HeartFlow FFRct for the computation of fractional flow reserve from coronary CT angiography

Chest pain of recent onset: assessment and diagnosis NICE guidelines [CG95]: Guidance update

Produced by:	King's Technology Evaluation Centre (KiTEC)
Authors: Correspondence to:	Anastasia Chalkidou, Senior Health Technology Assessor, KiTEC Naomi Herz, Health Technology Assessor and Health Economist, KiTEC Muralikrishnan Radhakrishnan Kartha, Senior Health Economist, KiTEC Mark Pennington, Health Economics Lead, KiTEC Stephen Keevil, Director, KiTEC Joanne Moffitt– joanne.moffitt@kcl.ac.uk
Date completed:	26/05/2016

Declared interests of the authors

None

Description of any pecuniary relationship with sponsors, both personal and of the EAC. Please refer to NICE's Code of Practice for declaring and dealing with conflicts of interests.

http://www.nice.org.uk/niceMedia/pdf/Guidanceondeclarationsofinterest.pdf

If there are none, please state 'none'.

Rider on responsibility for report

The views expressed in this report are those of the authors and not those of NICE. Any errors are the responsibility of the authors.

Clinical evidence update for technical validity, diagnostic accuracy, and clinical outcomes

For the updated review of the clinical evidence for Heartflow, the EAC replicated the search strategies undertaken for the original assessment report (page 186, Appendix 2, MT252_Heartflow_v3.1). The databases were originally searched on 24th of February 2016. An updated search of PubMed only using the terms 'FFRCT' and Heartflow' was performed on 4th of April 2016. Six further studies under publication or presented as conference proceedings were submitted by the manufacturer. The results are listed in the PRISMA flowchart (Figure 1). The EAC selected the studies based on the criteria identified in the original scope. The relevant studies selected for inclusion in this update are listed below. Table 3 presents a summary of currently ongoing studies with Heartflow.

Technical validity

1. Tanaka et al. (2016)

Tanaka et al. (2016) investigated the association between FFR_{CT} and invasive FFR in coronary arteries with serial lesions, in a subgroup population of the NXT study. The authors investigated patients (n=18 patients and 18 vessels) with stable angina and clinically suspected coronary artery disease (CAD). There was no clinical followup. The primary outcome was the per-segment correlation between FFR_{CT} and invasive FFR values, expressed as trans-lesional delta (the difference between the proximal and distal FFR measurement of all sequential lesions). Values of translesional delta for FFR and FFR_{CT} were 0.10 ± 0.09 and 0.09 ± 0.10 in distal segments, and 0.17 ± 0.10 and 0.22 ± 0.13 in proximal segments, respectively. The coefficient of correlation between trans-lesional delta FFR and FFR_{CT} in each segment was 0.92 (p<0.001). The authors concluded that trans-lesional delta FFR is highly correlated with FFR_{CT}.

Quality appraisal

This study retrospectively analysed a subgroup of patients from the prospective NXT trial, and therefore has a low risk of bias for flow and timing, and the index and

reference tests. Although the primary trial is significant in size and multicentre in nature, the sub-group analyses presented are constrained by smaller sample size, limiting power. This is the first study comparing non-invasive assessment of the haemodynamic significance of serial coronary lesions using FFR_{CT} with invasive FFR.

Diagnostic accuracy

2. Thompson et al. (2015)

Thompson et al. (2015) investigated the diagnostic performance of FFR_{CT} in relation to patients' sex and age, using invasive FFR measurements as the gold standard for a subgroup population of the DeFACTO study. The authors investigated patients (n=252 patients and 407 vessels) with stable angina and clinically suspected CAD and at least 1 coronary stenosis of 30-90%. For their analysis, the authors used a clinical rule that included all vessels of diameter ≥2 mm and assigned an FFR value of 0.90 for vessels with stenoses <30% and an FFR value of 0.50 for vessels with stenoses >90%. There was no clinical follow-up. The primary outcome was per patient and vessel diagnostic performance of FFR_{CT} using FFR as the reference standard. Using the clinical rule, the diagnostic performance improved in both sexes with no significant differences between them (AUC: 0.93 vs. 0.90, p=0.43). There were no differences in the discrimination of FFR_{CT} after application of the clinical use rule when stratified by age \geq 65 or <65 years (AUC: 0.95 vs. 0.90, p=0.10). The authors concluded that FFR_{CT} had similar diagnostic accuracy and discriminatory power to FFR for ischemia detection in men and women irrespective of age using a cutoff point of 65 years.

Quality appraisal

This study retrospectively analysed a subgroup of patients from the prospective DeFACTO trial, and therefore, has a low risk of bias for flow and timing, and for the index and reference tests. Although the primary trial is significant in size and multicentre in nature, the sub-group analyses presented are constrained by smaller

sample size, limiting power. The findings were exploratory with the aim of deriving suggestions for optimising FFR_{CT} accuracy. Previous evidence from the DeFACTO trial was not considered eligible for inclusion as the study included patients with high pre-test likelihood of CAD (Min et al. 2012). The Thompson et al. (2015) study is included as it reports results based on sub-group analyses for age and gender. The baseline pre-test likelihood did not differ in statistical significance within these sub-groups, therefore, it is not expected that it can bias results.

