Remdesivir and tixagevimab plus cilgavimab for treating COVID-19

For public – contains no ACIC information

Multiple Technology Appraisal – Fourth appraisal committee meeting

Technology appraisal committee C [05 March 2024]

Chair: Stephen O'Brien

External assessment group: School of Health and Related Research (ScHARR), Sheffield

Technical team: Rachel Ramsden, Adam Brooke, Ross Dent

Company: Gilead Sciences

Key issues

Issue	Resolved?	ICER impact
Restrictive patient population	No – for discussion	N/A – issue relating to decision problem
Underlying mortality rate	No – for discussion	Large 🖅
Remdesivir relative efficacy on mortality	Partly – for discussion	Large 🔛

Remdesivir and tixagevimab plus cilgavimab for treating COVID-19

- ✓ Recap
- Draft guidance 2 consultation responses
- Modelling and cost effectiveness
- Summary

Appraisal history Outline of meeting: 1. Consider consultation **Appeal DG** issued **FDG** issued **DG** issued responses outcome ACM 1 ACM 2 ACM 3 ACM 4 **Appeal** May 2023 December 2023 March 2024 October 2022 January 2023

Setting Recommended		Not recommended
Mild COVID-19 (high risk of progression, also hospital-onset COVID-19)	 nirmatrelvir plus ritonavir sotrovimab (only if nirmatrelvir plus ritonavir is contraindicated or unsuitable) 	 casirivimab plus imdevimab molnupiravir remdesivir tixagevimab plus cilgavimab
Severe COVID-19 (w/out supplemental oxygen)	 no technologies recommended 	 casirivimab plus imdevimab
Severe COVID-19 (with supplemental oxygen)	 tocilizumab 	casirivimab plus imdevimabremdesivir

Remdesivir is recommended in:

- adults
 - in hospital with pneumonia, and
 - need LFO, and
 - have a high risk of serious illness (risk factors defined in McInnes report)
- babies, children and young people
 - aged 4 weeks to 17 years and weigh ≥3 kg, and
 - in hospital with pneumonia, and
 - need supplemental oxygen

Appeal panel conclusion

Appeal panel suggested actions and considerations for committee based on Gilead's 4 upheld appeal points

Committee asked to:

- Address the unfairness resulting from deviation from NICE's processes for MTA, specifically, the challenges to stakeholder engagement
- Consider how best to ensure that that all relevant evidence, including Real World Evidence, is identified, evaluated, and critically appraised
- Provide a clear explanation of why the cohort of patients with severe COVID-19 who require low-flow oxygen was not considered suitable for sub-group analysis, and reconsider whether an analysis of this subgroup would be informative
- Reconsider whether their decision not to recommend any therapy for children with severe COVID-19 is a proportionate means to achieve NICE's legitimate aims

Consider rewording FDG to:

- Provide further explanation why a probabilistic sensitivity analysis was not performed
- Clarify what "other differences specific to pandemic setting" (FDG 3.12) means

Clinical rationale for population sub-groups considered at ACM3

Sub-groups in which Gilead consider remdesivir to be most effective

Table Definition of population sub-groups identified by Gilead

Low-flow oxygen	Patients requiring oxygen delivered by a simple face mask or nasal canula at a flow rate usually up to 15 litres/min as per the NICE COVID-19 rapid guidelines
Children	Paediatric population as per the marketing authorisation indication (previous slide)
Immunocompromised patients	Patients who have a weakened immune system due to a particular health condition or patients who are on medication or treatment that suppresses their immune system

Table EAG summary of the clinical rationale for the selected sub-groups provided by Gilead

Low-flow oxygen	 Subgroup considered as distinct and readily defined population ESCMID Guidelines conditionally recommend remdesivir for use in hospitalised patients requiring no or LFO but not in patients requiring high-flow oxygen
Children	 Remdesivir is the only available licensed treatment option Inequity of access to comprehensive clinical care for this group
Immunocompromised patients	 Considered to experience worse clinical outcomes than others; make up less than 1% of people but account for large proportion of COVID-19 hospitalisations/deaths Nirmatrelvir and ritonavir is the only recommended antiviral and is not appropriate for all immunocompromised patients

