Chronic obstructive pulmonary disease in over 16s: diagnosis and management

[A] Managing pulmonary hypertension and cor pulmonale

NICE guideline NG115
Evidence review
December 2018
Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© NICE, 2018. All rights reserved. See Notice of rights.

ISBN: 978-1-4731-3175-0
Appendix A – Review protocols .. 20
 Review protocol for managing pulmonary hypertension and cor pulmonale 20
 Appendix B – Methods ... 25
 Priority screening .. 25
 Incorporating published systematic reviews 25
 Evidence synthesis and meta-analyses .. 27
 Evidence of effectiveness of interventions .. 27
 Health economics .. 32
Appendix C – Literature search strategies ... 34
 Main searches ... 34
 Health Economics search strategy ... 36
Appendix D – Clinical evidence study selection 39
Appendix E – Clinical evidence tables ... 40
 Pulmonary hypertension ... 40
 Cor pulmonale ... 72
Appendix F – Forest plots ... 75
 Pulmonary hypertension ... 75
Appendix G – GRADE tables ... 83
 Pulmonary hypertension ... 83
 Cor pulmonale ... 93
Appendix H – Economic evidence study selection 94
Appendix I – Excluded studies ... 95
 Clinical studies ... 95
Appendix J – Research recommendations ... 98
Appendix K – References .. 99
 Clinical evidence - included studies .. 99
 Clinical evidence - excluded studies .. 100
Managing pulmonary hypertension and cor pulmonale

Review question

What are the most clinically and cost-effective therapies for managing complications (pulmonary hypertension and cor pulmonale) in people with stable chronic obstructive pulmonary disease (COPD)?

Introduction

The aim of this review question was to determine the effectiveness of different approaches to managing pulmonary hypertension and cor pulmonale secondary to COPD.

Pulmonary hypertension (PH) is a common complication of COPD that is associated with a worse disease prognosis, including an increased risk of exacerbations, reduced exercise capacity and reduced survival. PH is defined as raised pressure in the arteries on the right side of the heart that take blood to the lungs. PH can occur alone or as a result of other diseases that affect the heart or lungs such as COPD. Pulmonary artery hypertension is defined in this guideline as a mean pulmonary artery pressure of 25mm Hg or more. Pulmonary hypertension is usually a marker of more severe lung disease and over time this can develop into cor pulmonale.

Cor pulmonale is impairment in the structure and function of the right side of the heart caused by a chronic lung disease with renal fluid retention due to hypoxia/hypercapnia. This typically presents with swollen ankles and lower legs.

This review identified studies that fulfilled the conditions specified in Table 1. For full details of the review protocol, see appendix A.

Table 1 PICO table – managing pulmonary hypertension and cor pulmonale

<table>
<thead>
<tr>
<th>Population</th>
<th>People diagnosed with COPD, and with pulmonary hypertension or cor pulmonale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventions</td>
<td>Any relevant interventions, including:</td>
</tr>
<tr>
<td></td>
<td>• Smoking cessation</td>
</tr>
<tr>
<td></td>
<td>• Statins or other lipid modifying drugs</td>
</tr>
<tr>
<td></td>
<td>• Bosentan</td>
</tr>
<tr>
<td></td>
<td>• Phosphodiesterase-5 (PD-5) inhibitors (including sildenafil)</td>
</tr>
<tr>
<td></td>
<td>• Beta blockers</td>
</tr>
<tr>
<td></td>
<td>• Non-invasive ventilation</td>
</tr>
<tr>
<td>Comparator</td>
<td>• Each other</td>
</tr>
<tr>
<td></td>
<td>• No intervention</td>
</tr>
<tr>
<td>Outcomes</td>
<td>• Mortality</td>
</tr>
<tr>
<td></td>
<td>• Hospital admissions, re-admissions and bed days</td>
</tr>
<tr>
<td></td>
<td>• Exacerbations</td>
</tr>
<tr>
<td></td>
<td>• Breathlessness</td>
</tr>
<tr>
<td></td>
<td>• Orthopnoea</td>
</tr>
<tr>
<td></td>
<td>• Ankle swelling</td>
</tr>
<tr>
<td></td>
<td>• Arterial oxygen partial pressure</td>
</tr>
<tr>
<td></td>
<td>• Resting oxygen saturation</td>
</tr>
<tr>
<td></td>
<td>• Exercise capacity/exercise tolerance</td>
</tr>
</tbody>
</table>
Managing pulmonary hypertension and cor pulmonale

• Change in FEV1 (% predicted)
• Adverse events: all, serious, treatment discontinuation
• Quality of life
• Resource use and costs

Methods and process

This evidence review was developed using the methods and process described in Developing NICE guidelines: the manual. Methods specific to this review question are described in the review protocol in appendix A, and the methods section in appendix B. In particular, the minimally important differences (MIDs) used in this review are summarised in Table 5 in appendix B. These were selected based on the literature with input from the committee.

Subgroup analyses specified in the review protocol were not carried out for this review because the majority of included studies did not report data for the categories of interest in an accessible format.

The search strategies used in this review are detailed in appendix C.

Declarations of interest were recorded according to NICE’s 2014 conflicts of interest policy.

Clinical evidence

Included studies

This review was conducted as part of a larger update of the 2010 NICE COPD guideline (CG101). A systematic literature search for randomised controlled trials (RCTs) and systematic reviews of RCTs identified 3,014 references (no date limit was used as the previous guideline recommendations were not based on a systematic literature review). Additional references were added from the old guideline (13), the surveillance report (1) and from a systematic review (1, see below) to give a total of 3,029 references.

These were screened on title and abstract, with 50 papers ordered as potentially relevant systematic reviews or RCTs. RCTs were excluded if they did not meet the criteria of enrolling people with COPD and either cor pulmonale or pulmonary hypertension at baseline.

Seventeen papers were identified after full text screening: 3 systematic reviews (SRs) and 14 RCTs. Since the SRs were judged to be of low quality and partially applicable, they were only used as a source of primary references. One additional reference was identified in this manner and, as a result, 15 RCTs were included in this review.

For pulmonary hypertension there were 4 RCTs evaluating phosphodiesterase inhibitors, 4 RCTs evaluating statins, 2 RCTs evaluating nifedipine plus 1 RCT each for treatment with bosentan, losartan, nitric oxide and pentoxifylline. Only 1 RCT, using oxygen therapy, was identified for cor pulmonale.

A second set of searches was conducted at the end of the guideline development process for all updated review questions using the original search strategies, to capture papers published whilst the guideline was being developed. These searches, which included articles up to February 2018, returned 3,100 references in total for all the questions included in the update, and these were screened on title and abstract. No additional relevant references were found for this review question.

This process of study identification is summarised in the diagram in appendix D.
For the full evidence tables and full GRADE profiles for included studies, please see appendix E and appendix G. The references of individual included studies are given in appendix K.

Excluded studies

Details of the studies excluded at full-text review are given in appendix I.
Summary of clinical studies included in the evidence review

The included RCTs are summarised in Table 2 and Table 3.

Table 2 RCTs - pulmonary hypertension

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Interventions</th>
<th>Population</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azithromycin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Wang (2017) | • Simvastatin: 20mg/day plus azithromycin 0.25g/day
 • Simvastatin: 20mg/day | COPD diagnosis- criteria not stated
 • Pulmonary arterial hypertension with mean arterial pressure of not less than 25 mmHg by right cardiac catheterization at rest or no less than 30 mm Hg with activity
 • Sample size: 86
 • Intervention: 43 Control: 43
 • Mean age: years (SD)
 • 71.5 (8.2) | Partial pressure of arterial oxygen (PaO₂)
 • 6 minute walk distance (metres) |
| Bosentan | | | |
| Valerio (2009) | • Bosentan: 125mg twice a day
 • Placebo | COPD diagnosis - American Thoracic Society criteria and Global Initiative for Chronic Obstructive Lung Disease guidelines
 • Pulmonary arterial hypertension with mean pulmonary arterial pressure >25mmHg determined using right heart catheterization. Patients were monitored for a month and those with persistent pulmonary hypertension were included in the study.
 • Sample size:40
 • Intervention: 20 Control: 20
 • Mean age: years (SD) 65.5 (14.0) | 6 minute walk distance (metres)
 • FEV1 (%)
 • Partial pressure of arterial oxygen (PaO₂)
 • Mean pulmonary arterial pressure (mPAP, in mmHg)
 • Health-related quality of life:
 St. George's Respiratory Questionnaire (SGRQ).
 • Adverse events
 • Exacerbations per patient
 • Breathlessness:
 MRC and WHO scales |
Short Title

<table>
<thead>
<tr>
<th>Losartan</th>
<th>Nifedipine</th>
<th>Vestri (1988)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Losartan: 25mg/day for 1 week, then dose increased to 50mg/day, providing the patient's systolic blood pressure remained ≥ 100 mmHg. The dose could be down titrated once (to 25 mg) if necessary.</td>
<td>Nifedipine: 10mg three times a day</td>
<td>Nifedipine: 10mg three times a day</td>
</tr>
<tr>
<td>Placebo</td>
<td>No intervention - routine treatment for COPD</td>
<td>No intervention - routine treatment for COPD</td>
</tr>
<tr>
<td>COPD diagnosis - criteria not stated</td>
<td>COPD diagnosis - criteria not stated</td>
<td>COPD diagnosis - American Thoracic Society criteria</td>
</tr>
<tr>
<td>Pulmonary arterial hypertension with transthricuspid pressure gradient (TTPG) ≥ 30 mmHg and sitting systolic blood pressure ≥ 100 mmHg</td>
<td>Pulmonary arterial hypertension with mild PAH - mean pulmonary artery pressure >20 mmHg (control mean 29.3±2.8, intervention 31.7±2.3) determined using right heart catheterization.</td>
<td>Pulmonary arterial hypertension > 20 mmHg at rest, (mPAP Intervention 31.3 mmHg (SD 2.2), control 29.6 mmHg (1.4)). Determined using right heart catheterization.</td>
</tr>
<tr>
<td>Sample size: 40</td>
<td>Sample size: 20</td>
<td>Sample size: 60</td>
</tr>
<tr>
<td>Intervention: 20 Control: 20</td>
<td>Intervention: 10 Control: 10</td>
<td>Intervention: 30 Control: 30</td>
</tr>
<tr>
<td>Mean age: years (SD) 67.0 (7.9)</td>
<td>Mean age: years (SD) 62.0 (2.3)</td>
<td>Mean age: years (SD) 62.0 (2.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 m shuttle walk test</td>
<td>Partial pressure of arterial oxygen (PaO₂)</td>
<td>Partial pressure of arterial oxygen (PaO₂)</td>
</tr>
<tr>
<td></td>
<td>Mean pulmonary arterial pressure (mPAP, in mmHg)</td>
<td>Mean pulmonary arterial pressure (mPAP, in mmHg)</td>
</tr>
<tr>
<td></td>
<td>Adverse events</td>
<td>Adverse events</td>
</tr>
<tr>
<td></td>
<td>Ankle oedema</td>
<td>Ankle oedema</td>
</tr>
<tr>
<td></td>
<td>Breathlessness</td>
<td>Mortality</td>
</tr>
<tr>
<td></td>
<td>Mortality</td>
<td>Hospitalisation (days)</td>
</tr>
<tr>
<td></td>
<td>Ankle oedema</td>
<td>Ankle oedema</td>
</tr>
<tr>
<td>Short Title</td>
<td>Interventions</td>
<td>Population</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| **Nitric oxide** | • Oxygen and Nitric oxide
| | Pulsed inhalation of 50ml oxygen and 20parts per million NO
| | • Oxygen
| Vonbank (2003) | • COPD diagnosis - American Thoracic Society criteria
| | • Pulmonary arterial hypertension with mean pulmonary artery pressure of ≥ 25 mmHg determined using right heart catheterization
| | • Sample size: 40
| | • Oxygen alone: 20 Oxygen and NO: 20
| | • Mean age: years (SD) 63.3 (1.5) | • Partial pressure of arterial oxygen (PaO2)
| | • Mean pulmonary arterial pressure (mPAP, in mmHg)
| | • Mortality |
| **Pentoxifylline** | • Pentoxifylline: 400mg three times daily or 200mg for patients also receiving Theophylline.
| | • Placebo | • COPD diagnosis- criteria not stated
| Fallahi (2013) | • Pulmonary arterial hypertension with systolic pulmonary artery pressure >40 mmHg by echocardiography
| | • Sample size:28
| | • Intervention: 15 Control: 13
| | • Mean age: years (SD) 61.6 (8.2) | • 6 minute walk distance (metres)
| | • Oxygen saturation (%)
| | • Pre- and post-test breathlessness (Borg Score) |
| **Phosphodiesterase 5 inhibitors** | • Sildenafil plus pulmonary rehabilitation programme:
| | Sildenafil (20mg) three times daily plus a pulmonary rehabilitation programme starting a week later. This consisted of exercise training sessions on a cycloergometer three | • COPD diagnosis - Global Initiative for Chronic Obstructive Lung Disease guidelines
| Blanco (2013) | • Pulmonary arterial hypertension with systolic pulmonary arterial pressure (PAP) >34 mmHg or mean PAP ≥ 25 mmHg in patients who had previously been subjected to right heart catheterisation. Determined using echocardiography.
| | • Sample size:60
| | • Intervention: 29 Control: 31 | • 6 minute walk distance (metres)
| | • Cycle endurance time (seconds)
| | • Oxygen saturation (%)
| | • Health-related quality of life:
| | St. George's Respiratory Questionnaire (SGRQ) and Medical Outcomes Study 36-Item Short Form Health Survey (SF-36)
| | • Adverse events
| | • Exacerbations
| | • Mortality |
Managing pulmonary hypertension and cor pulmonale

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Interventions</th>
<th>Population</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goudie (2014)</td>
<td>Tadalafil: 10mg/day, Placebo</td>
<td>COPD diagnosis - American Thoracic Society criteria and European Respiratory Society criteria, Pulmonary arterial hypertension with >30 mmHg right ventricular systolic pressure or pulmonary acceleration time <120 ms. PAP determined using echocardiography.</td>
<td>6 minute walk distance (metres), FEV1 (%), Mean pulmonary arterial pressure (mPAP, in mmHg), Health-related quality-of-life: Minnesota Living With Heart Failure Questionnaire (MLHFQ), St George's Respiratory Questionnaire (SGRQ), Short Form 36 Health Survey (RAND version 1) (SF-36), Adverse events</td>
</tr>
<tr>
<td>Rao (2011)</td>
<td>Sildenafil: 20 mg three times a day, Placebo</td>
<td>COPD diagnosis - Global Initiative for Chronic Obstructive Lung Disease guidelines, Pulmonary arterial hypertension with pulmonary artery systolic pressure of >40 mmHg mPAP determined using echocardiography.</td>
<td>6 minute walk distance (metres), Mean pulmonary arterial pressure (mPAP, in mmHg)</td>
</tr>
<tr>
<td>Vitulo (2017)</td>
<td>Sildenafil: 20mg three times daily</td>
<td>COPD diagnosis - Global Initiative for Chronic Obstructive Lung Disease guidelines</td>
<td>6 minute walk distance (metres), FEV1 (%), Partial pressure of arterial oxygen (PaO2), Mean pulmonary arterial pressure (mPAP, in mmHg)</td>
</tr>
</tbody>
</table>
Interventions

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Interventions</th>
<th>Population</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| | Placebo | Pulmonary arterial hypertension with mPAP ≥ 35mm Hg in the case of FEV1 < 30% of predicted value after bronchodilator, and mPAP ≥ 30 mmHg for a FEV1 > 30% of predicted value after bronchodilator. Determined using right heart catheterisation. | Health-related quality-of-life: Medical Outcomes Study 36-item Short Form Health Survey (SF-36)
Adverse events |
| | Atorvastatin: 40mg/day
No intervention-routine treatment for COPD | COPD diagnosis - American Thoracic Society criteria
Pulmonary arterial hypertension with systolic pulmonary arterial pressure of >25 mmHg by echocardiography | Mean pulmonary arterial pressure (mPAP, in mmHg) |
| | Pravastatin: 40mg/day
Placebo | COPD diagnosis - American Thoracic Society criteria
Pulmonary arterial hypertension determined by routine echocardiogram- systolic pulmonary artery pressure ≥ 35 mmHg. | Naughton exercise stress test
FEV1 (%)
Systolic pulmonary arterial pressure (mmHg)
Breathlessness (Borg Score) |

Statins

| Arian (2017) | Atorvastatin: 40mg/day
No intervention-routine treatment for COPD | COPD diagnosis - American Thoracic Society criteria
Pulmonary arterial hypertension with systolic pulmonary arterial pressure of >25 mmHg by echocardiography | Mean pulmonary arterial pressure (mPAP, in mmHg) |
| | Pravastatin: 40mg/day
Placebo | COPD diagnosis - American Thoracic Society criteria
Pulmonary arterial hypertension determined by routine echocardiogram- systolic pulmonary artery pressure ≥ 35 mmHg. | Naughton exercise stress test
FEV1 (%)
Systolic pulmonary arterial pressure (mmHg)
Breathlessness (Borg Score) |
### Short Title	Interventions	Population	Outcomes
Moosavi (2013) | • Atorvastatin: 40mg/day
• Placebo | • COPD diagnosis - American Thoracic Society criteria
• Pulmonary arterial hypertension > 40 mmHg, method unclear
• Sample size: 45
• Split between study
• Intervention: 24 Control: 21
• Mean age: years (SD) 66.4 (12.4) | • 6 minute walk distance (metres)
• FEV1 (%)
• Systolic pulmonary arterial pressure (mmHg)

Table 3 RCTs - cor pulmonale

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Interventions</th>
<th>Population</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| MRC Working party (1981) | • Oxygen: For at least 15hrs a day
• No intervention - routine treatment for COPD | • Chronic bronchitis or emphysema with irreversible airways obstruction
• One of more episodes of heart failure with ankle oedema
• Sample size: 87
• Intervention: 42 Control: 45
• Mean age: years (SD) 57.7 (no SD data provided) | • Mortality
• Rate of change in FEV1
• Rate of change in PaO₂ |
Quality assessment of clinical studies included in the evidence review

See evidence tables in appendix E for quality assessment of individual studies and appendix G for full GRADE tables.