Clinical outcomes

3. The SCOT-HEART investigators (2015)

The SCOT-HEART RCT investigated the effect of adding CCTA to the standard care on the diagnosis, management, and outcome of patients with suspected angina due to CAD. As secondary outcomes, the radiation dose and adverse reactions to the CT scanning procedure (such as contrast reaction, renal impairment or vasovagal response) were investigated. The study included 1778 patients recruited at 12 cardiology centres across Scotland. At 6 weeks, CCTA reclassified the diagnosis of CAD in 27% of the patients and the diagnosis of angina due to CAD in 23% patients (standard care=1% and 1%, respectively; p<0.0001). This changed planned investigations (15% vs. 1%, p<0.0001) and treatments (23% vs. 5%, p<0.0001) but did not affect 6-week symptom severity or subsequent admittances to the hospital for chest pain. The authors concluded that the addition of CCTA to standard clinical care clarifies the diagnosis of angina due to CAD, reduces the need for further stress testing, increases the use of ICA, and results in more focused treatment regimes that are associated with an apparent reduction in fatal and non-fatal myocardial infarction. This study supports the findings of Douglas et al. 2015 (PROMISE study) included in the original assessment report that demonstrates that there is no statistically significant difference in the rates of MACE events occurring between a diagnostic pathway that utilises CCTA vs. functional testing and supports a diagnostic pathway based on CCTA. Please see table 2 for a breakdown of the results.

Quality appraisal

This is a large multicentre randomised clinical trial that included a broad and large population of patients who are representative of those referred to the cardiology clinic for assessment of suspected angina due to CAD. This study has a low risk of bias for flow and timing, and the index and reference tests. The authors obtained diagnostic information for 99% of patients. Finally, the authors included both short and long-term follow-up. Sample size calculations are reported along with CIs, and p values are presented for all outcomes.

4. Douglas (2015)

This is the publication of the PLATFORM study results at 3 months follow up that the manufacturer submitted in confidence during the previous assessment report period. The aim of this study was to compare the impact of FFR_{CT} in selecting symptomatic patients with intermediate pre-test likelihood of CAD for invasive coronary angiography (ICA) in comparison with functional imaging testing. The study included 584 patients recruited at 11 international centres. They were prospectively assigned to receive either functional testing (n=287) or CCTA/FFR_{CT} (n=297). Each cohort was subdivided into two groups based on the evaluation plan decided before enrolment in the study: non-invasive testing (any form of stress testing or CCTA without FFR_{CT}) or ICA. The primary end-point was the percentage of those with planned ICA in whom no significant obstructive CAD (no stenosis ≥50% by core laboratory quantitative analysis or invasive FFR<0.80) was found at ICA within 90 days. Secondary endpoints including death, myocardial infarction, and unplanned revascularisation were independently and blindly assessed. The authors concluded that FFR_{CT} was a feasible and safe alternative to ICA and was associated with a significantly lower rate of ICA showing no obstructive CAD. Please see table 2 for a breakdown of the results.

Quality appraisal

This is a large prospective consecutive cohort study utilising a comparative effectiveness observational design. This study has a low risk of bias for flow and timing, the index and reference tests. All analyses were done on the prospective allocation of patients into cohorts regardless of actual care. Use of an initial roll-in group of usual care 'control' patients provided a detailed, real-time snapshot of

contemporaneous practice at enrolling centres, rather than using historical controls. The authors conducted sensitivity analyses of the primary endpoint, yielding similar results, thus confirming that the results were free of verification bias. However, the sample size and follow-up duration are insufficient to detect an impact of FFR_{CT} on clinical outcomes.

5. Douglas (2016)

This is the publication of the PLATFORM study results at 1 year follow up. The aim of this study was to compare the impact of FFR_{CT} in selecting symptomatic patients with intermediate pre-test likelihood of CAD for ICA in comparison with functional imaging testing. The study included 584 patients recruited at 11 international centres. They were prospectively assigned to receive either functional testing (n=287) or CCTA/FFR_{CT} (n=297). Each cohort was subdivided into 2 groups based on the evaluation plan decided before enrolment in the study: non-invasive testing (any form of stress testing or CCTA without FFR_{CT}) or ICA. The endpoints reported in this publication were the adjudicated major adverse cardiovascular events (MACE), total medical costs, and quality of life (QOL). The authors concluded that in patients with stable chest pain and planned ICA, treatment guided by CCTA and selective FFR_{CT} was associated with equivalent clinical outcomes and quality of life and lower costs. Please see table 2 for a breakdown of the results.

Quality appraisal

This is a large prospective consecutive cohort study utilising a comparative effectiveness observational design. This study has a low risk of bias for flow and timing, the index and reference tests. All analyses were done on the prospective allocation of patients into cohorts regardless of actual care. Although this study was not randomised, propensity matching analyses of all endpoints yielded similar results. Use of an initial roll-in group of usual care 'control' patients provided a detailed, real-time snapshot of contemporaneous practice at enrolling centres, rather than using historical controls. However, the sample size and follow-up duration may be insufficient to detect an impact of FFR_{CT} on clinical outcomes.

6. Lu (2015)

Lu (2015) investigated the added value of FFR_{CT} in comparison with CCTA as a gatekeeper to improve efficiency of referral to ICA in a subgroup analysis (n=181) of the <u>PROMISE</u> trial retrospectively. In the PROMISE trial, patients were randomly assigned to either undergo CCTA or functional imaging as a first line diagnostic test. End points for this subgroup analysis were rate of revascularisation and ICA that did not show obstructive CAD and MACE. Over a median follow-up period of 25 months, the addition of FFR_{CT} increased the rate of ICA with revascularisation from 49% to 61%. The rate of angiography without obstructive disease decreased from 27% to 11%. No patient with $FFR_{CT} > 0.80$ had an adverse event which ICA would have prevented. The authors concluded that FFR_{CT} has the potential to improve efficiency of referral to ICA. Please see table 2 for a breakdown of the results.

