### Public slides – part 1 (Redacted)

## Lead team presentation

# Strimvelis for the treatment of adenosine deaminase deficiency-severe combined immunodeficiency

1<sup>st</sup> Evaluation Committee Meeting

Highly Specialised Technology, 28 September 2017

Lead team: Jeremy Manuel, Sarah Davis, Vincent Kirkbride

Companies: GlaxoSmithKline

Chair: Peter Jackson

Evidence review group: York Technology Assessment Group

NICE team: Thomas Strong, Ian Watson, Sheela Upadhyaya

## Disease background

## Adenosine deaminase deficiency-severe combined immunodeficiency (ADA-SCID)

- Enzyme defect (adenosine deaminase) leads to build up of toxic metabolites with organ dysfunction
- Severe combined immune deficiency due to inability to produce functional lymphocytes
- Has effect on other organ systems, including hepatic, lung, renal, lymphoma, skeletal abnormalities and neurological
  - Neurological abnormalities include cognitive, behavioural and neurosensory deficits
- One of the sub types of severe combined immune deficiency (SCID)
  - ADA-SCID accounts for 10-15% of all types of SCID
- Ultra rare autosomal recessive monogenic inherited immune disorder
- Incidence 1:200,000 to 1:1 million
  - Company estimates 3 patients per year

## Disease background

## Adenosine deaminase deficiency-severe combined immunodeficiency (ADA-SCID)

### Disease features

- Increased susceptibility to infections
- Failure to thrive
- Chronically debilitating and risk of death unless immune function is restored

### Age of presentation

- Usually diagnosed in early infancy
- 10-15% have delayed onset (6-24 months)
- Smaller percentage diagnosed after 4 years (late/adult onset)

### Diagnosis and early care

- Lymphocyte count, immunoglobulin assay, biochemical and genetic testing
- Specialist immunology and infectious disease teams two supra-regional centres
- Clinical management antibiotics, antiviral, antifungal therapy and immunoglobulin replacement therapy
- Stay in isolation until suitable donor identified

### **ADA-SCID**

### Current treatment options

### Pegylated adenosine deaminase (PEG-ADA)

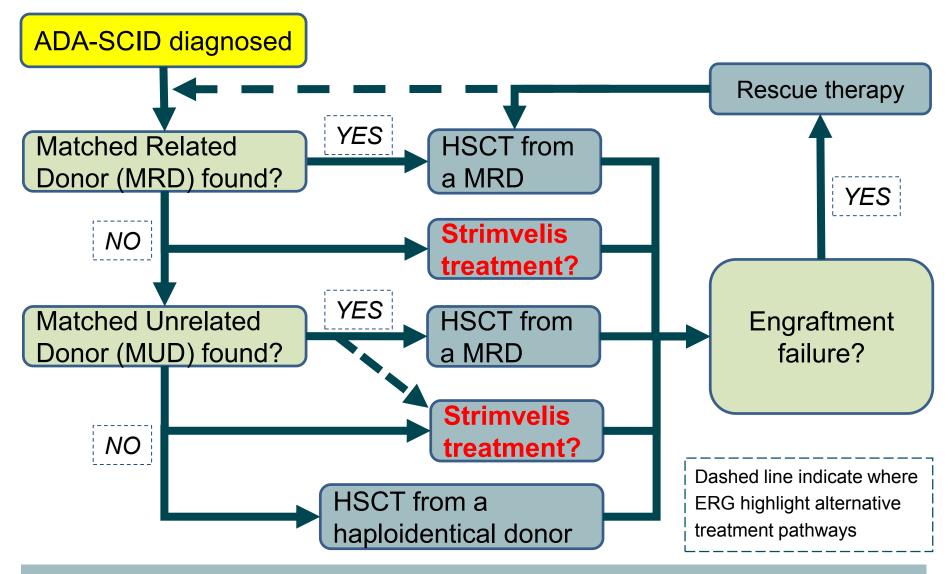
- Enzyme replacement therapy (no marketing authorisation in the UK) which can be used as a bridge until hematopoietic stem cell transplantation (HSCT)
- Outside the UK some people have long-term PEG-ADA treatment

### HSCT – Matched Related Donor (MRD) – 1st choice

- A donor must be found with the same human leukocyte antigens (HLA) to avoid the transplanted cells rejecting the host (Graft versus host disease [GvHD])
- 25% chance that a sibling donor (MSD) inherits identical HLA typing, 1 in 200 chance a parent has identical HLA-typing
- Only 20-25% of infants have a suitable MRD available

### HSCT – Matched Unrelated Donor (MUD), 2<sup>nd</sup> choice due to risk of GvHD

Database search conducted to find a registered donor who is HLA-matched


### HSCT – Haploidentical donor, (no recent in UK), high risk of GvHD

- A parent will always be at least 50% HLA-identical, and there is a 50% change that any sibling is at half matched.
- In the UK those unable to find a MUD are enrolled in trials for gene therapies



- Quality of life is impacted by recurrent infections due to fungal, viral, and opportunistic agents. Without treatment, patients die before school age.
- Neurological abnormalities, including cognitive deficits and hearing impairment, are common in patients with ADA-SCID
  - HSCT treatment is not thought to improve these aspects of the disease
- can have a profound impact on both patient and carer quality of life
- Quality of life for family members expected to be low with increased need for hospitalisations, more intensive caregiving, and resulting emotional toll

## Clinical pathway of care



## Strimvelis GlaxoSmithKline

## Marketing authorisation

Indicated for treating severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID), for whom no suitable human leukocyte antigen (HLA)- matched related stem cell donor is available

## Mechanism of action

Gene therapy containing autologous CD34<sup>+</sup> cells transduced *ex vivo* with a replication-deficient retroviral vector containing the correct form of the human ADA gene in the DNA sequence

## Administration & dose

- Must be administered in a specialist transplant centre\*
- 5 million purified CD34+ cells/kg required per patient#
   recommended that patients have pre-treatment with busulfan
- Single intravenous infusion. Effects estimated to be lifelong

### **List price**

List price: manufacture of Strimvelis = €594,000

<sup>\*</sup>At present, treatment with Strimvelis can only be performed at HSR-TIGET, Milan, Italy due to the 6-hour shelf life of the manufactured cell therapy product and the location of the manufacturing site.

#4 million CD34+ required for Strimvelis manufacture, 1 million required for possible rescue treatment Source: Strimvelis summary of product characteristics; Company submission

## Strimvelis treatment pathway

| Stage                | Details; average duration (range)                                                                                                                                          |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Screening            | Includes clinical and laboratory tests and a bone marrow biopsy to determine adequate CD34+ cells. Biopsy is currently performed in Italy, but may be performed in England |
|                      | (24 days)                                                                                                                                                                  |
| Baseline             | Includes in-patient stay for central venous catheter placement and                                                                                                         |
| Patient              | obtaining bone marrow back-up                                                                                                                                              |
| Preparation          | 31 days (31-45 days), including a 3-day inpatient stay                                                                                                                     |
| Treatment            | 50 days in isolation room if no complication occur.                                                                                                                        |
|                      | Includes non-myeloablative dose of busulfan chemotherapy before cell reinfusion                                                                                            |
| Outpatient           | Generally includes clinics and laboratory tests, imaging, bone                                                                                                             |
| Follow-up in         | marrow biopsy and specific disease/gene therapy tests                                                                                                                      |
| Milan                | 60 days (60-90 days)                                                                                                                                                       |
| Outpatient           | 4 months (3-4 months)                                                                                                                                                      |
| Follow-up in England | Continued for lifetime as per routine care for all ADA-SCID patients                                                                                                       |

Source: adapted from table B1, page 40, company submission and response B5, page 23, company response to clarification

