# National Institute for Health and Care Excellence

Final

## Intrapartum care

## [M] Evidence reviews for uterotonics for the prevention of postpartum haemorrhage

NICE guideline NG235

*Evidence reviews underpinning recommendations 1.10.9 to 1.10.11 and 1.10.13 in the NICE guideline* 

September 2023

Final

These evidence reviews were developed by NICE



FINAL

#### Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

#### Copyright

© NICE 2023 All rights reserved. Subject to Notice of rights.

ISBN: 978-1-4731-5398-1

### Contents

| Uteroton | ics for | the prevention of postpartum haemorrhage                                                                                          | 6          |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| Revie    | ew que  | stion                                                                                                                             | 6          |
|          | Introd  | uction                                                                                                                            | 6          |
|          | Summ    | nary of the protocol                                                                                                              | 6          |
|          | Metho   | ds and process                                                                                                                    | 7          |
|          | Effecti | veness evidence                                                                                                                   | 7          |
|          | Summ    | nary of included studies                                                                                                          | 7          |
|          | Qualit  | y assessment of included studies                                                                                                  | 8          |
|          | Clinica | al evidence profile for outcomes included in the network meta-analysis                                                            | 8          |
|          | Econo   | mic evidence                                                                                                                      | 38         |
|          | Summ    | nary of included economic evidence                                                                                                | 40         |
|          | Econo   | mic model                                                                                                                         | 44         |
|          | Unit c  | osts                                                                                                                              | 45         |
|          | The co  | ommittee's discussion and interpretation of the evidence                                                                          | 45         |
|          | Recor   | nmendations supported by this evidence review                                                                                     | 48         |
| Refe     | rences  |                                                                                                                                   | 49         |
| Appendie | ces     |                                                                                                                                   |            |
| Appendiz | хA      | Review protocols                                                                                                                  | 70         |
|          | Review  | w protocol for review question: What is the effectiveness of uterotonics<br>for the prevention of postpartum haemorrhage?         | 70         |
| Appendiz | хΒ      | Literature search strategies                                                                                                      | 78         |
|          | Literat | ure search strategies for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage? | 78         |
| Appendiz | хC      | Effectiveness evidence study selection                                                                                            | 87         |
|          | Study   | selection for: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?                             | 87         |
| Appendix | хD      | Evidence tables                                                                                                                   | 88         |
|          | Evider  | nce tables for review question: What is the effectiveness of uterotonics<br>for the prevention of postpartum haemorrhage?         | 88         |
| Appendix | хE      | Forest plots                                                                                                                      | 89         |
|          | Forest  | t plots for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?               | 89         |
| Appendix | хF      | GRADE tables                                                                                                                      | 97         |
|          | GRAD    | E tables for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?              | 97         |
| Appendiz | x G     | Economic evidence study selection                                                                                                 | <b>9</b> 8 |
|          | Study   | selection for: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?                             | 98         |
| Appendix | хH      | Economic evidence tables                                                                                                          | 99         |

| Econ       | omic evidence tables for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage? | 99  |
|------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
| Appendix I | Economic model                                                                                                                   | 103 |
| Econ       | omic model for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?           | 103 |
| Appendix J | Excluded studies                                                                                                                 | 125 |
| Exclu      | Ided studies for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?         | 125 |
| Appendix K | Research recommendations – full details                                                                                          | 138 |
| Rese       | arch recommendations for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage? | 138 |
| Appendix L | Network meta-analysis methods                                                                                                    | 139 |
| Appendix M | Model fit results                                                                                                                | 143 |
| Appendix N | Inconsistency checks                                                                                                             | 148 |

## Uterotonics for the prevention of postpartum haemorrhage

### **Review question**

What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

### Introduction

Women who choose to have active management of the third stage of labour are routinely offered a uterotonic during the third stage of labour. This medicine leads to contraction of the uterus, separation of the placenta and reduces blood loss from the placental site, reducing the risk of postpartum haemorrhage (PPH). A number of different uterotonics are available including oxytocin, the oxytocin analogue carbetocin, prostaglandins and the ergot alkaloid ergometrine.

The aim of this review was to determine which uterotonic agent is the most effective and cost-effective for the prevention of postpartum haemorrhage.

### Summary of the protocol

See Table 1 for a summary of the Population, Intervention, Comparison and Outcome (PICO) characteristics of this review.

| Population   | <ul> <li>Women in the third stage of labour following a vaginal or caesarean birth</li> </ul>                                                                                                                                                                                             |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Intervention | The following uterotonic agents:                                                                                                                                                                                                                                                          |  |  |
|              | ∘ Carbetocin                                                                                                                                                                                                                                                                              |  |  |
|              | <ul> <li>Ergometrine (includes also ergonovine, methylergonovine)</li> </ul>                                                                                                                                                                                                              |  |  |
|              | <ul> <li>Injectable prostaglandins (carboprost, tromethamine, sulprostone)</li> </ul>                                                                                                                                                                                                     |  |  |
|              | <ul> <li>Misoprostol</li> </ul>                                                                                                                                                                                                                                                           |  |  |
|              | - Dose ≤600 mcg                                                                                                                                                                                                                                                                           |  |  |
|              | - Dose >600 mcg to ≤800 mcg                                                                                                                                                                                                                                                               |  |  |
|              | - Dose >800 mcg to ≤1000 mcg                                                                                                                                                                                                                                                              |  |  |
|              | - Dose >1000 mcg                                                                                                                                                                                                                                                                          |  |  |
|              | o Oxytocin                                                                                                                                                                                                                                                                                |  |  |
|              | - Dose ≤1 iu                                                                                                                                                                                                                                                                              |  |  |
|              | - Dose >1 iu to ≤ 5 iu                                                                                                                                                                                                                                                                    |  |  |
|              | - Dose >5 iu to ≤ 10 iu                                                                                                                                                                                                                                                                   |  |  |
|              | - Dose > 10 iu                                                                                                                                                                                                                                                                            |  |  |
|              | The following combination agents:                                                                                                                                                                                                                                                         |  |  |
|              | <ul> <li>Syntometrine          ® as a fixed-combination agent containing 5 international<br/>units (IU) of oxytocin and 500 mcg of ergometrine; any oxytocin dose and<br/>route when combined with any dose and route of ergometrine,<br/>ergonovine, or methylergonovine     </li> </ul> |  |  |
|              | <ul> <li>Misoprostol plus oxytocin (any oxytocin dose and route when combined<br/>with any dose and route of misoprostol)</li> </ul>                                                                                                                                                      |  |  |
|              | The uterotonic or combination agents noted above will be eligible if they are administered systemically by a healthcare professional for preventing PPH at birth. Any dosage, route and regimen will be included                                                                          |  |  |

### Table 1: Summary of the protocol (PICO table)

| Comparison | <ul> <li>Any uterotonic agent listed as part of the interventions compared to another</li> <li>Placebo</li> <li>No treatment</li> </ul>                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outcome    | Critical:<br>• Primary PPH ≥1000 mL<br>Important:<br>• Severe maternal morbidity: intensive care admission<br>• Additional uterotonics<br>• Blood transfusions<br>• Mean volume of blood loss (mL) |

IU: international units; PPH: postpartum haemorrhage

For further details see the review protocol in appendix A.

#### Methods and process

This evidence review was developed using the methods and process described in <u>Developing NICE guidelines: the manual</u>. Methods specific to this review question are described in the review protocol in appendix A and the methods document (supplementary document 1).

Declarations of interest were recorded according to NICE's conflicts of interest policy.

### **Effectiveness evidence**

#### Included studies

A total of 220 randomised controlled trials (RCTs) were included in this evidence review. Most of these studies were identified from a published network meta-analysis (NMA) (n=196) (Gallos, 2018). A further 24 studies were identified by the updated literature search and included in the review.

53 studies provided evidence that was not included in the NMA and pairwise analysis was conducted for these studies (see supplement 5).

See the literature search strategy in appendix B and study selection flow chart in appendix C.

#### **Excluded studies**

Studies not included in this review are listed, and reasons for their exclusion are provided in appendix J.

### Summary of included studies

There was evidence available for all the specified outcomes, but not all studies provided data for every outcome included in this evidence review, therefore a narrative summary is presented below, which describes the overall evidence, and the studies that provided evidence for specific outcomes.

Trials were predominantly in population with high risk of PPH (n=78), or a combination of high and low risk for PPH (n=73). There were 69 trials with a population of low risk for PPH. High risk for PPH was defined as women with comorbidities and pregnancy complications

predisposing them to a high risk of PPH, and low risk for PPH was defined as healthy women with a singleton term pregnancy delivering vaginally.

The majority of the studies reported vaginal births (n=149). The rest reported caesarean births (n=67), both vaginal and caesarean births (n=3) and 1 study did not specify mode of birth.

Most studies included both nulliparous and multiparous women (n=125). A minority of trials included either nulliparous (n=7) or multiparous (n=1) women, and the remainder did not state the parity of participants (n=87).

Trials were predominantly conducted in women with a singleton pregnancy (n=145). Forty trials included a mixed population of women with both a singleton and multi-fetal pregnancies. One trial was conducted exclusively in women with a multi-fetal pregnancy. The remaining studies (n=35) did not explicitly state whether participants had a single or multi-fetal pregnancy.

Most of the trials were in a hospital setting (n=212), with only a minority in a community setting (n=8).

The majority of studies included (n=185) were 2 arm trials, directly comparing 2 different interventions, 24 studies were 3 arm trials, 9 studies were 4 arm trials and 2 were 5 arm trials.

There was evidence available for all listed interventions, apart from 2 specified injectable prostaglandins: tromethamine and sulprostone. There was evidence for all specified doses of misoprostol and oxytocin.

See the full evidence tables in appendix D (which is provided as a separate document, supplement 4) and the forest plots in appendix E.

### Quality assessment of included studies

See the clinical evidence profiles in appendix D (which is provided as a separate document, supplement 4).

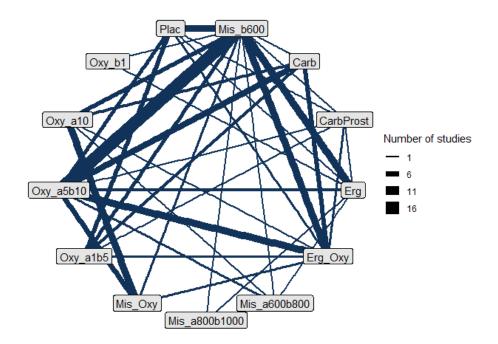
### Clinical evidence profile for outcomes included in the network meta-analysis

NMA was used to synthesise evidence for the following outcomes (both for the whole population of women and for the subgroups of either vaginal or caesarean birth):

- PPH ≥ 1000 mL
- Additional uterotonics
- Blood transfusion
- ICU admission (severe maternal morbidity)
- Mean blood loss (mL).

Where possible, placebo was used as the reference treatment in the NMAs. In two of the outcomes for the caesarean birth subgroup, placebo was not included in the evidence network and therefore another treatment (carbetocin) was used as the reference for those two analyses.

### PPH ≥ 1000ml


98 studies, comparing 13 interventions in 113,135 women were included in this analysis. Of these studies, 1 included women who had either vaginal or caesarean births, 71 were

conducted in women who had vaginal births only, and 26 in women who had caesarean births only.

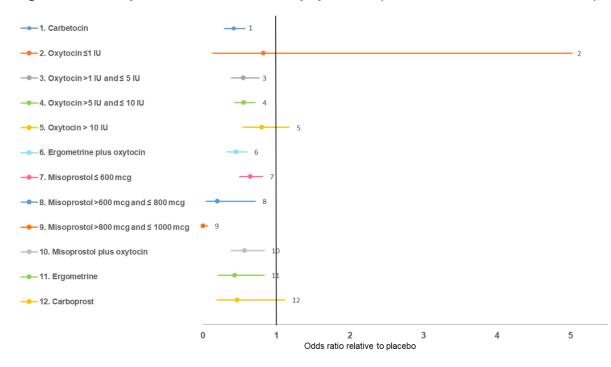
Of the 122 studies that reported this outcome, 24 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 1, the odds ratios and log odds ratios compared to placebo in Table 2, the Forest plot at Figure 2 and the median treatment ranks in Table 3.

#### Figure 1: Network of evidence for PPH ≥ 1000 mL, full dataset



Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >1IU and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_b1, oxytocin ≤1IU.


|                                     | NMA LogOR (95%               | Number of studi |
|-------------------------------------|------------------------------|-----------------|
| interventions compared              | l with placebo               |                 |
| Table 2: Odds ratio, log odds ratio | o and 95% Cris for PPH ≥ 100 | 0 mL for all    |

| Intervention                           | NMA OR (95% Crl)     | NMA LogOR (95%<br>Crl)  | Number of studies providing direct evidence |
|----------------------------------------|----------------------|-------------------------|---------------------------------------------|
| Misoprostol >800 mcg<br>and ≤ 1000 mcg | 0.000 (0.000, 0.065) | -44.31 (-81.14, -2.735) | -                                           |
| Misoprostol >600 mcg<br>and ≤ 800 mcg  | 0.199 (0.045, 0.713) | -1.613 (-3.112, -0.339) | -                                           |
| Carbetocin                             | 0.425 (0.293, 0.577) | -0.857 (-1.228, -0.551) | -                                           |
| Ergometrine                            | 0.434 (0.214, 0.837) | -0.8344 (-1.54, -0.179) | 1                                           |
| Ergometrine plus<br>oxytocin           | 0.449 (0.332, 0.600) | -0.800 (-1.104, -0.511) | 2                                           |
| Carboprost                             | 0.467 (0.198, 1.116) | -0.762 (-1.621, 0.1096) | 1                                           |
| Oxytocin >1 IU and ≤<br>5 IU           | 0.548 (0.391, 0.766) | -0.601 (-0.938, -0.266) | 5                                           |
| Oxytocin >5 IU and ≤                   | 0.555 (0.435, 0.711) | -0.589 (-0.832, -0.341) | 4                                           |

| Intervention                 | NMA OR (95% Crl)     | NMA LogOR (95%<br>Crl)  | Number of studies providing direct evidence |
|------------------------------|----------------------|-------------------------|---------------------------------------------|
| 10 IU                        |                      |                         |                                             |
| Misoprostol plus<br>oxytocin | 0.569 (0.383, 0.838) | -0.565 (-0.961, -0.177) | -                                           |
| Misoprostol ≤ 600 mcg        | 0.647 (0.502, 0.817) | -0.436 (-0.690, -0.203) | 8                                           |
| Oxytocin > 10 IU             | 0.803 (0.545, 1.170) | -0.2196 (-0.607, 0.157) | -                                           |
| Oxytocin ≤1 IU               | 0.824 (0.134, 5.018) | -0.1938 (-2.008, 1.613) | -                                           |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of PPH≥1000ml in the intervention arm) with lower numbers indicating greater benefit, OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

In this analysis only one study included the high-dose misoprostol arm and reported no PPH  $\geq$  1000 mL events in that arm which led to high uncertainty in the comparison with this treatment. Therefore high-dose misoprostol has been excluded from the ranking in Table 3 as the probability of being best can be biased for highly uncertain estimates.



#### Figure 2: Forest plot, PPH ≥ 1000 mL full population (OR<1 favours the intervention)

### Table 3: Median treatment ranks and probability of being the best treatment for all interventions for PPH ≥ 1000 mL

| Intervention                          | Median (95% Crl)<br>treatment rank | Probability of being best |  |  |  |
|---------------------------------------|------------------------------------|---------------------------|--|--|--|
| Misoprostol >600 mcg and ≤<br>800 mcg | 1 (1, 9)                           | 74.23%                    |  |  |  |
| Carbetocin                            | 3 (1, 6)                           | 1.83%                     |  |  |  |
| Ergometrine plus oxytocin             | 4 (2, 7)                           | 0.34%                     |  |  |  |
| Ergometrine                           | 4 (1, 10)                          | 1.26%                     |  |  |  |
| Carboprost                            | 4 (1, 12)                          | 12.71%                    |  |  |  |
| Oxytocin >1 IU and ≤ 5 IU             | 7 (3, 10)                          | 0.00%                     |  |  |  |
| Oxytocin >5 IU and ≤ 10 IU            | 7 (4, 9)                           | 0.00%                     |  |  |  |
| Misoprostol plus oxytocin             | 7 (3, 10)                          | 0.00%                     |  |  |  |
|                                       |                                    |                           |  |  |  |

| Intervention          | Median (95% Crl)<br>treatment rank | Probability of being best |
|-----------------------|------------------------------------|---------------------------|
| Oxytocin ≤1 IU        | 11 (1, 12)                         | 9.62%                     |
| Misoprostol ≤ 600 mcg | 9 (6, 10)                          | 0.00%                     |
| Oxytocin > 10 IU      | 10 (8, 12)                         | 0.00%                     |
| Placebo               | 11 (10, 12)                        | 0.00%                     |

Misoprostol >800 mcg and  $\leq$  1000 mcg is excluded from the ranking due to highly uncertain estimates.

### Vaginal birth subgroup analysis

71 studies comparing 13 treatments in 107,322 women were included in this subgroup analysis.

Of the 91 studies that reported this outcome, 20 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 3, the odds ratios compared to placebo in Table 4, the Forest plot at Figure 4 and the median treatment ranks in Table 5.

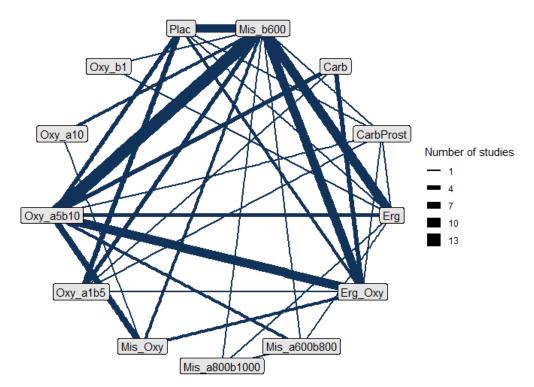
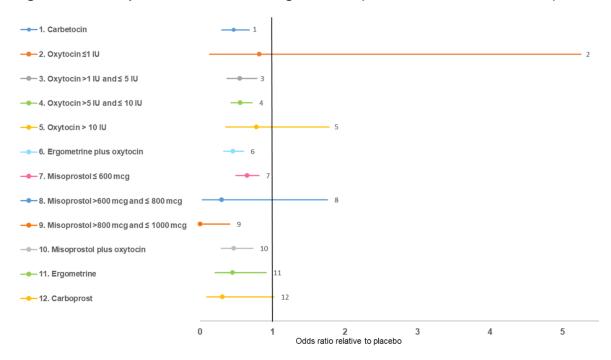



Figure 3: Network of evidence for PPH ≥ 1000 mL, vaginal birth subgroup

Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >1IU and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_b1, oxytocin ≤1IU.


### Table 4: Odds ratio, log odds ratio and 95% Crls for PPH ≥ 1000mL for all interventions compared with placebo, vaginal birth subgroup

| Intervention NMA OR (95% Crl) | NMA LogOR (95%<br>Cri) | Number of studies<br>providing direct<br>evidence |
|-------------------------------|------------------------|---------------------------------------------------|
|-------------------------------|------------------------|---------------------------------------------------|

| Intervention                           | NMA OR (95% Crl)     | NMA LogOR (95%<br>Crl)  | Number of studies<br>providing direct<br>evidence |
|----------------------------------------|----------------------|-------------------------|---------------------------------------------------|
| Misoprostol >800 mcg<br>and ≤ 1000 mcg | 0.000 (0.000, 0.413) | -21.83 (-66.24, -0.885) | -                                                 |
| Misoprostol >600 mcg<br>and ≤ 800 mcg  | 0.300 (0.035, 1.759) | -1.205 (-3.347, 0.5648) | -                                                 |
| Carboprost                             | 0.312 (0.094, 1.023) | -1.166 (-2.365, 0.0231) | 1                                                 |
| Ergometrine                            | 0.451 (0.213, 0.913) | -0.796 (-1.546, -0.091) | 1                                                 |
| Ergometrine plus<br>oxytocin           | 0.453 (0.328, 0.602) | -0.792 (-1.115, -0.507) | 2                                                 |
| Misoprostol plus<br>oxytocin           | 0.468 (0.295, 0.733) | -0.759 (-1.222, -0.311) | -                                                 |
| Carbetocin                             | 0.470 (0.302, 0.680) | -0.755 (-1.197, -0.386) | -                                                 |
| Oxytocin >1 IU and $\leq 5$ IU         | 0.547 (0.375, 0.788) | -0.603 (-0.981, -0.239) | 5                                                 |
| Oxytocin >5 IU and ≤<br>10 IU          | 0.556 (0.429, 0.721) | -0.586 (-0.847, -0.327) | 4                                                 |
| Misoprostol ≤ 600 mcg                  | 0.650 (0.497, 0.814) | -0.431 (-0.699, -0.206) | 8                                                 |
| Oxytocin > 10 IU                       | 0.779 (0.359, 1.780) | -0.2493 (-1.024, 0.577) | -                                                 |
| Oxytocin ≤1 IU                         | 0.819 (0.131, 5.254) | -0.1993 (-2.03, 1.659)  | -                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of PPH≥1000ml in the intervention arm) with lower numbers indicating greater benefit, OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

In this analysis only one study included the high-dose misoprostol arm, and reported no PPH ≥ 1000 mL events in that arm which led to high uncertainty in the comparison with this treatment. Therefore high-dose misoprostol has been excluded from the ranking in Table 5 as the probability of being best can be biased for highly uncertain estimates.

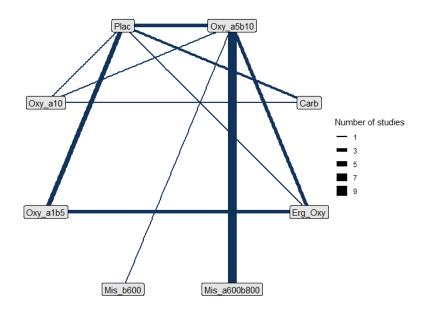


### Figure 4: Forest plot, PPH ≥ 1000mL vaginal birth (OR< 1 favours intervention)

### Table 5: Median treatment ranks and probability of being the best treatment for all interventions for PPH ≥ 1000mL, vaginal birth subgroup

| Intervention                          | Median (95% Crl)<br>treatment rank | Probability of being best |
|---------------------------------------|------------------------------------|---------------------------|
| Carboprost                            | 2 (1, 11)                          | 23.14%                    |
| Misoprostol >600 mcg and ≤<br>800 mcg | 2 (0, 12)                          | 57.63%                    |
| Ergometrine plus oxytocin             | 4 (2, 7)                           | 1.10%                     |
| Carbetocin                            | 5 (2, 9)                           | 1.17%                     |
| Misoprostol plus oxytocin             | 5 (1, 10)                          | 1.39%                     |
| Ergometrine                           | 4 (1, 11)                          | 4.66%                     |
| Oxytocin >1 IU and ≤ 5 IU             | 7 (2, 10)                          | 0.39%                     |
| Oxytocin >5 IU and ≤ 10 IU            | 7 (4, 10)                          | 0.00%                     |
| Oxytocin ≤1 IU                        | 10 (1, 12)                         | 9.95%                     |
| Misoprostol ≤ 600 mcg                 | 9 (6, 11)                          | 0.00%                     |
| Oxytocin > 10 IU                      | 10 (3, 12)                         | 0.57%                     |
| Placebo                               | 11 (10, 12)                        | 0.00%                     |

Misoprostol >800 mcg and  $\leq$  1000 mcg is excluded from the ranking due to highly uncertain estimates.


### Caesarean birth subgroup analysis

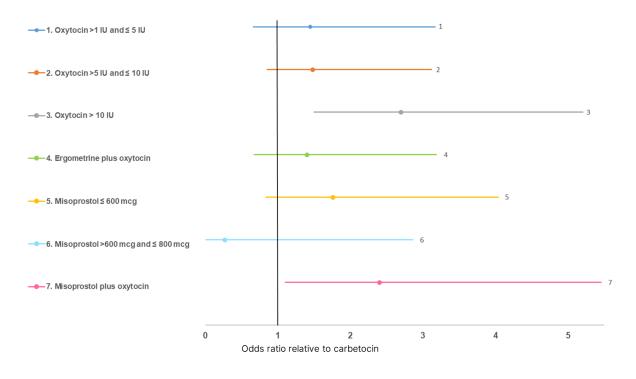
26 studies comparing 8 treatments in 5,284 women were included in this subgroup analysis.

Of the 30 studies that reported this outcome, 4 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 5, the odds ratios compared to carbetocin in Table 6, the Forest plot at Figure 6 and the median treatment ranks in Table 7.

### Figure 5: Network of evidence for PPH ≥ 1000mL, caesarean birth subgroup




Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Oxy\_a1b5, oxytocin >1IU and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU.

### Table 6: Odds ratio, log odds ratio and 95% Crls for PPH ≥ 1000mL for all interventions compared with carbetocin, caesarean birth subgroup

| Intervention                          | NMA OR (95% Crl)     | NMA LogOR (95% Crl)     | Number of studies<br>providing direct<br>evidence |
|---------------------------------------|----------------------|-------------------------|---------------------------------------------------|
| Misoprostol >600 mcg<br>and ≤ 800 mcg | 0.267 (0.010, 2.861) | -1.322 (-4.655, 1.051)  | -                                                 |
| Ergometrine plus<br>oxytocin          | 1.400 (0.674, 3.187) | 0.3363 (-0.3947, 1.159) | 1                                                 |
| Oxytocin >1 IU and ≤ 5<br>IU          | 1.445 (0.663, 3.168) | 0.3684 (-0.4111, 1.153) | 2                                                 |
| Oxytocin >5 IU and ≤<br>10 IU         | 1.480 (0.853, 3.114) | 0.3918 (-0.1594, 1.136) | 4                                                 |
| Misoprostol ≤ 600 mcg                 | 1.759 (0.832, 4.039) | 0.5649 (-0.1839, 1.396) | 1                                                 |
| Misoprostol plus<br>oxytocin          | 2.399 (1.101, 5.458) | 0.8752 (0.0964, 1.697)  | -                                                 |
| Oxytocin > 10 IU                      | 2.694 (1.500, 5.207) | 0.9909 (0.4055, 1.65)   | 3                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of PPH≥1000ml in the intervention arm), OR>1 favours carbetocin, with higher numbers indicating greater benefit of carbetocin in that comparison. Abbreviations: OR, odds ratio; Crl, credible interval.

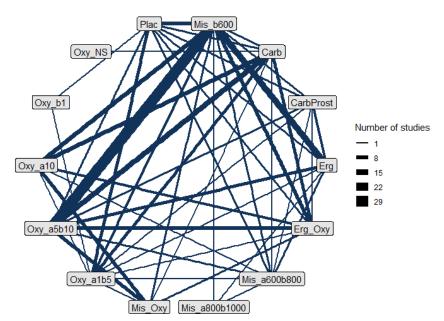
### Figure 6: Forest plot, PPH ≥ 1000mL caesarean birth (OR< 1 favours intervention, compared to carbetocin)



### Table 7: Median treatment ranks and probability of being the best treatment for all interventions for PPH ≥ 1000mL, caesarean birth subgroup

|              | Median (95% Crl) | Probability of being best |
|--------------|------------------|---------------------------|
| Intervention | treatment rank   |                           |

| Intervention                          | Median (95% Crl)<br>treatment rank | Probability of being best |
|---------------------------------------|------------------------------------|---------------------------|
| Misoprostol >600 mcg and ≤<br>800 mcg | 1 (1, 7)                           | 82.44%                    |
| Carbetocin                            | 2 (1, 4)                           | 10.46%                    |
| Ergometrine plus oxytocin             | 4 (2, 8)                           | 2.21%                     |
| Oxytocin >1 IU and ≤ 5 IU             | 4 (1, 8)                           | 2.85%                     |
| Oxytocin >5 IU and ≤ 10 IU            | 4 (2, 8)                           | 1.14%                     |
| Misoprostol ≤ 600 mcg                 | 5 (2, 8)                           | 0.79%                     |
| Misoprostol plus oxytocin             | 7 (3, 8)                           | 0.11%                     |
| Oxytocin > 10 IU                      | 8 (5, 8)                           | 0.00%                     |


### Additional uterotonics

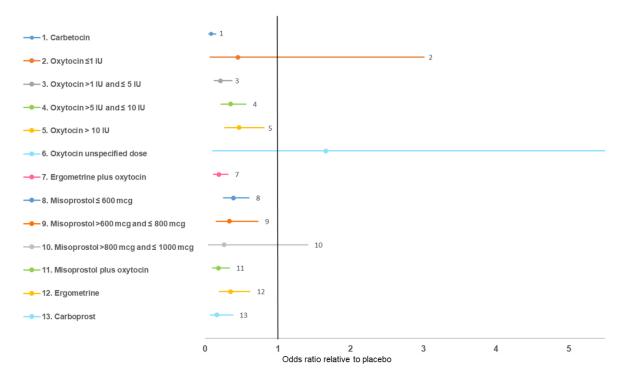
161 studies, comparing 14 interventions in 123,183 women were included in this analysis. Of these studies, 1 included women who had either vaginal or caesarean births, 109 were conducted in women who had vaginal births only, and 51 in women who had caesarean births only.

Of the 163 studies that reported this outcome, 2 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 7, the odds ratios compared to placebo in Table 8, the Forest plot at Figure 8 and the median treatment ranks in Table 9.

### Figure 7: Network of evidence for additional uterotonics, full dataset




Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >11U and ≤51U; Oxy\_a5b10, oxytocin >51U and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_b1, oxytocin ≤11U; Oxy\_NS, oxytocin unspecified dose.

| Table 8: Odds ratio, log odds ratio and 95% Crls for additional uterotonics for all |
|-------------------------------------------------------------------------------------|
| interventions compared with placebo                                                 |

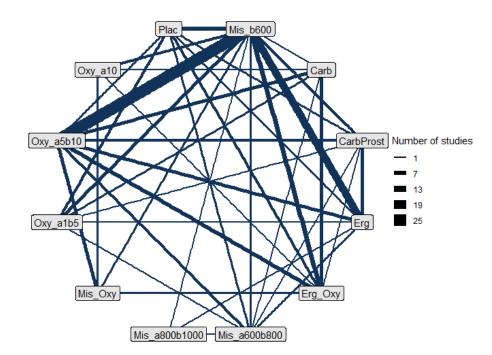
| Intervention                           | NMA OR (95% Crl)      | NMA LogOR (95% Crl)     | Number of studies<br>providing direct<br>evidence |
|----------------------------------------|-----------------------|-------------------------|---------------------------------------------------|
| Carbetocin                             | 0.087 (0.051, 0.146)  | -2.442 (-2.968, -1.927) | 2                                                 |
| Carboprost                             | 0.161 (0.068, 0.378)  | -1.826 (-2.687, -0.972) | 2                                                 |
| Misoprostol plus<br>oxytocin           | 0.184 (0.102, 0.333)  | -1.694 (-2.284, -1.1)   | -                                                 |
| Ergometrine plus<br>oxytocin           | 0.189 (0.112, 0.313)  | -1.668 (-2.185, -1.16)  | 3                                                 |
| Oxytocin >1 IU and ≤ 5<br>IU           | 0.211 (0.121, 0.366)  | -1.558 (-2.116, -1.005) | 6                                                 |
| Misoprostol >800 mcg<br>and ≤ 1000 mcg | 0.259 (0.046, 1.410)  | -1.352 (-3.072, 0.3433) | -                                                 |
| Misoprostol >600 mcg<br>and ≤ 800 mcg  | 0.331 (0.150, 0.724)  | -1.105 (-1.896, -0.323) | 2                                                 |
| Ergometrine                            | 0.347 (0.195, 0.615)  | -1.058 (-1.635, -0.486) | 2                                                 |
| Oxytocin >5 IU and ≤<br>10 IU          | 0.350 (0.220, 0.557)  | -1.05 (-1.516, -0.5854) | 2                                                 |
| Misoprostol ≤ 600 mcg                  | 0.390 (0.252, 0.605)  | -0.942 (-1.379, -0.503) | 9                                                 |
| Oxytocin ≤1 IU                         | 0.447 (0.065, 3.010)  | -0.8055 (-2.731, 1.102) | -                                                 |
| Oxytocin > 10 IU                       | 0.464 (0.267, 0.809)  | -0.769 (-1.321, -0.212) | -                                                 |
| Oxytocin unspecified dose              | 1.658 (0.099, 59.323) | 0.5054 (-2.313, 4.083)  | -                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of additional uterotonics in the intervention arm) with lower numbers indicating greater benefit, OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

### Figure 8: Forest plot, Additional uterotonics full population (OR < 1 favours intervention)



### Table 9: Median treatment ranks and probability of being the best treatment for all interventions for additional uterotonics


| Intervention                           | Median (95% Crl)<br>treatment rank | Probability of being best |
|----------------------------------------|------------------------------------|---------------------------|
| Carbetocin                             | 1 (1, 2)                           | 77.54%                    |
| Carboprost                             | 3 (1, 8)                           | 6.53%                     |
| Misoprostol plus oxytocin              | 4 (2, 7)                           | 0.09%                     |
| Ergometrine plus oxytocin              | 4 (2, 7)                           | 0.00%                     |
| Oxytocin >1 IU and ≤ 5 IU              | 5 (2, 8)                           | 0.03%                     |
| Misoprostol >800 mcg and ≤<br>1000 mcg | 6 (1, 14)                          | 9.78%                     |
| Misoprostol >600 mcg and ≤<br>800 mcg  | 8 (3, 12)                          | 0.02%                     |
| Oxytocin >5 IU and ≤ 10 IU             | 8 (6, 11)                          | 0.00%                     |
| Ergometrine                            | 8 (5, 12)                          | 0.00%                     |
| Oxytocin ≤1 IU                         | 11 (1, 14)                         | 4.44%                     |
| Misoprostol ≤ 600 mcg                  | 10 (7, 12)                         | 0.00%                     |
| Oxytocin > 10 IU                       | 11 (7, 13)                         | 0.00%                     |
| Oxytocin unspecified dose              | 14 (2, 14)                         | 1.57%                     |
| Placebo                                | 13 (12, 14)                        | 0.00%                     |

#### Vaginal birth subgroup analysis

109 studies comparing 12 treatments in 112,805 women were included in this subgroup analysis.

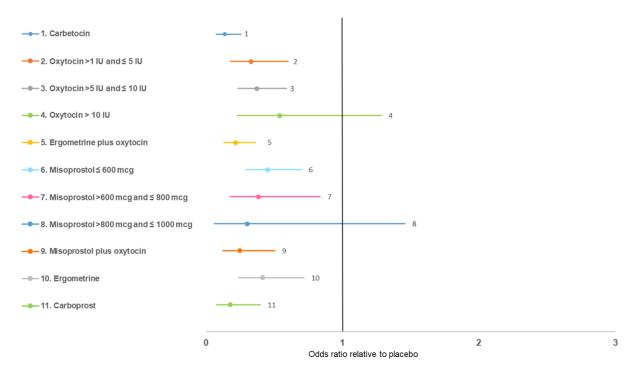
Of the 109 studies that reported this outcome, 0 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 9, the odds ratios compared to placebo in Table 10, the Forest plot at Figure 10 and the median treatment ranks in Table 11.



### Figure 9: Network of evidence for additional uterotonics, vaginal birth subgroup

Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >1/U and ≤5/U; Oxy\_a5b10, oxytocin >5/U and ≤10/U; Oxy\_a10, oxytocin >10/U.


### Table 10: Odds ratio, log odds ratio and 95% Crls for additional uterotonics for all interventions compared with placebo, vaginal birth subgroup

| Intervention                           | NMA OR (95% Crl)     | NMA LogOR (95% Crl)     | Number of studies<br>providing direct<br>evidence |
|----------------------------------------|----------------------|-------------------------|---------------------------------------------------|
| Carbetocin                             | 0.141 (0.075, 0.256) | -1.96 (-2.59, -1.363)   | -                                                 |
| Carboprost                             | 0.177 (0.078, 0.398) | -1.734 (-2.545, -0.922) | 2                                                 |
| Ergometrine plus<br>oxytocin           | 0.219 (0.131, 0.363) | -1.52 (-2.034, -1.012)  | 3                                                 |
| Misoprostol plus<br>oxytocin           | 0.249 (0.123, 0.505) | -1.39 (-2.094, -0.6832) | -                                                 |
| Misoprostol >800 mcg<br>and ≤ 1000 mcg | 0.302 (0.060, 1.457) | -1.196 (-2.807, 0.3764) | -                                                 |
| Oxytocin >1 IU and ≤ 5<br>IU           | 0.332 (0.180, 0.603) | -1.104 (-1.716, -0.505) | 4                                                 |
| Oxytocin >5 IU and ≤ 10<br>IU          | 0.372 (0.235, 0.591) | -0.989 (-1.448, -0.527) | 2                                                 |
| Misoprostol >600 mcg<br>and ≤ 800 mcg  | 0.384 (0.178, 0.838) | -0.958 (-1.727, -0.177) | 2                                                 |

| Intervention          | NMA OR (95% Crl)     | NMA LogOR (95% Crl)     | Number of studies<br>providing direct<br>evidence |
|-----------------------|----------------------|-------------------------|---------------------------------------------------|
| Ergometrine           | 0.414 (0.240, 0.719) | -0.881 (-1.426, -0.33)  | 2                                                 |
| Misoprostol ≤ 600 mcg | 0.451 (0.292, 0.699) | -0.797 (-1.23, -0.358)  | 9                                                 |
| Oxytocin > 10 IU      | 0.541 (0.231, 1.284) | -0.615 (-1.466, 0.2503) | -                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of additional uterotonics in the intervention arm) with lower numbers indicating greater benefit, OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

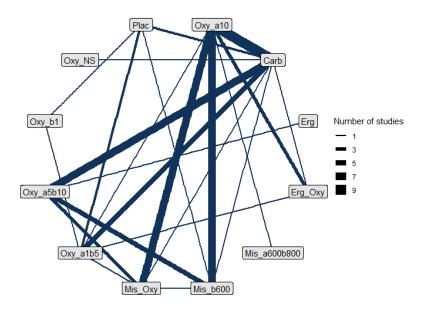
### Figure 10: Forest plot, Additional uterotonics vaginal birth (OR <1 favours intervention)



#### Table 11: Median treatment ranks and probability of being the best treatment for all interventions for additional uterotonics, vaginal birth subgroup

| Intervention                           | Median (95% Crl)<br>treatment rank | Probability of being best |
|----------------------------------------|------------------------------------|---------------------------|
| Carbetocin                             | 1 (1, 3)                           | 56.12%                    |
| Carboprost                             | 2 (1, 7)                           | 24.96%                    |
| Ergometrine plus oxytocin              | 3 (2, 6)                           | 1.11%                     |
| Misoprostol plus oxytocin              | 4 (1, 9)                           | 2.74%                     |
| Misoprostol >800 mcg and ≤<br>1000 mcg | 5 (1, 12)                          | 14.69%                    |
| Oxytocin >1 IU and ≤ 5 IU              | 6 (3, 11)                          | 0.13%                     |
| Oxytocin >5 IU and ≤ 10 IU             | 7 (5, 10)                          | 0.00%                     |
| Misoprostol >600 mcg and ≤<br>800 mcg  | 7 (3, 11)                          | 0.20%                     |
| Ergometrine                            | 8 (5, 11)                          | 0.00%                     |
| Misoprostol ≤ 600 mcg                  | 9 (7, 11)                          | 0.00%                     |
| Oxytocin > 10 IU                       | 10 (5, 12)                         | 0.04%                     |

| Intervention | Median (95% Crl)<br>treatment rank | Probability of being best |
|--------------|------------------------------------|---------------------------|
| Placebo      | 12 (11, 12)                        | 0.00%                     |


#### Caesarean birth subgroup analysis

51 studies comparing 12 treatments in 10,323 women were included in this subgroup analysis.

Of the 53 studies that reported this outcome, 2 studies were excluded as they reported no events in any arm for this outcome.

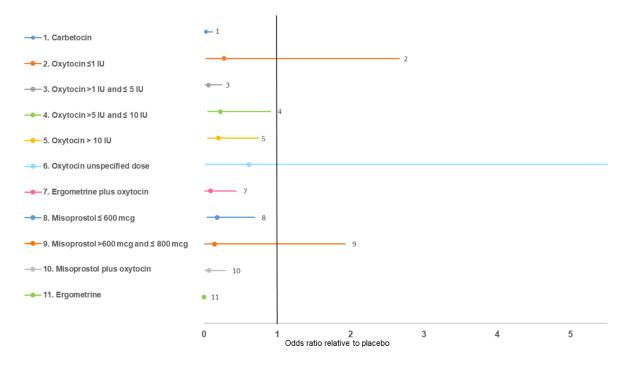
The network plot for this outcome is shown below at Figure 11, the odds ratios compared to placebo in Table 12, the Forest plot at Figure 12 and the median treatment ranks in Table 13.

### Figure 11: Network of evidence for additional uterotonics, caesarean birth subgroup



Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >11U and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_b1, oxytocin ≤1IU; Oxy\_NS, oxytocin unspecified dose.

### Table 12: Odds ratio, log odds ratio and 95% Crls for additional uterotonics for all interventions compared with placebo, caesarean birth subgroup


| Intervention              | NMA OR (95% Crl)     | NMA LogOR (95%<br>Crl)  | Number of studies<br>providing direct<br>evidence |
|---------------------------|----------------------|-------------------------|---------------------------------------------------|
| Ergometrine               | 0.000 (0.000, 0.001) | -95.56 (-198.1, -7.428) | -                                                 |
| Carbetocin                | 0.033 (0.009, 0.115) | -3.412 (-4.71, -2.166)  | 2                                                 |
| Oxytocin >1 IU and ≤ 5 IU | 0.066 (0.016, 0.251) | -2.724 (-4.106, -1.383) | 2                                                 |
| Misoprostol plus oxytocin | 0.072 (0.017, 0.292) | -2.636 (-4.054, -1.231) | -                                                 |

| Intervention                          | NMA OR (95% Crl)         | NMA LogOR (95%<br>Crl)  | Number of studies<br>providing direct<br>evidence |
|---------------------------------------|--------------------------|-------------------------|---------------------------------------------------|
| Ergometrine plus oxytocin             | 0.090 (0.018, 0.442)     | -2.404 (-4.023, -0.817) | -                                                 |
| Misoprostol >600 mcg and<br>≤ 800 mcg | 0.145 (0.011, 1.923)     | -1.929 (-4.518, 0.6539) | -                                                 |
| Misoprostol ≤ 600 mcg                 | 0.181 (0.047, 0.693)     | -1.712 (-3.068, -0.367) | 1                                                 |
| Oxytocin > 10 IU                      | 0.199 (0.052, 0.746)     | -1.616 (-2.951, -0.293) | -                                                 |
| Oxytocin >5 IU and ≤ 10 IU            | 0.227 (0.055, 0.910)     | -1.482 (-2.902, -0.094) | -                                                 |
| Oxytocin ≤1 IU                        | 0.276 (0.028, 2.660)     | -1.286 (-3.567, 0.9785) | 1                                                 |
| Oxytocin unspecified dose             | 0.614 (0.022,<br>30.417) | -0.4883 (-3.813, 3.415) | -                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of additional uterotonics in the intervention arm) with lower numbers indicating greater benefit, OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

In this analysis only one study included the ergometrine arm, and reported no additional uterotonic events in that arm which led to high uncertainty in the comparison with this treatment. Therefore, ergometrine has been excluded from the ranking in Table 13 as the probability of being best can be biased for highly uncertain estimates.

### Figure 12: Forest plot, Additional uterotonics caesarean birth (OR <1 favours intervention)

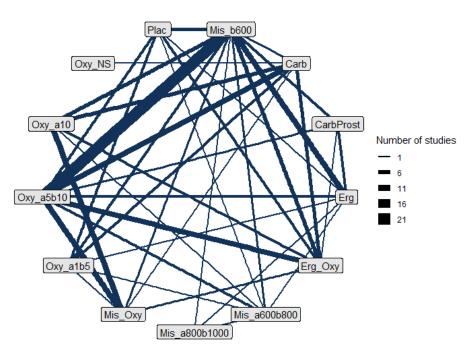


### Table 13: Median treatment ranks and probability of being the best treatment for all interventions for additional uterotonics, caesarean birth subgroup

| Intervention              | Median (95% Crl)<br>treatment rank | Probability of being best |
|---------------------------|------------------------------------|---------------------------|
| Carbetocin                | 1 (1, 3)                           | 67.09%                    |
| Oxytocin >1 IU and ≤ 5 IU | 3 (1, 6)                           | 5.06%                     |
| Misoprostol plus oxytocin | 3 (2, 6)                           | 0.84%                     |

| Intervention                          | Median (95% Crl)<br>treatment rank | Probability of being best |
|---------------------------------------|------------------------------------|---------------------------|
| Ergometrine plus oxytocin             | 4 (1, 8)                           | 3.37%                     |
| Misoprostol >600 mcg and ≤<br>800 mcg | 6 (1, 11)                          | 11.82%                    |
| Misoprostol ≤ 600 mcg                 | 7 (4, 9)                           | 0.00%                     |
| Oxytocin > 10 IU                      | 7 (5, 10)                          | 0.00%                     |
| Oxytocin ≤1 IU                        | 8 (1, 11)                          | 5.49%                     |
| Oxytocin >5 IU and ≤ 10 IU            | 8 (5, 10)                          | 0.00%                     |
| Oxytocin unspecified dose             | 10 (1, 11)                         | 6.33%                     |
| Placebo                               | 11 (9, 11)                         | 0.00%                     |

Ergometrine is excluded from the ranking due to highly uncertain estimates.


#### Blood transfusion

113 studies, comparing 13 interventions in 115,872 women were included in this analysis. Of these studies, 1 included women who had either vaginal or caesarean births, 80 were conducted in women who had vaginal births only, and 32 in women who had caesarean births only.

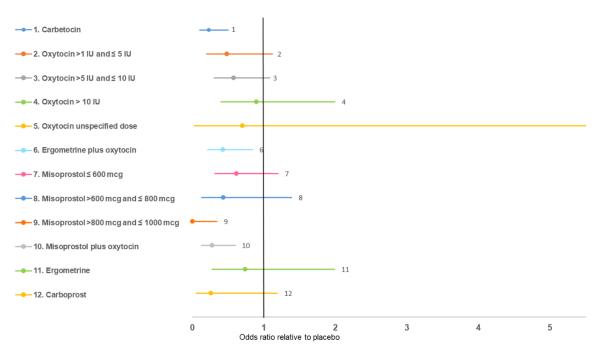
Of the 140 studies that reported this outcome, 27 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 13, the odds ratios compared to placebo in Table 14, the Forest plot at Figure 14 and the median treatment ranks in Table 15.

### Figure 13: Network of evidence for blood transfusion, full dataset



Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >11U and ≤51U; Oxy\_a5b10, oxytocin >51U and ≤101U; Oxy\_a10, oxytocin >101U; Oxy\_NS, oxytocin unspecified dose.


| Table 14: Odds ratio, log odds ratio and 95% Crls for blood transfusion for all |  |
|---------------------------------------------------------------------------------|--|
| interventions compared with placebo                                             |  |

| Intervention                           | NMA OR (95% Crl)      | NMA LogOR (95% Crl)     | Number of studies<br>providing direct<br>evidence |
|----------------------------------------|-----------------------|-------------------------|---------------------------------------------------|
| Misoprostol >800 mcg<br>and ≤ 1000 mcg | 0.000 (0.000, 0.344)  | -30.07 (-78.39, -1.067) | -                                                 |
| Carbetocin                             | 0.234 (0.104, 0.504)  | -1.452 (-2.259, -0.685) | -                                                 |
| Carboprost                             | 0.260 (0.054, 1.190)  | -1.347 (-2.917, 0.1736) | -                                                 |
| Misoprostol plus<br>oxytocin           | 0.277 (0.128, 0.600)  | -1.282 (-2.053, -0.511) | -                                                 |
| Ergometrine plus<br>oxytocin           | 0.428 (0.219, 0.841)  | -0.85 (-1.518, -0.173)  | 3                                                 |
| Misoprostol >600 mcg<br>and ≤ 800 mcg  | 0.434 (0.132, 1.390)  | -0.8358 (-2.024, 0.33)  | 1                                                 |
| Oxytocin >1 IU and ≤ 5<br>IU           | 0.481 (0.201, 1.124)  | -0.7322 (-1.604, 0.117) | 3                                                 |
| Oxytocin >5 IU and ≤ 10<br>IU          | 0.576 (0.306, 1.083)  | -0.551 (-1.183, 0.0801) | 3                                                 |
| Misoprostol ≤ 600 mcg                  | 0.615 (0.320, 1.198)  | -0.486 (-1.139, 0.1803) | 5                                                 |
| Oxytocin unspecified dose              | 0.700 (0.028, 28.474) | -0.356 (-3.58, 3.349)   | -                                                 |
| Ergometrine                            | 0.739 (0.278, 1.985)  | -0.3029 (-1.279, 0.686) | 1                                                 |
| Oxytocin > 10 IU                       | 0.898 (0.402, 1.994)  | -0.108 (-0.9118, 0.69)  | -                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of transfusion in the intervention arm) with lower numbers indicating greater benefit, OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

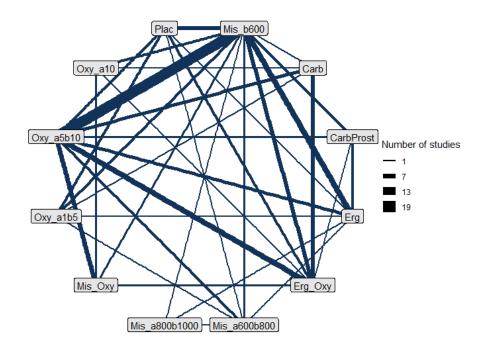
In this analysis only one study included the high-dose misoprostol arm, and reported no transfusion events in that arm which led to high uncertainty in the comparison with this treatment. Therefore, high-dose misoprostol has been excluded from the ranking in Table 15 as the probability of being best can be biased for highly uncertain estimates.

#### Figure 14: Forest plot, blood transfusion full population (OR< 1 favours intervention)



### Table 15: Median treatment ranks and probability of being the best treatment for all interventions for blood transfusion

| Intervention                          | Median (95% Crl)<br>treatment rank | Probability of being best |
|---------------------------------------|------------------------------------|---------------------------|
| Carbetocin                            | 2 (1, 5)                           | 22.32%                    |
| Misoprostol plus oxytocin             | 3 (1, 6)                           | 8.32%                     |
| Carboprost                            | 3 (1, 11)                          | 37.68%                    |
| Ergometrine plus oxytocin             | 5 (3, 8)                           | 0.04%                     |
| Misoprostol >600 mcg and ≤<br>800 mcg | 5 (1, 11)                          | 5.35%                     |
| Oxytocin >1 IU and ≤ 5 IU             | 6 (2, 11)                          | 0.66%                     |
| Oxytocin unspecified dose             | 8 (1, 12)                          | 25.62%                    |
| Oxytocin >5 IU and ≤ 10 IU            | 7 (5, 10)                          | 0.00%                     |
| Misoprostol ≤ 600 mcg                 | 8 (5, 11)                          | 0.00%                     |
| Ergometrine                           | 9 (4, 12)                          | 0.00%                     |
| Oxytocin > 10 IU                      | 10 (7, 12)                         | 0.00%                     |
| Placebo                               | 11 (7, 12)                         | 0.00%                     |


Misoprostol >800 mcg and  $\leq$  1000 mcg is excluded from the ranking due to highly uncertain estimates.

### Vaginal birth subgroup analysis

80 studies comparing 12 treatments in 107,850 women were included in this subgroup analysis.

Of the 99 studies that reported this outcome, 19 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 15, the odds ratios compared to placebo in Table 16, the Forest plot at Figure 16 and the median treatment ranks in Table 17.



#### Figure 15: Network of evidence for blood transfusion, vaginal birth subgroup

Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >1IU and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU.

| Table 16: Odds ratio, log odds ratio and 95% Crls for blood transfusion for all |
|---------------------------------------------------------------------------------|
| interventions compared with placebo, vaginal birth subgroup                     |

| Intervention                           | NMA OR (95% Crl)     | NMA LogOR (95% Crl)     | Number of studies<br>providing direct<br>evidence |
|----------------------------------------|----------------------|-------------------------|---------------------------------------------------|
| Misoprostol >800 mcg<br>and ≤ 1000 mcg | 0.000 (0.000, 0.572) | -31.89 (-96.77, -0.558) | -                                                 |
| Misoprostol plus<br>oxytocin           | 0.214 (0.100, 0.450) | -1.543 (-2.3, -0.7983)  | -                                                 |
| Carboprost                             | 0.252 (0.060, 1.007) | -1.377 (-2.81, 0.0065)  | -                                                 |
| Ergometrine plus<br>oxytocin           | 0.453 (0.259, 0.798) | -0.792 (-1.352, -0.226) | 3                                                 |
| Carbetocin                             | 0.471 (0.215, 1.004) | -0.7522 (-1.537, 0.004) | -                                                 |
| Oxytocin >5 IU and ≤<br>10 IU          | 0.509 (0.298, 0.865) | -0.675 (-1.209, -0.144) | 3                                                 |
| Misoprostol >600 mcg<br>and ≤ 800 mcg  | 0.551 (0.184, 1.624) | -0.5962 (-1.694, 0.485) | 1                                                 |
| Oxytocin > 10 IU                       | 0.558 (0.193, 1.570) | -0.5832 (-1.646, 0.451) | -                                                 |
| Oxytocin >1 IU and ≤ 5<br>IU           | 0.579 (0.246, 1.323) | -0.547 (-1.403, 0.2796) | 3                                                 |
| Misoprostol ≤ 600 mcg                  | 0.587 (0.336, 1.032) | -0.5333 (-1.09, 0.032)  | 5                                                 |
| Ergometrine                            | 0.671 (0.281, 1.612) | -0.3993 (-1.268, 0.478) | 1                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of transfusion in the intervention arm) with lower numbers indicating greater benefit, OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

In this analysis only one study included the high-dose misoprostol arm, and reported no transfusion events in that arm which led to high uncertainty in the comparison with this treatment. Therefore, high-dose misoprostol has been excluded from the ranking in Table 17 as the probability of being best can be biased for highly uncertain estimates.

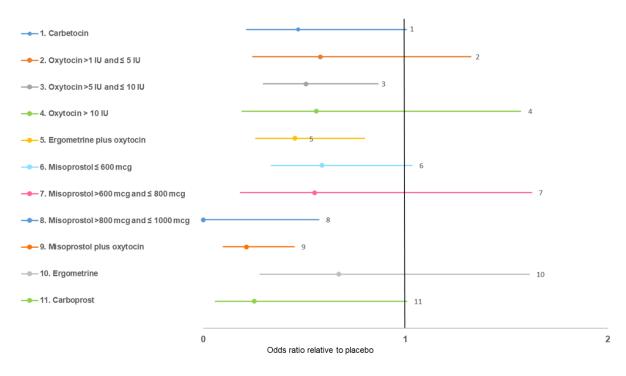
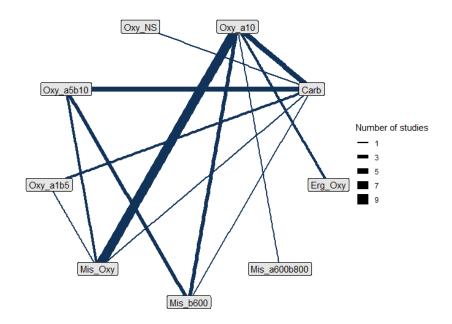



Figure 16: Forest plot, blood transfusion vaginal birth (OR <1 favours intervention)

### Table 17: Median treatment ranks and probability of being the best treatment for all interventions for blood transfusion, vaginal birth subgroup

|                                       | Median (95% Crl) | Probability of being best |
|---------------------------------------|------------------|---------------------------|
| Intervention                          | treatment rank   |                           |
| Misoprostol plus oxytocin             | 1 (1, 3)         | 47.23%                    |
| Carboprost                            | 2 (1, 10)        | 47.72%                    |
| Ergometrine plus oxytocin             | 4 (2, 9)         | 0.03%                     |
| Carbetocin                            | 5 (2, 10)        | 0.98%                     |
| Oxytocin >5 IU and ≤ 10 IU            | 6 (3, 9)         | 0.00%                     |
| Misoprostol >600 mcg and ≤<br>800 mcg | 7 (1, 11)        | 1.99%                     |
| Oxytocin > 10 IU                      | 7 (2, 11)        | 1.52%                     |
| Oxytocin >1 IU and ≤ 5 IU             | 7 (2, 11)        | 0.27%                     |
| Misoprostol ≤ 600 mcg                 | 7 (4, 10)        | 0.00%                     |
| Ergometrine                           | 9 (3, 11)        | 0.27%                     |
| Placebo                               | 11 (8, 11)       | 0.00%                     |


Misoprostol >800 mcg and  $\leq$  1000 mcg is excluded from the ranking due to highly uncertain estimates.

### Caesarean birth subgroup analysis

32 studies comparing 9 treatments in 8,114 women were included in this subgroup analysis.

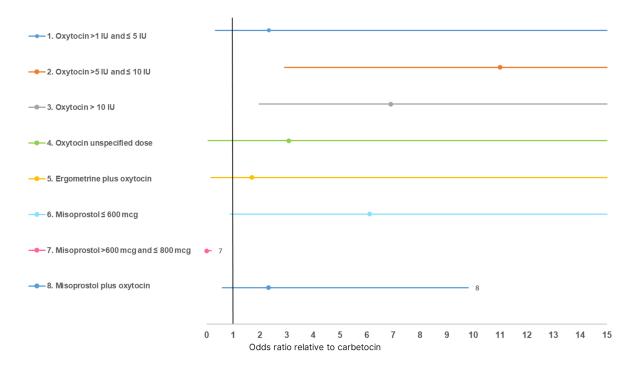
Of the 40 studies that reported this outcome, 8 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 17, the odds ratios compared to carbetocin in Table 18, the Forest plot at Figure 18 and the median treatment ranks in Table 19.





Abbreviations: Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >1IU and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_NS, oxytocin unspecified dose.


### Table 18: Odds ratio, log odds ratio and 95% Crls for blood transfusion for all interventions compared with carbetocin, caesarean birth subgroup

| Intervention                          | NMA OR (95% Crl)       | NMA LogOR (95% Crl)     | Number of<br>studies providing<br>direct evidence |
|---------------------------------------|------------------------|-------------------------|---------------------------------------------------|
| Misoprostol >600 mcg and<br>≤ 800 mcg | 0.000 (0.000, 0.178)   | -67.24 (-153.2, -1.728) | -                                                 |
| Ergometrine plus oxytocin             | 1.693 (0.166, 21.802)  | 0.5265 (-1.797, 3.082)  | -                                                 |
| Misoprostol plus oxytocin             | 2.318 (0.588, 9.796)   | 0.8407 (-0.531, 2.282)  | 1                                                 |
| Oxytocin >1 IU and $\leq$ 5 IU        | 2.349 (0.329, 15.943)  | 0.8539 (-1.111, 2.769)  | 1                                                 |
| Oxytocin unspecified dose             | 3.083 (0.062, 221.850) | 1.126 (-2.777, 5.402)   | 1                                                 |
| Misoprostol ≤ 600 mcg                 | 6.110 (0.881, 61.992)  | 1.81 (-0.1266, 4.127)   | 1                                                 |
| Oxytocin > 10 IU                      | 6.903 (1.978, 30.723)  | 1.932 (0.6821, 3.425)   | 5                                                 |
| Oxytocin >5 IU and $\leq$ 10 IU       | 11.001 (2.921, 58.440) | 2.398 (1.072, 4.068)    | 4                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of transfusion in the intervention arm), OR>1 favours carbetocin, with larger numbers indicating a greater benefit of carbetocin in that comparison. Abbreviations: OR, odds ratio; CrI, credible interval.

In this analysis only one study included the misoprostol >600 mcg and  $\leq$  800 mcg arm, and reported no transfusion events in that arm which led to high uncertainty in the comparison with this treatment. Therefore, misoprostol >600 mcg and  $\leq$  800 mcg has been excluded from the ranking in Table 19 as the probability of being best can be biased for highly uncertain estimates.

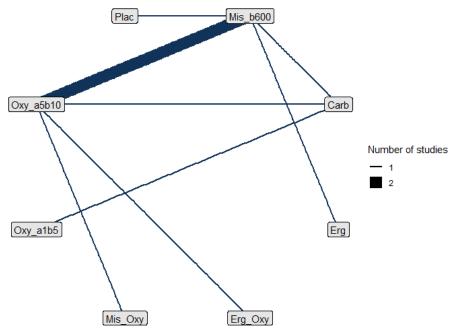
### Figure 18: Forest plot, blood transfusion caesarean birth (OR <1 favours intervention compared to carbetocin)



### Table 19: Median treatment ranks and probability of being the best treatment for all interventions for blood transfusion, caesarean birth subgroup

| Intervention               | Median (95% Crl)<br>treatment rank | Probability of being best |
|----------------------------|------------------------------------|---------------------------|
| Carbetocin                 | 2 (1, 4)                           | 33.30%                    |
| Ergometrine plus oxytocin  | 3 (1, 7)                           | 22.12%                    |
| Misoprostol plus oxytocin  | 4 (1, 6)                           | 1.40%                     |
| Oxytocin >1 IU and ≤ 5 IU  | 4 (1, 8)                           | 11.49%                    |
| Oxytocin unspecified dose  | 4 (1, 8)                           | 31.37%                    |
| Misoprostol ≤ 600 mcg      | 6 (2, 8)                           | 0.32%                     |
| Oxytocin > 10 IU           | 6 (4, 8)                           | 0.00%                     |
| Oxytocin >5 IU and ≤ 10 IU | 7 (4, 8)                           | 0.00%                     |

Misoprostol >600 mcg and  $\leq$  800 mcg is excluded from the ranking due to highly uncertain estimates.