Quality appraisal

This was a retrospective analysis of the PROMISE trial, a large prospective RCT with a median follow-up of 25 months submitted as a conference presentation. The CCTA and ICA were interpreted locally leading to possible bias for the reference test. A high number (30%) of CCTA tests 1/3 was not suitable for FFR_{CT} analysis leading to potential bias of the index test. CIs and sample size calculations were not reported.

7. Norgaard (2016)

Norgaard (2016) investigated the real-world clinical utility of FFR_{CT} for decisionmaking in patients (n=189) with stable CAD and intermediate-range coronary lesions. Patients were followed up for a median of 12 months. The primary endpoint was the impact of FFR_{CT} on further downstream diagnostic testing. Other endpoints were the agreement between FFR_{CT} and invasive FFR, and the short-term clinical outcome after FFR_{CT} testing defined as the occurrence of MACE (death and acute myocardial infarction) or an angina episode leading to hospital admission or visit in the outpatient clinic. The authors concluded that FFR_{CT} testing is feasible in realworld patients with intermediate-range coronary stenosis determined by CCTA, that implementation of FFR_{CT} for clinical decision-making may influence the downstream diagnostic workflow and that patients with an $FFR_{CT} > 0.80$ who are not referred for ICA have a favorable short-term prognosis. The authors also highlight that in patients with FFR_{CT} ranging between 0.76 and 0.80, a non-negligible number of false-positive results may be expected.

Quality appraisal

This was a single-centre, retrospective observational study. The data were collected in a non-selected cohort of patients (high risk of flow and timing) and the operators were not blinded to the FFRCT results (high risk of bias for the reference test). However, it included consecutive data from a relevant study cohort in a real-world setting. Cls and sample size calculation were not reported.

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
The SCOT- HEART investigators (2015) The SCOT- HEART study <u>NCT01149590</u>	Prospective RCT, multi- centre, UK. Follow-up: 19 months	 4146 symptomatic patients with suspected, but undiagnosed CAD Mean pre-test likelihood of CAD = unknown Patient characteristics: Age: CTA group 57.1±9.7 Functional testing group 57.0±9.7 Gender (males): CCTA group 1162 (56) Functional testing group 1163 	CCTA ECHO SPECT MRI	Primary: proportion of patients diagnosed with angina pectoris secondary to CAD at 6 weeks Secondary: Resource utilisation Survival MACE Radiation dose	Medium. This study was considered to be of relevance to informing the decision problem. It confirms the results of the US-based <u>PROMISE</u> study with no significant differences noted in MACE events between CCTA and functional testing, while CCTA was

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
		 (56) BMI: CTA group 29.7±5.8 Functional testing group 29.8±6.0 Hypertension: CTA group 712 (34) Hypertension: functional testing group 683 (33) Diabetes: CTA group 223 (11) Functional testing group 221 (11) 			associated with reduced ICA normalcy rates (fewer "false-positive" studies), and greater diagnostic certainty. CCTA was also associated with an increase in coronary revascularization rates (particularly of CABG), with a trend toward reduced death and myocardial infarction at 1 year.

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
Douglas (2015) The PLATFORM study <u>NCT01943903</u>	Prospective controlled comparative effectiveness observational, multi-centre, international Follow-up: 3 months	584 symptomatic patients with suspected, but undiagnosed CAD Mean pre-test likelihood of CAD = 49±17%, indicating an intermediate risk of CAD. Patient characteristics: Age: FFR _{CT} group 59.5±9.3 and 60.7±10.2 Functional testing group 57.9±10.7 and 63.4±10.9 Gender (women): FFRCT group 44 (42.3) and 74 (38.3) Functional testing group 34	CCTA/FFR _{CT} SPECT ECHO CCTA	Primary: 90-day rate of coronary angiogram showing no obstructive disease Secondary: (MACE) and MACE + vascular complications, all- cause death, non- fatal MI, resource utilization, quality of life (QOL) assessment (90 days, 180 days, 365 days), and	High This study showed that in patients with planned ICA, a diagnostic strategy based on CCTA/FFR _{CT} yielded a significantly lower rate of ICA showing no obstructive CAD. In patients with planned non-invasive testing, there was no difference between the use of CCTA/FFR _{CT} and

Study	Study design	Population (%)	Intervention	Outcomes	Usefulness to
	(country)		and/or	considered	decision problem
	Follow-up		comparators		
		(34) and 79 (42.2)		cumulative radiation	usual care. Clinical
		BMI: FFRCT group 27.3±3.9		exposure at 365	events through 90
		and 27.1±3.9		days.	days were rare with either strategy.
		Functional testing group			This study adds
		26.0±3.0 and 27.2±3.8			further evidence to
		Hypertension: FFRCT group			the PROMISE and
		57 (54.8) and 111 (57.5)			SCOT-HEART trials.
					Compared with
		Hypertension: functional			PROMISE, the
		testing group 38 (38) and 111			addition of FFRCT to
		(59.4)			CCTA prevented the
		Diabetes: FFRCT group 6			reported 50%
		(5.8) and 30 (15.5)			increase in ICA and
					revascularisations
		Functional testing group 8 (8)			and led to a
		and 36 (19.3)			cancellation of ICA in

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem 61% of the FFR _{CT}
					of finding no obstructive CAD.
Douglas (2016) The PLATFORM study <u>NCT01943903</u>	Prospective controlled comparative effectiveness observational multi-centre, international Follow-up: 1 Year	Same population as Douglas (2015)	Same intervention and comparators as Douglas (2015)	MACE events at 1 year Cost savings at 1 year QOL at 1 year	High The study showed that in patients with planned ICA, patient care guided by CCTA/FFR _{CT} resulted in equivalent clinical outcomes, a greater increase in the EQ5D-assessed quality of life and lower costs.