## Decision problem

No inconsistency between the final scope and decision problem

Source: Final scope

|              | Final Scope                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Population   | People with ADA-SCID for whom no suitable HLA-matched related stem cell donor is available                                                                                                                                                                                                                      |
| Intervention | Strimvelis (retroviral-transduced autologous CD34+ cells)                                                                                                                                                                                                                                                       |
| Comparator   | Bone marrow transplant (including HSCT from an HLA-MUD and HSCT from an HLA-haploidentical donor)                                                                                                                                                                                                               |
| Outcomes     | <ul> <li>Overall survival</li> <li>Intervention-free survival</li> <li>Immune function</li> <li>Non-immunological aspects of ADA-SCID</li> <li>Need for and duration of in-patient treatment</li> <li>Adverse effects of treatment</li> <li>Health-related quality of life (for patients and carers)</li> </ul> |

## Clinical expert comments

- Strimvelis could be offered to the large majority of ADA-SCID patients for whom a MSD is not available (up to 80% of the patients)
- In the UK, patients without an HLA-identical sibling donor are usually enrolled in a clinical trial at Great Ormond Street Hospital (GOSH)
- For patients who are not suitable to receive Strimvelis or who have failed gene therapy, a matched unrelated donor (MUD) search is started while the patient is maintained on enzyme replacement therapy.
- Gene therapy could potentially benefit all subgroups, from early onset to late onset
- Older patients usually have a lower cell content in the bone marrow, and may not produce enough cells for the Strimvelis procedure
- Usual complications of HSCT (including veno-occlusive hepatic disease, GvHD, and severe mucositis requiring parenteral nutrition) have not been observed with Strimvelis

## NHS England comments

- All patients with ADA-SCID treated at Newcastle Children's hospital or Great Ormond Street hospital (GOSH). No variation in clinical practice
- Where no suitable donor is available (~ 2 people a year) patients are treated under the gene therapy trial programme at GOSH\*
- Strimvelis appears to offer an alternative treatment option
- Key additional resource would be the cost of treatment in Milan and the cost of travel for patient and parent(s) to Milan.
- Arrangements for follow up, after care and management of complications if any would also need to be explicit
- NHS England would expect to pay for the service as a public sector commissioner and the contract would need to be managed within NHS England's usual financial processes

### CONFIDENTIAL

## Clinical evidence Summary of included evidence

### Integrated population (n=18)

- AD1117054 (pilot 1); n=1 *Complete*
- AD1117056 (pilot 2); n=2 Complete
- AD1115611 (pivotal trial); n=12 Complete
- AD1115611 (long-term follow-up [LTFU]); n=14 Ongoing,
  - Patients eligible if they had received Strimvelis in any of the above studies
  - 14 patients at latest datacut (1 from pilot 1; 2 from pilot 2; 11 from pivotal trial)
- AD1117064 (Compassionate use programme [CUP]); n=3 Complete
  - After 3 years of follow-up eligible to join the LTFU study

### **Supportive evidence**

Named Patient Programme;
 Ongoing

O

## Clinical evidence Trial methodology

Methodology consistent across studies

| Design       | Open-label; single-arm                                                                                                                                                                                                                                                                                                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site         | HSR-TIGET (Milan, Italy).                                                                                                                                                                                                                                                                                                            |
| Inclusion    | <ul> <li>Aged &lt;18 years with ADA-SCID and for whom an HLA-identical healthy sibling was not available as suitable bone marrow donor</li> <li>Exhibited lack of efficacy ≥6 months of treatment with PEG-ADA OR PEG-ADA discontinued due to intolerance OR enzyme replacement therapy not a lifelong therapeutic option</li> </ul> |
| Exclusion    | HIV; current or history of malignancy; received a previous gene therapy treatment in the 12 months                                                                                                                                                                                                                                   |
| Intervention | Infusion of Strimvelis after busulfan non-myeloablative conditioning                                                                                                                                                                                                                                                                 |

## Clinical evidence

### Patient baseline summary

|                       |           | Integrated population (n=18)                                           | Named Patient programme ( |
|-----------------------|-----------|------------------------------------------------------------------------|---------------------------|
| Median age (range)    |           | 1.70 years (0.5 – 6.1 years)                                           |                           |
| Fer                   | male (%)  | 7 (39%)                                                                |                           |
| Male (%)              |           | 11 (61%)                                                               |                           |
| Median height (range) |           | 4 <sup>th</sup> centile (<1 <sup>st</sup> – 97 <sup>th</sup> centile)  |                           |
| Median weight (range) |           | 15 <sup>th</sup> centile (<1 <sup>st</sup> – 97 <sup>th</sup> centile) |                           |
|                       | Caucasian | 10 (56%)                                                               |                           |
| =thnicity             | Arabic    | 5 (28%)                                                                |                           |
| Ethr                  | Black     | 2 (11%)                                                                |                           |
|                       | Asian     | 1 (6%)                                                                 |                           |

Source: adapted from EPAR page 46; table 1, page 3, company response to clarification

- Is the population generalisable to English clinical practice?
- Should the NPP data be included in the evidence synthesis?

## Overall and intervention-free survival

| Source                                                    | Overall survival | Intervention-free survival*                                                                  |
|-----------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------|
| Strimvelis                                                |                  |                                                                                              |
| Integrated population                                     | 18/18 (100%)     | 14/17 (82%)                                                                                  |
| Integrated population + named patient program             |                  |                                                                                              |
| HSCT                                                      |                  |                                                                                              |
| Matched unrelated donor Hassan 2012                       | 10/15 (67%)      | No PEG-ADA reintroduction information; 1/15 received 2 <sup>nd</sup> HSCT                    |
| Haploidentical donor<br>Hassan 2012 (full cohort)         | 13/30 (43%)      | Not reported                                                                                 |
| Haploidentical donor<br>Hassan 2012<br>(2000-2009 cohort) | 5/7 (71%)        | No PEG-ADA data; 2/7 did not engraft • 1 received gene therapy • 1 had 2 HSCTs and then died |

\*Defined for Strimvelis as no post-treatment PEG-ADA of ≥3 months, SCT, or death Hassan 2012 - largest data source on outcomes of HSCT for ADA-SCID currently available Source: adapted from page 94-95, Company submission

• What is the committee's view on the relevance of the survival outcomes?

## Immune function *Strimvelis*

### Lymphocyte counts

 Lymphocytes in general and CD3+ T cell counts in particular increased compared to baseline

### T cell receptor excision circles (TREC) - marker of thymic activity

 Increased from baseline Years 1-3 post treatment, declined years 5-8 but remained above baseline levels

#### Rates of metabolic detoxification

Rates of metabolic detoxification were high, based on dAXP and dATP levels;
 lymphocyte ADA activity dropped at year 4, but was increased at other time points

### **Vaccination response**

 Majority of patients had antibodies to a range of infectious antigens at one or more time points after IVIG had been stopped

#### **IVIG** discontinuation rate

Total of 11/17 (65%) discontinued. 8/11 before 3 years and 3/11 after 3 years

## Immune function *HSCT*

### Lymphocyte counts

 At last follow-up in Hassan 2012 cell counts for all donors were similar to those observed in the Strimvelis programme after a median follow-up of 6.9 years

### T cell receptor excision circles (TREC) - marker of thymic activity

Comparable data for either HSCT comparator was not identified

#### Rates of metabolic detoxification

 Rates of metabolic detoxification were high, based on dAXP and dATP levels. No comparable data of lymphocyte ADA activity for either HSCT comparator

### **Vaccination response**

 Although data is limited, vaccination response appears comparable for patients receiving HSCT from a MUD. No data from haploidentical donors.

