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Abbreviations 

Term Definition 

AI Artificial intelligence 

API Application programming interface 

CE mark Conformité européenne (European conformity) marking 

CEA Cost-effectiveness analysis 

CI Clinical investigator 

CNS Central nervous system 

CRD Centre for Reviews and Dissemination 

CT Computerised tomography 

D Dosimetrist 

DICE Dice similarity coefficient 

DICOM Digital Imaging and Communications in Medicine 

DTAC Digital Technology Assessment Criteria 

EAG External assessment group 

ESTRO European Society for Therapeutic Radiology and Oncology 

EU European Union 

EVA Early value assessment 

GBP British Pound 

GDPR General Data Protection Regulation 

H&N Head and neck 

HD Hausdorff distance 

HTA Health technology assessment 

H&N Head and neck 

ICTRP International Registry Platform 

INAHTA International Network of Agencies for Health Technology 
Assessment 

MAUDE Manufacturer and User Facility Device Experience 

MDD Medical devices directive 

MDR Medical device regulation 

MeSH Medical subject headings 

MHRA Medicines & Healthcare products Regulatory Agency 

MRI Magnetic resonance imaging 

N/A Not applicable 
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NHS National Health Service 

NICE National Institute for Health and Care Excellence 

NLM National Library of Medicine 

NR Not reported 

OAR Organs at risk 

PenTAG Peninsula Technology Assessment Group 

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-
Analyses 

PTV Planning target volume 

RCT Randomised controlled trial 

ReQoL Recovering Quality of Life quality 

RO Radiation oncologist 

RT Radiotherapy 

RTOG Radiation Therapy Oncology Group 

RTT Radiation therapist 

RWE Real world evidence 

SCM Specialist Committee Member 

SIGN Scottish Intercollegiate Guidelines Network 

UK United Kingdom 

UKCA United Kingdom Conformity Assessed marking 

USA United States of America 

USD United States Dollar 

VMAT Volumetric arc therapy 

WHO World Health Organization 
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1. EXECUTIVE SUMMARY 

Quality and relevance of clinical evidence 

The findings of this rapid appraisal suggested that there is strong evidence for the potential 

clinical usefulness of AI-based auto-contouring, but unclear evidence around cost-

effectiveness. The EAG identified a total of 79 reports that were potentially relevant to the 

present decision problem. Eight full text papers were predominantly prospective in design, 

19 were predominantly retrospective, and 52 were conference abstracts; 73 of the reports 

looked at a single included technology against a relevant comparator. The remaining six 

reports (all conference abstracts) compared two or more of the included technologies. 

Data were extracted for all eight prospective full text papers. For technologies that did not 

have a prospective full text paper, the highest quality retrospective full text paper was 

identified and extracted. This included five articles. There were no relevant full text articles 

for two of the technologies. For these, the EAG extracted data from a selected high quality 

conference abstract each. Results were therefore extracted from a total of 15 prioritised 

papers. 

All studies had some methodological limitations or misalignment with the NICE decision 

problem for this appraisal. Studies were often poorly reported, and it was not always clear 

what the intervention consisted of, nor how they were applied. Samples sizes were often 

small, and the evidence overwhelmingly focused on the head and neck and the pelvis 

(predominately the male pelvis, for prostate cancer). The most commonly reported outcome 

metrics were geometric outcomes, the clinical applicability of which has been questioned by 

researchers. 

All the studies reported either geometric, dosimetric or satisfaction scores which showed that 

AI-based auto-contouring creates contours, segmentations or plans similar to those created 

by manual contouring for most organs at risk and clinical target volumes. The majority of 

auto-contours were either ready to use or usable with only minor edits. However, certain 

organs at risk were consistently found more difficult to auto-contour, particularly those with a 

small volume, suggesting that auto-contouring is still best seen as an aide to radiation 

oncologists in their contouring work, rather than a stand-alone technology that will replace 

that role. 
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Manual contouring was the comparator for the majority of studies. In those studies that 

included an atlas contouring arm, the AI approach consistently created superior contours 

(e.g., geometrically closer to manual contours). 

Quality and relevance of economic evidence 

Based on clinical opinion to the EAG and evidence from published literature, AI auto-

contouring (including editing and reviewing time) appears to result in time savings when 

compared to current organs at risk contouring approaches used in clinical practice (albeit there 

is considerable time variation based on tumour site and the structures typically contoured). 

Due to the lack of published cost effectiveness evidence and heterogeneity in the pricing and 

reimbursement strategy for each technology, it was not possible to draw firm conclusions on 

the cost effectiveness of AI auto-contouring compared to manual or atlas-based segmentation 

approaches. 

Evidence Gap Analysis 

More robust evidence is required for the following: 1) AI intervention costs in clinical practice 

and how these technologies impact on healthcare resource use and/or patient outcomes in a 

UK context. 2) The impact of local NHS training sets rather than an “off the shelf” approach, 

from both a clinical and harmonisation/cost-effectiveness point of view. 3) AI auto-contouring 

effectiveness for body structures beyond head and neck and the pelvis, and identification of 

those organs at risk that are particularly susceptible to being poor contoured. 4) Relative 

clinical and cost-effectiveness of auto-contouring using MRI vs CT scans. 5) Direct, head-to-

head trials between alternative AI auto-contouring technologies. 

. 

 



   

 

External assessment group report: Artificial intelligence auto-contouring to aid radiotherapy 

treatment planning [GID-HTE10015] 

Date: July 2023  10 of 119 

2. DECISION PROBLEM 

Table 1 details the final scope issued by NICE for this EVA, defined per element of 

assessment.  

Table 1: Summary scope of the assessment 

Population People having radiotherapy treatment planning for external 

beam radiotherapy 

Interventions 

(proposed 

technologies) 

AI auto-contouring technologies for initial treatment planning, 

namely: 

• AI-Rad Companion Organs RT (Siemens 

Healthineers) 

• ART-Plan (TheraPanacea, Oncology Systems) 

• AutoContour (Radformation) 

• DLCExpert (Mirada Medical) 

• INTContour (Carina Medical) 

• Limbus Contour (Limbus AI, AMG Medtech) 

• MIM Contour ProtégéAI (MIM Software) 

• MRCAT Prostate plus Auto-contouring (Philips) 

• MVision Segmentation Service (MVision AI Oy, Xiel) 

• OSAIRIS (Cambridge University Hospitals NHS 

Foundation Trust) 

• RayStation (RaySearch Laboratories AB) 

Comparators Contouring methods used in standard care to contour OAR 

and target volumes including lymph nodes. These include: 

• manual contouring 

• atlas-based contouring 

• model-based segmentation. 

 

Comparators may also include ‘no contours or no contouring’ 

for cases where AI auto-contouring may generate contours for 

structures not routinely contoured in standard care. 

Healthcare setting Outpatient settings 
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Outcomes The outcome measures to consider include: 

Accuracy and acceptability 

• Clinical acceptability of contours including alignment 

with national and international guidelines 

• Accuracy of contours including quantitative measures 

of DICE coefficient and qualitative measures 

• Degree of contour edits needed before use in 

radiotherapy treatment planning 

• Consistency of contours including interrater reliability 

• Impact on radiotherapy treatment planning quality 

assurance including surrogate, qualitative and 

quantitative measures such as: 

o Dose prescription changes 

o Dose volume distributions 

o Radiation toxicity 

o Missing targets 

o Adherence to international guidelines 

• Usability, user experience and satisfaction 

 

Resource and system impact 

• Contouring time including time needed for healthcare 

professional review and manual edits 

• Radiotherapy treatment planning time including time 

saved and difference in time to start of treatment 

• Number of more complex plans produced including 

number of structures contoured 

• Impact on staffing and treatment planning resources, 

such as changes in skill-mix or healthcare professional 

grade needed to produce and review contours 

• Impact of the system on clinical oncology training 

(including training of all healthcare professionals 

contributing to radiotherapy treatment planning) 

• Impact on healthcare professional performance and 

productivity more broadly, such as efficiency, increase 

in patient-facing tasks and staff wellbeing. 
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Costs will be considered from an NHS and Personal Social 

Services perspective. Costs for consideration should include: 

• Costs of AI auto-contouring software including 

installation, licence fees, maintenance and update 

costs for additional libraries or features 

• Costs of any associated technology needed to use AI 

auto-contouring tools excluding capital costs for 

equipment that is otherwise used in standard care 

• Healthcare professional grade and time 

• Cost of other resource use such as additional 

appointments or healthcare professional training 

Time horizon The time horizon for estimating the clinical and economic 

value should be sufficiently long to reflect any differences in 

costs or outcomes. 

Abbreviations: AI = artificial intelligence. DICE = Dice similarity coefficient. NHS = National Health Service. OAR 
= organs at risk. 
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3. OVERVIEW OF THE TECHNOLOGY 

3.1. Purpose of the medical technology 

External beam radiotherapy uses ionising radiation to kill cancer cells in the treated area. It 

aims to give a high dose of radiation to cancer cells but as low a dose as possible to nearby 

healthy cells. Contouring is an important part of the radiotherapy treatment planning process. 

It involves outlining the target volumes and organs at risk (OAR) to guide radiotherapy so 

that treatment is effective and radiation toxicity is reduced. AI auto-contouring technologies 

aim to improve contouring efficiency by automatically contouring the organs at risk, with 

some also contouring the target volumes before radiotherapy. Most of these technologies 

have been trained using deep learning convolutional neural networks (a type of artificial 

intelligence learning algorithm) to process images from CT or MRI scans and produce an 

initial contour. Images and contours are then reviewed by trained healthcare professionals 

and modified as needed.  

During the scoping process, clinical experts advised that they spend a lot of time creating 

and reviewing manual contours. AI auto-contouring, with healthcare professional review, 

may be quicker than manual or atlas-based contouring (see section 4 for more details about 

manual and atlas-based contouring), and hence reduce costs by reducing healthcare 

professional time needed to do contouring. It may also improve consistency of contouring 

between people, standardise processes and improve adherence to international guidelines. 

Clinical experts considered that AI auto-contouring could result in quicker radiotherapy 

treatment planning pathways and shorter time to treatment for patients. The Royal College of 

Radiologists clinical oncology census report 20211 reports workforce pressure because of 

staff shortages and continued effects from the COVID-19 pandemic. Increased efficiency 

from using AI auto-contouring may increase capacity, allow healthcare professionals to focus 

on patient-facing tasks and reduce waiting lists. During the EVA scoping process, experts 

advised that potential improvements in consistency may lead to more accurate contours and 

could reduce unwanted variation and outliers which could reduce toxicity. 

3.2. Product properties 

This EVA focuses on AI auto-contouring technologies for radiotherapy treatment planning. It 

includes 11 technologies that: 
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• use AI-based algorithms to automatically contour organs at risk (OAR) or target volumes 

as part of initial radiotherapy treatment planning 

• are standalone AI auto-contouring software or have AI auto-contouring functionality 

integrated in treatment planning or radiotherapy platforms 

• meet the standards within the digital technology assessment criteria (DTAC), including 

the criteria to have a CE or UKCA mark where required. Products may also be 

considered if they are actively working towards required CE or UKCA mark and meet all 

other standards within the DTAC 

• are available for use in the NHS. 

Technologies for this assessment were identified through NICE topic intelligence, NHS 

stakeholders and clinical experts, and literature search. The scope of this assessment 

excludes adaptive radiotherapy systems. Experts advised that these technologies would 

likely have a different care pathway and should be evaluated separately. The scope also 

excludes bespoke AI auto-contouring technologies developed in-house by local services 

using open-source software such as Inner Eye project by Microsoft. 

SCMs noted that there is considerable heterogeneity between the technologies being 

assessed. Some of the included technologies are “stand alone” systems (such as from 

Limbus and MVision), meaning that they are hardware agnostic. Others, such as MRCAT, 

use in-built systems, meaning that they’re designed to be used with a specific hardware 

platform. A number of the technologies focus just on contouring, while some are part of a 

suite of software (such as DLCExpert) that include other components of the radiotherapy 

planning pathway. 

Other differences include how certain technologies focus on a relatively narrow band of 

structures (for example MRCAT Prostate plus). Various different datasets and consensus 

guidelines will have been used to train the algorithms—this is often poorly reported in 

company literature—and there are also differences in the degree to which a technology can 

be locally trained with datasets from a users’ institution (INTContour is very customisable, for 

example). A number of the technologies are well established, while others are more recent 

additions to the field, and are awaiting their CE Mark (for example AutoContour and 

OSAIRIS). Finally, most companies are continually updating and releasing auto-contouring 
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models, as well as developing new models, meaning that most of the literature will have 

compared algorithms which differ from those found in the technologies today. Such 

heterogeneity makes direct comparison difficult. 

Technologies are described in brief in Table 2. Further information can be found in the Final 

Scope.2 
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Table 2: Description of the technologies 

Full technology 
name and 
manufacturer 

Stand-alone or 
in-built system 

Training guidelines 
used 

Structures contoured CE mark and DTAC 
status 

Implementation options 
and limitations 

AI-Rad Companion 
Organs RT 
(Siemens 
Healthineers) 

Standalone Trained using RTOG 
guidelines 

Contours over 60 
organs at risk on CT 
scans including 
abdomen, head and 
neck, pelvis and thorax. 

The next version 
(VA50), rolling out in 
2023, will also contour 8 
organs at risk using MR 
images. 

CE-marked class IIb 
medical device under the 
EU medical devices 
regulation (MDR) 

 

DTAC application is being 
considered for the 
software 

Designed to be used with 
treatment planning systems 
and interactive contouring 
applications. Is part of 
a ”family” of companion 
software for various body 
regions, including for brain, 
chest, and prostate 

ART-Plan 
(TheraPanacea, 
Oncology Systems) 

Standalone Trained using 
international 
guidelines such as 
such as ESTRO and 
RTOG 

Contours over 150 
organs at risk and lymph 
nodes including 
abdomen, brain, head 
and neck, thorax and 
pelvis on CT images 
and abdomen, brain and 
male pelvis on MRI 

CE-marked class IIb 
medical device under the 
EU MDR 

 

No information on DTAC 
status 

Provided using installation 
files transferred to the 
server that will host the 
software. If the cloud option 
is used it is provided using 
installation files that allow 
access to the software 
installed in the cloud server 
located in that region 

AutoContour 
(Radformation) 

Standalone Trained using 
consensus 
guidelines 

It contours over 200 
structures including 
organs at risk and lymph 
node regions in the 
chest and abdomen, 
head and neck, and 
pelvis on CT images 
and brain on MRI 

Currently undergoing 
regulatory approval with a 
notified body for CE-
marking as a class IIa 
medical device. 

 

DTAC application in 
process 

It has DICOM standalone 
capability and can also be 
integrated with Varian 
Eclipse using the Eclipse 
Scripting application 
programming interface 
(API). 
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Full technology 
name and 
manufacturer 

Stand-alone or 
in-built system 

Training guidelines 
used 

Structures contoured CE mark and DTAC 
status 

Implementation options 
and limitations 

DLCExpert (Mirada 
Medical) 

In-built  

DLCExpert is 
deployed on 
Mirada Medical’s 
Workflow Box 
platform, which is 
a software 
application 
designed to 
perform 
automated 
workflows.  

Trained using 
consensus 
guidelines 

DLCExpert contours 
over 160 structures on 
CT and MRI images, 
including abdomen, 
breast, head and neck, 
prostate and thorax. 

CE-marked class I 
medical device under the 
EU medical devices 
directive (MDD). 

 

No information on DTAC 
status 

It is designed to be used 
with existing treatment 
planning or image 
processing software. 

INTContour (Carina 
Medical) 

Standalone  Not reported 

 

In addition to built-in 
protocols, individual 
institutions can train 
their own AI models 
in house 

Delineates organs on 
CT or MRI images. It 
contours over 60 target 
and organs at risk 
structures from 
abdomen, head and 
neck, male pelvis and 
thorax. 

Regulatory approval for 
use in the UK is expected 
in 2023. 

 

Company plan to apply for 
a DTAC before 09/2023 

INTContour can be 
accessed using the web-
based interface and 
DICOM tools. Users can 
create and use customised 
models. It can also be 
integrated with Varian 
Eclipse and RayStation 
treatment planning 
systems. 

Limbus Contour 
(Limbus AI, AMG 
Medtech) 

Standalone 

It is locally hosted 
and can be 
installed on any 
existing hardware 
without the need 
for a graphics 
processing unit 

Developed in line 
with international 
consensus 
guidelines 

It contours over 200 
organs at risk and target 
volumes including lymph 
nodes, abdomen, 
breast, central nervous 
system, head and neck, 
lung, pelvis and prostate 
on CT images, and 

CE-marked class I 
medical device under the 
EU MDD. 

 

DTAC has been 
completed for a number of 
customers 

It is vendor neutral which 
means DICOM (digital 
imaging and 
communications in 
medicine) files can be sent 
to the existing treatment 
planning system or 
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Full technology 
name and 
manufacturer 

Stand-alone or 
in-built system 

Training guidelines 
used 

Structures contoured CE mark and DTAC 
status 

Implementation options 
and limitations 

(GPU) or cloud 
connection. 

central nervous system, 
gynaecologic and 
brachy structures on 
MRI 

workstation for review and 
clinical validation. 

MIM Contour 
ProtégéAI (MIM 
Software) 

Standalone Not reported Contours organs at risk 
and sensitive structures 
from CT or MRI images. 

It contours head and 
neck, thorax, lungs and 
liver, prostate and 
abdomen structures 
from CT images and 
prostate from MRI. 

CE-marked class IIa 
medical device under the 
EU MDD. 

 

Currently applying for 
DTAC approval 

 

 

Image data are sent from 
the hospital picture 
archiving and 
communication system 
(PACS) or local planning 
system to MIM software for 
contouring before being 
saved as DICOM RT 
structures. Healthcare 
professionals can manually 
correct contours before 
sending to treatment 
planning systems. MIM 
Contour ProtégéAI is 
vendor neutral, and 
installation can be 
customised to service 
needs. 

MRCAT Prostate 
plus Auto-
contouring (Philips) 

In-built 

A clinical 
application 
integrated in 
Philips Ingenia 
system for 
magnetic 
resonance 

Not reported Prostate contouring CE-marked  

 

No DTAC application 
made 

MRCAT images conform to 
DICOM standards and can 
be exported to treatment 
planning systems. 

The company said that the 
system can replace 
traditional CT-based 
workflows with an MRI only 
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Full technology 
name and 
manufacturer 

Stand-alone or 
in-built system 

Training guidelines 
used 

Structures contoured CE mark and DTAC 
status 

Implementation options 
and limitations 

imaging in 
radiation therapy 
(MR-RT).  

radiotherapy workflow from 
imaging and planning to 
position verification. 

MVision 
Segmentation 
Service (MVision AI 
Oy, Xiel) 

Standalone 

 

Trained to comply 
with international 
guidelines using a 
peer-reviewed 
process. 

CT or MRI. It contours 
over 160 structures 
including organs at risk 
and target volumes in 
abdomen and thorax, 
brain, breast, head and 
neck, and pelvis. 

It is a CE-marked class I 
medical device under the 
EU MDD. 

 

MVision has received 
approval of several DTAC 
submissions to various 
NHS trusts 

Images from the scanner or 
treatment planning system 
are exported to MVision. A 
structure set is created, and 
contours are added to the 
original images. These are 
then sent to the DICOM 
folder or treatment planning 
system. 

OSAIRIS 
(Cambridge 
University Hospitals 
NHS Foundation 
Trust) 

Standalone The system was 
trained with data 
from the developer’s 
hospital (Cambridge 
University Hospitals 
NHS Foundation 
Trust) 

It contours up to 26 
head and neck and 
prostate treatment site 
structures on CT images 

Regulatory approval for 
use in the UK is in 
progress 

 

No information on DTAC 
status 

OSAIRIS is an open-source 
standalone AI auto-
contouring software. It is a 
cloud-based workflow 
acceleration technology, 
designed for free use and 
sharing within the NHS. It 
complies with the NHS 
Azure Blueprint. 

