Cost-effectiveness of a mass media campaign and a point of sale intervention to prevent the uptake of smoking in children and young people:

Economic modelling report

M. Raikou, A. McGuire

LSE Health, London School of Economics and Political Science

November 2021: NICE guidelines PH10 (February 2008) and PH14 (July 2008) have been updated and replaced by NG209. The recommendations labelled [2008] or [2008, amended 2021] in the updated guideline were based on these evidence reviews. See <u>www.nice.org.uk/guidance/NG209</u> for all the current recommendations and evidence reviews.

February 2008

Cost-effectiveness of a mass media campaign and a point of sale intervention to prevent the uptake of smoking in children and young people: Economic modelling report

By Dr Maria Raikou and Professor Alistair McGuire, LSE Health

Executive Summary

The aim of this study is to assess the cost-effectiveness of a mass media campaign/point of sale intervention aiming at the prevention of the uptake of smoking among young people. A cohort simulation model was used to estimate incremental cost-per-QALY for both interventions. The estimated cost-effectiveness ratios were based on the interventions being effective enough to reduce smoking prevalence by a given percentage by age 18. For the mass media campaign, under a range of assumptions on the effectiveness, drawn from existing literature, and costs, relating to the direct costs of the intervention and the treatment costs of smoking related diseases, the incremental cost-effectiveness ratio compared to no intervention was always under £500 per QALY. For the point-of-sale intervention, under a range of assumptions the incremental cost-effectiveness ratio compared to no intervention was always under £500 per QALY.

Introduction

The UK Government has identified the reduction in childhood smoking rates as a major priority to reduce future morbidity and mortality from smoking. Identification of appropriate policies to inhibit uptake and thereby stop young people from starting smoking which subsequently affects smoking prevalence rates in adult life is likely to be highly effective. The 1998 White paper Smoking Kills aimed at reducing the number of children (11-15 years old) who take up smoking or who smoke regularly from a baseline of 13% in the mid-1990s to 9% by 2010. This seems achievable as the current proportion of 11-15 years old who smoke is approximately 10%. As part of the strategy to achieve this objective the Government is considering a range of smoking prevention policies aimed particularly at young people. The aim of this study is to assess the cost-effectiveness of a mass media campaign/point of sale intervention aiming at the prevention of the uptake of smoking among young people.

Two interventions are compared separately against an alternative of the status quo (i.e. no intervention). The first comparison relates to a mass media campaign lasting for 5 years and is compared with no intervention. The second comparison considers a point of sale intervention lasting for 5 years and this is compared to a no intervention alternative. These campaigns are not mutually exclusive.

The aim of this study is then to assess the cost-effectiveness relating to smoking prevention strategies amongst young people based on a mass media intervention and a point of sale measure through development of an incremental cost-effectiveness model. While these prevention strategies are not well defined, making assumptions concerning cost and effect which are drawn from the literature allow indicative, as opposed to authoritative, conclusions to be drawn on the cost-effectiveness of these public health interventions.

The analysis is undertaken from the perspective of an organisation developing such a campaign/point of sale intervention and the NHS (paying for the cost of treating smoking related diseases). It is therefore a public health sector analysis and does not consider the full public sector costs of these interventions. There is therefore no attempt to calculate the reduction in tax take

resulting from a decrease in smoking prevalence as a result of these interventions. The target population group is defined to be 13-17 years old teenagers.

The perspective of the analysis means that the relevant costs are the implementation cost of the two interventions, (mass media campaign/point-of-sale intervention) and the costs of treatment arising from smoking related diseases. The direct intervention cost of these policies as used in this analysis is based on figures drawn from the Department of Health Regulatory Impact Assessment of the Health Act 2006 and the Department of Health Final Regulatory Impact Assessment entitled "The tobacco advertising and promotion (point of sale) regulations 2004".

The effectiveness of these strategies is based on evidence obtained from the literature relating to these interventions. Effectiveness is measured as the gain attributed to the specific intervention in life expectancy and quality adjusted life expectancy calculated as the difference between the no intervention and the intervention groups. The specific intervention's effect is expressed as the reduction in smoking prevalence determined after the mass media campaign/point of sale intervention has ended. The reduction in smoking prevalence observed at the last point of evaluation is then used to predict the gain in life expectancy and the reduction in smoking related diseases leading to NHS cost savings and gain in quality adjusted lifetime. The reduction in prevalence was based on evidence drawing on the NICE review of interventions to prevent the uptake of smoking in children and young people. This evidence was selected using criteria consistent with those of the effectiveness review. Given the uncertainties surrounding data on both effect and cost extensive sensitivity analysis was also undertaken.

The model

The model is a cohort simulation model and evaluates smoking prevention in young people through the impact this has on up-take in young people and subsequent reduction in up-take in adult life. The cohort model is based on the impact that such a prevention strategy has on a representative individual within the population in England. The model has two distinct phases: first there are the intervention years with immediate impact on the uptake of smoking among young people aged 13-17 which is modelled as a reduction in smoking prevalence achieved at the end of the intervention; then there is a second phase that follows the cohort over their lifetime assuming that the reduction in smoking prevalence at the 18th birthday caused by the youth prevention programme is maintained throughout adult life. For ages 13-17, it is assumed that no health impact is discernible during this period of cohort lifetime. From the age of 18, a cohort model was developed using a hypothetical population of 1000 male and female individuals with annual cycles over their lifetime. In each cycle the model assumes a proportionate split of the population across smokers, never-smokers and former smokers. In each cycle a smoker can remain a smoker, quit or die. Never-smokers between the age of 18 and 25 can commence smoking, continue in their present state or die, while former smokers of all ages and never-smokers over the age of 25 can continue in their present state or die.

At the start of the model, for each of the 3 smoking categories (smoker, never-smoker and former smoker) the age and gender specific prevalence of smoking status was applied to mirror the known prevalence of these states in the English population. The prevalence rates were taken from the Health Survey for England and are reported in Appendix A1 (Health Survey for England 2003). In each cycle, until the age of 25 the transition from never-smoker to smoking status was modelled so that the numbers in each smoking category would be close to the prevalence figures stated above using the information given in Table 1 below obtained from the 2005 General Household Survey that reports on the age adults started smoking regularly and the transition from smoking to being a former smoker was modelled using a quit rate of 0.02 per year. (The figure of 2% per year "background quit rate" can be thought of as a net quit rate, in that after the age of 25, it is assumed that no never-smokers become smokers, and that former smokers never relapse. Rather than

attempting to model the many quit attempts that ultimately fail or to account for small numbers of never-smokers over the age of 25 starting the habit, the whole process has been simplified such that after all these things have been accounted for, it is assumed that 2% of smokers of a given age quit each year. This is consistent with recent work undertaken by West (personal communication (2008)).

