Public observers – redacted [noACIC]

Lead team presentation Burosumab for treating X-linked hypophosphataemia

1st Evaluation Committee Meeting Highly Specialised Technology, 23 May 2018

Lead team: Stuart Davies, Jeremy Manuel, Glenda Sobey

Company: Kyowa Kirin

Chair: Peter Jackson

Evidence review group: Kleijnen Systematic Reviews

NICE team: Thomas Paling, Ian Watson, Sheela Upadhyaya

Key issues for consideration Clinical effectiveness

- How is burosumab expected to be used in practice?
 - Marketing authorisation: for children and adolescents with growing skeletons; expected up to age 16 in girls and 17 in boys
- Does the clinical evidence provide a suitable basis to establish the effectiveness of burosumab, compared with conventional therapy?
 - Children aged 1–4: CL205 single-arm study
 - Children aged 5–12: CL201 vs CL002 naïve and adjusted comparisons
 - Children aged 13+: no evidence presented
- Is burosumab clinically effective?
 - Do RSS and RGI-C capture important aspects of XLH?
 - Significance of the findings from CL205 and CL201?

Disease background

- X-linked hypophosphataemia (XLH) is a rare, chronically debilitating and deforming disease
- It is a genetic, X-linked dominant disorder caused by mutations in the PHEX gene
 - Inactivates PHEX enzyme → erroneous signal in phosphate sensing
 → increased levels of fibroblast growth factor 23 (FGF23)
- Excess FGF23 → impaired phosphate conservation + excess excretion
 → supressed vitamin-D production, decreased calcium
 and phosphate absorption
- Clinical expression of XLH is widely variable, partly due to genetic differences. Males are more severely affected than females
- Estimated population size in England aged 1 17 years:

Course of the disease

- Symptoms of XLH usually begin in early childhood
 - Heterogeneity in the occurrence and severity of symptoms in children and adults
- Early signs include skeletal abnormalities such as noticeably bowed or bent legs, short stature, and irregular growth of the skull
- Children may present with delayed walking or a waddling gait
- Over time, symptoms may progress to include further skeletal and non-skeletal manifestations (next slide)
- Bone deformities become irreversible when growth stops
- If undiagnosed in childhood, adults present with bone/joint pain, fractures, mineralisation defects, dental anomalies and fatigue
- · Patients often need orthopaedic surgery to correct bone deformities

Children	Adults
Progressive damage to growing skeleton	→ Impact of established skeletal damage
	→ Further progression of skeletal damage?
Other physiological effects of low phosphate (e.g. fatigue, muscle function)	Ongoing non-skeletal physiological effects

Symptoms and complications

- Rickets is associated with substantial skeletal deformities which limit physical function and lead to life long disability and pain
 - Children often have difficulties with motor activities e.g. walking, running and playing
 - Psychosocial consequences from impairment of growth and short stature
- XLH can manifest with other skeletal effects: bone/joint pain, calcification of tendons and ligaments, dental problems
- Some patients experience hearing loss (predominately sensorineural)
- Low serum phosphorous may also cause further physiological effects: muscle weakness, reduced physical functioning, and fatigue

XLH Symptoms						
Rickets related	Other bone defects					
Leg bowingDelayed walkingEnlarged cartilagesWaddling gait	 Calcification Osteoarthritis Dental problems Bone and/or joint pain 					
Short statureFracturesCraniosynostosis	 Other symptoms Hearing loss and vertigo Fatigue Muscle weakness 					

Current treatment options

- There are no therapies that treat the underlying cause of XLH
- Conventional therapy focuses on renal phosphate wasting, and vitamin D deficiency
 - Oral phosphate and vitamin D (alfacalcidol) commonly used
 - Often has poor adherence because of complex regimen (4–6 times a day) and unpleasant taste and side effects
- Early treatment can result in improved outcomes
- Aims:
 - In children: alleviate bone or joint pain, prevent skeletal deformities caused by rickets and improve growth
 - In adults: reduce pain, reduce osteomalacia, improve fracture healing and surgical recovery
- Corrective surgery of skeletal deformities is often required
- XLH can cause dental disease: root canals and tooth extractions are often performed

Clinical experts: Current treatment experience

_	4	4		4
Trea	tme	nt a	iims	to:

- Promote healing of rickets
- Improve growth rate
- Prevent limb deformities
- Improve dental health

- Improve myopathy
- Reduce bone pain
- Avoid or reduce complications
- Avoid cranio-facial abnormalities

Current treatments for XLH

- Phosphate and vitamin D 4–6 times a day (conventional therapy)
- Surgery for lower limb deformity

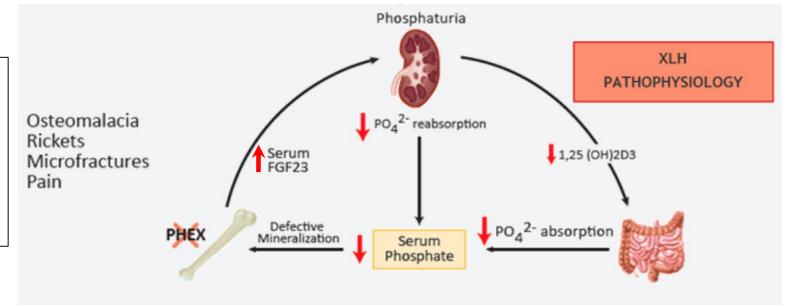
Side effects of phosphate and vitamin D

- Nausea
- Calcification in the kidneys
- Hyperparathyroidism

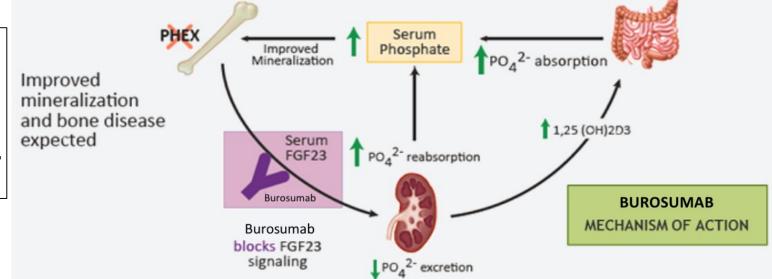
- Diarrhoea
- Abdominal pain

Without treatment

Normal height not achieved


Deformity is likely

Burosumab (Crysvita, Kyowa Kirin)


