NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE

INTERVENTIONAL PROCEDURES PROGRAMME

Interventional procedure overview of deep brain stimulation for tremor and dystonia (excluding Parkinson's disease)

Essential tremor (involuntary shaking of one or both hands) and dystonia (abnormal muscle spasm) can affect movement and posture. They can be treated by stimulating of a precise area of the brain using an electrode.

Introduction

This overview has been prepared to assist members of the Interventional Procedures Advisory Committee (IPAC) in making recommendations about the safety and efficacy of an interventional procedure. It is based on a rapid review of the medical literature and specialist opinion. It should not be regarded as a definitive assessment of the procedure.

Date prepared

This overview was prepared in February 2006

Procedure name

Deep brain stimulation - DBS

Specialty societies

- Association of British Neurologists
- Society of British Neurological Surgeons

Description

Indications

Tremor and dystonia are symptoms arising from a number of different neurological diseases other than Parkinson's Disease, including Essential Tremor, Multiple Sclerosis and Primary Generalised Dystonia.

Tremor is an involuntary rhythmic repetitive movement, most frequently affecting the upper limbs. Tremor can occur at rest, or be brought on (or

exacerbated) by posture or intentional movement. Severe tremor can be disabling as it affects fine movement coordination.

Dystonia describes uncoordinated simultaneous contraction of both opposing agonist and antagonist muscles. As a condition it can be focal and limited to a particular group of muscles, or be generalised.

Current treatment and alternatives

Currently available conservative management options for dystonia do not cure the underlying neurological disorder but improve symptoms. Over time, the severity of dystonia progresses as part of the underlying neurological condition. Surgical options include thalamotomy or pallidotomy however symptoms may relapse typically over some months and benefits may not be maintained in the long-term.

Most patients with tremor may benefit from rehabilitation and drug therapy and early appropriate treatment may minimise functional disability. Anti-tremor drugs such as propranolol or primidone exert their ameliorating effects by reducing tremor amplitude without any effect on frequency. A reduction in tremor amplitude, does not, however, always translate into functional improvement. Surgery, commonly involving surgical ablation of the thalamic nucleus, is usually reserved for patients with severe disabling tremor and functional disability that interferes with activities of daily living; or tremor that is refractory to the highest tolerated doses of medication..

What the procedure involves

Deep brain stimulation can be carried out on structures within the brain that are responsible for the modification of movements, such as the thalamus, the globus pallidus and the subthalamic nucleus, that interact functionally with the substantia negra (nigra). Each of these structures is bilateral, in the left and right hemispheres, surgery may therefore be carried out on one or both sides. Deep Brain Stimulation alters, through the application of electrical current, the function of these brain nuclei.

The procedure involves inserting fine needles into the brain through small holes made in the skull to determine the exact position of the nucleus, which may be different in each patient. This part of the procedure is usually carried out under local anaesthetic. A permanent electrode is then placed into this nucleus. Under general anaesthetic this wire is then tracked down subcutaneously to the anterior chest wall, where it is connected to a pulse generator.

Efficacy

Tremor

A case series study included in a systematic review found that there was an improvement in total tremor score in up to 27 months follow-up, although there was no significant improvement in most other efficacy outcomes¹. ,. Conversely, four case series included in the same systematic review reported on functional ability all reported improvements in activities of daily living following deep brain stimulation¹. A case series of 52 patients with essential tremor having deep brain stimulation found a significant improvement in activity of daily living at 3 months follow–up, with scores improving from 17.8 points to 6.5 points (p < 0.001)². Another case series of 19 patients found that deep brain stimulation produced an improvement in tremor score (Fahn-Tolosa-Marin scale) from 3.3 points at baseline to 0.8 points at 27 months follow-up (p < 0.005)³.

Overall there were very few data available relating to the use of deep brain stimulation for multiple sclerosis. Three case series reported significant improvements in tremor at 12 to 22 months, however two studies found that improvements in tremor did not necessarily correlate with improvements in functional ability¹.

Dystonia (including Primary Generalised Dystonia)

Data included in a systematic review of deep brain stimulation in dystonia showed marked improvements in clinical severity of dystonia as evaluated on the Burke-Fahn-Marsden Dystonia Rating Scale, with scores improving from baseline values by between 34% and 88%, although some of these differences were not statistically significant¹.

A case series of 22 patients having deep brain stimulation found that total Burke-Fahn-Marsden Dystonia Rating Scale score improved significantly from baseline 46.3 points to 24.3 points at 3 months follow-up, and this effect continued through to 12 months when the score was 21.0 points (p < 0.001 for both comparisons to baseline). Similarly, global disability score improved from 11.6 points at baseline to 7.6 points at 3 months, and 6.5 points at 12 months follow-up (p < 0.001)⁴.