### ICU admission (morbidity)

9 studies, comparing 8 interventions in 54,377 women were included in this analysis. Of these studies, 8 were conducted in women who had vaginal births only, and 1 in women who had caesarean births only.

Of the 22 studies that reported this outcome, 13 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 19, the odds ratios compared to placebo in Table 20 and the Forest plot at Figure 20.

Figure 19: Network of evidence for ICU admission, full dataset



Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >1IU and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU.

| Table 20: Odds ratio, log odds ratio and 95% Crls for ICU admission for all |  |
|-----------------------------------------------------------------------------|--|
| interventions compared with placebo                                         |  |

| Intervention                    | NMA OR (95% Crl)              | NMA LogOR (95% Crl)      | Number of<br>studies providing<br>direct evidence |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------|
| Oxytocin >1 IU and $\leq$ 5 IU  | 0.000 (0.000, 0.581)          | -25.29 (-70.78, -0.5434) | -                                                 |
| Ergometrine                     | 0.000 (0.000, 0.708)          | -25.06 (-70.55, -0.3448) | -                                                 |
| Misoprostol plus oxytocin       | 0.276 (0.005, 9.641)          | -1.287 (-5.267, 2.266)   | -                                                 |
| Oxytocin >5 IU and $\leq$ 10 IU | 0.779 (0.082, 7.493)          | -0.2502 (-2.507, 2.014)  | -                                                 |
| Carbetocin                      | 0.820 (0.081, 8.281)          | -0.1984 (-2.511, 2.114)  | -                                                 |
| Misoprostol ≤ 600 mcg           | 1.033 (0.120, 9.016)          | 0.03242 (-2.117, 2.199)  | 1                                                 |
| Ergometrine plus oxytocin       | 7.27E+10 (1.064,<br>5.22E+30) | 25.01 (0.06165, 70.73)   | -                                                 |

Results from the random effects NMA. OR<1 favours the intervention (lower risk of ICU admission in the intervention arm with lower numbers indicating a greater effect), OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

In this analysis all of the estimates are highly uncertain given the sparse evidence network, and the treatment ranking has not been presented as the probability of being best is likely to be biased.

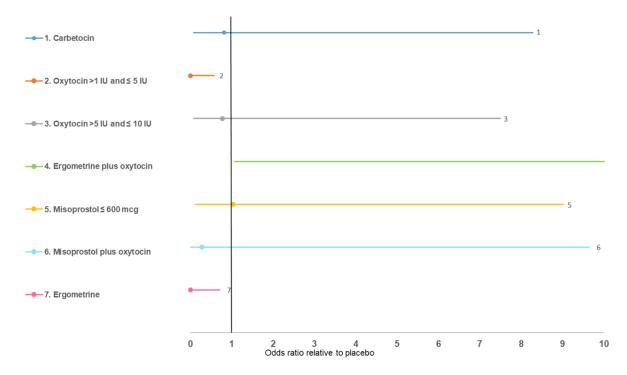
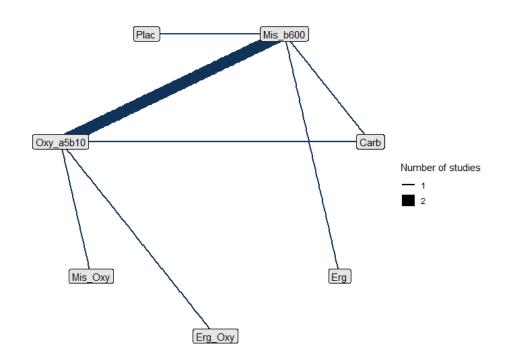



Figure 20: Forest plot, ICU admission full population (OR <1 favours intervention)


The forest plot in Figure 20 does not show the point estimate or upper error bar for ergometrine plus oxytocin. This is because these values are very large, so are much further to the right on the graph than all other strategies.

### Vaginal birth subgroup analysis

8 studies comparing 7 treatments in 54,000 women were included in this subgroup analysis.

Of the 18 studies that reported this outcome, 10 studies were excluded as they reported no events in any arm for this outcome.

The network plot for this outcome is shown below at Figure 21, the odds ratios compared to placebo in Table 21 and the Forest plot at Figure 22.



### Figure 21: Network of evidence for ICU admission, vaginal birth subgroup

Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a5b10, oxytocin >5IU and ≤10IU.

| Intervention                  | NMA OR (95% Crl)              | NMA LogOR (95% Crl)      | Number of studies<br>providing direct<br>evidence |
|-------------------------------|-------------------------------|--------------------------|---------------------------------------------------|
| Ergometrine                   | 0.000 (0.000, 0.692)          | -25.12 (-70.43, -0.3677) | -                                                 |
| Misoprostol plus<br>oxytocin  | 0.262 (0.005, 9.459)          | -1.339 (-5.293, 2.247)   | -                                                 |
| Oxytocin >5 IU and ≤<br>10 IU | 0.711 (0.081, 7.721)          | -0.3406 (-2.518, 2.044)  | -                                                 |
| Carbetocin                    | 0.746 (0.081, 8.542)          | -0.2936 (-2.513, 2.145)  | -                                                 |
| Misoprostol ≤ 600 mcg         | 0.950 (0.118, 9.217)          | -0.05112 (-2.141, 2.221) | 1                                                 |
| Ergometrine plus<br>oxytocin  | 7.13E+10 (0.925,<br>9.80E+30) | 24.99 (-0.07789, 71.36)  | -                                                 |

### Table 21: Odds ratio, log odds ratio and 95% Crls for ICU admission for all interventions compared with placebo, vaginal birth subgroup

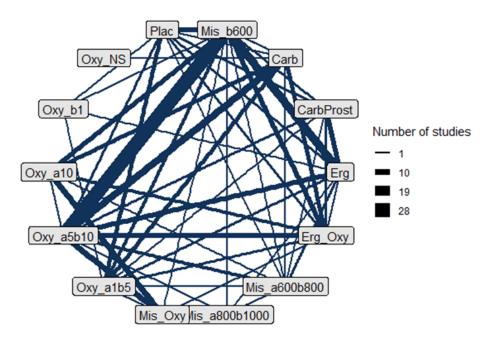
Results from the random effects NMA. OR<1 favours the intervention (lower risk of ICU admission in the intervention arm, with lower numbers indicating a greater effect), OR>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

In this analysis all of the estimates are highly uncertain given the sparse evidence network, and the treatment ranking has not been presented as the probability of being best is likely to be biased.

-1. Carbetocin - 2 ← 2. Oxytocin >5 IU and ≤ 10 IU - 3. Ergometrine plus oxytocin 4 I disoprostol ≤ 600 mcg 5. Misoprostol plus oxytocin 6. Ergometrine 0 1 2 3 4 5 6 7 8 9 10 Odds ratio relative to placebo

#### Figure 22: Forest plot, ICU admission vaginal birth (OR <1 favours intervention)

The forest plot in Figure 22 does not show the point estimate or upper error bar for ergometrine plus oxytocin. This is because these values are very large, so are much further to the right on the graph than all other strategies.


#### Caesarean birth subgroup analysis

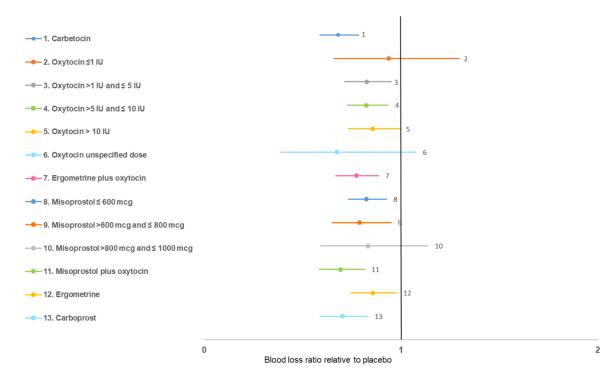
Only 1 study comparing 2 treatments was identified for this outcome in the caesarean birth subgroup, therefore an NMA could not be conducted. These results were analysed using pairwise analysis, which can be found in supplement 5.

#### Mean blood loss (ml)

156 studies, comparing 14 interventions in 85,514 women were included in this analysis. Of these studies, 1 included women who had either vaginal or caesarean births, 109 were conducted in women who had vaginal births only, and 46 in women who had caesarean births only.

The network plot for this outcome is shown below at Figure 23, the odds ratios compared to placebo in Table 22, the Forest plot at Figure 24 and the median treatment ranks in Table 23.




### Figure 23: Network of evidence for mean blood loss, full dataset

Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >11U and ≤51U; Oxy\_a5b10, oxytocin >51U and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_b1, oxytocin ≤11U; Oxy\_NS, oxytocin unspecified dose.

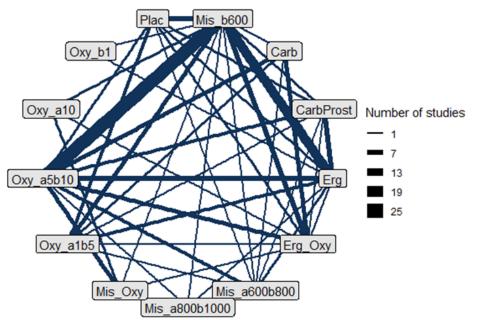
| ······································ |                                   |                                             |  |  |
|----------------------------------------|-----------------------------------|---------------------------------------------|--|--|
| Intervention                           | NMA blood loss ratio<br>(95% Crl) | Number of studies providing direct evidence |  |  |
| Oxytocin unspecified dose              | 0.6734 (0.3929, 1.077)            | -                                           |  |  |
| Carbetocin                             | 0.6819 (0.588, 0.7849)            | 1                                           |  |  |
| Misoprostol plus oxytocin              | 0.6931 (0.5858, 0.8168)           | -                                           |  |  |
| Carboprost                             | 0.7023 (0.5887, 0.832)            | 2                                           |  |  |
| Ergometrine plus oxytocin              | 0.7731 (0.6696, 0.8866)           | 2                                           |  |  |
| Misoprostol >600 mcg and ≤ 800<br>mcg  | 0.7903 (0.6513, 0.9498)           | 10                                          |  |  |
| Misoprostol ≤ 600 mcg                  | 0.8249 (0.7323, 0.927)            | 8                                           |  |  |
| Oxytocin >5 IU and ≤ 10 IU             | 0.825 (0.7271, 0.9341)            | 2                                           |  |  |
| Oxytocin >1 IU and ≤ 5 IU              | 0.8266 (0.7146, 0.9509)           | 6                                           |  |  |
| Misoprostol >800 mcg and ≤<br>1000 mcg | 0.8317 (0.5921, 1.137)            | -                                           |  |  |
| Oxytocin > 10 IU                       | 0.8563 (0.7326, 0.9961)           | -                                           |  |  |
| Ergometrine                            | 0.8574 (0.746, 0.979)             | 2                                           |  |  |
| Oxytocin ≤1 IU                         | 0.9383 (0.6582, 1.297)            | 1                                           |  |  |

### Table 22: blood loss ratio and 95% Crl for mean blood loss for all interventions compared with placebo

Results from the random effects NMA. Blood loss ratio <1 favours the intervention (lower amount of blood lost in the intervention arm) with lower numbers indicating greater benefit, blood loss ratio>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.



### Figure 24: Forest plot, mean blood loss full population (OR< 1 favours intervention)


### Table 23: Median treatment ranks and probability of being the best treatment for all interventions for mean blood loss

| Intervention                           | Median (95% Crl)<br>treatment rank | Probability of being best |
|----------------------------------------|------------------------------------|---------------------------|
| Carbetocin                             | 2 (1, 5)                           | 15.75%                    |
| Misoprostol plus oxytocin              | 3 (1, 6)                           | 14.32%                    |
| Carboprost                             | 3 (1, 7)                           | 13.26%                    |
| Oxytocin unspecified dose              | 2 (1, 14)                          | 49.70%                    |
| Ergometrine plus oxytocin              | 6 (3, 10)                          | 0.08%                     |
| Misoprostol >600 mcg and ≤<br>800 mcg  | 6 (2, 12)                          | 0.79%                     |
| Misoprostol >800 mcg and ≤<br>1000 mcg | 8 (1, 14)                          | 4.70%                     |
| Misoprostol ≤ 600 mcg                  | 9 (5, 12)                          | 0.00%                     |
| Oxytocin >5 IU and ≤ 10 IU             | 9 (5, 12)                          | 0.00%                     |
| Oxytocin >1 IU and ≤ 5 IU              | 9 (4, 13)                          | 0.01%                     |
| Oxytocin > 10 IU                       | 11 (6, 13)                         | 0.00%                     |
| Ergometrine                            | 11 (6, 13)                         | 0.00%                     |
| Oxytocin ≤1 IU                         | 13 (2, 14)                         | 1.38%                     |
| Placebo                                | 14 (12, 14)                        | 0.00%                     |

### Vaginal birth subgroup analysis

109 studies comparing 13 treatments in 76,400 women were included in this subgroup analysis.

The network plot for this outcome is shown below at Figure 25, the odds ratios compared to placebo in Table 24, the Forest plot at Figure 26 and the median treatment ranks in Table 25.





Abbreviations: Plac, placebo; Mis b600, misoprostol ≤600mcg; Carb, carbetocin; CarbProst, carboprost; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_a800b1000, misoprostol >800mcg and ≤1000mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >1IU and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_b1, oxytocin ≤1IU.

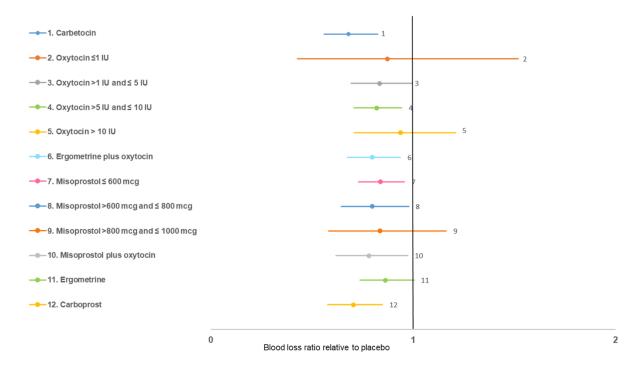

| compared with placebo, vaginal birth subgroup |                                   |                                                |  |  |
|-----------------------------------------------|-----------------------------------|------------------------------------------------|--|--|
| Intervention                                  | NMA blood loss ratio (95%<br>Crl) | Number of studies<br>providing direct evidence |  |  |
| Carbetocin                                    | 0.6817 (0.5584, 0.8251)           | -                                              |  |  |
| Carboprost                                    | 0.7038 (0.5772, 0.847)            | 2                                              |  |  |
| Misoprostol plus oxytocin                     | 0.7817 (0.6185, 0.9731)           | -                                              |  |  |
| Misoprostol >600 mcg and ≤<br>800 mcg         | 0.7976 (0.6443, 0.9777)           | 1                                              |  |  |
| Ergometrine plus oxytocin                     | 0.7977 (0.6755, 0.9358)           | 2                                              |  |  |
| Oxytocin >5 IU and ≤ 10 IU                    | 0.8189 (0.7078, 0.9424)           | 2                                              |  |  |
| Oxytocin >1 IU and ≤ 5 IU                     | 0.8328 (0.693, 0.9924)            | 4                                              |  |  |
| Misoprostol >800 mcg and ≤ 1000 mcg           | 0.8366 (0.5815, 1.163)            | -                                              |  |  |
| Misoprostol ≤ 600 mcg                         | 0.8368 (0.7295, 0.9565)           | 7                                              |  |  |
| Ergometrine                                   | 0.8626 (0.7373, 1.004)            | 2                                              |  |  |
| Oxytocin ≤1 IU                                | 0.8714 (0.4275, 1.519)            | -                                              |  |  |

Table 24: blood loss ratio and 95% Crl for mean blood loss for all interventions

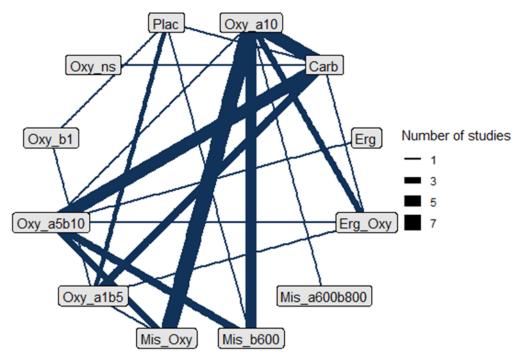
Results from the random effects NMA. Blood loss ratio <1 favours the intervention (lower amount of blood lost in the intervention arm) with lower numbers indicating greater benefit, blood loss ratio>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.

0.9367 (0.7093, 1.209)

Oxytocin > 10 IU



### Figure 26: Forest plot, mean blood loss vaginal birth (OR < 1 favours intervention)


### Table 25: Median treatment ranks and probability of being the best treatment for all interventions for mean blood loss, vaginal birth subgroup

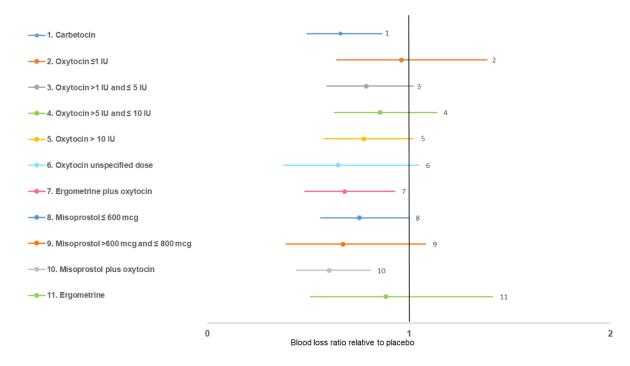
| Medien (05% Crit) Drebebility of being boot |                                                                                                                                                                                                                                                                                          |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| treatment rank                              | Probability of being best                                                                                                                                                                                                                                                                |  |  |  |
| 2 (1, 5)                                    | 39.21%                                                                                                                                                                                                                                                                                   |  |  |  |
| 2 (1, 7)                                    | 23.97%                                                                                                                                                                                                                                                                                   |  |  |  |
| 5 (1, 11)                                   | 4.72%                                                                                                                                                                                                                                                                                    |  |  |  |
| 6 (2, 11)                                   | 0.20%                                                                                                                                                                                                                                                                                    |  |  |  |
| 6 (2, 12)                                   | 1.88%                                                                                                                                                                                                                                                                                    |  |  |  |
| 7 (4, 10)                                   | 0.00%                                                                                                                                                                                                                                                                                    |  |  |  |
| 7 (1, 13)                                   | 7.59%                                                                                                                                                                                                                                                                                    |  |  |  |
| 8 (1, 13)                                   | 22.00%                                                                                                                                                                                                                                                                                   |  |  |  |
| 8 (3, 12)                                   | 0.22%                                                                                                                                                                                                                                                                                    |  |  |  |
| 8 (5, 11)                                   | 0.00%                                                                                                                                                                                                                                                                                    |  |  |  |
| 9 (5, 12)                                   | 0.00%                                                                                                                                                                                                                                                                                    |  |  |  |
| 11 (4, 13)                                  | 0.22%                                                                                                                                                                                                                                                                                    |  |  |  |
| 12 (10, 13)                                 | 0.00%                                                                                                                                                                                                                                                                                    |  |  |  |
|                                             | Median (95% Crl)           treatment rank           2 (1, 5)           2 (1, 7)           5 (1, 11)           6 (2, 11)           6 (2, 12)           7 (4, 10)           7 (1, 13)           8 (1, 13)           8 (3, 12)           8 (5, 11)           9 (5, 12)           11 (4, 13) |  |  |  |

#### Caesarean birth subgroup analysis

46 studies comparing 12 treatments in 8,585 women were included in this subgroup analysis.

The network plot for this outcome is shown below at Figure 27, the odds ratios compared to placebo in Table 26, the Forest plot at Figure 28 and the median treatment ranks in Table 27.




# Figure 27: Network of evidence for mean blood loss, caesarean birth subgroup

Abbreviations: Plac, placebo; Mis\_b600, misoprostol ≤600mcg; Carb, carbetocin; Erg, ergometrine; Erg\_Oxy, ergometrine plus oxytocin; Mis\_a600b800, misoprostol >600mcg and ≤800mcg; Mis\_Oxy, misoprostol plus oxytocin; Oxy\_a1b5, oxytocin >11U and ≤5IU; Oxy\_a5b10, oxytocin >5IU and ≤10IU; Oxy\_a10, oxytocin >10IU; Oxy\_NS, oxytocin unspecified dose; Oxy\_b1, oxytocin ≤1IU.

# Table 26: blood loss ratio and 95% Crl for mean blood loss for all interventions compared with placebo, caesarean birth subgroup

| Intervention                          | NMA blood loss ratio (95%<br>Crl) | Number of studies providing direct evidence |
|---------------------------------------|-----------------------------------|---------------------------------------------|
| Misoprostol plus oxytocin             | 0.6035 (0.4414, 0.8083)           | -                                           |
| Oxytocin unspecified dose             | 0.6484 (0.3743, 1.048)            | -                                           |
| Carbetocin                            | 0.6605 (0.4926, 0.8652)           | 1                                           |
| Misoprostol >600 mcg and ≤<br>800 mcg | 0.6722 (0.3892, 1.082)            | -                                           |
| Ergometrine plus oxytocin             | 0.6793 (0.482, 0.929)             | -                                           |
| Misoprostol ≤ 600 mcg                 | 0.7539 (0.5607, 0.9983)           | 1                                           |
| Oxytocin > 10 IU                      | 0.7743 (0.5759, 1.02)             | -                                           |
| Oxytocin >1 IU and $\leq$ 5 IU        | 0.7866 (0.5919, 1.022)            | 2                                           |
| Oxytocin >5 IU and ≤ 10 IU            | 0.8555 (0.6303, 1.136)            | -                                           |
| Ergometrine                           | 0.8839 (0.5105, 1.415)            | -                                           |
| Oxytocin ≤1 IU                        | 0.9617 (0.6401, 1.387)            | 1                                           |

Results from the random effects NMA. Blood loss ratio <1 favours the intervention (lower amount of blood lost in the intervention arm) with lower numbers indicating greater benefit, blood loss ratio>1 favours placebo. Abbreviations: OR, odds ratio; Crl, credible interval.



# Figure 28: Forest plot, mean blood loss caesarean birth (OR < 1 favours intervention)

# Table 27: Median treatment ranks and probability of being the best treatment for all interventions for mean blood loss, caesarean birth subgroup

| Intervention                          | Median (95% Crl)<br>treatment rank | Probability of being best |  |  |  |
|---------------------------------------|------------------------------------|---------------------------|--|--|--|
| Misoprostol plus oxytocin             | 2 (1, 6)                           | 28.40%                    |  |  |  |
| Carbetocin                            | 4 (1, 7)                           | 2.76%                     |  |  |  |
| Oxytocin unspecified dose             | 3 (1, 11)                          | 30.46%                    |  |  |  |
| Ergometrine plus oxytocin             | 4 (1, 9)                           | 4.88%                     |  |  |  |
| Misoprostol >600 mcg and ≤<br>800 mcg | 4 (1, 11)                          | 24.50%                    |  |  |  |
| Misoprostol ≤ 600 mcg                 | 6 (3, 10)                          | 0.23%                     |  |  |  |
| Oxytocin > 10 IU                      | 7 (4, 10)                          | 0.00%                     |  |  |  |
| Oxytocin >1 IU and ≤ 5 IU             | 8 (4, 11)                          | 0.12%                     |  |  |  |
| Ergometrine                           | 10 (1, 12)                         | 2.85%                     |  |  |  |
| Oxytocin >5 IU and ≤ 10 IU            | 9 (6, 12)                          | 0.00%                     |  |  |  |
| Placebo                               | 11 (1, 12)                         | 5.20%                     |  |  |  |
| Oxytocin ≤1 IU                        | 11 (3, 12)                         | 0.60%                     |  |  |  |

# **Economic evidence**

#### Included studies

Two economic studies were identified which were relevant to this question (Gallos 2019 and Matthijsse 2022).

See the literature search strategy in Appendix B and economic study selection flow chart in Appendix G.

# **Excluded studies**

Economic studies not included in this review are listed, and reasons for their exclusion are provided in Appendix J.

# Summary of included economic evidence

See Table 28 for the economic evidence profile of the included studies.

# Table 28: Economic evidence profile of a systematic review of economic evaluations of uterotonics for the prevention of postpartum haemorrhage

|                              |                                   |                                     |                                                                                                                                                                          | Incremental                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |
|------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                        | Limitations                       | Applicability                       | Other comments                                                                                                                                                           | Costs                                                                                                                                                                                                                                                                                                                           | Effect                                                                                                                                                                                                                                                                                                                                                                 | Cost<br>effectiveness                                                                                                                                                                       | Uncertainty                                                                                                                                                                                                                                                                                                            |
| NICE guideline model<br>2023 | Minor<br>limitations <sup>4</sup> | Directly<br>applicable <sup>1</sup> | Decision analytic<br>model<br>ICERs were<br>calculated for<br>non-QALY<br>outcomes and<br>interpreted by<br>transforming the<br>ICER using the<br>NICE WTP<br>threshold. | Incremental costs<br>are relative to<br>oxytocin 1-5 IU for<br>the full population<br>and caesarean<br>subgroup, and to<br>oxytocin 5-10 IU for<br>vaginal birth<br>Full population<br>Oxytocin 5-10 IU<br>£1.04<br>Oxytocin ≤1 IU<br>£5.39<br>Oxytocin >10 IU<br>£7.95<br>Carbetocin<br>£65.66<br>Ergometrine plus<br>oxytocin | Incremental effects<br>(PPH≥1000mL<br>avoided) are relative<br>to oxytocin 1-5 IU for<br>the full population<br>and caesarean<br>subgroup, and to<br>oxytocin 5-10 IU for<br>vaginal birth<br>Full population <sup>7</sup><br>Oxytocin 5-10 IU<br>0.001<br>Oxytocin ≤1 IU<br>0.053<br>Oxytocin >10 IU<br>0.030<br>Carbetocin<br>-0.015<br>Ergometrine plus<br>oxytocin | Full populationOxytocin 5-10 IU<br>DominatedOxytocin ≤1 IU<br>DominatedOxytocin >10 IU<br>DominatedCarbetocin<br>£4,319 per PPH<br>≥1000mL avoidedErgometrine plus<br>oxytocin<br>Dominated | Full population<br>Probabilistic<br>average results and<br>deterministic results<br>were broadly<br>similar.<br>When AEs are<br>excluded<br>ergometrine plus<br>oxytocin is most<br>likely to be cost-<br>effective.<br>Vaginal birth<br>Probabilistic<br>average results and<br>deterministic results<br>were broadly |

| Study       | Limitations         | Applicability                        | Other comments          | Incremental                   |                               |                  | Uncertainty                          |
|-------------|---------------------|--------------------------------------|-------------------------|-------------------------------|-------------------------------|------------------|--------------------------------------|
|             |                     |                                      |                         | £105.97                       | -0.012                        | Vaginal birth    | similar.                             |
|             |                     |                                      |                         |                               |                               | Oxytocin 1-5 IU  | When AEs are                         |
|             |                     |                                      |                         | Vaginal birth                 | Vaginal birth                 | £1,139 per PPH   | excluded                             |
|             |                     |                                      |                         | Oxytocin 1-5 IU               | Oxytocin 1-5 IU               | ≥1000mL avoided  | ergometrine plus                     |
|             |                     |                                      |                         | £1.50                         | -0.001                        |                  | oxytocin dominated<br>over all other |
|             |                     |                                      |                         |                               |                               | Oxytocin >10 IU  | treatments.                          |
|             |                     |                                      |                         | Oxytocin >10 IU               | Oxytocin >10 IU               | Dominated        | a outmonto.                          |
|             |                     |                                      |                         | £3.52                         | 0.030                         | Oxytocin ≤1 IU   |                                      |
|             |                     |                                      |                         | Oxytocin ≤1 IU                | Oxytocin ≤1 IU                | Dominated        |                                      |
|             |                     |                                      |                         | £6.82                         | 0.060                         | Dominated        |                                      |
|             |                     |                                      |                         | 20.02                         | 0.000                         | Ergometrine plus |                                      |
|             |                     |                                      |                         | Ergometrine plus              | Ergometrine plus              | oxytocin         |                                      |
|             |                     |                                      |                         | oxytocin                      | oxytocin                      | £5,423 per PPH   |                                      |
|             |                     |                                      |                         | £60.86                        | -0.012                        | ≥1000mL avoided  |                                      |
|             |                     |                                      |                         |                               |                               |                  |                                      |
|             |                     |                                      |                         | Carbetocin                    | Carbetocin                    | Carbetocin       | Caesarean birth                      |
|             |                     |                                      |                         | £68.76                        | -0.010                        | Dominated        | Probabilistic                        |
|             |                     |                                      |                         | Casaaraan hirth               | Casaaraan hirth               | Caesarean birth  | average results and                  |
|             |                     |                                      |                         | Caesarean birth<br>Carbetocin | Caesarean birth<br>Carbetocin | Carbetocin       | deterministic results                |
|             |                     |                                      |                         | £23.24                        | -0.024                        | £951 per PPH     | were broadly                         |
|             |                     |                                      |                         | 220.24                        | 0.024                         | ≥1000mL avoided  | similar.                             |
|             |                     |                                      |                         | Oxytocin >10 IU               | Oxytocin >10 IU               |                  |                                      |
|             |                     |                                      |                         | £70.74                        | 0.050                         | Oxytocin >10 IU  |                                      |
|             |                     |                                      |                         |                               |                               | Dominated        |                                      |
|             |                     |                                      |                         | Oxytocin 5-10 IU              | Oxytocin 5-10 IU              |                  |                                      |
|             |                     |                                      |                         | £123.26                       | 0.001                         | Oxytocin 5-10 IU |                                      |
|             |                     |                                      |                         |                               |                               | Dominated        |                                      |
|             |                     |                                      |                         | Ergometrine plus              | Ergometrine plus              | Ergometrine plus |                                      |
|             |                     |                                      |                         | oxytocin<br>£151.08           | oxytocin<br>-0.002            | oxytocin         |                                      |
|             |                     |                                      |                         | 2101.00                       | -0.002                        | Dominated        |                                      |
| Gallos 2019 | Potentially serious | Partially<br>applicable <sup>5</sup> | Decision analytic model | Vaginal birth                 | Vaginal birth                 | Vaginal birth    | Vaginal birth                        |

| Study                                                    | Limitations                  | Applicability | Other comments | Incremental                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               | Uncertainty                                                                                                                                                                              |
|----------------------------------------------------------|------------------------------|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uterotonic drugs to<br>prevent postpartum<br>haemorrhage | limitations <sup>2,3,4</sup> |               |                | Oxytocin<br>£0<br>Ergometrine plus<br>oxytocin<br>-£7<br>Carbetocin £6<br>Misoprostol plus<br>oxytocin -£6<br>Misoprostol £3<br>Ergometrine £6 | Oxytocin 0 cases of<br>PPH ≥ 500 mlErgometrine plus<br>oxytocin<br>0.028 cases of PPH<br>≥ 500 ml avoidedCarbetocin 0.036<br>cases of PPH ≥ 500<br>ml avoidedMisoprostol plus<br>oxytocin<br>0.023 cases of PPH<br>≥ 500 ml avoidedMisoprostol plus<br>oxytocin<br>0.023 cases of PPH<br>≥ 500 ml avoidedErgometrine<br>0.017 cases of PPH<br>≥ 500 ml | carbetocin v<br>ergometrine plus<br>oxytocin<br>£1,889 per PPH ≥<br>500 ml avoided<br>ergometrine plus<br>oxytocin<br>dominates all<br>other<br>interventions | Carbetocin had a<br>greater than 50%<br>probability of being<br>cost-effective<br>relative to oxytocin<br>for cost-<br>effectiveness<br>thresholds > £864<br>per PPH ≥ 500 ml<br>avoided |
|                                                          |                              |               |                | Caesarean birth<br>Misoprostol plus<br>oxytocin £0<br>Oxytocin £29<br>Carbetocin £19<br>Misoprostol £25                                        | Caesarean birth<br>Misoprostol plus<br>oxytocin 0 cases of<br>PPH $\ge$ 500 ml<br>Oxytocin 0.133<br>cases of PPH $\ge$ 500<br>ml<br>Carbetocin 0.033<br>cases of PPH $\ge$ 500<br>ml                                                                                                                                                                   | Caesarean birth<br>Misoprostol plus<br>oxytocin<br>dominates                                                                                                  |                                                                                                                                                                                          |

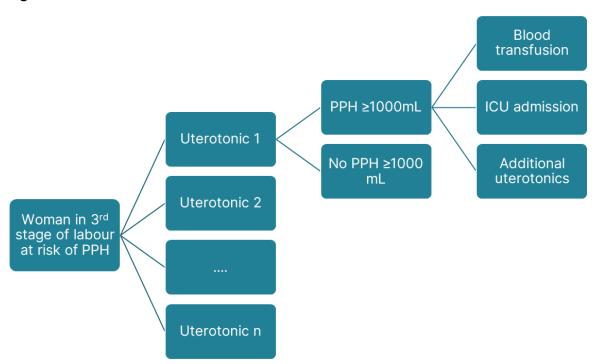
| Study                                                                                                                            | Limitations                                          | Applicability                        | Other comments             | Incremental        |                                               |                         | Uncertainty                                       |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------|--------------------|-----------------------------------------------|-------------------------|---------------------------------------------------|
|                                                                                                                                  |                                                      |                                      |                            |                    | Misoprostol<br>0.152 cases of PPH<br>≥ 500 ml |                         |                                                   |
| Matthijsse 2022<br>Carbetocin versus<br>oxytocin for the<br>prevention of<br>postpartum<br>hemorrhage following<br>vaginal birth | Potentially<br>serious<br>limitations <sup>2.6</sup> | Partially<br>applicable <sup>5</sup> | Decision analytic<br>model | Carbetocin<br>-£55 | Carbetocin<br>0.0342 PPH events<br>avoided    | Carbetocin<br>dominates | 79.5% probability<br>that carbetocin<br>dominates |

<sup>1</sup>This analysis was conducted specifically to answer this review question, QALYs were not used due to limited utility data but cost per outcome was compared with the NICE threshold using a conversion into healthy days lost.

<sup>2</sup>The authors noted that the trials including carbetocin in the NMA were small and of low quality and that there would be a need to update the NMA with the larger and better quality studies that have since been undertaken

<sup>3</sup> Probabilistic sensitivity analysis was restricted to the outcome of PPH  $\geq$  500 ml which was not identified by the guideline committee as either a primary or secondary outcome

<sup>4</sup> The authors identified missing data as the main limitation of this analysis


<sup>5</sup> Clinical effectiveness data from the NMA did not distinguish by dose

<sup>6</sup>The study was funded by the manufacturers of carbetocin

<sup>7</sup>Lower numbers of PPH events indicate more effective treatments

# Economic model

A de-novo economic model was developed to answer this question, based on the outputs from the updated NMAs on PPH ≥1000 mL, additional uterotonics, ICU admission, and blood transfusions. The model utilised the decision tree structure as shown in Figure 29, with the time horizon only considering the immediate costs and outcomes in the third stage of labour. The model compares all uterotonics included in the NMAs (where data allows), and due to a lack of utility data in this area, costs are presented alongside outcomes such as number of PPH≥1000 mL events avoided rather than as cost per QALY gained.



### Figure 29: Model schematic

Costs included in the model were; prophylactic drug costs, drug administration costs, treatment-related adverse event costs, cost of additional uterotonics, cost of blood transfusion, and cost of ICU admission (as a scenario analysis). In the base-case, ICU admission and the costs associated with this were excluded due to missing data in the NMA.

Results were generated separately for the full population and the subgroups of vaginal birth and caesarean birth, as agreed by the committee. Efficacy results for each population group were informed by the corresponding NMA.

Deterministic results were presented alongside a probabilistic sensitivity analysis (PSA) which involved repeated Monte Carlo simulation of model inputs from their corresponding probability distributions. This was done in order to capture the inherent uncertainty in the model inputs. In each simulation the total cost, and total number of outcomes was calculated for each uterotonic. These individual simulation values were then aggregated to determine the average total cost and total number of outcomes, to evaluate the cost per event avoided. The probabilistic results were broadly similar to the deterministic results, suggesting that the cost-effectiveness results are fairly stable to the parameter uncertainty.

Scenario analyses were conducted on inclusion of ICU admissions in the model, exclusion of adverse events, and route of administration for carbetocin, to determine the impact of these events in the economic results. These scenarios were selected as there were data gaps and therefore uncertainty in the data informing these aspects of the economic analysis.

For full details of the economic model and results are available in appendix I.

# Unit costs

The drug costs used in the economic model are detailed in the table below. Where combinations (for example, misoprostol plus oxytocin) or different doses than those listed (for example, misoprostol >800 mcg and  $\leq$  1000 mcg) have been modelled, the costs have been calculated using the values shown in the table. Details of these calculations are available in appendix I, Table 34.

| Resource           | Unit costs        | Source                                       |
|--------------------|-------------------|----------------------------------------------|
| Carbetocin 100mcg  | £17.64 (per dose) | British National Formulary –<br>January 2023 |
| Oxytocin 5IU       | £0.80 (per dose)  | British National Formulary –<br>January 2023 |
| Oxytocin 10IU      | £0.91 (per dose)  | British National Formulary –<br>January 2023 |
| Ergometrine 500mcg | £1.50 (per dose)  | British National Formulary –<br>January 2023 |
| Misoprostol 200mcg | £0.17 (per dose)  | British National Formulary –<br>January 2023 |
| Carboprost 250mcg  | £18.20 (per dose) | British National Formulary –<br>January 2023 |
| Syntometrine       | £1.57 (per dose)  | British National Formulary –<br>January 2023 |

# The committee's discussion and interpretation of the evidence

# The outcomes that matter most

The committee chose postpartum haemorrhage greater than or equal to 1000 mL as the critical outcome for this review. They agreed that this outcome directly informed the effectiveness of uterotonics to prevent postpartum haemorrhage. In addition, they agreed that this outcome indicated major haemorrhage which would impact the woman's birth experience, ability to bond with the baby, and could have a psychological impact on both her and her partner. They also agreed on important outcomes for the review as the need for additional uterotonics, intensive care admissions, number of blood transfusions, and mean blood loss volume. They agreed that these outcomes would provide further information to help understand which uterotonic would be the most effective to prevent postpartum haemorrhage, as they would demonstrate a reduction in other negative outcomes or need for further interventions. The committee discussed maternal mortality and agreed on the high importance of this outcome. However, they agreed that although postpartum haemorrhage accounts for many of maternal deaths, maternal mortality is still a very rare outcome and many studies would be underpowered to report this outcome with precision. Therefore the committee agreed that looking at postpartum haemorrhage as an outcome would be the best way of approaching this review question.

# The quality of the evidence

The trials included for this evidence review were individually assessed using the Cochrane risk of bias tool, and the summarised quality of the evidence for each of the NMAs is presented in supplement 4. The main area where trials were at risk of bias was due to not blinding of assessors. There were also some concerns around allocation concealment, and unclear bias on selective reporting due to no protocol being available to review.

The data presented using pairwise analysis were assessed using GRADE. The majority of the comparisons were assessed as low to very low. The concerns were mainly due to imprecision and also some concerns around risk of bias.

The inconsistency checks highlighted moderate heterogeneity but little evidence of inconsistency (see appendix N for more information).

### Benefits and harms

The committee discussed the network meta-analysis evidence on the use of a variety of uterotonics for the prevention of postpartum haemorrhage. They considered the evidence for the whole population for the critical outcome of PPH of 1000 mL or more and noted that the evidence indicated that, based on the odds ratios, all active treatments were better than placebo, although for 2 treatments the confidence intervals did cross the line of no effect. The committee therefore focussed their discussion on which of the treatments was most effective and noted that there were differences in the most effective uterotonic across the outcomes depending on mode of birth, and therefore agreed that they would consider the evidence broken down by modes of birth (vaginal or caesarean).

The committee also discussed that the evidence for ICU admission (as an indicator of maternal morbidity) was based on evidence from only 9 studies, the networks were sparsely populated, and in the case of the caesarean birth sub-group non-existent, so they agreed that the results from this outcome would be less influential in helping them make decisions.

The committee discussed the method of administration of the uterotonics and noted that both oxytocin and carbetocin could be administered by intravenous or intramuscular injection. They noted that the evidence for both oxytocin and carbetocin included both these routes of administration.

The committee discussed that in addition to the clinical effectiveness of the drugs it was also important to consider the route of administration, licensed status, cost effectiveness, side effects and heat stability.

The committee first discussed the evidence for the caesarean birth subgroup. They discussed that across the outcomes of postpartum haemorrhade of 1000 mL or more, need for additional uterotonics and blood transfusion, the evidence showed that misoprostol >600 mcg to ≤800 mcg and carbetocin were the best ranked drugs, although there was some uncertainty due to large credible intervals. For the outcome of mean blood loss, misoprostol plus oxytocin, or carbetocin were the best ranked drugs. As outlined above, the committee agreed that the evidence for intensive care admission was limited and they could not use it to guide their recommendations. The committee therefore discussed that misoprostol or carbetocin could be options for women who had had a caesarean birth but agreed that in theatre it would be easier to give intravenous carbetocin rather than misoprostol which has to be given orally or rectally, and also that misoprostol is not approved for this indication whereas carbetocin is approved. They also discussed the importance of side effects and noted that misoprostol often causes nausea and vomiting, diarrhoea and abdominal pain which would be extremely unpleasant for the woman, and may be difficult for woman being sutured and recovering from a caesarean birth. The committee also discussed the impact of these side-effects on the birth experience of the woman and her partner and agreed that although they might be short term, the postpartum period is a crucial period for bonding with the baby and it was important to ensure the best experience for the woman and her partner. The committee discussed that carbetocin was heat stable and did not require refrigeration, although this was unlikely to cause a problem in theatres where fridges for drug storage were likely to be available.

The committee then reviewed the cost-effectiveness data for the caesarean birth population (see more detailed discussion below) and agreed that due to its clinical and cost

effectiveness they would recommend intravenous carbetocin to prevent PPH in those women having a caesarean birth.

The committee then looked at the evidence for the vaginal birth subgroup and agreed that the results for this group were more varied. For the critical outcome of PPH of 1000 mL or more there was evidence that some doses of oxytocin, ergometrine, ergometrine plus oxytocin, carbetocin, some doses of misoprostol or misoprostol plus oxytocin were all effective. Similarly, a number of these treatments and carboprost seemed to demonstrate similar efficacy for the outcomes of additional uterotonics, blood transfusion and mean blood loss. The committee agreed not to recommend misoprostol because, as for caesarean birth, they were aware that misoprostol would have unpleasant side effects of nausea and vomiting, diarrhoea and abdominal pain and this would impact the woman's birth experience, and that it was not approved for this indication. The committee agreed that oxytocin or oxytocin plus ergometrine were already routinely used for prophylaxis of PPH, could be given intramuscularly in home births or midwife-led settings and that either of these options could be recommended. They also discussed the place of carbetocin but used the health economic analysis to inform their decision to not recommend carbetocin for use after vaginal birth as it was not cost-effective (see more detailed discussion below).

The committee discussed the evidence for oxytocin, and for oxytocin plus ergometrine, which both showed similar effectiveness for the outcomes of the review, although oxytocin plus ergometrine was marginally more effective with tighter credible intervals for the critical outcome of PPH of 1000 mL or more, and noted that oxytocin >5 units and  $\leq$  10 units and oxytocin plus ergometrine were cost-effective (see detailed discussion below). They agreed to offer women the option of either of these 2 drugs. The committee discussed that the side effect profiles differ between the two drugs, and that oxytocin plus ergometrine could be associated with more side effects (for example, nausea and vomiting) than oxytocin alone, and was contraindicated in women with severe hypertension, cardiac, hepatic or renal disease. Nevertheless, the committee agreed that it was important to give women the option for either drug given the potential increased effectiveness of oxytocin plus ergometrine, but that there needed to be careful consideration of the benefits and harms to allow women to make an informed decision. Based on their knowledge and experience the committee agreed that women receiving oxytocin plus ergometrine should be offered antiemetics as well.

The committee discussed that the evidence was not stratified by risk of postpartum haemorrhage and that the population in the evidence included a mixed population of high and low risk. They discussed that the recommendations would apply to a general mixed population but the committee agreed that due to the marginal greater effectiveness of oxytocin plus ergometrine they would advise this option in women who had been identified as at a higher risk of PPH.

#### Cost effectiveness and resource use

A health economic model was developed for this review question, comparing uterotonics for preventing postpartum haemorrhage. The committee also considered the two published studies identified for this review question (Gallos 2019 and Matthijsse 2022), but ultimately based their recommendations on the updated NMA and new economic model as that included the more recent clinical evidence including 2 large carbetocin trials, and also differentiated treatments by dose. The model was run separately for vaginal birth and caesarean birth since outcomes in the NMA were generated for each of these populations and the committee thought that there would be important differences between these groups and that recommendations may need to be considered separately.

The committee did not use the results of the full population analysis to make recommendations as they felt it was more appropriate to consider the mode-of-birth subgroups separately given the differences between them. The results from the economic model included three outcomes alongside costs;  $PPH \ge 1000$  mL, need for additional uterotonics, and need for blood transfusions. The committee reviewed all results generated in the model, but primarily based their decisions on the PPH  $\ge$  1000 mL outcome as this was designated as the critical outcome for this review.

There was evidence in the caesarean birth subgroup suggesting carbetocin to be the most cost-effective option of the uterotonics the committee were considering. Carbetocin was more costly but more effective than oxytocin >1 iu and  $\leq$  5 iu, and dominant over other oxytocin doses and oxytocin plus ergometrine. Using the conversion method described in a published HTA (Gallos 2019), carbetocin would be considered cost effective compared with oxytocin if a person would be willing to trade 17 days in full health to avoid having a PPH  $\geq$  1000 mL. The committee agreed that this was a reasonable trade off and recommended that carbetocin be offered for women who have had a caesarean birth.

In the vaginal birth subgroup the committee agreed that oxytocin >5 iu and  $\leq$  10 iu was likely to be the most cost-effective option, and oxytocin plus ergometrine was more costly and more effective but would be considered cost-effective compared to oxytocin if a person was willing to trade 91 days of full health to avoid having a PPH  $\ge$  1000 mL. However, there was missing data in the information from the HTA informing the adverse events in the model and a scenario analysis was undertaken in which side-effects were excluded. The committee considered this scenario as they believed that some of the key side effects of treatments in the comparison (nausea and vomiting) could be mitigated by offering antiemetics. Under this scenario oxytocin plus ergometrine became the most likely cost-effective option, being least costly and most effective. Carbetocin was more costly and less effective than oxytocin plus ergometrine in the base case model and in the scenario where adverse events were included. In the scenario where the cost of intramuscular injection was used for carbetocin administration carbetocin was less costly and less effective than ergometrine plus oxytocin, but more costly and more effective than oxytocin >5 iu and  $\leq$  10 iu, however when carbetocin was assumed to be administered by intramuscular injection and adverse events were excluded carbetocin was still more costly and less effective than oxytocin plus ergometrine. The committee agreed that the cost-effectiveness evidence was not strong enough to recommend carbetocin for the prevention of postpartum haemorrhage following vaginal birth. Based on the evidence, the committee recommended a choice between oxytocin or oxytocin plus ergometrine and listed factors that should be discussed when making this decision. The committee also recommended that antiemetics are offered alongside oxytocin plus ergometrine due to the higher likelihood of nausea and vomiting. Offering antiemetics is not anticipated to have a substantial resource impact as these drugs are low cost and are expected to reduce downstream costs in terms of managing nausea and vomiting.

# Other factors the committee took into account

The committee noted that the use of oxytocin for the prevention of postpartum haemorrhage was within the licensed indications and although the IM route is not strictly in line with the marketing authorisation, they recognised that this a well-established practice and licensed in several other countries.

# Recommendations supported by this evidence review

This evidence review supports recommendations 1.10.9 to 1.10.11 and 1.10.13.

# References

# Effectiveness

### Main references are in bold, followed by additional references to the trial

#### Abdel-Aleem 2010

Abdel-Aleem H, Singata M, Abdel-Aleem M, Mshweshwe N, Williams X, Hofmeyr GJ. Uterine massage to reduce postpartum hemorrhage after vaginal delivery. International Journal of Gynecology & Obstetrics 2010;111(1):32-6.

### Acharya 2001

Acharya G, Al-Sammarai MT, Patel N, Al-Habib A, Kiserud T. A randomized, controlled trial comparing effect of oral misoprostol and intravenous syntocinon on intra-operative blood loss during cesarean section. Acta Obstetricia et Gynecologica Scandinavica 2001;80(3):245-50.

### Adanikin 2012

Adanikin AI, Orji EO, Adanikin PO, Olaniyan O. Comparative study of rectal misoprostol to oxytocin infusion in preventing postpartum haemorrhage post-caesarean section. International Journal of Gynecology & Obstetrics 2012;119(Suppl 3):S825.

- Adanikin AI, Orji EO, Fasubaa OB, Onwudiegwu U, Ijarotimi OA, Olaniyan O. The effect of post-cesarean rectal misoprostol on intestinal motility. International Journal of Gynecology and Obstetrics 2012;119(2):159-62.
- Orji EO, Adanikin AI. Prospective randomised double blind study on the effect of post-caesarean rectal misoprostol on intestinal motility. International Journal of Gynecology and Obstetrics 2012;119(Suppl 3):S446-S447.
- Orji EO, Adanikin AO. The effect of post-caesarean rectal misoprostol on intestinal motility. BJOG: an international journal of obstetrics and gynaecology 2013;120(Suppl s1):21.

# Afolabi 2010

Afolabi EO, Kuti O, Orji EO, Ogunniyi SO. Oral misoprostol versus intramuscular oxytocin in the active management of the third stage of labour. Singapore Medical Journal 2010;51(3):207-11.

# Ahmed 2014

Ahmed WAS, Ibrahim ZM, Mostafa I, Kishk EA, Elbahie MA. Safety and efficacy of carbetocin in hypertensive pregnant women undergoing cesarean delivery. Journal of Maternal-Fetal & Neonatal Medicine 2014;27(Suppl 1):49.

#### Al- Sawaf 2013

Al-Sawaf A, El-Mazny A, Shohayeb A. A randomised controlled trial of sublingual misoprostol and intramuscular oxytocin for prevention of postpartum haemorrhage. Journal of Obstetrics and Gynaecology 2013;33(3):277-9

#### Al-Zubaidi 2022

Al Zubaidi, Shaymaa and Alhaidari, Taghreed. Heat stable carbetocin vs. oxytocin for the prevention of post-partum hemorrhage in emergency caesarean delivery: a randomized controlled trial. Journal of perinatal medicine 2022 50(2): 150-156

#### Amant 1999

Amant F, Spitz B, Timmerman D, Corresmans A, Assche FA. Misoprostol compared with methylergometrine for the prevention of postpartum haemorrhage: a double-blind randomised trial. British Journal of Obstetrics and Gynaecology 1999;106:1066-70.

# Amin 2014

Amin N. Prophylactic use of misoprostol in management of third stage of labour and prevention of atonic uterus. Journal of Postgraduate Medical Institute 2014;28(2):196-200.

# Amornpetchakul 2018

Amornpetchakul, Paweena, Lertbunnaphong, Tripop, Boriboonhiransarn, Dittakarn et al. . Intravenous carbetocin versus intravenous oxytocin for preventing atonic postpartum hemorrhage after normal vaginal delivery in high-risk singleton pregnancies: a triple-blind randomized controlled trial. Archives of gynecology and obstetrics 2018; 298(2): 319-327

### Anupama 2021

Anupama Sublingual Misoprostol for the Prevention of Postpartum Haemorrhage - A Randomised Control Trial. European Journal of Molecular and Clinical Medicine 2021; 8(4): 2218-2221

### Askar 2011

Askar AA, Ismail MT, EI-Ezz AA, Rabie NH. Carbetocin versus syntometrine in the management of third stage of labor following vaginal delivery. Archives of Gynecology and Obstetrics 2011;284(6):1359-65.

#### Attilakos 2008

Attilakos G, Psaroudakis D, Ash J, Buchanan R, Winter C, Donald F, et al. Can a new oxytocin analogue reduce the need for additional oxytocics after caesarean section? The results of a double-blind randomised trial. Archives of Disease in Childhood. Fetal and Neonatal Edition 2008;93(Suppl 1):Fa51.

- Attilakos G, Psaroudakis D, Ash J, Buchanan R, Winter C, Donald F, et al. Carbetocin versus oxytocin for the prevention of postpartum haemorrhage following caesarean section: the results of a double-blind randomised trial. BJOG: an international journal of obstetrics and gynaecology 2010;117(8):929-36.
- Attilakos G, Psaroudakis D, Ash J, Buchanan R, Winter C, Donald F, et al. The haemodynamic effects of oxytocin and carbetocin following caesarean section: the results of a double-blind randomised study. BJOG: an international journal of obstetrics and gynaecology 2008;115(s1):140-1.
- Attilakos G, Psaroudakis D, Ash J, Buchanen R, Winter C, Draycott T. Low recruitment rate for a drug trial in obstetrics: an effect of the publicity following the TGN1412 clinical trial at the PAREXEL Research Unit in Northwick Park Hospital? [abstract]. 31st British International Congress of Obstetrics and Gynaecology; 2007 July 4-6; London, UK. 2007:110.

# Atukunda 2014

Atukunda EC, Siedner MJ, Obua C, Mugyenyi GR, Twagirumukiza M, Agaba AG. Sublingual misoprostol versus intramuscular oxytocin for prevention of post-partum haemorrhage in Uganda: a randomised, controlled, non-inferiority trial. Lancet 2014;384(Suppl 1):S3.

• Atukunda EC, Siedner MJ, Obua C, Mugyenyi GR, Twagirumukiza M, Agaba AG. Sublingual misoprostol versus intramuscular oxytocin for prevention of postpartum hemorrhage in Uganda: a double-blind randomized non-inferiority trial. PLoS Medicine 2014;11(11):e1001752.

# Badejoko 2012

Badejoko OO, Ijarotimi AO, Awowole IO, Loto OM, Badejoko BO, Olaiya DS, et al. Adjunctive rectal misoprostol versus oxytocin infusion for prevention of postpartum hemorrhage in women at risk: a randomized controlled trial. Journal of Obstetrics and Gynaecology Research 2012;38(11):1294-301

# Bagheri 2022

Bagheri, Fatemeh Zahra, Azadehrah, Mahboobeh, Shabankhani, Bizhan et al. Rectal vs. sublingual misoprostol in cesarean section: Three-arm, randomized clinical trial. Caspian journal of internal medicine 2022; 13(1): 84-89

### Balki 2008

Balki M, Dhumne S, Kasodekar S, Kingdom J, Windrim R, Carvalho JC. Oxytocin-ergometrine co-administration does not reduce blood loss at caesarean delivery for labour arrest. BJOG: an international journal of obstetrics and gynaecology 2008;115(5):579-84.

### Balki 2021

Balki, Mrinalini, Downey, Kristi, Walker, Andrew et al. Prophylactic Administration of Uterotonics to Prevent Postpartum Hemorrhage in Women Undergoing Cesarean Delivery for Arrest of Labor: A Randomized Controlled Trial. Obstetrics and gynecology 2021; 137(3): 505-513

#### Bamigboye 1998

Bamigboye AA, Hofmeyr GJ, Merrell DA. Rectal misoprostol in the prevention of postpartum haemorrhage: a placebo controlled trial. Proceedings of the 17th Conference on Priorities in Perinatal Care; 1998; South Africa. 1998:49-52.

#### Bamigboye 1998

Bamigboye AA, Hofmeyr GJ, Merrell DA. Rectal misoprostol in the prevention of postpartum hemorrhage: a placebo-controlled trial. American Journal of Obstetrics and Gynecology 1998;179(4):1043-6.

#### Bamigboye 1998

Bamigboye AA, Merrell DA, Hofmeyr GJ, Mitchell R. Randomized comparison of rectal misoprostol with syntometrine for management of third stage of labor. Acta Obstetricia et Gynecologica Scandinavica 1998;77:178-81.

#### Barton 1996

Barton SR, Jackson A. The safety and efficiency of carbetocin to control uterine bleeding following caesarean section. Prenatal and Neonatal Medicine 1996;1(Suppl 1):185.

#### Baskett 2005

Baskett TF, Persad V, Clough H, Young D. Prophylactic use of misoprostol in the third stage of labor [abstract]. Obstetrics & Gynecology 2005;105(4 Suppl):39S.

- Baskett TF, Persad VL, Clough HJ, Young DC. Misoprostol versus oxytocin for the reduction of postpartum blood loss. International Journal of Gynecology & Obstetrics 2007;97(1):2-5.
- Chandra S, Persad V, Young D, Baskett T. A preliminary study of cutaneous blood flow associated with postpartum use of oral misoprostol. Journal of Obstetrics & Gynaecology Canada: JOGC 2004;26(12):1073-6.

# Begley 1990

Begley CM. Comparative studies in the third stage of labour [MSc thesis]. Dublin: Trinity College, University of Dublin, 1990.

- Begley CM. A comparison of 'active' and 'physiological' management of the third stage of labour. Midwifery 1990;6:3-17.
- Begley CM. The effect of ergometrine on breast feeding. Midwifery 1990;6:60-72.

# Bellad 2009

Bellad M, Ganachari TDM, Mallapur M. Sublingual (SL) powdered misoprostol (400 mcg) vs IM oxytocin (10 IU) for prevention of postpartum blood loss - a randomized controlled trial. International Journal of Gynecology & Obstetrics 2009;107(Suppl 2):S124-5.

• Bellad MB, Tara D, Ganachari MS, Mallapur MD, Goudar SS, Kodkany BS, et al. Prevention of postpartum haemorrhage with sublingual misoprostol or oxytocin: a double-blind randomised controlled trial. BJOG: an international journal of obstetrics and gynaecology 2012;119(8):975-86.

### Benchimol 2001

Benchimol M, Gondry J, Mention JE, Gagneur O, Boulanger JC. Role of misoprostol in the delivery outcome. [French] [Place du misoprostol dans la direction de la delivrance.]. Journal de Gynecologie, Obstetrique et Biologie de la Reproduction 2001;30(6):576-83.

#### Bhullar 2001

Bhullar A, Carlan SJ, Hamm J, Lamberty N, White L, Richichi K. Buccal misoprostol to decrease blood loss after vaginal delivery: a randomized trial. Obstetrics & Gynecology 2004;104(6):1282-8.

#### Borruto 2009

Borruto F, Treisser A, Comparetto C. Utilization of carbetocin for prevention of postpartum hemorrhage after cesarean section: a randomized clinical trial. Archives of Gynecology and Obstetrics 2009;280(5):707-12.

#### Boucher 1998

Boucher M, Horbay GL, Griffin P, Deschamps Y, Desjardins C, Schulz M, et al. Double-blind, randomized comparison of the effect of carbetocin and oxytocin on intraoperative blood loss and uterine tone of patients undergoing cesarean section. Journal of Perinatology 1998;18(3):202-7.

#### Boucher 2001

Boucher M, Nimrod C, Tawagi G. Carbetocin IM injection vs oxytocin IV infusion for prevention of postpartum hemorrhage in women at risk following vaginal delivery. American Journal of Obstetrics and Gynecology 2001;185(6 Pt 2):Abstract no: 494.

• Boucher M, Nimrod CA, Tawagi GF, Meeker TA, Rennicks White RE, Varin J. Comparison of carbetocin and oxytocin for the prevention of postpartum hemorrhage following vaginal delivery:a double-blind randomized trial. Journal of Obstetrics & Gynaecology Canada: JOGC 2004;26(5):481-8.

# Bugalho 2001

Bugalho A, Daniel A, Foundes A, Cunha M. Misoprostol for the prevention of postpartum hemorrhage. International Journal of Gynecology & Obstetrics 2001;73:1-6.

# Butwick 2009

Butwick AJ, Coleman L, Cohen SE, Riley ET, Carvalho B. A study of the minimum effective dose of oxytocin in patients undergoing elective cesarean delivery. American Society of Anaesthesiologists Annual Meeting; 2009 Oct 17-21; New Orleans, USA. 2009.

 Butwick AJ, Coleman L, Cohen SE, Riley ET, Carvalho B. Minimum effective bolus dose of oxytocin during elective caesarean delivery. British Journal of Anaesthesia 2010;104(3):338-43.

