

1	Disease-specific reference case extension:
2	Management of overweight and obesity in
3	adults
4 5	Appendix B: Literature review of economic evaluations of interventions for obesity
6	interventions for obesity
7	
8	
9	

Contents

3	Annen	dix B: Literature review of economic evaluations of interventions for o	hacity 1
_	• •		•
4		tionale for the review	
5		ds	
6	Results	s	6
7	1.1	Overview of Included Studies	6
8	1.2	Types of economic models and analysis approaches	g
9	1.3	Model structures and health states used	1C
10	1.4	Approaches to inform effectiveness in models	12
11	1.5	Risk factors	14
12	1.6	Costs and Quality of Life	15
13	1.7	Model uncertainty and sensitivity analysis	17
14	Discus	sion	18
15	Refere	ences	18
16	Appen	dix	23
17	A1. \$	Search strategies	23
18	A2. (Characteristics of included studies	28
19	A3: F	Risk equations used in TAs	57
20			
21			
22			

The rationale for the review

- 2 The aim of this pragmatic review was to gain an understanding of how obesity has
- 3 been modelled in the literature and summarise existing economic modelling
- 4 approaches used in cost-effectiveness analysis for obesity.

5

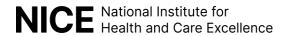
6

1

Methods

- 7 Initially, the published NICE guidance and technology appraisals (TAs) that had a
- 8 primary indication of obesity were identified and reviewed, specifically: TA664
- 9 (liraglutide), TA875 (semaglutide), TA1026 (tirzepatide) and NG246 'Overweight and
- 10 <u>obesity management'</u>. Each of these included a systematic review of health
- 11 economic evaluations of interventions for obesity as well as de novo health
- 12 economic models.

13


- 14 The most recent review of health economic evaluations of treatment for obesity in
- 15 the TAs was conducted as part of the tirzepatide TA. This was a systematic literature
- review of databases (Embase, MEDLINE, INAHTA, NHSEED) and HTA agencies of
- 17 cost effectiveness analyses for obesity medicines up to October and December 2022
- respectively. 16 economic evaluations were included in this review, of these, 6
- orlistat, while 5 evaluated liraglutide and 5 semaglutide. Models in this review were
- 20 primarily Markov models (thirteen studies), while the remaining utilised individual
- 21 patient simulation (IPS) models (three studies). In the TA, detailed reporting was only
- 22 provided for the liraglutide and semaglutide TA models as these were the only two
- 23 published in the last decade with an NHS focus.

- 25 In the guideline NG246, all systematic literature reviews were done by review
- 26 question and therefore limited to interventions listed in the review question protocol.
- 27 The only studies of relevance were:
- Evidence review F on diet, which searched databases (Embase, MEDLINE,
- EconLit, INAHTA, HTA, NHSEED) up to April 2023. Three economic
- evaluations were included: one was a within trial analysis and two were

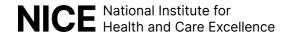
1 models using the PRIMEtime model (including the NICE de novo model for 2 that guideline). 3 Referral to bariatric surgery which searched databases (Embase, MEDLINE, 4 INAHTA, EconLit, NHSEED) up to February 2022. Four economic evaluations 5 were included comparing bariatric surgery to no intervention or conventional 6 treatment. Three were Markov models, all were UK based and published in 7 the last decade (2016-2021). 8 A top-up search was undertaken to identify any further publications of studies 9 assessing the cost-effectiveness of interventions for obesity that utilised economic 10 modelling approaches, the following databases were searched Embase (Ovid), 11 MEDLINE (Ovid), and INAHTA. 12 13 The database search was limited to English language studies published from 14 February 2022 to February 2025. This start date was selected to ensure any 15 publications since the 'referral to bariatric surgery' review cut-off date are captured. 16 This would also ensure any publications after the tirzepatide TA and NG246 diet 17 search cut offs were also identified. 18 19 Key search terms combined terms for the target condition (obesity) and economic 20 evaluations. Citation lists of systematic literature reviews were reviewed to identify 21 additional relevant publications. In addition to this top-up search, HTA websites 22 have been checked for obesity-related economic models, the following HTA 23 organisations were included: 24 Canada's Drug Agency (CDA-AMC) in Canada 25 • Institute for Quality and Efficiency in Health Care (IQWiG) in Germany 26 Institute of Clinical and Economic Review (ICER) in the US 27 NICE in England

Zorginstituut Nederland (ZIN) in the Netherlands.

- 1 The inclusion and exclusion criteria are presented in **Table 1** and the full search
- 2 strategy is provided in the **Appendix A1. Search strategies**.

Table 1. Inclusion and exclusion criteria for studies

	Inclusion criteria	Exclusion criteria
Population	Persons with a diagnosis of obesity.	Studies of persons where neither the full population nor a defined subpopulation have a diagnosis of obesity.
Interventions	Interventions for treatment of obesity.	Studies assessing diagnosis or screening of obesity, but not treatment.
Comparators	Any intervention or no intervention.	None.
Outcomes	Total costs and health outcomes, incremental cost-effectiveness ratios (ICERs).	Studies that do not report any of the outcomes of interest.
Study type	Full or partial economic evaluations that include an economic modelling component.	Epidemiological studies, burden of illness studies and other non-comparative cost studies, poster abstracts that did not provide sufficient methodological detail, letters to the editor, commentaries.


Abbreviations: ICER, incremental cost-effectiveness ratio

6

5

3

- 7 EPPI Reviewer 5 was used to export and store records from each database. Results
- 8 were screened against the selection criteria based on their titles and abstracts.
- 9 Records that potentially met the inclusion criteria were ordered and the full paper
- 10 reassessed against the selection criteria. All includable studies were extracted. Data
- 11 were extracted into prespecified tables developed in Microsoft Excel. The data
- 12 captured was around the study characteristics (country, setting, interventions and
- 13 comparator), methods (type of economic evaluation, analysis approach and
- 14 perspective, time horizon, cycle length, discount rate, cost items included, health

1 outcome measures, data sources for effectiveness and utility values) and authors' 2 self-reported limitations. The review aimed to summarise modelling approaches and 3 challenges, and not to identify the most cost-effective treatments for obesity; therefore, cost-effectiveness outcomes were not reported, but where available, key 4 5 model drivers were extracted. 6 7 A narrative synthesis was established around the methodological approaches and 8 assumptions of the included studies and any limitations highlighted by the authors. 9 **Results** 10 11 1.1 **Overview of Included Studies** 12 The database search yielded a total of 3,185 hits after deduplication. Of those, 3,149 13 were excluded based on their title and abstracts. The targeted search of HTA 14 organisations' websites identified 5 additional HTA reports. Also included in the 15 extraction table were the 4 models identified in the bariatric surgery evidence review 16 for NG246. Therefore, a total of 45 publications across the database search and 17 targeted search were reviewed in full. 18 After reviewing the full publications, 26 studies that reported economic models for 19 the treatment of obesity were finally included. Of these, five were HTA reports: three 20 NICE TAs, one NICE guideline and one ICER model (US HTA). Most of the studies 21 were carried out in the UK setting (n=11), followed by the US (n=7), and Canada 22 (n=2).23 24 A PRISMA flowchart outlining the different stages of identification and selection of 25 studies is presented in 26 Figure 1. 27 28 29

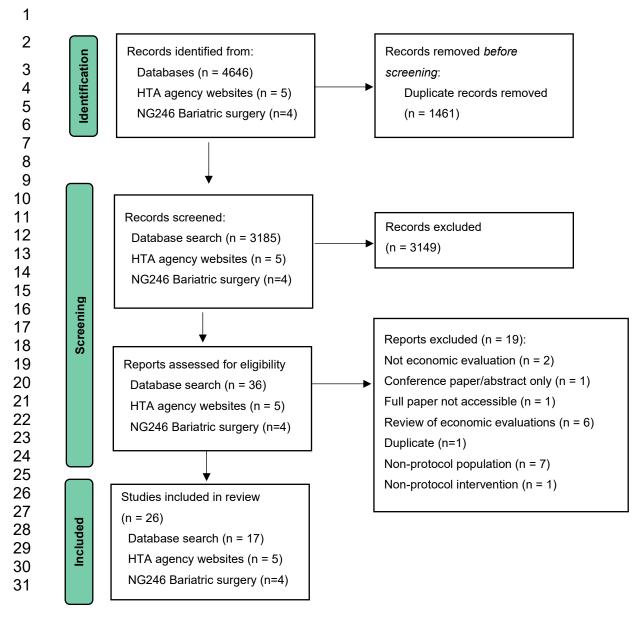
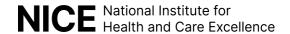
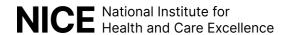



Figure 1. PRISMA flowchart for identification and selection of studies

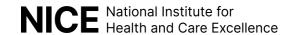
Of these 26 papers, 15 studies evaluated anti-obesity pharmacotherapy, and four studies assessed bariatric surgery as a treatment for obesity. Three studies examined a combination of interventions, including pharmacotherapy, lifestyle modification, and dietary intervention. Additionally, two studies focused solely on lifestyle changes (such as self-managed dietary plans and exercise), and two studies evaluated dietary interventions alone (such as calorie reduction and structured nutrition plans). The characteristic is included studies is provided in the **Appendix A2. Characteristics of included studies.**


1 2 **Targeted Populations** 3 The populations modelled in the included studies varied by BMI thresholds, presence 4 of comorbidities, and diabetes status. For pharmacotherapy studies, the most 5 commonly assessed populations included adults with a BMI ≥30 kg/m² with at least 6 one weight-related comorbidity as the base case. Other populations modelled 7 included adults with a BMI ≥35 kg/m² with non-diabetic hyperglycaemia and high 8 cardiovascular disease (CVD) risk, adults with a BMI ≥40 kg/m² (assessed in a 9 scenario analysis), adults with a BMI ≥27 kg/m² with at least one comorbidity, and 10 adults with a BMI ≥25 kg/m² in subgroup analyses. 11 12 For dietary intervention studies, populations included individuals classified as 13 overweight (BMI >25 kg/m²) and those with obesity (BMI >30 kg/m²). Studies 14 focusing on lifestyle modifications targeted individuals with a BMI ≥28 kg/m². Studies 15 evaluating bariatric surgery, or a combination of surgery and pharmacotherapy, primarily included individuals with a BMI >35 kg/m² or BMI >40 kg/m². 16 17 18 Some studies included both people with and without diabetes: four studies only 19 included people with both obesity and diabetes, and two studies evaluated both 20 individuals with diabetes and those without. In contrast, thirteen studies excluded 21 populations with diabetes, and eight studies did not report participants' diabetes 22 status. 23 24 **Interventions and comparators** 25 Among the 15 studies that evaluated anti-obesity pharmacotherapy, some assessed 26 a single agent, such as an incretion agonist, while others evaluated multiple 27 available anti-obesity drugs, depending on the study context. Pharmacotherapy 28 interventions were most commonly compared to standard lifestyle modification (diet 29 and exercise) or against other pharmacological agents. 30 31 For studies assessing bariatric surgery, the comparator was typically standard 32 lifestyle modification. In studies evaluating dietary interventions for obesity

30

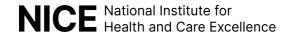
different early cycle breakdowns were used.