Economic evidence

Included studies

A single search was conducted to cover all review question topics in this guideline update. This search returned 16,299 records, of which all were excluded on title and abstract for this review question.

Summary of studies included in the economic evidence review

No economic evidence as identified for this review question.

Economic model

Economic modelling was not prioritised for this review question.

Evidence statements

The format of the evidence statements is explained in the methods in appendix B.

Pulmonary hypertension

Phosphodiesterase inhibitors

- Low to moderate quality evidence from up to 3 RCTs reporting data from up to 172 people with COPD and pulmonary hypertension found improvements in pulmonary artery pressure at 12-16 weeks follow-up in people offered a phosphodiesterase 5 inhibitor compared to placebo.
- Very low to moderate quality evidence from up to 2 RCTs reporting data from up to 183 people with COPD and pulmonary hypertension could not differentiate mortality, FEV1, partial pressure of arterial oxygen, 6 minute walk test results, numbers of exacerbations, quality of life, or adverse events at 12-16 weeks follow-up between people offered a phosphodiesterase 5 inhibitor or placebo.

Statins

- Moderate to high quality evidence from up to 3 RCTs reporting data from up to 123 people with COPD and pulmonary hypertension found improvements in systolic pulmonary artery pressure, the Borg breathlessness score and treadmill test results at 6 months follow-up in people offered a statin compared to placebo.
- Low to moderate quality evidence from up to 2 RCTs containing up to 89 people with COPD and pulmonary hypertension could not differentiate FEV1 or 6 minute walk test results at 6 months follow-up between people offered a statin or placebo.

Nifedipine

- Low quality evidence from up to 2 RCTs reporting data from up to 61 people with COPD and pulmonary hypertension found improvements in the levels of breathlessness but worsening in levels of oxygen saturation at 12-18 months follow-up in people offered nifedipine compared to no intervention.
• Very low evidence from up to 2 RCTs reporting data from up to 61 people with COPD and pulmonary hypertension could not differentiate mean pulmonary artery pressure, partial pressure of arterial oxygen, mortality, hospitalisation days or rates of ankle oedema at 12-18 months follow-up between people offered nifedipine or no intervention.

Losartan

• Very low to low quality evidence from 1 RCT reporting data from up to 40 people with COPD and pulmonary hypertension could not differentiate partial pressure of arterial oxygen, mortality, the number of adverse events and adverse events leading to discontinuation of treatment, the distance covered in the shuttle walk test, breathlessness after exercise or quality of life at 48 weeks between people offered losartan compared to placebo.

Pentoxifylline

• Low to high quality evidence from 1 RCT reporting data from up to 20 people with COPD and pulmonary hypertension found there was no meaningful difference in pre-exercise Borg breathlessness scores at 12 weeks in people offered pentoxifylline compared to placebo, and could not differentiate the distance covered during the 6 minute walk test, the post-exercise Borg breathlessness score, or pre- and post-exercise oxygen saturation.

Bosentan

• Low quality evidence from 1 RCT reporting data from 32 people with COPD and pulmonary hypertension found improvements in mean pulmonary artery pressure at 18 months in people offered bosentan compared to placebo.

• Very low quality evidence from 1 RCT reporting data from 32 people with COPD and pulmonary hypertension could not differentiate FEV1, partial pressure of arterial oxygen, the distance covered during the 6 minute walk test, quality of life or the WHO breathlessness scale at 18 months between people offered bosentan or placebo.

Nitric oxide

• Moderate quality evidence from 1 RCT reporting data from 32 people with COPD and pulmonary hypertension found an improvement in mean pulmonary artery pressure at 6 months follow-up in people offered oxygen and nitric oxide compared to oxygen alone.

• Very low to low quality evidence from 1 RCT reporting data from up to 40 people with COPD and pulmonary hypertension could not differentiate partial pressure of arterial oxygen or mortality at 6 months follow-up between people offered oxygen and nitric oxide or oxygen alone.

Azithromycin

• Low quality evidence from 1 RCT reporting data from 86 people with COPD and pulmonary hypertension found improvements in partial pressure of arterial oxygen and in the distance covered during the 6 minute walk test at 6 months follow-up in people offered azithromycin and simvastatin compared to simvastatin alone.
Cor pulmonale

Long term oxygen therapy

- Low quality evidence from 1 RCT reporting data from 59 people with COPD and cor pulmonale found improvements in partial pressure of arterial oxygen at 3 years follow-up in people offered long term oxygen therapy compared to no oxygen.
- Very low quality evidence from 1 RCT reporting data from up to 87 people with COPD and cor pulmonale could not differentiate FEV1 or mortality at 3 years follow-up between people offered long term oxygen therapy to no oxygen.

The committee's discussion of the evidence

Interpreting the evidence

The outcomes that matter most

Improvements in quality of life or functional outcomes such as the 6 minute walk test were prioritised during discussions as these were agreed to be important outcomes for people with COPD. The committee noted that although most included studies measured pulmonary haemodynamic outcomes such as systolic pulmonary artery pressure (systolic PAP), mean pulmonary artery pressure (mPAP) and oxygen saturation, these outcomes were not likely to be important to people with COPD in the absence of functional improvements. The committee agreed however that it was still important to report these haemodynamic outcomes, since if a significant difference in quality of life or functional ability were found with a treatment, these outcomes could help to determine the mechanism behind that improvement, which could have implications for practice.

The committee agreed with the minimally important differences (MIDs) for the St. George Respiratory Questionnaire quality of life outcome measure and 6 minute walk distance used by Blanco (2013) and noted that in the case of mortality any statistically significant change in effect (i.e. where the 95% CI does not cross 1) would be important.

The quality of the evidence

The committee agreed that certain studies were at high risk of bias due to a lack of blinding of participants and/or investigators, and that this was particularly pronounced in the studies that involved an intervention versus usual care instead of a placebo (both nifedipine trials and Arian (2017)). In other cases (Rao 2011, Valerio 2009, Vestri 1988) there was a high or unclear risk of bias due to the potential for selective reporting. This was due to the omission of outcomes that were mentioned in the methods section or the limited number of outcomes presented.

The committee noted that there was an issue with selective reporting bias due to missing data of several types. In some of the included trials this consisted of missing outcomes or participants. In the case of Blanco (2013) it was not possible to include a large part of the data in the meta-analysis as it was presented as medians rather than means and standard deviations. In addition, Chogtu (2016) was excluded at the data extraction stage due to the inadequate presentation of processed results - the results presented implied implausible standard errors and it was not possible to check these due to the absence of raw data. Finally, several potentially relevant RCTs identified by Chen (2015) were excluded as they were not available in English.

The committee noted that the overall quality of evidence was poor in some cases due to inconsistencies between results from different trials looking at similar outcomes.
Managing pulmonary hypertension and cor pulmonale

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)

(e.g. treadmill test versus 6 minute walk distance for the trials looking at statins). The committee noted the small sample sizes used in the included trials, and the resulting small evidence base, reduced confidence in the effect sizes as they were associated with large confidence intervals. It discussed the large trials available for statins for other diseases and noted the small evidence base for statins for pulmonary hypertension secondary to COPD.

The committee noted that the measurement of PAP was less accurate if it was determined indirectly using an echocardiogram rather than by right heart catheterisation. It decided that this issue was sufficient to warrant downgrading of this outcome for imprecision in the case of a single study using this intervention, or where more than one third of a meta-analysis used this method to determine PAP. The committee also commented that the differences in PAP as identified by echocardiogram in many of these trials are within the boundary of error for this test (about 5 mmHg) and so these results may be statistically significant but are not necessarily clinically meaningful.

Benefits and harms

The committee agreed not to recommend losartan and pentoxifylline for pulmonary hypertension (PH) secondary to COPD based on the lack of evidence of a significant positive effect from these treatments.

The committee noted that although treatment with nitric oxide, bosentan and phosphodiesterase 5 inhibitors improved pulmonary artery pressure, this was not associated with an improvement in any of the functional outcomes that were important to people with COPD, and thus improvement in this outcome alone was insufficient for them to recommend use of these interventions for people with pulmonary hypertension secondary to COPD.

The committee noted that pravastatin improved the relevant patient outcomes of breathlessness and treadmill walking time/heart rate. However, a trial of atorvastatin found no effect on the 6 minute walking test distance. The committee agreed that this was the more usual test for exercise tolerance and commented that the increase in treadmill walk time of 370 seconds in Lee (2009) seemed particularly high based on their experiences of these tests. They commented that it was mechanistically implausible that statins would have such a large impact. They also agreed it was appropriate to treat statins as a class, both based on the evidence from other indications and from the lack of heterogeneity detected in the evidence between pravastatin and atorvastatin.

The committee noted that although nifedipine improved levels of breathlessness, there was no effect on other patient relevant outcome such as mortality, hospitalisation days or rates of ankle oedema, and the evidence was of low to very low quality. Due to the conflicting evidence and the resulting level of uncertainty surrounding the benefits of statins and nifedipine, the committee agreed the evidence base was not strong enough to recommend these interventions. The committee agreed that it was also appropriate to consider the evidence presented in Wang (2017) within the prophylactic antibiotic review question of the 2018 guideline update, as the intervention in this paper was an antibiotic, azithromycin.

The committee agreed that there was insufficient high-quality evidence to allow them to recommend any of the above treatments for use in people with PH secondary to COPD. The committee noted that although there were no specific harms from treatment identified in the trials, all of these drugs would be associated with a risk of adverse events and there would therefore need to be clear evidence to justify their use.
The committee were concerned that recommending that treatments are not offered would disincentivise research in this area. In particular, they noted that the existing small scale trials do not rule out the possibility of positive effects from these interventions. They chose to make a recommendation that the treatments should only be used in the context of an RCT to highlight the need for larger, well-designed trials using these drugs and other possibly beneficial interventions. The committee also made a research recommendation to reflect this lack of evidence, but agreed that none of the treatments were sufficiently promising to be prioritised for further research over the others.

The committee noted that people may have been prescribed these treatments for other indications or for PH prior to COPD diagnosis, and these people should remain on their current medication unless otherwise indicated. The committee were careful to word the recommendation to only apply to people with pulmonary hypertension caused by COPD to reflect this.

The committee agreed there was no robust evidence that long-term oxygen therapy leads to survival gains in people with COPD and cor pulmonale. They noted that it was now considerably less common for people to first present with COPD and cor pulmonale, and therefore people with COPD would usually have already been identified as having chronic hypoxaemia and have been started on long-term oxygen therapy before cor pulmonale is identified. However, if a person did present for the first time with COPD and cor pulmonale the focus of treatment would be optimal treatment for their underlying COPD.

The committee also agreed that people with cor pulmonale who would benefit from long-term oxygen were likely to meet the other criteria for considering long-term oxygen given in the guideline. Therefore, in the absence of any strong evidence that these people should be treated differently, they agreed it was appropriate that people with COPD and cor pulmonale should be offered optimal treatment for their COPD (following the other recommendations in this guideline), and this may involve long-term oxygen therapy if they meet the standard criteria for people with COPD. The committee included a reference to the relevant section of the long-term oxygen recommendations to make this clear.

The 2010 guideline contained a list of interventions that were not recommended for the management of cor pulmonale (angiotensin-converting enzyme inhibitors, calcium channel blockers, alpha-blockers and digoxin). In the absence of any new evidence suggesting these interventions are effective, the committee agreed it was appropriate to keep this recommendation.

Cost effectiveness and resource use

No economic evidence was identified for this review question and economic modelling was not prioritised. The committee agreed that in the absence of any robust clinical evidence the interventions were clinically effective, it was not possible to justify the opportunity costs that would result from the NHS investing in prescribing them.

Other factors the committee took into account

The committee noted that it would have been useful to assess the benefits of these interventions for pulmonary hypertension secondary to COPD in patients who were former versus current smokers, but there was insufficient evidence to allow this analysis to be conducted.
Appendix A – Review protocols

Review protocol for managing pulmonary hypertension and cor pulmonale

<table>
<thead>
<tr>
<th>Field (based on PRISMA-P)</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review question</td>
<td>What are the most clinically and cost-effective therapies for managing complications (pulmonary hypertension and cor pulmonale) in people with stable COPD?</td>
</tr>
<tr>
<td>Type of review question</td>
<td>Intervention</td>
</tr>
<tr>
<td>Objective of the review</td>
<td>To determine the effectiveness of approaches to managing pulmonary hypertension and cor pulmonale in people with COPD</td>
</tr>
<tr>
<td>Eligibility criteria – population</td>
<td>People diagnosed with COPD (by any means including Global Strategy for the Diagnosis, Management and Prevention of COPD, GOLD, guideline; American Thoracic Society criteria for COPD; European Respiratory Society criteria) and with pulmonary hypertension (mean pulmonary artery pressure of ≥25 mm Hg) or cor pulmonale.</td>
</tr>
<tr>
<td>Eligibility criteria – interventions</td>
<td>Any relevant interventions, including:</td>
</tr>
<tr>
<td></td>
<td>• Any relevant interventions, including:</td>
</tr>
<tr>
<td></td>
<td>• Smoking cessation (stratification of analysis by intensity of smoking cessation support)</td>
</tr>
<tr>
<td></td>
<td>• Statins or other lipid modifying</td>
</tr>
<tr>
<td></td>
<td>• Bosentan</td>
</tr>
<tr>
<td></td>
<td>• Phosphodiesterase-5 (PD-5) inhibitors (including sildenafil)</td>
</tr>
<tr>
<td></td>
<td>• Beta blockers</td>
</tr>
<tr>
<td></td>
<td>• Non-invasive ventilation</td>
</tr>
<tr>
<td>Eligibility criteria – comparators</td>
<td>• Each other</td>
</tr>
<tr>
<td></td>
<td>• No intervention (placebo, usual care, no treatment)</td>
</tr>
<tr>
<td>Outcomes</td>
<td>• Mortality</td>
</tr>
<tr>
<td></td>
<td>• Hospital admissions, re-admissions and bed days</td>
</tr>
<tr>
<td></td>
<td>• Exacerbations</td>
</tr>
</tbody>
</table>
- Symptoms including breathlessness (e.g. Borg dyspnoea score, Modified MRC scale for dyspnoea) orthopnoea and ankle swelling
- Arterial oxygen partial pressure (PaO2)
- Resting oxygen saturation (SaO2)
- Exercise capacity/ exercise tolerance (e.g. 6 minute walking distance, 6MWD, treadmill test and the shuttle walk test)
- Change in FEV1, rate of change in FEV1
- Adverse events: all, severe, treatment discontinuation
- Quality of life (e.g. St. George's respiratory questionnaire, SGRQ, overall score)
- Resource use and costs

<table>
<thead>
<tr>
<th>Eligibility criteria – study design</th>
<th>RCTs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Systematic reviews of RCTs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other exclusion criteria</th>
<th>Subgroups:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trials that recruited patients with at least one COPD exacerbation in the 12 months before study entry</td>
</tr>
<tr>
<td></td>
<td>Heart disease</td>
</tr>
<tr>
<td></td>
<td>Heart failure</td>
</tr>
<tr>
<td></td>
<td>Obesity</td>
</tr>
<tr>
<td></td>
<td>Sleep apnoea</td>
</tr>
<tr>
<td></td>
<td>Multimorbidities (including COPD with asthma, bronchopulmonary dysplasia, bronchiectasis, anxiety or depression)</td>
</tr>
</tbody>
</table>

Subgroup analyses will only be conducted if the majority of trials report data for the listed categories in an accessible format.

<table>
<thead>
<tr>
<th>Selection process – duplicate screening/selection/analysis</th>
<th>10% of the abstracts were reviewed by two reviewers, with any disagreements resolved by discussion or, if necessary, a third independent</th>
</tr>
</thead>
</table>
reviewer. If meaningful disagreements were found between the different reviewers, a further 10% of the abstracts were reviewed by two reviewers, with this process continued until agreement is achieved between the two reviewers. From this point, the remaining abstracts will be screened by a single reviewer.

This review made use of the priority screening functionality with the EPPI-reviewer systematic reviewing software. See Appendix B for more details.

<table>
<thead>
<tr>
<th>Data management (software)</th>
<th>See Appendix B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information sources – databases and dates</td>
<td>See Appendix C</td>
</tr>
</tbody>
</table>

Main Searches:

- Cochrane Database of Systematic Reviews – CDSR (Wiley)
- Cochrane Central Register of Controlled Trials – CENTRAL (Wiley)
- Database of Abstracts of Reviews of Effects – DARE (Wiley)
- Health Technology Assessment Database – HTA (Wiley)
- EMBASE (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)
- PubMed

The search will not be date limited as the 2004 recommendations were not based on a systematic literature search.

