National Institute for Health and Care Excellence

Final

Obstructive sleep apnoea/hypopnoea syndrome and obesity hypoventilation syndrome in over 16s

Evidence review B: Assessment tools for people with suspected OSAHS, OHS or COPD-OSAHS overlap syndrome

NICE guideline NG202
Diagnostic evidence review
August 2021

Final

Developed by the National Guideline Centre, hosted by the Royal College of Physicians

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and, where appropriate, their carer or guardian.

Local commissioners and providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© NICE 2021. All rights reserved. Subject to Notice of rights.

ISBN: 978-1-4731-4229-9

Contents

;	synd	rome,	obesity hypoventilation syndrome or COPD-OSAHS overlap	5
	1.1	Review apnoea OSAH	v question: What assessment scales should be used if obstructive sleep a/hypopnoea syndrome, obesity hypoventilation syndrome or COPD- S overlap syndrome is suspected (for example, the Epworth sleepiness STOP-Bang sleep apnoea questionnaire or Berlin questionnaire)?	o s
	1.2	Introdu	uction	5
	1.3	PICO t	able	5
	1.4	Clinica	l evidence	6
		1.4.1	Included studies	6
		1.4.2	Excluded studies	7
		1.4.3	Summary of clinical studies included in the evidence review	8
		1.4.4	Quality assessment of clinical studies included in the evidence review	15
	1.5	Econo	mic evidence	18
		1.5.1	Included studies	18
		1.5.2	Excluded studies	18
		1.5.3	Health economic modelling	18
		1.5.4	Health economic evidence statements	18
	1.6	The co	mmittee's discussion of the evidence	18
		1.6.1	Interpreting the evidence	18
		1.6.2	Cost effectiveness and resource use	21
Арр	endic	ces		66
	Appe	ndix A:	Review protocols	66
	Appe	ndix B:	Literature search strategies	72
	Appe	ndix C:	Clinical evidence selection	85
	Appe	ndix D:	Clinical evidence tables	86
	Appe	ndix E:	Coupled sensitivity and specificity forest plots and sROC curves	121
	Appe	ndix F:	Health economic evidence selection	131
	Appe	ndix G:	Health economic evidence tables	132
	Appe	ndix H	Excluded studies	133

1.1 Review question: What assessment scales should be used if obstructive sleep apnoea/hypopnoea syndrome, obesity hypoventilation syndrome or COPD-OSAHS overlap syndrome is suspected (for example, the Epworth sleepiness scale, STOP-Bang sleep apnoea questionnaire or Berlin questionnaire)?

1.2 Introduction

Assessment scales are used to help with the identification of obstructive sleep apnoea/hypopnoea syndrome (OSAHS), obesity hypoventilation syndrome (OHS) and COPD-OSAHS overlap syndrome. These enable any healthcare professional assess patients in standardised way and help ensure only those most likely to have one of these conditions are referred onward to a sleep clinic for further investigation and diagnosis. Current assessment tools are usually the Epworth sleepiness score, the Stop Bang Questionnaire and the Berlin Questionnaire. There is no national guidance on which is the preferred option at the present time. This review aims to identify which, if any, of these should be used in practice.

1.3 PICO table

For full details see the review protocol in appendix A.

Table 1: PICO characteristics of review question

Population	People in whom OSAHS/OHS/ COPD-OSAHS overlap syndrome is suspected based on symptoms or co-existing conditions
Target condition	OSAHS/OHS/ COPD-OSAHS overlap syndrome
Index tests	Assessment scales including any one or more of the below: • Epworth sleepiness scale • STOP-BANG questionnaire • Berlin questionnaire
Reference standards	Accuracy For diagnosis of OSAHS reference standard will be AHI/RDI/ODI >5 by hospital polysomnography For diagnosis of OHS reference standard will be hypercapnia on arterial/capillary blood gases

	Test and treat
	Any strategy compared with any other
Statistical measures and	Accuracy outcomes:
Outcomes	sensitivity
	specificity
	positive predictive value (PPV)
	negative predictive value (NPV)
	Test and treat outcomes:
	Critical
	mortality (dichotomous)
	generic or disease specific quality of life (continuous)
	Important
	sleepiness scores (continuous, e.g. Epworth)
	apnoea-hypopnoea index or respiratory disturbance index (continuous)
	oxygen desaturation index (continuous)
	healthcare resource use (rates/dichotomous)
	impact on co-existing conditions: Alb 41a for dishetes (continuous)
	o HbA1c for diabetes (continuous) o cardiovascular events for cardiovascular disease (dichotomous)
	o systolic blood pressure for hypertension (continuous)
Study design	Single gate cross-sectional study designs will be included in the accuracy review. Two gate study designs will be excluded from the accuracy review
	RCTs will be prioritised for test and treat comparisons, if insufficient RCTs are found, non-randomised studies will be considered if they adjust for key confounders (age, BMI, co-existing conditions)

1.4 Clinical evidence

1.4.1 Included studies

OSAHS

This review aimed to assess which assessment scales are most useful in identifying possible cases of obstructive sleep apnoea/hypopnoea syndrome, obesity hypoventilation syndrome or COPD-OSAHS overlap syndrome. Ten studies were included in the review. 18, 68, 93, 96, 108, 126, 164, 416, 480, 553 Evidence from these studies is summarised in the clinical evidence summary below (Table 2).

Three studies assessed the accuracy of the Berlin questionnaire, 4 studies assessed Epworth Sleepiness Scale (ESS), 7 studies assessed STOP BANG questionnaire, and one study assessed a combination of STOP BANG and Epworth Sleepiness Scale (ESS). Some studies assessed more than one questionnaire.

Studies using modified assessment scales and/or using assessment scales which were not in English, were not included in this review.

No test and treat studies were identified.

OSAHS: FINAL

Assessment scales for suspected obstructive sleep apnoea/hypopnoea syndrome, obesity hypoventilation syndrome or COPD-OSAHS overlap syndrome

OHS

No studies were identified for people with suspected OHS.

COPD-OSAHS overlap syndrome

Two diagnostic accuracy studies in people with suspected COPD-OSAHS overlap syndrome were included in this review. ^{579, 582} One study assessed 3 questionnaires (Epworth Sleepiness scale, Berlin questionnaire and STOP-BANG questionnaire) and another study assessed 2 questionnaires (Berlin questionnaire and STOP-BANG questionnaire). No test and treat studies (RCTs) were identified.

Evidence from these studies is summarised in the clinical evidence summary below (Table 2).

See also the study selection flow chart in appendix C, sensitivity and specificity Forest plots in appendix E, and study evidence tables in appendix D.

1.4.2 Excluded studies

See the excluded studies list in appendix H.

1.4.3 Summary of clinical studies included in the evidence review

Table 2: Summary of studies included in the evidence review

Study	Population	Target condition	Assessment scale	Reference standard	Comments
Ahmadi 2008 ¹⁸ Retrospective chart review Canada	N = 130 analysed People referred to sleep and alertness clinic Age: mean 42.2 (male), 45.1 (female) Male/female ratio: 70:60 Ethnicity not reported	Sleep apnoea/ hypopnoea syndrome	Berlin questionnaire	Laboratory PSG with a pre-specified diagnostic RDI of >5	Setting: Respiratory ward or sleep laboratory
Boynton 2013 ⁶⁸ Cross- sectional USA	N = 219 recruited and analysed People referred for diagnostic PSG with suspicion of OSA Age: mean 46.3 (SD 13.9) Male/female ratio: 91/74 of those identified as being high risk for OSA Ethnicity not reported	OSA	Self-reported STOP-BANG questionnaire, high risk if score of 3 or more	Single nocturnal lab based PSG, with a pre- specified diagnostic AHI of >5	Setting: Respiratory ward or sleep laboratory

Cowan N 2014 ⁹³	Population N = 129 analysed	condition Obstructive	scale	Reference standard	Comments
sectional a	People referred to sleep centre for assessment of possible OSA Age: mean 49 (11) Male/female ratio: 82/47 Ethnicity: not reported	sleep apnoea	ESS (≥11/24), Berlin, STOP- BANG (≥3/8)	Home limited polygraphy with AHI ≥ 5	Setting: sleep centre
2020 ⁹⁶ a	N = 66 recruited and N = 60 analysed Adults with down syndrome attending Down Syndrome Reference Center of Hospital Regional da Asa Norte (HRAN) linked to Faculdade de Medicina da Escola Superior de Ciências da Sau'de (ESCS), Brası'lia, Federal District, Brazil. Age: mean 27.7 (SD 9.1)	Obstructive sleep apnoea	STOP-Bang questionnaire	Laboratory polysomnography with a prespecified diagnostic AHI ≥ 5	Setting: laboratory

Study	Population	Target condition	Assessment scale	Reference standard	Comments
	Ethnicity: not reported				
Duarte 2020 ¹⁰⁸	N = 8138 recruited and N = 7377 analysed, patients grouped into two large and independent cohorts: derivation (N=3771) and validation (N=3606)	Obstructive sleep apnoea	STOP-Bang questionnaire	Laboratory polysomnography with a prespecified diagnostic AHI ≥ 5	Setting: laboratory
	People referred to specialist centre for suspected obstructive sleep apnoea				
	Age: derivation cohort - mean 45.9 (SD 14.6) validation cohort - mean 45.7(14.6)				
	Male/female ratio: Derivation cohort – 1983/1788				
	Validation cohort – 1961/1645				
	Ethnicity: not reported				

Study	Population	Target condition	Assessment scale	Reference standard	Comments
Felfeli 2020 ¹²⁶	N=27 patients analysed Consecutive adult patients with new diagnosis of retinal vein occlusion confirmed with intravenous fluorescein angiography were enrolled and screened for obstructive sleep apnoea. Age: mean 69.6 (SD 11.5) Male/female ratio: 11/16 Ethnicity: not reported	Obstructive sleep apnoea	Berlin and Stop- Bang questionnaires	Laboratory polysomnography with a prespecified diagnostic AHI ≥ 15	Setting: laboratory
Hesselbacher 2012 ¹⁶⁴ Cross- sectional USA	N = 2112 studied, 1900 analysed People referred to specialist centre for suspected obstructive sleep apnoea Age: mean 54 (SD 15) Male/female ratio: 109:81 Ethnicity	Obstructive sleep apnoea	Epworth Sleepiness Scale	PSG, RDI >15	Setting: sleep centre
Pereira 2013 ⁴¹⁶ Cross- sectional	N=128 recruited and analysed People undergoing screening for obstructive sleep apnoea	Obstructive sleep apnoea	Berlin questionnaire; Stop Bang questionnaire;	Laboratory polysomnography with no pre-specified diagnostic AHI, RDI or ODI	Setting: Home then laboratory

Study	Population	Target condition	Assessment scale	Reference standard	Comments
Canada	Age: mean 50 (SD 12.3) Male/Female ratio: 84/44 Ethnicity: not reported		portable sleep monitor, with RDI and AHI		
Sangkum 2017 ⁴⁸⁰ Cross- sectional USA	N=208 recruited and analysed People with suspected obstructive sleep apnoea Age: mean 52.9 (SD 0.9) Male/Female ratio: 75/133 Ethnicity: African American (69%); white (28%); Hispanic (0.5%)	Obstructive sleep apnoea	STOP-BANG questionnaire	Laboratory polysomnography with a pre-specified OSA diagnostic AHI >5 events/hour	Setting: initial clinical evaluation site and laboratory
Vana 2013 ⁵⁵³ Cross- sectional USA	N=60 recruited, 47 analysed People undergoing screening for obstructive sleep apnoea and sleep-disordered breathing Age: mean 46.4 (SD 13.2) Male/Female ratio: 16/31	Obstructive sleep apnoea and sleep- disordered breathing	Epworth Sleepiness Scale questionnaire; STOP-Bang questionnaire	Polysomnography with a pre-specified diagnostic AHI ≥5 for OSA and RDI ≥5 for SDB	Setting: not reported

Study	Population	Target condition	Assessment scale	Reference standard	Comments	
	Ethnicity: Caucasian (76.6%); African American (10.6%); Native American/Asian/multiracial/'Mexican' (12.8%). 68.1% identified as Hispanic or Latino					
Wu 2020 ⁵⁷⁹	N = 116 recruited and analysed	Overlap syndrome	Berlin and STOP-BANG questionnaires	Laboratory polysomnography with a prespecified diagnostic AHI ≥ 5	Setting: laboratory	
	COPD subjects with suspected sleep apnoea					
	Age: mean 63 (Range 57, 68)					
	Male/female ratio: 101/15					
	Ethnicity: not reported					
Xiong 2019 ⁵⁸²	N = 476 recruited and N = 431 analysed	Overlap syndrome	ESS, Berlin and STOP-BANG questionnaires	Laboratory polysomnography with a prespecified diagnostic AHI ≥ 5	Setting: laboratory	
	Patients with COPD and suspected OSA					

Study	Population	Target condition	Assessment scale	Reference standard	Comments
	Age: mean 67.4 (SD 8.9)				
	Male/female ratio: 388/43				
	Ethnicity: not reported				

See appendix D for full evidence tables.

1.4.4 Quality assessment of clinical studies included in the evidence review

Table 3: Clinical evidence summary for assessment scales in people with suspected OSAHS

Index Test (Threshold)	Number of studies	N	Sensitivity % (95% CI)	Quality	Specificity % (95% CI)	Quality
Berlin questionnaire	4	410	Pooled ⁵ : 77.52% (39.99 to 94.51)	VERY LOW ^{1,2,4} due to risk of bias, very serious inconsistency and very serious imprecision	Pooled ⁵ : 31.34% (6.1 to75.26	VERY LOW ^{1,2,4} due to risk of bias, serious inconsistency and serious imprecision
Epworth Sleepiness Scale	3	2067	Pooled ⁵ : 52.42% (18.11 to 83.16)	VERY LOW ^{1,2,4} due to risk of bias, serious inconsistency and serious imprecision	Pooled ⁵ : 50.75% (21.08 to 79.37%)	VERY LOW ^{1,2,4} due to risk of bias, serious inconsistency and serious imprecision
STOP BANG questionnaire	7	8129	Pooled ⁵ : 90.31% (83.96 to 94.67)	VERY LOW ^{1,2,4} due to risk of bias, serious inconsistency and serious imprecision	Pooled ⁵ : 40.81% (27.19 to 55.01	LOW ^{1,2} due to risk of bias and serious inconsistency
STOP BANG or Epworth questionnaires (positive on either)	1	47	97% (84 to 100%)	LOW ^{1,4} due to risk of bias, and serious imprecision	20% (4 to 48%)	MODERATE ¹ due to risk of bias

- (1) Risk of bias was assessed using the QUADAS-2 checklist. The evidence was downgraded by 1 increment if the majority of studies were rated at high risk of bias and downgraded by 2 increments if the majority of studies were rated at very high risk of bias.
- (2) Inconsistency was assessed by inspection of the sensitivity and specificity plots. The evidence was downgraded by 1 increment if the individual studies varied across 2 areas [(for example, 50–90% and 90–100%)] and by 2 increments if the individual studies varied across 3 areas [(for example, 0–50%, 50–90% and 90–100%)].
- (3) Subgroup analysis was conducted for BMI and coexisting conditions. Subgroup analysis by BMI did not explain heterogeneity. Subgroup analysis by coexisting conditions could not be conducted because there was no sufficient information to conduct a subgroup analysis. Indirectness was assessed using the QUADAS-2 checklist items referring to applicability. The evidence was downgraded by 1 increment if the majority of studies were seriously indirect, and downgraded by 2 increments if the majority of studies are very seriously indirect
- (4) Imprecision was assessed based on inspection of the confidence region in the diagnostic meta-analysis or, where diagnostic meta-analysis has not been conducted, assessed according to the range of confidence intervals in the individual studies. Two clinical decision thresholds were determined at the value above which a test would be recommended (90%), and a second below which a test would be considered of no clinical use (60%). The evidence was downgraded by 1 increment when the range of the confidence interval around the point estimate crossed one threshold, and downgraded by 2 increments when the range covered two thresholds
- (5) Pooled sensitivity/specificity from diagnostic meta-analysis

Table 4: Clinical evidence summary for assessment scales in people with suspected OSAHS (patients with Down syndrome)

Index Test (Threshold)	Number of studies	N	Sensitivity % (95% CI)	Quality	Specificity % (95% CI)	Quality
STOP BANG questionnaire	1	60	100 % (93 to100%)	VERY LOW ^{1,3} due to very serious risk of bias, and indirectness	45% (17 to 77%)	VERY LOW ^{1,3,4} due to very serious risk of bias, indirectness and serious imprecision

- (1) Risk of bias was assessed using the QUADAS-2 checklist. The evidence was downgraded by 1 increment if the majority of studies were rated at high risk of bias and downgraded by 2 increments if the majority of studies were rated at very high risk of bias.
- (2) Inconsistency was assessed by inspection of the sensitivity and specificity plots. The evidence was downgraded by 1 increment if the individual studies varied across 2 areas [(for example, 50–90% and 90–100%)] and by 2 increments if the individual studies varied across 3 areas [(for example, 0–50%, 50–90% and 90–100%)].
- (3) Indirectness was assessed using the QUADAS-2 checklist items referring to applicability. The evidence was downgraded by 1 increment if the majority of studies were seriously indirect, and downgraded by 2 increments if the majority of studies are very seriously indirect
- (4) Imprecision was assessed based on inspection of the confidence region in the diagnostic meta-analysis or, where diagnostic meta-analysis has not been conducted, assessed according to the range of confidence intervals in the individual studies. Two clinical decision thresholds were determined at the value above which a test would be recommended (90%), and a second below which a test would be considered of no clinical use (60%). The evidence was downgraded by 1 increment when the range of the confidence interval around the point estimate crossed one threshold, and downgraded by 2 increments when the range covered two thresholds

Table 5: Clinical evidence summary for assessment scales in people with suspected COPD-OSAHS overlap syndrome

Index Test (Threshold)	Number of studies	N	Sensitivity % (95% CI)	Quality	Specificity % (95% CI)	Quality
Berlin questionnaire	2	547	Pooled ⁵ : 69.48% (11.28 to 97.87)	VERY LOW ^{1,4} due to risk of bias and very serious imprecision	Pooled ⁵ : 68.41% (2.7 to 99.39%)	VERY LOW ^{1,2,4} due to risk of bias, inconsistency and very serious imprecision
Epworth Sleepiness Scale	1	431	72% (67 to 77%)	MODERATE ¹ due to risk of bias	47% (37 to 57%)	MODERATE ¹ due to risk of bias
STOP BANG questionnaire	2	547	Pooled ⁵ : 89.78% (38.95 to 99.26%)	VERY LOW ^{1,2,4}	Pooled ⁵ : 49.25% (6.6 to 92.34%)	VERY LOW ^{1,2,4}

Index Test (Threshold)	Number of studies	N	Sensitivity % (95% CI)	Quality	Specificity % (95% CI)	Quality
				due to risk of bias, inconsistency and very serious imprecision		due to risk of bias, inconsistency and very serious imprecision

- (1) Risk of bias was assessed using the QUADAS-2 checklist. The evidence was downgraded by 1 increment if the majority of studies were rated at high risk of bias and downgraded by 2 increments if the majority of studies were rated at very high risk of bias.
- (2) Inconsistency was assessed by inspection of the sensitivity and specificity plots. The evidence was downgraded by 1 increment if the individual studies varied across 2 areas [(for example, 50–90% and 90–100%)] and by 2 increments if the individual studies varied across 3 areas [(for example, 0–50%, 50–90% and 90–100%)]. Subgroup analysis by BMI and coexisting conditions could not be conducted because there was no sufficient information to conduct subgroup analysis.
- (3) Indirectness was assessed using the QUADAS-2 checklist items referring to applicability. The evidence was downgraded by 1 increment if the majority of studies were seriously indirect, and downgraded by 2 increments if the majority of studies are very seriously indirect
- (4) Imprecision was assessed based on inspection of the confidence region in the diagnostic meta-analysis or, where diagnostic meta-analysis has not been conducted, assessed according to the range of confidence intervals in the individual studies. Two clinical decision thresholds were determined at the value above which a test would be recommended (90%), and a second below which a test would be considered of no clinical use (60%). The evidence was downgraded by 1 increment when the range of the confidence interval around the point estimate crossed one threshold, and downgraded by 2 increments when the range covered two thresholds
- (5) Pooled sensitivity/specificity from diagnostic meta-analysis

1.5 Economic evidence

1.5.1 Included studies

No health economic studies were included.

1.5.2 Excluded studies

No relevant health economic studies were excluded due to assessment of limited applicability or methodological limitations.

See also the health economic study selection flow chart in appendix F.

1.5.3 Health economic modelling

Original modelling was not conducted for this question.

1.5.4 Health economic evidence statements

No evidence was found

1.6 The committee's discussion of the evidence

1.6.1 Interpreting the evidence

1.6.1.1 The diagnostic measures that matter most

Questionnaires

The committee reviewed the evidence on sensitivity and specificity of the various questionnaires and tests; sensitivity as a screening measure was considered most important.

1.6.1.2 The quality of the evidence

OSAHS

Questionnaires

There was evidence from ten diagnostic accuracy studies in people with suspected OSAHS; four studies assessed the accuracy of the Berlin questionnaire, three studies assessed the accuracy of the Epworth Sleepiness Scale, seven studies assessed the accuracy of the STOP BANG questionnaire, one study assessed the accuracy of a combination of STOP BANG and Epworth. Some studies assessed more than one questionnaire. Studies varied in size however most of the studies consisted of medium to large size populations ranging from 60 to 354 participants and two studies included large populations of 2112 and 7377 participants respectively.

There was also one diagnostic accuracy study in people with suspected OSAHS and with Down syndrome, with the diagnostic accuracy of the Stop Bang questionnaire assessed in 60 patients. This study was analysed separately because patients with Down's syndrome tend to have higher incidence of OSAHS compared to the general population.

No test and treat studies (RCTs) were identified.

The quality of the evidence varied from moderate to very low quality; the majority of evidence was downgraded due to risk of bias, imprecision and inconsistency. Risk of bias was most commonly due to selection bias. The committee also acknowledged that some uncertainty existed across the effect sizes seen within the evidence, with some confidence intervals crossing the MID thresholds or line of no effect. Inconsistency was found in majority of comparisons (Berlin questionnaire, Epworth sleepiness scale and STOP BANG questionnaires). For inconsistency the evidence was downgraded by 1 increment if the individual studies varied across 2 areas [(for example, 50–90% and 90–100%)] and by 2 increments if the individual studies varied across 3 areas [(for example, 0–50%, 50–90% and 90–100%)] . Subgroup analysis was conducted for BMI and coexisting conditions. Subgroup analysis by BMI did not explain heterogeneity. Subgroup analysis by coexisting conditions could not be conducted because there was no sufficient information to conduct a subgroup analysis

OHS

No evidence was identified for people with suspected OHS.

COPD-OSAHS overlap syndrome

Questionnaires

There was evidence from two diagnostic accuracy studies in people with suspected COPD-OSAHS overlap syndrome: one study assessed 3 questionnaires (Epworth Sleepiness scale, Berlin questionnaire and STOP-BANG questionnaire) and another study assessed 2 questionnaires (Berlin questionnaire and STOP-BANG questionnaire). The studies included 116 and 431 participants respectively.

No test and treat studies (RCTs) were identified.

The quality of the evidence varied from moderate to very low quality; the majority of evidence was downgraded due to risk of bias, imprecision and inconsistency. Risk of bias was most commonly due to selection bias. The committee also acknowledged that some uncertainty existed across the effect sizes seen within the evidence, with some confidence intervals crossing the MID thresholds or line of no effect. Inconsistency was commonly due to overlap between studies and were downgraded by one increment if the individual study values varied across 2 areas: where values of individual studies are both above and below 50%, or both above and below 90% and downgraded by 2 increments if the individual study values varied across 3 areas, where values of individual studies are above and below 50%, and also above and below 90%. Subgroup analysis by BMI and coexisting conditions could not be conducted because there was no sufficient information to conduct subgroup analysis.

1.6.1.3 Benefits and harms

Questionnaires

OSAHS

The Epworth sleepiness scale is intended to assess for sleepiness rather than to diagnose OSAHS, and the limited evidence reflected this, showing that it performed poorly both for sensitivity and specificity in diagnosing OSAHS. The committee noted that some people with OSAHS do not have excessive sleepiness and that not all healthcare professionals are aware of this. However, the committee agreed that it has a useful role in assessment and in monitoring, and noted that it is part of the information required by the DVLA from medical professionals in assessing licencing in drivers with moderate and severe OSAHS once their condition is controlled (see also evidence report L on monitoring). They therefore agreed that it should be used, but not as the sole means of assessing the presence of OSAHS or as the sole basis for referral.

The committee wanted to emphasise that the Epworth sleepiness scale should not be used as a gateway for further diagnostic assessment as it has low sensitivity and specificity. However, assessment of sleepiness is vital for determining treatment and assessing response to treatment and the Epworth sleepiness scale is the standard tool for doing so.

Limited evidence showed that the STOP-Bang questionnaire has high sensitivity and low specificity for diagnosing OSAHS in both general population and in patients with Down's syndrome. Sensitivity is a priority for questionnaires because they are used only for initial assessment., The committee had some concerns about the accuracy of STOP-Bang questionnaire in people with less common presentations and in women. The committee from their experience noted that females snore less than males and their symptoms may also be different for example more sleep disturbance and less sleepiness so conventional tools which rely on former may not be as accurate. The committee agreed that it could have a role in assessment, alongside the Epworth sleepiness scale, for preliminary understanding of the persons' symptoms and concerns. Epworth sleepiness scale is used to assess only sleepiness whereas STOP-Bang questionnaire is used to assess risk of having OSAHS and includes parameters such as: snoring, tiredness, history of high blood pressure, BMI, age, neck size and gender. With this in mind the committee recommended using the Epworth questionnaire and to consider using the STOP-Bang questionnaire.

The committee did not want to make a specific recommendation for people with Down's syndrome, as the evidence was based on one small very low-quality study.

The committee agreed that the recommended questionnaires are widely used in current practice, so the recommendations are not expected to involve a change in practice.

OHS

The committee noted the lack of evidence for assessment scales in OHS and decided to make consensus recommendations based on experience and current practice.

The committee agreed that the Epworth sleepiness scale to assess sleepiness has a useful role in monitoring and assessment of sleepiness in people with OHS. However, it was noted that not all people with OHS have excessive sleepiness and that healthcare professionals may not always be aware of this. Therefore, the committee recommended to use Epworth sleepiness scale for preliminary assessment of sleepiness and not to use it as the sole basis to determine if referral is needed because not all people with OHS have excessive sleepiness.

The committee agreed that the Epworth sleepiness scale is widely used in current practice, so the recommendations are not expected to involve a change in practice.

As the committee made a strong recommendation for Epworth sleepiness scale, they did not want to make any research recommendation for this questionnaire.

The evidence for STOP-Bang questionnaire was limited to OSAHS only and there was no validation for its use in OHS. The committee agreed that the STOP-Bang questionnaire is not used in practice for OHS and therefore the committee did not make a recommendation or a research recommendation for this.

COPD-OSAHS overlap syndrome

Evidence from one study showed that Epworth sleepiness scale had moderate sensitivity and low specificity for diagnosing COPD-OSAHS overlap syndrome. Due to limited evidence, the committee also used their experience and knowledge of current practice to make the recommendations. The committee agreed that the Epworth sleepiness scale has a useful role in monitoring and preliminary assessment of sleepiness in COPD-OSAHS overlap syndrome. It was noted that not all people with COPD-OSAHS overlap syndrome have excessive sleepiness and that healthcare professionals may not always be aware of this.

However, the committee agreed that it has a useful role in assessment and monitoring, and noted that it is part of the DVLA requirements for drivers with suspected OSAHS (which will include those with COPD-OSAHS overlap syndrome) to be assessed with the Epworth sleepiness scale. With this in mind the committee recommended to use Epworth sleepiness scale for preliminary assessment of sleepiness and not to use it as the sole basis determine if referral to a sleep service is needed as not all people with COPD-OSAHS syndrome have excessive sleepiness.

Limited evidence showed that STOP-Bang questionnaire had high sensitivity and low specificity for diagnosing COPD-OSAHS overlap syndrome. Sensitivity is a priority for questionnaires used for initial assessment, however the committee had some concerns about its accuracy in people with less common presentations and in women. The committee from their experience noted that females snore less than males and their symptoms may also be different for example more sleep disturbance and less sleepiness, so conventional tools which rely on former may not be as accurate. The committee agreed that it could have a role in assessment, alongside the Epworth sleepiness scale, at referral for preliminary understanding of the persons' symptoms and concerns. Epworth questionnaire is used to assess only sleepiness whereas STOP-Bang questionnaire is used to assess risk of having OSAHS and includes parameters such as: snoring, tiredness, history of high blood pressure, BMI, age, neck size and gender. With this in mind the committee recommended using the Epworth questionnaire and to consider using the STOP-Bang questionnaire.

The committee from their experience discussed that spirometry is routinely measured in clinical practice to assess the severity of COPD and aids the understanding of the relative contribution of COPD and OSAHS to symptom load and pathophysiology. With this in mind the committee recommended offering spirometry to assess the severity of COPD in people with suspected COPD—OSAHS overlap syndrome and cross-referred to the recommendations on spirometry in the NICE guideline on Chronic obstructive pulmonary disease in over 16s: diagnosis and management.

The committee agreed that the Epworth sleepiness scale and STOP-Bang questionnaire are widely used in current practice, so the recommendations are not expected to involve a change in practice. Spirometry is routinely used in the assessment of COPD patients, so the recommendations are not expected to involve a change in practice.

As the committee made strong recommendations for Epworth sleepiness scale and STOP-Bang questionnaire, they did not want to make any research recommendations for these questionnaires.

1.6.2 Cost effectiveness and resource use

There were no economic evaluations identified for this review question.

The STOP-Bang score and Epworth Sleepiness Scale (ESS) are commonly used in the assessment of OSAHS. The committee did not feel that completing both questionnaires would result in increased resource use (staff time), as both are short in length and, in their absence, similar questions would be asked by the clinician, which would take the same length of time or longer.

As the recommended questionnaires are widely used in current practice, the committee was of the view that their recommendation would not result in increased expenditure for the NHS.

Finally, the committee made weak consensus recommendations for the OHS/COPD-OSAHS overlap syndrome population based on their clinical expertise and current practice as there was no clinical or economic evidence available to steer recommendations.

References

- 1. Aaronson JA, Nachtegaal J, van Bezeij T, Groet E, Hofman WF, van den Aardweg JG et al. Can a prediction model combining self-reported symptoms, sociodemographic and clinical features serve as a reliable first screening method for sleep apnea syndrome in patients with stroke? Archives of Physical Medicine and Rehabilitation. 2014; 95(4):747-752
- 2. Aaronson JA, van Bezeij T, van den Aardweg JG, van Bennekom CA, Hofman WF. Diagnostic accuracy of nocturnal oximetry for detection of sleep apnea syndrome in stroke rehabilitation. Stroke. 2012; 43(9):2491-2493
- 3. Abad J, Munoz-Ferrer A, Cervantes MA, Esquinas C, Marin A, Martinez C et al. Automatic video analysis for obstructive sleep apnea diagnosis. Sleep. 2016; 39(8):1507-1515
- 4. Abdelghani A, Chambille B, Alfandary D, Feigel P, Nedelcoux H, Lanoe JL et al. A cost-effective two-step strategy for the diagnosis of sleep apnoea syndrome. Somnologie. 2004; 8(4):139-145
- 5. Abdeyrim A, Li N, Shao L, Heizhati M, Wang Y, Yao X et al. What can impulse oscillometry and pulmonary function testing tell us about obstructive sleep apnea: A case-control observational study? Sleep & Breathing. 2016; 20(1):61-68
- 6. Abdeyrim A, Tang L, Muhamat A, Abudeyrim K, Zhang Y, Li N et al. Receiver operating characteristics of impulse oscillometry parameters for predicting obstructive sleep apnea in preobese and obese snorers. BMC Pulmonary Medicine. 2016; 16(1):125
- 7. Abdeyrim A, Zhang Y, Li N, Zhao M, Wang Y, Yao X et al. Impact of obstructive sleep apnea on lung volumes and mechanical properties of the respiratory system in overweight and obese individuals. BMC Pulmonary Medicine. 2015; 15:76
- 8. Abdullah B, Idris AI, Mohammad ZW, Mohamad H. Validation of Bahasa Malaysia STOP-BANG questionnaire for identification of obstructive sleep apnea. Sleep & Breathing. 2018; 22(4):1235-1239
- 9. Abeyratne UR, de Silva S, Hukins C, Duce B. Obstructive sleep apnea screening by integrating snore feature classes. Physiological Measurement. 2013; 34(2):99-121
- 10. Abeyratne UR, Wakwella AS, Hukins C. Pitch jump probability measures for the analysis of snoring sounds in apnea. Physiological Measurement. 2005; 26(5):779-798
- 11. Abraham WT, Trupp RJ, Phillilps B, Bourge RC, Bailey B, Harding SM et al. Validation and clinical utility of a simple in-home testing tool for sleep-disordered breathing and arrhythmias in heart failure: Results of the Sleep Events, Arrhythmias, and Respiratory Analysis in Congestive Heart Failure (SEARCH) study. Congestive Heart Failure. 2006; 12(5):241-247; quiz 248-249
- 12. Abrahamyan L, Sahakyan Y, Chung S, Pechlivanoglou P, Bielecki J, Carcone SM et al. Diagnostic accuracy of level IV portable sleep monitors versus polysomnography for obstructive sleep apnea: A systematic review and meta-analysis. Sleep & Breathing. 2018; 22(3):593-611
- 13. Abrishami A, Khajehdehi A, Chung F. A systematic review of screening questionnaires for obstructive sleep apnea. Canadian Journal of Anaesthesia. 2010; 57(5):423-438

- 14. Abumuamar AM, Dorian P, Newman D, Shapiro CM. The STOP-BANG questionnaire shows an insufficient specificity for detecting obstructive sleep apnea in patients with atrial fibrillation. Journal of Sleep Research. 2018; 27(6):e12702
- 15. Acharya UR, Chua EC, Faust O, Lim TC, Lim LF. Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters. Physiological Measurement. 2011; 32(3):287-303
- 16. Adachi H, Mikami A, Kumano-go T, Suganuma N, Matsumoto H, Shigedo Y et al. Clinical significance of pulse rate rise during sleep as a screening marker for the assessment of sleep fragmentation in sleep-disordered breathing. Sleep Medicine. 2003; 4(6):537-542
- 17. Adams RJ, Appleton SL, Vakulin A, Lang C, Martin SA, Taylor AW et al. Association of daytime sleepiness with obstructive sleep apnoea and comorbidities varies by sleepiness definition in a population cohort of men. Respirology. 2016; 21(7):1314-1321
- 18. Ahmadi N, Chung SA, Gibbs A, Shapiro CM. The Berlin questionnaire for sleep apnea in a sleep clinic population: relationship to polysomnographic measurement of respiratory disturbance. Sleep & Breathing. 2008; 12(1):39-45
- 19. Akhter S, Abeyratne UR, Swarnkar V, Hukins C. Snore sound analysis can detect the presence of obstructive sleep apnea specific to NREM or REM sleep. Journal of Clinical Sleep Medicine. 2018; 14(6):991-1003
- 20. Alakuijala A, Salmi T. Predicting obstructive sleep apnea with periodic snoring sound recorded at home. Journal of Clinical Sleep Medicine. 2016; 12(7):953-958
- 21. Alchakaki A, Riehani A, Shikh-Hamdon M, Mina N, Badr MS, Sankari A. Expiratory snoring predicts obstructive pulmonary disease in patients with sleep-disordered breathing. Annals of the American Thoracic Society. 2016; 13(1):86-92
- 22. Alhouqani S, Al Manhali M, Al Essa A, Al-Houqani M. Evaluation of the Arabic version of STOP-Bang questionnaire as a screening tool for obstructive sleep apnea. Sleep & Breathing. 2015; 19(4):1235-1240
- 23. Almazaydeh L, Elleithy K, Faezipour M. Obstructive sleep apnea detection using SVM-based classification of ECG signal features. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012; 2012:4938-4941
- Alshaer H, Fernie GR, Maki E, Bradley TD. Validation of an automated algorithm for detecting apneas and hypopneas by acoustic analysis of breath sounds. Sleep Medicine. 2013; 14(6):562-571
- 25. Alshaer H, Fernie GR, Tseng WH, Bradley TD. Comparison of in-laboratory and home diagnosis of sleep apnea using a cordless portable acoustic device. Sleep Medicine. 2016; 22:91-96
- 26. Alvarez D, Cerezo-Hernandez A, Crespo A, Gutierrez-Tobal GC, Vaquerizo-Villar F, Barroso-Garcia V et al. A machine learning-based test for adult sleep apnoea screening at home using oximetry and airflow. Scientific Reports. 2020; 10(1):5332
- 27. Alvarez D, Gutierrez GC, Marcos JV, Del Campo F, Hornero R. Spectral analysis of single-channel airflow and oxygen saturation recordings in obstructive sleep apnea detection. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires. 2010; 2010:847-850

- 28. Alvarez D, Hornero R, Abasolo D, del Campo F, Zamarron C. Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection. Physiological Measurement. 2006; 27(4):399-412
- 29. Alvarez D, Hornero R, Abasolo D, del Campo F, Zamarron C, Lopez M. Nonlinear measure of synchrony between blood oxygen saturation and heart rate from nocturnal pulse oximetry in obstructive sleep apnoea syndrome. Physiological Measurement. 2009; 30(9):967-982
- 30. Alvarez D, Hornero R, Garcia M, del Campo F, Zamarron C. Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure. Artificial Intelligence in Medicine. 2007; 41(1):13-24
- 31. Alvarez D, Hornero R, Garcia M, del Campo F, Zamarron C, Lopez M. Cross approximate entropy analysis of nocturnal oximetry signals in the diagnosis of the obstructive sleep apnea syndrome. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY. 2006; 2006:6149-6152
- 32. Amra B, Javani M, Soltaninejad F, Penzel T, Fietze I, Schoebel C et al. Comparison of Berlin Questionnaire, STOP-Bang, and Epworth Sleepiness Scale for diagnosing obstructive sleep apnea in persian patients. International Journal of Preventive Medicine. 2018; 9(1):28
- 33. Amra B, Nouranian E, Golshan M, Fietze I, Penzel T. Validation of the persian version of berlin sleep questionnaire for diagnosing obstructive sleep apnea. International Journal of Preventive Medicine. 2013; 4(3):334-339
- 34. Amra B, Rahmati B, Soltaninejad F, Feizi A. Screening questionnaires for obstructive sleep apnea: An updated systematic review. Oman Medical Journal. 2018; 33(3):184-192
- 35. Andres-Blanco AM, Alvarez D, Crespo A, Arroyo CA, Cerezo-Hernandez A, Gutierrez-Tobal GC et al. Assessment of automated analysis of portable oximetry as a screening test for moderate-to-severe sleep apnea in patients with chronic obstructive pulmonary disease. PloS One. 2017; 12(11):e0188094
- 36. Andreu AL, Chiner E, Sancho-Chust JN, Pastor E, Llombart M, Gomez-Merino E et al. Effect of an ambulatory diagnostic and treatment programme in patients with sleep apnoea. European Respiratory Journal. 2012; 39(2):305-312
- 37. Araujo I, Marques F, Andre S, Araujo M, Marques S, Ferreira R et al. Diagnosis of sleep apnea in patients with stable chronic heart failure using a portable sleep test diagnostic device. Sleep & Breathing. 2018; 22(3):749-755
- 38. Arrazola-Cortes E, Hernandez-Cervantes J, Gonzalez-Perez B, Sauri-Suarez S, Lopez-Hernandez LB, Toledo-Lozano CG et al. Polysomnography-based diagnosis in Mexican adult patients with Obstructive Sleep Apnea Syndrome (OSAS) clinical suspicion. Neuroendocrinology Letters. 2017; 38(6):449-454
- 39. Arunsurat I, Luengyosluechakul S, Prateephoungrat K, Siripaupradist P, Khemtong S, Jamcharoensup K et al. Simplified berlin questionnaire for screening of high risk for obstructive sleep apnea among Thai male healthcare workers. Journal of UOEH. 2016; 38(3):199-206
- 40. Assefa SZ, Diaz-Abad M, Korotinsky A, Tom SE, Scharf SM. Comparison of a simple obstructive sleep apnea screening device with standard in-laboratory polysomnography. Sleep & Breathing. 2016; 20(2):537-541

- 41. Aurora RN, Patil SP, Punjabi NM. Portable sleep monitoring for diagnosing sleep apnea in hospitalized patients with heart failure. Chest. 2018; 154(1):91-98
- 42. Avincsal MO, Dinc ME, Ulusoy S, Dalgic A, Ozdemir C, Develioglu ON. Modified Mallampati Score improves specificity of STOP-BANG Questionnaire for obstructive sleep apnea. Journal of Craniofacial Surgery. 2017; 28(4):904-908
- 43. Ayappa I, Norman RG, Seelall V, Rapoport DM. Validation of a self-applied unattended monitor for sleep disordered breathing. Journal of Clinical Sleep Medicine. 2008; 4(1):26-37
- 44. Ayas NT, Pittman S, MacDonald M, White DP. Assessment of a wrist-worn device in the detection of obstructive sleep apnea. Sleep Medicine. 2003; 4(5):435-442
- 45. Babaeizadeh S, Zhou SH, Pittman SD, White DP. Electrocardiogram-derived respiration in screening of sleep-disordered breathing. Journal of Electrocardiology. 2011; 44(6):700-706
- 46. Bagnato MC, Nery LE, Moura SM, Bittencourt LR, Tufik S. Comparison of AutoSet and polysomnography for the detection of apnea-hypopnea events. Brazilian Journal of Medical and Biological Research. 2000; 33(5):515-519
- 47. BaHammam AS, Al-Aqeel AM, Alhedyani AA, Al-Obaid GI, Al-Owais MM, Olaish AH. The validity and reliability of an arabic version of the STOP-bang questionnaire for identifying obstructive sleep apnea. Open Respiratory Medicine Journal. 2015; 9:22-29
- 48. BaHammam AS, Sharif M, Gacuan DE, George S. Evaluation of the accuracy of manual and automatic scoring of a single airflow channel in patients with a high probability of obstructive sleep apnea. Medical Science Monitor. 2011; 17(2):MT13-19
- 49. Ballester E, Solans M, Vila X, Hernandez L, Quinto L, Bolivar I et al. Evaluation of a portable respiratory recording device for detecting apnoeas and hypopnoeas in subjects from a general population. European Respiratory Journal. 2000; 16(1):123-127
- 50. Baltzan MA, Verschelden P, Al-Jahdali H, Olha AE, Kimoff RJ. Accuracy of oximetry with thermistor (OxiFlow) for diagnosis of obstructive sleep apnea and hypopnea. Sleep. 2000; 23(1):61-69
- 51. Banhiran W, Chotinaiwattarakul W, Chongkolwatana C, Metheetrairut C. Home-based diagnosis of obstructive sleep apnea by polysomnography type 2: Accuracy, reliability, and feasibility. Sleep & Breathing. 2014; 18(4):817-823
- 52. Banhiran W, Durongphan A, Saleesing C, Chongkolwatana C. Diagnostic properties of the STOP-Bang and its modified version in screening for obstructive sleep apnea in Thai patients. Journal of the Medical Association of Thailand. 2014; 97(6):644-654
- 53. Barak-Shinar D, Amos Y, Bogan RK. Sleep disordered breathing analysis in a general population using standard pulse oximeter signals. Sleep & Breathing. 2013; 17(3):1109-1115
- 54. Barreiro B, Badosa G, Quintana S, Esteban L, Heredia JL. Comparison between automatic and manual analysis in the diagnosis of obstructive sleep apnea-hypopnea syndrome. Archivos de Bronconeumologia. 2003; 39(12):544-548
- 55. Bausmer U, Gouveris H, Selivanova O, Goepel B, Mann W. Correlation of the Epworth Sleepiness Scale with respiratory sleep parameters in patients with sleep-