The youth prevention programme is assumed to affect smoking uptake which is modelled as a reduction in smoking prevalence. The model assumes that the benefit achieved over the duration of the preventative programme continues over the cohort's lifetime and the baseline assumption is of a 5% reduction in smoking prevalence at the end of the 5 year mass media campaign (which resulted in 196 male smokers and 186 male smokers out of 1000 in the no intervention and intervention groups respectively at age 18) and of a 0.5% reduction in smoking prevalence at the end of a 5 year point of sale intervention (which resulted in 196 male smokers and 195 male smokers out of 1000 in the no intervention and intervention groups respectively at age 18). The 5% reduction was chosen based on effect sizes of mass media campaigns reported in the literature ranging from approximately 2% to 7% [Farrelly et al (2005) report that the "truth" campaign accounted for 22% of an observed decline in smoking prevalence from 25.3% to 18% among all students between 1999 and 2002; Niederdeppe et al (2004) report that as a result of the "truth" campaign Florida teens were less likely to have smoked in the past 30 days compared to their national counterparts (Florida 6.6% vs. national 14%); Secker-Walker et al (1997) report that the difference in smoking prevalence at the end of a 4 year mass media campaign between those exposed to the campaign and those not exposed was 5.5%] whereas for the point of sale the effect size of 0.5% was chosen based on a Department of Health Full final regulatory impact assessment entitled "The tobacco advertising and promotion (point of sale) regulations 2004", http://www.dh.gov.uk/publications, where the following is stated: "If as an illustrative example there were a 0.5% reduction in smoking over five years as a result of the regulations restricting point of sale advertising, the NHS could ultimately save £10 million per annum".

Table 1. Age adults started smoking regularly, by gender (Source: General Household Survey 2005, Office for National Statistics)*

Age (years)	Percentages
Under 16	39
16-17	27
18-19	17
20-24	11
25 and over	6

*More up-to-date figures from more recent surveys change these figures minimally and have no impact on the overall conclusions.

In each cycle of the model an individual can die or develop one or more of the following major smoking related diseases:

Lung cancer; Coronary heart disease (CHD); COPD; Myocardial infarction (MI); Stroke as presented in Figure 1. Figure 1. Schematic outline of the model.

The probability of any given individual in the cohort developing one or more of these diseases changes within each cycle as they age. The same applies to the probability of an individual dying. For simplicity, no interaction between disease states is assumed.

To determine the number of never-smokers, current smokers and former smokers at the start of the model, smoking prevalence figures by age, gender and smoking status for England were obtained from the Health Survey for England 2003 (see Appendix 1). Data on mortality by age, gender and smoking status were obtained from Doll et al, 1994 and are reported in Table 2.

Age	Current smoker	Former smoker	Non-smoker
35-44	2.8	2	1.6
45-54	8.1	4.9	4
55-64	20.3	13.4	9.5
65-74	47	31.6	23.7
75-84	106	77.3	67.4
85+	218.7	179.7	168.6

Table 2. Mortality by age and smoking status per 1,000 (Doll et al 1994)

These data were combined with data on mortality by age and gender of the general population for England obtained from The Office for National Statistics

http://www.gad.gov.uk/Demography_Data/Life_Tables/Interim_life_tables.asp and reported in Table A.2.1 in Appendix A2 to allow estimation of age and gender specific mortality rates

according to smoking status in each cycle of the model. Following the same methodology as the one adopted in the York Health Economics Consortium NICE Report "Cost-effectiveness of interventions for smoking cessation" (August 2007), mortality rates by age, gender and smoking status were calculated using the following equation:

 $M = (MS \times PS) + (MFS \times PFS) + (MNS \times PNS)$

where *M* is the mortality rate by age and gender, *MS*, *MFS* and *MNS* are the mortality rates for smokers, former smokers and non-smokers respectively and *PS*, *PFS* and *PNS* are the smoking prevalence figures for smokers, former smokers and non-smokers respectively for each age. The resultant estimates are reported in Appendix 2 in Table A.2.2. The number of people dying within each cycle was then calculated by multiplying the age, gender and smoking status mortality rate by the number of individuals in each cycle.

A similar approach was followed to calculate the number of individuals with a smoking related disease. For each disease, data on disease prevalence by age and gender in the general population was combined with data on the relative risk of an individual developing a given disease according to smoking status to provide age and gender specific prevalence figures for each disease among non-smokers, current smokers and former smokers. Following the same methodology as the one adopted in the York Health Economics Consortium NICE Report "Cost-effectiveness of interventions for smoking cessation" (August 2007), disease prevalence was calculated based on the following equation:

 $DP = (DPS \times PS) + (DPFS \times PFS) + (DPNS \times PNS)$

where *DP* is the prevalence of disease by age and gender, *DPS*, *DPFS* and *DPNS* are the disease prevalence figures for smokers, former smokers and non-smokers respectively and *PS*, *PFS* and *PNS* are the smoking prevalence figures for smokers, former smokers and non-smokers respectively for each age. The data on disease prevalence and relative risk of disease by smoking status were obtained from the following sources. Prevalence of lung cancer from Forman et al. (2003); Prevalence of COPD from Britton M. (2003); Prevalence of CHD, MI and stroke from Allender et al. (2006); Relative risk of lung cancer by smoking status from Peto et al (2000); Relative risk of CHD, COPD, MI and stroke by smoking status from Department of Health and Human Services, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Washington DC: A Report by the Surgeon General (2004).

The calculated prevalence figures by age, gender and smoking status for lung cancer, CHD, COPD, MI and stroke are given in Appendices A3, A4, A5, A6 and A7 respectively. In any given cycle disease prevalence by age, gender and smoking status was multiplied by the number in the cycle to give the total number of smokers, never-smokers and former smokers with each disease.

Utility values associated with each disease state were obtained from the literature and were multiplied by the length of each cycle to estimate quality adjusted life expectancy. The incremental cost-effectiveness of the intervention compared to no intervention was then assessed as cost per QALY gained. The specific utility values used in this analysis were based on sources referred to in the York Health Economics Consortium NICE Report "Cost-effectiveness of interventions for smoking cessation" (August 2007) and are as follows. Lung cancer: 0.58, stroke: 0.48, CHD: 0.80, MI:0.80 [calculated as averages of the respective utility scores reported in Tengs and Wallace (2000) for each of these disease states], COPD: 0.73 [calculated as an average of the utility scores across the different stages of severity of COPD reported in Rutten van Molken et al. (2006)], current smoker in the absence of disease: 0.75 and former smoker in the absence of disease: 0.78 (Tillman and Silcock, 1997).

The number of individuals with each disease was multiplied by the annual cost of treatment for the disease to provide an estimate of total cost in that cycle which was then discounted at an annual rate of 3.5%. The data on the annual cost of treatment were based on sources referred to in the York Health Economics Consortium NICE Report "Cost-effectiveness of interventions for smoking cessation" (August 2007) and are as follows (in 2006 prices): Lung cancer: £5,500; stroke: £2,060; CHD: £1,060; MI: £2,175 and COPD: £926.

The cost of the mass media campaign was assumed to be incurred for a period of 5 years at an annual cost of £15 per person discounted at 3.5% per year for the 5 years of the campaign. This figure was based on an annual cost of £10 million for each year of a mass media campaign which was divided by the number of people aged 13 to 17 years old in England obtained from the Office for National Statistics (<u>http://www.statistics.gov.uk/census2001/pop2001/england_ages.asp</u>) to give a £15 annual intervention cost per person exposed to the campaign. The £10 million annual cost is 10 times the cost of education and communication programmes aimed at supporting the implementation of smoke-free legislation, the latter estimated at £1 million per year based on the experience of current Department of Health tobacco education and awareness campaigns as reported in the Final Regulatory Impact assessment of the Health Act 2006 (Department of Health, http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/documents/digitalasset/dh_074063. pdf)

The assumed cost of the point of sale intervention was £50 million in the first year which is half the estimated cost of replacing all existing gantries across the UK as part of an intervention aimed at banning all forms of point of sale advertising reported in the Full Final Regulatory Impact Assessment entitled "The tobacco advertising and promotion (point of sale) regulations 2004" (Department of Health,

http://www.dh.gov.uk/en/Publicationsandstatistics/Legislation/Regulatoryimpactassessment/DH_40 88278) plus an additional £1 million every year for the 5 years of the intervention which is the estimated cost of education and communication stated above. This resulted in £17.4 per person discounted at 3.5% per year for the 5 years of the intervention.