# Caliskan 2002

Caliskan E, Meydanli M, Dilbaz B, Aykan B, Sonmezer M, Haberal A. Is rectal misoprostol really effective in the treatment of third stage of labor? A randomized controlled trial. American Journal of Obstetrics and Gynecology 2002;187:1038-45.

### Caliskan 2003

Caliskan E, Dilbaz B, Meydanli MM, Ozturk N, Narin MA, Haberal A. Oral misoprostol for the third stage of labor: a randomized controlled trial. Obstetrics & Gynecology 2003;101(5 Pt 1):921-8.

### Carbonell 2009

Carbonell i Esteve JL, Hernandez JMR, Piloto M, Setien SA, Texido CS, Tomasi G, et al. Active management of the third phase of labour plus 400 mug of sublingual misoprostol and 200 mug of rectal misoprostol versus active management only in the prevention of post-partum haemorrhage. A randomised clinical trial [Manejo activo de la tercera fase del parto mas 400 mug de misoprostol sublingual y 200 mug de misoprostol rectal frente a manejo activo solo en la prevencion de la hemorragia posparto. Ensayo clinico aleatorizado]. Progresos de Obstetricia y Ginecologia 2009;52(10):543-51.

#### Cayan 2010

Cayan F, Doruk A, Sungur MA, Dilek S. Comparison of the different dosages of rectal misoprostol on I=intestinal motility and pain score in high risk cesarean delivery. Turkiye Klinikleri Journal of Medical Sciences 2010;30(4):1154-9.

#### Chaudhuri 2010

Chaudhuri P, Banerjee GB, Mandal A. Rectally administered misoprostol versus intravenous oxytocin infusion during cesarean delivery to reduce intraoperative and postoperative blood loss. International Journal of Gynecology & Obstetrics 2010;109(1):25-9.

# Chaudhuri 2012

Chaudhuri P, Biswas J, Mandal A. Sublingual misoprostol versus intramuscular oxytocin for prevention of postpartum hemorrhage in low-risk women. International Journal of Gynecology and Obstetrics 2012;116(2):138-42.

#### Chaudhuri 2015

Chaudhuri P, Majumdar A. Sublingual misoprostol as an adjunct to oxytocin during cesarean delivery in women at risk of postpartum hemorrhage. International Journal of Gynaecology & Obstetrics 2015;128:48-52.

# Chhabra 2008

Chhabra S, Tickoo C. Low-dose sublingual misoprostol versus methylergometrine for active management of the third stage of labor. Journal of Obstetrics and Gynaecology Research 2008;34(5):820-3.

# Choy 2002

Choy CMY, Lau WC, Tam WH, Yuen PM. A randomised controlled trial of intramuscular syntometrine and intravenous oxytocin in the management of the third stage of labour. BJOG: an international journal of obstetrics and gynaecology 2002;109:173-7.

# Cook 1999

Cook CM, Spurrett B, Murray H. A randomized clinical trial comparing oral misoprostol with synthetic oxytocin or syntometrine in the third stage of labour. Australian and New Zealand Journal of Obstetrics and Gynaecology 1999;39(4):414-9.

# Dansereau 1996

Dansereau J. Comparison of carbetocin vs. oxytocin in prevention of uterine atony post cesarean section. Prenatal and Neonatal Medicine 1996;1(Suppl 1):80.

- Dansereau J, Gambling D, Joshi A, Helewa M, Doran T, Lange I, et al. Double-blind comparison of carbetocin vs oxytocin in preventing uterine atony post Cesarean section. International Journal of Gynecology & Obstetrics 1994;46 Suppl:77.
- Dansereau J, Joshi AK, Helewa ME, Doran TA, Lange IR, Luther ER, et al. Double blind comparison of carbetocin versus oxytocin in prevention of uterine atony after cesarean section. American Journal of Obstetrics and Gynecology 1999;18(3 Pt 1):670-6.
- Dansereau J, Joshi AK, Helewa ME, Doran TA, Lange IR, Luther ER, et al. Double-blind comparison of carbetocin vs oxytocin in preventing uterine atony post Cesarean section. European Journal of Obstetrics & Gynecology and Reproductive Biology 1996;69:37.
- Gambling D, Dansereau J, Schulz M, Horbay GLA, Waasenaar W. Double-blind, randomized comparison of a single dose of carbetocin vs 8 hours oxytocin infusion after cesarean delivery: safety data. A Canadian multi-center trial [abstract]. International Journal of Obstetric Anesthesia 1994;3:113-4.
- Gambling DR, Dansereau J, Wassenaar W, Schulz M, Horbay GLA. Double-blind randomized comparison of a single dose of carbetocin versus 8 hours oxytocin infusion after cesarean delivery: safety data. Anesthesia & Analgesia 1994;78 Suppl:S127.

# Dasuki 2002

Dasuki D, Emilia O, Harini S. Randomized clinical trial: the effectiveness of oral misoprostol versus oxytocin in prevention of postpartum hemorrhage [abstract]. Journal of Obstetrics and Gynaecology Research 2002;28(1):46.

# Groot 1996

Groot ANJA, Roosmalen J, Dongen PWJ, Borm GF. A placebo-controlled trial of oral ergometrine to reduce postpartum hemorrhage. Acta Obstetricia et Gynecologica Scandinavica 1996;75:464-8.

#### Derman 2006

- Derman RJ, Kodkany BS, Goudar SS, Geller SE, Naik VA, Bellad MB, et al. Oral misoprostol in preventing postpartum haemorrhage in resource-poor communities: a randomised controlled trial. Lancet 2006;368(9543):1248-53.
- Geller SE, Goudar SS, Adams MG, Naik VA, Patel A, Bellad MB, et al. Factors associated with acute postpartum hemorrhage in low-risk women delivering in rural India. International Journal of Gynecology & Obstetrics 2008;101(1):94-9.
- Geller SE, Patel A, Niak VA, Goudar SS, Edlavitch SA, Kodkany BS, et al. Conducting international collaborative research in developing nations. International Journal of Gynecology & Obstetrics 2004;87(3):267-71.

- Goudar SS, Chakraborty H, Edlavitch SA, Naik VA, Bellad MB, Patted SS, et al. Variation in the postpartum hemorrhage rate in a clinical trial of oral misoprostol. Journal of Maternal-Fetal & Neonatal Medicine 2008;21(8):559-64.
- Kodkany BS, Derman RJ, Goudar SS, Geller SE, Edlavitch SA, Naik VA, et al. Initiating a novel therapy in preventing postpartum hemorrhage in rural India: a joint collaboration between the United States and India. International Journal of Fertility & Womens Medicine 2004;49(2):91-6.
- Kodkany BS, Goudar SS, Derman RJ. The efficacy of oral misoprostol in preventing postpartum hemorrhage in a community setting: a randomized double-blind placebo-controlled trial. International Journal of Gynecology & Obstetrics 2006;94(Suppl 2):S141-S142.
- NCT00097123. RCT of misoprostol for postpartum hemorrhage in India. clinicaltrials.gov/ct2/show/NCT00097123 (first received 18 November 2004).
- Patted SS, Goudar SS, Naik VA, Bellad MB, Edlavitch SA, Kodkany BS, et al. Side effects of oral misoprostol for the prevention of postpartum hemorrhage: results of a community-based randomised controlled trial in rural India. Journal of Maternal-Fetal & Neonatal Medicine 2009;22(1):24-8.

# Dhananjaya 2014

Dhananjaya BS, Charishma S. Comparative study of efficacy and safety of intramuscular oxytocin with intramuscular methylergometrine in the active management of third stage of labour. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2014;5(3):734-9.

# Docherty 1981

Docherty PW, Hooper M. Choice of an oxytocic agent for routine use at delivery. Journal of Obstetrics and Gynaecology 1981;2:60.

# Eftekhari 2009

Eftekhari N, Doroodian M, Lashkarizadeh R. The effect of sublingual misoprostol versus intravenous oxytocin in reducing bleeding after caesarean section. Journal of Obstetrics and Gynaecology 2009;29(7):633-6.

# Behery 2015

Behery MM, Sayed GA, Hameed AA, Soliman BS, Abdelsalam WA, Bahaa A. Carbetocin versus oxytocin for prevention of postpartum hemorrhage in obese nulliparous women undergoing emergency cesarean delivery. Journal of Maternal-Fetal & Neonatal Medicine 2015:1-4.

# Elgafor 2013

Elgafor El Sharkwy IA. Carbetocin versus sublingual misoprostol plus oxytocin infusion for prevention of postpartum hemorrhage at cesarean section in patients with risk factors: a randomized, open trail study. Archives of Gynecology and Obstetrics 2013;288(6):1231-6.

# El-Refaey

El-Refaey H, Nooh R, O'Brien P, Abdalla M, Geary M, Walder J, et al. The misoprostol third stage of labour study: a randomised controlled comparison between orally administered misoprostol and standard management. BJOG: an international journal of obstetrics and gynaecology 2000;107:1104-10.

# Elsedeek 2012

Elsedeek MS. Impact of preoperative rectal misoprostol on blood loss during and after elective cesarean delivery. International Journal of Gynecology & Obstetrics 2012;118(2):149-52.

# Enakpene 2007

Enakpene CA, Morhason-Bello IO, Enakpene EO, Arowojolu AO, Omigbodun AO. Oral misoprostol for the prevention of primary post-partum hemorrhage during third stage of labor. Journal of Obstetrics and Gynaecology Research 2007;33(6):810-7.

#### Ezeama 2014

Ezeama CO, Eleje GU, Ezeama NN, Igwegbe AO, Ikechebelu JI, Ugboaja JO, et al. A comparison of prophylactic intramuscular ergometrine and oxytocin for women in the third stage of labor. International Journal of Gynecology & Obstetrics 2014;124(1):67-71.

#### Fararjeh 2003

Fararjeh C, Gezer A, Cepni I, Benian A, Ocal P, Kosebay D. The efficacy of misoprostol in preventing postpartum bleeding [Postpartum Kanama Profilaksisinde Rektal Mizoprostol Kulanımının Etkinliği.]. Jinekoloji ve Obstetrik Dergisi 2003;17(4):218-23.

#### Fawole 2011

Fawole AO, Sotiloye OS, Hunyinbo KI, Umezulike AC, Okunlola MA, Adekanle DA, et al. A double-blind, randomized, placebo-controlled trial of misoprostol and routine uterotonics for the prevention of postpartum hemorrhage. International Journal of Gynecology & Obstetrics 2011;112(2):107-11.

#### Fazel 2013

Fazel MR, Mansoure-Samimi, Esmaeil-Fakharian. A comparison of rectal misoprostol and intravenous oxytocin on hemorrhage and homeostatic changes during cesarean section. Middle East Journal of Anesthesiology 2013;22(1):41-6.

#### Fekih 2009

Fekih M, Jnifene A, Fathallah K, Ben Regaya L, Memmi A, Bouguizene S, et al. Benefit of misoprostol for prevention of postpartum hemorrhage in cesarean section: a randomized controlled trial. Journal de Gynecologie, Obstetrique et Biologie de la Reproduction 2009;38(7):588-93.

#### Fenix 2012

Fenix AM. Double-blind randomized controlled trial comparing the effect of carbetocin with oxytocin for the prevention of postpartum hemorrhage among high risk women following vaginal delivery. International Journal of Gynaecology & Obstetrics 2012;119(Suppl 3):S347-S348.

#### Fu 2003

Fu YX, Ran KQ, Wang M. Prevention of early postpartum hemorrhage by way of oral misoprostol. Journal of Nursing Science 2003;18(12):910-1.

#### Garg 2005

Garg P, Batra S, Gandhi G. Oral misoprostol versus injectable methylergometrine in management of the third stage of labor. International Journal of Gynecology & Obstetrics 2005;91(2):160-1.

#### Gavilanes 2016

Gavilanes P, Morales MF, Velasco S, Teran E. Sublingual misoprostol is as effective as intravenous oxytocin to reduce intra-operative blood loss during cesarean delivery in women living at high altitude. Journal of Maternal-Fetal & Neonatal Medicine 2016;29(4):559-61.

# Gerstenfeld 2001

Gerstenfeld TS, Wing DA. Rectal misoprostol versus intravenous oxytocin for the prevention of postpartum hemorrhage after vaginal delivery. American Journal of Obstetrics and Gynecology 2001;185:878-82.

#### Guzmezoglu 2001

Gulmezoglu AM, Villar J, Ngoc NTN, Piaggio G, Carroli G, Adetoro L, et al. WHO multicentre randomised trial of misoprostol in the management of the third stage of labour. Lancet 2001;358:689-95.

- Lumbiganon P, Hofmeyr J, Gulmezoglu AM, Pinol A, Villar J. Misoprostol dose-related shivering and pyrexia in the third stage of labour Who collaborative trial of misoprostol in the management of the third stage of labour. British Journal of Obstetrics and Gynaecology 1999;106(4):304-8.
- Lumbiganon P, Villar J, Piaggio G, Gulmezoglu AM, Adetoro L, Carroli G. Side effects of oral misoprostol during the first 24 hours after administration in the third stage of labour. BJOG: an international journal of obstetrics and gynaecology 2002;109:1222-6.

### Gupta 2006

Gupta B, Jain V, Aggarwal N. Rectal misoprostol versus oxytocin in the prevention of postpartum hemorrhage - a pilot study. International Journal of Gynecology & Obstetrics 2006;94(Suppl 2):S139-S140.

#### Hamm 2005

Hamm J, Russell Z, Botha T, Carlan SJ, Richichi K. Buccal misoprostol to prevent hemorrhage at cesarean delivery: a randomized study. American Journal of Obstetrics and Gynecology 2005;192:1404-6.

#### Harriott 2009

Harriott J, Christie L, Wynter S, DaCosta V, Fletcher H, Reid M. A randomized comparison of rectal misoprostol with syntometrine on blood loss in the third stage of labour. West Indian Medical Journal 2009;58(3):201-6.

# Hofmeyr 1998

Hofmeyr GJ, Nikodem C, Jager M, Drakely A, Gilbart B. Oral misoprostol for labour third stage management: randomised assessment of side effects. Proceedings of the 17th Conference on Priorities in Perinatal Care; 1998; South Africa. 1998:53-4.

- Hofmeyr GJ, Nikodem VC, Jager M, Gelbart BR. A randomised placebo controlled trial of oral misoprostol in the third stage of labour. British Journal of Obstetrics and Gynaecology 1998;105(9):971-5.
- Hofmeyr GJ, Jager M, Rose L, Nikodem VC, Lawrie T. Misoprostol for third stage of labour management: a double blind, placebo controlled clinical trial. Proceedings of the 16th Conference on Priorities in Perinatal Care; 1997; South Africa. 1997:29-31.

#### Hofmeyr 2000

Hofmeyr GJ, Nikodem VC, Jager M, Drakely AJ. Side effects of oral misoprostol in the third stage of labour: a random allocation placebo controlled trial. Journal of Obstetrics & Gynaecology 2000;20(Suppl 1):S40-1.

• Hofmeyr GJ, Nikodem VC, Jager M, Drakely A. Side-effects of oral misoprostol in the third stage of labour--a randomised placebo-controlled trial. South African Medical Journal 2001;91(5):432-5.

# Hofmeyr 2011

Hofmeyr GJ, Fawole B, Mugerwa K, Godi NP, Blignaut Q, Mangesi L, et al. Administration of 400mug of misoprostol to augment routine active management of the third stage of labor. International Journal of Gynecology and Obstetrics 2011;112(2):98-102.

• NCT00124540. Misoprostol for preventing postpartum hemorrhage. clinicaltrials.gov/ct2/show/NCT00124540 Date first received: 26 July 2005.

### Hoj 2005

Hoj L, Cardoso P, Nielsen BB, Hvidman L, Nielsen J, Aaby P. Effect of sublingual misoprostol on severe postpartum haemorrhage in a primary health centre in Guinea-Bissau: randomised double blind clinical trial. BMJ 2005;331:723-7.

 Nielsen BB, Hoj L, Hvidman LE, Nielsen J, Cardoso P, Aaby P. Reduced post-partum bleeding after treatment with sublingual misoprostol: a randomized double-blind clinical study in a developing country - secondary publication [Reduceret post partum-blodning efter sublingval misoprostol: et randomiseret dobbeltblindt klinisk studie i et udviklingsland - sekundaerpublikation]. Ugeskrift for Laeger 2006;168(13):1341-3.

# Hong 2007

Hong SC, Kim JW, Park HT, Seol HJ, Kim HJ, Kim SH, et al. Additional rectal misoprostol plus intravenous oxytocin versus intravenous oxytocin for the prevention of postpartum hemorrhage after cesarean section. American Journal of Obstetrics and Gynecology 2007;197(6 Suppl 1):S99, Abstract no: 321.

#### Ibrahim 2017

Ibrahim KAAM SA. Prevention of postpartum haemorrhage in patients with severe preeclampsia using carbetocin versus misoprostol. Apollo Med 2017; 2(14): 117-122

#### Ibrahim 2020

Ibrahim, Zakia M, Sayed Ahmed, Waleed A, Abd El-Hamid, Eman M et al. Carbetocin versus oxytocin for prevention of postpartum hemorrhage in hypertensive women undergoing elective cesarean section. Hypertension in pregnancy 2020; 39(3): 319-325

#### ls 2012

Is S, Gr V, Keranahalli S. Comparison of intramuscular ergometrine and per rectal misoprostol for prophylaxis against atonic post patrum haemorrhage. International Journal of Gynecology & Obstetrics 2012;119(Suppl 3):S797-S798.

#### Jago 2007

Jago AA, Ezechi OC, Achinge GI, Okunlola MA. Effect of oxytocics on the blood pressure of normotensive Nigerian parturients. Journal of Maternal-Fetal & Neonatal Medicine 2007;20(9):703-5.

#### Jain 2019

Jain, R., Agrawal, S., Verma, K. et al. Comparison of intramuscular methylergometrine, rectal misoprostol, and low-dose intravenous oxytocin in active management of the third stage of labor. Tzu Chi Medical Journal 2019; 31(3): 158-162

# Jangsten 2011

Jangsten E, Mattsson L, Lyckestam I, Hellstro<sup>°</sup>m A, Berg M. A comparison of active management and expectant management of the third stage of labour: a Swedish randomised controlled trial. BJOG: an international journal of obstetrics and gynaecology 2011;118:362–9.

#### Jerbi 2007

Jerbi M, Hidar S, Elmoueddeb, Chaieb A, Khairi H. Oxytocin in the third stage of labor. International Journal of Gynecology & Obstetrics 2007;96(3):198-9.

#### Jirakulsawas 2000

Jirakulsawas J, Khooarmompattana S. Comparison of oral misoprostol and intramuscular methylergonovine for prevention of postpartum hemorrhage. Thai Journal of Obstetrics and Gynaecology 2000;12(4):332.

### Kang 2022

Kang, S., Zhou, L., Zhu, L. et al. Carbetocin versus oxytocin for the prevention of postpartum hemorrhage after elective caesarean section in high risk women: a prospective, randomized, open-label, controlled trial in China. Clinical and Experimental Obstetrics and Gynecology 2022; 49(1): 023

### Karkanis 2002

Karkanis SG, Caloia D, Salenieks ME, Kingdom J, Walker M, Meffe F, et al. Randomized controlled trial of rectal misoprostol versus oxytocin in third stage management. Journal of Obstetrics and Gynaecology Canada: JOGC 2002;24(2):149-54.

#### Kerekes 1979

Kerekes L, Domokos N. The effect of prostaglandin F2alpha on third stage labour. Prostaglandins 1979;18:161-6.

#### Khan 1995

Khan GQ, John IS, Chan T, Wani S, Hughes AO, Stirrat GM. Abu Dhabi third stage trial: oxytocin vs syntometrine in the active management of the third stage of labour. European Journal of Obstetrics & Gynecology and Reproductive Biology 1995;58:147-51.

• Khan GQ, Susheela J I, Chan T, Wani S, Hughes AO, Stirrat GM. Abu Dhabi third stage trial: oxytocin versus syntometrine in the active management of the third stage of labour. 27th British Congress of Obstetrics and Gynaecology; 1995 July 4-7; Dublin, Ireland. 1995:Abstract no: 212.

#### Kikutani 2006

Kikutani T, Kikutani M, Oshima M, Sugimoto K, Shimada Y. Effects of methylergometrine and oxytocin on blood loss and uterine contraction during cesarean section. Masui - Japanese Journal of Anesthesiology 2006;55(5):590-4.

#### Kumar 2021

Kumar Burman, S., Samanta, R., Lata, K.K. et al. Prophylactic administration of per rectal misoprostol vs intramuscular injection of oxytocin in third-stage of labour for prevention of

postpartum Haemorrhage: A randomised controlled trial. Journal of Clinical and Diagnostic Research 2021;15(9): qc09-qc13

# Kumru 2005

Kumru S, Gurates B, Parmaksiz C. Investigation of the usefulness of methyl ergonovine application in cesarean section cases [Sezaryen olgularinda metil ergonovin uygulamasinin yararliliginin arastirilmasi]. Journal of the Turkish German Gynecology Association Artemis 2005;6(1):42-5.

#### Kundodyiwa 2001

Kundodyiwa TW, Majoko F, Rusakaniko S. Misoprostol versus oxytocin in the third stage of labor. International Journal of Gynecology & Obstetrics 2001;75:235-41.

#### Lam 2004

Lam H, Tang OS, Lee CP, Ho PC. A pilot-randomized comparison of sublingual misoprostol with syntometrine on the blood loss in third stage of labor. Acta Obstetricia et Gynecologica Scandinavica 2004;83:647-50.

#### Lapaire 2006

Lapaire O, Schneider MC, Stotz M, Surbek DV, Holzgreve W, Hoesli IM. Oral misoprostol vs. intravenous oxytocin in reducing blood loss after emergency cesarean delivery. International Journal of Gynecology & Obstetrics 2006;95(1):2-7.

#### Leung 2006

Leung SW, Ng PS, Wong WY, Cheung TH. A randomised trial of carbetocin versus syntometrine in the management of the third stage of labour. BJOG: an international journal of obstetrics and gynaecology 2006;113:1459-64.

#### Liu 2020

Liu, H., Xu, X.-Y., Gu, N. et al. Intravenous Administration of Carbetocin Versus Oxytocin for Preventing Postpartum Hemorrhage after Vaginal Delivery in High Risk Women: A Doubleblind, Randomized Controlled Trial. Maternal-Fetal Medicine 2020; 2(2): 72-79Lokugamage 1999

Lokugamage AU, Moodley J, Sullivan K, Rodeck CH, Niculescu L, Tigere P. The Durban primary postpartum haemorrhage study. Women's Health - into the new millennium. Proceedings of the 4th International Scientific Meeting of the Royal College of Obstetricians and Gynaecologists; 1999 October 3-6; Cape Town South Africa. RCOG, 1999:77-8.

- Lokugamage AU, Paine M, Bassau-Balroop H, El-Refaey K, Sullivan K, Rodek C. Active management of the third stage at caesarean section: misoprostol vs syntocinon. XVI FIGO World Congress of Obstetrics & Gynecology; 2000 Sept 3-8; Washington DC, USA. 2000; Vol. Book 2:54.
- Lokugamage AU, Paine M, Bassaw-Balroop K, Sullivan KR, El-Refaey H, Rodeck CH. Active management of the third stage at caesarean section: a randomised controlled trial of misoprostol versus syntocinon. Australian & New Zealand Journal of Obstetrics & Gynaecology 2001;41(4):411-4.

#### Lumbiganon 1999

Lumbiganon P, Hofmeyr J, Gülmezoglu AM, Pinol A, Villar J. Misoprostol dose-related shivering and pyrexia in the third stage of labour. British Journal of Obstetrics and Gynaecology 1999;106:304-8.

#### Maged 2016

Maged AM, Hassan AM, Shehata NA. Carbetocin versus oxytocin for prevention of postpartum hemorrhage after vaginal delivery in high risk women. Journal of Maternal-Fetal & Neonatal Medicine 2016;29(4):532-6.

# Maged 2020

Maged AM, Waly M, Fahmy RM et al. Carbetocin versus rectal misoprostol for management of third stage of labor among women with low risk of postpartum hemorrhage. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2020; 148(2): 238-242

# Masse 2022

Masse N; Dexter F; Wong CA. Prophylactic Methylergonovine and Oxytocin Compared With Oxytocin Alone in Patients Undergoing Intrapartum Cesarean Birth: A Randomized Controlled Trial. Obstetrics and gynecology 2022; 140(2): 181-186

# McDonagh 2022

McDonagh, F, Carvalho, J C A, Abdulla, S et al. Carbetocin vs. oxytocin at elective caesarean delivery: a double-blind, randomised, controlled, non-inferiority trial of low- and high-dose regimens. Anaesthesia 2022.

# McDonald 1992

McDonald S. The Perth third stage oxytocic trial. Proceedings of National Conference on Research in Midwifery; 1992; Reading, UK. 1992.

- McDonald S, Prendiville WJ. A randomized controlled trial of syntocinon vs syntometrine as part of the active management of the third stage of labour. Journal of Perinatal Medicine 1992;20(Suppl 1):97.
- McDonald S, Prendiville WJ, Blair E. A randomised controlled trial of syntocinon vs syntometrine as part of the active management of the third stage of labour. Proceedings of 26th British Congress of Obstetrics and Gynaecology; 1992 July 7-10; Manchester, UK. 1992:87.
- McDonald SJ. Management in the third stage of labour [thesis]. University of Western Australia, 1996.
- McDonald SJ, Prendiville WJ, Blair E. Randomised controlled trial of oxytocin alone vs oxytocin and ergometrine in active management of third stage of labour. BMJ 1993;307:1167-71.

# Mitchell 1993

Mitchell GG, Elbourne DR. The Salford third stage trial: oxytocin plus ergometrine vs oxytocin alone in the active management of the third stage of labor. Online Journal of Current Clinical Trials 1993;2:Doc 83.

#### Mobeen 2011

Mobeen N, Durocher J, Zuberi NF, Jahan N, Blum J, Wasim S, et al. Administration of misoprostol by trained traditional birth attendants to prevent postpartum haemorrhage in homebirths in Pakistan: a randomised placebo-controlled trial. BJOG: an international journal of obstetrics and gynaecology 2011;118:353-61.

- Mobeen N, Durocher J, Zuberi NF, Jahan N, Blum J, Wasim S, et al. Use of misoprostol by trained traditional birth attendants to prevent postpartum haemorrhage during home deliveries in Pakistan: a randomised placebo-controlled trial. International Journal of Gynecology & Obstetrics 2009;107(Suppl 2):S92.
- NCT00120237. Misoprostol for the prevention of postpartum hemorrhage in rural Pakistan. clinicaltrials.gov/ct2/show/NCT00120237 Date first received: 7 July 2005.

# Moertl 2008

Moertl M, Kraschl J, Friedrich S, Pickel K, Ulrich D, Eder M, et al. Hemodynamic changes of carbetocin and oxytocin in women undergoing cesarean section. American Journal of Obstetrics and Gynecology 2008;199(6 Suppl 1):S112.

- Moertl MG, Friedrich S, Kraschl J, Wadsack C, Lang U, Schlembach D. Haemodynamic effects of carbetocin and oxytocin given as intravenous bolus on women undergoing caesarean delivery: a randomised trial. BJOG: an international journal of obstetrics and gynaecology 2011;118(11):1349-56.
- Mortl M, Pickel K, Friedrich S, Ulrich D, Lang U, Schlembach D. Hemodynamic changes of carbetocin and oxytocin given as i.v. bolus on women undergoing cesarean section. Geburtshilfe und Frauenheilkunde 2008;68:S46.

#### Moir 1979

Moir DD, Amoa AB. Ergometrine or oxytocin? Blood loss and side-effects at spontaneous vertex delivery. British Journal of Anaesthesia 1979;51(2):113-7.

### Moodie 1976

Moodie JE, Moir DD. Ergometrine, oxytocin and extradural analgesia. British Journal of Anaesthesia 1976;48:571-4.

#### Mukta 2013

Mukta M, Sahay PB. Role of misoprostol 600 mcg oral in active management of third stage of labor: a comparative study with oxytocin 10 IU i.m. Journal of Obstetrics and Gynecology of India 2013;6:325-7.

#### Musa 2015

Musa AO, Ijaiya MA, Saidu R, Aboyeji AP, Jimoh AA, Adesina KT, et al. Double-blind randomized controlled trial comparing misoprostol and oxytocin for management of the third stage of labor in a Nigerian hospital. International Journal of Gynecology & Obstetrics2015; Vol. 129, issue 3:227-30.

#### Nahaer 2020

Nahaer, M.K., Nurunnobi, A.K.M., Talukder, S.I. et al. Carbetocin versus oxytocin for prophylaxis of PPH used during caesarean section: An open label randomized control trial. Bangladesh Journal of Obstetrics and Gynecology 2020; 33(2): 113-118

#### Nasr 2009

Nasr A, Shahin AY, Elsamman AM, Zakherah MS, Shaaban OM. Rectal misoprostol versus intravenous oxytocin for prevention of postpartum hemorrhage. International Journal of Gynecology & Obstetrics 2009;105(3):244-7.

# Ng 2001

Ng PS, Chan ASM, Sin WK, Tang LCH, Cheung KB, Yuen PM. A multicentre randomized controlled trial of oral misoprostol and im syntometrine in the management of the third stage of labour. Human Reproduction 2001;16(1):31-5.

 Ng PS, Chan ASM, Sin WK, Tang LCH, Cheung KB, Yuen PM. Comparison of oral misoprostol and intramuscular syntometrine in the management of the third stage of labor - a multicenter randomised controlled trial. XVI FIGO World Congress of Obstetrics & Gynecology. Book 4; 2000 Sept 3-8; Washington DC, USA. 2000:29.

# Ng 2007

Ng PS, Lai CY, Sahota DS, Yuen PM. A double-blind randomized controlled trial of oral misoprostol and intramuscular syntometrine in the management of the third stage of labor. Gynecologic and Obstetric Investigation 2007;63(1):55-60.

• Yuen PM, Ng PS, Sahota DS. A double-blind randomised controlled trial of oral misoprostol in addition to intra-muscular syntometrine in the management of the third stage of labour. 30th British Congress of Obstetrics and Gynaecology; 2004 July 7-9; Glasgow, UK. 2004:62.

### Nihar 2022

Nihar, S., Mukherjee, S., Banumathy et al. Comparative study of blood loss in C-section with usage of intravenous oxytocin and intramuscular methergine-in a tertiary care hospital. Journal of Cardiovascular Disease Research 2022; 13(3): 1-9

### Nirmala 2009

Nirmala K, Zainuddin AA, Ghani NA, Zulkifli S, Jamil MA. Carbetocin versus syntometrine in prevention of post-partum hemorrhage following vaginal delivery. Journal of Obstetrics and Gynaecology Research 2009;35(1):48-54.

### Nordstrom 1997

Nordstrom L, Fogelstam K, Fridman G, Larsson A, Rydhstroem H. Routine oxytocin in the third stage of labour: a placebo controlled randomised trial. British Journal of Obstetrics and Gynaecology 1997;104(7):781-6.

### Oboro 2003

Oboro VO, Tabowei TO. A randomised controlled trial of misoprostol versus oxytocin in the active management of the third stage of labour. Journal of Obstetrics & Gynaecology 2003;23(1):13-6.

#### Ogunbode 1979

Ogunbode O, Obisesan K, Ayeni O. Methergin in the management of the third stage of labor: a comparative clinical trial with syntometrine and ergometrine. Current Therapeutic Research, Clinical and Experimental 1979;26:460-5.

#### Orji 2008

Orji E, Agwu F, Loto O, Olaleye O. A randomized comparative study of prophylactic oxytocin versus ergometrine in the third stage of labor. International Journal of Gynecology & Obstetrics 2008;101(2):129-32.

#### Ortiz-Gomez 2013

Ortiz-Gomez JR, Morillas-Ramirez F, Fornet-Ruiz I, Palacio-Abizanda FJ, Bermejo-Albares L. [Clinical and pharmacological study of the efficacy of carbetocin in elective caesareans compared to low and usual doses of oxytocin]. [Spanish]. Revista Espanola de Anestesiologia y Reanimacion 2013;60(1):7-15.

#### Otoide 2020

Otoide, VO A double blind randomized controlled clinical trial of oral misoprostol versus ergometrine in the prevention of primary postpartum hemorrhage. Tropical journal of obstetrics and gynaecology 2020; 37(1): 72-77

#### Ottun 2021

Ottun, Tawakwallit A, Adewunmi, Adeniyi A, Rabiu, Afolarin K et al. Misoprostol and oxytocin versus oxytocin alone in the active management of the third stage of labour: a randomised, double-blind, placebo-controlled trial. Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology 2021; 1-6

# Owonikoko 2011

Owonikoko KM, Arowojolu AO, Okunlola MA. Effect of sublingual misoprostol versus intravenous oxytocin on reducing blood loss at cesarean section in Nigeria: A randomized controlled trial. Journal of Obstetrics and Gynaecology Research 2011;37(7):715-21.

#### Parson 2006

Parsons SM, Walley RL, Crane JM, Matthews K, Hutchens D. Oral misoprostol versus oxytocin in the management of the third stage of labour. Journal of Obstetrics and Gynaecology Canada 2006;28(1):20-6.

### Parsons 2004

Parsons S, Ntumy YM, Walley RL, Wilson JB, Crane JMG, Matthews K, et al. Rectal misoprostol vs intramuscular oxytocin in the routine management of the third stage of labour. 30th British Congress of Obstetrics and Gynaecology; 2004 July 7-9; Glasgow, UK. 2004:18.

• Parsons SM, Walley RL, Crane JM, Matthews K, Hutchens D. Rectal misoprostol versus oxytocin in the management of the third stage of labour. Journal of Obstetrics and Gynaecology Canada 2007;29(9):711-8.

### Penaranda 2002

Penaranda WA, Arrieta OB, Yances BR. Active management of childbirth with sublingual misoprostol: a controlled clinical trial in the Hospital de Maternidad Rafael Calvo [Manejo activo del alumbramiento con misoprostol sublingual: un estudio clinico controlado en al hospital de maternidad rafael calvo de cartagena]. Revista Colombiana de Obstetricia y Ginecologia 2002;53(1):87-92.

#### Prendiville 1988

Prendiville WJ, Harding JE, Elbourne DR, Stirrat GM. The Bristol third stage trial: active versus physiological management of third stage of labour. BMJ 1988;297(6659):1295-300.

# Rajaei 2014

Rajaei M, Karimi S, Shahboodaghi Z, Mahboobi H, Khorgoei T, Rajaei F. Safety and efficacy of misoprostol versus oxytocin for the prevention of postpartum hemorrhage. Journal of Pregnancy 2014;2014:713879.

#### Ramirez 2001

Ramirez O, Benito V, Jimenez R, Valido C, Hernandez C, Garcia JA. Third stage of labour: active or expectant management? preliminary results [abstract]. Journal of Perinatal Medicine 2001;Suppl 1(Pt 2):364.

#### Rashid 2009

Rashid M, Clark A, Rashid MH. A randomised controlled trial comparing the efficacy of intramuscular syntometrine and intravenous syntocinon, in preventing postpartum haemorrhage. Journal of Obstetrics and Gynaecology 2009;29(5):396-401.

#### Ray 2001

Ray A, Mukherjee P, Basu G, Chatterjee A. Misoprostol and third stage of labour. Journal of Obstetrics and Gynecology of India 2001;51(6):53-4.

# Reyes 2011

Reyes OA, Gonzalez GM. Carbetocin versus oxytocin for prevention of postpartum hemorrhage in patients with severe preeclampsia: a double-blind randomized controlled trial. Journal of Obstetrics and Gynaecology Canada: JOGC 2011;33(11):1099-104.

#### Reyes 2011

Reyes OA. Carbetocin vs. oxytocin for the prevention of postpartum hemorrhage grand multipara patients: randomized controlled trial [Carbetocina vs. oxitocina para la prevención de hemorragia posparto en pacientes grandes multíparas: estudio aleatorizado controlado]. Clinica e Investigacion en Ginecologia y Obstetricia 2011;38:2-7.

#### Rogers 1998

Rogers J, Wood J, McCandlish R, Ayers S, Truesdale A, Elbourne D. Active versus expectant management of third stage of labour: the Hinchingbrooke randomised controlled trial. Lancet 1998;351(9104):693-9.

#### Rosseland 2013

Rosseland LA, Hauge TH, Grindheim G, Stubhaug A, Langesaeter E. Changes in blood pressure and cardiac output during cesarean delivery: the effects of oxytocin and carbetocin compared with placebo. Anesthesiology 2013;119(3):541-51.

• Gawecka E, Rosseland LA. A secondary analysis of a randomized placebo-controlled trial comparing the analgesic effects of oxytocin with carbetocin: postcesarean delivery morphine equivalents. Anesthesia and Analgesia 2014;119(4):1004.

#### Rozenberg 2015

Rozenberg P, Quibel T, Ghout I, Salomon L, Bussiere L, Goffinet F. Active management of the third stage of labor with routine oxytocin and misoprostol for the prevention of postpartum hemorrhage: a randomized controlled trial. American Journal of Obstetrics and Gynecology 2015;212(1 Suppl 1):S18.

#### Sadiq 2011

Sadiq UG, Kwanashie O, Mairiga G, Gamaniel S, Isa H, Abdu A, et al. A randomised clinical trial comparing the efficacy of oxytocin injection and oral misoprostol tablet in the prevention of postpartum haemorrhage in Maiduguri Nigeria. International Research Journal of Pharmacy 2011;2(8):76-81.

#### Samimi 2013

Samimi M, Imani-Harsini A, Abedzadeh-Kalahroudi M. Carbetocin vs. syntometrine in prevention of postpartum hemorrhage: a double blind randomized control trial. Iranian Red Crescent Medical Journal 2013;15(9):817-22.

#### Shady 2019

Shady, Nahla W, Sallam, Hany F, Elsayed, Ahmed H et al. The effect of prophylactic oral tranexamic acid plus buccal misoprostol on blood loss after vaginal delivery: a randomized controlled trial. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians 2019; 32(11): 1806-1812

#### Shaheen 2019

Shaheen, N. and Khalil, S. Safety and efficacy of 600ug sublingual misoprostol versus 10 U intramuscular Oxytocin for management of third stage of labor. Rawal Medical Journal 2019; 44(1): 137-140

# Shrestha 2011

Shrestha A, Dongol A, Chawla CD, Adhikari RK. Rectal misoprostol versus intramuscular oxytocin for prevention of post partum hemorrhage. Kathmandu University Medical Journal 2011;33(1):8-12.

### Singh 2009

Singh G, Radhakrishnan G, Guleria K. Comparison of sublingual misoprostol, intravenous oxytocin, and intravenous methylergometrine in active management of the third stage of labor. International Journal of Gynecology & Obstetrics 2009;107(2):130-4.

#### Soltan 2007

Soltan MH, El-Gendi E, Imam HH, Fathi O. Different doses of sublingual misoprostol versus methylergometrine for the prevention of atonic postpartum haemorrhage. International Journal of Health Sciences 2007;1(2):229-36.

### Sood 2012

Sood AK, Singh S. Sublingual misoprostol to reduce blood loss at cesarean delivery. Journal of Obstetrics and Gynaecology of India 2012;62(2):162-7.

#### Stanton 2012

Stanton CK, Newton S, Mullany LC, Cofie P, Agyemang CT, Adiibokah E, et al. Impact on postpartum hemorrhage of prophylactic administration of oxytocin 10 IU via Uniject by peripheral health care providers at home births: Design of a community-based cluster-randomized trial. BMC Pregnancy and Childbirth 2012;12:42.

- NCT01108302. Effectiveness, safety and feasibility of auxiliary nurse midwives' (ANM) use of oxytocin in uniject<sup>™</sup> to prevent postpartum hemorrhage in India. clinicaltrials.gov/ct2/show/NCT01108302 Date first received: 2 April 2010.
- Stanton CK, Newton S, Mullany LC, Cofie P, Tawiah Agyemang C, Adiibokah E, et al. Effect on postpartum hemorrhage of prophylactic oxytocin (10 IU) by injection by community health officers in Ghana: a community-based, cluster-randomized trial. PLoS Medicine. NCT01108289 2013; Vol. 10, issue 10:e1001524.

#### Su 2009

Su LL, Rauff M, Chan YH, Mohamad Suphan N, Lau TP, Biswas A, et al. Carbetocin versus syntometrine for the third stage of labour following vaginal delivery--a double-blind randomised controlled trial. BJOG: an international journal of obstetrics and gynaecology 2009;116(11):1461-6.

#### Sultana 2007

Sultana N, Khatun M. Misoprostol versus oxytocin in the active management of the third stage of labour. Journal of Bangladesh College of Physicians and Surgeons 2007;25(2):73-6.

#### Surbek 2000

Surbek DV, Fehr PM, Hoesli I, Holzgreve W. Misoprostol for prevention of postpartum hemorrhage: a randomized controlled trial [abstract]. XVI FIGO World Congress of Obstetrics & Gynecology; 2000 Sept 3-8; Washington DC, USA 2000;Book 1:33.

• Surbek DV, Fehr PM, Hoesli I, Holzgreve W. Oral misoprostol vs placebo for third stage of labour [Orales misoprostol reduziert den postpartalen blutverlust]. Gynakologisch Geburtshilfliche Rundschau 1999;39:144.

# Sweed 2018

Sweed, Mohamed S, El-Saied, Mourad M, Abou-Gamrah, Amgad E et al. Rectal vs. sublingual misoprostol before cesarean section: double-blind, three-arm, randomized clinical trial. Archives of gynecology and obstetrics 2018; 298(6): 1115-1122

#### Tahan 2012

Tahan MR, Warda OM, Rashad A, Yasseen AM, Ramzy EA, Ahmady MS, et al. Effects of preoperative sublingual misoprostol on uterine tone during isoflurane anesthesia for cesarean section. Revista Brasileira de Anestesiologia 2012;62(5):625-35.

#### Tewatia 2014

Tewatia R, Rani S, Srivastav U, Makhija B. Sublingual misoprostol versus intravenous oxytocin in prevention of post-partum hemorrhage. Archives of Gynecology and Obstetrics 2014;289:739-42.

### Thilaganathan 1993

Thilaganathan B, Cutner A, Latimer J, Beard R. Management of the third stage of labour in women at low risk of postpartum haemorrhage. European Journal of Obstetrics & Gynecology and Reproductive Biology 1993;48:19-22.

#### Ugwu 2014

Ugwu IA, Enabor OO, Adeyemi AB, Lawal OO, Oladokun A, Olayemi O. Sublingual misoprostol to decrease blood loss after caesarean delivery: a randomised controlled trial. Journal of Obstetrics and Gynaecology 2014;34(5):407-11.

#### Uncu 2015

Uncu Y, Karahasan M, Uyaniklar O, Uncu G. Prophylactic misoprostol for the prevention of postpartum hemorrhage: a randomized controlled trial. European Review for Medical and Pharmacological Sciences 2015;19(1):15-22.

#### Un Nisa 2012

Un Nisa S, Usmani SY. Role of intravenous syntocinon in prevention of primary postpartum haemorrhage. Pakistan Journal of Medical and Health Sciences 2012;6(4):1020-4.

#### Vagge 2013

Vagge DS, Mamatha KR, Rohatgi V. A comparative study to assess the efficacy and tolerability of per rectal misoprostol versus intravenous oxytocin in prevention of primary postpartum haemorrhage in a tertiary care hospital. Indian Journal of Pharmacology 2013;45 Suppl:S45.

• Vagge DS, Mamatha KR, Shivamurthy G, Rohatgi V. A comparative study to assess the efficacy and tolerability of per rectal misoprostol and intravenous oxytocin in prevention of primary postpartum haemorrhage in a tertiary care hospital. Journal of Chemical and Pharmaceutical Research 2014;6(3):1134-40.

# Vaid 2003

Vaid A, Dadhwal V, Mittal S, Deka D, Misra R, Sharma JB, et al. A randomized controlled trial of prophylactic sublingual misoprostol versus intramuscular methyl-ergometrine versus

intramuscular 15-methyl PGF2alpha in active management of third stage of labor. Archives of Gynecology and Obstetrics 2009;280(6):893-7.

# Van Der Nelson 2021

Van Der Nelson, H., O'Brien, S., Burnard, S. et al. Intramuscular oxytocin versus syntometrine versus carbetocin for prevention of primary postpartum haemorrhage after vaginal birth: A randomised double-blinded clinical trial of effectiveness, side effects and quality of life. BJOG: An International Journal of Obstetrics and Gynaecology 2021; 128(8): e31

#### Verma 2006

Verma P, Aggarwal N, Jain V, Suri V. A double-blind randomized controlled trial to compare sublingual misoprostol with methylergometrine for prevention of postpartum hemorrhage. International Journal of Gynecology & Obstetrics 2006;94(Suppl 2):S137-S138.

### Vimala 2004

Vimala N, Mittal S, Kumar S, Dadhwal V, Mehta S. Sublingual misoprostol versus methylergometrine for active management of third stage of labor. International Journal of Gynecology & Obstetrics 2004;87:1-5.

#### Vimala 2006

Vimala N, Mittal S, Kumar S. Sublingual misoprostol versus oxytocin infusion to reduce blood loss at cesarean section. International Journal of Gynecology & Obstetrics 2006;92(2):106-10.

### Walley 2000

Walley RL, Wilson JB, Crane JM, Matthews K, Sawyer E, Hutchens D. A double-blind placebo controlled randomised trial of misoprostol and oxytocin in the management of the third stage of labour. BJOG: an international journal of obstetrics and gynaecology 2000;107(9):1111-5.

#### Whigham 2014

Whigham CA, Gorelik A, Loughnan T, Trivedi A. Carbetocin versus oxytocin in active labour. BJOG: An International Journal of Obstetrics and Gynaecology 2014;121(Suppl 2):88.

#### Yesim 2022

Yesmin, S., Begum, F., Bain, S. et al. Carbetocin versus Oxytocin in the Prevention of Postpartum Haemorrhage after Caesarean Section. Bangladesh Journal of Obstetrics and Gynecology 2022; 35(2): 63-67

#### Yuen 1995

Yuen PM, Chan NST, Yim SF, Chang AMZ. A randomised double blind comparison of syntometrine and syntocinon in the management of the third stage of labour. British Journal of Obstetrics and Gynaecology 1995;102:377-80.

#### Zachariah 2006

Zachariah ES, Naidu M, Seshadri L. Oral misoprostol in the third stage of labor. International Journal of Gynecology & Obstetrics 2006;92(1):23-6.

# Zgaya 2020

Zgaya, R., Ghadhab, I., Triki, M.A. et al. Randomized controlled trial comparing 400mug sublingual misoprostol versus placebo for prevention of primary postpartum hemorrhage. Pan African Medical Journal 2020; 36: 1-9

#### Economic

#### Gallos 2019

Gallos I, Williams H, Price M et al. Uterotonic drugs to prevent postpartum haemorrhage: a network meta-analysis. Health Technol Assess. 2019 Feb;23(9):1-356.

#### Matthijsse 2022

Matthijsse S, Andersson FL, Gargano M et al. Cost-effectiveness analysis of carbetocin versus oxytocin for the prevention of postpartum hemorrhage following vaginal birth in the United Kingdom. J Med Econ. 2022 Jan-Dec;25(1):129-137.

# **Appendices**

# Appendix A Review protocols

Review protocol for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

| Table 29: Review protocol    |                                                                                                                   |
|------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Field                        | Content                                                                                                           |
| PROSPERO registration number | Not applicable                                                                                                    |
| Review title                 | Uterotonics for the prevention of PPH                                                                             |
| Review question              | What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?                            |
| Objective                    | To update the recommendations in CG190 (2014) for the use of uterotonics for prevention of postpartum haemorrhage |
| Searches                     | The following databases will be searched:                                                                         |
|                              | <ul> <li>Cochrane Central Register of Controlled Trials (CENTRAL)</li> </ul>                                      |
|                              | <ul> <li>Cochrane Database of Systematic Reviews (CDSR)</li> </ul>                                                |
|                              | • Embase                                                                                                          |
|                              | MEDLINE & MEDLINE In-Process                                                                                      |
|                              | <ul> <li>International Health Technology Assessment (IHTA) database</li> </ul>                                    |
|                              | Searches will be restricted by:                                                                                   |
|                              | <ul> <li>Date limitations: May 2018 (date when the search was last run for Gallos 2018)</li> </ul>                |
|                              | English language studies                                                                                          |
|                              | Human studies                                                                                                     |
|                              | Other searches:                                                                                                   |
|                              | Inclusion lists of systematic reviews                                                                             |
|                              | The full search strategies for the MEDLINE database will be published in the final review. For each search,       |

#### Table 29: Review protocol

| Field                             | Content                                                                                                                                                               |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | the principal database search strategy is quality assured by a second information scientist using an adaptation of the PRESS 2015 Guideline Evidence-Based Checklist. |
|                                   | Key papers:                                                                                                                                                           |
|                                   | <ul> <li>Cochrane NMA (Gallos 2018)</li> </ul>                                                                                                                        |
|                                   | https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011689.pub3/full                                                                                          |
|                                   | <ul> <li>IMOX trial <u>https://pubmed.ncbi.nlm.nih.gov/30606246/</u></li> </ul>                                                                                       |
|                                   | <ul> <li>CHAMPION trial <u>https://www.nejm.org/doi/full/10.1056/nejmoa1805489</u></li> </ul>                                                                         |
| Condition or domain being studied | Prevention of postpartum haemorrhage                                                                                                                                  |
| Population                        | • Women in the third stage of labour following a vaginal or caesarean birth                                                                                           |
| Intervention                      | The following uterotonic agents:                                                                                                                                      |
|                                   | Carbetocin                                                                                                                                                            |
|                                   | Ergometrine (includes also ergonovine, methylergonovine)                                                                                                              |
|                                   | <ul> <li>Injectable prostaglandins (carboprost, tromethamine, sulprostone)</li> </ul>                                                                                 |
|                                   | Misoprostol                                                                                                                                                           |
|                                   | o Dose ≤600 mcg                                                                                                                                                       |
|                                   | <ul> <li>o Dose &gt;600 mcg to ≤800 mcg</li> </ul>                                                                                                                    |
|                                   | <ul> <li>o Dose &gt;800 mcg to ≤1000 mcg</li> </ul>                                                                                                                   |
|                                   | o Dose >1000 mcg                                                                                                                                                      |
|                                   | Oxytocin                                                                                                                                                              |
|                                   | o Dose ≤1 iu                                                                                                                                                          |
|                                   | <ul> <li>Dose &gt;1 iu to ≤ 5 iu</li> </ul>                                                                                                                           |
|                                   | <ul> <li>Dose &gt;5 iu to ≤ 10 iu</li> </ul>                                                                                                                          |
|                                   | o Dose > 10 iu                                                                                                                                                        |
|                                   | • The following combination agents:                                                                                                                                   |
|                                   | <ul> <li>Syntometrine</li></ul>                                                                                                                                       |

| Field                              | Content                                                                                                                                                                                                           |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | route of ergometrine, ergonovine, or methylergonovine                                                                                                                                                             |
|                                    | <ul> <li>Misoprostol plus oxytocin (any oxytocin dose and route when combined with any dose and route<br/>of misoprostol)</li> </ul>                                                                              |
|                                    | The uterotonic or combination agents noted above will be eligible if they are administered systemically by a healthcare professional for preventing PPH at birth. Any dosage, route and regimen will be included. |
| Comparator                         | <ul> <li>Any uterotonic agent listed as part of the interventions compared to another</li> </ul>                                                                                                                  |
|                                    | • Placebo                                                                                                                                                                                                         |
|                                    | No treatment                                                                                                                                                                                                      |
| Types of study to be included      | Include published full-text papers:                                                                                                                                                                               |
|                                    | • RCTs                                                                                                                                                                                                            |
|                                    | Cluster RCTs                                                                                                                                                                                                      |
|                                    | Conference abstracts in which sufficient information can be retrieved                                                                                                                                             |
|                                    | Quasi-randomised trials will be excluded                                                                                                                                                                          |
| Other exclusion criteria           | <ul> <li>Trials evaluating uterotonics agents not administered systemically, such as intrauterine administration,<br/>or not immediately after birth</li> </ul>                                                   |
|                                    | • Trials exclusively comparing different dosages, routes or regimens of the same uterotonic agent                                                                                                                 |
| Context                            | This review will update the following guideline: Intrapartum care for healthy women and babies (CG190) and it is based on the Cochrane NMA Gallos 2018                                                            |
|                                    | https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011689.pub3/full                                                                                                                                      |
| Primary outcome (critical outcome) | • Primary PPH ≥1000 mL                                                                                                                                                                                            |
| Secondary outcomes                 | Severe maternal morbidity: intensive care admissions                                                                                                                                                              |
| (important outcomes)               | Additional uterotonics                                                                                                                                                                                            |

| Field                                  | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Number of blood transfusions                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Mean volumes of blood loss (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Data extraction (selection and coding) | All references identified by the searches and from other sources will be uploaded into EPPI and de-<br>duplicated. Titles and abstracts of the retrieved citations will be screened to identify studies that potentially<br>meet the inclusion criteria outlined in the review protocol.                                                                                                                                                                                                |
|                                        | Dual sifting will be performed on at least 10% of records; 90% agreement is required. Disagreements will be resolved via discussion between the two reviewers, and consultation with senior staff if necessary.                                                                                                                                                                                                                                                                         |
|                                        | Full versions of the selected studies will be obtained for assessment. Studies that fail to meet the inclusion criteria once the full version has been checked will be excluded at this stage. Each study excluded after checking the full version will be listed, along with the reason for its exclusion.                                                                                                                                                                             |
|                                        | A standardised form will be used to extract data from studies in excel. The following data will be extracted: study details (study ID, first author, publication year, number of arms, number randomised), participant characteristics, intervention characteristics, dose and route and relevant outcome data. Data will be extracted independently by 2 reviewers into a standardised form, and any disagreements will be resolved via discussion and consultation with senior staff. |
|                                        | For dichotomous outcomes, an intention-to-treat (ITT) approach will be taken and where possible ITT data will be extracted; if both ITT and completer data are reported, the former will be preferred; completer data will be used only if ITT data are not reported.                                                                                                                                                                                                                   |
|                                        | For continuous outcomes, completer data will be preferred, unless some method of adjusting for missing data has been used, in which case, an ITT approach will be preferred.                                                                                                                                                                                                                                                                                                            |
| Risk of bias (quality)<br>assessment   | Risk of bias of individual studies will be assessed using the relevant version of the Cochrane RoB tool, v1. checklist                                                                                                                                                                                                                                                                                                                                                                  |
| Strategy for data synthesis            | Method of analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | Network meta-analysis (NMA)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | <ul> <li>Network meta-analysis will be conducted within a Bayesian framework using WinBUGS.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | • The exact model structure will be agreed with the NICE Technical Support Unit (TSU) following the review of available clinical evidence. Fixed and random effects NMA models will be fitted to the data and                                                                                                                                                                                                                                                                           |

| Field                 | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                       | <ul> <li>compared based on the posterior mean residual deviance and DIC. The model with the best fit and meaningfully lower DIC will be selected. Differences of at least 3 will be considered meaningful.</li> <li>For dichotomous outcomes, posterior median ORs and 95% credible intervals (CrIs) will be used to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                       | report the results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                       | <ul> <li>For continuous outcomes, mean differences will be used to report the results</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                       | <ul> <li>Ranking of treatments will be provided (i.e. posterior median ranks and 95% Crls, rankograms,<br/>probability being best).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                       | <ul> <li>Inconsistency checks will be conducted by comparing the posterior mean residual deviance, DIC, and where appropriate (i.e., random effects models), posterior median between study standard deviation, of the base case NMA model and unrelated mean effects (UME) model. Plots of contributions to the residual deviance for the UME vs the NMA model will be inspected to identify lack of consistency for particular studies / comparisons. If these checks indicate potential inconsistency, further checks will be conducted using node splitting analysis. Pairwise estimates will be obtained from the UME model to aid comparison of the direct estimates with the NMA estimates.</li> <li>Threshold analysis will also be conducted if a clear decision rule between linking the recommendations</li> </ul>                                                                                                                                |  |  |
|                       | to the NMA estimates can be identified. <u>Pairwise meta-analysis</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                       | For outcomes with insufficient data for NMA, standard pair-wise meta-analysis will be conducted using Cochrane Review Manager. A fixed effect meta-analysis will be conducted and data will be presented as risk ratios if possible or odds ratios when required (for example, if only available in this form in included studies) for dichotomous outcomes, and mean differences or standardised mean differences for continuous outcomes. Heterogeneity in the effect estimates of the individual studies will be assessed using the I <sup>2</sup> statistic. Alongside visual inspection of the point estimates and confidence intervals, I <sup>2</sup> values of greater than 50% and 80% will be considered as appropriate using sensitivity analyses and pre-specified subgroup analyses. If heterogeneity cannot be explained through subgroup analysis then a random effects model will be used for meta-analysis, or the data will not be pooled. |  |  |
| Analysis of subgroups | Subgroup analysis: <ul> <li>Mode of birth:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

| Field                            | Content                                                         |                   |          |           |  |  |
|----------------------------------|-----------------------------------------------------------------|-------------------|----------|-----------|--|--|
|                                  | <ul><li>vaginal birth</li><li>Caesarean birth</li></ul>         |                   |          |           |  |  |
| Type and method of review        | $\boxtimes$                                                     | Intervention      |          |           |  |  |
|                                  |                                                                 | Diagnostic        |          |           |  |  |
|                                  |                                                                 | Prognostic        |          |           |  |  |
|                                  |                                                                 | Qualitative       |          |           |  |  |
|                                  |                                                                 | Epidemiologic     |          |           |  |  |
|                                  |                                                                 | Service Delivery  |          |           |  |  |
|                                  |                                                                 | Other (please spe | cify)    |           |  |  |
| Language                         | English                                                         |                   |          |           |  |  |
| Country                          | England                                                         |                   |          |           |  |  |
| Anticipated or actual start date | Not applicable                                                  |                   |          |           |  |  |
| Anticipated completion date      | Not applicable                                                  |                   |          |           |  |  |
| Stage of review at time of this  | Review stage                                                    |                   | Started  | Completed |  |  |
| submission                       | Preliminary searches                                            |                   | <b>v</b> |           |  |  |
|                                  | Piloting of the study selection process                         |                   | ~        |           |  |  |
|                                  | Formal screening of search results against eligibility criteria |                   |          |           |  |  |
|                                  | Data extraction                                                 |                   | <b>v</b> |           |  |  |
|                                  | Risk of bias (quality) asses                                    | sment             | V        | V         |  |  |
|                                  | Data analysis                                                   |                   | ~        | V         |  |  |

| Field                      | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Named contact              | <ul> <li>5a. Named contact</li> <li>Guideline Development Team National Guideline Alliance (NGA)</li> <li>5b. Named contact e-mail</li> <li><u>IPCupdate@nice.org.uk</u></li> <li>5c. Organisational affiliation of the review</li> <li>Guideline Development Team NGA, Centre for Guidelines, National Institute for Health and Care Excellence (NICE)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Review team members        | From the Guideline Development Team: <ul> <li>Senior Systematic Reviewer</li> <li>Systematic Reviewer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Funding sources/sponsor    | This systematic review is being completed by the Guideline Development Team NGA, Centre for Guidelines, which is part of the National Institute for Health and Care Excellence (NICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conflicts of interest      | All guideline committee members and anyone who has direct input into NICE guidelines (including the evidence review team and expert witnesses) must declare any potential conflicts of interest in line with NICE's code of practice for declaring and dealing with conflicts of interest. Any relevant interests, or changes to interests, will also be declared publicly at the start of each guideline committee meeting. Before each meeting, any potential conflicts of interest will be considered by the guideline committee Chair and a senior member of the development team. Any decisions to exclude a person from all or part of a meeting will be documented. Any changes to a member's declaration of interests will be recorded in the minutes of the meeting. Declarations of interests will be published with the final guideline. |
| Collaborators              | Development of this systematic review will be overseen by an advisory committee who will use the review to inform the development of evidence-based recommendations in line with section 3 of <u>Developing NICE</u> <u>guidelines: the manual</u> . Members of the guideline committee are available on the NICE website: <u>https://www.nice.org.uk/guidance/indevelopment/gid-ng10174</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Other registration details | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| URL for published protocol | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dissemination plans        | NICE may use a range of different methods to raise awareness of the guideline. These include standard approaches such as: notifying registered stakeholders of publication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Field                                                    | Content                                                                                                                                                                       |                                                        |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
|                                                          | publicising the guideline through NICE's newsletter and alerts<br>issuing a press release or briefing as appropriate, posting news articles on the NICE website, using social |                                                        |  |  |
|                                                          | media channels, and publicising the guideline within NICE.                                                                                                                    |                                                        |  |  |
| Keywords                                                 | [Give words or phras                                                                                                                                                          | [Give words or phrases that best describe the review.] |  |  |
| Details of existing review of same topic by same authors | Not applicable                                                                                                                                                                |                                                        |  |  |
| Current review status                                    | $\boxtimes$                                                                                                                                                                   | Ongoing                                                |  |  |
|                                                          |                                                                                                                                                                               | Completed but not published                            |  |  |
|                                                          |                                                                                                                                                                               | Completed and published                                |  |  |
|                                                          |                                                                                                                                                                               | Completed, published and being updated                 |  |  |
|                                                          |                                                                                                                                                                               | Discontinued                                           |  |  |
| Additional information                                   | None                                                                                                                                                                          |                                                        |  |  |
| Details of final publication                             | www.pice.org.uk                                                                                                                                                               |                                                        |  |  |

