Interventional procedure overview of biodegradable subacromial spacer insertion for rotator cuff tears

Indications and current treatment	2
What the procedure involves	3
Outcome measures	3
Evidence summary	5
Population and studies description	5
Procedure technique	23
Efficacy	23
Safety	28
Validity and generalisability	30
Existing assessments of this procedure	31
Related NICE guidance	32
Interventional procedures	32
Professional societies	32
Company engagement	32
References	33
Methods	34
Other relevant studies	37

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

Table 1 Abbreviations

Abbreviation	Definition
ADL	Activities of Daily Living
ASCR	Arthroscopic Superior Capsular Repair
ASES	American Shoulder and Elbow Society
EQ-5D-5L	EuroQol-5 Dimensions-5 Level
MCID	Minimal Clinically Important Difference
NS	Non-significant
OSS	Oxford Shoulder Score
RCT	Randomised Controlled Trial
ROM	Range of Motion
RTSA	Reverse Total Shoulder Arthroplasty
SCR	Superior Capsular Reconstruction
SD	Standard Deviation
VAS	Visual Analog Scale
WORC	Western Ontario Rotator Cuff

Indications and current treatment

People who have rotator cuff tears may have shoulder pain and weakness, with reduced shoulder function, leading to a reduced quality of life. Rotator cuff tears can be caused by an injury or can develop gradually. They can be minor or severe depending on the degree of damage to the tendons. Minor tears to the rotator cuff are very common and may not cause any symptoms at all. Diagnosis is usually by ultrasound or MRI.

Conservative treatment may include physical therapy, pharmacological treatments (including pain relief, and topical or oral non-steroidal anti-inflammatory medicines) and corticosteroid injections. If the tear is severe or has not responded to other treatments, surgical interventions such as debridement,

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

rotator cuff repair, subacromial smoothing, tendon transfer or shoulder arthroplasty may be needed.

What the procedure involves

Inserting a biodegradable subacromial spacer aims to improve pain and restore shoulder function in people who have irreparable rotator cuff tears. The aim is to reduce subacromial friction by lowering the humeral head during shoulder abduction. It is a less invasive and potentially safer alternative to reverse shoulder arthroplasty or tendon transfer, and has shorter procedure and rehabilitation times.

The procedure is done under general or regional anaesthetic. The subacromial space is visualised using either arthroscopy or mini-open surgery. The damaged area is surgically cleared. Measurements are taken to determine the size of biodegradable spacer needed. The balloon-like spacer is then inserted into the subacromial space and inflated with saline solution. Once a sufficient volume is reached, the balloon is sealed and left in place. The balloon spacer is made from a biodegradable polymer and resorbs over about 1 year.

Outcome measures

The main outcomes included are OSS, the ASES score, the Constant Score, the WORC Index score, VAS for pain, EQ-5D-5L quality of life score, active ROM and patient satisfaction. The measures used are detailed in the following paragraphs.

The OSS is a 12-item participant-reported measure (scored 0 to 48; in which 48 is the best score) of shoulder-related pain and function. Its published MCID is 6.

The ASES score is a mixed outcome reporting measure, divided into pain and ADL domains, for use in a variety of shoulder pathologies. Results are in the

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

0 to 100 range, in which 100 indicates the best shoulder condition. The MCID in ASES score is 17.

The Constant (or Constant-Murley) score consists of 4 variables that are used to assess the function of the shoulder. The objective variables are ROM and strength, which give a total of 65 points. The subjective variables are pain and ADL (sleep, work, recreation or sport), which give a total of 35 points. These can be combined to give a score out of 100, with 0 as the worst shoulder function and 100 as the best. The MCID in Constant Score has been shown to be 10.4 points.

The WORC Index is a disease-specific quality of life questionnaire, evaluating symptoms and functional ability. It is self-administered and has 21 items relating to 5 domains (physical symptoms, sports or recreation, work, social function, emotions). The maximum score is 2,100 (worst possible symptoms) and 0 represents no symptoms. Its MCID is 245 points of the total score.

The VAS score is an unidimensional measure of pain intensity, used to record patients' pain progression or to compare pain severity between patients with similar conditions. Pain is shown spatially as distance along a straight line, usually 10 cm, anchored by 2 verbal descriptors, 1 for each symptom extreme. The score is determined by measuring the distance on the line between the 'no pain' anchor and the patient's mark. The MCID has been found to be 1.4.

The EQ-5D-5L is a self-reported survey that measures quality of life across 5 domains: mobility, self-care, usual activities, pain or discomfort, and anxiety or depression. Each dimension is scored on a 5-level severity ranking that ranges from 'no problems' through to 'extreme problems'. It is assessed on a scale of 1 to 5 with a lower score indicating better quality of life.

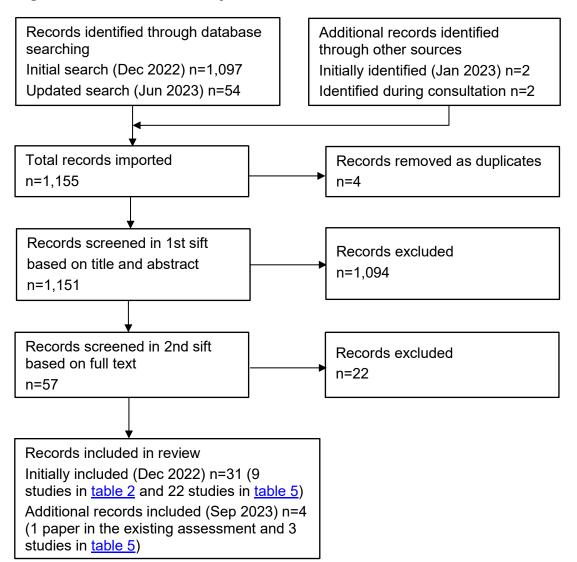
Active ROM measures the totality of movement the shoulder is capable of doing. Active (as opposed to passive) ROM assesses independent movement. The

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears © NICE 2023. All rights reserved. Subject to Notice of rights. movements that are most commonly assessed are: abduction, forward flexion, forward elevation and external rotation.

Evidence summary

Population and studies description

This interventional procedures overview is based on about 1,500 patients from 2 RCTs, 2 systematic reviews, 1 case-control study, 1 retrospective comparative study and 3 case series. Of these patients, about 675 patients had the procedure. This is a rapid review of the literature, and a flow chart of the complete selection process is shown in <u>figure 1</u>. This overview presents 9 studies as the key evidence in <u>table 2</u> and <u>table 3</u>, and lists other relevant studies in <u>table 5</u>.


Of those studies included that are not systematic reviews, 1 was from the UK, 1 from US and Canada, 1 from Italy, 1 from Greece, 1 from Israel, 1 from Turkey, 1 from Ireland and 1 from Slovenia. The mean follow up ranged from 12 months to 5 years, and the mean age of participants ranged from 65.7 to 70.3 years. All 9 studies had inclusion and exclusion criteria, which had some small differences between studies. Most stated that the rotator cuff tear had to be irreparable for a patient to be eligible, but this is a highly variable definition. But 1 case series (Senekovic 2017) included patients with irreparable and reparable rotator cuff tears. Also, 7 of the 9 studies stated that to be eligible the rotator cuff tear had to be defined as 'massive'. This is defined as a rotator cuff tear with retraction of the tendon to the glenoid rim or exposing two-thirds of the greater tuberosity.

Of those studies comparing spacer implantation with another group of patients, 1 RCT compared debridement with spacer implantation with debridement only as the control group (Metcalfe 2022). The other RCT compared InSpace implantation without repair with partial repair (Verma 2022). The case-control

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

study and the comparative study both compared partial repair with spacer implantation with partial repair only (Malahias 2021 and Bisel 2022). Meanwhile, the systematic review by Osti et al. 2021 collated evidence from studies on patients who had been implanted with a spacer and compared outcomes with those in patients who had had ASCR. <u>Table 2</u> presents study details.