RayStation 
(RaySearch) 

In-built 

 

Trained using 
multiple reference 
CT and/or MR image 
datasets with the 
patient structures 
contoured on them.  

It contours over 70 
structures on CT images 
including breast and 
lymph nodes, head and 
neck, male pelvis, 
thorax and abdomen. 

It is a CE-marked class IIb 
medical device under the 
EU MDD 

 

No DTAC application 
made 

RayStation is a 
radiotherapy external beam 
and brachytherapy planning 
system with AI auto-
contouring functionality 
included as part of the 
standard contouring tools.  

Abbreviations: AI = artificial intelligence; API = application programming interface; CE = Conformité européenne (European conformity); CT = Computerised tomography; 
DICOM = Digital Imaging and Communications in Medicine; DTAC = Digital Technology Assessment Criteria; ESTRO = European Society for Therapeutic Radiology and 
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Oncology; MDD = medical devices directive; MDR = Medical device regulation; MRI = Magnetic resonance imaging; NHS = National Health Service; RTOG = Radiation 
Therapy Oncology Group.
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3.3. Status quo 

AI auto-contouring would be used as an alternative to manual or atlas-based contouring or 

model-based segmentation as part of standard care radiotherapy treatment planning. For 

some cases, AI auto-contouring may generate contours for structures that are not routinely 

produced in standard care. In these instances, no contours or no contouring may be an 

appropriate comparator to consider. 
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4. CLINICAL CONTEXT 

The target population for this assessment is people having radiotherapy treatment planning 

for external beam radiotherapy. 

4.1. Care pathway 

Contouring in radiotherapy treatment planning is used to outline the target volume and 

organs at risk to guide radiotherapy so that treatment is effective and radiation toxicity is 

reduced. Healthcare professionals most often use manual or atlas-based contouring or 

model-based segmentation. Manual contouring is the most common contouring method 

used in standard care. Manual contouring of target regions is usually done by clinical 

(radiation) oncologists, while contouring of organs at risk may also be done by clinical 

technologists, dosimetrists, or therapeutic radiographers. There are published guidelines for 

contouring organs at risk and disease sites from organisations such as European Society for 

Radiotherapy and Oncology3 and the Royal College of Radiologists.4 Atlas-based contouring 

and model-based segmentation are not as widely used in standard care. Atlas-based 

contouring is an automated method that contours new images using models based on 

historical images of similar patient anatomy. Model-based segmentation is also an 

automated method that contours images using statistical shape models for different organ 

structures. Contours regardless of contouring method should be reviewed before being used 

in treatment planning in line with guidance such as the Royal College of Radiologists 

guidance on radiotherapy, target volume definition and peer review.4 

It is expected that AI auto-contouring would be used as part of standard care radiotherapy 

treatment planning. Radiotherapy is usually given in hospital on an outpatient basis. AI auto-

contouring would be reviewed and edited as needed by trained healthcare professionals, 

including clinical oncologists, therapeutic radiographers, clinical technologists and medical 

physicists. It is recommended that all contours should be reviewed and modified as needed 

before being used in treatment planning. 

4.1.1. Current use of AI auto-contouring to aid radiotherapy 

treatment planning 

Five of the eleven companies covered in this review advised in their company submissions 

to NICE that their respective AI auto-contouring technologies are in current use within the 

NHS for radiotherapy treatment planning: 
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*********************************************************************************************************

*********************************************************************************************************

*********************************************************************************************************

*************************************************************  

SCMs reported a range of experience in using AI auto-contouring technologies. Some SCMs 

have used AI auto-contouring for research purposes only; some use this regularly as part of 

current clinical practice.  

4.2. User issues and preferences 

SCMs reported enjoying using AI-based auto-contouring technology and thought that it 

would eventually save time and facilitate standardisation in radiotherapy. Some stated that 

with more use of AI auto-contouring. expertise and resources would be better employed in 

critically reviewing contours rather than in laborious manual delineation. Nevertheless, SCMs 

also described challenges when auto-contouring structures where there was multiple (or no) 

consensus on definition (for example, different protocols exist for inguinal nodes, or for head 

neck lymph nodes). They advised that it is therefore unlikely that AI will be acceptable to all 

users, at least in the first instance. 

Companies also offered their view of the technology in their submissions. They anticipated 

that AI auto-contouring technologies should increase accuracy in organ contouring and 

improve quality of care, and that use of the technologies may facilitate standardisation of 

treatment across the NHS. It was also often advised that technologies could lead to a more 

efficient use of staff time, and reduce the pressures of staff shortages, thus improving 

waiting times. Some companies described these technologies as an adjunct to standard care 

and did not anticipate that the patient experience would be affected.  
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5. SPECIAL CONSIDERATIONS, INCLUDING ISSUES 

RELATED TO EQUALITY 

The following issues were highlighted during the scoping process. No new issues were 

identified during EAG assessment. 

AI models can contain algorithmic bias depending on the population used in training. 

Populations used in training datasets may not be representative of patient populations in 

clinical practice which can cause potential age, gender, disability and ethnic bias. Clinical 

experts advised that there is a potential for gender bias, for example a lack of representation 

of the female pelvis and male breast cancer in some training datasets. There is also a 

potential for disability bias, for example not including people with hip replacements in training 

datasets. Training datasets may also underrepresent children and young people. This may 

affect the performance of AI auto-contouring for these populations. AI auto-contouring may 

perform best with certain CT or MRI sequences or with the person being in a specific 

position such as supine head-first. Training datasets may not include data on atypical 

positioning which may make AI auto-contouring less accurate for some people with limited 

mobility. Clinical experts advised that AI auto-contouring may also not work as well for 

people with atypical anatomy associated for example with previous medical interventions 

such as surgery.  

To mitigate these issues, the potential risk of bias of a specific technology should be 

considered when deciding if to use that technology in research or clinical settings. This 

should form part of a local assessment process before purchase and clinical decision-

making. Companies should also provide detailed information on training datasets as part of 

their product information pack, including guidelines used and demographics such as age 

range, gender ratios and inclusion of disabilities. 

Cancer is considered a disability under the Equality Act 2010. Incidence rates in the UK for 

all cancers combined are highest in people aged 85 to 89 with more than a third of 

diagnoses each year being in people aged 75 and older. Age and disability are protected 

characteristics under the Equality Act 2010.  
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6. POTENTIAL IMPLEMENTATION ISSUES 

The NICE adoption and implementation team consulted clinical experts and noted several 

potential implementation issues. When deciding whether to use AI auto-contouring 

technologies, radiation oncology services should consider: 

• compliance with GDPR, information governance and cybersecurity standards 

• staff acceptability of AI auto-contouring including ease of implementation considering 

workforce skills and workflows 

• education and training needed to use the specific technology 

• how automated decision-making fits into local protocols 

• bandwidth and server requirements 

• monitoring performance, risk assessment and quality assurance. 

Experts and stakeholders outlined several considerations for using AI auto-contouring 

technologies in the NHS. AI auto-contouring technologies should:  

• conform to national and international guidelines 

• come with detailed information on training datasets used, software optimisation and 

validation 

• be DICOM compatible (DICOM stands for Digital Imaging and Communications in 

Medicine and is the standard for the communication and management of medical 

imaging information and related data5) 

• be vendor neutral and able to integrate into current workflows easily and automatically 

• include all relevant organs at risk and targets including additional structures not 

manually contoured 

• be customisable, such as which structures to include, structure names, colours and fit 

with local protocols. 
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7. CLINICAL EVIDENCE SELECTION 

7.1. Search strategy 

Search strategies were based on those devised during the initial scoping searches by NICE 

Information Services with some amendments. The search strategies used relevant search 

terms, comprising a combination of indexed keywords (e.g., Medical Subject Headings, 

MeSH) and free-text terms appearing in the titles and/or abstracts of database records and 

were adapted according to the configuration of each database. No date, language or 

publication status (published, unpublished, in-press, and in-progress) limits were applied. 

Searches for clinical and cost-effectiveness were combined and carried out in one search 

strategy. 

Databases searched were Medline (including Medline in Process), Embase, Cochrane, 

INAHTA, CEA Registry and ScharrHUD. Additional trial registries searched were 

Clinicaltrials.gov (NLM) and ICTRP (WHO). The websites of the individual companies were 

searched; NICE and SIGN websites were searched for related guidelines, and MAUDE and 

MHRA were searched for adverse events data. Following deduplication (in Endnote), a total 

of 933 records of potentially relevant evidence on clinical and/or cost effectiveness were 

retrieved.  The company submission references were also scanned for additional 

references—from which five new articles were identified. 

The search strategies are presented in Appendix A. 

7.2. Study selection 

The abstracts and titles of references retrieved by the searches were screened for relevance 

(facilitated by the Rayyan platform). Full paper copies of potentially relevant studies were 

obtained. The retrieved articles were assessed for inclusion against pre-specified 

inclusion/exclusion criteria. At each stage of screening, a minimum of 10% of records were 

independently screened by a second reviewer. Discrepancies were resolved by discussion, 

with involvement of a third reviewer, where necessary. All duplicate papers were excluded. 

This assessment looked across a range of evidence types, including RCTs and real-world 

evidence, to inform clinical effectiveness.  

The following study types were excluded: 
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• Animal models 

• Pre-clinical and biological studies 

• Narrative reviews, editorials, opinion pieces 

• Meeting abstracts for studies where full-text papers were available. If studies were only 

available as meeting abstracts, inclusion depended on sufficient information being 

available to offer meaningful critique.  

• Studies not available in the English language. 

Eligible studies assessed a scoped intervention in a population of people having 

radiotherapy treatment planning for external beam radiotherapy.  

Studies were included if the comparator did not match the scope or if the outcomes did not 

match the scope, provided the outcomes appeared reasonable and could offer useful 

information in the context of the appraisal. The EAG’s general approach was one of ‘best 

evidence synthesis’, focusing on the most useful and rigorous evidence available over all 

possible included studies. Because of the large number of included technologies, the EAG 

focused on prospective studies where they were available. At least one full text article or 

abstract was identified for detailed assessment for each technology. This was supplemented 

with additional data from other studies where it was considered appropriate. 

Where no prospective studies were available for a given technology, the most relevant 

retrospective studies were sought. If no retrospective studies were available either, then 

conference abstracts were reviewed. If retrospective studies were available for a technology 

with one or more prospective studies, a brief commentary on these were provided.  

A PRISMA flow diagram is provided as Appendix B.  

Data were extracted from included studies by one reviewer into a bespoke database and a 

sample of at least 10% was checked by another reviewer. Due to time and resource 

constraints associated with conducting an EVA, the EAG did not conduct formal risk of bias 

assessment of the included studies. Informally, studies were prioritised based on a) study 

design (prospective/retrospective), b) currency and c) sample size. Blinding was also noted, 

where applicable (depending on the study design and outcomes assessed). 
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8. CLINICAL EVIDENCE REVIEW 

The EAG identified a total of 79 reports that were potentially relevant to the present decision 

problem. Eight full text papers were predominantly prospective in design, 19 were 

predominantly retrospective, and 52 were conference abstracts; 73 of the reports looked at a 

single included technology against a relevant comparator. The remaining six reports (all 

conference abstracts) compared two or more of the included technologies. Table 3 presents 

an overview of the evidence landscape.  

Data was extracted for all eight prospective full text papers. This covered four technologies: 

DLCExpert, Limbus Contour, MIM Contour ProtégéAI, and MRCAT Prostate plus Auto-

contouring. For technologies that did not have a prospective full text paper, the EAG 

extracted the highest quality and most relevant–based on currency and sample size—

retrospective full text paper (reasons for selection for each of the extracted papers are 

provided in section 8.5). This included five articles, covering five technologies: AI-Rad 

Companion Organs RT*, INTContour, MVision Segmentation Service, OSAIRIS, and 

RayStation. For the last two technologies, ART-Plan and AutoContour, the EAG extracted 

data from a selected high quality conference abstract each. Data was therefore extracted 

from a total of 15 prioritised papers. These are underlined and in bold in Table 3. 

Table 4 presents a detailed overview of the study design, characteristics, and limitations of 
each prioritised study. 
 

 

 

 

* The EAG notes that Ginn 2023 had a mixed prospective and retrospective design. 
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Table 3: Evidence landscape 

Technology Prospective studies 

(full text) 

Retrospective studies 
(full text) 

 Conference abstracts 

AI-Rad Companion Organs RT 

 

Ginn 20236* 
Hu 20237 
Marschner 20228 

Peng 20229 

Ginn 202210 

Maduro Bustos 202211 

ART-Plan 

  

Blanchard 202012 

Nachbar 202113 

Buatti 202214 

Costea 202115 

Rivera 202016 

Gregoire 202017 

AutoContour 

  

Leyva 202218 

Bice 202219 

Marasco 202220 

DLCExpert Hague 202021 
Van Dijk 202022 
Vaassen 202123 

Walker 202224 
Vaassen 202225 
Brouwer 202026 
Brunenberg 202027 

Lustberg 201828 

Van de Glind 202229 

Alty 202230 

Boukerroui 202231 

Vaassen 202132 

Gibbons 202133 

Geng 202134 

Brunenberg 202035 

Hague 202021 

 

* Note that the Ginn 2023 study has both prospective and retrospective components (see Table 4 for more details) 
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South 202036 

Liu 202037 

Poortmans 201938 

Lustberg 201828 

Aljabar 201839 

Bakker 201840 

Gooding 201841 

INTContour 

 

Duan 202242 
Chen 202043 

 

Limbus Contour Radici 202244 
Wong 202145 
Wong 202046 

Wong 202147 
D’Aviero 202248 
Zabel 202149 
 

Kirkby 202250 

Kucharczyk 202251 

Coughlan 202252 

Wong 202053 

Wong 202054 

Wong 201955 

Fong 201956 

Wong  201957 

MIM Contour ProtégéAI Urago 202158  Lastrucci 202259 Lancellotta 202260 

Tsai 202261 

Martinez 202262 

Kruzer 202063 

Cole 202064 

Halley 202065 

MRCAT Prostate plus Auto-contouring Kuisma 202066 

 

Maspero 201867 

MVision Segmentation Service 

 

Strolin 202368 
Kiljunen 202069 

Suresh 202170 

Heikkila 202071 

OSAIRIS  

 

Oktay 202072 

 



   

 

External assessment group report: Artificial intelligence auto-contouring to aid radiotherapy treatment planning [GID-HTE10015] 

Date: July 2023  31 of 119 

RayStation  

 

Almberg 202273 

Rigaud 202174 

Liu 202275 

Sidorski 202176 
 

Multiple tech comparison   Borkvel 202277 

Rong 202278 

Liao 202279 

Yuan 202280 

Gorgisyan 202281 

Doolan 202182 

Bold and underlined text = extracted study (see Table 4) 
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Table 4: Study design and characteristics of prioritised clinical effectiveness studies  

Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

AI-Rad Companion Organs RT (number of prioritised studies = 1) 

Ginn 20236 Part 
retrospective 
and part 
prospective 

 

USA 

Retrospective 

100 cases 

H&N (x46) 

Pelvic (x56) 

 

Prospective 

20 cases 

H&N (x10) 

Pelvic (x10) 

Auto-contours were 
generated by Siemens 
using the stand-alone 
automatic contouring 
application (which does 
not allow any user 
specific configuration). 

Retrospective: original 
clinical contours used 
to benchmark the 
automatic contouring 
software were 
generated by several 
different dosimetrists 

 

Prospective: manual 
contouring was 
performed by a trained 
medical dosimetrist. All 
patients and 
contouring tasks were 
assigned in a random 
order to mitigate bias 
from having previously 
seen either the 
automatic or manual 
contours 

Time-saving 
metrics (contouring 
time, including the 
time required to edit 
automatic contours) 

 

Qualitative 
assessment (scale 
scoring of clinical 
acceptability by 
physicians on a 4-
point scale) 

 

Geometric analysis 
(DICE, HD, 
Jaccard) 

No information on 
how patients were 
selected. No 
comparative 
element to the 
qualitative 
assessment. The 
timing component 
of the study only 
used a small subset 
of the total dataset. 

ART-Plan (number of prioritised studies = 1) 

Blanchard 
202012 

Abstract 
(prospective) 

 

France 

100 cases 

H&N 

Auto-contours were 
generated by ART-Plan. 
Two subsets were 
created: 

 

Manual contouring 
was performed by five 
or two experts, 
depending on the 
OARs 

Qualitative 
assessment (scale 
scoring of clinical 
usability by experts, 
including intra- and 
inter-observer 

Abstract only 
means that 
reporting is brief 
hence there is 
uncertainty 
considerable over 
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

Auto (v.1.0): trained 
using 6,000 cases per 
organ. 

 

Auto (v.2.0): trained 
using 21,000 cases per 
organ. 

rating between the 
two datasets) 

 

Geometric analysis 
(DICE, HD) 

exact methods and 
evaluation. 

AutoContour (number of prioritised studies = 1) 

Leyva 
202218 

Abstract 
(retrospective) 

 

USA 

224 structures 

H&N 

Auto-contours were 
generated by 
AutoContour. No local 
training was reported. 

Clinically approved 
organ structures 

Geometric analysis 
(DICE, mean 
surface distance) 

Abstract only 
means that 
reporting is brief 
hence there is 
uncertainty 
considerable over 
exact methods and 
evaluation. 

DLCExpert (number of prioritised studies = 3) 

Hague 
202121,83 

Prospective 

 

UK 

38 cases 

H&N 

 

Auto-contouring models 
were generated using 
DLCExpert: 

1) CT models (x2) 

2) Diagnostic MRI model 

3) Planning MRI model 

4) MR-Linac model 

 

The CT model was 
trained on 72 local 

Manual contouring 
was performed by a 
clinician using MR 
scans 

Qualitative 
assessment (scale 
scoring of 
goodness of fit by 
independent 
observers on a 7-
point scale) 

 

Geometric analysis 
(DICE, distance to 
agreement) 

The MRI model 
was trained and 
tested on a small 
dataset from a 
single institution. 
No information on 
how scans used for 
testing were 
selected. No 
blinding during 
assessment is 
reported. 
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

scans and 549 vendor 
scans. 

The MRI model was 
trained on 100 and 
validated on 28 
datasets. 

Van Dijk 
202022 

Prospective 

 

The Netherlands 

104 

H&N 

  

Auto-contours were 
generated by 
DLCExpert, trained on 
589 local head and neck 
cancer patients. 

1. Manual contouring 
was performed by a 
dedicated team of 
experts according to 
international 
consensus delineation 
guidelines. Clinically 
available atlas 
contours were often 
used as a basis for the 
contouring. 

 

2. Atlas contouring 
was performed by 
WorkflowBox 1.4, 
Mirada Medical, 
designed using a 
representative set of 
30 H&N patients taken 
from the training set. 

Time-saving 
metrics (time for 
two RO’s—an 
expert and a 
beginner—to adjust 
contours as 
necessary to make 
them suitable for 
clinical use) 

 

Qualitative 
assessment 
(blinded testing via 
a Turing test of 
ability to distinguish 
auto-contours from 
human generated 
contours) 

 

Dosimetric analysis 
(Dose constraints 
were computed and 
compared) 

 

The basis for 
manual contouring 
was often atlas 
contours, meaning 
that the study may 
be biased towards 
atlas contouring. 
The time 
evaluation, Turing 
test, and inter-
observer evaluation 
were performed on 
a subset of the 
sample. 
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

Geometric analysis 
(DICE, HD, 
absolute dose 
difference 

Vaassen 
202123 

Prospective 

 

The Netherlands 

20 cases 

Non-small cell 
lung cancer 

Auto-contours were 
generated by a 
prototype deep-learning 
contouring method 
(DLCExpert), followed 
by manual adjustment. 
No algorithm training 
was reported. 