Details of final publication <u>www.nice.org.uk</u>

CDSR: Cochrane Database of Systematic Reviews; CENTRAL: Cochrane Central Register of Controlled Trials; Crls: credible interval; DARE: Database of Abstracts of Reviews of Effects; Development and Evaluation; IHTA: International Health Technology Assessment; ITT: intention to treat; IU: international units; MID: minimally important difference; NGA: National Guideline Alliance; NHS: National health service; NICE: National Institute for Health and Care Excellence; NMA: network meta-analysis; OR: odds ratio; PPH: postpartum haemorrhage; PRESS: Peer Review of Electronic Search Strategies; RCT: randomised controlled trial; RoB: risk of bias; SD: standard deviation; TSU: technical support unit; UME: unrelated mean effects

# Appendix B Literature search strategies

# Literature search strategies for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

Database: Medline - OVID interface

Date of last search: 14/06/2022

| #  | Searches                                                                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 1  | POSTPARTUM HEMORRHAGE/                                                                                                |
| 2  | ((postpartum or post partum) adj3 h?emorrhag*).ti,ab.                                                                 |
| 3  | PPH.ti,ab.                                                                                                            |
| 4  | or/1-3                                                                                                                |
| 5  | exp ANTIFIBRINOLYTIC AGENTS/                                                                                          |
| 6  | (antifibrinoly* or anti-fibrinoly* or antiplasmin? or anti-plasmin? or plasmin inhibitor? or aminocaproic acid or     |
| 0  | tranexamic acid or vitamin k* or alpha-2-antiplasmin or aminomethylbenzoic acid).mp.                                  |
| 7  | APROTININ/                                                                                                            |
| 8  | aprotinin.mp.                                                                                                         |
| 9  | or/5-8                                                                                                                |
| 10 | uterotonic?.mp.                                                                                                       |
| 11 | exp OXYTOCICS/                                                                                                        |
| 12 | (oxytocic? or carbetocin or ergometrine or misoprostrol or oxytocin or pitocin or syntometrine).mp.                   |
| 13 | exp PROSTAGLANDINS/                                                                                                   |
| 14 | (prostaglandin? or carboprost).mp.                                                                                    |
| 15 | or/10-14                                                                                                              |
| 16 | 4 and 9                                                                                                               |
| 17 | 4 and 9<br>4 and 15                                                                                                   |
| 18 | or/16-17                                                                                                              |
| 19 | limit 18 to english language                                                                                          |
| 20 | LETTER/                                                                                                               |
| 20 | EDITORIAL/                                                                                                            |
| 22 | NEWS/                                                                                                                 |
| 23 | exp HISTORICAL ARTICLE/                                                                                               |
| 23 | ANECDOTES AS TOPIC/                                                                                                   |
| 24 | COMMENT/                                                                                                              |
| 26 | CASE REPORT/                                                                                                          |
| 20 | (letter or comment*).ti.                                                                                              |
| 28 | or/20-27                                                                                                              |
| 29 | RANDOMIZED CONTROLLED TRIAL/ or random*.ti,ab.                                                                        |
| 30 | 28 not 29                                                                                                             |
| 31 | ANIMALS/ not HUMANS/                                                                                                  |
| 32 | exp ANIMALS, LABORATORY/                                                                                              |
| 33 | exp ANIMAL EXPERIMENTATION/                                                                                           |
| 34 | exp MODELS, ANIMAL/                                                                                                   |
| 35 | exp RODENTIA/                                                                                                         |
| 36 | (rat or rats or mouse or mice).ti.                                                                                    |
| 37 | or/30-36                                                                                                              |
| 38 | 19 not 37                                                                                                             |
| 39 | META-ANALYSIS/                                                                                                        |
| 40 | META-ANALYSIS AS TOPIC/                                                                                               |
| 40 | (meta analy* or metanaly*).ti,ab.                                                                                     |
| 42 | ((systematic* or evidence*) adj2 (review* or overview*)).ti,ab.                                                       |
| 43 | (reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.                          |
| 44 | (search strategy or search criteria or systematic search or study selection or data extraction).ab.                   |
| 45 | (search* adj4 literature).ab.                                                                                         |
| 46 | (medline or pubmed or cochrane or embase or psychit or psyclit or psychinfo or psycinfo or cinahl or science citation |
| 10 | index or bids or cancerlit).ab.                                                                                       |
| 47 | cochrane.jw.                                                                                                          |
| 48 | or/39-47                                                                                                              |
| 49 | randomized controlled trial.pt.                                                                                       |
| 50 | controlled clinical trial.pt.                                                                                         |
| 51 | pragmatic clinical trial.pt.                                                                                          |
| 52 | randomi#ed.ab.                                                                                                        |
| 53 | placebo.ab.                                                                                                           |
| 54 | randomly.ab.                                                                                                          |
| 55 | CLINICAL TRIALS AS TOPIC/                                                                                             |
| 56 | trial.ti.                                                                                                             |
|    |                                                                                                                       |

| #                  | Searches                                                                                                                                                                                               |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <del>7</del><br>57 | or/49-56                                                                                                                                                                                               |
| 58                 | 38 and 48                                                                                                                                                                                              |
| 59                 | 38 and 57                                                                                                                                                                                              |
| 60                 | or/58-59                                                                                                                                                                                               |
|                    |                                                                                                                                                                                                        |
| 61                 | limit 50 to yr="2018 -Current"                                                                                                                                                                         |
| Data               | base: Embase – OVID interface                                                                                                                                                                          |
| Date               | of last search: 14/06/2022                                                                                                                                                                             |
|                    |                                                                                                                                                                                                        |
| #                  | Searches                                                                                                                                                                                               |
| 1                  | POSTPARTUM HEMORRHAGE/                                                                                                                                                                                 |
| 2                  | ((postpartum or post partum) adj3 h?emorrhag*).ti,ab.                                                                                                                                                  |
| 3                  | PPH.ti,ab.<br>or/1-3                                                                                                                                                                                   |
| 4<br>5             | exp ANTIFIBRINOLYTIC AGENT/                                                                                                                                                                            |
|                    |                                                                                                                                                                                                        |
| 6                  | (antifibrinoly* or anti-fibrinoly* or antiplasmin? or anti-plasmin? or plasmin inhibitor? or aminocaproic acid or tranexamic acid or vitamin k* or alpha-2-antiplasmin or aminomethylbenzoic acid).mp. |
| 7                  | aprotinin.mp.                                                                                                                                                                                          |
| 8                  |                                                                                                                                                                                                        |
| 9                  | exp UTEROTONIC AGENT/                                                                                                                                                                                  |
| 10                 | uterotonic?.mp.                                                                                                                                                                                        |
| 11                 | (oxytocic? or carbetocin or ergometrine or misoprostrol or oxytocin or pitocin or syntometrine).mp.                                                                                                    |
| 12                 | exp *PROSTAGLANDIN/                                                                                                                                                                                    |
| 13                 | (prostaglandin? or carboprost).mp.<br>or/9-13                                                                                                                                                          |
| 14                 | 4 and 8                                                                                                                                                                                                |
| 15<br>16           | 4 and 6<br>4 and 14                                                                                                                                                                                    |
| 17                 | 4 and 14<br>or/15-16                                                                                                                                                                                   |
|                    | limit 17 to english language                                                                                                                                                                           |
| 18                 |                                                                                                                                                                                                        |
| 19<br>20           | letter.pt. or LETTER/                                                                                                                                                                                  |
| 20                 | note.pt.<br>editorial.pt.                                                                                                                                                                              |
| 22                 | CASE REPORT/ or CASE STUDY/                                                                                                                                                                            |
| 23                 | (letter or comment*).ti.                                                                                                                                                                               |
| 23                 | or/19-23                                                                                                                                                                                               |
| 25                 | RANDOMIZED CONTROLLED TRIAL/ or random*.ti,ab.                                                                                                                                                         |
| 26                 | 24 not 25                                                                                                                                                                                              |
| 27                 | ANIMAL/ not HUMAN/                                                                                                                                                                                     |
| 28                 | NONHUMAN/                                                                                                                                                                                              |
| 29                 | exp ANIMAL EXPERIMENT/                                                                                                                                                                                 |
| 30                 | exp EXPERIMENTAL ANIMAL/                                                                                                                                                                               |
| 31                 | ANIMAL MODEL/                                                                                                                                                                                          |
| 32                 | exp RODENT/                                                                                                                                                                                            |
| 33                 | (rat or rats or mouse or mice).ti.                                                                                                                                                                     |
| 34                 | or/26-33                                                                                                                                                                                               |
| 35                 | 18 not 34                                                                                                                                                                                              |
| 36                 | SYSTEMATIC REVIEW/                                                                                                                                                                                     |
| 37                 | META-ANALYSIS/                                                                                                                                                                                         |
| 38                 | (meta analy* or metanaly* or metaanaly*).ti,ab.                                                                                                                                                        |
| 39                 | ((systematic or evidence) adj2 (review* or overview*)).ti,ab.                                                                                                                                          |
| 40                 | (reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.                                                                                                           |
| 41                 | (search strategy or search criteria or systematic search or study selection or data extraction).ab.                                                                                                    |
| 42                 | (search* adj4 literature).ab.                                                                                                                                                                          |
| 43                 | (medline or pubmed or cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or science citation index or bids or cancerlit).ab.                                                 |
| 44                 | ((pool* or combined) adj2 (data or trials or studies or results)).ab.                                                                                                                                  |
| 45                 | cochrane.jw.                                                                                                                                                                                           |
| 46                 | or/36-45                                                                                                                                                                                               |
| 47                 | random*.ti,ab.                                                                                                                                                                                         |
| 48                 | factorial*.ti,ab.                                                                                                                                                                                      |
| 49                 | (crossover* or cross over*).ti,ab.                                                                                                                                                                     |
| 50                 | ((doubl* or singl*) adj blind*).ti,ab.                                                                                                                                                                 |
| 51                 | (assign* or allocat* or volunteer* or placebo*).ti,ab.                                                                                                                                                 |
| 52                 | CROSSOVER PROCEDURE/                                                                                                                                                                                   |
| 53                 | SINGLE BLIND PROCEDURE/                                                                                                                                                                                |
| 54                 | RANDOMIZED CONTROLLED TRIAL/                                                                                                                                                                           |
| 55                 | DOUBLE BLIND PROCEDURE/                                                                                                                                                                                |
| <b>F</b> C         |                                                                                                                                                                                                        |

56 or/47-55

#

59

Searches 57 35 and 46 58 35 and 56 or/57-58

60 limit 59 to yr="2018 -Current"

Controlled Trials - Wiley interface

| Date | of last search: 14/06/2022                                                                                                                                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                          |
| ID   | Search                                                                                                                                                                                                                   |
| #1   | MeSH descriptor: [Postpartum Hemorrhage] this term only                                                                                                                                                                  |
| #2   | ((postpartum or "post partum") near/3 (hemorrhag* or haemorrhag*)):ti,ab                                                                                                                                                 |
| #3   | PPH:ti,ab                                                                                                                                                                                                                |
| #4   | {or #1-#3}                                                                                                                                                                                                               |
| #5   | MeSH descriptor: [Antifibrinolytic Agents] this term only                                                                                                                                                                |
| #6   | (antifibrinoly* or "anti-fibrinoly*" or antiplasmin* or "anti-plasmin*" or "plasmin inhibitor*" or "aminocaproic acid" or "tranexamic acid" or "vitamin k*" or "alpha-2-antiplasmin" or "aminomethylbenzoic acid"):ti,ab |
| #7   | MeSH descriptor: [Aprotinin] this term only                                                                                                                                                                              |
| #8   | aprotinin:ti,ab                                                                                                                                                                                                          |
| #9   | {or #5-#8}                                                                                                                                                                                                               |
| #10  | uterotonic*:ti,ab                                                                                                                                                                                                        |
| #11  | MeSH descriptor: [Oxytocics] this term only                                                                                                                                                                              |
| #12  | (oxytocic* or carbetocin or ergometrine or misoprostrol or oxytocin or pitocin or syntometrine):ti,ab                                                                                                                    |
| #13  | MeSH descriptor: [Prostaglandins] explode all trees                                                                                                                                                                      |
| #14  | (prostaglandin* or carboprost):ti,ab                                                                                                                                                                                     |
| #15  | {or #10-#14}                                                                                                                                                                                                             |
| #16  | #4 and #9                                                                                                                                                                                                                |
| #17  | #4 and #15                                                                                                                                                                                                               |
| #18  | #16 or #17 with Cochrane Library publication date Between Jan 2018 and Jun 2022                                                                                                                                          |

Databases: Cochrane Database of Systematic Reviews; Cochrane Central Register of

#### Database: CINAHL – Ebsco interface

#### Date of last search: 14/06/2022

| #   | Query                                                                                                           | Limiters/Expanders                                                                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| S45 | S27 AND S44                                                                                                     | Limiters - Published Date:<br>20180101-20220631; English<br>Language<br>Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S44 | S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36 OR S37<br>OR S38 OR S39 OR S40 OR S41 OR S42 OR S43 | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                                                                         |
| S43 | AB (cluster W3 RCT)                                                                                             | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                                                                         |
| S42 | MH (crossover design) OR MH (comparative studies)                                                               | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                                                                         |
| S41 | AB (control W5 group)                                                                                           | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                                                                         |
| S40 | PT (randomized controlled trial)                                                                                | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                                                                         |
| S39 | MH (placebos)                                                                                                   | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                                                                         |
| S38 | MH (sample size) AND AB (assigned OR allocated OR control)                                                      | Expanders - Apply equivalent subjects                                                                                                                |

| #   | Query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limiters/Expanders                                                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Search modes -                                                                                 |
| S37 | TI (trial)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Boolean/Phrase<br>Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S36 | AB (random*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S35 | TI (randomised OR randomized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S34 | (MH cluster sample)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S33 | (MH pretest-posttest design)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S32 | (MH random assignment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S31 | (MH single-blind studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S30 | (MH double-blind studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S29 | (MH randomized controlled trials)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S28 | (TI (systematic* n3 review*)) or (AB (systematic* n3 review*)) or (TI (systematic* n3 bibliographic*)) or (AB (systematic* n3 bibliographic*)) or (TI (systematic* n3 literature)) or (AB (systematic* n3 literature)) or (TI (comprehensive* n3 literature)) or (AB (comprehensive* n3 literature)) or (TI (comprehensive* n3 bibliographic*)) or (AB (comprehensive* n3 bibliographic*)) or (TI (integrative n3 review)) or (AB (comprehensive* n3 bibliographic*)) or (TI (integrative n3 review)) or (AB (integrative n3 review)) or (JN "Cochrane Database of Systematic Reviews") or (TI (information n2 synthesis)) or (TI (data n2 synthesis)) or (AB (data n2 synthesis)) or (AB (data n2 synthesis)) or (TI (data n2 extract*)) or (AB (data n2 extract*)) or (TI (medline or pubmed or psyclit or cinahl or (psycinfo database") or "web of science" or scopus or embase)) or (AB (medline or pubmed or psyclit or cinahl or (psycinfo not "psycinfo database") or "web of science" or scopus or embase)) or (MH "Meta Analysis") or (TI (meta-analy* or metaanaly*)) or (AB (meta-analy* or metaanaly*)) | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S27 | S18 not S26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S26 | S19 OR S22 OR S23 OR S24 OR S25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S25 | TI (rat or rats or mouse or mice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S24 | (MH Rodents+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S23 | (MH Animals, Laboratory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |
| S22 | S20 not S21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase                   |

| #               | Quant                                                                                                                                                                                                                                                                       | Limitero/Expandero                                                           |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <b>#</b><br>S21 | Query<br>(MH human)                                                                                                                                                                                                                                                         | Limiters/Expanders<br>Expanders - Apply equivalent                           |
| 021             |                                                                                                                                                                                                                                                                             | subjects<br>Search modes -                                                   |
| 000             | (MIL eximple ()                                                                                                                                                                                                                                                             | Boolean/Phrase                                                               |
| S20             | (MH animals+)                                                                                                                                                                                                                                                               | Expanders - Apply equivalent<br>subjects<br>Search modes -                   |
|                 |                                                                                                                                                                                                                                                                             | Boolean/Phrase                                                               |
| S19             | PT anecdote or PT audiovisual or PT bibliography or PT biography or PT book or<br>PT book review or PT brief item or PT cartoon or PT commentary or PT computer<br>program or PT editorial or PT games or PT glossary or PT historical material or PT                       | Expanders - Apply equivalent<br>subjects<br>Search modes -                   |
|                 | interview or PT letter or PT listservs or PT masters thesis or PT obituary or PT<br>pamphlet or PT pamphlet chapter or PT pictorial or PT poetry or PT proceedings or<br>PT "questions and answers" or PT response or PT software or PT teaching<br>materials or PT website | Boolean/Phrase                                                               |
| S18             | S16 OR S17                                                                                                                                                                                                                                                                  | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S17             | S4 AND S15                                                                                                                                                                                                                                                                  | Expanders - Apply equivalent subjects                                        |
|                 |                                                                                                                                                                                                                                                                             | Search modes -<br>Boolean/Phrase                                             |
| S16             | S4 AND S9                                                                                                                                                                                                                                                                   | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S15             | S10 OR S11 OR S12 OR S13 OR S14                                                                                                                                                                                                                                             | Expanders - Apply equivalent<br>subjects<br>Search modes -                   |
|                 |                                                                                                                                                                                                                                                                             | Boolean/Phrase                                                               |
| S14             | TX (prostaglandin* or carboprost)                                                                                                                                                                                                                                           | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S13             | (MH "Prostaglandins+")                                                                                                                                                                                                                                                      | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S12             | TX (oxytocic* or carbetocin or ergometrine or misoprostrol or oxytocin or pitocin or syntometrine)                                                                                                                                                                          | Expanders - Apply equivalent<br>subjects<br>Search modes -                   |
|                 |                                                                                                                                                                                                                                                                             | Boolean/Phrase                                                               |
| S11             | (MH "Oxytocics+")                                                                                                                                                                                                                                                           | Expanders - Apply equivalent<br>subjects<br>Search modes -                   |
|                 |                                                                                                                                                                                                                                                                             | Boolean/Phrase                                                               |
| S10             | TX uterotonic*                                                                                                                                                                                                                                                              | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S9              | S5 OR S6 OR S7 OR S8                                                                                                                                                                                                                                                        | Expanders - Apply equivalent<br>subjects<br>Search modes -                   |
|                 |                                                                                                                                                                                                                                                                             | Boolean/Phrase                                                               |
| S8              | TX aprotinin                                                                                                                                                                                                                                                                | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S7              | (MH "Aprotinin")                                                                                                                                                                                                                                                            | Expanders - Apply equivalent                                                 |
|                 |                                                                                                                                                                                                                                                                             | subjects<br>Search modes -<br>Boolean/Phrase                                 |
| S6              | TX (antifibrinoly* or "anti-fibrinoly*" or antiplasmin? or "anti-plasmin?" or "plasmin<br>inhibitor?" or "aminocaproic acid" or "tranexamic acid" or "vitamin k*" or "alpha-2-<br>antiplasmin" or "aminomethylbenzoic acid")                                                | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S5              | (MH "Antifibrinolytic Agents+")                                                                                                                                                                                                                                             | Expanders - Apply equivalent<br>subjects<br>Search modes -                   |
| S4              | S1 OR S2 OR S3                                                                                                                                                                                                                                                              | Boolean/Phrase                                                               |
| 34              | 51 UK 32 UK 33                                                                                                                                                                                                                                                              | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
|                 |                                                                                                                                                                                                                                                                             | DODEAN/FILlase                                                               |

| #  | Query                                                                                               | Limiters/Expanders                                                           |
|----|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| S3 | TI PPH OR AB PPH                                                                                    | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S2 | TI(((postpartum or post partum) N3 h?emorrhag*))OR AB(((postpartum or post partum) N3 h?emorrhag*)) | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |
| S1 | (MH "Postpartum Hemorrhage")                                                                        | Expanders - Apply equivalent<br>subjects<br>Search modes -<br>Boolean/Phrase |

Database: ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP)

Date of last search: 14/06/2022

List of search terms

Limited to 2018-

Third stage AND labo(u)r AND oxytocin

Third stage AND labo(u)r AND misoprostol

Third stage AND labo(u)r AND carbetocin

Third stage AND labo(u)r AND ergometrine

uterotonic\* AND oxytocin

uterotonic\* AND misoprostol

uterotonic\* AND carbetocin

uterotonic\* AND ergometrine

uterotonic\* AND labo(u)r

uterotonic\* AND h(a)emorrhage

h(a)emorrhage AND postpartum AND ergometrine

h(a)emorrhage AND postpartum AND oxytocin

h(a)emorrhage AND postpartum AND carbetocin

h(a)emorrhage AND postpartum AND misoprostol

#### Health economics search strategies

Database: Medline - OVID interface

Date of last search: 09/03/2022

| # | Searches                                                                                                                              |
|---|---------------------------------------------------------------------------------------------------------------------------------------|
| 1 | POSTPARTUM HEMORRHAGE/                                                                                                                |
| 2 | ((postpartum or post partum) adj3 h?emorrhag*).ti,ab.                                                                                 |
| 3 | PPH.ti,ab.                                                                                                                            |
| 4 | or/1-3                                                                                                                                |
| 5 | uterotonic?.mp.                                                                                                                       |
| 6 | exp OXYTOCICS/                                                                                                                        |
| 7 | (oxytocic? or carbetocin or ergometrine or ergonovine or methylergonovine or misoprostrol or oxytocin or pitocin or syntometrine).mp. |
| 8 | exp PROSTAGLANDINS/                                                                                                                   |

| #  | Searches                                                   |
|----|------------------------------------------------------------|
| 9  | (prostaglandin? or carboprost or sulprostone).mp.          |
| 10 | or/5-9                                                     |
| 11 | 4 and 10                                                   |
| 12 | limit 11 to english language                               |
| 13 | LETTER/                                                    |
| 14 | EDITORIAL/                                                 |
| 15 | NEWS/                                                      |
| 16 | exp HISTORICAL ARTICLE/                                    |
| 17 | ANECDOTES AS TOPIC/                                        |
| 18 | COMMENT/                                                   |
| 19 | CASE REPORT/                                               |
| 20 | (letter or comment*).ti.                                   |
| 21 | or/13-20                                                   |
| 22 | RANDOMIZED CONTROLLED TRIAL/ or random*.ti,ab.             |
| 23 | 21 not 22                                                  |
| 24 | ANIMALS/ not HUMANS/                                       |
| 25 | exp ANIMALS, LABORATORY/                                   |
| 26 | exp ANIMAL EXPERIMENTATION/                                |
| 27 | exp MODELS, ANIMAL/                                        |
| 28 | exp RODENTIA/                                              |
| 29 | (rat or rats or mouse or mice) ti.                         |
| 30 | or/23-29                                                   |
| 31 | 12 not 30                                                  |
| 32 | ECONOMICS/                                                 |
| 33 | VALUE OF LIFE/                                             |
| 34 | exp "COSTS AND COST ANALYSIS"/                             |
| 35 | exp ECONOMICS, HOSPITAL/                                   |
| 36 | exp ECONOMICS, MEDICAL/                                    |
| 37 | exp RESOURCE ALLOCATION/                                   |
| 38 | ECONOMICS, NURSING/                                        |
| 39 | ECONOMICS, PHARMACEUTICAL/                                 |
| 40 | exp "FEES AND CHARGES"/                                    |
| 41 | exp BUDGETS/                                               |
| 42 | budget*.ti,ab.                                             |
| 43 | cost*.ti,ab.                                               |
| 44 | (economic* or pharmaco?economic*).ti,ab.                   |
| 45 | (price* or pricing*).ti,ab.                                |
| 46 | (financ* or fee or fees or expenditure* or saving*).ti,ab. |
| 47 | (value adj2 (money or monetary)).ti,ab.                    |
| 48 | resourc* allocat*.ti,ab.                                   |
| 49 | (fund or funds or funding* or funded).ti.ab.               |
| 50 | (ration or rations or rationing* or rationed).ti,ab.       |
| 51 | ec.fs.                                                     |
| 52 | or/32-51                                                   |
| 53 | 31 and 52                                                  |
|    |                                                            |

#### Database: Embase - OVID interface

#### Date of last search: 09/03/2022

| #  | Searches                                                                                                                              |
|----|---------------------------------------------------------------------------------------------------------------------------------------|
| 1  | POSTPARTUM HEMORRHAGE/                                                                                                                |
| 2  | ((postpartum or post partum) adj3 h?emorrhag*).ti,ab.                                                                                 |
| 3  | PPH.ti,ab.                                                                                                                            |
| 4  | or/1-3                                                                                                                                |
| 5  | exp UTEROTONIC AGENT/                                                                                                                 |
| 6  | uterotonic?.mp.                                                                                                                       |
| 7  | (oxytocic? or carbetocin or ergometrine or ergonovine or methylergonovine or misoprostrol or oxytocin or pitocin or syntometrine).mp. |
| 8  | exp *PROSTAGLANDIN/                                                                                                                   |
| 9  | (prostaglandin? or carboprost or sulprostone).mp.                                                                                     |
| 10 | or/5-9                                                                                                                                |
| 11 | 4 and 10                                                                                                                              |
| 12 | limit 11 to english language                                                                                                          |
| 13 | letter.pt. or LETTER/                                                                                                                 |
| 14 | note.pt.                                                                                                                              |
| 15 | editorial.pt.                                                                                                                         |
|    |                                                                                                                                       |

| #  | Searches                                                   |
|----|------------------------------------------------------------|
| 16 | CASE REPORT/ or CASE STUDY/                                |
| 17 | (letter or comment*).ti.                                   |
| 18 | or/13-17                                                   |
| 19 | RANDOMIZED CONTROLLED TRIAL/ or random*.ti,ab.             |
| 20 | 18 not 19                                                  |
| 21 | ANIMAL/ not HUMAN/                                         |
| 22 | NONHUMAN/                                                  |
| 23 | exp ANIMAL EXPERIMENT/                                     |
| 24 | exp EXPERIMENTAL ANIMAL/                                   |
| 25 | ANIMAL MODEL/                                              |
| 26 | exp RODENT/                                                |
| 27 | (rat or rats or mouse or mice).ti.                         |
| 28 | or/20-27                                                   |
| 29 | 12 not 28                                                  |
| 30 | HEALTH ECONOMICS/                                          |
| 31 | exp ECONOMIC EVALUATION/                                   |
| 32 | exp HEALTH CARE COST/                                      |
| 33 | exp FEE/                                                   |
| 34 | BUDGET/                                                    |
| 35 | FUNDING/                                                   |
| 36 | RESOURCE ALLOCATION/                                       |
| 37 | budget*.ti,ab.                                             |
| 38 | cost*.ti,ab.                                               |
| 39 | (economic* or pharmaco?economic*).ti,ab.                   |
| 40 | (price* or pricing*).ti,ab.                                |
| 41 | (financ* or fee or fees or expenditure* or saving*).ti,ab. |
| 42 | (value adj2 (money or monetary)).ti,ab.                    |
| 43 | resourc* allocat*.ti,ab.                                   |
| 44 | (fund or funds or funding* or funded).ti,ab.               |
| 45 | (ration or rations or rationing* or rationed).ti,ab.       |
| 46 | or/30-45                                                   |
| 47 | 29 and 46                                                  |

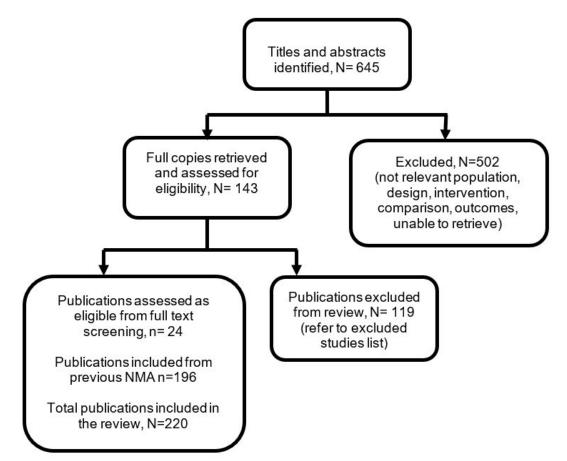
## Database: Cochrane Central Register of Controlled Trials – Wiley interface

#### Date of last search: 09/03/2022

| #   | Searches                                                                                                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| #1  | MeSH descriptor: [Postpartum Hemorrhage] this term only                                                                                    |
| #2  | ((postpartum or "post partum") near/3 (hemorrhag* or haemorrhag*)):ti,ab                                                                   |
| #3  | PPH:ti,ab                                                                                                                                  |
| #4  | #1 or #2 or #3                                                                                                                             |
| #5  | uterotonic*:ti,ab                                                                                                                          |
| #6  | MeSH descriptor: [Oxytocics] explode all trees                                                                                             |
| #7  | (oxytocic* or carbetocin or ergometrine or ergonovine or methylergonovine or misoprostrol or oxytocin or pitocin or<br>syntometrine):ti,ab |
| #8  | MeSH descriptor: [Prostaglandins] explode all trees                                                                                        |
| #9  | (prostaglandin* or carboprost or sulprostone):ti,ab                                                                                        |
| #10 | #5 or #6 or #7 or #8 or #9                                                                                                                 |
| #11 | #4 and #10                                                                                                                                 |
| #12 | MeSH descriptor: [Economics] this term only                                                                                                |
| #13 | MeSH descriptor: [Value of Life] this term only                                                                                            |
| #14 | MeSH descriptor: [Costs and Cost Analysis] explode all trees                                                                               |
| #15 | MeSH descriptor: [Economics, Hospital] explode all trees                                                                                   |
| #16 | MeSH descriptor: [Economics, Medical] explode all trees                                                                                    |
| #17 | MeSH descriptor: [Resource Allocation] explode all trees                                                                                   |
| #18 | MeSH descriptor: [Economics, Nursing] this term only                                                                                       |
| #19 | MeSH descriptor: [Economics, Pharmaceutical] this term only                                                                                |
| #20 | MeSH descriptor: [Fees and Charges] explode all trees                                                                                      |
| #21 | MeSH descriptor: [Budgets] explode all trees                                                                                               |
| #22 | budget*:ti,ab                                                                                                                              |
| #23 | cost*:ti,ab                                                                                                                                |
| #24 | (economic* or pharmaco?economic*):ti,ab                                                                                                    |
| #25 | (price* or pricing*):ti,ab                                                                                                                 |
| #26 | (financ* or fee or fees or expenditure* or saving*):ti,ab                                                                                  |
| #27 | (value near/2 (money or monetary)):ti,ab                                                                                                   |
| #28 | resourc* allocat*:ti,ab                                                                                                                    |

| #   | Searches                                                                                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| #29 | (fund or funds or funding* or funded):ti,ab                                                                                       |
| #30 | (ration or rations or rationing* or rationed):ti,ab                                                                               |
| #31 | #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 or #28 or #29 or #30 |
| #32 | #11 and #31                                                                                                                       |
|     |                                                                                                                                   |

## Database: International Health Technology Assessment


#### Date of last search: 09/03/2022

| # | Searches                         |
|---|----------------------------------|
|   | "Postpartum Hemorrhage"[mh]      |
|   | OR All: postpartum hemorrrhage   |
|   | OR All: postpartum haemorrrhage  |
|   | OR All: post partum hemorrrhage  |
|   | OR All: post partum haemorrrhage |

# Appendix C Effectiveness evidence study selection

Study selection for: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

Figure 30: Study selection flow chart



# Appendix D Evidence tables

### Evidence tables for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

Due to the size and complexity of these tables they are provided in a separate document. See Supplement 4.

# Appendix E Forest plots

#### Forest plots for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

This section includes forest plots only for outcomes that are meta-analysed, but were not included in the NMA. Outcomes from single studies are not presented here; the quality assessment for such outcomes is provided in the GRADE profiles in appendix F.

#### Postpartum haemorrhage ≥ 1000 mL

| Figure 51.                        | EIGOI        | neur     | ne vers                   | <b>us</b> IV | nsopi          |                    | icy – vayinai birtii                                    |
|-----------------------------------|--------------|----------|---------------------------|--------------|----------------|--------------------|---------------------------------------------------------|
|                                   | Ergome       | trine    | Misoprosto                | 600          |                | Risk Difference    | Risk Difference                                         |
| Study or Subgroup                 | Events       | Total    | Events                    | Total        | Weight         | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                      |
| Chhabra 2008                      | 0            | 100      | 0                         | 200          | 26.8%          | 0.00 [-0.02, 0.02] | •                                                       |
| Humera 2016                       | 0            | 50       | 0                         | 50           | 10.0%          | 0.00 [-0.04, 0.04] | +                                                       |
| Jago 2007                         | 0            | 254      | 0                         | 256          | 51.2%          | 0.00 [-0.01, 0.01] | •                                                       |
| Vimala 2004                       | 0            | 60       | 0                         | 60           | 12.0%          | 0.00 [-0.03, 0.03] | +                                                       |
| Total (95% CI)                    |              | 464      |                           | 566          | <b>100.0</b> % | 0.00 [-0.01, 0.01] |                                                         |
| Total events                      | 0            |          | 0                         |              |                |                    |                                                         |
| Heterogeneity: Chi <sup>2</sup> = | = 0.00, df = | 3 (P = 1 | .00); I <sup>z</sup> = 0% |              |                |                    |                                                         |
| Test for overall effect           | : Z = 0.00 ( | P = 1.00 | ))                        |              |                |                    | -1 -0.5 0 0.5 1<br>Favours Ergometrine Favours Miso 600 |

#### Figure 31: Ergometrine versus Misoprostol ≤600mcg – Vaginal birth

#### Figure 32: Misoprostol $\leq$ 600mcg versus Oxytocin >5 iu to $\leq$ 10 iu – Vaginal birth

|                                   | Misoprosto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600      | Oxytocin    | 5-10  |        | Risk Difference    | Risk Difference    |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------|--------|--------------------|--------------------|
| Study or Subgroup                 | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total    | Events      | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl |
| Afolabi 2010                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      | 0           | 100   | 5.0%   | 0.00 [-0.02, 0.02] | +                  |
| Bellad 2012                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 321      | 0           | 331   | 16.4%  | 0.00 [-0.01, 0.01] | •                  |
| Bhatti 2014                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60       | 0           | 60    | 3.0%   | 0.00 [-0.03, 0.03] | +                  |
| Gupta 2006                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      | 0           | 100   | 5.0%   | 0.00 [-0.02, 0.02] | +                  |
| Oboro 2003                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 247      | 0           | 249   | 12.5%  | 0.00 [-0.01, 0.01] | •                  |
| Sadiq 2011                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900      | 0           | 900   | 45.4%  | 0.00 [-0.00, 0.00] | •                  |
| Tewatia 2014                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50       | 0           | 50    | 2.5%   | 0.00 [-0.04, 0.04] | +                  |
| Walley 2000                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202      | 0           | 196   | 10.0%  | 0.00 [-0.01, 0.01] |                    |
| Total (95% CI)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1980     |             | 1986  | 100.0% | 0.00 [-0.00, 0.00] |                    |
| Total events                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0           |       |        |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = | 0.00, df = 7 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P = 1.00 | l); l² = 0% |       |        |                    |                    |
| Test for overall effect:          | abi 2010       0       100       0       100       5.0%       0.00 [-0.02, 0.02]         ad 2012       0       321       0       331       16.4%       0.00 [-0.03, 0.03]         ti 2014       0       60       0       60       3.0%       0.00 [-0.02, 0.02]         ta 2006       0       100       5.0%       0.00 [-0.03, 0.03]       -         ro 2003       0       247       0       249       12.5%       0.00 [-0.01, 0.01]         iq 2011       0       900       0       900       45.4%       0.00 [-0.00, 0.00]         atia 2014       0       50       0       50       2.5%       0.00 [-0.01, 0.01]         ey 2000       0       202       0       196       10.0%       0.00 [-0.01, 0.01] |          |             |       |        |                    |                    |

#### Figure 33: Oxytocin >1 iu to ≤ 5 iu versus Carbetocin

|                                      | ,                     |         |             |         |           |                    |                                                            |
|--------------------------------------|-----------------------|---------|-------------|---------|-----------|--------------------|------------------------------------------------------------|
|                                      | Oxytocin 1            | 1-5     | Carbet      | ocin    |           | Risk Difference    | Risk Difference                                            |
| Study or Subgroup                    | Events                | Total   | Events      | Total   | Weight    | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                         |
| 12.1.1 Vaginal Birth                 |                       |         |             |         |           |                    |                                                            |
| Amornpetchakul 2018                  | 0                     | 174     | 0           | 176     | 87.3%     | 0.00 [-0.01, 0.01] |                                                            |
| Subtotal (95% CI)                    |                       | 174     |             | 176     | 87.3%     | 0.00 [-0.01, 0.01] |                                                            |
| Total events                         | 0                     |         | 0           |         |           |                    |                                                            |
| Heterogeneity: Not appl              | icable                |         |             |         |           |                    |                                                            |
| Test for overall effect: Z           | = 0.00 (P = 1         | .00)    |             |         |           |                    |                                                            |
| 12.1.2 Caesarean Birth               |                       |         |             |         |           |                    |                                                            |
| Rosseland 2013                       | 0                     | 26      | 0           | 25      | 12.7%     | 0.00 [-0.07, 0.07] | +                                                          |
| Subtotal (95% CI)                    |                       | 26      |             | 25      | 12.7%     | 0.00 [-0.07, 0.07] | <b>•</b>                                                   |
| Total events                         | 0                     |         | 0           |         |           |                    |                                                            |
| Heterogeneity: Not appl              | icable                |         |             |         |           |                    |                                                            |
| Test for overall effect: Z           | = 0.00 (P = 1         | .00)    |             |         |           |                    |                                                            |
| Total (95% CI)                       |                       | 200     |             | 201     | 100.0%    | 0.00 [-0.01, 0.01] |                                                            |
| Total events                         | 0                     |         | 0           |         |           |                    |                                                            |
| Heterogeneity: Chi <sup>2</sup> = 0. | 00, df = 1 (P :       | = 1.00  | l); l² = 0% |         |           |                    | -1 -0.5 0 0.5                                              |
| Test for overall effect: Z           | = 0.00 (P = 1         | .00)    |             |         |           |                    | -1 -0.5 0 0.5<br>Favours Oxytocin 1 - 5 Favours Carbetocin |
| Test for subgroup differ             | ences: Chi <b>²</b> = | = 0.00, | df = 1 (P   | = 1.00) | , l² = 0% |                    | avours oxytoen i S Tavours Carbetoen                       |
|                                      |                       |         |             |         |           |                    |                                                            |

#### Figure 34: Oxytocin >1 iu to $\leq$ 5 iu versus Placebo

|                                   | Oxytocin     | 11-5                | Place                | bo      |                          | Risk Difference    | Risk Difference                                           |
|-----------------------------------|--------------|---------------------|----------------------|---------|--------------------------|--------------------|-----------------------------------------------------------|
| Study or Subgroup                 | Events       | Total               | Events               | Total   | Weight                   | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                        |
| 13.1.1 Vaginal Birth              |              |                     |                      |         |                          |                    |                                                           |
| Jerbi 2007                        | 0            | 65                  | 0                    | 65      | 71.8%                    | 0.00 [-0.03, 0.03] | · · · · · · · · · · · · · · · · · · ·                     |
| Subtotal (95% CI)                 |              | 65                  |                      | 65      | 71.8%                    | 0.00 [-0.03, 0.03] | <b>♦</b>                                                  |
| Total events                      | 0            |                     | 0                    |         |                          |                    |                                                           |
| Heterogeneity: Not ap             | oplicable    |                     |                      |         |                          |                    |                                                           |
| Test for overall effect:          | Z = 0.00 (F  | <sup>•</sup> = 1.00 | )                    |         |                          |                    |                                                           |
| 13.1.2 Caesarean Bi               | rth          |                     |                      |         |                          |                    |                                                           |
| Rosseland 2013                    | 0            | 26                  | 0                    | 25      | 28.2%                    | 0.00 [-0.07, 0.07] | +                                                         |
| Subtotal (95% CI)                 |              | 26                  |                      | 25      | <b>28.2</b> %            | 0.00 [-0.07, 0.07] | ◆                                                         |
| Total events                      | 0            |                     | 0                    |         |                          |                    |                                                           |
| Heterogeneity: Not ap             | oplicable    |                     |                      |         |                          |                    |                                                           |
| Test for overall effect:          | Z = 0.00 (F  | <sup>o</sup> = 1.00 | )                    |         |                          |                    |                                                           |
| Total (95% CI)                    |              | 91                  |                      | 90      | 100.0%                   | 0.00 [-0.03, 0.03] | <b></b>                                                   |
| Total events                      | 0            |                     | 0                    |         |                          |                    |                                                           |
| Heterogeneity: Chi <sup>2</sup> = | 0.00, df = 1 | 1 (P = 1            | .00); I <b>²</b> = ( | 0%      |                          |                    | -1 -0.5 0 0.5 1                                           |
| Test for overall effect:          | Z = 0.00 (F  | <sup>•</sup> = 1.00 | )                    |         |                          |                    | -1 -U.5 U U.5 1<br>Favours Oxytocin 1 - 5 Favours Placebo |
| Test for subgroup diff            | ferences: C  | Chi² = 0.           | 00, df= 1            | (P = 1. | .00), l <sup>2</sup> = 0 | 1%                 | Tavours Oxytochi 1-5 Favours Flatebo                      |
|                                   |              |                     |                      |         |                          |                    |                                                           |

#### Severe maternal morbidity – intensive care admissions

## Figure 35: Misoprostol >600 mcg to $\leq$ 800 mcg versus Oxytocin >1 iu to $\leq$ 5 iu –

### Vaginal birth

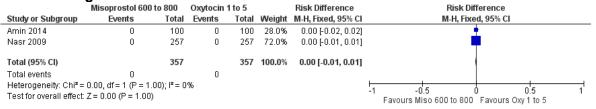



Figure 36: Misoprostol  $\leq$ 600 mcg versus Oxytocin >5 iu to  $\leq$  10 iu – Vaginal birth

|                                   | Misoprosto     | ol 600   | Oxytocin 5  | to 10 |        | Risk Difference    | Risk Difference                                                     |
|-----------------------------------|----------------|----------|-------------|-------|--------|--------------------|---------------------------------------------------------------------|
| Study or Subgroup                 | Events         | Total    | Events      | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                                  |
| Afolabi 2010                      | 0              | 100      | 0           | 100   | 20.0%  | 0.00 [-0.02, 0.02] | +                                                                   |
| Kundodyiwa 2001                   | 0              | 243      | 0           | 256   | 49.9%  | 0.00 [-0.01, 0.01] | •                                                                   |
| Musa 2015                         | 0              | 100      | 0           | 100   | 20.0%  | 0.00 [-0.02, 0.02] | +                                                                   |
| Tewatia 2014                      | 0              | 50       | 0           | 50    | 10.0%  | 0.00 [-0.04, 0.04] | +                                                                   |
| Total (95% CI)                    |                | 493      |             | 506   | 100.0% | 0.00 [-0.01, 0.01] |                                                                     |
| Total events                      | 0              |          | 0           |       |        |                    |                                                                     |
| Heterogeneity: Chi <sup>2</sup> = | 0.00, df = 3 ( | P = 1.00 | l); I² = 0% |       |        |                    |                                                                     |
| Test for overall effect:          | Z = 0.00 (P =  | 1.00)    |             |       |        |                    | -1 -0.5 0 0.5 1<br>Favours Misoprostol 600 Favours Oxytocin 5 to 10 |

#### Figure 37: Ergometrine + Oxytocin versus Carbetocin – Vaginal birth

| Ergometrine + Oxytocin            |                        | Carbet              | ocin   |       | Risk Difference | Risk Difference    |                                     |
|-----------------------------------|------------------------|---------------------|--------|-------|-----------------|--------------------|-------------------------------------|
| Study or Subgroup                 | Events                 | Total               | Events | Total | Weight          | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                  |
| Nirmala 2009                      | 0                      | 60                  | 0      | 60    | 37.5%           | 0.00 [-0.03, 0.03] | +                                   |
| Samimi 2013                       | 0                      | 100                 | 0      | 100   | 62.5%           | 0.00 [-0.02, 0.02] | •                                   |
| Total (95% CI)                    |                        | 160                 |        | 160   | <b>100.0</b> %  | 0.00 [-0.02, 0.02] | •                                   |
| Total events                      | 0                      |                     | 0      |       |                 |                    |                                     |
| Heterogeneity: Chi <sup>2</sup> = | 0.00, df = 1 (P = 1.00 | 0); I <b>z</b> = 0' | %      |       |                 |                    |                                     |
| Test for overall effect           | Z = 0.00 (P = 1.00)    |                     |        |       |                 |                    | Favours Ergo+Oxy Favours Carbetocin |

#### Need for blood transfusion

#### Figure 38: Ergometrine versus Misoprostol ≤600 mcg – Vaginal birth

|                                   | Ergome       | trine    | Misoprostol                     | <600  |        | Risk Difference    | Risk Difference                                         |
|-----------------------------------|--------------|----------|---------------------------------|-------|--------|--------------------|---------------------------------------------------------|
| Study or Subgroup                 | Events       | Total    | Events                          | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                      |
| Chhabra 2008                      | 0            | 100      | 0                               | 200   | 33.9%  | 0.00 [-0.02, 0.02] | •                                                       |
| Humera 2016                       | 0            | 50       | 0                               | 50    | 12.7%  | 0.00 [-0.04, 0.04] | +                                                       |
| Otoide 2020                       | 0            | 150      | 0                               | 150   | 38.1%  | 0.00 [-0.01, 0.01] | •                                                       |
| Vimala 2004                       | 0            | 60       | 0                               | 60    | 15.3%  | 0.00 [-0.03, 0.03] | +                                                       |
| Total (95% CI)                    |              | 360      |                                 | 460   | 100.0% | 0.00 [-0.01, 0.01] |                                                         |
| Total events                      | 0            |          | 0                               |       |        |                    |                                                         |
| Heterogeneity: Chi <sup>2</sup> = | = 0.00, df = | 3 (P = 1 | .00); <b>I<sup>2</sup> = 0%</b> |       |        |                    |                                                         |
| Test for overall effect           | : Z = 0.00 ( | P = 1.00 | ))                              |       |        |                    | -1 -0.5 0 0.5 1<br>Favours Ergometrine Favours Miso 600 |
|                                   |              |          |                                 |       |        |                    |                                                         |

#### Figure 39: Misoprostol ≤600 mcg versus Ergometrine + Oxytocin – Vaginal birth

|                                         | Misoprosto      | <600                    | Ergometrine + Oxytocin |       |        | Risk Difference    | Risk Difference                                        |  |  |
|-----------------------------------------|-----------------|-------------------------|------------------------|-------|--------|--------------------|--------------------------------------------------------|--|--|
| Study or Subgroup                       | Events          | Total                   | Events                 | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                     |  |  |
| Bamigboye, Merrell 1998                 | 0               | 231                     | 0                      | 233   | 76.8%  | 0.00 [-0.01, 0.01] |                                                        |  |  |
| Harriott 2009                           | 0               | 70                      | 0                      | 70    | 23.2%  | 0.00 [-0.03, 0.03] | <b>†</b>                                               |  |  |
| Total (95% CI)                          |                 | 301                     |                        | 303   | 100.0% | 0.00 [-0.01, 0.01] |                                                        |  |  |
| Total events                            | 0               |                         | 0                      |       |        |                    |                                                        |  |  |
| Heterogeneity: Chi <sup>2</sup> = 0.00, | df = 1 (P = 1.0 | 00); I <sup>z</sup> = 0 | %                      |       |        |                    |                                                        |  |  |
| Test for overall effect: Z = 0          | .00 (P = 1.00)  |                         |                        |       |        |                    | -1 -0.5 0 0.5 1<br>Favours Miso 600 Favours Ergo + Oxy |  |  |

| i iyule <del>4</del> 0.           | wiisopic        | 5101     | 2000 1      | ncy                   | vei su | S Oxytociii >      |                                                           |
|-----------------------------------|-----------------|----------|-------------|-----------------------|--------|--------------------|-----------------------------------------------------------|
|                                   | Misoprostol     | <600     | Oxytocin    | 5-10                  |        | Risk Difference    | Risk Difference                                           |
| Study or Subgroup                 | Events          | Total    | Events      | Total                 | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                        |
| 11.1.1 Vaginal birth              |                 |          |             |                       |        |                    |                                                           |
| Afolabi 2010                      | 0               | 100      | 0           | 100                   | 5.9%   | 0.00 [-0.02, 0.02] | +                                                         |
| Gupta 2006                        | 0               | 100      | 0           | 100                   | 5.9%   | 0.00 [-0.02, 0.02] | +                                                         |
| Lumbiganon 1999                   | 0               | 397      | 0           | 200                   | 15.6%  | 0.00 [-0.01, 0.01] | •                                                         |
| Oboro 2003                        | 0               | 247      | 0           | 249                   | 14.5%  | 0.00 [-0.01, 0.01] | •                                                         |
| Sadiq 2011                        | 0               | 900      | 0           | 884                   | 52.3%  | 0.00 [-0.00, 0.00] | •                                                         |
| Tewatia 2014                      | 0               | 50       | 0           | 50                    | 2.9%   | 0.00 [-0.04, 0.04] | +                                                         |
| Subtotal (95% CI)                 |                 | 1794     |             | 1583                  | 97.1%  | 0.00 [-0.00, 0.00] |                                                           |
| Total events                      | 0               |          | 0           |                       |        |                    |                                                           |
| Heterogeneity: Chi <sup>2</sup> = | 0.00, df = 5 (F | = 1.00)  | l² = 0%     |                       |        |                    |                                                           |
| Test for overall effect:          | Z = 0.00 (P =   | 1.00)    |             |                       |        |                    |                                                           |
| 11.1.2 Caesarean bir              | th              |          |             |                       |        |                    |                                                           |
| Fazel 2013                        | 0               | 50       | 0           | 50                    | 2.9%   | 0.00 [-0.04, 0.04] | +                                                         |
| Subtotal (95% CI)                 |                 | 50       |             | 50                    | 2.9%   | 0.00 [-0.04, 0.04] | <b>♦</b>                                                  |
| Total events                      | 0               |          | 0           |                       |        |                    |                                                           |
| Heterogeneity: Not ap             | plicable        |          |             |                       |        |                    |                                                           |
| Test for overall effect:          | Z = 0.00 (P =   | 1.00)    |             |                       |        |                    |                                                           |
| Total (95% CI)                    |                 | 1844     |             | 1633                  | 100.0% | 0.00 [-0.00, 0.00] |                                                           |
| Total events                      | 0               |          | 0           |                       |        |                    |                                                           |
| Heterogeneity: Chi <sup>2</sup> = | 0.00, df = 6 (F | = 1.00); | l² = 0%     |                       |        |                    |                                                           |
| Test for overall effect:          |                 |          |             |                       |        |                    | -1 -0.5 0 0.5 1<br>Foreuro Mice 500 Foreuro Octobrio 5.10 |
| Test for subgroup diff            |                 |          | #f = 1 (P = | 1.00), I <sup>z</sup> | = 0%   |                    | Favours Miso 600 Favours Oxytocin 5-10                    |
|                                   |                 |          |             |                       | -      |                    |                                                           |

#### Figure 40: Misoprostol $\leq$ 600 mcg versus Oxytocin >5 iu to $\leq$ 10 iu

Figure 41: Misoprostol  $\leq$ 600 mcg versus Oxytocin >1 iu to  $\leq$  5 iu – Vaginal birth

| -                                 | Misoprostol       | <600     | Oxytocii  | 1 1-5 | Risk Difference |                    | Risk Difference                                          |
|-----------------------------------|-------------------|----------|-----------|-------|-----------------|--------------------|----------------------------------------------------------|
| Study or Subgroup                 | Events            | Total    | Events    | Total | Weight          | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                       |
| Baskett 2007                      | 0                 | 311      | 0         | 311   | 73.6%           | 0.00 [-0.01, 0.01] |                                                          |
| Karkanis 2002                     | 0                 | 110      | 0         | 113   | 26.4%           | 0.00 [-0.02, 0.02] | +                                                        |
| Total (95% CI)                    |                   | 421      |           | 424   | 100.0%          | 0.00 [-0.01, 0.01] |                                                          |
| Total events                      | 0                 |          | 0         |       |                 |                    |                                                          |
| Heterogeneity: Chi <sup>2</sup> = | 0.00, df = 1 (P   | = 1.00); | ; I² = 0% |       |                 |                    |                                                          |
| Test for overall effect           | : Z = 0.00 (P = 1 | .00)     |           |       |                 |                    | -1 -0.5 0 0.5 1<br>Favours Miso 600 Favours Oxytocin 1-5 |

#### Figure 42: Oxytocin >10 iu versus Carbetocin

| Oxytocin     | i >10                                                                                                       | Carbet                                                                                                                                                                                     | ocin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Risk Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Events       | Total                                                                                                       | Events                                                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M-H, Fixed, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M-H, Fixed, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|              |                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0            | 50                                                                                                          | 0                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 [-0.04, 0.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|              | 50                                                                                                          |                                                                                                                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 [-0.04, 0.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>♦</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 0            |                                                                                                             | 0                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| plicable     |                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Z = 0.00 (F  | ° = 1.00                                                                                                    | )                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| th           |                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0            | 28                                                                                                          | 0                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 [-0.07, 0.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0            | 110                                                                                                         | 0                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 [-0.02, 0.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|              | 138                                                                                                         |                                                                                                                                                                                            | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 [-0.02, 0.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0            |                                                                                                             | 0                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0.00, df = 1 | 1 (P = 1                                                                                                    | .00); l <sup>2</sup> = (                                                                                                                                                                   | )%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Z = 0.00 (F  | ° = 1.00                                                                                                    | )                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|              | 188                                                                                                         |                                                                                                                                                                                            | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 [-0.02, 0.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0            |                                                                                                             | 0                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0.00, df = 3 | 2 (P = 1                                                                                                    | $.00); I^2 = 0$                                                                                                                                                                            | )%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Z = 0.00 (F  | <sup>o</sup> = 1.00                                                                                         | )                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1 -0.5 0 0.5 1<br>Favours Oxytocin >10 Favours Carbetocin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| erences: C   | ;<br>2hi² = 0.                                                                                              | 00, df = 1                                                                                                                                                                                 | (P = 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00), I² = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Favours Oxytochi >10 Favours Carpetochi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|              | Events<br>0<br>plicable<br>Z = 0.00 (f<br>th<br>0<br>0.00, df =<br>Z = 0.00 (f<br>0.00, df =<br>Z = 0.00 (f | 0 50<br>50<br>0<br>plicable<br>Z = 0.00 (P = 1.00<br>th<br>0 28<br>0 110<br>138<br>0<br>0.00, df = 1 (P = 1<br>Z = 0.00 (P = 1.00<br>188<br>0<br>0.00, df = 2 (P = 1<br>Z = 0.00 (P = 1.00 | Events         Total         Events           0         50         0           0         50         0           0         0         0           plicable         2         0.00 (P = 1.00)           th         0         28         0           0         110         0         138           0         0         0         0           0.00, df = 1 (P = 1.00); P = 0         2         0         0           188         0         0         0           0.00, df = 2 (P = 1.00); P = 0         0         0           Z = 0.00 (P = 1.00); P = 0         Z         0         0 | Events         Total         Events         Total           0         50         0         50           0         0         0         0           plicable         2         0.00 (P = 1.00)         10           0         28         0         29           0         110         0         110           138         139         0         0           0.00, df = 1 (P = 1.00); P = 0%         Z = 0.00 (P = 1.00)         188         189           0         0         0         0         0           0.00, df = 2 (P = 1.00); P = 0%         Z = 0.00 (P = 1.00)         100         100 | Events         Total         Events         Total         Weight           0         50         0         50         26.5%           0         0         0         26.5%           0         0         0         26.5%           0         0         0         26.5%           0         0         0         26.5%           0         0         0         26.5%           0         0         100         26.5%           0         0         29         15.1%           0         110         0         110         58.4%           138         139         73.5%           0         0         0         0           0.00, df = 1 (P = 1.00); P = 0%         2         9.00%         0           0         0         0         0         0           0.00, df = 2 (P = 1.00); P = 0%         Z = 0.00 (P = 1.00)         P         0% | Events         Total         Events         Total         Weight         M-H, Fixed, 95% CI           0         50         0         50         26.5%         0.00 [-0.04, 0.04]           0         0         0         0         00         0.00 [-0.04, 0.04]           0         0         0         0         0.00 [-0.04, 0.04]         0.00 [-0.04, 0.04]           0         0         0         0         0.00 [-0.07, 0.04]         0.00 [-0.07, 0.07]           0         110         0         110         58.4%         0.00 [-0.02, 0.02]           0         110         0         110         58.4%         0.00 [-0.02, 0.02]           0         0         0         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]           0         0         0         0         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02]         0.00 [-0.02, 0.02] </td |  |  |

#### Figure 43: Oxytocin >5 iu to $\leq$ 10 iu versus Carbetocin

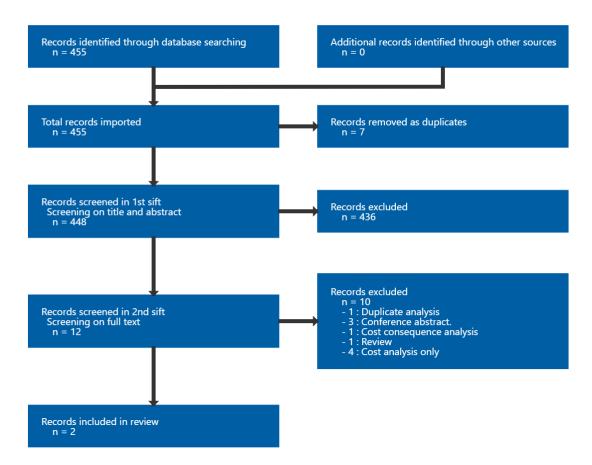
|                                   |                |                    | • • •                   |           |                                |                    |                                          |
|-----------------------------------|----------------|--------------------|-------------------------|-----------|--------------------------------|--------------------|------------------------------------------|
| -                                 | Oxytocin       | 5-10               | Carbet                  | ocin      |                                | Risk Difference    | Risk Difference                          |
| Study or Subgroup                 | Events         | Total              | Events                  | Total     | Weight                         | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                       |
| 17.1.1 Vaginal birth              |                |                    |                         |           |                                |                    |                                          |
| Fenix 2012                        | 0              | 30                 | 0                       | 30        | 37.5%                          | 0.00 [-0.06, 0.06] | - <b>+</b> -                             |
| Subtotal (95% CI)                 |                | 30                 |                         | 30        | 37.5%                          | 0.00 [-0.06, 0.06] | <b>•</b>                                 |
| Total events                      | 0              |                    | 0                       |           |                                |                    |                                          |
| Heterogeneity: Not a              | oplicable      |                    |                         |           |                                |                    |                                          |
| Test for overall effect           | : Z = 0.00 (F  | P = 1.00)          | )                       |           |                                |                    |                                          |
| 17.1.2 Caesarean bi               | rth            |                    |                         |           |                                |                    |                                          |
| Fahmy 2015                        | 0              | 50                 | 0                       | 50        | 62.5%                          | 0.00 [-0.04, 0.04] | 📫                                        |
| Subtotal (95% CI)                 |                | 50                 |                         | 50        | 62.5%                          | 0.00 [-0.04, 0.04] | •                                        |
| Total events                      | 0              |                    | 0                       |           |                                |                    |                                          |
| Heterogeneity: Not a              | oplicable      |                    |                         |           |                                |                    |                                          |
| Test for overall effect           | : Z = 0.00 (F  | P = 1.00)          | )                       |           |                                |                    |                                          |
| Total (95% CI)                    |                | 80                 |                         | 80        | 100.0%                         | 0.00 [-0.03, 0.03] | <b>+</b>                                 |
| Total events                      | 0              |                    | 0                       |           |                                |                    |                                          |
| Heterogeneity: Chi <sup>2</sup> = | : 0.00, df = 1 | 1 (P = 1.          | 00); I <sup>z</sup> = 0 | 1%        |                                |                    | -1 -0.5 0 0.5 1                          |
| Test for overall effect           | : Z = 0.00 (F  | P = 1.00)          | )                       |           |                                |                    |                                          |
| Test for subgroup dif             | ferences: C    | ;hi <b>²</b> = 0.0 | 00, df = 1              | (P = 1.0) | 00), <b>I<sup>2</sup> =</b> 09 | %                  |                                          |
|                                   |                |                    |                         | (P = 1.0  | 00), <b>I</b> ² = 09           | %                  | Favours Oxytocin 5-10 Favours Carbetocin |

#### Figure 44: Oxytocin >1 iu to $\leq$ 5 iu versus Placebo

|                                   |              | •••••    |             |          |                     |                    |                                      |
|-----------------------------------|--------------|----------|-------------|----------|---------------------|--------------------|--------------------------------------|
|                                   | Oxytoci      | n 1-5    | Place       | bo       |                     | Risk Difference    | Risk Difference                      |
| Study or Subgroup                 | Events       | Total    | Events      | Total    | Weight              | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                   |
| 20.1.1 Vaginal birth              |              |          |             |          |                     |                    |                                      |
| Jerbi 2007                        | 0            | 65       | 0           | 65       | 76.5%               | 0.00 [-0.03, 0.03] |                                      |
| Subtotal (95% CI)                 |              | 65       |             | 65       | 76.5%               | 0.00 [-0.03, 0.03] | <b>♦</b>                             |
| Total events                      | 0            |          | 0           |          |                     |                    |                                      |
| Heterogeneity: Not ap             | pplicable    |          |             |          |                     |                    |                                      |
| Test for overall effect           | : Z = 0.00 ( | P = 1.00 | ))          |          |                     |                    |                                      |
| 20.1.2 Caesarean bi               | rth          |          |             |          |                     |                    |                                      |
| Butwick 2010                      | 0            | 30       | 0           | 15       | 23.5%               | 0.00 [-0.10, 0.10] | _ <b>+</b> _                         |
| Subtotal (95% CI)                 |              | 30       |             | 15       | 23.5%               | 0.00 [-0.10, 0.10] | ◆                                    |
| Total events                      | 0            |          | 0           |          |                     |                    |                                      |
| Heterogeneity: Not ap             | pplicable    |          |             |          |                     |                    |                                      |
| Test for overall effect           | : Z = 0.00 ( | P = 1.00 | ))          |          |                     |                    |                                      |
| Total (95% CI)                    |              | 95       |             | 80       | <b>100.0</b> %      | 0.00 [-0.03, 0.03] | •                                    |
| Total events                      | 0            |          | 0           |          |                     |                    |                                      |
| Heterogeneity: Chi <sup>2</sup> = | : 0.00, df = | 1 (P = 1 | .00); l² =  | 0%       |                     |                    | -1 -0.5 0 0.5                        |
| Test for overall effect           | : Z = 0.00 ( | P = 1.00 | ))          |          |                     |                    | Favours Oxytocin 1-5 Favours Placebo |
| Test for subgroup dif             | ferences: (  | Chi²=O   | .00, df = 1 | l (P = 1 | .00), <b>i²</b> = I | 0%                 |                                      |

# Appendix F GRADE tables

GRADE tables for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?