Life expectancy and quality adjusted life expectancy were also discounted at 3.5% per year.

In each cycle population figures for England obtained from the Office for National Statistics (<u>http://www.statistics.gov.uk/census2001/pop2001/england_ages.asp</u>) providing the number of males and females in the general population were used to determine the proportion of males and females in each age group in the cohort. This allowed an estimate of costs and QALYs in each cycle that accounted for the proportion of males and females observed in the English population.

Results and discussion

Base case analysis

Tables 3 and 4 report the results on the cost-effectiveness of a mass media campaign and a point of sale intervention respectively for different levels of effect measured as change in adult smoking prevalence achieved by the end of the intervention at an assumed annual cost of £15 per person for the mass media campaign and £17 per person for a general point of sale intervention assuming an adult quit rate of 2% per year and an annual discount rate of 3.5%.

Table 3. Cost-effectiveness of mass media campaign for different effect sizes

mass media		
intervention annual cost quit rate=2%		
15 per person after 5 years discount rate=3.5%		
prevalence		
reduction (%) nointerv cost no interv L no interv qalyinterv cost interv LY interventer in	erv qaly cost/LY	cost/qaly
2 2033 21.100 19.058 2044 21.105	19.097 2049	279
3 2033 21.100 19.058 2042 21.108	19.116 1112	152
4 2033 21.100 19.058 2040 21.110	19.136 643	88
5 2033 21.100 19.058 2038 21.113	19.155 362	49
6 2033 21.100 19.058 2036 21.116	19.175 174	24
7 2033 21.100 19.058 2034 21.118	19.194 41	6

Table 4. Cost-effectiveness of point of sale intervention for different effect sizes

point of sale intervention annual cost quit rate=2% 17 per person after 5 years discount rate=3.5% prevalence										
protection										
reduction (%)	nointerv cost	no interv LY r	no interv qalyii	nterv cost i	nterv LY	interv qaly	cost/LY	cost/qaly		
0.5	2033	21.100	19.058	2060	21 101					
				2030	21.101	19.000	12399	1690		
1.0	2033	21.100	19.058	2049	21.101	19.008	12399 5818	1690 793		
1.0 1.5	2033 2033	21.100 21.100	19.058 19.058	2049 2048	21.101 21.102 21.104	19.068 19.078 19.087	12399 5818 3624	1690 793 494		

For the base case analysis for the two interventions the incremental cost-effectiveness ratio as compared to a no intervention status quo was never above $\pounds 500$ per QALY for the mass media campaign or $\pounds 2,000$ per QALY for the point-of-sale intervention. Thus even although the direct costs of the campaign are difficult to estimate given the lack of precision over the detail of these interventions, with a subsequent problem in defining the expected prevalence reduction, the base case scenarios highlight that under reasonable assumptions both interventions would be highly cost-effective.

Sensitivity analysis

Given the lack of precision over the definition of the interventions and the many assumptions used to populate the model extensive sensitivity analysis was undertaken. One way sensitivity analysis was undertaken to assess the impact of varying the following parameters on the cost-effectiveness ratio.

The size of effect of the intervention was varied between 2% and 7% for the mass media campaign and between 0.5% and 2% for the point of sale measure. The cost of the intervention was doubled and tripled and the background quit rate was varied to 1.2% and 3% per year.

Tables 5, 6 and 7 report the results of the sensitivity analyses for the mass media campaign while Tables 8, 9 and 10 report the corresponding results for the point of sale intervention.

Table 5. Cost-effectiveness of mass media campaign for different effect sizes at an intervention cost of £30 and £45 per person

mass me	dia	a qu	it rate=	2%								
		dis	scountr	rate=3.5%						interventio	on annual o	cost
prevalen	се			interventi	on annual	cost				45		
reduction	n			30	per person	i after 5 yea	ars			per person	after 5 yea	ars
(%)	n	ointerv c no	interv	no interv	interv cos	interv LY	interv qal	cost/LY	cost/qaly	interv cos	cost/LY	cost/qaly
2	2	2033	21.100	19.058	2059	21.105	19.097	4862	663	2074	7674	1046
:	3	2033	21.100	19.058	2057	21.108	19.116	2987	407	2072	4862	663
4	4	2033	21.100	19.058	2055	21.110	19.136	2049	279	2070	3456	471
ł	5	2033	21.100	19.058	2053	21.113	19.155	1487	203	2068	2612	356
(6	2033	21.100	19.058	2051	21.116	19.175	1112	152	2066	2049	279
-	7	2033	21.100	19.058	2049	21.118	19.194	844	115	2064	1648	225

Table 6. Cost-effectiveness of mass media campaign for different effect sizes assuming a background quit rate of 1.2%

mass media	intervention a	annual cost		quit rate=	1.2%			
	15	per person	after 5 years of	discount ra	te=3.5%			
prevalence								
reduction (%)	nointerv co	no interv	no interv qa i	interv cos	interv LY	interv qal	cost/LY	cost/qaly
2	2079	21.080	19.032	2089	21.086	19.072	1746	252
3	2079	21.080	19.032	2086	21.089	19.091	874	126
4	2079	21.080	19.032	2084	21.091	19.111	438	63
5	2079	21.080	19.032	2081	21.094	19.130	176	25
6	2079	21.080	19.032	2079	21.097	19.150	2	0
7	2079	21.080	19.032	2076	21.100	19.170	dominant	dominant

Table 7. Cost-effectiveness of mass media campaign for different effect sizes assuming a background quit rate of 3%

mass media	intervention	annual cost	t	quit rate=:	3%			
	15	per persor	after 5 years	discount ra	te=3.5%			
prevalence								
reduction (%)	nointerv co	no interv	no interv qa	interv cos	interv LY	interv qal	cost/LY	cost/qaly
2	2 1994	21.117	19.083	2006	21.122	19.121	2354	303
3	3 1994	21.117	19.083	2004	21.125	19.140	1349	174
4	l 1994	21.117	19.083	2003	21.127	19.160	847	109
5	5 1994	21.117	19.083	2001	21.130	19.179	546	70
6	6 1994	21.117	19.083	1999	21.132	19.198	345	44
7	7 1994	21.117	19.083	1998	21.135	19.217	202	26

Table 8. Cost-effectiveness of point of sale intervention for different effect sizes at an intervention cost of £35 and £52 per person

point of s	ale	quit rate≕ discount	2% rate=3.5%								
prevalenc	e			interventio	on annual	cost			interventio	n annual	cost
reduction				35	per persor	n after 5 yea	ars		52	per person	after 5 yea
(%)	nointerv co	no interv	no interv	interv cos	interv LY	interv qal	cost/LY	cost/qaly	interv cos	cost/LY	cost/qaly
0.5	5 2033	21.100	19.058	2067	21.101	19.068	25561	3484	2084	38723	5278
1.0	2033	21.100	19.058	2066	21.102	19.078	12399	1690	2083	18980	2587
1.	5 2033	21.100	19.058	2065	21.104	19.087	8012	1092	2082	12399	1690
2.0	2033	21.100	19.058	2064	21.105	19.097	5818	793	2081	9108	1241

