

Technology Assessment Report commissioned by the NIHR HTA Programme on behalf of the National Institute for Health and Care Excellence

A systematic review and economic evaluation of non-bisphosphonates for the prevention of osteoporotic fragility fractures (ID901)

Produced by	School of Health and Related Research (ScHARR), The University of Sheffield
Authors	Sarah Davis, Senior Lecturer in Health Economics, ScHARR, University of Sheffield, Sheffield, UK
	Emma Simpson, Senior Research Fellow, ScHARR, University of Sheffield, Sheffield, UK
	Jean Hamilton, Research Fellow in Statistics, ScHARR, University of Sheffield, Sheffield, UK
	Marrissa Martyn-St James, Research Fellow, ScHARR, University of Sheffield, Sheffield, UK
	Andrew Rawdin, Research Assistant, ScHARR, University of Sheffield, Sheffield, UK
	Ruth Wong, Information Specialist, ScHARR, University of Sheffield, Sheffield, UK
	Edward Goka, Research Assistant, ScHARR, University of Sheffield, Sheffield, UK
	Neil Gittoes, Consultant & Honorary Professor of Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
	Peter Selby, Consultant Physician and Honorary Clinical Professor of Metabolic Bone Disease, University of Manchester, Manchester, UK
Correspondence Author	Sarah Davis, Senior Lecturer in Health Economics,, ScHARR, University of Sheffield, Sheffield, UK

Date completed

Source of funding: This report was commissioned by the NIHR HTA Programme as project number 14/66/01.

Declared competing interests of the authors

None of the authors have any conflicts of interest to declare.

Acknowledgements

We would like to thank Matt Stevenson, ScHARR, for providing comments on the draft report, and Andrea Shippam, Programme Manager, ScHARR, for providing administrative support and in preparing and formatting the report.

This report was commissioned by the NHS R&D HTA Programme. The views expressed in this report are those of the authors and not necessarily those of the NHS R&D HTA Programme.

Rider on responsibility for report

The views expressed in this report are those of the authors and not necessarily those of the NHS R&D HTA Programme. Any errors are the responsibility of the authors.

This report should be referenced as follows:

Davis S, Simpson E, Martyn-St James M, Hamilton J, Rawdin A, Wong R, Goka E, Gittoes N, Selby P. A systematic review and economic evaluation of non-bisphosphonates for the prevention of osteoporotic fragility fractures (ID901). School of Health and Related Research (ScHARR), University of Sheffield, 2018.

Contributions of authors

Sarah Davis acted as the overall project lead. Emma Simpson and Marrissa Martyn-St James conducted the systematic review of clinical effectiveness studies. Edward Goka quality assured some of the fracture data extraction. Jean Hamilton conducted the network metaanalyses. Sarah Davis and Andrew Rawdin conducted the review of published costeffectivenes studies. Andrew Rawdin conducted the review of health related quality of life following fracture. Sarah Davis conducted the economic evaluation. Ruth Wong conducted the searches. Peter Selby and Neil Gittoes provided clinical advice. All authors were involved in drafting and commenting on the final report.

Copyright statement

Copyright belongs to The University of Sheffield

About ScHARR

The School of Health and Related Research (ScHARR) is one of the four Schools that comprise the Faculty of Medicine at the University of Sheffield. ScHARR brings together a wide range of medical- and health-related disciplines including public health, general practice, mental health, epidemiology, health economics, management sciences, medical statistics, operational research and information science. It includes the Sheffield unit of the Trent Institute for Health Services Research, which is funded by NHS R&D to facilitate high-quality health services research and capacity development.

The ScHARR Technology Assessment Group (ScHARR-TAG) synthesises research on the clinical effectiveness and cost-effectiveness of healthcare interventions for the NIHR Health Technology Assessment Programme on behalf of a range of policy makers, including the National Institute for Health and Care Excellence (NICE). ScHARR-TAG is part of a wider collaboration of a number of units from other regions including Southampton Health Technology Assessment Centre (SHTAC), University of Southampton; Aberdeen Health Technology Assessment Group (Aberdeen HTA Group), University of Aberdeen; Liverpool Reviews & Implementation Group (LRiG), University of Liverpool; Peninsular Technology Assessment Group (PenTAG), University of Exeter; the NHS Centre for Reviews and Dissemination, University of York; Warwick Evidence, The University of Warwick; the BMJ Group and Kleijnen Systematic Reviews.

Contents

	OF ABBREVIATIONS	
	CUTIVE SUMMARY	
2.1	Background	
2.2	Objectives	
2.3	Methods	
2.4	Results	
2.5	Discussion	
2.6	Conclusions	
	KGROUND	
3.1	Description of the health problem	
3.2	Current service provision	
3.3	Description of technology under assessment	
3.4	Impact of health problem	
	INITION OF THE DECISION PROBLEM	
4.1	Decision problem	
4.2	Overall aims and objectives of assessment	
	ESSMENT OF CLINICAL EFFECTIVENESS	
5.1	Methods for reviewing effectiveness	
5.2	Results	
5.3	Network meta-analysis	
5.4	Discussion	
	ESSMENT OF COST-EFFECTIVENESS	
6.1	Systematic review of existing cost-effectiveness evidence	
6.2	Independent economic assessment ESSMENT OF FACTORS RELEVANT TO THE NHS AND OTHER PAP	
	ESSMENT OF FACTORS RELEVANT TO THE NHS AND OTHER PAP	
	CUSSION	
8.1	Statement of principle findings	
8.2	Strengths and limitations of the assessment	
8.3	Uncertainties	
8.4	Other relevant factors	
	ICLUSIONS	
9.1	Implications for service provision	
9.2	Suggested research priorities	
10 RI	ERENCES	
11 A	ENDICES	170
		170
App	dix 1: Literature Search Strategies	
	dix 1: Literature Search Strategies dix 2: Thirty-four studies of non-bisphosphonates were excluded	
App		
App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics 	
App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics dix 5: Clinical effectiveness results 	182 185 190 247
App App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics dix 5: Clinical effectiveness results dix 6: Health-related Quality of Life 	182 185 190 247 342
Appo Appo Appo Appo Appo	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics dix 5: Clinical effectiveness results dix 6: Health-related Quality of Life dix 7: Specific adverse events 	182 185 190 247 342 346
App App App App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics dix 5: Clinical effectiveness results dix 6: Health-related Quality of Life dix 7: Specific adverse events dix 8: Statistical methods for the network meta-analysis 	182 185 190 247 342 346 359
App App App App App App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics dix 5: Clinical effectiveness results dix 6: Health-related Quality of Life dix 7: Specific adverse events dix 8: Statistical methods for the network meta-analysis dix 9: Additional results for the network meta-analysis 	182 185 190 247 342 346 359 366
App App App App App App App App	dix 2:Thirty-four studies of non-bisphosphonates were excludeddix 3:Bisphosphonate studiesdix 4:Trial and Population characteristicsdix 5:Clinical effectiveness resultsdix 6:Health-related Quality of Lifedix 7:Specific adverse eventsdix 8:Statistical methods for the network meta-analysisdix 9:Additional results for the network meta-analysisdix 10:Studies excluded at full text from the review of published excluded	182 185 190 247 342 346 359 366 conomic
App App App App App App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics dix 5: Clinical effectiveness results dix 6: Health-related Quality of Life dix 7: Specific adverse events dix 8: Statistical methods for the network meta-analysis dix 9: Additional results for the network meta-analysis dix 10: Studies excluded at full text from the review of published ecevaluations 	182 185 190 247 342 346 359 366 conomic 392
App App App App App App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies	182 185 190 247 342 346 359 366 conomic 392 ing
App App App App App App App App	 dix 2: Thirty-four studies of non-bisphosphonates were excluded dix 3: Bisphosphonate studies dix 4: Trial and Population characteristics dix 5: Clinical effectiveness results dix 6: Health-related Quality of Life dix 7: Specific adverse events dix 8: Statistical methods for the network meta-analysis dix 9: Additional results for the network meta-analysis dix 10: Studies excluded at full text from the review of published ecevaluations 	182 185 190 342 346 359 366 conomic 392 ing 393

·	pendi		Summary clinical outcomes when using FRAX	407			
Ар	pendi	x 14:	Basecase results from the probabilistic sensitivity analysis for QFracture	408			
Ap	pendi	x 15:	Basecase results from the probabilistic sensitivity analysis for				
Ap	pendi	x 16:	FRAX Sensitivity analyses for economic evaluation				
Г	I						
Table	s						
Table	1:	Primar	ry care prescribing of non-bisphosphonates per annum in 2017	20			
Table	2:	Acquis	sition costs associated with DEN, RLX, and TPTD	21			
Table	3:	Trials	included in the review	31			
Table	4:	Summ	ary of model fit and heterogeneity between studies and between				
		bispho	sphonate treatments, all outcomes	77			
Table	5:	Charac	eteristics of included studies – cost-effectiveness review	92			
Table	6:	Overvi	ew of the modelling methodology and key data sources	102			
Table	7:	Treatm	nent specific model inputs	116			
Table	8:	Costs a	and utility values applied in the first and subsequent years following				
		fractur	e	125			
Table	9:	Clinica	al outcomes across the whole population eligible for fracture risk				
		assessi	nent when using QFracture to estimate fracture risk	130			
Table	10:	ICERs	versus no treatment (NT) and treatment with maximum INMB by ris	k			
		deciles	s for QFracture and FRAX	131			
Table	11:	Excluc	led studies	182			
Table	12:	Include	ed bisphosphonate RCTs from TA 464 ³⁴	185			
Table	13:	Include	ed bisphosphonate RCTs from update review (additional to the NICE				
		TA464	•)	188			
Table	14:	Exclud	led bisphosphonate RCTs from TA 464	189			
Table	15:	Trial c	haracteristics	190			
Table	16:	Popula	tion baseline characteristics	228			
Table	17:	Verteb	ral fracture data reported by the included studies	247			
Table	18:	Non-ve	ertebral fracture outcomes	272			
Table	19:	Fractu	res hip, wrist or proximal humerus	282			
Table	20:	Femor	al neck BMD data reported by the included studies	289			
Table	21:	Advers	se events: mortality	303			
Table	22:	Advers	se events and serious adverse events	322			
Table	23:	LS BM	1D for studies not reporting FN BMD	341			
Table	24:	Publisl	hed results of validated HRQoL measures	342			
Table	25:	Specific AEs Additional bisphosphonate trials					

Table 26:	Specific AEs non-bisphosphonate studies	348
Table 27:	Data contributing to the NMA of vertebral fractures	366
Table 28:	Data contributing to the NMA of non-vertebral fractures	368
Table 29:	Data contributing to the NMA hip fractures	369
Table 30:	Data contributing to the NMA of wrist fractures	370
Table 31:	Data contributing to the NMA of wrist fractures	370
Table 32:	Model fit and heterogeneity for RE sensitivity analysis, all outcomes	371
Table 33:	Summary of model fit and heterogeneity between studies and between trea	tments
	for vertebral fracture network sensitivity analyses	373
Table 34:	Pairwise comparisons, vertebral fractures main analysis	375
Table 35:	Pairwise comparisons, non-vertebral fractures main analysis	376
Table 36:	Pairwise comparisons, hip fractures main analysis	377
Table 37:	Pairwise comparisons, wrist fractures main analysis	378
Table 38:	Pairwise comparisons, humerus fractures main analysis	379
Table 39:	Pairwise comparisons, femoral neck BMD main analysis	380
Table 40:	Node-splitting results, vertebral fractures main analysis	381
Table 41:	Node-splitting results, non-vertebral fractures main analysis	383
Table 42:	Node-splitting results, hip fractures main analysis	385
Table 43:	Node-splitting results, wrist fractures main analysis	386
Table 44:	Node-splitting results, proximal humerus fractures main analysis	387
Table 45:	Results of meta-analysis on gender, age and baseline response for all outco	mes
		389
Table 46:	Meta-regression on baseline risk, comparison of alternative models, verteb	ral
	fractures	391
Table 47:	Summary of included papers reporting EQ-5D quality-of-life measures	
	associated with osteoporotic fracture	396
Table 48:	Utility values after hip fracture used in the HTA and in the new review	400
Table 49:	Model validation steps for key changes	404
Table 50:	Clinical outcomes across the whole population eligible for fracture risk	
	assessment when using FRAX to estimate fracture risk	407
Table 51:	Basecase results from 200,000 PSA samples for QFracture risk category 1	
	(average 10 year fracture risk of 0.5%)	408
Table 52:	Basecase results from 200,000 PSA samples for QFracture risk category 2	
	(average 10 year fracture risk of 0.7%)	409
Table 53:	Basecase results from 200,000 PSA samples for QFracture risk category 3	
	(average 10 year fracture risk of 1.0%)	410

Table 54:	Basecase results from 200,000 PSA samples for QFracture risk category 4
	(average 10 year fracture risk of 1.4%)
Table 55:	Basecase results from 200,000 PSA samples for QFracture risk category 5
	(average 10 year fracture risk of 2.0%)
Table 56:	Basecase results from 200,000 PSA samples for QFracture risk category 6
	(average 10 year fracture risk of 2.7%)
Table 57:	Basecase results from 200,000 PSA samples for QFracture risk category 7
	(average 10 year fracture risk of 3.9%)
Table 58:	Basecase results from 200,000 PSA samples for QFracture risk category 8
	(average 10 year fracture risk of 5.5%)
Table 59:	Basecase results from 200,000 PSA samples for QFracture risk category 9
	(average 10 year fracture risk of 8.4%)
Table 60:	Basecase results from 200,000 PSA samples for QFracture risk category 10
	(average 10 year fracture risk of 16.0%)
Table 61:	Basecase results from 200,000 PSA samples for FRAX risk category 1 (average
	10 year fracture risk of 3.1%)
Table 62:	Basecase results from 200,000 PSA samples for FRAX risk category 2 (average
	10 year fracture risk of 4.3%)
Table 63:	Basecase results from 200,000 PSA samples for FRAX risk category 3 (average
	10 year fracture risk of 5.0%)
Table 64:	Basecase results from 200,000 PSA samples for FRAX risk category 4 (average
	10 year fracture risk of 5.6%)
Table 65:	Basecase results from 200,000 PSA samples for FRAX risk category 5 (average
	10 year fracture risk of 6.2%)
Table 66:	Basecase results from 200,000 PSA samples for FRAX risk category 6 (average
	10 year fracture risk of 7.3%)
Table 67:	Basecase results from 200,000 PSA samples for FRAX risk category 7 (average
	10 year fracture risk of 8.8%)
Table 68:	Basecase results from 200,000 PSA samples for FRAX risk category 8 (average
	10 year fracture risk of 10.7%)
Table 69:	Basecase results from 200,000 PSA samples for FRAX risk category 9 (average
	10 year fracture risk of 14.9%)
Table 70:	Basecase results from 200,000 PSA samples for FRAX risk category 10 (average
	10 year fracture risk of 25.1%)
Table 71:	ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when
	using the basecase scanrio

Table 72:	ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when
	assuming full persistence with treatment
Table 73:	ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when
	using the class-effect estimates for bisphosphonates
Table 74:	ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when
	making alternative assumptions for the offset period [†]
Figures	
Figure 1:	Flow diagram of study selection based
Figure 2:	Cochrane Risk of Bias summary across placebo-controlled non-bisphosphonate
	studies
Figure 3:	Cochrane Risk of Bias summary across non-bisphosphonate head-to-head studies
Figure 4:	Cochrane Risk of Bias summary across non-bisphosphonate vs. bisphosphonate
	studies
Figure 5:	Network diagrams for a) vertebral b) non-vertebral c) hip d) wrist e) proximal
	humerus fracture outcomes
Figure 6:	Forest plot for all fracture outcomes, main analysis
Figure 7:	Network diagram for percentage change in femoral neck BMD79
Figure 8:	Forest plot for percentage change in femoral neck BMD
Figure 9:	Flow diagram of study selection process (adapted from PRISMA) - cost-
	effectiveness review
Figure 10:	Clinical events that can occur during a patient's lifetime in the DES 100
Figure 11:	INMB as a function of absolute fracture risk as determined by QFracture 132
Figure 12:	INMB as a function of absolute fracture risk as determined by FRAX 133
Figure 13:	Forest plot of HR for all fracture outcomes using a random effects model 372
Figure 14:	Forest plot of vertebral fracture network sensitivity analyses
Figure 15:	QUORUM representation of the literature review for HRQoL
Figure 16:	Utility associated with vertebral fracture used in the HTA report and that chosen
	from the ICUROS study
Figure 17:	Utility associated with hip fracture used in the HTA report and that chosen from
	the ICUROS study
Figure 18:	Utility associated with distal forearm (wrist) fracture used in the HTA report and
	that chosen from the ICUROS study
Figure 19:	Utility associated with humerus (shoulder) fracture used in the HTA report and
	that chosen from the ICUROS study

1 LIST OF ABBREVIATIONS

Abbreviations

ACTIVE	Trial name Abaloparatide Comparator Trial In Vertebral Endpoints			
ADAMO	Trial name Denosumab Versus Placebo in Males With Osteoporosis			
ALN	Alendronate			
ARCH	Trial name Active-Controlled Fracture Study in Postmenopausal Women			
/iiteii	with Osteoporosis at High Risk			
BMD	bone mineral density			
BNF	British National Formulary			
BRIDGE	Trial name Phase 3 randomized placeBo-contRolled double-blind study			
DRIDGE	evaluating the efficacy and safety of Romosozumab in treating mEn with			
	osteoporosis			
CrI	Credible interval			
CODA	convergence diagnosis and output analysis			
DAPS	Trial name Denosumab Adherence Preference Satisfaction			
DATA	Trial name Denosumab and Teriparatide Administration			
DECIDE	Trial name Determining Efficacy: Comparison of Initiating Denosumab versus Alendronate			
DEN	Denosumab			
DES	Discrete event simulation			
DIRECT	Trial name Denosumab fracture Intervention RandomizEd placebo			
	Controlled Trial			
DVT	Deep vein thrombosis			
EFFECT	Trial name EFficacy of FOSAMAX versus EVISTA Comparison Trial			
eMIT	Electronic market information tool			
EQ-5D	Euro Quality of Life-5 Dimensions			
EQ-VAS	Euro Quality of Life – Visual Analogue Scale			
EU	European Union			
EUROFORS	Trial name European Study of Forsteo			
EuroGIOPS	Trial name acronym meaning not reported; EUROFORS European Study			
	of Forsteo			
EVA	Trial name Evista Alendronate Comparison trial			
FACT	Trial name Forteo Alendronate Comparator Trial			
FN	femoral neck			
FPT	Trial name fracture prevention trial			
FRAME	Trial name Fracture Study in Postmenopausal Women with Osteoporosis			

FREEDOM	Trial name Fracture Reduction Evaluation of Denosumab in Osteoporosis
GAM	generalised additive model
GP	General Practitioner
HES	Hospital Episode Statistics
HCHS	Hospital and community health services
HR	Hazard ratio
HRG	Healthcare resource group
HRQoL	Health-related quality of life
i.v.	intravenous
IBN	ibandronate
ICDF	Inconsistency degrees of freedom
ICER	Incremental cost-effectiveness ratio
INMB	Incremental net monetary benefit
ITT LOCF	intention-to-treat last observation carried forward
ITT MI	intention-to-treat multiple imputation
LOCF	Last observation carried forward
LS	lumbar spine
LY	Life-years
MHRA/CHM	Medicines and Healthcare products Regulatory Agency/Commission on
MHRA/CHM	Medicines and Healthcare products Regulatory Agency/Commission on Human Medicines
MHRA/CHM mITT	
	Human Medicines
mITT	Human Medicines modified intent to treat
mITT MORE	Human Medicines modified intent to treat Trial name European Study of Forsteo
mITT MORE MOVE	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported
mITT MORE MOVE NHS	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service
mITT MORE MOVE NHS NMA	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis
mITT MORE MOVE NHS NMA NOGG	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group
mITT MORE MOVE NHS NMA NOGG NR	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported
mITT MORE MOVE NHS NMA NOGG NR NT	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported No treatment
mITT MORE MOVE NHS NMA NOGG NR NT OLE	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported No treatment open label extension
mITT MORE MOVE NHS NMA NOGG NR NT OLE ONJ	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported No treatment open label extension Osteonecrosis of the jaw
mITT MORE MOVE NHS NMA NOGG NR NT OLE ONJ PB	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported No treatment open label extension Osteonecrosis of the jaw probability of being the best ranking treatment
mITT MORE MOVE NHS NMA NOGG NR NT OLE ONJ PB PBO	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported No treatment open label extension Osteonecrosis of the jaw probability of being the best ranking treatment placebo
mITT MORE MOVE NHS NMA NOGG NR NT OLE ONJ PB PBO PE	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported No treatment open label extension Osteonecrosis of the jaw probability of being the best ranking treatment placebo Pulmonary embolism
mITT MORE MOVE NHS NMA NOGG NR NT OLE ONJ PB PBO PE PI	Human Medicines modified intent to treat Trial name European Study of Forsteo Trial name Trial name, acronym meaning not reported Nationl Health Service Network meta-analysis National Osteoporosis Guideline Group not reported No treatment open label extension Osteonecrosis of the jaw probability of being the best ranking treatment placebo Pulmonary embolism Prediction interval

PSSRU	Personal Social Services Research Unit
QALY	Quality-adjusted life years
RCT	randomised controlled trial
RD	risk difference
RIS	Risedronate
RLX	Raloxifene
ROMO	Romosozumab
RR	risk ratio
S.C.	subcutaneous
SD	standard deviation
SmPC	Summary of Product Characteristics
STAND	Trial name Study of Transitioning from Alendronate to Denosumab
STRUCTURE	Trial name Study to Evaluate the Effect of Treatment With Romosozumab
	or Teriparatide in Postmenopausal Women
TPTD	Teriparatide
ТТО	Time-trade-off
VERO	VERtebral fracture treatment comparisons in Osteoporotic women
VTE	Venous thromboembolic events
WHO	World Health Organisation
ZOL	Zoledronate / Zoledronic acid

2 EXECUTIVE SUMMARY

2.1 Background

Osteoporosis is a disease characterised by low bone mass and structural deterioration of bone tissue, with a consequent increase in susceptibility to fragility fracture (defined by World Health Organization [WHO] as a broken bone resulting from a fall from standing height or less). In the UK, the number of women and men age >50 years with osteoporosis has been estimated as 2,527,331 women and 679,424 men, with approximately 536,000 new fragility fractures, comprising 79,000 hip fractures, 66,000 vertebral fractures, 69,000 forearm fractures and 322,000 other fractures. Osteoporotic fractures cause significant pain, disability and loss of independence and can be fatal.

2.2 Objectives

To determine the clinical effectiveness and cost-effectiveness of Denosumab (DEN), Raloxifene (RLX), Romosozumab (ROMO) and Teriparatide (TPTD), within their licensed indications, for the prevention of osteoporotic fragility fractures as compared against each other, bisphosphonates or a non-active treatment.

2.3 Methods

A systematic review and network meta-analysis (NMA) of clinical effectiveness and safety evidence for interventions of interest was conducted. Nine electronic databases were searched up to July 2018. Studies were eligible for inclusion if they were randomised controlled trials (RCTs) comparing the non-bisphosphonates DEN, RLX, ROMO, or TPTD with each other, placebo (PBO) or bisphosphonates within their licensed indication for an osteoporosis population, and reported either fracture or BMD data. Quality of included studies was assessed using the Cochrane Risk of Bias tool.

A review of the existing cost-effectiveness literature was undertaken, including economic evaluations described within the company submissions. The identified cost-effectiveness analyses were compared to the model developed to inform the National Institute of Health and Care Excellence (NICE) Multiple Technology Appraisal (MTA) of bisphosphonates (TA464) to identify areas of difference. The model used in TA464 was then adapted to evaluate the cost-effectiveness of non-bisphosphonates when compared to either no treatment or treatment with bisphosphonate across the whole population eligible for fracture risk assessment (as defined by NICE Clinical Guideline (CG) 146). Incremental analyses were conducted for 10 risk categories based on deciles of risk when using either the QFracture or FRAX risk scoring algorithms to determine risk. In the economic analyses, treatment with ROMO was modelled as a treatment sequence of ROMO followed by the bisphosphonate

alendronate (ROMO/ALN). All of the other treatment strategies modelled consisted of a single intervention followed by no treatment.

2.4 Results

The systematic review of clinical effectiveness identified 7,898 citations. Fifty-two RCTs of non-bisphosphonates were included in the review, and an additional 51 RCTs of bisphosphonates were included for the NMAs.

Across studies reporting overall mortality, there were no significant differences between nonbisphosphonate treatment arms and their comparators of placebo, other non-bisphosphonates or bisphosphonates. The ranges of serious adverse event rates were: DEN 2% to 25.8%; RLX 2% to 18.6%; ROMO 3.2% to 12.9%; TPTD 0% to 33.0%.

NMAs were conducted for vertebral fractures (46 RCTs, 11 interventions), non-vertebral fractures (42 RCTs, 11 interventions), hip fractures (23 RCTs, 9 interventions), wrist fractures (15 RCTs, 8 interventions), proximal humerus fractures (13 RCTs, 8 interventions) and percentage change in femoral neck BMD (73 RCTs, 12 interventions). For vertebral, non-vertebral and hip fractures and for femoral neck BMD, all treatments were associated with beneficial effects relative to placebo. For both vertebral fractures and percentage change in femoral neck BMD the treatment effects were statistically significant at a conventional 5% level for all treatments. For vertebral, non-vertebral, hip and wrist fractures, TPTD provided the largest treatment effect, though in general the ranking of treatments varied for the different outcomes. For wrist and proximal humerus fractures there was less RCT evidence, and so there is considerable uncertainty in treatment effects for certain interventions in these networks. Sensitivity analyses conducted to assess the impact of assessment method for vertebral fractures (radiographic or clinical), duration of study, issues with data quality and effect of prior bisphosphonate treatment, demonstrated that the results of the NMA were robust to these potential issues.

In the AG's economic evaluation, the incremental cost-effectiveness ratios (ICERs) versus no treatment were found to be above £30,000 per quality-adjusted life year (QALY) for all of the non-bisphosphonate treatments (RLX, DEN, TPTD, ROMO/ALN) across all 10 risk categories when using either QFracture or FRAX to estimate the 10-year absolute risk of fracture. This finding was unchanged when sensitivity analyses were conducted exploring alternative assumptions regarding the duration of persistence with treatment and the duration of time it takes for treatment effect to fall to zero after treatment stops (the offset period). The results of the regression of INMB against fracture risk suggest that DEN may have an ICER

under £30,000 compared to no treatment at very high levels of risk (FRAX score >45%), but the estimates of cost-effectiveness are very uncertain at this level of risk. Otherwise the results of the regression analysis were consistent with the findings based on the 10 risk categories. An exploratory scenario analysis examining an example high risk patient also suggested that the cost-effectiveness of DEN may be more favourable in high risk patients with specific characteristics.

2.5 Discussion

Fracture and BMD data were available for all four non-bisphosphonate interventions. All of these interventions were associated with beneficial effects compared to PBO.

One of the strengths of this analysis is that we have been able to estimate the costeffectiveness of each intervention across the broad range of absolute fracture risk observed within the population eligible for risk assessment under CG146. However, the downside of the approach we have taken is that the estimates of cost-effectiveness are uncertain in patients at high risk of fracture (e.g. >30%) as they are informed by fewer simulated patients.

The results of the AG's economic evaluation differ from the cost-effectiveness results presented in the submissions by the companies for DEN and ROMO. However, the review of cost-effectiveness analyses highlighted a number of important differences between these economic evaluations.

2.6 Conclusions

The non-bisphosphonate interventions (RLX, DEN, TPTD and ROMO) are all clinically effective at reducing vertebral fracture risk when compared to placebo. However, the effectiveness estimates for other fracture sites are more uncertain and the treatment effects were not statistically significant at a conventional 5% level for all non-bisphosphonate treatments for non-vertebral fractures.

The ICERS compared with no treatment are above the NICE threshold of £20,000 per QALY for all non-bisphosphonate interventions across the range of QFracture and FRAX scores expected in the population eligible for fracture risk assessment. The ICER for DEN may be below £30,000 per QALY in very high risk patients (FRAX >45%), but the estimates of cost-effectiveness in high risk patients are very uncertain.

3 BACKGROUND

3.1 Description of the health problem

Osteoporosis is a disease characterised by low bone mass and structural deterioration of bone tissue, with a consequent increase in susceptibility to fragility fracture (a broken bone resulting from a fall at standing height or less). The definition provided by the World Health Organization (1994) defines the condition as bone mineral density (BMD) 2.5 standard deviations (SDs) below peak bone mass (20-29 year-old healthy female average) as measured by DXA (dual energy X-ray absorptiometry).¹ The WHO operational definition is updated to refer specifically to DXA at the femoral neck.² The term "established osteoporosis" includes the presence of a fragility fracture.¹ Primary osteoporosis can occur in both men and women, but is most common in women after menopause when it is termed postmenopausal osteoporosis. In contrast, secondary osteoporosis may occur in anyone as a result of medications, specifically glucocorticoids, or in the presence of particular hormonal disorders and other chronic diseases.³

Fragility fractures are fractures that result from mechanical forces that would not ordinarily result in fracture, known as low-level (or 'low energy') trauma, quantified as forces equivalent to a fall from a standing height or less.¹ Whilst osteoporosis is an important predictor of the risk of fragility fracture, 70% of fragility fractures in postmenopausal women occur in those who do not meet the criteria for osteoporosis.⁴

The prevalence of osteoporosis in the European Union has been estimated at 22 million women and 5.5 million men.⁵ In the UK, the number of women and men aged >50 years with osteoporosis has been estimated as 2,527,331 women and 679,424 men, with approximately 536,000 new fragility fractures, comprising 79,000 hip fractures, 66,000 vertebral fractures, 69,000 forearm fractures and 322,000 other fractures (i.e., fractures of the pelvis, rib, humerus, tibia, fibula, clavicle, scapula, sternum and other femoral fractures) being sustained.⁶

In 2010, the number of postmenopausal women living with osteoporosis in the UK, based on the definition of a BMD at least 2.5 SDs lower than a young healthy women (T score \leq -2.5 SD), was predicted to increase to 2.1 million in 2020 (+16.5%).⁷ The prevalence of osteoporosis in the general population of women aged \geq 50 years in the UK was assumed to remain stable over time, at approximately 15.5%.

3.2 Current service provision

3.2.1 Clinical Guidelines

Currently, related NICE guidance includes a clinical guideline for identifying women and men at risk of fracture (CG146⁸) and three technology appraisals of treatments for osteoporosis (TA464,⁹ TA204,¹⁰ TA161¹¹).

3.2.2 Current NICE Technology Appraisal Guidance

NICE technology appraisal guidance 464 (TA464⁹), recommends oral bisphosphonates (ALN, IBN and RIS) and intravenous (i.v.) bisphosphonates (IBN and zoledronic acid (ZOL)) as options for treating osteoporosis in people who are eligible for risk assessment as defined in NICE's guideline 146 on osteoporosis,⁸ depending on the person's risk of fragility fracture.⁹ However, the risk level at which oral bisphosphonates are cost effective is not a clinical intervention threshold. NICE technology appraisal guidance 464⁹ should be applied clinically in conjunction with the NICE quality standard 149 on osteoporosis¹² that defines the clinical intervention thresholds. These thresholds are based on the NICE-accredited National Osteoporosis Guideline Group (NOGG) guideline.¹³

NICE technology appraisal guidance 204¹⁰ recommends DEN for the primary prevention of fragility fractures in postmenopausal women at specified fracture risks, defined by age, T-score and number of independent clinical risk factors for fracture, who have osteoporosis and who are unable to comply with the special instructions for administering ALN and either RIS or etidronate (which no longer marketed in the UK), or have an intolerance of, or a contraindication to, those treatments. Technology appraisal guidance 204¹⁰ also recommends DEN for the secondary prevention of osteoporotic fragility fractures in postmenopausal women at increased risk of fractures who are unable to comply with the special instructions for administering ALN and either RIS or etidronate, or have an intolerance of or a contraindication to ALN and either RIS or etidronate.

NICE technology appraisal guidance 161, recommends RLX and strontium ranelate (currently discontinued), and TPTD at specified fracture risks, defined by age, T-score and number of independent clinical risk factors for fracture, for women who have already sustained a fracture and who cannot take ALN.¹¹

3.2.3 Current service cost

Hernlund *et al.* $(2013)^{25}$ reviewed the literature on fracture incidence and costs of fractures in the 27 European Union (EU) countries and incorporated data into a model estimating the clinical and economic burden of osteoporotic fractures in 2010. The cost of osteoporosis,

including pharmacological intervention in the EU in 2010 was estimated at \notin 37 billion. Costs of treating incident fractures represented 66% of this cost, pharmacological prevention represented 5% and long-term fracture care represented 29%. Excluding the costs of pharmacological prevention, hip fractures represented 54% of the costs, vertebral and forearm fractures represented 5% and 1%, respectively; and "other fractures" represented 39 %. The estimated number of life-years lost in the EU due to incident fractures was approximately 26,300 in 2010. The total health burden, measured in terms of lost QALYs, was estimated at 1,180,000 QALYs for the EU.

In the UK the cost of osteoporosis (excluding the value of QALYs lost) in 2010 was estimated by Hernlund *et al.*¹⁴ at €103 million (£91.8 million in 2017 prices) for pharmacological fracture prevention, €3,977 million (£3546 million in 2017 prices) for cost of fractures, and €1328 million (£1185 million in 2017 prices) for cost of long-term disability. The 2010 cost of UK osteoporosis fracture in relation to population and healthcare spending was €5408 million (£4822 million in 2017 prices). The 2010 prices reported by Hernlund *et al.* in Euros have been converted back to £ sterling (2006 prices). The conversion ratio from 2006 prices to 2010 used by Hernlund *et al.* was estimated by ScHARR at 1.4065 by comparing the unit cost for nursing home stay against the cited UK specific source data from 2006.¹⁵ Costs have then been uplifted to 2017 prices using the hospital and community health services (HCHS) inflation indices from the Personal Social Services Research Unit (PSSRU)¹⁶ (302.3 for 2016/17 versus 240.9 for 2005/6).

3.2.4 *Current treatment pathway*

The NICE 2018 osteoporosis overview pathway¹⁷ and Fragility fracture risk assessment pathway¹⁸ cover NICE guidance on osteoporosis in adults (18 years and older), including assessing the risk of fragility fracture and drug treatment for the primary and secondary prevention of osteoporotic fragility fractures. (The recommendations on assessment of fracture risk in CG146 are summarised later in section 3.4.3).

3.3 Description of technology under assessment

3.3.1 Interventions considered in the scope of this report

Four interventions will be considered within this assessment: DEN, RLX, ROMO and TPTD.

3.3.2 Mode of action

Treatments for osteoporosis generally fall into two classes, bone-forming agents (ROMO and TPTD) and anti-resorptive agents (bisphosphonates, DEN and RLX). Bone-forming agents are used for shorter durations of treatment, often in patients at very high risk of fracture,

whereas anti-resorptive agents are used as long-term treatments and sometimes after boneforming agents.¹⁹ It should be noted that the company submission by UCB states that ROMO leads to "an increase in bone formation and reduction in bone resorption" suggesting that it is both bone forming and anti-resportive properties.²⁰

3.3.3 Marketing license and administration method

DEN (Prolia, Amgen) is a monoclonal antibody that reduces osteoclast activity, and so reduces bone breakdown. It is administered as a single 60 mg subcutaneous injection once every 6 months. DEN has a marketing authorisation in the UK for the treatment of osteoporosis in postmenopausal women and in men at increased risk of fractures.¹⁹

RLX (Evista, Daiichi Sankyo) is a selective oestrogen receptor modulator. It is administered orally at a dose of 60mg daily. RLX has a marketing authorisation in the UK for the treatment and prevention of osteoporosis in postmenopausal women. Non-proprietary RLX (Sandoz, Consilient Health, Actavis UK, Mylan UK) is also available for the same indication.¹⁹

ROMO (Evenity, UCB and Amgen) is a monoclonal antibody that inhibits the protein sclerostin, increasing bone formation and decreasing bone breakdown. It is administered as a subcutaneous injection. It does not currently have a marketing authorisation in the UK for treating osteoporosis. It has been studied in clinical trials as 12 months of ROMO followed by at least 12 months of ALN, compared with at least 24 months of ALN alone, in postmenopausal women. It has also been studied in a randomised, placebo-controlled clinical trial for treating osteoporosis in men.¹⁹ It is administered as a subcutaneous injection once monthly. A treatment dose is not yet licenced.

TPTD (Forsteo, Eli Lilly) is a recombinant fragment of human parathyroid hormone and, as an anabolic agent, it stimulates formation of new bone and increases resistance to fracture. It is administered subcutaneously at a dose of 20 µg daily for up to 24 months. TPTD has a marketing authorisation in the UK for treatment of osteoporosis in postmenopausal women and in men at increased risk of fracture. It also has a marketing authorisation in the UK for treatment of osteoporosis associated with sustained systemic glucocorticoid therapy in women and men at increased risk for fracture. Biosimilar versions of TPTD (Movymia, Internis Pharmaceuticals²¹; Terrosa, Gedeon Richter²²) have been licensed for the same indications.¹⁹.

3.3.4 Contraindications, special warnings and precautions

The summary of product characteristics (SmPC) for each intervention describes the contraindications and special warnings for bisphosphonates.²³⁻²⁵

DEN 60 mg subcutaneous injection once every 6 months is contraindicated in patients with hypocalcaemia or hypersensitivity to the active substance or to any of its excipients. Adequate intake of calcium and vitamin D is important in all patients.²³ Special warnings and precautions include hypocalcaemia, renal impairment, skin infections, osteonecrosis of the jaw (ONJ), and atypical femoral fracture.²³

RLX orally at a dose of 60mg daily is contraindicated in women with child bearing potential, in patients with: active or past history of venous thromboembolic events (VTE), including deep vein thrombosis (DVT), pulmonary embolism (PE) and retinal vein thrombosis; hepatic impairment including cholestasis, severe renal impairment, unexplained uterine bleeding, with signs or symptoms of endometrial cancer, or with hypersensitivity to the active substance or to any of the excipients.²⁴

The draft Summary of Product Characteristics for ROMO, notes special precautions in

patients							
		Special	warnings	and	precautions	include	
		0.5					
		.25					

TPTD administered subcutaneously at a dose of 20 µg daily is contraindicated in women who are pregnant or breast-feeding, patients with: pre-existing hypercalcaemia, severe renal impairment, metabolic bone diseases (including hyperparathyroidism and Paget's disease of the bone) other than primary osteoporosis or glucocorticoid-induced osteoporosis, unexplained elevations of alkaline phosphatase, prior external beam or implant radiation therapy to the skeleton, skeletal malignancies or bone metastases, or hypersensitivity to the active substance or to any of the excipients.²⁴ Precautions include elevations of serum calcium concentrations, active or recent urolithiasis, orthostatic hypotension, and renal impairment.²⁴

3.3.5 Place in treatment pathway

DEN is recommended as a treatment option for the primary prevention of osteoporotic fragility fractures only in postmenopausal women at increased risk of fractures who are unable to comply with the special instructions for administering ALN and either RIS or etidronate, or have an intolerance of, or a contraindication to, those treatments and who have a sufficiently high risk of fracture as determined by a combination of T-score, age and number of independent clinical risk factors for fracture.²⁶

RLX is recommended as an alternative treatment option for the secondary prevention of osteoporotic fragility fractures in postmenopausal women who are unable to comply with the special instructions for the administration of ALN and RIS, or have a contraindication to or are intolerant of ALN and RIS and who also have a sufficiently high risk of fracture as determined by a combination of T-score, age and number of independent clinical risk factors for fracture.²⁶

ROMO is not currently part of any NICE osteoporosis treatment pathway.

TPTD is recommended as an alternative treatment option for the secondary prevention of osteoporotic fragility fractures in postmenopausal women who are unable to take ALN and RIS, or have a contraindication to or are intolerant of ALN and RIS, or who have had an unsatisfactory response to treatment with ALN or RIS, and who are 65 years or older and have a T-score of -4.0 SD or below, or a T-score of -3.5 SD or below plus more than two fractures, or who are aged 55–64 years and have a T-score of -4 SD or below plus more than two fractures.²⁷

3.3.6 Identification of important subgroups

The final NICE scope specified subgroups based on patient characteristics that increase the risk of fracture (those specified in NICE CG146⁸) or that effect the impact of fracture on lifetime costs and outcomes.¹⁹

3.3.7 Current usage in the National Health Service (NHS)

Data from the 2017 Prescription Cost Analysis were analysed to determine the level of nonbisphosphonate usage within primary care across England in 2017.²⁸ It can be seen from the data summarised in Table 1 that branded DEN was the most commonly prescribed preparation in primary care. The prescribing costs in hospitals and the community in England 2016/17 for treatment of osteoporosis was £11,930,475 for DEN, £355,530 for RLX, and £4,409,696 for TPTD.²⁹

Table 1:	Primary care prescribing of non-bisphosphonates per annum in 2017
----------	---

Drug	Generic or branded	Dosing schedule	Prescriptions in thousands*	Description of preparations	
DEN	Branded	-	7911.635	Prolia Injection 60mg/1ml Pfs	
DEN	Dranded	Once every	/911.035	FIGHA Hijection oonig/ Thir Fis	
		six months			
RLX	Branded	Daily	44.345	Evista_Tablet 60mg	
	Generic	Daily	241.475	RLX HCl_Tablet 60mg	
TPTD	Branded Daily		402.111	Forsteo_Injection 250mcg/ml	
				2.4ml Pf Pen	

* Prescription items dispensed in the community in 2017²⁸

3.3.8 Anticipated costs associated with interventions

Table 2 summarises the 2018 net costs associated with the interventions based on their list prices.³⁰

Drug	Generic or	Unit type and dose	Price per unit
DEN	branded Branded	Prolia Injection 60mg/1ml 1 pre- filled disposable injection	NHS indicative price = £183.00 Drug Tariff (Part VIIIA Category C) price = £183.00
RLX	Branded	Evista_Tablet 60mg 28 tablet	NHS indicative price = £17.06 Drug Tariff (Part VIIIA Category M) price = £3.27
	Generic	RLX HCl_Tablet 60mg 28 tablet	Activis UK: NHS indicative price = £4.60 Drug Tariff (Part VIIIA Category M) price = £3.27
TPTD	Branded	Forsteo_Injection 250mcg/ml 2.4ml Pf Pen 1 pre-filled disposable injection (i.e. 30 daily doses)	NHS indicative price = £271.88 Drug Tariff (Part VIIIA Category C) price = £271.88

 Table 2:
 Acquisition costs associated with DEN, RLX, and TPTD

3.4 Impact of health problem

3.4.1 Significance for patients

Fractures cause significant pain, disability and loss of independence and can be fatal.¹ In the UK, the number of causally related deaths in 2010 was estimated at 6059. Hip, vertebral and other fractures accounted for 2764; 1795; and 1500 deaths respectively.⁶

3.4.2 Significance for the NHS

The cost of osteoporosis in the UK was estimated in 2010 at £4.4 billion. First year costs, subsequent year costs and pharmacological fracture prevention costs amounted to £3.2 billion, \pounds 1.1 billion and £84 million, respectively.⁶

3.4.3 Measurement of disease

Quantitative diagnosis in the UK relies on the assessment of BMD, usually by central dual energy X-ray absorptiometry (DXA). BMD at the femoral neck provides the reference site. It is defined as a value for BMD 2.5 SD or more below the young female adult mean (T-score less than or equal to -2.5 SD). Severe osteoporosis (established osteoporosis) describes osteoporosis in the presence of 1 or more fragility fractures.³¹

NICE Clinical Guideline 146 (CG146)⁸ recommends the estimation of absolute risk of fragility fracture when assessing risk of fracture and recommends the use either FRAX,³² (without a BMD value if a DXA scan has not previously been undertaken) or QFracture,³³ within their allowed age ranges, to estimate 10-year predicted absolute fracture risk when assessing risk of fracture.⁸ Above the upper age limits defined by the tools, people are considered to be at high risk.⁸

The guideline recommends that assessment is indicated in all women aged 65 years and over and all men aged 75 years and over and in women aged under 65 years and men aged under 75 years in the presence of risk factors (i.e., previous fragility fracture, current use or frequent recent use of oral or systemic glucocorticoids, history of falls, family history of hip fracture, other causes of secondary osteoporosis, low body mass index, smoking, and alcohol intake of more than 14 units per week for women and more than 21 units per week for men).⁸ The guideline recommends not routinely assessing fracture risk in people aged under 50 years unless they have major risk factors (i.e., current or frequent recent use of systemic corticosteroids, untreated premature menopause or previous fragility fracture).⁸ The guideline also recommends interpretation of the estimated absolute risk of fracture in people aged over 80 years with caution, because predicted 10-year fracture risk may underestimate their short-term fracture risk.⁸

4 DEFINITION OF THE DECISION PROBLEM

4.1 Decision problem

This assessment will address the question "what is the clinical effectiveness and costeffectiveness of DEN, RLX, ROMO and TPTD, within their licensed indications, for the prevention of osteoporotic fragility fractures as compared against each other, bisphosphonates or a non-active treatment?"

4.2 Overall aims and objectives of assessment

1) To evaluate the clinical effectiveness of each intervention, in terms of osteoporotic fragility fractures, and femoral neck (FN) BMD.

Population: Adults assessed for risk of osteoporotic fragility fracture, according to the recommendations in NICE clinical guideline 146.

Interventions: DEN; RLX; ROMO; and TPTD.

Comparators: placebo or no active treatment control; interventions compared with each other; the bisphosphonates ALN, RIS, IBN (oral or i.v.) and ZOL.

Outcomes: osteoporotic fragility fracture; BMD at the FN.

To evaluate the incremental cost-effectiveness of each intervention compared against
 (i) each other, (ii) the bisphosphonates ALN, IBN (oral or i.v.), RIS and ZOL, and
 (iii) no active treatment.

From here on, the term bisphosphonates will be used to refer only to those bisphosphonates included as comparators in this assessment i.e. ALN, RIS, IBN (oral or i.v.) and ZOL.

5 ASSESSMENT OF CLINICAL EFFECTIVENESS

A systematic review of the literature, and network meta-analyses (NMAs), were conducted in order to evaluate the clinical effectiveness of DEN, RLX, ROMO and TPTD in the treatment of adults with osteoporosis in terms of preventing osteoporotic fragility fractures.

The systematic review of the evidence was undertaken in accordance with the general principles recommended in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.³⁴

5.1 Methods for reviewing effectiveness

5.1.1 Search strategy

A comprehensive search was undertaken to systematically identify clinical effectiveness literature relating to the bisphosphonates ALN, IBN, RIS and ZOL, and the non-bisphosphonates DEN, RLX, ROMO, and TPTD, within their licensed indications for the prevention of fragility fractures.

The search strategy comprised the following main elements:

- Searching of electronic databases
- Contact with experts in the field
- Scrutiny of bibliographies of retrieved papers

The following database and trials registries were searched in 11th July 2018:

- MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and MEDLINE (Ovid) 1946 to 2018
- Embase (Ovid) 1974 to 2018
- Cochrane Database of Systematic Reviews (Wiley Interscience) 1996-2018
- Database of Abstract of Reviews of Effects (Wiley Interscience) 1995-2015
- Cochrane Central Register of Controlled Trials (Wiley Interscience) 1898-2018
- Health Technology Assessment Database (Wiley Interscience) 1995-2016
- Science Citation Index Expanded (Web of Science) 1900-2018
- Conference Proceedings Citation Index Science (Web of Science) 1990-2018
- WHO International Clinical Trials Registry Platform (<u>http://apps.who.int/trialsearch/</u>) [Accessed online 11th July 2018]

Existing evidence reviews commissioned by NICE, which included literature published up to September 2014, were assumed to have identified all papers relevant to this review published prior to 2014.

Searches were not restricted by language or publication type. Subject headings and keywords for 'osteoporosis' were combined with each of the named drug interventions. The MEDLINE search strategy is presented in Appendix 1. The search was adapted across the other databases. Highly sensitive study design filters were used to retrieve clinical trials and systematic reviews on MEDLINE and other databases, where appropriate. Industry submissions and relevant systematic reviews were also hand-searched in order to identify any further relevant clinical trials. The WHO International Clinical Trials Registry Platform was searched for on-going and recently completed research projects. Citation searches of key included studies were also undertaken using the Web of Science database. All potentially relevant citations were downloaded to Reference Manager bibliographic software, (version X8.2, Clarivate Analytics) and deduplication of citation records undertaken.

Other resources

In addition to database searches the reference lists of relevant studies were checked. Identified systematic reviews were checked to identify any additional trials meeting the inclusion criteria.

Bisphosphonate studies were identified from the NICE technology appraisal 464 "Bisphosphonates for preventing osteoporotic fragility fractures".³⁵ As the searches for this technology appraisal were last updated in September 2014, more recent studies were sought from the database searches.

Where data from included trials were missing, the company submissions were checked. Any academic or commercial in confidence data taken from a company submission were underlined and highlighted in the assessment report.

5.1.2 Study selection

All titles and abstracts identified by the searches were screened by one reviewer, and ten percent screened by a second reviewer. Full text articles were assessed by one reviewer with queries addressed by a second reviewer, and discrepancies resolved by discussion.

Inclusion and exclusion criteria for the selection of clinical effectiveness evidence were defined according to the decision problem outlined in the NICE scope ³⁶

5.1.2.1 Inclusion criteria

Population

Adults at risk of osteoporotic fragility fracture, according to the recommendations in NICE clinical guideline 146 CG146⁸ (section 3.4.3).

Interventions

Four interventions will be considered within this assessment: DEN RLX, ROMO and TPTD. The interventions were assessed in accordance with their licensed indications, at licensed dose. At the time that searches were conducted ROMO did not have a marketing authorisation in the UK for treating osteoporosis, but had been submitted to the European Medicines Agency, given as monthly 210 mg s.c. injections (draft summary of product characteristics as provided by the Company Submission).³⁷

Comparators

Interventions may be compared to placebo or no active treatment control, compared with each other, or compared to the bisphosphonates ALN, RIS, IBN (oral or i.v.) and ZOL, within their licensed indications (including s.c. and i.v. where licensed).

Studies which allowed concomitant treatment with calcium and / or vitamin D for patients in both the intervention and comparator arms were included.

Where studies planned treatment sequences or open-label extensions with participants in allocated randomised groups, these were included.

Outcomes

The main outcome sought was osteoporotic fragility fracture. Vertebral fractures, where data allowed, were considered separately for clinical/symptomatic fractures and morphometric/radiographic fractures. Radiographic fractures defined according to Genant were those resulting in a 20% or greater reduction in vertebral height, however if the study did not specify that the Genant³⁸ definition was used, morphometric/radiographic fracture data were still included. Non-vertebral fracture data were sought, and where reported, hip fracture, wrist fracture, and proximal humerus fractures were considered separately. Although planned, data on concordance were not extracted due to time constraints.

In addition, BMD at the FN, assessed by dual energy X-ray absorptiometry (DXA), data were sought. Only FN BMD data were included in the NMA, however where trials did not report this data, BMD measured at the lumbar spine was tabulated.

The following outcome measures were also included: mortality (overall or following fracture); adverse effects of treatment; health-related quality of life.

Study design

Randomised controlled trials (RCTs) were included. Studies published as abstracts or conference presentations were only included if sufficient details were presented to allow both an appraisal of the methodology and an assessment of the results to be undertaken. Systematic reviews and clinical guidelines were used only as potential sources of additional RCTs of efficacy evidence.

5.1.2.2 Exclusion criteriaStudies in patients with normal or unspecified BMD.

Studies in patients with other indications for the same drugs. Cancer populations at risk of osteoporosis which are covered by NICE guideline [NG101] Early and locally advanced breast cancer: diagnosis and management, and NICE guideline [CG175] Prostate cancer: diagnosis and management.

Studies where interventions are administered not in accordance with licensed indications.

Studies where interventions are co-administered with any other therapy with the potential to augment bone, unless concomitant treatments are specified in the summary of product characteristics.

Studies which were considered methodologically unsound in terms of study design or the method used to assess outcomes.

Reports published as abstracts or conference presentations only, where insufficient details are reported to allow an assessment of study quality or results.

Studies which were only published in languages other than English.

Studies based on animal models, preclinical and biological studies.

Narrative reviews, editorials, opinions.

5.1.3 Data extraction and critical appraisal

Data relevant to the decision problem were extracted by one reviewer, and checked by a second reviewer. Discrepancies were resolved by discussion. Data were extracted without blinding to authors or journal. Study arms where intervention treatments were administered in line with licensed indications were extracted; data from unlicensed treatment arms were not extracted.

For studies included in NICE TA464, the data used were those previously extracted.³⁵

Methodological quality of RCTs identified for inclusion were assessed using the Cochrane Collaboration risk of bias assessment criteria.³⁹ Risk of bias plots were produced using Cochrane Review Manager (RevMan) software (version 5.3).⁴⁰

The revised tool to assess the risk of bias in randomized trials (RoB 2.0) published in September 2018 (<u>https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/current-version-of-rob-2</u> [Accessed 21 November 2018]), was not applied as this review commenced prior to the publication of the revised RoB version.

RCTs were classified as being at high risk of attrition bias where drop-out in any treatment arm was $\geq 10\%$.⁴¹

5.1.4 Data synthesis

The extracted data and quality assessment variables were presented for each study, both in structured tables and as a narrative description. Information on between-group differences extracted from included studies were presented. Where these were not reported by included studies, these were estimated using Cochrane Review Manager (RevMan) software (version 5.3),⁴⁰ as either relative risk (RR) or mean difference (MD).

Data were pooled across studies in network meta-analyses, the methods of which are described in Section 5.3.1.

5.2 Results

5.2.1 Quantity and quality of research available

5.2.1.1 Quantity of research available

Study selection is shown in Figure 1. As a result of the searches described in Section 3.1, a total of 7,898 citations were identified for the clinical review. At abstract sift, 7,792 were excluded. At full text sift 34 records were excluded. These are listed in Appendix 2 with reasons for exclusion. Fifty-two RCTs of the interventions of interest were included (published in 69 references).

In addition, three bisphosphonate RCTs were identified and added to the 48 RCTs of bisphosphonates identified from TA464³⁵ (see Appendix 3).

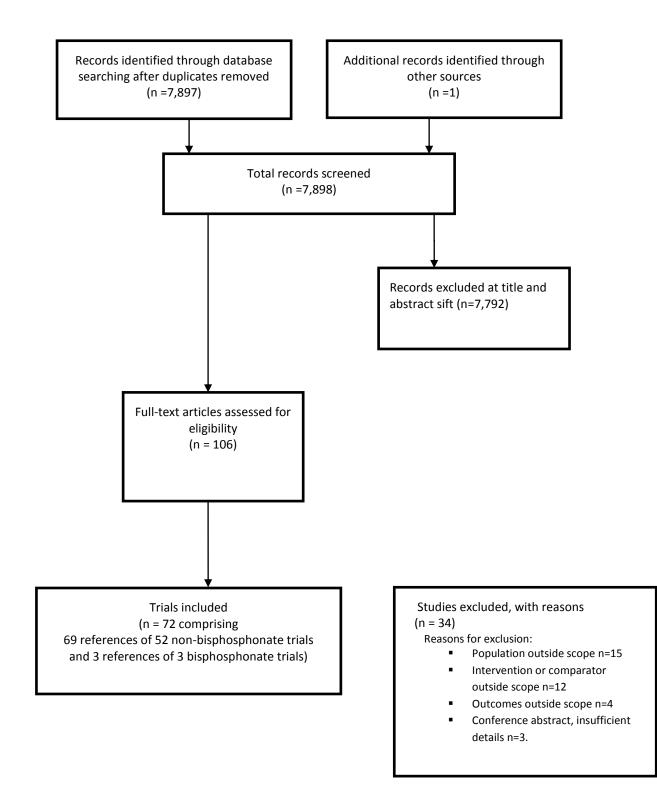


Figure 1: Flow diagram of study selection based

Randomised controlled trials included in the systematic review of clinical effectiveness and NMAs of fracture and FN BMD are presented in

Table **3**; only data from licensed dose arms are shown.

Of the 52 RCTs included, there were 23 RCTs comparing non-bisphosphonates to placebo, four headto-head comparisons of non-bisphosphonates (of which one RCT also included a bisphosphonate arm), and 25 RCTs comparing a non-bisphosphonate to a bisphosphonate.

Trial	Intervention	Population	Included in	Included in
	and	I I	vertebral	FN BMD
	comparators		fracture rate	NMA?
	F		NMA?	
DEN versus PBO				
FREEDOM ⁴²	DEN	Postmenopausal	Yes	Yes
		Women with		
	РВО	osteoporosis		
ADAMO	DEN	Men with	Yes	Yes
		osteoporosis		
Orwoll 2012 ⁴³	РВО			
DIRECT ⁴⁴	DEN followed	Postmenopausal	Yes	Yes
	by DEN	women and men		
		with osteoporosis		
	PBO followed			
	by DEN			
Nakamura	DEN	Postmenopausal	Yes	
201245		Women with		
	РВО	osteoporosis		
Koh 2016 ⁴⁶	DEN	Postmenopausal		Yes
		Women with		
	РВО	osteoporosis		
RLX versus PBO				
Adami 200847	RLX	Postmenopausal		Yes
		Women with		
	РВО	osteoporosis		
Morii et al	RLX	Postmenopausal	Yes	

Table 3:Trials included in the review

200348		Women with		
	РВО	osteoporosis		
Liu 2004 ⁴⁹	RLX	Postmenopausal	Yes	Yes
		Women with		
	РВО	osteoporosis		
Gorai et al	RLX	Postmenopausal		No, lumbar
2012 ⁵⁰		Women with		spine (LS)
	RLX plus	osteoporosis		BMD
	alfacalcidol			
	Alfacalcidol			
Silverman	RLX	Postmenopausal	Yes	Yes
2008 ⁵¹		Women with		
	РВО	osteoporosis		
MORE ⁵²	RLX	Postmenopausal	Yes	Yes
		Women with		
	РВО	osteoporosis		
Lufkin 1998 ⁵³	RLX	Postmenopausal	Yes	
		Women with		
	Control	osteoporosis		
Mok, 2011 ⁵⁴	RLX	Postmenopausal	Yes	Yes
		Women with		
	РВО	osteoporosis		
ROMO versus PB	80			
FRAME ⁵⁵	ROMO	Postmenopausal	Yes	Yes
	followed by	Women with		
	DEN	osteoporosis		
	PBO followed			
	by DEN			
Ishibashi 201756	ROMO	Postmenopausal		Yes
		Women with		
	PBO	osteoporosis		
BRIDGE ⁵⁷	ROMO	Men with		Yes
		osteoporosis		

	PBO					
TPTD versus PBO						
Orwoll 2003 ⁵⁸	TPTD	Men with		Yes		
		osteoporosis				
	РВО					
Miyauchi et al.	TPTD	Women and men	Yes	Yes		
2010 ⁵⁹		with osteoporosis				
	PBO					
Miyauchi et al.	TPTD	Women with		Yes		
2008^{60}		osteoporosis				
	PBO					
ACTIVE ⁶¹	TPTD	Postmenopausal	Yes	Yes		
		Women with				
	PBO	osteoporosis				
Leder 2015 ⁶²	TPTD	Postmenopausal		Yes		
		Women with				
	PBO	osteoporosis				
Fracture	TPTD	Postmenopausal	Yes	Yes		
prevention trial		women with prior				
(FPT) ⁶³	PBO	fractures				
Sethi 2008 ⁶⁴	TPTD	Postmenopausal		Yes		
		Women with				
	Control	osteoporosis				
Head-to-head nor	n-bisphosphonates					
DATA ⁶⁵	DEN (then	Postmenopausal		Yes		
DATA-	switch to	Women with				
SWITCH ⁶⁶	TPTD)	osteoporosis				
	TPTD(then					
	switch to DEN)					
	Combined DEN					
	and TPTD					
	(then switch to					
	DEN)					

EUROFORS ⁶⁷	TPTD followed	Postmenopausal	Yes	Yes
	by RLX	Women with		
		osteoporosis		
	TPTD			
STRUCTURE ⁶⁸	ROMO	Postmenopausal	Yes	Yes
		Women with		
	TPTD	osteoporosis		
McClung	ROMO	Postmenopausal		Yes
2014 ⁶⁹		Women with		
	TPTD	osteoporosis		
[also				
bisphosphonate	ALN			
comparator]				
	РВО			
DEN versus Bisph	hosphonates	I		
DECIDE ⁷⁰	DEN plus PBO	Postmenopausal		Yes
		Women with		
	ALN plus PBO	osteoporosis		
STAND ⁷¹	DEN	Postmenopausal		Yes
		Women with		
	ALN	osteoporosis		
	[after ALN]			
DAPS ⁷²	DEN followed	Postmenopausal		Yes
	by ALN	Women with		
		osteoporosis		
	ALN followed			
	by DEN			
AMG 162 Bone	DEN	Postmenopausal		Yes
Loss study ⁷³		Women with		
	ALN	osteoporosis		
	РВО			
Recknor et al.	DEN	Postmenopausal		Yes
201374		Women with		

	IBN (oral)	osteoporosis		
Saag 2018 ⁷⁵	DEN	Glucocorticoid-		Yes
		induced		
	RIS	Osteoporosis		
		(men and		
		women)		
Miller <i>et al.</i>	DEN plus PBO	Postmenopausal		Yes
2016 ⁷⁶		Women with		
	Zoledronic acid	osteoporosis		
	plus PBO			
RLX versus Bisph	osphonates			
EFFECT	RLX plus PBO	Postmenopausal	Yes	Yes
(International)77		Women with		
	ALN plus PBO	osteoporosis		
EFFECT (US) ⁷⁸	RLX plus PBO	Postmenopausal		Yes
		Women with		
	ALN plus PBO	osteoporosis		
Johnell et	RLX	Postmenopausal		Yes
al. 2002 ⁷⁹		Women with		
	ALN	osteoporosis		
Muscoso 2004 ⁸⁰	RLX	Postmenopausal	Yes	
		Women with		
	ALN	osteoporosis		
	RIS			
EVA ⁸¹	RLX	Postmenopausal	Yes	Yes
		Women with		
	ALN	osteoporosis		
Sanad 2011 ⁸²	RLX	Postmenopausal		Yes
		Women with		
	ALN	osteoporosis		

Michalska	RLX	Postmenopausal		Yes
2006 ⁸³		Women with		
	ALN	osteoporosis		
	РВО			
ROMO versus Bis	sphosphonates	I		
ARCH ⁸⁴	ROMO	Postmenopausal	Yes	Yes
	followed by	Women with		
	ALN	osteoporosis		
	ALN			
TPTD versus Bisp	phosphonates			
FACT ⁸⁵	TPTD plus	Postmenopausal		Yes
	РВО	Women with		
		osteoporosis		
	ALN plus PBO			
Saag 2009 ⁸⁶	TPTD	Glucocorticoid-	Yes	Yes
		induced		
	ALN	Osteoporosis		
		(men and		
		women)		
Panico 2011 ⁸⁷	TPTD	Postmenopausal	Yes	Yes
		Women with		
	ALN	osteoporosis		
EuroGIOPs ⁸⁸	TPTD	Glucocorticoid-		Yes
		induced		
	RIS	Osteoporosis		
		(men)		
Anastasilakis	TPTD	Postmenopausal		No, LS BMD
2008 ⁸⁹		Women with		
	RIS	osteoporosis		
Walker 201390	TPTD	Glucocorticoid-	Yes	Yes
		induced		
	RIS	Osteoporosis		
		(men)		
VERO ⁹¹	TPTD plus	Postmenopausal	Yes	

	РВО	Women with		
		osteoporosis		
	RIS plus PBO			
Hadji 2012 ⁹²	TPTD plus	Postmenopausal	Yes	Yes
	РВО	Women with		
		osteoporosis		
	RIS plus PBO			
MOVE ⁹³	TPTD plus	Post-surgery for	Yes	Yes
	РВО	osteoporotic hip		
		fracture		
	RIS plus PBO			
Cosman 2011 ⁹⁴	TPTD	Postmenopausal	Yes	Yes
		Women with		
	ZOL	osteoporosis		

Listed treatment arms were all at licensed dose

Trial characteristics are shown in Appendix 4. All 52 included trials were RCTs, with the majority being multi-centre studies. All trials providing data for the NMAs had concomitant treatment with calcium and vitamin D. The most common primary outcome measure was percent change in BMD from baseline.

The majority of RCTs had populations of postmenopausal women. Population baseline characteristics of RCTs are shown in Appendix 4. There was some variation between trials in baseline BMD T-score and percent of participants with fractures at baseline. Within RCTs, population baseline characteristics were balanced between treatment arms.

5.2.1.2 Quality of research available

Results of the risk of bias assessment

Non-bisphosphonates vs. placebo

A summary of the Cochrane Risk of Bias assessment across the placebo-controlled nonbisphosphonate studies is presented in Figure 2.

DEN vs. placebo

None of the five studies comparing DEN to placebo⁴²⁻⁴⁶ reported how the random sequence was generated, and only two reported that allocation to treatment groups was concealed.^{42, 43}

Four of the five studies reported that participants and personnel were blinded to treatment allocation.^{42-44, 46} Four studies reported that fracture assessment was blinded to treatment allocation.⁴³⁻⁴⁶ However, only one reported that BMD assessment was blinded to treatment allocation.⁴³

One study was considered at high risk of attrition bias for both fracture and BMD outcomes as $\geq 10\%$ in both treatment groups did not complete the study.⁴²

Only one study did not report the location of a study protocol to check reported outcomes against for selective reporting.⁴⁵ The remaining four studies of DEN vs. placebo were all considered at low risk of bias for this domain.^{42-44, 46}

RLX vs. placebo

Of the eight studies comparing RLX with placebo,^{47,49, 51-54, 95} only one reported how the random sequence was generated (computer generated), and was considered at low risk of bias for this domain.⁵¹ Only three of the eight studies reported that allocation to treatment groups was concealed.^{48, 51, 52}

Six of the studies reported that participants and personnel were blinded to treatment allocation.^{48, 49, 51-} ⁵⁴ One study was considered at high-risk of bias for this domain as it was described as open-label.⁹⁵

Four of the studies comparing RLX to placebo reported that fracture assessment was blinded to treatment allocation,^{48, 51, 52, 54} and three reported that BMD assessment was blinded to treatment allocation.^{47, 48, 54} One study reported that BMD assessment was not blinded to treatment allocation and was therefore considered high risk for this domain.⁹⁵

Four studies were considered at high risk of attrition bias for fracture and/or BMD outcomes as $\geq 10\%$ participants did not complete the study.^{48, 52, 54, 95}

Only three studies reported the location of a protocol to check outcomes against and were considered at low-risk of bias as all outcomes in the protocol had been reported.^{51, 53, 54}

In one study not reporting a protocol, BMD was only reported for a subset of participants and adverse events were not reported by the different RLX doses.⁵² This study was considered at high-risk of bias for selective reporting.

ROMO vs. placebo

All three of the studies comparing ROMO with placebo reported that allocation to treatment groups was concealed,⁵⁵⁻⁵⁷ and two reported how the random sequence was generated (all adequate methods).^{56, 57} All three reported that participants and personnel were blinded to treatment allocation.

All three studies assessed BMD,⁵⁵⁻⁵⁷ but none reported if the assessment was blind or not. Only one of the two studies assessing fracture, reported that this outcome was blinded to treatment allocation.⁵⁵

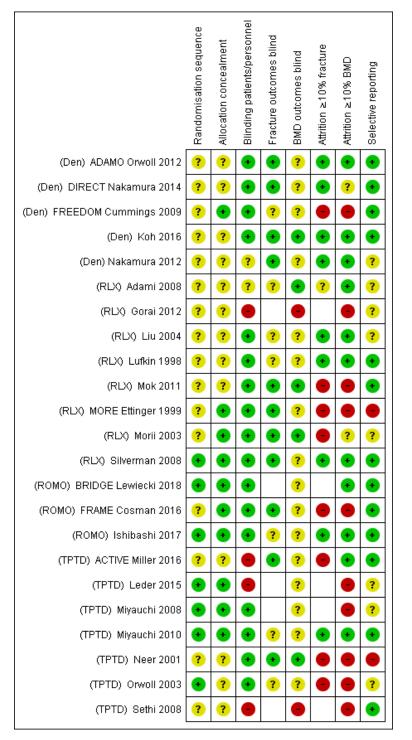
One study was considered to be at high risk of attrition bias ($\geq 10\%$ participants did not complete the study) for both BMD and fracture outcomes,⁵⁵ and one study was considered at low-risk of bias for BMD and fracture outcomes,⁵⁶ as was one study that only assessed BMD.⁵⁷

One of the studies comparing ROMO with placebo did not report the location of a protocol and was therefore judged to have an unclear-risk of bias for selective reporting.⁵⁵

All three studies reported the location of the protocol and all items in the protocol were reported in all three study publications.⁵⁵⁻⁵⁷

TPTD vs. placebo

Across the seven studies in TPTD vs. placebo,^{58-60, 62-64, 96} four reported a method for the random sequence generation (all adequate)^{58-60, 62} and three reported that allocation to treatment groups was concealed.^{59, 60, 62}


Three of the studies were described as open-label, and were considered at high-risk of bias for blinding of participants and study personnel.^{64, 66, 96} The other four trials were considered at low-risk of bias for this domain,^{58-60, 63}

Where fractures and/or BMD was an outcome, only two of the studies reported that fracture assessment was blind,^{63, 96} and only one reported that BMD assessment was blinded to treatment

allocation.⁶³ One study that reported that BMD assessment was unblinded (fractures not an outcome), was considered at high-risk of bias for this domain.⁶⁴

Attrition bias of $\geq 10\%$ was evident for reporting of fracture outcomes in three studies,^{58, 63, 96} and evident for five studies reporting BMD outcomes, all of which were judged at high risk of attrition bias.^{58, 60, 63, 64, 66}

Three studies reporting the location of a protocol were judged at low risk of selective reporting bias.^{59, 64, 96} One study was judged at high risk of selective reporting bias⁶³ as safety outcomes were not clearly reported in the publication and, although the online protocol described safety as a planned outcome, no results for any outcome had been posted.⁹⁷

Figure 2: Cochrane Risk of Bias summary across placebo-controlled non-bisphosphonate studies

?, unclear-risk of bias; low-risk of bias; high-risk of bias; blank cells, not a study outcome

DEN, Denosumab, RLX, Raloxifene; ROMO, Romosozumab; TPTD, Teriparatide; ACTIVE, Abaloparatide Comparator Trial In Vertebral Endpoints; ADAMO, DEN Versus Placebo in Males With Osteoporosis; BRIDGE, Phase 3 randomized placeBo-contRolled double-blind study evaluating the efficacy anD safety of ROMO in treating mEn with osteoporosis; DIRECT, DEN fracture Intervention RandomizEd placebo Controlled Trial; FRAME, Fracture Study in Postmenopausal Women with Osteoporosis; FREEDOM, Fracture Reduction Evaluation of DEN in Osteoporosis; MORE, European Study of Forsteo

Non-bisphosphonates head-to-head

The summary of the Cochrane Risk of Bias assessment across the head-to-head non-bisphosphonate studies is presented in Figure 3.

Of the four head-to-head studies,^{65, 67-69} three reported the method for the random sequence generation,^{65, 67, 68} and three reported that allocation was concealed.⁶⁷⁻⁶⁹

All four studies were reported as open-label and considered at high-risk of bias for blinding of participants and personnel.

Where fractures were an outcome, two studies reported that fracture assessment was not blinded to treatment allocation.^{67, 68} All four studies assessed BMD and three were considered at low-risk of bias for blinding of BMD assessment.^{65, 67, 68}

Two of the three studies assessing fracture were considered at low risk of attrition bias (<10% withdrawing/not included in the analysis) for this domain.^{65, 67, 68} All four studies reported BMD outcomes of which one was considered at high risk of attrition bias (\geq 10%) for this domain.⁶⁹ All other studies were considered at low risk.

Three studies reporting the location of a protocol were judged at low risk of selective reporting bias.^{65, 68, 69}

	Randomisation sequence	Allocation concealment	Blinding of patients/personnel	Fracture outcomes blind	BMD outcomes blind	Attrition ≥10% fracture	Attrition ≿10% BMD	Selective reporting
(DEN TPDT) DATA Tsai 2013	•	?	•		•		•	•
(ROMO TPTD) McClung 2014	?	•	•	?	?	?	•	•
(ROMO TPTD) STRUCTURE Langdahl 2017	•	•	•	•	÷	•	•	•
(TPTD RLX) EUROFORS Eastell 2009		•	•	•	•	•	•	?

Figure 3: Cochrane Risk of Bias summary across non-bisphosphonate head-to-head studies

?, unclear-risk of bias; 🛃 low-risk of bias; 🚽 high-risk of bias; blank cells, not a study outcome

DEN, Denosumab, RLX, Raloxifene; ROMO, Romosozumab; TPTD, Teriparatide; DATA, DEN and TPTD Administration; DIRECT, DEN fracture Intervention RandomizEd placebo Controlled Trial EUROFORS, European Study of Forsteo; EVA, Evista ALN Comparison trial; STRUCTURE, Study to Evaluate the Effect of Treatment With ROMO or TPTD in Postmenopausal Women

Non-bisphosphonates vs. bisphosphonates

The summary of the Cochrane Risk of Bias assessment across the non-bisphosphonate vs. nonbisphosphonate studies is presented in Figure 4.

DEN vs. bisphosphonates

Of the seven studies comparing DEN to a bisphosphonate,⁷⁰⁻⁷⁶ only one reported the method for the random sequence generation,⁷² and only three reported the method of treatment allocation concealment.^{70, 74, 75}

Three studies comparing DEN to a bisphosphonate were reported as open-label and were considered at high-risk of bias for blinding of participants and personnel.⁷²⁻⁷⁴

All seven studies assessed BMD as an outcome, but only one reported that the assessment was blinded to treatment allocation.⁷⁶ The remaining six studies were considered at unclear-risk of bias for this domain.⁷⁰⁻⁷⁵ Four of these studies were also considered at high risk of attrition bias (\geq 10%) for BMD outcomes.⁷²⁻⁷⁵

The six studies that assessed fracture as an outcome were all considered at unclear-risk of bias for blinded assessment.⁷¹⁻⁷⁶ All six studies were also considered at unclear risk of attrition bias (\geq 10%) for BMD outcomes.

Only one of the studies comparing DEN to a bisphosphonate reported the location of a protocol to check and was considered at low-risk of bias for selective reporting.⁷⁴

For one study,⁷⁰ health related quality of life was reported as an outcome for the study in the manufacturer's company submission.⁹⁸ However, this outcome was not reported in the published study which was considered at high risk of selective reporting.⁷⁰

RLX vs. bisphosphonates

Of the seven studies comparing RLX to a bisphosphonate,⁷⁷⁻⁸³ four reported the method for the random sequence generation (all adequate).^{77-79, 81} However, only three reported a method of treatment allocation concealment.⁸¹

Two of the studies comparing RLX to a bisphosphonate reported that participants and personnel were blinded to treatment allocation (low risk)^{77, 81} and one study reported an open-label design (high risk).⁸³ All other studies comparing RLX to a bisphosphonate were considered at unclear-risk of bias for blinding of participants and study personnel.^{78-80, 82}

Across studies comparing RLX to a bisphosphonate that assessed fracture and/or BMD, only one study reported that the fracture assessment was blinded to treatment allocation,⁸¹ and only two reported that fracture assessment was blinded to treatment allocation.^{77, 78}

One study comparing RLX to a bisphosphonate that reported fracture outcomes was considered at high risk of attrition bias ($\geq 10\%$),⁸¹ and four studies assessing BMD were considered at high risk of attrition bias ($\geq 10\%$).^{77-79, 81}

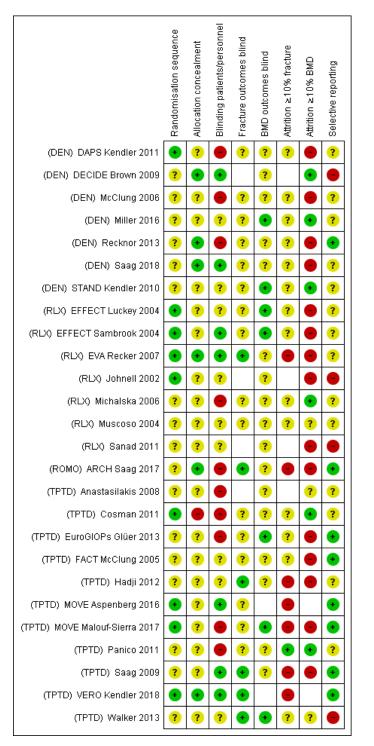
No study comparing RLX to a bisphosphonate reported the location of a study protocol. In one of the studies, adverse events were not fully reported in the study publication,⁷⁹ and one study reported that fractures was an assessed outcome, but did not report any results in the study publication.⁸² These two studies were considered at high risk of selective reporting.

ROMO vs. bisphosphonates

In the one study that compared ROMO to a bisphosphonate,⁸⁴ the method for the sequence generation was not reported, although the method for allocation concealment was. This study was described as

open-label and was considered at high-risk of bias for blinding of participants and study personnel. Blinding of fracture outcome assessment was reported; however, blinding of BMD assessment was not. Both fracture and BMD outcomes were considered at high risk of attrition bias ($\geq 10\%$). All outcomes in the study protocol were reported.

TPTD vs. bisphosphonates


Across the 11 studies that compared TPTD to a bisphosphonate,^{85-90, 92-94, 99, 100} four reported an adequate method of random sequence generation and only one study reported an adequate method of treatment allocation concealment.¹⁰⁰ One study reported that unblinded pharmacists distributed the study drug, and was considered at high-risk of bias for allocation concealment.⁹⁴

Three of the studies comparing TPTD to a bisphosphonate reported that participants and personnel were blinded to treatment allocation (low risk)^{86, 99, 100} and five studies reported an open-label design (high risk).^{87-89, 93, 94} The other three studies comparing TPTD to a bisphosphonate were considered at unclear-risk of bias for blinding of participants and study personnel.^{85, 90, 92}

Four of the studies comparing TPTD to a bisphosphonate reported that fracture assessment was blinded to treatment allocation,^{86, 90, 92, 100} and three reported that BMD assessment was blinded to treatment allocation.^{88, 90, 93}

Five studies comparing TPTD to a bisphosphonate that reported fracture outcomes were considered at high risk of attrition bias ($\geq 10\%$),^{86, 92, 93, 99, 100} and five studies assessing BMD were considered at high risk of attrition bias ($\geq 10\%$).^{85, 86, 88, 92, 93}

Six studies comparing TPTD to a bisphosphonate that reported that location of a protocol to check were considered at low risk of selective reporting bias.^{85, 86, 88, 93, 99, 100} One study reporting an intention-to-treat and per-protocol analysis stated in the study publication that the data from the per-protocol analysis were not reported.⁹⁰ This study was considered at high risk of selective reporting.⁹⁰

Figure 4: Cochrane Risk of Bias summary across non-bisphosphonate vs. bisphosphonate studies

?, unclear-risk of bias; +, low-risk of bias; + high-risk of bias; blank cells, not a study outcome

DEN, Denosumab, RLX, Raloxifene; ROMO, Romosozumab; TPTD, Teriparatide; DATA, DEN and ARCH, Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk; DAPS, DEN Adherence Preference Satisfaction; DECIDE, Determining Efficacy: Comparison of Initiating DEN versus ALN; EFFECT, EFficacy of FOSAMAX versus EVISTA Comparison Trial; EuroGIOPS, acronym meaning not reported; EVA, Evista ALN Comparison trial; FACT, Forteo ALN Comparator Trial; MOVE, acronym meaning not reported; STAND, Study of Transitioning from ALN to DEN; VERO, VERtebral fracture treatment comparisons in Osteoporotic women

5.2.2 Assessment of effectiveness

5.2.2.1 Fractures

Here we summarise the fracture results for the individual non-bisphosphonate RCTs included in the review. The results of the network meta-analyses which include both the bisphosphonate and non-bisphosphonate studies are summarised in Section 5.3.3.

5.2.2.1.1 Vertebral Fractures

Results for vertebral fractures reported by the included studies are presented in Table 17 for the nonbisphosphonate treatments compared to placebo, non-bisphosphonate treatments compared head-tohead, and non-bisphosphonate treatments compared to bisphosphonates. Fracture data used in the NMAs are shown in Appendix 9.1.

Clinical vertebral fractures –efficacy

Non-bisphosphonates vs. placebo – clinical vertebral fractures

One study comparing DEN to placebo reported a statistically significant between-group difference in clinical vertebral fractures at 36 months in favour of DEN in postmenopausal women with osteoporosis (p<0.001).⁴²

Three of the studies comparing RLX to placebo in postmenopausal women with osteoporosis reported on clinical vertebral fractures.^{49, 51, 101} One of these reported a statistically significant between-group difference in favour of RLX at 12 months in postmenopausal women with osteoporosis (p<0.001).¹⁰¹ In the other two studies comparing RLX to placebo the between-group difference was not statistically significant (RLX 0% vs. PBO 4.90%,p>0.05;⁴⁹ RLX 2.36% vs. PBO 4.10%, p=0.89⁵¹).

None of the studies comparing ROMO with placebo reported on clinical vertebral fractures.

Only one study comparing TPTD prescribed open-label to placebo reported on clinical vertebral fractures at 18 months in postmenopausal women with osteoporosis.⁹⁶ The estimated between-group difference was not statistically significant (TPTD 0.40% vs. PBO 1.10%, p=0.10).

Non-bisphosphonates compared head-to-head – clinical vertebral fractures

One study comparing TPTD to RLX in an open-label design, in postmenopausal women with severe osteoporosis who were all pre-treated with TPTD for 12 months prior to randomisation, reported that there was no statistically-significant between-group difference in clinical vertebral fractures at 12 months following randomisation (TPTD 1.32% vs. RLX 0%, p-value not reported).⁶⁷

Non-bisphosphonates vs. bisphosphonates – clinical vertebral fractures

The estimated between-group difference in clinical vertebral fractures for one study comparing DEN to RIS in women and men receiving glucocorticoids was not statistically significant at 12 months (DEN 3.00% vs. RIS 4.00%, p=0.34).⁷⁵

The estimated between-group difference in clinical vertebral fractures for one study comparing RLX to ALN in postmenopausal women with osteoporosis was not statistically significant after approximately 45 weeks of treatment (study stopped early due to difficulty in finding treatment-naïve women) (ALN 3.14% vs. RLX 1.93%, p=0.20).⁸¹

The reported between-group difference in clinical vertebral fractures for one study comparing ROMO to ALN in postmenopausal women with osteoporosis was not statistically significant at 12 months (ALN 0.9% vs. ROMO 0.50%, p=0.14).⁸⁴

The reported between-group difference in clinical vertebral fractures for one study comparing TPTD to ALN in women and men receiving glucocorticoids was not statistically significant at 18 months (p=0.07).¹⁰² However, the between-group difference at 36 months was statistically significant in favour of TPTD (p=0.037).¹⁰²

Morphometric vertebral fractures –efficacy

Morphometric assessment was not always defined, but for studies that assessed vertebral fracture as an efficacy measure, this was most often reported as using the method described by Genant.³⁸

Non-bisphosphonates vs. placebo – new morphometric vertebral fractures

One study comparing DEN to placebo in postmenopausal women with osteoporosis reported a statistically significant between-group difference at 36 months in new morphometric vertebral fractures in favour of DEN (p<0.001).⁴² The estimated between-group differences for this study over zero to 12 months, 12 to 24 months, and 24 to 36 months, were also statistically significant in favour of DEN (p<0.05).¹⁰³ However, the estimated between-group difference at the end of the seven-year open-label extension to this study following treatment switching (all participants received DEN) was not statistically significant (PBO switched to DEN 7.30% vs. continued DEN 7.04%, p=0.76).¹⁰⁴

In a single study comparing DEN to placebo in women and men with osteoporosis, the reported between-group difference in new morphometric vertebral fractures at 24 months was statistically significant in favour of DEN (p<0.0001).⁴⁴ The estimated between-group difference was also statistically significant in favour of DEN at 36 months, including a 12-month open-label extension following treatment switching (all participants received DEN) (p<0.0001).¹⁰⁵ The estimated between-

group difference for the 12-month open-label extension alone was p=0.05 (PBO switched to DEN 2.00% vs. continued DEN 0.25%).¹⁰⁵

Across two studies comparing RLX to placebo in postmenopausal women with osteoporosis, at 36 months the reported or estimated between-group differences were statistically significant in favour of RLX in reducing new morphometric vertebral fractures (p<0.05).^{51, 52} However, the between-group difference was not statistically significant in two studies in postmenopausal women with osteoporosis that reported this outcome at 12 months (PBO 2.30% vs. RLX 0%, estimated p=0.33⁴⁸ and PBO 40.00% vs. RLX 48.84%, estimated p=0.41⁵³), and one study in postmenopausal women on long-term glucocorticoids that reported this outcome at 12 months (PBO 5.36% vs. RLX 0%, reported p=0.24).⁵⁴

In the one study that compared ROMO to placebo in postmenopausal women with osteoporosis, statistically significant between-group differences in new morphometric vertebral fractures in favour of ROMO were reported at 12 months (p<0.001), and 24 months (p<0.001).⁵⁵ Following treatment switching to DEN (all participants), **and an example of the set of the**

In one study comparing TPTD to placebo in postmenopausal women with osteoporosis, the reported between-group difference at 18 months was statistically significant in favour of TPTD in reducing new morphometric vertebral fractures (p<0.001).⁹⁶ However, the estimated between-group difference was not statistically significant in one study in postmenopausal women with osteoporosis that reported this outcome at 12 months (PBO 5.97% vs. TPTD 3.68%, p=0.46).⁵⁹

Non-bisphosphonates compared head-to-head – new morphometric vertebral fractures

New morphometric vertebral fracture was not an outcome in the study comparing TPTD and RLX in postmenopausal women with osteoporosis.⁶⁷

Non-bisphosphonates vs. bisphosphonates – new morphometric vertebral fractures

The estimated between-group difference in new morphometric vertebral fractures in one study comparing RLX to ALN in postmenopausal women with osteoporosis after approximately 45 weeks of treatment (study stopped early due to difficulty in finding treatment-naïve women) was not statistically significant (ALN 3.14% vs. RLX 1.93%, p=0.39).⁸¹

The reported between-group difference between new morphometric vertebral fractures for one study comparing ROMO to ALN in postmenopausal women with osteoporosis was statistically significant at 12 months (mITT, p=0.003; LOCF, p=0.008) and at 24 months following treatment switching to ALN, in favour of the ROMO switching to ALN group (mITT and LOCF, p<0.001).⁸⁴

The reported between-group difference in new morphometric vertebral fractures for one study comparing TPTD to ALN in women and men receiving glucocorticoids was statistically significant at 18 months (p=0.004) and 36 months (p=0.007) in favour of TPTD.¹⁰² However, the estimated between-group difference at 18 months for men and women separately was not statistically significant (men, ALN 4.48% vs. TPTD 0.72%, p=0.09; women, ALN 12.90% vs. TPTD 0%, p=0.13).¹⁰⁶ One open-label study in postmenopausal women with severe osteoporosis receiving treatment for osteoporosis, reported that there was no statistically significant difference between TPTD and ALN at 18 months (p-value not reported) (ALN 15.7% vs. TPTD 2.4%, estimated p=0.08).⁸⁷

Across studies comparing TPTD to RIS, no statistically significant between-group differences in new morphometric vertebral fractures were evident at 18 months in men with osteoporosis (RIS 10.00% vs. TPTD 0%, estimated p=0.52),⁹⁰ or at six months in postmenopausal women with osteoporosis (RIS 5.10% vs. TPTD, reported p=0.6).⁹² However, statistically significant between-group differences in new morphometric vertebral fractures in postmenopausal women with osteoporosis in favour of TPTD were reported at 18 months (p=0.01),⁹² and at 24 months (p<0.0001).¹⁰⁰

Vertebral fractures assessed as safety or where the efficacy assessment method was not reported One study comparing DEN to placebo in men with osteoporosis reported that there was no statistically significant between-group difference in clinical fractures assessed as a safety outcome at 12 months (PBO 0.83% vs. DEN 0%, p=0.50).⁴³

One study comparing RLX to ALN in postmenopausal women with osteoporosis reported vertebral fractures as a safety outcome, but did not report the assessment method.⁷⁷ Zero events were reported in both treatment groups in this study.⁷⁷ One study comparing RLX, ALN and in postmenopausal women with osteoporosis reported vertebral fractures as an efficacy outcome, but did not report the assessment method.⁸⁰ Where estimable, the between-group difference was not statistically significant in this study (ALN 0.2% vs. RLX 0%, p=0.66; RIS 0% vs. RLX 0%, p-value not estimable).⁸⁰

In one study comparing TPTD to RIS in women and men with low BMD following hip fracture surgery where clinical vertebral fractures were a safety outcome,¹⁰⁷ zero events were reported in both groups at six months. The between-group difference at 18 months was not statistically significant (RIS 1.00% vs. TPTD 0%, p=1.00).⁹³

One study in postmenopausal women with osteoporosis comparing TPTD (plus a placebo for ZOL) to ZOL (without a placebo for TPTD) also reported vertebral fractures as a safety outcome (assessment

method not reported).⁹⁴ The estimated between-group difference at 12 months was not statistically significant (TPTD+PBO 0.70% vs. ZOL 3.70%, p=0.14).

Summary – clinical vertebral fractures

There is single study evidence that DEN is statistically more effective than placebo at 36 months reducing clinical vertebral fractures in postmenopausal women with osteoporosis. There is also single study evidence that RLX is statistically more effective than placebo at reducing clinical vertebral fractures at 12 months in postmenopausal women with osteoporosis. Evidence from a single open-label study has found no statistical difference between TPTD and placebo on clinical vertebral fractures at 18 months in postmenopausal women with osteoporosis. There are at present no placebo-controlled studies of ROMO that evaluate clinical vertebral fractures.

There is single study evidence that there is no statistically significant difference between: DEN and RIS; between RLX and ALN; and between ROMO and ALN, in the reduction of clinical vertebral fractures at up to 12 months in postmenopausal women with osteoporosis.

There is also single study evidence that there is a statistically significant between-group difference between TPTD and ALN in the reduction of clinical vertebral fractures at 36 months in women and men receiving glucocorticoids in favour of TPTD.

Summary – new morphometric vertebral fractures

There is single study evidence that DEN is statistically more effective than placebo at reducing new morphometric vertebral fractures at 24 months and 36 months in postmenopausal women with osteoporosis, and at 24 months in men and women with osteoporosis. There is evidence from two studies that RLX is statistically more effective than placebo at reducing new morphometric vertebral fractures at 36 months in postmenopausal women with osteoporosis. There is single study evidence that ROMO is statistically more effective than placebo at reducing new morphometric vertebral fractures at 12 and 24 months in postmenopausal women with osteoporosis. There is also single study evidence that TPTD is statistically more effective than placebo at reducing new morphometric vertebral fractures at 18 months in postmenopausal women with osteoporosis.

There is single study evidence that there is no statistically significant difference in new morphometric vertebral fractures between: RLX and ALN at approximately 45 weeks (study stopped early due to difficulty in finding treatment-naïve women) in postmenopausal women with osteoporosis; between TPTD and ALN at 18 months in women with severe osteoporosis receiving treatment for osteoporosis; and between TPTD and RIS at 18 months in men with osteoporosis. However, there is single study evidence that ROMO is significantly more effective than ALN at reducing new

morphometric vertebral fractures at 12 months in postmenopausal women with osteoporosis, and that TPTD is significantly more effective than ALN at reducing new morphometric vertebral fractures at 18 and 36 months in women and men receiving glucocorticoids. There is also evidence from two studies that TPTD is significantly more effective than RIS at reducing new morphometric vertebral fractures at 18 and 24 months in postmenopausal women with osteoporosis.