#### IVIG discontinuation rate

Higher rate in Hassan 2012 for both MUD (5/7, 71%) and haploidentical (7/7, 100%) discontinuing IVIG treatment

## Non-Immunological aspects of ADA-SCID

#### **Strimvelis**

- All but 1 patient had events during treatment or post-treatment, and many patients reported events pre-treatment
- 9 patients reported 12 adverse events of hearing impairment, of which 2 patients reported deafness and 2 further reported bilateral deafness
- 5 patients and 3 reported cognitive disorders and psychomotor hyperactivity
- People showed increases in height and weight
  - Weight of one patient was below the third percentile for most of the LTFU period.

#### **HSCT**

- Very limited reporting, but a high incidence of non-immunological problems was also found for ADA-SCID patients following HSCT
- Strengths and Difficulties Questionnaire indicated IQ levels more than two standard deviations below the general population mean (100) and greater risk of behavioural problems

## Need and duration of in-patient treatment

### **Strimvelis**

Patients were hospitalised for a median of 45 days (range: 34 to 110 days) after receipt of gene therapy, and the company expect that patients who receive Strimvelis in the future will be hospitalised for a similar period (average 50 days)

### **HSCT**

 The UK Stem Cell Strategy Oversight Committee guidelines on unrelated donor stem cell transplantation in the UK states that recovery from HSCT typically takes 4-8 weeks as an inpatient

### Adverse events

- Safety of Strimvelis in line with an ADA-SCID population that has undergone busulfan conditioning and undergoing immune reconstitution
- Adverse events were mostly grade 1 and 2
- All adverse events were resolved
- No Graft versus Host disease was observed
  - No immune rejection is expected as Strimvelis is an autologous treatment
  - Company consider the lack of GvHD to be a key benefit of Strimvelis treatment over HSCT
- Severe infections significantly reduced after gene therapy relative to baseline rates
- No events indicative of leukemic transformation or myelodysplasia reported
- No issues around immunogenicity were evident

## Adverse events Rate of severe infections

|                                                   |                                | Pre-treatment*          | Post-treatment <sup>b</sup> |
|---------------------------------------------------|--------------------------------|-------------------------|-----------------------------|
|                                                   | Patients with events, n (%)    | 14/17 <sup>a</sup> (82) | 10/17 <sup>a</sup> (59)     |
| Niverbanas                                        | Total                          | 40                      | 15                          |
| Number of events, n                               | 4 months to 3 years follow-upb |                         | 12                          |
| 3 (3) (1)                                         | 4 to 8 years follow-up         |                         | 3                           |
| NI salasasas                                      | 1                              | 4 (29)                  | 7 (70)                      |
| Number per person, n (%)                          | 2                              | 4 (29)                  | 1 (10)                      |
| porosii, ii (70)                                  | ≥3                             | 6 (43)                  | 2 (20)                      |
| Person-years of observation (free from infection) | Total                          | 34.3                    | 89.23                       |
|                                                   | 4 months to 3 years follow-upb |                         | 45.81                       |
|                                                   | 4 to 8 years follow-up         |                         | 43.42                       |
| Rate of infection                                 | Total                          | 1.17                    | 0.17                        |
|                                                   | 4 months to 3 years follow-upb |                         | 0.26                        |
|                                                   | 4 to 8 years follow-up         |                         | 0.07                        |

<sup>\*</sup>patient history and screening (including carer-recalled infections) from birth up to the time of gene therapy apatient excluded as data was not recorded; bExcludes planned 3-month hospitalisation period Source: Adapted from table C23, page 96, company submission

## Adverse events EMA assessment report

### The EMA notes:

- Short term safety evaluation appears to be hampered by the busulfan conditioning
- Medium and longer term safety seem to be consistent with safety findings in ADA patients undergoing immune reconstitution
- The use of other gamma-retroviral vectors has been associated with insertional mutagenesis in 3 different gene therapy trials
- The long-term carcinogenic potential of Stimvelis could not be determined at the time of EMA assessment
- Company notes Strimvelis uses a low-dose busulfan conditioning regimen whereas some HSCT protocols use full-dose chemotherapy regimens and adverse events may be dose-dependent
- How does committee view the long-term risks of Strimvelis treatment?

## Adverse events HSCT

- Adverse events after HSCT from a MUD or haploidentical donor for patients with ADA-SCID have not been systematically described
- Several cases of GvHD have been described following both HSCT from MUDs and haploidentical donors
  - None of the literature reports of GvHD in patients with ADA-SCID provided the terms used in reporting such as acute, chronic, severe, or specific grades
- Several infections, including infections resulting in deaths, were reported but details were limited in many cases
  - Not enough information was provided to determine a severe infection rate after HSCT

## Health-related quality of life (HRQoL)

#### **Strimvelis**

- Paediatric Quality of Life Inventory (PedsQL) collected for 1 person in the LTFU study
- Lansky Performance status index was collected in the LTFU study. Initial response rate was n=8 (year 4) and dropped to n=1 (year 9 and year 13)
- All patients reported as 'fully active, normal' during the LTFU, with 1 exception, who had minor restrictions in strenuous physical activity recorded at Year 7

#### **HSCT**

 1 poster presentation of quality of life in SCID survivors treated with HSCT in Newcastle included 12 patients with ADA-SCID. Limited data, and no information on type of HSCT, but people had significantly lower quality of life (except for the emotional domain) compared with published UK norms.

### **ERG Comments**

### Generalisability of evidence to UK clinical practice

- The ERG noted the following concerns with generalisability:
  - Lack of clarity regarding numbers screened or excluded outside the pivotal trial, therefore unclear if selection biases occurred
  - No Strimvelis patients had viral infections at screening. Active viral infection is known to impact HSCT prognosis and it may be a prognostic factor for Strimvelis treatment
  - Duration of PEG-ADA use was longer than would be expected in UK practice
  - The age of people treated in the study is older than the expected age of people who are newly diagnosed with ADA-SCID
- The clinical advisor to the ERG confirmed that he would not expect differences in the efficacy of treatment due to patient ethnicity

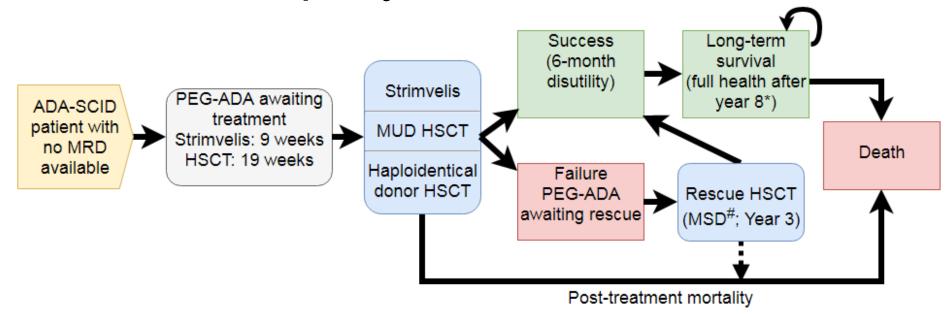
## ERG Comments Summary

- The ERG considers all important studies have been included for evaluation
- Substantial uncertainty based on small number of patients treated with Strimvelis.
   Small number of deaths will substantially impact perceived efficacy of Strimvelis
- Named Patient Programme data should be included in synthesis of evidence
- Strimvelis benefit based on overall survival is likely to be overestimated, due to the concomitant use of PEG-ADA and rescue therapy. Intervention-free survival is a more relevant outcome
- HSCT comparison is with historical controls: ERG presented expert opinion and evidence that survival after HSCT has improved over time
- Variable reporting or lack of comparable data in the literature for many key outcomes
- Given the small sample size of patients who have received Strimvelis, the risk of leukaemia cannot yet be ruled out as an important potential risk

## Key issues for consideration Clinical evidence

- Where will the technology be used in the treatment pathway?
- Will people whose initial treatment failed have similar outcomes to people who are treatment-naïve?
- Is the Strimvelis clinical evidence generalisable to:
  - o English clinical practice?
  - All ages of people with ADA-SCID?
- Should the Named Patient Programme be included in the evidence synthesis?
- What are the most relevant outcome measures to inform decisionmaking?
- Is the technology clinically effective:
  - o Versus a matched unrelated donor HSCT?
  - Versus a haploidentical donor HSCT?
- How does the committee view the long-term risks of Strimvelis treatment?