Summary of recommendations at ACM3

Table Recap of rationale for committee recommendations for remdesivir

ACM3	Adults in hospital with pneumonia who need LFO	ICERs >£20,000 per QALY gained for underlying mortality rates <14%. Mortality rate considered to be <14% for all people requiring LFO, so remdesivir would not be cost-effective. Further investigation needed to give a more accurate estimate of mortality in this population
	Adults in hospital with pneumonia who need LFO and who are immunocompromised	ICERs <£30,000 per QALY gained when a 14% underlying mortality rate used. Mortality rate likely >14% for immunocompromised people, so cost-effective in this group. Immunocompromised defined using McInnes criteria
	Babies, children and young people in hospital with pneumonia who need supplemental oxygen	Limited clinical evidence comparing remdesivir with standard care, so cost-effectiveness estimates highly uncertain. But limited treatment options licensed for this group and the number who would have remdesivir is very small

Summary of committee conclusions at ACM3

Committee preferences

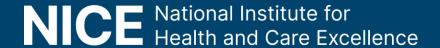
- Remove treatment effects on clinical improvement or time to discharge (DG 3.28)
- Use mortality hazard ratios for remdesivir from Amstutz et al. (2023) with SOLIDARITY (DG 3.23)
- Consider mean–low and low efficacy scenarios for remdesivir's relative treatment effects on mortality (DG 3.23)

Key areas of uncertainty

 Underlying mortality rate for all people requiring low-flow oxygen (DG 3.29)

Remdesivir (Veklury, Gilead Sciences)

Table Recap of details of the technology


Marketing authorisation	 Remdesivir is indicated for the treatment of COVID-19 in: adults and paediatric patients (at least 4 weeks of age and weighing at least 3 kg) with pneumonia requiring supplemental oxygen (low- or high-flow oxygen) adults and paediatric patients (weighing at least 40 kg) who do not require supplemental oxygen and are at increased risk of progressing to severe COVID-19
Mechanism	Remdesivir is an adenosine nucleotide prodrug which inhibits RNA polymerase
Administration	Day 1: IV infusion of 200 mg or 5 mg/kg for paediatric patients less than 40 kg Day 2+: IV infusion of 100mg or 2.5 mg/kg for paediatric patients less than 40 kg Duration: daily for at least 5 days, not more than 10
Price	£340.00 for one vial 100 mg powder for concentrate for solution for infusion £2,040 for a treatment duration of 5 days A simple patient access scheme discount is available

Abbreviations: RNA, ribonucleic acid

Remdesivir and tixagevimab plus cilgavimab for treating COVID-19

- □ Recap
- ✓ Draft guidance 2 consultation responses
- Modelling and cost effectiveness
- □ Summary

Consultation responses

Comments from 2 professional groups and 3 public (web) submissions, including AstraZeneca UK

Theme	
Immunocompromised people hospitalised but not requiring supplemental oxygen	 Immunocompromised people with no oxygen requirement or high flow oxygen requirements were not considered NHS interim clinical commissioning policy on remdesivir (2022) includes the caveat: "For significantly immunocompromised patients hospitalised for COVID-19 symptoms:the criterion on the need for supplemental oxygen requirement does not apply". Excluding this caveat from this NICE TA may exclude/delay access
Underlying mortality rate	 AstraZeneca considers the best estimate of mortality rate for the immunocompromised population in the LFO group to be 10.39% based on the INFORM study (2022 data)

Consultation responses

Comments from the company, not addressed in key issues

Theme	
Committee's preferred assumptions do not reflect the available evidence for remdesivir	 Committee failed to acknowledge the benefit remdesivir has on clinical improvement Committee chose an inappropriate subset of the Amstutz et al. meta-analysis which is not aligned with the patient population which Gilead is seeking reimbursement for Given depth of available evidence for remdesivir in the LFO population, mean efficacy levels should apply to remdesivir, as was applied for tocilizumab
Cost effectiveness threshold	 Committee has suggested an ICER >£20,000 in LFO population would not be cost-effective, without explanation for this threshold in context of section 6 of the Manual Uncaptured benefits for remdesivir have not been properly accounted for in the current draft guidance. For example: Caffrey et al. (>20,000 patients) showed remdesivir significantly lowered 30-day post discharge readmission compared to non-remdesivir group Boglione et al. demonstrated that remdesivir reduces the likelihood of long COVID-19 syndrome

Key issues: Restrictive patient population

Background

- Appeal panel asked the committee to reconsider whether an analysis of the subgroup of people with severe COVID-19 who require LFO would be informative
- In DG2, the committee recommended remdesivir in adults in hospital with pneumonia, and need LFO, and have a high risk of serious illness (risk factors defined in McInnes report)