5.2.2.1.2 Non-Vertebral Fractures

Non-vertebral fracture outcomes were reported in 28 RCTs and are shown in Table 18.Where reported separately, hip, wrist and proximal humerus fracture outcomes, reported in 22 RCTS, are shown in Table 19. These fractures are also counted among the non-vertebral total. Results of the network meta-analyses for these outcomes are shown in 5.3.3. Fracture data used in the NMAs are shown in Appendix 9.1.

Non-bisphosphonates versus placebo

FREEDOM⁴² reported a significant (p=0.01) advantage in non-vertebral fractures for DEN (6.1%) over PBO (7.5%) at 36 months for postmenopausal women. FREEDOM also had a lower rate of non-vertebral fractures for DEN (7.3%) than PBO/DEN (9.9%) (significance not reported, estimated in RevMan as p=0.01) 84 months into the open label extension. At 36 months FREEDOM reported a significantly (p=0.04) lower rate of hip fracture for DEN (0.7%) compared with PBO (1.2%) (Table 19). DIRECT,⁴⁴ an RCT in postmenopausal women and men, did not find a difference in all non-vertebral fractures at 24 months between DEN and PBO groups (both 4.1%), although there was a trend (P=0.0577) toward fewer major non-vertebral fractures in the DEN (1.6%) than the PBO (3.7%) group. Rates of non-vertebral fractures in the DEN groups at 24 months were similar for the international population of FREEDOM, and Japanese population of DIRECT.⁴² ⁴⁴ Following a further year in which all participants received DEN, DIRECT¹⁰⁵ reported non-vertebral fracture rates of 6.7% for PBO/DEN and 5.2% for DEN, with rates of major non-vertebral fractures of 5.4% and 2.0% respectively. At 24 months, DIRECT⁴⁴ reported 0% hip fractures for DEN, and 0.4% for PBO.

For the RLX versus PBO RCTs, Morii 2003⁴⁸ and Lufkin 1998⁵³ were not powered to detect a difference between groups, however both studies had a 0% rate of non-vertebral fractures in the RLX group at 12 months. In the Silverman 2008⁵¹ RCT there was no significant difference (estimated in RevMan as p=0.6409) in non-vertebral fractures at 36 months between RLX (6.3%) and PBO (5.7%) groups (Table 18), with rates of hip fracture 0.3% in both groups (Table 19).

FRAME⁵⁵ at 12 months reported a non-significant (p=0.096) difference between ROMO 1.6% and PBO 2.1% for non-vertebral fractures. At 24 months, FRAME⁵⁵ reported a significant advantage for

ROMO/DEN over PBO/DEN in non-vertebral fractures (2.7% versus 3.6%, p=0.029), with a trend (p=0.059) favouring ROMO/DEN in hip fractures, 0.3% compared with PBO/DEN 0.6%.

Miyauchi 2010,⁵⁹ which included women and men, reported a lower (significance not reported, estimated in RevMan as p=0.1838) rate of non-vertebral fractures for TPTD (2.2%) than for PBO (6.0%) at 12 months. In postmenopausal women, the ACTIVE⁹⁶ RCT did not find a significant difference (p=0.22) between TPTD (3.3%) and PBO (4.7%) non-vertebral fractures at 18 months. No hip fractures were reported in the TPTD group, with 0.2% in the PBO group of ACTIVE.⁹⁶ The FPT⁶³ RCT found a significant (p=0.04) advantage for TPTD (6.3%) over PBO (9.7%) in non-vertebral fractures. FPT⁶³ reported hip fracture rates of 0.4% in the TPTD group and 0.7% in the PBO group. The population in FPT⁶³ all had vertebral fracture at baseline, in contrast to ACTIVE⁹⁶ in which two-thirds had prior fractures at baseline. Whereas FPT was blinded, the TPTD arm in ACTIVE was open-label as the trial was designed compare abaloparatide with PBO.^{96 63}

Studies reporting non-vertebral fracture rates as safety data reported, for postmenopausal women, 6 month rates of DEN 1.5% and PBO 1.5%,⁴⁶ and 12 month rates of ROMO 3.2% and PBO 1.6%,⁵⁶ and in men 12 month rates of DEN 0.8% and PBO 1.7%.⁴³

Head-to-head non-bisphosphonates

EUROFORS⁶⁷ reported fractures as an efficacy outcome, and found no significant difference between TPTD (2.96%) and RLX (2.06%) in non-vertebral fractures at 12 months follow-up, in postmenopausal women with prior TPTD treatment. Rates of hip fracture were 0.3% for TPTD and 0% for RLX.

STRUCTURE⁶⁸ reported fractures as a safety outcome in postmenopausal women. The rates of nonvertebral fractures at 12 months were 3.21% for ROMO and 3.67% for TPTD. Rates of hip fracture were 0.5% for ROMO and 0% for TPTD.⁶⁸

Non-bisphosphonates versus bisphosphonates

Saag 2018^{75} reported rates (no significance reported, estimated in RevMan as p=0.1781) of non-vertebral fractures of 4.0% for DEN and 3.0% for RIS at 12 months follow-up, and hip fracture 0.3% for both groups.

Muscoso 2004⁸⁰ reported rates of non-vertebral fractures of 0% in both RLX and RIS group and 0.2% in the ALN group in both the first and second years of the RCT. The EVA⁸¹ RCT found no significant difference (estimated in RevMan as p=0.8092) between rates of non-vertebral fracture in the RLX (2.2%) and ALN (2.0%) groups. EVA⁸¹ reported hip fracture rates of RLX 0.3% and ALN 0.1%.

ARCH⁸⁴ reported a trend (p=0.057) favouring ROMO (3.4%) over ALN (4.6%) for non-vertebral fractures at 12 months, and for major non-vertebral fractures (pelvis, distal femur, proximal tibia, ribs, proximal humerus, forearm, and hip) there was a significant (p=0.019) difference (2.9% for ROMO, and 4.3% for ALN). There was no significant (p=0.19) difference in hip fracture rates at 12 months.⁸⁴ After a further year in which all participants received ALN, there was a significant (p=0.037) advantage in non-vertebral fractures for ROMO/ALN (8.7%) over ALN (10.6%), as well as for major non-vertebral fractures (p=0.004) and hip fractures (p=0.015).

Saag 2009¹⁰² found no significant (p=0.6) difference between rates of non-vertebral fractures for TPTD (5.6%) and ALN (3.7%) at 18 months, and also no significant treatment difference for subgroups of men (p=0.6) or women (p=0.3). Two RCTs in postmenopausal women comparing TPTD and RIS found no significant treatment difference for non-vertebral fractures; VERO Kendler 2018¹⁰⁰ at 24 months (TPTD 4.0%, RIS 6.0%, p=0.10) and Hadji 2012⁹² at 6 months (TPTD 7.8%, RIS 8.3%, p=0.89). The population in Hadji 2012⁹² were selected for having back pain due to vertebral fracture which may explain the higher rates in both groups than in VERO. Rates of hip fractures were TPTD 0.3% and RIS 0.7% for VERO,¹⁰⁰ and TPTD 1.4% and RIS 0.6% for Hadji 2012.⁹²

For studies reporting fractures as safety data, non-vertebral fracture rates for postmenopausal women at 12 months were reported as DEN 0.8% and ALN 0.9%,¹⁰⁸ RLX 3.9% and ALN 2.5%,⁷⁸ TPTD 5.1%,⁹⁴ ZOL 5.8%,⁹⁴ and for women pre-treated (with ALN) DEN 3.2% and ALN 1.6%.⁷¹ At 24 months non-vertebral fracture rates were RLX 3.0%, ALN 3.0% and PBO 6.0% for women pre-treated (with ALN).⁸³ Hip fracture rates at 12 months were reported as RLX 0.4% and ALN 0.0%.⁷⁷ For men with glucocorticoid induced osteoporosis, non-vertebral fracture rates of TPTD 0.0% and RIS 10.6% (trend p=0.056) were reported at 18 months.⁸⁸ In a population following hip surgery, at 18 months follow-up non-vertebral fractures reported were TPTD 4.7% and RIS 9.1%, and hip fracture rates TPTD 1.9% and RIS 6.4%.⁹³

Across placebo-controlled trials and trials with comparators of non-bisphosphonates or bisphosphonates, where reported, non-bisphosphonates had wrist fractures rates of no more than 2.5%, and proximal humerus fracture rates of no more than 1.1%.

5.2.2.2 BMD

Here we summarise the BMD results of the individual non-bisphosphonate RCTs included in the review. The results of the network meta-analyses which include both the bisphosphonate and non-bisphosphonate studies are summarised in Section 5.3.3.

Femoral neck BMD

Results for femoral neck BMD reported by the included studies are presented in Table 20 for the nonbisphosphonate treatments compared to placebo, non-bisphosphonate treatments compared head-tohead, and non-bisphosphonate treatments compared to bisphosphonates.

Non-bisphosphonates vs. placebo – femoral neck BMD

Three studies comparing DEN to placebo reported a statistically significant between-group difference in femoral neck BMD in favour of DEN: at six months in postmenopausal women with osteoporosis (p=0.0042);⁴⁶ at 12 months in men with osteoporosis (p<0.0001);⁴³ and at 24 months in women and men with osteoporosis (p<0.0001).⁴⁴ The estimated between-group differences were also statistically significant in favour of DEN in the open-label extensions to these studies. However, the open-label extension estimates were all reliant upon data extracted from graphs.

Statistically significant between-group differences in femoral neck BMD in favour of RLX compared to placebo were evident for two studies in postmenopausal women with osteoporosis, at 36 months ($p<0.0001^{51}$ and $p<0.001^{52}$), and one study at 12 months in postmenopausal women with osteoporosis who were pre-treated with TPTD (p<0.001).⁴⁷ However, the between-group difference in the open-label extensions to the study in postmenopausal women with osteoporosis pre-treated with TPTD was not statistically significant (Table 20).⁴⁷ The estimated between-group difference in one study at 12 months in postmenopausal women with osteoporosis was not statistically significant,⁴⁹ nor was the between-group difference in one study at 12 months in postmenopausal women receiving long-term glucocorticoids (data from graph).⁵⁴

Statistically significant between-group differences in femoral neck BMD in favour of ROMO compared to placebo were reported at 12 months for two studies in postmenopausal women with osteoporosis ($p<0.001^{55}$ and $p<0.00001^{56}$), and at 12 months in one study in men with osteoporosis (p<0.001).⁵⁷ The reported between-group difference was also statistically significant at 24 months in one study following an open-label treatment switching extension, favouring switching from ROMO to DEN compared to switching from placebo to DEN (p<0.001)⁵⁵ (Table 20).

Four studies comparing TPTD to placebo reported a statistically significant between-group difference in femoral neck BMD in favour of TPTD at six months in postmenopausal women with osteoporosis (p<0.01).⁶² Statistically significant between-group difference in favour of TPTD were also reported by one study at 12 months (p=0.015),⁵⁹ by one study at 18 months (p<0.0001),⁹⁶ and by one study at 24 months (p<0.001).⁶³ The estimated between-group difference was also statistically significant in favour of continued TPTD in the open-label extension in one of these studies, compared to placebo switching to TPTD at 18 months (p=0.03), but not at 24 months (Table 20).⁵⁹ The estimated betweengroup difference for one study comparing TPTD to placebo at six months in postmenopausal women with osteoporosis was not statistically significant,⁶⁰ nor was one study at six months comparing TPTD plus calcium and vitamin D to calcium and vitamin D alone.⁶⁴

Non-bisphosphonates compared head-to-head – femoral neck BMD

One study comparing TPTD to DEN in postmenopausal women with osteoporosis reported no statistically significant between group difference in femoral neck BMD at either 12⁶⁵ or at 24 months.¹⁰⁹ However, statistically significant differences were reported in the open-label extension following treatment switching, in favour of the TPTD switching to DEN group, at 24 and 48 months following switching.⁶⁶

A statistically significant between-group difference in femoral neck BMD at 12 months in postmenopausal women with osteoporosis pre-treated with ALN prior to randomisation, was reported by one study comparing TPTD to ROMO, in favour of ROMO (p<0.0001).⁶⁸

One study comparing TPTD, RLX, and a non-active control, in postmenopausal women with osteoporosis pre-treated with ALN, only reported on the between group difference in femoral neck BMD for TPTD compared to control, in favour of the non-active treatment (p<0.05).⁶⁷ No variance estimates were reported by this study. As such, the other between-group comparisons could not be estimated.

The estimated between-group difference in femoral neck BMD for one study at 12 months comparing TPTD to ROMO in postmenopausal women was not statistically significant.⁶⁹ In this study, the estimated between-group differences for both non-bisphosphonates compared to placebo were statistically significant in favour of the active treatment (TPTD, p=0.0007; ROMO, p=0.0002). However, for comparisons ROMO with ALN and for TPTD with ALN were not.

Non-bisphosphonates vs. bisphosphonates – femoral neck BMD

Across two open-label studies comparing DEN to ALN, statistically significant between-group differences in femoral neck BMD in favour of DEN were reported at 12 months in one study in postmenopausal women with osteoporosis (p=0.0001),⁷⁰ and at 12 months in one study in postmenopausal women with osteoporosis already receiving ALN(p<.0121).⁷¹ The estimated between-group difference for one study comparing DEN to ALN in postmenopausal women with osteoporosis, which was not powered for femoral neck BMD, was not statistically significant (Table 20).⁷²

In one open-label study comparing DEN to IBN (oral) in postmenopausal women with osteoporosis, at 12 months the between-group difference in femoral neck BMD was statistically significant in favour of DEN (p<0.001).⁷⁴

Statistically significant between-group differences in femoral neck BMD in favour of DEN at 12 months were also reported by one study comparing DEN to RIS in women and men with osteoporosis who were continuing or initiating glucocorticoids (continuing, p=0.004; initiating, p=0.020),⁷⁵ and one study comparing DEN to ZOL at 12 months in postmenopausal women with osteoporosis previously treated with bisphosphonates (p<0.0001).⁷⁶

Two studies comparing RLX to ALN in postmenopausal women with osteoporosis reported statistically significant between-group differences in femoral neck BMD in favour of RLX at 12 months (p=0.0001),⁷⁷ and at 24 months (p=0.002).⁸¹ However, one study comparing RLX to ALN in postmenopausal women with osteoporosis,⁷⁸ and one study comparing RLX to ALN in postmenopausal women with osteoporosis previously treated with bisphosphonates,⁸³ reported that the between-group difference at 12 months was not statistically significant. In one of these studies, the estimated between-group difference following a 12-month open-label extension to 24 months (data from graph) was statistically significant in favour of ALN (p=0.03).⁸³ One other study comparing RLX to ALN in postmenopausal women with osteoporosis also reported statistically significant between-group difference in favour of ALN at 12 months (p<0.05).⁷⁹

One study comparing TPTD to ALN in women and men with osteoporosis receiving glucocorticoids, reported a statistically significant between-group difference in femoral neck BMD at 36 months (p<0.001).¹⁰² The between-group difference reported by one study comparing TPTD to ALN at 18 months in postmenopausal women with osteoporosis was p=0.05.⁸⁵

Across three studies comparing TPTD to RIS, statistically significant between-group differences in femoral neck BMD in favour of TPTD were reported at 18 months: in men with osteoporosis receiving glucocorticoids (p=0.026);⁸⁸ in postmenopausal women with osteoporosis (p=0.02);⁹² and in women and men with low BMD following hip fracture surgery (p=0.003).⁹³ However, one of these studies reported an imbalance in femoral neck BMD across study groups at baseline.⁹² One study comparing TPTD to RIS in men with osteoporosis reported that the between-group difference at 18 months was not statistically significant.⁹⁰

One study comparing TPTD (plus a placebo for ZOL) to ZOL (without a placebo for TPTD), reported a statistically significant between-group difference in femoral neck BMD in favour of ZOL at 12 months in postmenopausal women with osteoporosis (p<0.05).⁹⁴

Summary – femoral neck BMD

There is single study evidence that DEN is statistically more effective than placebo at increasing femoral neck BMD at six months in postmenopausal women with osteoporosis, at 12 months in men with osteoporosis, and at 24 months in women and men with osteoporosis.

The evidence for RLX in increasing femoral neck BMD compared to placebo is mixed. There is single study evidence that RLX is statistically more effective than placebo at 36 months in postmenopausal women with osteoporosis, and at 12 months in postmenopausal women with osteoporosis who are pre-treated with TPTD. However, there is single study evidence that the between-group difference in RLX and placebo is not statistically different at 12 months in postmenopausal women with osteoporosis, and at 12 months in postmenopausal women receiving long-term glucocorticoids (data from graph).

There is single study evidence that ROMO is statistically more effective than placebo at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis (two studies) and at 12 months in men with osteoporosis.

The evidence for TPTD in increasing femoral neck BMD compared to placebo is mixed. There is single study evidence that TPTD is statistically more effective than placebo at six months, 12 months and 18 months, in postmenopausal women with osteoporosis. However, there is single study evidence that the between-group difference in TPTD compared to placebo, or TPTD plus calcium and vitamin D compared to calcium or vitamin D alone, is not statistically different at six months in postmenopausal women with osteoporosis.

There is single study evidence that, whilst TPTD is not statistically more effective than placebo at increasing femoral neck BMD osteoporosis at 12 or 24 months in postmenopausal women with, that treatment switching from TPTD to DEN is significantly more effective than continued DEN at a further 24 and 48 months (open-label).

There is single study evidence that ROMO is statistically more effective than TPTD at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis pre-treated with ALN.

There is single study evidence that DEN is statistically more effective than ALN at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis and at 12 months in postmenopausal women with osteoporosis already receiving ALN. There is also single study evidence that DEN is statistically more effective than oral IBN at 12 months in postmenopausal women with

osteoporosis, that DEN is statistically more effective than RIS at 12 months in women and men with osteoporosis continuing or initiating glucocorticoids, and that DEN is statistically more effective than ZOL at 12 months in postmenopausal women with osteoporosis previously treated with bisphosphonates.

The evidence for RLX compared to ALN is mixed. There is single study evidence that RLX is statistically more effective than ALN at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis. However, there is evidence that the between-group difference in RLX and placebo is not statistically different at 12 months in postmenopausal women with osteoporosis (two studies). There is also evidence that ALN is statistically more effective than RLX at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis (two studies).

There is single study evidence that ROMO is statistically more effective than ALN at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis and that switching from ROMO to ALN is statistically more effective than continued ALN at 24 and 36 months (open label).

The evidence for TPTD in increasing femoral neck BMD compared to placebo is mixed. There is evidence that TPTD is statistically more effective than RIS at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis (two studies). There is also single study evidence that TPTD is statistically more effective than RIS at increasing femoral neck BMD at 18 months: in women and men with osteoporosis receiving glucocorticoids, in men with osteoporosis receiving glucocorticoids, and in women and men with low BMD following hip fracture surgery. However, there is single study evidence that that the between-group difference in TPTD and RIS is not statistically different at 18 months in men with osteoporosis.

There is single study evidence that ZOL without placebo is statistically more effective than TPTD with placebo at increasing femoral neck BMD at 12 months in postmenopausal women with osteoporosis.

Lumbar Spine BMD

Six RCTs did not report FN BMD but did report lumbar spine (LS) BMD (Appendix 5 Table 23). One RCT reported a significant increase in lumbar spine (LS) BMD for DEN versus placebo.⁴⁵ A placebo controlled trial reported a significant increase in LS BMD for RLX,⁴⁸ a small RCT reported an advantage for RLX plus Alfacalcidol (n=31) versus alfacalcidol alone (n=34),⁵⁰ whereas another small trial found no significant difference for RLX (n=48) versus a no active treatment control (n=48).⁵³

One RCT of RLX versus bisphosphonates reported that ALN and RIS had a higher percentage increase in LS BMD at 24 months than RLX (estimated in RevMan p<0.001).⁸⁰ One small RCT did not find a significant difference between TPTD (n=22) and RIS (n=22) in the improvement of LS BMD.⁸⁹

5.2.2.3 Adverse events

Adverse events - mortality

Mortality across the included studies is presented in Table 21 for the non-bisphosphonate treatments compared to placebo, non-bisphosphonate treatments compared head-to-head and non-bisphosphonate treatments compared to bisphosphonates. None of the included studies reported on mortality following hip fracture, mortality following vertebral fracture, or mortality following any other type of fracture.

Non-bisphosphonates vs. placebo -mortality

Across the studies comparing DEN to placebo, six reported on mortality;^{42-44, 46, 105, 110} across studies comparing RLX to placebo, two reported on mortality;^{49, 51} and across studies comparing ROMO to placebo, three reported on mortality.^{55, 57} Six studies comparing TPTD to placebo reported on numbers of mortality,^{58,59,60, 62, 64, 96} and one reported that there was no statistically significant between-group difference (data not reported).⁶³

Where mortality was reported across studies comparing non-bisphosphonates with placebo, event rates were low with active treatment (0% to 1.8%). Only one study reported a between group difference⁴² which was not statistically significant (p=0.08). Where between-group differences were not reported, the estimated between-group differences were not statistically significant (p>0.05).

Non-bisphosphonates compared head-to-head- mortality

The DATA⁶⁵ and DATA-Switch study,⁶⁶ that compared DEN to TPTD did not report on mortality; neither did the EUROFORS study,⁶⁷ that compared TPTD to RLX. In the two studies that compared ROMO to TPTD and reported on mortality^{68, 69} event rates for mortality were low with either treatment (0% to 2%). The estimated between-group differences were not statistically significant (p>0.05).

Non-bisphosphonates vs. bisphosphonates - mortality

Across studies in DEN compared to bisphosphonates, three studies comparing DEN to ALN;^{70, 71, 73} one comparing DEN to oral IBN,⁷⁴ one comparing DEN to RIS,⁷⁵ and one comparing DEN to ZOL,⁷⁶ reported on mortality. Across these studies event rates for mortality were low across treatments (<1%) and the estimated between-group differences were not statistically significant (p>0.05).

Across studies in RLX compared to bisphosphonates, two studies comparing RLX to ALN reported on mortality.^{77, 81} Across these studies event rates for mortality were low across treatments (<1%) and the estimated between-group differences were not statistically significant (p>0.05).

One study comparing ROMO to ALN reported mortality rates of <2% with either treatment at 12 months prior to treatment switching and <5% at 24 months following treatment switching.⁸⁴ The estimated between-group differences were not statistically significant (p>0.05).

Across studies in TPTD compared to bisphosphonates, one study comparing TPTD to ALN;⁷⁵ four comparing TPTD to RIS,^{88, 92, 93, 99, 100} and one comparing TPTD to ZOL,⁹⁴ reported on mortality. Across these studies event rates ranged from 0% to 4.4% with TPTD and <1% to 6.4% with bisphosphonates. The estimated between-group differences were not statistically significant (p>0.05).

Adverse events and serious adverse events

Adverse events and serious adverse events across the included studies are presented in Table 22 for the non-bisphosphonate treatments compared to placebo, non-bisphosphonate treatments compared head-to-head and non-bisphosphonate treatments compared to bisphosphonates.

Non-bisphosphonates vs. placebo – adverse events

Five studies comparing DEN to placebo,^{42-46, 105, 110} three studies comparing RLX to placebo,^{48, 51, 95} three studies comparing ROMO to placebo,⁵⁵⁻⁵⁷ and five studies comparing TPTD to placebo,^{58,59,60, 62, 64, 96} reported on adverse events. Event rates ranged from 37% to 94.3% with DEN, 27.1% to 96% with RLX, 12.9% to 78.4% with ROMO, and 21.9% to 91.9% with TPTD. Where between-group differences were reported, these were not statistically significant, as were those that were estimated by ScHARR (p>0.05).

Non-bisphosphonates vs. placebo – serious adverse events

Five studies comparing DEN to placebo,^{42-46, 105, 110} three studies comparing RLX with placebo,^{48, 49, 51, 95} three studies comparing ROMO to placebo,⁵⁵⁻⁵⁷ and six studies comparing TPTD to placebo,^{58, 59,60, 62-64, 96} reported on serious adverse events. Event rates ranged from 2.0% to 25.8% with DEN, 2.0% to 18.6% with RLX, 3.2% to 12.9% with ROMO, and 0% to 10.0% with TPTD. Where between-group differences were reported, these were not statistically significant, as were those that were estimated (p>0.05).

Non-bisphosphonates compared head-to-head – adverse events

One study that compared TPTD to DEN,⁶⁵ one study that compared TPTD to RLX,⁶⁷ and two studies that compared TPTD to ROMO,^{68, 69} reported on adverse events. Across these studies, events for TPTD ranged from 16.1% to 90%, and 75.0% to 82.0% for ROMO and were 12.1% for DEN and 54.6% for RLX. The reported and estimated between-group differences were not statistically significant (p>0.05).

Non-bisphosphonates compared head-to-head – serious adverse events

The DATA⁶⁵ and DATA-SWITCH⁶⁶ studies that compared TPTD to DEN before and after treatment switching,⁶⁵ and two studies that compared TPTD to ROMO,^{68, 69} reported on serious adverse events. Across these studies, events for TPTD ranged from 6.5% to 11.0% (22.0% following treatment switching to DEN⁶⁵) and 8.0% to 10.0% for ROMO and was 3% for DEN. The estimated between-group differences were not statistically significant (p>0.05).

Non-bisphosphonates vs. bisphosphonates – adverse events

Across studies in DEN compared to bisphosphonates, three studies comparing DEN to ALN,^{70, 72, 73, 111} one comparing DEN to oral IBN,⁷⁴ one comparing DEN to RIS,⁷⁵ and one comparing DEN to ZOL,⁷⁶ reported on adverse events. Across these studies event rates for DEN ranged from 59.6% to 80.9%, event rates for bisphosphonates, from 64.1% to 91.3% with ALN, and were 56.1% with IBN, 69.0% with RIS and 62.2% with ZOL. Across these studies, both the reported and estimated between-group differences were not statistically significant (p>0.05).

Across studies in RLX compared to bisphosphonates, four studies comparing RLX to ALN reported on adverse events.^{77, 78, 81, 83} Across these studies event rates ranged from 24% to 75.2% for RLX and from 12.0% to 74.2% for ALN. Across these studies, both the reported and estimated between-group differences were not statistically significant (p>0.05).

One study comparing ROMO to ALN reported adverse events at 12 months prior to treatment switching (75.7% vs. 78.6%) and 24 months following treatment switching to ALN (86.6% vs. 88.6%).⁸⁴ The estimated between-group difference was p=0.02 at 12 months in favour of ROMO and p=0.05 at 24 months in favour of ROMO switched to ALN.

Across studies in TPTD compared to bisphosphonates, one study comparing TPTD to ALN;⁷⁵ six comparing TPTD to RIS,^{88, 89, 92, 93, 99, 100} and one comparing TPTD to ZOL,⁹⁴ reported on adverse events. Across these studies event rates with TPTD ranged from 31.9% to 79.1%, RIS from 33.3% to 81.4%, 86% for ALN, and 70.1% for ZOL. The estimated between-group difference for the study comparing TPTD and ZOL⁹⁴ was statistically in favour of TPTD (p=0.006). All other reported or estimated between-group differences were not statistically significant (p>0.05).

Non-bisphosphonates vs. bisphosphonates – serious adverse events

Across studies in DEN compared to bisphosphonates, three studies comparing DEN to ALN,^{70, 72, 73, 111} one comparing DEN to oral IBN,⁷⁴ one comparing DEN to RIS,⁷⁵ and one comparing DEN to ZOL,⁷⁶ reported on serious adverse events. Across these studies event rates for DEN ranged from 2.4% to 16.0%. Event rates for bisphosphonates ranged from 2.2% to 6.4% with ALN, 5.4% with IBN, 17% with RIS, and 9.1% with ZOL. The study comparing DEN to IBN,⁷⁴ reported a between-group difference in favour of IBN of p=0.046. Across all other studies, both the reported and estimated between-group differences were not statistically significant (p>0.05).

Across studies in RLX compared to bisphosphonates, four studies comparing RLX to ALN reported serious adverse events.^{77, 78, 83} Across these studies event rates for RLX ranged from 24% to 75.2% and for ALN from 12% to 74.2%. Across these studies, both the reported and estimated between-group differences were not statistically significant (p>0.05).

One study comparing ROMO to ALN reported serious adverse events at 12 months prior to treatment switching (12.8% vs. 13.8%) and 24 months following treatment switching to ALN (28.7% vs. 30.0%).⁸⁴ The estimated between-group differences were not statistically significant (p>0.05).

Across studies in TPTD compared to bisphosphonates, one study comparing TPTD to ALN;⁷⁵ four comparing TPTD to RIS,^{88, 92, 93, 99, 100} and one comparing TPTD to ZOL,⁹⁴ reported on serious adverse events. Across these studies event rates with TPTD ranged from 11% to 28.9%, from 16.6% to 46.8% for RIS, 30% for ALN, and 14.6% for ZOL. The estimated between-group difference for the study comparing TPTD to ZOL⁹⁴ was statistically in favour of TPTD (p=0.006). All other reported or estimated between-group differences were not statistically significant (p>0.05).

Specific adverse events

Details of venous thromboembolism, stroke, ONJ, and atypical femoral fracture, reported by the included studies are presented in Appendix 7.

Other evidence on adverse events

DEN – NICE Technology Appraisal summary of adverse events evidence

The NICE Technology Appraisal for DEN for the prevention of osteoporotic fractures in postmenopausal women [TA204],¹⁰ found that whilst the summary of product characteristics¹¹² indicates that conditions associated with DEN include: urinary tract infection, upper respiratory tract infection, sciatica, cataracts, constipation, rash, pain in extremity and skin infections, that there is no evidence of increased incidence of cataracts or diverticulitis in postmenopausal women with osteoporosis and that cataracts and diverticulitis occur only in patients with prostate cancer. The

summary of product characteristics¹¹² also states that ONJ has been reported in patients receiving DEN or bisphosphonates, with most cases occurring in people with cancer, but that some occurred in people with osteoporosis.

The NICE Technology Appraisal for DEN also found that studies of DEN for other indications have shown that treatment may be associated with ONJ, but that there is no evidence of this from the clinical studies of DEN in women with osteoporosis and that that the available clinical evidence indicates that DEN is a well-tolerated treatment for the prevention of osteoporotic fragility fractures in postmenopausal women.¹⁰

DEN – European Medicines Agency Assessment Report summary of adverse events evidence

The European Medicines Agency Assessment Report for DEN,¹¹³ found that no cases of ONJ were seen in the clinical studies it summarised and that there was no increased frequency of cardiovascular events or abnormal electrocardiographs in DEN treated patients. The report¹¹³ found that in one study in postmenopausal women, more subjects receiving DEN developed an infection that required hospitalisation compared with subjects receiving placebo. The report¹¹³ found that infections reported among DEN-treated subjects were characterised by common infections (e. g. pneumonia, urinary tract infection, cellulitis, appendicitis, and diverticulitis) and were not distinguishable as opportunistic infections, and that serious infection events tended to occur six to 12 months after the initial administration of DEN.

The report¹¹³ found that in the combined safety analysis across the four pivotal trials, the small differences noted in individual studies in certain serious adverse events were not evident across the postmenopausal women and hormone ablation therapy populations. Across other SAEs, the report found that fatalities in DEN and placebo occurred with the same frequencies. In one study in postmenopausal women, the report observed significantly more patients in the DEN group than in the placebo group reported SAEs, particularly osteoarthritis and pneumonia. However, in another study in postmenopausal women the report observed that there were no significant differences in SAEs between treatment groups.

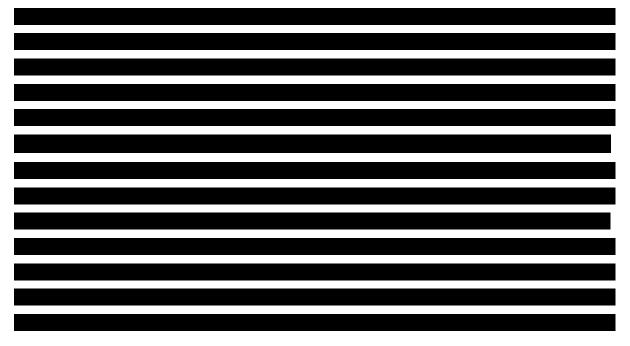
The report¹¹³ also found that no single type of malignancy was reported at an increased frequency in any trial of DEN. However, a significantly greater incidence of cataracts was evident in males receiving hormone ablation therapy treated with DEN compared with the control.

RLX – *NICE Technology Appraisal summary of adverse events evidence*

The NICE Technology Appraisal that included RLX for the secondary prevention of osteoporotic fragility fractures in postmenopausal women [TA161],¹¹ found that venous thromboembolism (VTE)

is the most serious adverse event reported with RLX with an approximate three-fold increased risk of VTE. The incidence of hot flushes, arthralgia, dizziness, leg cramps, influenza-like symptoms, endometrial cavity fluid, peripheral oedema and worsening diabetes is also statistically significantly greater with RLX compared with placebo. The report also found that whilst the impact of RLX on cardiovascular disease is unclear, there is evidence that it lowers serum concentrations of fibrinogen as well as total and low-density lipoprotein cholesterol levels, without increasing high-density lipoprotein cholesterol.

RLX – European Medicines Agency Assessment Report summary of adverse events evidence


The European Medicines Agency Summary of Product Characteristics for RLX,¹⁰ states that RLX is associated with an increased risk for venous thromboembolic events in postmenopausal women which occurred in <1.1% of treated patients.

RLX – European Medicines Agency SmPC summary of adverse events evidence

The European Medicines Agency Public Assessment Report for RLX,¹¹⁴ states that the most common side effects (seen in more than 1 patient in 10) are vasodilation and flu-like symptoms.

ROMO – Draft Summary of Product characteristics

The draft Summary of Product Characteristics for ROMO,¹¹⁵ notes under special precautions that

TPTD–NICE Technology Appraisal summary of adverse events evidence

The NICE Technology Appraisal that included TPTD for the secondary prevention of osteoporotic fragility fractures in postmenopausal women [TA161],¹¹ only reported on adverse events associated with TPTD at 40µg per day compared with placebo, which were nausea and headache.

TPTD– European Medicines Agency Scientific Discussion summary of adverse events evidence

The European Medicines Agency initial marketing Scientific Discussion for TPTD,¹¹⁶ reported that in the clinical pharmacology studies, orthostatic hypotension was observed in healthy subjects following administration of TPTD at doses higher that 20 μ g/day and at the proposed therapeutic dose of 20 μ g/day the most frequently reported adverse events were leg cramps, nausea and headache. The more recent European Medicines Agency variation on the Scientific Discussion,¹¹⁷ concluded that no further safety issues had been identified from further studies. The European Medicines Agency SmPC,¹¹⁷ states that the most commonly reported adverse reactions in patients treated with TPTD are nausea, pain in limb, headache and dizziness.

5.2.2.4 Health related quality of life

Five studies published results of reported health related quality of life (HRQoL) measured by a validated assessment tool (Appendix 6).

Non-bisphosphonates versus placebo- HRQoL

HRQoL was reported from the FREEDOM trial.^{118, 119} At three years follow-up there were no significant differences between DEN and placebo groups on the physical function, emotional status or back pain dimension of the Osteoporosis Assessment Questionnaire-Short Version (OPAQ-SV) (Appendix 6).¹¹⁸

RLX and placebo groups did not differ significantly in change from baseline as measured by the Women's Health Questionnaire (WHQ), or the European Foundation for Osteoporosis Quality of Life Questionnaire (QUALEFFO), or the Euro Quality of Life-5 Dimensions (EQ-5D) Visual Analog Scale (VAS), or the Euro Quality of Life-5 Dimensions (EQ-5D) Health State Profile Utility Score (Appendix 6) at 36 months follow-up in the Silverman 2008 RCT.⁵¹

Non-bisphosphonates versus bisphosphonates- HRQoL

In the Panico 2011 RCT,⁸⁷ both ALN and TPTD groups were significantly improved at 18 months on the QUALEFFO-41 domains pain, everyday activities, domestic job, locomotor function, social activities, and health perception, with more improvement (p value not reported) for TPTD. In the mood domain, only the TPTD was significantly improved (Appendix 6).

In the VERO RCT⁹¹ there was no significant difference between TPTD and RIS groups, which both showed significant improvement in the EQ-5D-5L VAS. The MOVE RCT⁹⁹ also reported no significant difference between the TPTD and RIS groups, which both showed significant improvement in the physical component of the SF-36.

5.3 Network meta-analysis

5.3.1 Methods for the network meta-analysis

An NMA was conducted for each of the five main fracture types (vertebral, non-vertebral, hip, wrist, proximal humerus), and for femoral neck BMD.

For consistency with NICE technology appraisal 464 (TA464),⁹ the model for the NMA assumed exchangeable treatment effects (i.e. a class effect) for bisphosphonate treatments, whereby individual treatment effects are estimated for each bisphosphonate treatment, but these are assumed to arise from a common distribution (or class). Unrelated treatment effects were assumed for all non-bisphosphonate interventions. For comparison, sensitivity analyses were also conducted using a standard random effects (RE) model with unrelated treatment effects for all interventions. Further details of the statistical models are provided in Appendix 8.

For fracture outcomes, treatment effects are presented as hazard ratios (HR) relative to placebo, with a HR less than one reflecting a reduced risk of fracture relative to the comparator treatment. To account for different lengths of follow up across the trials, the model assumed an underlying Poisson process for each trial arm, with constant event rate.¹²⁰ For femoral neck BMD, the model for the NMA included a covariate for the duration of follow up in each study and treatment effects are presented as the difference in mean percentage change from baseline in BMD relative to placebo after 1.6 years follow-up (the average duration of follow-up in these studies).

For fracture outcomes (i.e. binomial data) heterogeneity in treatments effects was characterised as being mild (<0.1) moderate ($0.1 \le HR < 0.5$), high ($0.5 \le HR < 1$) or extremely high (≥ 1) and for femoral neck BMD characterisation was based on a conversion as described in *Ren et al.*¹²¹ Where appropriate, heterogeneity in treatment effects was explored by considering potential treatment effect modifiers using meta-regression.¹²² Baseline risk/response can be used as a proxy for differences in patient characteristics across trials that may be modifiers of treatment effect. Adjustment for baseline risk/response was assessed using the method of Achana *et al.*¹²³

Potential inconsistency between direct and indirect evidence was assessed using node-splitting.¹²⁴

All analyses were conducted in the freely available software package WinBUGS¹²⁵ and R,¹²⁶ using the R2Winbugs¹²⁷ interface package. Convergence to the target posterior distributions was assessed using the Gelman-Rubin statistic, as modified by Brooks and Gelman,¹²⁸ for two chains with different initial values. For all outcomes, a burn-in of 75,000 iterations of the Markov chain was used with a further 20,000 iterations retained to estimate parameters. Samples from the posterior distributions exhibited

moderate correlation between successive iterations of the Markov chain so were thinned by retaining every 15th sample.

The absolute goodness of fit was checked by comparing the total residual deviance to the total number of data points included in an analysis. The deviance information criterion (DIC) provides a relative measure of goodness-of-fit that penalises complexity and was used to compare different models for the same likelihood and data.¹²⁹ Lower values of DIC are favourable, suggesting a more parsimonious model.

Results are presented using the posterior median treatment effects, 95% credible intervals (CrI) and 95% prediction intervals (PrI). The probability of each intervention ranking was computed by counting the proportion of iterations of the Markov chain in which each intervention had each rank. The treatment effects of each intervention compared to placebo together with the median rank and probability of being the highest-ranking treatment are displayed in forest plots.

5.3.2 Selection of evidence contributing to the network meta-analysis

Studies included in the systematic literature review were eligible to be included in the NMA. Characteristics of the studies are summarised in Table 15 and vertebral fractures in Table 17.

Vertebral fractures may be assessed using either clinical methods, or radiographic techniques. For studies that reported outcomes using multiple methods/definitions, radiographical assessment was selected for the main analysis as this was the most widely reported outcome. If radiographical assessment was not available for a given study then clinically assessed outcomes were included. Studies that did not state the assessment method were also included. A sensitivity analysis was performed (S1) to assess the impact of including only those RCTs with clinical assessment of fractures.

Outcomes may be reported at different time points across studies. For the primary analysis data set the longest reported time point was selected for each study and the difference in trial durations is accounted for in the statistical model, under the assumption that the fracture event rate in each study arm is constant over time. To assess this assumption, a sensitivity analysis (S2) was conducted restricting the analysis to studies that report outcomes at 12 months.

In order to contribute to the NMA studies were required to provide the number of events, and the analysed sample size in each arm. When not reported, these quantities were estimated from other information (reported percentages, figures), however the exact numbers are subject to uncertainty.

Sensitivity was therefore assessed (S3) by excluding these studies, along with other studies that that raised concerns regarding risk of bias due to blinding issues and early study termination.

A sensitivity analysis was also conducted excluding studies for which prior treatment with bisphosphonates was permitted (S4).

In summary, the following four sensitivity analyses were conducted for vertebral fracture outcomes:

- S1: Clinical assessment
- S2: 12-month data
- S3: Exclusion for quality issues
- S4: Exclusion for prior bisphosphonate treatment

For each of the sensitivity analyses, results were compared to the main analysis to assess the impact of the NMA inclusion criteria.

Data for femoral neck BMD outcomes was presented in two different formats; either as the percentage change in femoral neck BMD for each treatment group, or as the mean difference (MD) in the percentage change between treatment groups. In addition, data were presented either numerically or in graphical format.

Where available, numerical estimates for each treatment group were selected as the most accurate summaries of means and variances. For RCTs that presented results for each treatment group in graphical format, while presenting MDs numerically in the text, MDs were selected. 6 RCTs that did not provide variance estimates (in any format) were excluded.

5.3.3 Results of the network meta-analysis

Network diagrams for fracture outcomes and femoral neck BMD are presented in Figure 5 and Figure 7 respectively. Study level data contributing to the NMAs are provided in Appendix 9.1: Data contributing to the network meta-analysis.

The effects of each treatment relative to placebo are presented in Figure 6 for all fracture outcomes based on the primary model with class effect for bisphosphonate treatments, and unrelated treatment effects for all other interventions. Model fit is summarised in Table 4. For all outcomes the model fitted the data well with total residual deviance close to the number of datapoints in the network.

For comparison, results using a standard RE model with unrelated treatment effects for all interventions are provided in Appendix 9.2 NMA results from random effects model. Results from the two models were found to be consistent, with a better fit (as indicated by a lower DIC) provided by the primary model.

Vertebral fractures

Vertebral fracture data were available from 46 RCTs, each comparing two treatments with the exception of one three arm study.⁸⁰ Nineteen of these studies were included in TA464 (including one study⁸⁰ where an additional non-bisphosphonate treatment arm was added for the current review). Two further bisphosphonate studies not already in TA464,^{130, 131} and 24 non-bisphosphonate studies were included from the current review. A total of 11 interventions were assessed, including five non-bisphosphonate treatments.

The effects of each treatment relative to placebo are presented in Figure 6 and pairwise comparisons between treatments are provided in Appendix 9.4 Pairwise summary tables Table 34. All treatments were associated with statistically significant beneficial treatment effects relative to placebo. TPTD was associated with the greatest effect, HR 0.23 (95% CrI: 0.16, 0.32), with the highest probability of being the best treatment (0.38), and was statistically significantly more effective than all active treatments apart from denosomab, ROMO, and ROMO/ALN (Table 34). The H for a randomly chosen study for a new bisphosphonate is 0.47 (95% PrI: 0.19, 1.16), with the reported prediction interval allowing for both between-study and between-treatment heterogeneity.

Within the network there were 12 treatment pairs for which both direct and indirect comparison were available. None of the comparisons showed significant evidence of inconsistency (Table 40).

Four sensitivity analyses were conducted for the main vertebral fracture network. Treatment effects are provided in Appendix 9.3 Vertebral fracture sensitivity analyses(Figure 14) and a summary of model fit and heterogeneity is shown in Appendix 9.3 Vertebral fracture sensitivity analyses (Table 33).

S1 included outcomes assessed by clinical methods only. Data were available from 19 RCTs which assessed a total of 10 interventions, including four non-bisphosphonate treatments. It was concluded that the results are generally consistent with the primary analysis which includes both clinical and x-ray assessed outcomes. This supports the assumption that the treatment effect is not highly influenced by assessment method.

S2 included data reported at 12 months only. Data were available from 29 RCTs which assessed a total of 10 interventions, including four non-bisphosphonate treatments. The main difference in the results is that RIS is has a more beneficial treatment effect in the 12 month sensitivity (HR 0.44 95% CrI 0.32-0.60) compared with the primary analysis (HR 0.52 95% CrI 0.42-0.65). In both analyses, RIS has zero probability of being the best ranking treatments. It was concluded that the results are generally consistent with the primary analysis which included the longest duration of follow up for each study, and therefore supports the use of a constant HR.

S3 excluded studies for which there was a risk of bias in the reported outcomes. 4^{94 87 93 96} studies were excluded due to blinding issues, 2^{63 81} studies were terminated early, and for 10 studies^{43 132 133} ^{134 130 135 51 44 136, 137} the number of events or analysis sample size was estimated from other information. Data were available from 30 RCTs which assessed a total of 10 interventions, including five non-bisphosphonate treatments. It was concluded that the results are consistent with the primary analysis which includes all studies, and therefore supports the use of the full network of 46 studies to improve the strength of the network.

S4 excluded studies for which prior treatment with bisphosphonates was permitted. Prior treatment ranged from 8-73% across the studies. Data were available from 36 RCTs which assessed a total of 11 interventions, including five non-bisphosphonate treatments. It was concluded that the results are consistent with the primary analysis.

Non-vertebral fractures

Non-vertebral fracture data were available from 42 RCTs, each comparing two treatments with the exception of two three arm studies.^{80,83} Fifteen of these studies were included in TA464 (including one study⁸⁰ where an additional non-bisphosphonate treatment arm was added for the current review), and 27 non-bisphosphonate studies were included from the current review. A total of 11 interventions were assessed, including f non-bisphosphonate treatments.

Pairwise	comparisons	between	treatments	are	provided	in
----------	-------------	---------	------------	-----	----------	----

Table 35. All treatments were associated with beneficial treatment effects relative to placebo, although the results were not statistically significant for all treatments. TPTD was associated with the greatest effect, HR 0.58 (95% CrI: 0.45, 0.76), with the highest probability of being the best treatment (0.52), although there was insufficient evidence to differentiate between TPTD and the other active treatments apart from IBN daily, DEN and RLX (

Table 35). The HR for a randomly chosen study for a new bisphosphonate is 0.78 (95% PrI: 0.60, 1.08), with the reported prediction interval allowing for both between-study and between-treatment heterogeneity.

Within the network there were 14 treatment pairs for which both direct and indirect comparison were available. None of the comparisons showed significant evidence of inconsistency (

Table 35).

Hip fractures

Hip fracture data were available from 23 RCTs, each comparing two treatments with the exception of one three arm study.⁸⁰ Eight of these studies were included in TA464 (including one study⁸⁰ where an additional non-bisphosphonate treatment arm was added for the current review), and 15 non-bisphosphonate studies were included from the current review. A total of nine interventions were assessed, including five non-bisphosphonate treatments.

Pairwise	comparisons	between	treatments	are	provided	in
1 411 1150	comparisons	occucen	ti outilionto	ui e	provided	

Table 36. All treatments were associated with beneficial treatment effects relative to placebo, although the comparison to placebo was not statistically significant for ROMO or RLX. TPTD was associated with the greatest effect, HR 0.35 (95% CrI: 0.15, 0.73), with the highest probability of being the best treatment (0.50), although there was insufficient evidence to differentiate between reriparatide and the other active treatments (

Table 36). The HR for a randomly chosen study for a new bisphosphonate is 0.64 (95% PrI: 0.32, 1.29), with the reported prediction interval allowing for both between-study and between-treatment heterogeneity.

Within the network there were 14 treatment pairs for which both direct and indirect comparison were available. None of the comparisons showed significant evidence of inconsistency (Table 42).

Wrist fractures

Wrist fracture data were available from 15 RCTs, each comparing two treatments with the exception of one three arm study.⁸⁰ Six of these studies were included in TA464 (including one study⁸⁰ where an additional non-bisphosphonate treatment arm was added for the current review), and eight non-bisphosphonate studies were included from the current review. A total of eight interventions were assessed, including four non-bisphosphonate treatments.

Pairwise	comparisons	between	treatments	are	provided	in
----------	-------------	---------	------------	-----	----------	----

Table 37. All treatments were associated with beneficial treatment effects relative to placebo, apart from DEN, RLX and ROMO. Treatment effects for ROMO are based only on one small study⁶⁸ with zero events in the TPTD arm and one event in the ROMO arm. Treatment effects for DEN are based only on one small study with two events in the ALN arm and three events in the DEN arm.⁷¹ Treatment effects for these interventions are therefore highly uncertain.

TPTD was associated with the greatest effect, HR 0.75 (95% CrI: 0.38, 1.41), with the highestprobability of being the best treatment (0.28), although there was insufficient evidence to differentiatebetweenTPTDandtheotheractivetreatments

Table 37). The HR for a randomly chosen study for a new bisphosphonate is 0.82 (95% PrI: 0.29, 2.19), with the reported prediction interval allowing for both between-study and between-treatment heterogeneity.

Within the network there were eight treatment pairs for which both direct and indirect comparison were available. None of the comparisons showed significant evidence of inconsistency (Table 43).

Proximal humerus fractures

Proximal humerus fracture data were available from 13 RCTs, each comparing two treatments. Two of these studies were included in TA464 and 11 non-bisphosphonate studies were included from the current review. A total of eight interventions were assessed, including two bisphosphonate treatments.

Pairwise comparisons between treatments are provided in Table 38. All treatments were associated with beneficial treatment effects relative to placebo, apart from RLX. Treatment effects for RLX are based only on one small study⁷⁸ with zero events in the ALN arm and one event in the RLX arm and so treatment effects are highly uncertain. Event numbers were generally low in this network and five of the 13 included RCT's had zero counts in one of the treatments arms.

ROMO was associated with the greatest effect, HR 0.10 (95% CrI: 0.0, 3.66), with the highest probability of being the best treatment (0.77), although the treatment effect was highly uncertain and there was insufficient evidence to differentiate between ROMO and the other active treatments (

Table 38). Only RIS was associated with a HR that was statistically significant compared to placebo (HR 0.49, 95% CrI 0.23, 0.96). The HR for a randomly chosen study for a new bisphosphonate is 0.82 (95% PrI: 0.29, 2.19), with the reported prediction interval allowing for both between-study and between-treatment heterogeneity.

Within the network there were five treatment pairs for which both direct and indirect comparison were available. None of the comparisons showed significant evidence of inconsistency (

Table 38).

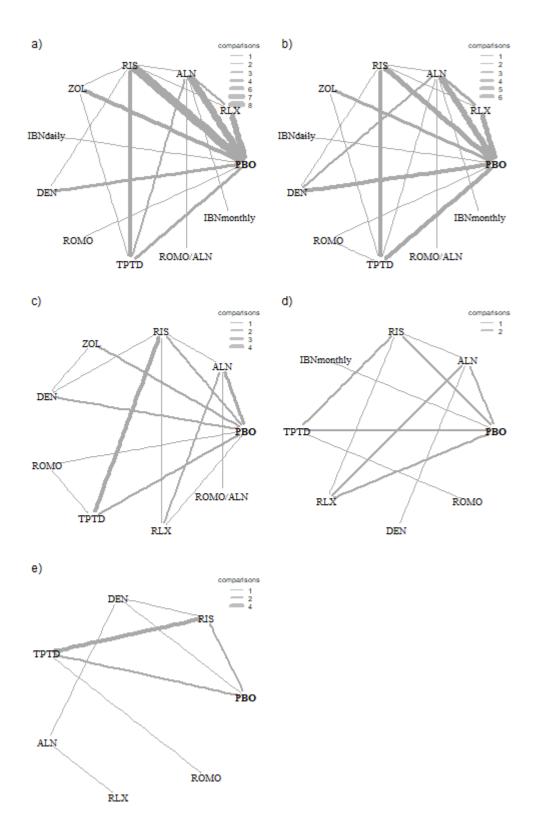


Figure 5:Network diagrams for a) vertebral b) non-vertebral c) hip d) wrist e) proximal
humerus fracture outcomes

Treatment	_ <u>HR_</u>	(95%_Crl)	(95%_Prl)	rank.PB.
Vertebral				
TPTD •	0.23	(0.16,0.32)	(0.13,0.38)	2(38%)
ROMO.ALN =	0.25	(0.15,0.43)	(0.13,0.50)	2(30%)
ROMO 🖛	0.27	(0.13,0.52)	(0.12,0.57)	3(27%)
DEN 🗢	0.30	(0.21,0.43)	(0.17.0.51)	4(3%)
ZOL 🔷	0.40	(0.29,0.55)	(0.25,0.69)	5(0%)
IBNdaily -	0.48	(0.33,0.71)	(0.28,0.83)	7(0%)
IBNmonthly	0.48	(0.26,0.90)	(0.24,0.99)	7(1%)
ALN T	0.50	(0.40,0.64)	(0.32,0.81)	8(0%)
RIS -	0.52	(0.42,0.65)	(0.32,0.82)	8(0%)
RLX -	0.61	(0.44.0.80)	(0.36,0.98)	10(0%)
Bis class effect	0.01	(0.33,0.69)	(0.19,1.16)	10(076)
Non-vertebral	0.47	(0.55,0.08)	(0.13,1.10)	
	0.50	(0.45.0.78)	(0.44.0.04)	4/509/1
	0.58	(0.45,0.76)	(0.41,0.81)	1(52%)
	0.63	(0.44,0.86)	(0.40,0.92)	2(30%)
ROMO -	0.71	(0.48,1.03)	(0.45,1.09)	4(12%)
RIS =	0.73	(0.59,0.88)	(0.53,0.98)	5(1%)
	0.73	(0.61,0.85)	(0.54,0.95)	5(1%)
ALN 🔫	0.77	(0.64,0.90)	(0.56,0.99)	6(0%)
IBNmonthly DEN IBNdaily	0.78	(0.54,1.27)	(0.50,1.31)	6(3%)
DEN	0.86	(0.69,1.12)	(0.64,1.23)	8(0%)
IBNdaily -	0.88	(0.67,1.32)	(0.60,1.38)	9(0%)
RLX	0.90	(0.65,1.21)	(0.60,1.29)	9(0%)
Bis class effect	0.78	(0.6,1.08)	(0.42,1.56)	
Hip				
трто	0.35	(0.15,0.73)	(0.14,0.78)	1(50%)
ROMO.ALN	0.39	(0.21,0.72)	(0.19,0.80)	2(30%)
DEN	0.56	(0.31,0.94)	(0.28,1.04)	4(5%)
ROMO	0.56	(0.22,1.43)	(0.20, 1.50)	4(12%)
ALN -	0.64	(0.45,0.88)	(0.39,1.04)	5(0%)
ZOL -	0.64	(0.47,0.86)	(0.39,1.01)	5(0%)
RIS -	0.66	(0.46,0.99)	(0.40,1.12)	6(0%)
	0.94	(0.31,2.67)	(0.29,2.82)	8(3%)
Bis class effect	0.64	(0.44,0.93)	(0.25,2.62) (0.32,1.29)	0(376)
	0.04	(0.44,0.33)	(0.32,1.23)	
Wrist				
тртр	0.75	(0.38,1.41)	(0.28, 1.88)	2(28%)
RIS	0.79	(0.49,1.22)	(0.34,1.77)	3(12%)
ALN	0.82	(0.51,1.23)	(0.35,1.77)	3(9%)
IBNmonthly	0.83	(0.42,1.89)	(0.31,2.31)	3(12%)
DEN	1.29	(0.15,12.49)	(0.14,13.46)	6(22%)
RLX	1.63	(0.80,3.51)	(0.62,4.58)	7(1%)
ROMO	3.87	(0.11,2062.02)	(0.10,2150.25)	8(15%)
Bis class effect	0.82	(0.48,1.4)	(0.29,2.19)	
Humerus				
ROMO -	0.10	(0.00,3.66)	(0.00,3.80)	1(70%)
ALN	0.46	(0.15,1.27)	(0.13,1.43)	3(8%)
RIS	0.49	(0.23,0.96)	(0.20,1.13)	3(4%)
DEN -	0.55	(0.12,2.41)	(0.11,2.60)	4(9%)
тртр —	0.55	(0.21,1.41)	(0.19,1.59)	4(3%)
RLX	2.46	(0.06,1204.07)	(0.06,1215.07)	7(6%)
Bis class effect	0.47	(0.18,1.15)	(0.13,1.56)	
0 1 2 3 4				

Figure 6: Forest plot for all fracture outcomes, main analysis

outcome	absolute model fit			Heterog	eneity
	D _{res}	DP	DIC	SD (95%CI)	SDt (95%CI)
vertebral	91.21	93	153.31	0.17 (0.02,0.37)	0.21 (0.01,0.90)
non-vertebral	74.05	86	128.40	0.08 (0,0.24)	0.15 (0.01,0.73)
hip*	38.63	47	70.23	0.12 (0.01,0.4)	0.13 (0.01,0.53)
wrist*	29.92	31	54.20	0.28 (0.04,0.62)	0.16 (0.01,0.61)
proximal humerus*	21.99	26	41.83	0.17 (0.01,0.57)	0.21 (0.01,0.7)
femoral neck BMD	144.70	137	258.86	0.85 (0.64,1.12)	0.74 (0.25,2.26)

Table 4:Summary of model fit and heterogeneity between studies and between
bisphosphonate treatments, all outcomes

 D_{res} : Total residual deviance, DP: data points, DIC: deviance information criterion, SD: between study standard deviation, SDt: between bisphosphonate treatment standard deviation

* For hip, wrist and humerus fractures weakly informative priors were used for the between study and between treatment SD such that SD, SDt $\sim HN(0, 0.32^2)$

Heterogeneity in treatment effects between studies, and between bisphosphonates, is summarised in Table 4. The estimates of between-study standard deviation suggest mild (non-vertebral) and moderate (vertebral, hip, wrist, proximal humerus, femoral neck BMD) heterogeneity in treatment effects between RCTs, respectively. The estimates of between-treatment standard deviation indicate moderate heterogeneity in effects between treatments for all outcomes (i.e., the effects of the bisphosphonates are relatively similar).

Meta-regressions were conducted to test for different treatment effects separately according to the mean age of participants in each study, and the proportion of female participants. A common meta-regression coefficient was assumed for all treatments.¹²² Based on comparison of models with and without a covariate for mean age or mean percentage female, there was no evidence that treatment effect varied with age or gender. Meta-regression coefficients were not statistically significantly different from zero, and DIC estimates were higher implying a less favourable model. A summary of the results is provided in

Table 45.

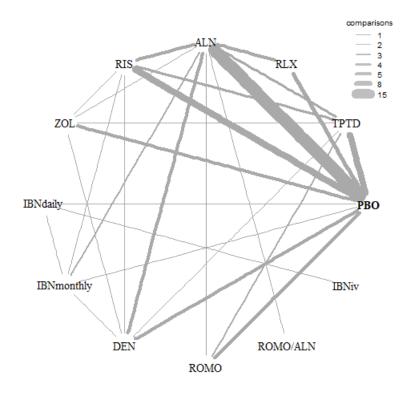
Baseline fracture risk can be used as a proxy for differences in patient characteristics across trials, that may be modifiers of treatment effect, and so introduce a potential source of heterogeneity in the NMA. The effect of baseline fracture risk as a potential treatment effect modifier was explored using the method of Achana *et al.*,¹²³ assuming a common meta-regression coefficient for all treatments (as for age and gender), and assuming that the baselines of each study follow a normal distribution with common mean and between study variance. Based on a comparison of models with and without an adjustment for baseline risk, and inspection of the regression coefficients, there was no evidence that treatment effect varied with baseline risk for any of the fracture outcomes (Appendix 9.6 NMA meta-regressions of the meta-regressions).

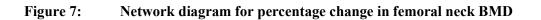
Table **45**).

Femoral neck BMD

Femoral neck BMD data were available from 73 RCTs, each comparing two treatments with the exception of one four-arm study and three three-arm studies.⁸⁰ Thirty-two of these studies were included in TA464. Three further bisphosphonate studies not already in TA464,^{130, 138, 139} and 38 non-bisphosphonate studies were included from the current review. A total of 12 interventions were assessed, including five non-bisphosphonate treatments. The network is shown in Figure 7.

The effects of each treatment relative to placebo are presented in Figure 8. Pairwise comparisons between treatments are provided in


Table 39. All treatments were associated with statistically significant beneficial treatment effects relative to placebo. ROMO/ALN was associated with the greatest treatment effect, mean difference 6.08 (95% CrI: 4.25, 7.91), with the highest probability of being the best treatment (0.96), and was statistically significantly more effective than all active treatments apart from ROMO (


Table 39). The treatment effect for a randomly chosen study for a new bisphosphonate is 2.34 (95% PrI: 1.26, 3.28), with the reported prediction interval allowing for both between-study and between-treatment heterogeneity.

To account for differing trial lengths, study duration was included as a trial level covariate. The estimated impact of duration of study on treatment effect, assuming a common relationship for each treatment, was 1.09 (95% CrI: 0.73, 1.45), indicating an increase in treatment effect with increasing duration of study, as expected.

As for fracture outcomes, there was no evidence that treatment effect varied with age, gender or baseline response

Table **45**).

Treatment		TE	(95% Crl)	(95% Prl)	rank
ROMO/ALN		6.08	(4.25,7.91)	(3.55,8.61)	1(96%)
ROMO		4.20	(3.23,5.16)	(2.24,6.17)	2(4%)
DEN		3.36	(2.74,3.97)	(1.51,5.16)	3(0%)
ZOL		3.17	(2.38,3.95)	(1.27,5.04)	4(0%)
TPTD		2.58	(2.00,3.17)	(0.77,4.40)	6(0%)
ALN		2.49	(2.05,2.91)	(0.71,4.25)	6(0%)
IBNiv		2.39	(0.83,3.78)	(0.06,4.56)	7(0%)
IBNmonthly		2.32	(1.50,3.13)	(0.41,4.24)	7(0%)
IBNdaily	·	1.85	(0.53,2.93)	(-0.30,3.85)	9(0%)
RIS		1.80	(1.22,2.37)	(0.01,3.58)	10(0%)
RLX		1.53	(0.78,2.31)	(-0.33,3.42)	11(0%)
Bis class effect		2.34	(1.26,3.28)	(-0.51,5.09)	

Figure 8: Forest plot for percentage change in femoral neck BMD

5.4 Discussion

Quantity and quality of RCT evidence

A systematic literature search identified 7,898 records. Fifty-two RCTs of non-bisphosphonates were included (published in 69 references). Of the 52 RCTs included, there were 23 RCTs comparing non-bisphosphonate to placebo, four head-to-head comparisons of non-bisphosphonates (of which one RCT also included a bisphosphonate arm), and 25 RCTs comparing a non-bisphosphonate to a bisphosphonate.

Studies varied in quality according to blinding and attrition. However, a sensitivity analysis removing lower quality studies from the NMA gave results consistent with the main analysis. Most of the included RCTs were conducted in postmenopausal women, although there were some trials of men and steroid induced osteoporosis for interventions where these were licensed indications. The majority of included trials typically excluded people with underlying conditions that influence bone metabolism, or receiving medications that influence bone metabolism.

Adverse events and HRQoL

Across studies reporting on overall mortality, event rates ranged from 0% to 6.4% across nonbisphosphonates and comparators, and between-group differences were not statistically significant. None of the included studies reported on mortality following hip fracture, mortality following vertebral fracture, or mortality following any other type of fracture.

Adverse event rates for DEN ranged from 12.1% to 94.3%, for RLX ranged from 24.0% to 96%, and for ROMO ranged from 74.6% to 82% across non-treatment switch studies, and 86.6% in one study where ROMO was switched to ALN; and for TPTD from 16.1% to 91.9%. The majority of reported and estimated between-group differences were not statistically significant for comparisons with placebo/no active treatment, head-to-head non-bisphosphonate comparisons, or comparisons with bisphosphonates. This was with the exception of one study reporting a comparison of ROMO with ALN where the estimated between-group difference was P=0.02 at 12 months in favour of ROMO and P=0.05 at 24 months in favour of ROMO switched to ALN, and one study comparing TPTD and ZOL where the between-group difference was statistically in favour of TPTD (P=0.006).

Serious adverse event rates for DEN 2% to 25.8%; RLX 2% to 18.6%; ROMO 3.2% to 12.9%; TPTD 0% to 33%. The majority of reported and estimated between-group differences were not statistically significant for comparisons with placebo/no active treatment, head-to-head non-bisphosphonate comparisons, or comparisons with bisphosphonates. This was with the exception of one study reporting comparing DEN with oral IBN where the between-group difference was statistically in favour of IBN (P=0.046).

Disease-specific measures of HRQoL were reported as showing no treatment difference between DEN and PBO, or RLX and PBO, but more improvement with TPTD than ALN, suggested by one RCT for each comparison. On generic measures of HRQoL, there was similarity for RLX and PBO (one RCT), or TPTD and RIS (two RCTs).

Discussion of NMA results

NMAs were conducted for vertebral fractures (46 RCTs, 11 interventions), non-vertebral fractures (42 RCTs, 11 interventions), hip fractures (23 RCTs, 9 interventions), wrist fractures (15 RCTs, 8 interventions), proximal humerus fractures (13 RCTs, 8 interventions) and femoral neck BMD (73 RCTs, 12 interventions).

For vertebral, non-vertebral and hip fractures and for femoral neck BMD, all treatments were associated with beneficial effects relative to placebo. For both vertebral fractures and percentage change in femoral neck BMD the treatment effects were statistically significant at a conventional 5% level for all treatments. TPTD was associated with the greatest effect for vertebral (HR 0.23, 95%CrI: 0.16-0.32, Probability of being the best (PB): 0.38), non-vertebral (HR 0.58, 95%CrI: 0.45-0.76, PB: 0.52), hip (HR 0.35, 95%CrI: 0.15-0.73, PB: 0.50) and wrist (HR 0.75, 95%CrI: 0.38-1.41, PB: 0.28) fractures, while ROMO was the most effective for proximal humerus fractures, and ROMO/ALN (HR 0.10, 95%CrI: 0-3.66, PB: 0.77) for percentage change in femoral neck BMD. For wrist and proximal humerus fractures networks there was less RCT evidence, with treatment effects for non-bisphosphonate treatments often contributed by single studies with low event numbers, and so there is considerable uncertainty in treatment effects for certain interventions in these networks.

The reported primary analyses used outcomes reported at the longest available time point for each study and assume that the fracture event rate is constant over time. Inclusion of studies reporting vertebral fractures at 12 months only did not provide any evidence to suggest different treatment effects when the analysis is limited to specific outcome measurement times. Assessment of vertebral fractures within the studies was based on both clinical and morphometric fractures. Consideration of the studies reporting clinical fractures did not provide any evidence to suggest different treatment effects according to assessment method. Similarly, sensitivity analyses conducted to assess the impact of study quality and prior bisphosphonate treatment did not suggest different treatment effects when the impacted studies were excluded.

The primary analysis model for the NMA assumed exchangeable treatment effects (i.e. a class effect) for bisphosphonate treatments and unrelated treatment effects are assumed for all non-bisphosphonate interventions. The treatment effects estimated using the primary model were broadly similar

qualitatively (i.e. direction of effect) and quantitatively (i.e. magnitude of effect) to those estimated using the standard random effects model with unrelated treatment effects for all interventions, but with the treatment effects for bisphosphonate interventions in the primary model shrunk towards the overall bisphosphonate class effect.

6 ASSESSMENT OF COST-EFFECTIVENESS

6.1 Systematic review of existing cost-effectiveness evidence

6.1.1 Methods

A comprehensive search was undertaken with a cut-off date of 16th July 2018 to identify papers published in 2006 or later which evaluated the cost-effectiveness of DEN, RLX, ROMO or TPTD in any of the patient groups eligible for risk assessment within CG146.⁸ Subject headings and keywords for 'osteoporosis' were combined with an economic filter without named interventions from 2014 until 2018 to update the searches conducted for TA464.¹⁴⁰ In addition, for records between 2006 and 2013, each of the named non-bisphosphonate interventions (RLX, DEN, ROMO and TPTD) were combined with an economics search filter to cover the years between 2006 and 2013 as studies for interventions would not have been retrieved in the review for TA464. The search strategy is provided in Appendix 1. The searches were limited to those published since the start of 2006 because studies reporting cost-effectiveness estimates for RLX, DEN and TPTD, are assumed to have been captured in the searches and reviews that informed TA160, TA161¹⁴¹ and TA204¹⁴² and studies reporting the cost-effectiveness of ROMO are not expected prior to 2006. However, any relevant studies published prior to 2006 which were identified within these previous appraisals or within published systematic reviews were included.

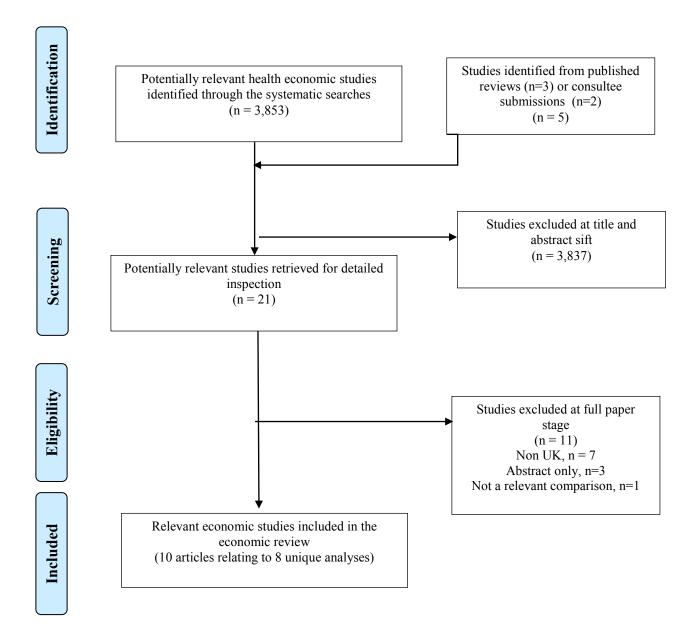
The following databases were searched:

- MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (Ovid) 1946 to 2018
- Embase (Ovid) 1974 to 2018
- Database of Abstract of Reviews of Effects (CRD Database) 1995 2015
- Health Technology Assessment Database (CRD Database) 1995 2016
- NHS Economic Evaluation Database (CRD Database) 1995 2015

Published economic evaluations cited within the consultee submissions were cross-checked with those identified from the search. Searches of key included studies were undertaken using the Web of Science.

6.1.1.2 Inclusions / exclusion criteria

Studies were included in the review if they reported full economic evaluations comparing DEN, RLX, ROMO or TPTD against each other, against bisphosphonates or against no treatment. Studies were included if any of the population considered would be eligible for risk assessment within CG146.¹⁴³ For example studies on post-menopausal women were included whether or not they specified that the women had risk factors as those aged over 65 would be eligible for risk assessment under CG146 even without risk factors being present.¹⁴³ Studies which did not assess outcomes using QALYs or


did not report the incremental cost per QALY of alternative treatment strategies were excluded. Studies which did not assess the cost-effectiveness within a UK setting were excluded to ensure consistency with the NICE reference case. Studies which assessed the cost-effectiveness of treatment at non-licensed doses were also excluded as were studies which used treatments for other indications such as the treatment of Paget's disease or metastatic bone disease. Studies published prior to 2006 were included when identified within existing NICE appraisals or published systematic reviews as described above. Studies were included only if they were reported as full papers with conference abstracts being excluded from the review as they present insufficient detail to allow for a rigorous assessment of study quality. Studies not reported in English language were also excluded. *De novo* economic analyses reported within the consultee submissions were included if they met the inclusion criteria of the review.

6.1.1.3 Review methods

The results of the economic searches described above were combined with the results of the searches conducted for the health related quality of life review (see appendix 11) and a combined sift was conducted to pick up any cross-relevant papers. The combined database was sifted by title and abstract by one reviewer. The full papers of studies which potentially met the inclusion criteria were retrieved for further inspection the same reviewer. Studies included in the systematic review were examined to determine whether they met the NICE reference case.¹⁴⁴ We stated in our protocol that we would critically appraise the included cost-effectiveness analyses using the checklist published by Philips *et al.*,¹⁴⁵ but this was not done due to time constraints.

6.1.2 Results

The study selection process is summarised in the form of a PRISMA diagram³⁴ in Figure 9, with the most common reason being that they were non-UK studies.

Figure 9: Flow diagram of study selection process (adapted from PRISMA) – costeffectiveness review

6.1.2.1 Quantity of evidence identified

The database search identified 3,853 citations across the combined cost-effectiveness and health related quality of life searches. Three additional articles¹⁴⁶⁻¹⁴⁸ were identified from the reference list of published reviews. None of the consultee submissions identified any published analyses not already picked up by through the systematic search but two reported *de novo* economic analyses which were included giving a total of 3,858 citations. Of these 3,837 were excluded at the title and abstract stage and a further 11 were excluded at the full paper stage with the most common reasons being that they were conference abstracts with limited data presented. Appendix 10 provides the reasons for exclusion for those papers which were not excluded based on title or abstract.

A total of 10 articles^{20, 98, 140, 146-152} were included however, one paper (Kanis 2002)¹⁴⁷ reported a previous version the model reported by Stevenson *et al.*¹⁴⁸ and was therefore not separately extracted and two articles provided the ERG's summary of the company submission for TA204.^{150, 152} Therefore, the review included 8 unique cost-effectiveness analyses. Additional documents related to TA204¹⁴² were downloaded from the NICE website to allow a full examination of this model (NB: this model is referred to as Waugh 2011 to avoid confusion with the Amgen submission for the current MTA). The model described in the Amgen submission for TA204^{150, 152} but these were separately extracted due to differences in the decision problem.

Although the assessment report for TA464 by Davis *et al.*¹⁴⁰ did not strictly meet the inclusion criteria for this review, as it did not include any non-bisphosphonate interventions, it has been included as it was stated in the protocol for this MTA that in order to ensure consistency across related appraisals, the economic analysis conducted to inform TA464⁹ was intended to be used as the starting point for any cost-effectiveness analysis conducted by the Assessment Group (AG). Therefore, it was necessary to compare this model against relevant published analyses to identify any significant areas of difference.

6.1.2.2 Study characteristics

The characteristics of the included studies are summarised in Table 5. Here we describe the key differences between the models in terms of their population, structure, and assumptions.

Population and subgroups

Six of the included studies [Kanis 2005, Stevenson 2005, Kanis 2008, Waugh 2011, Strom 2013, UCB 2018]^{20, 146, 148, 149, 151, 152} were in post-menopausal women. The CS by UCB restricted the population modelled to postmenopausal women at imminent risk of fracture, which it characterised as those with a recent major osteoporotic fracture.²⁰ Whilst no results were presented for men, UCB argued that the results would also be applicable to men as it is assumed that men will not respond differently to postmenopausal women. The AG model for TA464 (Davis *et al.*)¹⁴⁰ included all patients eligible for risk assessment under CG146,¹⁴³ therefore including both men and women, those with steroid induced osteoporosis and those with and without a prior fracture. However, Davis *et al.* examined subgroups according to absolute fracture risk rather than according to any of these specific patient characteristics. The submission by Amgen did not restrict the population to postmenopausal women and instead included people eligible for risk assessment under TA464 except that the only risk cut-offs examined in the Amgen submission were 10 year risks of 10% and 20%, whereas Davis *et al.*

reported outcomes for 10 risk deciles and also used regression to estimate thresholds for cost-effective intervention when treating risk as continuous variable.

Several of the analyses presented results separately for those with and without a prior fracture (Kanis 2005, Kanis 2008, Stevenson 2005. Waugh 2011)^{146, 148, 149, 152} or presented separate estimates for subgroups defined by combinations of age and T-Score, (Waugh 2011),¹⁵² combinations of age and number of risk factors (Strom 2013)¹⁵¹ or combinations of T-Score and risk factors (Waugh 2011).¹⁵² Two studies estimated the threshold for cost-effective intervention and expressed this using 10-year risk of fracture (Davis 2016, Strom 2013).^{140, 151} Two studies provided results for patients with a specific level of absolute fracture risk (Amgen and UCB)^{20, 98} but explored alternative specified levels of absolute fracture risk in scenario analysis.

None of the included economic evaluations provided an incremental analysis across all of the interventions and comparators identified in the scope of this appraisal. Two provided comparisons of RLX versus no treatment (Kanis 2005 and Kanis 2008).^{146, 149} Strom *et al.* (2013)¹⁵¹ compared DEN to bisphosphonates (ALN and RIS) and no treatment. Stevenson *et al.* (2005)¹⁴⁸ conducted an incremental analysis across multiple technologies but did not include DEN or ROMO. The submission by UCB²⁰ did not provide a comparison against oral or i.v. IBN but included all other comparators. The Amgen submission⁹⁸ stated that DEN was primarily used in primary care by patients unable to take an oral bisphosphonates and therefore the main comparators were RLX or no treatment. However, secondary analyses were provided comparing against i.v. ZOL and oral bisphosphonates. The company submission for TA204, described by Waugh *et a.*,¹⁵² also restricted the decision problem to patients unable to take bisphosphonates. Their primary analysis compared DEN to RLX and no treatment, but they also included comparisons against i.v. IBN, i.v. ZOL, TPTD and oral bisphosphonates in secondary analyses. Davis *et al.*¹⁴⁰ included only bisphosphonates and no treatment in their incremental analysis, which was consistent with the scope of TA464.¹⁴⁰

Model structure and outcomes modelled

Seven studies (Kanis 2005, Stevenson 2005, Kanis 2008, Waugh 2011, Strom 2013, Amgen 2018, UCB 2018)^{20, 98, 146, 148, 149, 151, 152} used a Markov model framework with five using a cohort-level modelling approach and two (UCB 2018, Stevenson 2005)^{20, 148} using a patient-level Markov simulation. Four of the Markov models employed a 6 monthly cycle length (Strom 2013, Waugh 2011, Amgen, UCB)^{20, 98, 151, 152} whilst the other three (Kanis 2005, Kanis 2008, Stevenson 2005)¹⁴⁸ used an annual cycle length. The AG for TA464 used a discrete event framework which is a patient level simulation which does not require the use of fixed time cycles. All of the studies included separate health states for hip fracture and vertebral fracture and all of the studies incorporated long-term consequences for these two fracture sites either by incorporating post-hip and post-vertebral

fracture health states in a cohort-level model or by tracking patient's prior fracture status within a patient-level simulation. All studies included wrist fracture. All but one study (Kanis 2005)¹⁴⁶ included fractures at sites other than the hip, wrist and vertebrae, but some modelled wrist fractures separately from other fracture sites (Davis 2016, Stevenson 2005, Kanis 2005, Waugh 2011, Amgen 2018, Strom 2013).^{98, 140, 146, 148, 151, 152} One study (UCB)²⁰ bundled wrist fracture together in a health state with fractures at other sites. Davis *et al.*¹⁴⁰ incorporated separate health states for wrist and proximal humerus fracture; fractures at additional sites (femoral shaft, humeral shaft, pelvis, scapula, clavicle, sternum, ribs, tibia and fibula) were incorporated by increasing the incidence of fractures at the four main sites (hip, wrist, spine and proximal humerus) with the allocation of these additional fractures to the main fracture type expected to have similar costs and utilities. The majority of the other studies included fractures at additional sites within a single health state with the costs, mortality and utility estimates being based on either a weighted mean across the included sites or an assumption that the consequences would be consistent with those for a known fracture site such as the wrist.

The use of a cohort-level approach meant that in four models future fractures were restricted for patient experiencing a hip or vertebral fracture (Strom 2013, Kanis 2005, Kanis 2008, Waugh 2011)^{146, 149, 151, 152} to ensure that patients did not transition to a health state with lower costs or better quality of life when experiencing a subsequent fracture that was less severe than the initial fracture experienced. In general, the approach taken was that patients experiencing a hip fracture were only at risk of subsequent hip fractures and patients experiencing a vertebral fracture were only at risk of hip or subsequent vertebral fractures. One model (Amgen 2018)⁹⁸ which used a similar hierarchical Markov structure adjusted for the missing fracture outcomes in patients having hip and vertebral fractures by estimating the "downstream" costs of subsequent fractures that were prevented by the hierarchical Markov structure. It was not necessary to restrict the sequence of fractures experienced in either of the patient level simulations as costs and utilities can be made dependent on the individual's entire history. However, Davis *et al.*¹⁴⁰ restricted the number of fractures, four rib fractures and two pelvic fractures.

Three studies included non-skeletal health outcomes, with three including breast cancer (Kanis 2005, Kanis 2008, Stevenson 2005),^{146, 148, 149} two including coronary heart disease CHD (Kanis 2005 and Stevenson 2005)^{146, 148} and two including either stroke or VTE (Kanis 2005, Kanis 2008).^{146, 149} All except 1 study (Kanis 2005)¹⁴⁶ reported including an increased risk of nursing home admission after hip fracture (Stevenson 2005, UCB, Amgen, Strom 2013, Kanis 2008, Waugh 2011, Davis 2016).^{20, 98, 140, 148, 149, 151, 152} None of the studies included an increased risk of nursing home admission following fractures at other sites but Davis *et al.*¹⁴⁰ presented a sensitivity analysis in which an equivalent rate of nursing home admission occurred for vertebral fracture and hip fracture.

Treatment duration

Four of the studies modelled a maximum treatment duration of 5-years for all treatments (Strom 2013, Kanis 2008, Kanis 2005, Waugh 2011).^{146, 149, 151, 152} Davis *et al.*¹⁴⁰ assumed a 5-year intended treatment duration for all bisphosphonates except i.v. ZOL where a 3-year intended treatment duration was assumed. Stevenson *et al.*¹⁴⁸ assumed a 5-year treatment duration for all treatments except TPTD, where the treatment duration was assumed to be 18 months. One study (Amgen)⁹⁸ assumed a 10-year treatment duration of DEN, 3 years for ZOL, and 5 years for RLX. Another study assumed a 4-year treatment duration for all interventions except DEN which was assumed to be given lifelong (UCB).²⁰ (Although it was noted that in the actual model persistence data were set to zero from 5 years so it is unclear what treatment duration was actually implemented).

Treatment initiation, monitoring, and administration

All but one of the studies (Davis *et al.*)¹⁴⁰ incorporated resource use for the monitoring of treatment. None of the studies included any costs for the administration of oral therapies. However, there was inconsistency across the studies for the administration costs for subcutaneous and i.v. therapies. The exact costs for administration and monitoring are discussed further in section 6.2.1.8, where we also describe the approach taken in the AG analysis.

Persistence

Persistence was included in either the basecase or sensitivity analysis within six of the models (Davis, UCB, Amgen, Waugh, Strom 2013, Kanis 2008).^{20, 98, 140, 149, 151, 152} In TA464,¹⁴⁰ the persistence data applied in the model were identified from a review of systematic reviews. In the other models, one used published estimates but did not describe how they were identified (Strom 2013),¹⁵¹ one used a mixture of published and unpublished data (UCB),²⁰ two used data on file from an unpublished study (Amgen, Waugh),^{98, 152} and one applied the assumption made in the model that informed TA160 and TA161. Many of the estimates came from analyses of real world data sources, such as administrative databases, with three models incorporating estimates from a large UK primary care database (CRPD/GPRD) (Amgen, UCB, Waugh).^{20, 98, 152} A full discussion of the data sources used in these models and the choice of data source for the AG model is provided in Section 6.2.1.4.

Treatment effectiveness beyond the treatment period

All of the studies assumed that treatment effectiveness falls linearly over time after patients discontinue treatment. The period between treatment discontinuation and when the treatment effect has fallen to zero is known as the offset period. Three studies assumed an offset period equal to the treatment duration for all interventions (Strom 2013, Kanis 2005, Kanis 2008).^{146, 149, 151} Davis *et al.*¹⁴⁰ and Stevenson *et al.*¹⁴⁸ made the same assumption for all but one intervention. Due to the shorter

treatment period for TPTD (18 months), Stevenson *et al.*¹⁴⁸ applied the full treatment effect was for 3.5 years after the end of treatment and this was noted as a very favourable assumption. Davis *et al.*¹⁴⁰ assumed a longer offset (7 years) for ZOL such that the treatment effect fell to zero by 10 years despite the shorter treatment duration of 3 years. In the basecase analysis where the treatment persistence was less than three years, the same ratio of offset period to treatment duration was applied by Davis *et al* (i.e. offset = 7/3 x treatment persistence). Two studies assumed a 1 year offset for all treatments (Waugh 2011 and Amgen 2018)^{98, 152} and one study(UCB)²⁰ assumed an offset equal to treatment duration for all interventions except for DEN where it was set to 1 year. The evidence regarding offset periods and the choice of offset period assumed in the AG model is discussed further in Section 6.2.1.6.

Adverse effects

All of the studies included some adverse effects (AEs) in either their basecase or their sensitivity analysis but there was considerable inconsistency between the studies in terms of the adverse events included. Three papers included gastrointestinal (GI) AEs in their basecase analysis (Davis 2015, UCB, Waugh 2011)^{20, 140, 152} and two included them in a sensitivity analysis (Kanis 2008, Strom 2013).^{149, 151} Amgen included GI AEs for oral bisphosphonates in the model reported in the company submission for TA204 (Waugh *et al*)¹⁵² but did not include any in the model reported in the company submission for the current appraisal.⁹⁸ Stevenson et al. did not include any GI adverse effects for bisphosphonates in their analysis, but their model was later adapted to include AEs for GI bisphosphonates in an analysis by Stevenson and Davis¹⁵³ conducted to inform TA160 and TA161. There was some consistency in the assumptions regarding GI AEs across the various models with three using the assumptions from TA160 and TA161 (Waugh, Kanis 2008, Strom 2013)^{149, 151, 152} and one (UCB)²⁰ using assumptions consistent with those applied in TA464 (Davis *et al*)¹⁴⁰ which themselves were very similar to those applied by Stevenson and Davis.¹⁵³ Davis et al.¹⁴⁰ included a one-off QALY loss to account for flu-like symptoms following administration of i.v. bisphosphonates. None of the other studies included any AEs for i.v. bisphosphonates. Two studies included VTE as a side-effect for RLX (Kanis 2005, Kanis 2008).^{146, 149} Amgen included cellulitis (a common bacterial skin infection) as an AEs for DEN in the model reported in the company submission for TA204 but did not include any AEs for DEN in the model reported in the company submission for the current appraisal.⁹⁸ Strom et al.¹⁵¹ did note that skin infections are more frequently reported for DEN but did not include cellulitis in their model. No studies reported including AEs for ROMO or TPTD. None of the studies included atypical femoral fracture or ONJ as AEs.

Mortality following fracture

Davis *et al.*¹⁴⁰ incorporated post-hip fracture mortality by assuming that a fixed proportion (which was gender and age specific) of patients experiencing hip fracture would die 3 months after fracture. This

was based on evidence showing from a study by Tosteson *et al.*¹⁵⁴ which found that the excess risk of mortality was limited to the first 6 months after fracture when adjusting for a number of prognostic factors including pre-fracture health status and evidence from another study by Abrahamsen *et al.*¹⁵⁵ which found that approximately half of all excess mortality had occurred at 3 months. Davis *et al.*¹⁴⁰ incorporated an increased risk of fracture following hip and vertebral fracture and assumed no increased risk for fractures at other sites. The same temporal pattern of risk was assumed for vertebral fractures.

Four of the other models identified in the review (Amgen, UCB, Waugh 2010, Strom 2013)^{20, 98, 151, 152} applied HRs to the general population mortality rate, with the hazard ratios for hip and vertebral fracture applied for 8 years following fracture and the HRs for non-hip non-vertebral fractures applied for 1 year. The data inputs appear to be consistent across these four models, with the primary source cited being Johnell et al. 2004¹⁵⁶ for clinical vertebral fractures, Jonsson et al.¹⁵⁷ for hip fractures and Barrett et al.¹⁵⁸ for "other fractures". These four models all assumed that only 30% of the increased risk was attributable to the fracture itself and down weighted the additional mortality risks accordingly. Kanis et al. (2005)¹⁴⁶ cited the same data source¹⁵⁶ for mortality after vertebral fracture but details are not provided on the duration over which the HR is applied or the proportion of excess risk that is considered attributable to fracture. Kanis et al. (2008)¹⁴⁹ cited alternative sources (Parker and Anand, Kanis 2004, Kanis 2003)¹⁵⁹⁻¹⁶¹ and stated that 30% is assumed to be causally related, but does not describe the duration over which the HRs are applied. Stevenson et al.¹⁴⁸ used unpublished estimates from the Anglian audit of hip fracture,¹⁶² which were reported for mortality risk for several different age bands, and adjusted these to remove those deaths not causally related to hip fracture using the data from Parker and Anand.¹⁶¹ Stevenson et al.¹⁴⁸ based their risk of death following vertebral fracture on a study by Centre et al. (1999).¹⁶³ Stevenson et al.¹⁴⁸ included a 2-fold increase in mortality following proximal humerus fracture, citing Johnell *et al.*,¹⁵⁶ but assumed no increased risk of mortality following wrist fractures. None of the published models identified sources of data that were more recent than those identified by the AG during TA464.