Figure 1 Flow chart of study selection

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

Table 2 Study details

Study no.	First author, date	Patients (men:women)	Age	Study design	Inclusion criteria	Intervention	Follow up
	Country						
1	Metcalfe et al., 2022. UK	117 (67:50)	Mean 66.9 years	RCT	Irreparable rotator cuff tear, which had not resolved with conservative treatment and had symptoms warranting surgery.	Debridement with spacer (56 patients) versus debridement only (61 patients).	3, 6 and 12 months
2	Verma et al., 2022. US and Canada	184 patients (100:84)	Mean age 66.8yrs (InSpace group), 64.7yrs (partial repair group)	RCT	Patients aged 40 years or over with symptomatic, irreparable, posterosuperior, massive rotator cuff tears and an intact subscapularis who had failed non-operative management. Further details: 1. Men or women aged 40 years or over 2. Within 9 months before study enrolment, positive diagnostic imaging by MRI of the index shoulder indicating a full-	InSpace implant insertion (with no rotator cuff repair) (93 patients) versus partial repair (suture anchor repair) (91 patients) as a primary surgical treatment for posterosuperior, massive rotator cuff tears.	10 days, 6 weeks, 3, 6, 12 and 24 months

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

Study no.	First author, date Country	Patients (men:women)	Age	Study design	Inclusion criteria	Intervention	Follow up
	Country				thickness massive		
					rotator cuff tear:		
					a. Measuring 5 cm or more in diameter (Cofield classification)		
					b. Involving 2 or more tendons		
					3. Functional deltoid muscle and preserved passive ROM on physical examination		
					4. Documented VAS pain score more than30 mm		
					5. Had failed non- operative treatment of at least 4 months' duration (time elapsed since the initial treatment) using 1		
					or more of the following: a. Oral analgesics b. Anti-inflammatory medication (for		
					example, ibuprofen, naproxen) c. Corticosteroid injection(s) d. Physical therapy e. Activity		

Study no.	First author, date Country	Patients (men:women)	Age	Study design	Inclusion criteria	Intervention	Follow up
					modification f. Rest (sling used)		
3	Osti, 2021 Italy	998. Gender specified in 25 studies (756 patients, 438:318).	Mean 67.9 years	Systematic review	Studies reporting clinical and functional outcomes after using a subacromial spacer for massive irreparable rotator cuff tear, comparing them with ASCR.	Subacromial spacer implantation (375 patients) versus ASCR (623 patients)	Mean 27.6 months (range 4 to 110). For Spacer group: mean 27.0 months (range 4 to 60).
4	Johns, 2020 USA	337 patients and 343 shoulders. When sex specified: 158:143	Mean 68 years	Systematic review	All studies assessing the use of implantable subacromial balloon spacers for managing massive, irreparable rotator cuff tears, reporting outcomes relating to biomechanics, clinical function, shoulder ROM, patient satisfaction, costs and complications.	Insertion of implantable subacromial balloon spacer for massive, irreparable rotator cuff tear.	Mean 33 months

Study no.	First author, date Country	Patients (men:women)	Age	Study design	Inclusion criteria	Intervention	Follow up
					Published in the English language.		
5	Malahias, 2021 Greece	32 (13:19)	Mean group A: 65.7 years, group B 69.7 years	Retrospective case-control study	A diagnosis of symptomatic massive rotator cuff tear confirmed clinically, radiologically and intra- operatively in patients over 50 years having arthroscopic treatment either as combined spacer and partial repair or isolated partial repair with follow up after 12 months postoperatively.	Arthroscopic partial repair with (16 patients) or without (16 patients) InSpace Balloon implantation.	12 months
6	Maman and Kazum, 2022 Israel	78 (37:41)	Mean age 70 years	Retrospective case series	Massive rotator cuff tear treated with InSpace device implantation, a minimum of 1-year follow up, failure of at least 3 months of conservative treatment,	Balloon implantation done arthroscopically.	Mean 56 months
7	Bilsel, 2022 Turkey	32 (8:24)	Median age partial repair group: 68 years.	Retrospective comparative study	Patients with a symptomatic and irreparable massive rotator cuff tear with tension retraction above	Patients who had had arthroscopic partial cuff repair only compared with patients who had	Partial repair group median follow up:

Study no.	First author, date Country	Patients (men:women)	Age	Study design	Inclusion criteria	Intervention	Follow up
			Median age partial repair with spacer group: 68.5 years		stage 2, according to the Patte classification, without significant osteoarthritis and minimum 1 year of follow up.	additional implantation of a subacromial spacer	28 months. Spacer group median follow up: 17 months
8	Davey, 2021 Ireland	45 (31:14)	Mean age 70.3 years	Retrospective case series	Patients with a massive rotator cuff tear who had subacromial balloon spacer insertion alone with a minimum of 12 months of follow up.	Subacromial balloon spacer insertion	Mean 37.1 months
9	Senekovic, 2017 Slovenia	24 (12:12)	Mean age 68.8 years	Prospective case series	Patients with persistent pain and functional disability for at least 6 months, imaging confirmation of a rotator cuff tear and failed conservative therapy.	Insertion of a biodegradable inflatable InSpace system in patients with massive reparable or irreparable rotator cuff tear.	5 years

Table 3 Study outcomes

First author, date	Efficacy outcomes	Safety outcomes
Metcalfe, 2022	Adjusted mean difference debridement only versus debridement with device:OSS at 12 months: -4.2 (95% CI: -8.2 to -0.26)Constant Score at 12 months: -13.8 (95%CI: -24.0 to -3.6)Abduction angle at 12 months: -34.1 (-77.1 to 8.8)Flexion angle at 12 months: -56.8 (-91.1 to -22.5)Abduction strength at 12 months: -2.3 (-3.8 to -0.8)WORC Index at 12 months: -8.4 (-16.8 to -0.1)EQ-5D-5L at 12 months: -0.056 (-0.150 to 0.035)	There were no clear differences in safety events between the 2 groups. Adverse events in debridement with device group: Overall: 11/56 (20%) participants had any adverse event: 6/56 exacerbation/persistence of shoulder pain or restrictive ROM, 3/56 injection into the shoulder region, 2/56 adhesive capsulitis, 1/56 persistent muscle soreness or muscle injury. 4/56 (7%) had a serious adverse event: 2 deemed related to the surgery (1 persistent pain or disability at 12 months, 1 further surgery needed). Adverse events in debridement only group: Overall: 9/61 (15%) had any adverse event: 5/61 exacerbation/persistence of shoulder pain, 1/61 injection into shoulder region. 2/61 (3%) had a serious adverse event: 1 deemed related to the surgery (persistent pain or disability at 12 months).
Verma, 2022	Outcomes of InSpace implant were comparable with those of partial repair at Month 24.	No device-related surgical complications were noted.

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

First author, date	Efficacy outcomes	Safety outcomes
	Mean operative time: InSpace implant group 44.6 mins	4/93 (4%) re-operations needed after
	versus Partial repair group 71.2 mins (p<0.0001). There was earlier recovery of outcome in the InSpace group compared with partial repair group.	InSpace implantation versus 3/91 (3%) re- operations after partial repair.
	ASES score (primary outcome):	
	Improvement from baseline to month 24:	
	InSpace group: 46.22 (SD 20.89), p<0.0001 versus partial repair group: 42.53 (SD 20.54), p<0.0001.	
	Patients reaching MCID at 24 months:	
	83% InSpace group versus 81% partial repair (NS).	
	Secondary outcomes:	
	• Constant Score: Statistically significant difference between groups in improvement from baseline to Week 6 and Month 24, favouring InSpace.	
	 WORC score: Statistically significant difference between groups in improvement from BL to Day 10, favouring InSpace. 	
	• Forward elevation: Statistically significant difference between groups in improvement from BL to Day 10, Week 6, Month 12, Month 24, favouring InSpace.	
	 VAS pain: NS difference between groups at all postoperative time-points. 	
	• EQ-5D-5L: NS difference between groups at all postoperative time-points.	

