National Institute for Health and Care Excellence

Final version

Sepsis

Sepsis: recognition, assessment and early management

NICE guideline 51
Appendices I to 0
July 2016

Developed by the National Guideline Centre hosted by the Royal College of Physicians

Disclaimer

Healthcare professionals are expected to take NICE clinical guidelines fully into account when exercising their clinical judgement. However, the guidance does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of each patient, in consultation with the patient and, where appropriate, their guardian or carer.

Copyright

National Institute for Health and Care Excellence, 2016

ISBN

978-1-4731-1998-7

Contents

Appendices	5
Appendix I: Economic evidence tables	
Appendix J: GRADE tables	12
Appendix K: Forest plots	45
Appendix L: Excluded clinical studies	109
Appendix M:Excluded health economic studies	147
Appendix N: Research recommendations	149
Appendix O: NICE technical team	155
References: Appendix I-O	156

Appendices

Appendix I: Economic evidence tables

I.1 Scoring systems

None.

I.2 Signs and symptoms

None.

I.3 Blood tests

None.

I.4 Lactate

None.

I.5 Serum creatinine

None.

I.6 Disseminated intravascular coagulation

None.

I.7 Antimicrobial treatment

None.

I.8 IV fluid administration

None.

I.9 Escalation of care

None.

I.10 Inotropic agents and vasopressors

None.

I.11 Supplemental oxygen

None.

I.12 Use of bicarbonate

None.

I.13 Early goal-directed therapy (EGDT)

Study	Mouncey 2015 ⁸²⁷			
Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis: CUA (health outcome: QALYs)	Population: Patients with early signs of	Total costs (mean per patient):	QALYs (mean per patient): Intervention 1: 0.054	ICER (Intervention 2 versus Intervention 1): Intervention 2 dominated (more expensive

Study design: Within trial analysis (RCT)

Approach to analysis: Analysis of individual level data for mortality and EQ-5D. Unit costs were applied to resource use.

Perspective: UK NHS

Time horizon/Follow-up 90 days QoL follow up Treatment effect duration: Resuscitation protocol was followed for 6 hours

Discounting: Costs: NR; Outcomes: NR

septic shock

N = 1251

Patient characteristics:

Mean age: invtn 1 = 64.3 (15.5), intvn 2 = 66.4 (14.6) Male: invtn 1 = 58.6%, intvn 2 = 57%

Intervention 1:

Usual care
The usual care group
continued to receive
monitoring, investigation
and treatment as

determined by the clinician.

Intervention 2:

Early Goal Directed Therapy (EGDT).

Following a resuscitation protocol involving central venous catheter insertion with central venous oxygen saturation monitoring capability and intensive therapy of other interventions

Intervention 1: £11,424 Intervention 2: £12,414 Incremental (2–1): £989 (95% CI: -726 to 2,705; p=NR)

Currency & cost year: 2012 UK pounds

Cost components incorporated:

- Equipment and consumables 2 monitors capable of oxygen saturation monitoring assumed to be needed per hospital. Costs of consumables including the catheter capable of monitoring, pressure transducers.
- Blood products and dobutamine
- Staff time to deliver the protocol; time for vascular catheter insertion and time for monitoring patients (assumed 10 minutes of nurse time per hr of the resus protocol). Staff time for training, assumed to be 20 minutes per ED staff member every 5 years (5 years assumed to be the life

Intervention 2: 0.054 Incremental (2–1): -0.001 (95% CI: -0.006 to 0.005); p=0.85) and less benefit)

Probability Intervention 2 cost-effective (£20K/30K threshold): 12%/12% (read from graph)

Analysis of uncertainty:

Some form of PSA undertaken ^(a) to generate cost effectiveness plane and cost effectiveness acceptability curve. 500 estimates obtained.

Sensitivity analyses undertaken include:

- Manufacturer list price used for monitoring machines instead of discounted price used in base case
- Staff monitoring time varied from 10 minutes per hour in the base case to 5 and 15 minutes.
- Location of protocol implementation; if protocol is implemented in the ED, staffneed to be trained but in critical care they do not. Sensitivity analysis assumed that the protocol was implemented either exclusively in the ED or critical care.
- Re-admission data in the base case was gathered both from the health services questionnaire sent out and the Intensive Care National Audit & Research Centre Case Mix Programme Database. In a sensitivity analysis only the database was used to avoid any potential double counting.
- Baseline covariates were adjusted for components of the Mortality in Emergency Department Sepsis (MEDS) score

of the protocol) - Hospital stay/ICU stay - Re-admissions	- Costs and QALYs were assumed to be gamma distributed, compared to normally distributed in the base case.
	EGDT remained cost-ineffective in all sensitivity analyses.

Data sources

Health outcomes: Mortality data taken from the RCT (proMISe trial) alongside the economic evaluation.

Quality-of-life weights: EQ-5D scores were elicited at 90 days, assuming an EQ-5D score of zero at randomisation, and a linear interpolation between randomisation and 90 days. Zero QALYs were assumed for people who died before 90 days.

Cost sources: Costs of monitor and central venous catheter with monitoring capability was derived from the manufacturer. These costs are over 50% discount on list prices. It was assumed each site would require 2 monitors which would have a lifespan on average of 5 years. Monitor costs per patient were calculated by dividing the total costs of the monitors (£4000) by the expected number of eligible patients over 5 years. Annual number of eligible patients calculated by taking average number of potentially eligible patients per site per year from the trial screening log data (23 patients per site per year). Some consumables sourced from hospital finance departments. Training costs per patient per hour derived from total training costs per site divided by eligible patients over 5 years. Blood products from NHS blood and transplant price list 2012. Drugs from BNF 2012. Staff costs and outpatient and community health service costs from PSSRU 2012. Hospital stay costs from NHS reference costs 2012.

Comments

Source of funding: NR **Limitations:** Adverse events not taken account of in cost effectiveness analysis (either their treatment costs or impact on QoL). Methodology behind probabilistic analysis unclear. Short time horizon.

Overall applicability(d): Directly applicable Overall quality: potentially serious limitations

Abbreviations: 95% CI: 95% confidence interval; CUA: cost—utility analysis; da: deterministic analysis; EQ-5D: Euroqol 5 dimensions (scale: 0.0 [death] to 1.0 [full health], negative values mean worse than death); ICER: incremental cost-effectiveness ratio; NR: not reported; pa: probabilistic analysis; PSSRU: Personal Social Services Research Unit; QALYs: quality-adjusted life years (a) The paper states incremental costs and QALYs were estimated using 'a seemingly unrelated regression model', and they used 'the estimates of the means, variances and the covariance from the regression model to generate 500 estimates of incremental costs and QALYs from the joint distribution of these endpoints'. By generating a cost effectiveness plane and cost effectiveness acceptability curve this implies some kind of probabilistic analysis was done but the methodology quoted isn't clear.

I.14 Monitoring

None.

I.15 Patient education, information and support

None.

I.16 Training and education

Study	Suarez 2011 ¹⁰⁷⁶			
Study details	Population & interventions	Costs	Health outcomes	Cost-effectiveness
Economic analysis: CEA/CUA (health outcome: Life Years Gained and QALYs) Study design: Within trial analysis Approach to analysis: Preeducation program cohort (2 months before program) was compared to a post education program cohort (4 months after program). Program consisted of a 2 month educational program of training physicians and nursing staff from the emergency department, medical, and surgical wards, and ICU in early recognition of severe sepsis and the treatments in the Surviving Sepsis Campaign (SSC) protocol. Unit costs applied to prospective study data. Multivariable regression models were used to adjust for baseline	Population: Patients with severe sepsis Patient characteristics: N = 2319 (b) Mean age = 62.2 (SD: 16.3) Male = 60.8% Intervention 1: Pre-intervention cohort, the 2 months prior to the educational program Intervention 2: Post intervention cohort, the 4 months following educational program.	Total costs (mean per patient): Intervention 1: £14,427 Intervention 2: £15,906 Incremental (2–1): £1,479 (95% CI: NR; p=NR) Currency & cost year: 2006 Spanish Euros presented here as 2006 UK pounds ^(c) Cost components incorporated: Unit costs for emergency visits, surgical and medical ward daily stays, and ICU daily stays. Cost associated with the pharmacological and non- pharmacological interventions of the SSC protocol. One of the goals of the SSC protocol is	QALYs (mean per patient): Intervention 1: 3.75 Intervention 2: 4.12 Incremental (2–1): 0.37 (95% CI: 0.02-0.73; p=NR) Life Years Gained (mean per patient): Intervention 1: 5.44 Intervention 2: 5.98 Incremental (2–1): 0.54 (95% CI: 0.02-1.05; p=NR)	ICER (Intervention 2 versus Intervention 1): £5,476 per QALY gained (the 'adjusted' ICER) (pa) 95% CI: NR Probability Intervention 2 cost-effective (£20K threshold): 94% (read off graph) Probabilistic analysis was undertaken using non parametric bootstrapping with 2000 replications. Analysis of uncertainty: One way sensitivity analyses undertaken include: - Changing the rate for sepsis survivors from 0.51 to 0.39. Making this value even more restrictive Quality of life weight was changed from 0.69 to 0.75 The ICER was also calculated for different utility values. Only for very low utility values (lower than 0.2) was the ICER more than £20,000 (read off graph) Discounting of Life Years Gained and

Economic evidence tables

differences of costs, QALYs, and Life Years Gained. Perspective: Spanish healthcare system perspective. Time horizon/Follow-up: Post intervention cohort was a 4 month period after intervention introduced. Costs were only considered up until hospital discharge. Lifetime horizon for life years. Treatment effect duration: Discounting: Costs: NA; Health maintaining glucose control; the average cost per patient reported in a cost effectiveness analysis of insulin therapy was used. Patients who achieved the goal were applied the cost of the intensive therapy group, and patients who did not meet the goal were applied the cost of the conventional therapy group.	QALYs was changed from 3% to 0%. - Discounting of Life Years Gained and QALYs was changed from 3% to 5%. - The cost of the education and training program and cost of staff time spent attending the sessions was not included in base case. These costs were included in a sensitivity analysis. All sensitivity analyses generated results similar to that of the base case.
--	---

outcomes: 3% Data sources

Health outcomes: Mortality and resource use data derived from a cohort before and after study (Ferrer 2008 ⁴⁵⁰). Age and gender specific life expectancy for each survivor taken from the 2006 Spanish like expectancy tables. These were adjusted using the estimated reduction rate for sepsis survivors of 0.51 ⁹⁴⁵.

Quality-of-life weights: The quality of lie weight used was 0.69. This utility weight was obtained from a study of 6 month survivors of severe sepsis using the EQ-5D. 395

Cost sources: unit costs for emergency visits, surgical and medical ward daily stays, and ICU daily stays were from the Spanish National Health Institute. Pharmacological intervention costs from the SSC protocol were from the Spanish physician's desk reference. Non-pharmacological intervention costs were obtained from their suppliers. Insulin therapy cost was the average cost per patient from a cost effectiveness study on insulin therapy¹¹²² (€144 for intensive therapy and €72 for conventional therapy). All prices in the study were adjusted to 2006 values using the Spanish consumer price index. Long term costs after discharge were not included. The costs of the training program were not included in the base case, but were included in a sensitivity analysis (€54,270).

Comments

Source of funding: Supported by a grant from the Instituto de Salud Carlos III. Limitations: Only includes short term costs. Data on effectiveness from a cohort study, not RCT. Base case did not include cost if the intervention itself. Methodology not always clear; particularly around where adjusted ICER comes from. Other: The paper states that both the incremental costs and incremental QALYs/Life Years Gained were 'obtained by adjusting multivariable regression models to take into account possible baseline imbalances'. The ICER that is reported in the study is stated to be the 'adjusted ICER' (6,428 Euros or £5,476). It is unclear whether the 'adjusted' ICER reported is the deterministic or probabilistic ICER, however the paper states the ICER in the text (as well as a table) then immediately in the next sentence states that

nearly all the bootstrap replications were below the threshold used of 30,000 euros. Thus implying this is likely to be the probabilistic ICER.

Overall applicability: Partially applicable^(d) **Overall quality**^(e) Potentially serious limitations

Abbreviations: CEA: cost-effectiveness analysis; 95% CI: 95% confidence interval; CUA: cost-utility analysis; EQ-5D: Euroqol 5 dimensions (scale: 0.0 [death] to 1.0 [full health], negative values mean worse than death); ICER: incremental cost-effectiveness ratio; NR: not reported; pa: probabilistic analysis; QALYs: quality-adjusted life years

- (a) The post intervention cohort are those that would benefit from the 'treatment effect' of the education program. This cohort included patients during the 4 month period after the intervention. The time horizon for health outcome was lifetime so life expectancy was applied to the survivors. Therefore there is an assumption being made about the continuation of the study effect because life years will continue to vary between arms as different numbers of people will be alive in the pre and post intervention cohorts. The utility being applied to the groups is the same because the utility is the utility of sepsis survivors and is not impacted by the intervention except by the impact on mortality.
- (b) Note that the study this economic evaluation is based on is included in the clinical review (Ferrer2008) and the number of patients included in the study is higher than that reported here because there was also a third observation period (one year after the pre intervention group, to test the longevity of the education program) included in the clinical paper that is separate to the pre and post intervention cohorts.
- (c) Converted using 2006 purchasing power parities 883
- (d) Directly applicable / Partially applicable / Not applicable
- (e) Minor limitations / Potentially serious limitations / Very serious limitations

Appendix J: GRADE tables

J.1 Scoring systems

None.

J.2 Signs and symptoms

None.

J.3 Blood tests

None.

J.4 Lactate

None.

J.5 Serum creatinine

None.

J.6 Disseminated intravascular coagulation (DIC)

Table 1: Disseminated intravascular coagulation (DIC) and all-cause mortality

			Quality asse	essment				No of atients	Effect		Quality	Importance	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	DIC	Control	OR (95% CI)	Abcoluto			
28-day morta	28-day mortality - Gando 2008												
		,	no serious inconsistency	very serious ²	no serious imprecision	none	65	264	1.22 (1.00 to 1.49)	_4	VERY LOW	CRITICAL	
28-day morta	ality - Gando 2013						•						
		,	no serious inconsistency	no serious indirectness	no serious imprecision	none	292	332	1.28 (1.14 to 1.44)	_4	VERY LOW	CRITICAL	
28-day morta	ality - Ogura 2014												
			no serious inconsistency	no serious indirectness	no serious imprecision	none	292	332	1.73 (1.09 to 2.75)	_4	VERY LOW	CRITICAL	
In-hospital n	nortality - Gando 20	007											
1		,	no serious inconsistency	no serious indirectness	serious ³	none	11	34	4.22 (1.42 to 12.59)	_4	VERY LOW	CRITICAL	
In-hospital n	n-hospital mortality - Gando 2007A												

		very serious ¹		no serious indirectness	serious ³	none	20	28	40.50 (4.54 to 360.98)	_4	VERY LOW	CRITICAL
In-hospital mortality - Ogura 2014												
		very serious ¹			no serious imprecision	none	292	332	1.55 (1.01 to 2.37)	_4	VERY LOW	CRITICAL

¹ Risk of bias mainly due to the lack of evidence that physicians treating patients were blinded to the DIC status. The assumed lack of blinding means that knowledge of DIC could affect treatment, which would possibly affect outcome.

J.7 Antimicrobial treatment

Table 2: <1 hour versus >1 hour (adult population)

			Quality asse	No of patients	Effect		Quality	Importance					
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<1h versus >1h (multivariable analysis)	Control	OR (95% CI)	Absolute		•	
Mortality													
	observational studies				no serious imprecision	none	-	-	OR 0.87 (0.81 to 0.94)	_2	VERY LOW	CRITICAL	
Mortality -	lortality - ICU setting												

² The majority of the evidence included an indirect population (downgraded by one increment) or a very indirect population (downgraded by two increments)

³ Downgraded by 1increment due to a very imprecise result expressed by a very wide confidence interval

⁴ N/A as only adjusted or unadjusted OR was provided

5	observational studies				no serious imprecision	none	-	-	Not estimable	_2	VERY LOW	CRITICAL		
Mortality -	Mortality - ED setting													
3	observational studies			no serious indirectness	serious³	none	-	-	Not estimable	_2	VERY LOW	CRITICAL		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Absolute effect not estimable as the crude event rate for the control group was not provided ³ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 3: <2 hours versus >2 hours (adult population)

			No of patients	Effec	et	Quality	Importance					
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<2h versus >2h (multivariable analysis)	Control	OR (95% CI)	Absolute		Importance
Mortality												
	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.73 (0.51 to 1.04)	_3	VERY LOW	CRITICAL
Mortality -	Mortality - ICU setting											

	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.14 (0.02 to 0.88)	_3	VERY LOW	CRITICAL		
Mortality -	Mortality - ED setting													
	observational studies				no serious imprecision	none	-	-	OR 0.78 (0.54 to 1.12)	_3	VERY LOW	CRITICAL		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

Table 4: <3 hours versus >3 hours (adult population)

			Quality assess				No of patients		Effec	t	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<3h versus >3h (multivariable analysis)	Control	OR (95% CI)	Absolute		importance
Mortality												
	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.7 (0.57 to 0.86)	_3	VERY LOW	CRITICAL
Mortality -	ICU setting											
1	observational	serious ¹	no serious	no serious	serious ²	none	-	-	OR 0.8 (0.6 to	_3	VERY	CRITICAL

		studies	inconsistency	indirectness					1.07)		LOW	
M	lortality -	ED setting										
5		observational studies		no serious indirectness	serious ²	none	-	-	OR 0.62 (0.47 to 0.82)	_3	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

Table 5: <4 hours versus >4 hours (adult population)

			Quality assess	sment			No of patients		Effec	t	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<4h versus >4h (multivariable analysis)	Control	OR (95% CI)	Absolute		mportance
Mortality												
	observational studies	serious ¹			very serious²	none	3/25 (12%)	-	OR 0.86 (0.49 to 1.53)	_3	VERY LOW	CRITICAL
Mortality -	ED setting											
	observational studies	serious ¹			very serious²	none	-	-	OR 0.86 (0.49 to 1.53)	_3	VERY LOW	CRITICAL

Table 6: <5 hours versus >5 hours (adult population)

Tuble 0.			Quality assess	·			No of patients		Effec	t	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<5h versus >5h (multivariable analysis)	Control	OR (95% CI)	Absolute		importance
Mortality												
	observational studies		no serious inconsistency		very serious²	none	-	-	OR 0.65 (0.26 to 1.62)	_3	VERY LOW	CRITICAL
Mortality -	ED setting											
	observational studies	serious ¹	no serious inconsistency		very serious²	none	-	-	OR 0.65 (0.26 to 1.62)	_3	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 7: <6 hours versus >6 hours (adult population)

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<6h versus >6h (multivariable analysis)	Control	OR (95% CI)	Absolute		
Mortality												
3	observational studies			no serious indirectness	serious²	none	-	-	OR 0.72 (0.58 to 0.9)	_3	VERY LOW	CRITICAL
Mortality -	ICU setting											
2	observational studies	serious ¹	serious ⁴	no serious indirectness	serious ²	none	-	-	OR 0.79 (0.57 to 1.08)	_3	VERY LOW	CRITICAL
Mortality -	ED setting											
1	observational studies			no serious indirectness	serious²	none	-	-	OR 0.67 (0.5 to 0.9)	_3	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

Table 8: Hourly treatment delay (ICU, adult population)

Quality assessment	No of patients	Effect	Quality	Importance

⁴ I2=60% (p=0.11)

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Hourly treatment delay (ICU)	Control	OR (95% CI)	Absolute		
In-hospital	mortality											
	observational studies				no serious imprecision	none	-	-	OR 1.12 (1.1 to 1.14)	_2	⊕000 VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Absolute effect not estimable as the crude event rate for the control group was not provided

Table 9: Parenteral antibiotics prior to admission to hospital

			Quality assess	sment		No of patients Effect Parenteral antibiotics prior to admission to hospital (GP) Control OR (95% CI) Absolute				Quality	Importance	
No of studies	Design Inconsistency Indirectness Imprecision					Other considerations		Control		Absolute	•	mportance
Mortality												
4	observational studies	,			very serious ²	none	-	-	OR 0.58 (0.21 to 1.58)	_3	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided

Table 10: <1 hour versus >1 hour (PICU, paediatric population)

			Quality asses	sment		No of patients		Effe	ct	Quality	Importance	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Parenteral antibiotics prior to admission to hospital (GP)	Control	OR (95% CI)	Absolute	-	•
Mortality												
4				no serious indirectness	very serious²	none	-	-	OR 0.6 (0.13 to 2.86)	_3	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

Table 11: <2 hours versus >2 hours (PICU, paediatric population)

			Quality assess	sment		Parenteral antibiotics prior to admission to hospital (GP) Control OR (95% CI) Absolute				Quality	Importance	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations		Control		Absolute	•	
Mortality												
14					very serious²	none	-	-	OR 0.41 (0.13 to 1.35)	_3	VERY LOW	CRITICAL

Table 12: <3 hours versus >3 hours (PICU, paediatric population)

			Quality asses	sment		No of patients Effect Parenteral antibiotics prior to admission to hospital (GP) Control OR (95% CI) Abs				Quality	Importance	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations		Control		Absolute		
Mortality												
4				no serious indirectness	serious ²	none	-	-	OR 0.25 (0.08 to 0.79)	_3	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 13: <4 hours versus >4 hours (PICU, paediatric population)

			Quality asses	sment			No of patients		Effe	ct	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Parenteral antibiotics prior to admission to hospital (GP)	Control	OR (95% CI)	Absolute		importance
Mortality												
1		very serious¹		no serious indirectness	serious ²	none	-	-	OR 0.28 (0.1	_3	VERY	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided

				to 0.81)	LOW	
						1

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

J.8 IV fluid administration

Table 14: Clinical evidence profile: 6% HES versus 0.9% saline in adults with sepsis

			Quality asse	ssment			No of patier	nts		Effect	Quality	Importance
No of studies	Design Inconsistency Indirectness Imprecision					Other considerations	6% HES versus 0.9% saline	Control	Relative (95% CI)	Absolute		
90-day mo	rtality											
	randomised trials			no serious indirectness	serious ²	none		224/945 (23.7%)	·	17 more per 1000 (from 19 fewer to 59 more)	LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 15: Clinical evidence profile: Crystalloid versus colloid plus crystalloid in adults with severe sepsis

Quality assessment	No of patients	Quality	Importance

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Crystalloid versus colloid + crystalloid	Control	Relative (95% CI)	Absolute		
Hospital r	mortality											
		very serious ¹	no serious inconsistency	no serious indirectness	serious ²	none	101/235 (43%)	121/258 (46.9%)		38 fewer per 1000 (from 117 fewer to 56 more)	VERY LOW	CRITICAL
ICU morta	ality											
		very serious ¹	no serious inconsistency	no serious indirectness	very serious²	none	72/235 (30.6%)	99/258 (38.4%)		77 fewer per 1000 (from 146 fewer to 8 more)	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 16: Clinical evidence profile: 20% albumin versus 6% HES in adults with severe sepsis

			Quality asse	ssment			No of patier	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	20% albumin versus 6% HES	Control	Relative (95% CI)	Absolute	Quanty	Importance
28-day mo	rtality											

randomised trials serious no seri
--

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 17: Clinical evidence profile: 4% albumin versus 0.9% Sodium Chloride RP in adults with severe sensis

Table 17	. Cillical e	evidence pi	onie. 4% albui	iiiii veisus 0.3	% Souluill Cil	ioriue Br iii au	uits with severe sep	J313				
			Quality asse	essment			No of patients Effect 4% albumin versus 0.9% Sodium Chloride BP Control (95% CI) Absolute 185/603 217/615 RR 0.87 46 fewer per 10					
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	0.9% Sodium Chloride	Control			Quality	Importance
28-day mo	ortality (univa	riate analysis	s)									
	randomised trials		no serious inconsistency	no serious indirectness	serious ²	none				46 fewer per 1000 (from 92 fewer to 7 more)	LOW	CRITICAL
28-day mo	ortality (multiv	variate analys	sis)									
			no serious inconsistency	no serious indirectness	no serious imprecision	none		166/467 (35.5%)	OR 0.71 (0.52 to 0.97)	_3	HIGH	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Adjusted odds ratio

Table 18: Clinical evidence profile: Albumin versus crystalloids in adults with sepsis

			Quality asse	essment			710/1937 763/1941 RR 0.93 28 fewer per 10			Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations		Control		Absolute	quanty	
All-cause	mortality											
1			no serious inconsistency		no serious imprecision	none				•	⊕⊕⊕O MODERATE	CRITICAL
90-day me	ortality							<u>'</u>				
1	randomised trials	very serious ²			no serious imprecision	none	115/283 (40.6%)	116/286 (40.6%)	RR 1 (0.82 to 1.22)	0 fewer per 1000 (from 73 fewer to 89 more)	⊕⊕OO LOW	CRITICAL

Table 19: Clinical evidence profile: Albumin versus colloids in adults with sepsis

			Quality assess	ment			No of patier	nts		Effect	Quality	Importance
No of	Design	Risk of	Inconsistency	Indirectness	Imprecision	Other	Albumin versus	Control	Relative	Absolute		

¹ Downgraded by 1 increment because of inconsistencies regarding the study population ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

studies		bias				considerations	colloids		(95% CI)			
Mortality	1	1										
1	randomised trials		no serious inconsistency	serious ²	serious ³	none		58/156 (37.2%)	RR 1.02 (0.76 to 1.36)	7 more per 1000 (from 89 fewer to 134 more)	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 20: Clinical evidence profile: Packed red blood cells (PRBC) plus EGDT versus EGDT only in adults with septic shock

			Quality assess	ment			No of patie	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	PRBC + EGDT versus EGDT	Control	Relative (95% CI)	Absolute	<u> </u>	
Hospital n	nortality											
			no serious inconsistency	no serious indirectness	very serious¹	none	14/34 (41.2%)	20/59 (33.9%)		71 more per 1000 (from 98 fewer to 366 more)	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 21: Clinical evidence profile: Red blood cells (RBC) for low threshold (≤7g/dl) versus high threshold (≤9g/dl) in adults with septic shock

Quality assessment	No of patients	Effect	Quality	Importance

Downgraded by 1 increment because of differences regarding the study population
 Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	RBC at low versus high threshold	Control	Relative (95% CI)	Absolute		
90-day mo	ortality											
1			no serious inconsistency		no serious imprecision	none	216/502 (43%)	223/496 (45%)	RR 0.97 (0.84 to 1.11)	13 fewer per 1000 (from 72 fewer to 49 more)	MODERATE	CRITICAL
90-day mo	ortality - >70 y	ears of age										
1	randomised trials		no serious inconsistency		no serious imprecision	none	93/173 (53.8%)	98/185 (53%)	RR 1.01 (0.84 to 1.23)	5 more per 1000 (from 85 fewer to 122 more)	MODERATE	CRITICAL
90-day mo	ortality - 70 ye	ars or young	er									
1	randomised trials		no serious inconsistency		no serious imprecision	none	123/329 (37.4%)	125/311 (40.2%)	RR 0.93 (0.77 to 1.13)	28 fewer per 1000 (from 92 fewer to 52 more)	MODERATE	CRITICAL

¹ Intervention does not fall within the 6-hour time frame

Table 22: Clinical evidence profile: 0-2 litres versus 2-4 litres of fluids in adults with severe sepsis

			Quality assess	sment			No of pat	ients		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	0-2L versus 2-4L	Control	Relative (95% CI)	Absolute		

Hospital m	nortality											
1	observational studies	very serious ¹		no serious indirectness	serious ²	none	97/210 (46.2%)	82/186 (44.1%)	•	22 more per 1000 (from 71 fewer to 132 more)	VERY LOW	CRITICAL
ICU morta	ICU mortality											
1	observational studies	very serious ¹		no serious indirectness	serious ²	none	66/210 (31.4%)	66/186 (35.5%)		39 fewer per 1000 (from 117 fewer to 60 more)	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 23: Clinical evidence profile: 0-2 litres versus >4 litres of fluids in adults with severe sepsis

	Quality assessment									Quality	Importance	
No of studies	studies Design bias Inconsistency Indirectness Imprecision consideration								Relative (95% CI)	Absolute	Quanty	importance
Hospital m	nortality											
	observational studies	very serious ¹		no serious indirectness	serious²	none	97/210 (46.2%)	45/100 (45%)	RR 1.03 (0.79 to 1.33)	13 more per 1000 (from 94 fewer to 149 more)	VERY LOW	CRITICAL
ICU morta	lity											
1	observational	very	no serious	no serious	serious ²	none	66/210	41/100	RR 0.77 (0.56	94 fewer per 1000 (from 180	VERY	CRITICAL

S	studies	serious ¹	inconsistency	indirectness		(31.4%)	(41%)	to 1.04)	fewer to 16 more)	LOW	

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 24: Clinical evidence profile: 2-4 litres versus >4 litres of fluids in adults with severe sepsis

	Quality assessment									Quality	Importance	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	2-4L versus >4L	Control	Relative (95% CI)	Absolute	Quanty	importanio
Hospital m	ortality											
				no serious indirectness	very serious ²	none	82/186 (44.1%)	45/100 (45%)	RR 0.98 (0.75 to 1.28)	9 fewer per 1000 (from 112 fewer to 126 more)	VERY LOW	CRITICAL
ICU mortal	ity											
				no serious indirectness	serious²	none	66/186 (35.5%)	45/100 (45%)	RR 0.79 (0.59 to 1.05)	94 fewer per 1000 (from 185 fewer to 22 more)	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 25: Clinical evidence profile: High volume (20-40ml Ringer lactate/kg) versus low volume (20ml Ringer lactate/kg) in children with septic shock

Quality assessment	No of patients	Effect	Quality	Importance
--------------------	----------------	--------	---------	------------

No of studies	Dasian	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	High volume versus low volume	Control	Relative (95% CI)	Absolute	
Cumula	ive 72-hour su	rvival									
1	randomised trials				no serious imprecision	none	52/74 (70.3%)	55/73 (75.3%)		53 fewer per 1000 (from 173 fewer to 105 more)	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

J.9 Escalation of care

None.

J.10 Inotropic agents and vasopressors

Table 26: Clinical evidence profile: Norepinephrine versus vasopressin for adults with septic shock

	Quality assessment							No of patients Effect			Quality	Importance
No of studies	Design Inconsistency Indirectness Imprecision				Other considerations	Norepinephrine versus vasopressin	Control	Relative (95% CI)	Absolute	quanty	portunes	
28-day m	28-day mortality											
1				no serious indirectness	serious ¹	none		140/396 (35.4%)	RR 1.11 (0.93 to	39 more per 1000 (from 25 fewer to 117	MODERATE	CRITICAL

									1.33)	more)		
90-day m	ortality											
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	188/379 (49.6%)	172/392 (43.9%)		57 more per 1000 (from 13 fewer to 136 more)	MODERATE	CRITICAL
ICU mort	ality											
2	randomised trials	serious ²	no serious inconsistency	no serious indirectness	very serious ¹	none	13/25 (52%)	11/28 (39.3%)	RR 1.26 (0.72 to 2.21)	102 more per 1000 (from 110 fewer to 475 more)	VERY LOW	CRITICAL
Requiring	g renal replac	ement thera	py at 48 hours									
1	randomised trials	serious ²	no serious inconsistency	no serious indirectness	very serious ¹	none	8/15 (53.3%)	5/15 (33.3%)	RR 1.6 (0.68 to 3.77)	200 more per 1000 (from 107 fewer to 923 more)	VERY LOW	NOT IMPORTANT
New onse	et of tachyarr	hythmias										
1	randomised trials	serious ²	no serious inconsistency	no serious indirectness	very serious ¹	none	4/15 (26.7%)	1/15 (6.7%)	RR 4 (0.5 to 31.74)	200 more per 1000 (from 33 fewer to 1000 more)	VERY LOW	NOT IMPORTANT

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 27: Norepinephrine versus dopamine for adults with septic shock

	Quality assessment						No of patients	·	Effect			Importance	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine versus dopamine	Control	Relative (95% CI)	Absolute	Quality	portuno	
28-day mo	ortality							<u> </u>					
	randomised trials	,	no serious inconsistency	no serious indirectness	serious ²	none	51/118 (43.2%)	67/134 (50%)	RR 0.86 (0.66 to 1.13)	70 fewer per 1000 (from 170 fewer to 65 more)	VERY LOW	CRITICAL	
Mortality	ortality												
	randomised trials	,		no serious indirectness	serious ²	none	23/40 (57.5%)	28/40 (70%)	RR 0.82 (0.59 to 1.15)	126 fewer per 1000 (from 287 fewer to 105 more)	VERY LOW	CRITICAL	
Hospital r	mortality												
	randomised trials	,		no serious indirectness	very serious ²	none	7/16 (43.8%)	10/16 (62.5%)	RR 0.7 (0.36 to 1.37)	188 fewer per 1000 (from 400 fewer to 231 more)	VERY LOW	CRITICAL	
Incidence	of arrhythmi	as						<u>'</u>					
1	randomised trials	,	no serious inconsistency	no serious indirectness	no serious imprecision	none	14/118 (11.9%)	51/134 (38.1%)	RR 0.31 (0.18 to 0.53)	263 fewer per 1000 (from 179 fewer to 312	LOW	NOT IMPORTANT	

										fewer)		
Length of stay in the hospital (Better indicated by lower values)												
1				no serious indirectness	no serious imprecision	none	118	134	-	MD 0.7 lower (4.36 lower to 2.96 higher)	LOW	IMPORTANT
Length of stay on the ICU (Better indicated by lower values)												
1				no serious indirectness	no serious imprecision	none	118	134	-	MD 0.7 higher (1.15 lower to 2.55 higher)	LOW	IMPORTANT

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 28: Norepinephrine versus epinephrine for adults with septic shock

Quality assessment							No of patients			Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine versus epinephrine	Control	Relative (95% CI)	Absolute		·
28-day m	28-day mortality											
1				no serious indirectness	serious ¹	none	24/82 (29.3%)	17/76 (22.4%)	RR 1.31 (0.76 to 2.24)	69 more per 1000 (from 54 fewer to 277 more)	MODERATE	CRITICAL

90-day	nortality										
1		no serious risk of bias	no serious indirectness	serious ¹	none	30/82 (36.6%)	23/74 (31.1%)	RR 1.18 (0.76 to 1.83)	56 more per 1000 (from 75 fewer to 258 more)	MODERATE	CRITICAL

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 29: Dopexamine versus dopamine for adults with septic shock

	Quality assessment							No of patients		Effect		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Dopexamine versus dopamine	Control	Relative (95% CI)	Absolute	Quality	
28-day mo	28-day mortality											
		no serious risk of bias			very serious¹	none	5/20 (25%)	4/21 (19%)	RR 1.31 (0.41 to 4.2)	59 more per 1000 (from 112 fewer to 610 more)	LOW	CRITICAL

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 30: Norepinephrine plus dobutamine versus epinephrine for adults with septic shock

Quality assessment	No of patients	Effect	Quality	Importance

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine + dobutamine versus epinephrine	Control	Relative (95% CI)	Absolute		
28-day m	ortality											
	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	58/169 (34.3%)	64/161 (39.8%)	RR 0.86 (0.65 to 1.14)	56 fewer per 1000 (from 139 fewer to 56 more)	MODERATE	CRITICAL
90-day m	ortality											
	randomised trials		no serious inconsistency	no serious indirectness	no serious imprecision	none	85/169 (50.3%)	84/161 (52.2%)	RR 0.96 (0.78 to 1.19)	21 fewer per 1000 (from 115 fewer to 99 more)	HIGH	CRITICAL
7-day mo	ortality		·			l				l	1	
1	randomised trials		no serious inconsistency	no serious indirectness	serious ¹	none	34/169 (20.1%)	40/161 (24.8%)	RR 0.81 (0.54 to 1.21)	47 fewer per 1000 (from 114 fewer to 52 more)	MODERATE	CRITICAL
14-day m	14-day mortality											
	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	44/169 (26%)	56/161 (34.8%)	RR 0.75 (0.54 to 1.04)	87 fewer per 1000 (from 160 fewer to 14 more)	MODERATE	CRITICAL
Mortality	Mortality											

2		very serious ²	no serious inconsistency	no serious indirectness	very serious ¹	none	13/26 (50%)	13/26 (50%)	RR 1 (0.58 to 1.71)	0 fewer per 1000 (from 210 fewer to 355 more)	VERY LOW	CRITICAL
Mortality	at discharge	from ICU										
1		no serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	75/169 (44.4%)	75/161 (46.6%)	RR 0.95 (0.75 to 1.21)	23 fewer per 1000 (from 116 fewer to 98 more)	HIGH	CRITICAL
Mortality	at discharge	from hospi	tal									
1			no serious inconsistency	no serious indirectness	no serious imprecision	none	82/169 (48.5%)	84/161 (52.2%)	RR 0.93 (0.75 to 1.15)	37 fewer per 1000 (from 130 fewer to 78 more)	HIGH	CRITICAL
Number	of serious ad	verse event	s during catecho	lamine infusion							'	
1			no serious inconsistency	no serious indirectness	very serious ¹	none	41/169 (24.3%)	43/161 (26.7%)	RR 0.91 (0.63 to 1.31)	24 fewer per 1000 (from 99 fewer to 83 more)	LOW	NOT IMPORTANT
Number of serious adverse events after catecholamine infusion												
1	randomised trials		no serious inconsistency	no serious indirectness	very serious ¹	none	13/169 (7.7%)	12/161 (7.5%)	RR 1.03 (0.49 to 2.19)	2 more per 1000 (from 38 fewer to 89 more)	LOW	NOT IMPORTANT

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 31: Norepinephrine plus dopexamine versus norepinephrine plus epinephrine for adults with septic shock

			Quality asses	·		,	No of patients		Effect			
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine + dopexamine versus Control epinephrine		Relative (95% CI)	Absolute	Quality	Importance
28-day me	ortality											
1			no serious inconsistency		very serious ¹	none	2/12 (16.7%)	3/10 (30%)	RR 0.56 (0.11 to 2.7)	132 fewer per 1000 (from 267 fewer to 510 more)	LOW	CRITICAL
90-day mortality												
1			no serious inconsistency		very serious ¹	none	3/12 (25%)	4/10 (40%)	RR 0.62 (0.18 to 2.16)	152 fewer per 1000 (from 328 fewer to 464 more)	LOW	CRITICAL

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 32: Norepinephrine plus epinephrine versus norepinephrine plus dobutamine for adults with septic shock

Quality assessment	No of patients	Effect	Quality	Importance
--------------------	----------------	--------	---------	------------

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine + epinephrine versus norepinephrine + dobutamine	Control	Relative (95% CI)	Absolute		
28-day m	ortality											
	randomised trials		no serious inconsistency	no serious indirectness	very serious ¹	none	15/30 (50%)	16/30 (53.3%)	RR 0.94 (0.57 to 1.53)	32 fewer per 1000 (from 229 fewer to 283 more)	LOW	CRITICAL
SOFA sc	ore at start (E	Better indic	ated by lower va	lues)								
	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.8 higher (2.31 lower to 3.91 higher)		IMPORTANT
SOFA sc	ore at 24 hou	ırs (Better i	ndicated by lowe	er values)								
	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.7 higher (2.41 lower to 3.81 higher)	MODERATE	IMPORTANT
SOFA sc	ore at 48 hou	ırs (Better i	ndicated by lowe	er values)								
	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.6 higher (2.49 lower to 3.69 higher)		IMPORTANT

SOFA so	core at 72 hou	ırs (Better i	ndicated by lowe	er values)										
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.6 higher (2.72 lower to 3.92 higher)		IMPORTANT		
SOFA so	core at 96 hou	ırs (Better i	ndicated by lowe	er values)										
1		no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.8 higher (2.62 lower to 4.22 higher)	MODERATE	IMPORTANT		
Acute co	cute coronary syndrome													
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	1/30 (3.3%)	1/30 (3.3%)	RR 1 (0.07 to 15.26)	0 fewer per 1000 (from 31 fewer to 475 more)	LOW	NOT IMPORTANT		
Arrhythr	nias													
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	4/30 (13.3%)	6/30 (20%)	RR 0.67 (0.21 to 2.13)	66 fewer per 1000 (from 158 fewer to 226 more)	LOW	NOT IMPORTANT		
Cerebra	stroke													
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ²	none	0/30 (0%)	0/30 (0%)	-	-	LOW	NOT IMPORTANT		

Limb is	chaemia									
1	randomised trials		very serious ¹	none	2/30 (6.7%)	3/30 (10%)	RR 0.67 (0.12 to 3.71)	33 fewer per 1000 (from 88 fewer to 271 more)	LOW	NOT IMPORTANT

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

J.11 Supplemental oxygen

None.

J.12 Use of bicarbonate

Table 33: Clinical evidence profile: bicarbonate versus no bicarbonate (28-day mortality)

			Quality asses	ssment			No of patients		Effect	Quality	Importance
No of studies	Risk of Inconsistency Indirectness Imprecision Other Bicarbonate versus Control Relative Absolute						Quanty	Importance			
28-day mo	ortality										
1	observational studies	- ,		no serious indirectness	very serious²	none	10/36 (27.8%)	12/36 (33.3%)	57 fewer per 1000 (from 197 fewer to 227 more)	VERY LOW	CRITICAL

¹ Case-control study. Small sample size

Table 34: Clinical evidence profile: bicarbonate versus no bicarbonate (Duration of critical care stay; Time to reversal of shock)

			Quality ass	essment			Median	[95% CI]		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Bicarbonate group	Control group	Relative (95% CI)	Absolute	quanty	importuned
Duration of	of critical care sta	ау										
1	observational studies	very serious ¹	not estimable ²	no serious indirectness	not estimable²	none	44.5 [34-54] Hours	55 [39-60] Hours	-	-	VERY LOW	IMPORTANT

² Confidence interval crossed both standard MIDs

Time	to reversal of shock											
1	observational studies	very serious ¹	not estimable ²	no serious indirectness	not estimable ²	none	11.5 [6.0-16.0] days	16.0 [13.5-19.0] days	-	-	VERY LOW	MPORTANT

¹ Case-control study. Small sample size

J.13 Early goal-directed therapy (EGDT)

Table 9: Clinical evidence profile: EGDT versus Usual care

			Quality as	sessment			No of pa	atients	Effect		Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	EGDT versus Control	Control	Relative (95% CI) Absolute		_	
Primary n	ortality outco	ome of eac	ch study									
5	randomised trials	serious ¹	serious ²	no serious indirectness	no serious imprecision	none	495/2134 (23.2%)	582/2601 (22.4%)	RR 1.01 (0.9 to 1.12)	2 more per 1000 (from 22 fewer to 27 more)	LOW	CRITICAL
90-day mo	ortality											
3	randomised trials		no serious inconsistency	no serious indirectness	no serious imprecision	none	460/1820 (25.3%)	598/2243 (26.7%)	RR 0.99 (0.89 to 1.11)	3 fewer per 1000 (from 29 fewer to 29 more)	MODERATE	CRITICAL
ICU admis	ssion											
3	randomised trials		serious inconsistency	no serious indirectness	no serious imprecision	none	1677/1856 (90.4%)	1902/2324 (81.8%)	RR 1.11 (1.09 to 1.14)	91 more per 1000 (from 75 more to 116 more)	LOW	CRITICAL
ICU lengt	n of stay for p	atient adn	nitted to ICU (day	s) (Better indicat	ted by lower val	ues)						

² Non-parametric results

4	randomised trials		no serious inconsistency	no serious indirectness	no serious imprecision	none	1825	2051	-	MD 0.02 lower (0.47 lower to 0.43 higher)	MODERATE	IMPORTANT		
ICU	ICU length of stay for patient admitted to ICU (days) - New Subgroup (Better indicated by lower values)													
4	randomised trials		no serious inconsistency	no serious indirectness	no serious imprecision	none	1825	2051	-	MD 0.02 lower (0.47 lower to 0.43 higher)	MODERATE	IMPORTANT		

¹Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ²Downgraded by 1 or 2 increments because:

J.14 Monitoring

None.

J.15 Patient education, information and support

None.

J.16 Training and education

None.

The point estimate varies widely across studies, unexplained by subgroup analysis.

o The confidence intervals across studies show minimal or no overlap, unexplained by subgroup analysis

Heterogeneity, I²=50%, p=0.04, unexplained by subgroup analysis.

Appendix K: Forest plots

K.1 Scoring systems

None.