- related breathing disorders and upper airway pathology. European Archives of Oto-Rhino-Laryngology. 2010; 267(10):1645-1648
- 56. Bauters FA, Loof S, Hertegonne KB, Chirinos JA, De Buyzere ML, Rietzschel ER. Sex-specific sleep apnea screening questionnaires: closing the performance gap in women. Sleep Medicine. 2020; 67:91-98
- 57. Beattie ZT, Hayes TL, Guilleminault C, Hagen CC. Accurate scoring of the apneahypopnea index using a simple non-contact breathing sensor. Journal of Sleep Research. 2013; 22(3):356-362
- 58. Behar J, Roebuck A, Shahid M, Daly J, Hallack A, Palmius N et al. SleepAp: An automated obstructive sleep apnoea screening application for smartphones. IEEE Journal of Biomedical & Health Informatics. 2015; 19(1):325-331
- 59. Behar JA, Palmius N, Zacharie S, Chocron A, Penzel T, Bittencourt L et al. Single-channel oximetry monitor versus in-lab polysomnography oximetry analysis: does it make a difference? Physiological Measurement. 2020; 41(4):044007
- 60. Ben-Israel N, Tarasiuk A, Zigel Y. Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults. Sleep. 2012; 35(9):1299-1305C
- 61. Berry RB, Hill G, Thompson L, McLaurin V. Portable monitoring and autotitration versus polysomnography for the diagnosis and treatment of sleep apnea. Sleep. 2008; 31(10):1423-1431
- 62. Best MW, Fitzpatrick M, Milev R, Bowie CR, Jokic R. Utility of the Berlin questionnaire for predicting obstructive sleep apnea in individuals with treatment-resistant depression. Sleep & Breathing. 2013; 17(4):1221-1227
- 63. Bille J, Bille-Hasselstrom C, Petersen CG. Translation and validation of the Stop-Bang Questionnaire for obstructive sleep apnoea into Danish. Danish Medical Journal. 2015; 62(12):A5158
- 64. Bingol Z, Pihtili A, Kiyan E. Modified STOP-BANG questionnaire to predict obesity hypoventilation syndrome in obese subjects with obstructive sleep apnea. Sleep & Breathing. 2016; 20(2):495-500
- 65. Bohning N, Zucchini W, Horstmeier O, Bohning W, Fietze I. Sensitivity and specificity of telemedicine-based long-term pulse-oximetry in comparison with cardiorespiratory polygraphy and polysomnography in patients with obstructive sleep apnoea syndrome. Journal of Telemedicine and Telecare. 2011; 17(1):15-19
- 66. Borsini E, Blanco M, Schonfeld S, Ernst G, Salvado A. Performance of Epworth Sleepiness Scale and tiredness symptom used with simplified diagnostic tests for the identification of sleep apnea. Sleep Science. 2019; 12(4):287-294
- 67. Borsini E, Ernst G, Salvado A, Bosio M, Chertcoff J, Nogueira F et al. Utility of the STOP-BANG components to identify sleep apnea using home respiratory polygraphy. Sleep & Breathing. 2015; 19(4):1327-1333
- 68. Boynton G, Vahabzadeh A, Hammoud S, Ruzicka DL, Chervin RD. Validation of the STOP-BANG Questionnaire among patients referred for suspected obstructive sleep apnea. Journal of Sleep Disorders Treatment & Care. 2013; 2(4):23
- 69. Bradley PA, Mortimore IL, Douglas NJ. Comparison of polysomnography with ResCare Autoset in the diagnosis of the sleep apnoea/hypopnoea syndrome. Thorax. 1995; 50(11):1201-1203

- 70. Braganza MV, Hanly PJ, Fraser KL, Tsai WH, Pendharkar SR. Predicting CPAP failure in patients with suspected sleep hypoventilation identified on ambulatory testing. Journal of Clinical Sleep Medicine. 2020; http://dx.doi.org/10.5664/jcsm.8616
- 71. Bravata DM, Sico J, Vaz Fragoso CA, Miech EJ, Matthias MS, Lampert R et al. Diagnosing and treating sleep apnea in patients with acute cerebrovascular disease. Journal of the American Heart Association. 2018; 7(16):e008841
- 72. Brown DL, Chervin RD, Hegeman G, 3rd, Smith MA, Garcia NM, Morgenstern LB et al. Is technologist review of raw data necessary after home studies for sleep apnea? Journal of Clinical Sleep Medicine. 2014; 10(4):371-375
- 73. Bsoul M, Minn H, Tamil L. Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG. IEEE Transactions on Information Technology in Biomedicine. 2011; 15(3):416-427
- 74. Cai SJ, Chen R, Zhang YL, Xiong KP, Lian YX, Li J et al. Correlation of Epworth Sleepiness Scale with multiple sleep latency test and its diagnostic accuracy in assessing excessive daytime sleepiness in patients with obstructive sleep apnea hypopnea syndrome. Chinese Medical Journal. 2013; 126(17):3245-3250
- 75. Calleja JM, Esnaola S, Rubio R, Duran J. Comparison of a cardiorespiratory device versus polysomnography for diagnosis of sleep apnoea. European Respiratory Journal. 2002; 20(6):1505-1510
- 76. Carter GS, Coyle MA, Mendelson WB. Validity of a portable cardio-respiratory system to collect data in the home environment in patients with obstructive sleep apnea. Sleep and Hypnosis. 2004; 6(2):85-92
- 77. Chai-Coetzer CL, Antic NA, Hamilton GS, McArdle N, Wong K, Yee BJ et al. Physician decision making and clinical outcomes with laboratory polysomnography or limited-channel sleep studies for obstructive sleep apnea: A randomized trial. Annals of Internal Medicine. 2017; 166(5):332-340
- 78. Chen NH, Chen MC, Li HY, Chen CW, Wang PC. A two-tier screening model using quality-of-life measures and pulse oximetry to screen adults with sleep-disordered breathing. Sleep & Breathing. 2011; 15(3):447-454
- 79. Chiner E, Signes-Costa J, Arriero JM, Marco J, Fuentes I, Sergado A. Nocturnal oximetry for the diagnosis of the sleep apnoea hypopnoea syndrome: A method to reduce the number of polysomnographies? Thorax. 1999; 54(11):968-971
- 80. Chiu HY, Chen PY, Chuang LP, Chen NH, Tu YK, Hsieh YJ et al. Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: A bivariate meta-analysis. Sleep Medicine Reviews. 2017; 36:57-70
- 81. Christensson E, Franklin KA, Sahlin C, Palm A, Ulfberg J, Eriksson LI et al. Can STOP-Bang and pulse oximetry detect and exclude obstructive sleep apnea? Anesthesia and Analgesia. 2018; 127(3):736-743
- 82. Chu G, Suthers B, Paech GM, Eyeington L, Gunawardhana L, Palazzi K et al. Feasibility of online haemodiafiltration in sleep apnoea: A randomized crossover study. Blood Purification. 2020; 49(5):604-661
- 83. Chung F, Liao P, Elsaid H, Islam S, Shapiro CM, Sun Y. Oxygen desaturation index from nocturnal oximetry: A sensitive and specific tool to detect sleep-disordered breathing in surgical patients. Anesthesia and Analgesia. 2012; 114(5):993-1000

- 84. Chung F, Subramanyam R, Liao P, Sasaki E, Shapiro C, Sun Y. High STOP-Bang score indicates a high probability of obstructive sleep apnoea. British Journal of Anaesthesia. 2012; 108(5):768-775
- 85. Chung F, Ward B, Ho J, Yuan H, Kayumov L, Shapiro C. Preoperative identification of sleep apnea risk in elective surgical patients, using the Berlin questionnaire. Journal of Clinical Anesthesia. 2007; 19(2):130-134
- 86. Chung F, Yang Y, Brown R, Liao P. Alternative scoring models of STOP-bang questionnaire improve specificity to detect undiagnosed obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2014; 10(9):951-958
- 87. Chung F, Yang Y, Liao P. Predictive performance of the STOP-Bang score for identifying obstructive sleep apnea in obese patients. Obesity Surgery. 2013; 23(12):2050-2057
- 88. Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S et al. Validation of the Berlin questionnaire and American Society of Anesthesiologists checklist as screening tools for obstructive sleep apnea in surgical patients. Anesthesiology. 2008; 108(5):822-830
- 89. Claman D, Murr A, Trotter K. Clinical validation of the Bedbugg in detection of obstructive sleep apnea. Otolaryngology Head and Neck Surgery. 2001; 125(3):227-230
- 90. Clark AL, Crabbe S, Aziz A, Reddy P, Greenstone M. Use of a screening tool for detection of sleep-disordered breathing. Journal of Laryngology and Otology. 2009; 123(7):746-749
- 91. Cooper BG, Veale D, Griffiths CJ, Gibson GJ. Value of nocturnal oxygen saturation as a screening test for sleep apnoea. Thorax. 1991; 46(8):586-588
- 92. Corral J, Sanchez-Quiroga MA, Carmona-Bernal C, Sanchez-Armengol A, de la Torre AS, Duran-Cantolla J et al. Conventional polysomnography is not necessary for the management of most patients with suspected obstructive sleep apnea. Noninferiority, randomized controlled trial. American Journal of Respiratory and Critical Care Medicine. 2017; 196(9):1181-1190
- 93. Cowan DC, Allardice G, Macfarlane D, Ramsay D, Ambler H, Banham S et al. Predicting sleep disordered breathing in outpatients with suspected OSA. BMJ Open. 2014; 4(4):e004519
- 94. Crowley KE, Rajaratnam SM, Shea SA, Epstein LJ, Czeisler CA, Lockley SW et al. Evaluation of a single-channel nasal pressure device to assess obstructive sleep apnea risk in laboratory and home environments. Journal of Clinical Sleep Medicine. 2013; 9(2):109-116
- 95. Damiani MF, Quaranta VN, Falcone VA, Gadaleta F, Maiellari M, Ranieri T et al. The Epworth Sleepiness Scale: conventional self vs physician administration. Chest. 2013; 143(6):1569-1575
- 96. de Carvalho AA, Amorim FF, Santana LA, de Almeida KJQ, Santana ANC, de Assis Rocha Neves F. STOP-Bang questionnaire should be used in all adults with down Syndrome to screen for moderate to severe obstructive sleep apnea. PloS One. 2020; 15:e0232596
- 97. de Oliveira ACT, Martinez D, Vasconcelos LFT, Cadaval Goncalves S, do Carmo Lenz M, Costa Fuchs S et al. Diagnosis of obstructive sleep apnea syndrome and its outcomes with home portable monitoring. Chest. 2009; 135(2):330-336

- 98. de Silva S, Abeyratne UR, Hukins C. A method to screen obstructive sleep apnea using multi-variable non-intrusive measurements. Physiological Measurement. 2011; 32(4):445-465
- 99. de Vries CEE, de Raaff CAL, Ruys AT, de Vries N, Hilgevoord AAJ, van Wagensveld BA. Validity of a simple sleep monitor for diagnosing OSA in bariatric surgery patients. Surgery for Obesity and Related Diseases. 2018; 14(7):1020-1025
- 100. de Vries GE, van der Wal HH, Kerstjens HA, van Deursen VM, Stegenga B, van Veldhuisen DJ et al. Validity and predictive value of a portable two-channel sleepscreening tool in the identification of sleep apnea in patients with heart failure. Journal of Cardiac Failure. 2015; 21(10):848-855
- 101. Deflandre E, Degey S, Brichant JF, Donneau AF, Frognier R, Poirrier R et al. Preoperative ability of clinical scores to predict obstructive sleep apnea (OSA) severity in susceptible surgical patients. Obesity Surgery. 2017; 27(3):716-729
- 102. Deflandre E, Piette N, Bonhomme V, Degey S, Cambron L, Poirrier R et al. Comparison of clinical scores in their ability to detect hypoxemic severe OSA patients. PloS One. 2018; 13(5):e0196270
- 103. del Campo F, Hornero R, Zamarron C, Abasolo DE, Alvarez D. Oxygen saturation regularity analysis in the diagnosis of obstructive sleep apnea. Artificial Intelligence in Medicine. 2006; 37(2):111-118
- 104. Dette FG, Graf J, Cassel W, Lloyd-Jones C, Boehm S, Zoremba M et al. Combination of STOP-Bang Score with Mallampati Score fails to improve specificity in the prediction of sleep-disordered breathing. Minerva Anestesiologica. 2016; 82(6):625-634
- 105. Donovan LM, Fernandes LA, Williams KM, Parsons EC, O'Hearn DJ, He K et al. Agreement of sleep specialists with registered nurses' sleep study orders in supervised clinical practice. Journal of Clinical Sleep Medicine. 2020; 16(2):279-283
- 106. Doshi V, Walia R, Jones K, Aston CE, Awab A. STOP-BANG questionnaire as a screening tool for diagnosis of obstructive sleep apnea by unattended portable monitoring sleep study. Springerplus. 2015; 4:795
- 107. Douglas NJ, Thomas S, Jan MA. Clinical value of polysomnography. Lancet. 1992; 339(8789):347-350
- 108. Duarte RL, Magalhaes-da-Silveira FJ, Oliveira ESTS, Silva JA, Mello FC, Gozal D. Obstructive sleep apnea screening with a 4-item instrument, named goal questionnaire: Development, validation and comparative study with No-Apnea, STOP-Bang, and NoSAS. Nature & Science of Sleep. 2020; 12:57-67
- 109. Duarte RLM, Fonseca LBM, Magalhaes-da-Silveira FJ, Silveira EAD, Rabahi MF. Validation of the STOP-Bang questionnaire as a means of screening for obstructive sleep apnea in adults in Brazil. Jornal Brasileiro de Pneumologia: Publicacao Oficial da Sociedade Brasileira de Pneumologia e Tisilogia 2017; 43(6):456-463
- 110. Dzieciolowska-Baran E, Gawlikowska-Sroka A, Szczurowski J. Diagnosis of sleep-disordered breathing in the home environment. 'In:' Pokorski M, editor. Medical Research and Development Advances in Experimental Medicine and Biology, vol 1271: Springer Cham. 2020.
- 111. Ebben MR, Krieger AC. Diagnostic accuracy of a mathematical model to predict apnea-hypopnea index using nighttime pulse oximetry. Journal of Biomedical Optics. 2016; 21(3):35006

- 112. Ehsan Z, He S, Huang G, Hossain MM, Simakajornboon N. Can overnight portable pulse oximetry be used to stratify obstructive sleep apnea risk in infants? A correlation analysis. Pediatric Pulmonology. 2020; 55(8):2082-2088
- 113. El Shayeb M, Topfer LA, Stafinski T, Pawluk L, Menon D. Diagnostic accuracy of level 3 portable sleep tests versus level 1 polysomnography for sleep-disordered breathing: A systematic review and meta-analysis. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne. 2014; 186(1):E25-51
- 114. Ellingsen I, Fondenes O, Overland B, Holmedahl NH. The severity of sleep hypoventilation in stable chronic obstructive pulmonary disease. Sleep and Breathing. 2020; http://dx.doi.org/10.1007/s11325-020-02097-y
- 115. Emsellem HA, Corson WA, Rappaport BA, Hackett S, Smith LG, Hausfeld JN. Verification of sleep apnea using a portable sleep apnea screening device. Southern Medical Journal. 1990; 83(7):748-752
- 116. Epstein LJ, Dorlac GR. Cost-effectiveness analysis of nocturnal oximetry as a method of screening for sleep apnea-hypopnea syndrome. Chest. 1998; 113(1):97-103
- 117. Eris Gulbay B, Acican T, Ciftci F, Erdemir Isik M, Onen ZP. Comparison of polysomnography variables in obstructive sleep apnea patients with or without excessive daytime sleepiness. Turkiye Klinikleri Journal of Medical Sciences. 2014; 34(1):87-92
- 118. Erman MK, Stewart D, Einhorn D, Gordon N, Casal E. Validation of the ApneaLink for the screening of sleep apnea: A novel and simple single-channel recording device. Journal of Clinical Sleep Medicine. 2007; 3(4):387-392
- 119. Ernst G, Bosio M, Salvado A, Nogueira F, Nigro C, Borsini E. Comparative study between sequential automatic and manual home respiratory polygraphy scoring using a three-channel device: Impact of the manual editing of events to identify severe Obstructive Sleep Apnea. Sleep Disorders Print. 2015; 2015:314534
- 120. Esnaola S, Duran J, Infante-Rivard C, Rubio R, Fernandez A. Diagnostic accuracy of a portable recording device (MESAM IV) in suspected obstructive sleep apnoea. European Respiratory Journal. 1996; 9(12):2597-2605
- 121. Fabius TM, Benistant JR, Bekkedam L, van der Palen J, de Jongh FHC, Eijsvogel MMM. Validation of the oxygen desaturation index in the diagnostic workup of obstructive sleep apnea. Sleep & Breathing. 2019; 23(1):57-63
- 122. Faria AC, da Costa CH, Rufino R. Sleep Apnea Clinical Score, Berlin Questionnaire, or Epworth Sleepiness Scale: Which is the best obstructive sleep apnea predictor in patients with COPD? International Journal of General Medicine. 2015; 8:275-281
- 123. Farney RJ, Walker LE, Jensen RL, Walker JM. Ear oximetry to detect apnea and differentiate rapid eye movement (REM) and non-REM (NREM) sleep. Screening for the sleep apnea syndrome. Chest. 1986; 89(4):533-539
- 124. Fasbender P, Haddad A, Burgener S, Peters J. Validation of a photoplethysmography device for detection of obstructive sleep apnea in the perioperative setting. Journal of Clinical Monitoring and Computing. 2019; 33(2):341-345
- 125. Fawale MB, Ibigbami O, Ismail I, Mustapha AF, Komolafe MA, Olamoyegun MA et al. Risk of obstructive sleep apnea, excessive daytime sleepiness and depressive symptoms in a Nigerian elderly population. Sleep Science. 2016; 9(2):106-111

- 126. Felfeli T, Alon R, Al Adel F, Shapiro CM, Mandelcorn ED, Brent MH. Screening for obstructive sleep apnea amongst patients with retinal vein occlusion. Canadian Journal of Ophthalmology. 2020; 55(4):310-316
- 127. Firat H, Yuceege M, Demir A, Ardic S. Comparison of four established questionnaires to identify highway bus drivers at risk for obstructive sleep apnea in Turkey. Sleep and Biological Rhythms. 2012; 10(3):231-236
- 128. Fletcher EC, Stich J, Yang KL. Unattended home diagnosis and treatment of obstructive sleep apnea without polysomnography. Archives of Family Medicine. 2000; 9(2):168-174
- 129. Forni Ogna V, Ogna A, Pruijm M, Bassi I, Zuercher E, Halabi G et al. Prevalence and diagnostic approach to sleep apnea in hemodialysis patients: A population study. BioMed Research International. 2015; 2015:103686
- 130. Frangopoulos F, Nicolaou I, Zannetos S, Economou NT, Adamide T, Georgiou A et al. Estimating obstructive sleep apnea in Cyprus: a randomised, stratified epidemiological study using STOP-Bang sleep apnea questionnaire. Sleep Medicine. 2019; 61:37-43
- 131. Fry JM, DiPhillipo MA, Curran K, Goldberg R, Baran AS. Full polysomnography in the home. Sleep. 1998; 21(6):635-642
- 132. Fuller JM, Wong KK, Grunstein R, Krass I, Patel J, Saini B. A comparison of screening methods for sleep disorders in Australian community pharmacies: A randomized controlled trial. PloS One. 2014; 9(6):e101003
- 133. Gabryelska A, Mokros L, Kardas G, Panek M, Riha R, Bialasiewicz P. The predictive value of BOAH scale for screening obstructive sleep apnea in patients at a sleep clinic in Scotland. Sleep and Breathing. 2020; https://doi.org/10.1007/s11325-020-02114-0
- 134. Gagnadoux F, Pelletier-Fleury N, Philippe C, Rakotonanahary D, Fleury B. Home unattended vs hospital telemonitored polysomnography in suspected obstructive sleep apnea syndrome: A randomized crossover trial. Chest. 2002; 121(3):753-758
- 135. Gantner D, Ge JY, Li LH, Antic N, Windler S, Wong K et al. Diagnostic accuracy of a questionnaire and simple home monitoring device in detecting obstructive sleep apnoea in a Chinese population at high cardiovascular risk. Respirology. 2010; 15(6):952-960
- 136. Garg N, Rolle AJ, Lee TA, Prasad B. Home-based diagnosis of obstructive sleep apnea in an urban population. Journal of Clinical Sleep Medicine. 2014; 10(8):879-885
- 137. Gasa M, Salord N, Fortuna AM, Mayos M, Embid C, Vilarrasa N et al. Optimizing screening of severe obstructive sleep apnea in patients undergoing bariatric surgery. Surgery for Obesity and Related Diseases. 2013; 9(4):539-546
- 138. Geessinck FAJ, Pleijhuis RG, Mentink RJ, van der Palen J, Koffijberg H. Costeffectiveness analysis of the DiagnOSAS Screening Tool compared with polysomnography diagnosis in Dutch primary care. Journal of Clinical Sleep Medicine. 2018; 14(6):1005-1015
- 139. Gergely V, Pallos H, Mashima K, Miyazaki S, Tanaka T, Okawa M et al. Evaluation of the usefulness of the SleepStrip for screening obstructive sleep apnea-hypopnea syndrome in Japan. Sleep and Biological Rhythms. 2009; 7(1):43-51

- 140. Giampa SQC, Pedrosa RP, Gonzaga CC, Bertolami A, Amodeo C, Furlan SF et al. Performance of NoSAS score versus Berlin questionnaire for screening obstructive sleep apnoea in patients with resistant hypertension. Journal of Human Hypertension. 2018; 32(7):518-523
- 141. Gjevre JA, Taylor-Gjevre RM, Skomro R, Reid J, Fenton M, Cotton D. Comparison of polysomnographic and portable home monitoring assessments of obstructive sleep apnea in Saskatchewan women. Canadian Respiratory Journal. 2011; 18(5):271-274
- 142. Glantz H, Thunstrom E, Herlitz J, Cederin B, Nasic S, Ejdeback J et al. Occurrence and predictors of obstructive sleep apnea in a revascularized coronary artery disease cohort. Annals of the American Thoracic Society. 2013; 10(4):350-356
- 143. Glazer SA, Erickson AL, Crosby RD, Kieda J, Zawisza A, Deitel M. The evaluation of screening questionnaires for obstructive sleep apnea to identify high-risk obese patients undergoing bariatric surgery. Obesity Surgery. 2018; 28(11):3544-3552
- 144. Goldstein CA, Karnib H, Williams K, Virk Z, Shamim-Uzzaman A. The utility of home sleep apnea tests in patients with low versus high pre-test probability for moderate to severe OSA. Sleep & Breathing. 2018; 22(3):641-651
- 145. Golpe R, Jimenez A, Carpizo R. Home sleep studies in the assessment of sleep apnea/hypopnea syndrome. Chest. 2002; 122(4):1156-1161
- 146. Golpe R, Jimenez A, Carpizo R, Cifrian JM. Utility of home oximetry as a screening test for patients with moderate to severe symptoms of obstructive sleep apnea. Sleep. 1999; 22(7):932-937
- 147. Goodrich S, Orr WC. An investigation of the validity of the Lifeshirt in comparison to standard polysomnography in the detection of obstructive sleep apnea. Sleep Medicine. 2009; 10(1):118-122
- 148. Graco M, Schembri R, Cross S, Thiyagarajan C, Shafazand S, Ayas NT et al. Diagnostic accuracy of a two-stage model for detecting obstructive sleep apnoea in chronic tetraplegia. Thorax. 2018; 73(9):864-871
- 149. Gros P, Mery VP, Lafontaine AL, Robinson A, Benedetti A, Kimoff RJ et al. Diagnosis of obstructive sleep apnea in parkinson's disease patients: Is unattended portable monitoring a suitable tool? Parkinsons Disease. 2015; 2015:258418
- 150. Grover M, Mookadam M, Chang YH, Parish JM. Obstructive sleep apnea: A better Dx model for primary care. Journal of Family Practice. 2018; 67(11):E1-E7
- 151. Grover SS, Pittman SD. Automated detection of sleep disordered breathing using a nasal pressure monitoring device. Sleep & Breathing. 2008; 12(4):339-345
- 152. Gu W, Leung L, Kwok KC, Wu IC, Folz RJ, Chiang AA. Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2020; http://dx.doi.org/10.5664/jcsm.8592
- 153. Gugger M. Comparison of ResMed AutoSet (version 3.03) with polysomnography in the diagnosis of the sleep apnoea/hypopnoea syndrome. European Respiratory Journal. 1997; 10(3):587-591
- 154. Guimaraes C, Martins MV, Vaz Rodrigues L, Teixeira F, Moutinho Dos Santos J. Epworth Sleepiness Scale in obstructive sleep apnea syndrome--an underestimated subjective scale. Revista Portuguesa de Pneumologia. 2012; 18(6):267-271

- 155. Gumb T, Twumasi A, Alimokhtari S, Perez A, Black K, Rapoport DM et al. Comparison of two home sleep testing devices with different strategies for diagnosis of OSA. Sleep & Breathing. 2018; 22(1):139-147
- 156. Gunduz C, Basoglu OK, Tasbakan MS. Prevalence of overlap syndrome in chronic obstructive pulmonary disease patients without sleep apnea symptoms. Clinical Respiratory Journal. 2018; 12(1):105-112
- 157. Gupta R, Ali R, Dhyani M, Das S, Pundir A. Hindi translation of Berlin questionnaire and its validation as a screening instrument for obstructive sleep apnea. Journal of Neurosciences in Rural Practice. 2016; 7(2):244-249
- 158. Gyulay S, Olson LG, Hensley MJ, King MT, Allen KM, Saunders NA. A comparison of clinical assessment and home oximetry in the diagnosis of obstructive sleep apnea. American Review of Respiratory Disease. 1993; 147(1):50-53
- 159. Ha SC, Lee DL, Abdullah VJ, van Hasselt CA. Evaluation and validation of four translated Chinese questionnaires for obstructive sleep apnea patients in Hong Kong. Sleep & Breathing. 2014; 18(4):715-721
- 160. Hara H, Murakami N, Miyauchi Y, Yamashita H. Acoustic analysis of snoring sounds by a multidimensional voice program. Laryngoscope. 2006; 116(3):379-381
- 161. Hashizaki M, Nakajima H, Tsutsumi M, Shiga T, Chiba S, Yagi T et al. Accuracy validation of sleep measurements by a contactless biomotion sensor on subjects with suspected sleep apnea. Sleep and Biological Rhythms. 2014; 12(2):106-115
- 162. Heneghan C, de Chazal P, Ryan S, Chua CP, Doherty L, Boyle P et al. Electrocardiogram recording as a screening tool for sleep disordered breathing. Journal of Clinical Sleep Medicine. 2008; 4(3):223-228
- 163. Herer B, Fuhrman C, Roig C, Housset B. Prediction of obstructive sleep apnea by OxiFlow in overweight patients. Sleep Medicine. 2002; 3(5):417-422
- 164. Hesselbacher S, Subramanian S, Allen J, Surani S, Surani S. Body mass index, gender, and ethnic variations alter the clinical implications of the epworth sleepiness scale in patients with suspected obstructive sleep apnea. Open Respiratory Medicine Journal. 2012; 6:20-27
- 165. Hilmisson H, Lange N, Duntley SP. Sleep apnea detection: Accuracy of using automated ECG analysis compared to manually scored polysomnography (apnea hypopnea index) Sleep & Breathing. 2019; 23(1):125-133
- 166. Holmedahl NH, Fjeldstad OM, Engan H, Saxvig IW, Gronli J. Validation of peripheral arterial tonometry as tool for sleep assessment in chronic obstructive pulmonary disease. Scientific Reports. 2019; 9(1):19392
- 167. Hong C, Chen R, Qing S, Kuang A, Yang H, Su X et al. Validation of the NoSAS Score for the screening of sleep-disordered breathing: A hospital-based retrospective study in China. Journal of Clinical Sleep Medicine. 2018; 14(2):191-197
- 168. Horvath CM, Jossen J, Kroll D, Nett PC, Baty F, Brill AK et al. Prevalence and prediction of obstructive sleep apnea prior to bariatric surgery-gender-specific performance of four sleep questionnaires. Obesity Surgery. 2018; 28(9):2720-2726
- 169. Hui DS, Ng SS, To KW, Ko FW, Ngai J, Chan KK et al. A randomized controlled trial of an ambulatory approach versus the hospital-based approach in managing suspected obstructive sleep apnea syndrome. Scientific Reports. 2017; 8:45901

- 170. Hussain SF, Fleetham JA. Overnight home oximetry: Can it identify patients with obstructive sleep apnea-hypopnea who have minimal daytime sleepiness? Respiratory Medicine. 2003; 97(5):537-540
- 171. Iber C, Redline S, Kaplan Gilpin AM, Quan SF, Zhang L, Gottlieb DJ et al. Polysomnography performed in the unattended home versus the attended laboratory setting--Sleep Heart Health Study methodology. Sleep. 2004; 27(3):536-540
- 172. Ibrahim AS, Almohammed AA, Allangawi MH, HA AS, Mobayed HS, Pannerselvam B et al. Predictors of obstructive sleep apnea in snorers. Annals of Saudi Medicine. 2007; 27(6):421-426
- 173. loachimescu OC, Allam JS, Samarghandi A, Anand N, Fields BG, Dholakia SA et al. Performance of peripheral arterial tonometry based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort. Journal of Clinical Sleep Medicine. 2020; http://dx.doi.org/10.5664/jcsm.8620
- 174. Isaac BTJ, Clarke SE, Islam MS, Samuel JT. Screening for obstructive sleep apnoea using the STOPBANG questionnaire and the Epworth sleepiness score in patients admitted on the unselected acute medical take in a UK hospital. Clinical Medicine. 2017; 17(6):499-503
- 175. Jen R, Orr JE, Li Y, DeYoung P, Smales E, Malhotra A et al. Accuracy of WatchPAT for the diagnosis of obstructive sleep apnea in patients with chronic obstructive pulmonary disease. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2020; 17(1):34-39
- 176. Jobin V, Mayer P, Bellemare F. Predictive value of automated oxygen saturation analysis for the diagnosis and treatment of obstructive sleep apnoea in a home-based setting. Thorax. 2007; 62(5):422-427
- 177. Kahal H, Tahrani AA, Kyrou I, Dimitriadis GK, Kimani PK, Barber TM et al. The relationship between obstructive sleep apnoea and quality of life in women with polycystic ovary syndrome: a cross-sectional study. Therapeutic Advances in Endocrinology and Metabolism. 2020; 11:1-12
- 178. Kaminska M, Jobin V, Mayer P, Amyot R, Perraton-Brillon M, Bellemare F. The Epworth Sleepiness Scale: Self-administration versus administration by the physician, and validation of a French version. Canadian Respiratory Journal. 2010; 17(2):e27-34
- 179. Karakoc O, Akcam T, Genc H, Yetkin S, Piskin B, Gerek M. Use of the Berlin Questionnaire to screen at-risk patients for obstructive sleep apnea. B-ENT. 2014; 10(1):21-25
- 180. Karaloglu F, Kemaloglu YK, Yilmaz M, Ulukavak Ciftci T, Ciftci B, Bakkal FK. Comparison of full-night and ambulatory polysomnography with ApneaGraph in the subjects with obstructive sleep apnea syndrome. European Archives of Oto-Rhino-Laryngology. 2017; 274(1):189-195
- 181. Katzan IL, Thompson NR, Uchino K, Foldvary-Schaefer N. A screening tool for obstructive sleep apnea in cerebrovascular patients. Sleep Medicine. 2016; 21:70-76
- 182. Khandoker AH, Gubbi J, Palaniswami M. Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings. IEEE Transactions on Information Technology in Biomedicine. 2009; 13(6):1057-1067
- 183. Kicinski P, Przybylska-Kuc SM, Tatara K, Dybala A, Zakrzewski M, Myslinski W et al. Reliability of the Epworth Sleepiness Scale and the Berlin Questionnaire for

- screening obstructive sleep apnea syndrome in the context of the examination of candidates for drivers. Medycyna Pracy. 2016; 67(6):721-728
- 184. Kiely JL, Delahunty C, Matthews S, McNicholas WT. Comparison of a limited computerized diagnostic system (ResCare Autoset) with polysomnography in the diagnosis of obstructive sleep apnoea syndrome. European Respiratory Journal. 1996; 9(11):2360-2364
- 185. Kim B, Lee EM, Chung YS, Kim WS, Lee SA. The utility of three screening questionnaires for obstructive sleep apnea in a sleep clinic setting. Yonsei Medical Journal. 2015; 56(3):684-690
- 186. Kim RD, Kapur VK, Redline-Bruch J, Rueschman M, Auckley DH, Benca RM et al. An economic evaluation of home versus laboratory-based diagnosis of obstructive sleep apnea. Sleep. 2015; 38(7):1027-1037
- 187. Korvel-Hanquist A, Andersen IG, Lauritzen SEK, Dahlgaard S, Moritz J. Validation of the Danish STOP-Bang obstructive sleep apnoea questionnaire in a public sleep clinic. Danish Medical Journal. 2018; 65(1):1-5
- 188. Kristiansen S, Traaen GM, Overland B, Plagemann T, Gullestad L, Akre H et al. Comparing manual and automatic scoring of sleep monitoring data from portable polygraphy. Journal of Sleep Research. 2020; http://dx.doi.org/10.1111/jsr.13036
- 189. Kukwa W, Migacz E, Lis T, Ishman SL. The effect of in-lab polysomnography and home sleep polygraphy on sleep position. Sleep & Breathing. 2020; http://dx.doi.org/10.1007/s11325-020-02099-w
- 190. Kum RO, Kundi FCS, Baklaci D, Kum NY, Guler I, Yilmaz YF et al. Predicting severe sleep apnea in patients with complaints: Pulse oximetry and body mass index. Turk Otorinolarengoloji Arsivi. 2018; 56(3):149-154
- 191. Kum RO, Ozcan M, Yurtsever Kum N, Yilmaz YF, Gungor V, Unal A. A new suggestion for the Epworth Sleepiness Scale in obstructive sleep apnea. European Archives of Oto-Rhino-Laryngology. 2015; 272(1):247-252
- 192. Kuna ST, Gurubhagavatula I, Maislin G, Hin S, Hartwig KC, McCloskey S et al. Noninferiority of functional outcome in ambulatory management of obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine. 2011; 183(9):1238-1244
- 193. Lachapelle P, Cascon J, Pamidi S, Kimoff RJ. Accuracy of portable devices in sleep apnea using oximetry-derived heart rate increases as a surrogate arousal marker. Sleep & Breathing. 2019; 23(2):483-492
- 194. Lado MJ, Vila XA, Rodriguez-Linares L, Mendez AJ, Olivieri DN, Felix P. Detecting sleep apnea by heart rate variability analysis: Assessing the validity of databases and algorithms. Journal of Medical Systems. 2011; 35(4):473-481
- 195. Lajoie AC, Series F, Bernard S, Bernard E, Santaolalla CJE, Abad Fernandez A et al. Reliability of home nocturnal oximetry in the diagnosis of overlap syndrome in COPD. Respiration. 2020; 99(2):132-139
- 196. Lam DC, Lui MM, Lam JC, Ong LH, Lam KS, Ip MS. Prevalence and recognition of obstructive sleep apnea in Chinese patients with type 2 diabetes mellitus. Chest. 2010; 138(5):1101-1107

- 197. Laohasiriwong S, Johnston N, Woodson BT. Extra-esophageal reflux, NOSE score, and sleep quality in an adult clinic population. Laryngoscope. 2013; 123(12):3233-3238
- 198. Laporta R, Anandam A, El-Solh AA. Screening for obstructive sleep apnea in veterans with ischemic heart disease using a computer-based clinical decision-support system. Clinical Research in Cardiology. 2012; 101(9):737-744
- 199. Laranjeira CM, Barbosa ERF, Rabahi MF. Is subjective sleep evaluation a good predictor for obstructive sleep apnea? Clinics (Sao Paulo, Brazil). 2018; 73:e355
- 200. Lauritzen E, Korvel-Hanquist A, Homoe P. The Danish translation and validation of the Berlin Questionnaire for sleep apnoea. Danish Medical Journal. 2018; 65(9):A5502
- 201. Lazaro J, Claveria P, Cabrejas C, Fernando J, Segura S, Marin JM. Sensitivity of a sequential model based on a questionnaire (STOP-Bang vs Dixon) and nocturnal pulse oximetry for screening obstructive sleep apnea in patients with morbid obesity candidates for bariatric surgery. Endocrinologia Diabetes y Nutricion. 2020; 67(8):509-516
- 202. Le TQ, Bukkapatnam ST. Nonlinear dynamics forecasting of obstructive sleep apnea onsets. PloS One. 2016; 11(11):e0164406
- 203. Leclerc G, Lacasse Y, Page D, Series F. Do obstructive sleep apnea syndrome patients underestimate their daytime symptoms before continuous positive airway pressure treatment? Canadian Respiratory Journal. 2014; 21(4):216-220
- 204. Lee CH, Won TB, Cha W, Yoon IY, Chung S, Kim JW. Obstructive site localization using multisensor manometry versus the Friedman staging system in obstructive sleep apnea. European Archives of Oto-Rhino-Laryngology. 2008; 265(2):171-177
- 205. Lee H, Park J, Kim H, Lee KJ. New rule-based algorithm for real-time detecting sleep apnea and hypopnea events using a nasal pressure signal. Journal of Medical Systems. 2016; 40(12):282
- 206. Lee HK, Kim H, Lee KJ. Nasal pressure recordings for automatic snoring detection. Medical and Biological Engineering and Computing. 2015; 53(11):1103-1111
- 207. Lee HK, Lee J, Kim H, Ha JY, Lee KJ. Snoring detection using a piezo snoring sensor based on hidden Markov models. Physiological Measurement. 2013; 34(5):N41-49
- 208. Lee IS, Bardwell W, Ancoli-Israel S, Natarajan L, Loredo JS, Dimsdale JE. The Relationship between psychomotor vigilance performance and quality of life in obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2011; 7(3):254-260
- 209. Lee LA, Lo YL, Yu JF, Lee GS, Ni YL, Chen NH et al. Snoring sounds predict obstruction sites and surgical response in patients with obstructive sleep apnea hypopnea syndrome. Scientific Reports. 2016; 6:30629
- 210. Lee SA, Han SH, Ryu HU. Anxiety and its relationship to quality of life independent of depression in patients with obstructive sleep apnea. Journal of Psychosomatic Research. 2015; 79(1):32-36
- 211. Lee SA, Paek JH, Han SH. Sleep hygiene and its association with daytime sleepiness, depressive symptoms, and quality of life in patients with mild obstructive sleep apnea. Journal of the Neurological Sciences. 2015; 359(1-2):445-449

- 212. Lee SJ, Kang HW, Lee LH. The relationship between the Epworth Sleepiness Scale and polysomnographic parameters in obstructive sleep apnea patients. European Archives of Oto-Rhino-Laryngology. 2012; 269(4):1143-1147
- 213. Leitzen KP, Brietzke SE, Lindsay RW. Correlation between nasal anatomy and objective obstructive sleep apnea severity. Otolaryngology Head and Neck Surgery. 2014; 150(2):325-331
- 214. Lentini S, Manka R, Scholtyssek S, Stoffel-Wagner B, Luderitz B, Tasci S. Creatine phosphokinase elevation in obstructive sleep apnea syndrome: An unknown association? Chest. 2006; 129(1):88-94
- 215. Leppanen T, Sarkka M, Kulkas A, Muraja-Murro A, Kupari S, Anttonen M et al. RemLogic plug-in enables clinical application of apnea-hypopnea index adjusted for severity of individual obstruction events. Journal of Medical Engineering and Technology. 2016; 40(3):119-126
- 216. Levartovsky A, Dafna E, Zigel Y, Tarasiuk A. Breathing and snoring sound characteristics during sleep in adults. Journal of Clinical Sleep Medicine. 2016; 12(3):375-384
- 217. Levendowski D, Steward D, Woodson BT, Olmstead R, Popovic D, Westbrook P. The impact of obstructive sleep apnea variability measured in-lab versus in-home on sample size calculations. International Archives of Medicine. 2009; 2:2
- 218. Levendowski DJ, Oksenberg A, Vicini C, Penzel T, Levi M, Westbrook PR. A systematic comparison of factors that could impact treatment recommendations for patients with Positional Obstructive Sleep Apnea (POSA). Sleep Medicine. 2018; 50:145-151
- 219. Levendowski DJ, Veljkovic B, Seagraves S, Westbrook PR. Capability of a neck worn device to measure sleep/wake, airway position, and differentiate benign snoring from obstructive sleep apnea. Journal of Clinical Monitoring and Computing. 2015; 29(1):53-64
- 220. Levy P, Pepin JL, Deschaux-Blanc C, Paramelle B, Brambilla C. Accuracy of oximetry for detection of respiratory disturbances in sleep apnea syndrome. Chest. 1996; 109(2):395-399
- 221. Li K, Pan W, Li Y, Jiang Q, Liu G. A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal.