Marketing authorisation	"for the treatment of XLH with radiographic evidence of bone disease in children one year of age and older and adolescents with growing skeletons"		
Mechanism of action	Monoclonal antibody that binds to and inhibits the activity of FGF23		
Administration & dose	Subcutaneous injection, once every 2 weeks. Starting dose: 0.4 mg/kg, maintenance dose 0.8 mg/kg, maximum 2mg/kg, 90mg		
List price	10 mg, 20 mg and 30 mg vials: £2,992, £5,984 and £8,976 per vial		
Treatment course length	Treatment may begin from one year of age, and will continue until the skeleton ceases to grow (16 in girls and 17 in boys)		
Source: Company submission			

Mechanism of action and pathophysiology

XLH manifestations

Burosumab impact

Clinical experts: Burosumab

Innovation

- Targets pathophysiology of XLH
- No advances in 35 years

 Innovative administration compared to complex dosing of current treatments

Benefits

- Improved adherence
- Improvements in growth rate
- Reduced need for orthopaedic surgery
- Improved quality of life

- Improved healing of rickets
- Improved muscle function
- No impact on length of life
- Fewer side effects

Subgroups

 Growing children with XLH rickets aged 6 months to 16 years are expected to benefit most

Stopping treatment

Treatment expected to stop around age 13 to 16 years when growing halts

Decision problem

	Final	Final Scope					
Population	Children and young people with	X-linked hypophosphataemia					
Intervention	Burosumab						
Comparator	Established clinical management	t without burosumab					
Outcomes	 fractures severity of rickets pain (including bone pain, joint pain and joint stiffness) motor skills growth (including height) tooth loss and pain skull and spinal deformities health-related quality of life (for patients and carers). adverse effects of treatment 	 neurological complications (increased intracranial pressure, craniosynostosis, problems with hearing and balance, and spinal cord compression) radiographic response renal function parathyroid hormone levels alkaline phosphatase levels mortality 					
Outcomes not captured in the studies	fracturestooth loss and painskull and spinal deformities	neurological complications (as above)mortality					

Clinical effectiveness evidence

Clinical evidence summary

- Study CL205 (1-4 years)
 - Multicentre, open-label, single-arm, Phase 2 study
- Study CL201 (5-12 years)
 - Randomised, multicentre, open-label, dose-finding Phase 2 study
- Study CL002 (5-12 years):
 - Reference group for comparative analysis of outcomes in study CL201
 - Evaluates long-term safety and efficacy of conventional therapy

Additional studies:

- UK chart review:
 - Longitudinal review of patient records (n=43) from 3 expert centres
 - Informs economic model only
- Study CL301 in progress, no data available yet
 - Phase III study evaluating safety and efficacy of burosumab compared to conventional therapy
 - Paediatric patients aged 1 to ≤12 years with XLH who have confirmed evidence of rickets (n=60)

Clinical evidence summary Burosumab studies

Study	Study type	Location, duration and patient numbers	Primary outcome(s)
CL205	multicentre, open-label, single-arm, Phase 2 study	 3 US centres 40 week primary analysis of data N=13, aged 1-4 years 	Change from baseline in serum phosphate
CL201	randomised, multicentre, open-label, dose-finding Phase 2 study	 9 centres (incl 3 UK) 40 week primary efficacy analysis, 64 week extended N=52, aged 5 -12 years 	Change from baseline rickets severity score (RSS)

Burosumab dosage

- CL205: Q2W; starting dose 0.8 mg/kg, could increase up to 1.2 mg/kg
- CL201: randomised to Q2W or Q4W; starting dose 0.1, 0.2 or 0.3 mg/kg Q2W (or equivalent Q4W), 16-week titration period
- Licensed dose: Q2W; starting dose 0.4 mg/kg, maintenance 0.8 mg/kg, maximum 2 mg/kg

Baseline characteristics

	CL205	CL201	Study CL002
	(n=13)	Q2W (n=26)	Radiographic analysis set (n=
Age (years), mean (SD)	2.9 (1.15)	8.7 (1.72)	
Sex, male n (%)	9 (69.2%)	12 (46.2%)	
Weight (kg), mean (SD)	12.92 (1.81)	31.87 (7.92)	
Height: Percentile, mean (SD) Z-score, mean (SD)	-1.38 (1.19)	-1.72 (1.03)	
Prior conventional therapy Number (%) who received Duration (yrs), mean (SD) Age (yrs) when started, mean (SD)	13 (100%) 1.39 (1.20)	24 (92.3%) 7.02 (2.14)	
Rickets severity RSS Total score, mean (SD)	2.92 (1.37)	1.92 (1.17)	

Clinical evidence ERG comments

- The main limitation of the clinical evidence is the design of the studies
 - Most of the presented evidence comes from single-arm studies
 - Phase III study (CL301) will reduce the uncertainty in the effectiveness of burosumab compared to conventional therapy
- CL201 has more restrictive inclusion criteria than CL002, including people with more severe XLH
- The historical control study CL002 does not include patients under 5 years old, therefore only provides comparison with CL201, not CL205
 - No comparison with conventional therapy can be made for children aged 1 to 4 years
- Only 13 children are enrolled in CL205, therefore results in this age group (1 to 4 years) are very uncertain
- Does the clinical evidence provide a suitable basis to establish the effectiveness of burosumab compared to conventional therapy?

