National Institute for Health and Care Excellence

Draft for consultation

Ovarian cancer: identifying and managing familial and genetic risk

[O] Evidence review for pathology protocol

NICE guideline number tbc

Evidence reviews underpinning recommendations 1.9.1 to 1.9.5 in the NICE guideline

September 2023

Draft for consultation

These evidence reviews were developed by NICE

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© NICE 2023. All rights reserved. Subject to Notice of rights.

ISBN:

Contents

Patholog	y proto	ocol	6
	Introdu	uction	6
	Summ	ary of the protocol	6
	Metho	ds and process	7
	Diagno	ostic evidence	7
	Summ	ary of included studies	7
	Summ	ary of the evidence	. 10
	Econo	mic evidence	. 10
	Summ	ary of included economic evidence	. 10
	Econo	mic model	. 11
	Evider	nce statements	. 11
	The co	ommittee's discussion and interpretation of the evidence	. 11
	Recon	nmendations supported by this evidence review	. 12
Refer	rences	– included studies	. 12
Appendic	ces		. 14
Appendix	κA	Review protocols	. 14
	Reviev	w protocol for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	. 14
Appendix	кВ	Literature search strategies	. 22
	Literat	ure search strategies for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	
Appendix	k C	Diagnostic evidence study selection	. 29
	Study	selection for: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	. 29
Appendix	k D	Evidence tables	. 30
	Evider	nce tables for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	. 30
Appendix	κE	Forest plots	. 45
		plots for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	. 45
Appendix	k F	Modified GRADE tables	. 54
	GRAD	E tables for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian	

	cancer?	54
Appendix G	Economic evidence study selection	56
Study	selection for: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	56
Appendix H	Economic evidence tables	57
Econo	mic evidence tables for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	57
Appendix I	Economic model	58
Econo	mic model for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	58
Appendix J	Excluded studies	
Exclud	ded studies for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	59
Appendix K	Research recommendations – full details	63
Resea	rch recommendations for review question: What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?	63
Appendix L	Outcome data used in meta-analysis	

Pathology protocol

- 2 What pathology protocol for handling specimens from risk reducing surgery should be
- 3 followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?

4 Introduction

- 5 Women with familial ovarian cancer risk are offered risk reducing surgery to help mitigate
- 6 their lifetime risk of developing ovarian cancer. This typically involves removing the tubes and
- 7 the ovaries in their entirety. These tissues are sent to pathologists, doctors who diagnose
- 8 abnormalities in tissues, for analysis. Before these tissues are examined by the pathologist,
- 9 they must be fixed and areas are selected to be made into slides for the pathologist to look
- 10 at. The number of areas sampled and made into slides depends on the degree of risk of
- 11 there being something abnormal within the specimen. It is not possible to examine the whole
- 12 sample as this would take too much time.
- 13 Women who have had risk reducing surgery due to having a familial ovarian cancer risk are
- 14 at an increased risk of having an undiagnosed pre-cancerous or cancerous lesion at the time
- 15 of their surgery. It is important to diagnose these occult lesions, if they exist, as if a woman
- 16 has a cancer she may need more treatment. Therefore, the way in which samples from risk
- 17 reducing surgery in women with a familial ovarian cancer risk are processed needs to be
- 18 agreed to ensure lesions are not missed but also the workload is manageable. This review
- 19 aims to investigate the best protocol to be used when processing pathology specimens taken
- 20 from risk reducing surgery in women with a familial ovarian cancer risk.

21 Summary of the protocol

- 22 See Table 1 for a summary of the Population, Index test, Reference Standard and Target
- 23 condition (PIRT) characteristics of this review.

24 Table 1: Summary of the protocol

Population	Women at increased risk of familial ovarian cancer who had a risk-reducing surgery	
Index test	Pathology protocol for handling specimens from risk-reducing surgeries for women at increased risk of ovarian cancer	
Reference standard	Protocol for sectioning and extensively examining the fimbriated end (SEE-FIM) of the fallopian tube specified in the study	
Target condition	 Critical Ovarian/tubal cancer incidence Serous tubal intraepithelial carcinoma (STIC) incidence Diagnostic accuracy, for example: sensitivity specificity likelihood ratios (positive and negative) area under the ROC curve Important None 	

- 26 ROC: receiver operating characteristic; SEE-FIM: sectioning and extensively examining the fimbriated end; STIC:
- 27 serous tubal intraepithelial carcinoma
- 28 For further details see the review protocol in appendix A.

1 Methods and process

- 2 This evidence review was developed using the methods and process described in
- 3 <u>Developing NICE guidelines: the manual</u>. Methods specific to this review question are
- 4 described in the review protocol in appendix A and the methods document (supplementary
- 5 document 1).
- 6 Declarations of interest were recorded according to NICE's conflicts of interest policy.

7 Diagnostic evidence

8 Included studies

- 9 Six studies were included for this review, 2 systematic reviews (Bogaerts 2022, Cheng
- 10 2020), 2 retrospective cohort studies (Pross 2021, Rhiem 2011) and 2 cross-sectional
- 11 studies (Rabban 2011, Samimi 2018).
- 12 Four studies (Bogaerts 2022, Cheng 2020, Pross 2021, Samimi 2018) reported the
- 13 prevalence of serous tubal intraepithelial carcinoma (STIC) at risk-reducing salpingo-
- 14 oophorectomy (RRSO) and 4 studies reported the prevalence of occult ovarian cancer at
- 15 RRSO (Cheng 2020, Pross 2021, Rabban 2011, Rhiem 2011). All studies included women
- 16 undergoing RRSO due to germline BRCA mutations.
- 17 There was considerable overlap between the studies included in the systematic reviews so
- 18 the Bogaerts 2022 review was used for the STIC outcome and the Cheng 2020 review for
- 19 the ovarian cancer outcome as that optimised the data available for these two outcomes.
- 20 The included studies are summarised in Table 2.
- 21 See the literature search strategy in appendix B and study selection flow chart in appendix C.

22 Excluded studies

- 23 Studies not included in this review are listed, and reasons for their exclusion are provided in
- 24 appendix J.

25 Summary of included studies

26 Summaries of the studies that were included in this review are presented in Table 2.

27 Table 2: Summary of included studies.

Study	Population	Test	Reference standard	Outcomes
Bogaerts 2022 Systematic review	N=6833 participants who underwent RRSO from 39 studies published	Characteristics of the pathology protocol: • SEE-FIM	NA ¹	• STIC incidence
Primary studies conducted in various international countries	between 2004 and 2020 n=3642 with known BRCA1 pathogenic variant	 Immunohistochemistry Dedicated gynaecopathologist 		
	n=2695 with known BRCA2 pathogenic variant			

			Reference	
Study	Population	Test	standard	Outcomes
	n=35 with both variants n=461 with no specified variant Age at RSSO (mean (SD) years): overall mean (SD) not reported but study means ranged from 43 to 54 years (SDs not reported)			
Cheng 2020 Systematic review Primary studies conducted in various international countries	not reported) N=4039 participants who underwent RRSO from 34 studies published between 2000 and 2018 n=2345 with known BRCA1 pathogenic variant n=1654 with known BRCA2 pathogenic variant n=14 with both variants n=426 with no specified variant Age at RSSO (mean (SD) years): overall mean not reported but study means ranged from 43 to 53 years (SD not reported)	Characteristics of the pathology protocol: • SEE-FIM	NA ¹	STIC incidence Ovarian cancer incidence
Pross 2021 Retrospective cohort Germany	N=191 women who underwent RRSO n=123 with known BRCA1 pathogenic variant n=53 with known BRCA2 pathogenic variant n=35 with both variants	Characteristics of the pathology protocol: • SEE-FIM • Experienced gynaecopathologist	NA ¹	 STIC incidence Ovarian cancer incidence

			Reference	
Study	Population	Test	standard	Outcomes
	n=1 with HNPCC variant n=1 with PALB2 variant n=8 with no specified variant n=5 with no variant Age at RSSO (mean (SD) years): 48.34 (9.19)			
Rabban 2011 USA Cross-sectional	N=134 women with a documented <i>BRCA</i> germline mutation undergoing RRSO n=74 with known <i>BRCA1</i> pathogenic variant n=60 with known <i>BRCA2</i> pathogenic variant Age at RSSO (mean (SD) years): Not reported but median (range), years: 46 (32-69)	Characteristics of the pathology protocol: • Gynecopathologist (gross (macroscopic) pathology) • Specialized pathologic evaluation protocol	NA ¹	STIC incidence Ovarian cancer incidence
Rhiem 2011 Germany Retrospective cohort	N=175 BRCA mutation carriers who had at least one ovary in situ, were free of ovarian cancer at the time of genetic testing and underwent RRSO n=92 with known BRCA1 pathogenic variant n=83 with known BRCA2 pathogenic variant Age at RSSO (mean (SD) years): Not reported but (median, (range), years): 47 (range not reported)	Characteristics of the pathology protocol: Routine method of examining pathological sections	NA ¹	 Ovarian cancer incidence
Samimi 2018	N=354 <i>BRCA</i> mutation carriers who	Characteristics of the pathology protocol:	NA ¹	• STIC

Study	Population	Test	Reference standard	Outcomes
	underwent RRSO	• SEE-FIM		incidence
Cross-sectional		 Dedicated 		
	n=354 with known BRCA1 or BRCA2	gynaecopathologist		
Canada	pathogenic variant			
	, ,			
	Age at RSSO (mean			
	(SD), years): 45.9 (13)			

- 1 H&E: haematoxylin and eosin; NA: not applicable; RRSO: risk-reducing salpingo oophorectomy; SEE-FIM:
- 2 protocol for sectioning and extensively examining the fimbriated end of the fallopian tube; SD: standard deviation;
- 3 STIC: serous tubal intraepithelial carcinoma
- 4 1. Histopathological examination of the surgical specimen from RRSO was effectively the reference standard in
- 5 these studies
- 6 See the full evidence tables in appendix D and the forest plots in appendix E.

7 Summary of the evidence

- 8 There was a lack of evidence from studies directly comparing pathology protocols and no
- 9 evidence on diagnostic accuracy outcomes. Instead, there was low to moderate quality
- 10 evidence from studies reporting the prevalence of occult ovarian cancer and STIC at risk
- 11 reducing salpingo-oophorectomy (RRSO). The overall prevalence of ovarian cancer in
- 12 surgical specimens from RRSO was 3.56% (95% CI 2.98 to 4.25%). The overall prevalence
- 13 of STIC in surgical specimens from RRSO was 3.11% (95% CI 2.43 to 3.96).
- 14 Similar prevalence rates were seen when the analyses were restricted to studies using the
- 15 SEE-FIM protocol, studies that reported having a dedicated gynaecopathologist and studies
- 16 reporting the use of immunohistochemistry. However it was invalid to compare for example
- 17 studies reporting use of SEE-FIM with studies that did not mention its use because according
- 18 to the committee's experience some of these studies were likely to have used SEE-FIM but
- 19 did not mention it because it was not the focus of the study.
- 20 The committee thought that age at surgery may contribute to this inconsistency with women
- 21 tending to have surgery at younger ages in more recent studies. However, in meta-
- 22 regression mean age at surgery was not a significant predictor of the effect size and the
- 23 residual heterogeneity remained serious (see Appendix L for the meta-regression analyses).

24 Economic evidence

25 Included studies

- 26 A systematic review of the economic literature was conducted but no economic studies were
- 27 identified which were applicable to this review question.
- 28 A single economic search was undertaken for all topics included in the scope of this
- 29 guideline. See supplementary material 2 for details.

30 Excluded studies

- 31 Economic studies not included in this review are listed, and reasons for their exclusion are
- 32 provided in appendix J.

33 Summary of included economic evidence

34 No economic studies were identified which were applicable to this review question.

1 Economic model

- 2 No economic modelling was undertaken for this review because the committee agreed that
- 3 other topics were higher priorities for economic evaluation.

4 Evidence statements

- 5 Economic
- 6 No economic studies were identified which were applicable to this review question.

7 The committee's discussion and interpretation of the evidence

8 The outcomes that matter most

- 9 Ovarian/tubal cancer incidence and serous tubal intraepithelial carcinoma incidence were
- 10 chosen as critical outcomes because it is critical for the pathology protocol to detect these
- 11 occult lesions if they exist. When such lesions are detected then the woman may need
- 12 additional staging or treatment. If any characteristics of the pathological protocol are
- 13 associated with a higher incidence then this suggests these characteristics make the protocol
- 14 more sensitive.
- 15 Diagnostic accuracy was also identified as a critical outcome because it measures the ability
- 16 of the pathology protocol to differentiate benign from malignant occult lesions: false positives
- 17 could lead to unnecessary further staging or treatment. False negatives would mean ovarian
- 18 cancer was missed and the person could be undertreated. The committee did not include
- 19 any further (important) outcomes because they agreed that the critical outcomes would
- 20 provide sufficient information to base recommendations on.

21 The quality of the evidence

- 22 The quality of the evidence for outcomes was assessed with GRADE and was rated low to
- 23 moderate. This was due to a serious risk of bias (reported in the included systematic
- 24 reviews) and very serious imprecision due to low event rates for all outcomes. For some
- 25 outcomes there was also serious inconsistency. The committee thought that age at surgery
- 26 may contribute to this inconsistency with women tending to have surgery at younger ages in
- 27 more recent studies. However, in meta-regression mean age at surgery was not a significant
- 28 predictor of the effect size and the residual heterogeneity remained serious.
- 29 No evidence was found for diagnostic accuracy outcomes, because the pathological
- 30 examination of the surgical specimen was generally considered the reference standard and
- 31 by definition its results could not be false positive or false negative. The committee
- 32 considered the prevalence of ovarian/tubal cancers and serous tubal intraepithelial
- 33 carcinoma detected in the surgical specimens were related to the sensitivity of the
- 34 pathological examination technique as more sensitive protocols would detect more
- 35 cancers.
- 36 Although there was a lack of evidence directly comparing pathology protocols the committee
- 37 agreed to make recommendations based on their experience as certain pathology protocols
- 38 have become a standard of care and they were aware of evidence from earlier cohort papers
- 39 that suggested cancers could be missed if they are not used.

40 Benefits and harms

- 41 Despite the low to moderate quality evidence the committee decided to make strong
- 42 recommendations on this topic because having a clearly defined detailed pathology protocol
- 43 can save lives. Although there was a lack of evidence comparing it to other protocols, the

- 1 committee agreed, based on their knowledge and experience, that people undergoing risk-
- 2 reducing surgery are at increased risk of having occult pre-cancerous or malignant lesions,
- 3 so intensive pathological investigation by a dedicated pathologist is needed even if the
- 4 evidence suggested that detection rates were similar without one. The committee
- 5 recommended that Sectioning and Extensively Examining the FIMbriated End (SEE-FIM)
- 6 should be used when carrying out risk reducing surgery. Compared to older pathology
- 7 protocols the SEE-FIM protocol examines a greater amount of tissue, with multiple sagittal
- 8 sections of fimbriae combined with 2 mm-thick sections of the remainder. Based on their
- 9 expertise they noted that this type of sectioning is necessary to maximise the detection of
- 10 early cancers, to allow for further staging or treatment if needed.
- 11 Based on expertise the committee noted that immunohistochemistry is a relatively cheap, yet
- 12 informative, investigation that is available in all NHS pathology laboratories.
- 13 Immunohistochemistry for p53 and ki67 helps in the identification of serous tubal
- 14 intraepithelial carcinoma (STIC) and high-grade serous ovarian carcinomas. The committee
- 15 agreed that investigations of these markers are only necessary if a pre-malignant or
- 16 malignant lesion is suspected on morphological examination. They should not be performed
- 17 in morphologically normal fallopian tubes because immunohistochemistry would not provide
- 18 any additional information or would even lead to false positives as p53 signatures are found
- 19 in normal tissue.
- 20 The committee noted once the adnexa have been removed from the body, it is impossible to
- 21 determine their laterality. They recommended that surgeons should ensure adnexal
- 22 specimens are submitted in 2 separate containers and labelled as either originating from the
- 23 left or right adnexa. This will enable pathologists to issue accurate reports.
- 24 The committee also agreed that peritoneal cytology is needed to correctly stage any pre-
- 25 cancerous or cancerous lesions and to detect occult primary peritoneal cancers which could
- 26 otherwise be missed.
- 27 Although the evidence review did not cover endometrial cancer the committee acknowledged
- 28 that risk reducing surgery for women with Lynch syndrome typically also involves
- 29 hysterectomy. Due to the increased risk of endometrial cancer in this group they
- 30 recommended that the entire endometrium should be submitted for pathological examination
- 31 to ensure that such cancers are identified and treated.

32 Cost effectiveness and resource use

- 33 The committee noted that there were no relevant published economic evaluations that had
- 34 been identified in this area. Therefore, they based their recommendations on the clinical
- 35 evidence, their knowledge and experience. They recognised that pathological investigations
- 36 are being carried out but that there is variation in the techniques that are being used. The
- 37 committee agreed that using the SEE-FIM pathology protocol would be the most effective
- 38 way to identify occult pre-cancerous or malignant lesion. This could lead to timelier
- 39 interventions and better outcomes. The recommendations in this area are standardising
- 40 practice and where practices will have to change it would not require significant additional
- 41 NHS resources to implement.

42 Recommendations supported by this evidence review

43 This evidence review supports recommendations 1.9.1 to 1.9.5 of the NICE guideline.

44 References – included studies

45 Bogaerts 2022

- 1 Bogaerts, J.M.A., Steenbeek, M.P., van Bommel, M.H.D. et al. Recommendations for
- 2 diagnosing STIC: a systematic review and meta-analysis. Virchows Archiv 480(4): 725-737,
- 3 2022

4 Cheng 2020

- 5 Cheng, Aoshuang, Li, Lei, Wu, Ming et al. Pathological findings following risk-reducing
- 6 salpingo-oophorectomy in BRCA mutation carriers: A systematic review and meta-analysis.
- 7 European journal of surgical oncology: the journal of the European Society of Surgical
- 8 Oncology and the British Association of Surgical Oncology 46(1): 139-147, 2020

9 Pross 2021

- 10 Pross, T., Karsten, M.M., Blohmer, J.-U. et al. Role of Routine Peritoneal Biopsies during
- 11 Risk Reducing Salpingo-Oophorectomy (RRSO). Geburtshilfe und Frauenheilkunde 81(9):
- 12 1031-1038, 2021

13 Rabban 2011

- 14 Rabban, J.T., MacKey, A., Powell, C.B. et al. Correlation of macroscopic and microscopic
- 15 pathology in risk reducing salpingo-oophorectomy: Implications for intraoperative specimen
- 16 evaluation. Gynecologic Oncology 121(3): 466-471, 2011

17 Rhiem 2011

- 18 Rhiem, K., Foth, D., Wappenschmidt, B. et al. Risk-reducing salpingo-oophorectomy in
- 19 BRCA1 and BRCA2 mutation carriers. Archives of Gynecology and Obstetrics 283(3): 623-
- 20 627, 2011

21 Samimi 2018

- 22 Samimi, G., Trabert, B., Geczik, A.M. et al. Population Frequency of Serous Tubal
- 23 Intraepithelial Carcinoma (STIC) in Clinical Practice Using SEE-Fim Protocol. JNCI Cancer
- 24 Spectrum 2(4): pky061, 2018

25

26

1 Appendices

2 Appendix A Review protocols

- 3 Review protocol for review question: What pathology protocol for handling specimens from risk reducing surgery should
- 4 be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?