1. Manual contouring 
(and adjustments to AI 
and Atlas contours) 
was performed by one 
experienced RTT. 

 

2. Atlas contouring 
was performed by the 
commercial atlas-
based method (Embra-
ceCT, Mirada Medical) 

Dosimetric analysis 
(comparison of 
dose-volume 
histograms 
between manual, 
atlas, auto, and 
auto + adjusted 
contours, including 
estimation of 
changes in dose 
distributions on 
treatment plans) 

 

Geometric analysis 
(DICE, HD) 

Small sample size 
and relatively small 
number of 
outcomes 
measured. All 
treatment plans 
were optimized by 
a “knowledge-
based planning 
model”; it is unclear 
how this may have 
impacted the 
findings. 

INTContour (number of prioritised studies = 1) 

Duan 
202242 

Retrospective 

 

USA 

23 cases 

Prostate 

Auto-contours were 
generated by 
INTContour, trained on 
84 local cases. 

Manual contouring 
was performed by a 
resident RO, and then 
were reviewed and 
modified by an RO 
with 20 years of 
clinical experience. 
These were then 
further reviewed by a 

Qualitative 
assessment (scale 
scoring of clinical 
acceptability by an 
RO on a 5-point 
scale) 

 

Dosimetric analysis 
(Dose constraints 

Small sample size 
and a small training 
set. A single RO 
performed all the 
manual contouring, 
which may have led 
to errors in the 
reference contours. 
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

third RO with 10 years’ 
experience. 

 

were computed and 
compared) 

 

Geometric analysis 
(DICE, HD, mean 
surface distance, 
inter-observer 
variability analysis) 

Limbus Contour (number of prioritised studies = 3) 

Radici 
202244 

Prospective 

 

Italy 

12 cases 

H&N (x3) 

Prostate (x3) 

Rectum (x3) 

Breast (x3) 

Auto-contours were 
generated by Limbus 
Contour (using the same 
CT scans as manual 
contouring), reviewed by 
the competent RO and, 
if necessary, the 
contours were modified. 
No local training of the 
algorithm was reported. 

Manual contouring 
was performed by four 
different RO’s, each 
with expertise in the 
specific clinical setting, 
following national and 
international 
consensus guidelines. 
Additional imaging was 
used, if necessary. 

Time-saving 
metrics (contouring 
time; absolute and 
relative differences) 

 

Dosimetric analysis 
(differences in dose 
volume histograms) 

 

Geometric analysis 
(DICE, volume 
variation, centre of 
mass shift) 

Very small sample 
sizes. No 
information on how 
patients were 
selected. 

Wong 
202145  

Prospective 

 

Canada 

~606 RT plans. 
A selection of 
which were 
assessed via 
scale scoring 
and geometric 
analysis: 

Limbus Contour auto-
segmentation software 
version 1.0.22 was 
implemented at two 
centres. Generated 
contours underwent 
manual review and were 

Unedited auto-
contours were 
compared to the edited 
treatment approved 
contours 

Qualitative 
assessment (scale 
scoring of the 
degree of edits 
required by 
RTT’s/D’s and RO’s 
on a 5-point scale) 

Relatively limited 
outcome metrics 
evaluated. No 
independent 
controls (i.e. no 
manual contours, 
and hence no 
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

CNS (x27) 

H&N (x54) 

Prostate (x93) 

edited as needed prior 
to being used for 
treatment planning. 

 

Geometric analysis 
(DICE, HD) 

comparative 
component for the 
qualitative 
assessment). Only 
a relatively small 
proportion of 
included plans were 
formally assessed, 
which may bias the 
outcomes.   

Wong 
202046 

Prospective 

 

Canada 

60 cases 

CNS (x20) 

H&N (x20)  

Prostate (x20) 

Auto-contours were 
generated using the 
auto-segmentation 
models in Limbus 
Contour. There was no 
local training of the 
algorithm. 

Manual contouring 
was performed by 
volunteer ROs using 
the same scans as 
used for AI contouring: 
three ROs for CNS, 
four for H&N, and 
three for prostate. ROs 
contoured according to 
their training and 
clinical judgement 
without viewing pre-
existing contours. 

Time-saving 
metrics (contouring 
time) 

 

Geometric analysis 
(DICE, HD) 

Small sample size 
for each structure. 
Only certain 
patients were 
eligible for 
inclusion, and 
patient selection 
was unclear. 
Limited number of 
outcomes metrics. 

MIM Contour ProtégéAI (number of prioritised studies = 1) 

Urago 
202158 

Prospective 

 

Japan 

51 cases 

H&N (x30) 

Prostate (x21) 

Auto-contours were 
generated by MIM 
Contour ProtégéAI (ver. 
0.9). No local training of 
the algorithm occurred. 

1. Manual contouring 
was performed by 
three RO’s for patients 
with prostate cancer, 
and five RO’s for 
patients with H&N 
cancer. 

Time-saving 
metrics (delineation 
time) 

 

Qualitative 
assessment (visual 

Small sample size 
for each structure. 
Uncertainty over 
how patients were 
selected. 
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

 

2. Atlas contouring 
was performed by the 
commercial software 
MIM Maestro (ver. 
7.0.3) 

evaluation of errors 
by RO’s) 

 

Geometric analysis 
(DICE, HD, mean 
distance to 
agreement 

 

MRCAT Prostate plus Auto-contouring (number of prioritised studies = 1) 

Kuisma 
202066 

Prospective 

 

Finland 

65 cases 

Prostate 

Auto-contours were 
generated by MRCAT 
after all standard 
manual delineations had 
been finished. No local 
training occurred. 

Manual contouring 
was performed by the 
clinical investigator 
(CI) RO’s. The CI was 
blinded to the 
structures contoured 
by the RO, and vice 
versa 

Geometric analysis 
(DICE, HD, 
absolute volume 
difference, centre of 
mass shift) 

Limited range of 
(only geometric) 
outcome metrics 
collected. A 
radiotherapist 
inspected the auto-
contours for outliers 
(e.g. cases where 
auto-contouring 
clearly mis-
performed). It is 
unclear how this 
may have impacted 
the findings. 

MVision Segmentation Service (number of prioritised studies = 1) 

Strolin 
202368 

Retrospective 

 

Italy 

111 cases 

H&N (x20) 

Breast (x20) 

Abdomen (x21) 

Auto-contours were 
generated by MVision 
and manually adjusted if 
necessary. The time 
between manual 
contouring and 

Manual contouring 
was performed by at 
least one senior and 
two in-training ROs, 
according to 
institutional protocols. 

Time-saving 
metrics (contouring 
time, including time 
for manual 

Small sample size 
for each structure. 
Uncertainty on how 
patients were 
selected.  
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

 Thorax (x20) 

Male pelvis 
(x20) 

Female pelvis 
(x10) 

modifying auto-contours 
was at least six months 
to remove potential bias. 
No local training of the 
algorithm occurred. 

An Atlas-based 
approach was 
permitted only for lung 
segmentations 

adjustment of auto-
contours) 

 

Qualitative 
assessment (scale 
scoring of level of 
satisfaction by RO’s 
on a 5-point scale) 

 

Geometric analysis 
(DICE, mean 
distance 
agreement) 

OSAIRIS (number of prioritised studies = 1) 

Oktay 
202072 

Retrospective 

 

UK 

178 cases 

Pelvic male 
(x132) 

H&N (x46) 

 

Auto-contours were 
generated by an AI 
model trained using a 
subset of the data. For 
pelvis the algorithm was 
trained on 345 scans 
and validated on 42 
scans. For head and 
neck it was trained on 
176 scans and validated 
on 20 scans. 

Manual contouring 
was performed by one 
expert and later 
reviewed by another 
oncologist 

Time-saving 
metrics (contouring 
time) 

 

Geometric analysis 
(DICE, HD, mean 
surface-to-surface 
distance) 

Uncertain how 
patients were 
selected. Limited 
number of 
outcomes metrics. 

RayStation (number of prioritised studies = 1) 

Almberg 
202273 

Retrospective 

 

Norway 

30 cases 

Left-sided 
breast cancer 

Deep learning 
segmentation models 
were trained by 

Manual contouring. 
The heart, left anterior 
descending artery, and 

Qualitative 
assessment (scale 
scoring of level of 

Uncertain how 
patient datasets 
were selected. 
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Reference Study design & 
country 

Sample & 
structures 

Intervention Comparator(s) Outcomes Study limitations 

RaySearch on 170 
cases from two centres 
in Norway. The final 
model was integrated 
into RayStation v9B. 

 

thyroid gland were 
delineated by 
oncologists 
(delineation of the 
heart was based on a 
previous atlas). The 
remaining structures 
were delineated by 
radiation therapists. 

 

satisfaction by RO’s 
on a 4-point scale) 

 

Dosimetric analysis 
(changes in dose 
distributions on 
OARs) 

 

Geometric analysis 
(DICE, HD) 

Uncertain 
generalisability as 
training from local 
cases were used. 
Time savings are 
discussed but not 
formally evaluated. 

Abbreviations: CI = clinical investigator. CNS = central nervous system. CT = computerised tomography. D = dosimetrist. DICE = Dice similarity coefficient. H&N = head and 
neck; HD = Hausdorff distance. MRI = magnetic resonance imaging. H&N = head and neck. OAR = organs at risk; RO = radiation oncologist. ROI= regions of interest. RTT = 
radiation therapist. UK = United Kingdom. USA = United States of America.  
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8.1. Overview of methodologies of all included studies 

All studies described in Table 4 had some methodological limitations or misalignment 

with the NICE decision problem for this appraisal. 

8.2. Study design, intervention and comparator 

Of the 15 prioritised papers, eight were prospective, five were retrospective (although 

one of these had a part prospective and part retrospective design) and two were 

conference abstracts (one of which was retrospective while the other appeared to be 

prospective). 

Study methods were often poorly reported. The sequence of events, such as when 

and how patient selection occurred, and when manual and auto-contours were 

performed, was frequently unclear. It was often challenging to ascertain whether a 

study was prospective or retrospective in design. Similarly, it was regularly unclear 

what the intervention consisted of. Software or algorithm version numbers were 

typically unreported, and it was not always clear whether local training or other user-

specific adjustments might have occurred, and if so, what difference this might have 

made to the “off the shelf” versions of the technology. This impacted on the 

generalisability of the evidence base. It was also often uncertain whether the 

intervention was the named technology, the algorithm that powers it, or the local 

adjustments or scripting algorithm that was performed in the tool. 

The most common comparator was manual contouring (in 13 of the 15 prioritised 

studies)—these typically were used as a reference contour, against which auto-

contours were judged. Sometimes manual contouring was performed by a single 

radiation oncologist, after which the contour may or may not have been reviewed, 

sometimes by a single of sometimes multiple radiation oncologists. Consequently, 

there was in some studies ambiguity about the reliability of the “ground truth” contour. 

SCM commentary also noted that there are tools in widespread use in treatment 

planning systems to (semi-) automate contouring for certain structures based on CT 

values, so even “manual contouring” isn’t always entirely manual. There was, for 

example, at least one instance in the prioritised studies where atlas contours were 

used as a basis for manual contouring (Van Dijk 202022) 
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The two studies that did not use manual contours as a reference instead used 

unedited auto-contours as the comparator to edited auto-contours. Four studies used 

atlas-contouring alongside manual contouring as a comparator; in one of these 

studies, atlas contouring was only used for lung segmentations. 

Evidence gap: There was a paucity of high quality, prospective studies. This 

may be understandable, as prospective studies are often more time-consuming 

and hence more expensive to conduct, but they offer greater control over 

potential confounding variables and are less susceptible to selection, allocation, 

and recall bias. 

Generalisability gap: The description of the intervention was often poor, 

meaning that it was unclear which version of a technology was being used. 

Alongside this, there is the question of whether local training sets had been used 

to train a technology, and if so, how this might affect the generalisability of the 

findings to other clinics or hospitals using ostensibly the same technology. 

However, the EAG notes that the question of local training does not apply to all 

software—some, such as AI-Rad, does not have the functionality to use local 

training sets. 

8.3. Samples and structures 

Sample sizes were often small—mostly under 100 cases. Larger sample sizes 

tended to come from retrospective studies, although in such studies it was often 

unclear how samples were selected. Some studies reported how patients were 

selected, for example, as consecutive patients from a certain date in the author’s 

institution. However, it was often unclear how patients were selected and why. 

The most commonly assessed structures were head and neck (11 studies) and the 

pelvis/prostate (10 studies). Other sites included thorax/lungs/breast (3 studies); 

rectum (1 study), abdomen (1 study), CNS (1 study). Only three of the prioritised 

studies were from the UK (one prioritised study for DLCExpert, one for OSAIRIS, and 

one for RayStation). 

Evidence gap: First, sample sizes were generally small, but more concerning is 

that details were often lacking in how the patients, cases or scans were selected 

for the study. This raises concerns of potential selection bias. Second, the 
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evidence base is focused on a) head and neck cancer and b) prostate cancer—

other parts of the body are less well covered by the evidence. 

Generalisability gap: The prioritised literature was global in scope, with only 

three of the prioritised studies coming from the UK. This raises generalisability 

concerns, though given the technical nature of most studies, the EAG expects 

that the evidence will be reasonably generalisable across borders. The rise in 

guidelines endorsed by regional and international bodies should further improve 

generalisability84,85. 

8.4. Outcomes reported 

Outcome metrics were classified into four subtypes, based on Mackay et al86: time-

saving, qualitative, dosimetric, and geometric. In line with the wider literature, most of 

our studies focused on geometric outcomes. Few studies were designed to capture 

real-world impact or patient outcomes: there was a lack of real-world, prospective 

trials. 

Fourteen of the studies reported geometric analyses. These are the quantitative 

assessment of similarity between a contour produced by an included technology and 

a ground truth contour. Metrics include the Dice Similarity Coefficient (DICE), the 

Hausdorff distance (HD), Jaccard indices, and the mean distance to agreement. 

These were by far the most reported outcomes, even though research suggests that 

they may not be clinically meaningful—for example there is often only a weak 

correlation between geometric and dosimetric outcomes86-89. It has been suggested 

that a more practical assessment procedure should mimic clinical practice as much 

as possible87. As such, the categories of metrics described below (qualitative, 

dosimetric, and time-saving metrics) may be more meaningful. 

Eight studies used qualitative assessments of auto-contours. This was most often via 

some form of scale scoring, where radiation oncologists or other experts would rank 

auto-contours on an ordinal scale according to whether they are, for example, “ready 

to use”, or would require “major” or “minor” adjustments before use, or are 

“completely unacceptable”. One study used a blinded Turing test, where assessors 

had to guess whether a contour had been created via auto- or manual contouring. 
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Seven studies measure time savings from the use of auto-contours. This metric 

should not just measure the amount of time taken for the creation of an auto- vs a 

manual contour, but also any time needed to check and edit auto-contours and 

prepare them for clinical use. Time-saving outcomes are reported both in the clinical 

section of the report and also in Table 6, on page 68, in the economic evidence 

section. 

The least reported metrics, reported by just five studies, were dosimetric outcomes. 

These compare radiotherapy dosing plans generated for manual contours as against 

auto-contours, for example by comparing dose volume histograms and/or by 

assessing dose constraints. 

Evidence gap: Future studies should focus on outcomes beyond geometric 

analysis. Compared to geometric analyses, satisfaction scores offer a more 

practical real-world test of the usefulness of plans, while dosimetric analyses are 

more applicable to potential patient outcomes. Time-saving metrics are required 

to understand the cost-effectiveness of auto-contouring technology. However, 

they are often not reported, or only partially reported (e.g., the time required for 

editing or correcting auto-contours is not reported). As the technology potentially 

becomes more embedded in systems, then evidence of impact on patients 

should be prioritised, ideally via randomised, real-world, prospective trials (if 

ethically possible).  

8.5. Results from the evidence base 

Short narrative summaries of the evidence base for each technology are provided. 

For the prioritised extracted studies, see Table 4 for more details on study 

characteristics, and Table 11 (in the appendices) for a more detailed breakdown of 

the results. Following this results section is the EAG’s interpretation of the clinical 

evidence (section 9), which summarises the results as follows: 

1. That there is strong evidence for the potential usefulness of AI-based auto-

contouring. 

2. That while most auto-contours were clinically useful, there were always some 

that either needed major editing or were unusable. The same structures 
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repeatedly had lower DICE scores or were marked down in qualitative 

assessment. 

3. That while timesaving has been reported by many studies, only reports that 

include the time taken for manual correction or editing of auto-contours are 

useful. 

4. That the evidence base is focused predominantly on a) head and neck cancer 

and b) prostate cancer. 

5. That it is not possible to say with any certainty that one software is more 

effective to another. 

6. That those studies that included atlas contouring as a comparator were 

conclusive in showing that AI-based auto-contouring gives superior results to 

atlas contouring. 

DICE is the most reported metric below. While there is no clear consensus on what 

an “acceptable” DICE score is, Strolin 202368 suggests that a score of ≥0.8 is 

considered agreement between two radiation oncologists. However, expert 

commentary for this EVA has suggested that this cut-off may not be meaningful as it 

varies across structures. 

8.5.1. AI-Rad Companion Organs RT 

The EAG identified three retrospective studies on AI-Rad. Ginn 20236 was prioritised 

for extraction due to its recency, its relatively large sample size, and because it had a 

partial prospective study design. The study involved 100 patients in its retrospective 

analysis, and 20 in its prospective component—both parts of the study included a mix 

of head and neck and pelvis scans. The study reviewed the time savings accrued, 

concluding that editing auto-contours was faster than manual contouring, with an 

average time saving of 43.4% or 11.8 minutes per patient. Over 95% of the auto-

contours were clinically usable or only needed minor edits to make them so. 

Problematic structures for the algorithm included the prostate, the oesophagus, and 

the optic nerves. The authors concluded that the results were promising, but that 

human review and some editing remains required prior to use. 

The other retrospective papers for AI-Rad were Hu 20237 and Marschner 20228. Hu 

looked at a wider range of structures (head and neck, thorax, breast, and the male 
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and female pelvis) and, similar to Ginn, found that auto-contours were clinically 

acceptable and only required minimal editing. Marschner 2022 focused on the 

algorithm used in AI-Rad rather than the technology itself and reported high 

alignment for both geometric and qualitative analysis. The few auto-contours that 

required manual corrections were mostly for the heart and rectum.  

8.5.2. ART-Plan 

The EAG identified six abstracts for ART-Plan (no full text studies were identified). 

Blanchard 202012 was prioritised because of its large sample size and its 

incorporation of a blinded analysis. The study included 100 head and neck cases and 

looked at versions of ART-Plan that had been trained on either 6000 cases per organ 

(v.1.0) or 21,000 cases per organ (v.2.0). Both geometric and qualitative analyses 

showed higher alignment to manual contours for v.2.0 over v.1.0. Auto-contours that 

were deemed clinically usable (i.e., either “acceptable” or “acceptable after minor 

corrections”) ranged from 100% for mandibles to 92% for the submandibular gland. 

The authors concluded that the auto-contours were very close to expert contouring 

and clinically usable in most cases. 

Of the remaining abstracts identified for ART-Plan, Rivera 202016 focused on breast 

cancer, Nachbar 202113 on the pelvis, and Buatti 202214, Costea 202115, and 

Gregoire 202017 on head and neck. Gregoire reported on time savings, finding that 

two minutes on average were needed to correct the contours after auto-segmentation 

versus 30 minutes for manual delineation. Three of the abstracts, Costea 2022, 

Gregoire 2020 and Nachbar 2021, noted in their conclusions that dosimetric analysis 

is required to complement the geometric analyses presented.  