K.2 Signs and symptoms

Seigel 2012 193 0 96 0

K.2.1 Temperature

Figure 1: Sensitivity and specificity for temperature, adults

0.67 [0.61, 0.72]

Temperature (adults): fever 38.5C and above to predict bacteriaemia in older patients FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0.27 [0.23, 0.31] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Pfitzenmeyer 1995 40 374 6 138 0.87 [0.74, 0.95] Temperature (adults): >38C to predict bacteriaemia in elderly patients TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study Lindvig 2014 158 361 87 1518 0.64 [0.58, 0.70] 0.81 [0.79, 0.83] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (adults): fever to predict bacteriaemia in elderly patients Sensitivity (95% CI) Specificity (95% CI) TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Study Chassagne 1996 0 0 0 0 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (adults): fever spike to predict bacteriaemia in elderly patients TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Chassagne 1996 0 0 0 0 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (adults): >39C to predict septic complications in adult patients undergoing cardiac surgery TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study 0.88 [0.62, 0.98] 14 53 2 41 0.44 [0.33, 0.54] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (adults): abnormal temperature (hypothermia or fever) in shock patients admitted to tertiary care centre via ED TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study

Not estimable

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 2: Sensitivity and specificity for temperature, children

Temperature (children): predicting EOS / pneumonia in term new-borns >37 weeks Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Hofer 2012A 0 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8 1 Temperature (children): >38C for predicting post-operative infectious complications FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Angel 1994 2 125 0.67 [0.09, 0.99] 0.27 [0.20, 0.34] 0 0.2 0.4 0.2 0.4 0.6 0.8 0.6 0.8 Temperature (children): >39C for predicting post-operative infectious complications Specificity (95% CI) TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Study Angel 1994 1 16 2 155 0.33 [0.01, 0.91] 0.91 [0.85, 0.95] 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 Temperature (children): <40C or >40C for predicting SBI in febrile infants 8-12 weeks Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) TP FP FN TN Specificity (95% CI) Study 0.96 [0.93, 0.98] 0 0.2 0.4 0.6 0.8 1 Bonadio 1994 5 12 21 298 0.19 [0.07, 0.39] 0 0.2 0.4 0.6 0.8 1 Temperature (children): age-specific temperature-pulse centiles >97th centile for prediciting SBI in 3 months - 10 year olds Sensitivity (95% CI) Specificity (95% CI) TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Study **Brent 2011** 13 6 112 0.14 [0.00, 0.58] 0.90 [0.83, 0.94] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (children): age-specific temperature-pulse centiles >90th centile for prediciting SBI in 3 months - 10 year olds Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Study TP FP FN TN 0.80 [0.71, 0.87] Brent 2011 3 88 0.25 [0.01, 0.81] 1 22 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (children): age-specific temperature-pulse centiles >75th centile for prediciting SBI in 3 months - 10 year olds Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 0 0 0 0 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (children): age-specific temperature-pulse centiles >50th centile for prediciting SBI in 3 months - 10 year olds Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) ___ **Brent 2011** 5 83 6 133 0.45 [0.17, 0.77] 0.62 [0.55, 0.68] 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 Temperature (children): age-specific temperature-pulse centiles >97th centile for prediciting SBI (meningococcal) FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 12 191 4 109 0.75 [0.48, 0.93] 0.36 [0.31, 0.42] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (children): age-specific temperature-pulse centiles 90th-97th centile for prediciting SBI (meningococcal) TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study Brent 2011 0 0 Not estimable Not estimable 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Temperature (children): age-specific temperature-pulse centiles 75th-90th centile for prediciting SBI (meningococcal) Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 Temperature (children): age-specific temperature-pulse centiles 50th-75th centile for prediciting SBI (meningococcal) Study FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 Temperature (children): <36C to predict bacteriaemia in neonates Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Study TP FP FN TN Sensitivity (95% CI) Hofer 2012 2 36 21 417 0.09 [0.01, 0.28] 0.92 [0.89, 0.94] 0.2 0.4 0.6 0.8 1 Temperature (children): >38.5C to predict bacteriaemia in neonates Specificity (95% CI) Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Hofer 2012 2 27 19 428 0.10 [0.01, 0.30] 0.94 [0.91, 0.96] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

K.2.2 Heart rate

Figure 3: Sensitivity and specificity for heart rate, adults

TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Chassagne 1996 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

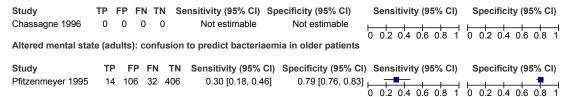
Figure 4: Sensitivity and specificity for heart rate, children Heart rate (children): tachycardia >180/min or bradycardia <100/min to predict culture-proven EOS in term neonates TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Study Specificity (95% CI) 14 81 37 344 0.27 [0.16, 0.42] 0.81 [0.77, 0.85] Hofer 2012 0.2 0.4 0.6 0.8 1 Heart rate (children): age-specific pulse centiles above 97th centile for SBI in 3 months - 10 year olds TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0 1 1 26 0.00 [0.00, 0.97] 0.96 [0.81, 1.00] Brent 2011 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Heart rate (children): age-specific pulse centiles above 90th centile for SBI in 3 months - 10 year olds TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 2 7 8 74 0.20 [0.03, 0.56] 0.91 [0.83, 0.96] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Heart rate (children): age-specific pulse centiles above 75th centile for SBI in 3 months - 10 year olds TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 0.42 [0.15, 0.72] 0.76 [0.69, 0.82] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Heart rate (children): age-specific pulse centiles above 50th centile for SBI in 3 months - 10 year olds TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0.49 [0.43, 0.54] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Brent 2011 10 159 4 151 0.71 [0.42, 0.92] Heart rate (children): tachycardia for SBI in 3 months - 10 year olds TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 23 196 11 284 0.59 [0.55, 0.64] 0.68 [0.49, 0.83] Brent 2011 Heart rate (children): age-specific pulse centiles above 97th centile for predicting meningococcal sepsis in children TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study Brent 2011 0 0 0 0 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Heart rate (children): age-specific pulse centiles above 75th centile for predicting meningococcal sepsis in children TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study Brent 2011 0 0 0 Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Heart rate (children): age-specific pulse centiles above 50th centile for predicting meningococcal sepsis in children Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 0 0 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Heart rate (children): age-specific pulse centiles under 50th centile for predicting meningococcal sepsis in children Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 0 0 0 0 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Heart rate (children): tachycardia for predicting meningococcal sepsis in children Study Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brent 2011 Not estimable Not estimable 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

K.2.3 Blood pressure

Figure 5: Sensitivity and specificity for blood pressure, adults

Blood pressure (adults): HTI of ABP drops <95 mmHg SAP to predict 28-day mortality in adults TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Study Specificity (95% CI) 0.29 [0.13, 0.49] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.93 [0.90, 0.96] Dunser 2009A 230 20 16 8 Blood pressure (adults): HTI of ABP drops <75 mmHg MAP to predict 28-day mortality in adults TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Study Specificity (95% CI) 0.38 [0.14, 0.68] Dunser 2009A 244 8 17 5 0.93 [0.90, 0.96] 6 0.2 0.4 0.6 0.8 1 Blood pressure (adults): HTI of ABP drops <65 mmHg SAP to predict 28-day mortality in adults FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Study Specificity (95% CI) 0.26 [0.20, 0.33] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 4 52 0.95 [0.87, 0.99] Dunser 2009A 73 145 Blood pressure (adults): HTI of ABP drops <45 mmHg MAP to predict 28-day mortality in adults Study FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0.29 [0.23, 0.36] Dunser 2009A 80 134 5 55 0.94 [0.87, 0.98] ۲ 0 0.2 0.4 0.6 0.8 1 Blood pressure (adults): MAP 70 mmHg and under to predict onset of organ failure at 24h in adults Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0.70 [0.53, 0.83] Slotman 1997 19 12 0 28 1.00 [0.82, 1.00] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Blood pressure (adults): MAP 70 mmHg and under to predict onset of organ failure at 48h in adults TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study Slotman 1997 1 45 0.93 [0.66, 1.00] 1.00 [0.92, 1.00] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 Blood pressure (adults): MAP 70 mmHg and under to predict onset of organ failure at 72h in adults TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study Slotman 1997 1.00 [0.82, 1.00] 0.00 [0.00, 0.09]

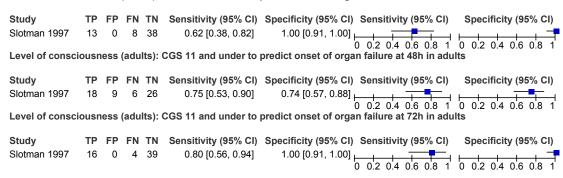
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1


K.2.4 Respiratory rate

None.

K.2.5 Altered mental state

Figure 6: Sensitivity and specificity for altered mental state, adults


Altered mental state (adults): to predict bacteriaemia in elderly patients

K.2.6 Level of consciousness

Figure 7: Sensitivity and specificity for level of consciousness, adults

Level of consciousness (adults): CGS 11 and under to predict onset of organ failure at 24h in adults

K.2.7 Oxygen saturation

None.

K.2.8 Urine output

None.

K.2.9 Diarrhoea

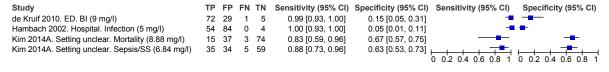
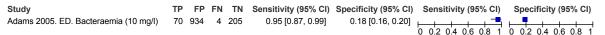
None.

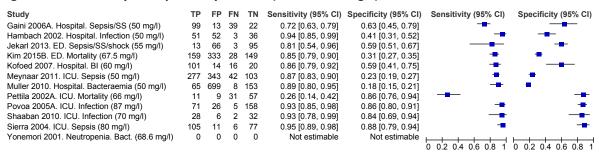
K.3 Blood tests

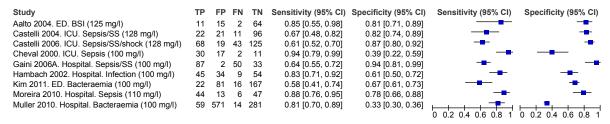
Note: studies for coupled sensitivity/specificity are listed in alphabetical order. Setting, target condition, and actual cut-off value reported by each study are included in the study name.

K.3.1 CRP, adults

Figure 8: Sensitivity and specificity for CRP (cut-off ≥5 mg/l), adults


Figure 9: Sensitivity and specificity for CRP (cut-off ≥10 mg/l), adults


Figure 10: Sensitivity and specificity for CRP (cut-off ≥20 mg/l), adults

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gaini 2006A. Hospital. Sepsis/SS (38 mg/l)	110	15	28	21	0.80 [0.72, 0.86]	0.58 [0.41, 0.74]	-	
Muller 2010. Hospital. Bacteraemia (20 mg/l)	70	775	3	77	0.96 [0.88, 0.99]	0.09 [0.07, 0.11]	-	
Nakamura 2009. Hospital. Bacteraemia (35 mg/l)	49	30	16	21	0.75 [0.63, 0.85]	0.41 [0.28, 0.56]	-	_
Stucker 2005. Hospital. Infection (30 mg/l)	46	107	4	60	0.92 [0.81, 0.98]	0.36 [0.29, 0.44]	-	-
Yonemori 2001. Neutropenia. Infection (30.8 mg/l)	0	0	0	0	Not estimable	Not estimable	0 02 04 06 08 1	0 02 04 06 08 1

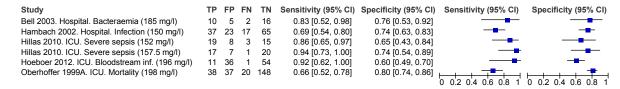
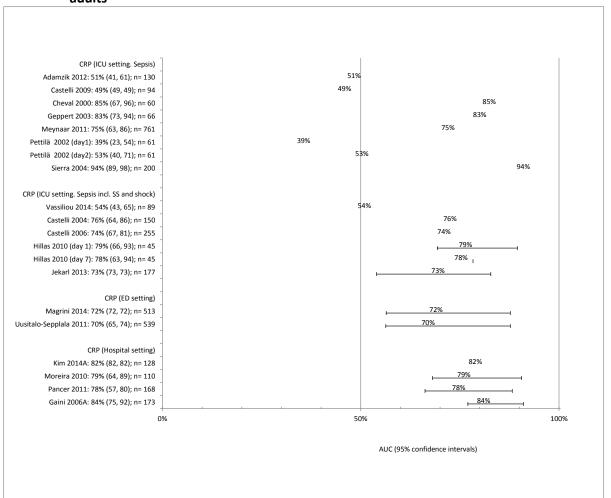
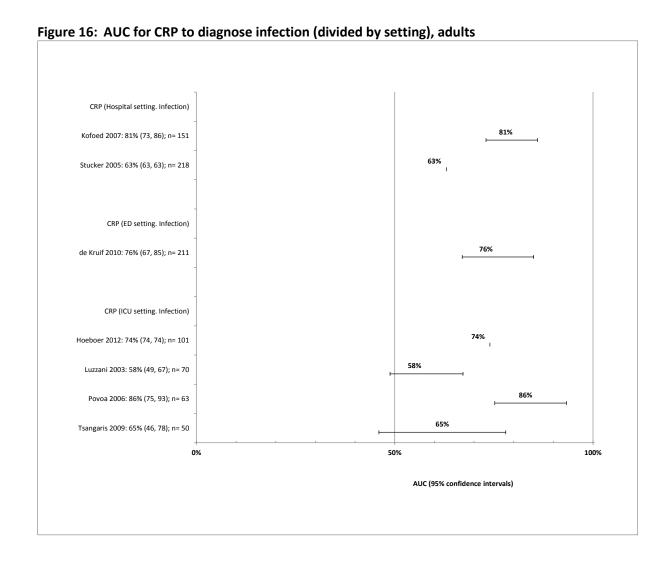
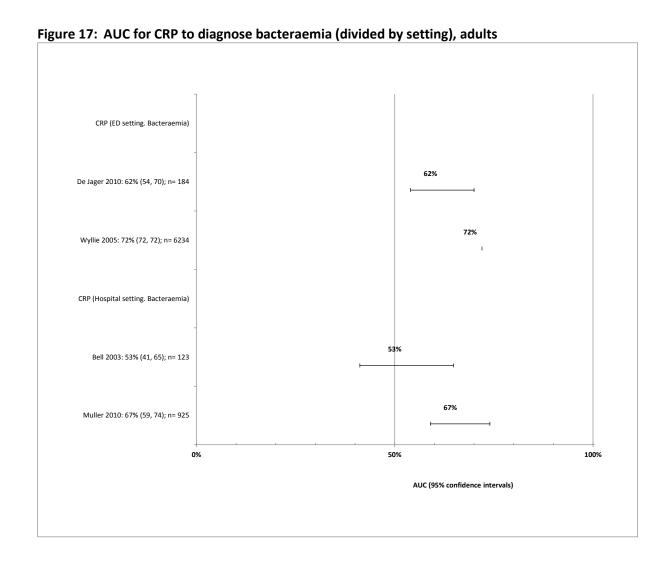

Figure 11: Sensitivity and specificity for CRP (cut-off ≥50 mg/l), adults

Figure 12: Sensitivity and specificity for CRP (cut-off ≥100 mg/l), adults


Figure 13: Sensitivity and specificity for CRP (cut-off ≥150 mg/l), adults




Figure 14: Sensitivity and specificity for CRP (cut-off ≥200 mg/l), adults

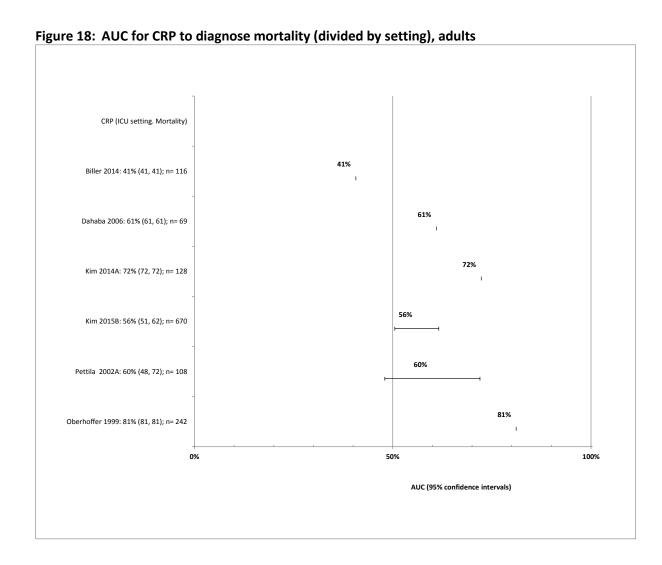

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hoeboer 2012. ICU. Septic shock (208 mg/l)	24	15	10	52	0.71 [0.53, 0.85]	0.78 [0.66, 0.87]		-
Muller 2010. Hospital. Bacteraemia (200 mg/l)	45	307	28	545	0.62 [0.50, 0.73]	0.64 [0.61, 0.67]	0.03.04.06.08.1	

Figure 15: AUC for CRP to diagnose sepsis, severe sepsis and septic shock (divided by setting), adults

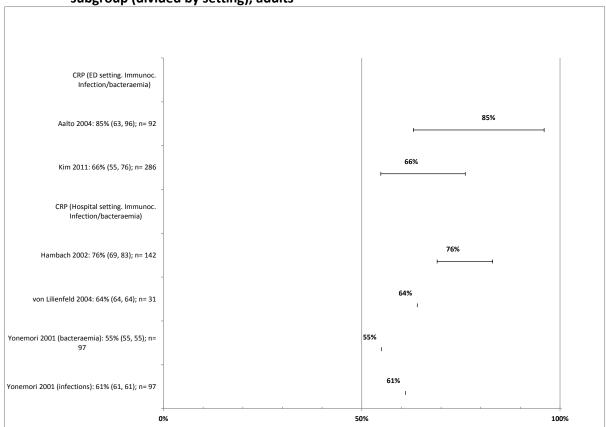


Figure 19: AUC for CRP to diagnose infection or bacteraemia in the immunocompromised subgroup (divided by setting), adults

Figure 20: Odds ratio for CRP ratio (follow-up/initial level), adults

AUC (95% confidence intervals)

Figure 21: Odds ratio for CRP >8 mg/l versus CRP ≤8 mg/l, adults

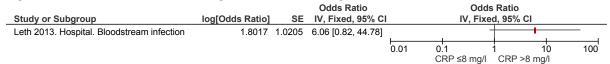


Figure 22: Odds ratio for CRP for diagnosing sepsis, adults

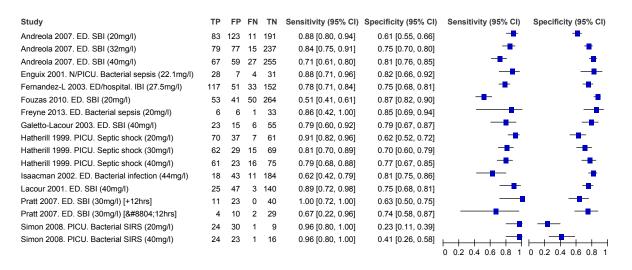
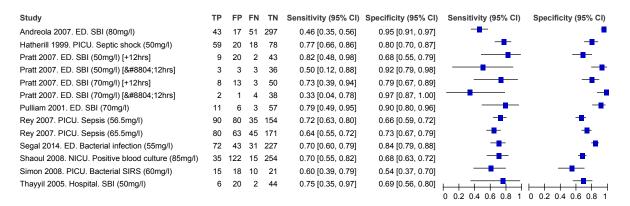
			Odds Ratio		00	ads Katio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV, F	ixed, 95%	CI	
Uusitalo-Sepplala 2011. ED. Sepsis/SS	0.2852	0.0975	1.33 [1.10, 1.61]			+		
				0.01	0.1	1	10	100
					Protective fac	tor Risk f	actor	

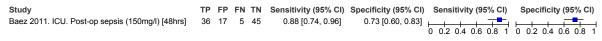
Figure 23: Odds ratio for CRP for diagnosing severe sepsis, adults

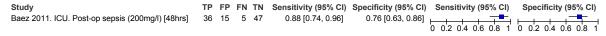
			Odds Ratio			Odds R	atio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV	, Fixed,	95% CI		
Uusitalo-Sepplala 2011. ED. Sepsis/SS	0.0198	0.1505	1.02 [0.76, 1.37]			+			
				0.01	0.1	1	10	5	100
					Protective	factor F	Rick factor		

K.3.2 CRP, children

Figure 24: Sensitivity and specificity for CRP (cut-off ≥20mg/I), children


Figure 25: Sensitivity and specificity for CRP (cut-off ≥50mg/l), children


Figure 26: Sensitivity and specificity for CRP (cut-off ≥100mg/l), children

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Baez 2011. ICU. Post-op sepsis (100mg/l) [24hrs]	34	16	7	46	0.83 [0.68, 0.93]	0.74 [0.62, 0.84]	-	
Baez 2011. ICU. Post-op sepsis (100mg/l) [48hrs]	37	19	4	43	0.90 [0.77, 0.97]	0.69 [0.56, 0.80]	-	
Baez 2011. ICU. Post-op sepsis (110mg/l) [24hrs]	38	24	3	38	0.93 [0.80, 0.98]	0.61 [0.48, 0.73]	-	-
Baez 2011. ICU. Post-op sepsis (110mg/l) [48hrs]	36	7	5	55	0.88 [0.74, 0.96]	0.89 [0.78, 0.95]	0 0.2 0.4 0.6 0.8 1	0 02 04 06 08 1

Figure 27: Sensitivity and specificity for CRP (cut-off ≥150mg/l), children

Figure 28: Sensitivity and specificity for CRP (cut-off ≥200mg/l), children

Figure 29: Sensitivity and specificity for change in CRP per day, children

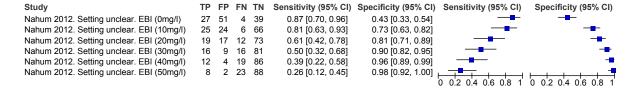
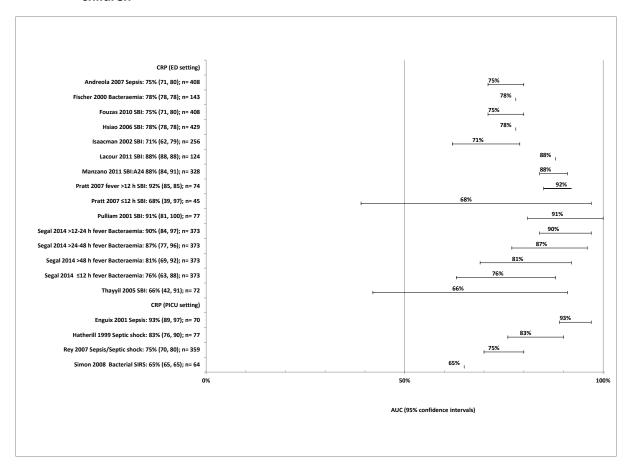



Figure 30: AUC for CRP to diagnose sepsis, severe sepsis and septic shock (divided by setting), children

K.3.3 CRP, neonates

Figure 31: Sensitivity and specificity for CRP (cut-off <5 mg/l), neonates

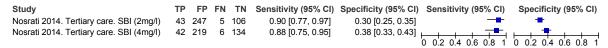
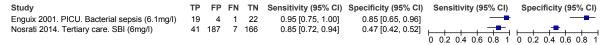



Figure 32: Sensitivity and specificity for CRP (cut-off ≥5mg/I), neonates

Figure 33: Sensitivity and specificity for CRP (cut-off ≥10mg/I), neonates

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Jacquot 2009. NICU. Late onset sepsis (10mg/l)	17	6	13	37	0.57 [0.37, 0.75]	0.86 [0.72, 0.95]		-
Nosrati 2014. Tertiary care. SBI (10mg/l)	40	138	8	215	0.83 [0.70, 0.93]	0.61 [0.56, 0.66]	-	-
Sherwin 2008. NICU. Late onset sepsis (18mg/l)	21	7	31	105	0.40 [0.27, 0.55]	0.94 [0.88, 0.97]	0 0.2 0.4 0.6 0.8 1	
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 34: Sensitivity and specificity for CRP (cut-off ≥20mg/I), neonates

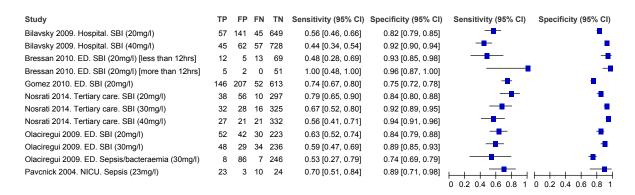


Figure 35: Sensitivity and specificity for CRP (cut-off ≥50mg/I), neonates

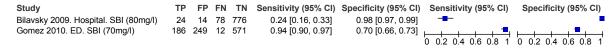
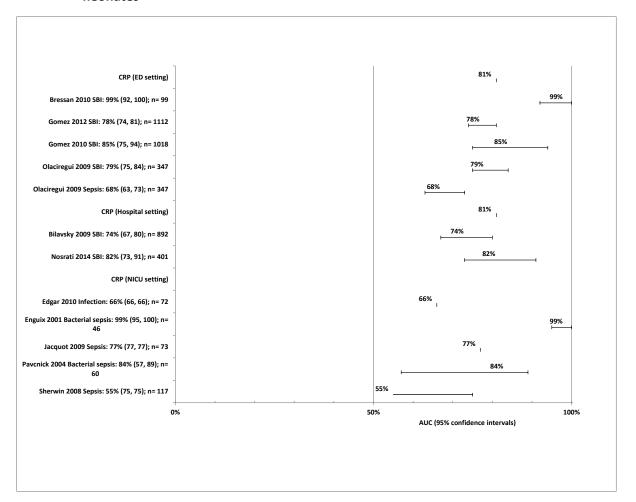



Figure 36: AUC for CRP to diagnose sepsis, severe sepsis and septic shock (divided by setting), neonates

K.3.4 WBC, adults

Figure 37: Sensitivity and specificity for WBC (<1x10⁹/I), adults

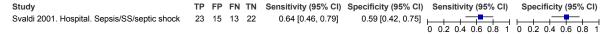
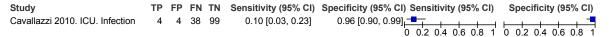
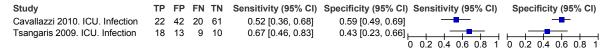



Figure 38: Sensitivity and specificity for WBC (>1x109/I), adults


Figure 39: Sensitivity and specificity for WBC (<4x109/I), adults

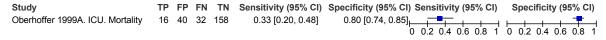

Figure 40: Sensitivity and specificity for WBC (>11x109/I), adults

Figure 41: Sensitivity and specificity for WBC (>12x109/I), adults

Figure 42: Sensitivity and specificity for WBC (>15x109/I), adults

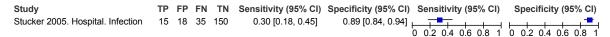

Figure 43: Sensitivity and specificity for WBC (>20.3x109/I), adults

Figure 44: Sensitivity and specificity for WBC (<4.3x109/l and >11x109/l), adults

Figure 45: Sensitivity and specificity for WBC (≤4x10⁹/l and ≥12x10⁹/l), adults

Figure 46: Sensitivity and specificity for WBC ($\leq 5 \times 10^9 / l$ and $\geq 20 \times 10^9 / l$), adults

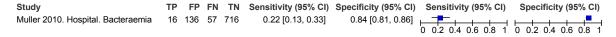


Figure 47: AUC for WBC to diagnose (1) sepsis, severe sepsis, septic shock; bacteraemia or infection; (3) mortality (divided by setting), adults

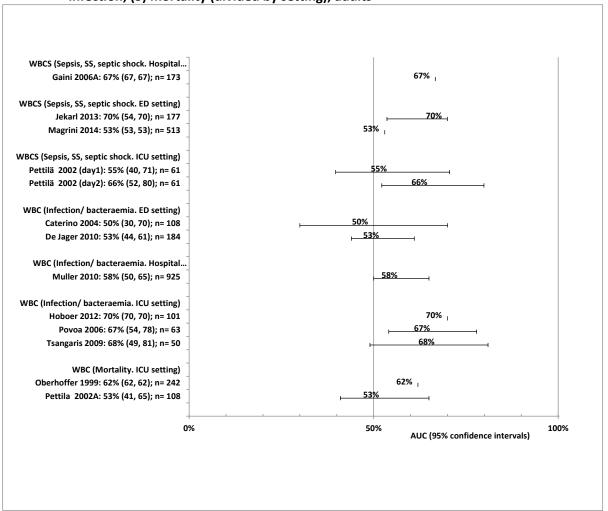


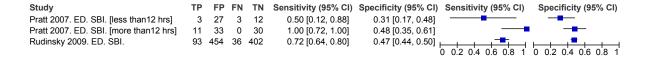
Figure 48: Odds ratio for WBC (>12x109/I), adults

				Odds Ratio		Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% CI		
Freund 2012. ED. Sepsis/SS/septic shock	0.6043	0.2282		1.83 [1.17, 2.86]			-		
					0.01	0.1 Protective factor	1 Risk facto	10 or	100

Figure 49: Odds ratio for WCC (<4x10⁹/l or >20x10⁹/l), adults

_			Odds Ratio		(Odds Ra	itio	
Study or Subgroup	log[Odds Ratio] SE	Weight	IV, Fixed, 95% CI		IV,	Fixed, 9	5% CI	
Patterson 2012. ED. Bacteraemia	-0.4943 1.2573		0.61 [0.05, 7.17]					
				0.01	0.1	1	10	100
					Protective fa	actor Ri	sk factor	

Figure 50: Odds ratio for WBC (≤4x109/I or ≥12x109/I), adults


		Odds Ratio						
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV,	Fixed, 95%	CI	
Stucker 2005. Hospital. Infection	1.2528 0	0.4023	3.50 [1.59, 7.70]			-	 .	
				0.01	0.1	1	10	100
					Protective f	actor Risk	factor	

K.3.5 WBC, children

Figure 51: Sensitivity and specificity for WBC (<5x109/I), children

Figure 52: Sensitivity and specificity for WBC (>10x109/I), children

Figure 53: Sensitivity and specificity for WBC (>10.47x109/I), children

Figure 54: Sensitivity and specificity for WBC (>15x10⁹/l), children

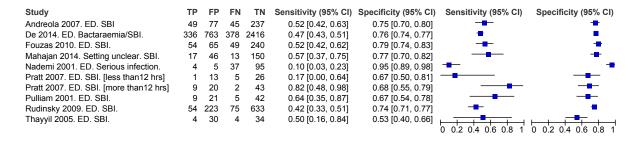


Figure 55: Sensitivity and specificity for WBC (>17.1x109/I), children

Figure 56: Sensitivity and specificity for WBC (>17.5x109/I), children

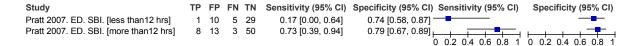


Figure 57: Sensitivity and specificity for WBC (>19x10⁹/I), children

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Mahajan 2014. Setting unclear. SBI.	14	19	16	177	0.47 [0.28, 0.66]			0.02.04.06.08.1

Figure 58: Sensitivity and specificity for WBC (>20x109/I), children

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
De 2014. ED. Bactaraemia/SBI.	186	318	528	2861	0.26 [0.23, 0.29]	0.90 [0.89, 0.91]	•	
Nademi 2001. ED. Serious infection.	12	7	29	93	0.29 [0.16, 0.46]	0.93 [0.86, 0.97]	-	-
Rudinsky 2009. ED. SBI.	21	60	108	796	0.16 [0.10, 0.24]	0.93 [0.91, 0.95]		
							0 02 04 06 08 1	0 02 04 06 08 1

Figure 59: Sensitivity and specificity for WBC (>25x10⁹/I), children

Figure 60: Sensitivity and specificity for WBC (<5 or >15 x109/l), children

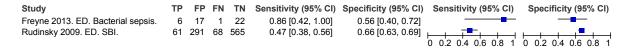
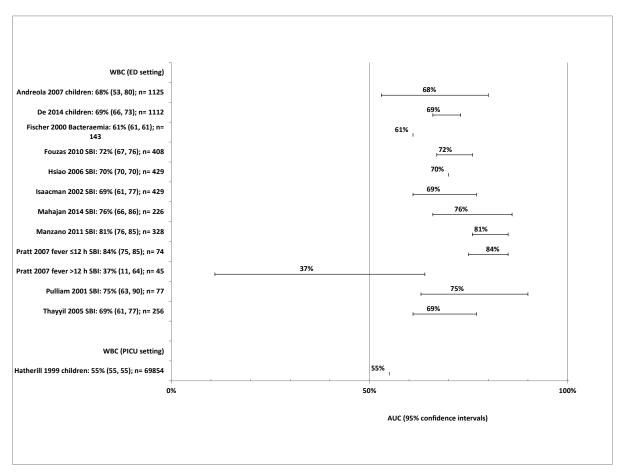



Figure 61: AUC for WBC to diagnose sepsis, severe sepsis and septic shock (divided by setting), children

K.3.6 WBC, neonates

Figure 62: Sensitivity and specificity for WBC (<1x10⁹/I), neonates

Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Specificity

Figure 63: Sensitivity and specificity for WBC (<5x10⁹/I), neonates

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 64: Sensitivity and specificity for WBC (>5x109/I), neonates

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 65: Sensitivity and specificity for WBC (>10x109/I), neonates

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 66: Sensitivity and specificity for WBC (>15x109/I), neonates

FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Bilavsky 2009. Hospital. SBI. 49 126 53 664 0.48 [0.38, 0.58] 0.84 [0.81, 0.87] Bonsu 2003. ED. Bacteraemia. 8 834 9 2959 0.47 [0.23, 0.72] 0.78 [0.77, 0.79] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 67: Sensitivity and specificity for WBC (>20x10⁹/l), neonates

TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Bilavsky 2009. Hospital. SBI. 22 38 80 752 0.22 [0.14, 0.31] 0.95 [0.93, 0.97] Bonsu 2003. ED. Bacteraemia. 266 3535 0.22 [0.03, 0.60] 0.93 [0.92, 0.94] 2182 12160 7474 48038 Hornik 2012 NICU Bacterial sensis 0.23 [0.22, 0.23] 0.80 [0.79, 0.80] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

Figure 68: Sensitivity and specificity for WBC (>25x109/I), neonates

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 69: Sensitivity and specificity for WBC (>30x10⁹/l), neonates

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 70: Sensitivity or specificity for WBC (>50x109/I), neonates

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 71: Sensitivity and specificity for WBC (<4 or ≥20x10⁹/I), neonates

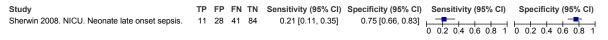


Figure 72: Sensitivity and specificity for WBC (>15 or <5 x109/I), neonates

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bilavsky 2009. Hospital. SBI.	51	173	51	617	0.50 [0.40, 0.60]	0.78 [0.75, 0.81]		•
Bonsu 2003. ED. Bacteraemia.	17	1060	9	2725	0.65 [0.44, 0.83]	0.72 [0.71, 0.73]		
Bressan 2010. ED. SBI. [fever less than 12 hrs]	7	9	18	65	0.28 [0.12, 0.49]	0.88 [0.78, 0.94]		-
Bressan 2010. ED. SBI. [fever more than 12 hrs]	4	5	1	48	0.80 [0.28, 0.99]	0.91 [0.79, 0.97]		
							0 02 04 06 08 1	0 02 04 06 08 1

Figure 73: Sensitivity and specificity for WBC (>20 or <4.1 x109/l), neonates

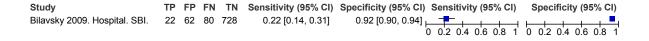
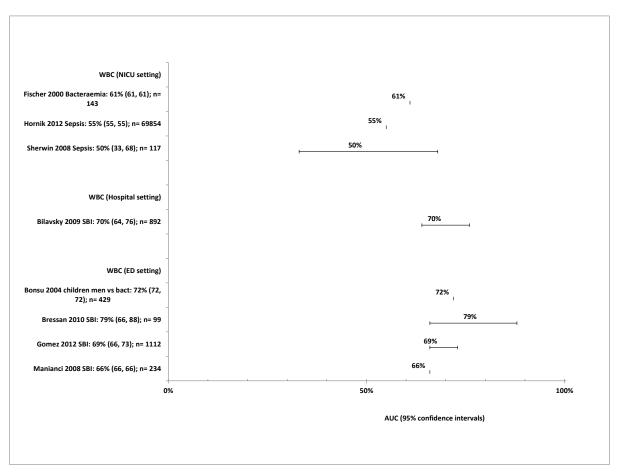



Figure 74: Sensitivity and specificity for WBC (>20 or <5 x109/l), neonates

Figure 75: AUC for WBC to diagnose sepsis, severe sepsis and septic shock (divided by setting), neonates

K.3.7 Leukocytes, adults

Figure 76: Multivariable odds ratio for leukocyte count, adults

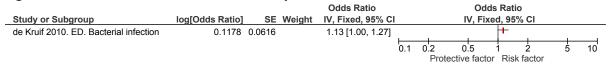


Figure 77: AUC for leukocyte sedimentation rate, adults

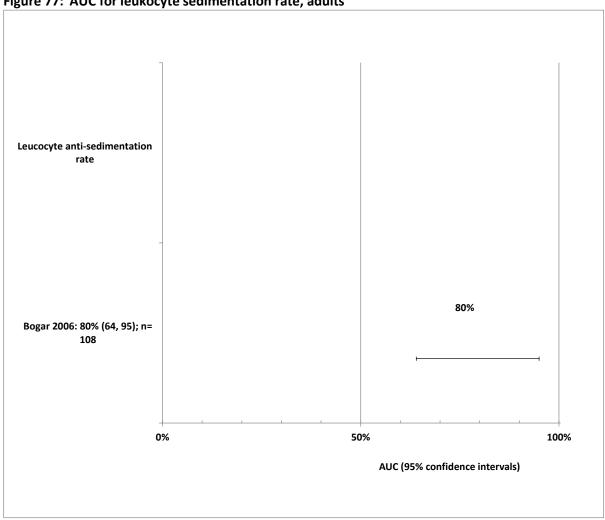


Figure 78: Odds ratio for leukocyte count ≥4x10⁹/l or ≤12x10⁹/l compared to <4x10⁹/l or >12x10⁹/l, adults

			Odds Ratio		Od	ds Ratio	ı	
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV, Fi	xed, 95%	CI	
Leth 2013. Hospital. Bloodstream infection	0.0677	0.2654	1.07 [0.64, 1.80]			+		
				0.01	0.1	1	10	100
					Protective fact	or Risk	factor	

K.3.8 Leukocytes, children

Figure 79: Sensitivity and specificity for leukocytes (>7.1x10⁹/l), children

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Fernandez-lopez 2003. ED/hospital. IBI.	81	48	69	154	0.54 [0.46, 0.62]	0.76 [0.70, 0.82] [<u> </u>	
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 80: Sensitivity and specificity for leukocytes (>15x109/l), children

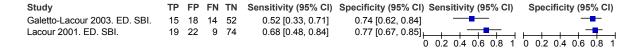
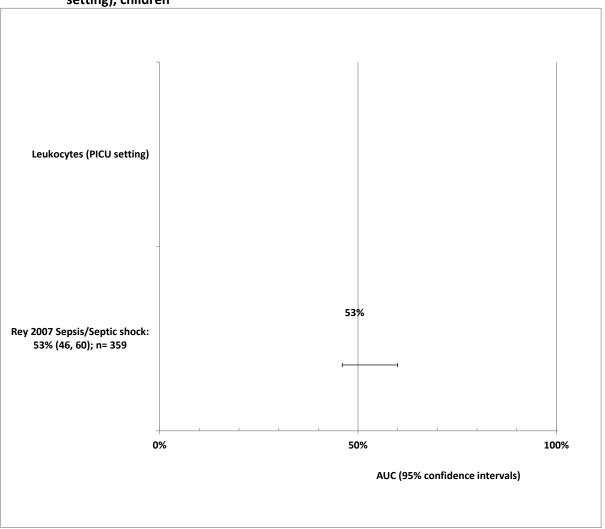



Figure 81: AUC for leukocytes to diagnose sepsis, severe sepsis and septic shock (divided by setting), children


K.3.9 Leukocytes, neonates

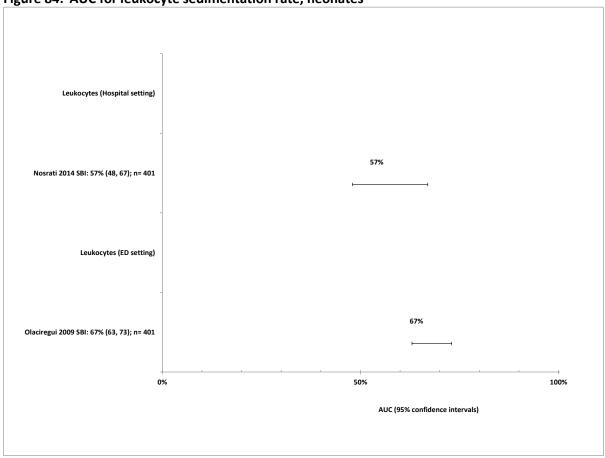

Figure 82: Sensitivity and specificity for leukocytes (>10x109/I), neonates

Figure 83: Sensitivity and specificity for leukocytes (>15x109/I), neonates

K.3.10 Neutrophils, adults

Figure 85: Sensitivity and specificity for neutrophil count (cut-off 7.5x109/I), adults

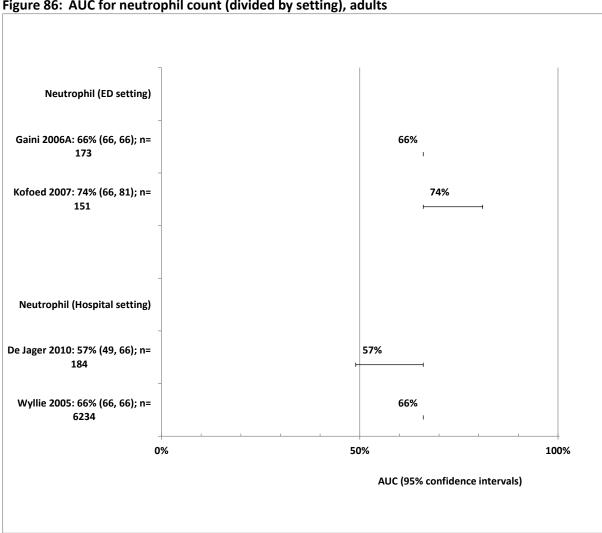
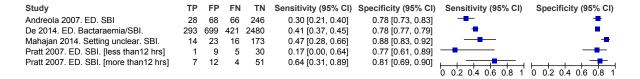


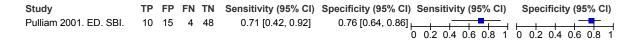
Figure 86: AUC for neutrophil count (divided by setting), adults

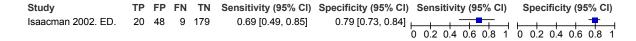
Figure 87: Odds ratio for neutrophil count (>80%), adults

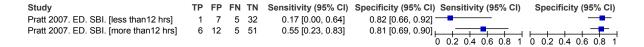
Figure 88: Odds ratio for neutrophil count ≥2x109/I or ≤7x109/I compared to <2x109/I or >7x109/I, adults



K.3.11 Neutrophils, children


Figure 89: Sensitivity and specificity for neutrophil count (cut-off 6.45x109/I), children


Figure 90: Sensitivity and specificity for neutrophil count (cut-off 10x109/I), children


Figure 91: Sensitivity and specificity for neutrophil count (cut-off 10.2x10⁹/l), children

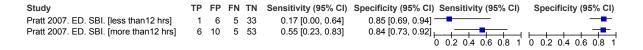

Figure 92: Sensitivity and specificity for neutrophil count (cut-off 10.6x10⁹/I), children

Figure 93: Sensitivity and specificity for neutrophil count (cut-off 11x109/I), children

Figure 94: Sensitivity and specificity for neutrophil count (cut-off 12x109/I), children

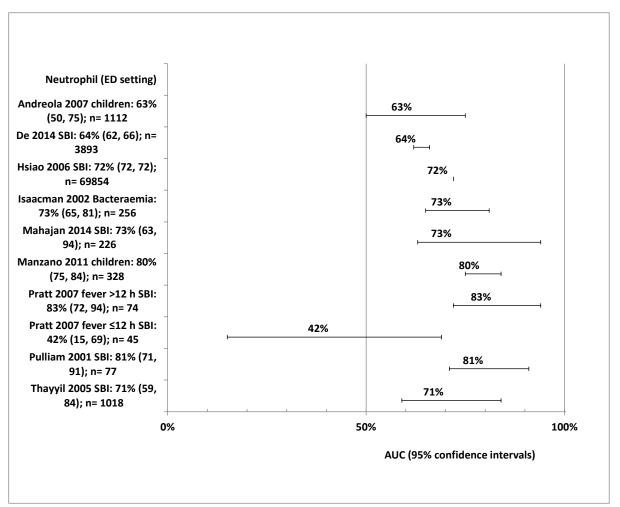

Figure 95: Sensitivity and specificity for neutrophil count (cut-off 13x109/I), children

Figure 96: Sensitivity and specificity for neutrophil count (cut-off 15x10⁹/l), children

Figure 97: AUC for neutrophils to diagnose sepsis, severe sepsis and septic shock (divided by setting), children

K.3.12 Neutrophils, neonates

Figure 98: Sensitivity and specificity for neutrophil count (cut-off 1x109/I), neonates

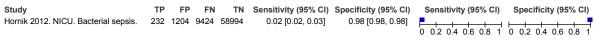


Figure 99: Sensitivity and specificity for neutrophil count (cut-off 1.5x109/I), neonates

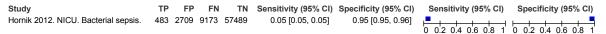
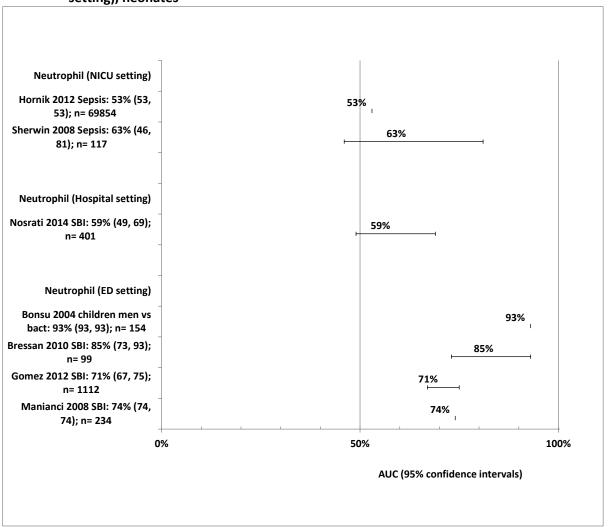



Figure 100: Sensitivity and specificity for neutrophil count (cut-off 10x10⁹/l), neonates

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bressan 2010. ED. SBI. [fever less than 12 hrs]	5	2	20	72	0.20 [0.07, 0.41]	0.97 [0.91, 1.00]	_	-
Bressan 2010. ED. SBI. [fever more than 12 hrs]	4	0	1	53	0.80 [0.28, 0.99]	1.00 [0.93, 1.00]		-
Sherwin 2008. NICU. Neonate late onset sepsis.	17	8	35	104	0.33 [0.20, 0.47]	0.93 [0.86, 0.97]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 101: AUC for neutrophils to diagnose sepsis, severe sepsis and septic shock (divided by setting), neonates

K.3.13 Lymphocytes, adults

K.3.14 Lymphocytes, children

None.

K.3.15 Lymphocytes, neonates

None.

K.3.16 Lactate, adults

Figure 103: Sensitivity and specificity for lactate (>1.5 mmol/l), adults

Figure 104: Sensitivity and specificity for lactate (>1.7 mmol/l), adults

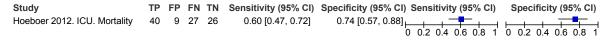


Figure 105: AUC for lactate to diagnose (1) sepsis, severe sepsis, septic shock; (2) bacteraemia or infection; (3) mortality, adults

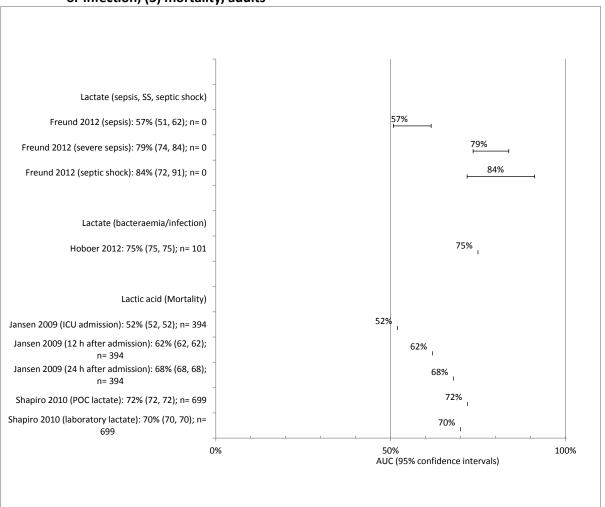
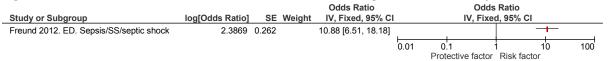
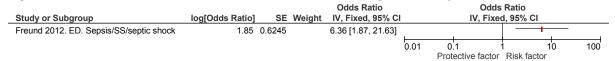




Figure 106: Odds ratio for lactate (>2 mmol/l) for the diagnosis of severe sepsis, adults

Figure 107: Odds ratio for lactate (>2 mmol/l) for the diagnosis of septic shock, adults

K.3.17 Lactate, children

None.

K.3.18 Lactate, neonates

None.

K.3.19 Bands, adults

Figure 108: Sensitivity and specificity for bands (>8.5%), adults

Figure 109: Sensitivity and specificity for bands (>10%), adults

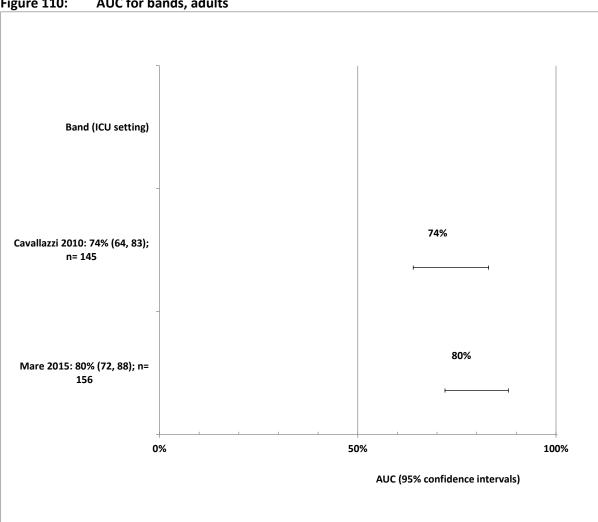


Figure 110: AUC for bands, adults

K.3.20 Bands, children

Sensitivity and specificity for bands (>1.5x109/I), children Figure 111:

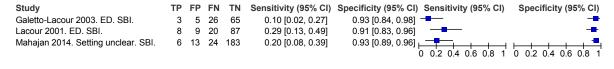
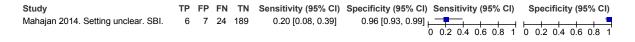



Figure 112: Sensitivity and specificity for bands (>1.8x10⁹/l), children

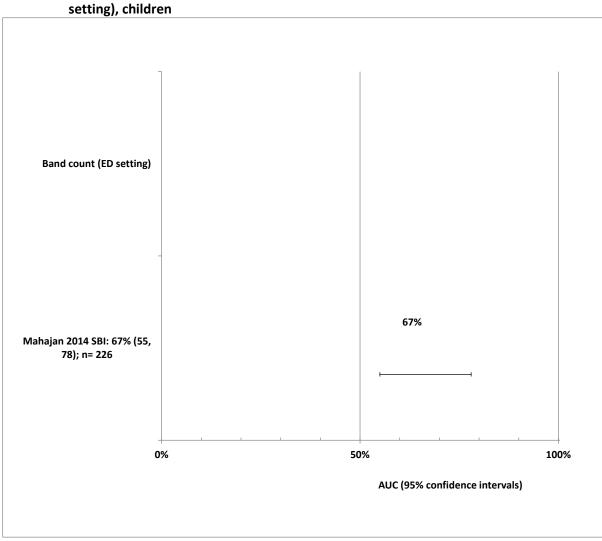


Figure 113: AUC for bands to diagnose sepsis, severe sepsis and septic shock (divided by setting), children

K.3.21 Bands, neonates

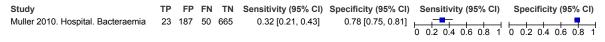
None.