5 Table 3: Review protocol

ID	Field	Content
0.	PROSPERO registration number	42022360536
1.	Review title	Effectiveness of pathology protocols for handling specimens from risk-reducing surgery for women at increased risk of familial ovarian cancer in the diagnosis of ovarian cancer
2.	Review question	What pathology protocol for handling specimens from risk reducing surgery should be followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?
3.	Objective	To establish the effectiveness of pathology protocols for handling specimens from risk-reducing surgery for women at increased risk of familial ovarian cancer in the diagnosis of ovarian cancer
4.	Searches	The following databases will be searched: Cochrane Central Register of Controlled Trials (CENTRAL) Cochrane Database of Systematic Reviews (CDSR) Embase MEDLINE, MEDLINE in Process & MEDLINE Epub Ahead of Print Epistemonikos Searches will be restricted by: English language studies Human studies

ID	Field	Content
		The searches will be re-run 6 weeks before final submission of the review and further studies retrieved for inclusion. The full search strategies for MEDLINE database will be published in the final review.
5.	Condition or domain being studied	Familial ovarian cancer
6.	Population	Inclusion: Women at increased risk of familial ovarian cancer who had a risk-reducing surgery Exclusion: none
7.	Test	Pathology protocol for handling specimens from risk-reducing surgeries for women at increased risk of ovarian cancer
8.	Reference standard	• Protocol for sectioning and extensively examining the fimbriated end (SEE-FIM) of the fallopian tube specified in the study
9.	Types of studies to be included	Cross sectional diagnostic accuracy studies or systematic reviews of such studies
10.	Other exclusion criteria	 Inclusion criteria: Full text papers Exclusion criteria: Conference abstracts Papers that do not include methodological details will not be included as they do not provide sufficient information to evaluate risk of bias/study quality. Non-English language articles
11.	Context	Pathology protocol to assess histological samples removed during risk-reducing surgery in women at increased risk of familiar ovarian cancer in primary, secondary or tertiary care
12.	Primary outcomes (critical outcomes)	 Ovarian/tubal cancer incidence Serous tubal intraepithelial carcinoma (STIC) incidence Diagnostic accuracy, for example: sensitivity

ID	Field	Content
		 specificity likelihood ratios (positive and negative) area under the ROC curve
13.	Secondary outcomes (important outcomes)	None
14.	Data extraction (selection and coding)	All references identified by the searches and from other sources will be uploaded into EPPI-Reviewer and de-duplicated. Titles and abstracts of the retrieved citations will be screened to identify studies that potentially meet the inclusion criteria outlined in the review protocol. Dual sifting will be performed on at least 10% of records (or 300 records, whichever is smaller); 90% agreement is required. Disagreements will be resolved via discussion between the two reviewers, and consultation with senior staff if necessary. Full versions of the selected studies will be obtained for assessment. Studies that fail to meet the inclusion criteria once the full version has been checked will be excluded at this stage. Each study excluded after checking the full version will be listed, along with the reason for its exclusion. A standardised form will be used to extract data from studies. The following data will be extracted: study details (reference, country where study was carried out, type and dates), participant characteristics, inclusion and exclusion criteria, details of the interventions if relevant, setting and follow-up, relevant outcome data and source of funding. One reviewer will extract relevant data into a standardised form, and this will be quality assessed by a senior reviewer.
15.	Risk of bias (quality) assessment	Quality assessment of individual studies will be performed using the following checklist: QUADAS-2 for diagnostic accuracy studies The quality assessment will be performed by one reviewer and this will be quality assessed by a senior reviewer
16.	Strategy for data synthesis	Depending on the availability of the evidence, the findings will be summarised narratively or quantitatively. Where appropriate, meta-analysis of diagnostic test accuracy will be performed using the metandi and midas applications in STATA or WinBugs and Cochrane Review Manager. Sensitivity and specificity with 95% CIs will be used as the outcome for diagnostic test usefulness. Diagnostic accuracy parameters will be obtained from the studies or calculated by the technical team using data from the studies. Validity

ID	Field	Content
		The confidence in the findings across all available evidence will be evaluated for each outcome using an adaptation of the 'Grading of Recommendations Assessment, Development and Evaluation (GRADE) toolbox' developed by the international GRADE working group: http://www.gradeworkinggroup.org/
		The risk of bias and indirectness GRADE domains will be based on the corresponding items in the QUADAS 2 checklist. Inconsistency will be based on visual inspection of forest plots and using statistical measures of heterogeneity (if meta-analysis has been done at a specified threshold).
		The GRADE imprecision domain will be judged using thresholds for likelihood ratios [LR] For positive likelihood ratios:
		• Useful test LR ≥ 5.0
		Not a useful test 1 < LR < 2.0
		For negative likelihood ratios:
		Useful test LR ≤ 0.2 Note that 10.5 of R 14.0 Note that 10.0 Note
		 Not a useful test 0.5 < LR ≤ 1.0 These thresholds will be used to determine whether imprecision is not serious, serious or very serious depending on whether confidence intervals cross zero, one or two thresholds.
17.	Analysis of sub-	Evidence will be stratified by:
	groups	• In situ lesions
		Invasive lesions
		Evidence will be subgrouped by the following only in the event that there is significant heterogeneity in outcomes: Groups identified in the equality considerations section of the scope:
		socioeconomic and geographical factors
		• age
		ethnicitydisabilities
		 disabilities people for whom English is not their first language or who have other communication needs
		• trans people (particularly trans men)
		• non-binary people

ID	Field	Content	Content		
		recommendations should a differential effect of inter	be made for distinct groups. ventions in distinct groups. I , whether it is reasonable to	f there is a lack of evidence in or	ase basis if separate y be made where there is evidence of ne group, the committee will consider, reventions will have similar effects in
18.	Type and method of review		Intervention		
		\boxtimes	Diagnostic		
			Prognostic		
			Qualitative		
			Epidemiologic		
			Service Delivery		
			Other (please specify)		
19.	Language	English			
20.	Country	England			
21.	Anticipated or actual start date	January 2022			
22.	Anticipated completion date	13 March 2024			
23.	Stage of review at time of this submission	Review stage		Started	Completed

ID	Field	Content		
		Preliminary searches		
		Piloting of the study selection process		
		Formal screening of search results against eligibility criteria		
		Data extraction		
		Risk of bias (quality) assessment		
		Data analysis		
24.	Named contact	5a. Named contactNational Institute for Health and Care Excelle5b Named contact e-mail foc@nice.org.uk	nce (NICE)	

ID	Field	Content
		5e Organisational affiliation of the review NICE
25.	Review team members	From the Guideline Development Team NGA, Centre for Guidelines, National Institute for Health and Care Excellence (NICE) • Senior Systematic Reviewer • Systematic Reviewer
26.	Funding sources/sponsor	This systematic review is being completed by NICE
27.	Conflicts of interest	All guideline committee members and anyone who has direct input into NICE guidelines (including the evidence review team and expert witnesses) must declare any potential conflicts of interest in line with NICE's code of practice for declaring and dealing with conflicts of interest. Any relevant interests, or changes to interests, will also be declared publicly at the start of each guideline committee meeting. Before each meeting, any potential conflicts of interest will be considered by the guideline committee Chair and a senior member of the development team. Any decisions to exclude a person from all or part of a meeting will be documented. Any changes to a member's declaration of interests will be recorded in the minutes of the meeting. Declarations of interests will be published with the final guideline.
28.	Collaborators	Development of this systematic review will be overseen by an advisory committee who will use the review to inform the development of evidence-based recommendations in line with section 3 of Developing NICE guidelines: the manual . Members of the guideline committee are available on the NICE website: NICE guideline webpage .
29.	Other registration details	None
30.	Reference/URL for published protocol	https://www.crd.york.ac.uk/PROSPERO/display record.php?RecordID=360536
31.	Dissemination plans	 NICE may use a range of different methods to raise awareness of the guideline. These include standard approaches such as: notifying registered stakeholders of publication publicising the guideline through NICE's newsletter and alerts issuing a press release or briefing as appropriate, posting news articles on the NICE website, using social media channels, and publicising the guideline within NICE.

ID	Field	Content	
32.	Keywords	Female; Humans; Ov	arian Neoplasms
33.	Details of existing review of same topic by same authors	None	
34.	Current review status		Ongoing
			Completed but not published
			Completed and published
			Completed, published and being updated
			Discontinued
35.	Additional information	None	
36.	Details of final publication	www.nice.org.uk	

1 Appendix B Literature search strategies

- 2 Literature search strategies for review question: What pathology protocol for
- 3 handling specimens from risk reducing surgery should be followed for risk-
- 4 reducing surgery for women at increased risk of familial ovarian cancer?
- 5 Database: Ovid MEDLINE(R) ALL
- 6 Date of last search: 21/12/2023

#	Searches
1	exp Ovarian Neoplasms/
2	(ovar* adj5 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).ti,ab,kf.
3	or/1-2
4	exp Breast Neoplasms/
5	exp "Neoplasms, Ductal, Lobular, and Medullary"/
6	((breast* or mammary) adj5 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or dcis or ductal or infiltrat* or intraductal* or lobular or medullary or metasta*)).ti,ab,kf.
7	or/4-6
8	3 or 7
9	exp Genetic Predisposition to Disease/
10	Pedigree/
11	exp Neoplastic Syndromes, Hereditary/
12	((hereditary or inherit* or familial) adj3 (nonpolyposis or non polyposis) adj3 (colon or colorectal or bowel) adj3 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).ti,ab,kf.
13	((lynch or Muir Torre) adj2 (syndrome* or cancer*)).ti,ab,kf.
14	HNPCC.ti,ab,kf.
15	(peutz* or intestin* polyposis or STK11 or LKB1 or PJS or hLKB1 or (perior* adj1 lentigino*)).ti,ab,kf.
16	((hamartoma* or "polyps and spots" or cowden*) adj2 (syndrome* or polyp*)).ti,ab,kf.
17	((hereditary or inherit* or familial or adenomato* or attenuated) adj3 polyp* adj3 (coli or colon or colorectal or bowel or rectum or intestin* or gastrointestin* or syndrome* or multiple)).ti,ab,kf.
18	gardner* syndrome*.ti,ab,kf.
19	(MUTYH or MYH or FAP or AFAP or APC).ti,ab,kf.
20	((familial or inherit* or heredit* or predispos* or pre dispos* or susceptib* or ancestr* or genealog* or descent) adj2 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).ti,ab,kf.
21	("hereditary breast and ovarian cancer" or HBOC or Li Fraumeni syndrome or SBLA or LFS).ti,ab,kf.
22	(famil* adj2 histor* adj2 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).ti,ab,kf.
23	risk factors/
24	((risk* or probabil*) adj3 (high* or increas* or factor* or rais*) adj3 (mutat* or malignan* or gene* or variant*)).ti,ab,kf.
25	((carrier* or gene*) adj3 mutat*).ti,ab,kf.
26	exp Genes, Tumor Suppressor/
27	exp Tumor Suppressor Proteins/
28	((tumo?r* or cancer* or metastas?s or growth*) adj2 (suppress* adj1 (gene* or protein*))).ti,ab,kf.
29	(anti oncogene* or antioncogene* or onco suppressor* or oncosuppressor*).ti,ab,kf.
30	or/9-29
31	8 and 30
32	exp Fanconi Anemia Complementation Group Proteins/
33	(Fanconi An?emia adj3 protein*).ti,ab,kf.
34	(BRCA* or IRIS or PSCP or BRCC1 or BRIP1 or BACH1 or FANC* or PNCA* or RNF53 or PPP1R53 or FAD* or FACD or GLM3 or BRCC2 or XRCC11 or TP53 or P53 or PALB2 or RAD51* or R51H3 or BROVCA* or TRAD or BARD1 or MLH1 or MSH2 or MSH6 or PMS2).ti,ab,kf.
35	("breast cancer gene 1" or "breast cancer gene 2").ti,ab.
36	Rad51 Recombinase/

#	Searches
37	Ataxia Telangiectasia Mutated Proteins/
38	((Ataxia telangiectasia adj1 mutated adj1 (protein* or kinase*)) or ATM or AT1 or ATA or ATC or ATD or ATDC or ATE or TEL1 or TELO1).ti,ab,kf.
39	Checkpoint Kinase 2/
40	(((checkpoint or check point or serine threonine) adj2 (protein* or kinase*)) or CHEK2 or CDS1 or CHK2 or HuCds1 or LFS2 or PP1425 or RAD53 or hCds1 or hchk2).ti,ab,kf.
41	Carcinoma, Small Cell/ge [Genetics]
42	(small cell adj2 (cancer* or carcinoma*) adj2 gene*).tw,kf.
43	(SMARCA4 or BRG1 or CSS4 or SNF2 or SWI2 or MRD16 or RTPS2 or BAF190 or SNF2L4 or SNF2LB or hSNF2b or BAF190A or SNF2-beta).tw,kf.
44	exp Sertoli-Leydig Cell Tumor/
45	(((Sertoli or leydig) adj3 (tumo?r* or adenoma* or cancer* or carcinoma* or neoplas* or metasta*)) or arrhenoblastoma* or andr?oblastoma* or SLCT or gynandroblastoma*).tw,kf.
46	(DICER?? or DCR1 or GLOW or MNG1 or aviD or HERNA or RMSE2 or K12H4?8-LIKE).tw,kf.
47	Epithelial Cell Adhesion Molecule/
48	Epithelial cell adhesion molecule*.tw,kf.
49	(EPCAM* or EP CAM or ESA or KSA or M4S1 or MK-1 or DIAR5 or EGP??? or Ly74 or gp40 or CD326 or GA733?? or GA 733 or KS1?4 or MIC18 or TROP1 or BerEp4 or HNPCC8 or LYNCH8 or MOC-31 or Ber-Ep4 or TACSTD1).tw,kf.
50	(serous tubal intraepithelial carcinoma* or STIC).tw,kf.
51	or/32-50
52	31 or 51
53	exp Salpingectomy/
54	exp Ovariectomy/
55	(oophorectom* or salping* or ovar??ctom* or ovar??tom* or BSO or RRSO* or RRSDO or RRSDO or RRSDO).tw,kf.
56	(((fallopian* or ovar* or tubal) adj4 (amputat* or resect* or excis* or surg* or remov* or extirpat*)) or tubectom*).tw,kf.
57	Hysterectomy, Vaginal/ or Hysterectomy/
58	(colpohysterectom* or panhysterectom* or hysterocolpectom* or hysterectom*).tw,kf.
59	((supervaginal or supravaginal or uterus* or uteri*) adj3 (amputat* or resect* or excis* or surg* or remov* or extirpat*)).tw,kf.
60	(gyn?ecolog* adj2 surg*).tw,kf.
61	exp Prophylactic Surgical Procedures/
62	(((risk adj2 reduc*) or prevent* or prophyla*) adj2 surg*).tw,kf.
63	risk reduction behavior/
64	(risk adj2 reduc* adj2 (behavio?r* or choice* or strateg* or decision*)).tw,kf.
65	or/53-64
66	52 and 65
67	exp Histology/
68	exp Pathology/
69	exp Cells/pa [Pathology]
70 71	exp Tissues/pa [Pathology] exp Cytodiagnosis/
71	exp Cytodiagnosis/ (cytolog* or cytodiag* or cytomorph* or cytopatholog*).tw,kf.
73	(cytolog* or cytodiag* or cytomorph* or cytopatholog*).tw,ki. (immunohistochem* or immunocytochem*).tw,kf.
73 74	((specimen* or tissue* or cell* or sample* or smear* or scrap*) adj5 (identif* or examin* or evaluat* or analys* or
74	histolog* or histopath* or pathol* or diagnos* or remov* or collect* or protocol* or standard* or guide* or plan* or practice* or process* or dissect* or pathog*)).tw,kf.
75	((tubal or fallopian* or fimbria*) adj4 (brush* or cytobrush* or scrap* or smear*)).tw,kf.
76	or/67-75
77	66 and 76
78	letter/
79	editorial/
80	news/
81	exp historical article/
82	Anecdotes as Topic/
83	comment/
84	case report/

#	Searches
85	(letter or comment*).ti.
86	or/78-85
87	randomized controlled trial/ or random*.ti,ab.
88	86 not 87
89	animals/ not humans/
90	exp Animals, Laboratory/
91	exp Animal Experimentation/
92	exp Models, Animal/
93	exp Rodentia/
94	(rat or rats or mouse or mice or rodent*).ti.
95	or/88-94
96	77 not 95
97	limit 96 to English language

1 Database: Embase

2 Date of last search: 21/12/2022

#	Searches
1	exp ovary tumor/
2	(ovar* adj5 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).tw,kf.
3	or/1-2
4	exp breast tumor/
5	((breast* or mammary) adj5 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or dcis or ductal or infiltrat* or intraductal* or lobular or medullary or metasta*)).tw,kf.
6	or/4-5
7	3 or 6
8	exp genetic predisposition/
9	pedigree/
10	exp hereditary tumor syndrome/
11	((hereditary or inherit* or familial) adj3 (nonpolyposis or non polyposis) adj3 (colon or colorectal or bowel) adj3 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).tw,kf.
12	((lynch or Muir Torre) adj2 (syndrome* or cancer*)).tw,kf.
13	HNPCC.tw,kf.
14	(peutz* or intestin* polyposis or STK11 or LKB1 or PJS or hLKB1 or (perior* adj1 lentigino*)).tw,kf.
15	((hamartoma* or "polyps and spots" or cowden*) adj2 (syndrome* or polyp*)).tw,kf.
16	((hereditary or inherit* or familial or adenomato* or attenuated) adj3 polyp* adj3 (coli or colon or colorectal or bowel or rectum or intestin* or gastrointestin* or syndrome* or multiple)).tw,kf.
17	gardner* syndrome*.tw,kf.
18	(MUTYH or MYH or FAP or AFAP or APC).tw,kf.
19	((familial or inherit* or heredit* or predispos* or pre dispos* or susceptib* or ancestr* or genealog* or descent) adj2 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).tw,kf.
20	((hereditary breast and ovarian cancer) or HBOC or Li Fraumeni syndrome or SBLA or LFS).tw,kf.
21	(famil* adj2 histor* adj2 (cancer* or neoplas* or carcino* or malignan* or tumo?r* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)).tw,kf.
22	risk factor/
23	((risk* or probabil*) adj3 (high* or increas* or factor* or rais*) adj3 (mutat* or malignan* or gene* or variant*)).tw,kf.
24	((carrier* or gene*) adj3 mutat*).tw,kf.
25	tumor suppressor gene/
26	exp tumor suppressor protein/
27	((tumo?r* or cancer* or metastas?s or growth*) adj2 (suppress* adj1 (gene* or protein*))).tw,kf.
28	(anti oncogene* or antioncogene* or onco suppressor* or oncosuppressor*).tw,kf.
29	or/8-28

#	Searches
30	7 and 29
31	Fanconi anemia protein/
32	(Fanconi An?emia adj3 protein*).tw,kf.
33	(BRCA* or IRIS or PSCP or BRCC1 or BRIP1 or BACH1 or FANC* or PNCA* or RNF53 or PPP1R53 or FAD* or FACD or GLM3 or BRCC2 or XRCC11 or TP53 or P53 or PALB2 or RAD51* or R51H3 or BROVCA* or TRAD or BARD1 or MLH1 or MSH2 or MSH6 or PMS2).tw,kf.
34	("breast cancer gene 1" or "breast cancer gene 2").tw.
35	Rad51 protein/
36	ATM protein/
37	((Ataxia telangiectasia adj1 mutated adj1 (protein* or kinase*)) or ATM or AT1 or ATA or ATC or ATD or ATDC or ATE or TEL1 or TELO1).tw,kf.
38	checkpoint kinase 2/
39	(((checkpoint or check point or serine threonine) adj2 (protein* or kinase*)) or CHEK2 or CDS1 or CHK2 or HuCds1 or LFS2 or PP1425 or RAD53 or hCds1 or hchk2).tw,kf.
40	small cell carcinoma/
41	genetics/
42	40 and 41
43	(small cell adj2 (cancer* or carcinoma*) adj2 gene*).tw,kf.
44	(SMARCA4 or BRG1 or CSS4 or SNF2 or SWI2 or MRD16 or RTPS2 or BAF190 or SNF2L4 or SNF2LB or hSNF2b or BAF190A or SNF2-beta).tw,kf.
45	androblastoma/ or Sertoli cell tumor/ or Leydig cell tumor/
46	(((Sertoli or leydig) adj3 (tumo?r* or adenoma* or cancer* or carcinoma* or neoplas* or metasta*)) or arrhenoblastoma* or andr?oblastoma* or SLCT or gynandroblastoma*).tw,kf.
47	(DICER?? or DCR1 or GLOW or MNG1 or aviD or HERNA or RMSE2 or K12H4?8-LIKE).tw,kf.
48	epithelial cell adhesion molecule/
49	Epithelial cell adhesion molecule*.tw,kf.
50	(EPCAM* or EP CAM or ESA or KSA or M4S1 or MK-1 or DIAR5 or EGP??? or Ly74 or gp40 or CD326 or GA733?? or GA 733 or KS1?4 or MIC18 or TROP1 or BerEp4 or HNPCC8 or LYNCH8 or MOC-31 or Ber-Ep4 or TACSTD1).tw,kf.
51	(serous tubal intraepithelial carcinoma* or STIC).tw,kf.
52	or/31-39,42-51
53	30 or 52
54	salpingectomy/
55	exp ovariectomy/
56	(oophorectom* or salping* or ovar??ctom* or ovar??tom* or BSO or RRSO* or RRBSO or RRSDO or RRESDO).tw,kf.
57	(((fallopian* or ovar* or tubal) adj4 (amputat* or resect* or excis* or surg* or remov* or extirpat*)) or tubectom*).tw,kf.
58	exp hysterectomy/
59	(colpohysterectom* or panhysterectom* or hysterocolpectom* or hysterectom*).tw,kf.
60	((supervaginal or supravaginal or uterus* or uteri*) adj3 (amputat* or resect* or excis* or surg* or remov* or extirpat*)).tw,kf.
61	(gyn?ecolog* adj2 surg*).tw,kf.
62	prophylactic surgical procedure/
63	(((risk* adj2 reduc*) or prevent* or prophyla*) adj2 surg*).tw,kf. risk reduction/
64 65	(risk* adj2 reduc* adj2 (behavio?r* or choice* or strateg* or decision*)).tw,kf.
66	or/54-65
67	53 and 66
68	exp histology/
69	exp pathology/
70	exp cells/
71	exp tissues/
72	70 or 71
73	exp pathology/
74	72 and 73
75	exp cytodiagnosis/