 Neurocomputing. 2018; 294:94-101
- 222. Li Y, Gao H, Ma Y. Evaluation of pulse oximeter derived photoplethysmographic signals for obstructive sleep apnea diagnosis. Medicine. 2017; 96(18):e6755
- 223. Li Y, Zhang J, Lei F, Liu H, Li Z, Tang X. Self-evaluated and close relative-evaluated Epworth Sleepiness Scale vs. multiple sleep latency test in patients with obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2014; 10(2):171-176
- 224. Liam CK. A portal recording system for the assessment of patients with sleep apnoea syndrome. Medical Journal of Malaysia. 1996; 51(1):82-88
- 225. Liesching TN, Carlisle C, Marte A, Bonitati A, Millman RP. Evaluation of the accuracy of SNAP technology sleep sonography in detecting obstructive sleep apnea in adults compared to standard polysomnography. Chest. 2004; 125(3):886-891

- 226. Lim JS, Lee JW, Han C, Kwon JW. Correlation of soft palate length with velum obstruction and severity of obstructive sleep apnea syndrome. Auris, Nasus, Larynx. 2018; 45(3):499-503
- 227. Lim LL, Tham KW, Fook-Chong SM. Obstructive sleep apnoea in Singapore: Polysomnography data from a tertiary sleep disorders unit. Annals of the Academy of Medicine, Singapore. 2008; 37(8):629-636
- 228. Lin CL, Yeh C, Yen CW, Hsu WH, Hang LW. Comparison of the indices of oxyhemoglobin saturation by pulse oximetry in obstructive sleep apnea hypopnea syndrome. Chest. 2009; 135(1):86-93
- 229. Ling IT, James AL, Hillman DR. Interrelationships between body mass, oxygen desaturation, and apnea-hypopnea indices in a sleep clinic population. Sleep. 2012; 35(1):89-96
- 230. Linz D, Kadhim K, Brooks AG, Elliott AD, Hendriks JML, Lau DH et al. Diagnostic accuracy of overnight oximetry for the diagnosis of sleep-disordered breathing in atrial fibrillation patients. International Journal of Cardiology. 2018; 272:155-161
- 231. Lipatov K, Hayek A, Ghamande S, Boethel C, Chen W, Jones S. Predictors of obstructive sleep apnea on a home sleep apnea test after a negative attended polysomnography. Journal of Clinical Sleep Medicine. 2018; 14(11):1889-1894
- 232. Littner MR. Portable monitoring in the diagnosis of the obstructive sleep apnea syndrome. Seminars in Respiratory and Critical Care Medicine. 2005; 26(1):56-67
- 233. Liu D, Yang X, Wang G, Ma J, Liu Y, Peng CK et al. HHT based cardiopulmonary coupling analysis for sleep apnea detection. Sleep Medicine. 2012; 13(5):503-509
- 234. Liu WT, Wu HT, Juang JN, Wisniewski A, Lee HC, Wu D et al. Prediction of the severity of obstructive sleep apnea by anthropometric features via support vector machine. PloS One. 2017; 12(5):e0176991
- 235. Lloberes P, Sampol G, Levy G, Aristizabal D, Sagales T, De la Calzada M et al. Influence of setting on unattended respiratory monitoring in the sleep apnoea/hypopnoea syndrome. European Respiratory Journal. 2001; 18(3):530-534
- 236. Logar M, Rudez K, Groselj LD. Objective measurment of excessive daytime sleepiness with maintenance of wakefulness test in patients with breathing disorders during sleep. Zdravniski Vestnik. 2013; 82(1):9-15
- 237. Lopes C, Esteves AM, Bittencourt LR, Tufik S, Mello MT. Relationship between the quality of life and the severity of obstructive sleep apnea syndrome. Brazilian Journal of Medical and Biological Research. 2008; 41(10):908-913
- 238. Lopez-Acevedo MN, Torres-Palacios A, Elena Ocasio-Tascon M, Campos-Santiago Z, Rodriguez-Cintron W. Overlap syndrome: An indication for sleep studies? Sleep & Breathing. 2009; 13(4):409-413
- 239. Lopez-Acevedo MN, Torres-Palacios A, Elena Ocasio-Tascon M, Campos-Santiago Z, Rodriguez-Cintron W. Overlap syndrome: An indication for sleep studies? : A pilot study. Sleep & Breathing. 2009; 13(4):409-413
- 240. Lu H, Fu C, Li W, Jiang H, Wu X, Li S. Screening for obstructive sleep apnea syndrome in asthma patients: A prospective study based on Berlin and STOP-Bang questionnaires. Journal of Thoracic Disease. 2017; 9(7):1945-1958

- 241. Lucey BP, McLeland JS, Toedebusch CD, Boyd J, Morris JC, Landsness EC et al. Comparison of a single-channel EEG sleep study to polysomnography. Journal of Sleep Research. 2016; 25(6):625-635
- 242. Luo J, Huang R, Zhong X, Xiao Y, Zhou J. STOP-Bang questionnaire is superior to Epworth sleepiness scales, Berlin questionnaire, and STOP questionnaire in screening obstructive sleep apnea hypopnea syndrome patients. Chinese Medical Journal. 2014; 127(17):3065-3070
- 243. Luo J, Huang R, Zhong X, Xiao Y, Zhou J. Value of STOP-Bang questionnaire in screening patients with obstructive sleep apnea hypopnea syndrome in sleep disordered breathing clinic. Chinese Medical Journal. 2014; 127(10):1843-1848
- 244. Luo M, Zheng HY, Zhang Y, Feng Y, Li DQ, Li XL et al. A nomogram for predicting the likelihood of obstructive sleep apnea to reduce the unnecessary polysomnography examinations. Chinese Medical Journal. 2015; 128(16):2134-2140
- 245. Macavei VM, Spurling KJ, Loft J, Makker HK. Diagnostic predictors of obesity-hypoventilation syndrome in patients suspected of having sleep disordered breathing. Journal of Clinical Sleep Medicine. 2013; 9(9):879-884
- 246. MacGregor CA, Karimi D, Azarbarzin A, Moussavi Z. Statistical analysis of tracheal breath sounds during wakefulness for screening obstructive sleep apnea. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2013; 2013:4549-4552
- 247. MacGregor CA, Moussavi Z. A novel expert classifier approach to pre-screening obstructive sleep apnea during wakefulness. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2014; 2014:4236-4239
- 248. Mador MJ, Kufel TJ, Magalang UJ, Rajesh SK, Watwe V, Grant BJ. Prevalence of positional sleep apnea in patients undergoing polysomnography. Chest. 2005; 128(4):2130-2137
- 249. Maeder MT, Strobel W, Christ M, Todd J, Estis J, Wildi K et al. Comprehensive biomarker profiling in patients with obstructive sleep apnea. Clinical Biochemistry. 2015; 48(4-5):340-346
- 250. Maestri R, La Rovere MT, Robbi E, Pinna GD. Night-to-night repeatability of measurements of nocturnal breathing disorders in clinically stable chronic heart failure patients. Sleep & Breathing. 2011; 15(4):673-678
- 251. Magalang UJ, Dmochowski J, Veeramachaneni S, Draw A, Mador MJ, El-Solh A et al. Prediction of the apnea-hypopnea index from overnight pulse oximetry. Chest. 2003; 124(5):1694-1701
- 252. Magnusdottir S, Hilmisson H. Ambulatory screening tool for sleep apnea: Analyzing a single-lead electrocardiogram signal (ECG). Sleep & Breathing. 2018; 22(2):421-429
- 253. Mahakit P. A comparative study of two-hour daytime and overnight polysomnography in high risk snorers. Journal of the Medical Association of Thailand. 2012; 95(Suppl 5):S17-22
- 254. Maier C, Dickhaus H. Recurrence analysis of nocturnal heart rate in sleep apnea patients. Biomedizinische Technik. 2006; 51(4):224-228

- 255. Maier C, Wenz H, Dickhaus H. Robust detection of sleep apnea from Holter ECGs. Joint assessment of modulations in QRS amplitude and respiratory myogram interference. Methods of Information in Medicine. 2014; 53(4):303-307
- Maier C, Wenz H, Dickhaus H. Steps toward subject-specific classification in ECG-based detection of sleep apnea. Physiological Measurement. 2011; 32(11):1807-1819
- 257. Maimon N, Hanly PJ. Does snoring intensity correlate with the severity of obstructive sleep apnea? Journal of Clinical Sleep Medicine. 2010; 6(5):475-478
- 258. Maislin G, Pack AI, Kribbs NB, Smith PL, Schwartz AR, Kline LR et al. A survey screen for prediction of apnea. Sleep. 1995; 18(3):158-166
- 259. Makarie Rofail L, Wong KK, Unger G, Marks GB, Grunstein RR. Comparing the diagnostic accuracy of nasal flow and oximetry for OSA at home. American Journal of Respiratory and Critical Care Medicine. 2008; 177:A210
- 260. Malbois M, Giusti V, Suter M, Pellaton C, Vodoz JF, Heinzer R. Oximetry alone versus portable polygraphy for sleep apnea screening before bariatric surgery. Obesity Surgery. 2010; 20(3):326-331
- 261. Man GC, Kang BV. Validation of a portable sleep apnea monitoring device. Chest. 1995; 108(2):388-393
- 262. Mandal S, Suh ES, Boleat E, Asher W, Kamalanathan M, Lee K et al. A cohort study to identify simple clinical tests for chronic respiratory failure in obese patients with sleep-disordered breathing. BMJ open respiratory research. 2014; 1:e000022
- 263. Manoochehri Z, Rezaei M, Salari N, Khazaie H, Khaledi Paveh B, Manoochehri S. The prediction of obstructive sleep apnea using data mining approaches. Archives of Iranian Medicine. 2018; 21(10):460-465
- 264. Manoochehri Z, Salari N, Rezaei M, Khazaie H, Manoochehri S, Pavah BK. Comparison of support vector machine based on genetic algorithm with logistic regression to diagnose obstructive sleep apnea. Journal of Research in Medical Sciences. 2018; 23:65
- 265. Manser RL, Rochford P, Pierce RJ, Byrnes GB, Campbell DA. Impact of different criteria for defining hypopneas in the apnea-hypopnea index. Chest. 2001; 120(3):909-914
- 266. Manuel ARG, Hart N, Stradling JR. Is a raised bicarbonate, without hypercapnia, part of the physiologic spectrum of obesity-related hypoventilation? Chest. 2015; 147(2):362-368
- 267. Maranate T, Pongpullponsak A, Ruttanaumpawan P. The prioritization of clinical risk factors of obstructive sleep apnea severity using fuzzy analytic hierarchy process. Computational and Mathematical Methods in Medicine. 2015; 2015:257856
- 268. Marcos JV, Hornero R, Alvarez D, Aboy M, Del Campo F. Automated prediction of the apnea-hypopnea index from nocturnal oximetry recordings. IEEE Transactions on Biomedical Engineering. 2012; 59(1):141-149
- 269. Marcos JV, Hornero R, Alvarez D, Del Campo F, Aboy M. Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis. Medical and Biological Engineering and Computing. 2010; 48(9):895-902

- 270. Marcos JV, Hornero R, Alvarez D, Del Campo F, Lopez M. Applying neural network classifiers in the diagnosis of the obstructive sleep apnea syndrome from nocturnal pulse oximetric recordings. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2007; 2007:5174-5177
- 271. Marcos JV, Hornero R, Alvarez D, del Campo F, Lopez M, Zamarron C. Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Medical and Biological Engineering and Computing. 2008; 46(4):323-332
- 272. Marcos JV, Hornero R, Alvarez D, del Campo F, Zamarron C. Assessment of four statistical pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from nocturnal oximetry. Medical Engineering and Physics. 2009; 31(8):971-978
- 273. Marcos JV, Hornero R, Alvarez D, Del Campo F, Zamarron C. A classification algorithm based on spectral features from nocturnal oximetry and support vector machines to assist in the diagnosis of obstructive sleep apnea. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2009; 2009:5547-5550
- 274. Marcos JV, Hornero R, Alvarez D, Del Campo F, Zamarron C, Lopez M. Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Computer Methods and Programs in Biomedicine. 2008; 92(1):79-89
- 275. Marcos JV, Hornero R, Alvarez D, Nabney IT, Del Campo F, Zamarron C. The classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome. Physiological Measurement. 2010; 31(3):375-394
- 276. Marcos JV, Hornero R, Nabney IT, Alvarez D, Del Campo F. Analysis of nocturnal oxygen saturation recordings using kernel entropy to assist in sleep apnea-hypopnea diagnosis. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2011; 2011:1745-1748
- 277. Marcos JV, Hornero R, Nabney IT, Alvarez D, Gutierrez-Tobal GC, del Campo F. Regularity analysis of nocturnal oximetry recordings to assist in the diagnosis of sleep apnoea syndrome. Medical Engineering and Physics. 2016; 38(3):216-224
- 278. Margallo VS, Muxfeldt ES, Guimaraes GM, Salles GF. Diagnostic accuracy of the Berlin questionnaire in detecting obstructive sleep apnea in patients with resistant hypertension. Journal of Hypertension. 2014; 32(10):2030-2036; discussion 2037
- 279. Marrone O, Salvaggio A, Insalaco G, Bonsignore MR, Bonsignore G. Evaluation of the POLYMESAM system in the diagnosis of obstructive sleep apnea syndrome. Monaldi Archives for Chest Disease. 2001; 56(6):486-490
- 280. Marti-Soler H, Hirotsu C, Marques-Vidal P, Vollenweider P, Waeber G, Preisig M et al. The NoSAS score for screening of sleep-disordered breathing: A derivation and validation study. The Lancet Respiratory Medicine. 2016; 4(9):742-748
- 281. Martinez-Garcia MA, Navarro-Soriano C, Torres G, Barbe F, Caballero-Eraso C, Lloberes P et al. Beyond resistant hypertension. Hypertension. 2018; 72(3):618-624
- 282. Martinez D, Breitenbach TC, Lumertz MS, Alcantara DL, da Rocha NS, Cassol CM et al. Repeating administration of Epworth Sleepiness Scale is clinically useful. Sleep & Breathing. 2011; 15(4):763-773

- 283. Martinez D, da Silva RP, Klein C, Fiori CZ, Massierer D, Cassol CM et al. High risk for sleep apnea in the Berlin questionnaire and coronary artery disease. Sleep & Breathing. 2012; 16(1):89-94
- 284. Martinez D, Lumertz MS, Lenz Mdo C. Dimensions of sleepiness and their correlations with sleep-disordered breathing in mild sleep apnea. Jornal Brasileiro De Pneumologia: Publicacao Oficial Da Sociedade Brasileira De Pneumologia E Tisilogia. 2009; 35(6):507-514
- 285. Martinez MW, Rodysill KJ, Morgenthaler TI. Use of ambulatory overnight oximetry to investigate sleep apnea in a general internal medicine practice. Mayo Clinic Proceedings. 2005; 80(4):455-462
- 286. Martinot JB, Borel JC, Cuthbert V, Guenard HJ, Denison S, Silkoff PE et al. Mandibular position and movements: Suitability for diagnosis of sleep apnoea. Respirology. 2017; 22(3):567-574
- 287. Martinot JB, Le-Dong NN, Cuthbert V, Denison S, Silkoff PE, Guenard H et al. Mandibular movements as accurate reporters of respiratory effort during sleep: Validation against diaphragmatic electromyography. Frontiers in Neurology. 2017; 8:353
- 288. Martins EF, Martinez D, Cortes AL, Nascimento N, Brendler J. Exploring the STOP-BANG questionnaire for obstructive sleep apnea screening in seniors. Journal of Clinical Sleep Medicine. 2020; 16(2):199-206
- 289. Masa JF, Corral J, Gomez de Terreros J, Duran-Cantolla J, Cabello M, Hernandez-Blasco L et al. Significance of including a surrogate arousal for sleep apnea-hypopnea syndrome diagnosis by respiratory polygraphy. Sleep. 2013; 36(2):249-257
- 290. Masa JF, Corral J, Pereira R, Duran-Cantolla J, Cabello M, Hernandez-Blasco L et al. Effectiveness of sequential automatic-manual home respiratory polygraphy scoring. European Respiratory Journal. 2013; 41(4):879-887
- 291. Masa JF, Corral J, Pereira R, Duran-Cantolla J, Cabello M, Hernandez-Blasco L et al. Effectiveness of home respiratory polygraphy for the diagnosis of sleep apnoea and hypopnoea syndrome. Thorax. 2011; 66(7):567-573
- 292. Masa JF, Corral J, Pereira R, Duran-Cantolla J, Cabello M, Hernandez-Blasco L et al. Therapeutic decision-making for sleep apnea and hypopnea syndrome using home respiratory polygraphy: A large multicentric study. American Journal of Respiratory and Critical Care Medicine. 2011; 184(8):964-971
- 293. Masa JF, Corral J, Sanchez de Cos J, Duran-Cantolla J, Cabello M, Hernandez-Blasco L et al. Effectiveness of three sleep apnea management alternatives. Sleep. 2013; 36(12):1799-1807
- 294. Masa JF, Duran-Cantolla J, Capote F, Cabello M, Abad J, Garcia-Rio F et al. Effectiveness of home single-channel nasal pressure for sleep apnea diagnosis. Sleep. 2014; 37(12):1953-1961
- 295. Massie F, De Almeida DM, Dreesen P, Thijs I, Vranken J, Klerkx S. An evaluation of the Night Owl home sleep apnea testing system. Journal of Clinical Sleep Medicine. 2018; 14(10):1791-1796
- 296. Maury G, Cambron L, Jamart J, Marchand E, Senny F, Poirrier R. Added value of a mandible movement automated analysis in the screening of obstructive sleep apnea. Journal of Sleep Research. 2013; 22(1):96-103

- 297. Maury G, Senny F, Cambron L, Albert A, Seidel L, Poirrier R. Mandible behaviour interpretation during wakefulness, sleep and sleep-disordered breathing. Journal of Sleep Research. 2014; 23(6):709-716
- 298. Mayer P, Herrero Babiloni A, Aube JL, Kaddaha Z, Marshansky S, Rompre PH et al. Autonomic arousals as surrogates for cortical arousals caused by respiratory events: A methodological optimization study in the diagnosis of sleep breathing disorders. Nature & Science of Sleep. 2019; 11:423-431
- 299. Mayer P, Meurice JC, Philip-Joet F, Cornette A, Rakotonanahary D, Meslier N et al. Simultaneous laboratory-based comparison of ResMed Autoset with polysomnography in the diagnosis of sleep apnoea/hypopnoea syndrome. European Respiratory Journal. 1998; 12(4):770-775
- 300. Maziere S, Pepin JL, Siyanko N, Bioteau C, Launois S, Tamisier R et al. Usefulness of oximetry for sleep apnea screening in frail hospitalized elderly. Journal of the American Medical Directors Association. 2014; 15(6):447.e449-414
- 301. Mazza A, Bendini MG, De Cristofaro R, Lovecchio M, Valsecchi S, Boriani G. Pacemaker-detected severe sleep apnea predicts new-onset atrial fibrillation. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology. 2017; 19(12):1937-1943
- 302. McArdle N, Grove A, Devereux G, Mackay-Brown L, Mackay T, Douglas NJ. Splitnight versus full-night studies for sleep apnoea/hypopnoea syndrome. European Respiratory Journal. 2000; 15(4):670-675
- 303. McArdle N, Ward SV, Bucks RS, Maddison K, Smith A, Huang RC et al. The prevalence of common sleep disorders in young adults: a descriptive population-based study. Sleep. 2020; http://dx.doi.org/10.1093/sleep/zsaa072
- 304. McCall WV, Kimball J, Boggs N, Lasater B, D'Agostino RB, Jr., Rosenquist PB. Prevalence and prediction of primary sleep disorders in a clinical trial of depressed patients with insomnia. Journal of Clinical Sleep Medicine. 2009; 5(5):454-458
- 305. McCarter SJ, St Louis EK, Duwell EJ, Timm PC, Sandness DJ, Boeve BF et al. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea. Sleep. 2014; 37(10):1649-1662
- 306. McIsaac DI, Gershon A, Wijeysundera D, Bryson GL, Badner N, van Walraven C. Identifying obstructive sleep apnea in administrative data: A study of diagnostic accuracy. Anesthesiology. 2015; 123(2):253-263
- 307. McMahon MJ, Sheikh KL, Andrada TF, Holley AB. Using the STOPBANG questionnaire and other pre-test probability tools to predict OSA in younger, thinner patients referred to a sleep medicine clinic. Sleep & Breathing. 2017; 21(4):869-876
- 308. McMillan A, Bratton DJ, Faria R, Laskawiec-Szkonter M, Griffin S, Davies RJ et al. A multicentre randomised controlled trial and economic evaluation of continuous positive airway pressure for the treatment of obstructive sleep apnoea syndrome in older people: PREDICT. Health Technology Assessment. 2015; 19(40):1-220
- 309. Medarov BI, Pluto LA, Fina L, Ilyas F, Sukhu I, Yucel R et al. Assessing the reliability of obstructive sleep apnea screening instruments in isolation or in combination. Respiratory Medicine: X. 2020; 2:100019

- 310. Mehra R, Stone KL, Ancoli-Israel S, Litwack-Harrison S, Ensrud KE, Redline S et al. Interpreting wrist actigraphic indices of sleep in epidemiologic studies of the elderly: the Study of Osteoporotic Fractures. Sleep. 2008; 31(11):1569-1576
- 311. Meissner WG, Flabeau O, Perez P, Taillard J, Marquant F, Dupouy S et al. Accuracy of portable polygraphy for the diagnosis of sleep apnea in multiple system atrophy. Sleep Medicine. 2014; 15(4):476-479
- 312. Mendelson WB. Use of the sleep laboratory in suspected sleep apnea syndrome: is one night enough? Cleveland Clinic Journal of Medicine. 1994; 61(4):299-303
- 313. Mendez MO, Corthout J, Van Huffel S, Matteucci M, Penzel T, Cerutti S et al. Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis. Physiological Measurement. 2010; 31(3):273-289
- 314. Meng L, Xu H, Guan J, Yi H, Wu H, Yin S. Validation of a novel sleep-monitoring system for diagnosing obstructive sleep apnea: A comparison with polysomnography. Experimental and Therapeutic Medicine. 2016; 12(5):2937-2941
- 315. Mergen H, Altindag B, Zeren Ucar Z, Karasu Kilicaslan I. The predictive performance of the STOP-Bang questionnaire in obstructive sleep apnea screening of obese population at sleep clinical setting. Cureus. 2019; 11(12):e6498
- 316. Mesquita J, Sola-Soler J, Fiz JA, Morera J, Jane R. All night analysis of time interval between snores in subjects with sleep apnea hypopnea syndrome. Medical and Biological Engineering and Computing. 2012; 50(4):373-381
- 317. Methipisit T, Mungthin M, Saengwanitch S, Ruangkana P, Chinwarun Y, Ruangkanchanasetr P et al. The Development of sleep questionnaires Thai version (ESS, SA-SDQ, and PSQI): Linguistic validation, reliability analysis and cut-Off level to determine sleep related problems in Thai population. Journal of the Medical Association of Thailand. 2016; 99(8):893-903
- 318. Meurgey JH, Brown R, Woroszyl-Chrusciel A, Steier J. Peri-operative treatment of sleep-disordered breathing and outcomes in bariatric patients. Journal of Thoracic Disease. 2018; 10(Suppl 1):S144-152
- 319. Michaelson PG, Allan P, Chaney J, Mair EA. Validations of a portable home sleep study with twelve-lead polysomnography: Comparisons and insights into a variable gold standard. Annals of Otology, Rhinology and Laryngology. 2006; 115(11):802-809
- 320. Mihaicuta S, Udrescu M, Topirceanu A, Udrescu L. Network science meets respiratory medicine for OSAS phenotyping and severity prediction. PeerJ. 2017; 5:e3289
- 321. Miller JN, Kupzyk KA, Zimmerman L, Pozehl B, Schulz P, Romberger D et al. Comparisons of measures used to screen for obstructive sleep apnea in patients referred to a sleep clinic. Sleep Medicine. 2018; 51:15-21
- 322. Miller JN, Schulz P, Pozehl B, Fiedler D, Fial A, Berger AM. Methodological strategies in using home sleep apnea testing in research and practice. Sleep & Breathing. 2018; 22(3):569-577
- 323. Minic M, Granton JT, Ryan CM. Sleep disordered breathing in group 1 pulmonary arterial hypertension. Journal of Clinical Sleep Medicine. 2014; 10(3):277-283

- 324. Miyata S, Otake H, Ando M, Okuda M, Fujishiro H, Iwamoto K et al. Patient characteristics affecting accurate detection of sleep apnea using a bed sheet-type portable monitor. Sleep and Breathing. 2020; 24(2):783-790
- 325. Mokhlesi B, Tulaimat A, Faibussowitsch I, Wang Y, Evans AT. Obesity hypoventilation syndrome: Prevalence and predictors in patients with obstructive sleep apnea. Sleep & Breathing. 2007; 11(2):117-124
- 326. Morales CR, Hurley S, Wick LC, Staley B, Pack FM, Gooneratne NS et al. In-home, self-assembled sleep studies are useful in diagnosing sleep apnea in the elderly. Sleep. 2012; 35(11):1491-1501
- 327. Morales Divo C, Selivanova O, Mewes T, Gosepath J, Lippold R, Mann WJ. Polysomnography and ApneaGraph in patients with sleep-related breathing disorders. ORL: Journal of Oto-Rhino-Laryngology and Its Related Specialties. 2009; 71(1):27-31
- 328. Morgan BJ, Reichmuth KJ, Peppard PE, Finn L, Barczi SR, Young T et al. Effects of sleep-disordered breathing on cerebrovascular regulation: A population-based study. American Journal of Respiratory and Critical Care Medicine. 2010; 182(11):1445-1452
- 329. Morgenstern C, Randerath WJ, Schwaibold M, Bolz A, Jane R. Feasibility of noninvasive single-channel automated differentiation of obstructive and central hypopneas with nasal airflow. Respiration. 2013; 85(4):312-318
- 330. Morgenstern C, Schwaibold M, Randerath WJ, Bolz A, Jane R. An invasive and a noninvasive approach for the automatic differentiation of obstructive and central hypopneas. IEEE Transactions on Biomedical Engineering. 2010; 57(8):1927-1936
- 331. Morillo DS, Gross N. Probabilistic neural network approach for the detection of SAHS from overnight pulse oximetry. Medical and Biological Engineering and Computing. 2013; 51(3):305-315
- 332. Morillo DS, Rojas JL, Crespo LF, Leon A, Gross N. Poincare analysis of an overnight arterial oxygen saturation signal applied to the diagnosis of sleep apnea hypopnea syndrome. Physiological Measurement. 2009; 30(4):405-420
- 333. Moro M, Westover MB, Kelly J, Bianchi MT. Decision modeling in sleep apnea: The critical roles of pretest probability, cost of untreated obstructive sleep apnea, and time horizon. Journal of Clinical Sleep Medicine. 2016; 12(3):409-418
- 334. Morrell MJ, Finn L, McMillan A, Peppard PE. The impact of ageing and sex on the association between sleepiness and sleep disordered breathing. European Respiratory Journal. 2012; 40(2):386-393
- 335. Morris LG, Burschtin O, Lebowitz RA, Jacobs JB, Lee KC. Nasal obstruction and sleep-disordered breathing: A study using acoustic rhinometry. American Journal of Rhinology. 2005; 19(1):33-39
- 336. Morris LG, Kleinberger A, Lee KC, Liberatore LA, Burschtin O. Rapid risk stratification for obstructive sleep apnea, based on snoring severity and body mass index.

 Otolaryngology Head and Neck Surgery. 2008; 139(5):615-618
- 337. Mou J, Pflugeisen BM, Crick BA, Amoroso PJ, Harmon KT, Tarnoczy SF et al. The discriminative power of STOP-Bang as a screening tool for suspected obstructive sleep apnea in clinically referred patients: Considering gender differences Sleep & Breathing. 2019; 23(1):65-75

- 338. Mueller A, Fietze I, Voelker R, Eddicks S, Glos M, Baumann G et al. Screening for sleep-related breathing disorders by transthoracic impedance recording integrated into a Holter ECG system. Journal of Sleep Research. 2006; 15(4):455-462
- 339. Mulgrew AT, Fox N, Ayas NT, Ryan CF. Diagnosis and initial management of obstructive sleep apnea without polysomnography: a randomized validation study. Annals of Internal Medicine. 2007; 146(3):157-166
- 340. Munoz-Ferrer A, Cervantes MA, Garcia-Olive I, Vicente I, Folgadob C, Ruiz-Manzano J et al. In-home diagnosis of obstructive sleep apnea using automatic video analysis. Archivos de Bronconeumologia. 2020; http://dx.doi.org/10.1016/j.arbres.2019.11.027
- 341. Musman S, Passos VM, Silva IB, Barreto SM. Evaluation of a prediction model for sleep apnea in patients submitted to polysomnography. Jornal Brasileiro De Pneumologia: Publicacao Oficial Da Sociedade Brasileira De Pneumologia E Tisilogia. 2011; 37(1):75-84
- 342. Mutlu P, Zateri C, Zohra A, Ozerdogan O, Mirici AN. Prevalence of obstructive sleep apnea in female patients with fibromyalgia. Saudi Medical Journal. 2020; 41(7):740-745
- 343. Nagappa M, Liao P, Wong J, Auckley D, Ramachandran SK, Memtsoudis S et al. Validation of the stop-bang questionnaire as a screening tool for obstructive sleep apnea among different populations: A systematic review and meta-analysis. PloS One. 2015; 10(12):e0143697
- 344. Nagubadi S, Mehta R, Abdoh M, Nagori M, Littleton S, Gueret R et al. The accuracy of portable monitoring in diagnosing significant sleep disordered breathing in hospitalized patients. PloS One. 2016; 11(12):e0168073
- 345. Nahapetian R, Silva GE, Vana KD, Parthasarathy S, Quan SF. Weighted STOP-Bang and screening for sleep-disordered breathing. Sleep & Breathing. 2016; 20(2):597-603
- 346. Nakano H, Furukawa T, Nishima S. Relationship between snoring sound intensity and sleepiness in patients with obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2008; 4(6):551-556
- 347. Nakano H, Hayashi M, Ohshima E, Nishikata N, Shinohara T. Validation of a new system of tracheal sound analysis for the diagnosis of sleep apnea-hypopnea syndrome. Sleep. 2004; 27(5):951-957
- 348. Nakano H, Hirayama K, Sadamitsu Y, Toshimitsu A, Fujita H, Shin S et al. Monitoring sound to quantify snoring and sleep apnea severity using a smartphone: Proof of concept. Journal of Clinical Sleep Medicine. 2014; 10(1):73-78
- 349. Nakano H, Ikeda T, Hayashi M, Ohshima E, Itoh M, Nishikata N et al. Effect of body mass index on overnight oximetry for the diagnosis of sleep apnea. Respiratory Medicine. 2004; 98(5):421-427
- 350. Nakano H, Tanigawa T, Furukawa T, Nishima S. Automatic detection of sleep-disordered breathing from a single-channel airflow record. European Respiratory Journal. 2007; 29(4):728-736
- 351. Nakano H, Tanigawa T, Ohnishi Y, Uemori H, Senzaki K, Furukawa T et al. Validation of a single-channel airflow monitor for screening of sleep-disordered breathing. European Respiratory Journal. 2008; 32(4):1060-1067

- 352. Narayan S, Shivdare P, Niranjan T, Williams K, Freudman J, Sehra R. Noncontact identification of sleep-disturbed breathing from smartphone-recorded sounds validated by polysomnography Sleep & Breathing. 2019; 23(1):269-279
- 353. National Institute for Health and Care Excellence. Developing NICE guidelines: the manual [Updated 2018]. London. National Institute for Health and Care Excellence, 2014. Available from: http://www.nice.org.uk/article/PMG20/chapter/1%20Introduction%20and%20overview
- 354. Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Annals of Internal Medicine. 1999; 131(7):485-491
- 355. Ng AK, Koh TS, Abeyratne UR, Puvanendran K. Investigation of obstructive sleep apnea using nonlinear mode interactions in nonstationary snore signals. Annals of Biomedical Engineering. 2009; 37(9):1796-1806
- 356. Ng AK, Koh TS, Baey E, Lee TH, Abeyratne UR, Puvanendran K. Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea? Sleep Medicine. 2008; 9(8):894-898
- 357. Ng AK, Koh TS, Baey E, Puvanendran K. Role of upper airway dimensions in snore production: Acoustical and perceptual findings. Annals of Biomedical Engineering. 2009; 37(9):1807-1817
- 358. Ng AK, Wong KY, Tan CH, Koh TS. Bispectral analysis of snore signals for obstructive sleep apnea detection. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2007; 2007:6196-6199
- 359. Ng SS, Chan TO, To KW, Ngai J, Tung A, Ko FW et al. Validation of a portable recording device (ApneaLink) for identifying patients with suspected obstructive sleep apnoea syndrome. Internal Medicine Journal. 2009; 39(11):757-762
- 360. Ng SS, Chan TO, To KW, Ngai J, Tung A, Ko FW et al. Validation of Embletta portable diagnostic system for identifying patients with suspected obstructive sleep apnoea syndrome (OSAS). Respirology. 2010; 15(2):336-342
- 361. Ng SS, Tam W, Chan TO, To KW, Ngai J, Chan KKP et al. Use of Berlin questionnaire in comparison to polysomnography and home sleep study in patients with obstructive sleep apnea. Respiratory Research. 2019; 20(1):40
- 362. Ng Y, Joosten SA, Edwards BA, Turton A, Romios H, Samarasinghe T et al. Oxygen desaturation index differs significantly between types of sleep software. Journal of Clinical Sleep Medicine. 2017; 13(4):599-605
- 363. Nicholl DD, Ahmed SB, Loewen AH, Hemmelgarn BR, Sola DY, Beecroft JM et al. Diagnostic value of screening instruments for identifying obstructive sleep apnea in kidney failure. Journal of Clinical Sleep Medicine. 2013; 9(1):31-38
- 364. Nicholl DDM, Ahmed SB, Loewen AHS, Hemmelgarn BR, Sola DY, Beecroft JM et al. Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia. Chest. 2012; 141(6):1422-1430
- 365. Nigro CA, Aimaretti S, Gonzalez S, Rhodius E. Validation of the WristOx 3100 oximeter for the diagnosis of sleep apnea/hypopnea syndrome. Sleep & Breathing. 2009; 13(2):127-136

- 366. Nigro CA, Borsini EE, Dibur E, Larrateguy LD, Cazaux A, Elias C et al. CPAP indication based on clinical data and oximetry for patients with suspicion of obstructive sleep apnea: A multicenter trial. Sleep Science. 2019; 12(4):249-256
- 367. Nigro CA, Dibur E, Aimaretti S, Gonzalez S, Rhodius E. Comparison of the automatic analysis versus the manual scoring from ApneaLinkTM device for the diagnosis of obstructive sleep apnoea syndrome. Sleep & Breathing. 2011; 15(4):679-686
- 368. Nigro CA, Dibur E, Aragone MR, Borsini E, Ernst G, Nogueria F. Can CPAP be indicated in adult patients with suspected obstructive sleep apnea only on the basis of clinical data? Sleep & Breathing. 2016; 20(1):175-182; discussion 182
- 369. Nigro CA, Dibur E, Grandval S, Nogueira F. Indication of cpap in patients with suspected obstructive sleep apnea, based on clinical parameters and a novel two-channel recording device (ApneaLink): A pilot study. Sleep Disorders Print. 2012; 2012;346181
- 370. Nigro CA, Dibur E, Malnis S, Grandval S, Nogueira F. Validation of ApneaLink OxTM for the diagnosis of obstructive sleep apnea. Sleep & Breathing. 2013; 17(1):259-266
- 371. Nigro CA, Dibur E, Rhodius E. Accuracy of the clinical parameters and oximetry to initiate CPAP in patients with suspected obstructive sleep apnea. Sleep & Breathing. 2012; 16(4):1073-1079
- 372. Nigro CA, Dibur E, Rhodius E. Pulse oximetry for the detection of obstructive sleep apnea syndrome: Can the memory capacity of oxygen saturation influence their diagnostic accuracy? Sleep Disorders Print. 2011; 2011:427028
- 373. Nigro CA, Gonzalez S, Arce A, Aragone MR, Nigro L. Accuracy of a novel auto-CPAP device to evaluate the residual apnea-hypopnea index in patients with obstructive sleep apnea. Sleep & Breathing. 2015; 19(2):569-578
- 374. Nigro CA, Malnis S, Dibur E, Rhodius E. How reliable is the manual correction of the autoscoring of a level IV sleep study (ApneaLinkTM) by an observer without experience in polysomnography? Sleep & Breathing. 2012; 16(2):275-279
- 375. Nigro CA, Serrano F, Aimaretti S, Gonzalez S, Codinardo C, Rhodius E. Utility of ApneaLink for the diagnosis of sleep apnea-hypopnea syndrome. Medicina. 2010; 70(1):53-59
- 376. Niijima K, Enta K, Hori H, Sashihara S, Mizoue T, Morimoto Y. The usefulness of sleep apnea syndrome screening using a portable pulse oximeter in the workplace. Journal of Occupational Health. 2007; 49(1):1-8
- 377. Nilius G, Domanski U, Schroeder M, Franke KJ, Hogrebe A, Margarit L et al. A randomized controlled trial to validate the Alice PDX ambulatory device. Nature & Science of Sleep. 2017; 9:171-180
- 378. Nishiyama T, Mizuno T, Kojima M, Suzuki S, Kitajima T, Ando KB et al. Criterion validity of the Pittsburgh Sleep Quality Index and Epworth Sleepiness Scale for the diagnosis of sleep disorders. Sleep Medicine. 2014; 15(4):422-429
- 379. Norman MB, Sullivan CE. Estimating sleep time from non-EEG-based PSG signals in the diagnosis of sleep-disordered breathing. Sleep & Breathing. 2017; 21(3):657-666
- 380. Novkovic D, Cvetkovic G, Acimovic S, Milic R, Sarac S, Urosevic R. Using respiratory polygraphy in diagnosing obstructive sleep apnea Our experiences. Vojnosanitetski Pregled. 2019; 76(11):1190-1193

- 381. O'Brien C, Heneghan C. A comparison of algorithms for estimation of a respiratory signal from the surface electrocardiogram. Computers in Biology and Medicine. 2007; 37(3):305-314
- 382. O'Driscoll DM, Turton AR, Copland JM, Strauss BJ, Hamilton GS. Energy expenditure in obstructive sleep apnea: Validation of a multiple physiological sensor for determination of sleep and wake. Sleep & Breathing. 2013; 17(1):139-146
- 383. Oeverland B, Skatvedt O, Kvaerner KJ, Akre H. Pulseoximetry: Sufficient to diagnose severe sleep apnea. Sleep Medicine. 2002; 3(2):133-138
- 384. Oktay B, Rice TB, Atwood CW, Jr., Passero M, Jr., Gupta N, Givelber R et al. Evaluation of a single-channel portable monitor for the diagnosis of obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2011; 7(4):384-390
- 385. Oliveira MG, Nery LE, Santos-Silva R, Sartori DE, Alonso FF, Togeiro SM et al. Is portable monitoring accurate in the diagnosis of obstructive sleep apnea syndrome in chronic pulmonary obstructive disease? Sleep Medicine. 2012; 13(8):1033-1038
- 386. Oliveira MG, Treptow EC, Fukuda C, Nery LE, Valadares RM, Tufik S et al.
 Diagnostic accuracy of home-based monitoring system in morbidly obese patients with high risk for sleep apnea. Obesity Surgery. 2015; 25(5):845-851
- 387. Olson LG, Ambrogetti A, Gyulay SG. Prediction of sleep-disordered breathing by unattended overnight oximetry. Journal of Sleep Research. 1999; 8(1):51-55
- 388. Onder NS, Akpinar ME, Yigit O, Gor AP. Watch peripheral arterial tonometry in the diagnosis of obstructive sleep apnea: influence of aging. Laryngoscope. 2012; 122(6):1409-1414
- 389. Onen SH, Dubray C, Decullier E, Moreau T, Chapuis F, Onen F. Observation-based nocturnal sleep inventory: Screening tool for sleep apnea in elderly people. Journal of the American Geriatrics Society. 2008; 56(10):1920-1925
- 390. Ong TH, Raudha S, Fook-Chong S, Lew N, Hsu AAL. Simplifying STOP-BANG: Use of a simple questionnaire to screen for OSA in an Asian population. Sleep & Breathing. 2010; 14(4):371-376
- 391. Ortiz-Tudela E, Martinez-Nicolas A, Albares J, Segarra F, Campos M, Estivill E et al. Ambulatory Circadian Monitoring (ACM) based on Thermometry, motor Activity and body Position (TAP): A comparison with polysomnography. Physiology and Behavior. 2014; 126:30-38
- 392. Ozegowski S, Wilczynska E, Piorunek T, Szymanowska K, Paluszkiewicz L. Usefulness of ambulatory ECG in the diagnosis of sleep-related breathing disorders. Kardiologia Polska. 2007; 65(11):1321-1328; discussion 1329-1330
- 393. Ozmen OA, Tuzemen G, Kasapoglu F, Ozmen S, Coskun H, Ursavas A et al. The reliability of SleepStrip as a screening test in obstructive sleep apnea syndrome. Journal of Ear, Nose & Throat: KBB. 2011; 21(1):15-19
- 394. Pallin M, O'Hare E, Zaffaroni A, Boyle P, Fagan C, Kent B et al. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea. Journal of Sleep Research. 2014; 23(4):475-484
- 395. Pamidi S, Knutson KL, Ghods F, Mokhlesi B. Depressive symptoms and obesity as predictors of sleepiness and quality of life in patients with REM-related obstructive

- sleep apnea: Cross-sectional analysis of a large clinical population. Sleep Medicine. 2011; 12(9):827-831
- 396. Panchasara B, Poots AJ, Davies G. Are the Epworth Sleepiness Scale and Stop-Bang model effective at predicting the severity of obstructive sleep apnoea (OSA); in particular OSA requiring treatment? European Archives of Oto-Rhino-Laryngology. 2017; 274(12):4233-4239
- 397. Pang KP, Dillard TA, Blanchard AR, Gourin CG, Podolsky R, Terris DJ. A comparison of polysomnography and the SleepStrip in the diagnosis of OSA. Otolaryngology Head and Neck Surgery. 2006; 135(2):265-268
- 398. Pang KP, Gourin CG, Terris DJ. A comparison of polysomnography and the WatchPAT in the diagnosis of obstructive sleep apnea. Otolaryngology Head and Neck Surgery. 2007; 137(4):665-668
- 399. Park DY, Kim HJ, Kim CH, Kim YS, Choi JH, Hong SY et al. Reliability and validity testing of automated scoring in obstructive sleep apnea diagnosis with the Embletta X100. Laryngoscope. 2015; 125(2):493-497
- 400. Park JU, Lee HK, Lee J, Urtnasan E, Kim H, Lee KJ. Automatic classification of apnea/hypopnea events through sleep/wake states and severity of SDB from a pulse oximeter. Physiological Measurement. 2015; 36(9):2009-2025
- 401. Parra O, Garcia-Esclasans N, Montserrat JM, Garcia Eroles L, Ruiz J, Lopez JA et al. Should patients with sleep apnoea/hypopnoea syndrome be diagnosed and managed on the basis of home sleep studies? European Respiratory Journal. 1997; 10(8):1720-1724
- 402. Passali FM, Bellussi L, Mazzone S, Passali D. Predictive role of nasal functionality tests in the evaluation of patients before nocturnal polysomnographic recording. Acta Otorhinolaryngologica Italica. 2011; 31(2):103-108
- 403. Pataka A, Daskalopoulou E, Kalamaras G, Fekete Passa K, Argyropoulou P. Evaluation of five different questionnaires for assessing sleep apnea syndrome in a sleep clinic. Sleep Medicine. 2014; 15(7):776-781
- 404. Pataka A, Kalamaras G, Daskalopoulou E, Argyropoulou P. Sleep questionnaires for the screening of obstructive sleep apnea in patients with type 2 diabetes mellitus compared with non-diabetic patients. Journal of Diabetes. 2019; 11(3):214-222
- 405. Pataka A, Kotoulas S, Kalamaras G, Schiza S, Sapalidis K, Giannakidis D et al. Gender differences in obstructive sleep apnea: The value of sleep questionnaires with a separate analysis of cardiovascular patients. Journal of Clinical Medicine. 2020; 9:130
- 406. Pataka A, Zarogoulidis P, Hohenforst-Schmidt W, Tsiouda T, Tsavlis D, Kioumis I et al. During economic crisis can sleep questionnaires improve the value of oximetry for assessing sleep apnea? Annals of Translational Medicine. 2016; 4(22):443
- 407. Patout M, Gagnadoux F, Rabec C, Trzepizur W, Georges M, Perrin C et al. AVAPS-AE versus ST mode: A randomized controlled trial in patients with obesity hypoventilation syndrome. Respirology. 2020; 25(10):1073-1081
- 408. Peker Y, Basoglu OK, Firat H, Turkapne Study Group. Rationale and design of the Turkish Sleep Apnea Database TURKAPNE: A national, multicenter, observational, prospective cohort study. Turkish Thoracic Journal. 2018; 19(3):136-140