K.3.22 Haemoglobin, adults

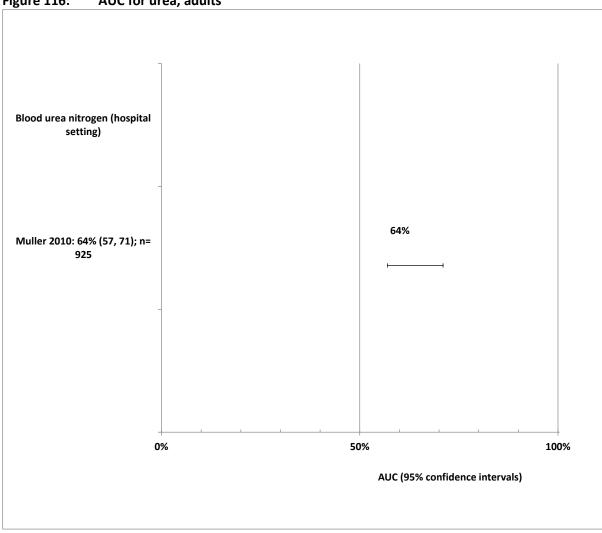
Figure 114: Odds ratio for haemoglobin (≤100 g/l), adults

			Odds Ratio		(Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV,	Fixed, 95%	CI	
Patterson 2012. ED. Bacteraemia	-0.3425 1.0	.0628	0.71 [0.09, 5.70]			-		
				0.01	0.1	1	10	100
					Protective fa	ctor Risk	actor	

K.3.23 Haemoglobin, children


None.

K.3.24 Haemoglobin, neonates


None.

K.3.25 Urea, adults

Figure 115: Sensitivity and specificity for urea (>11 mmol/I), adults

K.3.26 Urea, children

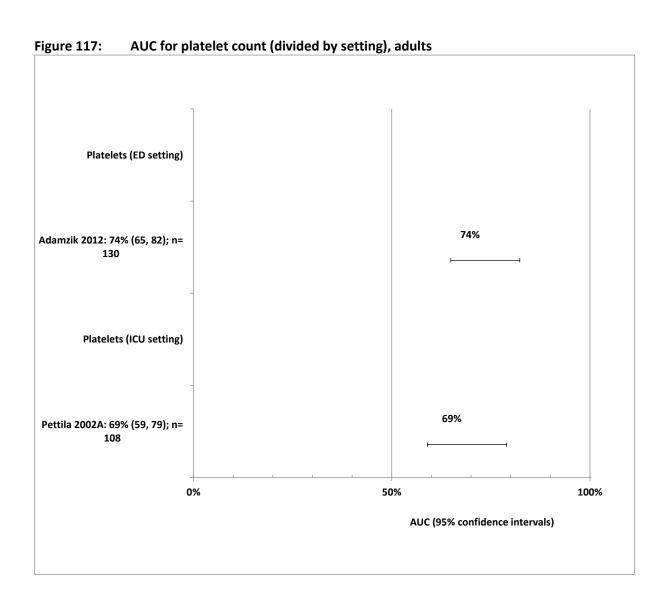
None.

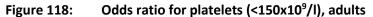
K.3.27 Urea, neonates

None.

K.3.28 Creatinine, adults

None.


K.3.29 Creatinine, children


None.

K.3.30 Creatinine, neonates

None.

K.3.31 Platelets, adults

K.3.32 Platelets, children

Figure 119: Sensitivity and specificity for platelets (>68x109/l), children

Figure 120: Sensitivity and specificity for platelets (>400x109/l), children

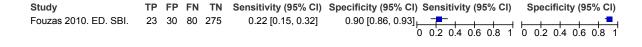

Figure 121: Sensitivity and specificity for platelets (>450x109/l), children

Figure 122: Sensitivity and specificity for platelets (>500x10⁹/l), children

Figure 123: Sensitivity and specificity for platelets (>600x10⁹/l), children

Figure 124: Sensitivity and specificity for platelets (20% increase), children

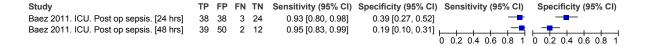
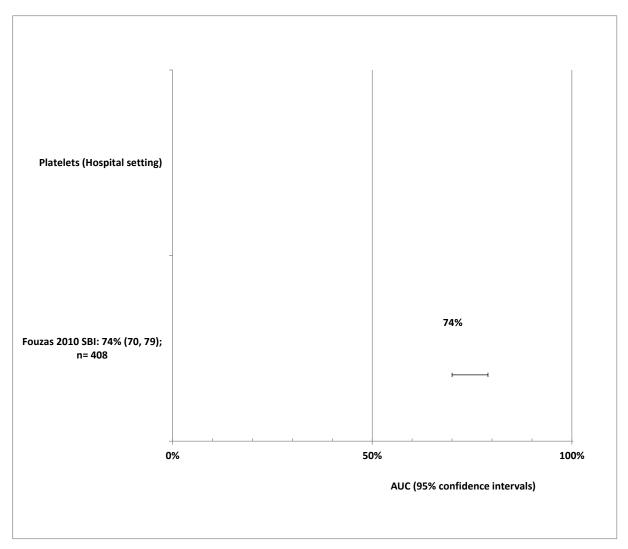



Figure 125: AUC for platelets to diagnose sepsis, severe sepsis and septic shock (divided by setting), children

K.3.33 Platelets, neonates

Figure 126: Sensitivity and specificity for platelets (>50x109/l), neonates

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hornik 2012. NICU. Bacterial sepsis.	744	1324	8912	58874	0.08 [0.07, 0.08]	0.98 [0.98, 0.98]	0.02.04.06.08.1	0.02.04.06.08.1

Figure 127: Sensitivity and specificity for platelets (>100x10⁹/l), neonates

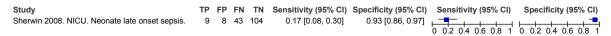


Figure 128: Sensitivity and specificity for platelets (<100x109/l), neonates

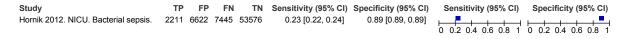
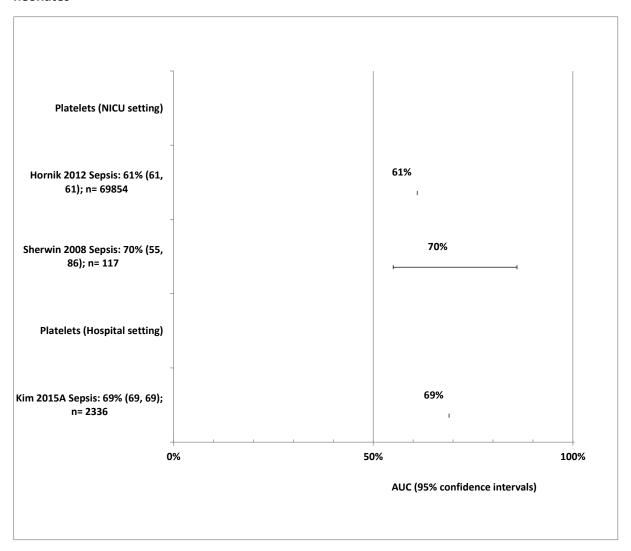
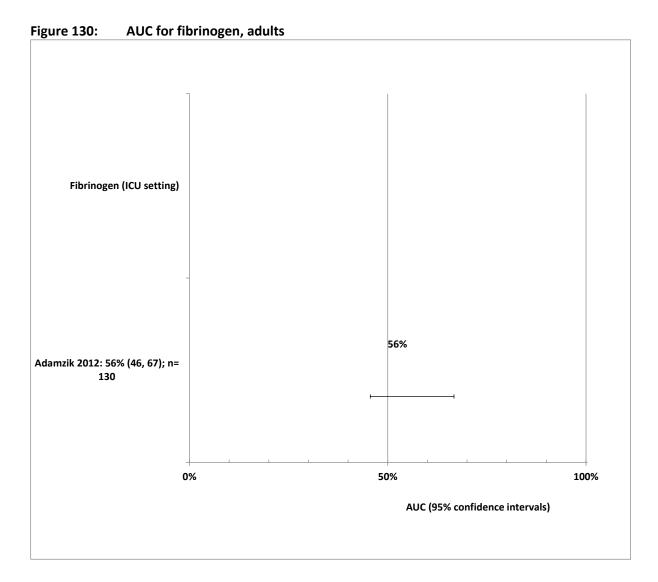
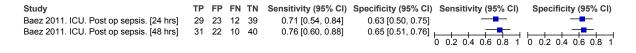




Figure 129: AUC for platelets to diagnose sepsis, severe sepsis and septic shock (divided by setting), neonates



K.3.34 Fibrinogen, adults

K.3.35 Fibrinogen, children

Figure 131: Sensitivity and specificity for fibrinogen (20% increase), children

K.3.36 Fibrinogen, neonates

None.

K.3.37 Thrombin time, adults

Odds ratio for prothrombin time (≥18.4 seconds), adults Figure 132:

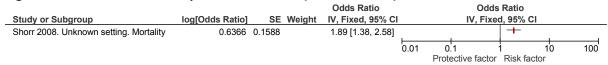


Figure 133: AUC for thrombin time (divided by setting), adults

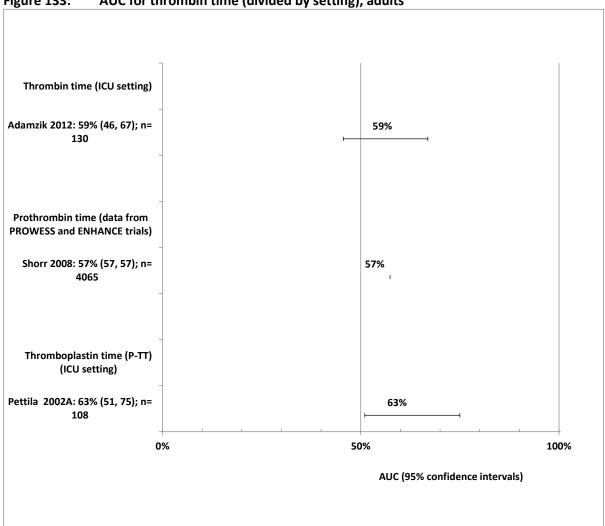


Figure 134: Odds ratio for anti-thrombin III (<53%), adults

			Odds Ratio		Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV, Fixed	d, 95% CI		
Shorr 2008. Unknown setting. Mortality	0.8416	0.1609	2.32 [1.69, 3.18]			+ .		
				0.01	0.1 Protective factor	1 10 Risk factor	100	

K.3.38 Thrombin time, children

None.

K.3.39 Thrombin time, neonate	(.3.39	HIGHIOTHI	ume,	neonate
-------------------------------	---------------	-----------	------	---------

None.

K.3.40 Bilirubin, adults

None.

K.3.41 Bilirubin, children

None.

K.3.42 Bilirubin, neonates

None.

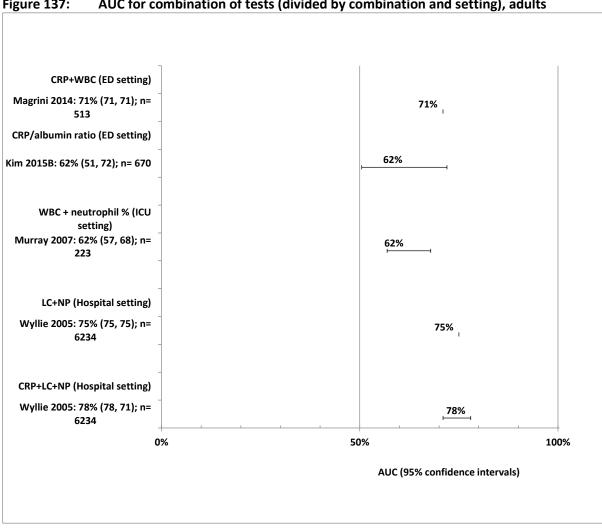

K.3.43 Combination of tests, adults

Figure 135: Sensitivity and specificity for bands (>10%) and WBC (>12x109/I), adults

Figure 136: Sensitivity and specificity for CRP/albumin ratio (>5.09), adults

AUC for combination of tests (divided by combination and setting), adults Figure 137:

Odds ratio for CRP >100 mg/l and lactate <4.0 mmol/l, adults **Figure 138:**

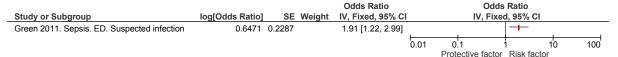


Figure 139: Odds ratio for CRP >100 mg/l and lactate ≥4.0 mmol/l, adults

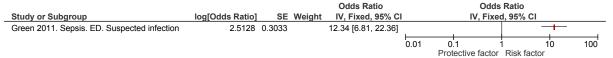
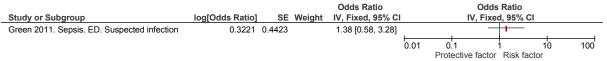



Figure 140: Odds ratio for CRP ≤100 mg/l and lactate ≥4.0 mmol/l, adults

K.3.44 Combination of tests, children

Figure 141: Sensitivity and specificity for CRP (>31mg/l) or WBC (>17.1x10⁹/l), children

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 142: Sensitivity and specificity for CRP (>36mg/l) or ANC (>10.5x10⁹/l), children

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

 Isaacman 2002. ED.
 23
 114
 6
 114
 0.79 [0.60, 0.92]
 0.50 [0.43, 0.57]
 0.20 0.4 0.6 0.8 1
 0.02 0.4 0.6 0.8 1
 0.02 0.4 0.6 0.8 1

Figure 143: Sensitivity and specificity for CRP (>85mg/l) and ANC (>10x10⁹/l) or WBC (>15 x10⁹/l), children

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

Figure 144: Sensitivity and specificity for CRP (>85mg/l) and ANC (>10x10 9 /l) and WBC (>15 x10 9 /l), children

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% CI)
 Specificity (95% CI)
 Sensitivity (95% CI)
 Specificity (95% CI)

K.3.45 Combination of tests, neonates

None.

K.4 Lactate

None.

K.5 Serum creatinine

Figure 145: Serum creatinine level increase per 0.1 mg/dl: 28-day mortality

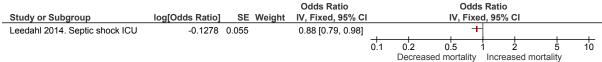


Figure 146: Initial serum creatinine >3.0 mg/dl: in-hospital mortality

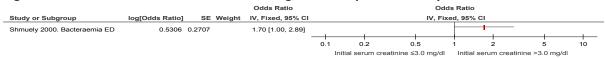


Figure 147: Initial serum creatinine >0.7 mg/dl: in-hospital mortality

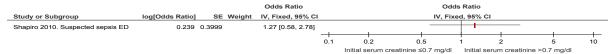


Figure 148: Initial serum creatinine >1.7 mg/dl: in-hospital mortality

K.6 Disseminated intravascular coagulation (DIC)

Figure 149: 28-day mortality (multivariable analysis)

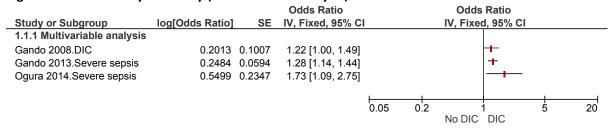


Figure 150: In-hospital mortality (multivariable and univariable analyses)

			Odds Ratio			Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	IV, Fixed, 95% C	l		IV, Fixed, 95% CI		
1.2.1 Multivariable analysis								
Gando 2007.SIRS/sepsis	1.441	0.557	4.22 [1.42, 12.59]					_
Ogura 2014. Severe sepsis	0.4357	0.2182	1.55 [1.01, 2.37]			 		
1.2.2 Univariable analysis								
Gando 2007A.SIRS/sepsis	3.7013	1.1161	40.50 [4.54, 360.98]					
				0.05	0.2	1 No DIC DIC	- 5	20

K.7 Antimicrobial treatment

Figure 151: Mortality: <1 hour versus >1 hour, adult population

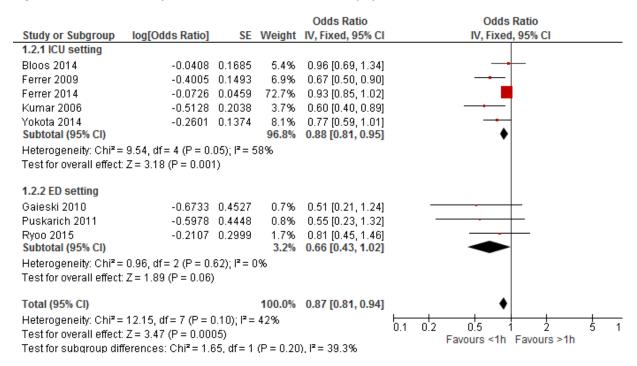


Figure 152: Mortality <2 hours versus >2 hours, adult population

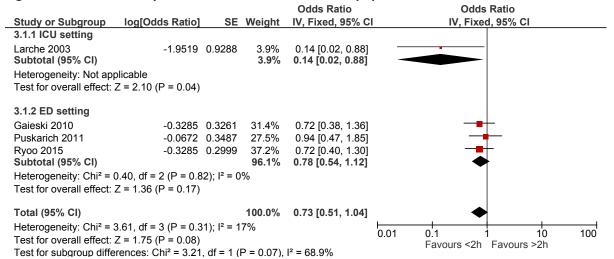
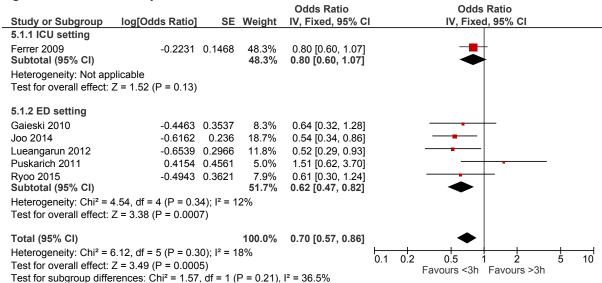
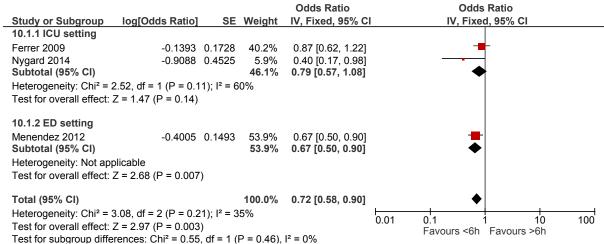


Figure 153: Mortality <3 hours versus >3 hours




Figure 154: Mortality <4 hours versus >4 hours

	-			Odds Ratio		Odds R	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed,	95% CI	
7.1.2 ED setting								
Gaieski 2010	-0.2231	0.4218	47.6%	0.80 [0.35, 1.83]		-	_	
Puskarich 2011	0.9416	0.8082	13.0%	2.56 [0.53, 12.50]		+	-	
Ryoo 2015	-0.4155154	0.463304	39.4%	0.66 [0.27, 1.64]		-	_	
Subtotal (95% CI)			100.0%	0.86 [0.49, 1.53]		•	•	
Heterogeneity: Chi ² =	2.18, $df = 2$ ($P = 0$.	34); I² = 8%						
Test for overall effect:	Z = 0.51 (P = 0.61)	ı						
T / 1/05*/ OB			400.00	0.0010.40.4.501				
Total (95% CI)			100.0%	0.86 [0.49, 1.53]		-	•	
Heterogeneity: Chi ^z =	2.18, $df = 2$ ($P = 0$.	34); I² = 8%			0.01 0.1		10	100
Test for overall effect:	Z = 0.51 (P = 0.61)	ı			0.01 0.1	Favoure I	Favours >4h	100
Test for subgroup diffe	erences: Not appli	cable				i avouis i	avours -411	

Figure 155: Mortality <5 hours versus >5 hours

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	, 95% CI	
9.1.1 ED setting								
Gaieski 2010	-0.1508	1.0037	21.6%	0.86 [0.12, 6.15]	-	-		
Puskarich 2011	0.3716	1.1674	16.0%	1.45 [0.15, 14.29]			-	
Ryoo 2015	-0.7339692	0.590773	62.4%	0.48 [0.15, 1.53]			_	
Subtotal (95% CI)			100.0%	0.65 [0.26, 1.62]			-	
Heterogeneity: Chi²=	0.81, $df = 2$ (P = 0 .	67); I² = 0%						
Test for overall effect:	Z = 0.92 (P = 0.36)	ı						
						_		
Total (95% CI)			100.0%	0.65 [0.26, 1.62]			-	
Heterogeneity: Chi ² =	0.81, $df = 2$ ($P = 0$.	67); I² = 0%			0.01 0.1		10	100
Test for overall effect:	Z = 0.92 (P = 0.36)	ı			0.01 0.1	Favoure	Favours >5h	100
Test for subgroup diff	erences: Not appli	cable				ravours	Favours 2011	

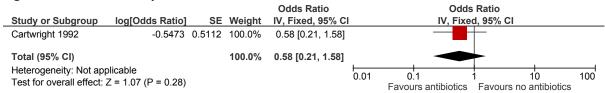

K.7.1 Hourly treatment delay

Figure 157: In-hospital mortality for hourly treatment delay

K.7.2 Parenteral antibiotics prior to admission to hospital

Figure 158: Mortality

K.7.3 PICU setting, paediatric population

Figure 159: PICU mortality: <1 hour versus >1 hour

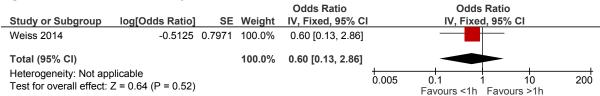


Figure 160: PICU mortality: <2 hours versus >2 hours

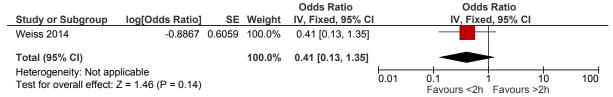
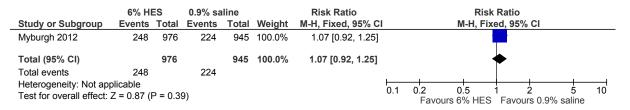


Figure 161: PICU mortality: <3 hours versus >3 hours

			Odds Ratio	Odds Rati	io
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI	IV, Fixed, 95	% CI
Weiss 2014	-1.3665 0.	.575 100.0%	0.25 [0.08, 0.79]	_	
Total (95% CI)		100.0%	0.25 [0.08, 0.79]		
Heterogeneity: Not appropriate for overall effect:				0.01	10 100 yours >3h

Figure 162: PICU mortality: <4 hours versus >4 hours



K.8 IV fluid administration

K.8.1 6% HES versus 0.9% saline in adults with sepsis

K.8.1.1 Mortality at 28 days

Figure 163: Mortality at 90 days

K.8.2 Crystalloid versus colloid plus crystalloid in adults with severe sepsis

K.8.2.1 Mortality at 28 days

Figure 164: Hospital mortality

	Crystal	lloid	Colloid + crys	stalloid		Risk Ratio			Risk	Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	l		M-H, Fixe	d, 95% (CI		
McInthyre 2007A	101	235	121	258	100.0%	0.92 [0.75, 1.12]			-	-			
Total (95% CI)		235		258	100.0%	0.92 [0.75, 1.12]			•	-			
Total events	101		121										
Heterogeneity: Not ap Test for overall effect:	•	P = 0.38	3)				0.1	0.2 Favo	0.5 urs Crystalloid	l 2 Favours	1 2 3 Colloid + (5 crysta	10 al

Figure 165: ICU mortality

	Crystal	lloid	Colloid + crys	stalloid		Risk Ratio			Risk	Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	l		M-H, Fixe	d, 95% (CI		
McInthyre 2007A	72	235	99	258	100.0%	0.80 [0.62, 1.02]			-				
Total (95% CI)		235		258	100.0%	0.80 [0.62, 1.02]			•				
Total events	72		99										
Heterogeneity: Not ap Test for overall effect:		P = 0.07	")				0.1	0.2 Favo	0.5 urs Crystalloid	1 2 Favours	2 Colloid	5 + cryst	10 al

K.8.3 20% albumin versus 6% HES in adults with severe sepsis

K.8.3.1 Mortality at 28 days

Figure 166: 28-day mortality

•	•		•				
	Albun	nin	Colloid	- HES		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Dolecek 2009	4	30	6	26	100.0%	0.58 [0.18, 1.83]	
Total (95% CI)		30		26	100.0%	0.58 [0.18, 1.83]	
Total events	4		6				
Heterogeneity: Not app	plicable						0.1 0.2 0.5 1 2 5 10
Test for overall effect:	Z = 0.93 (P = 0.3	5)				0.1 0.2 0.5 1 2 5 10 Favours Albumin Favours HFS

K.8.4 4% albumin versus 0.9% Sodium Chloride BP in adults with severe sepsis

K.8.4.1 Mortality at 28 days

Figure 167: 28-day mortality (univariate analysis)

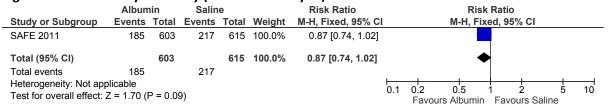
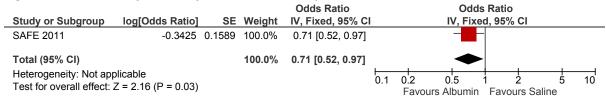



Figure 168: 28-day mortality (multivariate analysis)

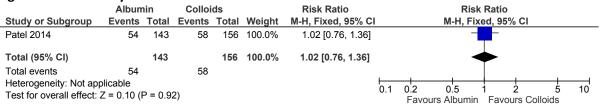
Note: adjusted OR

K.8.5 Albumin versus crystalloids in adults with sepsis

K.8.5.1 Mortality at 28 days

Figure 169: Mortality

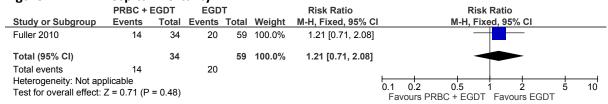
	Albun	nin	Crystall	oids		Risk Ratio			Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl			M-H, Fixe	ed, 95% CI		
Patel 2014	710	1937	763	1941	100.0%	0.93 [0.86, 1.01]						
Total (95% CI)		1937		1941	100.0%	0.93 [0.86, 1.01]			•			
Total events	710		763									
Heterogeneity: Not app Test for overall effect:		P = 0.0	9)				0.1	0.2 Favo	0.5 ours Albumin	1 2 Favours Cry	5 /stalloids	10


Figure 170: 90-day mortality

	Albun	nin	Crystall	loids		Risk Ratio			Risk	Ratio)		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fix	ed, 95	% CI		
ALBIOS 2014	115	283	116	286	100.0%	1.00 [0.82, 1.22]			-	.			
Total (95% CI)		283		286	100.0%	1.00 [0.82, 1.22]			•				
Total events	115		116										
Heterogeneity: Not ap Test for overall effect:		P = 0.9	9)				0.1	0.2 Favours	0.5 20% albumin	1 Favo	2 ours crvs	5 stalloids	10

K.8.6 Albumin versus colloids in adults with sepsis

K.8.6.1 Mortality at 28 days


Figure 171: Mortality

K.8.7 Packed red blood cells (PRBC) plus EGDT versus EGDT only in adults with septic shock

K.8.7.1 Mortality at 28 days

Figure 172: Hospital mortality

K.8.8 Red blood cells (RBC) for low threshold (≤7 g/dl) versus high threshold (≤9 g/dl) in adults with septic shock

K.8.8.1 Mortality at 28 days

Figure 173: 90-day mortality

0		_									
	Low thres	shold	High thre	shold		Risk Ratio		Ris	sk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, F	ixed, 95% CI		
11.1.1 > 70 years of a	ge										
Holst 2014	93	173	98	185	42.4%	1.01 [0.84, 1.23]					
Subtotal (95% CI)		173		185	42.4%	1.01 [0.84, 1.23]			~		
Total events	93		98								
Heterogeneity: Not ap	plicable										
Test for overall effect:	Z = 0.15 (P	= 0.88)									
11.1.2 70 years or yo	unger										
Holst 2014	123	329	125	311	57.6%	0.93 [0.77, 1.13]		-	-		
Subtotal (95% CI)		329		311	57.6%	0.93 [0.77, 1.13]		•	•		
Total events	123		125								
Heterogeneity: Not ap	plicable										
Test for overall effect:	Z = 0.73 (P	= 0.47)									
Total (95% CI)		502		496	100.0%	0.97 [0.84, 1.11]			♦		
Total events	216		223								
Heterogeneity: Chi ² =	0.39, df = 1	(P = 0.5)	3); I ² = 0%					0.2 0.5	+ +	<u></u>	10
Test for overall effect:	Z = 0.49 (P	= 0.63)					0.1	Favours low threshol	ı ∠ d Favourshi	gh threshold	10
Test for subgroup diffe	erences: Chi	$i^2 = 0.39$, df = 1 (P =	0.53), I	$^{2} = 0\%$			1 avodio low tilicolloi	a 1 a voui 3 iii	giranconola	

K.8.9 0-2 litres versus 2-4 litres of fluid in adults with severe sepsis

K.8.9.1 Mortality at 28 days

Figure 174: Hospital mortality



Figure 175: ICU mortality

	0-2L	_	2-4L			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
McInthyre 2007A	66	210	66	186	100.0%	0.89 [0.67, 1.17]	-
Total (95% CI)		210		186	100.0%	0.89 [0.67, 1.17]	•
Total events Heterogeneity: Not ap	66 plicable		66				
Test for overall effect:		P = 0.3	9)				0.1 0.2 0.5 1 2 5 10 Favours 0-2L Favours 4L

K.8.10 0-2 litres versus >4 litres of fluids in adults with severe sepsis

K.8.10.1 Mortality at 28 days

Figure 176: Hospital mortality

•	0-2L		>4L			Biok Botio	Diak Datia
Study or Subgroup	U-2L Events				Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
Study of Subgroup	Lvents	TOtal	Lvenis	TOtal	weigni	W-11, 1 IXEU, 35 /6 CI	WI-11, 1 IXEU, 95 /6 CI
McInthyre 2007A	97	210	45	100	100.0%	1.03 [0.79, 1.33]	*
Total (95% CI)		210		100	100.0%	1.03 [0.79, 1.33]	•
Total events	97		45				
Heterogeneity: Not ap	plicable						
Test for overall effect:	7 – 0 20 (D - 0 8	4)				0.1 0.2 0.5 1 2 5 10
rest for overall effect.	Z - 0.20 (- 0.0	+)				Favours 0-2L Favours >4L

Figure 177: ICU mortality

	0-2L	-	>4L			Risk Ratio			Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fix	ed, 95% (CI	
McInthyre 2007A	66	210	41	100	100.0%	0.77 [0.56, 1.04]			-	†		
Total (95% CI)		210		100	100.0%	0.77 [0.56, 1.04]			•	-		
Total events	66		41									
Heterogeneity: Not ap Test for overall effect:		P = 0.0	9)				0.1	0.2 Fa	0.5 vours 0-2L	1 2 Favours	5 >4L	10

K.8.11 2-4 litres versus >4 litres of fluids in adults with severe sepsis

K.8.11.1 Mortality at 28 days

Figure 178: Hospital mortality

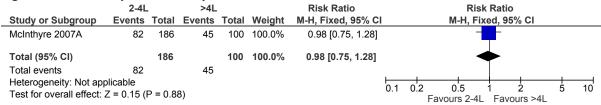


Figure 179: ICU mortality

	2-4L		>4L			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
McInthyre 2007A	66	186	45	100	100.0%	0.79 [0.59, 1.05]	
Total (95% CI)		186		100	100.0%	0.79 [0.59, 1.05]	•
Total events Heterogeneity: Not ap	66		45				
Test for overall effect:		P = 0.1	1)				0.1 0.2 0.5 1 2 5 10 Favours 2-4L Favours >4L

K.8.12 High volume (20-40 ml Ringer lactate/kg) versus low volume (20 ml Ringer lactate/kg) in children with septic shock

K.8.12.1 Mortality at 28 days

Figure 180: Cumulative 72-hour survival

	20-40ml RL	per kg	20ml RL	per kg		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Santhanam 2008	52	74	55	73	100.0%	0.93 [0.77, 1.14]	-
Total (95% CI)		74		73	100.0%	0.93 [0.77, 1.14]	•
Total events	52		55				
Heterogeneity: Not ap	plicable						0.1 0.2 0.5 1 2 5 10
Test for overall effect:	Z = 0.69 (P = 0)	0.49)					Favours High Favours Low

K.9 Escalation of care

None.

K.10 Inotropic agents and vasopressors

K.10.1 Norepinephrine versus vasopressin for adults with septic shock

K.10.1.1 Mortality

Figure 181: 28-day mortality

	Norepiner	hrine	Vasopre	essin		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Russell 2008	150	382	140	396	100.0%	1.11 [0.93, 1.33]	_
Total (95% CI)		382		396	100.0%	1.11 [0.93, 1.33]	-
Total events	150		140				
Heterogeneity: Not ap	plicable					-	0.5 0.7 1 1.5 2
Test for overall effect:	Z = 1.13 (P =	= 0.26)					0.5 0.7 1 1.5 2 Favours Norepinephrine Favours Vasopressin

Figure 182: 90-day mortality

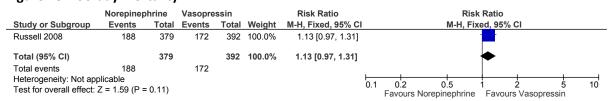


Figure 183: ICU mortality

	Norepinep	hrine	Vasopre	essin		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Lauzier 2006	3	10	3	13	24.6%	1.30 [0.33, 5.12]	
Morelli 2009 (TERLIVAP)	10	15	8	15	75.4%	1.25 [0.69, 2.26]	
Total (95% CI)		25		28	100.0%	1.26 [0.72, 2.21]	
Total events	13		11				
Heterogeneity: $Chi^2 = 0.00$, Test for overall effect: $Z = 0$			0%				0.1 0.2 0.5 1 2 5 10 Favours Norepinephrine Favours Vasopressin

K.10.1.2 Adverse events

Figure 184: Requiring renal replacement therapy

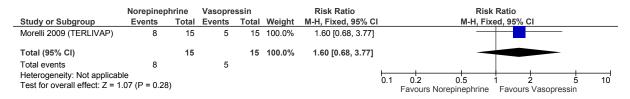
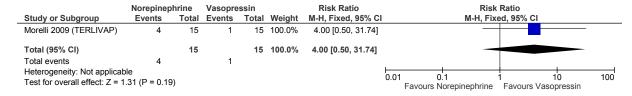



Figure 185: New onset of tachyarrhythmias

Note: this forest plot has a different scale

K.10.2 Norepinephrine versus dopamine for adults with septic shock

K.10.2.1 Mortality

Figure 186: 28-day mortality

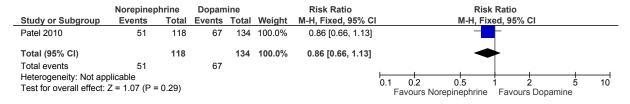


Figure 187: All-cause mortality

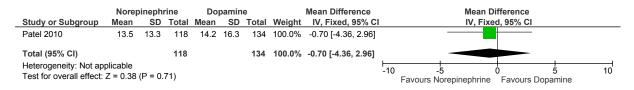

	Norepinep	hrine	Dopam	nine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Marik 1994	5	10	6	10	21.4%	0.83 [0.37, 1.85]	
Mathur 2007	14	25	19	25	67.9%	0.74 [0.49, 1.11]	
Ruokonen 1993	4	5	3	5	10.7%	1.33 [0.58, 3.09]	-
Total (95% CI)		40		40	100.0%	0.82 [0.59, 1.15]	
Total events	23		28				
Heterogeneity: Chi2 =	1.55, df = 2 (F	P = 0.46); $I^2 = 0\%$				
Test for overall effect:	Z = 1.15 (P =	0.25)					0.1 0.2 0.5 1 2 5 10 Favours Norepinephrine Favours Dopamine

Figure 188: Hospital mortality

	Norepinep	hrine	Dopan	nine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Martin 1993	7	16	10	16	100.0%	0.70 [0.36, 1.37]	-
Total (95% CI)		16		16	100.0%	0.70 [0.36, 1.37]	•
Total events	7		10				
Heterogeneity: Not ap Test for overall effect:		: 0.30)					0.01 0.1 1 10 100 Favours Norepinephrine Favours Dopamine

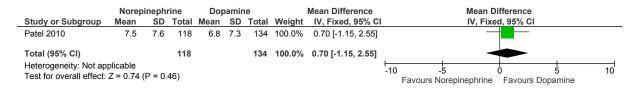

K.10.3 Duration of hospital stay

Figure 189: Length of stay in hospital

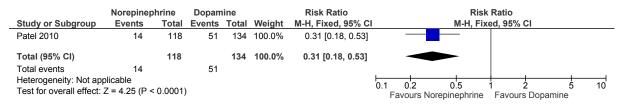
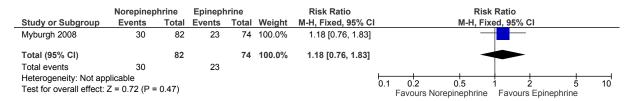

K.10.4 Duration of critical care stay

Figure 190: ICU length of stay

K.10.5 Adverse events

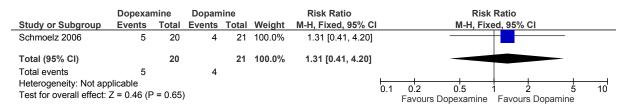
Figure 191: Incidence of arrhythmias


K.10.6 Norepinephrine versus epinephrine for adults with septic shock

K.10.6.1 Mortality

Figure 192: 28-day mortality

	Norepinep	hrine	Epinepl	nrine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Myburgh 2008	24	82	17	76	100.0%	1.31 [0.76, 2.24]	_
Total (95% CI)		82		76	100.0%	1.31 [0.76, 2.24]	
Total events Heterogeneity: Not ap	24		17				
Test for overall effect:		0.33)					0.1 0.2 0.5 1 2 5 10 Favours Norepinephrine Favours Epinephrine


Figure 193: 90-day mortality

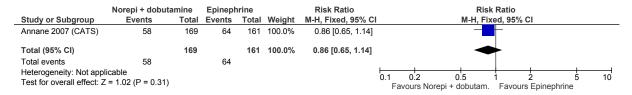
K.10.7 Dopexamine versus dopamine for adults with septic shock

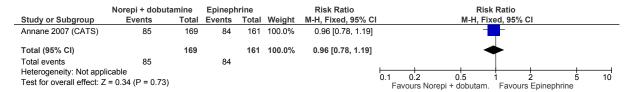
K.10.7.1 Mortality at 28 days

Figure 194: 28-day mortality

K.10.8 Norepinephrine plus dobutamine versus epinephrine for adults with septic shock

K.10.8.1 Mortality


Figure 195: 7-day mortality


Figure 196: 14-day mortality

	Norepi + dobuta	amine	Epinepl	nrine		Risk Ratio			Risk	Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fix	ed, 95%	6 CI		
Annane 2007 (CATS)	44	169	56	161	100.0%	0.75 [0.54, 1.04]				t			
Total (95% CI)		169		161	100.0%	0.75 [0.54, 1.04]			•	+			
Total events	44		56										
Heterogeneity: Not appl Test for overall effect: Z							0.1 Fa	0.2 vours Nore	0.5 epi + dobutam.	1 Favou	2 urs Epiner	5 ohrine	10

Figure 197: 28-day mortality

Figure 198: 90-day mortality

Figure 199: All-cause mortality

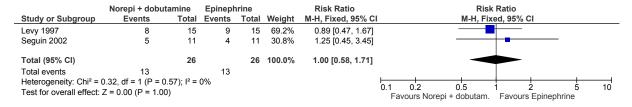


Figure 200: Mortality at discharge from the ICU

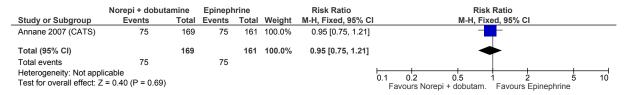


Figure 201: Mortality at discharge from the hospital

	Norepi + dobuta	amine	Epinepl	nrine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Annane 2007 (CATS)	82	169	84	161	100.0%	0.93 [0.75, 1.15]	-
Total (95% CI)		169		161	100.0%	0.93 [0.75, 1.15]	•
Total events	82		84				
Heterogeneity: Not app Test for overall effect: 2							0.1 0.2 0.5 1 5 10 Favours Norepi + dobutam. Favours Epinephrine

K.10.8.2 Adverse events

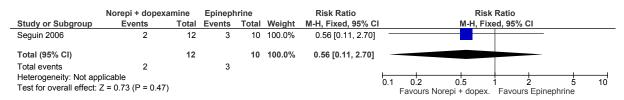
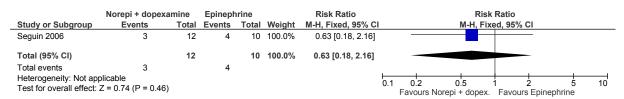
Figure 202: Number of adverse events during catecholamine infusion

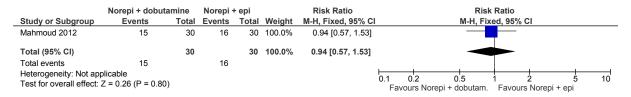
Figure 203: Number of adverse events after catecholamine infusion

K.10.9 Norepinephrine plus dopexamine versus epinephrine for adults with septic shock

K.10.9.1 Mortality

Figure 204: 28-day mortality


Figure 205: 90-day mortality

K.10.10 Norepinephrine plus epinephrine versus norepinephrine plus dobutamine for adults with septic shock

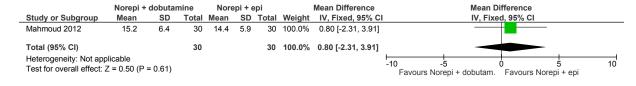
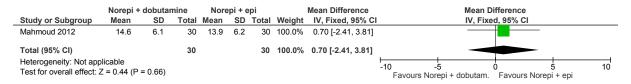

K.10.10.1 Mortality at 28 days

Figure 206: 28-day mortality



K.10.10.2 Number of organs supported

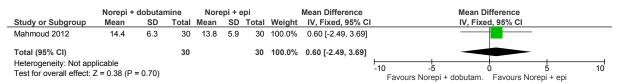

Figure 207: SOFA score at start


Figure 208: SOFA score at 24 hours

Figure 209: SOFA score at 48 hours

Figure 210: SOFA score at 72 hours

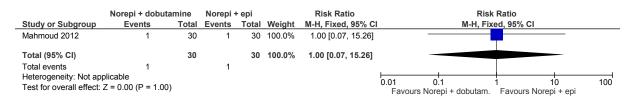


Figure 211: SOFA score at 96 hours

	Norepi +	dobutar	nine	Nore	pi + e	epi		Mean Difference		Mean Di	fference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% CI		
Mahmoud 2012	13.5	6.9	30	12.7	6.6	30	100.0%	0.80 [-2.62, 4.22]					
Total (95% CI)			30			30	100.0%	0.80 [-2.62, 4.22]					
Heterogeneity: Not app Test for overall effect: Z		= 0.65)							-10 - Favours Nor	5 epi + dobutam.	Favours Norep	5 i + epi	10

K.10.10.3 Adverse events

Figure 212: Acute coronary syndrome

Note: this forest plot has a different scale

Figure 213: Arrhythmias

Figure 214: Cerebral stroke

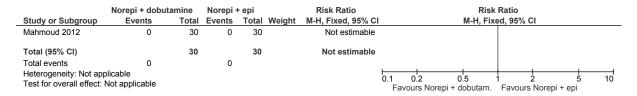
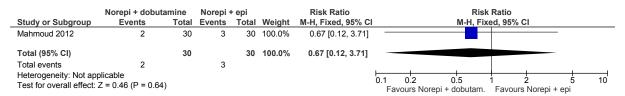



Figure 215: Limb ischaemia

K.11 Supplemental oxygen

None.

K.12 Use of bicarbonate

Figure 216: Bicarbonate versus no bicarbonate in sepsis. 28-day mortality

K.13 Early goal-directed therapy (EGDT)

K.13.1 The effect of EGDT versus a non-EGDT resuscitation strategy for people presenting to the ED with septic shock

K.13.1.1 Mortality

Figure 217: Primary mortality outcome of each study

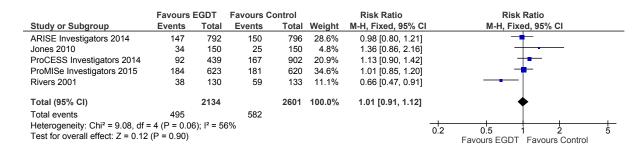


Figure 218: 90-day mortality

	Favours EG	DT Favours	Control		Risk Ratio	Risk Ratio
Study or Subgroup	Events T	otal Events	Total	Weight	M-H, Fixed, 95% CI Year	M-H, Fixed, 95% CI
ProMISe Investigators 2015	184	623 181	620	35.8%	1.01 [0.85, 1.20]	
ProCESS Investigators 2014	129	405 267	827	34.7%	0.99 [0.83, 1.17] 2014	
ARISE Investigators 2014	147	792 150	796	29.5%	0.98 [0.80, 1.21] 2014	
Total (95% CI)	1	820	2243	100.0%	1.00 [0.90, 1.11]	
Total events	460	598				
Heterogeneity: Chi ² = 0.05, df =	= 2 (P = 0.97); I	$ ^2 = 0\%$			-	0.7 0.85 1 1.2 1.5
Test for overall effect: Z = 0.09	(P = 0.93)					Favours EGDT Favours Control

K.13.1.2 ICU Utilisation

Figure 219: ICU admission^a

a: ICU admission refers to the rate of ICU admission from ED; 'favours EGDT means a lower ICU admission rate for the EGDT group and 'favours control' means a higher ICU admission rate for the EDGT group in the given trial.

Figure 220: ICU length of stay for patients admitted to ICU (days)

	Favo	urs E	GDT	Favours Contro				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.4.1 New Subgroup									
ARISE Investigators 2014	4.9	7.2	725	4.8	5.9	661	42.8%	0.10 [-0.59, 0.79]	
Jones 2010	5.6	7.39	150	5.9	8.46	150	6.3%	-0.30 [-2.10, 1.50]	
ProCESS Investigators 2014	5.1	6.3	401	4.9	6.5	774	34.6%	0.20 [-0.57, 0.97]	
ProMISe Investigators 2015 Subtotal (95% CI)	5.7	8.1	549 1825	6.4	9.8	466 2051	16.3% 100.0%	-0.70 [-1.82, 0.42] -0.02 [-0.47, 0.43]	•
Heterogeneity: Chi ² = 1.94, df	= 3 (P =	0.58); I	2 = 0%						
Test for overall effect: Z = 0.09	9 (P = 0.9	(3)							
Total (95% CI)			1825			2051	100.0%	-0.02 [-0.47, 0.43]	•
Heterogeneity: Chi ² = 1.94, df	= 3 (P =	0.58); I	$ ^2 = 0\%$					-	
Test for overall effect: Z = 0.09	P = 0.9	3)							Favours EGDT Favours Control
Test for subgroup differences:	Not appl	icable							Tavouis EGDT Tavouis Control

K.14 Monitoring

None.

K.15 Patient education, information and support

None.

K.16 Training and education

None.

