 2 patients with cancer. British Journal of Cancer, 118(8), pp.1056-1061.

Murthy S B, Cushman M, Bobrow D, Kamel H, Merkler A E, Elkind M S. V, DeAngelis L M,
and Navi B B. (2018). Ability of the Khorana score to predict recurrent thromboembolism in
cancer patients with ischemic stroke. Journal of Clinical Neuroscience, 57, pp.111-115.

Nendaz M R, Bandelier P, Aujesky D, Cornuz J, Roy P M, Bounameaux H, and Perrier A.
(2004). Validation of a risk score identifying patients with acute pulmonary embolism, who
are at low risk of clinical adverse outcome. Thrombosis & Haemostasis, 91(6), pp.1232-6.

9 Nendaz M, Spirk D, Kucher N, Aujesky D, Hayoz D, Beer J H, Husmann M, Frauchiger B,

- 10 Korte W, Wuillemin W A, Jager K, Righini M, and Bounameaux H. (2014). Multicentre
- 11 validation of the Geneva Risk Score for hospitalised medical patients at risk of venous
- thromboembolism. Explicit ASsessment of Thromboembolic RIsk and Prophylaxis for
 Medical PATients in SwitzErland (ESTIMATE). Thrombosis & Haemostasis, 111(3), pp.531-
- 14 8.

15 Nieto J A, Bruscas M J, Ruiz-Ribo D, Trujillo-Santos J, Valle R, Monreal M, Arcelus J I, Barba R, Barron M, Blanco A, Buges J, Cabezudo M A, Casado I, Conget F, De las Heras, G 16 , Falga C, Fernandez-Capitan C, Font L, Gallego P, Garcia-Bragado F, Grau E, Guijarro R, 17 18 Guil M, Gutierrez J, Hernandez L, Jimenez D, Laserna E, Lobo J L, Lopez F, Lopez L, Lopez 19 I, Maestre A, Martin J J, Naufall M D, Otero R, Pedrajas J M, Portillo J, Rabunal R, Raguer E, Raventos A, Roman R, Romero C, Rosa V, Ruiz-Gimenez N, Samperiz A L, Sanchez R, 20 21 Sanchez J F, Soler S, Tiberio G, Tirado R, Tolosa C, Trujillo J, Uresandi F, Vasco B, Llobet 22 X, Mismetti P, Rivron-Guillot K, and Bottaro F. (2006). Acute venous thromboembolism in 23 patients with recent major bleeding. The influence of the site of bleeding and the time 24 elapsed on outcome. Journal of Thrombosis and Haemostasis, 4(11), pp.2367-2372.

Nieto J A, Solano R, Ruiz-Ribo M D, Ruiz-Gimenez N, Prandoni P, Kearon C, Monreal M,
and Riete Investigators. (2010). Fatal bleeding in patients receiving anticoagulant therapy for
venous thromboembolism: findings from the RIETE registry. Journal of Thrombosis &
Haemostasis, 8(6), pp.1216-22.

Ozsu S, Ozlu T, Senturk A, Ucar E Y, Kirkil G, Kadioglu E E, Altinsoy B, Saylan B, Selimoglu
 H S, Dabak G, Tutar N, Uysal A, and Investigators Tupeg Study. (2014). Combination and

31 comparison of two models in prognosis of pulmonary embolism: results from TUrkey

32 Pulmonary Embolism Group (TUPEG) study. Thrombosis Research, 133(6), pp.1006-10.

Paiva L V, Providencia R C, Barra S N, Faustino A C, Botelho A M, and Marques A L.

(2013). Cardiovascular risk assessment of pulmonary embolism with the GRACE risk score.
 American Journal of Cardiology, 111(3), pp.425-31.

