Remit/evaluation objective
To evaluate the benefits and costs of migalastat within its licensed indication for treating Fabry disease for national commissioning by NHS England.

Background
Fabry disease (also known as Anderson-Fabry disease) is an inherited lysosomal storage disorder caused by mutations in the GLA gene which encodes the enzyme alpha-galactosidase A. Mutations in the GLA gene change the enzyme’s structure and function and prevent it from breaking down a fat called globotriaosylceramide (Gb3). Progressive accumulation of Gb3 in cells can lead to a wide range of symptoms which may not appear in everyone with the disease.¹

The number and severity of symptoms varies between patients and can include short term severe pain or burning sensation, which starts at the extremities and spreads throughout the rest of the body (often referred to as a ‘Fabry crisis’), gastrointestinal complications such as diarrhoea, nausea and abdominal pain, headaches, inability to sweat properly (hypohidrosis), vertigo and hearing impairment. Other body sites that can also be affected include the skin, eyes, kidneys, heart, brain and nervous system. Symptoms usually worsen as patients get older, except pain, which often improves after childhood.² Fabry disease can lead to heart and renal failure and can raise a patient’s risk of stroke.

Fabry disease is X-linked, therefore men who have only one copy of the defective gene are more likely to develop the disease.³ Men can have either:

- no alpha-galactosidase A activity, in which case symptoms will usually develop during childhood and be quite severe (this is the standard presentation); or
- some alpha-galactosidase A activity, in which case symptoms develop between the ages of 60 and 80 years (this is atypical and these men can remain asymptomatic for many years before being diagnosed with Fabry disease).³

Because women have two X chromosomes, enzyme activity is extremely variable due to random X-chromosomal activation. Therefore, some women will have no disease activity, while others may have mild, moderate or severe symptoms. It has been estimated that there are approximately 400 people in England with Fabry disease.³

There is currently no cure for Fabry disease. Enzyme replacement therapy (agalsidase alfa and agalsidase beta) are administered to replace the non-functioning enzyme² and help prevent the development of disease-related symptoms in younger patients, and slow disease progression in people with
more advanced disease. For people with severe kidney disease, a kidney transplant may be considered. Fabry disease and related conditions (collectively termed lysosomal storage diseases) are usually managed in specialist centres in England.

The technology

Migalastat (Galafold, Amicus Therapeutics) is a molecule that binds with and refolds the faulty alpha-galactosidase A enzyme to restore its activity. This allows it to enter the lysosome and to break down Gb3. It is administered orally.

Migalastat does not currently have a marketing authorisation in the UK. It has been studied as monotherapy in clinical trials in people aged 16 years or older with Fabry disease who have a mutation in the GLA gene that is known to be responsive to migalastat in vitro, compared with placebo. Migalastat has been studied in people who have not received previous treatment, and in those who have previously received enzyme replacement therapy.

<table>
<thead>
<tr>
<th>Intervention(s)</th>
<th>Migalastat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population(s)</td>
<td>People with Fabry disease with a confirmed GLA mutation that is amenable to migalastat in vitro</td>
</tr>
</tbody>
</table>
| Comparators | • Agalsidase alpha
| | • Agalsidase beta |
| Outcomes | The outcome measures to be considered include:
| | • symptoms of Fabry disease (including pain)
| | • Gb3 levels in kidney
| | • plasma lyso-Gb3 levels
| | • kidney function
| | • cardiac function and disease measurements (such as left ventricular mass index)
| | • progression-free survival (time to occurrence of renal, cardiac, neurological and cerebrovascular events)
| | • mortality
| | • adverse effects of treatment
| | • health-related quality of life (for patients and carers). |
| Nature of the condition | • disease morbidity and patient clinical disability with current standard of care
| | • impact of the disease on carer’s quality of life
| | • extent and nature of current treatment options |
| Impact of the new technology | • clinical effectiveness of the technology
| | • overall magnitude of health benefits to patients and, when relevant, carers
| | • heterogeneity of health benefits within the population
| | • robustness of the current evidence and the contribution the guidance might make to strengthen it
| | • treatment continuation rules (if relevant) |
| Cost to the NHS and Personal Social Services (PSS), and Value for Money | • budget impact in the NHS and PSS, including patient access agreements (if applicable)
| | • robustness of costing and budget impact information
| | • technical efficiency (the incremental benefit of the new technology compared to current treatment)
| | • productive efficiency (the nature and extent of the other resources needed to enable the new technology to be used)
| | • allocative efficiency (the impact of the new technology on the budget available for specialised commissioning) |
| Impact of the technology beyond direct health benefits, and on the delivery of the specialised services | • whether there are significant benefits other than health
| | • whether a substantial proportion of the costs (savings) or benefits are incurred outside of the NHS and personal and social services
| | • the potential for long-term benefits to the NHS of research and innovation
| | • staffing and infrastructure requirements, including training and planning for expertise. |
| Other considerations | Guidance will only be issued in accordance with the marketing authorisation.Where the wording of the therapeutic indication does not include specific treatment combinations, guidance will be issued only |
Appendix B

<table>
<thead>
<tr>
<th>Related NICE recommendations and NICE Pathways</th>
<th>None</th>
</tr>
</thead>
</table>

References