Due to the size and complexity of these tables they are provided in a separate document. See Supplement 5.

# Appendix G Economic evidence study selection

# Study selection for: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

Of 455 studies, 12 were assessed at full text level and of those 2 were included for this review.

## Figure 45: Study selection flow chart



# Appendix H Economic evidence tables

Economic evidence tables for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

| prevention of postpartum haemorrhage |               |                               |                     |                               |                |  |  |  |  |  |  |
|--------------------------------------|---------------|-------------------------------|---------------------|-------------------------------|----------------|--|--|--|--|--|--|
| a                                    |               | Study                         | Costs and           |                               |                |  |  |  |  |  |  |
| Study                                | Intervention  | population,                   | outcomes            |                               |                |  |  |  |  |  |  |
| country and                          | and           | design and                    | (descriptions       | Descrite                      | 0              |  |  |  |  |  |  |
| type                                 | comparator    | data sources                  | and values)         | Results                       | Comments       |  |  |  |  |  |  |
| Author and                           | Interventions | Population                    | Vaginal             | Vaginal                       | Currency:      |  |  |  |  |  |  |
| year:                                | in detail:    | characteristi                 | births no           | births no                     | GBP            |  |  |  |  |  |  |
| Gallos 2019                          | * ergometrine | CS:                           | adverse<br>events   | adverse<br>events             |                |  |  |  |  |  |  |
|                                      | * ergometrine | Women at risk<br>of PPH after | events              | events                        | Cost year:     |  |  |  |  |  |  |
| Country:                             | plus oxytocin | birth                         | Maan aaat           |                               | 2016           |  |  |  |  |  |  |
| UK                                   | * carbetocin  | birdi                         | Mean cost<br>per    | ICERs:                        |                |  |  |  |  |  |  |
|                                      | * misoprostol | Modelling                     | participant:        | carbetocin v<br>ergometrine   | Time           |  |  |  |  |  |  |
| Type of                              | * misoprostol | approach:                     | Oxytocin            | plus oxytocin                 | horizon:       |  |  |  |  |  |  |
| economic                             | plus oxytocin | Decision                      | £2,545              | £1,889 per                    | 6 days         |  |  |  |  |  |  |
| analysis:                            |               | analytic model                | ,0 . 0              | PPH ≥ 500 ml                  |                |  |  |  |  |  |  |
| Cost                                 | Comparator    |                               | Ergometrine         | avoided                       | Discounting:   |  |  |  |  |  |  |
| effectiveness                        | in detail:    | Source of                     | plus oxytocin       |                               | N/A            |  |  |  |  |  |  |
| analysis                             | * oxytocin    | baseline                      | £2,538              | ergometrine                   |                |  |  |  |  |  |  |
|                                      |               | data:                         | , - ,               | plus oxytocin                 | Applicability: |  |  |  |  |  |  |
| 0                                    |               | Oxytocin                      | Carbetocin          | dominates all                 | Partially      |  |  |  |  |  |  |
| Source of<br>funding:                |               | direct and                    | £2,551              | other                         | applicable     |  |  |  |  |  |  |
| -                                    |               | indirect                      | ,                   | interventions                 |                |  |  |  |  |  |  |
| National<br>Institute for            |               | evidence from                 | Misoprostol         |                               | Limitations:   |  |  |  |  |  |  |
| Health                               |               | trials included               | plus oxytocin       | Probability of                | Potentially    |  |  |  |  |  |  |
| Research                             |               | in the NMA                    | £2,539              | being cost                    | serious        |  |  |  |  |  |  |
| (NIHR)                               |               | 0                             |                     | effective:                    | limitations    |  |  |  |  |  |  |
|                                      |               | Source of<br>effectiveness    | Misoprostol         | Carbetocin                    |                |  |  |  |  |  |  |
|                                      |               | data:                         | £2,548              | had a greater<br>than 50%     |                |  |  |  |  |  |  |
|                                      |               | Direct and                    |                     | probability of                |                |  |  |  |  |  |  |
|                                      |               | indirect                      | Ergometrine         | being cost-                   |                |  |  |  |  |  |  |
|                                      |               | evidence from                 | £2,551              | effective                     |                |  |  |  |  |  |  |
|                                      |               | trials included               |                     | relative to                   |                |  |  |  |  |  |  |
|                                      |               | in the NMA                    | Primary             | oxytocin for                  |                |  |  |  |  |  |  |
|                                      |               |                               | measure of          | cost-                         |                |  |  |  |  |  |  |
|                                      |               | Source of                     | outcome:            | effectiveness<br>thresholds > |                |  |  |  |  |  |  |
|                                      |               | cost data:                    | PPH ≥ 500 ml        | £864 per PPH                  |                |  |  |  |  |  |  |
|                                      |               | Birmingham                    | avoided             | ≥ 500 ml                      |                |  |  |  |  |  |  |
|                                      |               | Women's                       | Maan                | avoided                       |                |  |  |  |  |  |  |
|                                      |               | Hospital,<br>Literature       | Mean<br>outcome per |                               |                |  |  |  |  |  |  |
|                                      |               | estimates                     | participant:        | Subgroup                      |                |  |  |  |  |  |  |
|                                      |               |                               | Oxytocin            | analysis:                     |                |  |  |  |  |  |  |
|                                      |               | Source of                     | 0.908               | Caesarean                     |                |  |  |  |  |  |  |
|                                      |               | unit cost                     | 0.000               | births with                   |                |  |  |  |  |  |  |
|                                      |               | data:                         | Ergometrine         | no adverse                    |                |  |  |  |  |  |  |
|                                      |               | NHS                           | plus oxytocin       | events and                    |                |  |  |  |  |  |  |
|                                      |               | Reference                     | 0.936               | excluding<br>ergometrine      |                |  |  |  |  |  |  |
|                                      |               |                               | 0.000               | ergomenne                     |                |  |  |  |  |  |  |

 Table 30: Economic evidence tables for the effectiveness of uterotonics for the prevention of postpartum haemorrhage

| Study       | Internetien      | Study                                                                   | Costs and                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|-------------|------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| country and | Intervention and | population,<br>design and                                               | outcomes<br>(descriptions                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| type        | comparator       | data sources                                                            | and values)                                                                                                       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments |
|             |                  | Costs 2014-<br>15, BNF 71,<br>NHS<br>Electronic<br>Drugs Tariff<br>2016 | Carbetocin<br>0.944<br>Misoprostol<br>plus oxytocin<br>0.931<br>Misoprostol<br>0.899<br>Ergometrine<br>0.891<br>: | and<br>ergometrine<br>plus oxytocin<br>dominates<br>Sensitivity<br>analysis:<br>Vaginal<br>births with<br>adverse<br>events<br>carbetocin v<br>oxytocin<br>£928 per PPH<br>≥ 500 ml<br>avoided<br>oxytocin<br>dominates all<br>other<br>interventions<br>Caesarean<br>births with<br>adverse<br>events and<br>excluding<br>ergometrine<br>plus oxytocin<br>carbetocin v<br>misoprostol<br>plus oxytocin<br>£2,480 per<br>PPH ≥ 500 ml<br>avoided<br>carbetocin v<br>misoprostol<br>plus oxytocin<br>£2,480 per<br>PPH ≥ 500 ml<br>avoided<br>carbetocin s<br>misoprostol<br>plus oxytocin<br>£2,480 per<br>PPH ≥ 500 ml<br>avoided |          |

| Study                                                                                                                                                                                           | 1                                                                                                                                          | Study                                                                                                                                                                                                                                                                                                                                                                                     | Costs and                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                                                               | Intervention<br>and                                                                                                                        | population,<br>design and                                                                                                                                                                                                                                                                                                                                                                 | outcomes<br>(descriptions                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |
| country and<br>type                                                                                                                                                                             | comparator                                                                                                                                 | data sources                                                                                                                                                                                                                                                                                                                                                                              | and values)                                                                                                                                                                                                                                                                             | Results                                                                                                                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                                                                                                |
| (Jpc                                                                                                                                                                                            | oomparator                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                           | und valuoo,                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                 |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                         | <i>plus oxytocin</i><br>ergometrine<br>plus oxytocin<br>dominates all<br>other<br>interventions<br><i>Caesarean</i><br><i>births with</i><br><i>no adverse</i><br><i>events and</i><br><i>including</i><br><i>ergometrine</i><br><i>and</i><br><i>ergometrine</i><br><i>plus oxytocin</i><br>ergometrine<br>plus oxytocin<br>dominates all<br>other<br>interventions |                                                                                                                                                                                                                                                         |
| Author and<br>year:<br>Matthijsse<br>2022<br>Country:<br>UK<br>Type of<br>economic<br>analysis:<br>Cost<br>effectiveness<br>analysis<br>Source of<br>funding:<br>Ferring<br>Pharmaceutic<br>als | Interventions<br>in detail:<br>100 µg<br>carbetocin<br>given<br>intramuscularl<br>y<br>Comparator<br>in detail:<br>10 IU bolus<br>oxytocin | Population<br>characteristi<br>cs:<br>Women at risk<br>of PPH after<br>vaginal birth<br>Modelling<br>approach:<br>Decision<br>analytic model<br>Source of<br>baseline<br>data:<br>Oxytocin<br>direct and<br>indirect<br>evidence from<br>trials included<br>in the NMA<br>Source of<br>effectiveness<br>data:<br>Direct and<br>indirect<br>evidence from<br>trials included<br>in the NMA | Mean cost<br>per<br>participant:<br>Intervention:<br>£1,375<br>Control:<br>£1,430<br>Difference:<br>-£55<br>Primary<br>measure of<br>outcome:<br>PPH event<br>avoided<br>Mean<br>outcome per<br>participant:<br>Intervention:<br>0.0878<br>Control:<br>0.1220<br>Difference:<br>-0.0342 | ICERs:<br>Carbetocin<br>dominates<br>Probability of<br>being cost<br>effective:<br>79.5%<br>probability<br>that<br>carbetocin<br>dominates<br>Sensitivity<br>analysis:<br>A number of<br>one-way<br>sensitivity<br>analyses<br>presented as<br>a Tornado<br>diagram                                                                                                  | Currency:<br>GBPCost year:<br>2019Time<br>horizon:<br>30 daysDiscounting:<br>N/AApplicability:<br>Partially<br>applicableLimitations:<br>Potentially<br>serious<br>limitationsOther<br>comments:<br>Study funded<br>by<br>manufacturer<br>of carbetocin |

| Study<br>country and<br>type | Intervention<br>and<br>comparator | Study<br>population,<br>design and<br>data sources                                                                                                                                                                                                                                                            | Costs and<br>outcomes<br>(descriptions<br>and values) | Results | Comments |
|------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------|----------|
|                              |                                   | Source of<br>cost data:<br>Survey of<br>midwives in<br>France, Italy,<br>the<br>Netherlands<br>and the UK,<br>expert<br>opinion,<br>North Bristol<br>NHS Trust<br>Postpartum<br>Haemorrhage<br>Study<br>Source of<br>unit cost<br>data:<br>NHS<br>Reference<br>Costs 2018-<br>19, MIMS<br>2020, PSSRU<br>2019 |                                                       |         |          |

GBP = Pounds Sterling; ICER = Incremental cost effectiveness ratio; MIMS = Monthly Index of Medical Specialties; NMA = Network meta-analysis; PPH = Postpartum haemorrhage; PSSRU = Personal Social Services Research Unit

# Appendix I Economic model

# Economic model for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

#### Cost-effectiveness analysis of different uterotonics

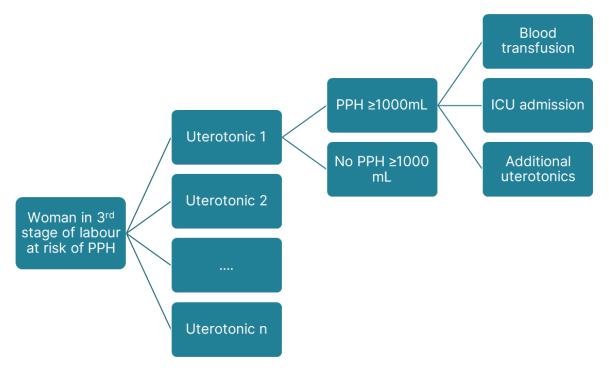
#### Introduction

Postpartum haemorrhage (PPH) can have significant physical and psychological impacts on a woman's health, as well as impacting the woman's birth experience and ability to bond with their baby. There are various uterotonic drugs that can be used prophylactically to reduce the risk of PPH, and the difference in effectiveness and downstream costs of these drugs is important to consider in the context of a resource constrained publicly funded health service and the potentially large resource impact given the number of women treated.

A recent UK health technology assessment (HTA) (Gallos 2019) synthesised clinical evidence comparing uterotonics for prevention of PPH using an NMA, and the HTA also included an economic evaluation. New evidence has been highlighted since this HTA was published including two large carbetocin trials, so it was decided the NMA and health economic model needed to be updated for the committee to make fully informed recommendations on uterotonics for prevention of PPH. The existing economic model included more of the pathway than could be informed by the new NMA evidence, so the NICE guideline developers constructed a new economic model for the purposes of this guideline.

### Methods

#### Setting and population


The model was in the NHS setting, and the population was women in the third stage of labour, who are all at risk of PPH. The time horizon was very short, only capturing the immediate postpartum period and the costs and outcomes in the third stage of labour. The model was run for the full population, and also for two mode-of-birth subgroups; vaginal birth and caesarean birth.

#### Model structure

A decision analytic model was developed in Microsoft Excel® to assess the costeffectiveness of different uterotonics for prevention of PPH.

The model schematic is shown in Figure 46, and shows the four outcomes considered in the model, with the primary outcome being a PPH of 1000mL or more.

## Figure 46: Model schematic



### **Clinical outcomes**

The clinical outcomes incorporated into the model were the same as those considered in the NMA:

- PPH ≥1000mL
- Additional uterotonics
- ICU admission
- Blood transfusions

The continuous outcome of mean blood loss was not used in the economic model, as the committee felt this overlapped and would be correlated with the PPH ≥1000mL outcome. The relative treatment effects for each of these outcomes are informed by the NMAs for the entire population and mode-of-birth subgroups.

### Interventions

The uterotonics included in the economic analysis reflected the interventions in which there was evidence from the NMAs, particularly for the PPH ≥1000mL outcome. The committee's clinical opinion was then used to select those uterotonics which were plausible clinical alternatives for PPH prophylaxis in an NHS setting.

The interventions included in the economic model were:

- Carbetocin
- Oxytocin  $\leq$  1 iu (full population and vaginal birth groups only)
- Oxytocin >1 iu and  $\leq$  5 iu
- Oxytocin >5 iu and  $\leq$  10 iu

- Oxytocin > 10 iu
- Ergometrine plus oxytocin

The network of evidence for the PPH  $\geq$ 1000mL outcome in the caesarean birth subgroup did not include oxytocin  $\leq$  1 iu, so this dose level was not included in the economic model for the caesarean birth analysis.

There was limited NMA data for the ICU admission outcome, so this was included as a scenario only in the full population and vaginal birth subgroup, with the comparison restricted to just oxytocin >5 iu and  $\leq$  10 iu and carbetocin.

#### Baseline

The NMA provided evidence on the relative effectiveness of treatments relative to a reference treatment for each outcome. This analysis used the placebo arm as the reference for the majority of outcomes and population groups, but in two cases (caesarean birth; PPH≥1000mL and blood transfusion) the placebo arm was not included in the network and carbetocin was used as the reference instead.

Probabilities for each of the events in the reference arm were taken from trials included in that NMA that were considered to be in the most similar setting to the UK NHS perspective and are listed in Table 31.

| Outcome                   | Population | Study arm  | Probability | Standard error <sup>a</sup> | Source         |
|---------------------------|------------|------------|-------------|-----------------------------|----------------|
| PPH<br>≥1000mL            | Full       | Placebo    | 11.9%       | 0.0004                      | Jans 2016      |
|                           | VB         | Placebo    | 11.9%       | 0.0004                      | Jans 2016      |
|                           | СВ         | Carbetocin | 4.8%        | 0.0011                      | Attilakos 2010 |
| Additional<br>uterotonics | Full       | Placebo    | 23.5%       | 0.0005                      | Jans 2016      |
|                           | VB         | Placebo    | 23.5%       | 0.0005                      | Jans 2016      |
|                           | СВ         | Placebo    | 92.0%       | 0.0106                      | Rosseland 2013 |
| Blood<br>transfusion      | Full       | Placebo    | 1.4%        | 0.0001                      | Jans 2016      |
|                           | VB         | Placebo    | 1.4%        | 0.0001                      | Jans 2016      |
|                           | СВ         | Carbetocin | 2.1%        | 0.0008                      | Attilakos 2010 |
| ICU<br>admission          | Full       | Placebo    | 0.2%        | 0.0001                      | Derman 2006    |
|                           | VB         | Placebo    | 0.2%        | 0.0001                      | Derman 2006    |

#### Table 31: Baseline event probabilities

<sup>a</sup>Standard error calculated from the total number of individuals, total number of events, and mean probability Beta distribution used around all probabilities.

#### Treatment effectiveness

Treatment effect was incorporated in the model by using the outcomes from the NMAs. The NMAs generated relative effectiveness in the form of odds ratios, which are applied to the baseline probabilities detailed in the previous section to calculate the event probabilities specific to each treatment in the economic model. These odds ratios are listed for each treatment, mode-of-birth subgroup, and event, in the Clinical evidence profile for outcomes included in the network meta-analysis.

The odds ratios are applied to baseline probabilities using a logit function:

• Logit = In (reference treatment probability / (1 – reference treatment probability))

- Log odds (treatment A) = logit + log odds ratio of treatment A
- Absolute probability (treatment A) = exp (log odds) / (1 + exp (log odds))

## Adverse events

Treatment-related adverse events were included in the model and are informed by the Gallos 2019 HTA. The probabilities and standard errors used in the economic model are detailed in Table 32 and Table 33. Since the HTA only reported adverse events for the separate subgroups, the adverse event probabilities for the full population are assumed to be the average of the probabilities reported for the two subgroups, and this approach was informed by clinical opinion.

Assumptions have been made where there are evidence gaps. Carboprost was not included in the HTA analysis so adverse events were not reported, and therefore the event probabilities have been assumed equal to the probabilities of oxytocin based on clinical opinion on the similarities in those treatments. Where information was missing for carbetocin the probabilities were set equal to those in the oxytocin arm, given the similarities between the probabilities for carbetocin and oxytocin in other events and other subgroups. Where information was missing for any other treatment three options were considered; average of all other treatments, minimum from other treatments, or maximum from other treatments. The base-case assumed the average of probabilities from other treatments for that subgroup and event.

| Intervention                                   | Nausea           | Vomiting         | Hypertension     | Headache         | Tachycardia     | Hypotension         | Fever           | Shivering        | Abdominal pain   |
|------------------------------------------------|------------------|------------------|------------------|------------------|-----------------|---------------------|-----------------|------------------|------------------|
| Carbetocin                                     | 0.028            | 0.01             | 0.03             | 0.054            | 0.074           | 0.005*              | 0.02*           | 0.071*           | 0.099            |
|                                                | (0.341)          | (0.305)          | (0.808)          | (0.382)          | (0.498)         | (0.005)             | (0.003)         | (0.007)          | (0.307)          |
| Oxytocin ≤ 1 iu                                | 0.039            | 0.01             | 0.021            | 0.044            | 0.025           | 0.005               | 0.02            | 0.071            | 0.134            |
|                                                | (0.005)          | (0.002)          | (0.005)          | (0.009)          | (0.014)         | (0.005)             | (0.003)         | (0.007)          | (0.043)          |
| Oxytocin >1 iu and ≤                           | 0.039            | 0.01             | 0.021            | 0.044            | 0.025           | 0.005               | 0.02            | 0.071            | 0.134            |
| 5 iu                                           | (0.005)          | (0.002)          | (0.005)          | (0.009)          | (0.014)         | (0.005)             | (0.003)         | (0.007)          | (0.043)          |
| Oxytocin >5 iu and ≤                           | 0.039            | 0.01             | 0.021            | 0.044            | 0.025           | 0.005               | 0.02            | 0.071            | 0.134            |
| 10 iu                                          | (0.005)          | (0.002)          | (0.005)          | (0.009)          | (0.014)         | (0.005)             | (0.003)         | (0.007)          | (0.043)          |
| Oxytocin > 10 iu                               | 0.039            | 0.01             | 0.021            | 0.044            | 0.025           | 0.005               | 0.02            | 0.071            | 0.134            |
|                                                | (0.005)          | (0.002)          | (0.005)          | (0.009)          | (0.014)         | (0.005)             | (0.003)         | (0.007)          | (0.043)          |
| Ergometrine plus<br>oxytocin<br>(syntometrine) | 0.081<br>(0.202) | 0.043<br>(0.099) | 0.059<br>(0.633) | 0.072<br>(0.294) | 0.04<br>(0.551) | 0.0037*<br>(0.7014) | 0.02<br>(0.336) | 0.087<br>(0.282) | 0.149<br>(0.245) |
| Misoprostol ≤ 600                              | 0.058            | 0.029            | 0.033            | 0.068            | 0.036*          | 0.002               | 0.105           | 0.271            | 0.127            |
| mcg                                            | (0.161)          | (0.097)          | (0.655)          | (0.323)          | (0.184)         | (1.63)              | (0.162)         | (0.14)           | (0.158)          |
| Misoprostol >600                               | 0.058            | 0.029            | 0.033            | 0.068            | 0.036*          | 0.002               | 0.105           | 0.271            | 0.127            |
| mcg and ≤ 800 mcg                              | (0.161)          | (0.097)          | (0.655)          | (0.323)          | (0.184)         | (1.63)              | (0.162)         | (0.14)           | (0.158)          |
| Misoprostol >800                               | 0.058            | 0.029            | 0.033            | 0.068            | 0.036*          | 0.002               | 0.105           | 0.271            | 0.127            |
| mcg and ≤ 1000 mcg                             | (0.161)          | (0.097)          | (0.655)          | (0.323)          | (0.184)         | (1.63)              | (0.162)         | (0.14)           | (0.158)          |
| Misoprostol plus                               | 0.27             | 0.039            | 0.0444*          | 0.0635*          | 0.036*          | 0.0037*             | 0.09            | 0.261            | 0.1337*          |
| oxytocin                                       | (0.891)          | (0.255)          | (0.424)          | (0.2093)         | (0.184)         | (0.7014)            | (0.229)         | (0.246)          | (0.1662)         |
| Ergometrine                                    | 0.106            | 0.042            | 0.172            | 0.129            | 0.036*          | 0.0037*             | 0.02            | 0.097            | 0.172            |
|                                                | (0.226)          | (0.148)          | (0.814)          | (0.412)          | (0.184)         | (0.7014)            | (0.303)         | (0.265)          | (0.464)          |
| Carboprost                                     | 0.039*           | 0.01*            | 0.021*           | 0.044*           | 0.025*          | 0.005*              | 0.02*           | 0.071*           | 0.134*           |
|                                                | (0.005)          | (0.002)          | (0.005)          | (0.009)          | (0.014)         | (0.005)             | (0.003)         | (0.007)          | (0.043)          |

### Table 32: Treatment-related adverse event probabilities (SE), vaginal births

\*Missing data, completed with assumptions

| Intervention                                   | Nausea           | Vomiting         | Hypertension    | Headache            | Tachycardia      | Hypotension      | Fever              | Shivering           | Abdominal<br>pain   |
|------------------------------------------------|------------------|------------------|-----------------|---------------------|------------------|------------------|--------------------|---------------------|---------------------|
| Carbetocin                                     | 0.092            | 0.049            | 0.167*          | 0.083               | 0.12             | 0.157            | 0.026              | 0.035               | 0.178               |
|                                                | (0.327)          | (0.282)          | (0.076)         | (0.151)             | (1.546)          | (0.346)          | (0.785)            | (0.392)             | (0.089)             |
| Oxytocin ≤ 1 iu                                | 0.091            | 0.056            | 0.167           | 0.094               | 0.024            | 0.169            | 0.033              | 0.05                | 0.172               |
|                                                | (0.019)          | (0.011)          | (0.076)         | (0.021)             | (0.016)          | (0.065)          | (0.005)            | (0.01)              | (0.071)             |
| Oxytocin >1 iu and ≤                           | 0.091            | 0.056            | 0.167           | 0.094               | 0.024            | 0.169            | 0.033              | 0.05                | 0.172               |
| 5 iu                                           | (0.019)          | (0.011)          | (0.076)         | (0.021)             | (0.016)          | (0.065)          | (0.005)            | (0.01)              | (0.071)             |
| Oxytocin >5 iu and ≤                           | 0.091            | 0.056            | 0.167           | 0.094               | 0.024            | 0.169            | 0.033              | 0.05                | 0.172               |
| 10 iu                                          | (0.019)          | (0.011)          | (0.076)         | (0.021)             | (0.016)          | (0.065)          | (0.005)            | (0.01)              | (0.071)             |
| Oxytocin > 10 iu                               | 0.091            | 0.056            | 0.167           | 0.094               | 0.024            | 0.169            | 0.033              | 0.05                | 0.172               |
|                                                | (0.019)          | (0.011)          | (0.076)         | (0.021)             | (0.016)          | (0.065)          | (0.005)            | (0.01)              | (0.071)             |
| Ergometrine plus<br>oxytocin<br>(syntometrine) | 0.453<br>(1.012) | 0.337<br>(1.127) | 0.042<br>(1.08) | 0.0863*<br>(0.2404) | 0.018<br>(0.707) | 0.141<br>(0.532) | 0.042*<br>(0.3329) | 0.1252*<br>(0.2104) | 0.1998*<br>(0.1168) |
| Misoprostol ≤ 600                              | 0.043            | 0.048            | 0.142*          | 0.059               | 0.039*           | 0.034            | 0.049              | 0.244               | 0.1998*             |
| mcg                                            | (0.687)          | (0.407)          | (0.2768)        | (0.451)             | (0.386)          | (1.077)          | (0.639)            | (0.4)               | (0.1168)            |
| Misoprostol >600                               | 0.043            | 0.048            | 0.142*          | 0.059               | 0.039*           | 0.034            | 0.049              | 0.244               | 0.1998*             |
| mcg and ≤ 800 mcg                              | (0.687)          | (0.407)          | (0.2768)        | (0.451)             | (0.386)          | (1.077)          | (0.639)            | (0.4)               | (0.1168)            |
| Misoprostol >800                               | 0.043            | 0.048            | 0.142*          | 0.059               | 0.039*           | 0.034            | 0.049              | 0.244               | 0.1998*             |
| mcg and ≤ 1000 mcg                             | (0.687)          | (0.407)          | (0.2768)        | (0.451)             | (0.386)          | (1.077)          | (0.639)            | (0.4)               | (0.1168)            |
| Misoprostol plus                               | 0.164            | 0.085            | 0.142*          | 0.141               | 0.039*           | 0.22             | 0.073              | 0.16                | 0.333               |
| oxytocin                                       | (0.393)          | (0.299)          | (0.2768)        | (0.576)             | (0.386)          | (0.672)          | (0.274)            | (0.262)             | (0.328)             |
| Ergometrine                                    | 0.1202*          | 0.0839*          | 0.142*          | 0.0863*             | 0.039*           | 0.1296*          | 0.042*             | 0.1252*             | 0.1998*             |
|                                                | (0.3869)         | (0.2973)         | (0.2768)        | (0.2404)            | (0.386)          | (0.5041)         | (0.3329)           | (0.2104)            | (0.1168)            |
| Carboprost                                     | 0.091*           | 0.056*           | 0.167*          | 0.094*              | 0.024*           | 0.169*           | 0.033*             | 0.05*               | 0.172*              |
|                                                | (0.019)          | (0.011)          | (0.076)         | (0.021)             | (0.016)          | (0.065)          | (0.005)            | (0.01)              | (0.071)             |

#### Table 33: Treatment-related adverse event probabilities (SE), caesarean births

\*Missing data, completed with assumptions

# Costs

In accordance with NICE methodology a NHS and Personal Social Services (PSS) perspective was adopted for this analysis. NHS Reference Costs were based on the 2019/20 published costs. Drug costs were taken from the British National Formulary (BNF) at the date of writing. The short time horizon of the model meant that all costs occurred within a few days, meaning that there were no future costs to discount.

### Drug costs

Treatment costs for each uterotonic used for prophylaxis are summarised in Table 34. Where a dose range is specified the dose used for costing is assumed to be the upper limit of that range. Drug costs were treated deterministically in the model as the values are based on published prices which are not subject to sampling uncertainty.

| Intervention                           | Cost   | Notes                                                                  | Source            |
|----------------------------------------|--------|------------------------------------------------------------------------|-------------------|
| Carbetocin                             | £17.64 | 1x 100mcg dose                                                         | BNF, January 2023 |
| Oxytocin ≤ 1 iu                        | £0.80  | 1x 5 IU dose<br>Wastage assumed for the rest of<br>the 5 IU ampoule    | BNF, January 2023 |
| Oxytocin >1 iu and $\leq$ 5 iu         | £0.80  | 1x 5 IU dose                                                           | BNF, January 2023 |
| Oxytocin >5 iu and ≤ 10 iu             | £0.91  | 1x 10 IU dose                                                          | BNF, January 2023 |
| Oxytocin > 10 iu                       | £2.72  | 3x 10 IU dose<br>Assumed to be 30 IU as<br>observed in clinical trials | BNF, January 2023 |
| Ergometrine plus oxytocin              | £1.57  | 1x syntometrine (500mcg/5IU)                                           | BNF, January 2023 |
| Misoprostol ≤ 600 mcg                  | £0.50  | 3x 200mcg oral tablets                                                 | BNF, January 2023 |
| Misoprostol >600 mcg and ≤<br>800 mcg  | £0.67  | 4x 200mcg oral tablets                                                 | BNF, January 2023 |
| Misoprostol >800 mcg and ≤<br>1000 mcg | £0.84  | 5x 200mcg oral tablets                                                 | BNF, January 2023 |
| Misoprostol plus oxytocin              | £1.24  | 2x 200mcg oral misoprostol<br>1x 10 IU dose oxytocin                   | BNF, January 2023 |
| Ergometrine                            | £1.50  | 1x 500mcg dose                                                         | BNF, January 2023 |
| Carboprost                             | £18.20 | 1x 250mcg dose                                                         | BNF, January 2023 |

### Table 34: Drug costs of prophylactic uterotonics

# Drug administration costs

Administration costs were informed by clinical opinion and are detailed in Table 35. These costs include staff time only. Misoprostol is assumed to have no administration costs as it is assumed to be given either orally, vaginally or rectally. Based on committee input carbetocin is assumed to be given intravenously in the base case, and all other treatments are given by intramuscular injection for administration costing purposes. A scenario was included in the vaginal birth subgroup where carbetocin was assumed to be given by intramuscular injection.

The cost per working hour for one midwife is assumed to be £51.00 which is the cost for an hour of band 6 nurse time, as reported in the most recently published <u>PSSRU document</u>.

### Table 35: Drug administration costs

| Route of administration   | Staff requirements | Cost   |
|---------------------------|--------------------|--------|
| Intravenous slow infusion | 2x midwives        | £25.50 |

| Route of administration | Staff requirements                                                             | Cost   |
|-------------------------|--------------------------------------------------------------------------------|--------|
|                         | 15 minutes for drawing up, checking, and delivering the drug                   |        |
| Intramuscular injection | 2x midwives<br>10 minutes for drawing up, checking, and<br>delivering the drug | £17.00 |

### Treatment-related adverse event costs

Adverse event costs are applied to the proportions of women expected to experience the events for each treatment, as detailed in the earlier section. Management of each event is based on that reported in the Gallos 2019 HTA, and all costs have been recalculated with drug costs taken from the BNF (accessed January 2023) and excess bed day costs from the NHS reference costs. The costs applied in the economic model are detailed in Table 36.

| Event          | Total cost | Notes <sup>123</sup>                                                                                           |
|----------------|------------|----------------------------------------------------------------------------------------------------------------|
| Nausea         | £5.45      | 2x 50mg injection of cyclizine (£3.45)<br>2x 4mg injection of ondansetron (£2.00)                              |
| Vomiting       | £758.75    | 3x 12.5mg injection prochlorperazine (£1.57)<br>1x excess bed day (£757.18)                                    |
| Hypertension   | £784.87    | 200mg labetalol over 24 hours (£27.60)<br>20mg nifedipine over 24 hours (£0.09)<br>1x excess bed day (£757.18) |
| Headache       | £1.29      | Paracetamol for 24 hours (£0.60)<br>Codeine for 24 hours (£0.69)                                               |
| Tachycardia    | £757.18    | 1x excess bed day (£757.18)                                                                                    |
| Hypotension    | £757.18    | 1x excess bed day (£757.18)                                                                                    |
| Fever          | £759.70    | Paracetamol (£0.60)<br>Amoxicillin (£1.92)<br>1x excess bed day (£757.18)                                      |
| Shivering      | £757.18    | 1x excess bed day (£757.18)                                                                                    |
| Abdominal pain | £1.76      | Paracetamol for 24 hours (£0.60)<br>Ibuprofen for 24 hours (£1.16)                                             |

#### Table 36: Adverse event costs

<sup>1</sup>Drug costs are taken from the BNF, accessed in January 2023 <sup>2</sup>Excess bed days are costed as the weighted average of all currency codes related to delivery (normal, assisted, planned caesarean, and emergency caesarean) in the National schedule of NHS reference costs <sup>3</sup>For drugs where the amount has not been specified the cost of a full pack has been used, taking the least costly pack price from the BNF

### Cost of additional uterotonics

Based on clinical input, assumptions were made on which uterotonics could be used as second line. It was assumed that it was not appropriate for single agent or combinations of either misoprostol or ergometrine to be repeated whereas repeat oxytocin can be. The model uses an average cost of all potential second line treatments following each prophylactic uterotonic. The cost associated with second line uterotonics used in the model is summarised in Table 37.

| Table 37: Cost of subsequent uterotonics                            |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Uterotonic used as prophylaxis Cost Uterotonics included in average |  |  |  |  |  |  |  |  |
| Carbetocin £3.95 All uterotonics                                    |  |  |  |  |  |  |  |  |

| Uterotonic used as prophylaxis      | Cost  | Uterotonics included in average                 |
|-------------------------------------|-------|-------------------------------------------------|
| Oxytocin ≤ 1 iu                     | £3.95 | All uterotonics                                 |
| Oxytocin >1 iu and ≤ 5 iu           | £3.95 | All uterotonics                                 |
| Oxytocin >5 iu and ≤ 10 iu          | £3.95 | All uterotonics                                 |
| Oxytocin > 10 iu                    | £3.95 | All uterotonics                                 |
| Ergometrine plus oxytocin           | £4.43 | All options except ergometrine and syntometrine |
| Misoprostol ≤ 600 mcg               | £5.52 | All options except misoprostol                  |
| Misoprostol >600 mcg and ≤ 800 mcg  | £5.52 | All options except misoprostol                  |
| Misoprostol >800 mcg and ≤ 1000 mcg | £5.52 | All options except misoprostol                  |
| Misoprostol plus oxytocin           | £5.52 | All options except misoprostol                  |
| Ergometrine                         | £4.43 | All options except ergometrine and syntometrine |
| Carboprost                          | £3.95 | All uterotonics                                 |

### Cost of blood transfusions

The cost of blood transfusions is calculated using the cost per unit, administration cost, and the estimated number of units required. The cost per unit is £153.30 and was taken from the NHS blood and transplant price list 2022/23. The mean number of units was assumed to be two units based on committee clinical opinion and is varied in a gamma distribution with a confidence interval of 1-4 units which allows for rare events where many more units are required. The administration cost is £586.85, taken as the cost of a single plasma exchange or other intravenous blood transfusion as reported in the National schedule of NHS reference costs. The total cost of blood transfusion used in the model is £893.45 and is applied to the proportion of women having this outcome, as reported in the NMA.

# Cost of ICU admission

The cost of ICU admission is only applied in scenario analysis due to the limited NMA evidence on this outcome. The cost used in the analysis is £2,303.38 which is the weighted average of all codes for obstetric critical care (Service code CCU12 with currency codes XC02Z, XC03Z, XC04Z, XC05Z, XC06Z, XC07Z) in the <u>National schedule of NHS reference costs</u>.

### Cost-effectiveness measure

In general NICE prefers a cost-utility approach in economic analyses, using QALYs to measure the health benefits of an intervention, however other approaches can be used if it is not possible to quantify benefits using QALYs. The Gallos 2019 HTA presented an analysis based on cost per PPH ≥500mL avoided, and noted that QALYs could not be used due to the lack of appropriate utility data in the literature. For this analysis a similar approach was taken, using cost per PPH ≥1000mL avoided, after a non-systematic review of the literature did not identify any utility data for PPH.

The Gallos 2019 HTA detailed a method of considering ICERs based on hard outcomes (i.e., PPH  $\geq$ 1000mL) against a willingness-to-pay threshold of £30,000 per QALY gained, without having QALYs as an outcome of the analysis. This analysis also uses this approach to aid interpretation of the results for the committee given there isn't an agreed price that the NHS is willing to pay for avoidance of PPH. This analysis uses the ICER and a cost-effectiveness threshold of £20,000 per QALY to calculate how many days in perfect health must be considered acceptable to trade off to avoid one PPH event. An illustrative example of this calculation is given below.

### Example:

• Suppose carbetocin is associated with £10 more costs and 0.01 less PPH≥1000mL events than oxytocin and therefore has an ICER of £1,000 per PPH≥1000mL avoided

- First, we divide the ICER by the cost-effectiveness threshold of £20,000 to calculate the QALYs needed in this scenario to justify the incremental cost (£1,000 / £20,000 = 0.05)
- We then calculate the number of "perfect health" days that would need to be traded off to avoid one PPH≥1000mL event i.e. the number of days in full health equivalent to the calculated number of QALYs (0.05 / (1 / 365.25) = 18.26 days)
- Therefore, for carbetocin to be considered cost-effective compared with oxytocin at an ICER of £1,000 per PPH≥1000mL avoided, we must be willing to trade off 18 days in full health to avoid having a PPH≥1000mL.

This calculation is also performed at the £30,000 per QALY threshold to provide a range of trade-off days for each result.

Cost-effectiveness was only based on the PPH≥1000mL event, not the additional outcomes included in the economic model.

# Sensitivity analysis

All results are presented using PSA to reflect uncertainty with respect to the precise value of model parameters. This involved running a total of 10,000 Monte Carlo simulations where, with the exception of a small number of deterministic parameters, model inputs are sampled from a probability distribution. In each simulation the total costs and outcomes (PPH ≥1000mL, additional uterotonics, blood transfusions) are calculated for each uterotonic treatment, which are then used to calculate the average total costs and outcomes and subsequently the cost-effectiveness measure using the methods detailed above.

Simulations of relative treatment effectiveness were undertaken using Bayesian Markov chain Monte Carlo (MCMC) simulation, which sampled directly from the joint posterior distribution from the NMAs, thereby maintaining any correlation between them, in the WinBugs® package. The results output (CODA) was then imported into the Microsoft Excel® spreadsheet model. When running the simulations in Excel a random number was used to select a row of data (reflecting a single WinBugs® simulation) so that any correlation between the LORs would be preserved.

In addition to the probabilistic base case and the deterministic results, two scenarios were run around parameters the committee considered important; exclusion of adverse events, and inclusion of ICU admission as an outcome. In the vaginal birth subgroup a scenario was explored assuming that carbetocin is administered by intramuscular injection.

### Results

### Full population

The results of the base-case analysis in the full population are summarised in Table 38, with absolute costs and numbers of events from the probabilistic analysis presented for each treatment.

As Table 38 shows, carbetocin is considered cost-effective compared with ergometrine plus oxytocin, and would be considered cost-effective compared with oxytocin >1 iu and  $\leq$  5 iu if we are willing to trade off 79 days in full health to avoid one PPH  $\geq$ 1000mL.

| Strategy                      | Absolute<br>Costs    | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental<br>costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                                                                                                                              |
|-------------------------------|----------------------|--------------------------------|------------------------------------|-----------------------------|----------------------|---------------------------|--------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxytocin >1 iu<br>and ≤ 5 iu  | £274.80<br>(£274.16) | 0.069<br>(0.069)               | 0.063 (0.061)                      | 0.008<br>(0.007)            | -                    | -                         | -                                    | -                                | -                                                                                                                                                                                                                                                                               |
| Oxytocin >5 iu<br>and ≤ 10 iu | £275.85<br>(£275.63) | 0.070<br>(0.069)               | 0.099 (0.097)                      | 0.009<br>(0.008)            | £1.04<br>(£1.47)     | -0.0006<br>(-0.0007)      | -0.0361<br>(-0.0363)                 | -0.0011<br>(-0.0014)             | Dominated by oxytocin<br>>1 iu and ≤ 5 iu                                                                                                                                                                                                                                       |
| Oxytocin ≤ 1 iu               | £280.20<br>(£281.01) | 0.122<br>(0.100)               | 0.155 (0.121)                      | 0.014<br>(0.014)            | £5.39<br>(£6.86)     | -0.0527<br>(-0.0308)      | -0.0917<br>(-0.0599)                 | -0.0067<br>(-0.0074)             | Dominated by oxytocin<br>>1 iu and ≤ 5 iu                                                                                                                                                                                                                                       |
| Oxytocin > 10<br>iu           | £282.76<br>(£281.65) | 0.099<br>(0.097)               | 0.128 (0.125)                      | 0.014<br>(0.013)            | £7.95<br>(£7.49)     | -0.0296<br>(-0.0287)      | -0.0650<br>(-0.0639)                 | -0.0063<br>(-0.0060)             | Dominated by oxytocin<br>>1 iu and ≤ 5 iu                                                                                                                                                                                                                                       |
| Carbetocin                    | £340.46<br>(£339.01) | 0.054<br>(0.054)               | 0.027 (0.026)                      | 0.004<br>(0.003)            | £65.66<br>(£64.86)   | 0.0152<br>(0.0147)        | 0.0360<br>(0.0347)                   | 0.0040<br>(0.0036)               | More costly but more<br>effective than<br>oxytocin>1 iu and $\leq$ 5<br>iu<br>Cost-effective if willing<br>to trade off 79 days in<br>full health to avoid one<br>PPH $\geq$ 1000mL at the<br>£20,000 per QALY<br>threshold or 53 days at<br>the £30,000 per QALY<br>threshold. |

# Table 38: Probabilistic (deterministic)\* results, full population

| Strategy                  | Absolute<br>Costs    | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental<br>costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided) |
|---------------------------|----------------------|--------------------------------|------------------------------------|-----------------------------|----------------------|---------------------------|--------------------------------------|----------------------------------|----------------------------------------------------|
| Ergometrine plus oxytocin | £380.77<br>(£390.66) | 0.057<br>(0.057)               | 0.056 (0.055)                      | 0.007<br>(0.006)            | £40.31<br>(£51.64)   | -0.0032<br>(-0.0029)      | -0.0291<br>(-0.0287)                 | -0.0029<br>(-0.0028)             | Dominated by<br>carbetocin                         |

\*Deterministic results are given in parentheses for comparison.

Table 39 and Table 40 summarise the results of the scenarios where adverse events were excluded and ICU events were included, respectively. The scenarios use the deterministic values only.

In the adverse events scenario (Table 39) the absolute costs are significantly lower and ergometrine plus oxytocin is likely to be cost-effective.

In the ICU admissions scenario (Table 40) only oxytocin >5 iu and  $\leq$  10 iu and carbetocin can be compared, and carbetocin would be considered cost-effective compared with oxytocin if we are willing to trade off 75 days in full health to avoid one PPH $\geq$ 1000mL.

### Table 39: Scenario results, adverse events excluded, full population

| Strategy                      | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                                                                                                             |
|-------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxytocin >1 iu<br>and ≤ 5 iu  | £24.26            | 0.069                          | 0.061                              | 0.007                       | -                 | -                         | -                                    | -                                | -                                                                                                                                                                                                                                                              |
| Ergometrine plus<br>oxytocin  | £24.35            | 0.057                          | 0.055                              | 0.006                       | £0.09             | 0.0118                    | 0.0060                               | 0.0008                           | More costly but more<br>effective than<br>oxytocin<br>Cost-effective if<br>willing to trade off<br>0.14 days in full<br>health to avoid one<br>PPH $\geq$ 1000mL at the<br>£20,000 per QALY<br>threshold or 0.09<br>days at the £30,000<br>per QALY threshold. |
| Oxytocin >5 iu<br>and ≤ 10 iu | £25.73            | 0.069                          | 0.097                              | 0.008                       | £1.38             | -0.0126                   | -0.0423                              | -0.0021                          | Dominated by<br>ergometrine plus<br>oxytocin                                                                                                                                                                                                                   |

| Strategy         | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental<br>costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                                                                                                                              |
|------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|----------------------|---------------------------|--------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxytocin ≤ 1 iu  | £31.12            | 0.100                          | 0.121                              | 0.014                       | £6.77                | -0.0427                   | -0.0659                              | -0.0082                          | Dominated by<br>ergometrine plus<br>oxytocin                                                                                                                                                                                                                                    |
| Oxytocin > 10 iu | £31.75            | 0.097                          | 0.125                              | 0.013                       | £7.40                | -0.0405                   | -0.0699                              | -0.0067                          | Dominated by<br>ergometrine plus<br>oxytocin                                                                                                                                                                                                                                    |
| Carbetocin       | £46.28            | 0.054                          | 0.026                              | 0.003                       | £21.93               | 0.0029                    | 0.0287                               | 0.0028                           | More costly but more<br>effective than<br>ergometrine plus<br>oxytocin<br>Cost-effective if<br>willing to trade off<br>138 days in full<br>health to avoid one<br>PPH $\geq$ 1000mL at the<br>£20,000 per QALY<br>threshold or 92 days<br>at the £30,000 per<br>QALY threshold. |

### Table 40: Scenario results, ICU admission events included, full population

| Strategy                      | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                      |
|-------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|-------------------------------------------------------------------------|
| Oxytocin >5 iu<br>and ≤ 10 iu | £280.07           | 0.069                          | 0.097                              | 0.008                       | -                 | -                         | -                                    | -                                | -                                                                       |
| Carbetocin                    | £343.69           | 0.054                          | 0.026                              | 0.003                       | £63.62            | 0.0155                    | 0.0710                               | 0.0049                           | More costly but more<br>effective than<br>oxytocin<br>Cost-effective if |

| Strategy | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                        |
|----------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                   |                                |                                    |                             |                   |                           |                                      |                                  | willing to trade off 75<br>days in full health to<br>avoid one PPH<br>≥1000mL at the<br>£20,000 per QALY<br>threshold or 50 days<br>at the £30,000 per<br>QALY threshold. |

### Vaginal birth subgroup

The results of the base-case analysis in the vaginal birth subgroup are summarised in Table 41, with absolute costs and numbers of events from the probabilistic analysis presented for each treatment.

The results in Table 41 suggest that oxytocin >5 iu and  $\leq$  10 iu was the most cost-effective option, and oxytocin plus ergometrine was more costly and more effective but would be cost-effective if we are willing to trade off 91 days in full health to avoid one PPH  $\geq$ 1000mL.

### Table 41: Probabilistic (deterministic)\* results, vaginal birth subgroup

| Strategy                      | Absolute<br>Costs    | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental<br>costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                              |
|-------------------------------|----------------------|--------------------------------|------------------------------------|-----------------------------|----------------------|---------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxytocin >5 iu<br>and ≤ 10 iu | £141.28<br>(£141.14) | 0.070<br>(0.069)               | 0.104<br>(0.103)                   | 0.008<br>(0.007)            | -                    | -                         | -                                    | -                                | -                                                                                                                                                               |
| Oxytocin >1 iu<br>and ≤ 5 iu  | £142.78<br>(£141.88) | 0.069<br>(0.069)               | 0.095<br>(0.092)                   | 0.009<br>(0.008)            | £1.50<br>(£0.75)     | 0.0013<br>(0.0009)        | 0.0092<br>(0.0101)                   | -0.0015<br>(-0.0010)             | More costly and<br>marginally more<br>effective than<br>oxytocin >5 iu and ≤<br>10 iu<br>Cost-effective if<br>willing to trade off 21<br>days in full health to |

| Strategy                     | Absolute<br>Costs    | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental<br>costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                                                                                                                                                              |
|------------------------------|----------------------|--------------------------------|------------------------------------|-----------------------------|----------------------|---------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                      |                                |                                    |                             |                      |                           |                                      |                                  | avoid one PPH<br>≥1000mL at the<br>£20,000 per QALY<br>threshold or 14 days<br>at the £30,000 per<br>QALY threshold.                                                                                                                                                                                            |
| Oxytocin > 10 iu             | £144.80<br>(£143.74) | 0.100<br>(0.093)               | 0.150<br>(0.142)                   | 0.009<br>(0.008)            | £2.02<br>(£1.85)     | -0.0309<br>(-0.0244)      | -0.0548<br>(-0.0500)                 | -0.0001<br>(0.0003)              | Dominated by<br>oxytocin >1 iu and ≤<br>5 iu                                                                                                                                                                                                                                                                    |
| Oxytocin ≤ 1 iu              | £148.10<br>(£147.81) | 0.130<br>(0.104)               | 0.235<br>(0.235)                   | 0.014<br>(0.014)            | £5.32<br>(£5.93)     | -0.0609<br>(-0.0357)      | -0.1397<br>(-0.1425)                 | -0.0052<br>(-0.0060)             | Dominated by<br>oxytocin >1 iu and ≤<br>5 iu                                                                                                                                                                                                                                                                    |
| Ergometrine plus<br>oxytocin | £202.14<br>(£218.62) | 0.058<br>(0.058)               | 0.065<br>(0.063)                   | 0.007<br>(0.007)            | £59.36<br>(£76.73)   | 0.0109<br>(0.011)         | 0.0306<br>(0.0295)                   | 0.0023<br>(0.0018)               | More costly and<br>more effective than<br>oxytocin >5 iu and ≤<br>10 iu<br>Cost-effective if<br>willing to trade off 91<br>days in full health to<br>avoid one PPH<br>≥1000mL at the<br>£20,000 per QALY<br>threshold or 60 days<br>at the £30,000 per<br>QALY threshold.<br>Dominant over<br>carbetocin in PSA |
| Carbetocin                   | £210.03<br>(£209.70) | 0.061<br>(0.059)               | 0.043<br>(0.041)                   | 0.007<br>(0.007)            | £7.89<br>(-£8.91)    | -0.0026<br>(-0.0019)      | 0.0215<br>(0.0215)                   | -0.0005<br>(-0.0003)             | Dominated (on PPH<br>≥1000mL) by<br>ergometrine plus<br>oxytocin in PSA                                                                                                                                                                                                                                         |

\*Deterministic results are given in parentheses for comparison.

Table 42 and Table 43 summarise the results of the scenarios where adverse events were excluded and ICU events were included, respectively. The scenarios use the deterministic values only.

In the adverse events scenario (Table 42) the absolute costs are significantly lower and ergometrine plus oxytocin is dominant over all other strategies.

In the ICU admissions scenario (Table 43) only oxytocin >5 iu and  $\leq$  10 iu and carbetocin can be compared, and carbetocin would be considered cost-effective compared with oxytocin if we are willing to trade off 125 days in full health to avoid one PPH $\geq$ 1000mL.

| Strategy                      | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided) |
|-------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|----------------------------------------------------|
| Ergometrine plus oxytocin     | £24.72            | 0.058                          | 0.063                              | 0.007                       | -                 | -                         | -                                    | -                                | -                                                  |
| Oxytocin >5 iu<br>and ≤ 10 iu | £24.89            | 0.069                          | 0.103                              | 0.007                       | £0.17             | 0.0119                    | 0.0396                               | 0.0008                           | Dominated by<br>ergometrine plus<br>oxytocin       |
| Oxytocin >1 iu<br>and ≤ 5 iu  | £25.64            | 0.069                          | 0.092                              | 0.008                       | £0.92             | 0.0110                    | 0.0295                               | 0.0018                           | Dominated by<br>ergometrine plus<br>oxytocin       |
| Oxytocin > 10 iu              | £27.49            | 0.093                          | 0.142                              | 0.008                       | £2.77             | 0.0354                    | 0.0794                               | 0.0015                           | Dominated by<br>ergometrine plus<br>oxytocin       |
| Oxytocin ≤ 1 iu               | £31.57            | 0.104                          | 0.235                              | 0.014                       | £6.85             | 0.0467                    | 0.1720                               | 0.0078                           | Dominated by<br>ergometrine plus<br>oxytocin       |
| Carbetocin*                   | £49.40*           | 0.059                          | 0.041                              | 0.007                       | £24.68            | 0.0019                    | -0.0215                              | 0.0003                           | Dominated by<br>ergometrine plus<br>oxytocin       |

### Table 42: Scenario results, adverse events excluded, vaginal birth subgroup

\*When intramuscular injection costs rather than intravenous costs are used for carbetocin administration the only change to results here is that the total cost is reduced to £40.90 for carbetocin.

| Strategy                      | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                                                                                                          |
|-------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxytocin >5 iu<br>and ≤ 10 iu | £145.19           | 0.069                          | 0.103                              | 0.007                       | -                 | -                         | -                                    | -                                | -                                                                                                                                                                                                                                                           |
| Carbetocin                    | £213.96           | 0.059                          | 0.041                              | 0.007                       | £68.76            | 0.0100                    | 0.0611                               | 0.0005                           | More costly but more<br>effective than<br>oxytocin<br>Cost-effective if<br>willing to trade off<br>125 days in full<br>health to avoid one<br>PPH $\geq$ 1000mL at the<br>£20,000 per QALY<br>threshold or 84 days<br>at the £30,000 per<br>QALY threshold. |

### Table 43: Scenario results, ICU admission events included, vaginal birth subgroup

Table 44 summarises the results of the scenario where intramuscular injection costs are used for carbetocin administration. In this scenario carbetocin became slightly less costly than oxytocin plus ergometrine, but remained more costly and more effective than any dose of oxytocin, and could be considered cost-effective compared with oxytocin >1 iu and  $\leq$  5 iu if we are willing to trade off 79 days in full health to avoid one PPH  $\geq$ 1000mL.

### Table 44: Scenario results, intramuscular carbetocin, vaginal birth subgroup

| Strategy                      | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)             |
|-------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|----------------------------------------------------------------|
| Oxytocin >5 iu<br>and ≤ 10 iu | £141.14           | 0.069                          | 0.103                              | 0.007                       | -                 | -                         | -                                    | -                                | -                                                              |
| Oxytocin >1 iu<br>and ≤ 5 iu  | £141.88           | 0.069                          | 0.092                              | 0.008                       | £0.75             | -0.0009                   | -0.0101                              | 0.0010                           | More costly and<br>more effective than<br>oxytocin >5 iu and ≤ |

| Strategy                     | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                                                                                                                                   |
|------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                   |                                |                                    |                             |                   |                           |                                      |                                  | 10 iu<br>Cost-effective if<br>willing to trade off 15<br>days in full health to<br>avoid one PPH<br>≥1000mL at the<br>£20,000 per QALY<br>threshold or 10 days<br>at the £30,000 per<br>QALY threshold.                                                                              |
| Oxytocin > 10 iu             | £143.74           | 0.093                          | 0.142                              | 0.008                       | £1.85             | 0.0244                    | 0.0398                               | 0.0007                           | Dominated by<br>oxytocin >1 iu and ≤<br>5 iu                                                                                                                                                                                                                                         |
| Oxytocin ≤ 1 iu              | £147.81           | 0.104                          | 0.235                              | 0.014                       | £5.93             | 0.0357                    | 0.1324                               | 0.0070                           | Dominated by<br>oxytocin >1 iu and ≤<br>5 iu                                                                                                                                                                                                                                         |
| Carbetocin                   | £201.20           | 0.059                          | 0.041                              | 0.007                       | £59.32            | -0.0091                   | -0.0611                              | -0.0005                          | More costly and<br>more effective than<br>oxytocin >1 iu and $\leq$<br>5 iu<br>Cost-effective if<br>willing to trade off<br>119 days in full<br>health to avoid one<br>PPH $\geq$ 1000mL at the<br>£20,000 per QALY<br>threshold or 79 days<br>at the £30,000 per<br>QALY threshold. |
| Ergometrine plus<br>oxytocin | £218.62           | 0.058                          | 0.063                              | 0.007                       | £17.41            | -0.0019                   | -0.0396                              | -0.0008                          | More costly and<br>more effective than<br>carbetocin<br>Cost-effective if                                                                                                                                                                                                            |

| Strategy | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                          |
|----------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                   |                                |                                    |                             |                   |                           |                                      |                                  | willing to trade off<br>169 days in full<br>health to avoid one<br>PPH ≥1000mL at the<br>£20,000 per QALY<br>threshold or 113<br>days at the £30,000<br>per QALY threshold. |

### Caesarean birth subgroup

The results of the base-case analysis in the caesarean birth subgroup are summarised in Table 45, with absolute costs and numbers of events from the probabilistic analysis presented for each treatment.

The results in Table 45 indicate that carbetocin is the most cost-effective option of the uterotonics as carbetocin was more costly but more effective than oxytocin >1 iu and  $\leq$  5 iu, and dominant over other oxytocin doses and oxytocin plus ergometrine. Using the cost-effectiveness measure described, carbetocin would be considered cost effective compared with oxytocin if we are willing to trade off 17 days in full health to avoid one PPH  $\geq$ 1000mL.