1 management, the comparator was a conventional diet plan. Studies investigating 2 self-management interventions compared these strategies with no intervention. 3 1.2 Types of economic models and analysis approaches 4 Most of the included studies conducted cost-utility analysis (n=23) using costs and 5 quality-adjusted life years (QALYs) as outcomes to compare the costs and health 6 benefits of different interventions. Three studies conducted cost-effectiveness 7 analyses, measured by a wide range of health outcomes or using life-year gained. 8 9 All included studies were model-based economic evaluations. Almost half of the 10 studies (n=14) employed a Markov state-transition cohort approach. Four studies 11 used a microsimulation modelling framework and one study was a Markov model 12 which used an individual patient simulation rather than a cohort. Three studies 13 applied a decision analytic model. One study utilised a discrete event simulation 14 model, and one study incorporated a Mendelian randomisation approach to tackle 15 the causal effects of potential risk factors. 16 17 Time horizon was reported in almost all studies. Among those studies, long-term 18 horizons (such as 20 years, 30 years, 40 years) and lifetime horizon were frequently 19 used. Other relatively short horizons (such as 1 year, 17 months, 5 years and 10 20 years) were used in some studies. In studies where the time horizon exceeded one 21 year, costs and benefits were discounted, most commonly at 3.5% per annum, 22 depending on the study's settings. 23 24 For the cycle length, half of the studies (n=13) adopted a 1-year cycle, while some 25 studies had an alternative approach to incorporate pharmacotherapy treatment 26 durations, discontinuations, and stopping rules. For example, 4-week cycle for the 27 first 2 years, followed by an annual cycle length for the rest of the lifetime time 28 horizon. However, the cycle settings have heterogeneity across these studies, where

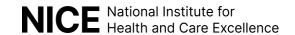


31

Half of the studies conducted their evaluations from a healthcare system perspective 1 2 (N=13), considering only direct healthcare costs, including medications, surgery, 3 treatments for complications and adverse events, and outpatient hospital visits. The 4 rest were conducted from a societal perspective (n=2) or from both healthcare and 5 societal perspectives (n=11), and included non-medical costs (such as social care 6 costs) and productivity loss. 7 8 1.3 Model structures and health states used 9 The included model-based economic evaluations commonly relied on surrogate 10 outcomes to inform effectiveness within the models. Of the 15 studies using a 11 Markov state-transition method, eight studies used risk equations to estimate 12 transition probabilities for health states (such as type 2 diabetes mellitus (T2DM) 13 status and cardiovascular disease (CVD) events). Four studies, based health state 14 transitions solely on BMI, establishing health states defined by different obesity 15 levels. Additionally, five studies incorporated hard clinical outcomes, directly tracking 16 clinical events observed in the trials to inform health state transitions or decision 17 analytical models. 18 19 A few different model structures were identified in terms of health states used. One is 20 the Core Obesity Model (Lopes et al. 2020 and Lopes et al. 2021) which is used in 6 21 studies for pharmacotherapy, including TA guidelines. In this specific model, 11 22 health states have been developed based on T2DM status and CVD events. Patients 23 were assumed to enter the models at the stages of normal glucose tolerance or 24 prediabetes (non-diabetic hyperglycaemia or non-diabetic hyperglycaemia reversal) 25 and T2DM. Then, they would enter the stages of first complication, which includes 4 26 states: Post acute coronary syndrome (ACS), or Post stroke, or T2DM + Post ACS, 27 or T2DM + post stroke. After the first complications, they could transition to further 28 complication states, including Post ACS + post stroke or T2DM + post ACS + post 29 stroke. Among these studies with the Core Obesity Model, one study conducted an


additional first complication state: cancer and T2DM + Cancer, considering the

cancer development in a scenario analysis. In any health state, the following could


1 occur: sleep apnoea or knee replacement or bariatric surgery. The last health state is 2 death. Of note, no liver disease health states were included. 3 4 There are a few other studies that also constructed their health states in a way that 5 captured the complex nature of obesity and its associated comorbidities over time. 6 Among these models, one study (Atlas et al. 2022) had a Markov structure beginning 7 with patients in a 'No DM' health state. From the first cycle onward, patients could 8 transition to several cardiovascular-related health states, including myocardial 9 infarction (MI), stroke, combined MI and stroke, or other cardiovascular diseases 10 (e.g., peripheral artery disease, angina, and transient ischemic attack), with or 11 without developing diabetes. Heart failure was modelled as a consequence of prior 12 MI due to its strong causal relationship with obesity. The model assumed optimal 13 blood pressure control in all patients and did not include non-ischemic pathways to 14 heart failure. Patients could transition to a death state from any health state. One 15 model for a surgical intervention (Galvain et al. 2021) was distinct from the above 16 structures, with patients able to transition between diabetes-related health states 17 (with T2DM, without T2DM, or in T2DM remission), with ongoing transitions possible 18 between T2DM and remission. Additionally, patients could simultaneously transition 19 through mutually exclusive health states for major comorbid conditions, including 20 stroke, MI, and cancer. For patients undergoing bariatric surgery, the model 21 incorporated pre-Markov allocations for surgical complications, reoperations, and 30-22 day mortality. 23 24 Another identified model (NICE TA1026), which conducted an individual patient 25 simulation for Markov state-transition, also used T2DM status and other related 26 events for health states. Patients were assumed to start at the stages of no CVD 27 events (Normal glucose tolerance or Pre-DM). Then, they would have the following 28 clinical events, including temporary reversal of prediabetes, stroke, MI, angina, sleep 29 apnoea, non-alcoholic fatty liver disease (NAFLD), and T2DM. Of note, liver disease 30 and sleep apnoea health states were included as ongoing status. Other clinical 31 events modelled as one-off effects include knee replacement, bariatric surgery and 32 treatment-related adverse events (AEs). These can occur to patients in any state at

any time with a specified probability, which may depend on existing comorbidities or

1 surrounding conditions. Finally, a death state is included, which includes CVD-2 related or non-CVD death. 3 4 One identified model from NG246, the PRIMEtime (Preventable Risk Integrated 5 ModEl) model. It is a computer simulation used to assess the impact of dietary 6 factors on the risk of chronic diseases, including cancer and T2DM. It is a multi-7 cohort Markov life table model that simulates the natural history of disease over time 8 within a population, incorporating states such as healthy (alive without disease), 9 disease onset, and death (from all causes or specific diseases). The model captures 10 the progression of obesity-related comorbidities, including ischaemic heart disease 11 (IHD), stroke, T2DM, cirrhosis, and several cancer types (breast, colorectal, kidney, 12 and liver cancer). Cancer incidence is derived from national registry data and 13 modelled explicitly, with transitions accounting for age- and sex-specific risks, case 14 fatality, and mortality rates to estimate population-level health and economic 15 outcomes. 16 17 Besides health states based on weight-related comorbidities, some studies based on 18 the degree of weight loss or obesity status (i.e. based on BMI) for their health states 19 in the models (Papantoniou and Maniadakis 2025, Haseed et al. 2024, Mital and 20 Nguyen 2023). 21 22 As outlined, current models are generally designed to account for weight-related 23 comorbidities, aiming to capture the complex nature of obesity. These comorbidities, 24 which are either caused or worsened by excess body weight, often include 25 hypertension, type 2 diabetes mellitus, dyslipidaemia, obstructive sleep apnoea, 26 cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Some studies 27 considered these comorbidities when identifying and segmenting populations most 28 likely to benefit from interventions. These conditions not only influence baseline risk 29 but also affect transition probabilities in models of disease progression, ultimately 30 shaping outcomes such as QALYs and healthcare costs. 31

1.4 Approaches to inform effectiveness in models

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

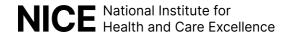
25

26

27

28

29


30

31

32

33

The treatment effect of the intervention can be incorporated through a reduction in either the intermediate clinical outcomes or the final clinical outcomes. Most included studies (n = 18) used surrogate outcomes, such as weight loss or weight change converted to body mass index (BMI) change, to measure treatment effects in their models. These surrogate outcomes are widely used in the evaluation of overweight and obesity interventions due to their association with the risk of developing chronic conditions. Weight loss is particularly linked to a lower incidence of T2DM, cardiovascular disease, and other long-term health issues. Other surrogate outcomes are also used, including systolic blood pressure, total cholesterol and highdensity lipoprotein. These surrogate measures are particularly helpful when direct clinical endpoints (like heart attacks or mortality) are not observed during the trial period. Of the studies that used surrogate outcomes to inform effectiveness in models, 18 studies derived their effectiveness data from clinical trials or metaanalyses. Five studies measured the treatment effect by BMI changes and derived their effectiveness data from a mixture of national dataset and meta-analyses. The clinical trials assessing the effects of drugs on surrogate markers such as blood pressure and BMI were not specifically powered to detect adverse cardiovascular events in people with obesity, such as mortality. In contrast, three studies used direct clinical outcomes to inform their models. Health outcomes and state transitions were based on actual clinical events observed during the trials, using survival equations derived from clinical trial data, such as that from the SELECT trial (Lincoff et al. 2023). For instance, one study (McEwan et al. 2025) modelled risks of cardiovascular events (such as MI), progression to T2DM, chronic kidney disease (CKD), and mortality. Another study (Zomer et al. 2024) defined health states as alive with CVD, alive with recurrent CVD, and dead, while a third study (Rennert-May et al. 2025) included states such as alive without complications, experiencing a cardiovascular event (such as ischaemic stroke, heart failure hospitalisation, myocardial infarction), and dead. Statistical approaches, including joint and independent survival models, were selected based on model fit. In some of the non-pharmacotherapy studies, trajectories of BMI and other risk factors were used to estimate the impact of weight loss and weight loss maintenance

- 1 on a range of health conditions including CVD, T2DM, osteoarthritis and depression
- 2 in their simulation models (Bates et al. 2022, NG246, Arrospide et al. 2022).

3 1.5 Risk factors

- 4 In many cases, it is not feasible to directly measure final outcomes. Even when such
- 5 measurements are available, they are often limited to short-term observations.
- 6 Consequently, extrapolation is necessary to estimate long-term risks, particularly in
- 7 models with a lifetime horizon. Some studies used existing risk equations to estimate
- 8 the probability of clinical events such as MI, angina or stroke and the risk of
- 9 developing T2DM in their models, as well as mortality.