Projector and public slides – part 1 (Redacted)


## Lead team presentation

Strimvelis for the treatment of adenosine deaminase deficiency-severe combined immunodeficiency

1<sup>st</sup> Evaluation Committee Meeting Highly Specialised Technology, 28 September 2017

Economic evidence Sarah Davis

## Company model structure



\*A proportion in year 1-8 use IVIG and are at risk of GvHD, and severe infection #Rescue HSCT assumed from MSD, with 100% success rate and no post-treatment mortality, serious infection or GVHD (66% mortality explored in scenario analysis)

Time horizon: lifetime (100 years)

Discount rate: 1.5% Perspective: NHS

Cycle length: 2 cycles of 6 months, 1 year thereafter

Modelled population: aged 1; 50% male and 50% female

Source: Adapted from figure 5, page 139, company submission

## Key company assumptions (I)

| Source / Justification                                                                                                                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                              |  |  |  |
| 78% at 20 years with half of the deaths on ERT occurring within the first 6 months of treatment. Conservatively assumed that survival is 100% for simplicity |  |  |  |
| No patients died waiting for rescue transplant in Strimvelis trials. No data from Hassan 2012*. Conservatively assumed that all survive until transplant     |  |  |  |
| Data from Hassan 2012* do not show deaths after ~1 year. Clinical advice confirmed that this life expectancy assumption is reasonable                        |  |  |  |
| Post-transplant outcomes                                                                                                                                     |  |  |  |
| No available data for MUD or haploidentical donor                                                                                                            |  |  |  |
|                                                                                                                                                              |  |  |  |

## Key company assumptions (II)

| Assumption                                                                    | Source / Justification                                                                                                                                                                         |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Treatment failure                                                             |                                                                                                                                                                                                |  |  |
| PEG-ADA restarts 3 months after treatment failure                             | ~4 months earliest restart to PEG-ADA in Strimvelis trials. Based on expert clinical advice                                                                                                    |  |  |
| Rescue transplant occurs in year 3                                            | Based on expert clinical advice.                                                                                                                                                               |  |  |
| Rescue transplant from matched sibling donor – with 100% success and survival | Rescue transplants from Strimvelis and Hassan 2012 were all from newly born siblings. For simplicity rescue is assumed to be successful with no adverse events (i.e. GvHD or severe infection) |  |  |
| Other                                                                         |                                                                                                                                                                                                |  |  |
| 1.5% discount rate for costs and outcomes                                     | Strimvelis meets the criteria for a 1.5% discount rate as treatment leads to long and sustained benefit and people regain normal life expectancy                                               |  |  |
| Average weight is the 25th percentile of an average child                     | Patients continued to track along their original percentiles but remained below the 50 <sup>th</sup> percentile                                                                                |  |  |
| Source: Table D2 and D4, page 142-145 and 149, Company submission             |                                                                                                                                                                                                |  |  |

## Key company clinical variables

| Variable             | Strimvelis                                                                                               | MUD                         | Haploidentical              |  |
|----------------------|----------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|--|
| 6-month OS           | 100% (18/18) <sup>a</sup>                                                                                | 67% (10/15) <sup>b</sup>    | 71% (5/7) <sup>b</sup>      |  |
| >6-month OS          | Assumed equal to general population                                                                      |                             |                             |  |
| Severe infections    | 26% for first 3 years,<br>7% for Years 4-8                                                               | Assumed equ                 | Assumed equal to Strimvelis |  |
| Rescue HSCT          | 17.6% (3/17) <sup>a</sup>                                                                                | 6.7% (1/15) <sup>b</sup>    | 28.6% (2/7)b                |  |
| IVIG use             | Year 1: 100% (18/18) <sup>a</sup><br>Year 3: 58.8% (10/17) <sup>a</sup><br>Year 8: 0% (0/4) <sup>a</sup> | Assumed equal to Strimvelis |                             |  |
| Grade I/II GvHD      | 0%                                                                                                       | 17.9% (5/28) <sup>c</sup>   | 22.2% (2/9) <sup>c</sup>    |  |
| ဗို ≥ Acute GvHD     | 0%                                                                                                       | 10.7% (3/28) <sup>c</sup>   | 11.1% (1/9) <sup>c</sup>    |  |
| ပြို့ 🗎 Chronic GvHD | 0%                                                                                                       | 3.6% (1/28) <sup>c</sup>    | 0% (0/9) <sup>c</sup>       |  |

<sup>&</sup>lt;sup>a</sup>based Strimvelis integrated population (does not included NPP population)

bbased on Hassan 2012 data

<sup>&</sup>lt;sup>c</sup>based on pooled incidence of GvHD from the literature Source: Table D5, page 158-167, Company submission

### CONFIDENTIAL

### Treatment cost

| Variable                                 | Strimvelis            | MUD      | Haploidentical |
|------------------------------------------|-----------------------|----------|----------------|
| Initial PEG-ADA <sup>a</sup>             | £124,254              | £262,314 | £262,314       |
| Cost of screening for donor <sup>b</sup> | N/A <sup>c</sup>      | £45,127  | £45,127        |
| Price of technology                      | £505,000 <sup>d</sup> | N/A      | N/A            |
| Confirmation of eligibility              |                       | N/A      | N/A            |
| Hospitalisation cost                     | d                     | £95,516  | £108,760       |
| Follow-up costs per living patient       |                       | £59,541  | £59,541        |
| Total cost per treatment/patient         |                       | £462,498 | £475,742       |

<sup>a</sup>Cost per week is £13,500 (1.5 vials; clinical expert advice) + £306 administration (NHS reference costs) <sup>b</sup>Source: Van Agthoven 2002 in euros. Inflated to 2016 value conversion of 1€ = £0.85 on 08 May 2017 <sup>c</sup>Not applicable as UK ESID and EBMT clinical guidelines recommend gene therapy after no MRD available <sup>d</sup>Cost to be paid in euros. Conversion 1€ = £0.85 on 08 May 2017; includes 2 months follow-up Source: Adapted from Table 17, page 99, ERG report

## **Utilities**

| Variable                  | Company value                   | Source / Justification                                                           |
|---------------------------|---------------------------------|----------------------------------------------------------------------------------|
| Pre-treatment             | 0.98                            | For simplicity, assumed no disutility whilst waiting for treatment on PEG-ADA    |
| 0-6 months post-treatment | 0.57 utility decrement          | Value from study of patients with acute myeloid leukaemia after HSCT (Sung 2003) |
| >6 month post-treatment   | Age-adjusted general population | No literature on non-immune related disutility                                   |
| IVIG disutility           | No disutility                   | Likely to have little impact as assumed the                                      |
| Severe infection          | No disutility                   | rates are equal                                                                  |
| Acute GvHD                | One-off loss of 0.41            | Values calculated from GvHD in lymphoma                                          |
| Chronic GvHD              | One-off loss of 1.44            | patients (Swinburn 2015), adjusted by assumed durations                          |