Another 22 patients undergoing deep brain stimulation for dystonia found a significant improvement in quality of life with scores improving from 29 points at baseline to 76.2 points at 25 months follow-up (p < 0.01)⁵.

Safety

One case series reported that pulse generator failure occurred in 50% (6/12) of patients having deep brain stimulation, but the cause of this failure is not described⁶. Other device-related complications reported include stimulating electrode displacement, which sometimes required further surgery. Across the case series where this outcome was reported this occurred in 6% (1/18)³, 8% (1/12)⁶ and 15% (8/52)² of patients. The incidence of lead fracture or failure varied across studies: 4% (2/52)², 5% (1/22)⁴ and 6% (1/18)³.

One case series of 22 patients undergoing deep brain stimulation for dystonia found that there was one case each (5%) of transient oedema of the frontal lobe, cutaneous necrosis of the scalp, localised skin infection, and haematoma at site of the electrode. However, none of these events had permanent sequelea⁴.

Literature review

Rapid review of literature

The medical literature was searched to identify studies and reviews relevant to Interventional procedure overview of deep brain stimulation for tremor and dystonia (excluding Parkinson's disease). Searches were conducted via the following databases, covering the period from their commencement to 20 February 2006. MEDLINE, PREMEDLINE, EMBASE, Cochrane Library and Science Citation Index. Trial registries and the Internet were also searched. No language restriction was applied to the searches.

The following selection criteria (Table 1) were applied to the abstracts identified by the literature search. Where these criteria could not be determined from the abstracts the full paper was retrieved

Characteristic	Criteria
Publication type	Clinical studies included. Emphasis was placed on identifying good quality studies. Abstracts were excluded where no clinical outcomes were reported, or where the paper was a review, editorial, laboratory or animal study. Conference abstracts were also excluded because of the difficulty of
	appraising methodology.
Patient	Patients with essential tremor or dystonia
Intervention/test	Deep brain stimulation
Outcome	Articles were retrieved if the abstract contained information relevant to the safety and/or efficacy.
Language	Non-English-language articles were excluded unless they were thought to add substantively to the English-language evidence base.

Table 1 Inclusion criteria for identification of relevant studies

List of studies included in the overview

This overview is based on one systematic review of controlled studies and case series of patients with essential tremor, dystonia, and multiple sclerosis¹, and five case series; three concerning patients with dystonia^{4,6,5} (one of children with dystonia⁶) and two concerning patients with essential tremor^{2,3}.

Existing reviews on this procedure

The Trent institute for health care research have produced an evidence-based commissioning collaboration report, which is detailed in Table 2¹. This report includes data from the 2001 Wessex Institute for Health Research and Development report.

Related NICE guidance

Below is a list of NICE guidance related to this procedure. Appendix B details the recommendations made in each piece of guidance listed below.

Interventional procedures

IPG019 Deep brain stimulation for Parkinson's disease http://www.nice.org.uk/page.aspx?o=91583

Technology appraisals None

Clinical guidelines Parkinson's disease – Second consultation, due June 2006 <u>http://www.nice.org.uk/page.aspx?o=33924</u>

Public health None

Table 2 Summary of key efficacy and safety findings on deep brain stimulation for tremor and dystonia (excluding Parkinson's disease)