Summary of effectiveness analyses

Outcomes

- Rickets: Rickets severity score (RSS) and Radiographic Global Impression of Change (RGI-C)
- Growth, walking ability (6MWT), functional disability and pain (POSNA-PODCI), phosphate homeostasis and bone metabolism

Comparison methods

- Baseline vs post-baseline assessments
- Naïve comparison (CL201 v CL002) no comparison in children aged 1-4 years
- Matched comparison (accounts for imbalances in baseline characteristics)

- Due to differences in inclusion criteria, naïve comparison is unreliable people in CL201 had more severe disease (baseline RSS) than CL002
- Matched comparison is unreliable due to limitations with the methods
 - Subjects can only be matched on measured variables
 - Selection of matching variables not fully explained (age, gender, and RSS)
 - Possibly insufficient number of variables (3)
- Is the evidence suitable to establish the effectiveness of burosumab vs conventional therapy?
- ⊙ Do RSS and RGI-C capture important aspects of XLH?

Clinical effectiveness – results

Effectiveness in children aged 1 to 4 years CL205

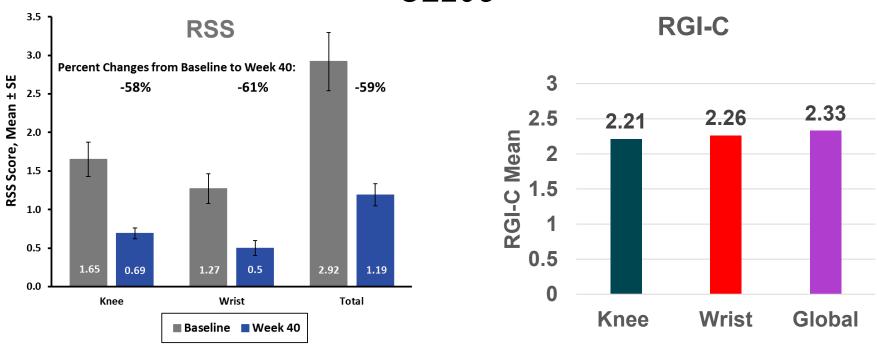



Figure redacted AIC

Effectiveness in children aged 5 to 12 years: Naïve comparison (CL201 v CL002): rickets healing

- 58% reduction in RSS on burosumab, compared to with long-term conventional therapy
- on burosumab after 64 weeks than conventional therapy after 102 weeks

Figure redacted - AIC

Figure redacted - AIC

Effectiveness in children aged 5–12 years *Matched comparison (CL201 v CL002): rickets healing*

Figure redacted - AIC

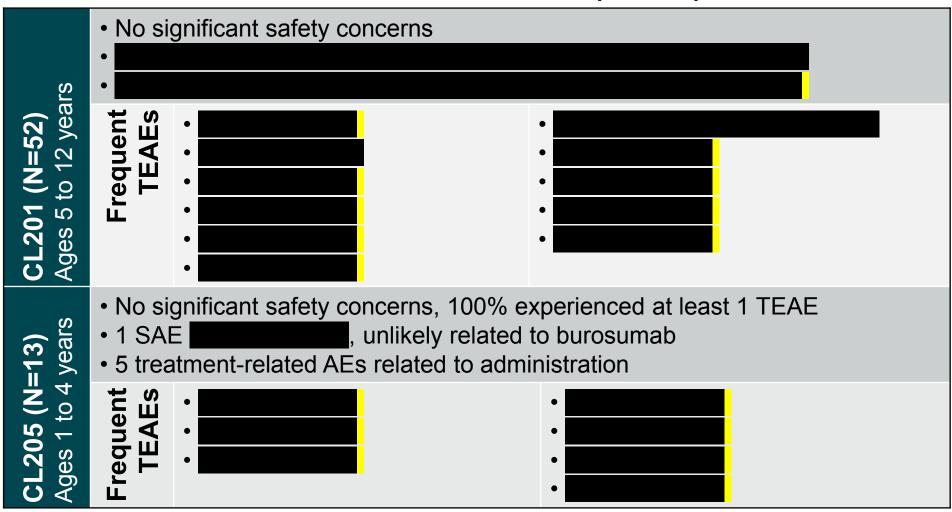
Effectiveness in children aged 5–12 years *CL201 v CL002: Other outcomes*

	Week 4	10 (n=26)	Week 64 (n=26)		Convention al Therapy
	Effect Size	p-value	Effect Size	p-value	Effect Size
Growth velocity Mean change, comparing pre- and post-treatment (cm/year)	-	-			
Standing Height Z-score LS mean change from Baseline	-	-			
6MWT Distance LS mean change from Baseline (m)					
Sports/Physical Functioning Scale (POSNA-PODCI) [10 = 1 SD] LS mean change from Baseline					
Pain/Comfort Scale (POSNA-PODCI) [10 = 1 SD] LS mean change from Baseline					

Subgroups: low vs high RSS CL201 v CL002: RSS total score

Figure redacted - AIC

Figure redacted - AIC


Source: adapted from figure 7 and p106 company submission

Subgroup analysis on Q2W:

- Higher RSS subgroup (RSS total score ≥ 1.5; N=17 (CL201))
- Lower RSS subgroup (RSS total score <1.5; N= 9 (CL201))

RGI-C scores show consistent findings

Adverse events (AEs)

ERG comment: Relative safety and toxicity cannot be assessed as AEs with conventional therapy were not reported

Key issues for consideration Clinical effectiveness

- How is burosumab expected to be used in practice?
 - Marketing authorisation: for children and adolescents with growing skeletons; expected up to age 16 in girls and 17 in boys
- Does the clinical evidence provide a suitable basis to establish the effectiveness of burosumab, compared with conventional therapy?
 - Children aged 1–4: CL205 single-arm study
 - Children aged 5–12: CL201 vs CL002 naïve and adjusted comparisons
 - Children aged 13+: no evidence presented
- Is burosumab clinically effective?
 - Do RSS and RGI-C capture important aspects of XLH?
 - Significance of the findings from CL205 and CL201?