Appendix L: Excluded clinical studies

L.1 Scoring systems

Table 35: Studies excluded from the clinical review

Table 33. Stut	dies excluded from the chilical review
Reference	Reason for exclusion
Adrie 2009 ²⁷	Setting (ICU)
Acharya 2007 ¹⁸	Setting (ICU)
Ait-Oufella 2011 ⁴²	Setting (ICU)
Alberti 2005 ⁵⁹	Setting (ICU)
Alsous 2000 ⁷⁰	Setting (ICU)
Anon 1999 ¹	Not scoring tool
Arnell 1996 ⁹⁶	Setting (ICU)
Arregui 1991 ⁹⁹	Setting (ICU)
Artero 2010 ¹⁰¹	Setting (ICU)
Ausania 2015 ¹⁰⁶	Not scoring tool
Bagshaw 2012 ¹²⁰	Not scoring tool (biomarkers)
Bains 2012 ¹³¹	Not scoring tool
Bang 2005 ¹³⁸	Not scoring tool
Barriere 1995 ¹⁴⁹	Systematic review including ICU setting
Baumgartner 1992 ¹⁵	Setting (ICU)
Bassetti 2014 ¹⁵³	Setting (ICU)
Bayer 2015 ¹⁶⁰	Development of a new scoring system, not externally validated
Beck 2014 ¹⁶³	Setting (ICU)
Behdad 2006 ¹⁶⁴	Population
Bencosme 1996 ¹⁶⁹	Setting (ICU)
Billeter 2009 ¹⁸⁹	Outcomes not analysed for scoring tool
Bleeker 2001 ¹⁹²	Not scoring tool
Boniatti 2011 ²¹²	Setting (ICU)
Bonig 2000 ²¹³	Setting (ICU)
Brunkhorst 2000 ²³⁴	Diagnostic accuracy of PCY, not a scoring system
Buist 2000 ²³⁸	Setting (ICU)
Byrne 1989 ²⁴⁴	Not scoring tool (theory behind the development of ASESPSIS)
Calle 2012 ²⁴⁸	Systematic review with different protocol
Calvano 1998 ²⁴⁹	Setting (surgical ICU)
Chan 2005 ²⁷⁹	Setting (ICU)
Charles 2008 ²⁸⁵	Setting (ICU)
Chawla 2007 ²⁸⁸	Setting (ICU)
Chen 2011 ²⁹⁸	Setting (ICU)
Chen 2006B ²⁹²	Setting (ICU)
Chen 1994 ²⁹¹	Setting (SICU)
Chen 2012 ²⁹⁶	Outcomes not analysed in relation to scoring tool
Close 2011 ³¹⁹	Not scoring tool

Reference	Reason for exclusion
Coslovsky 2015 ³³²	Development of a new scoring system, not externally validated
Cook 1992 ³²⁷	Setting (ICU)
Couto-Alves 2013 ³³⁴	Setting (PICU)
Croce 1992 ³³⁶	Setting (post-trauma). Outcomes not analysed in relation to scores at admission
Dabar 2015 ³⁴⁵	Comparison
Dabhi 2014 ³⁴⁶	Setting (ICU)
Das 2014 ³⁵³	Setting and when scores taken (post-surgical)
De Azevedo 2015 ³⁵⁷	Setting (ICU)
Deleon 2005 ³⁶³	Setting (PICU)
Dellinger 1988 ³⁷⁵	Setting (ICU)
Derkx 1996 ³⁷⁸	Setting (ICU)
Desai 2013 ³⁷⁹	Setting (MICU)
Eisen 2006 ⁴¹¹	Not scoring system
Elias 2015 ⁴¹⁶	Setting (ICU)
Emparanza 1988 ⁴¹⁹	Setting (PICU)
Escobar 2014 ⁴²⁹	Score immediately after birth (prior to hospital discharge)
Feng 2013 ⁴⁴⁶	Setting (ICU)
Flores 2001 ⁴⁶¹	Setting (ICU)
Furtado 2012 ⁴⁷²	Setting (ICU)
Garcia Paez 2008 ⁴⁸⁴	Not scoring system
Giamarellos-Bourboulis 2012 498	Setting (ICU)
Gogos 2003 ⁵⁰⁵	Not scoring system
Goitein 1985 ⁵⁰⁶	Setting (PICU)
Granja 2013 ⁵¹⁶	Setting (ICU)
Grozdanovski 2012 ⁵²²	Setting (ICU)
Hachimi-Idrissi 1998 ⁵⁴³	Setting (ICU)
Han 2006 ⁵⁵⁰	Narrative review
Henry 2015 ⁵⁶¹	Setting (ICU)
Hillas 2010 ⁵⁷²	Setting (ICU)
Hoen 1993 ⁵⁷⁸	Not scoring system
Holme 2013 ⁵⁷⁹	Setting (NICU), population (neonates)
Inal 2009 ⁵⁹⁷	Setting (ICU)
Jaimes 2005 ⁶⁰⁹	Outcomes not analysed
Jiang 2015 ⁶²²	Setting (ICU)
Jones 2008 ⁶²⁷	Incorrect study design
Kaur 2014 ⁶⁴³	Setting (PICU)
Kellner 2013 ⁶⁴⁷	Setting (ICU)
Khwannimit 2009 ⁶⁵⁷	Setting (ICU)
Kumar 2003 ⁶⁹¹	Setting (ICU included in outcome with ward)
Landesberg 2015 ⁷⁰⁶	No prognostic scores
Legall 1993 ⁷¹³	Setting (ICU)
Lee 1993 ⁷¹⁶	Setting (ICU)

Reference	Reason for exclusion
Maher 1989 ⁷⁵⁹	Setting (ICU)
Marra 2006a ⁷⁷⁴	Setting (ICU)
Marshall 2014 ⁷⁷⁶	Narrative review
McGillicuddy 2009 ⁷⁹¹	Not diagnostic accuracy of a scoring system
Mei 2007 ⁷⁹⁶	Not diagnostic accuracy of a scoring system
Mohan 2015 ⁸¹⁵	Setting (ICU)
Moreno 1999 ⁸²⁴	Setting (ICU)
Naved 2011 ⁸⁴²	Setting (ICU)
Oda 2000 ⁸⁷⁰	Setting (ICU)
Paul 2006 ⁹⁰⁴	Development of a new scoring system, not externally validated
Paul 2007A ⁹⁰⁶	Not mortality predictor
Pilz 1991 ⁹²¹	Not a study
Pollock 1991 ⁹²⁷	Setting (PICU)
Pollock 1997 ⁹²⁶	Setting (PICU)
Presterl 1997 ⁹³⁶	Setting (ICU)
Que 2015 ⁹⁴⁶	Setting (ICU)
Rhee 2009 ⁹⁶⁶	Setting (ICU)
Richards 2011 ⁹⁶⁷	Setting (ICU)
Rixen 1996 ⁹⁷⁴	Setting (ICU)
LeGall1993 ⁷¹³	Setting (ICU)
Rogy 1996 ⁹⁸²	Setting (surgical ICU)
Rosenberg 2002 ⁹⁸⁷	Setting (ICU)
Routsi 2007 ⁹⁸⁹	Setting (ICU)
Shapiro 2009 ¹⁰²⁵	Not scoring tool
Silva 2001a ¹⁰³⁸	Setting (PICU)
Smith 2008 ¹⁰⁴⁷	Systematic review with different protocol
Smith 2008B ¹⁰⁴⁸	Systematic review with different protocol
Tafelski 2015 ¹⁰⁸⁶	Setting (ICU)
Tsai 2014 ¹¹⁰⁶	Not a scoring tool
Ueda 2014 ¹¹¹⁶	Setting (ICU)
Umscheid 2015 ¹¹¹⁹	Development of a new scoring system, not externally validated
van de Voorde 2013 ¹¹²¹	Outcomes not analysed in relation to scoring tool
Vincent 2011 1144	Outcomes not analysed in relation to scores at admission
Vincent 2011A ¹¹⁴⁴	Changes in score not analysed in regards to admission
Vincent 1996 1143	Not a study
Vincent 2003 ¹¹⁴⁵	Not a study
Viallon 2008 ¹¹⁴¹	Not scoring tool
Wang 2010 ¹¹⁵⁸	Setting (ICU)
Wilson 1990 ¹¹⁷²	Setting (post-surgical). Outcomes not analysed in relation to scores at admission
Wong 2008 ¹¹⁷⁹	Setting (PICU)
Wong 2014 ¹¹⁸⁰	Setting (PICU)
Wunder 2004 ¹¹⁸¹	Setting (ICU)

L.2 Signs and symptoms

Table 36: Studies excluded from the clinical review

Reference	Reason for exclusion
Aalto 2004 ¹⁰	No relevant outcomes and does not match review question (blood test)
Abrahamsen 2013 ¹⁴	No relevant outcomes
Abudu 2002 ¹⁵	No relevant outcomes and does not match review question (no signs and symptoms considered)
Acosta 2012 19	Inappropriate study design (case control)
Adam 2013 ²⁰	Not a study
Adams 1993 ²²	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes) Incorrect study design (case-control study)
Adejuyigbe 2001 ²³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Aebi 1996 ²⁹	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Ahkee 1997 ³⁴	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Ahn 2013A ³⁷	No relevant outcomes and does not match review question (blood test)
Aina-Mumuney 2007 ⁴⁰	No relevant outcomes and does not match review question (foetal monitoring on neonatal outcomes) Incorrect study design (case-control study)
Akpede 1993 ⁴⁴	No relevant outcomes and does not match review question (no signs and symptoms considered)
Akpede 1994 ⁴³	No relevant outcomes and does not match review question (prediction of meningitis in children with fever and seizure)
Al Jarousha 2008 ⁴⁶	Incorrect study design (case-control study)
Alam 2014 ⁵²	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Alberti 2005 ⁵⁹	No relevant outcomes
Alexander 1998 ⁶¹	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Alexander 1999 ⁶²	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Aliberti 2008 ⁶⁵	No relevant outcomes and does not match review question (prediction of clinical failure related to CAP)
Aliberti 2015 ⁶⁴	No relevant outcomes and does not match review question
Almuneef 2000 ⁶⁷	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Altunhan 2011 ⁷¹	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Alves 2010 ⁷³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Alves 2011 ⁷²	No relevant outcomes and does not match review question (no signs and symptoms considered)

Reference	Reason for exclusion
Ammann 2013 75	Setting not relevant.
Andersen 2004 ⁷⁸	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Andrews 2012 ⁸²	Systematic review with different protocol
Angsuwat 2010 84	No analysis on relevant outcomes.
Anon 2007 ³	Abstract only
Antonow 1998 86	No relevant outcomes and does not match review question (inappropriate comparisons)
Ariffin 2002 ⁹²	No relevant outcomes
Arsura 1998 ¹⁰⁰	No relevant outcomes and does not match review question (RDS). Sample size
Asiimwe 2015 ¹⁰²	No relevant analysis (no predictor analysis)
Ayoola 2003 ¹¹²	No relevant analysis.
Babay 2005 ¹¹³	No relevant outcomes and does not match review question (not a prognostic study; 8% of patients had sepsis)
Bagshaw 2007 129	No analysis on relevant outcomes. No relevant outcomes and does not match review question
Bagshaw 2008 ¹²⁶	No relevant outcomes and does not match review question (sepsis as risk factor for acute kidney injury)
Bang 2005b ¹³⁷	No relevant analysis.
Barati 2013 ¹⁴¹	No relevant outcomes and does not match review question (diagnostic accuracy of brain natriuretic peptide)
Barie 2004 ¹⁴⁵	No relevant outcomes and does not match review question (identification of source of infection)
Barnaby 2002 ¹⁴⁶	No relevant outcomes
Bas 2011 ¹⁵¹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Baskaran 2008 ¹⁵²	No relevant outcomes and does not match review question (no signs and symptoms considered)
Bastos 1993 ¹⁵⁴	Does not match review question (GCS as predictor of mortality in any non-traumatic ICU admission; 3% had sepsis)
Bayer 2015 ¹⁶⁰	No relevant analysis (no signs and symptoms analysed)
Bejan 2014A ¹⁶⁶	No relevant analysis.
Bekhof 2013 ¹⁶⁷	Population does not match protocol (preterm infants)
Benito 2013 ¹⁷²	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Bernstein 2007 ¹⁸¹	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Bettiol 2012 ¹⁸²	Cochrane review
Bettiol 2012 ¹⁸³	Cochrane review
Beuchee 2009 ¹⁸⁴	Population does not match protocol (preterm infants)
Bilavsky 2009 ¹⁸⁷	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Bilbault 2004 ¹⁸⁸	Does not match review question (gene expression)
Bizzarro 2011 ¹⁹⁰	No relevant outcomes and does not match review question (RDS)
Bleeker 2007 ¹⁹¹	Does not match review question (diagnostic accuracy of a tool to predict bacteraemia)

Reference	Reason for exclusion
Bochicchio 2001 ¹⁹⁵	Does not match review question (SIRS score to predict risk of infection)
Bochud 1994 ¹⁹⁶	Systematic review with different protocol
Boersma 1999 ¹⁹⁷	Does not match review question (review on discriminant rules to predict mortality in patients with community acquired pneumonia)
Bogar 2006 ¹⁹⁸	Does not match review question (diagnostic accuracy of PCT and leucocyte anti-sedimentation rate to predict bacteraemia)
Boland 1994 ²⁰⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Bonadio 1990 ²⁰⁷	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Bonadio 1992 ²⁰⁹	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Bonadio 1993 ²⁰⁶	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Bonadio 1993B ²¹⁰	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered, identification of pathogen)
Bonadio 1993C ²⁰⁸	No relevant outcomes and does not match review question (diagnostic accuracy of Young Infant Observation Scale to predict infection)
Bonig 2000 ²¹³	Does not match review question (blood tests)
Bonsu 2003 ²¹⁴	Does not match review question (diagnostic accuracy of WBC to predict bacteraemia)
Boockvar 2013 ²¹⁵	No relevant outcomes and does not match review question (predictors of delirium)
Bossink 1998 ²²⁰	No relevant outcomes
Bossink 1999 ²¹⁷	No relevant outcomes and does not match review question (development of model)
Bossink 2001 ²¹⁸	No relevant outcomes
Bozzetti 1991 ²²³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Bressan 2012 ²²⁸	Does not match review question (diagnostic accuracy of PCT, CRP, WBC to predict serious bacterial infection)
Bressan 2012A ²²⁷	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Breuling 2015 ²²⁹	No relevant analysis (no diagnostic accuracy data)
Brunkhorst 2000 ²³⁴	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Byer 2006 ²⁴²	Does not match review question (prediction of hypotension or toxic shock syndrome in patients with fever and erythroderma)
Caksen 2000 ²⁴⁵	No relevant outcomes and does not match review question (distribution of patients according to symptoms for septic arthritis and osteomyelitis)
Caljouw 2011 ²⁴⁷	No relevant outcomes and does not match review question
Carbonell 2008 ²⁵¹	No relevant outcomes and does not match review question
Carrieri 2003 ²⁵⁵	No relevant outcomes and does not match review question
Chaboyer 2008 ²⁷³	Does not match review question (prediction of adverse events after discharge from ICU; sepsis: 22%)
Chan 2014 ²⁸⁰	No relevant outcomes and does not match review question (biomarker profiling for the prediction of neutropenic fever)

Reference	Reason for exclusion
Chassagne 1996 ²⁸⁶	Incorrect analysis (no data given to validate summary results)
Chen 1992 ²⁸⁹	No relevant outcomes and does not match review question
Chen 2002 ²⁹³	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Chen 2007 ³⁰⁰	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Chen 2012B ²⁹⁹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Chen 2014 ²⁹⁰	No relevant outcomes and does not match review question
Chia 1991 ³⁰³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Chisti 2010 ³⁰⁶	Population not relevant (those with diarrhoea only in Bangladesh)
Chiu 1997 ³⁰⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Churgay 1994 ³¹¹	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Chwals 1994 ³¹³	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Clemmer 1992 ³¹⁸	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Coburn 2012 321	Systematic review with different protocol.
Comstedt 2009 ³²⁵	No relevant outcomes and does not match review question (no signs and symptoms considered)
Corona 2004 ³²⁹	No relevant outcomes and does not match review question
Craig 2010 335	Outcomes reported only in figure.
D'Orio 1990 ³⁴²	No relevant outcomes.
da Silvia 2007 ³⁴³	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Dalegrave 2012 ³⁴⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Damas 1997 ³⁵⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Daoud 1995 352	No relevant outcomes and does not match review question
Day 1992 ³⁵⁶	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
de Macedo 2003 ³⁶⁴	No relevant outcomes.
De 2013 ³⁷⁰	No relevant outcomes and does not match review question (review traffic light system for predicting serious bacterial infections)
De2014 ³⁷¹	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Devaux 1992 ³⁸³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Dewhurst 2008 ³⁸⁶	Population does not match protocol (preterm infants)
Dickinson 2010 ³⁸⁹	Incorrect study design (narrative review)
Diepold 2008 ³⁹⁰	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests: IL-6 and IL-8)
Dior 2014 ³⁹³	No relevant outcomes and does not match review question (maternal risk

Reference	Reason for exclusion
	factors on neonatal outcomes)
Dorio 1990 ³⁴²	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Drewry 2013 ³⁹⁸	Incorrect study design (case-control study)
Drewry 2015 399	No relevant analysis (no predictor analysis)
Drvar 2013 ⁴⁰²	No relevant outcomes and does not match review question
Dunser 2009 ⁴⁰⁸	No relevant outcomes reported
Dwyer 2011 ⁴⁰⁹	No relevant outcomes and does not match review question (diagnostic accuracy of prediction rules)
Ebersoldt 2007 ⁴¹⁰	Systematic review with different protocol
Elbanks 1993 ⁴³³	No relevant outcomes and does not match review question
Elting 1992 ⁴¹⁸	No relevant outcomes and does not match review question
Escobar 2000 ⁴²⁸	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Fairchild 2010 ⁴³⁷	Incorrect study design (narrative paper)
Fairchild 2013A ⁴³⁶	Incorrect study design (narrative paper)
Falguera 2009 ⁴³⁹	No relevant outcomes
Farley 1993 ⁴⁴²	No relevant outcomes and does not match review question
Fernandez-Perez 2005 ⁴⁴⁷	Review with different protocol
Fialkow 2006 451	No relevant outcomes and does not match review question
Figueroa-Damian 1999 452	No relevant outcomes and does not match review question
Filbin 2014 ⁴⁵³	No relevant outcomes and does not match review question
Finfer 2004 ⁴⁵⁴	No relevant outcomes and does not match review question
Fleming 2011 ⁴⁶⁰	Does not match protocol (no relevant analysis or outcomes)
Fok 1998 ⁴⁶³	No relevant outcomes and does not match review question (RDS). Setting not relevant
Galanakis 2002 ⁴⁷⁴	No relevant outcomes and does not match review question (RDS)
Galetto-Lacour 2010 ⁴⁷⁵	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Gallagher 1994 ⁴⁷⁶	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Garra 2005 ⁴⁹⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Gavazzi 2005 ⁴⁹¹	No relevant outcomes and does not match review question (no signs and symptoms considered)
George 1997 ⁴⁹²	No relevant outcomes and does not match review question (predictors of delirium)
Ghiorghis 1992 ⁴⁹⁶	Incorrect study design (case-control study)
Gille-Johnson 2012 ⁵⁰⁰	No relevant outcome
Goerlich 2014 ⁵⁰⁴	No relevant outcomes and does not match review question (no signs and symptoms considered)
Gogos 2003 ⁵⁰⁵	Does not match protocol (no relevant analysis or outcomes)
Goulet 2014 ⁵¹³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Grander 2013 ⁵¹⁴	Does not match review question (prediction of mortality from critical illness, 8% sepsis)

Reference	Reason for exclusion
Griffin 2005 ⁵¹⁸	No relevant outcomes (results from multivariable analysis available in graphic form only)
Griffin 2007 ⁵¹⁹	No relevant outcomes (results from multivariable analysis available in graphic form only)
Guo 2015 ⁵³⁴	No relevant population (not people with sepsis)
Haj-Hassan 2011 ⁵⁴⁵	No relevant outcome
Hashavya 2001 ⁵⁵⁶	No relevant outcomes and does not match review question (blood test)
Hazan 2014 ⁵⁵⁸	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Herbst 1997 ⁵⁶⁴	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Hernandez 2012 ⁵⁶⁶	No relevant outcomes and does not match review question (predictors of resuscitation)
Horeczko 2013 ⁵⁸⁴	No relevant outcomes and does not match review question
Housinger 1993 588	No relevant outcomes and does not match review question (blood test)
Hsiao 2006 ⁵⁹⁰	Outcomes not relevant (no analysis)
Ireland 2014 ⁵⁹⁹	No relevant outcomes and does not match review question (maternal predictors). Inappropriate comparison
Isfandiaty 2012 ⁶⁰²	No relevant outcomes and does not match review question (sepsis as a predictor of delirium)
Ismail 1997 ⁶⁰⁴	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered; prediction of nosocomial bacteraemia)
lwashyna 2012 ⁶⁰⁵	No relevant outcomes and does not match review question
Jacobs 1990A ⁶⁰⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Jain 2003 ⁶¹⁰	No relevant outcomes and does not match review question
Jeddi 2010 ⁶¹⁸	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Juncal 2011 ⁶³¹	No relevant outcomes
Karambin 2011 638	No relevant outcomes and does not match review question
Katsimpardi 2006 ⁶⁴⁰	Does not match review question (assessment of infectious complications in paediatric patients with acute lymphoblastic leukaemia)
Kayange 2010 ⁶⁴⁴	No relevant outcomes and does not match review question (inappropriate comparison)
Khaskheli 2013 ⁶⁵²	No relevant outcomes and does not match review question (no signs and symptoms considered)
Khassawneh 2009 ⁶⁵⁴	No relevant outcomes and does not match review question (inappropriate comparison)
Khurana 2011 ⁶⁵⁶	No relevant outcomes and does not match review question
Kibuuka 2015 ⁶⁵⁸	Incorrect population (malaria population)
Kim 2011A ⁶⁶⁵	No relevant outcomes and does not match review question (no signs and symptoms considered)
Kimmoun 2013 ⁶⁶⁹	No relevant outcomes
Landesberg 2012 ⁷⁰⁵	No relevant outcomes
Lannergard 2009 ⁷⁰⁷	Does not match review question (evaluation of biomarkers as prognostic tools for the decision to stop antibiotic therapy or to investigate oral stepdown therapy after an initial course of empiric intravenous cefuroxime or

Reference	Reason for exclusion
Tierer en de	a combination of cefuroxime and tobramycin)
Laterre 2005 ⁷¹⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Laupland 2012 ⁷¹¹	No relevant outcomes
LeDoux 2000 ⁷¹⁴	No relevant outcomes and does not match review question (effect of vasopressor therapy)
Lefrant 2010 719	No relevant outcomes and does not match review question (scoring tool)
Leichtle 2013 ⁷²⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Levy 2005 ⁷²³	No relevant outcomes and does not match review question
Liaw 1997 ⁷²⁶	No relevant outcomes and does not match review question
Lim 2012 ⁷²⁸	Inappropriate population (pre-term infants)
Mann-Salinas 2013 ⁷⁶⁵	Incorrect study design (case-control study)
Mesquida 2012 ⁸⁰¹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Metsvaht 2009 803	No relevant outcomes and does not match review question (antimicrobial)
Mikkelsen 2013 ⁸⁰⁸	No relevant outcomes and does not match review question (development of ARDS in patients with sepsis)
Mitra 1993 813	Setting not relevant
Mobin 2012 ⁸¹⁴	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Nimri 2001 ⁸⁶⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
O'Leary 2015 ⁸⁶⁵	Incorrect population
Oostenbrink 2012 ⁸⁷⁹	No relevant outcomes
Ozalay 2006 ⁸⁸⁹	No relevant analysis
Papaioannou 2012 ⁸⁹¹	No relevant outcomes reported
Piazza 2004 ⁹²⁰	No relevant outcomes and does not match review question
Pontet 2003 ⁹²⁸	No relevant outcomes reported
Pope 2010 ⁹²⁹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Quach 2008 944	No relevant outcomes and does not match review question (scoring tool)
Rackoff 1996 ⁹⁴⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Ranes 2006 ⁹⁵⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Razzaq 2013 ⁹⁵⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Rehman 2014 ⁹⁵⁹	Incorrect study design (narrative study)
Ronco 1994 ⁹⁸³	No analysis of relevant variables
Santolaya 2008 ¹⁰⁰⁰	No relevant outcomes and does not match review question (prognostic value of blood tests)
Schultz 2013 ¹⁰¹⁰	No relevant outcomes reported
Sevastos 2008 ¹⁰²¹	No relevant outcomes and does not match review question
Shani 2008 ¹⁰²²	No relevant outcomes and does not match review question (RDS)

Reference	Reason for exclusion
Shapiro 2009 ¹⁰²⁵	Does not match protocol (sepsis scores)
Singh 2003 ¹⁰⁴³	Population does not match protocol (preterm infants)
Sirvent 2013 ¹⁰⁴⁴	No relevant outcomes and does not match review question (scoring tool)
Smith 1997 ¹⁰⁵²	No relevant outcomes and does not match review question (review to determine the rate of bacteraemia in women with pyelonephritis)
Sole-vidan 2011 ¹⁰⁵⁴	No relevant outcomes and does not match review question
Somogyi-Zalud 2000 ¹⁰⁵⁷	No relevant outcomes and does not match review question
Spanos 2010 ¹⁰⁶²	No relevant outcomes
Spruijt 2013 ¹⁰⁶⁴	No relevant outcomes
Sprung 2006 ¹⁰⁶⁵	No relevant outcomes and does not match review question (no signs and symptoms considered)
Stathakis 2007 ¹⁰⁶⁶	No relevant outcomes and does not match review question (no signs and symptoms considered, only blood markers)
Struelens 1991 ¹⁰⁷¹	Incorrect study design (case-control study)
Suchyta 1997 ¹⁰⁷⁹	No relevant outcomes and does not match review question
Tayek 2012 ¹⁰⁹¹	Review with different protocol
Thai 2012 ¹⁰⁹⁵	No relevant outcomes and does not match review question
Thompson 2009 ¹⁰⁹⁷	Case study
Thompson 2010 ¹⁰⁹⁶	Editorial
Torres 1991 ¹¹⁰⁰	Review with different protocol.
Toweill 2000 ¹¹⁰²	No relevant outcomes and does not match review question (no signs and symptoms considered)
Tsering 2011 ¹¹¹⁰	No relevant outcomes and does not match review question
Van den Bruel 2010 ¹¹²³	Systematic review
Vandissel 2005 ¹¹²⁵	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Venugopal 2012 ¹¹³⁹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Vyles 2014 ¹¹⁵⁰	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Wang 2009 ¹¹⁵⁷	No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)
Waskerwitz 1981 ¹¹⁶¹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Wojkowskamach 2012 ¹¹⁷⁶	Inappropriate population (hospitalised LBW newborns)
Xi 2010 ¹¹⁸²	No relevant outcomes and does not match review question (inappropriate comparisons)
Yahav 2015 ¹¹⁸⁶	No relevant analysis (no analysis of predictors)
Yang 2013 ¹¹⁹²	No relevant outcomes and does not match review question (ARDS)
Yossuck 2002 ¹²⁰¹	Inappropriate population (newborn)
Yu 2011 ¹²⁰²	No relevant outcomes and does not match review question (blood test)
Zaidi 1999 ¹²⁰⁴	No relevant outcomes and does not match review question

L.3 Blood tests

Table 37: Studies excluded from the clinical review

Study	Exclusion reason
Abdollahi 2012 ¹²	Invalid country
Aboud 2010 ¹³	Case-control study
Adamik 2000 ²¹	Invalid diagnostic tests
Adhikari 1986 ²⁴	Invalid outcomes
Adib 2012 ²⁵	Invalid country
Agrawal 2008 ³²	Invalid country
Agyeman 2011 ³³	Invalid population
Ahmed 2005 ³⁵	Invalid country
Ahn 2012 ³⁶	Invalid diagnostic tests
Aikawa 2005 ³⁸	Invalid population
Aimoto 2014 ³⁹	Invalid population
Al 2011 ⁴⁷	Invalid diagnostic tests
Alamgir 2006 ⁵⁵	Invalid analysis
Albright 2015 ⁶⁰	Invalid diagnostic tests
Al-Majali 2004 ⁴⁸	Invalid country
Al-Nawas 1996 ⁴⁹	Invalid outcomes
Al-Nawas 1996A ⁵⁰	Procalcitonin
Altunhan 2011 ⁷¹	Invalid country
Alves 2010 ⁷³	Invalid diagnostic tests
Al-Zwaini 2009 ⁵¹	Invalid diagnostic tests
Ambalavanan 2005 ⁷⁴	Invalid country Invalid population
Anbar 1986 ⁷⁷	
Ando 2012 ⁷⁹	Invalid outcomes
	Invalid analysis
Anwer 2000 ⁸⁸	Invalid country
Aquino 2012 ⁹⁰	Invalid outcomes
Arkader 2006 ⁹³	Invalid country
Arnalich 1999 ⁹⁵	No prognostic or diagnostic data
Arnon 2007 ⁹⁸	Invalid analysis
Aube 1992 ¹⁰⁵	Published before 1999
Aydemir 2014 ¹⁰⁹	Invalid country
Aydin 2013 ¹¹¹	Invalid country
Aydin 2014 ¹¹⁰	Invalid country
Bakker 1996 ¹³²	No data given
Balci 2003 ¹³³	Invalid country
Ballot 2004 ¹³⁵	Procalcitonin
Baorto 2001 ¹⁴⁰	Invalid population
Barati 2008 ¹⁴³	Procalcitonin
Barati 2015 ¹⁴²	Invalid country
Baron 1989 ¹⁴⁸	Invalid outcomes
Bates 1990 ¹⁵⁶	Invalid outcomes
Becchi 2008 ¹⁶¹	Invalid outcomes
Bender 2008 ¹⁷¹	Procalcitonin
Benitz 1998 ¹⁷³	Invalid setting
Benuck 1983 ¹⁷⁵	Invalid outcomes
Berger 1995 ¹⁷⁶	Invalid setting
Berkman 2009 ¹⁷⁹	Invalid diagnostic tests
Bernstein 2007 ¹⁸¹	Invalid outcomes
Bhaandari 2014 ¹⁸⁵	Invalid diagnostic tests
Bianchi 2004 ¹⁸⁶	Invalid country

T. 1 T. 201103	
Bleeker 2001 ¹⁹²	Invalid analysis
Blommendahl 2002 ¹⁹³	Invalid population
Bloos 2014 ¹⁹⁴	Narrative review
Bojic 2014 ¹⁹⁹	Invalid country
Boskabadi 2010 ²¹⁶	Case-control study
Bossink 1998 ²²⁰	Published before 1999
Bossink 1999A ²¹⁹	Invalid diagnostic tests
Bossink 2001 ²¹⁸	Invalid outcomes
Brierley 2009 ²³⁰	Narrative review
Brodska 2009 ²³¹	Procalcitonin
Broner 1990 ²³³	Invalid setting
Buck 1994 ²³⁶	Invalid population
Byl 1997 ²⁴³	Published before 1999
Caldas 2008 ²⁴⁶	Not English
Calvano 1998 ²⁴⁹	Invalid diagnostic tests
Carrol 2002 ²⁵⁶	Invalid population
Carrol 2002A ²⁵⁷	Procalcitonin
Carrol 2005 ²⁵⁸	Invalid population
Casado-Flores 2006 ²⁶¹	Invalid population
Cazalis 2013 ²⁶⁷	Invalid diagnostic tests
Cekmez 2011 ²⁶⁹	Invalid country
Celik 2010 ²⁷⁰	Invalid country
Chaaban 2009 ²⁷²	Invalid analysis
Chalupa 2011 ²⁷⁵	Invalid outcomes
Chan 1997 ²⁷⁸	Invalid population
Chan 2002 ²⁸²	Invalid country
Chan 2004 ²⁸³	Invalid country
Chan 2011 ²⁸¹	Narrative review
Charles 2008 ²⁸⁵	Invalid outcomes
Chen 2010 ²⁹⁷	Narrative review
Chen 2014 ²⁹⁴	Invalid country
Chen 2014E ³⁰¹	Invalid country
Chen 2014F ²⁹⁵	Invalid country
Chiesa 2000 ³⁰⁴	Procalcitonin
Chiesa 2003 ³⁰⁵	Invalid analysis
Claessens 2010 ³¹⁶	Invalid population
Clec'h 2004 ³¹⁷	Procalcitonin
Coggins 2013 ³²³	Invalid analysis
Collighan 2004 ³²⁴	Invalid diagnostic tests
Contenti 2015A ³²⁶	Invalid diagnostic tests
Cortegiani 2014 ³³¹	Invalid outcomes
Couto 2007 ³³³	
	Invalid diagnostic tests
Couto-Alves 2013 ³³⁴	Not relevant to review question
Craig 2010 ³³⁵	Invalid diagnostic tests
Da Silva 2007A ³⁴⁴	Invalid population
Dalton 2012 ³⁴⁹	Invalid analysis
Davis 2015 ³⁵⁴	Invalid population
De 1998 ³⁶⁹	Invalid country
de Azevedo 2015 ³⁵⁷	Invalid country
De Blasi 2013 ³⁵⁸	Invalid study design
De Jager 2010 ³⁶²	Invalid study design
Debiane 2014 ³⁷²	Invalid population
Degroot 2014 ³⁶¹	Invalid diagnostic tests

D 11 204 F 381	
Dettmer 2015 ³⁸¹	Invalid comparison
Devran 2012 ³⁸⁵	Invalid country
DeWerra 1997 ³⁶⁸	Published before 1999
Dhanalakshmi 2015 ³⁸⁷	Invalid country
Dierkes 2009 ³⁹¹	Invalid diagnostic tests
Diez-Padrisa 2012 ³⁹²	Invalid country
Dornbusch 2003 ³⁹⁴	Procalcitonin
Draz 2013 ³⁹⁶	Invalid diagnostic tests
Drees 2012 ³⁹⁷	Invalid diagnostic tests
Drumheller 2012 ⁴⁰¹	Invalid diagnostic tests
Du 2002 ⁴⁰³	Invalid outcomes
Du 2003 ⁴⁰⁴	Invalid country
Du 2014 ⁴⁰⁵	Invalid country
Elawady 2014 ⁴¹⁵	Invalid country
El-Maghraby 2007 ⁴¹⁴	Invalid country
Endo 2008 ⁴²⁰	Invalid analysis
Engel 1998 ⁴²¹	Invalid diagnostic tests
Ersoy 2007 ⁴²⁵	Invalid outcomes
Escobar 2015 ⁴²⁷	Animal study
Fan 1989 ⁴⁴⁰	Invalid outcomes
Feng 2012 ⁴⁴⁵	Invalid country
Fisher 2000 ⁴⁵⁶	Invalid study design
Fleischhack 2000 ⁴⁵⁸	Invalid population
Fleischhack 2000A ⁴⁵⁹	Invalid population
Galetto-Lacour 2010 ⁴⁷⁵	Invalid study design
Garcia 2007 ⁴⁸⁵	Invalid diagnostic tests
Garland 2003 ⁴⁸⁷	Invalid population
Gerdes 1987 ⁴⁹⁴	Invalid setting
Ghosh 2001 ⁴⁹⁷	Invalid country
Gille-Johnson 2012 ⁵⁰⁰	Invalid outcomes
Greenberg 1990 ⁵¹⁷	Invalid outcomes
Gu 2015 ⁵²³	Invalid analysis
Guclu 2013 ⁵²⁴	Invalid study design
Guibourdenche 2002 ⁵²⁶	Invalid analysis
Guido 2012 ⁵²⁹	Invalid outcomes
Guillois 1994 ⁵³⁰	Invalid population
Gutovitz 2011 ⁵³⁶	Invalid comparison
Guven 2002 ⁵³⁷	Procalcitonin
Hall 2011 ⁵⁴⁷	Narrative review
Hanson 1983 ⁵⁵¹	Invalid study design
Hariharan 2011 ⁵⁵⁴	Invalid outcomes
Hegadi 2015 ⁵⁵⁹	Invalid country
Hengst 2003 ⁵⁶⁰	Invalid study design
Heper 2006 ⁵⁶²	Invalid outcomes
Hermans 2012 ⁵⁶⁵	Invalid outcomes
Hernandez-Bou 2015 ⁵⁶⁸	Invalid population
Herzum 2008 ⁵⁶⁹	Narrative review
Hisamuddin 2015 ⁵⁷³	Invalid country
Ho 2008 ⁵⁷⁶	
	Invalid diagnostic tests
Hoppensteadt 2014A ⁵⁸³	Invalid diagnostic tests
Hoppensteadt 2015 ⁵⁸²	Invalid diagnostic tests
Hui 2012 ⁵⁹²	Invalid study design
Iba 2014 ⁵⁹⁴	Narrative review

Jain 2014 ⁶¹¹	Invalid country
James 1999 ⁶¹²	Narrative review
Jansen 2009 ⁶¹⁴	Invalid study design
Janum 2011 ⁶¹⁵	Invalid outcomes
Jat 2011 ⁶¹⁷	Invalid country
Jeschke 2013 ⁶²⁰	Invalid analysis
Jordan 2000 ⁶³⁰	Invalid diagnostic tests
Juutilainen 2011A ⁶³³	Invalid population
Kasem 2012 ⁶³⁹	Procalcitonin
Katz 1992 ⁶⁴¹	Invalid population
Keshet 2009 ⁶⁴⁹	Invalid population
Keßler 1994 ⁶⁵⁰	Invalid outcomes
Khassawneh 2007 ⁶⁵³	Invalid country
Kim 2013A ⁶⁶⁸	Invalid outcomes
Kirschenbaum 2006 ⁶⁷²	Invalid outcomes
Kite 1988 ⁶⁷³	Invalid population
Kobayashi 2001 ⁶⁷⁷	Invalid outcomes
Kocabas 2007 ⁶⁷⁸	Invalid country
Kocazeybek 2003 ⁶⁷⁹	Invalid population
Kohli 1993 ⁶⁸⁰	Invalid country
Kohn 2001 ⁶⁸¹	Invalid study design
Koksal 2007 ⁶⁸²	Invalid country
Kono 1999 ⁶⁸⁴	Invalid outcomes
Krediet 1992 ⁶⁸⁶	Invalid setting
Krishna 2000 ⁶⁸⁸	Invalid country
Kumar 2010 ⁶⁹²	Invalid country
Kushimoto 2007 ⁶⁹⁶	Invalid outcomes
Kyr 2007 ⁶⁹⁷	Invalid diagnostic tests
Laborada 2003 ⁶⁹⁹	Invalid diagnostic tests
Lacaze-Masmonteil 2014 ⁷⁰⁰	Invalid analysis
Laham 2014 ⁷⁰¹	Invalid population
Lam 2008 ⁷⁰²	Invalid study design
Larsen 2011 ⁷⁰⁹	Invalid outcomes
Lee 2012A ⁷¹⁵	Invalid analysis
Leli 2014 ⁷²¹	Procalcitonin
Lichtenstern 2012 ⁷²⁷	Narrative review
Luz Fiusa 2013 ⁷⁴⁹	Invalid country
Lyle 2013 ⁷⁵⁰	Narrative review
MacKay 2011A ⁷⁵³	Invalid outcomes
Magudumana 2000 ⁷⁵⁷	Invalid population
Malik 2003 ⁷⁶²	Systematic review
Mannan 2010 ⁷⁶⁷	Invalid country
Manucha 2002 ⁷⁶⁸	Invalid country
Manzano 2010 ⁷⁶⁹	Procalcitonin
Manzon 2015 ⁷⁷⁰	Invalid diagnostic tests
Marecaux 1996 ⁷⁷¹	Invalid outcomes
Martinez-Albarran 2009 ⁷⁸⁰	Invalid country
Marzouk 1993 ⁷⁸¹	Invalid population
Mathers 1987 ⁷⁸³	Invalid setting
Mazur 1994 ⁷⁸⁹	Invalid outcomes
McKenzie 2009 ⁷⁹²	Invalid study design
Meidani 2013 ⁷⁹⁷	Cross-sectional study
Meisner 1998A ⁷⁹⁸	Invalid population

700	
Mencacci 2012 ⁷⁹⁹	Invalid diagnostic tests
Menon 2015 ⁸⁰⁰	Invalid country
Mimoz 1998 ⁸¹⁰	Invalid outcomes
Mintegi 2009 ⁸¹¹	Invalid population
Mistry 2013 ⁸¹²	Invalid population
Mokart 2005 ⁸¹⁷	Inconsistencies regarding units of measurement
Montiel-Jarquin 2012 ⁸¹⁹	Invalid country
Munoz 2004 ⁸³²	Procalcitonin
Murphy 2012A ⁸³⁴	Invalid analysis
Mustafa 2005 ⁸³⁶	Invalid country
Mustard 1987 ⁸³⁷	Invalid population
Naher 2011 ⁸³⁸	Invalid country
Neely 1998 ⁸⁴³	Invalid setting
Neely 2004 ⁸⁴⁴	Invalid diagnostic tests
Ng 2004A ⁸⁴⁷	Narrative review
Ng 2006 ⁸⁴⁸	Narrative review
Nijman 2011 ⁸⁵⁹	Invalid outcomes
Nijman 2013 ⁸⁵⁸	Invalid analysis
Nuntnarumit 2002 ⁸⁶³	Invalid country
Oberhoffer 1999 ⁸⁶⁸	Invalid outcomes
Oliveira 2008 ⁸⁷⁷	Invalid outcomes
Oliveira 2013 ⁸⁷⁶	Invalid comparison
Opal 2014 ⁸⁸⁰	Narrative review
Örtqvist 1995 ⁸⁸⁵	Invalid outcomes
Park 2014 ⁸⁹⁶	Invalid population
Park 2014B ⁸⁹⁴	Invalid diagnostic tests
Pechorsky 2009 ⁹¹⁰	Invalid outcomes
Peduzi 1992 ⁹¹¹	Invalid setting
Peltola 1983 ⁹¹³	Invalid population
Pfitzenmeyer 1995 ⁹¹⁷	Published before 1999
Pinilla 1998 ⁹²²	Invalid population
Povoa 1998 ⁹³³	Published before 1999
Povoa 2002 ⁹³²	Narrative review
Povoa 2005 ⁹³⁴	Invalid analysis
Qu 2015 ⁹⁴³	Invalid country
Ranzani 2013 ⁹⁵¹	Invalid country
Raoofi 2014 ⁹⁵²	Procalcitonin
Rast 2015 ⁹⁵³	Invalid population
Ravishankar 2009 ⁹⁵⁴	Invalid study design
Ravishankaran 2011 ⁹⁵⁵	Invalid study design
Reed 2013 ⁹⁵⁸	Invalid analysis
Resch 2003 ⁹⁶³	
Riche 2003 ⁹⁶⁸	Invalid population Invalid population
Riedel 2011 ⁹⁷⁰	
Riedel 2011 ⁹⁷⁹	Procalcitonin Procalcitonin
Rondina 201 ⁹⁸⁴	
	Invalid diagnostic tests
Rønnestad 1999 ⁹⁸⁵	Invalid analysis
Sakha 2008 ⁹⁹⁵	Invalid country
Samraj 2013 ⁹⁹⁸	Narrative review
Santolaya 2008 ¹⁰⁰⁰	Invalid country
Sauer 2003 ¹⁰⁰³	Invalid intervention
Schreiber 2013 ¹⁰⁰⁹	Invalid outcomes
Schwarz 2000 ¹⁰¹¹	Invalid analysis

2 22 . 21012	
Scott 2012 ¹⁰¹³	Invalid outcomes
Seigel 2012 ¹⁰¹⁴	Invalid outcomes
Shaw 1991 ¹⁰²⁶	Case-control study
Shine 1985 ¹⁰³⁰	Invalid analysis
Shorr 2010 ¹⁰³²	Invalid analysis
Sierra 2007 ¹⁰³⁵	Systematic review
Silveira 1999 ¹⁰³⁹	Invalid population
Simms 1992 ¹⁰⁴⁰	Invalid diagnostic tests
Sivula 2015 ¹⁰⁴⁵	Invalid diagnostic tests
Somech 2000 ¹⁰⁵⁶	Invalid outcomes
Sonawane 2014 ¹⁰⁵⁸	Invalid country
Spasova 2005 ¹⁰⁶³	Invalid outcomes
Steinbach 2007 ¹⁰⁶⁷	Invalid population
Struelens 1988 ¹⁰⁷⁰	Invalid outcomes
Su 2012B ¹⁰⁷⁵	Invalid country
Su 2014 ¹⁰⁷³	Invalid country
Sucilathangam 2012 ¹⁰⁸⁰	Invalid country
Suri 1991 ¹⁰⁸³	Invalid country
Tegtmeyer 1992 ¹⁰⁹²	Invalid outcomes
Toh 2003A ¹⁰⁹⁸	Invalid analysis
Tong 2015 ¹⁰⁹⁹	Invalid diagnostic tests
Tsalik 2012 ¹¹⁰⁷	Inconsistencies regarding units of measurement
Tschaikowsky 2011 ¹¹⁰⁹	Invalid outcomes
Tugrul 2002 ¹¹¹³	Invalid country
Turi 2013 ¹¹¹⁵	Invalid diagnostic tests
Ueda 2014 ¹¹¹⁶	Not relevant to review question
Ulla 2013 ¹¹¹⁸	Invalid diagnostic tests
Van den Bruel 2011 ¹¹²⁴	Invalid study design
Vassiliou 2015A ¹¹³¹	Invalid diagnostic tests
Venkataseshan 2007 ¹¹³⁵	Invalid diagnostic tests
Ventetuolo 2008 ¹¹³⁷	Narrative review
Venugopal 2014 ¹¹³⁸	Narrative review
Verbakel 2014 ¹¹⁴⁰	Study protocol
Viallon 2008 ¹¹⁴¹	Invalid diagnostic tests
Volante 2004 ¹¹⁴⁷	Narrative review
Wacharasint 2012 ¹¹⁵¹	Invalid analysis
Waliullah 2010 ¹¹⁵³	Invalid country
Waliullah 2009 ¹¹⁵⁵	Invalid country
West 2012 ¹¹⁶⁶	Invalid country
Wilkinson 2009 ¹¹⁷⁰	Invalid outcomes
Xie 2013 ¹¹⁸³	Invalid diagnostic tests
Yan 2001 ¹¹⁹⁰	Invalid outcomes
Yentis 1995 ¹¹⁹⁵	Invalid analysis
Yilmaz 2003 ¹¹⁹⁷	Invalid outcomes
Yin 2011 ¹¹⁹⁹	Invalid outcomes
Zant 2014 ¹²⁰⁶	Invalid outcomes Invalid population
Zarkesh 2015 ¹²⁰⁷	
Zarkesn 2015 ¹¹³ Zimmerman 2010 ¹²¹⁸	Invalid country Invalid outcomes
Zillilletillati ZUIU	IIIvaliu OutComes

L.4 Lactate

Table 38: Studies excluded from the clinical review

Study	Reason for exclusion
Aitofella 2012 ⁴¹	AUC data but no sensitivity or specificity data
Berger 2013 ¹⁷⁸	Hyperlactaemia was an outcome not a predictor
Bollaert 2003 ²⁰⁵	No diagnostic accuracy data; relativistic OR/RR data only
Breuling 2015 ²²⁹	No diagnostic accuracy data; relativistic OR/RR data only
Brodska 2013 ²³²	No diagnostic accuracy data; relativistic OR/RR data only
Casagandra 2015 ²⁶²	AUC data but no sensitivity or specificity data
Chen 2014F ³⁰²	Study conducted in non OECD country (China)
Cicarelli 2007 ³¹⁴	Study conducted in a developing country (Brazil)
Contenti 2015 ³²⁶	No protocol outcomes
Gao 2014 ⁴⁸³	Study conducted in a developing country (China)
Giannazzo 2006 ⁴⁹⁹	No diagnostic accuracy data; relativistic OR/RR data only
Giulieri 2015 ⁵⁰²	Target disease was community-acquired meningitis
Gwak 2015 ⁵³⁸	Target disease was community-acquired pneumonia
Hermans 2012 ⁵⁶⁵	AUC data but no sensitivity or specificity data
Hernandez 2012A ⁵⁶⁷	No protocol outcomes
Hisamuddin 2012 ⁵⁷⁴	Study conducted in a developing country (Malaysia)
Howell 2007A ⁵⁸⁹	No diagnostic accuracy data; relativistic OR/RR data only
Jansen 2011 ⁶¹³	Non-systematic review with different inclusion criteria (prognostic value of lactate, non-sepsis specific)
Jones 2010 ⁶²⁸	No relevant to protocol
Kang 2011 ⁶³⁶	Wrong population
Kim 2015B ⁶⁶⁴	Outcomes not relevant to this review
Kobayashi 2001 ⁶⁷⁷	No diagnostic accuracy data; relativistic OR/RR data only
Krishna 2009 ⁶⁸⁹	No protocol outcomes
Kung 2014 ⁶⁹³	No diagnostic accuracy data
Kung 2015 ⁶⁹⁴	AUC data but no sensitivity or specificity data
Lee 2008 ⁷¹⁷	No diagnostic accuracy data; relativistic OR/RR data only
Li 2013A ⁷²⁵	Li 2013A ⁷²⁵
Liu 2015 ⁷³⁷	Target condition was severe pneumonia, and country was non OECD (China)
Linder 2012 ⁷³³	No protocol outcomes
Lorente 2013 ⁷⁴³	No diagnostic accuracy data; relativistic OR/RR data only
Lorente 2014A ⁷⁴⁴	No diagnostic accuracy data; relativistic OR/RR data only
Lorente 2014B ⁷⁴⁵	No protocol outcomes
Lorente 2015A 745	Not protocol biomarker
Lorente 2015 ⁷⁴²	AUC data but no sensitivity or specificity data
Mallat 2014A ⁷⁶³	No diagnostic accuracy data; relativistic OR/RR data only
Manzon 2015 ⁷⁷⁰	AUC data but no sensitivity or specificity data
Mato 2010 ⁷⁸⁴	No protocol outcomes
Matsumura 2014 ⁷⁸⁶	ICU population but did not have sepsis
Mesquida 2015 ⁸⁰²	No diagnostic accuracy data; relativistic OR/RR data only