<i>First author</i> Location	Population Interventions	Type of evaluation	Perspective	Time Horizon	Cost year Cost discount rate	Cost source	Benefits population Benefits discount rate	Benefits source Benefits instrument	Effectiveness data
Kanis 2005 ¹⁴⁶ (MORE)	Postmenopaus al women – subgroups for with and without prior fracture RLX, no treatment	Cohort Markov model	UK NHS	Not stated	2002	Published estimates and reference costs	Patient only 1.5%	EQ-5D in Swedish patients using UK valuation set	Single study estimate [MORE] In addition to fracture outcomes, includes beneficial effect on breast cancer and heart disease and adverse effect on VTE.
Stevenson 2005 ¹⁴⁸ UK	Postmenopaus al women Bisphosphonat es, RLX; TPTD; no treatment*	Patient level Markov model	UK NHS & PSS	Lifetime	2001/2 6%	Fracture costs were based on published estimates that were uplifted	Patient only 1.5%	Observational data EQ-5D	Systematic review and Meta-analysis conducted by authors
Kanis 2008 ¹⁴⁹ (BONE)	Postmenopaus al women Bisphosphonat es, RLX,* no treatment	Cohort Markov model	UK NHS (includes nursing home admission)	Lifetime	3.5%	Published literature (UK estimates of length of stay and cost per bed day and Swedish estimates of ratio of outpatient to inpatient costs	3.5%	EQ-5D in Swedish patients using UK tariff	Published systematic review and meta-analysis including breast cancer reduction for RLX

Table 5: Characteristics of included studies – cost-effectiveness review

<i>First author</i> Location	Population Interventions	Type of evaluation	Perspective	Time Horizon	Cost year Cost discount rate	Cost source	Benefits population Benefits discount rate	Benefits source Benefits instrument	Effectiveness data
Scotland /Waugh 2011/Amge n submission for TA204 ¹⁵²	Postmenopaus al women unable to take, comply with or tolerate bisphosphonat es – 70 years, T-score -2.5; Subgroups with and without prior fracture. DEN, RLX, i.v. bisphosphonat es, TPTD, oral bisphosphonat es, no treatment*	Cohort Markov model	UK NHS and PSS	Lifetime	2009 3.5%	HRG costs and BNF drug prices	Patients 3.5%	EQ-5D using UK tariff	Company's systematic review and meta-analysis with indirect comparison (Bucher method)
Strom 2013 ¹⁵¹	Postmenopaus al women – subgroups by fracture risk DEN, ALN, RIS, no treatment*	Cohort Markov model	UK NHS	Lifetime	2010 3.5%	Published literature (UK estimates of length of stay and cost per bed day and Swedish estimates of ratio of outpatient to inpatient costs)	Patient only 3.5%	EQ-5D in Swedish patients using UK tariff	Systematic review and meta-analysis Persistence incorporated Treatment effect after cessation incorporated

<i>First author</i> Location	Population Interventions	Type of evaluation	Perspective	Time Horizon	Cost year Cost discount rate	Cost source	Benefits population Benefits discount rate	Benefits source Benefits instrument	Effectiveness data
Davis 2016 ¹⁴⁰	People eligible for risk assessment within CG146 Bisphosphonat es, no treatment	Discrete event simulation (patient level model to capture individual's history)	UK NHS and PSS	Lifetime	2014 3.5%	NHS reference costs, PSSRU unit costs, national drug tariff and database of generic drug costs	Patient only 3.5%	EQ-5D using UK tariff from published studies identified by systematic review	Author's systematic review and network meta- analysis
UCB 2018 ²⁰	Women at imminent risk of fracture (recent major fracture, 10 year risk of 30%) ROMO, ALN, RIS, i.v. ZOL, TPTD, DEN.	Patient level Markov model	UK NHS and PSS	Lifetime	2017/18 3.5%	NHS reference costs, PSSRU unit costs, national drug tariff (same source cited for fracture costs but different figures provided)	Patient only 3.5%	Observational study EQ-5D using UK tariff.	Company's systematic review and network meta- analysis
Amgen 2018 98	People eligible for risk assessment under CG146 who cannot take oral bisphosphonat es DEN, RLX, no treatment (i.v. ZOL, and oral bisphosphonat es in	Cohort Markov model	UK NHS and PSS	Lifetime	2016/17 3.5%	NHS reference costs, PSSRU unit costs, national drug tariff and database of generic drug costs (costs as for TA464 except changes in monitoring and administration costs)	Patient only 3.5%	Systematic review in TA464 EQ-5D using UK tariff	Published systematic review and network meta- analysis (TA464)

<i>First author</i> Location	Population Interventions	Type of evaluation	Perspective	Time Horizon	Cost year Cost discount rate	Cost source	Benefits population Benefits discount rate	Benefits source Benefits instrument	Effectiveness data
	secondary analysis)								

* other non-relevant interventions were also modelled e.g. oestrogen, strontium ranelate

6.1.2.3 Consistency with the NICE reference case

All of the included studies measured direct health effects for patients and none included any benefits for carers. All of the studies reported using published estimates of utility following fracture from studies that had measured utility using the EQ-5D using the UK general population valuation set. There was some inconsistency in the approach taken to estimating utility following nursing home admission with one study reporting no additional disutility (Waugh 2011),¹⁵² one study reporting using a value based on an expert panel (Stevenson 2005),¹⁴⁸ one study reporting a value based on EQ-5D (Davis *et al.*)¹⁴⁰ and several studies not reporting the approach taken to estimating utility values for nursing home admission (Strom 2013, Kanis 2005, Kanis 2008, UCB, Amgen).^{20, 98, 146, 149, 151}

One study based its effectiveness estimate on a single RCT (Kanis 2005)¹⁴⁶ and only reported a comparison between the interventions included in the RCT (RLX versus no treatment). The other studies all sourced their effectiveness estimates from a systematic review and meta-analysis, although only the three most recent models used network meta-analysis to estimate the relative treatment between active comparators (Davis 2016, UCB, Amgen).^{20, 98, 140} One study used the method published by Bucher *et al.* to conduct an indirect comparison (Waugh 2011).¹⁵² Two studies (Strom 2013, Stevenson 2005)^{148, 151} present incremental analyses that appear to be based on a naïve indirect comparisons based on equivalent outcomes for patients receiving placebo. The remaining study only provided comparisons against no treatment (Kanis 2008).¹⁴⁹

Five studies explicitly reported using an NHS and personal social services (PSS) perspective (Stevenson 2005, Waugh 2011, Davis 2016, UCB and Amgen).^{20, 98, 140, 148, 152} Three studies reported taking a healthcare perspective (Kanis 2005, Kanis 2008, Strom 2013)^{146, 149, 151} but two of these (Kanis 2008 and Strom 2013)^{149, 151} also included nursing home costs which are likely to fall under PSS rather than NHS in a UK context, although some may also fall under societal costs if families pay privately for nursing home care. Discounting consistent with the current NICE reference case (3.5% for both costs and QALYs)¹⁴⁴ was applied in all but two studies (Stevenson 2005 and Kanis 2005)^{146, 148} who applied discounting at rates consistent with previous NICE methods guidance (6% for costs and 1.5% for QALYs). The time horizon is not explicitly stated for the 2005 publication by Kanis *et al.* but otherwise, all of the included economic evaluations incorporated a lifetime horizon, although in the analysis by Stevenson *et al* (2005)¹⁴⁸ the Markov model was used for the first 10 years and then additional calculations were used to estimate QALYs gained over the remaining lifetime.

6.1.2.4 Quality and applicability of studies

The only analyses considered to be broadly consistent with the NICE reference case were the models described in the submissions by UCB²⁰ and Amgen⁹⁸ and the analysis by Davis *et al.* ¹⁴⁰ which informed TA464. None of the other models provided an incremental analysis informed by a

systematic review and network meta-analysis, which is a significant deviation from the NICE reference case and may be a potential source of bias. However, it is noted that the analysis by Davis *et al.*¹⁴⁰ was not relevant to the decision problem, and was included purely to allow comparisons to be made between the published models and the model we intended to adapt for this appraisal.

6.1.2.5 Study conclusions

Due to the concerns regarding applicability to the decision problem and consistency with the NICE reference case, for several of the studies^{140, 146, 149-152} included in the review, results are only summarised here for the UCB²⁰ and Amgen⁹⁸ submission.

In the Amgen company submission,⁹⁸ which investigated the cost-effectiveness of DEN in a population of patients with a ten-year fracture risk of 20%, DEN was found to be associated with an ICER of £27,792 per QALY versus RLX and £27,363 per QALY versus no treatment. At the same risk of facture, DEN was also found to dominate ZOL.

In the UCB submission, ²⁰ which investigated the cost-effectiveness of a treatment sequence of 1 year of ROMO followed by 4 years of ALN (ROMO/ALN), in a population of post-menopausal women with a ten-year fracture risk of 30%, ROMO/ALN was found to be associated with an ICER of per QALY versus ALN alone and per QALY versus no treatment. The UCB submission also presented scenario analyses comparing ROMO/ALN to RIS, ZOL, RLX, DEN, TPTD (18 months and 24 months). The ICERs for ROMO/ALN when compared against these alternative comparators were and the advantagement of ROMO/ALN when compared against these alternative comparators were and the advantagement of ROMO/ALN to RIS, respectively when using the PAS price for ROMO.

6.1.2.6 Review conclusions

The review has identified that there are no published cost-effectiveness studies which are compare all of the interventions and comparators specified in the scope of this appraisal across the broad population specified in the scope, which is patients eligible for risk assessment under CG146. Whilst the Amgen and UCB submissions,^{20, 98} provide an incremental analysis agaist the majority of the interventions and comparators specified in the scope (neither compared against i.v. IBN), their analyses are restricted to high risk subgroups of the population. However, this review was useful in identifying areas where the model used in TA464 differed from the models included in the review. These are discussed further in section 6.2 where we describe the changes made to the model reported by Davis *et al.*¹⁴⁰

6.2 Independent economic assessment

6.2.1 Methods

Having considered the review of published models and the models included within the company submissions, the AG decided to adapt the model used to inform TA464 (Davis *et al.*)¹⁴⁰ rather than developing a *de novo* model for this assessment. However, based on the review of models, the AG recognised that there were several areas where it would be useful to consider whether the model should be updated or adapted. The areas identified for consideration were:

- Treatment persistence the duration of time the patient persists with treatment
- Offset period the period between when treatment ends and the treatment effect reaches zero
- Incorporation of adverse events specific to non-bisphosphonates
- Resource use associated with monitoring and administration of treatments
- Utility values following fracture
- Drug prices
- Disease costs (i.e. fracture, nursing home admission)

It was not feasible to conduct a full systematic review of the literature to inform each of these updates to the model. Instead, the AG considered any additional sources of evidence provided in the company submission or cited within the published cost-effectiveness studies. This was supplemented by ad-hoc searches using google scholar to identify any recent systematic reviews. A more rigorous approach was taken to identifying updated estimates of utility following fracture. For this we conducted a full systematic search for studies reporting utility pre- and post-fracture as measured by the EQ-5D. The aim of this review was to update the review conducted for TA464 by Davis *et al.*¹⁴⁰

In addition to these updates the AG also identified that changes to the VBA code would be needed to: (a) increase the number of treatment strategies that can be modelled, (b) allow for drug specific offset periods and (c) allow for sequences of treatments to be modelled.

Unless otherwise stated, all other aspects of the model remain unchanged from the model used to inform TA464⁹ as described in the Assessment Report for TA464 (Davis *et al.* 2016),¹⁴⁰ with the additional change regarding nursing and residential care home costs described in the addendum provided before the second committee meeting (Davis *et al.* 2017). The other changes documented in the addendum are superseded by the updated NMA reported in section 5.3 and the need to update drug costs to reflect current prices.

6.2.1.1 Model structure

The ScHARR osteoporosis model (used in TA464) is a discrete event simulation (DES) which simulates the clinical events occuring over the life-times of individual patients with heterogenous

characteristics. A patient-level simulation approach was chosen to allow the future events expererinced by patients to be affected by prior events such as incident fractures. We chose to model a heterogeneous population because we anticipated that certain patient characteristics, such as age, would be non-linearly related to cost-effectiveness. In this situation the cost-effectiveness for a patient with average characteristics is not the same as the average cost-effectiveness when taking into account the distribution of that characteristic across the population.

In general, within a DES model, the patient's progression through the model is determined by the events that occur rather than by the health states they occupy. Figure 10 shows the clinical events that can occur within the patient's lifetime with the arrows showing which events can occur following other events. (N.B. This is not a state transition diagram as patients do not reside in the state defined by the most recent event until the next event is experienced). In the ScHARR osteoporosis model the main clinical events were fracture, death and new admission to residential care. Fractures at different sites were processed using separate fracture events for: hip; wrist; vertebral; and proximal humerus. These are the sites most strongly associated with osteoporosis and these are the fracture sites included by both the QFracture and FRAX risk calculators. Fractures at additional sites (femoral shaft, humeral shaft, pelvis, scapula, clavicle, sternum, ribs, tibia and fibula) have been incorporated by increasing the incidence of these four event types rather than by adding additional competing events.

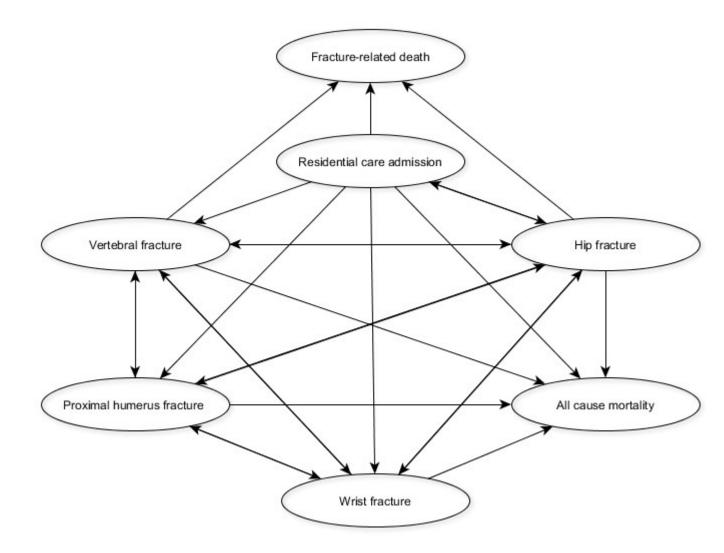


Figure 10: Clinical events that can occur during a patient's lifetime in the DES

In a DES no changes are made to the patient's attributes between events, but the event list which determines the future events experience, can be re-sampled each time an event occurs to incorporate any changes in patient characteristics. Dummy events were included in the model to ensure that patient attributes were updated at 1 year after the start of the model, at the end of treatment, at the end of the offset period, at 5 years, at 10 years and 1 year after each incident fracture. Linear approximation is used to adjust for age-related changes in utilty between events.

Utility in the model is based on a combination of gender, age, fracture history and residential status (community dwelling or institutionalised). Separate utility multipliers and costs are applied to the first and subsequent years after fracture to reflect the differences between the acute and chronic impact of fracture. The chronic cost is set to the maximum chronic cost for all fracture events experienced so far. Therefore, the maximum chronic cost for any individual is the cost for institutionalised patients. Drug costs are applied from the start of the simulation until the end of the treatment period and are

assumed to accrue at a constant rate across time. Death does not incur any additional costs within the model but the acute cost of fracture is incurred for both fatal and non-fatal fractures.

The model also incorporates the following structural assumptions:

- there are no restrictions on the sequence of fractures that can be experienced
- the maximum number of fractures that can be experienced is limited to 1 per bone (i.e. 2 hip fractures) with an additional limit of 4 vertebral fractures, 4 rib fractures and 2 pelvic fractures.
- death attributable to fracture occurs 3 months after fracture with other fracture events possible during this period but no mortality from non-fracture related causes
- incident fractures increase the risk of future fractures
- a fracture event occurring less than one year after a previous event supersedes the dummy event used to update patient attributes 1 year after fracture thus reducing the acute period for the earlier fracture
- nursing home admission can only occur following fracture and therefore patients who are community dwelling at the start of the simulation do not transfer to nursing home care as they age unless this is simulated to occur following a fracture.

A brief overview of the key features of the ScHARR osteoporosis model used in TA464 is provided in Table 6, alongside a description of the key changes to the model since TA464. The only deviation from the NICE reference case to note is that the utility estimates for ONJ has been valued using the United States rather than the UK valuation set for EQ-5D.

Model feature	Description of model in TA464	Description of revised model
Decision problem	To assess the cost-effectiveness of bisphosphonates	To assess the cost-effectiveness of non-bisphosphonates compared
	compared with no treatment at varying levels of absolute	with bisphosphonates and no treatment at varying levels of absolute
	fracture risk as defined by the FRAX and QFracture risk	fracture risk as defined by the FRAX and QFracture risk assessment
	assessment tools.	tools.
Type of economic	Cost-effectiveness analysis with benefits expressed as	No change
evaluation	QALYs	
Population /	The model simulates the heterogeneous patient population	No change
subgroups	eligible for risk assessment under CG146.	(see section 6.2.1.2)
	The population is stratified into 10 risk categories and	
	results presented for each risk category. This is done once	
	using FRAX and once using QFracture.	
Interventions	ALN	DEN
	RIS	RLX
	oral IBN	ROMO
	I.V. IBN	TPTD
	I.V. ZOL	(see section 6.2.1.3)
Comparators	No treatment	No treamtment and the bisphosphonates listed as comparators for
		TA464
		(see section 6.2.1.3)
Perspective	NHS and Person Social Services (PSS)	No change
Model type	Discrete event simulation with heterogeneous patient	No change

Table 6:Overview of the modelling methodology and key data sources

Model feature	Description of model in TA464	Description of revised model		
	population			
Model events	Clinical events are fracture, death (all-cause mortality and	No change		
	fracture related mortality) and nursing home admission.	(see description of model events in section 6.2.1.1)		
	There are four possible fracture events (hip, wrist, vertebral			
	and proximal humerus) with fracture at other sites included			
	by increasing the incidence of these events.			
	Dummy events are used to update attributes one year after			
	fracture and to update the fracture risks once treatment			
	finishes.			
Time horizon	Lifetime (up to age of 100)	No change		
Duration of treatment	Mean duration of persistence with treatment from	Data sources for persistence with oral bisphosphonates have been		
	observational studies.	updated. Additional persistence data have been identified for non-		
		bisphosphonates		
		(see section 6.2.1.4)		
Natural history	Time to fracture is based on the estimate of absolute	No change		
	fracture risk for major osteoporotic fractures (hip, wrist,			
	proximal humerus and vertebral) provided by either			
	QFracture or FRAX which are uplifted to include fractures			
	at additional sites. The distribution of fractures across			
	different sites is based on incidence data from Sweden. The			
	increased risks of fracture following incident fracture are			
	based on a published systematic review.			

Model feature	Description of model in TA464	Description of revised model		
Effectiveness	The hazard ratios from the systematic review and network	The NMA has been updated to include studies for non-		
	meta-analysis are applied for the duration of treatment.	bisphosphonates and any new bisphosphonates studies published		
	Some effectiveness is assumed to persist beyond treatment	since TA464.(see section 6.2.15)		
	during the 'offset period'. A linear decline in treatment	Data has been identified on the duration of treatment effect after		
	effect is assumed during this time.	treatment cessation for the non-bisphosphonates. (see section		
		6.2.1.6)		
		No changes were made to offset assumptions for bisphosphonates.		
		(see section 6.2.1.6)		
Adverse events	Upper GI side-effects for oral bisphosphonates and flu-like	Additional adverse events have been incorporated for;		
	symptoms for i.v. bisphosphonates are included by applying	• ONJ		
	one-off cost and QALY deductions in the first month of	• VTE		
	treatment.	• Cellulitis		
		(see section 6.2.1.9)		
Mortality	All-cause mortality is based on UK life-tables.	No change		
	Fracture related mortality is based on estimates of excess			
	mortality attributable to hip and vertebral from a case-			
	control study using routine data from UK general practice.			
Utility data	Utility decrements based on EQ-5D scores pre and post	The utility decrements for fracture have been updated to reflect new		
	fracture were obtained from a systematic review. Utility	evidence identified in an updated systematic review. (see section		
	decrement for nursing home admission was based on a	6.2.11)		
	single study identified from the literature which used EQ-	Utility estimates have been identified and incorpated for the AEs of		
	5D. Variation in baseline utility by age and gender was	ONJ, VTE and cellulitis (see section 6.2.1.9)		

Model feature	Description of model in TA464	Description of revised model
	based on UK EQ-5D population estimates.	The incorporated utility estimates are all based on EQ-5D with
		valuation using the UK time-trade-off (TTO) data set, with the
		exception of ONJ where the estimates are based on the US
		valuation set for EQ-5D.
Resource use and unit	The analysis includes drug costs, administration costs and	Drug costs have been updated using the latest National Drug Tariff
costs	costs of fracture including those falling on primary care,	and eMIT database. (see section 6.2.1.7)
COSIS		
	secondary care and personal social services.	Costs for monitoring (DXA scanning and annual physican review)
	Post-fracture costs were based on a case control study	have been incorporated. (see section 6.2.1.8)
	which used routine data from UK general practice. Nursing	Administration costs for i.v. bisphosphonates have updated and
	home admission following hip fracture was based on a UK	administration costs for non-bisphosphonates have been
	observational study of discharge destinations.	incorporated. (see section 6.2.1.8)
	Unit costs are taken from NHS reference costs, PSSRU unit	Other costs have been inflated using standard inflation indicies (see
	costs, the primary care National Drug Tariff and the eMIT*	section 6.2.1.10)
	database of generic drug costs in secondary care.	Costs are reported in pounds sterling (£)
	Costs are reported in pounds sterling (£)	Cost year is 2018
	Cost year is 2014.	
Discounting	3.5% per annum for both costs and QALYs	No change
Sensitivity analysis	Probabilistic sensitivity analysis was undertaken for the	No change
	basecase scenario to estimate the mean costs and benefits	
	when taking into account parameter uncertainty.	
	Structural uncertainty was assessed through scenario	

Model feature	Description of model in TA464	Description of revised model			
	analysis where parameters were set to their midpoint values.				

*eMIT, electronic market information tool

6.2.1.2 Population

The population is patients eligible for risk assessment under CG146¹⁴³ as per the final NICE scope. CG146 recommends that either FRAX³² or QFracture^{33, 164, 165} be used to assess the absolute risk of fracture. In order to explore whether the most cost-effective treatment varies for patients at different levels of absolute fracture risk we report the variation in incremental net monetary benefit (INMB) across risk using two approaches. Firstly, we report outcomes for ten risk categories, based on deciles of absolute fracture risk. Secondly, we use regression to determine the relationship between INMB and absolute risk as a continuous variable. These steps are undertaken for absolute risk assessed by both FRAX and for absolute risk assessed by QFracture.

6.2.1.3 Interventions and comparators

The treatment strategies modelled and the intended treatment durations were as follows:

- oral ALN (5 years)
- oral RIS (5 years)
- oral IBN (5 years)
- i.v. IBN (5 years)
- i.v. ZOL (3 years)
- RLX (5 years)
- DEN (10 years)
- TPTD (2 years)
- ROMO (1 year) followed by ALN (4 years)

These were all compared against a strategy of no treatment to estimate the incremental costs, incremental QALYs and incremental net monetary benefit (INMB) relative to no treatment. We note that in the basecase analysis the actual treatment duration modelled is determined by the duration of treatment persistence rather than the intended treatment duration, but it is necessary to specify the intended treatment duration for the scenario analysis assuming full persistence.

The intended treatment durations for bisphosphonates (3 years for ZOL and 5 years for all others) are based on the assumption made in TA464.¹⁴⁰ For the sequence of ROMO followed by ALN, the 1-year treatment duration for ROMO is based on the anticipated marketing authorisation. However, the anticipated marketing authorisation also states that ROMO should be followed by an anti-resorptive, but does not specify the duration for anti-resportive treatment. In the ARCH trial¹⁶⁶ patients in both arms received open-label ALN after the 1-year double blind phase. In the clinical study report (CSR)¹⁶⁶ for the ARCH trial, the mean duration of ALN exposure after the 1-year double blind phase is both arms, but the maximum treatment exposure is between the second years across the

two trial arms. In order to have the same overall intended treatment duration as the ALN strategy, we decided to model the ROMO / ALN strategy as including 4 years of ALN. For DEN, we have assumed an intended treatment duration of 10 years as this is what was assumed in the Amgen submission⁹⁸ where it was argued that there is data from the FREEDOM study on the efficacy and safety of up to 10 years of DEN treatment.

6.2.1.4 Treatment persistence

In the AG model, we have assumed that costs and benefits are linearly related to the duration of treatment persistence and therefore the individual level variation in persistence does not need to be modelled. The assumption was found to be reasonable in sensitivity analyses reported by Davis *et al.* Therefore, the variable that needs estimating to inform the model is the mean treatment persistence and standard error of the mean which describes the uncertainty around the mean for the probabilistic sensitivity analysis (PSA).

In the model that informed TA464, Davis et al.¹⁴⁰ used published estimates of treatment persistence from observational cohort studies, with separate estimates applied for oral bisphosphonates, based on a systematic review by Imaz et al.,¹⁶⁷ and i.v. bisphosphonates, based on a US study of Medicare patients (Curtis *et al.*).¹⁶⁸ Davis *et al.*¹⁴⁰ applied the mean persistence reported in these studies to all patients receiving treatment rather than modelling individual level heterogeneity in treatment persistence. The model in the Amgen submission⁹⁸ used persistence data from a retrospective analysis of a large UK primary care database (the Clinical Practice Research Dataline [CPRD]) (Amgen, data on file). The proportion persisting with treatment over 5 years was estimated from these data and extrapolated beyond 5 years in the model based on the last year of data. The model in the UCB submission²⁰ used published estimates for treatment persistence for bisphosphonates and RLX from a UK GPRD study and data from a non-UK registry study for DEN. Unpublished data were cited by UCB²⁰ as the source for TPTD and ZOL persistence. For the sequence of ROMO followed by ALN, the model submitted by UCB²⁰ assumed that 90% of patients would persist with ROMO up to 1 year, based on experience from clinical trials, and that once patients switched to ALN the treatment persistence would be 85% of that observed for DEN - the treatment with the highest persistence rate based on the published estimates. Strom et al.¹⁵¹ used persistence data for oral bisphosphonates from a UK CPRD study (Li et al. 2010,¹⁶⁹ similarities suggest this is the same study cited by UCB) to model persistence over time for the first 3 years and then assumed that all patients reaching 3 years would continue on oral bisphosphonates. Strom et al.¹⁵¹ used a non-UK randomised crossover comparison study to model treatment persistence with DEN (Freemantle 2011).¹⁰⁸ Kanis et al (2008) assumed that 50% of patients receiving oral bisphosphonates persist up to 3 months and the rest persist up to the intended treatment duration, based on the assumption used in the analysis that informed TA160 and TA161. It is not clear what assumption was made by Kanis et al. (2008) regarding treatment

persistence for RLX. In the model based on the MORE study (Kanis *et al* 2005), patient compliance was not taken into account, but it was noted in the discussion that 92% of patients took more than 80% of their study medication. In the model submitted by Amgen for TA204 (Waugh 2011), treatment persistence was assumed to be 100% for all treatments in the basecase analysis but a lower rate of treatment persistence for oral bisphosphonates was applied in a sensitivity analysis based on data from the General Practice Research Database (GPRD is the previous name of the CPRD but the data used here appear to be from a different study to that used in the current Amgen submission).

Both of the company submissions used data from the same large UK primary care database (GPRD/ CPRD). The published analysis by Li *et al.* $(2012)^{170}$ gave a median durations of persistence for oral bisphosphonates ragning from 5 to 7 months across the more commonly used weekly and monthly preparations, whereas the more recent but unpublished analysis cited in the Amgen submission⁹⁸ had a lower median persistence of 3.7 months for all oral bisphoshonates. However, the AG notes that the data from Li *et al.* suggest that the time to discontinuation curve has a long tail so mean persistence will be longer than median persistence.

The AG estimated mean time on treatment from the Kaplan-Meier estimates published by Li *et al.*¹⁷⁰ by crudely estimating the area under tha Kaplan-Meier curve assuming linear changes between the estiamtes reported. (The AG note that the data from Table 3 in the paper by Li *et al.*¹⁷⁰ do not match the data used in the UCB mdoel with the exception of the first two time points for RLX despite this being the cited souce.²⁰) The data from the more recent analysis presented in the Amgen submission⁹⁸ were considered less mature than the data presented by Li *et al.*¹⁷⁰ Mean durations of persistence in the first 5 years after starting treatment were estimated to be 1.7 years, 1.5 years and 1.4 years for ALN, RIS and RLX respectively. Estimates for oral IBN were not possible due to missing data at 5 years. Although separate estimates of persistence are provided for ALN and RIS, in the absence of any data demonstrating that treatment persistence differs significantly between different oral bisphosphonates, we decided to apply the average persistence is approximately three times longer under this assumption than assumed previously in the model that informed TA464.¹⁴⁰

The AG was not convinced that data from a primary care database, as used in both the Amgen⁹⁸ and UCB models, would be generalisabel to i.v. bisphosphonates (and likewise TPTD) as these are usually prescribed in secondary care. Given this concern and in the absence of any other alternative data sources, the AG decided to use the same estimates of treatment persistence for i.v. bisphosphonates as assumed in the model that informed TA464.¹⁴⁰

The evidence on the long-term persistence with DEN appears to be very limited with most studies reporting a maximum of 24 months follow-up (Hadji 2016,¹⁷¹ Karlsson 2015,¹⁷² Silverman 2018,¹⁷³ Freemantle¹¹¹). It is difficult to estimate the mean or median duration of treatment from studies which are limited to 2 years when persistence is high at 2 years and it is possible for DEN to be given longterm. The analysis of CPRD data presented in the Amgen submission⁹⁸ presents data beyond 2 years but these were described as exploratory analyses only. The AG were concerned about whether the analysis of CPRD data presented by Amgen would accurately capture DEN persistence as whilst DEN may sometimes be administered in primary care, treatment is usually initiated in secondary care. Therefore, any estimate of persistence derived solely from primary care records may fail to accurately capture treatment discontinuation in the transition between secondary and primary care. Furthermore, the data in the Amgen spreadsheet model for DEN persistence do not match those provided in Table 4-2 of the Amgen submission. The persistence data used for DEN in the UCB submission²⁰ match the cited source (Karlsson *et al*)¹⁷² up to 24 months but beyond that they have simply assumed a fixed proportional decrease in the numbers who are persistent based on a comparison between the 18 month and 24 months persistence rates, despite the proportional decrease from 24 months to 30 months being smaller in the Kaplan-Meier plot presented by Karlsson et al. The AG decided to estimate the mean treatment persistence from the CRPD data presented by Amgen in their model. The estimates of persistence appear to be very uncertain beyond 4 years but there appears to be a constant risk of discontinuation from years 2 to 4. The AG decided to use the rate of discontinuation between years 2 to 4 to estimate the proportionate decrease in persistence experienced thereafter. From this the mean treatment persistence over 10 years was estimated to be). The AG notes that these estimates are uncertain due to the exclusive use of primary care records and need for an assumption to be made to extrapolate persistence up to 10 years due to the low proportion of patients captured in the analysis beyond 2 years (

Several sources of persistence data were identified for TPTD. As stated above the estimates based on UK primary care databases were discounted based on the fact that TPTD is usually prescribed in secondary care. However, two published articles were identified from ad hoc literature searches which described persistence in UK patients in real clinical practice based on data from the main homecare provider of TPTD in the UK (Arden 2006, Abhiskeh 2006).^{174, 175} Both these studies were conducted before the maximum duration of treatment in the MA was extended from 18 to 24 months, but they show high levels of persistence at 18 months of 79%¹⁷⁴ and 74%,¹⁷⁵ for women and men respectively. However, these estimates were based on Kaplan-Meier data taking into account the censoring of patients who were still on treatment at longest follow-up. Data from the ExFOS study, which was a large European real-life clinical practice study of TPTD use after the license was extended to 24 months, showed a mean treatment duration of 20.7 months despite 29% of patients residing in

).

countries where the license remained restricted to 18 months. All three papers show a fairly linear fall off in persistence, although a more rapid fall in persistence was seen in the ExFOS study at 18 months in the countries with 24-month reimbursement which could be explained by a lack of uptake of the longer dosing schedule. We decided to use the data from UK women to estimate the average duration of treatment. To do this we assumed a constant rate of discontinuation from 0 months to 24 months based on the rate observed over 18 months by Arden *et al.*,¹⁷⁴ giving an estimated mean persistence time of 1.72 years (20.6 months), which is reasonably consistent with the estimate from ExFOS which had a mean treatment duration of 20.7 months. We decided to take the SE of the mean (0.14 months) from the ExFOS study as the measure of uncertainty for the estimate applied in the model. When sampling this parameter in ther PSA, maximum number of doses was capped at 24 as per the SmPC for TPTD.²⁴

For ROMO, the manufacturer claimed that 90% of patients persisted to 12 months based on data from the clinical trials. The AG used data on doses received in the ARCH study to estimate mean persistence with treatment and found that this agreed with patients being treated for a mean of **Manufactures**, although it noted that only **Manufactures** of patients received all 12 doses of ROMO. When sampling this parameter in the PSA, the maximum nmber of doses was capped at 12 as per the draft SmPC for ROMO provided in the UCB submission.¹¹⁵ For the sequence of ROMO followed by ALN we have assumed that treatment persistence with ALN is the same as for the ALN only strategy.

6.2.1.5 Effectiveness data

The HRs estimated in the NMA (see Figure 7) were applied in the model for the duration of treatment with a linear increase to a HR of 1 (i.e. no treatment effect) during the offset period. For the treatment sequence of ROMO followed by ALN, the HR for ROMO followed by ALN was applied during both the ROMO and the ALN treatment periods as the HR estimate in the NMA was based on fractures occurring during both treatment phases. The NMA requires a single estimate of treatment effect for each study and therefore it would not have been possible to generate separate estimates of treatment efficacy for the ROMO and ALN parts of the treatment sequence.

Where data on fracture outcomes were lacking for i.v. IBN, the AG used the NMA estimate for daily oral IBN, as the marketing authorisation for i.v. IBN was based on studies demonstrating that i.v. IBN had superior BMD outcomes compared with daily oral IBN. It is noted that this is potentially unfavourable to i.v. IBN if superior BMD otucomes translate into superior fracture prevention outcomes. However, this is consistent with the approach taken in TA464.

For vertebral fracture we have used the outputs of the basecase NMA which included studies reporting morphometric fractures. This is because the outcome of morphometric fracture was more

widely reported, and the NMA sensitivity analysis which excluded studies that only reported morphometric fractures leaving just those studies reporting clinical vertebral fracture, was found to produce results that were consistent with the base-case analysis.

In the model that informed TA464,¹⁴⁰ it was possible to use the bisphosphonate class effect estimate where data on individual bisphosphonates were lacking. In the updated networks described in section 5.3, there were no hip fracture data available for i.v. IBN and monthly oral IBN but data were available for all non-bisphosphonates. We decided to apply the bisphosphonate class effect estimate for i.v. IBN and monthly oral IBN where data were lacking for hip fracture. We note that the class effect for bisphosphonates was very similar to the estimates for ALN, RIS, ZOL and so this was not considered to unfairly bias the cost-effectiveness analysis.

In the analysis that informed TA464,¹⁴⁰ the data were considered too sparse for the outcome of proximal humerus fracture so the non-vertebral NMA estimates were used instead. In the NMAs conducted for the current MTA, the networks were sparsely populated for non-bisphosphonates for the outcomes of both wrist fracture and proximal humerus fracture. The AG decided to use the NMA estimates from the non-vertebral fracture NMA for both wrist and proximal humerus fractures as this allowed a single network to be used to estimate HRs for all interventions. This was considered preferable to using data from different networks for bisphosphonates and non-bisphosphonates as the wrist and proximal humerus fracture estimates would be more uncertain than the non-vertebral fracture estimates.

In the basecase analysis, the CODA (convergence diagnosis and output analysis) samples from the NMA were used, as these preserve the underlying joint distribution of the HRs, but in the deterministic analyses the median HR was used.

6.2.1.6 Offset period

The AG used a review by Idolazzi *et al.* $(2013)^{176}$ and papers cited in the company submission to identify relevant studies that could be used to inform the assumptions regarding the appropriate offset periods for the different treatments modelled.

For ALN the key study was considered to be the FLEX study as this provides comparative data on both fracture risk and BMD for patients remaining on, or stopping treatment with, ALN after 5 years of treatment (Schwartz 2010 and Black 2006).^{177, 178} This study found that it took 5 years for total hip BMD to return to pre-treatment levels when treatment with ALN was discontinued after 5 years. This was supported by no separation of the time to event curves for non-vertebral fractures for patients remaining on treatment compared to those stopping treatment. There was some evidence of a

continued treatment effect for LS BMD and a continued reduction in vertebral fracture risk was observed (RR 0.45, 95%CI 0.24-0.88) for patients who continued versus those who discontinued.

For RIS, two studies were identified (Watts 2008 and Eastell 2011).^{179, 180} Watts *et al.* reported outcomes for patients randomised to either placebo or RIS in the year after discontinuing study drug. Eastell *et al.* reported outcomes in patients in the year after completing the VERT-MN study where patients were randomised to either RIS or placebo for 3 years followed by a 2-year open label extension on the allocated study drug, followed by 2 years of open-label RIS in both groups. Both studies reported that BMD gains at the hip were lost in the one year following treatment discontinuation, although Watts *et al.* observed smaller losses in LS BMD and reported a statistically significant reduction in vertebral fracture incidence between those previously treated with RIS and those previously treated with placebo and in the year after treatment discontinuation.

The data identified for oral IBN were limited to those from 1 year post trial follow-up from an early dose-finding study (Ravn 1998)¹⁸¹ which included the 2.5mg daily dose that has been shown in non-inferiority bridging studies to be equivalent to the 150mg monthly dose that is now licensed (Reginster 2006).¹⁸² This study appears to show a similar patter to that seen for the RIS, in that hip BMD appears to return to pre-treatment levels in the year after treatment, with a slightly slower return for LS BMD. However, as the duration of treatment was only 1 year it is not clear if the offset time is 1 year regardless of treatment duration or whether it would increase in proportion to treatment duration.

For oral bisphosphonates, the AG decided to keep the assumption made previously in the model that informed TA464,¹⁴⁰ which was that treatment effect falls to zero over a period equal to the initial treatment duration for all oral bisphosphonates as this was accepted previously by the NICE Appraisal Committee. However, in a sensitivity analysis, we have also explored the possibility of a fixed 1-year offset time for RIS and oral IBN.

For i.v IBN, no studies were identified that explored BMD or fracture outcomes following treatment discontinuation. Therefore, we assumed that the offset period would be the same as for oral IBN and set it equal to treatment duration with a fixed 1-year offset explored in a sensitivity analysis.

For i.v. ZOL, data from the HORIZON PFT extension study are provided by Black *et al.* (2012).¹⁸³ In the extension study, patients who had received 3 years of ZOL were randomised to receive either ZOL or placebo for a further 3 years. At the end of the study, FN BMD had declined in those switched to placebo but not to baseline levels suggesting an offset period that is longer than the treatment duration when measured based on BMD changes. This suggests a slightly longer tailing off of treatment effect

than observed for ALN in the FLEX study. There was however, no statistically significant difference in non-vertebral fractures between placebo and ZOL in the extension phase. Similar to the picture seen in the FLEX study, further gains were made in LS BMD after discontinuation and there was a statistically significant difference in new vertebral fractures in the extension stage of HORIZON.

For i.v. ZOL the AG decided to keep the assumption made previously in the model that informed TA464,¹⁴⁰ which was that treatment effect falls to zero 10 years after the start of a 3-year treatment period. For patients stopping treatment early, the offset duration was assumed to decrease proportionately. A sensitivity analysis assuming an offset period equal to treatment duration was also conducted.

For TPTD, data on treatment in women were identified from the Fracture Prevention Trial follow-up study (Lindsay 2004 and Prince 2005)^{184, 185} which followed patients for a median duration of 30 months after the RCT phase of the study. The RCT phase was terminated early (due to concerns regarding the safety of long-term use) with a median treatment duration was 20 months. During the follow-up study, patients were treated according to local standards and a high proportion (i.e. 56.9% of those randomised to the licensed dose of TPTD in the RCT phase) received other osteoporosis interventions. To account for this, results were presented for the subgroup with no further osteoporosis intervention in addition to the analysis for all patients. Statistically significant reductions in vertebral fractures were reported by Lindsay et al. in the 18 months following discontinuations and not all of the LS BMD gained during treatment had been lost by 18 months. For non-vertebral fractures, statistically significant differences were not found for the licensed dose compared with placebo at the longer follow-up point of 30 months post discontinuation when adjusting for usage of other osteoporosis medications. Furthermore, the gains in FN and total hip BMD appear to be lost by 18 months in the group not receiving other osteoporosis interventions. A second smaller study in men with shorter follow-up had similar findings (Kaufman 2005). Based on these two studies we decided to assume an offset period equal to the treatment duration.

For RLX, two relevant studies were identified. One compared continuation with RLX with discontinuation in patients previously treated for 96 weeks (Naylor 2010). Although there were some baseline differences in BMD the percentage change in LS BMD from baseline was no longer statistically significant at 144 weeks in the group who had discontinued at 96 weeks, whereas the benefit in LS BMD was maintained in those continuing RLX up to 192 weeks from baseline. A second RCT extension study which examined 1-year outcomes in patients discontinuing after 5 years of RLX, oestrogen or placebo found that BMD values were significantly lower 1 year after discontinuing than at the end of treatment therapy for both LS and FN BMD. Whilst these data are from a small study, they support a rapid loss of efficacy in the year after treatment even for patients

treated for longer than 2 years. Based on these two studies we decided to apply a 1-year offset period for RLX.

For DEN, two papers reporting outcomes from a single study were identified (Bone 2011, Bone 2008). The paper reporting 2 years follow-up post discontinuation in patients allocated to either 2 years of DEN or 2 years of placebo found that gains in both LS BMD and total hip BMD were lost in the first year after discontinuation suggesting that an offset period of 1 year would be reasonable for DEN. A third paper presenting an analysis of post-trial outcomes of patients from the FREEDOM study was also identified which described a rapid fall in BMD in the 1 year after discontinuation occurred even after treatment lasting 10 years (Popp *et al.*).¹⁸⁶ Whilst this analysis was limited to 12 women from a single site and therefore can only be considered to be weak evidence, this analysis is supportive of a fixed offset period of 1 year rather than one that varies with treatment duration. Therefore, for DEN we have assumed a fixed offset period equal to 1 year (or the treatment duration when this is less than 1 year).

For ROMO, no data were identified in the published literature on the treatment effect following discontinuation. In sequences where ROMO is followed by ALN, we have assumed an offset period equal to the total duration of the treatment sequence with efficacy during the offset linearly declining from the efficacy observed across the treatment sequence. This is consistent with the assumption applied by UCB.²⁰

6.2.1.7 Drug costs

For drugs with multiple preparations, the cost was based on the lowest cost preparation available. For drugs administered in primary care, the costs were taken from the NHS Drug Tariff.¹⁸⁷ For drugs administered in secondary care, the eMIT database¹⁸⁸ was used for generic preparations (i.v. bisphosphonates) and the NHS Drug Tariff¹⁸⁷ price was used where no generic preparation was listed as being available (TPTD and DEN). For ROMO, the annual costs for both the list price and the patient access scheme (PAS) price were taken from the company submission. The PAS price was used in the AG's basecase analysis. Whilst the TPTD patent will expire in August 2019 and two biosimilars have already been approved (Movymia and Terrosa),^{21, 22} their prices are currently unknown.

The dosing, cost per item and annual cost for each treatment strategy are summarised in Table 7.

Table 7:Treatment specific model inputs

	ALN /RIS / IBN (oral)	IBN i.v.	ZOL i.v.	RLX	DEN	TPTD	ROMO/ALN
Intended treatment	5	5	3	5	10	2	1 ROMO
duration (years)							4 ALN
Mean persistence	1.60	1.1	1.7	1.38		1.72	ROMO
(years)							1.60 ALN
Offset	1.60	1.10	1.70	1.00	1.00	1.72	
Drug acquisition costs							
Dosing unit	70mg /35mg / 150mg	3mg in 3ml	5mg / 100ml	60mg	60mg	20 µg	210 mg
Dosing frequency	weekly / weekly / monthly	quarterly	annual	daily	biannual	daily	monthly
Unit cost	£0.76 per 4/ £0.76 per 4 / £0.99 per 1	£7.89 per 1	£13.24 per 1	£3.27 per 28	£183 per 1	£271.88 per 30	Not provided
Total cost/year	£9.91 / £9.91 / £11.88	£31.56	£13.24	£42.63	£366	£3,307.87	
Administration costs	•				•		
Route of	Oral	i.v.	i.v.	Oral	Subcutaneous	Subcutaneous	Subcutaneous
administration	Orai	1.V.	1.V.	Ofai	injection	injection	injection
Resource use for	N/A	Outpatiant	Dev esse	N/A	2 as outpatient	Self-	Self-administered
administrations	IN/A	Outpatient	Day case	IN/A	then GP nurse	administered	
Cost per	N/A	£150.38	£253.32	N/A	£10.85	N/A	£0.00
administration	IN/A				(£150.38 1 st yr)		20.00
No.	N/A	4	1	N/A	2	N/A	12
administrations/year	IN/A	4	1	1N/A			12
Total costs/year	£0.00	£601.52	£253.32	£0.00	£21.70	N/A	£0.00
	20.00	2001.52			(£300.76 1 st yr)	20.0	20.00
Monitoring costs					1	1	
Type of follow-up	GP	Outpatient	Outpatient	GP	GP with 1 in 4	Outpatient	Outpatient
visit		Outputient	Outputient	01	as outpatient		
Cost per follow-up	£38	£150.38	£150.38	£38	£66.09 (average)	£150.38	£150.38
visit (1 per annum)							
Years between DXA	5	5	3	5	5	2	1
Annualised BMD	£13.66	£13.66	£13.66	£13.66	£13.66	£34.14	£68.29
measurement costs	215.00	210.00	210.00	215.00			200.27
Total monitoring	£51.66	£165.04	£173.14	£51.66	£79.75	£184.52	£218.67
costs/year							210.07
Total annual costs	£61.57 / £61.57 / £63.54	£797.11	£439.71	£94.29	£467.45	£3,492.40	
					(£746.51 in 1 st yr)		

6.2.1.8 Treatment initiation, administration and monitoring

Six of the studies assumed that patients would receive DXA scans every other year whilst on treatment (Waugh, Kanis 2008, Kanis 2005, Strom 2013, Amgen, UCB).^{20, 98, 146, 149, 151, 152} Stevenson et al.¹⁴⁸ assumed that patients would receive DXA scans at years 2 and 5 and Davis et al.¹⁴⁰ did not include any DXA scans to monitor treatment with bisphosphonates. Not all of the papers were explicit about whether patients were assumed to have had a DXA before starting treatment but in Davis et al.¹⁴⁰ all costs related to risk assessment, which may include DXA in some patients, were considered to be have already occurred prior to treatment choice as these were included in the cost-effectiveness analysis for risk assessment within CG146.143 The AG considered that the inclusion of routine DXA scans in the model was problematic as the approach taken may differ depending on the baseline risk of the patient and the treatment being administered. For example, CG146 does not recommend that DXA scans are performed routinely as part of the risk assessment of patients.¹⁴³ Therefore it is reasonable to assume that many patients may be started on the current first line therapy, which is oral bisphosphonates, without a DXA scan and this is consistent with the approach recommended in the NICE-accredited NOGG guideline.¹³ However, the NOGG also recommends that FRAX with BMD is used to reassess patients at the end of 5 years of bisphosphonate therapy (3 years for ZOL). On this basis we decided to assume that DXA scans are given when patients reach the end of the intended treatment duration. We made an exception for DEN as the intended treatment duration is much longer than for other therapies, so here we assumed a DXA scan every 5 years. This was based on advice from one of our clinical experts that patients receiving DEN in primary care would be likely to be reviewed in specialist care at 3 or 5 years. For the treatment sequence of ROMO followed by ALN, we assumed one DXA at the end of the 1 year of ROMO and 1 at the end of the 4 years of ALN. Because treatment duration in the model is based on average treatment persistence rather than the distribution of persistence across the population, the AG incorporated DXA costs as an annualised cost, otherwise no DXA costs would be applied as the average patient never reaches the intended treatment duration. This is consistent with the assumption that costs and benefits are linearly related to the duration of treatment persistence and therefore the individual level variation in persistence does not need to be modelled. The cost applied for a DXA is based on the NHS reference cost for a direct access DXA (£68.29 for RD50Z).189

Four of the studies assumed that patients would receive annual General Practitioner (GP) appointments to monitor treatment (UCB, Kanis 2005, Strom 2013, Waugh).^{20, 146, 151, 152} Amgen assumed the same for treatments given in primary care (which included oral bisphosphonates and DEN) but assumed secondary care follow-up appointments for i.v. bisphosphonates.⁹⁸ Kanis *et al.* (2008) assumed 1 GP appointment to initiate treatment. Stevenson *et al.*¹⁴⁸ assumed 2 GP appointments per annum, whilst Davis *et al.*¹⁴⁰ did not include any GP appointments for monitoring. There is now a NICE quality standard¹² which states that patients having bone sparing treatments

should have medication reviews to discuss adverse effects and adherence but the frequency of the reviews is not specified. We have assumed that patients will have annual reviews and that those reviews will occur in primary care for oral bisphosphonates and RLX. For this we applied the cost per average GP patient contact (£38 per 9.22 mins).¹⁶ For DEN we were advised that patients would be reviewed in secondary care every 3 to 5 years, so we have assumed that one in four annual reviews will occur in secondary care. For i.v. bisphosphonates, ROMO and TPTD we have assumed that the annual review occurs in secondary care as an outpatient endocrinology appointment. The cost (£150.38) for a consultant led non-admitted face to face follow-up attendance at endocriniology outpatients has been applied (healthcare resource group [HRG] currency code, WF01A, service code 302).¹⁸⁹

As noted previously, none of the studies identified in the review included any costs for the administration of oral therapies and this was the assumption applied in our model. UCB also assumed no administration costs for subcutaneous therapies (i.e. DEN, TPTD and ROMO).²⁰ In the Amgen submission for this MTA⁹⁸ it was assumed that DEN would be given by a GP nurse whereas in the Amgen submission for TA204 they assumed that one injection would be administered during the annual GP visit and therefore one additional GP appointment was required per annum for the second injection. For DEN, we assumed that patients would initiate treatment in secondary care with the first two doses being given as an outpatient procedure using the same HRG codes as applied for i.v. IBN. Thereafter it was assumed that DEN would be administered under a shared care agreement with a primary care nurse providing future doses during a 15.5-minute appointment at a cost of £10.85 (based on £42 pe hour for GP nurse contact time).¹⁶ This was based on advice from our clinical experts that ideally only the first one or two doses would be given in secondary care, although they also noted that there is significant variation in practice surrounding shared care agreements with some local areas having a poor uptake of primary care administration.

Stevenson *et al.*¹⁴⁸ do not describe any additional administration costs for TPTD. Waugh *et al.*¹⁵² included one additional GP appointment for initiation of TPTD. The AG did not consider that any additional costs were necessary for the administration of TPTD given that it is self-administered and an annual secondary care review has already been included for TPTD as described previously.

Davis *et al.*¹⁴⁰ assumed that i.v. IBN is delivered during an outpatient endocrinology appointment and i.v. ZOL is delivered as a day case procedure using the HRG code for administration of a simple parenteral chemotherapy (SB12Z). UCB assumed administration of i.v. ZOL in secondary care but the exact source of the cost applied is unclear.²⁰ In the Amgen submission for TA204, administration of i.v. bisphosphonates was assumed to occur in secondary care under the same HRG code as used by Davis *et al.*¹⁴⁰ for i.v. ZOL. However, in the Amgen submission for the current MTA,⁹⁸ it was argued

that the use of an oncology HRG was inappropriate and instead the cost was based on day case and elective inpatient spells averaged over 9 HRG codes related to non-inflammatory bone and joint disorders and pathological fractures. The AG was already aware of a study that compared the cost of secondary care infusion of ZOL with a home care delivery model in a UK NHS setting.¹⁹⁰ In correspondence with the study author¹⁹¹ it was stated that the reference cost including the drug costs for this activity was £300 per patient (£14,980 per 50 patients) and this included acquisition of the drug at a discounted (undisclosed) cost from the manufacturer. However, the income for the activity based on the tariff was much lower at £143 per patient which also includes the cost of drug acquisition. Based on these figures, we felt that the estimates provided by Amgen were likely to be too high and we decided to use the HRG codes applied in the model that informed TA464¹⁴⁰ but updated to the latest reference costs¹⁸⁹ giving a cost of £253 for day case infusion of i.v. ZOL (Day case, SB12Z delivery of simple parenteral chemotherapy at first attendance).

For i.v. IBN, no alternative estimates of administration costs were identified from the studies included in the review. We therefore decided to assume the same resource use as in the model used to inform TA464¹⁴⁰ (one outpatient endocrinology follow-up appointment), but we updated the unit cost to reflect the latest reference $costs^{189}$ giving a cost of £150.

6.2.1.9 Adverse effects

For oral and i.v. bisphosphonates the AG decided not to change the approach to modelling AEs that was adopted in TA464¹⁴⁰ as there was no new evidence on which to base alternative assumptions identified from the review of cost-effectiveness studies.

The AG decided to include serious (i.e. leading to hospitalisation) cellulitis as an AE for DEN because it had been included in the model which informed TA204. Although it was noted that the 10-year results of the FREEDOM study suggest that the incidence is low at 0.2% or less in each of the study years. The HRG cost for a non-elective inpatient spell for minor skin conditions with interventions ranges from £2,588 to £7,764 depending on the level of complications and comorbidities with a weighted average of £4,467.¹⁸⁹ Assuming an incidence of 0.2%, per annum, and applying this weighted cost to the incident population would increase the cost of DEN by £8.93 per annum. The AG identified a paper which had estimated the QALY loss of cellulitis as 0.005 QALYs (reduction in EQ-5D by 26.3% for 7 days) based on a comparison of EQ-5D scores in a prospective RCT of antibiotics versus placebo to prevent recurrent cellulitis.¹⁹² This is equivalent to a loss of INMB of £0.20 per annum. As the duration of treatment persistence with DEN in the model is greaters, this would suggest that the total impact of cellulitis is a reduction in INMB for DEN of the order of **Costs** and QALY losses for cellulitis per year of exposure to DEN have been included in the basecase model.

The AG notes that the Medicines and Healthcare products Regulatory Agency/Commission on Human Medicines (MHRA/CHM) has issued advice regarding the risk of atyprical femoral fractures for both DEN and bisphosphonates³⁰ but this advice states that these events are rare and that they are primarily related to long-term use. The AG decided not to include atypical femoral fractures as a separate AE within the model. This was firstly because the HRs for fractures estimated from the clinical trials would already include any impact of the drug on atypical femoral fractures and including them as a separate event may result in these outcomes being double counted within the model. The AG accepts that atypical femoral fractures may not have been captured within the trials if they only occur after long-term use of osteoporosis treatment. However, the AG notes that the basecase scenario incorporates real world treatment persistence which is much shorter than the intended treatment duration for both bisphosphonates and DEN making these adverse events which occur with long-term use less relevant to these treatments as they are modelled.

The AG notes the MHRA/CHM advice regarding the risk of ONJ in patients receiving bisphosphonates.³⁰ The advice states that the risk is considered to be substantially higher in those receiving IV bisphosphonates in the treatment of cancer and the risk is said to be related to cumulative dose. Similarly, the MHRA/CHM advice on DEN states that "Osteonecrosis of the jaw is a well-known and common side-effect in patients receiving DEN 120 mg for cancer" and recommends dental examination and preventative dentistry treatment in all patients starting DEN for cancer.³⁰ It should be noted that the dose for cancer is 120mg monthly rather than 60mg every 6 months and in the context of using DEN to prevent osteoporotic fracture, such precautions are only recommended by the MHRA/CHM only for those with risk factors.³⁰ The AG also notes that a systematic review by Boquete-Castro *et al.* (2016)¹⁹³ states, "*it should be stressed that most of the adverse effects of DEN appear with doses of 120 mg. Adverse effects with doses of 60 mg are directly related to the duration of treatment.*" Although there appears to be less concern regarding ONJ in patients receiving antiresportives for osteoporosis than for cancer, the AG decided to incorporate this AE within the model to establish the likely impact on the cost-effectiveness estimates.

The AG examined a systematic review reported by Khan *et al.* (2015) which was conducted to inform an international consensus statement on osteonecrosis of the jaw.¹⁹⁴ Khan *et al.* conclude from their review that, *"the incidence of ONJ in the osteoporosis patient population appears to be very low, ranging from 0.15% to less than 0.001% person-years of exposure and may be only slightly higher than the frequency observed in the general population."* For oral bisphosphonates, the review by Khan *et al.* ¹⁹⁴ identified a UK (Scotland) prospective case series that reported an incidence for ONJ of 1 case per 4,545 drug-patient-years (0.022%) for patients exposed to ALN (Malden 2012).¹⁹⁵ This was within the incidence range of 1.04 to 69 cases per 100,000 patient-years reported by the other

studies identified in the review by Khan et al.¹⁹⁴ It should be noted that Lo et al.¹⁹⁶ found in a crosssectional survey conducted in the United States that prevalence of ONJ was related to duration of exposure, with estimated prevalences of 0%, 0.05% and 0.21% in patients exposed for < 2 years, 2 to <4 years and 4 years and over. For i.v. bisphosphonates, Khan *et al.* reported an incidence range of 0 to 90 per 100,000 patient-years. ¹⁹⁴ The incidence estimated across 5 RCTs is given by Khan et al. as <1 in 14,200 patient years of exposure (<0.007%).¹⁹⁴ For DEN, Khan *et al.* reported that the estimates of incidence ranged from 0 to 30.2 per 100,000 patient years.¹⁹⁴ However, more recent data from the 10-year follow-up of the FREEDOM trial gave an exposure-adjusted incidence of ONJ of 5.2 per 10,000 participant years (0.052%). The SmPC for DEN stgates that the incidence is related to the duration of exposure.¹⁹⁷ Given that there is a lack of comparative data on the incidence of ONJ across the different forms of antiresportives, and that the estimates for the different antiresportive drugs all relate to different periods of exposure, we have decided to assume the same incidence per year of drug exposure across all antiresportives. This was based on the estimate from the prospective case series in Scotland. This was because this estimate fell within the range provided by Kahn *et al.* for each type of antiresportive (oral bisphosphonates, i.v. bisphosphonates and DEN) and was based on the average duration of use in clinical practice and therefore would be more applicable to the duration of treatment persistence modelled in this analysis.

A paper measuring health utility in patients with ONJ was identied using ad-hoc searches of google scholar (Miksad et al.).¹⁹⁸ It reported utility measured by the EQ-5D in 34 cancer patients with bisphosphonate-associated ONJ patients. However, it should be noted that it was not compliant with the reference case in several ways. Firstly, althought the pateints had all themselves experienced ONJ, they were asked to value clinical vignettes describing different stages of ONJ in patients who also have cancer, rather than being asked to value their own health state. Secondly, the utility weights applied were from the US rather than the UK valuation set. However, given the lack of alternative estimates, we calculated the average utility decrement based on the utility decrements (relative to patients with cancer but without ONJ) for stages 2 to 3 (-0.33 and -0.61 respectively) and the distribution of ONJ stages (2 were stage 3 and 9 were stage 2) across the UK prospective case series reported by Malden et al.¹⁹⁵ This gave an average utility decrement of -0.38. The mean time from diagnosis to healing (6.5 months) was taken from the same study¹⁹⁵ to given an average QALY loss of 0.206 QALYs per case of ONJ. The NHS reference cost for a minor outpatient oral surgical procedure was applied (HRG code, CD03A, £166),¹⁸⁹ to account for the cost of surgical management as most patients in the Malden et al.,¹⁹⁵ case series had some form of surgical management, with debridement being the most common procedure. We note that the Malden *et al.*¹⁹⁵ case series may have missed less severe cases of osteonecrosis of the jaw which would be classed as stage 1. However, as cancer pateints with stage 1 ONJ were found not to have EQ-5D values significantly different from cancer patients without ONJ (Miksad et al.),¹⁹⁸ and patients with stage 1 would be more likely to be managed

conservatively,¹⁹⁴ we felt that exclusion of this group was unlikely to significantly bias the estimates of costs and QALYs resulting from ONJ priovided they are excluded from both the incidence estimates and the estimates of costs and QALYs per case. Costs and QALY losses per year of exposure to DEN, oral bisphosphoantes and i.v. bisphosphonates have been included in the basecase analysis but we note that their impact is very small due to the extremely low incidence.

Kanis *et al.*¹⁴⁶ applied HRG costs and a utility loss in the year after VTE but not beyond. The utility decrement was based on an assumption as no estimate was identified from the literature. No other models identified in the literature review included VTE as an adverse outcome. Rather than extend the AG model to incorporate the competing risk of VTE in patients at risk of fracture, the AG decided to estimate that average discounted lifetime cost and QALY loss attributable to VTE using a published model (Pandor *et al*, In press).¹⁹⁹ As this model was constructed to estimate the costs and benefits of thromboprophylaxis, the AG removed all costs and QALY losses attributable to the thromboprophylaxis itself including the increased risks of bleeding during the prophylaxis; thereby reducing the model to a comparison of two groups where the only difference between them is their risk of VTE. All consequences related to asymptomatic VTE was been recorded as an adverse outcome. The AG then compared costs, QALYs and the number of symptomatic VTEs for the strategies of prophyalixs for all and prophyalixs for none. These figures were used to estimate the average discounted lifetime cost and QALY loss per symptomatic VTE which were estimate the average discounted relevant with a starting age of 50.

The largest RCT reporting VTE as an adverse outcome for RLX was the MORE study (Ettinger *et al.*, 1999, Maricic *et al.*, 2002)^{52, 101} which reported that 25 out of 2557 patients receiving RLX experience VTE, whereas 8 out of 2576 patients receiving placebo experienced VTE. Based on the increased incidence observed in the MORE study, the excess rate of VTE attributable to RLX was estimated to be 0.67% over the 3-year study period. Ettinger *et al.* did not report the proportion of these events that were PE but did say that a mixture of PE and DVT events were observed. The study by Silverman *et al.*⁵¹ did repot the breakdown by type of VTE and reported that 4 of the 12 VTE events in the RLX treated arm were PE. It should be noted that in the model by Pandor *et al.*¹⁹⁹ 30% of symptomatic VTE events are PE which is reasonably consistent with the ratio of PE to DVT observed in the RLX arm in the study by Silverman *et al.* (2008).⁵¹

By applying the estimates of costs and QALYs per symptomatic VTE derived from Pandor *et al.*¹⁹⁹ to the excess incidence observed in the MORE study, we estimated a reduction in INMB of £116 per patient enrolled in the MORE study when valuing a QALY at £20,000 (and assuming that VTE occurred at age 50). Given that the average duration of persistence in the model for treatment with

RLX is 1.38 years, if we assume that the absolute risk is proportional to the time spent on treatment, the INMB loss attributable to VTE would be of the order of £53 per patient started on treatment (cost of £5.80, QALY loss of 0.00237). It should be noted that the QALY losses would be lower for older patients experiencing VTE as much of the QALY loss is attributed to long-term sequelae that have a greater impact in patients with higher life-expectancy. However, when assuming a start age of 75, the INMB loss attributable to VTE per patient started on RLX was estimated to be £47 (compared with £53 for patients aged 50) so the error associated with applying costs and QALYas estimated for a 50 year-old was not considered likely to have resulted in a large bias. The average costs and QALYs loss attributable to excess VTE were applied to each patient initiating treatment with RLX with the risk proportional to time spent on treatment such that they have a bigger impact in the SA assuming full treatment persistence.

6.2.1.10 Disease costs

The costs of fracture in the TA464¹⁴⁰ model were based on a UK resource use study reported in two papers by Gutierrez *et al.*^{200, 201} which used a GP database (The Health Improvement Network) to estimate resource use for those who fractured compared with matched controls. Unit costs from 2013/14 reference costs²⁰² and PSSRU unit costs²⁰³ were then applied to this resource use to estimate total cost in the year of fracture and in the subsequent years following fracture. None of the studies included in the review provided a more recent source of resource use. Two reported using costs based on Gutierrez *et al.* (UCB and Amgen)^{20, 98} and five used estimates from the literature from less recent publications (Kanis 2005, Kanis 2008, Strom 2013, Stevenson 2005, Waugh 2011).^{146, 148, 149, 151, 152}

The AG identified two additional relevant UK studies in the systematic database search conducted to identify published cost-effectiveness analyses. Lambrelli *et al.*²⁰⁴ used a methodology similar to that employed by Gutierrez *et al.* but using an alternative primary care database (CPRD) with linkage to a secondary care database (Hospital Episode Statistics [HES]). Lambrelli *et al.*²⁰⁴ reported costs in the year following hip fracture of £7,359. Leal *et al.*²⁰⁵ reported higher costs of £14,163 based on an analysis of HES data alone. This analysis excluded activity in primary care and was focused solely on patients admitted to hospital following fracture. For comparison, the estimate used in TA464¹⁴⁰ based on the data from Gutierrez *et al.* when excluding the costs of home help was £6,274. The AG decided to use the data from TA464¹⁴⁰ and to adjust it using PSSRU inflation indices,¹⁶ as the two studies by Gutierrez *et al.* provided a consistent methodology for estimating both hip and non-hip fractures and they included activity in both primary and secondary care settings and incorporated prescription costs.

Costs for home help and residential care / nursing home admission were estimated by uplifting the estimates used in TA464¹⁴⁰ using PSSRU inflation indices.¹⁶

The costs applied in the first and subsequent years following fracture are summarised in

Table 8.

6.2.1.11 Health-related quality of life

The systematic review of health-related quality of life studies conducted to for TA464¹⁴⁰ was updated. Further details on the review methods and findings can be found in Appendix 11. In summary, the review identified four papers²⁰⁶⁻²⁰⁹ all reporting outcomes from the ICUROS study. This study was previously identified in the review conducted for TA464.¹⁴⁰ However, the four new papers identified reported additional data. ICUROS was an international multi-centre study and two of the papers^{206, 207} reported outcomes from specific countries that formed subgroups of the overall ICUROS study population. The other two papers reported longer-term follow-up from the overall international dataset. One of these papers²⁰⁹ restricted their analysis to those patients with complete follow-up on both the EQ-5D and the EQ-VAS, which resulted in a smaller population available for analysis. The paper reporting outcomes from the international cohort without restricting to patients who also reported EQ-VAS was chosen as it was the larger dataset.²⁰⁸ This paper reported utility multipliers for the year following fracture and subsequent years for hip, wrist and vertebral fractures. The multipliers presented in the paper were applied directly in the model. However, no data were presented in this paper for proximal humerus fractures. The only paper reporting outcomes following proximal humerus fracture was the one reporting outcomes for the Australian sub-population of ICUROS.²⁰⁶ Although these data were specific to a different country, results were presented in an appendix using the UK TTO tariff for the EQ-5D. From these data, we calculated utility multipliers for the year following humerus fracture and subsequent years, using the same methodology as employed in the international paper for the other fracture types. The utility values applied are summarised in Table 8.

Parameter	Нір	Proximal	Wrist	New admission to	
	mp	Vertebrae	1 I UAIIII ai	vv i ist	
			humerus		residential care
Costs in year of	£8,568	£4,342	£1358	£896	£24,519
fracture ^a					
Costs in subsequent	£110	£345	£73	£73	£24,519
years ^a					
Utility multiplier in	0.55 ^b	0.68 ^b	0.78 °	0.83 ^b	0.625
year of fracture					
Utility in	0.86 ^b	0.85 ^b	1.00 °	0.99 ^b	0.625
subsequent years					

Table 8:Costs and utility values applied in the first and subsequent years following
fracture

^a data applied in TA464¹⁴⁰ but inflated using PSSRU inflation indices¹⁶

^b International ICUROS data reported by Svedbom et al. (2018) ²⁰⁸

^c Calculated from Australian ICUROS subgroup data reported by Abimanyi-Ochom *et al.* (2015)²⁰⁶ and assumed fixed it the PSA

^d data from Tidermark *et al.*²¹⁰ previously applied in TA464¹⁴⁰

6.2.12 Model valudation

The model is designed to operate in several different modes which facilitate debugging and validation. A description of the general validation methods used and the specific methods used to validate each structural change to the model is provided in Appendix 12.

6.2.13 Approach to sensitivity analysis

A PSA has been conducted to estimate the mean costs and QALYs gained when taking into account the uncertainty in the parameter values used in the model. In general, parameters were estimated using the following distributions: gamma distributions for costs; log-normal distributions for HRs (except the efficacy estiamtes which were based on the CODA samples from the NMA); and beta distributions for utility values and probabilities. The treatment persistence estimates were assumed to be normally distributed, but maximum and minimum values were applied to ensure they did not fall below zero or exceed the intended treatment duration. None of the parameters used to estimate fracture risk, in the absence of treatment, was varied in the PSA. This was to ensure that a specific set of patient characteristics was consistently mapped to the same survival curve for fracture-free survival without any parameter uncertainty. The following additional parameters were not varied in the PSA: drug prices; discount rates; unit costs sourced from PSSRU; utility in the second year after proximal humerus fracture; life expectancy after fracture associated with excess mortality; unit costs for

prescriptions after fracture; and proportion of self-funders for residential care, costs and QALY decrements for adverse events.

Structural sensitivity analyses were conducted to explore whether the results were sensitive to different model assumptions. To reduce model computation time, the structural sensitivity analyses were conducted using midpoint parameter inputs rather than using the full PSA version of the model. Any structural sensitivity analyses conducted during TA464 which showed minimal impact were not repeated here. The structural sensitivity analyses that were found to have the biggest impact in TA464 were those related to treatment perisistence and adverse events.

We conducted the following structural sensitivity analyses;

- Assuming full persistence with treatment up to the intended treatment duration
- Alternative assumptions for offset periods (1 year offset periods for RIS, IBN [oral and i.v.], TPTD and offset period equal to treatment duration for ZOL, DEN, RLX)
- HRs for bisphosphonates based on class-effect estimate (the predicted HR for a new drug in the same class)

We noted that both the Amgen and UCB submissions focused on high risk subgroups. In order to generate some comparable results, we conducted an exploratory scenario analysis in which we fixed the patient characteristics to obtain an estimate of the cost-effectiveness for an example high risk patient. The patient characteristics were chosen to match those used in the UCB model as closely as possible, although an exact match was not possible as the AG model uses FRAX for unknown BMD whereas the UCB model specifies the T-Score of the patient. The patient characteristics selected were female, aged 75, with a previous fracture, a BMI of 21 and one additional risk factor which was chosen to be moderate alcohol consumption (3-6 units per day) to give a FRAX risk which was similar to the FRAX risk of 30% reported for the patient population in the UCB economic model. This example patient had a FRAX score of 31.6%. The model was then run for 500,000 PSA samples with these patient characteristics fixed but allowing life-expectancy to be sampled.

6.2.2 Basecase results

The basecase results are based on the average model outcomes across 2 million patients from the PSA version of the model run with 1 parameter sample per patient. As the cost-effectivenss is dependent on absolute risk of fracture, results are provided for 10 risk categories each containing approximately 200,000 patients. It should be noted that the patients within the risk categories differ for QFracture and FRAX, as each risk category is based on a decile of risk scores across the population modelled to

ensure that each risk category contains approximately the same number of patients and is not underpowered relative to the other risk categories.

The adverse clinical outcomes avoided (i.e. fractures, fatal fractures and new admissions to nursing / residential care) compared to no treatment, when using QFracture to estimate fracture risk, are summarised in Table 9 along with the LYs gained (equivalent data when using FRAX to estimate fracture risk can be found in Appendix 13). It shoud be noted that as these are based on the mean outcomes from the PSA, which incorporates estimates of efficacy based on the CODA samples from the NMA, it is possible for a drug with a midpoint HR close to 1 and a broad CrI to have an adverse impact on fracture on average across the PSA samples. This is the case for RLX, where the HR for hip fracture was 0.93 (CrI of 0.30 to 2.76), resulting in a predicted small increase in hip fractures on average across the PSA samples. This was not observed when running the model using the midpoint HRs and therefore it clear that it is being caused by the distribution of CODA samples for the hip fracture HR for RLX.

It can be seen from Table 9, that ROMO/ALN results in the largest number of fractures avoided, followed by TPTD. DEN has fewer fractures avoided in total than TPTD but a higher number of LYs gained. This is because the LYs gained are dependent on both the number and the type of fractures avoided as only hip and vertebral fractures have an excess mortality risk. It can be seen that DEN avoids a similar number of hip fractures as TPTD, but DEN avoids more vertebral fractures than TPTD, meaning that there are fewer fatal fractures for DEN and this results in a greater number of LYs gained.

The ICERs versus no treatment and the treatment with maximum INMB (when valuing a QALY at either £20,000 or £30,000) for each risk category are summarised in Table 9: Clinical outcomes across the whole population eligible for fracture risk assessment when using QFracture to estimate fracture risk

	Adverse clinical outcomes <u>avoided</u> per 100,000 patients treated when compared to no treatment							
	Total fracture	Hip fractur	Vertebr al	Proxim al humeru s	Wrist fractur	Nursing home / residenti al care admissio	Fatal fractur	gained per patient vs. no treatme
	S	e	fracture	fracture	e	n	e	nt
ALN	353	93	85	45	130	16	14	0.0011
RIS	366	83	85	52	147	15	13	0.0010
IBN (oral)	295	81	85	35	94	13	13	0.0010
IBN (i.v.)	147	52	55	9	31	8	9	0.0007
ZOL	617	145	161	80	231	25	26	0.0020
RLX	37	-16	27	17	9	5	-1	0.0005
DEN	507	172	182	42	110	41	30	0.0029

TPTD	660	176	147	91	247	31	27	0.0020
ROMO/AL	833	248	158	129	298	56	34	0.0030
Ν								

Table 10. We used a regression using a generalised additive model (GAM) to estimate the relationship between INMB and absolute risk as a continuous variable for both QFracture and FRAX. Plots of the predicted INMBs when valuing a QALY at £20,000 for each non-bisphosphonate treatment are summarised in Figure 11 for QFracture and Figure 12 for FRAX. It can be seen that the INMB relative to no treatment increases with increasing baseline risk for both QFracture and FRAX for DEN, TPTD and ROMO/ALN, but the INMBs remain under zero acrosss the range of fracture risk observed in the population eligible for risk assessment. (A negative INMB in Figures 11 and 12 indicates an ICER over £20,000 per QALY compared to no treatment). For RLX, the relationship between fracture risk and INMB is less clear, particularly when using FRAX to estimate fracture risk. The INMB versus no treatment predicted by the regression does go above zero from a FRAX score of 32.6% to 37.8%, but it should be noted that the predictions become more uncertain as the risk scores increase as they are informed by estimates from fewer simulated patients. For example, only 2% of patients have a FRAX score over 30% and 0.2% of patients have a FRAX score less than 40%, which is why we do not present the INMB plots for FRAX scores higher than 40%. The risks of fracture predicted by QFracture are generally lower than the risks predicted by FRAX meaning that only 0.3% have a risk score over 30% when using QFracture. The plot of INMB versus risk for RLX may also be less well defined for RLX than the other non-bisphosphonates as RLX resulted in the fewest number of fractures being prevented, making the estimates of average INMB gains from prevented fractures more uncertain.

The AG also ran the regression of INMB against QFracture and FRAX when assuming that a QALY is valued at £30,000. The predicted INMBs remained under zero across the full range of risk scores observed for RLX, TPTD and ROMO/ALN for both QFracture and FRAX. For DEN, the predicted INMB was above zero indicating that DEN has an ICER below £30,000 compared to no treatment for FRAX scores above 45%; it remained under zero for the full range of QFracture scores. However, the AG notes the estimates of INMB at these very high levels of risk are uncertain as they are informed by less than 0.05% of the simulated population.

A full incremental analysis for each risk category is presented in Appendix 14 for QFracture and Appendix 15 for FRAX. The optimal treatment (i.e. the one with maximum INMB) when valuing a QALY at either £20,000 or £30,000 is summarised in Table 9 for easy reference. It can be seen that the optimal treatment when valuing a QALY at £20,000 is no treatment for patients in the lower risk categories and oral bisphosphonates for patients in the higher risk categories. When valuing a QALY at £30,000, oral bisphosphonates have maximum INMB even in the lowest risk category when using FRAX to estimate fracture risk (average risk of 3.1%) but no treatment is still the optimal strategy in the lowest risk category when using QFracture to estimates fracture risk. Using the predicted INMBs

from the regression we can say that oral bisphosphonates have maximum INMB from a FRAX score of 4.5% and from a QFracture score of 5.2% when valuing a QALY at £20,000.

The i.v. bisphosphonates never have higher INMB than the oral bisphosphonates. However, ZOL has a positive INMB versus no treatment from a FRAX score of 31.1% for Qfracture and 22.5% for FRAX. Conversely, i.v. IBN is always dominated by i.v. ZOL due to the higher costs associated with quarterly administration and the poorer efficacy estimates.

RLX is dominated by no treatment (higher costs and fewer QALYs gained) across all QFracture risk categories and across all but one FRAX risk category (category 8 with an average risk of 10.7%). This is explained by the few numbers of fracture prevented and the VTE risk associated with RLX.

TPTD is consistently dominated by ROMO/ALN across all risk categories for both QFracture and FRAX. This is because **Example 1**, the efficacy is applied over a longer timeframe as the treatment duration is not limited to 2 years and the **Example 2** benefits from the low cost of

6.2.3 Sensitivity analyses results

The results for the structural sensitivity analyses (conducted using midpoint parameter estimates) are presented in Appendix 16. In broad terms the results for non-bisphosphonates were consistent with the basecase analysis in that none of the non-bisphosphonates had an ICER under £30,000 per QALY when compared to no treatment in any of the QFracture or FRAX risk categories across any of the sensitivity analyses examined.

The exploratory scenario analysis examining a population with fixed patient characteristics, chosen to give a FRAX score of approximately 30%, resulted in an ICER of £13,544 for DEN versus no treatment (see Table 74). The ICER for ZOL versus no treatment was £11,427, but ZOL was extendedly dominated leaving ALN, DEN and ROMO/ALN on the cost-effectiveness frontier. ALN remained the optimal treatment when valuing a QALY at £20,000 as DEN had an ICER of £26,977 versus ALN. However, this scenario analysis shows that the results may be more favourable when considering specific high risk groups, even though the ICER for DEN in the highest decile of FRAX risk scores where the average risk score was 25% was above £30,000 per QALY versus no treatment. However, the AG believes that this exploratory scenario analysis should be interpreted cautiously given that it is based on a single example set of patient characteristics and the cost-effectiveness may differ for patients with different characteristics but the same FRAX score. It is also noted that the results for the same patient were qualitatively different when using QFracture to estimate fracture risk

as the risk was much lower at 13.3%. In this scenario none of the non-bisphosphonates had ICERs under £30,000 versus no treatment (see Table 75) when using QFracture to estimate absolute fracture risk.

	Adverse clinical outcomes avoided per 100,000 patients treated when compared to no treatment								
	Total fractures	Hip fracture	Vertebral fracture	Proximal humerus fracture	Wrist fracture	Nursing home / residential care admission	Fatal fracture	gained per patient vs. no treatment	
ALN	353	93	85	45	130	16	14	0.0011	
RIS	366	83	85	52	147	15	13	0.0010	
IBN (oral)	295	81	85	35	94	13	13	0.0010	
IBN (i.v.)	147	52	55	9	31	8	9	0.0007	
ZOL	617	145	161	80	231	25	26	0.0020	
RLX	37	-16	27	17	9	5	-1	0.0005	
DEN	507	172	182	42	110	41	30	0.0029	
TPTD	660	176	147	91	247	31	27	0.0020	
ROMO/ALN	833	248	158	129	298	56	34	0.0030	

 Table 9:
 Clinical outcomes across the whole population eligible for fracture risk assessment when using QFracture to estimate fracture risk

Risk decile	1	2	3	4	5	6	7	8	9	10	All
Qfracture											
score (%)	0.5	0.7	1.0	1.4	2.0	2.7	3.9	5.5	8.4	16.0	NA
ALN	£675,004	£290,229	£125,805	£126,025	£77,059	£65,281	£30,452	£14,820	£5,622	Dominates	£31,200
RIS	£829,832	£319,027	£129,889	£100,618	£81,404	£64,979	£32,482	£17,119	£7,235	Dominates	£33,840
IBN (oral)	£948,571	£301,165	£119,370	£137,375	£93,736	£68,805	£34,713	£21,840	£9,443	Dominates	£38,321
IBN (i.v.)	Dominated	Dominated	Dominated	Dominated	Dominated	£4,373,315	£1,250,818	£564,407	£398,475	£266,492	£1,442,071
ZOL	Dominated	£2,984,339	£808,583	£723,860	£442,296	£353,780	£210,441	£127,491	£93,903	£60,300	£236,247
RLX	Dominated	Dominated	Dominated	Dominated	Dominated						
DEN	£1,794,421	£1,092,301	£1,868,896	£632,830	£523,142	£502,655	£462,072	£250,729	£166,441	£126,392	£388,796
TPTD	£8,610,782	£5,871,874	£3,731,997	£3,083,847	£2,356,350	£1,964,475	£1,366,400	£971,695	£671,001	£457,894	£1,419,377
ROMO/ALN											
Max INMB at £20K	NT	ALN	ALN	ALN	NT						
at £30K	NT	ALN	ALN	ALN	NT						
FRAX score											
(%)	3.1	4.3	5.0	5.6	6.2	7.3	8.8	10.7	14.9	25.1	NA
ALN	£28,541	£27,325	£16,808	£15,524	£11,362	£8,951	£3,791	Dominates	Dominates	Dominates	£3,659
RIS	£32,429	£27,654	£15,575	£17,389	£11,265	£8,736	£4,572	Dominates	Dominates	Dominates	£4,181
IBN (oral)	£34,519	£27,349	£17,728	£16,459	£12,209	£12,389	£6,035	£734	Dominates	Dominates	£5,333
IBN (i.v.)	£1,214,068	£853,480	£443,563	£430,771	£342,182	£362,332	£367,423	£215,680	£163,225	£111,944	£299,662
ZOL	£170,998	£145,587	£110,846	£96,012	£82,355	£82,446	£63,432	£51,057	£37,737	£20,257	£68,512
RLX	Dominated	£57,050	Dominated	Dominated	Dominated						
DEN	£398,751	£250,782	£195,106	£220,601	£184,386	£193,385	£140,582	£95,158	£89,300	£58,730	£145,830
TPTD	£1,254,448	£1,115,769	£832,835	£745,024	£632,511	£622,664	£542,248	£439,478	£343,693	£244,558	£549,324
ROMO/ALN											
Max INMB at £20K	NT	NT	RIS	ALN	RIS	ALN	ALN	ALN	ALN	ALN	ALN
at £30K	ALN	ALN	RIS	ALN	RIS	ALN	ALN	ALN	ALN	ALN	ALN

Table 10:ICERs versus no treatment (NT) and treatment with maximum INMB by risk deciles for QFracture and FRAX

Figure 11: INMB as a function of absolute fracture risk as determined by QFracture

Figure 12: INMB as a function of absolute fracture risk as determined by FRAX

6.2.4 Discussion

A key strength of the approach we have taken is that we have been able to adapt the model used in TA464 to allow the cost-effectiveness of non-bisphosphonates to be assessed in a manner consistent with the approach used previously to assess the cost-effectiveness of bisphosphonates. However, whilst the overall model structure and many of the data inputs have remained unchanged to maintain consistency, there are several areas of differences that should be noted. We have updated the estimates of treatment persistence used for oral bisphosphonates to incorporate a new data source identified in the UCB company submission. This has increased the duration of treatment persistence for oral bisphosphonates 3-fold. We have incorporated monitoring costs for bisphosphonates consisting of annual follow-up appointments to encourage persistence and manage adverse events and DXA scans when completing treatment to assess need for continued treatment. We have applied the HRs from the NMA for each individual bisphosphonate, as per the original AG report for TA464, rather than the estimates based on the bisphosphonate class-effect as presented in the addendum which followed the original assessment report. However, this only impacts the incremental cost-effectiveness of non-bisphosphonates relative to bisphosphonates. We have incorporated ONJ, VTE and cellulitis as AEs in the model. The utility values applied following fracture in the revised model are based on an updated systematic review of utility estimates. The costs following fracture have been uplifted to reflect prices changes over time and the drug costs were updated to reflect current prices. For consistency, we have used non-vertebral fracture HRs for wrist fractures for all interventions due to sparse data on this outcome for nonbisphosphonates, whereas previously we used wrist fracture specific outcomes for the bisphosphonates as the data were less sparse when considering only the bisphosphonate interventions.

Although assessing the cost-effectiveness of non-bisphosphonates was the objective of this analysis, it is noted that the level of fracture risk at which the oral bisphosphonates become cost-effective is higher than in the analysis that informed TA464. This is due to the inclusion of monitoring costs which add an additional £52 per annum to the drug costs which are around £10 per annum. However, these revised estimates of cost-effectiveness for oral bisphosphonates appear to be reasonably consistent with the intervention thresholds specified in the NICE Quality Standard (QS14) which provide age-related intervention thresholds varying from a 10-year absolute risk level of 5.9% in patients aged 40 rising to 20% in patients aged ≥ 70 .¹² In addition, it is noted that TA464 recommends i.v. bisphosphonates for patients with a risk of 10% or higher but i.v. IBN and ZOL had ICERs over £30,000 at this

risk level in the revised analysis. Again, this is likely to be as a results of the incorporation of additional costs for monitoring in secondary care and the correction to the administration costs for i.v. ibandronate.

The models in the UCB and Amgen submissions both focused their analysis only on higher risk subgroups of the population specified in the scope, whilst the AG model provides cost-effectiveness estimates for 10 risk categories covering the whole population eligible for risk assessment under CG146. It is therefore difficult to compare the results directly. However, the AG model provides much higher ICERs than those provided by the analyses described in the UCB and Amgen submissions, even for the highest FRAX and QFracture risk categories. Although an exploratory scenario analysis examining an example high risk patient with a FRAX score of approximately 30% resulted in an ICER versus no treatment for DEN that was under £30,000 per QALY suggesting that the cost-effectiveness estimates for some non-bisphosphonates may be more favourable for specific high risk patients. The AG notes that this scenario analyses should be interpreted somewhat cautiously as other patients with a similar FRAX score may be more or less cost-effective.

There are several key differences between the AG analysis and the analyses presented in the UCB and Amgen submissions that should also be noted when interpreting these differences. The model in the Amgen submission incorporated a much higher cost of administration for i.v. ZOL (£559 vs £253) which resulted in a more favourable comparison of DEN versus ZOL. The model in the Amgen submission assumed that all DEN treatments would be administered in primary care whereas the AG model assumed that the first 2 DEN treatments would be given in secondary care which substantially increases the administration costs for DEN. The model in the Amgen submission applied a 1-year offset to all drugs which is unfavourable compared with what the AG assumed for all drugs except DEN and RLX. The approach taken to model mortality following fracture differed in the models in the Amgen and UCB submissions which allowed for an increase risk of mortality that persisted beyond the 6month timeframe assumed by the AG for excess mortality attributable to fracture. However, it was not possible to asses the impact of the different assumptions on mortality attributable to fracture within the AG model due to the different model structures employed. The model in the UCB submission applied different efficacy estimates at different time points (different estimates every 6 months, up to 4 years). The AG found that restricting the NMA to studies reporting vertebral fractures at 12 months did not provide any evidence to suggest different treatment effects when the analysis is limited to specific outcome measurement times. Based on this, the NMA used to inform the AG model incorporated outcomes reported at the longest available time point for each study and assumed that the fracture event rate is constant over

time. UCB applied a short-term elevated risk for recent fracture in addition to the long-term elevated risk following fracture incorporated within FRAX. In contrast to this, the AG model included HRs that increase the risk of fracture following an incident fracture which are applied for the remainder of the model. However, within the AG model, the increased risk incoporated within the QFracture and FRAX score is removed at the time of the incident fracture. It is unclear what effect these different approaches have had on the estimates of future fracture risk following an incident fracture. UCB applied different persistence assumptions for patients receiving ALN following ROMO than for patients receiving ALN from the start of the model whereas the AG assumed that a patient's persistence with ALN treatment woud be independent of whether they had previously had ROMO.

One of the key limitations of the AG analysis is that we have assumed that all of the treatment strategies modelled are viable options for all patients within the population. This allowed us to run the model once for the whole population eligible for risk assessment and to determine a single absolute risk threshold for cost-effective intervention for each treatment. Applying a strict interpretation of the licensed indications for each treatment would have required running the analysis multiple times for different groups who have different treatment options which was not feasible. Whilst incremental analyses are usually conducted over a set of potentially interchangeable treatments, in reality it is often the case that some of the cohort of patients who are eligible for one treatment would be contraindicated for another and allowances are made for this when interpreting the cost-effectiveness results. For example, it is possible to rank the treatments in order of decreasing INMB and treat with the next most cost-effective treatment when the optimal treatment is contraindicated.

Similarly, whilst we have not explicitly conducted separate analyses within and between particular drug classes, it is possible to use the INMB estimates provided to identify the optimal treatment within a particular class. For example, deleting the RLX, TPTD and ROMO/ALN rows from the results tables shown in Appendices 14 and 15 and examining the INMBs estimates for the remaining interventions would allow the optimal treatment to be identified within the class of antiresportives (ALN, RIS, IBN, ZOL, DEN). Alternatively, deleting the bisphosphonates rows from the tables would allow the optimal treatment to be identified for patients in whom bisphosphonates are contraindicated.

The AG economic model assumes that the relative treatment effect (i.e. HR) is consistent across all populations included in the scope despite there being heterogeneity in terms of gender, risk factors (e.g. prior fracture and steroid use) and baseline risk across studies included in the NMA. However, there was no evidence that treatment effect varied with age,

gender or baseline risk based on the meta-regression conducted for the NMA outcomes of fracture and BMD.

We note that there are limited data on the long-term persistence for all treatments, but particularly for the non-bisphosphonates and the estimates of treatment persistence for TPTD and DEN in particular are based on a fairly crude extrapolation of Kaplan-Meier plots for treatment discontinuation. However, the sensitivity analyses in which patients were assumed to persist for the full intended treatment duration did not result in ICERs falling under £30,000 per QALY for any of the non-bisphosphonate treatments.

The economic analysis of ROMO is based on the assumption that it will be used in sequence with 4 years of ALN and that the efficacy observed during the 24 months of the ARCH⁸⁴ RCT will continue during the full 4 years of ALN. This results in the treatment effect being extrapolated beyond the trial period in the analysis assuming full persistence with treatment. However, the overall duration of treatment is less than 4 years in the basecase model due to the application of real-world persistence data for ALN so the need for extrapolation is minimised.

AEs have been incorporated in a fairly crude manner by applying an average cost and QALY decrement to every individual treated based on the average incidence rather than including the AEs as separate competing events within the model. The benefit of doing this is that it avoids the impact of very rare AEs such as ONJ being missed because they do not occur often within the simulated population. The estimates of costs and QALY decrements attributable to AE were also not included in the PSA which may mean that the decision uncertainty associted with AEs will be underestimated. However, this is unlikely to be a significant limitation for cellulitis and ONJ where the AE events rates were very low and the average costs and QALY decrements per treated patient were small and are therefore unlikely to be significant drivers of cost-effectiveness. However, the average loss of INMB attributable to the AE of VTE for RLX was relatively large in comparison to the costs of treatment (discounted INMB decrement of £53 per patient started on treatment versus an annual drug cost of £43) meaning that this is likely to be a significant driver of cost-effectiveness for RLX. (Whilst an explicit scenario analysis has not been conducted, the AG expects that for the majority of the risk categories, the INMBs would be unlikely to be above zero when removing the impact of VTE based on the results presented).

We note that the cost-effectiveness analysis is based on current prices for each intervention and where there is more than one preparation we have assumed that the lowest cost preparation is used, which is often the generic form, where one is avaiable. We also note that the TPTD patent will expire in August 2019 and two biosimilars have already been approved (Movymia and Terrosa),^{21, 22} but their prices are currently unknown. It is likely that these biosimilar preparations will have a lower cost and therefore the estimates of costeffectiveness for TPTD may be overly pessimistic compared to what may be achieved in practice in future years if there is widespread uptake of these biosimilars and they are made available at a substantially lower cost than TPTD.

The scope of the MTA stated that, "if evidence allows, treatment sequences will be considered." The only treatment sequence modelled by the AG is ROMO/ALN as no other treatment sequences were included in the NMA for fracture outcomes. The AG notes that the UCB submission also contained cost-effectiveness estimates for the sequence of ALN/ROMO but it appears that this was based on an assumption of clinical equivalence for ROMO/ALN and ALN/ROMO and assumptions regarding the appropriate offset period. Whilst there was RCT evidence comparing the sequence of ROMO/DEN to placebo followed by DEN from the FRAME⁵⁵ RCT, it was not possible to include this RCT in the NMAs (as neither study arm connected with any other studies included in the networks) and therefore we have not been able to estimate the cost-effectiveness of the ROMO/DEN sequence.

One of the strengths of this analysis is that we have been able to estimate the costeffectiveness of each intervention across the broad range of absolute fracture risk observed within the population eligible for risk assessment under CG146. However, the downside of the approach we have taken is that the estimates of cost-effectiveness are uncertain in patients at high risk of fracture (e.g. >30%) as they are informed by fewer simulated patients. We tried to adderess this by conducting an exploratory sensitivity analysis for an example high risk patient, however, we note that the cost-effectiveness of other patients with similar FRAX scores may differ and that the regression of INMB across the full range of risk scores observed in the population eligible for fracture risk assessment did not identify a risk at which the ICER fell under £20,000 for any of the non-bisphosphonates.

7 ASSESSMENT OF FACTORS RELEVANT TO THE NHS AND OTHER PARTIES

The only non-bisphosphonate not currently in use within the NHS in England is ROMO. The UCB submission²⁰ states that, "there is likely no administration costs or initiation costs associated with romosozumab as the training of injection techniques will be provided as part of the patient support program provided by UCB". The AG believes that the impact on NHS services of introducing ROMO to the NHS in England is anticipated to be small, as the needs of patients on ROMO are likely to be similar to those on TPTD, which is already an established treatment.

8 **DISCUSSION**

8.1 Statement of principle findings

Fifty-two RCTs of non-bisphosphonates were included in the review. An additional fifty-one RCTs of bisphosphonates were included for the NMAs.

Across studies reporting overall mortality, there were no significant differences between nonbisphosphonate treatment arms and their comparators of placebo, other non-bisphosphonates or bisphosphonates. The ranges of serious adverse event rates were: DEN 2% to 25.8%; RLX 2% to 18.6%; ROMO 3.2% to 12.9%; TPTD 0% to 33%.