Public observers – redacted [noACIC]

Lead team presentation Burosumab for treating X-linked hypophosphataemia

1st Evaluation Committee Meeting Highly Specialised Technology, 23 May 2018

Lead team: Stuart Davies, Jeremy Manuel, Glenda Sobey

Company: Kyowa Kirin

Chair: Peter Jackson

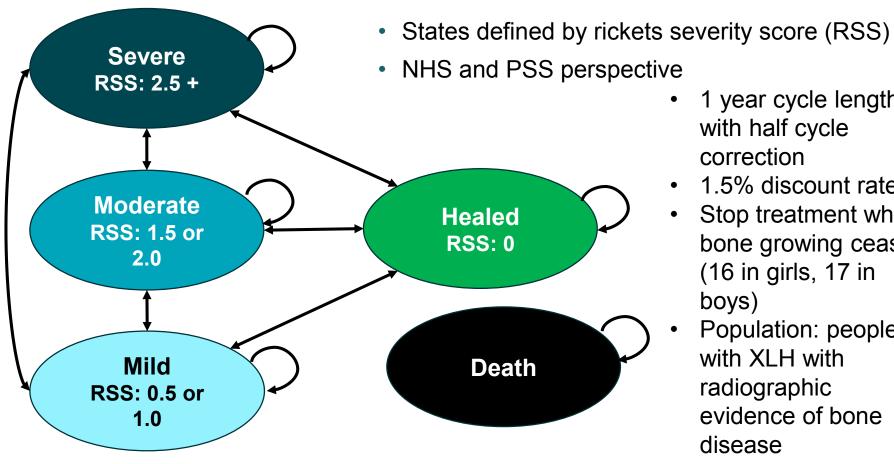
Evidence review group: Kleijnen Systematic Reviews

NICE team: Thomas Paling, Ian Watson, Sheela Upadhyaya

Key issues for consideration (1)

Cost-effectiveness

- Is the economic model suitable for decision-making?
 - Do the model health states (based on RSS) appropriately map the course of XLH and capture the key elements of the disease?
 - Is it appropriate to assume lifetime disease stabilisation at the end of treatment?
- What are the most appropriate assumptions?
 - Transition probabilities: ERG amendments?
 - Utility values: company vs ERG values? Decline in utility after 20 years?
 - Discount rate: 1.5% or 3.5%?
- What is the committee's view on the probabilistic analyses?


Key issues for consideration (2)

Cost-effectiveness

- What is the committee's view on additional uncertainties in the model?
 - Difference in effect between age groups
 - Baseline weight, age and disease severity
 - Adverse events
- What factors affecting the guidance need to be taken into account?
 - Population contains children: any additional considerations required?
- What are the most plausible ICERs?
- Application of QALY weighting?

Economic model

Structure: Markov model

1 year cycle length with half cycle correction

- 1.5% discount rate
- Stop treatment when bone growing ceases (16 in girls, 17 in boys)
- Population: people with XLH with radiographic evidence of bone disease
- Comparator: standard care

Source: model diagram adapted from CS figure 24

Cost effectiveness analysis Clinical evidence applied in the model

CL205 and CL201:

- Transition probabilities for burosumab
- Baseline age and disease severity (starting health state distribution)

UK Chart review:

- Review of patient records from 3 expert UK centres (38 patients)
 - Wider age range (up to 18 yrs) than CL002, but not as well matched to CL201
- Used to estimate the transition probabilities for standard care

Lloyd et al: Vignette utility study used to inform health state utilities

ONS life tables: Background mortality

UK growth charts: Distribution of baseline weights

Using rickets severity score to define modelled health states

- In the model RSS is used as a proxy for XLH health status
- RSS does not capture all aspects of XLH symptoms and progression
 - E.g. some people with mild rickets could have other XLH manifestations which are more severe
 - This is acknowledged as a limitation of the model structure
 - However, RSS measure provides a reasonable indication of patients' status
- RSS is scored without reference to previous measures → may result in inconsistent scores between time points (could affect transition probabilities)
- RGI-C does capture changes over time, but does not indicate health status so cannot be considered as an alternative proxy

- RSS may improve but there can be residual deformity and increased fracture risk
 - These factors are likely to be negatively associated with utility, so defining health states by RSS may overestimate burosumab benefits

Baseline age, disease severity and weight

				A	ge	Total	
				1–4	5–12		
		Matched to the baseline		Severe	12%	32%	43%
		•		Moderate	7%	23%	28%
Severity			Mild	2%	26%	25%	
			Healed	0%	5%	5%	

Weight

Weight by age and gender taken from UK growth charts

- Base case: 50th percentile
- Sensitivity analysis: 25th percentile (patients have short stature)

- Rationale for the choice of data source is unclear
- Data available from the UK chart review dataset (representative cohort of UK XLH patients) but not used

Transition probabilities (1) Based on RSS data

- For burosumab:
 - Ages 1-4 years old: CL205, up to week 40
 - Ages 5 +: in CL201 (week 0 to week 64,Q2W only)
 - Transitions for 13-17 year olds extrapolated from for 5-12 year olds
- For standard care:
 - Based on data from UK patient chart review
- It is assumed there is no mortality risk with XLH risk is based on general population figures (ONS life tables)
- Transitions between states stop after treatment stops

- Health effects of burosumab are assumed to be age-dependent
 - Unclear whether the distinction between age 1–4 and age 5–12 is due to different manifestation of disease or different treatment effect

Transition probabilities (2)

Transition matrices

Burosumab ages 1-4 years (CL205)

Burosumab ages 5 years + (CL201)

To From	Healed	Mild	Mod	Severe	To From	Healed	Mild	Mod	Severe
Healed	100%	0%	0%	0%	Healed	100%	0%	0%	0%
Mild	0%	100%	0%	0%	Mild	43%	57%	0%	0%
Moderate	0%	59%	41%	0%	Moderate	12%	37%	52%	0%
Severe	0%	50%	50%	0%	Severe	8%	53%	25%	14%