Study	Reason for exclusion
Miguelbayarri 2012 ⁸⁰⁶	No diagnostic accuracy data; relativistic OR/RR data only
Mikkelsen 2009 ⁸⁰⁷	No diagnostic accuracy data; relativistic OR/RR data only
Muller 2000 ⁸²⁸	Target condition was sepsis – not a worsening of existing sepsis
Musikatavorn 2015 835	No diagnostic accuracy data
Nanda 2009 ⁸³⁹	No protocol outcomes
Nguyen 2010A ⁸⁵⁴	No diagnostic accuracy data; relativistic OR/RR data only
Nguyen 2011 ⁸⁵³	Not relevant to the protocol
Ouillette 2014 ⁸⁸⁸	Case control study
Pandey 2014 ⁸⁹⁰	AUC data but no sensitivity or specificity data
Park 2014 ⁸⁹⁶	Study conducted in a developing country (South Korea)
Puskarich 2012A ⁹⁴²	Insufficient data for analysis
Ryoo 2015 ⁹⁹³	No diagnostic accuracy data; relativistic OR/RR data only
Shapiro 2010 ¹⁰²³	AUC data but no sensitivity or specificity data
Singer 2014 ¹⁰⁴¹	No diagnostic accuracy data
Singh2012A ¹⁰⁴²	Study did not evaluate lactate specifically
Song 2012 ¹⁰⁵⁹	No diagnostic accuracy data; relativistic OR/RR data only
Suarezsantamaria 2010 ¹⁰⁷⁷	AUC data but no sensitivity or specificity data
Tang 2015 ¹⁰⁹⁰	No diagnostic accuracy data; relativistic OR/RR data only
Varpula 2005 ¹¹³⁰	No diagnostic accuracy data; relativistic OR/RR data only
Whittaker 2015 ¹¹⁶⁸	No diagnostic accuracy data; relativistic OR/RR data only
Zanaty 2012 1205	Study conducted in a developing country (Egypt)
Zhang 2014E ¹²⁰⁹	Study conducted in a developing country (China)

L.5 Serum creatinine

Table 39: Studies excluded from the clinical review

Study	Reason for exclusion
Badin 2011 ¹¹⁶	Not protocol biomarker
Bagshaw 2013 ¹¹⁹	Not protocol biomarker
Bagshaw 2010 ¹²⁴	Not protocol biomarker
Bagshaw 2007 ¹²³	No protocol outcomes
Bagshaw 2007 ¹²⁸	Not protocol biomarker
Bagshaw 2006 ¹²²	Not protocol biomarker
Bagshaw 2006 ¹²⁷	Not protocol population
Basu 2011 ¹⁵⁵	No protocol outcomes
Carbonell 2004 ²⁵⁰	Not protocol biomarker
Cartinceba 2012 ²⁶⁰	SR with no protocol outcomes
Chawla 2005 ²⁸⁷	No outcomes of interest
De 2004 ³⁵⁹	Not protocol study type
Desouza 2014 ³⁶⁷	Study conducted in developing country
Dinardo 2013 ³⁸⁸	No protocol outcomes

Drey 2015 ⁴⁰⁰	No protocol outcomes
Elfarghali 2012 ⁴¹³	No protocol outcomes
Glassford 2013 ⁵⁰³	No protocol outcomes
Guo 2011 ⁵³³	Study conducted in developing country
Hamzic-Mehmedbasic 2015 549	Study conducted in non-OECD country
Hoste 2003 ⁵⁸⁶	No protocol outcomes
Iglesias 2003 ⁵⁹⁶	Not protocol population
Kiers 2010 ⁶⁶⁰	No protocol outcomes
Mariano 2008 ⁷⁷²	Not protocol biomarker
Martensson 2010 ⁷⁷⁷	Not protocol biomarker
Martensson 2012 ⁷⁷⁸	No protocol outcomes
Mazulsunko 2004 ⁷⁸⁸	No protocol outcomes
Nejat 2010 ⁸⁴⁵	No protocol outcomes
Nie 2013 ⁸⁵⁷	Not protocol biomarker
Plataki 2011 ⁹²⁴	No protocol outcomes
Poukkanen 2013 ⁹³¹	No protocol outcomes
Soni 2009 ¹⁰⁶⁰	Not protocol population
Su 2011 ¹⁰⁷⁴	Study conducted in developing country
Suh 2013 ¹⁰⁸¹	No protocol outcomes
Terzi 2014 ¹⁰⁹³	No protocol outcomes
Vanmassenhove2013 ¹¹²⁹	Not protocol biomarker
Walshe 2009 ¹¹⁵⁶	No protocol outcomes
Waring 2011 ¹¹⁵⁹	SR with no protocol outcomes
Wheeler 2008 ¹¹⁶⁷	No protocol outcomes
Wong 2015 ¹¹⁷⁸	Not protocol biomarker
Yamashita 2014 ¹¹⁸⁹	Not protocol population
Yegenaga 2004 ¹¹⁹⁴	No protocol outcomes
Zhang 2015 ¹²¹⁰	Not protocol study type
Zhou ¹²¹⁷	Study conducted in non OECD country

L.6 Disseminated intravascular coagulation (DIC)

Table 40: Studies excluded from the clinical review

Study	Reason for exclusion
Angstwurm 2006 ⁸³	Not protocol study design
Brenner 2012 ²²⁵	Not protocol study design
Cauchie 2006 ²⁶⁶	Not protocol population
Dempfle 2004 ³⁷⁷	Not protocol study design
Ersoy 2007 ⁴²⁵	Not protocol risk factor
Gamper 2001 ⁴⁷⁷	Not protocol population
Gando 1999 ⁴⁸⁰	Not protocol study design
Gando 2002 ⁴⁷⁹	Not protocol study design
Gando 2006 ⁴⁷⁸	Not protocol study design
Gando 2009 ⁴⁸¹	Not protocol study design

Study	Reason for exclusion
Gogos 2003 ⁵⁰⁵	Not protocol risk factor
Gomez 2007 ⁵⁰⁹	Not protocol risk factor
Guirgis 2014 ⁵³¹	SR not protocol risk factor
Ha 2015 ⁵³⁹	Not protocol study design
Harbarth 2002 ⁵⁵³	Not protocol study design
Hayakawa 2007 ⁵⁵⁷	Not protocol study design
Hoppensteadt 2014 581	Not protocol study design
lba 2015 ⁵⁹⁵	Not protocol study design
Ishimura 2014 ⁶⁰³	Not protocol study design
Jesmin 2013 ⁶²¹	Not protocol risk factor
Keneka 2012 ⁶⁴⁸	Not protocol study design
Kienast 2006 ⁶⁵⁹	Not protocol study design
Kim 2014 ⁶⁶²	Not protocol risk factor
Kinasewitz 2005 ⁶⁷¹	Not protocol study design
Kinasewitz 2004 ⁶⁷⁰	Not protocol study design
Kobayashi 2001 ⁶⁷⁷	Not protocol study design
Koyama 2014 ⁶⁸⁵	Not protocol risk factor
Kushimoto 2008 ⁶⁹⁵	Not protocol study design
Lavigne-Lissalde 2015 ⁷¹²	Conference abstract
Lin 2006 ⁷³²	Not protocol study design
Lin 2008 ⁷³¹	Not protocol study design
Lissaldelavigne 2008 ⁷³⁴	Not protocol study design
Madoiwa 2006 ⁷⁵⁶	Not protocol risk factor
Massion 2012 ⁷⁸²	Not protocol risk factor
Muller 2014 ⁸²⁹	Not protocol risk factor
Ogura 2014 ⁸⁷²	Not protocol study design
Oh 2010 ⁸⁷³	Not protocol study design
Okabayashi 2004 ⁸⁷⁴	Not protocol population
Ostrowski 2013 ⁸⁸⁶	Not protocol risk factor
Park 1999 ⁸⁹⁷	Not protocol study design
Park 2011 ⁸⁹³	Not protocol study design
Peigne 2013 ⁹¹²	Not protocol study design
Saracco 2011 ¹⁰⁰¹	Not protocol study design
Sawamura 2009 ¹⁰⁰⁵	Not protocol study design
Sawamura 2009 ¹⁰⁰⁴	Not protocol study design
Seki 2013 ¹⁰¹⁶	Not protocol study design
Takahashi 2015 ¹⁰⁸⁷	Not protocol study design
Voves 2006 ¹¹⁴⁹	Not protocol study design
Yamakawa 2013 ¹¹⁸⁷	Not protocol study design

L.7 Antimicrobial treatment

Table 41: Studies excluded from the clinical review

Reference	Reason for exclusion
Bagshaw 2009 ¹²¹	Not relevant outcomes
Band 2011 ¹³⁶	Comparison does not match protocol (patients who presented to the ED by ambulance versus patients who arrived by alternative means)
Barochia 2010 ¹⁴⁷	Setting does not match protocol (review on the use of bundles in patients with septic shock)
Beck 2014A ¹⁶²	Comparison does not match protocol (time to vasopressor initiation in patients with septic shock)
Behrendt 1999 ¹⁶⁵	Comparison does not match protocol (appropriate therapy within 48 hours versus after 48 hours)
Degoricija 2006 ³⁷³	No relevant outcomes, comparison does not match protocol
Erbay 2009 ⁴²³	Comparison does not match protocol (appropriate treatment within 24 hours versus after 24 hours)
Gabram 1993 ⁴⁷³	No relevant outcomes, study population does not match protocol (trauma patients)
Garcia-Saenz 2002 ⁴⁸⁶	Full text not available. Not in English language.
Garnacho-Montero 2003 ⁴⁸⁹	Comparison does not match protocol (adequate versus non-adequate empirical antimicrobial therapy; no time to antibiotics)
Garnacho-Montero 2006 ⁴⁸⁸	Comparison does not match protocol (appropriate treatment within 24 hours versus after 24 hours)
Gordon 2005 ⁵¹²	Comparison does not match protocol (not time to antibiotics)
Hanzelka 2013 ⁵⁵²	Setting does not match protocol (implementation of an EGDT protocol for cancer patients)
Hetem 2011 ⁵⁷⁰	Comparison does not match protocol (under 24 hours versus after 24 hours)
Hortmann 2014 ⁵⁸⁵	Comparison does not match protocol (time to antibiotics not analysed)
Houck 2004 ⁵⁸⁷	Study population does not match protocol (proportion of patients with sepsis not clearly mentioned)
Iscimen 2008 ⁶⁰¹	No relevant outcomes and does not match review protocol
Irwin 2015 ⁶⁰⁰	No relevant outcome
Jacob 2012 ⁶⁰⁶	Wrong population
Kang 2003 ⁶³⁴	Comparison does not match protocol (under 24 hours versus after 24 hours)
Khan 2015 ⁶⁵¹	No relevant intervention (over 24 hours)
Khatib 2006A ⁶⁵⁵	Comparison does not match protocol (not early versus delayed treatment)
Kim 2012C ⁶⁶⁷	Comparison does not match protocol (adequate versus inadequate treatment)
Ko 2015 ⁶⁷⁶	Setting does not match protocol (implementation of a door-to-antibiotics time)
Krediet 2003 ⁶⁸⁷	No relevant outcomes
Lin 2008 ⁷²⁹	Comparison does not match protocol (under 24 hours versus after 24 hours)
Lodise 2007 ⁷⁴¹	Comparison does not match protocol (appropriate treatment up to 52

Reference	Reason for exclusion
	hours)
Lodise 2003 ⁷⁴⁰	Comparison does not match protocol (under 44.75 hours versus after 44.75 hours)
MacArthur 2004 ⁷⁵²	Comparison does not match protocol (adequate versus inadequate treatment)
MacRedmond 2010 ⁷⁵⁵	Setting does not match protocol (implementation of a sepsis management protocol)
Meehan 1997 ⁷⁹⁵	Study population does not match protocol (proportion of patients with sepsis not clearly mentioned)
Natarajan 2014 ⁸⁴¹	No data reported
Nguyen 2006A ⁸⁵⁰	Study design does not match protocol (review with different protocol)
Nguyen 2007B ⁸⁵¹	Setting does not match protocol (implementation of a sepsis bundle)
Nguyen 2010 ⁸⁴⁹	Study design does not match protocol
Nickerson 2009 ⁸⁵⁶	Comparison does not match protocol (median delay is 3 days)
Onder 2008 ⁸⁷⁸	Not relevant outcomes
Parish 2013 ⁸⁹²	Setting does not match protocol (assessing a nurse-led protocol)
Park 2013 ⁸⁹⁵	Comparison does not match protocol (adequate antimicrobial therapy within 3 days)
Paul 2010 ⁹⁰⁵	Study population does not match protocol (12% sepsis)
Paul 2010A ⁹⁰⁷	Comparison does not match protocol (assesses appropriate antibiotics)
Pestana 2010 ⁹¹⁶	No relevant outcomes, study population does not match protocol
Rehmani 2014 ⁹⁶⁰	Setting does not match protocol (assessing an antibiotic protocol)
Rodriguez-Pardo 2015 ⁹⁸¹	No relevant outcomes, study population does not match protocol
Ronnestad 2005 ⁹⁸⁶	Study design does not match protocol (survey), not relevant (no info on antibiotics intervention)
Sainio 1995 ⁹⁹⁴	Not relevant review question
Schweizer 2010 ¹⁰¹²	Comparison does not match protocol (adequate versus inadequate treatment)
Shime 2010 ¹⁰²⁹	Intervention does not match protocol (antibiotics up to 48 hours)
Shorr 2011 ¹⁰³¹	Comparison does not match protocol (appropriate therapy versus inadequate; no time to antibiotics)
Siddiqui 2009 ¹⁰³³	Comparison does not match protocol (no comparison)
Siddiqui 2010 ¹⁰³⁴	Cochrane review does not include RCT evidence
Silber 2003 ¹⁰³⁶	Study population does not match protocol (proportion of patients with sepsis not clearly mentioned)
Sterling 2015 ¹⁰⁶⁸	Unclear methodology
Strang 1992 ¹⁰⁶⁹	Incorrect study design (survey data)
Studnek 2012 ¹⁰⁷²	Setting does not match protocol (EGDT paper)
Sweet 2010 ¹⁰⁸⁴	Setting does not match protocol (study assesses protocol and not timing of antibiotics)
Talmor 2008 ¹⁰⁸⁹	Setting does not match protocol (EGDT paper)
The ProCESS Investigators 2014 ⁹³⁷	Setting does not match protocol (EGDT paper)
Tumbarello 2007 ¹¹¹⁴	Comparison does not match protocol (examines inadequate antibiotics)
Uittenbogaard 2014 ¹¹¹⁷	No relevant outcomes and does not match review protocol

Reference	Reason for exclusion
Vanparidon 2015 ¹¹²⁶	No relevant analysis (effect size per minute)
Venkatesh 2013 ¹¹³⁶	No relevant outcomes
Waterer 2006 ¹¹⁶²	Study population does not match protocol (no sepsis)
Yahav 2013 ¹¹⁸⁵	Review with different inclusion criteria (pneumonia population)
Zahar 2011 ¹²⁰³	Comparison does not match protocol (appropriate treatment within 24 hours versus after 24 hours)

L.8 IV fluid administration

Table 42: Studies excluded from the clinical review

Study	Exclusion reason
Abulebda 2014 ¹⁶	Incorrect interventions
Andre 2010 ⁸¹	Incorrect interventions
Andre 2011 ⁸⁰	Incorrect interventions
Annane 2013 ⁸⁵	Incorrect interventions
Apibunyopas 2014 ⁸⁹	Paper not available
Arnold 2013 ⁹⁷	No relevant outcome
Bagshaw 2013 ¹²⁵	Not guideline condition
Bansal 2013 ¹³⁹	Invalid inclusion criteria
Bayer 2011 ¹⁵⁹	Incorrect interventions
Bayer 2012 ¹⁵⁸	Incorrect interventions
Boldt 1995 ²⁰²	No relevant outcome
Boldt 1996 ²⁰¹	Incorrect interventions
Boldt 1996 ²⁰³	Incorrect interventions
Boldt 1998 ²⁰⁴	Incorrect interventions
Boyd 2011 ²²²	Incorrect interventions
Brunkhorst 2008 ²³⁵	Incorrect interventions
Busund 1993 ²⁴¹	Incorrect interventions
Cardoso 2010 ²⁵²	Incorrect interventions
Carlsen 2011 ²⁵⁴	Incorrect interventions
Casserly 2011 ²⁶³	Incorrect interventions
Castellanos-ortega 2010 ²⁶⁴	Incorrect interventions
Chang 2014 ²⁸⁴	No relevant outcome
Chen 2014 ²⁹⁴	Incorrect interventions
Chong 2014 ³⁰⁸	Incorrect interventions
Chopra 2011 ³⁰⁹	Incorrect interventions
Chuesakoolvanich 2007 ³¹⁰	Not study design
Coen 2014 ³²²	Inappropriate comparison
Crowe 2010 ³³⁹	Inappropriate comparison
Cui 2012 ³⁴¹	Not English
De oliveira 2008 ³⁶⁶	Inappropriate comparison
Delaney 2011 ³⁷⁴	Incorrect interventions
Dubin 2010 ⁴⁰⁷	No relevant outcome
El solh 2008 ⁴¹²	Inappropriate comparison

424	
Ernest 1999 ⁴²⁴	No relevant outcome
Estrada 2013 ⁴³²	Commentary
Fang 2008 ⁴⁴¹	No relevant outcome
Femling 2014 ⁴⁴³	Incorrect interventions
Ferrer 2009 ⁴⁴⁹	Incorrect interventions
Finfer 2004 ⁴⁵⁴	Incorrect interventions
Ford 2012 ⁴⁶⁵	No relevant outcome
Fuller 2012 ⁴⁷⁰	No relevant outcome
Groeneveld 2011 ⁵²¹	Incorrect interventions
Guidet 2012 ⁵²⁸	Incorrect interventions
Gurnani 2010 ⁵³⁵	Incorrect interventions
Haase 2013 ⁵⁴¹	No relevant outcome
Haase 2013 ⁵⁴⁰	Incorrect interventions
Haase 2014 ⁵⁴²	Incorrect interventions
Holst 2013 ⁵⁸⁰	Study protocol
Jacob 2012 ⁶⁰⁶	Not study population
Jiang 2014 ⁶²³	Incorrect interventions
Jones 2007 ⁶²⁵	Inappropriate comparison
Karam 2011 ⁶³⁷	Incorrect interventions
Lee 2014 ⁷¹⁸	Incorrect interventions
Lefrant 2010 ⁷¹⁹	Incorrect interventions
Lin 2006 ⁷³⁰	Incorrect interventions
Liu 2013 ⁷³⁶	Incorrect interventions
Ma 2015 ⁷⁵¹	Systematic review
Maitland 2011 ⁷⁶⁰	Not guideline condition
Malbrain 2014 ⁷⁶¹	Not guideline condition
Miller 2013 ⁸⁰⁹	Incorrect interventions
Muller 2015 ⁸³⁰	Incorrect interventions
Murphy 2009 ⁸³³	Incorrect interventions
Nunes 2014 ⁸⁶²	No relevant outcome
Nurnberger 1999 ⁸⁶⁴	Incorrect interventions
O'neill 2012 ⁸⁶⁶	Incorrect interventions
Opiyo 2014 ⁸⁸¹	Incorrect interventions
Orbegozo cortes 2014 ⁸⁸²	Not guideline condition
Parsons 2011 ⁹⁰⁰	Incorrect interventions
Patel 2013 ⁹⁰¹	Incorrect interventions
Peake 2014 ⁹⁰⁸	Incorrect interventions
Perner 2012 ⁹¹⁵	Incorrect interventions
Perner 2012 ⁹¹⁴	Incorrect interventions
Purdy 1997 ⁹⁴¹	No relevant outcome
Raghunathan 2014 ⁹⁴⁸	Incorrect interventions
Raza 2015 ⁹⁵⁶	Not review population
Reiter 2013 ⁹⁶²	Incorrect interventions
Rewari 2014 ⁹⁶⁵	Abstract only
Rinaldi 2013 ⁹⁷¹	Incorrect interventions
Rivers 2001 ⁹⁷³	Incorrect interventions
Rochwerg 2014 ⁹⁷⁹	No relevant outcome
Rochwerg 2015 ⁹⁷⁸	Network meta-analysis with different study protocol
Rosland 2014 ⁹⁸⁸	Incorrect interventions

Serpa neto 2014 ¹⁰²⁰	No relevant outcome
Smith 2012 ¹⁰⁵¹	Incorrect interventions
Surat 2014 ¹⁰⁸²	Paper not available
Trof 2010 ¹¹⁰³	Inappropriate comparison
Upadhyay 2005 ¹¹²⁰	No relevant outcome
Vanparidon 2015 ¹¹²⁶	Invalid analysis
Veneman 2004 ¹¹³⁴	No relevant outcome
Wawrzeniak 2015 ¹¹⁶³	Inappropriate comparison
Wiedermann 2008 ¹¹⁶⁹	Incorrect interventions
Wittbrodt 2013 ¹¹⁷⁵	Incorrect interventions
Xu 2014 ¹¹⁸⁴	Incorrect interventions
Yang 2010 ¹¹⁹¹	Not English
Yealy 2014 ¹¹⁹³	Incorrect interventions
Zhang 2015 ¹²⁰⁸	Incorrect interventions
Zhong 2013 ¹²¹³	No relevant outcome

L.9 Escalation of care

Table 43: Studies excluded from the clinical review

Study	Exclusion reason
Alsolamy 2014 ⁶⁹	Invalid intervention
Austin 2014 ¹⁰⁷	Invalid population
Chamberlain 2015 ²⁷⁷	Invalid analysis
Esteban 2007 ⁴³¹	Invalid comparison
Evans 2014 ⁴³⁴	Invalid population
Femling 2014 ⁴⁴³	Invalid comparison
Fendler 2012 ⁴⁴⁴	Invalid intervention
Jaderling 2013 ⁶⁰⁸	Invalid comparison
Junhasavasdikul 2013 ⁶³²	Invalid population
Robert 2000 ⁹⁷⁵	Invalid outcome
Takeyama 2012 ¹⁰⁸⁸	Invalid intervention
Vinson 2014 ¹¹⁴⁶	Invalid intervention

L.10 Inotropic agents and vasopressors

Table 44: Studies excluded from this clinical review

Study	Exclusion reason
Acevedo 2009 ¹⁷	Abstract
Agrawal 2011 ³⁰	No relevant outcome
Agrawal 2012 ³¹	Invalid study design
Albanese 2004 ⁵⁷	No relevant outcome
Albanèse 2005 ⁵⁶	Incorrect interventions

Annatasit 2014 ⁷⁶ Retrospective analysis of VASST trial Anwar 2002 ⁸⁷ Not available Avni 2015 ¹⁶⁸ Systematic review Bahloul 2014 ¹³⁰ Inappropriate comparison Barton 1996 ¹⁵⁰ No relevant outcome Boulain 2009 ²³¹ Invalid study design Cardoso 2010 ²³² Incorrect interventions Cha 2004 ²⁷¹ Not fallish Daley 2013 ³⁴⁸ Invalid study design Dunser 2009 ⁴⁶⁸ No relevant outcome El Solla 2008 ⁴⁷² Incorrect interventions Cha 2004 ²⁷³ Invalid study design Dunser 2009 ⁴⁶⁸ No relevant outcome El Solla 2008 ⁴⁷² Incorrect interventions El Solla 2008 ⁴⁷² Invalid study population Gordon 2010 ²³³ Invalid study population Gordon 2010 ²³⁴ Not relevant outcome Hall 2004 ⁴⁶⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁷⁹ Inappropriate comparison Lampin 2012 ⁷²⁴ Inappropriate comparison Lampin 2012 ⁷²⁴ Inappropriate comparison Levy 2005 ⁷⁷² Inappropriate comparison Lupei 2009 ⁷⁸⁸ Inappropriate comparison Lupei 2009 ⁷⁸⁸ Inappropriate comparison Marka 2014 ⁷⁷³ Inappropriate comparison Marka 2014 ⁷⁷³ Inappropriate comparison Marka 2014 ⁷⁷³ Inappropriate comparison Marki 2000 ⁷⁸⁶ Inappropriate comparison Marki 2000 ⁷⁸⁷⁶ Inappropriate comparison Marki 2000 ⁷⁸⁷⁸ Inappropriate comparison Marki 2000 ⁷⁸⁸⁸ Inappropriate comparison Morelli 2000 ⁷⁸⁹⁸ Incorrect interventions Morelli 2000 ⁷⁸⁹⁸ Inappropriate comparison Morelli 2009 ⁷⁸⁹⁸ Inappropriate comparison Mulliner 2004 ⁷⁹⁹⁹ Systematic review Obritsch 2004 ⁷⁸⁹⁸ Inappropriate comparison Poriell 2012 ⁷⁸⁹⁸ Inappropriate	Study	Exclusion reason
Anvia 2002 ⁸⁷ Not available Avni 2015 ¹⁶⁸ Systematic review Backer 2012 ¹¹⁸ Systematic review Barkor 1996 ¹⁵⁰ No relevant outcome Boulain 2009 ²²¹ Invalid study design Cardoso 2010 ⁵²² Incorrect interventions Cardoso 2010 ⁵²² Incorrect interventions Daley 2013 ⁴⁶⁸ Invalid study design Durser 2009 ⁴⁶⁸ No relevant outcome El solh 2008 ⁴⁷² Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome El solh 2008 ⁴¹² Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵¹⁶ Invalid study design Klein 2006 ⁶¹⁴ Not relevant setting Klein 2006 ⁶¹⁴ Not relevant setting Klein 2008 ⁶²⁰ Inappropriate comparison Lampin 2012 ⁷²⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 1999 ⁷²² No relevant outcome Levy 1999 ⁷²³ Inappropriate comparison Lin 2006 ⁷²⁰ Inappropriate comparison Lin 2006 ⁷²⁰ Inappropriate comparison Mark 2014 ⁷⁷² Inappropriate comparison Mark 2014 ⁷⁷² Inappropriate comparison Mark 2010 ⁷⁷⁸ Inappropriate comparison Mark 2000 ⁷⁸⁸ Incorrect interventions Marke 2007 ⁸⁹⁵ Invalid study design Mono 2010 ²⁰⁰ Not guideline condition Morelli 2008 ⁷²⁸ Incorrect interventions Morimatus 2004 ⁸²⁹⁸ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁰⁷ Systematic review Obritsch 2008 ⁸⁶⁸ Inappropriate comparison O'neill 2012 ⁸⁶⁸ Inappropriate comparison Povea 2009 ⁸³⁵ Inappropriate comparison Povea 2009 ⁸³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Russell 2001 ⁹³⁹⁹ Inappropriate comparison Russell 2001 ⁹³⁹⁰ Inappropriate comparison Russell 2009 ⁹³⁹⁰ Inappropriate comparison Not review population Sakr 2006 ⁸⁹⁸ Inappropriate comparison		Retrospective analysis of VASST trial
Backer 2012 ¹¹⁵ Systematic review Bahloul 2014 ¹²⁰ Inappropriate comparison Barton 1996 ¹⁵⁰ No relevant outcome Boulain 2009 ²²¹ Invalid study design Cardoso 2010 ²⁵² Incorrect interventions Cha 2004 ²⁷¹ Not English Daley 2013 ³⁴⁸ Invalid Study design Dunser 2009 ⁴⁰⁸ No relevant outcome El solh 2008 ⁴¹² Incorrect interventions Elmenesy 2008 ⁴¹⁷ Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁸ Invalid study design Invalid study design Klein 2006 ⁵⁷⁴ Not relevant outcome Hall 2004 ⁵⁸⁶ Invalid study design Klein 2006 ⁵⁷⁴ Not relevant outcome Hall 2004 ⁵⁸⁶ Inpapropriate comparison Lampin 2012 ⁷⁹⁴ Inappropriate comparison Levy 1999 ⁷⁹² No relevant outcome Levy 2005 ⁷⁹³ Inappropriate comparison Lievy 1999 ⁷⁹⁴ No relevant outcome Hall 2004 ⁵⁸⁶ Inappropriate comparison Lupei 2009 ⁷⁸⁸ Inappropriate comparison Lupei 2009 ⁷⁸⁸ Inappropriate comparison Marka 2014 ⁷⁹³ Inappropriate comparison Marka 2004 ⁷⁹³ Inappropriate comparison Marka 2007 ⁷⁹⁸ Incorrect interventions Mack 2007 ⁷⁹⁸ Incorrect interventions Micek 2007 ⁷⁹⁸ Invalid study design Mono 2010 ⁸⁰⁹ Not guideline condition Morelli 2008 ⁸²³ Incorrect interventions Morelli 2008 ⁸²³ Incorrect interventions Morientsus 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³⁷ Systematic review Obritsch 2004 ⁸⁹⁸⁷ Systematic review Obritsch 2004 ⁸⁹⁸⁷ Systematic review Obritsch 2004 ⁸⁹⁸⁷ Inappropriate comparison Porela 2012 ⁸⁹⁸⁶ Inappropriate comparison Porela 2012 ⁸⁹⁸⁷ Inappropriate comparison Porela 2012 ⁸⁹⁸⁸ Inappropriate comparison Mullner 2004 ⁸⁹⁹⁷ Inappropriate comparison Mullner 2004 ⁸⁹⁹⁷ Inappropriate comparison Nor relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Porela 2012 ⁸⁹⁸⁸ Inappropriate comparison Porela 2012 ⁸⁹⁸⁹ Inappropriate comparison Porela 2012 ⁸⁹⁸⁹ Inappropriate comparison Nor review population Sake 2006 ⁹⁹⁹⁶ Inappropriate comparison	Anwar 2002 ⁸⁷	Not available
Bahloul 2014 ¹³⁰ Inappropriate comparison Barton 1996 ¹⁵⁰ No relevant outcome Boulain 2009 ²²¹ Invalid study design Cardoso 2010 ²⁵² Incorrect interventions Cardoso 2010 ²⁵² Incorrect interventions Daley 2013 ¹⁴⁸ Invalid study design Dunser 2009 ⁴⁶⁸ No relevant outcome El solh 2008 ⁴¹² Incorrect interventions Elmenesy 2008 ⁴⁴⁷ Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁵⁷⁴ Not relevant setting Klein 2006 ⁵⁷⁴ Not relevant setting Kumar 2008 ⁶⁰⁰ Inappropriate comparison Lawpin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²⁸ Inappropriate comparison Lupel 2009 ⁴⁴⁷ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷⁴ Inappropriate comparison Mark 2014 ⁷⁷⁵ Inappropriate comparison Mark 2008 ⁷⁸⁰ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁶ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2008 ⁸²³ Incorrect interventions Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸²¹ Cochrane review (outdated) Oba 2014 ⁸²⁷ Systematic review Obritsch 2004 ⁸²⁸ Inappropriate comparison Portisch 2004 ⁸²⁹ No relevant outcome Povoa 2009 ⁹³⁸ Inappropriate comparison Portisch 2004 ⁸²⁹ No relevant outcome Povoa 2009 ⁹³⁸ Inappropriate comparison Portisch 2004 ⁸²⁹ No relevant outcome Povoa 2009 ⁹³⁸ Inappropriate comparison Portisch 2004 ⁸²⁹ No relevant outcome Povoa 2009 ⁹³⁸ Inappropriate comparison Russell 2013 ⁹³⁸ Inappropriate comparison Russell 2013 ⁹³⁸ Inappropriate comparison Russell 2009 ⁸³⁰ Inappropriate comparison Russell 2009 ⁸³⁰ Inappropriate comparison	Avni 2015 ¹⁰⁸	Systematic review
Barton 1996 ¹⁵⁰ No relevant outcome Boulain 2009 ²²¹ Invalid study design Cardoso 2010 ²⁵² Incorrect interventions Cha 2004 ²⁷⁷ Not English Daley 2013 ³⁵⁴⁸ Invalid study design Dunser 2009 ⁴⁶⁸ No relevant outcome El solh 2008 ⁴¹² Incorrect interventions El solh 2008 ⁴¹⁷ Not available Gordon 2010 ⁵²¹⁰ Invalid study oppulation Gordon 2010 ⁵²¹⁰ Invalid study design Melai 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁵⁷⁴ Not relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁵⁷⁴ Not relevant setting Klein 2006 ⁵⁷⁴ Not relevant setting Klein 2006 ⁵⁷⁴ Not relevant outcome Lampin 2012 ⁷⁰⁴ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2000 ⁷⁸⁵ Incorrect interventions Mick 2007 ⁸⁰⁵ Invalid study design Moon 2010 ²²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatus 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸²⁶ Inappropriate comparison Mullner 2004 ⁸²⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison Mullner 2004 ⁸²⁸ Inappropriate comparison Poblisch 2004 ⁸⁶⁹ Inappropriate comparison Mullner 2004 ⁸²⁹ Inappropriate comparison Poblisch 2004 ⁸⁶⁹ Inappropriate comparison Poblisch 2008 ⁸⁶⁹ Inappropriate comparison Poblisch 2008 ⁸⁶⁹ Inappropriate comparison Russell 2013 ⁸⁶⁹ Inappropriate com	Backer 2012 ¹¹⁵	Systematic review
Boulain 2009 ²²¹ Invalid study design Cardoso 2010 ²⁵² Incorrect interventions Cha 2004 ²⁷³ Not English Daley 2013 ²⁸⁸ Invalid study design Dunser 2009 ⁴⁶⁸ No relevant outcome El solh 2008 ⁴¹² Incorrect interventions Elmenesy 2008 ⁴¹⁷ Not available Gordon 2010 ⁸¹⁰ Invalid study population Gordon 2012 ⁸¹¹ No relevant cutcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁰⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2000 ⁷⁹⁸ Incorrect interventions Micek 2007 ⁸⁰⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Not guideline condition Morrelli 2008 ⁸²³ Incorrect interventions Morimatsu 2	Bahloul 2014 ¹³⁰	Inappropriate comparison
Cardoso 2010 ²⁵² Incorrect interventions Cha 2004 ²⁷¹ Not English Daley 2013 ³⁴⁸ Invalid study design Dunser 2009 ⁴⁰⁸ No relevant outcome El solh 2008 ⁴¹² Incorrect interventions Elimenesy 2008 ⁴¹⁷ Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2006 ⁶⁷⁴ Not relevant setting Kumar 2006 ⁶⁷⁶ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³⁶ Incorrect interventions Morimatsu 2004 ⁸²⁶ Systematic review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁸⁰⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁸⁰⁰ Inappropriate comparison Russell 2013 ⁹³⁹ Not review population Sakr 2006 ⁹³⁶ Inappropriate comparison	Barton 1996 ¹⁵⁰	No relevant outcome
Cha 2004 ²⁷¹ Not English Daley 2013 ³⁴⁸ Invalid study design Dunser 2009 ⁴⁰⁸ No relevant outcome El solh 2008 ⁴¹² Incorrect interventions Ellemensy 2008 ⁴¹⁷ Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁸⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Markin 2000 ⁷⁹⁰ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Mick 2005 ⁷⁸⁵ Incorrect interventions Mick 2005 ⁷⁸⁵ Incorrect interventions Morol 2010 ⁸²⁰ Not guideline condition Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸⁸¹ Cochrane review (outdated) Oba 2014 ⁸⁸⁷ Systematic review Obritsch 2004 ⁸⁸⁸ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁸⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁸³⁸ Inappropriate comparison Russell 2009 ⁹³² Inappropriate comparison Russell 2009 ⁹³² Inappropriate comparison Russell 2009 ⁹³² Inappropriate comparison Russell 2003 ⁹³² Inappropriate comparison	Boulain 2009 ²²¹	Invalid study design
Daley 2013 ³⁴⁶ Invalid study design Dunser 2009 ⁴⁰⁸ No relevant outcome El solh 2008 ⁴¹⁷ Incorrect interventions Elmeney 2008 ⁴¹⁷ Not available Gordon 2015 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Invalid study design Mon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Inappropriate comparison Muliner 2004 ⁸²⁵ Inappropriate comparison Muliner 2004 ⁸²⁵ Inappropriate comparison Muliner 2004 ⁸²⁶ Inappropriate comparison Muliner 2004 ⁸²⁷ Systematic review (outdated) Oba 2014 ⁸⁶⁷ Systematic review (outdated) Oba 2014 ⁸⁶⁸ Inappropriate comparison Povoa 2009 ⁸²⁵ Inappropriate comparison Povoa 2009 ⁸²⁶ Inappropriate comparison Radiguez-nunez 2006 ⁶⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁶⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁶⁸⁰ Inappropriate comparison Russell 2003 ⁶⁹² Inappropriate comparison Russell 2003 ⁶⁹³ Inappropriate comparison Russell 2003 ⁶⁹³ Inappropriate comparison Russell 2003 ⁶⁹³ Inappropriate comparison	Cardoso 2010 ²⁵²	Incorrect interventions
Dunser 2009 ⁴⁰⁸ No relevant outcome El solh 2008 ⁴¹² Incorrect interventions Elmenesy 2008 ⁴¹⁷ Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupie 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2005 ⁷⁸⁵ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Moro 2010 ⁸²⁰ Not guideline condition Morolli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Muliner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison Vinelli 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Russell 2002 ⁹⁰² Inappropriate comparison Russell 2002 ⁹⁰² Inappropriate comparison Russell 2003 ⁹³⁶ Inappropriate comparison Russell 2003 ⁹³⁷ Not relevant outcome Russell 2003 ⁹³⁸ Inappropriate comparison Russell 2003 ⁹³⁹ Inappropriate comparison	Cha 2004 ²⁷¹	Not English
El solh 2008 ⁴¹² Incorrect interventions Elmenesy 2008 ⁴¹⁷ Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2008 ⁵⁶⁶ Invalid study design Klein 2006 ⁵⁷⁴ Not relevant setting Kumar 2008 ⁸⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lina 2006 ⁷³⁰ Inappropriate comparison Lina 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2001 ⁷⁷⁹ Incorrect interventions March 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁰⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Povoa 2009 ⁹³⁵ Inappropriate comparison Povoa 2009 ⁹³⁵ Inappropriate comparison Povoa 2009 ⁹³⁵ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Daley 2013 ³⁴⁸	Invalid study design
Elmenesy 2008 ⁴¹⁷ Not available Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁵⁷⁴ Not relevant setting Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Micek 2007 ⁸⁰⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁹ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison	Dunser 2009 ⁴⁰⁸	No relevant outcome
Gordon 2010 ⁵¹⁰ Invalid study population Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷¹² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Marcon 2000 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁴ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Pova 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison	El solh 2008 ⁴¹²	Incorrect interventions
Gordon 2012 ⁵¹¹ No relevant outcome Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mick 2007 ⁸⁰⁵ Incorrect interventions Mick 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁸⁹⁰ Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Elmenesy 2008 ⁴¹⁷	Not available
Hall 2004 ⁵⁴⁶ Invalid study design Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2007 ⁷⁸⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹³ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions	Gordon 2010 ⁵¹⁰	Invalid study population
Klein 2006 ⁶⁷⁴ Not relevant setting Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rossell 2009 ⁹⁹² Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison	Gordon 2012 ⁵¹¹	No relevant outcome
Kumar 2008 ⁶⁹⁰ Inappropriate comparison Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Hall 2004 ⁵⁴⁶	Invalid study design
Lampin 2012 ⁷⁰⁴ Inappropriate comparison Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Klein 2006 ⁶⁷⁴	Not relevant setting
Levy 1999 ⁷²² No relevant outcome Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Mark 2010 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Inappropriate comparison Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Kumar 2008 ⁶⁹⁰	Inappropriate comparison
Levy 2005 ⁷²³ Inappropriate comparison Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Lampin 2012 ⁷⁰⁴	Inappropriate comparison
Lin 2006 ⁷³⁰ Inappropriate comparison Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Levy 1999 ⁷²²	No relevant outcome
Lupei 2009 ⁷⁴⁸ Inappropriate comparison Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Levy 2005 ⁷²³	Inappropriate comparison
Mark 2014 ⁷⁷³ Inappropriate comparison Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2003 ⁹⁹³ Inappropriate comparison Russell 2003 ⁹⁹⁴ Inappropriate comparison Russell 2003 ⁹⁹⁵ Inappropriate comparison Russell 2003 ⁹⁹⁶ Inappropriate comparison	Lin 2006 ⁷³⁰	Inappropriate comparison
Martin 2000 ⁷⁷⁹ Incorrect interventions Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2009 ⁹⁹³ Inappropriate comparison Russell 2009 ⁹⁹⁴ Inappropriate comparison Russell 2009 ⁹⁹⁵ Inappropriate comparison Russell 2009 ⁹⁹⁶ Inappropriate comparison Russell 2009 ⁹⁹⁷ Inappropriate comparison Russell 2009 ⁹⁹⁸ Inappropriate comparison Russell 2009 ⁹⁹⁹⁸ Inappropriate comparison Russell 2009 ⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹	Lupei 2009 ⁷⁴⁸	Inappropriate comparison
Matok 2005 ⁷⁸⁵ Incorrect interventions Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2003 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Mark 2014 ⁷⁷³	Inappropriate comparison
Micek 2007 ⁸⁰⁵ Invalid study design Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Martin 2000 ⁷⁷⁹	Incorrect interventions
Moon 2010 ⁸²⁰ Not guideline condition Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Matok 2005 ⁷⁸⁵	Incorrect interventions
Morelli 2007 ⁸²² Abstract Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Micek 2007 ⁸⁰⁵	Invalid study design
Morelli 2008 ⁸²³ Incorrect interventions Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Moon 2010 ⁸²⁰	Not guideline condition
Morimatsu 2004 ⁸²⁵ Inappropriate comparison Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Morelli 2007 ⁸²²	Abstract
Mullner 2004 ⁸³¹ Cochrane review (outdated) Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Morelli 2008 ⁸²³	Incorrect interventions
Oba 2014 ⁸⁶⁷ Systematic review Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Morimatsu 2004 ⁸²⁵	Inappropriate comparison
Obritsch 2004 ⁸⁶⁹ Inappropriate comparison O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Mullner 2004 ⁸³¹	Cochrane review (outdated)
O'neill 2012 ⁸⁶⁶ Inappropriate comparison Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Oba 2014 ⁸⁶⁷	Systematic review
Patel 2002 ⁹⁰² No relevant outcome Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Obritsch 2004 ⁸⁶⁹	Inappropriate comparison
Povoa 2009 ⁹³⁵ Inappropriate comparison Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	O'neill 2012 ⁸⁶⁶	Inappropriate comparison
Prys-picard 2013 ⁹³⁸ Inappropriate comparison Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Patel 2002 ⁹⁰²	No relevant outcome
Rodriguez-nunez 2006 ⁹⁸⁰ Incorrect interventions Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Povoa 2009 ⁹³⁵	Inappropriate comparison
Russell 2009 ⁹⁹² Inappropriate comparison Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Prys-picard 2013 ⁹³⁸	Inappropriate comparison
Russell 2013 ⁹⁹¹ Not review population Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Rodriguez-nunez 2006 ⁹⁸⁰	Incorrect interventions
Sakr 2006 ⁹⁹⁶ Inappropriate comparison	Russell 2009 ⁹⁹²	Inappropriate comparison
	Russell 2013 ⁹⁹¹	Not review population
Serpa neto 2012 ¹⁰¹⁹ Incorrect interventions	Sakr 2006 ⁹⁹⁶	Inappropriate comparison
	Serpa neto 2012 ¹⁰¹⁹	Incorrect interventions

Study	Exclusion reason
Shapiro 2006 ¹⁰²⁴	Incorrect interventions
Soong 2011 ¹⁰⁶¹	Inappropriate comparison
Tourneux 2008 ¹¹⁰¹	Inappropriate comparison
Tsapenko 2013 ¹¹⁰⁸	Inappropriate comparison
Tsuneyoshi 2001 ¹¹¹¹	Invalid study design
Vasu 2012 ¹¹³²	Systematic review
Waechter 2014 ¹¹⁵²	Inappropriate comparison
Wilkman 2013 ¹¹⁷¹	Inappropriate comparison
Yildizdas 2008 ¹¹⁹⁶	Incorrect interventions
Zhang 2015 ¹²⁰⁸	Inappropriate comparison
Zhao 2012 ¹²¹²	Not English
Zhou 2013 ¹²¹⁴	Not English
Zhou 2014 ¹²¹⁵	Systematic review
Zhou 2015 ¹²¹⁶	Systematic review

L.11 Supplemental oxygen

Table 45: Studies excluded from the clinical review

Reference	Reason for exclusion
Alia 1999 ⁶³	Inappropriate comparison (therapy with normal targeted value of oxygen delivery versus targeted oxygen delivery index)
Balk 2004 ¹³⁴	Inappropriate study design (narrative paper)
Bellomo 2008 ¹⁶⁸	Inappropriate study design (commentary)
Crone 1994 ³³⁸	Inappropriate study design (letter to the editor)
Duarte 2005 ⁴⁰⁶	Inappropriate study design (narrative review)
Erstad 1994 ⁴²⁶	Review with different protocol
Esen 1992 ⁴³⁰	Inappropriate intervention (artificial ventilation)
Ferrer 200 ⁴⁴⁸	Inappropriate population (acute hypoxemic respiratory failure) and incorrect comparison (non invasive ventilation versus oxygen using high concentration sources)
Freebairn 1997 ⁴⁶⁶	Inappropriate interventions (vecuronium or saline closed-loop infusion)
Ince 1999 ⁵⁹⁸	Review with different protocol
Matuschak 1997 ⁷⁸⁷	Review with different protocol
Rampal 2010 ⁹⁴⁹	Review with different protocol
Russell 1995 ⁹⁹⁰	Inappropriate study design (narrative review)
Textoris 2011 1094	Inappropriate intervention (local hospital protocol)
Vincent 1995 ¹¹⁴²	Inappropriate study design (narrative review)

L.12 Use of bicarbonate

Table 46: Studies excluded from the clinical review

Reference	Reason for exclusion
Kim 2013 ⁶⁶³	Population not relevant to review question (61% of patients had sepsis as cause of lactic acidosis; 67 % of the population received bicarbonate therapy)
Velissaris 2015 ¹¹³³	Literature review

L.13 Early goal-directed therapy (EGDT)

None.