Study Details	ing; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis ra Key efficacy findings	Key safety findings	Comments
Denby T (2004) ¹	Dsytonia	Complications	Thorough literature search and
	Primary generalised dystonia:	Adverse events were common and	study selection
Systematic review	There were marked improvements in the clinical severity of	similar across all patient groups, and	5
-	dystonia, following DBS, as assessed by BFMDRS.	included surgical complications,	A 'rebound phenomenon' was
UK	Improvement in scores, from baseline to last follow-up, ranged	stimulation side effects, infection and	reported in a few studies
	from 34% to 88%. Some of these improvements were	device related problems. Very few	evaluating the effect of DBS on
13 studies (1 systematic review	statistically significant. Functional score of BFMDRS improved	studies gave estimates given on the	dystonic patients where sudder
and 12 case series) were	by 27% to 95%.	numbers	cessation of stimulation, as a
identified that evaluated the		or rate of adverse events per patient	result of hardware failure, led to
effectiveness of DBS for patients	Two studies found that DBS was as effective for children as	or subgroup. Instead, descriptions of	acute severe relapse
with dystonia, 12 studies (1	adults, with no significant difference between children and	the type of incidents suffered across	
systematic review, 1 RCT, 2	adults in the functional or clinical score following surgery.	the whole study population were	
case control studies, and 8 case		common.	
series) for patients with essential	In four studies of patients with cervical dystonia, mean		
tremor, and 4 (1 systematic	improvements in severity on the TWSTRS were around 63%,	There were few reported surgical	
review and 3 case series) for	in disability they were between 60% and 69% and in pain 50%	complications. In contrast, side	
patients with multiple sclerosis.	and 59%.	effects associated with stimulation,	
		such as transient paraesthesia, were	
n = >200+ with dystonia (%	Secondary dystonia (definition not stated):	common, although were considered	
primary and secondary	The evidence indicates that these patients respond less	mild and were often controlled with	
dystonia varied between	favourably to DBS than PGD or CD. Across three studies, the	changes in stimulation parameters.	
studies), >300 with Essential	improvement in BFMDRS clinical scores following surgery	Device-related complications were	
Tremor, and 72 with MS.	were 12% at 3 months, 14% at 6 months, 31% at 1 year and	also common and included infection,	
,	23% at 2 years. Functional BFMDRS score assessed in one	lead fractures, sudden battery	
Follow-up = 3 months to	study had improved by just 7% at 1 year and 9% at 2-year	depletion and lead slippage. These	
6.5 years	follow-up.	adverse events were potentially more	
0.5 years		serious, and in some cases led to	
	In one study patients reported better performance and more	repeat surgery.	
	independence but no significant change was found in the	In one case-control study comparing	
	formal assessment of their disability.	thalamotomy and DBS, thalamotomy	
	One study evaluating the effects of DBS on patients suffering	resulted in a higher level of surgical	
	from PGD or segmental dystonia reported a significant	complications. A larger number of	
	improvement in quality of life of 64%, as measured by	DBS patients, however, underwent	
	EuroQol1 6–12 months after surgery. Another study assessing	repeat surgeries due to hardware	
	the effects of DBS on PGD patients reported an	complications.	

IP overview: Interventional procedure overview of deep brain stimulation for tremor and dystonia (excluding Parkinson's disease)

Study Details	of daily living; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis Key efficacy findings	Key safety findings	Comments
	improvement in health status, as measured by SF-36 by an average of 36% 3–12 months following surgery.		

Abbreviations used: DBS, deep brain stimulation; BFMDRS, Burke-Fahn-Marsden Dystonia Rating Scale; PGD, primary generalised dystonia; CD, cervical dystonia; MMSE, Mini-Mental State Examination; ADL, activities of daily living; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis rating scale; SF-36 – short form health survey

Study Details	Key efficacy findings	Key safety findings	Comments
enby T (2004) ¹ continued	The two studies evaluating mental health found no significant changes in MMSE scores. In one study there was a significant fall in the level of depression 2 years after surgery, although this finding was not replicated in another study.		
	Essential Tremor The case-control study that compared thalamotomy with DBS found no significant differences between any efficacy outcome variable over 27 months, although there was an improvement in total tremor score. In a very small case-control study (six patients) DBS modified several features of the tremor and reduced tremor severity. Only one of the patients still had a tremor with stimulation on, although the amplitude was considerably reduced compared with off stimulation		
	The six case series reporting tremor severity all reported some level of improvement following DBS, four of which noted significant effects.		
	In four of the case series reporting functional ability in this review, tremor ADL scores, derived from tremor severity rating scales, were detailed. All patients reported improvements in ADL following DBS.		
	In a 12-month study, it was found that DBS improved the emotional condition of the patients and reduced the negative impact of the disease on their social life and life as a whole. Multiple Sclerosis Three case studies reported significant improvements in tremor at 12–22 months Two studies reported that the improvement in tremor didn't correlate with an improvement in functional ability		
	 didn't correlate with an improvement in functional ability or in patients' perception of their condition. In another case series patients reported that their ability to feed themselves was significantly improved 2 months after surgery, although at 1 year this was no longer statistically significant. One study reported quality of life based on SF-36. There were no significant changes following DBS 		

Abbreviations used: DBS, deep brain stimulation; BFMDRS, Burke-Fahn-Marsden Dystonia Rating Scale; PGD, primary generalised dystonia; CD, cervical dystonia; MMSE, Mini-Mental State Examination; ADL, activities of daily living; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis rating scale; SF-36 – short form health survey