#### Table 45: Probabilistic (deterministic)\* results, caesarean birth subgroup

| Strategy                     | Absolute<br>Costs    | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs  | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                     |
|------------------------------|----------------------|--------------------------------|------------------------------------|-----------------------------|--------------------|---------------------------|--------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Oxytocin >1 iu<br>and ≤ 5 iu | £464.42<br>(£446.45) | 0.072<br>(0.068)               | 0.489<br>(0.430)                   | 0.068<br>(0.049)            | -                  | -                         | -                                    | -                                | -                                                                                                                      |
| Carbetocin                   | £487.65<br>(£488.40) | 0.048<br>(0.048)               | 0.354<br>(0.275)                   | 0.021<br>(0.021)            | £23.24<br>(£41.95) | 0.0244<br>(0.0197)        | 0.1344<br>(0.1551)                   | 0.0464<br>(0.0273)               | More costly and<br>more effective than<br>oxytocin >1 iu and ≤<br>5 iu<br>Cost-effective if<br>willing to trade off 17 |

| Strategy                  | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                             |
|---------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                   |                                |                                    |                             |                   |                           |                                      |                                  | days in full health to<br>avoid one PPH<br>≥1000mL at the<br>£20,000 per QALY<br>threshold or 12 days<br>at the £30,000 per<br>QALY threshold. |
| Oxytocin > 10 iu          | £535.16           | 0.123                          | 0.703                              | 0.145                       | £47.51            | -0.0749                   | -0.3492                              | -0.1237                          | Dominated by                                                                                                                                   |
|                           | (£522.60)         | (0.119)                        | (0.696)                            | (0.130)                     | (£34.20)          | (-0.0713)                 | (-0.4206)                            | (-0.1092)                        | carbetocin                                                                                                                                     |
| Oxytocin >5 iu            | £587.68           | 0.073                          | 0.726                              | 0.208                       | £100.03           | -0.0252                   | -0.3718                              | -0.1863                          | Dominated by carbetocin                                                                                                                        |
| and ≤ 10 iu               | (£576.75)         | (0.069)                        | (0.723)                            | (0.193)                     | (£88.34)          | (-0.0215)                 | (-0.4482)                            | (-0.1717)                        |                                                                                                                                                |
| Ergometrine plus oxytocin | £615.50           | 0.071                          | 0.553                              | 0.063                       | £127.85           | -0.0228                   | -0.1990                              | -0.0415                          | Dominated by                                                                                                                                   |
|                           | (£591.26)         | (0.066)                        | (0.510)                            | (0.035)                     | (£102.86)         | (-0.0178)                 | (-0.2346)                            | (-0.0142)                        | carbetocin                                                                                                                                     |

\*Deterministic results are given in parentheses for comparison.

Table 46 summarises the results of the scenario analysis where adverse events were excluded. The scenario uses the deterministic values only.

In the adverse events scenario (Table 46) all oxytocin doses are dominated, and carbetocin would be considered cost-effective compared with ergometrine plus oxytocin if we are willing to trade off 11 healthy days to avoid one PPH≥1000mL.

### Table 46: Scenario results, adverse events excluded, caesarean birth subgroup

| Strategy                     | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)         |
|------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|-------------------|---------------------------|--------------------------------------|----------------------------------|------------------------------------------------------------|
| Ergometrine plus oxytocin    | £52.55            | 0.066                          | 0.510                              | 0.035                       | -                 | -                         | -                                    | -                                | -                                                          |
| Oxytocin >1 iu<br>and ≤ 5 iu | £62.90            | 0.068                          | 0.430                              | 0.049                       | £10.35            | -0.0019                   | 0.0795                               | -0.0131                          | Dominated by<br>ergometrine plus<br>oxytocin               |
| Carbetocin                   | £63.24            | 0.048                          | 0.275                              | 0.021                       | £10.69            | 0.0178                    | 0.2346                               | 0.0142                           | More costly and<br>more effective than<br>ergometrine plus |

| Strategy                      | Absolute<br>Costs | Total PPH<br>≥1000mL<br>events | Total<br>additional<br>uterotonics | Total blood<br>transfusions | Incremental<br>costs | PPH<br>≥1000mL<br>avoided | Additional<br>uterotonics<br>avoided | Blood<br>transfusions<br>avoided | Cost-effectiveness<br>(cost/PPH≥1000mL<br>avoided)                                                                                                                                                        |
|-------------------------------|-------------------|--------------------------------|------------------------------------|-----------------------------|----------------------|---------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                   |                                |                                    |                             |                      |                           |                                      |                                  | oxytocin<br>Cost-effective if<br>willing to trade off 11<br>days in full health to<br>avoid one PPH<br>≥1000mL at the<br>£20,000 per QALY<br>threshold or 7 days<br>at the £30,000 per<br>QALY threshold. |
| Oxytocin > 10 iu              | £139.05           | 0.119                          | 0.696                              | 0.130                       | £75.81               | -0.0713                   | -0.4206                              | -0.1092                          | Dominated by<br>carbetocin                                                                                                                                                                                |
| Oxytocin >5 iu<br>and ≤ 10 iu | £193.20           | 0.069                          | 0.723                              | 0.193                       | £129.96              | -0.0215                   | -0.4482                              | -0.1717                          | Dominated by<br>carbetocin                                                                                                                                                                                |

# Conclusion

In the full population, the model indicated that carbetocin is considered cost-effective compared with ergometrine plus oxytocin and would be considered cost-effective compared with oxytocin >1 iu and  $\leq$  5 iu if we are willing to trade off 79 days in full health to avoid one PPH  $\geq$ 1000mL. In the scenario where adverse events are excluded, oxytocin plus ergometrine is likely to be the most cost-effective, as compared with oxytocin we would only need to be willing to trade off 0.14 days in full health to avoid one PPH  $\geq$ 1000mL.

In the base-case model for the vaginal birth subgroup there was evidence suggesting that oxytocin >5 iu and  $\leq$  10 iu was the most cost-effective option, and oxytocin plus ergometrine was more costly and more effective but would be cost-effective if we are willing to trade off 91 days in full health to avoid one PPH  $\geq$ 1000mL. Oxytocin >1 iu and  $\leq$  5 iu was more costly and marginally more effective than the >5 iu and  $\leq$  10 iu dose range, and would be considered cost-effective compared with this dose if we are willing to trade off 21 days in full health to avoid one PPH  $\geq$ 1000mL. If adverse events are excluded from the analysis then oxytocin plus ergometrine becomes likely to be the most cost-effective option, being less costly and more effective than the other strategies. Carbetocin is not likely to be considered cost-effective for the vaginal birth subgroup.

There was strong evidence in the caesarean birth subgroup suggesting carbetocin to be the most cost-effective option of the uterotonics. Carbetocin was more costly but more effective than oxytocin >1 iu and  $\leq$  5 iu, and dominant over other oxytocin doses and oxytocin plus ergometrine. Using the cost-effectiveness measure described, carbetocin would be considered cost effective compared with oxytocin if we are willing to trade off 17 days in full health to avoid one PPH  $\geq$ 1000mL.

# Appendix J Excluded studies

Excluded studies for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

### **Excluded effectiveness studies**

| Carbetocin Versus Buccal Misoprostol Plus IV<br>Tranexamic Acid for Prevention of Postpartum<br>Hemorrhage at Cesarean Section.           | - Study design not in PICO<br>Clinical trial - no results posted or publication<br>provided                      |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Buccal Misoprostol Versus IV Oxytocin in<br>Prevention of Postpartum Hemorrhage.                                                          | <ul> <li>Study design not in PICO</li> <li>Clinical trial - no results posted or publication provided</li> </ul> |
| Carbetocin Versus Ergometrin in the Prevention<br>of Postpartum Hemorrhage.                                                               | <ul> <li>Study design not in PICO</li> <li>Clinical trial - no results posted or publication provided</li> </ul> |
| Carbetocin Versus Oral Tranexamic Acid Plus,<br>Buccal Misoprostol on Blood Loss After Vaginal<br>Delivery.                               | <ul> <li>Study design not in PICO</li> <li>Clinical trial - no results posted or publication provided</li> </ul> |
| Carbetocin Versus Oxytocin and Ergometrine for<br>the Prevention of Postpartum Hemorrhage.                                                | <ul> <li>Study design not in PICO</li> <li>Clinical trial - no results posted or publication provided</li> </ul> |
| Carbetocin Versus Oxytocin for Prevention of<br>Postcesarean Hemorrhage in Pregnancy With<br>High Risk for PPH.                           | - Study design not in PICO<br>Clinical trial - no results posted or publication<br>provided                      |
| Carbetocin Versus Oxytocin for the Prevention<br>of Postpartum Hemorrhage in Emergency<br>Caesarean Delivery.                             | - Study design not in PICO<br>Clinical trial - no results posted or publication<br>provided                      |
| Carbetocin Versus Oxytocin Infusion Plus<br>Tranexamic Acid During Cesarean Section.                                                      | <ul> <li>Study design not in PICO</li> <li>Clinical trial - no results posted or publication provided</li> </ul> |
| Carbetocin Versus Oxytocin Plus Sublingual<br>Misoprostol in the Management of Atonic<br>Postpartum Hemorrhage.                           | - Study design not in PICO<br>Network meta analysis - checked for eligible<br>studies                            |
| Carbetocin Versus Syntocinon for Prevention of<br>Postpartum Hemorrhage in Cardiac Patients<br>Undergoing Caesarean Section.              | <ul> <li>Study design not in PICO</li> <li>Clinical trial - no results posted or publication provided</li> </ul> |
| Carbetocin Versus Syntometrine in Obese<br>Women Undergoing Elective Cesarean.                                                            | - Study design not in PICO<br>Clinical trial - no results posted or publication<br>provided                      |
| <u>The Comparison of the Effect of Different</u><br><u>Oxytocin Administrations on the Blood Loss</u><br><u>During Cesarean Delivery.</u> | <ul> <li>Study design not in PICO</li> <li>Clinical trial - no results posted or publication provided</li> </ul> |
| Double Simultaneous Uterotonic Agents Versus<br>Single Agent Regimen to Prevent Early<br>Postpartum Hemorrhage.                           | - Study design not in PICO<br>Clinical trial - no results posted or publication<br>provided                      |
| The Effect of Labor Induction With Oxytocin on<br>Early Postpartum Hemorrhage, Perineal Integrity                                         | - Study design not in PICO                                                                                       |

| Study                                                                                         | Reason                                                        |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Study                                                                                         |                                                               |
| and Breastfeeding.                                                                            | Clinical trial - no results posted or publication<br>provided |
| Misoprostol Before and After Cesarean Section.                                                | - Study design not in PICO                                    |
|                                                                                               | Clinical trial - no results posted or publication provided    |
| Oxytocin at Elective Cesarean Deliveries: A                                                   | - Study design not in PICO                                    |
| Dose-finding Study in Women With BMI ≥<br>40kg/m2.                                            | Clinical trial - no results posted or publication provided    |
| Oxytocin i.m./i.v. Versus Carbetocin i.v. in                                                  | - Study design not in PICO                                    |
| Elective Cesarean Sections.                                                                   | Clinical trial - No results posted or publication provided    |
| Oxytocin Versus, Sublingual Misoprostol in the                                                | - Study design not in PICO                                    |
| Secondary Prevention of Postpartum<br>Hemorrhage After Vaginal Delivery.                      | Clinical trial - no results posted or publication provided    |
| Oxytocin vs Carbetocin at Cesarean Delivery in                                                | -<br>- Study design not in PICO                               |
| Women With Morbid Obesity.                                                                    | Clinical trial - no results posted or publication<br>provided |
| Preoperative and Postoperative Sublingual                                                     | - Study design not in PICO                                    |
| Misoprostol for Prevention of Postpartum Blood<br>Loss in Cesarean Section.                   | Clinical trial - no results posted or publication provided    |
| Prevention of Primary Postpartum                                                              | - Study design not in PICO                                    |
| Haemorrhage.                                                                                  | Clinical trial - no results posted or publication provided    |
| Second-Line Uterotonics in Postpartum                                                         | - Duplicate                                                   |
| Hemorrhage: A Randomized Clinical Trial.                                                      | Duplicate from IS search                                      |
| Sublingual Misoprostol With or Without                                                        | - Study design not in PICO                                    |
| Intravenous Tranexamic Acid During<br>Hemorrhagic Cesarean Section.                           | Clinical trial - no results posted or publication provided    |
| Sublingual vs Intrauterine MISOPROSTOL Plus                                                   | - Study design not in PICO                                    |
| Oxytocin Infusion for Prevention of Post-                                                     | Clinical trial - no results posted or publication             |
| <u>cesarean Hemorrhage in High Risk Pregnant</u><br><u>Women: A Double-blind Placebo RCT.</u> | provided                                                      |
| A Trial of Sublingual Misoprostol to Reduce                                                   | - Study design not in PICO                                    |
| Primary Postpartum Haemorrhage After Vaginal Delivery.                                        | Clinical trial - no results posted or publication<br>provided |
| Carbetocin at Elective Cesarean Deliveries: A                                                 | - Unavailable from IS search                                  |
| Dose-finding Study in Women With BMI ≥ 40kg/m2.                                               | Journal information unavailable so could no be found          |
| Carbetocin Versus Rectal Misoprostol for                                                      | - Unavailable from IS search                                  |
| Management of Third Stage of Labor in Women<br>at Low Risk of Postpartum Hemorrhage.          | Journal information unavailable so could no be found          |
| The Effect of Preoperative and Post Operative                                                 | - Unavailable from IS search                                  |
| Misoprostol Administration on Intraoperative<br>Blood Loss and Postpartum Hemorrhage in CS.   | Journal information unavailable so could no be found          |
| Intrauterine Misoprostol Versus Rectal                                                        | - Unavailable from IS search                                  |
| Misoprostol in Reducing Blood Loss During<br>Cesarean Section.                                | Journal information unavailable so could no be found          |
| Randomization of Oxytocin,                                                                    | - Unavailable from IS search                                  |
| Oxytocin+Intrauterine Misoprostol and<br>Carbetocin During C-section.                         | Journal information unavailable so could no be found          |
| Multimodal Uterotonics at the Time of Cesarean                                                | - Study design not in PICO                                    |
| Section in Laboring Patients.                                                                 | Conference abstract                                           |
|                                                                                               |                                                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reason                                                                                                                                                                                                             |
| Abbas, Dina F, Mirzazada, Shafiq, Durocher, Jill<br>et al. (2020) Testing a home-based model of<br>care using misoprostol for prevention and<br>treatment of postpartum hemorrhage: results<br>from a randomized placebo-controlled trial<br>conducted in Badakhshan province,<br>Afghanistan. Reproductive health 17(1): 88                                                                                                                                                                                                 | - Intervention not in PICO<br>Intervention for treatment of PPH                                                                                                                                                    |
| Abdelaleem, Ahmed A, Abbas, Ahmed M,<br>Thabet, Andrew L et al. (2019) The effect of<br>initiating intravenous oxytocin infusion before<br>uterine incision on the blood loss during elective<br>cesarean section: a randomized clinical trial.<br>The journal of maternal-fetal & neonatal<br>medicine : the official journal of the European<br>Association of Perinatal Medicine, the<br>Federation of Asia and Oceania Perinatal<br>Societies, the International Society of Perinatal<br>Obstetricians 32(22): 3723-3728 | - Intervention not in PICO<br>Only one uterotonic - intravenous oxytocin<br>infusion before uterine incision versus late after<br>umbilical cord clamping                                                          |
| Adnan, Nita, Conlan-Trant, Rebecca,<br>McCormick, Ciara et al. (2018) Intramuscular<br>versus intravenous oxytocin to prevent<br>postpartum haemorrhage at vaginal delivery:<br>randomised controlled trial. BMJ (Clinical<br>research ed.) 362: k3546                                                                                                                                                                                                                                                                       | - Intervention not in PICO<br>Same drug intervention both arms only different<br>routes of administration                                                                                                          |
| Ahmadi, Fatemeh (2018) A comparative study<br>on infusion of usual dose of oxytocin and 80<br>units dose of oxytocin in the prevention of<br>postpartum hemorrhage in cesarean section.<br>Journal of advanced pharmaceutical technology<br>& research 9(3): 102-106                                                                                                                                                                                                                                                         | - Intervention not in PICO<br>Only one uterotonic - different doses of oxytocin                                                                                                                                    |
| Alalfy, Mahmoud, Lasheen, Yossra, Elshenoufy,<br>Hossam et al. (2020) The efficacy of intrauterine<br>misoprostol during cesarean section in<br>prevention of primary PPH, a randomized<br>controlled trial. The journal of maternal-fetal &<br>neonatal medicine : the official journal of the<br>European Association of Perinatal Medicine, the<br>Federation of Asia and Oceania Perinatal<br>Societies, the International Society of Perinatal<br>Obstetricians 33(9): 1459-1465                                        | - Non systemic administration<br>Intrauterine misoprostol                                                                                                                                                          |
| Anger, Holly A, Dabash, Rasha, Hassanein,<br>Nevine et al. (2020) A cluster-randomized, non-<br>inferiority trial comparing use of misoprostol for<br>universal prophylaxis vs. secondary prevention<br>of postpartum hemorrhage among community<br>level births in Egypt. BMC pregnancy and<br>childbirth 20(1): 317                                                                                                                                                                                                        | - Intervention not in PICO<br>Only one uterotonic - 600mcg oral misoprostol<br>versus 800mcg sublingual misoprostol Primary<br>vs secondary prevention (i.e. provided only to<br>women with postpartum blood loss) |
| Ashwal, Eran, Amikam, Uri, Wertheimer, Avital<br>et al. (2022) Route of postpartum oxytocin<br>administration and maternal hemoglobin decline<br>- A randomized controlled trial. European journal<br>of obstetrics, gynecology, and reproductive<br>biology 272: 134-138                                                                                                                                                                                                                                                    | <ul> <li>Intervention not in PICO</li> <li>Only one uterotonic - 1) Intramuscular 10units;</li> <li>2) intravenous 10units in 100 ml 0.9%NaCl solution over 10-15 min; 3) combined IV + IM regimens</li> </ul>     |
| Awoleke, J.O., Adeyanju, B.T., Adeniyi, A. et al.<br>(2020) Randomised Controlled Trial of<br>Sublingual and Rectal Misoprostol in the<br>Prevention of Primary Postpartum Haemorrhage<br>in a Resource-Limited Community. Journal of                                                                                                                                                                                                                                                                                        | - Intervention not in PICO<br>Same drug intervention both arms only different<br>routes of administration - 600 mcg of<br>misoprostol rectally or 600 mcg of misoprostol                                           |

| Of the last                                                                                                                                                                                                                                                                                                                                                      | Proven                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study<br>Obstetrics and Gynecology of India 70(6): 462-                                                                                                                                                                                                                                                                                                          | Reason<br>sublingually                                                                                                                                                                                                    |
| 470                                                                                                                                                                                                                                                                                                                                                              | Subilityually                                                                                                                                                                                                             |
| Bahadur, Anupama, Khoiwal, Kavita,<br>Bhattacharya, Namrata et al. (2019) The effect<br>of intrauterine misoprostol on blood loss during<br>caesarean section. Journal of obstetrics and<br>gynaecology : the journal of the Institute of<br>Obstetrics and Gynaecology 39(6): 753-756                                                                           | - Non systemic administration<br>Intrauterine misoprostol                                                                                                                                                                 |
| Baliuliene, Vilda; Vitartaite, Migle; Rimaitis,<br>Kestutis (2021) Prophylactic Dose of Oxytocin<br>for Uterine Atony during Caesarean Delivery: A<br>Systematic Review. International journal of<br>environmental research and public health 18(9)                                                                                                              | - Intervention not in PICO<br>Same drug intervention both arms but different<br>IV doses of oxytocin                                                                                                                      |
| Barua HR, Barua R, Barua S EA (2017)<br>Carbetocin and oxytocin in the active<br>management of third stage of labor after vaginal<br>birth of baby. Bangladesh Med J 1(46): 7-10                                                                                                                                                                                 | - Study design not in PICO<br>Not a randomised trial                                                                                                                                                                      |
| Begley, Cecily M, Gyte, Gillian MI, Devane,<br>Declan et al. (2019) Active versus expectant<br>management for women in the third stage of<br>labour. The Cochrane database of systematic<br>reviews 2: cd007412                                                                                                                                                  | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018                                    |
| Beiranvand S, Karimi A, Vahabi S et al. (2019)<br>Comparison of the Mean Minimum Dose of<br>Bolus Oxytocin for Proper Uterine Contraction<br>during Cesarean Section. Current clinical<br>pharmacology 14(3): 208-213                                                                                                                                            | - Study design not in PICO<br>Cross sectional study                                                                                                                                                                       |
| Biradar, A.M., Yaliwal, R.G., Kori, S.S. et al.<br>(2021) Randomised control trial of 3 iu<br>intravenous oxytocin bolus with 7 iu oxytocin<br>infusion versus 10 iu intramuscular oxytocin in<br>the third stage of labour in the prevention of<br>postpartum hemorrhage. International Journal of<br>Women's Health and Reproduction Sciences<br>9(3): 171-175 | - Intervention not in PICO<br>Same drug intervention all arms but different<br>routes of administration and different doses - 3<br>IU IV bolus and 7 IU infusion of oxytocin or 10 IU<br>of IM oxytocin                   |
| <u>Caceda, Sonia Indacochea; Ramos, Richard</u><br><u>Rubio; Saborido, Carlos Martin (2018)</u><br><u>Pharmacoeconomic study comparing carbetocin</u><br><u>with oxytocin for the prevention of hemorrhage</u><br><u>following cesarean delivery in Lima, Peru.</u><br>Journal of comparative effectiveness research<br>7(1): 49-55                              | - Study design not in PICO<br>Pharmacoecnomic study                                                                                                                                                                       |
| <u>Carroli, G., Durocher, J., Dzuba, I. et al. (2018)</u><br><u>Does route matter? intravenous versus</u><br><u>intramuscular oxytocin for prevention of</u><br><u>postpartum hemorrhage.</u> International Journal of<br>Gynecology and Obstetrics 143(supplement3):<br>236                                                                                     | - Intervention not in PICO<br>Only one uterotonic - 10 IU oxytocin-IV versus<br>IM-and a matching ampoule (saline)                                                                                                        |
| <u>Cecilia, Maria, Vijayaselvi, Reeta, Bansal,</u><br><u>Ramandeep et al. (2018) Ten units intravenous</u><br><u>oxytocin over 2-4 h is as effective as 30 units</u><br><u>over 8-12 h in preventing postpartum</u><br><u>hemorrhage after cesarean section: A</u><br><u>randomized controlled trial.</u> Indian journal of<br>pharmacology 50(5): 279-283       | <ul> <li>Intervention not in PICO</li> <li>Only one uterotonic - single-dose intravenous<br/>oxytocin over 2-4 h (total = 10 units) versus<br/>oxytocin maintenance infusion for 8-12 h (total =<br/>30 units)</li> </ul> |
| <u>Charles D, Anger H, Dabash R et al. (2019)</u><br>Intramuscular injection, intravenous infusion,                                                                                                                                                                                                                                                              | - Intervention not in PICO<br>Same drug intervention both arms only different                                                                                                                                             |

| Chudy                                                                                           | Passan                                                       |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Study                                                                                           | Reason                                                       |
| and intravenous bolus of oxytocin in the third<br>stage of labor for prevention of postpartum   | routes of administration - 10 IU oxytocin                    |
| hemorrhage: a three-arm randomized control                                                      | administered as either IM injection; IV infusion or IV bolus |
| trial. BMC pregnancy and childbirth 19(1): 38                                                   |                                                              |
|                                                                                                 |                                                              |
| Charles, Dyanna, Anger, Holly, Dabash, Rasha                                                    | - Duplicate                                                  |
| et al. (2019) Intramuscular injection, intravenous                                              | Duplicate from IS search                                     |
| infusion, and intravenous bolus of oxytocin in the                                              |                                                              |
| third stage of labor for prevention of postpartum<br>hemorrhage: a three-arm randomized control |                                                              |
| trial. BMC pregnancy and childbirth 19(1): 38                                                   |                                                              |
|                                                                                                 |                                                              |
| Drew T, Balki M, Farine D et al. (2020)                                                         | - Study design not in PICO                                   |
| Carbetocin at elective caesarean section: a                                                     | Dose finding study - no comparative group                    |
| sequential allocation trial to determine the minimum effective dose in obese women.             |                                                              |
| Anaesthesia 75(3): 331-337                                                                      |                                                              |
|                                                                                                 |                                                              |
| Durocher, Jill, Dzuba, Ilana G, Carroli, Guillermo                                              | - Intervention not in PICO                                   |
| et al. (2019) Does route matter? Impact of route                                                | Only one uterotonic - 10 IU oxytocin via IV                  |
| of oxytocin administration on postpartum                                                        | infusion versus IM injection and a matching                  |
| bleeding: A double-blind, randomized controlled                                                 | saline ampoule                                               |
| trial. PloS one 14(10): e0222981                                                                |                                                              |
| Ebada, Mahmoud Ahmed; Elmatboly,                                                                | - Intervention not in PICO                                   |
| Abdelmagid M; Baligh, Galal (2020) Intravenous                                                  | One uterotonic only - IV versus IM oxytocin                  |
| Oxytocin versus Intramuscular Oxytocin for the                                                  |                                                              |
| Management of Postpartum Hemorrhage: A                                                          |                                                              |
| Systematic Review and Meta-Analysis. Current                                                    |                                                              |
| drug research reviews 12(2): 150-157                                                            |                                                              |
| El-Sherbini, Moutaz M, Maged, Ahmed M, Helal,                                                   | - Non systemic administration                                |
| Omneya M et al. (2021) A comparative study                                                      | Rectal misoprostol versus intrauterine                       |
| between preoperative rectal misoprostol and                                                     | misoprostol                                                  |
| intraoperative intrauterine administration in the                                               |                                                              |
| reduction of blood loss during and after cesarean delivery: A randomized controlled trial.      |                                                              |
| International journal of gynaecology and                                                        |                                                              |
| obstetrics: the official organ of the International                                             |                                                              |
| Federation of Gynaecology and Obstetrics                                                        |                                                              |
| 153(1): 113-118                                                                                 |                                                              |
|                                                                                                 | Svetemetic roview                                            |
| <u>Feduniw S, Warzecha D, Szymusik I et al.</u><br>(2020) Epidemiology, prevention and          | - Systematic review                                          |
| management of early postpartum hemorrhage -                                                     | Checked for eligible studies - eligible studies              |
| a systematic review. Ginekologia polska 91(1):                                                  | included. Ineligible studies either did not meet             |
| 38-44                                                                                           | inclusion criteria or already included in Gallos             |
|                                                                                                 | 2018                                                         |
| Gallos, Ioannis, Williams, Helen, Price, Malcolm                                                | - Study design not in PICO                                   |
| et al. (2019) Uterotonic drugs to prevent                                                       | Health technology assessment                                 |
| postpartum haemorrhage: a network meta-                                                         |                                                              |
| analysis. Health technology assessment (Winchester, England) 23(9): 1-356                       |                                                              |
|                                                                                                 |                                                              |
| Ibrahim ZM, Sayed Ahmed WA, Abd El-Hamid                                                        | - Duplicate                                                  |
| EM et al. (2020) Carbetocin versus oxytocin for                                                 | Duplicate from IS search                                     |
| prevention of postpartum hemorrhage in                                                          |                                                              |
| hypertensive women undergoing elective                                                          |                                                              |
| cesarean section. Hypertension in pregnancy                                                     |                                                              |
| 39(3): 319-325                                                                                  |                                                              |
| Ibrahim, G. and Khalid, A. (2019) Is carbetocin                                                 | - Study design not in PICO                                   |
| as effective as oxytocin in preventing PPH in the                                               | Conference abstract                                          |
| third stage of labour in the emergency                                                          |                                                              |
| caesarean section?. Australian and New                                                          |                                                              |
| Zealand Journal of Obstetrics and Gynaecology                                                   |                                                              |

| Chudu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Passan                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study<br>59(supplement1): 32                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reason                                                                                                                                                                                 |
| Islamy, N., Bernolian, N., Basir, F. et al. (2018)<br>The effect of different doses of intraumbilical<br>oxytocin on the third stage of labor. International<br>Journal of Gynecology and Obstetrics<br>143(supplement3): 288-289                                                                                                                                                                                                                                                    | - Non systemic administration<br>Intraumbilical administration                                                                                                                         |
| Jaafar, J.D., Ismail, H., Ishak, N.A. et al. (2019)<br>Carbetocin versus syntometrine in the<br>prevention of postpartum haemorrhage among<br>women with risk factors following vaginal<br>delivery. Medical Journal of Malaysia<br>74(supplement1): 24                                                                                                                                                                                                                              | - Study design not in PICO<br>Conference abstract                                                                                                                                      |
| Jaffer, Danish, Singh, Preet Mohinder, Aslam,<br>Adam et al. (2022) Preventing postpartum<br>hemorrhage after cesarean delivery: a network<br>meta-analysis of available pharmacologic<br>agents. American journal of obstetrics and<br>gynecology 226(3): 347-365                                                                                                                                                                                                                   | - Study design not in PICO<br>Conference abstract                                                                                                                                      |
| Jiang, Danni, Yang, Yang, Zhang, Xinxin et al.<br>(2022) Continued versus discontinued oxytocin<br>after the active phase of labor: An updated<br>systematic review and meta-analysis. PloS one<br>17(5): e0267461                                                                                                                                                                                                                                                                   | - Intervention not in PICO<br>Same drug intervention both arms only different<br>routes of administration- continued versus<br>discontinued oxytocin                                   |
| Jin, Xin-Hang; Li, Dan; Li, Xia (2019) Carbetocin<br>vs oxytocin for prevention of postpartum<br>hemorrhage after vaginal delivery: A meta-<br>analysis. Medicine 98(47): e17911                                                                                                                                                                                                                                                                                                     | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018 |
| Kalafat, Erkan, Gokce, Ali, O'Brien, Pat et al.<br>(2021) Efficacy of carbetocin in the prevention of<br>postpartum hemorrhage: a systematic review<br>and Bayesian meta-analysis of randomized<br>trials. The journal of maternal-fetal & neonatal<br>medicine : the official journal of the European<br>Association of Perinatal Medicine, the<br>Federation of Asia and Oceania Perinatal<br>Societies, the International Society of Perinatal<br>Obstetricians 34(14): 2303-2316 | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018 |
| Leas, B. and Umscheid, C. A. (2011) Active management and treatment of postpartum hemorrhage.                                                                                                                                                                                                                                                                                                                                                                                        | - Unavailable from IS search                                                                                                                                                           |
| Lewis, Lucy, Doherty, Dorota A, Conwell, Marion<br>et al. (2021) Spontaneous vaginal birth following<br>induction with intravenous oxytocin: Three<br>oxytocic regimes to minimise blood loss post<br>birth. Women and birth : journal of the Australian<br>College of Midwives 34(3): e322-e329                                                                                                                                                                                     | - Intervention not in PICO<br>Oxytocin used for induction of labour                                                                                                                    |
| Li, T, Wei, Q, Wu, L et al. (2022) Multicenter,<br>Randomized, Double-Blind, and Positive Drug-<br>Controlled Clinical Trial on Prevention of<br>Postpartum Hemorrhage after Vaginal Delivery<br>with Ergometrine Maleate. Sichuan da xue xue<br>bao. Yi xue ban [Journal of Sichuan University.<br>Medical science edition] 53(2): 316-320                                                                                                                                          | - Unavailable from IS search<br>Not available in English                                                                                                                               |
| Maged AM, Fawzi T, Shalaby MA et al. (2019) A<br>randomized controlled trial of the safety and<br>efficacy of preoperative rectal misoprostol for                                                                                                                                                                                                                                                                                                                                    | - Intervention not in PICO<br>Same drug intervention both arms - 400 μg<br>rectal misoprostol at urinary catheter insertion                                                            |

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reason                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| prevention of intraoperative and postoperative<br>blood loss at elective cesarean delivery.<br>International journal of gynaecology and<br>obstetrics: the official organ of the International<br>Federation of Gynaecology and Obstetrics<br>147(1): 102-107                                                                                                                                                                         | plus 400 µg rectally after abdominal closure<br>versus 800 µg of rectal misoprostol after<br>abdominal closure                                                                         |
| Maged, Ahmed M, Fawzi, Tarek, Shalaby,<br>Mohamed A et al. (2019) A randomized<br>controlled trial of the safety and efficacy of<br>preoperative rectal misoprostol for prevention of<br>intraoperative and postoperative blood loss at<br>elective cesarean delivery. International journal<br>of gynaecology and obstetrics: the official organ<br>of the International Federation of Gynaecology<br>and Obstetrics 147(1): 102-107 | - Duplicate<br>Duplicate from IS search                                                                                                                                                |
| Maged, Ahmed M, Wali, Ahmed A, Metwally,<br>Ahmed A et al. (2022) The efficacy of<br>misoprostol in reducing intraoperative blood loss<br>in women undergoing elective cesarean section.<br>A systematic review and meta-analysis. The<br>journal of obstetrics and gynaecology research                                                                                                                                              | - Intervention not in PICO<br>Same drug intervention both arms - preoperative<br>versus postoperative misoprostol                                                                      |
| Maged, Ahmed M, Waly, Mohamed, Fahmy,<br>Radwa M et al. (2020) Carbetocin versus rectal<br>misoprostol for management of third stage of<br>labor among women with low risk of postpartum<br>hemorrhage. International journal of<br>gynaecology and obstetrics: the official organ of<br>the International Federation of Gynaecology and<br>Obstetrics 148(2): 238-242                                                                | - Duplicate<br>Duplicate from IS search                                                                                                                                                |
| Mannaerts, D, Van der Veeken, L, Coppejans, H<br>et al. (2018) Adverse Effects of Carbetocin<br>versus Oxytocin in the Prevention of Postpartum<br>Haemorrhage after Caesarean Section: A<br>Randomized Controlled Trial. Journal of<br>pregnancy 2018: 1374150                                                                                                                                                                       | - Included in Gallos 2018                                                                                                                                                              |
| Mansouri, H.A. and Bahkali, D. (2018) A<br>randomized controlled trial of intra-umbilical vein<br>ergometrine as compared to intramuscular<br>oxytocin for management of third stage of labor.<br>Clinical and Experimental Obstetrics and<br>Gynecology 45(4): 567-569                                                                                                                                                               | - Non systemic administration<br>Intraumbilical administration                                                                                                                         |
| Masse, N.; Wong, C.; Dexter, F. (2022) A<br>Randomized Controlled Trial to Assess<br>Prophylactic Methylergonovine in Patients<br>Undergoing an Intrapartum Cesarean Section.<br>American Journal of Obstetrics and Gynecology<br>226(1supplement): 34                                                                                                                                                                                | - Duplicate<br>Duplication from manual addition                                                                                                                                        |
| Masuzawa, Yuko, Kataoka, Yaeko, Fujii, Kana<br>et al. (2018) Prophylactic management of<br>postpartum haemorrhage in the third stage of<br>labour: an overview of systematic reviews.<br>Systematic reviews 7(1): 156                                                                                                                                                                                                                 | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018 |
| Mirteimouri, M, Pourali, L, Akhlaghi, F et al.<br>(2020) Effect of sublingual Misoprostol in<br>combination with oxytocin in reducing blood loss<br>during and after cesarean delivery: a<br>randomized clinical trial. Tehran university                                                                                                                                                                                             | - Unavailable from IS search<br>Not available in English                                                                                                                               |

| Study                                                                                                                                                                                                                                                                                                                   | Reason                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| medical journal 78(6): 357-365                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |
| Mohta, Medha, Chowdhury, Rohit B, Tyagi,<br>Asha et al. (2021) Efficacy of different infusion<br>rates of oxytocin for maintaining uterine tone<br>during elective caesarean section: A randomised<br>double blind trial. Anaesthesia and intensive<br>care 49(3): 183-189                                              | - Intervention not in PICO<br>Same drug intervention both arms only different<br>doses - Initial 1 IU bolus, then oxytocin infusion<br>for four hours at 1.25 IU/hour versus 2.5 IU/hour<br>versus 5.0 IU/hour                    |
| Mohta, Medha, Siddiqui, Sheeba, Chilkoti,<br>Geetanjali T et al. (2022) Oxytocin infusion rates<br>for maintaining uterine tone during non-elective<br>cesarean section in laboring patients: a<br>randomized, controlled trial. Journal of<br>anesthesia                                                               | <ul> <li>Intervention not in PICO</li> <li>Same drug intervention both arms only different doses - oxytocin infusions at rates of 2.5 IU/h versus 5 IU/h (Group 5) versus 10 IU/h (Group 10) following 3 IU slow bolus</li> </ul> |
| Monte-Fenix AP, Vera TR GN (2011) Double-<br>blind randomized controlled trial comparing the<br>effect of carbetocin and oxytocin for the<br>prevention of postpartum hemorrhage among<br>high risk women following vaginal delivery.<br>Philipp J Obstet Gynecol 35: 169-175                                           | - Study design not in PICO<br>Conference abstract                                                                                                                                                                                 |
| Moradan, S; Anaraki, RM; Mirmohammadkhani,<br>M (2018) Prophylactic effect of misoprostol<br>versus tranexamic acid in conjunction with<br>oxytocin in reduction of post-partum hemorrhage<br>after cesarean sectionin: a randomized clinical<br>trial. Koomesh 20(4): 620-625                                          | - Unavailable from IS search<br>Not available in English                                                                                                                                                                          |
| Muhammad, R., Isah, A., Agida, T. et al. (2019)<br>A prospective study to compare the<br>effectiveness of adjunctive rectal misoprostol or<br>oxytocin titration in the prevention of primary<br>post-partum haemorrhage in at risk patients.<br>African Health Sciences 19(1): 1517-1524                               | - Study design not in PICO<br>Case-control study                                                                                                                                                                                  |
| Naeem, M., Nawaz, F., Latif, M. et al. (2021)<br>Compare the sublingual and per rectal routes of<br>misoprostol administration in third stage of labor<br>in terms of average blood loss. Medical Forum<br>Monthly 32(3): 105-108                                                                                       | - Intervention not in PICO<br>Same drug intervention both arms only different<br>routes of administration - 400 micro grams of<br>sublingual misoprostol versus 400 micro grams<br>of rectal misoprostol                          |
| Neyshabour University of Medical, Sciences<br>(2022) The comparison of low dose with high<br>dose of oxytocin in prevention of postpartum<br>hemorrhage.                                                                                                                                                                | - Unavailable from IS search<br>Journal information unavailable so could no be<br>found                                                                                                                                           |
| Oladapo, O.T., Okusanya, B.O., Abalos, E. et al.<br>(2020) Intravenous versus intramuscular<br>prophylactic oxytocin for reducing blood loss in<br>the third stage of labour. Cochrane Database of<br>Systematic Reviews 2020(12): cd009332                                                                             | - Intervention not in PICO<br>Same drug intervention both arms only different<br>routes of administration -IV versus IM oxytocin                                                                                                  |
| Oladapo, Olufemi T, Okusanya, Babasola O,<br>Abalos, Edgardo et al. (2020) Intravenous<br>versus intramuscular prophylactic oxytocin for<br>the third stage of labour. The Cochrane<br>database of systematic reviews 11: cd009332                                                                                      | - Duplicate<br>Duplicate from IS search                                                                                                                                                                                           |
| Onwochei, D N, Van Ross, J, Singh, P M et al.<br>(2019) Carbetocin reduces the need for<br>additional uterotonics in elective caesarean<br>delivery: a systematic review, meta-analysis and<br>trial sequential analysis of randomised controlled<br>trials. International journal of obstetric<br>anesthesia 40: 14-23 | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018                                            |

| Study                                                                                                                                                                                                                                                                                                                                                        | Reason                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Onwochei, Desire N, Owolabi, Adetokunbo,<br>Singh, Preet Mohinder et al. (2020) Carbetocin<br>compared with oxytocin in non-elective<br>Cesarean delivery: a systematic review, meta-<br>analysis, and trial sequential analysis of<br>randomized-controlled trials. Canadian journal of<br>anaesthesia = Journal canadien d'anesthesie<br>67(11): 1524-1534 | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018 |
| Peska, E., Balki, M., Maxwell, C. et al. (2021)<br>Oxytocin at elective caesarean delivery: a dose-<br>finding study in women with obesity.<br>Anaesthesia 76(7): 918-923                                                                                                                                                                                    | - Study design not in PICO<br>Dose finding study - no comparison/control<br>group                                                                                                      |
| Phung, Laura C, Farrington, Elise K, Connolly,<br>Mairead et al. (2021) Intravenous oxytocin<br>dosing regimens for postpartum hemorrhage<br>prevention following cesarean delivery: a<br>systematic review and meta-analysis. American<br>journal of obstetrics and gynecology 225(3):<br>250e1-250e38                                                      | - Intervention not in PICO<br>Same drug intervention both arms only different<br>doses of IV oxytocin                                                                                  |
| Qian XW, Drzymalski DM, Lv CC et al. (2019)<br>The ED50 and ED95 of oxytocin infusion rate for<br>maintaining uterine tone during elective<br>caesarean delivery: a dose-finding study. BMC<br>pregnancy and childbirth 20(1): 6                                                                                                                             | - Intervention not in PICO<br>Only one uterotonic - oxytocin infusion at a rate<br>of 0, 1, 2, 3, 5, or 8 IU h- 1, to be given for a total<br>of 1 hour                                |
| Salati, J.A., Leathersich, S.J., Williams, M.J. et<br>al. (2019) Prophylactic oxytocin for the third<br>stage of labour to prevent postpartum<br>haemorrhage. Cochrane Database of<br>Systematic Reviews 2019(4): cd001808                                                                                                                                   | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018 |
| Shah, M., Urooj, H., Shah, S. et al. (2021)<br>EFFICACY OF RECTAL MISOPROSTOL VS<br>INTRAVENOUS OXYTOCIN IN PREVENTING<br>POSTPARTUM HEMORRHAGE FOLLOWING<br>ELECTIVE CAESAREAN SECTION. Journal of<br>Postgraduate Medical Institute 35(3): 131-135                                                                                                         | - Intervention not in PICO<br>In one of the arms uterotonics were not<br>administered as part of the third stage of labour                                                             |
| Slowiczek, L., Hein, D., Lozicki, A. et al. (2018)<br>Methylergonovine versus prostaglandins for<br>postpartum hemorrhage: A systematic review<br>and meta-analysis. Journal of the American<br>Pharmacists Association 58(3): e83                                                                                                                           | - Study design not in PICO<br>Conference abstract                                                                                                                                      |
| Somjit, Monsicha, Surojananon, Jaruta,<br>Kongwattanakul, Kiattisak et al. (2020)<br>Comparison of Low Dose versus High Dose of<br>Oxytocin for Initiating Uterine Contraction During<br>Cesarean Delivery: A Randomized, Controlled,<br>Non-Inferiority Trial. International journal of<br>women's health 12: 667-673                                       | - Intervention not in PICO<br>Same drug intervention both arms only different<br>doses - intravenous injections of high-dose (10<br>IU) and low-dose (5 IU) oxytocin                   |
| Sun, Haiyan, Xu, Lei, Li, Yu et al. (2022)<br>Effectiveness and safety of carboxytocin versus<br>oxytocin in preventing postpartum hemorrhage:<br><u>A systematic review and meta-analysis.</u> The<br>journal of obstetrics and gynaecology research<br>48(4): 889-901                                                                                      | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018 |
| Suzhou Municipal, Hospital (2018) Therapeutic<br>efficacy and safety of carbetocin on postpartum<br>hemorrhage.                                                                                                                                                                                                                                              | - Unavailable from IS search<br>Not available in English                                                                                                                               |

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reason                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Sweed, Mohamed, El-Said, Mourad, Abou-<br>Gamrah, Amgad et al. (2019) Comparison<br>between 200, 400 and 600 microgram rectal<br>misoprostol before cesarian section: A<br>randomized clinical trial. The journal of<br>obstetrics and gynaecology research 45(3): 585-<br>591                                                                                                                                                                                                                                                                  | - Intervention not in PICO<br>Same drug intervention both arms only different<br>doses - 200-, 400- or 600-mug misoprostol<br>rectally |
| Tabl, S, Balki, M, Downey, K et al. (2019)<br>Uterotonics in elective caesarean delivery: a<br>randomised non-inferiority study comparing<br>carbetocin 20 mug and 100 mug. Anaesthesia<br>74(2): 190-196                                                                                                                                                                                                                                                                                                                                       | - Intervention not in PICO<br>Only one uterotonic - intravenous carbetocin<br>(20mug and 100mug)                                       |
| Taheripanah, Robabeh, Shoman, Amal,<br>Karimzadeh, Mohammad Ali et al. (2018)<br>Efficacy of oxytocin versus carbetocin in<br>prevention of postpartum hemorrhage after<br>cesarean section under general anesthesia: a<br>prospective randomized clinical trial. The journal<br>of maternal-fetal & neonatal medicine : the<br>official journal of the European Association of<br>Perinatal Medicine, the Federation of Asia and<br>Oceania Perinatal Societies, the International<br>Society of Perinatal Obstetricians 31(21): 2807-<br>2812 | - Included in Gallos 2018                                                                                                              |
| Tan YQ, Liu SJ, Cao SY, Wang TT CL (2018)<br>Comparison of the effectiveness and safety of<br>carbetocin and oxytocin in preventing<br>postpartum hemorrhage after vaginal delivery: a<br>meta-analysis. Chin J Evid Based Med 10:<br>1093-1100                                                                                                                                                                                                                                                                                                 | - Unavailable from IS search<br>Not available in English                                                                               |
| Torloni, Maria Regina, Siaulys, Monica, Riera,<br>Rachel et al. (2021) Timing of oxytocin<br>administration to prevent post-partum<br>hemorrhage in women delivered by cesarean<br>section: A systematic review and metanalysis.<br>PloS one 16(6): e0252491                                                                                                                                                                                                                                                                                    | - Intervention not in PICO<br>Same drug intervention both arms only different<br>timing of oxytocin                                    |
| Torloni, Maria Regina, Siaulys, Monica, Riera,<br>Rachel et al. (2021) Route of oxytocin<br>administration for preventing blood loss at<br>caesarean section: a systematic review with<br>meta-analysis. BMJ open 11(9): e051793                                                                                                                                                                                                                                                                                                                | - Duplicate<br>Duplication from IS search                                                                                              |
| University College of Mediacl Sciences and<br>GTb, Hospital (2019) Comparison between<br>mothers at high or low risk of uterine bleeding,<br>with regards to the effective dose of oxytocin<br>during cesarean surgery.                                                                                                                                                                                                                                                                                                                         | - Unavailable from IS search<br>Unavailable from IS search as no journal<br>information                                                |
| University of, Liverpool (2018) Carboprost vs<br>Oxytocin as the First Line Treatment of Primary<br>Postpartum Haemorrhage: A phase IV, double-<br>blind, double-dummy, randomised controlled<br>trial.                                                                                                                                                                                                                                                                                                                                         | - Unavailable from IS search<br>Unavailable from IS search as no journal<br>information                                                |
| van der Nelson, H, O'Brien, S, Burnard, S et al.<br>(2021) Intramuscular oxytocin versus<br>Syntometrine R versus carbetocin for prevention<br>of primary postpartum haemorrhage after<br>vaginal birth: a randomised double-blinded<br>clinical trial of effectiveness, side effects and                                                                                                                                                                                                                                                       | - Duplicate<br>Duplication from IS search                                                                                              |

| Of the second seco | Press                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reason                                                                                                                                                                                 |
| <u>quality of life.</u> BJOG : an international journal of obstetrics and gynaecology 128(7): 1236-1246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                        |
| Vernekar, Sunil S, Goudar, Swati S, Metgud,<br>Mrityunjay et al. (2021) Effect of heat stable<br>carbetocin vs oxytocin for preventing postpartum<br>haemorrhage on post delivery hemoglobin-a<br>randomized controlled trial. The journal of<br>maternal-fetal & neonatal medicine : the official<br>journal of the European Association of Perinatal<br>Medicine, the Federation of Asia and Oceania<br>Perinatal Societies, the International Society of<br>Perinatal Obstetricians: 1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Study design not in PICO<br>Sub analysis CHAMPION trial                                                                                                                              |
| Vice chancellor for Research, Tabriz University<br>Of Medical Sciences (2021) Comparison of the<br>effects of misoprostol and oxytocine on<br>postpartum Hemorrhage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Unavailable from IS search<br>Journal information unavailable so could not be<br>found                                                                                               |
| Voon HY, Suharjono HN, Shafie AA et al. (2018)<br>Carbetocin versus oxytocin for the prevention of<br>postpartum hemorrhage: A meta-analysis of<br>randomized controlled trials in cesarean<br>deliveries. Taiwanese journal of obstetrics &<br>gynecology 57(3): 332-339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018 |
| Wan SQ, Pan CY, Yin HZ ZY (2018) Meta-<br>analysis of the effectiveness and safety of<br>carbetocin versus oxytocin in preventing post-<br>cesarean hemorrhage. Drug Eval Res 8: 1504-<br>1511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Unavailable from IS search<br>Not available in English                                                                                                                               |
| Wang, L.; Jiang, HM.; Yang, RR. (2020)<br>Carboprost tromethamine prevents caesarean<br>section-associated postpartum hemorrhage.<br>Tropical Journal of Pharmaceutical Research<br>19(4): 899-904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Non systemic administration<br>Intrauterine administration                                                                                                                           |
| Wei, Lin; Yang, Haiping; Sun, Xiaoli (2022) The<br>Effect of Oxytocin plus Carboprost Methylate in<br>Preventing Postpartum Hemorrhage in High-<br>Risk Pregnancy and Its Effect on Blood<br>Pressure. Evidence-based Complementary &<br>Alternative Medicine (eCAM): 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Intervention not in PICO<br>Oxytocin versus Oxytocin plus carboprost<br>methylate                                                                                                    |
| Widmer, M., Piaggio, G., Nguyen, T.M.H. et al.<br>(2018) Heat-Stable Carbetocin Versus Oxytocin<br>to Prevent Hemorrhage after Vaginal Birth.<br>Obstetrical and Gynecological Survey 73(11):<br>613-614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Included in Gallos 2018                                                                                                                                                              |
| <u>Widmer, M, Piaggio, G, Nguyen, TMH et al.</u><br>(2018) Heat-Stable Carbetocin Versus Oxytocin<br>to Prevent Hemorrhage after Vaginal Birth.<br>Obstetrical & gynecological survey 73(11): 613-<br>614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Duplicate<br>Duplication from IS search                                                                                                                                              |
| Widmer, Mariana, Piaggio, Gilda, Nguyen, Thi M<br>H et al. (2018) Heat-Stable Carbetocin versus<br>Oxytocin to Prevent Hemorrhage after Vaginal<br>Birth. The New England journal of medicine<br>379(8): 743-752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Duplicate<br>Duplication from IS search                                                                                                                                              |
| Wu, Yu, Wang, Huan, Wu, Qi-Yan et al. (2020)<br><u>A meta-analysis of the effects of intramuscular</u><br>and intravenous injection of oxytocin on the third<br><u>stage of labor</u> . Archives of gynecology and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Intervention not in PICO<br>Same drug intervention both arms only different<br>routes of administration- IV versus IM oxytocin                                                       |

| Study                                                                                                                                                                                                                                                                                                                                       | Reason                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| obstetrics 301(3): 643-653                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| Xu, Renmei, Guo, Yongjie, Zhang, Qinggui et al.<br>(2022) Comparison of Clinical Efficacy and<br>Safety between Misoprostol and Oxytocin in the<br>Prevention of Postpartum Hemorrhage: A Meta-<br>Analysis. Journal of healthcare engineering<br>2022: 3254586                                                                             | - Systematic review<br>Checked for eligible studies - eligible studies<br>included. Ineligible studies either did not meet<br>inclusion criteria or already included in Gallos<br>2018                                                                                             |
| <u>Yildirim, Dogukan and Ozyurek, Sefik Eser</u><br>(2018) Intramuscular oxytocin administration<br>before vs. after placental delivery for the<br>prevention of postpartum hemorrhage: A<br>randomized controlled prospective trial.<br>European journal of obstetrics, gynecology, and<br>reproductive biology 224: 47-51                 | - Intervention not in PICO<br>Same drug intervention both arms only different<br>timings - 10 IU of oxytocin intramuscularly within<br>the first minute following the delivery of the fetus<br>versus 10 IU of intramuscular oxytocin<br>immediately following placental delivery. |
| Zgaya, Rym, Ghadhab, Imen, Triki, Mohamed<br>Amine et al. (2020) Randomized controlled trial<br>comparing 400mug sublingual misoprostol<br>versus placebo for prevention of primary<br>postpartum hemorrhage. The Pan African<br>medical journal 36: 186                                                                                    | - Duplicate<br>Duplication from IS search                                                                                                                                                                                                                                          |
| Zhou, Yuan-Hong, Xie, Yan, Luo, You-Zhen et<br>al. (2020) Intramuscular versus intravenous<br>oxytocin for the third stage of labor after vaginal<br>delivery to prevent postpartum hemorrhage: a<br>meta-analysis of randomized controlled trials.<br>European journal of obstetrics, gynecology, and<br>reproductive biology 250: 265-271 | - Intervention not in PICO<br>Same drug intervention both arms only different<br>routes of administration - IV versus IM oxytocin                                                                                                                                                  |

# Excluded economic studies

# Table 48: Excluded studies and reasons for their exclusion

| Study                                                                                                                                                                                                                                                                                                                                                             | Reason               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Barrett, Jon; Ko, Samuel; Jeffery, William (2021)<br>Cost Implications of Using Carbetocin Injection<br>to Prevent Postpartum Hemorrhage in a<br>Canadian Urban Hospital. Journal of obstetrics<br>and gynaecology Canada : JOGC = Journal<br>d'obstetrique et gynecologie du Canada : JOGC                                                                       | - Cost analysis only |
| Lawrie, Theresa A., Rogozinska, Ewelina,<br>Sobiesuo, Pauline et al. (2019) A systematic<br>review of the cost-effectiveness of uterotonic<br>agents for the prevention of postpartum<br>hemorrhage. International journal of<br>gynaecology and obstetrics: the official organ of<br>the International Federation of Gynaecology and<br>Obstetrics 146(1): 56-64 | - Review             |
| Luni, Yasmin, Borakati, Aditya, Matah, Arti et al.<br>(2017) A prospective cohort study evaluating the<br>cost-effectiveness of carbetocin for prevention of<br>postpartum haemorrhage in caesarean sections.<br>Journal of obstetrics and gynaecology : the<br>journal of the Institute of Obstetrics and<br>Gynaecology 37(5): 601-604                          | - Cost analysis only |
| <u>Mills, F., Siu, E., Poinas, A. C. et al. (2014) A</u>                                                                                                                                                                                                                                                                                                          | - Cost analysis only |

| Study                                                                                                                                                                                                                                                                                                                         | Reason                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>cost-minimization analysis of carbetocin for the</u><br><u>prevention of postpartum hemorrhage in</u><br><u>Canada.</u> Value in Health 17(3): a161                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                     |
| Patel, B. and Haloob, R. (2014) Carbitocin: A<br>cost-effective tool to save lives. BJOG: An<br>International Journal of Obstetrics and<br>Gynaecology 121(suppl2): 88-89                                                                                                                                                     | - Conference abstract.                                                                                                                                                                                                                                                                                                                                                              |
| Pickering, Karen, Gallos, Ioannis D., Williams,<br>Helen et al. (2019) Uterotonic Drugs for the<br>Prevention of Postpartum Haemorrhage: A Cost-<br>Effectiveness Analysis. PharmacoEconomics -<br>open 3(2): 163-176                                                                                                         | - Duplicate analysis                                                                                                                                                                                                                                                                                                                                                                |
| Shaw, L., Morris, C., Baekgaard, E. et al. (2013)<br>Cost comparison of routine carbetocin use at<br>caesarean section. BJOG: An International<br>Journal of Obstetrics and Gynaecology<br>120(suppl1): 119-120                                                                                                               | - Conference abstract.                                                                                                                                                                                                                                                                                                                                                              |
| van der Nelson, Helen A., Draycott, Tim,<br>Siassakos, Dimitrios et al. (2017) Carbetocin<br>versus oxytocin for prevention of post-partum<br>haemorrhage at caesarean section in the United<br>Kingdom: An economic impact analysis.<br>European journal of obstetrics, gynecology, and<br>reproductive biology 210: 286-291 | - Cost consequence analysis. In addition it was<br>considered that this study could not helpfully<br>inform recommendations as there was more<br>recent research and a de Novo model produced<br>for the guideline which included a broader range<br>of uterotonic comparators as well as more<br>recent clinical evidence which was synthesised<br>through a network meta-analysis |
| Wohling, J., Edge, N., Pena, Leal D. et al.<br>(2018) Cost comparison of carbetocin compared<br>to oxytocin as primary postpartum haemorrhage<br>(PPH) prophylaxis at caesarean section.<br>Australian and New Zealand Journal of<br>Obstetrics and Gynaecology 58(supplement1):<br>88                                        | - Conference abstract.                                                                                                                                                                                                                                                                                                                                                              |

# Appendix K Research recommendations – full details

Research recommendations for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

No research recommendations were made for this review question.

# Appendix L Network meta-analysis methods

# Network meta-analysis methods for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

### Introduction

The results of conventional pairwise meta-analyses of direct evidence alone are not sufficient to fully inform a number of outcomes for the review on the effectiveness of uterotonics for the prevention of postpartum haemorrhage.

Each pairwise comparison does not fully inform the choice between the different treatments and having a series of discrete pairwise comparisons can be incoherent and difficult to interpret.

In addition, direct comparisons of treatments of clinical interest are not fully available, for all comparisons.

To overcome these issues, a Bayesian NMA was performed. Advantages of performing this type of analysis are as follows.

- It allows the synthesis of evidence on multiple treatments to be compared directly and indirectly without breaking randomisation. If treatment A has never been compared to treatment B in a head-to-head trial, but these two interventions have been compared to a common comparator, then an indirect treatment comparison can be derived using the relative effects of the two treatments versus the common comparator. Indirect estimates can be calculated whenever there is a path linking two treatments through a set of common comparators. There does not have to be a common comparator to which all treatments have been compared merely a connected network of treatments. All the randomised evidence is considered simultaneously within the same model.
- For every intervention in a connected network, a relative effect estimate (with its 95% Crls) between any two interventions can be estimated. These estimates provide a useful clinical summary of the results and facilitate the formation of recommendations based on all relevant evidence, whilst appropriately accounting for uncertainty. Ranks of interventions may also be calculated.
- Estimates from the NMA can be used to directly parameterise treatment effectiveness in cost-effectiveness modelling of multiple treatments.

Conventional fixed effect meta-analysis assumes that the relative effect of one treatment compared to another is the same across an entire set of trials. In a random effects model, it is assumed that the relative effects are different in each trial but that they are from a single common distribution and that this distribution is common across all sets of trials.

NMA assumes that the included studies are similar in terms of factors that might interact with the intervention effects (effect modifiers). So, the relative effect of intervention B vs intervention A would be expected to be similar in all of the studies (if they had included A and B interventions). This assumption is the same as that made in conventional pairwise metaanalysis, but we have to be particularly careful that the studies making different comparisons do not differ in effect modifiers (the data are consistent). We can assess this assumption by measuring statistical heterogeneity, and also by checking if the direct and indirect estimates are in agreement when there are loops of evidence in the network.

### Study selection and data collection

For full details see analysis protocol in appendix A.

### Outcome measures

The protocol for this review stated that NMA would be considered for five outcomes, if feasible. Based on the availability of data and the formation of a connected network, all five outcomes were deemed suitable for synthesis using NMA: PPH  $\geq$  1000ml, additional uterotonics, blood transfusion, ICU admission (morbidity) and mean blood loss (ml). NMAs were performed on these outcomes for all women, and for subgroups of women based on the mode of birth (vaginal or caesarean). The committee agreed it was important to consider results separately according to subgroups based on the mode of birth as their clinical experience suggested that different treatments are likely to be effective depending on the mode of birth.

For the outcome of ICU admissions (morbidity) there were fewer studies, particularly in the caesarean birth subgroup where there was only one study comparing two treatments. Therefore an NMA was not conducted for this outcome in the caesarean birth subgroup.

### **PPH** ≥ 1000ml

Data for PPH  $\geq$  1000ml was reported as number of women experiencing an event in the RCTs. The probability of PPH  $\geq$  1000ml in each arm of a trial was estimated as the number of women who had PPH  $\geq$  1000ml, divided by the total number of women in this arm. The results are presented as posterior mean ORs.

### Additional uterotonics

Data for additional uterotonics was reported as number of women requiring additional uterotonics in the RCTs. The probability of requiring additional uterotonics in each arm of a trial was estimated as the number of women who required this, divided by the total number of women in this arm. The results are presented as posterior mean ORs.

### **Blood transfusion**

Data for blood transfusions was reported as number of women requiring transfusion in the RCTs. The probability of blood transfusion in each arm of a trial was estimated as the number of women requiring transfusion, divided by the total number of women in this arm. The results are presented as posterior mean ORs.

### ICU admission (morbidity)

Data for ICU admissions was reported as number of women experiencing an event in the RCTs. The probability of having an ICU admission in each arm of a trial was estimated as the number of women who had an ICU admission, divided by the total number of women in this arm. The results are presented as posterior mean ORs.

### Mean blood loss (ml)

Data for mean blood loss was reported as a continuous variable of the mean blood loss in ml as measured in the RCTs. The results are presented as posterior mean blood loss ratios.

### Methodology

### Model description

For four of the outcomes with dichotomous data, Binomial models with logit link were used for the synthesis. For mean blood loss Normal models with a log-link were used to estimate treatment effects as ratios of mean blood loss. The log-link was used as this gave an improved fit with less inconsistency, suggesting a multiplicative rather than additive effect of treatment. In both cases both fixed and random effects models were fitted for the full population, and for both subgroups of women who had vaginal birth and women who had a caesarean birth, and model choice based on goodness of fit.