Table 9. Cost-effectiveness of point of sale intervention for different effect sizes assuming a background quit rate of 1.2%

point of sa	ale							
	intervention	annual cost	1	quit rate=1	.2%			
prevalenc	17	per person	after 5 yea	discount rat	te=3.5%			
reduction								
(%)	nointerv co	no interv	no interv	interv cos i	nterv LY	interv qal	cost/LY	cost/qaly
0.5	2079	21.080	19.032	2095	21.081	19.042	11373	1644
1	2079	21.080	19.032	2094	21.083	19.052	5251	759
1.5	2079	21.080	19.032	2093	21.084	19.062	3211	464
2	2079	21.080	19.032	2091	21.086	19.072	2190	317

Table 10. Cost-effectiveness of point of sale intervention for different effect sizes assuming a background quit rate of 3%

point of s	ale										
	interver	ntion anr	nual co	ost		quit rate=	3%				
prevalence reduction	:	17 pe	r pers	on aft	er 5 yea	discount ra	ite=3.5	%			
(%)	nointer	v co no	inter	v no	interv	interv cos	interv	LY	interv qal	cost/LY	cost/qaly
0 6	. 1	100/	21 1	17	10 083	2011	- 21	110	10.003	2 13///0	1722

• •									
	0.5	1994	21.117	19.083	2011	21.119	19.093	13440	1732
	1	1994	21.117	19.083	2010	21.120	19.102	6390	824
	1.5	1994	21.117	19.083	2009	21.121	19.112	4041	521
	2	1994	21.117	19.083	2008	21.122	19.121	2866	369

Assuming an annual cost of £15 per person over the 5-year duration of the mass media campaign – a total of £10 million per year for the total population of 13-17 years old in England – and assuming a quit rate of 2% per year in adult life, the results of the base case cost-effectiveness modelling for the mass media campaign suggest that that this is a cost-effective strategy as compared to no intervention if smoking prevalence is reduced at the end of the campaign by 5% with a cost per QALY gained estimated to be £49 (£362 per LY gained) while it results in £279 per QALY gained (£2,049 per LY gained) if the reduction in smoking prevalence at the end of the campaign falls to 2%. A range of one way sensitivity analyses based on doubling and tripling the cost of the campaign adult quit rate to 1.2% and 3% show that the cost per QALY is never greater than £1,046 for this intervention.

For the point of sale measure the base case analysis assumes an annual cost of £17.5 per person over the 5 year duration of the intervention – a total of £51 million in the first year and £1 million annually for the 4 subsequent years of the intervention for the total population of 13-17 years old in England – and assuming a quit rate of 2% per annum in adult life the cost-effectiveness is estimated to lie between £1,690 per QALY gained (£12,399 per LY gained) and £344 per QALY gained (£2,527 per LY gained) as the effect changes from a 0.5% reduction in smoking prevalence at the end of the intervention to a 2% reduction in smoking prevalence by the end of the intervention. A range of one way sensitivity analyses based on doubling and tripling the cost of the intervention and changing the adult quit rate to 1.2% and 3% per annum shows the cost per QALY gained is always less than £5,500 for this intervention.

If the cost-effectiveness threshold is assumed to be £20,000 per QALY the effect size to achieve that threshold has to be lowered to approximately 0.04% for both interventions For the mass media campaign the results show that when the effect size is 0.04% reduction in prevalence per year the incremental cost per QALY is £19,063 (£139,860 per LY) and it becomes £25,453 per QALY (£186,735 per LY) when the effect size falls to 0.03% per year. For the point of sale intervention when the effect size is 0.04% reduction in prevalence per year the incremental cost per QALY is £22,321 (£163,760 per LY) and it decreases to £17,836 per QALY (£130,856 per LY) when the effect size becomes 0.05% per year.

Conclusions

On the basis of this analysis, using the QALY as the appropriate measure of health related outcome, it is suggested that both a general mass media campaign aimed at 13-17 year old people and a general point of sale intervention aimed at reducing access to tobacco amongst the young would be cost-effective if they achieved the reduction in smoking prevalence assumed above and incurred the costs assumed above.

Limitations of the study include the fact that explicit concerns over whether the interventions merely delay the up-take of smoking have not been addressed. Given that the overwhelming majority of individuals have either taken up smoking by age 25, or stated differently if individuals have not started smoking by age 25 they are extremely unlikely to start smoking, that we model the impact of the interventions on prevalence at age 18, and that the sensitivity analysis covers a large range of effectiveness outcomes we would argue that the range of estimated results given in the sensitivity analysis would encompass the impact that smoking delay would have on modelled results. In other words, as both programmes remain extremely cost-effective under a range of effectiveness outcomes it is extremely unlikely that if smoking is merely delayed, noting that the vast majority of smokers start prior to age 25, there will be any major impact on the calculations; the programmes are likely to remain highly cost-effective. Moreover the same conclusion holds true if the adult campaigns relating to smoking cessation have a residual impact on the prevention programmes.

References

1. Department of Health Final Regulatory Impact Assessment entitled "The tobacco advertising and promotion (point of sale) regulations 2004"

http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsLegislation/DH_40844 90 Date accessed: December 2007

2. Health Survey for England 2003

http://www.ic.nhs.uk/statistics-and-data-collections/health-and-lifestyles/health-survey-forengland/health-survey-for-england-2004-updating-of-trend-tables-to-include-2004-data Date accessed: December 2007

3. Farrelly MC, Davis KC, Haviland ML, et al. Evidence of a dose-response relationship between "truth" antismoking ads and youth smoking prevalence. *American Journal of Public Health*, 2005; 95(3): 425-431.

4. Niederdeppe JD, Farrelly MC, Haviland ML. Confirming "truth": more evidence of a successful tobacco countermarketing campaign in Florida. *American Journal of Public Health*, 2004; 94(2): 255-257.

5. Secker-Walker RH, Worden JK, Holland RR et al. A mass media programme to prevent smoking among adolescents: costs and cost-effectiveness. *Tobacco Control*, 1997; 6: 207-212.

6. General Household Survey 2005, Office for National Statistics <u>http://www.statistics.gov.uk/</u> Date accessed: December 2007

7. Doll R, Peto R, Wheatley K, Gray R, Sutherland I. Mortality in Relation to Smoking - 40 Years Observations on Male British Doctors. *British Medical Journal*. 1994; 309 (6959): 901-911.

8. The Office for National Statistics

http://www.gad.gov.uk/Demography_Data/Life_Tables/Interim_life_tables.asp: Date accessed December 2007

9. York Health Economics Consortium NICE Report "Cost-effectiveness of interventions for smoking cessation" (August 2007)

10. Forman D, Stockton D, Moller H, Quinn M, Babbo P, De Angelis R, Micheli A. Cancer Prevalence in the UK: Results from the EUROPREVAL Study. *Annals of Oncology*. 2003; 14 648-654.

11. Britton M. The Burden of COPD in the UK: Results from the Confronting COPD Survey. *Respiratory Medicine*. 2003; 97 S71-S79.