Economics:

- NHS Economic Evaluation Database – NHS EED (Wiley)
- Health Economic Evaluations Database – HEED (Wiley)
- EconLit (Ovid)
- Embase (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)
<table>
<thead>
<tr>
<th>Table Content</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The economics search will cover all questions and will be date limited from</td>
<td>The previous search January 2009-May 2017.</td>
</tr>
<tr>
<td>Identify if an update</td>
<td>Update of 2004 COPD guideline question:</td>
</tr>
<tr>
<td></td>
<td>In patients with stable COPD what therapies can be used to manage pulmonary hypertension?</td>
</tr>
<tr>
<td></td>
<td>The guideline also contains recommendations on the management of cor pulmonale, but it is not</td>
</tr>
<tr>
<td></td>
<td>clear which specific review question these link to.</td>
</tr>
<tr>
<td>Author contacts</td>
<td>Guideline update</td>
</tr>
<tr>
<td>Highlight if amendment to previous protocol</td>
<td>For details please see section 4.5 of Developing NICE guidelines: the manual</td>
</tr>
<tr>
<td>Search strategy – for one database</td>
<td>For details please see appendix C</td>
</tr>
<tr>
<td>Data collection process – forms/duplicate</td>
<td>A standardised evidence table format will be used, and published as appendix E (clinical evidence</td>
</tr>
<tr>
<td></td>
<td>tables)</td>
</tr>
<tr>
<td>Data items – define all variables to be collected</td>
<td>For details please see evidence tables in appendix E (clinical evidence tables)</td>
</tr>
<tr>
<td>Methods for assessing bias at outcome/study level</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>Criteria for quantitative synthesis</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>Methods for quantitative analysis – combining studies and exploring (in)consistency</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>Meta-bias assessment – publication bias, selective reporting bias</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>Confidence in cumulative evidence</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>Rationale/context – what is known</td>
<td>For details please see the introduction to the evidence review in the main file.</td>
</tr>
<tr>
<td>Describe contributions of authors and guarantor</td>
<td>A multidisciplinary committee developed the evidence review. The committee was convened by</td>
</tr>
</tbody>
</table>
the NICE Guideline Updates Team and chaired by Damien Longson (until September 2017) and Andrew Molyneux (from September 2017) in line with section 3 of Developing NICE guidelines: the manual.

Staff from the NICE Guideline Updates Team undertook systematic literature searches, appraised the evidence, conducted meta-analysis and cost-effectiveness analysis where appropriate, and drafted the evidence review in collaboration with the committee. For details please see Developing NICE guidelines: the manual.

<table>
<thead>
<tr>
<th>Sources of funding/support</th>
<th>The NICE Guideline Updates Team is an internal team within NICE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of sponsor</td>
<td>The NICE Guideline Updates Team is an internal team within NICE.</td>
</tr>
<tr>
<td>Roles of sponsor</td>
<td>The NICE Guideline Updates Team is an internal team within NICE.</td>
</tr>
</tbody>
</table>
Appendix B – Methods

Priority screening

The reviews undertaken for this guideline all made use of the priority screening functionality with the EPPI-reviewer systematic reviewing software. This uses a machine learning algorithm (specifically, an SGD classifier) to take information on features (1, 2 and 3 word blocks) in the titles and abstract of papers marked as being ‘includes’ or ‘excludes’ during the title and abstract screening process, and re-orders the remaining records from most likely to least likely to be an include, based on that algorithm. This re-ordering of the remaining records occurs every time 25 additional records have been screened.

Research is currently ongoing as to what are the appropriate thresholds where reviewing of abstract can be stopped, assuming a defined threshold for the proportion of relevant papers it is acceptable to miss on primary screening. As a conservative approach until that research has been completed, the following rules were adopted during the production of this guideline:

- In every review, at least 50% of the identified abstract (or 1,000 records, if that is a greater number) were always screened.
- After this point, screening was only terminated if a pre-specified threshold was met for a number of abstracts being screened without a single new include being identified. This threshold was set according to the expected proportion of includes in the review (with reviews with a lower proportion of includes needing a higher number of papers without an identified study to justify termination), and was always a minimum of 250.

As an additional check to ensure this approach did not miss relevant studies, the included studies lists of included systematic reviews were searched to identify any papers not identified through the primary search.

Incorporating published systematic reviews

For all review questions where a literature search was undertaken looking for a particular study design, systematic reviews containing studies of that design were also included. All included studies from those systematic reviews were screened to identify any additional relevant primary studies not found as part of the initial search.

Quality assessment

Individual systematic reviews were quality assessed using the ROBIS tool, with each classified into one of the following three groups:

- High quality – It is unlikely that additional relevant and important data would be identified from primary studies compared to that reported in the review, and unlikely that any relevant and important studies have been missed by the review.
- Moderate quality – It is possible that additional relevant and important data would be identified from primary studies compared to that reported in the review, but unlikely that any relevant and important studies have been missed by the review.
- Low quality – It is possible that relevant and important studies have been missed by the review.
Each individual systematic review was also classified into one of three groups for its applicability as a source of data, based on how closely the review matches the specified review protocol in the guideline. Studies were rated as follows:

- Fully applicable – The identified review fully covers the review protocol in the guideline.
- Partially applicable – The identified review fully covers a discrete subsection of the review protocol in the guideline.
- Not applicable – The identified review, despite including studies relevant to the review question, does not fully cover any discrete subsection of the review protocol in the guideline.

Using systematic reviews as a source of data

If systematic reviews were identified as being sufficiently applicable and high quality, and were identified sufficiently early in the review process, they were used as the primary source of data, rather than extracting information from primary studies. The extent to which this was done depended on the quality and applicability of the review, as defined in Table 4. When systematic reviews were used as a source of primary data, any unpublished or additional data included in the review which is not in the primary studies was also included. Data from these systematic reviews was then quality assessed and presented in GRADE/CERQual tables as described below, in the same way as if data had been extracted from primary studies. In questions where data was extracted from both systematic reviews and primary studies, these were cross-referenced to ensure none of the data had been double counted through this process.

Table 4 Criteria for using systematic reviews as a source of data

<table>
<thead>
<tr>
<th>Quality</th>
<th>Applicability</th>
<th>Use of systematic review</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Fully applicable</td>
<td>Data from the published systematic review were used instead of undertaking a new literature search or data analysis. Searches were only done to cover the period of time since the search date of the review.</td>
</tr>
<tr>
<td>High</td>
<td>Partially applicable</td>
<td>Data from the published systematic review were used instead of undertaking a new literature search and data analysis for the relevant subsection of the protocol. For this section, searches were only done to cover the period of time since the search date of the review. For other sections not covered by the systematic review, searches were undertaken as normal.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Fully applicable</td>
<td>Details of included studies were used instead of undertaking a new literature search. Full-text papers of included studies were still retrieved for the purposes of data analysis. Searches were only done to cover the period of time since the search date of the review.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Partially applicable</td>
<td>Details of included studies were used instead of undertaking a new literature search for the relevant subsection of the protocol. For this section, searches were only done to cover the period of time since the search date of the review. For other sections not covered by the systematic review, searches were undertaken as normal.</td>
</tr>
</tbody>
</table>
Evidence synthesis and meta-analyses

Where possible, meta-analyses were conducted to combine the results of studies for each outcome. For mean differences, where change from baseline data were reported in the trials and were accompanied by a measure of spread (for example standard deviation), these were extracted and used in the meta-analysis. Where measures of spread for change from baseline values were not reported, the corresponding values at study end were used and were combined with change from baseline values to produce summary estimates of effect. All studies were assessed to ensure that baseline values were balanced across the treatment groups; if there were significant differences in important confounding variables at baseline these studies were not included in any meta-analysis and were reported separately.

Evidence of effectiveness of interventions

Quality assessment

Individual RCTs and quasi-randomised controlled trials were quality assessed using the Cochrane Risk of Bias Tool. Cohort studies were quality assessed using the CASP cohort study checklist. Each individual study was classified into one of the following three groups:

- Low risk of bias – The true effect size for the study is likely to be close to the estimated effect size.
- Moderate risk of bias – There is a possibility the true effect size for the study is substantially different to the estimated effect size.
- High risk of bias – It is likely the true effect size for the study is substantially different to the estimated effect size.

Each individual study was also classified into one of three groups for directness, based on if there were concerns about the population, intervention, comparator and/or outcomes in the study and how directly these variables could address the specified review question. Studies were rated as follows:

- Direct – No important deviations from the protocol in population, intervention, comparator and/or outcomes.
- Partially indirect – Important deviations from the protocol in one of the population, intervention, comparator and/or outcomes.
- Indirect – Important deviations from the protocol in at least two of the following areas: population, intervention, comparator and/or outcomes.

Methods for combining intervention evidence

Meta-analyses of interventional data were conducted with reference to the Cochrane Handbook for Systematic Reviews of Interventions (Higgins et al. 2011).

Where different studies presented continuous data measuring the same outcome but using different numerical scales (e.g. a 0-10 and a 0-100 visual analogue scale), these outcomes were all converted to the same scale before meta-analysis was conducted on the mean differences. Where outcomes measured the same underlying construct but used different instruments/metrics, data were analysed using standardised mean differences (Hedges’ g).
A pooled relative risk was calculated for dichotomous outcomes (using the Mantel–Haenszel method). Both relative and absolute risks were presented, with absolute risks calculated by applying the relative risk to the pooled risk in the comparator arm of the meta-analysis (all pooled trials).

Fixed- and random-effects models (der Simonian and Laird) were fitted for all syntheses, with the presented analysis dependent on the degree of heterogeneity in the assembled evidence. Fixed-effects models were the preferred choice to report, but in situations where the assumption of a shared mean for fixed-effects model were clearly not met, even after appropriate pre-specified subgroup analyses were conducted, random-effects results are presented. Fixed-effects models were deemed to be inappropriate if one or both of the following conditions was met:

- Significant between study heterogeneity in methodology, population, intervention or comparator was identified by the reviewer in advance of data analysis. This decision was made and recorded before any data analysis was undertaken.
- The presence of significant statistical heterogeneity in the meta-analysis, defined as $I^2 \geq 50\%$.

In any meta-analyses where some (but not all) of the data came from studies at high risk of bias, a sensitivity analysis was conducted, excluding those studies from the analysis. Results from both the full and restricted meta-analyses are reported. Similarly, in any meta-analyses where some (but not all) of the data came from indirect studies, a sensitivity analysis was conducted, excluding those studies from the analysis.

In situations where subgroup analyses were conducted, pooled results and results for the individual subgroups are reported when there was evidence of between group heterogeneity, defined as a statistically significant test for subgroup interactions (at the 95% confidence level). Where no such evidence as identified, only pooled results are presented.

Meta-analyses were performed in Cochrane Review Manager v5.3.

Minimal clinically important differences (MIDs)

The Core Outcome Measures in Effectiveness Trials (COMET) database was searched to identify published minimal clinically important difference thresholds relevant to this guideline. Identified MIDs were assessed to ensure they had been developed and validated in a methodologically rigorous way, and were applicable to the populations, interventions and outcomes specified in this guideline. In addition, the Guideline Committee were asked to prospectively specify any outcomes where they felt a consensus MID could be defined from their experience. In particular, any questions looking to evaluate non-inferiority (that one treatment is not meaningfully worse than another) required an MID to be defined to act as a non-inferiority margin.

MIDs found through this process and used to assess imprecision in the guideline are given in **Table 5**. For other mean differences where no MID is given below the line of no effect is used.

Table 5 Identified MIDs

<table>
<thead>
<tr>
<th>Outcome</th>
<th>MID</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borg breathlessness score</td>
<td>2 units</td>
<td>Ries AL. Minimally clinically important difference for the UCSD shortness of breath questionnaire, Borg</td>
</tr>
</tbody>
</table>
Outcome | MID | Source
--- | --- | ---
6 minute walk distance | 26m (-26, +26) | Puhan MA, Chandra D, Mosenifar Z, et al. The minimal important difference of exercise tests in severe COPD. Eur Respir J (2011); 37: 784–790.

For standardised mean differences where no other MID was available, an MID of 0.2 was used, corresponding to the threshold for a small effect size initially suggested by Cohen et al. (1988). The committee specified that any difference in mortality would be clinically meaningful, and therefore the line of no effect was used as an MID. For other relative risks, where no MID was specified, the GRADE default MID interval for dichotomous outcomes of 0.8 to 1.25 was used.

When decisions were made in situations where MIDs were not available, the ‘Evidence to Recommendations’ section of that review should make explicit the committee’s view of the expected clinical importance and relevance of the findings.

GRADE for pairwise meta-analyses of interventional evidence

GRADE was used to assess the quality of evidence for the selected outcomes as specified in ‘Developing NICE guidelines: the manual (2014)’. Data from RCTs was initially rated as high quality and the quality of the evidence for each outcome was downgraded or not from this initial point. If non-RCT evidence was included for intervention-type systematic reviews then these were initially rated as either moderate quality (quasi-randomised studies) or low quality (cohort studies) and the quality of the evidence for each outcome was further downgraded or not from this point, based on the criteria given in **Table 6**.

<table>
<thead>
<tr>
<th>GRADE criteria</th>
<th>Reasons for downgrading quality for intervention studies</th>
</tr>
</thead>
</table>
| Risk of bias | Not serious: If less than 33.3% of the weight in a meta-analysis came from studies at moderate or high risk of bias, the overall outcome was not downgraded.
Serious: If greater than 33.3% of the weight in a meta-analysis came from studies at moderate or high risk of bias, the outcome was downgraded one level.
Very serious: If greater than 33.3% of the weight in a meta-analysis came from studies at high risk of bias, the outcome was downgraded two levels.
Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between studies at high and low risk of bias. |
| Indirectness | Not serious: If less than 33.3% of the weight in a meta-analysis came from partially indirect or indirect studies, the overall outcome was not downgraded.
Serious: If greater than 33.3% of the weight in a meta-analysis came from partially indirect or indirect studies, the outcome was downgraded one level. |
GRADE criteria

<table>
<thead>
<tr>
<th>Reason for downgrading quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very serious: If greater than 33.3% of the weight in a meta-analysis came from indirect studies, the outcome was downgraded two levels. Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between direct and indirect studies.</td>
</tr>
</tbody>
</table>

Inconsistency

- **Concerns about inconsistency of effects across studies, occurring when there is unexplained variability in the treatment effect demonstrated across studies (heterogeneity), after appropriate pre-specified subgroup analyses have been conducted.** This was assessed using the I^2 statistic.
- **N/A: Inconsistency was marked as not applicable if data on the outcome was only available from one study.**
- **Not serious: If the I^2 was less than 33.3%, the outcome was not downgraded.**
- **Serious: If the I^2 was between 33.3% and 66.7%, the outcome was downgraded one level.**
- **Very serious: If the I^2 was greater than 66.7%, the outcome was downgraded two levels.** Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between studies with the smallest and largest effect sizes.

Imprecision

- **If MIDs (one corresponding to meaningful benefit; one corresponding to meaningful harm) were defined for the outcome, the outcome was downgraded once if the 95% confidence interval for the effect size crossed one MID, and twice if it crossed both the upper and lower MIDs.**
- **If the line of no effect was defined as an MID for the outcome, it was downgraded once if the 95% confidence interval for the effect size crossed the line of no effect (i.e. the outcome was not statistically significant), and twice if the sample size of the study was sufficiently small that it is not plausible any realistic effect size could have been detected.**

Outcomes meeting the criteria for downgrading above were not downgraded if the confidence interval was sufficiently narrow that the upper and lower bounds would correspond to clinically equivalent scenarios.

The quality of evidence for each outcome was upgraded if any of the following five conditions were met:

- Data from non-randomised studies showing an effect size sufficiently large that it cannot be explained by confounding alone.
- Data showing a dose-response gradient.
- Data where all plausible residual confounding is likely to increase our confidence in the effect estimate.

Publication bias

Publication bias was assessed in two ways. First, if evidence of conducted but unpublished studies was identified during the review (e.g. conference abstracts, trial protocols or trial records without accompanying published data), available information on these unpublished studies was reported as part of the review. Secondly, where 10 or more studies were included as part of a single meta-analysis, a funnel plot was produced to graphically assess the potential for publication bias.
Evidence statements

For outcomes with a defined MID, evidence statements were divided into 4 groups as follows:

- Situations where the data are only consistent, at a 95% confidence level, with an effect in one direction (i.e. one that is 'statistically significant'), and the magnitude of that effect is most likely to meet or exceed the MID (i.e. the point estimate is not in the zone of equivalence). In such cases, we state that the evidence showed that there is an effect.

- Situations where the data are only consistent, at a 95% confidence level, with an effect in one direction (i.e. one that is 'statistically significant'), but the magnitude of that effect is most likely to be less than the MID (i.e. the point estimate is in the zone of equivalence). In such cases, we state that the evidence showed there is an effect, but it is less than the defined MID.

- Situations where the confidence limits are smaller than the MIDs in both directions. In such cases, we state that the evidence demonstrates that there is no meaningful difference.

- In all other cases, we state that the evidence could not differentiate between the comparators.

For outcomes without a defined MID or where the MID is set as the line of no effect (for example, in the case of mortality), evidence statements are divided into 2 groups as follows:

- We state that the evidence showed that there is an effect if the 95% CI does not cross the line of no effect.

- We state the evidence could not differentiate between comparators if the 95% CI crosses the line of no effect.

The number of trials and participants per outcome are detailed in the evidence statements, but in cases where there are several outcomes being summarised in a single evidence statement and the numbers of participants and trials differ between outcomes, then the number of trials and participants stated are taken from the outcome with the largest number of trials. This is denoted using the terminology ‘up to’ in front of the numbers of trials and participants.