10

15

16

17

18

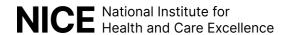
19

20

21

22

23

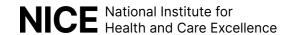

24

25

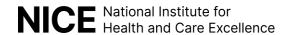
26

27

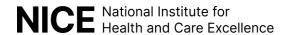
- 11 Risk equations incorporate various factors, such as characteristics, behaviours, and
- 12 exposures that influence the likelihood of developing specific health conditions.
- 13 Several established tools are commonly used in the UK context, as well as current
- 14 TAs:
 - QDiabetes is a UK-developed clinical risk prediction model estimating an individual's 10-year risk of developing type 2 diabetes. It incorporates variables such as age, BMI, ethnicity, smoking status, family history, and comorbidities like hypertension and cardiovascular disease.
 - The <u>Framingham Risk Equation</u>, developed from the US-based Framingham
 Heart Study, predicts 10-year cardiovascular risk using factors such as age,
 sex, cholesterol levels, blood pressure, smoking status, and diabetes.
 However, it may underestimate risk in more deprived populations, as it does
 not account for socioeconomic factors.
 - QRisk3, another UK-based tool, predicts 10-year cardiovascular disease risk
 and includes a broader range of variables. In addition to traditional clinical
 factors, it accounts for ethnicity, socioeconomic deprivation, and conditions
 such as severe mental illness and chronic kidney disease, enhancing its
 relevance across diverse populations.



31


2 the Appendix A3: Risk equations used in TAs. 3 Despite the use of risk equations to estimate long-term outcomes, concerns have 4 been raised in TAs regarding their appropriateness and limitations. Risk equations 5 typically rely on relative treatment effects applied to surrogate endpoints to project 6 long-term cardiovascular outcomes. This approach introduces uncertainty, 7 particularly when extrapolating beyond the duration of clinical trials. Furthermore, 8 these models were not originally developed to estimate long-term risk in the context 9 of interventions with time-limited benefits, which may compromise their validity in 10 such scenarios. In the case of incretin agonists, the full cardiovascular benefit may 11 be underestimated when using risk equations rather than direct clinical outcomes. 12 This is especially relevant if the intervention exerts effects through an unknown or 13 complex mode of action not captured by the model inputs. Despite these 14 methodological uncertainties, the Evidence Assessment Groups (EAG) for the 15 incretin agonist TAs concluded that risk equations remain the only feasible approach 16 currently available for estimating long-term cardiovascular outcomes in the absence 17 of direct evidence. 18 1.6 19 **Costs and Quality of Life** 20 Costs incorporated in the models varied based on the interventions and perspectives 21 defined. Direct medical costs included expenses related to disease conditions, such 22 as treatments, diagnostic procedures, and healthcare resources used. Indirect costs 23 were associated with productivity losses due to illness. Most of the studies that 24 evaluated pharmaceutical treatments included treatment costs (acquisition cost of 25 pharmacological treatment and the cost of diet and exercise), obesity monitoring 26 cost, cost of obesity-related complications, costs of treatment-related adverse 27 events, bariatric surgery costs, etc. 28 29 Only five studies that evaluated incretin agonist drugs considered severe 30 gastrointestinal (GI) AEs in the economic evaluation model. One study considered

AE discontinuation mainly in year 1 and 1% annually thereafter (NICE TA1026). The


The detailed information regarding the use of risk equations in the TAs is provided in

1 other study applied a percent severity multiplier to capture the proportion of patients 2 with severe adverse events (Kim et al. 2022). 3 4 For the studies that evaluated surgery, they considered the intervention costs, 5 including costs of surgery, repeat surgery and associated AEs from surgery. 6 7 The cost elements included in the model depended on the model structure and 8 health states, for example where the model structure included health states for 9 individual obesity-related comorbidities, the cost of managing the comorbidity was 10 attributed to this health state. In contrast, where the structure included health states 11 by BMI category, an average cost associated with healthcare usage for people in 12 that BMI category was applied. In both examples, the costs are based on published 13 sources, such as literature, NHS reference costs or UKPDS costs. No evidence of 14 the use of regression analyses on patient level data were seen. 15 16 With respect to outcome measures, most studies reported generic health outcomes, 17 most commonly QALYs. Fifteen studies derived utility values based on BMI and 18 other risk factors such as age and sex. The most frequently used approach involved 19 assigning baseline utility values that varied according to BMI, while incorporating 20 health-related quality of life (HRQoL) decrements (disutilities) associated with 21 comorbidities and acute events. In seven studies, utility estimates were generated by 22 assigning utility weights to defined health states. Two studies obtained utility values 23 directly from clinical trial data. However, the methodologies used to derive these 24 utility values were often inadequately described. Additionally, two studies did not 25 report their approach to utility estimation. 26 27 In the PRIMEtime model in the UK (Briggs et al. 2019), disease-specific treatment 28 costs are sourced from NHS England Programme Budgeting Data, while unrelated 29 future healthcare costs are estimated using NHS cost curves. Utility values (baseline 30 EQ-5D and disease-specific decrements) are taken from Sullivan et al. 2011 and 31 adjusted for age and multimorbidity. These are used to estimate QALYs over time. 32 accounting for disease onset, recovery, and mortality. PRIMEtime model also used a

1 collaborative analysis of 57 prospective studies to capture the impact of BMI on all 2 cause and cause-specific mortality (Prospectives Studies Collaboration 2009). 3 1.7 4 Model uncertainty and sensitivity analysis 5 In the current obesity models, several assumptions introduce uncertainty that may 6 impact the robustness of the economic evaluation. 7 Weight rebound/regain assumptions 8 Assumptions regarding weight regain following treatment discontinuation represent a 9 key source of uncertainty in obesity modelling. Ten studies considered treatment 10 duration, with most assuming weight regain occurs over a 2-year period after 11 stopping treatment. This was particularly relevant for liraglutide and semaglutide, 12 which were only evaluated within specialist weight management service which allow 13 a maximum duration of 2 years in the UK. However, the pattern and rate of weight regain varied across studies, reflecting the lack of long-term data to support these 14 15 assumptions. Evidence from trials such as SURMOUNT-1 (Jastreboff et al. 2022) 16 and SELECT (Lincoff et al. 2023) suggests that weight loss from pharmacological 17 interventions slows over time and may stabilise, similar to patterns observed with 18 lifestyle interventions. Despite this, assumptions about weight regain remained 19 contentious and influential in recent TAs, including those for semaglutide and 20 tirzepatide. The committee for tirzepatide preferred a 2-year regain period, informed 21 by data from STEP-1 (Wilding et al. 2021), although this remains an area of 22 considerable uncertainty requiring further exploration through scenario and 23 sensitivity analyses. 24 Impact on prediabetes 25 Some models included prediabetes as a baseline comorbidity in the analyses, with 26 the potential for reversal following weight loss. Notably, the Core Obesity Model 27 (Lopes et al. 2020 and Lopes et al. 2021) assumed no transition from prediabetes to 28 T2D following a CVD event. Additionally, one study assumed individuals who revert 29 to normal glucose tolerance would relapse into prediabetes after three years, despite

- 1 limited long-term evidence to support this rate of recurrence (NICE
- 2 TA875). However, similar to assumptions around weight regain, there is a lack of
- 3 long-term data to accurately predict the recurrence of prediabetes.
- 4 Impact on diabetes
- 5 Diabetes remission and relapse is another source of uncertainty. Interventions that
- 6 reduce weight have shown to increase diabetes remission (DIRECT trial, Lean et al.
- 7 2024). Some of these people will relapse but, with no long-term data, published HE
- 8 analyses can only rely on uncertain predictions (Xin et al. 2019).

Discussion

9

10

11

12

13

14

15

16

17

18

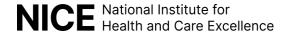
19

20

21

22

23

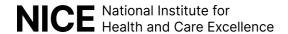

24

25

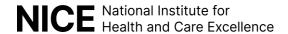
26

27

This pragmatic review was conducted to gain an understanding of how obesity has been modelled in the economic literature. This review summarises the modelling approaches used in cost-effectiveness analyses and provides background information that helped to inform the development of the NICE obesity reference case extension. The review identified substantial heterogeneity in model structures and health states, reflecting differences in research objectives, study perspectives and clinical settings. The choice of model structure and health states was often influenced by the intervention type (e.g. pharmacotherapy, surgery, or lifestyle), the population under consideration, and the specific policy or clinical questions being addressed. Many models used surrogate outcomes to estimate long term health outcomes, with a variety of different risk equations utilised. The models identified highlighted the limited evidence currently available to capture treatment effects over time, including weight regain following treatment discontinuation. Assumptions were often needed to inform these treatment effects over time. Discontinuation and weight regain appear to be key drivers in the model results. Finally, there were inconsistencies in how quality of life, healthcare resource use, and costs were captured across economic models.

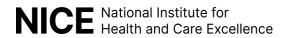


References


- 2 Alshahawey M., Ghazy M., El Morshedy M. and El, O. (2024). Cost-effectiveness
- 3 analysis of once-weekly semaglutide vs. once-daily liraglutide administered
- 4 subcutaneously in patients with overweight and obesity: a decision
- 5 analysis. PubMed, [online] 28(9), pp.3365–3374.
- 6 doi:https://doi.org/10.26355/eurrev 202405 36181.
- 7 Arrospide, A., Ibarrondo, O., Castilla, I., Larrañaga, I. and Mar, J. (2021).
- 8 Development and Validation of a Discrete Event Simulation Model to Evaluate the
- 9 Cardiovascular Impact of Population Policies for Obesity. Medical Decision Making,
- 10 42(2), p.0272989X2110329. doi:https://doi.org/10.1177/0272989x211032964.
- 11 Atlas, S.J., Kim, K., Nhan, E., Touchette, D.R., Moradi, A., Agboola, F., Rind, D.M.,
- 12 Beaudoin, F.L. and Pearson, S.D. (2023). Medications for obesity management:
- 13 Effectiveness and value. Journal of Managed Care & Specialty Pharmacy, 29(5),
- 14 pp.569–575. doi:https://doi.org/10.18553/jmcp.2023.29.5.569.
- 15 Avenell, A., Robertson, C., Skea, Z., Jacobsen, E., Boyers, D., Cooper, D., Aceves-
- 16 Martins, M., Retat, L., Fraser, C., Aveyard, P., Stewart, F., MacLennan, G., Webber,
- 17 L., Corbould, E., Xu, B., Jaccard, A., Boyle, B., Duncan, E., Shimonovich, M. and
- Bruin, M. de (2018). Bariatric surgery, lifestyle interventions and orlistat for severe
- 19 obesity: the REBALANCE mixed-methods systematic review and economic
- evaluation. Health Technology Assessment, 22(68), pp.1–246.
- 21 doi:https://doi.org/10.3310/hta22680.
- Bates, S.E., Thomas, C., Islam, N., Ahern, A.L., Breeze, P., Griffin, S. and Brennan,
- 23 A. (2022). Using health economic modelling to inform the design and development of
- 24 an intervention: estimating the justifiable cost of weight loss maintenance in the
- 25 UK. BMC Public Health, 22(1). doi:https://doi.org/10.1186/s12889-022-12737-5.
- Boyers, D., Retat, L., Jacobsen, E., Avenell, A., Aveyard, P., Corbould, E., Jaccard,
- 27 A., Cooper, D., Robertson, C., Aceves-Martins, M., Xu, B., Skea, Z., de Bruin, M.,
- 28 Jacobsen, E., Boyers, D., Cooper, D., Retat, L., Aveyard, P., Stewart, F. and
- 29 MacLennan, G. (2021). Cost-effectiveness of bariatric surgery and non-surgical
- 30 weight management programmes for adults with severe obesity: a decision analysis
- 31 model. International Journal of Obesity, 45(10), pp.2179–2190.
- 32 doi:https://doi.org/10.1038/s41366-021-00849-8.
- 33 Briggs, A.D.M., Cobiac, L.J., Wolstenholme, J. and Scarborough, P. (2019).
- 34 PRIMEtime CE: a multistate life table model for estimating the cost-effectiveness of
- 35 interventions affecting diet and physical activity. BMC Health Services Research,
- 36 19(1). doi:https://doi.org/10.1186/s12913-019-4237-4.
- 37 Galekop, M., Del Bas, M., Calder, P.C., Uyl-De Groot, C.A. and Redekop W.K.
- 38 (2024). A health technology assessment of personalized nutrition interventions using
- 39 the EUnetHTA HTA Core Model. International Journal of Technology Assessment in
- 40 Health Care, 40(1). doi:https://doi.org/10.1017/s0266462324000060.