In NMAs for vertebral, non-vertebral and hip fractures and for femoral neck BMD, all treatments were associated with beneficial effects relative to placebo. For both vertebral fractures and percentage change in femoral neck BMD the treatment effects were statistically significant at a conventional 5% level for all treatments. TPTD was associated with the greatest effect for vertebral (HR 0.23, 95% CrI: 0.16-0.32, Probability of being the best (PB): 0.38), non-vertebral (HR 0.58, 95% CrI: 0.45-0.76, PB: 0.52), hip (HR 0.35, 95% CrI: 0.15-0.73, PB: 0.50) and wrist (HR 0.75, 95% CrI: 0.38-1.41, PB: 0.28) fractures, while ROMO was the most effective for proximal humerus fractures, and ROMO/ALN (HR 0.10, 95% CrI: 0-3.66, PB: 0.77) for percentage change in femoral neck BMD. In general, the ranking of treatments varied for the different outcomes.

The ICERS compared with no treatment are above £20,000 per QALY for all nonbisphosphonate interventions across the range of QFracture and FRAX scores expected in the population eligible for fracture risk assessment. The ICER for DEN may fall below £30,000 at very high levels of risk (FRAX score >45%), but the estimates of cost-effectiveness are very uncertain at this level of risk. An exploratory scenario analysis examining an example high risk patient also suggested that the cost-effectiveness of DEN may be more favourable in high risk patients with specific characteristics.

8.2 Strengths and limitations of the assessment

Strengths

A comprehensive search for RCTs was undertaken.

RCTs were available for all treatments of interest, reporting fracture data and FN BMD data. NMAs were used to synthesise the evidence, permiting a coherent comparison of the efficacy of interventions in terms of fracture and femoral neck BMD. Although studies varied in quality, a sensitivity analysis removing lower quality studies from the NMA gave results consistent with the main analysis.

A key strength of the approach we have taken in the economic evaluation is that we have been able to adapt the model used in TA464 to allow the cost-effectiveness of non-bisphosphonates to be assessed in a manner consistent with the approach used previously to assess the costeffectiveness of bisphosphonates.

Limitations

Evidence was restricted to English language publications.

Most RCTs had a primary endpoint of BMD which is a surrogate endpoint, rather than fractures which are of clinical importance to patients.

For wrist and proximal humerus fractures there was less RCT evidence. Although NMAs were conducted, there is considerable uncertainty in treatment effects for certain interventions in these networks. However, for the economic analysis we were able to use the non-vertebral fracture NMA outcomes for wrist and proximal humerus fracture as this network as this was less sparse.

Due to the limitations of the evidence available, we were only able to model one treatment sequence within the economic analysis. Whilst we were able to estimate INMB as a function of absolute risk across the full range of risk scores expected within the population eligible for risk assessment, the estimates of INMB in patients at very high risk of fracture (e.g. >30%) are uncertain as they are based on a small proportion of the simulated population (<2% for FRAX and <0.2% for QFracture).

8.3 Uncertainties

Although statistically significant treatment effects were found when comparing interventions to placebo, the effects of non-bisphosphonates were generally similar (with non-statistically significant pairwise HRs). There was evidence of moderate heterogeneity in treatment effects between studies.

8.4 Other relevant factors

Any future introduction of biosimilar treatments for TPTD or DEN would be likely to change the cost-effectiveness of these treatments. This assessment report was prepared whilst ROMO was still being assessed by the European Medicines Agency and therefore it is based on the anticipated rather than the final licensed indication for ROMO.

9 CONCLUSIONS

RCTs were available for all non-bisphosphonate treatments of interest, reporting fracture data and FN BMD data. All treatments were associated with beneficial effects relative to placebo. For each intervention, reported SAEs varied across trials, with the majority of between-group differences not being statistically significant for comparisons with placebo/no active treatment, head-to-head non-bisphosphonate comparisons, or comparisons with bisphosphonates.

The ICERS compared with no treatment are above £20,000 per QALY for all nonbisphosphonate interventions across the range of QFracture and FRAX scores expected in the population eligible for fracture risk assessment. The ICER for DEN may fall below £30,000 at very high levels of risk (FRAX score >45%), but the estimates of cost-effectiveness are very uncertain at this level of risk. An exploratory scenario analysis examining an example high risk patient also suggested that the cost-effectiveness of DEN may be more favourable in high risk patients with specific characteristics.

9.1 Implications for service provision

As the majority of the non-bisphosphonates interventions are already part of current practice, and the additional treatment of ROMO is likely to be delivered in a similar manner to TPTD, we do not anticipate any significant implications for service provision associated with these treatments.

9.2 Suggested research priorities

Additional head-to-head studies comparing non-bisphosphonates would be beneficial as few of the RCTs identified in the systematic review were head-to-head comparisons. In particular, it would be useful to know whether a treatment sequence of TPTD followed by ALN provides similar efficacy to the ROMO/ALN sequence.

There were not many trials with a follow-up of longer than 36 months. The reporting of longterm outcomes from the ARCH and FRAME studies for ROMO in particular would be useful to see if the treatment effectiveness persists during the following years of antiresportive treatment.

Although there were few data on wrist and humerus fractures for non-bisphosphonates, further research to gather these is unlikely to be useful as we were able to use the outcomes from the non-vertebral fracture network. Similarly, although there were few RCTs in men or steroid induced osteoporosis, these showed similar treatment effect patterns to

postmenopausal women and so further research in these populations is not considered a research priority.

10 REFERENCES

- 1. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of World Health Organization study group no. WHO Technical Report Series 843; 1994.
- 2. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, *et al.* European guidance for the diagnosis and management of osteoporosis in postmenopausal women. *Osteoporos Int* 2008;19:399-428.
- 3. Online NCS. Osteoporosis Prevention, Diagnosis, and Therapy. 200011/12/2014).
- 4. Pasco JA, Seeman E, Henry MJ, Merriman EN, Nicholson GC, Kotowicz MA. The population burden of fractures originates in women with osteopenia, not osteoporosis. *Osteoporosis Int* 2006;17:1404-9.
- 5. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: Medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Archives of Osteoporosis 2013;8 (1-2) (no pagination).
- 6. Svedbom A, Hernlund E, Ivergard M, Compston J, Cooper C, Stenmark J, *et al.* Osteoporosis in the European Union: A compendium of country-specific reports. *Archives of Osteoporosis* 2013;8 (1-2) (no pagination).
- Gauthier A, Kanis J, Jiang Y, Martin M, Compston J, Borgstrom F, *et al.* Epidemiological burden of postmenopausal osteoporosis in the UK from 2010 to 2021: estimations from a disease model. Paper presented at: Archives of Osteoporosis2011.
- National Institute for Health and Care Excellence. Osteoporosis: assessing the risk of fragility fracture. Clinical guideline [CG146]. *Journal* 2012. <u>https://www.nice.org.uk/guidance/cg146/resources/osteoporosis-assessing-therisk-of-fragility-fracture-pdf-35109574194373</u> [Accessed 20 November 2018]
- 9. National Institute for Health and Care Excellence. Bisphosphonates for treating osteoporosis. Technology Appraisal Guidance [TA464]. *Journal* 2017. <u>https://www.nice.org.uk/guidance/ta464/resources/bisphosphonates-fortreating-osteoporosis-pdf-82604905556677</u> [Accessed 20 November 2018]
- 10. National Institute for Health and Care Excellence. Denosumab for the prevention of osteoporotic fractures in postmenopausal women. Technology appraisal guidance [TA204]. 2010. <u>https://www.nice.org.uk/guidance/ta70</u> [Accessed 31 October 2018] (Accessed 23 November 2016).
- National Institute of Heath and Care Excellence (NICE). Raloxifene and teriparatide for the secondary prevention of osteoporotic fragility fractures in postmenopausal women [TA161]. 2008. <u>https://www.nice.org.uk/Guidance/TA161</u> [Accessed 2 November 2018] (Accessed 22 March 2016).
- National Institute for Health and Care Excellence. NICE quality standard 149 on osteoporosis. *Journal* 2017. <u>https://www.nice.org.uk/guidance/qs149/resources/osteoporosis-pdf-75545487906757</u> [Accessed 20 November 2018]
- National Osteoporosis Guideline Group. NGG 2017: Clinical guideline for the prevention and treatment of osteoporosis. *Journal* 2017. <u>https://www.sheffield.ac.uk/NOGG/NOGG%20Guideline%202017.pdf</u> [Accessed 20 November 2018]

- 14. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: Medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Journal 2013. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed11&N EWS=N&AN=2014029368 [Accessed 20 November 2018]
- 15. Stevenson M, Davis S. Analyses of the cost-effectiveness of pooled alendronate and risedronate, compared with strontium ranelate, raloxifene, etidronate and teriparatide. *Journal* 2006. https://www.nice.org.uk/guidance/TA160/documents/dsu-economic-evaluation-of-pooled-alendronate-and-risedronate-compared-with-strontium-ranelate-raloxifene-etidronate-and-teriparatide2 [Accessed 30 November 2018]
- 16. Curtis L, Burns A. Unit costs for health and social care 2017. *Journal* 2017. <u>https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2017/</u> [Accesed 20 November 2018]2014
- National Institute for Health and Care Excellence. Osteoporosis Overview -NICE pathway. *Journal* 2018. <u>https://pathways.nice.org.uk/pathways/osteoporosis#content=view-index</u> [Accessed 20 November 2018]
- 18. National Institute for Health and Care Excellence. Fragility fracture risk assessment - NICE Pathway. *Journal* 2018. <u>http://pathways.nice.org.uk/pathways/osteoporosis#path=view%3A/pathways/osteoporosis/fragility-fracture-risk-assessment.xml&content=view-index [Accessed 30 November 2018]</u>
- 19. National Institute for Health and Clinical Excellence. Non-bisphosphonates for treating osteoporosis: Final Scope. London; 2018.
- 20. UCB Pharma. Company evidence submission for romosozumab.
- 21. Summary of opinion1 (initial authorisation) Movymia. London: European Medicines Agency; 2016.
- 22. Summary of opinion1 (initial authorisation) Terrosa. London: European Medicines Agency; 2016.
- 23. Summary of Product Characteristics for Evista 60 mg film coated tablets. Journal 2018. <u>https://www.medicines.org.uk/emc/product/3778/smpc</u> [Accessed 20 Novmebr 2018]
- Summary of Product Characteristics for FORSTEO 20 micrograms/80 microlitres solution for injection in pre-filled pen. *Journal* 2018. https://www.medicines.org.uk/emc/product/2215 [Accessed 20 Novmebr 2018]
- 25. UCB Pharma Ltd. A Multicenter, Randomized, Double-blind, Placebocontrolled Study to Compare the Efficacy and Safety of Romosozumab With Placebo in Men With Osteoporosis. Clinical Study Report.; 2016.
- 26. National Institute for Health and Care Excellence. Denosumab for the prevention of osteoporotic fractures in postmenopausal women. Technology Appraisal Guidance [TA464]. *Journal* 2010. <u>https://www.nice.org.uk/guidance/ta204/resources/denosumab-for-the-prevention-of-osteoporotic-fractures-in-postmenopausal-women-pdf-82600189194949</u> [Accessed 20 November 2018]

- 27. National Institute for Health and Care Excellence. Raloxifene and teriparatide for the secondary prevention of osteoporotic fragility fractures in postmenopausal actures inpostmenopausal women. Technology Appraisal Guidance [TA161]. *Journal* 2010. https://www.nice.org.uk/guidance/ta161/resources/raloxifene-and-teriparatide-for-the-secondary-prevention-of-osteoporotic-fragility-fractures-in-postmenopausal-women-pdf-82598370170821 [Accessed 20 November 2018]
- 28. NHS Digital. Prescription Cost Analysis England, 2017 [PAS]. *Journal* 2017. <u>https://digital.nhs.uk/data-and-</u> information/publications/statistical/prescription-cost-analysis/prescriptioncost-analysis-england-2017 [Accessed 21 November 2018]
- 29. NHS Digital. Prescribing Costs in Hospitals and the Community, England 2016/17. *Journal* 2017. <u>https://digital.nhs.uk/data-and-information/publications/statistical/prescribing-costs-in-hospitals-and-the-community/2016-17</u> [Accessed 21 November 2018]
- 30. MedicinesComplete. British National Formulary (BNF). *Journal* 2018. https://www.medicinescomplete.com/#/ [Accessed 21 November 2018]
- 31. Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, *et al.* Guideline for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. National Osteoporosis Guideline Group; 2014.
- 32. World Health Organization Centre for Metabolic Bone Diseases. FRAX®. 2014. <u>http://www.shef.ac.uk/FRAX/</u> (Accessed 11/12/2014).
- 33. ClinRisk. QFracture® 2012 risk calculator. ClinRisk Ltd. 2012. http://qfracture.org (Accessed 11/12/2014).
- 34. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. 2009;339.
- 35. National Institute for Health and Clinical Excellence. Bisphosphonates for preventing osteoporotic fragility fractures (including a partial update of NICE technology appraisal guidance 160 and 161). London: National Institute for Health and Clinical Excellence (NICE); 2015.
- 36. National Institute for Health and Clinical Excellence. Non-bisphosphonates for treating osteoporosis: Final scope. London: National Institute for Health and Clinical Excellence (NICE); 20158.
- 37. UCB Pharma Ltd. A Multicenter, International, Randomized, Double-blind, Placebo-controlled, Parallel-group Study to Assess the Efficacy and Safety of Romosozumab Treatment in Postmenopausal Women With Osteoporosis. Clinical Study Report.; 2017.
- 38. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. 1993;8:1137-48.
- 39. Higgins J, Altman A, Sterne J, on behalf of the Cochrane Statistical Methods Group and the Cochrane Bias Methods Group. Chapter 8: Assessing risk of bias in included studies. In: Higgins J, Churchill R, Chandler J, Cumpston M, editors. Cochrane Handbook for Systematic Reviews of Interventions version 520 (updated June 2017): Cochrane, 2017. Available from www.training.cochrane.org/handbook; 2017.
- 40. The Cochrane Collaboration. Review Manager (RevMan). In. 5.2 ed; 2014.
- 41. Wright CC, Sim J. Intention-to-treat approach to data from randomized controlled trials: a sensitivity analysis. *Journal of Clinical Epidemiology* 2003;56:833-42.

- 42. Cummings SR, Martin JS, McClung MR, Siris ES, Eastell R, Reid IR, *et al.* Denosumab for prevention of fractures in postmenopausal women with osteoporosis. *N Engl J Med* 2009;361:756-65.
- 43. Orwoll E, Teglbjaerg CS, Langdahl BL, Chapurlat R, Czerwinski E, Kendler DL, *et al.* A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. *J Clin Endocrinol Metab* 2012;97:3161-9.
- 44. Nakamura T, Matsumoto T, Sugimoto T, Hosoi T, Miki T, Gorai I, *et al.* Clinical Trials Express: fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: denosumab fracture intervention randomized placebo controlled trial (DIRECT). *J Clin Endocrinol Metab* 2014;99:2599-607.
- 45. Nakamura T, Matsumoto T, Sugimoto T, Shiraki M. Dose-response study of denosumab on bone mineral density and bone turnover markers in Japanese postmenopausal women with osteoporosis. *Osteoporos Int* 2012;23:1131-40.
- 46. Koh JM, Chung DJ, Chung YS, Kang MI, Kim IJ, Min YK, et al. Assessment of Denosumab in Korean Postmenopausal Women with Osteoporosis: Randomized, Double-Blind, Placebo-Controlled Trial with Open-Label Extension. Yonsei Medical Journal 2016;57:905-14.
- 47. Adami S, San Martin J, Munoz-Torres M, Econs MJ, Xie L, Dalsky GP, *et al.* Effect of raloxifene after recombinant teriparatide [hPTH(1-34)] treatment in postmenopausal women with osteoporosis. *Osteoporos Int* 2008;19:87-94.
- 48. Morii H, Ohashi Y, Taketani Y, Fukunaga M, Nakamura T, Itabashi A, *et al.* Effect of raloxifene on bone mineral density and biochemical markers of bone turnover in Japanese postmenopausal women with osteoporosis: results from a randomized placebo-controlled trial. *Osteoporos Int* 2003;14:793-800.
- 49. Liu JL, Zhu HM, Huang QR, Zhang ZL, Li HL, Qin YJ, *et al.* Effects of raloxifene hydrochloride on bone mineral density, bone metabolism and serum lipids in Chinese postmenopausal women with osteoporosis: a multi-center, randomized, placebo-controlled clinical trial. *Chin Med J* 2004;117:1029-35.
- 50. Gorai I, Hattori S, Tanaka Y, Iwaoki Y. Alfacalcidol-supplemented raloxifene therapy has greater bone-sparing effect than raloxifene-alone therapy in postmenopausal Japanese women with osteoporosis or osteopenia. *J Bone Miner Metab* 2012;30:349-58.
- 51. Silverman SL, Christiansen C, Genant HK, Vukicevic S, Zanchetta JR, de Villiers TJ, *et al.* Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. *J Bone Miner Res* 2008;23:1923-34.
- 52. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators.[Erratum appears in JAMA 1999 Dec 8;282(22):2124]. Jama 1999;282:637-45.
- 53. Lufkin EG, Whitaker MD, Nickelsen T, Argueta R, Caplan RH, Knickerbocker RK, *et al.* Treatment of established postmenopausal osteoporosis with raloxifene: a randomized trial. *J Bone Miner Res* 1998;13:1747-54.

- 54. Mok CC, Ying KY, To CH, Ho LY, Yu KL, Lee HK, *et al.* Raloxifene for prevention of glucocorticoid-induced bone loss: a 12-month randomised double-blinded placebo-controlled trial. *Annals of the Rheumatic Diseases* 2011;70:778-84.
- 55. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, *et al.* Romosozumab Treatment in Postmenopausal Women with Osteoporosis. *N Engl J Med* 2016;375:1532-43.
- 56. Ishibashi H, Crittenden DB, Miyauchi A, Libanati C, Maddox J, Fan M, *et al.* Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: A phase 2 study. *Bone* 2017;103:209-15.
- 57. Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, *et al.* A Phase 3 Randomized Placebo-controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men With Osteoporosis. *J Clin Endocrinol Metab* 2018;20:20.
- 58. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, *et al.* The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. *J Bone Miner Res* 2003;18:9-17.
- 59. Miyauchi A, Matsumoto T, Sugimoto T, Tsujimoto M, Warner MR, Nakamura T. Effects of teriparatide on bone mineral density and bone turnover markers in Japanese subjects with osteoporosis at high risk of fracture in a 24-month clinical study: 12-month, randomized, placebocontrolled, double-blind and 12-month open-label phases. *Bone* 2010;47:493-502.
- 60. Miyauchi A, Matsumoto T, Shigeta H, Tsujimoto M, Thiebaud D, Nakamura T. Effect of teriparatide on bone mineral density and biochemical markers in Japanese women with postmenopausal osteoporosis: a 6-month dose-response study. *J Bone Miner Metab* 2008;26:624-34.
- 61. Miller PD, Leder BZ, Hattersley G, Lau E, Alexandersen P, Hala T, *et al.* Effects of abaloparatide on vertebral and non-vertebral fracture incidence in postmenopausal women with osteoporosis-results of the phase 3 active trial. *Endocrine Reviews Conference: 97th Annual Meeting and Expo of the Endocrine Society, ENDO* 2015;36.
- 62. Leder BZ, O'Dea LS, Zanchetta JR, Kumar P, Banks K, McKay K, *et al.* Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. *J Clin Endocrinol Metab* 2015;100:697-706.
- 63. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, *et al.* Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. *N Engl J Med* 2001;344:1434-41.
- 64. Sethi BK, Chadha M, Modi KD, Kumar KM, Mehrotra R, Sriram U. Efficacy of teriparatide in increasing bone mineral density in postmenopausal women with osteoporosis--an Indian experience. *Journal of the Association of Physicians of India* 2008;56:418-24.
- 65. Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman E, McKay EA, *et al.* Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. *Lancet* 2013;382:50-6.
- 66. Leder BZ, Tsai JN, Uihlein AV, Wallace PM, Lee H, Neer RM, *et al.* Denosumab and teriparatide transitions in postmenopausal osteoporosis (the

DATA-Switch study): extension of a randomised controlled trial. *Lancet* 2015;386:1147-55.

- 67. Eastell R, Nickelsen T, Marin F, Barker C, Hadji P, Farrerons J, *et al.* Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). *J Bone Miner Res* 2009;24:726-36.
- 68. Langdahl BL, Libanati C, Crittenden DB, Bolognese MA, Brown JP, Daizadeh NS, *et al.* Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. *Lancet* 2017;390:1585-94.
- 69. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, *et al.* Romosozumab in postmenopausal women with low bone mineral density. *N Engl J Med* 2014;370:412-20.
- 70. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, *et al.* Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. *J Bone Miner Res* 2009;24:153-61.
- 71. Kendler DL, Roux C, Benhamou CL, Brown JP, Lillestol M, Siddhanti S, *et al.* Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. *J Bone Miner Res* 2010;25:72-81.
- 72. Kendler DL, McClung MR, Freemantle N, Lillestol M, Moffett AH, Borenstein J, *et al.* Adherence, preference, and satisfaction of postmenopausal women taking denosumab or alendronate. *Osteoporos Int* 2011;22:1725-35.
- 73. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, *et al.* Denosumab in postmenopausal women with low bone mineral density. *N Engl J Med* 2006;354:821-31.
- 74. Recknor C, Czerwinski E, Bone HG, Bonnick SL, Binkley N, Palacios S, *et al.* Denosumab compared with ibandronate in postmenopausal women previously treated with bisphosphonate therapy: a randomized open-label trial. *Obstet Gynecol* 2013;121:1291-9.
- 75. Saag KG, Wagman RB, Geusens P, Adachi JD, Messina OD, Emkey R, *et al.* Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active-controlled, double-dummy, noninferiority study. *Lancet Diabetes Endocrinol* 2018;6:445-54.
- 76. Miller PD, Pannacciulli N, Brown JP, Czerwinski E, Nedergaard BS, Bolognese MA, *et al.* Denosumab or Zoledronic Acid in Postmenopausal Women With Osteoporosis Previously Treated With Oral Bisphosphonates. J Clin Endocrinol Metab 2016;101:3163-70.
- 77. Sambrook PN, Geusens P, Ribot C, Solimano JA, Ferrer-Barriendos J, Gaines K, *et al.* Alendronate produces greater effects than raloxifene on bone density and bone turnover in postmenopausal women with low bone density: results of EFFECT (Efficacy of FOSAMAX versus EVISTA Comparison Trial) International. *J Intern Med* 2004;255:503-11.
- 78. Luckey M, Kagan R, Greenspan S, Bone H, Kiel RD, Simon J, *et al.* Onceweekly alendronate 70 mg and raloxifene 60 mg daily in the treatment of postmenopausal osteoporosis. *Menopause* 2004;11:405-15.

- 79. Johnell O, Scheele WH, Lu Y, Reginster JY, Need AG, Seeman E. Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. *J Clin Endocrinol Metab* 2002;87:985-92.
- 80. Muscoso E, Puglisi N, Mamazza C, Lo Giudice F, Testai M, Abbate S, *et al.* Antiresorption therapy and reduction in fracture susceptibility in the osteoporotic elderly patient: open study. *Eur Rev Med Pharmacol Sci* 2004;8:97-102.
- 81. Recker RR, Kendler D, Recknor CP, Rooney TW, Lewiecki EM, Utian WH, *et al.* Comparative effects of raloxifene and alendronate on fracture outcomes in postmenopausal women with low bone mass. *Bone* 2007;40:843-51.
- 82. Sanad Z, Ellakwa H, Desouky B. Comparison of alendronate and raloxifene in postmenopausal women with osteoporosis. *Climacteric* 2011;14:369-77.
- 83. Michalska D, Stepan JJ, Basson BR, Pavo I. The effect of raloxifene after discontinuation of long-term alendronate treatment of postmenopausal osteoporosis. *J Clin Endocrinol Metab* 2006;91:870-7.
- 84. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, *et al.* Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. *N Engl J Med* 2017;377:1417-27.
- 85. McClung MR, San Martin J, Miller PD, Civitelli R, Bandeira F, Omizo M, *et al.* Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass.[Erratum appears in Arch Intern Med. 2005 Oct 10;165(18):2120]. *Arch Intern Med* 2005;165:1762-8.
- 86. Saag KG, Zanchetta JR, Devogelaer JP, Adler RA, Eastell R, See K, *et al.* Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. *Arthritis Rheum* 2009;60:3346-55.
- 87. Panico A, Lupoli GA, Marciello F, Lupoli R, Cacciapuoti M, Martinelli A, *et al.* Teriparatide vs. alendronate as a treatment for osteoporosis: changes in biochemical markers of bone turnover, BMD and quality of life. *Medical Science Monitor* 2011;17:CR442-8.
- 88. Gluer CC, Marin F, Ringe JD, Hawkins F, Moricke R, Papaioannu N, *et al.* Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the EuroGIOPs trial. *J Bone Miner Res* 2013;28:1355-68.
- 89. Anastasilakis AD, Goulis DG, Polyzos SA, Gerou S, Koukoulis GN, Efstathiadou *Z, et al.* Head-to-head comparison of risedronate vs. teriparatide on bone turnover markers in women with postmenopausal osteoporosis: a randomised trial. *Int J Clin Pract* 2008;62:919-24.
- 90. Walker MD, Cusano NE, Sliney J, Jr., Romano M, Zhang C, McMahon DJ, *et al.* Combination therapy with risedronate and teriparatide in male osteoporosis. *Endocrine* 2013;44:237-46.
- 91. Geusens P, Marin F, Kendler DL, Russo LA, Zerbini CA, Minisola S, *et al.* Effects of Teriparatide Compared with Risedronate on the Risk of Fractures in Subgroups of Postmenopausal Women with Severe Osteoporosis: The VERO Trial. *J Bone Miner Res* 2018;33:783-94.
- 92. Hadji P, Zanchetta JR, Russo L, Recknor CP, Saag KG, McKiernan FE, *et al.* The effect of teriparatide compared with risedronate on reduction of back pain in postmenopausal women with osteoporotic vertebral fractures. *Osteoporos Int* 2012;23:2141-50.

- 93. Malouf-Sierra J, Tarantino U, Garcia-Hernandez PA, Corradini C, Overgaard S, Stepan JJ, *et al.* Effect of Teriparatide or Risedronate in Elderly Patients With a Recent Pertrochanteric Hip Fracture: Final Results of a 78-Week Randomized Clinical Trial. *J Bone Miner Res* 2017;32:1040-51.
- 94. Cosman F, Eriksen EF, Recknor C, Miller PD, Guanabens N, Kasperk C, *et al.* Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis. *J Bone Miner Res* 2011;26:503-11.
- 95. Gorai I, Tanaka Y, Hattori S, Iwaoki Y. Assessment of adherence to treatment of postmenopausal osteoporosis with raloxifene and/or alfacalcidol in postmenopausal Japanese women. *J Bone Miner Metab* 2010;28:176-84.
- 96. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, *et al.* Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women With Osteoporosis: A Randomized Clinical Trial.[Erratum appears in JAMA. 2017 Jan 24;317(4):442; PMID: 28118431]. *Jama* 2016;316:722-33.
- 97. NCT00670501. Effects of Teriparatide in the Treatment of Postmenopausal Women With Osteoporosis. *Journal* 2008. http://clinicaltrials.gov/show/NCT00670501 [Accessed 06 November 2018]
- 98. Amgen. Company evidence submission for denosumab.
- 99. Abtahi J, Henefalk G, Aspenberg P. Randomised trial of bisphosphonatecoated dental implants: Radiographic follow-up after five years of loading. *International Journal of Oral and Maxillofacial Surgery* 2016;45:1564-9.
- 100. Kendler DL, Marin F, Zerbini CAF. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial (vol 391, pg 230, 2017). *Lancet* 2018;391:204-.
- 101. Maricic M, Adachi JD, Sarkar S, Wu W, Wong M, Harper KD. Early effects of raloxifene on clinical vertebral fractures at 12 months in postmenopausal women with osteoporosis. *Arch Intern Med* 2002;162:1140-3.
- 102. Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 2007;357:2028-39.
- 103. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, *et al.* 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. *Lancet Diabetes Endocrinol* 2017;5:513-23.
- 104. NCT00523341. Extension Study to Evaluate the Long Term Safety and Efficacy of Denosumab in the Treatment of Osteoporosis. 2007. <u>https://clinicaltrials.gov/ct2/show/NCT00523341</u> (Accessed 20 October 2018).
- 105. Sugimoto T, Matsumoto T, Hosoi T, Miki T, Gorai I, Yoshikawa H, et al. Three-year denosumab treatment in postmenopausal Japanese women and men with osteoporosis: results from a 1-year open-label extension of the Denosumab Fracture Intervention Randomized Placebo Controlled Trial (DIRECT). Osteoporos Int 2015;26:765-74.
- 106. Langdahl BL, Marin F, Shane E, Dobnig H, Zanchetta JR, Maricic M, *et al.* Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. *Osteoporos Int* 2009;20:2095-104.
- 107. Aspenberg P, Tarantino U, Corradini C, Overgaard S, Borris L, Frihagen F, *et al.* Teriparatide seems to improve recovery after pertrochanteric hip fracture:

Comparison with risedronate in a randomized, controlled trial. *HIP International* 2016;26 (Supplement 2):S14.

- 108. Freemantle N, Satram-Hoang S, Tang ET, Kaur P, Macarios D, Siddhanti S, et al. Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos Int 2011; http://dx.doi.org/10.1007/s00198-011-1780-1:1-10.
- 109. Leder BZ, Tsai JN, Uihlein AV, Burnett-Bowie SA, Zhu Y, Foley K, *et al.* Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. *J Clin Endocrinol Metab* 2014;99:1694-700.
- 110. Langdahl BL, Teglbjaerg CS, Ho PR, Chapurlat R, Czerwinski E, Kendler DL, *et al.* A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. *J Clin Endocrinol Metab* 2015;100:1335-42.
- 111. Freemantle N, Satram-Hoang S, Tang ET, Kaur P, Macarios D, Siddhanti S, *et al.* Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. *Osteoporos Int* 2012;23:317-26.
- 112. Curtis L, Burns A. Unit Costs of Health and Social Care 2017. *University of Kent* 2017.
- 113. European Medicines Agency. CHMP Assessment Report for Prolia. *Journal* 2010. <u>https://www.ema.europa.eu/documents/assessment-report/prolia-epar-public-assessment-report_en.pdf</u> [Accessed 31 October 2018]
- 114. European Medicines Agency. CHMP Assessment Report for Prolia. *Journal* 2009. <u>https://www.ema.europa.eu/documents/assessment-report/prolia-epar-public-assessment-report_en.pdf</u> [Accessed 31 October 2018]
- 115. National Institute of Heath and Care Excellence (NICE). Alendronate, Etidronate, Risedronate, Raloxifene and Strontium Ranelate for the Primary Prevention of Osteoporotic Fragility Fractures in Postmenopausal Women (Amended) [TA160]. 2011. <u>http://www.laalamedilla.org/GUIAS/Guia%20NICE%20osteoporosis%20P12</u> 011.pdf (Accessed 31 October 2018).
- 116. European Medicines Agency. EPAR Scientific Discussion for Forsteo. Journal 2005. <u>https://www.ema.europa.eu/documents/scientific-discussion/forsteo-epar-scientific-discussion_en.pdf</u> [Accessed on 2 November 2018]
- 117. European Medicines Agency. Summary of Product Characteristics for Forsteo. Journal 2016. <u>https://www.ema.europa.eu/documents/product-information/forsteo-epar-product-information_en.pdf</u> [Accessed on 2 November 2018]
- 118. Silverman S, Viswanathan H, Wang A, Ragi-Eis S, Fardellone P, Gilchrist N, *et al.* Evaluation of health-related quality of life in postmenopausal women with osteoporosis who participated in the freedom trial. *Osteoporos Int* 2010;1):S14-S5.
- 119. Silverman S, Viswanathan HN, Yang YC, Wang A, Boonen S, Ragi-Eis S, *et al.* Impact of clinical fractures on health-related quality of life is dependent on time of assessment since fracture: results from the FREEDOM trial. *Osteoporos Int* 2012;23:1361-9.

- 120. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. *Med Decis Making* 2013;33:607-17.
- 121. Ren SJ, Oakley JE, Stevens JW. Incorporating Genuine Prior Information about Between-Study Heterogeneity in Random Effects Pairwise and Network Meta-analyses. *Med Decis Making* 2018;38:531-42.
- 122. Dias S., Sutton A. J., Welton N. J., Ades AE. Evidence synthesis for decision making 3: heterogeneity--subgroups, meta-regression, bias, and bias-adjustment. . *Med Decis Making* 2013;33:618-40.
- 123. Achana FA, Cooper NJ, Dias S, Lu G, Rice SJ, Kendrick D, *et al.* Extending methods for investigating the relationship between treatment effect and baseline risk from pairwise meta-analysis to network meta-analysis. *Stat Med* 2013;32:752-71.
- 124. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. *Stat Med* 2010;29:932-44.
- 125. Lunn DJ, Thomas A, Best N, Spiegelhalter DJS, Computing. WinBUGS A Bayesian modelling framework: Concepts, structure, and extensibility. 2000;10:325-37.
- 126. R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2017.
- 127. Sturtz S., Ligges U., A. G. R2WinBUGS: A package for running WinBUGS from R. *Journal of Statistical Software* 2005;12:1-16.
- 128. Brooks S. P., A. G. General methods for monitoring convergence of iterative simulations. *Journal of Computational and Graphical Statistics* 1998;7:434-55.
- 129. Spiegelhalter DJ, Best NG, Carlin BR, Van Der Linde A. Bayesian measures of model complexity and fit. *Journal of the Royal Statistical Society Series B-Statistical Methodology* 2002;64:583-616.
- 130. Miller PD, Schnitzer T, Emkey R, Orwoll E, Rosen C, Ettinger M, *et al.* Weekly oral alendronic Acid in male osteoporosis. *Clin Drug Investig* 2004;24:333-41.
- 131. Nakamura T, Fukunaga M, Nakano T, Kishimoto H, Ito M, Hagino H, *et al.* Efficacy and safety of once-yearly zoledronic acid in Japanese patients with primary osteoporosis: two-year results from a randomized placebo-controlled double-blind study (ZOledroNate treatment in Efficacy to osteoporosis; ZONE study). *Osteoporos Int* 2017;28:389-98.
- 132. Dursun N, Dursun E, Yalcin S. Comparison of alendronate, calcitonin and calcium treatments in postmenopausal osteoporosis. *Int J Clin Pract* 2001;55:505-9.
- 133. Hooper MJ, Ebeling PR, Roberts AP, Graham JJ, Nicholson GC, D'Emden M, *et al.* Risedronate prevents bone loss in early postmenopausal women: a prospective randomized, placebo-controlled trial. *Climacteric* 2005;8:251-62.
- 134. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, *et al.* Once-Yearly Zoledronic Acid for Treatment of Postmenopausal Osteoporosis. Paper presented at: N Engl J Med5/3/2007.
- 135. Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, et al. Effect of Oral Alendronate on Bone Mineral Density and the Incidence of Fractures in Postmenopausal Osteoporosis. Paper presented at: N Engl J Med11/30/1995.

- 136. Carfora E, Sergio F, Bellini P. Effect of treatment of postmenopausal osteoporosis with continuous daily oral alendronate and the incidence of fractures. *Gazzetta Medica Italiana Archivio Per Le Scienze Mediche* 1998;157:106-9.
- Chesnut III CH, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, *et al.* Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. *J Bone Miner Res* 2004;19:1241-9.
- 138. Tan W, Sun J, Zhou L, Li Y, Wu X. Randomized trial comparing efficacies of zoledronate and alendronate for improving bone mineral density and inhibiting bone remodelling in women with post-menopausal osteoporosis. *J Clin Pharm Ther* 2016;41:519-23.
- 139. Paggiosi MA, Peel N, McCloskey E, Walsh JS, Eastell R. Comparison of the effects of three oral bisphosphonate therapies on the peripheral skeleton in postmenopausal osteoporosis: the TRIO study. *Osteoporos Int* 2014;25:2729-41.
- 140. Davis S, Martyn-St James M, Sanderson J, Stevens J, Goka E, Rawdin A, *et al.* A systematic review and economic evaluation of bisphosphonates for the prevention of fragility fractures. *Health Technol Assess* 2016;20:1-406.
- 141. National Institute for Health and Care Excellence. Alendronate, etidronate, risedronate, raloxifene and strontium ranelate for the primary prevention of osteoporotic fragility fractures in postmenopausal women. London: NICE; 2008.
- 142. National Institute for Health and Care Excellence. Denosumab for the prevention of osteoporotic fractures in postmenopausal women. London: NICE; 2010.
- 143. National Institute for Health and Care Excellence. Osteoporosis: assessing the risk of fragility fracture. *Journal* 2018. <u>https://pathways.nice.org.uk/pathways/osteoporosis#content=view-index&path=view%3A/pathways/osteoporosis/osteoporosis-assessing-the-risk-of-fragility-fracture.xml [Accessed 20 November 2018]</u>
- 144. National Institute for Health and Care Excellence. Guide to the methods of technology appraisal. London: NICE; 2013.
- 145. Philips Z, Ginnelly L, Sculpher M, Claxton K, Golder S, Riemsma R, *et al.* Review of guidelines for good practice in decision-analytic modelling in health technology assessment. *Health Technol Assess* 2004;8:iii-iv, ix-xi, 1-158.
- 146. Kanis JA, Borgstrom F, Johnell O, Oden A, Sykes D, Jonsson B. Costeffectiveness of raloxifene in the UK: an economic evaluation based on the MORE study. *Osteoporos Int* 2005;16:15-25.
- 147. Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M. Treatment of established osteoporosis: a systematic review and cost-utility analysis. *Health Technol Assess* 2002;6:1-146.
- 148. Stevenson M, Jones ML, De Nigris E, Brewer N, Davis S, Oakley J. A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis. *Health Technol Assess* 2005;9:1-160.
- 149. Kanis JA, Adams J, Borgstrom F, Cooper C, Jonsson B, Preedy D, *et al.* The cost-effectiveness of alendronate in the management of osteoporosis. *Bone* 2008;42:4-15.

- 150. Scotland G, Waugh N, Royle P, McNamee P, Henderson R, Hollick R. Denosumab for the prevention of osteoporotic fractures in post-menopausal women: a NICE single technology appraisal. *Pharmacoeconomics* 2011;29:951-61.
- 151. Strom O, Jonsson B, Kanis JA. Intervention thresholds for denosumab in the UK using a FRAX-based cost-effectiveness analysis. *Osteoporos Int* 2013;24:1491-502.
- 152. Waugh N, Royle P, Scotland G, Henderson R, Hollick R, McNamee P. Denosumab for the prevention of osteoporotic fractures in postmenopausal women. *Health Technol Assess* 2011;15 Suppl 1:51-9.
- 153. Stevenson M, Davis S. Analyses of the Cost Effectiveness of Pooled Alendronate and Risedronate, Compared with Strontium Ranelate, Raloxifene, Etidronate and Teriparatide. Sheffield: University of Sheffield; 2006.
- 154. Tosteson AN, Gottlieb DJ, Radley DC, Fisher ES, Melton LJ, 3rd. Excess mortality following hip fracture: the role of underlying health status. *Osteoporos Int* 2007;18:1463-72.
- 155. Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. *Osteoporos Int* 2009;20:1633-50.
- 156. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, *et al.* Mortality after osteoporotic fractures. *Osteoporos Int* 2004;15:38-42.
- 157. Jonsson B, Strom O, Eisman JA, Papaioannou A, Siris ES, Tosteson A, *et al.* Cost-effectiveness of Denosumab for the treatment of postmenopausal osteoporosis. *Osteoporos Int* 2011;22:967-82.
- 158. Barrett JA, Baron JA, Beach ML. Mortality and pulmonary embolism after fracture in the elderly. *Osteoporos Int* 2003;14:889-94.
- 159. Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B. Excess mortality after hospitalisation for vertebral fracture. *Osteoporos Int* 2004;15:108-12.
- 160. Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby AK. The components of excess mortality after hip fracture. *Bone* 2003;32:468-73.
- 161. Parker MJ, Anand JK. What is the true mortality of hip fractures? *Public Health* 1991;105:443-6.
- 162. Todd CJ, Freeman C, Camilleri-Ferrante C, Laxton C, Murrell P, Palmer C, *et al.* Anglian Audit of Hip Fracture 2. Cambridge: Unviersity of Cambridge; 1999.
- 163. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. *Lancet* 1999;353:878-82.
- 164. Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. *Bmj* 2009;339.
- 165. Hippisley-Cox J, Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. *Bmj* 2012;344.
- 166. UCB Pharma Ltd. A Multicenter, International, Randomized, Double-blind, Alendronate-controlled Study to Determine the Efficacy and Safety of Romosozumab in the Treatment of Postmenopausal Women With Osteoporosis. Clinical Study Report.; 2017.

- 167. Imaz I, Zegarra P, Gonzalez-Enriquez J, Rubio B, Alcazar R, Amate JM. Poor bisphosphonate adherence for treatment of osteoporosis increases fracture risk: Systematic review and meta-analysis. *Osteoporos Int* 2010;21:1943-51.
- 168. Curtis JR, Yun H, Matthews R, Saag KG, Delzell E, Curtis JR, et al. Adherence with intravenous zoledronate and intravenous ibandronate in the United States Medicare population. Arthritis care & research 2012;64:1054-60.
- 169. Li L, Roddam A, Gitlin M, Taylor A, Shepherd S, Jick S. Non-Persistence to Anti-Osteoporosis Medications in the UK using the General Practice Research Database (GPRD). *Rheumatology* 2010;49:i23-i5.
- 170. Li L, Roddam A, Gitlin M, Taylor A, Shepherd S, Shearer A, *et al.* Persistence with osteoporosis medications among postmenopausal women in the UK General Practice Research Database. *Menopause* 2012;19:33-40.
- 171. Hadji P, Papaioannou N, Gielen E, Feudjo Tepie M, Zhang E, Frieling I, *et al.* Persistence, adherence, and medication-taking behavior in women with postmenopausal osteoporosis receiving denosumab in routine practice in Germany, Austria, Greece, and Belgium: 12-month results from a European non-interventional study. *Osteoporos Int* 2015;26:2479-89.
- 172. Karlsson L, Lundkvist J, Psachoulia E, Intorcia M, Strom O. Persistence with denosumab and persistence with oral bisphosphonates for the treatment of postmenopausal osteoporosis: a retrospective, observational study, and a meta-analysis. *Osteoporos Int* 2015;26:2401-11.
- 173. Silverman SL, Siris E, Belazi D, Recknor C, Papaioannou A, Brown JP, et al. Persistence at 24 months with denosumab among postmenopausal women with osteoporosis: results of a prospective cohort study. Arch Osteoporos 2018;13:85.
- 174. Arden NK, Earl S, Fisher DJ, Cooper C, Carruthers S, Goater M. Persistence with teriparatide in patients with osteoporosis: the UK experience. *Osteoporos Int* 2006;17:1626-9.
- 175. Abhishek A, Pande I. Teriparatide in men: persistence and geographical variation in the UK. *Osteoporos Int* 2009;20:1453-4.
- 176. Idolazzi L, Fassio A, Gatti D, Tamanini S, Viapiana O, Rossini M, *et al.* Duration of treatment for osteoporosis. *Reumatismo* 2013;65:22-35.
- 177. Schwartz AV, Bauer DC, Cummings SR, Cauley JA, Ensrud KE, Palermo L, *et al.* Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial. *J Bone Miner Res* 2010;25:976-82.
- 178. Black D, Schwartz A, Ensrud K, Cauley J, Levis S, Quandt S, *et al.* Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. *Journal of American Medical Association* 2006;296:2927-38.
- 179. Eastell R, Hannon RA, Wenderoth D, Rodriguez-Moreno J, Sawicki A. Effect of stopping risedronate after long-term treatment on bone turnover. *J Clin Endocrinol Metab* 2011;96:3367-73.
- 180. Watts NB, Chines A, Olszynski WP, McKeever CD, McClung MR, Zhou X, *et al.* Fracture risk remains reduced one year after discontinuation of risedronate. *Osteoporos Int* 2008;19:365-72.
- 181. Ravn P, Christensen JO, Baumann M, Clemmesen B. Changes in biochemical markers and bone mass after withdrawal of ibandronate treatment: prediction of bone mass changes during treatment. *Bone* 1998;22:559-64.

- 182. Reginster JY, Adami S, Lakatos P, Greenwald M, Stepan JJ, Silverman SL, *et al.* Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. *Annals of the Rheumatic Diseases* 2006;65:654-61.
- 183. Black DM, Reid IR, Boonen S, Bucci-Rechtweg C, Cauley JA, Cosman F, et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT).[Erratum appears in J Bone Miner Res. 2012 Dec;27(12):2612]. J Bone Miner Res 2012;27:243-54.
- 184. Lindsay R, Scheele WH, Neer R, Pohl G, Adami S, Mautalen C, et al. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med 2004;164:2024-30.
- 185. Prince R, Sipos A, Hossain A, Syversen U, Ish-Shalom S, Marcinowska E, *et al.* Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. *J Bone Miner Res* 2005;20:1507-13.
- 186. Popp AW, Varathan N, Buffat H, Senn C, Perrelet R, Lippuner K. Bone Mineral Density Changes After 1 Year of Denosumab Discontinuation in Postmenopausal Women with Long-Term Denosumab Treatment for Osteoporosis. *Calcif Tissue Int* 2018;103:50-4.
- 187. NHS Prescription Servcies. The electronic Drug Tariff. Online: The Department of Health; 2018.
- 188. Commercial Medicines Unit. eMit national database. Online: Department of Health and Social Care; 2017.
- Department of Health. National Schedule of Reference Costs Year 2015/16 -NHS trusts and NHS foundation trusts. London: The Department of Health; 2016.
- 190. Wong M, Pacey S, Sahota O. Setting up a homecare service for zoledronic acid treatment of osteoporosis. *European Journal of Hospital Pharmacy* 2016;23:364-5.
- 191. Opinder S. Near final version of "Setting up a homecare service for zoledronic acid treatment of osteoporosis". In: Davis S, ed.; 2018.
- 192. Mason JM, Thomas KS, Crook AM, Foster KA, Chalmers JR, Nunn AJ, *et al.* Prophylactic antibiotics to prevent cellulitis of the leg: economic analysis of the PATCH I & II trials. *PLoS One* 2014;9:e82694.
- 193. Boquete-Castro A, Gomez-Moreno G, Calvo-Guirado JL, Aguilar-Salvatierra A, Delgado-Ruiz RA. Denosumab and osteonecrosis of the jaw. A systematic analysis of events reported in clinical trials. *Clinical Oral Implants Research* 2016;27:367-75.
- 194. Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK, O'Ryan F, *et al.* Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. *J Bone Miner Res* 2015;30:3-23.
- 195. Malden N, Lopes V. An epidemiological study of alendronate-related osteonecrosis of the jaws. A case series from the south-east of Scotland with attention given to case definition and prevalence. *J Bone Miner Metab* 2012;30:171-82.
- 196. Lo JC, O'Ryan FS, Gordon NP, Yang J, Hui RL, Martin D, *et al.* Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. *J Oral Maxillofac Surg* 2010;68:243-53.

- 197. Summary of Product Characteristics for Prolia 60 mg solution for injection in pre-filled syringe. Electronic Medicines Compendium. <u>https://www.medicines.org.uk/emc/product/568/smpc</u> [Accessed 31 October 2018] (Accessed
- 198. Miksad RA, Lai KC, Dodson TB, Woo SB, Treister NS, Akinyemi O, *et al.* Quality of life implications of bisphosphonate-associated osteonecrosis of the jaw. *Oncologist* 2011;16:121-32.
- 199. Pandor A, Horner D, Davis S, Goodacre S, Stevens JW, Clowes M, *et al.* Thromboprophylaxis for lower limb immobilisation: Systematic review and economic evaluation. *Health Technology Assessment* In press.
- 200. Gutierrez L RN, Castellsague J, Beard S, Rycroft C, Abeysinghe S, Shannon P, Robbins S, Gitlin M,. Study of the incremental cost and clinical burden of hip fractures in postmenopausal women in the United Kingdom. *J Med Econ* 2011;14:99-107.
- 201. Gutierrez L, Roskell N, Castellsague J, Beard S, Rycroft C, Abeysinghe S, *et al.* Clinical burden and incremental cost of fractures in postmenopausal women in the United Kingdom. *Bone* 2012;51:324-31.
- 202. Department of Health. National Schedule of Reference Costs Year 2013-14. Department of Health, London: NHS Trusts and NHS Foundation Trusts; 2015.
- 203. Curtis L. Unit costs for health and social care 2014. Canterbury: PSSRU, University of Kent; 2014.
- 204. Lambrelli D, Burge R, Raluy-Callado M, Chen SY, Wu N, Schoenfeld MJ. Retrospective database study to assess the economic impact of hip fracture in the United Kingdom. *Journal of Medical Economics* 2014;17:817-25.
- 205. Leal J, Gray AM, Prieto-Alhambra D, Arden NK, Cooper C, Javaid MK, *et al.* Impact of hip fracture on hospital care costs: a population-based study. *Osteoporos Int* 2016;27:549-58.
- 206. Abimanyi-Ochom J, Watts JJ, Borgstrom F, Nicholson GC, Shore-Lorenti C, Stuart AL, *et al.* Changes in quality of life associated with fragility fractures: Australian arm of the International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS). *Osteoporos Int* 2015;26:1781-90.
- 207. Jurisson M, Pisarev H, Kanis J, Borgstrom F, Svedbom A, Kallikorm R, *et al.* Quality of life, resource use, and costs related to hip fracture in Estonia. *Osteoporos Int* 2016;27:2555-66.
- 208. Svedbom A, Borgstom F, Hernlund E, Strom O, Alekna V, Bianchi ML, *et al.* Quality of life for up to 18 months after low-energy hip, vertebral, and distal forearm fractures-results from the ICUROS. *Osteoporos Int* 2018;29:557-66.
- 209. Svedbom A, Borgstrom F, Hernlund E, Strom O, Alekna V, Bianchi ML, *et al.* Quality of life after hip, vertebral, and distal forearm fragility fractures measured using the EQ-5D-3L, EQ-VAS, and time-trade-off: results from the ICUROS. *Quality of Life Research* 2018;27:707-16.
- 210. Tidermark J, Zethraeus N, Svensson O, Tornkvist H, Ponzer S. Femoral neck fractures in the elderly: functional outcome and quality of life according to EuroQol. *Qual Life Res* 2002;11:473-81.
- 211. Tsourdi E, Langdahl B, Cohen-Solal M, Aubry-Rozier B, Eriksen EF, Guanabens N, *et al.* Discontinuation of Denosumab therapy for osteoporosis: A systematic review and position statement by ECTS. *Bone* 2017;105:11-7.
- 212. Nayak S, Greenspan SL. Osteoporosis Treatment Efficacy for Men: A Systematic Review and Meta-Analysis. *J Am Geriatr Soc* 2017;65:490-5.

- 213. Kim SM, Kang KC, Kim JW, Lim SJ, Hahn MH. Current Role and Application of Teriparatide in Fracture Healing of Osteoporotic Patients: A Systematic Review. *Journal of Bone Metabolism* 2017;24:65-73.
- 214. Shi Z, Zhou H, Pan B, Lu L, Liu J, Kang Y, et al. Effectiveness of Teriparatide on Fracture Healing: A Systematic Review and Meta-Analysis. PLoS ONE [Electronic Resource] 2016;11:e0168691.
- 215. Beaudoin C, Jean S, Bessette L, Ste-Marie LG, Moore L, Brown JP. Denosumab compared to other treatments to prevent or treat osteoporosis in individuals at risk of fracture: a systematic review and meta-analysis. *Osteoporos Int* 2016;27:2835-44.
- 216. Chen JF, Yang KH, Zhang ZL, Chang HC, Chen Y, Sowa H, *et al.* A systematic review on the use of daily subcutaneous administration of teriparatide for treatment of patients with osteoporosis at high risk for fracture in Asia. *Osteoporos Int* 2015;26:11-28.
- 217. Diedhiou D, Cuny T, Sarr A, Norou Diop S, Klein M, Weryha G. Efficacy and safety of denosumab for the treatment of osteoporosis: A systematic review. *Ann Endocrinol (Paris)* 2015;76:650-7.
- 218. Fujiwara S, Hamaya E, Sato M, Graham-Clarke P, Flynn JA, Burge R. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia). *Clinical Interventions In Aging* 2014;9:1879-93.
- 219. Trevisani VF, Riera R, Imoto AM, Saconato H, Atallah AN. Teriparatide (recombinant human parathyroid hormone 1-34) in postmenopausal women with osteoporosis: systematic review. *Sao Paulo Med J* 2008;126:279-84.
- 220. Brandao CM, Lima MG, Silva AL, Silva GD, Guerra AA, Jr., Acurcio Fde A. Treatment of postmenopausal osteoporosis in women: a systematic review. *Cadernos de Saude Publica* 2008;24 Suppl 4:s592-606.
- 221. Gallacher SJ, Dixon T. Impact of treatments for postmenopausal osteoporosis (bisphosphonates, parathyroid hormone, strontium ranelate, and denosumab) on bone quality: a systematic review. *Calcif Tissue Int* 2010;87:469-84.
- 222. Lin T, Yan SG, Cai XZ, Ying ZM, Yuan FZ, Zuo X. Alendronate versus Raloxifene for Postmenopausal Women: A Meta-Analysis of Seven Head-to-Head Randomized Controlled Trials. *International Journal of Endocrinology Print* 2014;2014:796510.
- 223. MacLean C, Newberry S, Maglione M, McMahon M, Ranganath V, Suttorp M, *et al.* Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. *Ann Intern Med* 2008;148:197-213.
- 224. Liu CL, Lee HC, Chen CC, Cho DY. Head-to-head comparisons of bisphosphonates and teriparatide in osteoporosis: a meta-analysis. *Clin Invest Med* 2017;40:E146-E57.
- 225. Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY, Yu SN. A network metaanalysis on the short-term efficacy and adverse events of different antiosteoporosis drugs for the treatment of postmenopausal osteoporosis. *Journal of Cellular Biochemistry* 2018;119:4469-81.
- 226. Murad MH, Drake MT, Mullan RJ, Mauck KF, Stuart LM, Lane MA, *et al.* Comparative Effectiveness of Drug Treatments to Prevent Fragility Fractures: A Systematic Review and Network Meta-Analysis. *J Clin Endocrinol Metab* 2012;97:1871-80.

- 227. Saito T, Sterbenz JM, Malay S, Zhong L, MacEachern MP, Chung KC. Effectiveness of anti-osteoporotic drugs to prevent secondary fragility fractures: systematic review and meta-analysis. *Osteoporos Int* 2017;28:3289-300.
- 228. Liu Y, Cao Y, Zhang S, Zhang W, Zhang B, Tang Q, *et al.* Romosozumab treatment in postmenopausal women with osteoporosis: a meta-analysis of randomized controlled trials. *Climacteric* 2018;21:189-95.
- 229. Wang YK, Qin SQ, Ma T, Song W, Jiang RQ, Guo JB, *et al.* Effects of teriparatide versus alendronate for treatment of postmenopausal osteoporosis: A meta-analysis of randomized controlled trials. *Medicine* 2017;96:e6970.
- 230. Wang G, Sui L, Gai P, Li G, Qi X, Jiang X. The efficacy and safety of vertebral fracture prevention therapies in post-menopausal osteoporosis treatment: Which therapies work best? a network meta-analysis. *Bone & Joint Research* 2017;6:452-63.
- 231. Lou S, Lv H, Wang G, Li Z, Li M, Zhang L, *et al.* The effect of sequential therapy for postmenopausal women with osteoporosis A PRISMA-compliant meta-analysis of randomized controlled trials. *Medicine (United States)* 2016;95:e5496.
- 232. Amiche MA, Albaum JM, Tadrous M, Pechlivanoglou P, Levesque LE, Adachi JD, *et al.* Efficacy of osteoporosis pharmacotherapies in preventing fracture among oral glucocorticoid users: a network meta-analysis. *Osteoporos Int* 2016;27:1989-98.
- 233. Chen LX, Zhou ZR, Li YL, Ning GZ, Zhang TS, Zhang D, *et al.* Comparison of Bone Mineral Density in Lumbar Spine and Fracture Rate among Eight Drugs in Treatments of Osteoporosis in Men: A Network Meta-Analysis. *PLoS ONE [Electronic Resource]* 2015;10:e0128032.
- 234. Freemantle N, Cooper C, Diez-Perez A, Gitlin M, Radcliffe H, Shepherd S, *et al.* Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: a meta-analysis. *Osteoporos Int* 2013;24:209-17.
- 235. Bolland MJ, Grey AB, Gamble GD, Reid IR. Effect of osteoporosis treatment on mortality: a meta-analysis. *J Clin Endocrinol Metab* 2010;95:1174-81.
- 236. Gu HF, Gu LJ, Wu Y, Zhao XH, Zhang Q, Xu ZR, *et al.* Efficacy and Safety of Denosumab in Postmenopausal Women With Osteoporosis: A Meta-Analysis. *Medicine* 2015;94:e1674.
- 237. Han SL, Wan SL. Effect of teriparatide on bone mineral density and fracture in postmenopausal osteoporosis: meta-analysis of randomised controlled trials. *Int J Clin Pract* 2012;66:199-209.
- 238. Lin T, Wang C, Cai XZ, Zhao X, Shi MM, Ying ZM, *et al.* Comparison of clinical efficacy and safety between denosumab and alendronate in postmenopausal women with osteoporosis: a meta-analysis. *Int J Clin Pract* 2012;66:399-408.
- 239. Nakamura T, Tsujimoto M, Hamaya E, Sowa H, Chen P. Consistency of fracture risk reduction in Japanese and Caucasian osteoporosis patients treated with teriparatide: a meta-analysis. *J Bone Miner Metab* 2012;30:321-5.
- 240. Schwarz P, Jorgensen NR, Mosekilde L, Vestergaard P. Effects of increasing age, dosage, and duration of PTH treatment on BMD increase--a meta-analysis. *Calcif Tissue Int* 2012;90:165-73.
- 241. von Keyserlingk C, Hopkins R, Anastasilakis A, Toulis K, Goeree R, Tarride JE, *et al.* Clinical efficacy and safety of denosumab in postmenopausal women

with low bone mineral density and osteoporosis: a meta-analysis. *Semin Arthritis Rheum* 2011;41:178-86.

- 242. Benjamin B, Benjamin MA, Swe M, Sugathan S. Review on the comparison of effectiveness between denosumab and bisphosphonates in post-menopausal osteoporosis. *Osteoporosis and Sarcopenia* 2016;2:77-81.
- 243. Sutton EE, Riche DM. Denosumab, a RANK ligand inhibitor, for postmenopausal women with osteoporosis. *Ann Pharmacother* 2012;46:1000-9.
- 244. Whelan AM, Raman-Wilms L. Denosumab: A new injectable treatment for postmenopausal osteoporosis. *Canadian Pharmacists Journal* 2011;144:72-8.
- 245. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Wang H, Liu Y, *et al.* Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. *J Clin Endocrinol Metab* 2008;93:2149-57.
- 246. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC, *et al.* Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. *J Clin Endocrinol Metab* 2011;96:972-80.
- 247. Naylor KE, Clowes JA, Finigan J, Paggiosi MA, Peel NF, Eastell R. The effect of cessation of raloxifene treatment on bone turnover in postmenopausal women. *Bone* 2010;46:592-7.
- 248. Dore RK, Cohen SB, Lane NE, Palmer W, Shergy W, Zhou L, *et al.* Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. *Annals of the Rheumatic Diseases* 2010;69:872-5.
- 249. Cosman F, Wermers RA, Recknor C, Mauck KF, Xie L, Glass EV, *et al.* Effects of teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: differences between stopping and continuing the antiresorptive agent. *J Clin Endocrinol Metab* 2009;94:3772-80.
- 250. Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, *et al.* Denosumab in men receiving androgen-deprivation therapy for prostate cancer. *N Engl J Med* 2009;361:745-55.
- 251. Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, *et al.* Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. *J Clin Oncol* 2008;26:4875-82.
- 252. Gnant M, Pfeiler G, Dubsky PC, Hubalek M, Greil R, Jakesz R, *et al.* Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. *Lancet* 2015;386:433-43.
- 253. Klotz L, Smith MR, Coleman RE, Pittman KB, Milecki P, Wei R, *et al.* Symptomatic skeletal events (SSE) in patients with advanced prostate cancer: Results from a phase III trial of denosumab for the prevention of skeletalrelated events. *Journal of Clinical Oncology Conference* 2014;32.
- 254. Raje N, Terpos E, Willenbacher W, Shimizu K, Garcia-Sanz R, Durie B, *et al.* Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. *Lancet Oncol* 2018;19:370-81.
- 255. Henry DH, Von Moos R, Hungria V, Costa L, Woll PJ, Scagliotti G, *et al.* Delaying skeletal-related events in a randomized phase III study of denosumab versus zoledronic acid in patients with advanced cancer. *Journal of Clinical Oncology Conference* 2010;28.

- 256. Fazeli PK, Wang IS, Miller KK, Herzog DB, Misra M, Lee H, *et al.* Teriparatide increases bone formation and bone mineral density in adult women with anorexia nervosa. *J Clin Endocrinol Metab* 2014;99:1322-9.
- 257. Ensrud KE, Stock JL, Barrett-Connor E, Grady D, Mosca L, Khaw KT, *et al.* Effects of raloxifene on fracture risk in postmenopausal women: the Raloxifene Use for the Heart Trial. *J Bone Miner Res* 2008;23:112-20.
- 258. Bonani M, Brockmann J, Cohen CD, Fehr T, Nocito A, Schiesser M, *et al.* A randomized open-label clinical trial examining the effect of denosumab on the prevention of 1st-year bone mineral density loss after renal transplantation (POSTOP study; NCT01377467). *Nephrology Dialysis Transplantation* 2012;2):ii304.
- 259. Haghverdi F, Farbodara T, Mortaji S, Soltani P, Saidi N. Effect of raloxifene on parathyroid hormone in osteopenic and osteoporotic postmenopausal women with chronic kidney disease stage 5.[Erratum appears in Iran J Kidney Dis. 2015 Jan;9(1):76; PMID: 25599744]. *Iranian journal of Kidney Diseases* 2014;8:461-6.
- 260. Szczepanek K, Pedziwiatr M, Klek S. Denosumab Improves Bone Mineral Density in Patients With Intestinal Failure Receiving Home Parenteral Nutrition: Results From a Randomized, Controlled Clinical Trial. JPEN J Parenter Enteral Nutr 2017; https://dx.doi.org/10.1177/0148607117695247:148607117695247.
- 261. Zhu H, Tang H, Cheng Q, He L, Li P, Xue Q, *et al.* Efficacy and safety of denosumab in Chinese postmenopausal women with osteoporosis at increased risk of fracture: results from a 12-month, randomized, double-blind, placebo-controlled phase III study. *Journal* 2017. <u>http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/241/CN-01462241/frame.html</u>
- 262. Thomas T, Cheung AM, Shane E, Zanchetta JR, Kearns A, Hans D, *et al.* Changes in lumbar spine QCT, DXA and TBS following treatment with denosumab (DMAB), alendronate (ALN), or placebo (PBO) in postmenopausalwomen with low bone mass. *Osteoporos Int* 2014;2):S123.
- 263. Galesanu C, Lisnic N, Moisii L. Denosumab significantly increases BMD compared with alendronate in postmenopausal women. *Journal* 2015. <u>http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/035/CN-01080035/frame.html</u>

https://link.springer.com/content/pdf/10.1007%2Fs00198-015-3068-3.pdf

- 264. Nakano T, Shiraki M, Sugimoto T, Kishimoto H, Ito M, Fukunaga M, *et al.* Once-weekly teriparatide reduces the risk of vertebral fracture in patients with various fracture risks: subgroup analysis of the Teriparatide Once-Weekly Efficacy Research (TOWER) trial. *J Bone Miner Metab* 2014;32:441-6.
- 265. Cosman F, Nieves JW, Zion M, Barbuto N, Lindsay R. Effect of prior and ongoing raloxifene therapy on response to PTH and maintenance of BMD after PTH therapy. *Osteoporos Int* 2008;19:529-35.
- 266. Body JJ, Gaich GA, Scheele WH, Kulkarni PM, Miller PD, Peretz A, *et al.* A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1-34)] with alendronate in postmenopausal women with osteoporosis. *J Clin Endocrinol Metab* 2002;87:4528-35.
- 267. Finkelstein JS, Wyland JJ, Lee H, Neer RM. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. *J Clin Endocrinol Metab* 2010;95:1838-45.

- 268. Iseri K, Iyoda M, Watanabe M, Matsumoto K, Sanada D, Inoue T, *et al.* Comparison of the efficacy of denosumab and alendronate in glucocorticoidinduced osteoporosis. *Nephrology Dialysis Transplantation* 2017;32 (Supplement 3):iii235.
- 269. Iwamoto J, Sato Y, Uzawa M, Takeda T, Matsumoto H. Comparison of effects of alendronate and raloxifene on lumbar bone mineral density, bone turnover, and lipid metabolism in elderly women with osteoporosis.[Retraction in Yonsei Med J. 2018 Jan;59(1):167; PMID: 29214794]. *Yonsei Medical Journal* 2008;49:119-28.
- 270. Roux C, Hofbauer LC, Ho PR, Wark JD, Zillikens MC, Fahrleitner-Pammer A, *et al.* Denosumab compared with risedronate in postmenopausal women suboptimally adherent to alendronate therapy: efficacy and safety results from a randomized open-label study. *Bone* 2014;58:48-54.
- 271. Mok CC, Ho LY, Ma KM. Denosumab for patients receiving long-term glucocorticoids who do not have adequate response to bisphosphonate treatment: A randomized controlled trial. *Annals of the Rheumatic Diseases Conference: Annual European Congress of Rheumatology of the European League Against Rheumatism, EULAR* 2014;73.
- 272. Gonnelli S, Martini G, Caffarelli C, Salvadori S, Cadirni A, Montagnani A, *et al.* Teriparatide's effects on quantitative ultrasound parameters and bone density in women with established osteoporosis. *Osteoporos Int* 2006;17:1524-31.
- Siris ES, Harris ST, Eastell R, Zanchetta JR, Goemaere S, Diez-Perez A, et al. Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J Bone Miner Res 2005;20:1514-24.
- 274. Majima T, Komatsu Y, Shimatsu A, Satoh N, Fukao A, Ninomiya K, *et al.* Efficacy of combined treatment with raloxifene and alfacalcidol on bone density and biochemical markers of bone turnover in postmenopausal osteoporosis. *Endocr J* 2008;55:127-34.
- 275. Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E, *et al.* Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. *J Bone Miner Res* 2010;25:1886-94.
- 276. Dempster DW, Zhou H, Recker RR, Brown JP, Bolognese MA, Recknor CP, *et al.* Skeletal histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) study: a randomized controlled trial. *J Clin Endocrinol Metab* 2012;97:2799-808.
- 277. Bai H, Jing D, Guo A, Yin S. Randomized controlled trial of zoledronic acid for treatment of osteoporosis in women. 2013;41:697-704.
- 278. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, *et al.* Differential Effects of Teriparatide and Denosumab on Intact PTH and Bone Formation Indices: AVA Osteoporosis Study. *J Clin Endocrinol Metab* 2016;101:1353-63.
- 279. Adami S, Passeri M, Ortolani S, Broggini M, Carratelli L, Caruso I, *et al.* Effects of oral alendronate and intranasal salmon calcitonin on bone mass and biochemical markers of bone turnover in postmenopausal women with osteoporosis. *Bone* 1995;17:383-90.
- 280. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, *et al.* Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. *The Lancet* 1996;348:1535-41.

- 281. Cummings S, Black D, Thompson D, Applegate W, Barrett-Connor E, Musliner T, et al. Effect of Alendronate on Risk of Fracture in Women With Low Bone Density but Without Vertebral Fractures. Journal of American Medical Association 1998;280:2077-82.
- 282. Bone HG, Greenspan SL, McKeever C, Bell N, Davidson M, Downs RW, *et al.* Alendronate and estrogen effects in postmenopausal women with low bone mineral density. *Journal of Clinical Endocrinology and Metabolism* 2000;85:720-6.
- 283. Greenspan SL, Schneider DL, McClung MR, Miller PD, Schnitzer TJ, Bonin R, *et al.* Alendronate Improves Bone Mineral Density in Elderly Women with Osteoporosis Residing in Long-Term Care Facilities: A Randomized, Double-Blind, Placebo-Controlled Trial. *Ann Intern Med* 2002;136:742-6.
- 284. Greenspan SL, Resnick NM, Parker RA. Combination Therapy With Hormone Replacement and Alendronate for Prevention of Bone Loss in Elderly Women: A Randomized Controlled Trial. *Journal of American Medical Association* 2003;289:2525-33.
- 285. Ho A, Kung A. Efficacy and tolerability of alendronate once weekly in Asian postmenopausal osteoporotic women. *Ann Pharmacother* 2005;39:1428-33.
- 286. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, et al. Alendronate for the Treatment of Osteoporosis in Men. Paper presented at: N Engl J Med8/31/2000.
- 287. Pols HAP, Felsenberg D, Hanley DA, Štepán J, Munoz-Torres M, lkin TJ, *et al.* Multinational, Placebo-Controlled, Randomized Trial of the Effects of Alendronate on Bone Density and Fracture Risk in Postmenopausal Women with Low Bone Mass: Results of the FOSIT Study. Paper presented at: Osteoporos International1999.
- 288. Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S, *et al.* Alendronate for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Paper presented at: N Engl J Med7/30/1998.
- 289. Adachi JD, Saag KG, Delmas PD, Liberman UA, Emkey RD, Seeman E, *et al.* Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: A randomized, double-blind, placebocontrolled extension trial. *Arthritis Rheum* 2001;44:202-11.
- 290. Chesnut CH, Ettinger MP, Miller PD, Baylink DJ, Emkey R, Harris ST, *et al.* Ibandronate produces significant, similar antifracture efficacy in North American and European women: new clinical findings from BONE. *Curr Med Res Opin* 2005;21:391-401.
- 291. McClung MR, Bolognese MA, Sedarati F, Recker RR, Miller PD, McClung MR, *et al.* Efficacy and safety of monthly oral ibandronate in the prevention of postmenopausal bone loss. *Bone* 2009;44:418-22.
- 292. Delmas PD, Adami S, Strugala C, Stakkestad JA, Reginster JY, Felsenberg D, *et al.* Intravenous ibandronate injections in postmenopausal women with osteoporosis: one-year results from the dosing intravenous administration study. *Arthritis Rheum* 2006;54:1838-46.
- 293. Eisman JA, Civitelli R, Adami S, Czerwinski E, Recknor C, Prince R, *et al.* Efficacy and tolerability of intravenous ibandronate injections in postmenopausal osteoporosis: 2-year results from the DIVA study. *J Rheumatol* 2008;35:488-97.
- 294. Miller PD, McClung MR, Macovei L, Stakkestad JA, Luckey M, Bonvoisin B, *et al.* Monthly Oral Ibandronate Therapy in Postmenopausal Osteoporosis: 1-

Year Results From the MOBILE Study. *Journal of Bone and Mineral Research* 2005;20:1315-22.

- 295. Boonen S, Orwoll ES, Wenderoth D, Stoner KJ, Eusebio R, Delmas PD, *et al.* Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. *J Bone Miner Res* 2009;24:719-25.
- 296. Cohen S, Levy RM, Keller M, Boling EP, Emkey RD, Greenwald M, *et al.* Risedronate therapy prevents corticosteroid-induced bone loss: a twelvemonth, multicenter, randomized, double-blind, placebo-controlled, parallelgroup study. *Arthritis Rheum* 1999;42:2309-18.
- 297. Fogelman I, Ribot C, Smith R, Ethgen D, Sod E, Reginster for the bmd-mn Study Group J-Y. Risedronate Reverses Bone Loss in Postmenopausal Women with Low Bone Mass: Results From a Multinational, Double-Blind, Placebo-Controlled Trial. Paper presented at: The Journal of Clinical Endocrinology & Metabolism5/1/2000.
- 298. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, *et al.* Effects of Risedronate Treatment on Vertebral and Nonvertebral Fractures in Women With Postmenopausal Osteoporosis: A Randomized Controlled Trial. *Journal of American Medical Association* 1999;282:1344-52.
- 299. Ste-Marie LG, Sod E, Johnson T, Chines A. Five Years of Treatment with Risedronate and its Effects on Bone Safety in Women with Postmenopausal Osteoporosis. Paper presented at: Calcified Tissue International2004.
- 300. Reginster JY, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, *et al.* Randomized Trial of the Effects of Risedronate on Vertebral Fractures in Women with Established Postmenopausal Osteoporosis. Paper presented at: Osteoporosis International2000.
- 301. Sorensen OH, Crawford GM, Mulder H, Hosking DJ, Gennari C, Mellstrom D, *et al.* Long-term efficacy of risedronate: a 5-year placebo-controlled clinical experience. *Bone* 2003;32:120-6.
- 302. Leung JYY, Ho AYY, Ip TP, Lee G, Kung AWC. The efficacy and tolerability of risedronate on bone mineral density and bone turnover markers in osteoporotic Chinese women: a randomized placebo-controlled study. *Bone* 2005;36:358-64.
- 303. Reid DM, Hughes RA, Laan RFJM, Sacco-Gibson NA, Wenderoth DH, Adami S, et al. Efficacy and Safety of Daily Risedronate in the Treatment of Corticosteroid-Induced Osteoporosis in Men and Women: A Randomized Trial. Journal of Bone and Mineral Research 2000;15:1006-13.
- 304. Ringe JD, Faber H, Farahmand P, Dorst A. Efficacy of risedronate in men with primary and secondary osteoporosis: results of a 1-year study. Paper presented at: Rheumatology International2006.
- 305. Ringe JD, Farahmand P, Faber H, Dorst A, Ringe JD, Farahmand P, *et al.* Sustained efficacy of risedronate in men with primary and secondary osteoporosis: results of a 2-year study. *Rheumatology International* 2009;29:311-5.
- 306. Reid IR, Gamble GD, Mesenbrink P, Lakatos P, Black DM, Reid IR, *et al.* Characterization of and risk factors for the acute-phase response after zoledronic acid. *J Clin Endocrinol Metab* 2010;95:4380-7.
- 307. Lyles KW, Cólon-Emeric C, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic Acid and Clinical Fractures and Mortality after Hip Fracture. Paper presented at: N Engl J Med11/1/2007.

- 308. Adachi JD, Lyles KW, Colon-Emeric CS, Boonen S, Pieper CF, Mautalen C, *et al.* Zoledronic acid results in better health-related quality of life following hip fracture: the HORIZON-Recurrent Fracture Trial. *Osteoporos Int* 2011;22:2539-49.
- 309. Boonen S, Eastell R, Su G, Mesenbrink P, Cosman F, Cauley JA, et al. Time to onset of antifracture efficacy and year-by-year persistence of effect of zoledronic acid in women with osteoporosis. J Bone Miner Res 2012;27:1487-93.
- 310. McClung M, Miller P, Recknor C, Mesenbrink P, Bucci-Rechtweg C, Benhamou CL, *et al.* Zoledronic acid for the prevention of bone loss in postmenopausal women with low bone mass: a randomized controlled trial. *Obstet Gynecol* 2009;114:999-1007.
- 311. Miller PD, Epstein S, Sedarati F, Reginster JY, Miller PD, Epstein S, *et al.* Once-monthly oral ibandronate compared with weekly oral alendronate in postmenopausal osteoporosis: results from the head-to-head MOTION study. *Curr Med Res Opin* 2008;24:207-13.
- 312. Sarioglu M, Tuzun C, Unlu Z, Tikiz C, Taneli F, Uyanik BS. Comparison of the effects of alendronate and risedronate on bone mineral density and bone turnover markers in postmenopausal osteoporosis. Paper presented at: Rheumatology International2006.
- 313. Rosen CJ, Hochberg MC, Bonnick SL, McClung M, Miller P, Broy S, et al. Treatment With Once-Weekly Alendronate 70 mg Compared With Once-Weekly Risedronate 35 mg in Women With Postmenopausal Osteoporosis: A Randomized Double-Blind Study. *Journal of Bone and Mineral Research* 2005;20:141-51.
- 314. Bonnick S, Saag KG, Kiel DP, McClung M, Hochberg M, Burnett SA, *et al.* Comparison of Weekly Treatment of Postmenopausal Osteoporosis with Alendronate Versus Risedronate Over Two Years. Paper presented at: The Journal of Clinical Endocrinology & Metabolism7/1/2006.
- 315. Reid DM, Hosking D, Kendler D, Brandi ML, Wark JD, Weryha G, *et al.* Alendronic acid produces greater effects than risedronic acid on bone density and turnover in postmenopausal women with osteoporosis: results of FACTSinternational. *Clinical Drug Investigation* 2006;26:63-74.
- 316. Reid DM, Hosking D, Kendler D, Brandi ML, Wark JD, Marques-Neto JF, *et al.* A comparison of the effect of alendronate and risedronate on bone mineral density in postmenopausal women with osteoporosis: 24-month results from FACTS-International. *Int J Clin Pract* 2008;62:575-84.
- 317. Reid I, Boonen S, Black DM, Colon-Emeric C, Eastell R, Magaziner J, *et al.* Once-yearly treatment with zoledronic acid continues to be effective in old age. *Bone* 2009;44:S94.
- 318. Chesnut III CH, McClung MR, Ensrud KE, Bell NH, Genant HK, Harris ST, *et al.* Alendronate treatment of the postmenopausal osteoporotic woman: Effect of multiple dosages on bone mass and bone remodeling. *The American Journal of Medicine* 1995;99:144-52.
- 319. Klotz LH, McNeill IY, Kebabdjian M, Zhang L, Chin JL, Consortium. CUR, *et al.* A phase 3, double-blind, randomised, parallel-group, placebo-controlled study of oral weekly alendronate for the prevention of androgen deprivation bone loss in nonmetastatic prostate cancer: the Cancer and Osteoporosis Research with Alendronate and Leuprolide (CORAL) study. *European Urology* 2013;63:927-35.

- 320. Shilbayeh S, S-Zumeili A, Hilow HM. The efficacy and safety of Calidron tablets for management of osteoporosis in Jordanian women: A randomised clinical trial. *Saudi Pharmaceutical Journal* 2004;12:86-95.
- 321. Smith BJ, Laslett LL, Pile KD, Phillips PJ, Phillipov G, Evans SM, *et al.* Randomized controlled trial of alendronate in airways disease and low bone mineral density. *Chronic Respiratory Disease* 2004;1:131-7.
- 322. Lester JE, Dodwell D, Purohit OP, Gutcher SA, Ellis SP, Thorpe R, *et al.* Prevention of anastrozole-induced bone loss with monthly oral ibandronate during adjuvant aromatase inhibitor therapy for breast cancer. *Clin Cancer Res* 2008;14:6336-42.
- 323. Choo C, Lukka H, Kiss A, Danjoux C. Double-blinded, placebo-controlled randomized study evaluating the efficacy of risedronate to prevent the loss of bone mineral density in non-metastatic prostate cancer patients undergoing radiotherapy plus 2-3 years of androgen ablation therapy. *Journal* 2011. <u>http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&N</u> <u>EWS=N&AN=70648453</u>
- 324. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, *et al.* Effect of Risedronate on the Risk of Hip Fracture in Elderly Women. Paper presented at: N Engl J Med2/1/2001.
- 325. Taxel P, Dowsett R, Richter L, Fall P, Klepinger A, Albertsen P, *et al.* Risedronate prevents early bone loss and increased bone turnover in the first 6 months of luteinizing hormone-releasing hormone-agonist therapy for prostate cancer. *BJU International* 2010;106:1473-6.
- 326. Atmaca A, Gedik O. Effects of alendronate and risedronate on bone mineral density and bone turnover markers in late postmenopausal women with osteoporosis. *Advances in Therapy* 2006;23:842-53.
- 327. Hadji P, Gamerdinger D, Spieler W, Kann P, Loeffler H, Articus K, et al. The Rapid Onset and Sustained Efficacy (ROSE) study: Zoledronic acid vs. alendronate. Journal 2010. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NE WS=N&AN=70226012
- 328. Hadji P, Gamerdinger D, Spieler W, Kann PH, Loeffler H, Articus K, *et al.* Rapid Onset and Sustained Efficacy (ROSE) study: results of a randomised, multicentre trial comparing the effect of zoledronic acid or alendronate on bone metabolism in postmenopausal women with low bone mass. *Osteoporos Int* 2012;23:625-33.
- 329. NCT00205777. Study Evaluating Bazedoxifene Acetate In Osteoporosis In Postmenopausal Women. 2005. https://clinicaltrials.gov/ct2/show/NCT00205777 (Accessed 20 October 2018).
- 330. Silverman SLJQoLR. The Osteoporosis Assessment Questionnaire (OPAQ): A reliable and valid disease-targeted measure of health-related quality of life (HRQOL) in osteoporosis. 2000;9:767-74.
- 331. Hunter MS. The Women's Health Questionnaire (WHQ): Frequently Asked Questions (FAQ). *Health and quality of life outcomes* 2003;1:41-.
- 332. Lips P, Cooper C, Agnusdei D, Caulin F, Egger P, Johnell O, et al. Quality of life in patients with vertebral fractures: validation of the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO). Working Party for Quality of Life of the European Foundation for Osteoporosis. Osteoporos Int 1999;10:150-60.

- 333. EuroQol group. EuroQol a new facility for the measurement of health-related quality of life. *Health Policy* 1990;16:199-208.
- 334. Brazier JE, Harper R, Jones NM, O'Cathain A, Thomas KJ, Usherwood T, *et al.* Validating the SF-36 health survey questionnaire: new outcome measure for primary care. *BMJ (Clinical research ed)* 1992;305:160-4.
- 335. Aspenberg P, Malouf J, Tarantino U, Garcia-Hernandez PA, Corradini C, Overgaard S, et al. Effects of Teriparatide Compared with Risedronate on Recovery After Pertrochanteric Hip Fracture: Results of a Randomized, Active-Controlled, Double-Blind Clinical Trial at 26 Weeks. J Bone Joint Surg Am 2016;98:1868-78.
- 336. NCT00680953. Denosumab Fracture Intervention Randomized Placebo Controlled Trial in Japanese Patients With Osteoporosis. In; 2008.
- 337. Chapurlat R, Papapoulos S, Brown JP, Franchimont N, Brandi ML, Czerwinski E, *et al.* Treatment of postmenopausal women with osteoporosis for six years with denosumab: Three-year results from the freedom extension. *Annals of the Rheumatic Disease Conference: Annual European Congress of Rheumatology of the European League Against Rheumatism, EULAR* 2012;71.
- 338. NCT00542425. Phase 2 Dose-finding Study to Evaluate the Effects of BA058 in the Treatment of Postmenopausal Women With Osteoporosis. In; 2007.
- 339. NCT00043186. Determine the Efficacy, Safety and Tolerability of Denosumab (AMG 162) in the Treatment of Postmenopausal Women With Low Bone Mineral Density. 2007.
- 340. NCT01575873. Efficacy and Safety of Denosumab Compared With Risedronate in Individuals Taking Glucocorticoids (GIOP). *Journal* 2012. <u>https://clinicaltrials.gov/ct2/show/NCT01575873</u> [Accessed 28 November 2018]
- 341. NCT01732770. Safety and Efficacy Study to Evaluate Denosumab Compared With Zoledronic Acid in Postmenopausal Women With Osteoporosis. 2012. https://clinicaltrials.gov/ct2/show/NCT00523341 (Accessed 20 October 2018).
- 342. NCT00051558. Comparison of Teriparatide With Alendronate for Treating Glucocorticoid-Induced Osteoporosis. In; 2003.
- 343. NCT00887354. A Study That Will Compare the Effect of Two Drugs on Participants With Low Bone Mass and a Recent Hip Fracture (MOVE). *Journal* 2015. <u>https://clinicaltrials.gov/ct2/show/NCT00887354</u> [Accessed 28 November 2018]
- 344. Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, *et al.* Teriparatide or alendronate in glucocorticoid-induced osteoporosis. *Obstetrical and Gynecological Survey* 2008;63:232-3.
- 345. Dias S, Sutton AJ, Welton NJ, Ades AE. Evidence synthesis for decision making 3: heterogeneity--subgroups, meta-regression, bias, and bias-adjustment. *Med Decis Making* 2013;33:618-40.
- 346. Griffin XL, Parsons N, Achten J, Fernandez M, Costa ML. Recovery of health-related quality of life in a United Kingdom hip fracture population: The warwick hip trauma evaluation A prospective cohort study. *Bone and Joint Journal* 2015;97-B:372-82.

11 APPENDICES

Appendix 1:Literature Search StrategiesCLINICAL EFFECTIVENESS

Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily, Ovid MEDLINE and Versions(R) 1946 to 2018

11th July 2018

#	Searches
1	exp osteoporosis/
2	osteoporo*.tw.
3	bone diseases, metabolic/
4	exp Bone Density/
5	(bone adj3 densit*).tw.
6	exp fractures, bone/
7	fractures, cartilage/
8	fracture*.tw.
9	(bone* adj2 fragil*).tw.
10	bone mineral densit*.tw.
11	bone loss.tw.
12	bmd.tw.
13	or/1-12
14	(alendron* or fosomax or fosavance or 121268-17-5).mp.
15	(ibandron* or boniva or bondronat or bonviva or adronil or 114084-78-5).mp.
16	(risedron* or actonel or atelvia or benet or 105462-24-6).mp.
17	(zoledron* or zometa or zomera or aclasta or reclast or 118072-93-8).mp.
18	or/14-17
19	limit 18 to yr="2014 -Current"
20	(abaloparatide or eladynos or 247062-33-5).mp.
21	(DEN or prolia or xgeva or 615258-40-7).mp.
22	(RLX or evista or keoxifene or 84449-90-1).mp.
23	(ROMO or evenity or 909395-70-6).mp.
24	(TPTD or forsteo or 52232-67-4 or movymia or terrosa).mp.
25	or/20-24
26	13 and (19 or 25)
27	meta-analysis as topic/

29 M 30 (s) 31 "F 32 or 33 (c) 34 (f) 35 (f) 36 "r 37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	meta analy* or metaanaly*).tw. Meta-Analysis/ systematic adj (review*1 or overview*1)).tw. Review Literature as Topic"/ r/27-31
31 "F 32 or 33 (c 33 (c 34 (f) 35 (f) 36 "r 37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	Review Literature as Topic"/ r/27-31
32 or 33 (c 33 (c 34 (fi 35 (fi 36 "r 37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	r/27-31
33 (c or or 34 ((i) 35 ((i) 36 "r 37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	
or 34 ((i) 35 ((i) 36 "r 37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	1 1 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
34 ((1) 35 ((1) 36 "r 37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or cinhal
(n 35 (() 36 "r 37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	r science citation index or bids or cancerlit).ab.
35 ((a) 36 "r 37 35 38 co 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	(reference adj list*) or bibliograph* or hand-search* or (relevant adj journals) or
36 "r 37 35 38 co 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	manual adj search*)).ab.
37 35 38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	(selection adj criteria) or (data adj extraction)).ab.
38 cc 39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	review"/
39 A 40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	5 and 36
40 H 41 39 42 38 43 32 44 43 45 26 46 Ra	omment/ or editorial/ or letter/
41 39 42 38 43 32 44 43 45 26 46 Ra	nimals/
42 38 43 32 44 43 45 26 46 Ra	Iumans/
43 32 44 43 45 26 46 Ra	9 not (39 and 40)
44 43 45 26 46 Ra	8 or 41
45 26 46 Ra	2 or 33 or 34 or 37
46 Ra	3 not 42
	6 and 44
/7 R	andomized controlled trials as Topic/
- 1	andomized controlled trial/
48 Ra	andom allocation/
49 ra	andomized controlled trial.pt.
50 D	Double blind method/
51 Si	ingle blind method/
52 C	Clinical trial/
	xp Clinical Trials as Topic/
54 co	ontrolled clinical trial.pt.
55 cl	linical trial*.pt.
56 m	nulticenter study.pt.
57 or	r/46-56
58 (c	clinic* adj25 trial*).ti,ab.
	(singl* or doubl* or treb* or tripl*) adj (blind* or mask*)).tw.
60 Pl	lacebos/

61	Placebo*.tw.
62	(allocated adj2 random).tw.
63	or/58-62
64	57 or 63
65	Case report.tw.
66	Letter/
67	Historical article/
68	65 or 66 or 67
69	exp Animals/
70	Humans/
71	69 not (69 and 70)
72	68 or 71
73	64 not 72
74	26 and 73
75	45 or 74

Embase 1974 to 2018

11th July 2018

#	Searches
1	exp osteoporosis/
2	osteoporo*.tw.
3	metabolic bone disease/
4	exp bone density/
5	(bone adj3 densit*).tw.
6	exp fracture/
7	cartilage fracture/
8	fracture*.ti,ab.
9	(bone* adj2 fragil*).tw.
10	bone mineral densit*.tw.
11	bone loss.tw.
12	bmd.tw.
13	or/1-12
14	(alendron* or fosomax or fosavance or 121268-17-5).mp.
15	(ibandron* or boniva or bondronat or bonviva or adronil or 114084-78-5).mp.
16	(risedron* or actonel or atelvia or benet or 105462-24-6).mp.

17	(zoledron* or zometa or zomera or aclasta or reclast or 118072-93-8).mp.
18	or/14-17
19	limit 18 to yr="2014 -Current"
20	(abaloparatide or eladynos or 247062-33-5).mp.
21	(DEN or prolia or xgeva or 615258-40-7).mp.
22	(RLX or evista or keoxifene or 84449-90-1).mp.
23	(ROMO or evenity or 909395-70-6).mp.
24	(TPTD or forsteo or 52232-67-4 or movymia or terrosa).mp.
25	or/20-24
26	13 and (19 or 25)
27	exp Meta Analysis/
28	((meta adj analy*) or metaanalys*).tw.
29	(systematic adj (review*1 or overview*1)).tw.
30	or/27-29
31	cancerlit.ab.
32	cochrane.ab.
33	embase.ab.
34	(psychlit or psyclit).ab.
35	(psychinfo or psycinfo).ab.
36	(cinahl or cinhal).ab.
37	science citation index.ab.
38	bids.ab.
39	or/31-38
40	reference lists.ab.
41	bibliograph*.ab.
42	hand-search*.ab.
43	manual search*.ab.
44	relevant journals.ab.
45	or/40-44
46	data extraction.ab.
47	selection criteria.ab.
48	46 or 47
49	review.pt.
50	48 and 49
51	letter.pt.