The evidence statements also cover the quality of the outcome based on the GRADE table entry. These can be included as single ratings of quality or go from one quality level to another if multiple outcomes with different quality ratings are summarised by a single evidence statement.

Deviations from review protocol

Two additional measures, not specified in the original protocol, were included in the outcomes analysed in this question, as they were agreed to be specific measures of the level of pulmonary hypertension (systolic pulmonary arterial pressure and mean pulmonary arterial pressure). These outcomes were downgraded for imprecision if they were obtained using echocardiography instead of right heart catheterisation, due to the high margins of error in this measurement approach. Downgrading was carried out in the case of a single study or where more than one third of the weight in a meta-analysis used this method to determine pulmonary artery pressure, PAP.
Health economics

Literature reviews seeking to identify published cost–utility analyses of relevance to the issues under consideration were conducted for all questions. In each case, the search undertaken for the clinical review was modified, retaining population and intervention descriptors, but removing any study-design filter and adding a filter designed to identify relevant health economic analyses. In assessing studies for inclusion, population, intervention and comparator, criteria were always identical to those used in the parallel clinical search; only cost–utility analyses were included. Economic evidence profiles, including critical appraisal according to the Guidelines manual, were completed for included studies.

Economic studies identified through a systematic search of the literature are appraised using a methodology checklist designed for economic evaluations (NICE guidelines manual; 2014). This checklist is not intended to judge the quality of a study per se, but to determine whether an existing economic evaluation is useful to inform the decision-making of the committee for a specific topic within the guideline.

There are 2 parts of the appraisal process. The first step is to assess applicability (that is, the relevance of the study to the specific guideline topic and the NICE reference case); evaluations are categorised according to the criteria in Table 7.

<table>
<thead>
<tr>
<th>Level</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directly applicable</td>
<td>The study meets all applicability criteria, or fails to meet one or more applicability criteria but this is unlikely to change the conclusions about cost effectiveness</td>
</tr>
<tr>
<td>Partially applicable</td>
<td>The study fails to meet one or more applicability criteria, and this could change the conclusions about cost effectiveness</td>
</tr>
<tr>
<td>Not applicable</td>
<td>The study fails to meet one or more applicability criteria, and this is likely to change the conclusions about cost effectiveness. These studies are excluded from further consideration</td>
</tr>
</tbody>
</table>

In the second step, only those studies deemed directly or partially applicable are further assessed for limitations (that is, methodological quality); see categorisation criteria in Table 8.

<table>
<thead>
<tr>
<th>Level</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor limitations</td>
<td>Meets all quality criteria, or fails to meet one or more quality criteria but this is unlikely to change the conclusions about cost effectiveness</td>
</tr>
<tr>
<td>Potentially serious limitations</td>
<td>Fails to meet one or more quality criteria and this could change the conclusions about cost effectiveness</td>
</tr>
<tr>
<td>Very serious limitations</td>
<td>Fails to meet one or more quality criteria and this is highly likely to change the conclusions about cost effectiveness. Such studies should usually be excluded from further consideration</td>
</tr>
</tbody>
</table>
Studies were prioritised for inclusion based on their relative applicability to the development of this guideline and the study limitations. For example, if a high quality, directly applicable UK analysis was available, then other less relevant studies may not have been included. Where selective exclusions were made on this basis, this is noted in the relevant section.

Where relevant, a summary of the main findings from the systematic search, review and appraisal of economic evidence is presented in an economic evidence profile alongside the clinical evidence.
Appendix C – Literature search strategies

Main searches

Sources searched for this review question:
- Cochrane Database of Systematic Reviews – CDSR (Wiley)
- Cochrane Central Register of Controlled Trials – CENTRAL (Wiley)
- Database of Abstracts of Reviews of Effects – DARE (Wiley)
- Health Technology Assessment Database – HTA (Wiley)
- EMBASE (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)
- PubMed

Identification of evidence

The population terms have been updated from the original guideline to include potential co-morbidities such as asthma, bronchopulmonary dysplasia and bronchiectasis. These were excluded in the original strategy.

In this update, several lines of the strategy have been focused with the use of the term ‘chronic’ to reduce retrieval of articles focusing on acute signs or symptoms.

Additional acronyms for COPD have been included and on recommendation from the guideline committee, terms around ‘breathlessness’ have been added.

Searches were re-run in February 2018 and also included searching Medline epub ahead of print.

Review question search strategy

- What are the most clinically and cost-effective therapies for managing complications (pulmonary hypertension and cor pulmonale) in people with stable COPD?

The MEDLINE search strategy is presented below in Table 9. This was translated for use in all of the other databases.

Table 9 Search strategy

<table>
<thead>
<tr>
<th>Medline Strategy, searched 28th April 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database: Ovid MEDLINE(R) 1946 to April Week 3 2017</td>
</tr>
<tr>
<td>Search Strategy:</td>
</tr>
<tr>
<td>1 lung diseases, obstructive/</td>
</tr>
<tr>
<td>2 exp pulmonary disease, chronic obstructive/</td>
</tr>
<tr>
<td>3 (copd or coad or cobd or aecb).tw.</td>
</tr>
<tr>
<td>4 emphysema*.tw.</td>
</tr>
<tr>
<td>5 (chronic* adj4 bronch*).tw.</td>
</tr>
<tr>
<td>6 (chronic* adj3 (airflow* or airway* or bronch* or lung* or respirat* or pulmonary) adj3 obstruct*).tw.</td>
</tr>
</tbody>
</table>
Medline Strategy, searched 28th April 2017
Database: Ovid MEDLINE(R) 1946 to April Week 3 2017
Search Strategy:
7 (pulmonum adj4 (volumen or pneumatosis)).tw.
8 pneumonectasia.tw.
9 *Dyspnea/
10 (chronic* adj3 (breath* or respirat*) adj3 (difficult* or labor* or labour* or problem* or short*)).tw.
11 (chronic* adj3 (dyspnea* or dyspnoea* or dyspneic or breathless*)).tw.
12 or/1-11
13 exp Hypertension, Pulmonary/
14 ((pulmonary or lung) adj4 hypertensi*).tw.
15 Pulmonary Heart Disease/
16 (cor adj4 pulmonale).tw.
17 corpulmonale.tw.
18 (pulmonary adj4 (cardiac or heart) adj4 (disease* or disorder*)).tw.
19 (chronic* adj3 (anoxemia or anoxia or hypoxi* or hypoxemi*)).tw.
20 (chronic* adj3 oxygen adj3 deficienc*).tw.
21 or/13-20
22 12 and 21
23 animals/ not humans/
24 22 not 23
25 limit 24 to english language
26 limit 25 to (letter or historical article or comment or editorial or news or case reports)
27 25 not 26

Note: in-house RCT and systematic review filters were appended

Study design filters and limits

The MEDLINE systematic review (SR) and Randomized Controlled Trial (RCT) filters were appended to the review question above and are presented below in Table 10. They were translated for use in the MEDLINE In-Process and Embase databases.

Table 10 Study design filters

The MEDLINE SR and RCT filters are presented below.

Systematic Review
2. Meta-Analysis as Topic/
4. exp Review Literature as Topic/
5. (metaanaly$ or metanaly$ or (meta adj3 analy$)).tw.
6. (review$ or overview$).ti.
7. (systematic$ adj5 (review$ or overview$)).tw.
8. ((quantitative$ or qualitative$) adj5 (review$ or overview$)).tw.
9. ((studies or trial$) adj2 (review$ or overview$)).tw.
10. (integrat$ adj3 (research or review$ or literature)).tw.

Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
The MEDLINE SR and RCT filters are presented below.

11. (pool$ adj2 (analy$ or data)).tw.
12. (handsearch$ or (hand adj3 search$)).tw.
14. or/1-13
15. animals/ not humans/
16. 14 not 15

RCT
1 Randomized Controlled Trial.pt.
2 Controlled Clinical Trial.pt.
3 Clinical Trial.pt.
4 exp Clinical Trials as Topic/
5 Placebos/
6 Random Allocation/
7 Double-Blind Method/
8 Single-Blind Method/
9 ((random$ or control$ or clinical$) adj3 (trial$ or stud$)).tw.
10 (random$ adj3 allocat$).tw.
11 placebo$.tw.
12 ((singl$ or doubl$ or trebl$ or tripl$) adj (blind$ or mask$)).tw.
13 or/1-12
14 animals/ not humans/
15 13 not 14

Note: analysts requested cross-over studies to be removed.

An English language limit has been applied. Animal studies and certain publication types (letters, historical articles, comments, editorials, news and case reports) have been excluded.

No date limit was used as the previous guideline recommendations were not based on a systematic literature search.

Health Economics search strategy

Economic evaluations and quality of life data

Sources searched:
- NHS Economic Evaluation Database – NHS EED (Wiley) (legacy database)
- Health Technology Assessment (HTA Database)
- EconLit (Ovid)
- Embase (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)

Search filters to retrieve economic evaluations and quality of life papers were appended to population search terms in MEDLINE, MEDLINE In-Process and EMBASE to identify relevant evidence and can be seen below in Table 11. Searches were carried out on 5th May.
2017 with a date limit from the previous search of January 2009 – May 2017. Searches were re-run in February 2018.

An English language limit has been applied. Animal studies and certain publication types (letters, historical articles, comments, editorials, news and case reports) have been excluded.

Table 11 Health economics filters
The MEDLINE economic evaluations and quality of life search filters are presented below. They were translated for use in the MEDLINE In-Process and Embase databases.

Economic evaluations

1. Economics/
2. exp "Costs and Cost Analysis"/
3. Economics, Dental/
4. exp Economics, Hospital/
5. exp Economics, Medical/
6. Economics, Nursing/
7. Economics, Pharmaceutical/
8. Budgets/
9. exp Models, Economic/
10. Markov Chains/
11. Monte Carlo Method/
12. Decision Trees/
13. econom$.tw.
14. cba.tw.
15. cea.tw.
16. cua.tw.
17. markov$.tw.
18. (monte adj carlo).tw.
19. (decision adj3 (tree$ or analys$)).tw.
20. (cost or costs or costing$ or costly or costed).tw.
21. (price$ or pricing$).tw.
22. budget$.tw.
23. expenditure$.tw.
24. (value adj3 (money or monetary)).tw.
25. (pharmacoeconomic$ or (pharmaco adj economic$)).tw.
26. or/1-25

Quality of life

1. "Quality of Life"/
2. quality of life.tw.
3. "Value of Life"/
4. Quality-Adjusted Life Years/
5. quality adjusted life.tw.
6. (qaly$ or qald$ or qale$ or qtime$).tw.
7. disability adjusted life.tw.
8. daly$.tw.
9. Health Status Indicators/
The MEDLINE economic evaluations and quality of life search filters are presented below. They were translated for use in the MEDLINE In-Process and Embase databases.

Economic evaluations

10 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirty six or sf thirty six or shortform thirty six or short form thirty six).tw.
11 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw.
12 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw.
13 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw.
14 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw.
15 (euroqol or euro qol or eq5d or eq 5d).tw.
16 (qol or hql or hqol or hrqol).tw.
17 (hqe or hyes).tw.
18 health$ year$ equivalent$.tw.
19 utilit$.tw.
20 (hui or hui1 or hui2 or hui3).tw.
21 disutili$.tw.
22 rosser.tw.
23 quality of wellbeing.tw.
24 quality of well-being.tw.
25 qwb.tw.
26 willingness to pay.tw.
27 standard gamble$.tw.
28 time trade off.tw.
29 time tradeoff.tw.
30 tto.tw.
31 or/1-30
Appendix D – Clinical evidence study selection

- Databases: 3,014 Citation(s)
 - Old guideline: 13 Citation(s)
 - Surveillance report: 1 Citation(s)
 - Systematic review: 1 Citation(s)

3,029 Non-Duplicate Citations Screened

Inclusion/Exclusion Criteria Applied
- 2,979 Articles Excluded After Title/Abstract Screen
- 34 Articles Excluded After Full Text Screen
- 1 Articles Excluded During Data Extraction

50 Articles Retrieved

15 Articles Included
Appendix E – Clinical evidence tables

Pulmonary hypertension

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Title</th>
<th>Study characteristics</th>
<th>Risk of bias and directness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arian (2017)</td>
<td>The Effects of Statins on Pulmonary Artery Pressure in Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial</td>
<td>Study type: Randomised controlled trial Study details: Study location: Iran Study setting: Vali-Asr Hospital, Birjand, East of Iran. Study dates: 2014 Duration of follow-up: 6 months Sources of funding: Research Committee of Birjand University of Medical Sciences Inclusion criteria: COPD diagnosis - American Thoracic Society criteria Pulmonary arterial hypertension Systolic pulmonary arterial pressure of >25 mmHg by echocardiography. No previous use of statins</td>
<td>Random sequence generation Low risk of bias Allocation concealment Unclear risk of bias No information provided Blinding of participants and personnel High risk of bias No placebo was used in the study Blinding of outcome assessment Low risk of bias Incomplete outcome data Unclear risk of bias It was unclear how many people were...</td>
</tr>
<tr>
<td>Absence of liver disease</td>
<td>Included in each outcome as the paper stated that the number of participants varied slightly due to missing assessments, but did not give numbers. As a result the maximum possible number for each group was used in our analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Selective reporting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergoing treatment for pulmonary hypertension</td>
<td>Unclear risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of heart disease</td>
<td>Very few test outcomes were reported and it was unclear whether additional tests had been carried out and were not presented.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statin therapy complications</td>
<td>Other sources of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term use of systemic corticosteroids</td>
<td>Low risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinuation of statin therapy during the study</td>
<td>Overall risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample characteristics</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>Due to the risk of performance bias associated with the absence of a placebo, the lack of information provided about the numbers of people associated with the outcome data and an unclear risk of selective reporting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split between study groups</td>
<td>Interventions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention: 21 Control: 21</td>
<td>Atorvastatin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss to follow up</td>
<td>40mg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34/42 (81%) completed the trial</td>
<td>Sample characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% female</td>
<td>Sample size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68% (for the 34 people who completed the trial)</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age: years (SD)</td>
<td>Split between study groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.7 (9.4) (for the 34 people who completed the trial)</td>
<td>Intervention: 21 Control: 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Intervention</td>
<td>Outcome measure(s)</td>
<td>Directness</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Blanco (2013)</td>
<td>Sildenafil to improve respiratory rehabilitation outcomes in COPD: a controlled trial</td>
<td>Mean pulmonary arterial pressure (mPAP, in mmHg)</td>
<td>Directly applicable</td>
</tr>
</tbody>
</table>

Study type
- Randomised controlled trial

Study details
- **Study location**: Barcelona, Spain.
- **Study setting**: Four university hospitals in Barcelona, Spain. The Hospital Clinic of Barcelona carried out the baseline and final measurements, and acted as a co-ordinating centre.
- **Study dates**: August 2008-November 2010
- **Duration of follow-up**: 3-months

Sources of funding
- Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation. Sildenafil and placebo tablets were donated by Pfizer Inc. but they played no part in the study design, data analyses or manuscript preparation.

Bias
- **Random sequence generation**: Low risk of bias
- **Allocation concealment**: Low risk of bias
- **Blinding of participants and personnel**: Low risk of bias
- **Blinding of outcome assessment**: Unclear risk of bias

The study did not state that the staff assessing the outcome were blind to the intervention leading to a risk of detection bias.
Inclusion criteria
- COPD diagnosis - Global Initiative for Chronic Obstructive Lung Disease guidelines
- Pulmonary arterial hypertension
 - Systolic pulmonary arterial pressure (PAP) >34 mmHg or mean PAP ≥ 25 mmHg in patients who had previously been subjected to right heart catheterisation. Determined using echocardiography.
- Stable clinical condition free from exacerbations ≥ 4 weeks from last exacerbation

Exclusion criteria
- Pulmonary arterial hypertension with underlying cause other than COPD
- Ischaemic or mitral or aortic valve diseases
- Previous use of Sildenafil or other PDE-5 inhibitors
- History of ischaemic heart disease
- Inability to exercise on a cycloergometer
- Treatment with nitrates

Sample characteristics
- Sample size: 60
- Split between study groups: Intervention: 29 Control: 31
- Loss to follow up: 51/60 (85%) completed trial
 - % female

Incomplete outcome data
- Low risk of bias

Selective reporting
- Low risk of bias

Other sources of bias
- Low risk of bias

Overall risk of bias
- Low

Directness
- Directly applicable
Interventions
Sildenafil plus pulmonary rehabilitation programme
Sildenafil (20mg) three times daily plus a pulmonary rehabilitation programme starting a week later. This consisted of exercise training sessions on a cycloergometer three times a week for 12 weeks.
Placebo plus a pulmonary rehabilitation programme

Outcome measure(s)
- 6 minute walk distance (metres)
- Cycle endurance time (seconds)
- Oxygen saturation (%)
- Health-related quality-of-life
- Adverse events
- Incidence of exacerbations
- Mortality

Fallahi (2013)
Effects of pentoxifylline on oxygenation and exercise tolerance in patients with severe chronic obstructive pulmonary disease

Study type
Randomised controlled trial

Study details
Study location
Study setting

Random sequence generation
Low risk of bias
Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)

<table>
<thead>
<tr>
<th>Study details</th>
<th>Inclusion criteria</th>
</tr>
</thead>
</table>
| Outpatient Pulmonary Clinic at Shiraz Medical Centre | COPD diagnosis- criteria not stated
Severe to very severe COPD with FEV1 of < 50% of their predicted value.
Pulmonary arterial hypertension
Systolic pulmonary artery pressure >40 mmHg by echocardiography. |

| Exclusion criteria | |
|--------------------| History of ischaemic heart disease
Inability to perform the 6-min walk test
Systolic blood pressure >180 mmHg or diastolic blood pressure >120 mm Hg
Left ventricular dysfunction
Exertional dysrhythmias or symptomatic peripheral vascular disease |

| Allocation concealment | Unclear risk of bias
No information provided |
| Blinding of participants and personnel | Low risk of bias |
| Blinding of outcome assessment | Low risk of bias |
| Incomplete outcome data | Unclear risk of bias
5/37 participants were lost to follow-up |
Selective reporting	Low risk of bias
Other sources of bias	Low risk of bias
Overall risk of bias	Low
Sample characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>28</td>
</tr>
<tr>
<td>Split between study groups</td>
<td></td>
</tr>
<tr>
<td>Intervention:</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>15</td>
</tr>
<tr>
<td>Pentoxifylline</td>
<td>13</td>
</tr>
<tr>
<td>Loss to follow up</td>
<td></td>
</tr>
<tr>
<td>20/28 (71%) completed the trial</td>
<td></td>
</tr>
<tr>
<td>% female</td>
<td>32%</td>
</tr>
<tr>
<td>Mean age:</td>
<td></td>
</tr>
<tr>
<td>years (SD)</td>
<td>65.5 (10.3)</td>
</tr>
</tbody>
</table>

Interventions

- Placebo
- Pentoxifylline
 - 400mg three times daily or 200mg for patients also receiving Theophylline.