#	Searches
76	(cytolog* or cytodiag* or cytomorph* or cytopatholog*).tw,kf.
77	(immunohistochem* or immunocytochem*).tw,kf.
78	((specimen* or tissue* or cell* or sample* or smear* or scrap*) adj5 (identif* or examin* or evaluat* or analys* or histolog* or histopath* or pathol* or diagnos* or remov* or collect* or protocol* or standard* or guide* or plan* or practice* or process* or dissect* or pathog*)).tw,kf.
79	((tubal or fallopian* or fimbria*) adj4 (brush* or cytobrush* or scrap* or smear*)).tw,kf.
80	or/68-69,74-79
81	67 and 80
82	letter.pt. or letter/
83	note.pt.
84	editorial.pt.
85	case report/ or case study/
86	(letter or comment*).ti.
87	or/82-86
88	randomized controlled trial/ or random*.ti,ab.
89	87 not 88
90	animal/ not human/
91	nonhuman/
92	exp Animal Experiment/
93	exp Experimental Animal/
94	animal model/
95	exp Rodent/
96	(rat or rats or mouse or mice or rodent*).ti.
97	or/89-96
98	81 not 97
99	(conference abstract* or conference review or conference paper or conference proceeding).db,pt,su.
100	98 not 99
101	limit 100 to English language

- Database: Cochrane Database of Systematic Reviews, Issue 12 of 12, December 2022
 and Cochrane Central Register of Controlled Trials, Issue 11 of 12, November 2022

3 Date of last search: 21/12/2022

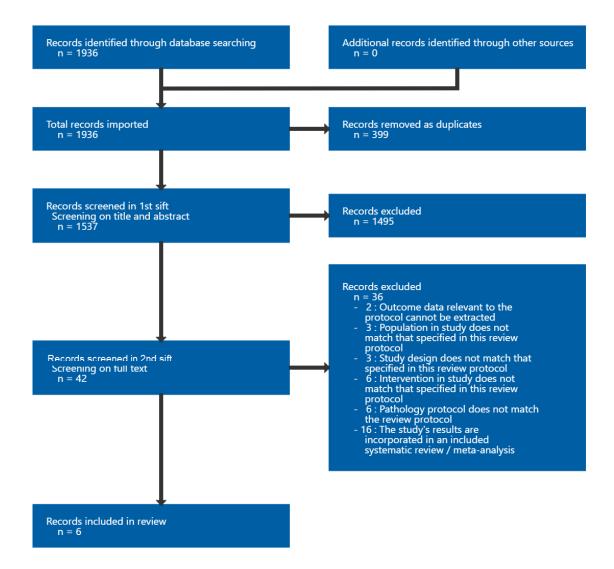
#	Searches
#1	MeSH descriptor: [Ovarian Neoplasms] explode all trees
#2	(ovar* NEAR/5 (cancer* or neoplas* or carcino* or malignan* or tumor* or tumour* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)):ti,ab,kw
#3	#1 or #2
#4	MeSH descriptor: [Breast Neoplasms] explode all trees
#5	MeSH descriptor: [Neoplasms, Ductal, Lobular, and Medullary] explode all trees
#6	((breast* or mammary) NEAR/5 (cancer* or neoplas* or carcino* or malignan* or tumor* or tumour* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or dcis or ductal or infiltrat* or intraductal* or lobular or medullary or metasta*)):ti,ab,kw
#7	{OR #4-#6}
#8	#3 OR #7
#9	MeSH descriptor: [Genetic Predisposition to Disease] explode all trees
#10	MeSH descriptor: [Pedigree] this term only
#11	MeSH descriptor: [Neoplastic Syndromes, Hereditary] explode all trees
#12	((hereditary or inherit* or familial) NEAR/3 (nonpolyposis or "non polyposis") NEAR/3 (colon or colorectal or bowel) NEAR/3 (cancer* or neoplas* or carcino* or malignan* or tumor* or tumour* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)):ti,ab,kw
#13	((lynch or "Muir Torre") NEAR/2 (syndrome* or cancer*)):ti,ab,kw
#14	HNPCC:ti,ab,kw
#15	(peutz* or intestin* NEXT polyposis or STK11 or LKB1 or PJS or hLKB1 or (perior* NEAR/1 lentigino*)):ti,ab,kw
#16	((hamartoma* or "polyps and spots" or cowden*) NEAR/2 (syndrome* or polyp*)):ti,ab,kw

#	Searches
#17	((hereditary or inherit* or familial or adenomato* or attenuated) NEAR/3 polyp* NEAR/3 (coli or colon or colorectal or
	bowel or rectum or intestin* or gastrointestin* or syndrome* or multiple)):ti,ab,kw
#18	gardner* NEXT syndrome*:ti,ab,kw
#19	(MUTYH or MYH or FAP or AFAP or APC):ti,ab,kw
#20	((familial or inherit* or heredit* or predispos* or pre NEXT dispos* or susceptib* or ancestr* or genealog* or descent) NEAR/2 (cancer* or neoplas* or carcino* or malignan* or tumor* or tumuor* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)):ti,ab,kw
#21	("hereditary breast and ovarian cancer" or HBOC or "Li Fraumeni syndrome" or SBLA or LFS):ti,ab,kw
#22	(famil* NEAR/2 histor* NEAR/2 (cancer* or neoplas* or carcino* or malignan* or tumor* or tumour* or adenocarcinoma* or sarcoma* or angiosarcoma* or lymphoma* or leiomyosarcoma* or metasta*)):ti,ab,kw
#23	MeSH descriptor: [Risk Factors] this term only
#24	((risk* or probabil*) NEAR/3 (high* or increas* or factor* or rais*) NEAR/3 (mutat* or malignan* or gene* or variant*)):ti,ab,kw
#25	((carrier* or gene*) NEAR/3 mutat*):ti,ab,kw
#26	MeSH descriptor: [Genes, Tumor Suppressor] explode all trees
#27	MeSH descriptor: [Tumor Suppressor Proteins] explode all trees
#28	((tumor* or tumour* or cancer* or metastasis or metastases or growth*) NEAR/2 (suppress* NEAR/1 (gene* or protein*))):ti,ab,kw
#29	(anti NEXT oncogene* or antioncogene* or onco NEXT suppressor* or oncosuppressor*):ti,ab,kw
#30	{OR #9-#29}
#31	#8 AND #30
#32	MeSH descriptor: [Fanconi Anemia Complementation Group Proteins] explode all trees
#33	(Fanconi NEXT Anemia NEAR/3 protein*):ti,ab,kw
#34	(BRCA* or IRIS or PSCP or BRCC1 or BRIP1 or BACH1 or FANC* or PNCA* or RNF53 or PPP1R53 or FAD* or FACD or GLM3 or BRCC2 or XRCC11 or TP53 or P53 or PALB2 or RAD51* or R51H3 or BROVCA* or TRAD or BARD1 or MLH1 or MSH2 or MSH6 or PMS2):ti,ab,kw
#35	("breast cancer gene 1" or "breast cancer gene 2"):ti,ab,kw
#36	MeSH descriptor: [Rad51 Recombinase] this term only
#37	MeSH descriptor: [Ataxia Telangiectasia Mutated Proteins] this term only
#38	("Ataxia telangiectasia" NEAR/1 mutated NEXT (protein* or kinase*)):ti,ab,kw
#39	(ATM or AT1 or ATA or ATC or ATD or ATDC or ATE or TEL1 or TELO1):ti,ab,kw
#40	MeSH descriptor: [Checkpoint Kinase 2] this term only
#41	((checkpoint or "check point" or "serine threonine") NEAR/2 (protein* or kinase*)):ti,ab,kw
#42	(CHEK2 or CDS1 or CHK2 or HuCds1 or LFS2 or PP1425 or RAD53 or hCds1 or hchk2):ti,ab,kw
#43	MeSH descriptor: [Carcinoma, Small Cell] explode all trees and with qualifier(s): [genetics - GE]
#44	("small cell" NEAR/2 (cancer* or carcinoma*) NEAR/2 gene*):ti,ab,kw
#45	(SMARCA4 or BRG1 or CSS4 or SNF2 or SWI2 or MRD16 or RTPS2 or BAF190 or SNF2L4 or SNF2LB or hSNF2b or BAF190A or "SNF2 beta"):ti,ab,kw
#46	MeSH descriptor: [Sertoli-Leydig Cell Tumor] explode all trees
#47	(((Sertoli or leydig) NEAR/3 (tumor* or tumour* or adenoma* or cancer* or carcinoma* or neoplas* or metasta*)) or arrhenoblastoma* or androblastoma* or andreoblastoma* or SLCT or gynandroblastoma*):ti,ab,kw
#48	(DICER or DICER1 or DICER1e or DCR1 or GLOW or MNG1 or aviD or HERNA or RMSE2 or "K12H4.8 LIKE"):ti,ab,kw
#49	MeSH descriptor: [Epithelial Cell Adhesion Molecule] this term only
#50	Epithelial NEXT cell NEXT adhesion NEXT molecule*:ti,ab,kw
#51	(EPCAM* or EP CAM or ESA or KSA or M4S1 or MK-1 or DIAR5 or EGP* or Ly74 or gp40 or CD326 or GA733* or GA 733 or KS14 or MIC18 or TROP1 or BerEp4 or HNPCC8 or LYNCH8 or MOC-31 or Ber-Ep4 or TACSTD1):ti,ab,kw
#52	(serous NEXT tubal NEXT intraepithelial NEXT carcinoma* or STIC):ti,ab,kw
#53	{OR #32-#52}
#54	#31 OR #53
#55	MeSH descriptor: [Salpingectomy] explode all trees
#56	MeSH descriptor: [Ovariectomy] explode all trees
#57	(oophorectom* or salping* or ovariectom* or ovarectom* or ovariotom* or ovarotom* or BSO or RRSO* or RRSDO or RRSDO):ti,ab,kw
#58	(((fallopian* or ovar* or tubal) NEAR/4 (amputat* or resect* or excis* or surg* or remov* or extirpat*)) or tubectom*):ti,ab,kw
#59	MeSH descriptor: [Hysterectomy, Vaginal] this term only

#	Searches	
#60	MeSH descriptor: [Hysterectomy] this term only	
#61	(colpohysterectom* or panhysterectom* or hysterocolpectom* or hysterectom*):ti,ab,kw	
#62	((supervaginal or supravaginal or uterus* or uteri*) NEAR/3 (amputat* or resect* or excis* or surg* or remov* or extirpat*)):ti,ab,kw	
#63	((gynecolog* or gynaecolog*) NEAR/2 surg*):ti,ab,kw	
#64	MeSH descriptor: [Prophylactic Surgical Procedures] explode all trees	
#65	(((risk* NEAR/2 reduc*) or prevent* or prophyla*) NEAR/2 surg*):ti,ab,kw	
#66	MeSH descriptor: [Risk Reduction Behavior] this term only	
#67	(risk* NEAR/2 reduc* NEAR/2 (behavior* or behaviour* or choice* or strateg* or decision*)):ti,ab,kw	
#68	{OR #55-#67}	
#69	#54 AND #68	
#70	MeSH descriptor: [Histology] explode all trees	
#71	MeSH descriptor: [Pathology] explode all trees	
#72	MeSH descriptor: [Cells] explode all trees and with qualifier(s): [pathology - PA]	
#73	MeSH descriptor: [Tissues] explode all trees and with qualifier(s): [pathology - PA]	
#74	MeSH descriptor: [Cytodiagnosis] explode all trees	
#75	(cytolog* or cytodiag* or cytomorph* or cytopatholog*):ti,ab,kw	
#76	(immunohistochem* or immunocytochem*):ti,ab,kw	
#77	((specimen* or tissue* or cell* or sample* or smear* or scrap*) NEAR/5 (identif* or examin* or evaluat* or analys* or histolog* or histopath* or pathol* or diagnos* or remov* or collect* or protocol* or standard* or guide* or plan* or practice* or process* or dissect* or pathog*)):ti,ab,kw	
#78	((tubal or fallopian* or fimbria*) NEAR/4 (brush* or cytobrush* or scrap* or smear*)):ti,ab,kw	
#79	{OR #70-#78}	
#80	#69 AND #79	
#81	conference:pt or (clinicaltrials or trialsearch):so	
#82	#80 NOT #81	

1 Database: Epistemonikos

2 Date of last search: 21/12/2022


#	Searches
1	(advanced_title_en:(((ovarian OR breast) AND (familial OR hered*) AND cancer)) OR advanced_abstract_en:(((ovarian OR breast) AND (familial OR hered*) AND cancer)))
2	(advanced_title_en:((oophorectom* OR salping* OR ovariectom* OR ovariotom* OR BSO OR RRSO* OR RRBSO OR RRSDO OR RRSDO OR RRSDO OR colpohysterectom* OR panhysterectom* OR hysterocolpectom* OR hysterectom*)) OR advanced_abstract_en:((oophorectom* OR salping* OR ovariectom* OR ovariotom* OR BSO OR RRSO* OR RRBSO OR RRSDO OR RRSDO OR colpohysterectom* OR panhysterectom* OR hysterocolpectom* OR hysterectom*)))
3	(advanced_title_en:(((specimen* OR tissue* OR cell* OR sample* OR smear* OR scrap*) AND (identif* OR examin* OR evaluat* OR analys* OR histolog* OR histopath* OR pathol* OR diagnos* OR remov* OR collect* OR protocol* OR standard* OR guide* OR plan* OR practice* OR process* OR dissect* OR pathog*))) OR advanced_abstract_en:(((specimen* OR tissue* OR cell* OR sample* OR smear* OR scrap*) AND (identif* OR examin* OR evaluat* OR analys* OR histolog* OR histopath* OR pathol* OR diagnos* OR remov* OR collect* OR protocol* OR standard* OR guide* OR plan* OR practice* OR process* OR dissect* OR pathog*))))
4	2 AND 3
5	1 AND 4

3

1 Appendix C Diagnostic evidence study selection

- 2 Study selection for: What pathology protocol for handling specimens from risk
- 3 reducing surgery should be followed for risk-reducing surgery for women at
- 4 increased risk of familial ovarian cancer?

Figure 1: Study selection flow chart

1 Appendix D Evidence tables

- 2 Evidence tables for review question: What pathology protocol for handling specimens from risk reducing surgery should be
- 3 followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?
- 4 Table 4: Evidence tables
- 5 **Bogaerts**, 2022

Bibliographic
Reference

Bogaerts, J.M.A.; Steenbeek, M.P.; van Bommel, M.H.D.; Bulten, J.; van der Laak, J.A.W.M.; de Hullu, J.A.; Simons, M.; Recommendations for diagnosing STIC: a systematic review and meta-analysis; Virchows Archiv; 2022; vol. 480 (no. 4); 725-737

6

7 Study details

Country/ies where study was carried out	Primary studies conducted in various international countries	
Study type	Systematic review	
Study dates	Studies published between 2004 and 2020	
Inclusion criteria	 studies describing the pathology results of a risk-reducing salpingo-oophorectomy (RRSO), performed among BRCA1/2 pathogenic variant carriers, aimed at defining the incidence or describing the histopathological characteristics of ovaries and fallopian tubes 	
Exclusion criteria	 where subgroup data for summarized BRAC1/2 results was not available articles written in another language than English or Dutch conference abstracts case reports review articles 	
Patient	N=6833 cases from 39 studies (10 prospective, 29 retrospective studies)	

n=3642 with known <i>BRCA1</i> pathogenic variant	
n=2695 with known BRCA2 pathogenic variant	
n=35 with both variants	
n=461 with no specified BRCA variant	
Age at RSSO (mean (SD) years): overall mean (SD) not reported but study means ranged from 43 to 54 years (SDs not reported)	
Immunohistochemistry (IHC): The use of IHC in diagnosing STIC was described by 21 studies SEE-FIM: consistently used in 20 studies Dedicated gynaecopathologist: Pathology specimens were assessed in 25 studies	
STIC (serous tubal intraepithelial carcinoma)	
Histopathological examination of the surgical specimen from RRSO (as described above in pathology protocols)	
w- Not reported	
Not reported	
See Appendix L	
The methodological quality of each study was assessed using the quality assessment tool for observational cohort and cross-sectional studies of the National Heart, Lung and Blood institute (NIH). Overall there were concerns about length of follow-up (37% of studies), definition of outcome measures (56% of studies), description of intervention (47% of studies), comparability of control groups (41% of studies) and inclusion of consecutive cases (36% of studies). For this reason evidence from this review is at serious risk of bias	

1 Critical appraisal - NGA Critical appraisal - ROBIS checklist

Section	Question	Answer
Study eligibility criteria	Concerns regarding specification of study eligibility criteria	Low
Identification and selection of studies	Concerns regarding methods used to identify and/or select studies	Low
Data collection and study appraisal	Concerns regarding methods used to collect data and appraise studies	Low
Synthesis and findings	Concerns regarding the synthesis and findings	Serious (biases in primary studies were significant and not addressed in the synthesis)
Overall study ratings	Overall risk of bias	Serious (due to risk of bias in primary studies)
Overall study ratings	Applicability as a source of data	Fully applicable

2

3 Cheng, 2020

Bibliographic
Reference

Cheng, Aoshuang; Li, Lei; Wu, Ming; Lang, Jinghe; Pathological findings following risk-reducing salpingo-oophorectomy in BRCA mutation carriers: A systematic review and meta-analysis.; European journal of surgical oncology: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology; 2020; vol. 46 (no. 1); 139-147

4

5 Study details

Country/ies where	Primary studies conducted in various international countries
study was carried	Thinary station contactor in various international coarrance

out		
Study type	Systematic review	
Study dates	Included studies were published between 2000 and 2018	
Inclusion criteria	 Studies published in English reporting on patients with a deleterious germline BRCA1/2 mutation who underwent a prophylactic oophorectomy 	
Exclusion criteria	studies with overlapping data and case reports with fewer than 5 cases	
Patient characteristics	N=4039 cases from 34 studies n=2345 with known <i>BRCA1</i> pathogenic variant n=1654 with known <i>BRCA2</i> pathogenic variant n=14 with both variants n=426 with no specified variant Age at RSSO (mean (SD) years): overall mean not reported but study means ranged from 43 to 53 years (SD not reported)	
Pathology protocol(s)	Protocols using SEE-FIM Protocols not using SEE-FIM	
Target conditions	Ovarian cancer STIC (serous tubal intraepithelial carcinoma)	
Reference standard(s)	Histopathological examination of the surgical specimen from RRSO (as described above in pathology protocols)	
Duration of follow-up	Not reported	
Sources of funding	Supported by the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (CAMS-2017-I2M-1- 002) and by the National Science-Technology Support Plan Projects (2015BAI13B04)	

Outcomes	See Appendix L
Other information	The methodological quality of each study was assessed using the criteria of the Agency for Healthcare Research and Quality (AHRQ). Studies ranged from low to medium quality (exact numbers not reported)For this reason evidence from this review is at serious risk of bias. There is also overlap of the included studies with the studies reported in Bogaerts 2022 – which also concluded a serious risk of bias.