L.14 Monitoring

Table 47: Studies excluded from the clinical review (use of scoring systems)

Reference	Reason for exclusion
Abbott 2015 ¹¹	Intervention does not match protocol (not for monitoring: comparison of NEWS and PARS)
	Population does not match protocol (not sepsis specific: all patients admitted to the acute assessment unit)
Adshead 2009 ²⁸	Incorrect study design (narrative article)
Akre 2010 ⁴⁵	Intervention does not match protocol (not for monitoring: external validation or PEWS and calculation of median time from critical PEWS to rapid response team)
	Population does not match protocol (not sepsis specific: hospitalised paediatric patients, respiratory, infectious disease, cancer, cardiac, digestive)
Alam 2014A ⁵³	Intervention does not match protocol (not for monitoring: systematic review on ability of EWS to identify patients at risk of deterioration)
	Population does not match protocol (not sepsis specific: ED and ward patients)
Alam 2015 ⁵⁴	Intervention does not match protocol (not for monitoring: validation of NEWS to predict adverse outcome)
	Population does not match protocol (not sepsis specific: all ED patients with an emergency severity index of 2 and 3 not triaged to the resuscitation room)
Albert 2011 ⁵⁸	Intervention does not match protocol (not for monitoring: development of a modified EWS)
	Population does not match protocol (not sepsis specific: cardiac, respiratory, neurological, sepsis (1.3%))
Alrawi 2013 ⁶⁸	Intervention does not match protocol (not for monitoring: to assess ability of MEWS to predict mortality)
	Population does not match protocol (not sepsis specific: acutely ill nursing home residents)
Anon 2014B ⁹	Incorrect study design (narrative article)
Armagan 2008 ⁹⁴	Intervention does not match protocol (not for monitoring: validation of MEWS)

Reference	Reason for exclusion
	Population does not match protocol (not sepsis specific: all ED patients)
Ausania 2015 ¹⁰⁶	Intervention does not match protocol (not for monitoring: multivariable analysis of risk factors associated with morbidity and mortality) Population does not match protocol (not sepsis specific: post-operative patients)
Bayer 2015 ¹⁶⁰	Intervention does not match protocol (not for monitoring: development of a new scoring system, not externally validated) Population does not match protocol (not sepsis specific: all patients admitted to ED)
Bradman 2008 ²²⁴	Intervention does not match protocol (not for monitoring: to see if PEWS could determine at triage children who needed admission or who could be discharged at home) Population does not match protocol (not sepsis specific: all children attending the paediatric emergency department)
Badriyah 2014 ¹¹⁷	Intervention does not match protocol (not for monitoring: validation of NEWS) Population does not match protocol (not sepsis specific: all patients admitted to the medical assessment unit)
Breslin 2014 ²²⁶	Intervention does not match protocol (to establish that higher PEWS at time of ED disposition decision is associated with need for higher levels of care at ED disposition, not for monitoring) Population does not match protocol (not sepsis specific: ED patients)
Burch 2008 ²³⁹	Intervention does not match protocol (to evaluate the utility of MEWS as a triage tool, not for monitoring) Population does not match protocol (not sepsis specific: medical patients presenting to the ED)
Chaiyakulsil 2015 ²⁷⁴	Population does not meet protocol (not sepsis)
Cei 2009 ²⁶⁸	Intervention does not match protocol (to identify patients at risk of deterioration, not for monitoring) Population does not match protocol (not sepsis specific: all patients admitted to a medical ward)
Churpek 2013 ³¹²	Intervention does not match protocol (to discuss risk scores for use on the general inpatient wards to predict mortality, ICU transfer and cardiac arrest, not for monitoring) Population does not match protocol (not sepsis specific: patients on general wards)
Cildir 2013 ³¹⁵	Intervention does not match protocol (not for monitoring: to evaluate the ability of MEDS, MEWS and the Charlson comorbidity index (CCI) to predict prognosis in patients who are diagnosed in sepsis)
Corfield 2014 ³²⁸	Intervention does not match protocol (not for monitoring: to determine, in patients with sepsis, whether a single NEWS on ED arrival is a predictor of mortality, or ICU admission)
Correia 2014 ³³⁰	Intervention does not match protocol (not for monitoring: EWS score at -72h, -24h and -12h in patients transferred from the ward to the ER) Population does not match protocol (not sepsis specific: cardiovascular, respiratory, neurological, renal or other clinical reasons)
Dawes 2014 ³⁵⁵	Intervention does not match protocol (not for monitoring: ability of the Worthing PSS score, calculated using VitalPAC, to predict mortality.) Population does not match protocol (not sepsis specific: all patients admitted to the Acute Medical Unit)

Reference	Reason for exclusion
De Meester 2013A ³⁶⁵	Intervention does not match protocol (monitoring for serious adverse events after ICU discharge)
	Population does not match protocol (not sepsis specific: surgical and medical ICU patients)
Ennis 2014 ⁴²²	Intervention does not match protocol (not for monitoring: evaluate the effectiveness of PEWS to early detect clinical deterioration)
	Population does not match protocol (not sepsis specific: acutely ill children in hospital)
Fairclough 2009 ⁴³⁸	Intervention does not match protocol (not for monitoring: use of MEWS to predict mortality in acute medical admission unit)
	Population does not match protocol (not sepsis specific: only 12% of patients had sepsis)
Finlay 2014 ⁴⁵⁵	Intervention does not match protocol (not for monitoring: MEWS to predict mortality)
	Population does not match protocol (not sepsis specific: general medical-surgical patients)
Friedman 2015 ⁴⁶⁷	Incorrect study design (narrative review)
Fuijkschot 2015 ⁴⁶⁹	Intervention does not match protocol (not for monitoring: PEWS to identify patients for PICU admission)
	Population does not match protocol (not sepsis specific: all patients receiving emergency medical interventions at the paediatric wards; all patients admitted to paediatric oncology ward)
Goldhill 2004 ⁵⁰⁷	Intervention does not match protocol (not for monitoring: physiological variables to predict mortality)
	Population does not match protocol (not sepsis specific: all patients in non-obstetric bed area)
Goldhill 2005 ⁵⁰⁸	Intervention does not match protocol (not for monitoring: physiological variables and Patient-At-Risk score to predict mortality)
	Population does not match protocol (not sepsis specific: outreach service database)
Griffiths 2012 ⁵²⁰	Incorrect study design (survey)
Haines 2006 ⁵⁴⁴	Intervention does not match protocol (not for monitoring: to develop and evaluate a clinical and physiologically based for identification of acutely ill children in ward areas) Population does not match protocol (not sepsis specific)
Hammond 2013 ⁵⁴⁸	Intervention does not match protocol (not sepsis specific)
Hammond 2013	change in combination or individual vital signs frequency before and after MEWS implementation)
	Population does not match protocol (not sepsis specific: ICU patients with three diagnostic groups: cardiovascular, respiratory and gastrointestinal)
Henry 2015 ⁵⁶¹	Outcome does not match protocol (diagnostic accuracy data)
Ho 2013 ⁵⁷⁷	Intervention does not match protocol (not for monitoring: MEWS to
	predict mortality and ICU admission) Population does not match protocol (not sepsis specific: critically ill patients who require continuous ECG monitoring)
Holme 2013 ⁵⁷⁹	Intervention does not match protocol (not for monitoring: To design and
Holling 2013	validate an objective clinical scoring system to identify unwell neonates) Population does not match protocol (not sepsis specific: all neonates >35 weeks' gestation admitted to the NICU)
Jarvis 2015A ⁶¹⁶	Intervention does not match protocol (not for monitoring: use of NEWS
Jai VIS ZULJA	intervention does not match protocol (not for monitoring, use of NEWS

Reference	Reason for exclusion
Reference	to calculate risk of death and adverse outcome)
	Population does not match protocol (not sepsis specific: all patients admitted to hospital)
Jo 2013 ⁶²⁴	Intervention does not match protocol (not for monitoring: to examine whether the predictive value of EWS could be improved by including rapid lactate levels, and to compare the modified EWS with the preexisting risk scoring systems)
Kaul 2014 ⁶⁴²	Incorrect study design (survey)
Kellett 2012 ⁶⁴⁵	Intervention does not match protocol (not for monitoring: validation of an abbreviated Vitalpac Early Warning Score) Population does not match protocol (not sepsis specific: includes surgical patients, medical, cardiac, oncology, renal and stroke patients)
Kyriacos 2011 ⁶⁹⁸	Intervention does not match protocol (not for monitoring: review the validity of EWS/MEWS)
	Population does not match protocol (not sepsis specific: population not specified)
Lam 2006 ⁷⁰³	Intervention does not match protocol (not for monitoring: applicability of MEWS for the emergency department observation ward to predict serious outcome)
	Population does not match protocol (not sepsis specific: patients with cardiac or gastrointestinal symptoms, or dizziness)
Liu 2015 ⁷³⁵	Intervention does not match protocol (not for monitoring: validation of National EWS in emergency intensive care unit)
	Population does not match protocol (not sepsis specific: neurological, cardiovascular, respiratory, gastrointestinal and other diseases)
Ludikhuize 2012 ⁷⁴⁷	Intervention does not match protocol (not for monitoring: effectiveness of MEWS to predict cardiopulmonary arrest, ICU admission, death, emergency surgery) Population does not match protocol (not sepsis specific: patients on
	general wards)
Ludikhuize 2014 ⁷⁴⁶	Intervention does not match protocol (not for monitoring: implementation of a RRs protocol) Population does not match protocol (not sepsis specific: hospitalised
	patients)
Mandell 2015 ⁷⁶⁴	Population does not match protocol (not sepsis population)
Moseson 2014 ⁸²⁶	Intervention does not match protocol (not for monitoring: comparison of APACHE II, APACHE III, SAPS II, MEWS, REMS, PEDS to predict mortality)
	Population does not match protocol (not sepsis specific: critically ill patients admitted to the ICU with one of the following diagnosis category: respiratory, cardiovascular, infectious disease, neurology, gastrointestinal, other)
Oldroyd 2011 ⁸⁷⁵	Incorrect study design (narrative article)
Parshuram 2011 ⁸⁹⁸	Intervention does not match protocol (not for monitoring: before-and- after study to evaluate the effect of implementation of the Bedside PEWS)
	Population does not match protocol (not sepsis specific: all paediatric patients)
Parshuram 2011A ⁸⁹⁹	Repeated measures analysis showed that the Bedside PEWS increased over the 24 hours before urgent ICU admission or code blue event from a baseline mean score of 5.3, 20-24h before clinical deterioration, to 8.4 in the last 4 h

Reference	Reason for exclusion	
	Population does not match protocol (not sepsis specific: all paediatric patients, case-control study)	
Patterson 2011 ⁹⁰³	Incorrect study design (survey)	
Pearson 2011 ⁹⁰⁹	Incorrect study design (narrative article)	
Prytherch 2010 ⁹³⁹	Intervention does not match protocol (not for monitoring: to develop a validated, paper-based, aggregate weighted track and trigger system (AWTTS) for the detection of patient deterioration) Population does not match protocol (not sepsis specific: database of	
	acute medical admissions)	
Reini 2012 ⁹⁶¹	Intervention does not match protocol (not for monitoring: to assess ability of MEWS, SAPS III, and SOFSA to predict ICU mortality)	
	Population does not match protocol (not sepsis specific: only 13% of participants had sepsis. ICU setting)	
Seiger 2013 ¹⁰¹⁵	Intervention does not match protocol (not for monitoring: review to evaluate ability of PEWS to predict hospitalisation and ICU admission) Population does not match protocol (not sepsis specific: all children presenting to the ED with the following problems: trauma, gastrointestinal, FWS, dyspnea, wounds, neurologic, urinary tract problems, local infection/abscess, rash, ear, nose, throat, other)	
Silcock 2015 ¹⁰³⁷	Intervention does not match protocol (not for monitoring: validation of NEWS in identifying patients at risk of death or deterioration in the pre-hospital setting) Population does not match protocol (not sepsis specific: unselected pre-hospital patients)	
Skaletzky 2012 ¹⁰⁴⁶	Intervention does not match protocol (not for monitoring: validation of a modified PEWS) Population does not match protocol (not sepsis specific: all patients	
Smith 2013 ¹⁰⁴⁹	admitted to medical-surgical wards. Case-control study) Intervention does not match protocol (not for monitoring: evaluate the ability of NEWS to detect mortality and ICU admission)	
	Population does not match protocol (not sepsis specific: patients admitted to the medical assessment unit)	
Smith 2014 ¹⁰⁵⁰	Intervention does not match protocol (not for monitoring: review on the validity of EWS)	
	Population does not match protocol (not sepsis specific: medical and surgical inpatients)	
So 2015 ¹⁰⁵³	Intervention does not match protocol (to detect weather ED monitoring by MEWS is better than nurse clinical judgement in changing the patient's ED management plan)	
	Population does not match protocol (not sepsis specific: all patients being held in the ED observation area because of access block to the following specialty wards: medical, general surgery, neurosurgery and clinical oncology)	
Solevag 2013 ¹⁰⁵⁵	Intervention does not match protocol (not for monitoring: to assess the correlation of modified PEWS results with other indicators of severe illness) Population does not match protocol (not sepsis specific: injury, congenital	
	cardiovascular disease, acquired cardiovascular disease, neurological disease, renal disease including urinary tract infection, gastrointestinal disease, respiratory, other infection, miscellaneous including dehydration and diabetes ketoacidosis)	

Reference	Reason for exclusion
Subbe 2001 ¹⁰⁷⁸	Intervention does not match protocol (not for monitoring: validation of a modified EWS)
	Population does not match protocol (not sepsis specific: all medical emergency admissions admitted to the medical admissions unit)
Tafelski 2015 ¹⁰⁸⁶	Intervention does not match protocol (not for monitoring: application of three different PIRO systems)
Tucker 2009 ¹¹¹²	Intervention does not match protocol (not for monitoring: validation of PEWS)
	Population does not match protocol (not sepsis specific: most common diagnosis were asthma exacerbation, bronchiolitis and pneumonia)
Van Rooijen 2013 ¹¹²⁷	Intervention does not match protocol (not for monitoring: evaluation of the threshold value for the EWS on general wards) Population does not match protocol (not sepsis specific: all patients on medical and surgical wards)
Vorwerk 2009 ¹¹⁴⁸	Intervention does not match protocol (not for monitoring: to determine the efficacy of the abbreviated MEDS score (without neutrophil bands), and MEWS in predicting mortality in adult ED patients with sepsis)
Yoo 2015 ¹²⁰⁰	Intervention does not match protocol (not for monitoring: to determine whether use of a combination of MEWS and lactate enhances prediction of ICU transfer and mortality in hospitalized patients with severe sepsis/septic shock)

L.15 Patient education, information and support

Table 48: Studies excluded from the clinical review

Reference	Reason for exclusion
Flynn 2012 ⁴⁶²	SR includes studies in wrong population
Higgins 2008 ⁵⁷¹	Wrong population
Jeon 2012 ⁶¹⁹	Wrong intervention
Obermann 2007 ⁸⁷¹	Wrong intervention
Plowright 2013 ⁹²⁵	Wrong study type
Yamamoto 1997 ¹¹⁸⁸	Wrong intervention

L.16 Education and training

Table 49: Studies excluded from the clinical review

Reference	Reason for exclusion
Adler 2007 ²⁶	Not relevant to review question
Allen 2011 ⁶⁶	Not relevant to review question
Anon 2008 ⁴	Not relevant to review question
Anon 2005A ²	Not relevant to review question
Anon 2007 ³	Comment
Anon 2008F ⁵	Not relevant to review question
Anon 2010 ⁶	Not relevant to review question.

Reference	Reason for exclusion	
Anon 2010A ⁷	Comment	
Anon 2013D ⁸	Comment	
Arabi 2014 ⁹¹	Expert opinion	
Assuncao 2010 ¹⁰³	No detail about how training was carried out	
Assuncao 2014 ¹⁰⁴	No detail about how training was carried out	
Austin 2014 ¹⁰⁷	Not relevant to review question	
Bach 1996 ¹¹⁴	Not relevant to review question.	
Berger 2010 ¹⁷⁷	Not education/training.	
Bond 2013 ²¹¹	No detail about how training was carried out	
Bridgewater 2014	Critical care nursing education/degree	
Bruce 2011 ⁷⁹³	Protocol. Not on education/training	
Buckley 2010 ²³⁷	Implementation of a protocol, not any details of training	
Burney 2012 ²⁴⁰	Not relevant to review question	
Baez 2013 ¹¹⁸	not relevant to review question/not enough details in paper	
Barbieri 2013 ¹⁴⁴	Quality improvement initiatives, do not explain specific training or education	
Benczo 2004 ¹⁷⁰	Not related to sepsis	
Benson 2014 ¹⁷⁴	Early recognition, not training	
Berg 2013 ¹⁸⁰	No details of how implemented/training	
Capp 2011 ⁴⁶⁴	No details of training provided	
Carlbom 2007 ²⁵³	Survey on barriers which may inform a training intervention but no training intervention	
Casserly 2011 ²⁶³	Implementation of a Sepsis Intervention Programme, but no details on training	
Chamberlain 2006 ²⁷⁶	Short summary	
Carter 2007 ²⁵⁹	Outcomes not adequately measured	
Castro2008 ²⁶⁵	Comparison of 2 intervention protocols, but no details on training	
Chen 2013 ¹²¹¹	Impact of an education programme on patient outcomes. Details of training and education programme not included	
Coba 2011 ³²⁰	Outcomes not adequately measured	
Croft 2014 ³³⁷	Not relevant to review question.	
Cruz 2012 ³⁴⁰	Not relevant to review question.	
Daniels 2010	No details of training provided	
Daniels 2011 ³⁵¹	States staff underwent training on sepsis 6 but no details of training provided	
De Groot 2012 ³⁶⁰	No details of training provided.	
Demmel 2010 ³⁷⁶	Not relevant to review question.	
Desmond 2013 ³⁸⁰	Not relevant population.	
Deutsch 2014 ³⁸²	Conference abstract	
Devita 2007 ³⁸⁴	GDG ref. Comment on review	
Fadale 2014 ⁴³⁵	Not relevant to review question. Training about vasopressor titration.	
Fitzpatrick 2014 ⁴⁵⁷	Not relevant to review question. Wrong study design.	
Fuchs 2015 ⁴⁶⁸	Conference abstract	
Funk 2009 ⁴⁷¹	Review proposes and discusses barriers and RRS but does not present actual results of effectiveness of these.	

ReferenceReason for exclusionGannon 2011482Not relevant to review question.Gerber 2010493Not relevant to review question.Gerdtz2013495GDG ref. Not relevant to review question.Girardis 2009501Not relevant to review question. Deve	
Gerber 2010 ⁴⁹³ Not relevant to review question. Gerdtz2013 ⁴⁹⁵ GDG ref. Not relevant to review ques	
·	
Girardis 2009 ⁵⁰¹ Not relevant to review question. Deve	stion
	elopment and implementation of a
protocol. No details given on the train	ing and education.
Granier 1998 ⁵¹⁵ Not relevant to review question.	
Greenspoon 1994 Implementation of a protocol.	
Guerra 2013 ⁵²⁵ No detail about how training was carri	ied out
Gultepe 2014 ⁵³² Not relevant to review question	
Harrigan 2006 ⁵⁵⁵ GDG ref. Not relevant to review quest	ion.
Herasevich 2011 ⁵⁶³ Not relevant to review question.	
Hitti 2012 ⁵⁷⁵ No details of training provided.	
Huggan 2011 ⁵⁹¹ summary	
Hurtado 2006 ⁵⁹³ summary of bundles in surviving sepsi	is campaign
Jeon 2012 ⁶¹⁹ GDG ref. Not relevant to review quest No details given on the training and ed	
Jones 1998 ⁶²⁹ Comment on sepsis and SIRS definition	ns
Jones 2014 ⁶²⁶ Not relevant to review question.	
Kang 2012 ⁶³⁵ Not relevant to review question.	
Kellie 2014 ⁶⁴⁶ Not relevant to review question.	
Kim 2001 ⁶⁶⁶ Prevention of infection for HCP	
Kim 1999 ⁶⁶¹ Not relevant to review question.	
Kleinpell 2014 ⁶⁷⁵ comment on SSC and bundles, not orig	ginal research
Kollef 2010 ⁶⁸³ GDG ref. Not relevant to review quest No details given on the training and ed	
Larosa 2012 ⁷⁰⁸ Not relevant to review question. No education.	details given on the training and
Launay 2011 No details of training provided.	
Levy 2010 ⁷²⁴ No detail about what was how training	g/education carried out.
Levy 2014 No detail about what was how training	g/education carried out.
Lobo 2005 ⁷³⁹ GDG ref. Prevention of catheter-relate awareness of identification/ managem	_
Lobo 2010 ⁷³⁸ Prevention of catheter-related infection identification/ management of sepsis	ons, not about raising awareness of
Mackintosh 2012 ⁷⁵⁴ GDG ref. Not relevant to review quest	ion. Not about education/training
Mahavanakul 2012 ⁷⁵⁸ Not relevant to review question.	
McGaughey 2010 ⁷⁹⁰ GDG ref. Wrong study design (protocol Not about education/training	ol). Not relevant to review question.
Mann-Salinas 2014 ⁷⁶⁶ Description of sepsis in theory	
Marshall 2009 ⁷⁷⁵ Conference abstract	
Mckinley 2011 ⁷⁹³ Implemented protocol but no details of	of how implemented/training
McNally 2009 ⁷⁹⁴ Not relevant to review question.	
Meyer 2013 ⁸⁰⁴ No training implementation/analysis	
Mok 2014 ⁸¹⁶ Not relevant to review question	
Monette 2007 ⁸¹⁸ Not relevant to review question.	

Reference	Reason for exclusion	
Moore 2009 ⁸²¹	Sensitivity and specificity of sepsis screening protocol	
Nassau 2003 ⁸⁴⁰	Summary/comment, not original research	
Nelson 2011 ⁸⁴⁶	Not relevant to review question.	
Nguyen 2014 ⁸⁵⁵	Not relevant to review question.	
Nguyen 2009 ⁸⁵²	Not relevant to review question.	
Noritomi 2014 ⁸⁶¹	Protocol implementation. No detail about what was included/how training/education carried out	
Orji 2007 ⁸⁸⁴	Not relevant to review question	
Ottestad 2007 ⁸⁸⁷	Scores performance in identifying sepsis but not implementing any training	
Patocka 2014	No details of training provided.	
Phua 2012 ⁹¹⁸	Not relevant to review question.	
Phua 2013 ⁹¹⁹	Not relevant to review question.	
Plambech 2012 ⁹²³	Protocol implementation. No detail about what was included in the training.	
Potter 2011 ⁹³⁰	Editorial article	
Prasas 2010	Not relevant to review question.	
Puntis 1991 ⁹⁴⁰	Prevention of catheter-related infections, not about raising awareness of identification/management of sepsis	
Reuben 2006 ⁹⁶⁴	Not relevant to review question.	
Rincon 2011 ⁹⁷²	No details of how implemented/training	
Robson 2008 ⁹⁷⁷	Not relevant to review question.	
Robson 2007 ⁹⁷⁶	Not relevant to review question.	
Salluh 2008 ⁹⁹⁷	Not relevant to review question.	
Santana 2008 ⁹⁹⁹	Prevention of catheter-related infections, not about raising awareness of identification/management of sepsis	
Sarani 2008 ¹⁰⁰²	Not relevant to review question	
Sawyer 2011 ¹⁰⁰⁶	Not training/education.	
Scheer 2015 ¹⁰⁰⁷	Conference abstract	
Schramm 2011 ¹⁰⁰⁸	Implementation of a protocol, not any details of training	
Semelsberger 2009 ¹⁰¹⁷	Prevention of catheter-related infections, not about raising awareness of identification/management of sepsis	
Seoane 2013 ¹⁰¹⁸	Implementation of a protocol, not any details of training	
Shearer 2012 ¹⁰²⁷	Not relevant to review question.	
Sherertz 2000 ¹⁰²⁸	GDG ref. Prevention of infection, not about raising awareness of identification/ management of sepsis	
Smith 2012 ¹⁰⁵¹	Implementation of a protocol, not any details of training	
Tromp 2009 ¹¹⁰⁴	No details of training.	
Tromp 2010 ¹¹⁰⁵	Implementation of a protocol, not any details of training	
Tromp 2011	Implementation of a protocol, not any details of training	
Tafelski 2010 ¹⁰⁸⁵	Not relevant to review question.	
van Zanten 2014	No detail about what was how training/education carried out.	
van Dijck 2009 ¹¹²⁸	Not relevant to review question.	
Wallgren 2014 ¹¹⁵⁴	Implementation of two sepsis screening tools, not any details of training	
Warren 2003 ¹¹⁶⁰	Specific sepsis prevention programme	

Reference	Reason for exclusion	
Weaver 2003 ¹¹⁶⁴	States what can be done but does not show results of it being done	
Weinert 2008 ¹¹⁶⁵	General ICU not Sepsis	
Wolbrink 2014 ¹¹⁷⁷	describes platform but no results of effect in practice	
Winters 2013 ¹¹⁷⁴	GDG ref. Comment. No study undertaken	
Winterbottom 2011 ¹¹⁷³	Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programme	
Yilmaz 2007 ¹¹⁹⁸	Prevention of catheter-related infections, not about raising awareness of identification/management of sepsis	
Yurkova 2011	No details of training provided.	
Zaffar 2009	Not relevant to review question.	
Zuhlke 2013 ¹²¹⁹	Public education, not health professionals.	

Appendix M: Excluded health economic studies

M.1 Scoring systems

None.

M.2 Signs and symptoms

None.

M.3 Blood tests

None.

M.4 Lactate

None.

M.5 Serum creatinine

None.

M.6 Disseminated intravascular coagulation (DIC)

None.

M.7 Antimicrobial treatment

None.

M.8 IV fluid administration

Table 50: Studies excluded from the economic review

Reference	Reason for exclusion
GUIDET 2007 ⁵²⁷	This study was selectively excluded due to a combination of applicability and methodological limitations.
	Health outcomes were not expressed as QALYs. Time horizon may not be sufficient to capture all benefits and costs if benefits persist beyond 5 years. The associated RCT (SAFE Study) is just 1 of 7 included studies in the clinical review, which also has limitations because the treatment effect used in the cost effectiveness paper is a post hoc analysis and the treatment effect in the severe sepsis group was not found to be significant.

M.9 Escalation of care

None.

M.10 Inotropic agents and vasopressors

None.

M.11 Supplemental oxygen

None.

M.12 Use of bicarbonate

None.

M.13 Early goal-directed therapy

None.

M.14 Monitoring

None.

M.15 Patient education, information and support

None.

M.16 Education and training

None.

Appendix N: Research recommendations

N.1 Epidemiological study on presentation and management of sepsis in England

Research question:

What is the incidence, presentation and management of sepsis in the United Kingdom?

Why this is important:

The lack of robust UK based epidemiological studies on the incidence and outcomes from sepsis have been clear throughout the guideline development process. A large epidemiological study to collect information about where sepsis is being treated, patient interventions and patient outcomes would provide population based statistics on epidemiology of sepsis which are necessary to support evaluation of interventions, planning of services and service redesign. The mortality and morbidity and service complexity associated with severe infection and sepsis, and the need to use broad spectrum antimicrobials to treat sepsis, justifies the cost required to set up such a study.

Criteria for selecting high	i-priority research recommendations.
PICO question	The questions that a registry could help answer are: What is the epidemiology of life threatening sepsis in the UK?
	How and where is life threatening sepsis treated? What important safety monitors need to be in place to capture unintended consequences?
	Would co-ordinated service evaluation linked to a Sepsis Registry lead to better patient care?
Importance to patients or the population	The interventions recognised in this guideline as a standard of care for sepsis require timely, coordinated, and robust healthcare services. Process and patient outcome improvement can only occur if based on standardised data systems that inform us of epidemiological, clinical and outcome trends. There is a lack of evidence to support any particular service improvement methodology in sepsis but coordinated efforts to provide longitudinal data on process and outcome would help with this.
Relevance to NICE guidance	Provide baseline data on impact of sepsis in UK population and help inform future guidance on effective service improvement methodologies
Relevance to the NHS	Will provide assurance of guideline implementation which (along with mechanisms such as CQUIN) will drive service improvement. Will provide measures of local and population based epidemiology to inform service design and resourcing.
National priorities	National Sepsis CQUIN
	NHS Ombudsman Report into Sepsis Sign up to Safety NHSE priorities
Current evidence base	There is a lack of current national sepsis statistics with poor coding of episodes of sepsis and limited knowledge of UK sepsis epidemiology
Equality	None Relevant
Study design	Service evaluation and audit Epidemiological primary research
Feasibility	Information governance and Caldicott issues will need to be addressed.

	Centralised registry will need to be funded in line with other similar databases.
Other comments	A variety of known local service evaluation and audit methods could be adapted for national use.
Importance	 High: the research is essential to inform future updates of key recommendations in the guideline.

N.2 A complex service evaluation of implementation of NICE Sepsis guideline

Research question:

What effect will the NICE Sepsis guideline have on patient care processes and outcome in the UK over the next 5 years?

Why this is important:

Implementation of the NICE Sepsis guideline will be a challenge to the NHS. A robust evaluation of how NHS service providers adhere to the recommended care processes and the effect of implementation needs to be carried out.

A complex evaluation is required to understand the effect of guidelines on services and on patient outcomes. Evaluation should include assessment of costs and cost effectiveness, the use of a universal audit tool for sepsis patient care that includes evaluation of pre-hospital and secondary care and monitoring of broad spectrum antibiotic use, development of multi-resistant organisms and incidence of antibiotic related infection such as C. Difficile.

PICO question	What effect will the NICE Sepsis guideline have on patient care processes and outcome in the UK over the next 5 years?
Importance to patients or the population	The interventions recognised in this guideline as a standard of care for sepsis require timely, coordinated, and robust healthcare services. This is a complex intervention that needs assessment as such to allow changes to care to be monitored and evaluated to ensure improvement in care for people with sepsis.
Relevance to NICE guidance	Inform NICE of clinical effectiveness of guideline implementation and inform guideline updates.
Relevance to the NHS	Will provide information on guideline implementation which (along with mechanisms such as CQUIN) will drive service improvement.
National priorities	National Sepsis CQUIN NHS Ombudsman Report into Sepsis Sign up to Safety NHSE priorities
Current evidence base	Not applicable
Equality	None Relevant
Study design	Complex evaluation using the principles of process evaluation
Feasibility	Information governance and Caldicott issues will need to be addressed. The evaluation is feasible.
Other comments	
Importance	 High: the research is essential to inform NICE and local commissioners in gaps or difficulties in implementation of the guideline

N.3 Use of biomarkers to diagnose and initiate treatment

Research question:

What is the clinical and cost effectiveness of procalcitonin (PCT) point-of-care tests at initial triage compared for diagnosis of serious infection and the initiation of appropriate antibiotic therapy?

Why this is important:

There is an urgent clinical need for accurate biomarkers of serious bacterial infection (SBI) which provide early diagnosis of SBI, and prompt clinical interventions to improve outcomes. The current tests used in the NHS (white cell count and C-reactive protein) are non-specific and not sensitive enough. Biomarker-guided initiation and termination of antibiotic therapy might be an effective strategy to reduce unnecessary antibiotic use and help prevent further multidrug resistance. The recent NICE Diagnostic Guidance (DG18) on Procalcitonin for diagnosing and monitoring sepsis has shown there is not enough evidence in this area.

	F - 7
PICO question	Population: Adults and children with suspected sepsis at triage in the UK Index test: PCT Comparison: CRP Outcomes: time to diagnosis of sepsis, antibiotic exposure (initiation of appropriate antibiotic therapy), duration of hospital stay, duration of ICU stay, adverse clinical outcomes (for example mortality, antibiotic-related adverse events)
Importance to patients or the population	The rapid and accurate determination of the presence or absence of systematic infection is important for patients' clinical outcomes and also to reduce unnecessary exposure to antibiotics.
Relevance to NICE guidance	Further research on PCT would provide a stronger evidence base in order for NICE to issue clear guidance for diagnosis of children, young people and adults with suspected sepsis
Relevance to the NHS	Antimicrobial stewardship is important for the NHS and accurate identification of the need for antibiotics would allow more targeted use of antibiotics. Better stratification of disease severity will reduce morbidity and mortality, and reduce NHS costs.
National priorities	National Sepsis CQUIN NHS Ombudsman Report into Sepsis Sign up to Safety NHSE priorities UK Five Year Antimicrobial Resistance Strategy 2013 to 2018
Current evidence base	The current evidence for PCT is is limited. The current evidence for CRP is considered in Chapter 8 of the full guideline.
Equality	There are no equality issues.
Study design	PCT and CRP would be evaluated by standard methods including specificities, sensitivities, receiver operator curves (ROCs) or area under the curves (AUC) for diagnosis of sepsis. Assessment of initiation of appropriate antibiotic therapy would be evaluated by hazard ratios, odds ratios and/or relative risk for duration of hospital stay, duration of ICU stay, and adverse clinical outcomes.
Feasibility	The study is feasible as currently CRP is routinely tested in people with suspected sepsis.
Other comments	The study may attract commercial funders in the diagnostics arena including companies developing novel PCT assays.

Importance

• High: the research is essential to inform future updates of key recommendations in the guideline.

N.4 Validation of clinical early warning scores in pre-hospital and emergency care settings

Research question:

Can early warning scores for example NEWS (national early warning scores for adults) and PEWS (paediatric early warning score) be used to improve the detection of sepsis and facilitate prompt and appropriate clinical response in pre-hospital settings and in emergency departments?

Why this is important:

Delay in detecting and treating sepsis increases mortality. Early detection and appropriate management will reduce morbidity and mortality and will reduce NHS costs by reducing critical care admissions, inappropriate antimicrobial use and length of hospital stay. No high quality data exist on the validation or use of early warning scores in pre-hospital settings or in the emergency department settings. The use of scores might improve communication between pre-hospital settings and hospital settings and allow recognition of people who need more urgent assessment.

	. • •
PICO question	Population: non-hospital based patients (both those totally managed in primary care and those who are transferred to secondary care), and patients managed in the emergency room with suspected sepsis in the UK. Intervention: (1) NEWS and (2) PEWS scores to direct care Comparison: No use of score to direct care Outcomes: referral rates, adverse clinical outcomes (for example mortality)
Importance to patients or the population	Timely diagnosis of sepsis and detection of worsening symptoms will improve patient outcomes.
Relevance to NICE guidance	Research would provide evidence to enable NICE to make recommendations on the use of NEWS and PEWS in the pre-hospital setting, emergency room or secondary care setting.
Relevance to the NHS	Prompt and early recognition of people with sepsis is critical to reducing morbidity and mortality and reducing NHS costs.
National priorities	NICE CG 50 Acutely ill patient in hospital: research recommendation re the sensitivity and specificity of track and trigger systems in various clinical settings NCEPOD Think Sepsis: recommends a standardised approach to vital signs monitoring in primary care, such as NEWS to help in the prioritisation of emergency care Ombudsman report 'Time to Kill': recommends the development of clinical tools highly predictive of sepsis to be used in primary care
Current evidence base	The development of the NICE guideline on sepsis found no evidence for use of validated tools in the pre-hospital or emergency room settings, and limited evidence in the emergency room and secondary care setting (chapter 6 of the guideline)
Equality	There are no equality issues.
Study design	Cluster randomised trial, or, if not feasible due to widespread NHS implementation following NCEPOD recommendation, observational score validation to establish: whether scores taken in primary/community care or the emergency room can
	differentiate patients requiring immediate escalation of care from those who can

	be managed less aggressively
	whether scores taken solely in the community can add to GPs or other health professional add to their assessments and clinical experience
	whether scores help communication between primary and secondary care and ambulances
	Whether scores in emergency room stings reduce the volume of empirical antimicrobial prescription, reduce critical care admissions, reduce length of stay or mortality
Feasibility	Baseline physiological measurements are already routinely taken in primary care but it is not usual practice to measure all the parameters and calculate a NEWS or PEWS score. It would require education and training of clinicians.
	In emergency room is feasible as baseline physiological measurements are routinely taken.
Other comments	
Importance	 High: The research is essential to inform future updates of key recommendations in the guideline.

N.5 Derivation of clinical decision rules in suspected sepsis

Research question:

Is it possible to derive and validate a set of clinical decision rules or a predictive tool to rule out sepsis which can be applied to patients presenting to hospital with suspected sepsis.

Why this is important:

In primary care and emergency departments people with suspected sepsis are often seen by relatively inexperienced doctors. Many of these people will be in low and medium risk groups but evidence is lacking as to who can be sent home safely and who needs intravenous or oral antibiotics. The consequences of getting the decision making wrong can be catastrophic and therefore many patients are potentially over-investigated and admitted inappropriately. Current guidance is dependent on use of individual variables informed by low quality evidence.

Criteria for selecting high	i-priority research recommendations.
PICO question	Population: Adults and children presenting to hospital with suspected sepsis in UK. Intervention: Derivation of history and physiological variables as well the application of diagnostic testing to be applied to patients fulfilling the inclusion criteria. Comparison: Normal practice/ guidelines. Outcome: diagnosis of sepsis, length of hospital stay, adverse clinical events (for example mortality)
Importance to patients or the population	Errors are still made with clinical decisions making in patients with suspected sepsis. Delays in initiating treatments can unfortunately lead to life-threatening consequences. Evidence based clinical decision rules would support safer decision making and improve patient safety
Relevance to NICE guidance	Would help to influence future guidelines in the moderate to low risk group.
Relevance to the NHS	Safer patient care. Cost reductions to allow early discharge of appropriate patients.
National priorities	Sepsis is high on the national agenda. Mortality rates are high and life- threatening treatments are occasionally omitted or delayed due to poor clinical decision making.
Current evidence base	The development of the NICE guideline on sepsis suggested that the current available evidence in this area is of poor quality and not fit for purpose.
Equality	None Relevant
Study design	Prognostic observational cohort study to identify risk factors for developing sepsis, and then validation of derived prediction tool in separate cohorts.
Feasibility	The research is feasible as comparable research has been achieved for other presentations, for example chest pains, DVTsGI Bleeds, headache, and head injuries
Other comments	The difficulty of diagnosing sepsis is the lack of an acceptable, recognised gold standard from which to work. Gold standard for a study may need to be developed by a Delphi method.
Importance	 High: the research is essential to inform future updates of key recommendations in the guideline.

Appendix O: NICE technical team

Name	Role
Sharon Summers-Ma	Guideline Lead
Martin Allaby	Clinical Advisor
Judith Thornton	Technical Lead (until November 2015)
Bhash Naidoo	Technical Lead (HE)
Caroline Keir	Guideline Commissioning Manager
Helen Dickinson	Guideline Coordinator
Gareth Haman	Editor
Rachel O'Mahony	Technical Lead (December 2015-present)
Laura Sadler	PIP Lead
Andrew Gyton	Project Manager

References: Appendix I-O

- Clinical prediction of serious bacterial infections in young infants in developing countries. The WHO Young Infants Study Group. Pediatric Infectious Disease Journal. 1999; 18(10 Suppl):S23-S31
- 2 Learn new ways to treat, monitor septic patients. ED Nursing. 2005; 8(9):102-104
- 3 Scoring system for CAP predicts severe disease. Journal of Family Practice. 2007; 56(2):92
- 4 Award-winning program slashes sepsis mortalities. ED Management. 2008; 20(6):64-67
- Hospital's sepsis program initiative boosts safety. Healthcare Risk Management. 2008; 30(3):32-34
- Answer/evaluation form: SIRS: a systematic approach to medical-surgical nurses to stop the progression to sepsis. Medsurg Nursing. 2010; 19(1):16
- 7 GPs fail to recognise symptoms of meningitis and septicaemia. Emergency Nurse. 2010; 18(4):4
- 8 Use early warning scores to detect sepsis... "Nurses urged to be alert to dangers of sepsis," nursingtimes.net. Nursing Times. 2013; 109(37):9
- Impact of early warning systems on patient outcomes. Centre for Reviews and Dissemination (CRD), 2014. Available from: http://www.york.ac.uk/media/crd/effectiveness-matters-September-2014-earlywarningsystems.pdf
- Aalto H, Takala A, Kautiainen H, Repo H. Laboratory markers of systemic inflammation as predictors of bloodstream infection in acutely ill patients admitted to hospital in medical emergency. European Journal of Clinical Microbiology and Infectious Diseases. 2004; 23(9):699-704
- Abbott TEF, Vaid N, Ip D, Cron N, Wells M, Torrance HDT et al. A single-centre observational cohort study of admission National Early Warning Score (NEWS). Resuscitation. 2015; 92:89-93
- Abdollahi A, Shoar S, Nayyeri F, Shariat M. Diagnostic Value of Simultaneous Measurement of Procalcitonin, Interleukin-6 and hs-CRP in Prediction of Early-Onset Neonatal Sepsis.

 Mediterranean Journal of Hematology and Infectious Diseases. 2012; 4(1):e2012028
- Aboud MI, Waise MMA, Shakerdi LA. Procalcitonin as a marker of neonatal sepsis in intensive care units. Iranian Journal of Medical Sciences. 2010; 35(3):205-210
- Abrahamsen SK, Haugen CN, Rupali P, Mathai D, Langeland N, Eide GE et al. Fever in the tropics: aetiology and case-fatality a prospective observational study in a tertiary care hospital in South India. BMC Infectious Diseases. 2013; 13:355
- Abudu A, Sivardeen KAZ, Grimer RJ, Pynsent PB, Noy M. The outcome of perioperative wound infection after total hip and knee arthroplasty. International Orthopaedics. 2002; 26(1):40-43
- Abulebda K, Cvijanovich NZ, Thomas NJ, Allen GL, Anas N, Bigham MT et al. Post-ICU admission fluid balance and pediatric septic shock outcomes: a risk-stratified analysis. Critical Care Medicine. 2014; 42(2):397-403

- Acevedo JG, Fernandez J, Escorsell A, Mas A, Gines P, Arroyo V. Clinical efficacy and safety of terlipressin administration in cirrhotic patients with septic shock. Journal of Hepatology. 2009; 50(Suppl No 1):S73
- Acharya SP, Pradhan B, Marhatta MN. Application of "the Sequential Organ Failure Assessment (SOFA) score" in predicting outcome in ICU patients with SIRS. Kathmandu University Medical Journal. 2007; 5(4):475-483
- Acosta CD, Bhattacharya S, Tuffnell D, Kurinczuk JJ, Knight M. Maternal sepsis: a Scottish population-based case-control study. BJOG. 2012; 119(4):474-483
- Adam N, Kandelman S, Mantz J, Chretien F, Sharshar T. Sepsis-induced brain dysfunction. Expert Review of Anti-Infective Therapy. 2013; 11(2):211-221
- Adamik B, Kubler-Kielb J, Golebiowska B, Gamian A, Kubler A. Effect of sepsis and cardiac surgery with cardiopulmonary bypass on plasma level of nitric oxide metabolites, neopterin, and procalcitonin: correlation with mortality and postoperative complications. Intensive Care Medicine. 2000; 26(9):1259-1267
- Adams WG, Kinney JS, Schuchat A, Collier CL, Papasian CJ, Kilbride HW et al. Outbreak of early onset group B streptococcal sepsis. Pediatric Infectious Disease Journal. 1993; 12(7):565-570
- Adejuyigbe EA, Adeodu OO, Ako-Nai KA, Taiwo O, Owa JA. Septicaemia in high risk neonates at a teaching hospital in Ile-Ife, Nigeria. East African Medical Journal. 2001; 78(10):540-543
- Adhikari M, Coovadia HM, Coovadia YM, Smit SY, Moosa A. Predictive value of C-reactive protein in neonatal septicaemia. Annals of Tropical Paediatrics. 1986; 6(1):37-40
- Adib M, Bakhshiani Z, Navaei F, Saheb F.F., Fouladi S, Kazemzadeh H. Procalcitonin: a reliable marker for the diagnosis of neonatal sepsis. Iranian Journal of Basic Medical Sciences. 2012; 15(2):777-782
- Adler MD, Trainor JL, Siddall VJ, McGaghie WC. Development and evaluation of high-fidelity simulation case scenarios for pediatric resident education. Ambulatory Pediatrics. 2007; 7(2):182-186
- Adrie C, Francais A, Alvarez-Gonzalez A, Mounier R, Azoulay E, Zahar JR et al. Model for predicting short-term mortality of severe sepsis. Critical Care. 2009; 13(3):R72
- Adshead N, Thomson R. Use of a paediatric early warning system in emergency departments. Emergency Nurse. 2009; 17(1):22-25
- Aebi C, Ahmed A, Ramilo O. Bacterial complications of primary varicella in children. Clinical Infectious Diseases. 1996; 23(4):698-705
- Agrawal A, Gupta A, Consul S, Shastri P. Comparative study of dopamine and norepinephrine in the management of septic shock. Saudi Journal of Anaesthesia. 2011; 5(2):162-166
- Agrawal A, Singh VK, Varma A, Sharma R. Therapeutic applications of vasopressin in pediatric patients. Indian Pediatrics. 2012; 49(4):297-305
- Agrawal S, Sachdev A, Gupta D, Chugh K. Platelet counts and outcome in the pediatric intensive care unit. Indian Journal of Critical Care Medicine. 2008; 12(3):102-108

- Agyeman P, Aebi C, Hirt A, Niggli FK, Nadal D, Simon A et al. Predicting bacteremia in children with cancer and fever in chemotherapy-induced neutropenia: results of the prospective multicenter SPOG 2003 FN study. Pediatric Infectious Disease Journal. 2011; 30(7):e114-e119
- Ahkee S, Srinath L, Ramirez J. Community-acquired pneumonia in the elderly: association of mortality with lack of fever and leukocytosis. Southern Medical Journal. 1997; 90(3):296-298
- Ahmed Z, Ghafoor T, Waqar T, Ali S, Aziz S, Mahmud S. Diagnostic value of C- reactive protein and haematological parameters in neonatal sepsis. Journal of the College of Physicians and Surgeons--Pakistan. 2005; 15(3):152-156
- Ahn S, Lee YS, Chun YH, Lim KS, Kim W, Lee JL. Predictive factors of bacteraemia in low-risk patients with febrile neutropenia. Emergency Medicine Journal. 2012; 29(9):715-719
- Ahn S, Lee YS, Lim KS, Lee JL. Adding procalcitonin to the MASCC risk-index score could improve risk stratification of patients with febrile neutropenia. Supportive Care in Cancer. 2013; 21(8):2303-2308
- Aikawa N, Fujishima S, Endo S, Sekine I, Kogawa K, Yamamoto Y et al. Multicenter prospective study of procalcitonin as an indicator of sepsis. Journal of Infection and Chemotherapy. 2005; 11(3):152-159
- Aimoto M, Koh H, Katayama T, Okamura H, Yoshimura T, Koh S et al. Diagnostic performance of serum high-sensitivity procalcitonin and serum C-reactive protein tests for detecting bacterial infection in febrile neutropenia. Infection. 2014; 42(6):971-979
- Aina-Mumuney AJ, Althaus JE, Henderson JL, Blakemore MC, Johnson EA, Graham EM. Intrapartum electronic fetal monitoring and the identification of systemic fetal inflammation. Journal of Reproductive Medicine. 2007; 52(9):762-768
- Ait-Oufella H, Joffre J, Boelle PY, Galbois A, Bourcier S, Baudel JL et al. Knee area tissue oxygen saturation is predictive of 14-day mortality in septic shock. Intensive Care Medicine. 2012; 38(6):976-983
- 42 Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J et al. Mottling score predicts survival in septic shock. Intensive Care Medicine. 2011; 37(5):801-807
- Akpede GO, Abiodun PO, Ambe JP, Jacob DD. Presenting features of bacterial meningitis in young infants. Annals of Tropical Paediatrics. 1994; 14(3):245-252
- 44 Akpede GO, Abiodun PO, Sykes RM. Pattern of infections in children under-six years old presenting with convulsions associated with fever of acute onset in a children's emergency room in Benin City, Nigeria. Journal of Tropical Pediatrics. 1993; 39(1):11-15
- Akre M, Finkelstein M, Erickson M, Liu M, Vanderbilt L, Billman G. Sensitivity of the pediatric early warning score to identify patient deterioration. Pediatrics. 2010; 125(4):e763-e769
- Al Jarousha AMK, El Qouqa IA, El Jadba AHN, Al Afifi AS. An outbreak of Serratia marcescens septicaemia in neonatal intensive care unit in Gaza City, Palestine. Journal of Hospital Infection. 2008; 70(2):119-126
- 47 Al W, I, Rivera J, Cairo J, Hachem R, Raad I. Comparing clinical and microbiological methods for the diagnosis of true bacteraemia among patients with multiple blood cultures positive for coagulase-negative staphylococci. Clinical Microbiology and Infection. 2011; 17(4):569-571