- 409. Pelletier-Fleury N, Gagnadoux F, Philippe C, Rakotonanahary D, Lanoe JL, Fleury B. A cost-minimization study of telemedicine. The case of telemonitored polysomnography to diagnose obstructive sleep apnea syndrome. International Journal of Technology Assessment in Health Care. 2001; 17(4):604-611
- 410. Penacoba P, Llauger MA, Fortuna AM, Flor X, Sampol G, Pedro-Pijoan AM et al. Primary care and sleep unit agreement in management decisions for sleep apnea: a prospective study in Spain. Journal of Clinical Sleep Medicine. 2020; http://dx.doi.org/10.5664/jcsm.8492
- 411. Peng M, Chen R, Cheng J, Li J, Liu W, Hong C. Application value of the NoSAS score for screening sleep-disordered breathing. Journal of Thoracic Disease. 2018; 10(8):4774-4781
- 412. Penzel T, Fricke R, Jerrentrup A, Peter JH, Vogelmeier C. Peripheral arterial tonometry for the diagnosis of obstructive sleep apnea. Biomedizinische Technik. 2002; 47(Suppl 1 Pt 1):315-317
- 413. Penzel T, Kesper K, Pinnow I, Becker HF, Vogelmeier C. Peripheral arterial tonometry, oximetry and actigraphy for ambulatory recording of sleep apnea. Physiological Measurement. 2004; 25(4):1025-1036
- 414. Penzel T, Kesper K, Ploch T, Becker HF, Vogelmeier C. Ambulatory recording of sleep apnea using peripheral arterial tonometry. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2004; 2004:3856-3859
- 415. Pepin JL, Defaye P, Vincent E, Christophle-Boulard S, Tamisier R, Levy P. Sleep apnea diagnosis using an ECG Holter device including a nasal pressure (NP) recording: Validation of visual and automatic analysis of nasal pressure versus full polysomnography. Sleep Medicine. 2009; 10(6):651-656
- 416. Pereira EJ, Driver HS, Stewart SC, Fitzpatrick MF. Comparing a combination of validated questionnaires and level III portable monitor with polysomnography to diagnose and exclude sleep apnea. Journal of Clinical Sleep Medicine. 2013; 9(12):1259-1266
- 417. Peto N, Seres T, Szakacs Z, Fay V, Karaszova J, Kontra A et al. Evaluation of the Brussells questionnaire as a screening tool for obstructive sleep apnea syndrome. New Medicine. 2017; 21(1):3-7
- 418. Phua CQ, Jang IJ, Tan KB, Hao Y, Senin SRB, Song PR et al. Reducing cost and time to diagnosis and treatment of obstructive sleep apnea using ambulatory sleep study: a Singapore sleep centre experience. Sleep & Breathing. 2020; https://dx.doi.org/10.1007/s11325-020-02115-z
- 419. Pichel F, Zamarron C, Magan F, Rodriguez JR. Sustained attention measurements in obstructive sleep apnea and risk of traffic accidents. Respiratory Medicine. 2006; 100(6):1020-1027
- 420. Pietzsch JB, Garner A, Cipriano LE, Linehan JH. An integrated health-economic analysis of diagnostic and therapeutic strategies in the treatment of moderate-to-severe obstructive sleep apnea. Sleep. 2011; 34(6):695-709
- 421. Pihtili A, Bingol Z, Kiyan E. The predictors of obesity hypoventilation syndrome in obstructive sleep apnea. Balkan Medical Journal. 2017; 34(1):41-46

- 422. Pillar G, Peled N, Katz N, Lavie P. Predictive value of specific risk factors, symptoms and signs, in diagnosing obstructive sleep apnoea and its severity. Journal of Sleep Research. 1994; 3(4):241-244
- 423. Pinna GD, Robbi E, Pizza F, Taurino AE, Pronzato C, La Rovere MT et al. Can cardiorespiratory polygraphy replace portable polysomnography in the assessment of sleep-disordered breathing in heart failure patients? Sleep & Breathing. 2014; 18(3):475-482
- 424. Pinto JA, Godoy LB, Ribeiro RC, Mizoguchi EI, Hirsch LA, Gomes LM. Accuracy of peripheral arterial tonometry in the diagnosis of obstructive sleep apnea. Revista Brasileira de Otorrinolaringologia. 2015; 81(5):473-478
- 425. Pissulin FDM, Pacagnelli FL, Alda MA, Beneti R, Barros JL, Minamoto ST et al. The triad of obstructive sleep apnea syndrome, COPD, and obesity: Sensitivity of sleep scales and respiratory questionnaires. Jornal Brasileiro De Pneumologia: Publicacao Oficial Da Sociedade Brasileira De Pneumologia E Tisilogia. 2018; 44(3):202-206
- 426. Pittman SD, Ayas NT, MacDonald MM, Malhotra A, Fogel RB, White DP. Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: In-laboratory and ambulatory validation. Sleep. 2004; 27(5):923-933
- 427. Pittman SD, MacDonald MM, Fogel RB, Malhotra A, Todros K, Levy B et al.
 Assessment of automated scoring of polysomnographic recordings in a population with suspected sleep-disordered breathing. Sleep. 2004; 27(7):1394-1403
- 428. Planes C, Leroy M, Bouach Khalil N, El Mahmoud R, Digne F, De Roquefeuil F et al. Home diagnosis of obstructive sleep apnoea in coronary patients: Validity of a simplified device automated analysis. Sleep & Breathing. 2010; 14(1):25-32
- 429. Polese JF, Santos-Silva R, de Oliveira Ferrari PM, Sartori DE, Tufik S, Bittencourt L. Is portable monitoring for diagnosing obstructive sleep apnea syndrome suitable in elderly population? Sleep & Breathing. 2013; 17(2):679-686
- 430. Popovic D, King C, Guerrero M, Levendowski DJ, Henninger D, Westbrook PR. Validation of forehead venous pressure as a measure of respiratory effort for the diagnosis of sleep apnea. Journal of Clinical Monitoring and Computing. 2009; 23:1-10
- 431. Pouliot Z, Peters M, Neufeld H, Kryger MH. Using self-reported questionnaire data to prioritize OSA patients for polysomnography. Sleep. 1997; 20(3):232-236
- 432. Poupard L, Mathieu M, Goldman M, Chouchou F, Roche F. Multi-modal ECG Holter system for sleep-disordered breathing screening: A validation study. Sleep & Breathing. 2012; 16(3):685-693
- 433. Poupard L, Philippe C, Goldman MD, Sartene R, Mathieu M. Novel mathematical processing method of nocturnal oximetry for screening patients with suspected sleep apnoea syndrome. Sleep & Breathing. 2012; 16(2):419-425
- 434. Pradhan PS, Gliklich RE, Winkelman J. Screening for obstructive sleep apnea in patients presenting for snoring surgery. Laryngoscope. 1996; 106(11):1393-1397
- 435. Prasad KT, Sehgal IS, Agarwal R, Nath Aggarwal A, Behera D, Dhooria S. Assessing the likelihood of obstructive sleep apnea: A comparison of nine screening questionnaires. Sleep & Breathing. 2017; 21(4):909-917
- 436. Prikladnicki A, Martinez D, Brunetto MG, Fiori CZ, Lenz M, Gomes E. Diagnostic performance of cheeks appearance in sleep apnea. Cranio. 2018; 36(4):214-221

- 437. Quaranta VN, Dragonieri S, Carratu P, Falcone VA, Carucci E, Ranieri T et al. A new approach for the assessment of sleepiness and predictivity of obstructive sleep apnea in drivers: A pilot study. Lung India. 2016; 33(1):14-19
- 438. Quintana-Gallego E, Villa-Gil M, Carmona-Bernal C, Botebol-Benhamou G, Martinez-Martinez A, Sanchez-Armengol A et al. Home respiratory polygraphy for diagnosis of sleep-disordered breathing in heart failure. European Respiratory Journal. 2004; 24(3):443-448
- 439. Rajeswari J, Jagannath M. Screening of obstructive sleep apnea in an urban population in south India. Obesity Medicine. 2020; 18:100220
- 440. Randerath WJ, Treml M, Priegnitz C, Stieglitz S, Hagmeyer L, Morgenstern C. Evaluation of a noninvasive algorithm for differentiation of obstructive and central hypopneas. Sleep. 2013; 36(3):363-368
- 441. Rashid NH, Zaghi S, Scapuccin M, Camacho M, Certal V, Capasso R. The value of oxygen desaturation index for diagnosing obstructive sleep apnea: A systematic review. Laryngoscope. 2020; https://dx.doi.org/10.1002/lary.28663
- 442. Rathnayake SI, Wood IA, Abeyratne UR, Hukins C. Nonlinear features for single-channel diagnosis of sleep-disordered breathing diseases. IEEE Transactions on Biomedical Engineering. 2010; 57(8):1973-1981
- 443. Rauhala E, Virkkala J, Himanen SL. Periodic limb movement screening as an additional feature of Emfit sensor in sleep-disordered breathing studies. Journal of Neuroscience Methods. 2009; 178(1):157-161
- 444. Rauscher H, Popp W, Zwick H. Model for investigating snorers with suspected sleep apnoea. Thorax. 1993; 48(3):275-279
- 445. Ravelo-Garcia AG, Saavedra-Santana P, Julia-Serda G, Navarro-Mesa JL, Navarro-Esteva J, Alvarez-Lopez X et al. Symbolic dynamics marker of heart rate variability combined with clinical variables enhance obstructive sleep apnea screening. Chaos. 2014; 24(2):024404
- 446. Raymond B, Cayton RM, Chappell MJ. Combined index of heart rate variability and oximetry in screening for the sleep apnoea/hypopnoea syndrome. Journal of Sleep Research. 2003; 12(1):53-61
- 447. Rebelo-Marques A, Vicente C, Valentim B, Agostinho M, Pereira R, Teixeira MF et al. STOP-Bang questionnaire: The validation of a Portuguese version as a screening tool for obstructive sleep apnea (OSA) in primary care. Sleep & Breathing. 2018; 22(3):757-765
- 448. Reda M, Gibson GJ, Wilson JA. Pharyngoesophageal pressure monitoring in sleep apnea syndrome. Otolaryngology Head and Neck Surgery. 2001; 125(4):324-331
- 449. Rees K, Wraith PK, Berthon-Jones M, Douglas NJ. Detection of apnoeas, hypopnoeas and arousals by the AutoSet in the sleep apnoea/hypopnoea syndrome. European Respiratory Journal. 1998; 12(4):764-769
- 450. Reichert JA, Bloch DA, Cundiff E, Votteri BA. Comparison of the NovaSom QSG, a new sleep apnea home-diagnostic system, and polysomnography. Sleep Medicine. 2003; 4(3):213-218
- 451. Reis R, Teixeira F, Martins V, Sousa L, Batata L, Santos C et al. Validation of a Portuguese version of the STOP-Bang questionnaire as a screening tool for

- obstructive sleep apnea: Analysis in a sleep clinic. Revista Portuguesa de Pneumologia. 2015; 21(2):61-68
- 452. Reisch S, Daniuk J, Steltner H, Ruhle KH, Timmer J, Guttmann J. Detection of sleep apnea with the forced oscillation technique compared to three standard polysomnographic signals. Respiration. 2000; 67(5):518-525
- 453. Reuven H, Schweitzer E, Tarasiuk A. A cost-effectiveness analysis of alternative athome or in-laboratory technologies for the diagnosis of obstructive sleep apnea syndrome. Medical Decision Making. 2001; 21(6):451-458
- 454. Roche F, Celle S, Pichot V, Barthelemy JC, Sforza E. Analysis of the interbeat interval increment to detect obstructive sleep apnoea/hypopnoea. European Respiratory Journal. 2007; 29(6):1206-1211
- 455. Roche F, Duverney D, Court-Fortune I, Pichot V, Costes F, Lacour JR et al. Cardiac interbeat interval increment for the identification of obstructive sleep apnea. Pacing and Clinical Electrophysiology. 2002; 25(8):1192-1199
- 456. Roche F, Gaspoz JM, Court-Fortune I, Minini P, Pichot V, Duverney D et al. Screening of obstructive sleep apnea syndrome by heart rate variability analysis. Circulation. 1999; 100(13):1411-1415
- 457. Roche F, Sforza E, Duverney D, Borderies JR, Pichot V, Bigaignon O et al. Heart rate increment: An electrocardiological approach for the early detection of obstructive sleep apnoea/hypopnoea syndrome. Clinical Science. 2004; 107(1):105-110
- 458. Roche N, Herer B, Roig C, Huchon G. Prospective testing of two models based on clinical and oximetric variables for prediction of obstructive sleep apnea. Chest. 2002; 121(3):747-752
- 459. Rodrigues Filho JC, Neves DD, Velasque L, Maranhao AA, de Araujo-Melo MH. Diagnostic performance of nocturnal oximetry in the detection of obstructive sleep apnea syndrome: a Brazilian study. Sleep and Breathing. 2020; http://dx.doi.org/10.1007/s11325-019-02000-4
- 460. Rodsutti J, Hensley M, Thakkinstian A, D'Este C, Attia J. A clinical decision rule to prioritize polysomnography in patients with suspected sleep apnea. Sleep. 2004; 27(4):694-699
- 461. Rofail LM, Wong KK, Unger G, Marks GB, Grunstein RR. Comparison between a single-channel nasal airflow device and oximetry for the diagnosis of obstructive sleep apnea. Sleep. 2010; 33(8):1106-1114
- 462. Rofail LM, Wong KK, Unger G, Marks GB, Grunstein RR. The role of single-channel nasal airflow pressure transducer in the diagnosis of OSA in the sleep laboratory. Journal of Clinical Sleep Medicine. 2010; 6(4):349-356
- 463. Rolon RE, Larrateguy LD, Di Persia LE, Spies RD, Rufiner HL. Discriminative methods based on sparse representations of pulse oximetry signals for sleep apnea-hypopnea detection. Biomedical Signal Processing and Control. 2017; 33:358-367
- 464. Romano S, Salvaggio A, Lo Bue A, Marrone O, Insalaco G. A negative expiratory pressure test during wakefulness for evaluating the risk of obstructive sleep apnea in patients referred for sleep studies. Clinics (Sao Paulo, Brazil). 2011; 66(11):1887-1894

- 465. Romem A, Romem A, Koldobskiy D, Scharf SM. Diagnosis of obstructive sleep apnea using pulse oximeter derived photoplethysmographic signals. Journal of Clinical Sleep Medicine. 2014; 10(3):285-290
- 466. Romero-Lopez Z, Ochoa-Vazquez MD, Mata-Marin JA, Ochoa-Jimenez LG, Rico-Mendez FG. Development and validation of a questionnaire to identify patients with sleep apnea in Mexican population: Mexican questionnaire to identify sleep apnea. Sleep & Breathing. 2011; 15(1):113-119
- 467. Rosen CL, Auckley D, Benca R, Foldvary-Schaefer N, Iber C, Kapur V et al. A multisite randomized trial of portable sleep studies and positive airway pressure autotitration versus laboratory-based polysomnography for the diagnosis and treatment of obstructive sleep apnea: The HomePAP study. Sleep. 2012; 35(6):757-767
- 468. Rosen IM, Kirsch DB, Carden KA, Malhotra RK, Ramar K, Aurora RN et al. Clinical use of a home sleep apnea test: An updated American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine. 2018; 14(12):2075-2077
- 469. Rosenthal LD, Dolan DC. The Epworth sleepiness scale in the identification of obstructive sleep apnea. Journal of Nervous and Mental Disease. 2008; 196(5):429-431
- 470. Rosenwein T, Dafna E, Tarasiuk A, Zigel Y. Breath-by-breath detection of apneic events for OSA severity estimation using non-contact audio recordings. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015; 2015;7688-7691
- 471. Ross SD, Allen IE, Harrison KJ. Review: Screening tests are not as accurate as overnight polysomnography for the diagnosis of adult sleep apnoea. Evidence-Based Medicine. 2000; 5(2):61
- 472. Ross SD, Allen IE, Harrison KJ, Kvasz M, Connelly J, Sheinhait IA. Systematic review of the literature regarding the diagnosis of sleep apnea. Summary, Evidence Report/Technology Assessment: Number 1, December 1998. Rockville, MD. Agency for Health Care Policy and Research, 1998. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11925/
- 473. Ross SD, Sheinhait IA, Harrison KJ, Kvasz M, Connelly JE, Shea SA et al. Systematic review and meta-analysis of the literature regarding the diagnosis of sleep apnea. Sleep. 2000; 23(4):519-532
- 474. Roth T, Zammit G, Kushida C, Doghramji K, Mathias SD, Wong JM et al. A new questionnaire to detect sleep disorders. Sleep Medicine. 2002; 3(2):99-108
- 475. Rowley JA, Aboussouan LS, Badr MS. The use of clinical prediction formulas in the evaluation of obstructive sleep apnea. Sleep. 2000; 23(7):929-938
- 476. Ryan PJ, Hilton MF, Boldy DA, Evans A, Bradbury S, Sapiano S et al. Validation of British Thoracic Society guidelines for the diagnosis of the sleep apnoea/hypopnoea syndrome: Can polysomnography be avoided? Thorax. 1995; 50(9):972-975
- 477. Saarelainen S, Himanen SL, Hasan J, Virkkala J, Koobi T. Whole-body impedance recording--a practical method for the diagnosis of sleep apnoea. Clinical Physiology and Functional Imaging. 2003; 23(2):110-113
- 478. Saha S, Kabir M, Montazeri Ghahjaverestan N, Hafezi M, Gavrilovic B, Zhu K et al. Portable diagnosis of sleep apnea with the validation of individual event detection. Sleep Medicine. 2020; 69:51-57

- 479. Saleh AB, Ahmad MA, Awadalla NJ. Development of Arabic version of Berlin questionnaire to identify obstructive sleep apnea at risk patients. Annals of Thoracic Medicine. 2011; 6(4):212-216
- 480. Sangkum L, Klair I, Limsuwat C, Bent S, Myers L, Thammasitboon S. Incorporating body-type (apple vs. pear) in STOP-BANG questionnaire improves its validity to detect OSA. Journal of Clinical Anesthesia. 2017; 41:126-131
- 481. Santaolalla Montoya F, Iriondo Bedialauneta JR, Aguirre Larracoechea U, Martinez Ibarguen A, Sanchez Del Rey A, Sanchez Fernandez JM. The predictive value of clinical and epidemiological parameters in the identification of patients with obstructive sleep apnoea (OSA): A clinical prediction algorithm in the evaluation of OSA. European Archives of Oto-Rhino-Laryngology. 2007; 264(6):637-643
- 482. Saricam E, Yalcinkaya E, Basay N. Bedside approach in the diagnosis obstructive sleep apnea using postprandial oximetry testing: A comparative study with polysomnography. Clinical Respiratory Journal. 2020; 14(1):35-39
- 483. Savage HO, Khushaba RN, Zaffaroni A, Colefax M, Farrugia S, Schindhelm K et al. Development and validation of a novel non-contact monitor of nocturnal respiration for identifying sleep-disordered breathing in patients with heart failure. ESC heart failure. 2016; 3(3):212-219
- 484. Scarlata S, Pedone C, Curcio G, Cortese L, Chiurco D, Fontana D et al. Prepolysomnographic assessment using the Pittsburgh Sleep Quality Index questionnaire is not useful in identifying people at higher risk for obstructive sleep apnea. Journal of Medical Screening. 2013; 20(4):220-226
- 485. Schafer H, Ewig S, Hasper E, Luderitz B. Predictive diagnostic value of clinical assessment and nonlaboratory monitoring system recordings in patients with symptoms suggestive of obstructive sleep apnea syndrome. Respiration. 1997; 64(3):194-199
- 486. Scharf C, Cho YK, Bloch KE, Brunckhorst C, Duru F, Balaban K et al. Diagnosis of sleep-related breathing disorders by visual analysis of transthoracic impedance signals in pacemakers. Circulation. 2004; 110(17):2562-2567
- 487. Senaratna CV, Perret JL, Matheson MC, Lodge CJ, Lowe AJ, Cassim R et al. Validity of the Berlin questionnaire in detecting obstructive sleep apnea: A systematic review and meta-analysis. Sleep Medicine Reviews. 2017; 36:116-124
- 488. Senn O, Brack T, Russi EW, Bloch KE. A continuous positive airway pressure trial as a novel approach to the diagnosis of the obstructive sleep apnea syndrome. Chest. 2006; 129(1):67-75
- 489. Sergi M, Rizzi M, Greco M, Andreoli A, Bamberga M, Castronovo C et al. Validity of diurnal sleep recording performed by an ambulatory device in the diagnosis of obstructive sleep apnoea. Respiratory Medicine. 1998; 92(2):216-220
- 490. Series F, Cormier Y, La Forge J. Validity of diurnal sleep recording in the diagnosis of sleep apnea syndrome. American Review of Respiratory Disease. 1991; 143(5 l):947-949
- 491. Series F, Marc I. Nasal pressure recording in the diagnosis of sleep apnoea hypopnoea syndrome. Thorax. 1999; 54(6):506-510
- 492. Series F, Marc I, Cormier Y, La Forge J. Utility of nocturnal home oximetry for case finding in patients with suspected sleep apnea hypopnea syndrome. Annals of Internal Medicine. 1993; 119(6):449-453

- 493. Serrano EM, Lopez-Picado A, Etxagibel A, Casi A, Cancelo L, Aguirregomoscorta JI et al. Derivation and validation of a clinical prediction rule for sleep apnoea syndrome for use in primary care. BJGP Open. 2018; 2(2):1-10
- 494. Sert Kuniyoshi FH, Zellmer MR, Calvin AD, Lopez-Jimenez F, Albuquerque FN, van der Walt C et al. Diagnostic accuracy of the Berlin Questionnaire in detecting sleepdisordered breathing in patients with a recent myocardial infarction. Chest. 2011; 140(5):1192-1197
- 495. Sforza E, Pichot V, Cervena K, Barthelemy JC, Roche F. Cardiac variability and heart-rate increment as a marker of sleep fragmentation in patients with a sleep disorder: A preliminary study. Sleep. 2007; 30(1):43-51
- 496. Shalaby A, Atwood C, Hansen C, Konermann M, Jamnadas P, Lee K et al. Feasibility of automated detection of advanced sleep disordered breathing utilizing an implantable pacemaker ventilation sensor. Pacing and Clinical Electrophysiology. 2006; 29(10):1036-1043
- 497. Shams E, Karimi D, Moussavi Z. Bispectral analysis of tracheal breath sounds for Obstructive Sleep Apnea. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2012; 2012:37-40
- 498. Shi W, Xue B, Guo S, Goh DYT, Ser W. Obstructive Sleep Apnea Detection Using Difference in Feature and Modified Minimum Distance Classifier. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2018; 2018:1-4
- 499. Shin JH, Chee YJ, Jeong DU, Park KS. Nonconstrained sleep monitoring system and algorithms using air-mattress with balancing tube method. IEEE Transactions on Information Technology in Biomedicine. 2010; 14(1):147-156
- 500. Shochat T, Hadas N, Kerkhofs M, Herchuelz A, Penzel T, Peter JH et al. The SleepStrip: An apnoea screener for the early detection of sleep apnoea syndrome. European Respiratory Journal. 2002; 19(1):121-126
- 501. Shokrollahi M, Saha S, Hadi P, Rudzicz F, Yadollahi A. Snoring sound classification from respiratory signal. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2016; 2016;3215-3218
- 502. Siegel H, Sonies BC, Graham B, McCutchen C, Hunter K, Vega-Bermudez F et al. Obstructive sleep apnea: A study by simultaneous polysomnography and ultrasonic imaging. Neurology. 2000; 54(9):1872
- 503. Silva GE, Vana KD, Goodwin JL, Sherrill DL, Quan SF. Identification of patients with sleep disordered breathing: Comparing the four-variable screening tool, STOP, STOP-Bang, and Epworth Sleepiness Scales. Journal of Clinical Sleep Medicine. 2011; 7(5):467-472
- 504. Sivam S, Yee B, Wong K, Wang D, Grunstein R, Piper A. Obesity hypoventilation syndrome: Early detection of nocturnal-only hypercapnia in an obese population. Journal of Clinical Sleep Medicine. 2018; 14(9):1477-1484
- 505. Skiba V, Goldstein C, Schotland H. Night-to-night variability in sleep disordered breathing and the utility of esophageal pressure monitoring in suspected obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2015; 11(6):597-602
- 506. Skomro RP, Cotton DJ, Gjevre JA, Grover VK, McNab BD, Reid JK et al. An empirical continuous positive airway pressure trial for suspected obstructive sleep apnea. Canadian Respiratory Journal. 2007; 14(3):159-163

- 507. Smith D, Park J, Hay K, Hoey L, Leong G, Leong M et al. Use of a limited-channel device for obstructive sleep apnoea diagnosis in a tertiary sleep disorders centre. Internal Medicine Journal. 2020; 50(9):1109-1114
- 508. Sola-Soler J, Fiz JA, Morera J, Jane R. Multiclass classification of subjects with sleep apnoea-hypopnoea syndrome through snoring analysis. Medical Engineering and Physics. 2012; 34(9):1213-1220
- 509. Sola-Soler J, Fiz JA, Torres A, Jane R. Identification of Obstructive Sleep Apnea patients from tracheal breath sound analysis during wakefulness in polysomnographic studies. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2014; 2014:4232-4235
- 510. Sola-Soler J, Jane R, Fiz JA, Morera J. Automatic classification of subjects with and without sleep apnea through snoring analysis. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2007; 2007:6094-6097
- 511. Sommermeyer D, Zou D, Grote L, Hedner J. Detection of sleep disordered breathing and its central/obstructive character using nasal cannula and finger pulse oximeter. Journal of Clinical Sleep Medicine. 2012; 8(5):527-533
- 512. Song C, Liu K, Zhang X, Chen L, Xian X. An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG Signals. IEEE Transactions on Biomedical Engineering. 2016; 63(7):1532-1542
- 513. Stein PK, Duntley SP, Domitrovich PP, Nishith P, Carney RM. A simple method to identify sleep apnea using Holter recordings. Journal of Cardiovascular Electrophysiology. 2003; 14(5):467-473
- 514. Stelmach-Mardas M, Iqbal K, Mardas M, Kostrzewska M, Piorunek T. Clinical utility of Berlin questionnaire in comparison to polysomnography in patients with obstructive sleep apnea. Advances in Experimental Medicine and Biology. 2017; 980:51-57
- 515. Stendardo M, Casillo V, Schito M, Ballerin L, Stomeo F, Vitali E et al. Forced expiratory volume in one second: A novel predictor of work disability in subjects with suspected obstructive sleep apnea. PloS One. 2018; 13(7):e0201045
- 516. Stoohs R, Guilleminault C. Investigations of an automatic screening device (MESAM) for obstructive sleep apnoea. European Respiratory Journal. 1990; 3(7):823-829
- 517. Stoohs R, Guilleminault C. MESAM 4: An ambulatory device for the detection of patients at risk for obstructive sleep apnea syndrome (OSAS). Chest. 1992; 101(5):1221-1227
- 518. Su CT, Chen KH, Chen LF, Wang PC, Hsiao YH. Prediagnosis of obstructive sleep apnea via multiclass MTS. Computational and Mathematical Methods in Medicine. 2012; 2012:212498
- 519. Su S, Baroody FM, Kohrman M, Suskind D. A comparison of polysomnography and a portable home sleep study in the diagnosis of obstructive sleep apnea syndrome.

 Otolaryngology Head and Neck Surgery. 2004; 131(6):844-850
- 520. Subramanian S, Hesselbacher SE, Aguilar R, Surani SR. The NAMES assessment: A novel combined-modality screening tool for obstructive sleep apnea. Sleep & Breathing. 2011; 15(4):819-826
- 521. Suksakorn S, Rattanaumpawan P, Banhiran W, Cherakul N, Chotinaiwattarakul W. Reliability and validity of a Thai version of the Berlin guestionnaire in patients with

- sleep disordered breathing. Journal of the Medical Association of Thailand. 2014; 97(Suppl 3):S46-56
- 522. Sun LM, Chiu HW, Chuang CY, Liu L. A prediction model based on an artificial intelligence system for moderate to severe obstructive sleep apnea. Sleep & Breathing. 2011; 15(3):317-323
- 523. Sun WL, Wang JL, Jia GH, Mi WJ, Liao YX, Huang YW et al. Impact of obstructive sleep apnea on pulmonary hypertension in patients with chronic obstructive pulmonary disease. Chinese Medical Journal. 2019; 132(11):1272-1282
- 524. Takama N, Kurabayashi M. Effectiveness of a portable device and the need for treatment of mild-to-moderate obstructive sleep-disordered breathing in patients with cardiovascular disease. Journal of Cardiology. 2010; 56(1):73-78
- 525. Takeda T, Nishimura Y, Satouchi M, Kamiryo H, Takenaka K, Kasai D et al. Usefulness of the oximetry test for the diagnosis of sleep apnea syndrome in Japan. American Journal of the Medical Sciences. 2006; 331(6):304-308
- 526. Tanaka F, Nakano H, Sudo N, Kubo C. Relationship between the body position-specific apnea-hypopnea index and subjective sleepiness. Respiration. 2009; 78(2):185-190
- 527. Tauman R, O'Brien LM, Barbe F, Iyer VG, Gozal D. Reciprocal interactions between spontaneous and respiratory arousals in adults with suspected sleep-disordered breathing. Sleep Medicine. 2006; 7(3):229-234
- 528. Teferra RA, Grant BJ, Mindel JW, Siddiqi TA, Iftikhar IH, Ajaz F et al. Cost minimization using an artificial neural network sleep apnea prediction tool for sleep studies. Annals of the American Thoracic Society. 2014; 11(7):1064-1074
- 529. Teklu M, Gouveia CJ, Yalamanchili A, Ghadersohi S, Price CPE, Bove M et al. Predicting obstructive sleep apnea status with the reflux symptom index in a sleep study population. Laryngoscope. 2020; http://dx.doi.org/10.1002/lary.28592
- 530. Teramoto S, Matsuse T, Fukuchi Y. Clinical significance of nocturnal oximeter monitoring for detection of sleep apnea syndrome in the elderly. Sleep Medicine. 2002; 3(1):67-71
- 531. Terjung S, Geldmacher J, Brato S, Werther S, Teschler H, Taube C et al. Classification of sleep and wake using a novel minimal-contact single-channel device. Somnologie. 2018; 22(2):144-151
- 532. Terjung S, Wang Y, Werther S, Zaffaroni A, Teschler H, Weinreich G. Validation of SleepMinder for sleep quality evaluation in patients with OSAS. Somnologie. 2016; 20(1):54-60
- 533. Thong JF, Pang KP. Clinical parameters in obstructive sleep apnea: Are there any correlations? Journal of Otolaryngology Head & Neck Surgery. 2008; 37(6):894-900
- 534. Thornton AT, Singh P, Ruehland WR, Rochford PD. AASM criteria for scoring respiratory events: interaction between apnea sensor and hypopnea definition. Sleep. 2012; 35(3):425-432
- 535. Tian J, Liu J. Apnea detection based on time delay neural network. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2005; 2005:2571-2574

- 536. Tiihonen P, Hukkanen T, Tuomilehto H, Mervaala E, Toyras J. Evaluation of a novel ambulatory device for screening of sleep apnea. Telemedicine Journal and e-Health. 2009; 15(3):283-289
- 537. Ting H, Mai YT, Hsu HC, Wu HC, Tseng MH. Decision tree based diagnostic system for moderate to severe obstructive sleep apnea. Journal of Medical Systems. 2014; 38(9):94
- 538. To KW, Chan WC, Chan TO, Ngai J, Tung A, Ng S et al. Comparison of empirical continuous positive airway pressure (CPAP) treatment versus initial portable sleep monitoring followed by CPAP treatment for patients with suspected obstructive sleep apnoea. Internal Medicine Journal. 2012; 42(6):e107-114
- 539. To KW, Chan WC, Chan TO, Tung A, Ngai J, Ng S et al. Validation study of a portable monitoring device for identifying OSA in a symptomatic patient population. Respirology. 2009; 14(2):270-275
- 540. Tong GM, Zhang HC, Guo JH, Han F. Detection of sleep apnea-hypopnea syndrome with ECG derived respiration in Chinese population. International Journal of Clinical and Experimental Medicine. 2014; 7(5):1269-1275
- 541. Topor ZL, Remmers JE, Grosse J, Mosca EV, Jahromi SAZ, Zhu Y et al. Validation of a new unattended sleep apnea monitor using two methods for the identification of hypopneas. Journal of Clinical Sleep Medicine. 2020; 16(5):695-703
- 542. Traxdorf M, Tziridis K, Scherl C, Iro H, Haferkamp J. The Erlangen Questionnaire: a new 5-item screening tool for obstructive sleep apnea in a sleep clinic population A prospective, double blinded study. European Review for Medical and Pharmacological Sciences. 2017; 21(16):3690-3698
- 543. Tsai WH, Remmers JE, Brant R, Flemons WW, Davies J, Macarthur C. A decision rule for diagnostic testing in obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine. 2003; 167(10):1427-1432
- 544. Tsukahara M, Sakao S, Jujo T, Sakurai T, Terada J, Kunii R et al. The accuracy and uncertainty of a sheet-type portable monitor as a screening device to identify obstructive sleep apnea-hypopnea syndrome. Internal Medicine. 2014; 53(12):1307-1313
- 545. Ugon A, Seroussi B, Philippe C, Ganascia JG, Garda P, Sedki K et al. Towards a wireless smart polysomnograph using symbolic fusion. Studies in Health Technology and Informatics. 2016; 221:23-27
- 546. Ulasli SS, Gunay E, Koyuncu T, Akar O, Halici B, Ulu S et al. Predictive value of Berlin Questionnaire and Epworth Sleepiness Scale for obstructive sleep apnea in a sleep clinic population. Clinical Respiratory Journal. 2014; 8(3):292-296
- 547. Unal M, Ozturk L, Kanik A. The role of oxygen saturation measurement and body mass index in distinguishing between non-apnoeic snorers and patients with obstructive sleep apnoea syndrome. Clinical Otolaryngology and Allied Sciences. 2002; 27(5):344-346
- 548. Ustun B, Westover MB, Rudin C, Bianchi MT. Clinical prediction models for sleep apnea: The importance of medical history over symptoms. Journal of Clinical Sleep Medicine. 2016; 12(2):161-168
- 549. Valipour A, Lothaller H, Rauscher H, Zwick H, Burghuber OC, Lavie P. Genderrelated differences in symptoms of patients with suspected breathing disorders in

- sleep: A clinical population study using the sleep disorders questionnaire. Sleep. 2007; 30(3):312-319
- 550. Van Brunt DL, Lichstein KL, Noe SL, Aguillard RN, Lester KW. Intensity pattern of snoring sounds as a predictor for sleep-disordered breathing. Sleep. 1997; 20(12):1151-1156
- 551. Van Meerhaeghe A, Delpire P, Stenuit P, Kerkhofs M. Operating characteristics of the negative expiratory pressure technique in predicting obstructive sleep apnoea syndrome in snoring patients. Thorax. 2004; 59(10):883-888
- 552. Van Surell C, Lemaigre D, Leroy M, Foucher A, Hagenmuller MP, Raffestin B. Evaluation of an ambulatory device, CID 102, in the diagnosis of obstructive sleep apnoea syndrome. European Respiratory Journal. 1995; 8(5):795-800
- 553. Vana KD, Silva GE, Goldberg R. Predictive abilities of the STOP-Bang and Epworth Sleepiness Scale in identifying sleep clinic patients at high risk for obstructive sleep apnea. Research in Nursing and Health. 2013; 36(1):84-94
- 554. Varady P, Micsik T, Benedek S, Benyo Z. A novel method for the detection of apnea and hypopnea events in respiration signals. IEEE Transactions on Biomedical Engineering. 2002; 49(9):936-942
- 555. Vaughan L, Redline S, Stone K, Ulanski J, Rueschman M, Dailey H et al. Feasibility of self-administered sleep assessment in older women in the Women's Health Initiative (WHI). Sleep & Breathing. 2016; 20(3):1079-1091
- 556. Vaz AP, Drummond M, Mota PC, Severo M, Almeida J, Winck JC. Translation of Berlin Questionnaire to Portuguese language and its application in OSA identification in a sleep disordered breathing clinic. Revista Portuguesa de Pneumologia. 2011; 17(2):59-65
- 557. Vazquez JC, Tsai WH, Flemons WW, Masuda A, Brant R, Hajduk E et al. Automated analysis of digital oximetry in the diagnosis of obstructive sleep apnoea. Thorax. 2000; 55(4):302-307
- 558. Ventura C, Oliveira AS, Dias R, Teixeira J, Canhao C, Santos O et al. The role of nocturnal oximetry in obstructive sleep apnoea-hypopnoea syndrome screening. Revista Portuguesa de Pneumologia. 2007; 13(4):525-551
- 559. Victor Marcos J, Hornero R, Alvarez D, Del Campo F, Zamarron C, Lopez M. Single layer network classifiers to assist in the detection of obstructive sleep apnea syndrome from oximetry data. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2008; 2008:1651-1654
- 560. Virkkula P, Bachour A, Hytonen M, Malmberg H, Salmi T, Maasilta P. Patient- and bed partner-reported symptoms, smoking, and nasal resistance in sleep-disordered breathing. Chest. 2005; 128(4):2176-2182
- 561. Virkkula P, Silvola J, Maasilta P, Malmberg H, Salmi T. Esophageal pressure monitoring in detection of sleep-disordered breathing. Laryngoscope. 2002; 112(7 Pt 1):1264-1270
- 562. Wang CC, Lien HC, De Virgilio A, Huang WC, Wu MF, Liu SA et al. Airway pH monitoring in patients with suspected obstructive sleep apnoea using the Dx-pH oropharyngeal probe: Preliminary report of a prospective cohort study. Clinical Otolaryngology. 2014; 39(6):352-358

- 563. Ward K, Palmer L, Mukherjee S, Lee J, Cooper M, Love G et al. Evaluation of home based oximetry for investigation of Obstructive Sleep Apnoea (OSA). Sleep and Biological Rhythms. 2009; 7(Suppl 1):A43
- 564. Ward KL, McArdle N, James A, Bremner AP, Simpson L, Cooper MN et al. A comprehensive evaluation of a two-channel portable monitor to "rule in" obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2015; 11(4):433-444
- 565. Ward NR, Cowie MR, Rosen SD, Roldao V, De Villa M, McDonagh TA et al. Utility of overnight pulse oximetry and heart rate variability analysis to screen for sleep-disordered breathing in chronic heart failure. Thorax. 2012; 67(11):1000-1005
- Weinreich G, Armitstead J, Teschler H. Pattern recognition of obstructive sleep apnoea and Cheyne-Stokes respiration. Physiological Measurement. 2008; 29(8):869-878
- 567. Weinreich G, Terjung S, Wang Y, Werther S, Zaffaroni A, Teschler H. Validation of a non-contact screening device for the combination of sleep-disordered breathing and periodic limb movements in sleep. Sleep & Breathing. 2018; 22(1):131-138
- 568. Weinreich G, Terjung S, Wang Y, Werther S, Zaffaroni A, Teschler H. Validation of SleepMinder as screening device for obstructive sleep apnea. Somnologie. 2014; 18(4):238-242
- 569. Westerlund A, Brandt L, Harlid R, Akerstedt T, Lagerros YT. Using the Karolinska Sleep Questionnaire to identify obstructive sleep apnea syndrome in a sleep clinic population. Clinical Respiratory Journal. 2014; 8(4):444-454
- 570. White DP, Gibb TJ, Wall JM, Westbrook PR. Assessment of accuracy and analysis time of a novel device to monitor sleep and breathing in the home. Sleep. 1995; 18(2):115-126
- 571. White JE, Smithson AJ, Close PR, Drinnan MJ, Prichard AJ, Gibson GJ. The use of sound recording and oxygen saturation in screening snorers for obstructive sleep apnoea. Clinical Otolaryngology and Allied Sciences. 1994; 19(3):218-221
- 572. Whitelaw WA, Brant RF, Flemons WW. Clinical usefulness of home oximetry compared with polysomnography for assessment of sleep apnea. American Journal of Respiratory and Critical Care Medicine. 2005; 171(2):188-193
- 573. Wieczorek T, Lorenc M, Martynowicz H, Piotrowski P, Mazur G, Rymaszewska J. Parasomnias and obstructive sleep apnea syndrome: In search for a parasomnia evaluating tool appropriate for osas screening. Family Medicine and Primary Care Review. 2018; 20(2):176-181
- 574. Williams AJ, Yu G, Santiago S, Stein M. Screening for sleep apnea using pulse oximetry and a clinical score. Chest. 1991; 100(3):631-635
- 575. Williams R, Williams M, Stanton MP, Spence CD. Implementation of an obstructive sleep apnea screening program at an overseas military hospital. AANA Journal. 2017; 85(1):42-48
- 576. Wiltshire N, Kendrick AH, Catterall JR. Home oximetry studies for diagnosis of sleep apnea/hypopnea syndrome: Limitation of memory storage capabilities. Chest. 2001; 120(2):384-389
- 577. Wong KK, Jankelson D, Reid A, Unger G, Dungan G, Hedner JA et al. Diagnostic test evaluation of a nasal flow monitor for obstructive sleep apnea detection in sleep apnea research. Behavior Research Methods. 2008; 40(1):360-366

- 578. Wu MF, Huang WC, Juang CF, Chang KM, Wen CY, Chen YH et al. A new method for self-estimation of the severity of obstructive sleep apnea using easily available measurements and neural fuzzy evaluation system. IEEE Journal of Biomedical & Health Informatics. 2017; 21(6):1524-1532
- 579. Wu Q, Xie L, Li W, Xiang G, Hu W, Jiang H et al. Pulmonary function influences the performance of berlin questionnaire, modified berlin questionnaire, and stop-bang score for screening obstructive sleep apnea in subjects with chronic obstructive pulmonary disease. International Journal of COPD. 2020; 15:1207-1216
- 580. Xie B, Minn H. Real-time sleep apnea detection by classifier combination. IEEE Transactions on Information Technology in Biomedicine. 2012; 16(3):469-477
- 581. Xie L, Wu Q, Hu W, Li W, Xiang G, Hao S et al. Performance of brief ICF-sleep disorders and obesity core set in obstructive sleep apnea patients. Respiratory Research. 2020; 21(1):156
- 582. Xiong M, Hu W, Dong M, Wang M, Chen J, Xiong H et al. The screening value of ESS, SACS, BQ, and SBQ on obstructive sleep apnea in patients with chronic obstructive pulmonary disease. International Journal of COPD. 2019; 14:2497-2505
- 583. Xu L, Han F, Keenan BT, Kneeland-Szanto E, Yan H, Dong X et al. Validation of the NOX-T3 portable monitor for diagnosis of obstructive sleep apnea in chinese adults. Journal of Clinical Sleep Medicine. 2017; 13(5):675-683
- 584. Yaddanapudi SS, Pineda MC, Boorman DW, Bryne RE, Hing KL, Sharma S. High-Resolution Pulse Oximetry (HRPO): A cost-effective tool in screening for obstructive sleep apnea (OSA) in acute stroke and predicting outcome. Journal of Stroke and Cerebrovascular Diseases. 2018; 27(11):2986-2992
- 585. Yagi H, Nakata S, Tsuge H, Yasuma F, Noda A, Morinaga M et al. Significance of a screening device (Apnomonitor 5) for sleep apnea syndrome. Auris, Nasus, Larynx. 2009; 36(2):176-180
- 586. Yalamanchali S, Farajian V, Hamilton C, Pott TR, Samuelson CG, Friedman M. Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: Meta-analysis. JAMA Otolaryngology-- Head & Neck Surgery. 2013; 139(12):1343-1350
- 587. Yamaguchi Y, Taketa Y. Clinical evaluation of the SleepStrip, a screening device for the easy diagnosis of sleep apnea-hypopnea syndrome. Sleep and Biological Rhythms. 2007; 5(3):215-217
- 588. Yamashiro Y, Kryger MH. Nocturnal oximetry: Is it a screening tool for sleep disorders? Sleep. 1995; 18(3):167-171
- 589. Yang GG, Yang MC, Chung CY, Chen YT, Chang ET. Respiratory-inductive-plethysmography-derived flow can be a useful clinical tool to detect patients with obstructive sleep apnea syndrome. Journal of the Formosan Medical Association. 2011; 110(10):642-645
- 590. Yang Y, Chung F. A screening tool of obstructive sleep apnea: STOP-bang questionnaire. Sleep Medicine Clinics. 2013; 8(1):65-72
- 591. Yin M, Miyazaki S, Ishikawa K. Evaluation of type 3 portable monitoring in unattended home setting for suspected sleep apnea: factors that may affect its accuracy.