52	editorial.pt.
53	animal/
54	human/
55	53 not (53 and 54)
56	or/51-52,55
57	30 or 39 or 45 or 50
58	57 not 56
59	26 and 58
60	Clinical trial/
61	Randomized controlled trial/
62	Randomization/
63	Single blind procedure/
64	Double blind procedure/
65	Crossover procedure/
66	Placebo/
67	Randomi?ed controlled trial*.tw.
68	Rct.tw.
69	Random allocation.tw.
70	Randomly allocated.tw.
71	Allocated randomly.tw.
72	(allocated adj2 random).tw.
73	Single blind*.tw.
74	Double blind*.tw.
75	((treble or triple) adj blind*).tw.
76	Placebo*.tw.
77	Prospective study/
78	or/60-77
79	Case study/
80	Case report.tw.
81	Abstract report/ or letter/
82	or/79-81
83	animal/
84	human/
85	83 not (83 and 84)
86	or/79-81,85

87	78 not 86
88	26 and 87
89	59 or 88

Web of Science® Core Collection

Science Citation Index Expanded (1900-2018)

Conference Proceedings Citation Index - Science (1990-2018)

11th July 2018

#	Searches
# 1	TOPIC: (osteoporo*)
# 2	TOPIC: ((bone NEAR/3 densit*))
# 3	TOPIC: (fracture*)
#4	TOPIC: (bone mineral densit*)
# 5	TOPIC: (bone loss)
# 6	TOPIC: (bmd)
# 7	#6 OR #5 OR #4 OR #3 OR #2 OR #1
# 8	TOPIC: ((alendron* or fosomax or fosavance or 121268-17-5))
#9	TOPIC: ((ibandron* or boniva or bondronat or bonviva or adronil or 114084-78-5))
# 10	TOPIC: ((risedron* or actonel or atelvia or benet or 105462-24-6))
#11	TOPIC: ((zoledron* or zometa or zomera or aclasta or reclast or 118072-93-8))
# 12	#11 OR #10 OR #9 OR #8
	Timespan=2014-2018
# 13	TS=((abaloparatide or eladynos or 247062-33-5))
# 14	TS=((DEN or prolia or xgeva or 615258-40-7))
# 15	TS=((RLX or evista or keoxifene or 84449-90-1))
# 16	TS=((ROMO or evenity or 909395-70-6))
# 17	TS=((TPTD or forsteo or 52232-67-4 or movymia or terrosa))
# 18	#17 OR #16 OR #15 OR #14 OR #13
# 19	#7 and (#12 or #18)
# 20	TS=((meta-analysis or meta analy* or metaanaly*)) OR TS=(("review literature" or
	"literature review")) OR TS=(("systematic review*" or "systematic overview*"))
	OR TS=((cochrane or embase or psychit or psychinfo or psycinfo or
	cinahl or cinhal or science citation index or bids or cancerlit)) OR TS=(("reference
	list*" or bibliograph* or hand-search* or "relevant journals" or "manual search*"))
	OR TS=((("selection criteria" or "data extraction") and review))
# 21	#20 AND #19

# 22	TS=(("clinic* trial*" or "randomi* controlled trial*")) OR TS=(((singl* or doubl* or
	treb* or tripl*) and (blind* or mask*))) OR TS=((placebo*)) OR TS=((allocat* and
	random*))
# 23	#22 AND #19

Cochrane Database of Systematic Reviews (CDR): Wiley Interscience. 1996-2018 Cochrane Central Register of Controlled Trials (CENTRAL): Wiley Interscience. 1898-2018

Health Technology Assessment Database (HTA): Wiley Interscience. 1995-2016 Database of Abstracts of Reviews of Effects (DARE)): Wiley Interscience. 1995-2015 11th July 2018

#	Searches
#1	MeSH descriptor: [Osteoporosis] explode all trees
#2	osteoporo*:ti,ab,kw
#3	MeSH descriptor: [Bone Diseases, Metabolic] this term only
#4	MeSH descriptor: [Bone Density] this term only
#5	(bone next/3 densit*):ti,ab,kw
#6	MeSH descriptor: [Fractures, Bone] explode all trees
#7	MeSH descriptor: [Fractures, Cartilage] explode all trees
#8	fracture*:ti,ab
#9	(bone* next/2 fragil*):ti,ab,kw
#10	bone mineral densit*:ti,ab,kw
#11	bone loss:ti,ab,kw
#12	bmd:ti,ab,kw
#13	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12
#14	(alendron* or fosomax or fosavance or 121268-17-5):ti,ab,kw
#15	(ibandron* or boniva or bondronat or bonviva or adronil or 114084-78-5):ti,ab,kw
#16	(risedron* or actonel or atelvia or benet or 105462-24-6):ti,ab,kw
#17	(zoledron* or zometa or zomera or aclasta or reclast or 118072-93-8):ti,ab,kw
#18	(or #14-#17)
#19	#13 and #18 Publication Year from 2014 to 2018
#20	(abaloparatide or eladynos or 247062-33-5):ti,ab,kw
#21	(DEN or prolia or xgeva or 615258-40-7):ti,ab,kw
#22	(RLX or evista or keoxifene or 84449-90-1):ti,ab,kw
#23	(ROMO or evenity or 909395-70-6):ti,ab,kw
#24	(TPTD or forsteo or 52232-67-4 or movymia or terrosa):ti,ab,kw

#25	(or #20-#24)
#26	#19 or #25

WHOICTRP

 11^{th} July 2018

#	Searches
1	(alendron* or fosomax or fosavance or 121268-17-5).mp.
2	(ibandron* or boniva or bondronat or bonviva or adronil or 114084-78-5).mp
3	(risedron* or actonel or atelvia or benet or 105462-24-6).mp.
4	(zoledron* or zometa or zomera or aclasta or reclast or 118072-93-8).mp.
5	(abaloparatide or eladynos or 247062-33-5).mp.
6	(DEN or prolia or xgeva or 615258-40-7).mp.
7	(RLX or evista or keoxifene or 84449-90-1).mp.
8	(ROMO or evenity or 909395-70-6).mp.
9	(TPTD or forsteo or 52232-67-4 or movymia or terrosa).mp.

Thirty-four systematic reviews were checked for RCTs meeting the inclusion criteria.

211-216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

COST-EFFECTIVENESS STUDIES OF OSTEOPOROSIS

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily, and Versions(R) 1946 to 2018 16th July 2018

#	Searches	
1	exp osteoporosis/	
2	osteoporo*.tw.	
3	bone diseases, metabolic/	
4	exp Bone Density/	
5	(bone adj3 densit*).tw.	
6	exp fractures, bone/	
7	fractures, cartilage/	
8	fracture*.tw.	
9	(bone* adj2 fragil*).tw.	
10	bone mineral densit*.tw.	
11	bone loss.tw.	
12	bmd.tw.	
13	or/1-12	

14	exp "Costs and Cost Analysis"/
15	Economics/
16	exp Economics, Hospital/
17	exp Economics, Medical/
18	Economics, Nursing/
19	exp models, economic/
20	Economics, Pharmaceutical/
21	exp "Fees and Charges"/
22	exp Budgets/
23	budget*.tw.
24	ec.fs.
25	cost*.ti.
26	(cost* adj2 (effective* or utilit* or benefit* or minimi*)).ab.
27	(economic* or pharmacoeconomic* or pharmaco-economic*).ti.
28	(price* or pricing*).tw.
29	(financial or finance or finances or financed).tw.
30	(fee or fees).tw.
31	(value adj2 (money or monetary)).tw.
32	quality-adjusted life years/
33	(qaly or qalys).af.
34	(quality adjusted life year or quality adjusted life years).af.
35	or/14-34
36	13 and 35
37	limit 36 to yr="2014 -Current"

Embase 1974 to 2018 16th July 2018

#	Searches
1	exp osteoporosis/
2	osteoporo*.tw.
3	metabolic bone disease/
4	exp bone density/
5	(bone adj3 densit*).tw.
6	exp fracture/
7	cartilage fracture/
8	fracture*.ti,ab.
9	(bone* adj2 fragil*).tw.
10	bone mineral densit*.tw.
11	bone loss.tw.
12	bmd.tw.
13	or/1-12
14	*economics/
15	(economic adj2 model*).mp.

16	(cost minimi* or cost-utilit* or health utilit* or economic evaluation* or economic review* or cost outcome or cost analys?s or economic analys?s or budget* impact analys?s).ti,ab,hw,kw.
17	(cost-effective* or pharmacoeconomic* or pharmaco-economic* or cost-benefit or costs).ti,hw,kw.
18	(life year or life years or qaly* or cost-benefit analys?s or cost-effectiveness analys?s).ab,hw,kw.
19	(cost or economic*).ti,hw,kw. and (costs or cost-effectiveness or markov).ab.
20	or/14-19
21	13 and 20
22	limit 21 to yr="2014 -Current"

Health Technology Assessment Database (HTA): Centre for Reviews and Dissemination. 1995-2016

NHS Economic Evaluation Database (NHS EED): Centre for Reviews and Dissemination. 1995-2015

Database of Abstracts of Reviews of Effects (DARE): Centre for Reviews and Dissemination. 1995-2015

16th July 2018

#	Searches
1	MeSH DESCRIPTOR Osteoporosis EXPLODE ALL TREES
2	(osteoporo*)
3	MeSH DESCRIPTOR Bone Diseases, Metabolic
4	MeSH DESCRIPTOR Bone Diseases
5	(bone adj3 densit*)
6	MeSH DESCRIPTOR Fractures, Bone EXPLODE ALL TREES
7	MeSH DESCRIPTOR Fractures, Cartilage EXPLODE ALL TREES
8	(fracture*)
9	(bone* adj2 fragil*)
10	(bone mineral densit*)
11	(bone loss)
12	(bmd)
13	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12
14	(#14) FROM 2014 TO 2018
15	(#15) IN HTA FROM 2014 TO 2018
16	(#15) IN NHSEED FROM 2014 TO 2018
17	(#15) IN DARE FROM 2014 TO 2018

EQ-5D AND OSTEOPOROSIS

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily, and Versions(R) 1946 to 2018 19th July 2018

#	Searches
1	exp osteoporosis/
2	bone diseases, metabolic/
3	osteoporo*.tw.
4	or/1-3
5	(bone adj6 densit*).tw.
6	bone density/
7	bmd.ti,ab.
8	(bone or bones).mp.
9	exp densitometry/
10	tomography, x-ray computed/
11	densit*.tw.
12	10 and 11
13	9 or 12
14	8 and 13
15	5 or 6 or 7 or 14
16	exp fractures, bone/
17	fractures, cartilage/
18	fracture*.ti,ab.
19	or/16-18
20	15 or 19
21	4 and 20
22	(euroqol or euro qol or eq5d or eq 5d).mp.
23	21 and 22
24	limit 23 to yr="2014 -Current"

Embase 1974 to 2018 19th July 2018

#	Searches
1	exp osteoporosis/
2	osteoporo*.tw.
3	metabolic bone disease/
4	or/1-3
5	(bone adj6 densit*).tw.
6	bone density/
7	bmd.ti,ab.
8	(bone or bones).mp.
9	exp densitometry/
10	tomography/
11	densit*.tw.
12	10 and 11
13	9 or 12
14	8 and 13
15	5 or 6 or 7 or 14

16	exp fracture/
17	cartilage fracture/
18	fracture*.ti,ab.
19	16 or 17 or 18
20	15 or 19
21	4 and 20
22	(euroqol or euro qol or eq5d or eq 5d).mp.
23	21 and 22
24	limit 23 to yr="2014 -Current"

Trial	Reason for exclusion
Bone 2008 ²⁴⁵	Population outside scope
and extension ²⁴⁶	Low BMD not osteoporosis (and mean age under
	65)
Naylor 2010 ²⁴⁷	Population outside scope
	Low BMD not osteoporosis (and mean age under
	65)
Dore 2010 ²⁴⁸	Population outside scope
	Low BMD not osteoporosis (and mean age under
	65)
Cosman 2009 ²⁴⁹	Comparison outside scope
	Stopping study
Smith 2009 ²⁵⁰	Population outside scope
	Cancer treatment
Ellis 2008 ²⁵¹	Population outside scope
	Cancer treatment
Gnant 2015 252	Population outside scope
	Cancer treatment
Klotz 2014 ²⁵³	Population outside scope
	Cancer
Raje 2018 ²⁵⁴	Population outside scope
	Cancer
Henry 2010 ²⁵⁵	Population outside scope
	Cancer, Conference abstract only
Fazelli 2014 ²⁵⁶	Population outside scope
	Anorexia nervosa
RUTH ²⁵⁷	Population outside scope
	Coronary heart disease
Bonani 2012 258	Population outside scope
	Post kidney transplant
Haghverdi 2014 ²⁵⁹	Population outside scope
	Chronic kidney disease
Szczepanek 2017 ²⁶⁰	Population outside scope
	Low BMD not osteoporosis

Appendix 2: Thirty-four studies of non-bisphosphonates were excluded

Table 11:Excluded studies

	Intestinal failure
Zhu 2017 ²⁶¹	Conference abstract only
	Insufficient details reported
Thomas 2014 ²⁶²	Conference abstract only
	Insufficient details reported
Galesanu 2015 ²⁶³	Conference abstract only
	Insufficient details reported
TOWER ²⁶⁴	Intervention outside scope
	Unlicensed dose of TPTD
Cosman 2008 ²⁶⁵	Intervention outside scope
	Unlicensed dose of TPTD
Body 2002 ²⁶⁶	Intervention outside scope
	Unlicensed dose of TPTD
Finkelstein 2010 ²⁶⁷	Intervention outside scope
	Unlicensed dose of TPTD
Iseri 2017 ²⁶⁸	Intervention outside scope
	Unlicensed dose of ALN
Iwamoto 2008 269	Intervention outside scope
	Unlicensed dose of ALN
Roux 2014 ²⁷⁰	Intervention outside scope
	Unlicensed dose of RIS
Mok 2014 ²⁷¹	Intervention outside scope
	Pooled bisphosphonate data, doses not reported
Gonnelli 2006 ²⁷²	Intervention outside scope
	Pooled comparator data includes treatments
	outside scope
CORE (extension of MORE) ²⁷³	Intervention outside scope
	Pooled unlicensed and licensed doses of RLX
	from MORE study
Majima 2008 ²⁷⁴	Comparison outside scope
	RLX versus RLX plus alfacalcidol
Seeman <i>et al.</i> 2010 ²⁷⁵	Outcomes outside scope
	No outcomes of interest
SHOTZ ²⁷⁶	Outcomes outside scope
	No outcomes of interest
Bai 2013 ²⁷⁷	Outcomes outside scope

	No usable outcomes
AVA osteoporosis ²⁷⁸	Outcomes outside scope
	No outcomes of interest

Appendix 3: Bisphosphonate studies

Of 48 RCTs (reported in 59 references) included in TA464,³⁵ 38 RCTs (reported in 48 references) were included in the NMAs of fracture and/or FN BMD data in this report.

Three additional bisphosphonate RCTs were identified by the searches in this report (Appendix 1) to update the review of TA464. These were included in the NMAs.

Seven RCTs from TA464 were excluded for not reporting either fracture or FN BMD data. Additionally, three RCTs of bisphosphonates from TA464 were excluded for being conducted in a cancer population.

Trial	Population	Intervention and	Vertebral	FN
		comparator(s)	fracture	BMD
			NMA	NMA
Adami 1995 ²⁷⁹	Postmenopausal women with	Placebo		Yes
	osteoporosis	ALN 10mg/d		
FIT I Black	Postmenopausal women with	Placebo	Yes	Yes
1996 ²⁸⁰	osteoporosis	ALN 10mg/d		
FIT II Cummings	Postmenopausal women with	Placebo	Yes	Yes
1998 ²⁸¹	osteoporosis	ALN 10mg/d		
Bone 2000 ²⁸²	Postmenopausal women with	Placebo		Yes
	osteoporosis	ALN 10mg/d		
Carfora 1998 ¹³⁶	Postmenopausal women with	Placebo	Yes	
	osteoporosis	ALN 10mg/d		
Dursun 2001 ¹³²	Postmenopausal women with	Calcium	Yes	Yes
	osteoporosis	ALN		
		10mg/d+calcium		
Greenspan	Postmenopausal women with	Placebo		Yes
2002 ²⁸³	osteoporosis	ALN 10mg/d		
Greenspan	Postmenopausal aged 65 or older	Placebo		Yes
2003 ²⁸⁴		ALN 10mg/d		
Ho 2005 ²⁸⁵	Postmenopausal women with	Calcium		Yes
	osteoporosis	ALN		
		10mg/d+calcium		

Table 12:Included bisphosphonate RCTs from TA 464³⁵

Trial	Population	Intervention and	Vertebral	FN
		comparator(s)	fracture	BMD
			NMA	NMA
Liberman 1995 ¹³⁵	Postmenopausal women with	Placebo	Yes	Yes
	osteoporosis	ALN 10mg/d		
Orwoll 2000 ²⁸⁶	Men with osteoporosis	Placebo	Yes	Yes
		ALN 10mg/d		
Miller 2004 ¹³⁰	Men with osteoporosis	Placebo	Yes	
		ALN 70mg/w		
FOSIT Pols	Postmenopausal women with	Placebo		Yes
1999 ²⁸⁷	osteoporosis	ALN 10mg/d		
Saag 1998 ²⁸⁸	Men and women with	Placebo		Yes
Adachi 2001 ²⁸⁹	glucocorticoid induced	ALN 10mg/d		
	osteoporosis			
BONE Chesnut	Postmenopausal women with	Placebo	Yes	Yes
2004 ¹³⁷ ; Chesnut	osteoporosis	IBN 2.5mg/d		
2005 ²⁹⁰		IBN 20mg eod,		
McClung 2009 ²⁹¹	Postmenopausal women with	Placebo		Yes
	osteoporosis	IBN 150mg/m		
DIVA Delmas	Postmenopausal women with	IBN 2.5mg/d		Yes
2006 ²⁹² Eisman	osteoporosis	IBN 2mg/iv, 2/m		
2008 ²⁹³		IBN3mg/iv, 3/m		
MOBILE Miller	Postmenopausal women with	IBN 2.5mg		Yes
2005 ²⁹⁴ Reginster	osteoporosis	IBN 50mg. 2		
2006 ¹⁸²		doses/m		
		IBN100mg/m		
		IBN 150mg/m		
Boonen 2009 ²⁹⁵	Men with osteoporosis	Placebo	Yes	Yes
		RIS 35mg/w		
Cohen 1999 ²⁹⁶	Men and women 18-85 years	Placebo	Yes	Yes
	receiving glucocorticoids	RIS 5mg/d		
BMD-MN	Postmenopausal women with	Placebo	Yes	Yes
Fogelman 2000 ²⁹⁷	osteoporosis	RIS 5mg/d		
Hooper 2005 ¹³³	Postmenopausal women with	Placebo	Yes	Yes
	osteoporosis	RIS 5mg/d		

Trial	Population	Intervention and	Vertebral	FN
		comparator(s)	fracture	BMD
			NMA	NMA
VERT-NA Harris	Postmenopausal women with	Placebo	Yes	Yes
1999, ²⁹⁸ Ste-	osteoporosis	RIS 5mg/d		
Marie (2004) ²⁹⁹				
VERT-MN	Postmenopausal women with	Placebo	Yes	Yes
Reginster	osteoporosis	RIS 5mg/d		
2000, ³⁰⁰ Sorensen				
2003 ³⁰¹				
Leung 2005 ³⁰²	Postmenopausal women with	Placebo		Yes
	osteoporosis	RIS 5mg/d		
Reid 2000 ³⁰³	Men and women taking	Placebo	Yes	Yes
	glucocorticoids for ≥ 6 months	RIS 5mg/d		
Ringe 2006, ³⁰⁴	Men with osteoporosis	Placebo	Yes	
Ringe 2009 ³⁰⁵		RIS 5mg/d		
HORIZON-PFT	Postmenopausal women with	Placebo	Yes	Yes
Black 2007, ¹³⁴	osteoporosis	ZOL 5mg/y		
Reid 2010 ³⁰⁶				
HORIZON-RFT	Men and women 50 years of age	Placebo	Yes	Yes
Lyles 2007 ³⁰⁷	or older within 90 days after	ZOL 5mg/y		
Adachi 2011 ³⁰⁸	surgical repair of a hip fracture			
Boonen 2012 ³⁰⁹	Men with osteoporosis	Placebo	Yes	Yes
		ZOL 5mg/y		
McClung 2009 ³¹⁰	Postmenopausal women with	Placebo		Yes
	osteoporosis	ZOL 5mg/y		
MOTION Miller	Postmenopausal women with	ALN 70mg/w	Yes	Yes
2008 ³¹¹	osteoporosis	IBN150mg/m		
Muscoso 2004 ⁸⁰	Postmenopausal women with	RIS 5mg/d	Yes	
	osteoporosis	ALN 10mg/d		
Sarioglu 2006 ³¹²	Postmenopausal women with	RIS 5mg/d		Yes
	osteoporosis	ALN 10mg/d		
FACT Rosen	Postmenopausal women with	ALN 70mg/w		Yes
2005, ³¹³ Bonnick	osteoporosis	RIS 35mg/w		
2006 ³¹⁴				

Trial		Population	Intervention and	Vertebral	FN
			comparator(s)	fracture	BMD
				NMA	NMA
FACTS	Reid	Postmenopausal women with	ALN 70mg/w		Yes
2006, ³¹⁵	Reid	osteoporosis	RIS 35mg/w		
2008316					
HORIZON	Reid	Men and women taking	ZOL 5mg/y	Yes	Yes
2009 ³¹⁷		glucocorticoids<3mo or ≥3mo	RIS 5mg/d		

eod every other day, /d per day, /w per week , /y per year

Table 13:Included bisphosphonate RCTs from update review (additional to the NICETA464)

Trial	Population	Intervention and comparators	Included in fracture rate NMA?	Included in FN BMD NMA?
TRIO	Postmenopausal Women	ALN	No	Yes
139	with osteoporosis			
		IBN		
		RIS		
Tan	Postmenopausal Women	ALN	No	Yes
2016	with osteoporosis			
138		ZOL		
ZONE	Women and men with	Placebo	Yes	No
131	osteoporosis			
		ZOL		

Trial	Population	Intervention and	Reason for
		comparators	exclusion
Chesnut 1995 ³¹⁸	Postmenopausal women with	Placebo	Outcome outside
	osteoporosis	ALN 10mg/d	scope
CORAL Klotz	Men with androgen deprivation bone	Placebo	Population
2013 ³¹⁹	loss in non-metastatic prostate cancer	ALN 70mg/w	outside scope,
			cancer
Shilbayeh	Postmenopausal women with	Placebo	Outcome outside
2004 ³²⁰	osteoporosis	ALN 10mg/d	scope
Smith 2004 ³²¹	Men and women with asthma and/or	Placebo	Outcome outside
	chronic obstructive airways disease	ALN 10mg/d	scope
ARIBON Lester	Postmenopausal women with breast	Placebo	Outcome outside
2008 ³²²	cancer	IBN150mg/m	scope
Choo 2011 ³²³	Men with androgen deprivation bone	Placebo	Population
	loss in non-metastatic prostate cancer	RIS 35mg/w	outside scope,
			cancer
McClung 2001 ³²⁴	Postmenopausal women with	Placebo	Outcome outside
	osteoporosis	RIS 5mg/d	scope
Taxel 2010 ³²⁵	Men aged >55 years and within a month	Placebo	Population
	of receiving an initial injection of ADT	RIS 35mg/w	outside scope,
	for prostate cancer		cancer
Atmaca 2006 ³²⁶	Postmenopausal women with	RIS 5mg/d	Outcome outside
	osteoporosis	ALN 10mg/d	scope
ROSE Hadji	Postmenopausal women with	ZOL 5mg/y	Outcome outside
2010 ³²⁷ Hadji	osteoporosis	ALN 70mg/d	scope
2012 328			

Table 14:Excluded bisphosphonate RCTs from TA 464

ADT, androgen deprivation therapy; eod, every other day; mg/d, milligrams per day; mg/m, milligrams per month; mg/iv, milligrams intravenous; mg/y, milligrams per year; 2/m, twice per month; 3/m, three times per month

Trial acronyms: ARIBON, reversal of anastrozole (ARImidex) induced bone loss with oral monthly IBN (BONdronat) treatment during adjuvant therapy for breast cancer; BONE, IBN Osteoporosis vertebral fracture trial in North America and Europe; DIVA, Dosing IntraVenous Administration; FACT, Fosamax Actonel Comparison Trial; FACTS, Fosamax Actonel Comparison Trial international study; FIT, Fracture Intervention Trial; FOSIT, FOSamax International Trial; HORIZON-PFT, Health Outcomes and Reduced Incidence with Zoledronic acid Once Yearly-Pivotal Fracture Trial; HORIZON-RFT, Health Outcomes and Reduced Incidence with Zoledronic acid Once Yearly-Recurrent Fracture Trial; ROSE, Rapid Onset and Sustained Efficacy; MOBILE, Monthly Oral IBN In LadiEs; MOTION, Monthly Oral Therapy with IBN for Osteoporosis iNtervention; VERT-NA, Vertebral efficacy with RIS Therapy-North American; VERT-MN, Vertebral efficacy with RIS Therapy-Multi National

Appendix 4: Trial and Population characteristics

Table 15:Trial characteristics

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
DEN versus Placebo)			L		L
FREEDOM	International, randomised,	Women between the	Placebo, 3906	All women	36 months and	New vertebral
Cummings 2009 ⁴²	placebo-controlled trial -21	ages of 60 and 90 years	DEN 60 mg s.c.,	received daily	OLE to 84 months	fracture
Bone 2017 ¹⁰³	centres in the United States	with a lumbar spine or	3902	supplements		
	and Canada	total hip T-score of less	Both every 6	containing at		
		than -2.5 Excluded if	months	least 1000 mg of		
		they had conditions that		calcium		
		influence bone				
		metabolism or had				
		taken oral				
		bisphosphonates for				
		more than 3 years				
ADAMO	Randomised placebo-	Men with low bone	Placebo for one	Daily calcium	24 months	LS BMD %
NCT00980174	controlled phase III trial,	mineral density	year, then open	(≥1000		change from
Orwoll 2012 ⁴³	International, multi-centre	LS or FN BMD T-score	label DEN for 1	mg) and vitamin		baseline at 12
	Belgium, Canada,	≤-2.0≥-3.5;	year	D (≥800 IU)		months

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	Denmark, France,	or previous major	N=121			
	Poland, Sweden, United	osteoporotic fracture				
	States	and BMD-score \leq -1.0	DEN			
		≥-3.5	60 mg of DEN			
		Excluded if severe, or	every 6 months			
		multiple, vertebral	for 2 years (1			
		fracture(s), conditions	year blinded,			
		that influence bone	then 1 year open			
		metabolism, or prior	label) N=121			
		bisphosphonate				
		treatment (3 months+ in				
		past 2 years or 1				
		month+ in past year or				
		within				
		3-months of				
		randomisation				
DIRECT	Randomised placebo-	Postmenopausal women	Placebo 2 years	Daily calcium	36 months	Incidence of new
NCT00680953	controlled phase III trial,	and men aged 50+ with	followed by	$\geq 600 \text{ mg}$ and		or worsening

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
Nakamura 2014 ⁴⁴	multi-centre, Japan, open-	osteoporosis.	open label DEN	vitamin D ≥400		vertebral fracture
	label extension	1-4 vertebral fractures	1 year	IU		by X-ray at 24-
		and LS BMD T-score	N=511			months
		<-1.7 (Young Adult				
		Mean in	DEN			
		Japan 80%), or total hip	60 mg every 6			
		BMD-T-score <-1.6.	months 2 years			
		Excluded if severe, or	followed by			
		2+ moderate, vertebral	open label DEN			
		fractures, conditions	1 year			
		that influence bone				
		metabolism, or prior	N=500			
		bisphosphonate				
		Treatment (3+ years, or				
		with 6 months of				
		randomisation), prior				
		hormonal treatments,				
		calcitonin o TPTD				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		within 6 weeks of				
		enrolment.				
Nakamura 2012 ⁴⁵	Randomised placebo-	Postmenopausal women	Placebo	Daily calcium	12 months	LS BMD %
	controlled phase II trial,	aged 80 or under,	N=55	$\geq 600 \text{ mg}$ and		change from
	multi-centre, Japan	ambulatory,		vitamin D \geq 400		baseline at 12
		osteoporosis, LS BMD	DEN 60mg	IU		months
		T-score (for Japanese	every 6 months			
		subjects) $\leq -2.5 \geq -4.0$ or	N=54			
		FN or total hip $\leq -2.5 \geq -$	For 1 year			
		3.5				
		Excluded if any severe				
		or 2+ moderate				
		vertebral fracture,				
		hypocalcaemia, prior				
		bisphosphonates or				
		parathyroid hormone				
		within 12 months, or				
		hormonal or calcium				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		treatment within 3				
		months prior to				
		randomisation.				
Koh 2016	Randomised placebo-	Postmenopausal women	Placebo 6months	Daily calcium	12 months	LS BMD %
NCT01457950 ⁴⁶	controlled phase III trial,	aged 60-90, Korean-	then open label	$\geq 1000 \text{ mg}$ and		change from
	multi-centre, Korea, open-	born, LS or total hip	DEN 6 months	vitamin D ≥400		baseline at 6
	label extension	BMD <-2.5≥-4.0	N=66	IU		months
		Excluded if conditions				
		that influence bone	DEN 60mg			
		metabolism, increased	6 months			
		risk of ONJ, hypo-	then open label			
		hyper-calcaemic,	DEN 6months			
		vitamin D deficiency,	N=69			
		prior treatment with				
		bone metabolism drugs				
RLX versus Placebo	1	L	L	1	1	1
Adami 200847	International, randomised-	Postmenopausal	Placebo, 172	All participants	12 months from	Lumbar spine
	controlled trial - 32 clinical	women, aged 50 to 80,	RLX 60 mg, 157	received oral	randomisation	BMD

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	centres in seven countries	BMD T-score below -	Both daily	supplements of at		
	(the United States, France,	2.5 at the lumbar spine.		least 500 mg/day		
	Germany, Spain, Italy,	Exclude if had	All pre-treated	of elemental		
	Canada, and Australia).	condition or receiving	for 12 months	calcium and 400		
		treatment affecting	with TPTD 20	to 800 IU/day of		
		BMD.	μg s.c. daily	vitamin D		
			prior to			
			randomisation			
Morii <i>et al</i> 2003 ⁴⁸	Randomised placebo-	Postmenopausal (2+	Placebo	Daily Calcium	12 months	LS BMD %
Japan	controlled, multicentre,	years) women, aged	N=100	500mg and		change from
Clinical Trial	Japan	\leq 80, LS BMD \leq -2.5		vitamin D 200 ID		baseline at 12
Research Group		YAM	RLX 60mg daily			months
		Excluded if conditions	N=100			
		that influence bone				
		metabolism, hormonal				
		therapy, pathologic				
		fractures or LS BMD				
		unevaluable,				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		bisphosphonates within				
		6months				
Liu 2004 ⁴⁹	Randomised placebo-	Postmenopausal (2+	Placebo	Daily Calcium	12 months	LS BMD %
	controlled, multicentre,	years) women, aged 50-	N=102	500mg and		change from
	China	80, LS or FN BMD T-		vitamin D 200 ID		baseline at 12
		score \leq -2.5	RLX 60mg daily			months
		Excluded if conditions	N=102			
		or treatments that				
		influence bone				
		metabolism				
Gorai <i>et al</i> 2012 ⁵⁰	Randomised controlled	Postmenopausal (2+	Alfacalcidol		24 months	LS BMD %
	trial, open label, two	years) women, LS	1microgram/day			change from
	centres, Japan	BMD ≤-2.0 YAM	N=46			baseline and
		Excluded if conditions				bone turnover
		or treatments that	RLX 60mg/day			
		influence bone	N=42			
		metabolism,				
		bisphosphonates within	RLX 60mg/day			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		18 months	plus alfacalcidol			
			1microgram/day			
			N=45			
Silverman 2008	Randomised controlled	Postmenopausal (2+	Placebo	Daily Calcium	36 months	% new vertebral
NCT00205777 ⁵¹	trial, phase III, multicentre,	years) women, aged 55-	N=1885	≤ 1200 mg and		fractures by X-
	Argentina, Australia,	85, LS or FN BMD T-		vitamin D 400-		ray at 36 months
	Austria, Belgium,	score \leq -2.0 \geq -4.0; or 1+	RLX 60mg/day	800 ID		
	Brazil, Bulgaria,	mild vertebral fracture	N=1849			
	Canada, Chile, Croatia,	and LS or FN BMD T-				
	Denmark, Estonia,	score \geq -4.0				
	Finland, France,	Excluded if conditions				
	Germany, Greece, Hong	that influence bone				
	Kong, Hungary, Italy,	metabolism, history of				
	Lithuania, Mexico,	thrombosis, hormonal				
	Netherlands, New	or bisphosphonate				
	Zealand, Norway,	treatment within 6				
	Poland, Romania,	months				
	Russian Federation,					

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	Slovakia, South Africa,					
	Spain, United States					
MORE ^{52,101}	Randomised controlled	Postmenopausal (2+	Placebo	Daily Calcium	36 months	Incident vertebral
	trial, multicentre, Canada,	years) women,	N=2576	500mg and		fractures and
	Europe, South America,	FN or LS BMD T-score		vitamin D 400-		BMD
	USA	<-2.5;	RLX 60mg/day	600 ID		
		Or 1+ moderate or	N=2557			
		severe or 2+ mild or				
		moderate vertebral				
		fractures.				
		Excluded if conditions				
		that influence bone				
		metabolism, history of				
		thrombosis, hormonal				
		therapy 2/6 months,				
		bisphosphonates with 6				
		months, pathologic				
		fractures, unevaluable				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		by thoracic/lumbar X-				
		ray				
Lufkin 1998 ⁵³	Randomised controlled	Postmenopausal (5+	Control	Daily Calcium	12 months	Biochemical
	trial, two centres, USA	years) women, aged 45-	N=48	750mg and		markers of bone
		75, ambulatory, LS or		vitamin D 800 ID		turnover
		FN BMD $\leq 10^{th}$	RLX 60mg/day			
		percentile of normal and	N=48			
		1+ non-traumatic				
		vertebral fracture.				
		Excluded if conditions				
		that influence bone				
		metabolism, history of				
		thrombosis, prior				
		bisphosphonates,				
		hormonal therapy				
		within 6months				
Mok 2011	Randomised placebo	Postmenopausal (1+	Placebo	Daily calcium	12 months	LS and hip BMD
NCT00371956 ⁵⁴	controlled trial, phase IV,	year) women receiving	N=57	1000mg/day and		% change from

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	two sites, China	long-tern glucocorticoid		calcitrol 0.25		baseline at 12
		treatment (prednisone	RLX 60mg/day	microgram/day		months
		\leq 10mg/d or equivalent)	N=57			
		≥ 6 months.				
		Excluded if history of				
		thrombosis or				
		hypercoagulability,				
		prior bisphosphonates				
		or PTH				
ROMO versus Place	ebo		I	L	I	
FRAME	International, randomised-	Women aged 55 to 90	Placebo, 3591	daily calcium	12 months from	New vertebral
Cosman 201655	controlled trial – 25	years with a T score of	ROMO 210 mg	(500 to 1000 mg)	randomisation then	fractures
	countries across Latin	-2.5 to -3.5 at the total	s.c., 3589	and vitamin D ₃ or	a further 12	
	America, Central or	hip or femoral neck.	Both once	D_2 (600 to 800	months open-label	
	Eastern Europe, Western	Excluded if had a	monthly for 12	IU)	following	
	Europe, Australia, or New	history of hip or severe	months then	For patients with	treatment	
	Zealand, Asia Pacific and	vertebral fracture,	DEN 60 mg s.c.	low screening	switching	
	the US	conditions or treatment	every 6 months	vitamin D blood		

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		affecting BMD,	for 12 months	test, a loading		
		osteonecrosis of the	open-label (both	dose of 50,000 to		
		jaw, and low 25-	groups)	60,000 IU of		
		hydroxyvitamin D level.		vitamin D was		
				given		
Ishibashi (2017)	Randomised placebo	Postmenopausal	Placebo	Daily calcium	15 months	LS BMD %
NCT01992159 ⁵⁶	controlled trial, phase II,	women, aged 55-85,	N=63	\geq 500mg and		change from
	multicentre, Japan	ambulatory, LS FN or		vitamin $D \geq$		baseline at 12
		total hip BMD T-score	ROMO 210 mg	600IU		months
		≤-2.5, LS BMD >-4.0,	per month			
		FN or total hip BMD >-	N=63			
		3.5.				
		Excluded if condition or	For 12 months			
		prior treatment				
		influencing bone				
		metabolism, including				
		i.v. bisphosphonates				
		within 5 years, oral				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		bisphosphonates within				
		6 months or 1+ months				
		within 1year, or				
		>3years, or prior DEN				
		within 18 months, or				
		PTH within 1year,				
		history of vertebral or				
		hip fracture				
BRIDGE	Randomised placebo	Men aged 55-90,	Placebo	Daily calcium	15 months	LS BMD %
NCT02186171 ⁵⁷	controlled trial, phase III,	LS total hip or FN	N=82	500-1000mg and		change from
	multicentre, Europe, Latin	BMD T-score \leq -2.5,		vitamin D 600-		baseline at 12
	America, Japan, North	Or \leq -1.5 with fragility	ROMO	800 IU		months
	America	fracture, evaluable for	210mg/month			
		LS and hip DXA.	N=163			
		Excluded if condition or				
		current treatment	For 12 months			
		influencing bone				
		metabolism, hip or FN				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		T-score \leq -3.5, hip				
		fracture				
TPTD versus Placeb	00					
Orwoll 2003 ⁵⁸	International, randomised,	Men aged 30-85 years	Placebo, 147	All subjects also	The study was	LS BMD %
	placebo-controlled trial -	with lumbar spine or	TPTD 20 μg s.c.,	received	stopped after a	change from
	37 centres in 11 countries	proximal femur (neck or	151	supplemental	median duration of	baseline
	(countries NR)	total hip) BMD at least	Both daily	calcium and	11 months	
		2 SD below the average		vitamin D		
		for young, healthy Men.				
		Secondary causes of				
		metabolic bone disease,				
		were excluded				
Miyauchi et al.	Randomised placebo-	Postmenopausal (≥5	Placebo	Daily calcium	24 months	LS BMD %
2010	controlled phase III trial,	years) women and men,	12months	610mg and		change from
NCT0043316059	multicentre, Japan	ambulatory, aged 55+,	then option of	vitamin D 400IU		baseline at 12
		LS BMD <80% young	open label TPTD			months
		adult mean for Japanese	for 12months			
		subjects (approx. T-	N=70			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		score -2.6) and 1+				
		vertebral fragility	TPTD 12months			
		fracture; or age 65+	then open label			
		approx. LS BMD T-	TPTD for			
		score -1.7; or age 55+	12months			
		with LS BMD <65%	N=137			
		YAM				
Miyauchi et al.	Randomised placebo-	Postmenopausal (≥5	Placebo 6months	Daily calcium	6 months	LS BMD %
2008^{60}	controlled phase II trial,	years) women,	n=38	610mg and		change from
	multicentre, Japan	ambulatory, aged 55+,		vitamin D 400IU		baseline at 24
		LS BMD <80% YAM	TPTD			weeks
		for Japanese subjects	20microg daily			
		(approx. T-score -2.6)	for 6 months			
		and 1+ moderate or 2+	N=39			
		mild vertebral fragility				
		fracture; or age 65+ and				
		<70% YAM; or LS				
		BMD <60% YAM				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		Excluded if conditions				
		that influence bone				
		metabolism, treatment				
		influencing bone				
		metabolism within 24				
		months of				
		randomisation				
ACTIVE	Randomised placebo-	Postmenopausal	Placebo	Adequate	18 months	% with 1+ new
NCT01343004 ⁹⁶	controlled phase III trial,	women, age 49-86,	18months	calcium and		vertebral fracture
	multicentre, Argentina,	FN or LS BMD T-score	(blinded against	vitamin D (25-		(X-ray)
	Brazil, Czech Republic,	≤-2.5>-5.0 and 2+ mild	abaloparatide)	hydroxyvitamin		
	Denmark, Estonia, Hong	or 1+ moderate	n=821	D concentrations		
	Kong, Lithuania,	vertebral fracture, or		in serum greater		
	Poland, Romania,	other low trauma	TPTD	than 37.5		
	United States	fracture within 5 years;	20microg daily	nmol/L)		
		Or age 65+ and T-score	for 18 months,			
		≤-2.0>-5.0;	open label			
		Or age 65+ without	N=818			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		fracture if and T-score				
		≤-3.0>-5.0.				
		Excluded if severe, or				
		4+ mild/moderate,				
		vertebral fractures, <2				
		evaluable lumbar				
		vertebrae, hip BMD				
		unevaluable, conditions				
		that influence bone				
		metabolism, treatment				
		influencing bone				
		metabolism,				
		bisphosphonates				
		(3months+) within 5				
		years, DEN within 1				
		year				
Leder 2015 ⁶²	Randomised, parallel-	Postmenopausal	Open-label	All subjects	6 months plus a	BMD % change
	group, multicentre, dose-	women, 55–85 years	Placebo, 45	received	further 6-month	from baseline

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	finding, double-blind,	old, with T-score \leq -2.5	TPTD 20 μg, 45	supplemental	extension to 12	and bone
	placebo-controlled trial -	at the lumbar spine or	Both daily	calcium (500–	months	turnover markers
	30 centres in the US,	femoral neck or total		1000 mg) and		
	Argentina, India, and UK	hip, or T-score \leq -2.0		vitamin D (400-		
		plus low trauma		800 IU)		
		fracture, or T-score \leq -				
		2.0 plus risk factor for				
		osteoporosis.				
		Treatments and				
		conditions affecting				
		BMD were excluded				
FPT	Randomised placebo-	Postmenopausal (5+	Placebo	Daily calcium	Median 21 months	% with 1+ new
NCT0067050163	controlled phase III trial,	years) women,	n=544	1000mg and		vertebral fracture
	multicentre, Argentina,	ambulatory,		vitamin D 400-		(X-ray)
	Australia, Austria,	1+ moderate or	TPTD	1200IU		[planned at 3
	Belgium, Canada, Czech	2+ mild atraumatic	20microg daily			years but study
	Republic, Denmark,	vertebral fractures ; or	N=541			halted]
	Finland, Hungary,	fewer than two	Study halted at			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	Israel, Italy,	moderate fractures, T-	median 21			
	Netherlands, New	score BMD hip or LS \leq -	months			
	Zealand, Norway,	1.				
	Poland, Sweden, United	Excluded if conditions				
	States	that influence bone				
		metabolism,				
		bisphosphonates within				
		3months or within 24				
		months if 60 days+,				
		other prior treatment				
		that influenced bone				
		metabolism within				
		6months				
Sethi 2008	Randomised placebo-	Postmenopausal (3+	Control	Daily calcium	180 days	LS BMD %
NCT00500409 ⁶⁴	controlled, open-label,	years) women, aged 45-	N=41	1000mg and		change from
	phase III trial, multicentre,	75, LS or FN BMD T-		vitamin D		baseline at 6
	India	score \leq -2.5	TPTD			months
		Excluded if conditions	20microg daily			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		that influence bone	N=41			
		metabolism, LS BMD				
		unevaluable, prior				
		treatment that				
		influenced bone				
		metabolism within				
		6months, current				
		steroids, anticoagulants				
		or anticonvulsants				
Head-to-head non-b	pisphosphonates		I	I		I
DATA	Randomised controlled	Postmenopausal	TPTD	Daily calcium	24	LS BMD %
NCT00926380 ⁶⁵	phase II trial, open-label	women, aged 45+,	20microg daily	1200mg and		change from
	single centre, USA	LS, FN or hip T-score	24 months	vitamin D (25-		baseline at 12
		≤ - 2.5;	N=36	hydroxyvitamin		months
		Or T-score ≤-2.5 plus	DATA-SWITCH	D concentrations		
		risk factor for fracture;	TPTD followed	in serum greater		
		Or T-score ≤-1.0 plus	by 24 months	than 50 nmol/L)		
DATA-SWITCH ⁶⁶		fragility fracture.	DEN			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		Excluded if conditions				
		that influence bone				
		metabolism,				
		History of i.v.				
		bisphosphonates or	DEN			
		strontium ranelate;	60mg every			
		glucocorticoids or oral	6months for 24			
		bisphosphonates within	months			
		6 months; hormonal or	N=27			
		calcium therapy with 3	DATA-SWITCH			
		months of	DEN followed			
		randomisation.	by 24 months			
			TPTD			
			N=27			
EUROFORS ⁶⁷	Randomised controlled	Postmenopausal (2+	Control	Daily Calcium	12 months post	LS BMD %
	open-label trial,	years) women, aged	12months	\geq 500mg and	randomisation	change from
	multicentre,	55+, LS or FN or total	N=102	vitamin D 400-	(24 months total)	baseline at 24
	Austria, Belgium,	hip BMD T-score \leq -2.5,		800 ID		months

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	Denmark, France,	1+ vertebral or non-	RLX 60mg daily			
	Germany, Greece,	vertebral fragility	N=100			
	Iceland, Portugal,	fracture within 3years,				
	Spain, United Kingdom	2+ BMD evaluable	TPTD 20microg			
		lumbar vertebrae.	daily			
		Excluded if conditions	N=305			
		or treatments that				
		influence bone	All following			
		metabolism	12months TPTD			
STRUCTURE	Randomised controlled	Postmenopausal	TPTD 20	Daily calcium	12 months	Hip BMD %
NCT0179630168	trial, open label, phase III,	osteoporosis (3+ years),	micrograms/day	500-1000mg and		change from
	multicentre, North	aged 55 to 90, vertebral	N=218	vitamin D 600-		baseline at 12
	America, Latin America,	fracture or non-		800 IU		months
	Europe	vertebral after age 50,	ROMO			
		LS FN or total hip	210mg/month			
		BMD T-score ≤-2.5, 3+	N=218			
		years of bisphosphonate				
		therapy, evaluable for	For 12 months			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		hip and LS BMD	Following 12			
		Excluded if condition,	months of ALN			
		or non-bisphosphonate				
		treatment, influencing				
		bone metabolism				
McClung 2014 ⁶⁹	Phase III, multicentre,	Postmenopausal	Open-label	All the	12 months	LS BMD %
	international, randomised,	women, 55 to 85 years	ALN 70 mg	participants were		change from
	placebo-controlled,	old with a T score of	weekly, 51	required to take		baseline
	parallel-group, eight-group	-2.0 or less at the	TPTD 20 µg	at least 1000 mg		
	study - 28 centres in	lumbar spine, total hip,	daily, 55	of elemental		
	Argentina, Austria,	or femoral neck and	Blind	calcium and 800		
	Belgium, Canada,	-3.5 or more at each of	Pooled placebo	IU of vitamin D		
	Denmark, Spain, and the	these sites. Treatments	(mix of	daily		
	US	and conditions affecting	administrations),			
		BMD were excluded	52			
			ROMO 210 mg			
			s.c. monthly, 55			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
DECIDE ⁷⁰	Randomised controlled	Postmenopausal	DEN 60mg	Daily calcium	12 months	LS BMD %
	trial, phase III, non-	women, ambulatory, LS	every six months	\geq 500mg and		change from
	inferiority, multicentre,	or total hip BMD T-	plus placebo	vitamin D 400-		baseline at 12
	Australia, Europe, North	score \leq -2.0, evaluable	N=594	800 IU		months
	America, South America	for hip and LS BMD.				
		Excluded if condition				
		influencing bone	ALN 70mg/week			
		metabolism, prior i.v.	plus placebo			
		bisphosphonates, other	N=595			
		treatments influencing				
		bone metabolism within				
		3 months				
STAND Kendler	Phase III 1- international,	Women \geq 55 years of	Open-label ALN	daily 1000mg	12 months	Total hip BMD
201071	multicentre, randomised,	age with a lumbar spine	70 mg weekly	calcium and at		% change from
	double-blind, double-	or total hip T-scores	for 1 month then:	least 400 IU		baseline
	dummy, parallel-group.	between -4.0 and -2.0	ALN 70 mg	vitamin D.		
	Countries NR	receiving ALN	weekly, 251			
		equivalent to	DEN 60 mg s.c.,			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		70mg/week for at least	every 6 months,			
		6 months. Treatments	253			
		and conditions affecting	Both with			
		BMD were excluded	placebo			
DAPS Kendler	Multicentre, randomised,	Postmenopausal women	ALN 70 mg	daily calcium	12 months prior to	Treatment
2011 ^{72,111}	open-label, 2-year,	with low BMD who had	weekly, 124	(1,000 mg) and	crossover	adherence in the
	crossover - 20 centres in	not received prior	DEN 60 mg s.c.,	vitamin D (≥400		first 12 months
	the USA and 5 centres in	bisphosphonate or DEN	every 6 months,	IU)		
	Canada	therapy with T-scores	126	supplementation.		
		between -4.0 and -2.0	Open-label			
		at the lumbar spine,				
		total hip, or femoral				
		neck. Treatments and				
		conditions affecting				
		BMD were excluded				
AMG 162 Bone	Randomised, placebo-	Osteopenic and	Placebo s.c.	daily calcium (1	12 months	LS BMD %
Loss study	controlled, dose-ranging	osteoporotic	every 3 months,	g) and vitamin D		change from
McClung 2006 ⁷³	study - 29 study centres in	postmenopausal women	46	(400 IU).		baseline

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
	the US	\leq 80 years of age with a	ALN 70 mg			
		T-score of -1.8 to -4.0	weekly, 47			
		at the lumbar spine or –	(open-label)			
		1.8 to -3.5 at either the	DEN 60 mg s.c.,			
		femoral neck or total	every 6 months,			
		hip. Treatments and	47			
		conditions affecting				
		BMD were excluded				
Recknor 2013 ⁷⁴	Randomised, open-label,	Postmenopausal women	IBN 150 mg	daily calcium	12 months	Total hip BMD
	parallel-group study - 74	\geq 55 years of age with	every month,	(500 mg or more)		% change from
	centres in the US and	T-score of \leq -2 or \geq -4 at	416	and vitamin D		baseline
	Europe	the total hip who had	DEN 60 mg s.c.,	(800+ IU)		
		either discontinued or	every 6 months,			
		had insufficient	417			
		adherence to				
		bisphosphonates ≥ 1				
		month before screening				
		Treatments and				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		conditions affecting				
		BMD were excluded				
Saag 2018 ⁷⁵	Phase II, international,	Women and men aged	RIS 5 mg daily,	at least 1000 mg	12 months	LS BMD %
	randomised, double-blind,	18 years or older and	397	calcium and at		change from
	double-dummy, active-	were either continuing	DEN 60 mg s.c.,	least 800 IU		baseline
	controlled, non-inferiority	or initiating	every 6 months,	vitamin D daily		
	study - 79 centres in 16	glucocorticoids (≥ 7.5	398			
	countries in Europe, Latin	mg prednisone, or its	Both groups			
	America, Asia, and the US	equivalent daily)	received a			
		Patients younger than	placebo			
		50 years had to have a				
		history of osteoporosis-				
		related fracture.				
		Continuing patients had				
		to have total hip,				
		femoral neck of lumbar				
		spine T-score ≤2.0 or				
		≤ 1.0 with a history of				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		fracture				
Miller 2016 ⁷⁶	International, multicentre,	Postmenopausal women	ZOL 5 mg iv	1000 mg or	12 months	LS BMD %
	randomized, double-blind,	\geq 55 years of age who	annually, 322	greater elemental		change from
	double-dummy, active-	received oral	DEN 60 mg s.c.,	calcium and 800		baseline
	controlled, parallel-group	bisphosphonate therapy	every 6 months,	IU or greater		
	study - 37 study centres in	for ≥ 2 years with a T-	321	vitamin D daily.		
	Belgium, Denmark,	score of ≤ 2.5 or less at	Both groups			
	Poland, Spain, Canada,	the lumbar spine, total	received a			
	the US, and Australia	hip, or femoral neck.	placebo			
		Treatments and				
		conditions affecting				
		BMD were excluded				
RLX versus Bisphe	osphonates	1		1	1	1

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
EFFECT	Randomised, double-	Postmenopausal women	ALN 10 mg, 246	Calcium and	12 months	LS BMD %
(International)	masked, double-dummy,	with low BMD at least	RLX 60 mg, 241	vitamin D		change from
Sambrook 200477	multinational study - 50	2.0 SD below the young	Both daily			baseline
	centres in 16 countries	normal mean at either				
	throughout Europe, South	the total hip or lumbar				
	America and Asia-Pacific	spine. Treatments and				
		conditions affecting				
		BMD were excluded				
EFFECT (US)	Double-blind, randomised,	Postmenopausal women	ALN 70 mg	500-1000 mg	12 months	LS BMD %
Luckey 200478	active-controlled,	>40 years old low BMD	weekly, 223	calcium and 200		change from
	multicentre study – 52	at least 2.0 SD below	RLX 60 mg	IU Vitamin D		baseline
	centres US	the young normal mean	daily, 233	daily		
		at either the total hip or	Both groups			
		lumbar spine.	received a			
		Treatments and	placebo			
		conditions affecting				
		BMD were excluded				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
Johnell 2002 ⁷⁹	Phase III, randomised,	Postmenopausal women	Placebo (ALN	500 mg/d	12 months	LS BMD and FN
	double-blind study - 30	aged \geq 75 years femoral	and RLX), 82	elemental		BMD % change
	centres in Australia,	neck BMD ≥2.0 SD	ALN 10 mg and	calcium and		from baseline
	Belgium, Canada, Italy,	below peak bone mass	RLX PBO, 83	vitamin D 400-		
	Mexico, South Africa,	for healthy	RLX 60 mg and	600 IU/d.		
	Spain, and Sweden.	premenopausal women.	ALN PBO, 82			
		Treatments and	All daily			
		conditions affecting				
		BMD were excluded				
Muscoso 2004 ⁸⁰	Randomised trial – centres	Women with	ALN 10mg,	1 gram of	24 months	NR
	and countries NR	osteoporosis. No further	1000	calcium and 800		Lumbar spine
		details of inclusion or	RIS 5 mg, 100	IU of		BMD and
		exclusion criteria	RLX 60 mg, 100	Vitamin D daily		incidence
		reported	All daily			fractures reported
EVA Recker	Randomised double-blind	Postmenopausal women	ALN 10mg, 716	calcium (500	24 months	Number of
2007 ⁸¹	study – 13 centres in	50-80 years old with	RLX 60 mg, 717	mg/day) and	Assessments also	women with ≥ 1
	Canada and US	femoral neck T-score	Both daily	vitamin D (400	planned at 3 and 5	new osteoporotic
	(NCT00035971)	-2.5 to -4.0 and no		IU/day)	years, but trial was	vertebral or non-

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		prevalent vertebral			stopped early	vertebral fracture
		fractures. Treatments				
		and conditions affecting				
		BMD were excluded				
Sanad 2011 ⁸²	Randomised clinical study	Postmenopausal women	ALN 10mg, 44	1500 mg calcium	12 months	NR
	– single centre, Egypt	50-70 years old with	RLX 60 mg, 46	carbonate and		Lumbar spine,
		BMD at lumbar spine or	Both daily	400 IU vitamin		femoral neck and
		femoral neck -2.5		D3		total hip BMD;
		standard deviations				bone turnover,
		below a reference				and lipid
		population of young				metabolism
		postmenopausal				reported
		women. Treatments and				
		conditions affecting				
		BMD were excluded				
Michalska 2006 ⁸³	Placebo-controlled,	Postmenopausal women	Open-label	calcium (500	12 months	LS BMD %
	randomised trial – single	50-80 years old with	ALN 10 mg, 33	mg/d) and	followed by 12	change from
	centre, Austria	previous treatment with	Blind	vitamin D (800	months open-label	baseline

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		ALN (10 mg/d) for	Placebo, 33	IU/d)	extension	
		more than 3 years and	RLX 60 mg, 33			
		lumbar spine or femoral	All daily			
		neck T-score less than -				
		2.5				
ROMO versus Bis	phosphonates		I	I		I
ARCH Saa	g Phase III, multicentre,	Postmenopausal women	ALN 70 mg	daily calcium and	12 months from	Vertebral
2017 ⁸⁴	international, randomised,	55 to 90 years old with	weekly, 2047	vitamin D	randomisation then	fractures and
	double-blind trial - 137	either T score of –2.5 or	ROMO 210 mg		a further 12	clinical fracture
	centres (NCT01631214)	less at the total hip or	s.c. monthly,		months open-label	(non-vertebral
		femoral neck plus ≥ 1	2046		following	and symptomatic
		moderate/severe or ≥ 2	Both for 12		treatment	vertebral
		mild vertebral fractures;	months then		switching	fracture) at 24
		or T score of -2.0 or	ALN 70 mg			months
		less with ≥ 2	weekly open-			
		moderate/severe	label (both			
		vertebral or proximal	groups) for 12			
		femur fracture	months			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
TPTD versus Bispho	osphonates	L				
FACT McClung	Randomised, double-blind,	Postmenopausal women	ALN 10 mg, 101	daily	18 months	LS and hip BMD
2005 ⁸⁵	active comparator study -	aged 45 to 84 years,	TPTD 20 μg s.c.,	supplementation		% change from
	19 clinical	with lumbar spine or	102	of calcium (1000		baseline
	sites globally	femoral neck T-score	Both daily	mg) and vitamin		
		between -2.5 and -4.0.	Both groups	D (400-800 IU)		
		Treatments and	received a			
		conditions affecting	placebo			
		BMD were excluded.				
Saag 2009 ⁸⁶	Randomised, double-blind,	Women ≥21 years old	ALN 10 mg, 214	calcium (1,000	36 months	LS BMD %
	double-dummy, active	who had taken	TPTD 20 μg s.c.,	mg/day) and		change from
	comparator-controlled -13	prednisone or its	214	vitamin D (800		baseline
	countries at 76 centres	equivalent at a dosage	Both daily	IU/day) were		
		of ≥ 5 mg/day for ≥ 3	Both groups	provided		
		months with lumbar	received a			
		spine, femoral neck, or	placebo			
		total hip BMD T score				
		of \leq -2 or of \leq -1 plus a				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		prevalent fracture				
Panico 201187	Randomised controlled	Postmenopausal	TPTD	Daily calcium	18 months	% change from
	trial, single centre, Italy	women, LS or FN BMD	20micrograms	1000mg and		baseline in
		T-score \leq -2.5, 2+	daily	vitamin D 800 IU		biochemical
		fractures, back pain,	N=42			markers of bone
		prior treatment for				turnover
		osteoporosis.	ALN 70mg/week			
		Excluded if condition	N=39			
		influencing bone				
		metabolism, increased				
		risk of osteosarcoma				
EuroGIOPs Glüer	Phase III, randomised,	Men aged ≥ 25 years	Open label	1 g calcium and	18 months	LS BMD %
2013 ⁸⁸	open-label, active	with a lumbar spine,	RIS 35 mg	800 to 1200 IU of		change from
	comparator-controlled	femoral neck, or total	weekly, 47	vitamin D per		baseline
	study - 16 centres in	hip T-score ≤1.5 SDs	TPTD 20 µg s.c.	day		measured by
	Germany, Greece, Italy,	below normal young	daily, 45			QCT
	and Spain	adult male taking				
		glucocorticoids (≥5.0				

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		mg prednisone, or its				
		equivalent daily) ≥ 3				
		months. Treatments and				
		conditions affecting				
		BMD were excluded.				
Anastasilakis	Randomised, open-label	Postmenopausal women	Open label	500 mg of	12 months	Bone turnover
2008 ⁸⁹	trial - Greece.	with osteoporosis and	RIS 35 mg	elemental		markers
		T-score < -2.5 (site	weekly, 22	calcium and 400		
		NR). Treatments and	TPTD 20 μg s.c.	IU vitamin D		
		conditions affecting	daily, 22	daily		
		BMD were excluded.				
Walker 2013 ⁹⁰	Randomised, double-blind,	Men aged 30-85 years	RIS 35 mg	500 mg of	18 months	LS BMD %
	placebo-controlled trial -	with low BMD	weekly, 10	calcium and 400		change from
	US	secondary to idiopathic	TPTD 20 μg s.c.	IU of vitamin D		baseline
		OP and lumbar spine,	daily, 9	daily.		
		femoral neck or total	Both groups			
		hip T-score <-2.0.	received a			
		Treatments and	placebo			

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		conditions affecting				
		BMD were excluded.				
VERO Kendler	Randomised, double-blind,	Postmenopausal women	RIS 35 mg	daily	24 months	New
2018 ¹⁰⁰	active-controlled, parallel-	> 45 years of age and	weekly, 683	supplements of		radiographic
	group trial - 123 centres 14	lumbar spine, femoral	TPTD 20 μg s.c.	500–1000 mg		vertebral
	countries in Europe, South	neck or total hip T-	daily, 683	calcium and 400-		fractures
	America, and US	score ≥ -1.50 with	Both groups	800 IU of vitamin		
		prevalent vertebral	received a	D3 or D2, or		
		fragility fracture.	placebo	2000 IU per day,		
		Treatments and	680 in each	if low screening		
		conditions affecting	group started	vitamin D blood		
		BMD were excluded.	treatment	test		
Hadji 2012 ⁹²	Randomised, parallel,	Postmenopausal women	RIS 35 mg	1,000 mg/day	18 months	Proportion of
	double-blind, double-	\geq 45 years with a history	weekly, 350	calcium and 800		patients
	dummy, active-controlled	of back pain likely to be	TPTD 20 μg s.c.	IU/day vitamin D		experiencing
	trial – 72 international	caused by osteoporotic	daily, 360			\geq 30% reduction
	study locations	vertebral fracture, with	Both groups			in worst back
	(NCT00343252)	lumbar spine, femoral	received a			pain at 6 months.

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
		neck, or total hip T-	placebo			
		score of ≤ -2 ; and a				
		minimum of one				
		moderate vertebral				
		fracture. Treatments and				
		conditions affecting				
		BMD were excluded				
MOVE	Multinational, multicentre,	Men and	RIS 35 mg	calcium (500 to	6 months ⁹⁹	LS BMD %
Aspenberg 2016 ⁹⁹	prospective, randomised,	postmenopausal women	weekly, 113	1000 mg/day)	18 months ⁹³	change from
Malouf-Sierra	active-controlled study -	with low bone mass (T-	TPTD 20 μg s.c.	and vitamin D		baseline
2017 ⁹³	17 countries in US,	score < -2.0 s at the total	daily, 111	(800 IU/day). For		
	Mexico, and Europe	hip, femoral neck, or	Both groups	patients with low		
		lumbar spine who had	received a	screening vitamin		
		sustained a recent	placebo	D blood test,		
		unilateral	Blind until 6	loading dose of		
		pertrochanteric fracture	months then	100,000 IU of		
			open label	vitamin D2 or		
				D3.		

Trial name	Trial design	Population eligibility	Intervention and	Concomitant	Follow-up duration	Primary outcome
/Author/date			comparators	treatment		
			Numbers			
			randomised to			
			each group			
Cosman 2011 ⁹⁴	Partial double-blinded,	Women aged 45 to 89	ZOL 5 mg iv	daily calcium	12 months	LS BMD %
	randomised,	years with BMD T-	annually, 137	(1000 to 1200		change from
	multicentre, multinational	scores of -2.5 or less at	TPTD 20 µg s.c.	mg) and vitamin		baseline
	- centres and countries NR	the femoral neck,	daily, 138	D (400 to 800		
		total hip, or lumbar	Only TPTD	IU).		
		spine or a BMD T-score	received a			
		of -2.0 or less at any site	placebo			
		plus one or more				
		documented vertebral or				
		non-vertebral fractures.				
		Treatments and				
		conditions affecting				
		BMD were excluded				

Table 10: Population Dasenne characteristics	Table 16:	Population baseline characteristics
--	-----------	-------------------------------------

						X	Prior treatment
	in yea	ars	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
	(SD)			FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
				I			
ebo	72.3 (5.2	2)	100	-2.17 (0.71)	NR	915 (23.4)	0
906							
60 mg s.c. every 6 months	72.3 (5.2	2)	100	-2.15 (0.72)	NR	929 (23.8)	0
902							
ebo for one year, then open label	65.0 (\$	SD	0	-1.9 (0.6)	NR	48 (39.7)	NR
for 1 year	9.1)						
21							
[64.9 (\$	SD	0	-1.9 (0.6)	NR	47 (38.8)	NR
ng of DEN every 6 months for 2	10.5)						
s (1 year blinded, then 1 year							
label) N=121							
ebo	69.0 (7.6	57)	95.0	-2.29 (0.71)	NR	471 (98.1)	NR
80							
	906 60 mg s.c. every 6 months 02 bo for one year, then open label for 1 year 21 g of DEN every 6 months for 2 (1 year blinded, then 1 year label) N=121 bo	bo $72.3 (5.2)$ 906 $72.3 (5.2)$ 60 mg s.c. every 6 months $72.3 (5.2)$ $60 2$ $72.3 (5.2)$ bo for one year, then open label $65.0 (3)$ for 1 year 9.1 21 $64.9 (3)$ g of DEN every 6 months for 2 10.5 (1 year blinded, then 1 year 10.5 bo $69.0 (7.6)$	bo $72.3 (5.2)$ 906 $72.3 (5.2)$ 60 mg s.c. every 6 months $72.3 (5.2)$ 902 $72.3 (5.2)$ 902 $72.3 (5.2)$ 903 $65.0 (SD)$ 904 9.1 905 $64.9 (SD)$ 906 10.5 907 10.5 908 $69.0 (7.67)$	bo72.3 (5.2)10090672.3 (5.2)10060 mg s.c. every 6 months72.3 (5.2)10090272.3 (5.2)10090291100bo for one year, then open label65.0 (SD0919.1)9.1)9.19164.9 (SD09110.5)10.5)10.5)95.069.0 (7.67)95.0	reported) Mean (SD)bo 90672.3 (5.2)100-2.17 (0.71)60 mg s.c. every 6 months 90272.3 (5.2)100-2.15 (0.72) $reported)$ $reported)72.3 (5.2)100-2.15 (0.72)reported)reported)72.3 (5.2)100-2.15 (0.72)reported)reported)65.0 (SD9.1)0-1.9 (0.6)reported)reported)64.9 (SD10.5)0-1.9 (0.6)reported)reported)64.9 (SD10.5)0-1.9 (0.6)reported)reported)10.5)10.5)-2.29 (0.71)$	reported) Mean (SD)reported) (g/cm²) Mean (SD)bo 906 $72.3 (5.2)$ 100 $-2.17 (0.71)$ NR60 mg s.c. every 6 months 02 $72.3 (5.2)$ 100 $-2.15 (0.72)$ NRbo for one year, then open label for 1 year 21 65.0 (SD) 0 $-1.9 (0.6)$ NRg of DEN every 6 months for 2 (1 year blinded, then 1 year label) N=121 64.9 (SD) 0 $-1.9 (0.6)$ NRbo $69.0 (7.67)$ 95.0 $-2.29 (0.71)$ NR	reported) Mean (SD)reported) (g/cm²) Mean (SD)reported) (g/cm²) Mean (SD)bo 906 $72.3 (5.2)$ 100 $-2.17 (0.71)$ NR $915 (23.4)$ 60 mg s.c. every 6 months 02 $72.3 (5.2)$ 100 $-2.15 (0.72)$ NR $929 (23.8)$ 02 $50 (SD 0$ $-1.9 (0.6)$ NR $48 (39.7)$ 01 9.1 100 $-1.9 (0.6)$ NR $48 (39.7)$ 01 105 10.5 $1.9 (0.6)$ NR $47 (38.8)$ 02 10.5 10.5 $1.9 (0.6)$ NR $47 (38.8)$ 105 10.5 10.5 $1.9 (0.6)$ NR $47 (38.8)$

	DEN	69.9 (7.36)	95.1	-2.38 (0.70)	NR	466 (98.7)	NR
	60 mg every 6 months						
	N=472						
Nakamura 2012 ⁴⁵	Placebo	64.6 (7.0)	100	LS	LS	7 (12.7)	NR
	N=55			-3.02 (0.34)	0.652		
					(0.040)		
	DEN 60mg every 6 months	65.1 (6.3)	100	LS	LS	7 (13.0)	NR
	N=54			-3.10 (0.44)	0.642		
					(0.051)		
Koh 2016	Placebo 6months	66.0 (4.77)	100	-2.4 (0.61)	NR	15 (23)	NR
NCT01457950 ⁴⁶	then open label DEN 6 months						
	N=66						
	DEN 60mg	67.0 (4.86)	100	-2.5 (0.56)	NR	21 (30)	NR
	6 months then open label DEN						
	6months						
	N=69						
RLX versus Placebo				1			
Adami 200847	Placebo	67.1 (6.5)	100	NR	0.62 (0.10)	NR	0
	172						
	RLX 60 mg daily	66.7 (6.4)	100	NR	0.64 (0.10)	NR	0
	157						
Morii <i>et al</i> 2003 ⁴⁸	Placebo	64.3 (6.5)	100	NR	0.64 (0.05)	26 (26.8)	NR
	N=97						

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	RLX 60mg/d	65.2 (6.2)	100	NR	0.66 (0.5)	22 (24.4)	NR
	N=90						
Liu 2004 ⁴⁹	Placebo	65.1 (5.4)	100	NR	NR	Thoracic 10	0
	N=102					(9.8)	
						Lumbar 6 (5.9)	
	RLX	65.5 (6.5)	100	NR	NR	Thoracic 11	0
	N=102					(10.8)	
						Lumbar 9 (8.8)	
Gorai <i>et al</i> 2012 ⁵⁰	Alfacalcidol	65.2 (6.5)	100	NR	LS 0.663	NR	NR
	N=46				(0.082)		
	RLX	64.4 (6.6)	100	NR	LS 0.678	NR	NR
	N=42				(0.083)		
	Alfacalcidol plus RLX	65.1 (7.6)	100	NR	LS 0.670	NR	NR
	N=45				(0.067)		
Silverman 2008	Placebo	66.5 (6.8)	100	-1.8 (0.9)	NR	981 (56.4)	NR
NCT00205777 ⁵¹	N=1885						

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	RLX	66.4 (6.7)	100	-1.7 (0.9)	NR	954 (56.3)	NR
	N=1849						
MORE ^{52,101}	Placebo	66.6 (7.1)	100	NR	Reported	(36.4)	NR
	N=2576				by		
					subgroup		
					Mean		
					ranged		
					from 0.565		
					to 0.719		
	RLX	66.5 (7.0)	100	NR	Reported	(38.1)	NR
	N=2557				by		
					subgroup		
					Mean		
					ranged		
					from 0.569		
					to 0.720		
Lufkin 1998 ⁵³	Control	68.2 (0.7)	100	NR	LS 0.54	NR	NR

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	N=48				(0.01)		
	RLX	69.9 (0.5)	100	NR	LS 0.52	NR	NR
	N=48				(0.01)		
Mok 2011	Placebo	55.2 (7.6)	100	NR	0.683	2 (4)	5
NCT00371956 ⁵⁴	N=57				(0.126)		
	RLX	55.4 (7.8)	100	NR	0.647	4 (7)	11
	N=57				(0.117)		
ROMO versus Placebo	1						
FRAME	Placebo	70.8 (6.9)	100	-2.74 (0.29)	NR	496 (13.8%)	0
Cosman 2016 ⁵⁵	N=3591						
	Then DEN 60 mg s.c. every 6 months						
	for 12 months open-label						
	ROMO 210 mg/ month	70.9 (7.0)	100	-2.76 (0.28)	NR	506 (14.1%)	0
	N=3589						
	Then DEN 60 mg s.c. every 6 months						
	for 12 months open-label						

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
Ishibashi (2017)	Placebo	67.8 (7.2)	100	-2.31 (0.47)	NR	0	NR
NCT01992159 ⁵⁶	N=63						
	RLX	68.3 (5.9)	100	-2.32 (0.59)	NR	0	NR
	N=63						
BRIDGE	Placebo	71.5 (6.9)	0	-2.3 (0.52)	NR	46 (56.1)	Bisphosphonates
NCT0218617157	N=82						5 (6.1)
							PTH 0
							DEN 3 (3.7)
	ROMO	72.4 (7.4)	0	-2.34 (0.52)	NR	86 (52.8)	Bisphosphonates
	N=163						1 (0.6)
							PTH 1 (0.6)
							DEN 3 (1.8)
TPTD versus Placeb	0	I	1	1	1	1	I
Orwoll 2003 ⁵⁸	Placebo	59 (13)	0	-2.7 (0.8)	LS BMD	NR	8.16%
	147				0.85 (0.14)		
		50 (12)					7.050/
	TPTD 20 μg s.c. daily	59 (13)	0	-2.6 (0.8)	0.89 (0.15)	NR	7.95%

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	151						
Miyauchi et al. 2010 ⁵⁹	Placebo 12months	70.4 (5.4)	92.5	NR	LS 0.638	29 (43.3)	34.3%
	then option of open label TPTD for				(0.079)		
	12months						
	N=67						
	TPTD 12months then open label	69.2 (6.3)	93.4	NR	LS 0.639	54 (39.7)	36.8
	TPTD for 12months				(0.069)		
	N=136						
Miyauchi et al. 2008 ⁶⁰	Placebo	69.9 (3.6)	100	NR	0.5068	17 (44.7)	21.1
	N=38				(0.0802)		
	TPTD	71.5 (5.1)	100	NR	0.5168	16 (41.0)	25.6
	20microg daily				(0.0927)		
	N=39				(n=38)		
ACTIVE	Placebo	68.7 (6.5)	100	-2.2 (0.7)	0.732	514 (62.6)	NR
NCT0134300496	N=821				(0.099)		
	TPTD	68.8 (6.6)	100	-2.1 (0.7)	0.737	510 (62.3)	NR
	20microg daily				(0.096)		

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	N=818						
Leder 2015 ⁶²	Placebo	65.0 (7.1)	100	-2.26 (0.72)	0.65 (0.11)	NR	0
	45						
	TPTD 20 µg daily	64.5 (7.5)	100	-2.09 (0.75)	0.66 (0.11)	NR	0
	45						
FPT	Placebo	69 (7)	100	NR	LS 0.82	448 (100)	15
NCT00670501 ⁶³	n=448				(0.17)		
	TPTD	69 (7)	100	NR	LS 0.82	444 (100)	16
	20microg daily				(0.17)		
	N=444						
Sethi 2008	Control	63.0 (6.3)	100	-2.34 (0.73)	0.62 (0.09)	NR	NR
NCT00500409 ⁶⁴	N=41						
	TPTD	61.0 (6.3)	100	-2.49 (0.55)	0.62 (0.08)	NR	NR
	20microg daily						
	N=41						
Head-to-head non-ba	isphosphonates	I	1	1	I	1	<u> </u>
DATA ⁶⁵	TPTD	65.5 (7.9)	100	-1.9 (0.5)	0.643	16 (52)	Bisphosphonates

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	20microg daily				(0.061)		42
	N=36						
	DEN	66.3 (8.3)	100	-1.9 (0.8)	0.641	12 (36)	Bisphosphonates
	60mg every 6months				(0.086)		36
	N=34						
EUROFORS ⁶⁷	Control 12months	69.1 (8.6)	100	LS -3.1	LS 0.75	102 (100)	Antiresorptive
	N=102			(0.89)	(0.11)		62.7
	following 12months TPTD						
	RLX 12months	69.4 (7.0)	100	LS -3.2	LS 0.75	97 (100)	Antiresorptive
	N=97			(0.85)	(0.12)		64.9
	following 12months TPTD						
	TPTD 12months	69.2 (7.2)	100	LS -3.2	LS 0.74	304 (100)	Antiresorptive
	N=304			(0.87)	(0.11)		72.4
	following 12months TPTD						
STRUCTURE ⁶⁸	TPTD	71.2 (7.7)	100	-2.43 (0.66)	NR	(99.5)	Bisphosphonates
	N=218						100
	ROMO	71.8 (7.4)	100	-2.49 (0.67)	NR	(100)	Bisphosphonates

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	N=218						100
McClung 2014 ⁶⁹	Pooled placebo (mix of	67.0 (6.5)	100	-1.76 (0.56)	NR	NR	0
	administrations), 52						
	Open-label	67.1 (5.8)	100	-1.91 (0.61)	NR	NR	0
	ALN 70 mg weekly, 51						
	TPTD 20 μg daily, 54	66.8 (5.7)	100	-1.79 (0.67)	NR	NR	0
	ROMO 210 mg s.c. monthly, 55	66.3 (6.5)	100	-1.87 (0.58)	NR	NR	0
DEN versus Bisphospho	pnates						
DECIDE ⁷⁰	DEN plus placebo	64.1 (8.6)	100	LS -2.57	NR	(40)	Any 23
	N=594			(0.75)			Bisphosphonates
							13
	ALN plus placebo	64.6 (8.3)	100	LS -2.57	NR	(41)	Any 24
	N=595			(0.75)			Bisphosphonates
							11
STAND Kendler	ALN 70 mg/week plus PBO 251	68.2 (7.7)	100	LS T-score	NR	NR	0
2010 ⁷¹				-2.62 (0.79)			

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	DEN 60 mg s.c., every 6 months plus	66.9 (7.8)	100	-2.64 (0.75)	NR	NR	0
	РВО						
	253						
DAPS Kendler 2011 ^{72,}	ALN 70 mg/week,	65.3 (7.7)	100	-2.03 (0.62)	NR	NR	0
111	N=124						
	DEN 60 mg s.c., every 6 months	65.1 (7.6)	100	-2.01 (0.55)	NR	NR	0
	N=126						
AMG 162 Bone Loss	Placebo s.c. every 3 months,	63.7 (9.1)	100	-1.9 (0.6)	NR	0	0
study ⁷³	46						
	ALN 70 mg/week	62.8 (8.2)	100	-1.9 (0.7)	NR	0	0
	47 (open-label)						
	DEN 60 mg s.c., every 6 months,	63.1 (8.1)	100	-1.9 (0.7)	NR	0	0
	47						
Recknor 2013 ⁷⁴	IBN 150 mg every month,	66.2 (7.8)	100	-2.1 (0.7)	NR	NR	Prior
	416						bisphosphonate
							374 (89.9)

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	DEN 60 mg s.c., every 6 months, 417	67.2 (8.1)	100	-2.1 (0.7)	NR	NR	Prior
							bisphosphonate
							377 (90.4)
Saag 2018 ⁷⁵	RIS 5 mg daily plus PBO	Continuing	Continuing	LS T-score	NR	Continuing	0
	397	GCC	GCC, 73%	Continuing		GCC	
		RIS, 61·3	Initiating	GCC		80/252 (32)	
		(11.1)	GCC, 64%	-2.0 (1.4)		Initiating GCC	
		Initiating		Initiating		26/145 (18)	
		GCC		GCC			
		64.4		-1.1 (1.6)			
		(10.0)					
	DEN 60 mg s.c., every 6 months plus	Continuing	Continuing	LS T-score	NR	Continuing	0
	РВО	GCC	GCC, 73%	Continuing		GCC	
	398	61.5	Initiating	GCC		67/253 (26)	
		(11.6)	GCC, 64%	DEN-1.9		Initiating GCC	
		Initiating		(1.4)		21/145 (14)	
		GCC		Initiating			

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
		67.5		GCC			
		(10.1)		-0.9 (1.9)			
Miller 2016 ⁷⁶	ZOL 5 mg iv annually plus PBO	69.5 (7.7)	100	LS T-score	NR	159 (49.4)	Prior oral
	322			-2.64 (0.86)			bisphosphonates,
							mean years (SD)
							6.4 (3.7)
	DEN 60 mg s.c., every 6 months plus	68.5 (7.1)	100	-2.74 (0.83)	NR	169 (52.6)	Prior oral
	РВО						bisphosphonates,
	321						mean years (SD)
							6.2 (3.8)
RLX versus Bisphosp	honates						1
EFFECT	ALN 10 mg plus PBO	61.5 (8.2)	100	LS T-score	NR	NR	0
Sambrook 200477	246			-2.89 (0.78)			
	RLX 60 mg daily plus PBO	61.8 (7.7)	100	LS T-score	NR	NR	0
	241			-2.86 (0.76)			
EFFECT	ALN 70 mg weekly plus PBO	63.8 (9.9)	100	LS T-score	NR	NR	0
Luckey 2004 ⁷⁸	223			-2.43 (0.78)			

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	RLX 60 mg daily plus PBO 233	64.7 (9.8)	100	LS T-score	NR	NR	0
				-2.5 (0.69)			
Johnell 2002 ⁷⁹	Placebo (ALN and RLX), 82	63.8 (5.3)	100	NR	0.62 (0.09)	NR	0
	ALN 10 mg daily and RLX PBO, 83	63.7 (6.0)	100	NR	0.62 (0.08)	NR	0
	RLX 60 mg daily and ALN PBO, 82	63.4 (6.3)	100	NR	0.62 (0.07)	NR	0
Muscoso 2004 ⁸⁰	ALN 10mg daily	71 (8)	100	NR	NR	NR	NR
	1000						
	RIS 5 mg daily	66 (9)	100	NR	NR	NR	NR
	100						
	RLX 60 mg daily	64 (3)	100	NR	NR	NR	NR
	100						
EVA Recker 2007 ⁸¹	ALN 10mg daily	65.7 (7.8)	100	-2.39 (0.56)	0.61 (0.09)	0	0
	716						
	RLX 60 mg daily	65.5 (7.7)	100	-2.39 (0.54)	0.61 (0.09)	0	0
	717						
Sanad 2011 ⁸²	ALN 10mg daily	61.7 (4.3)	100	NR	0.63 (0.03)	NR	0

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	31						
	RLX 60 mg daily	62.5 (3.9)	100	NR	0.63	NR	0
	35				(0.05);		
Michalska 2006 ⁸³	Blind	64.5 (6.3)	100	NR	0.616	Non-vertebral	100 (3+ years
	Placebo				(0.075)	18/33 (54.5)	ALN)
	33						
	Open-label	65.4 (6.8)	100	NR	0.609	9/33 (27.3)	100 (3+ years
	ALN 10 mg daily				(0.063)		ALN)
	33						
	RLX 60 mg daily	65.6 (7.1)	100	NR	0.633	16/33 (48.5)	100 (3+ years
	33				(0.087)		ALN)
ROMO versus Bisphos	sphonates						1
ARCH Saag 2017 ⁸⁴	ALN 70 mg weekly	74.2 (7.5)	100	-2.90 (0.50)	NR	1964/2047	0
	N=2047					(95.9)	
	12 months then ALN 70 mg weekly						
	open-label for 12 months						
	ROMO 210 mg s.c. monthly	74.4 (7.5)	100	-2.89 (0.49)	NR	1969/2046	0

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	N=2046					(96.2)	
	12 months then ALN 70 mg weekly						
	open-label for 12 months						
TPTD versus Bisphosph	nonates	I		I	I	I	
FACT McClung	ALN 10 mg daily plus PBO	66.6 (8.5)	100	-2.3 (0.8)	NR	NR	0
2005 ⁸⁵	N= 101						
	TPTD 20 μg s.c. daily plus PBO	65.3 (8.4)	100	-2.3 (0.6)	NR	NR	0
	N= 102						
Saag 2009 ^{86 102}	ALN 10 mg daily plus PBO	57.3	100	-2.1 (0.10)	0.721	X-ray	0
	n=214	(14.0)			(0.013)	confirmed	
						53/214 (25)	
	TPTD 20 μg s.c. daily plus PBO	56.1	100	-2.2 (0.10)	0.705	X-ray	0
	N=214	(13.4)			(0.013)	confirmed	
						63/214 (30)	
Panico 2011 ⁸⁷	TPTD	65 (9.0)	100	-3.07 (0.60)	NR	42 (100)	100
	N=42						
	ALN	60 (14.4)	100	-3.02 (0.61)	NR	38 (97)	97

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
	N=39						
EuroGIOPs Glüer	Open label	55.1	0	-1.82 (0.91)	NR	17/47 (36.2)	0
201388	RIS 35 mg weekly,	(15.5)					
	47						
	TPTD 20 μg s.c. daily	57.5	0	-1.95 (0.78)	NR	19/45 (42.2)	0
	45	(12.8)					
Anastasilakis 2008 ⁸⁹	Open label	64.7 (7.0)	100	NR	LS BMD	NR	0
	RIS 35 mg weekly				0.757		
	22				(0.08)		
	TPTD 20 μg s.c. daily	65.4 (7.5)	100	NR	LS BMD	NR	0
	22				0.764		
					(0.11)		
Walker 2013 ⁹⁰	RIS 35 mg weekly plus PBO	54.0 (6.3)	100	-2.1 (0.63)	0.669	0	bisphosphonates
	N=10				(0.09)		20
	TPTD 20 μg s.c. daily plus PBO	51.6	100	-2.0 (0.9)	0.659	33	bisphosphonates
	N=9	(11.7)			(0.12)		33
VERO Kendler	RIS 35 mg weekly plus PBO	71.6	100	-2.24 (0.74)	0.67 (0.11)	(100)	71

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
2018 ¹⁰⁰	N=680	(8.58)					
	TPTD 20 μg s.c. daily plus PBO	72.6 (8.77)	100	-2.27 (0.76)	0.66 (0.11)	(100)	73
	N=680						
Hadji 2012 ⁹²	RIS 35 mg weekly plus PBO	71.6 (8.1)	100	-2.44 (0.67)	NR	90%	73.7
	N=350					confirmed by	
						X-ray	
						(All back pain	
						likely to be	
						due to	
						vertebral	
						fracture)	
	TPTD 20 μg s.c. daily plus PBO	70.5 (8.8)	100	-2.32 (0.75)	NR	89.7%	74.2
	N= 360					confirmed by	
						X-ray	
						(All back pain	
						likely to be	
						due to	

Trial name	Treatment arms	Mean age	Sex	T-score	BMD at FN	Fractures (at	Prior treatment
/Author/date	(n=)	in years	% female	FN (or LS if	(or LS if	baseline)	for osteoporosis
		(SD)		FN not	FN not	n (%)	%
				reported)	reported)		
				Mean (SD)	(g/cm^2)		
					Mean (SD)		
						vertebral	
						fracture)	
MOVE	RIS 35 mg weekly plus PBO	76.4 (7.5)	77.6	-2.63 (0.657)	0.602	(100)	12.9
Aspenberg 2016 ⁹⁹	N= 85				(0.116)		
Malouf-Sierra 201793							
	TPTD 20 µg s.c. daily plus PBO	77.2 (8.0)	76.7	-2.63 (0.519)	0.603	(100)	14.0
	N= 86				(0.098)		
Cosman 2011 ⁹⁴	ZOL 5 mg iv annually	66.1 (9.0)	100	LS T-score	NR	21 (15.3)	0
	n=137			-2.88 (0.883)			
	TPTD 20 µg s.c. daily plus PBO	63.8 (9.1)	100	LS T-score	NR	22 (15.9)	0
	N= 138			-2.87			
				(0.807)			

Appendix 5: Clinical effectiveness results

Table 17: Vertebral fracture data reported by the included studies

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
DEN vs. PBO						
FREEDOM	Efficacy	Morphometric,	PBO, 3906	PBO, 3691	36	PBO, 264/3691 (7.15%)
Cummings 2009 ⁴²		new.	DEN, 3902	DEN, 3702		DEN, 86/3702 (2.32%)
PM women with OP		Definition:				
		increase of at least				(RD to 4.8 [95%CI, to 3.9 to 5.8];
		Genant ³⁸ grade 1,				RR, 0.32 [95%CI, to 0.26 to 0.41];
		20% or more				p<0.001)
		reduction in				
		anterior, middle,				
		and/or posterior				
		height and a				
		reduction of				
		area 10-20%				

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
FREEDOM	Efficacy	Clinical	PBO, 3906	PBO, 3906	36	PBO, 92/3906 (2.36%)
Cummings 2009 ⁴²			DEN, 3902	DEN, 3902		DEN, 29/3902 (0.74%)
PM women with OP						
						(RD to 1.7 [95%CI, to 1.1 to 2.3];
						RR, 0.31 [95%CI, to 0.20 to 0.47];
						p<0.001)
FREEDOM	Efficacy	Morphometric	PBO, 3906	PBO, 3691	36	PBO, 59/3691 (1.60%)
Cummings 2009 ⁴²		Multiple (>2)	DEN, 3902	DEN, 3702		DEN, 23/3702 (0.62%)
PM women with OP						
						(RD to 1.0 [95%CI, to 0.5 to 1.5];
						RR, 0.39 [95%CI, to 0.24 to 0.63];
						p <0.001)
FREEDOM	Efficacy	Morphometric	PBO, 3906	PBO, 3691	0-12 months	PBO, 82/3691 (2.22%)
Bone 2017 ¹⁰³		new	DEN, 3902	DEN, 3702		DEN, 32/3702 (0.86%)
PM women with OP						Values Estimated RR, from graph
						Estimated RR, 0.39 [95%CI, 0.26
						to 0.58], p<0.00001

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
FREEDOM	Efficacy	Morphometric	As above	PBO, 3691	12-24 months	PBO, 116/3691 (3.14%)
Bone 2017 ¹⁰³		new		DEN, 3702		DEN, 26/3702 (0.70%)
PM women with OP						Values Estimated RR, from graph
						Estimated RR, 0.22 [95%CI, 0.15
						to 0.34], p<0.00001
FREEDOM	Efficacy	Morphometric	As above	PBO, 3691	24-36 months	PBO, 114/3691 (3.09%)
Bone 2017 ¹⁰³		new		DEN, 3702		DEN, 40/3702 (1.08%)
PM women with OP						Values Estimated RR, from graph
						Estimated RR, 0.35 [95%CI, 0.24
						to 0.50], p<0.00001
FREEDOM Bone 2017	Efficacy	Morphometric	Entered OLE	PBO/DEN, 1991	84 months	PBO/DEN, 145/ 1991 (7.30%)
OLE ¹⁰⁴		new	PBO to DEN,	DEN/DEN, 2116	from OLE	DEN/DEN, 149/2116 (7.04%)
PM women with OP)			2207			Estimated RR, 0.97 [95%CI, 0.78
			DEN to DEN,			to 1.21], p=0.76
			2343			

Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
or safety	vertebral	randomised	analysed	months	(%) (reported between group
outcome	fracture				difference)
	assessment				
	Clinical /				
	morphometric				
Safety	Clinical	PBO, 121	Safety Ns	12	PBO, 1/120 (0.83%)
		DEN, 121	PBO, 120		DEN, 0/120 (0%)
			DEN, 120		Estimated RR, 0.33 [95%CI, 0.01
					to 8.10], p=0.50
Efficacy	Morphometric,	PBO, 511	PBO, 480	24	PBO, 41/480 (8.60%)
	new.	DEN, 500	DEN, 472		DEN, 10/472 (2.20%)
	Definition:				(HR to 0.260 [95%CI, to 0.129 to
	increase of at least				0.521]; p<0.0001)
	Genant ³⁸ grade 1,				
	20% or more				
	reduction in				
	anterior,				
	posterior, or				
	central vertebra				
	height				
	or safety outcome Safety	or safety vertebral outcome fracture assessment Clinical / Morphometric Safety Clinical Efficacy Morphometric, new. Definition: increase of at least Genant ³⁸ grade 1, 20% or more reduction in anterior, posterior, or central vertebra	or safetyvertebral fracture assessment Clinical / morphometricrandomisedSafetyClinical / morphometric/SafetyClinical/SafetyClinicalPBO, 121 DEN, 121EfficacyMorphometric, new.PBO, 511 DEN, 500Definition: increase of at least Genant ³⁸ grade 1, 20% or more reduction in anterior, posterior, or central vertebraHereine (Composition) Definition: increase of at least increase of at least 	or safety outcomevertebral fracture assessment Clinical / morphometricrandomisedanalysedSafetyClinical / morphometric///SafetyClinicalPBO, 121 DEN, 121Safety Ns PBO, 120 DEN, 120EfficacyMorphometric, new.PBO, 511 DEN, 500PBO, 480 DEN, 472Definition: increase of at least Genant ³⁸ grade 1, 20% or more reduction in anterior, posterior, or central vertebraPBO, 511 LeasePBO, 480 Lease Lease	or safety outcomevertebral fracture assessment Clinical / morphometricrandomisedanalysedmonthsSafetyClinical / morphometric////SafetyClinical////SafetyClinicalPBO, 121 DEN, 121Safety Ns PBO, 120 DEN, 12012EfficacyMorphometric, new.PBO, 511 DEN, 500PBO, 480 DEN, 47224EfficacyMorphometric, new.PBO, 500DEN, 47224Definition: increase of at least Genant ³⁸ grade 1, 20% or more reduction in anterior, posterior, or central vertebraPBO, 511 ClinicalPBO, 480 DEN, 47224