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
					In patients with planned ICA mean costs were 33% lower with a strategy incorporating CCTA and selective FFR _{CT} .
Lu (2015)	Retrospective observational cohort study international	181 Patients Age 61.8 ± 8.6 years Female 66 (36%) Racial/ethnic minority 18 (10%)	CCTA/FFR _{CT}	Efficiency of FFR _{CT} as gatekeeper to ICA (%ICA leading to revascularisation)	Medium Demonstrates that FFR _{CT} ≤0.80 could improve treatment efficiency by increasing the rate of ICA resulting in revascularisation from 49% to 61%.

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
					Rate of ICA without obstructive disease decreased from 27% to 11%. No patient with $FFR_{CT} > 0.80$ had an adverse event which ICA would have prevented.
Nørgaard (2016)	Single-centre, observational Median follow up of 12 months	185 patients Patient characteristics: Age 57 ± 11 years Male 551 (47%)	CCTA/FFR _{CT}	Consequences on downstream diagnostic testing agreement between FFR _{CT} and invasive	Medium Demonstrates that FFR _{CT} testing is feasible in real-world symptomatic patients.

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
		Diabetes 117 (10%) Hypertension 399 (10%) Hyperlipidaemia 340 (29%) Symptoms: Typical angina 152 (13%) Atypical angina 763 (65%) Non-anginal chest pain 176 (15%) Dyspnoea 82 (7%) Intermediate (20-80%) pre- test risk 844 (72%)		FFR Short-term clinical outcome after FFR _{CT}	No MACE events where recorded in cases with $FFR_{CT}>0.8$ in which ICA was deferred. A "normal" FFR_{CT} result was present in 69% of the patients, among whom ICA was successfully deferred. The coronary revascularization rate in patients with $FFR_{CT} \leq 0.80$ was low (45%).

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
Tanaka (2016)	Retrospective analysis of <u>NXT trial</u> sub- cohort Follow up: NA	 18 patients with a total of 18 vessels Patient characteristics: Age: 60.0 ± 9 Gender (males): 17 (94) BMI: 26±4 Hypertension: 13 (72) Diabetes: 5 (28) Distal stenosis lesion: 43.6± 14.6 Proximal stenosis lesion: 50.3± 15.4 	FFR	Per-segment correlation between FFR _{CT} and invasive FFR values	Low Serial coronary stenoses impact upon the hemodynamic significance of each other. This study addresses the issue of assessing sequential stenoses with FFR _{CT} that was raised in the technical evaluation report.

Study	Study design (country) Follow-up	Population (%)	Intervention and/or comparators	Outcomes considered	Usefulness to decision problem
Thompson (2015)	Retrospective analysis of <u>DeFACTO trial</u> sub-cohort Follow up: NA	252 patients Patient characteristics: Gender (males): 178 (70) Age: women 65.5 ± 8.6 Men: 61.9 ± 8.6 BMI: women 26 ± 4.3 Men 27.0 ± 3.5 Pre-test likelihood of CAD: women $58.5\% \pm 32$ men $64.6\% \pm 34.6$	FFR _{CT} FFR	Diagnostic accuracy	Medium This study provides evidence that age and sex do not impact on the diagnostic accuracy of FFR _{CT} .

Table 2: Clinical outcomes re	esults of included studies.
-------------------------------	-----------------------------

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
The SCOT- HEART investigators (2015) The SCOT- HEART study NCT01149590	ECHO SPECT CCTA MRI	The use of CCTA was associated with the cancellation of 121 functional stress tests and 29 invasive coronary angiograms. Conversely, CCTA was associated with 94 further ICAs. The changes in diagnoses and investigations	After 1.7 years, CCTA was associated with a 38% reduction in fatal and non- fatal myocardial infarction (26 vs. 42, HR=0.62, 95% CI 0.38–1.01; p=0.0527), but this was not significant. Of those 1778	CCTA was not associated with an increase in the proportion of coronary revascularisation (11.2 vs. 9.7%; p=0.0611)	The median radiation dose was 4.1 (IQR 3.0–5.6) mSv, (dose-length product 291 [216–397] mGy.cm); more than a third (37%) of the dose was attributable to the measurement of the coronary artery calcium score.	NA

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
		were associated				
			participants			
		with changes in	who underwent			
		the subsequent	CCTA, 31 (2%)			
		recommendations	had an			
		for preventive	adverse event			
		(18% vs. 4%	related to the			
		respectively;	CCTA (13			
		p<0.0001) and	contrast			
		antianginal (9%	reactions, 7			
		vs. 1%	contrast			
		respectively;	extravasations,			
		p<0.0001)	4 vasovagal			
		treatments	reactions, 4			
			headaches,			
			and 3 other			
			reactions). All			
			adverse events			
			were mild and			
			self-limiting			

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
			with no cases of anaphylaxis or renal failure.			
Douglas (2015) The PLATFORM study <u>NCT01943903</u>	MRI SPECT ECHO CCTA	Among those with intended ICA (FFR _{CT} - guided=193; standard of care= 187), no obstructive CAD was found at ICA in 24 (12%) in the CCTA/FFR _{CT} arm and 137 (73%) in the standard of care arm (risk	Clinical event rates within 90 days were low between the standard of care and CCTA/FFR _{CT} arms.	NA	Among those intended for ICA, the mean cumulative radiation exposure (9.9 vs. 9.4 mSv, p=0.20) was similar between the 2 groups.	NA

