Icosapent ethyl with statin therapy for reducing the risk of cardiovascular events in adults with elevated triglycerides

Lead team presentation

Lead team: Rob Forsyth, Subhash Pokhrel, Stella O'Brien ERG: Kleijnen Systematic Reviews Technical team: Steve O'Brien, Catie Parker, Alex Filby, Ross Dent Company: Amarin 11 January 2022

© NICE 2021. All rights reserved. Subject to notice of rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner.

Disease background

VIG

A group of conditions often related to narrowing of arteries. Cardiovascular events include **myocardial infarction** and **stroke**

Epidemiology

In England, around **6.4 million** people are living with CVD¹

Estimated **25%** to **35%** of people on statins have elevated triglycerides

Mortality

In England, **1** in **4** deaths is caused by CVD²

In 2020, **137,152** people died from CVD in England¹

Risk factors

Age, hypertension, dyslipidaemia (**high LDL, TGs, cholesterol**), diabetes, physical inactivity, and obesity

NICE

CVD, cardiovascular disease; LDL, low-density lipoproteins; TG, triglyceride

1. British Heart Foundation 2021, 2. Public Health England 2019

Perspectives on managing CVD risk factors

- Many premature and preventable deaths (approx. 26%)
- Access to NHS Health Checks varies across the country
 - ➢ In 2020, 97% of NHS Health Checks were cancelled
- Current treatment options
 - Non-pharmaceutical interventions (NPIs) for modifiable risk factors; e.g., BMI, food choices, exercise, alcohol consumption, tobacco cessation
 - Pharmaceutical interventions (PIs). Statins are the backbone. Fibrates prescribed for some but another treatment option is helpful
- Adherence to NPIs and statin therapy can be poor
 - Lack of data on efficiency and effectiveness of NPIs
 - > 75% of people stop taking lipid lowering therapies after 2 years
- Barriers to access
 - > No more barriers should be introduced that delay risk reduction

Equality and equity considerations

- People with Black, Asian and minority ethnic family backgrounds have higher triglyceride levels and increased CVD risk factors
- People in England's most deprived areas are almost 4 times more likely to die prematurely from CVD than people in the least deprived areas
- Variation in access to secondary and tertiary care
- People with severe mental illness are more likely to develop and die from preventable conditions like CVD
- People with learning disabilities are at increased risk of developing CVD
- Some faiths and ethical beliefs may restrict use of fish products
- Pregnancy and breast-feeding

Clinical expert perspective

Current care

- Unmet need for people with raised TGs with residual risk of CVD events even when optimally treated
- No effective treatment to add to statins for residual raised TGs which may reflect apoB
- Prevalence of people with co-existing raised TGs and CVD risk is increasing

Icosapent ethyl

- Expect it to improve quality of life
- Expect most benefit in secondary prevention
- Benefit in practice may be less than trial
- Adverse event
 concerns: atrial
 fibrillation, bleeding,
 constipation
- Mechanism of action seems independent of lipid modulation

Considerations for implementation

- If it's recommended, would need to implement a full fasting lipid profile
- Expect it to be used mostly in primary care but also in secondary care
- Some GPs are overwhelmed by CVD guidance & pushback about value of managing lipids

NICE

Icosapent ethyl (Vazkepa, Amarin)

Marketing authorisation (MHRA) Indicated to reduce the risk of cardiovascular events in adult statintreated patients at high cardiovascular risk with elevated triglycerides (\geq 150 mg/dL [\geq 1.7 mmol/L]) and

- established cardiovascular disease, or
- diabetes, and at least one other cardiovascular risk factor. Risk factors from SPC:
 - hypertension or on an antihypertensive medicinal product
 - age at least 55 years (men) or at least 65 years (women)
 - low high-density lipoprotein cholesterol levels
 - smoking
 - raised high-sensitivity C-reactive protein levels
 - renal impairment
 - micro or macroalbuminuria
 - retinopathy
 - reduced ankle brachial index