1

2 Critical appraisal - NGA Critical appraisal - ROBIS checklist

Section	Question	Answer
Study eligibility criteria	Concerns regarding specification of study eligibility criteria	Low
Identification and selection of studies	Concerns regarding methods used to identify and/or select studies	Low
Data collection and study appraisal	Concerns regarding methods used to collect data and appraise studies	Low
Synthesis and findings	Concerns regarding the synthesis and findings	Serious (biases in primary studies were significant and not addressed in the synthesis)
Overall study ratings	Overall risk of bias	Serious (due to risk of bias in primary studies)
Overall study ratings	Applicability as a source of data	Fully applicable

1 Pross, 2021

Bibliographic
Reference

Pross, T.; Karsten, M.M.; Blohmer, J.-U.; Speiser, D.; Role of Routine Peritoneal Biopsies during Risk Reducing Salpingo-Oophorectomy (RRSO); Geburtshilfe und Frauenheilkunde; 2021; vol. 81 (no. 9); 1031-1038

2

3 Study details

Country/ies where study was carried out	Germany		
Study type	Retrospective cohort study		
Study dates	2014-2020		
Inclusion criteria	Women who underwent (risk reducing salpingo-oophorectomy) RRSO		
Exclusion criteria	If RRSO was combined with any other operation (such as enucleation of myoma, mastectomy, hysteroscopy)		
Patient characteristics	N=191 n=123 with known BRCA1 pathogenic variant n=53 with known BRCA2 pathogenic variant n=35 with both variants n=1 with HNPCC variant n=1 with PALB2 variant n=8 with no specified variant n=5 with no variant Age at RSSO (mean (SD): 48.34 (9.19)		

Pathology protocol(s)	All specimen collected during RRSO were analysed using the protocol for Sectioning and Extensively Examining the FIMbria (SEE-FIM) by experienced pathologists trained in gynaecologic pathology. Immunohistochemistry staining not reported		
Target conditions	Ovarian cancer		
	STIC (serous tubal intraepithelial carcinoma)		
Reference standard(s)	Histopathological examination of the surgical specimen from RRSO (as described above in pathology protocols)		
Duration of follow- up	None		
Sources of funding	No funding from agencies in the public, commercial, or not-for-profit sectors.		
Outcomes	See Appendix L		

1 Critical appraisal - NGA Critical appraisal - QUADAS-2

Section	Question	Answer
Patient selection: risk of bias	Could the selection of patients have introduced bias?	High (Unclear how participants were sampled)
Patient selection: applicability	Are there concerns that included patients do not match the review question?	Low
Index tests: risk of bias	Could the conduct or interpretation of the index test have introduced bias?	Low
Index tests: applicability	Are there concerns that the index test, its conduct, or interpretation differ from the review question?	Low
Reference standard: risk of	Could the reference standard, its conduct, or its interpretation have introduced bias?	Low

Section	Question	Answer
bias		
Reference standard: applicability	Is there concern that the target condition as defined by the reference standard does not match the review question?	Low
Flow and timing: risk of bias	Could the patient flow have introduced bias?	High (Not all patients included in analysis. Pathology protocol was the reference standard – there was no way to evaluate the accuracy of the pathology protocol)

2 Rabban, 2011

Bibliograph i	ic
Reference	

Rabban, J.T.; MacKey, A.; Powell, C.B.; Crawford, B.; Zaloudek, C.J.; Chen, L.-M.; Correlation of macroscopic and microscopic pathology in risk reducing salpingo-oophorectomy: Implications for intraoperative specimen evaluation; Gynecologic Oncology; 2011; vol. 121 (no. 3); 466-471

3

4 Study details

Country/ies where study was carried out	USA
Study type	Cross-sectional study
Study dates	1998-2009
Inclusion criteria	 women with a documented BRCA1/2 germline mutation undergoing bilateral risk reducing salpingo-oophorectomy (RRSO)

Exclusion criteria	Not reported
Patient characteristics	N=134 n=74 with known <i>BRCA1</i> pathogenic variant n=60 with known <i>BRCA2</i> pathogenic variant Age at RSSO (mean (SD) years): Not reported but median (range), years: 46 (32-69)
Pathology protocol(s)	 Gynecopathologist (gross (macroscopic) pathology) The method of intraoperative evaluation was determined on an ad hoc basis by the pathologist and consisted of either 1) gross inspection only; 2) specimen dissection with gross inspection only; or 3) specimen dissection with frozen section evaluation. All diagnoses of malignancy were independently verified by a second gynaecologic pathologist. Specialized pathologic evaluation protocol A specialized pathologic evaluation protocol was used to maximize visualization of the tissues most at risk for harbouring microscopic foci of carcinoma, the mucosa of the fallopian tube fimbriae and the ovarian surface epithelium. The default practice was to use the specialized protocol unless the surgeon had a strong suspicion for tumour based on the intraoperative macroscopic finding.
Target conditions	Ovarian cancer STIC (serous tubal intraepithelial carcinoma)
Reference standard(s)	Histopathological examination of the surgical specimen from RRSO (as described above in pathology protocols)
Duration of follow-up	Not reported
Sources of funding	Not reported
Outcomes	See Appendix L

1 Critical appraisal - NGA Critical appraisal - QUADAS-2

Section	Question	Answer
Patient selection: risk of bias	Could the selection of patients have introduced bias?	Unclear (unclear how patients were sampled)
Patient selection: applicability	Are there concerns that included patients do not match the review question?	Low
Index tests: risk of bias	Could the conduct or interpretation of the index test have introduced bias?	Low
Index tests: applicability	Are there concerns that the index test, its conduct, or interpretation differ from the review question?	Low
Reference standard: risk of bias	Could the reference standard, its conduct, or its interpretation have introduced bias?	Low
Reference standard: applicability	Is there concern that the target condition as defined by the reference standard does not match the review question?	Low
Flow and timing: risk of bias	Could the patient flow have introduced bias?	Serious (use of the specialized protocol reference standard depended on the intraoperative macroscopic findings. Pathology protocol was the reference standard – there was no way to evaluate the accuracy of the pathology protocol)

2

3 Rhiem, 2011

Bibliographic
Reference

Rhiem, K.; Foth, D.; Wappenschmidt, B.; Gevensleben, H.; Buttner, R.; Ulrich, U.; Schmutzler, R.K.; Risk-reducing salpingo-ophorectomy in BRCA1 and BRCA2 mutation carriers; Archives of Gynecology and Obstetrics; 2011; vol. 283 (no. 3); 623-

1

2 Study details

Country/ies where study was carried out	Germany
Study type	Retrospective cohort study
Study dates	1996-2009
Inclusion criteria	 BRCA mutation carriers who had at least one ovary in situ and who were free of ovarian cancer at the time of genetic testing undergoing risk-reducing salpingo-oophorectomy (RRSO)
Exclusion criteria	Not reported
Patient characteristics	N=175 n=92 with known <i>BRCA1</i> pathogenic variant n=83 with known <i>BRCA2</i> pathogenic variant Age at RSSO (mean (SD) years): Not reported but median age at RRSO (years): 47
Pathology protocol(s)	Histopathologic evaluation of RRSO specimens from carriers of BRCA mutations included careful macroscopic examination by a pathologist. Tissue specimens were subsequently fixed in 4% buffered formaldehyde and entirely embedded in paraffin. After fixation, systematic pathologic microsectioning and histopathologic examination of hematoxylin–eosinstained cross sections of the complete ovarian and fallopian tube tissue were performed.
Target conditions	Ovarian cancer
Reference standard(s)	Histopathologic evaluation of RRSO specimens as described above

Duration of follow- up	Median time of follow-up (months): 47.8 (range 1–372). Participants were followed from the date of first counselling until, (1) the development of ovarian, peritoneal or fallopian tube cancer, (2) the last visitation in the Centre, or (3) the death of the proband.
Sources of funding	Grant from the German Cancer Aid to RKS
Outcomes	See Appendix L

2 Critical appraisal - NGA Critical appraisal - QUADAS-2

Section	Question	Answer
Patient selection: risk of bias	Could the selection of patients have introduced bias?	Low
Patient selection: applicability	Are there concerns that included patients do not match the review question?	Low
Index tests: risk of bias	Could the conduct or interpretation of the index test have introduced bias?	Low
Index tests: applicability	Are there concerns that the index test, its conduct, or interpretation differ from the review question?	Low
Reference standard: risk of bias	Could the reference standard, its conduct, or its interpretation have introduced bias?	Low
Reference standard: applicability	Is there concern that the target condition as defined by the reference standard does not match the review question?	Low
Flow and timing: risk of bias	Could the patient flow have introduced bias?	High (Pathology protocol was the reference standard – there was no way to evaluate the accuracy of the pathology protocol)

2 Samimi, 2018

Bibliographic Reference

Samimi, G.; Trabert, B.; Geczik, A.M.; Duggan, M.A.; Sherman, M.E.; Population Frequency of Serous Tubal Intraepithelial Carcinoma (STIC) in Clinical Practice Using SEE-Fim Protocol; JNCI Cancer Spectrum; 2018; vol. 2 (no. 4); pky061

3

4 Study details

Country/ies where study was carried out	Canada
Study type	Cross-sectional study
Study dates	2014-2016
Inclusion criteria	 population-based data from Calgary Laboratory Services (CLS) in Alberta, Canada, which performs total or modified SEE-FIM processing on all fallopian tubes, including histologic examination of all tubal segments and the entire fimbria, where most STIC arises
Exclusion criteria	Not reported
Patient characteristics	N=354 <i>BRCA1/2</i> mutations carriers had risk-reducing surgery (risk-reducing includes: risk reducing, prophylactic, <i>BRCA</i> positive, <i>BRCA</i> test pending, family history of cancer (breast/ovarian/uterine), and family history of <i>BRCA</i> positive) Age (mean (SD), years): 45.9 (13)
Pathology protocol(s)	Total or modified SEE-FIM Haematoxylin and eosin-stained glass slides of formalin-fixed paraffin-embedded tissue sections are reviewed for morphologic changes indicative of STIC, and these were usually confirmed by p53 immunohistochemical staining. Diagnostically challenging cases were reviewed by the laboratory's gynaecological pathologists.
Target conditions	STIC (serous tubal intraepithelial carcinoma)

Reference standard(s)	Histopathological examination of the surgical specimen from RRSO (as described above in pathology protocols)
Duration of follow- up	Not reported
Sources of funding	Not reported
Outcomes	See Appendix L

2 Critical appraisal - NGA Critical appraisal - QUADAS-23

Section	Question	Answer
Patient selection: risk of bias	Could the selection of patients have introduced bias?	Low
Patient selection: applicability	Are there concerns that included patients do not match the review question?	Low
Index tests: risk of bias	Could the conduct or interpretation of the index test have introduced bias?	Low
Index tests: applicability	Are there concerns that the index test, its conduct, or interpretation differ from the review question?	Low
Reference standard: risk of bias	Could the reference standard, its conduct, or its interpretation have introduced bias?	Low
Reference standard: applicability	Is there concern that the target condition as defined by the reference standard does not match the review question?	Low

DRAFT FOR CONSULTATION

Section	Question	Answer
Flow and timing: risk of bias	Could the patient flow have introduced bias?	High (Pathology protocol was the reference standard – there was no way to evaluate the accuracy of the pathology protocol)

1

1 Appendix E Forest plots

- 2 Forest plots for review question: What pathology protocol for handling specimens from risk reducing surgery should be
- 3 followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?
- 4 This section includes forest plots only for outcomes that are meta-analysed. Outcomes from single studies are not presented here; the quality
- 5 assessment for such outcomes is provided in the GRADE profiles in appendix F.

Figure 2: Prevalence of ovarian cancer in risk reducing salpingo-oophorectomy specimens

Study	Age	n	N	Proportion	Prop. (%)	95% CI	Weight (common)	Weight (random)
Thompson 2018	43.00	1	46	- * i	2.17	[0.06; 11.53]	0.9%	1.3%
Primas 2012	43.30	2	94		2.13	[0.26; 7.48]	1.7%	2.3%
Mingels 2012	44.00	2	226	=	0.88	[0.11; 3.16]	1.7%	2.3%
Reistma 2013	44.00	4	303	-	1.32	[0.36; 3.35]	3.4%	3.5%
Kim 2015	44.40		22	<u>→ i</u>	0.00	[0.00; 15.44]	0.4%	0.7%
Powell 2011	46.00		111	- ia		[1.48; 10.20]	4.2%	3.9%
Zakhour 2016	46.00		257	= ;		[0.63; 4.48]	4.3%	4.0%
Rabban 2011	46.00		134	+		[0.82; 7.47]	3.4%	3.5%
Barrington 2018	46.20		6	1		[0.00; 45.93]	0.4%	0.7%
Lee 2017	46.50		63	- 		[0.99; 13.29]	2.5%	2.9%
Laki 2007	46.80		89			[1.24; 11.11]	3.3%	3.5%
Bogani 2017	47.00		57			[2.91; 19.30]	4.0%	3.8%
Lamb 2006	47.00		62	- -		[1.01; 13.50]	2.5%	2.9%
Oliver 2004	47.00	5	65	-		[2.54; 17.05]	4.0%	3.9%
Yates 2011	47.00		136	<u> </u>		[0.46; 6.31]	2.6%	3.0%
Rhiem 2011	47.00	1	175	- -i		[0.01; 3.14]	0.9%	1.3%
Miller 2017	47.40		70	<u>+</u>		[0.00; 5.13]	0.4%	0.7%
Conner 2013	47.50		345	*		[2.24; 6.71]	11.7%	5.9%
Kauff 2002	47.50		98	*		[0.64; 8.69]	2.5%	3.0%
Finch 2005	47.90		159			[1.40; 8.03]	5.0%	4.3%
Wong 2018	48.20		216	*		[1.61; 7.17]	6.7%	4.9%
Pross 2021	48.34	3	191	**		[0.33; 4.52]	2.6%	3.0%
Colgan 2001	48.40		39	-		[2.87; 24.22]	3.1%	3.4%
Cheng 2020 (1)	48.50		9			[0.00; 33.63]	0.4%	0.7%
Cheng 2020 (2)	48.50		15	1		[0.17; 31.95]	0.8%	1.3%
Manchanda 2011	48.90		117	1		[0.94; 8.52]	3.4%	3.5%
Ayres 2017	49.00		12	- 1		[0.00; 26.46]	0.4% 0.9%	0.7% 1.3%
Bacha 2012		1	76 15	-		[0.03; 7.11] [4.33; 48.09]	2.1%	2.6%
Hirst 2009 Minig 2018	49.00 49.30		359	i		[0.62; 3.60]	5.1%	4.4%
McAlpine 2011	50.45		11	<u> </u>		[0.02, 3.00]	0.8%	1.2%
Evans 2009	50.43	3	160	1		[0.39; 5.38]	2.6%	3.0%
Lavie 2015	53.00		92	1		[1.79; 12.23]	4.1%	3.9%
Carcangiu 2006	33.00	3	50			[1.25; 16.55]	2.5%	2.9%
Leunen 2006		0	24			[0.00; 14.25]	0.4%	0.7%
Lu 2000		2	23			[1.07; 28.04]	1.6%	2.1%
Vd Hoven 2018		3	235	-		[0.26; 3.69]	2.6%	3.0%
Va 110V611 2010		0	200	_	1.20	[0.20, 0.00]	2.070	0.070
Common effect mode Random effects mod Heterogeneity: /2 = 34%	el		4162 $\rho = 0.02$	•		[2.98; 4.25] [2.75; 4.43]	100.0% 	100.0%
				0 10 20 30 40				

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported)
Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews, except for Pross 2021, Rabban 2011, Rhiem 2011

Figure 3: Prevalence of ovarian cancer in risk reducing salpingo-oophorectomy specimens studies using the SEE-FIM protocol

Study	Age	n N	Proportion	Prop. (%) 95% CI	Weight (common)	Weight (random)
Thompson 2018	43.00	1 46		2.17 [0.06; 11.53]	1.5%	2.5%
Mingels 2012		2 226	+	0.88 [0.11; 3.16]		4.2%
Reistma 2013	44.00			1.32 [0.36; 3.35]		6.3%
Zakhour 2016	46.00			1.95 [0.63; 4.48]		6.9%
Lee 2017	46.50		<u> </u>	4.76 [0.99; 13.29]		5.3%
Laki 2007	46.80			4.49 [1.24; 11.11]		6.2%
Lamb 2006		3 62	- t	4.84 [1.01; 13.50]		5.3%
Oliver 2004	47.00		i	7.69 [2.54; 17.05]		6.8%
Conner 2013	47.50		-	4.06 [2.24; 6.71]		9.6%
Finch 2005	47.90	6 159	-	3.77 [1.40; 8.03]		7.4%
Pross 2021	48.34	3 191	= {	1.57 [0.33; 4.52]		5.4%
Cheng 2020 (2)	48.50	1 15		6.67 [0.17; 31.95]		2.4%
Manchanda 2011	48.90			3.42 [0.94; 8.52]		6.2%
Ayres 2017	49.00	0 12	• •	0.00 [0.00; 26.46]		1.4%
Hirst 2009	49.00	3 15		20.00 [4.33; 48.09]	3.6%	4.8%
Minig 2018	49.30	6 359	≖ {	1.67 [0.62; 3.60]	8.8%	7.5%
McAlpine 2011	50.45	1 11		— 9.09 [0.23; 41.28]	1.4%	2.4%
Carcangiu 2006		3 50	- t =	6.00 [1.25; 16.55]	4.2%	5.3%
Lu 2000		2 23	*	8.70 [1.07; 28.04]	2.7%	4.0%
			<u> </u>	• • •		
Common effect mod	lel	2408	\(\bar{\phi} \)	3.59 [2.84; 4.51]	100.0%	
Random effects mo	del		<u></u>	3.68 [2.61; 5.16]		100.0%
Heterogeneity: $I^2 = 459$	6, τ ² = 0.267	$^{\prime}$ 2, $p = 0.0$				
			0 10 20 30	40		

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported) Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews, except for Pross 2021

Figure 4: Prevalence of ovarian cancer in risk reducing salpingo-oophorectomy specimens in studies reporting a dedicated gynaecopathologist

Study	Age n	N	Proportion	Prop. (%)	95% CI	Weight (common)	Weight (random)
Thompson 2018	43.00 1	46		2.17	[0.06; 11.53]	1.8%	3.1%
Mingels 2012	44.00 2	226	*	0.88	[0.11; 3.16]	3.7%	5.0%
Reistma 2013	44.00 4	303	=	1.32	[0.36; 3.35]	7.3%	7.2%
Powell 2011	46.00 5	111	-	4.50	[1.48; 10.20]	8.9%	7.7%
Zakhour 2016	46.00 5	257	-	1.95	[0.63; 4.48]	9.1%	7.8%
Rabban 2011	46.00 4	134		2.99	[0.82; 7.47]	7.2%	7.1%
Lee 2017	46.50 3	63	-	4.76	[0.99; 13.29]	5.3%	6.2%
Bogani 2017	47.00 5	57	 	8.77	[2.91; 19.30]	8.5%	7.6%
Lamb 2006	47.00 3	62	-	4.84	[1.01; 13.50]	5.3%	6.2%
Finch 2005	47.90 6	159	-	3.77	[1.40; 8.03]	10.7%	8.3%
Pross 2021	48.34 3	191	=	1.57	[0.33; 4.52]	5.5%	6.3%
Manchanda 2011	48.90 4	117	*	3.42	[0.94; 8.52]	7.2%	7.1%
Ayres 2017	49.00 0	12	-	0.00	[0.00; 26.46]	0.9%	1.8%
Hirst 2009	49.00 3	15			[4.33; 48.09]	4.4%	5.6%
Minig 2018	49.30 6	359	-	1.67	[0.62; 3.60]	10.9%	8.3%
Lu 2000	2	23	 •	8.70	[1.07; 28.04]	3.4%	4.8%
Common effect mod	lel	2135	\	3.30	[2.55; 4.27]	100.0%	
Random effects model Heterogeneity: $I^2 = 529$, <i>p</i> < 0.01	0 10 20 30 40	3.39	[2.28; 4.99]		100.0%

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported) Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews, except for Pross 2021, Rabban 2011

Figure 5: Prevalence of ovarian cancer in risk reducing salpingo-oophorectomy specimens in studies which reported using immunohistochemistry

Study	Age ı	n N	Proportion	Prop. (%)	95% CI	Weight (common)	Weight (random)
Thompson 2018 Reistma 2013 Lee 2017 Oliver 2004 Conner 2013 Cheng 2020 (1) Cheng 2020 (2) Ayres 2017	43.00 44.00 4 46.50 3 47.00 8 47.50 1 48.50 6 49.00 0	4 303 3 63 5 65 4 345 0 9 1 15	***	1.32 4.76 7.69 4.06 - 0.00 6.67	[0.06; 11.53] [0.36; 3.35] [0.99; 13.29] [2.54; 17.05] [2.24; 6.71] [0.00; 33.63] [0.17; 31.95] [0.00; 26.46]	11.7% 8.5% 13.7% 40.0% 1.4% 2.8%	5.6% 14.5% 12.1% 15.7% 22.9% 3.0% 5.4% 3.1%
Minig 2018 Common effect mod Random effects mod Heterogeneity: $I^2 = 329$	del	1217	0 5 10 15 20 25 30	3.38	[0.62; 3.60] [2.43; 4.68] [2.01; 5.50]		17.5% 100.0%