Company

- Restricting remdesivir to people already on LFO negates benefit of access earlier in disease course
- Meeting both McInnes criteria and LFO requirements will restrict access for people most likely to benefit
- Unnecessary to additionally impose McInnes criteria, which aimed to identify individuals at high risk of progressing to severe COVID-19, to people in hospital with COVID-19 on LFO

EAG comments

EAG has run analyses for adults immunocompromised population, not requiring LFO

Is remdesivir cost-effective for immunocompromised people in hospital for COVID-19, but not on LFO?

Key issues: Underlying mortality rates

Background

- After appeal, underlying mortality rate changed to account for positioning for LFO population
- DG 3.35: ICERs < £30k per QALY gained for a 14% mortality rate
 - For immunocompromised people on LFO, mortality rate likely >14%, so remdesivir is a cost-effective use of NHS resources in this group
- Committee considered further investigation needed to give a more accurate estimate of underlying mortality for all people requiring LFO, due to sensitivity of cost-effectiveness estimates to this parameter

Company

- Committee failed to acknowledge the mortality risk for LFO population (experts advised critically unwell)
- Any reliance on a figure of 7% (discussed with NICE in a phone call following ACM3) lacks transparency
- A more plausible range for the mortality rate is ~9 to in LFO population
- Values provided align with the 14% estimate used previously in MTA process for decision making

EAG comments

- Company did not provide a full critique of strengths and limitations of the evidence sources
- Mozaffari et al. and Isath et al. note limitations of the potential for residual confounding and misclassification of COVID-19 diagnosis, and data on vaccinations were not available
- Real-world data may be confounded, and not be generalisable to the current conditions in the UK

What underlying mortality rate should be used in the model for the LFO group?

Underlying mortality rates: LFO

~	

Company: data does not distinguish between oxygenation status or treatment received, so likely to represent lower threshold for mortality rate in LFO population

Company: likely to represent an upper estimate of the mortality rate

EAG: scant details on the dataset and cannot rule out confounding factors when generalising to UK*

- 1 dail 1 d		
Underlying mortality rate	Population	Source
10% at 15 days	People requiring LFO	Suggested by company based on 14% mortality in SOLIDARITY
14% at 28 days	People who needed oxygen but without ventilation, who did not receive remdesivir	Amstutz et al.
12%	People needing oxygen and care from a respiratory consultant	Clinical expert opinion at ACM3
6%	People with COVID-19 in critical care	Clinical expert opinion at ACM3
2%	Overall population hospitalised with COVID-19	Clinical expert opinion at ACM3
9%	People with COVID-19	UKHSA (2023 dataset)
12.3% at 28 days	People requiring LFO, who did not receive remdesivir	Mozaffari et al.
13.2%	Adults hospitalised with COVID-19 in United States	Isath et al.
_9.8% at 28	People requiring LFO, receiving	2024 CROI conference (data
days	standard of care (dexamethasone monotherapy)	generated December 2021 to April 2023)

NICE

^{*}Gilead supplied additional materials on the dataset, received after the EAG's final critique of Gilead's response to consultation Abbreviations: ACM, appraisal committee meeting; LFO, low-flow oxygen

Underlying mortality rates: recent statistics for all people hospitalised with COVID-19

OpenSAFELY-TPP database (based on NHS electronic health records from GP surgeries in England that use TPP software)

• Study population: all people hospitalised with COVID-19 as a diagnosis in any position between 1st January 2023 and 31st December 2023

Population	N	Events	28-day mortality rate
All	60,460	1,095	1.81%
Hospitalised (no ICU admission)	57,930	990	1.71%
Hospitalised (ICU admission)	2,530	105	4.15%
Admitted January-June 2023	37,760	750	1.99%
Admitted July-December 2023	22,700	345	1.52%
COVID-19 primary reason for admission	17,395	230	1.32%
COVID-19 not primary reason for admission	43,065	865	2.01%

Underlying mortality rate	Population	Source
24.98%	Immunocompromised (includes deaths following hospitalisation)	Evans at al. (INFORM study)
10.39%	Hospitalised immunocompromised (greatest level of care is admission to the general ward)	Unpublished data on file for the INFORM study - AstraZeneca consultation response
19.2%	Hospitalised immunocompromised	2024 CROI conference (data generated during Omicron era)

