NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

INTERVENTIONAL PROCEDURES PROGRAMME

Interventional procedure overview of optical coherence tomography to guide percutaneous coronary intervention

Optical coherence tomography (OCT) is a method for creating images of the inside of blood vessels. A thin flexible tube (a catheter) with a tip emitting near-infrared light is inserted into an artery in the groin or arm under local anaesthetic, in the same way as the balloon catheters and stents used to treat narrowing in the coronary arteries (that supply blood to the heart). The OCT images help to make decisions about treatment or show how well balloon and stent treatment has worked.

Introduction

The National Institute for Health and Care Excellence (NICE) has prepared this interventional procedure (IP) overview to help members of the Interventional Procedures Advisory Committee (IPAC) make recommendations about the safety and efficacy of an interventional procedure. It is based on a rapid review of the medical literature and specialist opinion. It should not be regarded as a definitive assessment of the procedure.

Date prepared

This overview was prepared in May 2013 and updated with information requested by IPAC in August 2013.

Procedure name

• Optical coherence tomography to guide percutaneous coronary intervention

Specialist societies

- British Cardiovascular Intervention Society
- British Cardiovascular Society.

Description

Indications and current treatment

Optical coherence tomography (OCT) uses a catheter emitting near-infrared light to produce high-resolution images of blood vessel walls. It may be used to assess stenotic lesions in the coronary arteries and to image the result of stent deployment during percutaneous coronary interventions.

Coronary angiography is used to image coronary arteries immediately before angioplasty. Intravascular ultrasound or OCT may be used to provide additional and complementary information to coronary angiography.

What the procedure involves

Optical coherence tomography (OCT) is usually performed using local anaesthesia. A guide wire and delivery sheath are introduced percutaneously into either the femoral or radial artery and passed into the target coronary artery using fluoroscopic image guidance. OCT imaging needs a blood-free field. This was first achieved by an occlusive technique, using an occlusion balloon with first-generation time-domain OCT (TD-OCT), but this technique is no longer used in clinical practice. A non-occlusive technique is now used, involving continuous flushing of contrast with frequency-domain OCT (FD-OCT). For non-occlusive OCT, a guide wire through which contrast can be injected is used. The imaging catheter is delivered over this wire. Injection of contrast and imaging take place concurrently.

Second-generation FD-OCT devices aim to improve image quality and, more importantly, increase the speed of image acquisition by a factor of 10. FD-OCT has superseded TD-OCT in the UK.

The resolution of coronary OCT is reported to be 10 times higher than that of intravascular ultrasound, and has rapid 3-dimensional reconstruction capability. The aim of providing more detailed images is to improve clinical outcome.

Literature review

Rapid review of literature

The medical literature was searched to identify studies and reviews relevant to optical coherence tomography to guide percutaneous coronary intervention. Searches were conducted of the following databases, covering the period from their commencement to 1 May 2013: MEDLINE, PREMEDLINE, EMBASE, Cochrane Library and other databases, Trial registries and the Internet were also searched. No language restriction was applied to the searches (see appendix C for details of search strategy). Relevant published studies identified during consultation or resolution that are published after this date may also be considered for inclusion.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 2 of 53 The following selection criteria (table 1) were applied to the abstracts identified by the literature search. Where selection criteria could not be determined from the abstracts the full paper was retrieved.

Characteristic	Criteria						
Publication type	Clinical studies were included. Emphasis was placed on identifying good quality studies.						
	Abstracts were excluded where no clinical outcomes were reported, or where the paper was a review, editorial, or a laboratory or animal study.						
	Conference abstracts were also excluded because of the difficulty of appraising study methodology, unless they reported specific adverse events that were not available in the published literature.						
Patient	Patients needing intravascular coronary imaging.						
Intervention/test	Optical coherence tomography.						
Outcome	Articles were retrieved if the abstract contained information relevant to the safety and/or efficacy.						
Language	Non-English-language articles were excluded unless they were thought to add substantively to the English-language evidence base.						

Table 1 Inclusion criteria for identification of relevant studies

List of studies included in the overview

This IP overview is based on approximately 1692 patients from 1 RCT, 3 comparative studies, 5 case series and 5 case studies.

Other studies that were considered to be relevant to the procedure but were not included in the main extraction table (table 2) have been listed in appendix A.

Table 2 Summary of key efficacy and safety findings on optical coherence tomography to guide percutaneous coronary intervention

Study details	Key efficacy findi	ngs			Key safety findings	Comments			
Prati, F (2012) ¹ Retrospective matched case control study	Number of patients angio vs. 335 Ang Clinical decision-	jio only)	670 (335 F	D-OCT +	Acquisition of OCT imaging was not associated with any major complication, as no case of significant spasm, dissection or life-threatening arrhythmia	 Follow-up issues: Patients were followed up at 1-3 and 6 months. All patients were questioned by a research nurse 			
Italy Recruitment period: 2009- 2011 Study population: Consecutive patients undergoing PCI with angiography plus OCT guidance (OCT group) matched patients undergoing PCI with angiography only guidance	 OCT findings led to of the subjects: further stentin edge dissection lumen area th additional ball (14.0% for sterintra-stent throw 	o additional g in 12.6% on, 7.2% to at was <4 n oon dilatatio nt under-ex ombus).	of cases (5 enlarge a r nm ²). on in 22.1% pansion, 8	.4% for an eference o of cases .1% for	occurred (that is, requiring pharmacologic therapy, revascularisation, or cardioversion/defibrillation). Accordingly, no significant differences in post-procedural renal function were found comparing the OCT group with the angio group.	 between 11.5 and 12.5 months after the index procedure. Study design issues: Treatment choices were at the operator's discretion. The use of OCT guidance for coronary angioplasty was left at the operator's discretion, with some preferring either OCT guidance or angiographic guidance alone for most of their cases. The authors report that patients in the OCT group were matched with 			
within 30 days and in the same institution (angio group) n = 670 (335 FD-OCT + angio vs 335 angio only) Age: 65.9 years	In-hospital events	Angio group n (%)	OCT group n (%)	p-value		the OCT group were matched with a randomly selected patient undergoing PCI, without OCT guidance, at the same institution			
	Cardiac death	3 (0.9%)	2 (0.6%)	1.0		within 30 days but do not include details of randomisation.			
Sex: 76.9% male	Non-fatal MI	-fatal MI 22 13 0.1 (6.5%) (3.9%)		0.118		Study population issues:			
Patient selection criteria: Operational, not experimental. Specific selection criteria not reported	Events at 1- year follow-up					 Patients in the angio group were older (67.0 vs. 64.8 years, p. 0.016), more frequently. 			
	Total deaths	23 (6.9%)	11 (3.3%)	0.035		p=0.016), more frequently presented with ST-elevation MI (36.7% vs. 25.7%, p=0.005), type			
	Cardiac death	15 (4.5%)	4 (1.2%)	0.010		B2/C lesions (86.7% vs. 72.8%, p<0.001) and were less likely to be			
Technique: FD-OCT images	MI	29	18	0.096		treated with DES (43.6% vs. 63.39			

Abbreviations used: angio angiography: DES_drug-eluting stept: ED-OCT_frequency-domain optical coherence tomography: MI_myocardial infarction: OCT_optical

Study details	Key efficacy finding	gs			Key safety findings	Comments		
were acquired with the C7		(8.7%)	(5.4%)			p<0.001).		
XR system (LightLab, St Jude Medical). All procedures were carried out by senior staff members with established skills and case-load. Follow-up: 1 year Conflict of interest/source of funding: the authors have no conflicts of interest to declare. The study was funded by Centro per la Lotta contro l'Infarto.	Target lesion repeat revascularisation	11 (3.3%)	11 (3.3%)	1.0		 Conversely, subjects in the OCT group had a higher prevalence of non-ST-elevation acute coronary syndromes (33.4% vs. 25.4%, 		
	Definite stent thrombosis	2 (0.6%)	1 (0.3%)	1.0		p=0.005), dyslipidaemia (53.3% v 64.5%, p=0.002), prior PCI (23.5%		
	Cardiac death or MI	43 (13.0%)	22 (6.6%)	0.006		vs. 34.3%, p=0.002), multivessel disease (52.1% vs. 63.2%,		
	Cardiac death, MI or repeat50 (15.1%)32 (9.6%)0.034revascularisation(15.1%)(9.6%)					p=0.007), and left main disease (2.4% vs. 6.6%, p=0.009), more frequently received treatment on t left anterior descending (53.4% vs		
	OCT and survival: I Multivariate analysis associated with the 0	adjusted	l for all covari			60.9%, p=0.050) or multiple vesse (15.5% vs. 23.3%, p=0.011), had longer total stent length (26.0 \pm 15. mm vs. 29.0 \pm 16.6 mm, p=0.024), and more frequently received		
		or gr	ardiac death r MI in OCT roup R (95% CI)	p- value		overlapping stents (7.5% vs. 14.6 p=0.003) and larger balloons (3.0±0.5 mm vs. 3.1±0.4 mm, p=0.037).		
	Multivariate logistic regression		49 (0.25- 96)	0.037				
	+propensity score matching and bootstrap re-sampl	0.9	37 (0.10- 90)	0.050				
	Cox proportional hazards model		51 (0.28- 93)	0.028				
	+propensity score matching and bootstrap re-sampl	0.9	44 (0.21- 92)	0.030				

Abbreviations used: angio, angiography; DES, drug-eluting stent; FD-OCT, frequency-domain optical coherence tomography; MI, myocardial infarction; OCT, optical

Study details	Key efficacy findin	gs			Key safety finding	S			Comments	
Habara, M (2012) ²	Number of patients IVUS)) (35 OCT vs	. 35	No complications as procedure were obs	Study design issues: • Randomisation by				
Randomised controlled trial	Procedural Outcom			1		sealed envelopes.Blinding was not				
Japan		ОСТ	IVUS	р	Adverse events					
Recruitment period: 2010		20.4+9.4	24.9.10.4	value		OCT	IVUS	р	possible for either investigator or	
Study population: patients with new	Total fluoroscopy time (minutes)	20.4 <u>+</u> 8.4	24.8 <u>+</u> 10.4	0.05		n (%)	n(%)	value	subject; however,	
coronary artery lesions and either	Device success*	100%	100%	>0.99	Death	0	0	N/A	QCA measurements	
unstable or stable angina pectoris. n = 70 (35 OCT vs. 35 IVUS) Age: 67.5 years Sex: 78.6% male Patient selection criteria:	(%)	10078	100 %	20.99	Emergency	0	0	N/A	were done by a	
	Clinical success ^a			-	÷		single operator			
	(%)	01.170	00.1 /0	0.7 1	Q-wave MI (due	1	1	N/A	blinded to clinical	
	Good vessel borde	to side-branch	(2.9)	(2.9)		characteristics.				
	At proximal ref	62.9%	100%	<0.001	occlusion in the	< - /	(=.0)		Quantitative OCT and	
	At MLA site	8.6%	94.3%	< 0.001	OCT patient;				IVUS analysis were	
	At distal ref	62.9%	100%	< 0.001	due to distal				also performed by an	
	At MSA site	11.4%	94.3%	<0.001	embolism in the				independent experienced observe	
Inclusion criteria: patients with	*defined as imaging	IVUS patient)				blinded to clinical and				
symptomatic ischaemic heart	through the lesion to	Non-Q-wave	1	4	0.36	angiographic lesion				
disease; a new lesion in the native	^a defined as final les	MI(all were	(2.9)	(2.9) (11.4)		 Where the vessel border was not visible 				
coronary circulation detected by	a major in-hospital	attributed to								
coronary angiography; and planned		distal embolus)								
stent implantation.	Optimization of St	On the institute of Oten (Deputte					0 0		at both reference	
·	Optimisation of Stent Results				Life-threatening arrhythmia	-	÷	N/A	segments, stent	
Exclusion criteria: left main coronary		OCT	IVUS	р.	Coronary	1	0	N/A	length and diameter	
artery disease; totally occluded			lean±SD Mean±SD value		dissection	(2.9)	Ŭ	1.1/7.1	were decided by	
lesion; lesion length >25mm	Post procedure Q		50.45	0.00				N1/A	angiography.	
analysed by QCA; bifurcation lesion;	Post % diameter	7.7 <u>+</u> 5.8	5.0 <u>+</u> 4.5	0.03	Prolonged and severe vessel	0	0	N/A	Where the vessel	
lesion of vessel with diameter	stenosis								border was not visible	
>3.5mm (analysed by QCA); lesion	Post procedure IV		74.04	0.04	spasm	.			at MLA site, stent	
of severe tortuous vessel;	MSA mm ²	6.1 <u>+</u> 2.2	7.1 <u>+</u> 2.1	0.04	Distal embolus	1	5	0.2	deployment pressure	
cardiogenic shock; left ventricular	Mean stent area	7.5+2.5	8.7+2.4	0.04	(leading to MI,	(2.9)	(14.2)		was decided by	
ejection fraction <30%; serum	Focal stent	64.7+13.7	80.3+13.4	0.002	see above)				angiography.	
creatinine >2mg/dL; ST elevation MI;	expansion %	04.7+13.7	00.3+13.4	0.002						
use of aspirin, ticlopidine or heparin	Diffuse stent	84.2+15.8	98.8+16.5	0.003					Study population	
contraindicated.	Dinuse Sterit	04.2710.0	30.0+10.0	0.003					issues:	