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported) Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews

Figure 6: Prevalence of STIC in risk reducing salpingo-oophorectomy specimens

Study	Age n	N	Proportion	Prop. (%)	95% CI	Weight (common)	Weight (random)
Thompson 2018	43.00 0	46	# - 1	0.00	[0.00; 7.71]	0.3%	0.7%
Mingels 2012	44.00 14	226	-	6.19	[3.43; 10.18]	7.0%	3.8%
Reitsma 2013	44.00 3	303	-	0.99	[0.20; 2.87]	1.6%	2.4%
Samimi 2018	45.90 5	354	*	1.41	[0.46; 3.27]	2.6%	2.9%
Powell 2011	46.00 5	111	-	4.50	[1.48; 10.20]	2.5%	2.9%
Zakhour 2016	46.00 9	251		3.59	[1.65; 6.70]	4.6%	3.5%
Lee (2) 2017	46.50 2	36	*	5.56	[0.68; 18.66]	1.0%	1.9%
Bogani 2017	47.00 2	57		3.51	[0.43; 12.11]	1.0%	1.9%
Lamb 2006	47.00 4	62			[1.79; 15.70]	2.0%	2.6%
Shaw 2009	47.00 15				[4.85; 13.67]	7.3%	3.8%
Conner 2014	47.50 5	302	=		[0.54; 3.82]	2.6%	2.9%
Stanciu 2019	47.80 6	244			[0.91; 5.28]	3.1%	3.1%
Artioli 2018	47.90 1	10			[0.25; 44.50]	0.5%	1.1%
Wong 2018	48.20 3	197	<u> </u>		[0.32; 4.39]	1.6%	2.4%
Gornjec 2020	48.30 3	145		2.07	[0.43; 5.93]	1.6%	2.4%
Visvanathan 2018	48.30 12		*		[1.71; 5.66]	6.1%	3.7%
Stewart 2019	48.32 3	61	- *	4.92	[1.03; 13.71]	1.5%	2.3%
Pross 2021	48.34 2	187	= 1		[0.13; 3.81]	1.0%	1.9%
Cheng (1) 2020	48.50 0	9	-		[0.00; 33.63]	0.3%	0.7%
Cheng (2) 2020	48.50 1	15	-		[0.17; 31.95]	0.5%	1.2%
Lee (1) 2017	48.50 2	130	*		[0.19; 5.45]	1.0%	1.9%
Manchanda 2011	48.90 6	117	-		[1.90; 10.83]	3.0%	3.1%
Ayres 2017	49.00 0	12	•		[0.00; 26.46]	0.3%	0.7%
Bacha 2012	49.00 0	76	-		[0.00; 4.74]	0.3%	0.7%
Hirst 2009	49.00 1	15			[0.17; 31.95]	0.5%	1.2%
Wilhite 2019	49.00 7	290	4		[0.98; 4.91]	3.6%	3.3%
Minig 2018	49.30 3	359	*		[0.17; 2.42]	1.6%	2.4%
Poon 2016	51.75 3	72	-		[0.87; 11.70]	1.5%	2.3%
Malmberg 2016	52.10 1	42			[0.06; 12.57]	0.5%	1.2%
Wethington 2013	54.00 10		*		[1.29; 4.85]	5.2%	3.6%
Blok 2019	4	527	₩		[0.21; 1.93]	2.1%	2.7%
Carcangiu 2004	2	26	*		[0.95; 25.13]	1.0%	1.8%
Carcangiu 2006	3	50	*		[1.25; 16.55]	1.5%	2.3%
Cass 2014	8	78			[4.53; 19.21]	3.8%	3.3%
Leonhardt 2011	0	14	-		[0.00; 23.16]	0.3%	0.7%
Powell 2013	17		3-		[2.46; 6.64]	8.6%	3.9%
Rabban 2009	5	102			[1.61; 11.07]	2.5%	2.9%
Ricciardi 2017	7	290	₹ _		[0.98; 4.91]	3.6%	3.3%
Rudaitis 2019	7	71			[4.06; 19.26]	3.3%	3.2%
Rush 2020	8	371	**		[0.94; 4.20]	4.1%	3.4%
Sherman 2014	4	559	*		[0.20; 1.82]	2.1%	2.7%
Vd Hoeven 2018	2	235	*	0.85	[0.10; 3.04]	1.0%	1.9%
Common effect model		7374			[3.02; 3.98]	100.0%	
Random effects mode			♦	3.11	[2.43; 3.96]		100.0%
Heterogeneity: $I^2 = 59\%$,	$\tau^2 = 0.3609$	p < 0.01	0 10 20 30 40				

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported)
Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews, except for Pross 2021, Samimi 2018

Figure 7: Prevalence of STIC in risk reducing salpingo-oophorectomy specimens studies using the SEE-FIM protocol

Study	Age	n	N	Proportion	Prop. (%)	95% CI	Weight (common)	Weight (random)
Thompson 2018	43.00	0	46	•	0.00	[0.00; 7.71]	0.4%	0.8%
Mingels 2012	44.00		226	<u> </u>		[3.43; 10.18]	11.1%	6.7%
Reitsma 2013	44.00		303	-		[0.20; 2.87]	2.5%	3.4%
Samimi 2018	45.90		354	.		[0.46; 3.27]	4.2%	4.6%
Zakhour 2016	46.00		251	-		[1.65; 6.70]	7.4%	5.9%
Lee (2) 2017	46.50		36			[0.68: 18.66]	1.6%	2.5%
Lamb 2006	47.00	_	62	i =		[1.79; 15.70]	3.2%	4.0%
Conner 2014	47.50		302	= 		[0.54; 3.82]	4.2%	4.6%
Stanciu 2019	47.80	6	244			[0.91; 5.28]	5.0%	5.0%
Artioli 2018	47.90	1	10	-	10.00	[0.25; 44.50]	0.8%	1.4%
Gornjec 2020	48.30	3	145	<u>=</u>	2.07	[0.43; 5.93]	2.5%	3.4%
Visvanathan 2018	48.30	12	366		3.28	[1.71; 5.66]	9.8%	6.5%
Stewart 2019	48.32	3	61	- *	4.92	[1.03; 13.71]	2.4%	3.4%
Pross 2021	48.34	2	187	* i	1.07	[0.13; 3.81]	1.7%	2.6%
Cheng (2) 2020	48.50	1	15	-	6.67	[0.17; 31.95]	0.8%	1.5%
Manchanda 2011	48.90	6	117	- i = -	5.13	[1.90; 10.83]	4.8%	4.9%
Ayres 2017	49.00	0	12	•	0.00	[0.00; 26.46]	0.4%	0.8%
Hirst 2009	49.00	1	15	- i •	6.67	[0.17; 31.95]	0.8%	1.5%
Wilhite 2019	49.00	7	290	+	2.41	[0.98; 4.91]	5.8%	5.3%
Minig 2018	49.30	3	359	#-	0.84	[0.17; 2.42]	2.5%	3.4%
Poon 2016	51.75	3	72	- 10	4.17	[0.87; 11.70]	2.4%	3.4%
Wethington 2013	54.00	10	375		2.67	[1.29; 4.85]	8.2%	6.1%
Carcangiu 2006		3	50	- 10	6.00	[1.25; 16.55]	2.4%	3.3%
Rabban 2009		5	102	- i =	4.90	[1.61; 11.07]	4.0%	4.5%
Ricciardi 2017		7	290	4	2.41	[0.98; 4.91]	5.8%	5.3%
Rudaitis 2019		7	71	-	9.86	[4.06; 19.26]	5.3%	5.2%
Common effect mode	el		4361	.	3.38	[2.84; 4.02]	100.0%	
Random effects mode Heterogeneity: $I^2 = 45\%$,		01, /	o < 0.01	∳ 0 10 20 30 40		[2.53; 4.23]	-	100.0%

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported)
 Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews, except for Pross 2021, Samimi 2018

Figure 8: Prevalence of STIC in risk reducing salpingo-oophorectomy specimens in studies reporting a dedicated gynaecopathologist

Study	Age	STIC	N	Proportion	(%)	95% CI	Weight
Thompson 2018	43.00	0	46	II	0.00	[0.00; 7.71]	1.0%
Mingels 2012	44.00	14	226	-		[3.43; 10.18]	5.2%
Reitsma 2013	44.00	3	303	-		[0.20; 2.87]	3.4%
Samimi 2018	45.90	5	354	-		[0.46; 3.27]	4.1%
Powell 2011	46.00	5	111		4.50	[1.48; 10.20]	4.1%
Zakhour 2016	46.00	9	251		3.59	[1.65; 6.70]	4.8%
Lee (2) 2017	46.50	2	36		5.56	[0.68; 18.66]	2.7%
Bogani 2017	47.00	2	57	- is	3.51	[0.43; 12.11]	2.7%
Lamb 2006	47.00	4	62		6.45	[1.79; 15.70]	3.7%
Shaw 2009	47.00	15	176	-	8.52	[4.85; 13.67]	5.2%
Stanciu 2019	47.80	6	244	**	2.46	[0.91; 5.28]	4.3%
Artioli 2018	47.90	1	10		— 10.00	[0.25; 44.50]	1.6%
Visvanathan 2018	48.30	12	366	*	3.28	[1.71; 5.66]	5.1%
Pross 2021	48.34	2	187	*		[0.13; 3.81]	2.7%
Manchanda 2011	48.90	6	117			[1.90; 10.83]	4.3%
Ayres 2017	49.00	0	12			[0.00; 26.46]	1.0%
Hirst 2009	49.00	1	15	-		[0.17; 31.95]	1.7%
Minig 2018	49.30	3	359	-		[0.17; 2.42]	3.4%
Poon 2016	51.75	3	72			[0.87; 11.70]	3.3%
Wethington 2013	54.00	10	375	<u>-</u>		[1.29; 4.85]	4.9%
Blok 2019		4	527			[0.21; 1.93]	3.8%
Cass 2014		8	78			[4.53; 19.21]	4.6%
Powell 2013		17	405	=		[2.46; 6.64]	5.4%
Rabban 2009		5	102			[1.61; 11.07]	4.1%
Ricciardi 2017		7	290	=		[0.98; 4.91]	4.5%
Rush 2020		8	371			[0.94; 4.20]	4.7%
Sherman 2014		4	559	₩	0.72	[0.20; 1.82]	3.8%
Random effects mode			5711	*	3.15	[2.31; 4.27]	100.0%
Heterogeneity: $I^2 = 66\%$,	$\tau^{2} = 0.399$	53, p <	0.01	1 1 1 1			
				0 10 20 30 40			

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported)
Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews except for Samimi 2018

Figure 9: Prevalence of STIC in risk reducing salpingo-oophorectomy specimens in studies which reported using immunohistochemistry

041.				Para anti-	D	050/ 01	Weight	Weight
Study	Age	n	N	Proportion	Prop. (%)	95% CI	(common)	(random)
Thompson 2018	43.00	0	46	<u>- 3</u>	0.00	[0.00; 7.71]	0.5%	1.5%
Reitsma 2013	44.00	3	303	=	0.99	[0.20; 2.87]	3.0%	4.6%
Samimi 2018	45.90	5	354	= {	1.41	[0.46; 3.27]	5.0%	5.4%
Lee (2) 2017	46.50	2	36		5.56	[0.68; 18.66]	1.9%	3.7%
Shaw 2009	47.00	15	176		8.52	[4.85; 13.67]	14.0%	6.7%
Conner 2014	47.50	5	302	= ² / ₂	1.66	[0.54; 3.82]	5.0%	5.4%
Stanciu 2019	47.80	6	244		2.46	[0.91; 5.28]	6.0%	5.7%
Visvanathan 2018	48.30	12	366	+	3.28	[1.71; 5.66]	11.8%	6.6%
Cheng (1) 2020	48.50	0	9	-	0.00	[0.00; 33.63]	0.5%	1.4%
Cheng (2) 2020	48.50	1	15	- 1 * · · · · · · · · · · · · · · · · · ·	6.67	[0.17; 31.95]	1.0%	2.4%
Lee (1) 2017	48.50	2	130	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1.54	[0.19; 5.45]	2.0%	3.8%
Ayres 2017	49.00	0	12		0.00	[0.00; 26.46]	0.5%	1.5%
Minig 2018	49.30	3	359	= }	0.84	[0.17; 2.42]	3.0%	4.6%
Poon 2016	51.75	3	72		4.17	[0.87; 11.70]	2.9%	4.5%
Malmberg 2016	52.10	1	42	- + 3 3	2.38	[0.06; 12.57]	1.0%	2.5%
Wethington 2013	54.00	10	375	- 1		[1.29; 4.85]	9.9%	6.4%
Blok 2019		4	527	≖		[0.21; 1.93]	4.0%	5.1%
Carcangiu 2004		2	26		7.69	[0.95; 25.13]	1.9%	3.7%
Cass 2014		8	78		10.26	[4.53; 19.21]	7.3%	6.0%
Leonhardt 2011		0	14		0.00	[0.00; 23.16]	0.5%	1.5%
Rabban 2009		5	102		4.90	[1.61; 11.07]	4.8%	5.4%
Ricciardi 2017		7	290		2.41	[0.98; 4.91]	7.0%	5.9%
Rudaitis 2019		7	71		9.86	[4.06; 19.26]	6.4%	5.8%
				1 1				
Common effect mode			3949	•		[2.89; 4.23]	100.0%	
Random effects mode				*	3.09	[2.14; 4.46]		100.0%
Heterogeneity: $I^2 = 66\%$,	$\tau^2 = 0.48$	867, /	p < 0.01	0 5 10 15 00				
				0 5 10 15 20 25 30				

Age refers to the mean (or median if mean not reported) age at RRSO in the study (where reported) Studies come from the Cheng 2020 & Bogaerts 2022 systematic reviews except for Samimi 2018

2 Appendix F Modified GRADE tables

- 3 GRADE tables for review question: What pathology protocol for handling specimens from risk reducing surgery should be
- 4 followed for risk-reducing surgery for women at increased risk of familial ovarian cancer?

5 Table 5: Evidence profile for prevalence of ovarian cancer according to characteristics of the pathology protocol

Table 3. L	able 5. Evidence profile for prevalence of ovarian cancer according to characteristics of the pathology protocol								
No. of studies	Study design	No of OC / Total no of patients	Prevalence (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality	
Prevalence o	f ovarian cancer	at RRSO							
37 ¹	Cohort studies	117/4162	3.56% (2.98 to 4.25)	Serious ²	Not serious	Not serious	Not serious	MODERATE	
Prevalence o	Prevalence of ovarian cancer at RRSO in studies using the SEE-FIM protocol								
19 ⁴	Cohort studies	70/2408	3.59% (2.84 to 4.51)	Serious ²	Not serious	Not serious	Not serious	MODERATE	
Prevalence o	f ovarian cancer	at RRSO in studies with a dedicate	d gynaecopathologist						
16 ⁵	Cohort studies	56/2135	3.39% (2.28 to 4.99)	Serious ²	Serious ³	Not serious	Not serious	LOW	
Prevalence o	Prevalence of ovarian cancer at RRSO in studies reporting use of IHC								
96	Cohort studies	34/1217	3.38% (2.43 to 4.68)	Serious ²	Not serious	Not serious	Not serious	MODERATE	

⁶ CI: confidence interval; IHC: immunohistochemistry; OC: ovarian cancer; RRSO: risk reducing salpingo-oophorectomy; SEE-FIM: sectioning and extensively examining the fimbriated end

^{8 1.} Cheng 2020 & Bogaerts 2022 systematic reviews, Pross 2021, Rabban 2011, Rhiem 2011

^{9 2.} Serious risk of bias according to the quality assessment reported in Cheng 2020 (using the criteria of the Agency for Healthcare Research and Quality)

^{10 3.} Serious heterogeneity not explained by meta-regression with mean age in study as a predictor. No other subgroup analysis (as per protocol) was possible

^{11 4.} Cheng 2020 & Bogaerts 2022 systematic reviews , Pross 2021

^{12 5.} Cheng 2020 & Bogaerts 2022 systematic reviews, Pross 2021, Rabban 2011

^{13 6.} Cheng 2020 & Bogaerts 2022 systematic reviews

1 Table 6: Evidence profile for prevalence of STIC according to characteristics of the pathology protocol

No. of studies	Study design	No of STIC / Total no of patients	Prevalence (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality	
Prevalence o	f STIC at RRSO								
42 ¹	Cohort studies	195/7374	3.11% (2.43 to 3.96)	Serious ²	Serious ³	Not serious	Not serious	LOW	
Prevalence o	Prevalence of STIC at RRSO in studies using the SEE-FIM protocol								
26 ¹	Cohort studies	122/4361	3.38% (2.84 to 4.02)	Serious ²	Not serious	Not serious	Not serious	MODERATE	
Prevalence o	f STIC at RRSO i	n studies with a dedicated gynaeco	pathologist						
274	Cohort studies	156/5711	3.15% (2.31 to 4.27)	Serious ²	Serious ³	Not serious	Not serious	LOW	
Prevalence o	Prevalence of STIC at RRSO in studies reporting IHC								
23 ⁴	Cohort studies	101/3949	3.09% (2.14 to 4.46)	Serious ²	Serious ³	Not serious	Not serious	LOW	

² CI: confidence interval; IHC: immunohistochemistry; RRSO: risk reducing salpingo-oophorectomy; SEE-FIM: sectioning and extensively examining the fimbriated end; STIC: 3 serous tubal intraepithelial carcinoma

^{4 1.} Cheng 2020 & Bogaerts 2022 systematic reviews, Pross 2021, Samimi 2018

^{5 2.} Serious risk of bias according to the quality assessment tool for observational cohort and cross-sectional studies of the National Heart, Lung and Blood Institute (NIH; reported in Bogaerts 2022)

^{7 3.} Serious heterogeneity not explained by meta-regression with mean age in study as a predictor. No other subgroup analysis (as per protocol) was possible

^{8 4.} Cheng 2020 & Bogaerts 2022 systematic reviews, Samimi 2018

1 Appendix G Economic evidence study selection

- 2 Study selection for: What pathology protocol for handling specimens from risk
- 3 reducing surgery should be followed for risk-reducing surgery for women at
- 4 increased risk of familial ovarian cancer?
- 5 No economic evidence was identified which was applicable to this review question.

6

7

1 Appendix H Economic evidence tables

- 2 Economic evidence tables for review question: What pathology protocol for
- 3 handling specimens from risk reducing surgery should be followed for risk-
- 4 reducing surgery for women at increased risk of familial ovarian cancer?
- 5 No evidence was identified which was applicable to this review question.

6

1 Appendix I Economic model

- 2 Economic model for review question: What pathology protocol for handling
- 3 specimens from risk reducing surgery should be followed for risk-reducing
- 4 surgery for women at increased risk of familial ovarian cancer?
- 5 No economic analysis was conducted for this review question.