First author, date	Efficacy outcomes	Safety outcomes
Osti, 2021	Subacromial Spacer Implantation pre- to postoperative:Constant Score: Mean improved from 35.8 to 64.8.ASES: Mean increased from 45 to 84.VAS: Mean improved from 6.1 to 3.5OSS: Mean improved from 30.8 to 33.0ROM forward elevation: Mean increased from 94° to 150°.UCLA: Mean increased from 10.9 to 15.9Patient satisfaction: 80.3% overall satisfaction rate.ASCR pre- to postoperatively: Constant Score: Mean improved from 41.8 to 70.4.ASES: Mean increased from 44 to 86.VAS: Mean improved from 5.2 to 1.OSS: Mean improved from 17.9 to 38.5.ROM forward elevation: Mean increased from 105° to 133°.UCLA: Mean increased from 9.9 to 32.4.Patient satisfaction: 76.2% overall satisfaction rate.	Subacromial Spacer Implantation: Complications reported in 25 (6.7%) patients postoperatively: in 3 patients the balloon migrated, 18 patients pain persisted (12 had RTSA, in 3 the balloon was reimplanted), 1 patient transient neural damage with forearm dysesthesia, 1 patient superficial wound infection, 1 patient deep wound infection treated with balloon removal, 1 patient a persistent limited motion treated with latissimus dorsi tendon transfer. ASCR: Complications reported in 92 (14.8%) patients postoperatively: 34 graft tears, 7 suture anchor pull-out, 6 severe shoulder contracture, 5 deep infections, 33 graft failures, 2 persistent shoulder pain, 1 anterior shoulder escape.
Johns, 2020	Constant Score (assessed by 11 studies) All reported statistically significant improvement in Constant Score from pre- to postoperatively at all time- points. Pre-operative range 22.5 to 41.8, postoperative range 51.4 to 72.3.	 Transient forearm dysesthesia in the lateral cutaneous nerve: 1/350 (0.29%) patients. Superficial wound infection: 1/350 (0.29%) patients.

First author, date	Efficacy outcomes	Safety outcomes
	 OSS (assessed by 3 studies) Pre-operative range 21.3 to 26, postoperative range 34.39 to 48.2 ASES score (assessed by 4 studies) All showed statistically significant improvement from preto postoperatively. VAS pain score (assessed by 3 studies) 1 study showed statistically significant improvement at 3, 6, 12 and 24 months. 24-month result: 6.6-2.8, p=0.0019. 1 study showed statistically significant improvement at 12 and 24 months. 24-month result: 7.1-2.1, p<0.0001). 1 study showed statistically significant improvement at 12 and 24 months. 24-month result: 7.1-2.1, p<0.0001). 1 study showed statistically significant improvement following both partial repair with spacer and spacer alone, with no statistically significant difference between groups. UCLA shoulder score (assessed by 1 study) Mean improved from 10.9 (SD 3.24) pre-operatively to 15.9 (SD 6.87) postoperatively, p=0.001 Shoulder ROM (assessed by 4 studies) Statistically significant improvement of shoulder abduction (pre-operative range: 70 to 113 degrees, postoperative range: 110 to 165 degrees), shoulder flexion (pre-operative range: 80 to 130 degrees postoperative range: 106.5 to 161 degrees, postoperative range: 35 to 63.7 degrees). Patient satisfaction (assessed by 4 studies) 	 Deep wound infection: 1/350 (0.29%) patients. Remnants of deflated balloon transforming into scar tissue in subacromial space: 1/350 (0.29%) patients. Re-operation needed in 11/350 (3.14%) patients, including 5 (1.42%) for balloon migration, 1 (0.29%) for synovitis, 6 (1.71%) had RTSA because of absence of or worsening symptoms. Synovitis on MRI at 3-years post- implantation, 4 patients. Shoulder dislocation secondary to acute trauma, 1/350 (0.29%) patients.

First author, date	Efficacy outcomes	Safety outcomes
First author, date Malahias, 2021	Efficacy outcomesMean of 3.7 on the 4-point Likert satisfaction scale.13 of 15 patients rated their satisfaction from 8-10 on a10-point scale, with 10 representing 'very satisfied'.1 study: 25/31 patients (80.6%) were fully or almostsatisfied, 3/31 (9.6%) reported moderate satisfaction, 3/31(9.6%) no satisfaction.1 study: 11/24 (46%) of patient's satisfied.All mean postoperative clinical and functional scores ofboth groups statistically significantly improved incomparison to the mean pre-operative value.Patients having partial repair and spacer implantation hada propensity toward better functional outcomes comparedwith partial repair alone, but these differences were notstatistically significant.Partial repair and spacer group pre- to postoperativechanges:Constant Score: Increased from mean 38.8 (SD 19.9) tomean 75.8 (SD 12.1), p<0.001.ASES score: Increased from mean 47.7 (SD 19.1) to mean89.8 (SD 10.9), p<0.001.VAS pain: Decreased from mean 53.8/100 (SD 29.4) tomean 16.9/100 (SD 23.0), p<0.001.ROM:Shoulder forward flexion: Improved from mean 128.8	Safety outcomes Spacer only group: No re-operations or major complications. Partial repair only group: 1 patient had a deep infection needing a revision shoulder arthroscopy.
	degrees (SD 56.0) to mean 175.6 degrees (SD 7.3), p=0.02.% reaching MCID of Constant Score: 93.8%.	

First author, date	Efficacy outcomes	Safety outcomes
	% reaching MCID of ASES score: 93.8%.	
	Partial repair only pre- to postoperative changes:	
	Constant Score: Increased from mean 41.7 (SD 15.6) to mean 69.6 (SD 19.7), p<0.001.	
	ASES score: Increased from mean 51.0 (SD 16.5) to mean 79.8 (SD 18.8), p<0.001.	
	VAS pain: Decreased from mean 41.3/100 (SD 30.9) to 8.7/100 (SD 15.5), p<0.001.	
	ROM	
	Shoulder forward flexion: Increased from mean 140.7 degrees (SD 50.9) to 171.6 degrees (SD 23.7), p<0.05.	
	% reaching MCID of Constant Score: 87.5%	
	% reaching MCID of ASES score: 87.5%	
Maman and Kazum, 2022	ROM: Forward flexion: Mean improvement of 13 degrees (from a mean of 107 degrees pre-operatively to 120 degrees postoperatively).	 2/78 (2.5%) patients had superficial wound infection. 9/78 (11.5%) patients had RTSA subsequently, average time to
	Abduction: Mean improvement of 14 degrees (from a mean of 106 degrees pre-operatively to 120 degrees).	RTSA was 17 months.
	External rotation: Mean improvement of 2 degrees (from a mean of 36 degrees pre-operatively to 38 degrees).	
	Patient report of a positive effect on their conditions: 51 (65%).	
	Patient reported they would repeat the procedure in hindsight: 45 (58%)	

First author, date	Efficacy outcomes	Safety outcomes
Bilsel, 2022	Pre- and postoperative outcome scores. Value (range)	Not assessed
	Pre-operative median ASES (range)	
	Partial repair 30.0 (20 to 37.5)	
	Partial repair plus spacer 30.8 (20 to 42)	
	p-value 0.4	
	Postoperative median ASES (range)	
	Partial repair 55.0 (37.5 to 65)	
	Partial repair plus spacer 75.5 (55 to 88.3)	
	P-value <0.001	
	Median ASES (improvement between pre- and postoperative scores)	
	Partial repair 28.0 (7 to 40)	
	Partial repair plus spacer 40.2 (26.7 to 63.3)	
	P-value <0.001	
	% reaching MCID ASES	
	Partial repair 70	
	Partial repair plus spacer 100	
	P-value 0.04	
	Pre-operative median Constant Score (range)	
	Partial repair 26.0 (20 to 38)	
	Partial repair plus spacer 28.5 (20 to 40)	
	P-value 0.6	
	Postoperative median Constant Score (range)	
	Partial repair 55.0 (31 to 79)	