- 48 Al-Majali RM. White blood cell count, absolute neutrophil count, as predictors of hidden bacterial infections in febrile children 1-18 months of age without focus. Pakistan Journal of Medical Sciences. 2004; 20(2):97-100
- 49 Al-Nawas B, Krammer I, Shah PM. Procalcitonin in diagnosis of severe infections. European Journal of Medical Research. 1996; 1(7):331-333
- Al-Nawas B, Shah PM. Procalcitonin in patients with and without immunosuppression and sepsis. Infection. 1996; 24(6):434-436
- Al-Zwaini EJ. C-reactive protein: a useful marker for guiding duration of antibiotic therapy in suspected neonatal septicaemia? Eastern Mediterranean Health Journal. 2009; 15(2):269-275
- Alam MM, Saleem AF, Shaikh AS, Munir O, Qadir M. Neonatal sepsis following prolonged rupture of membranes in a tertiary care hospital in Karachi, Pakistan. Journal of Infection in Developing Countries. 2014; 8(1):67-73
- Alam N, Hobbelink EL, van Tienhoven AJ, van de Ven PM, Jansma EP, Nanayakkara PWB. The impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review. Resuscitation. 2014; 85(5):587-594
- Alam N, Vegting IL, Houben E, van Berkel B, Vaughan L, Kramer MHH et al. Exploring the performance of the national early warning Score (NEWS) in a European emergency department. Resuscitation. 2015; 90:111-115
- Alamgir S, Volkova NB, Peterson MW. Prognostic value of low blood glucose at the presentation of E. coli bacteremia. American Journal of Medicine. 2006; 119(11):952-957
- Albanèse J, Leone M, Delmas A, Martin C. Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Critical Care Medicine. 2005; 33(9):1897-1902
- Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C. Renal effects of norepinephrine in septic and nonseptic patients. Chest. 2004; 126(2):534-539
- Albert BL, Huesman L. Development of a modified early warning score using the electronic medical record. Dimensions of Critical Care Nursing. 2011; 30(5):283-292
- Alberti C, Brun-Buisson C, Chevret S, Antonelli M, Goodman SV, Martin C et al. Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. American Journal of Respiratory and Critical Care Medicine. 2005; 171(5):461-468
- Albright CM, Ali TN, Lopes V, Rouse DJ, Anderson BL. Lactic acid measurement to identify risk of morbidity from sepsis in pregnancy. American Journal of Perinatology. 2015; 32(5):481-486
- 61 Alexander JM, Gilstrap LC, Cox SM, McIntire DM, Leveno KJ. Clinical chorioamnionitis and the prognosis for very low birth weight infants. Obstetrics and Gynecology. 1998; 91(5 Pt 1):725-729
- Alexander JM, McIntire DM, Leveno KJ. Chorioamnionitis and the prognosis for term infants. Obstetrics and Gynecology. 1999; 94(2):274-278
- Alia I, Esteban A, Gordo F, Lorente JA, Diaz C, Rodriguez JA et al. A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest. 1999; 115(2):453-461

- Aliberti S, Bellelli G, Belotti M, Morandi A, Messinesi G, Annoni G et al. Delirium symptoms during hospitalization predict long-term mortality in patients with severe pneumonia. Aging Clinical and Experimental Research. 2015;
- Aliberti S, Amir A, Peyrani P, Mirsaeidi M, Allen M, Moffett BK et al. Incidence, etiology, timing, and risk factors for clinical failure in hospitalized patients with community-acquired pneumonia. Chest. 2008; 134(5):955-962
- Allen LB, Allen M, Lesa RF, Richardson GE, Eggett DL. Rheumatic fever in Samoa: education as prevention. Pacific Health Dialog. 2011; 17(1):107-118
- 67 Almuneef M, Alalola S, Ahmed S, Memish Z, Khan MY, Alshaalan M. The changing spectrum of Group B streptococcal (GBS) infection in infants of Saudi Arabia. Journal of Chemotherapy. 2000; 12(1):48-52
- Alrawi YA, Parker RA, Harvey RC, Sultanzadeh SJ, Patel J, Mallinson R et al. Predictors of early mortality among hospitalized nursing home residents. QJM. 2013; 106(1):51-57
- Alsolamy S, Al Salamah M, Al Thagafi M, Al-Dorzi HM, Marini AM, Aljerian N et al. Diagnostic accuracy of a screening electronic alert tool for severe sepsis and septic shock in the emergency department. BMC Medical Informatics and Decision Making. 2014; 14:105
- Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000; 117(6):1749-1754
- 71 Altunhan H, Annagur A, Ors R, Mehmetoglu I. Procalcitonin measurement at 24 hours of age may be helpful in the prompt diagnosis of early-onset neonatal sepsis. International Journal of Infectious Diseases. 2011; 15(12):e854-e858
- Alves BE, Montalvao SAL, Aranha FJP, Lorand-Metze I, De Souza CA, Annichino-Bizzacchi JM et al. Time-course of sFlt-1 and VEGF-A release in neutropenic patients with sepsis and septic shock: a prospective study. Journal of Translational Medicine. 2011; 9:23
- Alves BE, Montalvao SAL, Aranha FJP, Siegl TFG, Souza CA, Lorand-Metze I et al. Imbalances in serum angiopoietin concentrations are early predictors of septic shock development in patients with post chemotherapy febrile neutropenia. BMC Infectious Diseases. 2010; 10:143
- Ambalavanan N, Ross AC, Carlo WA. Retinol-binding protein, transthyretin, and C-reactive protein in extremely low birth weight (ELBW) infants. Journal of Perinatology. 2005; 25(11):714-719
- Ammann RA, Bodmer N, Simon A, Agyeman P, Leibundgut K, Schlapbach LJ et al. Serum concentrations of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the risk of adverse events in pediatric patients with cancer and fever in neutropenia. Journal of the Pediatric Infectious Diseases Society. 2013; 2(2):155-161
- Anantasit N, Boyd JH, Walley KR, Russell JA. Serious adverse events associated with vasopressin and norepinephrine infusion in septic shock. Critical Care Medicine. 2014; 42(8):1812-1820
- Anbar RD, Richardson-de C, V, O'Malley PJ. Difficulties in universal application of criteria identifying infants at low risk for serious bacterial infection. Journal of Pediatrics. 1986; 109(3):483-485

- Andersen J, Christensen R, Hertel J. Clinical features and epidemiology of septicaemia and meningitis in neonates due to Streptococcus agalactiae in Copenhagen County, Denmark: a 10 year survey from 1992 to 2001. Acta Paediatrica. 2004; 93(10):1334-1339
- Ando K, Kato H, Kotani T, Ozaki M, Arimura Y, Yagi J. Plasma leukocyte cell-derived chemotaxin 2 is associated with the severity of systemic inflammation in patients with sepsis. Microbiology and Immunology. 2012; 56(10):708-718
- Andre S, Taboulet P, Elie C, Milpied N, Nahon M, Kierzek G et al. Febrile neutropenia in French emergency departments: Results of an analysis of practice in a prospective multicentre survey. Annales Francaises De Medecine D'Urgence. 2011; 1(4):232-242
- Andre S, Taboulet P, Elie C, Milpied N, Nahon M, Kierzek G et al. Febrile neutropenia in French emergency departments: results of a prospective multicentre survey. Critical Care. 2010; 14(2):R68
- Andrews T, Thompson M, Buckley DI, Heneghan C, Deyo R, Redmond N et al. Interventions to influence consulting and antibiotic use for acute respiratory tract infections in children: a systematic review and meta-analysis. PloS One. 2012; 7(1):e30334
- Angstwurm MWA, Dempfle C-E, Spannagl M. New disseminated intravascular coagulation score: A useful tool to predict mortality in comparison with Acute Physiology and Chronic Health Evaluation II and Logistic Organ Dysfunction scores. Critical Care Medicine. 2006; 34(2):314-320
- Angsuwat M, Kavar B, Lowe AJ. Early detection of spinal sepsis. Journal of Clinical Neuroscience. 2010; 17(1):59-63
- Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013; 310(17):1809-1817
- Antonow JA, Hansen K, McKinstry CA, Byington CL. Sepsis evaluations in hospitalized infants with bronchiolitis. Pediatric Infectious Disease Journal. 1998; 17(3):231-236
- Anwar M, Adams R. Effect of vasopressin on hemodynamic profile in patients with septic shock. American Journal of Respiratory and Critical Care Medicine. 2002; 165(Suppl 8):A710
- Anwer SK, Mustafa S. Rapid identification of neonatal sepsis. JPMA Journal of the Pakistan Medical Association. 2000; 50(3):94-98
- Apibunyopas Y. Mortality rate among patients with septic shock after implementation of 6-hour sepsis protocol in the emergency department of Thammasat University Hospital. Journal of the Medical Association of Thailand. 2014; 97 Suppl 8:S182-S193
- 90 Aquino VM, Cost C, Gomez A, Bowers DC, Ramilo O, Ahmad N et al. Predictive value of interleukin-5 and monocyte chemotactic protein-1 for bacteremia in children with febrile neutropenia. Journal of Pediatric Hematology/Oncology. 2012; 34(6):e241-e245
- Arabi Y, Alamry A, Levy MM, Taher S, Marini AM. Improving the care of sepsis: Between system redesign and professional responsibility: A roundtable discussion in the world sepsis day, September 25, 2013, Riyadh, Saudi Arabia. Annals of Thoracic Medicine. 2014; 9(3):134-137

- Ariffin H, Navaratnam P, Lin HP. Surveillance study of bacteraemic episodes in febrile neutropenic children. International Journal of Clinical Practice. 2002; 56(4):237-240
- 93 Arkader R, Troster EJ, Lopes MR, Junior RR, Carcillo JA, Leone C et al. Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Archives of Disease in Childhood. 2006; 91(2):117-120
- 94 Armagan E, Yilmaz Y, Olmez OF, Simsek G, Gul CB. Predictive value of the modified Early Warning Score in a Turkish emergency department. European Journal of Emergency Medicine. 2008; 15(6):338-340
- Arnalich F, Lopez J, Codoceo R, Jim nez M, Madero R, Montiel C. Relationship of plasma leptin to plasma cytokines and human survivalin sepsis and septic shock. Journal of Infectious Diseases. 1999; 180(3):908-911
- Arnell TD, De VC, Chang L, Bongard F, Stabile BE. Admission factors can predict the need for ICU monitoring in gallstone pancreatitis. American Surgeon. 1996; 62(10):815-819
- 97 Arnold RC, Sherwin R, Shapiro NI, O'Connor JL, Glaspey L, Singh S et al. Multicenter observational study of the development of progressive organ dysfunction and therapeutic interventions in normotensive sepsis patients in the emergency department. Academic Emergency Medicine. 2013; 20(5):433-440
- Arnon S, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R, Dolfin T. Serum amyloid A: an early and accurate marker of neonatal early-onset sepsis. Journal of Perinatology. 2007; 27(5):297-302
- 99 Arregui LM, Moyes DG, Lipman J, Fatti LP. Comparison of disease severity scoring systems in septic shock. Critical Care Medicine. 1991; 19(9):1165-1171
- 100 Arsura EL, Bellinghausen PL, Kilgore WB, Abraham JJ, Johnson RH. Septic shock in coccidioidomycosis. Critical Care Medicine. 1998; 26(1):62-65
- 101 Artero A, Zaragoza R, Camarena JJ, Sancho S, Gonzalez R, Nogueira JM. Prognostic factors of mortality in patients with community-acquired bloodstream infection with severe sepsis and septic shock. Journal of Critical Care. 2010; 25(2):276-281
- Asiimwe SB, Abdallah A, Ssekitoleko R. A simple prognostic index based on admission vital signs data among patients with sepsis in a resource-limited setting. Critical Care. 2015; 19:86
- 103 Assuncao M, Akamine N, Cardoso GS, Mello PVC, Teles JM, Nunes AL et al. Survey on physicians' knowledge of sepsis: do they recognize it promptly? Journal of Critical Care. 2010; 25(4):545-552
- Assuncao MSC, Teich V, Shiramizo SCPL, Araujo DV, Carrera RM, Serpa Neto A et al. The costeffectiveness ratio of a managed protocol for severe sepsis. Journal of Critical Care. 2014; 29(4):692-696
- Aube H, Milan C, Blettery B. Risk factors for septic shock in the early management of bacteremia. American Journal of Medicine. 1992; 93(3):283-288
- Ausania F, Guzman Suarez S, Alvarez Garcia H, Senra del Rio P, Casal Nunez E. Gallbladder perforation: morbidity, mortality and preoperative risk prediction. Surgical Endoscopy. 2015; 29(4):955-960

- 107 Austin DM, Sadler L, McLintock C, McArthur C, Masson V, Farquhar C et al. Early detection of severe maternal morbidity: a retrospective assessment of the role of an Early Warning Score System. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2014; 54(2):152-155
- Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A. Vasopressors for the Treatment of Septic Shock: Systematic Review and Meta-Analysis. PloS One. 2015; 10(8):e0129305
- 109 Aydemir G, Cekmez F, Kalkan G, Fidanci MK, Kaya G, Karaoglu A et al. High serum 25-hydroxyvitamin D levels are associated with pediatric sepsis. Tohoku Journal of Experimental Medicine. 2014; 234(4):295-298
- Aydin B, Dilli D, Zenciroglu A, Karadag N, Beken S, Okumus N. Mean platelet volume and uric acid levels in neonatal sepsis. Indian Journal of Pediatrics. 2014; 81(12):1342-1346
- Aydin B, Dilli D, Zenciroglu A, Kaya O, Bilaloglu E, Okumus N et al. Comparison of a rapid bedside test with a central laboratory analysis for C-reactive protein in newborn infants with suspicion of sepsis. Clinical Laboratory. 2013; 59(9-10):1045-1051
- Ayoola OO, Adeyemo AA, Osinusi K. Aetiological agents, clinical features and outcome of septicaemia in infants in Ibadan. West African Journal of Medicine. 2003; 22(1):30-34
- Babay HA, Twum-Danso K, Kambal AM, Al-Otaibi FE. Bloodstream infections in pediatric patients. Saudi Medical Journal. 2005; 26(10):1555-1561
- 114 Bach JF, Chalons S, Forier E, Elana G, Jouanelle J, Kayemba S et al. 10-year educational programme aimed at rheumatic fever in two French Caribbean islands. Lancet. 1996; 347(9002):644-648
- Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Critical Care Medicine. 2012; 40(3):725-730
- 116 Badin J, Boulain T, Ehrmann S, Skarzynski M, Bretagnol A, Buret J et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Critical Care. 2011; 15(3):R135
- 117 Badriyah T, Briggs JS, Meredith P, Jarvis SW, Schmidt PE, Featherstone PI et al. Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). Resuscitation. 2014; 85(3):418-423
- 118 Baez AA, Hanudel P, Perez MT, Giraldez EM, Wilcox SR. Prehospital Sepsis Project (PSP): knowledge and attitudes of United States advanced out-of-hospital care providers. Prehospital and Disaster Medicine. 2013; 28(2):104-106
- Bagshaw SM, Bennett M, Devarajan P, Bellomo R. Urine biochemistry in septic and non-septic acute kidney injury: A prospective observational study. Journal of Critical Care. 2013; 28(4):371-378
- 120 Bagshaw SM, Haase M, Haase-Fielitz A, Bennett M, Devarajan P, Bellomo R. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrology Dialysis Transplantation. 2012; 27(2):582-588

- Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Medicine. 2009; 35(5):871-881
- Bagshaw SM, Mortis G, Godinez-Luna T, Doig CJ, Laupland KB. Renal recovery after severe acute renal failure. International Journal of Artificial Organs. 2006; 29(11):1023-1030
- Bagshaw SM, Bellomo R. Early diagnosis of acute kidney injury. Current Opinion in Critical Care. 2007; 13(6):638-644
- 124 Bagshaw SM, Bennett M, Haase M, Haase-Fielitz A, Egi M, Morimatsu H et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Medicine. 2010; 36(3):452-461
- Bagshaw SM, Chawla LS. Hydroxyethyl starch for fluid resuscitation in critically ill patients. Canadian Journal of Anaesthesia. 2013; 60(7):709-713
- Bagshaw SM, George C, Bellomo R, ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Critical Care. 2008; 12(2):R47
- 127 Bagshaw SM, Langenberg C, Bellomo R. Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. American Journal of Kidney Diseases. 2006; 48(5):695-705
- Bagshaw SM, Langenberg C, Haase M, Wan L, May CN, Bellomo R. Urinary biomarkers in septic acute kidney injury. Intensive Care Medicine. 2007; 33(7):1285-1296
- 129 Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clinical Journal of the American Society of Nephrology. 2007; 2(3):431-439
- 130 Bahloul M, Tounsi A, Ben Algia N, Chaari A, Chtara K, Dammak H et al. Does change of catecholamine use improve the outcome of patients with shock admitted to intensive care unit? American Journal of Therapeutics. 2014; 21(5):358-365
- Bains HS, Soni RK. A Simple Clinical Score "TOPRS" to Predict Outcome in Pediatric Emergency Department in a Teaching Hospital in India. Iranian Journal of Pediatrics. 2012; 22(1):97-101
- Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. American Journal of Surgery. 1996; 171(2):221-226
- BalcI C, Sungurtekin H, Gurses E, Sungurtekin U, Kaptanoglu B. Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit. Critical Care. 2003; 7(1):85-90
- Balk RA. Optimum treatment of severe sepsis and septic shock: Evidence in support of the recommendations. Disease-a-Month. 2004; 50(4):168-213
- Ballot DE, Perovic O, Galpin J, Cooper PA. Serum procalcitonin as an early marker of neonatal sepsis. South African Medical Journal. 2004; 94(10):851-854
- Band RA, Gaieski DF, Hylton JH, Shofer FS, Goyal M, Meisel ZF. Arriving by emergency medical services improves time to treatment endpoints for patients with severe sepsis or septic shock. Academic Emergency Medicine. 2011; 18(9):934-940

- 137 Bang AT, Bang RA, Reddy MH, Baitule SB, Deshmukh MD, Paul VK et al. Simple clinical criteria to identify sepsis or pneumonia in neonates in the community needing treatment or referral. Pediatric Infectious Disease Journal. 2005; 24(4):335-341
- 138 Bang AT, Bang RA, Reddy MH, Baitule SB, Deshmukh MD, Paul VK et al. Simple clinical criteria to identify sepsis or pneumonia in neonates in the community needing treatment or referral. Pediatric Infectious Disease Journal. 2005; 24(4):335-341
- Bansal M, Farrugia A, Balboni S, Martin G. Relative survival benefit and morbidity with fluids in severe sepsis a network meta-analysis of alternative therapies. Current Drug Safety. 2013; 8(4):236-245
- 140 Baorto EP, Aquino VM, Mullen CA, Buchanan GR, DeBaun MR. Clinical parameters associated with low bacteremia risk in 1100 pediatric oncology patients with fever and neutropenia. Cancer. 2001; 92(4):909-913
- Barati M, Farnia L, Eshaghi MA, Talebi-Taher M, Farhadi N. Diagnostic performance of brain natriuretic peptide in patients suspected to Sepsis. Archives of Clinical Infectious Diseases. 2013; 8(4)
- 142 Barati M, Shekarabi M, Chobkar S, Talebi-Taher M, Farhadi N. Evaluation of diagnostic value of soluble urokinase-type plasminogen activator receptor in sepsis. Archives of Clinical Infectious Diseases. 2015; 10(1)
- 143 Barati M, Alinejad F, Bahar MA, Tabrisi MS, Shamshiri AR, Bodouhi NN et al. Comparison of WBC, ESR, CRP and PCT serum levels in septic and non-septic burn cases. Burns. 2008; 34(6):770-774
- Barbieri JS, Fuchs BD, Fishman N, Cutilli CC, Umscheid CA, Kean C et al. The Mortality Review Committee: a novel and scalable approach to reducing inpatient mortality. Joint Commission Journal on Quality and Patient Safety. 2013; 39(9):387-395
- Barie PS, Hydo LJ, Eachempati SR. Causes and consequences of fever complicating critical surgical illness. Surgical Infections. 2004; 5(2):145-159
- Barnaby D, Ferrick K, Kaplan DT, Shah S, Bijur P, Gallagher EJ. Heart rate variability in emergency department patients with sepsis. Academic Emergency Medicine. 2002; 9(7):661-670
- Barochia AV, Cui X, Vitberg D, Suffredini AF, O'Grady NP, Banks SM et al. Bundled care for septic shock: an analysis of clinical trials. Critical Care Medicine. 2010; 38(2):668-678
- Baron MA, Fink HD, Cicchetti DV. Blood cultures in private pediatric practice: an eleven-year experience. Pediatric Infectious Disease Journal. 1989; 8(1):2-7
- Barriere SL, Lowry SF. An overview of mortality risk prediction in sepsis. Critical Care Medicine. 1995; 23(2):376-393
- Barton P, Garcia J, Kouatli A, Kitchen L, Zorka A, Lindsay C et al. Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest. 1996; 109(5):1302-1312

- 151 Bas AY, Demirel N, Aydin M, Zenciroglu A, Tonbul A, Tanir G. Pneumococcal meningitis in the newborn period in a prevaccination era: a 10-year experience at a tertiary intensive care unit. Turkish Journal of Pediatrics. 2011; 53(2):142-148
- Baskaran ND, Gan GG, Adeeba K. Applying the Multinational Association for Supportive Care in Cancer risk scoring in predicting outcome of febrile neutropenia patients in a cohort of patients. Annals of Hematology. 2008; 87(7):563-569
- 153 Bassetti M, Righi E, Ansaldi F, Merelli M, Trucchi C, De Pascale G et al. A multicenter study of septic shock due to candidemia: outcomes and predictors of mortality. Intensive Care Medicine. 2014; 40(6):839-845
- 154 Bastos PG, Sun X, Wagner DP, Wu AW, Knaus WA. Glasgow Coma Scale score in the evaluation of outcome in the intensive care unit: findings from the Acute Physiology and Chronic Health Evaluation III study. Critical Care Medicine. 1993; 21(10):1459-1465
- Basu RK, Standage SW, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ et al. Identification of candidate serum biomarkers for severe septic shock-associated kidney injury via microarray. Critical Care. 2011; 15(6):R273
- Bates DW, Cook EF, Goldman L, Lee TH. Predicting bacteremia in hospitalized patients. A prospectively validated model. Annals of Internal Medicine. 1990; 113(7):495-500
- Baumgartner JD, Bula C, Vaney C, Wu MM, Eggimann P, Perret C. A novel score for predicting the mortality of septic shock patients. Critical Care Medicine. 1992; 20(7):953-960
- Bayer O, Reinhart K, Kohl M, Kabisch B, Marshall J, Sakr Y et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Critical Care Medicine. 2012; 40(9):2543-2551
- Bayer O, Reinhart K, Sakr Y, Kabisch B, Kohl M, Riedemann NC et al. Renal effects of synthetic colloids and crystalloids in patients with severe sepsis: a prospective sequential comparison. Critical Care Medicine. 2011; 39(6):1335-1342
- Bayer O, Schwarzkopf D, Stumme C, Stacke A, Hartog CS, Hohenstein C et al. An early warning scoring system to identify septic patients in the prehospital setting: The PRESEP score. Academic Emergency Medicine. 2015; 22(7):868-871
- Becchi C, Pillozzi S, Fabbri LP, Al MM, Caciapuoti C, Della BC et al. The increase of endothelial progenitor cells in the peripheral blood: A new parameter for detecting onset and severity of sepsis. International Journal of Immunopathology and Pharmacology. 2008; 21(3):697-705
- Beck V, Chateau D, Bryson GL, Pisipati A, Zanotti S, Parrillo JE et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Critical Care. 2014; 18(3):R97
- Beck V, Chateau D, Bryson GL, Pisipati A, Zanotti S, Parrillo JE et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Critical Care. 2014; 18(3):R97
- Behdad A, Hosseinpour M. Evaluation of Systemic Inflammatory Response Syndrome (SIRS) score as a predictor of mortality in trauma patients. European Journal of Trauma. 2006; 32(5):464-467

- Behrendt G, Schneider S, Brodt HR, Just-Nubling G, Shah PM. Influence of antimicrobial treatment on mortality in septicemia. Journal of Chemotherapy. 1999; 11(3):179-186
- Bejan C, Loghin I, Rosu F, Dorobat G, Dorobat CM. Clinical features and evolution of organ dysfunctions in sepsis. Revista Medico-Chirurgicala a Societatii De Medici Si Naturalisti Din Iasi. 2014; 118(1):71-74
- Bekhof J, Reitsma JB, Kok JH, Van Straaten IHLM. Clinical signs to identify late-onset sepsis in preterm infants. European Journal of Pediatrics. 2013; 172(4):501-508
- Bellomo R, Reade MC, Warrillow SJ. The pursuit of a high central venous oxygen saturation in sepsis: Growing concerns. Critical Care. 2008; 12(2)
- Bencosme A, Warner A, Healy D, Verme C. Prognostic potential of cytokines, nitrates, and APACHE II score in sepsis. Annals of Clinical and Laboratory Science. 1996; 26(5):426-432
- Benczo C, Gaudy D, White TM. "Keeping each patient safe": quality safety teaching/learning packets. Joint Commission Journal on Quality and Safety. 2004; 30(12):676-680
- 171 Bender L, Thaarup J, Varming K, Krarup H, Ellermann-Eriksen S, Ebbesen F. Early and late markers for the detection of early-onset neonatal sepsis. Danish Medical Bulletin. 2008; 55(4):219-223
- 172 Benito J, Luaces-Cubells C, Mintegi S, Astobiza E, Martinez-Indart L, Valls-Lafont A et al. Lack of value of midregional pro-adrenomedullin and C-terminal pro-endothelin-1 for prediction of severe bacterial infections in infants with fever without a source. European Journal of Pediatrics. 2013; 172(11):1441-1449
- 173 Benitz WE, Han MY, Madan A, Ramachandra P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics. 1998; 102(4):E41
- 174 Benson L, Hasenau S, O'Connor N, Burgermeister D. The impact of a nurse practitioner rapid response team on systemic inflammatory response syndrome outcomes. Dimensions of Critical Care Nursing. 2014; 33(3):108-115
- Benuck I, David RJ. Sensitivity of published neutrophil indexes in identifying newborn infants with sepsis. Journal of Pediatrics. 1983; 103(6):961-963
- 176 Berger C, Uehlinger J, Ghelfi D, Blau N, Fanconi S. Comparison of C-reactive protein and white blood cell count with differential in neonates at risk for septicaemia. European Journal of Pediatrics. 1995; 154(2):138-144
- 177 Berger T, Birnbaum A, Bijur P, Kuperman G, Gennis P. A Computerized Alert Screening for Severe Sepsis in Emergency Department Patients Increases Lactate Testing but does not Improve Inpatient Mortality. Applied Clinical Informatics. 2010; 1(4):394-407
- 178 Berger T, Green J, Horeczko T, Hagar Y, Garg N, Suarez A et al. Shock index and early recognition of sepsis in the emergency department: pilot study. Western Journal of Emergency Medicine. 2013; 14(2):168-174
- Berkman M, Ufberg J, Nathanson LA, Shapiro NI. Anion gap as a screening tool for elevated lactate in patients with an increased risk of developing sepsis in the Emergency Department. Journal of Emergency Medicine. 2009; 36(4):391-394

- Bernatsky S, Clarke AE, Labrecque J, von Scheven E, Schanberg LE, Silverman ED. Cancer risk in childhood-onset systemic lupus. Arthritis Research and Therapy. 2013; 15(6):R198
- 181 Bernstein LH, Devakonda A, Engelman E, Pancer G, Ferraraf J, Rucinski J et al. The role of procalcitonin in the diagnosis of sepsis and patient assignment to medical intensive care. Journal of Clinical Ligand Assay. 2007; 30(3-4):98-104
- Bettiol S, Thompson MJ, Roberts NW, Perera R, Heneghan CJ, Harnden A. Symptomatic treatment of the cough in whooping cough. Cochrane Database of Systematic Reviews. 2010;(1):CD003257
- 183 Bettiol S, Wang K, Thompson MJ, Roberts NW, Perera R, Heneghan CJ et al. Symptomatic treatment of the cough in whooping cough. Cochrane Database of Systematic Reviews. 2012; 5:CD003257
- 184 Beuchee A, Carrault G, Bansard JY, Boutaric E, Betremieux P, Pladys P. Uncorrelated randomness of the heart rate is associated with sepsis in sick premature infants. Neonatology. 2009; 96(2):109-114
- Bhandari V. Effective biomarkers for diagnosis of neonatal sepsis. Journal of the Pediatric Infectious Diseases Society. 2014; 3(3):234-245
- 186 Bianchi RA, Silva NA, Natal ML, Romero MC. Utility of base deficit, lactic acid, microalbuminuria, and C-reactive protein in the early detection of complications in the immediate postoperative evolution. Clinical Biochemistry. 2004; 37(5):404-407
- Bilavsky E, Yarden-Bilavsky H, Ashkenazi S, Amir J. C-reactive protein as a marker of serious bacterial infections in hospitalized febrile infants. Acta Paediatrica. 2009; 98(11):1776-1780
- Bilbault P, Lavaux T, Lahlou A, Uring-Lambert B, Gaub MP, Ratomponirina C et al. Transient Bcl-2 gene down-expression in circulating mononuclear cells of severe sepsis patients who died despite appropriate intensive care. Intensive Care Medicine. 2004; 30(3):408-415
- Billeter A, Turina M, Seifert B, Mica L, Stocker R, Keel M. Early serum procalcitonin, interleukin-6, and 24-hour lactate clearance: Useful indicators of septic infections in severely traumatized patients. World Journal of Surgery. 2009; 33(3):558-566
- 190 Bizzarro MJ, Jiang Y, Hussain N, Gruen JR, Bhandari V, Zhang H. The impact of environmental and genetic factors on neonatal late-onset sepsis. Journal of Pediatrics. 2011; 158(2):234-238
- 191 Bleeker SE, Derksen-Lubsen G, Grobbee DE, Donders ART, Moons KGM, Moll HA. Validating and updating a prediction rule for serious bacterial infection in patients with fever without source. Acta Paediatrica. 2007; 96(1):100-104
- 192 Bleeker SE, Moons KG, Derksen-Lubsen G, Grobbee DE, Moll HA. Predicting serious bacterial infection in young children with fever without apparent source. Acta Paediatrica. 2001; 90(11):1226-1232
- 193 Blommendahl J, Janas M, Laine S, Miettinen A, Ashorn P. Comparison of procalcitonin with CRP and differential white blood cell count for diagnosis of culture-proven neonatal sepsis.

 Scandinavian Journal of Infectious Diseases. 2002; 34(8):620-622
- 194 Bloos F, Reinhart K. Rapid diagnosis of sepsis. Virulence. 2014; 5(1):154-160

- 195 Bochicchio GV, Napolitano LM, Joshi M, McCarter RJJ, Scalea TM. Systemic inflammatory response syndrome score at admission independently predicts infection in blunt trauma patients. Journal of Trauma. 2001; 50(5):817-820
- Bochud PY, Calandra T, Francioli P. Bacteremia due to viridans streptococci in neutropenic patients: a review. American Journal of Medicine. 1994; 97(3):256-264
- Boersma WG. Assessment of severity of community-acquired pneumonia. Seminars in Respiratory Infections. 1999; 14(2):103-114
- Bogar L, Molnar Z, Kenyeres P, Tarsoly P. Sedimentation characteristics of leucocytes can predict bacteraemia in critical care patients. Journal of Clinical Pathology. 2006; 59(5):523-525
- Bojic S, Kotur-Stevuljevic J, Kalezic N, Jelic-Ivanovic Z, Stefanovic A, Palibrk I et al. Low paraoxonase 1 activity predicts mortality in surgical patients with sepsis. Disease Markers. 2014; 2014:427378
- Boland GW, Lee MJ, Leung J, Mueller PR. Percutaneous cholecystostomy in critically ill patients: early response and final outcome in 82 patients. American Journal of Roentgenology. 1994; 163(2):339-342
- 201 Boldt J, Heesen M, Muller M, Pabsdorf M, Hempelmann G. The effects of albumin versus hydroxyethyl starch solution on cardiorespiratory and circulatory variables in critically ill patients. Anesthesia and Analgesia. 1996; 83(2):254-261
- 202 Boldt J, Heesen M, Welters I, Padberg W, Martin K, Hempelmann G. Does the type of volume therapy influence endothelial-related coagulation in the critically ill? British Journal of Anaesthesia. 1995; 75(6):740-746
- 203 Boldt J, Muller M, Heesen M, Neumann K, Hempelmann GG. Influence of different volume therapies and pentoxifylline infusion on circulating soluble adhesion molecules in critically ill patients. Critical Care Medicine. 1996; 24(3):385-391
- Boldt J, Muller M, Mentges D, Papsdorf M, Hempelmann G. Volume therapy in the critically ill: is there a difference? Intensive Care Medicine. 1998; 24(1):28-36
- Bollaert PE, Fieux F, Charpentier C, Levy B. Baseline cortisol levels, cortisol response to corticotropin, and prognosis in late septic shock. Shock. 2003; 19(1):13-15
- 206 Bonadio WA, Hagen E, Rucka J, Shallow K, Stommel P, Smith D. Efficacy of a protocol to distinguish risk of serious bacterial infection in the outpatient evaluation of febrile young infants. Clinical Pediatrics. 1993; 32(7):401-404
- 207 Bonadio WA, Hegenbarth M, Zachariason M. Correlating reported fever in young infants with subsequent temperature patterns and rate of serious bacterial infections. Pediatric Infectious Disease Journal. 1990; 9(3):158-160
- 208 Bonadio WA, Hennes H, Smith D, Ruffing R, Melzer-Lange M, Lye P et al. Reliability of observation variables in distinguishing infectious outcome of febrile young infants. Pediatric Infectious Disease Journal. 1993; 12(2):111-114
- 209 Bonadio WA, Smith D, Carmody J. Correlating CBC profile and infectious outcome. A study of febrile infants evaluated for sepsis. Clinical Pediatrics. 1992; 31(10):578-582

- 210 Bonadio WA, Webster H, Wolfe A, Gorecki D. Correlating infectious outcome with clinical parameters of 1130 consecutive febrile infants aged zero to eight weeks. Pediatric Emergency Care. 1993; 9(2):84-86
- 211 Bond CM, Djogovic D, Villa-Roel C, Bullard MJ, Meurer DP, Rowe BH. Pilot study comparing sepsis management with and without electronic clinical practice guidelines in an academic emergency department. Journal of Emergency Medicine. 2013; 44(3):698-708
- 212 Boniatti MM, Cardoso PRC, Castilho RK, Vieira SRR. Is hyperchloremia associated with mortality in critically ill patients? A prospective cohort study. Journal of Critical Care. 2011; 26(2):175-179
- 213 Bonig H, Schneider DT, Sprock I, Lemburg P, Gobel U, Nurnberger W. 'Sepsis' and multi-organ failure: predictors of poor outcome after hematopoietic stem cell transplantation in children. Bone Marrow Transplantation. 2000; 25 Suppl 2:S32-S34
- 214 Bonsu BK, Chb M, Harper MB. Identifying febrile young infants with bacteremia: is the peripheral white blood cell count an accurate screen? Annals of Emergency Medicine. 2003; 42(2):216-225
- Boockvar K, Signor D, Ramaswamy R, Hung W. Delirium during acute illness in nursing home residents. Journal of the American Medical Directors Association. 2013; 14(9):656-660
- 216 Boskabadi H, Maamouri G, Afshari JT, Ghayour-Mobarhan M, Shakeri MT. Serum interleukin 8 level as a diagnostic marker in late neonatal sepsis. Iranian Journal of Pediatrics. 2010; 20(1):41-47
- Bossink AW, Groeneveld AB, Hack CE, Thijs LG. The clinical host response to microbial infection in medical patients with fever. Chest. 1999; 116(2):380-390
- Bossink AW, Groeneveld AB, Koffeman GI, Becker A. Prediction of shock in febrile medical patients with a clinical infection. Critical Care Medicine. 2001; 29(1):25-31
- 219 Bossink AW, Groeneveld AB, Thijs LG. Prediction of microbial infection and mortality in medical patients with fever: plasma procalcitonin, neutrophilic elastase-alpha1-antitrypsin, and lactoferrin compared with clinical variables. Clinical Infectious Diseases. 1999; 29(2):398-407
- 220 Bossink AW, Groeneveld J, Hack CE, Thijs LG. Prediction of mortality in febrile medical patients: How useful are systemic inflammatory response syndrome and sepsis criteria? Chest. 1998; 113(6):1533-1541
- Boulain T, Runge I, Bercault N, Benzekri-Lefevre D, Wolf M, Fleury C. Dopamine therapy in septic shock: detrimental effect on survival? Journal of Critical Care. 2009; 24(4):575-582
- 222 Boyd JH, Forbes J, Nakada Ta, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Critical Care Medicine. 2011; 39(2):259-265
- Bozzetti F, Bonfanti G, Regalia E, Cozzaglio L, Callegari L. A new approach to the diagnosis of central venous catheter sepsis. Journal of Parenteral and Enteral Nutrition. 1991; 15(4):412-416

- 224 Bradman K, Maconochie I. Can paediatric early warning score be used as a triage tool in paediatric accident and emergency? European Journal of Emergency Medicine. 2008; 15(6):359-360
- 225 Brenner T, Schmidt K, Delang M, Mehrabi A, Bruckner T, Lichtenstern C et al. Viscoelastic and aggregometric point-of-care testing in patients with septic shock Cross-links between inflammation and haemostasis. Acta Anaesthesiologica Scandinavica. 2012; 56(10):1277-1290
- Breslin K, Marx J, Hoffman H, McBeth R, Pavuluri P. Pediatric early warning score at time of emergency department disposition is associated with level of care. Pediatric Emergency Care. 2014; 30(2):97-103
- 227 Bressan S, Berlese P, Mion T, Masiero S, Cavallaro A, Da Dalt L. Bacteremia in feverish children presenting to the emergency department: a retrospective study and literature review. Acta Paediatrica. 2012; 101(3):271-277
- 228 Bressan S, Gomez B, Mintegi S, Da Dalt L, Blazquez D, Olaciregui I et al. Diagnostic performance of the lab-score in predicting severe and invasive bacterial infections in well-appearing young febrile infants. Pediatric Infectious Disease Journal. 2012; 31(12):1239-1244
- 229 Breuling T, Tschiedel E, Grose-Lordemann A, Hunseler C, Schmidt C, Niemann F et al. Septic shock in children in an urban area in Western Germany--outcome, risk factors for mortality and infection epidemiology. Klinische Padiatrie. 2015; 227(2):61-65
- 230 Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Critical Care Medicine. 2009; 37(2):666-688
- 231 Brodska H, Drabek T, Malickova K, Kazda A, Vitek A, Zima T et al. Marked increase of procalcitonin after the administration of anti-thymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study. Critical Care. 2009; 13(2):R37
- 232 Brodska H, Malickova K, Valenta J, Fabio A, Drabek T. Soluble receptor for advanced glycation end products predicts 28-day mortality in critically ill patients with sepsis. Scandinavian Journal of Clinical and Laboratory Investigation. 2013; 73(8):650-660
- 233 Broner CW, Polk SA, Sherman JM. Febrile infants less than eight weeks old. Predictors of infection. Clinical Pediatrics. 1990; 29(8):438-443
- 234 Brunkhorst FM, Wegscheider K, Forycki ZF, Brunkhorst R. Procalcitonin for early diagnosis and differentation of SIRS, sepsis, severe sepsis, and septic shock. Intensive Care Medicine, Supplement. 2000; 26(2):S148-S152
- 235 Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. New England Journal of Medicine. 2008; 358(2):125-139
- Buck C, Bundschu J, Gallati H, Bartmann P, Pohlandt F. Interleukin-6: a sensitive parameter for the early diagnosis of neonatal bacterial infection. Pediatrics. 1994; 93(1):54-58

- 237 Buckley JD, Joyce B, Garcia AJ, Jordan J, Scher E. Linking residency training effectiveness to clinical outcomes: a quality improvement approach. Joint Commission Journal on Quality and Patient Safety. 2010; 36(5):203-208
- Buist M, Gould T, Hagley S, Webb R. An analysis of excess mortality not predicted to occur by APACHE III in an Australian level III intensive care unit. Anaesthesia and Intensive Care. 2000; 28(2):171-177
- Burch VC, Tarr G, Morroni C. Modified early warning score predicts the need for hospital admission and inhospital mortality. Emergency Medicine Journal. 2008; 25(10):674-678
- 240 Burney M, Underwood J, McEvoy S, Nelson G, Dzierba A, Kauari V et al. Early detection and treatment of severe sepsis in the emergency department: identifying barriers to implementation of a protocol-based approach. Journal of Emergency Nursing: JEN. 2012; 38(6):512-517
- Busund R, Straume B, Revhaug A. Fatal course in severe meningococcemia: clinical predictors and effect of transfusion therapy. Critical Care Medicine. 1993; 21(11):1699-1705
- 242 Byer RL, Bachur RG. Clinical deterioration among patients with fever and erythroderma. Pediatrics. 2006; 118(6):2450-2460
- Byl B, Deviere J, Saint-Hubert F, Zech F, Gulbis B, Thys J-P. Evaluation of tumor necrosis factoralpha, interleukin-6 and C-reactive protein plasma levels as predictors of bacteremia in patients presenting signs of sepsis without shock. Clinical Microbiology and Infection. 1997; 3(3):306-313
- 244 Byrne DJ, Malek MM, Davey PG, Cuschieri A. Postoperative wound scoring. Biomedicine and Pharmacotherapy. 1989; 43(9):669-673
- Caksen H, Ozturk MK, Uzum K, Yuksel S, Ustunbas HB, Per H. Septic arthritis in childhood. Pediatrics International. 2000; 42(5):534-540
- 246 Caldas JPS, Marba STM, Blotta MHSL, Calil R, Morais SS, Oliveira RTD. Accuracy of white blood cell count, C-reactive protein, interleukin-6 and tumor necrosis factor alpha for diagnosing late neonatal sepsis. Jornal De Pediatria. 2008; 84(6):536-542
- 247 Caljouw MA, den Elzen WP, Cools HJ, Gussekloo J. Predictive factors of urinary tract infections among the oldest old in the general population. A population-based prospective follow-up study. BMC Medicine. 2011; 9:57
- 248 Calle P, Cerro L, Valencia J, Jaimes F. Usefulness of severity scores in patients with suspected infection in the emergency department: a systematic review. Journal of Emergency Medicine. 2012; 42(4):379-391
- 249 Calvano SE, Coyle SM, Barbosa KS, Barie PS, Lowry SF. Multivariate analysis of 9 diseaseassociated variables for outcome prediction in patients with sepsis. Archives of Surgery. 1998; 133(12):1347-1350
- 250 Carbonell N, Blasco M, Ferreres J, Blanquer J, Garcia-Ramon R, Mesejo A et al. Sepsis and SOFA score: related outcome for critically ill renal patients. Clinical Nephrology. 2004; 62(3):185-192
- 251 Carbonell-Estrany X, Figueras-Aloy J, Salcedo-Abizanda S, Rosa-Fraile M, Castrillo Study Group. Probable early-onset group B streptococcal neonatal sepsis: a serious clinical condition related

- to intrauterine infection. Archives of Disease in Childhood Fetal and Neonatal Edition. 2008; 93(2):F85-F89
- 252 Cardoso T, Carneiro AH, Ribeiro O, Teixeira-Pinto A, Costa-Pereira A. Reducing mortality in severe sepsis with the implementation of a core 6-hour bundle: Results from the Portuguese community-acquired sepsis study (SACiUCI study). Critical Care. 2010; 14(3)
- Carlbom DJ, Rubenfeld GD. Barriers to implementing protocol-based sepsis resuscitation in the emergency department--results of a national survey. Critical Care Medicine. 2007; 35(11):2525-2532
- 254 Carlsen S, Perner A, East Danish Septic Shock Cohort Investigators. Initial fluid resuscitation of patients with septic shock in the intensive care unit. Acta Anaesthesiologica Scandinavica. 2011; 55(4):394-400
- 255 Carrieri MP, Stolfi I, Moro ML, Italian Study Group on Hospital Acquired Infections in Neonatal Intensive Care Units. Intercenter variability and time of onset: two crucial issues in the analysis of risk factors for nosocomial sepsis. Pediatric Infectious Disease Journal. 2003; 22(7):599-609
- 256 Carrol ED, Newland P, Riordan FAI, Thomson APJ, Curtis N, Hart CA. Procalcitonin as a diagnostic marker of meningococcal disease in children presenting with fever and a rash. Archives of Disease in Childhood. 2002; 86(4):282-285
- 257 Carrol ED, Thomson APJ, Hart CA. Procalcitonin as a marker of sepsis. International Journal of Antimicrobial Agents. 2002; 20(1):1-9
- 258 Carrol ED, Newland P, Thomson APJ, Hart CA. Prognostic value of procalcitonin in children with meningococcal sepsis. Critical Care Medicine. 2005; 33(1):224-225
- 259 Carter C. Implementing the severe sepsis care bundles outside the ICU by outreach. Nursing in Critical Care. 2007; 12(5):225-230
- 260 Cartin-Ceba R, Kashiouris M, Plataki M, Kor DJ, Gajic O, Casey ET. Risk factors for development of acute kidney injury in critically ill patients: a systematic review and meta-analysis of observational studies. Critical Care Research and Practice. 2012; 2012:691013
- 261 Casado-Flores J, Blanco-Quiros A, Nieto M, Asensio J, Fernandez C. Prognostic utility of the semi-quantitative procalcitonin test, neutrophil count and C-reactive protein in meningococcal infection in children. European Journal of Pediatrics. 2006; 165(1):26-29
- Casagranda I, Vendramin C, Callegari T, Vidali M, Calabresi A, Ferrandu G et al. Usefulness of suPAR in the risk stratification of patients with sepsis admitted to the emergency department. Internal and Emergency Medicine. 2015; 10(6):725-730
- 263 Casserly B, Baram M, Walsh P, Sucov A, Ward NS, Levy MM. Implementing a collaborative protocol in a sepsis intervention program: lessons learned. Lung. 2011; 189(1):11-19
- 264 Castellanos-Ortega A, Suberviola B, Garcia-Astudillo LA, Holanda MS, Ortiz F, Llorca J et al. Impact of the Surviving Sepsis Campaign protocols on hospital length of stay and mortality in septic shock patients: Results of a three-year follow-up quasi-experimental study. Critical Care Medicine. 2010; 38(4):1036-1043

- 265 Castro R, Regueira T, Aguirre ML, Llanos OP, Bruhn A, Bugedo G et al. An evidence-based resuscitation algorithm applied from the emergency room to the ICU improves survival of severe septic shock. Minerva Anestesiologica. 2008; 74(6):223-231
- 266 Cauchie P, Cauchie C, Boudjeltia KZ, Carlier E, Deschepper N, Govaerts D et al. Diagnosis and prognosis of overt disseminated intravascular coagulation in a general hospital -- meaning of the ISTH score system, fibrin monomers, and lipoprotein-C-reactive protein complex formation. American Journal of Hematology. 2006; 81(6):414-419
- 267 Cazalis MA, Friggeri A, Cave L, Demaret J, Barbalat V, Cerrato E et al. Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. Critical Care. 2013; 17(6):R287
- 268 Cei M, Bartolomei C, Mumoli N. In-hospital mortality and morbidity of elderly medical patients can be predicted at admission by the Modified Early Warning Score: a prospective study. International Journal of Clinical Practice. 2009; 63(4):591-595
- 269 Cekmez F, Canpolat FE, Cetinkaya M, Aydinoz S, Aydemir G, Karademir F et al. Diagnostic value of resistin and visfatin, in comparison with C-reactive protein, procalcitonin and interleukin-6 in neonatal sepsis. European Cytokine Network. 2011; 22(2):113-117
- 270 Celik IH, Demirel FG, Uras N, Oguz SS, Erdeve O, Biyikli Z et al. What are the cut-off levels for IL-6 and CRP in neonatal sepsis? Journal of Clinical Laboratory Analysis. 2010; 24(6):407-412
- 271 Cha KC, Hwang SO, Oh SB, Kim SH, Ji HJ, Kim H. Comparison of Two Titration Methods of Vasopressor Infusion to Correct Septic Shock. Journal of the Korean Society of Emergency Medicine. 2004; 15(4):280-285
- 272 Chaaban H, Singh K, Huang J, Siryaporn E, Lim YP, Padbury JF. The role of inter-alpha inhibitor proteins in the diagnosis of neonatal sepsis. Journal of Pediatrics. 2009; 154(4):620-622
- 273 Chaboyer W, Thalib L, Foster M, Ball C, Richards B. Predictors of adverse events in patients after discharge from the intensive care unit. American Journal of Critical Care. 2008; 17(3):255-264
- 274 Chaiyakulsil C, Pandee U. Validation of pediatric early warning score in pediatric emergency department. Pediatrics International. 2015; 57(4):694-698
- 275 Chalupa P, Beran O, Herwald H, Kasprikova N, Holub M. Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection. 2011; 39(5):411-417
- 276 Chamberlain D, Hunt T, Hany A. Severe sepsis in intensive care patients is not identified by intensive care clinicians within 24 hours of admission. Australian Critical Care. 2006; 19(4):148
- 277 Chamberlain DJ, Willis E, Clark R, Brideson G. Identification of the severe sepsis patient at triage: A prospective analysis of the Australasian Triage Scale. Emergency Medicine Journal. 2015; 32(9):690-697
- 278 Chan DK, Ho LY. Usefulness of C-reactive protein in the diagnosis of neonatal sepsis. Singapore Medical Journal. 1997; 38(6):252-255
- 279 Chan KPW, Low JGH, Raghuram J, Fook-Chong SMC, Kurup A. Clinical characteristics and outcome of severe melioidosis requiring intensive care. Chest. 2005; 128(5):3674-3678