Technique: FD-OCT was performed using the Light Lab OCT system. IVUS was performed using an IVUS catheter by Boston Scientific Corporation and commercially available software by Indec Systems to review the images.• Baseline demographics, clinical data, and angiographic characteristics including QCA findings were simili between groups.Follow-up: not applicableOther significant results include plaque burden at the proximal edge (p<0.05). MSA was also significantly different as assessed by post-procedure OCT (p=0.03).Other significant results include plaque burden at the proximal edge (p<0.05). MSA was also significantly different as assessed by post-procedure OCT (p=0.03).• Baseline demographics, clinical data, and angiographic characteristics including QCA findings were similiable	Study details	Key efficacy findir	ngs			Key safety findings	Comments		
	Fechnique: FD-OCT was performed using the Light Lab OCT system. VUS was performed using an IVUS atheter by Boston Scientific Corporation and commercially available software by Indec Systems o review the images. Follow-up: not applicable Conflict of interest/source of funding:	expansion % Mean reference lumen area mm ² EEM at MSA site mm ² Residual plaque burden at MSA site % Other significant res proximal edge (p<0 different as assessed	9.2+3.3 12.9+5.2 50.7+11.3 sults include .05). MSA w	12.6+4.3 41.8+9.1 plaque burde as also signi	0.82 <0.001 en at the ficantly	Key safety findings	Baseline demographics, clinical data, and angiographic characteristics including QCA findings were simila		

Abbreviations used: CABG, coronary artery bypass graft; ECG, electrocardiogram; FD-OCT, frequency-domain optical coherence tomography; IVUS, intravascular ultrasound; OCT,
optical coherence tomography; PCI, percutaneous coronary intervention

Study details	Key efficacy findings				Key safety findings		Comments
Imola, F (2010) ³	Number of patients analyse	d: 90 pat	ients, 114	OCT acquisitions			Follow-up issues:
Case series Italy Recruitment period: 2009	Procedural outcome The procedure was success the OCT probe being stuck Clinical decision making			Adverse event Transient vessel spasm, resolved with intra-coronary nitrates	n 1	 2 patients lost to follow-up The minimum duration of follow-up was 1 	
Study population: 40 patients with ambiguous/intermediate lesions; 50 patients to address adequacy of stent deployment	Pre-intervention OCT was p lesions in 40 patients. Base 16 had PCI deferred.			Ischaemic ECG changes Ventricular ectopic	0	 month only. Study design issues: Non-consecutive patients No comparison group with which 	
n = 90 patients; 114 OCT acquisitions Age: 67 years Sex: 73.4% male	Stent assessment was performed interventions in 24 out of 74 additional stent deployment	patients.	. 15 had fur	beats (found during contrast infusion for blood clearance)			
Patient selection criteria: patients referred for coronary angioplasty with silent ischaemia, stable angina or acute coronary syndrome.	Clinical follow-up (n=88) Death MI	n 0 0	%		Other major arrhythmias (ventricular tachycardia or fibrillation)	0	 to compare event rates during clinical follow-up Patients with calcified and
Exclusion criteria: presence of cardiogenic shock, renal insufficiency or coexistent condition associated with limited life expectancy.	Angina recurrence CABG Re-PCI	3 1 1	3.4% 1.1% 1.1%				tortuous vessels were included in this study.
Technique: FD-OCT was achieved with the LightLab system.	No patient in whom PCI was coronary events. These 16			OCT findings experienced any om free at follow-up.			
Follow-up: 4.6 months (average) Conflict of interest/source of funding: the authors have no conflicts of interest							

Abbreviations used: ACS, acute coronary syndrome; AF, atrial fibrillation; OCT, optical coherence tomography; STEMI, ST-elevation; MI, myocardial infarction; TD-OCT, time domain
optical coherence tomography.

Study details	Key efficacy findings	Key safety findings					Comments		
Barlis, P (2009) ⁴	Number of						Study design issues:		
Retrospective case series	patients analysed: 468		All (468)	Occlusive technique (256)	Non-occlusive technique (212)	p- value	• Study includes cases from 6 centres.		
The Netherlands, UK, Italy,		Self-limiting events %					 Study includes all OCT 		
Germany		Chest pain	47.6	69.9	20.8	<0.001	cases before 31 January		
Recruitment period: before 2008		Widening QRS/ST depression	41.0	54.3	25	<0.001	2008, including cases from the earliest phase of OCT		
Study population: 248 with stable		ST elevation	4.5	6.6	1.9	0.01	development.		
angina, 121 unstable angina, 99		Sinus bradycardia	3.0	4.3	1.4	0.07			
ACS/STEMI		Sinus tachycardia	2.1	2.7	1.4	0.33			
n = 468		Atrioventricular shock	0.4	0.8	0	0.19			
Age: 63.7 years		Major complications n	(%)	•		•			
		AF	0	0	0	-			
Sex: 78.4% male		Ventricular tachycardia	0	0	0	-			
Patient selection criteria:		Ventricular fibrillation	5 (1.1)	3 (1.2)	2 (0.9)	0.81			
Consecutive patients who had OCT		Coronary spasm	0	0	0	-			
before 31 January 2008.		Dissection	1 (0.2)	1 (0.4)	0	0.36			
		Perforation	0	0	0	-			
		Thrombus	0	0	0	-			
Technique: TD-OCT imaging was acquired using a LightLab imaging		Air embolism	3 (0.6)	2 (0.8)	1 (0.5)	0.68			
system; non-occlusive and occlusive using a balloon were		Mechanical device failure	1 (0.2)	0	1 (0.5)	0.45			
used depending on the centre.		Major adverse cardiac events	0	0	0	-			
Follow-up: 24 hours		Outcomes of adverse entreatment but resolved be							
Conflict of interest/source of funding: the authors have no conflicts of interest		discharge from catheteris	ation labo	pratory and ongoing c	linical surveillance.				

Study details	Key efficacy finding	gs			Key safety findings	Comments			
Viceconte N (2013) ⁵	Number of patients an Strut malapposition		(54 bifurcations)	None presented	 Clinical assessment done at 9 months. 				
UK recruitment period: 2006-2010 Study population: patients undergoing post- procedural OCT examination after stent implantation (with 2 different stenting strategies) in coronary bifurcation lesion. n = 41 (45 bifurcations) Age: 67.8 years Sex: 83% male	Strut malapposition w facing the side-branch of the bifurcation (11. distal segment (5.7%) Comparison of 1 ste Lesions (n = 15) treat had a total higher rate stenting of the MV on	was significar ch (SB) ostiur .8%), half bifu 5) (all p<0.000 ent versus 2 ted with sten e of malappo	n (42.9%) than in urcation opposite D1). • stent technique ting of both main osition than those	the proximal segment the SB (6.7%), or the s vessel (MV) and SB (n = 30) treated with		 Study design issues: Small prospective study. 26 patients had stenting on main vessel (MV) only and stenting of both MV and side branch was done in 15. Lack of randomisation between 1 stent and 2 stent strategies. 70% had elective procedure due to stable angina. 			
Technique: TD-OCT in 27 patients (Light Lab Imaging system) and FD-OCT in 14 patients (St Jude) was performed by non-occlusive technique to assess strut apposition immediately after drug-eluting stent implantation (PCI) across 4 segments inside the bifurcation. 30 bifurcations were treated with 1 stent and 15 received 2 stents. OCT pullbacks were performed in the main vessel.	Comparison of FD-C In MV group, lesions 13) presented a lower conventional angiogra 17.5%; p=0.005).	treated with er rate of mala	FD-OCT-guided s apposition than th		 Technique of treatment changed during study period. Different stent types were used. Analysis was limited to MV OCT pullback. All bifurcation lesions were classified by the Medina classification based on the program of period 				
Follow-up: 415 days (mean)	tec	stent chnique %	2 stent technique %	p value		presence/absence of >50% stenosis in the proximal and distal main vessel and the side branch ostium.			
Conflict of interest/source of funding: study grant provided by Medtronic, StJude LightLab, Abbott, and Biosensors sponsored live transmissions	(n) TVR 13 Stent 0 thrombosis) 3 (4/30)	(n) 7 (1/15) 0	0.65 0					
	Deaths 0		13 (2/15) (non-cardiac)	0.11					

itudy details	Key efficacy findings	Key safety findings	Comments
Abbreviations used: ACS, acute coronary syndrome Study details Stefano G (2011) ⁶ Case series JSA Recruitment period: 2010 Study population: patients undergoing interventional coronary procedures n = 15 patients (19 target moderate stenoses) Age: 69 years Sex: 64% male Patient selection criteria: patients undergoing both TD-OCT and FFR and with target stenoses classed as moderate (40-70% stenosis) by angiography were included. Fechnique: FD-OCT was performed with the C7 XR system (LightLab, St Jude Medical) Follow-up: Not applicable Conflict of interest/source of funding: Dr Costa is on he Speaker Bureau and is a consultant for BSC, Sanofi/Aventis, Eli Lilly, and Medtronic and is on the	Key efficacy findings Number of patients analysed: 14 (18 target moderate stenoses) Procedural outcomes OCT provided optimal visualisation in 95% (18/19) of the target segments. Clinical decision making FD-OCT data were used in decision-making in 71.4% (10/14) patients. 3 patients were noted to have angiographic tandem lesions. In these patients FD-OCT was useful in defining which lesion to treat. Of 6 patients with FFR >0.80 and a clinical presentation of ACS, FD-OCT ruled out plaque rupture, erosion and thrombosis to help guide decisions to defer PCI. 1 patient with FFR >0.80 underwent PCI with FD-OCT data and clinical information guiding the decision. FFR was used for decision-making in all patients.	nography; FFR, fraction Key safety findings FD-OCT was performed in all attempted cases without complication.	 al flow reserve; PCI, percutaneous coronary intervention Comments Follow-up issues: One patient was excluded from this report due to uninterpretable FD-OCT data. Study design issues: OCT images were analysed by two independent investigators who were blinded to FFR values. Where there was discordance between observers, a consensus reading was obtained by a third senior expert Fractional flow reserve employs a sensor on the tip of a catheter to measure intravascular pressure differences across a coronary artery stenosis to determine the likelihood that the stenosis impedes oxygen delivery to the heart muscle. Other issues: The authors state that FD-OCT had been used routinely at their centre since May 2010, and that patients were recruited from September to November 2010. This may suggest some inexperience with the procedure that could bias practitioners towards using FFR to guide decision-making.

Abbreviations used: IVUS, intravascular ultrasound; MI, myocardial infarction; MLA, minimal lumen area; MLD, minimal lumen diameter; OCT, optical coherence tomography; PCI, percutaneous coronary intervention, TD-OCT, time-domain optical coherence tomography.