First author, date	Efficacy outcomes	Safety outcomes
	Partial repair plus spacer 40.0 (43 to 79)	
	P-value 0.01	
	Median Constant Score (range) (improvement between pre- and postoperative scores)	
	Partial repair 29.0 (8 to 53)	
	Partial repair plus spacer 39.0 (23 to 53)	
	P-value 0.01	
	% reaching MCID Constant Score	
	Partial repair 95	
	Partial repair plus spacer 100	
	P-value 0.6	
	Pre-operative median VAS (range)	
	Partial repair 8.0 (7 to 9)	
	Partial repair plus spacer 7.5 (6 to 9)	
	P-value 0.6	
	Postoperative median VAS (range)	
	Partial repair 2.0 (0 to 4)	
	Partial repair plus spacer 1.0 (0 to 3)	
	P-value 0.04	
	Median VAS (range) (improvement between pre- and postoperative scores)	
	Partial repair 5.5 (3 to 8)	
	Partial repair plus spacer	
	P-value 0.1	

First author, date	Efficacy outcomes	Safety outcomes
	% reaching MCID VAS	
	Partial repair 100	
	Partial repair plus spacer 100	
	P-value not applicable	
	Pre-operative median forward flexion (range)	
	Partial repair 100.0 degrees (75 to 120 degrees)	
	Partial repair plus spacer 105.0 degrees (75 to 120 degrees)	
	P-value 0.5	
	Postoperative median forward flexion (range)	
	Partial repair 120.0 degrees (80 to 153 degrees)	
	Partial repair plus spacer 140.0 degrees (90 to 150 degrees)	
	P-value 0.01	
	Median forward flexion (range) (improvement between pre- and postoperative angles)	
	Partial repair 17.5 degrees (-10 to 33 degrees)	
	Partial repair plus spacer 30.0 degrees (15 to 40 degrees)	
	P-value <0.001	
	Pre-operative median abduction (range)	
	Partial repair 80.0 degrees (60 to 100 degrees)	
	Partial repair plus spacer 85.0 degrees (60 to 100 degrees)	
	P-value 0.5	
	Postoperative median abduction (range)	

First author, date	Efficacy outcomes	Safety outcomes
	Partial repair 90.0 degrees (70 to 110 degrees)	
	Partial repair plus spacer 100.0 degrees (70 to 130 degrees) degrees)	
	P-value 0.03	
	Median abduction (range) (improvement between pre- and postoperative angles)	
	Partial repair 10.0 degrees (-10 to 30 degrees)	
	Partial repair plus spacer 20.0 degrees (0 to 40 degrees)	
	P-value 0.05	
	Pre-operative median external rotation	
	Partial repair 3.0 degrees (2 to 3 degrees)	
	Partial repair plus spacer 3.0 degrees (2 to 3 degrees)	
	P-value 0.9	
	Postoperative median external rotation	
	Partial repair 3.0 degrees (2 to 4 degrees)	
	Partial repair plus spacer 3.0 degrees (2 to 5 degrees)	
	P-value 0.4	
	Median external rotation (improvement between pre- and postoperative angles)	
	Partial repair 0.0 degree (-1 to 2 degrees)	
	Partial repair plus spacer 1.0 degree (-1 to 2 degrees)	
	P-value 0.5	
Davey, 2021	Final follow up: (no pre-operative values measured)	3 (6.6%) patients needed
	Mean ASES score: 73.4 (SD 21.8)	subsequent procedure to the ipsilateral shoulder.

First author, date	Efficacy outcomes	Safety outcomes	
	Mean Subjective Shoulder Value (SSV): 76.4 (SD 16.0) Patient satisfaction: % relatively satisfied: 40 (88.9%) % very satisfied: 37 (82.2%) % that would opt to have procedure again: 40 (88.9%)	 2 (4.4%) patients had removal of balloon following plateau in rehabilitation alongside ongoing pain. 1 (2.2%) patient had removal of suture anchor for residual pain. 	
Senekovic, 2017	Change between pre-operative and 3, 4 and 5-year follow up: Total Constant Score: 3 years: +23.28 (19.42), p<0.0001 4 years: +26.55 (19.51), p<0.0001 5 years: +28.56 (17.65), p<0.0001 At 5-year follow up, 84.6% showed improvement of 15 points, 61.5% showed improvement of 25 points.	 No complications or unexpected device-related adverse events were recorded. 1 patient diagnosed with a recurrent rotator cuff tear at 4.5 years of follow up. 2 patients presented with synovitis. It is unclear if this was related to the device. 	

IP 1315/2 [IPG775]

Procedure technique

All 9 studies detailed the procedure technique and devices used. All used the InSpace implant (Stryker, US) as the surgical device for insertion.

As outlined previously, there were some differences in the surgical techniques used while inserting the InSpace device. Of the studies comparing spacer implantation with another group of patients, 1 RCT compared debridement plus spacer implantation with debridement only as the control group (Metcalfe 2022). It has been proposed by a recent review that extensive debridement in addition to spacer implantation may theoretically lead to balloon migration and so inferior outcomes (Mease 2023). The other RCT compared InSpace implantation without repair with partial repair (Verma 2022). The case-control study and the comparative study both compared partial repair plus spacer implantation with partial repair only (Malahias 2021 and Bisel 2022). Meanwhile, the systematic review by Osti et al. (2021) collated evidence from studies on patients who had a spacer implanted and compared outcomes with those in patients who had ASCR.

Efficacy

Oxford Shoulder Score

The OSS was assessed by 1 RCT and 2 systematic reviews. The RCT found a statistically significantly higher OSS in the control group (debridement only) compared with the intervention group (debridement with spacer) at 12 months of follow up (OSS of 34.3 [SD 11.1] in the debridement group, compared with 30.3 [10.9] in the debridement plus device group, mean difference -4.2 [95% CI -8.2 to -0.26; Metcalfe 2022]). A systematic review comparing spacer implantation with ASCR found a higher postoperative OSS in patients having ASCR compared with those having spacer implantation (mean increase in OSS from pre to post operation of 30.8 to 33.0 in the spacer implantation group compared with 17.9 to 38.5 in the ASCR group). The spacer implantation group consisted of IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

128 patients from 4 studies while the ASCR group consisted of 25 patients from 1 study (Osti, 2021). Another systematic review found a statistically significant increase in OSS in patients having spacer implantation at a mean follow up of 33 months (pre-operative range 21.3 to 26; postoperative range 34.4 to 48.2; Johns 2020).

ASES

ASES was examined by 1 RCT, 2 systematic reviews, 1 case-control study, 1 retrospective comparative study and 1 case series. The RCT found statistically significant and comparable improvements in ASES from baseline to month 24 in both the spacer and partial repair groups. (The InSpace group improvement from baseline to month 24 was 46.2 [SD 20.9], p<0.001 compared with 42.5 [SD 20.5], p < 0.001.) There was no statistically significant difference in the percentage of patients reaching MCID in ASES at 24 months (83% for the InSpace group compared with 81% for the partial repair group; Verma 2022). A comparative study found the percentage reaching MCID in ASES was statistically significantly higher in the partial repair with spacer group compared with the partial repair only group (100% compared with 70%, p=0.04; Bilsel, 2022). A systematic review found a slightly greater increase in ASES in the ASCR group compared with the spacer group (mean increase in the spacer group of 45 to 84 compared with a mean increase from 44 to 86 in the ASCR group; Osti 2021). A case-control study found statistically significant improvements in ASES in both the partial repair with spacer and partial repair only group at 12 months of follow up (mean improved from 47.7 [SD 19.1] to 89.8 [SD 10.9], p<0.001 in the partial repair plus spacer group compared with mean improvement from 51.0 [SD 16.5] to 79.8 [SD 18.8] in the partial repair group, p<0.001; Malahias 2021). A systematic review with mean follow up of 33 months, which included 4 studies examining ASES found a statistically significant improvement in ASES score after spacer insertion, with a pre-operative range of 24.5 to 59.1 and a postoperative range of 72.5 to 85.7.