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
DIRECT Nakamura	Efficacy	Morphometric	As above	PBO, 480	24	PBO, 49/480 (10.30%)
2014 ⁴⁴		new or worsening		DEN, 472		DEN, 17/472 (3.60%)
Women and men with OP						(HR 0.343 [95%CI, to 0.194 to
						0.606], p=0.0001)
DIRECT Sugimoto	Efficacy	Morphometric	PBO to DEN, 406	PBO/DEN, 406	36 including	PBO/DEN, 42/406 (10.30%)
2015 ¹⁰⁵		new	DEN to DEN, 404	DEN/DEN, 404	12 OLE	DEN/DEN, 10/404 (2.50%)
Women and men with OP			12 months open-			Estimated RR, 0.24 [95%CI, 0.12
			label			to 0.47], p<0.0001
DIRECT Sugimoto	Efficacy	Morphometric	As above	PBO/DEN, 406	36 including	PBO/DEN, 48/406 (11.80%)
2015 ¹⁰⁵		new or worsening		DEN/DEN, 404	12 OLE	DEN/DEN, 15/404 (3.71%)
Women and men with OP						Estimated RR, 0.31 [95%CI, 0.18
						to 0.55], p<0.0001
DIRECT Sugimoto	Efficacy	Morphometric	As above	PBO/DEN, 406	12 OLE	PBO/DEN, 8/406 (2.00%)
2015 ¹⁰⁵		new		DEN/DEN, 404		DEN/DEN, 1/404 (0.25%)
Women and men with OP						Estimated RR, 0.13 [95%CI, 0.02
						to 1.00], p=0.05

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
DIRECT Sugimoto	Efficacy	Morphometric	As above	PBO/DEN, 406	12 OLE	PBO/DEN, 2/406 (0.50%)
2015 ¹⁰⁵		new or worsening		DEN/DEN, 404		DEN/DEN, 1/404 (0.25%)
Women and men with OP						Estimated RR, 0.50 [95%CI, 0.05
						to 5.52], p=0.57
Nakamura 2012	Efficacy	Morphometric	PBO, 55	PBO, 55	12	PBO, 0/55 (0%)
PM women with OP		new or worsening	DEN, 54	DEN, 54		DEN, 0/54 (0%)
						NE
RLX. vs PBO						
Morii 2003 ⁴⁸	Efficacy	Morphometric,	PBO, 97	PBO, 87	12	PBO, 2/87 (2.30%)
PM women with OP		new.	RLX, 90	RLX, 79		RLX, 0/79 (0%)
		Definition:				Estimated RR, 0.22 [95%CI, 0.01
		Genant ³⁸ method				to 4.51], p=0.33
Liu 2004 ⁴⁹	Efficacy	Clinical	PBO, 102	PBO,102	12	PBO, 5/102 (4.90%)
PM women with OP			RLX, 102	RLX, 102		RLX, 0/102 (0%)
						(RR, 0.09 [95%CI, to 0.005 to
						1.580]; p>0.05)

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
Silverman 2008 ⁵¹	Efficacy	Morphometric,	PBO, 1855	PBO,1741	36	PBO, 71/1741 (4.10%)
PM women with OP		new	RLX, 1849	RLX, 1696		RLX, 40/1696 (2.36%)
		Definition:				(HR to 0.58 [95%CI, 95% CI to
		Genant ³⁸ method				0.38 to 0.89]; p<0.05)
Silverman 2008 ^{51, 329}	Efficacy	Clinical	As above	PBO, 1741	36	PBO, 16/1741 (0.92%)
PM women with OP				RLX, 1696		RLX, 15/1696 (0.88%)
						(p=0.89)
MORE Ettinger 1999 ⁵²	Efficacy	Morphometric	PBO, NR	PBO, 1522	36	PBO, 68/1522 (4.50%)
Women with OP		new	RLX, NR	RLX, 1490		RLX, 35/1490 (2.30%)
		Definition:				(RR, 0.5 [95%CI, to 0.4 to 0.9])
		Genant ³⁸ method				Estimated p=0.002
MORE Ettinger 1999 ⁵²	Efficacy	Morphometric	PBO, NR	PBO, 770	36	PBO, 163/770 (21.20%)
Women with low BMD +		new	RLX, NR	RLX, 769		RLX, 113/769 (14.70%)
fracture						(RR, 0.7 [95%CI, to 0.6 to 0.9])
						Estimated p=0.001

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
MORE Maricic 2002 ¹⁰¹	Efficacy	Clinical	PBO, 2576	PBO, 2292	0-12 months	PBO, 19/2292 (0.80%)
PM women with OP			RLX, 2557	RLX, 2259		RLX, 6/2259 (0.20%)
						(RR, 0.32 [95%CI, 0.13 to 0.79],
						p<0.001)
MORE Maricic 2002 ¹⁰¹	Efficacy	Clinical	As above	PBO, 2292	12-24 months	PBO, 33/2292 (1.40%)
PM women with OP				RLX, 2259		RLX, 22/2259 (1.00%)
						Estimated RR, 0.68 [95%CI, 0.40
						to 1.16], p=0.15
MORE Maricic 2002 ¹⁰¹	Efficacy	Clinical	As above	PBO, 2292	24-36 months	PBO, 29/2292 (1.30%)
PM women with OP				RLX, 2259		RLX, 19/2259 (0.80%)
						Estimated RR, 0.66 [95%CI, 0.37
						to 1.18], p=0.16
MORE Maricic 2002 ¹⁰¹	Efficacy	Clinical	As above	PBO, 2292	36	PBO, 81/2292 (3.50%)
PM women with OP				RLX, 2259		RLX, 47/2259 (2.10%)
						Estimated RR, 0.59 [95%CI, 0.41
						to 0.84], p=0.003

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
MORE Maricic 2002 ¹⁰¹	Efficacy	Clinical	As above	PBO, 2292	24	PBO, 35/2292 (1.54%)
PM women with OP				RLX, 2259		RLX, 22/2259 (0.97%)
						Estimated RR, from graph
						Estimated RR, 0.64 [95%CI, 0.38
						to 1.08], p=0.10
Lufkin 1998 ⁵³	Efficacy	Morphometric	PBO, 48	PBO, 45	12	PBO, 18/45 (40.00%)
PM women with OP		new	RLX, 48	RLX, 43		RLX, 21/43 (48.84%)
		Definition: 15%				Estimated RR, 1.22 [95%CI, 0.76
		decrease in the				to 1.96], p=0.41
		same				
		vertebra				

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
Mok 2011 ⁵⁴	Efficacy	Morphometric	PBO, 57	PBO, 56	12	PBO, 3/56 (5.36%)
PM women on long-term		new	RLX, 57	RLX, 51		RLX, 0/51 (0%)
GC		Definition: loss of				(p=0.24)
		at least 25% of				
		vertebral height in				
		previously normal				
		vertebrae				
ROMO. vs PBO						
FRAME	Efficacy	Morphometric	PBO, 3591	PBO, 3322	12	PBO, 59/3322 (1.78%)
Cosman 2016 ⁵⁵		new	ROMO, 3589	ROMO, 3321		ROMO, 16/3321 (0.48%)
PM women with OP		Definition:				(RR, 0.27 [95%CI, to 0.16 to 0.47];
		Genant ³⁸ method				Nominal p<0.001; Adjusted
						p<0.001)
FRAME	Efficacy	Morphometric	As above	PBO, 3322	12	PBO, 9/3322 (0.27%)
Cosman 2016 ⁵⁵		Multiple or		ROMO, 3321		ROMO, 1/3321 (0.03%)
PM women with OP		worsening				(RR, 0.11 [95%CI, to 0.01 to 0.87];
						Nominal p=0.011)

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
FRAME	Efficacy	Morphometric	PBO to DEN,	PBO, 3327	24	PBO/DEN, 84/3327 (2.52%)
Cosman 2016 ⁵⁵		new	3591	ROMO, 3325		ROMO/DEN, 21/3325 (0.63%)
PM women with OP			ROMO to DEN,			(RR, 0.25 [95%CI, to 0.16 to 0.40];
			3589			Nominal p<0.001; Adjusted
			12 months open-			p<0.001)
			label			
FRAME	Efficacy	Morphometric	As above	PBO, 3327	24	PBO/DEN, 17/3327 (0.51%)
Cosman 2016 ⁵⁵		Multiple or		ROMO, 3325		ROMO/DEN, 1/3325 (0.03%)
PM women with OP		worsening				(RR, 0.06 [95%CI, ,0.01 to 0.44;
						Nominal p<0.001)
FRAME	Efficacy	Morphometric	PBO to DEN,	PBO, 3327	36	PBO/DEN, 94/3327 (2.8%)
Cosman 2016 ³⁷		new	3591	ROMO, 3325		ROMO/DEN, 32/3327 (1.0%)
PM women with OP			ROMO to DEN,			(RR reduction 66% [95%CI, 95%
			3589			CI: 49 to 77]; RR=0.34; Nominal
			12 months open-			p<0.001)
			label			

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
FRAME	Efficacy	Morphometric	As above	PBO, 3327	36	PBO/DEN, 94/3327 (2.8%)
Cosman 2016 ³⁷		Multiple or		ROMO, 3325		ROMO/DEN, 33/3327 (1.0%)
PM women with OP		worsening				(RR reduction 65% [95%CI, to 48
						to 76] RR=0.35; Nominal p<0.001)
TPTD. vs PBO						
ACTIVE Miller 2016 ⁹⁶	Efficacy	Morphometric	PBO, 821	PBO, 821	18	PBO, 30/711 (4.20%)
PM women with OP		new	TPTD, 818	TPTD, 818		TPTD, 6/717 (0.80%)
		Definition:				(RD to -3.38 [95%CI, to -5.18 to
		Genant ³⁸ method				-1.80]; RR, 0.20 [95%CI, to 0.08
						to 0.47]; p<0.001)
ACTIVE Miller 2016 ⁹⁶	Efficacy	Clinical	As above	PBO, 821	18	PBO, 9/821 (1.10%)
PM women with OP				TPTD, 818		TPTD, 3/818 (0.40%)
						Estimated RR, 0.59 [95%CI, 0.29
						to 1.17], p=0.10

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
Miyauchi 2010 ⁵⁹	Efficacy	Morphometric	PBO, 70	PBO, 67	12	PBO, 4/67 (5.97%)
Women and men with OP		any	TPTD, 137	TPTD, 136		TPTD, 6/136 (4.41%)
						Estimated RR, 0.33 [95%CI, 0.09
						to 1.23], p=0.63
Miyauchi 2010 ⁵⁹	Efficacy	Morphometric	As above	PBO, 67	12	PBO, 4/67 (5.97%)
Women and men with OP		new		TPTD, 136		TPTD, 5/136 (3.68%)
		Definition:				Estimated RR, 0.74 [95%CI, 0.22
		deterioration of at				to 2.53], p=0.46
		least one grade by				
		Genant ³⁸ method				
Miyauchi 2010 ⁵⁹	Efficacy	Morphometric	As above	PBO, 67	12	PBO, 0/67 (0%)
Women and men with OP		worsening		TPTD, 136		TPTD, 2/136 (1.47%)
		Definition:				Estimated RR, 0.62 [95%CI, 0.17
		deterioration of at				to 2.22], p=0.56
		least one grade by				
		Genant ³⁸ method				

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
Neer 2001 ⁶³	Efficacy	Morphometric ≥ 1	PBO, 544	PBO, 448	24	PBO, 64/448 (14.00%)
PM women with OP		fracture	TPTD, 541	TPTD, 444		TPTD,22/444 (5.00%)
		Definition:				(RR, 0.35 [95%CI, to 0.22 to 0.55];
		Genant ³⁸ method				Reduction in absolute risk to 9%;
						P≤0.001)
Neer 2001 ⁶³	Efficacy	Morphometric > 1	As above	As above	24	PBO, 22/448 (5.00%)
PM women with OP		fracture				TPTD,5/444 (1.00%)
						(RR, 0.23 [95%CI, to 0.09 to 0.60];
						Reduction in absolute risk to 4%;
						P≤0.001)
Neer 2001 ⁶³	Efficacy	Morphometric ≥ 1	As above	As above	24	PBO, 42/448 (9.00%) to 4/444
PM women with OP		moderate or				(0.90%)
		severe				(RR, 0.10 [95%CI, to 0.04 to 0.27];
						Reduction in absolute risk to 9%;
						P≤0.001)

Trial name /Author date/Population	Efficacy or safety outcome	Methodofvertebral/fracture/assessment/Clinical/morphometric/	Treatments, n randomised	Treatments, n analysed	Follow-up months	Vertebral Fracture outcomes n/N (%) (reported between group difference)
Head-to-head non-						
bisphosphonates						
EUROFORS Eastell	Efficacy	Clinical	TPTD, 304	TPTD, 304	12	TPTD, 4/304 (1.32%)
200967			RLX, 97	RLX, 97		RLX, 0/97 (0%)
PM women with OP pre-			CON ¹ , 102	CON, 102		CON, 0/102 (0%)
treated with TPTD						(Not significant, P value NR)
DEN vs.						
Bisphosphonates						
Saag 2018 ⁷⁵	Efficacy	Clinical	RIS, 397	RIS, 397	12	RIS, 15/342 (4.0%)
Women and men on GC			DEN, 398	DEN, 398		DEN, 10/333 (3.00%)
with OP or low			Both with PBO			Estimated RR, 0.67 [95%CI, 0.30
BMD+fracture						to 1.52], p=0.34
Miller 2016 ⁷⁶	Safety	NR	ZOL, 322	ZOL, 320	12	ZOL, 4 fractures
			DEN, 321	DEN, 320		DEN, 0 fractures
			Both with PBO			n participants NR

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	I	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
RLX vs.						
Bisphosphonates						
EFFCT Sambrook 2004 ⁷⁷	Safety	Not reported	ALN, 246	ALN, 246	12	ALN, 0/246 (0%)
(International not			RLX, 241	RLX, 241		RLX, 0/241 (0%)
including US)			Both with PBO			NE
PM women with OP						
Muscoso 2004 ⁸⁰	Efficacy	Not reported	ALN, 1000	ALN, 1000	0-12 months	ALN, 2/1000 (0.2%)
PM women with OP			RLX, 100	RLX, 100		RLX, 0/100 (0%)
			RIS, 100	RIS, 100		RIS, 0/100 (0%)
			All daily open-			ALN vs. RLX Estimated RR, 1.99
			label			[95%CI, 0.09 to 41.68], p=0.66
						RIS vs. RLX NE

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
Muscoso 2004 ⁸⁰	Efficacy	Not reported	As above	ALN, 1000	12-24 months	ALN, 4/1000 (0.4%)
PM women with OP				RLX, 100		RLX, 0/100 (0%)
				RIS, 100		RIS, 0/100 (0%)
						ALN vs. RLX Estimated RR, 1.10
						[95%CI, 0.06 to 20.61], p=0.95
						RIS vs. RLX NE
EVA Recker 2007 ⁸¹	Efficacy	Morphometric	ALN, 716	ALN, 255	Mean 312	ALN, 8/255 (3.14%)
PM women with OP		new	RLX, 707	RLX, 259	(SD 252)	RLX, 5/259 (1.93%)
		Definition:	Both with PBO		days	Estimated RR, 0.62 [95%CI, 0.20
		Genant ³⁸ method				to 1.86], p=0.39
EVA Recker 2007 ⁸¹	Efficacy	Morphometric	ALN, 716	ALN, 255	Mean 312	ALN, 4/255 (1.57%)
PM women with OP		moderate/ severe	RLX, 707	RLX, 259	(SD 252)	RLX, 0/259 (0%)
		Definition:	Both with PBO		days	Estimated RR, 0.11 [95%CI, 0.01
		Genant ³⁸ method				to 2.02], p=0.14
		>25% loss of				
		height				

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
EVA Recker 2007 ⁸¹	Efficacy	Clinical	As above	716/707	Mean 312	ALN, 3/713 (0.40%)
PM women with OP					(SD 252)	RLX, 0/699 (0%)
					days	Estimated RR, 0.15 [95%CI, 0.01
						to 2.82], p=0.20
ROMO vs.						
Bisphosphonates						
ARCH Saag 2017 ⁸⁴	Efficacy	Morphometric	ALN, 2047	ALN, 2047	12	ALN, 128/2047 (6.3%)
PM women with OP		new ITT MI	ROMO, 2046	ROMO, 2046		ROMO, 82/2046 (4.00%)
		Definition:	Both with PBO			(RR, 0.63 [95%CI, to 0.47 to 0.85];
		Genant ³⁸ method				p=0.003)
ARCH Saag 2017 ⁸⁴	Efficacy	Morphometric	As above	ALN, 1703	12	ALN, 85/1703 (5.00%)
PM women with OP		new ITT LOCF		ROMO, 1696		ROMO, 55/1696 (3.20)
						(RR, 0.64 [95%CI, (%%CI to 0.46
						to 0.89]; p=0.008)

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
ARCH Saag 2017 ⁸⁴	Efficacy	Morphometric	As above	ALN, 1703	12	ALN, 101/1703 (5.90%)
PM women with OP		new or worsening		ROMO, 1696		ROMO, 67/1696 (4.00%)
						(RR, 0.66 [95%CI, to 0.49 to 0.89];
						p=0.006)
ARCH Saag 2017 ⁸⁴	Efficacy	Clinical	As above	ALN, 2047	12	ALN, 18/2047 (0.90%)
PM women with OP				ROMO, 2046		ROMO, 10/2046 (0.50%)
						(HR 0.56 [95%CI, to 0.26 to 1.22];
						p=0.14)
ARCH Saag 2017 ⁸⁴	Efficacy	Morphometric	ALN to ALN,	ALN/ALN, 2047	24	ALN/ALN, 243/2047 (11.90%)
PM women with OP		new ITT MI	2047	ROMO/ALN,		ROMO/ALN, 127/2046 (6.20%)
			ROMO to ALN,	2046		(RR, 0.52 [95%CI, to 0.40 to 0.66];
			2046			p<0.001)
			Open-label			
ARCH Saag 2017 ⁸⁴	Efficacy	Morphometric	As above	ALN/ALN, 1843	24	ALN/ALN, 147/1834 (8.00%)
PM women with OP		new ITT LOCF		ROMO/ALN,		ROMO/ALN, 74/1825 (4.55%)
				1825		(RR, 0.50[95%CI, to 0.38 to 0.66];
						p<0.001)

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
ARCH Saag 2017 ⁸⁴	Efficacy	Morphometric	As above	ALN/ALN, 1843	24	ALN/ALN, 168/1834 (9.20%),
PM women with OP		new or worsening		ROMO/ALN,		ROMO/ALN, 87/1825 (4.77%)
				1825		(RR, [95%CI, to 0.52 0.40 to 0.66];
						p<0.001)
TPTD vs.						
Bisphosphonates						
Saag 2009 ¹⁰² Women and	Efficacy	Morphometric	Women and men	ALN, 165	18	ALN, 10/165 (6.10%)
men on GC with OP or		new	ALN, 214	TPTD, 171		TPTD, 1/171 (0.6%)
low BMD+fracture		Definition:	TPTD, 214			(p=0.004)
		Genant ³⁸ method	Both with PBO			
Saag 2009 ¹⁰² Women and	Efficacy	Clinical	As above	ALN, 165	18	ALN, 3/165 (1.80%)
men on GC with OP or				TPTD, 171		TPTD, 0/171 (0%)
low BMD+fracture						(p=0.07)
Saag 2009 ¹⁰² Women and	Efficacy	Morphometric	As above	ALN, 169	36	ALN, 13/169 (7.70%)
men on GC with OP or		new		TPTD, 173		TPTD, 3/173 (1.70%)
low BMD+fracture						(p=0.007)

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
Saag 2009 ⁸⁶	Efficacy	Clinical	As above	ALN, 169	36	ALN, 4/169 (2.40%)
				TPTD, 173		TPTD, 0/173 (0%)
						(p=0.037)
Langdahl 2009 ¹⁰⁶	Efficacy	Morphometric	Women	ALN, 134	18	ALN, 6/134 (4.48%)
Women and men on GC		new	ALN, 173	TPTD, 139		TPTD, 1/139 (0.72%)
with OP or low			TPTD, 171			Estimated RR, 0.16 [95%CI, 0.02
BMD+fracture			Both with PBO			to 1.32], p=0.09
Langdahl 2009 ¹⁰⁶	Efficacy	Morphometric	Men	ALN, 31	18	ALN, 4/31 (12.90%)
Women and men on GC		new	ALN, 41	TPTD, 31		TPTD, 0/31 (0%)
with OP or low			TPTD, 42			Estimated RR, 0.11 [95%CI, 0.01
BMD+fracture			Both with PBO			to 1.98], p=0.13
Panico 2011 ⁸⁷	Efficacy	Morphometric	ALN weekly,39	ALN, 39	18	ALN 6/39 (15.7%)
PM women with severe		new	TPTD,42	TPTD, 42		TPTD 1/42 (2.4%)
OP+fracture and on			Without PBO			Estimated RR, 0.15 [95%CI, 0.02
treatment for OP						to 1.23], p=0.08

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
Walker 2013 ⁹⁰	Efficacy	Morphometric	RIS weekly, 10	RIS, 10	18	RIS, 1/10 (10.00%)
Men with OP		new	TPTD, 9	TPTD, 9		TPTD, 0/9 (0%)
		Definition:	Both with PBO			Estimated RR, 0.37 [95%CI, 0.02
		Genant ³⁸ method				to 8.01], p=0.52
Hadji 2012 ⁹²	Efficacy	Morphometric	RIS weekly, 350	RIS, 350	6	RIS, 18/350 (5.10%)
PM women with OP		new	TPTD, 360	TPTD, 360		TPTD, 15/360 (4.20%)
		Definition:	Both with PBO			(p=0.6)
		Genant ³⁸ method				
Hadji 2012 ⁹²	Efficacy	Morphometric	As above	RIS, 350	6	RIS, 22/350 (6.30%)
PM women with OP		new or worsening		TPTD, 360		TPTD, 23/360 (6.40%)
						(p=1.00)
Hadji 2012 ⁹²	Efficacy	Morphometric	As above	RIS, 350	18	RIS, 3/350 (9.40%)
PM women with OP		new		TPTD, 360		TPTD, 16/360 (4.40%)
						(p=0.01)
Hadji 2012 ⁹²	Efficacy	Morphometric	As above	RIS, 350	18	RIS, 39/350 (11.10%)
PM women with OP		new or worsening		TPTD, 360		TPTD, 24/360 (6.70%)
						(p<0.05)

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
VERO Kendler 2018 ¹⁰⁰	Efficacy	Morphometric	RIS weekly, 680	RIS, 533	24	RIS, 64/533 (12.00%)
PM women with OP		new	TPTD, 680	TPTD, 516		TPTD, 28/516 (5.00%)
		Definition:	Both with PBO			(RR, 0.44 [95%CI, to 0.29 to
		Genant ³⁸ method				0·68]; p<0.0001)
VERO Kendler 2018 ¹⁰⁰	Efficacy	Morphometric	As above	RIS, 533	24	RIS, 69/533 (13.00%)
PM women with OP		new and		TPTD, 516		TPTD, 31/516 (6.00%)
		worsening				(RR, 0.46 [95%CI, to 0.31 to
						0·68]; p<0.0001)
VERO Kendler 2018 ¹⁰⁰	Efficacy	Morphometric	As above	RIS, 533	24	RIS, 12/533 (2.00%)
PM women with OP		multiple		TPTD, 516		TPTD, 2/516 (0.39%)
						(RR, 0.16 [95%CI, to 0.04 to
						0·74]; p=0.007)
VERO Kendler 2018 ¹⁰⁰	Efficacy	Morphometric	As above	RIS, 533	12	RIS, 11/533 (2.10%)
PM women with OP		multiple		TPTD, 516		TPTD, 4/516 (0.78%)
						Estimated RR, from graph
						Estimated RR, 0.38 [95%CI, 0.12
						to 1.17], p=0.09

Trial name /Author	Efficacy	Method of	Treatments, n	Treatments, n	Follow-up	Vertebral Fracture outcomes n/N
date/Population	or safety	vertebral	randomised	analysed	months	(%) (reported between group
	outcome	fracture				difference)
		assessment				
		Clinical /				
		morphometric				
MOVE Aspenberg	Safety	Clinical	RIS daily, 113	RIS, 113	6	RIS, 0/110 (0%)
2016 ¹⁰⁷			TPTD, 111	TPTD, 111		TPTD, 0/116 (0%)
Women and men with			Both with PBO			NE
low BMD + recent hip						
fracture surgery						
MOVE Malouf-Sierra	Safety	Clinical	As above	RIS, 113	18	RIS, 1/110 (1.00%)
2017 ⁹³				TPTD, 111		TPTD, 0/116 (0%)
Women and men with						(p=1.00)
low BMD + recent hip						
fracture surgery						
Cosman 2011 ⁹⁴	Safety	Adverse event	ZOL ² , 137	ZOL, 137	12	ZOL, 5/137 (3.70%)
PM women with OP			TPTD + ZOL	TPTD+PBO, 138		TPTD+PBO, 1/137 (0.70%)
			PBO, 138			Estimated RR, 0.20 [95%CI, 0.02
						to 1.69], p=0.14

Definition of morphometric not provided in all studies.

ALN, Alendronate 10 mg daily or 70 mg weekly; BMD, bone mineral density; ; CON, control; DEN, Denosumab 60 mg s.c. every 6 months; HR, hazard ratio; GC, glucocorticoids; IBN, Ibandronate 150 mg oral every month; ITT LOCF, intention-to-treat last observation carried forward; ITT MI, intention-to-treat multiple imputation; NE. not estimable; PBO, placebo; RLX, RLX 60 mg daily; PM, postmenopausal; OLE, open-label extension; OP, osteoporosis; ROMO, Romosozumab 210 mg s.c. monthly; RR, risk ratio; NR, not reported; SD, standard deviation; TPTD, Teriparatide 20 ug s.c. daily; ZOL, ZOL 5 mg iv annually ACTIVE, Abaloparatide Comparator Trial In Vertebral Endpoints; ADAMO, DEN Versus Placebo in Males With Osteoporosis; ARCH, Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk; BRIDGE, Phase 3 randomized placeBo-contRolled double-blind study evaluatIng the efficacy anD safety of ROMO in treating mEn with osteoporosis; DATA, DEN and TPTD Administration; DECIDE, Determining Efficacy: Comparison of Initiating DEN versus ALN; DIRECT, DEN fracture Intervention RandomizEd placebo Controlled Trial; EFFECT, EFficacy of FOSAMAX versus EVISTA Comparison Trial;

EUROFORS, European Study of Forsteo; EVA, Evista ALN Comparison trial; FACT, Forteo ALN Comparator Trial; FRAME, Fracture Study in Postmenopausal Women with Osteoporosis; FREEDOM, Fracture Reduction Evaluation of DEN in Osteoporosis; MORE, European Study of Forsteo; MOVE, acronym meaning not reported; VERO, VERtebral fracture treatment comparisons in Osteoporotic women. ¹No active treatment, ²Not placebo controlled for TPTD

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
DEN versus Pla	cebo	1	<u> </u>	
FREEDOM ⁴²	Efficacy	Placebo	36	PBO, 293/3906 (7.50%)
		3906		DEN, 238/3902 (6.10%)
		DEN 3902		
				(RD, 1.5 [95%CI, 0.3 to 2.7]; RR, 0.80 [95%CI, 0.67 to 0.95]; p=0.01)
FREEDOM ¹⁰³	Efficacy	Placebo	0-12 months	PBO, 120/3906 (3.06%), DEN, 101/3902 (2.59%)
		3906		
		DEN 3902		Values estimated from graph
FREEDOM ¹⁰³	Efficacy	Placebo	12-24	PBO, 113/3906 (2.89%)
		3906	months	DEN, 82/3902 (2.09%)
		DEN 3902		
				Values estimated from graph
FREEDOM ¹⁰³	Efficacy	Placebo	24-36	PBO, 98/3906 (2.50%)
		3906	months	DEN, 84/3902 (2.15%)
		DEN 3902		
				Values estimated from graph

Table 18:Non-vertebral fracture outcomes

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
FREEDOM	Efficacy	Entered OLE	84 months	PBO/DEN, 219/ 2207 (9.92%)
OLE		Placebo/DEN2207	from OLE	DEN/DEN, 172/2343 (7.34%)
(NCT0052334		DEN/DEN 2343		
1)				
ADAMO ⁴³	Safety	Placebo 121	12	PBO 2/120 (1.67%)
		DEN 121		DEN 1/120 (0.83%)
DIRECT ⁴⁴	Efficacy	Placebo 511	24	All
		DEN 500		PBO 20/480 (4.10%)
				DEN 19/472 (4.10%)
				(HR 1.002 [95%CI 0.521to 1.926]; p=0.9951)
				Major (proximal humerus, forearm,
				ribs/clavicle, pelvis, hip, distal femur, and proximal tibia)
				PBO 18/480 (3.70%)
				DEN 8/472 (1.60%)
				(HR 0.434 [95%CI 0.178 to 1.055]; p=0.0577)
				Non-major PBO 2/480 (0.40%)
				DEN 12/472 (2.50%) (HR 5.552 [95%CI 1.231 to 25.042]; p=0.0120)

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral	
/Author/date		randomised	months	n/N (%)	
				(reported between group difference)	
DIRECT ¹⁰⁵	Efficacy	PBO to DEN 406	36 including	All	
		DEN to DEN 404	12 OLE	PBO/DEN 27/406 (6.65%)	
				DEN/DEN 21/404 (5.20%)	
				Major (proximal humerus forearm ribs/clavicle pelvis hip distal femur and proximal tibia) PBO/DEN 22/406 (5.42%)	
Koh 2016 ⁴⁶	Safety	Placebo 66	6	DEN/DEN 8/404 (1.98%) PBO 1/66 (1.52%)	
		DEN 69		DEN 1/69 (1.45%)	
Koh 2016 OLE ⁴⁶	Safety	PBO to DEN 66 DEN to DEN 69	6-12 months OLE	PBO 1/63 (1.60%) DEN 0/60 (0%)	
RLX versus Placebo					
Morii 2003 ⁴⁸	Efficacy	Placebo 97	12	PBO 4/97 (4.12%)	
		RLX 90		RLX 0/88 (0%)	

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
Silverman	Efficacy	Placebo 1855	36	PBO 118/1885 (5.70%)
200851		RLX 1849		RLX 109/1849 (6.30%)
clinicaltrials.g				Non-significant p-value NR
ov				
NCT00205777				
Lufkin 199853	Efficacy	Placebo 48	12	PBO 3/45 (6.67%)
		RLX 48		RLX 0/43 (0%)
ROMO versus P	lacebo			
FRAME ⁵⁵	Efficacy	Placebo 3591	12	PBO, 75/3591 (2.1%)
		ROMO 3589		ROMO, 56/3589 (1.6%)
				(HR, 0.75 [95%CI, 0.53 to 1.05]; p=0.096
FRAME ⁵⁵	Efficacy	PBO to DEN 3591	24	PBO, 129/3591 (3.6%),
		ROMO to DEN		ROMO, 96/3589 (2.7%)
		3589		(HR, 75 [95%CI, 0.57 to 0.97]; p=0.029
Ishibashi	Safety	Placebo 63	12	PBO 1/63 (1.59%)
2017 ⁵⁶		ROMO 63		ROMO 2/63 (3.17%)

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
Miyauchi	Efficacy	Placebo 70	12	PBO 4/67 (6.00%)
2010 ⁵⁹		TPTD 137		TPTD 3/136 (2.20%)
				Fragility
				PBO 1/67 (1.50%)
				TPTD 1/136 (0.70%)
Miyauchi	Efficacy	Entered extension	12-18	PBO/TPTD 4/59 (6.78%)
2010 ⁵⁹		PBO to TPTD 59	months OLE	TPTD/TPTD 3/119 (2.52%)
		TPTD to TPTD		
		119		Estimated from graph
Miyauchi	Efficacy	Entered extension	18-24	PBO/TPTD 4/50 (8.0%)
2010 ⁵⁹		PBO to TPTD 59	months OLE	TPTD/TPTD 3/102 (2.94%)
		TPTD to TPTD		
		119		Estimated from graph
ACTIVE ⁹⁶	Efficacy	Placebo 821	18	PBO 33/821 (4.70%)
		TPTD 818		TPTD 24/818 (3.30%)
				(RD -1.46 [95%CI -3.50 to 0.58]; HR 0.72 [95%CI 0.42 to 1.22];
				p=0.22)

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
FPT ⁶³	Efficacy	Placebo 544	19	PBO 53/544 (9.74%)
		TPTD 541		TPTD34/541 (6.28%)
				(p=0.04)
				Fragility
				PBO 30/544 (5.51%)
				TPTD14/541 (2.59%)
				(p=0.02)
Head-to-head no	on-bisphosphonates	1	I	
EUROFORS ⁶⁷	Efficacy	TPTD 304	12	TPTD 9/304 (2.96%)
		RLX 97		RLX 2/97 (2.06%)
		Control 102		NT 1/102 (0.98%)
				Non-significant p value NR
STRUCTURE ⁶	Safety	ROMO 218	12	ROMO 7/218 (3.21%)
8		TPTD 218		TPTD 8/214 (3.67%)
Non-bisphospho	nates versus Bisphosphonates			

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
STAND ⁷¹	Safety	ALN 251	12	ALN 4/249 (1.61%)
		DEN 253		DEN 8/253 (3.16%)
DAPS ¹⁰⁸	Safety	ALN 124	12	ALN 1/118 (0.85%)
	-	DEN 126		DEN 1/125 (0.80%)
DAPS ¹⁰⁸	Safety	ALN to DEN 106	12-24mo	ALN/DEN 3/106 (2.83%)
		DEN to ALN 115		DEN/ALN 1/110 (0.90%)
Saag 2018 ⁷⁵	Efficacy	RIS plus PBO 397	12	RIS 10/397 (3.0%)
		DEN plus PBO		DEN 17/398 (4.0%)
		398		
EFFECT	Safety	ALN 223	12	ALN 5/199 (2.51%)
(US) ⁷⁸		RLX 233		RLX 8/206 (3.88%)
Muscoso	Efficacy	ALN 1000	0-12 months	ALN 2/1000 (0.2%)
2004^{80}		RLX 100		RLX 0/100 (0%)
		RIS 100		RIS 0/100 (0%)
Muscoso	Efficacy	ALN 1000	12-24	ALN 2/1000 (0.2%)
200480		RLX 100	months	RLX 0/100 (0%)
		RIS 100		RIS 0/100 (0%)

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral		
/Author/date		randomised	months	n/N (%)		
				(reported between group difference)		
EVA ⁸¹	Efficacy	ALN 716	Mean 312	ALN 14/713 (2.00%)		
		RLX 707	(SD 252)	RLX 15/699 (2.20%)		
			days	(RR 0.92 [95%CI 0.45 to 1.86])		
Michalska	Safety	Placebo 33	24	PBO 2/33 (6.06%)		
2006 ⁸³		RLX 33		RLX 1/33 (3.03%)		
		Open-label		ALN 1/33 (3.03%)		
		ALN 33				
ARCH ⁸⁴	Efficacy	ALN 2047	12	ALN 95/2047 (4.60%)		
		ROMO 2046		ROMO 70/2046 (3.40%)		
				(HR 0.74 [95%CI 0.54 to 1.01]; p=0.057)		
ARCH ⁸⁴	Efficacy	ALN 2047	12	Major (pelvis, distal femur, proximal tibia, ribs, proximal humerus,		
		ROMO 2046		forearm, and hip)		
				ALN 88/2047 (4.30%)		
				ROMO 59/2046 (2.90%)		
				(HR 0.67 [95%CI 0.48 to 0.94]; p=0.019)		
ARCH ⁸⁴	Efficacy	ALN to ALN 2047	24	ALN/ALN 217/2047 (10.60%)		
		ROMO to ALN		ROMO/ALN 178/2046 (8.70%)		
		2046		(HR 0.81 [95%CI 0.66 to 0.99]; p=0.037)		

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
ARCH ⁸⁴	Efficacy	ALN to ALN 2047	24	Major (pelvis, distal femur, proximal tibia, ribs, proximal humerus,
		ROMO to ALN		forearm, and hip)
		2046		ALN/ALN 196/2047 (9.60%)
				ROMO/ALN 146/2046 (7.10%)
				(HR 0.73 [95%CI 0.59 to 0.90]; p=0.004)
Saag 2009 ¹⁰²	Efficacy	Men and women	18	ALN 8/214 (3.70%)
		ALN 214		TPTD 12/214 (5.60%)
		TPTD 214		(p=0.36)
Saag 2009 ¹⁰²	Efficacy	Men and women	36	ALN 15/214 (7.00%)
		ALN 214		TPTD 16/214 (7.50%)
		TPTD 214		(p=0.843)
Saag 2009 ¹⁰⁶	Efficacy	Men	18	ALN 2/71 (2.82%)
		ALN 41		TPTD 1/42 (2.38%)
		TPTD 42		(p=0.58)
Saag 2009 ¹⁰⁶	Efficacy	Women	18	ALN 6/173 (3.47%)
		ALN 173		TPTD 11/171 (6.43%)
		TPTD 171		(Postmenopausal p=0.36; Premenopausal p=0.32)
EuroGIOPs ⁸⁸	Safety	RIS 47	18	RIS 5/47 (10.60%)
		TPTD 45		TPTD 0/45 (0%)
				(p=0.056)

Trial name	Efficacy or safety outcome	Treatments n	Follow-up	Non-vertebral
/Author/date		randomised	months	n/N (%)
				(reported between group difference)
VERO ¹⁰⁰	Efficacy	RIS plus PBO 680	24	RIS 38/680 (6.00%)
		TPTD plus PBO		TPTD 25/680 (4.00%)
		680		(HR 0.66 [95%CI 0.39 to 1.10]; p=0.10)
VERO ¹⁰⁰	Efficacy	RIS plus PBO 680	12	RIS 23/680 (3.32%)
		TPTD plus PBO		TPTD 15/680 (2.21%)
		680		Estimated from graph
Hadji 2012 ⁹²	Efficacy	RIS 350	6	RIS 29/350 (8.30%)
		TPTD 360		TPTD 28/360 (7.80%)
				(p=0.89)
MOVE ⁹³	Safety	RIS 350	18	RIS 10/110 (9.10%)
		TPTD 360		TPTD 5/116 (4.70%)
				(p=0.286)
Cosman 2011 ⁹⁴	Safety	ZOL (no PBO)	12	ZOL 8/137 (5.84%)
		137		TPTD+PBO 7/137 (5.11%)
		TPTD plus PBO		
		138		

All reported treatment arms at licensed dose. ALN Alendronate; BMD bone mineral density; DEN Denosumab; HR hazard ratio; IBN ibandronate; ITT LOCF intention-to-treat last observation carried forward; ITT MI intention-to-treat multiple imputation; ROMO Romosozumab; RD risk difference; RR risk ratio; NR not reported; PBO placebo; OLE=open label extension; RAL RLX; s.c. subcutaneous; SD standard deviation; TPTD Teriparatide; ZOL Zoledronate

Trial name	Treatment arms	Follow-up	Hip fracture	Wrist fracture	Proximal humerus
/Author/date		Months	n/N (%)	n/N (%)	fracture n/N (%)
			(reported between group	(reported between	(reported between
			difference)	group difference)	group difference)
DEN versus Placebo					
FREEDOM ⁴²	Placebo	0-36	43/3906 (1.2)	NR	NR
	DEN		26/3902 (0.7)	NR	NR
			Difference 0.3 (95%CI -0.1,		
			0.7)		
			HR 0.60 (95%CI 0.37, 0.97)		
			P=0.04		
FREEDOM ¹⁰³	Placebo	1-12	21/3906 (0.55)	NR	NR
	DEN		11/3902 (0.29)	NR	NR
			Non-significant (p value NR)		
	Placebo	12-24	14/3906 (0.36)	NR	NR
	DEN		3/3902 (0.08)	NR	NR

Table 19:Fractures hip, wrist or proximal humerus

Trial name	Treatment arms	Follow-up	Hip fracture	Wrist fracture	Proximal humerus
/Author/date		Months	n/N (%)	n/N (%)	fracture n/N (%)
			(reported between group	(reported between	(reported between
			difference)	group difference)	group difference)
			Non-significant (p value NR)		
	Placebo	24-36	11/3906 (0.27)	NR	NR
	DEN		12/3902 (0.32)	NR	NR
			Non-significant (p value NR)		
ADAMO ⁴³	Placebo	12	NR	NR	1/120 (0.8)
	DEN		NR	NR	0/120 (0)
DIRECT ⁴⁴	Placebo	24	2/480 (0.4)	NR	NR
	DEN		0/472 (0)	NR	NR
RLX versus placebo					
Silverman 2008 ^{51 329}	Placebo	36	PBO 6/1885 (0.3)	PBO 31/1885 (1.6)	NR
	RLX		RLX 5/1849 (0.3)	RLX 46/1849 (2.5) ³²⁹	NR
Lufkin 1998 ⁵³	Placebo	12	0/45 (0)	0/45 (0)	NR
	RLX		0/43 (0)	0/43 (0)	NR
ROMO versus Placebo		1	1	1	
FRAME ⁵⁵	Placebo	12	13/3591 (0.4)	NR	NR
	ROMO		7/3589 (0.2)	NR	NR

Trial name	Treatment arms	Follow-up	Hip fracture	Wrist fracture	Proximal humerus
/Author/date		Months	n/N (%)	n/N (%)	fracture n/N (%)
			(reported between group	(reported between	(reported between
			difference)	group difference)	group difference)
			HR 0.54 (95%CI 0.22, 1.35) p=0.18		
FRAME ⁵⁵	Placebo followed by DEN	24	22/3591 (0.6)	NR	NR
	ROMO followed by DEN		11/3589 (0.3) HR 0.50 (95%CI 0.24, 1.04) p=0.059	NR	NR
Ishibashi 2017 ⁵⁶	Placebo	12	NR	0/63 (0)	NR
	ROMO		NR	1/63 (1.6)	NR
TPTD versus Placebo				I	I
ACTIVE ⁹⁶	Placebo	18	2/821 (0.2)	15/821 (1.8)	3/821 (0.4)
	TPTD		0/818 (0)	17/818 (2.1)	2/818 (0.2)
			NR	NR	NR
FPT ⁶³	Placebo	19	All	All	All

Trial name	Treatment arms	Follow-up	Hip fracture	Wrist fracture	Proximal humerus
/Author/date		Months	n/N (%)	n/N (%)	fracture n/N (%)
			(reported between group	(reported between	(reported between
			difference)	group difference)	group difference)
			4/544 (0.7)	13/544 (2.4)	5/544 (0.9)
			Fragility	Fragility	Fragility
			4/544 (0.7)	7/544 (1.3)	2/544 (0.4)
	TPTD		All	All	All
			2/541 (0.4)	7/541 (1.3)	4/541 (0.7)
			Fragility	Fragility	Fragility
			1/541 (0.2)	2/541 (0.4)	2/541 (0.4)
Head-to-head non-bisphospho	nates				
EUROFORS ⁶⁷		24	0/102 (0)	0/102 (0)	0/102 (0)
	[12months] (following				
	pre-randomisation				
	TPTD [12 months])				
	RLX (following TPTD)		0/97 (0)	0/97 (0)	1/97 (1.0)
	TPTD [12 months]		1/304 (0.3)	3/304 (1.0)	0/304 (0)
	(following 12months				

Trial name	Treatment arms	Follow-up	Hip fracture	Wrist fracture	Proximal humerus	
/Author/date		Months	n/N (%)	n/N (%)	fracture n/N (%)	
			(reported between group	(reported between	(reported between	
			difference)	group difference)	group difference)	
	pre-random TPTD)					
STRUCTURE ⁶⁸	TPTD	12	0/218 (0)	0/218 (0)	1/218 (0.5)	
	ROMO		1/218 (0.5)	1/218 (0.5)	0/218 (0)	
Non-bisphosphonates versus	s Bisphosphonates	I	1	1	1	
STAND ⁷¹	ALN	12	NR	2/249 (0.8)	0/249 (0)	
	DEN		NR	3/253 (1.2)	1/253 (0.4)	
Saag 2018 ⁷⁵	RIS	12	1/397 (0.3)	NR	3/397 (0.8)	
	DEN		1/398 (0.3)	NR	3/398 (0.8)	
EFFECT (International) ⁷⁷	RLX plus placebo	12	1/241 (0.4)	NR	NR	
	ALN plus placebo		0/246 (0)	NR	NR	
EFFECT (US) ⁷⁸	RLX plus placebo	12	NR	1/206 (0.5)	1/206 (0.5)	
	ALN plus placebo		NR	0/199 (0)	0/199 (0)	
Muscoso 2004 ⁸⁰	ALN	12	1/1000 (0.1) 1/1000 (0.1)		NR	
	RLX		0/100 (0)	0/100 (0)	NR	

Trial name	Treatment arms	Follow-up	Hip fracture	Wrist fracture	Proximal humerus	
/Author/date		Months	n/N (%)	n/N (%)	fracture n/N (%)	
			(reported between group	(reported between	(reported between	
			difference)	group difference)	group difference)	
	RIS		0/100 (0)	0/100 (0)	NR	
	ALN	12-24	2/1000 (0.2)	0/1000 (0)	NR	
	RLX		0/100 (0)	0/100 (0)	NR	
	RIS		0/100 (0)	0/100 (0)	NR	
EVA ⁸¹	RLX	24	2/699 (0.3)	8/699 (1.1)	NR	
	ALN		1/713 (0.1)	6/713 (0.8)	NR	
			RR 0.49 (95%CI 0.04, 3.77)	RR 0.74 (95%CI 0.27,		
				2.02)		
ARCH ⁸⁴	ROMO	12	14/2046 (0.7)	NR	NR	
	ALN		22/2047 (1.1)	NR	NR	
			P=0.19			
	ROMO followed by	Median 2.7	41/2046 (2.0)	NR	NR	
	ALN	year				
	ALN followed by ALN		66/2047 (3.2)	NR	NR	
			P=0.015			
EUROGIOPs ⁸⁸	RIS	18	1/47 (2.1)	NR	1/47 (2.1)	
	TPTD		0/45 (0)	NR	0/45(0)	

Trial name	Treatment arms	Follow-up	Hip fracture	Wrist fracture	Proximal humerus	
/Author/date		Months	n/N (%)	n/N (%)	fracture n/N (%)	
			(reported between group	(reported between	(reported between	
			difference)	group difference)	group difference)	
VERO ¹⁰⁰	RIS	24	5/680 (0.7)	10/680 (1.5)	2/680 (0.3)	
	TPTD		2/680 (0.3)	6/680 (0.9)	4/680 (0.6)	
Hadji 2012 ⁹²	RIS	18	2/350 (0.6)	2/350 (0.6)	5/350 (1.4)	
	TPTD		5/360 (1.4)	4/360 (1.1)	4/360 (1.1)	
MOVE ⁹⁹	RIS	6	5/110 (4.5)	NR	1/110 (0.9)	
	TPTD		2/106 (1.9)	NR	1/106 (0.9)	
MOVE ⁹³	RIS	18	7/110 (6.4)	NR	1/110 (0.9)	
	TPTD		2/106 (1.9)	NR	1/106 (0.9)	

All reported arms at licensed dose; NR= not reported; NA=not applicable

Trial name	Treatments, n	Treatments, n	Follow-up	FN BMD	Estimated	FN BMD
/Author	randomised	analysed	months	Percent change from	from	Reported (estimated) between
date/Population				baseline	graph	group difference
				Mean (SD)		
DEN vs. PBO						
FREEDOM	PBO, 3906	PBO, 3906	36	PBO, +7.1 (NR)	Nothing	NR
Bone 2017 ¹⁰³	DEN, 3902	DEN, 3902		DEN, +9.0 (NR)		(NE)
PM women with						
ОР						
FREEDOM Bone	Entered OLE	PBO/DEN, 2809	84 months	PBO/DEN, +7.40 (5.83)	Nothing	NR
2017 OLE ¹⁰⁴	PBO to DEN,	DEN/DEN, 2210	from OLE	DEN/DEN, +3.40 (6.00)		(MD, -4.00 [95%CI, -4.35 to -
PM women with	2207					3.65], p<0.00001)
ОР	DEN to DEN,					
	2343					
ADAMO Orwoll	PBO, 121	PBO, 117	12	PBO, 0.00 (3.31 ¹)	95%CIs	p<0.0001
201243	DEN, 121	DEN, 111		DEN, +2.10 (3.35 ¹)		
Men with OP						

 Table 20:
 Femoral neck BMD data reported by the included studies

DIRECT	PBO, 511	PBO, 480	24	PBO, -1.10 (4.30 ¹)	95%CIs	p<0.0001
Nakamura 2014 ⁴⁴	DEN, 500	DEN, 472		DEN, +4.00 (4.82 ¹)		
Women and men						
with OP						
DIRECT Sugimoto	PBO to DEN, 406	PBO/DEN, 406	36 including	PBO/DEN, +1.1 (4.32 ¹)	95%CIs	NR
2015 ¹⁰⁵	DEN to DEN, 404	DEN/DEN, 404	12 OLE	DEN/DEN, +4.8 (4.61 ¹)		(MD, +3.70 [95%Ci, 3.08 to
Women and men						4.32], P0<0.00001)
with OP						
DIRECT Sugimoto	PBO to DEN, 406	PBO/DEN, 406	24-36 OLE	PBO/DEN, +0.8 (NR)	Nothing	NR
2015 ¹⁰⁵	DEN to DEN, 404	DEN/DEN, 404		DEN/DEN, +2.30 (NR)		(NE)
Women and men						
with OP						
Koh 2016 ⁴⁶	PBO, 66	PBO, 66	6	PBO, +0.73 (2.88 ¹)	Means	Mean difference between
PM women with	DEN, 69	DEN, 68		DEN, +4.37 (4.50 ¹)	and	groups in % change
OP					95%CIs	1.4% (95% CI, 0.4%, 2.3%);
						p=0.0042
Koh 2016 ⁴⁶	Entered OLE	OLE	6-12 OLE	PBO/DEN, +3.48 (3.29 ¹)	Means	NR
PM women with	PBO to DEN, 63	PBO/DEN, 59		DEN/DEN, +5.59 (4.04 ¹)	and	(MD, +2.11 [95%CI, 0.78 to
ОР	DEN to DEN, 60	DEN/DEN, 59			95%CIs	3.44], p=0.002)
RLX. vs PBO						

Adami 200847	PBO, 172	PBO, 154	12	PBO, +0.20 (3.72 ²)	Nothing	p<0.001
PM women with	RLX, 157	RLX, 145		RLX, +2.30 (4.82 ²)		
OP pre-treated with						
TPTD						
Adami 200847	OLE	PBO/RLX, 146	36 including	PBO, 1.70 (4.83 ²)	Nothing	NR
PM women with	PBO to RLX, 172	RLX/RLX, 139	24 OLE	RLX, 2.20 (5.89 ²)		(MD, +0.50 [95%CI, -0.75 to
OP pre-treated with	RLX to RLX, 157					1.75], p=0.43)
TPTD						
Liu 2004 ⁴⁹	PBO, 102	PBO, 102	12	PBO, -0.40 (5.80)	Nothing	NR
PM women with	RLX, 102	RLX, 102		RLX, 0.9 (5.40)		(MD, +1.30 [95%CI, -0.24 to
OP						2.84], p=0.10)
Silverman 2008 ⁵¹	PBO, 1855	PBO, 1711	36	PBO, -1.30 (6.20 ²)	Nothing	NR
PM women with	RLX, 1849	RLX, 1662		RLX, 0.80 (6.11 ²)		(MD, +2.10 [1.68 to 2.52],
OP						p<0.00001)
MORE Ettinger	PBO, NR	PBO, 1522	36	NR	Nothing	RLX group increased by 2.1%
1999 ⁵²	RLX, NR	RLX, 1490				compared to placebo, p<0.001
Women with OP						
Mok 2011 ⁵⁴ PM	PBO, 57	PBO, 56	12	PBO, -0.45 (4.71 ²)	Mean and	NR
women on long-	RLX, 57	RLX, 51		RLX, -0.59 (3.86 ²)	SEMs	(MD, -0.14 [95%CI, -1.77 to
term GC						1.49], p=0.87)
ROMO. vs PBO						

FRAME	PBO, 3591	Substudy	12	PBO, -0.70 (8.60 ¹)	95%CIs	ROMO group compared to
Cosman 2016 ⁵⁵	ROMO, 3589	PBO, 62		ROMO, +5.20 (8.10 ¹)		placebo
PM women with		ROMO, 66				5.9% (95%CI 4.3, 7.4)
OP						p<0.001
FRAME	PBO to DEN,	PBO/DEN, 62	24	PBO/DEN, +0.60 (8.30 ¹)	95%CIs	ROMO group compared to
Cosman 2016 ⁵⁵	3591	ROMO/DEN, 66		ROMO/DEN, +6.60 (8.70 ¹)		placebo
PM women with	ROMO to DEN,					6.0% (95%CI 4.4, 7.7)
ОР	3589					p<0.001
	12 months open-					
	label					
Ishibashi 2017 ⁵⁶	PBO, 63	PBO, 59	12	PBO, +0.30 (3.53 ¹)	Nothing	ROMO group compared to
PM women with	ROMO, 63	ROMO, 59		ROMO, +3.80 (4.31 ¹)		placebo
OP						3.5% (1-sided 95%CI 2.3%,
						NA)
						(p<0.00001)
BRIDGE ⁵⁷	PBO, 82	PBO, 79	12	PBO, -0.20 (4.00 ¹)	95%CIs	p<0.001
Men with OP	ROMO, 63	ROMO, 158		ROMO, +2.20 (4.60 ¹)		

TPTD. vs PBO						
ACTIVE Miller	PBO, 821	PBO, 821	18	PBO, -0.44 (3.57)	Nothing	p<0.0001
2016 ⁹⁶	TPTD, 818	TPTD, 818		TPTD, +2.26 (3.57)		
PM women with						
ОР						
Orwoll 2003 ⁵⁸	PBO, 147	PBO, 147	12	PBO, +0.31 (4.1)	Nothing	p=0.029
Men with OP	TPTD, 151	TPTD, 151		TPTD, +1.53 (3.95)		
Miyauchi 2010 ⁵⁹	PBO, 70	PBO, 67	12	PBO, +0.46 (3.89)	Nothing	p=0.015
Women and men	TPTD, 137	TPTD, 136		TPTD, +2.24 (6.01)		
with OP						
Miyauchi 2010 ⁵⁹	PBO to TPTD, 59	PBO/TPTD, 58	12-18 OLE	PBO, +1.22 (4.72)	Nothing	NR
Women and men	TPTD to TPTD,	TPTD/TPTD, 117		TPTD, +2.92 (4.83)		(MD, +1.70 [95%CI, 0.20 to
with OP	119					3.20], p=0.03)
Miyauchi 2010 ⁵⁹	PBO to TPTD, 50	PBO/TPTD, 48	18-24 OLE	PBO, +2.43 (4.99)	Nothing	NR
Women and men	TPTD, to TPTD	TPTD/TPTD, 95		TPTD, +3.25 (4.49)		(MD, +0.82 [95%CI, -0.86 to
with OP	102					2.50], p=0.34)
Miyauchi 2008 ⁶⁰	PBO, 39	PBO, 34	6	PBO, -0.71 (4.68)	Nothing	NR
PM women with	TPTD, 39	TPTD, 36		TPTD, +0.96 (4.86)		MD, +1.67 [95%CI, -0.56 to
OP						3.90], p=0.14)

Leder 2015 ⁶²	PBO, 45	PBO, 41	6	PBO, +0.8 (4.8)	Nothing	p<0.01
PM women with	TPTD, 45	TPTD, 38		TPTD, +1.1 (4.6)		
OP						
Leder 2015 ⁶²	Entered extension	PBO, 11	12 months	PBO, +1.0 (NR)	Nothing	NR
PM women with	PBO, 11	TPTD, 14		TPTD, +2.2 (NR)		(NE)
OP	TPTD, 14					
Neer 2001 ⁶³	PBO, 544	PBO, 479	24	PBO, -0.7 (5.4)	Nothing	p<0.001
PM women with	TPTD, 541	TPTD, 479		TPTD, +2.8 (5.7)		
OP						
Sethi 2008 ⁶⁴	Ca+Vit D, 41	Ca+Vit D, 35	6	Ca+Vit D, +2.12 (5.92)	Nothing	NR
PM women with	41	TPTD Ca+Vit D,		TPTD Ca+Vit D, +1.97		(MD, -0.15 [95%CI, -2.53 to
OP		38		(4.25)		2.23], p=0.90)
Head-to-head non-						
bisphosphonates						
DATA Tsai 2013 ⁶⁵	TPTD, 36	TPTD, 31	12	TPTD, +0.80 (4.10	Nothing	p=0.1939
PM women with	DEN, 34	DEN, 33		DEN, +2.10 (3.80)		
OP	Without PBO					
	open-label					

DATA Leder	As above	TPTD, 31	24	TPTD, +2.80 (3.90)	Nothing	p=0.23
2014 ¹⁰⁹		DEN, 33		DEN, +4.10 (3.80)		
PM women with						
OP						
DATA-SWITCH ⁶⁶	OLE	TPTD/DEN, 27	0-24	TPTD/DEN, +8.30 (5.83 ¹)	Nothing	p<0.0005
	TPTD to DEN, 27	DEN/TPTD, 27		DEN/TPTD, +4.90 (7.02 ¹)		
	DEN to TPTD, 27					
DATA-SWITCH66	OLE	TPTD/DEN, 27	24-48	TPTD/DEN, +5.60 (4.77 ¹)	Nothing	p<0.0005
	TPTD to DEN, 27	DEN/TPTD, 27		DEN/TPTD, +1.20 (5.83 ¹)		
	DEN to TPTD, 27			From cis		
EUROFORS	TPTD, 304	TPTD, 304	24	TPTD, +1.30 (NR)	Nothing	p<0.05 TPTD vs no active
Eastell 200967	RLX, 97	RLX, 97		RLX, +3.10 (NR)		treatment, other comparisons
PM women with	CON ³ , 102	CON, 102		CON, +3.50 (NR)		NR
OP pre-treated with						(NE)
TPTD						
STRUCTURE ⁶⁸	TPTD, 218	TPTD, 209	12	TPTD, -0.20 (4.43 ¹)	Nothing	p<0.0001
PM women with	ROMO, 218	ROMO, 206		ROMO, +3.20, (3.30 ¹)		
OP pre-treated with	Without PBO					
ALN	open-label					

McClung 2014 ⁶⁹	PBO, 52	PBO, 47	12	PBO, +1.10 (3.15 ¹)	Nothing	NR
PM women with	TPTD, 55	TPTD,46		TPTD, +1.10 (3.11 ¹)		(TPTD vs. ROMO - MD, -0.30
OP	ROMO, 52	ROMO, 50		ROMO, +1.40 (3.25 ¹)		[95%CI, -1.59 to 0.99],
	ALN, 51	ALN, 47		ALN, +1.2 (3.15 ¹)		p=0.65)
						(ROMO vs. PBO, p=0.0002)
						(TPTD vs. PBO, p=0.0007)
						(ROMO vs. ALN, p=0.73)
						(TPTD vs. ALN, p=0.88)
DEN vs.						
Bisphosphonates						
DECIDE ⁷⁰	ALN, 595	ALN, 586	12	ALN, +1.80 (3.77 ¹)	95%CIs	Absolute treatment difference
PM women with	DEN, 594	DEN, 593		DEN, +2.40 (3.17 ¹)		0.6% (95%CI 0.3, 1.0)
OP	Both with PBO					p=0.0001
STAND ⁷¹	ALN, 251	ALN, 233	12	ALN, +0.41 (3.81 ¹)	Means	p<0.0121
PM women with	DEN, 253	DEN, 241		DEN, +1.40 (3.34 ¹)	and	
OP already on	Without PBO				95%CIs	
ALN						
DAPS ⁷²	ALN, 124	ALN, 106	12	ALN, +2.00 (3.60)	Nothing	NR
PM women with	DEN, 126	DEN, 113		DEN, +2.90 (3.50)		(MD, +0.90 [95%CI, -0.04 to
OP	Without PBO					1.84], p=0.06)
						[note BMD not powered]

DAPS ¹⁰⁸	Cross-over	ALN/DEN, 92	12-24 months	ALN/DEN, -0.10 (NR)	Nothing	NR
PM women with	ALN to DEN, 92	DEN/ALN, 102	(post	DEN/ALN, +1.70 (NR)		(NE)
OP	DEN to ALN, 102		crossover)			[note BMD not powered]
McClung 2006 ⁷³	PBO for DEN, 46	PBO, 40	12	PBO, -0.30 (3.16 ²)	Nothing	ALN and DEN vs. PBO, both
PM women with	ALN, 47	ALN, 45		ALN, +2.10 (3.35 ²)		p<0.001
OP or osteopenia	DEN, 47	DEN, 42		DEN, +2.10 (3.24 ²)		(ALN vs. DEN MD, 0.00
						[95%CI, -1.38 to 1.38],
						p=1.00)
Recknor et al.	IBN, 416	IBN, 368	12	IBN, +0.70 (4.79 ¹)	95%CIs	p<0.001
201374	DEN,414	DEN,399		DEN, +1.70 (3.96 ¹)		
PM women with	Without PBO					
ОР						
Saag 2018 ⁷⁵	RIS,252	RIS, 215	12	RIS, +0.60 (3.37 ¹)	95%CIs	p=0.004
Women and men	DEN, 145	DEN,217		DEN, +1.60 (3.76 ¹)		
continuing GC with	Both with PBO					
OP or low						
BMD+fracture						

Saag 2018 ⁷⁵	RIS,253	RIS, 128	12	RIS, -0.20 (4.33 ¹)	95%CIs	p=0.020
Women and men	DEN, 145	DEN, 119		DEN, +0.90 (4.17 ¹)		
initiating GC with	Both with PBO					
OP or low						
BMD+fracture						
Miller <i>et al.</i> 2016 ⁷⁶	ZOL, 322	ZOL, 309	12	ZOL, -0.10 (3.34 ¹)	Nothing	p<0.0001
PM women with	DEN, 321	DEN, 311		DEN, +1.20 (3.96 ¹)		
OP previously	Both with PBO					
treated with						
bisphosphonates						
RLX vs.						
Bisphosphonates						
EFFCT Sambrook	ALN, 246	ALN, 246	12	ALN, +2.20 (5.02 ²)	SEMs	1.3%; 95%CI, 0.5 to 2.1;
200477	RLX, 241	RLX, 241		RLX, +1.00 (4.66 ²)		p=0.0001
(International not	Both with placebo					
including US)						
PM women with						
ОР						
EFFECT (US) ⁷⁸	ALN, 223	ALN, 199	12	ALN, +1.72 (4.23 ²)	Means	p=0.396
PM women with	RLX, 233	RLX, 206		RLX, +1.35 (4.59 ²)	and SEMs	
OP	Both with placebo					

Johnell 2002 ⁷⁹	PBO, 82	PBO, 77	12	PBO, +0.20 (3.51 ²)	Nothing	ALN and RLX both
PM women with	ALN, 83	ALN, 77		RLX, +1.70 (3.51 ²)		significantly different from
OP	RLX, 82	RLX, 77		ALN, +2.70 (4.39 ²)		PBO (p<0.05)
						ALN significantly different
						from RLX (p<0.05)
EVA Recker	ALN, 716	ALN, 64	24	ALN, +3.88 (4.96 ²)	SEMs	p=0.002
2007 ⁸¹	RLX, 707	RLX, 58		RLX, +2.31 (3.96 ²)		
PM women with	Both with PBO					
OP						
Sanad 2011 ⁸²	ALN weekly, 46	ALN, 31	12	ALN, +3.11 (NR)	Means	NR
PM women with	RLX, 44	RLX, 35		RLX, +3.48 (NR)		(NE)
OP	Without PBO					
Michalska 2006 ⁸³	PBO, 33	PBO, 33	12	PBO, +1.11 (NR)	Means	P≥0.05
PM women with	RLX, 33	RLX, 33		RLX, +2.07 (NR)	(SEMs in	(NE)
OP previously	ALN, 33	ALN, 33		ALN, +2.32 (NR)	graph	
treated with					overlap –	
bisphosphonates					unable to	
					extract)	

Michalska 2006 ⁸³	OLE	No treatment, 33	24 including	No treatment, $+0.89(3.27^2)$	Means	NR
PM women with	No treatment, 33	RLX, 33	12 months	RLX, +1.14 (2.81 ²)	and SEMs	(RLX vs. ALN MD, -1.72
OP previously	RLX, 33	ALN, 33	OLE	ALN, +2.86 (3.73 ²)		[95%CI, -3.31 to -0.13],
treated with	ALN, 33					p=0.03)
bisphosphonates						(RLX vs. no treatment MD,
						+0.25 [95%CI, -1.22 to 1.72],
						p=0.74)
ROMO vs.						
Bisphosphonates						
ARCH Saag 2017 ⁸⁴	ALN, 2047	ALN, 1826	12	ALN, +1.70 (5.67 ¹)	Nothing	p<0.001
PM women with	ROMO, 2046	ROMO, 1829		ROMO, +4.90 (6.33 ¹)		
OP	Both with PBO			ITT LOCF		
ARCH Saag 2017 ⁸⁴	ALN to ALN,	ALN/ALN, 1826	24	ALN/ALN, +2.30 (6.65 ¹)	Nothing	p<0.001
PM women with	2047	ROMO/ALN,		ROMO/ALN, +6.00 (7.42 ¹)		
OP	ROMO to ALN,	1829		ITT LOCF		
	2046					
	Open-label					
ARCH Saag 2017 ⁸⁴	As above	ALN/ALN, 1826	36	ALN/ALN, +2.40 (7.19 ¹)	Nothing	p<0.001
PM women with		ROMO/ALN,		ROMO/ALN, +6.00 (7.90 ¹)		
OP		1829		ITT LOCF		

TPTD vs.						
Bisphosphonates						
FACT ⁸⁵	ALN, 101	ALN, 101	18	ALN, +3.50 (3.18 ¹)	95%CIs	p=0.05
PM women with	TPTD, 102	TPTD, 102		TPTD, +3.90 (4.51 ¹)		
OP	Both with PBO					
Saag 2009 ¹⁰²	ALN, 214	ALN, 113	36	ALN, +3.40 (4.93 ¹)	95%CIs	p<0.001
Women and men	TPTD, 214	TPTD, 120		TPTD, +6.29 (5.03 ¹)		
on GC with OP or	Both with PBO					
low BMD+fracture						
EUROGIOPs ⁸⁸	RIS, 47	RIS, 37	18	RIS, -1.10 (7.00 ²)	SEMs	p=0.026
Men on GC with	TPTD, 45	TPTD, 38		TPTD, +1.52 (6.66 ²)		
OP	Without PBO					
	Open label					
Walker 201390	RIS weekly, 10	RIS, 10	18	RIS, +0.5 (5.38 ²)	Nothing	P≥0.05
Men with OP	TPTD, 9	TPTD, 9		TPTD, +3.89 (5.10 ²)		
	Both with PBO					
Hadji 2012 ⁹²	RIS weekly, 350	RIS, 338	18	RIS, +0.77 (7.35 ²)	Nothing	p=0.02
PM women with	TPTD, 360	TPTD, 351		TPTD, +2.11 (7.58 ²)		
OP	Both with PBO					

MOVE Malouf-	RIS daily, 113	RIS, 81	18	RIS, -1.19 (NR)	Nothing	p=0.003
Sierra 2017 ⁹³	TPTD, 111	TPTD, 80		TPTD, +1.96 (NR)		
Women and men	Both with PBO					
with low BMD +						
recent hip fracture						
surgery						
Cosman 2011 ⁹⁴	ZOL ⁴ , 137	ZOL, 129	12	ZOL, +1.90 (5.22 ²)	Nothing	p<0.05
PM women with	TPTD + ZOL	TPTD+PBO, 129		TPTD+PBO, +0.09 (4.20 ²)		
OP	РВО, 138					

ALN, Alendronate 10 mg daily or 70 mg weekly; BMD, bone mineral density; Ca, calcium; CON, control; DEN, Denosumab 60 mg s.c. every 6 months; hazard ratio; GC, glucocorticoids; IBN, Ibandronate 150 mg oral every month; ITT LOCF, intention-to-treat last observation carried forward; MD, mean difference; NE, not estimable; PBO, placebo; RLX, Raloxifene 60 mg daily; PM, postmenopausal; OLE, open-label extension; OP, osteoporosis; ROMO, Romosozumab 210 mg s.c. monthly; RR, risk ratio; NR, not reported; SD, standard deviation; SEM, standard error of the mean; tmt, treatment; TPTD, Teriparatide 20 ug s.c. daily; Vit, vitamin; ZOL, ZOL 5 mg iv annually

ACTIVE, Abaloparatide Comparator Trial In Vertebral Endpoints; ADAMO, DEN Versus Placebo in Males With Osteoporosis; ARCH, Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk; BRIDGE, Phase 3 randomized placeBo-contRolled double-blind study evaluatIng the efficacy anD safety of ROMO in treatinG mEn with osteoporosis; DATA, DEN and TPTD Administration; DECIDE, Determining Efficacy: Comparison of Initiating DEN versus ALN; DIRECT, DEN fracture Intervention RandomizEd placebo Controlled Trial; EFFECT, EFficacy of FOSAMAX versus EVISTA Comparison Trial; EUROFORS, European Study of Forsteo; EVA, Evista ALN Comparison trial; EuroGIOPS, acronym meaning not reported; FACT, Forteo ALN Comparator Trial; FRAME, Fracture Study in Postmenopausal Women with Osteoporosis; FREEDOM, Fracture Reduction Evaluation of DEN in Osteoporosis; MORE, European Study of Forsteo; MOVE, acronym meaning not reported; VERO, VERtebral fracture treatment comparisons in Osteoporotic women

¹Estimated from 95%CI

²Estimated from standard error

³No active treatment

⁴Not placebo controlled for TPTD

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
DEN vs. PBO				
FREEDOM	PBO, 3876	36 months	PBO, 90/3876	p=0.08
Cummings	DEN, 3882		(2.3%)	
200942			DEN, 70/3886	
Bone 2017 ¹⁰³			$(1.8\%)^{42}$	
ADAMO	PBO, 120	12 months	1/120 (0.8%)	NR
Orwoll 2012 ⁴³	DEN, 120		1/120 (0.8%)	
	Both for 12			
	months then			
	DEN open-label			
	(both groups)			
	for 12 months			

Table 21:Adverse events: mortality

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
ADAMO	PBO, 116	12-24 months	0/116 (0%)	NR
Langdahl 2015 ¹¹⁰	DEN, 111		1/111 (1%)	
	Both for 12			
	months then			
	DEN open-label			
	(both groups)			
	for 12 months			
DIRECT	PBO,481	24 months	5/481 (1.0%)	NR
Nakamura	DEN, 475		5/475 (1.1%)	
2014 ⁴⁴				
DIRECT	PBO, 406	24-36 months	2/406 (0.5%)	NR
Sugimoto	DEN, 404		4/404 (1.0%)	
2015 ¹⁰⁵	Both for 24			
	months then			
	DEN open-label			
	(both groups)			
	for 12 months			

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
Nakamura	PBO, 55	12 months	NR	NR
201245	DEN, 54			
Koh 2016 ⁴⁶	PBO, 66	6 months	0/66 (0%)	NR
NCT01457950	DEN, 69		1/69 (<1%)	
Koh 2016 ⁴⁶	PBO, 63	6-12 months	0/63 (0%)	NR
NCT01457950	DEN, 60		0/60 (0%)	
	Both for 6			
	months then			
	DEN open-label			
	(both groups)			
	for 12 months			
RLX vs. PBO				
Adami 200847	All TPTD for 12	12 months	NR	NR
	months then:			
	PBO, 172			
	RLX, 157			

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
Morii et al	PBO,97	12 months	NR	NR
200348	RLX, 90			
Liu 2004 ⁴⁹	PBO,102	12 months	0/102 (0%)	NR
	RLX, 102		0/102 (0%)	
Gorai et al	Alfacalcidol, 44	12 months	NR	NR
2012 ⁹⁵	RLX, 45			
	Alfacalcidol			
	plus RLX, 48			
Silverman 2008	PBO,1885	36 months	11/1885	NR
NCT00205777 ⁵¹	RLX, 1849		(0.6%)	
			19/1849	
			(1.0%)	
MORE Ettinger	PBO,2576	36 months	NR	NR
1999/Muscoso	RLX, 2557			
2002 ^{52, 101}				

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
Lufkin 1998 ⁵³	Control (no	12 months	NR	NR
	active			
	treatment), 48			
	RLX, 48			
Mok 2011 ⁵⁴	PBO,57	12 months	NR	NR
NCT00371956	RLX, 57			
ROM vs. PBO				
BRIDGE	PBO,82	12 months	PBO, 1/81	NR
Lewiecki 201857	ROM, 163		(1.2%)	
NCT02186171			ROM, 2/163	
			(1.2%)	

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
FRAME	PBO, 3591	12 and 24	12 months	NR
Cosman 2016 ⁵⁵	ROM, 3589	months	PBO, 23/3576	
	For 12 months		(0.6%)	
	then DEN for 12		ROM,	
	months open-		29/3581	
	label (both		(0.8%)	
	groups)		24 months	
			PBO-DEN,	
			47/3576	
			(1.3%)	
			ROM-DEN,	
			52/3581	
			(1.5%)	
Ishibashi	PBO,63	12 months	PBO, 0/63	NR
$(2017)^{56}$	ROM, 63		(0%)	
NCT01992159			ROM, 0/63	
			(0%)	

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
TPTD vs. PBO				
Orwoll 2003 ⁵⁸	PBO, 147	Median 11	PBO, 0/147	NR
	TPTD, 151	months	(0%)	
			TPTD, 2/151	
			(1.3%)	
Miyauchi et al.	PBO, 67	24 months	0/67 (0%)	NR
2010 ⁵⁹	TPTD, 136		0/136 (0%)	
	Both for 12			
	months then			
	TPTD open-			
	label (both			
	groups) for 12			
	months			
Miyauchi et al.	PBO,38	6 months	0/38 (0%)	NR
200860	TPTD, 39		0/39 (0%)	

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
ACTIVE ⁹⁶	PBO,820	18 months	5/820 (0.6%)	NR
NCT01343004	TPTD, 818		3/818 (0.4%)	
Leder 2015 ⁶²	PBO, 45	6 months plus	6 months	NR
	TPTD, 45	a further 6-	PBO, 0/45	
	Open-label	month	(0%)	
		extension to	TPTD, 0/45	
		12 months	(0%)	
			12 months NR	
Neer 2001 ⁶³	PBO, 544	21 months	NR	Reports no
NCT00670501	TPTD months,	(stopped		significant
	541	early)		difference.
				Data NR

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
Sethi 2008 ⁶⁴	Control	6 months	0/41 (0%)	Reports no
NCT00500409	(Calcium +		0/41 (0%)	significant
	Vitamin D), 41			difference.
	TPTD and			
	Calcium +			
	Vitamin D, 41			
Head-to-head				
non-				
bisphosphonates				
DATA ⁶⁵	DEN, 34	12 months	NR	NR
	TPTD, 36			
DATA ⁶⁵	DEN, 34	24 months	NR	NR
NCT00926380	TPTD, 36			

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
DATA-	DEN, 27	24 to 48	NR	NR
SWITCH ⁶⁶	TPTD, 27	months		
	Both for 24			
	months then			
	DEN switched			
	to TPTD and			
	TPTD switched			
	to DEN open-			
	label for 12			
	months			
EUROFORS	All TPDT for 12	24 months	NR	NR
Eastell 200967	months then:			
	Control (no			
	active			
	treatment), 102			
	TPTD, 304			
	RLX, 97			

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
STRUCTURE ⁶⁸	ROM, 218	12 months	1/218 (0.5%)	NR
	TPTD, 214		1/214 (0.5%)	
McClung 2014 ⁶⁹	ROM, 51 (blind)	12 months	ROM, 0/51	NR
	TPTD, 55		(0%)	
	(open-label)		TPTD, 0/54	
	Pooled PBO		(0%)	
	(mix of ALN,		PBO, 1/50	
	TPTD and ROM		(2%)	
	administrations),		ALN, 0/51	
	50 (blind)		(0%)	
	ALN, 51 (open-			
	label)			
DEN vs.				
Bisphosphonates				
DECIDE ⁷⁰	ALN, 586	12 months	1/593 (0.2%)	NR
	DEN,593		1/586 (0.2%)	(not
	Both plus PBO			significant)

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
STAND Kendler	ALN, 251	12 months	ALN, 0/249	p=1.0000
2010 ⁷¹	DEN, 253		(0%)	
			DEN, 1/253	
			(0.4%)	
DAPS Kendler	ALN, 124	12 months	NR	NR
201172, 111	DEN, 126			
	Open-label			
McClung 2006 ⁷³	PBO for	12 months	PBO, 0/46	NR
	abaloparatide		(0%)	
	s.c. every 3		ALN, 0/46	
	months, 46		(0%)	
	ALN open-		DEN, 0/47	
	label, 47		(0%)	
	DEN, 47			

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
Recknor 2013 ⁷⁴	IBN, 416	12 months	IBN, 1/410	p=0.299
	DEN, 417		(0.2%)	
			DEN, 0/411	
			(0%)	
Saag 2018 ⁷⁵	RIS, 384	12 months	RIS, 9/384	NR
	DEN, 394		(2.34%)	
	Both with PBO		DEN, 13/394	
			(3.30%)	
			NCT01575873	
Miller 2016 ⁷⁶	ZOL, 322	12 months	Fatal AEs	NR
	DEN, 321		ZOL, 1/320	
	Both with PBO		(0.3%)	
			DEN, 0/320	
			(0.0%)	

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
RLX vs.				
Bisphosphonates				
EFFECT	ALN, 246	12 months	ALN, 0/246	NR
(International	RLX, 241		(0%)	(not
excluding US)			RLX, 1/241	significant)
Sambrook 200477			(<1%)	
EFFECT (US)	ALN, 223	12 months	NR	NR
Luckey 200478	RLX, 233			
	Both groups			
	received PBO			
Johnell 2002 ⁷⁹	PBO (ALN and	12 months	NR	NR
	RLX), 82			
	ALN, 83			
	RLX, 82			
	ALN and RLX			
	received PBO			

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
Muscoso 2004 ⁸⁰	ALN, 1000	24 months	NR	NR
	RIS, 100			
	RLX, 100			
	All daily			
EVA Recker	ALN, 716	24 months	ALN, 1/716	NR
2007 ⁸¹	RLX, 707		(<1%)	(not
			RLX, 1/707	significant)
			(<1%)	
Sanad 2011 ⁸²	ALN, 44	12 months	NR	NR
	RLX, 46			
Michalska	Open-label	12 months	NR	NR
2006 ⁸³	ALN, 33	followed by		
	Blind	12 months		
	PBO, 33	open-label		
	RLX, 33	extension		

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
ROM vs.				
Bisphosphonates				
ARCH Saag	ALN, 2014	12 months	0-12 months	NR
2017 ⁸⁴	ROM, 2040	from	ALN, 21/2014	
	Both for 12	randomisation	(1.0%)	
	months then	then a further	ROM,	
	ALN open-label	12 months	30/2040	
	(both groups)	open-label	(1.5%)	
	for 12 months	following	0-24 months	
		treatment	ALN/ALN,	
		switching	90/2014	
			(4.5%)	
			ROM/ALN,	
			90/2040	
			(4.4%)	
TPTD vs.				
Bisphosphonates				

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
FACT McClung	ALN, 101	18 months	NR	NR
2005 ⁸⁵	TPTD, 102			
	Both with PBO			
Saag 2009 ⁸⁶	ALN, 214	36 months	ALN, 4/214	NR
	TPTD, 214		(1.87%)	(not
	Both with PBO		TPTD 2/214	significant)
			(0.93%)	
			NCT00051558	
Panico 2011 ⁸⁷	ALN, 39	18 months	NR	NR
	TPTD, 42			
	Open-label			
EuroGIOPs	RIS, 47	18 months	RIS, 1/47	p=0.613
Glüer 2013 ⁸⁸	TPTD, 45		(2.1%)	
	Open-label		TPTD, 2/45	
			(4.4%)	

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
Anastasilakis	RIS, 22	12 months	NR	NR
2008 ⁸⁹	TPTD, 22			
	Open-label			
Walker 201390	RIS, 10	18 months	NR	NR
	TPTD, 9			
	Both with PBO			
Hadji 2012 ⁹²	RIS, 350	18 months	RIS, 5/350	p=0.75
	TPTD, 360		(1.4%)	
	Both with PBO		TPTD, 4/360	
			(1.1%)	
VERO Kendler	RIS, 680	24 months	RIS, 7/680	p=0.13
2018 ¹⁰⁰	TPTD, 680		(1.0%)	
	Both with PBO		TPTD, 15/690	
			(2.2%)	

Trial name	Treatment arms	Follow-up	Overall	Reported
/Author/date	(n=)		Mortality	between
			n/N (%)	group
				difference
MOVE	RIS, 110	6 months	RIS, 5/110	p=0.446
Aspenberg	TPTD, 106		(4.5%)	
201699	Both with PBO		TPTD, 2/106	
	Blind until 6		(1.9%)	
MOVE	months then	24 months	RIS, 7/110	p=0.171
Malouf-Sierra	open-label		(6.4%)	
2017 ⁹³			TPTD, 2/106	
			(1.9%)	
Cosman 2011 ⁹⁴	ZOL, 137	12 months	ZOL, 1/137	NR
	TPTD, 137		(<1%)	
	Only TPTD		TPTD, 0/137	
	received PBO		(0%)	
	1	1	1	

ALN, Alendronate 10 mg daily or 70 mg weekly; CON, control; DEN, Denosumab 60 mg s.c. every 6 months; IBN, Ibandronate 150 mg oral every month; NR, not reported; PBO, placebo; RLX, Raloxifene 60 mg daily; ROMO, Romosozumab 210 mg s.c. monthly; RIS, Risedronate 5 mg daily or 35 mg weekly; s.c., subcutaneous; TPTD, Teriparatide 20 ug s.c. daily; ZOL, Zoledronate 5 mg iv annually. ACTIVE, Abaloparatide Comparator Trial In Vertebral Endpoints; ADAMO, DEN Versus Placebo in Males With Osteoporosis; ARCH, Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk; BRIDGE, Phase 3 randomized placeBo-contRolled double-blind study evaluatIng the efficacy anD safety of ROMO in treating mEn with osteoporosis; DAPS, DEN Adherence Preference Satisfaction; DATA, DEN and TPTD Administration; DECIDE, Determining Efficacy: Comparison of Initiating DEN versus ALN; DIRECT, DEN fracture Intervention Randomized placebo Controlled Trial; EFFECT, EFficacy of FOSAMAX versus EVISTA Comparison Trial; EuroGIOPS, acronym meaning not reported; EUROFORS, European Study of Forsteo; EVA, Evista ALN Comparison trial; FACT, Forteo ALN Comparator Trial; FRAME, Fracture Study in Postmenopausal Women with Osteoporosis; FREEDOM, Fracture Reduction Evaluation of DEN in Osteoporosis; MORE, European Study of Forsteo; MOVE, acronym meaning not reported; STAND, Study of Transitioning from ALN to DEN; STRUCTURE, Study to Evaluate the Effect of Treatment With ROMO or TPTD in Postmenopausal Women; VERO, VERtebral fracture treatment comparisons in Osteoporotic women

Table 22:	Adverse events and serious adverse events

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
DEN vs. PBO						
FREEDOM	PBO, 3876	36 months	PBO, 972/3876	p=0.61	PBO, 3607/3876	p=0.91
Cummings 2009 ⁴²	DEN, 3886		(25.1%)		(93.1%)	
Bone 2017 ¹⁰³	Both every 6 months		DEN, 1004/3886		DEN, 3605/3886	
			(25.8%) ⁴²		(92.8%) ⁴²	
ADAMO	PBO, 120	12 months	PBO, 10/120	NR	PBO, 84/120	NR
Orwoll 2012 ⁴³	DEN, 120		(8.3%)		(70.0%)	
	Both for 12 months then DEN		DEN, 11/120		DEN, 86/120	
	open-label (both groups) for 12		(9.2%)		(71.7%)	
	months					
ADAMO	PBO, 116	12-24 months	PBO, 5/116 (4%)	NR	PBO, 60/116	NR
Langdahl 2015 ¹¹⁰	DEN, 111		DEN, 9/111 (8%)		(52%)	
	Both for 12 months then DEN				DEN 70/111	
	open-label (both groups) for 12				(63%)	
	months					

Trial name	Treatment arms	Follow-up	One or	more	Reported	One or	more	Reported
/Author/date	(n=)		SAE(s)		between	AE(s)		between
			n/N (%)		group	n/N (%)		group
					difference			difference
DIRECT	PBO,481	24 months	PBO,	68/481	NR	PBO,	446/481	NR
Nakamura 2014 ⁴⁴	DEN, 475		(14.1%)			(92.7%)		
			DEN,	66/475		DEN,	448/475	
			(13.9%)			(94.3%)		
DIRECT ¹⁰⁵	PBO, 406	24-36 months	PBO,	27/406	NR	PBO,	339/406	NR
	DEN, 404		(6.7%)			(83.5%)		
	Both for 24 months then DEN		DEN,	30/404		DEN,	343/404	
	open-label (both groups) for 12		(7.4%)			(84.9%)		
	months							
Nakamura 2012 ⁴⁵	PBO, 55	12 months	PBO, 4/54	(7.4%)	NR	PBO,	49/54	NR
	DEN, 54		DEN,	6/53		(90.7%)		
			(11.3%)			DEN,	47/54	
						(87.0%)		
Koh 2016 ⁴⁶	PBO, 66	6 months	PBO, 1/66	(2%)	NR	PBO, 32/0	66 (48%)	NR
NCT01457950	DEN, 69		DEN, 2/69	9 (3%)		DEN, 38/	69 (55%)	

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
Koh 2016 ⁴⁶	PBO, 63	6-12 months	PBO/DEN, 3/63	NR	PBO/DEN, 29/63	NR
NCT01457950	DEN, 60		(5%)		(46%)	
	Both for 6 months then DEN open-		DEN, 1/60 (2%)		DEN, 22/60 (37%)	
	label (both groups) for 12 months					
RLX vs. PBO						
Adami 200847	All TPTD for 12 months then:	12 months	NR	NR	NR	NR
	PBO, 172					
	RLX, 157					
Morii <i>et al</i> 2003 ⁴⁸	PBO,97	12 months	PBO, 7 (7.2%)	p=0.452	PBO, TEAE	p=0.444
	RLX, 90		RLX, 5 (5.4%)		33 (34.0%)	(all AEs
					RLX, TEAE	[number NR]
					32 (34.8%)	p=0.851)
Liu 2004 ⁴⁹	PBO,102	12 months	PBO, 5/102	Not	NR	
	RLX, 102		(4.9%)	significant		
			RLX, 2/102	at p<0.05		
			(2.0%)			

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
Gorai <i>et al</i> 2012 ⁹⁵	Alfacalcidol, 44	12 months	NR	NR	Alfacalcidol 11/44	NR
	RLX, 45				(25.0%)	
	Alfacalcidol plus RLX, 48				RLX, 17/45	
					(37.8%)	
					Alfacalcidol plus	
					RLX 13/48	
					(27.1%)	
Silverman 2008	PBO,1885	36 months	PBO, 353/1885	NR	PBO, 1813/1885	NR
NCT00205777 ⁵¹	RLX, 1849		(18.7%)		(96.2%)	
			RLX, 344/1849		RLX, 1775/1885	
			(18.6%)		(96.0%)	
MORE Ettinger	PBO,2576	36 months	NR	NR	NR	NR
1999/Muscoso	RLX, 2557					
2002 ^{52, 101}						
Lufkin 1998 ⁵³	Control (no active treatment), 48	12 months	NR			
	RLX, 48					

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
Mok 2011 ⁵⁴	PBO,57	12 months	NR			
NCT00371956	RLX, 57					
ROMO vs. PBO						
BRIDGE	PBO,82	12 months	TEAE PBO, 10/81	NR	TEAE PBO, 65/81	NR
NCT0218617157	ROMO, 163		(12.3%)		(80.2%)	
			ROMO, TEAE		TEAE ROMO	
			21/163 (12.9%)		123/163 (75.5%)	

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
FRAME	PBO, 3591	12 months from	12 months	NR	12 months	NR
Cosman 2016 ⁵⁵	ROMO, 3589	randomisation	PBO, 312/3576		PBO, 2850/3576	
	For 12 months then DEN for 12	then a further 12	(8.7%)		(79.7%)	
	months open-label (both groups)	months following	ROMO, 344/3581		ROMO,	
		treatment	(9.6%)		2806/3581	
		switching	24 months		(78.4%)	
			PBO-DEN,		24 months	
			550/3576 (15.1%)		PBO-DEN,	
			ROMO-DEN,		3069/3576	
			565/3581 (15.8%)		(85.8%)	
					ROMO-DEN,	
					3053/3581	
					(85.3%)	
Ishibashi (2017) ⁵⁶	PBO,63	12 months	PBO, 4/63 (6.3%)	NR	PBO, 43/63	NR
NCT01992159	ROMO, 63		ROMO, 2/63		(68.3%)	
			(3.2%)		ROMO, 47/63	
					(74.6%)	

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
TPTD vs. PBO						
Orwoll 2003 ⁵⁸	PBO, 147	Median 11 months	NR	NR	Reports that the	NR
	TPTD, 151				overall incidence	
	Both daily				of adverse events	
					was similar across	
					groups. No data	
Miyauchi et al.	PBO, 67	24 months	PBO,13/67	Reported as	PBO, 64/67	Reported as
2010 ⁵⁹	TPTD, 136		(19.4%)	not	(95.5%)	not
	Both for 12 months then TPTD		TPTD, 12/136	significant.	TPTD, 125/136	significant. p-
	open-label (both groups) for 12		(8.8%)	p-value NR	(91.9%)	value NR
	months					
Miyauchi et al.	PBO,38	6 months	[not reported as		PBO, TEAE 29	NR
200860	TPTD, 39		number of		(76.3%)	
			participants with		TPTD, TEAE 33	
			SAE]		(84.6%)	

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
ACTIVE ⁹⁶	PBO,820	18 months	PBO, 90/820	NR	PBO, 718/820	NR
NCT01343004	TPTD, 818		(11.0%)		(87.6%)	
			TPTD, 82/818		TPTD, 727/818	
			(10.0%)		(88.9%)	
Leder 2015 ⁶²	PBO, 45	6 months plus a	6 months	NR	6 months	NR
	TPTD, 45	further 6-month	PBO, 1/45 (2.2%)		PBO, 32/45	
	Open-label	extension to 12	TPTD, 0/45 (0%)		(71.1%)	
		months	12 months		TPTD, 35/45	
			PBO, 1/45 (2.2%)		(77.8%)	
			TPTD, 0/45 (0%)		12 months	
					PBO, 16/45 (36%)	
					TPTD, 14/45	
					(30%)	
Neer 2001 ⁶³	PBO, 544	21 months	PBO, NR			
NCT00670501	TPTD months, 541	(stopped early)	[withdrew due to			
			AE 32 (6%)]			
			TPTD, NR			

Trial name	Treatment arms	Follow-up	One or more	Reported	One or	more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)		between
			n/N (%)	group	n/N (%)		group
				difference			difference
Sethi 2008 ⁶⁴	Control (Calcium + Vitamin D), 41	6 months	CON, 0/41 (0%	Reported as	CON,	9/41	Reported as
NCT00500409	TPTD and Calcium + Vitamin D,		TPTD, 0/41 (0%)	not	(21.9%)		not
	41			significant.	TPTD,	9/41	significant. p-
				p-value NR	(21.9%)		value NR
Head-to-head							
non-							
bisphosphonates							
DATA ⁶⁵	DEN, 34	12 months	DEN, 1/34 (2.9%)		NR		
	TPTD, 36		TPTD, NR – 3				
			events				
DATA ⁶⁵	DEN, 34	24 months	DEN, 1/33 (3.0%)	NR	TPTD,	5/31	NR
NCT00926380	TPTD, 36		TPTD, 2/31		(16.1%)		
			(6.5%)		DEN,	4/33	
					(12.1%)		

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
DATA-	DEN, 27	24 to 48 months	DEN/TPTD, 4/27	NR	NR	NR
SWITCH ⁶⁶	TPTD, 27		(14.8%)			
	Both for 24 months then DEN		TPTD/DEN, 6/27			
	switched to TPTD and TPTD		(22.2%)			
	switched to DEN open-label for 12					
	months					
STRUCTURE ⁶⁸	ROMO, 218	12 months	TPTD, 23/214	NR	TPTD, 148/214	NR
	TPTD, 214		(11%)		(69%)	
			ROMO, 17/218		ROMO, 164/218	
			(8%)		(75%)	
EUROFORS ⁶⁷	All TPDT for 12 months then:	24 months	NR	NR	CON, TEAE	Not
	Control (no active treatment), 102				56/102 (54.9%)	significant at
	TPTD, 304				TPTD, TEAE	p<0.05
	RLX, 97				174/304 (57.0%)	
					RLX, TEAE	
					53/97 (54.6%)	

Trial name	Treatment arms	Follow-up	One or	more	Reported	One or	more	Reported
/Author/date	(n=)		SAE(s)		between	AE(s)		between
			n/N (%)		group	n/N (%)		group
					difference			difference
McClung 2014 ⁶⁹	ROMO, 51 (blind)	12 months	ROMO,	5/51	NR	ROMO,	42/51	NR
	TPTD, 55 (open-label)		(10%)			(82%)		
	Pooled PBO (mix of ALN, TPTD		TPTD, 5/54	(9%)		TPTD,	37/54	
	and ROMO administrations), 50		PBO, 7/50 ((14%)		(69%)		
	(blind)		ALN, 4/51	(8%)		PBO, 45/3	50 (90%)	
	ALN, 51 (open-label)					ALN, 44/	51 (86%)	
DEN vs.								
Bisphosphonates								
DECIDE ⁷⁰	ALN, 586	12 months	ALN,	37/586	0.71	ALN,	482/586	Nonsig
	DEN,593		(6.3%)			(82.3%)		p=0.60
	Both plus PBO		DEN,	34/593		DEN,	480/593	
			(5.7%)			(80.9%)		
STAND Kendler	ALN, 251	12 months	ALN,	16/249	p=0.8546	ALN,	196/249	p=0.8294
2010 ⁷¹	DEN, 253		(6.4%)			(78.7%)		
			DEN,	15/253		DEN,	197/253	
			(5.9%)			(77.9%)		

Trial name	Treatment arms	Follow-up	One or	more	Reported	One of	r more	Reported
/Author/date	(n=)		SAE(s)		between	AE(s)		between
			n/N (%)		group	n/N (%)		group
					difference			difference
DAPS Kendler	ALN, 124	12 months	ALN,	5/117	NR	ALN,	75/117	p=0.403
2011 ^{72, 111}	DEN, 126		(4.3%)			(64.1%)		
	Open-label		DEN,	3/125		DEN,	90/125	
			(2.4%)			(72.0%)		
McClung 2006 ⁷³	PBO for abaloparatide s.c. every 3	12 months	PBO, 2/46	(4.3%)	NR	PBO,	41/46	NR
	months, 46		ALN, 1/46	(2.2%)		(89.1%)		
	ALN open-label, 47		DEN, NR			ALN,	42/46	
	DEN, 47		18/314	(5.7%)		(91.3%)		
			across all	l DEN		DEN, NR		
			dosing arm	IS		274/314	(87.3%)	
						across a	all DEN	
						dosing ar	ms	
Recknor 2013 ⁷⁴	IBN, 416	12 months	IBN,	22/410	p=0.046	IBN,	230/410	p=0.635
	DEN, 417		(5.4%)			(56.1%)		
			DEN,	39/411		DEN,	245/411	
			(9.5%)			(59.6%)		

Trial name	Treatment arms	Follow-up	One or	more	Reported	One of	r more	Reported
/Author/date	(n=)		SAE(s)		between	AE(s)		between
			n/N (%)		group	n/N (%)		group
					difference			difference
Saag 2018 ⁷⁵	RIS, 384	12 months	RIS, 65/38	4 (17%)	NR	RIS,	265/384	NR
	DEN, 394		DEN,	63/394		(69%)		
	Both with PBO		(16%)			DEN,	285/394	
						(72%)		
Miller 2016 ⁷⁶	ZOL, 322	12 months	ZOL	29/320	NR	ZOL,	199/320	NR
	DEN, 321		(9.1%)			(62.2%)		
	Both with PBO		DEN,	25/320		DEN,	199/320	
			(7.8%)			(62.2%)		
RLX vs.								
Bisphosphonates								
EFFECT	ALN, 246	12 months	ALN,	11/246	p=0.543	ALN,	154/246	p=0.573
(International	RLX, 241		(4.5%)			(62.6%)		
excluding US)			RLX,	14/241		RLX,	157/241	
Sambrook 200477			(5.8%)			(65.1%)		

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
EFFECT (US)	ALN, 223	12 months	ALN, 11/221	p=0.43	ALN, 164/221	p=0.83
Luckey 2004 ⁷⁸	RLX, 233		(5.0%)		(74.2%)	
	Both groups received PBO		RLX, 16/230		RLX, 173/230	
			(7.0%)		(75.2%)	
Johnell 2002 ⁷⁹	PBO (ALN and RLX), 82	12 months	NR	NR	NR	NR
	ALN, 83					
	RLX, 82					
	ALN and RLX received PBO					
Muscoso 2004 ⁸⁰	ALN, 1000	24 months	NR	NR	NR	NR
	RIS, 100					
	RLX, 100					
	All daily					
EVA Recker	ALN, 716	24 months	NR	NR	ALN, 397/716	p=0.92
2007 ⁸¹	RLX, 707				(55.5%)	
					RLX, 390/707	
					(55.2%)	

Trial name	Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/date	(n=)		SAE(s)	between	AE(s)	between
			n/N (%)	group	n/N (%)	group
				difference		difference
Sanad 2011 ⁸²	ALN, 44	12 months	NR	NR	NR	NR
	RLX, 46					
Michalska 2006 ⁸³	Open-label	12 months	NR	NR	PBO, 2/33 (6%)	p=0.126
	ALN, 33	followed by 12			ALN, 4/33 (12%)	
	Blind	months open-label			RLX, 8/33 (24%)	
	PBO, 33	extension				
	RLX, 33					

Trial name		Treatment arms	Follow-up	One or more	Reported	One or more	Reported
/Author/dat	te	(n=)		SAE(s)	between	AE(s)	between
				n/N (%)	group	n/N (%)	group
					difference		difference
ROMO	vs.						
Bisphospho	onates						
ARCH	Saag	ALN, 2014	12 months from	0-12 months	NR	0-12 months	NR
2017 ⁸⁴		ROMO, 2040	randomisation	ALN, 278/2014		ALN, 1584/2014	
		Both for 12 months then ALN	then a further 12	(13.8%)		(78.6%)	
		open-label (both groups) for 12	months open-label	ROMO, 262/2040		ROMO,	
		months	following	(12.8%)		1544/2040	
			treatment	0-24 months		(75.7%)	
			switching	ALN/ALN,		0-24 months	
				605/2014 (30.0%)		ALN/ALN,	
				ROMO/ALN,		1784/2014	
				586/2040 (28.7%)		(88.6%)	
						ROMO/ALN,	
						1766/2040	
						(86.6%)	

Trial name	Treatment arms	Follow-up	One or	more	Reported	One or	more	Reported
/Author/date	(n=)		SAE(s)		between	AE(s)		between
			n/N (%)		group	n/N (%)		group
					difference			difference
TPTD vs.								
Bisphosphonates								
FACT McClung	ALN, 101	18 months	NR		NR	NR		NR
2005 ⁸⁵	TPTD, 102							
	Both with PBO							
Saag 2009 ⁸⁶	ALN, 214	36 months	ALN, 64	4/214	p=0.518	ALN,	184/214	p=0.116
	TPTD, 214		(30%)			(86%)		
	Both with PBO		TPTD, 70	0/214		TPTD,	194/214	
			(33%)			(91%)		
Panico 2011 ⁸⁷	ALN, 39	18 months	NR		NR	NR		NR
	TPTD, 42							
	Open-label							
EuroGIOPs Glüer	RIS, 47	12 months	RIS, Z	22/47	p=0.089	RIS,	35/45	p=0.080
2013 ⁸⁸	TPTD, 45		(46.8%)			(74.5%)		
	Open-label		TPTD,	13/45		TPTD,	25/47	
			(28.9%)			(55.6%)		

Trial name	Treatment arms	Follow-up	One or	more	Reported	One or	more	Reported
/Author/date	(n=)		SAE(s)		between	AE(s)		between
			n/N (%)		group	n/N (%)		group
					difference			difference
Anastasilakis	RIS, 22	12 months	NR		NR	RIS, 7/22	(33.3%)	Not
2008 ⁸⁹	TPTD, 22					TPTD,	11/22	significant at
	Open-label					(39.1%)		p<0.05
Walker 201390	RIS, 10	18 months	NR		NR	NR		NR
	TPTD, 9							
	Both with PBO							
Hadji 2012 ⁹²	RIS, 350	18 months	RIS,	65/350	p=0.27	RIS,	285/350	p=0.45
	TPTD, 360		(18.6%)			(81.4%)		
	Both with PBO		TPTD,	55/360		TPTD,	285/360	
			(15.3)			(79.2%)		
VERO Kendler	RIS, 680	24 months	RIS,	115/680	p=0.13	RIS,	500/680	p=0.76
2018100	TPTD, 680		(16.9%)			(73.5%)		
	Both with PBO		TPTD,	137/680		TPTD,	495/680	
			(20.1%)			(72.8%)		

Trial name	Treatment arms	Follow-up	One or	more	Reported	One or	more	Reported
/Author/date	(n=)		SAE(s)		between	AE(s)		between
			n/N (%)		group	n/N (%)		group
					difference			difference
MOVE	RIS, 110	6 months	RIS,	21/110	p=0.271	RIS,	50/110	p=0.683
Aspenberg 2016 ⁹⁹	TPTD, 106		(19.1%)			(45.5%)		
	Both with PBO		TPTD,	14/106		TPTD,	52/106	
	Blind until 6 months then open-		(13.2%)			(49.1%)		
MOVE	label	24 months	RIS,	27/110	p=0.418	RIS,	58/110	p=0.684
Malouf-Sierra			(24.5%)			(52.7%)		
2017 ⁹³			TPTD,	21/106		TPTD,	59/106	
			(19.8%)			(55.7%)		
Cosman 2011 ⁹⁴	ZOL, 137	12 months	ZOL,	20/137	NR	ZOL,	115/137	NR
	TPTD, 137		(14.60%)			(83.94%)		
	Only TPTD received PBO		TPTD,	15/137		TPTD,	96/137	
			(10.95%)			(70.07%)		
			NCT0043	9244		NCT0043	9244	

ALN, Alendronate; DEN, Denosumab; NR, not reported; PBO, placebo; RLX, Raloxifene; s.c., subcutaneous; TPTD, Teriparatide; ZOL< Zoledronate 5 mg iv

ACTIVE, Abaloparatide Comparator Trial In Vertebral Endpoints; ADAMO, DEN Versus Placebo in Males With Osteoporosis; ARCH, Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk; BRIDGE, Phase 3 randomized placeBo-contRolled double-blind study evaluatIng the efficacy anD safety of ROMO in treatinG mEn with osteoporosis; DAPS DEN Adherence Preference Satisfaction; DATA, DEN and TPTD Administration; DIRECT, DEN fracture Intervention Randomized placebo Controlled Trial; EFFECT, EFficacy of FOSAMAX versus EVISTA Comparison Trial; EuroGIOPS, acronym meaning not reported; EUROFORS, European Study of Forsteo; EVA, Evista ALN Comparison trial; FACT, Forteo ALN Comparator Trial; FRAME, Fracture Study in Postmenopausal Women with Osteoporosis; FREEDOM, Fracture Reduction Evaluation of DEN in Osteoporosis; MORE, European Study of Forsteo; MOVE, acronym meaning not reported; STAND, Study of Transitioning from ALN to DEN; STRUCTURE, Study to Evaluate the Effect of Treatment With ROMO or TPTD in Postmenopausal Women; VERO, VERtebral fracture treatment comparisons in Osteoporotic women.