Rickets improves Rickets declines

SoC: UK chart review (assuming LOCF for missing data)

ioi iiiiooiiig data)							
To From	Healed	Mild	Mod	Severe			
Healed	71%	7%	7%	14%			
Mild	9%	70%	11%	9%			
Moderate	4%	18%	69%	10%			
Severe	4%	5%	12%	79%			

- Adjusted transition probabilities to address flaw in the company's method
- ERG changes have a minimal impact

Utility values Company

- 6 physicians experienced in treating XLH acted as a proxy to estimate HRQoL using EQ-5D-5L
- Case study descriptions were developed for:
 - 4 severities of rickets (healed, mild, moderate, severe defined by RSS), in
 - 3 age groups (1-4 years, 5-12 years, and 13 years +).
- Small sample of experts means significant variation around the mean – affects probabilistic analysis
 - To ensure values were plausible, moderate health state used as an anchor

Health state	Utility value				
Age 1-4					
Healed rickets	0.872				
Mild rickets	0.774				
Moderate rickets	0.685				
Severe rickets	0.545				
Age 5-12					
Healed rickets	0.969				
Mild rickets	0.757				
Moderate rickets	0.613				
Severe rickets	0.521				
Age 13 and over					
Healed rickets	0.862				
Mild rickets	0.671				
Moderate rickets 0.575					
Severe rickets 0.462					
Age multipliers applied from age 18+					
No adverse event disutility					
Source: table 31 CS					

Health-related Quality of Life (HRQoL)

Health state vignettes

	Age 1–4	Age 5–12	Age 13+
Healed (RSS=0)			
Mild (RSS=0.5–1) Moderate (RSS=1.5–2)	 For each state/age Diagnosis Walking/gait Usual activities and school/work Stature Strength/mobility Pain 	 Sleep ar Mood/ps Relation Respirat Dental p 	sychological state ships cory function
Severe (RSS=2.5+)			

Utility values ERG comment

- Obtaining utilities from experts not XLH patients or parents is a limitation
- Vignettes imply a perfect association between rickets severity and other outcomes (such as pain) – not always true in XLH
- Utility values in the company submission do not match those reported in the published report of the vignette study (Lloyd et al)
 - ERG use utilities from Lloyd et al report
- Mild and moderate values consistent with the company values

Company response:

- Adjusted Lloyd et al utilities to account for missing estimates for some of the healed and severe healed states
- Adjustments were anchored around the moderate health state

• Which utility values are most appropriate?
Lloyd et al, or adjusted

11				
Health state	Utility value			
Age (1-4)				
Healed rickets	0.800			
Mild rickets	0.774			
Moderate rickets	0.685			
Severe rickets	0.610			
Age 5-12				
Healed rickets	0.890			
Mild rickets	0.757			
Moderate rickets	0.613			
Severe rickets	0.602			
Age 13 and over				
Healed rickets	0.811			
Mild rickets	0.671			
Moderate rickets	0.575			
Severe rickets	0.479			
Source: table 6.3 ERG report				

Colours show increased and decreased values vs company base case 12

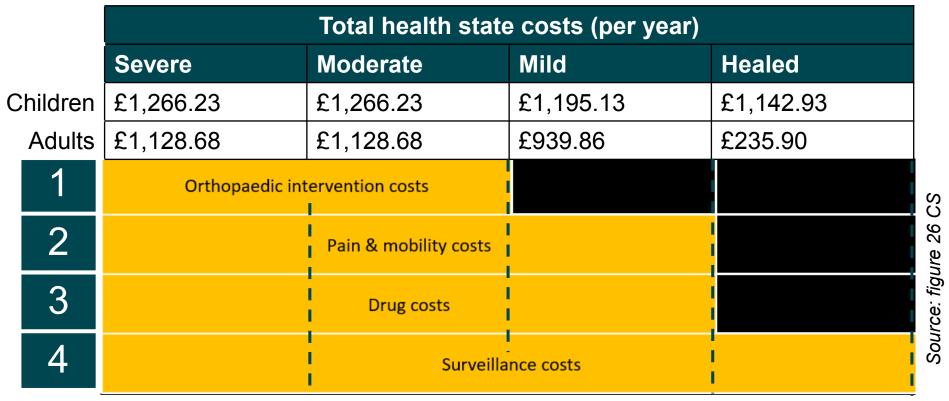
Source: table 6.4 ERG report

Utility values Continued treatment benefit

 After age 17 (closure of the growth plate) patients remain in the same health state

ERG comment:

- The model assumes a life time treatment effect of rickets healing overly optimistic
- The ERG assumed 20 years after the end of treatment patients would experience a decline in quality of life


 After 20 years people are moved to the next (more severe) utility value (the next state down in the table)

Health state	Utility value (13 to 37 years)	Utility value (38 years and older)
Healed rickets	0.811	0.671
Mild rickets	0.671	0.575
Moderate rickets	0.575	0.479
Severe rickets	0.479	0.479