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

IP 1315/2 [IPG775]

Constant Score

Constant Score was examined by 2 RCTs, 2 systematic reviews, 1 case-control study, 1 comparative study and 1 case series. Of the 2 RCTs, 1 found a mean difference at 12 months of follow up in Constant Score between the debridement only and debridement with device groups of -13.8 (95% CI -24.0 to -3.6 favouring the debridement only group; Metcalfe 2022). Another RCT found a statistically significant difference in the improvement in Constant Score between the InSpace and partial repair groups at both the 6-week and 24-month follow-up points. favouring the InSpace group (no figures available; Verma 2022). The comparative study also found a statistically significant difference between the spacer with partial repair and partial repair only groups, favouring the spacer group (change in median Constant Score of 29.0 for partial repair compared with 39.0 for partial repair with spacer, p=0.01; Bilsel 2022). All 11 studies assessing Constant Score in the systematic review by Johns et al. reported a statistically significant improvement in Constant Score after spacer insertion (pre-operative range 22.5 to 41.8 and postoperative range 51.4 to 72.3). One case series examined change in Constant Score between pre- and postoperatively at 3, 4 and 5 years of follow up. At all follow-up points, there continued to be a statistically significant improvement compared with baseline. At 5 years of follow up, the mean improvement in Constant Score was 28.6 (SD 17.7), p<0.0001.

WORC score

WORC score was assessed by the 2 RCTs. One RCT found a mean difference in WORC score between the debridement only group compared with the debridement with device group, which favoured debridement only (mean difference -8.4 [95% CI -16.8 to -0.1] Metcalfe 2022). The other RCT showed no statistically significant difference in improvement between baseline and all follow-up points between the InSpace and partial repair groups, apart from at day 10, which favoured the InSpace group (figures not available).

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears © NICE 2023. All rights reserved. Subject to <u>Notice of rights</u>.

IP 1315/2 [IPG775]

VAS pain score

VAS pain score was assessed by 1 RCT, 2 systematic reviews, 1 case-control study and 1 comparative study. The RCT found no statistically significant difference between the InSpace and partial repair groups in terms of improvement in VAS at any follow-up time point (Verma 2022). A systematic review found a mean improvement in VAS after spacer implantation to be 6.1 to 3.5 (98 patients) compared with 5.2 to 1 in ASCR (340 patients; Osti 2021). Another systematic review included 3 studies assessing improvement in VAS after spacer implantation, all 3 of which showed statistically significant improvements compared with the pre-operative VAS pain value. The comparative study found that 100% of patients in both the partial repair and partial repair plus spacer groups had an MCID in VAS pain score after their procedure (Bilsel 2022). The case-control study showed statistically significant improvements in VAS in both the partial with spacer and partial only groups (reduction in mean VAS of 53.8 of 100 [SD 29.4] to 16.9 of 100 [23.0] p<0.001 in the partial and spacer group compared with mean reduction from 41.3 of 100 [30.9] to 8.7 of 100 [15.5], p<0.001 in the partial only group; Malahias 2021).

EQ-5D-5L

EQ-5D-5L was investigated by the 2 RCTs. Both found no statistically significant difference between the spacer and control groups in terms of improvement in EQ-5D-5L between baseline and any follow-up time point. One found a mean difference between the debridement only and debridement plus device group of -0.056 (95% CI -0.150 to 0.035).

ROM

Active ROM was assessed by 2 RCTs, 2 systematic reviews, 1 case series and 1 comparative study. Not all studies examined the same movements. The RCT found that, at 12 months of follow up, the control group had a statistically significantly greater increase in flexion compared with the spacer group (mean IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

difference -56.8, 95% CI -91.1 to -22.5; Metcalfe 2022). The comparative study found a statistically significantly greater median change in forward flexion angle in the spacer group compared with the partial repair group (median increase of 17.5 degrees compared with 30.0 degrees, p<0.001; Bilsel 2022).

There was a statistically significantly greater improvement in forward elevation from baseline to all follow-up time-points (day 10, week 6, month 12 and month 24) in the spacer group compared with the partial repair group in 1 RCT (Verma 2022). A systematic review found that mean forward elevation in 288 patients with a spacer implant increased from 94 degrees pre-operation to 150 degrees post operation, compared with the mean increase in the ASCR group, which was from 105 degrees to 133 degrees.

In the 4 studies that examined abduction in a systematic review, all showed statistically significant improvement in abduction pre- and postoperatively (preoperative range 70 to 113 degrees compared with postoperative range 80 to 130 degrees; Osti 2021). But the comparative study found no statistically significant difference in the change in abduction angle between the partial repair only and InSpace implantation groups (Bilsel 2022).

Patient satisfaction

Patient satisfaction was assessed in 2 systematic reviews and 1 case series. One systematic review found the overall satisfaction rate of spacer implantation was 80% compared with 76% for those who had ASCR (Osti 2021). Another systematic review found that in 1 study, 13 of 15 patients rated their satisfaction after spacer implantation between 8 and 10 on a 10-point scale, with 10 representing very satisfied while another study found that 81% were fully or almost satisfied, 10% reported moderate satisfaction and 10% no satisfaction. But a further study included in the systematic review found that only 46% were

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

satisfied (Johns 2020). In the case series, 82% were very satisfied after spacer implantation.

Safety

Deep wound infection

One out of 350 patients in a systematic review had a deep wound infection that needed a 1-week course of intravenous antibiotics followed by 2 weeks of oral antibiotics.

Persistence or exacerbation of shoulder pain, or persistent limited motion

Three studies (1 systematic review, 1 RCT and 1 case series) reported patients who had persistent worsening of their shoulder pain or continued limited ROM. The systematic review by Osti et al. (2021) noted that 19 of 373 (5%) patients had this after balloon implantation. The RCT found that 6 of 56 (11%) patients were having these symptoms by 12 months of follow up, with 1 further patient having persistent muscle soreness or muscle injury (Metcalfe 2022). In the case series, 1 out of 45 patients had persistent symptoms and needed removal of suture anchor for residual pain within the 37-month follow-up period (Davey 2021).

Re-operations

Several studies noted the risk of a further operation being needed. In an RCT, 4 of 93 (4%) patients needed a re-operation by 24 months of follow up (1 arthroscopy for persistent pain, 2 conversions to RTSA for failure, 1 conversion to RTSA for fracture non-union after a fall). A systematic review found that at mean follow up of 33 months, re-operation was needed in 11 of 350 (3%) patients, including 5 of 350 (1%) for balloon migration, 1 of 350 for synovitis and 6 of 350 (2%) had RTSA because of absence of clinical improvement or

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

worsening of symptoms (Johns 2020). In a case series, 3 (7%) needed a subsequent procedure, including 2 (4%) for removal of the balloon (Davey 2021).

Superficial wound infection

Superficial wound infection was documented in 1 of 350 patients in a systematic review. This resolved after a course of antibiotics. Also, 2 of 78 (3%) in a case-control study had a superficial wound infection.

Synovitis

Synovitis was documented in 4 patients included in a systematic review (Johns 2020). This was found on MRI at 3 years after implantation of the spacer device. Two of 24 patients in a case series presented within the 5-year follow-up period with synovitis (Senekovic 2017). But because there was no pre-operative imaging available, it was unclear if this was related to the device.