6

7

2 Appendix J Excluded studies

- 3 Excluded studies for review question: What pathology protocol for handling
- 4 specimens from risk reducing surgery should be followed for risk-reducing
- 5 surgery for women at increased risk of familial ovarian cancer?
- 6 Excluded diagnostic studies

7 Table 7: Excluded studies and reasons for their exclusion

Charles and reasons for their exclusion	Paggan for avaluation
Study	Reason for exclusion
Blok, F., Roes, E.M., van Leenders, G.J.L.H. et al. (2016) The lack of clinical value of peritoneal washing cytology in high risk patients undergoing risk-reducing salpingo-oophorectomy: A retrospective study and review. BMC Cancer 16(1): 18	- Pathology protocol does not match the review protocol Cytology study
Carr, C.E., Chambers, L., Jernigan, A.M. et al. (2021) Short- And long-term outcomes for single-port risk-reducing salpingo-oophorectomy with and without hysterectomy for women at risk for gynecologic cancer. International Journal of Gynecological Cancer 31(2): 215-221	- Intervention in study does not match that specified in this review protocol No details about the pathology protocol
Colgan, T.J., Murphy, J., Cole, D.E.C. et al. (2001) Occult carcinoma in prophylactic oophorectomy specimens: Prevalence and association with BRCA germline mutation status. American Journal of Surgical Pathology 25(10): 1283-1289	- The study's results are incorporated in an included systematic review / meta-analysis Included in Cheng 2020
Cowan, R., Nobre, S.P., Pradhan, N. et al. (2021) Outcomes of incidentally detected ovarian cancers diagnosed at time of risk-reducing salpingo-oophorectomy in BRCA mutation carriers. Gynecologic Oncology 161(2): 521-526	- The study's results are incorporated in an included systematic review / meta-analysis Pathology protocol not reported
Deligdisch, L., Gil, J., Kerner, H. et al. (1999) Ovarian dysplasia in prophylactic oophorectomy specimens. Cytogenetic and morphometric correlations. Cancer 86(8): 1544-1550	- Intervention in study does not match that specified in this review protocol No details about the pathology protocol
Domchek, S.M., Friebel, T.M., Garber, J.E. et al. (2010) Occult ovarian cancers identified at risk-reducing salpingo-oophorectomy in a prospective cohort of BRCA1/2 mutation carriers. Breast Cancer Research and Treatment 124(1): 195-203	- Intervention in study does not match that specified in this review protocol No details about the pathology protocol
Finch, A., Shaw, P., Rosen, B. et al. (2006) Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecologic Oncology 100(1): 58-64	- The study's results are incorporated in an included systematic review / meta-analysis Included in Cheng 2020 systematic review
Goldenberg, M., Revivo, P.E., Gurevitch, S. et al. (2022) Risk-reducing bilateral salpingo-oopherectomy for BRCA mutation carriers via the transvaginal natural orifice transluminal endoscopic surgery approach. International Journal of Gynecology and Obstetrics 158(3): 764-765	- Intervention in study does not match that specified in this review protocol Pathology protocol not reported
Gornjec, A., Merlo, S., Novakovic, S. et al. (2020) The prevalence	- The study's results are

Study	Reason for exclusion
Study of occult ovarian cancer in the series of 155 consequently operated	incorporated in an included
high risk asymptomatic patients - Slovenian population based study. Radiology and Oncology 54(2): 180-186	systematic review / meta- analysis Included in Bogaerts 2022
Haldar, K; Giamougiannis, P; Crawford, R (2011) Utility of peritoneal lavage cytology during laparoscopic salpingo-oophorectomy: a retrospective analysis. BJOG: an international journal of obstetrics and gynaecology 118(1): 28-33	- Pathology protocol does not match the review protocol Cytology study
Kotsopoulos, J., Karlan, B., Gronwald, J. et al. (2020) Long-term outcomes following a diagnosis of ovarian cancer at the time of preventive oophorectomy among BRCA1 and BRCA2 mutation carriers. International Journal of Gynecological Cancer 30(6): 825-830	- Intervention in study does not match that specified in this review protocol Pathology protocol not reported
Landon, G, Stewart, J, Deavers, M et al. (2012) Peritoneal washing cytology in patients with BRCA1 or BRCA2 mutations undergoing risk-reducing salpingo-oophorectomies: a 10-year experience and reappraisal of its clinical utility. Gynecologic oncology 125(3): 683-6	- Pathology protocol does not match the review protocol Cytology study
Laokulrath, N., Warnnissorn, M., Chuangsuwanich, T. et al. (2019) Sectioning and extensively examining the fimbriated end (SEE-FIM) of the fallopian tube in routine practices, is it worth the effort?. Journal of Obstetrics and Gynaecology Research 45(3): 665-670	- Population does not match the review protocol Not just RRSO
Lee, YJ., Lee, SW., Kim, KR. et al. (2017) Pathologic findings at risk-reducing salpingo-oophorectomy (RRSO) in germline BRCA mutation carriers with breast cancer: Significance of bilateral RRSO at the optimal age in germline BRCA mutation carriers. Journal of Gynecologic Oncology 28(1): e3	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022
<u>Leeper, K., Garcia, R., Swisher, E. et al. (2002) Pathologic findings in prophylactic oophorectomy specimens in high-risk women.</u> Gynecologic Oncology 87(1): 52-56	- Study design does not match that specified in this review protocol Case review
Lu, K.H., Garber, J.E., Cramer, D.W. et al. (2000) Occult ovarian tumors in women with BRCA1 or BRCA2 mutations undergoing prophylactic oophorectomy. Journal of Clinical Oncology 18(14): 2728-2732	- The study's results are incorporated in an included systematic review / meta-analysis Included in Cheng 2020
Mahe, E., Tang, S., Deb, P. et al. (2013) Do deeper sections increase the frequency of detection of serous tubal intraepithelial carcinoma (stic) in the sectioning and extensively examining the fimbriated end (see-fim) protocol?. International Journal of Gynecological Pathology 32(4): 353-357	- Population in study does not match that specified in this review protocol Not RRSO
Menkiszak, J., Chudecka-Glaz, A., Bedner, R. et al. (2012) Genital malignant tumors and precancerous conditions in female carriers of constitutional BRCA1 gene mutations undergoing prophylactic adnexectomy. Current Gynecologic Oncology 10(4): 270-285	- Outcome data relevant to the protocol cannot be extracted
Menkiszak, J., Chudecka-Glaz, A., Gronwald, J. et al. (2016) Prophylactic salpingo-oophorectomy in BRCA1 mutation carriers and postoperative incidence of peritoneal and breast cancers. Journal of Ovarian Research 9(1): 220	- Study design does not match that specified in this review protocol <i>Not</i> concerned with pathological findings of <i>RRSO</i>
Miller, H., Pipkin, L.S., Tung, C. et al. (2017) The Role of Routine Peritoneal and Omental Biopsies at Risk-Reducing Salpingo-Oophorectomy. Journal of Minimally Invasive Gynecology 24(5): 772-776	- The study's results are incorporated in an included systematic review / meta-analysis Included in Cheng 2020
Morice, P., Pautier, P., Mercier, S. et al. (1999) Laparoscopic	- Outcome data relevant to
,,,,,, (

Childre	Pageon for evaluaion
Study	Reason for exclusion
prophylactic oophorectomy in women with inherited risk of ovarian cancer. European Journal of Gynaecological Oncology 20(3): 202-204	the protocol cannot be extracted
Nomura, H., Ikki, A., Fusegi, A. et al. (2021) Clinical and pathological outcomes of risk-reducing salpingo-oophorectomy for Japanese women with hereditary breast and ovarian cancer. International Journal of Clinical Oncology 26(12): 2331-2337	- Population does not match the review protocol Not RRSO Adnexectomy
Olivier, R.I., Van Beurden, M., Lubsen, M.A.C. et al. (2004) Clinical outcome of prophylactic oophorectomy in BRCA1/BRCA2 mutation carriers and events during follow-up. British Journal of Cancer 90(8): 1492-1497	- The study's results are incorporated in an included systematic review / meta-analysis Included in Cheng 2020
Piek, J M, van Diest, P J, Zweemer, R P et al. (2001) Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. The Journal of pathology 195(4): 451-6	- Pathology protocol does not match the review protocol Not SEE-FIM
Powell, B.C., Kenley, E., Chen, LM. et al. (2005) Risk-reducing salpingo-oophorectomy in BRCA mutation carriers: Role of serial sectioning in the detection of occult malignancy. Journal of Clinical Oncology 23(1): 127-132	- The study's results are incorporated in an included systematic review / meta-analysis Cohort included in Cheng systematic review (as Powell 2011 study)
Powell, C.B., Littell, R.D., Landen, C.N. et al. (2020) Cytological sampling of fallopian tubes using a hysteroscopic catheter: A multicenter study. Gynecologic Oncology 156(3): 636-640	- Pathology protocol does not match the review protocol Cytology study
Pramanik, Sharmila; Yang, Eric; Wu, Wendy (2020) Cytologic studies of in vivo fallopian tube specimens in patients undergoing salpingo-oophorectomy. CytoJournal 17: 19	- Pathology protocol does not match the review protocol Cytology study
Reitsma, W., De Bock, G.H., Oosterwijk, J.C. et al. (2013) Support of the 'fallopian tube hypothesis' in a prospective series of risk-reducing salpingo-oophorectomy specimens. European Journal of Cancer 49(1): 132-141	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022
Ricciardi, E., Tomao, F., Aletti, G. et al. (2017) Risk-reducing salpingo-oophorectomy in women at higher risk of ovarian and breast cancer: A single institution prospective series. Anticancer Research 37(9): 5241-5248	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022
Rudaitis, V., Mikliusas, V., Januska, G. et al. (2020) The incidence of occult ovarian neoplasia and cancer in BRCA1/2 mutation carriers after the bilateral prophylactic salpingo-oophorectomy (PBSO): A single-center prospective study. European Journal of Obstetrics and Gynecology and Reproductive Biology 247: 26-31	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022
Sherman, M.E., Piedmonte, M., Mai, P.L. et al. (2014) Pathologic findings at risk-reducing salpingo-oophorectomy: Primary results from Gynecologic Oncology Group trial GOG-0199. Journal of Clinical Oncology 32(29): 3275-3283	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022
Stuckey, A., Dizon, D., Scalia Wilbur, J. et al. (2010) Clinical characteristics and choices regarding risk-reducing surgery in BRCA mutation carriers. Gynecologic and Obstetric Investigation 69(4): 270-273	- Intervention in study does not match that specified in this review protocol Pathology protocol not reported

Study	Reason for exclusion
Tait, D.L. (2005) Risk-reducing salpingo-oophorectomy in BRCA mutation carriers: Role of serial sectioning in the detection of occult malignancy. Women's Oncology Review 5(2): 101-102	- Study design does not match that specified in this review protocol Commentary on another article (Powell 2005)
Thompson, C., McCormick, C., Kamran, W. et al. (2018) Risk reduction surgery (RRS) for tubo-ovarian cancer in an Irish gynaecological practice: an analysis of indications and outcomes. Irish Journal of Medical Science 187(3): 789-794	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022 and Cheng 2020
Wethington, S.L., Park, K.J., Soslow, R.A. et al. (2013) Clinical outcome of isolated Serous tubal intraepithelial carcinomas (STIC). International Journal of Gynecological Cancer 23(9): 1603-1611	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022 and Cheng 2020
Wong, S.; Ratner, E.; Buza, N. (2018) Intra-operative evaluation of prophylactic hysterectomy and salpingo-oophorectomy specimens in hereditary gynaecological cancer syndromes. Histopathology 73(1): 109-123	- The study's results are incorporated in an included systematic review / meta-analysis Included in Bogaerts 2022 and Cheng 2020

1 Excluded economic studies

- 2 No economic evidence was identified for this review. See supplementary material 2 for
- 3 further information.

1 Appendix K Research recommendations – full details

- 2 Research recommendations for review question: What pathology protocol for
- 3 handling specimens from risk reducing surgery should be followed for risk-
- 4 reducing surgery for women at increased risk of familial ovarian cancer?
- $\,\,^{5}$ No research recommendations were made for this review question. $\,^{6}$

7

1 Appendix L Outcome data used in meta-analysis and meta-2 regression

- 3 Key to variables in Table 8 and Table 9:
- 4 study_id study identification variable
- 5 source source of the study
- 6 age mean age at surgery (median if mean was not reported)
- 7 oc number of ovarian carcinomas detected at RRSO
- 8 stic number of serous tubal intraepithelial carcinomas detected at RRSO
- 9 brca total total number of women with BRCA mutation who underwent RRSO
- 10 see_fim whether the study reported the SEE-FIM protocol was used
- 11 gynaecopath whether the study reported a dedicated gynaecopathologist
- 12 IHC whether the study reported that immunohistochemistry was used

13 Table 8: Raw data used for the meta-analysis of ovarian cancer prevalence at RRSO

study_id	source	age	ос	brca_tota	see_fim	gynaec opath	IHC	
Ayres 2017	Cheng 2020/ Bogaerts 2022	49.00	0	12	У	у	У	
Bacha 2012	Cheng 2020/ Bogaerts 2022	49	1	76	n	nr	nr	
Barrington 2018	Cheng 2020/ Bogaerts 2022	46.2	0	6	n	nr	nr	
Bogani 2017	Cheng 2020/ Bogaerts 2022	47	5	57	n	у	nr	
Carcangiu 2006	Cheng 2020/ Bogaerts 2022	na	3	50	У	nr	nr	
Cheng 2020 (1)	Cheng 2020/ Bogaerts 2022	48.5	0	9	n	nr	У	
Cheng 2020 (2)	Cheng 2020/ Bogaerts 2022	48.5	1	15	У	nr	У	
Colgan 2001	Cheng 2020/ Bogaerts 2022	48.4	4	39	n	nr	nr	
Conner 2013	Cheng 2020/ Bogaerts 2022	47.5	14	345	У	nr	У	
Evans 2009	Cheng 2020/ Bogaerts 2022	50.5	3	160	n	nr	nr	
Finch 2005	Cheng 2020/ Bogaerts 2022	47.9	6	159	У	у	nr	
Hirst 2009	Cheng 2020/ Bogaerts 2022	49	3	15	У	У	nr	
Kauff 2002	Cheng 2020/ Bogaerts 2022	47.5	3	98	n	nr	nr	
Kim 2015	Cheng 2020/ Bogaerts 2022	44.4	0	22	na	na	na	
Laki 2007	Cheng 2020/ Bogaerts 2022	46.8	4	89	У	nr	nr	
Lamb 2006	Cheng 2020/ Bogaerts 2022	47	3	62	у	у	nr	

				brca_tota		gynaec		
study_id	source	age	ос	I	see_fim	opath	IHC	
Lavie 2015	Cheng 2020/ Bogaerts 2022	53	5	92	na	na	na	
Lee 2017	Cheng 2020/ Bogaerts 2022	46.5	3	63	У	у	У	
Leunen 2006	Cheng 2020/ Bogaerts 2022	na	0	24	na	na	na	
Lu 2000	Cheng 2020/ Bogaerts 2022	na	2	23	У	У	nr	
Manchanda 2011	Cheng 2020/ Bogaerts 2022	48.9	4	117	У	У	nr	
McAlpine 2011	Cheng 2020/ Bogaerts 2022	50.45	1	11	У	na	na	
Miller 2017	Cheng 2020/ Bogaerts 2022	47.4	0	70	na	na	na	
Mingels 2012	Cheng 2020/ Bogaerts 2022	44	2	226	У	У	nr	
Minig 2018	Cheng 2020/ Bogaerts 2022	49.3	6	359	У	У	У	
Oliver 2004	Cheng 2020/ Bogaerts 2022	47.00	5	65	У	nr	У	
Powell 2011	Cheng 2020/ Bogaerts 2022	46	5	111	n	у	nr	
Primas 2012	Cheng 2020/ Bogaerts 2022	43.3	2	94	na	na	na	
Reistma 2013	Cheng 2020/ Bogaerts 2022	44.00	4	303	У	у	У	
Thompson 2018	Cheng 2020/ Bogaerts 2022	43	1	46	У	у	У	
Vd Hoven 2018	Cheng 2020/ Bogaerts 2022	na	3	235	n	nr	nr	
Wong 2018	Cheng 2020/ Bogaerts 2022	48.2	8	216	na	nr	nr	
Yates 2011	Cheng 2020/ Bogaerts 2022	47	3	136	n	na	na	
Zakhour 2016	Cheng 2020/ Bogaerts 2022	46	5	257	У	у	nr	
Pross 2021	Lit search	48.34	3	191	у	у	nr	
Rabban 2011	Lit search	46	4	134	n	у	nr	
Rhiem 2011	Lit search	47	1	175	n	nr	nr	

¹ na: missing value; nr: not reported; RRSO: risk-reducing salpingo oophorectomy; SEE-FIM: protocol for

3 Table 9: Raw data used for the meta-analysis of serous tubal intraepithelial carcinoma prevalence at RRSO

study_id	source	age	see_fim	gynae copath	IHC	stic	brca_total
Artioli 2018	Cheng 2020/ Bogaerts 2022	47.9	у	у	nr	1	10
Ayres 2017	Cheng 2020/ Bogaerts 2022	49	у	у	у	0	12
Bacha 2012	Cheng 2020/	49	n	n	nr	0	76

² sectioning and extensively examining the fimbriated end of the fallopian tube

study_id	source	age	see_fim	gynae copath	IHC	stic	brca_total
	Bogaerts 2022						
Blok 2019	Bogaerts 2022	na	n	у	у	4	527
Bogani 2017	Cheng 2020/ Bogaerts 2022	47	n	у	nr	2	57
Carcangiu 2004	Cheng 2020/ Bogaerts 2022	na	n	n	у	2	26
Carcangiu 2006	Cheng 2020/ Bogaerts 2022	na	у	n	nr	3	50
Cass 2014	Cheng 2020/ Bogaerts 2022	na	na	у	у	8	78
Cheng (1) 2020	Bogaerts 2022	48.5	n	n	у	0	9
Cheng (2) 2020	Bogaerts 2022	48.5	у	n	у	1	24
Conner 2014	Cheng 2020/ Bogaerts 2022	47.5	у	n	у	5	302
Gornjec 2020	Bogaerts 2022	48.3	у	n	nr	3	145
Hirst 2009	Cheng 2020/ Bogaerts 2022	49	у	у	nr	1	15
Lamb 2006	Cheng 2020/ Bogaerts 2022	47	у	у	nr	4	62
Lee (1) 2017	Cheng 2020/ Bogaerts 2022	48.5	n	n	у	2	130
Lee (2) 2017	Cheng 2020/ Bogaerts 2022	46.5	у	у	у	2	36
Leonhardt 2011	Cheng 2020/ Bogaerts 2022	na	na	n	у	0	14
Malmberg 2016	Cheng 2020/ Bogaerts 2022	52.1	n	n	у	1	42
Manchanda 2011	Cheng 2020/ Bogaerts 2022	48.9	у	у	nr	6	117
Mingels 2012	Cheng 2020/ Bogaerts 2022	44	у	у	nr	14	226
Minig 2018	Cheng 2020/ Bogaerts 2022	49.3	у	у	у	3	359
Poon 2016	Cheng 2020/ Bogaerts 2022	51.75	у	у	у	3	72
Powell 2011	Cheng 2020/ Bogaerts 2022	46	n	у	nr	5	111
Powell 2013	Cheng 2020/ Bogaerts 2022	na	na	у	nr	17	405
Rabban 2009	Cheng 2020/ Bogaerts 2022	na	у	у	у	5	102
Reitsma 2013	Cheng 2020/ Bogaerts 2022	44	у	у	у	3	303
Ricciardi 2017	Cheng 2020/ Bogaerts 2022	na	у	у	у	7	290
Rudaitis 2019	Bogaerts 2022	na	у	n	у	7	71
Rush 2020	Bogaerts 2022	na	na	у	nr	8	371
Shaw 2009	Cheng 2020/ Bogaerts 2022	47	n	у	у	15	176
Sherman 2014	Cheng 2020/	na	n	у	nr	4	559

study_id	source	age	see_fim	gynae copath	IHC	stic	brca_total
	Bogaerts 2022						
Stanciu 2019	Bogaerts 2022	47.8	у	У	У	6	244
Stewart 2019	Bogaerts 2022	48.32	у	n	nr	3	61
Thompson 2018	Cheng 2020/ Bogaerts 2022	43	У	У	у	0	46
Vd Hoeven 2018	Cheng 2020/ Bogaerts 2022	na	n	n	nr	2	235
Visvanathan 2018	Cheng 2020/ Bogaerts 2022	48.3	У	У	у	12	366
Wethington 2013	Cheng 2020/ Bogaerts 2022	54	У	У	у	10	375
Wilhite 2019	Bogaerts 2022	49	у	n	nr	7	290
Wong 2018	Cheng 2020/ Bogaerts 2022	48.2	na	n	nr	3	197
Zakhour 2016	Cheng 2020/ Bogaerts 2022	46	У	У	nr	9	251
Pross 2021	Lit search	48.34	у	У	nr	2	187
Samimi 2018	Lit search	45.9	у	у	У	5	354

¹ na: missing value; nr: not reported; RRSO: risk-reducing salpingo oophorectomy; SEE-FIM: protocol for sectioning and extensively examining the fimbriated end of the fallopian tube