Pannucci C J, Barta R J, Portschy P R, Dreszer G, Hoxworth R E, Kalliainen L K, and Wilkins
E G. (2012). Assessment of postoperative venous thromboembolism risk in plastic surgery
patients using the 2005 and 2010 Caprini Risk score. Plastic & Reconstructive Surgery,

- 39 130(2), pp.343-53.
- 40 Parker A, Peterson E, Lee A Y. Y, de Wit, C, Carrier M, Polley G, Tien J, and Wu C. (2018).
- 41 Risk stratification for the development of venous thromboembolism in hospitalized patients
- 42 with cancer. Journal of Thrombosis & Haemostasis, 16(7), pp.1321-1326.

1 Penaloza A, Melot C, and Motte S. (2011). Comparison of the Wells score with the simplified

revised Geneva score for assessing pretest probability of pulmonary embolism. Thrombosis
 Research, 127(2), pp.81-4.

Penaloza A, Soulie C, Moumneh T, Delmez Q, Ghuysen A, El Kouri , D , Brice C, Marjanovic
N S, Bouget J, Moustafa F, Trinh-Duc A, Le Gall , C , Imsaad L, Chretien J M, Gable B,
Girard P, Sanchez O, Schmidt J, Le Gal , G , Meyer G, Delvau N, and Roy P M. (2017).
Pulmonary embolism rule-out criteria (PERC) rule in European patients with low implicit
clinical probability (PERCEPIC): a multicentre, prospective, observational study. The Lancet
Haematology, 4(12), pp.e615-e621.

Piovella C, Dalla Valle, F, Trujillo-Santos J, Pesavento R, Lopez L, Font L, Valle R, Nauffal
D, Monreal M, Prandoni P, and Investigators Riete. (2014). Comparison of four scores to
predict major bleeding in patients receiving anticoagulation for venous thromboembolism:
findings from the RIETE registry. Internal & Emergency Medicine, 9(8), pp.847-52.

Poli D, Antonucci E, Testa S, Cosmi B, Palareti G, Ageno W, and Clinics Fcsa Italian
Federation of Anticoagulation. (2013). The predictive ability of bleeding risk stratification
models in very old patients on vitamin K antagonist treatment for venous thromboembolism:
results of the prospective collaborative EPICA study. Journal of Thrombosis & Haemostasis,
11(6), pp.1053-8.

19 Poli D, and Palareti G. (2013). Assessing recurrence risk following acute venous

thromboembolism: use of algorithms. Current Opinion in Pulmonary Medicine, 19(5), pp.40712.

Prandoni P, Trujillo-Santos J, Sanchez-Cantalejo E, Dalla Valle, F, Piovella C, Pesavento R,
Nieto RodriGuez, J A, and Monreal M. (2010). Major bleeding as a predictor of mortality in
patients with venous thromboembolism: Findings from the RIETE Registry. Journal of
Thromboembolism: 0(44) or 0575 0577

25 Thrombosis and Haemostasis, 8(11), pp.2575-2577.

Rief P, and Raggam R B. (2018). The HAS-BLED score is useful for the identification of
venous thromboembolism patients with high risk for major bleeding complications: A
prospective outpatient cohort study. Vasomed, 30(1), pp.36-37.

29 Rief P, Raggam R B, Hafner F, Avian A, Hackl G, Cvirn G, Brodmann M, and Gary T. (2018).

- 30 Calculation of HAS-BLED Score Is Useful for Early Identification of Venous
- 31 Thromboembolism Patients at High Risk for Major Bleeding Events: A Prospective
- 32 Outpatients Cohort Study. Seminars in Thrombosis & Hemostasis, 44(4), pp.348-352.

Rieken M, and Bachmann A. (2018). Risk of Bleeding Versus Venous Thromboembolism in
 Urological Surgery-Finding the Right Balance Is Not Always Easy!. European Urology, 73(2),
 pp.252-253.

Robert-Ebadi H, Le Gal , G , Carrier M, Couturaud F, Perrier A, Bounameaux H, and Righini
M. (2010). Differences in clinical presentation of pulmonary embolism in women and men.
Journal of Thrombosis & Haemostasis, 8(4), pp.693-8.