Recurrent rotator cuff tear

Recurrent rotator cuff tear was experienced by 1 of 24 patients in a case series with 5 years of follow up (Senekovic 2017).

Transient neural damage with forearm dysesthesia

One of 373 patients had transient neural damage with forearm dysesthesia in a systematic review with a mean follow up of 27 months (Osti 2021).

Shoulder dislocation

One of 350 patients had shoulder dislocation in a systematic review with mean follow up 33 months. It was documented as being secondary to acute trauma. (Johns 2020).

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

Remnants of deflated balloon transforming into scar tissue

Remnants of deflated balloon transforming into scar tissue was documented in 1 of 350 patients in a systematic review with mean follow-up time of 33 months (Johns 2020).

Anecdotal and theoretical adverse events

Expert advice was sought from consultants who have been nominated or ratified by their professional society or royal college. They were asked if they knew of any other adverse events for this procedure that they had heard about (anecdotal), which were not reported in the literature. They were also asked if they thought there were other adverse events that might possibly occur, even if they had never happened (theoretical).

They listed the following anecdotal adverse events:

- anterior escape of the balloon in the shoulder leading to pain
- inserting a balloon that is too large and overfilling the device
- failure to ensure that the device is appropriately sited
- balloon bursting.

Four professional expert questionnaires for this procedure were submitted. Find full details of what the professional experts said about the procedure in the <u>specialist advice questionnaires for this procedure</u>.

Validity and generalisability

Overall, results from studies that have simply compared shoulder functioning and pain before and after insertion of a biodegradable spacer have mostly shown improved shoulder functioning and reduced pain after biodegradable subacromial spacer insertion. The procedure also appears to have a low rate of complications. For the 2 recent RCTs, 1 showed non-inferiority of biodegradable spacer

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

IP 1315/2 [IPG775]

insertion to partial rotator cuff repair and the other found inferiority of debridement with spacer insertion to debridement alone.

The 2 RCTs had a difference in their study population's pre-operative active forward flexion (74.1 in the UK study by Metcalfe et al. and 115 in the US and Canada study by Verma et al.). It has been proposed that pre-operative ROM may influence final outcomes (Mease 2023). But it was unclear whether the ROM was measured in the same way in the 2 trials (Verma et al. stated that active ROM was used, while Metcalfe et al, might apply pain free ROM, which was not specified in the paper). In the Verma et al. study, participants were screened by MRI to identify tears of 5 cm or more and involving 2 or more tendons. In comparison, in the Metcalfe et al. study there was no cut-off for tear size (Mease 2023). Also, the 2 RCTs had differing postoperative rehabilitation protocols. An important finding from both RCTs was that men had better results than women (although subgroup comparison was based on small numbers). Finally, the study by Verma et al. was funded by OrthoSpace (now Stryker), the manufacturer of the InSpace device, and 2 of the authors are Stryker or OrthoSpace employees.

The systematic reviews on this topic are limited by most of the studies being case series with small numbers of patients and relatively short follow ups.

Existing assessments of this procedure

The management of irreparable posterosuperior rotator cuff tears was published in 2023 (Pogorzelski 2023). In this article, following a critical review of the contemporary literature on the treatment options for irreparable posterosuperior rotator cuff tears, a clinically applicable treatment algorithm was proposed by the AGA shoulder committee.

In the non-functional, osteoarthritic shoulder, treatment strategies in the management of irreparable posterosuperior rotator cuff tears include debridement-based procedures and RTSA as the treatment of choice. Joint-

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears © NICE 2023. All rights reserved. Subject to <u>Notice of rights</u>. preserving procedures aimed at restoring glenohumeral biomechanics and function should be reserved for the non-osteoarthritic shoulder. But, before these procedures, patients should be counselled about deteriorating results over time. Recent innovations such as the SCR and the implantation of a subacromial biodegradable spacer show promising clinical short-term results, yet current comparative studies indicate limited efficacy comparing the SCR or the InSpace balloon to partial repair procedures. Taking the much higher costs for these innovative procedures into account, no fundamental recommendation can be given for either the SCR or the balloon. Future prospective comparative studies at long-term follow up are needed to delineate the sustainability of these procedures and derive stronger recommendations.

Related NICE guidance

Interventional procedures

- <u>NICE's interventional procedures guidance on superior capsular</u> <u>augmentation for massive rotator cuff tears</u> (Recommendation: research only).
- NICE's interventional procedures guidance on shoulder resurfacing <u>arthroplasty (Recommendation: normal arrangements).</u>

Professional societies

British Elbow & Shoulder Society (subgroup of the British Orthopaedic Association)

Company engagement

NICE asked companies who manufacture a device potentially relevant to this procedure for information on it. NICE received 1 completed submission. This was

considered by the IP team and any relevant points have been taken into consideration when preparing this overview.

References

- Metcalfe A, Parsons H, Parsons N et al. (2022) Subacromial balloon spacer for irreparable rotator cuff tears of the shoulder (START:REACTS): a groupsequential, double-blind, multicentre randomised controlled trial. Lancet; 399:1954-63.
- 2. Verma N, Srikumaran MD, Roden CM et al. (2022) InSpace implant compared with partial repair for the treatment of full-thickness massive rotator cuff tears. J Bone Joint Surg Am. 104;1250-62.
- Osti L, Milani L, Ferrari S, Maffulli N. (2021) Subacromial spacer implantation: an alternative to arthroscopic superior capsular reconstruction. A systematic review. British Medical Bulletin, 139:59-72.
- 4. Johns WL, Ailaney N, Lacy K et al. (2020) Implantable subacromial balloon spacers in patients with massive rotator cuff tears: a systematic review of clinical, biomechanical, and financial implications. Arthroscopy, Sports Medicine, and Rehabilitation. Vol 2, No 6 (December), pp e855-e872.
- 5. Malahias, M-A, Brilakis E, Avramidis G et al. (2021) Arthroscopic partial repair with versus without biodegradable subacromial spacer for patients with massive rotator cuff tears: a case-control study. Musculoskeletal surgery. 105:247-255.
- 6. Maman E, Kazum E, Abboud JA et al. (2022) Biodegradable balloon spacer for massive irreparable rotator cuff tears is associated with improved functional outcomes, low revisions, and complications rate at minimum one year follow-up. International Orthopaedics 46:573-579.
- Bilsel K, Aliyev O, Atlintas B et al. (2022) Subacromial spacer implantation during arthroscopic partial repair in patients with massive irreparable rotator cuff tears provides satisfactory clinical and radiographic outcomes: a retrospective comparative study. Arthroscopy, Sports Medicine, and Rehabilitation. Vol 4, No 3, pp e1051-e1057.
- 8. Davey MS, Kaar K. (2021) Clinical outcomes at medium-term follow-up of sub-acromial balloon spacer insertion in the operative management of massive rotator cuff tears. Irish Journal of Medical Science 191:1687-1691.
- 9. Senekovic V, Poberaj B, Kovacic L et al. (2017) The biodegradable spacer as a novel treatment modality for massive rotator cuff tears: a prospective study with 5-year follow-up. Archives of Orthopaedic and Trauma Surgery 137, 95-103.

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

 Pogorzelski J, Rupp MC, Scheiderer B et al. (2023) Management of irreparable posterosuperior rotator cuff tears-a current concepts review and proposed treatment algorithm by the AGA shoulder committee. Journal of Personalized Medicine 13(2): 191

Methods

NICE identified studies and reviews relevant to biodegradable subacromial spacer insertion for rotator cuff tears from the medical literature. The following databases were searched between the date they started to 20 June 2023: MEDLINE, PREMEDLINE, EMBASE, Cochrane Library and other databases. Trial registries and the internet were also searched (see the <u>literature search</u> <u>strategy</u>). Relevant published studies identified during consultation or resolution that are published after this date may also be considered for inclusion.