Outcome measure(s)

- 6 minute walk distance (metres)
- Oxygen saturation (%)
 - pre- and post- exercise test
- Breathlessness (Borg Score)
 - pre- and post- exercise test

Directness

- Directly applicable
| Study type | Randomised controlled trial |
| Study details | Study location |
| Scotland, UK | Study setting |
| Unspecified centres in Dundee, Perth and Fife. | Study dates |
| September 2010- September 2012. | Duration of follow-up |
| 12 weeks | Sources of funding |
| Chief Scientist Office for Scotland |

Inclusion criteria
COPD diagnosis - American Thoracic Society criteria
COPD diagnosis - European Respiratory Society criteria
Sildenafil test criteria fulfilled
Patients tested with 50mg dose of Sildenafil and observed for 3 hrs. People were included if they were free from clinically significant symptoms, hypotension (systolic blood pressure <90 mmHg) or symptomatic postural hypotension (a decrease of ≥20 mmHg in systolic blood pressure drop during 3 min of standing) throughout the test dose observation period.
Pulmonary arterial hypertension
>30 mmHg right ventricular systolic pressure or pulmonary

Random sequence generation
Low risk of bias

Allocation concealment
Unclear risk of bias
No information provided

Blinding of participants and personnel
Low risk of bias

Blinding of outcome assessment
Low risk of bias

Incomplete outcome data
Low risk of bias

Selective reporting
Low risk of bias

Overall risk of bias
Low
acceleration time <120 ms. PAP determined using echocardiography.
Stable clinical condition free from exacerbations
No exacerbations for at least a month.
Smokers or ex-smokers
Age 35-85 years old
Post- bronchodilator forced expiratory volume in 1 s < 80%
predicted

Exclusion criteria
Treatment with nitrates
Treatment with nicorandil or doxazosin
Left ventricular dysfunction
< 45%
Pulmonary stenosis
Left ventricular outflow obstruction confirmed by echocardiography

Sample characteristics
Sample size
120
Split between study groups
Intervention: 60 Control: 60
Loss to follow up
113/120 (94%) completed the trial
% female
32%
Mean age: years (SD)

| Directness | Directly applicable |
Interventions

Placebo
Tadalafil
10mg/day

Outcome measure(s)
- 6 minute walk distance (metres)
- FEV1 (%)
- Mean pulmonary arterial pressure (mPAP, in mmHg)
- Health-related quality-of-life
 - *Minnesota Living With Heart Failure Questionnaire (MLHFQ), St George’s Respiratory Questionnaire (SGRQ), Short Form 36 Health Survey (RAND version 1) (SF-36).*

Adverse events

Lee (2009)

- **Effects of pravastatin on functional capacity in patients with chronic obstructive pulmonary disease and pulmonary hypertension**

<table>
<thead>
<tr>
<th>Study type</th>
<th>Randomised controlled trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study details</td>
<td></td>
</tr>
<tr>
<td>Study location</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Study setting</td>
<td>A tertiary care medical centre</td>
</tr>
<tr>
<td>Study dates</td>
<td></td>
</tr>
</tbody>
</table>

Allocation concealment
Unclear risk of bias
No information provided

Blinding of participants and personnel
No information provided

Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
Inclusion criteria
COPD diagnosis - American Thoracic Society criteria

With FEV1 (forced expiratory volume in 1 sec) < 80% of predicted values and FEV1/FVC (forced vital capacity) ratio < 70%.

Pulmonary arterial hypertension

Determined by routine echocardiogram - systolic pulmonary artery pressure ≥ 35 mmHg.

Stable clinical condition free from exacerbations

≥ 3 months

Age

40-80 years

Exclusion criteria
Asthma, periodic wheezing, allergic rhinitis, pulmonary embolism

Previous treatment with cholesterol lowering agents

Improvement in FEV1 > X% of expected values after use of a bronchodilator

>15% increase

Duration of follow-up
6 months

Sources of funding
Chi-Mei Medical Centre and Department of Health, Taiwan.

Not stated

Low risk of bias

Blinding of outcome assessment

Unclear risk of bias

No information provided

Incomplete outcome data

Low risk of bias

Selective reporting

Low risk of bias

Other sources of bias

Low risk of bias

Overall risk of bias

Low

Directness

Directly applicable
Sample characteristics

- **Sample size**: 65
- **Split between study groups**: Intervention: 32, Control: 33
- **Loss to follow up**: 53/65 (82%) completed the trial.
- **% female**: 22% for the 53 people who completed the trial
- **Mean age**: years (SD) 71.5 (7.0) for the 53 people that completed the trial.

Interventions

- Placebo
- Pravastatin 40mg/day

Outcome measure(s)

- Naughton exercise stress test
- FEV1 (%)
- Systolic pulmonary arterial pressure (mmHg)
- Breathlessness (Borg Score) *Measured using the Borg scale.*
<table>
<thead>
<tr>
<th>Study Type</th>
<th>Study Details</th>
<th>Inclusion Criteria</th>
<th>Random Sequence Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of the Effects of Atorvastatin on the Treatment of Secondary Pulmonary Hypertension due to Chronic Obstructive Pulmonary Diseases: A Randomized Controlled Trial</td>
<td>Study location
Tehran, Iran
Study setting
Rasoule-Akram hospital
Study dates
2009-2011
Duration of follow-up
6 months
Sources of funding
Not stated</td>
<td>COPD diagnosis - American Thoracic Society criteria
FEV1 (forced expiratory volume in 1 s) < 80% of the predicted values, and a FEV1/FVC (forced vital capacity) ratio < 70% Pulmonary arterial hypertension > 40 mmHg, method unclear. No history of using prostanoids, statins, endothelin antagonists Ability to complete the 6-min walk test Obstructive pattern in pulmonary function test</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td></td>
<td>Randomised controlled trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study location
Tehran, Iran
Study setting
Rasoule-Akram hospital
Study dates
2009-2011
Duration of follow-up
6 months
Sources of funding
Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study details</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random sequence generation</td>
<td>Low risk of bias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocation concealment</td>
<td>Low risk of bias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blinding of participants and personnel</td>
<td>Low risk of bias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blinding of outcome assessment</td>
<td>Low risk of bias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incomplete outcome data</td>
<td>High risk of bias 20% dropout rate in study.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selective reporting</td>
<td>Low risk of bias</td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Other sources of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary arterial hypertension with underlying cause other than COPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL < 70 mg/dl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT or AST > 3x upper limit normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample characteristics</td>
<td>Overall risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split between study groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention: 24 Control: 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss to follow up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36/45 (80%) completed trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age: years (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.4 (12.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean duration of COPD in months (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.0 (12.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td>Directness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40mg/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low risk of bias

Low

Directly applicable
Outcome measure(s)
- 6 minute walk distance (metres)
- FEV1 (%)
- Systolic pulmonary arterial pressure (mmHg)

Morrell (2005)
Pilot study of losartan for pulmonary hypertension in chronic obstructive pulmonary disease

<table>
<thead>
<tr>
<th>Study type</th>
<th>Random sequence generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomised controlled trial</td>
<td>Unclear risk of bias</td>
</tr>
<tr>
<td>Study details</td>
<td>Allocation concealment</td>
</tr>
<tr>
<td>Study location</td>
<td>Unclear risk of bias</td>
</tr>
<tr>
<td>UK</td>
<td>No information provided</td>
</tr>
<tr>
<td>Study setting</td>
<td>Blinding of participants and personnel</td>
</tr>
<tr>
<td>An unspecified hospital clinic.</td>
<td>Unclear risk of bias</td>
</tr>
<tr>
<td>Study dates</td>
<td>No information provided</td>
</tr>
<tr>
<td>Not stated</td>
<td>Blinding of outcome assessment</td>
</tr>
<tr>
<td>Duration of follow-up</td>
<td>Unclear risk of bias</td>
</tr>
<tr>
<td>48 weeks</td>
<td>No information provided</td>
</tr>
<tr>
<td>Sources of funding</td>
<td>Incomplete outcome data</td>
</tr>
<tr>
<td>Merck Sharp & Dohme Ltd. Two of the researchers were employed by Merck Sharp & Dohme Ltd and may own stock/stock options.</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Incomplete outcome data</td>
</tr>
<tr>
<td>COPD diagnosis - criteria not stated</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Pulmonary arterial hypertension</td>
<td>Large loss to follow-up as 13/40 did not complete the trial</td>
</tr>
<tr>
<td>Transticuspip pressure gradient (TTPG) ≥ 30 mmHg and sitting systolic blood pressure ≥ 100 mmHg. Obstructive pattern in pulmonary function test</td>
<td>Incomplete outcome data</td>
</tr>
</tbody>
</table>

Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)

<table>
<thead>
<tr>
<th>FEV1/FVC ≤ 70%</th>
<th>Selective reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 50-80 years</td>
<td>Low risk of bias</td>
</tr>
</tbody>
</table>

Exclusion criteria
- Significant kidney dysfunction
- Left ventricular dysfunction
- Ejection fraction < 35%
- Myocardial infarction
- Recent exacerbation of COPD
- Concomitant use of vasodilators, Beta-blockers or potassium-sparing diuretics

Sample characteristics
- Sample size 40
- Split between study groups: Intervention: 20 Control: 20
- Loss to follow up: 27/40 (67.5%) completed the trial.
- % female: 52.5%
- Mean age: years (SD) 67.0 (7.9)
- Mean duration of COPD in months (SD)

Other sources of bias
Low risk of bias

Overall risk of bias
Moderate

Due to the large loss to follow-up of trial participants and a lack of information regarding randomisation and blinding

Directness
Directly applicable
Interventions

Placebo
Losartan
25mg/day for 1 week, then dose increased to 50mg/day, providing the patient's systolic blood pressure remained ≥ 100 mmHg. The dose could be down titrated once (to 25 mg) if necessary.

Outcome measure(s)

- 10 m shuttle walk test
- Health-related quality-of-life
- St George's Hospital Respiratory Questionnaire (SGRQ) and Patient Health Survey (SF-36).

Adverse events

- Rao (2011)
 - Sildenafil improves six-minute walk distance in chronic obstructive pulmonary disease: a randomised, double-blind, placebo-controlled trial.

Study type

Randomised controlled trial

Study details

- Study location: India
- Study setting: Not stated.
- Study dates: Not stated.
Duration of follow-up
- 12 weeks

Sources of funding
- Not stated, M/s Cipla Pharmaceuticals provided the drug and identical placebo.

Inclusion criteria
- COPD diagnosis - Global Initiative for Chronic Obstructive Lung Disease guidelines
 - Severe or very severe COPD.
- Pulmonary arterial hypertension
 - Pulmonary artery systolic pressure of >40mmHg mPAP determined using echocardiography.
 - Past history of smoking at least 20 packs/year

Exclusion criteria
- Pulmonary arterial hypertension with underlying cause other than COPD
- History of ischaemic heart disease
- Treatment with nitrates
 - Use of nitrates or other vasodilators throughout the study period
- History of heart disease
- History of asthma
- Improvement in FEV1 >X% of expected values after use of a bronchodilator
 - >12% increase
- Recent exacerbation of COPD

Low risk of bias
- Blinding of outcome assessment
 - Unclear risk of bias
 - No information provided
- Incomplete outcome data
 - Low risk of bias
- Selective reporting
 - High risk of bias
 - Heart rate, oxygen saturation and breathlessness as per the Borg scale before and after the walk were recorded but not presented.
 - Low risk of bias
 - For the PAP and 6MWD test data presented.
- Other sources of bias
 - Low risk of bias
- Overall risk of bias
 - Moderate
<1month
Any severe concomitant disease
Haemoglobin <12g/dL

Sample characteristics
Sample size
37
Split between study groups
Intervention: 17 **Control:** 20
Loss to follow up
33/37 (89%) completed the trial.
% female
Not stated.
Mean age: years (SD)
62.3 (7.5)

Interventions
Placebo
Sildenafil
20 mg three times a day. *(Patients were using inhaled anti-
muscarinic, long-acting beta agonists, inhaled corticosteroids and
sustained release theophylline one month before the enrolment in
the study and the same medicines were continued during the study
for both groups.)*

Due to lack of information about allocation concealment and assessor
blinding plus reporting bias for certain outcomes

Directness
Directly applicable
Outcome measure(s)
- 6 minute walk distance (metres)
- Mean pulmonary arterial pressure (mPAP, in mmHg)

Study type
Randomised controlled trial

Study details
- **Study location**: France
- **Study setting**: Not stated.
- **Study dates**: Not stated.
- **Duration of follow-up**: 18 months
- **Sources of funding**: Not stated.

Inclusion criteria
- COPD diagnosis - criteria not stated
- With functional tests showing evidence of serious respiratory impairment (forced expiratory volume in one second (FEV1) between 20 and 40% of predicted.
- Pulmonary arterial hypertension
- Mild PAH - mean pulmonary artery pressure >20 mmHg (control mean 29.3±2.8, intervention 31.7±2.3) determined using right heart

Random sequence generation
Unclear risk of bias
No information provided

Allocation concealment
Unclear risk of bias
No information provided

Blinding of participants and personnel
High risk of bias
No placebo was used in the study

Blinding of outcome assessment
Unclear risk of bias
No information provided

Incomplete outcome data
Low risk of bias

Selective reporting
Low risk of bias

Saadjian (1988)

<table>
<thead>
<tr>
<th>catheterization. Stable clinical condition free from exacerbations ≥ 2 months Breathlessness and fatigue after minimal or moderate exertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria Left ventricular dysfunction Treatment with vasodilators, long-acting theophylline, B2 agonists, almitrine, diuretics or digitalis.</td>
</tr>
<tr>
<td>Sample characteristics Sample size 20 Split between study groups Intervention: 10 Control: 10 Loss to follow up 20/20 (100%) completed the trial. % female 0% Mean age: years (SD) 62.0 (2.3)</td>
</tr>
<tr>
<td>Interventions No intervention- routine treatment for COPD Nifedipine</td>
</tr>
</tbody>
</table>

Other sources of bias
Low risk of bias

Overall risk of bias
High
Due to the absence of a placebo and a lack of information about randomisation and outcome assessor

Directness
Directly applicable
<table>
<thead>
<tr>
<th>Valerio (2009)</th>
<th>Effect of bosentan upon pulmonary hypertension in chronic obstructive pulmonary disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type</td>
<td>Randomised controlled trial</td>
</tr>
</tbody>
</table>
| **Study details** | Study location: Italy
Study setting: Centre for the Treatment of Chronic Respiratory Insufficiency
Study dates: Not stated
Duration of follow-up: 18 months
Sources of funding: Not stated |
| **Inclusion criteria** | COPD diagnosis - American Thoracic Society criteria
COPD diagnosis - Global Initiative for Chronic Obstructive Lung
Ankle oedema
Partial pressure of arterial oxygen (PaO₂)
Mean pulmonary arterial pressure (mPAP, in mmHg) |
| **Outcome measure(s)** | Random sequence generation
Low risk of bias
Allocation concealment
Unclear risk of bias
No information provided
Blinding of participants and personnel
High risk of bias
Participants were blinded, but medical staff were not because of the severe respiratory failure seen in some patients.
Blinding of outcome assessment
High risk of bias
Medical staff were not blinded because |
Disease guidelines

Pulmonary arterial hypertension

Mean pulmonary arterial pressure >25mmHg determined using right heart catheterization. Patients were monitored for a month and those with persistent pulmonary hypertension were included in the study.

Exclusion criteria

None reported

Sample characteristics

Sample size

40

Split between study groups

Intervention: 20 Control: 20

Loss to follow up

32/40 (80%) completed the trial

% female

22% female (of the patients completing the study)

Mean age: years (SD)

65.5 (14.0)

Interventions

- Placebo
- Bosentan

of the severe respiratory failure seen in some patients.

Incomplete outcome data

High risk of bias

8/40 participants did not complete the trial

Selective reporting

High risk of bias

Several outcomes mentioned in the methods are not presented in the results section (including SaO₂, MRC breathlessness scale results).