- 39 Rodger MA, Kahn SR, Wells PS, Anderson DA, Chagnon I, Le Gal G, Solymoss S, Crowther
- 40 M, Perrier A, White R, Vickars L, Ramsay T, Betancourt MT, and Kovacs MJ. (2008).
- 41 Identifying unprovoked thromboembolism patients at low risk for recurrence who can
- 42 discontinue anticoagulant therapy.. CMAJ : Canadian Medical Association journal = journal
- de l'Association medicale canadienne, 179(5), pp.417-26.

- 1 Rodger M A, Scarvelis D, Kahn S R, Wells P S, Anderson D A, Chagnon I, Le Gal , G ,
- 2 Gandara E, Solymoss S, Sabri E, Kovacs J, and Kovacs M J. (2016). Long-term risk of
- 3 venous thrombosis after stopping anticoagulants for a first unprovoked event: A multi-
- 4 national cohort. Thrombosis Research, 143, pp.152-8.
- 5 Rosenberg D, Eichorn A, Alarcon M, McCullagh L, McGinn T, and Spyropoulos A C. (2014).
- 6 External validation of the risk assessment model of the International Medical Prevention
- 7 Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health
- 8 system. Journal of the American Heart Association, 3(6), pp.e001152.
- 9 Rosenberg D J, Press A, Fishbein J, Lesser M, McCullagh L, McGinn T, and Spyropoulos A
 10 C. (2016). External validation of the IMPROVE Bleeding Risk Assessment Model in medical
 11 patients. Thrombosis & Haemostasis, 116(3), pp.530-6.
- Sam A, Sanchez D, Gomez V, Wagner C, Kopecna D, Zamarro C, Moores L, Aujesky D,
 Yusen R, Jimenez Castro, and D. (2011). The shock index and the simplified PESI for
 identification of low-risk patients with acute pulmonary embolism. European Respiratory
 Journal, 37(4), pp.762-766.
- Sanden P, Svensson P J, and Sjalander A. (2017). Venous thromboembolism and cancer
 risk. Journal of Thrombosis & Thrombolysis, 43(1), pp.68-73.
- 18 Shen J H, Chen H L, Chen J R, Xing J L, Gu P, and Zhu B F. (2016). Comparison of the
- Wells score with the revised Geneva score for assessing suspected pulmonary embolism: a
 systematic review and meta-analysis. Journal of Thrombosis & Thrombolysis, 41(3), pp.48292.
- Smith J G, Wieloch M, Koul S, Braun O O, Lumsden J, Rydell E, Ohman J, Schersten F,
 Svensson P J, Van Der Pals, and J. (2012). Triple antithrombotic therapy following an acute
 coronary syndrome: Prevalence, outcomes and prognostic utility of the HAS-BLED score.
 EuroIntervention, 8(6), pp.672-678.
- Spirk D, Aujesky D, Husmann M, Hayoz D, Baldi T, Frauchiger B, Banyai M, Baumgartner I,
 and Kucher N. (2011). Cardiac troponin testing and the simplified Pulmonary Embolism
 Severity Index. The SWIss Venous ThromboEmbolism Registry (SWIVTER). Thrombosis &
 Haemostasis, 106(5), pp.978-84.
- Squizzato A, Donadini M P, Galli L, Dentali F, Aujesky D, and Ageno W. (2012). Prognostic
 clinical prediction rules to identify a low-risk pulmonary embolism: a systematic review and
 meta-analysis. Journal of Thrombosis & Haemostasis, 10(7), pp.1276-90.
- Stoker T B, and Evans N R. (2016). Managing risk after intracerebral hemorrhage in
 concomitant atrial fibrillation and cerebral amyloid angiopathy. Stroke, 47(7), pp.e190-e192.
- 35 Suarez C, Gonzalez R, Arcelus J I, Barba R, Blanco A, Barron M, Buges J, Calvo J M,
- 36 Casado I, Epelde F, Falga C, Fernandez-Capitan C, Gallego P G, Arcia-Bragado F, Grau E,
- 37 Guijarro R, Guil M, Gutierrez J, Gutierrez M R, Hernandez L, Jimenez D, Lecumberri R,
- 38 Lopez F, Lopez L, Lopez I, Madridano O, Maestre A, Martin-Villasclaras J J, Monreal M,
- 39 Montes J, Naufall M D, Nieto J A, Nunez M J, Orue M T, Perez J L, Portillo J, Rabunal R,
- 40 Raguer E, Roman P, Ruiz-Gimenez N, Samperiz A L, Sanchez R, Sanchez J F, Soler S, 41 Tiberio G, Tirada P, Tadeli J A, Talaga C, Truille J, Vala P, Vala J, Miamatti D, Diverse
- Tiberio G, Tirado R, Todoli J A, Tolosa C, Trujillo J, Valle R, Vela J, Mismetti P, RivronGuillot K, Le Gal , G , Di Micco , P , Enea I, Ghirarduzzi A, Iannuzo M T, Poggio R, Prandoni
- 43 P, Quintavalla R, and Tiraferri E. (2008). Predictive variables for major bleeding events in