Study	Index test(s)	Resource	MACE/Adverse	Revascularisation	Radiation dose	QOL
		utilisation	events	rates		
		difference 61%,				
		95% CI= 53–69,				
		p<0.0001)				
		Among those				
		intended for non-				
		invasive testing,				
		the rates of				
		finding no				
		obstructive CAD				
		at ICA were 13%				
		(CCTA/FFR _{CT})				
		and 6% (standard				
		of care), p=0.95				
		Invasive coronary				
		angiography was				
		cancelled in 61%				
		of the cases after				

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
		receiving CCTA/FFR _{CT} results.				
Douglas (2016) The PLATFORM study <u>NCT01943903</u>	MRI SPECT ECHO CCTA	NA	2 MACE events in each arm of the planned invasive group (risk difference -0.03 [CI -8.6 to +8.5]) and 1 in the planned noninvasive cohort (risk difference - 1.00 [CI -12.7	NA	Cumulative 1- year radiation exposure in patients with an intended invasive evaluation was similar in the usual care cohort (mean: 10.4 ± 6.7 mSv) and FFR _{CT} cohort	Functional status and QOL improved from baseline to 1-year of follow-up in the planned noninvasive group (p<0.001 for all measures), with greater

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
			to +10.7]).		(mean: 10.7 \pm 9.6 mSv), p=0.21. Cumulative 1- year radiation exposure in patients with an FFR _{CT} - guided evaluation was higher than in the usual care cohort (mean: 9.6 \pm 10.6 mSv vs. 6.4 \pm 7.6 mSv, p<0.001)	improvements in patients in the FFR _{CT} strategy group than the usual care group on the EQ-5D (mean change of 0.12 for FFR _{CT} vs. 0.07 for usual care, p=0.02)

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
Lu (2015)	CCTA FFR _{CT}	NA	NA	FFR _{CT} ≤0.80 resulted in better prediction of revascularisation and MACE than CCTA stenosis ≥70%. FFR _{CT} ≤0.80 as gatekeeper to ICA increased the % of ICA leading to PCI from 49%	NA	NA

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
				to 61%		
				Rate of angiography without obstructive disease decreased from		
				27% to 11%		
				No patient with $FFR_{CT} > 0.80$ had an adverse event which ICA would have prevented		

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
Nørgaard (2016)	CCTA/FFR _{CT}	NA	Patients with an FFR _{CT} value >0.80 being deferred from invasive coronary angiography have a favourable short-term prognosis. There were no adverse cardiac events where FFR _{CT} >0.8 and ICA deferred. Median follow-	In patients with FFR _{CT} ≤0.80 being referred to ICA, 45% (22 of 49) underwent coronary revascularization	Cumulative radiation exposure, mSv ICA=8.8±6.6 FFR _{CT} =3.2±1.1	NA

Study	Index test(s)	Resource utilisation	MACE/Adverse events	Revascularisation rates	Radiation dose	QOL
			up time of 12			
			months.			

Conclusion of the clinical evidence

The External Assessment Centre considered that the new evidence submitted from the 1-year follow-up of the PLATFORM study supported the company's claims regarding resource use, rates of ICA and PCI, and quality of life in comparison with the standard of care cohort. Additionally, the 1-year follow-up evidence from the PLATFORM and PROMISE studies supports the company's claim that major adverse cardiac events are equivalent between a diagnostic pathway that utilises CCTA and FFRCT vs. functional-testing, and CCTA vs. functional imaging respectively. It also considered that the evidence from the PLATFORM study shows similar cumulative 1-year radiation exposure in patients intended for invasive evaluation but higher in the FFRCT cohort in patients intended for non-invasive evaluation. This finding is to be expected as many patients in the non-invasive evaluation received a noninvasive test which did not require the use of radiation. As a conclusion the submitted evidence on clinical outcomes supports the 'value proposition' of an FFRCT-guided strategy vs. standard of care, mainly in patients with planned invasive investigation, with equivalent results between FFRCT and functional imaging in the non-invasive cohort.

Table 3: Ongoing clinical studies with Heartflow.

Trial name	NCT number	Number of patients	Study Objectives
CREDENCE	NCT02173275	618	Direct head-to-head comparison of
			coronary CTA plus FFR _{CT} versus
			myocardial perfusion imaging by
			SPECT or PET
DECIDE-	NCT02178904	156	Comparison of FFR _{CT} versus dual-
Gold			energy CT rest/stress perfusion
			imaging
CONSERVE	NCT01810198	1500	Evaluation of FFR _{CT} as a "gatekeeper"
			to invasive coronary angiography
			(secondary aim)
ADVANCE	NCT02499679	ND	Prospective longitudinal registry to
			evaluate prognostic implications of
			FFR _{CT}

Economic evidence update

Published economic evidence

In total, 273 publications were identified for title and abstract review in the updated search performed on 18 April 2016 (some of which were obtained in the original search). Based on inclusion and exclusion criteria, 22 studies were retrieved for further full text review. Four were excluded as they had been captured in the original search, 3 were excluded because they did not meet the population specified in the scope, 6 did not include FFR_{CT}, and 8 were not economic analysis studies (Figure 2). One study in the updated search (Hlatky et al. 2015) met the inclusion criteria for this literature review (Table 4).