The following inclusion criteria were applied to the abstracts identified by the literature search.

- Publication type: clinical studies were included with emphasis on identifying good quality studies. Abstracts were excluded if they did not report clinical outcomes. Reviews, editorials, and laboratory or animal studies, were also excluded and so were conference abstracts, because of the difficulty of appraising study methodology, unless they reported specific adverse events that not available in the published literature.
- Patients with rotator cuff tears.
- Intervention or test: biodegradable subacromial spacer insertion.
- Outcome: articles were retrieved if the abstract contained information relevant to the safety, efficacy, or both.

If selection criteria could not be determined from the abstracts the full paper was retrieved.

Potentially relevant studies not included in the main evidence summary are listed in the section on <u>other relevant studies</u>.

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

Find out more about how NICE selects the evidence for the committee.

Table 4 literature search strategy

Databases	Date searched	Version/files
MEDLINE (Ovid)	20/06/2023	1946 to June 19, 2023
MEDLINE In-Process (Ovid)	20/06/2023	1946 to June 19, 2023
MEDLINE Epubs ahead of print (Ovid)	20/06/2023	1946 to June 19, 2023
EMBASE (Ovid)	20/06/2023	1974 to 2023 June 19
EMBASE Conference (Ovid)	20/06/2023	1974 to 2023 June 19
Cochrane Database of Systematic	20/06/2023	Issue 6 of 12, June 2023
Reviews – CDSR (Cochrane Library)		
Cochrane Central Database of Controlled	20/06/2023	Issue 6 of 12, June 2023
Trials – CENTRAL (Cochrane Library)		
International HTA database (INAHTA)	20/06/2023	-

Trial sources searched:

- Clinicaltrials.gov
- ISRCTN
- WHO International Clinical Trials Registry.

Websites searched:

- National Institute for Health and Care Excellence (NICE)
- NHS England
- Food and Drug Administration (FDA) MAUDE database
- Australian Safety and Efficacy Register of New Interventional Procedures Surgical (ASERNIP – S)
- Australia and New Zealand Horizon Scanning Network (ANZHSN)
- General internet search.

The following search strategy was used to identify papers in MEDLINE. A similar strategy was used to identify papers in other databases.

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

MEDLINE search strategy

Strategy used:

- 1 Rotator Cuff/
- 2 Shoulder Impingement Syndrome/
- 3 Shoulder Pain/
- 4 Shoulder Joint/
- 5 Acromion/

6 (shoulder* or rotat* or rotor* or rotar* or cuff* or humer* or abcromi* or subacromi* or sub-acromi* or arthroscop* or supraspinatus* or infraspinatus* or "teres minor*" or teres-minor* or subscapularis*).ti,ab.

7 ((scar* or tear* or torn* or rip* or ruptur* or absenc* or irrepair* or irreparab* or imping* or non-funct* or nonfunct* or ruptur*) adj4 (lesion* or large* or partial* or massive* or tendon* or tendin* or ligament* or muscle* or coracohumeral* or coracoid* or internal* or posterosuperio* or outlet* or glenohumeral* or fullthick* or full-thick* or glenoid*)).ti,ab.

- 8 or/1-6
- 9 7 and 8

10 Arthroplasty, Replacement, Shoulder/ or Arthroplasty, Replacement/ or Arthroplasty/

- 11 (arthroplast* or arthroscop* or fluoroscop*).tw.
- 12 Video-Assisted Surgery/
- 13 Surgery, Computer-Assisted/
- 14 Therapy, Computer-Assisted/

15 ((minimal* or non*) adj4 invasiv* adj4 (surg* or tech* or treat* or therap* or device* or procedure*)).tw.

16 ((video* or comput*) adj4 (surg* or tech* or treat* or therap* or device* or pocedure*)).tw.

- 17 or/10-16
- 18 Polymers/
- 19 Biodegradable Plastics/

20 (compostab*or copolymer* or co-polymer* or polymer* or biodegrad* or biograd* or saline* or fluid* or absorb*).ti,ab.

- 21 joint prosthesis/ or shoulder prosthesis/
- 22 Absorbable Implants/
- 23 (implant* or space* or balloon*).ti,ab.
- 24 or/18-23
- 25 9 and 17 and 24
- 26 (Inspace or inspaceTM or Orthospace).ti,ab.
- 27 25 or 26
- 28 animals/ not humans/
- 29 27 not 28

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

Other relevant studies

Other potentially relevant studies to the IP overview that were not included in the main evidence summary (tables 2 and 3) are listed in table 5.

 Table 5 additional studies identified

Article	Number of patients and follow up	Direction of conclusions	Reason study was not included in main evidence summary
Davies A, Singh P, Reilly P et al. (2022) Superior capsule reconstruction, partial cuff repair, graft interposition, arthroscopic debridement or balloon spacers for large and massive irreparable rotator cuff tears: a systematic review and meta- analysis. Journal of orthopaedic surgery and research 17(1): 552	Systematic review and meta-analysis n=268 shoulders (10 studies)	Large initial improvements in shoulder scores were shown for all techniques despite high retear rates for reconstructive procedures. Shoulder scores may decline at mid- to long-term follow up.	Of the 10 studies relevant to this procedure, 9 studies are included in the overview (main evidence or table 5).
Hughes JD, Davis B et al. (2022) Nonarthroplasty options for massive, irreparable rotator cuff tears have improvement in ROM and patient-reported outcomes as short- term follow up: a systematic review. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA	Systematic review n=3363 (assessing multiple options for treating rotator cuff tear). Follow up: minimum 1 year	All treatment options (including spacer insertion) resulted in statistically significant improvements in ROM and patient-reported outcomes.	Other systematic reviews selected instead.

IP overview: Biodegradable subacromial spacer insertion for rotator cuff tears

Kooistra B, Gurnani N et al. (2019) Low level of evidence for all treatment modalities for irreparable posterosuperior rotator cuff tears. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 27(12): 4038-48	Systematic review n=2000 (including all treatments for rotator cuff tears). Minimum 2 years of follow up	The weighted mean improvement in Constant Score following subacromial spacer was 32.5.	More recent systematic review with the same studies included.
Liu F, Dong J, Kang Q et al. (2021) Subacromial balloon spacer implantation for patients with massive irreparable rotator cuff tears achieves satisfactory clinical outcomes in the short and middle of follow-up period: A meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 29: 143–53.	Meta-analysis n=268 (270 shoulders; 10 studies)	This meta-analysis indicated that subacromial balloon spacer implantation for patients with massive irreparable rotator cuff tears may achieve satisfactory outcomes between 3 months and 3 years of follow ups. Although the short- and middle- term effect is significant, the long-term effect needs to be confirmed by large- sample RCT. (Level of evidence: 4)	All studies in the meta-analysis are included in the overview (Osti 2021; Johns 2020).
Kunze KN, Moran J, Cecere R et al. (2023) High rate of clinically meaningful achievement in outcomes after subacromial balloon spacer implantation for massive irreparable rotator cuff tears: a systematic review and meta- analysis. The American Journal of Sports Medicine. 0(0).	Systematic review and meta-analysis n=748 (of which 379 had subacromial balloon spacer implantation) Follow up: 1-3 years depending on outcome measure.	Patients who had isolated subacromial balloon spacer implantation for massive irreparable rotator cuff tears had a high rate of clinically significant improvement in Constant-Murley score, ASES and OSS.	Other systematic reviews included similar studies. This paper was published after literature search was completed.
Moon AS, Harshadkumar A, Patel MD et al. (2019)	Systematic review	Patients have satisfactory outcomes at 2 to 3 years of follow up	More recent systematic review included.