patients presenting with documented acute venous thromboembolism. Findings from the
 RIETE Registry. Thrombosis and Haemostasis, 100(1), pp.26-31.

Tan C, Sim T B, and Thng S Y. (2013). Validation of the San Francisco Syncope Rule in two
 hospital emergency departments in an Asian population. Academic Emergency Medicine,

5 20(5), pp.487-97.

Thomas I C, and Sorrentino M J. (2014). Bleeding risk prediction models in atrial fibrillation
topical collection on invasive electrophysiology and pacing. Current Cardiology Reports, 16
(1) (no pagination)(432), pp..

9 Tosetto A, Iorio A, Marcucci M, Baglin T, Cushman M, Eichinger S, Palareti G, Poli D, Tait R
10 C, and Douketis J. (2012). Predicting disease recurrence in patients with previous
11 unprovoked venous thromboembolism: a proposed prediction score (DASH). Journal of

12 Thrombosis & Haemostasis, 10(6), pp.1019-25.

Touhami O, Marzouk S B, Bennasr L, Touaibia M, Souli I, Felfel M A, Kehila M, Channoufi M
B, and Magherbi H E. (2018). Are the Wells Score and the Revised Geneva Score valuable
for the diagnosis of pulmonary embolism in pregnancy?. European Journal of Obstetrics,
Gynecology, and & Reproductive Biology, 221, pp.166-171.

Tritschler T, Mean M, Limacher A, Rodondi N, and Aujesky D. (2015). Predicting recurrence
after unprovoked venous thromboembolism: prospective validation of the updated Vienna
Prediction Model. Blood, 126(16), pp.1949-51.

Trujillo-Santos J, Lozano F, Lorente M A, Adarraga D, Hirmerova J, Del Toro, J, Mazzolai L,
Barillari G, Barron M, Monreal M, and Investigators Riete. (2015). A prognostic score to
identify low-risk outpatients with acute deep vein thrombosis in the lower limbs. American
Journal of Medicine, 128(1), pp.90.e9-15.

Tsu L V, Berry A, Wald E, and Ehrlich C. (2015). Modified HAS-BLED score and risk of major
bleeding in patients receiving dabigatran and rivaroxaban: A retrospective, case-control
study. Consultant Pharmacist, 30(7), pp.395-402.

van Es, N, Di Nisio, M, Cesarman G, Kleinjan A, Otten H M, Mahe I, Wilts I T, Twint D C,

28 Porreca E, Arrieta O, Stepanian A, Smit K, De Tursi , M , Bleker S M, Bossuyt P M,

Nieuwland R, Kamphuisen P W, and Buller H R. (2017). Comparison of risk prediction scores
 for venous thromboembolism in cancer patients: a prospective cohort study. Haematologica,
 102(9), pp.1494-1501.

van Es, N, Wells P S, and Carrier M. (2017). Bleeding risk in patients with unprovoked
 venous thromboembolism: A critical appraisal of clinical prediction scores. Thrombosis
 Research, 152, pp.52-60.