Source: Table D5, page 158-167, Company submission

### Base case results

|                                                                                                       | Total<br>costs | Total<br>QALYs | Incr.<br>costs | Incr. QALYs (undiscounted) | ICER    |
|-------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------------------|---------|
| Company – base case (deterministic)                                                                   |                |                |                |                            |         |
| Strimvelis                                                                                            | £1,059,425     | 41.4           | -              | -                          | -       |
| MUD                                                                                                   | £565,170       | 27.8           | £494,255       | 13.6 (23.2)                | £36,360 |
| Haplo                                                                                                 | £888,757       | 29.7           | £170,668       | 11.7 (19.9)                | £14,645 |
| Source: Table D14, page 189, company submission; company response to clarification query B20, page 44 |                |                |                |                            |         |

- As the decision model is linear, the probabilistic ICER is almost identical to the deterministic ICER
  - o ERG believe the deterministic ICERs are suitable for decision-making

## Sensitivity analysis Multi-way scenario-based sensitivity analysis

 Company explored the joint uncertainties in long-term utility scores and mean life-expectancy for survivors (MLS)

|                                                                                                | MLS*1 (79.9 years) | MLS*0.8 (63.9 years) |
|------------------------------------------------------------------------------------------------|--------------------|----------------------|
| Strimvelis vs HSCT from a MUD                                                                  |                    |                      |
| Utility Score by Age * 1                                                                       | £36,360            | £40,987              |
| Utility Score by Age * 0.8                                                                     | £45,475            | £51,266              |
| Strimvelis vs HSCT from a Haploidentical donor                                                 |                    |                      |
| Utility Score by Age * 1                                                                       | £14,645            | £16,508              |
| Utility Score by Age * 0.8                                                                     | £18,352            | £20,694              |
| Source: Adapted from table D26, page 214, company submission; base case is bold and underlined |                    |                      |

- Is it plausible that people regain full health following treatment?
- Should a lower utility or life-expectancy be used in decision-making?

### Scenario analyses

- At clarification the company provided a "secondary" scenario analysis
  with updated unit costs for PEG-ADA and IVIG, cost to the NHS for
  providing travel to Milan, and ambulance costs to and from the airports
- PEG-ADA cost had the largest impact on ICER: +£72 Strimvelis versus
   MUD ICER and + £7,619 Strimvelis versus Haploidentical donor
- ERG prefers this analysis, and incorporate these assumptions into its preferred base case

| Scenario                    |       | Strimvelis versus HSCT |           |         |         |  |
|-----------------------------|-------|------------------------|-----------|---------|---------|--|
|                             |       | Inc. costs             | Inc. QALY | ICER    | ΔICER   |  |
| Company base case           | MUD   | £494,255               | 13.6      | £36,360 | -       |  |
|                             | Haplo | £170,668               | 11.7      | £14,645 | _       |  |
| Combined secondary analysis | MUD   | £495,167               | 13.6      | £36,427 | +£67    |  |
|                             | Haplo | £265,182               | 11.7      | £22,755 | +£8,110 |  |

Source: table 30, page 117-120, ERG report

## Budget impact (undiscounted)

- The company assumed that per year in England:
  - 3 people are diagnosed with ADA-SCID
  - 1/3 patients will have a matched related donor HSCT
  - Only 1/2 patients will choose to have Strimvelis, given the travel requirements

|                  | Year 1           | Year 2         | Year 3        | Year 4       | Year 5   | Total      |  |  |  |
|------------------|------------------|----------------|---------------|--------------|----------|------------|--|--|--|
| Cost per patient |                  |                |               |              |          |            |  |  |  |
| Strimvelis       | £870,399         | £150,112       | £34,075       | £6,202       | £2,629   | £1,063,417 |  |  |  |
| MUD              | £484,638         | £62,861        | £13,964       | £3,218       | £1,611   | £566,292   |  |  |  |
| Haplo            | £619,058         | £221,495       | £46,181       | £7,302       | £2,323   | £896,358   |  |  |  |
| Incrementa       | al budget ii     | mpact assi     | uming 1 pa    | atient per y | vear ear |            |  |  |  |
| Vs. MUD          | £385,761         | £473,012       | £493,123      | £496,107     | £497,125 | £2,345,128 |  |  |  |
| Vs. Haplo        | £251,341         | £179,958       | £167,852      | £166,752     | £167,058 | £932,960   |  |  |  |
| Source: Adapted  | l from table D30 | – D3, page 231 | -238, Company | submission   |          |            |  |  |  |

• Are the patient numbers for Strimvelis plausible?

#### Key concerns

## 1. Treatment costs are overestimated for HSCT and underestimated for Strimvelis

- ERG identified alternative unit costs, and preferred the scenario where travel costs to Italy were included
- Assumed additional wait time before treatment overestimates HSCT costs
- No additional costs incurred by people who have complications in Italy
- Treatment failure with Strimvelis is only assumed to occur during follow-up

#### 2. Position of Strimvelis in the treatment pathway

- Strimvelis is assumed not to include search for a MUD
- Other alternative treatment pathways have not been explored

#### 3. Overestimation of health gains with Strimvelis

- NPP data not included, which would reduce intervention-free survival
- Plausible that overall survival benefit could be overestimated
- Assuming people regain full health is contradicted by the evidence

#### 1. Treatment costs PEG-ADA treatment

ERG noted uncertainty regarding the duration and rate of PEG-ADA use

| Variable           |            | Company value | Source / Justification         |
|--------------------|------------|---------------|--------------------------------|
| PEG-ADA            | Strimvelis | 9 weeks       | Clinical schedule              |
| duration<br>before | MUD        | 19 weeks      | Gaspar 2013                    |
| treatment          | Haplo      | 19 weeks      | Assumes MUD searched initially |

- Many patients with ADA-SCID did not receive ERT prior to HSCT, while the majority of patients did receive ERT prior to gene therapy
- There may be a lower wait time for HSCT in clinical practice with the possibility of cord blood matches
- 9 week PEG-ADA duration for Strimvelis is less than observed in the pivotal study 'pre-treatment phase' (average 25 weeks)
- ERG prefers to use equal PEG-ADA duration for all treatments

## 1. Treatment costs Graft versus host disease duration

- In the company base case the duration of chronic GvHD (3 years) exceeds the assumed time to rescue transplant (in year 3 therefore 2 years)
- Clinical advice is rescue transplant is only performed once GVHD is resolved
- Company note that as Strimvelis does not cause GvHD rescue may occur earlier
- ERG preferred analysis reduces the duration of chronic GvHD to 2 years, although the impact on the ICER is much smaller than delaying rescue transplant

|                          |       | -1 years | Base case | +1 years | + 2 years |
|--------------------------|-------|----------|-----------|----------|-----------|
| Timing of rescue         | MUD   | £30,699  | £36,360   | £41,971  | £47,456   |
| transplant               | Haplo | £20,822  | £14,645   | £8,414   | £2,147    |
| Duration of chronic GvHD | MUD   | £36,421  | £36,360   | -        | -         |
|                          | Haplo | £14,645  | £14,645   | -        | -         |

Source: adapted from page 46, company response to clarification

#### CONFIDENTIAL

## 1. Treatment costs Resources and costs

- ERG concerned that applying only the standard hospitalisation charge to patients for Strimvelis the company model underestimates the potential costs to the NHS. The ERG explored additional costs in a sensitivity analysis.
- ERG also identified several alternative unit costs to the company:

| Variable         | Company base case                                     | ERG preferred assumption                                                                                        |
|------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| HSCT costs       | £95,516<br>NHS reference cost<br>HSCT from cord blood | £81,973 Weighted average including transplants undertaking using bone marrow (£79,199)                          |
| GvHD<br>costs    | £29,420 cost of severe (Grade III/IV) GvHD            | £17,089 Inflated difference of any GvHD event (£28,860) and the mean cost of readmission without GvHD (£13,405) |
| Eligibility cost | Includes outpatient tests and bone marrow test        | Assumes people will not be eligible (but will incur testing cost)                                               |