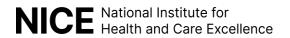
NICE National Institute for Health and Care Excellence

- 1 Galvain, T., Patel, S., Kabiri, M., Tien, S., Casali, G. and Pournaras, D.J. (2021).
- 2 Cost-effectiveness of bariatric and metabolic surgery, and implications of COVID-19
- 3 in the United Kingdom. Surgery for Obesity and Related Diseases, [online] 17(11),
- 4 pp.1897–1904. doi:https://doi.org/10.1016/j.soard.2021.07.009.
- 5 Gulliford, M.C., Charlton, J., Prevost, T., Booth, H., Fildes, A., Ashworth, M.,
- 6 Littlejohns, P., Reddy, M., Khan, O. and Rudisill, C. (2017). Costs and Outcomes of
- 7 Increasing Access to Bariatric Surgery: Cohort Study and Cost-Effectiveness
- 8 Analysis Using Electronic Health Records. Value in Health, 20(1), pp.85–92.
- 9 doi:https://doi.org/10.1016/j.jval.2016.08.734.
- Harrison, S., Dixon, P., Jones, H.E., Davies, A.R., Howe, L.D. and Davies, N.M.
- 11 (2021). Long-term cost-effectiveness of interventions for obesity: A mendelian
- randomisation study. PLOS Medicine, 18(8), p.e1003725.
- 13 doi:https://doi.org/10.1371/journal.pmed.1003725.
- 14 Haseeb M., Chhatwal J., Xiao, J., Jirapinyo P. and Thompson, C.C. (2024).
- 15 Semaglutide vs Endoscopic Sleeve Gastroplasty for Weight Loss. JAMA network
- 16 open, 7(4), pp.e246221–e246221.
- doi:https://doi.org/10.1001/jamanetworkopen.2024.6221.
- 18 Hu, Y., Zheng, S.-L., Ye, X.-L., Shi, J.-N., Zheng, X.-W., Pan, H.-S., Zhang, Y.-W.,
- 19 Yang, X.-L. and Huang, P. (2022). Cost-effectiveness analysis of 4 GLP-1RAs in the
- treatment of obesity in a US setting. Annals of Translational Medicine, 10(3),
- 21 pp.152–152. doi:https://doi.org/10.21037/atm-22-200.
- Jastreboff, A.M., Aronne, L.J., Ahmad, N.N., Wharton, S., Connery, L., Alves, B.,
- 23 Kiyosue, A., Zhang, S., Liu, B., Bunck, M.C. and Stefanski, A. (2022). Tirzepatide
- 24 Once Weekly for the Treatment of Obesity. New England Journal of Medicine,
- 25 [online] 387(3), pp.205–216. doi:https://doi.org/10.1056/nejmoa2206038.
- 26 Kelly, J., Menon, V., O'Neill, F.J., Elliot, L., Combe, E., Drinkwater, W., Abbott, S.
- 27 and Bu'Hussain Hayee (2023). UK cost-effectiveness analysis of endoscopic sleeve
- 28 gastroplasty versus lifestyle modification alone for adults with class II
- obesity. International Journal of Obesity, 47(11), pp.1161–1170.
- 30 doi:https://doi.org/10.1038/s41366-023-01374-6.
- 31 Kim, N., Wang, J., Burudpakdee, C., Song, Y., Ramasamy, A., Xie, Y., Sun, R.,
- 32 Kumar, N., Wu, E.Q. and Sullivan, S.D. (2022). Cost-effectiveness analysis of
- semaglutide 2.4 mg for the treatment of adult patients with overweight and obesity in
- the United States. Journal of Managed Care & Specialty Pharmacy, 28(7), pp.740–
- 35 752. doi:https://doi.org/10.18553/jmcp.2022.28.7.740.
- Lean M.E.J., Leslie, W.S., Barnes, A.C., Brosnahan, N., Thom, G., McCombie, L.,
- Kelly, T., Irvine, K., Peters, C., Sviatlana Zhyzhneuskaya, Hollingsworth, K.G.,
- 38 Adamson, A.J., Sniehotta, F.F., Mathers, J.C., McIlvenna, Y., Welsh, P.,
- 39 McConnachie, A., McIntosh, A., Sattar, N. and Taylor, R. (2024). 5-year follow-up of
- 40 the randomised Diabetes Remission Clinical Trial (DiRECT) of continued support for



- 1 weight loss maintenance in the UK: an extension study. The Lancet Diabetes &
- 2 Endocrinology, [online] 12(4). doi:https://doi.org/10.1016/s2213-8587(23)00385-6.
- 3 Lincoff A. M., Brown-Frandsen K., Colhoun, H.M., Deanfield, J., Emerson, S.S.,
- 4 Esbjerg S., Hardt-Lindberg S., Kees Hovingh G., Kahn, S.E., Kushner, R.F., Lingvay
- 5 I., Kalaycı Oral T., Michelsen M. M., Plutzky, J., Tornøe, C.W. and Ryan, D.H.
- 6 (2023). Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. The
- 7 New England Journal of Medicine, [online] 389(24).
- 8 doi:https://doi.org/10.1056/nejmoa2307563.
- 9 Lopes, S., Johansen, P., Lamotte, M., McEwan, P., Olivieri, A.-V. and Foos, V.
- 10 (2020). External Validation of the Core Obesity Model to Assess the Cost-
- 11 Effectiveness of Weight Management Interventions. PharmacoEconomics, 38(10),
- 12 pp.1123–1133. doi:https://doi.org/10.1007/s40273-020-00941-3.
- Lopes, S., Meincke, H.H., Lamotte, M., Olivieri, A. and Lean, M.E.J. (2021). A novel
- 14 decision model to predict the impact of weight management interventions: The Core
- 15 Obesity Model. Obesity Science & Practice, 7(3), pp.269–280.
- 16 doi:https://doi.org/10.1002/osp4.495.
- 17 Lumbreras A.G., Tan, M.S., Vila-Zapata, L., Ilham, S., Earl, J.C. and Malone, D.C.
- 18 (2023). Cost-effectiveness analysis of five anti-obesity medications from a US
- 19 payer's perspective. Nutrition, Metabolism and Cardiovascular Diseases, 33(6),
- 20 pp.1268–1276. doi:https://doi.org/10.1016/j.numecd.2023.03.012.
- 21 McEwan, P., Bøg, M., Faurby, M., Foos, V., Lingvay, I., Lübker, C., Miller, R.,
- 22 Toliver, J.C., Yeates, F. and Lincoff, A.M. (2025). Cost-effectiveness of semaglutide
- 23 in people with obesity and cardiovascular disease without diabetes. Journal of
- 24 Medical Economics, 28(1), pp.1–16.
- 25 doi:https://doi.org/10.1080/13696998.2025.2459529.
- 26 Miguel L.S., Soares, M., Olivieri, A., Sampaio, F., Lamotte, M., Shukla, S., Conde,
- 27 V., Freitas, P., Costa, J. and Borges, M. (2024). Cost-effectiveness of semaglutide
- 28 2.4 mg in chronic weight management in Portugal. Diabetology & Metabolic
- 29 Syndrome, 16(1). doi:https://doi.org/10.1186/s13098-024-01338-4.
- 30 Mital, S. and Nguyen, H.V. (2023). Cost-Effectiveness of Antiobesity Drugs for
- 31 Adolescents With Severe Obesity. JAMA Network Open, [online] 6(10), p.e2336400.
- doi:https://doi.org/10.1001/jamanetworkopen.2023.36400.
- 33 Olivieri, A.-V., Muratov, S., Larsen, S., Luckevich, M., Chan, K., Lamotte, M. and
- David (2024). Cost-effectiveness of weight-management pharmacotherapies in
- 35 Canada: a societal perspective. International Journal of Obesity, 10(3).
- 36 doi:https://doi.org/10.1038/s41366-024-01467-w.
- 37 Papantoniou, P. and Maniadakis, N. (2025). Semaglutide 2.4 mg versus Liraglutide 3
- 38 mg for the Treatment of Obesity in Greece: A Short-Term Cost-Effectiveness
- 39 Analysis. PharmacoEconomics Open, 9(3), pp.487–497.
- 40 doi:https://doi.org/10.1007/s41669-025-00561-7.

- 1 Prospective Studies Collaboration (2009). Body-mass index and cause-specific
- 2 mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. The
- 3 Lancet, [online] 373(9669), pp.1083–1096. doi:https://doi.org/10.1016/s0140-
- 4 6736(09)60318-4.
- 5 Rennert-May, E., Manns, B., Clement, F., Spackman, E., Collister, D., Sumner, G.,
- 6 Leal, J., Miller, R.J.H. and Chew, D.S. (2025). Cost-Effectiveness of Semaglutide in
- 7 Patients With Obesity and Cardiovascular Disease. Canadian Journal of Cardiology,
- 8 41(1). doi:https://doi.org/10.1016/j.cjca.2024.09.025.
- 9 Sullivan, P.W., Slejko, J.F., Sculpher, M.J. and Ghushchyan, V. (2011). Catalogue of
- 10 EQ-5D Scores for the United Kingdom. Medical Decision Making, 31(6), pp.800–804.
- 11 doi:https://doi.org/10.1177/0272989x11401031.
- 12 Wilding, J.P.H., Batterham, R.L. and Calanna, S. (2021). Once-Weekly Semaglutide
- in Adults with Overweight or Obesity. The New England Journal of Medicine, [online]
- 14 384(11), pp.989–1002. doi:https://doi.org/10.1056/NEJMoa2032183.
- 15 Xin, Y., Davies, A., McCombie, L., Briggs, A., Messow, C. -M., Grieve, E., Leslie,
- 16 W.S., Taylor, R. and Lean, M.E.J. (2019). Type 2 diabetes remission: economic
- 17 evaluation of the DiRECT/Counterweight-Plus weight management programme
- within a primary care randomized controlled trial. Diabetic Medicine, 36(8), pp.1003-
- 19 1012. doi:https://doi.org/10.1111/dme.13981.
- Zomer, E., Zhou, J., Nelson, A.J., Sumithran, P., Nanayakkara, S., Ball, J., Kaye, D.,
- Liew, D., Nicholls, S.J., Stub, D. and Zoungas, S. (2024). The cost-effectiveness of
- 22 semaglutide in reducing cardiovascular risk among people with overweight and
- 23 obesity and existing cardiovascular disease, but without diabetes. European Heart
- 24 Journal Quality of Care and Clinical Outcomes, 11(6).
- doi:https://doi.org/10.1093/ehjqcco/gcae063.