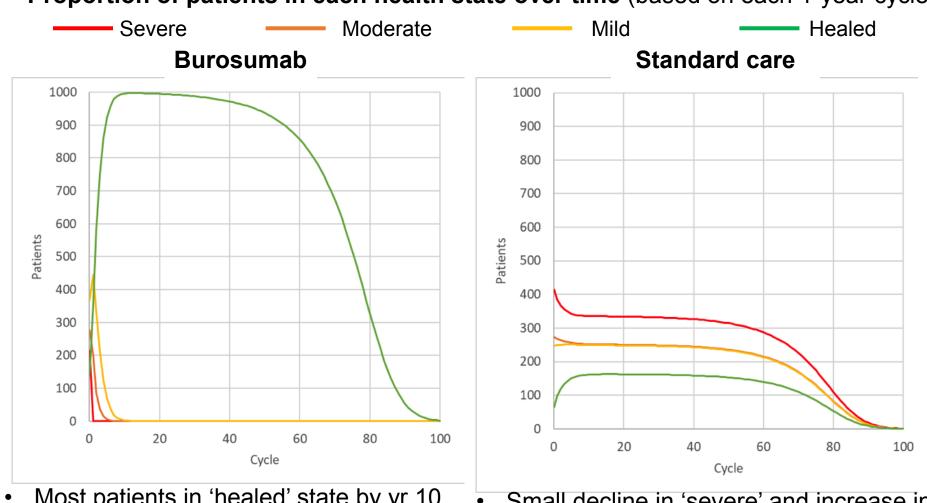
Treatment cost

Cost element Value						
Treatment costs						
Burosumab cost p	£2,992					
Buros	sumab acquisition	n cost: based on (0.8 mg/kg			
Age (years)	Weight (kg)	Rounded dose (mg)	Annual cost			
1 to 5	Up to 18.5	10	£ 77,792.00			
6 to 9	Up to 28.7	20	£ 155,584.00			
10 to 12	Up to 39.1	30	£ 233,376.00			
13 to 15	Up to 54.2	40	£ 311,168.00			
16 and 17	Up to 60.7	50	£ 388,960.00			
	Burosumab ı	monitoring costs				
Costs associated	£126.55					
Conventional therapy acquisition cost						
Annual cost of alf	acalcidol and oral	phosphate	£492.57			

Health state costs

- 1. Hip arthroplasty, osteotomy and dental abnormalities
- 2. Physiotherapy costs (5% of children and 57.4% of adults). No pain management costs are applied
- 3. 9.68grams of phosphate (5 tablets) and 1.125micrograms of alfacalidol per day
- 4. Current cost of UK clinical management. Equal for all health states
 - Such as: specialist consultation, lab monitoring, radiography, renal ultrasonography, and dental check up

CONFIDENTIAL


Company base case results

	Total QALYs	Inc costs	Inc QALYs	ICER
Burosumab	36.293		10.304	
Standard care	25.989			

Source: economic model post clarification

Markov traces

Proportion of patients in each health state over time (based on each 1-year cycle)

- Most patients in 'healed' state by yr 10
- Very few patients in 'severe' state after yr 3
- Small decline in 'severe' and increase in 'healed' over yrs 1–10
- Stable from this point on

Company scenario analysis (1)

Scenario	Scenario info	ICER (£)				
	Company base case					
	Discount rate					
1	Discount rate (3.5%)					
	Starting distribution					
2	Even age distribution of cohort aged 1-12 years					
3	Age and severity distribution: only use Q2W group					
4	25 th percentile children weight distribution					
	Treatment discontinuation					
5	Treatment stops at 15 years, both genders					
6	Treatment stops at 16 years, both genders					
7	Treatment stops at 17 years, both genders					
8	Continuing SoC drug treatment in adults with healed rickets					
Burosumab dose						
9	Mean burosumab dose 1.05 mg/kg					
10	Rounding up the dosage of burosumab (closest 10mg)					

11

Patients receive exact dose

Company scenario analysis (2)

Scenario	Scenario info	ICER (£)		
	Company base case			
	Transition probabilities			
12	Transition probabilities (ages 1-4 years) 40-week observations			
13	Transition probabilities (ages 5 years +) 64-week observations			
14	SoC transition probabilities imputing missing data (not LOCF)			
15	Study CL002 data for SoC transition probabilities			
16	Combining CL205 and CL201 transition probabilities			
	Surveillance costs			
17	No surveillance in adulthood for children with healed rickets			
	Mortality			
18	Double mortality risk in severe health state after 50 years			

Company sensitivity analysis Deterministic

Figure and text redacted - CIC

- ICER is sensitive
 to the utility values
 in the healed, mild
 and severe health
 states for people
 13 years +
- Patients remain in the same health state when treatment is discontinued
- ICER also sensitive to burosumab transition probabilities in people aged 5 years +

Source: figure 31 CS

ERG preferred analysis

- The ERG made the following changes to the company base-case:
 - 1. Included costs for adverse events (£5 applied for injection site reactions)
 - ERG: treatment/disease-related AEs were not included in the cost or utility calculations; likely to have a modest effect
 - 2. Corrected burosumab transition probabilities to account for completing risks between modelled health states (see slide 9)
 - 3. Applied utilities from Lloyd et al 2018 (see slide 12)
 - 4. Decline in QoL 20 years after the end of treatment (see slide 13)
 - 5. Discounting at 3.5%
 - ERG: the application of a 1.5% discount rate is only appropriate if the achievement of long-term benefit is highly likely

		Total QALYs	Inc costs	Inc QALYs	ICER
ERG-preferred base-case analysis					
Burosumab		20.122		3.947	
Standard care		16.175			

ERG preferred analysis Impact of ERG changes on company base-case

- Analyses added 1 by 1
- Scenario 5 shows the cumulative impact of all ERG changes

Scenario	Scenario info	ICER (£)	Δ
	Company base-case		
1	Including AE cost		
2	Transition matrices burosumab: alternative		
	methodology to calculate transitions		
3	Utilities from Lloyd et al		
4	Utilities decline 20 years after end of treatment		
5	Discount rate 3.5% (costs and benefits)		

⊙Which assumptions are the most appropriate?