Mechanism of
actionNot fully understood, but appears to modulate atherosclerosis pathway
by lipid and non-lipid effects

Administration Oral

Price Anticipated list price £173 per pack of 120 capsules (£2,106.28 per year). No Patient Access Scheme

NICE dL, decilitre; L, litre; mg, milligram; MHRA, Medicines and Healthcare products Regulatory Agency; mmol, millimole; SPC, summary of product characteristics

7

Treatment pathway & proposed position

- Controlled LDL-C levels (REDUCE-IT): > 1.04 mmol/L and ≤ 2.60 mmol/L
- Raised triglycerides (marketing authorisation): \geq 1.70 mmol/L

NICE CVD, cardiovascular disease; LDL-C, low-density lipoprotein cholesterol; mmol/L, millimoles per litre

Key issues (1/2) 👔 Model driver 🗳 Unknown impact 🔍 Small impact

	Issue description	Questions	Impact
1	REDUCE-IT population narrower than scope	Can recommendations be made in line with full marketing authorisation?	2 2 2
3	MACE composite outcome	Is the composite 5-point MACE outcome appropriate to use in the model?	2 2 2
4	REDUCE-IT generalisability	Are the results from REDUCE-IT generalisable to the NHS in England?	
5	Model structure	Is the company's partitioned survival model appropriate for decision making?	N/A
6	Using partial KM		?
7	Time to event analysis	Is the company's updated time to event analysis	R
8	DSU guidance not followed	acceptable?	2 ²
9	Assumption of no treatment waning	Is a 10 year, 20 year, or no waning assumption most appropriate?	

Partially resolved/for brief discussion Unresolved, for discussion

NICE

DSU, Decision Support Unit; KM, Kaplan-Meier; MACE, major adverse cardiovascular event

Key issues (2/2) Model driver 🖉 Unknown impact 🖓 Small impact

	Issue description	Question	Impact
10	Treatment-dependent non-cardiovascular related death hazard ratios	Should non-cardiovascular related death hazard ratios be treatment dependent or independent?	æ
13	Time to treatment discontinuation	Which curve is most appropriate for time to treatment discontinuation?	<u>í</u>
		Unresolved, for d	iscussion

Issues resolved at technical engagement

Model driver 🕹 Unknown impact 🔍 Small impact

	Issue	Technical engagement	Impact
2	Time to determine stable statin dose	Time to determine stable dose of statins in REDUCE-IT likely similar to clinical practice, around 3 months	
11	Utility values	ERG agrees that Stevanovic & O'Reilly baseline values and CG181 multipliers are likely appropriate	
12, 14	Event costs not adjusted for time since previous event	Company updated event costs to reflect cost per day after event instead of one-off event cost. ERG satisfied with company's changes	e e e e e e e e e e e e e e e e e e e
15	Model validation	Company provided validation checklists: AdViSHE and TECH-VER. ERG satisfied with model validation	?

Resolved

Summary

Comparators	Best supportive care = stable dose of statins with or without ezetimibe
Subgroups	 Secondary prevention (CV1): Adults with established cardiovascular disease Primary prevention (CV2): Adults with diabetes and at least 1 other risk factor (slide 7)
REDUCE-IT clinical trial	Randomised controlled trial comparing icosapent ethyl with placebo (mineral oil)
Model	Partitioned survival model with 8 health states

REDUCE-IT overview

Randomised, double-blind, placebo-controlled phase 3 trial

(full list, slide 7)

hypertension, HDL-C ≤1.04 mmol/L, renal disfunction

CVD, cardiovascular disease; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event; mmol/L, millimoles per litre; TG, triglyceride

REDUCE-IT results, intention to treat population Randomised, double-blind, placebo-controlled phase 3 trial

Kaplan-Meier curves for 5-point MACE composite endpoint

Graphical representation of total events in primary endpoint

HR, hazard ratio; MACE, major adverse cardiovascular event; RR, relative risk

REDUCE-IT results, subgroups

Secondary prevention

Primary prevention

CI, confidence interval; HR, hazard ratio; RR, relative risk

REDUCE-IT: comments on trial (1/2)