Study details	•	•		ee tonnog	iapriy.			Key safety findings	Comments
-								Some transient events, such as	
Yamaguchi, T (2008) ⁷ Comparative study Japan	Procedui Success	ral outco	-	: 76 patie	ents: 110 acqu	chest discomfort, bradycardia or tachycardia and ST-T changes on electrocardiogram, were observed	 Study design issues: Multicentre study. Main study findings (not reported here) 		
Recruitment period: 2004-2005 Study population: patients undergoing coronary angiography and/or PCI n= 76 Age: 63.3 years Sex: 88% male	Overall (Diagnos catheter (n=36)	(n=110) tic	107 (97.	T n (%) .3%) (100%)	IVUS n (%) 104 (94.5%) 36 (100%)	p value 0.307 1		during OCT or IVUS imaging all of which resolved immediately after the procedure. Neither haemodynamic instability nor ventricular tachyarrhythmia was observed.	 are the differences in measurements taken on OCT images versus IVUS images. The study was not designed to look at clinical outcomes. The study reveals a
Patient selection criteria: Inclusion criteria: patients aged 20-75, not pregnant and protected against pregnancy; undergoing angiography and/or PCI; stenosis <99% and length <20mm.	, ,					0.284 1 nt stenoses tha	at the	There were no major complications including MI, emergency revascularisation, or death.	significant difference in absolute values in measurements taken using OCT imaging compared with measurements taken
Exclusion criteria: acute MI; ejection fraction <30%, target lesion in an ostium, a bifurcation, a left main coronary artery, or a vessel with thrombus or severe calcification.	Image quality n=98 matched acquisitions						There were no acute procedural complications including acute	using IVUS. However, neither technique can claim to be the Gold	
	Good	Lume OCT 88 4	n border IVUS 81 0	Vess OCT 5 7	iel border IVUS 55 7			vessel occlusion, dissection, thrombus formation, embolism or vasospasm.	Standard. The true values of the measurements are unknown.
Technique: TD-OCT was performed with an M2 OCT system (LightLab Imaging). The occlusion balloon technique was used.	Poor 6 17 86 36 p value 0.037 <0.0001								
Follow-up: not applicable Conflict of interest/source of funding: this study was supported by a grant from Goodman Corp (occlusion balloon manufacturers).	<i>IVUS and OCT measurements</i> MLD and MLA measured by OCT were significantly correlated with those measured by IVUS (r=0.91; p< 0.0001). However, both measurements were significantly smaller by OCT (MLD 0.1mm, p= 0.008 ; MLA 0.4mm ² , p< 0.0001).								

Comparative studyCorJS, Italy, Japan, Latvia (analysis ompleted in US)The dimeRecruitment period: not statedImage: CorStudy population: patients enrolled in arious (unspecified) clinical trials. Indications for using both imaging modalities varied by individual study irotocol.Image: Cor	ronary artery diseas results showed equ ensions. FD-OCT de _A _D _A	ivalence between FD-OCT and IVUS in determining reference tected smaller MLA and higher %stenosis than IVUS Difference (mm, mm ² for area) FD-OCT-IVUS (n=56) -0.19 -0.05 -0.99	p value 0.29 0.23	None reported	 Study design issues: Protocols for image acquisition may have been different between centres. Intrinsic differences between the
JS, Italy, Japan, Latvia (analysis ompleted in US) The dime Recruitment period: not stated Image: Completed in US) Rational (unspecified) clinical trials. Image: Completed in US) Indications for using both imaging nodalities varied by individual study with the completed of US and IVUS images of the Image: Completed in US)	e results showed equ ensions. FD-OCT de _A _D _A _D	ivalence between FD-OCT and IVUS in determining reference tected smaller MLA and higher %stenosis than IVUS Difference (mm, mm ² for area) FD-OCT-IVUS (n=56) -0.19 -0.05 -0.99	p value 0.29 0.23	reported	 acquisition may have been different between centres. Intrinsic differences between the
dime completed in US) Recruitment period: not stated Study population: patients enrolled in arious (unspecified) clinical trials. Indications for using both imaging modalities varied by individual study rotocol. Matched OCT and IVUS images of the	ensions. FD-OCT de _A _D _A _D	etected smaller MLA and higher %stenosis than IVUS Difference (mm, mm² for area) FD-OCT-IVUS (n=56) -0.19 -0.05 -0.99	p value 0.29 0.23		between centres.Intrinsic differences between the
RLarious (unspecified) clinical trials.ndications for using both imagingnodalities varied by individual studyrotocol.Matched OCT and IVUS images of the	_D _A _D	-0.19 -0.05 -0.99	0.29		between the
RLarious (unspecified) clinical trials.ndications for using both imagingnodalities varied by individual studyrotocol.Matched OCT and IVUS images of the	_D _A _D	-0.05 -0.99	0.23		
arious (unspecified) clinical trials.RLndications for using both imagingMLnodalities varied by individual studyMLvrotocol.ArdMatched OCT and IVUS images of theDia	LA LD	-0.99			imaging methods
ndications for using both imaging nodalities varied by individual study rotocol. Matched OCT and IVUS images of the	LD				mean exactly the
nodalities varied by individual study rotocol. Matched OCT and IVUS images of the			<0.001		same cross-section
Natched OCT and IVUS images of the Dia	an atomonia 9/	-0.37	<0.001		of each vessel may
		13.51	<0.001		not have been
	ameter stenosis %	12.74	<0.001		identified for all comparisons. This
intra = 187 patients: 454 pullbacks (227 VUS vs. 100 FD-OCT and 127 TD-		OCT were more sensitive for detection of stent malappositio sion. TD-OCT systematically underestimated reference vess of stented vessels			 the differences observed betweer measurements. Neither IVUS nor
			value		OCT can claim to
Age: 65.1 years			33		the Gold Standard
Sex: 77.5% male RL	_D -	0.07 0.	28		The true values of
In-	-stent lumen area				the measurements
Patient selection criteria:			95		are unknown.
Mi			54		
Ma		0.27 0.	38		
	ent area				
			002		
nalysable frames in both modalities).			57		
Ma		-	005		
	0		0.001		
vith side branch occupying 45° of the ross-section; failure to match OCT	alapposition area	0.24 0.	017		

Abbreviations used: IVUS, intravascular ultrasound; MI, myocardial infarction; MLA, minimal lumen area; MLD, minimal lumen diameter; OCT, optical coherence tomography; PCI, percutaneous coronary intervention, TD-OCT, time-domain optical coherence tomography.

Study details	Key efficacy f	indings		Key safe	ety findings	Comments
patient/time point.	Follow-up asses	sment of stented vessels				
Technique: OCT imaging was performed using two different systems:		Difference (mm, mm ² for area) FD-OCT - IVUS (n=18)	p value	Difference (mm, mm ² for area) TD-OCT-IVUS (n=127)	p value	
TD-OCT (M2CV Imaging System,	RLA	0.34	0.07	-0.67	<0.001	
LightLab Imaging) and FD-OCT (C7XR	RLD	0.08	0.09	-0.16	<0.001	
Imaging System, LightLab Imaging).	In-stent lumen a	rea				
TD-OCT was performed using the	Mean	-0.61	0.005	-0.72	<0.001	
occlusive technique.	Min	-1.00	<0.001	-0.95	<0.001	
	Max	0.04	0.93	-0.55	<0.001	
Follow-up: not applicable	Stent area		1			
	Mean	-0.04	0.85	0.07	0.17	
Conflict of interest/source of funding: 4	Min	-0.23	0.22	0.02	0.69	
authors have received consulting fees	Max	0.18	0.66	-0.15	0.099	
from St Jude Medical. 1 has also	NIH area	0.63	<0.001	0.80	<0.001	
received consulting fees from Boston	Stenosis (%)	7.87	<0.001	10.32	<0.001	
Scientific and Volcano. 1 author has received honoraria from St Jude	Malapposition area	0.04	0.01	0.00	0.96	
Medical. 2 authors have received research grants from St Jude Medical. 1 author has additionally received grant support from Medtronic, Scitech, Cordis, Boston Scientific and Abbott Vascular.						

Abbreviations used: FFR, fractional flow reserve; MACE, major adverse cardiac events; MLA, minimal lumen area; MLD, minimal lumen diameter; NPV, negative predictive value; OCT, optical coherence tomography; PPV, positive predictive value; TD-OCT time-domain optical coherence tomography, TVR, target vessel revascularisation.

Study details	Key efficacy findings				Key safety findings	Comments		
Radu MD (2013) ⁹	Number of patients analysed: 56 (62 lesions)				Follow-up:			
	OCT detected edge dissections			At 1-year imaging	• 1 patient (1 lesion) with no serially			
Case series Denmark, Netherlands, Switzerland Recruitment period: 2008-2010 Study population: patients from the Copenhagen OCT registry and from the OCT substudy of the RESOLUTE all- comers trial. n = 57 patients: 63 coronary lesions Age: 63 years Sex: 75% male Patient selection criteria: inclusion criteria: lesions exhibiting edge dissections as assessed by OCT after stent implantation.	35% (20/56) patients with limiting edge dissections. angiographically visible (a vessel separated by 2 mr dissections. The median whereas the circumferent mm and 0.6 mm, respect and adventitia in 7 (33%) (82%) OCT-detected edge intravascular ultrasound, detected dissections. Healing response 90% (20/22) edge dissect year follow-up. The 2 cas (2.81 mm and 2.42 mm) a Morphology results	9% (2/22) edg as type A hazin n). Flaps were longitudinal dis tial and axial e ively. Dissection and 4 (20%) o e dissections which identifie	ge dissections v ness and locate found in 96% (ssection length xtensions amou ons extended in dissections, res were also evalu d nine (50%) of npletely healed	vere d in same 21/22) of was 2.9 mm, inted to 1.2 to the media bectively. 18 ated with these OCT- on OCT at 1	procedure 1 patient had a clinically driven TVR.	 analysable edge dissection was excluded. Study design issues: Small observational study. Serial data from 2 studies (Copenhagen OCT registry and the OCT substudy of the RESOLUTE al comers trial) included. The dissection was graded accordint to the National Heart Lung and Bloo Institute classification. Angiograms were assessed by 3 independent cardiologists for preser of edge dissections. Edge dissections were defined as 		
Technique: TD-OCT or FD OCT imaging with occlusive and non-occlusive techniques following drug-eluting stent implantation, LightLab/St Jude system (M2, M3, C7) used.	OCT (n=22) Reference vessel segment Lumen area, mm2 Lumen diameter, mm	Baseline 5.35±1.73 2.58±0.42	1-year follow-up 5.58±1.72 2.64±0.38	p value 0.203 0.174		 tears of the luminal surface in the 5 mm segment proximal and distal t the stent and categorised as flaps, cavities, double lumen dissections of fissures. OCT analyses performed every 		
Follow-up: 1 year Conflict of interest/source of funding: 1 author received consulting fees from Abbott, Boston Scientific, Biosensors, Cordis and Medtronic. Others have no conflicts of interest.	Clinical outcomes All patients except 1 rece follow-up period. No deat revascularisation occurre edge dissections at 1-yea years after the index proc	hs, MIs, stent d up to 1 year ar follow-up we	thrombosis or ta 2 patients with	arget lesion persistent		 OCF analyses performed every 0.5 mm at baseline and 1 year. Clinical outcomes were assessed by independent observers blinded to imaging results for the Copenhagen registry and for the RESOLUTE trial to a clinical events adjudication committee. 		

Abbreviations used: BP, blood pressure; FD-OCT, frequency-domain optical coherence tomography; IVUS, intravascular ultrasound; OCT, optical coherence tomography; TD-OCT, time-domain OCT

Study details	Key efficacy findings	Key safety findings	Comments
Dobarro, D (2010) ¹⁰ ; Kim, J-S (2008) ¹¹ ; Park, C-B (2012) ¹² ; Seo, Y- S (2008) ¹³ ; Wiyono, S (2012) ¹⁴ 5 case reports 3 x Republic of Korea; 1 x Spain; 1 x The Netherlands Study population: 1 x evaluation of right coronary artery; 4 x previous history of PCI admitted for follow-up. n = 5 Age: 64-77 years (range)	Key efficacy findings Number of patients analysed: 5 patients	One patient complained of chest pain during withdrawal of the OCT wire, which was caused by vessel-spasm. ST-segment elevation was registered on ECG. This was completely resolved with use of intracoronary nitrate. In 3 cases, multiple thrombi formation occurred during the OCT procedure. These were treated with 24-hour intravenous heparin in 1 patient and thrombus aspiration in 2 patients. All 3 patients had no significant deterioration in their condition, with 2 of the patients reported as being discharged and recovering uneventfully. In 1 patient a large coronary perforation occurred during OCT,	 Comments Study design issues: In 2 cases, IVUS had been performed immediately before OCT. Just 1 of these serious complications arose in a FD-OCT case (thrombus formation) with the other 4 occurring with use of TD-OCT.
Sex: 2 male; 3 female Technique: 3 used occlusion TD- OCT, one used TD-OCT and did not state whether or not it was the occlusive or non-occlusive technique. One paper reports use of FD-OCT. Follow-up: not applicable		leading to BP depression and loss of consciousness. Attempts to seal the perforation in the catheterisation lab failed and the patient was transferred to the operating room for surgical repair. Arterial grafting was performed but the patient died after cardiac arrest 7 days after surgery.	
Conflict of interest/source of funding: none			

Efficacy

A retrospective case series compared 335 matched pairs of patients undergoing percutaneous coronary intervention (PCI) with either angiographic guidance only or angiographic and frequency-domain optical coherence tomography (FD-OCT) guidance. FD-OCT led to additional interventions (further stenting and additional balloon dilation) in 35% (116) of patients. Patients who had PCI with FD-OCT guidance were less likely than those who had PCI with angiographic guidance alone to have a cardiac death or myocardial infarction (MI) over a follow-up period of 1 year (odds ratio 0.49; 95% confidence interval 0.25 to 0.96; p=0.037, adjusted for all covariates associated with the OCT group)¹.