Hlatky et al. (2015) investigated the quality of life (QoL) and economic outcomes of FFR_{CT} in the PLATFORM study (described in the Douglas et al. 2016 study summary). Hlatky et al. (2015) aimed to compare the costs and QoL of FFR_{CT} versus standard care to evaluate patients with suspected coronary artery disease. The study assessed QoL at baseline and 90 days using the 7-item Seattle Angina Questionnaire and the 5-item EuroQOL scale (EQ-5D) as well as a visual analogue scale. Cumulative medical costs were measured over 90 days for each patient by multiplying a standardised cost weight for each medical resource by the number of resources used by the individual patient. Medicare reimbursement rates (the national average of technical and professional fees in the US) from 2015 were applied as cost weights and online pharmacy costs were used for drugs. Patients were prospectively assigned to receive either standard of care testing (n=287) or CCTA/ FFR_{CT} (n=297). Mean costs were \$7,343 (£4,993) among the FFR_{CT} patients and \$10,734 (£7,299) among standard testing patients (p<0.0001). In the non-invasive stratum, mean costs were not significantly different (p=0.26) between the FFR_{CT} patients (\$2,679; £1,822) and the standard care patients (\$2,137; £1,453). Overall, each QoL score improved in the study population (p<0.0001) and QoL scores improved more in FFR_{CT} patients than in standard care patients. In the invasive cohort, the improvements in QoL were similar in the FFR_{CT} and standard care patients.

Quality Appraisal

The quality of the PLATFORM study is appraised under the Douglas et al. (2015) study in the 'Evidence update for technical validity, diagnostic accuracy and clinical outcomes' section. The economics portion of the study by Hlatky et al. (2015) examined the effect of the technology on both costs and QoL and appropriately compared it to the standard of care. The study was conducted in 11 European centres, however the practice patterns at these centres may have differed and the costs used US Medicare weights. The use of these costs may limit their generalisability to the UK. Costs were not discounted due to their short follow-up time frame (of 90 days). Sensitivity analyses increasing the cost of FFR_{CT} showed that the group consistently had lower costs when compared with the standard of care group in the invasive testing stratum.

Figure 2: PRISMA flow diagram showing the updated search results

Study	Study design (country)	Outcomes	Results	Sensitivity Analysis
Hlatky et al. (2015) The PLATFORM study	Prospective observational, multi-centre, international	Costs: enumerated the use of key medical resources from the time of enrolment through to the 90-day follow-up visit, and multiplied the cumulative costs for each patient by a standardised cost weight for each medical resource (using 2015 US Medicare reimbursement rates) Effects: Assessed quality of life at baseline and 90 days using the 7-item Seattle Angina Questionnaire and the 5-	Mean costs were \$7,343 (£4,993) among FFR _{CT} patients and \$10,734 (£7,299) among standard care patients (p<0.0001). In the non-invasive stratum, mean costs were not significantly different (p=0.26) between the FFR _{CT} patients (\$2,679; £1,822) and the standard care patients (\$2,137; £1,453). Overall, each QoL score improved in the study population (p<0.0001) and QoL scores improved more in FFR _{CT}	The cost weight for FFR _{CT} was set to 7 times the cost weight of CTA: $\$8,619$ (£5,861) vs. \$10,734 (£7,299) p < 0.0001) in the FFR _{CT} versus standard of care strategies. The costs equalised when the cost weight for FFR _{CT} was set to 20 times the

Table 4: Economic evaluation results of included study

Study	Study design (country)	Outcomes	Results	Sensitivity Analysis
		item EuroQOL scale (EQ-	patients than in standard care	cost weight for
		5D) and a visual analogue	patients. In the invasive cohort,	CTA.
		scale.	the improvements in QoL were	
			similar in the FFR_{CT} and	
			standard care patients.	
MT252 – Cost Model Update

The NICE guideline on chest pain (NICE clinical guideline CG95) was reviewed in December 2014 and new evidence was identified relating to the use of non-invasive tests for the diagnosis of CAD in people with stable chest pain of suspected cardiac origin. The review also identified new evidence on clinical prediction models which may impact the assessment of the pre-test likelihood of CAD in this population. Based on the evidence and economics analysis, changes have been made to the clinical guideline. The most important recommendation was offering 64-slice (or above) coronary CT angiograph (CCTA) to patients with features of typical or atypical angina based on clinical assessment, irrespective of pre-test likelihood scoring (10-90%). This was based on economic analysis undertaken as part of the clinical guidance review which showed that CCTA had the lowest cost per correct diagnosis for all pre-test likelihood groups (10-29%, 30-60% & 61-90%) for both 50% and 70% stenosis thresholds. The use of non-invasive functional imaging for myocardial ischaemia was recommended if 64-slice (or above) CCTA indicates CAD of uncertain functional significance or is non-diagnostic. The updated guideline also recommends offering invasive coronary angiography (ICA) as a second-line investigation when the results of non-invasive functional imaging are inconclusive.

Implications for the Heartflow model

Based on the new recommendations in the revised chest pain guideline, the Heartflow cost model submitted by the sponsor and subsequently revised by the EAC has been updated. The key changes to the model are as follows.

- Different pathways (from CG95) for the three likelihood groups have now been replaced with a single pathway (Figure 2). All the patients with pre-test likelihood of 10-90% are now offered 64-slice (or above) CCTA as the first line investigation. Functional imaging is offered following uncertain CCTA results and ICA is offered if the results of functional imaging are also uncertain.
- The updated pathway is similar to the 10-29% pathway in CG95, except that calcium scoring is not included. CT calcium scoring has been excluded because topic experts who contributed to the chest pain economic model

advised that this would rarely be carried out in isolation from a full CCTA in practice. The Heartflow model also excludes isolated calcium scoring.