8.5.3. AutoContour 

The EAG identified three abstracts for AutoContour (no full text studies were 

retrieved). Leyva 202218 was prioritised for extraction because of its larger sample 

size. The study included 224 head and neck structures and focused on a geometric 

analysis of auto-contours vs manual contours. Good agreement was found between 

contours, with DICE scores of greater than 0.7 for 60% of the sample included. A 

larger variance in DICE scores was seen for small structures, such as pituitary, 

chiasm and cochlea. The authors concluded that the tool was efficient in removing 

inter-user segmentation variability that occurs with manual segmentation, but that 
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while good quantitative agreement was found, further analysis was needed using a 

randomized qualitative scoring method and a larger segment sample. 

One of the other abstracts, Bice 202219, looked at the head and neck, thorax, and 

pelvis regions, while Marasco 202220 focused on prostate cancer patients. Bice 2022, 

unlike Leyva, included a qualitative assessment, which incorporated an element of 

time-saving analysis. On a scale of 1 (“zero edits required”) to 5 (“entirely unusable 

output”), with 3 indicating “no time saved by using the software after editing”, the 

mean score for the auto-contours generated was 2.09. Marasco 2022, focusing on 

geometric analysis on the delineation of the rectum, reported an average DICE score 

of 0.8 between manual and auto-contours. 

8.5.4. DLCExpert 

The EAG identified three prospective studies, four retrospective studies, and 15 

conference abstracts for DLCExpert. The three prospective studies were prioritised 

for extraction: Hague 202021 and Van Dijk 202022 both focused on the head and 

neck, while Vaassen 202123 selected non-small cell lung cancer patients. Hague 

2020 collected qualitative and geometric outcomes that compared manual with auto-

contouring using CT scans and MRI scans (MR offers improved soft tissue contrast 

and may therefore be superior to CT for auto-contouring). Qualitative assessment 

found that auto-contours were clinically acceptable for diagnostic and planning MRI 

scans, but not for Magnetic Resonance Linear Accelerator (MR-Linac) scans. 

Geometric analysis of auto-contours from the MR-Linac scans were correspondingly 

lower, with particularly low scores for the left and right submandibular glands (mean 

DICE of 0.1 and 0, respectively). The authors concluded that MR auto-contouring 

shows promise, with statistically improved performance vs a CT based model, 

although performance is affected by the method of MR acquisition and further work is 

needed. 

Van Dijk 2020 reported greater time savings and improved qualitative scores for AI 

over atlas generated contours. Dosimetric analysis also showed a lower mean dose 

for organs at risk for AI over atlas contours. AI-contours further showed an improved 

alignment via geometric analysis with manual contouring compared to atlas contours 

for the thyroid gland, and all upper digestive tract and airway organs (except the oral 

cavity). The authors concluded that a suitably trained deep learning algorithm 
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outperformed atlas contouring for the majority of head and neck organs at risk, and 

that deep learning contouring had the potential to replace atlas contouring currently 

used in their institution. 

Vaassen 2021 similarly found that dose differences for the various AI generated 

treatment plans, when evaluated against the treatment plans generated via manual 

contouring, were small (on average below 1 Gy/1%) and that the majority of 

treatment plans fulfilled the planning objectives. The authors noted some instances 

where organs, contoured by AI, would have received doses above the clinical 

constraint: this happened on occasion for the heart, the lungs and the spinal cord. 

From the geometric analysis, the highest DICE scores were for lungs (1.0), while the 

lowest DICE score was for the oesophagus (0.46). The authors concluded with some 

specific thoughts about the checking required for individual structures. For example, 

the authors suggested that for the heart (Heart Dmean): 

• “Overlap between heart and PTV: the heart contour should be checked and 

adjusted. 

• No overlap between heart and PTV: only a quick check is sufficient.” 

Similar heuristics were set out for the spinal cord, oesophagus and mediastinum.  

Among the retrospective studies, Walker 2022 investigated head and neck and 

prostate structures, finding time savings compared to the existing clinical method 

(which may have differed slightly depending on the three centres) of 5.9 +/- 3.5 min 

for prostate contouring, and 16.2 +/- 8.6 min for head and neck structures. The 

results also showed acceptable geometric alignment. 

Brouwer 202026 and Brunenberg 202027 both focused solely on the head and neck. 

Brouwer 2020 found that while most contours needed very little editing, some 

structures occasionally required large adjustments. The authors reported that auto-

contouring tended to under-segment the desired contour (i.e., that enlarging of the 

contour was needed). Brunenberg 2020 similarly reported—using geometric and 

qualitative analysis—that auto-contours provided a reasonable starting point for 

delineation, noting that some organs at risk were better contoured than others. 
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Vaassen 202225 focused on the thorax region, comparing auto-contours to manual 

contours using qualitative real-world analysis. The authors reported that, similar to 

Brouwer 2020, while most contours needed very little editing, some structures 

occasionally required large adjustments, and that in such cases the auto-contours 

tended to need enlarging.  

Finally, Lustberg 201828 looked at auto-contouring for lung cancer. A prototype of 

DLCExpert was trained with scans from 450 patients and evaluated on 20 patients 

(vs manual and atlas contouring). The median time for manual contouring was 20 

min. Atlas contouring saved a median time of 7.8 min, while deep learning contouring 

saved a median time of 10 min. Deep learning also scored better (scale scoring) than 

atlas contours for most, but not all, structures. The authors concluded that deep 

learning contouring showed promising results compared to existing solutions. 

Because of the large number of full text studies, the EAG offers no commentary on 

the conference abstracts for DLCExpert. 

8.5.5. INTContour 

The EAG identified two retrospective studies. Duan 202242 was prioritised because of 

its recency. The study focused on 23 people with prostate cancer. Geometric 

analysis showed good alignment between auto- and manual contours, with slightly 

lower scores for the seminal vesicles and penile bulb (DICE scores of 0.72 and 0.53 

respectively). A qualitative analysis showed that 95.7% of the auto-contours were 

either “perfect” or “acceptable”. And dosimetric analysis similarly showed good 

alignment with the manual approach, with no statistically significant differences 

between the two for organs at risk, except for the bladder (where the auto-contour 

had generated a lower dose). The authors concluded that, using the investigated 

model, the implementation of an automated prostate treatment planning process was 

clinically feasible. 

The second retrospective study, Chen 202043, focused on head and neck images, 

comparing deep learning contours with atlas and manual contouring. Geometric and 

dosimetric analyses both found that deep learning contours were more closely 

matched with that of manual contours when compared with atlas contours.   
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8.5.6. Limbus Contour 

The EAG identified three prospective studies, three retrospective studies, and eight 

conference abstracts. The three prospective studies were prioritised for extraction: 

Radici 202244, Wong 202145 and Wong 202046. Radici 2022 investigated 12 cases: 

three head and neck, three prostate, three rectum and three breast. Time savings 

were identified for head and neck contours (-65%), breast (-46%), prostate (-18%), 

and rectum contours (-17%). Good geometric alignment was found between auto- 

and manual contours, although the penile bulb scored slightly lower (DICE score of 

0.39). Dose distributions were also similar, except for the bowel, the reason for which 

was discussed. The authors concluded that auto-contouring was able to save time, 

simplify the workflow, and reduce interobserver variability, and that its 

implementation improved the radiation therapy workflow in their department. 

Wong 2021 reported looking at 601 plans, from a subset of which assessment 

surveys were reported for the central nervous system (n = 27), head and neck (n = 

54), and prostate (n = 93). They reported that satisfaction, as measured on a five-

point scale (from 1 [“poor”] to 5 [“high”]), was scored at an average of 4.1 for the 

CNS, 4.4 for head and neck, and 4.6 for the prostate. The optic chiasm had the 

poorest geometric scores and needed the most editing. The authors concluded that 

the high user satisfaction suggested that the auto-contours served as appropriate 

starting points for patient specific edits. 

Wong 2020 included 60 cases, twenty for each of central nervous system, head and 

neck, and prostate. Similar to Radici 2022, Wong also reported time savings: the 

mean auto and manual contouring times were, respectively: 0.4 vs 7.7 min for CNS; 

0.6 vs 26.6 min for head and neck; 0.4 vs 21.3 min for prostate. Geometric analyses 

showed that deep learning contours approximated the expert Inter-observer-

variability seen for organs at risk, although deep learning contours for clinical target 

volumes were less accurate. The authors concluded that auto-contours would likely 

serve as a usable starting template for patient specific adjustments. 

Among the retrospective studies, Wong 202147 focused on the training and validation 

of lung auto-contours, reporting good geometric alignment to clinical contours for 

most organs, but slightly poorer alignment for the brachial plexus (DICE score 0.52). 

D’Aviero 202248 looked at the head and neck. Geometric analysis showed that 
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alignment with manual contours was good, particularly for the brain (DICE score 1), 

left and right eye globes and the mandible (DICE score 0.98). The structures that 

required greater editing were the optic chiasm, optic nerves, and cochleae. Finally, 

Zabel 202190 focused on the bladder and rectum, and found that more editing of atlas 

contours was needed than deep learning contours. Time savings were also reported. 

Mean durations for initial contour generation were 10.9 min, 1.4 min, and 1.2 min for 

manual, deep learning, and atlas contours, respectively. However, because initial 

deep learning contours were more similar to manual contours, the mean durations of 

the editing steps for manual, deep learning, and atlas contours were 4.1 min, 4.7 min, 

and 10.2 min, respectively, leading to overall time savings for deep learning auto-

contouring. 

Because of the large number of full text studies, the EAG offers no commentary on 

the conference abstracts for Limbus Contour. 

8.5.7. MIM Contour ProtégéAI 

The EAG identified one prospective study and one retrospective study for MIM 

Contour. The prospective study was prioritised for extraction. Urago looked at 51 

cases, 30 from the head and neck and 21 from the prostate, and compared AI-

contours with manual and atlas contours. The researchers reported that AI-based 

delineations were more consistent with the manual ones than the atlas contours 

were. There were no significant differences between manual and AI-contours except 

for some small delineations such as the optic chiasm and optic nerve. For prostate 

patients the processing time to create delineations was approximately 3 min per case 

for atlas and approximately 5 min per case for AI, while for patients with head and 

neck cancer the processing times were both approximately 6 min. The authors 

concluded that the effectiveness of the AI-based model can be expected to improve 

efficiency and to significantly shorten delineation time. 

The retrospective study by Lastrucci 202259 focused on prostate cancer and 

compared AI against both atlas and manual contours. The geometric analysis 

reported that AI performed consistently better than atlas contouring: for example, 

mean DICE scores for the prostate were AI 0.78 vs atlas 0.64, and for the rectum AI 

0.86 vs atlas 0.58. 
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Because of the full text studies, and large number of abstracts, the EAG offers no 

commentary on the conference abstracts for MIM Contour ProtégéAI. 

8.5.8. MRCAT Prostate plus Auto-contouring 

The EAG identified one prospective study and one conference abstract. The 

prospective study by Kuisma 202066 looked at 65 prostate cases and compared them 

via geometric analysis to manual contouring. The researchers reported that DICE 

scores showed high alignment for delineating prostate (0.84), bladder (0.92), and 

rectum (0.86), although scores were lower for seminal vesicles (0.56) and penile bulb 

(0.69). The authors concluded that the auto-contours showed good agreement and 

repeatability compared with manual contours, although manual review and 

adjustment of some structures in individual cases remained important. 

The abstract by Maspero 201867 investigated whether MRCAT, designed for patients 

with prostate cancer, might also be suitable for patients with rectal cancer. The 

geometric results showed good alignment and the dosimetric results suggested that 

dose distributions were accurate—and therefore that MRCAT appears feasible for 

use in a clinical radiotherapy workflow for patients with rectal cancer. 

8.5.9. MVision Segmentation Service 

The EAG identified two retrospective studies and two abstracts. Of the two 

retrospective studies, Strolin 202368, who looked at 111 cases of head and neck, 

breast, abdomen, thorax, male pelvis, and female pelvis cases, was prioritised 

because of its recency and large sample size. The authors reported that median 

DICE scores, when comparing manually adjusted auto-contours vs unedited auto-

contours, were higher than 0.8 for all the organs except for the oesophagus and 

glottis. Qualitative analysis showed that radiation oncologists scored 44% of unedited 

auto-contours as 4 (“well done”) and 43% as 5 (“very well done”). The median time 

for manual delineation, deep learning-based segmentation, and subsequent manual 

corrections were 25, 2.3 and 10 minutes, respectively. The authors concluded that 

the tool offered a high level of user satisfaction, saved time, and improved 

consistency among radiation oncologists. 

The second retrospective study, by Kiljunen 202069, focused on 30 prostate cancer 

patients across six clinics. The study reported that mean time saved by using auto-
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segmentation as against manual contouring was 12 minutes for the whole data set (-

46%). In terms of geometric outcomes, mean DICE scores, when comparing manual 

with auto-contours (across all six clinics), were 0.82 for prostate, 0.72 for seminal 

vesicles, 0.93 for bladder, 0.84 for rectum, 0.69 for femoral heads and 0.51 for penile 

bulb. The authors concluded that using auto-contouring saves time and improves 

consistency. 

The two abstracts looked at prostate cancer (Suresh 202170) and breast cancer 

(Heikkila 202071). Suresh reported that geometric and dosimetric outcomes showed 

good alignment between manual and auto-contours. Heikkila investigated AI 

contours against both manual and four atlas-based segmentation software. They 

reported that the AI method resulted in equal or better contours as compared to 

atlas-based methods. 

8.5.10. OSAIRIS  

The EAG identified one study (Oktay 202072), a retrospective analysis of 132 pelvic 

male and 46 head and neck cases that compared auto-contours to manual 

contouring. Geometric analysis revealed that auto-contouring achieved levels of 

clinical accuracy within the bounds of expert interobserver variability for 13 of 15 

structures (the left and right submandibular glands were the only two structures 

outside the bounds). Auto-contouring also saved time. Manual segmentation of nine 

organs at risk took 86.75 min/scan for an expert reader and 73.25 min/scan for a 

radiation oncologist. Whereas the correction time of auto-contours was 4.98 min/scan 

for head and neck scans and 3.40 min/scan for prostate scans. The authors 

concluded that, with the availability of open-source libraries and reliable performance, 

the tool creates significant opportunities for the transformation of radiation treatment 

planning. 

8.5.11. RayStation 

The EAG identified two retrospective studies and two abstracts. Of the two 

retrospective studies, Almberg 202273 was prioritised because of its currency. The 

study focused on breast cancer, and the algorithm was trained on 170 patients and 

evaluated on a further 30. The authors reported that “no” or only “minor corrections” 

were required for 14% and 71% of the clinical target volumes and 72% and 26% of 

the organs at risk, respectively; the most frequent corrections were made for the 
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cranial and caudal parts of the structures. Geometric analysis revealed that auto-

contour variation was generally less than observed manual inter-observer variation. 

Dosimetric analysis also found consistency between auto- and manual contours—

while some statistically significant differences were found, no differences in organs at 

risk dosage were considered clinically relevant. Finally, although not formally 

measured, the authors estimated that the use of AI reduced total delineation time 

from roughly 1 hour to 15 minutes per patient. 

The second retrospective study, by Rigaud 202174, focussed on cervical cancer, with 

the algorithm in RayStation 9B trained on 255 scans and tested on 61 validation, 62 

internal test (at a centre in the US) and 30 external test scans (at a centre in France). 

The authors found similar performance between the two institutional data sets and 

reasonable dosimetric accuracies. Auto-contouring challenges were found when 

there was an absence of clear contrast between organs (e.g. between the cervix and 

bladder) or other difficulties with the scan, though the authors noted that in these 

cases segmentation failures could be easily identified visually and quickly corrected 

manually. 

Both of the abstracts focused on the male pelvis. Liu 202275 reported that geometric 

analysis showed that the agreement between auto-segmented structures and 

manually segmented structures was similar to previously reported values of 

interobserver variability. DICE scores between auto- and manual contours were 0.95, 

0.85, 0.82, 0.92 and 0.91 for the bladder, prostate, rectum, left femur, and right 

femur, respectively. The second abstract, Sidorski 202176, reported an average DICE 

score of 0.85 for organs at risk (bladder, rectum and femoral heads) and 0.7 for 

prostate. 

8.5.12. Multiple technology comparison 

The EAG retrieved six abstracts that compared two or more of the included 

technologies: Borkvel 202277, Rong 202278, Liao 202279, Yuan 202280, Gorgisyan 

202281, and Doolan 202182. Because they are abstracts, reported details are sparse. 

Borkvel 202277 compared MVision, ART-Plan, DLCExpert, RayStation and 

AutoContour, for prostate and head and neck cancer. For prostate, they reported 

that, on average, manual contours took 43.1 min and that the range of time reduction 

provided by AI tools was between 1.1 and 67.4%, with a median value of 50.7%. 
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(The EAG noted the abstract did not report the mean reduction, which is the statistic 

required for decision making.) Larger time savings were seen for tools with higher 

average DICE scores and for a tool that included a local training data set (from the 

North Estonia Medical Centre). For head and neck, manual contouring took an 

average 2.81 hours. AI tools were found to reduce this time by nearly 50% (though 

the EAG noted that the authors do not report whether this is a median or mean 

figure). The authors also noted in their conclusion the importance of training the 

algorithm, and that including local data in the algorithm training set can improve 

outcomes. 

Rong 202278 compared MIM, Limbus Contour, DLCExpert, INTContour and 

AutoContour, for head and neck cancer. They reported that lower DICE scores 

(compared to manual contours) were found for the optical chiasm, oral cavity, optical 

nerves, and the cochlea. The authors also reported that some AI platforms showed 

better consistency compared to the corresponding manual contours, especially for 

those soft tissue organs that are difficult to identify on CT images—the authors do not 

report which platforms. 

Liao 202279 compared MIM, Limbus, DLCExpert, INTContour and AutoContour, also 

for head and neck cancer. The authors report that AI generated contours were 

accurate for high contrast and relatively large organs, such as: mandible, brain, 

parotids, eyes, and sub mandibular glands, with DICE scores of around 0.8-0.9 from 

all modules. However, for low contrast regions, more complex and/or smaller 

structures, such as the brachial plexus and chiasm, DICE scores decrease to <0.5. 

The score also varied among modules for long structures like spinal cord and 

oesophagus. The study further incorporated a qualitative assessment of the AI 

contours by two dosimetrists and two physicists using a 4-point scoring scale, in 

which the authors report that Limbus was the top performer. 

Yuan 202280 looked at MIM, Limbus Contour, DLCExpert, INTContour and 

AutoContour for three anatomical sites: thorax, abdomen, and pelvis. Among the 25 

organs investigated, 10 had DICE scores of >0.9, including lung, liver, kidney, 

femoral head, bladder, and heart. Eight averaged DICE scores of 0.7 to 0.89, 

including spinal cord, rectum, and stomach. The remaining organs, including 

gallbladder, bronchus, duodenum, seminal vesicle, penile bulb, and brachial plexus, 

reported average DICE scores of <0.7. The authors concluded that AI contouring 
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results in large variations in accuracy among organs of interest, indicating that quality 

assurance of these tools is necessary before clinical implementation. 

Gorgisyan 202281 investigated MVision and RayStation for the male pelvis. The study 

found that both AI models demonstrated good performance for the bladder and 

rectum, but that clinic specific training data might be necessary to achieve 

segmentation results in accordance with the clinical specific standard for some 

anatomical structures, such as the femoral heads in the case of the authors’ 

institution. The authors also noted that manual delineation took on average 13 

minutes compared to 0.5 minutes (RaySearch) and 1.4 minutes (MVision), although 

this did not include manual correction. 