Vink R, Kraaijenhagen R A, Levi M, and Buller H R. (2003). Individualized duration of oral
anticoagulant therapy for deep vein thrombosis based on a decision model. Journal of
Thrombosis & Haemostasis, 1(12), pp.2523-30.

38 Vuilleumier N, Limacher A, Mean M, Choffat J, Lescuyer P, Bounameaux H, Aujesky D, and 39 Righini M. (2015). Cardiac biomarkers and clinical scores for risk stratification in elderly

40 patients with non-high-risk pulmonary embolism. Journal of Internal Medicine, 277(6),

41 pp.707-16.

- 1 Wells P S, Forgie M A, Simms M, Greene A, Touchie D, Lewis G, Anderson J, and Rodger M
- A. (2003). The outpatient bleeding risk index: validation of a tool for predicting bleeding rates
- 3 in patients treated for deep venous thrombosis and pulmonary embolism. Archives of Internal
- 4 Medicine, 163(8), pp.917-20.

Wells Ps, Kovacs Mj, Anderson D, Kahn Sr, Kearon C, Schulman S, Keeling Dm, Kaatz S,
Solymoss S, Corsi D, and et al. (2016). Prediction of bleeding risk in patients on extended
oral anticoagulation for venous thromboembolism. Blood. Conference: 58th annual meeting
of the american society of hematology, and ASH 2016. United states. Conference start:
20161203. Conference and: 20161206. 128(22) (no pagination) pp.

- 9 20161203. Conference end: 20161206, 128(22) (no pagination), pp..
- 10 Wicki J, Perrier A, Perneger T V, Bounameaux H, and Junod A F. (2000). Predicting adverse
- outcome in patients with acute pulmonary embolism: a risk score. Thrombosis &
 Haemostasis, 84(4), pp.548-52.
- Zhou H X, Peng L Q, Yan Y, Yi Q, Tang Y J, Shen Y C, Feng Y L, and Wen F Q. (2012).
 Validation of the Caprini risk assessment model in Chinese hospitalized patients with venous
 thromboembolism. Thrombosis Research, 130(5), pp.735-40.
- 16 Zhou X Y, Ben S Q, Chen H L, and Ni S S. (2012). The prognostic value of pulmonary
- embolism severity index in acute pulmonary embolism: A meta-analysis. Respiratory
 Research, 13 (no pagination)(111), pp..

19 Excluded studies (search update)

Alatri, A., Mazzolai, L., Font, C. et al. (2017) Low discriminating power of the modified Ottawa risk
 score in a cohort of patients with active cancer and acute venous thromboembolism. Vasa - European
 Journal of Vascular Medicine 46 (Supplement 98): 20-21

- 23 Dhanda, S., Davies, M., Roy, D. et al. (2018) Risk of major and clinically relevant non-major (CRNM)
- bleeding in patients prescribed rivaroxaban in primary care in England. Drug Safety 41 (11): 1130 1131
- Jaquet, E., Tritschler, T., Stalder, O. et al. (2018) Prediction of short-term prognosis in elderly patients
 with acute pulmonary embolism: validation of the RIETE score. Journal of Thrombosis & Haemostasis
 16(7): 1313-1320
- 29 Palareti, G., Antonucci, E., Mastroiacovo, D. et al. (2018) The American College of Chest Physician
- 30 score to assess the risk of bleeding during anticoagulation in patients with venous thromboembolism.
- 31 Journal of Thrombosis and Haemostasis 16(10): 1994-2002
- Wells, P., Peacock, W. F., Fermann, G. J. et al. (2019) The value of sPESI for risk stratification in
 patients with pulmonary embolism. Journal of Thrombosis and Thrombolysis.