The full description of standard fixed and random effects models using binomial likelihood with logit link, and the normal identity models can be found in NICE DSU Technical Support Document 2 (Dias 2011). The normal identity model was adapted for a log-link. Examples of the WinBUGS codes used to synthesise data can also be found in Appendix N.

Analysis was undertaken following Bayesian statistics principles and conducted using MCMC simulation techniques implemented in WinBUGS 1.4.3. (Lunn 2000; Spiegelhalter 2001).

For baseline and treatment effects non informative priors were used Normal(mean=0, variance=10000), Normal(mean=0, variance=1000) respectively, and a non-informative prior uniform (0,5) was specified for the between study SD for all outcomes except mean blood loss which used uniform (0,10000).

Each model was run until convergence was satisfactory and then the results were based on a further sample of iterations on three chains, the following iterations were used:

|                              | Full popul | Full population      |          | Vaginal birth        |              | in birth             |
|------------------------------|------------|----------------------|----------|----------------------|--------------|----------------------|
| Outcome                      | Burn-ins   | Post-<br>convergence | Burn-ins | Post-<br>convergence | Burn-<br>ins | Post-<br>convergence |
| PPH ≥ 1000ml                 | 120,000    | 20,000               | 100,000  | 20,000               | 20,000       | 20,000               |
| Additional uterotonics       | 10,000     | 20,000               | 10,000   | 20,000               | 30,000       | 20,000               |
| Blood<br>transfusion         | 20,000     | 20,000               | 40,000   | 20,000               | 400,000      | 20,000               |
| ICU admission<br>(morbidity) | 10,000     | 20,000               | 10,000   | 20,000               | -            | -                    |
| Mean blood<br>loss (ml)      | 10,000     | 20,000               | 10,000   | 20,000               | 10,000       | 20,000               |

The posterior mean of the residual deviance, which measures the magnitude of the differences between the observed data and the model predictions of the data, was used to assess and compare the goodness of fit of each model. Smaller values are preferred and in a well-fitting model the posterior mean residual deviance should be close to the number of data points in the network (each study arm contributes 1 data point) (Spiegelhalter 2002).

In addition to comparing how well the models fit the data using the posterior mean of the residual deviance, models were compared using the deviance information criterion (DIC). This is equal to the sum of the posterior mean of the residual deviance and the effective number of parameters and thus penalizes model fit with model complexity. Lower values are preferred and typically differences of 3-5 points are considered meaningful (Spiegelhalter 2002).

For each analysis fixed and random effects models were compared and the best fitting model was chosen based on the criteria described above.

An important assumption made in NMA concerns the consistency, that is, the agreement of the direct and indirect evidence informing the treatment contrasts and there should be no meaningful differences between these two sources of evidence. The consistency checks were undertaken by TSU and are summarised in in Appendix N.

### NMA methods references

Dias 2011

Dias S, Welton N, Sutton A, Ades A. NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials, 2011, last updated September 2016, available from http://scharr.dept.shef.ac.uk/nicedsu/technical-support-documents/evidence-synthesis-tsd-series/

### Lunn 2000

Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS -- a Bayesian modelling framework: concepts, structure, and extensibility, Statistics and Computing, 10, 325-337, 2000

### Spiegelhalter 2002

Spiegelhalter D, Best N, Carlin B, van der Linde A. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583-616, 2002

### Spiegelhalter 2001

Spiegelhalter DJ,Thomas A,Best NG, et al. WinBUGS User Manual: Version 5.1.4. Cambridge: MRC Biostatistics Unit, 2001

### Turner 2015

Turner R, Jackson D, Wei Y, Thompson S, Higgins J. Predictive distributions for betweenstudy heterogeneity and simple methods for their application in Bayesian meta-analysis. Statistics in Medicine 2015;34:984-98.

# Appendix M Model fit results

# Model fit characteristics for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

Model selection was based on the posterior mean residual deviance (a measure of model fit), and the Deviance Information Criteria (DIC), where smaller values are preferred and differences of between 3-5 are considered meaningful. The chosen model for each analysis is noted in the first column of each of the tables below, and results from the selected model are reported in the main text of this evidence review. For the selected model, results from an inconsistency model are reported. Comparing the NMA and inconsistency models provides a global test of inconsistency and, where inconsistency was identified it was explored further in Appendix N.

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual<br>deviance <sup>a</sup> | DIC    |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|--------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.22 (0.03, 0.41)                          | 247.2                             | 1073.0 |
| Random effects -<br>inconsistency                                                                                    | 0.22 (0.04, 0.44)                          | 239.0                             | 1077.8 |
| Fixed effects – consistency                                                                                          | -                                          | 270.0                             | 1078.7 |

### Model fit characteristics for PPH ≥ 1000ml: whole population

Crl: credible interval; DIC: deviance information criterion (a) Compare 212 data points

### Model fit characteristics for PPH ≥ 1000ml: vaginal birth subgroup

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC   |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.20 (0.02, 0.45)                          | 190.5                          | 795.1 |
| Random effects -<br>inconsistency                                                                                    | 0.21 (0.02, 0.47)                          | 178.9                          | 791.9 |
| Fixed effects – consistency                                                                                          | -                                          | 205.9                          | 798.4 |

Crl: credible interval; DIC: deviance information criterion (a) Compare 157 data points

#### Model fit characteristics for PPH ≥ 1000ml: caesarean birth subgroup

| Model                                     | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC   |
|-------------------------------------------|--------------------------------------------|--------------------------------|-------|
| Random effects -<br>consistency (selected | 0.34 (0.03, 0.81)                          | 56.3                           | 276.9 |

| Model                                                                                       | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC   |
|---------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-------|
| <ul> <li>all results reported in<br/>this guideline are<br/>based on this model)</li> </ul> |                                            |                                |       |
| Random effects -<br>inconsistency                                                           | 0.26 (0.01, 0.79)                          | 55.4                           | 277.3 |
| Fixed effects – consistency                                                                 | -                                          | 61.6                           | 276.6 |

Crl: credible interval; DIC: deviance information criterion (a) Compare 53 data points

# Model fit characteristics for additional uterotonics: whole population

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual<br>deviance <sup>a</sup> | DIC    |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|--------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.83 (0.71, 0.98)                          | 366.5                             | 2035.7 |
| Random effects -<br>inconsistency                                                                                    | 0.91 (0.76, 1.08)                          | 360.4                             | 2039.6 |
| Fixed effects – consistency                                                                                          | -                                          | 1162.0                            | 2715.7 |

Crl: credible interval; DIC: deviance information criterion (a) Compare 345 data points

### Model fit characteristics for additional uterotonics: vaginal birth subgroup

|                                                                                                                      |                                            |                                | <b>•</b> • |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|------------|
| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC        |
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.73 (0.58, 0.90)                          | 254.0                          | 1414.4     |
| Random effects -<br>inconsistency                                                                                    | 0.74 (0.57, 0.94)                          | 249.3                          | 1415.3     |
| Fixed effects –<br>consistency                                                                                       | -                                          | 682.1                          | 1768.3     |

Crl: credible interval; DIC: deviance information criterion (a) Compare 236 data points

### Model fit characteristics for additional uterotonics: caesarean birth subgroup

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC   |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 1.03 (0.76, 1.39)                          | 111.5                          | 617.9 |
| Random effects -<br>inconsistency                                                                                    | 1.20 (0.85, 1.68)                          | 110.8                          | 620.6 |

| Model                          | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC   |
|--------------------------------|--------------------------------------------|--------------------------------|-------|
| Fixed effects –<br>consistency | -                                          | 315.7                          | 788.3 |

Crl: credible interval; DIC: deviance information criterion (a) Compare 107 data points

#### Model fit characteristics for blood transfusion: whole population

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC    |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|--------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.74 (0.51, 1.02)                          | 270.1                          | 1074.6 |
| Random effects -<br>inconsistency                                                                                    | 0.75 (0.45, 1.11)                          | 268.1                          | 1082.0 |
| Fixed effects – consistency                                                                                          | -                                          | 381.5                          | 1142.9 |

Crl: credible interval; DIC: deviance information criterion

(a) Compare 242 data points

#### Model fit characteristics for blood transfusion: vaginal birth subgroup

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC   |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.53 (0.25, 0.84)                          | 200.4                          | 782.7 |
| Random effects -<br>inconsistency                                                                                    | 0.54 (0.21, 0.93)                          | 196.5                          | 789.7 |
| Fixed effects – consistency                                                                                          | -                                          | 243.9                          | 803.0 |

Crl: credible interval; DIC: deviance information criterion

(a) Compare 175 data points

#### Model fit characteristics for blood transfusion: caesarean birth subgroup

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC   |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 1.11 (0.45, 1.99)                          | 67.95                          | 283.9 |
| Random effects -<br>inconsistency                                                                                    | 1.50 (0.48, 3.09)                          | 67.59                          | 286.8 |
| Fixed effects – consistency                                                                                          | -                                          | 94.73                          | 299.0 |

Crl: credible interval; DIC: deviance information criterion

#### (a) Compare 65 data points

#### Model fit characteristics for ICU admission: whole population

| Model                                                                                                               | Between-study standard deviation (95% Crl) | Residual<br>deviance <sup>a</sup> | DIC  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|------|
| Fixed effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | -                                          | 17.2                              | 72.9 |
| Fixed effects -<br>inconsistency                                                                                    | -                                          | 14.8                              | 70.6 |
| Random effects –<br>consistency                                                                                     | 1.87 (0.06, 4.75)                          | 16.3                              | 73.4 |

Crl: credible interval; DIC: deviance information criterion

(a) Compare 18 data points

#### Model fit characteristics for ICU admission: vaginal birth subgroup

| Model                                                                                                               | Between-study standard deviation (95% Crl) | Residual<br>deviance <sup>a</sup> | DIC  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|------|
| Fixed effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | -                                          | 16.0                              | 68.7 |
| Fixed effects -<br>inconsistency                                                                                    | -                                          | 13.5                              | 66.4 |
| Random effects –<br>consistency                                                                                     | 1.83 (0.06, 4.72)                          | 15.0                              | 69.0 |

Crl: credible interval; DIC: deviance information criterion

(a) Compare 16 data points

#### Model fit characteristics for mean blood loss: whole population

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC    |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|--------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.24 (0.23, 0.27)                          | 336.1                          | 2883.0 |
| Random effects -<br>inconsistency                                                                                    | 0.23 (0.20, 0.26)                          | 334.2                          | 2884.0 |
| Fixed effects – consistency                                                                                          | -                                          | 5125.0                         | 7526.2 |

Crl: credible interval; DIC: deviance information criterion

(a) Compare 332 data points

|                                                                                                                      | model ni characteristics for mean blood 1055. Vaginal birth subgroup |                                |        |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|--------|--|--|--|
| Model                                                                                                                | Between-study standard deviation (95% Crl)                           | Residual deviance <sup>a</sup> | DIC    |  |  |  |
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.25 (0.21, 0.29)                                                    | 239.6                          | 1936.4 |  |  |  |
| Random effects -<br>inconsistency                                                                                    | 0.24 (0.20, 0.28)                                                    | 238.1                          | 1937.6 |  |  |  |
| Fixed effects –<br>consistency                                                                                       | -                                                                    | 2961.0                         | 4553.8 |  |  |  |

#### Model fit characteristics for mean blood loss: vaginal birth subgroup

Crl: credible interval; DIC: deviance information criterion

(a) Compare 235 data points

#### Model fit characteristics for mean blood loss: caesarean birth subgroup

| Model                                                                                                                | Between-study standard deviation (95% Crl) | Residual deviance <sup>a</sup> | DIC    |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|--------|
| Random effects -<br>consistency (selected<br>– all results reported in<br>this guideline are<br>based on this model) | 0.21 (0.16, 0.27)                          | 93.9                           | 926.5  |
| Random effects -<br>inconsistency                                                                                    | 0.19 (0.14, 0.25)                          | 94.4                           | 927.3  |
| Fixed effects – consistency                                                                                          | -                                          | 1706.0                         | 2506.8 |

Crl: credible interval; DIC: deviance information criterion

(a) Compare 95 data points

# Appendix N Inconsistency checks

# Inconsistency checks for review question: What is the effectiveness of uterotonics for the prevention of postpartum haemorrhage?

Guidelines Technical Support Unit (TSU), University of Bristol (Beatrice Downing, Nicky J. Welton)

#### Introduction

The purpose of this analysis was to assess the consistency assumption in the NMA model used to estimate the comparative effectiveness uterotonics for the prevention of postpartum haemorrhage. The outcomes included in this analysis were 1) PPH  $\ge$  1000ml, 2) additional uterotonics, 3) blood transfusion, 4) ICU admission (morbidity), and 5) mean blood loss (ml).

#### Methods

#### Inconsistency checks

NMA assumes that the included studies are similar in terms of factors that might interact with the intervention effects (effect modifiers). So, the relative effect of intervention B vs intervention A would be expected to be similar in all of the studies (if they had included A and B interventions). This assumption is the same as that made in conventional pairwise meta-analysis, but we have to be particularly careful that the studies making different comparisons do not differ in effect modifiers (the data are consistent). We can assess this assumption by measuring statistical heterogeneity, and also by checking if the direct and indirect estimates are in agreement when there are loops of evidence in the network.

To conduct inconsistency checks, an appropriate base-case model (fixed or random effects) must be determined beforehand. We assessed and compared the fit of a fixed effect model and a random effects model with a standard, uninformative prior distribution for all outcomes on the between-study standard deviation. The vague prior used on the between-study standard deviation (0,5) (for PPH  $\ge$  1000ml, additional uterotonics, blood transfusion, ICU admission (morbidity)), or Uniform (0, 10,000) (for mean blood loss). To determine if there is evidence of inconsistency, the selected consistency model (fixed or random effects) was compared to an "inconsistency", or unrelated mean effects (UME), model (Dias 2013, Dias 2014). The latter is equivalent to having separate, unrelated, meta-analyses for every pairwise contrast, with a common variance parameter assumed in the case of random effects models. Note that the consistency assumption can only be assessed when there are closed loops of direct evidence on 3 treatments that are informed by at least 3 independent sources of evidence (Van Valkenhoef 2016).

The posterior mean of the residual deviance, which measures the magnitude of the differences between the observed data and the model predictions of the data, was used to assess and compare the goodness of fit of each model (Spiegelhalter 2002). Smaller values are preferred and in a well-fitting model the posterior mean residual deviance should be close to the number of data points in the network (each study arm contributes 1 data point on average) (Spiegelhalter 2002).

Where the base-case model assumes random effects, if the inconsistency model has smaller heterogeneity (measured by the posterior median between-study standard deviation) compared to the consistency model, then this may also indicate potential inconsistency in the data.

We performed further checks for evidence of inconsistency through node-splitting. The node-splitting method permits the direct and indirect evidence contributing to an estimate of a relative effect to be split and compared (Dias 2014, Dias 2010).

There are some small differences between the NMA estimates produced by the NMA models (presented in the main results) and those produced by the node-splitting models for exploring inconsistency (presented in forest plot below), due to small differences in the software used (WinBUGS or the GeMTC package in R). The NMA estimates presented in the main results were used to compare the safety and effectiveness of the interventions. In a separate exercise, the direct, indirect, and NMA estimates produced by the node-splitting modelling were used to assess how potential inconsistency between the direct and indirect estimates impacted the NMA estimates.

# Results

# Outcome: PPH >1000ml

# Summary

We identified moderate heterogeneity in both full and mode-of-delivery subgroup datasets for this outcome, but little evidence of inconsistency. There was some indication of inconsistency between the studies comparing treatments on the oxytocin (>5 IU and  $\leq$  10 IU) vs carboprost v ergometrine loop, however these findings were driven by very small numbers of events in the Modi 2014 study.

# Full data set

# **Global inconsistency check**

Analysis of the full dataset for the outcome post-partum haemorrhage (>1000ml) included 98 studies (212 arms) of 13 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Comparing fixed (FE) and random-effect (RE) network meta-analysis (NMA) models indicated support for the random-effect model on the basis of a small decrease in DIC and a sizeable decrease in residual deviance (**Error! Reference source not found.**).

Total residual deviance was lower in the inconsistency UME model than in the NMA model; however, DIC was lower for the NMA model and the estimate of between-study SD was similar in the NMA and UME models (Table 49). This suggests that there is little evidence of inconsistency but moderate heterogeneity between study estimates.

| Table 49: Model fit statistics for fixed- and random-effect NMA and UME models of th | е |
|--------------------------------------------------------------------------------------|---|
| outcome PPH >1000ml, full dataset.                                                   |   |

| Outcome Pop. Model | Posterior<br>total<br>residual<br>deviance <sup>1</sup><br>Between-stu<br>SD<br>Mean, 95%<br>credible inter | pD | DIC <sup>2</sup> |
|--------------------|-------------------------------------------------------------------------------------------------------------|----|------------------|
|--------------------|-------------------------------------------------------------------------------------------------------------|----|------------------|

<sup>&</sup>lt;sup>1</sup> Posterior mean residual deviance compared to 212 total data points

<sup>&</sup>lt;sup>2</sup> Deviance information criteria (DIC) – lower values preferred

| РРН | Full | FE NMA    | 270.0 | -                 | 106.3 | 1078.7 |
|-----|------|-----------|-------|-------------------|-------|--------|
| PPH | Full | RE<br>NMA | 247.2 | 0.22 (0.03, 0.41) | 123.7 | 1073.0 |
| РРН | Full | FE UME    | 257.1 | -                 | 122.8 | 1082.3 |
| PPH | Full | RE<br>UME | 239.0 | 0.22 (0.04, 0.44) | 136.3 | 1077.8 |

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 47), shows that two studies showed inconsistency with the rest of the dataset:

- Begley, 1990
  - Compares Ergometrine (coded 12) and placebo (coded 1)
- Modi, 2014
  - Compares Oxytocin [>5 IU and ≤ 10 IU] (coded 5), Misoprostol ≤600mcg (coded 8), Ergometrine (coded 12) and Carboprost (coded 13)
  - In this four-armed trial events were rare with only two events observed, both on the carboprost arm, which likely explains the high deviance contribution for this study under the NMA model.

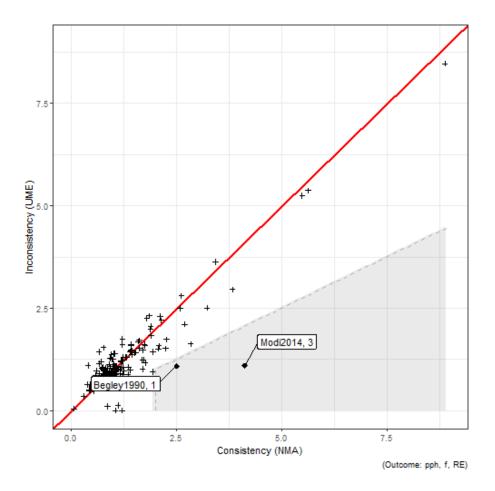
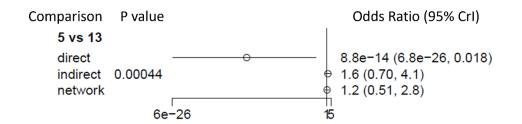


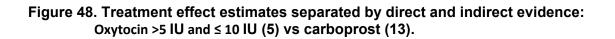

Figure 47. Dev-dev plot of each study arm's residual deviance under the standard and inconsistency models (RE model structure) for PPH >1000ml, full dataset. Labels indicate study arms with high deviance in the NMA model, relative to their deviance in the UME model. The dotted line and grey shaded area denotes where study arms fit poorly in the NMA model but well in the UME model, suggesting that they are predicted poorly when the model enforces consistency in treatment differences.

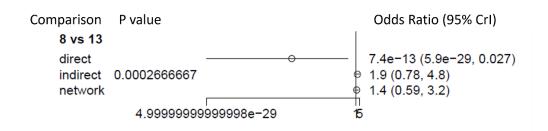
# Checking inconsistency within individual treatment comparisons (Node-splitting)

Node-splitting procedures indicated no evidence of a difference between direct and indirect evidence on most treatment comparisons. Evidence conflicted on five comparisons (Table 50), including treatment comparisons where study arms were identified as inconsistent:

- Placebo and Ergometrine
- Carbetocin and Oxytocin >5 IU and ≤ 10 IU
- Ergometrine and Carboprost
- Carboprost and Oxytocin >5 IU and ≤ 10 IU
- Carboprost and Misoprostol ≤ 600 mcg


Given multiple testing of 33 contrasts, we would expect p-values below a 5% threshold in at least 1 case. Applying a Bonferroni correction suggests that only comparisons between carboprost and misoprostol ( $\leq 600 \text{ mcg}$ ) and oxytocin (>5 IU and  $\leq 10 \text{ IU}$ ).


Forest plots for the comparisons where direct evidence conflicts with indirect evidence are presented (Figure 48 and Figure 49). We note that carboprost is only linked to treatments Oxytocin >5 IU and  $\leq$  10 IU, ergometrine and misoprostol  $\leq$  600 mcg by a single study (Modi 2014) in which no events were observed on 3 arms, leaving very little evidence with which to reach an estimate of the treatment effect and leading to extremely large treatment differences.


#### Table 50. Model fit statistics for node-split model (PPH >1000ml, full dataset). Comparisons where there is an indication of inconsistency between direct and indirect estimates (p-values <0.001 following application of a Bonferroni correction) are highlighted in orange.

| Comparison                                    | Total    | p-value |
|-----------------------------------------------|----------|---------|
|                                               | Residual |         |
|                                               | Deviance |         |
| Carboprost vs Oxytocin >5 IU and $\leq$ 10 IU | 240.9    | <0.001  |
| Carboprost vs Misoprostol ≤ 600 mcg           | 240.0    | <0.001  |
| Placebo vs Ergometrine                        | 246.6    | 0.029   |
| Carbetocin vs Oxytocin >5 IU and $\leq$ 10 IU | 245.6    | 0.038   |
| Ergometrine vs Carboprost                     | 240.2    | 0.015   |
| Placebo vs Oxytocin >1 IU and $\leq$ 5 IU     | 244.1    | 0.741   |
| Placebo vs Oxytocin >5 IU and $\leq$ 10 IU    | 246.2    | 0.922   |
| Placebo vs Ergometrine plus oxytocin          | 246.8    | 0.843   |
| Placebo vs Misoprostol ≤ 600 mcg              | 242.7    | 0.526   |
| Placebo vs Carboprost                         | 247.8    | 0.653   |
| Carbetocin vs Oxytocin >1 IU and $\leq$ 5 IU  | 246.9    | 0.863   |

| Carbetocin vs Oxytocin > 10 IU                                             | 246.1 | 0.471 |
|----------------------------------------------------------------------------|-------|-------|
| Carbetocin vs Ergometrine plus oxytocin                                    | 242.1 | 0.157 |
| Carbetocin vs Misoprostol ≤ 600 mcg                                        | 247.3 | 0.471 |
| Oxytocin >1 IU and $\leq$ 5 IU vs Ergometrine plus oxytocin                | 247.1 | 0.434 |
| Oxytocin >1 IU and $\leq$ 5 IU vs Misoprostol $\leq$ 600 mcg               | 244.1 | 0.393 |
| Oxytocin >5 IU and $\leq$ 10 IU vs Ergometrine plus oxytocin               | 238.9 | 0.543 |
| Oxytocin >5 IU and $\leq$ 10 IU vs Misoprostol $\leq$ 600 mcg              | 236.8 | 0.578 |
| Oxytocin >5 IU and $\leq$ 10 IU vs Misoprostol >600 mcg and $\leq$ 800 mcg | 248.5 | 0.779 |
| Oxytocin > 10 IU vs Ergometrine plus oxytocin                              | 247.0 | 0.256 |
| Oxytocin > 10 IU vs Misoprostol ≤ 600 mcg                                  | 247.1 | 0.870 |
| Oxytocin > 10 IU vs Misoprostol >600 mcg and $\leq$ 800 mcg                | 247.6 | 0.390 |
| Ergometrine plus oxytocin vs Misoprostol ≤ 600 mcg                         | 239.9 | 0.417 |
| Misoprostol ≤ 600 mcg vs Misoprostol >600 mcg and ≤ 800 mcg                | 245.7 | 0.037 |
| Misoprostol plus oxytocin vs Oxytocin >5 IU and $\leq$ 10 IU               | 251.4 | 0.061 |
| Misoprostol plus oxytocin vs Oxytocin > 10 IU                              | 250.3 | 0.074 |
| Misoprostol plus oxytocin vs Ergometrine plus oxytocin                     | 246.6 | 0.991 |
| Misoprostol plus oxytocin vs Misoprostol ≤ 600 mcg                         | 244.8 | 0.067 |
| Ergometrine vs Oxytocin >5 IU and $\leq$ 10 IU                             | 239.9 | 0.082 |
| Ergometrine vs Misoprostol ≤ 600 mcg                                       | 242.8 | 0.054 |
| Ergometrine vs Misoprostol >600 mcg and ≤ 800 mcg                          | 245.7 | 0.508 |
| Carboprost vs Oxytocin >1 IU and $\leq$ 5 IU                               | 246.8 | 0.715 |
| Carboprost vs Ergometrine plus oxytocin                                    | 245.7 | 0.250 |
| NMA (no nodes split)                                                       | 246.6 | -     |







#### Figure 49. Treatment effect estimates separated by direct and indirect evidence: Misoprostol ≤ 600 mcg (8) vs carboprost (13).

# Vaginal birth subgroup

# **Global inconsistency check**

Analysis of the dataset for the vaginal birth subgroup for the outcome post-partum haemorrhage (>1000ml) included 71 studies (157 arms) of 13 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting of both fixed and random-effect network meta-analysis (NMA) models indicated support for the random-effect model on the basis of a small decrease in DIC and a sizeable decrease in residual deviance (Table 51).

Total residual deviance and DIC were lower in the inconsistency UME model than in the NMA model and the estimate of between-study SD was the similar in the NMA and UME models (Table 51). This suggests no evidence of inconsistency, but that there is moderate heterogeneity between study estimates.

| Table 51. Model fit statistics for fixed- and random-effect NMA and UME models of the |
|---------------------------------------------------------------------------------------|
| outcome PPH >1000ml, vaginal birth subgroup.                                          |

| Outcome | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>3</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD    | DIC <sup>4</sup> |
|---------|------|-----------|---------------------------------------------------------|-------------------------------------------------------|-------|------------------|
| PPH     | VD   | FE NMA    | 205.9                                                   | -                                                     | 79.5  | 798.4            |
| PPH     | VD   | RE<br>NMA | 190.5                                                   | 0.20 (0.02, 0.45)                                     | 91.6  | 795.1            |
| РРН     | VD   | FE UME    | 190.8                                                   | -                                                     | 90.5  | 794.2            |
| PPH     | VD   | RE<br>UME | 178.9                                                   | 0.21 (0.02, 0.47)                                     | 100.1 | 791.9            |

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 50), shows that two studies showed inconsistency with the rest of the dataset:

- Begley, 1990
  - Compares Ergometrine (coded 12) and placebo (coded 1)
- Modi, 2014
  - Compares Oxytocin [>5 IU and ≤ 10 IU] (coded 5), Misoprostol ≤600mcg (coded 8), Ergometrine (coded 12) and Carboprost (coded 13)
  - In this four-armed trial events were rare with only two events observed, both on the carboprost arm, which likely explains the high deviance contribution for this study under the NMA model.

<sup>&</sup>lt;sup>3</sup> Posterior mean residual deviance compared to 157 data points

<sup>&</sup>lt;sup>4</sup> Deviance information criteria (DIC) – lower values preferred

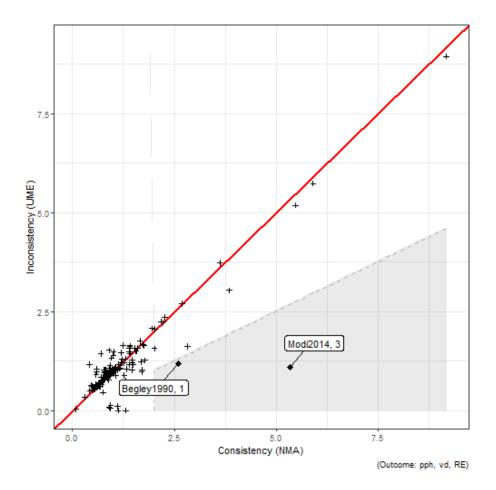



Figure 50. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for PPH >1000ml, vaginal birth subgroup. Labels indicate study arms with high deviance in the NMA model, relative to their deviance in the UME model. The dotted line and grey shaded area outline a region where study arms fit poorly in the NMA model but well in the UME model, suggesting that they are predicted poorly when the model enforces consistency in treatment differences.

#### Checking inconsistency within individual treatment comparisons (Node-splitting)

Node-splitting procedures indicate that direct and indirect evidence on most treatment comparisons agree. Evidence conflicted on 1 comparison following Bonferroni correction: Carboprost vs Misoprostol (<600mcg) (Table 52). The direct evidence for this comparison conflicts with indirect evidence (Figure 51), though the direct evidence is weak, being drawn from a single study (Modi 2014) in which no events were observed on 3 arms.

Table 52. Model fit statistics for node-split model (PPH >1000ml, vaginal birth<br/>subgroup). Comparisons where there is an indication of inconsistency<br/>between direct and indirect estimates (p-values <0.002 [p<0.05 following<br/>Bonferroni correction for 29 comparisons]) are high<br/>lighted in orange.

| Comparison            | Total Residual<br>Deviance | p-value |
|-----------------------|----------------------------|---------|
| CarbProst vs Mis_b600 | 186.4                      | <0.001  |

| Plac vs Erg               | 189.0 | 0.019 |
|---------------------------|-------|-------|
| Plac vs CarbProst         | 191.5 | 0.880 |
| Erg vs CarbProst          | 187.4 | 0.004 |
|                           | 189.8 | 0.790 |
| Plac vs Oxy_a1b5          |       |       |
| CarbProst vs Oxy_a1b5     | 190.2 | 0.997 |
| Carb vs Oxy_a1b5          | 185.7 | 0.088 |
| Plac vs Oxy_a5b10         | 191.2 | 0.928 |
| Erg vs Oxy_a5b10          | 190.4 | 0.093 |
| CarbProst vs Oxy_a5b10    | 189.2 | 0.002 |
| Carb vs Oxy_a5b10         | 188.0 | 0.263 |
| Mis_Oxy vs Oxy_a5b10      | 182.7 | 0.988 |
| Mis_Oxy vs Oxy_a10        | 182.0 | 0.939 |
| Plac vs Erg_Oxy           | 186.2 | 0.801 |
| Oxy_a1b5 vs Erg_Oxy       | 188.7 | 0.035 |
| Mis_Oxy vs Erg_Oxy        | 190.6 | 0.607 |
| CarbProst vs Erg_Oxy      | 182.0 | 0.070 |
| Carb vs Erg_Oxy           | 187.2 | 0.409 |
| Oxy_a5b10 vs Erg_Oxy      | 182.3 | 0.539 |
| Plac vs Mis_b600          | 189.0 | 0.528 |
| Mis_Oxy vs Mis_b600       | 188.9 | 0.224 |
| Erg vs Mis_b600           | 188.7 | 0.055 |
| Oxy_a1b5 vs Mis_b600      | 185.9 | 0.410 |
| Erg_Oxy vs Mis_b600       | 184.6 | 0.385 |
| Oxy_a5b10 vs Mis_b600     | 179.1 | 0.872 |
| Oxy_a10 vs Mis_b600       | 190.7 | 0.903 |
| Erg vs Mis_a600b800       | 190.5 | 0.592 |
| Oxy_a5b10 vs Mis_a600b800 | 184.0 | 0.280 |
| Mis_b600 vs Mis_a600b800  | 190.0 | 0.041 |
| NMA (no nodes split)      | 190.5 | -     |

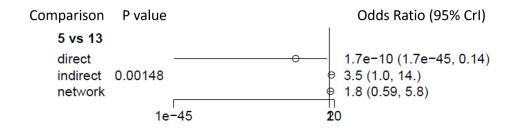



Figure 51. Treatment effect estimates separated by direct and indirect evidence: Misoprostol ≤600mcg (5) vs Carboprost (13) for the vaginal birth subgroup.

# Caesarean Section birth subgroup

#### Global inconsistency check

Analysis of the dataset for the CS birth subgroup for the outcome post-partum haemorrhage (>1000ml) included 26 studies (53 arms) of 8 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting both fixed (FE) and random-effect (RE) network meta-analysis (NMA) models gave similar values for DIC. However, residual deviance was lower by 5.3 for the RE NMA (Table 53) suggesting support for the RE model for these data.

Total residual deviance and DIC were lower in the inconsistency UME model than in the NMA model and the estimate of between-study SD was the similar in the NMA and UME models (Table 53). This suggests that there is no evidence of inconsistency, but moderate heterogeneity between study estimates.

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 52), showed no study arms to have high deviance in the NMA model, relative to their deviance in the UME model. Taken together, the model fit and dev-dev plots suggest there was little evidence of inconsistency in these data. Therefore, node-splitting models were not required.

| Table 53.                               | Model 1 | fit statistic | s for fixed- and | d random-effect NI | MA and U | ME mode | ls of the |
|-----------------------------------------|---------|---------------|------------------|--------------------|----------|---------|-----------|
| outcome PPH >1000ml, CS birth subgroup. |         |               |                  |                    |          |         |           |
|                                         |         |               |                  | Potwoon study      |          |         |           |

| Outcome | Pop. | Model     | Posterior<br>total<br>residual<br>deviance⁵ | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD   | DIC <sup>6</sup> |
|---------|------|-----------|---------------------------------------------|-------------------------------------------------------|------|------------------|
| PPH     | CS   | FE NMA    | 61.6                                        | -                                                     | 32.6 | 276.6            |
| PPH     | CS   | RE<br>NMA | 56.3                                        | 0.34 (0.03, 0.81)                                     | 38.1 | 276.9            |
| РРН     | CS   | FE UME    | 56.7                                        | -                                                     | 36.6 | 275.7            |
| PPH     | CS   | RE<br>UME | 55.4                                        | 0.26 (0.01, 0.79)                                     | 39.5 | 277.3            |

<sup>&</sup>lt;sup>5</sup> Posterior mean residual deviance compared to 53 data points

<sup>&</sup>lt;sup>6</sup> Deviance information criteria (DIC) – lower values preferred

Intrapartum care: evidence review for uterotonics to prevent postpartum haemorrhage FINAL (September 2023)

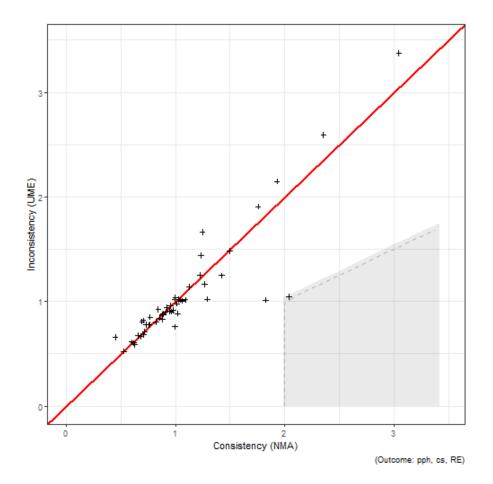



Figure 52. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for PPH >1000ml, CS birth subgroup. No study arms were identified as inconsistent (i.e. points in the shaded region).

# **Outcome: Additional uterotonics**

#### Summary

We identified strong heterogeneity in study estimates for this outcome, but little evidence of inconsistency in both the full population and either of the mode-of-delivery subgroups. Estimates from two study arms, Supe 2016 (carboprost arm) and Maged 2020 (carbetocin arm), which were present in the full dataset and the vaginal birth subgroup datasets, were found to have a poor fit to the NMA model. Further investigation using node-splitting showed that although there was some evidence of inconsistency on the carboprost-carbetocin-misoprostol (>600mcg and <800mcg)-placebo loop, this was likely driven by a lack of data and hence very imprecise estimates. Global inconsistency tests detected no inconsistency in the CS birth subgroup.

# Full dataset

#### Global inconsistency check

Analysis of the full dataset for the outcome additional uterotonics included 161 studies (345 arms) of 14 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting of both fixed and random-effect network meta-analysis (NMA) models indicated strong support for the random-effect model on the basis of large reductions in DIC and residual deviance (Table 54**Error! Reference source not found.**). Between-study SD was estimated to be 0.83 (95% CrI 0.71, 0.98), which is large on the odds ratio scale. Modelling treatment differences with a random effects structure results in good model fit, with the total residual deviance equivalent to the number of study arms. Total residual deviance was slightly lower in the inconsistency UME model than in the NMA model, however DIC was lower for the NMA model and the estimate of between-study SD was similarly large in both NMA and UME models. This suggests that there is no evidence of inconsistency but there is evidence of substantial heterogeneity between study estimates.

| Table 54. Model fit statistics for fixed- and random-effect NMA and UME models of the |
|---------------------------------------------------------------------------------------|
| outcome additional uterotonics, full dataset.                                         |

| Outcome     | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>7</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD    | DIC <sup>8</sup> |
|-------------|------|-----------|---------------------------------------------------------|-------------------------------------------------------|-------|------------------|
| Uterotonics | Full | FE NMA    | 1162.0                                                  | -                                                     | 173.1 | 2715.7           |
| Uterotonics | Full | RE<br>NMA | 366.5                                                   | 0.83 (0.71, 0.98)                                     | 288.3 | 2035.7           |
| Uterotonics | Full | FE UME    | 1035.0                                                  | -                                                     | 198.0 | 2614.0           |
| Uterotonics | Full | RE<br>UME | 360.4                                                   | 0.91 (0.76, 1.08)                                     | 298.4 | 2039.6           |

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 53), shows that two studies showed inconsistency with the rest of the dataset:

- Supe 2016
  - Compares misoprostol (>600mcg and <800mcg) (coded 10), ergometrine (coded 13), carboprost (coded 14) and placebo (coded 1)

<sup>&</sup>lt;sup>7</sup> Posterior mean residual deviance compared to 345 total data points

<sup>&</sup>lt;sup>8</sup> Deviance information criteria (DIC) – lower values preferred

- This trial reports relatively small numbers of events on each arm (with a total of 12 events in 200 participants across all four arms)
- Maged 2020
  - Compares carbetocin (coded 2) and ergometrine plus oxytocin (coded 8)

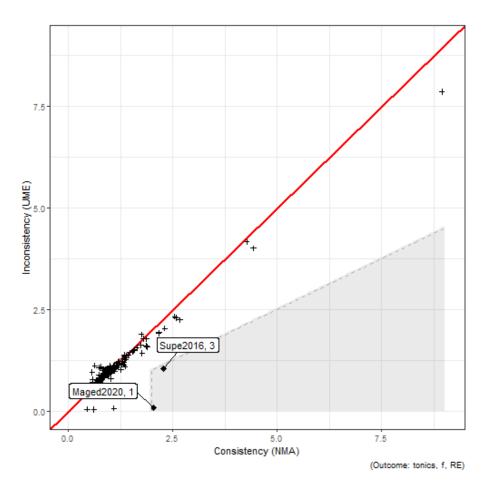



Figure 53. Dev-dev plot of each study arm's residual deviance under the standard and inconsistency models (RE model structure) for additional uterotonics, full dataset. Labels indicate study arms with high deviance in the NMA model, relative to their deviance in the UME model. The dotted line and grey shaded area denotes where study arms fit poorly in the NMA model but well in the UME model, suggesting that they are predicted poorly when the model enforces consistency in treatment differences.

# Checking inconsistency within individual treatment comparisons (Node-splitting)

Node-splitting procedures indicate that direct and indirect evidence on most treatment comparisons agree. Applying a Bonferroni correction suggests that there are no comparisons where direct and indirect evidence is inconsistent, given 42 comparisons (Table 55). However, we note a p-value of 0.003 when comparing estimates from direct and indirect evidence for the comparison between misoprostol (>6000mcg and <8000mcg) and carbetocin and present the forest plot for this comparison (Figure 54), as well as for the comparison between misoprostol (>6000mcg) and carboprost.

| Table 55. Model fit statistics for node-split model (additional uterotonics, full dataset). |
|---------------------------------------------------------------------------------------------|
| No comparisons had p<0.0012 (Bonferroni correction of p <0.05 given 42                      |
| tests) when testing consistency between estimates from direct and indirect                  |
| evidence.                                                                                   |

| Comparison                | Total    | p-value |  |
|---------------------------|----------|---------|--|
|                           | Residual |         |  |
|                           | Deviance |         |  |
| Mis_a600b800 vs Carb      | 365.3    | 0.003   |  |
| Plac vs Mis_a600b800      | 365.8    | 0.831   |  |
| Plac vs Erg               | 367.5    | 0.340   |  |
| Plac vs CarbProst         | 366.6    | 0.271   |  |
| Plac vs Carb              | 366.3    | 0.184   |  |
| Plac vs Oxy_a1b5          | 363.1    | 0.758   |  |
| Plac vs Oxy_a5b10         | 366.7    | 0.704   |  |
| Plac vs Erg_Oxy           | 367.0    | 0.458   |  |
| Plac vs Mis_b600          | 365.2    | 0.270   |  |
| Mis_a600b800 vs Erg       | 366.7    | 0.955   |  |
| Mis_a600b800 vs CarbProst | 366.9    | 0.055   |  |
| Mis_a600b800 vs Oxy_a1b5  | 366.8    | 0.988   |  |
| Mis_a600b800 vs Oxy_a5b10 | 367.0    | 0.509   |  |
| Mis_a600b800 vs Oxy_a10   | 366.9    | 0.981   |  |
| Mis_a600b800 vs Mis_b600  | 364.1    | 0.720   |  |
| Mis_Oxy vs Carb           | 366.2    | 0.526   |  |
| Mis_Oxy vs Oxy_a1b5       | 366.3    | 0.866   |  |
| Mis_Oxy vs Oxy_a5b10      | 366.3    | 0.465   |  |

| Mis_Oxy vs Oxy_a10     | 365.1 | 0.323 |
|------------------------|-------|-------|
| Mis_Oxy vs Erg_Oxy     | 366.8 | 0.501 |
| Mis_Oxy vs Mis_b600    | 365.2 | 0.793 |
| Erg vs CarbProst       | 362.5 | 0.081 |
| Erg vs Oxy_a1b5        | 366.4 | 0.162 |
| Erg vs Oxy_a5b10       | 362.3 | 0.963 |
| Erg vs Mis_b600        | 362.0 | 0.519 |
| CarbProst vs Oxy_a1b5  | 364.5 | 0.567 |
| CarbProst vs Oxy_a5b10 | 365.1 | 0.346 |
| CarbProst vs Erg_Oxy   | 367.3 | 0.863 |
| CarbProst vs Mis_b600  | 362.7 | 0.274 |
| Carb vs Oxy_a1b5       | 364.7 | 0.422 |
| Carb vs Oxy_a5b10      | 365.3 | 0.886 |
| Carb vs Oxy_a10        | 364.1 | 0.643 |
| Carb vs Erg_Oxy        | 365.3 | 0.607 |
| Carb vs Mis_b600       | 364.9 | 0.644 |
| Oxy_a1b5 vs Oxy_a10    | 365.0 | 0.318 |
| Oxy_a1b5 vs Erg_Oxy    | 366.9 | 0.944 |
| Oxy_a1b5 vs Mis_b600   | 364.7 | 0.489 |
| Oxy_a5b10 vs Erg_Oxy   | 364.3 | 0.185 |
| Oxy_a5b10 vs Mis_b600  | 360.2 | 0.459 |
| Oxy_a10 vs Erg_Oxy     | 366.7 | 0.776 |
| Oxy_a10 vs Mis_b600    | 364.1 | 0.854 |
| Erg_Oxy vs Mis_b600    | 365.6 | 0.606 |
| NMA (no nodes split)   | 366.7 | -     |

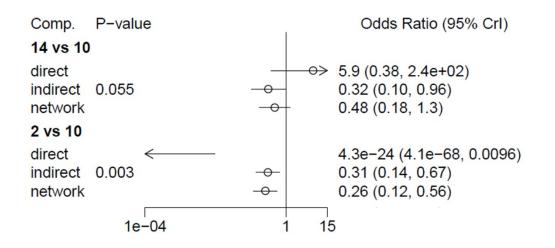



Figure 54. Treatment effect estimates separated by direct and indirect evidence for two comparisons: misoprostol (>600mcg and <800mcg) (10) vs carboprost (14) and misoprostol (>600mcg and <800mcg) (10) vs carbetocin (2).

# Vaginal birth subgroup

#### Global inconsistency check

Analysis of the dataset for the vaginal birth subgroup for the outcome additional uterotonics included 109 studies (236 arms) of 12 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Comparing fixed and random-effect network meta-analysis (NMA) models indicated strong support for the random-effect model on the basis of large decreases in DIC and residual deviance (Table 56). Between-study SD was estimated to be large at 0.73 (95% CrI 0.58, 0.90), suggesting that there is heterogeneity in study estimates of treatment effect for the same treatment comparison. There was no reduction in DIC or between studies SD for the RE UME relative to the RE NMA, however there was an improvement in overall fit (residual deviance) for the RE UME suggesting there may be evidence of inconsistency, which we explore further below.

|             |      |        |                                                         | raginal kirtir cakg                                   |       |                   |
|-------------|------|--------|---------------------------------------------------------|-------------------------------------------------------|-------|-------------------|
| Outcome     | Pop. | Model  | Posterior<br>total<br>residual<br>deviance <sup>9</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | рD    | DIC <sup>10</sup> |
| Uterotonics | VD   | FE NMA | 682.1                                                   | -                                                     | 119.1 | 1768.3            |
| Uterotonics | VD   | RE NMA | 254.0                                                   | 0.73 (0.58, 0.90)                                     | 193.3 | 1414.4            |
| Uterotonics | VD   | FE UME | 579.2                                                   | -                                                     | 137.4 | 1683.8            |
| Uterotonics | VD   | RE UME | 249.3                                                   | 0.74 (0.57, 0.94)                                     | 198.8 | 1415.3            |

| Table 56. Model fit statistics for fixed- and random-effect NMA and UME models of the |
|---------------------------------------------------------------------------------------|
| outcome additional uterotonics, vaginal birth subgroup.                               |

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 55), shows that two studies showed inconsistency with the rest of the dataset:

- Supe 2016
  - Compares misoprostol a600b800 (coded 10), ergometrine (coded 13), carboprost (coded 14) and placebo (coded 1), with the carboprost arm specifically labelled as being inconsistent by residual deviance

<sup>&</sup>lt;sup>9</sup> Posterior mean residual deviance compared to 236 data points

<sup>&</sup>lt;sup>10</sup> Deviance information criteria (DIC) – lower values preferred

- This trial reports small numbers of events on each arm (12 events in 200 participants)
- Maged 2020
  - Compares carbetocin (coded 2) and ergometrine plus oxytocin (coded 8), with the carbetocin arm specifically labelled as being inconsistent by residual deviance

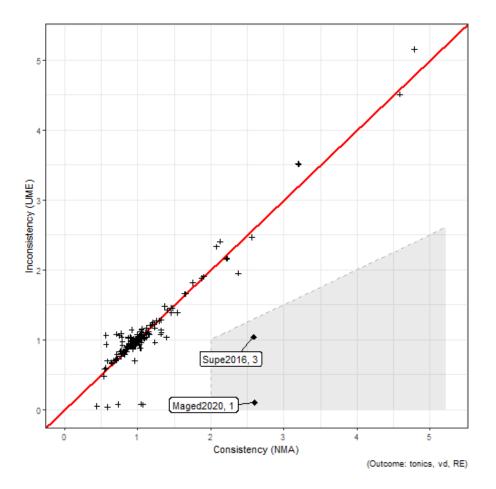



Figure 55. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for additional uterotonics, vaginal birth subgroup. Labels indicate study arms with high deviance in the NMA model, relative to their deviance in the UME model. The dotted line and grey shaded area outline a region where study arms fit poorly in the NMA model but well in the UME model, suggesting that they are predicted poorly when the model enforces consistency in treatment differences.

# Checking inconsistency within individual treatment comparisons (Node-splitting)

Node-splitting procedures indicate that direct and indirect evidence on most treatment comparisons agree. Applying a Bonferroni correction suggests that there are no comparisons where direct and indirect evidence is inconsistent, given 36 comparisons (Table 57). We note some small p-values, e.g. for the comparison between misoprostol (>6000mcg and <8000mcg) and carbetocin and between oxytocin (<10) and ergometrine with oxytocin. We present the forest plot for these comparisons (Figure 56) but the inconsistency is likely to be the result of weak evidence meaning that effect estimates are imprecisely estimated for these comparisons (as can be seen in the credible intervals).

# Table 57. Model fit statistics for node-split model (additional uterotonics, vaginal birth subgroup). No comparisons had p<0.0014 (Bonferroni correction of p <0.05 given 36 tests) when testing consistency between direct and indirect evidence.

| evidence.              |                            | 1           |
|------------------------|----------------------------|-------------|
| Comparison             | Total Residual<br>Deviance | p-<br>value |
| Carb vs Mis_a600b800   | 252.1                      | 0.003       |
| Plac vs Erg            | 254.8                      | 0.157       |
| Plac vs CarbProst      | 253.1                      | 0.263       |
| Plac vs Oxy_a1b5       | 252.4                      | 0.667       |
| Plac vs Oxy_a5b10      | 253.5                      | 0.745       |
| Plac vs Erg_Oxy        | 254.4                      | 0.235       |
| Plac vs Mis_b600       | 252.9                      | 0.353       |
| Plac vs Mis_a600b800   | 253.0                      | 0.988       |
| Mis_Oxy vs Oxy_a5b10   | 252.8                      | 0.110       |
| Mis_Oxy vs Oxy_a10     | 253.4                      | 0.140       |
| Mis_Oxy vs Erg_Oxy     | 253.6                      | 0.707       |
| Mis_Oxy vs Mis_b600    | 253.0                      | 0.644       |
| Erg vs CarbProst       | 249.2                      | 0.046       |
| Erg vs Oxy_a1b5        | 253.1                      | 0.069       |
| Erg vs Oxy_a5b10       | 248.6                      | 0.673       |
| Erg vs Mis_b600        | 249.0                      | 0.553       |
| Erg vs Mis_a600b800    | 253.2                      | 0.996       |
| CarbProst vs Oxy_a1b5  | 251.0                      | 0.472       |
| CarbProst vs Oxy_a5b10 | 252.0                      | 0.211       |

| Г                         | 1     | 1     |
|---------------------------|-------|-------|
| CarbProst vs Erg_Oxy      | 254.5 | 0.819 |
| CarbProst vs Mis_b600     | 249.5 | 0.219 |
| CarbProst vs Mis_a600b800 | 253.6 | 0.041 |
| Carb vs Oxy_a1b5          | 254.0 | 0.714 |
| Carb vs Oxy_a5b10         | 252.9 | 0.270 |
| Carb vs Oxy_a10           | 253.5 | 0.036 |
| Carb vs Erg_Oxy           | 251.9 | 0.774 |
| Carb vs Mis_b600          | 253.5 | 0.588 |
| Oxy_a1b5 vs Mis_b600      | 252.6 | 0.698 |
| Oxy_a1b5 vs Mis_a600b800  | 254.2 | 0.738 |
| Oxy_a5b10 vs Erg_Oxy      | 250.5 | 0.217 |
| Oxy_a5b10 vs Mis_b600     | 247.3 | 0.788 |
| Oxy_a5b10 vs Mis_a600b800 | 254.2 | 0.306 |
| Oxy_a10 vs Erg_Oxy        | 253.1 | 0.018 |
| Oxy_a10 vs Mis_b600       | 254.2 | 0.483 |
| Erg_Oxy vs Mis_b600       | 252.7 | 0.588 |
| Mis_b600 vs Mis_a600b800  | 251.2 | 0.648 |
| NMA (no nodes split)      | 253.6 | -     |

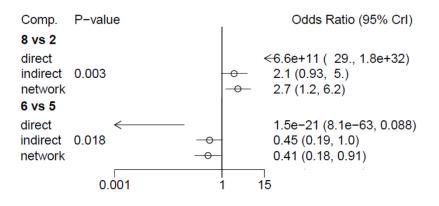



Figure 56. Treatment effect estimates separated by direct and indirect evidence for two comparisons in the vaginal birth subgroup: Misoprostol (>600mcg and < 800mcg) (8) vs Carbetocin (2) and Oxytocin (<10) (5) vs Ergometrine plus Oxytocin (6).

# Caesarean Section birth subgroup

#### Global inconsistency check

Analysis of the dataset for the CS birth subgroup for the outcome additional uterotonics included 51 studies (107 arms) of 12 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting of both fixed (FE) and random-effect (RE) network meta-analysis (NMA) models indicated strong support for the random-effect model on the basis of large reductions in DIC and residual deviance (Table 57). There was no reduction in DIC when the RE UME model was fitted, relative to the RE NMA, suggesting that direct and indirect evidence is consistent.

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 57), showed no study arms to have high deviance in the NMA model, relative to their deviance in the UME model. Taken together, the model fit and dev-dev plots suggest there is no evidence of inconsistency, and so node-splitting models were not required.

| Outcome     | Pop. | Model  | Posterior total<br>residual<br>deviance <sup>11</sup> | Between-study SD<br>Mean, 95%<br>credible interval | рD   | DIC <sup>12</sup> |
|-------------|------|--------|-------------------------------------------------------|----------------------------------------------------|------|-------------------|
| Uterotonics | CS   | FE NMA | 315.7                                                 | -                                                  | 60.9 | 788.3             |
| Uterotonics | CS   | RE NMA | 111.5                                                 | 1.03 (0.76, 1.39)                                  | 94.7 | 617.9             |
| Uterotonics | CS   | FE UME | 305.8                                                 | -                                                  | 70.9 | 788.3             |
| Uterotonics | CS   | RE UME | 110.8                                                 | 1.20 (0.85, 1.68)                                  | 98.0 | 620.6             |

# Table 58. Model fit statistics for fixed- and random-effect NMA and UME models of the outcome additional uterotonics, CS birth subgroup.

<sup>&</sup>lt;sup>11</sup> Posterior mean residual deviance compared to 107 data points

<sup>&</sup>lt;sup>12</sup> Deviance information criteria (DIC) – lower values preferred

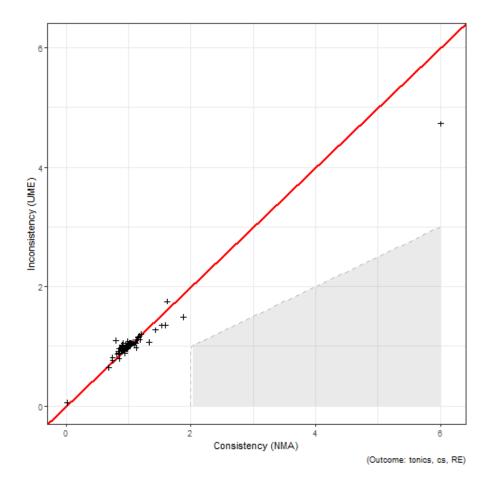



Figure 57. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for additional uterotonics, CS birth subgroup. No study arms were identified as inconsistent (i.e. there were no points in the shaded region).

# **Outcome: Blood transfusion**

# Summary

We identified strong heterogeneity in studies of this outcome that was adequately captured by the random-effects network meta-analysis. There was little evidence of inconsistency between direct and indirect evidence in the full population or either of the mode-of-delivery subgroups. One study in the full dataset (Modi et al. 2014) showed moderate inconsistency on the carboprost arm with indirect evidence from the network. Node-splitting of the full dataset suggests that there may be the potential for inconsistency on the oxytocin (10IU)-misoprostol (>600mcg and <800mcg)-placebo loop. However, this is likely to be the result of weak direct evidence: transfusion being a rare event in this population. Global inconsistency checks support that node-splitting models were not required for the vaginal birth and CS birth subgroups.

# Full dataset

# **Global inconsistency check**

Analysis of the full dataset for the outcome Transfusion included 113 studies (242 arms) of 13 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting of both fixed and random-effect network meta-analysis (NMA) models indicated strong support for the random-effect model on the basis of large reductions in DIC and residual deviance (Table 59**Error! Reference source not found.**). Between-study SD was estimated to be 0.74 (95% credible interval [CrI] 0.51, 1.02), which is large on the odds ratio scale. Modelling treatment differences with a random effects structure results in good model fit, with the total residual deviance equivalent to the number of study arms. Total residual deviance was slightly lower in the inconsistency UME model than in the NMA model, however DIC was lower for the NMA model and the estimate of between-study SD was similarly large in both NMA and UME models. This suggests that there is evidence of substantial heterogeneity between study estimates, but no evidence of inconsistency.

| Table 59. Model fit statistics for fixed- and random-effect NMA and UME models of the | ÷ |
|---------------------------------------------------------------------------------------|---|
| outcome Transfusion, full dataset.                                                    |   |

| Outcome     | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>13</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD    | DIC <sup>14</sup> |
|-------------|------|-----------|----------------------------------------------------------|-------------------------------------------------------|-------|-------------------|
| Transfusion | Full | FE<br>NMA | 381.5                                                    | -                                                     | 120.0 | 1142.9            |
| Transfusion | Full | RE<br>NMA | 270.1                                                    | 0.74 (0.51, 1.02)                                     | 163.1 | 1074.6            |
| Transfusion | Full | FE<br>UME | 344.7                                                    | _                                                     | 138.8 | 1124.9            |
| Transfusion | Full | RE<br>UME | 268.1                                                    | 0.75 (0.45, 1.11)                                     | 172.5 | 1082.0            |

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 58), shows that one study showed inconsistency with the rest of the dataset: Modi 2014. Modi 2014 compares oxytocin [>5 IU and  $\leq$  10 IU] (coded 4), misoprostol  $\leq$ 600mcg (coded 8), ergometrine (coded 12) and carboprost (coded 13). In this four-armed trial events were rare with only two events observed, both on the carboprost arm, which likely explains the high deviance contribution for this study under the NMA model.

<sup>&</sup>lt;sup>13</sup> Posterior mean residual deviance compared to 242 total data points

<sup>&</sup>lt;sup>14</sup> Deviance information criteria (DIC) – lower values preferred

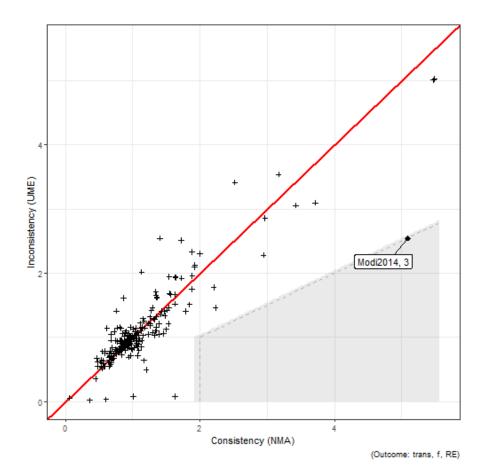



Figure 58. Dev-dev plot of each study arm's residual deviance under the standard and inconsistency models (RE model structure) for Transfusion, full dataset. Labels indicate study arms with high deviance in the NMA model, relative to their deviance in the UME model. The dotted line and grey shaded area denotes where study arms fit poorly in the NMA model but well in the UME model, suggesting that they are predicted poorly when the model enforces consistency in treatment differences.

#### Checking inconsistency within individual treatment comparisons (Node-splitting)

Node-splitting procedures indicate that direct and indirect evidence on most treatment comparisons agree. Applying a Bonferroni correction suggests that there are no comparisons where direct and indirect evidence is inconsistent, given 42 comparisons (Table 60). However, we note small p-values arising from comparisons of direct and indirect evidence for the treatment effect estimates between misoprostol (>6000mcg and <8000mcg) and placebo, misoprostol (>6000mcg and <8000mcg) and oxytocin (<10IU) and ergometrine and oxytocin (>1IU and <5IU). These are the result of very imprecise estimates from the direct evidence: for example, although misoprostol (>6000mcg and <8000mcg) was used in seven studies, there were either zero or only one person transfused in six of these.