Doolan 202182 compared MVision and DLCExpert. They focused on breast, head 

and neck, lung, and prostate. The authors reported that both commercial AI 

contouring solutions generated contours with consistently high DICE and low HD 

scores, offering good quality structures across all anatomical sites. Also, it was noted 

that the time to correct the AI contours was less than the time required to contour the 

structures manually, for both technologies. 
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9. INTERPRETATION OF THE CLINICAL EVIDENCE 

The rapid review of the evidence for eleven AI-based auto-contouring technologies 

has identified some key themes in terms of the clinical evidence. 

First, there is strong evidence for the potential usefulness of AI-based auto-

contouring in healthcare systems. All the studies reported either geometric, 

dosimetric or satisfaction scores which showed that AI-based auto-contouring 

creates contours, segmentations or plans similar to those created by manual 

contouring for most organs at risk and clinical target volumes. The majority of auto-

contours were either ready to use or usable with only minor edits. 

Second, while most auto-contours were clinically useful, there were always some that 

either needed major editing or were unusable. The same structures repeatedly had 

lower DICE scores or were marked down in qualitative assessment. Mostly, they 

were smaller structures, including the pituitary gland, the optic chiasm and optic 

nerves, the cochlea, the submandibular glands, the oesophagus, the seminal 

vesicles, and the penile bulb (SCMs note that these difficulties with small volumes 

may arise because of CT slice thickness, or could simply be a function of how DICE 

is calculated*). This suggests that auto-contours should be used—at least at the 

present time—as starting points for clinical contouring; that all contours need to be 

evaluated and edited as necessary before clinical use. While there is anticipation that 

auto-contouring accuracy will continue to improve, the EAG are interpreting the 

evidence as it currently stands. 

This leads onto the third point, which is that while timesaving has been reported by 

many studies, only reports that include the time taken for manual correction or editing 

of auto-contours are useful. An SCM noted that, “unless perfect, which is unlikely, 

there will always be a requirement for an expert to review and modify”. Therefore, 

some of the larger claims of time-savings need to be considered carefully, particularly 

if they are a crude comparison of time to perform a manual contour vs time for AI-

 

* See, for example, the AAPM (American Association of Physicists in Medicine) report on image 
assessment in radiotherapy at: https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.12256 

https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.12256
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based auto-contouring, with no assessment of the entire workflow, including quality 

assurance. 

Fourth, the evidence base is focused predominantly on a) head and neck cancer and 

b) prostate cancer. While the included studies have not exclusively investigated 

these cancers and the relevant structures (some studies evaluated auto-contouring 

in, for example, the CNS and thorax), other parts of the body are less covered by the 

evidence-base. 

Fifth, because of the multiple metrics reported, the lack of clinical relevance of many 

of the metrics used, the limited generalisability due to local software training, and the 

risk of bias in the trials, the EAG cannot say with any certainty that one software is 

more effective to another. The EAG notes that three technologies have a larger 

evidence-base than others (measured simply in terms of numbers of studies 

identified): these are DLCExpert and Limbus Contour, followed by MIM Contour 

ProtégéAI. 

Sixth, those studies that included atlas contouring as a comparator were conclusive 

in showing that AI-based auto-contouring gives superior results to atlas contouring. 

This was seen in satisfaction scores, geometric and dosimetric outcomes. And 

because AI-based contours were often initially closer to the (reference standard) 

manual contours, they took less editing time too. 
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10. ADVERSE EVENTS AND TECHNOLOGY 

CONSIDERATIONS 

None of the prioritised studies reported adverse effects. This is most likely because 

all the AI-based auto-contours required approval by a qualified clinician before use; 

clinicians were on hand to manually delineate structures in cases where automated 

tools failed to produce a suitable contour. 

Nevertheless, adverse events in the field of auto-contouring are possible. AI-

contouring may occasionally misidentify organs, leading to potential serious errors; 

for example, by mistaking the bladder for one of the kidneys (company submission: 

INTContour). There is also the risk that as AI contouring tools become more 

successful, there becomes an increased reliance on these tools, resulting in 

decreased human review of AI-generated contours. Even with quality assurance 

processes, there remains a risk of poor-quality contouring if AI segmentation is 

inaccurate or not based on guidelines, which could misguide staff members during 

segmentation. It will be necessary to prevent the deskilling of the workforce and 

ensure that clinicians maintain their skills to mitigate potential safety issues. 

MRCAT relies on images generated by Magnetic Resonance Imaging (MRI) 

(company submission; MRCAT). MRI is often considered superior to Computed 

Tomography (CT), in terms of soft tissues detailing, and therefore using MRI offers 

the potential for improved contouring—at least for some structures91. However, it is 

important to note that MRI is contraindicated in patients with certain implants due to 

the high magnetic field involved92. 

There are also software considerations. The EAG searched MAUDE (U.S. Food and 

Drug Administration) and MHRA (UK Government alerts), for the last five years, and 

identified two safety alerts. The first, from MAUDE in July 202193, described a 

software implementation error concerning dose tracking in RayStation; the second, 

from MHRA in February 202394, also concerned dose tracking in RayStation. In both 

cases the event happened in the wider treatment planning system—rather than in the 

auto-contouring algorithm itself. The company stated that this will be corrected in a 

new release of the technology in June 2023. 
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Finally, processing data locally or sending it to the cloud of a host company after 

pseudonymization, as done with software like MVision (company submission; 

MVision) or building an NHS cloud as OSAIRIS (company submission; OSAIRIS), 

entails data protection risks that should be considered95. The EAG notes that 

companies who acknowledge this risk emphasise that patient-identifiable data would 

not be compromised. 

Evidence gap: There is currently very little reporting of adverse effects 

because the evidence base relates primarily to technological over patient 

outcomes. However, if auto-contouring becomes embedded into systems 

then, as noted above, real-world, prospective  trials with patient outcomes 

should be performed, at which time evidence of harms should be collected. 

The EAG noted that there are numerous reports in the evidence base of 

individual auto-contours being clinically unusable or would have led to a 

dangerously high dose to an organ at risk. There is, therefore, real potential 

for patient harm if quality assurance procedures are not followed. 
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11. ECONOMIC EVIDENCE 

11.1. Published economic evidence 

Based on the NICE scope, the EAG did not identify any published cost effectiveness 

evidence within the literature i.e., cost utility analyses, cost effectiveness analyses, 

cost minimisation analyses or cost consequences analyses comparing the listed AI-

auto contouring technologies to either manual or atlas-based contouring were not 

available.  

Evidence gap: There is currently a lack of published cost effectiveness evidence 

comparing AI auto-contouring interventions (as outlined in the NICE scope) to 

manual or atlas-based auto contouring in people having radiotherapy treatment 

planning for external beam radiotherapy. There is a need for robust evidence 

generation regarding AI intervention costs in clinical practice and how these 

technologies impact on healthcare resource use and/or patient outcomes.   

11.2. Economic evaluation 

Conventional health economic evaluation techniques with patient-focused outcomes 

were not considered appropriate for analysis. A cost utility analysis was not feasible 

due to the lack of quality of life/patient reported outcome data within the published 

literature for the interventions of interest. Similarly, a cost effectiveness analysis was 

not considered appropriate due to the lack of quantifiable health outcomes reported 

such as life years gained. The EAG hypothesised that patient outcomes were unlikely 

to be affected by use of AI auto-contouring, the benefit being primarily a reduction in 

time taken in treatment planning. A case could be made for improved patient 

outcomes if AI auto-contouring were shown to be superior to manual, for example 

through better targeted radiation leading to a reduction in dose and less damage to 

surrounding healthy tissues, but this is purely conjectural.  A cost minimisation 

analysis was considered, but due to the heterogeneity in AI intervention cost data 

provided to the EAG, it was not feasible to identify the lowest cost AI intervention 

(see Section 6211.2.1.1).     

A simple cost consequences analysis was selected as the most appropriate 

evaluation method given the extent and quality of data available. A cost 

consequences analysis is a form of economic evaluation that compares the costs 
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and consequences of different healthcare interventions/programmes. It provides a 

comprehensive assessment of the costs incurred and the outcomes achieved, 

without aggregating them into a single metric such as cost effectiveness or cost utility 

ratios.  

Based on the heterogeneity/variability of the evidence available with respect to 

published clinical outcomes (consequences) and technology costs (see section 

11.2.1 for more detail), a robust cost consequences analysis reporting incremental 

results (AI interventions vs manual contouring and atlas-based auto contouring), was 

not possible. The EAG has therefore opted to take a summative approach which lists 

the costs associated with each AI technology, and where available, reports 

information on a key consequence identified in the literature. In this instance 

resource use or time associated with the use of AI auto-contouring technology (vs 

manual or atlas) was considered as the primary consequence, as it was the health 

economic outcome most consistently reported in the literature. 

11.2.1. Costs 

11.2.1.1. Intervention costs 

The costs associated with each AI technology were provided by the manufacturers 

(See Table 5: AI intervention costs). Intervention costs consisted of software costs 

(including license and subscription costs), hardware costs (one-off installation costs), 

data storage costs and maintenance costs. 

The EAG noted considerable heterogeneity and uncertainty surrounding the reporting 

of intervention costs, including the following. 

• Costs for OSAIRIS, DLCExpert and ART-Plan were only reported costs on a per 

patient basis i.e., there was no information on the cost of the software, hardware 

of maintenance costs for these interventions.  

• Per patient costs ranged from £4 to £50. However, the cost per patient reported 

by manufacturers was dependent on hospital size/patient throughput and 

number of scans. Note that cost per patient was not reported for all technologies.  
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• **********************************************************************************************

*******************************************************************************************

********************.   

• Data storage costs were dependent on whether cloud storage would be used or 

if data were to be stored on a hardware device. The applicability of these costs 

therefore depend on each individual hospital’s data storage set up.  

• Some intervention costs were noted to be exclusive of VAT, whilst the VAT 

status of others was not clear.  

Ultimately the EAG considered there to be significant variability in the pricing and 

reimbursement strategies for each technology. The lack of complete costing 

information from all manufacturers and variability in annual treated patient 

numbers/CT scans introduced further uncertainty. It is challenging to therefore 

identify the true cost for each intervention.   

Evidence gap: The cost per technology appears to be dependent on multiple 

factors including utilisation rates in clinical practice. For a meaningful 

assessment of technology costs, it would be helpful to have hospital case study 

evidence for all interventions.  
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Table 5: AI intervention costs 

Technology Software cost Hardware cost Maintenance cost Cost per patient 

INTContour ******************************
********* 

******************************
******************************
******************************
*** 

**************************** ******************************
******************************
*********** 

AI-Rad ******************************
******************************
******************************
******************************
******************************
******************************
**************** 

************************* ****************** ******************************
******************************
******************************
***************** 

ART-Plan ** ** ** *********** 

AutoContour ******************************
******************************
******************************
******************************
******************************
************************ 

******************************
******************************
******************************
******************************
************** 

******************************
******************************
******************************
** 

** 

MRCAT ******************************
******************************
******   

The software can be 
added to existing MR for 
******** 

The MR scanners range 
from £750K to £950K 
depending on 
configuration requirement 

Note: The full RT imaging 
capability may be more 
than this if LAP laser 

Customer support 
agreement would be *** 
per annum for this 
equipment. Costs (ex 
VAT) 

No limit on number of 
patients  
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Abbreviations: AI artificial intelligence, GPU graphic processing unit, LAP laser ablation of the prostate, MR magnetic resonance, NHS National Health Service, NR not 
reported, RT radiotherapy, USD United States dollars, VAT value added tax,

bridges are required in 
addition 

MVision ******************************
**** 

**************************  ******************************
******************************
******************************
******************************
******************************
******************************
********************** 

OSAIRIS NR NR NR £4/ patient 

Raystation **************** ******* ******************************
*************** 

*********** 

DLCExpert  ******************************
******************************
** 

****************** ** *********** 

Limbus AI ******************************
******************************
******************************
******************************
******************************
***** 

************ ************ ******************************
******************************
*************************** 

MIM ******************************
*** 

*************************** ******************************
*************************** 

******************************
************ 
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11.2.2. Consequences 

Time taken to delineate organs at risk and review and edit images associated with AI 

auto-contouring (vs manual or atlas) was considered an outcome of economic 

interest on the basis that this could be quantified and therefore potentially be used to 

inform an economic analysis. As previously mentioned in Section 8, seven prioritised 

studies were identified that measured time from the use of AI auto-contours, these 

included Ginn et al. (2023)6, Van Dijk et al. (2020)22, Radici et al. (2022)44, Wong et 

al. (2020)46, Strolin et al. (2023)68, Oktay et al. (2020)72, and Urago et al. (2021)58. 

Results are reported in Table 6. The EAG noted the following concerns surrounding 

the reporting time as an outcome measure/consequence within the published 

literature.  

• There was considerable heterogeneity between studies in terms of study design, 

number of patients included and site of tumour/AI-auto-contouring use, thus 

making it challenging to compare interventions and meaningfully interpret 

reported times.  

• There was variability between studies in relation the time outcome itself i.e., 

some studies only reported time taken to delineate organs at risk whilst others 

reported delineation time and the editing time required by a clinician.  

• Time estimates were not available for all AI auto-contouring technologies i.e., 

ART-Plan, AutoContour, INTContour and MRCAT.  

On balance, the majority of studies which assessed time as an outcome measure, 

reported time savings associated with the use of AI auto-contouring compared to 

manual contouring. However, the EAG noted one study by Urago et al. (2021)58 

reported that an atlas-based model resulted in less processing time to create 

delineations compared to the AI-based model for the patients with prostate cancer 

(see Table 6).  

Due to the variability of reported data, SCMs were asked to provide additional 

commentary that could help fill data gaps and potentially be used to inform an 

economic evaluation. The full list of EAG ‘cost effectiveness’ questions and SCM 

responses are provided in Table 12, Appendix E. The majority of SCMs confirmed 

that AI auto-contouring is likely to result in a reduction in clinician time compared to 
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standard approaches used (manual and atlas-based contouring), though one 

clinician noted this may not be the case when AI auto-contouring is used in patients 

who have unusual anatomy/post-surgical changes in anatomy. When asked how 

much time clinicians spent editing AI auto-contours, responses ranged from 10 

minutes to 30 minutes. Several clinicians noted that editing time is highly variable 

and depends on the different structures and tumour sites which are contoured in 

clinical practice.  
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Table 6: Studies from the prioritised literature which contained a ‘time saved’ component 

Study Name of Tech/Manufacturer Comparator Results 

Ginn et al. 
(2023)6 

AI Rad-Companion organs RT 
(Siemens Healthineers) 

Manual contouring Edited AI saved 11.8 mins per patient 

Van Dijk 
et al. 
(2020)22 

DLCExpert (Mirada Medical) Manual contouring/Atlas  Atlas contours: 

Average expert delineation time: 36 ± 7 

Average beginner delineation time: 59 ± 14 minutes  
 

Deep learning contours: 

Average expert delineation time: 34 ± 6 

Average beginner delineation time: 54 ± 8 minutes  

Radici et 
al 
(2022)44 

Limbus Contour (Limbus AI, 
AMG Medtech) 

Manual contouring Time savings absolute and relative for: 

Head and neck contours (80 min, -65%) 

Breast contours (7 min, -46%) 

Prostate contours (4 min, -18%) 

Rectum contours (3 min, -17%).  

Wong et 
al. 
(2020)46 

Limbus Contour (Limbus AI, 
AMG Medtech) 

Manual contouring  Mean auto and manual contouring times: 

0.4 vs 7.7 min for CNS 

0.6 vs 26.6 min for head and neck 

0.4 vs 21.3 min for prostate.  

Strolin et 
al. 
(2023)68 

MVision Segmentation 

Service (MVision AI, oy Xiel) 

Manual contouring The median (range) time (mins) for: 

Manual delineation 25.0 (8.0-115.0) 

Deep learning-based segmentation, and subsequent manual corrections 
were, 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively 
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Oktay et 
al. 
(2020)72 

OSAIRIS Manual contouring Manual segmentation of nine organs at risk took 86.75 min/scan for 
expert reader and 73.25 min/scan for radiation oncologist. 

With AI to assist them in reviewing and editing it took: 

4.98 (95% CI, 4.44-5.52) min/scan for head and neck 

3.40 (95% CI, 1.60-5.20) min/scan for prostate 

The autogenerated contours represented a 93% reduction in time 

Urago et 
al. 
(2021)58 

MIM Atlas contouring Delineation time per case: 

Prostate cancer atlas: approximately 3 min 

Prostate cancer AI-based approximately 5 min 

Head and neck cancer using both atlas and AI-based: approximately 6 
min (range, 3–8 min). 

Abbreviations: AI artificial intelligence, CI confidence interval, CNS central nervous system, SIB simultaneous integrated boost, VMAT volumetric arc therapy
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12. INTERPRETATION OF THE ECONOMIC EVIDENCE 

No cost effectiveness evidence was found for any of the 11 AI auto-contouring 

interventions listed in the NICE scope. There remains uncertainty surrounding the 

cost effectiveness of these AI auto-contouring interventions compared to manual 

contouring, atlas-based auto contouring and model-based segmentation in people 

having radiotherapy treatment planning for external beam radiotherapy. The EAG 

initially aimed to utilise manufacturer cost data and published outcome data (on time 

taken to delineate organs at risk and review and edit images associated with AI auto-

contouring vs manual or atlas) in order to create a bespoke cost consequences 

analysis that could help to inform healthcare decision making. However, due to the 

variability in the pricing and reimbursement strategies for each technology and 

limitations surrounding the economic outcome of interest within the published 

literature, a robust analysis was not considered feasible. A summative approach, 

collating manufacturer AI technology costs, SCM opinion and published data on time 

to delineate organs at risk and review and edit images was therefore adopted to 

provide a comprehensive overview of the information available to the EAG. 

Overall, the key costs and outcomes that are of relevance to the decision problem 

are intervention costs (licence fees and upgrade costs, service contracts, data 

storage and capital equipment, costs involved in commissioning—i.e. the testing and 

evaluation of systems prior to clinical use—and costs involved in preparing data for 

training models should this be required), differences in time taken to contour and plan 

a course of treatment, and user (i.e. clinician) satisfaction.  It may be possible to 

hypothesise improved patient outcomes from more carefully directed radiation (via 

increased dose delivered to the cancer and reduced damage to surrounding tissue), 

however the evidence base to support or refute this is still emerging. The evidence 

base focuses on head and neck and prostate cancers and overall intervention costs 

ranged from £4 to £50 per planning session. Evidence on reduced time for treatment 

planning was heterogeneous, including by site of contouring, and thus unclear in the 

magnitude of effect: a critical element is the time required for any manual editing, 

which was not reported consistently across studies. The majority opinion of SCMs 

was that AI-based auto-contouring was likely to reduce treatment planning time, but 

manual editing may negate some (or all) of this. Estimates of time saved from the 
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literature ranged widely from approximately 3 to 80 minutes, depending largely on 

tumour site.  