In a randomised controlled trial (RCT) comparing FD-OCT against intravascular ultrasound (IVUS) for PCI optimisation in 70 patients, there was inferior stent expansion, both focal (65% versus 80%, p=0.002) and diffuse (84% versus 99%, p=0.003) when FD-OCT had been used. PCI guided by FD-OCT also showed a significant increase in residual stent-edge plaque burden compared against IVUS (51% versus 42% p<0.001). There were no significant differences in stent apposition².

A case series of 90 patients undergoing 114 FD-OCT image acquisitions reported that, of the 40 patients in whom OCT was used to evaluate ambiguous or intermediate lesions, 24 were treated with PCI and 16 had PCI deferred. None of the patients for whom PCI was deferred experienced a coronary event. All these patients were symptom free at an average follow-up of 4.6 months. Additional interventions were prompted in 24 of 74 patients who had a stent assessed with OCT³.

A case series of 14 patients who underwent both fractional flow reserve (FFR) or FD-OCT investigations when presenting with moderate stenosis (according to angiography) reported use of FD-OCT to aid decision-making in 71% (10/14) of patients. In 3 patients with tandem lesions, FD-OCT was useful in defining which lesion to treat. In 6 patients with acute coronary syndromes (ACS) and FFR>0.80, FD-OCT supported the decision to defer PCI. In 1 patient with FFR>0.80, FD-OCT data were used by the treating physician in their decision to use PCI⁶.

In a comparative study of 76 patients who underwent imaging by both OCT and IVUS, the OCT image wire was able to cross 5 out of 6 tight stenoses that the IVUS catheter could not cross⁷.

Diagnostic outcomes

In the RCT comparing FD-OCT (35 patients) with IVUS (35 patients) for PCI optimisation, OCT was judged to be significantly worse for visualising the vessel border. Vessel border visibility at the minimum lumen area (MLA) site was good

in 9% (3/35) of patients when visualised by OCT, compared with 94% (33/35) of patients when visualised by IVUS $(p<0.001)^2$.

In a comparative study that examined 56 matched FD-OCT and IVUS assessments of coronary artery disease, FD-OCT detected smaller MLA and higher percentage stenosis than IVUS (p<0.001). In 26 matched OCT and IVUS assessments of stented vessels, both time-domain optical coherence tomography (TD-OCT) and FD-OCT were more sensitive than IVUS for detection of stent malapposition, neointimal hyperplasia and intra-stent protrusion. TD-OCT reported systematically smaller reference vessel dimensions⁸.

In the comparative study examining TD-OCT and IVUS in the same 98 vessels (from 76 patients), visibility of the vessel border was judged to be poor in 88% (86/98) of TD-OCT acquisitions and 37% (36/98) of IVUS acquisitions (p<0.0001). However, this study also found that TD-OCT was significantly better for visualising the lumen border (p=0.037). Measurements by TD-OCT were significantly correlated with those from IVUS, although they were significantly smaller⁷.

In a case series of 53 patients with 69 non-significant coronary plaques, plaque characteristics recognised by TD-OCT imaging were shown to be significantly correlated with plaque progression. These were intimal laceration (p<0.001), microchannel (p<0.001), thin cap fibroatheroma (p<0.001), presence of macrophages (p=0.001) and thrombus (0.002). This suggests that plaque characteristics on OCT images could be used to inform clinical decision-making when considering whether a particular plaque poses a risk to a patient⁵.

A case series of 41 patients with 45 coronary bifurcation lesions, assessed after stenting with OCT, reported that strut malapposition was significantly more frequent in the half bifurcation facing the side-branch (SB) ostium (42.9%) than in the proximal segment of the bifurcation (11.8%), half bifurcation opposite the SB (6.7%), or the distal segment (5.7%) (all p<0.0001). Lesions (n=15) treated with stenting of both main vessel (MV) and SB had a total higher rate of malapposition than those (n=30) treated with stenting of the MV only (17.6% versus 9.5%; p=0.0014). In the latter group, lesions treated with FD-OCT-guided stent implantation (n=13) presented a lower rate of malapposition than those treated with conventional angiographic-guided stent implantation (n=17) (7.1% versus 17.5%; p=0.005)⁵.

A case series of 57 patients with 63 lesions, assessed with OCT following drugeluting stent implantation reported that 22 non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only 2 (9%) were angiographically visible. Ninety per cent (20/22) of edge dissections were completely healed on OCT at 1-year follow-up. No deaths, MIs, stent thrombosis or target lesion revascularisation occurred up to 1 year⁹.

Safety

A large coronary perforation occurred (no further details of cause available) during optical coherence tomography (OCT) imaging in 1 patient presented in a case report, leading to reduced blood pressure and loss of consciousness. Surgical repair was done but the patient died of cardiac arrest after 7 days¹².

Major complications including 5 ventricular fibrillations (3 out of 256 during occlusive imaging and 2 out of 212 during non-occlusive imaging), 1 dissection, 3 air embolisms and 1 mechanical device failure were reported in a case series of 468 patients during time-domain OCT (TD-OCT) imaging. There was no significant difference in occurrence with the occlusive or the non-occlusive technique. A range of self-limiting events were also seen during TD-OCT imaging. The most common was chest pain (48%), which was significantly more common when the occlusive technique was employed (70% [180/256] compared with 21% [45/212], p<0.001). Widening QRS or ST depression and ST elevation were also more common in occlusive TD-OCT than in non-occlusive TD-OCT (54% [139/256] versus 25% [53/212], p<0.001; and 7% [18/256] versus 2% [4/212], p=0.01 respectively). Of these events, just under 97% were immediately resolved, 3% required specific treatment but resolved before leaving the catheterisation laboratory, and less than 1% persisted beyond discharge from the laboratory and required ongoing clinical surveillance⁴.

Multiple thrombi were reported during OCT imaging in 3 patients presented in case reports. These formed during OCT imaging in the left anterior descending artery, causing total occlusion in 1 patient and subtotal occlusion in 2 others. The thrombi were treated with intravenous heparin in 1 patient and thrombus aspiration in 2 patients. All resolved with appropriate management and all patients recovered uneventfully^{11,13,14}.

A vessel-spasm during withdrawal of the OCT wire, causing chest pain and STsegment elevation, was reported in a single case report. This completely resolved with an intracoronary injection of nitrate¹⁰.

A transient vessel spasm that resolved spontaneously was reported in 1 patient in the case series of 90 patients undergoing 114 OCT image acquisitions. Ventricular ectopic beats were noted in 3 patients, but no ischaemic ECG changes or other major arrhythmias were observed³.

Transient events such as chest discomfort, bradycardia and tachycardia, and ST-T changes on ECG were observed during TD-OCT or IVUS imaging in the study comparing TD-OCT and IVUS of the same target areas in 76 patients (110 acquisitions). All resolved immediately after the procedure. Neither haemodynamic instability nor ventricular tachyarrhythmia was observed. There were no major complications such as MI, emergency revascularisation or death. There were no acute procedural complications, including acute vessel occlusion, dissection, thrombus formation, embolism or vasospasm⁷.

Validity and generalisability of the studies

- Just 1 study examined whether using OCT led to better clinical outcomes at 1-year follow-up¹. All other studies were concerned with how useful OCT might be in clinical decision-making.
- Just 3 studies reported on clinical follow-up of patients who had undergone
 OCT. No study followed patients beyond a year post-procedure.
- There are likely to be significant differences in both the safety and efficacy of TD-OCT, with and without balloon occlusion, and FD-OCT. The balloon occlusion method has been superseded by the constant flush method for coronary work in this country.
- This overview presents 2 studies using TD-OCT with balloon occlusion, 1 study using non-occlusive TD-OCT, 1 using both occlusive and nonocclusive TD-OCT, 1 using occlusive TD-OCT and FD-OCT, and 4 studies using FD-OCT. The 5 case reports of safety events include 3 using TD-OCT with balloon occlusion, 1 using TD-OCT without stating whether occlusion was used or not, and 1 using FD-OCT.

Existing assessments of this procedure

There were no published assessments from other organisations identified at the time of the literature search.

Related NICE guidance

Below is a list of NICE guidance related to this procedure. Appendix B gives details of the recommendations made in each piece of guidance listed.

Technology appraisals

Guidance on the use of coronary artery stents. NICE technology appraisal guidance 71 (2003). Available from www.nice.org.uk/guidance/TA71

Specialist advisers' opinions

Specialist advice was sought from consultants who have been nominated or ratified by their Specialist Society or Royal College. The advice received is their individual opinion and does not represent the view of the society.

Dr Saqib Chowdhary (British Cardiovascular Society); Professor Tony Gershlick (British Cardiovascular Society); Mr Robert Henderson (British Cardiovascular Society).

- Two specialist advisers perform this procedure regularly; 1 has performed it at least once.
- Two specialist advisers considered this procedure established practice and no longer new; 1 considered it to be definitely novel and of uncertain safety and efficacy.
- All 3 specialist advisers considered intravascular ultrasound (IVUS) to be the comparator for this procedure.
- Key efficacy outcomes include a change in diagnosis or management because of the results of optical coherence tomography (OCT) imaging, mentioned by 3 specialist advisers. Other examples include identifying culprit or non-culprit plaques in acute coronary syndrome (ACS), including plaque erosion that cannot be detected by other forms of in-vivo imaging; identifying intra-coronary or intra-stent thrombus; identifying dissections and complications after stenting; examining stent deformation and conformation; identifying modes of stent failure including neoatherogenesis; and documenting stent tissue coverage.
- Uncertainties and concerns about the efficacy of this procedure include questions about the prospective clinical relevance of certain OCT findings given the extremely high resolution of the imaging provided. Specifically, there were uncertainties around the thresholds for stent-related dissections or inappositions that would need further intervention; the patterns of incomplete tissue coverage that would predict high late stent thrombosis rates; and the paucity of long-term outcome data.
- The specialist advisers stated that limited instruction is needed by experienced interventional cardiologists to carry out OCT safely and effectively, but that training is needed to correctly interpret OCT images.

Patient commentators' opinions

NICE's Public Involvement Programme was unable to gather patient commentary for this procedure.

Issues for consideration by IPAC

 There is one ongoing trial. NCT01743274: Does Optical Coherence Tomography Optimise Results of Stenting (DOCTORS); Location: France; Type: RCT; Estimated enrolment: 230; Estimated study completion date: March 2014.

References

- Prati F, Di VL, Biondi-Zoccai G et al. (2012) Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: The Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention.8 (7) (pp 823-829), 2012.Date of Publication: November 2012. 823-829.
- Habara M, Nasu K, Terashima M et al. (2012) Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circulation: Cardiovascular Interventions 5:193-201.
- 3. Imola F, Mallus MT, Ramazzotti V et al. (2010) Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. Eurointervention 6:575-581.
- 4. Barlis P, Gonzalo N, Di MC et al. (2009) A multicentre evaluation of the safety of intracoronary optical coherence tomography. Eurointervention 5:90-95.
- 5. Viceconte N et al (2013). Immediate results of bifurcational stenting assessed with optical coherence tomography. Catheterization & Cardiovascular Interventions 81 (3) 519-528.
- 6. Stefano GT, Bezerra HG, Attizzani G et al. (2011) Utilization of frequency domain optical coherence tomography and fractional flow reserve to assess intermediate coronary artery stenoses: conciliating anatomic and physiologic information. The International Journal of Cardiovascular Imaging 27:299-308.
- 7. Yamaguchi T, Terashima M, Akasaka T et al. (2008) Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. American Journal of Cardiology 101:562-567.
- Bezerra H, Attizzani G, Sirbu V et al. (2013) Optical Coherence Tomography versus Intravascular Ultrasound to Evaluate Coronary Artery Disease and Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions 6: 228-36.
- Radu MD et al (2013). Natural history of optical coherence tomographydetected non-flow-limiting edge dissections following drug-eluting stent implantation. Eurointervention 2013. Dobarro D, Jimenez-Valero S, and Moreno R. (2010) Severe coronary spasm induced by OCT wire. There are no innocuous procedures. Journal of Invasive Cardiology 22:385

- 10. Kim J-S, Choi E-Y, Choi D et al. (2008) Catastrophic thrombus formation during optical coherence tomography. Circulation.118 (6) (pp e101-e102), 2008. Date of Publication: 05 Aug 2008. e101-e102.
- 11. Park CB, Joe BH, Hwang HJ et al. (23-2-2012) Coronary perforation during conventional time domain optical coherence tomography. International Journal of Cardiology 155:e14-e15.
- Seo Y-S, Lee JM, Son JY et al. (2008) A newly developed stent thrombus related to optical coherence tomography. Korean Circulation Journal.38 (12) (pp 674-676), 2008.Date of Publication: December 2008. 674-676.
- Wiyono SA, Van Beusekom HMM, Ligthart JM et al. (2012) Thrombotic complication during intracoronary imaging. Netherlands Heart Journal.20 (5) (pp 229-231), 2012.Date of Publication: May 2012. 229-231.