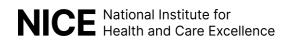

27

1 Appendix

2 A1. Search strategies

Database: MEDLINE							
Strategy used:							
Ovid MEDLINE(R) ALL <1946 to February 20, 2025>							
1 exp *obesity/ or Obesity Management/ or overweight/ or *adiposity/ 215779							
2 (obes* or preobese* or overweight* or over-weight* or adiposity*).ti,ab.							
449999							
3 (weight* adj1 (loss* or management* or reduc* or status*)).ti,ab. 146668							
4 (("body mass ind*" or "body fat ind*" or BMI or BFI) adj1 (loss* or							
management* or reduc* or status*)).ti,ab. 6458							
5 or/1-4 569459							
6 Economics/ 27545							
7 Value of life/ 5834							
8 exp "Costs and Cost Analysis"/ 276561							
9 exp Economics, Hospital/ 26122							
10 exp Economics, Medical/ 14458							
11 Economics, Nursing/ 4013							
12 Economics, Pharmaceutical/ 3156							
13 exp "Fees and Charges"/ 31621							
14 exp Budgets/ 14320							
15 budget*.ti,ab.39118							
16 cost*.ti. 155686							
17 (economic* or pharmaco?economic*).ti. 66785							
18 (price* or pricing*).ti,ab. 59288							
19 (cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or							
variable*)).ab. 238100							
20 (financ* or fee or fees).ti,ab. 181168							
21 (value adj2 (money or monetary)).ti,ab. 3359							
22 or/6-21 803708							

25	editorial/ 720897
26	news/ 229814
27	exp historical article/ 415339
28	Anecdotes as Topic/ 4747
29	comment/ 1047940
30	(letter or comment*).ti. 209889
31	or/24-30 2994472
32	randomized controlled trial/ or random*.ti,ab. 1731726
33	31 not 32 2967228
34	animals/ 7604929
35	exp Animals, Laboratory/ 988284
36	exp Animal Experimentation/ 10664
37	exp Models, Animal/ 674157
38	exp Rodentia/ 3686001
39	(rat or rats or mouse or mice or rodent*).ti. 1521410
40	or/34-39 7736162
41	40 not humans/ 5396425
42	33 or 41 8262949
43	23 not 42 11114
44	limit 43 to english language/ 10716
45	limit 44 to ed=20220102-20250224 1713
46	limit 45 to dt=20220102-20250224 1514
47	45 or 46 1713

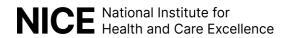

Database: Embase

Strategy used:

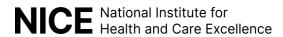
Embase <1974 to 2025 February 20>

NICE National Institute for Health and Care Excellence

exp *obesity/ or obesity management/ 317674 2 (obes* or preobese* or overweight* or over-weight* or adiposity*).ti,ab. 664203 (weight* adj1 (loss* or management* or reduc* or status*)).ti,ab. 233019 3 (("body mass ind*" or "body fat ind*" or BMI or BFI) adj1 (loss* or management* or reduc* or status*)).ti,ab. 11218 5 or/1-4 867130 Health economics/ 36963 6 exp health care cost/ 363687 8 exp Fee/ 45903 exp Budget/ 35813 10 Funding/ 82263 11 budget*.ti,ab.51286 12 cost*.ti. 207362 13 (economic* or pharmaco?economic*).ti. 82545 14 (price* or pricing*).ti,ab. 80041 15 (cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or 321475 variable*)).ab. 16 (financ* or fee or fees).ti,ab. 259403 17 (value adj2 (money or monetary)).ti,ab. 4452 18 or/6-17 1158073 19 5 and 18 23184 20 letter.pt. or letter/ 1364035 21 note.pt. 997145 22 editorial.pt. 825872 23 case report/ or case study/ 3144520 24 (letter or comment*).ti. 253567 25 or/20-24 6053005 26 randomized controlled trial/ or random*.ti,ab. 2290127 27 25 not 26 5989264 28 animal/ 1681525

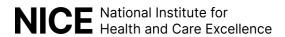

29	nonhuman/ 7984031
30	exp Animal Experiment/ 3291780
31	exp Experimental Animal/ 880084
32	animal model/ 1877447
33	exp Rodent/ 4238544
34	(rat or rats or mouse or mice or rodent*).ti. 1691317
35	or/28-34 10540539
36	35 not human/ 7473388
37	27 or 36 13295259
38	19 not 37 21048
39	conference*.db,pt,su. 6165894
40	38 not 39 12605
41	limit 40 to english language/ 11999
42	limit 41 to dc=20220101-20250224 2789
43	limit 41 to dd=20220101-20250224 2558
44	42 or 43 2795
Note	es:
L	

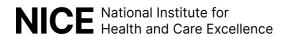
Database: INAHTA


Strategy used:

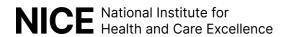
English language and date limits applied results reduced to 138

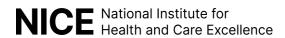
8	#7 OR #6 OR #5 OR #4 OR #3 OR #2 OR #1	1316	February 24
			2025 2:29 PM
7	(body mass index or body fat index or BMI or	973	February 24
	BFI)[Title] OR (body mass index or body fat index or		2025 2:29 PM
	BMI or BFI)[abs]		
6	(weight)[Title] AND (loss* or management* or reduc* or	49	February 24
	status*)[Title]		2025 2:24 PM

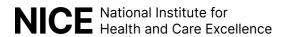

5 (weight)[abs] AND (loss* or management* or reduc* or	311	February 24
status*)[abs]		2025 2:23 PM
4 "Adiposity"[mh]	2	February 24 2025 2:20 PM
3 "Overweight"[mh]	18	February 24 2025 2:19 PM
2 "Obesity Management"[mh]	23	February 24 2025 2:19 PM
1 "Obesity"[mh]	263	February 24 2025 2:10 PM
Notes:		


A2. Characteristics of included studies

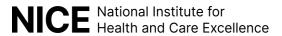
Tabe A2-1 Pharmacological treatments evaluated in HTAs


HTA agency,	Population	Intervention	Comparator	Model type,	Health states	Model drivers/
Report				cycle length,		key assumption
number, year,				time horizon,		or limitation
country				Perspective		
TA664 (NICE	BMI ≥35 kg/m2,	Liraglutide	Diet and	Markov cohort	10 health states	Top 3 drivers:
<u>2020)</u> , UK	non-diabetic		exercise	model, 1-year, 40	1. Normal glucose	1. proportion of
	hyperglycaemia,		alone	years, healthcare	tolerance,	patients on diet
	high risk for CVD			perspective and	2. Pre-DM	and exercise who
				social services	3. Type 2 DM,	revert from
				perspective	4. ACS,	prediabetes to
					5. Post stroke,	normal glucose
					6. Type 2 DM+ post	tolerance
					ACS,	following
					7. T2D + stroke,	treatment
					post ACS + post	2. the proportion
					stroke,	of patients on
						liraglutide who


					8. Post ACS + post	revert from
					stroke,	prediabetes to
					9. T2D + post ACS	normal glucose
					+ post stroke,	tolerance
					10. death.	3. weight
						reduction at the
					Scenario analysis:	start of year 2
					11. Cancer	with diet and
					12. T2DM+Cancer	exercise.
						Assumptions of
						cardiovascular
						outcome benefits
						that were based
						on temporary
						improvements in
						risk factors.
TA875 (NICE	• BMI ≥ 30 kg/m2	Semaglutide	(1) diet and	Markov cohort	11 health states	Top 3 drivers:
<u>2023)</u> , UK	patients with at		exercise	model, 1-year, 40	1. Normal glucose	1. the starting
	least one weight-			years, healthcare	tolerance,	BMI of the cohort


	related comorbidity		alone; (2)	perspective and	2. non-diabetic	2. the discount
	(base case)		liraglutide	social services	hyperglycaemia,	rate for QALYs
	• BMI ≥35 kg/m2,			perspective	3. non-diabetic	3. the weight
	non-diabetic				hyperglycaemia	reduction at the
	hyperglycaemia,				reversal,	start of Year-2
	high risk for CVD				4. Type 2 DM,	with diet and
					5. ACS,	physical activity.
					6. Post stroke,	
					7. Type 2 DM+ post	Assumption
					ACS,	uncertainties, the
					8. T2D + stroke,	rebound in weight
					post ACS + post	gain after
					stroke,	semaglutide is
					9. Post ACS + post	stopped.
					stroke,	
					10. T2D + post ACS	
					+ post stroke,	
					11. death.	
<u>TA1026 (NICE</u>	• BMI ≥30 kg/m2	Tirzepatide	diet and	Microsimulation	10 health states	Assumptions
<u>2024)</u> , UK	with at least one		exercise	(both being a		regarding the

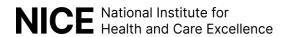
	weight-related		alone;	Markov model	1. Normal glucose	HbA1c values of
	comorbidity (base		semaglutide;	and an individual	tolerance,	simulated
	case)		(liraglutide as	patient	2. Pre-DM	patients for
	• BMI ≥35 kg/m2		a comparator	simulation), 4-	3. Temporary	normoglycaemia
	with at least one		for a	week for the first	reversal Pre-DM	and prediabetes,
	weight-related		subgroup)	2 years followed	4. stroke,	cost offsets and
	comorbidity			by an annual	5. MI,	quality of life
	• BMI ≥35 kg/m2,			cycle length for	6. angina,	gains from
	non-diabetic			the rest of	7. sleep apnoea,	avoiding T2DM.
	hyperglycaemia,			the lifetime time	8. NAFLD,	
	high risk for CVD.			horizon, lifetime,	9. T2DM	
				healthcare	10. death.	
				perspective and		
				social services		
				perspective		
NG246 (NICE	People with DM	Diet	usual care	Multi-cohort	health (alive),	Driver:
<u>2025)</u> , UK	and overweight	interventions	(conventional	Markov model, 1	diseases, dead (all	benefits of weight
	(BMI>25		diet and	year, lifetime,	causes), dead	reduction on
	kg/m2)/obesity		standard	healthcare	(disease).	diabetes
	(BMI>30 kg/m2)			perspective and		remission.