The EAG have produced a simple, interactive, cost offset calculator to illustrate the 

relationship between time savings and staffing costs (see Appendix F for more 

details)  
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13. EVIDENCE GAP ANALYSIS AND FUTURE 

RESEARCH 

13.1. Evidence gap analysis 

A summary of evidence gaps, pertaining to outcomes, study design and structures 

covered, is summarised in Table 7. The table was populated based on full text 

evidence. Therefore, ART-Plan and AutoContour have been marked up as ‘N/A’, as 

the EAG only identified conference abstracts for these technologies. A narrative 

assessment of evidence gaps in other methodological areas besides outcomes is 

presented within the clinical section of the report. In terms of gaps in the cost 

effectiveness evidence the EAG noted that there is a need for robust evidence 

generation regarding AI intervention costs in clinical practice and how these 

technologies impact on healthcare resource use and/or patient outcomes.
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Table 7: Evidence Gap Analysis (based on full-text evidence only) 

 AI-Rad ART-
Plan 

Auto 
contour 

DLC 
Expert 

INT 
Contour 

Limbus 
Contour 

MIM 
Contour 

MRCAT 
Prostate 

MVision OSAIRIS Ray 
Station 

Outcomes            

Time-saving metrics ✓ N/A N/A ✓  ✓ ✓  ✓ ✓  

Qualitative assessment ✓ N/A N/A ✓ ✓ ✓ ✓  ✓  ✓ 

Dosimetric analyses  N/A N/A ✓ ✓ ✓    ✓ ✓ 

Geometric analyses ✓ N/A N/A ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

Adverse effects  N/A N/A         

Study design            

Prospective (full text) RED* RED RED GREEN 
3 studies 

RED GREEN 
3 studies 

AMBER 
1 study 

AMBER 
1 study 

RED RED RED 

Retrospective (full text) GREEN 
3 studies 

RED RED GREEN 
4 studies 

GREEN 
2 studies 

GREEN 
3 studies 

AMBER 
1 study 

RED GREEN 
2 studies 

AMBER 
1 study 

GREEN 
2 studies 

Structures covered            

Central nervous system  N/A N/A   ✓      

Head and neck ✓ N/A N/A ✓ ✓ ✓ ✓  ✓ ✓  

Pelvis ✓ N/A N/A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Thorax/abdomen ✓ N/A N/A ✓  ✓   ✓  ✓ 

Colour coding: Green = ≥2 studies; Amber = 1 study; Red = no studies 

 

 

* Note that Ginn 2023, as previously described, has both prospective and retrospective study components. 
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There are a number of evidence gaps in respect of the clinical evidence base as it 

pertains to the decision problem. Key gaps included:  

Population gaps 

• The prioritised literature was global in scope, with only three of the prioritised 

studies coming from the UK. This raises generalisability concerns, though given 

the technical nature of the decision question, the EAG expects that the evidence 

will be reasonably generalisable across borders. 

• Sample sizes were mostly small, but more concerningly is that there were often 

no details provided on how the patients, cases or scans were selected for the 

study. This raises concerns of potential selection bias. 

• The evidence base is focused on a) head and neck cancer and b) prostate 

cancer—other structures of the body are less well covered by the evidence. 

• There is uncertainty about the availability of training sets for certain 

demographics, such as children or people with disabilities. This should be 

addressed as a potential equity issue. 

Intervention gaps 

• The description of the intervention was often poor—it was often unclear which 

version of a technology was being used. 

• There is the question of whether local training sets had been used to train a 

technology, and if so, how this might affect the generalisability of the findings to 

other clinics using the same technology. 

• There is no full-text evidence available for ART-Plan and AutoContour. 

Comparator gaps 

• Manual contouring was the most common comparator. There is relatively less 

evidence of AI-based auto-contouring vs atlas contouring. 

• There is no full text evidence comparing any of the included technologies against 

each other. 
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Outcome gaps 

• The most common outcomes across the included studies were one or geometric 

metrics (such as DICE or HD). However, there is a lack of an agreed, high-

quality metric which can be universally applied, which makes comparison of 

geometric performance across studies difficult. Furthermore, satisfaction scores 

offer a more useful real-world test of the useful of plans, while dosimetric 

analyses are more applicable to potential patient outcomes. (Although Borkvel 

202277 did find that larger time savings were seen for tools with higher average 

DICE scores.) 

• Time-saving metrics were often not reported, or only partially reported. Without 

reporting of the time spent to quality assure and edit auto-contours, timings are 

of limited use.  

• As the technology potentially becomes more embedded in the NHS, evidence of 

impact on patients will be required, ideally via randomised, real-world, 

prospective  trials. While process efficiency is important, there is nevertheless 

potential to improve patient outcomes. For example, accurate organ at risk 

delineation should lead to a reduction in treatment toxicity. Also, cluster trials 

may be able to identify improvements in throughput, leading to reduced 

treatment waiting times, and therefore improved outcomes for patients treated 

more swiftly. 

• Outcomes differ sharply between different structures. The evidence-base 

suggests that larger structures are generally well delineated by AI-based auto-

contour software, but that smaller and/or elongated structures are more difficult 

to delineate. More evidence is needed on which structures can best be handled 

by auto-contouring, and where extra caution may be required. 

Other considerations 

• There was a paucity of high quality, prospective studies. This may be 

understandable, as prospective studies are often time-consuming and hence 

expensive to conduct, but they offer more control over potential confounding 

variables and are less susceptible to selection, allocation, and recall bias. 
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• Most contouring is done with CT scans. However, some recent research has 

investigated the use of MRI, because of its perceived superiority to CT in terms 

of soft tissues detailing. While some articles have compared MRI to CT scans for 

auto-contouring (such as Hague 202021), the evidence base remains limited. 

SCM commentary also noted that MRI datasets have only limited applicability for 

dose calculation, which is required in radiotherapy treatment planning. CT 

datasets are more routinely used, so although MR images may have superior 

soft tissue detail, it is often not appropriate for creating the radiotherapy 

treatment plan alone. Therefore, CT datasets must also be used. Further, it was 

noted that some structures may be better visualised using MRI rather than CT 

(or potentially vice versa), and that it may be that a software works better with 

one modality than another for specific structures. 

13.2. Integration into the NHS 

In addition to the formal evidence gaps identified above, there are wider issues to 

consider with regards to the integration of AI-based auto-contouring technology in the 

NHS. 

Company submissions report that there is already some use of the scoped auto-

contouring technologies within certain NHS trusts. If further adopted, wider use of the 

technology would involve upscaling across more trusts. Potential challenges include 

ensuring sufficient appropriate staff resource and training to deliver such 

interventions—including promoting critical reflection on current clinical practice. 

There is also the question of deciding for which structures auto-contouring 

technology should be used—as noted above, the evidence base is focused mostly on 

the head and neck and pelvis. Beyond these two anatomical sites, the evidence base 

is weaker. 

Related to this is the fact that SCMs reported that contouring is already challenging 

for structures where there is no shared consensus on definitions and process. For 

example, different protocols exist for inguinal nodes and for head and neck lymph 

nodes. It is therefore very unlikely that AI-based systems, however good, will be 

acceptable to all users within or between hospitals. This raises the need to ensure 

adequate quality assurance and safety protocols. SCMs notify us that validation of 

protocols is currently done via a mixture of metrics (such as DICE) and visual review 
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by experts/trained staff on a patient-by-patient basis. Such processes would have to 

be incorporated into any workflow. 

One of the key questions that would need to be considered if further integration is to 

take place is whether to promote “off the shelf” AI-contouring use or rather to 

encourage hospitals to use local training datasets. The previous paragraph noted 

that there are different protocols between hospitals, at least for some structures, and 

SCMs have suggested that off the shelf use would encourage harmonisation. It may 

also save time and resource, as re-training algorithms could be very demanding in 

terms of number of ‘perfectly’ manually contoured datasets required. Finally, re-

training could result in errors or bias, if staff doing this are inexperienced, or could 

perpetuate unwarranted variation in local institutions. 

On the other hand, the SCMs also noted that there is a risk in off the shelf use that if 

only commercially trained software packages are available, especially for rare tumour 

sites, this may not be an economically viable model for a commercial manufacturer to 

create and maintain. SCMs also noted that local training may be useful for site-

specific requirements and specific patient cohorts, such as may be found in 

paediatrics. Alternatively, there may be a middle way between “off the shelf” and 

local training. One SCM did suggest that if training were to occur, then perhaps this 

would best be done at a national level, to ensure consistency across centres. Finally, 

a barrier to off the shelf use, or NHS wide solutions, is that treatment protocols and 

equipment can differ significantly between hospitals. 

13.3. Ongoing studies 

Ongoing studies were identified for three of the technologies, either through company 

submissions or EAG searches, and are listed below in Table 8. It is uncertain 

whether any of them will address the evidence gaps and integration issues 

described. 



   

 

External assessment group report: Artificial intelligence auto-contouring to aid 

radiotherapy treatment planning [GID-HTE10015] 

Date: July 2023  78 of 119 

Table 8: Ongoing studies 

 

In addition to the studies described in Table 8, NICE have informed the EAG that, as 

part of the NHS England AI awards*, King’s technology evaluation centre (KiTEC) is 

setting up two studies to gather further evidence on a number of AI-based auto-

contouring technologies. One study will focus on the qualitative aspects, including 

acceptability of the contours and ease of integration into the treatment planning 

workflow. The other will gather evidence to help inform a future cost-effectiveness 

analysis. There studies are planned to report within two years, by 2025. 

13.4. Key areas for evidence generation 

Given the gaps and issues raised in this section, the EAG presents some specific 

evidence generation recommendations in Table 9. Any proposed trials should follow 

the best practice recommendations of the Radiotherapy Trials Quality Assurance 

(RTTQA).†  

Table 9: Evidence generation recommendations 

Research question Possible study design Outcomes 

1. Which technology or 
technologies are most suitable 
for NHS use? 

Comparative cohort studies of 
two or more included 
technologies in a prospective 
RWE setting with manual 
contours as a reference 
standard and blinded 
assessment. 

Time-saving metrics, 
dosimetrics, and 
qualitative assessment 
(blinded scale scoring). 

 

* For more information, see the AI in Health and Care Award website, available at: 
https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/ai-health-and-care-award/ai-health-and-care-
award-winners/ 

† For more information, see https://rttrialsqa.org.uk/ 

DLCExpert Limbus MVision 

********************************
********************************
*********** 

CTRI/2019/09/02131696 
Evaluation of performance 
of artificial intelligence 
based auto-contouring 
software in delineation of 
tumor and organs-at-risk for 
image-based radiotherapy 
planning. 

********************************
********************************
********************************
********************************
********** 

https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/ai-health-and-care-award/ai-health-and-care-award-winners/
https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/ai-health-and-care-award/ai-health-and-care-award-winners/
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2. Do AI-based auto-
contouring technologies 
improve process efficiency 
and/or patient outcomes in the 
NHS? 

Cluster randomised controlled 
trial or, failing that, a before 
and after cohort study 

Throughput, patient 
outcomes, adverse 
events. 

3. What is the cost 
effectiveness of AI auto-
contouring interventions to 
manual contouring or atlas-
based contouring, within an 
NHS context? 

Cluster randomised controlled 
trial or, failing that, a before 
and after cohort study 

Time saving metrics, 
technology costs, 
resource use estimates 
(clinician time, staff 
training costs), patient 
reported outcomes i.e. 
QALYs (if appropriate) 

 

Abbreviations: AI artificial intelligence, NHS National Health Service, QALY quality-adjusted life year, 
RWE real world evidence  
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14. CONCLUSIONS 

Based on clinical opinion to the EAG and evidence from published literature, AI auto-

contouring produces contours that are mostly either ready to use or just need minor 

edits. However, AI software is less able to consistently create such accurate contours 

for certain organs at risk, typically organs with a small volume or that have an 

elongated shape, meaning that at the present all AI produced auto-contours should 

be checked by a clinician before use. I.e., that auto-contouring facilitates, rather than 

replaces, manual contouring. Where AI-contours were compared with atlas contours, 

the AI approach consistently outperformed atlas contouring. 

AI auto-contouring (including editing and reviewing time) also appears to result in 

time savings when compared to current contouring approaches used in clinical 

practice (albeit there is considerable time variation based on tumour site and the 

structures typically contoured). However, due to the lack of published cost 

effectiveness evidence and heterogeneity in the pricing and reimbursement strategy 

for each technology, it was not possible to draw firm conclusions on the cost 

effectiveness of AI auto-contouring compared to manual or atlas-based segmentation 

approaches. 

There was not sufficient evidence to draw a conclusion on which of the eleven 

technologies were either most clinical or cost-effective. The three technologies with 

the largest evidence base were: DLCExpert (Mirada Medical) and Limbus Contour 

(Limbus AI, AMG Medtech), followed by MIM Contour ProtégéAI (MIM Software). 

More robust evidence is required for the following: 1) AI intervention costs in clinical 

practice and how these technologies impact on healthcare resource use and/or 

patient outcomes in a UK context. 2) The impact of local NHS training sets rather 

than an “off the shelf” approach, from both a clinical and harmonisation/cost-

effectiveness point of view. 3) AI auto-contouring effectiveness for body structures 

beyond head and neck and the pelvis, and identification of those organs at risk that 

are particularly susceptible to being poor contoured. 4) Relative clinical and cost-

effectiveness of auto-contouring using MRI vs CT scans. 5) Direct, head-to-head 

trials between alternative AI auto-contouring technologies.  
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16. APPENDICES 

Appendix A: Searches for clinical and cost effectiveness 

evidence 

Table 10: Resources searched for clinical and cost effectiveness studies 

Database/Resource  Host  Date Searched Results 

MEDLINE and Epub Ahead 
of Print, In-Process & Other 
Non-Indexed Citations and 
Daily  

Ovid  03.05.23 241 

Embase  Ovid  03.05.23 837 

Cochrane Database of 
Systematic Reviews 

Cochrane Library: Wiley  04.05.23 5 

Cochrane CENTRAL  04.05.23 62 

INAHTA HTA database  https://database.inahta.org/  04.05.23 6 

Company websites  04.05.23 32 

ClinicalTrials.gov  http://www.clinicaltrials.gov/  03.05.23 56 

WHO ICTRP  https://trialsearch.who.int/  03.05.23 12 

NICE Guidelines  04.05.23 6 

SIGN Guidelines  04.05.23 0 

MHRA https://www.gov.uk/drug-device-alerts   1 

MAUDE https://www.accessdata.fda.gov/script
s/cdrh/cfdocs/cfmaude/search.cfm 

 1 

ScharrHUD https://www.scharrhud.org/ 03.05.23 0 

CEA Registry https://cear.tuftsmedicalcenter.org/ 03.05.23 0 

Total records retrieved  1259 

Total records after deduplication  933 

 

Ovid MEDLINE(R) ALL  

# Searches Results 

1 
(AI-rad companion* or "Art-plan" or Autocontour or DLCexpert* or DLC-expert* 
or "DLC expert*" or INTContour or "INT Contour" or limbusAI or "limbus AI" or 
"limbus-AI" or "Limbus Contour" or "MIM contour" or ProtegeAI or MRCAT or 

1305 

https://trialsearch.who.int/
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm
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MVision* or Osairis or Osiris or "Ray station*" or Raystation* or “workflow 
box”).af. 

2 

("AMG medtech" or mirada or philips or raysearch or "ray search" or 
"Oncology systems" or therapanacea or "MIM software" or radformation or 
carina or "Siemens Healthineers" or MVision or "Cambridge University 
Hospitals NHS Foundation Trust").in. 

21511 

3 1 or 2 22752 

4 Organs at Risk/ 4663 

5 ("organ*?at?risk*" or "organs-at-risk").ti,ab,kw,kf. 5931 

6 exp *Radiotherapy/ 113501 

7 
("clinical target volume" or CTV or "target volume" or "planning target volume" 
or PTV or "gross tumour volume" or "gross tumor volume" or GTV).ti,ab,kw,kf. 

19191 

8 
(radiotherap* or irradiation* or "gamma knife" or "cyberknife" or "linear 
accelerator" or linac or wbrt or (radiation adj2 (therap* or dose*))).ti,ab. 

496046 

9 or/4-8 539523 

10 
((AI or intelligen* or auto* or radiomic*) and (contour* or autocontour* or "auto 
contour*" or segment* or plan* or optimi*)).ti,ab. 

141438 

11 
(((deep* or machine*) adj2 learn*) and (contour* or autocontour* or "auto 
contour*" or segment* or plan* or optimi*)).ti,ab. 

25391 

12 or/10-11 155988 

13 3 and 9 and 12 157 

14 
((AI or intelligen* or (deep adj2 learn*) or (machine adj2 learn*)) adj3 (contour* 
or autocontour* or "auto contour*" or segment* or plan* or optimi*)).ti,ab. 
/freq=2 

749 

15 14 and 9 102 

16 13 or 15 241 

 

Embase 

# Searches Results 

1 

(AI-rad companion* or "Art-plan" or Autocontour or DLCexpert* or DLC-expert* 
or "DLC expert*" or INTContour or "INT Contour" or limbusAI or "limbus AI" or 
"limbus-AI" or "Limbus Contour" or "MIM contour" or ProtegeAI or MRCAT or 
MVision* or Osairis or Osiris or "Ray station*" or Raystation* or "workflow 
box").af. 

3029 

2 

("AMG medtech" or mirada or philips or raysearch or "ray search" or 
"Oncology systems" or therapanacea or "MIM software" or radformation or 
carina or "Siemens Healthineers" or MVision or "Cambridge University 
Hospitals NHS Foundation Trust").in. 

24497 
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3 1 or 2 27362 

4 Organs at Risk/ or exp clinical target volume/ 15992 

5 ("organ*?at?risk*" or "organs-at-risk").ti,ab,kw,kf. 13249 

6 exp *Radiotherapy/ 256603 

7 
("clinical target volume" or CTV or "target volume" or "planning target volume" 
or PTV or "gross tumour volume" or "gross tumor volume" or GTV).ti,ab,kw,kf. 

43208 

8 
(radiotherap* or irradiation* or "gamma knife" or "cyberknife" or "linear 
accelerator" or linac or wbrt or (radiation adj2 (therap* or dose*))).ti,ab. 

692274 

9 or/4-8 769069 

10 
((AI or intelligen* or auto* or radiomic*) and (contour* or autocontour* or "auto 
contour*" or segment* or plan* or optimi*)).ti,ab. 

204823 

11 
(((deep* or machine*) adj2 learn*) and (contour* or autocontour* or "auto 
contour*" or segment* or plan* or optimi*)).ti,ab. 