Appendix A: Additional papers on Optical Coherence Tomography to guide percutaneous coronary intervention

The following table outlines the studies that are considered potentially relevant to the overview but were not included in the main data extraction table (table 2). It is by no means an exhaustive list of potentially relevant studies.

Article	Number of patients/follow- up	Direction of conclusions	Reasons for non-inclusion in table 2
Abnousi F et al (2013). Variability in quantitative and qualitative analysis of intravascular ultrasound and frequency domain optical coherence tomography. Catheterization & Cardiovascular Interventions 82 (3) E192- E199.	n=14 226+/-2 stent cross-sections with IVUS and 232+/-2 stent cross-sections with FD-OCT	Despite varying levels of training, the increased resolution of FD-OCT compared to IVUS provides better detection and less variability in quantitative image analysis. On the contrary, this increased resolution not only increases the rate but also the variability of detection of qualitative image analysis, especially for beginner analysts.	Other studies provide outcomes that are more clinically relevant.
Adlam D, Hutchings D, and Channon KM. (2011) Optical coherence tomography-guided stenting of a large coronary aneurysm: images at implantation and at 6 months. Journal of Invasive Cardiology 23:168-169.	1	OCT was useful for guiding PCI in this patient.	A case-study. Clinical outcomes from larger studies available.
Alcock R, Yong AS, Yiannikas J et al. (2012) Optical coherence tomography-guided left main stem stenting: a new approach? Texas Heart Institute Journal 39:596-	1	OCT guidance of LMCA stenting is a straightforward and precise method that warrants further evaluation.	A case-study. Clinical outcomes from larger studies available.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 25 of 53

597.			
Alegria-Barrero E, Foin N, Chan PH et al. (2012) Choosing the right cell: guidance with three- dimensional optical coherence tomography of bifurcational stenting. European heart journal cardiovascular Imaging 13:443-	2	High resolution intravascular imaging with OCT and 3D reconstruction has the unique ability to clearly identify the position of wire crossing during bifurcation stenting.	Case studies concerned primarily with 3D reconstruction of OCT images.
Alfonso F, Canales E, and Aleong G. (2009) Spontaneous coronary artery dissection: Diagnosis by optical coherence tomography. European Heart Journal.30 (3) (pp 385), 2009.Date of Publication: February 2009. 385-	1	OCT provided unique insights into the underlying substrate of the proximal restenosis unravelling a complicated plaque with associated thrombus.	A case-study. Clinical outcomes from larger studies available.
Alfonso F, Canales E, Dutary J et al. (2011) Coronary dissection healing patterns: from complete resolution to restenosis, insights from optical coherence tomography. Eurointervention 7:270- 273.	1	The unique spatial resolution provided by OCT might be particularly valuable in the decision- making process involved in the management of patients suffering from this rare entity.	A case-study. Clinical outcomes from larger studies available.
Alfonso F, Dutary J, Paulo M et al. (2012) Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis. Heart 98:1213-1220	15	OCT provides unique insights on the underlying substrate of ST and may be used to optimise results in these challenging interventions. In this setting, OCT and IVUS have complementary diagnostic values.	Other studies provide outcomes that are more clinically relevant.
Alfonso F, Gonzalo N, and Hernandez R. (2011) A rare cause of late drug- eluting stent thrombosis unravelled by optical coherence tomography. Circulation:	1	The unique spatial resolution provided by OCT might be very useful to identify causative substrates at the DES edge and therefore particularly	A case-study. Clinical outcomes from larger studies available.

analysis of intracoronary optical coherence tomography measurements of stent strut apposition and tissue coverage. International Journal of Cardiology 141:151-156.		tool in the setting of intracoronary stent imaging.	bigger studies with larger patient numbers. Other studies contain more clinical outcomes.
Barlis P, Serruys PW, Gonzalo N et al. (2008) Assessment of Culprit and Remote Coronary Narrowings Using Optical Coherence Tomography With Long-Term Outcomes. American Journal of Cardiology.102 (4) (pp 391-395), 2008.Date of Publication: 15 Aug 2008. 391-395.	23	This study showed that OCT can be safely applied to image beyond the culprit lesion and can detect in vivo morphologic features associated with plaque vulnerability using retrospective pathologic examination.	These efficacy findings are reported in bigger studies with larger n numbers and better methodology.
Belkacemi A et al (2013). Diagnostic accuracy of optical coherence tomography parameters in predicting in-stent hemodynamic severe coronary lesions: Validation against fractional flow reserve. International Journal of Cardiology 168 (4) 4209- 4213.	n=27 OCT and FFR	With OCT, a good diagnostic efficiency can be achieved in identifying coronary severity in in-stent lesions in a per-group analysis. This provides an extra dimension, next to morphological information, when acquiring OCT images in scientific studies. OCT seems limited in a per- patient clinical decision making process due to reasonable but limited sensitivity and specificity in predicting coronary severity.	Other studies provide outcomes that are more clinically relevant.
Bezerra HG et al (2013). Three-dimensional imaging of fibrous cap by frequency-domain optical coherence tomography. Catheterization & Cardiovascular Interventions 81 (3) 547-	n=2	Illustrate the importance of three- dimensional volumetric quantification of the FC capitalizing on the properties of frequency-domain	Other studies provide outcomes that are more clinically relevant.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 28 of 53

549.		iOCT.	
Bouki KP, Chatzopoulos DN, Katsafados MG et al. (12-11-2009) Late acquired stent malapposition detected by optical coherence tomography examination. International Journal of Cardiology 137:e77-e78.	1	OCT was used to aid the successful diagnosis and treatment of this patient.	A case-study. Clinical outcomes from larger studies available.
Bouki KP, Chatzopoulos DN, Sakkali EK et al. (2011) Visualization of coronary plaque rupture using optical coherence tomography. Hjc Hellenic Journal of Cardiology 52:168-170.	1	OCT was used to evaluate the culprit lesion morphology in a patient with acute myocardial infarction and to confirm good stent apposition.	A case-study. Clinical outcomes from larger studies available.
Bouma BE, Tearney GJ, Yabushita H et al. (2003) Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89:317-320.	39	Intracoronary OCT for monitoring stent deployment is feasible and provides superior contrast and resolution of arterial pathology than IVUS.	Older and smaller paper with safety findings covered by bigger newer papers and more clinically relevant efficacy findings presented elsewhere.
Bozkurt A et al (2013). A new diagnostic method for woven coronary artery: Optical coherence tomography. Herz.38 (4) (pp 435-438), 2013.Date of Publication: June 2013. (4) 435-438.	n=1 Case report	OCT used for the definitive diagnosis and appropriate treatment of woven coronary artery.	A case-study with no additional efficacy or safety information.
Brugaletta S, Gomez-Lara J, Bruining N et al. (20-7- 2012) Head to head comparison of optical coherence tomography, intravascular ultrasound echogenicity and virtual histology for the detection of changes in polymeric struts over time: insights from the ABSORB trial.	35	OCT is able to detect changes in the scaffold struts, although the correlation between OCT detected changes IVUS, echo and VH was small.	These efficacy findings are reported in bigger studies with larger n numbers and better methodology.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 29 of 53

Eurointervention 8:352-			
358.			
Buellesfeld L, Lim V, Gerckens U et al. (2005) Comparative endoluminal visualization of TAXUS crush-stenting at 9 months follow-up by intravascular ultrasound and optical coherence tomography. Zeitschrift fur Kardiologie 94:690-694.	1	OCT provided superior imaging quality and provided new insights into the stent performance at the open bifurcation site.	A case-study. Clinical outcomes from larger studies available.
Burris N, Schwartz K, Tang CM et al. (2007) Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery. Journal of Thoracic & Cardiovascular Surgery 133:419-427.	50	OCT imaging provides an accurate, real-time and reproducible means for assessing saphenous vein graft and radial artery graft bypass conduits. As a quality assurance tool, this technology might afford a more objective basis for conduit selection.	Efficacy outcomes more relevant to clinical practice were present in other studies.
Cao HM, Jiang JF, Deng B et al. (2010) Evaluation of myocardial bridges with optical coherence tomography. Journal of International Medical Research 38:681-685.	12	The morphological and intimal structure characteristics of MBs can be observed clearly with OCT.	Other studies contain outcomes that are more relevant to clinical practice.
Capodanno D, Prati F, Pawlowsky T et al. (2009) Comparison of optical coherence tomography and intravascular ultrasound for the assessment of in-stent tissue coverage after stent implantation. Eurointervention 5:538- 543.	20	OCT can quantify in- stent coverage and detect strut healing with high reproducibility. IVUS tends to underestimate the percentage of in-stent tissue coverage as compared to OCT.	Other studies contain outcomes that are more relevant to clinical practice.
Carrizo S, Salinas P, Jimenez-Valero S et al. (2013) Utility of optical coherence tomography to assess a hazy intracoronary image after percutaneous coronary	1	This case illustrates the ability of OCT for accurate diagnosis of an intracoronary post- angioplasty that had an uncertain hazy image, and its	A case-study. Clinical outcomes from larger studies available.

intervention. Sunhwangi 43:44-47. Cho JM, Sohn IS, Kim CJ	1	usefulness as a guide for therapeutic strategy. OCT used as a tool to	A case-study.
et al. (2011) Vulnerable plaque inside stent. Jacc: Cardiovascular Imaging 4:430-431.		aid in the management of this patient.	Clinical outcomes from larger studies available.
Dato I et al (2013). Multiple coronary plaque ruptures in a patient with a recent ST-elevation acute myocardial infarction causing recurrent coronary instability. Journal of Cardiovascular Medicine.14 (9) (pp 681- 682), 2013.Date of Publication: September 2013. (9) 681-682.	n=1 case report	Case of multiple coronary instability in a patient with anterior STEMI where OCT has tailored an optimal diagnosis and treatment.	A case-study with no additional efficacy or safety information.
Diaz-Sandoval LJ, Bouma BE, Tearney GJ et al. (2005) Optical coherence tomography as a tool for percutaneous coronary interventions. Catheterization & Cardiovascular Interventions 65:492-496.	10	OCT provides cross- sectional images of tissue in situ at high resolution, rendering detailed structural information.	This paper is older and smaller and others reporting similar efficacy findings. Other studies contain outcomes that are more relevant to clinical practice.
Diletti R, Garcia-Garcia HM, Gomez-Lara J et al. (2011) Assessment of coronary atherosclerosis progression and regression at bifurcations using combined IVUS and OCT. Jacc: Cardiovascular Imaging 4:774-780.	24	The combined use of IVUS-VH and OCT is a reliable tool to serially assess plaque progression and regression, and in the present study it was demonstrated to be safe and feasible.	Other studies contain outcomes that are more relevant to clinical practice.
Fedele S, Biondi-Zoccai G, Kwiatkowski P et al. (15-10-2012) Reproducibility of coronary optical coherence tomography for lumen and length	25	FD-OCT showed excellent reproducibility, with low intraobserver, interobserver and interpullback variability for both	Other studies contain outcomes that are more relevant to clinical practice.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 31 of 53

measurements in humans (The CLI-VAR [Centro per la Lotta contro l'Infarto- VARiability] study). American Journal of Cardiology 110:1106- 1112.		lumen area and lesion length measurements in humans.	
Fujino, Y et al (2013). Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease - A comparison with intravascular ultrasound. Catheterization and Cardiovascular Interventions.82 (3) (pp E173-E183), 2013.Date of Publication: 01 Sep 2013. (3) E173-E183.	n=35 patients with unprotected left main (ULM) disease. Case series FD-OCT vs IVUS assessments pre- and post- PCI repeated at 1 year Follow-up 1 year	FD-OCT required more repeated pullbacks to image the ROI compared to IVUS. Mean lumen and stent areas were similar between FD- OCT and IVUS (11.24 +/- 2.66 vs. 10.85 +/- 2.47 mm ² , P = 0.13 and 10.44 +/- 2.33 vs. 10.49 +/- 2.32 mm ² , P = 0.82, respectively), whereas imaged stent length was shorter with FD-OCT. Malapposition areas and volumes were larger and more edge dissections were detected by FD-OCT. There were no clinical adverse events and no complications associated with FD- OCT at baseline and 1-year follow-up. All dissections were healed, whereas stent malapposition was still detected at follow-up.	These efficacy findings are reported in bigger studies with larger n numbers and better methodology.
Garg S, Bourantas C, and Thackray S. (2008) Suspected coronary artery dissection post-stenting, confirmed by optical coherence tomography. Heart.94 (3) (pp 335), 2008.Date of Publication: March 2008. 335-	1	OCT confirmed diagnosis which was unclear from angiography.	A case-study. Clinical outcomes from larger studies available.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 32 of 53