Study Details Key efficacy findings	Key safety		omments
Vidailhet M (2005) ⁴ Motor function Case series Baseline 3 months p France BFMDRS – 46.3 24.6 < 0.0	Key safety12 months p1 21.01 6.51 6.5eline.t speech and swallowing ow-upundation at 3 months, gnificantly worse with respectively (p < 0.001).	findings Cc rents Incase one episode each (5% ca nsient postoperative bli he frontal lobe, fractured ous ous necrosis of the scalp, out in infection, and 3 r near the neurostimulator. sti nanent sequelae. Tv be du Th an Au of dy No part part output nanent sequelae. Tv be du Th an Au of dy bi an an an an an bi an bi an an an an an bi an an an an an an an bi an bi an bi an bi an <td>omments Idependent outcome ssessment by videotape of ases wearing a hat to ensure ind evaluation. Introme assessment at months was done with the imulator both on and off. D-hour washout period may ave been insufficient. Wo cases required stimulation eing reinstated during washout ue to clinical deterioration. hese cases were excluded from halysis. Introm note that there is a lack if standard criteria for classifying ystonia. o details given of method of atient recruitment. Iulticentre study with each entre submitting a small number if cases may have resulted in ome degree of operator experience.</td>	omments Idependent outcome ssessment by videotape of ases wearing a hat to ensure ind evaluation. Introme assessment at months was done with the imulator both on and off. D-hour washout period may ave been insufficient. Wo cases required stimulation eing reinstated during washout ue to clinical deterioration. hese cases were excluded from halysis. Introm note that there is a lack if standard criteria for classifying ystonia. o details given of method of atient recruitment. Iulticentre study with each entre submitting a small number if cases may have resulted in ome degree of operator experience.

Study Details	Key efficacy findings	Key safety findings	Comments
Yianni J (2005)⁵	Quality of life There was a significant improvement in the EQ-5D scores	No safety outcomes were reported	All operations undertaken by one surgeon.
Case series	following DBS at final followtup of 25 months. The score rose from 29 to 76.2 points ($p < 0.01$)		Study provides a cost–utility
UK and Australia			analysis of DBS.
n = 22 (dystonia unspecified)	Willingness to pay Patients willingness to pay for the operation ranged from £1000 to £1,000,000, with a mean price of £291 231 and a		Willingness to pay outcomes may overstate the value of the
No definition given of study cohort characteristics	median price of £20,000.		treatment as individuals who respond well to the treatment may not recognise the wider
Electrodes inserted into the target area of the brain			range of benefits gained by others.
Outcomes were assessed using the EQ-5D questionnaire, with patient self-reporting			Authors state that increased experience may improve patient selection for the procedure and result in better outcomes.
Follow-up = 25 months			
Disclosure of interest: supported by a grant from the medical research council.			Clinical benefits may enable some patients to return to work.

Abbreviations used: DBS, deep brain stimulation; BFMDRS, Burke-Fahn-Marsden Dystonia Rating Scale; PGD, primary generalised dystonia; CD, cervical dystonia; MMSE, Mini-Mental State Examination; ADL, activities of daily living; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis rating scale; SF-36 – short form health survey

Examination; ADL, activities of daily liv	<u>/ing; EQ-5D, Euroquol; TWSTRS – Torc</u>	onto western spasmodic torticollis r	ating scale; SF-36 – short form health survey	
Study Details	Key efficacy findings		Key safety findings	Comments
Zorzi G (2005) ⁶ Case series Italy n = 12 (dystonia both primary and secondary) Cases from 1999 to 2003 Childhood-onset dystonia Positioning using MRI and (with general anaesthesia) bilateral electrode implant into the ventroposterolateral globus pallidus internus, with quadripolar electrodes. Stimulation started 2 days after surgery and adjusted during the first year to obtain the best response without side effects. Age = 15 years, Male = 83%, age of dystonia onset = 3.9 years, primary dystonia n = 7, secondary dystonia n = 2, status dystonicus n = 3, DTY1 mutation n = 1. Follow up = 1.8 years Disclosure of interest: supported by the national ministry of health and the Paolo Zorzi Association for Neuroscience.	Motor responses For 9 primary and secondary dys BASEline BFMDRS 62 ± 17.8 severity BFMDRS 16.7 ± 2.6 disability BFMDRS total 78.7 ± 19.9 All comparisons were statistically Improvements were usually evide following surgery. Oromandibular dystonias and fixe little or did not improve by DBS. In the 3 patients with status dystor effective (although there was no i score in one). In one patient med 12 months. Mobility Of 5 patients who were wheelcha able to walk 2–6 months after sur	Final evaluation 33.8 ± 20.1 10.9 ± 5.2 44.7 ± 25 significant (p < 0.008) ent from 1 week to 2 months ed dystonia postures changed onicus DBS was considered mprovement in BFMDRS ical therapy was withdrawn at ir bound at baseline were	Complications 50% (6/12) patients suffered remote post-surgical complications. In one patient the left electrode became displaced requiring further surgery. One or both pulse generators failed in 50% (6/12) of patients.	It is useful to document all DBS non-responders to help determine appropriate case selection It is not stated whether included cases were consecutive or not and method of selection used is not described. No statistical analysis of outcomes for the 3 patients with status dystonicus was undertaken. Outcome assessment was undertaken by 3 specialists in childhood movement disorders. No details of blinding of outcome assessment.