# 2. Position in pathway Alternative treatment pathways

- Strimvelis is assumed not to include search for MUD
  - ERG considers some people would have Strimvelis after search for a MUD and would therefore incur costs of search
- The model does not incorporate a pathway for patients unable to donate adequate CD34+ cells for Strimvelis treatment
- Alternative rescue therapy pathways are not explored, including:
  - People who have initial HSCT could have subsequent Strimvelis therapy
  - People who have had failed initial MUD HSCT may be less likely to have subsequent MUD HSCT, possibly increasing duration of PEG-ADA treatment
  - People with Strimvelis are not at risk of chronic GvHD, potentially shortening duration until rescue transplant
  - Rescue transplant could differ between people who fail gene therapy without completing search for MUD versus those who have completed a search

#### CONFIDENTIAL

#### 3. Overestimation of health gains Treatment effectiveness – Survival

- ERG prefer to include the NPP data where possible. This would decrease the intervention-free survival from 82.4% to
- Survival after transplant from a MUD is lower than that from a haploidentical donor, which lacks face validity
- The absolute difference in overall survival between Strimvelis and HSCT may be overestimated in the company model because:
  - It is not implausible overall survival is less that 100% for Strimvelis given the severe nature of ADA-SCID
  - HSCT overall survival may now be higher than that reported in Hassan 2012
- ERG believes that the assumption that people have full life expectancy after the initial treatment, regardless of treatment success is overly optimistic. They note:
  - Patients are modelled requiring IVIG for up to 8 years
  - People continue to be underweight
  - Strimvelis and HSCT is thought to have no impact on some adverse events

#### CONFIDENTIAL

# 3. Overestimation of health gains Rescue therapy (I)

- The calculation of rescue therapy rates conducted by the company are not conditional on survival following the initial procedure
- Highly uncertain whether there is any difference in the rate of rescue therapy between Strimvelis and HSCT

|                              | Strimvelis integrated population | Strimvelis integrated population + NPP | MUD             | Haplo          |
|------------------------------|----------------------------------|----------------------------------------|-----------------|----------------|
| Patients                     | 17                               |                                        | 15              | 7              |
| Rescue transplant            | 3                                |                                        | 1               | 2              |
| Died                         | 0                                |                                        | 5               | 2              |
| Survived                     | 17                               |                                        | 10              | 5              |
| Non-conditional rescue rates | 3/17 (17.6%)                     |                                        | 1/15<br>(6.7%)  | 2/7<br>(28.6%) |
| Conditional rescue rates     | 3/17 (17.6%)                     |                                        | 1/10<br>(10.0%) | 2/5<br>(40%)   |
| Source: table 26, page 113,  | ERG report                       |                                        |                 |                |

• What are the most plausible rates of rescue therapy?

### 3. Overestimation of health gains Rescue therapy (II)

- Rescue transplant was assumed to come from MSD, with 100% success and survival, and no risk of GvHD or severe infection – not clinically plausible
- The company included a sensitivity analysis in which the survival rate from a rescue transplant is taken from a MUD procedure, but this did not include the risk of GvHD nor severe infections
  - This overestimates the mortality in patients assigned to HSCT
- ERG preferred assumption that people would receive a MUD transplant, and incur chance of GvHD, severe infections, and further failure to engraft

- What form of rescue treatment will people have?
- Will rescue treatment have similar outcomes to initial treatment?

### 3. Overestimation of health gains Health-related quality of life

- Model assumes that people have utility equal to the general population pre-treatment and 8 years post-treatment, and with no disutility in relation to severe infections or IVIG administration
- The ERG considers that prior to transplantation the HRQL of patients awaiting treatment may be lower than that of the general population
- ERG prefer to include the 0.75 weight for IVIG disutility included in the company sensitivity analysis
- ERG identified long-term disutilities for bilateral permanent hearing impairment and emotional and behavioural dysfunction
  - Given uncertainties in the utilities for emotional and behavioural dysfunction,
     the ERG prefers to include only hearing impairment disutilities

- Will utilities post-treatment be equal to the general population?
- What utilities should be included in the modelling?

# ERG comments Key changes to company model

- Using alternative assumptions from the company's secondary analysis
- Inclusion of Named Patient Programme data
- Assuming equal wait time and pre-procedure PEG-ADA use across treatment arms
- Assuming rescue therapy has cost and health outcomes of initial MUD HSCT
- Including ongoing healthcare costs and morbidity associated with systemic sequelae of ADA-SCID
- Adjusting unit costs for:
  - HSCT from a MUD to reflect the proportion sourced from bone marrow
  - GvHD events to make the cost per event consistent with severity
- Incorporating cost of baseline screening of patients ineligible for Strimvelis
- What is the committee's view of the ERG's changes to the model?
- Are there any issues raised which require further exploration?

## ERG preferred analysis

|                                            | Strimvelis versus HSCT |            |                          |         |          |  |
|--------------------------------------------|------------------------|------------|--------------------------|---------|----------|--|
|                                            |                        | Inc. costs | Inc. QALY (undiscounted) | ICER    | ΔICER    |  |
| Company base case                          | MUD                    | £494,255   | 13.6 (23.2)              | £36,360 | _        |  |
|                                            | Haplo                  | £170,668   | 11.7 (19.9)              | £14,645 | -        |  |
| ERG preferred analysis                     | MUD                    | £811,195   | 9.3 (15.9)               | £86,815 | +£50,455 |  |
|                                            | Haplo                  | £184,686   | 11.1 (18.8)              | £16,704 | +£2,060  |  |
| Source: table 30, page 117-120, ERG report |                        |            |                          |         |          |  |

#### Sensitivity to overall survival

- The difference in mortality between Strimvelis and a MUD HSCT is a key driver of the ICER. Reducing the difference increases the ICER.
- Reducing the difference in survival also impacts the total QALY gain and hence any QALY weighting
- Strimvelis must reduce mortality by over 25 percentage points

| MUD OS                                                                                | Strimvelis vs MUD ICER                                          | Adjusted threshold*      |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|--|--|--|--|--|--|
| ICERs below £100,000 per QALY                                                         |                                                                 |                          |  |  |  |  |  |  |
| 0.667                                                                                 | £86,856                                                         | £159,000                 |  |  |  |  |  |  |
| 0.70                                                                                  | £97,699                                                         | £140,000                 |  |  |  |  |  |  |
| ICERs above §                                                                         | ICERs above £100,000 per QALY, but below the adjusted threshold |                          |  |  |  |  |  |  |
| 0.71                                                                                  | £101,549                                                        | £135,000                 |  |  |  |  |  |  |
| 0.74                                                                                  | £115,277                                                        | £118,000                 |  |  |  |  |  |  |
| ICERs above §                                                                         | E100,000 per QALY and the adjusted                              | threshold                |  |  |  |  |  |  |
| 0.75                                                                                  | £120,759                                                        | £112,000                 |  |  |  |  |  |  |
| 0.78                                                                                  | £141,027                                                        | £100,000 (no adjustment) |  |  |  |  |  |  |
| *adjusted threshold based on the QALY weighting applied to the undiscounted QALY gain |                                                                 |                          |  |  |  |  |  |  |

\*adjusted threshold based on the QALY weighting applied to the undiscounted QALY gain Source: adapted from table 32, page 120-121, ERG report; ERG preferred analysis bolded and underlined