	Mixed population		weight	social services	8 independent	
	with overweight		management)	perspective	Markov models to	
	(BMI>25 kg/m2)/				project the lifetime	
	obesity (BMI>30				incidence of	
	kg/m2) (including				diabetes, IHD,	
	with and without				stroke, selected	
	DM)				cancers, and	
					cirrhosis.	
ICER 2022	Without pre-DM	•	Standard	Markov cohort	9 health states	Drivers:
(Atlas SJ et al.	and either a BMI	semaglutide	lifestyle	model, 1-year,	1. No DM,	health state utility,
2022), US	≥30 kg/m2 or ≥27	liraglutide	modification	lifetime,	2. with DM,	effectiveness of
	kg/m2 with at least	•		healthcare	3. MI,	medication in
	one weight-related	phentermine/		perspective	4. stroke,	reducing weight,
	comorbid condition	topiramate		(Scenario	5. stroke+MI, or	and factors
	(base-case)	• naltrexone/		Analyses with	6. other CVD,	associated with
		bupropion		Societal	7. HF,	prevention of
	Adults were			perspective	8. Post-stroke+MI	diabetes mellitus,
	80% female with an			(including labour	9. death	such as reduction
	average age of 45			costs))		in HbA1C with

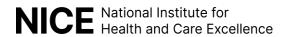
yrs, BMI of 38			treatment and
kg/m2			baseline HbA1C.
, SBP of 125			
mmHg, and HbA1C			Assumptions:
of			Patients continue
5.7% without			to receive the
confirmed DM.			intervention or
(RCT+RWD);			lifestyle
Scenario analysis			modification
with population			throughout the
consisting of men			model time
and women (50:50)			horizon.
			Treatment
Adults with a			discontinuation is
starting BMI of ≥40			included in the
kg/m2 (scenario			model prior to the
analysis)			first model cycle.
			longitudinal
			changes in the
			persistence and

			adherence to
			medications were
			not considered in
			the model.
			Proportion of
			actively treated
			hypertension is a
			function of BMI
			without a
			significant
			influence on the
			incremental cost-
			effectiveness
			ratio,
			In patients with
			hypertension,
			blood pressure is
			equally well
			managed across

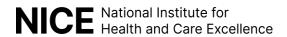


		all weight loss
		treatments.

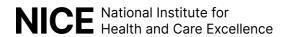
Tabe A2-2 Pharmacological treatments

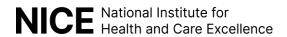

Author, year,	Population	Intervention	Comparator	Model type,	Health states	Model drivers/
country				cycle length,		key assumption
setting				time horizon,		or limitation
				Perspective		
Kim 2022 (Kim	• Adults BMI ≥	Semaglutide	Diet and	Markov cohort	10 health states	Driver: maximum
et al. 2022), US	30 kg/m2		exercise	model, 3 months	1. Normal	treatment
	Adults BMI 27-		alone; and	was applied in	glucose	duration and time
	29.9, with at		other anti-	the first year,	tolerance,	horizon, followed
	least one		obesity	annual cycles	2. Pre-DM	by regimen after
	weight-related		medication	were applied	3. Type 2 DM,	treatment
	comorbidity		(liraglutide,	after the first	4. ACS,	discontinuation,
			phentermine	year. 30-year	5. Post stroke,	weight-rebound
			topiramate,	horizon,	6. Type 2 DM+	rate, and
			and naltrexone	healthcare	post ACS,	semaglutide 2.4
			bupropion).	perspective		mg efficacy on
						ВМІ.

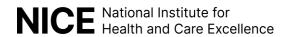
		7. T2D + stroke,	
		post ACS + post	Assumptions:
		stroke,	After AOM
		8. Post ACS +	treatment
		post stroke,	discontinuation,
		9. T2D + post	weight loss
		ACS + post	benefit
		stroke,	(represented by
		10. Death.	BMI reduction) is
			expected to
			diminish (ie,
			weight
			rebounds). The
			rebound rate was
			applied until
			patients' BMI
			returned to the
			baseline level.
			• Patients
			discontinuing

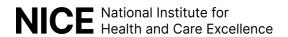


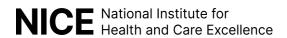
						AOMs were
						assumed to
						continue lifestyle
						intervention until
						death or the end
						of the 30-year
						model.
McEwan 2025	Adults with	Semaglutide	Diet and	Markov cohort	1. Established	Top 3 most
(McEwan et al.	obesity and		exercise alone	model, 4-week	CVD (at	influential inputs
2025), US	cardiovascular			cycle; lifetime,	baseline)	on maintenance
	disease without			healthcare	2. DM status	cost: DM.
	diabetes			perspective	3. CKD stages	Discontinuation
					4. Non-CV	rate as dose 24+
					death or CV	months. Costs
					death	discounting.
						Top 3 most
						influential inputs
						on QALYs:
						Disutility BMI


			gain, benefits
			discounting,
			maintenance
			disutility: CKD
			stage 1.
			Cost-
			effectiveness
			outcomes were
			most sensitive to
			the following
			inputs:
			discounting of
			QALY benefits;
			the BMI-
			associated
			disutility;
			maintenance
			disutilities
			associated with
			CKD (particularly

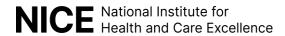

						at early stages);
						and diabetes.
Rennert-May	Adults with	Semaglutide	Diet and	Decision analytic	2 states	Driver: clinical
2025 (Rennert-	obesity and		exercise alone	Markov model,	1. survive	effectiveness of
May et al.	cardiovascular			monthly cycle,	without	semaglutide on
2025), Canada	disease without			10-year (base	complication,	mortality
	diabetes			case);	experience a	reduction and the
				Scenario:	health event	cost of
				lifetime,	2. death	semaglutide.
				healthcare		
				perspective		Assumption:
						mortality benefit
						conferred by
						semaglutide was
						attenuated.
Zomer 2024	Adults with	Semaglutide	diet and	Markov cohort, 1	3 states	Driver: cost of
(Zomer et al.	obesity and		exercise alone	year cycle, 20	1. Alive with	drug.
2024), Australia	cardiovascular			year horizon,	CVD	
	disease without			healthcare	2. Alive with	
	diabetes			perspective	recurrent CVD	


					3. Death	
Lumbreras	Adults with a	semaglutide	Diet and	Decision analytic	Treatment	Driver: The
2023	mean age of 45.	liraglutide	exercise alone	model, 1 year,	discontinuation;	model was more
(Lumbreras et	Mean BMI of	tirzepatide		40 years	Weight loss;	sensitive
al. 2023), US	37.1 for females	• phentermine/		horizon,	BMI categories;	to the utility and
	and 36.8 for	topiramate		healthcare	CVD events and	cost of being
	males (base	•		perspective.	DM;	obese (BMI≥30).
	case)	naltrexone/bupropion			Death.	
						Assumed life
						time therapy for
						those successful
						(patients
						experiencing at
						least 5% of body
						weight loss).
Alshahawey	Adults with BMI	Semaglutide	liraglutide	Decision analytic	1. Treatment	
2024	≥ 30 or ≥ 27 with		• diet and	model, 68 weeks	continuation	
(Alshahawey et	one or more		exercise alone	horizon (17	2. Treatment	
al. 2024), US	weight-related			months),	success	

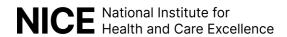

	comorbidities,			healthcare	3. Achievement	
	without diabetes			perspective	≥15% weight	
					loss	
Hu 2022 (Hu et	Adult population	Liraglutide	No-treatment	Decision analytic		Driver: BMI loss
al. 2022), China	with a BMI	Semaglutide		model, 1 year		parameter of
	between 30.4	Dulaglutide		horizon,		Exenatide
	and 33.9	Exenatide		healthcare		(treatment
				perspective		effectivness) and
						the costs of
						Semaglutide and
						Exenatide had a
						greater effect on
						the results than
						other
						parameters.
						Assumed the
						weight of
						untreated obese
						patients will


						continue to
						increase slightly
						over time.
Papantoniou	Adults with BMI	Semaglutide	Liraglutide	Decision analytic	Thresholds:	Drivers:
2025	≥ 30 or ≥ 27 with			model, 68 weeks	1. achievement	1. the proportion
(Papantoniou	one or more			horizon (17	≥5% weight loss	of patients
and Maniadakis	weight-related			months),	2. achievement	achieving the
2025), Greece	comorbidities,			healthcare	≥10% weight	weight loss target
	without diabetes			perspective.	loss	with liraglutide
					3. achievement	2. the ex-factory
					≥15% weight	price of
					loss	liraglutide
					4. achievement	
					≥20% weight	Assumed
					loss	maximum dosing
						per the trial
						protocol without
						accounting for
						real-world
						adherence.

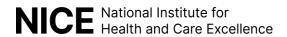
Mital 2023	Adolescents with	Orlistat	No treatment	Microsimulation,	1. Adolescent	Driver: most
(Mital and	severe obesity	Liraglutide		1 year cycle, 10	healthy weight	sensitive to drug
Nguyen 2023),		Semaglutide		year horizon,	2. Adolescent	costs and
US		Phentermine-		healthcare	overweight	efficacy.
		topiramate		perspective	3. Adolescent	
					obesity	
		Sensitivity:			4. Adolescent	
		Metformin vs			severe obesity	
		Bariatric surgery			5. Adolescent	
					healthy weight	
					6. Adolescent	
					overweight	
					7. Adult obesity	
					1	
					8. Adult obesity	
					II	
					9. Adult obesity	
					III	
					10. Death	



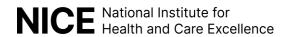
Olivieri 2024	Adult with BMI ≥	Orlistat	Diet and	Markov cohort, 1	11 health	Non-responders
(Olivieri et al.	30 kg/m2 or 27–	Liraglutide	exercise alone	year cycle, 40	states:	to
2024), Canada	30 kg/m2 and ≥1	Semaglutide		years horizon,	1. Normal	pharmacotherapy
	weight-related	Naltrexone 32		societal	glucose	were assumed to
	condition,	mg/bupropion		perspective	tolerance,	discontinue
	including T2D.				2. non-diabetic	treatment but
					hyperglycemia,	continue lifelong
					3. non-diabetic	diet and exercise
					hyperglycaemia	(D&E) therapy,
					reversal,	reflecting
					4. Type 2 DM,	Canadian clinical
					5. ACS,	guidelines where
					6. Post stroke,	D&E is
					7. Type 2 DM+	foundational and
					post ACS,	pharmacotherapy
					8. T2D + stroke,	is continued only
					post ACS + post	with meaningful
					stroke,	weight loss after
					9. Post ACS +	3–6 months.
					post stroke,	


					10. T2D + post	
					ACS + post	
					stroke,	
					11. Death.	
Miguel 2024	Adult with	Semaglutide	Diet and	Markov cohort, a	11 health	Drivers:
(Miguel et al.	BMI≥30 kg/m2		exercise alone	3-month cycle	states:	1. most
2024), Portugal	with one or more			was used in the	1. Normal	sensitivity to
	obesity-related			first year to	glucose	variations in the
	comorbidity			better capture	tolerance,	discount rate
				treatment effects	2. non-diabetic	applied to
				and	hyperglycemia,	benefits.
				discontinuations.	3. non-diabetic	2. the baseline
				Annual cycles	hyperglycaemia	incidence of
				applied	reversal,	post-menopausal
				thereafter. 40	4. Type 2 DM,	endometrial
				years horizon,	5. ACS,	cancer (for the
				healthcare	6. Post stroke,	non-obese
				perspective	7. Type 2 DM+	Portuguese
					post ACS,	general
						population)/

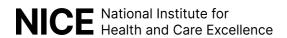
		8. T2D + stroke,	3. weight
		post ACS + post	reductions
		stroke,	applied in year 2
		9. Post ACS +	of the model on
		post stroke,	treatment with
		10. T2D + post	diet and
		ACS + post	exercise.
		stroke,	
		11. Death.	Treatment
			discontinuation
			was assumed for
			patients not
			responding to
			treatment.