Professional organisation

- Level of risk reduction is disproportionate to triglyceride lowering
- Mineral oil not neutral, increases inflammatory markers. Prefer corn oil
- In STRENGTH analysis, EPA relative risk reduction half benefit seen in REDUCE-IT

ERG response

- Icosapent ethyl is not the same as EPA
- Takahito et al. 2021 may indicate REDUCE-IT results overestimate benefit, but
 - > Plausible that corn oil reduces risk of MACE and analysis was based on oil surrogate
 - No significant effect of 2 of the surrogates (LDL-C or C-reactive protein) on primary outcome in REDUCE-IT
- 2020 systematic review found mineral oil 'does not meaningfully affect study conclusions when used as a placebo at the quantities used in clinical trials'
 - > But, study not well reported & co-author employed by Amarin

European Public Assessment Report (EPAR)

- Based on analyses provided by company, a putative negative effect of mineral oil should not account for more than 0.3 – 3% of MACE events
- Assuming unlikely worst-case scenario, the remaining beneficial effect of icosapent ethyl on MACE events can be considered robust and meaningful

NICE

REDUCE-IT: comments on trial (2/2)

NHS England

- REDUCE-IT: findings different from previous studies of omega-3 fatty acids & magnitude of benefit much greater than predicted based on change in triglyceride levels
- REDUCE-IT authors note ASCVD benefits not explained by change in triglycerides or atherogenic and inflammatory biomarkers. Cardiovascular benefit may be driven by pleiotropic effects of EPA
- STRENGTH trial: In population at high risk of, or with established ASCVD, 4g/day EPA-75% and DHA-25% compared with corn oil for 3.5 years had no beneficial effect on ASCVD risk
- Danish investigators found contrasting results of ASCVD prevention in REDUCE-IT and STRENGTH trials could be partly explained by differences in effect of active and comparator oils on lipid traits and C-reactive protein. Negative effect of mineral oil in REDUCE-IT increased predicted ASCVD risk by 7%
 - NHSE considers treatment effect in REDUCE-IT likely overestimated
 - Expect company to provide a scenario with magnitude of treatment effect reduced by 7% to account for estimated increased risk of ASCVD events associated with mineral oil use

Company's model

- Health state cohort model (partitioned survival approach)
- 8 health states based on occurrence of cardiovascular events and death
- 1 day cycle length, 36 year horizon
- Mean age at baseline: 64 years
- Percent male at baseline: 71%
- REDUCE-IT used to estimate parametric survival models for health state occupancy
 - Estimated using composite end points and subdivided between event types
 - Cardiovascular death
 - Myocardial infarction
 - Stroke

NICE

- Unstable angina
- Revascularisation

CVD, cardiovascular disease; LDL-C, low-density lipoprotein cholesterol; mmol/L, millimoles per litre; TG, triglyceride

Issue 1: Eligible population

Summary: Marketing authorisation does not specify age or LDL-C level

REDUCE-IT included people:

- ≥ 45yrs with CVD
- ≥ 50yrs with diabetes and at least 1 other risk factor

REDUCE-IT included people with:

- LDL-C >1.04mmol/L and
 - ≤ 2.60mmol/L

Marketing authorisation:

"to reduce the risk of cardiovascular events in adult statin-treated patients at high cardiovascular risk with elevated triglycerides (\geq 150 mg/dL [\geq 1.7 mmol/l]) and established cardiovascular disease, or diabetes, and at least one other cardiovascular risk factor"

Company TE response

Population should follow REDUCE-IT, which is narrower than licensed indication

ERG		Enapoint/sub	group Hazard	i ratio (95% CI)		
Subgroup analysis indicates age might have substantial effect on outcome		Primary Compos Age Group <65 Years		0.752 (0.682, 0.830)		
Clinical expert comments		≥65 Years		0.873 (0.761, 1.001)		
 No biological reason to restrict drug to people over 45, may disadvantage people at risk Some people in NHS < 45 with CVD or diabetes and raised triglycerides especially in people with South Asian family backgrounds 						
? Can recommendations be made in line	with	full market	ing authoris	ation?		