Company: remdesivir showed significantly lower mortality risk compared to non-remdesivir overall (adjusted HR [95% CI]: 0.75 [0.68-0.83]) in people with

- no supplemental oxygen requirements (0.72 [0.61-0.85]) at 28 days
- any supplemental oxygen requirement (0.77[0.68-0.87]) at 28 days

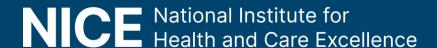
Key issues: Remdesivir relative efficacy: mortality

Background

- Company preferred mortality data from Huang et al., EAG used Amstutz et al. (including SOLIDARITY)
- Committee preferred Amstutz et al. (including SOLIDARITY)
- DG 3.23: "The AG noted that a sensitivity analysis by Amstutz et al. did not show a significant difference in relative benefit between the no oxygen and the low-flow oxygen groups."

Company:

- LFO (without SOLIDARITY) dataset should be used for decision making
- LFO (with SOLIDARITY) dataset not representative of LFO population Gilead is seeking reimbursement for
- Amstutz et al. described the relative benefit between the no oxygen group and the LFO group as "similar" but results for LFO (with SOLIDARITY) and LFO (without SOLIDARITY) are very different


Dataset	Mortality at day 28, aOR (95%CI)			
	No oxygen	LFO		
With additional WHO SOLIDARITY data	0.86 (0.53-1.39)	0.79 (0.68-0.92)		
Without additional WHO SOLIDARITY data	0.77 (0.34–1.74)	0.59 (0.43-0.82)		

EAG comments

- None of the relevant comparisons in Amstutz et al. are statistically significantly different
- EAG ran analyses with and without SOLIDARITY but maintains its preference for including SOLIDARITY (acknowledges this may be unfavourable to remdesivir due to inclusion of some people receiving HFO)

Remdesivir and tixagevimab plus cilgavimab for treating COVID-19

- □ Recap
- Draft guidance 2 consultation responses
- Modelling and cost effectiveness
- Summary

Amendments to the EAG's model (1/2)

The EAG's efficacy scenarios consider differences in the 1) source of underlying mortality, 2) source of relative efficacy of remdesivir, 3) use of mean, low or mean-low relative efficacy estimates for remdesivir, and 4) use of pooled data for no oxygen and LFO requirements

1) Source of underlying mortality

Modelled population	Underlying mortality rate	Source
LFO, not immunocompromised	7%	Company: preferred by the Committee, as discussed with NICE
	9.8%	For presentation at the 2024 CROI conference (provided by the company)
	14%	Amstutz et al. (used by the EAG in its previous report)
Immunocompromised, no supplemental oxygen	10.39%	Unpublished estimate from INFORM (provided by AstraZeneca)
	14%	Assumed to be a likely lower estimate by the Committee at ACM3
	19.2%	For presentation at the 2024 CROI conference (provided by the company)

Amendments to the EAG's model (2/2)

- 2) Source of relative efficacy of remdesivir:
 - Amstutz et al. including SOLIDARITY data
 - Amstutz et al. excluding SOLIDARITY data
 - Embargoed data provided by the company, for presentation at the 2024 CROI conference
- 3) Use of mean, low or mean-low relative efficacy estimates for remdesivir See recap slide
- 4) Use of pooled data for no oxygen and LFO requirements:

Analysis	Modelled population		
	LFO, not immunocompromised	Immunocompromised, no supplemental oxygen	
Group specific (non-pooled)	LFO data only	No supplemental oxygen data only	
Pooled	No supplemental oxygen and LFO data		

EAG comments: pooled data may give more precise estimate of efficacy but differs from values used previously in patients requiring LFO

The model was also amended to use a starting ordinal scale of ordinal stage 4 for the immunocompromised, no supplemental oxygen population, and ordinal stage 5 for the LFO, not immunocompromised population