 Otolaryngology Head and Neck Surgery. 2006; 134(2):204-209

- 592. Yin M, Miyazaki S, Itasaka Y, Shibata Y, Abe T, Miyoshi A et al. A preliminary study on application of portable monitoring for diagnosis of obstructive sleep apnea. Auris, Nasus, Larynx. 2005; 32(2):151-156
- 593. Yuceege M, Firat H, Altintas N, Mutlu M, Ardic S. The utility of neck/thyromental ratio in defining low-risk patients with obstructive sleep apnea in sleep clinics. European Archives of Oto-Rhino-Laryngology. 2014; 271(9):2575-2581
- 594. Yuceege M, Firat H, Sever O, Demir A, Ardic S. The effect of adding gender item to Berlin Questionnaire in determining obstructive sleep apnea in sleep clinics. Annals of Thoracic Medicine. 2015; 10(1):25-28
- 595. Yunus A, Seet W, Mohamad Adam B, Haniff J. Validation of the Malay version of Berlin questionaire to identify Malaysian patients for obstructive sleep apnea.

 Malaysian Family Physician. 2013; 8(1):5-11
- 596. Zaffaroni A, de Chazal P, Heneghan C, Boyle P, Mppm PR, McNicholas WT. SleepMinder: an innovative contact-free device for the estimation of the apnoea-hypopnoea index. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2009; 2009:7091-7094
- 597. Zaffaroni A, Kent B, O'Hare E, Heneghan C, Boyle P, O'Connell G et al. Assessment of sleep-disordered breathing using a non-contact bio-motion sensor. Journal of Sleep Research. 2013; 22(2):231-236
- 598. Zamarron C, Gude F, Barcala J, Rodriguez JR, Romero PV. Utility of oxygen saturation and heart rate spectral analysis obtained from pulse oximetric recordings in the diagnosis of sleep apnea syndrome. Chest. 2003; 123(5):1567-1576
- 599. Zamarron C, Hornero R, del Campo F, Abasolo D, Alvarez D. Heart rate regularity analysis obtained from pulse oximetric recordings in the diagnosis of obstructive sleep apnea. Sleep & Breathing. 2006; 10(2):83-89
- 600. Zamarron C, Romero PV, Gude F, Amaro A, Rodriguez JR. Screening of obstructive sleep apnoea: heart rate spectral analysis of nocturnal pulse oximetric recording. Respiratory Medicine. 2001; 95(9):759-765
- 601. Zamarron C, Romero PV, Rodriguez JR, Gude F. Oximetry spectral analysis in the diagnosis of obstructive sleep apnoea. Clinical Science. 1999; 97(4):467-473
- 602. Zarei A, Mohammadzadeh Asl B. Automatic detection of obstructive sleep apnea using wavelet transform and entropy based features from Single-Lead ECG Signal. IEEE Journal of Biomedical & Health Informatics. 2018; 23(3):1011 1021
- 603. Zhang JN, Peng B, Zhao TT, Xiang M, Fu W, Peng Y. Modification of the Epworth Sleepiness Scale in central China. Quality of Life Research. 2011; 20(10):1721-1726
- 604. Zhang S, Qing S, Liu H, Zhang N. Effect of HCO-3 level on the accuracy of NoSAS screening for obstructive sleep apnea hypopnea syndrome. National Medical Journal of China. 2018; 98(32):2564-2568
- 605. Zou J, Guan J, Yi H, Meng L, Xiong Y, Tang X et al. An effective model for screening obstructive sleep apnea: a large-scale diagnostic study. PloS One. 2013; 8(12):e80704
- 606. Zou J, Meng L, Liu Y, Xu X, Liu S, Guan J et al. Evaluation of a 2-channel portable device and a predictive model to screen for obstructive sleep apnea in a laboratory environment. Respiratory Care. 2015; 60(3):356-362

OSAHS: FINAL

- 607. Zucconi M, Ferini-Strambi L, Castronovo V, Oldani A, Smirne S. An unattended device for sleep-related breathing disorders: Validation study in suspected obstructive sleep apnoea syndrome. European Respiratory Journal. 1996; 9(6):1251-1256
- 608. Zywietz CW, Von Einem V, Widiger B, Joseph G. ECG analysis for sleep apnea detection. Methods of Information in Medicine. 2004; 43(1):56-59

Appendices

Appendix A: Review protocols

Table 6: Review protocol diagnosis of obstructive sleep apnoea/hypopnoea syndrome, obesity hypoventilation syndrome and COPD-OSAHS overlap syndrome

synarom	6	
Field	Content	
PROSPERO registration number	Not registered	
Review title	Assessment scales	
Review question	What assessment scales should be used if obstructive sleep apnoea/hypopnoes syndrome, obesity hypoventilation syndrome or COPD-OSAHS overlap syndrome is suspected (for example, the Epworth sleepiness scale, STOP-Bar sleep apnoea questionnaire or Berlin questionnaire)?	
Objective	To determine which assessment scales are most useful in identifying possible cases of obstructive sleep apnoea/hypopnoea syndrome, obesity hypoventilation syndrome or COPD-OSAHS overlap syndrome.	
Searches	The following databases (from inception) will be searched:	
	Cochrane Central Register of Controlled Trials (CENTRAL)	
	Cochrane Database of Systematic Reviews (CDSR)	
	Embase	
	MEDLINE	
	Epistemonikos	
	Searches will be restricted by:	
	English language studies	
	The searches may be re-run 6 weeks before the final committee meeting and further studies retrieved for inclusion if relevant.	
	The full search strategies will be published in the final review.	
Condition or domain being studied	Obstructive sleep apnoea/hypopnoea syndrome is the most common form of sleep disordered breathing. The guideline will also cover obesity hypoventilation syndrome and COPD-OSAHS overlap syndrome (the coexistence of obstructive sleep apnoea/hypopnoea syndrome and chronic obstructive pulmonary disease).	
Population	Inclusion: People in whom OSAHS/OHS/COPD-OSAHS overlap syndrome is suspected based on symptoms or co-existing conditions	
	Population will be stratified by:	
	Suspicion of OSAHS vs OHS vs COPD-OSAHS overlap syndrome	
Intervention/Expos ure/Test	Epworth sleepiness scale	
u16/165t	STOP-BANG questionnaire Berlin questionnaire	
	- Domin questionnaire	

	For test and treat studies, negative test results must receive no OSAHS/OHS/overlap syndrome treatment and positive test results should receive some form of OSAHS/OHS/COPD-OSAHS overlap syndrome (including CPAP, surgery, mandibular devices – directness to be assessed against results of intervention reviews elsewhere in the guideline).	
Comparator/Refere nce standard/Confound ing factors	For diagnosis of OSAHS reference standard will be AHI/RDI/ODI >5 by hospital	
	blood gases	
	Test and treat	
	Any testing strategy compared with any other including the reference standards listed above	
Types of study to be included	Single gate cross-sectional study designs will be included in the accuracy review. Two gate study designs will be excluded from the accuracy review	
	RCTs will be prioritised for test and treat comparisons, if insufficient RCTs are found, non-randomised studies will be considered if they adjust for key confounders (age, BMI, co-existing conditions).	
Other exclusion criteria	None	
Context	NA	
Primary outcomes (critical outcomes)	Accuracy outcomes:	
	Sensitivity	
	Specificity	
	• PPV	
	• NPV	
	Test and treat outcomes:	
	Mortality (dichotomous)	
	Generic or disease specific quality of life (continuous)	
Secondary outcomes	Test and treat outcomes:	
(important	Sleepiness scores (continuous, e.g. Epworth)	
outcomes)	Apnoea-Hypopnoea index or respiratory disturbance index (continuous)	
	Oxygen desaturation index (continuous)	
	Healthcare resource use (rates/dichotomous)	
	Impact on co-existing conditions:	
	HbA1c for diabetes (continuous) Cardinyanaular aventa for cardinyanaular diabana (diabatamaya)	
	 Cardiovascular events for cardiovascular disease (dichotomous) Systolic blood pressure for hypertension (continuous) 	

Data extraction (selection and coding)	bibliographies. All reference will be screened for inclusive reviewers, with any disagnative third independent review	reference management, sifting, citations and noces identified by the searches and from other sources ision. 10% of the abstracts will be reviewed by two greements resolved by discussion or, if necessary, a ter. The full text of potentially eligible studies will be essed in line with the criteria outlined above.	
	A standardised form will NICE guidelines: the ma	be used to extract data from studies (see <u>Developing</u> nual_section 6.4).	
Risk of bias (quality) assessment	Risk of bias will be assessed using the appropriate checklist as described in Developing NICE guidelines: the manual.		
	Diagnostic test accuracy studies: QUADAS-2		
	Standard RCT checklists will be used to critically appraise individual studies for the test and treat evidence.		
	10% of all evidence revieus	ews are quality assured by a senior research fellow. This	
	papers were included /excluded appropriately		
	a sample of the data ex	xtractions	
	correct methods are us	sed to synthesise data	
	a sample of the risk of bias assessments		
		the review authors over the risk of bias in particular by discussion, with involvement of a third review author	
Strategy for data synthesis	RevMan will be used for production of paired forest plots and pairwise meta- analysis of test and treat outcomes. WinBUGS will be used for meta-analysis of diagnostic accuracy studies.		
	GRADEpro will be used to assess the quality of evidence for each test and treat outcome.		
	For test and treat studies		
	Heterogeneity between the studies in effect measures will be assessed using the I² statistic and visually inspected. An I² value greater than 50% will be considered indicative of substantial heterogeneity. Sensitivity analyses will be conducted based on pre-specified subgroups using stratified meta-analysis to explore the heterogeneity in effect estimates. If this does not explain the heterogeneity, the results will be presented pooled using random-effects.		
Analysis of sub- groups	Subgroups that will be investigated if heterogeneity is present:		
	BMI – obese vs non-obese Co-existing conditions vs no co-existing conditions		
Type and method		Intervention	
of review	\boxtimes	Diagnostic	
		Prognostic	
		Qualitative	
		Epidemiologic	
		Service Delivery	
		•	
		Other (please specify)	

Language	English	
Country	England	
Anticipated or actual start date	NA NA	
Anticipated completion date	NA	
Named contact	5a. Named contact	
	National Guideline Centre	
	5b Named contact e-mail	
	SleepApnoHypo@nice.org.uk	
	5e Organisational affiliation of the review	
	National Institute for Health and Care Excellence (NICE) and the National Guideline Centre	
Review team	From the National Guideline Centre:	
members	Carlos Sharpin, Guideline lead	
	Sharangini Rajesh, Senior systematic reviewer	
	Audrius Stonkus, Systematic reviewer	
	Emtiyaz Chowdhury (until January 2020), Health economist	
	David Wonderling, Head of health economics	
	Agnes Cuyas, Information specialist (till December 2019)	
	Jill Cobb, , Information specialist	
Funding sources/sponsor	This systematic review is being completed by the National Guideline Centre which receives funding from NICE.	
Conflicts of interest	All guideline committee members and anyone who has direct input into NICE guidelines (including the evidence review team and expert witnesses) must declare any potential conflicts of interest in line with NICE's code of practice for declaring and dealing with conflicts of interest. Any relevant interests, or changes to interests, will also be declared publicly at the start of each guideline committee meeting. Before each meeting, any potential conflicts of interest will be considered by the guideline committee Chair and a senior member of the development team. Any decisions to exclude a person from all or part of a meeting will be documented. Any changes to a member's declaration of interests will be recorded in the minutes of the meeting. Declarations of interests will be published with the final guideline.	
Collaborators	Development of this systematic review will be overseen by an advisory committee who will use the review to inform the development of evidence-based recommendations in line with section 3 of Developing NICE guidelines: the manual . Members of the guideline committee are available on the NICE website: https://www.nice.org.uk/guidance/indevelopment/gid-ng10098	
Other registration details	NA – not registered	
Reference/URL for published protocol	NA – not registered	

Dissemination plans	NICE may use a range of different methods to raise awareness of the guideline. These include standard approaches such as: • notifying registered stakeholders of publication • publicising the guideline through NICE's newsletter and alerts • issuing a press release or briefing as appropriate, posting news articles on the NICE website, using social media channels, and publicising the guideline within NICE.
Keywords	-
Details of existing review of same topic by same authors	NA
Additional information	-
Details of final publication	www.nice.org.uk

Table 7: Health economic review protocol

Table 7: Health economic review protocol		
Review question	All questions – health economic evidence	
Objectives	To identify health economic studies relevant to any of the review questions.	
Search criteria	 Populations, interventions and comparators must be as specified in the clinical review protocol above. 	
	 Studies must be of a relevant health economic study design (cost-utility analysis, cost-effectiveness analysis, cost-benefit analysis, cost-consequences analysis, comparative cost analysis). 	
	 Studies must not be a letter, editorial or commentary, or a review of health economic evaluations. (Recent reviews will be ordered although not reviewed. The bibliographies will be checked for relevant studies, which will then be ordered.) 	
	 Unpublished reports will not be considered unless submitted as part of a call for evidence. 	
	Studies must be in English.	
Search strategy	A health economic study search will be undertaken using population-specific terms and a health economic study filter – see appendix B below.	
Review strategy	Studies not meeting any of the search criteria above will be excluded. Studies published before 2003, abstract-only studies and studies from non-OECD countries or the USA will also be excluded.	
	Each remaining study will be assessed for applicability and methodological limitations using the NICE economic evaluation checklist which can be found in appendix H of Developing NICE guidelines: the manual (2014). ³⁵³	
	Inclusion and exclusion criteria	
	 If a study is rated as both 'Directly applicable' and with 'Minor limitations' then it will be included in the guideline. A health economic evidence table will be completed and it will be included in the health economic evidence profile. 	
	 If a study is rated as either 'Not applicable' or with 'Very serious limitations' then it will usually be excluded from the guideline. If it is excluded, then a health economic evidence table will not be completed and it will not be included in the health economic evidence profile. 	

 If a study is rated as 'Partially applicable', with 'Potentially serious limitations' or both then there is discretion over whether it should be included.

Where there is discretion

The health economist will make a decision based on the relative applicability and quality of the available evidence for that question, in discussion with the guideline committee if required. The ultimate aim is to include health economic studies that are helpful for decision-making in the context of the guideline and the current NHS setting. If several studies are considered of sufficiently high applicability and methodological quality that they could all be included, then the health economist, in discussion with the committee if required, may decide to include only the most applicable studies and to selectively exclude the remaining studies. All studies excluded on the basis of applicability or methodological limitations will be listed with explanation in the excluded health economic studies appendix below.

The health economist will be guided by the following hierarchies. *Setting:*

- UK NHS (most applicable).
- OECD countries with predominantly public health insurance systems (for example, France, Germany, Sweden).
- OECD countries with predominantly private health insurance systems (for example, Switzerland).
- Studies set in non-OECD countries or in the USA will be excluded before being assessed for applicability and methodological limitations.

Health economic study type:

- Cost-utility analysis (most applicable).
- Other type of full economic evaluation (cost–benefit analysis, cost-effectiveness analysis, cost–consequences analysis).
- · Comparative cost analysis.
- Non-comparative cost analyses including cost-of-illness studies will be excluded before being assessed for applicability and methodological limitations.

Year of analysis:

- The more recent the study, the more applicable it will be.
- Studies published in 2003 or later but that depend on unit costs and resource data entirely or predominantly from before 2003 will be rated as 'Not applicable'.
- Studies published before 2003 will be excluded before being assessed for applicability and methodological limitations.

Quality and relevance of effectiveness data used in the health economic analysis:

 The more closely the clinical effectiveness data used in the health economic analysis match with the outcomes of the studies included in the clinical review the more useful the analysis will be for decision-making in the guideline. OSAHS: FINAL

Assessment scales for suspected obstructive sleep apnoea/hypopnoea syndrome, obesity hypoventilation syndrome or COPD-OSAHS overlap syndrome

Appendix B: Literature search strategies

Sleep Apnoea search strategy 3 diagnostic tests/assessment

This literature search strategy was used for the following reviews;

 What assessment scales should be used if obstructive sleep apnoea/hypopnoea syndrome, obesity hypoventilation syndrome or COPD-OSAHS overlap syndrome is suspected (for example, the Epworth sleepiness scale, STOP-Bang sleep apnoea questionnaire or Berlin questionnaire)?

The literature searches for this review are detailed below and complied with the methodology outlined in Developing NICE guidelines: the manual.³⁵³

For more information, please see the Methods Report published as part of the accompanying documents for this guideline.

B.1 Clinical search literature search strategy

Searches were constructed using a PICO framework where population (P) terms were combined with Intervention (I) and in some cases Comparison (C) terms. Outcomes (O) are rarely used in search strategies for interventions as these concepts may not be well described in title, abstract or indexes and therefore difficult to retrieve. Search filters were applied to the search where appropriate.

Table 8: Database date parameters and filters used

Database	Dates searched	Search filter used
Medline (OVID)	1946 – 6 July 2020	Exclusions Randomised controlled trials Systematic review studies Observational studies Diagnostic tests studies
Embase (OVID)	1974 – 6 July 2020	Exclusions Randomised controlled trials Systematic review studies Observational studies Diagnostic tests studies
The Cochrane Library (Wiley)	Cochrane Reviews to 2020 Issue 7 of 12 CENTRAL to 2020 Issue 7 of 12	None
Epistemonikos (Epistemonikos Foundation)	Inception – 29 November 2018	None

Medline (Ovid) search terms

<u> </u>	cumic (Ovia) scarcii terms	
1.	exp Sleep Apnea Syndromes/	
2.	(sleep* adj4 (apn?ea* or hypopn?ea*)).ti,ab.	
3.	(sleep* adj4 disorder* adj4 breath*).ti,ab.	
4.	(OSAHS or OSA or OSAS).ti,ab.	
5.	(obes* adj3 hypoventil*).ti,ab.	
6.	pickwick*.ti,ab.	
7.	or/1-6	

8.	letter/	
9.	editorial/	
10.	news/	
11.	exp historical article/	
12.	Anecdotes as Topic/	
13.	comment/	
14.	case report/	
15.	(letter or comment*).ti.	
16.	or/8-15	
17.	randomized controlled trial/ or random*.ti,ab.	
18.	16 not 17	
19.	animals/ not humans/	
20.	exp Animals, Laboratory/	
21.	exp Animal Experimentation/	
22.	exp Models, Animal/	
23.	exp Rodentia/	
24.	(rat or rats or mouse or mice).ti.	
25.	or/18-24	
26.	7 not 25	
27.	limit 26 to English language	
28.	(exp child/ or exp pediatrics/ or exp infant/) not (exp adolescent/ or exp adult/ or exp middle age/ or exp aged/)	
29.	27 not 28	
30.	(Epworth or ESS or ESS-CHAD).ti,ab.	
31.	(STOP-bang or stopbang or "snoring tired observed pressure").ti,ab.	
32.	((sleep* or Berlin or STOP*) adj3 (questionnair* or questionair*)).ti,ab.	
33.	((score* or scoring or stratif* or assess*) adj3 (system* or schem*)).ti,ab.	
34.	exp Oximetry/	
35.	(oxymet* or oximet*).ti,ab.	
36.	Capnography/	
37.	capnogra*.ti,ab.	
38.	(oxi-capnogra* or oxicapnogra* or oxy-capnogra* or oxycapnogra*).ti,ab.	
39.	POLYSOMNOGRAPHY/	
40.	(polysomnogra* or PSG).ti,ab.	
41.	(polygraph* or HRP).ti,ab.	
42.	ACTIGRAPHY/	
43.	actigraph.ti,ab.	
44.	(venous adj3 bicarbonat*).ti,ab.	
45.	or/30-44	
46.	29 and 45	
47.	randomized controlled trial.pt.	
48.	controlled clinical trial.pt.	
49.	randomi#ed.ti,ab.	
50.	placebo.ab.	
51.	randomly.ti,ab.	

52.	Clinical Trials as topic.sh.
53.	trial.ti.
54.	or/47-53
55.	Meta-Analysis/
56.	exp Meta-Analysis as Topic/
57.	(meta analy* or metanaly* or metaanaly* or meta regression).ti,ab.
58.	((systematic* or evidence*) adj3 (review* or overview*)).ti,ab.
59.	(reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.
60.	(search strategy or search criteria or systematic search or study selection or data extraction).ab.
61.	(search* adj4 literature).ab.
62.	(medline or pubmed or cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or science citation index or bids or cancerlit).ab.
63.	cochrane.jw.
64.	((multiple treatment* or indirect or mixed) adj2 comparison*).ti,ab.
65.	or/55-64
66.	exp "sensitivity and specificity"/
67.	(sensitivity or specificity).ti,ab.
68.	((pre test or pretest or post test) adj probability).ti,ab.
69.	(predictive value* or PPV or NPV).ti,ab.
70.	likelihood ratio*.ti,ab.
71.	likelihood function/
72.	((area under adj4 curve) or AUC).ti,ab.
73.	(receive* operat* characteristic* or receive* operat* curve* or ROC curve*).ti,ab.
74.	(diagnos* adj3 (performance* or accurac* or utilit* or value* or efficien* or effectiveness)).ti,ab.
75.	gold standard.ab.
76.	or/66-75
77.	Epidemiologic studies/
78.	Observational study/
79.	exp Cohort studies/
80.	(cohort adj (study or studies or analys* or data)).ti,ab.
81.	((follow up or observational or uncontrolled or non randomi#ed or epidemiologic*) adj (study or studies or data)).ti,ab.
82.	((longitudinal or retrospective or prospective or cross sectional) and (study or studies or review or analys* or cohort* or data)).ti,ab.
83.	Controlled Before-After Studies/
84.	Historically Controlled Study/
85.	Interrupted Time Series Analysis/
86.	(before adj2 after adj2 (study or studies or data)).ti,ab.
87.	exp case control studies/
88.	case control*.ti,ab.
89.	Cross-sectional studies/
90.	(cross sectional and (study or studies or review or analys* or cohort* or data)).ti,ab.
91.	or/77-90

92.	46 and (54 or 65 or 76 or 91)	
-----	-------------------------------	--

Embase (Ovid) search terms

1.	(Ovid) search terms exp Sleep Disordered Breathing/	
2.	(sleep* adj4 (apn?ea* or hypopn?ea*)).ti,ab.	
3.	(sleep* adj4 disorder* adj4 breath*).ti,ab.	
4.	(OSAHS or OSA or OSAS).ti,ab.	
5.	(obes* adj3 hypoventil*).ti,ab.	
6.	pickwick*.ti,ab.	
7.	or/1-6	
8.	letter.pt. or letter/	
9.	note.pt.	
10.	editorial.pt.	
11.	case report/ or case study/	
12.	(letter or comment*).ti.	
13.	or/8-12	
14.	randomized controlled trial/ or random*.ti,ab.	
15.	13 not 14	
16.	animal/ not human/	
	nonhuman/	
17.		
18.	exp Animal Experiment/	
19.	exp Experimental Animal/ animal model/	
20.		
21.	exp Rodent/	
22.	(rat or rats or mouse or mice).ti.	
23.		
24.	7 not 23	
25.	limit 24 to English language	
26.	(exp child/ or exp pediatrics/) not (exp adult/ or exp adolescent/)	
27.	25 not 26	
28.	(Epworth or ESS or ESS-CHAD).ti,ab.	
29.	(STOP-bang or stopbang or "snoring tired observed pressure").ti,ab.	
30.	((sleep* or Berlin or STOP*) adj3 (questionnair* or questionair*)).ti,ab.	
31.	((score* or scoring or stratif* or assess*) adj3 (system* or schem*)).ti,ab.	
32.	oximetry/ or transcutaneous oxygen monitoring/	
33.	(oxymet* or oximet*).ti,ab.	
34.	capnometry/	
35.	capnogra*.ti,ab.	
36.	(oxi-capnogra* or oxicapnogra* or oxy-capnogra* or oxycapnogra*).ti,ab.	
37.	polysomnography/	
38.	(polysomnogra* or PSG).ti,ab.	
39.	(polygraph* or HRP).ti,ab.	
40.	actimetry/	
41.	actigraph.ti,ab.	
42.	(venous adj3 bicarbonat*).ti,ab.	

43.	or/28-42	
44.	27 and 43	
45.	random*.ti,ab.	
46.	factorial*.ti,ab.	
47.	(crossover* or cross over*).ti,ab.	
48.	((doubl* or singl*) adj blind*).ti,ab.	
49.	(assign* or allocat* or volunteer* or placebo*).ti,ab.	
50.	crossover procedure/	
51.	single blind procedure/	
52.	randomized controlled trial/	
53.	double blind procedure/	
54.	or/45-53	
55.	systematic review/	
56.	meta-analysis/	
57.	(meta analy* or metanaly* or metaanaly* or meta regression).ti,ab.	
58.	((systematic* or evidence*) adj3 (review* or overview*)).ti,ab.	
59.	(reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.	
60.	(search strategy or search criteria or systematic search or study selection or data extraction).ab.	
61.	(search* adj4 literature).ab.	
62.	(medline or pubmed or cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or science citation index or bids or cancerlit).ab.	
63.	cochrane.jw.	
64.	((multiple treatment* or indirect or mixed) adj2 comparison*).ti,ab.	
65.	or/55-64	
66.	exp "sensitivity and specificity"/	
67.	(sensitivity or specificity).ti,ab.	
68.	((pre test or pretest or post test) adj probability).ti,ab.	
69.	(predictive value* or PPV or NPV).ti,ab.	
70.	likelihood ratio*.ti,ab.	
71.	((area under adj4 curve) or AUC).ti,ab.	
72.	(receive* operat* characteristic* or receive* operat* curve* or ROC curve*).ti,ab.	
73.	(diagnos* adj3 (performance* or accurac* or utilit* or value* or efficien* or effectiveness)).ti,ab.	
74.	diagnostic accuracy/	
75.	diagnostic test accuracy study/	
76.	gold standard.ab.	
77.	or/66-76	
78.	Clinical study/	
79.	Observational study/	
80.	family study/	
81.	longitudinal study/	
82.	retrospective study/	
83.	prospective study/	
84.	cohort analysis/	

85.	follow-up/
86.	cohort*.ti,ab.
87.	85 and 86
88.	(cohort adj (study or studies or analys* or data)).ti,ab.
89.	((follow up or observational or uncontrolled or non randomi#ed or epidemiologic*) adj (study or studies or data)).ti,ab.
90.	((longitudinal or retrospective or prospective or cross sectional) and (study or studies or review or analys* or cohort* or data)).ti,ab.
91.	(before adj2 after adj2 (study or studies or data)).ti,ab.
92.	or/78-84,87-91
93.	exp case control study/
94.	case control*.ti,ab.
95.	cross-sectional study/
96.	(cross sectional and (study or studies or review or analys* or cohort* or data)).ti,ab.
97.	or/92-96
98.	44 and (54 or 65 or 77 or 97)

Cochrane Library (Wiley) search terms

#1.	MeSH descriptor: [Sleep Apnea Syndromes] explode all trees
#2.	(sleep* near/4 (apn?ea* or hypopn?ea*)):ti,ab
#3.	(sleep* near/4 disorder* near/4 breath*):ti,ab
#4.	(OSAHS or OSA or OSAS):ti,ab
#5.	(obes* near/3 hypoventil*):ti,ab
#6.	pickwick*:ti,ab
#7.	(OR #1-#6)
#8.	(Epworth or ESS or ESS-CHAD):ti,ab
#9.	(STOP-bang or stopbang or "snoring tired observed pressure"):ti,ab
#10.	((sleep* or Berlin or STOP*) near/3 (questionnair* or questionair*)):ti,ab
#11.	((score* or scoring or stratif* or assess*) near/3 (system* or schem*)):ti,ab
#12.	MeSH descriptor: [Oximetry] explode all trees
#13.	(oxymet* or oximet*):ti,ab
#14.	MeSH descriptor: [Capnography] this term only
#15.	capnogra*:ti,ab
#16.	(oxi-capnogra* or oxicapnogra* or oxy-capnogra* or oxycapnogra*):ti,ab
#17.	MeSH descriptor: [Polysomnography] this term only
#18.	(polysomnogra* or PSG):ti,ab
#19.	(polygraph* or HRP):ti,ab
#20.	MeSH descriptor: [Actigraphy] this term only
#21.	actigraph:ti,ab
#22.	(venous near/3 bicarbonat*):ti,ab
#23.	(OR #8-#22)
#24.	#7 and #23

Epistemonikos search terms

	1.	((title:((sleep apnea syndromes) OR (sleep* AND (apn?ea* OR hypopn?ea*)) OR
	(sleep* AND (apn?ea* OR hypopn?ea*)) OR (sleep* AND (disorder* OR breath*)) (OSAHS OR OSA OR OSAS) OR (obes* AND hypoventil*) OR pickwick*) OR	

abstract:((sleep apnea syndromes) OR (sleep* AND (apn?ea* OR hypopn?ea*)) OR (sleep* AND (apn?ea* OR hypopn?ea*)) OR (sleep* AND (disorder* OR breath*)) OR (OSAHS OR OSA OR OSAS) OR (obes* AND hypoventil*) OR pickwick*)))

B.2 Health Economics literature search strategy

Health economic evidence was identified by conducting a broad search relating to sleep apnoea population in NHS Economic Evaluation Database (NHS EED – this ceased to be updated after March 2015) and the Health Technology Assessment database (HTA – this ceased to be updated after March 2018) with no date restrictions. NHS EED and HTA databases are hosted by the Centre for Research and Dissemination (CRD). Additional searches were run on Medline and Embase for health economics and quality of life studies.

B.2.1 Health economic studies strategy

Table 9: Database date parameters and filters used

Database	Dates searched	Search filter used
Medline	2014 – 6 July 2020	Exclusions Health economics studies
Embase	2014 – 6 July 2020	Exclusions Health economics studies
Centre for Research and Dissemination (CRD)	HTA - Inception – 31 March 2018 NHSEED - Inception to March 2015	None

Medline (Ovid) search terms

	exp Sleep Apnea Syndromes/
1.	(sleep* adj4 (apn?ea* or hypopn?ea*)).ti,ab.
2.	(sleep* adj4 disorder* adj4 breath*).ti,ab.
3.	(OSAHS or OSA or OSAS).ti,ab.
4.	(obes* adj3 hypoventil*).ti,ab.
5.	pickwick*.ti,ab.
6.	or/1-6
7.	limit 7 to English language
8.	letter/
9.	editorial/
10.	news/
11.	exp historical article/
12.	Anecdotes as Topic/
13.	comment/
14.	case report/
15.	(letter or comment*).ti.
16.	or/9-16
17.	randomized controlled trial/ or random*.ti,ab.
18.	17 not 18

19.	animals/ not humans/
20.	exp Animals, Laboratory/
21.	exp Animal Experimentation/
22.	exp Models, Animal/
23.	exp Rodentia/
24.	(rat or rats or mouse or mice).ti.
25.	or/19-25
26.	8 not 26
27.	Economics/
28.	Value of life/
29.	exp "Costs and Cost Analysis"/
30.	exp Economics, Hospital/
31.	exp Economics, Medical/
32.	Economics, Nursing/
33.	Economics, Pharmaceutical/
34.	exp "Fees and Charges"/
35.	exp Budgets/
36.	budget*.ti,ab.
37.	cost*.ti.
38.	(economic* or pharmaco?economic*).ti.
39.	(price* or pricing*).ti,ab.
40.	(cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.
41.	(financ* or fee or fees).ti,ab.
42.	(value adj2 (money or monetary)).ti,ab.
43.	or/28-43
44.	27 and 44

Embase (Ovid) search terms

1.	exp Sleep Disordered Breathing/
2.	(sleep* adj4 (apn?ea* or hypopn?ea*)).ti,ab.
3.	(sleep* adj4 disorder* adj4 breath*).ti,ab.
4.	(OSAHS or OSA or OSAS).ti,ab.
5.	(obes* adj3 hypoventil*).ti,ab.
6.	pickwick*.ti,ab.
7.	or/1-6
8.	limit 7 to English language
9.	letter.pt. or letter/
10.	note.pt.
11.	editorial.pt.
12.	case report/ or case study/
13.	(letter or comment*).ti.
14.	or/9-13
15.	randomized controlled trial/ or random*.ti,ab.

16.	14 not 15		
17.	animal/ not human/		
18.	nonhuman/		
19.	exp Animal Experiment/		
20.	exp Experimental Animal/		
21.	animal model/		
22.	exp Rodent/		
23.	(rat or rats or mouse or mice).ti.		
24.	or/16-23		
25.	8 not 24		
26.	health economics/		
27.	exp economic evaluation/		
28.	exp health care cost/		
29.	exp fee/		
30.	budget/		
31.	funding/		
32.	budget*.ti,ab.		
33.	cost*.ti.		
34.	(economic* or pharmaco?economic*).ti.		
35.	(price* or pricing*).ti,ab.		
36.	(cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.		
37.	(financ* or fee or fees).ti,ab.		
38.	(value adj2 (money or monetary)).ti,ab.		
39.	or/26-38		
40.	25 and 39		

NHS EED and HTA (CRD) search terms

#1.	MeSH DESCRIPTOR Sleep Apnea Syndromes EXPLODE ALL TREES
#2.	(sleep* adj4 (apn?ea* or hypopn?ea*))
#3.	(sleep* adj4 disorder* adj4 breath*)
#4.	(OSAHS or OSA or OSAS)
#5.	(obes* adj3 hypoventil*)
#6.	(pickwick*)
#7.	#1 OR #2 OR #3 OR #4 OR #5 OR #6

B.2.2 Quality of life studies strategy

Table 10: Database date parameters and filters used

Database	Dates searched	Search filter used
Medline	1946 – 26 November 2019	Exclusions Quality of life studies
Embase	1974 – 26 November 2019	Exclusions Quality of life studies

Medline (Ovid) search terms

1.	exp Sleep Apnea Syndromes/			
2.	(sleep* adj4 (apn?ea* or hypopn?ea*)).ti,ab.			
3.	(sleep* adj4 disorder* adj4 breath*).ti,ab.			
4.	(OSAHS or OSA or OSAS).ti,ab.			
5.	(obes* adj3 hypoventil*).ti,ab.			
6.	pickwick*.ti,ab.			
7.	or/1-6			
8.	limit 7 to English language			
9.	letter/			
10.	editorial/			
11.	news/			
12.	exp historical article/			
13.	Anecdotes as Topic/			
14.	comment/			
15.	case report/			
16.	(letter or comment*).ti.			
17.	or/9-16			
18.	randomized controlled trial/ or random*.ti,ab.			
19.	17 not 18			
20.	animals/ not humans/			
21.	exp Animals, Laboratory/			
22.	exp Animal Experimentation/			
23.	exp Models, Animal/			
24.	exp Rodentia/			
25.	(rat or rats or mouse or mice).ti.			
26.	or/19-25			
27.	8 not 26			
28.	quality-adjusted life years/			
29.	sickness impact profile/			
30.	(quality adj2 (wellbeing or well being)).ti,ab.			
31.	sickness impact profile.ti,ab.			
32.	disability adjusted life.ti,ab.			
33.	(qal* or qtime* or qwb* or daly*).ti,ab.			
34.	(euroqol* or eq5d* or eq 5*).ti,ab.			
35.	(qol* or hql* or hqol* or h qol* or hrqol* or hr qol*).ti,ab.			
36.	(health utility* or utility score* or disutilit* or utility value*).ti,ab.			
37.	(hui or hui1 or hui2 or hui3).ti,ab.			
38.	(health* year* equivalent* or hye or hyes).ti,ab.			
39.	discrete choice*.ti,ab.			
40.	rosser.ti,ab.			

41.	(willingness to pay or time tradeoff or time trade off or tto or standard gamble*).ti,ab.
42.	(sf36* or sf 36* or short form 36* or shortform 36* or shortform36*).ti,ab.
43.	(sf20 or sf 20 or short form 20 or shortform 20 or shortform20).ti,ab.
44.	(sf12* or sf 12* or short form 12* or shortform 12* or shortform12*).ti,ab.
45.	(sf8* or sf 8* or short form 8* or shortform 8* or shortform8*).ti,ab.
46.	(sf6* or sf 6* or short form 6* or shortform 6* or shortform6*).ti,ab.
47.	or/28-46
48.	27 and 47

Embase (Ovid) search terms

1.	exp Sleep Disordered Breathing/
2.	(sleep* adj4 (apn?ea* or hypopn?ea*)).ti,ab.
3.	(sleep* adj4 disorder* adj4 breath*).ti,ab.
4.	(OSAHS or OSA or OSAS).ti,ab.
5.	(obes* adj3 hypoventil*).ti,ab.
6.	pickwick*.ti,ab.
7.	or/1-6
8.	limit 7 to English language
9.	letter.pt. or letter/
10.	note.pt.
11.	editorial.pt.
12.	case report/ or case study/
13.	(letter or comment*).ti.
14.	or/9-13
15.	randomized controlled trial/ or random*.ti,ab.
16.	14 not 15
17.	animal/ not human/
18.	nonhuman/
19.	exp Animal Experiment/
20.	exp Experimental Animal/
21.	animal model/
22.	exp Rodent/
23.	(rat or rats or mouse or mice).ti.
24.	or/16-23
25.	8 not 24
26.	quality adjusted life year/
27.	"quality of life index"/
28.	short form 12/ or short form 20/ or short form 36/ or short form 8/
29.	sickness impact profile/
30.	(quality adj2 (wellbeing or well being)).ti,ab.
31.	sickness impact profile.ti,ab.
32.	disability adjusted life.ti,ab.
33.	(qal* or qtime* or qwb* or daly*).ti,ab.

34.	(euroqol* or eq5d* or eq 5*).ti,ab.
35.	(qol* or hql* or hqol* or h qol* or hrqol* or hr qol*).ti,ab.
36.	(health utility* or utility score* or disutilit* or utility value*).ti,ab.
37.	(hui or hui1 or hui2 or hui3).ti,ab.
38.	(health* year* equivalent* or hye or hyes).ti,ab.
39.	discrete choice*.ti,ab.
40.	rosser.ti,ab.
41.	(willingness to pay or time tradeoff or time trade off or tto or standard gamble*).ti,ab.
42.	(sf36* or sf 36* or short form 36* or shortform 36* or shortform36*).ti,ab.
43.	(sf20 or sf 20 or short form 20 or shortform 20 or shortform20).ti,ab.
44.	(sf12* or sf 12* or short form 12* or shortform 12* or shortform12*).ti,ab.
45.	(sf8* or sf 8* or short form 8* or shortform 8* or shortform8*).ti,ab.
46.	(sf6* or sf 6* or short form 6* or shortform 6* or shortform6*).ti,ab.
47.	or/26-46
48.	25 and 47

Appendix C: Clinical evidence selection

Figure 1: Flow chart of clinical study selection for the review of diagnosis

Appendix D: Clinical evidence tables

Reference	Ahmadi 2008 ¹⁸				
Study type	Retrospective chart review				
Study methodology	Data source: charts identified in order from alphabetically filed charts, and the first 130 charts were selected that met study inclusion/exclusion criteria				
	Recruitment: For the chart collection, the person collecting the data chose charts in order from the alphabetically filed charts in the clinic. Those charts that met the criteria were selected, and the process was continued until 130 qualified charts, as determined by the inclusion criteria, were collected.				
Number of patients	n = 130 analysed				
Patient	Age, mean (SD): male: 42.2 (SD not reported); female: 45.1 (SD not reported)				
characteristics	Gender (male to female ratio): 70/50				
	Ethnicity: not reported				
	Setting: respiratory ward or sleep laboratory				
	Country: Canada				
	Inclusion criteria: referral for sleepiness and/or poor sleep; recordings available from two overnight PSGs; a completed questionnaire battery including the Berlin questionnaire. Exclusion criteria: Charts of patients with incomplete or missing data for the respiratory variables.				
	Sleep disorders included those secondary to psychiatric or neurological disorders. Charts of patients who slept less than 240 minutes on either of the two nights were excluded from the study.				
Target condition(s)	Sleep apnoea/ hypopnoea syndrome				
Index test(s) and reference standard	Index test The Berlin questionnaire was scored as previously reported by Netzer and colleagues. Berlin questionnaire, scoring positively on less than 2 categories were identified as being low risk of having sleep apnoea.				

Reference	Ahmadi 2008 ¹⁸				
	Reference standard Laboratory PSG with no pre-specified diagnostic AHI, RDI or ODI: apnoeas/hypopnoeas were scored where there was a 50% or greater reduction in the baseline amplitude of respiration or at least 3% reduction in oxygen saturation, either lasting for a minimum of 10 seconds. Maximum RDI across two nights as observed by PSG, multiple cut-offs reported, RDI of 5 (as per protocol) extracted Prevalence 56 subjects (RDI>5) Time between measurement of index test and reference standard: not reported				
2×2 table		Reference standard +	Reference standard -	Total	
	Index test +	38	38	76	
	Index test -	18	36	54	
	Total	56	74	130	
Statistical measures	Index text: BQ (≥3% oxygen desaturation) Sensitivity: 67.8% (54 – 79) Specificity: 48.6% (37 – 60) Positive predictive value: not reported Negative predictive value: not reported Area under the curve (95% confidence interval): not reported				
Source of funding	Not reported				
Limitations	Risk of bias: Very serious. Retrospective chart review; unclear if study inclusions/exclusions appropriate as part of study criteria; test results could have been interpreted with knowledge of the other test results; time interval between the index test and reference standard not reported Indirectness: None				
Comments	Study population included people with sleep disorders secondary to psychiatric or neurological disorders; RERA not included in definition of RDI from laboratory PSG. Sensitivity and specificity calculated by excel spreadsheet by NGC.				

Reference	Boynton 2013 ⁶⁸
Study type	Cross-sectional
Study methodology	Data source: Adults referred for diagnostic polysomnography completed the STOP questions and answered four yes/no questions (BANG self-reported) about their body mass index (weight and height), age, neck circumference, and gender, which were also assessed by laboratory technologists (BANG-measured). Recruitment: not reported
Number of patients	n = 219 recruited and analysed
Patient characteristics	Age, mean (SD): 46.3 (SD 13.9)
	Gender (male to female ratio): 91/74 of those identified as being high risk for OSA
	Ethnicity: not reported
	Setting: respiratory ward or sleep laboratory
	Country: USA
	Inclusion criteria: at least 18 years old; English-speaking; referred for diagnostic, baseline polysomnography to assess for OSA. Exclusion criteria: unable to read, sign, or understand informed consent; previously diagnosed or treated for OSA
Target condition(s)	Obstructive sleep apnoea
Index test(s) and reference standard	Index test STOP-BANG questionnaire: patients were classified as having high risk for OSA if they had a total STOP-BANG score ≥3 points, out of a possible 8 points. As both self-reported and measured or observed values for BMI, age, neck circumference, and gender were collected, two sets of scores were calculated. One STOP-BANG score was based entirely on patient responses to STOP questions and their self-reported BANG values. The second STOP-BANG score was based on patient responses to STOP questions and the BANG values that were measured by technicians or obtained from patient health records. This version of the questionnaire was completed by the research team after the study appointment.
	(STOP-BANG questionnaire, self-reported, high risk if score of 3 or more out of 8)
	Reference standard

Reference	Boynton 2013 ⁶⁸				
	In centre polysomnography (PSG): the results of a single nocturnal, laboratory-based sleep study were used. The diagnosis of OSA required an AHI >5 events per hour of sleep, coupled with daytime sleepiness or symptoms of disturbed sleep. Obstructive and central apnoeas were defined as the complete absence of airflow for at least 10 seconds, in the presence or absence of continued respiratory effort respectively. Hypopneas were defined as a ≥50% decrease in airflow followed by an arousal, awakening, or ≥3% desaturation from baseline levels, consistent with American Academy of Sleep Medicine guidelines available at the time the studies were performed. Both the technologists who scored the studies and the physicians who interpreted them were masked to STOP-BANG scores. Prevalence – 169 subjects (AHI>5) (In centre PSG, multiple AHI cut-offs provided included >5 (extracted below))				
2×2 table		Reference standard	Reference standard -	Total	Calculated by NGC
	Index test +	134	25	159	
	Index test -	35	25	60	
	Total	169	50	219	
Statistical measures	Index text: STOP-BANG (≥3% oxygen desaturation) Sensitivity: 79.3% (75.6-82.8) Specificity: 50% (37.6-62.0) Positive predictive value: 84.3% Negative predictive value: 41.7% Area under the curve (95% confidence interval) All OSA (AHI≥5): 0.722 (0.645 – 0.799) Moderate-severe (AHI≥15): 0.746 (0.682 – 0.811) Severe (AHI≥30): 0.762 (0.696 - 0.827)				
Source of funding	the University	of Michigan Sleep Disord	ers Centre	-	cal School Summer biomedical Research Program, and
Limitations	Risk of bias: Serious. Enrolment method unclear; index test results could have been interpreted with knowledge of the reference standard results. Indirectness: None				
Comments	Incomplete rep	porting of the reference st	andard methods. Paper	only provides	totals and not TP, FP, FN, or TN.
	These have been calculated using diagnostic calculation spreadsheet using sensitivity, specificity, PPV, NPV and totals.				