33577 

12 or/10-11 222878 

13 3 and 9 and 12 596 

14 
((AI or intelligen* or (deep adj2 learn*) or (machine adj2 learn*)) adj3 (contour* 
or autocontour* or "auto contour*" or segment* or plan* or optimi*)).ti,ab. 
/freq=2 

1197 

15 14 and 9 325 

16 13 or 15 842 

 

Cochrane Library 

#1 (("AI-rad" NEXT companion*) OR Art-plan OR Autocontour OR DLCexpert* 
OR DLC-expert* OR ("DLC" NEXT expert*) OR INTContour OR "INT Contour" OR 
limbusAI OR "limbus AI" OR limbus-AI OR "Limbus Contour" OR "MIM contour" OR 
ProtegeAI OR MRCAT OR MVision* OR Osairis OR Osiris OR ("Ray" NEXT station*) 
OR Raystation* OR “workflow box”) 89 

#2 ("AMG medtech" OR mirada OR philips OR raysearch OR "ray search" OR 
"Oncology systems" OR therapanacea OR "MIM software" OR radformation OR 
carina OR "Siemens Healthineers" OR MVision OR "Cambridge University Hospitals 
NHS Foundation Trust") 1620 

#3 #1 OR #2 1693 

#4 ("organ* at risk*":ti,ab OR organs-at-risk:ti,ab) 124 

#5 MeSH descriptor: [Radiotherapy] explode all trees 10296 

#6 ("clinical target volume":ti,ab OR CTV:ti,ab OR "target volume":ti,ab OR 
"planning target volume":ti,ab OR PTV:ti,ab OR "gross tumour volume":ti,ab OR 
"gross tumor volume":ti,ab OR GTV:ti,ab) 1734 



   

 

External assessment group report: Artificial intelligence auto-contouring to aid 

radiotherapy treatment planning [GID-HTE10015] 

Date: July 2023  98 of 119 

#7 (radiotherap*:ti,ab OR irradiation*:ti,ab OR "gamma knife":ti,ab OR 
cyberknife:ti,ab OR "linear accelerator":ti,ab OR linac:ti,ab OR wbrt:ti,ab OR 
(radiation:ti,ab NEAR/2 (therap*:ti,ab OR dose*:ti,ab))) 41486 

#8 #4 OR #5 OR #6 OR #7 44223 

#9 ((AI:ti,ab OR intelligen*:ti,ab OR auto*:ti,ab OR radiomic*:ti,ab) AND 
(contour*:ti,ab OR autocontour*:ti,ab OR ("auto" NEXT contour*):ti,ab OR 
segment*:ti,ab OR plan*:ti,ab OR optimi*:ti,ab)) 10968 

#10 (((deep*:ti,ab OR machine*:ti,ab) NEAR/2 learn*:ti,ab) AND (contour*:ti,ab OR 
autocontour*:ti,ab OR ("auto" NEXT contour*):ti,ab OR segment*:ti,ab OR plan*:ti,ab 
OR optimi*:ti,ab)) 784 

#11 #9 OR #10 11342 

#12 #3 AND #8 AND #11 25 

#13 ((AI:ti,ab OR intelligen*:ti,ab OR (deep:ti,ab NEAR/2 learn*:ti,ab) OR 
(machine:ti,ab NEAR/2 learn*:ti,ab)) NEAR/3 (contour*:ti,ab OR autocontour*:ti,ab 
OR ("auto" NEXT contour*):ti,ab OR segment*:ti,ab OR plan*:ti,ab OR optimi*:ti,ab))
 196 

#14 #13 and #8 46 

#15 #12 or #14 67 

= 5 reviews and 62 trials 

 

INAHTA 

((radiotherap* or irradiation* or "gamma knife" or "cyberknife" or "linear accelerator" 
or linac or wbrt*) AND (contour* or autocontour* or "auto contour*" or segment* or 
plan* or optimi*) AND (AI or intelligen* or auto* or radiomic* or machine*)) OR ((AI-
rad companion* or "Art-plan" or Autocontour or DLCexpert* or DLC-expert* or "DLC 
expert*" or INTContour or "INT Contour" or limbusAI or "limbus AI" or "limbus-AI" or 
"Limbus Contour" or "MIM contour" or ProtegeAI or MRCAT or MVision* or Osairis or 
Osiris or "Ray station*" or Raystation* or “workflow box”)) 

= 6 hits 

 

ClinicalTrials.gov 

Search string Results 

autocontour/all studies 0 

autocontouring/all studies 0 
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artificial intelligence AND radiotherapy AND contour/all studies 6 

machine learning AND radiotherapy AND contour/all studies 1 

artificial intelligence AND radiotherapy AND plan/all studies 18 

machine learning AND radiotherapy AND plan/all studies 16 

artificial intelligence AND radiotherapy AND optimization/all studies 4 

machine learning AND radiotherapy AND optimization/all studies 4 

AI-rad companion/all studies 0 

Art-plan/all studies 1 

Autocontour/all studies 0 

DLCexpert/all studies 0 

DLC-expert/all studies 0 

DLC expert/all studies 0 

INTContour/all studies 0 

INT Contour/all studies 1 

limbusAI/all studies 0 

limbus AI/all studies 0 

limbus-AI/all studies 0 

Limbus Contour/all studies 1 

MIM contour/all studies 3 

ProtegeAI/all studies 0 

MRCAT/all studies 0 

MVision/all studies 0 

Osairis/all studies 0 

Raystation/all studies 1 

workflow box/all studies 0 

 

ICTRP  (basic search) 

Search string Results 

Autocontour 0 

Autocontouring 0 

artificial intelligence AND radio* AND contour* 2 

machine learning AND radiotherapy AND contour  0 

artificial intelligence AND radio* AND plan* 6 

machine learning AND radio* AND plan* 2 



   

 

External assessment group report: Artificial intelligence auto-contouring to aid 

radiotherapy treatment planning [GID-HTE10015] 

Date: July 2023  100 of 119 

artificial intelligence AND radio* AND optimi*   0 

machine learning AND radio* AND optimi* 1 

AI-rad companion 0 

Art-plan 0 

Autocontour 0 

DLCexpert 0 

DLC-expert 0 

DLC expert 0 

INTContour 0 

INT Contour 0 

limbusAI 0 

limbus AI 0 

limbus-AI 0 

Limbus Contour 1 

MIM contour 0 

ProtegeAI 0 

MRCAT 0 

MVision 0 

Osairis 0 

Raystation 0 

Workflow box 0 

 

CEA Registry 

Search string Results 

contour* OR auto-contour* or autocontour* 0 

Artificial intelligence 5 (0) 

Machine learning 5 (0) 

 

ScharrHUD 

Search string Results 

contour* OR auto-contour* or autocontour* 0 

Artificial intelligence 0 

Machine learning 0 



   

 

External assessment group report: Artificial intelligence auto-contouring to aid 

radiotherapy treatment planning [GID-HTE10015] 

Date: July 2023  101 of 119 

(radio* or radiation) AND (map* or plan* or segment* or contour*) 6 (0) 

 

NICE 

contour or contouring or autocontour or autocontouring or artificial intelligence or 
machine learning (as separate searches) 

= 6 guidelines 

 

SIGN 

contour or contouring or autocontour or autocontouring or artificial intelligence or 
machine learning (as separate searches) 

= 0 guidelines 
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Appendix B: PRISMA flow diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 
2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/

Identification of studies via databases and registers Identification of studies via other methods 

Records identified from*: 
Databases (n = 1151) 
 MEDLINE (n=241) 
 Embase (n=837) 
 CDSR (n=5) 
 CENTRAL (n=62) 

INAHTA (n=6) 
Registers (n = 68) 

Records removed before 
screening: 

Duplicate records removed 

(n = 326) 
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(n = 938) 

Records excluded: 

(n = 801) 

Reports sought for retrieval: 

(n = 137) 
Reports not retrieved: 

(n = 0) 

Reports assessed for eligibility: 

(n = 137) 

Reports excluded: 

(n = 56) 

See Appendix C 

Records identified from: 
Company websites (n = 32) 
Guideline websites (n=6) 
MHRA (n=1) 
MAUDE (n=1) 
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Appendix C: List of excluded studies  

Author Reason for exclusion 

Ahn, 201997 Wrong intervention 

Alves, 202198 Wrong study design 

Aoyama, 202199 Wrong intervention 

Azria, 2022100 Wrong intervention 

Bakx, 2021101 Wrong intervention 

Byun, 2021102 Wrong intervention 

Canters, 2021103 Wrong intervention 

Chan, 2018104 Wrong intervention 

Chen, 2021105 Wrong intervention 

Choi, 2020106 Wrong intervention 

Chuter, 2018107 Wrong intervention 

Crouzen, 2021108 Wrong intervention 

Ewinckele, 2020109 Background article 

Feng, 2019110 Wrong intervention 

Feng, 2020111 Wrong intervention 

Feng, 2020112 Wrong intervention 

Feng, 2021113 Wrong publication type 

Fi, 2019114 Wrong intervention 

Fong, 2021115 Wrong intervention 

Gan, 2021116 Wrong intervention 

Garcia-Perez, 2018117 Wrong intervention 

Ghimire, 2021118 Wrong intervention 

Ghimire, 2022119 Wrong intervention 

Giaddui, 2016120 Wrong intervention 

Giaddui, 2016121 Wrong intervention 

Gleeson (2023)122 Wrong intervention 

Gooding, 2022123 Background article 

Gungor, 2022124 Wrong intervention 

Hammers 2020125 Wrong intervention 

He, 2022126 Wrong intervention 

Hedrick, 2022127 Wrong study design 

Hern, 2022128 Wrong intervention 
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Johansson, 2022129 Wrong intervention 

Khalifa, 2022130 Wrong study design 

Loap, 2023131 Wrong intervention 

Lu, 2021132 Wrong intervention 

Magallon-Baro, 2022133 Wrong intervention 

Nash, 2022134 Wrong intervention 

Newman, 2022135 Wrong intervention 

Nicolae, 2020136 Wrong intervention 

O'Hara, 2022137 Wrong intervention 

Okada, 2022138 Wrong intervention 

Shelley, 2023139 Wrong intervention 

Sibolt, 2021140 Wrong study design 

Singh, 201996 Wrong study design 

Tsui 2021141 Wrong intervention 

van de Sande, 2021142 Wrong intervention 

Visak, 2023143 Wrong intervention 

Vrtovec, 2020144 Background article 

Wang, 2019145 Wrong intervention 

Wang, 2019146 Wrong intervention 

Yang, 2020147 Wrong intervention 

Yedekci, 2022148 Wrong intervention 

Zabel, 202090 Wrong study design 

Yedekci 2023149 Wrong intervention 

Zhong, 2021150 Wrong intervention 
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Appendix D. Additional study results 

This table presents results for clinical effectiveness outcomes. Further details compared to the results presented in the main clinical section are provided 

where relevant. However, there has been a focus on making the results understandable rather than presenting all minutiae. 

Table 11: Study results for clinical effectiveness 

References Structures Results Authors conclusions 

AI-Rad Companion Organs RT 

Ginn 20236 Head & neck 

 

Pelvis 

Time-saving metrics: Editing contours was faster than manual contouring with an 
average time saving of 43.4% or 11.8 minutes per patient. 

 

Qualitative assessment: 240 structures were scored, with > 95% of structures 
receiving a score of 3 (only minor edits needed) or 4 (clinically usable). Of the 
structures reviewed, only 11 structures needed major revision or to be redone entirely. 
Structures that needed more revision included the prostate, the oesophagus and the 
optic nerves. 

 

Geometric analysis: Dice and Jaccard scores showed high alignment (> 0.8) for 
relatively large organs such as the lungs, brain, liver, femurs, and kidneys. Smaller 
elongated structures had lower scores. Poor performing outlier cases included 
overestimation of the bladder and incorrect truncation of the spinal cord and femur 
contours. 

Our results indicate the 
evaluated auto-contouring 
solution has the potential to 
reduce clinical contouring 
time. The algorithm’s 
performance is promising, but 
human review and some 
editing is required prior to 
clinical use. 

ART-Plan 

Blanchard 
202012 

(abstract) 

Head & neck Qualitative assessment: 

v1.0 (trained on 6,000 cases): 96% of all manual contours were classified as clinically 
useable (75% as A [acceptable] and 21% as B [acceptable after minor corrections] 
categories), compared to 95% for auto-contours (56 % and 39 % in A and B, 
respectively). 

This study illustrates the 
potential of AI for automatic 
contouring of organs at risk in 
radiotherapy planning. 
Automatic contouring with this 
CE-marked software was very 
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References Structures Results Authors conclusions 

v2.0 (trained on 21,000 cases): contours classified as clinically useable (A + B) 
increased significantly, reaching 100% for mandibles, 98% for brain stem, 98% for 
optic nerve and 92% for submandibular gland, versus 100%, 97%, 63% and 50% for 
v1.0, respectively. 

 

Geometric analysis: For optic nerve and submandibular gland, mean DICE score 
improved from 0.53 to 0.70 and 0.70 to 0.78 between v1.0 and v2.0 of the software, 
whereas mean HD score decreased by 30% and 17%, respectively. 

close to expert contouring and 
clinically usable in the vast 
majority of cases. 

AutoContour 

Leyva 202218 

(abstract) 

Head & neck Geometric analysis: Good agreement was found between the AI generated contours 
and manually drawn clinical contours. Nine out of ten had mean surface distance less 
than 5mm, while DICE scores of greater than 0.7 were found for 60% of the sample 
included. However, a larger variance in DICE scores was seen for structures with small 
volume (< 5cc) such as pituitary, chiasm and cochlea, as well as for structures that 
were manually drawn solely in the area of interest, such as the spinal cord and 
oesophagus. 

AutoContour tool generates 
clinically acceptable normal 
structure contours and is 
efficient in removing inter-user 
segmentation variability that 
occurs with manual 
segmentation but more 
qualitative research is 
needed. 

DLCExpert 

Hague 202021 Head & neck 

 

Qualitative assessment: Scores were from 1 (good agreement’) to 7 (gross error); a 
score of 5 or less was defined as clinically acceptable. Scores were assigned based on 
scans from three different MRI machines (diagnostic, planning and MR-linac). The 
mean score using diagnostic scans was 1.4, for planning scans it was 1.9, while for 
MR-linac it was 5.4. 

 

Geometric analysis: Automated contours showed good agreement with manual 
contours on the diagnostic and planning scans for bilateral parotid glands and 
submandibular glands (with a mean DICE score of 0.8 or above). The agreement was 
lower for the MR-linac scan for the bilateral parotid glands (mean DICE of 0.70). There 

MR -based deep learning 
auto-contouring models show 
promise as an aid to clinician 
OAR contouring. A model 
trained on diagnostic MR 
images has been shown to 
work well on planning images 
as well as diagnostic images. 
However, extending this MR-
linac images shows that these 
models remain sensitive to 
the MR sequence used.  
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References Structures Results Authors conclusions 

was a lack of overlap between automated and manual contours on the MR-linac 
images for the left and right submandibular glands (mean DICE of 0.10 and 0) 

Van Dijk 202022 Head & neck Time-saving metrics: Deep learning contouring reduced the delineation time 
compared to atlas contours. The average delineation time for the expert and beginner 
observer for the atlas contours were 36 ± 7 and 59 ± 14 minutes, respectively, reducing 
slightly to 34 ± 6 and 54 ± 8 minutes, respectively, for the deep-learning contours. 

 

Qualitative assessment: Deep learning contours were more often preferable to the 
atlas contours overall, were considered to be more precise, and were more often 
confused with manual contours (in the Turing test). The overall misclassification of 
manual contours was 41%, with 32% of them being marked as requiring correction. 
However, manual contours still outperformed both deep learning and atlas contours. 
Nevertheless, deep learning contour results were within or bordering the inter-observer 
variability for the manual edited contours. 

 

Dosimetric analysis: The mean dose differences (|∆mean-dose|) between the 
glandular manual and auto-contours were lower for deep learning contours (0.9 ± 1.3 
Gy) than for atlas contours (1.9 ± 2.7 Gy). Likewise, the mean dose differences 
decreased significantly for all upper digestive tract and airway organs, except for the 
right buccal mucosa. For the CNS, mean dose differences were comparable between 
atlas and deep learning contours, while deep learning contouring reduced the mean 
dose distance in the carotid arteries.  

 

Geometric analysis: For glandular organs at risk, DICE values for deep learning 
contours significantly improved over atlas, with the largest difference for the thyroid 
gland, where DICE increased from 0.60 ± 0.15 (atlas) to 0.83 ± 0.08 (deep learning). 
Similarly, for the upper digestive tract and airway organs, DICE values were 
significantly higher for deep learning compared to atlas for all except for the oral cavity. 
For the CNS, DICE values were slightly higher for atlas than for deep learning 
contouring (DICE >0.86 and >0.84, respectively) for the brainstem, cerebrum, and 

The deep learning contouring, 
trained on a large head and 
neck cancer patient cohort, 
outperformed atlas contouring 
for the majority of head and 
neck outcomes of interest. 
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References Structures Results Authors conclusions 

spinal cord. Finally, DICE values were substantially higher for deep learning (0.68 ± 
0.11) than for atlas (0.29 ± 0.12) for the carotid arteries. 

Vaassen 202132 Thorax (lung 
cancer) 

Dosimetric analysis: Dosimetric effect of intra-observer contour variability was highest 
for Heart Dmax(3.4 ± 6.8 Gy) and lowest for Lungs Dmean(0.3 ± 0.4 Gy). The effect of 
contour variation on treatment plan evaluation was highest for Heart Dmax(6.0 ± 13.4 
Gy) and oesophagus Dmax(8.7 ± 17.2 Gy). However, dose differences for the various 
treatment plans, evaluated against the manual contour, were on average below 1 
Gy/1%, and the majority of treatment plans fulfilled the planning objectives. 

Some patients were assigned doses by auto-contouring above the clinical constraint: 
this happened for the heart (x3), the lungs (x6) and the spinal cord (x1). For the heart, 
the clinical constraint was exceeded for patients where the target was located close to, 
or overlapped with, the heart. For Lungs, this was due to large tumour size. For the 
spinal cord, the tumour was located next to the spinal cord. 

 

Geometric analysis: The highest DICE scores were for lungs (1.0), while the lowest 
DICE score was for the oesophagus (0.46) (although the highest HD score—and 
therefore poorest alignment according to that metric—was for the heart). 

This study shows the potential 
for procedures to use 
automatic delineation and 
planning in the thorax in 
clinical practice. Dose 
differences arising from 
automatic contour variations 
were of the same magnitude 
or lower than intra-observer 
contour variability. 

INTContour 

Duan 202242 Pelvis 
(prostate 
cancer) 

 

Qualitative assessment: In the double-blinded evaluation, 95.7% of the AI contours 
were scored as either “perfect” (34.8%) or “acceptable” (60.9%), while only one 
(prostate) case (4.3%) was scored as “unacceptable with minor changes required.” The 
reference contour was picked as the better contour in seven of 23 cases, and the AI 
contour was picked as the better contour in three cases. The remaining 13 cases were 
“too close to call”. 

 

Dosimetric analysis: AI contours produced a statistically significant difference in 
bladder dose (a lower dose). No statistically significant differences were found in other 
organs at risk. All organs at risk satisfied the dose constraints of RTOG-0815 
(contouring guidelines) 

 

Automated treatment plans 
created from the AI contours 
produced similar and clinically 
acceptable dosimetric 
distributions as those from 
plans created from reference 
contours. 
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References Structures Results Authors conclusions 

Geometric analysis: The AI contours demonstrated good accuracy on organs at risk 
and prostate contours, with average DICE scores for bladder, rectum, femoral heads, 
seminal vesicles, and penile bulb of 0.93, 0.85, 0.96, 0.72, and 0.53, respectively. The 
DICE, HD, and mean surface distance for the prostate were 0.83 ± 0.05, 6.07 ± 1.87 
mm, and 2.07 ± 0.73 mm, respectively. 

Limbus Contour 

Radici 202244 Head & neck 

 

Pelvis 
(prostate 
cancer) 

 

Bowel (rectal 
cancer) 

 

Thorax 
(breast 
cancer) 

Time-saving metrics: The maximum time saving, both absolute and relative, was in 
head and neck contours (80 min, -65%). Time savings were also seen for breast (7 
min, -46%); prostate (4 min, -18%), and rectum contours (3 min, -17%).  

 

Dosimetric analysis: The most relevant difference between auto and manual contours 
was found in the bowel for rectal cancer treatments: the mean volume covered by the 
45 Gy isodose was 10.4 cm3 for the manually contoured structures versus 289.4 cm3 
for the auto-contoured ones. The reason for this large difference is discussed later in 
the paper, where the authors noted that differences in the definition of the bowel 
between automatic and manual contours justified the dosimetric variation observed. 
Otherwise, dose distributions were similar between auto and manual contours. 

 

Geometric analysis: The lowest DICE score was for the penile bulb (0.39), while the 
best results were found for lungs (0.99). Good agreements were found for bladder, 
heart, and femoral heads, all with values greater than or close to 0.9. Considering all 
structures, the average DISC score was 0.72 

Automatic contouring was 
able to significantly reduce 
the time required in the 
procedure, simplifying the 
workflow, and reducing 
interobserver variability. Its 
implementation was able to 
improve the radiation therapy 
workflow in our department. 

Wong 202145 Central 
nervous 
system 

 

Head & neck 

 

Qualitative assessment: “Satisfaction scores” could be assigned from 1 (poor) to 5 
(high). The mean score for CNS was 4.1, for head and neck it was 4.4, and for prostate 
it was 4.6. “Editing scores”, on the other hand, ranged from 1 (minimal editing required) 
to 5 (significant editing required). Most deep learning contours required minimal edits 
(mean editing score ≤2). The highest editing scores were for optic chiasm (3.4), 
prostate (2.8) and mandible (2.3). 