Tabe A2-3 Non-Pharmacological treatments

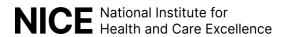

Author, year,	Population	Intervention	Comparator	Model type,	Health states	Model drivers/
country setting				cycle length,		key
				time horizon,		assumption
				Perspective		or limitation
Bates 2022	People with a	Self-management	No intervention	Microsimulation,		Duration of
(Bates et al.	BMI of 28kg/m2	interventions		1-year, lifetime,		effect and the
2022), UK	or above without			healthcare		initial weight
	diabetes			perspective		loss had the
						greatest
	People with a					impact on
	diagnosis of					justifiable cost.
	T2DM prescribed					
	one non-insulin					
	diabetes					
	medication.					
Arrospide 2022	Spanish	self-management	No intervention	discrete event		NR
(Arrospide et al.	population	interventions		simulation		
2022), Spain				model, lifetime,		

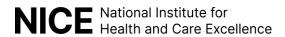
				healthcare		
				perspective		
Avenell 2018	Adult population	(1) low intensity	No intervention	Microsimulation,	1. Health	Drivers:
(Avenell et al.	with a BMI of ≥	weight		1 year cycle, 30	2. One of the	weight regain
2018), UK	35 kg/m2	management		years horizon,	CVD events	assumptions,
		(2) Diet		health and social		time horizon,
		interventions		perspective		discount rate
		(3) Bariatric				
		surgery				
Boyers 2021	Adult with a BMI	(1) low-intensity	No intervention	Microsimulation,	1. Health	Driver:
(Boyers et al.	of ≥ 35 kg/m2	weight		1 year cycle, 30	2. One of the	assumptions
2021), UK		management		years horizon,	CVD events	about the rate
		(2) Diet		health and social		of weight
		interventions +		perspective		regain over
		weight				time.
		management				
		(3) moderate				
		intensit weight				
		management				



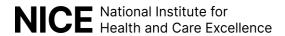
		(4) high intensity				
		weight				
		management				
		(5) Bariatric				
		surgery				
Galvain 2021	• (1) adults with	Bariatric surgery	Self-management	Markov cohort, I	1. T2D	NR
(Galvain et al.	BMI 40 kg/m2, or		interventions	year cycle,	2. T2D	
2021), UK	BMI 35 kg/m2			lifetime, health	remission	
	with obesity-			and social	3. No TD2	
	related			perspective	4. Acute Stroke	
	comorbidities;				5. MI	
	• (2) adults with				6. Cancer	
	BMI 35 kg/m2				7. Post stroke	
	with T2DM				8. Post MI	
					9. Death	
Gulliford 2017	Adults with	Bariatric surgery	Self-management	Markov cohort, I	1. At risk	Driver:
(Gulliford et al.	BMI>40 kg/m2,		interventions	year cycle,	2. DM	obesity-related
2017), UK	including DM and			lifetime, health	3. CHD	physical and
	other			and social	4. Stroke	psychological
	comorbidities			perspective	5. Cancer	comorbidities

					6. Death	were the main
					Each state is	drivers of
					stratified by BI	health-care
					category	costs.
Harrison 2021	Adults with BMI >	Bariatric surgery	Self-management	Mendelian		N/A
(Harrison et al.	35 kg/m2		interventions	randomisation,		
2021), UK				health and social		
				perspective		
Haseeb 2024	Adult with BMI	(1) Bariatric	No treatment	Markov cohort, 1	For drug	Driver: Annual
(Haseeb et al.	35-39.9 kg/m2	surgery		month cycle, 5	1. Weight loss	drug cost of
2024), US		(2) Semaglutide		year horizon,	(year 1)	semaglutide,
				healthcare	2. Weight	weight loss
				perspective	loss/plateau	endoscopic
					3. drop out	sleeve
						gastroplasty
					For surgery	(year 1),
					1. Weight loss	and drop-out
					(year 1)	rate of
					2. Weight	Semaglutide
					loss/plateau	


		3. repeat	Assumptions:
		procedure	1. Assumed
			that patients
			who dropped
			out from the
			semaglutide
			strategy
			experienced
			weight loss for
			at least 3
			months before
			starting to
			regain weight.
			2. A proportion
			of patients with
			insufficient
			weight loss or
			weight regain
			underwent
			repeat surgery

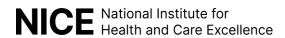

						after the first
						year.
						3. patients
						faced a 30-day
						mortality risk in
						our model
						based on
						expert opinion.
Kelly 2023 (Kelly	Adults with BMI	Bariatric surgery	Self-management	Markov cohort, A	6 health states	Drivers:
et al. 2023), UK	35.0-39.9 kg/m2		interventions	cycle length of	1. Obesity III	health state
				6 months was	(BMI>40)	utility values
				used for the first	2. Obesity II BMI	and
				year to reflect	35-39.9)	prevalence of
				the immediate	3. Obesity I (BMI	type 2 diabetes
				weight loss, and	30-34.9)	in both the
				annual cycles	4. overweight	obesity I and II
				were used	(BMI 25-34.9)	health states.
				thereafter,	5. Healthy	
				lifetime horizon,	weight (BMI	Assumptions:
					18.5-24.9)	

		health and social	6. Death	- Weight loss
		perspective.		was assumed
				to plateau after
				2 years (with
				BMI remaining
				constant
				thereafter) for
				80% of model
				patients
				receiving ESG.
				To account for
				the potential of
				weight regain
				following ESG,
				the remaining
				20% of
				patients
				receiving ESG
				were assumed
				to gradually

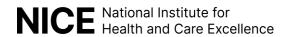

			return to
			baseline BMI
			by 5 years
			based on a
			recent
			systematic
			review and
			meta-analysis
			of studies
			assessing
			weight regain
			following
			bariatric
			surgery.
			Explored in
			sensitivity
			analysis with
			more
			conservative
			assumption.

						- Co-morbidity
						associated
						disutility
						assumed to be
						accounted for
						in BMI based
						health state
						utility values.
						- 100%
						compliance
						with lifestyle
						modification
						assumed.
Galekop 2024	Adults with	Personalised	General Nutrition	Markov cohort, 1	10 health states	Driver: the
(Galekop 2024),	overweight or	Nutrition Plan	Plan	year, lifetime,	1. No DM/ No	effect in
Denmark	obesity (BMI of			societal	IHD/ no Stroke	HRQoL (short-
	27 kg/m2			perspective	2. IHD	term trial
	but < 40 kg/m2)				3. DM	effect) had the
	and had no				4. Stroke	most impact.
	chronic diseases				5. DM+IHD	

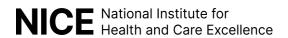
(e.g., diabetes		6. IHD+Stoke	
and cancer)		7. DM+ Stroke	
		9.	
		DM+IHD+Stroke	
		10. Death	

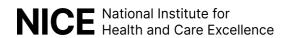


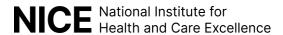
A3: Risk equations used in TAs


Liraglutide TA664

Rish equation used and sources (123 of 196)

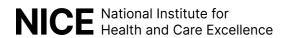

Complication	Risk equation(s) available in	Justification for base	Committee and Evidence
	model	case selection	Review Group (ERG)
			Discussion
Risk of type 2 diabetes	QDiabetes-2018 Model C (UK)	The QDiabetes risk model	The committee accepted the use
onset in normal glucose		was preferred as being the	of risk equations in the model but
tolerance (NGT)		most validated risk score in	was concerned about assuming
patients		a UK population, allowing	long-term cardiovascular benefits
Risk of type 2 diabetes	QDiabetes-2018 Model C (UK)	10 years prediction of risk	from temporary improvements in
onset in patients with	adjusted to reflect a higher risk of diabetes by setting the HbA1c	including prediction of risk	risk factors. However, clinical
prediabetes	parameter equal 42 mmol/mol (6	in patients with	experts clarified that short-term
	%- points) then held constant over time until diabetes	prediabetes (122).	weight loss and diabetic status
	development.		improvements from liraglutide
	*Alternative: Framingham Offening Study adjusted to		could reduce long-term risks of
	Offspring Study adjusted to reflect a higher risk of diabetes by setting the FG 100-126 mg/dL parameter equal to 1 (parameter is 0 for normal glucose tolerance patients)		myocardial infarction, angina, and
			stroke.