Trial	Intervention and	Follow-up	LS BMD change from baseline
	comparators	duration	Mean (SD)
	(n)	Months	reported between-group difference
Nakamura	Placebo	12	3.2 (NR)
201245	N=55		(estimated from graph) P<0.0001
	DEN		6.73 (NR)
	N=54		
Morii et al	Placebo	12	0.0 (SE0.3)
2003 ⁴⁸	N=97		Estimated from graph P<0.001
	RLX		3.5 (SE0.3)
	N=90		Estimated from graph
Gorai et al	Alfacalcidol	24	-0.8 (4.6)
2012 ⁵⁰	N=34		
	RLX		2.8 (3.9) Significant increase compared
	N=33		with alfacalcidol (p value NR)
	Alfacalcidol plus RLX		4.7 (4.4) Significant increase compared
	N=31		with alfacalcidol (p value NR)
Lufkin 1998 ⁵³	Control	12	1.44 (0.74) Non-significant
	N=48		P value NR
	RLX		1.34 (1.02)
	N=48		
Muscoso 2004 ⁸⁰	ALN	24	7.2% (1.9)
	N=1000		
	RIS		6.2% (2.0)
	N=100		
	RLX		2.4% (1.1)
	N=100		
Anastasilakis	RIS	12	3.3 (NR)
2008 ⁸⁹	N=22		Calculated
			Non-significant
			p value NR
	TPTD		5.9 (NR)
	N=22		Calculated

Table 23:LS BMD for studies not reporting FN BMD

NR= not reported; SD= standard deviation

Trial	Measure	Follow-	Treatment group	Results
		up		
FREEDOM	Osteoporosis	36	PBO	Change from baseline
118, 119	Assessment	months	N=NR	Mean
	Questionnaire-			Physical function -1.2
	Short Version			Emotional status -1.6
	(OPAQ-SV) 330			Back pain 4.3
			DEN	Change from baseline
			N=NR	Mean
			(N across both	Physical function -1.3
			groups	Emotional status -1.4
			Physical function	Back pain 4.1
			6152	
			Emotional status	Non-significant between
			6154	groups
			Back pain 6164)	P value NR
			118	
Silverman	Women's Health	36	РВО	Change from baseline
2008	Questionnaire	months	N=1179	Least squares mean (SE)
NCT002057	(WHQ)			0.005 (0.005)
77	331			
Clinicaltrials				
.gov				
			RLX	Change from baseline
			N=1168	Least squares mean (SE)
				0.005 (0.005)
				Non-significant between
				groups
				0.98
	European	36	PBO	Change from baseline
	Foundation for	months	N=1176	Least squares mean (SE) -
	Osteoporosis			0.35 (0.3)
	Quality of Life			

Appendix 6:	Health-related Quality of Life
-------------	--------------------------------

 Table 24:
 Published results of validated HRQoL measures

Questionnaire	up		
Questionnaire			
(QUALEFFO) ³³²			
		RLX	Change from baseline
		N=1168	Least squares mean (SE)
			0.26 (0.3)
			Non-significant between
			groups
			P=0.11
Euro Quality of	36	PBO	Change from baseline
Life-5 Dimensions	months	N=1120	Least squares mean (SE)
(EQ-5D) Visual			4.66 (1.70)
Analog Scale			
(VAS) ³³³			
		RLX	Change from baseline
		N=1092	Least squares mean (SE)
			1.60 (1.71)
			Non-significant between
			groups
France Orgelitze of	26	DD()	P=0.16
			Change from baseline
	monuns	N-1128	Least squares mean (SE) -
			0.00 (0.01)
Score			
		RLX	Change from baseline
		N=1111	Least squares mean (SE) -
			0.01 (0.01)
			Non-significant between
			groups
_	Life-5 Dimensions (EQ-5D) Visual Analog Scale (VAS) ³³³	Life-5 Dimensions months (EQ-5D) Visual Analog Scale (VAS) ³³³ Euro Quality of 36 Life-5 Dimensions months (EQ-5D)- Health State Profile Utility	Euro Quality of Life-5 Dimensions (EQ-5D) Visual Analog Scale (VAS)33336PBO N=1120RLX N=1092RLX N=1092Euro Quality of Life-5 Dimensions (EQ-5D)- Health State Profile Utility Score33336PBO N=1128Image: RLX N=1092N=1128RLX N=1128N=1128

Trial	Measure	Follow-	Treatment group	Results
		up		
				P=0.92
Panico	QUALEFFO-41 ³³²	18	ALN	Change from baseline
2011 ⁸⁷		months	N=39	Pain -9.7%
				Everyday activities 11%
				Domestic job 2.9%
				Locomotor function 11.5%
				Social activities 105%
				Health perception 12.8%
				Mood 1.8%
			TPTD	Change from baseline
			N=42	Pain -22.0%
				Everyday activities 27.3%
				Domestic job 29%
				Locomotor function 37.8%
				Social activities 28.4%
				Health perception 33.9%
				Mood 29.7%
VERO ⁹¹	Euro Quality of	24	RIS plus placebo	Change from baseline
Clinicaltrials	Life-5 Dimensions	months		Least squares mean
.gov	(EQ-5D) Visual			0.04
	Analog Scale			
	(VAS) UK ³³³			Baseline 0.62 (SD 0.228);
				24months 0.68 (SD 0.205)
			TPTD plus placebo	Change from baseline
				Least squares mean
				0.06
				Baseline 0.59 (SD 0.243);
				24months 0.65 (SD 0.249)
				Between groups -0.0
				(95%CI -0.03, 0.02)
				p=0.757

Trial	Measure	Follow-	Treatment group	Results
		up		
	Questionnaire			Baseline 31.8 (1.53); 26
	Physical Function			weeks 45.8 (1.55)
	Component			
	(post-surgery) ³³⁴			
			TPTD plus placebo	Mean (SD)
				Baseline 30.1 (1.51); 26
				weeks 46.4 (1.59)
				Between groups p=0.267

NR=not reported; SE = standard error

The UCB CS reported that in both the FRAME (ROMO vs. PBO) and the ARCH (ROMO vs. ALN) studies there was between treatment groups in HRQoL, ³⁷

The Amgen CS ⁹⁸ reported that DECIDE found difference between DEN and ALN as measured by EQ-5D.

Appendix 7: Specific adverse events

Bisphosphonate studies - specific adverse events

Three additional bisphosphonate RCTs were identified by the search (Table 25). Of these, two RCTs assessed atypical femoral fractures and found no incidences of atypical femoral fractures in participants treated with ZOL compared with ALN¹³⁸ or ZOL compared with placebo.¹³¹ One study assessed osteonecrosis of the jaw and found no incidences in participants treated with ZOL or placebo.¹³¹

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
TRIO Paggiosi 2014 ¹³⁹	ALN, 57 IBN, 57 RIS, 58	24 months	NR	NR	NR	NR
Tan 2016	ALN, 53 ZOL, 52	36 months	NR	NR	NR	ALN, 0/53 (0%) ZOL, 0/52 (0%)
ZONE ¹³¹	PBO, 331 ZOL, 330	24 months	NR	NR	PBO, 0/331 ZOL, 0/330	PBO, 0/331 (0%) ZOL, 0/330 (0%)

 Table 25:
 Specific AEs Additional bisphosphonate trials

ALN, ALN; PBO, placebo; RIS, RIS; VTE, venous thromboembolism; ZOL, zoledronic acid

Non-bisphosphonate studies– specific adverse events

Venous thromboembolism

Across the studies comparing a non-bisphosphonate to placebo, five reported thrombotic events of venous origin,^{44, 47, 48, 51, 52} and one study reported on arterial limb thrombosis.⁴³ Across these studies event rates were $\leq 1\%$. The estimated between-group differences were not statistically significant at p<0.05 (p-values not presented), with the exception of one study comparing RLX to placebo at 36 months in postmenopausal women with osteoporosis, in favour of placebo (estimated p=0.005).⁵²

None of the bisphosphonates compared head-to-head studies reported on venous thromboembolism.

Across the studies comparing a non-bisphosphonate to a bisphosphonate, two studies reported on thrombosis but did not specify whether this was venous or arterial in origin,^{73, 75} eight reported on thrombotic events of venous origin,^{75, 78, 81, 82, 92, 100, 102, 335} and one reported on Peripheral artery thrombosis.⁷⁶ Across these studies event rates were $\leq 3\%$. The estimated between-group differences were not statistically significant at p<0.05 (p-values not presented).

Stroke

Across the studies comparing a non-bisphosphonate to placebo, four reported on stroke.^{42, 51, 57, 110} Across these studies, event rates were $\leq 2\%$ and no statistically significant between-group differences were evident (reported or estimated).

None of the bisphosphonates compared head-to-head studies reported on stroke.

Across the studies comparing a non-bisphosphonate to placebo, eight reported on stroke.^{73, 75, 84, 92, 94, 100, 102, 335} Across these studies event rates were $\leq 2\%$. The estimated between-group differences were not statistically significant at p<0.05 (p-values not presented). However, the estimated between-group difference between in stoke for one of these studies comparing ROMO to ALN in postmenopausal women with osteoporosis was statistically significant at 24 months following treatment switching to ALN, in favour of the continued ALN group (p=0.004).⁸⁴

Osteonecrosis of the jaw

Osteonecrosis of the jaw was reported by nine studies comparing a non-bisphosphonate to placebo,^{42,} ^{43, 45, 46, 55-57, 110} one study comparing non-bisphosphonates head-to-head,⁶⁸ and three studies comparing a non-bisphosphonate with a bisphosphonate.^{72, 75, 84} Across these studies, event rates were $\leq 1\%$ and no statistically significant between-group differences were evident (reported or estimated)

Atypical femoral fracture

Atypical femoral fracture was reported by nine studies comparing a non-bisphosphonate to placebo,^{42,} ^{43, 46, 55-57, 105, 110, 336} one study comparing non-bisphosphonates head-to-head,⁶⁸ and three studies comparing a non-bisphosphonate with a bisphosphonate.^{75, 76, 84, 108} Across these studies, event rates were $\leq 1\%$ and no statistically significant between-group differences were evident (reported or estimated).

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
DEN vs. PBO						
FREEDOM Cummings 2009 ⁴² PM women with OP	PBO, 3607 DEN, 3886	36 months	NR	PBO, 54/3607 (1.4%) DEN, 56/3886 (1.4%) p=0.89 ⁴²	PBO, 0/3607 (0%) DEN, 0/3886 (0%) ⁴²	PBO, 0/3607 (0%) DEN, 0/3886 (0%) ³³⁷
ADAMO Orwoll 2012 ⁴³ Men with OP	PBO, 120 DEN, 120	12 months	Arterial limb thrombosis PBO, 0/120 (0%) DEN, 1/120 (1.7%)	NR	PBO, 0/120 (0%) DEN, 0/120 (0%)	PBO, 0/120 (0%) DEN, 0/120 (0%)
ADAMO Langdahl 2015 ¹¹⁰ Men with OP	PBO to DEN, 120 DEN to DEN, 120	24 months including 12 OLE	NR	Transient ischemic attack PBO/DEN, 1/120 (<1%) DEN/DEN, 0/120 (0%)	PBO/DEN, 0/120 (0%) DEN/DEN, 0/120 (0%)	PBO/DEN, 0/120 (0%) DEN/DEN, 0/120 (0%)
DIRECT Nakamura 2014 ³³⁶ Women and men with OP	PBO, 481 DEN, 475	24 months	1/481 (0.21%) 0/475 (0%) NCT00680953.	NR	PBO, 0/481 (0%) DEN, 0/475 (0%)	PBO, 0/481 (0%) DEN, 0/475 (0%)
DIRECT Sugimoto 2015 ¹⁰⁵ Women and men with OP	PBO to DEN, 406 DEN to DEN, 404 12 months open- label	24-36 months	NR	NR	PBO/DEN, 1/406 (0.2%) (0%) DEN/DEN, 0/404 (0%)	PBO/DEN, 0/406 (0%) DEN/DEN, 0/404 (0%)

Table 26:Specific AEs non-bisphosphonate studies

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures
						n/N (%)
Nakamura 2012 ⁴⁵	PBO, 54	12	NR	NR	PBO, 0/54 (0%)	NR
PM women with OP	DEN, 54				DEN, 0/54 (0%)	
Koh 2016 ⁴⁶	PBO, 66	6	NR	NR	PBO, 0/69 (0%)	PBO, 0/69
PM women with OP	DEN, 69				DEN, 0/69 (0%)	(0%)
						DEN, 0/69
						(0%)
Koh 2016 ⁴⁶	Entered OLE	6-12 OLE	NR	NR	PBO/DEN, 0/63	PBO/DEN,
PM women with OP	PBO to DEN, 63				(0%)	0/63 (0%)
	DEN to DEN, 60				DEN/DEN, 0/60	DEN/DEN,
					(0%)	0/60 (0%)
RLX. vs PBO						
Adami 200847	PBO, 172	12 months	PBO, 0/172 (0%)	NR	NR	NR
PM women with OP	RLX, 157		RLX, 1/157 (<1%)			
pre-treated with TPTD			retinal vein			
			thrombosis			
Morii 2003 ⁴⁸	PBO, 97	12	PBO, 0/97 (0%)	NR	NR	NR
PM women with OP	RLX, 90		RLX, 0/90 (0%)			
Liu 2004 ⁴⁹	PBO, 102	12	PBO, 0/102 (0%)	NR	NR	NR
PM women with OP	RLX, 102		RLX, 0/102 (0%)			
Gorai et al 201295	Alfacalcidol, 44	12	NR	NR	NR	NR
PM women with low	RLX, 45					
osteopenia	Alfacalcidol+RLX, 48					

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
Silverman 2008 ^{51, 329} PM women with OP	PBO, 1855 RLX, 1849	36	DVT PBO, 1/1855 (0.1%) RLX, 8/1849 (0.4%) PE PBO, 4/1855 (0.2%) RLX, 4/1849 (0.2%) Retinal PBO, 3/1855 (0.2%) RLX, 0/1849 (0%)	PBO, 20/1855 (1.1%) RLX, 15/1849 (0.8%)	NR	NR
MORE Ettinger 1999 ⁵² Women with OP	PBO, 2576 RLX, 2557	36	8/2576 (0.3%) 25/2557 (1.0%) Estimated p=0.005	NR	NR	NR
Lufkin 1998 ⁵³ PM women with OP	PBO, 48 RLX, 48	12	PBO, 0/48 (0%) RLX, 0/48 (0%)	NR	NR	NR
Mok 2011 ⁵⁴ PM women on long- term GC	PBO, 57 RLX, 57	12	PBO, 0/57 (0%) RLX, 0/57 (0%)	NR	NR	NR
ROMO. vs PBO						
FRAME Cosman 2016 ⁵⁵ PM women with OP	PBO, 3591 Romo, 3589	12	NR	NR	PBO, 0/3576 (0%) ROMO, 1/3581 (<0.1%)	PBO, 0/3576 (0%) ROMO, 1/3581 (<0.1%)

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
FRAME Cosman 2016 ⁵⁵ PM women with OP	PBO to DEN, 3591 ROMO to DEN, 3589 12 months open- label	24	NR	NR	PBO-DEN, 0/3576 (0%) ROMO-DEN, 2/3581 (<0.1%)	PBO-DEN, 0/3576 (0%) ROMO-DEN, 1/3581 (<0.1%)
Ishibashi 2017 ⁵⁶ PM women with OP	PBO, 63 ROMO, 63	12	NR	NR	PBO, 0/63 (0%) ROMO, 0/63 (0%	PBO, 0/63 (0%) ROMO, 0/63 (0%
BRIDGE ⁵⁷ Men with OP	PBO, 82 ROMO, 163	12	NR	PBO, 1/82 (1.2%) ROMO, 3/163 (1.8%)	PBO, 0/82 (0%) ROMO, 0/163 (0%)	PBO, 0/82 (0%) ROMO, 0/163 (0%)
TPTD. vs PBO						
ACTIVE Miller 2016 ⁹⁶ PM women with OP	PBO, 820 TPTD, 818	18 months	NR	NR	NR	NR
Orwoll 2003 ⁵⁸ Men with OP	PBO, 147 TPTD, 151	The study was stopped after a median duration of 11 months	NR	NR	NR	NR
Miyauchi 2010 ⁵⁹ Women and men with OP	PBO, 67 TPTD, 136	12	NR	NR	NR	NR
Miyauchi 2010 ⁵⁹ Women and men with OP	PBO to TPTD, 59 TPTD to TPTD, 119	24 months including 12 OLE	NR	NR	NR	NR
Miyauchi 2008 ⁶⁰ PM women with OP	PBO, 38 TPTD, 39	6 months	NR	NR	NR	NR

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
Leder 2015 ^{62, 338} PM women with OP	PBO, 45 TPTD, 45	6 months	NR	NR	NR	NR
Neer 2001 ⁶³ PM women with OP	PBO, 544 TPTD, 541	24	NR	NR	NR	NR
Sethi 2008 ⁶⁴ PM women with OP	Ca+Vit D, 41 TPTD Ca+Vit D, 41	6	NR	NR	NR	NR
Head-to-head non- bisphosphonates						
DATA Tsai 2013 ⁶⁵ PM women with OP	TPTD, 36 DEN, 34 Without PBO open-label	12	NR	NR	NR	NR
DATA Leder 2014 ¹⁰⁹ PM women with OP	TPTD, 36 DEN, 34 Without PBO open-label	24	NR	NR	NR	NR
EUROFORS Eastell 2009 ⁶⁷ PM women with OP pre-treated with TPTD	TPTD, 304 RLX, 97 CON ¹ , 102	24	NR	NR	NR	NR
STRUCTURE ⁶⁸ PM women with OP pre-treated with ALN	TPTD, 218 ROMO, 218 Without PBO open-label	12	NR	NR	TPTD, 0/218 (0%) ROMO, 0/218 (0%)	TPTD, 0/218 (0%) ROMO, 0/218 (0%)
McClung 2014 ⁶⁹ PM women with OP	PBO, 52 TPTD, 55 ROMO, 52 ALN, 51	12	NR	NR	NR	NR

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
DEN vs.						
Bisphosphonates						
DECIDE ⁷⁰	ALN, 586	12	NR	NR	NR	NR
PM women with OP	DEN, 593					
	Both with PBO					
STAND ⁷¹	ALN, 251	12 months	NR	NR	NR	NR
PM women with OP	DEN, 253					
already on ALN	Both with PBO					
DAPS ⁷²	ALN, 124	12 months	NR	NR	ALN, 0/117	NR
PM women with OP	DEN, 126				(0%)	
	Without PBO				DEN, 0/125	
DAPS ¹⁰⁸	<u> </u>	24 months	NR	NR	(0%)	
PM women with OP	Cross-over ALN to DEN, 92	24 months	INK	INK	ALN, 0/228 (0%)	ALN, 0/228 (0%)
	DEN to ALN, 102				DEN, 0/230	DEN, 0/230
	DEN 10 ALIN, 102				(0%)	(0%)
McClung 2006 ^{73, 339}	PBO for DEN, 46	12 months	Thrombosis	PBO, 0/46	NR	NR
PM women with OP	ALN, 47	12 months	PBO, 0/46	(0.00%)		
or osteopenia	DEN, 47		(0.00%)	ALN, 0/46		
or obteopenia			ALN, 0/46	(0.00%)		
			(0.00%)	DEN, 0/47		
			DEN, 0/47	(0.00%)		
			(0.00%)	()		
Recknor <i>et al</i> . 2013 ⁷⁴	IBN, 416	12 months	NR	NR	NR	NR
PM women with OP	DEN,417					
	Without PBO					

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
Saag 2018 ^{75, 340} Women and men on GC with OP or low BMD+fracture	RIS, 384 DEN, 394 Both with PBO	12 months	DVT RIS, 2/385 (0.52%) DEN, 0/394 (0.00%) Thrombosis RIS, 1/385 (0.26%) DEN, 0/394 (0.00%) NCT01575873	RIS, 1/384 (0.26%) DEN, 3/394 (0.76%) NCT01575873	RIS, 0/384 (0%) DEN, 0/394 (0%)	RIS, 0/384 (0%) DEN, 1/394 (<1%)
Miller <i>et al.</i> 2016 ^{76, 341} PM women with OP previously treated with bisphosphonates	ZOL, 322 DEN, 321 Both with PBO	12 months	Peripheral artery thrombosis ZOL, 1/320 (0.31%) DEN, 0/320 (0.00%) NCT01732770	NR	NR	ZOL, 1/320 (0.3%) DEN, 2/320 (0.6%)
RLX vs. Bisphosphonates						
EFFCT Sambrook 2004 ⁷⁷ (International not including US) PM women with OP	ALN, 246 RLX, 241 Both with PBO	12 months	NR	NR	NR	NR
EFFECT (US) ⁷⁸ PM women with OP	ALN, 223 RLX, 233 Both with placebo	12 months	ALN, 0/221 (0%) RLX, 1/230 (<1%)	NR	NR	NR

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
Johnell 2002 ⁷⁹ PM women with OP	PBO, 82 ALN, 83 RLX, 82	12 months	NR	NR	NR	NR
Muscoso 2004 ⁸⁰ PM women with OP	ALN, 1000 RLX, 100 RIS, 100 All daily open- label	24 months	NR	NR	NR	NR
EVA Recker 2007 ⁸¹ PM women with OP	ALN, 716 RLX, 707 Both with PBO	24 months	DVT ALN, 1/716 (<1%) Pulmonary embolism RLX, 1/707 (<1%)	NR	NR	NR
Sanad 2011 ⁸² PM women with OP	ALN weekly, 31 RLX, 35 Without PBO	12 months	DVT, 0/31 (0%) ALN, 1/35 (2.9%)	NR	NR	NR
Michalska 2006 ⁸³ PM women with OP previously treated with bisphosphonates	PBO, 33 RLX, 33 ALN, 33	12 months	NR	NR	NR	NR
ROMO vs. Bisphosphonates						
ARCH Saag 2017 ⁸⁴ PM women with OP	ALN, 2047 ROMO, 2046 Both with PBO	12	NR	ALN, 7/2014 (0.3%) ROMO, 16/2040 (0.8%)	ALN, 0/2014 (0 %) ROMO, 0/2040 (0%)	ALN, 0/2014 (0 %) ROMO, 0/2040 (0%)

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
ARCH Saag 2017 ⁸⁴ PM women with OP	ALN to ALN, 2047 ROMO to ALN, 2046 Open-label	24 including 12 months OLE	NR	ALN/ALN, 27/2014 (1.3%) ROMO/ALN, 45/2040 (2.2%) Estimated p=0.004	ALN/ALN, 1/2014 (<0.1%) ROMO/ALN, 1/2040 (<0.1%)	ALN/ALN, 4/2014 (<0.2%) ROMO/ALN, 2/2040 (<0.1%)
TPTD vs. Bisphosphonates						
FACT ⁸⁵ PM women with OP	ALN, 101 TPTD, 102 Both with PBO	18 months	NR	NR	NR	NR
Saag 2009 ¹⁰² Langdahl 2009 ^{106,} ³⁴² Women and men on GC with OP or low BMD+fracture	ALN, 214 TPTD, 214 Both with PBO	36	DVT ALN, 1/214 (0.47%) TPTD. 2/214 (0.93%) Venous thrombosis ALN, 0/214 (0%) TPTD, 1/214 (0.47%) NCT01732770	ALN, 1/214 (0.47%) TPTD. 0/214 (0%) NCT01732770	NR	NR
Panico 2011 ⁸⁷ PM women with severe OP+fracture and on treatment for OP	ALN weekly,39 TPTD,42 Without PBO	18	NR	NR	NR	NR
Anastasilakis 2008 ⁸⁹	RIS, 22 TPTD, 22 Without PBO open-label	12 months	NR	NR	NR	NR

Trial name /Author/date	Treatment arms (N=)	Follow-up	VTE(s) n/N (%)	Stroke n/N (%)	Osteonecrosis of jaw n/N (%)	Atypical femoral fractures n/N (%)
EUROGIOPs ⁸⁸ Men on GC with OP	RIS, 47 TPTD, 45 Without PBO Open label	18 months	NR	NR	NR	NR
Walker 2013 ⁹⁰ Men with OP	RIS weekly, 10 TPTD, 9 Both with PBO	18 months	NR	NR	NR	NR
Hadji 2012 ⁹² PM women with OP	RIS weekly, 350 TPTD, 360 Both with PBO	18 months	DVT 1/350 (0.29%) 0/360 (0.00%) Pulmonary thrombosis 1/350 (0.29%) 0/360 (0.00%) NCT00343252	RIS, 6/350 (1.71%) TPTD, 1/360 (0.28%) NCT00343252	NR	NR
VERO Kendler 2018 ¹⁰⁰ PM women with OP	RIS weekly, 680 TPTD, 680 Both with PBO	24 months	DVT RIS, 3/683 (0.44%) TPTD, 2/683 (0.29%) Vena cava thrombosis RIS, 1/683 (0.15%) TPTD, 0/683 (0.00%) NCT01709110	RIS, 1/683 (0.15%) TPTD, 2/683 (0.29%) NCT01709110	NR	NR

Trial name	Treatment arms	Follow-up	VTE(s)	Stroke	Osteonecrosis of	Atypical
/Author/date	(N=)		n/N (%)	n/N (%)	jaw	femoral
					n/N (%)	fractures
						n/N (%)
MOVE	RIS, 110	NR	Venous	RIS, 2/110	NR	NR
Aspenberg 2016, ³³⁵	TPTD, 106		thrombosis	(1.82%)		
Malouf-Sierra 2017 ³⁴³	Both with PBO to		RIS, 1/110	TPTD, 0/106		
	6 months then		(0.91%)	(0.00%)		
	OLE to 12 months		TPTD, 0/106	NCT00887354		
			(0.00%)			
			NCT00887354			
Cosman 2011 ⁹⁴	ZOL ² , 137	12 months	NR	ZOL, 0/137	NR	NR
PM women with OP	TPTD + ZOL			(0.00%)		
	PBO, 138			TPTD, 0/137		
				(0.00%)		
				NCT00439244		

ALN, ALN 10 mg daily or 70 mg weekly; BMD, bone mineral density; Ca, calcium; CON, control; DEN, DEN 60 mg s.c. every 6 months; DVT, deep vein thrombosis; GC, glucocorticoids; IBN, Ibandronate 150 mg oral every month; PBO, placebo; PE, pulmonary embolism; RLX, RLX 60 mg daily; PM, postmenopausal; OLE, open-label extension; OP, osteoporosis; ROMO, ROMO 210 mg sc. monthly; RR, risk ratio; NR, not reported; TPTD, TPTD 20 ug sc daily; Vit, vitamin; VTE, venous thromboembolism; ZOL, ZOL 5 mg iv annually

ACTIVE, Abaloparatide Comparator Trial In Vertebral Endpoints; ADAMO, DEN Versus Placebo in Males With Osteoporosis; ARCH, Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk; BRIDGE, Phase 3 randomized placeBo-contRolled double-blind study evaluatIng the efficacy anD safety of ROMO in treating mEn with osteoporosis; DATA, DEN and TPTD Administration; DECIDE, Determining Efficacy: Comparison of Initiating DEN versus ALN; DIRECT, DEN fracture Intervention RandomizEd placebo Controlled Trial; EFFECT, EFficacy of FOSAMAX versus EVISTA Comparison Trial; EUROFORS, European Study of Forsteo; EVA, Evista ALN Comparison trial; EuroGIOPS, acronym meaning not reported; FACT, Forteo ALN Comparator Trial; RAME, Fracture Study in Postmenopausal Women with Osteoporosis; REEDOM, Fracture Reduction Evaluation of DEN in Osteoporosis; MORE, European Study of Forsteo; MOVE, acronym meaning not reported; VERO, VERtebral fracture treatment comparisons in Osteoporotic women

¹No active treatment

²Not placebo controlled for TPTD

Appendix 8: Statistical methods for the network meta-analysis

Statistical model for the network meta-analysis of fracture outcomes

The RCTs presented data in terms of the number of individuals experiencing at least one fracture. For each fracture type, r_{ik} is defined as the number of events out of the total number of participants, n_{ik} , where the participants are receiving treatment t_{ik} in arm k of trial i. The data generation process is assumed to follow a Binomial likelihood such that

$$r_{ik} \sim bin(p_{ik}, n_{ik}), \tag{1}$$

where $p_{i,k}$ represents the probability of an event in arm k of trial i ($i = 1 \dots ns, k = 1 \dots na$) after follow up time f_i . For all RCTs, the number of arms included in the analysis is 2 (i.e. na = 2) and the number of RCTs, ns, varies according to fracture type.

To account for different trial durations, an underlying Poisson process is assumed for each trial arm, so that T_{ik} (the time until a fracture occurs in arm k of study i) follows an exponential distribution, $T_{ik} \sim exp(\lambda_{ik})$, where λ_{ik} is the event rate in arm k of study i, assumed constant over time. The probability that there are no events at time f_i is given by the survivor function, $P(T_{ik} > f_i) = exp(-\lambda_{ik}f_i)$. For each study, i, the probability of an event in arm k after follow up time f_i can be written as

$$p_{ik} = 1 - P(T_{ik} > f_i) = 1 - \exp(-\lambda_{ik}f_i),$$
(2)

which is dependent on follow up time. The probabilities of fracture are non-linear functions of event rates and so were modelled using the complementary log-log link function:

$$cloglog(p_{ik}) = \log(f_i) + \mu_i + \delta_{i,1k} I_{k\neq 1}.$$
(3)

Here, the μ_i are trial specific baselines, representing the log-hazards of fracture in the baseline treatment, which is assumed to be arm k = 1 for all trials. Note that for some trials, the baseline may be an active treatment rather than placebo. The trial-specific treatment effects, $\delta_{i,1k}$, are log-hazard ratios of fracture for the treatment in arm k, relative to the baseline treatment.

As described below, two different modelling strategies were considered for the treatment effects; i) standard independent random (treatment) effects model ii) exchangeable treatment effects (i.e. a class effect) for bisphosphonate treatments with unrelated treatment effects for all other interventions. The main results are based on model ii) while the results for the standard independent random effects model are provided in the appendix for comparison.

Standard independent random effects model:

The trial-specific treatment effects, $\delta_{i,1k}$, were assumed to arise from a common population distribution with mean treatment effect relative to the reference treatment, which was defined as placebo for this analysis, such that

$$\delta_{i,1k} \sim N(d_{t_{i},t_{ik}},\tau^2), \tag{4}$$

where $d_{t_{i1}, t_{ik}}$ represents the mean effect of the treatment in arm k of study i (t_{ik}) compared to the treatment in arm 1 of study i (t_{i1}) and τ^2 represents the between study variance in treatment effects (heterogeneity) which is assumed to be the same for all treatments.

The model was completed by specifying prior distributions for the parameters. Where there were sufficient sample data, conventional reference prior distributions were used:

- Trial specific baseline, μ_i ~ N(0, 100²),
- Treatment effects relative to reference treatment, d_{1k} ~ N(0, 100²),
- Between study standard deviation of treatment effects, $\tau \sim U(0,2)$.

For hip, wrist and proximal humerus fracture outcomes, there were relatively few RCTs to allow Bayesian updating (i.e. estimation of parameters from the sample data alone) of the reference prior distribution for the between-study standard deviation. When prior distributions do not represent reasonable prior beliefs then, in the absence of sufficient sample data, posterior distributions will not represent reasonable posterior beliefs. Therefore, rather than using a reference prior distribution, a weakly informative prior distribution was used for the between study standard deviation such that: $\tau \sim HN(0, 0.32^2)$.

Primary analysis model

In the previous NICE assessment for bisphosphonates, a class effects model was used. Not all RCTs contributing wrist fracture data provide evidence about all bisphosphonates; in particular, there was no evidence about ZOL. To allow an assessment of the uncertainty associated with ZOL for inclusion in the economic model, a class effects model was fitted from which the predictive distribution of a new intervention in the same class can be generated. This modelling approach also has the benefit of addressing data sparsity in the hip network.

For the primary analysis model, a class effects was assumed <u>for bisphosphonate treatments only</u>. Under a class effects model, the trial-specific treatment effects are again assumed to be Normally distributed as in equation (3), but the mean effects of each treatment are assumed to be exchangeable and assumed to arise from a Normal distribution with mean, D, with variance τ_D^2 :

$d_{t_{i_*}t_{i_*}} \sim N(D, \tau_D^2)$

The model was completed by specifying prior distributions for the parameters.

- Mean bisphosphonate effect, D ~ N(0, 100²),
- Between treatment standard deviation, $\tau_D \sim U(0,2)$.

For hip, wrist and proximal humerus outcomes, a weakly informative prior was used for the between treatment standard deviation such that: $\sigma_D^2 \sim HN(0, 0.32^2)$.

Predicting effects in new RCTs

To account for heterogeneity in the effect of treatments between RCTs, results are also presented for the predictive distributions of the effect of treatment in a new (randomly chosen) study.

From equation (4), it follows that the study specific population log-hazard ratio, $\delta_{i,j}$, for study i, evaluating any given treatment j in reference to the control treatment can be written as

$$\delta_{i,j} = d_{1j} + \varepsilon_{ij},\tag{6}$$

where $\varepsilon_{ij} \sim N(0, \tau^2)$. The predictive distribution for the effect of a particular treatment $\delta_{i,j}$, in a new study is:

$$\delta_{new,j} \sim N(d_{1j},\tau^2) \tag{7}$$

The class effects model also allows generation of the predictive distribution of a new, randomly chosen bisphosphonate treatment from the same class. From equation (5), it follows that the population log-hazard ratio for each treatment can be written as

$$d_{1j} = D + \xi_j, \tag{8}$$

where $\xi \sim N(0, \tau_D^2)$. Therefore, combining equations (6) and (8), the study-specific population log-hazard ratio, δ_{ij} , for study *i* evaluating bisphosphonate *j* is:

$$\delta_{ij} = D + \zeta_j + \varepsilon_{ij},\tag{9}$$

For a new, randomly chosen bisphosphonate, the expectation is $E[\delta_{ij}] = E[D + \zeta_j + \varepsilon_{ij}] = D$, with variance:

$$V[\delta_{ij}] = V[D + \zeta_j + \varepsilon_{ij}] = \tau^2 + \tau_D^2$$
⁽¹⁰⁾

Therefore, the predictive distribution for the effect of a new, randomly chosen study from the same class is:

$$\delta_{new} \sim N(D, \tau_D^2 + \tau^2), \tag{11}$$

which accounts for both between study, τ^2 , and between treatment within class, τ_D^2 , heterogeneity for any (including a new) treatment.

It is the predictive distribution of a new treatment within the class and the predictive distribution of a new study for a new treatment within the class that we use to characterise the uncertainty about the effect of ZOL for hip fractures.

Statistical model for the network meta-analysis of femoral neck bone mineral density

Data for femoral neck BMD outcomes was presented in two different formats; either as the percentage change in femoral neck BMD for each treatment group, or as the mean difference in the percentage change between treatment groups. Two different data generation (i.e. likelihood) models are therefore required.

Percentage change in femoral neck BMD

The majority of RCTs presented data as the percentage change in femoral neck BMD, y_{ik} , and associated standard errors, se_{ik} , for arm k of trial i with study duration f_i years. The data generation process is assumed to follow a Normal likelihood such that

$$y_{ik} \sim N(\theta_{ik}, se_{ik}^2), \tag{12}$$

where the population variance of the mean, se_{ik}^2 , is assume to be known and equal to the sample estimate. The parameters of interest, θ_{ik} , are modelled using the identity link function and, to account for differing trial lengths, study duration was included as a trial level covariate. The link function is given by:

$$\theta_{ik} = \mu_i + (\delta_{i,1k} + (\beta_{1t_{ik}} - \beta_{1t_{i_1}})f_i)I_{k\neq 1}, \tag{13}$$

where $\beta_{11} = 0$, and β_{1k} (k = 2,...,na) are the treatment-specific interactions, describing the relationship between the effect of treatment on percentage change in femoral neck BMD and duration of study. The trial baselines, μ_i , represent the percentage change in femoral neck BMD from baseline in the reference arm. The treatment effects, $\delta_{i,1k}$, represent the difference between the percentage change in the treatment group and the reference group. Assumptions about the relationship between the interaction terms are described further in the meta-regression section.

Difference between treatments in mean change in femoral neck BMD

Some RCTs provided data in terms of the mean difference in percentage change in femoral neck BMD between two treatments, defined as

$$MD_{i,1k} = y_{ik} - y_{i1}, (14)$$

(1.4)

together with the associated standard errors of the mean difference, $v_{i,1k}$, rather than the percentage change in femoral neck BMD for individual treatments. The difference between treatments in the mean change are also assumed to be Normally distributed such that:

$$MD_{i,1k} \sim N(\theta'_{ik}, v_{i1k}^2), \tag{15}$$

where the population standard error of the difference, v_{i1k}^2 , is assumed to be known and equal to the sample estimate. From the mean differences, no trial-specific effects of the baseline treatment can be estimated. The linear predictor is then given by

$$\theta'_{ik} = (\delta_{i,1k} + (\beta_{1t_{ik}} - \beta_{1t_{ii}})f_i)I_{k\neq 1}$$
(16)

The study-specific treatment effects, $\delta_{i,1k}$, have the same interpretation as those from the equation (13) and thus can be combined to estimate the mean effects for each treatment, regardless of the way the data were reported.

A class effects model was assumed such that the treatment effects of the individual bisphosphonates were assumed to be exchangeable and to arise from a Normal distribution with mean, D, with variance τ_D^2 :

$$d_{t_{i_1},t_{j_k}} \sim N(D,\tau_D^2). \tag{17}$$

The model was completed by specifying prior distributions for the parameters, using conventional reference prior distributions:

- Trial specific baseline, μ_i ~ N(0, 100²),
- Treatment effects relative to reference treatment, d_{1k} ~ N(0, 100²),
- Between study standard deviation of treatment effects, $\tau \sim U(0,100)$.
- Mean of related treatment effects, D ~ N(0, 100²),
- Between treatment standard deviation, τ_D ~ U(0,100).

Meta-regression

Where appropriate, heterogeneity in treatment effects was explored by considering potential treatment effect modifiers. Meta-regression was used to test for interactions between the treatment effects and trial level covariates, as described in Dias *et al.*.

An interaction term, β , is introduced on the treatment effect by replacing

$$\tilde{\delta}_{i,1k} = \delta_{i,1k} + (\beta_{1t_{ik}} - \beta_{1t_{i1}})(x_i - \bar{x}),$$
(18)

where x_i is the trial-level covariate for trial *i* and may represent a subgroup, continuous covariate, or baseline risk (as described in more detail below), and $\beta_{11} = 0$. The regression is centred at the mean value of the covariate across the RCTs so that the interpretation of the treatment effect is as the effect at the average value of the covariate.

Different assumptions can be made about the relationship between the interaction terms for each treatment. For the main analysis, we assume a common interaction for each treatment relative to treatment 1, such that

$$\beta_{\mathbf{1},t_{ik}} = b, \tag{19}$$

for k = 2, ..., na. We also considered a model in which the interaction terms for each treatment were considered to be related but not identical (i.e. exchangeable) such that:

$$\beta_{\mathbf{1},t_{jk}} \sim N(b,\tau_B^2). \tag{20}$$

Meta-regression on baseline risk/response

Baseline risk/response can be used as a proxy for differences in patient characteristics across trials that, may be modifiers of treatment effect, and so introduce a potential source of heterogeneity in the NMA. Adjustment for baseline risk/response was assessed using the method of Achana et. al.

Dependence on baseline risk is introduced through an interaction term, so that:

$$\delta_{i,1k} = d_{t_{i}, t_{ik}} + \beta_{t_{i}, t_{ik}} (\mu_{ip} - \bar{\mu}_{p}) + \varepsilon_{i, t_{i}, t_{ik}}, \qquad (21)$$

where $\varepsilon_{i,t_{i},t_{ik}} \sim N(0,\tau^2)$. The updated study specific treatment effects, $\tilde{\delta}_{i,1k}$, are now adjusted using the `true' but unobserved baseline risk/response in the placebo arm of trial i, μ_{ip} . The coefficient, $\beta_{t_{i},t_{ik}}$, represents the change in the treatment effect (e.g. log HR or difference between treatments in mean change) per unit change in the baseline risk/response. The baseline risk/response is centred on $\overline{\mu}_p$, the observed mean (e.g. log HR or difference between treatments in mean change) in the placebo group, and $\beta_{11} = 0$.

For RCTs with an active treatment control, $(t_{i1} \neq P)$, there is no direct estimate of the placebo baseline risk/response. Under the consistency of evidence arising from the exchangeability assumption, the substitution $d_{t_{i1}t_{ik}} = d_{Pt_{ik}} - d_{Pt_{i1}}$ can be made, allowing equation (21) to be expressed as

$$\tilde{\delta}_{i,1k} = (d_{p_{t_{ik}}} - d_{p_{t_{ik}}}) + (\beta_{p_{t_{ik}}} - \beta_{p_{t_{ik}}})(\mu_{ip} - \bar{\mu}_{p}).$$
(22)

Although a placebo treatment may not be included in all RCTs, the assumption of exchangeability means that the treatment arms can be assumed missing at random without loss to efficacy, and the baseline risk/response in RCTs without a placebo arm can be estimated, borrowing strength from other RCTs.

As previously described, some RCTs report data on the mean differences in percentage change between two treatments. Under the model described in equations (15) and (16), study specific effects of the baseline treatment cannot be estimated. These RCTs still contribute to the model through estimation of the treatment effects, but do not directly contribute to estimation of the slope in the meta-regression.

Appendix 9: Additional results for the network meta-analysis

Appendix 9.1: Data contributing to the network meta-analysis

study	t1	t2	t3	t	n1	r1	n2	r2	n3	r3	Μ	S1
Liberman (1995)	PBO	ALN	-	36	355	22	175	5	-	-	1	0
Orwoll (2000)	PBO	ALN	-	24	94	7	146	1	-	-	1	0
FIT I Black (1996)	PBO	ALN	-	36	965	192	981	83	-	-	1	0
FIT I Black (1996)	PBO	ALN	-	36	1000	50	1000	23	-	-	0	0
FIT II Cumming (1998)	PBO	ALN	-	48	2077	78	2057	43	-	-	1	0
Dursun (2001)	PBO	ALN	-	12	35	14	38	12	-	-	1	1
Carfora (1998)	PBO	ALN	-	30	34	4	34	1	-	-	1	0
Cohen (1999)	PBO	RIS	-	12	35	5	34	2	-	-	1	1
Fogelman (2000)	PBO	RIS	-	24	125	17	112	8	-	-	1	0
VERT-USA Harris (1999)	PBO	RIS	-	36	678	93	696	61	-	-	1	0
VERT-USA Harris (1999)	PBO	RIS	-	12	660	42	669	16	-	-	0	1
VERT-EU Reginster (2000)	PBO	RIS	-	36	346	89	344	53	-	-	1	0
VERT-EU Reginster (2000)	PBO	RIS	-	12	334	45	333	19	-	-	0	1
Hooper (2005)	PBO	RIS	-	24	125	10	129	10	-	-	1	0
Reid (2000)	PBO	RIS	-	12	60	9	60	3	-	-	1	1
Boonen (2009)	PBO	RIS	-	24	80	0	179	2	-	-	1	0
Ringe (2006)	PBO	RIS	-	12	158	20	158	8	-	-	1	1
Boonen (2012)	PBO	ZOL	-	24	574	28	533	9	-	-	1	0
Boonen (2012)	PBO	ZOL	-	12	574	16	553	5	-	-	0	1
HORIZON-PFT Black												
(2007)	PBO	ZOL	-	36	3861	84	3875	19	-	-	0	0
HORIZON-PFT Black (2007)	PBO	ZOL		12	3861	143	3875	58		_	0	1
HORIZON-PFT Black	FBU	ZOL	-	12	3001	145	3873	38	-	-	0	1
(2007)	PBO	ZOL	-	36	3861	310	3875	92	-	-	1	0
HORIZON-RFT Lyles												
(2007)	PBO	ZOL	-	36	1062	39	1065	21	-	-	1	0
HORIZON-RFT Lyles (2007)	PBO	ZOL		12	1057	21	1054	13	_		0	1
BONE Chestnut (2004)	PBO	IBN daily	-	36	975	73	977	37	-	-	1	0
BONE Chestnut (2004)	PBO	IBN daily	-	12	889	24	929	13	-	-	0	1
BONE Chestnut (2004)	PBO	IBN daily	-	36	975	41	929	22	-	-	0	0
HORIZON-SIO Reid (2009)	RIS	ZOL	-	12	381	3	378	5	-	-	1	1
MOTION Miller (2008)	ALN	IBN monthly		12	859	5	874	5	-	-	1	1
ZONE Nakamura (2017)	PBO	ZOL	-	24	327	29	330	10	-	-	1	
		ZOL	-	24	331	17	330	5	-	-	0	0
ZONE Nakamura (2017)	PBO		-						-	-		1
ZONE Nakamura (2017)	PBO	ZOL	-	12	331	6	330	4	-	-	0	1
FREEDOM Bone (2017)	PBO	DEN	-	36	3691	264	3702	86	-	-	1	0
FREEDOM Bone (2017)	PBO	DEN	-	36	3906	92	3902	29	-	-	0	0
FREEDOM Bone (2017)	PBO	DEN	-	12	3691	82	3702	32	-	-	0	1
FRAME Cosman (2016)	PBO	ROMO	-	12	3322	59	3321	16	-	-	1	1

Table 27:Data contributing to the NMA of vertebral fractures

			1			.		I -	I	i i	.	-
ADAMO Orwoll (2012)	PBO	DEN	-	12	120	1	120	0	-	-	1	1
DIRECT Nakamura (2014)	PBO	DEN	-	24	480	41	472	10	-	-	1	0
DIRECT Nakamura (2014)	PBO	DEN	-	12	480	9	472	6	-	-	0	1
Miyauchi (2010)	PBO	TPTD	-	12	67	4	136	5	-	-	1	1
ACTIVE Miller (2016)	PBO	TPTD	-	18	711	30	717	6	-	-	1	0
ACTIVE Miller (2016)	PBO	TPTD	-	18	821	9	818	3	-	-	0	0
Neer (2001)	PBO	TPTD	-	24	448	64	444	22	-	-	1	0
Morii (2003)	PBO	RLX	-	12	87	2	79	0	-	-	1	1
Liu (2004)	PBO	RLX	-	12	102	5	102	0	-	-	1	1
Silverman (2008)	PBO	RLX	-	36	1741	71	1696	40	-	-	1	0
Silverman (2008)	PBO	RLX	-	36	1741	16	1696	15	-	-	0	0
MORE Maricic (2002)	PBO	RLX	-	12	2292	19	2259	6	-	-	0	1
MORE Maricic (2002)	PBO	RLX	-	36	2292	81	2259	47	-	-	0	0
MORE Maricic (2002)	PBO	RLX	-	36	2292	231	2259	148	-	-	1	0
Lufkin (1998)	PBO	RLX	-	12	45	18	43	21	-	-	1	1
Saag (2007)	ALN	TPTD	-	36	169	13	173	3	-	-	1	0
Saag (2007)	ALN	TPTD	-	36	169	4	173	0	-	-	0	0
Walker (2013)	RIS	TPTD	-	18	10	1	9	0	-	-	1	0
VERO Kendler (2018)	RIS	TPTD	-	24	533	64	516	28	-	-	1	0
VERO Kendler (2018)	RIS	TPTD	-	12	533	11	516	4	-	-	0	1
Hadji (2012)	RIS	TPTD	-	18	309	33	317	16	-	-	1	0
MOVE Malouf-Sierra												
(2017)	RIS	TPTD	-	18	106	1	116	0	-	-	1	0
Cosman (2011)	ZOL	TPTD	-	12	137	5	137	1	-	-	1	1
EVA Recker (2007)	ALN	RLX	-	10.26	255	8	259	5	-	-	1	0
EVA Recker (2007)	ALN	RLX	-	10.26	713	3	699	0	-	-	0	0
Muscoso (2004)	ALN	RLX	RIS	12	1000	2	100	0	100	0	0	1
Muscoso (2004)	ALN	RLX	RIS	24	1000	6	100	0	100	0	1	0
ARCH Saag (2017)	ALN	ROMO	-	12	1703	85	1696	55	-	-	0	1
ARCH Saag (2017)	ALN	ROMO/ALN	-	24	1834	147	1825	74	-	-	1	0
ARCH Saag (2017)	ALN	ROMO/ALN	-	24	2047	18	2046	10	-	-	0	0
Panico (2011)	ALN	TPTD	-	18	39	6	42	1	-	-	1	0
Saag (2018)	RIS	DEN	-	12	342	15	333	10	-	-	1	1
Mok (2011)	PBO	RLX	-	12	56	3	51	0	-	-	1	1
Miller (2004)	PBO	ALN	-	12	41	3	80	6	-	-	1	1
Miller (2004)	PBO	ALN	-	12	58	3	109	5	-	-	0	0
M: main analysis S1: Sensitivity analysis	1 S2 Sensi	tivity analysis 2 \$3. \$	ensitivity	analysis 3								

M: main analysis, S1: Sensitivity analysis 1, S2: Sensitivity analysis 2, S3: Sensitivity analysis 3.

study	t1	t2	t3	t	n1	r1	n2	r2	n3	r3
FREEDOM Cummings										
(2009)	PBO	DEN	-	36	3906	293	3902	238	-	-
FRAME Cosman (2016)	PBO	ROMO	-	12	3591	75	3589	56	-	-
Orwoll (2003)	PBO	TPTD	-	12	147	3	151	2	-	-
ADAMO Orwoll (2012)	PBO	DEN	-	12	120	2	120	1	-	-
DIRECT Nakamura										
(2014)	PBO	DEN	-	24	480	20	472	19	-	-
Koh (2016)	PBO	DEN	-	6	66	1	69	1	-	-
Miyauchi (2010)	PBO	TPTD	-	12	67	1	136	1	-	-
ACTIVE Miller (2016)	PBO	TPTD	-	18	821	33	818	24	-	-
Neer (2001)	PBO	TPTD	-	24	544	30	541	14	-	-
Silverman (2008)	PBO	RLX	-	36	1885	118	1849	109	-	-
Ishibashi (2017)	PBO	RLX	-	12	63	1	63	2	-	-
STRUCTURE Langdahl	DOMO	TDTD		10	210	7	214	8		
(2017) STAND Kendler (2010)	ROMO ALN	TPTD	-	12 12	218	7	214	8	-	-
DAPS Freemantle (2012)	ALN	DEN DEN	-	12	249 118	4	253 125	8	-	-
		TPTD	-	36		15	214	16	-	-
Saag (2009)	ALN RIS	TPTD	-	18	214 47	5	45	10	-	-
EuroGIOPs Gluer (2013)	RIS	TPTD	-	24	680	38	680	25	-	-
VERO Kendler (2018)			-						-	-
Hadji (2012)	RIS	TPTD	-	18	350	29 10	360	28 5	-	-
Malouf-Sierra (2017)	RIS	TPTD	-	18 12	110	8	106		-	-
Cosman (2011)	ZOL	TPTD	-		137	<u>8</u>	137		-	-
Muscoso (2004)	ALN	RLX	RIS	24	1000		100	170	100	0
ARCH Saag (2017) EFFECT (US) Luckey	ALN	ROMO/ALN	-	32.4	2047	217	2046	178	-	-
(2004)	ALN	RLX	-	12	199	5	206	8	-	-
ZONE Nakamura (2017)	PBO	ZOL	-	24	331	37	330	20	-	-
Lufkin (1998)	РВО	RLX	-	12	45	3	43	0	-	-
Saag (2018)	RIS	DEN	-	12	397	10	398	17	-	-
Michalska (2006)	PBO	ALN	RLX	24	33	2	33	1	33	1
Fogelman (2000)	РВО	RIS	-	36	125	13	112	7	-	-
VERT-USA Harris (1999)	РВО	RIS	-	36	815	52	812	33	-	-
VERT-EU Reginster										
(2000)	PBO	RIS	-	24	406	51	406	36	-	-
Hooper (2005)	PBO	RIS	-	12	125	6	129	5	-	-
Ringe (2006)	PBO	RIS	-	48	158	17	158	10	-	-
FIT I Black (1996)	PBO	ALN	-	36	1005	148	1022	122	-	-
FIT II Cumming (1998)	PBO	ALN	-	48	2218	294	2214	261	-	-
Orwoll (2000)	PBO	ALN	-	24	94	5	146	6	-	-
FOSIT Pols (1999)	РВО	ALN	-	12	958	37	950	19	-	-
Bone (2000)	РВО	ALN	-	24	50	4	92	5	-	-
HORIZON-PFT Black (2007)	РВО	ZOL	-	11	3861	388	3875	292	-	-

 Table 28:
 Data contributing to the NMA of non-vertebral fractures

HORIZON-RFT Lyles (2007)	РВО	ZOL	-	36	1062	107	1065	79	-	-
BONE Chesnut (2004)	PBO	IBNdaily	-	36	975	80	977	89	-	-
MOTION Miller (2008)	ALN	IBNmonthly	-	12	859	12	874	14	-	-
Morii (2003)	PBO	RLX	-	12	97	4	88	1	-	-

Table 29:Data contributing to the NMA hip fractures

study	t1	t2	t3	t	n1	r1	n2	r2	n3	r3
FREEDOM Cummings										
(2009)	PBO	DEN	-	36	3906	43	3902	26	-	-
FRAME Cosman (2016)	PBO	ROMO	-	12	3591	13	3589	7	-	-
DIRECT Nakamura					10.0					
(2014)	PBO	DEN	-	24	480	2	472	0	-	-
ACTIVE Miller (2016)	PBO	TPTD	-	18	821	2	818	0	-	-
Neer (2001)	PBO	TPTD	-	24	544	4	541	1	-	-
STRUCTURE Langdahl	DOLGO			10	• • •		• • • •	0		
(2017)	ROMO	TPTD	-	12	218	1	218	0	-	-
Miller (2016)	ZOL	DEN	-	12	320	2	320	1	-	-
EuroGIOPs Gluer (2013)	RIS	TPTD	-	18	47	1	45	0	-	-
VERO Kendler (2018)	RIS	TPTD	-	24	680	5	680	2	-	-
Hadji (2012)	RIS	TPTD	-	18	350	2	360	5	-	-
EFFECT Sambrook										
(2004)	ALN	RLX	-	12	246	0	241	1	-	-
MOVE Malouf (2017)	RIS	TPTD	-	18	110	7	106	2	-	-
Muscoso (2004)	ALN	RLX	RIS	24	1000	3	100	0	100	0
ARCH Saag (2017)	ALN	ROMO/ALN	-	32.4	2047	66	2046	41	-	-
Saag (2018)	RIS	DEN	-	12	397	1	398	1	-	-
Silverman (2008)	PBO	RLX	-	36	1885	6	1849	5	-	-
VERT-USA Harris (1999)	PBO	RIS	-	36	815	15	812	12	-	-
VERT-EU Reginster										
(2000)	PBO	RIS	-	36	406	11	406	9	-	-
FIT I Black (1996)	PBO	ALN	-	36	1005	22	1022	11	-	-
FIT II Cumming (1998)	PBO	ALN	-	48	2218	24	2214	19	-	-
Greenspan (2002)	PBO	ALN	-	24	164	4	163	2	-	-
HORIZON-PFT Black										
(2007)	PBO	ZOL	-	36	3861	88	3875	52	-	-
HORIZON-RFT Lyles					10.65		105-			
(2007)	PBO	ZOL	-	36	1062	33	1065	23	-	-

study	t1	t2	t3	t	n1	r1	n2	r2	n3	r3
ACTIVE Miller										
(2016)	PBO	TPTD	-	18	821	15	818	17	-	-
Neer (2001)	PBO	TPTD	-	24	544	7	541	2	-	-
Ishibashi (2017)	PBO	RLX	-	12	63	0	63	1	-	-
STRUCTURE	DOMO	TDTD		10	210	1	210	0		
Langdahl (2017) STAND Kendler	ROMO	TPTD	-	12	218	1	218	0	-	-
(2010)	ALN	DEN	-	12	249	2	253	3	-	-
VERO Kendler										
(2018)	RIS	TPTD	-	24	680	10	680	6	-	-
Hadji (2012)	RIS	TPTD	-	18	350	2	360	4	-	-
Muscoso (2004)	ALN	RLX	RIS	24	1000	1	100	0	100	0
EFFECT US Luckey										
(2004)	ALN	RLX	-	12	199	0	206	1	-	-
Silverman (2008)	PBO	RLX	-	36	1885	31	1849	46	-	-
VERT-USA Harris										
(1999)	PBO	RIS	-	36	815	22	812	14	-	-
VERT-EU Reginster										
(2000)	PBO	RIS	-	36	406	21	406	15	-	-
FIT I Black (1996)	PBO	ALN	-	36	1005	41	1022	22	-	-
FIT II Cumming										
(1998)	PBO	ALN	-	48	2218	70	2214	83	-	-
McClung (2009)	PBO	IBNmonthly	-	12	83	0	77	1	-	-

Table 30:Data contributing to the NMA of wrist fractures

Table 31:Data contributing to the NMA of wrist fractures

study	t1	t2	t	n1	r1	n2	r2
ADAMO Orwoll (2012)	PBO	DEN	12	120	1	120	0
ACTIVE (2016)	PBO	TPTD	18	821	3	818	2
Neer (2001)	PBO	TPTD	24	544	2	541	2
STRUCTURE Langdahl (2017)	ROMO	TPTD	12	218	0	218	1
STAND Kendler (2010)	ALN	DEN	12	249	0	253	1
EuroGIOPs Gluer (2013)	RIS	TPTD	18	47	1	45	0
VERO Kendler (2018)	RIS	TPTD	24	680	2	680	4
Hadji (2012)	RIS	TPTD	18	350	5	360	4
MOVE Malouf-Sierra (2017)	RIS	TPTD	18	110	1	106	1
EFFECT (US) Luckey (2004)	ALN	RLX	12	199	0	206	1
Saag (2018)	RIS	DEN	12	391	3	398	3
VERT-MN Harris (1999)	PBO	RIS	36	815	10	812	4
VERT-MN Reginster (2000)	РВО	RIS	36	406	14	406	7

Appendix 9: Network meta-analysis additional results

Appendix 9.2 NMA results from random effects model

Treatment effects vs placebo, from the RE model shown in Figure 13 below and a summary of model fit and heterogeneity is shown in Table 32. For all outcomes the DIC was larger for the RE model, implying that the primary model (class effect for bisphosphonate treatments, and unrelated treatment effects for all other interventions) provides a better fit to the data. Treatment effects from the RE model are generally consistent with primary model.

Treatment effects from the two models appear most different for proximal humerus fractures. Using a random effects model ALN has a highly beneficial HR (0.09, 95% CrI: 0-4.23) and probability 0.39 of being the best treatment. Under the class effects model the HR for ALN is less extreme (0.46, 95% CrI: 0.15-1.27) since it is also influenced by the estimate for RIS (the only other bisphosphonate included in the network). The estimate for ALN is only contributed by one study ⁷⁸ with zero events in the ALN arm and 1 event in the RLX arm and so is highly uncertain.

outcome	absolute model fit		DIC	SD (95%CI)
outcome	D _{res}	DP	DIC	SD (7370C1)
vertebral fractures	93.42	93	156.43	0.15 (0.01,0.37)
non-vertebral fractures	73.93	86	129.50	0.08 (0.01,0.24)
hip*	39.58	47	72.37	0.13 (0.01,0.45)
wrist*	30.21	31	55.89	0.30 (0.04,0.66)
proximal humerus*	22.87	26	44.02	0.17 (0.01,0.58)
femoral neck BMD				

 Table 32:
 Model fit and heterogeneity for RE sensitivity analysis, all outcomes

*D*_{res}: Total residual deviance, DP: data points, DIC: deviance information criterion, SD: between study standard deviation * For hip, wrist and humerus fractures weakly informative priors were used for the between study and between treatment SD

Treatment	HR	(95%_Crl)	(95%_Prl)	rank.PB.
Vertebral				
TPTD <	0.23	(0.17,0.32)	(0.14,0.38)	2(34%)
ROMO/ALN =	0.25	(0.16,0.45)	(0.14,0.52)	2(26%)
ROMO 🖛	0.27	(0.13,0.50)	(0.12,0.54)	3(26%)
DEN 🔹	0.31	(0.21,0.42)	(0.18,0.51)	4(3%)
ZOL 🖝	0.35	(0.27,0.50)	(0.23,0.61)	5(0%)
IBNdaily -	0.49	(0.29,0.85)	(0.26,0.95)	7(0%)
IBNmonthly	0.49	(0.13,1.91)	(0.12,2.00)	7(10%)
ALN -	0.51	(0.40,0.69)	(0.33,0.86)	8(0%)
RIS 🗢	0.54	(0.42,0.68)	(0.33,0.82)	8(0%)
RLX 🗢	0.62	(0.45,0.79)	(0.38,0.95)	9(0%)
Non-vertebral				
тртр 🗢	0.57	(0.43.0.74)	(0.40.0.80)	1(51%)
ROMO/ALN -	0.63	(0.42,0.86)	(0.39,0.91)	3(23%)
RIS 💳	0.69	(0.55,0.88)	(0.50,0.97)	4(3%)
ZOL CALLER COMO	0.71	(0.58,0.85)	(0.51.0.94)	4(2%)
ROMO	0.71	(0.48,1.03)	(0.45,1.08)	4(10%)
ALN 🗢	0.78	(0.62.0.92)	(0.55,1.00)	6(0%)
DEN -	0.86	(0.69,1.11)	(0.64, 1.23)	8(0%)
RLX -	0.89	(0.65,1.19)	(0.60, 1.27)	8(0%)
IBNmonthly	0.90	(0.38,2.09)	(0.37,2.14)	8(11%)
IBNdaily -	1.12	(0.77.1.62)	(0.72.1.71)	11(0%)
Hip				
TPTD	0.36	(0.15.0.81)	(0.14,0.88)	2(43%)
ROMO/ALN -	0.38	(0.18,0.78)	(0.16,0.87)	2(38%)
DEN	0.56	(0.30,0.96)	(0.26,1.08)	4(5%)
ROMO	0.56	(0.22,1.47)	(0.20,1.58)	4(11%)
ALN TO RIS	0.62	(0.37,1.01)	(0.32, 1.15)	5(0%)
ZOL -	0.63	(0.42,0.94)	(0.38,1.14)	5(1%)
RIS	0.72	(0.40,1.28)	(0.36,1.44)	6(0%)
RLX	0.93	(0.30,2.76)	(0.29,2.89)	8(3%)
Wrist		(,	(,	-()
тртр ———	0.72	(0.35.1.39)	(0.26.1.91)	2(23%)
RIS -	0.73	(0.40,1.32)	(0.28, 1.87)	2(21%)
ALN	0.83	(0.44,1.37)	(0.31,1.98)	3(12%)
DEN	1.29	(0.16,12.59)	(0.14,13.61)	5(19%)
RLX	1.64	(0.79,3.56)	(0.60,4.90)	6(0%)
ROMO	3.61	(0.10,1488.17)	(0.10,1574.17)	7(15%)
IBNmonthly	5.24	(0.18,2604.15)	(0.17,2650.00)	7(9%)
Humerus				
ALN -	0.09	(0.00,4.23)	(0.00, 4.35)	2(39%)
ROMO -	0.10	(0.00,3.40)	(0.00,3.49)	2(44%)
DEN	0.43	(0.07,2.12)	(0.07,2.28)	4(3%)
RIS	0.49	(0.24,0.98)	(0.20,1.15)	4(2%)
RLX -	0.53	(0.00,967.09)	(0.00,995.29)	4(11%)
TPTD	0.56	(0.22,1.40)	(0.19,1.59)	5(1%)
0 1 2 5 4				

Figure 13:	Forest plot of HR for all fracture outcomes using a random effects model

Appendix 9.3 Vertebral fracture sensitivity analyses

4 sensitivity analyses were conducted for the vertebral fracture network:

- S1: 12 month data only
- S2: Clinically assessed fractures only
- S3: Exclusion of studies with quality issues
- S4: Exclusion of studies where prior bisphosphonate treatment had been received

Treatment effects vs placebo, are summarised in Figure 14 below and a summary of model fit and heterogeneity is shown in Table 33.

Table 33:	Summary	of	model	fit	and	heterogeneity	between	studies	and	between
	treatments	for	vertebr	al fr	actur	e network sensi	tivity anal	yses		

outcome	absolute	model fit		Heterogeneity	
		data	DIC	between study	between treatment SD
	D _{res}	points		SD (95%CI)	(95%CI)
vertebral fractures	91.21	93	153.31	0.17 (0.02,0.37)	0.21 (0.01,0.90)
S1: 12 months	56.17	59	95.94	0.17(0.01,0.51)	0.15(0.01,0.86)
S2: Clinical fractures	38.16	38	68.36	0.31(0.02,0.88)	0.286(0.013,1.33)
S3: Excluding qualtity					
issues	58.27	61	99.4	0.13(0.01,0.38)	0.149(0.01,1.04)
S4: Excluding prior					
treatment	69.83	72	117.47	0.11(0.01,0.34)	0.117(0.01,0.69)

Treatment		<u>HR</u>	<u>(95% Crl)</u>	<u>(95% Prl)</u>	<u>rank.PB.</u>
Vertebral					
TPTD	-	0.23	(0.16,0.32)	(0.13,0.38)	2(38%)
ROMO/ALN	-	0.25	(0.15,0.43)	(0.13,0.50)	2(30%)
ROMO		0.27	(0.13,0.52)	(0.12,0.57)	3(27%)
DEN	-	0.30	(0.21,0.43)	(0.17,0.51)	4(3%)
ZOL	-	0.40	(0.29,0.55)	(0.25,0.69)	5(0%)
IBNdaily		0.48	(0.33,0.71)	(0.28,0.83)	7(0%)
BNmonthly		0.48	(0.26.0.90)	(0.24.0.99)	7(1%)
	-	0.48			
ALN			(0.40,0.64)	(0.32,0.81)	8(0%)
RIS		0.52	(0.42,0.65)	(0.32,0.82)	8(0%)
RLX		0.61	(0.44,0.80)	(0.36,0.98)	10(0%)
Bis class effect		0.47	(0.33,0.69)	(0.19,1.16)	
Vertebral S1					
TPTD		0.23	(0.10.0.51)	(0.09.0.59)	1(69%)
ROMO		0.30	(0.18.0.50)	(0.15.0.61)	2(24%)
DEN		0.39	(0.24.0.63)	(0.20.0.78)	3(4%)
RIS		0.44	(0.32.0.60)	(0.25.0.82)	5(0%)
	-		((/	
ZOL		0.46	(0.35,0.65)	(0.27,0.89)	6(0%)
IBNdaily	=	0.47	(0.31,0.79)	(0.25,0.97)	6(1%)
IBNmonthly		0.47	(0.27,0.93)	(0.23,1.09)	6(1%)
ALN		0.49	(0.36,0.78)	(0.28,0.97)	7(0%)
RLX		0.58	(0.31,0.97)	(0.25,1.12)	9(1%)
Bis class effect		0.47	(0.33.0.72)	(0.2.1.21)	
Vertebral S2				(
TPTD	-	0.16	(0.06,0.45)	(0.04,0.61)	1(66%)
ROMO/ALN		0.10	(0.08,1.12)	(0.06,1.50)	3(20%)
DEN		0.28			
			(0.13,0.75)	(0.09,1.04)	3(10%)
ZOL		0.38	(0.23,0.65)	(0.15,1.08)	4(1%)
RIS		0.44	(0.22,0.86)	(0.15,1.35)	6(0%)
IBNmonthly		0.46	(0.21,1.30)	(0.15,1.80)	6(1%)
IBNdaily		0.47	(0.26,0.96)	(0.17,1.45)	6(0%)
ALN		0.51	(0.31,1.05)	(0.20, 1.62)	7(0%)
RLX		0.55	(0.25,0.93)	(0.16,1.41)	8(1%)
Bis class effect		0.45	(0.25,0.91)	(0.11,2.21)	
Vertebral S3		V. TV	(a.a.a.a.a.)	(0.11,6.6.1)	
TPTD	-	0.22	(0.14,0.34)	(0.13.0.39)	2(42%)
ROMO/ALN	—	0.24	(0.14,0.40)	(0.13,0.46)	2(31%)
ROMO		0.26	(0.13,0.49)	(0.12,0.54)	3(24%)
DEN		0.32	(0.22,0.47)	(0.19,0.54)	4(2%)
ZOL		0.47	(0.33,0.62)	(0.28, 0.75)	6(0%)
ALN		0.48	(0.38,0.63)	(0.31,0.77)	6(0%)
IBNmonthly	-	0.49	(0.26,0.88)	(0.24,0.96)	6(1%)
RIS	1	0.51	(0.40.0.64)	(0.32,0.76)	7(0%)
RLX		0.66	(0.47,0.90)	(0.39,1.07)	9(0%)
Bis class effect		0.49		1	2(0,0)
	-	0.49	(0.2,1.22)	(0.31,0.75)	
Vertebral S4					
TPTD	-	0.13	(0.06,0.25)	(0.06,0.27)	1(89%)
ROMO/ALN	-	0.24	(0.15,0.39)	(0.14,0.44)	2(5%)
ROMO	-	0.26	(0.14,0.49)	(0.13,0.52)	3(6%)
DEN	-	0.31	(0.22,0.41)	(0.19.0.47)	4(0%)
ZOL		0.48	(0.31.0.61)	(0.28.0.71)	6(0%)
ALN	-	0.49	(0.40,0.61)	(0.34.0.74)	7(0%)
IBNmonthly		0.45	(0.29.0.78)	(0.27.0.87)	7(0%)
	-				
IBNdaily		0.50	(0.36,0.67)	(0.32,0.77)	7(0%)
RIS		0.52	(0.42,0.63)	(0.35,0.75)	8(0%)
RLX		0.63	(0.48,0.80)	(0.41,0.94)	10(0%)
Bis class effect		0.49	(0.38,0.65)	(0.25,0.95)	
	0 1 2 9	4	-		
	· · · ·	-			

Figure 14: Forest plot of vertebral fracture network sensitivity analyse	Figure 14:	ertebral fracture network sensitivity analys	ses
--	------------	--	-----

Appendix 9.4 Pairwise summary tables

Pairwise summary tables for all outcomes are shown below. Median HR and 95% CrI are presented below the diagonal, median HR and 95% PrI are shown above the diagonal.

	PBO	ALN	RIS	ZOL	IBNdaily	IBNmonthly	DEN	ROMO	TPTD
РВО		0.50(0.32,0.81)	0.52(0.32,0.82)	0.39(0.25,0.69)	0.48(0.28,0.83)	0.48(0.24,0.99)	0.31(0.17,0.51)	0.27(0.12,0.57)	0.23(0.13,0.38)
ALN	0.50(0.40,0.64)		1.06(0.53,1.90)	0.78(0.42,1.61)	0.98(0.47,1.87)	0.96(0.42,2.16)	0.61(0.29,1.20)	0.53(0.21,1.28)	0.47(0.23,0.88)
RIS	0.52(0.42,0.65)	1.03(0.77,1.39)		0.74(0.42,1.63)	0.93(0.47,1.86)	0.92(0.41,2.17)	0.58(0.29,1.19)	0.51(0.20,1.25)	0.44(0.23,0.85)
ZOL	0.40(0.29,0.55)	0.81(0.54,1.08)	0.77(0.52,1.08)		1.23(0.57,2.43)	1.19(0.53,2.91)	0.79(0.34,1.50)	0.68(0.24,1.60)	0.60(0.26,1.11)
IBNdaily	0.48(0.33,0.71)	0.98(0.63,1.43)	0.95(0.61,1.37)	1.18(0.82,1.99)		0.99(0.42,2.40)	0.63(0.29,1.32)	0.55(0.21,1.40)	0.48(0.23,0.99)
IBNmonthly	0.48(0.26,0.90)	0.98(0.51,1.75)	0.95(0.47,1.71)	1.14(0.68,2.50)	1.00(0.49,1.98)		0.64(0.25,1.52)	0.55(0.19,1.56)	0.48(0.19,1.13)
DEN	0.30(0.21,0.43)	0.61(0.39,0.91)	0.58(0.40,0.88)	0.77(0.46,1.19)	0.63(0.38,1.03)	0.64(0.31,1.26)		0.87(0.33,2.23)	0.76(0.36,1.57)
ROMO	0.27(0.13,0.52)	0.53(0.25,1.06)	0.51(0.25,1.03)	0.67(0.30,1.35)	0.55(0.25,1.16)	0.55(0.22,1.36)	0.87(0.40,1.86)		0.87(0.34,2.22)
TPTD	0.23(0.16,0.32)	0.46(0.31,0.66)	0.44(0.32,0.61)	0.58(0.36,0.90)	0.47(0.29,0.77)	0.48(0.25,0.95)	0.76(0.46,1.20)	0.87(0.41,1.87)	
RLX	0.61(0.44,0.80)	1.23(0.82,1.71)	1.17(0.82,1.68)	1.54(0.94,2.32)	1.26(0.78,1.97)	1.27(0.65,2.47)	2.01(1.25,3.13)	2.30(1.09,4.83)	2.66(1.72,4.11)
ROMO/ALN	0.25(0.15,0.43)	0.50(0.30,0.80)	0.47(0.28,0.86)	0.62(0.33,1.11)	0.51(0.28,0.98)	0.51(0.24,1.12)	0.81(0.44,1.59)	0.93(0.40,2.29)	1.06(0.60,2.06)

Table 34: Pairwise comparisons, vertebral fractures main analysis

	PBO	ALN	RIS	ZOL	IBNdaily	IBNmonthly	DEN	ROMO	TPTD
PBO		0.78(0.56,0.99)	0.73(0.53,0.98)	0.73(0.54,0.95)	0.89(0.60,1.38)	0.79(0.50,1.31)	0.86(0.64,1.23)	0.71(0.45,1.09)	0.58(0.
ALN	0.77(0.64,0.90)		0.95(0.65,1.43)	0.94(0.65,1.42)	1.15(0.75,1.91)	1.02(0.63,1.78)	1.10(0.76,1.84)	0.92(0.56,1.56)	0.75(0.
RIS	0.73(0.59,0.88)	0.96(0.73,1.19)		1.00(0.66,1.48)	1.22(0.76,2.11)	1.07(0.65,1.96)	1.18(0.79,1.91)	0.97(0.57,1.65)	0.80(0.
ZOL	0.73(0.61,0.85)	0.96(0.76,1.17)	1.00(0.79,1.28)		1.23(0.77,2.08)	1.07(0.65,1.93)	1.18(0.79,1.90)	0.97(0.58,1.63)	0.80(0.
IBNdaily	0.88(0.67,1.32)	1.13(0.91,1.76)	1.20(0.93,1.98)	1.20(0.93,1.91)		0.91(0.47,1.49)	0.95(0.57,1.69)	0.79(0.43,1.43)	0.65(0.
IBNmonthly	0.78(0.54,1.27)	1.01(0.70,1.66)	1.05(0.74,1.84)	1.05(0.74,1.83)	0.93(0.50,1.32)		1.08(0.61,1.98)	0.90(0.47,1.68)	0.74(0.4
DEN	0.86(0.69,1.12)	1.12(0.87,1.57)	1.18(0.90,1.63)	1.18(0.91,1.63)	0.97(0.62,1.46)	1.09(0.65,1.73)		0.83(0.46,1.38)	0.68(0.4
ROMO	0.71(0.48,1.03)	0.92(0.62,1.39)	0.97(0.64,1.49)	0.97(0.64,1.47)	0.79(0.47,1.28)	0.90(0.50,1.53)	0.82(0.51,1.26)		0.82(0.4
TPTD	0.58(0.45,0.76)	0.76(0.57,1.02)	0.80(0.61,1.04)	0.80(0.60,1.08)	0.66(0.40,0.96)	0.74(0.42,1.14)	0.68(0.47,0.94)	0.82(0.53,1.28)	
RLX	0.90(0.65,1.21)	1.17(0.84,1.63)	1.23(0.85,1.77)	1.23(0.87,1.74)	1.01(0.62,1.53)	1.14(0.66,1.83)	1.05(0.68,1.49)	1.27(0.78,2.05)	1.55(1.
ROMO/ALN	0.63(0.44,0.86)	0.81(0.61,1.09)	0.86(0.58,1.25)	0.86(0.59,1.23)	0.70(0.42,1.06)	0.79(0.46,1.26)	0.73(0.46,1.06)	0.88(0.53,1.44)	1.08(0.