Issue 3: Composite MACE outcome

Background

- REDUCE-IT had composite 5-point MACE
- ERG: composite outcomes may mask treatment effect of individual outcomes. Should explore impact of single outcomes

Company TE response

- Composite 5-point MACE used to model time of a 1st, 2nd or 3rd+ event
- Distribution of specific cardiovascular events experienced by patients in each treatment group was applied (table)
- Using single outcomes would not lead to large increase in ICER

ERG

NICE

Company has not explored impact of single outcomes so ERG view remains the same

Clinical expert comments

Most major trials use composite MACE

Distribution of events from REDUCE-IT

		Icosapent ethvl		Placebo	
	CV death				
	MI				
1 st	Stroke				
event	Unstable angina				
	Revascularisation				
	Total		705	901	
	CV death				
	MI				
2 nd	Stroke				
event	Unstable angina				
	Revascularisation				
	Total		236	376	
	CV death				
	MI				
3 rd	Stroke				
event	Unstable angina				
	Revascularisation				
	Total				

? Is the composite 5-point MACE outcome appropriate to use in the model?

CV, cardiovascular; ICER, incremental cost-effectiveness ratio; MACE, major adverse cardiovascular event; MI, myocardial infarction

20

secondary prevention subgroups with Steen Steen et al. was retrospective, cross-

Issue 4: REDUCE-IT generalisability (1/2)

sectional analysis of 183,565 people in the UK – from The Health Improvement Network (THIN) database

Provided baseline comparison of primary and

REDUCE-IT did not include any UK

See slide 37

Background

participants

Company

et al.

ERG

- Differences in characteristics that may affect treatment between REDUCE-IT and Steen
- Unclear if Steen et al. is relevant to UK clinical practice, it is 5 years old
- Patients in UK clinical practice for whom • the company submission would be most appropriate would be those who most resemble patients in REDUCE-IT
 - o e.g. with diabetes in the primary prevention population and with hypertension in both populations

Clinical experts

- Uncertain generalisability: trial does not represent ethnic groups in the UK who have higher ۲ triglycerides and may have benefited more
- Current UK practice does not routinely assess triglycerides or set an LDL target, so the ٠ eligible population would not be easily identifiable

Issue 4: REDUCE-IT generalisability (2/2)

NHS England

Generalisability in relation to current management of high-risk ASCVD

- In REDUCE-IT, only 6.4% had ezetimibe & <4% had PCSK-9 inhibitors. These each reduce triglycerides by 5-10% beyond statin effect
- Inclisiran recommended for people with LDL-C >2.6 mmol/L despite maximum tolerated statin, with or without ezetimibe. Similar population to REDUCE-IT
- → Combination of therapies could reduce triglycerides below threshold for icosapent ethyl & benefit of icosapent ethyl for people having these treatments unknown

Generalisability in relation to current management of type 2 diabetes mellitus

- People are offered lifestyle advice which can decrease triglycerides
- Poor blood glucose control associated with hypertriglyceridemia and should be optimised
- Recently updated NICE guidance recommends earlier use of SGLT2 inhibitors for people with diabetes & high ASCVD risk. CV risk protection from SGLT2 inhibitors not fully appreciated in REDUCE-IT, uncertain how many people in REDUCE-IT had SGLT2 inhibitors or GLP-1 agonists
- → These treatments could reduce triglycerides below threshold for icosapent ethyl & benefit of icosapent ethyl for people having these treatments unknown

? Are the results from REDUCE-IT generalisable to the NHS in England?