# ERG Comments Sensitivity to discount rate

- A discount rate of 1.5% may be considered if it is highly likely that, on the basis of the evidence presented, the long-term health benefits are likely to be achieved
- Company considers Strimvelis meets this criterion as treatment leads to long and sustained benefit and people regain normal life expectancy
- The ERG is concerned that many patients will not return to full health, but the
   1.5% discount rate may be reasonable according to NICE guidance

| Scenario                         |       | Strimvelis versus HSCT |           |          |          |  |
|----------------------------------|-------|------------------------|-----------|----------|----------|--|
|                                  |       | Inc. costs             | Inc. QALY | ICER     | ΔICER    |  |
| ERG preferred                    | MUD   | £811,195               | 9.3       | £86,815  | -        |  |
| assumptions (1.5%)               | Haplo | £184,686               | 11.1      | £16,704  | _        |  |
| ERG preferred assumptions (3.5%) | MUD   | £740,930               | 5.5       | £135,028 | +£48,213 |  |
|                                  | Haplo | £238,681               | 6.5       | £36,837  | +£20,133 |  |

Source: Table 1, page 1-2, ERG addendum

#### Sensitivity to product price

- Product cost of Strimvelis is uncertain because:
  - potential fluctuations in the exchange rate
  - costs incurred in Italy still under negotiation between NHSE and company
- ICER for Strimvelis compared to MUD is sensitive to both overall survival and the product cost

|                            | Strimvelis product price |       |       |       |       |       |       |      |  |  |
|----------------------------|--------------------------|-------|-------|-------|-------|-------|-------|------|--|--|
| ival<br>iold)              |                          | +30%  | +20%  | +10%  | 0%    | -10%  | -20%  | -30% |  |  |
| s survival<br>threshold)   | 1.00<br>(159K)           | £103K | £98K  | £92K  | £87K  | £81K  | £76K  | £71K |  |  |
| Strimvelis<br>(adjusted th | 0.95<br>(133K)           | £119K | £112K | £106K | £99K  | £93K  | £87K  | £80K |  |  |
| Strii<br>(adju             | 0.90<br>(108K)           | £142K | £134K | £126K | £118K | £110K | £102K | £94K |  |  |

Source: adapted from figure 5, page 122, ERG report; ERG preferred analysis bolded and underlined

• What uncertainties around product price need to be taken into account?

### Sensitivity to rates of rescue therapy

- Highly uncertain whether there is any difference in the rate of rescue therapy between Strimvelis and HSCT
- Setting rates of rescue therapy to be equal to the Strimvelis rate would increase MUD rate from 10% and decrease haploidentical rate from 40%
- The ICER is sensitive to this change, because of costs of PEG-ADA before rescue therapy

| Scenario               |       | Strimvelis versus HSCT |           |         |          |  |
|------------------------|-------|------------------------|-----------|---------|----------|--|
|                        |       | Inc. costs             | Inc. QALY | ICER    | ΔICER    |  |
| ERG preferred analysis | MUD   | £811,195               | 9.3       | £86,815 | -        |  |
|                        | Haplo | £184,686               | 11.1      | £16,704 | -        |  |
| Equal rescue rates of  | MUD   | £514,931               | 11.0      | £46,849 | -£39,965 |  |
|                        | Haplo | £480,950               | 9.4       | £51,116 | +£34,412 |  |

#### Alternative treatment pathway scenario

- Strimvelis would incur the costs of searching for a MUD if:
  - People explore having a MUD HSCT before deciding to use Strimvelis
  - People have Strimvelis as a rescue therapy after HSCT
- ERG note that, if a search were not conducted, Strimvelis should be compared to weighted mix of MUD and haploidentical transplants
  - The ICER would be lower than for Strimvelis vs MUD alone

| Scenario                               |       | Strimvelis versus HSCT |           |         |         |  |  |
|----------------------------------------|-------|------------------------|-----------|---------|---------|--|--|
|                                        |       | Inc. costs             | Inc. QALY | ICER    | ΔICER   |  |  |
| EDC proformed analysis                 | MUD   | £811,195               | 9.3       | £86,815 | -       |  |  |
| ERG preferred analysis                 | Haplo | £184,686               | 11.1      | £16,704 | -       |  |  |
| Cost of screening for a                | MUD   | £856,322               | 9.3       | £91,644 | +£4,830 |  |  |
| MUD                                    | Haplo | £229,913               | 11.1      | £20,786 | +£4,082 |  |  |
| Source: table 33, page 125, ERG report |       |                        |           |         |         |  |  |

• Should search costs for a MUD be included for Strimvelis?

#### **Innovation**

The company considers Strimvelis is an innovative treatment because:

- To date, Strimvelis is the only ex vivo gene therapy to gain marketing authorisation from the EMA
- Strimvelis is a step-change in the management of ADA-SCID because it corrects the underlying cause of the disease using the patients' own cells circumventing the need for a stem cell donor search and the risk of immune rejection (GvHD)
- Advanced therapies form an important part of the UK Life Sciences strategy. The UK aspires to position itself as a global hub for researching, developing, manufacturing, and adopting advanced therapies

### Managed Access Agreement

- Given the low ICERs and budget impact, the company does not believe that a managed access arrangement (MAA) is required
  - Elements often observed in MAAs are already naturally in place for Strimvelis
  - Strimvelis is only indicated for patients with ADA-SCID without an MRD – eligibility is already restricted to those patients that can benefit the most
  - Company expects referrals only from 2 specialist hospitals further ensures that Strimvelis will only be given to patients for whom the treatment is fully appropriate
  - Data collection to monitor outcomes is already in place through the Strimvelis registry – can be shared with the NHS as they become available

## **QALY** weighting

- For ICERs above £100,000 per QALY, recommendations must take into account the magnitude of the QALY gain and the additional QALY weight that would be needed to fall below £100,000 per QALY
- To apply the QALY weight, there must be compelling evidence that the treatment offers significant QALY gains

| Lifetime incr QALYs gained  | Weight                             |
|-----------------------------|------------------------------------|
| Less than or equal to 10    | 1                                  |
| 11–29                       | Between 1 and 3 (using equal incr) |
| Greater than or equal to 30 | 3                                  |

| Company | ERG  |
|---------|------|
|         |      |
| 23.2    | 15.9 |
| 19.9    | 18.8 |
|         |      |

• What QALY weighting should be used for decision-making?

Source: Adapted from table D20, page 197, Company submission; table 31, page 120, ERG report

## Factors affecting the guidance

• In forming the guidance, committee will take account of the following factors:

| Nature of the condition                                                                                                                                                                                                               | Clinical effectiveness                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Extent of disease morbidity and patient clinical disability with current care</li> <li>Impact of disease on carers' QoL</li> <li>Extent and nature of current treatment options</li> </ul>                                   | <ul> <li>Magnitude of health benefits to patients and carers</li> <li>Heterogeneity of health benefits</li> <li>Robustness of the evidence and the how the guidance might strengthen it</li> <li>Treatment continuation rules</li> </ul>                                                                                                                                                      |  |  |
| Value for money                                                                                                                                                                                                                       | Impact beyond direct health benefits                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <ul> <li>Cost effectiveness using incremental cost per QALY</li> <li>Patient access schemes and other commercial agreements</li> <li>The nature and extent of the resources needed to enable the new technology to be used</li> </ul> | <ul> <li>Non-health benefits</li> <li>Costs (savings) or benefits incurred outside of the NHS and personal and social services</li> <li>Long-term benefits to the NHS of research and innovation</li> <li>The impact of the technology on the delivery of the specialised service</li> <li>Staffing and infrastructure requirements, including training and planning for expertise</li> </ul> |  |  |

## Equality

- In England ADA-SCID is most common in people from Irish Traveller and Somalian family origins
- Company have noted donor availability for HSCT can differ based on ethnicity, with people from non-Caucasian backgrounds having a more difficult time finding a suitable donor and a longer wait for an available donor
- Using gene therapy treatments such as Strimvelis will avoid the longer wait for these patients
- Due to low patient numbers the company model has not explored subgroup analysis by ethnicity
- The company does not explore alternative treatment pathways based on longer treatment durations for some people

### Key issues for consideration Cost-effectiveness evidence (I)

#### Overall modelling approach

- Is the company model appropriate for decision-making?
  - Should alternative treatment pathways be considered in the model?
- Should data from the Named Patient Program be included?
- Is it appropriate that a 1.5% discount rate is used?