Subacromial spacer implantation for the treatment of massive irreparable rotator cuff tears: A systematic review. Arthroscopy, Vol 35, No 2	n=200 patients, 204 shoulders mean 19.4 months of follow up	with a low rate of complications after subacromial spacer implantation.	
Stewart RK, Kaplin L, Parada SA et al. (2019) Outcomes of subacromial balloon spacer implantation for massive and irreparable rotator cuff tears. OJSM, 7(10).	Systematic review n=284 patients (291 shoulders). Mean 22.9 months of follow up	Subacromial balloon spacer has favourable patient-reported outcomes at limited short-term follow up.	More recent systematic review included.
Yallapragada RK, Apostolopoulos A et al. (2018) The use of a subacromial spacer- InSpace balloon in managing patients with irreparable rotator cuff tears. Journal of Orthopaedics 15(3): 862-8	Non- randomised study. n=14 Mean follow up: 12.6 months	Spacer implantation resulted in improved shoulder function and pain.	Small case series
Oh JH, Park JH, Jeong HJ et al. (2019) Comparing clinical outcomes after subacromial spacer insertion versus other reconstruction methods in the treatment of irreparable massive rotator cuff tears. Orthopaedic Journal of Sports Medicine 7(9).	Cohort study n=17 patients (spacer) versus 36 patients (other techniques) Follow up: Min 2 years	No difference in outcomes between subacromial spacer and other techniques, but other techniques have high retear rate.	Small number of patients having spacer.
Vecchini E, Gulmini M, Peluso A et al. (2022) The treatment of irreparable massive rotator cuff tears with	Case series n=79 patients Mean follow up 56 months.	Improvement in function and ROM following InSpace implantation.	Small case series

InSpace balloon: rational and medium- term results. Acta bio-medica: Atenei Parmensis 92(s3): e2021584		07.5%	
Gervasi E, Maman E et al. (2021) Fluoroscopically guided subacromial spacer implantation for massive rotator cuff tears: two years of prospective follow- up. Orthopaedic Journal of Sports Medicine 9(4)	Case series n=46 patients Follow up 2 years	87.5% of patients saw statistically significant improvement in Constant and ASES scores. Low rates of complications	Case series
Malahias MA, Brilakis E et al. (2019) Satisfactory mid-term outcome of subacromial balloon spacer for the treatment of irreparable rotator cuff tears. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA 27(12): 3890-6	Case series n=31 Mean follow up 22.1 months	InSpace implantation leads to statistically significantly improved mid-term outcomes and high patient satisfaction	Small case series
Iban MAR, Moreno RL et al. (2018) The absorbable subacromial spacer for irreparable posterosuperior cuff tears has inconsistent results. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA 26(12): 3848-54	Case series n=16 Follow up: 12 and 24 months	Outcomes after implantation of subacromial spacer at 2- year follow up are not satisfactory. Only 40% of patients clearly benefit from surgery.	Small case series
Piekaar RSM, Bouman ICE et al. (2018) Early promising outcome	Case series n=44 patients, 46 shoulders	Biodegradable balloon spacer statistically significantly reduces pain	Included in systematic

following arthroscopic implantation of the subacromial balloon spacer for treating massive rotator cuff tear. Musculoskeletal surgery 102(3): 247- 255	Follow up: 1 year	and improves ADL at 1 year follow up.	reviews already in overview
Ricci M, Vecchini E, Bonfante E et al. (2017) A clinical and radiological study of biodegradable subacromial spacer in the treatment of massive irreparable rotator cuff tears. Acta bio-medica: Atenei Parmensis 88(4s): 75-80	Case series n=30 Follow up: 3, 6, 12 and 24 months	Results support biodegradable spacer implantation for shoulder function improvement and reduction of pain.	Already included in systematic review within overview.
Basat HC, Kircil C, Armangil M et al. (2017) Treatment alternative for irreparable rotator cuff ruptures: Arthroscopic biodegradable balloon. Nigerian journal of clinical practice 20(8): 952-7	Case series n=12	Biodegradable balloon yields improvement in function, ROM and all patients were satisfied.	Small case series already included in systematic review in overview.
Gervasi E, Maman E, Dekel A et al. (2016) Fluroscopy-guided biodegradable spacer implantation using local anaesthesia: safety and efficacy study in patients with massive rotator cuff tears. Musculoskeletal surgery 100(suppl1): 19-24	Case series n=15 Follow up: 6 weeks and 12 months	All patients had an improvement in Constant Score and ASES.	Small case series, already included in systematic review within overview.
Moreno JG, Bellido PC et al. (2022) Results after the application of	Case series n=25	Results are in favour of the use of subacromial balloon.	Small case series

biodegradable spacer balloons as therapeutic option in non-repairable massive ruptures of the shoulder rotator cuff. Revista espanola de cirugia ortopedica y traumatologia 66(1): 68-73 Garofalo R, De	Follow up: 1 year Case series	Clinical outcomes and	Small case
Crescenzo AD et al. (2022). Rotator cuff repair protected with subacromial balloon spacer shows low rate of non-healing. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA 30(6): 2123-9	n=32 Mean follow up 27 months	pain scores improved statistically significantly without severe complications.	series
Familiari F, Nayar SK et al. (2021) Subacromial balloon spacer for massive, irreparable rotator cuff tears is associated with improved shoulder function and high patient satisfaction. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association 37(2): 480-6	Case series n=51 Mean follow up 36 months	At a mean of 3 years of follow up, subacromial spacer placement was associated with statistically significant improvement in shoulder function, limited need for revision surgery and high patient satisfaction.	Case series
Piekaar RSM, Bouman ICE et al. (2019). The subacromial balloon	Case series n=44 patients, 46 shoulders.	Biodegradable balloon spacer leads to statistically significant	Already included in systematic

spacer for massive irreparable rotator cuff tears: approximately 3 years of prospective follow-up. Musculoskeletal surgery 104(2): 207- 14	Follow up: 3 years	reduction in pain and improvement of function.	review included within overview.
Deranlot J, Herisson O et al. (2017). Arthroscopic subacromial spacer implantation in patients with massive irreparable rotator cuff tears: clinical and radiographic results of 39 retrospective cases. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association 33(9): 1639-44	Case series n=37 patients, 39 shoulders. Follow up: min 1 year	Biodegradable spacer implantation leads to statistically significant improvement in shoulder function at a minimum of 1 year postoperatively.	Case series already included in systematic review.
Senekovic V, Poberaj B. (2013). Prospective clinical study of a novel biodegradable subacromial spacer in treatment of massive irreparable rotator cuff tears. European journal of orthopaedic surgery & traumatology: orthopedie traumatologie 23(3): 311-6	Case series n=20 Follow up: 3 years	Biodegradable spacer is a low-risk procedure associated with improvement in shoulder function and low complications	Case series already included within systematic reviews.
Oderuth ENH, Morris DLJ et al. (2021). The balloon spacer	Case series n=22	The balloon spacer is effective in a minority (32%) of patients in the	Small case series

improves outcomes in only a minority of patients with an irreparable rotator cuff tear. Journal of Arthroscopy and Joint Surgery 8(1): 64-70	Mean follow up: 31.4 months	medium term. The majority convert to reverse total shoulder replacement or remain symptomatic.	
Fury MS, Cirino C M, White AE et al. (2023) Rice-body synovitis, foreign body reaction, and rotator cuff failure after subacromial balloon spacer augmentation of a rotator cuff repair: a case report. JBJS case connector 13(2)	Case report n=1	Despite promising early results, augmentation of a rotator cuff repair with a subacromial balloon spacer introduces a risk of inflammatory reaction that may mimic a deep infection and compromise rotator cuff healing.	Small sample
Mease SJ, Wang KC et al. (2023) Tendon transfers, balloon spacers, and bursal acromial reconstruction for massive rotator cuff tears. Clinics in sports medicine 42(1): 125- 40	Review	Not applicable: discusses reasons for conflicting results in the 2 RCTs within overview.	No results.