Reference	Cowan 2014 ⁹³
Study type	Cross-sectional Cross-sectional
Study methodology	Data source: Prospective observational study conducted during May-December 2012. Recruitment: consecutive
Number of patients	n = 129 analysed
Patient	Age, mean (SD): 49 (SD 11)
characteristics	Gender (male to female ratio): 82/47
	Ethnicity: not reported
	Setting: Tertiary sleep centre
	Country: UK
	Inclusion criteria: Consecutive patients aged ≥16 years referred to the North Glasgow sleep service (a tertiary centre) for assessment of possible OSA were invited to participate
	Exclusion criteria: not reported
Target condition(s)	Suspected obstructive sleep apnoea
Index test(s) and reference standard	Index tests ESS – a validated measure of daytime sleepiness including eight questions, each with four possible responses, that assess the likelihood of dozing in different situations; score of ≥11/24 denotes excessive daytime somnolence. Berlin questionnaire – includes questions in three categories that relate, first, to snoring and witnessed apnoeas, second to tiredness, fatigue and sleepiness, and third, to hypertension and obesity. High risk of OSA is defined by scoring positively in ≥2 categories.
	STOP-BANG – includes four yes/no questions that relate to snoring, tiredness, observed apnoeas, and high blood pressure it also includes four additional questions relating to BMI, age, neck circumference and gender, and high risk OSA is defined as a score of ≥3.

Reference	Cowan 2014 ⁹³					
	Reference standard — Home polygraphy studies were performed using the SOMNOmedics SOMNOscreen kit (Randersacker, Germany) with channels that recorded body position, thoraco abdominal movements, oronasal airflow, heart rate, pulse oximetry and snoring. An Apnoea was defined as cessation of nasal flow for ≥10s, while a hypopnea was defined as 50% reduction in nasal flow for ≥10 s, or lesser reduction in flow associated with oxygen desaturation of ≥4%. Prevalence (ESS ≥11/24) – 92 patients had AHI ≥ 5 Prevalence (Berlin positive)— 94 patients had AHI ≥ 5 Prevalence (STOP-BANG ≥3/8) – 93 patients had AHI ≥ 5 Time between measurement of index test and reference standard: not reported					
2×2 table	ESS	Reference standard	Reference standard -	Total	Calculated by NGC	
	Index test +	63	17	80		
	Index test -	29	11	40		
	Total	92	28	120		
2×2 table	Berlin	Reference standard +	Reference standard -	Total	Calculated by NGC	
	Index test +	87	29	116		
	Index test -	7	2	9		
	Total	94	31	125		
2×2 table	SB	Reference standard +	Reference standard -	Total	Calculated by NGC	
	Index test +	88	21	109		
	Index test -	5	9	14		
	Total	93	30	123		
		33	30	123		

Reference **Statistical** measures Cowan 201493

Index text ESS Sensitivity 68.4%

Specificity 39.2%

Positive predictive value: not reported Negative predictive value: not reported

Area under the curve (95% confidence interval)

All OSA (AHI≥5): not reported

Moderate-severe (AHI≥15): not reported

Severe (AHI≥30): not reported

Index text Berlin

Sensitivity 92.6% Specificity 6.5%

Positive predictive value: 75% Negative predictive value: 22%

Area under the curve (95% confidence interval)

All OSA (AHI≥5): not reported

Moderate-severe (AHI≥15): not reported

Severe (AHI≥30): not reported

Index text SB

Sensitivity 94.6% Specificity 30%

Positive predictive value: 81% Negative predictive value: 64%

Area under the curve (95% confidence interval)

All OSA (AHI≥5): not reported

Moderate-severe (AHI≥15): not reported

Severe (AHI≥30): not reported

Reference	Cowan 2014 ⁹³
Source of funding	This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.
Limitations	Risk of bias: Serious. Exclusion criteria not reported Indirectness: none
Comments	Study reported number of patients positive on questionnaires (ESS, Berlin and STOP-BANG) and with AHI ≥5, sensitivity, specificity was calculated using 2x2 tables

Reference	de Carvalho 2020 ⁹⁶
Study type	Cross-sectional
Study methodology	Data source: This study was carried out from October 2017 to October 2018 and included 66 adults with Down's Syndrome (DS) attending the Down Syndrome Reference Center (CRISDOWN) of Hospital Regional da Asa
	Recruitment: not reported
Number of patients	n = 66 recruited, 60 analysed
Patient characteristics	Age, mean (SD): 27.7 (SD 9.1)
	Gender (male to female ratio): 33/27
	Ethnicity: not reported
	Setting: sleep laboratory
	Country: Brazil
	Inclusion criteria: The inclusion criteria comprised individuals with DS treated at the service, of both genders, good overall health status, aged 18 years and older, capable to understand and accept the study and its procedures.
	Exclusion criteria: individuals under 18 years of age; patients undergoing treatment for sleep disorders; patients with a history of conditions that could affect brain structure or function (such as cerebrovascular accident or head trauma); those who refused to participate in the study.
Target condition(s)	Sleep apnoea/hypopnoea syndrome

Index test(s) Index test: STOP-BANG questionnaire: due to absence of cut-off points specifically defined for the adult population with the Down's syndrome the and reference following was used - risk for OSA in the SBQ (3 or more affirmative answers) standard These questionnaire was answered by the patients' proxies, in agreement with other studies in individuals with DS. Reference standard Polysomnography (PSG), with pre-specified AHI >15, In the present study, the equipment used to perform the type III PSG assessments was the ApneaLink Air (ResMed Germany Inc.), which has been previously used in other important studies. This equipment allowed monitoring with the use of nasal pressure cannula for airflow and snore detection), chest piezoelectric strap (for respiratory effort detection) and pulse oximetry (to monitor peripheral arterial oxygen saturation—SpO2 and heart rate). The total recording time was used as the denominator to calculate the respiratory event index (REI). The PSG was assembled by a specialized technician from the Sleep Laboratory of our service. The respiratory events were defined as follows: (1) hypopnea, when there was a 30% reduction in airflow for at least 10 seconds, observed through the nasal cannula, associated with a decrease in SpO2 of at least 3%; (2) obstructive apnoea, due to the absence or reduction 90% of airflow for at least 10 seconds in the presence of respiratory effort; (3) mixed apnoea, due to the absence or reduction 90% of airflow, without the presence of respiratory effort only at the beginning of the event; (4) central apnoea, due to absence or 90% reduction in airflow for at least 10 seconds associated with absence of respiratory effort throughout the event. Prevalence – 49 subjects (AHI>15) Time between measurement of index test and reference standard: not reported but the ESS, STOP-BANG and Berlin questionnaires were completed prior to polysomnography 2×2 table Reference standard + Reference standard -Total Calculated by NGC All OSAS (AHI Index test + 49 6 55 ≥ 15) Index test -0 5 5 STOP-BANG 49 11 60 Total questionnaire

Reference

de Carvalho 202096

Reference	de Carvalho 2020 ⁹⁶
Statistical	
measures	Index text: STOP-BANG questionnaire, AHI>15, Sensitivity: 100% Specificity: 45% Positive predictive value: not reported Negative predictive value: not reported Area under the curve, Area under the curve, not reported
Source of funding	This study was supported by grants from the Fundac¸ão de Ensino e Pesquisa em Ciências da Sau´de (FEPECS), process number 064.000.560/2015, of Public Notice number 40 of 10/29/2015, published in DODF n. 213, of 11/06/2015, regarding the Homologation of the Final Selection Result of Research Projects. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Fundac¸ão de Ensino e Pesquisa em Ciências da Sau´de (FEPECS
Limitations	Risk of bias: Serious. Included patients with down syndrome. Indirectness: Serious. AHI ≥15
Comments	Paper only provides total number of patients diagnosed by polysomnography, number of people at risk of OSA using STOP-BANG questionnaire. Sensitivity, specificity and TP, FN, FP, TN values not provided.

Reference	Duarte 2020 ¹⁰⁸
Study type	Cross-sectional
Study methodology	Data source: This was a cross-sectional study, comprising the period from January 2017 to June 2019, including adults which were consecutively referred for PSG evaluation due to suspected sleep disordered breathing by their attending physicians Recruitment: not reported
Number of patients	n = 8138 recruited, 7377 analysed (patients grouped into two large and independent cohorts: derivation (N=3771) and validation (N=3606)

Reference	Duarte 2020 ¹⁰⁸
Patient characteristics	Age, mean (SD) derivation cohort: 45.9 (SD 14.6) Age, mean (SD) validation cohort: 45.9 (SD 14.6)
	Gender (male to female ratio) derivation cohort: 1983/1788 Gender (male to female ratio) validation cohort: 1961/1645
	Ethnicity: not reported
	Setting: sleep laboratory
	Country: Brazil
	Inclusion criteria: of both genders, aged ≥18 years and with suspected of OSA. Exclusion criteria: previously diagnosed OSA, use of home sleep study for diagnosis, incomplete clinical data and technically inadequate PSG
	This was a cross-sectional study, comprising the period from January 2017 to June 2019, including adults which were consecutively referred for PSG evaluation due to suspected sleep disordered breathing by their attending physicians. Then, all subjects were grouped into two separate cohorts: derivation (from January 2017 to February 2018) and validation (from May 2018 to June 2019).
Target condition(s)	Sleep apnoea/hypopnoea syndrome
Index test(s) and reference standard	Index test for both derivation and validation cohorts: STOP-BANG questionnaire (final score from 0 to 8, high risk with 3 or more points) consists of 8 yes-or-no questions (1 point for each affirmative answer): loud snoring, tiredness, observed apnoea, hypertension, BMI >35 kg/m2, age >50 years, NC > 40 cm, and male gender.
	Reference standard Polysomnography (PSG), with a prespecified diagnostic AHI ≥ 5, All subjects underwent an attended, in-lab PSG (EMBLA® S7000, Embla Systems, Inc., Broomfield, Colorado, United States) consisting of continuous monitoring of electroencephalogram, electrooculogram, electromyogram (chin and legs), electrocardiogram, airflow, thoracic and abdominal impedance belts, oxygen saturation, snoring microphone and sensors for body position. Polysomnographic records were manually interpreted by two board-certified sleep physicians, according to a guideline previously published in 2012 by the American Academy of Sleep Medicine (AASM),28 which were blinded to the values of all screening instruments collected prior to PSG. Apnoeas were classified from a drop ≥90% of baseline airflow lasting at least 10 s,

Reference	Duarte 2020 ¹⁰⁸				
	while hypopneas were classified from a ≥30% pre-event drop over ≥10 s associated with desaturation of oxygen ≥3% or an arousal.28 The AHI was calculated as the number of apnoea plus hypopnea/total sleep time (in hours). Polysomnographic diagnosis of OSA was based on apnoea/hypopnea index (AHI) ≥5.0/h and its severity was classified as follows: ≥5.0/h as any OSA (OSA≥5), ≥15.0/h as moderate/ severe OSA (OSA≥15), and ≥30.0/h as severe OSA (OSA≥30). Prevalence: derivation cohort 2984 subjects (AHI>5), validation cohort 2842 subjects (AHI>5) Time between measurement of index test and reference standard: not reported				
2×2 table		Reference standard +	Reference standard -	Total	Calculated by NGC
Derivation cohort	Index test +	2602	389	2991	
AII OSAS (AHI ≥ 5)	Index test -	382	398	780	
STOP-BANG questionnaire	Total	2984	787	3771	
2×2 table		Reference standard +	Reference standard -	Total	
Validation cohort	Index test +	2501	366	2867	
All OSAS (AHI ≥ 5)	Index test -	341	398	739	
STOP-BANG questionnaire	Total	2842	764	3606	
Statistical measures	Index text derivation cohort: STOP-BANG questionnaire, AHI ≥5 Sensitivity: 87.2% Specificity: 50.6% Positive predictive value: 87% Negative predictive value: 51.1% Area under the curve, manually scored, (95% confidence interval) All OSA (AHI≥5): 0.789(0.771-0.806) Index text derivation cohort: STOP-BANG questionnaire, AHI ≥5 Sensitivity: 88% Specificity: 52.1% Positive predictive value: 87.2% Negative predictive value: 53.9% Area under the curve, manually scored, (95% confidence interval) All OSA (AHI≥5): 0.797(0.779-0.815)				

Reference	Duarte 2020 ¹⁰⁸
Source of funding	Funding not stated
Limitations	Risk of bias: None
	Indirectness: None
Comments	Paper only provides sensitivity specificity, positive predictive value, negative predictive value totals and not TP, FP, FN, or TN.
	These have been calculated using diagnostic calculation spreadsheet using sensitivity, specificity, PPV, NPV and totals.

Reference	Felfeli 2020 ¹²⁶
Study type	Cross-sectional Cross-sectional
Study methodology	Data source: The study was conducted at a tertiary academic centre between March 22, 2017, and April 7, 2018. Patients completed the Berlin and STOP-BANG questionnaires screening for OSA at presentation. Diagnostic test properties of the 2 questionnaires compared with polysomnography at a certified sleep laboratory centre as the gold standard for detection of OSA were calculated Recruitment: consecutive
Number of patients	n = 27 analysed
Patient characteristics	Age, mean (SD): 69.6 (SD 11.5) Gender (male to female ratio): 11/15 Ethnicity: not reported Setting: Tertiary sleep centre

Reference	Felfeli 2020 ¹²	26					
	Country: Can	ada					
	Inclusion criteria: Consecutive adult patients (>18 years of age) with a new diagnosis of RVO confirmed with intravenous fluorescein angiography were enrolled.						
	Exclusion crit	eria: Patients with a known diagnosis of OSA were excluded					
Target condition(s)	Suspected ob	ostructive sleep apnoea					
Index test(s)	Index tests						
and reference	Berlin question	onnaire – cut-off not stated					
standard	STOP-BANG	questionnaire – cut-off not stated					
	Reference standard — All patients were then scheduled to undergo a polysomnography at a certified University of Toronto - affiliated academic sleep laboratory centre (Sleep and Alertness Clinic, Toronto, Ont.), which has maintained standards endorsed by the Ontario Ministry of Health for over 30 years. The polysomnography was conducted using the following channels: tracheal sounds by microphone tapes to the neck, nasal flow by cannula linked to a pressure transducer, oxygen saturation by digital oximetry, heart rate through the pulse oximetry signal, thoracic and abdominal movements by piezoelectric sensors, and body position by mercury sensors and actigraphy. Patients required overnight stay at the sleep clinic for completion of the study. Apnoeic episodes were defined as complete cessation of breathing for at least 10 seconds, or hypopnea in which airflow is decreased by 50% for 10 seconds, or hypopnea in which airflow is decreased by 30% for 10 seconds with decreased oxygen saturation. Polysomnography data were analysed by both a certified technician and a physician with specialisation in sleep disorders who were masked to the patients' disease and groupings. The AHI (number of events/hour) was assigned to each patient's polysomnography. Severity of OSA was classified as mild (AHI 5-15), moderate (AHI 16-30), and severe (AHI >30). An AHI <5 was considered a normal test and thus negative for OSA. The other parameters recorded from polysomnography were the AHI during rapid eye movement (REM) sleep (AHI-REM, commonly measured owing to the expected decrease in muscle tone in REM sleep), the percentage of lowest saturation of peripheral oxygen (SPO2- min), and the cumulative time of SPO2 below 90% (CT90%).						
	i iiie betweer	n measurement of index test and reference standard: not reported					
2×2 table	Berlin	Reference standard + Reference standard - Total					

Reference	Felfeli 2020 ¹²⁶				
Berlin	Index test +	9	2	11	
	Index test -	12	4	16	
	Total				
		21	6	27	
2×2 table	SB	Reference standard +	Reference standard -	Total	
Stop-Bang	Index test +	18	3	21	
	Index test -	3	3	6	
	Total				
		21	6	27	
Statistical	Index text Berlin				
measures	Sensitivity 42.6				
	Specificity 66.7				
		ive value: 81.8%			
	negative predic	tive value: 25%			
	Area under the	curve, not reported			
	Area under the	curve, not reported			
	Index text SB				
	Sensitivity 85.7	%			
	Specificity 50%				
	Positive predict				
	Negative predic	tive value: 64%			
		curve, not reported			
Source of	Not stated				
funding					
Limitations	Risk of bias: Se				
		erious AHI>15 for referen			
Comments					e value totals and not TP, FP, FN, or TN.
	These have bee	en calculated using diagr	nostic calculation spreads	sheet using sensitivity	r, specificity, PPV, NPV and totals.

Reference	Hesselbacher 2012 ¹⁶⁴
Study type	Cross-sectional Cross-sectional

Reference	Hesselbacher	2012164			
Study			mnographic diagnosis of	OSA completed ques	stionnaires, including demographic data and
methodology		s determined based on a r			
	Recruitment: c	onsecutive			
Number of patients	n = 2112 studie	ed, 1900 analysed			
Patient characteristics	Age, mean (SE	D): 54 (15)			
	Gender (male	to female ratio):			
	Ethnicity: Cauc	casian (males 53%, female	es 50%), Hispanic (male	s 43%, 48%), Other (r	nales 3%, females 2 %)
	Setting: sleep	centre			
	Country: USA				
		ia: not reported ria: not reported			
		·	ura prior to a diagnosia of	064	
	All study partic	ipants were aged ≥12 yea	irs prior to a diagnosis of	USA.	
Target condition(s)	Obstructive sle	ep apnoea			
Index test(s)	Index test: ESS				
and reference	Cut-off not stat	red			
standard	Reference star	ndard			
	PSG RDI >/=1				
					t OSA – 17% (~323 subjects), prevalence was
	calculated usin	ig sensitivity, specificity ar	nd number of people with	out OSA.	
2×2 table		Reference standard +	Reference standard -	Total	
	Index test +	852	139	991	
	Index test -	725	184	909	
	Total	1577	323	1900	

Reference	Hesselbacher 2012 ¹⁶⁴
Statistical measures	Index text ESS (cut-off not stated) Sensitivity: 54% Specificity: 57% Positive predictive value: 64% Negative predictive value: 47% Area under the curve (95% confidence interval): not reported
Source of funding	Funding not stated
Limitations	Risk of bias: serious. Inclusion and exclusion criteria not reported Indirectness: serious RDI ≥15 for reference standard
Comments	This study included adults and children (aged ≥12 years), paper provided sensitivity, specificity and number of people with no OSA. TP, FP, FN and TN values were calculated using 2x2 tables. Positive predictive value and negative predictive value reported in the paper seems to be inaccurate.

Reference	Pereira 2013 ⁴¹⁶
Study type	Cross-sectional Cross-sectional
Study methodology	Data source: Consecutive patients referred to the Sleep Disorders Clinic completed 3 testing components: (1) 3 questionnaires (Berlin, STOP-Bang, and Sleep Apnea Clinical Score [SACS]); (2) Level III at-home PM (MediByte) study; and (3) Level I in-laboratory PSG. The utility of individual questionnaires, the Level III device alone, and the combination of questionnaires and the Level III device were compared with the PSG. Recruitment: consecutive
Number of patients	n = 128 recruited and analysed
Patient characteristics	Age, mean (SD): 50 (12.3)

Reference	Pereira 2013 ⁴¹⁶
	Gender (male to female ratio): 84/44
	Ethnicity: not reported
	Setting: Home then laboratory
	Country: Canada
	Inclusion criteria: the ability to apply the Level III monitoring equipment without supervision (after brief initial training) and a primary residence within 100 miles of the sleep clinic (for returning the portable monitor equipment) Exclusion criteria: known COPD; congestive heart failure; uncontrolled asthma
Target condition(s)	Obstructive sleep apnoea
Index test(s)	Index tests Berlin questionnaire: details not reported; completed prior to portable sleep monitoring and PSG
standard	Sleep Apnoea Clinical Score questionnaire: details not reported; completed prior to portable sleep monitoring and PSG
	Stop Bang questionnaire: details not reported; completed prior to portable sleep monitoring and PSG
	Portable sleep monitor (MediByte; Braebon Medical Corporation, Ottawa, ON): this was a level III device, worn on two consecutive nights at home. The first night of recording was used in the analysis, with the second night as a back-up if recording from the first night did not provide sufficient data. The device consists of two inductance bands for thoracic and abdomen measurement, a nasal cannula pressure transducer airflow signal, finger pulse oximetry, and a body position sensor. Patients were given the option to either manually turn on the device before switching off the lights at night and turn off the device once awake in the morning, or to have the device start and stop automatically at predetermined times. RDI was the outcome measure for data from the monitor, defined as the number of apnoeas and hypopnoeas per hour of recording time.
	Reference standard Laboratory polysomnography (PSG) with no pre-specified diagnostic AHI, RDI or ODI: full, overnight PSG recordings were conducted using Sandman Elite SD32+ digital sleep recording system (Natus [Embla]; Otawa, ON) and included 4 EEG channels, 2 EOG channels, submental EMG, intercostal (diaphragmatic surface) EMG, bilateral anterior tibialis EMG, ECG, respiratory piezo bands (chest and abdomen), finger pulse oximetry, a vibration snore sensor, nasal pressure airflow, and oronasal thermocouple. PSG recordings were conducted as either a diagnostic study or, in the event of severe OSA, a split-night study. For split-night studies, the initial diagnostic period was followed by the introduction of treatment during the night, and only the diagnostic part of the recording was used for comparison.

Reference	Pereira 2013 ⁴¹⁶				
2×2 table	the in-lab PSG. were blinded to device data wer were reviewed I seconds, and hy followed by ≥3% airflow amplitud screening tools Prevalence – 1. Time between repoint not reported.	The PSGs were manuall results of the questionnate reviewed by an experiency a sleep specialist. For a special structure of experience of experience of experience of experience of the subjects (AHI ≥ 5) the experience of the subjects (AHI ≥ 5) the experience of th	ly scored using standard lires and the portable more enced technologist (with both the index test and leas a reduction in pressure or the PSG, the definitional, in the absence of a dead with PSG, at different with the absence standard.	criteria by registered onitoring device. Sixty-concordance between PSG data, apnoeas we-derived airflow of 50 n of hypopnoea also insaturation ≥3% (alternAHI thresholds) d: PSG completed foll Total	perienced scorer who was blinded to the results of polysomnographic technologists, who in turn after percent of the scored portable monitoring in the two scorers of 99.2%), and all PSG studies ere scored as a cessation of airflow ≥50% for ≥10 0% to 90% from baseline for ≥10 seconds included ≥50% reduction in pressure-derived thative criteria). The agreement of each of the four owing portable sleep monitoring at home, time
Berlin questionnaire	Index test 1 + Index test 1 - Total	100 16 116	9 3 12	109 19 128	
2×2 table		Reference standard +	Reference standard -	Total	
Sleep Apnea	Index test 1 +	38	2	40	
clinical score	Index test 1 -	78	10	88	
questionnaire	Total	116	12	128	
2×2 table		Reference standard +	Reference standard -	Total	
Stop Bang	Index test 1 +	104	7	111	
questionnaire	Index test 1 -	12	5	17	
	Total	116	12	128	

Reference Statistical measures Pereira 2013⁴¹⁶

Index text 1, Berlin questionnaire

Sensitivity 86% Specificity 25%

Positive predictive value: 91.7% Negative predictive value: 15.8%

Area under the curve (95% confidence interval) at PSG cut-off AHI≥10

All OSA (AHI≥10): 0.565 (CI not reported)

Moderate-severe (AHI≥15):

Severe (AHI≥30):

Index text 2, Sleep Apnoea Clinical Score questionnaire

Sensitivity 33% Specificity 83%

Positive predictive value: 95% Negative predictive value: 11.4%

Area under the curve (95% confidence interval) at PSG cut-off AHI≥10

All OSA (AHI≥10): 0.540 (CI not reported) Moderate-severe (AHI≥15): not reported

Severe (AHI≥30): not reported

Index text 3, Stop Bang questionnaire

Sensitivity 90% Specificity 42%

Positive predictive value: 93.7% Negative predictive value: 29.4%

Area under the curve (95% confidence interval) at PSG cut-off AHI≥10

All OSA (AHI≥10): 0.575 (CI not reported) Moderate-severe (AHI≥15): not reported

Severe (AHI≥30): not reported

Reference	Pereira 2013 ⁴¹⁶
Source of	Innovation Fund, the Ontario Ministry of Health and the William M. Spear Foundation from the Queen's University
funding	
Limitations	Risk of bias: Serious. Unclear if all study exclusions appropriate as part of study exclusion criteria and unclear time between index testing and measurement of the reference standard. Indirectness: None
Comments	

Reference	Sangkum 2017 ⁴⁸⁰
Study type	Cross-sectional
Study	Data source: Two hundred and eight subjects who were referred for an evaluation of possible OSA at Tulane Comprehensive Sleep Center Recruitment: not reported
Number of patients	n = 208 recruited and analysed
Patient characteristics	Age, mean (SD): 52.9 (0.9) Gender (male to female ratio): 75/133
	Ethnicity: African American (69%); white (28%); Hispanic (0.5%) Setting: initial clinical evaluation site and laboratory
	Country: USA

Reference	Sangkum 2017 ⁴⁸⁰
	Inclusion criteria: not reported Exclusion criteria: age <18 years old; incomplete or absent questionnaire; incomplete body type identification; PSG refusal; pregnant women Participants undergoing OSA evaluation with polysomnography were recruited
Target condition(s)	Obstructive sleep apnoea
Index test(s) and reference standard	Index tests STOP-BANG questionnaire: administered during the initial clinical evaluation, a score greater than or equal to 3 was determined as 'high risk' for OSA
	STOP-BANG-Apple questionnaire: as above but with additional data included on fat distribution type (apple, pear or indeterminate); apple and pear body type is defined as excess upper body fat and lower body fat respectively. Indeterminate body type refers to fat distribution that cannot categorise as apple or pear such as a patient with low body fat or generalised distribution of excess body fat. Fat distribution type was determined by subjective visual inspection (i.e. eyeball test).
	STOP questionnaire: not pre-specified in methods but results reported (cut-off score=2)
	STOP-Apple questionnaire: not pre-specified in methods but results reported (cut-off score=2)
	Reference standard Laboratory polysomnography with a pre-specified AHI >5 events per hour diagnostic of OSA: overnight PSG included sleep staging, monitored using electroencephalogram, bilateral electro-oculogram, and a surface submental electromyogram. Respiratory parameters were monitored using pulse oximetry, snoring microphone, nasal thermistors and pressure transducer, and thoracic and abdominal inductance plethysmograms. The heart rate was continuously monitored using an electrocardiogram. Bilateral tibialis EMG leads were placed to detect periodic limb movements. A registered PSG technologist under the supervision of the sleep physician visually scored all studies. The technologist was blinded to clinical information and the results of STOP-BANG-apple scores. Using the 2012 American Academy of Sleep Medicine for Scoring of Sleep and Associated Events, apnoea was defined as cessation of the airflow ≥90% detected through the nasal thermistor sensor for at least 10 seconds. Hypopnoea was defined by a peak airflow signal excursion of ≥30% using nasal pressure, with ≥3% oxygen desaturation or associated arousal. Prevalence − 165 subjects (AHI>5)
	Time between measurement of index test and reference standard: not reported

Reference Sangkum 2017 ⁴⁸⁰ 2×2 table STOP-BANG Reference standard Reference standard – Total questionnaire (cut-off of 3)
questionnaire (out-oil of o)
(cut-off of 3) Index test 1 + 156 37 193
Index test 1 - 6 9 15
Total 162 46 208
2×2 table STOP-BANG- Apple questionnaire (cut-off of 4) STOP-BANG- Apple to questionnaire (cut-off of 4) STOP-BANG- Apple to questionnaire (cut-off of 4) Reference standard Reference standard - Total
(cut-off of 4) Index test 2 + 146 28 174
Index test 2 - 16 18 34
Total 162 46 208
2×2 table STOP Reference standard Reference standard – Total questionnaire (cut-off score of 2)
2) Index test 3 + 157 41 198
Index test 3 – 5 5 10
Total 162 46 208
Index text 24 STOP-Apple questionnaire (cut-off score of 3) Index text 24 Reference standard Reference standard - Total + Total + Total Reference standard - Total + Total Reference standard - Total + Total + Total Reference standard - Total + Total + Total Reference standard - Total +
Index test 4 + 143 28 171
Index test 4 - 19 18 37
Total 162 46 208

Reference	Sangkum 2017 ⁴⁸⁰
	Sensitivity 88.3%
	Specificity 39.1%
	Positive predictive value: 83.6%
	Negative predictive value: 48.6%
	Area under the curve (95% confidence interval)
	All OSA (AHI≥5): 0.6789 (CI not reported)
	Moderate-severe (AHI≥15): not reported
	Severe (AHI≥30): not reported
Source of funding	National Institute of General Medical Sciences of the National Institutes of Health
Limitations	Risk of bias: Serious. Enrollment method unclear; unclear if all study exclusions appropriate, and test results could have been
	interpreted with knowledge of the other test results.
	Indirectness: None
Comments	

Reference	Vana 2013 ⁵⁵³
Study type	Cross sectional
Study methodology	Data source: This study compared the predictive abilities of the STOP-Bang and Epworth Sleepiness Scale (ESS) for screening sleep clinic patients for obstructive sleep apnoea (OSA) and sleep-disordered breathing (SDB). Recruitment: 'a convenience sample', consecutive
Number of patients	n = 60 recruited, 47 analysed

Reference	Vana 2013 ⁵⁵³							
	were completed within 3 months of screenings, and met established polysomnographic standards for evaluating OSA. All tracings were visually scored by sleep technologists using updated American Academy of sleep Medicine scoring criteria (1999) and were reviewed and interpreted by a board-certified sleep physician. Apnoea was defined as a complete cessation of airflow >10 seconds. Hypopnoeas were defined as decreased nasal pressure transducer amplitudes of 30% or more lasting >10 seconds and accompanied by 4% oxyhaemoglobin desaturations or arousals. Respiratory effort related arousals were defined as respiratory events that demonstrated increased respiratory efforts, clear drops in airflow, and arousals, but did not meet the criteria for apnoeas or hypopnoeas. The AHI was calculated by summing the number of apnoeas and hypopnoeas during sleep and dividing by the number of hours of sleep. Similarly, the RDI was calculated by summing the number of apnoeas, hypopnoeas, and respiratory effort related arousals and dividing by the number of hours of sleep. Prevalence — 32 subjects Time between measurement of index test and reference standard: not reported							
2×2 table	ESS	Reference standard	Reference standard -	Total				
	Index test 1 +	10	7	17				
	Index test 1 -	22	8	30				
	Total	32	15	47				
2×2 table	STOP-Bang questionnaire, SB30	Reference standard +	Reference standard -	Total				
	Index test 2 +	31	10	41				
	Index test 2 -	1	5	6				
	Total	32	15	47				
2×2 table	STOP-Bang questionnaire, SB35	Reference standard +	Reference standard -	Total				
	Index test 3 +	30	10	40				
	Index test 3 -	2	5	7				
	Total	32	15	47				
2×2 table	STOP-Bang questionnaire, SB35 OR ESS	Reference standard +	Reference standard -	Total				
	Index test 4 +	31	12	43				

Reference	Vana 2013 ⁵⁵³							
	Index test 4 -	1	3	4				
	Total	32	15	47				
Statistical measures	Index test 1, Epworth Sleepiness Scale questionnaire Sensitivity 31.3% Specificity 53.3% Positive predictive value: 58.8% Negative predictive value: 26.7% Area under the curve (95% confidence interval) All OSA (AHI≥5): 0.423 (0.269 − 0.577) Moderate-severe (AHI≥15): not reported Severe (AHI≥30): not reported							
	Sensitivity 96.99 Specificity 33.39 Positive predicti Negative predicti	%						
	All OSA (AHI≥5)): 0.651(0.524 – 0.778) e (AHI≥15): not reported	•					
	Sensitivity 93.89 Specificity 33.39 Positive predicti	%	<u>SB35</u>					
	All OSA (AHI≥5)	curve (95% confidence ii): 0.635 (0.505 – 0.766) e (AHI≥15): not reported): not reported	•					

Reference	Vana 2013 ⁵⁵³
	Index test 4, STOP-Bang questionnaire, SB35 OR ESS Sensitivity 96.9% Specificity 20% Positive predictive value: 72.1% Negative predictive value: 75% Area under the curve (95% confidence interval) All OSA (AHI≥5): 0.584 (0.475 − 0.694) Moderate-severe (AHI≥15): not reported Severe (AHI≥30): not reported
Source of funding	Not reported
Limitations	Risk of bias: Serious. Unclear if all study exclusions appropriate, and test results could have been interpreted with knowledge of the other test results. Thirteen of 60 (22%) did not undergo PSG and were excluded from analysis Indirectness: None
Comments	

Reference	Wu 2020 ⁵⁷⁹
Study type	Cross-sectional Cross-sectional
Study methodology	Data source: Patients from the Pneumology Department of Zhongshan hospital were invited, screened, and enrolled into this study from September 2015 to October 2019. Recruitment: not reported
Number of patients	n = 328 recruited, 116 analysed
Patient characteristics	Age, mean (SD): 63 (range 57, 68) Gender (male to female ratio): 101/5 Ethnicity: not reported Setting: sleep laboratory

Reference	Wu 2020 ⁵⁷⁹
	Country: China Inclusion criteria: Age ≥40 years, ≤80; Diagnosis of COPD by GOLD guidelines. Exclusion criteria: Sleep less than 4 hours tested by PSG; Patients on home oxygen therapy or mechanical ventilation; Acute exacerbation of COPD in the preceding month; Other lung diseases; Sleep disorders other than OSA; Active or unstable cardiovascular diseases; Non-controlled arterial hypertension; Severe dementia; Severe untreated psychiatric conditions; Neuromuscular disease; Unwilling or undisciplined patient.
Target condition(s)	Overlap syndrome
Index test(s) and reference standard	Index test 1: Berlin questionnaire - comprises three categories including 10 questions. Part (category) 1 of BQ includes information on snoring and apnea, part 2 reflects daytime sleepiness or fatigue, and part 3 combines information about obesity and hypertension. BMI cut-off point was adjusted from 30.0 to 25.0 in MBQ compare to BQ. High risk of OSA is defined as ≥2 positive results of the three categories of BQ or MBQ. Index test 2: STOP-BANG questionnaire is a tool involving 3 subjective items (snoring, tiredness, and observed apnoea) and 5 objective items (hypertension, age, sex, body mass index (BMI), and neck circumference), a score ≥ 3 is regarded as having a moderate to severe risk of OSA.
	Reference standard PSG was tested in Sleep Center of Zhongshan Hospital by a PSG recorder (Respironics, Alice-5 Respironics, Pittsburgh, Pennsylvania, USA) within 1 week after pulmonary function examination, including electromyogram, electrocardiogram, electrooculogram, oronasal flow, thoracoabdominal movements, arterial oxygen saturation, body position, and snoring sounds. Breathing was recorded with nasal pressure transducer. PSG reports were analysed by two skilled specialists followed by guideline.21 Apnoea was defined as a decrease of at least 90% of airflow from baseline, lasting 10 s or longer, and hypopnea was defined as ≥30% decrease of airflow Lasting at least 10 s, associated with either an arousal or a ≥3% O2 saturation according to American Academy of Sleep Medicine criteria.22 The mean number of apnoeas and hypopneas per hour of sleep (Apnoea—Hypopnea Index [AHI]) was calculated, and OSA was diagnosed if the Apnoea—Hypopnea Index (AHI) was ≥5 events per hour.
	Prevalence – 62 subjects

Reference	Wu 2020 ⁵⁷⁹				
	Time between mea		reference standard: not re	eported but po	olysomnography was performed aft
2×2 table		Reference standard +	Reference standard -	Total	Calculated by NGC
All OSAS (AHI ≥ 5)	Index test +	33	66	39	
Berlin questionnaire	Index test -	29	48	77	
	Total	62	54	116	
2×2 table		Reference standard +	Reference standard -	Total	Calculated by NGC
AII OSAS (AHI ≥ 5)	Index test +	52	22	74	· ·
STOP-BANG questionnaire	Index test -	10	32	42	
	Total	62	54	116	
	All OSA (AHI≥5): 0 Index text: STOP-I Sensitivity: 84% Specificity: 59% Positive predictive Negative predictive	rve, manually scored, (95% o 0.71 (0.64-0.79) BANG questionnaire, AHI ≥5 value: 70%	<u>.</u>	SA (AHI≥5): 0.	72 (0.64 – 0.80)
Source of funding	This work was supported by grants from the National Key Research and Development Program of China (NO. 2018YFC1313600) and the National Natural Science Foundation of China (No. 81570081, 81770083).				
	2018YFC1313600) and the National Natural S	cience Foundation of Chir	ıa (No. 81570	081. 81770083).

Reference	Wu 2020 ⁵⁷⁹
Comments	Paper only provides totals and not TP, FP, FN, or TN. These have been calculated using diagnostic calculation spreadsheet using sensitivity, specificity, PPV, NPV and totals.

Reference	Xiong 2019 ⁵⁸²
Study type	Cross-sectional
Study methodology	Data source: From Dec 2016 to Dec 2018, a total of 476 consecutive patients with suspected COPD were enrolled as the study candidates, those who met the inclusion criteria and exclusion criteria were enrolled as study participants. The inclusion criteria were: subjects aged at least 40 years old with a diagnosis of COPD conforming to GOLD guideline. Recruitment: not reported
Number of patients	n = 476 recruited, 431 analysed
Patient characteristics	Age, mean (SD): 67.4 (SD 8.9)
	Gender (male to female ratio): 388/43
	Ethnicity: not reported
	Setting: sleep laboratory
	Country: China
	Inclusion criteria: subjects aged at least 40 years old with a diagnosis of COPD conforming to GOLD guideline
	Exclusion criteria: those were less than 40 years old or pregnant; patients with evidence of bronchial asthma, bronchiectasis, pulmonary fibrosis, intratracheal neoplasms, destructive sequelae of tuberculosis, etc; 3) patients with combined other diseases affecting survival, such as neoplastic diseases, renal insufficiency, or acute myocardial infarction; those with history of stroke, heart failure, neuromuscular, cognitive impairment or other mental and psychological diseases that would prevent completion of pulmonary function test, questionnaire or PSG; and 5) those who had other sleep disorders such as obesity hypoventilation syndrome.
Target condition(s)	COPD-OSAHS Overlap syndrome

Reference	Xiong 2019 ⁵⁸²					
Index test(s) and reference standard					s of subjects in different situations cessive daytime sleepiness.	
	Berlin questionr	naire - (BQ) comprises three of the three categories.	categories including 10 qι	uestions, high	risk of OSA is defined as ≥ two	
		(SBQ) is a tool involving 4 did ate to severe risk of OSA.	chotomous items and 4 cli	nical paramete	er items, a score≥ 3 is regarded as	
	sleep diagnostic less than 7 hrs i Medicine criteria Depending on the Prevalence – 33	hy (PSG), all subjects with consistent (SOMNOscreen Plumonitoring at night. All tracing a.20 Subjects who experience AHI, OSA severity is dividing the AHI, OSA severity is dividing the AHI, OSA severity is dividing the AHI.	us Tele PSG, SOMNOmed gs were manually scored a ed AHI ≥5 events/hour du ed into mild (5–14.9), mod	lics GmbH, Ge according to th ring sleep wer derate (15–29.		
2×2 table		Reference standard +	Reference standard –	Total	Calculated by NGC	
All OSAS (AHI ≥ 5)	Index test +	242	51	293	Calculated by NGC	
ESS questionnaire	Index test -	93	45	138		
	Total	335	96	431		
2×2 table		Reference standard +	Reference standard -	Total	Calculated by NGC	
All OSAS (AHI ≥ 5)	Index test +	272	58	330	·	
Berlin questionnaire	Index test -	63	38	101		
	Total	335	96	431		
2×2 table		Reference standard +	Reference standard -	Total	Calculated by NGC	
All OSAS (AHI ≥ 5)	Index test +	311	57	368	,	

Reference	Xiong 2019 ⁵⁸²						
STOP-BANG questionnaire	Index test -	24	39	63			
	Total						
		335	96	431			
Statistical measures	Sensitivity: 72.2% Specificity: 46.9% Positive predictive of Negative predictive of Negative predictive of Sensitivity: 81.2% Specificity: 39.6% Positive predictive of Negative of Negative predictive of Neg	value: not reported ve, manually scored, (95% uestionnaire, AHI ≥5 (≥3% value: not reported value: not reported ve, manually scored, (95% ng questionnaire, AHI ≥5 value: not reported value: not reported value: not reported value: not reported	6 confidence interva 6 oxygen desaturatio 6 confidence interva (≥3% oxygen desat 6 confidence interva	on) NI OSA (AHI≥5): 0.609 NI) All OSA (AHI≥5): 0.639 Uration) NI) All OSA (AHI≥5): 0.729	4(0.578 – 0.680) 3 (0.723 (0.678 – 0.764)		
Source of funding	2016YFC1304403)	ported by the National Key . The sponsor had no role	in the design or co	nduct of this research.	W 5		
Limitations	Risk of bias: Serious. Enrolment method unclear and inclusion/exclusion criteria not reported Indirectness: Serious. AHI ≥10						
Comments	Paper only provides	s totals and not TP, FP, F	N, or TN.				
	These have been calculated using diagnostic calculation spreadsheet using sensitivity, specificity and totals.						