Abbreviations used: DBS, deep brain stimulation; BFMDRS, Burke-Fahn-Marsden Dystonia Rating Scale; PGD, primary generalised dystonia; CD, cervical dystonia; MMSE, Mini-Mental State Examination; ADL, activities of daily living; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis rating scale; SF-36 – short form health survey

Abbreviations used: DBS, deep brain stimulation; BFMDRS, Burke-Fahn-Marsden Dystonia Rating Scale; PGD, primary generalised dystonia; CD, cervical dystonia; MMSE, Mini-Mental State Examination; ADL, activities of daily living; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis rating scale; SF-36 – short form health survey

Study Details	Key efficacy findings	Key safety findings	Comments
	$\begin{array}{c c} \hline \textit{Ing; EQ-5D, Euroquol; TWSTRS - Toronto western spasmodic torticollis r.} \\ \hline \textbf{Key efficacy findings} \\ \hline \textbf{Motor function} \\ & Base-line & 3 & p & 24 & p \\ & (n = 45) & months & months \\ & (n = 35) & (n=7) \\ \hline \textbf{Midline tremor} & 5.6 \pm 5.1 & 2.0 \pm 2.4 < 0.001 & 0.8 \pm 0.8 < 0.001 \\ - \ bilateral \\ stimulation \\ \hline \textbf{Midline tremor} & 4.1 \pm 3.1 & 1.2 \pm 1.3 < 0.001 & 1.8 \pm 1.9 \\ - \ \textbf{unilateral} \\ stimulation \\ \hline \textbf{Activities of} & 17.8 & 6.5 \pm 6.5 < 0.001 \\ \hline \textbf{daily living} & \pm 3.7 \\ \hline \end{array}$		Comments A consecutive sample of patients. Diagnosis was made by one neurologist for consistency Between 3 and 5% of participants did not complete all measures at each evaluation interval
All patients discontinued anti- tremor medication before baseline assessment. Under general anaesthesia a stimulation electrode was implanted into the ventral intermediate nucleus of the thalamus following MRI positioning. Intraoperative test stimulations were performed. Stimulation settings were adjusted for optimal tremor control. Age = 72 years, male = 58%, tremor duration = 24 years, unilateral stimulation n = 29. Follow up =19.8 months Disclosure of interest: research supported by a grant and fellowship of the Mayo Clinic.	'On' stimulation assessment of frequency and power for both contralareral resting and postural tremor showed significant improvement when compared with baseline and when compared with 'off' assessment. At 2 years follow-up the Purdue pegboard score (using both hands) was significantly improved from baseline $(6.6 \pm 3.2 \text{ vs} 5.4 \pm 2.8)$ (p < 0.001), although there was no significant difference at 1 or 2 months.	And two leads bloke during follow-up.One DBS system was explanted due to infection at 22 months follow-up.Stimulator setting adjustment was undertaken at 63% (231/367) of clinic visitsSide effectsEffectUnilateralDysarthria0%27%(6/22)Disequilibrium923%(3/22)(1/22)Motor5%9%disturbance(1/22)	At each follow-up point outcomes were assessed with stimulation on and off with overnight or at least 1-hour washout period. Assessment on stimulation was undertaken before the settings were adjusted to optimise therapy, giving a conservative measure of efficacy. It is not stated whether outcome assessment is undertaken on or off medical therapy Comparison of drop-out rates found that at 2-year follow-up significantly fewer patient with unilateral then bilateral stimulation were available. Analysis also undertaken to estimate scores for drop outs using either the worst score, baseline score, or most recent score carry forward techniques.