EAG scenarios: LFO, not immunocompromised

Committee preference at ACM3			HR for time to death (assumes an impact on overall survival only)			
Study used for remdesivir	Pooled data	Population	Efficacy scenario	Underlying mortality rate 7%	Underlying mortality rate 9.8%	Underlying mortality rate 14%
(including SOLIDARITY)	Yes	No oxygen, LFO, HFO	Mean	1) 0.814	1) 0.814	1) 0.814
			Low	2) 0.935	2) 0.935	2) 0.935
			Mean-Low	3) 0.875	3) 0.875	3) 0.875
	No	LFO, HFO	Mean	4) 0.817	4) 0.817	4) 0.817
			Low	5) 0.930	5) 0.930	5) 0.930
			Mean-Low	6) 0.865	6) 0.865	6) 0.865
Amstutz et al	Yes	No oxygen, LFO	Mean	7) 0.636	7) 0.636	7) 0.636
(excluding			Low	8) 0.850	8) 0.850	8) 0.850
SOLIDARITY)			Mean-Low	9) 0.744	9) 0.744	9) 0.744
	No	LFO	Mean	10) 0.635	10) 0.635	10) 0.635
			Low	11) 0.839	11) 0.839	11) 0.839
			Mean-Low	12) 0.723	12) 0.723	12) 0.723
Company's embargoed data	No	LFO	Mean	13) 0.741	13) 0.741	13) 0.741
			Low	14) 0.800	14) 0.800	14) 0.800
			Mean-Low	15) 0.770	15) 0.770	15) 0.770

NICE Abbreviations: EAG, external assessment group; HFO, high-flow oxygen; HR, hazard ratio; ICER, incremental cost effectiveness ratio; LFO, low flow oxygen; PAS, patient access scheme

New data submitted by company

EAG's scenarios: No supplemental oxygen, immunocompromised

Equivalent to Committee's preferences at ACM3			at ACM3	HR for time to death (assumes an impact on overall survival only)		
Study used for remdesivir	Pooled data	Population	Efficacy scenario	Underlying mortality rate 10.39%	Underlying mortality rate 14%	Underlying mortality rate 19.2%
Amstutz et al	Yes	ito oxygon, Er o,	Mean	1) 0.814	1) 0.814	1) 0.814
(including		HFO	Low	2) 0.935	2) 0.935	2) 0.935
SOLIDARITY)			Mean-Low	3) 0.875	3) 0.875	3) 0.875
	No	No oxygen	Mean	4) 0.894	4) 0.894	4) 0.894
			Low	5) unity	5) unity	5) unity
			Mean-Low	6) unity	6) unity	6) unity
Amstutz et al	Yes	No oxygen, LFO	Mean	7) 0.636	7) 0.636	7) 0.636
(excluding			Low	8) 0.850	8) 0.850	8) 0.850
SOLIDARITY)			Mean-Low	9) 0.744	9) 0.744	9) 0.744
	No	No oxygen	Mean	10) 0.850	10) 0.850	10) 0.850
			Low	11) unity	11) unity	11) unity
			Mean-Low	12) unity	12) unity	12) unity
Company's	Yes	No oxygen, LFO	Mean	13) 0.751	13) 0.751	13) 0.751
embargoed data			Low	14) 0.830	14) 0.830	14) 0.830
			Mean-Low	15) 0.790	15) 0.790	15) 0.790
	No	No oxygen	Mean	16) 0.723	16) 0.723	16) 0.723
			Low	17) 0.850	17) 0.850	17) 0.850
			Mean-Low	18) 0.786	18) 0.786	18) 0.786

NICE Abbreviations: EAG, external assessment group; HFO, high-flow oxygen; HR, hazard ratio; ICER, incremental cost effectiveness ratio; LFO, low flow oxygen; PAS, patient access scheme

Cost-effectiveness results

All results for remdesivir are reported in PART 2 slides because they include confidential PAS discounts

Summary

- Wide range of ICERs in both adults requiring LFO and in adults who are immunocompromised but do not require supplemental oxygen
 - ICERs are lower for higher underlying mortality rates
 - Source of efficacy data for remdesivir had a large impact on the ICER
 - When efficacy is from Amstutz et al., use of pooled data for no oxygen and LFO requirements has a large impact on the ICER in adults who are immunocompromised but do not require supplemental oxygen
 - This is because the efficacy estimates for remdesivir reported in Amstutz et al. for patients not requiring supplemental oxygen have wide confidence intervals that cross unity, implying that remdesivir may be harmful to people in this population
 - The impact of using pooled data on the ICER is small in adults requiring LFO

NICE

Key issues

Key issue	ICER impact	Slide
Restrictive patient population	N/A	<u>13</u>
Underlying mortality rate	Large	<u>14</u>
Remdesivir relative efficacy on mortality	Large	<u>17</u>

Thank you.