12. Allender S, Peto V, Scarborough P, Boxer A, Rayner M. Coronary Heart Disease Statistics, 2006 Edition. 2006.

13. Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R. Smoking, Smoking Cessation, and Lung Cancer in the UK Since 1950: Combination of National Statistics with Two Case-Control Studies. *British Medical Journal*. 2000; 321 323-329.

14. Department of Health and Human Services, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Washington DC. *The Health Consequences of Smoking: A Report by the Surgeon General.* 2004.

15. Tengs T Wallace A. One Thousand Health-Related Quality-of-Life Estimates. *Medical Care*. 2000; 38 (6): 583-637.

16. Rutten-van Molken MP, Oostenbrink JB, Tashkin DP, Burkhart D, Monz BU. Does quality of life of COPD patients as measured by the generic EuroQol five-dimension questionnaire differentiate between COPD severity stages? *Chest.* 2006; 130 (4): 1117-28.

17. Tillmann M Silcock J. A Comparison of Smokers' and Ex-smokers' Health-Related Quality of Life. *Journal of Public Health Medicine*. 1997; 19: 268-273.

18. Office for National Statistics. <u>http://www.statistics.gov.uk/census2001/pop2001/england_ages.asp</u> Date Accessed: December 2007.

19. Department of Health, Final Regulatory Impact assessment of the Health Act 2006 http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/documents/digitalasset/dh_074063. pdf . Date accessed: December 2007.

20. Department of Health, Full Final Regulatory Impact Assessment: "The tobacco advertising and promotion (point of sale) regulations 2004" <u>http://www.dh.gov.uk/en/Publicationsandstatistics/Legislation/Regulatoryimpactassessment/DH_40</u> 88278, Date accessed: December 2007.

Appendix A1

Self-reported cigarette smoking status, by age and sex (survey year 2004)

	Men	Women		Men	Women		Men	Women
Age			Age			Age		
Current cigar	ette smoker		Ex-regular	cigarette:	smoker	Never regula	rly smoke	d cigarette
16-24	25.404	28.940	16-24	5.420	6.956	16-24	69.176	64.104
25-34	37.425	27.693	25-34	13.958	15.809	25-34	48.617	56.498
35-44	26.414	27.062	35-44	20.753	17.643	35-44	52.833	55.295
45-54	25.208	24.758	45-54	30.448	23.948	45-54	44.344	51.294
55-64	19.175	19.806	55-64	44.439	30.439	55-64	36.386	49.755
65-74	10.188	13.295	65-74	55.861	29.440	65-74	33.952	57.265
75 and over	6.935	9.354	75 and ove	e 60.960	33.775	75 and over	32.105	56.871

Source: Health Survey for England 2003

http://www.ic.nhs.uk/statistics-and-data-collections/health-and-lifestyles/health-survey-forengland/health-survey-for-england-2004-updating-of-trend-tables-to-include-2004-data

Appendix A2. Table A 2.1. Mortality in the general population 2006

Δne		male	female
Age	18	0.000601	0.000261
	19	0.000628	0.000293
	20	0.000672	0.000269
	21	0.000632	0.000261
	22	0.000733	0.000283
	23	0.00073	0.0003
	24	0.000693	0.000279
	25	0.00078	0.000316
	26	0.000751	0.000347
	27	0.0008	0.000347
	28	0.000739	0.000366
	29	0.000842	0.000357
	30	0.000074	0.000411
	32	0.00032	0.000403
	33	0.001044	0.000517
	34	0.001063	0.000551
	35	0.001169	0.000577
	36	0.001262	0.000661
	37	0.001302	0.000732
	38	0.001302	0.000783
	39	0.001403	0.00086
	40	0.001532	0.000896
	41	0.001644	0.00099
	42	0.001794	0.001126
	43	0.002039	0.001242
	44	0.002156	0.00139
	45	0.002310	0.001464
	40 47	0.002493	0.001845
	48	0.00270	0.001040
	49	0.003397	0.002199
	50	0.003709	0.00255
	51	0.004219	0.002668
	52	0.004524	0.002863
	53	0.004853	0.003145
	54	0.005317	0.003409
	55	0.005726	0.003636
	56	0.006196	0.004117
	5/	0.0069	0.004444
	58	0.007332	0.004714
	59	0.008095	0.005292
	61	0.009433	0.005000
	62	0.010575	0.000403
	63	0.012554	0.007715
	64	0.014005	0.008597
	65	0.015325	0.009256
	66	0.016746	0.01047
	67	0.018331	0.011412
	68	0.020247	0.012776
	69	0.022174	0.013812
	70	0.024629	0.015151

Appendix A2. Table A 2.1. Mortality in the general population 2006 (contd.)

Age		male	female	
	71	0.027556	0.016837	
	72	0.030791	0.019307	
	73	0.033777	0.02139	
	74	0.037759	0.024347	
	75	0.041933	0.027465	
	76	0.04723	0.030855	
	77	0.052538	0.034577	
	78	0.05863	0.039347	
	79	0.065442	0.043829	
	80	0.072777	0.048621	
	81	0.080283	0.055612	
	82	0.089894	0.061802	
	83	0.099328	0.06977	
	84	0.110524	0.07849	
	85	0.115512	0.086389	
	86	0.130625	0.096889	
	87	0.14081	0.107885	
	88	0.165993	0.127892	
	89	0.184895	0.142379	
	90	0.194843	0.156578	
	91	0.216547	0.177591	
	92	0.233399	0.197006	
	93	0.257081	0.218451	
	94	0.277844	0.241982	
	95	0.302966	0.263987	
	96	0.328658	0.288671	
	97	0.36303	0.313412	
	98	0.383838	0.339623	
	99	0.399065	0.360455	
	100	0.455431	0.379679	

Source: The Office for National Statistics http://www.gad.gov.uk/Demography_Data/Life_Tables/Interim_life_tables.asp