- 3. Two strategies are compared in the updated model 1) using CCTA to inform treatment of stable angina and 2) using FFR_{CT} (Heartflow) after a positive CCTA result to inform treatment. The square box in the model structure denotes a decision node, circles denote chance nodes and triangles denote terminal nodes which indicate treatment for stable angina with either percutaneous coronary intervention (PCI) or optimal medical therapy. The time horizon for the model is 1 year to capture the impact of diagnosis on initial treatment.
- 4. The diagnostic accuracy for CCTA, ICA and functional imaging are estimates from the EAC meta-analysis of per-patient based diagnostic accuracy. The EAC did not use the estimates from the clinical guideline because the EAC meta-analysis is based on studies relevant to the Heartflow technology. However, the updated cost model has been subjected to sensitivity analysis using values taken from the economic model in the revised clinical guideline.
- 5. In the chest pain economic model in the revised guideline, test costs are taken from the most recent NHS reference costs (Table 5). These costs have also been updated in the Heartflow model. It should be noted that the cost of cardiac magnetic resonance imaging (CMR) is taken from the Payment by Results tariff rather than the reference cost, since the chest paint guideline committee determined that the reference cost for CMR was not representative of its true cost. The tariff is believed to better represent the cost of CMR.

*Uncertain CCTA - image quality is not sufficient to clearly view degree of stenosis

Figure 3: Updated chest pain model structure

Test	Code, description	Source	Amount
ICA	EY43A to EY43F,	NHS Reference Costs 2014-15,	£1685
	Standard cardiac	weighted average	
	catheterisation		
ССТА	RD28Z, Complex	NHS Reference Costs 2014-15	£122
	computerised tomography		
	scan		
SPECT	RN21Z, Myocardial	NHS Reference Costs 2014-15	£367
	perfusion scan, stress		
	only		
ECHO	EY50Z, Complex	NHS Reference Costs 2014-15	£271
	echocardiogram		
CMR	RA67Z, Cardiac magnetic	Enhanced Tariff Option 2015-16	£515
	resonance imaging scan,		
	pre and post contrast		

Table 5: Cost of tests used in the updated chest pain economic model

Results

Base case

The average total cost per patient tested following the updated NICE guideline adapted to incorporate FFR_{CT} compared to the updated NICE guideline alone is presented in Table 6. Three separate model results using different functional imaging techniques (SPECT, MRI and ECHO) have been estimated by the EAC. The results show that the adapted pathway using FFR_{CT} has a cost saving of £214, irrespective of the functional imaging test used. This is because functional imaging is applied downstream from the identification of CT positive patients who might benefit from FFR_{CT} to the group of patients with uncertain CT results not eligible for FFR_{CT} and hence the impact on costs is independent of the decision to undertake FFR_{CT} . The cost savings from FFR_{CT} occur as a result of ICA and PCI avoided (46-48%) by the use of Heartflow technology. The main drivers of the cost are the diagnostic accuracy of CCTA, ICA and FFR_{CT} and the price of the technology.

	Average total cost per patient (patient based)			
	(Functional Imaging: SPECT) Model	(Functional Imaging: MRI) Model	(Functional Imaging: ECHO) Model	
NICE Updated Guideline	£1,321	£1,301	£1,259	
Adapted NICE Guideline using FFR _{CT}	£1,107	£1,087	£1,045	
Difference (cost saving)	£214	£214	£214	

Table 6: Base case results (patient based)

Sensitivity analysis

Table 7 reports the impact of sensitivity analysis on the results for a number of variables. None of the analyses change the conclusion that Heartflow technology saves costs. Of interest is the price of the technology. The sponsor reduced the price of the technology to £700 from its original listing of £888 during assessment. Even at the original list price, the technology is cost saving (£139). The EAC also used estimates of diagnostic accuracy of CCTA and ICA used in the revised chest pain guideline economic model (highlighted in yellow) in the sensitivity analysis. The meta-analysis estimates from the chest pain guideline for functional imaging were not used in the sensitivity analysis, since diagnostic accuracy of functional imaging did not affect the cost savings at all. Using the meta-analysis estimates from the chest pain economic model did not change the cost savings conclusion of the technology. Heartflow remains cost saving in all scenarios.

Table 7: Sensitivity Analysis

<u>Cost</u>	Savings	by P	Price	of	<u>FFR_{ст}</u>

			SPECT	MRI	ECHO
NO	£	500	-£293	-£293	-£293
HeartFlow	£	600	-£253	-£253	-£253
	£	700	-£214	-£214	-£214
Price	£	800	-£174	-£174	-£174
Ω.	£	888	-£139	-£139	-£139
	£	1,000	-£94	-£94	-£94
	£	1,200	-£15	-£15	-£15

Cost Savings by Dx Sensitvity of FFR_{CT}

		SPECT	MRI	ECHO
FFR _{CT}	76%	-£255	-£255	-£255
	78%	-£247	-£247	-£247
ivity	80%	-£239	-£239	-£239
Sensitivity	84%	-£222	-£222	-£222
	86%	-£214	-£214	-£214
Ď	88%	-£206	-£206	-£206
	90%	-£198	-£198	-£198
	92%	-£189	-£189	-£189
	93%	-£185	-£185	-£185

Cost Savings by Dx Specificity of FFR_{CT}

		SPECT	MRI	ECHO
FFR _{CT}	72%	-£176	-£176	-£176
	73%	-£181	-£181	-£181
icity	74%	-£187	-£187	-£187
Specificity	77%	-£203	-£203	-£203
	79%	-£214	-£214	-£214
DX	81%	-£225	-£225	-£225
	83%	-£236	-£236	-£236
	85%	-£247	-£247	-£247

		SPECT		MRI		ECHO
	63%	-£214	81%	-£214	33%	-£214
	65%	-£214	84%	-£214	35%	-£214
ity	68%	-£214	87%	-£214	40%	-£214
Sensitivity	71%	-£214	89%	-£214	43%	-£214
Sen	73%	-£214	91%	-£214	45%	-£214
DX	76%	-£214	93%	-£214	47%	-£214
	79%	-£214	95%	-£214	54%	-£214
	81%	-£214	97%	-£214	57%	-£214