Examination; ADL, activities of daily liv			ronto westerr	n spasmodic torticollis ra		ealth survey	
Study Details	Key efficacy findin	gs			Key safety findings		Comments
Lee J Y K (2005) ³	Surgical parameters Implantation of the DBS system was successful in 95% (18/19)		Complications Event	Frequency	Not stated whether this is a consecutive cohort.		
Case series USA	of cases. In one patient temporary electrode placement eliminated tremor. This case was excluded from analysis.		Lead breakage Temporary erythema (oral antibiotics)	6% (1/18) 6% (1/18)	Although a drawing test is described in the methods, no		
n = 19 (Essential Tremor)	All patients were discharged the day following surgery. Approximately half of the patients did not require further			Electrode migration (requiring surgery) Mild hand tingling during stimulation	6% (1.18) 17% (3/18)		
Cases from May 1997 to November 2003 Patients with sever tremor	adjustment of stimulation once initial programming was completed. Functional assessment.			sumulation		Authors state that lesioning requires no permanent placement of a device so could be considered a simpler	
causing disability refractory to medical management.	The Fahn-Tolosa-M evaluate outcome		remor score Final	e was used to			procedure.
DBS using the activa tremor system. Electrodes were positioned using MRI guidance	Tremor score Handwriting score	3.3 ± 0.5 2.8 ± 0.9	follow-up 0.8 ± 0.4 1.0 ± 0.6	< 0.005 < 0.005			outcome assessment Concomitant medical therapy, if
to the ventralis intermedius nucleus of the thalamus, Stimulation testing under local anaesthesia, and implantation of	For a subgroup of patients with at least 2 years of follow-up (mean 51 months) f Baseline Final p				any, not described		
the pulse generator with general anaesthesia.	Tremor score Handwriting score	$\begin{array}{c} 3.3\pm0.5\\ 2.8\pm0.8\end{array}$	$\begin{array}{l} \text{follow-up} \\ 0.7\pm0.5 \\ 1.1\pm0.8 \end{array}$	0.003 0.003			
Age = 60 years, male = 63%, duration of symptoms = 23 years, upper extremities tremor n = 19, head tremor n = 9, lower extremities tremor n = 1.	Eight patients demonstrated better tremor control immediately postoperatively but then deteriorated with time, but they all maintained better control than baseline score.						
Follow-up =27 months							
Disclosure of interest: not stated							

Abbreviations used: DBS, deep brain stimulation; BFMDRS, Burke-Fahn-Marsden Dystonia Rating Scale; PGD, primary generalised dystonia; CD, cervical dystonia; MMSE, Mini-Mental State Examination; ADL, activities of daily living; EQ-5D, Euroquol; TWSTRS – Toronto western spasmodic torticollis rating scale; SF-36 – short form health survey

Validity and generalisability of the studies

- Reported outcomes may be affected by the efficacy of concomitant pharmacotherapy.
- There is variation between studies in target nucleus used, and on bilateral or unilateral techniques, and uncertainty about relative merits of stimulation of different target nuclei.
- In relation to dystonia, some studies included patients with primary dystonia, some included patients with secondary dystonia, and some had a mixed cohort.
- Most of reviewed studies were published in the 2004 and 2005.

Specialist advisors' opinions

Specialist advice was sought from consultants who have been nominated or ratified by their Specialist Society or Royal College.

Dr P Bain, Dr R Gregory, Professor TZ Aziz, Professor IR Whittle, Dr DJ Burn

- Four out of five advisors considered this procedure to be established practice
- The benefits sought with this intervention are improves quality of life, with good functional outcomes and less impairment, as well as tremor suppression.
- Reported adverse events relating to this procedure are infection, haemorrhage (possibly causing hemiparesis), Hardware failure, dysarthia, speech disturbance, cerebral oedema, and death.
- Additionally, theoretical complications may include stroke, language impairment, cognitive impairment, depression and suicide, and damage from MRI scans.
- Patient selection is important, particularly in dystonia as some patients mat respond better than others.
- Most advisors noted the importance of patients being treated by a multidisciplinary team.
- The procedure requires high quality imaging for targeting the stimulation, and those undertaking the procedure need to be familiar with the stimulating equipment.
- Nine centres already carry out DBS regularly for Parkinson's disease.
- There may be concerns about the long term efficacy of the procedure as tremors may become resistant to the stimulation, and there is no follow up of patients with dystonia for 10 years.
- There may potentially be a UK trial of DBS in dystonia.
- Audit criteria should include quality of life outcomes using recognised scales, reduction in medication requirement, neuro-psychiatric adverse events, fits, death, hardware failure, and long term efficacy.

Issues for consideration by IPAC

- This is a potentially reversible procedure, unlike palidiotomy or thalamotomy.
- There is an ongoing RCT to compare DBS (treatment group) or delayed stimulation (control group) in primary generalized dystonia http://www.clinicaltrials.gov/ct/gui/show/NCT00272246

- 1. Denby T (2004) Deep brain stimulation for movement disorders other than Parkinson's disease. 1–106.
- 2. Putzke JD, Wharen RE Jr., Obwegeser AA et al. (2004) Thalamic deep brain stimulation for essential tremor: recommendations for long-term outcome analysis.[see comment]. *Canadian Journal of Neurological Sciences* 31: 333–342.
- Lee JY, Kondziolka D (2005) Thalamic deep brain stimulation for management of essential tremor.[see comment]. *Journal of Neurosurgery* 103: 400–3.
- 4. Vidailhet M, Vercueil L, Houeto JL et al. (2005) Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia.[see comment]. *New England Journal of Medicine* 352: 459–467.
- 5. Yianni J, Green AL, McIntosh E et al. The costs and benefits of deep brain stimulation surgery for patients with dystonia: An initial exploration. *Neuromodulation* 8: 155-161.
- Zorzi G, Marras C, Nardocci N et al. (2005) Stimulation of the globus pallidus internus for childhood-onset dystonia. *Movement Disorders* 20: 1194–1200.