4 Meta-analytic and meta-regression analysis output from R-studio

5 [1] "*******oc--overall*******

6 Review: oc – overall

7		events	95%-CI	%W(cc	mmon)	%W(random)
8	Ayres 2017	0.0000	[0.0000; 26.46	48]	0.4	0.7
9	Bacha 2012	1.3158	[0.0333; 7.114	44]	0.9	1.3
10	Barrington 2018	0.0000	[0.0000; 45.92	258]	0.4	0.7
11	Bogani 2017	8.7719	[2.9099; 19.29	57]	4.0	3.8
12	Carcangiu 2006	6.0000	[1.2549; 16.54	82]	2.5	2.9
13	Cheng 2020 (1)	0.0000	[0.0000; 33.62	:67]	0.4	0.7
14	Cheng 2020 (2)	6.6667	[0.1686; 31.94	85]	0.8	1.3
15	Colgan 2001	10.2564	[2.8660; 24.22	10]	3.1	3.4
16	Conner 2013	4.0580	[2.2360; 6.714	49]	11.7	5.9
17	Evans 2009	1.8750	[0.3884; 5.38	16]	2.6	3.0
18	Finch 2005	3.7736	[1.3972; 8.032	23]	5.0	4.3
19	Hirst 2009	20.0000	[4.3312; 48.08	91]	2.1	2.6
20	Kauff 2002	3.0612	[0.6358; 8.686	63]	2.5	3.0
21	Kim 2015	0.0000	[0.0000; 15.43	73]	0.4	0.7

1	Laki 2007	4.4944	[1.2380; 11.1092]	3.3	3.5
2	Lamb 2006	4.8387	[1.0092; 13.4962]	2.5	2.9
3	Lavie 2015	5.4348	[1.7880; 12.2287]	4.1	3.9
4	Lee 2017	4.7619	[0.9930; 13.2918]	2.5	2.9
5	Leunen 2006	0.0000	[0.0000; 14.2474]	0.4	0.7
6	Lu 2000	8.6957	[1.0710; 28.0379]	1.6	2.1
7	Manchanda 2011	3.4188	[0.9392; 8.5224]	3.4	3.5
8	McAlpine 2011	9.0909	[0.2299; 41.2780]	0.8	1.2
9	Miller 2017	0.0000	[0.0000; 5.1334]	0.4	0.7
10	Mingels 2012	0.8850	[0.1074; 3.1600]	1.7	2.3
11	Minig 2018	1.6713	[0.6157; 3.6021]	5.1	4.4
12	Oliver 2004	7.6923	[2.5448; 17.0456]	4.0	3.9
13	Powell 2011	4.5045	[1.4786; 10.1993]	4.2	3.9
14	Primas 2012	2.1277	[0.2587; 7.4752]	1.7	2.3
15	Reistma 2013	1.3201	[0.3608; 3.3454]	3.4	3.5
16	Thompson 2018	2.1739	[0.0550; 11.5272]	0.9	1.3
17	Vd Hoven 2018	1.2766	[0.2640; 3.6852]	2.6	3.0
18	Wong 2018	3.7037	[1.6123; 7.1671]	6.7	4.9
19	Yates 2011	2.2059	[0.4572; 6.3111]	2.6	3.0
20	Zakhour 2016	1.9455	[0.6347; 4.4816]	4.3	4.0
21	Pross 2021	1.5707	[0.3251; 4.5213]	2.6	3.0
22	Rabban 2011	2.9851	[0.8192; 7.4665]	3.4	3.5
23	Rhiem 2011	0.5714	[0.0145; 3.1425]	0.9	1.3
24					

25 Number of studies combined: k = 37

26 Number of observations: o = 4162

27 Number of events: e = 117

28

29		events	95%-CI
30	Common effect model	3.5633	[2.9849; 4.2489]
31	Random effects model	3.4938	[2.7481; 4.4325]

32

33 Quantifying heterogeneity:

```
1 tau^2 = 0.1969 [0.0029; 0.5946]; tau = 0.4437 [0.0540; 0.7711]
 2 I<sup>2</sup> = 34.5% [1.9%; 56.2%]; H = 1.24 [1.01; 1.51]
 3
 4 Test of heterogeneity:
 5
    Q
           d.f.
                  p-value
   54.93 36
 6
                  0.0225
 7
 8 Details on meta-analytical method:
 9 - Inverse variance method
10 - Restricted maximum-likelihood estimator for tau^2
11 - Q-Profile method for confidence interval of tau^2 and tau
12 - Logit transformation
13 - Clopper-Pearson confidence interval for individual studies
14 - Continuity correction of 0.5 in studies with zero cell frequencies
15 - Events per 100 observations
16
17 Mixed-Effects Model (k = 33; tau<sup>2</sup> estimator: REML)
18
19
                           AIC
                                   BIC
                                           AICc
     logLik deviance
20 -36.8964 73.7927 79.7927 84.0947 80.6816
21
22 tau^2 (estimated amount of residual heterogeneity):
                                                           0.1714 (SE = 0.1252)
23 tau (square root of estimated tau^2 value):
                                                          0.4140
24 I^2 (residual heterogeneity / unaccounted variability): 35.03%
25 H<sup>2</sup> (unaccounted variability / sampling variability):
                                                          1.54
26 R<sup>2</sup> (amount of heterogeneity accounted for):
                                                          8.34%
27
28 Test for Residual Heterogeneity:
29 QE(df = 31) = 45.2882, p-val = 0.0470
30
31 Test of Moderators (coefficient 2):
32 QM(df = 1) = 2.9481, p-val = 0.0860
33
```

```
1 Model Results:
 2
 3
           estimate
                               zval
                                                           ci.lb
                                                                         ci.ub
                        se
                                             pval
 4 intrcpt -8.4930
                        3.0161 -2.8159
                                             0.0049
                                                           -14.4044
                                                                         -2.5816 **
           0.1090
                        0.0635 1.7170
                                             0.0860
                                                           -0.0154
                                                                         0.2334 .
 5 age
 6
 7 ---
 8 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 9
10 [1] "******oc--IHC*******
11 Review: oc -- IHC
12
13
                        events
                                      95%-CI
                                                       %W(common)
                                                                         %W(random)
14 Ayres 2017
                                      [0.0000; 26.4648]
                                                                         3.1
                        0.0000
                                                            1.4
15 Cheng 2020 (1)
                        0.0000
                                      [0.0000; 33.6267]
                                                            1.4
                                                                         3.0
16 Cheng 2020 (2)
                        6.6667
                                      [0.1686; 31.9485]
                                                            2.8
                                                                         5.4
17 Conner 2013
                        4.0580
                                      [2.2360; 6.7149]
                                                          40.0
                                                                         22.9
18 Lee 2017
                        4.7619
                                      [0.9930; 13.2918]
                                                            8.5
                                                                         12.1
19 Minig 2018
                        1.6713
                                      [0.6157; 3.6021]
                                                           17.5
                                                                         17.5
20 Oliver 2004
                        7.6923
                                      [2.5448; 17.0456]
                                                           13.7
                                                                         15.7
21 Reistma 2013
                        1.3201
                                      [0.3608; 3.3454]
                                                           11.7
                                                                         14.5
22 Thompson 2018
                        2.1739
                                      [0.0550; 11.5272]
                                                            2.9
                                                                         5.6
23
24 Number of studies combined: k = 9
25 Number of observations: o = 1217
26 Number of events: e = 34
27
28
                                      95%-CI
                         events
29 Common effect model 3.3805
                                      [2.4345; 4.6765]
30 Random effects model 3.3364
                                      [2.0072; 5.4966]
31
32 Quantifying heterogeneity:
33 tau<sup>2</sup> = 0.2346 [0.0000; 1.0952]; tau = 0.4844 [0.0000; 1.0465]
```

```
1 I<sup>2</sup> = 32.3% [0.0%; 68.7%]; H = 1.22 [1.00; 1.79]
 2
 3 Test of heterogeneity:
       Q d.f. p-value
 4
    11.81 8 0.1598
 5
 6
 7 Details on meta-analytical method:
 8 - Inverse variance method
 9 - Restricted maximum-likelihood estimator for tau^2
10 - Q-Profile method for confidence interval of tau^2 and tau
11 - Logit transformation
12 - Clopper-Pearson confidence interval for individual studies
13 - Continuity correction of 0.5 in studies with zero cell frequencies
14 - Events per 100 observations
15
16 Mixed-Effects Model (k = 9; tau^2 estimator: REML)
17
18
     logLik
                deviance
                              AIC
                                      BIC
                                              AICc
19
    -8.4923
                16.9846 22.9846 22.8223 30.9846
20
21 tau^2 (estimated amount of residual heterogeneity):
                                                           0.2968 (SE = 0.3595)
22 tau (square root of estimated tau^2 value):
                                                           0.5448
23 I<sup>2</sup> (residual heterogeneity / unaccounted variability): 48.12%
24 H<sup>2</sup> (unaccounted variability / sampling variability):
                                                           1.93
25 R<sup>2</sup> (amount of heterogeneity accounted for):
                                                           0.00%
26
27 Test for Residual Heterogeneity:
28 QE(df = 7) = 11.4715, p-val = 0.1193
29
30 Test of Moderators (coefficient 2):
31 QM(df = 1) = 0.3876, p-val = 0.5336
32
33 Model Results:
```

```
1
 2
          estimate
                                zval
                                                ci.lb
                                                        ci.ub
                       se
                                        pval
                       6.9960 -1.1029 0.2701 -21.4276 5.9961
 3 intrcpt -7.7158
           0.0927
                       4 age
 5
 6 ---
 7 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 8
 9 [1] "*******oc--see_fim*******
10 Review: oc -- see_fim
11
12
                                    95%-CI
                                                                      %W(random)
                                                  %W(common)
                       events
13 Ayres 2017
                       0.0000
                                     [0.0000; 26.4648]
                                                         0.7
                                                                       1.4
                                                                      5.3
14 Carcangiu 2006
                       6.0000
                                     [1.2549; 16.5482]
                                                         4.2
15 Cheng 2020 (2)
                                     [0.1686; 31.9485]
                                                          1.4
                                                                      2.4
                       6.6667
16 Conner 2013
                       4.0580
                                     [2.2360; 6.7149]
                                                        20.0
                                                                      9.6
17 Finch 2005
                       3.7736
                                     [1.3972; 8.0323]
                                                         8.6
                                                                      7.4
18 Hirst 2009
                       20.0000
                                     [4.3312; 48.0891]
                                                          3.6
                                                                      4.8
19 Laki 2007
                       4.4944
                                     [1.2380; 11.1092]
                                                                      6.2
                                                         5.7
20 Lamb 2006
                       4.8387
                                     [1.0092; 13.4962]
                                                          4.2
                                                                      5.3
21 Lee 2017
                       4.7619
                                     [0.9930; 13.2918]
                                                                      5.3
                                                          4.2
22 Lu 2000
                       8.6957
                                     [1.0710; 28.0379]
                                                         2.7
                                                                      4.0
23 Manchanda 2011
                       3.4188
                                     [0.9392; 8.5224]
                                                         5.7
                                                                      6.2
24 McAlpine 2011
                       9.0909
                                     [0.2299; 41.2780]
                                                          1.4
                                                                      2.4
25 Mingels 2012
                       0.8850
                                     [0.1074; 3.1600]
                                                         2.9
                                                                      4.2
26 Minig 2018
                       1.6713
                                     [0.6157; 3.6021]
                                                         8.8
                                                                      7.5
27 Oliver 2004
                       7.6923
                                     [2.5448; 17.0456]
                                                         6.9
                                                                      6.8
28 Reistma 2013
                       1.3201
                                     [0.3608; 3.3454]
                                                         5.9
                                                                      6.3
29 Thompson 2018
                       2.1739
                                     [0.0550; 11.5272]
                                                                      2.5
                                                          1.5
30 Zakhour 2016
                       1.9455
                                     [0.6347; 4.4816]
                                                         7.3
                                                                      6.9
31 Pross 2021
                       1.5707
                                     [0.3251; 4.5213]
                                                         4.4
                                                                      5.4
32
```

33 Number of studies combined: k = 19

```
1 Number of observations: o = 2408
 2 Number of events: e = 70
 3
 4
                                       95%-CI
                          events
 5 Common effect model 3.5854 [2.8449; 4.5098]
 6 Random effects model 3.6793 [2.6096; 5.1642]
 7
 8 Quantifying heterogeneity:
 9 tau<sup>2</sup> = 0.2672 [0.0095; 1.0327]; tau = 0.5169 [0.0977; 1.0162]
10 I<sup>2</sup> = 44.7% [5.1%; 67.7%]; H = 1.34 [1.03; 1.76]
11
12 Test of heterogeneity:
13
      Q d.f. p-value
14 32.52 18 0.0191
15
16 Details on meta-analytical method:
17 - Inverse variance method
18 - Restricted maximum-likelihood estimator for tau^2
19 - Q-Profile method for confidence interval of tau^2 and tau
20 - Logit transformation
21 - Clopper-Pearson confidence interval for individual studies
22 - Continuity correction of 0.5 in studies with zero cell frequencies
23 - Events per 100 observations
24
25 Mixed-Effects Model (k = 17; tau<sup>2</sup> estimator: REML)
26
27
                                   BIC
                                          AICc
    logLik deviance
                          AIC
28 -17.2995 34.5991 40.5991 42.7232 42.7809
29
30 tau^2 (estimated amount of residual heterogeneity):
                                                               0.2364 (SE = 0.1973)
31 tau (square root of estimated tau^2 value):
                                                               0.4862
32 I<sup>2</sup> (residual heterogeneity / unaccounted variability):
                                                               45.61%
33 H<sup>2</sup> (unaccounted variability / sampling variability):
                                                               1.84
```

```
1 R<sup>2</sup> (amount of heterogeneity accounted for):
                                                            15.34%
 2
 3 Test for Residual Heterogeneity:
 4 QE(df = 15) = 25.4562, p-val = 0.0441
 5
 6 Test of Moderators (coefficient 2):
 7 QM(df = 1) = 3.6160, p-val = 0.0572
 8
 9 Model Results:
10
11
           estimate
                                                ci.lb
                                                       ci.ub
                       se
                              zval
                                       pval
12 intrcpt -12.8373 4.9995 -2.5677 0.0102 -22.6362 -3.0385 *
13 age
            0.2012 0.1058 1.9016 0.0572 -0.0062 0.4086 .
14
15 ---
16 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
17
18 [1] "*******oc--gynaecopath*******"
19 Review: oc -- gynaecopath
20
21
                                                                          %W(random)
                        events
                                      95%-CI
                                                     %W(common)
22 Ayres 2017
                        0.0000
                                      [0.0000; 26.4648]
                                                            0.9
                                                                          1.8
23 Bogani 2017
                        8.7719
                                      [2.9099; 19.2957]
                                                            8.5
                                                                          7.6
24 Finch 2005
                        3.7736
                                      [1.3972; 8.0323]
                                                           10.7
                                                                          8.3
25 Hirst 2009
                        20.0000
                                      [4.3312; 48.0891]
                                                            4.4
                                                                          5.6
26 Lamb 2006
                        4.8387
                                      [1.0092; 13.4962]
                                                            5.3
                                                                          6.2
27 Lee 2017
                        4.7619
                                      [0.9930; 13.2918]
                                                            5.3
                                                                          6.2
28 Lu 2000
                        8.6957
                                      [1.0710; 28.0379]
                                                                          4.8
                                                            3.4
                                                                          7.1
29 Manchanda 2011
                                      [0.9392; 8.5224]
                                                            7.2
                        3.4188
30 Mingels 2012
                        0.8850
                                      [0.1074; 3.1600]
                                                            3.7
                                                                          5.0
31 Minig 2018
                         1.6713
                                      [0.6157; 3.6021]
                                                           10.9
                                                                          8.3
32 Powell 2011
                        4.5045
                                      [1.4786; 10.1993]
                                                            8.9
                                                                          7.7
                                                                          7.2
33 Reistma 2013
                         1.3201
                                      [0.3608; 3.3454]
                                                            7.3
```

```
1 Thompson 2018
                         2.1739
                                                               1.8
                                                                             3.1
                                        [0.0550; 11.5272]
 2 Zakhour 2016
                         1.9455
                                        [0.6347; 4.4816]
                                                              9.1
                                                                             7.8
 3 Pross 2021
                         1.5707
                                        [0.3251; 4.5213]
                                                              5.5
                                                                             6.3
 4 Rabban 2011
                         2.9851
                                        [0.8192; 7.4665]
                                                              7.2
                                                                             7.1
 5
 6 Number of studies combined: k = 16
 7 Number of observations: o = 2135
 8 Number of events: e = 56
 9
10
                 events
                              95%-CI
11 Common effect model 3.2990 [2.5459; 4.2650]
12 Random effects model 3.3853 [2.2838; 4.9909]
13
14 Quantifying heterogeneity:
15 tau<sup>2</sup> = 0.3429 [0.0398; 1.3301]; tau = 0.5856 [0.1995; 1.1533]
16 I<sup>2</sup> = 51.8% [14.6%; 72.8%]; H = 1.44 [1.08; 1.92]
17
18 Test of heterogeneity:
19
       Q d.f. p-value
20 31.10 15 0.0085
21
22 Details on meta-analytical method:
23 - Inverse variance method
24 - Restricted maximum-likelihood estimator for tau<sup>2</sup>
25 - Q-Profile method for confidence interval of tau^2 and tau
26 - Logit transformation
27 - Clopper-Pearson confidence interval for individual studies
28 - Continuity correction of 0.5 in studies with zero cell frequencies
29 - Events per 100 observations
30
31 Mixed-Effects Model (k = 15; tau<sup>2</sup> estimator: REML)
32
33
                           AIC
                                           AICc
```

BIC

logLik

deviance

```
1 -15.6543 31.3087 37.3087 39.0035 39.9753
 2
 3 tau<sup>2</sup> (estimated amount of residual heterogeneity):
                                                             0.3200 (SE = 0.2459)
 4 tau (square root of estimated tau^2 value):
                                                             0.5657
 5 I^2 (residual heterogeneity / unaccounted variability):
                                                             52.11%
 6 H^2 (unaccounted variability / sampling variability):
                                                             2.09
 7 R<sup>2</sup> (amount of heterogeneity accounted for):
                                                             4.59%
 8
 9 Test for Residual Heterogeneity:
10 QE(df = 13) = 26.4592, p-val = 0.0147
11
12 Test of Moderators (coefficient 2):
13 QM(df = 1) = 2.1173, p-val = 0.1456
14
15 Model Results:
16
17
                                              ci.lb
                                                       ci.ub
            estimate
                        se
                             zval
                                     pval
18 intrcpt -11.4069 5.5053 -2.0720 0.0383 -22.1972 -0.6167 *
            0.1708 0.1173 1.4551 0.1456 -0.0592 0.4007
19 age
20
21 ---
22 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
23
24 [1] "*******stic--overall*******
25 Review: stic -- overall
26
27
                                       95%-CI
                                                                           %W(random)
                         events
                                                      %W(common)
                                                             0.5
                                                                           1.1
28 Artioli 2018
                         10.0000
                                       [0.2529; 44.5016]
                                       [0.0000; 26.4648]
29 Ayres 2017
                         0.0000
                                                             0.3
                                                                           0.7
30 Bacha 2012
                         0.0000
                                       [0.0000; 4.7379]
                                                             0.3
                                                                           0.7
31 Blok 2019
                         0.7590
                                       [0.2072; 1.9319]
                                                             2.1
                                                                           2.7
32 Bogani 2017
                         3.5088
                                       [0.4278; 12.1071]
                                                             1.0
                                                                           1.9
                                                             1.0
                                                                           1.8
33 Carcangiu 2004
                         7.6923
                                       [0.9455; 25.1303]
```