Guagliumi G et al (2013).	n=21	Accurate volumetric	Other studies
Volumetric assessment of	FD-OCT	measurement of the	provide
lesion severity with optical		lumen profile with FD-	outcomes that
coherence tomography:		OCT correlates more	are more
Relationship with		closely with FFR than	clinically
fractional flow reserve.		standard metrics	relevant.
EuroIntervention.8 (10)		derived from single	
(pp 1172-1181),		image cross-sections.	
2013.Date of Publication:		vascular resistance	
February 2013. (10) 1172-		ratio (VRR) shows	
1181.		promise as a method	
		for evaluating lesion severity.	
Gonzalo N, Escaned J,	56	Looks at OCT and	Other studies
Alfonso F et al. (20-3-		IVUS for identifying	contain
2012) Morphometric		haemodynamically	outcomes that
assessment of coronary		severe coronary	are more
stenosis relevance with		stenoses as	relevant to
optical coherence		determined by	clinical
tomography: a		fractional flow	practice.
comparison with fractional flow reserve and		reserve. OCT has	
intravascular		moderate diagnostic efficiency, although	
ultrasound.[Erratum		OCT seems slightly	
appears in J Am Coll		superior to IVUS for	
Cardiol. 2012 Apr		this purpose,	
17;59(16):1491 Note:		particularly in vessels	
Gonzalo, Nieve [corrected		<3mm, its low	
to Gonzalo, Nieves];		specificity precludes	
Fernandez-Ortiz, Antonia		its use as a substitute	
[corrected to Fernandez-		of FFR for functional	
Ortiz, Antonio]]. Journal of		stenosis assessment.	
the American College of			
Cardiology 59:1080-1089. Gonzalo N, Serruys PW,	73	OCT allows a	Other studies
Okamura T et al. (2009)		detailed visualisation	contain
Optical coherence		of vessel injury post	outcomes that
tomography assessment		stent implantation	are more
of the acute effects of		and enables a	relevant to
stent implantation on the		systematic	clinical
vessel wall: A systematic		classification and	practice.
quantitative approach.		quantification in vivo.	
Heart.95 (23) (pp 1913-			
1919), 2009.Date of			
Publication: December			
2009. 1913-1919. Gonzalo N, Tearney GJ,	45		Other studies
Serruys PW et al. (2010)	40	FD-OCT involving high-speed data	contain
Second-generation optical		acquisition	outcomes that
coherence tomography in		demonstrated good	are more
clinical practice. High-		interstudy,	relevant to
	tomography to guide	percutaneous coronary int	

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 33 of 53

speed data acquisition is highly reproducible in patients undergoing percutaneous coronary intervention. Revista Espanola de Cardiologia 63:893-903.		interobserver and intraobserver reproducibility for characterising plaque and evaluating stent implantation in patients undergoing a PCI.	clinical practice.
Gutierrez-Chico JL, Serruys PW, Girasis C et al. (2012) Quantitative multi-modality imaging analysis of a fully bioresorbable stent: a head-to-head comparison between QCA, IVUS and OCT. The International Journal of Cardiovascular Imaging 28:467-478.	45	There is poor agreement for minimal lumen area estimation between all the imaging modalities studied including IVUS-OCT, hence their values are not interchangeable/ OCT is the most accurate technique for measuring stent length.	Other studies contain outcomes that are more relevant to clinical practice.
Hou J, Lv H, Jia H et al. (2012) OCT assessment of allograft vasculopathy in heart transplant recipients. Jacc: Cardiovascular Imaging 5:662-663.	7	This study demonstrates that OCT, compared to IVUS, is more sensitive for early detection of CAV. IH thickness <150um is under the resolution of IVUS and can therefore only be diagnosed with OCT. Moreover, OCT provides additional information on characteristics of IH such as lipid plaques and thin fibrous caps.	Other studies contain outcomes that are more relevant to clinical practice.
Jaguszewski M et al (2013). Optical frequency domain imaging for guidance of optimal stenting in the setting of recanalization of chronic total occlusion. Journal of Invasive Cardiology 25 (7) 367-368.	n=1 case report	Case demonstrates the potential clinical role of high-resolution OFDI to optimize coronary stent implantation. OFDI may help to limit the coronary area covered by stents to the true coronary lesion.	A case-study with no additional efficacy or safety information.

Jamil Z, Tearney G, Bruining N et al. (2011) Interstudy reproducibility of the second generation, Fourier domain OCT in patients with coronary artery disease. European Heart Journal.Conference: European Society of Cardiology, ESC Congress 2011 Paris France.Conference Start: 20110827 Conference End: 20110831.Conference Publication: (var.pagings).32 (pp 854- 855), 2011.Date of Publication: August 2011. 854-855.	18	FD-OCT shows excellent reproducibility and very low inter-study variability in both native and stented coronary segments. No significant differences in quantitative lumen morphometry were observed between OCT and IVUS.	Other studies contain outcomes that are more relevant to clinical practice.
Jang I-K, Bouma BE, Kang D-H et al. (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. Journal of the American College of Cardiology.39 (4) (pp 604-609), 2002.Date of Publication: 20 Feb 2002. 604-609.	42	Intracoronary OCT appears to be feasible and safe. OCT identified most architectural features detected by IVUS and may provide additional detailed structural information.	Other studies contain outcomes that are more relevant to clinical practice.
Jang I-K, Tearney GJ, MacNeill B et al. (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation.111 (12) (pp 1551-1555), 2005.Date of Publication: 29 Mar 2005. 1551-1555.	69	OCT is a safe and effective modality for characterising coronary atherosclerotic plaques in vivo.	Other studies contain outcomes that are more relevant to clinical practice.
Jia H et al (2013). In Vivo Diagnosis of Plaque Erosion and Calcified Nodule in Patients with Acute Coronary Syndrome by Intravascular Optical Coherence Tomography. J Am.Coll.Cardiol.	n=126 patients with ACS OCT	OCT is a promising modality for identifying OCT- erosion and calcified nodule (OCT-CN) in vivo. OCT-erosion is a frequent finding in patients with ACS,	Other studies provide outcomes that are more clinically relevant.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 35 of 53

		opposibly in these]
		especially in those with non-ST-segment elevation (NSTE- ACS) and younger patients. OCT-CN is the least common etiology for ACS and is more common in older patients.	
Jiang B, Gai L, Sun Z et al. (2011) The combination of 64 multislice CT angiography and optical coherence tomography optimally characterizes coronary plaques. Acta Cardiologica 66:213-218.	28	CTCA vs. OCT and CA: CTCA best revealed the vessel wall while OCT provided optimal visualisation of the intima. The extent of coronary artery disease was best determined with CA and CTCA	Other studies contain outcomes that are more relevant to clinical practice.
Jimenez-Valero S, Moreno R, and Sanchez- Recalde A. (2009) Very late drug-eluting stent thrombosis related to incomplete stent endothelialization: in-vivo demonstration by optical coherence tomography. Journal of Invasive Cardiology 21:488-490.	1	This case illustrates the ability of OCT for in-vivo identification of stent coverage and role in evaluation of stent thrombosis.	A case-study. Clinical outcomes from larger studies available.
Khandhar SJ et al (2013). Optical coherence tomography for characterization of cardiac allograft vasculopathy after heart transplantation (OCTCAV study). Journal of Heart and Lung Transplantation.32 (6) (pp 596-602), 2013.Date of Publication: June 2013. (6) 596-602.	n=15 patients 1 to 4 years after transplant with no angiographic evidence of coronary allograft vasculopathy (CAV) FD-OCT	OCT imaging revealed 8 of 15 patients had intimal hyperplasia with an I/M ratio >1. Comparing those with I/M ratio of <=1 and >1, the median intimal thickness was greater (75 [70-101] vs 206 [97-269] mum, p = 0.03), whereas the media thickness was no different (72 [70-103] vs 94 [73- 113] mum, $p = 0.53$). In addition, 7 of 15 patients had lipid-rich or calcified atherosclerotic	Other studies provide outcomes that are more clinically relevant.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 36 of 53

		plaques. OCT provides high- resolution quantitative imaging of the coronary arteries and its use allows for detailed assessment of the coronary artery wall and early morphologic changes that occur after cardiac transplantation.	
Kataiwa H, Tanaka A, Kitabata H et al. (21-1- 2011) Head to head comparison between the conventional balloon occlusion method and the non-occlusion method for optical coherence tomography. International Journal of Cardiology 146:186-190.	23	Compares balloon occlusion and continuous flushing OCT, finds both can be performed safely and obtained similar quality images.	Other studies contain outcomes that are more relevant to clinical practice.
Kawamori H, Shite J, Shinke T et al. (2010) The ability of optical coherence tomography to monitor percutaneous coronary intervention: detailed comparison with intravascular ultrasound. Journal of Invasive Cardiology 22:541-545.	18	Proximal coronary occlusion during OCT imaging was possibly related to underestimation of vessel sizing at distal reference. OCT might provide more detailed information on the presence of tissue prolapse, thrombus formation and edge dissection than IVUS.	Other studies contain outcomes that are more relevant to clinical practice.
Kubo T, Imanishi T, Takarada S et al. (4-9- 2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. Journal of the American College of Cardiology 50:933-939	30	OCT is a feasible imaging modality in patient with acute myocardial infarction and allows identification of plaque rupture, fibrous cap erosion, intracoronary thrombus and TCFA in vivo more frequently than using IVUS or coronary angiography.	Other studies contain outcomes that are more relevant to clinical practice.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 37 of 53

			
Kubo T, Nakamura N, Matsuo Y et al. (2011) Virtual histology intravascular ultrasound compared with optical coherence tomography for identification of thin-cap fibroatheroma. International Heart Journal 52:175-179. Lim C, Banning A, and Channon K. (2010) Optical coherence tomography in the diagnosis and treatment of spontaneous coronary artery dissection. Journal of Invasive Cardiology 22:559-560. Lindsay A C et al (2013). Predictors of stent strut malapposition in calcified vessels using frequency- domain optical coherence tomography. Journal of Invasive Cardiology.25 (9) (pp 429- 434), 2013.Date of Publication: September 2013. (9) 429-434.	96 1 n=23 PCI patients OCT before and after stent deployment	This study compared VH-IVUS with OCT, (VH-IVUS as experimental, OCT as gold standard). Found VH-IVUS correctly identified thin-cap fibroatheroma, as determined by OCT. OCT as an aid in emergency PCI. OCT was integral not only to the diagnosis of spontaneous coronary artery dissection but also to the successful PCI of the condition. 8% of all stent struts were malapposed, in the proximal part of the stent. By univariate analysis, the % of malapposed struts was found to correlate with the circumferential extent of calcification (P<=.04); Using multivariate analysis, the circumferential extent of vessel wall calcification was the only plaque feature found to correlate with the % of malapposed struts (P<=.01). Using OCT to assess vessel wall characteristics, the circumferential extent of superficial calcification seen, and not the depth, correlated well with the percentage of	Primary finding relates to VH- IVUS. A case-study. Clinical outcomes from larger studies available. These efficacy findings are reported in bigger studies with larger n numbers and better methodology.
		malapposed struts	
Liu W et al (2013). Is this	n=1 case report	following PCI.	A case-study
spontaneous coronary			with no
IP overview: Optical coherence	tomography to quide	percutaneous coronary int	