#### Overall and intervention-free survival

- What is the most plausible difference in overall survival for Strimvelis and HSCT?
- What are the most plausible rates of intervention-free survival for the treatments?
- Will life expectancy following treatment be equal to the general population?

### Key issues for consideration Cost-effectiveness evidence (II)

#### Assumptions in the model: costs, utilities and rescue therapy

- What are the most plausible pre-treatment PEG-ADA durations?
- What uncertainties around the product price need to be taken into account?
- Are the assumptions around utilities appropriate?
  - Will long-term utilities following treatment be equal to the general population?
  - What utilities and disutilities should be included in the modelling?
- Are the assumptions around rescue therapy appropriate?
  - What form of rescue treatment will people whose treatment has failed have?
  - Do rescue rates differ systematically between different groups?

#### **Conclusions**

- What QALY weighting should be used in decision-making?
- What factors affecting the guidance need to be taken into account?
- What are the most plausible ICERs?

Public slides – part 1 (Redacted)

### Lead team presentation

Strimvelis for the treatment of adenosine deaminase deficiency-severe combined immunodeficiency

1<sup>st</sup> Evaluation Committee Meeting Highly Specialised Technology, 28 September 2017

Patient Perspective Jeremy Manuel



#### Impact on families and carers – company survey

### Redacted

# Patient expert comments Patient groups

- Babies with SCID may seem well at birth, but soon suffer infections more frequently and severely than other infants
- If there is no family history of ADA-SCID people can suffer delays to diagnosis due to the rarity of the condition and it not being recognised
- Prolonged hospitalisation, separation from extended family, blood tests and uncomfortable procedures contribute to stress and anxiety and even guilt for parents
- Strimvelis treatment involves travel to Milan.
  - huge upheaval for a family
  - may have cost implications in terms of family income and having on-hand support from family and friends
- Enrolling in a UK clinical trial may be more attractive for some people
- Based on current knowledge of incidence 6-10 children will present with ADA-SCID per annum, of these most will be eligible for Strimvelis

## Patient expert comments Carers

- Delays in diagnosis occur due to lack of knowledge of this condition
- HSCT may not be a viable treatment option depending on other health issues
- All aspects of life for both child and family are impacted
- Anxiety is a huge emotion to have to deal with as a carer
  - Before diagnosis, you know something is wrong and have to watch your child suffer terribly with severe illnesses without knowing why
  - After diagnosis, there is a strain of having to think about what lies ahead in terms of treatment, life changes, possibility of giving up a job to be a carer
- This technology is a safer, less risky, less harsh benefits are life changing including everything from emotional wellbeing, physical appearance, quality of life etc.
- The financial and impact on family and work with this technology you would get from other treatments

## Impact on families and carers Treatment abroad with Strimvelis

- The Telethon Foundation started an anonymous formal assessment in July 2017
- The preliminary results of this assessment showed that patients and parents were very satisfied overall with the support provided by the Telethon Foundation
  - As an example, a parent described their family's 3.5 months stay in Milan "just like home."
- The company notes that there are only 2 centres in the UK that perform paediatric HSCT (London and Newcastle)
  - Therefore families would still face lengthy treatments far from home
- With the availability of Strimvelis, patients and families will no longer face a long wait for treatment while searching for a MUD or have to make a choice to undergo HSCT that carries a significant mortality risk

Additional slides – for committee and public (NoACIC)

#### **Additional slides**

Strimvelis for the treatment of adenosine deaminase deficiency-severe combined immunodeficiency

1<sup>st</sup> Evaluation Committee Meeting Highly Specialised Technology, 28 September 2017

Committee's preferred assumptions

## Committee's preferred assumptions

3.5% discount rate

| Scenario                      |       | Strimvelis versus HSCT |               |                           |          |          |
|-------------------------------|-------|------------------------|---------------|---------------------------|----------|----------|
|                               |       | Inc. costs             | Incr.<br>QALY | Incr. QALY (undiscounted) | ICER     | ΔICER    |
| ERG preferred                 | MUD   | £740,930               | 5.5           | 15.9                      | £135,028 | -        |
| analysis                      | Haplo | £238,681               | 6.5           | 18.8                      | £36,837  | _        |
| Exclusion of NPP data         | MUD   | £626,013               | 6.0           | 17.3                      | £105,049 | -£29,979 |
|                               | Haplo | £123,764               | 7.0           | 20.2                      | £17,804  | -£19,033 |
| Exclusion of                  | MUD   | £731,635               | 5.5           | 15.9                      | £133,334 | -£1,694  |
| deafness costs                | Haplo | £227,923               | 6.5           | 18.8                      | £35,176  | -£1,660  |
| MUD survival set to 72.5%     | MUD   | £743,659               | 4.5           | 13.1                      | £164,281 | +£29,253 |
|                               | Haplo | £228,874               | 6.3           | 18.3                      | £36,186  | -£650    |
| Addition of excluded patient  | MUD   | £722,325               | 6.0           | 16.0                      | £129,829 | -£5,199  |
|                               | Haplo | £220,075               | 6.6           | 19.0                      | £33,569  | -£3,267  |
| Combined                      | MUD   | £599,613               | 5.0           | 14.0                      | £120,506 | -£14,523 |
|                               | Haplo | £82,002                | 6.8           | 19.6                      | £12,106  | -£24,731 |
| Combined + equal rescue rates | MUD   | £490,346               | 5.0           | 15.0                      | £91,910  | -£43,118 |
|                               | Haplo | £464,340               | 5.5           | 16.0                      | £84,172  | +£47,336 |
| Source: ERG model             |       |                        |               |                           |          |          |

## Committee's preferred assumptions

1.5% discount rate

| Scenario                  |       | Strimvelis versus HSCT |               |                           |                     |          |
|---------------------------|-------|------------------------|---------------|---------------------------|---------------------|----------|
|                           |       | Inc. costs             | Incr.<br>QALY | Incr. QALY (undiscounted) | ICER                | ΔICER    |
| ERG preferred             | MUD   | £811,195               | 9.3           | 15.9                      | £86,815             | -        |
| analysis                  | Haplo | £184,686               | 11.1          | 18.8                      | £16,704             | -        |
| Exclusion of NPP          | MUD   | £666,137               | 10.2          | 17.3                      | £65,620             | -£21,195 |
| data                      | Haplo | £39,627                | 11.9          | 20.2                      | £3,340              | -£13,364 |
| Exclusion of              | MUD   | £795,161               | 9.3           | 15.9                      | £85,099             | -£1,716  |
| deafness costs            | Haplo | £165,950               | 11.1          | 18.8                      | £15,010             | -£1,695  |
| MUD survival set to 72.5% | MUD   | £817,760               | 7.7           | 13.1                      | £106,101            | +£19,286 |
|                           | Haplo | £169,519               | 10.8          | 18.3                      | £15,721             | -£983    |
| Addition of               | MUD   | £787,710               | 9.0           | 16.0                      | £83,138             | -£3,677  |
| excluded patient          | Haplo | £161,200               | 11.2          | 19.0                      | £14,410             | -£2,295  |
| Combined                  | MUD   | £630,475               | 8.0           | 14.0                      | £74,430             | -£12,385 |
|                           | Haplo | -£22,804               | 11.5          | 19.6                      | Strimvelis Dominant | -        |
| Combined + equal          | MUD   | £491,053               | 9.0           | 15.0                      | £54,072             | -£32,743 |
| rescue rates              | Haplo | £465,071               | 9.4           | 16.0                      | £49,429             | +£32,724 |
| Source: ERG model         |       |                        |               |                           |                     |          |