Appendix A2. Table A.2.2. Mortality by age and gender and smoking status

	SMOKERS	6	FORMER	SMOKERS	NON-SMO	KERS
Age	Male	Female	Male	Female	Male	Female
18	8 0.000873	0.00037	0.000624	0.0002643	0.000357	0.000151
19	0.000913	0.000415	0.000652	0.0002967	0.000373	0.00017
20	0.000977	0.000381	0.000698	0.0002724	0.000399	0.000156
21	0.000919	0.00037	0.000656	0.0002643	0.000375	0.000151
22	2 0.001065	0.000401	0.000761	0.0002866	0.000435	0.000164
23	8 0.001061	0.000425	0.000758	0.0003038	0.000433	0.000174
24	0.001007	0.000396	0.000719	0.0002825	0.000411	0.000161
25	5 0.001038	0.000443	0.000741	0.0003167	0.000423	0.000181
26	0.000999	0.000487	0.000714	0.0003478	0.000408	0.000199
27	0.001064	0.000487	0.00076	0.0003478	0.000434	0.000199
28	3 0.000983	0.000514	0.000702	0.0003668	0.000401	0.00021
29	0.00112	0.000501	0.0008	0.0003578	0.000457	0.000204
30	0.001163	0.000577	0.00083	0.0004119	0.000475	0.000235
31	0.001224	0.000574	0.000874	0.0004099	0.0005	0.000234
32	2 0.001382	0.000627	0.000987	0.000448	0.000564	0.000256
33	3 0.001389	0.000725	0.000992	0.0005182	0.000567	0.000296
34	0.001414	0.000773	0.00101	0.0005522	0.000577	0.000316
35	5 0.001637	0.00081	0.001169	0.0005784	0.000668	0.00033
36	6 0.001767	0.000928	0.001262	0.0006626	0.000721	0.000379
37	0.001823	0.001027	0.001302	0.0007337	0.000744	0.000419
38	3 0.001823	0.001099	0.001302	0.0007848	0.000744	0.000448
39	0.001964	0.001207	0.001403	0.000862	0.000802	0.000493
40	0.002145	0.001257	0.001532	0.0008981	0.000875	0.000513
41	0.002302	0.001389	0.001644	0.0009923	0.000939	0.000567
42	2 0.002512	0.00158	0.001794	0.0011286	0.001025	0.000645
43	8 0.002855	0.001743	0.002039	0.0012449	0.001165	0.000711
44	0.003018	0.001951	0.002156	0.0013933	0.001232	0.000796
45	5 0.003535	0.002298	0.002138	0.0013902	0.001056	0.000687
46	6 0.003805	0.002495	0.002302	0.0015092	0.001137	0.000745
47	0.004243	0.002857	0.002567	0.0017284	0.001267	0.000854
48	3 0.004763	0.003254	0.002881	0.0019682	0.001423	0.000972
49	0.005184	0.003405	0.003136	0.00206	0.001549	0.001017
50	0.00566	0.003949	0.003424	0.0023888	0.001691	0.00118
51	0.006439	0.004132	0.003895	0.0024994	0.001923	0.001234
52	2 0.006904	0.004434	0.004177	0.002682	0.002063	0.001324
53	0.007406	0.00487	0.00448	0.0029462	0.002213	0.001455
54		0.005279	0.004909	0.0031935	0.002424	0.001577
50	0.008737	0.005755	0.005767	0.0037987	0.002699	0.001778
50	0.009404	0.000010	0.000241	0.0043012	0.002921	0.002013
51	0.010520	0.007034	0.00095	0.0040428	0.003252	0.002173
50	0.011100	0.007401	0.007303	0.0049249	0.003430	0.002505
55	0.012332	0.000070	0.000133	0.0055288	0.003010	0.002307
61	0.014333	0.000300	0.003301	0.0009190	0.004440	0.00277
62	0.013020	0.010107	0.010440	0.0000010	0.004000	0.003435
62	0.01704	0.0112	0.012645	0.0070400	0.005445	0.003772
64	0.010100	0.013606	0.012040	0.0089816	0.006601	0.004203
65	0.023626	0.012037	0.015885	0.0100431	0.00801	0.005064
66	S 0 025817	0.016897	0.017357	0.0113603	0.008753	0.005728
67	0.02826	0.018417	0.019	0.0123824	0.009581	0.006244
67	3 0.031214	0.020618	0.020986	0.0138624	0.010582	0.00699
69	0.034185	0.02229	0.022984	0.0149865	0.01159	0.007557
70	0.037969	0.024451	0.025528	0.0164393	0.012873	0.00829

Appendix A2. Table A.2.2. Mortality by age, gender and smoking status (contd.).

		SMOKERS	3	FORMER	SMOKERS	NON-SMOKERS	
Age		Male	Female	Male	Female	Male	Female
	71	0.042482	0.027172	0.028562	0.0182687	0.014403	0.009212
	72	0.047469	0.031158	0.031915	0.0209487	0.016093	0.010564
	73	0.052072	0.03452	0.03501	0.0232089	0.017654	0.011703
	74	0.058211	0.039292	0.039138	0.0264173	0.019735	0.013321
	75	0.0584	0.039154	0.042588	0.028553	0.027079	0.018155
	76	0.065777	0.043987	0.047967	0.0320773	0.0305	0.020396
	77	0.073169	0.049293	0.053358	0.0359467	0.033928	0.022857
	78	0.081653	0.056093	0.059545	0.0409057	0.037862	0.02601
	79	0.09114	0.062483	0.066464	0.0455653	0.042261	0.028973
	80	0.101356	0.069314	0.073913	0.0505471	0.046998	0.03214
	81	0.111809	0.079281	0.081536	0.057815	0.051845	0.036762
	82	0.125194	0.088105	0.091297	0.0642502	0.058051	0.040853
	83	0.138333	0.099464	0.100879	0.0725339	0.064144	0.046121
	84	0.153925	0.111896	0.112249	0.0815993	0.071374	0.051885
	85	0.141257	0.10672	0.116067	0.0876892	0.089478	0.067601
	86	0.159738	0.119691	0.131253	0.0983472	0.101185	0.075818
	87	0.172193	0.133275	0.141486	0.1095087	0.109075	0.084422
	88	0.202989	0.157991	0.16679	0.1298168	0.128582	0.100078
	89	0.226104	0.175887	0.185783	0.1445219	0.143224	0.111415
	90	0.238269	0.193428	0.195779	0.1589346	0.15093	0.122526
	91	0.26481	0.219386	0.217587	0.1802638	0.167742	0.138969
	92	0.285418	0.24337	0.23452	0.199971	0.180796	0.154161
	93	0.314378	0.269862	0.258316	0.2217388	0.199141	0.170943
	94	0.339769	0.298931	0.279179	0.2456239	0.215224	0.189356
	95	0.37049	0.326115	0.304422	0.2679601	0.234684	0.206576
	96	0.401908	0.356608	0.330237	0.2930156	0.254586	0.225891
	97	0.44394	0.387172	0.364774	0.318129	0.281211	0.245252
	98	0.469386	0.419552	0.385682	0.3447344	0.29733	0.265762
	99	0.488007	0.445286	0.400982	0.36588	0.309125	0.282064
1	00	0.556935	0.469035	0.457619	0.3853933	0.352787	0.297107

Appendix A3. Prevalence of lung cancer by age, gender and smoking status.

	:	SMOKERS	5	FORMER	SMOKERS	NON-SMOK	ERS
Age		Male	Female	Male	Female	Male	Female
	18	6.7E-05	5.95E-05	2.95E-05	1.2498E-05	2.009E-06	2.976E-06
	19	6.7E-05	5.95E-05	2.95E-05	1.2498E-05	2.009E-06	2.976E-06
	20	6.7E-05	5.95E-05	2.95E-05	1.2498E-05	2.009E-06	2.976E-06
	21	6.7E-05	5.95E-05	2.95E-05	1.2498E-05	2.009E-06	2.976E-06
	22	6.7E-05	5.95E-05	2.95E-05	1.2498E-05	2.009E-06	2.976E-06
	23	6.7E-05	5.95E-05	2.95E-05	1.2498E-05	2.009E-06	2.976E-06
	24	6.7E-05	5.95E-05	2.95E-05	1.2498E-05	2.009E-06	2.976E-06
	25	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	26	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	27	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	28	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	29	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	30	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	31	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	32	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	33	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	34	4.44E-05	5.91E-05	1.95E-05	1.2412E-05	1.333E-06	2.955E-06
	35	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	36	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	37	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	38	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	39	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	40	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	41	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	42	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	43	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	44	5.39E-05	5.96E-05	2.37E-05	1.2525E-05	1.616E-06	2.982E-06
	45	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	46	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	47	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	48	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	49	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	50	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	51	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	52	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	53	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	54	0.003831	0.002133	0.001686	0.00044789	0.0001149	0.0001066
	55	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	56	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	57	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	58	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	59	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	60	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	61	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	62	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	03	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	64	0.003842	0.002405	0.001691	0.00050513	0.0001153	0.0001203
	00	0.022350	0.010071	0.009837	0.00211497	0.0006707	0.0005030
	00	0.022300	0.010071	0.00903/	0.00211497	0.0000707	0.0005030
	60	0.022300	0.010071	0.00903/	0.00211497	0.0000707	0.0005030
	00	0.022000	0.010071	0.00903/	0.00211497	0.0000707	0.0005050
	70	0.022356	0.010071	0.009837	0.00211497	0.0006707	0.0005036
			2.2.0011	2.220001		2.2230.01	

Prevalence of lung cancer by age, gender and smoking status (contd.).