NICE

ASCVD; atherosclerotic cardiovascular disease; CV, cardiovascular; GLP-1, glucagon-like peptide-1; LDL-C, low-density lipoprotein cholesterol; mmol/L, millimoles per litre; PCSK-9, proprotein convertase subtilisin/kexin type 9; SGLT2, sodium-glucose cotransporter-2

Issue 5: Model structure (1/2)

ERG comments before TE

- Unclear appropriateness of partitioned survival model, assumes independence of endpoints
- Model different than related topics: TA393, TA394, TA420
 - Structure does not explicitly model nonfatal CV events but uses composite endpoint
 - > 1 day cycle may make model error prone
 - Event costs modelled to last 1 day, but utilities applied 60 days post event (likely over estimated costs)
- Prefer individual patient level simulation

ERG post technical engagement

NICE

- Requested company provide detailed comparison of its model with validation model (slides 38-39)
- Due to time constraints, not fully reviewed validation and detailed comparison

Company

- Provided state transition model for validation (structure, next slide)
- Model comparison shows similar clinical estimates (slide 40)
 - > shows company's model is appropriate
 - proportion of patients alive lower in company model because non-CV related mortality HR used to account for additional risk of death following CV event – not in validation model
- Updated event costs as daily cost for 60 days

(<u>company ar</u>	nd validation	<u>i moc</u>	dels at	30	year	S
		Model	Icosapent ethyl		E	BSC	
	2 nd avont	Validation					
Zieveni		Company					
2rd avent		Validation					
	J. eveni	Company					
	Patients	Validation					
	alive	Company					
							2

Comparison of selected clinical estimates: company and validation models at 30 years

BSC, best supportive care; CV, cardiovascular; TE, technical engagement

Issue 5: Model structure (2/2)

Validation state-transition model structure •

Company and validation model results

Population	Model	ICER (£/QALY)
ITT	Validation	
	Company	28,266
Primary	Validation	
prevention	Company	85,438
Secondary	Validation	
prevention	Company	22,796

NICE

Is the company's partitioned survival model appropriate for decision making?

AF, atrial fibrillation; CR, coronary revascularisation; CVD, cardiovascular disease; ICER, incremental cost-effectiveness ratio; ITT, intention to treat; MI, myocardial infarction; QALY, quality-adjusted life year; VT, ventricular tachycardia

Issues 6, 7 & 8: Time to event analysis (1/3)

ERG comments before TE

Observations when only 10% at risk removed

- Uncertainty around long term survival curves
- Company did not follow TSD 14
- Requested: fitted models, selection justification, and alternative to literature HR approach

Parametric models fitted to **1st event**: ITT population, icosapent ethyl

Company

Updated base case following TSD 14:

- Complete Kaplan Meier
- Fitted parametric models* to REDUCE-IT 1st, 2nd, 3rd+ event, with treatment as covariate
- Proportional hazards assumption holds (ERG agrees, slides 41-42)
- Log-cumulative hazard plot, visual inspection, AIC/BIC, & compared with validation model

Parametric models fitted to **1st event**: ITT population, placebo

*Unable to fit Weibull as it caused error

Note: Updated analyses not fully validated by ERG

AIC, Akaike information criterion; BIC, Bayesian information criterionHR, hazard ratio; ITT, intention to treat; TE, technical engagement; TSD, technical support document **25**

Issues 6, 7 & 8: Time to event analysis (2/3)

Company

- Uncertainty around 2nd and 3rd+ event distributions
- Log-logistic best fitting statistically (base case)
- Exponential estimates closer to validation model
- Different distributions have small impact on ICER (slide 35)

Note: Analyses not fully validated by ERG

ICER, incremental costeffectiveness ratio; ITT, intention to treat

? Is the company's updated time to event analysis acceptable?