Appendix A: Additional papers on deep brain stimulation for tremor and dystonia (excluding Parkinson's disease) not included in summary table 2

Article title	Number of	Comments	Direction of
	patients/ follow-up		conclusions
Binder DK, Rau GM, Starr PA. Risk	Case series	A mixed study	6 symptomatic and
factors for hemorrhage during		cohort of a range	10 asymptomatic
microelectrode-guided deep brain	n=208	of movement	haematomas
stimulator implantation for movement	FU=?	disorders	reported
disorders. Neurosurgery 2005; 56(4):722-732	FU=?		
Bittar RG, Yianni J, Wang S, Liu X,	Case series	Have larger case	At 2 years there was
Nandi D, Joint C et al. Deep brain		series in Table 2	a 46% improvement
stimulation for generalised dystonia and	n=12		in overall BFMDRS
spasmodic torticollis. Journal of Clinical Neuroscience 2005; 12(1):12-16.	FU=2 years		scores
Burkhard PR, Vingerhoets FJ, Berney	Case series	A mixed study	6 of 140 DBS
A, Bogousslavsky J, Villemure JG,		cohort of a range	treated patients
Ghika J. Suicide after successful deep	n=140	of movement	committed suicide in
brain stimulation for movement disorders. [Review] [10 refs]. Neurology	FU=9 years	disorders	9 year follow up
2004; 63(11):2170-2172	FU=9 years		
Bryant JA, De Salles A, Cabatan C, Frysinger R, Behnke E, Bronstein J.	Case series	Have larger case series in Table 2	A 34% improvement in the Fahn-Tolosa-
The impact of thalamic stimulation on	n=16	Series III Table 2	Marin tremor rating
activities of daily living for essential			scale
tremor. Surgical Neurology 2003;	FU=13		
59(6):479-484	months		
Cif L, El Fertit H, Vayssiere N, Hemm S, Hardouin E, Gannau A et al. Treatment	Case series	Included in Denby (2004) study	In secondary sytonia the effect of DBS is
of dystonic syndromes by chronic	n=53	(2004) Sludy	more limited.
electrical stimulation of the internal			
globus pallidus. Journal of	FU=26		
Neurosurgical Sciences 2003; 47(1):52- 55	months		
Halbig, T. D., Gruber, D., Kopp, U. A.,	Case series	Have larger and	BFMDRS motor
Schneider, GH., Trottenberg, T., and		longer FU case	scores improved by
Kupsch, A.	n=15	series in Table 2	between 26 and
Pallidal stimulation in dystonia: Effects on cognition, mood, and quality of life.	FU=6.5		93%.
Journal of Neurology, Neurosurgery &	months		
Psychiatry (12) 1716			
Hooper J, Taylor R, Pentland B, Whittle	Case series	Included in Denby	A significant
IR. A prospective study of thalamic	n 15	(2004) study	reduction in severity of tremor and in
deep brain stimulation for the treatment of movement disorders in multiple	n=15		hand function
sclerosis. British Journal of	FU=12		
Neurosurgery 2002; 16(2):102-109	months		
Koller WC, Lyons KE, Wilkinson SB,	Case series	Included in Denby	A significant
Pahwa R. Efficacy of unilateral deep brain stimulation of the VIM nucleus of	n=60	(2004) study	improvement in head tremor at all
the thalamus for essential head tremor.			follow up points.
Movement Disorders 1999; 14(5):847-	FU=12		
850	months		

Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Movement Disorders 2001; 15(2):464,469	Case series n=25 FU=40 months	Included in Denby (2004) study	Tremor scores improved from baseline with DBS switched on
16(3):464-468 Lyons KE, Pahwa R, Busenbark KL, Troster AI, Wilkinson S, Koller WC. Improvements in daily functioning after deep brain stimulation of the thalamus for intractable tremor. Movement Disorders 1998; Vol. 13(4):-692.	Case series n=22 FU=11 months	Have larger case series in Table 2	A 58% improvement in tremor activities of daily living scores when stimulation on compared to off
Ondo W, Jankovic J, Schwartz K, Almaguer M, Simpson RK. Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson's disease tremor. Neurology 1998; 51:1063-1069	Case series n=33 FU=3 months	A mixed study cohort some patients with Parkinson's disease	An 83% reduction in observed contralateral tremor
Pahwa R, Lyons KE, Wilkinson SB, Troster AI, Overman J, Kieltyka J et al. Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Movement Disorders 2001; 16(1):140-143.	Non randomised controlled trial n=35	Included in Denby (2004) study	No significant differences in any efficacy outcomes between DBS and thalamotomy groups.
	FU=27 months		
Stein K. Deep brain stimulation for movement disorders other than Parkinsons disease. 2001. London: Bazian Ltd (Editors), Wessex Institute for Health Research and Development, University of Southampton	Systematic review 20 case series and 1 RCT	Included in Denby (2004) study	Results varied between primary studies
	FU=?		

Appendix B: Related published NICE guidance for deep brain stimulation for tremor and dystonia (excluding Parkinson's disease)

Guidance programme	Recommendation
Interventional procedures	IPG019 Deep brain stimulation for Parkinson's disease
	1.1 Current evidence on the safety and efficacy of deep brain stimulation for Parkinson's disease appears adequate to support the use of the procedure, provided that normal arrangements are in place for consent, audit and clinical governance.
	1.2 The clinical and cost effectiveness of deep brain stimulation for Parkinson's disease is being evaluated by the PD Surg trial, which is expected to complete randomisation in 2005/6. The results of this trial are likely to provide evidence on the most appropriate use of the procedure and clinicians are encouraged to consider randomising patients in the trial (www.pdsurg.bham.ac.uk).
	1.3 It is recommended that patient selection should be made with the involvement of a multidisciplinary team, and that patients should be offered the procedure only when their disease has become refractory to best medical treatment.
Technology appraisals	None applicable
Clinical guidelines	Parkinson's disease
	 1.5.1 STN stimulation 1.5.1.1 Bilateral subthalamic stimulation can be used in people with PD who fit the following criteria: [D] Motor complications which are refractory to best medical treatment Biologically fit with no clinically significant active comorbidity Levodopa responsive No clinically significant active mental health problems (for example, depression) or dementia.

	 1.5.2 GPI stimulation 1.5.2.1 Bilateral globus pallidus stimulation can be used in people with PD who fit the following criteria: [D(GPP)] Motor complications which are refractory to best medical treatment Biologically fit with no clinically significant active comorbidity Levodopa responsive No clinically significant active mental health problems (for example, depression) or dementia 1.5.3 Comparison of different types of deep brain stimulation 1.5.3.1 With the current evidence it is not possible to specify whether or not subthalamic nucleus or globus pallidus stimulation is the preferred surgical option for people with PD. In considering the type of surgery, account should be taken of: [D(GPP)] the clinical condition and the lifestyle of the person with PD the views of the person with PD after being informed of the potential benefits and drawbacks of the different surgical procedures. 1.5.4 Thalamic stimulation 1.5.4.1 Thalamic deep brain stimulation can be considered as an option in people with PD who predominantly have severe disabling tremor and where STN DBS cannot be performed. [D]
Public health	None applicable

Appendix C: Literature search for deep brain stimulation for tremor and dystonia (excluding Parkinson's disease)

The following search strategy was used to identify papers in Medline. A similar strategy was used to identify papers in EMBASE, Current Contents, PreMedline and all EMB databases.

Procedure number: 319	Procedure Name: DBS for dystonia and non parkinsons tremor	
Databases	Version searched (if applicable)	Date searched
The Cochrane Library	2005 Issue 3	26/09/2005
CRD		27/09/2005
Embase	1980 to 2005 Week 39	26/09/2005
Medline	1966 to September Week 2 2005	26/09/2005
Premedline	September 23, 2005	26/09/2005
CINAHL	1982 to September Week 3 2005	26/09/2005
British Library Inside Conferences (limited to current year only)		27/09/2005
National Research Register	2005 Issue 3	27/09/2005
Controlled Trials Registry		27/09/2005

1. *movement disorders/

- 2. *parkinson disease/
- 3. 1 not 2
- 4. exp *dystonic disorders/
- 5. *essential tremor/
- 6. *dystonia/
- 7. dystoni\$.tw.
- 8. ((nonparkins\$ or non\$ parkins\$) adj3 (tremor\$ or disorder\$)).tw.
- 9. or/3-8
- 10. deep brain stimulation/
- 11. (deep adj2 brain\$ adj2 stimul\$).tw.
- 12. dbs-stn.tw.
- 13. or/10-12
- 14. 9 and 13
- 15. animal/ not human/
- 16. 14 not 15

For all other databases a simple search strategy using the key words in the title was employed.