		SMOKERS	S	FORMER	SMOKERS	NON-SMOK	
Age		Male	Female	Male	Female	Male	Female
	71	0.022356	0.010071	0.009837	0.00211497	0.0006707	0.0005036
	72	0.022356	0.010071	0.009837	0.00211497	0.0006707	0.0005036
	73	0.022356	0.010071	0.009837	0.00211497	0.0006707	0.0005036
	74	0.022356	0.010071	0.009837	0.00211497	0.0006707	0.0005036
	75	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	76	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	77	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	78	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	79	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	80	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	81	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	82	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	83	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	84	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	85	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	86	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	87	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	88	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	89	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	90	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	91	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	92	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	93	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	94	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	95	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	96	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	97	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	98	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
	99	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832
1	00	0.023041	0.011664	0.010138	0.00244938	0.0006912	0.0005832

Appendix A4. Prevalence of CHD by age, gender and smoking status.

1 90		SMOKERS	Fomelo	FORMER SMO	OKERS	NON-SMOKER	S
Age	40	wale		Male		Male	
	18	0	0.003777727	0	0.001876756	0	0.00121081
	19	0	0.003777727	0	0.001876756	0	0.00121081
	20	0	0.003777727	0	0.001876756	0	0.00121081
	21	0	0.003////2/	0	0.001876756	0	0.00121081
	22	0	0.003777727	0	0.001876756	0	0.00121081
	23	0	0.003777727	0	0.001876756	0	0.00121081
	24	0	0.003777727	0	0.001876756	0	0.00121081
	25	0	0	0	0	0	0
	26	0	0	0	0	0	0
	27	0	0	0	0	0	0
	28	0	0	0	0	0	0
	29	0	0	0	0	0	0
	30	0	0	0	0	0	0
	31	0	0	0	0	0	0
	32	0	0	0	0	0	0
	33	0	0	0	0	0	0
	34	0	0	0	0	0	0
	35	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	36	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	37	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	38	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	39	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	40	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	41	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	42	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	43	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	44	0.016773096	0.007469699	0.00833279	0.003710908	0.005375992	0.002394134
	45	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	46	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	47	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	48	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	49	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	50	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	51	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	52	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	53	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	54	0.064164505	0.03766804	0.0318766	0.018713289	0.020565546	0.01207309
	55	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	56	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	57	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	58	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	59	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	60	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	61	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	62	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	63	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	64	0.209772495	0.115970404	0.1042139	0.057613502	0.067234774	0.037170001
	65	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	66	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	67	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	68	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	69	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	70	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922

Appendix A4. Prevalence of CHD by age, gender and smoking status (contd.).

		SMOKERS		FORMER SM	OKERS	NON-SMOKERS	
Age		Male	Female	Male	Female	Male	Female
	71	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	72	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	73	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	74	0.440384009	0.209616956	0.21878052	0.104136629	0.141148721	0.067184922
	75	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	76	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	77	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	78	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	79	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	80	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	81	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	82	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	83	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	84	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	85	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	86	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	87	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	88	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	89	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	90	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	91	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	92	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	93	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	94	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	95	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	96	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	97	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	98	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	99	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813
	100	0.555679058	0.414775335	0.27605851	0.206058259	0.178102262	0.132940813

Appendix A5. Prevalence of COPD by age, gender and smoking status.

	SMOKER	S	FORMER	SMOKERS	NON-SMO	KERS
Age	Male	Female	Male	Female	Male	Female
	18 0.012988	0.010572	0.01091	0.0101487	0.008832	0.009726
	19 0.012988	0.010572	0.01091	0.0101487	0.008832	0.009726
:	20 0.012988	0.010572	0.01091	0.0101487	0.008832	0.009726
:	21 0.012988	0.010572	0.01091	0.0101487	0.008832	0.009726
:	22 0.012988	0.010572	0.01091	0.0101487	0.008832	0.009726
:	23 0.012988	0.010572	0.01091	0.0101487	0.008832	0.009726
:	24 0.012988	0.010572	0.01091	0.0101487	0.008832	0.009726
:	25 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
:	26 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
:	27 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
2	28 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
:	29 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
:	30 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
:	31 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
	32 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
	33 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
-	34 0.012164	0.010543	0.010218	0.0101215	0.008272	0.0097
	35 0.012536	0.010541	0.01053	0.010119	0.008524	0.009697
	36 0.012536	0.010541	0.01053	0.010119	0.008524	0.009697
	37 0.012536	0.010541	0.01053	0.010119	0.008524	0.009697
	38 0.012536	0.010541	0.01053	0.010119	0.008524	0.009697
	39 0.012536		0.01053	0.010119	0.008524	0.009697
4	40 0.012530		0.01053	0.010119	0.000524	0.009097
•	+1 0.012530	0.010541	0.01053	0.010119	0.008524	0.009097
•	+2 0.012530	0.010541	0.01053	0.010119	0.008524	0.009097
-	44 0.012536		0.01053	0.010119	0.000524	0.009097
	45 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
	46 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
	47 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
	48 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
	49 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
-	50 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
:	51 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
:	52 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
:	53 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
	54 0.012355	0.010533	0.010378	0.0101118	0.008401	0.00969
	55 0.012308	0.010548	0.010339	0.0101264	0.00837	0.009704
:	56 0.012308	0.010548	0.010339	0.0101264	0.00837	0.009704
	57 0.012308	0.010548	0.010339	0.0101264	0.00837	0.009704
-	58 0.012308	0.010548	0.010339	0.0101264	0.00837	0.009704
-	59 0.012308	0.010548	0.010339	0.0101264	0.00837	0.009704
	$50 \ 0.012308$	0.010548	0.010339	0.0101264	0.00837	0.009704
			0.010339	0.0101264	0.00837	0.009704
	52 0.012300		0.010339	0.0101204	0.00037	0.009704
	33 0.012308 34 0.012308	0.010548	0.010339	0.0101204	0.00837	0.009704
	35 0.062346	0.010340	0.010339	0.0101204	0.00007	0.009704
	36 0.002340	0.053055	0.052371	0.05003331	0.042305	0.048811
	67 0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811
	68 0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811
	69 0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811
	70 0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811

Appendix A5. Prevalence of COPD by age, gender and smoking status (contd.).

-		SMOKERS	5	FORMER	SMOKERS	NON-SMO	KERS
Age		Male	Female	Male	Female	Male	Female
	71	0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811
	72	0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811
	73	0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811
	74	0.062346	0.053055	0.052371	0.0509331	0.042395	0.048811
	75	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	76	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	77	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	78	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	79	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	80	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	81	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	82	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	83	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	84	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	85	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	86	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	87	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	88	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	89	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	90	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	91	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	92	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	93	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	94	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	95	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	96	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	97	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	98	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
	99	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769
1	00	0.125043	0.106271	0.105036	0.1020198	0.085029	0.097769

Appendix A6. Prevalence of MI by age, gender and smoking status.