 

Previously validated deep 
learning contouring models 
for CNS, head and neck, and 
prostate radiotherapy 
planning required minimal 
subjective and objective edits.  

High user satisfaction 
suggests that the auto 
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Pelvis 
(prostate 
cancer) 

Geometric analysis: Unedited DCs were compared to the edited treatment approved 
contours. Mean DICE HD scores were ≥ 0.90 and ≤ 2.0mm, respectively. The poorest 
scores were for the optic chiasm. 

contours may have served as 
appropriate starting points. 

Wong 202046 Central 
nervous 
system 

 

Head & neck 

 

Pelvis 
(prostate 
cancer) 

Time-saving metrics: The mean auto and manual contouring times were, 
respectively: 0.4 vs 7.7 min for CNS; 0.6 vs 26.6 min for head and neck; 0.4 vs 21.3 
min for prostate.  

 

Geometric analysis: Geometric analyses focused on inter-observer variation, to 
determine if the variation between deep learning and manual contours is comparable to 
variation among manual contours by ROs. 

For CNS structures, geometric metrics were not significantly different for the optic 
chiasm. However, variation was greater between deep learning and manual contours 
vs among manual contours alone for the optic globe (DICE score 0.85 vs 0.87, 
respectively). 

For head and neck, geometric metrics were not significantly different for spinal cord, 
parotid gland, submandibular gland. Variation was greater, however, between deep 
learning and manual contours vs among manual contours alone for the neck clinical 
target volume (DICE score 0.72 vs 0.79). 

For prostate, geometric metrics were not significantly different for seminal vesicles and 
rectum. However, variation was greater between deep learning and manual contours 
vs among manual contours alone for bladder (DICE score 0.97 vs 0.96), femoral head 
(0.91 vs 0.91) and prostate (0.79 vs 0.83). 

We found that deep learning 
contours take significantly 
less time to generate than 
manual contours and 
approximate the expert Inter-
observer-variability seen for 
organs at risk. Deep learning 
contours for clinical target 
volumes were less accurate, 
but given that these volumes 
highly depend on the clinical 
scenario and clinical 
judgement of the treating 
physician, they would likely 
serve as a usable starting 
template for patient specific 
adjustments. 

MIM Contour ProtégéAI 

Urago 202158 Head & neck 

 

Pelvis 
(prostate 
cancer) 

 

Time-saving metrics: The processing time to create delineations was approximately 3 
min per case on the atlas-based model and approximately 5 min (range, 3–10 min) per 
case on the AI-based model for the patients with prostate cancer. For patients with 
head and neck cancer, the processing times were both approximately 6 min (range, 3–
8 min). 

 

The effectiveness of the 
commercial AI-based model 
can be expected to improve 
the segmentation efficiency 
and to significantly shorten 
the delineation time. 
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Qualitative assessment: For prostate cancer patients, some errors were observed in 
the atlas-based delineations when the boundary between the small bowel or the 
seminal vesicle and the bladder was unclear. The AI-based delineations, on the other 
hand, were more consistent with the manual ones. For patients with head and neck 
cancer, no significant differences were observed between the two models for almost all 
organs at risk, except small delineations such as the optic chiasm and optic nerve (for 
both atlas and AI-based delineations).  

 

Geometric analysis: In both the atlas- and AI-based models, the median DICE score 
exceeded 0.8, indicating good agreement with the manual delineations. In the AI 
contours, the median value was closer to 1, and the interquartile range was smaller 
than that of the atlas contours. Similarly, for HD, the median and interquartile range of 
AI-based assessment was smaller than that of the atlas-based assessment in both the 
bladder and the rectum. Mean distance to agreement results were similar to those of 
HD. 

MRCAT Prostate plus Auto-contouring 

Kuisma 202066 Pelvis 
(prostate 
cancer) 

Geometric analysis: DICE scores (mean, SD) showed high alignment for delineating 
prostate were 0.84, for bladder they were 0.92, and for rectum 0.86. DICE scores were 
lower (showing moderate alignment) for seminal vesicles (0.56) and penile bulb (0.69). 
In repeat assessment, using a second scan taken a median of 8 days after the first 
scan, consistency of prostate delineation resulted in a mean DICE score of 0.89 for 
auto-contours, while mean DICE scores for manual delineation was 0.82. 

Fully automated MRI 
segmentation tool showed 
good agreement and 
repeatability compared with 
manual segmentation and 
was found clinically robust in 
patients with PC. However, 
manual review and 
adjustment of some structures 
in individual cases remain 
important in clinical use 

MVision Segmentation Service 

Strolin 202368 Head & neck 

 

Time-saving metrics: The median (range) time for manual delineation, deep learning-
based segmentation, and subsequent manual corrections were 25.0 (8.0-115.0), 2.3 
(1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall time for volume of 

Our analysis revealed the 
positive impact of introducing 
and validating a novel CE- 
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Thorax 

 

Abdomen 

 

Male and 
female pelvis 

interest retrieving and modification was statistically significantly lower than for manual 
contouring (p<0.001) 

 

Qualitative assessment: The deep learning tool was generally appreciated by ROs, 
with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with the 
saved time (p<0.001). The average satisfactory grade per district was higher than 4, 
except for the female pelvis. 

 

Geometric analysis: Overall, DICE scores increased with the volume of the 
investigated volume of interest. Median DICE scores, when comparing manually 
adjusted auto-contours vs unedited auto-contours were higher than 0.8 for all the 
organs except for the oesophagus and glottis in the head and neck district. The relative 
volume differences and similarity indexes suggested a better inter-agreement of 
manually adjusted auto-contours than manually segmented ones. 

and FDA- approved 
commercial deep learning tool 
for automatic segmentation in 
terms of; i) a high level of 
clinicians’ satisfaction, 
particularly for complex cases 
including large and numerous 
organs, ii) saving time, and iii) 
improving the consistencies of 
volumes of interest amongst 
different ROs. 

OSAIRIS  

Oktay 202072 Pelvis (male) 

 

Head & neck 

Time-saving metrics: Manual segmentation of nine organs at risk took 86.75 min/scan 
for expert reader and 73.25 min/scan for radiation oncologist. With AI to assist them in 
reviewing and editing it took 4.98 (95% CI, 4.44-5.52) min/scan for head and neck 
scans and 3.40 (95% CI, 1.60-5.20) min/scan for prostate scans. The autogenerated 
contours represented a 93% reduction in time. 

 

Geometric analysis: The auto-contouring models achieved levels of clinical accuracy 

within the bounds of expert interobserver variability for 13 of 15 structures (the left and 
right submandibular glands were the only two structures outside the bounds). The 
models also performed consistently well according to DICE scores and similar metrics. 
The lowest DICE score for the head and neck structures was 0.79, for the right 
submandibular gland, while the highest was 0.96, for the mandible. For pelvic 
structures the lowest DICE score was 0.73, for the seminal vesicles, and the highest 
was 0.982, for the left femur. 

The models achieved levels 
of clinical accuracy within 

expert inter-observer 
variability while reducing 
manual contouring time and 
performing consistently well 
across previously unseen 
heterogeneous data sets. 
With the availability of open-
source libraries and reliable 
performance, this creates 
significant opportunities for 
the transformation of radiation 
treatment planning. 

RayStation  
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 Almberg 202273 Thorax (left-
sided breast 
cancer) 

Qualitative assessment: No or only minor corrections were required for 14% and 71% 
of the CTVs and 72% and 26% of the OARs, respectively. Major corrections were 
required for 15% of the CTVs and 2% of the OARs. None of the structures, neither 
target volumes nor OARs, were scored as ‘‘not usable”. The lungs and sternum did not 
need any corrections, while the most frequent corrections occurred in the cranial and 
caudal parts of the structures. 

 

Dosimetric analysis: VMAT-plans were automatically optimised based on the auto-
contours using an in-house developed script in RayStation. Dose coverage (D98; 
lowest dose to 98% of the volume) for auto-contours was compared to those from the 
manual reference contours. While some statistically significant differences were found, 
these differences were considered clinically irrelevant.  

 

Geometric analysis: The metrics (DICE and HD) for auto-contours were better than 
manual inter-observer variation for all target volumes, reaching statistical significance 
for all except the breast. The trend was the same for the OARs: one or both metrics 
were significantly better for auto-contours than for manual inter-observer variation; the 
only exception was the thyroid gland. 

The model is now clinically 
implemented at both hospitals 
and will be combined with 
other existing models and 
soon be available world-wide. 
 
Alongside implementation, 
quality assurance and 
monitoring should be 
performed, to gain further 
understanding of both the 
capabilities and limitations of 
the model.  
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Appendix E. SCM responses to cost-effectiveness question 

Table 12 SCM responses to the EAGs cost effectiveness questions 

Question 
posed to SCM 

SCM 1 
response 

SCM 2 
response 

SCM 3 
response 

SCM 4 
response 

SCM 5 
response 

SCM 6 
response 

SCM 7 
response 

SCM 8 
response 

In your 
experience, 
does the use 
of AI auto 
contouring 
result in a 
reduction in 
clinician time 
compared to 
the standard 
approach 
used?  

Yes (mostly). 
Apart from 
structures where 
a different 
definition/guideli
nes may be 
used  
Or for (small 
number) of 
patients who are 
known to have 
unusual anatomy 
/ post-surgical 
changes in 
anatomy, which 
current AI 
segmentation 
cannot manage 
well.  
 

Yes  Yes If used correctly 
with the right 
software, then 
yes 
 

At the moment 
its hard to tell, 
although I expect 
the degree of 
time saving will 
improve. Our 
experience was 
that currently 
there was no 
benefit.  
 

In general no. 
OARs are often 
not contoured by 
clinicians, but 
rather by 
technical staff 
(radiographers, 
physicists, 
dosimetrists) and 
quickly checked 
for gross error by 
clinicians. 
Introducing AI 
contouring for 
OARs is 
therefore not 
reducing 
clinician time in 
our experience 

Yes, very clearly. 
Both expected 
time savings for 
OARs that were 
previously 
outlined 
manually. Also, 
some 
unexpected 
benefits e.g. lung 
tumour CTV 
definition, still 
done manually 
but time is 
reduced by 
being able to 
exclude local 
normal 
structures 
(outlined with AI) 
from the CTV 
using TPS 
Boolean tools.  
 

Yes; there will 
be some 
reduction in 
clinician time. It 
could potentially 
speed up RT 
pathways and 
hence enable 
quicker access 
to treatment as 
well as 
clinician’s ability 
to do more 
cases per unit of 
time.  

From your 
perspective, 
what is the 
primary 

Efficiency and 
harmonisation 
gains.  

Reduction in 
delineation time  

It saves time in 
contouring 
routine organs at 
risk , good 

Frees staff for 
more complex 
cases where AI 
not appropriate 

the primary 
benefit is time 
saving.  
 

Primary benefit 
is greater 
standardisation 
of contours 

Time saving. 
Hopefully 
improved 
consistency too 

Reduction in the 
time required for 
contouring 
OARs – may 
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benefit of 
using AI- auto 
contouring, 
compared to 
current 
standard 
practice 

Allows all staff to 
have a 
harmonised 
vocabulary and 
knowledge to 
discuss 
contours. Allows 
us to realistically 
design audit or 
research 
questions using 
large numbers of 
patients, with full 
contouring 
(which would be 
un-feasible if this 
was all manually 
contoured).  
 

standardised 
approach in 
contouring and 
labelling as 
compared to 
manual process. 

and increasing 
clinical load  
Standardises 
contours among 
observers 

facilitate 
shortening of RT 
pathways and 
better access for 
patients. There 
may be some 
harmonisation of 
practices and 
reductions in 
inter-observer 
variability  

Do you 
foresee any 
improvement 
in patient 
disease 
progression 
or survival 
outcomes 
from these 
technologies? 

This would be 
very difficult to 
demonstrate in a 
scientifically and 
statistically 
rigorous way, 
and potentially 
not very ethical 
to test this 
prospectively in 
a full randomised 
controlled trial.    
  
It is **possible** 
that efficiency 
gains could 

Yes. Accurate 
Organ at Risk 
delineation will 
lead to a 
reduction in 
treatment 
toxicity. AI 
delineation of 
target structures 
may lead to 
improved clinical 
outcomes.  

Yes, if there is a 
complete 
solution from 
contouring to 
planning 
technique. 

Could be if 
shortening 
treatment 
pathways, but 
this is less 
relevant for 
prostate cancer. 
In theory in 
centres where AI 
contours are 
more clinically 
appropriate than 
the local clinician 
contours.  
Might also help if 
more accurate 

If centres follow 
current 
guidelines and 
peer review all 
contours 
(whether human 
or machine 
generated), 
there should be 
no difference in 
contours and 
plan dosimetry. If 
AI contours are 
not properly 
reviewed, it 
could lead to 

Not currently. 
More likely to 
reduce toxicity  

Not where it is 
being used to 
simply replicate 
manual 
contouring. 
Perhaps where it 
allows structures 
to be outlined 
where they 
weren’t before or 
for techniques to 
be changed e.g., 
breast 
Radiotherapy 
changing from a 
VSIM approach 

No. OAR 
delineation 
would not be 
anticipated to 
have an impact 
on disease 
progression. 
Some tools offer 
prophylactic 
nodes 
delineation but I 
would not 
anticipate this to 
have an impact  
  
 



   

 

External assessment group report: Artificial intelligence auto-contouring to aid radiotherapy treatment planning [GID-HTE10015] 

Date: July 2023  116 of 119 

shorten patient 
pathways, and 
that could 
influence 
outcomes in a 
positive 
way.  Also, any 
reduction in 
unwarranted 
variations (e.g. 
on contour 
definition or 
accuracy) would 
also have a 
positive impact 
on patient 
outcomes.  
  
It is possible that 
use of AI 
segmentation on 
retrospective 
patient cohorts 
(where follow up 
data on disease 
progression or 
survival was 
available) could 
facilitate audit 
and research. 
This sort of 
retrospective 
audit/registry trial 
could be a good 
way of 

bowel etc 
contouring for 
toxicity rates. 
 

worse outcomes 
as it could result 
in suboptimal 
treatments. 
Conversely, if we 
ever reach a 
point where AI 
contours result in 
significant time 
saving, this 
could 

to target volume 
based 
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demonstrating 
benefits/risks of 
high quality 
contouring on 
patient 
outcomes.  

From your 
perspective 
what would 
you say were 
the major 
impacts on 
resources 
(either 
savings or 
increases) 
from using AI 
auto-
contouring?   
(Please 
consider both 
in terms of 
staff time and 
any 
equipment 
required, or 
other impacts 
on resource 
use) 

Has allowed 
more skill mix in 
tasks from v 
experienced staff 
to other staff 
groups / less 
experienced staff 
members whilst 
maintaining 
consistent 
quality.  
 
Has allowed de-
bundling of tasks 
and steps in 
patient pathway. 
This allows a 
much more 
consistent time 
for the 
contouring step 
in the patient 
pathway with AI, 
rather than with 
manual human 
expert 
delineation, 
reduces delays 
or waiting time in 

Costly to 
purchase, 
commission 
time, lack of 
formal QA 
standards. 
Saving of 
delineator time 
(radiographer, 
dosimetrist or 
clinician)  

 

Training, Trouble 
shooting, 
financial cost, 
Data protection 

Time a massive 
impact with 
increasing 
patient numbers 
and more time 
pressure on 
staff. Especially 
important given 
clinical oncology 
recruitment 
issues and 
unfilled training/ 
consultant posts. 
Equipment less 
of an issue at 
our centre as 
contouring done 
remotely now, 
rather than in a 
‘planning room. 
 

There will be a 
significant cost 
in 
commissioning 
and 
implementing 
these systems 
if models need 
training on local 
data, or 
retraining at later 
dates due to 
changes eg in 
protocol, imaging 
modalities/param
eters etc.  
hardware or 
cloud computing 
physics/computi
ng staff to 
maintain the 
systems, 
perform updates 
etc 
There could be 
significant 
savings. 
in staff time 
spent contouring 

Some time 
savings from AI 
auto contours, 
but offset by time 
for manual 
inspection and 
minor 
modifications. As 
commercial AI 
auto-contouring 
models are 
currently classed 
as decision aids 
the responsibility 
for accuracy lies 
with the end-
user and this 
limits the time 
savings available 
to clinical staff.  
 
Additional 
resources are 
required to 
implement AI 
models initially 
and for any 
updates (that are 
often quite 

Reduction in 
staff time for 
contouring is the 
obvious main 
benefit. The 
financial cost of 
the software 
needs to be 
considered. Staff 
time will be 
required to 
develop 
processes for 
the safe 
implementation 
of AI auto-
contouring and 
manage 
software 
upgrades. 
Reduction in 
staff time spent 
contouring will 
greatly outweigh 
this though 

Time saving for 
clinicians and 
streamlining of 
pathways  
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the many 
consecutive 
steps of patient 
treatment 
pathway.  

 

if the systems 
are good enough 
 

regular as the 
models are not 
yet fully mature 
in most cases).  
 

On average, 
how much 
time do you 
spend editing 
AI auto 
contours? 

Varies hugely 
depending on 
tumour site and 
individual 
structure. Also 
can be very 
patient 
dependant.  
 
HN lymph nodes 
– estimated 
around 10 mins 
average editing 
time  
 

30mins  less than 15 
minutes if it is 
only organ at risk 

It would depend 
on how accurate 
the contour is, 
and the 
structure. IF 
accurate then a 
minute or so for 
prostate. Can be 
more for SV. 
Many contours 
are appropriate 
for clinical use 
but we are just 
so used to 
‘tweaking’ them 
 

We have 
decided not to 
use these 
systems 
currently as we 
did not feel they 
are currently 
worth the 
expense.  
 

Difficult to say as 
once AI models 
are in routinely 
clinical use, we 
do not monitor 
time spent 
changing AI auto 
contours.  
We know from 
local data that 
<3% of AI auto 
contours are 
grossly incorrect, 
usually due to 
unusual patient 
set-up or 
anatomy. 

It varies greatly 
for different 
treatment sites 
and different 
structures, and 
depends on how 
the AI is 
implemented, 
what imaging 
protocols are 
used 

N/A 
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Appendix F. Description of cost offset calculator 

The purpose of this appendix is to provide a user guide and summary implications of the 

Excel cost offset calculator for AI auto-contouring. 

To use: 

• Enter the estimated cost of the AI intervention per radiotherapy planning session. This 

should include any licence fee and any specific equipment required over and above that 

required for manual contouring. If the licence fee is on a per centre or per period of time 

basis rather than per plan then an estimate of the cost per plan must be made based on 

expected number of plans per period of time. 

• Enter the time saved from auto-contouring vs manual. This should be the estimated time 

to prepare a manual plan less the estimated time to prepare an auto-contouring plan. 

• Select the grade of staff who performs the contouring from the dropdown list of options. 

Based on this information, an hourly cost for the staff grade is estimated based on 2021 unit 

costs (the latest available at the time of writing). Multiplying this by the time saved gives an 

estimate of the value of the time. The net cost is simply the cost of the AI system less the 

cost of time saved. 

For example, suppose the AI system cost £8 per plan and reduced the time taken to prepare 

a plan by 30 minutes and a registrar usually performed the contouring. At the time of writing, 

the hourly cost of a registrar is £52, so the value of time saved is £26 (£8 - £26 = -£18). 

Therefore, the cost saving per plan is £18. 

Under this scenario, the AI system can cost up to the £26 value of time saved for it to be 

cost-neutral to the NHS. 

Likewise, If a band 7 radiographer were to perform the contouring (£65ph) and the per-plan 

cost of AI was only £4, it would have to save only 4/65 = 0.062 of an hour = ~4 minutes for it 

to be cost neutral. If the per plan cost was £50, then it has to save at least 50/65 = 0.769 of 

an hour = ~47 minutes for it to be cost-neutral. 

 