Table 35: Pairwise comparisons, non-vertebral fractures main analysis

	РВО	ALN	RIS	ZOL	DEN	ROMO	ТРТД	RLX	ROM
РВО		0.64(0.39,1.04)	0.66(0.40,1.12)	0.63(0.39,1.01)	0.56(0.28,1.04)	0.56(0.20,1.50)	0.34(0.14,0.78)	0.93(0.29,2.82)	0.39(0
ALN	0.64(0.45,0.88)		1.03(0.56,2.01)	1.00(0.54,1.85)	0.88(0.38,1.94)	0.88(0.29,2.64)	0.54(0.20,1.37)	1.48(0.44,4.81)	0.62(0
RIS	0.66(0.46,0.99)	1.02(0.71,1.63)		0.97(0.51,1.79)	0.85(0.36,1.84)	0.85(0.27,2.63)	0.52(0.21,1.23)	1.41(0.42,4.71)	0.59(0
ZOL	0.64(0.47,0.86)	1.00(0.70,1.44)	0.99(0.62,1.38)		0.88(0.39,1.91)	0.88(0.29,2.65)	0.54(0.20,1.34)	1.48(0.44,4.82)	0.62(0
DEN	0.56(0.31,0.94)	0.88(0.45,1.63)	0.85(0.43,1.57)	0.88(0.46,1.59)		1.00(0.31,3.31)	0.61(0.21,1.77)	1.68(0.47,5.95)	0.70(0
ROMO	0.56(0.22,1.43)	0.88(0.33,2.41)	0.85(0.31,2.33)	0.88(0.33,2.36)	1.01(0.33,3.04)		0.61(0.17,2.19)	1.65(0.37,7.39)	0.70(0
TPTD	0.35(0.15,0.73)	0.54(0.23,1.19)	0.52(0.23,1.06)	0.54(0.23,1.18)	0.62(0.24,1.58)	0.61(0.19,1.97)		2.74(0.68,11.24)	1.14(0
RLX	0.94(0.31,2.67)	1.48(0.49,4.20)	1.42(0.45,4.21)	1.47(0.48,4.27)	1.69(0.50,5.45)	1.64(0.41,6.67)	2.73(0.73,10.19)		0.42(0
ROMO/ALN	0.39(0.21,0.72)	0.62(0.36,1.03)	0.59(0.31,1.12)	0.61(0.32,1.13)	0.70(0.32,1.62)	0.70(0.22,2.14)	1.14(0.44,3.09)	0.42(0.13,1.39)	

Table 36:Pairwise comparisons, hip fractures main analysis

	РВО	ALN	RIS	IBNmonthly	DEN	ROMO	TPTD	RLX
PBO		0.83(0.35,1.77)	0.79(0.34,1.77)	0.84(0.31,2.31)	1.29(0.14,13.46)	3.90(0.10,2150.25)	0.76(0.28,1.88)	1.62(0.62
ALN	0.82(0.51,1.23)		0.96(0.33,2.84)	1.01(0.33,3.46)	1.59(0.17,18.17)	4.86(0.12,2746.02)	0.92(0.28,3.10)	1.95(0.59
RIS	0.79(0.49,1.22)	0.98(0.59,1.52)		1.05(0.34,3.59)	1.65(0.17,19.09)	5.04(0.12,2961.30)	0.96(0.28,3.09)	2.04(0.6)
IBNmonthly	0.83(0.42,1.89)	1.00(0.54,2.22)	1.02(0.57,2.42)		1.56(0.14,18.93)	4.72(0.11,2771.52)	0.90(0.23,3.26)	1.94(0.49
DEN	1.29(0.15,12.49)	1.58(0.20,15.16)	1.64(0.20,16.21)	1.54(0.17,15.60)		3.26(0.04,2080.02)	0.57(0.05,6.23)	1.25(0.10
ROMO	3.87(0.11,2062.02)	4.80(0.13,2579.12)	5.02(0.14,2672.92)	4.68(0.12,2477.20)	3.27(0.04,2077.15)		0.19(0.00,7.20)	0.42(0.00
TPTD	0.75(0.38,1.41)	0.92(0.44,1.90)	0.96(0.47,1.88)	0.90(0.34,2.11)	0.57(0.05,5.17)	0.19(0.00,6.39)		2.14(0.59
RLX	1.63(0.80,3.51)	1.98(0.92,4.87)	2.07(0.92,5.04)	1.96(0.71,5.39)	1.27(0.12,11.69)	0.42(0.00,16.12)	2.17(0.86,6.12)	

Table 37:	Pairwise comparisons, wrist fractures main analysis
-----------	---

	РВО	ALN	RIS	DEN	ROMO	ТРТД	RLX
РВО		0.46(0.13,1.43)	0.48(0.20,1.13)	0.55(0.11,2.60)	0.10(0.00,3.80)	0.55(0.19,1.59)	2.48(0.06,1215.07)
ALN	0.46(0.15,1.27)		1.03(0.36,3.52)	1.21(0.24,6.59)	0.23(0.00,10.16)	1.22(0.32,4.89)	5.48(0.16,2806.02)
RIS	0.49(0.23,0.96)	1.01(0.47,2.78)		1.13(0.24,5.46)	0.22(0.00,8.19)	1.15(0.38,3.48)	5.27(0.14,2596.20)
DEN	0.55(0.12,2.41)	1.21(0.26,5.68)	1.14(0.28,4.57)		0.19(0.00,9.50)	1.00(0.18,5.72)	4.63(0.09,2621.17)
ROMO	0.10(0.00,3.66)	0.23(0.00,9.49)	0.22(0.00,7.54)	0.19(0.00,8.82)		5.11(0.16,2773.07)	34.06(0.14,132817.46)
TPTD	0.55(0.21,1.41)	1.22(0.39,4.05)	1.15(0.50,2.63)	1.00(0.20,5.02)	5.10(0.17,2692.22)		4.63(0.11,2511.00)
RLX	2.46(0.06,1204.07)	5.43(0.17,2598.02)	5.19(0.15,2496.67)	4.64(0.10,2526.10)	33.91(0.15,126105.00)	4.58(0.12,2345.00)	

Table 38:	Pairwise co	omparisons,	humerus	fractures	main	analysis

	РВО	ALN	RIS	ZOL	IBNdaily	IBNmonthly	IBNiv	DEN	ROMO	TPTD	RLX	ROMO/
РВО		2.48(0.71,4.25)	1.80(0.01,3.58)	3.16(1.27,5.04)	1.84(-0.30,3.85)	2.30(0.41,4.24)	2.38(0.06,4.56)	3.35(1.51,5.16)	4.20(2.24,6.17)	2.58(0.77,4.40)	1.52(-0.33,3.42)	6.09(3.5
ALN	2.49(2.05,2.91)		-0.70(-3.20,1.78)	0.68(-1.91,3.19)	-0.65(-3.37,1.98)	-0.19(-2.74,2.37)	-0.12(-2.97,2.66)	0.87(-1.69,3.36)	1.71(-0.94,4.34)	0.10(-2.41,2.57)	-0.97(-3.49,1.60)	3.60(0.5
RIS	1.80(1.22,2.37)	-0.69(-1.29,-0.09)		1.36(-1.22,3.95)	0.03(-2.66,2.70)	0.51(-2.03,3.10)	0.58(-2.30,3.37)	1.56(-0.95,4.08)	2.40(-0.25,5.10)	0.79(-1.70,3.30)	-0.26(-2.84,2.35)	4.27(1.2
ZOL	3.17(2.38,3.95)	0.68(-0.09,1.49)	1.37(0.41,2.28)		-1.32(-4.14,1.41)	-0.86(-3.48,1.85)	-0.77(-3.72,2.08)	0.18(-2.39,2.77)	1.04(-1.67,3.76)	-0.58(-3.21,2.06)	-1.63(-4.24,1.02)	2.92(-0.3
IBNdaily	1.85(0.53,2.93)	-0.63(-1.97,0.41)	0.05(-1.24,1.15)	-1.31(-2.86,-0.06)		0.48(-2.17,3.17)	0.54(-2.18,3.28)	1.52(-1.20,4.27)	2.39(-0.52,5.22)	0.75(-1.94,3.51)	-0.29(-3.05,2.52)	4.25(1.0
IBNmonthly	2.32(1.50,3.13)	-0.16(-0.99,0.63)	0.51(-0.33,1.41)	-0.83(-1.95,0.15)	0.47(-0.56,1.73)		0.07(-2.80,2.88)	1.04(-1.55,3.64)	1.91(-0.87,4.59)	0.29(-2.38,2.87)	-0.78(-3.47,1.87)	3.78(0.6
IBNiv	2.39(0.83,3.78)	-0.10(-1.66,1.32)	0.56(-0.92,2.09)	-0.73(-2.53,0.64)	0.52(-0.69,1.92)	0.06(-1.47,1.54)		0.97(-1.90,3.87)	1.82(-1.16,4.85)	0.21(-2.62,3.15)	-0.86(-3.69,2.15)	3.72(0.3
DEN	3.36(2.74,3.97)	0.87(0.24,1.49)	1.56(0.83,2.30)	0.19(-0.70,1.09)	1.52(0.33,2.91)	1.04(0.16,1.95)	0.97(-0.50,2.60)		0.85(-1.79,3.53)	-0.78(-3.31,1.80)	-1.82(-4.36,0.80)	2.73(-0.3
ROMO	4.20(3.23,5.16)	1.71(0.67,2.75)	2.40(1.28,3.51)	1.03(-0.22,2.28)	2.36(0.88,3.95)	1.88(0.65,3.12)	1.82(0.10,3.65)	0.84(-0.30,1.96)		-1.63(-4.27,1.00)	-2.66(-5.40,0.03)	1.88(-1.3
TPTD	2.58(2.00,3.17)	0.09(-0.56,0.75)	0.78(0.02,1.54)	-0.59(-1.52,0.35)	0.73(-0.47,2.14)	0.25(-0.68,1.22)	0.19(-1.30,1.85)	-0.78(-1.57,0.01)	-1.62(-2.63,-0.60)		-1.04(-3.65,1.56)	3.51(0.4
RLX	1.53(0.78,2.31)	-0.95(-1.74,-0.14)	-0.26(-1.19,0.66)	-1.63(-2.70,-0.56)	-0.30(-1.64,1.17)	-0.79(-1.86,0.31)	-0.85(-2.42,0.87)	-1.82(-2.77,-0.86)	-2.66(-3.89,-1.42)	-1.04(-1.98,-0.09)		4.55(1.4
ROMO/ALN	6.08(4.25,7.91)	3.59(1.81,5.37)	4.29(2.40,6.14)	2.92(0.93,4.86)	4.26(2.14,6.42)	3.76(1.79,5.73)	3.70(1.41,6.03)	2.72(0.83,4.61)	1.89(-0.22,3.98)	3.50(1.57,5.41)	4.55(2.57,6.50)	

Table 39:Pairw	ise comparisons.	, femoral neck	BMD main analy	sis
----------------	------------------	----------------	----------------	-----

Appendix 9.5 Assessment of inconsistency Vertebral fractures

12 treatment contrasts have both direct and indirect evidence, however only 10 of these were assessed for consistency. RIS-ALN was not assessed since the direct comparison is contributed by one small study⁸⁰ with a zero count in the control arm. ZOL-TPTD was not assessed since the direct comparison is contributed by one small study,⁹⁴ with only 1 event in the TPTD arm. Multiple testing should be taken into account when considering p-values.

Comparing the DIC for the different node-splits with that of the full consistency NMA model, only the PBO-ZOL comparison provides a lower DIC when the node is split. However the difference is small (-0.7), therefore there is not a clear advantage of one model over the other. The HR's from both the direct and indirect evidence favour ZOL and the combined estimate is more heavily influenced by the direct studies. It was concluded that there is no strong evidence for inconsistency in the network.

		Heterogeneity		Model	Fit	HR's			p*
T1	T2					All			1
		SD	SDt	D _{res}	DIC	evidence	Direct	Indirect	
PBO	ALN	0.14	0.42	105		0.50	0.46	0.76	
PBU	ALN	(0.01,0.34)	(0.05,1.48)	90.4	152.7	(0.40,0.64)	(0.36,0.62)	(0.43,1.68)	0.18
PBO	RIS	0.16	0.19			0.52	0.57	0.45	
PBU	KIS	(0.01,0.37)	(0.01,0.86)	92.31	155	(0.41,0.65)	(0.42,0.74)	(0.32,0.65)	0.31
DDO	ZOL	0.12	0.13			0.40	0.33	0.56	
PBO	ZOL	(0.01,0.31)	(0.00,0.92)	91.29	151.6	(0.29,0.55)	(0.25,0.45)	(0.38,1.25)	0.03
PBO	TPTD	0.17	0.19			0.23	0.30	0.18	
PBU	IFID	(0.02,0.37)	(0.01,0.89)	90.18	153.33	(0.16,0.32)	(0.19,0.49)	(0.11,0.28)	0.12
RIS	ZOL	0.16	0.23			0.78	1.78	0.73	
KI5	ZOL	(0.01,0.35)	(0.02,0.97)	92.07	155.02	(0.52,1.08)	(0.40,9.98)	(0.49,1.05)	0.26
RIS	DEN	0.18	0.21			0.59	0.67	0.56	
KI5	DEN	(0.01,0.38)	(0.01,0.91)	91.95	155.44	(0.39,0.88)	(0.26,1.65)	(0.35,0.90)	0.72
DIC	TDTD	0.18	0.20			0.44	0.44	0.45	
RIS	TPTD	(0.02,0.39)	(0.01,0.90)	91.82	155.24	(0.32,0.61)	(0.27,0.68)	(0.27,0.72)	0.94
DDO		0.16	0.20			0.61	0.64	0.30	
PBO	RLX	(0.01,0.36)	(0.01,0.90)	91.58	154.34	(0.44,0.80)	(0.47,0.85)	(0.09,0.90)	0.19
DDO	DEN	0.18	0.21			0.30	0.29	0.35	
PBO	DEN	(0.02,0.38)	(0.01,0.90)	91.97	155.54	(0.21,0.43)	(0.19,0.43)	(0.14,0.90)	0.72

 Table 40:
 Node-splitting results, vertebral fractures main analysis

ALN	TPTD	0.15	0.22			0.46	0.18	0.53	
ALN	IFID	(0.01,0.35)	(0.02,0.92)	90.5	153.26	(0.31,0.66)	(0.04,0.51)	(0.35,0.77)	0.06
Consi	stency mo	odel	Į	I	I	ļ	Į	Į	1 1
		0.17	0.20						
		(0.02,0.37)	(0.01,0.91)	91.24	152.34				

* Bayesian p-value

Non-vertebral fractures

14 treatment contrasts have both direct and indirect evidence, however only 13 of these were assessed for consistency. RIS-ALN was not assessed since the direct comparison is contributed by one small study⁸⁰ with a zero count in the RIS arm. Multiple testing should be taken into account when considering p-values.

Comparing the DIC for the different node-splits with that of the full consistency NMA model, only the PBO-ALN comparison provides a lower DIC when the node is split. However the difference is small therefore there is not a clear advantage of one model over the other, and the p-values are large for all comparisons. It was concluded that there is no strong evidence for inconsistency in network.

, 	, 	Heterogeneit	ty	Model I	Fit	HR's			
T1	T2					All			р
		SD	SDt	D _{res}	DIC	evidence	Direct	Indirect	
	[]	0.88	1.14			0.90	0.88	1.14	
PBO	RLX	(0.62,1.19)	(0.39,3.23)	74.61	129.85	(0.65,1.21)	(0.62,1.19)	(0.39,3.23)	0.65
	1	0.81	0.66			0.77	0.81	0.66	
PBO	ALN	(0.65,0.95)	(0.39,0.91)	73.06	127.94	(0.64,0.90)	(0.65,0.95)	(0.39,0.91)	0.31
	1	0.65	0.80			0.73	0.65	0.80	
PBO	RIS	(0.48,0.86)	(0.59,1.12)	73.8	128.78	(0.59,0.88)	(0.48,0.86)	(0.59,1.12)	0.28
	1	0.71	0.78			0.73	0.71	0.78	
PBO	ZOL	(0.57,0.86)	(0.42,1.33)	74.3	129.46	(0.61,0.85)	(0.57,0.86)	(0.42,1.33)	0.65
	1	0.82	1.34			0.86	0.82	1.34	
PBO	DEN	(0.65,1.05)	(0.69,2.61)	73.41	128.2	(0.69,1.12)	(0.65,1.05)	(0.69,2.61)	0.19
	1	0.75	0.50			0.71	0.75	0.50	
PBO	ROMO	(0.49,1.14)	(0.16,1.46)	74.45	129.95	(0.48,1.03)	(0.49,1.14)	(0.16,1.46)	0.49
		0.60	0.57			0.58	0.60	0.57	!
PBO	TPTD	(0.39,0.89)	(0.40,0.80)	74.6	129.91	(0.45,0.76)	(0.39,0.89)	(0.40,0.80)	0.88
		1.06	0.71			0.76	1.06	0.71	!
ALN	TPTD	(0.52,2.23)	(0.52,0.96)	73.84	128.86	(0.57,1.02)	(0.52,2.23)	(0.52,0.96)	0.3
		1.75	1.12			1.18	1.75	1.12	
RIS	DEN	(0.78,4.16)	(0.85,1.57)	74.15	129.18	(0.90,1.63)	(0.78,4.16)	(0.85,1.57)	0.33
		0.69	0.97			0.80	0.69	0.97	!
RIS	TPTD	(0.47,0.99)	(0.66,1.46)	72.89	128.22	(0.61,1.04)	(0.47,0.99)	(0.66,1.46)	0.22
		0.85	0.79			0.80	0.85	0.79	
ZOL	TPTD	(0.29,2.51)	(0.58,1.07)	74.84	130.26	(0.60,1.08)	(0.29,2.51)	(0.58,1.07)	0.89
		1.15	0.77			0.82	1.15	0.77	
ROMO	TPTD	(0.37,3.53)	(0.46,1.24)	74.43	129.92	(0.53,1.28)	(0.37,3.53)	(0.46,1.24)	0.49
	1	0.07	0.16			1.12	1.83	1.09	
ALN	DEN	(0.00,0.23)	(0.01,0.74)	74.49	129.77	(0.87,1.57)	(0.58,6.33)	(0.84,1.52)	0.39
Consiste	ency mode	el							
	I	0.08	0.15						
	ļ	(0,0.24)	(0.01,0.73)	74.047	128.4				
D	!	L							

 Table 41:
 Node-splitting results, non-vertebral fractures main analysis

* Bayesian p-value

Hip fractures

14 treatment contrasts have both direct and indirect evidence, however only 9 of these were assessed for consistency. For 5 of these (RIS-ALN, RIS-DEN, RIS-RLX, ZOL-DEN, ROMO-TPTD) the direct comparison is contributed by small studies⁸⁰, ³⁴⁴, Miller 2016.⁶⁸ Multiple testing should be taken into account when considering p-values.

Comparing the DIC for the different node-splits with that of the full consistency NMA model, for all comparisons there is a higher DIC (indicating a less favourable model) when the node is split and the p-values are large. It was concluded that there is no strong evidence for inconsistency in network.

- 42.					HR's		,
T2			'		All		
	SD	SDt	D _{res}	DIC	evidence	Direct	Indirect
	0.16	0.38		· · · · · ·	0.64	0.62	
ALN	(0.01,0.63)	(0.02,1.77)	39.72	73.1	(0.41,0.94)	(0.35,1.07)	0.62 (0.16,1.92)
1	0.15	0.32			0.67	0.80	
RIS	(0.00,0.61)	(0.01,1.70)	39.32	72.68	(0.43,1.10)	(0.40,1.58)	0.57 (0.19,1.22)
1	0.16	0.43		1	0.64	0.62	
ZOL	(0.01,0.63)	(0.02,1.81)	39.58	72.92	(0.44,0.92)	(0.39,1.02)	0.72 (0.20,4.39)
1	0.15	0.24			0.56	0.57	
DEN	(0.01,0.59)	(0.01,1.59)	39.76	73.08	(0.29,0.99)	(0.28,1.05)	0.41 (0.04,2.75)
1	0.14	0.23			0.56	0.52	1.97 (0.05,
ROMO	(0.01,0.58)	(0.01,1.60)	40.01	73.68	(0.20,1.48)	(0.17,1.48)	642.60)
ļ	0.15	0.25			0.34	0.19	
TPTD	(0.01,0.59)	(0.01,1.60)	39.75	73.33	(0.15,0.77)	(0.02,1.03)	0.39 (0.14,0.98)
1	0.14	0.23		1	0.94	0.83	
RLX	(0.01,0.58)	(0.01,1.57)	39.91	73.18	(0.31,2.85)	(0.22,3.08)	1.10 (0.10,7.81)
,	0.15	0.23	'		1.49	1.73 (
RLX	(0.01,0.58)	(0.01,1.57)	40.03	73.46	(0.47,4.66)	0.16,11.56)	1.31 (0.31,5.34)
,	0.15	0.25	'		0.51	0.59	
TPTD	(0.01,0.58)	(0.01,1.58)	39.42	72.97	(0.23,1.07)	(0.24,1.41)	0.27 (0.04,1.33)
stency mc	odel	1	1 1	1 I	l	1	
	0.14	0.23					
ł	(0.01,0.56)	(0.01,1.54)	39.0876	71.572			
	T2 ALN RIS ZOL DEN ROMO TPTD RLX RLX TPTD	Heterogeneit T2 SD SD 0.16 ALN (0.01,0.63) 0.15 0.16 RIS (0.00,0.61) 0.16 0.16 ZOL (0.01,0.63) 0.15 0.15 DEN (0.01,0.59) 0.14 0.15 TPTD (0.01,0.58) 0.14 0.15 RLX (0.01,0.58) 0.15 0.15 TPTD (0.01,0.58) 0.15 0.15 TPTD (0.01,0.58) 0.15 0.15 TPTD (0.01,0.58) 0.15 0.15 TPTD (0.01,0.58)	Heterogeneity T2 Heterogeneity SD SDt SD SDt ALN 0.16 0.38 ALN (0.01,0.63) (0.02,1.77) 0.15 0.32 RIS (0.00,0.61) (0.01,1.70) 0.16 0.43 ZOL (0.01,0.63) (0.02,1.81) 0.15 0.24 DEN (0.01,0.59) (0.01,1.59) 0.14 0.23 ROMO (0.01,0.58) (0.01,1.60) 0.15 0.25 TPTD (0.01,0.58) (0.01,1.57) 0.15 0.23 RLX (0.01,0.58) (0.01,1.57) 0.15 0.23 RLX (0.01,0.58) (0.01,1.57) 0.15 0.25 TPTD (0.01,0.58) (0.01,1.57) 0.15 0.25 TPTD (0.01,0.58) (0.01,1.58) TPTD (0.01,0.58) (0.01,1.58)	Heterogeneity Model Fi SD SDt Dress 0.16 0.38 Dress ALN (0.01,0.63) (0.02,1.77) 39.72 0.15 0.32 39.72 RIS (0.00,0.61) (0.01,1.70) 39.32 0.16 0.43 39.58 ZOL (0.01,0.63) (0.02,1.81) 39.58 0.15 0.24 39.76 DEN (0.01,0.59) (0.01,1.59) 39.76 0.14 0.23 40.01 0.15 0.25 1 TPTD (0.01,0.59) (0.01,1.60) 39.75 0.14 0.23 1 1 RLX (0.01,0.58) (0.01,1.57) 39.91 0.15 0.23 1 1 RLX (0.01,0.58) (0.01,1.57) 40.03 0.15 0.25 1 1 TPTD (0.01,0.58) (0.01,1.57) 39.42 Stency model 14 0.23 3	Heterogeneity Model Fit T2 SD SDt D _{res} DIC SD 0.16 0.38 D	Heterogeneity Model Fit HR's T2 SD SDt Dres DIC evidence 0.16 0.38 0.64 0.64 0.67 0.67 ALN (0.01,0.63) (0.02,1.77) 39.72 73.1 (0.41,0.94) 0.67 RIS (0.00,0.61) (0.01,1.70) 39.32 72.68 (0.43,1.10) 0.64 ZOL (0.01,0.63) (0.02,1.81) 39.58 72.92 (0.44,0.92) 0.56 DEN (0.01,0.63) (0.02,1.81) 39.58 72.92 (0.44,0.92) 0.56 DEN (0.01,0.59) (0.01,1.59) 39.76 73.08 (0.29,0.99) 0.14 0.23 0.56 0.34 0.56 ROMO (0.01,0.58) (0.01,1.60) 39.75 73.33 (0.15,0.77) 0.15 0.23 0.94 0.94 0.94 RLX (0.01,0.58) (0.01,1.57) 39.91 73.18 (0.47,4.66) 0.15 0.25 0.51 0	Heterogeneity Model Fit HR's T2 SD SDt D_{ress} DIC evidence Direct ALN (0.01,0.63) (0.02,1.77) 39.72 73.1 (0.41,0.94) (0.35,1.07) 0.15 0.32 73.1 (0.41,0.94) (0.35,1.07) 0.15 0.32 73.1 (0.41,0.94) (0.35,1.07) 0.16 0.32 0.64 0.62 RIS (0.00,0.61) (0.01,1.70) 39.32 72.68 (0.43,1.10) (0.40,1.58) 0.16 0.43 99.32 72.68 (0.44,0.92) (0.39,1.02) 0.16 0.43 0.97 73.08 (0.29,0.99) (0.28,1.05) 0.15 0.24 1 0.56 0.52 DEN (0.01,0.59) (0.01,1.59) 39.76 73.08 (0.29,0.99) (0.28,1.05) 0.14 0.23 1 0.56 0.52 0.56 0.52 RDMO (0.01,0.59) (0.01,1.60) 39.75 73.33

 Table 42:
 Node-splitting results, hip fractures main analysis

* Bayesian p-value

Wrist

8 treatment contrasts have both direct and indirect evidence, however only 5 of these were assessed for consistency. For 3 of these (RIS-ALN, ALN-RLX, RIS-RLX) the direct comparison is contributed by small studies.^{80,78} Multiple testing should be taken into account when considering p-values.

Comparing the DIC for the different node-splits with that of the full consistency NMA model, for all comparisons there is a higher DIC (indicating a less favourable model) when the node is split and the p-values are large. It was concluded that there is no strong evidence for inconsistency in network.

		Heterogeneit	ty	Model F	it	HR's			
T1	T2					All			p*
		SD	SDt	D _{res}	DIC	evidence	Direct	Indirect	
		0.30	0.21			0.82	0.86	0.73	
PBO	ALN	(0.03,0.65)	(0.01,0.68)	29.93	54.51	(0.51,1.23)	(0.45,1.48)	(0.28,1.77)	0.74
		0.29	0.19			0.79	0.67	0.91	
PBO	RIS	(0.04,0.64)	(0.01,0.64)	29.87	54.47	(0.48,1.22)	(0.34,1.32)	(0.45,1.90)	0.49
		0.30	0.17			0.75	0.80	0.66	
PBO	TPTD	(0.04,0.65)	(0.01,0.63)	30.3	55.32	(0.38,1.41)	(0.33,1.79)	(0.21,2.10)	0.78
		0.28	0.17			1.63	1.58	2.18 (
PBO	RLX	(0.03,0.63)	(0.01,0.62)	30.61	55.58	(0.80,3.51)	(0.75,3.56)	0.18,23.47)	0.81
I		0.30	0.17			0.96	0.86	1.04	
RIS	TPTD	(0.04,0.66)	(0.01,0.63)	30.25	55.13	(0.47,1.88)	(0.31,2.40)	(0.37,2.69)	0.78
Consi	stency n	nodel	I	I	I	I	I	Ι	
		0.28	0.16						
		(0.04,0.62)	(0.01,0.61)	29.9199	54.203				

 Table 43:
 Node-splitting results, wrist fractures main analysis

* Bayesian p-value

Humerus

5 treatment contrasts have both direct and indirect evidence, however only 4 of these were assessed for consistency. For the PBO-DEN comparison the direct comparison is contributed by one small study⁴³ zero events in the DEN arm. Multiple testing should be taken into account when considering p-values.

Comparing the DIC for the different node-splits with that of the full consistency NMA model, for all comparisons there is a higher DIC (indicating a less favourable model) when the node is split and the p-values are large. It was concluded that there is no strong evidence for inconsistency in network.

		Heterogeneit	ty	Model F	it	HR's			
T1	T2					All			p*
		SD	SD.d	D _{res}	DIC	evidence	Direct	Indirect	
		0.18	0.21			0.48	0.45	0.63	
PBO	RIS	(0.01,0.59)	(0.01,0.71)	22.98	43.98	(0.24,0.96)	(0.19,0.98)	(0.12,3.00)	0.71
		0.17	0.21			0.55	0.77	0.42	
PBO	TPTD	(0.01,0.60)	(0.01,0.72)	22.86	43.99	(0.21,1.41)	(0.17,3.30)	(0.11,1.47)	0.53
		0.17	0.22			1.14	0.97	1.40 (
RIS	DEN	(0.01,0.58)	(0.01,0.72)	23.05	43.93	(0.28,4.57)	(0.15,5.91)	0.13,14.31)	0.8
		0.17	0.21			1.15	1.00	1.80	
RIS	TPTD	(0.01,0.59)	(0.01,0.72)	22.61	43.46	(0.50,2.63)	(0.38,2.65)	(0.33,9.58)	0.54
Consi	stency mo	odel	1	1	Į	I	I	Ι	Ī
		0.17	0.21						
		(0.01,0.57)	(0.01,0.7)	21.9908	41.832				

 Table 44:
 Node-splitting results, proximal humerus fractures main analysis

* Bayesian p-value

Appendix 9.6 NMA results of meta-regressions

A summary of meta-regression models (covariate estimate, model fit, heterogeneity) is provided in

Table **45** for all outcomes.

Note that for age and gender, a common meta-regression coefficient is assumed for all treatments (see ³⁴⁵ for further details). Alternative models were also considered but did not improve model fit.

For meta-regressions on baseline response, the results for all outcomes assume a common metaregression coefficient for all treatments (as for age and gender), and the baselines of each study were assumed to follow a normal distribution with common mean and between treatment variance (see Achana ¹²³for further details). Alternative models were also considered but did not improve model fit. Results are provided Table 45 below.

Meta-regression on baseline risk, model selection

For the vertebral fractures network four different baseline risk models were considered, allowing different assumptions about the model for baseline risk and covariate treatment interaction:

- A1: Unconstrained baseline and common slope
- A2: Normal distribution for baseline risk and common slope
- B1: Unconstrained baseline and common slope
- B2: Normal distribution for baseline risk and common slope

Alternative models were considered for vertebral fractures only (which provides the largest network of evidence). Models with an unconstrained baseline (A1, B1) had a high DIC. Model A2, with normal distribution for baseline risk and assumption of common slope parameter for treatment-covariate interaction was chosen for the main meta-regression model since this provided the lowest DIC. Results using this model provided in

Table **45** for all outcomes.

Outcome/Model	absolute	model fit	DIC	heterogeneity		covariate	baseline parameter	e parameters	
Outcome/wiodei	D _{res}	DP	DIC	SD (95%CI)	SDt (95%CI)	estimate (95% CI)	Covariate	SD	
<u>Vertebral</u>									
age	92.15	93	155.19	0.176(0.018,0.378)	0.191(0.011,0.882)	-0.028(-0.227,0.192)	NA	NA	
gender	91.31	93	154.81	0.185(0.03,0.379)	0.2(0.01,0.939)	0.06(-0.117,0.263)	NA	NA	
baseline response	88.57	93	147.16	0.18(0.02,0.37)	0.17(0.01,0.8)	0.13(-0.04,0.3)	-3.1(-3.41,-2.8)	0.96(0.76,1.23)	
Non-vertebral									
age	74.62	86	130.01	0.08(0.003,0.244)	0.166(0.009,0.768)	0.014(-0.16,0.207)			
gender	74.75	86	129.92	0.077(0.004,0.236)	0.14(0.006,0.694)	0.062(-0.132,0.256)			
baseline response M2	73.44	86	119.99	0.1(0.01,0.28)	0.15(0.01,0.76)	0.05(-0.16,0.32)	-3.41(-3.61,-3.22)	0.53(0.39,0.73)	
<u>Hip</u>									
age	39.83	47	72.83	0.12(0.007,0.434)	0.266(0.011,1.594)	-0.103(-0.782,0.538)	NA	NA	
gender	39.55	47	72.39	0.135(0.006,0.47)	0.248(0.01,1.6)	-0.118(-1.048,0.845)	NA	NA	
baseline response M2	39.14	47	67.24	0.13(0.01,0.47)	0.29(0.01,1.66)	0.08(-0.37,0.74)	-5.21(-5.62,-4.77)	0.77(0.48,1.29)	
<u>Wrist</u>									
age	30	31	54.79	0.216(0.015,0.592)	0.446(0.012,1.885)	-0.638(-1.56,0.261)	NA	NA	
baseline response M2	28.42	31	48.6	0.34(0.05,0.7)	0.45(0.02,1.82)	0.37(-1.56,2.58)			
Humerus									
age	23.92	26	46.12	0.179(0.008,0.619)	0.998(0.049,1.953)	0.273(-2.788,3.6)	NA	NA	
gender	24.01	26	46.38	0.171(0.008,0.582)	0.988(0.052,1.951)	0.412(-1.351,3.199)	NA	NA	
baseline response	22.17	26	38.53	0.18(0.01,0.59)	1(0.05,1.95)	-0.26(-1.36,3.04)	-5.15(-6.03,-3.73)	0.72(0.13,3.09)	
Femoral neck BMD									

 Table 45:
 Results of meta-analysis on gender, age and baseline response for all outcomes

age	144.5	137	259.24	0.86(0.65,1.14)	0.76(0.25,2.28)	-0.01(-0.07,0.05)	NA	NA	
gender	145.7	137	258.73	0.80(0.59,1.08)	0.77(0.28,2.34)	0.01(0,0.02)	NA	NA	
baseline response	NA	137	NA	0.81(0.61,1.08)	0.67(0.24,1.65)	0.16(-0.32,0.81)	-0.31(-0.57,-0.04)	1.92(0.91,4.18)	

	absolute model fit			heterogeneity		covariate		baseline parame	baseline parameters	
Model						estimate (95%				
	D _{res}	DP	DIC	SD (95%CI)	SDt (95%CI)	CI)	SD (95% CI)	covariate	SD covariate	
A1	89.91	93	171.57	1.06(0.06,1.4)	0.31(0.01,1.47)	-1(-1.01,0.09)	NA	NA	NA	
A2	88.57	93	147.16	0.18(0.02,0.37)	0.17(0.01,0.8)	0.13(-0.04,0.3)	NA	-3.1(-3.41,-2.8)	0.96(0.76,1.23)	
B1	92.85	93	157.38	0.16(0.02,0.39)	0.2(0.01,1.11)	0.03(-0.16,0.22)	0.13(0.01,0.6)	NA	NA	
								-3.11(-3.41,-		
B2	89.48	93	148.39	0.17(0.02,0.37)	0.18(0.01,0.94)	0.14(-0.03,0.33)	0.09(0.01,0.47)	2.81)	0.96(0.77,1.24)	

 Table 46:
 Meta-regression on baseline risk, comparison of alternative models, vertebral fractures

Appendix 10:	Studies excluded at full text from	the review of r	oublished economic evaluations
rippenana ro.	Studies excluded at full text if on	the review of p	

Citation	Reason for exclusion
Alexander W, Strom O, Macarios D. American Society for Bone and Mineral Research: DEN (Prolia): A cost-effectiveness model. P and T 2009;34:633.	Abstract only
Davies A, Compston J, Ferguson S, McClosky E, Shearer A, Taylor A. Cost-effectiveness of DEN in the treatment of postmenopausal osteoporosis in Scotland. Value in Health 2011;14 (7):A310. https://doi.org/http://dx.doi.org/10.1016/j.jval.2011.08.430	Abstract only
Hagen G. Comparative Effectiveness and Cost-Effectiveness of Generic ALN, RIS, DEN and Zolendronic Acid for Secondary Prevention of Fragility Fractures - Perliminay Results. Value in Health 2015;18:A648. https://doi.org/https://dx.doi.org/10.1016/j.jval.2015.09.2329	Abstract only
Liu H, Michaud K, Nayak S, Karpf DB, Owens DK, Garber AM. The cost-effectiveness of therapy with TPTD and ALN in women with severe osteoporosis. Arch Intern Med 2006;166:1209-17.	Non UK
Meadows ES, Klein R, Rousculp MD, Smolen L, Ohsfeldt RL, Johnston JA. Cost-effectiveness of preventative therapies for postmenopausal women with osteopenia. BMC Women's Health 2007;7:6.	Non UK
Mobley LR, Hoerger TJ, Wittenborn JS, Galuska DA, Rao JK. Cost-effectiveness of osteoporosis screening and treatment with hormone replacement therapy, RLX, or ALN. Med Decis Making 2006;26:194-206.	Non UK
Murphy DR, Klein RW, Smolen LJ, Klein TM, Roberts SD. Using common random numbers in health care cost-effectiveness simulation modeling. Health Serv Res 2013;48:1508-25. https://doi.org/https://dx.doi.org/10.1111/1475-6773.12044	Non UK
O'Hanlon CE, Parthan A, Kruse M, Cartier S, Stollenwerk B, Jiang Y, <i>et al.</i> A Model for Assessing the Clinical and Economic Benefits of Bone-forming Agents for Reducing Fractures in Postmenopausal Women at High, Near-term Risk of Osteoporotic Fracture. Clin Ther 2017;39:1276-90. https://doi.org/https://dx.doi.org/10.1016/j.clinthera.2017.05.348	Non UK
Pfister AK, Welch CA, Lester MD, Emmett MK, Saville PD, Duerring SA. Cost-effectiveness strategies to treat osteoporosis in elderly women. South Med J 2006;99:123-31.	Non UK
Turner DA, Khioe RFS, Shepstone L, Lenaghan E, Cooper C, Gittoes N, <i>et al.</i> The Cost-Effectiveness of Screening in the Community to Reduce Osteoporotic Fractures in Older Women in the UK: Economic Evaluation of the SCOOP Study. J Bone Miner Res 2018;33:845-51. https://doi.org/https://dx.doi.org/10.1002/jbmr.3381	Not a relevant comparison - compares screening to usual care with treatment after screening directed by clinician
Zethraeus N, Borgstrom F, Strom O, Kanis JA, Jonsson B. Cost- effectiveness of the treatment and prevention of osteoporosis - A review of the literature and a reference model. Osteoporos Int 2007;18:9-23. https://doi.org/http://dx.doi.org/10.1007/s00198-006- 0257-0	Non UK

Appendix 11: Health-related quality of life: review of utility values following fracture

To inform the model, data were needed on the proportionate decrease in HRQoL that occurs in the year following fracture and in subsequent years. This was then used to calculate a utility multiplier, which was applied to the pre-fracture utility value to calculate the post-fracture utility. For example, a proportionate decrease of 10% would translate into a utility multiplier of 0.9. If the patient's prior fracture utility is 0.8, then the post-fracture utility would be 0.72. Data on the absolute HRQoL after fracture can be obtained from studies that measure HRQoL in patients who have experienced a recent fracture. However, the proportionate decrease can be obtained only if there is some estimate of pre-fracture utility. Ideally, HRQoL would be measured prospectively in a cohort of patients at risk of fracture and these patients would be followed up with HRQoL re-measured at regular intervals with the time of any incident fracture being recorded so that the correlation between HRQoL and incident fracture can be obtained after adjusting for other confounding factors. However, many studies simply recruit patients at the time of fracture and ask them to recall their pre-fracture health state, which is subject to recall bias. Other studies may compare the HRQoL in individuals who have fractured with matched controls or population norms, in which case the estimates may be confounded by differences in other factors between cases and controls.

Systematic searches were undertaken to identify studies reporting on health utilities associated with different states for osteoporosis published since 2014. Searches were undertaken in July 2018 in the following electronic databases:

- MEDLINE Epub Ahead of Print, In-Process & Other Non-Indexed Citations: Ovid, 1946 to 2018
- EMBASE: Ovid, 1974 to 2018

In line with the NICE reference case, the searches focussed specifically on studies which reported HRQoL estimates for health states which were measured and valued using the EQ-5D. The search strategy comprised sensitive Medical Subject Headings (MeSH) or Emtree Thesauri terms and free-text synonyms for 'osteoporosis' combined with free-text synonyms for 'EQ-5D'. The search strategies are presented in Appendix 1.

This search retrieved 111 unique references. The results of the economic searches described above were combined with the results of the searches conducted for the review of published cost-effectieness studies (see Section 6.1.1) to give a total of 3,853 unique references and a combined sfit was conducted to pick up any cross-relevant papers. This initial sift of paper titles by a first reviewer reduced the number thought to be relevant to the HRQoL review to 131. A further sift of the abstracts by a second reviewer identified 53 citations that could be excluded (48 conference proceedings, 3

non-English papers and 2 commentaries). Leaving 81 studies reporting health utility in patients with an incident osteoporotic fracture. However, values measured during RCT's were excluded due to the possibility that the study interventions may affect HRQoL independently of their impact on fracture. Studies reporting the quality-of-life impact of prevalent fractures were also excluded on the basis that there is no way of knowing how long ago the prevalent fracture was sustained. Furthermore, studies reporting the HRQoL associated with osteoporotic fractures using instruments other than the EQ-5D such as the HUI or SF-6D were excluded. A further study³⁴⁶ which fulfilled these inclusion criteria was excluded as resulting EQ-5D utilities at specific time points following fracture were only presented graphically, rather than numerically, which mean accurate estimates of the utility values was impossible leaving four remaining studies. A QUORUM diagram representing this process is presented in Figure 15.

These four remaining studies²⁰⁶⁻²⁰⁹ are (summarised in Table 47). All four provided HRQoL for hip fracture, three for wrist (distal forearm) fracture,^{206, 208, 209} three for vertebral fracture,^{206, 208, 209} and one for fracture of the proximal humerus (shoulder).²⁰⁶ One study also reported HRQoL for fracture of the ankle and other fracture.²⁰⁶ All four studies all were based on the ICUROS (the International Costs and Utilities Related to Osteoporotic fractures Study) two of the papers presented values for individual countries in the ICUROS cohort (Australia²⁰⁶ and Estonia²⁰⁷) and two presented values for groups of ICUROS counties.^{208, 209} One of these papers presents HRQoL utility values for patients in ten ICUROS countries (Austria, Australia, Estonia, France, Italy, Lithuania, Mexico, Russia, Spain and the United Kingdom) who sustained a hip, vertebral and wrist fracture.²⁰⁹ Utility was measured pre-fracture (recall), post-fracture (within two weeks of the fracture being sustained), four moths post fracture, twelve months post-fracture and eighteen months post-fracture. However, only data from patients who completed all instruments (not just the EQ-5D) at all time points is included. The second paper presents HRQoL utility values for patients in eleven ICUROS countries (Austria, Australia, Estonia, France, Italy, Lithuania, Mexico, Russia, Spain and the United Kingdom) who sustained a hip, vertebral and wrist fracture.²⁰⁸ Utility was measured pre-fracture (recall), post-fracture (within two weeks of the fracture being sustained), four moths post fracture, twelve months post-fracture and eighteen months post-fracture. However, in this analysis data was included from patients who completed the EQ-5D instrument at all time points. Thus the HRQoL utility values in the latter of these two studies was based on significantly more data (1,415 patients for hip fracture, 559 patients or vertebral fracture and 1,047 for wrist (wrist) fracture compared with 505 patients for hip fracture, 316 patients for vertebral fracture and 589 for distal forearm (wrist) fracture. Hence the latter of these two studies was chosen to provide HRQoL values for hip, vertebral and wrist fracture to the model.

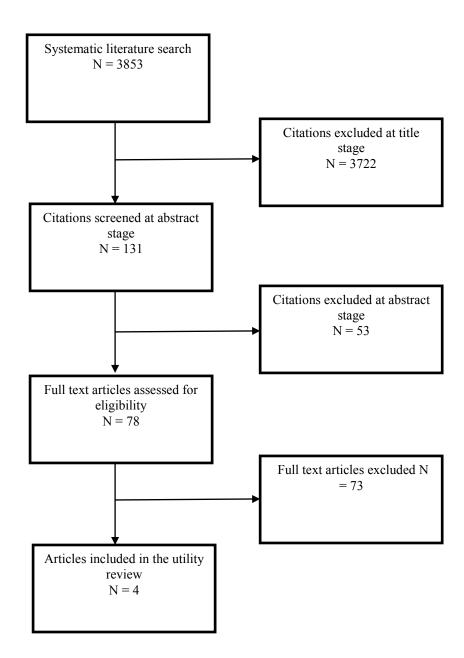


Figure 15: QUORUM representation of the literature review for HRQoL

Author & year of	Country	Study Design	Cohort Description	Sample size at baseline and % of	Valuation set	Reason for
study publication	Country	Study Design	Conort Description	missing data	used for EQ-5D	excluding
Svedbom <i>et al</i> 2018. ²⁰⁹	Multi-centre (10 countries)	Prospective observational cohort study	ICUROS study including	Hip fracture N = 505 Vertebral fracture N = 316 Distal forearm fracture N = 589 (Patients lost to follow-up were excluded from analyses)	UK (TTO)	Considered relevant
Svedbom <i>et al</i> 2018. ²⁰⁸	Multi-centre (11 countries)	Prospective observational cohort study	patients aged at least 50 years living in their own home prior to fracture who sustained a low energy fracture.	Hip fracture N = 1,415 Vertebral fracture N = 559 Distal forearm fracture N = 1,047 (Patients lost to follow-up were excluded from analyses)	UK (TTO)	Considered relevant
Abimanyi- Ochom <i>et al</i> 2015. ²⁰⁶	Australia	Prospective observational cohort study	Initial post-fracture assessment of health related quality of life taking place within 2 weeks of fracture.	All fractures N = 915 (41%)* Hip fracture N = 224 (49%)* Distal forearm fracture N = 308 (24%)* Vertebral fracture N = 92 (45%)* Humerus fracture N = 65 (48%)* Ankle fracture N = 89 (48%)* Other fracture N = 137 (53%)*	UK (TTO)	Considered relevant
Jurisson <i>et al</i> 2016. ²⁰⁷	Estonia	Prospective observational		Hip fracture N = 205 (XX%)	UK (TTO)	Considered relevant

Table 47:Summary of included papers reporting EQ-5D quality-of-life measures associated with osteoporotic fracture

cohort study		
--------------	--	--

Notes

* Percentage of baseline cohort lost by eighteen months

HRQoL values associated with proximal humerus fracture were still required by the model, and the only study to provide such values was the study concerned with the Australian ICUROS cohort²⁰⁶ in which the UK value set was used to convert the dimension scores into a utility value. In this study sixty-five patients provided HRQoL vales at baseline (pre-fracture and immediately post-fracture) fifty-seven patients at four months, fifty-four patients at twelve months and thirty-four patients at eighteen months. Only 52% of baseline patients survived to eighteen months.

Values from four papers ²⁰⁶⁻²⁰⁹ all came from one study (ICUROS) which included patients aged at least 50 years living in their own home prior to fracture who sustained a low energy fracture. Initial post-fracture assessment of health related quality of life taking place within 2 weeks of fracture, patients who sustained another fracture in the follow up period were excluded as were people who were lost to follow up. However, although two of the papers^{208, 209} ensure that data relating to patients excluded at some later point in the study are removed from summary HRQoL utility data at all time points the remaining two papers ^{206, 207} do not and use all available data at each time point.

The two multicentre papers reported broadly similar values at all time points except for those recorded at two weeks following fracture in which those reported in the paper with the larger dataset²⁰⁸ were lower than those reported in the paper that excluded more patients for incomplete data²⁰⁹ (hip fracture: -0.11, vertebral fracture: 0.17, wrist fracture: 0.41 compared with hip fracture: -0.02, vertebral fracture: 0.27, wrist fracture: 0.47) respectively. The study using Australian data but with a UK tariff²⁰⁶ reported values that were again higher at two weeks following fracture (hip fracture: 0.11, vertebral fracture: 0.32, wrist fracture: 0.53) these higher values were also reflected at four months and twelve months though by a lessening degree until the increase had become negligible by eighteen months. The Estonian study, which again used the UK tariff,²⁰⁷ also reported higher values at two weeks following fracture (0.07). This may raise concerns about the values used in the model, even though they are based on a significant larger sample size. However, the excluded paper³⁴⁶ which presented utility values in a graphical rather than a numerical format suggests similar values to the international ICUROS dataset²⁰⁸ for a UK population with the HRQoL utility value at two weeks post-fracture being approximately -0.15.

For hip, vertebral and wrist fractures the utility multipliers for zero to twelve months, twelve to twenty-four months and beyond twenty-four months are presented by Svedbom *et al.*²⁰⁸ together with 95% confidence intervals enabling standard deviation to be calculated. However, we assume that improvements in utility in the period between twelve months post-fracture to twenty-four months post-fracture are subject to significant uncertainty and thus we apply the utility values presented for the period beyond twenty-four months post-fracture in the paper for any period beyond twelve months

post-fracture in the model. For proximal humerus fracture we assume that the utility drops at the point of fracture to the value measured in the first two weeks post fracture and remains at this value for the first two weeks by a gradual linear improvement to four months, twelve months and finally eighteen months. We assume that utility at eighteen months is maintained indefinitely. The utility multiplier for the first year post fracture was calculated by dividing the total utility accrued by twelve months by the pre-fracture utility value. The utility value observed at 12 months is assumed to persist in the long term, so the multiplier for the second and subsequent years was calculated by dividing the total utility accrue utility value. These data are presented in Table 48.

Description	Hip fracture		Vertebral fracture		Humerus fracture		Distal forearm fracture	
	TA464 ¹⁴⁰	ICUROS ²⁰⁸	TA464 ¹⁴⁰	ICUROS ²⁰⁸	TA464 ¹⁴⁰	ICUROS ²⁰⁶	TA464 ¹⁴⁰	ICUROS ²⁰⁸
Baseline no of patients	282	1,415	76	559	38	65	325	1,047
Utility index								
Pre-fracture	0.81	0.77	0.74	0.83	0.65	0.81	0.90	0.89
Post-fracture	0.19	-0.11	0.18	0.17	0.36	0.21	0.56	0.41
Four months	0.64	0.49	0.49	0.60	0.58	0.70	0.83	0.77
Twelve months	0.69	0.59	0.49	0.70	0.65	0.77	0.88	0.85
Eighteen months	0.72	0.66	0.49	0.70	-	0.83	0.90	0.88
Utility multiplier								
Year 1								
Mean	0.69	0.55	0.57	0.68	0.86	0.78	0.88	0.83
St. Deviation	0.02	0.01	0.03	0.01	0.08	0.03	0.02	0.01
Subsequently								
Mean	0.85	0.86[a]	0.66	0.85[a]	1.00	1.00[b]	0.98	0.99[a]
St. Deviation	Not reported	0.01	Not reported	0.01	Not reported	0.04	Not reported	0.01

Table 48: Utility values after hip fracture used in the HTA and in the new review

[a] We apply the utility multipliers presented in the paper for year 3 onwards to our model from year 2 onwards [b] Capped at 1.0000

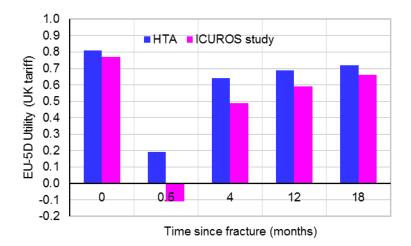


Figure 16:Utility associated with vertebral fracture used in the HTA report and that
chosen from the ICUROS study

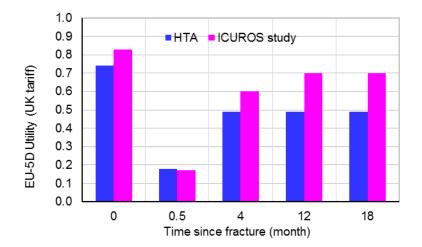


Figure 17:Utility associated with hip fracture used in the HTA report and that chosen from
the ICUROS study

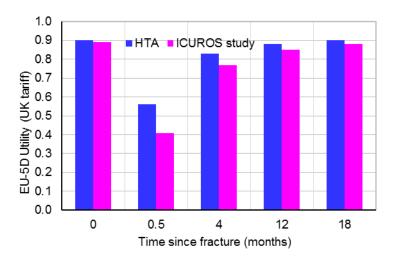


Figure 18:Utility associated with distal forearm (wrist) fracture used in the HTA report
and that chosen from the ICUROS study

Figure 19:Utility associated with humerus (shoulder) fracture used in the HTA report and
that chosen from the ICUROS study

Appendix 12: Model validation methods

The model is designed to operate in several different modes which facilitate debugging and validation. When running the model with fixed patient chacteristics, using determinisitic inputs and with random number control switched on, the model generates identical results each time it is run. This feature has been used to check that the model continues to operate in a consistent manner when any change is made to the VBA code that aims to restructure the code without altering the basic functioning of the model. The model can also be run in debug mode whereby it outputs a detailed list of the events experienced and their individual times for each patient. This has been used extensively during model adaptations to check that the model is operating as intended. For example, it was used to check that the additional dummy events required for the new intervention lines were occurring at the correct times.

The code has been extensively commented with any changes made since T464 identied by the date of change. When making alterations to the VBA code, the developer set up break points where any new code was implemented, allowing the model to be run quickly as far as the new code and then for the new code to be stepped through under observation to check it behaves as intended. The locals window, within the VBA development environment, which allows the values of any object (i.e. variable, array etc) to be checked, was used to observe that the various arrays and variables had been filled with the intended data and to see changes to these variables when stepping through the code. The developed also used the immediate window to output specific variables at specific points in the code when trying to verify model behaviour. Error handling was incorporated to ensure that inputs to functions were within their required range and to initiate message boxes describing errors identified and the values of inputs prior to the error.

To assess the face validity of the clinical outcomes predicted by model, the fractures prevented for each treatment (broken down into the four main fractures types) were graphed and compared against the absolute risk reduction for each fracture type multiplied by the 'effective treatment duration' which is dependent on both the time on treatment and the offset period (i.e. a drug with a 5-year treatment period and an additional 5-year offset period would have a 7.5 year effective treatment duration). This was done for the outcomes of both the PSA model and the version using mean parameter inputs.

The box below lists the main changes to the model made since TA464 and the methods used to validate each adapatation.

Table 49:	Model validation steps for key changes
-----------	--

Description of adaptation	Description of key changes to model	Validation method
needed		
Increase the number of	The model was already set up to pull in drug specific inputs	The structural changes to the VBA code required to incorporate
treatment strategies that	as arrays. These arrays were extended to allow for up to 15	additional intervention lines were made without any changes to
can be modelled	lines of treatment to be modelled with 11 being used within	model inputs allowing outputs to be compared against the TA464
	the final analysis (no treatment, 9 interventions with 2	version of the model. New outputs were only incoporated once the
	needed to capture the ROMO/ALEND sequence).	model was verified to be equivalent for the additional intervention
		lines.
		Model inputs for interventions 6 to 10 and 11 to 15 were set equal
		to inputs for interventions 1 to 5. Model was run in debug mode
		and patient level results were checked to ensure that identical
		outputs were being generated for intervention lines with identical
		inputs.

Allow for drug specific	In the TA464 version, the offset period was twice the	Results were run (with the model set up to produce reproducible
offset periods	treatment period for all drugs except ZOL and specific	outputs) before and after the code for handling the offset period
	VBA code was used to adjust the offset period for ZOL. In	was altered and the outputs were compared.
	the revised model, an array of offset inputs are pulled into	
	the model, allowing a unique offset period for each drug.	
Allow for sequences of	Two additional input arrays were added. One which says	Intervention 6 was set up to have same outcomes as intervention 1
treatments to be	whether a treatment switch should occur and one which	but to achieve this through a treatment switch to intervention 11.
modelled.	says which intervention should be swiched to. VBA code	To do this intervention 6 was set to have half the treatment
	for processing the end of treatment event was adapated to	duration of intervention 1 but to switch to intervention 11 on
	reset the treatment period and offset period to the second	completion. Intervention 11 was set to have half the treatment
	drug in the sequence. VBA code was adapted to	duration of intervention 1 but the same offset period (as it is the
	differentiate between the treatment sequence being	second drug in the sequence that determins the offset period).
	modelled (drug_index_int) and the current drug which	Costs for intervention 6 and intervention 11 were set equal to cost
	changes after the swich (person_curr_drug). Costs, efficacy	for intervention 1.
	and adverse events were made dependent on	The model was run in debug mode to check that outputs for
	person_curr_drug.	intervention 6, were identical to outputs for intervention 1.
Allow resource use for	In TA464 no monitoring costs were included and	Adapatations were made to incorporate the new arrays. The model
monitoring and	administration costs were only included for I.V. IBN and	was run and code was step through with break points placed on
administration to be	I.V. ZOL. Total intervention costs per annum were handled	the revised code to check that it was performing as expected.
specified for each drug.	as a single variable. In the revised model, separate arrays	The model was run in debug mode and patient level outputs were
	are specified for drug costs, resource use and unit costs.	checked to see if the total undiscounted costs matched the total
		treatment costs (i.e. drug, administration and monitoring) expected
		for patients experiencing no fracture events.
	1	1

Additional inputs	The main changes were to drug costs, efficacy inputs,	Cells which had inputs updated from TA464 were highlighted in		
required for non-	treatment persistence, teatment offset periods, resource use	orange and were double checked against the values described in		
bisphosphonates and new	for administration and monitoring, costs and QALY	final report.		
inputs for	adjustments for adverse events (VTE, ONJ and cellulitis)	Cells which were not marked as changed were double checked		
bisphosphonates	and post-fracture costs and utilities.	against the model used in TA464.		

Appendix 13: Summary clinical outcomes when using FRAX

	Adverse clinica	l outcomes <u>avoid</u>	<u>ed</u> per 100,000 p	atients treated w	hen compared to	no treatment		Total LYS
	Total fractures	Hip fracture	Vertebral fracture	Proximal humerus fracture	Wrist fracture	Nursing home / residential care admission	Fatal fracture	gained per patient vs. no treatment
When using QF	Fracture to estim	ate risk of fractu	re	I				
ALN	988	201	245	138	405	33	30	0.0026
RIS	1,047	191	239	154	464	33	32	0.0026
oral IBN	847	182	243	107	315	30	30	0.0027
i.v. IBN	419	115	162	38	103	20	18	0.0015
ZOL	1,787	333	467	254	733	53	54	0.0048
RLX	336	-11	164	95	88	20	-35	-0.0029
DEN	1,611	407	587	212	404	89	29	0.0023
TPTD	1,857	390	414	269	784	64	59	0.0052
ROMO/ALN	2,589	553	549	400	1,088	106	89	0.0062

Table 50:Clinical outcomes across the whole population eligible for fracture risk assessment when using FRAX to estimate fracture risk

Appendix 14: Basecase results from the probabilistic sensitivity analysis for QFracture

	Mean outcom (discounted)		Incremental ou no treatment (c		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£683	16.6049	£0	-	£0	£0	£0	
ALN	£777	16.6050	£94	0.0001	£675,004	-£91	-£90	£675,004
RIS	£778	16.6050	£94	0.0001	£829,832	-£92	-£91	Dominated
RLX	£778	16.6032	£95	- 0.0016	-£58,385	-£127	-£143	Dominated
IBN (oral)	£781	16.6050	£97	0.0001	£948,571	-£95	-£94	Dominated
ZOL	£1,403	16.6048	£720	- 0.0001	-£9,181,178	-£721	-£722	Dominated
IBN (i.v.)	£1,541	16.6044	£858	- 0.0005	-£1,784,152	-£867	-£872	Dominated
DEN	£2,454	16.6059	£1,770	0.0010	£1,794,421	-£1,750	-£1,741	£986,470
ROMO/ALN		16.6071		0.0022				
TPTD	£6,502	16.6055	£5,819	0.0007	£8,610,782	-£5,805	-£5,798	Dominated

 Table 51:
 Basecase results from 200,000 PSA samples for QFracture risk category 1 (average 10 year fracture risk of 0.5%)

	Mean outcom (discounted)		Incremental outcomes versus no treatment (discounted)		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£1,152	15.3523	£0	-	£0	£0	£0	
RIS	£1,243	15.3525	£91	0.0003	£319,027	-£85	-£82	Extendedly dominated
ALN	£1,243	15.3526	£91	0.0003	£290,229	-£85	-£82	£290,229
IBN (oral)	£1,246	15.3526	£94	0.0003	£301,165	-£88	-£85	Extendedly dominated
RLX	£1,297	15.3507	£145	- 0.0015	-£96,336	-£175	-£190	Dominated
ZOL	£1,864	15.3525	£713	0.0002	£2,984,339	-£708	-£705	Dominated
IBN (i.v.)	£2,009	15.3518	£857	- 0.0004	-£1,958,289	-£866	-£870	Dominated
DEN	£2,961	15.3539	£1,809	0.0017	£1,092,301	-£1,776	-£1,760	£1,279,494
ROMO/ALN		15.3539		0.0016				
TPTD	£6,961	15.3532	£5,809	0.0010	£5,871,874	-£5,790	-£5,780	Dominated

 Table 52:
 Basecase results from 200,000 PSA samples for QFracture risk category 2 (average 10 year fracture risk of 0.7%)

Mean outcomes (discounted)			Incremental outcomes versus no treatment (discounted)		Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*	
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£2,260	14.0458	£0	-	£0	£0	£0	
RIS	£2,349	14.0465	£89	0.0007	£129,889	-£75	-£68	Extendedly dominated
ALN	£2,349	14.0465	£89	0.0007	£125,805	-£75	-£67	Extendedly dominated
IBN (oral)	£2,352	14.0466	£92	0.0008	£119,370	-£77	-£69	£119,370
RLX	£2,378	14.0436	£118	- 0.0023	-£52,066	-£163	-£186	Dominated
ZOL	£2,968	14.0467	£707	0.0009	£808,583	-£690	-£681	£5,875,083
IBN (i.v.)	£3,113	14.0457	£853	- 0.0002	-£5,378,179	-£856	-£858	Dominated
DEN	£4,041	14.0468	£1,781	0.0010	£1,868,896	-£1,762	-£1,752	Extendedly dominated
ROMO/ALN		14.0475		0.0017				
TPTD	£8,059	14.0474	£5,799	0.0016	£3,731,997	-£5,768	-£5,752	Dominated

 Table 53:
 Basecase results from 200,000 PSA samples for QFracture risk category 3 (average 10 year fracture risk of 1.0%)

	Mean outcomes (discounted)				ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£2,722	12.6966	£0	-	£0	£0	£0	
ALN	£2,804	12.6973	£82	0.0007	£126,025	-£69	-£63	Extendedly dominated
RIS	£2,804	12.6974	£83	0.0008	£100,618	-£66	-£58	£100,618
IBN (oral)	£2,813	12.6973	£91	0.0007	£137,375	-£78	-£71	Dominated
RLX	£2,847	12.6952	£126	- 0.0014	-£91,201	-£153	-£167	Dominated
ZOL	£3,421	12.6976	£699	0.0010	£723,860	-£680	-£670	Extendedly dominated
IBN (i.v.)	£3,572	12.6964	£850	- 0.0002	-£4,066,084	-£854	-£856	Dominated
DEN	£4,487	12.6994	£1,766	0.0028	£632,830	-£1,710	-£1,682	£855,463
ROMO/ALN		12.7002		0.0036				
TPTD	£8,497	12.6985	£5,776	0.0019	£3,083,847	-£5,738	-£5,720	Dominated

 Table 54:
 Basecase results from 200,000 PSA samples for QFracture risk category 4 (average 10 year fracture risk of 1.4%)

Table 55:	Basecase results from	200.000 PSA samples	for OFracture risk category :	5 (average 10	year fracture risk of 2.0%)

	Mean outcomes (discounted)		Incremental outcomes versus no treatment (discounted)		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£2,936	11.6723	£0	-	£0	£0	£0	
ALN	£3,016	11.6734	£80	0.0010	£77,059	-£59	-£49	£77,059
RIS	£3,019	11.6733	£82	0.0010	£81,404	-£62	-£52	Dominated
IBN (oral)	£3,021	11.6732	£84	0.0009	£93,736	-£66	-£57	Dominated
RLX	£3,067	11.6712	£130	- 0.0011	-£118,232	-£153	-£164	Dominated
ZOL	£3,625	11.6739	£688	0.0016	£442,296	-£657	-£642	Extendedly dominated
IBN (i.v.)	£3,784	11.6722	£848	- 0.0001	-£11,357,805	-£849	-£850	Dominated
DEN	£4,695	11.6757	£1,759	0.0034	£523,142	-£1,692	-£1,658	£721,645
ROMO/ALN		11.6763		0.0040				
TPTD	£8,695	11.6748	£5,759	0.0024	£2,356,350	-£5,710	-£5,686	Dominated

	Mean outcomes (discounted)		Incremental outcomes versus no treatment (discounted)		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£3,064	10.6107	£0	-	£0	£0	£0	
ALN	£3,142	10.6119	£78	0.0012	£65,281	-£54	-£42	Dominated
RIS	£3,143	10.6119	£79	0.0012	£64,979	-£55	-£42	£64,979
IBN (oral)	£3,147	10.6119	£83	0.0012	£68,805	-£59	-£47	Dominated
RLX	£3,164	10.6095	£100	- 0.0012	-£83,809	-£124	-£136	Dominated
ZOL	£3,753	10.6126	£689	0.0019	£353,780	-£650	-£631	Extendedly dominated
IBN (i.v.)	£3,908	10.6109	£843	0.0002	£4,373,315	-£840	-£838	Dominated
DEN	£4,774	10.6141	£1,710	0.0034	£502,655	-£1,642	-£1,608	£745,595
ROMO/ALN		10.6150		0.0043				
TPTD	£8,798	10.6136	£5,733	0.0029	£1,964,475	-£5,675	-£5,646	Dominated

 Table 56:
 Basecase results from 200,000 PSA samples for QFracture risk category 6 (average 10 year fracture risk of 2.7%)

 Table 57:
 Basecase results from 200,000 PSA samples for QFracture risk category 7 (average 10 year fracture risk of 3.9%)

	Mean outcomes (discounted)		Incremental outcomes versus no treatment (discounted)		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£3,277	9.5502	£0	-	£0	£0	£0	
ALN	£3,339	9.5522	£62	0.0020	£30,452	-£21	-£1	£30,452
RIS	£3,340	9.5521	£63	0.0020	£32,482	-£24	-£5	Dominated
IBN (oral)	£3,345	9.5521	£68	0.0020	£34,713	-£29	-£9	Dominated
RLX	£3,448	9.5476	£171	- 0.0026	-£65,412	-£223	-£249	Dominated
ZOL	£3,933	9.5533	£656	0.0031	£210,441	-£594	-£562	£552,756
IBN (i.v.)	£4,109	9.5509	£832	0.0007	£1,250,818	-£819	-£812	Dominated
DEN	£5,009	9.5539	£1,733	0.0037	£462,072	-£1,658	-£1,620	Extendedly dominated
ROMO/ALN		9.5562		0.0060				
TPTD	£8,954	9.5544	£5,677	0.0042	£1,366,400	-£5,594	-£5,553	Dominated

	Mean outcomes (discounted)		Incremental outcomes versus no treatment (discounted)		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£3,958	8.4539	£0	-	£0	£0	£0	
ALN	£4,001	8.4568	£43	0.0029	£14,820	£15	£44	£14,820
RIS	£4,007	8.4568	£48	0.0028	£17,119	£8	£36	Dominated
IBN (oral)	£4,021	8.4568	£63	0.0029	£21,840	-£5	£23	Extendedly dominated
RLX	£4,081	8.4531	£123	- 0.0008	-£146,142	-£139	-£148	Dominated
ZOL	£4,591	8.4589	£633	0.0050	£127,491	-£534	-£484	£273,143
IBN (i.v.)	£4,784	8.4554	£826	0.0015	£564,407	-£796	-£782	Dominated
DEN	£5,613	8.4605	£1,655	0.0066	£250,729	-£1,523	-£1,457	£625,518
ROMO/ALN		8.4637		0.0098				
TPTD	£9,593	8.4597	£5,635	0.0058	£971,695	-£5,519	-£5,461	Dominated

 Table 58:
 Basecase results from 200,000 PSA samples for QFracture risk category 8 (average 10 year fracture risk of 5.5%)

 Table 59:
 Basecase results from 200,000 PSA samples for QFracture risk category 9 (average 10 year fracture risk of 8.4%)

	Mean outcomes (discounted)		Incremental outcomes versus no treatment (discounted)		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALŶ	QALŶ	-
NT	£6,197	6.6409	£0	-	£0	£0	£0	
ALN	£6,221	6.6451	£24	0.0042	£5,622	£60	£102	£5,622
RIS	£6,227	6.6450	£30	0.0041	£7,235	£53	£94	Dominated
IBN (oral)	£6,234	6.6448	£37	0.0039	£9,443	£41	£80	Dominated
RLX	£6,308	6.6391	£110	- 0.0017	-£63,265	-£145	-£163	Dominated
ZOL	£6,794	6.6472	£597	0.0064	£93,903	-£470	-£406	£266,114
IBN (i.v.)	£6,998	6.6429	£801	0.0020	£398,475	-£761	- £741	Dominated
DEN	£7,730	6.6501	£1,533	0.0092	£166,441	- £1,349	-£1,257	£327,719
ROMO/ALN		6.6513		0.0105				
TPTD	£11,717	6.6491	£5,520	0.0082	£671,001	-£5,355	-£5,273	Dominated

		Mean outcomes (discounted)		Incremental outcomes versus no treatment (discounted)		Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
ALN	£13,370	4.0837	-£51	0.0058	-£8,820	£167	£225	
RIS	£13,384	4.0833	-£37	0.0054	-£6,896	£144	£197	Dominated
IBN (oral)	£13,393	4.0831	-£28	0.0051	-£5,417	£130	£181	Dominated
NT	£13,421	4.0779	£0	-	£0	£0	£0	Dominated
RLX	£13,524	4.0760	£103	- 0.0019	-£53,780	-£141	-£160	Dominated
ZOL	£13,897	4.0858	£477	0.0079	£60,300	-£318	-£239	£250,205
IBN (i.v.)	£14,165	4.0807	£744	0.0028	£266,492	-£689	-£661	Dominated
DEN	£14,768	4.0886	£1,347	0.0107	£126,392	-£1,134	-£1,028	£315,774
ROMO/ALN		4.0919		0.0140				
TPTD	£18,604	4.0893	£5,183	0.0113	£457,894	-£4,957	-£4,844	Dominated

 Table 60:
 Basecase results from 200,000 PSA samples for QFracture risk category 10 (average 10 year fracture risk of 16.0%)

Appendix 15: Basecase results from the probabilistic sensitivity analysis for FRAX

	Mean outcomes (discounted)		Incremental outcomes versus no treatment (discounted)		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£4,241	13.6665	£0	-	£0	£0	£0	
RIS	£4,315	13.6687	£73	0.0023	£32,429	-£28	-£5	Extendedly dominated
ALN	£4,315	13.6690	£73	0.0026	£28,541	-£22	£4	£28,541
IBN (oral)	£4,319	13.6687	£78	0.0023	£34,519	-£33	-£10	Dominated
RLX	£4,350	13.6641	£109	- 0.0023	-£47,105	-£156	-£179	Dominated
ZOL	£4,926	13.6705	£685	0.0040	£170,998	-£605	-£565	£427,431
IBN (i.v.)	£5,088	13.6671	£846	0.0007	£1,214,068	-£832	-£825	Dominated
DEN	£5,981	13.6708	£1,740	0.0044	£398,751	-£1,653	-£1,609	Extendedly dominated
ROMO/ALN		13.6726		0.0061				
TPTD	£10,011	13.6711	£5,770	0.0046	£1,254,448	-£5,678	-£5,632	Dominated

 Table 61:
 Basecase results from 200,000 PSA samples for FRAX risk category 1 (average 10 year fracture risk of 3.1%)

	Mean outcor (discounted)		Incremental ou no treatment (d		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£4,48 7	13.6230	£0	-	£0	£0	£0	
RLX	£4,524	13.6228	£37	- 0.0002	-£199,169	-£41	-£43	Dominated
RIS	£4,555	13.6255	£68	0.0025	£27,654	-£19	£6	Extendedly dominated
ALN	£4,556	13.6256	£69	0.0025	£27,325	-£19	£7	£27,325
IBN (oral)	£4,557	13.6256	£70	0.0026	£27,349	-£19	£7	£28,946
ZOL	£5,151	13.6276	£664	0.0046	£145,587	-£572	-£527	£297,575
IBN (i.v.)	£5,331	13.6240	£844	0.0010	£853,480	-£825	-£815	Dominated
DEN	£6,159	13.6297	£1,672	0.0067	£250,782	-£1,539	-£1,472	£478,086
ROMO/ALN		13.6320		0.0090				
TPTD	£10,236	13.6282	£5,749	0.0052	£1,115,769	-£5,646	-£5,595	Dominated

 Table 62:
 Basecase results from 200,000 PSA samples for FRAX risk category 2 (average 10 year fracture risk of 4.3%)

 Table 63:
 Basecase results from 200,000 PSA samples for FRAX risk category 3 (average 10 year fracture risk of 5.0%)

	Mean outcom	mes	Incremental ou	tcomes versus	ICER vs. no	Net benefit at	Net benefit at	Incremental
	(discounted)	1	no treatment (d	liscounted)	treatment	£20K per	£30K per	analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£4,976	13.8999	£0	-	£0	£0	£0	
RIS	£5,033	13.9035	£57	0.0037	£15,575	£16	£53	£15,575
ALN	£5,037	13.9035	£61	0.0037	£16,808	£12	£48	Dominated
IBN (oral)	£5,039	13.9034	£63	0.0035	£17,728	£8	£43	Dominated
RLX	£5,045	13.8992	£69	- 0.0007	- £105,444	-£83	-£89	Dominated
ZOL	£5,635	13.9058	£659	0.0059	£110,846	-£540	-£481	£263,566
IBN (i.v.)	£5,810	13.9017	£834	0.0019	£443,563	-£797	-£778	Dominated
DEN	£6,636	13.9084	£1,660	0.0085	£195,106	- £1,489	- £1,404	£390,788
ROMO/ALN		13.9117		0.0118				
TPTD	£10,708	13.9067	£5,732	0.0069	£832,835	-£5,594	-£5,526	Dominated

	Mean outcor (discounted)		Incremental ou no treatment (d		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£5,465	14.2478	£0	-	£0	£0	£0	
ALN	£5,521	14.2515	£56	0.0036	£15,524	£16	£53	£15,524
IBN (oral)	£5,524	14.2514	£59	0.0036	£16,459	£13	£49	Dominated
RIS	£5,525	14.2513	£60	0.0035	£17,389	£9	£44	Dominated
RLX	£5,558	14.2458	£94	- 0.0020	-£47,071	-£133	-£153	Dominated
ZOL	£6,116	14.2546	£651	0.0068	£96,012	-£516	-£448	£189,147
IBN (i.v.)	£6,295	14.2497	£831	0.0019	£430,771	-£792	-£773	Dominated
DEN	£7,152	14.2555	£1,687	0.0076	£220,601	-£1,534	-£1,458	£1,197,064
ROMO/ALN		14.2569		0.0091				
TPTD	£11,185	14.2555	£5,720	0.0077	£745,024	-£5,567	-£5,490	Dominated

 Table 64:
 Basecase results from 200,000 PSA samples for FRAX risk category 4 (average 10 year fracture risk of 5.6%)

	Mean outcomes (discounted)		Incremental ou no treatment (d		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£5,792	12.8154	£0	-	£0	£0	£0	
ALN	£5,845	12.8201	£54	0.0047	£11,362	£41	£88	Extendedly dominated
RIS	£5,846	12.8202	£54	0.0048	£11,265	£42	£90	£11,265
IBN (oral)	£5,849	12.8200	£57	0.0047	£12,209	£36	£83	Dominated
RLX	£5,873	12.8144	£81	- 0.0010	-£82,569	-£101	-£110	Dominated
ZOL	£6,435	12.8232	£644	0.0078	£82,355	-£487	-£409	£194,815
IBN (i.v.)	£6,623	12.8178	£831	0.0024	£342,182	-£783	-£758	Dominated
DEN	£7,435	12.8243	£1,643	0.0089	£184,386	-£1,465	-£1,375	Extendedly dominated
ROMO/ALN		12.8286		0.0132				
TPTD	£11,479	12.8244	£5,687	0.0090	£632,511	-£5,507	-£5,417	Dominated

Table 65: Basecase results from 200,000 PSA samples for FRAX risk category 5 (average 10 year fracture risk of 6.2%)

	Mean outcor (discounted)				ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£5,868	11.0066	£0	-	£0	£0	£0	
RIS	£5,906	11.0111	£39	0.0044	£8,736	£50	£95	£8,736
ALN	£5,910	11.0114	£43	0.0048	£8,951	£53	£101	£11,817
IBN (oral)	£5,922	11.0110	£54	0.0044	£12,389	£33	£77	Dominated
RLX	£6,012	11.0049	£145	- 0.0018	-£82,686	-£180	-£197	Dominated
ZOL	£6,491	11.0142	£623	0.0076	£82,446	-£472	-£396	£209,233
IBN (i.v.)	£6,692	11.0089	£825	0.0023	£362,332	-£779	-£756	Dominated
DEN	£7,557	11.0154	£1,690	0.0087	£193,385	-£1,515	-£1,428	Extendedly dominated
ROMO/ALN		11.0208		0.0142				dominated
TPTD	£11,507	11.0157	£5,640	0.0091	£622,664	-£5,459	-£5,368	Dominated

 Table 66:
 Basecase results from 200,000 PSA samples for FRAX risk category 6 (average 10 year fracture risk of 7.3%)

	Mean outcor (discounted)		Incremental ou no treatment (d		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
NT	£5,488	9.3617	£0	-	£0	£0	£0	
ALN	£5,508	9.3671	£20	0.0054	£3,791	£87	£140	£3,791
RIS	£5,511	9.3667	£23	0.0050	£4,572	£77	£128	Dominated
IBN (oral)	£5,518	9.3667	£30	0.0050	£6,035	£70	£120	Dominated
RLX	£5,584	9.3615	£96	- 0.0002	-£455,927	-£100	-£102	Dominated
ZOL	£6,070	9.3709	£582	0.0092	£63,432	-£399	-£307	£147,034
IBN (i.v.)	£6,301	9.3639	£813	0.0022	£367,423	-£769	-£747	Dominated
DEN	£7,082	9.3731	£1,594	0.0113	£140,582	-£1,367	-£1,254	Extendedly dominated
ROMO/ALN		9.3788		0.0170				
TPTD	£11,069	9.3720	£5,581	0.0103	£542,248	-£5,375	-£5,272	Dominated

 Table 67:
 Basecase results from 200,000 PSA samples for FRAX risk category 7 (average 10 year fracture risk of 8.8%)

	Mean outcor (discounted)		Incremental ou no treatment (d		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
ALN	£5,754	8.1143	-£11	0.0066	-£1,716	£142	£208	
RIS	£5,764	8.1143	-£2	0.0065	-£297	£132	£198	Dominated
NT	£5,766	8.1077	£0	-	£0	£0	£0	Dominated
IBN (oral)	£5,770	8.1141	£5	0.0064	£734	£123	£187	Dominated
RLX	£5,820	8.1087	£54	0.0009	£57,050	-£35	-£26	Dominated
ZOL	£6,308	8.1184	£542	0.0106	£51,057	-£330	-£224	£136,054
IBN (i.v.)	£6,556	8.1114	£790	0.0037	£215,680	- £717	-£680	Dominated
DEN	£7,247	8.1233	£1,482	0.0156	£95,158	- £1,170	- £1,014	£189,738
ROMO/ALN		8.1266		0.0189				
TPTD	£11,275	8.1203	£5,510	0.0125	£439,478	-£5,259	-£5,133	Dominated

 Table 68:
 Basecase results from 200,000 PSA samples for FRAX risk category 8 (average 10 year fracture risk of 10.7%)

 Table 69:
 Basecase results from 200,000 PSA samples for FRAX risk category 9 (average 10 year fracture risk of 14.9%)

	Mean outcomes (discounted)		Incremental ou no treatment (d		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
ALN	£8,078	7.0926	-£43	0.0082	-£5,233	£208	£290	
RIS	£8,082	7.0923	-£39	0.0080	-£4,904	£200	£280	Dominated
IBN (oral)	£8,085	7.0922	-£36	0.0079	-£4,537	£194	£273	Dominated
NT	£8,121	7.0843	£0	-	£0	£0	£0	Dominated
RLX	£8,251	7.0837	£130	- 0.0006	-£206,484	-£142	-£148	Dominated
ZOL	£8,615	7.0974	£494	0.0131	£37,737	-£232	-£101	£110,826
IBN (i.v.)	£8,881	7.0890	£760	0.0047	£163,225	-£666	-£620	Dominated
DEN	£9,560	7.1004	£1,439	0.0161	£89,300	- £1,116	-£955	£312,269
ROMO/ALN		7.1056		0.0213				
TPTD	£13,523	7.1000	£5,402	0.0157	£343,693	-£5,088	-£4,930	Dominated

	Mean outcor (discounted)		Incremental ou no treatment (d		ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
ALN	£13,031	4.7140	-£129	0.0110	-£11,748	£348	£458	
RIS	£13,040	4.7134	-£120	0.0104	-£11,572	£327	£431	Dominated
IBN (oral)	£13,048	4.7130	-£112	0.0100	-£11,122	£312	£413	Dominated
NT	£13,160	4.7030	£0	-	£0	£0	£0	Dominated
RLX	£13,276	4.7012	£116	- 0.0018	-£63,139	-£153	-£172	Dominated
ZOL	£13,487	4.7191	£327	0.0161	£20,257	-£4	£157	£88,002
IBN (i.v.)	£13,853	4.7092	£693	0.0062	£111,944	-£569	-£507	Dominated
DEN	£14,370	4.7236	£1,210	0.0206	£58,730	-£798	-£592	£197,979
ROMO/ALN		4.7303		0.0273				
TPTD	£18,252	4.7238	£5,092	0.0208	£244,558	-£4,676	-£4,468	Dominated

 Table 70:
 Basecase results from 200,000 PSA samples for FRAX risk category 10 (average 10 year fracture risk of 25.1%)

Appendix 16: Sensitivity analyses for economic evaluation

NB: These sensitivity analyses are based on the model using midpoint parameter inputs rather than the average outcomes across the PSA

Risk decile	1	2	3	4	5	6	7	8	9	10	All
Ofracture	1	-	5	-	5	0	,	0	7	10	1 111
score (%)	0.5	0.7	1.0	1.4	2.0	2.7	3.9	5.5	8.4	16.0	NA
ALN	£498,737	£412,005	£157,211	£149,958	£68,492	£44,834	£37,197	£16,884	£745	Dominates	£29,766
RIS	£565,069	£441,369	£160,348	£158,750	£69,748	£47,388	£38,372	£16,920	£2,190	Dominates	£31,628
IBN (oral)	£463,164	£427,947	£156,817	£144,798	£70,576	£46,196	£37,906	£17,487	£837	Dominates	£30,561
IBN (i.v.)	Dominated	Dominated	Dominated	Dominated	£4,767,171	£1,413,543	£1,040,966	£650,661	£307,706	£199,398	£1,066,308
ZOL	£241,951,112	£21,001,049	£1,200,415	£870,723	£469,207	£308,198	£227,473	£133,550	£79,528	£58,085	£233,405
RLX	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated
DEN	£1,998,145	£1,741,276	£1,143,632	£887,398	£609,344	£492,380	£386,626	£243,281	£163,466	£115,933	£382,864
TPTD	£7,503,596	£6,096,105	£4,057,889	£3,088,025	£2,244,920	£1,700,544	£1,405,530	£910,295	£608,736	£453,776	£1,361,877
ROMO/ALN											
FRAX score											
(%)	3.1	4.3	5.0	5.6	6.2	7.3	8.8	10.7	14.9	25.1	NA
ALN	£24,918	£22,192	£15,189	£16,287	£10,585	£3,769	£1,096	Dominates	Dominates	Dominates	£1,350
RIS	£25,690	£22,982	£15,820	£17,515	£10,337	£3,911	£1,349	Dominates	Dominates	Dominates	£1,814
IBN (oral)	£25,107	£23,022	£15,393	£16,536	£11,305	£3,733	£1,713	Dominates	Dominates	Dominates	£1,756
IBN (i.v.)	£671,930	£761,291	£455,094	£398,749	£365,350	£261,759	£262,550	£184,121	£140,596	£82,567	£248,478
ZOL	£152,696	£146,559	£111,458	£96,479	£78,835	£66,241	£57,551	£48,346	£33,954	£18,654	£63,969
RLX	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	£18,508,020	£158,275	£115,977	£56,599	Dominated
DEN	£325,050	£281,011	£205,252	£190,057	£166,993	£147,494	£130,881	£106,085	£81,500	£52,679	£137,302
TPTD	£1,123,470	£983,834	£869,760	£767,917	£670,930	£601,318	£482,831	£444,825	£330,544	£232,180	£532,666
ROMO/ALN											

 Table 71:
 ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when using the basecase scanrio

Risk decile	1	2	3	4	5	6	7	8	9	10	All
Qfracture											
score (%)	0.5	0.7	1.0	1.4	2.0	2.7	3.9	5.5	8.4	16.0	NA
ALN	£251,941	£168,092	£119,902	£79,284	£60,970	£31,766	£21,485	£10,432	£932	Dominates	£24,274
RIS	£268,409	£173,111	£121,180	£81,223	£62,848	£33,001	£22,356	£11,356	£1,273	Dominates	£25,717
IBN (oral)	£249,462	£167,996	£116,962	£80,518	£62,242	£32,880	£21,962	£10,972	£1,310	Dominates	£25,052
IBN (i.v.)	£6,829,412	£3,436,012	£2,239,222	£1,466,327	£1,139,102	£652,143	£477,492	£326,477	£231,761	£173,580	£568,098
ZOL	£1,872,105	£1,080,025	£721,322	£481,417	£368,038	£222,443	£160,376	£110,764	£74,556	£54,055	£191,981
RLX	Dominated	Dominated	Dominated	Dominated	Dominated						
DEN	£1,961,321	£1,264,758	£1,002,128	£693,856	£526,207	£357,560	£265,653	£186,577	£128,911	£94,665	£322,714
TPTD	£7,552,870	£5,127,678	£4,294,267	£2,966,878	£2,601,782	£1,717,937	£1,230,354	£814,753	£600,894	£406,640	£1,288,454
ROMO/ALN											
FRAX score											
(%)	3.1	4.3	5.0	5.6	6.2	7.3	8.8	10.7	14.9	25.1	NA
ALN	£20,826	£13,265	£10,205	£8,667	£7,096	£4,570	Dominates	Dominates	Dominates	Dominates	£629
RIS	£21,225	£13,435	£10,374	£9,194	£7,051	£4,739	Dominates	Dominates	Dominates	Dominates	£1,061
IBN (oral)	£21,651	£13,923	£10,577	£9,059	£7,570	£5,066	£26	Dominates	Dominates	Dominates	£1,060
IBN (i.v.)	£424,242	£313,920	£269,844	£243,798	£238,418	£216,521	£174,715	£133,701	£114,229	£84,510	£187,936
ZOL	£134,229	£99,921	£85,457	£75,996	£71,730	£65,020	£51,386	£39,131	£32,428	£20,158	£57,147
RLX	Dominated	£697,741	£196,074	£107,583	Dominated						
DEN	£243,364	£184,578	£159,477	£141,243	£137,427	£120,484	£97,963	£77,542	£63,636	£42,333	£109,566
TPTD	£1,059,530	£914,573	£769,066	£691,834	£637,242	£550,881	£495,976	£388,142	£323,503	£230,761	£505,256
ROMO/ALN											
							· •		·		

Table 72:ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when assuming full persistence with treatment

Risk decile	1	2	3	4	5	6	7	8	9	10	All
Qfracture											
score (%)	0.5	0.7	1.0	1.4	2.0	2.7	3.9	5.5	8.4	16.0	NA
ALN	£799,955	£486,510	£172,280	£106,937	£85,656	£59,255	£27,980	£12,480	£5,185	Dominates	£31,647
RIS	£799,955	£486,510	£172,280	£106,937	£85,656	£59,255	£27,980	£12,480	£5,185	Dominates	£31,647
IBN (oral)	£826,668	£502,375	£178,069	£110,735	£88,733	£61,464	£29,355	£13,378	£5,907	Dominates	£33,205
IBN (i.v.)	Dominated	Dominated	Dominated	Dominated	£7,531,872	£2,733,301	£981,482	£435,481	£360,520	£206,403	£1,086,629
ZOL	Dominated	£10,002,667	£1,313,565	£794,622	£556,859	£336,315	£196,111	£130,628	£100,210	£62,599	£248,980
RLX	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated
DEN	£2,346,041	£1,613,668	£1,005,637	£823,644	£638,855	£487,738	£330,852	£227,692	£185,220	£122,045	£383,999
TPTD	£8,161,900	£5,841,080	£4,235,494	£3,154,275	£2,175,649	£1,968,959	£1,205,259	£885,276	£714,965	£481,048	£1,415,644
ROMO/ALN											
FRAX score											
(%)	3.1	4.3	5.0	5.6	6.2	7.3	8.8	10.7	14.9	25.1	NA
ALN	£27,834	£19,286	£16,881	£14,023	£10,907	£4,553	£1,530	Dominates	Dominates	Dominates	£2,591
RIS	£27,834	£19,286	£16,881	£14,023	£10,907	£4,553	£1,530	Dominates	Dominates	Dominates	£2,591
IBN (oral)	£28,967	£20,169	£17,695	£14,715	£11,600	£5,160	£2,044	Dominates	Dominates	Dominates	£3,131
IBN (i.v.)	£616,244	£408,882	£418,532	£337,957	£325,277	£287,300	£226,977	£183,012	£142,975	£97,801	£240,853
ZOL	£178,326	£130,666	£122,750	£96,355	£106,623	£78,832	£63,178	£54,261	£38,658	£24,279	£72,230
RLX	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	£115,828	£80,087	Dominated
DEN	£321,955	£245,827	£211,101	£175,962	£177,597	£153,423	£127,213	£109,102	£83,514	£56,914	£138,658
TPTD	£1,187,281	£940,410	£859,389	£720,901	£666,582	£583,940	£499,370	£437,612	£348,992	£252,450	£541,645
ROMO/ALN											

Table 73:ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when using the class-effect estimates for bisphosphonates

	Mean outcon	nes (discounted)	Incremental on no treatment (utcomes versus discounted)	ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost QALYs			QALY	QALŶ	·
ALN	£7,476	6.6254	-£235	0.0199	-£11,804	£634	£834	
RIS	£7,479	6.6248	-£232	0.0193	-£12,014	£618	£811	Dominated
IBN (oral)	£7,509	6.6242	-£202	0.0187	-£10,776	£576	£764	Dominated
NT	£7,711	6.6055	£0	-	£0	£0	£0	Dominated
RLX	£7,832	6.6067	£121	0.0012	£105,283	-£98	-£87	Dominated
ZOL	£8,001	6.6308	£290	0.0253	£11,427	£217	£471	Extendedly dominated
IBN (i.v.)	£8,329	6.6193	£618	0.0138	£44,785	-£342	-£204	Dominated
DEN	£8,491	6.6631	£780	0.0576	£13,544	£372	£948	£26,977
ROMO/ALN								
TPTD	£12,820	6.6418	£5,109	0.0363	£140,684	-£4,383	-£4,020	Dominated

 Table 74:
 Scenario results for high risk patient with FRAX risk of 30% (based on 500,000 PSA samples with fixed patient characteristics)

Table 75:	Scenario results for high risk	patient with QFracture risk of 13.3% (based on 500,000 PSA sam	ples with fixed patient characteristics)

	Mean outcor	nes (discounted)	Incremental on treatment	utcomes versus (discounted)	ICER vs. no treatment	Net benefit at £20K per	Net benefit at £30K per	Incremental analysis*
Treatment strategy	Cost	QALYs	Cost	QALYs		QALY	QALY	
ALN	£2,782	6.8336	-£24	0.0071	-£3,393	£167	£238	
RIS	£2,782	6.8335	-£24	0.0069	-£3,463	£163	£233	Dominated
IBN (oral)	£2,794	6.8331	-£12	0.0065	-£1,819	£143	£208	Dominated
NT	£2,806	6.8265	£0	-	£0	£0	£0	Dominated
RLX	£2,947	6.8256	£141	- 0.0009	-£152,373	-£159	-£169	Dominated
ZOL	£3,387	6.8352	£581	0.0087	£66,928	-£407	-£321	Extendedly dominated
IBN (i.v.)	£3,577	6.8307	£771	0.0042	£183,707	-£687	-£645	Dominated
DEN	£4,205	6.8478	£1,399	0.0212	£65,851	-£974	-£761	£100,788
ROMO/ALN								
TPTD	£8,315	6.8398	£5,509	0.0133	£414,209	-£5,243	-£5,110	Dominated

Risk decile	1	2	3	4	5	6	7	8	9	10	All
Qfracture											
score (%)	0.5	0.7	1.0	1.4	2.0	2.7	3.9	5.5	8.4	16.0	NA
ALN	£667,007	£344,843	£154,562	£158,993	£79,839	£96,437	£32,481	£16,709	£9,373	Dominating	£37,101
RIS	£833,648	£378,035	£155,152	£176,091	£87,929	£98,283	£33,908	£19,143	£9,239	Dominating	£39,904
IBN (oral)	£613,050	£300,939	£153,457	£165,724	£80,313	£98,014	£33,897	£17,620	£10,028	Dominating	£38,227
IBN (i.v.)	Dominated	Dominated	Dominated	Dominated	£6,497,796	Dominated	£984,778	£539,348	£428,815	£189,330	£1,167,465
ZOL	Dominated	Dominated	£3,032,964	£2,134,060	£694,683	£813,434	£266,397	£215,493	£141,142	£79,915	£359,734
RLX	Dominated										
DEN	£1,875,580	£1,067,021	£725,687	£574,802	£412,867	£409,288	£226,792	£186,474	£119,740	£84,928	£277,008
TPTD	£7,103,236	£5,463,987	£4,344,868	£4,130,127	£2,585,616	£2,577,445	£1,336,591	£1,136,165	£771,301	£499,965	£1,581,013
ROMO/ALN											
FRAX score											
(%)	3.1	4.3	5.0	5.6	6.2	7.3	8.8	10.7	14.9	25.1	NA
ALN	£43,692	£29,116	£20,888	£16,881	£14,815	£10,289	£6,445	£1,671	Dominating	Dominating	£5,789
RIS	£41,868	£30,603	£20,138	£17,014	£15,644	£11,783	£7,082	£2,179	Dominating	Dominating	£6,585
IBN (oral)	£43,872	£29,515	£21,422	£17,188	£15,311	£10,602	£7,219	£2,062	Dominating	Dominating	£6,353
IBN (i.v.)	£1,135,784	£620,464	£432,254	£341,331	£362,455	£346,713	£338,155	£209,343	£172,366	£96,099	£280,111
ZOL	£292,309	£212,340	£171,060	£135,810	£139,460	£124,920	£113,027	£81,472	£62,310	£33,641	£106,395
RLX	Dominated	Dominated	Dominated	£316,965	Dominated	Dominated	Dominated	£450,493	£132,412	£50,539	£11,272,49 1
DEN	£228,836	£180,468	£152,041	£132,978	£126,706	£114,716	£105,110	£74,266	£59,072	£38,160	£101,453
TPTD	£1,492,180	£1,109,874	£933,843	£782,904	£858,530	£704,890	£658,543	£504,232	£418,570	£280,094	£637,237
ROMO/ALN											
† Assuming offset period equal to treatment time for ZOL, RLX, DEN and assuming offset period equal to 1 year for ALN, RIS, IBN (oral), IBN (i.v.), TPTD											

Table 76:ICERs versus no treatment (NT) by risk deciles for QFracture and FRAX when making alternative assumptions for the offset

period†