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 38 of 53

Coherence Tomography		position with	
(OCT) in the evaluation of		improved precision.	
the left main stem			
coronary artery.			
International Journal of			
Cardiology 148:243-244.			
Montone RA, Cataneo L, Minelli S et al. (2012) Very late stent thrombosis complicating a previously	1	Before deciding on a discontinuation of dual antiplatelet therapy, a coronary	A case-study. Clinical outcomes from larger studies
lost and partially crushed stent: demonstration by optical coherence tomography.		angiography followed by an OCT run to evaluate stent coverage, healing	available.
Cardiovascular Revascularization Medicine 13:357-359.		and integration may be useful.	
Motreff P, Levesque S, Souteyrand G et al. (2010) High-resolution coronary	73	OCT provides otherwise unobtainable in vivo	Other studies contain outcomes that
imaging by optical coherence tomography:		information, it allows further study of	are more relevant to
Feasibility, pitfalls and		vulnerable plaque	clinical
artefact analysis. Archives		and for stent	practice.
of cardiovascular diseases		assessment. After a	
103:215-226.		20-examination	
		learning curve,	
		effectiveness is	
		excellent.	
Movahed MR, Ram V, and	1	OCT remains an	A case-study.
Arsanjani R. (2012)		excellent tool for	Clinical
Optimal visualization of		assessment of	outcomes from
five different stent layers		lesions with instent	larger studies
during and after		restenosis for optimal	available.
percutaneous coronary		stent assessment and	
intervention for recurrent		treatment. To our	
in-stent restenosis using		knowledge, this case	
optical coherence		is the first case report	
tomography (OCT).		demonstrating	
Cardiovascular		excellent visualization	
Revascularization		of 5 different stent	
Medicine 13:292-294.		layers extending back	
		near the adventitia	
Muramateu T at al (2012)	n=97	Using OCT.	Those office of
Muramatsu T et al (2013) Intimal Flaps Detected by	FD-OCT after	OFDI identified 8 flap in 7 patients, all flaps	These efficacy findings are
Optical Frequency	stent	were left untreated. In	reported in
Domain Imaging in the	implantation in	5.1% of STEMI	bigger studies
Proximal Segments of	patients with	patients, post-	with larger n
Native Coronary Arteries.	STEMI (8,931	procedural FD-OCT	numbers and
Harve Coronary Artenes.			numbers and

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 40 of 53

Nagoshi R et al (2013). Qualitative and quantitative assessment of stent restenosis by optical coherence tomography: comparison between drug-eluting and bare-metal stents. Circulation Journal 77 (3) 652-660.	frames) n=122 OCT	identified flaps with minimal involvement of the intima in the proximal coronary arteries. There were no adverse cardiac events during 6- months follow-up. A precise interpretation of flap like structure may help decision making to avoid unnecessary procedures. The morphologic OCT patterns of the neointimal tissue (NIT) in in-stent restenosis (ISR) differed significantly between DES and BMS, probably reflecting pathologic differences. Layered and heterogeneous tissues might respond better than homogeneous tissue to simple balloon dilatation, suggesting a possible direction for OCT-based ISR	better methodology. Other studies provide outcomes that are more clinically relevant.
Nakamura R et al (2011). A successful treatment for in-stent restenosis using a 4-French guiding catheter with optical coherence tomography guidance. Cardiovascular Intervention and Therapeutics 26 (3) 296- 300.	n=1 case report	treatment strategies. Optical coherence tomography (OCT) image acquisition was successfully performed using a non-occlusive technique. Restenotic tissue consisting of eccentric layers was observed by the OCT.	A case-study with no additional efficacy or safety information.
Okamura T, Gonzalo N, Gutierrez-Chico JL et al. (2010) Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented	9	Demonstrates a remarkably high reproducibility for in vivo quantification of lumen area and stent area using FD-OCT. This high	Other studies contain outcomes that are more relevant to clinical

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 41 of 53

coronary arteries using three different software packages. Eurointervention 6:371- 379.		reproducibility is robust when subjected to various core laboratory software solutions with different levels of automation for contour tracing.	practice.
Okamura T, Onuma Y, Garcia-Garcia HM et al. (2011) First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 6:1037-1045.	19	FD-OCT imaging is feasible both before and after stenting and has a promising safety profile. The FD-OCT provided clear high resolution images and robust lumen measurements.	These efficacy findings are reported in bigger studies with larger n numbers and better methodology.
Parodi G, Maehara A, Giuliani G et al. (2010) Optical coherence tomography in unprotected left main coronary artery stenting. Eurointervention 6:94-99.	15	OCT assessment of vascular response after left main coronary artery DES implantation is safe and feasible. Further development of OCT imaging technology will be necessary for complete evaluation of left main coronary artery stents.	Other studies contain outcomes that are more relevant to clinical practice.
Pawlowski T et al (2013). Optical coherence tomography criteria for defining functional severity of intermediate lesions: a comparative study with FFR. Int.J Cardiovasc.Imaging	n=48 71 intermediate coronary lesions assessed using both OCT (non- occlusive method) and FFR	OCT derived minimal lumen area might be complementary to FFR measurement in identifying ischemia related lesions. Further studies are warranted to assess threshold values in relation to vessel size and location. OCT was used to	Other studies provide outcomes that are more clinically relevant.

and Brilakis ES. (2012) Application of optical coherence tomography in the treatment of coronary bifurcation lesions. Journal of Invasive Cardiology 24:E39-E42.		optimize the procedural result. We describe 3 coronary bifurcation PCI cases, in which OCT helped guide the procedure by detecting a dissection (case 1), thrombus (case 2), and by confirming ostial vessel coverage (case 3).	studies. Clinical outcomes from larger studies available.
Prati F, Cera M, Ramazzotti V et al. (2008) From bench to bedside - A novel technique of acquiring OCT images. Circulation Journal.72 (5) (pp 839-843), 2008.Date of Publication: 2008. 839- 843.	44	The non-occlusive direct modality of OCT acquisition is safe and effective.	Other studies contain outcomes that are more relevant to clinical practice.
Ramesh S, Papayannis A, Abdel-Karim AR et al. (2012) In vivo comparison of Fourier-domain optical coherence tomography and intravascular ultrasonography. Journal of Invasive Cardiology 24:111-115.	15	OCT and IVUS produce similar measurements.	Other studies contain outcomes that are more relevant to clinical practice.
Rayoo R, Tuer Z, Sharma N et al. (2011) Intracoronary optical coherence tomography for the assessment of in-stent restenosis. Heart, Lung & Circulation 20:332-335.	1	OCT was used in investigation.	A case-study. Clinical outcomes from larger studies available.
Ruiz-Garcia J et al (2013). Stent thrombosis in ostial lesion: diagnosis and treatment guided by optical coherence tomography. Revista Espanola de Cardiologia 66 (7) 586- 588.	n=1 case report	Stent thrombosis in which OCT provided useful information for diagnosis, understanding the thrombotic mechanism, deciding on appropriate therapeutic strategy, and guiding PCI.	A case-study with no additional efficacy or safety information.
Sato D, Koga S, Yasunaga T et al. (2012)	2	Culprit segments were identified by	Case-studies. Clinical

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 43 of 53

Culprit segments identified by optical coherence tomography in patients with acute myocardial infarction: Two case reports.		OCT but not by either coronary angiography or intravascular ultrasound.	outcomes from larger studies available. Other studies
Saw J et al (2012). Intracoronary imaging of coronary fibromuscular dysplasia with OCT and IVUS. Catheter. Cardiovasc.Interv.		Adjunctive IVUS or OCT may aid the diagnosis of coronary fibromuscular dysplasia and we report the first of such novel images.	oritically relevant.
Sawada T, Shite J, Garcia-Garcia HM et al. (2008) Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. European Heart Journal 29:1136- 1146.	56	Evaluating the feasibility of the combined use of virtual histology-IVUS and OCT they found neither modality alone is sufficient for detecting TCFA. The combined use of OCT and VH-IVUS might be a feasible approach for evaluating TCFA (thin-cap fibroatheroma).	Other studies contain outcomes that are more relevant to clinical practice.
Secco GG, Foin N, Viceconte N et al. (2011) Optical coherence tomography for guidance of treatment of in-stent restenosis with cutting balloons. Eurointervention 7:828-834.	14	OCT measurements of strut-to-strut distance allow safe upsizing of the CB with an acceptable lumen increase before deployment of a new DES. The strategy appears of particular usefulness for a DEB strategy with no intention to implant new stents.	Other studies contain outcomes that are more relevant to clinical practice.
Smith DK, Bourenane H, Strange JW et al. (2012) Catheter-induced coronary dissection during optical coherence tomography investigation. Eurointervention 7:1124- 1125. Soeda T, Uemura S,	1	The images, generated with OCT, facilitate safe and accurate delineation of arterial pathology and optimisation of stenting procedures.	A case-study. Clinical outcomes from larger studies available. Other studies

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 44 of 53

Morikawa Y et al. (5-5- 2011) Diagnostic accuracy of dual-source computed tomography in the characterization of coronary atherosclerotic plaques: comparison with intravascular optical coherence tomography. International Journal of Cardiology 148:313-318.		are around noninvasive DSCT however it has been compared with OCT.	contain outcomes that are more relevant to clinical practice.
Sukiennik A, Radomski M, Rychter M et al. (2008) Usefulness of optical coherence tomography in the assessment of atherosclerotic culprit lesions in acute coronary syndromes. Comparison with intravascular ultrasound and virtual histology. Cardiology Journal 15:561-563.	1	OCT is useful as an imaging method to complement VH and IVUS in diagnostic evaluation.	A case-study. Clinical outcomes from larger studies available.
Suzuki N, Guagliumi G, Bezerra HG et al. (2011) The impact of an eccentric intravascular ImageWire during coronary optical coherence tomography imaging. Eurointervention 6:963-969.	30	Eccentric intraluminal position of the OCT image wire occurs frequently and affects calibration and interpretation of images, including length, orientation and visibility of vessel wall .structures	Outcomes more relevant to clinical practice are found in other studies.
Takarada S, Imanishi T, Liu Y et al. (1-2-2010) Advantage of next- generation frequency- domain optical coherence tomography compared with conventional time- domain system in the assessment of coronary lesion. Catheterization & Cardiovascular Interventions 75:202-206.	14	Compares FD-OCT and TD-OCT. Concludes that FD- OCT has better performance in the clinical setting and the potential to overcome several limitations of conventional TD-OCT systems.	Outcomes more relevant to clinical practice are found in other studies.
Tanimoto T, Imanishi T, Tanaka A et al. (2009) Various types of plaque disruption in culprit coronary artery visualized	1	OCT clearly revealed ruptured plaque and an intraluminal thrombus. OCT also revealed a small	A case-study with no additional efficacy or safety

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 45 of 53

			· • •
by optical coherence tomography in a patient with unstable angina. Circulation Journal.73 (1) (pp 187-189), 2009.Date of Publication: 2009. 187- 189. Tearney GJ, Waxman S, Shishkov M et al. (2008) Three-dimensional coronary artery	3	ruptured plaque and an eroded plaque with intraluminal thrombi in a distal site remote from the culprit lesion, neither of which was visualised by IVUS. OCT is a viable method for imaging the microstructure of long coronary	These efficacy findings are reported in bigger studies
microscopy by intracoronary optical frequency domain imaging. Jacc: Cardiovascular Imaging 1:752-761.		segments in patients. This technology may be useful for studying human coronary pathophysiology in vivo and as a clinical tool for guiding the management of coronary artery disease.	with larger n numbers and better methodology.
Toutouzas K, Karanasos A, Stathogiannis K et al. (2012) A honeycomb-like structure in the left anterior descending coronary artery: demonstration of recanalized thrombus by optical coherence tomography. Jacc: Cardiovascular Interventions 5:688-689.	1	OCT was used in the assessment because the angiograph was hazy.	A case-study with no additional efficacy or safety information.
Toutouzas K, Karanasos A, and Stefanadis C. (2012) Pitfalls of angiography in the assessment of atherosclerosis: the role of optical coherence tomography. Journal of Invasive Cardiology 24:246-247.	1	OCT can minimise diagnostic errors.	A case-study with no additional efficacy or safety information.
Tu S, Xu L, Ligthart J et al. (2012) In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D)	74	Comparison of coregistered 3D quantitative coronary angiography and invasive imaging data suggests a bias	Outcomes more relevant to clinical practice are found in other studies.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 46 of 53