34 Other references

- 35 Khan, F., Rahman, A., Carrier, M., Kearon, C., Weitz, J. I., Schulman, S., ... & Agnelli, G.
- 36 (2019). Long term risk of symptomatic recurrent venous thromboembolism after
- 37 discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism
- 38 event: systematic review and meta-analysis. *bmj*, *366*, 14363.
- Wolff R, Moons K, Riley R, Whiting P, Westwood M, Collins G, Reitsma J, Kleijnen J, Mallett
- 40 S. PROBAST A risk-of-bias tool for prediction-modelling studies. Abstracts of the Global
- 41 Evidence Summit, Cape Town, South Africa. Cochrane Database of Systematic Reviews
- 42 2017, Issue 9 (Suppl 1). https://doi.org/10.1002/14651858.CD201702.

1 Now published as:

- 2 Wolff RF, Moons KGM, Riley RD, Whiting PF et al. (2019) PROBAST: A Tool to Assess the 3 Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019; 170: 51-58
- 4 Moons KGM, Wolff RF, Riley RD, Whiting PF et al. (2019) PROBAST: A Tool to Assess Risk
- 5 of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann
- 6 Intern Med. 2019; 170: W1-W33

1 Appendix K – Research recommendations

2 Research recommendation 1

Research recommendation	What is the prognostic accuracy of a tool to predict both VTE-recurrence and major bleeding after 3 months of initial anticoagulation treatment and in the long-term? [2019]
Population	Adults (aged 18+) with confirmed VTE who have already received ≥3 months' anticoagulation treatment.
Intervention(s)	Any risk tool using multiple predictors to predict both VTE recurrence (if treatment is stopped) and major bleeding (if treatment is continued) following an initial treatment duration of ≥3 months.
Outcomes	Recurrence of VTE and major bleeding
Outcome measures	 For each outcome, prognostic accuracy measures will be reported where available, for example: Odds ratios/hazard ratios Model fit (e.g. r squared) Sensitivity, specificity, positive and negative predictive values. C-statistics Observed and estimated risks
Study design	A prognostic test accuracy study designing and externally validating a combined tool using multiple predictors to predict the risk of VTE recurrence following cessation of anticoagulant treatment and major bleeding during continued treatment that gives a combined score regarding the decision to stop or continue anticoagulation treatment.
Subgroup analyses	 Age Sex (male/female) D-dimer (as a dichotomous variable) Hormone therapy (yes vs. no)

Potential criterion	Explanation
Importance to patients, service users or the population	There is uncertainty surrounding the best way to estimate the risk associated with stopping or continuing anticoagulation treatment. Current prediction tools only predict recurrence or major bleeding individually, with no tool predicting both. Current tools therefore do no translate that well into a clinical decision to continue or stop anticoagulation treatment. The development of a tool that could assess the combined risks of major bleeding and VTE recurrence will be helpful in providing information about the balance the benefits and harms of continuing treatment at the individual level and could be used as part of the decision- making process for stopping treatment after the initial treatment period or continuing treatment longer term.

Potential criterion	Explanation
Relevance to NICE guidance	Medium priority: the committee were able to make recommendations based on current evidence, recommending the use of a tool to predict major bleeding and a different tool to predict VTE-recurrence in subsets of the population, but they could not recommend a tool that was able to do both as none were identified. This research will help to create better prediction tools and improve the recommendations.
Current evidence base	After initial treatment, a clinician must balance the benefits and harms of extended treatment, by weighing the risk of recurrence associated with stopping treatment against the risk of bleeding associated with continuing treatment. This review identified 18 studies reporting data on 15 different prognostic tools to predict major bleeding. However, none of these tools have better than "good" prognostic classification accuracy, and most tools were found to have only poor to adequate classification accuracy. Additionally, most of the tools were developed (and externally validated) in cohorts of people beginning treatment however the intended use of a tool to predict major bleeding is for it to be used after a person with VTE has completed 3 months of anticoagulation treatment to help inform the decision to continue or stop treatment. Only one study (Seiler, 2017) tested tools in people who had received 3 months treatment.
Equality	No specific equality concerns are relevant to this research recommendation.
Feasibility	There is a sufficiently large and well-defined population available that a high quality prognostic accuracy study should be feasible.