Appendix E: Coupled sensitivity and specificity forest plots and sROC curves

E.1 Coupled sensitivity and specificity forest plots-OSAHS

Figure 2: Berlin questionnaire (reference standard: AHI/RDI/ODI >5 by hospital polysomnography)

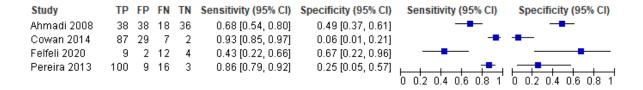


Figure 3: Epworth Sleepiness scale (reference standard: AHI/RDI/ODI >5 by hospital polysomnography)

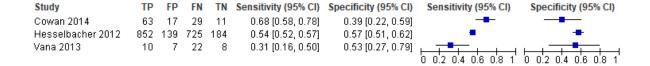


Figure 4: STOP BANG (reference standard: AHI/RDI/ODI >5 by hospital polysomnography)

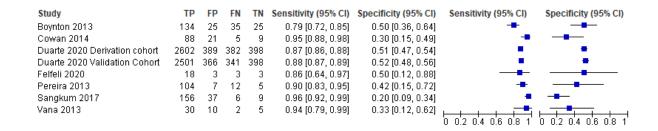


Figure 5: STOP BANG or ESS (reference standard: AHI/RDI/ODI >5 by hospital polysomnography)

sROC curves

Figure 6: Berlin questionnaire

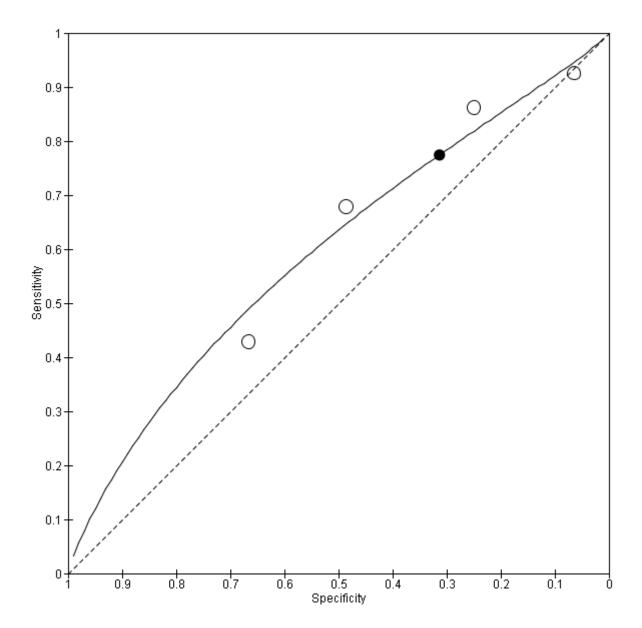


Figure 7: Epworth Sleepiness scale

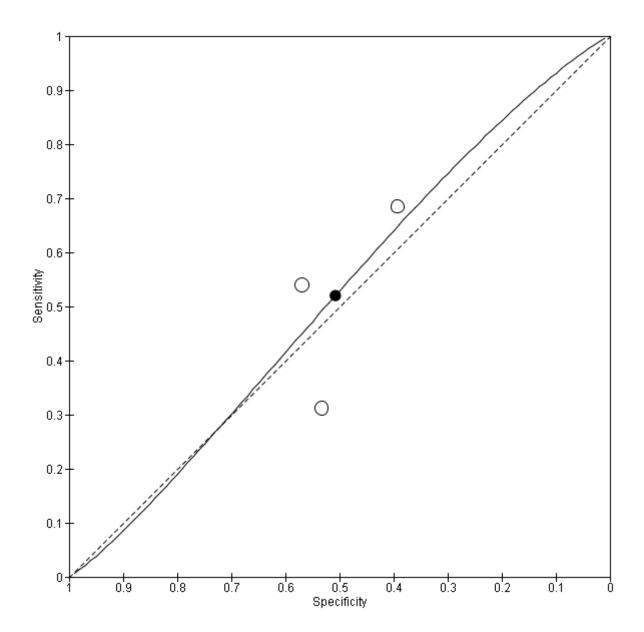


Figure 8: STOP BANG

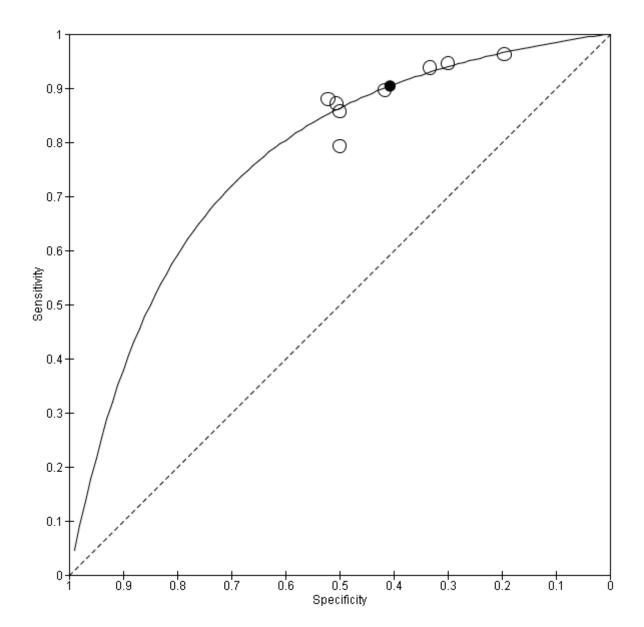
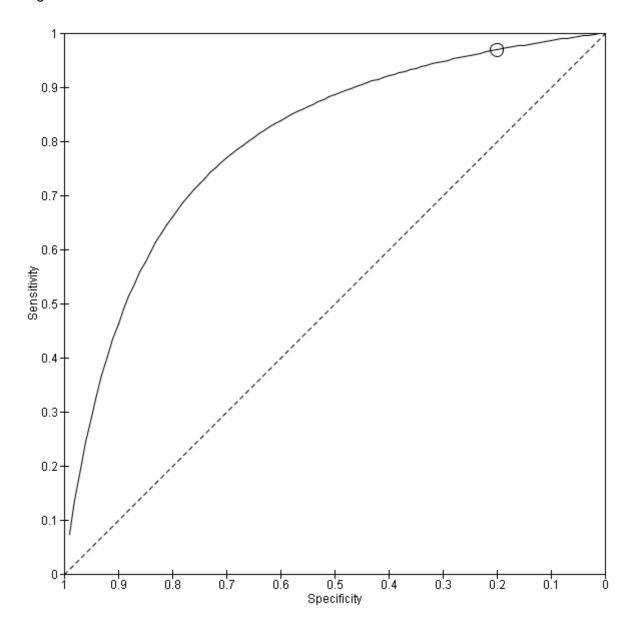



Figure 9: STOP BANG or ESS

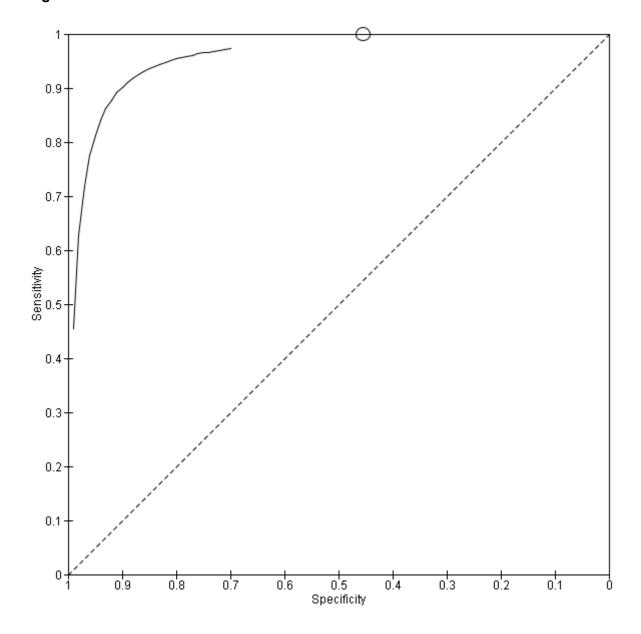

E.2 Coupled sensitivity and specificity forest plots-OSAHS (patients with Down syndrome)

Figure 10: STOP-BANG

sROC curves

Figure 11: STOP-BANG

E.3 Coupled sensitivity and specificity forest plots-COPD-OSAHS overlap syndrome

Figure 12: Berlin



Figure 13: Epworth Sleepiness scale

Figure 14: Stop-Bang

sROC curves

Figure 15: Berlin

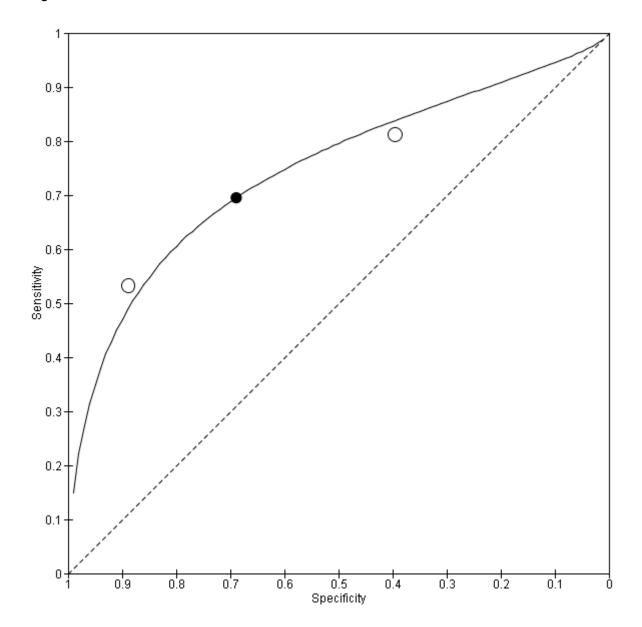


Figure 16: Epworth sleepiness scale

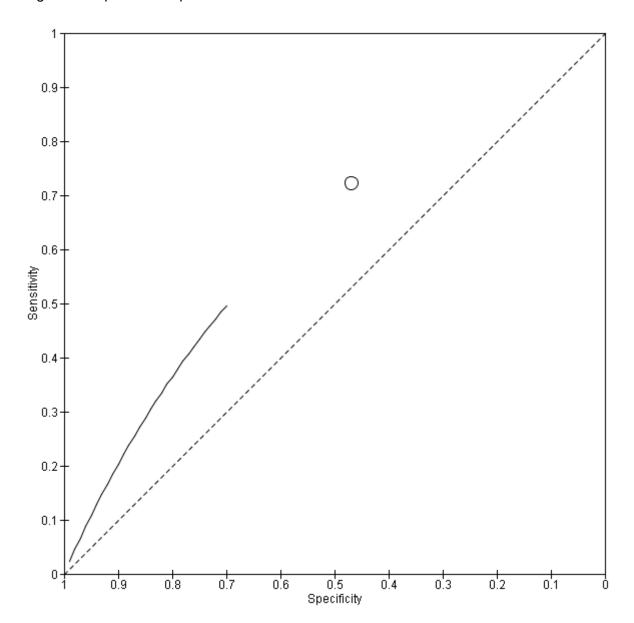
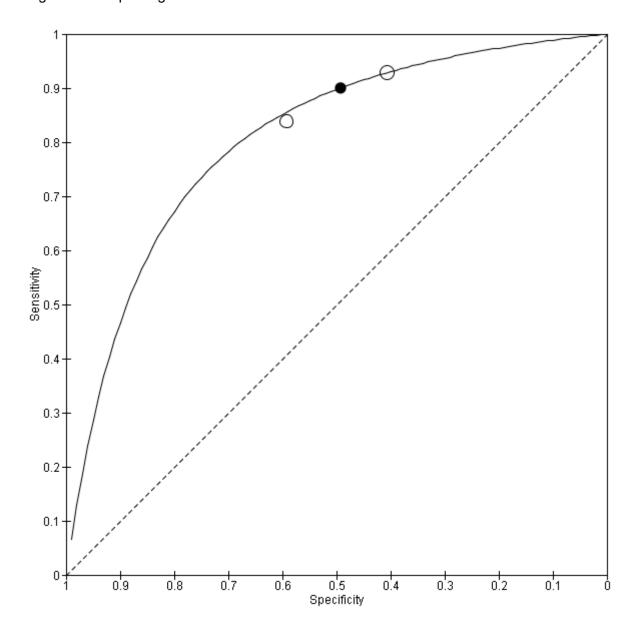
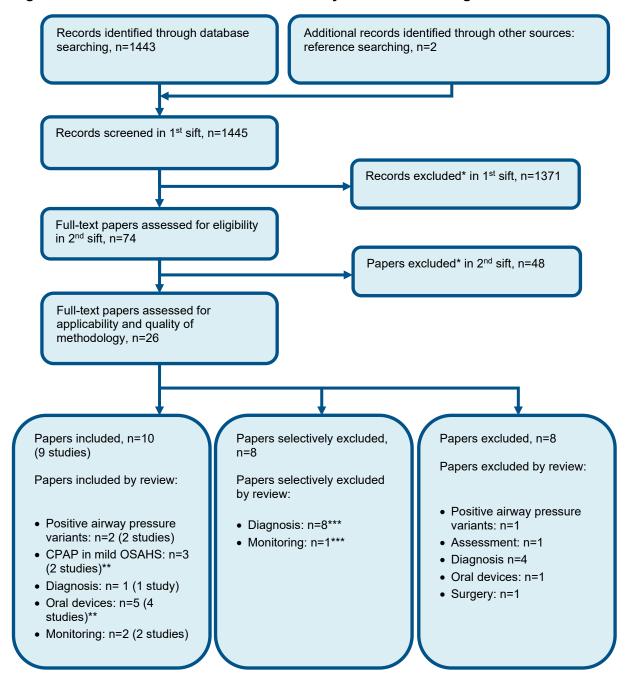




Figure 17: Stop-Bang

Appendix F: Health economic evidence selection

Figure 18: Flow chart of health economic study selection for the guideline

^{*} Non-relevant population, intervention, comparison, design or setting; non-English language

^{**} Two studies (in three papers) were included for two different questions

^{***} One study was considered for two different questions

Appendix G: Health economic evidence tables

None

Appendix H: Excluded studies

H.1 Excluded clinical studies

Table 11: Studies excluded from the clinical review

Reference	Exclusion Reason
Aaronson 2012 ²	Not an assessment scale – hospital oximetry, ODI recorded using polygraph Inappropriate population -stroke patients
Aaronson 2014 ¹	Inappropriate assessment scale - SAS questionnaire Inappropriate reference standard -hospital oximetry
Abad 2016 ³	Inappropriate population –stroke patients Not an assessment scale – SleepWise nonintrusive video system
Abdelghani 2004 ⁴	Inappropriate reference standard – PSG at home or in hospital
Abdeyrim 2015 ⁷	No usable outcomes – no diagnostic accuracy data
Abdeyrim 2016 ⁵	Inappropriate study design – case control study/ no diagnostic accuracy study
Abdeyrim 2016 ⁶	Not an assessment scale - impulse oscillometry
Abdullah 2018 ⁸	Inappropriate assessment scale - The Bahasa Malaysia version of the STOP-BANG questionnaire
Abeyratne 2005 ¹⁰	Not an assessment scale - novel feature termed the 'intra-snore-pitch-jump' (ISPJ) to diagnose OSA.
Abeyratne 2013 ⁹	Inappropriate assessment scale - snore based multi-feature class OSA screening tool
Abraham 2006 ¹¹	Inappropriate population - class III systolic heart failure patients with suspected sleep disordered breathing Not an assessment scale - cardiorespiratory testing system (ClearPath).
Abrahamyan 2018 ¹²	Systematic review - references checked
Abrishami 2010 ¹³	Systematic review - references checked
Abumuamar 2018 ¹⁴	Inappropriate population - patients with atrial fibrillation, recruited from arrhythmia clinics. Not general population
Acharya 2011 ¹⁵	Not an assessment scale – electrocardiogram signals
Adachi 2003 ¹⁶	Not an assessment scale – pulse rate rise
Adams 2016 ¹⁷	Inappropriate reference standard – home unattended polysomnography
Akhter 2018 ¹⁹	Not an assessment scale – snoring sound

Reference	Exclusion Reason
Alakuijala 2016 ²⁰	Not an assessment scale – snoring sound
Alchakaki 2016 ²¹	Not an assessment scale – snoring sound
Alhouqani 2015 ²²	Inappropriate assessment scale – Arabic version of stop bang questionnaire
Almazaydeh 2012 ²³	Not an assessment scale – ECG data
Alshaer 2013 ²⁴	Not an assessment scale – acoustic analysis of breathing sounds
Alshaer 2016 ²⁵	Not an assessment scale - cordless acoustic portable device (BresoDx™)
Alvarez 2006 ²⁸	Not an assessment scale – hospital oximetry
Alvarez 2006 ³¹	Not an assessment scale - nocturnal oximetry using Cross Approximate Entropy (Cross-ApEn).
Alvarez 2007 ³⁰	Not an assessment scale – hospital oximetry
Alvarez 2009 ²⁹	Not an assessment scale – hospital oximetry
Alvarez 2010 ²⁷	Not an assessment scale – oxygen desaturation derived from PSG
Alvarez 2020 ²⁶	Inappropriate reference standard - home polysomnography
Amra 2013 ³³	Not an assessment scale - pulmonary function tests Inappropriate population – patients with
	sleep disordered breathing
Amra 2018 ³⁴	Systematic review - references checked
Amra 2018 ³²	Inappropriate assessment scale – Persian questionnaires
Andres-Blanco 2017 ³⁵	Not an assessment scale – laboratory oximetry
Andreu 2012 ³⁶	Inappropriate study design – RCT patients with negative tests were also followed up
Araujo 2018 ³⁷	Not an assessment scale – Apnea link Tm single channel device
Arrazola-Cortes 2017 ³⁸	Inappropriate study design – all patients underwent polysomnography only
Arunsurat 2016 ³⁹	Inappropriate study design – not a diagnostic accuracy study, patients got Berlin questionnaire, no reference standard
Assefa 2016 ⁴⁰	Not an assessment scale – ApneaStrip device
Aurora 2018 ⁴¹	Inappropriate population – Patients with heart failure scored for obstructive and central disordered breathing (ApneaLink Plus) Inappropriate index test - The nasal pressure transducers for polysomnography and respiratory polygraphy units were

connected to one nasal cannula through a three-way valve for contemporaneous nasal airflow measurement. The two recording systems were synchronized such that the both tests had equivalent total recording time Avincsal 2017 ⁴² Inappropriate assessment scale − modified Stop Bang questionnaire, using modified modified Mallampi score Ayappa 2008 ⁴³ Inappropriate population − patients with suspected sleep disordered breathing Not an assessment scale - The ARES™ consists of the Unicorder device, a self-administered questionnaire, and off-line analysis software.	Reference	Exclusion Reason
Stop Bang questionnaire, using modified modified Mallampi score in modified Mallampi score in Inappropriate population – patients with suspected sleep disordered breathing Not an assessment scale - The ARES™ consists of the Unicorder device, a self-administered questionnaire, and off-line analysis software. Ayas 2003⁴⁴ Inappropriate population – patients without suspected OSA Babaeizadeh 2011⁴⁵ Not an assessment scale – electrocardiogram derived respiration Inappropriate population –sleep disordered breathing Bagnato 2000⁴⁰ Not an assessment scale – AutoSetI™ (AS) system BaHammam 2015⁴₹ Inappropriate assessment scale – Arabic version of Stop Bang questionnaire BaHammam 2011⁴⁵ Not an assessment scale - ApneaLink™ (AL) is a single-channel type-4 device Not an assessment scale – portable respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Baltzan 2000⁵⁰ Not an assessment scale – oximetry, but not oximetry alone – OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Not an assessment scale – home polysomnography Banhiran 2014⁵¹ Not an assessment scale – home polysomnography Banhiran 2014⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003⁵⁴ Inappropriate sudy design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020⁵⁰		three-way valve for contemporaneous nasal airflow measurement. The two recording systems were synchronized such that the both tests had equivalent total recording
suspected sleep disordered breathing Not an assessment scale - The ARES™ consists of the Unicorder device, a self- administered questionnaire, and off-line analysis software. Ayas 2003 ⁴⁴ Inappropriate population – patients without suspected OSA Babaeizadeh 2011 ⁴⁵ Not an assessment scale - electrocardiogram derived respiration Inappropriate population – sleep disordered breathing Bagnato 2000 ⁴⁶ Not an assessment scale – AutoSet tm (AS) system BaHammam 2015 ⁴⁷ Inappropriate assessment scale – Arabic version of Stop Bang questionnel BaHammam 2011 ⁴⁸ Not an assessment scale - ApneaLink™ (AL) is a single-channel type-4 device Not an assessment scale – portable respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Baltzan 2000 ⁵⁰ Not an assessment scale - oximetry, but not oximetry alone - OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Avincsal 2017 ⁴²	Stop Bang questionnaire, using modified
Suspected OSA Babaeizadeh 2011 ⁴⁵ Babaeizadeh 2011 ⁴⁵ Not an assessment scale - electrocardiogram derived respiration Inappropriate population –sleep disordered breathing Bagnato 2000 ⁴⁶ Not an assessment scale – AutoSet ^{tim} (AS) system BaHammam 2015 ⁴⁷ Inappropriate assessment scale – Arabic version of Stop Bang questionnaire BaHammam 2011 ⁴⁸ Not an assessment scale - ApneaLink TM (AL) is a single-channel type-4 device Not an assessment scale – portable respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Baltzan 2000 ⁵⁰ Not an assessment scale - oximetry, but not oximetry alone - OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading No relevant outcomes – no diagnostic accuracy data Inappropriate reference standard – home	Ayappa 2008 ⁴³	suspected sleep disordered breathing Not an assessment scale - The ARES™ consists of the Unicorder device, a self- administered questionnaire, and off-line
electrocardiogram derived respiration Inappropriate population –sleep disordered breathing Bagnato 2000 ⁴⁶ Not an assessment scale – AutoSet [™] (AS) system BaHammam 2015 ⁴⁷ Inappropriate assessment scale – Arabic version of Stop Bang questionnaire BaHammam 2011 ⁴⁸ Not an assessment scale – ApneaLink™ (AL) is a single-channel type-4 device Ballester 2000 ⁴⁹ Not an assessment scale – portable respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Baltzan 2000 ⁵⁰ Not an assessment scale – oximetry, but not oximetry alone – OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Inappropriate reference standard – home	Ayas 2003 ⁴⁴	
system BaHammam 2015 ⁴⁷ Inappropriate assessment scale – Arabic version of Stop Bang questionnaire BaHammam 2011 ⁴⁸ Not an assessment scale - ApneaLink™ (AL) is a single-channel type-4 device Ballester 2000 ⁴⁹ Not an assessment scale – portable respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Baltzan 2000 ⁵⁰ Not an assessment scale – oximetry, but not oximetry alone – OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Babaeizadeh 2011 ⁴⁵	electrocardiogram derived respiration Inappropriate population –sleep disordered
version of Stop Bang questionnaire BaHammam 2011 ⁴⁸ Not an assessment scale - ApneaLink™ (AL) is a single-channel type-4 device Ballester 2000 ⁴⁹ Not an assessment scale – portable respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Baltzan 2000 ⁵⁰ Not an assessment scale - oximetry, but not oximetry alone - OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Bagnato 2000 ⁴⁶	· · ·
(AL) is a single-channel type-4 device Ballester 2000 ⁴⁹ Not an assessment scale – portable respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Baltzan 2000 ⁵⁰ Not an assessment scale - oximetry, but not oximetry alone - OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Inappropriate reference standard – home	BaHammam 2015 ⁴⁷	
respiratory recordings device Inappropriate population – general population, not people with suspected OSAHS Not an assessment scale - oximetry, but not oximetry alone - OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Inappropriate reference standard – home	BaHammam 2011 ⁴⁸	
not oximetry alone - OxiFlow (OF) device which combines oximetry with recording of thermistor airflow. Banhiran 2014 ⁵¹ Not an assessment scale – home polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Ballester 2000 ⁴⁹	respiratory recordings device Inappropriate population – general population, not people with suspected
polysomnography Banhiran 2014 ⁵² Inappropriate assessment scale – Thai version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Baltzan 2000 ⁵⁰	not oximetry alone - OxiFlow (OF) device which combines oximetry with recording of
version of Stop-Bang questionnaire Barak-Shinar 2013 ⁵³ Inappropriate population – Sleep disordered breathing Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Banhiran 2014 ⁵¹	
Barreiro 2003 ⁵⁴ Inappropriate study design/inappropriate comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Banhiran 2014 ⁵²	
comparison – polysomnography automatic reading was compared to polysomnography manual reading Bausmer 2010 ⁵⁵ No relevant outcomes – no diagnostic accuracy data Bauters 2020 ⁵⁶ Inappropriate reference standard – home	Barak-Shinar 2013 ⁵³	
Bauters 2020 ⁵⁶ accuracy data Inappropriate reference standard – home	Barreiro 2003 ⁵⁴	comparison – polysomnography automatic reading was compared to
	Bausmer 2010 ⁵⁵	_
	Bauters 2020 ⁵⁶	

Reference	Exclusion Reason
Beattie 2013 ⁵⁷	Not an assessment scale – LC system consists of pressure sensors (i.e. LCs) that are placed under the supports of a bed. The LCs detect movement on the bed as fluctuations in the forces supported by each of the bed legs.
Behar 2015 ⁵⁸	Not assessment scale – Machine learning, screening application for smartphones was analysed
Behar 2020 ⁵⁹	Not an assessment scale - OxyDOSA, a published machine learning model, was trained to distinguish between non-OSA and OSA individuals using the ODI computed while including versus excluding overnight desaturations overlapping with a wake period, thus mimicking portable and PSG oximetry analyses, respectively
Ben-Israel 2012 ⁶⁰	Not an assessment scale - Snore sounds were recorded using a directional condenser microphone placed 1 m above the bed.
Berry 2008 ⁶¹	Inappropriate study design – RCT patients randomised to PM-APAP and polysomnography, no diagnostic accuracy data
Best 2013 ⁶²	Inappropriate population – patients with treatment resistant depression. Not general population.
Bille 2015 ⁶³	Inappropriate reference standard - cardiorespiratory monitoring
Bingol 2016 ⁶⁴	Inappropriate assessment scale – Stop – Bang questionnaire was used to predict OHS syndrome
Bohning 2011 ⁶⁵	Not an assessment scale – hospital oximetry
Borsini 2015 ⁶⁷	Inappropriate reference standard – respiratory polygraphy
Borsini 2019 ⁶⁶	Inappropriate reference standard - respiratory polygraphy
Bradley 1995 ⁶⁹	Not an assessment scale - Autoset Inappropriate population – unclear what population was included
Braganza 2020 ⁷⁰	Inappropriate study design - non diagnostic accuracy study, study looked at threshold values for excluding CPAP failure
Bravata 2018 ⁷¹	Not assessment scale - patients were randomised to enhanced intervention, standard intervention and control group.
Brown 2014 ⁷²	Inappropriate population – patients within 45 days of stroke onset, patients with predominantly central sleep apnoea were not excluded.

Reference	Exclusion Reason
	Not an assessment scale – ApneaLink Plus – 3 channels
Bsoul 2011 ⁷³	Not an assessment scale - Real-time sleep apnea monitor using single-lead ECG
Cai 2013 ⁷⁴	Not an assessment scale – Chinese version of ESS questionnaire
Calleja 2002 ⁷⁵	Not assessment scale: /diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP
Carter 2004 ⁷⁶	Not an assessment scale – LifeShirt (LS, VivoMetrics, Inc; Ventura CA)
Chai-Coetzer 2017 ⁷⁷	Not an assessment scale—patients randomised full PSG and home RP all participants including those with negative tests were followed up
Chen 2011 ⁷⁸	Inappropriate assessment scale - Chinese ESS/
	Inappropriate population - sleep disordered breathing
Chiner 1999 ⁷⁹	Not an assessment scale – hospital oximetry
Chiu 2017 ⁸⁰	Systematic review - references checked
Christensson 2018 ⁸¹	Inappropriate reference standard- hospital polygraphy
Chu 2020 ⁸²	Inappropriate study design - patients were randomised to high flux haemodialysis (HF-HD) followed by 2 month haemodiafiltration or vice-versa with 1 month washout via HF-HD
Chung 2007 ⁸⁵	Inappropriate population – sleep disordered breathing
Chung 2008 ⁸⁸	Inappropriate population – surgical patients, tertiary care
Chung 2012 ⁸³	Inappropriate reference standard – sleep disordered breathing
Chung 2012 ⁸⁴	Inappropriate population – preoperative patients, tertiary care
Chung 201387	Inappropriate population – preoperative patients
Chung 2014 ⁸⁶	Inappropriate population – preoperative patients, tertiary care
Claman 2001 ⁸⁹	Inappropriate study design - not questionnaire/diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP
Clark 2009 ⁹⁰	Inappropriate reference standard – Embletta polygraphy
Cooper 1991 ⁹¹	Not an assessment scale - Biox IIA ear oximeter with the output signal connected to a Rikadenki three channel chart recorder.

hospital and home RP Inappropriate population – sleep disordered breathing Damiani 2013** Damiani 2013** Mo relevant outcomes Not assessment scale: home oximetry, hospital and home RP de Silva 2011** de Viries 2015** de Viries 2015** de Viries 2018** Deflandre 2017** Deflandre 2017** Deflandre 2018** Not an assessment scale – hospital oximetry in infants was analysed Desla 2011** Douglas 1992** Not an assessment scale – hospital oximetry in infants was analysed Douglas 2020** El Shayeb 2014** Not an assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014** Douglas analysed by systematic review - references checked Not an assessment scale - diagnostic accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014** Not an assessment scale - diagnostic tests: home oximetry, hospital and home RP Epstein 1990** Eris Gulbay 2014** Not an assessment scale - hospital oximetry in infants was analysed	Reference	Exclusion Reason
Damiani 2013% No relevant outcomes Not assessment scale: home oximetry, hospital and home RP de Silva 2011% Not an assessment scale – snoring sounds de Vries 2015¹00 Inappropriate population patients with heart failure!2 channel sleep screening tool de Vries 2018³9 Inappropriate population – bariatric surgery patients Deflandre 2017¹0¹ Inappropriate population – surgical patients, tertiary care Deflandre 2018¹0² Inappropriate comparison – questionnaires compared with each other del Campo 2006¹0³ Not an assessment scale – hospital oximetry Dette 2016¹0⁴ Inappropriate population – sleep disordered breathing Donovan 2020¹0⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015¹06 Inappropriate reference standard – portable monitoring Douglas 1992¹07 Not an assessment scale – polysomnography Duarte 2017¹09 Not an assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020¹¹¹0 Book chapter Ebben 2016¹¹¹1 Not an assessment scale – hospital oximetry Elsan 2020¹¹² Not assessment scale – accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014¹¹¹3 Systematic review - references checked Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014¹¹¹3 Not an assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014¹¹¹3 Not an assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014¹¹¹3 Not an assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Erstein 1990¹¹¹5 Not an assessment scale - hospital oximetry in infants was analysed Erstein 1990¹¹¹5 Not an assessment scale - hospital oximetry in infants was analysed	Corral 2017 ⁹²	
Not assessment scale: home oximetry, hospital and home RP Not an assessment scale – snoring sounds de Vries 2015 ¹⁰⁰ Repropriate population patients with heart failure/2 channel sleep screening tool de Vries 2018 ⁹⁹ Deflandre 2017 ¹⁰¹ Inappropriate population – bariatric surgery patients Deflandre 2017 ¹⁰¹ Inappropriate population – surgical patients, tertlary care Deflandre 2018 ¹⁰² Inappropriate comparison – questionnaires compared with each other del Campo 2006 ¹⁰³ Not an assessment scale – hospital oximetry Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁰ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Elsan 2020 ¹¹² Not an assessment scale – accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Ellingsen 2020 ¹¹⁴ Not an assessment scale - diagnostic accuracy of diagnostic accuracy of diagnostic accuracy of diagnostic accuracy of diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry in infants was analysed	Crowley 2013 ⁹⁴	
de Oliveira 2009 ³⁷ de Silva 2011 ³⁸ Not an assessment scale – snoring sounds de Vries 2015 ¹⁰⁰ Inappropriate population patients with heart failure/2 channel sleep screening tool de Vries 2018 ³⁹ Inappropriate population – bariatric surgery patients Deflandre 2017 ¹⁰¹ Inappropriate population – surgical patients, tertiary care Inappropriate comparison – questionnaires compared with each other del Campo 2006 ¹⁰³ Not an assessment scale – hospital oximetry Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale – Portuguese Stop-bang questionnaire Inappropriate susted design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale – accuracy of conditional probabilities was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - hospital oximetry Not an assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - hospital oximetry Not an assessment scale - hospital oximetry	Damiani 2013 ⁹⁵	No relevant outcomes
de Vries 2015 ¹⁰⁰ Inappropriate population patients with heart failure/2 channel sleep screening tool Inappropriate population – bariatric surgery patients Deflandre 2017 ¹⁰¹ Inappropriate population – bariatric surgery patients Deflandre 2018 ¹⁰² Inappropriate comparison – questionnaires compared with each other del Campo 2006 ¹⁰³ Not an assessment scale – hospital oximetry Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry El Shayeb 2014 ¹¹³ Systematic review – references checked Not assessment scale – accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review – references checked Not assessment scale – accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale – diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Not an assessment scale – hospital oximetry Epstein 1998 ¹¹⁶ Not an assessment scale – hospital oximetry Firs Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	de Oliveira 2009 ⁹⁷	
heart failure/2 channel sleep screening tool Inappropriate population – bariatric surgery patients Deflandre 2017 ¹⁰¹ Inappropriate population – surgical patients, tertiary care Deflandre 2018 ¹⁰² Inappropriate comparison – questionnaires compared with each other del Campo 2006 ¹⁰³ Not an assessment scale – hospital oximetry Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale – polysomnography Duarte 2017 ¹⁰⁹ Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Elingsen 2020 ¹¹² Not assessment scale – accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not an assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic oximetry Inappropriate study design – not diagnostic oximetry	de Silva 2011 ⁹⁸	Not an assessment scale – snoring sounds
Deflandre 2017 ¹⁰¹ Inappropriate population – surgical patients, tertiary care Deflandre 2018 ¹⁰² Inappropriate comparison – questionnaires compared with each other Not an assessment scale – hospital oximetry Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale - polysomnography Duarte 2017 ¹⁰⁹ Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale – accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	de Vries 2015 ¹⁰⁰	Inappropriate population patients with heart failure/2 channel sleep screening tool
Deflandre 2018 ¹⁰² Inappropriate comparison – questionnaires compared with each other del Campo 2006 ¹⁰³ Not an assessment scale – hospital oximetry Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale - polysomnography Duarte 2017 ¹⁰⁹ Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale – accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	de Vries 2018 ⁹⁹	Inappropriate population – bariatric surgery patients
compared with each other del Campo 2006 ¹⁰³ Not an assessment scale – hospital oximetry Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale - polysomnography Duarte 2017 ¹⁰⁹ Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Deflandre 2017 ¹⁰¹	
Dette 2016 ¹⁰⁴ Inappropriate population – sleep disordered breathing Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale - polysomnography Duarte 2017 ¹⁰⁹ Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Deflandre 2018 ¹⁰²	
Donovan 2020 ¹⁰⁵ Donovan 2020 ¹⁰⁵ Inappropriate study design - not a diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale - polysomnography Duarte 2017 ¹⁰⁹ Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Ellingsen 2020 ¹¹⁴ Not an assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	del Campo 2006 ¹⁰³	· ·
diagnostic accuracy study, study looked at agreement between sleep specialists and registered nurses Doshi 2015 ¹⁰⁶ Inappropriate reference standard – portable monitoring Douglas 1992 ¹⁰⁷ Not an assessment scale - polysomnography Duarte 2017 ¹⁰⁹ Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale – accuracy of combined home and hospital oximetry in infants was analysed EI Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Dette 2016 ¹⁰⁴	
Douglas 1992 ¹⁰⁷ Douglas 1992 ¹⁰⁷ Not an assessment scale – polysomnography Not appropriate assessment scale – Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed EI Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Donovan 2020 ¹⁰⁵	diagnostic accuracy study, study looked at agreement between sleep specialists and
Duarte 2017 ¹⁰⁹ Duarte 2017 ¹⁰⁹ Not appropriate assessment scale — Portuguese Stop-bang questionnaire Inappropriate study design — accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale — hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed EI Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design — not diagnostic	Doshi 2015 ¹⁰⁶	
Portuguese Stop-bang questionnaire Inappropriate study design – accuracy of conditional probabilities was analysed Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed EI Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Douglas 1992 ¹⁰⁷	
Dzieciolowska-Baran 2020 ¹¹⁰ Book chapter Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Duarte 2017 ¹⁰⁹	Portuguese Stop-bang questionnaire
Ebben 2016 ¹¹¹ Not an assessment scale – hospital oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic		
oximetry Ehsan 2020 ¹¹² Not assessment scale - accuracy of combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Ellingsen 2020 ¹¹⁴ Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Dzieciolowska-Baran 2020 ¹¹⁰	Book chapter
combined home and hospital oximetry in infants was analysed El Shayeb 2014 ¹¹³ Systematic review - references checked Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Ebben 2016 ¹¹¹	·
Ellingsen 2020 ¹¹⁴ Not assessment scale- accuracy of combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Ehsan 2020 ¹¹²	combined home and hospital oximetry in
combined home and hospital oximetry in infants was analysed Emsellem 1990 ¹¹⁵ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	El Shayeb 2014 ¹¹³	Systematic review - references checked
accuracy study of diagnostic tests: home oximetry, hospital and home RP Epstein 1998 ¹¹⁶ Not an assessment scale - hospital oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Ellingsen 2020 ¹¹⁴	combined home and hospital oximetry in
oximetry Eris Gulbay 2014 ¹¹⁷ Inappropriate study design – not diagnostic	Emsellem 1990 ¹¹⁵	accuracy study of diagnostic tests: home
	Epstein 1998 ¹¹⁶	·
2002.20, 0.02,	Eris Gulbay 2014 ¹¹⁷	Inappropriate study design – not diagnostic accuracy study

Reference	Exclusion Reason
Erman 2007 ¹¹⁸	Not an assessment scale - single channel ApneaLink
Ernst 2015 ¹¹⁹	Inappropriate population - snoring, sleep apnea, or diurnal somnolence
Esnaola 1996 ¹²⁰	No relevant outcomes/inappropriate comparison - selected cut-off points corresponding to the specificity closest to 0.97
Fabius 2019 ¹²¹	Inappropriate reference standard - portable monitoring
Faria 2015 ¹²²	Inappropriate assessment scale – Portuguese version Berlin and ESS questionnaires
Farney 1986 ¹²³	Not an assessment scale – hospital oximetry
Fasbender 2019 ¹²⁴	Not an assessment scale - photoplethysmography
Fawale 2016 ¹²⁵	No relevant outcomes – no diagnostic accuracy data
Firat 2012 ¹²⁷	Inappropriate population - all heavy-vehicle driver's license applicants
Fletcher 2000 ¹²⁸	Inappropriate reference standard – no polysomnography
Forni Ogna 2015 ¹²⁹	Inappropriate population – hemodialysis patients
Frangopoulos 2019 ¹³⁰	Inappropriate reference standard -no polysomnography
Fry 1998 ¹³¹	No relevant outcomes – no diagnostic accuracy data
Fuller 2014 ¹³²	Inappropriate comparison – patients randomised to risk assessment only vs risk assessment+ nasal flow group
Gabryelska 2020 ¹³³	inappropriate assessment scale - BOAH scale
Gagnadoux 2002 ¹³⁴	Not an assessment scale – home polysomnography
Gantner 2010 ¹³⁵	Inappropriate reference standard – home polysomnography
Garg 2014 ¹³⁶	Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP
Gasa 2013 ¹³⁷	Inappropriate population- bariatric patients Inappropriate study design – predictive models using anthropometric and clinical predictors were analysed
Geessinck 2018 ¹³⁸	Inappropriate study design – Markov model
Gergely 2009 ¹³⁹	Not an assessment scale – sleep strip
Giampa 2018 ¹⁴⁰	Inappropriate assessment scale – NoSAS questionnaire

Reference	Exclusion Reason
Gjerve 2011 ¹⁴¹	Not assessment scale: home oximetry, hospital and home RP
Glantz 2013 ¹⁴²	Inappropriate population – coronary artery disease patients
	No relevant outcomes – no diagnostic accuracy data
Glazer 2018 ¹⁴³	Inappropriate population- patients undergoing bariatric surgery, tertiary care
Goldstein 2018 ¹⁴⁴	Not an assessment scale – HSAT, no diagnostic accuracy data
Golpe 1999 ¹⁴⁶	No relevant outcomes – validity indices of oximetry parameters were calculated
Golpe 2002 ¹⁴⁵	Inappropriate study design - not questionnaire/diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP
Goodrich 2009 ¹⁴⁷	Not assessment scale: home oximetry, hospital and home RP
Graco 2018 ¹⁴⁸	Inappropriate population - chronic tetraplegia
	Inappropriate assessment scale – tetraplegia specific questionnaire
Gros 2015 ¹⁴⁹	Inappropriate population – Parkinson's disease
	Not an assessment scale – Embletta gold Natus, three channels
Grover 2008 ¹⁵¹	Inappropriate population – sleep disordered breathing
Grover 2018 ¹⁵⁰	No relevant outcomes – no diagnostic accuracy data
Gu 2020 ¹⁵²	Not an assessment scale - Belun ring platform, which captures oxygen saturation, photophlethysmography accelerometers signals
Gugger 1997 ¹⁵³	Not an assessment scale – Resmed AutoSet
Guimaraes 2012 ¹⁵⁴	Not in English
Gumb 2018 ¹⁵⁵	Inappropriate population – patients recruited without regard to OSA symptoms
Gunduz 2018 ¹⁵⁶	No relevant outcomes – no diagnostic accuracy data
Gupta 2016 ¹⁵⁷	Inappropriate assessment scale - Hindi Berlin questionnaire
Gyulay 1993 ¹⁵⁸	Inappropriate study design/ Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP
Ha 2014 ¹⁵⁹	Inappropriate assessment scale – Chinese questionnaires
Hara 2006 ¹⁶⁰	Not an assessment scale – voice program

Reference	Exclusion Reason
Hashizaki 2014 ¹⁶¹	Not an assessment scale - contactless biomotion sensor
Heneghan 2008 ¹⁶²	Not an assessment scale - Electrocardiogram recording
Herer 2002 ¹⁶³	Inappropriate population – Sleep disordered breathing
Hilmisson 2019 ¹⁶⁵	Not an assessment scale - ECG analysis
Holmedahl 2019 ¹⁶⁶	Not assessment scale- patients were randomised to beetroot juice containing nitrate or placebo
Hong 2018 ¹⁶⁷	Inappropriate population – sleep disordered breathing
Horvath 2018 ¹⁶⁸	Inappropriate population – bariatric surgery patients, tertiary care
	Inappropriate reference standard – hospital polygraphy
Hui 2017 ¹⁶⁹	Not assessment scale- ambulatory approach versus the hospital-based approach
Hussain 2003 ¹⁷⁰	Not assessment scale- patients with normal oximetry results were recruited
Iber 2004 ¹⁷¹	Not an assessment scale – home polysomnography
Ibrahim 2007 ¹⁷²	No relevant outcomes – nodiagnostic accuracy data
loachimescu 2020 ¹⁷³	Not assessment scale- non diagnostic accuracy study, study analysed performance of peripheral arterial tonometry
Isaac 2017 ¹⁷⁴	Inappropriate population – patients admitted for any medical reason
Jen 2020 ¹⁷⁵	Not assessment scale: home oximetry, hospital and home RP
Jobin 2007 ¹⁷⁶	Systematic review - references checked
Kahal 2020 ¹⁷⁷	Inappropriate comparison - respiratory poligraphy manual scoring compared to respiratory polygraphy automatic scoring
Kaminska 2010 ¹⁷⁸	Systematic review - references checked
Karakoc 2014 ¹⁷⁹	Inappropriate reference standard – no polysomnography
Karaloglu 2017 ¹⁸⁰	Inappropriate comparison – polysomnography vs polysomnography
Katzan 2016 ¹⁸¹	Inappropriate population – cerebrovascular patients (ischemic stroke, intracerebral haemorrhage and carotid occlusion
Khandoker 2009 ¹⁸²	Not an assessment scale - short-term electrocardiogram recordings
Kicinski 2016 ¹⁸³	Inappropriate population – sleep disordered breathing
Kiely 1996 ¹⁸⁴	Not an assessment scale -ResCare Autoset