Issues 6, 7 & 8: Time to event analysis (3/3)

Extrapolated proportion of people experiencing 1st event, exponential

	1 year	5 years	10 years	20 years	30 years
Icosapent ethyl					
Best supportive care					

Extrapolated proportion of people experiencing 2nd event

		1 year	5 years	10 years	20 years	30 years
1	Icosapent ethyl					
	Best supportive care					
2	Icosapent ethyl					
	Best supportive care					

Extrapolated proportion of people experiencing 3rd + event

		<u> </u>			<u> </u>		
			1 year	5 years	10 years	20 years	30 years
1	Icosapei	nt ethyl					
	Best sup	portive care					
2	Icosapei	nt ethyl					
	Best sup	portive care					
		1 log-logistic	(company's b	base case for	2 nd & 3 rd + events	s) Note: Analy	yses not
	NICE	2 exponentia	l (estimates d	(estimates closer to validation model)		fully validate	d by ERG ²⁷

Issue 9: Treatment waning

Company

- Base case **no** treatment waning, provided scenarios with 10 or 20 year waning assumptions
- No waning in similar appraisals: TA393, TA394 & TA733
- Analysis of REDUCE-IT shows no treatment waning during trial across all populations (below)

Recent appraisals

- **TA733 inclisiran**: Assumption of no waning of treatment effect may be appropriate but adds uncertainty
- **TA694 bempedoic acid + ezetimibe**: Company assumed effect maintained for model duration or until treatment stopped. ERG noted there may be slight waning. Committee concluded there is uncertainty in the evidence

NICE

Is a 10 year, 20 year, or no waning assumption most appropriate?

ERG

- Base case: waning 10 years
 post trial completion
- Remaining uncertainty
- Want to see smoothed hazard plots over time per arm and for subgroups

Clinical experts

- Limited data for long term
 treatment effect
- Assumption of no treatment waning reasonable 28

Issue 10: Treatment-dependent noncardiovascular related death hazard ratios

Company

- Base case: treatment specific non-cardiovascular related death hazard ratios
- Do not agree with ERG approach of applying average of treatment dependent hazard ratios per health state to both treatment groups (subgroup analysis)
 - Primary and secondary prevention not comparable
 - Diabetes and number of prior events identified as non-cardiovascular related mortality modifiers so cannot be ignored
- Scenario applying treatment-independent hazard ratios, but used distribution of events that occurred across both treatment arms

Event	Treatment independent	lcosapent ethyl ਮੁਲ	Placebo нв	ERGAgree non-cardiovascular
	HR			related death bazard ratios
None	1.54	1.54	1.54	should be calculated separately
1 st	2.12	2.12	2.12	for CV1 and CV2 subgroups
Post 1 st	2.12	2.12	2.12	 Would like to see evidence that
2 nd	2.36	2.27	2.45	diabetes and number of events
Post 2 nd	2.36	2.27	2.45	are non-cardiovascular related
3 rd	2.58	2.56	2.60	mortality modifiers
Post 3 rd	2.58	2.56	2.60	29

? Should non-cardiovascular related death hazard ratios be treatment dependent or independent?

HR, hazard ratio

Issue 13: Extrapolation of time to treatment discontinuation

38 year extrapolation of TTD based on icosapent ethyl discontinuation in REDUCE-IT

ERG

- Weibull, Gompertz, log-logistic & lognormal all secondbest fit
- Base case: loglogistic
- Uncertain without long term data

Clinical experts

- Most CVD drugs have long-term adherence around 60% (Wei et al. 2008)
- Discontinuation may be greater in primary prevention group

NICE

Which curve is most appropriate for time to treatment discontinuation?

CVD, cardiovascular disease; TTD, time to treatment discontinuation

Other considerations

 Clinical experts: Innovative because it appears to work on a pathway that is not yet defined and addresses unmet need of people with elevated triglycerides and residual CVD risk

Equality issues

- People with Black, Asian and minority ethnic family backgrounds have higher triglyceride levels
- People in England's most deprived areas are almost 4 times more likely to die prematurely from CVD than people in the least deprived areas
- People with severe mental illness are more likely to develop and die from preventable conditions like CVD
- People with learning disabilities are at increased risk of developing CVD
- Some religions have restrictions on fish products

Are there any equalities issues that need to be taken into account?