Other sources of bias

Low risk of bias

Overall risk of bias

High

Due to a lack of blinding, a high risk of attrition bias and selective reporting

Directness

Directly applicable
125mg twice a day

Outcome measure(s)
- 6 minute walk distance (metres)
- FEV1 (%)
- Partial pressure of arterial oxygen (PaO₂)
- Mean pulmonary arterial pressure (mPAP, in mmHg)
- Health-related quality-of-life
- *St. George’s Respiratory Questionnaire*
- Adverse events
- *Exacerbations per patient*
- Breathlessness
- *MRC and WHO scales*

<table>
<thead>
<tr>
<th>Vestri (1988)</th>
<th>Study type</th>
<th>Randomised controlled trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-year clinical study on nifedipine in the treatment of pulmonary hypertension in chronic obstructive lung disease</td>
<td>Study details</td>
<td>Study location: France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study setting: Not stated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study dates: Not stated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration of follow-up: 12 months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random sequence generation</th>
<th>Unclear risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment</td>
<td>Unclear risk of bias</td>
</tr>
<tr>
<td>Blinding of participants and personnel</td>
<td>High risk of bias</td>
</tr>
<tr>
<td></td>
<td>No placebo was used in the study</td>
</tr>
</tbody>
</table>
Inclusion criteria
- COPD diagnosis - American Thoracic Society criteria
- With severe exertional breathlessness, bronchial airflow obstruction and persistent hypoxemia (PaO$_2$ <80 mmHg).
- Pulmonary arterial hypertension
 - PAH > 20 mmHg at rest, (mPAP Intervention 31.3 mmHg (SD 2.2), control 29.6 mmHg (1.4)). Determined using right heart catheterization.
- Stable clinical condition free from exacerbations > 1 month
- No evidence of left ventricular hypertrophy or hemodynamic criteria of left ventricular failure.
- Nifedipine test criteria fulfilled
 - Tested with a dose of 10mg nifedipine. Patients who did not suffer a decrease in cardiac output or any other adverse effect in the hour following administration were included in the study.

Exclusion criteria
- None reported

Sample characteristics
- Sample size
 - 60
- Split between study groups

Blinding of outcome assessment
- Unclear risk of bias
 - No information provided

Incomplete outcome data
- Low risk of bias

Selective reporting
- Unclear risk of bias
 - Unclear how many people included in the analysis for the following outcomes: breathlessness, hospitalisations, PaO$_2$.
 - Low risk of bias
 - For the ankle oedema and death outcomes as including all participants.

Other sources of bias
- Low risk of bias

Overall risk of bias
- High
 - Due to issues with randomisation, binding (including the lack of a
Interventions

- No intervention - routine treatment for COPD
- Nifedipine
 - 10mg three times a day

Outcome measure(s)

- Partial pressure of arterial oxygen (PaO₂)
- Breathlessness
- Mortality
- Hospitalisation (days)
- Ankle oedema

Study type

- Randomised controlled trial

Random sequence generation

- Low risk of bias

Directness

- Directly applicable

Loss to follow up

41/60 (68%) completed the trial.

Characteristics

- % female: 6.7%
- Mean age: 63.3 (1.5) years (SD)
- Mean duration of COPD in months (SD): 155.76 (10.8)

Placebo group

Vitulo (2017)

- Sildenafil in severe pulmonary hypertension associated with chronic obstructive pulmonary disease: A randomized study

- Placebo) and a high risk of selective reporting

- Directly applicable
<table>
<thead>
<tr>
<th>controlled multicenter clinical trial</th>
<th>Study details</th>
<th>Allocation concealment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study location</td>
<td>Study location</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>Italy</td>
<td>Study location</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>Study setting</td>
<td>Study setting</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>Seven centres with expertise in the management of COPD and pulmonary hypertension.</td>
<td>Study dates</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>March 2012-March 2013</td>
<td>Duration of follow-up</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>16 weeks</td>
<td>Sources of funding</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>Pfizer provided funding and sildenafil/identical placebo tablets, but was not involved in the study design, data collection or analysis or manuscript preparation. The study was sponsored by Associazione Italiana Pneumologi Ospedaleri.</td>
<td>Inclusion criteria</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>COPD diagnosis - Global Initiative for Chronic Obstructive Lung Disease guidelines</td>
<td>Inclusion criteria</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>Pulmonary arterial hypertension</td>
<td>Inclusion criteria</td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>Patients with a baseline systolic pulmonary arterial pressure of ≥ 50 mmHg underwent right heart catheterisation. To ensure significant PH patients were selected with mPAP ≥ 35mm Hg in the case of FEV1 < 30% of predicted value after bronchodilator, and mPAP ≥ 30 mmHg for a FEV1 > 30% of predicted value after bronchodilator. Stable clinical condition free from exacerbations</td>
<td>Inclusion criteria</td>
<td>Low risk of bias</td>
</tr>
</tbody>
</table>

Allocation concealment

Blinding of participants and personnel

Blinding of outcome assessment

Incomplete outcome data

Selective reporting

Other sources of bias

Overall risk of bias

Low risk of bias
Last exacerbation ≥ 4 weeks earlier

Exclusion criteria
- Pulmonary arterial hypertension with underlying cause other than COPD
- Ischaemic or mitral or aortic valve diseases
- Treatment with nitrates
- Undergoing treatment for pulmonary hypertension
- Decompensated heart failure
- Intolerance to or contraindication for the use of Sildenafil
- A severe mental disorder preventing informed consent to participate in the study
- Liver/kidney dysfunction

Sample characteristics
- Sample size: 28
- Split between study groups:
 - Intervention: 18
 - Control: 10
- Loss to follow up: 25/28 (89%) completed the trial.
- % female: 25%
- Mean age: years (SD) 65.6 (8.1)

Directness
- Directly applicable
Interventions
- Placebo
- Sildenafil
 - 20mg three times daily.

Outcome measure(s)
- 6 minute walk distance (metres)
- FEV1 (%)
- Partial pressure of arterial oxygen (PaO₂)
- Mean pulmonary arterial pressure (mPAP, in mmHg)
- Health-related quality-of-life
 - Medical Outcomes Study 36-item Short Form Health Survey (SF-36).

Adverse events
- Vonbank (2003)
 - Controlled prospective randomised trial on the effects on pulmonary haemodynamics of the ambulatory long term use of nitric oxide and oxygen in patients with severe COPD.

Study type
- Randomised controlled trial

Study details
- **Study location**: Austria
- **Study setting**: Not stated.
- **Study dates**: July 1998-January 2000
- **Duration of follow-up**: 6 months
- **Sources of funding**: Not stated.

Random sequence generation
- Low risk of bias

Allocation concealment
- Low risk of bias

Blinding of participants and personnel
- Unclear risk of bias
 - No information was provided about whether personnel were blinded to the intervention and it was unclear whether...
Inclusion criteria
- COPD diagnosis - American Thoracic Society criteria
- Pulmonary arterial hypertension
- Mean pulmonary artery pressure of ≥ 25 mmHg determined using right heart catheterization.

Exclusion criteria
- History of ischaemic heart disease
- Myocardial infarction
 - During the 6 month period before the study.
- Stroke during the 6 months before the study
- Acute left heart disease
- Pulmonary wedge pressure of >13 mmHg
- Atrial fibrillation or flutter

Sample characteristics
- Sample size: 40
- Split between study groups: Oxygen alone: 20, Oxygen and NO: 20
- Loss to follow up: 31/40 (77.5%) completed the trial.
 - % female: 32.5%

Messer Austria.
- participants were able to determine their treatment group.

Blinding of outcome assessment
- Unclear risk of bias
 - No information provided

Incomplete outcome data
- Low risk of bias

Selective reporting
- Low risk of bias

Other sources of bias
- Low risk of bias

Overall risk of bias
- Moderate
 - Due to a lack of information regarding blinding of study participants, staff and assessors.

Directness
- Directly applicable
| | | **Study details** | |
| | | Study location | China |
| | | Study setting | Zhengzhou TCM Hospital |
| | | Study dates | August 2013 to October 2014 |
| | | Duration of follow-up | 6 months |
| | | Sources of funding | |

| Mean age: years (SD) | 61.6 (8.2) |
| Mean duration of COPD in months (SD) | 107.2 (63.6) |

Interventions
- Oxygen
- Oxygen and Nitric oxide
 - Pulsed inhalation of 50ml oxygen and 20 parts per million NO.

Outcome measure(s)
- Partial pressure of arterial oxygen (PaO₂)
- Mean pulmonary arterial pressure (mPAP, in mmHg)
- Mortality

Wang (2017)
Effect of azithromycin in combination with simvastatin in the treatment of chronic obstructive pulmonary disease complicated by pulmonary arterial hypertension

Study type
Randomised controlled trial

Study details
- Study location: China
- Study setting: Zhengzhou TCM Hospital
- Study dates: August 2013 to October 2014
- Duration of follow-up: 6 months
- Sources of funding

Random sequence generation
Low risk of bias

Allocation concealment
Unclear risk of bias
No information provided

Blinding of participants and personnel
High risk of bias
Lack of a placebo for patients in the control group and no information regarding blinding of personnel
Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD diagnosis - criteria not stated</td>
</tr>
<tr>
<td>Pulmonary arterial hypertension</td>
</tr>
<tr>
<td>Mean arterial pressure of not less than 25 mmHg by right cardiac catheterization at rest or no less than 30 mm Hg with activity.</td>
</tr>
<tr>
<td>Stable clinical condition free from exacerbations</td>
</tr>
<tr>
<td>Not currently suffering from an acute lung infection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary arterial hypertension with underlying cause other than COPD</td>
</tr>
<tr>
<td>Primary pulmonary hypertension</td>
</tr>
<tr>
<td>Liver/kidney dysfunction</td>
</tr>
<tr>
<td>Asthma or allergic rhinitis</td>
</tr>
<tr>
<td>Known allergy to simvastatin or azithromycin</td>
</tr>
<tr>
<td>Pulmonary thromboembolism</td>
</tr>
<tr>
<td>Severe cardiac abnormality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
</tr>
<tr>
<td>86</td>
</tr>
<tr>
<td>Split between study groups</td>
</tr>
<tr>
<td>Intervention: 43 Control: 43</td>
</tr>
<tr>
<td>Loss to follow up</td>
</tr>
<tr>
<td>86/86 (100%) completed the trial</td>
</tr>
<tr>
<td>% female</td>
</tr>
<tr>
<td>40.7</td>
</tr>
<tr>
<td>Mean age: years (SD)</td>
</tr>
<tr>
<td>71.5 (8.2)</td>
</tr>
<tr>
<td>Mean duration of COPD in months (SD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blinding of outcome assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk of bias</td>
</tr>
<tr>
<td>No blinding of outcome assessors described.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incomplete outcome data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclear risk of bias</td>
</tr>
<tr>
<td>Not described</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selective reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk of bias</td>
</tr>
<tr>
<td>Due to the lack of a data for the breathlessness outcome.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other sources of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
<tr>
<td>Due to the lack of blinding of participants, personnel and outcome assessors and the lack of a data for the breathlessness outcome.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Directness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directly applicable</td>
</tr>
</tbody>
</table>
Cor pulmonale

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Title</th>
<th>Study characteristics</th>
<th>Risk of bias and directness</th>
</tr>
</thead>
</table>
Randomised controlled trial
Study details
Study location
UK
Study setting
Centres in Edinburgh, Birmingham and Sheffield.
Study dates
1973- unknown end date
Duration of follow-up
3 years
Sources of funding | **Random sequence generation**
Low risk of bias
Allocation concealment
Unclear risk of bias
No information provided
Blinding of participants and personnel
High risk of bias
Absence of a placebo |

Interventions
- Simvastatin
- *Simvastatin 20mg/day*
- Simvastatin and azithromycin
- *Simvastatin 20mg/day, azithromycin 0.25g once a day*

Outcome measure(s)
- 6 minute walk distance (metres)
- Partial pressure of arterial oxygen (PaO2)
Inclusion criteria
- Chronic bronchitis or emphysema with irreversible airways obstruction
- FEV1 <1.2 litres
- Arterial oxygen tension between 40 and 60 mmHg when breathing air at rest
- One of more episodes of heart failure with ankle oedema.
- Resting pulmonary arterial hypertension was not used as an entry criterion.
- Arterial blood gas, FEV1 and body weight stable over 2 measurements at least 3 weeks apart.

Exclusion criteria
- History of ischaemic heart disease
- Other concomitant life threatening diseases
- Fibrotic or infiltrative lung disease
- Pneumoconiosis (category 2 or more), severe kyphoscoliosis, overt episodes of pulmonary embolism
- Systemic hypertension
- Diastolic pressure >100 mmHg under 60 years of age, or > 110 mmHg over 65 years of age.

Sample characteristics
- Sample size

Medical Research Council

Blinding of outcome assessment
Unclear risk of bias
No information provided

Incomplete outcome data
Low risk of bias

Selective reporting
High risk of bias
Data for rates of change of physiological variables is not presented for the whole data set, just males.

Other sources of bias
Low risk of bias

Overall risk of bias
High
Due to the lack of information regarding allocation concealment and outcome assessor blinding, the absence of a placebo and selective reporting of data
87
Split between study groups
Intervention: 43 Control: 45
Loss to follow up
86/87 (98.9%) completed the trial.
% female
24.1%
Mean age: years (SD)
57.7 (no SD data provided)

Interventions
No intervention- routine treatment for COPD
Oxygen
For at least 15hrs a day.

Outcome measure(s)
Mortality
Rate of change in FEV1
Rate of change in PaO₂

Directness
Directly applicable
Appendix F – Forest plots

Pulmonary hypertension

Phosphodiesterase 5 inhibitors

Mean pulmonary artery pressure (mPAP, mmHg)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PD5 Inhibitor Mean [mmHg]</th>
<th>PD5 Inhibitor SD [mmHg]</th>
<th>Total Mean [mmHg]</th>
<th>Total SD [mmHg]</th>
<th>Total Weight</th>
<th>IV, Fixed, 95% CI [mmHg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutubal 2016</td>
<td>-3.94</td>
<td>0.67</td>
<td>18</td>
<td>2.4</td>
<td>10</td>
<td>10.1%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>10</td>
<td>10</td>
<td>10.1%</td>
<td>-1.44 [0.59, 5.71]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>73</td>
<td>66</td>
<td>100.0%</td>
<td>-3.29 [-5.56, -1.02]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Ch² = 0.23, df = 1 (P = 0.63), P = 0%
Test for overall effect: Z = 2.94 (P = 0.003)
Test for subgroup differences: Ch² = 0.29, df = 1 (P = 0.59), P = 0%
Mortality (number of deaths)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PD5 Inhibitor</th>
<th>Control</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1 Tadalafil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goudie 2014</td>
<td>2</td>
<td>60</td>
<td>60</td>
<td>100.0%</td>
<td>5.00 [0.25, 102.00]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>60</td>
<td>60</td>
<td>100.0%</td>
<td>5.00 [0.25, 102.00]</td>
</tr>
<tr>
<td>Total events</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 1.05$ (P = 0.30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3.2 Sildenafil					
Blanco 2013	0	32	31		Not estimable
Subtotal (95% CI)		32	31		Not estimable
Total events	0	0	0		
Heterogeneity: Not applicable					
Test for overall effect: Not applicable					

| Total (95% CI) | 92 | 91 | 100.0%| 5.00 | 5.00 [0.25, 102.00] |
| Total events | 2 | 0 | 2 | | |
| Heterogeneity: Not applicable |
| Test for overall effect: $Z = 1.05$ (P = 0.30) |
| Test for subgroup differences: Not applicable |
Forced expiratory volume in 1 second (FEV1, % predicted)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PD5 inhibitor Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>IV, Fixed, 95% CI</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1 Tadalafil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gougie 2014</td>
<td>-1.3</td>
<td>15.4</td>
<td>58</td>
<td>-0.6</td>
<td>15.2</td>
<td>57</td>
<td>90.5%</td>
<td>-0.70 [-6.34, 4.94]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>58</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td>90.5%</td>
<td>-0.70 [-6.34, 4.94]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.24 (P = 0.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.2 Sildenafil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voluto 2016</td>
<td>0.22</td>
<td>22.6931</td>
<td>18</td>
<td>-2.70</td>
<td>22.4938</td>
<td>10</td>
<td>9.5%</td>
<td>3.00 [-14.44, 20.44]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>18</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>9.5%</td>
<td>3.00 [-14.44, 20.44]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.34 (P = 0.74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>74</td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-0.35 [-5.72, 5.02]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Ch² = 0.16, df = 1 (P = 0.69); Ι² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.13 (P = 0.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Ch² = 0.16, df = 1 (P = 0.69); Ι² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
6 minute walk distance (metres)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Sildenafil</th>
<th>Mean [metres]</th>
<th>SD [metres]</th>
<th>Total</th>
<th>Control</th>
<th>Mean [metres]</th>
<th>SD [metres]</th>
<th>Total</th>
<th>Weight</th>
<th>IV, Random, 95% CI [metres]</th>
<th>IV, Random, 95% CI [metres]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rou 2010</td>
<td>191</td>
<td>127</td>
<td>15</td>
<td>39</td>
<td>97</td>
<td>16</td>
<td>50.3%</td>
<td>50.3%</td>
<td>152.00</td>
<td>[76.20, 227.80]</td>
<td></td>
</tr>
<tr>
<td>Vituldo 2016</td>
<td>8.1</td>
<td>102.67</td>
<td>18</td>
<td>-11.2</td>
<td>181.19</td>
<td>10</td>
<td>49.7%</td>
<td>49.7%</td>
<td>18.33</td>
<td>[-59.33, 97.93]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>100.0%</td>
<td>-43.96, 216.12</td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>Tau² = 7.251.96; Chi² = 5.67, df = 1 (P = 0.02); I² = 82%</td>
<td></td>
</tr>
<tr>
<td>Test for overall effect</td>
<td>Z = 1.30 (P = 0.19)</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>96.08</td>
<td>[43.96, 216.12]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>Tau² = 7.251.96; Chi² = 5.67, df = 1 (P = 0.02); I² = 82%</td>
<td></td>
</tr>
<tr>
<td>Test for overall effect</td>
<td>Z = 1.30 (P = 0.19)</td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Not applicable</td>
<td></td>
</tr>
</tbody>
</table>