Table 60. Model fit statistics for node-split model (Transfusion, full dataset). No comparisons where were indicated to show inconsistency between direct and indirect estimates (p-values <0.0014 [p<0.05 following Bonferroni correction for 35 comparisons]).

| Comparison              | Total Residual<br>Deviance | p-value |
|-------------------------|----------------------------|---------|
| Erg vs Oxy_a1b5         | 266.5                      | 0.003   |
| Oxy_a10 vs Mis_a600b800 | 267.8                      | 0.008   |
| Plac vs Mis_a600b800    | 267.7                      | 0.018   |
| Plac vs Erg             | 270.3                      | 0.430   |
| Plac vs Oxy_a1b5        | 269.0                      | 0.390   |
| Plac vs Oxy_a5b10       | 269.9                      | 0.671   |
| Plac vs Erg_Oxy         | 270.1                      | 0.620   |
| Plac vs Mis_b600        | 268.3                      | 0.520   |
| Mis_Oxy vs Carb         | 270.6                      | 0.245   |
| Mis_Oxy vs Oxy_a1b5     | 269.3                      | 0.716   |
| Mis_Oxy vs Oxy_a5b10    | 273.2                      | 0.042   |
| Mis_Oxy vs Oxy_a10      | 275.3                      | 0.062   |
| Mis_Oxy vs Erg_Oxy      | 270.2                      | 0.648   |
| Mis_Oxy vs Mis_b600     | 268.7                      | 0.552   |
| Erg vs CarbProst        | 263.1                      | 0.245   |
| Erg vs Oxy_a5b10        | 266.4                      | 0.468   |
| Erg vs Mis_b600         | 265.5                      | 0.283   |
| Erg vs Mis_a600b800     | 268.7                      | 0.743   |
| CarbProst vs Oxy_a5b10  | 266.0                      | 0.304   |
| CarbProst vs Erg_Oxy    | 270.2                      | 0.986   |
| CarbProst vs Mis_b600   | 264.8                      | 0.302   |
| Carb vs Oxy_a1b5        | 269.2                      | 0.559   |
| Carb vs Oxy_a5b10       | 265.9                      | 0.627   |
| Carb vs Oxy_a10         | 271.3                      | 0.508   |
| Carb vs Erg_Oxy         | 266.7                      | 0.109   |
| Carb vs Mis_b600        | 269.1                      | 0.838   |

| Oxy_a1b5 vs Mis_b600      | 262.0 | 0.511 |
|---------------------------|-------|-------|
| Oxy_a1b5 vs Mis_a600b800  | 270.8 | 0.252 |
| Oxy_a5b10 vs Erg_Oxy      | 265.4 | 0.282 |
| Oxy_a5b10 vs Mis_b600     | 264.3 | 0.110 |
| Oxy_a5b10 vs Mis_a600b800 | 271.0 | 0.235 |
| Oxy_a10 vs Erg_Oxy        | 270.4 | 0.546 |
| Oxy_a10 vs Mis_b600       | 269.7 | 0.700 |
| Erg_Oxy vs Mis_b600       | 266.7 | 0.787 |
| Mis_b600 vs Mis_a600b800  | 267.5 | 0.246 |
| NMA (no nodes split)      | 270.4 | -     |

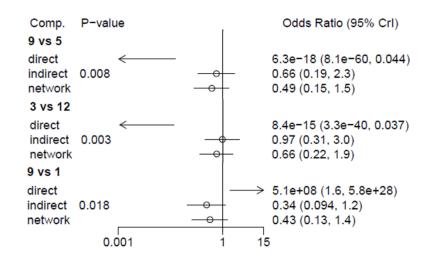



Figure 59. Treatment effect estimates separated by direct and indirect evidence for three comparisons: misoprostol (>600mcg and <800mcg) (9) vs oxytocin (5); oxytocin (>1IU and <5IU) (3) vs ergometrine (12) and misoprostol (>600mcg and <800mcg) (9) vs placebo (1)

# Vaginal birth subgroup

#### Global inconsistency check

Analysis of the dataset for the vaginal birth subgroup for the outcome transfusion included 80 studies (175 arms) of 12 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting of both fixed and random-effect network meta-analysis (NMA) models indicated strong support for the random-effect model on the basis of large decreases in DIC and residual deviance (Table 61). Between-study SD was estimated to be large at 0.53 (95% Crl 0.25, 0.84), suggesting that there is heterogeneity in studies' estimates of treatment effect for the same treatment comparison. There was no reduction in DIC when the RE UME model was fitted, relative to the RE NMA, suggesting no evidence of inconsistency.

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 60), showed no study arms to have high deviance in the NMA model, relative to their deviance in the UME model. Taken together, the model fit and dev-dev plots suggest there was little evidence of inconsistency so node-splitting models were not required.

| Outcome     | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>15</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD    | DIC <sup>16</sup> |
|-------------|------|-----------|----------------------------------------------------------|-------------------------------------------------------|-------|-------------------|
| Transfusion | VD   | FE NMA    | 243.9                                                    | -                                                     | 86.9  | 803.0             |
| Transfusion | VD   | RE<br>NMA | 200.4                                                    | 0.53 (0.25, 0.84)                                     | 110.7 | 782.7             |
| Transfusion | VD   | FE UME    | 228                                                      | -                                                     | 102.8 | 803.0             |
| Transfusion | VD   | RE<br>UME | 196.5                                                    | 0.54 (0.21, 0.93)                                     | 121.1 | 789.7             |

# Table 61. Model fit statistics for fixed- and random-effect NMA and UME models of the outcome Transfusion, vaginal birth subgroup.

<sup>&</sup>lt;sup>15</sup> Posterior mean residual deviance compared to 175 data points

<sup>&</sup>lt;sup>16</sup> Deviance information criteria (DIC) – lower values preferred

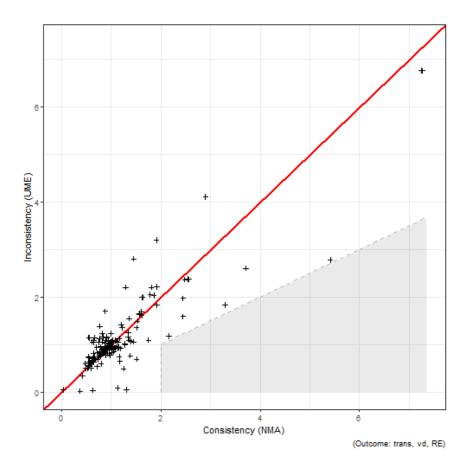



Figure 60. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for Transfusion, vaginal birth subgroup. No study arms had high deviance in the NMA model, relative to their deviance in the UME model.

#### Caesarean Section birth subgroup

#### **Global inconsistency check**

Analysis of the dataset for the CS birth subgroup for the outcome transfusion included 32 studies (65 arms) of 9 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting of both fixed (FE) and random-effect (RE) network meta-analysis (NMA) models indicated strong support for the random-effects model on the basis of a large reduction in residual deviance and a moderate reduction in DIC (Table 62). There was no reduction in DIC when the RE UME model was fitted, relative to the RE NMA, suggesting that direct and indirect evidence is consistent.

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 61), showed no study arms to have high deviance in the NMA model, relative to their deviance in the UME model. Taken together, the model fit and dev-dev plots suggest there was little evidence of inconsistency so node-splitting models were not required.

| Table 62. Model fit statistics for fixed- and random-effect NMA and UME mode | ls of the |
|------------------------------------------------------------------------------|-----------|
| outcome Transfusion, CS birth subgroup.                                      |           |

| Outcome     | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>17</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | рD   | DIC <sup>18</sup> |
|-------------|------|-----------|----------------------------------------------------------|-------------------------------------------------------|------|-------------------|
| Transfusion | CS   | FE NMA    | 94.73                                                    | -                                                     | 37.9 | 299.0             |
| Transfusion | CS   | RE<br>NMA | 67.95                                                    | 1.11 (0.45, 1.99)                                     | 49.6 | 283.9             |
| Transfusion | CS   | FE UME    | 90.01                                                    | -                                                     | 42.4 | 298.8             |
| Transfusion | CS   | RE<br>UME | 67.59                                                    | 1.50 (0.48, 3.09)                                     | 52.8 | 286.8             |

<sup>&</sup>lt;sup>17</sup> Posterior mean residual deviance compared to 65 data points

<sup>&</sup>lt;sup>18</sup> Deviance information criteria (DIC) – lower values preferred

Intrapartum care: evidence review for uterotonics to prevent postpartum haemorrhage FINAL (September 2023)

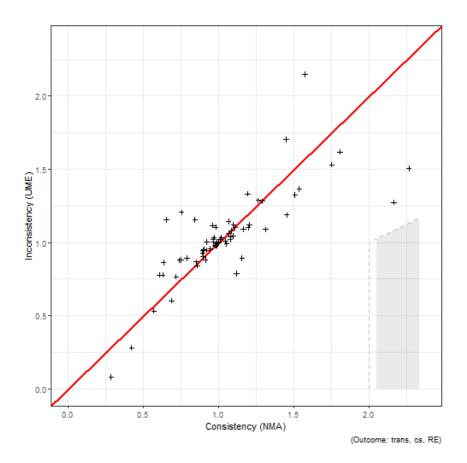



Figure 61. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for Transfusion, CS birth subgroup. No study arms were identified as inconsistent (i.e. there were no points in the shaded region).

#### Outcome: ICU admission

#### Summary

ICU admission was a rare event in these datasets and network meta-analysis (NMA) was possible for only the full and vaginal birth subgroups. Only one treatment comparison was informed by more than one study, providing insufficient evidence to inform a random-effects model structure.

There was only one loop of evidence within the full dataset and vaginal birth subgroup networks, and no evidence of inconsistency was identified within these datasets.

#### Full dataset

#### **Global inconsistency check**

Analysis of the full dataset for the outcome ICU admission included 9 studies (18 arms) of 8 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting both fixed (FE) and random-effect (RE) NMA models indicated that the FE model structure was sufficient for the full dataset, with residual deviance of 17.2 (Table 63), approximately equivalent to the number of study arms (18).

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the fixed effects UME and NMA models (Figure 62), showed no study arms to have high deviance in the NMA model, relative to their deviance in the UME model. Taken together, the model fit, small number of studies on the loop of evidence, and dev-dev plots suggest there was little evidence of inconsistency; therefore, node-splitting models were not required.

# Table 63. Model fit statistics for fixed- and random-effect NMA and UME models of the outcome ICU admission, full dataset.

| Outcome          | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>19</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD   | DIC <sup>20</sup> |
|------------------|------|-----------|----------------------------------------------------------|-------------------------------------------------------|------|-------------------|
| ICU<br>admission | Full | FE<br>NMA | 17.2                                                     | -                                                     | 12.3 | 72.9              |
| ICU<br>admission | Full | RE<br>NMA | 16.3                                                     | 1.87 (0.06, 4.75)                                     | 13.7 | 73.4              |
| ICU<br>admission | Full | FE<br>UME | 14.8                                                     | -                                                     | 12.5 | 70.6              |
| ICU<br>admission | Full | RE<br>UME | 15.1                                                     | 1.62 (0.04, 4.66)                                     | 13.2 | 71.6              |

<sup>&</sup>lt;sup>19</sup> Posterior mean residual deviance compared to 18 total data points

<sup>&</sup>lt;sup>20</sup> Deviance information criteria (DIC) – lower values preferred

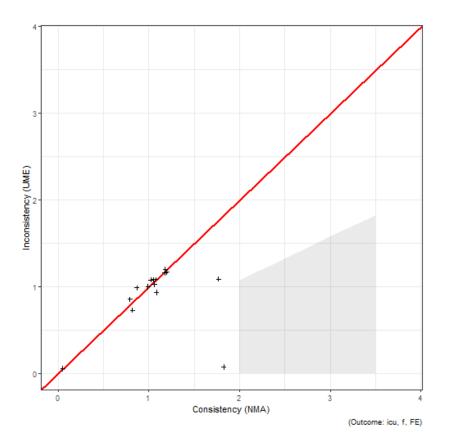



Figure 62. Dev-dev plot of each study arm's residual deviance under the standard and inconsistency models (FE model structure) for ICU admission, full dataset. No study arms had high deviance in the NMA model, relative to their deviance in the UME model.

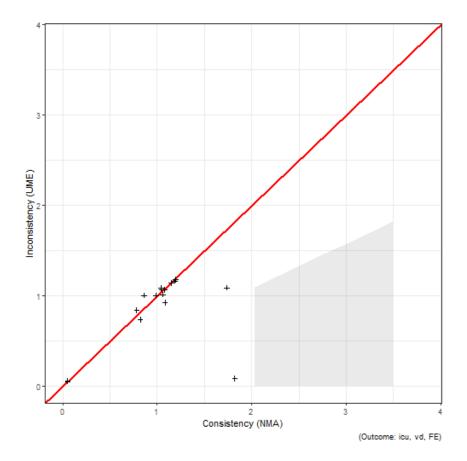
# Vaginal birth subgroup

#### Global inconsistency check

Analysis of the dataset for the vaginal birth subgroup for the outcome ICU admission included 8 studies (16 arms) of 7 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting both fixed (FE) and random-effect (RE) NMA models indicated that the FE model structure was sufficient for the full dataset, with residual deviance of 16.0 (Table 64), equivalent to the 16 study arms.


The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the fixed effects UME and NMA models (Figure 63), showed no study arms to have high deviance in the NMA model, relative to their deviance in the UME model. Taken together, the model fit, small number of studies on the loop of evidence, and dev-dev plots suggest there was little evidence of inconsistency; therefore, node-splitting models were not required.

| Outcome          | Pop. | Model  | Posterior<br>total<br>residual<br>deviance <sup>21</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD   | DIC <sup>22</sup> |
|------------------|------|--------|----------------------------------------------------------|-------------------------------------------------------|------|-------------------|
| ICU<br>admission | VD   | FE NMA | 16.0                                                     | -                                                     | 11.4 | 68.7              |
| ICU<br>admission | VD   | RE NMA | 15.0                                                     | 1.83 (0.06, 4.72)                                     | 12.7 | 69.0              |
| ICU<br>admission | VD   | FE UME | 13.5                                                     | -                                                     | 11.6 | 66.4              |
| ICU<br>admission | VD   | RE UME | 13.9                                                     | 1.64 (0.04, 4.67)                                     | 12.3 | 67.5              |

# Table 64. Model fit statistics for fixed- and random-effect NMA and UME models of the outcome ICU admission, vaginal birth subgroup.

<sup>&</sup>lt;sup>21</sup> Posterior mean residual deviance compared to 16 data points

<sup>&</sup>lt;sup>22</sup> Deviance information criteria (DIC) – lower values preferred



# Figure 63. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with FE structure for ICU admission, vaginal birth subgroup. No study arms had high deviance in the NMA model, relative to their deviance in the UME model.

### **Outcome: Mean blood loss**

#### Summary

We identified moderate heterogeneity in both full and mode-of-delivery subgroup datasets for this outcome, but little evidence of inconsistency. Mean blood loss was analysed with treatment effects estimated on the log scale, with the effect of treatment assumed to be proportional rather than additive.

The only indicated inconsistency was connected to the estimate for the treatment effect of ergometrine (coded 13) relative to Oxytocin [>5 IU and  $\leq$  10 IU] (coded 5) from the study Modi 2014. Arm 3 from Modi 2014, which included carboprost, also showed relatively high residual deviance within the dataset. However, residual deviance for this arm was more similar between NMA and UME models, suggesting heterogeneity between study estimates for this treatment comparison rather than inconsistency.

Node-splitting models indicated potential inconsistency between direct and indirect evidence in the estimation of treatment differences between misoprostol plus oxytocin and oxytocin (>10IU) in the full dataset, and misoprostol (≤600mcg) and oxytocin (>10IU) in the vaginal delivery subgroup. While seven studies in the full dataset inform the comparison between oxytocin (>10IU) and misoprostol (≤600mcg) and nine inform the comparison between oxytocin (>10IU) and misoprostol plus oxytocin, only one study (Caliskan et al. 2003) informs

the comparison between misoprostol plus oxytocin and misoprostol (≤600mcg). This suggests that this loop of evidence (misoprostol (≤600mcg) – oxytocin (>10IU) – misoprostol plus oxytocin) contains inconsistency and we would suggest that Caliskan et al. 2003 is examined to ensure that there are no sources of potential inconsistency.

# Full dataset

# Global inconsistency check

Analysis of the full dataset for the outcome mean blood loss included 156 studies (332 arms) of 14 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Comparing fixed (FE) and random-effect (RE) network meta-analysis (NMA) models indicated support for the random-effect model on the basis of large decreases in DIC and residual deviance (Table 65).

Total residual deviance was lower in the inconsistency UME model than in the NMA model; however, DIC was lower for the NMA model and the estimate of between-study SD was similar in the NMA and UME models (Table 65). This suggests that there is little evidence of inconsistency but moderate heterogeneity between study estimates.

| Outcome | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>23</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD    | DIC <sup>24</sup> |
|---------|------|-----------|----------------------------------------------------------|-------------------------------------------------------|-------|-------------------|
| PPH     | Full | FE NMA    | 5125.0                                                   | -                                                     | 168.8 | 7526.2            |
| PPH     | Full | RE<br>NMA | 336.1                                                    | 0.24 (0.23, 0.27)                                     | 314.4 | 2883.0            |
| PPH     | Full | FE UME    | 3533.0                                                   | -                                                     | 199.4 | 5965.4            |
| PPH     | Full | RE<br>UME | 334.2                                                    | 0.23 (0.20, 0.26)                                     | 317.4 | 2884.0            |

| Table 65. Model fit statistics for fixed- and random-effect NMA and UME model | s of the |
|-------------------------------------------------------------------------------|----------|
| outcome Blood loss, full dataset.                                             |          |

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 64), shows that one study arm showed inconsistency with the rest of the dataset. The point on the border of the shaded area is the third arm from the same study:

• Modi, 2014

<sup>&</sup>lt;sup>23</sup> Posterior mean residual deviance compared to 332 total data points

<sup>&</sup>lt;sup>24</sup> Deviance information criteria (DIC) – lower values preferred

 Compares Oxytocin [>5 IU and ≤ 10 IU] (coded 5), Misoprostol ≤600mcg (coded 9), Ergometrine (coded 13) and Carboprost (coded 14)

However, residual deviance is relatively low even for this study arm. Taken together, the model fit and dev-dev plots suggest there was little evidence of inconsistency in these data. Node-splitting models for the loop of evidence informed by Modi et al. 2014 were run in WinBUGS.

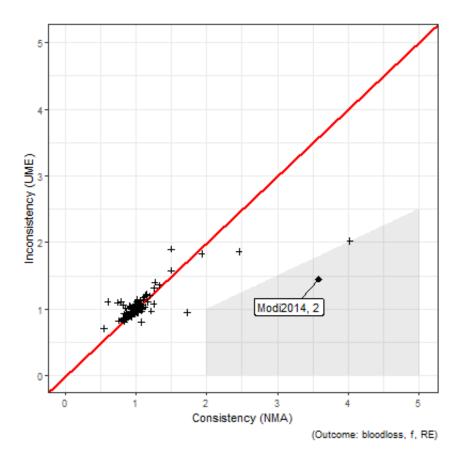



Figure 64. Dev-dev plot of each study arm's residual deviance under the standard and inconsistency models (RE model structure) for Blood loss, full dataset. Labels indicate study arms with high deviance in the NMA model, relative to their deviance in the UME model. The dotted line and grey shaded area denotes where study arms fit poorly in the NMA model but well in the UME model, suggesting that they are predicted poorly when the model enforces consistency in treatment differences.

### Checking inconsistency within individual treatment comparisons (Node-splitting)

Node-splitting procedures indicated no evidence of a difference between direct and indirect evidence on most treatment comparisons. Evidence conflicted on a single comparison, for oxytocin (> 10IU) vs misoprostol with oxytocin (Table 66). A forest plot is presented for this comparison (Figure 65).

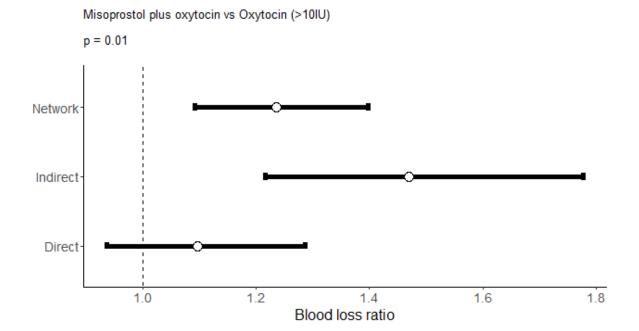



Figure 65. Treatment difference of misoprostol plus oxytocin vs oxytocin on outcome mean blood loss, full dataset, as estimated from the full network, indirect evidence only and direct evidence only. Ratios greater than 1 indicate that blood loss was greater in the misoprostol plus oxytocin group. Table 66. Estimates of treatment effect from direct and indirect evidence from node-splitting models, full dataset. 'Comparison' indicates the pair of nodes for which evidence was split into direct and indirect evidence. Direct and indirect estimates are log blood loss ratios, where zero indicates no difference in blood loss between treatment groups.

| Comparison              | Total residual deviance | рD    | DIC  | Direct                   | Indirect                 | p value | Between-study<br>SD |
|-------------------------|-------------------------|-------|------|--------------------------|--------------------------|---------|---------------------|
| Oxy_a10 vs Mis_Oxy      | 343.1                   | 317.0 | 2893 | 0.09 (-0.06,<br>0.25)    | 0.38 (0.20, 0.58)        | 0.01    | 0.23 (0.20, 0.26)   |
| Carb vs Placebo         | 486.5                   | 295.8 | 3015 | -0.48 (-1.27,<br>0.20)   | -0.39 (-0.54, -<br>0.23) | 0.42    | 0.26 (0.21, 0.27)   |
| Oxy_b1 vs Placebo       | 341.8                   | 317.1 | 2891 | 0.01 (-0.46,<br>0.47)    | -0.21 (-0.86,<br>0.39)   | 0.70    | 0.24 (0.21, 0.27)   |
| Oxy_a1b5 vs Placebo     | 377.8                   | 345.8 | 2956 | -0.19 (-0.41,<br>0.01)   | -0.17 (-0.35,<br>0.02)   | 0.43    | 0.24 (0.21, 0.27)   |
| Oxy_a5b10 vs Placebo    | 341.1                   | 316.1 | 2890 | -0.25 (-0.58,<br>0.09)   | -0.18 (-0.32, -<br>0.05) | 0.37    | 0.24 (0.21, 0.27)   |
| Erg_Oxy vs Placebo      | 342.3                   | 315.5 | 2890 | -0.11 (-0.45,<br>0.23)   | -0.29 (-0.44, -<br>0.14) | 0.82    | 0.24 (0.21, 0.27)   |
| Mis_b600 vs Placebo     | 347.0                   | 318.7 | 2898 | -0.19 (-0.35, -<br>0.02) | -0.21 (-0.37, -<br>0.06) | 0.58    | 0.24 (0.21, 0.27)   |
| Mis_a600b800 vs Placebo | 531.0                   | 430.0 | 3193 | -0.31 (-0.79,<br>0.18)   | -0.19 (-0.40,<br>0.02)   | 0.33    | 0.25 (0.21, 0.27)   |
| Erg vs Placebo          | 1074                    | 605.5 | 3912 | -0.28 (-0.63,<br>0.07)   | -0.12 (-0.28,<br>0.03)   | 0.21    | 0.24 (0.22, 0.28)   |
| CarbProst vs Placebo    | 432.5                   | 348.0 | 3013 | -0.21 (-0.56,<br>0.14)   | -0.40 (-0.59, -<br>0.21) | 0.83    | 0.24 (0.21, 0.27)   |
| Oxy_a1b5 vs Carb        | 337.1                   | 314.5 | 2884 | 0.13 (-0.07,<br>0.34)    | 0.23 (0.06, 0.40)        | 0.23    | 0.24 (0.21, 0.27)   |
| Oxy_a5b10 vs Carb       | 339.8                   | 317.7 | 2890 | 0.16 (0.01, 0.32)        | 0.20 (0.06, 0.34)        | 0.35    | 0.24 (0.21, 0.27)   |
| Oxy_a10 vs Carb         | 537.2                   | 416.8 | 3186 | 0.25 (0.05, 0.45)        | 0.21 (0.05, 0.37)        | 0.62    | 0.24 (0.21, 0.27)   |
| Erg_Oxy vs Carb         | 358.9                   | 321.1 | 2912 | 0.12 (-0.07,<br>0.32)    | 0.12 (-0.03,<br>0.26)    | 0.52    | 0.24 (0.21, 0.27)   |
| Mis_b600 vs Carb        | 343.5                   | 318.8 | 2895 | 0.38 (-0.18,             | 0.18 (0.07, 0.30)        | 0.75    | 0.24 (0.21, 0.27)   |

|                               |        |        |      | 0.96)                  |                        |      |                                       |
|-------------------------------|--------|--------|------|------------------------|------------------------|------|---------------------------------------|
|                               | 537.9  | 140.0  | 2910 | -0.13 (-0.71,          | -0.12 (-0.58,          |      | 0.30 (0.21, 0.45)                     |
| Oxy_a1b5 vs Oxy_b1            | 557.5  | 140.0  | 2910 | 0.43)                  | 0.34)                  | 0.49 | 0.30 (0.21, 0.43)                     |
| Mis_b600 vs Oxy_b1            | 644.7  | 488.5  | 3366 | -0.24 (-0.87,<br>0.40) | -0.07 (-0.43,<br>0.28) | 0.31 | 0.24 (0.21, 0.27)                     |
|                               |        |        |      | -0.18 (-0.53,          | -0.05 (-0.20,          | 0.31 |                                       |
| Erg_Oxy vs Oxy_a1b5           | 341.1  | 317.3  | 2891 | 0.18)                  | 0.10)                  | 0.25 | 0.24 (0.21, 0.27)                     |
|                               | 2615.0 | 2371.0 | 7219 | 0.02 (-0.22,           | 0.01 (-0.14,           |      | 0.26 (0.21, 0.27)                     |
| Mis_b600 vs Oxy_a1b5          | 2010.0 | 201    |      | 0.25)                  | 0.16)                  | 0.52 | 0.20 (0.21, 0.21)                     |
| Oxy_a10 vs Oxy_a5b10          | 557.2  | 430.5  | 3220 | 0.04 (-0.43,<br>0.51)  | 0.04 (-0.08, 0.16)     | 0.51 | 0.24 (0.21, 0.27)                     |
|                               | 000 0  | 7.0    | 2001 | 0.02 (-0.31,           | -0.04 (-0.23,          | 0.01 | 0.20 (0.22, 0.52)                     |
| Erg_Oxy vs Oxy_a5b10          | 866.3  | -7.8   | 3091 | 0.35)                  | 0.22)                  | 0.66 | 0.39 (0.22, 0.53)                     |
|                               | 358.6  | 323.6  | 2915 | 0.03 (-0.06,           | -0.02 (-0.14,          | 0 77 | 0.24 (0.21, 0.27)                     |
| Mis_b600 vs Oxy_a5b10         |        |        |      | 0.13)                  | 0.09)<br>-0.10 (-0.25, | 0.77 | , , , , , , , , , , , , , , , , , , , |
| Erg_Oxy vs Oxy_a10            | 374.6  | 330.7  | 2938 | 0.15)                  | 0.05)                  | 0.52 | 0.24 (0.21, 0.27)                     |
|                               | 344.0  | 316.9  | 2893 | -0.15 (-0.33,          | 0.03 (-0.11,           |      | 0.23 (0.21, 0.26)                     |
| Mis_b600 vs Oxy_a10           | 344.0  | 510.5  | 2035 | 0.03)                  | 0.17)                  | 0.06 | 0.23 (0.21, 0.20)                     |
| Mis_b600 vs Erg_Oxy           | 343.7  | 320.7  | 2897 | 0.12 (-0.05, 0.28)     | 0.02 (-0.10,<br>0.14)  | 0.81 | 0.23 (0.20, 0.26)                     |
|                               |        |        |      | -0.34 (-0.80,          | -0.11 (-0.30,          | 0.01 |                                       |
| Carb vs Mis_a600b800          | 336.5  | 314.5  | 2883 | 0.12)                  | 0.07)                  | 0.19 | 0.23 (0.21, 0.27)                     |
|                               | 339.6  | 317.3  | 2889 | -0.19 (-0.72,          | 0.08 (-0.12,           |      | 0.24 (0.21, 0.27)                     |
| Oxy_a1b5 vs Mis_a600b800      |        | 01110  | 2000 | 0.35)                  | 0.28)                  | 0.18 | 0.2 (0.2 )                            |
| Oxy_a5b10 vs Mis_a600b800     | 343.9  | 317.9  | 2894 | 0.05 (-0.18, 0.29)     | 0.04 (-0.17,<br>0.25)  | 0.53 | 0.24 (0.21, 0.27)                     |
|                               | 044.4  | 047.0  | 0004 | 0.16 (-0.32,           | 0.07 (-0.12,           | 0.00 | 0.04 (0.04, 0.07)                     |
| Oxy_a10 vs Mis_a600b800       | 344.1  | 317.8  | 2894 | 0.64)                  | 0.27)                  | 0.64 | 0.24 (0.21, 0.27)                     |
|                               | 387.5  | 337.3  | 2957 | 0.09 (-0.38,           | 0.05 (-0.12,           | 0.50 | 0.24 (0.21, 0.27)                     |
| Mis_b600 vs Mis_a600b800      |        |        |      | 0.56)                  | 0.21)                  | 0.56 | ( · · · /                             |
| Mis_a800b1000 vs Mis_a600b800 | 343.7  | 319.1  | 2895 | -0.02 (-0.49, 0.44)    | 0.23 (-0.30, 0.75)     | 0.24 | 0.24 (0.21, 0.27)                     |
| Erg vs Mis_a600b800           | 410.0  | 339.4  | 2982 | 0.30 (-0.13,           | 0.17 (-0.07,           | 0.68 | 0.26 (0.21, 0.27)                     |

|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | 0.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|--------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                       |
| 362.3  | 336.3                                                                                                                       | 2931                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.04                                                   | 0.23 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.94                                                   | ( , ,                                                 |
| 342.8  | 319.0                                                                                                                       | 2894                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20                                                   | 0.24 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20                                                   |                                                       |
| 749.6  | 450.1                                                                                                                       | 3432                                                                                                                                                                                                                                                                                                                                                                                            | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 72                                                   | 0.26 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72                                                   |                                                       |
| 343.7  | 316.4                                                                                                                       | 2893                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.69                                                   | 0.24 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                   |                                                       |
| 342.2  | 317.8                                                                                                                       | 2892                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                   | 0.23 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                   |                                                       |
| 342.0  | 317.3                                                                                                                       | 2892                                                                                                                                                                                                                                                                                                                                                                                            | 0.26 (0.10, 0.41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                                                   | 0.23 (0.21, 0.26)                                     |
| 000.0  | 0.40.0                                                                                                                      | 0005                                                                                                                                                                                                                                                                                                                                                                                            | 0.06 (-0.42,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 0.04 (0.04 0.07)                                      |
| 392.3  | 340.6                                                                                                                       | 2965                                                                                                                                                                                                                                                                                                                                                                                            | 0.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.42                                                   | 0.24 (0.21, 0.27)                                     |
| 102.2  | 226.0                                                                                                                       | 2062                                                                                                                                                                                                                                                                                                                                                                                            | 0.16 (-0.25,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.19 (0.04 0.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0.24 (0.21, 0.27)                                     |
| 403.3  | 320.9                                                                                                                       | 2903                                                                                                                                                                                                                                                                                                                                                                                            | 0.57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.16 (0.04, 0.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.46                                                   | 0.24 (0.21, 0.27)                                     |
| 3/1 0  | 316 /                                                                                                                       | 2801                                                                                                                                                                                                                                                                                                                                                                                            | -0.17 (-0.81,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.14 (-0.22,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | 0.23 (0.21, 0.27)                                     |
| 541.5  | 510.4                                                                                                                       | 2031                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18                                                   | 0.23 (0.21, 0.21)                                     |
| 410.5  | 348.3                                                                                                                       | 2991                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 0.24 (0.21, 0.26)                                     |
| 110.0  | 0.0.0                                                                                                                       | 2001                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.61                                                   | 0.21 (0.21, 0.20)                                     |
| 350.1  | 318.0                                                                                                                       | 2900                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 0.24 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.82                                                   |                                                       |
| 343.4  | 315.8                                                                                                                       | 2892                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20                                                   | 0.24 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.29                                                   | , , , , , , , , , , , , , , , , , , ,                 |
| 347.6  | 317.6                                                                                                                       | 2898                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25                                                   | 0.24 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25                                                   |                                                       |
| 361.9  | 332.6                                                                                                                       | 2927                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 95                                                   | 0.24 (0.21, 0.27)                                     |
|        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.55                                                   |                                                       |
| 1187.0 | -426.7                                                                                                                      | 2993                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.42                                                   | 0.39 (0.21, 0.70)                                     |
| 0.40.0 | 000 7                                                                                                                       | 000 1                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
| 348.9  | 322.7                                                                                                                       | 2904                                                                                                                                                                                                                                                                                                                                                                                            | 0.41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.23 (0.06, 0.39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.26                                                   | 0.24 (0.20, 0.26)                                     |
| 345.0  | 318.0                                                                                                                       | 2895                                                                                                                                                                                                                                                                                                                                                                                            | 0.11 (-0.29,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10 (-0.08,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.53                                                   | 0.24 (0.21, 0.27)                                     |
|        | 749.6<br>343.7<br>342.2<br>342.0<br>392.3<br>403.3<br>341.9<br>410.5<br>350.1<br>343.4<br>347.6<br>361.9<br>1187.0<br>348.9 | 342.8       319.0         749.6       450.1         343.7       316.4         342.2       317.8         342.0       317.3         392.3       340.6         403.3       326.9         341.9       316.4         410.5       348.3         350.1       318.0         343.4       315.8         347.6       317.6         361.9       332.6         1187.0       -426.7         348.9       322.7 | 342.8         319.0         2894           749.6         450.1         3432           343.7         316.4         2893           342.2         317.8         2892           342.0         317.3         2892           392.3         340.6         2965           403.3         326.9         2963           341.9         316.4         2891           403.3         326.9         2963           341.9         316.4         2891           410.5         348.3         2991           350.1         318.0         2900           343.4         315.8         2892           347.6         317.6         2898           361.9         332.6         2927           1187.0         -426.7         2993           348.9         322.7         2904 | 342.8 $319.0$ $2894$ $-0.17$ ( $-0.67$ , $0.34$ ) $749.6$ $450.1$ $3432$ $0.11$ ( $-0.37$ , $0.59$ ) $343.7$ $316.4$ $2893$ $0.15$ ( $-0.25$ , $0.56$ ) $342.2$ $317.8$ $2892$ $0.45$ ( $-0.01$ , $0.92$ ) $342.0$ $317.3$ $2892$ $0.26$ ( $0.10, 0.41$ ) $392.3$ $340.6$ $2965$ $0.06$ ( $-0.42$ , $0.53$ ) $403.3$ $326.9$ $2963$ $0.16$ ( $-0.25$ , $0.57$ ) $341.9$ $316.4$ $2891$ $-0.17$ ( $-0.81$ , $0.44$ ) $410.5$ $348.3$ $2991$ $0.00$ ( $-0.29$ , $0.30$ ) $350.1$ $318.0$ $2900$ $0.02$ ( $-0.15$ , $0.26$ ) $343.4$ $315.8$ $2892$ $-0.24$ ( $-0.73$ , $0.26$ ) $347.6$ $317.6$ $2898$ $-0.04$ ( $-0.16$ , $0.09$ ) $361.9$ $332.6$ $2927$ $-0.11$ ( $-0.28$ , $0.06$ ) $1187.0$ $-426.7$ $2993$ $0.11$ ( $-0.82$ , $1.14$ ) $348.9$ $322.7$ $2904$ $0.12$ ( $-0.77$ , $0.41$ ) | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

|                       |       |       |      | 0.51)                  | 0.27)             |      |                   |
|-----------------------|-------|-------|------|------------------------|-------------------|------|-------------------|
| Mis_b600 vs CarbProst | 372.1 | 335.5 | 2940 | -0.16 (-0.54,<br>0.22) | 0.17 (0.02, 0.33) | 0.06 | 0.24 (0.21, 0.27) |

## Vaginal birth subgroup

#### Global inconsistency check

Analysis of the dataset for the vaginal delivery subgroup for the outcome blood loss included 109 studies (235 arms) of 13 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting of both fixed and random-effect network meta-analysis (NMA) models indicated support for the random-effect model on the basis of a small decrease in DIC and a sizeable decrease in residual deviance (Table 67).

Total residual deviance and DIC were lower in the inconsistency UME model than in the NMA model and the estimate of between-study SD was the similar in the NMA and UME models (Table 67). This suggests no evidence of inconsistency, but that there is moderate heterogeneity between study estimates.

| Outcome | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>25</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD    | DIC <sup>26</sup> |
|---------|------|-----------|----------------------------------------------------------|-------------------------------------------------------|-------|-------------------|
| PPH     | VD   | FE NMA    | 2961.0                                                   | -                                                     | 120.9 | 4553.8            |
| PPH     | VD   | RE<br>NMA | 239.6                                                    | 0.25 (0.21, 0.29)                                     | 224.6 | 1936.4            |
| PPH     | VD   | FE UME    | 1870.0                                                   | -                                                     | 146.9 | 3489.5            |
| PPH     | VD   | RE<br>UME | 238.1                                                    | 0.24 (0.20, 0.28)                                     | 227.2 | 1937.6            |

| Table 67. Model fit statistics for fixed- and random-effect NMA and UME models of the |
|---------------------------------------------------------------------------------------|
| outcome Blood loss, vaginal delivery subgroup.                                        |

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 66), shows that one study arm showed inconsistency with the rest of the dataset:

- Modi, 2014
  - Compares Oxytocin [>5 IU and ≤ 10 IU] (coded 5), Misoprostol ≤600mcg (coded 8), Ergometrine (coded 12) and Carboprost (coded 13)

<sup>&</sup>lt;sup>25</sup> Posterior mean residual deviance compared to 235 data points

<sup>&</sup>lt;sup>26</sup> Deviance information criteria (DIC) – lower values preferred

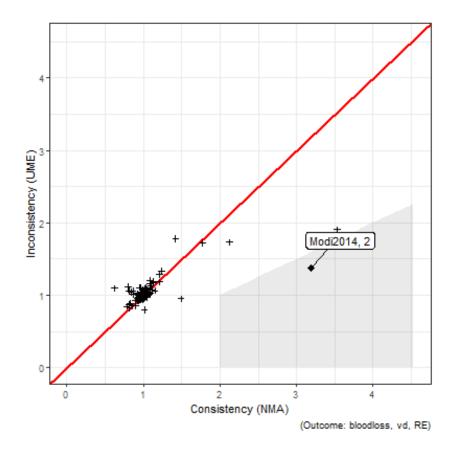



Figure 66. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for Blood loss, vaginal delivery subgroup. Labels indicate study arms with high deviance in the NMA model, relative to their deviance in the UME model. The dotted line and grey shaded area outline a region where study arms fit poorly in the NMA model but well in the UME model, suggesting that they are predicted poorly when the model enforces consistency in treatment differences.

#### Checking inconsistency within individual treatment comparisons (Node-splitting)

Node-splitting procedures indicated no evidence of a difference between direct and indirect evidence on most treatment comparisons. Evidence conflicted on a single comparison, for oxytocin (> 10IU) vs misoprostol (<600mcg) (Table 68). A forest plot is presented for this comparison (Figure 67).

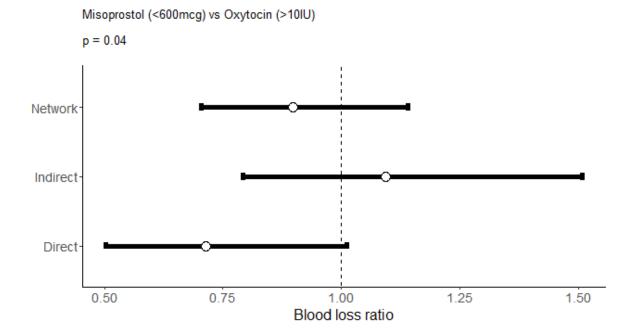



Figure 67. Treatment difference of misoprostol vs oxytocin on outcome mean blood loss, vaginal delivery subgroup, as estimated from the full network, indirect evidence only and direct evidence only. Ratios greater than 1 indicate that blood loss was greater in the misoprostol group. Table 68. Estimates of treatment effect from direct and indirect evidence from node-splitting models, vaginal delivery subgroup. 'Comparison' indicates the pair of nodes for which evidence was split into direct and indirect evidence. Direct and indirect estimates are log blood loss ratios, where zero indicates no difference in blood loss between treatment groups.

| Comparison              | Total residual<br>Deviance | pD     | DIC  | Direct                 | Indirect                 | P value | Between-study<br>SD |
|-------------------------|----------------------------|--------|------|------------------------|--------------------------|---------|---------------------|
| Mis_b600 vs Oxy_a10     | 249.5                      | 229.4  | 1951 | -0.34 (-0.69,<br>0.01) | 0.09 (-0.23, 0.41)       | 0.04    | 0.25 (0.21, 0.29)   |
| Oxy_a1b5 vs Placebo     | 892.7                      | 197.1  | 2562 | -0.26 (-0.59,<br>0.07) | -0.02 (-0.34, 0.42)      | 0.17    | 0.32 (0.22, 0.49)   |
| Oxy_a5b10 vs Placebo    | 1044.0                     | -455.7 | 2060 | -0.25 (-1.12,<br>0.63) | -0.34 (-0.92, -<br>0.03) | 0.52    | 0.51 (0.22, 0.95)   |
| Erg_Oxy vs Placebo      | 417.2                      | 235.6  | 2125 | -0.12 (-0.49,<br>0.25) | -0.27 (-0.45, -<br>0.07) | 0.74    | 0.29 (0.22, 0.29)   |
| Mis_b600 vs Placebo     | 284.4                      | 259.4  | 2016 | -0.14 (-0.33,<br>0.06) | -0.23 (-0.41, -<br>0.06) | 0.77    | 0.25 (0.22, 0.29)   |
| Mis_a600b800 vs Placebo | 244.6                      | 226.0  | 1943 | -0.31 (-0.81,<br>0.20) | -0.19 (-0.42, 0.04)      | 0.34    | 0.25 (0.21, 0.29)   |
| Erg vs Placebo          | 256.1                      | 231.1  | 1959 | -0.28 (-0.64,<br>0.08) | -0.12 (-0.28, 0.05)      | 0.21    | 0.25 (0.21, 0.29)   |
| CarbProst vs Placebo    | 243.1                      | 226.5  | 1942 | -0.21 (-0.58,<br>0.16) | -0.40 (-0.61, -<br>0.20) | 0.82    | 0.25 (0.21, 0.29)   |
| Oxy_a1b5 vs Carb        | 246.4                      | 225.9  | 1944 | 0.19 (-0.17, 0.55)     | 0.20 (-0.03, 0.43)       | 0.49    | 0.25 (0.22, 0.29)   |
| Oxy_a5b10 vs Carb       | 254.3                      | 231.6  | 1958 | 0.10 (-0.13, 0.34)     | 0.22 (0.02, 0.42)        | 0.24    | 0.25 (0.22, 0.29)   |
| Erg_Oxy vs Carb         | 278.3                      | 255.1  | 2006 | 0.14 (-0.09, 0.37)     | 0.16 (-0.06, 0.38)       | 0.46    | 0.25 (0.22, 0.29)   |

|                               |         |        | 1     | 1                      | 1                   |      |                   |
|-------------------------------|---------|--------|-------|------------------------|---------------------|------|-------------------|
| Mis_b600 vs Carb              | 246.9   | 226.8  | 1946  | 0.39 (-0.20, 0.98)     | 0.19 (0.02, 0.36)   | 0.73 | 0.25 (0.22, 0.29) |
| Erg_Oxy vs Oxy_a1b5           | 244.7   | 227.4  | 1944  | -0.30 (-0.81,<br>0.21) | -0.01 (-0.20, 0.18) | 0.14 | 0.25 (0.21, 0.29) |
| Mis_b600 vs Oxy_a1b5          | 282.9   | 259.4  | 2015  | 0.01 (-0.22, 0.25)     | 0.01 (-0.17, 0.19)  | 0.50 | 0.25 (0.21, 0.29) |
| Erg_Oxy vs Oxy_a5b10          | 247.1   | 228.1  | 1947  | 0.08 (-0.13, 0.29)     | -0.04 (-0.2, 0.12)  | 0.82 | 0.26 (0.22, 0.30) |
| Mis_b600 vs Oxy_a5b10         | 247.2   | 231.1  | 1950  | 0.04 (-0.07, 0.15)     | 0.02 (-0.12, 0.17)  | 0.57 | 0.26 (0.22, 0.30) |
| Erg_Oxy vs Oxy_a10            | 246.9   | 228.7  | 1948  | -0.04 (-0.54,<br>0.47) | -0.20 (-0.49, 0.10) | 0.71 | 0.25 (0.22, 0.29) |
| Mis_b600 vs Erg_Oxy           | 246.0   | 228.2  | 1946  | 0.11 (-0.06, 0.29)     | -0.02 (-0.17, 0.12) | 0.88 | 0.24 (0.21, 0.28) |
| Carb vs Mis_a600b800          | 239.0   | 224.0  | 1935  | -0.34 (-0.83,<br>0.15) | -0.11 (-0.35, 0.13) | 0.21 | 0.25 (0.22, 0.29) |
| Oxy_a1b5 vs Mis_a600b800      | 248.3   | 229.1  | 1950  | -0.19 (-0.75,<br>0.36) | 0.09 (-0.15, 0.33)  | 0.18 | 0.25 (0.21, 0.29) |
| Oxy_a5b10 vs Mis_a600b800     | 243.4   | 227.1  | 1943  | 0.05 (-0.20, 0.31)     | 0.01 (-0.24, 0.25)  | 0.60 | 0.25 (0.22, 0.29) |
| Mis_b600 vs Mis_a600b800      | 368.4   | 246.9  | 2087  | 0.08 (-0.42, 0.59)     | 0.05 (-0.15, 0.24)  | 0.56 | 0.27 (0.22, 0.30) |
| Mis_a800b1000 vs Mis_a600b800 | 56420.0 | -25440 | 32450 | 1.32 (-0.52, 4.45)     | 0.50 (-0.60, 2.18)  | 0.58 | 0.52 (0.22, 0.91) |
| Erg vs Mis_a600b800           | 304.5   | 267.6  | 2044  | 0.15 (-0.18, 0.48)     | 0.09 (-0.11, 0.28)  | 0.64 | 0.25 (0.22, 0.29) |
| CarbProst vs Mis_a600b800     | 344.4   | 196.1  | 2013  | 0.21 (-0.26, 0.65)     | -0.16 (-0.41, 0.06) | 0.92 | 0.27 (0.21, 0.38) |
| Oxy_a5b10 vs Mis_a800b1000    | 251.4   | 226.4  | 1950  | -0.17 (-0.70,<br>0.37) | 0.09 (-0.32, 0.50)  | 0.23 | 0.25 (0.21, 0.29) |
| Mis_b600 vs Mis_a800b1000     | 285.8   | 234.2  | 1992  | 0.11 (-0.39, 0.62)     | -0.13 (-0.52, 0.41) | 0.70 | 0.27 (0.22, 0.29) |
| Erg vs Mis_a800b1000          | 961.0   | -332.2 | 2101  | 0.15 (-0.67, 0.98)     | 0.02 (-0.67, 0.71)  | 0.63 | 0.42 (0.22, 0.65) |

|                        |        |             | 1    |                        | 1                        |      |                   |
|------------------------|--------|-------------|------|------------------------|--------------------------|------|-------------------|
| Oxy_a5b10 vs Mis_Oxy   | 249.8  | 228.9       | 1951 | 0.10 (-0.10, 0.30)     | -0.24 (-0.71, 0.22)      | 0.91 | 0.25 (0.21, 0.29) |
| Oxy_a10 vs Mis_Oxy     | 244.9  | 226.4       | 1943 | 0.01 (-0.35, 0.36)     | 0.35 (-0.01, 0.70)       | 0.09 | 0.25 (0.21, 0.29) |
| Erg_Oxy vs Mis_Oxy     | 248.7  | 228.6       | 1949 | 0.05 (-0.45, 0.56)     | 0.03 (-0.20, 0.25)       | 0.54 | 0.25 (0.22, 0.29) |
| Mis_b600 vs Mis_Oxy    | 2469.0 | -<br>1981.0 | 1960 | 0.15 (-1.06, 1.35)     | 0.11 (-0.43, 0.70)       | 0.58 | 0.56 (0.22, 1.00) |
| Oxy_a1b5 vs Erg        | 244.0  | 227.5       | 1944 | 0.01 (-0.30, 0.31)     | -0.03 (-0.22, 0.15)      | 0.59 | 0.25 (0.21, 0.29) |
| Oxy_a5b10 vs Erg       | 247.8  | 228.7       | 1949 | 0.03 (-0.16, 0.22)     | -0.09 (-0.23, 0.04)      | 0.85 | 0.25 (0.21, 0.29) |
| Erg_Oxy vs Erg         | 250.2  | 229.9       | 1952 | -0.24 (-0.76,<br>0.28) | -0.07 (-0.22, 0.08)      | 0.27 | 0.25 (0.22, 0.29) |
| Mis_b600 vs Erg        | 250.1  | 227.6       | 1950 | -0.04 (-0.17,<br>0.10) | 0.06 (-0.09, 0.22)       | 0.17 | 0.26 (0.22, 0.30) |
| CarbProst vs Erg       | 817.5  | -190.3      | 2099 | -0.09 (-0.42,<br>0.25) | -0.49 (-1.07, -<br>0.06) | 0.94 | 0.42 (0.22, 0.66) |
| Oxy_a1b5 vs CarbProst  | 753.1  | -153.8      | 2071 | 0.11 (-0.94, 1.19)     | 0.14 (-0.31, 0.49)       | 0.46 | 0.43 (0.22, 0.69) |
| Oxy_a5b10 vs CarbProst | 250.4  | 229.9       | 1952 | 0.12 (-0.18, 0.42)     | 0.22 (0.04, 0.40)        | 0.28 | 0.24 (0.21, 0.28) |
| Erg_Oxy vs CarbProst   | 252.5  | 237.2       | 1962 | 0.22 (-0.45, 0.88)     | 0.12 (-0.07, 0.31)       | 0.62 | 0.25 (0.22, 0.29) |
| Mis_b600 vs CarbProst  | 1219.0 | -558.2      | 2133 | -0.17 (-1.14,<br>0.79) | 0.07 (-0.49, 0.40)       | 0.24 | 0.54 (0.22, 0.93) |

#### Caesarean birth subgroup

#### Global inconsistency check

Analysis of the dataset for the CS delivery subgroup for the outcome blood loss included 46 studies (95 arms) of 12 treatments.

Results were based on 80,000 iterations following a burn-in of 60,000 iterations, which was sufficient to achieve convergence using a standard, uninformative prior for between-study standard deviation (SD).

Fitting both fixed (FE) and random-effect (RE) network meta-analysis (NMA) models gave similar values for DIC. However, residual deviance was lower by 5.3 for the RE NMA (Table 69) suggesting support for the RE model for these data.

Total residual deviance and DIC were lower in the inconsistency UME model than in the NMA model and the estimate of between-study SD was the similar in the NMA and UME models (Table 69). This suggests that there is no evidence of inconsistency, but moderate heterogeneity between study estimates.

The dev-dev plot, which shows the contribution of each study datapoint to the residual deviance under the random effects UME and NMA models (Figure 68), showed no study arms to have high deviance in the NMA model, relative to their deviance in the UME model. Taken together, the model fit and dev-dev plots suggest there was little evidence of inconsistency in these data. Therefore, node-splitting models were not required.

| Outcome | Pop. | Model     | Posterior<br>total<br>residual<br>deviance <sup>a</sup> | Between-study<br>SD<br>Mean, 95%<br>credible interval | pD   | DIC⁵   |
|---------|------|-----------|---------------------------------------------------------|-------------------------------------------------------|------|--------|
| PPH     | CS   | FE NMA    | 1706.0                                                  | -                                                     | 56.9 | 2506.8 |
| PPH     | CS   | RE<br>NMA | 93.9                                                    | 0.21 (0.16, 0.27)                                     | 88.9 | 926.5  |
| PPH     | CS   | FE UME    | 717.0                                                   | -                                                     | 65.0 | 1525.7 |
| PPH     | CS   | RE<br>UME | 94.4                                                    | 0.19 (0.14, 0.25)                                     | 89.2 | 927.3  |

# Table 69. Model fit statistics for fixed- and random-effect NMA and UME models of the outcome Blood loss, CS delivery subgroup.

<sup>b</sup> Deviance information criteria (DIC) – lower values preferred

<sup>&</sup>lt;sup>a</sup> Posterior mean residual deviance compared to 95 data points

Intrapartum care: evidence review for uterotonics to prevent postpartum haemorrhage FINAL (September 2023)

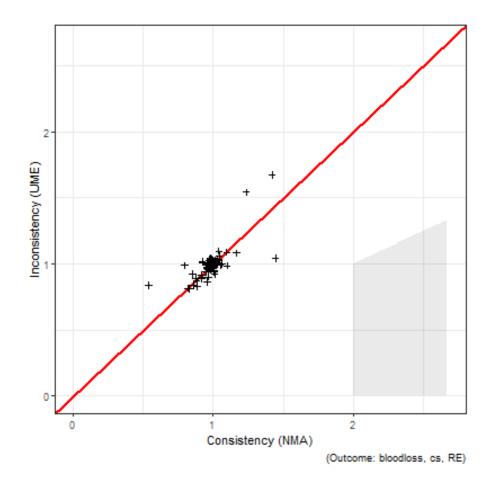



Figure 68. Dev-dev plot of each study arm's residual deviance under the consistency (NMA) and inconsistency models with RE structure for Blood loss, CS delivery subgroup. No study arms were identified as inconsistent (i.e. points in the shaded region).

#### NMA code

The code below was originally based on information within the TSU evidence synthesis technical support documents (Dias 2011, Dias 2014).

#### WinBUGS code for fixed effect model – binary outcomes

```
# Binomial likelihood, logit link
# Fixed effects model
                                # *** PROGRAM STARTS
model{
for(i in 1:ns) {
                                # LOOP THROUGH STUDIES
   mu[i] ~ dnorm(0,.0001)
                              # vague priors for all trial baselines
    for (k in 1:na[i]) {
                                # LOOP THROUGH ARMS
       r[i,k] ~ dbin(p[i,k],n[i,k])
                                       # binomial likelihood
# model for linear predictor
       logit(p[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]</pre>
# expected value of the numerators
        rhat[i,k] <- p[i,k] * n[i,k]</pre>
#Deviance contribution
```

FINAL Uterotonics to prevent postpartum haemorrhage

```
dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))</pre>
             + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-
rhat[i,k])))
     }
# summed residual deviance contribution for this trial
    resdev[i] <- sum(dev[i,1:na[i]])</pre>
totresdev <- sum(resdev[])</pre>
                                 # Total Residual Deviance
d[1]<-0 # treatment effect is zero for reference treatment</pre>
# vague priors for treatment effects
for (k in 2:nt){ d[k] ~ dnorm(0,.001) }
# ranking on relative scale
for (k in 1:nt) {
# rk[k] <- nt+1-rank(d[],k) # assumes events are "good"</pre>
rk[k] <- rank(d[],k) # assumes events are "bad"</pre>
best[k] <- equals(rk[k],1) #calculate probability that treat k is best</pre>
for (h in 1:nt) { prob[h,k] <- equals(rk[k],h) } # calculates probability</pre>
that treat k is h-th best
 }
}
                                                           # *** PROGRAM ENDS
```

#### WinBUGS code for random effect model - binary outcomes

```
# Binomial likelihood, logit link
# Random effects model for multi-arm trials
model{
                                      # *** PROGRAM STARTS
                                      # LOOP THROUGH STUDIES
for(i in 1:ns) {
    w[i,1] <- 0 # adjustment for multi-arm trials is zero for control</pre>
arm
    delta[i,1] <- 0
                                 # treatment effect is zero for control arm
    mu[i] ~ dnorm(0,.0001)
                                     # vague priors for all trial baselines
                                      # LOOP THROUGH ARMS
    for (k in 1:na[i]) {
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood
        logit(p[i,k]) <- mu[i] + delta[i,k] # model for linear predictor</pre>
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators</pre>
#Deviance contribution
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))</pre>
           + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-
rhat[i,k])))
                     }
# summed residual deviance contribution for this trial
    resdev[i] <- sum(dev[i,1:na[i]])</pre>
    for (k in 2:na[i]) {
                                      # LOOP THROUGH ARMS
# trial-specific LOR distributions
        delta[i,k] ~ dnorm(md[i,k],taud[i,k])
# mean of LOR distributions (with multi-arm trial correction)
        md[i,k] < - d[t[i,k]] - d[t[i,1]] + sw[i,k]
# precision of LOR distributions (with multi-arm trial correction)
        taud[i,k] <- tau *2*(k-1)/k</pre>
# adjustment for multi-arm RCTs
       w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])</pre>
# cumulative adjustment for multi-arm trials
        sw[i,k] <- sum(w[i,1:k-1])/(k-1)</pre>
      }
  }
                                      # Total Residual Deviance
totresdev <- sum(resdev[])</pre>
d[1]<-0 # treatment effect is zero for reference treatment
# vague priors for treatment effects
for (k in 2:nt) {
      d[k] ~ dnorm(0,.001)
      }
```

FINAL Uterotonics to prevent postpartum haemorrhage

```
# vague prior for between-trial SD
sd \sim dunif(0,5)
tau <- pow(sd,-2)  # between-trial precision = (1/between-trial variance)</pre>
# pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2
for (c in 1:(nt-1)) {
for (k in (c+1):nt) {
      or[c,k] <- exp(d[k] - d[c])</pre>
      lor[c,k] <- (d[k]-d[c])
}
# ranking on relative scale
for (k in 1:nt) {
# rk[k] <- nt+1-rank(d[],k) # assumes events are "good"</pre>
rk[k] <- rank(d[],k) # assumes events are "bad"</pre>
best[k] <- equals(rk[k],1) #calculate probability that treat k is best</pre>
for (h in 1:nt) { prob[h,k] <- equals(rk[k],h) } # calculates probability</pre>
that treat k is h-th best
 }
                                     # *** PROGRAM ENDS
}
```

#### WinBUGS code for fixed effect model – continuous outcomes

```
# Normal likelihood, log link
# Fixed effects model
                                      # *** PROGRAM STARTS
model{
                                      # LOOP THROUGH STUDIES
for(i in 1:ns){
    mu[i] ~ dnorm(0,.0001)
                                      # vague priors for all trial baselines
    for (k in 1:na[i]) {
                                      # LOOP THROUGH ARMS
        var[i,k] <- pow(se[i,k],2)  # calculate variances</pre>
        prec[i,k] <- 1/var[i,k]</pre>
                                     # set precisions
        y[i,k] ~ dnorm(theta[i,k],prec[i,k]) # normal likelihood
# model for linear predictor
        log(theta[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]</pre>
#Deviance contribution
        dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]</pre>
      }
  summed residual deviance contribution for this trial
   resdev[i] <- sum(dev[i,1:na[i]])</pre>
  }
                                      #Total Residual Deviance
totresdev <- sum(resdev[])</pre>
             # treatment effect is zero for control arm
d[1]<-0
# vague priors for treatment effects
for (k in 2:nt) { d[k] ~ dnorm(0,.0001) }
for (k in 1:nt) {
           blossRatio[k] <- exp(d[k])</pre>
      }
}
                                        # *** PROGRAM ENDS
```

#### WinBUGS code for random effect model – continuous outcomes

```
# adjustment for multi-arm trials is zero for control
    w[i,1] <- 0
arm
    delta[i,1] <- 0
                                 # treatment effect is zero for control arm
   mu[i] ~ dnorm(0,.0001)
                                      # vague priors for all trial baselines
    for (k in 1:na[i]) {
                                     # LOOP THROUGH ARMS
        var[i,k] <- pow(se[i,k],2)  # calculate variances</pre>
        prec[i,k] <- 1/var[i,k]
                                     # set precisions
        y[i,k] ~ dnorm(theta[i,k],prec[i,k]) # binomial likelihood
        log(theta[i,k]) <- mu[i] + delta[i,k] # model for linear predictor</pre>
#Deviance contribution
        dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]</pre>
      }
#
  summed residual deviance contribution for this trial
    resdev[i] <- sum(dev[i,1:na[i]])</pre>
    for (k in 2:na[i]) {
                                      # LOOP THROUGH ARMS
# trial-specific LOR distributions
        delta[i,k] ~ dnorm(md[i,k],taud[i,k])
# mean of LOR distributions, with multi-arm trial correction
        md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k]</pre>
# precision of LOR distributions (with multi-arm trial correction)
        taud[i,k] <- tau *2*(k-1)/k
# adjustment, multi-arm RCTs
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])</pre>
# cumulative adjustment for multi-arm trials
        sw[i,k] <- sum(w[i,1:k-1])/(k-1)</pre>
      }
 }
totresdev <- sum(resdev[])</pre>
                                       #Total Residual Deviance
d[1]<-0 # treatment effect is zero for control arm
# vague priors for treatment effects
for (k in 2:nt) { d[k] \sim dnorm(0,.0001) }
sd ~ dunif(0,5)  # vague prior for between-trial SD
tau <- pow(sd,-2)  # between-trial precision = (1/between-trial variance)</pre>
# Provide estimates of treatment effects T[k] on the natural scale
# Given a Mean Effect, meanA, for 'standard' treatment A,
# with precision (1/variance) precA
for (k in 1:nt) {
           blossRatio[k] <- exp(d[k])</pre>
      }
}
                                       # *** PROGRAM ENDS
```

#### Acknowledgments

We would like to acknowledge Beatrice Downing and Nicky Welton from the Guidelines Technical Support Unit, at University of Bristol, for providing advice, models, inconsistency checking and quality assurance for the network meta-analyses included in this review.