Cost Savings by Dx Sensitivity of Functional Imaging

Cost Savings by Dx Specificity of Functional Imaging

	SPECT			MRI	ECHO	
city	60%	-£214	81%	-£214	85%	-£214
Specificity	61%	-£214	84%	-£214	86%	-£214
	63%	-£214	87%	-£214	87%	-£214
DX	65%	-£214	89%	-£214	89%	-£214
	67%	-£214	91%	-£214	90%	-£214
	69%	-£214	93%	-£214	91%	-£214
	71%	-£214	95%	-£214	92%	-£214
	73%	-£214	97%	-£214	93%	-£214
	74%	-£214			94%	-£214
	L					

Cost Savings by Dx Sensitivity of CCTA

			ECHO
92% 93% 94% 95% 96%	-£215 -£215 -£214 -£214 -£213	-£215 -£215 -£214 -£214 -£213	-£215 -£215 -£214 -£214 -£213
97%	-£212	-£212	-£212
	93% 94% 95% 96%	93%-£21594%-£21495%-£21496%-£213	93%-£215-£21594%-£214-£21495%-£214-£21496%-£213-£213

Cost Savings by Dx Specificity of CCTA

		SPECT	MRI	ECHO
Dx Specificity CCTA	65%	-£243	-£243	-£243
	66%	-£235	-£235	-£235
	67%	-£226	-£226	-£226
	68%	-£214	-£214	-£214
	69%	-£208	-£208	-£208
	70%	-£200	-£200	-£200
	71%	-£191	-£191	-£191
	72%	-£182	-£182	-£182
	78%	-£130	-£130	-£130

Cost Savings by Dx Sensitivity of ICA

		SPECT	MRI	ECHO
ICA	52%	-£200	-£200	-£200
of	54%	-£203	-£203	-£203
	58%	-£207	-£207	-£207
Sensitivity	62%	-£212	-£212	-£212
Dx Se	64%	-£214	-£214	-£214
	66%	-£216	-£216	-£216
	70%	-£221	-£221	-£221
	72%	-£223	-£223	-£223
	74%	-£225	-£225	-£225
	100%	-£255	-£255	-£255

Cost Savings by Dx Specificity of ICA

		SPECT	MRI	ECHO
ICA	76%	-£244	-£244	-£244
	77%	-£240	-£240	-£240
Specificity	79%	-£231	-£231	-£231
	81%	-£222	-£222	-£222
Ď	83%	-£214	-£214	-£214
	85%	-£204	-£204	-£204
	86%	-£199	-£199	-£199
	87%	-£195	-£195	-£195
	88%	-£190	-£190	-£190
	100%	-£136	-£136	-£136

Cost Savings by Functional Test Uncertain

<u>proportion</u>

		SPECT	MRI	ECHO
Functional uncertain	1%	-£214	-£214	-£214
	5%	-£214	-£214	-£214
	7%	-£214	-£214	-£214
	10%	-£214	-£214	-£214
	12%	-£214	-£214	-£214
	15%	-£214	-£214	-£214
	20%	-£214	-£214	-£214

Cost Savings by CCTA Uncertain

<u>proportion</u>

		SPECT	MRI	ECHO
	1%	-£235	-£235	-£235
CCTA uncertain	5%	-£225	-£225	-£225
	7%	-£221	-£221	-£221
	10%	-£214	-£214	-£214
	12%	-£209	-£209	-£209
	15%	-£202	-£202	-£202
	20%	-£190	-£190	-£190

References

Douglas, P. S., G. Pontone, M. A. Hlatky, et al. (2015). "Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study." Eur Heart J 36(47): 3359-67.

Douglas, P.S, De Bruyne B., Pontone G, et al. (2016). "One-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease: PLATFORM Study." <u>JACC (In Press)</u>.

Hlatky, M. A., B. De Bruyne, G. Pontone, et al. (2015). "Quality-of-Life and Economic Outcomes of Assessing Fractional Flow Reserve With Computed Tomography Angiography: PLATFORM." J Am Coll Cardiol 66(21): 2315-23.

Lu M, F. M., Roberts R, Ivanov A, Adami E, et al (2015). Noninvasive Fractional Flow Reserve Derived from Coronary CT Angiography (FFRCT) in the PROMISE Trial: Revascularization, Events and Efficiency of Referral to Invasive Coronary Angiography. Conference: Unknown, Conference location: Unknown.

Min, J. K., J. Leipsic, M. J. Pencina, et al. (2012). "Diagnostic accuracy of fractional flow reserve from anatomic CT angiography." JAMA 308(12): 1237-45.

Norgaard, B. L., J. Hjort, S. Gaur, et al. (2016). "Clinical Use of Coronary CTA-Derived FFR for Decision-Making in Stable CAD." Jacc: Cardiovascular Imaging. doi: 10.1016/j.jcmg.2015.11.025. [Epub ahead of print]

The SCOT-HEART investigators. (2015). CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. [Erratum appears in Lancet. 2015 Jun 13;385(9985):2354; PMID: 26088642]." Lancet 385(9985): 2383-91.

Tanaka, K., H. G. Bezerra, S. Gaur, et al. (2016). "Comparison Between Noninvasive (Coronary Computed Tomography Angiography Derived) and Invasive-Fractional Flow Reserve in Patients with Serial Stenoses Within One Coronary Artery: A NXT Trial substudy." Ann Biomed Eng 44(2): 580-9. Thompson, A. G., R. Raju, P. Blanke, et al. (2015). "Diagnostic accuracy and discrimination of ischemia by fractional flow reserve CT using a clinical use rule: Results from the Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography study." Journal of cardiovascular computed tomography 9(2): 120-28.