	SMOKERS			FORMER SMOKERS NON-SMOKERS				
Age		Male	Female	Male	Female	Male	Female	
	18	0	0	0	0	0	0	
	19	0	0	0	0	0	0	
	20	0	0	0	0	0	0	
	21	0	0	0	0	0	0	
	22	0	0	0	0	0	0	
	23	0	0	0	0	0	0	
	24	0	0	0	0	0	0	
	25	0	0	0	0	0	0	
	26	0	0	0	0	0	0	
	27	0	0	0	0	0	0	
	28	0	0	0	0	0	0	
	29	0	0	0	0	0	0	
	30	0	0	0	0	0	0	
	31	0	0	0	0	0	0	
	32	0	0	0	0	0	0	
	33	0	0	0	0	0	0	
	34	0	0	0	0	0	0	
	35	0	0	0	0	0	0	
	36	0	0	0	0	0	0	
	37	0	0	0	0	0	0	
	38	0	0	0	0	0	0	
	39	0	0	0	0	0	0	
	40	0	0	0	0	0	0	
	41	0	0	0	0	0	0	
	42	0	0	0	0	0	0	
	43	0	0	0	0	0	0	
	44	0	0	0	0	0	0	
	45	0	0	0	0	0	0	
	46	0	0	0	0	0	0	
	47	0	0	0	0	0	0	
	48	0	0	0	0	0	0	
	49	0	0	0	0	0	0	
	50	0	0	0	0	0	0	
	51	0	0	0	0	0	0	
	52	0	0	0	0	0	0	
	53	0	0	0	0	0	0	
	54	0	0	0	0	0	0	
	55	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	56	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	57	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	58	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	59	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	60	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	61	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	62	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	63	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	64	0.092101	0.042499	0.063895	0.0170919	0.057563	0.015398	
	65	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635	
	66	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635	
	67	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635	
	68	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635	
	69	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635	
	70	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635	

Appendix A6. Prevalence of MI by age, gender and smoking status (contd.).

		SMOKERS	6	FORMER SMOKERS NON-SMOKERS			
Age		Male	Female	Male	Female	Male	Female
	71	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635
	72	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635
	73	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635
	74	0.172461	0.092832	0.119645	0.0373344	0.107788	0.033635
	75	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	76	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	77	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	78	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	79	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	80	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	81	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	82	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	83	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	84	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	85	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	86	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	87	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	88	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	89	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	90	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	91	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	92	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	93	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	94	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	95	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	96	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	97	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	98	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
	99	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547
1	00	0.174625	0.098111	0.121146	0.0394575	0.10914	0.035547

Appendix A7. Prevalence of stroke by age, gender and smoking status.

	SMOKER	S	FORMER	SMOKERS	NON-SMOP	(ERS
Age	Male	Female	Male	Female	Male	Female
_	8 0.001240	6 0.002458	0.001009	0.0019915	0.000909	0.001794
-	9 0.001240	6 0.002458	0.001009	0.0019915	0.000909	0.001794
2	20 0.001240	6 0.002458	0.001009	0.0019915	0.000909	0.001794
2	21 0.001240	6 0.002458	0.001009	0.0019915	0.000909	0.001794
2	22 0.001240	6 0.002458	0.001009	0.0019915	0.000909	0.001794
2	23 0.001240	6 0.002458	0.001009	0.0019915	0.000909	0.001794
2	24 0.001246	6 0.002458	0.001009	0.0019915	0.000909	0.001794
2	25 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
2	26 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
2	27 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
2	28 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
2	29 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
3	30 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
3	31 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
3	32 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
3	33 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
3	34 0.004749	9 0.00367	0.003848	0.0029736	0.003467	0.002679
3	35 0.003668	3 0.007342	0.002972	0.0059489	0.002677	0.005359
3	36 0.003668	3 0.007342	0.002972	0.0059489	0.002677	0.005359
3	37 0.003668	3 0.007342	0.002972	0.0059489	0.002677	0.005359
	38 0.003668	3 0.007342	0.002972	0.0059489	0.002677	0.005359
÷	39 0.003668	3 0.007342	0.002972	0.0059489	0.002677	0.005359
2	0 0.003668	3 0.007342	0.002972	0.0059489	0.002677	0.005359
2	1 0.003668	3 0.007342	0.002972	0.0059489	0.002677	0.005359
2		3 0.007342	0.002972	0.0059489	0.002677	0.005359
2		3 0.007342	0.002972	0.0059489	0.002677	0.005359
4		0.007342	0.002972	0.0009469	0.002077	0.005359
4	5 0.0145	0.011029	0.011021	0.000930	0.01005	0.00805
4	0 0.0145	0.011029	0.011021	0.000930	0.01005	0.000005
4	7 0.01450 8 0.01450	0.011020	0.011821	0.0000000	0.01065	0.000000
4	0 0.0140 0 0.01450	0.011020	0.011821	0.0000000	0.01065	0.00000
5	0 0.0145	0.011029	0.011821	0.008936	0.01065	0.00805
5	1 0.01459	0.011029	0.011821	0.008936	0.01065	0.00805
5	2 0.01459	0 011029	0.011821	0.008936	0.01065	0.00805
5	3 0.01459	0.011029	0.011821	0.008936	0.01065	0.00805
5	4 0.0145	9 0.011029	0.011821	0.008936	0.01065	0.00805
Ę	55 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
Ę	6 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
5	57 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
Ę	58 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
5	59 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
6	60 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
6	61 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
6	62 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
6	63 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
6	64 0.02691	5 0.030946	0.021807	0.0250731	0.019646	0.022588
6	0.094728	0.0684	0.076751	0.0554191	0.069145	0.049927
6	00 0.094728	3 0.0684	0.076751	0.0554191	0.069145	0.049927
6	07 0.094728	o 0.0684	0.076751	0.0554191	0.069145	0.049927
6		o 0.0684	0.076751	0.0554191	0.069145	0.049927
6	0 0 00470		0.076751	0.0554191	0.069145	0.049927
1	0 0.094720	0.0004	0.070731	0.0004191	0.009140	0.049927

Appendix A7. Prevalence of stroke by age, gender and smoking status (contd.).

_	SMOKERS			FORMER	SMOKERS	NON-SMOKERS	
Age		Male	Female	Male	Female	Male	Female
7	′1	0.094728	0.0684	0.076751	0.0554191	0.069145	0.049927
7	'2	0.094728	0.0684	0.076751	0.0554191	0.069145	0.049927
7	'3	0.094728	0.0684	0.076751	0.0554191	0.069145	0.049927
7	′4	0.094728	0.0684	0.076751	0.0554191	0.069145	0.049927
7	'5	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
7	'6	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
7	7	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
7	78	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
7	'9	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	30	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	31	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	32	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	33	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	34	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	35	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	86	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	37	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	88	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
8	39	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	90	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	91	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	92	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	93	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	94	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	95	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	96	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	97	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	98	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
g	99	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041
10	00	0.16675	0.113766	0.135104	0.0921752	0.121715	0.083041