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
All adverse events

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Sildenafil</th>
<th>Control</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>2.5.1 Sildenafil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanco 2013</td>
<td>16</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>Vitulo 2016</td>
<td>5</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>50</td>
<td>41</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 1.04; \chi^2 = 1.99, df = 1 (P = 0.16); P = 59%$

Test for overall effect: $Z = 0.52 (P = 0.61)$

Total (95% CI) | 50 | 41 | 100.0% | 1.59 [0.27, 9.32]

Total events | 21 | 15

Heterogeneity: $\tau^2 = 1.04; \chi^2 = 1.99, df = 1 (P = 0.16); P = 59%$

Test for overall effect: $Z = 0.52 (P = 0.61)$

Test for subgroup differences: Not applicable
Statins

Systolic pulmonary artery pressure (PAP, mmHg)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Statin Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Atervastatin</td>
<td>-10.4</td>
<td>13.6</td>
<td>15</td>
<td>-6.7</td>
<td>15.0</td>
<td>15</td>
<td>10.0%</td>
<td>-3.70 [-13.37, 5.97]</td>
<td></td>
</tr>
<tr>
<td>Moosavi 2013</td>
<td>-5.6</td>
<td>9.3</td>
<td>19</td>
<td>-1.5</td>
<td>14.6</td>
<td>17</td>
<td>14.3%</td>
<td>-4.10 [-12.20, 4.00]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>35</td>
<td>24.3</td>
<td>35</td>
<td>-3.94 [-10.15, 2.28]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 0.00, df = 1 (P = 0.95), I² = 0%
Test for overall effect: Z = 1.24 (P = 0.21)

4.1.2 Pravastatin

Lee 2003

Subtotal (95% CI)

Heterogeneity: Not applicable
Test for overall effect: Z = 3.34 (P = 0.0008)

Total (95% CI)

Heterogeneity: Chi² = 0.33, df = 2 (P = 0.85); I² = 0%
Test for overall effect: Z = 3.52 (P = 0.0004)
Test for subgroup differences: Chi² = 0.32, df = 1 (P = 0.57); I² = 0%
Forced expiratory volume in 1 second (FEV1, % predicted)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Statin Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV, Fixed, 95% CI</th>
<th>Mean Difference</th>
<th>IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 Atorvastatin</td>
<td></td>
</tr>
<tr>
<td>Mooesi 2013</td>
<td>3.6</td>
<td>23.4</td>
<td>19</td>
<td>5.1</td>
<td>19.3</td>
<td>17</td>
<td>25.4%</td>
<td>-1.56</td>
<td>[-17.22, 14.22]</td>
<td>-1.50</td>
<td>[-17.22, 14.22]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>19</td>
<td></td>
<td>17</td>
<td>25.4%</td>
<td>-1.50</td>
<td>[-17.22, 14.22]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.19 (P = 0.05)</td>
<td></td>
</tr>
<tr>
<td>4.2.2 Pravastatin</td>
<td></td>
</tr>
<tr>
<td>Lee 2003</td>
<td>4.6</td>
<td>20.4</td>
<td>27</td>
<td>-0.1</td>
<td>13</td>
<td>25</td>
<td>74.6%</td>
<td>4.70</td>
<td>[-4.47, 13.87]</td>
<td>4.70</td>
<td>[-4.47, 13.87]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>27</td>
<td></td>
<td>26</td>
<td>74.6%</td>
<td>4.70</td>
<td>[-4.47, 13.87]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.00 (P = 0.32)</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>46</td>
<td></td>
<td>43</td>
<td>100.0%</td>
<td>3.13</td>
<td>[-4.80, 11.05]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 0.45, df = 1 (P = 0.50); I² = 0%</td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.77 (P = 0.44)</td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi² = 0.45, df = 1 (P = 0.50), I² = 0%</td>
<td></td>
</tr>
</tbody>
</table>

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
Nifedipine

Partial pressure of arterial oxygen (PaO₂, mmHg)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Nifedipine</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Saadjan 1988</td>
<td>-4.7</td>
<td>2</td>
<td>10</td>
<td>-2.7</td>
</tr>
<tr>
<td>Vestri 1998</td>
<td>3.2</td>
<td>2.9</td>
<td>19</td>
<td>3.6</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>29</td>
<td></td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 1.26, df = 1 (P = 0.26); I² = 22%
Test for overall effect: Z = 1.42 (P = 0.15)

Oxygen saturation (SaO₂, %)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Nifedipine</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Saadjan 1988</td>
<td>-3</td>
<td>2.4</td>
<td>10</td>
<td>-0.5</td>
</tr>
<tr>
<td>Vestri 1998</td>
<td>0.7</td>
<td>1.6</td>
<td>19</td>
<td>2.11</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>29</td>
<td></td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 0.95, df = 1 (P = 0.35); I² = 0%
Test for overall effect: Z = 3.91 (P < 0.0001)
Appendix G – GRADE tables

Pulmonary hypertension

Phosphodiesterase 5 inhibitors (PD5 inhibitors) versus control (placebo or no intervention)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean pulmonary artery pressure (mPAP) – mmHg (lower values favour PD5 inhibitor)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RCT</td>
<td>139</td>
<td>MD -3.29 (-5.56, -1.02)</td>
<td>-</td>
<td>-</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Serious¹</td>
<td>Moderate</td>
</tr>
<tr>
<td>Systolic pulmonary artery pressure (PAP) – mmHg (lower values favour PD5 inhibitor)</td>
<td></td>
</tr>
<tr>
<td>1 (Rao 2010)</td>
<td>RCT</td>
<td>33</td>
<td>MD -8.00 (-14.86, -1.14)</td>
<td>-</td>
<td>-</td>
<td>Serious²</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious¹</td>
<td>Low</td>
</tr>
<tr>
<td>Mortality – number of deaths (lower values favour PD5 inhibitor)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RCT</td>
<td>183</td>
<td>RR 5.00 (0.25, 102.00)</td>
<td>Not calculable³</td>
<td>Not calculable³</td>
<td>Not serious</td>
<td>N/A⁴</td>
<td>Not serious</td>
<td>Serious⁶</td>
<td>Moderate</td>
</tr>
<tr>
<td>FEV1 - % predicted (higher values favour PD5 inhibitor)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RCT</td>
<td>141</td>
<td>MD -0.35 (-5.72, 5.02)</td>
<td>-</td>
<td>-</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Serious⁶</td>
<td>Moderate</td>
</tr>
<tr>
<td>Partial pressure of arterial oxygen (PaO₂) - mmHg (higher values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>1 (Vitulo 2016)</td>
<td>RCT</td>
<td>28</td>
<td>MD -1.02 (-11.13, 9.09)</td>
<td>-</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious⁷</td>
<td>Low</td>
</tr>
<tr>
<td>Short Form 36 health survey, general health domain (higher values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>1 (Vitulo 2016)</td>
<td>RCT</td>
<td>28</td>
<td>MD 9.90</td>
<td>-</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious⁷</td>
<td>Low</td>
</tr>
</tbody>
</table>
Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>6 minute walk distance – metres (higher values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>Modified MRC scale for breathlessness (lower values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>1 (Vitulo 2016)</td>
<td>RCT</td>
<td>28</td>
<td>MD -0.60 (-1.27, 0.07)</td>
<td>-</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious[^7]</td>
<td>Low</td>
</tr>
<tr>
<td>All adverse events – number of events (lower values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RCT</td>
<td>91</td>
<td>RR 1.59 (0.27, 9.32)</td>
<td>39.02 per 100</td>
<td>62.05 per 100 (10.54, 100)</td>
<td>Not serious</td>
<td>Serious[^10]</td>
<td>Not serious</td>
<td>Very serious[^5]</td>
<td>Very low</td>
</tr>
<tr>
<td>Exacerbations leading to discontinuation – number of exacerbations (lower values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>1 (Blanco 2013)</td>
<td>RCT</td>
<td>63</td>
<td>RR 1.94 (0.38, 9.83)</td>
<td>6.45 per 100</td>
<td>12.52 per 100 (2.45, 63.42)</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious[^5]</td>
<td>Low</td>
</tr>
<tr>
<td>Exacerbations leading to hospitalisation – number of exacerbations (lower values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>1 (Blanco 2013)</td>
<td>RCT</td>
<td>63</td>
<td>RR 1.45 (0.26, 8.11)</td>
<td>6.45 per 100</td>
<td>9.35 per 100 (1.68, 52.32)</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious[^5]</td>
<td>Low</td>
</tr>
<tr>
<td>All exacerbations – number of exacerbations (lower values favour sildenafil)</td>
<td></td>
</tr>
<tr>
<td>1 (Blanco 2013)</td>
<td>RCT</td>
<td>63</td>
<td>RR 0.88 (0.44, 1.77)</td>
<td>35.48 per 100</td>
<td>31.23 per 100 (15.61, 62.81)</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious[^5]</td>
<td>Low</td>
</tr>
<tr>
<td>St. George’s respiratory questionnaire (SGRQ), total score (lower values favour tadalafil)</td>
<td></td>
</tr>
<tr>
<td>1 (Goudie 2014)</td>
<td>RCT</td>
<td>113</td>
<td>MD -2.64 (-6.43, 1.15)</td>
<td>-</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious[^11]</td>
<td>Moderate</td>
</tr>
<tr>
<td>Short Form 36 health survey (SF36), physical functioning domain score (higher values favour tadalafil)</td>
<td></td>
</tr>
</tbody>
</table>
Managing pulmonary hypertension and cor pulmonale

Chronic obstructive pulmonary disease in over 16s: diagnosis and management

No. of studies | Study design | Sample size | Effect size (95% CI) | Absolute risk: control | Absolute risk: intervention (95% CI) | Risk of bias | Inconsistency | Indirectness | Imprecision | Quality |
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
1 (Goudie 2014) | RCT | 113 | MD 4.08 (-1.36, 9.52) | - | Not serious | N/A | Not serious | Serious⁶ | Moderate |

Minnesota living with heart failure questionnaire (MHLFQ), total score (lower values favour tadalafil)

No. of studies	Study design	Sample size	Effect size (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Goudie 2014) | RCT | 113 | MD -2.31 (-7.06, 2.44) | Not serious | N/A | Not serious | Serious⁶ | Moderate |

1. Single study or meta-analysis where the >33.3% of weight came from trials measuring PAP by echocardiography, which is less accurate than the alternative method of right heart catheterization.
2. Study at high risk of reporting bias.
3. No events occurred in the placebo arm of either trial.
4. Relative risk could only be calculated for one study, as no events occurred in either arm of the second study.
5. 95% confidence interval crosses both ends of a defined MID interval.
6. Non-significant result.
7. Non-significant result and small sample size.
8. >33.3% of weighted data from studies at moderate or high risk of bias.
9. i-squared >66.7%.
10. i-squared >33.3% and <66.7%.
11. 95% confidence interval crosses one end of a defined MID interval.

Statins versus placebo

Systolic pulmonary artery pressure (PAP) – mmHg (lower values favour statins)

No. of studies	Study design	Sample size	Effect size (95% CI)	Absolute risk: control	Absolute risk: intervention (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
3 | RCT | 123 | MD -5.50¹ (-8.56, -2.44) | - | Not serious | Not serious | Not serious | Serious² | Moderate |

¹ MD for systolic pulmonary artery pressure (PAP) is often expressed in mmHg.
FEV1 - % predicted (higher values favour statins)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RCT</td>
<td>89</td>
<td>MD 3.13 (-4.80, 11.05)</td>
<td>-</td>
<td>-</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Serious³</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

1. Result does not meaningfully change when study at high risk of bias is excluded.

2. Downgraded as systolic pulmonary artery pressure was measured using echocardiography, a less accurate method than right heart catheterisation.

3. Non-significant result

4. 95% confidence interval crosses both ends of a defined MID interval

Borg breathlessness score following exercise test (lower values favours pravastatin)

<table>
<thead>
<tr>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Lee 2009)</td>
<td>RCT</td>
<td>53</td>
<td>MD -2.74 (-3.27, -2.21)</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>High</td>
</tr>
</tbody>
</table>

6 minute walk distance – metres (higher values favour atorvastatin)

<table>
<thead>
<tr>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Moosavi 2013)</td>
<td>RCT</td>
<td>36</td>
<td>MD 45.00 (-41.00, 131.00)</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious⁴</td>
</tr>
</tbody>
</table>

Treadmill test- exercise time - seconds (higher values favour pravastatin)

<table>
<thead>
<tr>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Lee 2009)</td>
<td>RCT</td>
<td>53</td>
<td>MD 370.00 (231.99, 508.01)</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>High</td>
</tr>
</tbody>
</table>

Treadmill test- target heart rate - % (higher values favour pravastatin)

<table>
<thead>
<tr>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Lee 2009)</td>
<td>RCT</td>
<td>53</td>
<td>MD 9.00 (3.27, 14.73)</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>High</td>
</tr>
</tbody>
</table>

1. Result does not meaningfully change when study at high risk of bias is excluded.

2. Downgraded as systolic pulmonary artery pressure was measured using echocardiography, a less accurate method than right heart catheterisation.

3. Non-significant result

4. 95% confidence interval crosses both ends of a defined MID interval
Nifedipine versus no intervention

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Saadjian 1988)</td>
<td>RCT</td>
<td>20</td>
<td>MD -2.00 (-4.49, 0.49)</td>
<td>-</td>
<td>-</td>
<td>Very serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious²</td>
<td>Very low</td>
</tr>
<tr>
<td>2</td>
<td>RCT</td>
<td>61</td>
<td>MD -0.96 (-2.29, 0.36)</td>
<td>-</td>
<td>-</td>
<td>Very serious⁵</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Very serious³</td>
<td>Very low⁴</td>
</tr>
<tr>
<td>2</td>
<td>RCT</td>
<td>61</td>
<td>MD -1.56 (-2.34, -0.78)</td>
<td>-</td>
<td>-</td>
<td>Very serious⁵</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Low⁴</td>
</tr>
<tr>
<td>1 (Vestri 1988)</td>
<td>RCT</td>
<td>60</td>
<td>RR 0.88 (0.36, 2.11)</td>
<td>26.67 per 100</td>
<td>23.47 per 100 (9.60, 56.27)</td>
<td>Very serious⁶</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious³</td>
<td>Very low</td>
</tr>
<tr>
<td>1 (Vestri 1988)</td>
<td>RCT</td>
<td>41</td>
<td>MD 0.20 (-1.95, 2.35)</td>
<td>-</td>
<td>-</td>
<td>Very serious⁶</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious³</td>
<td>Very low</td>
</tr>
<tr>
<td>1 (Vestri 1988)</td>
<td>RCT</td>
<td>60</td>
<td>RR 9.00 (0.51, 160.17)</td>
<td>Not calculable§</td>
<td>Not calculable§</td>
<td>Very serious⁶</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious⁷</td>
<td>Very low</td>
</tr>
<tr>
<td>1 (Vestri 1988)</td>
<td>RCT</td>
<td>41</td>
<td>MD -0.53 (-0.65, -0.41)</td>
<td>-</td>
<td>-</td>
<td>Very serious⁶</td>
<td>N/A</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Low</td>
</tr>
</tbody>
</table>

1. Lack of information regarding random sequence generation, allocation concealment and blinding of participants, personnel and outcome assessors.
Losartan versus placebo

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial pressure of arterial oxygen (PaO₂) - kPa (higher values favour losartan)</td>
<td></td>
</tr>
<tr>
<td>1 (Morrell 2005)</td>
<td>RCT</td>
<td>27</td>
<td>MD -0.70 (-1.76, 0.36)</td>
<td>-</td>
<td>-</td>
<td>Serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious²</td>
<td>Very low</td>
</tr>
<tr>
<td>Mortality– number of deaths (lower values favour losartan)</td>
<td></td>
</tr>
<tr>
<td>1 (Morrell 2005)</td>
<td>RCT</td>
<td>40</td>
<td>RR 3.00 (0.13, 69.52)</td>
<td>Not calculable³</td>
<td>Not calculable³</td>
<td>Serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious⁵</td>
<td>Low</td>
</tr>
<tr>
<td>Adverse events leading to discontinuation of treatment – number of events (lower values favour losartan)</td>
<td></td>
</tr>
<tr>
<td>1 (Morrell 2005)</td>
<td>RCT</td>
<td>40</td>
<td>RR 0.33 (0.04, 2.94)</td>
<td>15.00 per 100</td>
<td>4.95 per 100 (0.60, 44.10)</td>
<td>Serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious⁴</td>
<td>Very low</td>
</tr>
<tr>
<td>All adverse events– number of events (lower values favour losartan)</td>
<td></td>
</tr>
<tr>
<td>1 (Morrell 2005)</td>
<td>RCT</td>
<td>40</td>
<td>RR 0.21 (0.02, 2.08)</td>
<td>95.00 per 100</td>
<td>19.95 per 100 (1.90, 100)</td>
<td>Serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious⁴</td>
<td>Very low</td>
</tr>
</tbody>
</table>
Managing pulmonary hypertension and cor pulmonale