Reference	Exclusion Reason
Kim 2015 ¹⁸⁵	Inappropriate assessment scale – Korean questionnaires
Kim 2015 ¹⁸⁶	Inappropriate study design - economic analysis
Korvel-Hanquist 2018 ¹⁸⁷	Inappropriate assessment scale– Danish Stop Bang questionnaire
Kristiansen 2020 ¹⁸⁸	Inappropriate comparison - manual respiratory polygraphy compared to automatic respiratory polygraphy
Kukwa 2020 ¹⁸⁹	Inappropriate study design - study comparing in-laboratory PSG and HSAT using a peripheral arterial tone (PAT) technology device. No diagnostic accuracy data
Kum 2015 ¹⁹¹	Inappropriate assessment scale – Turkish ESS questionnaire
Kum 2018 ¹⁹⁰	Not an assessment scale – oximetry from polysomnography
Kuna 2011 ¹⁹²	Not assessment scale— analysis under 3 conditions 1. traditional PSG, 2. modified PSG + Lifeshirt, 3. Lifeshirt at home. Lifeshirt – 3 channels
Lachapelle 2019 ¹⁹³	Inappropriate population— patients with inconclusive home study results were included in the analysis
Lado 2011 ¹⁹⁴	Not assessment scale– assessment of ECG databases
Lajoie 2020 ¹⁹⁵	Not assessment scale- aim of the study was to determine the accuracy of home oximetry to distinguish between nocturnal oximetry desaturation relapsed to COPD alone or to sleep apnoea in patients with moderate to severe COPD who have significant nocturnal hypoxemia with clinical changes in saturation/
	no relevant outcomes - no sensitivity or specificity data
Lam 2010 ¹⁹⁶	Inappropriate population – patients screened from Diabetes mellitus database No relevant outcomes
Laohasiriwong 2013 ¹⁹⁷	No relevant outcomes – no diagnostic accuracy data
Laporta 2012 ¹⁹⁸	Inappropriate population – Ischemic heart disease patients. Patients recruited from cardiology clinic. Not general population
Laranjeira 2018 ¹⁹⁹	Inappropriate study design – not a diagnostic accuracy study
Lauritzen 2018 ²⁰⁰	Inappropriate assessment scale – Danish Berlin questionnaire
Lazaro 2020 ²⁰¹	Not in English

Reference	Exclusion Reason
Le 2016 ²⁰²	Inappropriate study design – not diagnostic accuracy study
Leclerc 2014 ²⁰³	No relevant outcomes - No diagnostic accuracy data
Lee 2008 ²⁰⁴	Not an assessment scale – multisensory manometry No relevant outcomes – no diagnostic accuracy data
Lee 2011 ²⁰⁸	Inappropriate population – patients with diagnosed OSA
Lee 2012 ²¹²	Inappropriate population – patients with diagnosed OSA
Lee 2013 ²⁰⁷	Not assessment scale- snoring detection method based on hidden Markov models
Lee 2015 ²⁰⁶	Not assessment scale- Nasal pressure recordings for automatic snoring detection
Lee 2015 ²¹⁰	Inappropriate population – patients with diagnosed OSA
Lee 2015 ²¹¹	Inappropriate population – patients with diagnosed OSA
Lee 2016 ²⁰⁵	Inappropriate population – patients with diagnosed OSA
Lee 2016 ²⁰⁹	Inappropriate population – patients with diagnosed OSA
Leitzen 2014 ²¹³	No relevant outcomes – no diagnostic accuracy data
Lentini 2006 ²¹⁴	Not an assessment scale – serum creatine phosphokinase
Leppanen 2016 ²¹⁵	Not assessment scale– study analysed RemLogic™ plug-in
Levartovsky 2016 ²¹⁶	Not an assessment scale – breathing and snoring sounds recorded by polysomnography
Levendowski 2009 ²¹⁷	Inappropriate population – untreated OSA patients
Levendowski 2015 ²¹⁹	Not an assessment scale - neck device measuring loud snoring
Levendowski 2018 ²¹⁸	No usable outcomes – no diagnostic accuracy data
Levy 1996 ²²⁰	Not an assessment scale – hospital oximetry
Li 2014 ²²³	Inappropriate population – confirmed OSA
Li 2017 ²²²	Not an assessment scale - photoplethysmograph
Li 2018 ²²¹	Not an assessment scale - single-lead ECG signal
Liam 1996 ²²⁴	Not an assessment scale – Edentrace II
Liesching 2004 ²²⁵	Not assessment scaleSNAP technology sleep sonography

Reference	Exclusion Reason
Lim 2008 ²²⁷	Not an assessment scale – polysomnography data was analysed
Lim 2018 ²²⁶	Not an assessment scale – Soft palate length with velum obstruction
Lin 2009 ²²⁸	Inappropriate population – patients with diagnosed OSA
Ling 2012 ²²⁹	Not an assessment scale – hospital oximetry
Linz 2018 ²³⁰	Not an assessment scale - hospital oximetry
Lipatov 2018 ²³¹	Inappropriate population – patients with negative polysomnography
Littner 2005 ²³²	Inappropriate study design – Literature review
Liu 2012 ²³³	No relevant outcomes – no diagnostic accuracy data
Liu 2017 ²³⁴	Not assessment scale– support vector machine was used to predict model for severity of OSA
Lloberes 2001 ²³⁵	Not assessment scale: home oximetry, hospital and home RP
Logar 2013 ²³⁶	Not assessment scale- modern machine learning method, the support vector machine to establish a predicting model for the severity of OSA
Lopes 2008 ²³⁷	Inappropriate study design – not a diagnostic accuracy study
Lopez-Acevedo 2009 ²³⁹	Inappropriate study design – not a diagnostic accuracy study
Lopez-Acevedo 2009 ²³⁸	Inappropriate study design – not a diagnostic accuracy study
Lu 2017 ²⁴⁰	Inappropriate population – asthma patients
Lucey 2016 ²⁴¹	Not an assessment scale – single channel EEG
Luo 2014 ²⁴²	Inappropriate assessment scale – Chinese questionnaires
Luo 2014 ²⁴³	Inappropriate assessment scale – Chinese questionnaires
Luo 2015 ²⁴⁴	Not an assessment scale - nomogram
Macavei 2013 ²⁴⁵	Inappropriate reference standard – partial pressure of carbon dioxide (pCO2)
MacGregor 2013 ²⁴⁶	Not an assessment scale - tracheal breath sounds
MacGregor 2014 ²⁴⁷	Inappropriate study design – conference proceedings
Mador 2005 ²⁴⁸	Inappropriate study design – not a diagnostic accuracy study
Maeder 2015 ²⁴⁹	Inappropriate study design – not a diagnostic accuracy study
Maestri 2011 ²⁵⁰	Inappropriate study design – not a diagnostic accuracy study

Reference	Exclusion Reason
Magalang 2003 ²⁵¹	Not an assessment scale – hospital oximetry
Magnusdottir 2018 ²⁵²	Not an assessment scale - single-lead electrocardiogram signal
Mahakit 2012 ²⁵³	Not an assessment scale – daytime polysomnography
Maier 2006 ²⁵⁴	Not an assessment scale - electrocardiogram
Maier 2011 ²⁵⁶	Not an assessment scale - electrocardiogram
Maier 2014 ²⁵⁵	Not an assessment scale - electrocardiogram
Maimon 2010 ²⁵⁷	Not an assessment scale - snoring
Maislin 1995 ²⁵⁸	Inappropriate study design – not diagnostic accuracy study
Makarie Rofail 2008 ²⁵⁹	Not an assessment scale – nasal flow
Malbois 2010 ²⁶⁰	Inappropriate comparison – oximetry compared to polygraphy
Man 1995 ²⁶¹	Inappropriate population - SDB
Mandal 2014 ²⁶²	Inappropriate population – sleep disordered breathing
Manoochehri 2018 ²⁶³	Not an assessment scale – models LRM and C5.0
Manoochehri 2018 ²⁶⁴	Not an assessment scale – support vector machine based algorithm
Manser 2001 ²⁶⁵	Inappropriate study design – different scoring methods analysed, not diagnostic accuracy study
Manuel 2015 ²⁶⁶	Inappropriate study design – not a diagnostic accuracy study
Maranate 2015 ²⁶⁷	Not an assessment scale – not a diagnostic accuracy study
Marcos 2007 ²⁷⁰	Inappropriate study design – conference proceedings
Marcos 2008 ²⁷¹	Inappropriate population – patients with atrial fibrilation
Marcos 2008 ²⁷⁴	Not an assessment scale – not a diagnostic accuracy study
Marcos 2009 ²⁷³	Inappropriate study design – not a diagnostic accuracy study
Marcos 2009 ²⁷²	Inappropriate study design – not a diagnostic accuracy study
Marcos 2010 ²⁶⁹	Inappropriate study design – not a diagnostic accuracy study
Marcos 2010 ²⁷⁵	Inappropriate study design – not a diagnostic accuracy study
Marcos 2011 ²⁷⁶	Inappropriate study design – not a diagnostic accuracy study
Marcos 2012 ²⁶⁸	Inappropriate study design – not a diagnostic accuracy study

Reference	Exclusion Reason
Marcos 2016 ²⁷⁷	Inappropriate study design – not a diagnostic accuracy study
Margallo 2014 ²⁷⁸	Inappropriate population- patients with resistant hypertension. Patients recruited from hypertension outpatient clinic (tertiary care University Hospital)
Marrone 2001 ²⁷⁹	Not assessment scale: home oximetry, hospital and home RP
Martinez 2005 ²⁸⁵	Not an assessment scale – hospital oximetry
Martinez 2009 ²⁸⁴	Inappropriate study design – not a diagnostic accuracy study
Martinez 2011 ²⁸²	Inappropriate population – sleep disordered breathing
Martinez 2012 ²⁸³	Inappropriate population – coronary artery disease/angina complaints Inappropriate reference standard – home polysomnography
Martinez-Garcia 2018 ²⁸¹	Inappropriate population – patients with resistant hypertension No relevant outcomes – no diagnostic accuracy data
Martinot 2017 ²⁸⁶	Not an assessment scale – Mandibular position and movements
Martinot 2017 ²⁸⁷	Inappropriate population – sleep disordered breathing
Martins 2020 ²⁸⁸	no relevant outcomes -sensitivity and specificity not reported
Martinot 2017 ²⁸⁷	Inappropriate population – sleep disordered breathing
Marti-Soler 2016 ²⁸⁰	Inappropriate population – sleep disordered breathing
Masa 2011 ²⁹²	Inappropriate study design – patients randomised to home RP vs hospital PSG, no relevant outcomes
Masa 2013 ²⁸⁹	Inappropriate study design – RCT, no relevant outcomes
Masa 2014 ²⁹⁴	Not an assessment scale - single channel (ApneaLink; Resmed)
Masa 2011 ²⁹¹	Inappropriate study design - RCT, no relevant outcomes
Masa 2013 ²⁹⁰	Inappropriate study design - RCT, no relevant outcomes
Masa 2013 ²⁹³	Inappropriate study design - RCT, no relevant outcomes
Massie 2018 ²⁹⁵	Not an assessment scale – hospital NightOWL
Maury 2013 ²⁹⁶	Not an assessment scale – oximetry + nasal flow
Maury 2014 ²⁹⁷	Inappropriate population – sleep disordered breathing

Reference	Exclusion Reason
Mayer 1998 ²⁹⁹	Inappropriate population – snoring or suspected OSAHS
Mayer 2019 ²⁹⁸	Not assessment scale- different heart rate accelaration and pulse transit time cut-offs calculated with total sleep time, all patients underwent polysomnography
Maziere 2014 ³⁰⁰	Inappropriate reference standard – hospital pulse oximetry
Mazza 2017 ³⁰¹	Inappropriate population – atrial fibrillation patients who received dual-chamber pacemaker No relevant outcomes – no diagnostic accuracy data
McArdle 2000 ³⁰²	Inappropriate study design – long term outcomes were assessed in people from CPAP trial
McArdle 2020 ³⁰³	No relevant outcomes - no diagnostic accuracy data
McCall 2009 ³⁰⁴	Inappropriate population – depressed patients with insomnia No usable outcomes – no diagnostic accuracy data
McCarter 2014 ³⁰⁵	Not assessment scale– study analysed RSWA phasic burst durations
McIsaac 2015 ³⁰⁶	Not assessment scale- accuracy of case- ascertainment algorithms for identifying patients with OSA
McMahon 2017 ³⁰⁷	Inappropriate population – Sleep disordered breathing patients
McMillan 2015 ³⁰⁸	Inappropriate study design – health technology assessment
Medarov 2020 ³⁰⁹	Inappropriate reference standard - home polysomnography vs hospinal polysomnography
Mehra 2008 ³¹⁰	Not an assessment scale - wrist actigraphy Inappropriate population – sleep disordered breathing
Meissner 2014 ³¹¹	Not assessment scale—multiple system atrophy/ home RP (oximetry, nasal flow, abdominal movements) polysomnography performed after 4 weeks.
Mendelson 1994 ³¹²	Inappropriate study design – not a diagnostic accuracy study
Mendez 2010 ³¹³	Not an assessment scale - ECG based on empirical mode decomposition and wavelet analysis
Meng 2016 ³¹⁴	Not an assessment scale - micromovement sensitive mattress
Mergen 2019 ³¹⁵	No relevant outcomes - specificity was not reported

Mesquita 2012 ³¹⁶ Methipisit 2016 ³¹⁷ Meurgey 2018 ³¹⁸	Not an assessment scale – respiratory sounds Not assessment scale – linguistic validation
Meurgey 2018 ³¹⁸	of THAI version ESS questionnaire
	Inappropriate population – sleep disordered breathing in bariatric patients
Michaelson 2006 ³¹⁹	Not an assessment scale – SNAP testing
Mihaicuta 2017 ³²⁰	Inappropriate study design – not diagnostic accuracy study, patient network analysis
Miller 2018 ³²¹	Inappropriate analysis – unclear calculations
Miller 2018 ³²²	Systematic review - references checked
Minic 2014 ³²³	Inappropriate population - Sleep disordered breathing in group 1 pulmonary arterial hypertension
Miyata 2020 ³²⁴	Not an assessment scale - sheet like device called SD 102 with SPO2 monitoring
Mokhlesi 2007 ³²⁵	Inappropriate study design – prevalence in OHS was measured in the population with confirmed OSA
Morales 2012 ³²⁶	Not an assessment scale – single channel ResCare AutoSet
Morales Divo 2009 ³²⁷	Not an assessment scale - ApneaGraph
Morgan 2010 ³²⁸	Inappropriate population- Sleep-disordered Breathing
Morgenstern 2010 ³³⁰	Not assessment scalestudy assessed automatic differentiation of central hypopnea
Morgenstern 2013 ³²⁹	Not an assessment scale – nasal airflow
Morillo 2009 ³³²	Not assessment scale- Poincare analysis of an overnight arterial oxygen saturation
Morillo 2013 ³³¹	Not assessment scale- Probabilistic neural network approach for the detection
Moro 2016 ³³³	Not an assessment scale – economical study
Morrell 2012 ³³⁴	Inappropriate population – sleep disordered breathing
Morris 2005 ³³⁵	Not an assessment scale - acoustic rhinometry
Morris 2008 ³³⁶	Not an assessment scale – snoring severity score
Mou 2019 ³³⁷	Inappropriate study design – validation of STOP-Bang among clinically referred patients and tested alternative scoring designs on tool performance, with a focus on gender differences in OSA.
Mueller 2006 ³³⁸	Not an assessment scale - transthoracic impedance recording integrated into a Holter ECG system
Mulgrew 2007 ³³⁹	Not assessment scale- compared

Reference	Exclusion Reason
	standard PSG with ambulatory CPAP titration in high-risk patients identified by a diagnostic algorithm.
Munoz-Ferrer 2020 ³⁴⁰	Not assessment scaledesign - the study aimed to evaluate the degree of measurement agreement between stepwise, in laboratory attended polysomnography and a home, no sleep apnea test diagnostic accuracy data
Musman 2011 ³⁴¹	Economic model with no new clinical evidence
Mutlu 2020 ³⁴²	No relevant outcomes- no diagnostic accuracy data
Nagappa 2015 ³⁴³	Systematic review - references checked
Nagubadi 2016 ³⁴⁴	Inappropriate population – sleep disordered breathing
Nahapetian 2016 ³⁴⁵	Inappropriate study design – prevalence in OHS was measured in the population with confirmed OSA
Nakano 2004 ³⁴⁷	Not an assessment scale - Tracheal Sound Analysis
Nakano 2004 ³⁴⁹	Inappropriate comparison – BMI compared to ODI
Nakano 2007 ³⁵⁰	Not an assessment scale – single channel airflow signal
Nakano 2008 ³⁴⁶	Not an assessment scale – snoring intensity/ no diagnostic accuracy data
Nakano 2008 ³⁵¹	Not assessment scale- Somnie (1 channel)
Nakano 2014 ³⁴⁸	Not an assessment scale – snoring sound recorded via smartphone
Narayan 2019 ³⁵²	Not an assessment scale - smartphone- recorded sounds validated by polysomnography
Netzer 1999 ³⁵⁴	Inappropriate reference standard – home respiratory polygraphy
Ng 2007 ³⁵⁸	Not an assessment scale – snore signals
Ng 2008 ³⁵⁶	Not an assessment scale - frequencies of snore signals
Ng 2009 ³⁵⁵	Not an assessment scale – snore signals
Ng 2009 ³⁵⁷	Inappropriate study design - acoustical and perceptual impacts of changing the cross-sectional areas (CSA) of the pharynx and oral cavity on the production of snores
Ng 2017 ³⁶²	Not an assessment scale - Apnea link-ox (3 channels)
Ng 2019 ³⁶¹	Not assessment scale—study investigated acoustical and perceptual impacts of changing the cross sectional areas (CSA) of the pharynx and oral cavity on the production of snores
110 2013	on the production of shores

Reference	Exclusion Reason
Ng 2009 ³⁵⁹	Not an assessment scale - Apnea link-ox (3 channels)
Ng 2010 ³⁶⁰	Inappropriate study design - not questionnaire/diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP
Nicholl 2012 ³⁶⁴	Inappropriate study design – not a diagnostic accuracy study
Nicholl 2013 ³⁶³	Inappropriate population patients with CKD and end-stage renal disease Inappropriate reference standard –home cardiopulmonary study
Nigro 2009 ³⁶⁵	Not an assessment scale – hospital oximetry
Nigro 2011 ³⁷²	Not an assessment scale - ApneaLink (1 channel)
Nigro 2012 ³⁶⁹	Not an assessment scale - ApneaLink (1 channel)
Nigro 2012 ³⁷¹	Not an assessment scale – hospital oximetry
Nigro 2015 ³⁷³	Not an assessment scale - diagnostic accuracy of autoscoring from auto-CPAP using different cut-off points
Nigro 2016 ³⁶⁸	Inappropriate study design – accuracy of clinical criteria to diagnose OSA and prescribe CPAP
Nigro 2011 ³⁶⁷	Not an assessment scale - Apnea link single channel
Nigro 2013 ³⁷⁰	Not an assessment scale - Apnea link-ox (3 channels)
Nigro 2012 ³⁷⁴	Inappropriate study design- skilled observer compared to observer with no experience
Nigro 2010 ³⁷⁵	Not an assessment scale –ApneaLink 1 channel
Nigro 2019 ³⁶⁶	Not an assessment scale - pulse oximetry recorded from hospital polysomnography
Niijima 2007 ³⁷⁶	Inappropriate population/inappropriate study design – workers in transport, construction, retail and security companies/no diagnostic accuracy study
Nilius 2017 ³⁷⁷	Inappropriate study design – not diagnostic accuracy study, study assessed diagnostic agreement between PSG vs PDX
Nishiyama 2014 ³⁷⁸	Not an assessment scale – polysomnography recordings
Norman 2017 ³⁷⁹	Not assessment scale– Polysomnography at home vs polysomnography in hospital
Novkovic 2019 ³⁸⁰	no relevant outcomes - no diagnostic accuracy data
O'Brien 2007 ³⁸¹	Inappropriate study design – conference paper on ECG derived respiratory signals

Reference	Exclusion Reason
O'Driscoll 2013 ³⁸²	No relevant outcomes - accuracy data for determination of sleep and wake between SenseWear and PSG
Oeverland 2002 ³⁸³	Inappropriate population – Sleep disordered breathing
Oktay 2011 ³⁸⁴	Not an assessment scale - ApneaLink-ox (1 channel)
Oliveira 2012 ³⁸⁵	Not an assessment scale – Stardust, 3 channel portable recorder
Oliveira 2015 ³⁸⁶	Not an assessment scale – Stardust II 3 channel recorder
Olson 1999 ³⁸⁷	Inappropriate study design – diagnostic accuracy of cumulative percentage time at SaO2 < 90% (CT90) and a saturation variability index
Onder 2012 ³⁸⁸	No relevant outcomes – no diagnostic accuracy data
Onen 2008 ³⁸⁹	Not an assessment scale - Observation- based Nocturnal Sleep Inventory
Ong 2010 ³⁹⁰	Not an assessment scale – simplified Stop- Bang questionnaire
Ortiz-Tudela 2014 ³⁹¹	Not an assessment scale - wrist Temperature, motor Activity and body Position (TAP
Ozegowski 2007 ³⁹²	Not an assessment scale - ambulatory ECG
Ozmen 2011 ³⁹³	Not an assessment scale – sleep strip, 3 channels
Pallin 2014 ³⁹⁴	Not an assessment scale – SleepMinderTM biomotion sensor
Pamidi 2011 ³⁹⁵	No usable outcomes – no diagnostic accuracy data
Panchasara 2017 ³⁹⁶	Inappropriate study design – not diagnostic accuracy study
Pang 2006 ³⁹⁷	Not an assessment scale - SleepStrip
Pang 2007 ³⁹⁸	No usable outcomes – prevalence not reported
Park 2015 ³⁹⁹	Not an assessment scale – polysomnography automated vs polysomnography manual methods
Park 2015 ⁴⁰⁰	Inappropriate population – sleep disordered breathing
Parra 1997 ⁴⁰¹	No usable outcomes – diagnostic accuracy presented on a ROC curve only
Passali 2011 ⁴⁰²	No usable outcomes – no diagnostic accuracy data
Pataka 2014 ⁴⁰³	Inappropriate assessment scale – Greek questionnaires
Pataka 2019 ⁴⁰⁴	Inappropriate assessment scale – Greek questionnaires

Reference	Exclusion Reason
Pataka 2016 ⁴⁰⁶	Inappropriate analysis - unclear calculation methods used, sensitivity and specificity was calculated including symptoms however it is unclear from the paper how thos symptoms were used
Pataka 2020 ⁴⁰⁵	Inappropriate reference standard - Embla Embletta® GOLD Portable respiratory polygraphy REI>15
Patout 2020 ⁴⁰⁷	Inappropriate study design - patients randomised to automised expiratory positive airway pressure (AVAPS-AE) or pressure support ventilation (ST)
Peker 2018 ⁴⁰⁸	No usable outcomes - no diagnostic accuracy data
Pelletier-Fleury 2001 ⁴⁰⁹	Not an assessment scale – home polysomnography
Penacoba 2020 ⁴¹⁰	Inappropriate study design - non diagnostic accuracy study, diagnostic agreement between primary and specialized care was measured
Peng 2018 ⁴¹¹	Inappropriate population – suspected sleep disordered breathing
Penzel 2002 ⁴¹²	Inappropriate population - patients with obstructive sleep apnea and arterial hypertension
Penzel 2004 ⁴¹³	No relevant outcomes – no diagnostic accuracy data
Penzel 2004 ⁴¹⁴	Inappropriate study design – conference paper
Pepin 2009 ⁴¹⁵	Not an assessment scale - ECG Holter device including a nasal pressure
Peto 2017 ⁴¹⁷	Not an assessment scale – Brussels questionnaire
Phua 2020 ⁴¹⁸	Not assessment scale- Study investigated if WatchPat reduces time to diagnosis and treatment, no diagnostic accuracy study
Pichel 2006 ⁴¹⁹	No usable outcomes – No diagnostic accuracy data
Pietzsch 2011 ⁴²⁰	Economic model with no new clinical evidence
Pihtili 2017 ⁴²¹	Inappropriate study design – not a diagnostic accuracy study, study investigated frequency of predictors of OHS in obese patients
Pillar 1994 ⁴²²	No usable outcomes – diagnostic accuracy of OSA predictions made from questionnaires, clinical interviews and physical examinations
Pinna 2014 ⁴²³	Inappropriate population – sleep disordered breathing in heart failure patients
Pinto 2015 ⁴²⁴	Not an assessment scale – peripheral arterial tonometry

Reference	Exclusion Reason
Pissulin 2018 ⁴²⁵	Inappropriate assessment scale – Portuguese questionnaire
Pittman 2004 ⁴²⁶	Not an assessment scale – home and hospital watchPAT 100
Pittman 2004 ⁴²⁷	Not an assessment scale - Polysomnography
Planes 2010 ⁴²⁸	Not assessment scale— automatic polysomnography scoring compared to manual scoring polysomnography at home
Polese 2013 ⁴²⁹	Not assessment scale: home oximetry, hospital and home RP
Popovic 2009 ⁴³⁰	Not an assessment scale– ARES™ Unicorder, Advanced Brain Monitoring/no diagnostic accuracy data
Poupard 2012 ⁴³²	Not an assessment scale inappropriate population - ECG Holter monitor/sleep disordered breathing
Poupard 2012 ⁴³³	Not an assessment scale – hospital oximetry
Pouliot 1997 ⁴³¹	Incorrect cut-off was used for reference standard AI<20
Pradhan 1996 ⁴³⁴	Not an assessment scale – Pittsburgh sleep quality index
Prasad 2017 ⁴³⁵	Inappropriate assessment scale – Modified Berlin questionnaire
Prikladnicki 2018 ⁴³⁶	Not an assessment scale - Orofacial Myofunctional Evaluation with Scores
Quaranta 2016 ⁴³⁷	Inappropriate reference standard - Somnea, polygraphy
Quintana-Gallego 2004 ⁴³⁸	Inappropriate population – sleep disordered breathing in heart failure
Rajeswari 2020 ⁴³⁹	Inappropriate study design - not a diagnostic accuracy study, different questionnaires were compared, no polysomnography
Randerath 2013 ⁴⁴⁰	Not an assessment scale - oesophageal manometry
Rashid 2020 ⁴⁴¹	systematic review references checked
Rathnayake 2010 ⁴⁴²	Not an assessment scale – single channel airflow measurement. /Inappropriate population sleep disordered breathing
Rauhala 2009 ⁴⁴³	Not an assessment scale - Periodic limb movement screening
Rauscher 1993 ⁴⁴⁴	Not an assessment scale – hospital oximetry
Ravelo-Garcia 2014 ⁴⁴⁵	Not an assessment scale - electrocardiogram
Raymond 2003 ⁴⁴⁶	Not an assessment scale - Combined index of heart rate variability and oximetry, hospital setting

Rebelo-Marques 2018 ⁴⁴⁷ Reda 2001 ⁴⁴⁸	Inappropriate assessment scale – Portuguese version of Stop Bang questionnaire
Reda 2001 ⁴⁴⁸	queenennane
	Not an assessment scale - pharyngo-eosophageal manometry.
Rees 1998 ⁴⁴⁹	No relevant outcomes – no diagnostic accuracy data
Reichert 2003 ⁴⁵⁰	Not assessment scale: home oximetry, hospital and home RP
Reis 2015 ⁴⁵¹	Not an assessment scale - Portuguese version of the STOP-Bang questionnaire
Reisch 2000 ⁴⁵²	Not assessment scale—forced oscillation techniques compared to three standard polysomnographic signals
Reuven 2001 ⁴⁵³	No relevant outcomes - economic analysis with no diagnostic accuracy data
Roche 1999 ⁴⁵⁶	Not an assessment scale - heart rate variability
Roche 2002 ⁴⁵⁵	Not an assessment scale - ECG Holter monitoring
Roche 2002 ⁴⁵⁸	Not an assessment scale – hospital oximetry
Roche 2004 ⁴⁵⁷	Not an assessment scale - electrocardiogram Holter monitoring
Roche 2007 ⁴⁵⁴	Not an assessment scale - electrocardiogram Holter monitoring
Rodrigues Filho 2020 ⁴⁵⁹	Not an assessment scale - oximetry of all PSG performed by the LabSono
Rodsutti 2004 ⁴⁶⁰	Inappropriate study design – not diagnostic accuracy study
Rofail 2010 ⁴⁶¹	Not assessment scale: home oximetry, hospital and home RP
Rofail 2010 ⁴⁶²	Not an assessment scale - single channel nasal airflow
Rolon 2017 ⁴⁶³	Inappropriate study design – polysomnography using only oximetry signals
Romano 2011 ⁴⁶⁴	Not an assessment scale - diurnal negative expiratory pressure test
Romem 2014 ⁴⁶⁵	Not an assessment scale – hospital oximetry
Romero-Lopez 2011 ⁴⁶⁶	Inappropriate assessment scale – Spanish language questionnaire
Rosen 2012 ⁴⁶⁷	Not an assessment scale – patients were randomised to hospital polysomnography and portable monitoring, patients with ahi>15 started CPAP therapy
Rosen 2018 ⁴⁶⁸	Inappropriate study design - literature review
Rosen 2012 ⁴⁶⁷	language questionnaire Not an assessment scale – patients were randomised to hospital polysomnography and portable monitoring, patients with ahi>15 started CPAP therapy

Reference	Exclusion Reason
Rosenthal 2008 ⁴⁶⁹	Unclear analysis – prevalence not reported
Rosenwein 2015 ⁴⁷⁰	Not an assessment scale - non-contact audio recordings
Ross 1998 ⁴⁷²	Systematic review - references checked
Ross 2000 ⁴⁷³	Systematic review - references checked
Ross 2000 ⁴⁷¹	Abstract only
Roth 2002 ⁴⁷⁴	Inappropriate assessment scale - Global Sleep Assessment Questionnaire
Rowley 2000 ⁴⁷⁵	inappropriate assessment scale – SACS questionnaire
Ryan 1995 ⁴⁷⁶	Not assessment scale: home oximetry, hospital and home RP
Saarelainen 2003 ⁴⁷⁷	Not an assessment scale - whole-body impedance cardiography
Saha 2020 ⁴⁷⁸	Not an assessment scale - patch wearable device used to record respiratory sounds and neck position and movement
Saleh 2011 ⁴⁷⁹	Inappropriate assessment scale - Arabic version of Berlin questionnaire
Santaolalla Montoya 2007 ⁴⁸¹	Not an assessment scale – clinical prediction algorithm using various epidemiological parameters
Saricam 2020 ⁴⁸²	Inappropriate reference standard/ - Berlin questionnaire
Savage 2016 ⁴⁸³	Inappropriate population – sleep disordered breathing in patients with heart failure
Scarlata 2013 ⁴⁸⁴	Inappropriate reference standard - 35 patients polysomnography and 219 cardiorespiratory monitoring
Schafer 1997 ⁴⁸⁵	Not an assessment scale – oximetry measured with a four channel MESAM 4 device
Scharf 2004 ⁴⁸⁶	Not an assessment scale – cardiac pacemaker
Senaratna 2017 ⁴⁸⁷	Systematic review - references checked
Senn 2006 ⁴⁸⁸	Not assessment scale– patients randomised to CPAP vs polysomnography
Sergi 1998 ⁴⁸⁹	Inappropriate comparison – daytime polysomnography was compared to daytime polysomnography
Series 1991 ⁴⁹⁰	Not an assessment – daytime polysomnography was compared to daytime polysomnography
Sériès 1993 ⁴⁹²	Not an assessment scale - oximetry
Series 1999 ⁴⁹¹	Not an assessment scale – nasal pressure tracing
Serrano 2018 ⁴⁹³	Not assessment scale – clinical prediction rules were analysed

Reference	Exclusion Reason
Sert Kuniyoshi 2011 ⁴⁹⁴	Inappropriate population – sleep disordered breathing in patients with a recent myocardial infarction
Sforza 2007 ⁴⁹⁵	Not assessment scale - heart-rate variability (HRV) measures on the degree of sleep fragmentation.
Shalaby 2006 ⁴⁹⁶	Not an assessment scale - The pacemaker trans-thoracic impedance signal
Shams 2012 ⁴⁹⁷	Not assessment scale - tracheal breath sounds
Shi 2018 ⁴⁹⁸	Inappropriate study design – conference paper, algorithm analysis
Shin 2010 ⁴⁹⁹	Inappropriate study design – algorithm analysis
Shochat 2002 ⁵⁰⁰	Not an assessment scale - SleepStrip
Shokrollahi 2016 ⁵⁰¹	Inappropriate study design – conference paper, snoring sound analysis
Siegel 2000 ⁵⁰²	Not an assessment scale – ultrasonic imaging
Silva 2011 ⁵⁰³	Inappropriate population – sleep disordered breathing
Sivam 2018 ⁵⁰⁴	Not an assessment scale – oximetry and transcutaneous CO2 measured during polysomnography in OHS population
Skiba 2015 ⁵⁰⁵	Not assessment scale– retrospective review of Polysomnography results
Skomro 2007 ⁵⁰⁶	Not assessment scale - retrospective study of all patients who had been offered empirical CPAP therapy for suspected OSA was conducted.
Smith 2020 ⁵⁰⁷	Not an assessment scale - 2 channel apnealink tm, oximetry and nasal flow
Sola-Soler 2007 ⁵¹⁰	Inappropriate study design – conference paper
Sola-Soler 2012 ⁵⁰⁸	Not an assessment scale - snoring analysis
Sola-Soler 2014 ⁵⁰⁹	Not an assessment scale - tracheal breath sound analysis
Sommermeyer 2012 ⁵¹¹	Not appropriate assessment scale—cardiorespiratory polygraphy
Song 2016 ⁵¹²	Inappropriate study design - Markov model from ECG Signals
Stein 2003 ⁵¹³	Not an assessment scale test- Holter recordings
Stelmach-Mardas 2017 ⁵¹⁴	Inappropriate assessment scale – Polish Berlin questionnaire
Stendardo 2018 ⁵¹⁵	Inappropriate study design – not diagnostic accuracy study
Stoohs 1990 ⁵¹⁶	Not an assessment scale – MESAM device
Stoohs 1992 ⁵¹⁷	Not an assessment scale – MESAM device

Reference	Exclusion Reason
Su 2004 ⁵¹⁹	Not an assessment scale – SNAP digital recorder
Su 2012 ⁵¹⁸	No usable outcomes – no diagnostic accuracy data
Subramanian 2011 ⁵²⁰	Not an assessment scale – NAMES assessment
Suksakorn 2014 ⁵²¹	Inappropriate assessment scale – Thai version of Berlin questionnaire in patients with sleep disordered breathing
Sun 2011 ⁵²²	Inappropriate study design – artificial intelligence method to screen OSA
Sun 2019 ⁵²³	inappropriate study design - patients completed, home portable monitoring and echocardiography
Takama 2010 ⁵²⁴	Inappropriate population – sleep disordered breathing in patients with cardiovascular disease
Takeda 2006 ⁵²⁵	Not an assessment scale – Apnomonitor III test, not oximetry alone
Tanaka 2009 ⁵²⁶	No usable outcomes – no diagnostic accuracy data
Tauman 2006 ⁵²⁷	No usable outcomes no diagnostic accuracy data
Teferra 2014 ⁵²⁸	Inappropriate study design – analysis of artificial neural network sleep apnea tool for sleep studies
Teklu 2020 ⁵²⁹	Inappropriate study design/inappropriate comparison- no diagnostic accuracy data
Teramoto 2002 ⁵³⁰	Not an assessment scale – hospital oximetry
Terjung 2016 ⁵³²	Inappropriate population - mixed OSA and PLM population
Terjung 2018 ⁵³¹	Not an assessment scale – VitaLog, no diagnostic accuracy data
Thong 2008 ⁵³³	No relevant outcomes – no diagnostic accuracy data
Thornton 2012 ⁵³⁴	Not an assessment scale - previously scored polysomnography was reviewed
Tian 2005 ⁵³⁵	Inappropriate study design conference paper
Tiihonen 2009 ⁵³⁶	Inappropriate reference standard – hospital polygraphy
Ting 2014 ⁵³⁷	Inappropriate study design – validation of prediction system to diagnose OSA
To 2009 ⁵³⁹	Not an assessment scale – ARES (apnea risk evaluation system)
To 2012 ⁵³⁸	Not assessment scale – CPAP compared with portable sleep monitoring
Tong 2014 ⁵⁴⁰	Not an assessment scale - ECG derived respiration

Reference	Exclusion Reason
Topor 2020 ⁵⁴¹	Not an assessment scale - MATRx plus(ZephyrSleep Technologies) - level 3 device cosists of microphone and accelerometer
Traxdorf 2017 ⁵⁴²	Not an assessment scale – Erlangen questionnaire
Tsai 2003 ⁵⁴³	Not an assessment scale – decision rule(cricomental space, pharyngeal grade)
Tsukahara 2014 ⁵⁴⁴	Not an assessment scale – sheet type portable monitor SD-101
Ugon 2016 ⁵⁴⁵	No relevant outcomes – no diagnostic accuracy study
Ulasli 2014 ⁵⁴⁶	Inappropriate assessment scale – Turkish version of Berlin and ESS questionnaires
Unal 2002 ⁵⁴⁷	Not an assessment scale – polysomnography recordings were analysed
Ustun 2016 ⁵⁴⁸	Not an assessment scale – SLIM and 7 state of the art classification methods
Valipour 2007 ⁵⁴⁹	No relevant outcomes – no diagnostic accuracy data
Van Brunt 1997 ⁵⁵⁰	Not an assessment scale – snoring sounds
Van Meerhaeghe 2004 ⁵⁵¹	Not an assessment scale – NEP (negative pressure) procedure
Van Surell 1995 ⁵⁵²	Not an assessment scale – CID 102 device
Varady 2002 ⁵⁵⁴	Not assessment scale – artificial neural networks for the recognition of three different patterns in the respiration signals were analysed
Vaughan 2016 ⁵⁵⁵	No relevant outcomes – no diagnostic accuracy data
Vaz 2011 ⁵⁵⁶	Not in English
Vazquez 2000 ⁵⁵⁷	Not an assessment scale – hospital oximetry
Ventura 2007 ⁵⁵⁸	Not an assessment scale - hospital oximetry
Victor Marcos 2008 ⁵⁵⁹	Inappropriate study design – oxygen saturation recordings were used. The performance of two different ensemble classifiers was analysed.
Virkkula 2002 ⁵⁶¹	No usable outcomes – no diagnostic accuracy data
Virkkula 2005 ⁵⁶⁰	No usable outcomes – no diagnostic
VIIIMAIA 2000	accuracy data
Wang 2014 ⁵⁶²	
	accuracy data No usable outcomes – no diagnostic
Wang 2014 ⁵⁶²	accuracy data No usable outcomes – no diagnostic accuracy data

Reference	Exclusion Reason
Weinreich 2008 ⁵⁶⁶	Inappropriate population – 11 patients with OSA, 10 with hypopnea, 11 with Cheyne-Strokes respiration and 5 with normal breathing
Weinreich 2014 ⁵⁶⁸	Not an assessment scale – SleepMinder
Weinreich 2018 ⁵⁶⁷	Not an assessment scale - non-contact device emits a very weak electromagnetic radiation and detects body movement by measuring the Doppler effect
Westerlund 2014 ⁵⁶⁹	Not an assessment scale - Karolinska Sleep Questionnaire
White 1994 ⁵⁷¹	Not an assessment scale - sound recording and oxygen saturation
White 1995 ⁵⁷⁰	Not an assessment scale - Healthdyne NightWatch (NW) System
Whitelaw 2005 ⁵⁷²	Not assessment scale – patients were randomised to polysomnography or home monitoring all patients used CPAP for 4 weeks
Wieczorek 2018 ⁵⁷³	Not an assessment scale – PADSS (Paris Arousal Disorder Severity Scale)
Williams 1991 ⁵⁷⁴	Not an assessment scale – hospital oximetry + clinical score
Williams 2017 ⁵⁷⁵	No usable outcomes – no diagnostic accuracy data
Wiltshire 2001 ⁵⁷⁶	Not an assessment scale - diagnostic accuracy study of diagnostic tests: home oximetry, hospital and home RP
Wong 2008 ⁵⁷⁷	Not an assessment scale – nasal flow monitor
Wu 2017 ⁵⁷⁸	Not an assessment scale – fuzzy evaluation system (NFES)
Xie 2012 ⁵⁸⁰	Not an assessment scale – ECG and Peripheral SpO2 from polysomnography
Xie 2020 ⁵⁸¹	Not assessment scale - Data were collected using Brief ICF-Sleep Disorders and Obesity Core Set Polysomnography was performed and basic characteristics of the patients were recorded.
Xu 2017 ⁵⁸³	Not assessment scale: home oximetry, hospital and home RP
Yaddanapudi 2018 ⁵⁸⁴	Inappropriate population/ stroke patients who underwent HRPO,. No diagnostic accuracy data
Yagi 2009 ⁵⁸⁵	No usable outcomes – Only sensitivity and positive predictive values presented in the paper
Yalamanchali 2013 ⁵⁸⁶	Systematic review - references checked
Yamaguchi 2007 ⁵⁸⁷	Not an assessment scale - SleepStrip
Yamashiro 1995 ⁵⁸⁸	Inappropriate population – Sleep disordered breathing

Reference	Exclusion Reason
Yang 2011 ⁵⁸⁹	Not an assessment scale - plethysmography
Yang 2013 ⁵⁹⁰	Inappropriate study design – literature review
Yin 2005 ⁵⁹²	No relevant outcomes – no diagnostic accuracy data
Yin 2006 ⁵⁹¹	No usable outcomes – study reported only sensitivity and positive predictive value, prevalence unclear
Yuceege 2014 ⁵⁹³	Not an assessment scale - neck/thyromental distance
Yuceege 2015 ⁵⁹⁴	Inappropriate assessment scale – Turkish version Berlin questionnaire + gender
Yunus 2013 ⁵⁹⁵	Inappropriate assessment scale – Malay version of Berlin questionnaire
Zaffaroni 2009 ⁵⁹⁶	Not an assessment scale – SleepMinder
Zaffaroni 2013 ⁵⁹⁷	Not an assessment scale – SleepMinder
Zamarron 1999 ⁶⁰¹	Not an assessment scale – hospital oximetry
Zamarron 2001 ⁶⁰⁰	Not an assessment scale – hospital oximetry
Zamarron 2003 ⁵⁹⁸	Not an assessment scale – hospital oximetry
Zamarron 2006 ⁵⁹⁹	Not an assessment scale – hospital oximetry
Zarei 2018 ⁶⁰²	Not an assessment scale - Single-Lead ECG Signal.
Zhang 2011 ⁶⁰³	Inappropriate population— sleep disordered breathing/no diagnostic accuracy data
Zhang 2018 ⁶⁰⁴	Not in English
Zou 2013 ⁶⁰⁵	Inappropriate assessment scale – Chinese ESS questionnaire
Zou 2015 ⁶⁰⁶	Not an assessment scale - The SleepView device is a 2-channel diagnostic tool designed for screening of sleep-disordered breathing
Zucconi 1996 ⁶⁰⁷	Not an assessment scale - unattended recording device (MicroDigitrapper-S) (M-S).
Zywietz 2004 ⁶⁰⁸	Not an assessment scale - single channel ECG

H.2 Excluded health economic studies

Published health economic studies that met the inclusion criteria (relevant population, comparators, economic study design, published 2003 or later and not from non-OECD country or USA) but that were excluded following appraisal of applicability and methodological quality are listed below:

Table 12: Studies excluded from the health economic review

Reference	Reason for exclusion
Geessinck 2018 ¹³⁸	Since there was no evidence for DiagnOSAS tool that could be included in the clinical review, this economic model evaluating the tool was considered to be not applicable.