Risk of CVD in primary prevention in NGT and prediabetic patients	 QRisk3 (UK) *Framingham Heart Study 	The QRisk3 equation was used to predict the risk of first cardiovascular event in prediabetes and normal glucose tolerance states and was chosen because it contains UK cohort and as
Risk of CVD in	Framingham Recurrent Coronary	such is being used in UK. The Framingham
secondary prevention in	Heart Disease (US)	Recurring Coronary Heart
NGT patients		Disease risk model was
		used to predict recurrent
		cardiovascular events.
Risk of CVD in primary	UKPDS82 (UK) *Alternative 4: OBiole2	The UKPDS 82 risk model
prevention in patients	*Alternative 1: QRisk3*Alternative 2: Swedish NDR	(outcome model 2) was
with type 2 diabetes		used, as it is a UK study
		and able to predict both

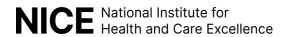

		first and recurrent	
		cardiovascular events after	
		the onset of type 2	
		diabetes.	
Dials of CVD in	LIKEDEGGG (LIK)		
Risk of CVD in	UKPDS82 (UK)*Alternative: Framingham	The UKPDS 82 risk model	
secondary prevention in	Recurrent Coronary Heart	(outcome model 2) was	
patients with type 2	Disease (US)	used, as it is a UK study	
diabetes		and able to predict both	
		first and recurrent	
		cardiovascular events after	
		the onset of type 2	
		diabetes .	
Risk of knee	Incidence in reference BMI group	Did not provide	
replacement	and per unit increase from		
	calculated.		
Obstructive sleep	Prevalence by BMI level from the	Did not provide	
apnoea prevalence	Sleep Heart Study.		
Risk of colorectal	Incidence in reference BMI	Meta-analyses and	
cancer	group: US National Institutes of Health (NIH) AARP Diet and Health Study	systematic review were	

	Risk adjustment by BMI level:	preferred over individual	
	Meta-analysis: Schlesinger, S., Lieb, W., Koch, M., Fedirko, V., Dahm, C.C., Pischon, T., Nöthlings, U., Boeing, H. and Aleksandrova, K., 2015. Body weight gain and risk of colorectal cancer: a systematic review and meta-analysis of observational studies. Obesity Reviews, 16(7), pp.607-619. • Alternative: Incidence in reference BMI group AND risk adjustment by BMI: US National Institutes of Health (NIH) AARP Diet and Health Study: Adams et al. Body mass and colorectal cancer risk in the NIH-AARP cohort. Am J Epidemiol. 2007 Jul 1;166(1):36-45.	studies.	
Risk of endometrial	Incidence in the reference BMI group		
cancer in post-	and per unit BMI increase calculated		
menopausal women	from: Renehan et al. Body mass		
	index and incidence of cancer: a		
	systematic review and meta-analysis		
	of prospective observational studies.		

	The Lancet, 2008; 371(9612),	
	pp.569-578	
	*Alternative: Million Women Study:	
	Yang TY, Cairns BJ, Allen N,	
	Sweetland S, Reeves GK, Beral V;	
	Million Women Study, Post-	
	menopausal endometrial cancer risk	
	and body size in early life and middle	
	age: prospective cohort study, Br J	
	Cancer. 2012 Jun 26;107(1):169-75.	
Risk of breast cancer in	Incidence in the reference BMI group	Meta-analyses and
post-menopausal	and per unit increase calculated	systematic review were
women	from: Renehan et al. Body mass	preferred over individual
	index and incidence of cancer: a	studies.
	systematic review and meta-analysis	
	of prospective observational studies.	
	The Lancet, 2008; 371(9612),	
	pp.569-578	

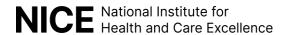


*Alternative: Ahn J, Schatzkin A,	
Lacey JV Jr, Albanes D, Ballard-	
Barbash R, Adams KF, Kipnis V,	
Mouw T, Hollenbeck AR, Leitzmann	
MF Adiposity, adult weight change,	
and post-menopausal breast cancer	
risk Arch Intern Med. 2007 Oct	
22;167(19):2091-102. '- Study	
conducted on 99,039 post-	
menopausal women in the US	
National Institutes of Health–AARP	
Diet and Health Study	


NGT: normal glucose tolerance; CVD: cardiovascular disease

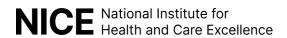
Note: *Scenario analysis

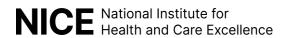
Semaglutide TA875							
Risk equations used for	obesity-related complicati	ons (116 of 176)					
Complication	Risk equation(s)	Justification for base case	Committee and ERG Discussion				
	available in model	selection					



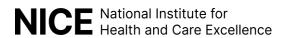
Onset of T2D	 QDiabetes-2018 Model C Framingham Offspring* 	QDiabetes allows prediction of 10- year risk and includes BMI and HbA1c as predictive variables. This is in line with assumptions from TA664.	Ci U: Ci	he committee expressed oncern that the risk equations sed to model long-term ardiovascular and diabetes utcomes were based on urrogate markers and lacked
First CV event	 Qrisk3 Framingham Heart Study*	The QRisk3 contains a UK cohort and as such is being used in UK. This is in line with assumptions from TA664.	va d ca n a	alidation in populations without iabetes, especially for ardiovascular benefits. They also oted that these equations ssume a steady state and may ot accurately reflect the time-
Recurrent CV event	Framingham Recurring Coronary Heart Disease	The only risk equation identified for recurrent CV events in non-diabetic patients. This is in line with assumptions from TA664.	m te	mited effects of semaglutide, naking it difficult to quantify longerm benefits reliably. (see 3.16). The committee noted that excluding cardiovascular benefits from the model had only a small
First CV event in T2D	UKPDS82Qrisk3*	The UKPDS 82 risk model (outcome	u	pward effect on the ICER, while xcluding diabetes-related
Incidence of recurrent	UKPDS82	model 2) is a large UK study and		enefits had a larger impact,
CV event in T2D	Framingham Recurring Coronary Heart Disease*	able to predict both first and recurrent CV events after the onset of T2D. This is in line with assumptions from TA664.	T re co	ignificantly increasing the ICER. his suggests that although the eliability of risk equations was a oncern, particularly for ardiovascular outcomes, the nodel remained cost-effective
Onset of OSA	Sleep Heart Study	This study preferred to other available studies because it was the		ven without those benefits, with iabetes outcomes being more

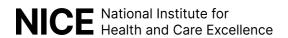
		largest in sample size (n=5,615), it provided sufficient data to calculate a prevalence rate per unit BMI, and it investigated the prevalence of moderate-to-severe OSA (AHI ≥15), given that in the present health-economic analysis, OSA was assigned a hospital cost for continuous positive airway pressure treatment.	influential in determining cost- effectiveness.
Knee replacement	Wendelboe et al. 2003	The study provided granular data on the association between BMI and incidence of knee surgeries by 2.5 BMI-unit steps for observed BMI levels between 17.50 and 42.49 kg/m2.	

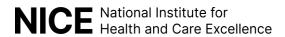

Note: *Scenario analysis to test assumptions regarding choice of risk equation on CE

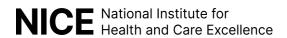

Tirzepatide TA 1026

Risk equation used and sources (178 of 258)

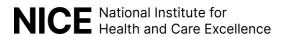

Population	Complication	Risk equation(s)	Base case	Justification for base	Committee and EAG
		available in model	source in	case selection	Discussion
			previous TAs		
Patients without T2DM	Development of T2DM	Base case: QDiabetes Scenario: Framingham Offspring Study	TA875 and TA664: aligned	In addition to being aligned with both TA875 and TA664, this source was considered more suitable for use in the base case as it has been externally validated, had a larger	The committee was concerned that using risk equations based on surrogate outcomes like BMI to predict long-term clinical events introduced uncertainty, as these estimates were not supported by direct trial evidence.
				patient cohort than the Framingham Offspring Study and has been widely used in the UK, given this study was conducted in England	Additionally, the model excluded relevant baseline comorbidities and outcomes such as cancer, which may be influenced by BMI, potentially


	_		(whereas the Framingham Heart Study was based in the US).	undermining the accuracy of treatment benefit estimates. The committee was concerned that annualising multi-year
CVD (stroke, MI and angina): Initial	 Base case: QRisk3 Scenario: Framingham Heart Study 	TA875 and TA664: aligned	Similarly to the QDiabetes risk equations for T2DM, the use of the QRISK3 risk equation in the base case is aligned with both TA875 and TA664 and this source has been externally validated, had a larger patient cohort than the Framingham Heart Study and has been widely used in the UK since this study was conducted in England	risk estimates could lead to events being predicted too early and too frequently, introducing bias in the model. This compounding effect may overestimate event incidence, especially in the active treatment arms, although scenario analyses showed it had limited impact on cost-effectiveness estimates.


			(whereas the	
			Framingham Heart	
			Study was based in the	
			US).	
CVD (stroke, MI		TA875 and	This risk equation was	
and angina):	Framingham Heart Study	TA664: aligned	chosen for the base	
Recurrent	 Scenario: LIPID 		case as it is considered	
	Study		robust and is widely	
			used. This risk equation	
			also explicitly considers	
			the increased risk of	
			recurrent CVD events	
			among patients who	
			have already	
			experienced a CVD	
			event. It also included a	
			larger patient cohort	
			compared with the	
			LIPID study, and has	
			previously been used	


Patients with T2DM	CVD (stroke, MI and angina):	• UKPDS82	TA875 and TA664: aligned	and accepted in prior TAs for obesity. Although it was developed specifically in a US context, no suitable alternative in a UK context were identified. This risk equation was chosen for the base case since it explicitly	
	Initial CVD (stroke, MI and angina): Recurrent			case since it explicitly considers the increased risk of recurrent CVD events among patients who have already experienced a CVD	
				event. It has also been externally validated, is widely used in the UK	

				and is aligned with both	
				TA875 and TA664.	
All patients	Knee	Wendelboe et al.	TA875 and	This study was chosen	
	replacement	2003	TA664: aligned	as no appropriate	
				alternative risk	
				equations were	
				identified. It was also	
				used in the base case	
				of the models	
				presented in TA664	
				and TA875, and	
				Company evidence	
				submission template for	
				tirzepatide for	
				managing overweight	
				and obesity [ID6179] ©	
				Eli Lilly and Company	
				(2023). All rights	
				reserved Page 178 of	
				258 was deemed	



			appropriate by the
			Committee in these
			appraisals.
OSA	Erridge et al. 2021	TA875 and	Erridge et al, 2021 is a
		TA664: Young et	UK study which
		al. 2002 (Sleep	included 276,600
		Heart Study)	patients with obesity
		(not aligned)	(BMI ≥30 kg/m2)
			identified during a data
			extraction of the CPRD
			in 2017, with median
			follow up of 147.0
			months. This source
			was preferred
			compared to the study
			used in TA664 and
			TA875 (Young et al.
			2002) due to its larger
			sample size, UK
			population, recency,

			and the granularity of	
			the BMI covariate, in	
			particular between 30	
			and 40 BMI kg/m2	
			where the majority of	
			the patient population is	
			expected to be upon	
			entering the model.	
NAFLD	Loomis et al. 2016	N/A – not	The incidence rate for	
		included in	patients in the model	
		previous	developing NAFLD are	
		appraisals (and	based on a study by	
		noted by the	Loomis et al. 2016, a	
		Committee in	retrospective	
		TA875 as an	population-based	
		omission of	longitudinal cohort	
		benefit)	study conducted using	
			The Health	
			Improvement Network	
			(THIN) database in the	

	UK. Loomis et al. fitted
	Cox proportional
	hazard models to a
	cohort of 1,133,525
	patients (followed up
	for a median of 4.96
	years) to derive hazard
	ratios (HRs) based on
	BMI category, sex and
	diabetes status. The
	patient data used were
	collected between 2007
	and 2013. Although no
	internal or external
	validation was
	conducted to assess
	the discrimination or
	calibration of the
	models, no suitable

	alternative sources	
	were identified.	