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuttle walk test – number of shuttle distances completed (higher values favour losartan)</td>
<td>1 (Morrell 2005)</td>
<td>RCT</td>
<td>32</td>
<td>MD 2.40 (-1.25, 6.05)</td>
<td>-</td>
<td>Serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious⁵</td>
<td>Low</td>
</tr>
<tr>
<td>Breathlessness after exercise (lower values favour losartan)</td>
<td>1 (Morrell 2005)</td>
<td>RCT</td>
<td>32</td>
<td>MD 0.70 (-0.47, 1.87)</td>
<td>-</td>
<td>Serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious⁵</td>
<td>Low</td>
</tr>
<tr>
<td>St. George's respiratory questionnaire (SGRQ), total score (lower values favour losartan)</td>
<td>1 (Morrell 2005)</td>
<td>RCT</td>
<td>33</td>
<td>MD -5.30 (-11.60, 1.00)</td>
<td>-</td>
<td>Serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious⁶</td>
<td>Low</td>
</tr>
</tbody>
</table>

1. Lack of information regarding random sequence generation, allocation concealment, blinding of participants, personnel and outcome assessors and a high risk of bias for incomplete outcome data.
2. Non-significant result and small sample size
3. No events occurred in the placebo arm of the trial
4. 95% confidence interval crosses both ends of a defined MID interval
5. Non-significant result
6. 95% confidence interval crosses one end of a defined MID interval

Pentoxifylline versus placebo

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 minute walk distance – metres (higher values favour pentoxifylline)</td>
<td>1 (Fallahi 2013)</td>
<td>RCT</td>
<td>20</td>
<td>MD 17.00 (-41.29, 75.29)</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious¹</td>
<td>Low</td>
</tr>
<tr>
<td>Borg score (pre-test) (lower values favour pentoxifylline)</td>
<td></td>
</tr>
</tbody>
</table>

Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
Borg score (post-test) (lower values favour pentoxifylline)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Fallahi 2013)</td>
<td>RCT</td>
<td>20</td>
<td>MD -0.40 (-1.38, 0.58)</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Not serious</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

Oxygen saturation (pre-test) - % (higher values favour pentoxifylline)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Fallahi 2013)</td>
<td>RCT</td>
<td>20</td>
<td>MD -2.00 (-10.77, 6.77)</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Oxygen saturation (post-test) - % (higher values favour pentoxifylline)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Fallahi 2013)</td>
<td>RCT</td>
<td>20</td>
<td>MD -1.00 (-5.47, 3.47)</td>
<td>-</td>
<td>Not serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Very serious</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

1. 95% confidence interval crosses both ends of a defined MID interval
2. 95% confidence interval crosses one end of a defined MID interval
3. Non-significant result and small sample size

Bosentan versus placebo

Mean pulmonary artery pressure (mPAP) – mmHg (lower values favour bosentan)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Valerio 2009)</td>
<td>RCT</td>
<td>32</td>
<td>MD -8.00 (-12.52, -3.48)</td>
<td>-</td>
<td>Very serious</td>
<td>N/A</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

FEV1 - % predicted (higher values favour bosentan)
Partial pressure of arterial oxygen (PaO₂) - mmHg (higher values favour bosentan)

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Valerio 2009)</td>
<td>RCT</td>
<td>32</td>
<td>MD 6.00 (-4.75, 16.75)</td>
<td>-</td>
<td>-</td>
<td>Very serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious²</td>
<td>Very low</td>
</tr>
</tbody>
</table>

1. High risk of bias for selective reporting and blinding of participants, personnel and outcome assessors; unclear risk of bias for allocation concealment and outcome data.
2. Non-significant result
3. 95% confidence interval crosses one end of a defined MID interval
4. 95% confidence interval crosses both ends of a defined MID interval
Nitric Oxide versus no intervention

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean pulmonary artery pressure (mPAP) – mmHg (lower values favour nitric oxide)</td>
<td>1 (Vonbank 2003)</td>
<td>RCT</td>
<td>32</td>
<td>MD -7.60 (-11.56, -3.64)</td>
<td>-</td>
<td>-</td>
<td>Serious(^1)</td>
<td>N/A</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>Partial pressure of arterial oxygen (PaO(_2)) - kPa (higher values favour nitric oxide)</td>
<td>1 (Vonbank 2003)</td>
<td>RCT</td>
<td>32</td>
<td>MD 0.40 (-0.81, 1.61)</td>
<td>-</td>
<td>-</td>
<td>Serious(^1)</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious(^2)</td>
</tr>
<tr>
<td>Mortality - number of deaths (lower values favour nitric oxide)</td>
<td>1 (Vonbank 2003)</td>
<td>RCT</td>
<td>40</td>
<td>RR 0.33 (0.01, 7.72)</td>
<td>Not calculable(^2)</td>
<td>Not calculable(^2)</td>
<td>Serious(^1)</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious(^2)</td>
</tr>
</tbody>
</table>

1. High risk of bias due to a lack of information regarding blinding of study participants, personnel and assessors.
2. Non-significant result
3. No events occurred in the control arm of the trial

Azithromycin versus no intervention

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial pressure of arterial oxygen (PaO(_2)) (higher values favour azithromycin)</td>
<td>1 (Wang 2017)</td>
<td>RCT</td>
<td>86</td>
<td>MD 8.43 (6.66, 10.02)</td>
<td>-</td>
<td>-</td>
<td>Very serious(^1)</td>
<td>N/A</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>6 minute walk distance – metres (higher values favour azithromycin)</td>
<td>1 (Wang 2017)</td>
<td>RCT</td>
<td>86</td>
<td>MD 83.90 (71.00, 96.80)</td>
<td>-</td>
<td>-</td>
<td>Very serious(^1)</td>
<td>N/A</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
</tbody>
</table>
Cor pulmonale

Long term oxygen therapy versus no oxygen

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Sample size</th>
<th>Effect size (95% CI)</th>
<th>Absolute risk: control</th>
<th>Absolute risk: intervention (95% CI)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of change in Partial pressure of arterial oxygen (PaO₂) (higher values favour LTOT)</td>
<td></td>
</tr>
<tr>
<td>1 (MRC 1981)</td>
<td>RCT</td>
<td>59</td>
<td>MD 2.69 (0.49, 4.90)</td>
<td>-</td>
<td>-</td>
<td>Very serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Low</td>
</tr>
<tr>
<td>FEV1 (higher values favour LTOT)</td>
<td></td>
</tr>
<tr>
<td>1 (MRC 1981)</td>
<td>RCT</td>
<td>61</td>
<td>MD 0.02 (-0.02, 0.07)</td>
<td>-</td>
<td>-</td>
<td>Very serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious²</td>
<td>Very low</td>
</tr>
<tr>
<td>Mortality – number of deaths (lower values favour LTOT)</td>
<td></td>
</tr>
<tr>
<td>1 (MRC 1981)</td>
<td>RCT</td>
<td>87</td>
<td>RR 0.68 (0.46, 1.00)</td>
<td>66.67 per 100 (30.67, 66.67)</td>
<td>Very serious¹</td>
<td>N/A</td>
<td>Not serious</td>
<td>Serious²</td>
<td>Very low</td>
<td></td>
</tr>
</tbody>
</table>

1. Study at high risk of bias due to the lack of blinding of participants, personnel and outcome assessors and the lack of a data for the breathlessness outcome.

1. Issues with selective reporting of data (men only) and blinding of participants, personnel and outcome assessors.
2. Non-significant result
Appendix H – Economic evidence study selection

Databases
16,299 Citation(s)

Non-Duplicate Citations Screened

Inclusion/Exclusion Criteria Applied
16,299 Articles Excluded After Title/Abstract Screen

Articles Retrieved

Inclusion/Exclusion Criteria Applied
0 Articles Excluded After Full Text Screen

0 Articles Included

0 Articles Excluded During Data Extraction
Appendix I – Excluded studies

Clinical studies

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Title</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adnot (1988)</td>
<td>The effects of urapidil therapy on hemodynamics and gas exchange in exercising patients with chronic obstructive pulmonary disease and pulmonary hypertension</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Alkhayat (2016)</td>
<td>Sildenafil citrate therapy for secondary pulmonary arterial hypertension due to chronic obstructive lung disease</td>
<td>Not a relevant study design</td>
</tr>
<tr>
<td>Blanco (2010)</td>
<td>Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Blanco (2013)</td>
<td>Sildenafil treatment to improve the outcomes of pulmonary rehabilitation in COPD: A randomized, controlled trial</td>
<td>Conference abstract</td>
</tr>
<tr>
<td>Boeck (2011)</td>
<td>Inhalation of a prostacyclin analog (iloprost) does not improve exercise capacity in COPD with disproportional pulmonary hypertension</td>
<td>Conference abstract</td>
</tr>
<tr>
<td>Chogtu (2016)</td>
<td>A prospective, randomized study: Evaluation of the effect of rosuvastatin in patients with chronic obstructive pulmonary disease and pulmonary hypertension</td>
<td>Data not reported in an extractable format. The paper does not present primary data for the outcomes of interest and the CI around the MD for the 6MW test is implausibly small.</td>
</tr>
<tr>
<td>Danahy (1979)</td>
<td>Effects of isosorbide dinitrate on pulmonary hypertension in chronic obstructive pulmonary disease</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Elborn (1992)</td>
<td>The effects of flosequinan on hemodynamics and oxygen delivery in cor pulmonale</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Feuring (2000)</td>
<td>Moxonidine and ramipril in patients with hypertension and obstructive pulmonary disease</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Goudie (2013)</td>
<td>Do phosphodiesterase 5 inhibitors improve exercise capacity in patients with COPD associated pulmonary hypertension? (3P study)</td>
<td>Conference abstract</td>
</tr>
<tr>
<td>Harris (2010)</td>
<td>The effects of sildenafil in pulmonary hypertension secondary to chronic obstructive pulmonary disease</td>
<td>Conference abstract</td>
</tr>
<tr>
<td>Short Title</td>
<td>Title</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Horita (2014)</td>
<td>Statins reduce all-cause mortality in chronic obstructive pulmonary disease: a systematic review and meta-analysis of observational studies.</td>
<td>SR of wrong study type (not RCTs) or SR did not include any relevant RCTs</td>
</tr>
<tr>
<td>Lampert (1991)</td>
<td>Disappearance of molsidomine effects on pulmonary circulation of patients with chronic obstructive pulmonary disease after a three week treatment</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Lee (2004)</td>
<td>Effect of beraprost sodium in patients with chronic obstructive pulmonary disease</td>
<td>Study not reported in English</td>
</tr>
<tr>
<td>Liker (1975)</td>
<td>Portable oxygen in chronic obstructive lung disease with hypoxemia and cor pulmonale. A controlled double-blind crossover study</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Lin (1996)</td>
<td>Comparisons of long-term effects of lisinopril vs nifedipine vs conventional therapy in the treatment of mild-to-moderate hypertension in patients with chronic obstructive pulmonary disease</td>
<td>Study does not contain any of the outcomes of interest</td>
</tr>
<tr>
<td>Liu (2015)</td>
<td>Influence of Rho kinase inhibitor fasudil on late endothelial progenitor cells in peripheral blood of COPD patients with pulmonary artery hypertension</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Nenci (1988)</td>
<td>Effects of dipyridamole on the hypoxemic pulmonary hypertension of patients with chronic obstructive pulmonary disease</td>
<td>Not a relevant study design</td>
</tr>
<tr>
<td>Oh (2015)</td>
<td>Effects of trimetazidine on patients with chronic obstructive pulmonary disease and pulmonary hypertension</td>
<td>Conference abstract</td>
</tr>
<tr>
<td>Oliver (1996)</td>
<td>Xamoterol improves right ventricular systolic and diastolic function in pulmonary heart disease</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Park (2013)</td>
<td>Systemic review and meta-analysis of pulmonary specific therapy for exercise capacity in COPD</td>
<td>Full text paper not available</td>
</tr>
<tr>
<td>Pourdowlat (2013)</td>
<td>Is there a new indication and route of administration for an old drug in pulmonary hypertension (PH) secondary to COPD? a pilot study</td>
<td>Conference abstract</td>
</tr>
<tr>
<td>Prins (2016)</td>
<td>Use of PAH-specific therapy in world health organization group iii pulmonary hypertension: A systematic review and meta-analysis</td>
<td>Conference abstract</td>
</tr>
<tr>
<td>Short Title</td>
<td>Title</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Salem (2014)</td>
<td>Short term effects of sildenafil citrate therapy in secondary pulmonary hypertension</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Seibold (1994)</td>
<td>Elderly patients benefit from calcium antagonist therapy</td>
<td>Study not reported in English. Study duration <12 weeks</td>
</tr>
<tr>
<td>Sharif-Kashani (2014)</td>
<td>The Effect of Amlodipine and Sildenafil on the NT-ProBNP Level of Patients with COPD-Induced Pulmonary Hypertension</td>
<td>Study does not contain any of the outcomes of interest. Study duration <12 weeks</td>
</tr>
<tr>
<td>Sin (2007)</td>
<td>Effects of nocturnal noninvasive mechanical ventilation on heart rate variability of patients with advanced COPD</td>
<td>Does not contain a population of people with COPD, cor pulmonale or pulmonary hypertension</td>
</tr>
<tr>
<td>Skwarski (1989)</td>
<td>The effects of mexiletine on cardiac arrhythmias in patients with cor pulmonale</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Wever (1983)</td>
<td>The influence of guanfacine on blood pressure and lung function in hypertensive patients with chronic obstructive lung disease</td>
<td>Study duration <12 weeks</td>
</tr>
<tr>
<td>Zielinski (1986)</td>
<td>Captopril effects on pulmonary and systemic hemodynamics in chronic cor pulmonale.</td>
<td>Study duration <12 weeks</td>
</tr>
</tbody>
</table>
Appendix J – Research recommendations

<table>
<thead>
<tr>
<th>Question</th>
<th>What are the most clinical and cost effective treatments for pulmonary hypertension in people with COPD?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>People diagnosed with pulmonary hypertension secondary to COPD</td>
</tr>
<tr>
<td>Interventions</td>
<td>Any relevant intervention (including pharmacological treatments, pulmonary rehabilitation and non-invasive ventilation)</td>
</tr>
</tbody>
</table>
| Comparator | • Each other
• Placebo |
| Outcomes | • Mortality
• Hospital admissions, re-admissions and bed days
• Exacerbations
• Breathlessness, orthopnoea, ankle swelling
• Arterial oxygen partial pressure (PaO2)
• Resting oxygen saturation (SaO2)
• Exercise capacity/ exercise tolerance (walk test)
• Change in FEV1
• Adverse events: all, severe, treatment discontinuation
• Quality of life
• Resource use and costs |
| Study design | Randomised controlled trial |

Potential criterion

Importance to patients, service users or the population	Pulmonary hypertension is a common complication of COPD that is associated with a worse disease prognosis, including an increased rate of exacerbations, reduced exercise capacity and reduced survival. Treatment of this complication could improve quality of life for people with COPD.
Relevance to NICE guidance	Moderate-priority: a negative recommendation was made due to the lack of evidence for an effective treatment. This recommendation could be changed if a new treatment was shown to be effective for the outcomes of most interest to people with pulmonary hypertension secondary to COPD or if new evidence supported the use of an existing intervention.
Current evidence base	Although there were a number of studies looking at pharmacological treatments for pulmonary hypertension secondary to COPD, some of these studies had methodological limitations that increased the uncertainty surrounding their results. In addition, there were inconsistencies in the evidence base within some drug classes that further complicated interpretation. No evidence was identified for the effectiveness of non-pharmacological interventions.
Equality	No specific equality concerns are relevant to this research recommendation.
Feasibility	There is a large enough population of people with pulmonary hypertension secondary to COPD that intervention studies in this area should be feasible.
Appendix K – References

Clinical evidence - included studies

Pulmonary hypertension - RCTs

Arian Anahita, Moghadam Sayyed Gholamreza Mortazavi, Kazemi Toba, and Hajihosseini Morteza (2017) The Effects of Statins on Pulmonary Artery Pressure in Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Journal of research in pharmacy practice 6, 27-30

Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)

Pulmonary hypertension - systematic reviews

Wang Lin, Qu Moying, Chen Yao, Zhou Yaxiong, and Wan Zhi (2016) Statins Have No Additional Benefit for Pulmonary Hypertension: A Meta-Analysis of Randomized Controlled Trials. PloS one 11, e0168101

Cor pulmonale - RCTs

Clinical evidence - excluded studies

Blanco Isabel, Gimeno Elena, Munoz Phillip A, Pizarro Sandra, Gistau Concepcion, Rodriguez-Roisin Robert, Roca Josep, and Barbera Joan Albert (2010) Hemodynamic and

Chronic obstructive pulmonary disease in over 16s: diagnosis and management : evidence review for managing pulmonary hypertension and cor pulmonale, (December 2018)
gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension. American journal of respiratory and critical care medicine 181, 270-8

Boeck L, Tamm M, and Stolz D (2011) Inhalation of a prostacyclin analog (iloprost) does not improve exercise capacity in COPD with disproportional pulmonary hypertension. European Respiratory Journal 38, no pagination

Managing pulmonary hypertension and cor pulmonale