ERG scenario analysis (1)

Scenario	Scenario info	ICER (£)
	ERG base case	
1	Using utilities from the company submission (Lloyd et	
	al adjusted for missing estimates)	
2	Rounding up burosumab treatment dose (to the next	
	10mg)	

ERG scenario analysis (2)

- The ERG queried the assumption that burosumab would have a lifetime treatment effect
 - To account for this they incorporated applying a decline in utility after 20 years in the preferred analysis
 - Scenario analysis explored the impact of changing the time at which the disutility is applied

Figure redacted - CIC

Probabilistic analyses

Company

	Total cost	Total QALY	Inc cost	Inc QALY	ICER
Burosumab		36.293		8.120	
SC		24.825			

ERG preferred

	Total cost	Total QALY	Inc cost	Inc QALY	ICER
Burosumab		17.21		0.94	
sc		16.271			

- Company: probabilistic ICERs higher than deterministic may be caused by sampling negative utility values and effects of prior distribution
- ERG: PSA well performed, but highlights significant uncertainty:
 - Transition probabilities significant effect on ICER
 - Utility values
 - Other uncertainties not captured

Probabilistic analyses ERG comments

Transition probabilities

- Uncertainty in transitions captured using a uniform 'prior' distribution of probabilities – reasonable in principle, but choice of factor (0.05) was arbitrary
- Because the amount of trial data was very low (very few observations), results are very sensitive to the choice of prior distribution
- ERG prefers a uniform prior distribution that applies greater weigh to the prior distribution (factor of 1)

Utilities

- Company used SD not SE when sampling random values for utilities
- Sample utilities 'bounded' so that utility values in less severe states are higher (i.e. healed ≥ mild ≥ moderate ≥ severe)
 - Given that RSS does not capture all aspects of XLH, bounding utilities in this way is not necessary

Other uncertainties not captured: starting state distribution, gender, weight

CONFIDENTIAL

Probabilistic analyses ERG scenario analysis

	ICER (£)
ERG preferred: deterministic	
ERG preferred: probabilistic	

Transition probabilities: Effect of choice of prior distribution

	ICER (£)
ERG preferred: probabilistic	
Assuming prior distribution (dirichlet (0.05,0.05,0.05,0.05))	
Assuming prior distribution (dirichlet (0.1,0.1,0.1,0.1))	
Assuming prior distribution (dirichlet (0.5,0.5,0.5,0.5))	
Assuming prior distribution (dirichlet (1, 1, 1, 1))	

Utilities: Effect of 'bounded' utilities

	ICER (£)
ERG preferred: probabilistic	
Running PSA with bounded utilities	27

QALY weighting

- For ICERs above £100,000 per QALY, recommendations must take into account the magnitude of the QALY gain and the additional QALY weight that would be needed to fall below £100,000 per QALY
- To apply the QALY weight, there must be compelling evidence that the treatment offers significant QALY gains

Lifetime inc QALYs gained	Weight
Less than or equal to 10	1
11–29	Between 1 and 3 (using equal inc)
Greater than or equal to 30	3

	QALY gain		
Scenario	Undiscounted	Discounted (discount rate)	
Company base case	17.01	10.30 <i>(1.5%)</i>	
ERG preferred analysis	8.29	3.95 <i>(3.5%)</i>	
ERG's scenario analysis with the highest QALY gains (burosumab life time treatment effect)	13.56	4.91 <i>(3.5%)</i>	

28

Budget Impact

- Estimated UK prevalence of XLH is
- Number of eligible patients (per year)

	Year 1	Year 2	Year 3	Year 4	Year 5
Expected uptake of burosumab	40%	65%	90%	90%	90%
Burosumab treated patients					
Number of new patients					
Number of continuing patients					
Cost of burosumab (£)					
Cost offsets in drug costs (£)					
Monitoring costs (£)					
Net budget impact (£) ERG comment: Real		~ ~		be pa	atients,

with this number of patients the year 5 costs would be

Impact of the technology beyond direct health benefits

- Through a reduction or elimination of XLH symptoms, people treated with burosumab may be able to gain further education and work more
- In the short term fewer work hours may be lost to carer or patient burdens
- The impact on other government bodies has not been quantified, but it is expected to be reduced as treatment increases independence

ERG comment:

- ERG highlights that the company was unable to quantify costs and benefits incurred outside NHS
 - Interruptions to schooling to attend hospital appointments
 - Limited specialist centres means considerable travel

Service design and delivery

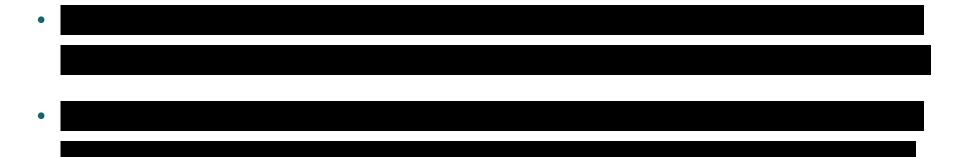
- NHSE does not have a specified service for XLH or rare bone disease
 - Pathway depends on the referring clinician
- NHSE states that the pathway of care would be made clearer if burosumab were to be restricted to expert centres
 - Treatment should be initiated and monitored at expert centres
 - Company reports discussions with NHS England have suggested that burosumab would only be prescribed by specialist centres that are members of ERN-BOND: European Reference Network on Rare Bone Disorders.
- It is planned that burosumab will be supplied via a homecare provider once patients have been established on a maintenance dose
 - Investment in training for parents and older children could allow home delivery
- During the initial dose titration period burosumab will be supplied directly to designated hospitals where this option is required

Innovation

- Burosumab is a first in-class disease-modifying drug that inhibits the action of excess FGF23
- Awarded Promising Innovative Medicine (PIM) designation by the MHRA
- Administration is less burdensome that conventional therapy, this allows for a more normal life for patients and families
- Burosumab is well tolerated and avoids complications that are associated with conventional therapies

Equality

- No potential equality issues were identified during the scoping process
- Burosumab is indicated for the treatment of children and adolescents
- Company states that a refusal to recommend a treatment that principally affects children is discriminatory based on age


Factors affecting the guidance

• In forming the guidance, committee will take account of the following factors:

Nature of the condition	Clinical effectiveness
 Extent of disease morbidity and patient clinical disability with current care Impact of disease on carers' QoL Extent and nature of current treatment options 	 Magnitude of health benefits to patients and carers Heterogeneity of health benefits Robustness of the evidence and the how the guidance might strengthen it Treatment continuation rules
Value for money	Impact beyond direct health benefits
 Cost effectiveness using incremental cost per QALY Patient access schemes and other commercial agreements The nature and extent of the resources needed to enable the new technology to be used 	 Non-health benefits Costs (savings) or benefits incurred outside of the NHS and personal and social services Long-term benefits to the NHS of research and innovation The impact of the technology on the delivery of the specialised service Staffing and infrastructure requirements, including training and planning for expertise

CONFIDENTIAL

Managed access agreement

Key issues for consideration (1)

Cost-effectiveness

- Is the economic model suitable for decision-making?
 - Do the model health states (based on RSS) appropriately map the course of XLH and capture the key elements of the disease?
 - Is it appropriate to assume lifetime disease stabilisation at the end of treatment?
- What are the most appropriate assumptions?
 - Transition probabilities: ERG amendments?
 - Utility values: company vs ERG values? Decline in utility after 20 years?
 - Discount rate: 1.5% or 3.5%?
- What is the committee's view on the probabilistic analyses?

Key issues for consideration (2)

Cost-effectiveness

- What is the committee's view on additional uncertainties in the model?
 - Difference in effect between age groups
 - Baseline weight, age and disease severity
 - Adverse events
- What factors affecting the guidance need to be taken into account?
 - Population contains children: any additional considerations required?
- What are the most plausible ICERs?
- Application of QALY weighting?

Lead team presentation Burosumab for treating X-linked hypophosphataemia

1st Evaluation Committee MeetingHighly Specialised Technologies, 23 May 2018

Lead team: Stuart Davies, Jeremy Manuel, Glenda Sobey

Company: Kyowa Kirin

Chair: Peter Jackson

Evidence review group: Kleijnen Systematic Reviews

NICE team: Thomas Paling, Ian Watson, Sheela Upadhyaya

Patient perspectives: XLH

Impact of XLH

Children Adults

- Physical pain
- Missing schooling, and being unable to participate in sporting activities
- Teasing and bullying due to appearance
- Significant emotional and social impact in children
- "My daughter is regularly upset at not being able to take part in sports for example and comments from other children about her height and her knock knees."
- " ... missed a lot of school due to pain meaning he's unable to attend, also long periods of time off school due to operations"

- Adverse outcomes continue in to adulthood, impacting working choices and subsequently finances
- Appearance can affect relationships
- Family planning has an impact on mental wellbeing and relationships
- Amplified burden when XLH is passed to children – physical and emotional
- "I have been emotionally and physically impacted by this condition."

Patient perspectives: Living with XLH

- XLH causes physical pain:
 - When doing exercise or walking too long
 - Can result in an inability to attend work or school
 - Reliant on care and assistance from others loss of independence
- The condition causes emotional suffering:
 - People with XLH have a physical difference which can be noticed
 - Children with XLH are bullied, which has an impact on both parents and children
 - Parents can feel responsible for suffering in children
- In older age XLH can cause spinal stenosis and severe leg bowing
 - Leaving people unable to walk and potentially bedbound
- As XLH can be passed on to children, multiple individuals in one family are often diagnosed with XLH:
 - Reproductive decisions are complicated and emotionally challenging
 - "You cannot rely on other family members" who are also suffering

Patient perspectives: Diagnosis

Diagnosis

- Testing of children of parents with XLH reduces diagnosis time
- Adults with XLH report diagnosis delays due to lack of knowledge
- Earlier treatment improves outcomes
- Misdiagnosis of rickets in children can delay XLH diagnosis until 3 years +
- Delayed diagnosis can lead to a need for corrective surgery
- "I was misdiagnosed at 18 months of age as having rickets so given alfacalcidol drops only"
- "At around 10 years of age, I was diagnosed with XLH. I already had severe bowing by this age"
- "Diagnosis is particularly a challenge in those where there is no family history of XLH"
- "It's also challenging to learn that delays in obtaining the diagnosis means a delay in treatment at a critical time for bone growth"

Patient perspectives: Current treatment options

- Current treatment options are flawed:
 - Children starting current treatment at birth still have significant leg bowing does not stop symptoms
 - Phosphate solution is unpleasant to take and has unpleasant side effects can cause diarrhoea and stomach pain
 - Administering 6 times a day and keeping phosphate cold is not practical
 - Many children will avoid taking treatment when inconvenient they don't think about the long term impact
- "Phosphate and alfcalcidol has caused all members of my family ... varying degrees of diarrhoea including stomach pain which is very unpleasant to deal with"
- "This obviously has an impact on your school and work, to frequently be excused to take toilet breaks"
- "Phosphate is extremely bitter/sour so very unpleasant and difficult to administer to young children in particular"
- [Administering 6 times a day] "is very difficult to do when you're trying to go about everyday life"

Patient perspectives: Burosumab

Innovation

"[burosumab] treats the underlying cause so would prevent many of the symptoms [...] this will mean less pain [...] and also improve patients' mental state..."

Benefits

- Improvement in pain, fatigue and physical function/mobility
- Improvements in growth and walking ability
- Fewer unpleasant side effects
- Potential reduction in surgery

- Improvement in rickets
- Reduced stiffness
- Treatment in early life would mean improvements in quality of life
- Less frequent dose is more practical
- Less monitoring / fewer doctors' visits

Limitations

- Cannot reverse bone defects
- Administration could be challenging in children with a phobia of needles
- Trips to metabolic bone units for treatment could be costly

Subgroups

- Children treated before onset of symptoms could avoid bone defects
- Lesser benefit in adults (outside the MA), but can still improve pain

Patient perspectives: Need for new treatment

- There is an unmet need for an effective and practical treatment
 - An injection every 2 weeks is easier to manage far preferable to phosphate
 - Side effects are less common and more manageable than current treatment
- Children stand to benefit most from new treatment as they are still growing and can avoid deformities – improved long term physical and emotional wellbeing
 - Treatment will also benefit adults* as deformities can still occur later in life and the management of phosphate levels remains a challenge