	[
quantitative coronary		towards larger lumen	
angiography, intravascular		dimensions by IVUS	
ultrasound and optical		and by OCT, which	
coherence tomography.		was more	
The International Journal		pronounced in larger	
•••			
		The 371 null-backs	These efficacy
of Cardiovascular Imaging 28:1315-1327. Viceconte, N et al (2013). Frequency domain optical coherence tomography for guidance of coronary stenting. International Journal of Cardiology 166 (3) 722- 728.	398 OCT pull- backs in 108 patients Case series	and tortuous vessels. The 371 pull-backs, had an average length of 35 mm and encompassed 193 lesions. In the pre- intervention group deferral of treatment was decided for 13/68 pullbacks (19.1%), whereas strategies different from conventional predilatation (e.g. thrombectomy, rotablator, cutting- balloon) were decided in 23 cases (33.8%). After full lesion dilatation 96 pullbacks (25.9%, pre-stenting group) were performed, 46 (47.9%) of which suggested proceeding directly with stenting while 50 (52.1%) suggesting further treatment. Out of the 207 pullbacks in post-stenting group, 29 (14%) suggested new stent implantation because of dissection or residual stenosis; 64	These efficacy findings are reported in bigger studies with larger n numbers and better methodology.
		(30.9%) suggested	
		further optimization with high	
		pressure/larger-sized	
		balloon. No major	
		complications were	
		observed. Five cases	
		(4.6%) of contrast-	
]		induced nephropathy	

		were reported.	
Won, H et al (2013).	489 patients	Repeated examinations with FD-OCT can be safely used to guide stent selection and improve stent expansion and apposition. The best cut-off value	Study detected
Optical coherence tomography derived cut- off value of uncovered stent struts to predict adverse clinical outcomes after drug-eluting stent implantation. The International Journal of Cardiovascular Imaging 29 (6) 1255-1263.	treated with DES OCT follow-up: median 489 days	of % of uncovered struts for predicting MSE was 5.9%. A greater percentage of uncovered struts (the cut-off value of >=5.9 % uncovered struts) might be significantly associated with occurrence of MSE after DES implantation.	cut off value of uncovered sturts by OCT for predicting adverse clinical outcomes. Other studies provide outcomes that are more clinically relevant.
Wong DT et al (2013). In- stent thrombosis due to neoatherosclerosis: insight from optical coherence tomography. Journal of Invasive Cardiology 25 (6) 304.	Case report	Study highlights the use of OCT in identifying the precise mechanism of the stent thrombosis, which helped guide the appropriate intervention.	A case-study with no additional efficacy or safety information.
Wykrzykowska JJ, Ligthart J, Lopez NG et al. (2012) How should I treat an iatrogenic aortic dissection as a complication of complex PCI? EuroIntervention.7 (9) (pp 1111+1117), 2012.Date of Publication: January 2012. 1111+1117-	1	OCT was useful in this investigation.	A case-study. Clinical outcomes from larger studies available.
Yamamoto M, Takano M, Murakami D et al. (7-1- 2011) Optical coherence tomography analysis for restenosis of drug-eluting stents. International Journal of Cardiology 146:100-103.	25	OCT imaging may be useful for selection of appropriate therapeutic strategies.	Outcomes more relevant to clinical practice are found in other studies.
Yonetsu T, Kakuta T, Lee	125	OCT may be useful in	Aims do not

T et al. (2011) Impact of plaque morphology on creatine kinase-MB elevation in patients with elective stent implantation. International Journal of Cardiology.146 (1) (pp 80- 85), 2011.Date of Publication: 07 Jan 2011. 80-85.		stratifying the risk for nonemergency stent implantation.	include assessing OCT and primary results do not consider OCT.
Yoon HJ, Hur SH, Kim SK et al. (2011) A case of in- stent neointimal plaque rupture 10 years after bare metal stent implantation: intravascular ultrasound and optical coherence tomographic findings. Sunhwangi 41:671-673.	1	OCT was useful in this investigation.	A case-study. Clinical outcomes from larger studies available.
Yoshikawa D, Ishii H, Aoyama Y et al. (2010) Optical coherence tomography images of a coronary artery aneurysm in an infarct-related artery 6 months after bare-metal stent implantation. Jacc: Cardiovascular Interventions 3:1300- 1302.	1	OCT was useful in this investigation.	A case-study. Clinical outcomes from larger studies available.
Yoshikawa D, Ishii H, Aoyama Y et al. (2010) Characteristics of in vivo images from an in-stent restenosis lesion of a saphenous vein graft after bare-metal stent implantation: Assessment using optical coherence tomography. Journal of Cardiology Cases.1 (3) (pp e151-e153), 2010.Date of Publication: June 2010. e151-e153.	1	OCT was useful in this investigation.	A case-study. Clinical outcomes from larger studies available.
InVivo Diagnosis of Plaque Erosion and Calcified Nodule in Patients With Acute Coronary Syndrome by	n=126 with ACS OCT	Optical coherence tomography is a promising modality for identifying OCT- erosion and OCT-CN.	Other studies provide outcomes that are more clinically

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 49 of 53

Intravascular Optical Coherence Tomography. Journal of the American College of Cardiology 2013. OCT Compared With	n=100	In the clinical study,	relevant. Other studies
IVUS in a Coronary Lesion Assessment The OPUS-CLASS Study. Jacc: Cardiovascular Imaging 2013.	prospective study using angiography, FD- OCT, and IVUS	the mean MLD measured by QCA was significantly smaller than that measured by FD- OCT and the MLD measured by IVUS was significantly greater than that measured by FD- OCT although a significant correlation was observed between the 2 imaging techniques. The results of this prospective multicenter study demonstrate that FD- OCT provides accurate and reproducible quantitative measurements of coronary dimensions in the clinical setting.	provide outcomes that are more clinically relevant.

Appendix B: Related NICE guidance for optical

coherence tomography to guide percutaneous coronary intervention

Guidance	Recommendations
Technology appraisals	Guidance on the use of coronary artery stents. NICE technology appraisal 71 (2003)
	1.1 Stents should be used routinely where percutaneous coronary intervention (PCI) is the clinically appropriate procedure for patients with either stable or unstable angina or with acute myocardial infarction (MI).
	1.2 It is recommended that when considering the use of a bare-metal stent (BMS) or a drug-eluting stent (DES) the decision should be based on the anatomy of the target vessel for stenting and the symptoms and mode of presentation of the disease.
	1.3 The use of either a Cypher (sirolimus-eluting) or Taxus (paclitaxel-eluting) stent is recommended in PCI for patients with symptomatic coronary artery disease (CAD), in whom the target artery is less than 3 mm in calibre (internal diameter) or the lesion is longer than 15 mm. This guidance for the use of DES does not apply to people who have had an MI in the preceding 24 hours, or for whom there is angiographic evidence of thrombus in the target artery.
	1.4 If more than one artery is considered clinically appropriate for stenting then the considerations in Section 1.3 apply to each artery.
	1.5 This guidance specifically relates to the present clinical indications for PCI and excludes conditions (such as many cases of stable angina) that are adequately managed with standard drug therapy.

Appendix C: Literature search for Optical Coherence

Tomography to guide percutaneous coronary

intervention

Databases	Date searched	Version/files	No. retrieved
Cochrane Database of Systematic Reviews – CDSR (Cochrane Library)	30/10/2013	Issue 10 of 12, October 2013	1
Database of Abstracts of Reviews of Effects – DARE (CRD website)	30/10/2013	Issue 10 of 12, October 2013	0
HTA database (CRD website)	30/10/2013	Issue 10 of 12, October 2013	0
Cochrane Central Database of Controlled Trials – CENTRAL (Cochrane Library)	30/10/2013	Issue 10 of 12, October 2013	1
MEDLINE (Ovid)	30/10/2013	1946 to October Week 3 2013	105
MEDLINE In-Process (Ovid)	30/10/2013	October 29, 2013	68
PubMed	30/10/2013	N/A	42
EMBASE (Ovid)	30/10/2013	1974 to 2013 Week 43	207
CINAHL (NLH Search 2.0 or EBSCOhost) (delete if not requested)	30/10/2013	N/A	28
JournalTOCS	30/10/2013	N/A	19

The following search strategy was used to identify papers in MEDLINE. A similar strategy was used to identify papers in other databases.

1	Tomography, Optical Coherence/
2	(Optic* adj3 Coherenc* adj3 Tomograph*).tw.
3	OCT.tw.
4	(Optic* adj3 frequenc* adj3 domain* adj3 Imag*).tw.
5	OFDI.tw.
6	(dragonfly adj3 catheter*).tw.
7	(ilumien adj3 system*).tw.
8	(lunawave adj3 system*).tw.
9	(fastview adj3 catheter*).tw.

IP overview: Optical coherence tomography to guide percutaneous coronary intervention Page 52 of 53

 10 or/1-9 11 coronary vessels/ 12 Coronary Artery Disease/ 13 coronary occlusion/ or exp coronary stenosis/ or coronary restenosis/ 14 Coronary Thrombosis/ ((coronar* or arter*) adj3 (infarct* or obstruct* or vessel* or occlus* or stenosis* or restenosis* or Thrombosis* or stent* or patenc* or atherosclerosis)).tw. 16 (Stent* adj3 (visualization or deployment or thrombosis)).tw. 17 imag*.tw. 18 ((intravascular or intracoronary) adj3 imag*).tw. 19 15 and 17 20 11 or 12 or 13 or 14 or 16 or 18 or 19 21 10 and 20 22 Animals/ not Humans/ 		
 12 Coronary Artery Disease/ 13 coronary occlusion/ or exp coronary stenosis/ or coronary restenosis/ 14 Coronary Thrombosis/ 15 (coronar* or arter*) adj3 (infarct* or obstruct* or vessel* or occlus* or stenosis* or restenosis* or Thrombosis* or stent* or patenc* or atherosclerosis)).tw. 16 (Stent* adj3 (visualization or deployment or thrombosis)).tw. 17 imag*.tw. 18 ((intravascular or intracoronary) adj3 imag*).tw. 19 15 and 17 20 11 or 12 or 13 or 14 or 16 or 18 or 19 21 10 and 20 	10	or/1-9
 13 coronary occlusion/ or exp coronary stenosis/ or coronary restenosis/ 14 Coronary Thrombosis/ 15 (coronar* or arter*) adj3 (infarct* or obstruct* or vessel* or occlus* or stenosis* or restenosis* or Thrombosis* or stent* or patenc* or atherosclerosis)).tw. 16 (Stent* adj3 (visualization or deployment or thrombosis)).tw. 17 imag*.tw. 18 ((intravascular or intracoronary) adj3 imag*).tw. 19 15 and 17 20 11 or 12 or 13 or 14 or 16 or 18 or 19 21 10 and 20 	11	coronary vessels/
 or coronary restenosis/ Coronary Thrombosis/ ((coronar* or arter*) adj3 (infarct* or obstruct* or vessel* or occlus* or stenosis* or restenosis* or Thrombosis* or stent* or patenc* or atherosclerosis)).tw. (Stent* adj3 (visualization or deployment or thrombosis)).tw. imag*.tw. ((intravascular or intracoronary) adj3 imag*).tw. 15 and 17 11 or 12 or 13 or 14 or 16 or 18 or 19 10 and 20 	12	Coronary Artery Disease/
 ((coronar* or arter*) adj3 (infarct* or obstruct* or vessel* or occlus* or stenosis* or restenosis* or Thrombosis* or stent* or patenc* or atherosclerosis)).tw. (Stent* adj3 (visualization or deployment or thrombosis)).tw. imag*.tw. ((intravascular or intracoronary) adj3 imag*).tw. 15 and 17 11 or 12 or 13 or 14 or 16 or 18 or 19 10 and 20 	13	
 15 obstruct* or vessel* or occlus* or stenosis* or restenosis* or Thrombosis* or stent* or patenc* or atherosclerosis)).tw. 16 (Stent* adj3 (visualization or deployment or thrombosis)).tw. 17 imag*.tw. 18 ((intravascular or intracoronary) adj3 imag*).tw. 19 15 and 17 20 11 or 12 or 13 or 14 or 16 or 18 or 19 21 10 and 20 	14	Coronary Thrombosis/
 thrombosis)).tw. imag*.tw. ((intravascular or intracoronary) adj3 imag*).tw. 15 and 17 11 or 12 or 13 or 14 or 16 or 18 or 19 10 and 20 	15	obstruct* or vessel* or occlus* or stenosis* or restenosis* or Thrombosis* or stent* or
18 ((intravascular or intracoronary) adj3 imag*).tw. 19 15 and 17 20 11 or 12 or 13 or 14 or 16 or 18 or 19 21 10 and 20	16	
 ¹⁰ imag*).tw. 19 15 and 17 20 11 or 12 or 13 or 14 or 16 or 18 or 19 21 10 and 20 	17	imag*.tw.
20 11 or 12 or 13 or 14 or 16 or 18 or 19 21 10 and 20	18	
21 10 and 20	19	15 and 17
	20	11 or 12 or 13 or 14 or 16 or 18 or 19
22 Animals/ not Humans/	21	10 and 20
	22	Animals/ not Humans/
23 21 not 22	23	21 not 22
24 limit 23 to english language	24	limit 23 to english language