1	Carcangiu 2006	6.0000	[1.2549; 16.5482]	1.5	2.3
2	Cass 2014	10.2564	[4.5331; 19.2127]	3.8	3.3
3	Cheng (1) 2020	0.0000	[0.0000; 33.6267]	0.3	0.7
4	Cheng (2) 2020	6.6667	[0.1686; 31.9485]	0.5	1.2
5	Conner 2014	1.6556	[0.5397; 3.8212]	2.6	2.9
6	Gornjec 2020	2.0690	[0.4287; 5.9272]	1.6	2.4
7	Hirst 2009	6.6667	[0.1686; 31.9485]	0.5	1.2
8	Lamb 2006	6.4516	[1.7857; 15.7028]	2.0	2.6
9	Lee (1) 2017	1.5385	[0.1869; 5.4469]	1.0	1.9
10	Lee (2) 2017	5.5556	[0.6800; 18.6637]	1.0	1.9
11	Leonhardt 2011	0.0000	[0.0000; 23.1636]	0.3	0.7
12	Malmberg 2016	2.3810	[0.0603; 12.5659]	0.5	1.2
13	Manchanda 2011	5.1282	[1.9050; 10.8280]	3.0	3.1
14	Mingels 2012	6.1947	[3.4277; 10.1753]	7.0	3.8
15	Minig 2018	0.8357	[0.1727; 2.4226]	1.6	2.4
16	Poon 2016	4.1667	[0.8676; 11.6975]	1.5	2.3
17	Powell 2011	4.5045	[1.4786; 10.1993]	2.5	2.9
18	Powell 2013	4.1975	[2.4639; 6.6357]	8.6	3.9
19	Rabban 2009	4.9020	[1.6106; 11.0696]	2.5	2.9
20	Reitsma 2013	0.9901	[0.2046; 2.8661]	1.6	2.4
21	Ricciardi 2017	2.4138	[0.9759; 4.9099]	3.6	3.3
22	Rudaitis 2019	9.8592	[4.0566; 19.2644]	3.3	3.2
23	Rush 2020	2.1563	[0.9354; 4.2045]	4.1	3.4
24	Shaw 2009	8.5227	[4.8487; 13.6673]	7.3	3.8
25	Sherman 2014	0.7156	[0.1953; 1.8219]	2.1	2.7
26	Stanciu 2019	2.4590	[0.9076; 5.2751]	3.1	3.1
27	Stewart 2019	4.9180	[1.0259; 13.7069]	1.5	2.3
28	Thompson 2018	0.0000	[0.0000; 7.7062]	0.3	0.7
29	Vd Hoeven 2018	0.8511	[0.1032; 3.0403]	1.0	1.9
30	Visvanathan 2018	3.2787	[1.7054; 5.6571]	6.1	3.7
31	Wethington 2013	2.6667	[1.2860; 4.8493]	5.2	3.6
32	Wilhite 2019	2.4138	[0.9759; 4.9099]	3.6	3.3
33	Wong 2018	1.5228	[0.3152; 4.3857]	1.6	2.4

1	Zakhour 2016	2 5057		1 6525:	6.6973]	4.6	3.5
1	Pross 2021	1.0695	•	<u> </u>	3.8099]		1.9
	Samimi 2018	1.4124	•	<u> </u>	3.2652]		2.9
4	Samini 2010	1.4124		0.4002,	3.2032]	2.0	2.9
	Number of studies co	mhined	k = 42				
	Number of studies combined: k = 42 Number of observations: o = 7374						
	Number of observations: 6 – 7374 Number of events: e = 195						
8	Number of Sychia. C = 100						
9			events	95	5%-CI		
10	Common effect mode	el	3.4684	[;	3.0213; 3.	9788]	
11	Random effects mode	el	3.1087	[2	2.4338; 3.	9630]	
12							
13	Quantifying heterogeneity:						
14	tau^2 = 0.3609 [0.1299; 0.6860]; tau = 0.6008 [0.3604; 0.8283]						
15	I^2 = 59.3% [42.9%; 71.0%]; H = 1.57 [1.32; 1.86]						
16							
17	Test of heterogeneity:						
18	Q d.f. p-value						
19	100.85 41 < 0.0001						
20							
21	Details on meta-analytical method:						
22	- Inverse variance method						
23	- Restricted maximum-likelihood estimator for tau^2						
24	- Q-Profile method for confidence interval of tau^2 and tau						
	- Logit transformation						
	- Clopper-Pearson confidence interval for individual studies						
	- Continuity correction of 0.5 in studies with zero cell frequencies						
	- Events per 100 obse	ervation	S				
29	National Effects NATION	/I ₄ = 00	440	.4i c.4 -			
	Mixed-Effects Model (k = 30; tau^2 estimator: REML)						
31							

32 logLik deviance AIC BIC AICc

33 -32.6497 65.2994 71.2994 75.2960 72.2994

```
1
 2 tau^2 (estimated amount of residual heterogeneity):
                                                              0.2242 (SE = 0.1372)
 3 tau (square root of estimated tau<sup>2</sup> value):
                                                              0.4735
 4 I^2 (residual heterogeneity / unaccounted variability):
                                                              46.40%
                                                              1.87
 5 H<sup>2</sup> (unaccounted variability / sampling variability):
                                                              0.00%
 6 R<sup>2</sup> (amount of heterogeneity accounted for):
 7
 8 Test for Residual Heterogeneity:
 9 QE(df = 28) = 50.5537, p-val = 0.0056
10
11 Test of Moderators (coefficient 2):
12 QM(df = 1) = 0.2482, p-val = 0.6183
13
14 Model Results:
15
16
                                                    ci.lb
                  estimate
                                     zval
                                             pval
                                                             ci.ub
                              se
17 intrcpt
                  -2.0536 2.8006 -0.7333 0.4634 -7.5427 3.4355
18 age
                  -0.0291 0.0584 -0.4982 0.6183 -0.1437 0.0854
19
20 ---
21 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
22
23 [1] "*******stic--IHC*******
24 Review: stic -- IHC
25
26
                                       95%-CI
                                                      %W(common)
                                                                            %W(random)
                         events
27 Ayres 2017
                         0.0000
                                        [0.0000; 26.4648]
                                                              0.5
                                                                            1.5
28 Blok 2019
                                        [0.2072; 1.9319]
                                                                            5.1
                         0.7590
                                                              4.0
                                        [0.9455; 25.1303]
29 Carcangiu 2004
                                                              1.9
                                                                            3.7
                         7.6923
30 Cass 2014
                         10.2564
                                        [4.5331; 19.2127]
                                                              7.3
                                                                            6.0
31 Cheng (1) 2020
                         0.0000
                                        [0.0000; 33.6267]
                                                              0.5
                                                                            1.4
32 Cheng (2) 2020
                         6.6667
                                        [0.1686; 31.9485]
                                                              1.0
                                                                            2.4
                                                              5.0
33 Conner 2014
                         1.6556
                                        [0.5397; 3.8212]
                                                                            5.4
```

1	Lee (1) 2017	1.5385	[0.1869; 5.4469]	2.0	3.8	
2	Lee (2) 2017	5.5556	[0.6800; 18.6637]	1.9	3.7	
3	Leonhardt 2011	0.0000	[0.0000; 23.1636]	0.5	1.5	
4	Malmberg 2016	2.3810	[0.0603; 12.5659]	1.0	2.5	
5	Minig 2018	0.8357	[0.1727; 2.4226]	3.0	4.6	
6	Poon 2016	4.1667	[0.8676; 11.6975]	2.9	4.5	
7	Rabban 2009	4.9020	[1.6106; 11.0696]	4.8	5.4	
8	Reitsma 2013	0.9901	[0.2046; 2.8661]	3.0	4.6	
9	Ricciardi 2017	2.4138	[0.9759; 4.9099]	7.0	5.9	
10	Rudaitis 2019	9.8592	[4.0566; 19.2644]	6.4	5.8	
11	Shaw 2009	8.5227	[4.8487; 13.6673]	14.0	6.7	
12	Stanciu 2019	2.4590	[0.9076; 5.2751]	6.0	5.7	
13	Thompson 2018	0.0000	[0.0000; 7.7062]	0.5	1.5	
14	Visvanathan 2018	3.2787	[1.7054; 5.6571]	11.8	6.6	
15	Wethington 2013	2.6667	[1.2860; 4.8493]	9.9	6.4	
16	Samimi 2018	1.4124	[0.4602; 3.2652]	5.0	5.4	
17						
18	Number of studies combined: k = 23					
19	Number of observations: o = 3949					
20	Number of events: e = 101					
21						
22		events	95%-CI			
23	Common effect model 3.5006		[2.8905; 4.2339]			
24	Random effects model 3.0914		[2.1353; 4.4562]			
25						
26	Quantifying heterogeneity:					
27	tau^2 = 0.4867 [0.1363; 1.0083]; tau = 0.6976 [0.3692; 1.0041]					
28	I^2 = 66.2% [47.7%; 78.2%]; H = 1.72 [1.38; 2.14]					
29						
~~	T (()					

30 Test of heterogeneity:

31 Q d.f. p-value

32 65.17 22 < 0.0001

33

```
1 Details on meta-analytical method:
 2 - Inverse variance method
 3 - Restricted maximum-likelihood estimator for tau<sup>2</sup>
 4 - Q-Profile method for confidence interval of tau^2 and tau
 5 - Logit transformation
 6 - Clopper-Pearson confidence interval for individual studies
 7 - Continuity correction of 0.5 in studies with zero cell frequencies
 8 - Events per 100 observations
 9
10 Mixed-Effects Model (k = 16; tau^2 estimator: REML)
11
                                    BIC
                                           AICc
12
    logLik
              deviance
                           AIC
13 -17.2770 34.5540 40.5540 42.4712 42.9540
14
15 tau^2 (estimated amount of residual heterogeneity):
                                                          0.3480 (SE = 0.2598)
16 tau (square root of estimated tau^2 value):
                                                     0.5899
17 I^2 (residual heterogeneity / unaccounted variability): 55.95%
18 H<sup>2</sup> (unaccounted variability / sampling variability): 2.27
19 R<sup>2</sup> (amount of heterogeneity accounted for):
                                                        0.00%
20
21 Test for Residual Heterogeneity:
22 QE(df = 14) = 34.1658, p-val = 0.0020
23
24 Test of Moderators (coefficient 2):
25 QM(df = 1) = 0.3194, p-val = 0.5720
26
27 Model Results:
28
29
            estimate
                                               ci.lb
                                                         ci.ub
                        se
                               zval
                                      pval
30 intropt -5.7843 3.8332 -1.5090 0.1313 -13.2972 1.7287
31 age
            0.0447  0.0791  0.5652  0.5720  -0.1103  0.1997
32
```

33 ---

```
1 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 2
 3 [1] "******stic--see_fim*******"
 4 Review:
              stic -- see fim
 5
 6
                                     95%-CI
                                                    %W(common)
                                                                         %W(random)
                        events
 7 Artioli 2018
                        10.0000
                                      [0.2529; 44.5016]
                                                           8.0
                                                                         1.4
 8 Ayres 2017
                        0.0000
                                      [0.0000; 26.4648]
                                                           0.4
                                                                         8.0
 9 Carcangiu 2006
                        6.0000
                                      [1.2549; 16.5482]
                                                           2.4
                                                                         3.3
10 Cheng (2) 2020
                        6.6667
                                      [0.1686; 31.9485]
                                                           8.0
                                                                         1.5
11 Conner 2014
                        1.6556
                                      [0.5397; 3.8212]
                                                           4.2
                                                                         4.6
12 Gornjec 2020
                                      [0.4287; 5.9272]
                        2.0690
                                                           2.5
                                                                         3.4
13 Hirst 2009
                        6.6667
                                      [0.1686; 31.9485]
                                                           8.0
                                                                         1.5
14 Lamb 2006
                                      [1.7857; 15.7028]
                        6.4516
                                                           3.2
                                                                         4.0
15 Lee (2) 2017
                                      [0.6800; 18.6637]
                                                           1.6
                                                                         2.5
                        5.5556
16 Manchanda 2011
                        5.1282
                                      [1.9050; 10.8280]
                                                           4.8
                                                                         4.9
17 Mingels 2012
                        6.1947
                                      [3.4277; 10.1753]
                                                           11.1
                                                                         6.7
18 Minig 2018
                        0.8357
                                      [0.1727; 2.4226]
                                                           2.5
                                                                         3.4
19 Poon 2016
                        4.1667
                                      [0.8676; 11.6975]
                                                           2.4
                                                                         3.4
20 Rabban 2009
                        4.9020
                                      [1.6106; 11.0696]
                                                           4.0
                                                                         4.5
21 Reitsma 2013
                                      [0.2046; 2.8661]
                        0.9901
                                                           2.5
                                                                         3.4
22 Ricciardi 2017
                        2.4138
                                      [0.9759; 4.9099]
                                                           5.8
                                                                         5.3
23 Rudaitis 2019
                        9.8592
                                      [4.0566; 19.2644]
                                                           5.3
                                                                         5.2
24 Stanciu 2019
                        2.4590
                                      [0.9076; 5.2751]
                                                           5.0
                                                                         5.0
25 Stewart 2019
                        4.9180
                                      [1.0259; 13.7069]
                                                           2.4
                                                                         3.4
26 Thompson 2018
                        0.0000
                                      [0.0000; 7.7062]
                                                           0.4
                                                                         8.0
27 Visvanathan 2018
                        3.2787
                                      [1.7054; 5.6571]
                                                           9.8
                                                                         6.5
28 Wethington 2013
                                                                         6.1
                        2.6667
                                      [1.2860; 4.8493]
                                                           8.2
29 Wilhite 2019
                        2.4138
                                      [0.9759; 4.9099]
                                                                         5.3
                                                           5.8
30 Zakhour 2016
                        3.5857
                                      [1.6525; 6.6973]
                                                           7.4
                                                                         5.9
31 Pross 2021
                        1.0695
                                      [0.1298; 3.8099]
                                                           1.7
                                                                         2.6
32 Samimi 2018
                        1.4124
                                      [0.4602; 3.2652]
                                                           4.2
                                                                         4.6
33
```

```
1 Number of studies combined: k = 26
 2 Number of observations: o = 4361
 3 Number of events: e = 122
 4
 5
                                      95%-CI
                         events
 6 Common effect model 3.3813 [2.8390; 4.0228]
 7 Random effects model 3.2759 [2.5288; 4.2341]
 8
 9 Quantifying heterogeneity:
10 tau<sup>2</sup> = 0.2001 [0.0243; 0.6315]; tau = 0.4473 [0.1558; 0.7947]
   I<sup>2</sup> = 45.2% [12.9%; 65.4%]; H = 1.35 [1.07; 1.70]
11
12
13 Test of heterogeneity:
14
      Q d.f. p-value
15 45.58 25 0.0072
16
17 Details on meta-analytical method:
18 - Inverse variance method
19 - Restricted maximum-likelihood estimator for tau^2
20 - Q-Profile method for confidence interval of tau^2 and tau
21 - Logit transformation
22 - Clopper-Pearson confidence interval for individual studies
23 - Continuity correction of 0.5 in studies with zero cell frequencies
24 - Events per 100 observations
25
26 Mixed-Effects Model (k = 22; tau<sup>2</sup> estimator: REML)
27
28
   logLik deviance
                          AIC
                                  BIC
                                          AICc
29 -22.5076 45.0151 51.0151 54.0023 52.5151
30
31 tau^2 (estimated amount of residual heterogeneity):
                                                             0.1766 (SE = 0.1383)
32 tau (square root of estimated tau^2 value):
                                                             0.4202
33 I^2 (residual heterogeneity / unaccounted variability):
                                                             41.63%
```

```
1 H<sup>2</sup> (unaccounted variability / sampling variability):
                                                            1.71
                                                            0.00%
 2 R<sup>2</sup> (amount of heterogeneity accounted for):
 3
 4 Test for Residual Heterogeneity:
 5 QE(df = 20) = 33.0778, p-val = 0.0331
 6
 7 Test of Moderators (coefficient 2):
 8 QM(df = 1) = 0.0150, p-val = 0.9025
 9
10 Model Results:
11
12
                                            ci.lb
            estimate
                                                     ci.ub
                       se
                             zval
                                    pval
13 intrcpt -3.1495 2.7532 -1.1439 0.2526 -8.5457 2.2467
           -0.0070 0.0574 -0.1225 0.9025 -0.1195 0.1054
14 age
15
16 Signif. Codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
17
18 [1] "*******stic-gynaecopath*******
19 Review: stic – gynaecopath
20
21
                                      95%-CI
                                                     %W(common)
                                                                          %W(random)
                        events
22 Artioli 2018
                         10.0000
                                       [0.2529; 44.5016]
                                                            0.6
                                                                          1.6
23 Ayres 2017
                        0.0000
                                       [0.0000; 26.4648]
                                                            0.3
                                                                          1.0
24 Blok 2019
                        0.7590
                                       [0.2072; 1.9319]
                                                            2.6
                                                                          3.8
25 Bogani 2017
                        3.5088
                                       [0.4278; 12.1071]
                                                             1.3
                                                                          2.7
26 Cass 2014
                         10.2564
                                       [4.5331; 19.2127]
                                                            4.8
                                                                          4.6
27 Hirst 2009
                        6.6667
                                       [0.1686; 31.9485]
                                                            0.6
                                                                          1.7
28 Lamb 2006
                        6.4516
                                       [1.7857; 15.7028]
                                                            2.5
                                                                          3.7
29 Lee (2) 2017
                        5.5556
                                       [0.6800; 18.6637]
                                                             1.3
                                                                          2.7
30 Manchanda 2011
                        5.1282
                                       [1.9050; 10.8280]
                                                             3.8
                                                                          4.3
                                       [3.4277; 10.1753]
                                                            8.7
                                                                          5.2
31 Mingels 2012
                        6.1947
32 Minig 2018
                        0.8357
                                       [0.1727; 2.4226]
                                                            2.0
                                                                          3.4
33 Poon 2016
                        4.1667
                                       [0.8676; 11.6975]
                                                             1.9
                                                                          3.3
```

1	Powell 2011	4.5045	[1.4786; 10.1993]	3.2	4.1	
2	Powell 2013	4.1975	[2.4639; 6.6357]	10.8	5.4	
3	Rabban 2009	4.9020	[1.6106; 11.0696]	3.2	4.1	
4	Reitsma 2013	0.9901	[0.2046; 2.8661]	2.0	3.4	
5	Ricciardi 2017	2.4138	[0.9759; 4.9099]	4.6	4.5	
6	Rush 2020	2.1563	[0.9354; 4.2045]	5.2	4.7	
7	Shaw 2009	8.5227	[4.8487; 13.6673]	9.1	5.2	
8	Sherman 2014	0.7156	[0.1953; 1.8219]	2.6	3.8	
9	Stanciu 2019	2.4590	[0.9076; 5.2751]	3.9	4.3	
10	Thompson 2018	0.0000	[0.0000; 7.7062]	0.3	1.0	
11	Visvanathan 2018	3.2787	[1.7054; 5.6571]	7.7	5.1	
12	Wethington 2013	2.6667	[1.2860; 4.8493]	6.5	4.9	
13	Zakhour 2016	3.5857	[1.6525; 6.6973]	5.8	4.8	
14	Pross 2021	1.0695	[0.1298; 3.8099]	1.3	2.7	
15	Samimi 2018	1.4124	[0.4602; 3.2652]	3.3	4.1	
16						
17	Number of studies combined: k = 27					
18	Number of observations: o = 5711					
19	Number of events: e = 156					
20						

- 21 events 95%-CI
- 22 Common effect model 3.5585 [3.0485; 4.1503]
- 23 Random effects model 3.1479 [2.3350; 4.2314]

24

- 25 Quantifying heterogeneity:
- 26 tau² = 0.3953 [0.1465; 0.9402]; tau = 0.6287 [0.3828; 0.9696]
- I² = 65.8% [48.7%; 77.2%]; H = 1.71 [1.40; 2.09] 27

28

- 29 Test of heterogeneity:
- 30 Q d.f. p-value
- 31 76.07 26 < 0.0001

32

33 Details on meta-analytical method:

```
1 - Inverse variance method
 2 - Restricted maximum-likelihood estimator for tau^2
 3 - Q-Profile method for confidence interval of tau^2 and tau
 4 - Logit transformation
 5 - Clopper-Pearson confidence interval for individual studies
 6 - Continuity correction of 0.5 in studies with zero cell frequencies
 7 - Events per 100 observations
 8
 9 Mixed-Effects Model (k = 20; tau<sup>2</sup> estimator: REML)
10
     logLik
                            AIC
                                    BIC
                                            AICc
11
              deviance
12 -21.5603 43.1206 49.1206 51.7918 50.8349
13
14 Tau<sup>2</sup> (estimated amount of residual heterogeneity):
                                                                0.2882 (SE = 0.1842)
15 tau (square root of estimated tau^2 value):
                                                                0.5368
16 I<sup>2</sup> (residual heterogeneity / unaccounted variability):
                                                                56.68%
17 H<sup>2</sup> (unaccounted variability / sampling variability):
                                                                2.31
18 R<sup>2</sup> (amount of heterogeneity accounted for):
                                                                0.00%
19
20 Test for Residual Heterogeneity:
21 QE(df = 18) = 39.9332, p-val = 0.0021
22
23 Test of Moderators (coefficient 2):
24 QM(df = 1) = 0.0498, p-val = 0.8233
25
26 Model Results:
27
28
            estimate
                             zval
                                       pval
                                                ci.lb
                                                       ci.ub
                         se
29 intrcpt -2.6451 3.1375 -0.8431 0.3992 -8.7945 3.5043
30 age
            -0.0147 0.0658 -0.2233 0.8233 -0.1437 0.1143
31
32 ---
33 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

1