1

1 Research recommendation 2

search recommendation z		
Research recommendation	What is the prognostic accuracy of tools to predict both VTE-recurrence and major bleeding compared with clinician's judgment in people with unprovoked proximal DVT or PE? [2019]	
Population	Adults (aged 18+) with confirmed unprovoked VTE who have already received ≥3 months' anticoagulation treatment.	
Intervention(s)	Any risk tool using multiple predictors to predict both VTE recurrence (if treatment is stopped) and major bleeding (if treatment is continued) following an initial treatment duration of ≥3 months.	
Comparator	Clinician judgement	
Outcomes	Recurrence of VTE and major bleeding	
Outcome measures	 Model fit (e.g. r squared) Sensitivity, specificity, positive and negative predictive values. C-statistics Risk ratios/hazard ratios 	
Study design	Note that it is intended that this research is only commenced after research recommendation 1 has produced a new prognostic tool capable of predicting both VTE-recurrence and major bleeding.	
	Prospective cohort study or test and treat RCT.	
	Prospective cohort study: treating physicians will estimate the risk of recurrence and major bleeding (high or low risk only) for each participant (without using a prognostic tool) and treat as normal. At the same time, the clinical characteristics needed for the prognostic tool will be collected amongst other relevant information. At the end of the study, the risk of VTE recurrence and major bleeding will be assessed using the joint tool to give a decision to continue (low risk group) or stop treatment (high risk group). The tools rating of low and high risk and the clinician's judgement will then be compared to the patient outcomes (VTE recurrence and major bleeding with major bleed on treatment or VTE recurrence off treatment counting as the wrong decision.) The results for prognostic accuracy of the tool and clinician gestalt can then be compared directly using the same patient population.	
	risk of bleeding and recurrence assessed by either a joint risk tool or clinician's judgement, with subsequent treatment being administered accordingly and the effects on major bleeding and VTE recurrence, amongst others, assessed.	
Subgroup analyses	 Age Sex (male/female) D-dimer (as a dichotomous variable) Hormone therapy (yes vs. no) 	

Potential criterion	Explanation
Importance to patients, service users or the population	After initial treatment, it is important that any decision to continue or stop treatment balances the risk of recurrence against the risk of bleeding. There is uncertainty as to whether predictive tools improve decision making over clinician's gestalt. This research will help to identify the best method of estimating a person's combined risk of major bleeding and recurrence and help to better balance the benefits and harms of continuing and stopping anticoagulant treatment. Any tool capable of better prognostic accuracy than clinician judgement would be useful in the decision to continue or stop anticoagulant treatment, regardless of the tool's level of accuracy.
Relevance to NICE guidance	High priority: The committee were able to make recommendations to use tools that predict major bleeding or VTE-recurrence, but these tools were not useful in all scenarios and did not give a combined output to inform the decision to continue or stop treatment. The results of testing a new tool that was able to predict combined VTE recurrence and major bleeding risk and that was shown to be better than clinician judgement would substantially change and improve the recommendations.
Current evidence base	After initial treatment, a clinician must balance the benefits and harms of extended treatment, by weighing the risk of recurrence associated with stopping treatment against the risk of bleeding associated with continuing treatment. The currently available prognostic tools offer less than ideal prognostic accuracy and there is uncertainty as to whether these tools are better able to classify risk than clinician's gestalt, as the evidence identified for this review did not compare any of the tools to clinical judgment. After a new prognostic tool (capable of predicting both VTE-recurrence and major bleeding) is established and externally verified, a study is needed to see whether this prediction tool has better classification accuracy than clinician's gestalt alone, and whether it improves outcomes.
Equality	No specific equality concerns are relevant to this research recommendation.
Feasibility	There is a sufficiently large and well-defined population available that a high quality prospective cohort study should be feasible. A high quality RCT may be less feasible than a prospective study as there are a likely to be more limited numbers of people willing to take part. Of note, there are no currently available tools that area capable of predicting both VTE-recurrence and major bleeding in a single score and therefore such a tool needs to be derived and externally validated – in accordance with research recommendation 1 before the study in this research recommendation is possible.

2