Base case assumptions

ERG analyses not updated at technical engagement due to concerns with model and survival analysis

		Co cas	mpany old base se	ERG (dependent on company old base case)	Company new base case	
6	KM data	Red (exe afte	duced dataset cluded observations er 10% at risk)	Reduced dataset (<i>noted complete dataset</i> <i>should be used</i>)	Complete KM	
7,8	Extrapolated time to event curves	Sep RE arm	Darate curves fit to DUCE-IT treatment	Separate curves for treatment arms (<i>noted company did not</i> <i>follow TSD 14</i>)	Per TSD 14, fitted parametric models to data with treatment group as covariate	
9	Treatment waning	No	waning	10 years post trial	No waning	
10	Non-CV related death HR	Tre	atment dependent	Treatment independent	Treatment dependent	
12, 14	Event costs	App cos	olied as one off its	Applied as one off costs, corrected (<i>noted daily</i> <i>cost more appropriate</i>)	Applied as daily cost for 60 days post event	
13	Time to treatment	Exp	oonential	Log-logistic	Exponential	
	uiscontinuation		Note: Updated time to event analysis not fully validated by ERG			
Ν	HR, H	hazai	azard ratio; KM, Kaplan-Meier; TE, technical engagement; TSD, 3 Technical Support Document			

Summary of cost-effectiveness results Whole population, secondary prevention & primary prevention

Company's deterministic base case results

Population	Incremental costs	Incremental QALYs	ICER (£/QALY)	
Intention to treat	£10,632	0.376	28,266	
Secondary prevention (CV1)	£10,534	0.462	22,796	
Primary prevention (CV2)	£11,276	0.132	85,438	

ERG's deterministic base case results before technical engagement

Population	ICER (£/QALY)	 ERG results use old time to event analysis – separate curves for treatment arms 			
Intention to treat	122,598	 Due to time limitations unable to present 			
Secondary prevention (CV1)	88,888	ERG results with updated time to event			
Primary prevention (CV2)	758,717	analysis			

Note: Company's results not fully validated by ERG

NICE

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life year

Deterministic cost-effectiveness results (1/2) Secondary prevention (CV1)

		Incremental cost	Incremental QALYs	ICER (£/QALY)
1	Company base case	£10,534	0.462	22,796*
2	Log-logistic for time to treatment discontinuation (1+2)	£11,642	0.462	25,193
3	10-year post trial treatment waning applied to 3 rd + events (1+3)	£11,078	0.409	27,086
4	Combined scenario (1+2+3+4)	£12,170	0.409	29,756

*Probabilistic: £22,075/QALY

Additional scenarios

5	20-year post trial treatment waning applied to 3 rd + events (4+5)	£12,034	0.423	28,455
6	Treatment independent non-CV related death hazard ratios (4+6)	£12,102	0.389	31,121

Note: Results not fully validated by ERG

CV, cardiovascular; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life year

Deterministic cost-effectiveness results (2/2) Secondary prevention (CV1)

Time to event scenarios based on combined scenario 4 (previous slide)

	Distribution	Incremental	Incremental	
	Exponential (company base case)	£12.170	0.409	29.756
	Gompertz	£12,198	0.413	29,547
1 st event	Log-logistic	£12,392	0.380	32,582
	Lognormal	£12,587	0.361	34,821
	Generalised gamma	£12,286	0.397	30,976
	Exponential	£12,052	0.429	28,090
	Gompertz	£12,361	0.404	30,623
2 nd event	Log-logistic (company base case)	£12,170	0.409	29,756
	Lognormal	£12,050	0.389	30,984
	Generalised gamma	£12,201	0.416	29,357
	Exponential	£12,621	0.390	32,353
3rd + avont	Gompertz	£11,567	0.448	25,797
J · EVEIIL	Log-logistic (company base case)	£12,170	0.409	29,756
	Lognormal	£12,575	0.384	32,739

Unable to provide results using Weibull for any event & generalised gamma for 3rd + events as they resulted in errors

Note: Scenarios not fully validated by ERG

NICE

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life year