- 280 Chan SM, Chadwick J, Young DL, Holmes E, Gotlib J. Intensive serial biomarker profiling for the prediction of neutropenic Fever in patients with hematologic malignancies undergoing chemotherapy: a pilot study. Hematology Reports. 2014; 6(2):5466
- 281 Chan T, Gu F. Early diagnosis of sepsis using serum biomarkers. Expert Review of Molecular Diagnostics. 2011; 11(5):487-496
- 282 Chan YL, Liao HC, Tsay PK, Chang SS, Chen JC, Liaw SJ. C-reactive protein as an indicator of bacterial infection of adult patients in the emergency department. Chang Gung Medical Journal. 2002; 25(7):437-445
- 283 Chan YL, Tseng CP, Tsay PK, Chang SS, Chiu TF, Chen JC. Procalcitonin as a marker of bacterial infection in the emergency department: an observational study. Critical Care. 2004; 8(1):R12-R20
- 284 Chang DW, Huynh R, Sandoval E, Han N, Coil CJ, Spellberg BJ. Volume of fluids administered during resuscitation for severe sepsis and septic shock and the development of the acute respiratory distress syndrome. Journal of Critical Care. 2014; 29(6):1011-1015
- 285 Charles PE, Ladoire S, Snauwaert A, Prin S, Aho S, Pechinot A et al. Impact of previous sepsis on the accuracy of procalcitonin for the early diagnosis of blood stream infection in critically ill patients. BMC Infectious Diseases. 2008; 8
- 286 Chassagne P, Perol MB, Doucet J, Trivalle C, Menard JF, Manchon ND et al. Is presentation of bacteremia in the elderly the same as in younger patients? American Journal of Medicine. 1996; 100(1):65-70
- 287 Chawla LS, Abell L, Mazhari R, Egan M, Kadambi N, Burke HB et al. Identifying critically ill patients at high risk for developing acute renal failure: a pilot study. Kidney International. 2005; 68(5):2274-2280
- 288 Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL et al. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clinical Journal of the American Society of Nephrology. 2007; 2(1):22-30
- 289 Chen CW, Jong GM, Shiau JJ, Hsiue TR, Chang HY, Chuang YC et al. Adult bacteremic pneumonia: bacteriology and prognostic factors. Journal of the Formosan Medical Association. 1992; 91(8):754-759
- 290 Chen C-M, Cheng K-C, Chan K-S, Yu W-L. Age may not influence the outcome of patients with severe sepsis in intensive care units. International Journal of Gerontology. 2014; 8(1):22-26
- 291 Chen FG, Koh KF. Septic shock in a surgical intensive care--validation of multiorgan and APACHE II scores in predicting outcome. Annals of the Academy of Medicine, Singapore. 1994; 23(4):447-451
- 292 Chen J-S, Ko W-J, Yu H-Y, Lai L-P, Huang S-C, Chi N-H et al. Analysis of the outcome for patients experiencing myocardial infarction and cardiopulmonary resuscitation refractory to conventional therapies necessitating extracorporeal life support rescue. Critical Care Medicine. 2006; 34(4):950-957
- 293 Chen KT, Ringer S, Cohen AP, Lieberman E. The role of intrapartum fever in identifying asymptomatic term neonates with early-onset neonatal sepsis. Journal of Perinatology. 2002; 22(8):653-657

- 294 Chen M, Wang B, Xu Y, Deng Z, Xue H, Wang L et al. Diagnostic value of serum leptin and a promising novel diagnostic model for sepsis. Experimental and Therapeutic Medicine. 2014; 7(4):881-886
- 295 Chen Q, Shi J, Fei A, Wang F, Pan S, Wang W. Neutrophil CD64 expression is a predictor of mortality for patients in the intensive care unit. International Journal of Clinical and Experimental Pathology. 2014; 7(11):7806-7813
- 296 Chen R, Yan ZQ, Feng D, Luo YP, Wang LL, Shen DX. Nosocomial bloodstream infection in patients caused by Staphylococcus aureus: drug susceptibility, outcome, and risk factors for hospital mortality. Chinese Medical Journal. 2012; 125(2):226-229
- 297 Chen SCA, Kontoyiannis DP. New molecular and surrogate biomarker-based tests in the diagnosis of bacterial and fungal infection in febrile neutropenic patients. Current Opinion in Infectious Diseases. 2010; 23(6):567-577
- 298 Chen SJ, Chao TF, Chiang MC, Kuo SC, Chen LY, Yin T et al. Prediction of patient outcome from Acinetobacter baumannii bacteremia with Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) II scores. Internal Medicine. 2011; 50(8):871-877
- 299 Chen WC, Tsai KD, Chen CH, Lin MS, Chen CM, Shih CM et al. Role of gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU. Internal and Emergency Medicine. 2012; 7(1):53-58
- 300 Chen WL, Kuo CD. Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Academic Emergency Medicine. 2007; 14(5):392-397
- 301 Chen YX, Li CS. Risk stratification and prognostic performance of the predisposition, infection, response, and organ dysfunction (PIRO) scoring system in septic patients in the emergency department: a cohort study. Critical Care. 2014; 18(2):R74
- 302 Chen YX, Li CS. Lactate on emergency department arrival as a predictor of mortality and site-of-care in pneumonia patients: a cohort study. Thorax. 2015; 70(5):404-410
- 303 Chia F, Malathi I, Low EH. The importance of septic work-up in the febrile neonate. Journal of the Singapore Paediatric Society. 1991; 33(3-4):159-164
- 304 Chiesa C, Pacifico L, Rossi N, Panero A, Matrunola M, Mancuso G. Procalcitonin as a marker of nosocomial infections in the neonatal intensive care unit. Intensive Care Medicine. 2000; 26 Suppl 2:S175-S177
- Chiesa C, Pellegrini G, Panero A, Osborn JF, Signore F, Assumma M et al. C-reactive protein, interleukin-6, and procalcitonin in the immediate postnatal period: Influence of illness severity, risk status, antenatal and perinatal complications, and infection. Clinical Chemistry. 2003; 49(1):60-68
- 306 Chisti MJ, Saha S, Roy CN, Salam MA. Predictors of bacteremia in infants with diarrhea and systemic inflammatory response syndrome attending an urban diarrheal treatment center in a developing country. Pediatric Critical Care Medicine. 2010; 11(1):92-97
- 307 Chiu CH, Lin TY, Bullard MJ. Identification of febrile neonates unlikely to have bacterial infections. Pediatric Infectious Disease Journal. 1997; 16(1):59-63

- 308 Chong SL, Ong GY, Venkataraman A, Chan YH. The golden hours in paediatric septic shock-current updates and recommendations. Annals of the Academy of Medicine, Singapore. 2014; 43(5):267-274
- 309 Chopra A, Kumar V, Dutta A. Hypertonic versus normal saline as initial fluid bolus in pediatric septic shock. Indian Journal of Pediatrics. 2011; 78(7):833-837
- 310 Chuesakoolvanich K. Septic death in adults at Surin Hospital: an investigation of real-life clinical practice vs. empirical guidelines. Journal of the Medical Association of Thailand. 2007; 90(10):2039-2046
- Churgay CA, Smith MA, Blok B. Maternal fever during labor--what does it mean? Journal of the American Board of Family Practice. 1994; 7(1):14-24
- Churpek MM, Yuen TC, Edelson DP. Risk stratification of hospitalized patients on the wards. Chest. 2013; 143(6):1758-1765
- 313 Chwals WJ, Fernandez ME, Jamie AC, Charles BJ, Rushing JT. Detection of postoperative sepsis in infants with the use of metabolic stress monitoring. Archives of Surgery. 1994; 129(4):437-442
- 314 Cicarelli DD, Vieira JE, Bensenor FEM. Lactate as a predictor of mortality and multiple organ failure in patients with the systemic inflammatory response syndrome. Revista Brasileira De Anestesiologia. 2007; 57(6):630-638
- 315 Cildir E, Bulut M, Akalin H, Kocabas E, Ocakoglu G, Aydin SA. Evaluation of the modified MEDS, MEWS score and Charlson comorbidity index in patients with community acquired sepsis in the emergency department. Internal and Emergency Medicine. 2013; 8(3):255-260
- 316 Claessens YE, Schmidt J, Batard E, Grabar S, Jegou D, Hausfater P et al. Can C-reactive protein, procalcitonin and mid-regional pro-atrial natriuretic peptide measurements guide choice of inpatient or out-patient care in acute pyelonephritis? Biomarkers In Sepsis (BIS) multicentre study. Clinical Microbiology and Infection. 2010; 16(6):753-760
- 317 Clec'h C, Ferriere F, Karoubi P, Fosse JP, Cupa M, Hoang P et al. Diagnostic and prognostic value of procalcitonin in patients with septic shock. Critical Care Medicine. 2004; 32(5):1166-1169
- 318 Clemmer TP, Fisher CJJ, Bone RC, Slotman GJ, Metz CA, Thomas FO. Hypothermia in the sepsis syndrome and clinical outcome. The Methylprednisolone Severe Sepsis Study Group. Critical Care Medicine. 1992; 20(10):1395-1401
- Close RM, Ejidokun OO, Verlander NQ, Fraser G, Meltzer M, Rehman Y et al. Early diagnosis model for meningitis supports public health decision making. Journal of Infection. 2011; 63(1):32-38
- Coba V, Whitmill M, Mooney R, Horst HM, Brandt M-M, Digiovine B et al. Resuscitation Bundle Compliance in Severe Sepsis and Septic Shock: Improves Survival, Is Better Late than Never. Journal of Intensive Care Medicine. 2011; 26(5):304-313
- Coburn B, Morris AM, Tomlinson G, Detsky AS. Does this adult patient with suspected bacteremia require blood cultures? JAMA. 2012; 308(4):502-511

- Coen D, Cortellaro F, Pasini S, Tombini V, Vaccaro A, Montalbetti L et al. Towards a less invasive approach to the early goal-directed treatment of septic shock in the ED. American Journal of Emergency Medicine. 2014; 32(6):563-568
- Coggins SA, Wynn JL, Hill ML, Slaughter JC, Ozdas-Weitkamp A, Jalloh O et al. Use of a computerized C-reactive protein (CRP) based sepsis evaluation in very low birth weight (VLBW) infants: a five-year experience. PloS One. 2013; 8(11):e78602
- 324 Collighan N, Giannoudis PV, Kourgeraki O, Perry SL, Guillou PJ, Bellamy MC. Interleukin 13 and inflammatory markers in human sepsis. British Journal of Surgery. 2004; 91(6):762-768
- Comstedt P, Storgaard M, Lassen AT. The Systemic Inflammatory Response Syndrome (SIRS) in acutely hospitalised medical patients: a cohort study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2009; 17:67
- 326 Contenti J, Corraze H, Lemoel F, Levraut J. Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients. American Journal of Emergency Medicine. 2015; 33(2):167-172
- 327 Cook DJ, Guyatt GH, McIlroy W, Reeve BK, Willan A, Pearl RG. Serum cortisol: A predictor of mortality in sepsis? Journal of Intensive Care Medicine. 1992; 7(2):84-89
- 328 Corfield AR, Lees F, Zealley I, Houston G, Dickie S, Ward K et al. Utility of a single early warning score in patients with sepsis in the emergency department. Emergency Medicine Journal. 2014; 31(6):482-487
- 329 Corona A, Wilson AP, Grassi M, Singer M. Prospective audit of bacteraemia management in a university hospital ICU using a general strategy of short-course monotherapy. Journal of Antimicrobial Chemotherapy. 2004; 54(4):809-817
- 330 Correia N, Rodrigues RP, Sa MC, Dias P, Lopes L, Paiva A. Improving recognition of patients at risk in a Portuguese general hospital: results from a preliminary study on the early warning score. International Journal of Emergency Medicine. 2014; 7:22
- 331 Cortegiani A, Russotto V, Montalto F, Foresta G, Accurso G, Palmeri C et al. Procalcitonin as a marker of Candida species detection by blood culture and polymerase chain reaction in septic patients. BMC Anesthesiology. 2014; 14:9
- Coslovsky M, Takala J, Exadaktylos AK, Martinolli L, Merz TM. A clinical prediction model to identify patients at high risk of death in the emergency department. Intensive Care Medicine. 2015; 41(6):1029-1036
- 333 Couto RC, Barbosa JAA, Pedrosa TMG, Biscione FM. C-reactive protein-guided approach may shorten length of antimicrobial treatment of culture-proven late-onset sepsis: an intervention study. Brazilian Journal of Infectious Diseases. 2007; 11(2):240-245
- Couto-Alves A, Wright VJ, Perumal K, Binder A, Carrol ED, Emonts M et al. A new scoring system derived from base excess and platelet count at presentation predicts mortality in paediatric meningococcal sepsis. Critical Care. 2013; 17(2):R68
- 335 Craig JC, Williams GJ, Jones M, Codarini M, Macaskill P, Hayen A et al. The accuracy of clinical symptoms and signs for the diagnosis of serious bacterial infection in young febrile children: prospective cohort study of 15 781 febrile illnesses. BMJ. 2010; 340:c1594

- 336 Croce MA, Fabian TC, Stewart RM, Pritchard FE, Minard G, Kudsk KA. Correlation of Abdominal Trauma Index and Injury Severity Score with abdominal septic complications in penetrating and blunt trauma. Journal of Trauma. 1992; 32(3):380-388
- 337 Croft CA, Moore FA, Efron PA, Marker PS, Gabrielli A, Westhoff LS et al. Computer versus paper system for recognition and management of sepsis in surgical intensive care. Journal of Trauma and Acute Care Surgery. 2014; 76(2):311-319
- 338 Crone PD, Yu M, Myers SA. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: A prospective, randomized, controlled study [1]. Critical Care Medicine. 1994; 22(9):1512-1513
- 339 Crowe CA, Kulstad EB, Mistry CD, Kulstad CE. Comparison of severity of illness scoring systems in the prediction of hospital mortality in severe sepsis and septic shock. Journal of Emergencies, Trauma, and Shock. 2010; 3(4):342-347
- 340 Cruz AT, Williams EA, Graf JM, Perry AM, Harbin DE, Wuestner ER et al. Test characteristics of an automated age- and temperature-adjusted tachycardia alert in pediatric septic shock. Pediatric Emergency Care. 2012; 28(9):889-894
- Cui JY, Xu HL, Wang AT, Zhu X, Yao GQ, Liu F. Influence of albumin as a resuscitation fluid on the prognosis of patients with sepsis: a meta-analysis. Chinese Critical Care Medicine. 2012; 24(1):18-23
- 342 D'Orio V, Mendes P, Saad G, Marcelle R. Accuracy in early prediction of prognosis of patients with septic shock by analysis of simple indices: prospective study. Critical Care Medicine. 1990; 18(12):1339-1345
- da Silva LPA, Cavalheiro LG, Queiros F, Nova CV, Lucena R. Prevalence of newborn bacterial meningitis and sepsis during the pregnancy period for public health care system participants in Salvador, Bahia, Brazil. Brazilian Journal of Infectious Diseases. 2007; 11(2):272-276
- da Silva PSL, Iglesias SBO, Nakakura CH, de Aguiar VE, de Carvalho WB. The product of platelet and neutrophil counts (PN product) at presentation as a predictor of outcome in children with meningococcal disease. Annals of Tropical Paediatrics. 2007; 27(1):25-30
- Dabar G, Harmouche C, Salameh P, Jaber BL, Jamaleddine G, Waked M et al. Community- and healthcare-associated infections in critically ill patients: a multicenter cohort study. International Journal of Infectious Diseases. 2015; 37:80-85
- Dabhi AS, Khedekar SS, Mehalingam V. A Prospective Study of Comparison of APACHE-IV & SAPS-II Scoring Systems and Calculation of Standardised Mortality Rate in Severe Sepsis and Septic Shock Patients. Journal of Clinical and Diagnostic Research. 2014; 8(10):MC09-MC13
- 347 Dalegrave D, Silva RL, Becker M, Gehrke LV, Friedman G. Relative adrenal insufficiency as a predictor of disease severity and mortality in severe septic shock. Revista Brasileira De Terapia Intensiva. 2012; 24(4):362-368
- Daley MJ, Lat I, Mieure KD, Jennings HR, Hall JB, Kress JP. A comparison of initial monotherapy with norepinephrine versus vasopressin for resuscitation in septic shock. Annals of Pharmacotherapy. 2013; 47(3):301-310

- 349 Dalton HJ, Carcillo JA, Woodward DB, Short MA, Williams MD. Biomarker response to drotrecogin alfa (activated) in children with severe sepsis: results from the RESOLVE clinical trial*. Pediatric Critical Care Medicine. 2012; 13(6):639-645
- Damas P, Canivet JL, de Groote D, Vrindts Y, Albert A, Franchimont P et al. Sepsis and serum cytokine concentrations. Critical Care Medicine. 1997; 25(3):405-412
- Daniels R, Nutbeam T, McNamara G, Galvin C. The sepsis six and the severe sepsis resuscitation bundle: a prospective observational cohort study. Emergency Medicine Journal. 2011; 28(6):507-512
- Daoud AS, Abuekteish F, Obeidat A, el-Nassir Z, al-Rimawi H. The changing face of neonatal septicaemia. Annals of Tropical Paediatrics. 1995; 15(1):93-96
- Das K, Ozdogan M, Karateke F, Uzun AS, Sozen S, Ozdas S. Comparison of APACHE II, P-POSSUM and SAPS II scoring systems in patients underwent planned laparotomies due to secondary peritonitis. Annali Italiani Di Chirurgia. 2014; 85(1):16-21
- Davis J, Christie S, Fairley D, Coyle P, Tubman R, Shields MD. Performance of a Novel Molecular Method in the Diagnosis of Late-Onset Sepsis in Very Low Birth Weight Infants. PloS One. 2015; 10(8):e0136472
- Dawes TR, Cheek E, Bewick V, Dennis M, Duckitt RW, Walker J et al. Introduction of an electronic physiological early warning system: effects on mortality and length of stay. British Journal of Anaesthesia. 2014; 113(4):603-609
- Day D, Ugol JH, French JI, Haverkamp A, Wall RE, McGregor JA. Fetal monitoring in perinatal sepsis. American Journal of Perinatology. 1992; 9(1):28-33
- 357 de Azevedo JRA, Torres OJM, Beraldi RA, Ribas CAPM, Malafaia O. Prognostic evaluation of severe sepsis and septic shock: procalcitonin clearance vs DELTA Sequential Organ Failure Assessment. Journal of Critical Care. 2015; 30(1):219-12
- De Blasi RA, Cardelli P, Costante A, Sandri M, Mercieri M, Arcioni R. Immature platelet fraction in predicting sepsis in critically ill patients. Intensive Care Medicine. 2013; 39(4):636-643
- De Gaetano A, Cortese G, Pedersen MG, Panunzi S, Picchini U, Morelli A. Modeling serum creatinine in septic ICU patients. Cardiovascular Engineering. 2004; 4(2):173-180
- de Groot B, de Deckere ER, Flameling R, Sandel MH, Vis A. Performance of illness severity scores to guide disposition of emergency department patients with severe sepsis or septic shock. European Journal of Emergency Medicine: Official Journal of the European Society for Emergency Medicine. 2012; 19(5):316-322
- 361 de Groot B, Verdoorn RCW, Lameijer J, van der Velden J. High-sensitivity cardiac troponin T is an independent predictor of inhospital mortality in emergency department patients with suspected infection: a prospective observational derivation study. Emergency Medicine Journal. 2014; 31(11):882-888
- de Jager CPC, van Wijk PTL, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Critical Care. 2010; 14(5):R192

- De Leon ALP-P, Romero-Gutierrez G, Valenzuela CA, Gonzalez-Bravo FE. Simplified PRISM III score and outcome in the pediatric intensive care unit. Pediatrics International. 2005; 47(1):80-83
- de Macedo JL, Rosa SC, Castro C. Sepsis in burned patients. Revista Da Sociedade Brasileira De Medicina Tropical. 2003; 36(6):647-652
- De Meester K, Das T, Hellemans K, Verbrugghe W, Jorens PG, Verpooten GA et al. Impact of a standardized nurse observation protocol including MEWS after Intensive Care Unit discharge. Resuscitation. 2013; 84(2):184-188
- 366 de Oliveira CF, de Oliveira DSF, Gottschald AFC, Moura JDG, Costa GA, Ventura AC et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Medicine. 2008; 34(6):1065-1075
- de Souza SP, Matos RS, Barros LL, Rocha PN. Inverse association between serum creatinine and mortality in acute kidney injury. Jornal Brasileiro De Nefrologia. 2014; 36(4):469-475
- de Werra I, Jaccard C, Corradin SB, Chiolero R, Yersin B, Gallati H et al. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Critical Care Medicine. 1997; 25(4):607-613
- 369 De A, Saraswathi K, Gogate A, Raghavan K. C-reactive protein and buffy coat smear in early diagnosis of childhood septicemia. Indian Journal of Pathology and Microbiology. 1998; 41(1):23-26
- 370 De S, Williams GJ, Hayen A, Macaskill P, McCaskill M, Isaacs D et al. Accuracy of the "traffic light" clinical decision rule for serious bacterial infections in young children with fever: a retrospective cohort study. BMJ. 2013; 346:f866
- 371 De S, Williams GJ, Hayen A, Macaskill P, McCaskill M, Isaacs D et al. Value of white cell count in predicting serious bacterial infection in febrile children under 5 years of age. Archives of Disease in Childhood. 2014; 99(6):493-499
- 372 Debiane L, Hachem RY, Al Wohoush I, Shomali W, Bahu RR, Jiang Y et al. The utility of proadrenomedullin and procalcitonin in comparison to C-reactive protein as predictors of sepsis and bloodstream infections in critically ill patients with cancer*. Critical Care Medicine. 2014; 42(12):2500-2507
- 373 Degoricija V, Sharma M, Legac A, Gradiser M, Sefer S, Vucicevic Z. Survival analysis of 314 episodes of sepsis in medical intensive care unit in university hospital: impact of intensive care unit performance and antimicrobial therapy. Croatian Medical Journal. 2006; 47(3):385-397
- Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Critical Care Medicine. 2011; 39(2):386-391
- Dellinger EP. Use of scoring systems to assess patients with surgical sepsis. Surgical Clinics of North America. 1988; 68(1):123-145

- 376 Demmel KM, Williams L, Flesch L. Implementation of the pediatric early warning scoring system on a pediatric hematology/oncology unit. Journal of Pediatric Oncology Nursing. 2010; 27(4):229-240
- 377 Dempfle C-E, Lorenz S, Smolinski M, Wurst M, West S, Houdijk WPM et al. Utility of activated partial thromboplastin time waveform analysis for identification of sepsis and overt disseminated intravascular coagulation in patients admitted to a surgical intensive care unit. Critical Care Medicine. 2004; 32(2):520-524
- 378 Derkx HH, van den Hoek J, Redekop WK, Bijlmer RP, van Deventer SJ, Bossuyt PM.

 Meningococcal disease: a comparison of eight severity scores in 125 children. Intensive Care

 Medicine. 1996; 22(12):1433-1441
- 379 Desai S, Lakhani JD. Utility of SOFA and APACHE II score in sepsis in rural set up MICU. Journal of the Association of Physicians of India. 2013; 61(9):608-611
- 380 Desmond NA, Nyirenda D, Dube Q, Mallewa M, Molyneux E, Lalloo DG et al. Recognising and treatment seeking for acute bacterial meningitis in adults and children in resource-poor settings: a qualitative study. PloS One. 2013; 8(7):e68163
- Dettmer M, Holthaus CV, Fuller BM. The impact of serial lactate monitoring on emergency department resuscitation interventions and clinical outcomes in severe sepsis and septic shock: an observational cohort study. Shock. 2015; 43(1):55-61
- 382 Deutsch L, Aggarwal R, Wright A, Stapleton C, Stanley S, Emerson M. PLD.42 'Sepsis Six' Adaptation of a trust innovation in Maternity. Archives of Disease in Childhood Fetal and Neonatal Edition. 2014; 99 Suppl 1:A118
- 383 Devaux Y, Archimbaud E, Guyotat D, Plotton C, Maupas J, Fleurette J et al. Streptococcal bacteremia in neutropenic adult patients. Nouvelle Revue Française D'Hematologie. 1992; 34(2):191-195
- DeVita MA, Bellomo R. The case of rapid response systems: are randomized clinical trials the right methodology to evaluate systems of care? Critical Care Medicine. 2007; 35(5):1413-1414
- Devran O, Karakurt Z, Adiguzel N, Gungor G, Mocin OY, Balci MK et al. C-reactive protein as a predictor of mortality in patients affected with severe sepsis in intensive care unit.

 Multidisciplinary Respiratory Medicine. 2012; 7(6)
- Dewhurst CJ, Cooke RW, Turner MA. Clinician observation of physiological trend monitoring to identify late-onset sepsis in preterm infants. Acta Paediatrica. 2008; 97(9):1187-1191
- Dhanalakshmi V, Sivakumar ES. Comparative Study in Early Neonates with Septicemia by Blood Culture, Staining Techniques and C Reactive Protein (CRP). Journal of Clinical and Diagnostic Research. 2015; 9(3):DC12-DC15
- Di Nardo M, Ficarella A, Ricci Z, Luciano R, Stoppa F, Picardo S et al. Impact of severe sepsis on serum and urinary biomarkers of acute kidney injury in critically ill children: an observational study. Blood Purification. 2013; 35(1-3):172-176
- Dickinson A, Qadan M, Polk HCJ. Optimizing surgical care: a contemporary assessment of temperature, oxygen, and glucose. American Surgeon. 2010; 76(6):571-577

- 390 Diepold M, Noellke P, Duffner U, Kontny U, Berner R. Performance of Interleukin-6 and Interleukin-8 serum levels in pediatric oncology patients with neutropenia and fever for the assessment of low-risk. BMC Infectious Diseases. 2008; 8:28
- 391 Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infectious Diseases. 2009; 9:126
- 392 Diez-Padrisa N, Bassat Q, Morais L, O'Callaghan-Gordo C, Machevo S, Nhampossa T et al. Procalcitonin and C-reactive protein as predictors of blood culture positivity among hospitalised children with severe pneumonia in Mozambique. Tropical Medicine and International Health. 2012; 17(9):1100-1107
- Dior UP, Kogan L, Calderon-Margalit R, Burger A, Amsallem H, Elchalal U et al. The association of maternal intrapartum subfebrile temperature and adverse obstetric and neonatal outcomes. Paediatric and Perinatal Epidemiology. 2014; 28(1):39-47
- 394 Dornbusch HJ, Strenger V, Kerbl R, Lackner H, Schwinger W, Sovinz P et al. Procalcitonin and Creactive protein do not discriminate between febrile reaction to anti-T-lymphocyte antibodies and Gram-negative sepsis. Bone Marrow Transplantation. 2003; 32(9):941-945
- 395 Drabinski A, Williams G, Formica C. OBSERVATIONAL EVALUATION OF HEALTH STATE UTILITIES AMONG A COHORT OF SEPSIS PATIENTS. Value in Health.: Blackwell Science Inc. 2001; 4(2):128-129
- 396 Draz NI, Taha SE, Abou Shady NM, Abdel Ghany YS. Comparison of broad range 16S rDNA PCR to conventional blood culture for diagnosis of sepsis in the newborn. Egyptian Journal of Medical Human Genetics. 2013; 14(4):403-411
- 397 Drees M, Kanapathippillai N, Zubrow MT. Bandemia with normal white blood cell counts associated with infection. American Journal of Medicine. 2012; 125(11):1124
- 398 Drewry AM, Fuller BM, Bailey TC, Hotchkiss RS. Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: a case-control study. Critical Care. 2013; 17(5):R200
- 399 Drewry AM, Fuller BM, Skrupky LP, Hotchkiss RS. The presence of hypothermia within 24 hours of sepsis diagnosis predicts persistent lymphopenia. Critical Care Medicine. 2015; 43(6):1165-1169
- Drey M, Behnes M, Kob R, Lepiorz D, Hettwer S, Bollheimer C et al. C-terminal agrin fragment (CAF) reflects renal function in patients suffering from severe sepsis or septic shock. Clinical Laboratory. 2015; 61(1-2):69-76
- Drumheller BC, McGrath M, Matsuura AC, Gaieski DF. Point-of-care urine albumin:Creatinine ratio is associated with outcome in emergency department patients with sepsis: A pilot study. Academic Emergency Medicine. 2012; 19(3):259-264
- Drvar Z, Tonkovic D, Pavlek M, Pavlovic DB, Baronica R, Peric M. Stroke volume variation and pulse pressure variation as predictors of fluid responsiveness in patients with sepsis. Neurologia Croatica. 2013; 62(SUPPL.2):1-4
- Du B, Chen D, Pan J, Li Y. Procalcitonin may be a better predictor of interleukin-6 than conventional inflammatory markers. Critical Care and Shock. 2002; 5(3):177-182

- 404 Du B, Pan J, Chen D, Li Y. Serum procalcitonin and interleukin-6 levels may help to differentiate systemic inflammatory response of infectious and non-infectious origin. Chinese Medical Journal. 2003; 116(4):538-542
- 405 Du J, Li L, Dou Y, Li P, Chen R, Liu H. Diagnostic utility of neutrophil CD64 as a marker for early-onset sepsis in preterm neonates. PloS One. 2014; 9(7):e102647
- Duarte AG, Bidani A. Evaluating hypoxemia in the critically ill. Journal of Respiratory Diseases. 2005; 26(5):209-219
- 407 Dubin A, Pozo MO, Casabella CA, Murias G, Palizas FJ, Moseinco MC et al. Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. Journal of Critical Care. 2010; 25(4):659-8
- 408 Dunser MW, Ruokonen E, Pettila V, Ulmer H, Torgersen C, Schmittinger CA et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Critical Care. 2009; 13(6):R181
- Dwyer R, Hedlund J, Darenberg J, Henriques-Normark B, Naucler P, Runesdotter S et al. Improvement of CRB-65 as a prognostic scoring system in adult patients with bacteraemic pneumococcal pneumonia. Scandinavian Journal of Infectious Diseases. 2011; 43(6-7):448-455
- 410 Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Medicine. 2007; 33(6):941-950
- 411 Eisen DP, Dean MM, Thomas P, Marshall P, Gerns N, Heatley S et al. Low mannose-binding lectin function is associated with sepsis in adult patients. FEMS Immunology and Medical Microbiology. 2006; 48(2):274-282
- 412 El Solh AA, Akinnusi ME, Alsawalha LN, Pineda LA. Outcome of septic shock in older adults after implementation of the sepsis "bundle". Journal of the American Geriatrics Society. 2008; 56(2):272-278
- 413 El-Farghali OG, El-Raggal NM, Mahmoud NH, Zaina GA. Serum neutrophil gelatinase-associated lipocalin as a predictor of acute kidney injury in critically-ill neonates. Pakistan Journal of Biological Sciences: PJBS. 2012; 15(5):231-237
- 414 El-Maghraby SM, Moneer MM, Ismail MM, Shalaby LM, El-Mahallawy HA. The diagnostic value of C-reactive protein, interleukin-8, and monocyte chemotactic protein in risk stratification of febrile neutropenic children with hematologic malignancies. Journal of Pediatric Hematology/Oncology. 2007; 29(3):131-136
- Elawady S, Botros SK, Sorour AE, Ghany EA, Elbatran G, Ali R. Neutrophil CD64 as a diagnostic marker of sepsis in neonates. Journal of Investigative Medicine. 2014; 62(3):644-649
- 416 Elias KM, Moromizato T, Gibbons FK, Christopher KB. Derivation and validation of the acute organ failure score to predict outcome in critically ill patients: a cohort study. Critical Care Medicine. 2015; 43(4):856-864
- 417 Elmenesy TM, Nassar Y. A randomized double-blind comparative study between short-term norepinephrine and vasopressin infusion in septic shock. Egyptian Journal of Anaesthesia. 2008; 24(4):355-362

- 418 Elting LS, Bodey GP, Keefe BH. Septicemia and shock syndrome due to viridans streptococci: a case-control study of predisposing factors. Clinical Infectious Diseases. 1992; 14(6):1201-1207
- Emparanza JI, Aldamiz-Echevarria L, Perez-Yarza EG, Larranaga P, Jiminez JL, Labiano M et al. Prognostic score in acute meningococcemia. Critical Care Medicine. 1988; 16(2):168-169
- 420 Endo S, Aikawa N, Fujishima S, Sekine I, Kogawa K, Yamamoto Y et al. Usefulness of procalcitonin serum level for the discrimination of severe sepsis from sepsis: a multicenter prospective study. Journal of Infection and Chemotherapy. 2008; 14(3):244-249
- 421 Engel A, Mack E, Kern P, Kern WV. An analysis of interleukin-8, interleukin-6 and C-reactive protein serum concentrations to predict fever, gram-negative bacteremia and complicated infection in neutropenic cancer patients. Infection. 1998; 26(4):213-221
- 422 Ennis L. Paediatric early warning scores on a children's ward: a quality improvement initiative. Nursing Children and Young People. 2014; 26(7):25-31
- 423 Erbay A, Idil A, Gozel MG, Mumcuoglu I, Balaban N. Impact of early appropriate antimicrobial therapy on survival in Acinetobacter baumannii bloodstream infections. International Journal of Antimicrobial Agents. 2009; 34(6):575-579
- 424 Ernest D, Belzberg AS, Dodek PM. Distribution of normal saline and 5% albumin infusions in septic patients. Critical Care Medicine. 1999; 27(1):46-50
- 425 Ersoy B, Nehir H, Altinoz S, Yilmaz O, Dundar PE, Aydogan A. Prognostic value of initial antithrombin levels in neonatal sepsis. Indian Pediatrics. 2007; 44(8):581-584
- 426 Erstad BL. Oxygen transport goals in the resuscitation of critically ill patients. Annals of Pharmacotherapy. 1994; 28(11):1273-1284
- 427 Escobar DA, Botero-Quintero AM, Kautza BC, Luciano J, Loughran P, Darwiche S et al.

 Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation. Journal of Surgical Research. 2015; 194(1):262-272
- 428 Escobar GJ, Li DK, Armstrong MA, Gardner MN, Folck BF, Verdi JE et al. Neonatal sepsis workups in infants >/=2000 grams at birth: A population-based study. Pediatrics. 2000; 106(2 Pt 1):256-263
- 429 Escobar GJ, Puopolo KM, Wi S, Turk BJ, Kuzniewicz MW, Walsh EM et al. Stratification of risk of early-onset sepsis in newborns > 34 weeks' gestation. Pediatrics. 2014; 133(1):30-36
- 430 Esen F, Telci L, Akpir K, Kesecioglu J, Denkel T, Pembeci K. Oxygen uptake/supply dependency in human sepsis: does it increase the risk of multisystem organ failure? Advances in Experimental Medicine and Biology. 1992; 317:855-861
- 431 Esteban A, Frutos-Vivar F, Ferguson ND, Penuelas O, Lorente JA, Gordo F et al. Sepsis incidence and outcome: contrasting the intensive care unit with the hospital ward. Critical Care Medicine. 2007; 35(5):1284-1289
- Estrada CA, Murugan R. Hydroxyethyl starch in severe sepsis: end of starch era? Critical Care. 2013; 17(2):310
- Eubanks PJ, de Virgilio C, Klein S, Bongard F. Candida sepsis in surgical patients. American Journal of Surgery. 1993; 166(6):617-620

- Evans AB, Kulik D, Banerji A, Boggild A, Kain KC, Abdelhaleem M et al. Imported pediatric malaria at the hospital for sick children, Toronto, Canada: a 16 year review. BMC Pediatrics. 2014; 14:251
- Fadale K, Tucker D, Dungan J, Sabol V. Improving Nurses' Vasopressor Titration Skills and Self-Efficacy via Simulation-Based Learning. Clinical Simulation in Nursing. 2014; 10(6):e291-e299
- Fairchild KD. Predictive monitoring for early detection of sepsis in neonatal ICU patients. Current Opinion in Pediatrics. 2013; 25(2):172-179
- Fairchild KD, O'Shea TM. Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis. Clinics in Perinatology. 2010; 37(3):581-598
- 438 Fairclough E, Cairns E, Hamilton J, Kelly C. Evaluation of a modified early warning system for acute medical admissions and comparison with C-reactive protein/albumin ratio as a predictor of patient outcome. Clinical Medicine. 2009; 9(1):30-33
- Falguera M, Trujillano J, Caro S, Menendez R, Carratala J, Ruiz-Gonzalez A et al. A prediction rule for estimating the risk of bacteremia in patients with community-acquired pneumonia. Clinical Infectious Diseases. 2009; 49(3):409-416
- 440 Fan ST, Teoh-Chan CH, Lau KF. Evaluation of central venous catheter sepsis by differential quantitative blood culture. European Journal of Clinical Microbiology and Infectious Diseases. 1989; 8(2):142-144
- Fang ZX, Li YF, Zhou XQ, Zhang Z, Zhang JS, Xia HM et al. Effects of resuscitation with crystalloid fluids on cardiac function in patients with severe sepsis. BMC Infectious Diseases. 2008; 8:50
- 442 Farley MM, Harvey RC, Stull T, Smith JD, Schuchat A, Wenger JD et al. A population-based assessment of invasive disease due to group B Streptococcus in nonpregnant adults. New England Journal of Medicine. 1993; 328(25):1807-1811
- Femling J, Weiss S, Hauswald E, Tarby D. EMS patients and walk-in patients presenting with severe sepsis: differences in management and outcome. Southern Medical Journal. 2014; 107(12):751-756
- 444 Fendler W, Klobusinska J, Walenciak L, Mlynarski W, Piotrowski A. Weekend admissions to paediatric/neonatal intensive care units are associated with longer hospitalisation time but not with greater mortality. Anaesthesiology Intensive Therapy. 2012; 44(4):204-207
- Feng L, Zhou X, Su Lx, Feng D, Jia Yh, Xie Lx. Clinical significance of soluble hemoglobin scavenger receptor CD163 (sCD163) in sepsis, a prospective study. PloS One. 2012; 7(7):e38400
- Feng W, Tang C, Guo H, Bao Y, Wen X, Xue T et al. Prognostic value of serum cholinesterase activities in sepsis patients. Hepato-Gastroenterology. 2013; 60(125):1001-1005
- Fernandez-Perez ER, Salman S, Pendem S, Farmer JC. Sepsis during pregnancy. Critical Care Medicine. 2005; 33(10 Suppl):S286-S293
- Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. American Journal of Respiratory and Critical Care Medicine. 2003; 168(12):1438-1444

- 449 Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. American Journal of Respiratory and Critical Care Medicine. 2009; 180(9):861-866
- 450 Ferrer R, Artigas A, Levy MM, Blanco J, Gonzalez-Diaz G, Garnacho-Montero J et al. Improvement in process of care and outcome after a multicenter severe sepsis educational program in Spain. JAMA. 2008; 299(19):2294-2303
- Fialkow L, Fochesatto Filho L, Bozzetti MC, Milani AR, Rodrigues Filho EM, Ladniuk RM et al. Neutrophil apoptosis: a marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Critical Care. 2006; 10(6):R155
- Figueroa-Damian R, Arredondo-Garcia JL, Mancilla-Ramirez J. Amniotic fluid interleukin-6 and the risk of early-onset sepsis among preterm infants. Archives of Medical Research. 1999; 30(3):198-202
- 453 Filbin MR, Hou PC, Massey M, Barche A, Kao E, Bracey A et al. The microcirculation is preserved in emergency department low-acuity sepsis patients without hypotension. Academic Emergency Medicine. 2014; 21(2):154-162
- 454 Finfer S, Bellomo R, Lipman J, French C, Dobb G, Myburgh J. Adult-population incidence of severe sepsis in Australian and New Zealand intensive care units. Intensive Care Medicine. 2004; 30(4):589-596
- Finlay GD, Rothman MJ, Smith RA. Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system. Journal of Hospital Medicine. 2014; 9(2):116-119
- 456 Fisher CJJ, Yan SB. Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Critical Care Medicine. 2000; 28(9 Suppl):S49-S56
- Fitzpatrick D, McKenna M, Rooney K, Beckett D, Pringle N. Improving the management and care of people with sepsis. Emergency Nurse. 2014; 22(1):18-24
- 458 Fleischhack G, Cipic D, Juettner J, Hasan C, Bode U. Procalcitonin-a sensitive inflammation marker of febrile episodes in neutropenic children with cancer. Intensive Care Medicine. 2000; 26 Suppl 2:S202-S211
- 459 Fleischhack G, Kambeck I, Cipic D, Hasan C, Bode U. Procalcitonin in paediatric cancer patients: its diagnostic relevance is superior to that of C-reactive protein, interleukin 6, interleukin 8, soluble interleukin 2 receptor and soluble tumour necrosis factor receptor II. British Journal of Haematology. 2000; 111(4):1093-1102
- 460 Fleming S, Thompson M, Stevens R, Heneghan C, Pluddemann A, Maconochie I et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet (London, England). 2011; 377(9770):1011-1018
- 461 Flores JM, Jimenez PI, Rincon MD, Marquez JA, Navarro H, Arteta D et al. Early risk factors for sepsis in patients with severe blunt trauma. Injury. 2001; 32(1):5-12
- 462 Flynn D, Knoedler MA, Hess EP, Murad MH, Erwin PJ, Montori VM et al. Engaging patients in health care decisions in the emergency department through shared decision-making: A systematic review. Academic Emergency Medicine. 2012; 19(8):959-967

- Fok TF, Lee CH, Wong EM, Lyon DJ, Wong W, Ng PC et al. Risk factors for Enterobacter septicemia in a neonatal unit: case-control study. Clinical Infectious Diseases. 1998; 27(5):1204-1209
- 464 Fokam J, Salpini R, Santoro MM, Cento V, Perno C, Colizzi V. Drug resistance among drug-naive and first-line antiretroviral treatment-failing children in Cameroon. Pediatric Infectious Disease Journal. 2011; 30(12):1062-1068
- Ford N, Hargreaves S, Shanks L. Mortality after fluid bolus in children with shock due to sepsis or severe infection: a systematic review and meta-analysis. PloS One. 2012; 7(8):e43953
- 466 Freebairn RC, Derrick J, Gomersall CD, Young RJ, Joynt GM. Oxygen delivery, oxygen consumption, and gastric intramucosal pH are not improved by a computer-controlled, closed-loop, vecuronium infusion in severe sepsis and septic shock. Critical Care Medicine. 1997; 25(1):72-77
- 467 Friedman AM. Maternal Early Warning Systems. Obstetrics and Gynecology Clinics of North America. 2015; 42(2)
- 468 Fuchs C, Scheer C, Vollmer M, Rehberg S, Meissner K, Kuhn SO et al. SEP-5: SUSTAINED REDUCTION OF 90-DAY MORTALITY OF SEVERE SEPSIS AND SEPTIC SHOCK AS A RESULT OF A CONTINUOUS TRAINING PROGRAM FOR PHYSICIANS AND NURSING STAFF. Shock. 2015; 44 Suppl 2:15
- Fuijkschot J, Vernhout B, Lemson J, Draaisma JMT, Loeffen JLCM. Validation of a Paediatric Early Warning Score: first results and implications of usage. European Journal of Pediatrics. 2015; 174(1):15-21
- 470 Fuller BM, Gajera M, Schorr C, Gerber D, Dellinger RP, Parrillo J et al. Transfusion of packed red blood cells is not associated with improved central venous oxygen saturation or organ function in patients with septic shock. Journal of Emergency Medicine. 2012; 43(4):593-598
- 471 Funk D, Sebat F, Kumar A. A systems approach to the early recognition and rapid administration of best practice therapy in sepsis and septic shock. Current Opinion in Critical Care. 2009; 15(4):301-307
- Furtado GH, Wiskirchen DE, Kuti JL, Nicolau DP. Performance of the PIRO score for predicting mortality in patients with ventilator-associated pneumonia. Anaesthesia and Intensive Care. 2012; 40(2):285-291
- 473 Gabram SGA, Quintiliani R, Jacobs LM, Sullivan M, Zhi J, Yuk J et al. The pharmacokinetics of cefotaxime in acutely injured blunt trauma patients: Aeromedical vs emergency department administration. Advances in Therapy. 1993; 10(1):31-39
- 474 Galanakis E, Krallis N, Levidiotou S, Hotoura E, Andronikou S. Neonatal bacteraemia: a population-based study. Scandinavian Journal of Infectious Diseases. 2002; 34(8):598-601
- 475 Galetto-Lacour A, Gervaix A. Identifying severe bacterial infection in children with fever without source. Expert Review of Anti-Infective Therapy. 2010; 8(11):1231-1237
- 476 Gallagher EJ, Brooks F, Gennis P. Identification of serious illness in febrile adults. American Journal of Emergency Medicine. 1994; 12(2):129-133

- 477 Gamper G, Oschatz E, Herkner H, Paul G, Burgmann H, Janata K et al. Sepsis-associated purpura fulminans in adults. Wiener Klinische Wochenschrift. 2001; 113(3-4):107-112
- 478 Gando S, Iba T, Eguchi Y, Ohtomo Y, Okamoto K, Koseki K et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: Comparing current criteria. Critical Care Medicine. 2006; 34(3):625-631
- 479 Gando S, Kameue T, Morimoto Y, Matsuda N, Hayakawa M, Kemmotsu O. Tissue factor production not balanced by tissue factor pathway inhibitor in sepsis promotes poor prognosis. Critical Care Medicine. 2002; 30(8):1729-1734
- 480 Gando S, Nanzaki S, Kemmotsu O. Disseminated intravascular coagulation and sustained systemic inflammatory response syndrome predict organ dysfunctions after trauma:

 Application of clinical decision analysis. Annals of Surgery. 1999; 229(1):121-127
- 481 Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T et al. Disseminated intravascular coagulation (DIC) diagnosed based on the Japanese Association for Acute Medicine criteria is a dependent continuum to overt DIC in patients with sepsis. Thrombosis Research. 2009; 123(5):715-718
- 482 Gannon M, Qaseem A, Snow V, Snooks Q. Using online learning collaboratives to facilitate practice improvement for COPD: an ACPNet pilot study. American Journal of Medical Quality. 2011; 26(3):212-219
- 483 Gao Y, Li Y, Yu X, Guo S, Ji X, Sun T et al. The impact of various platelet indices as prognostic markers of septic shock. PloS One. 2014; 9(8):e103761
- 484 Garcia Paez JI, Tengan FM, Barone AA, Levin AS, Costa SF. Factors associated with mortality in patients with bloodstream infection and pneumonia due to Stenotrophomonas maltophilia. European Journal of Clinical Microbiology and Infectious Diseases. 2008; 27(10):901-906
- 485 Garcia PCR, Longhi F, Branco RG, Piva JP, Lacks D, Tasker RC. Ferritin levels in children with severe sepsis and septic shock. Acta Paediatrica. 2007; 96(12):1829-1831
- 486 Garcia-Saenz JA, Martin M, Casado A, Perez-Segura P, Manrique I, Flores L et al. Immediate vs. delayed imipenem treatment in cancer patients with profound neutropenia induced by high-dose chemotherapy: results of a randomized study. Revista Espanola De Quimioterapia. 2002; 15(3):257-263
- 487 Garland SM, Bowman ED. Reappraisal of C-reactive protein as a screening tool for neonatal sepsis. Pathology. 2003; 35(3):240-243
- 488 Garnacho-Montero J, Aldabo-Pallas T, Garnacho-Montero C, Cayuela A, Jimenez R, Barroso S et al. Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Critical Care. 2006; 10(4):R111
- 489 Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Critical Care Medicine. 2003; 31(12):2742-2751
- 490 Garra G, Cunningham SJ, Crain EF. Reappraisal of criteria used to predict serious bacterial illness in febrile infants less than 8 weeks of age. Academic Emergency Medicine. 2005; 12(10):921-925

- 491 Gavazzi G, Escobar P, Olive F, Couturier P, Franco A. Nosocomial bacteremia in very old patients: predictors of mortality. Aging Clinical and Experimental Research. 2005; 17(4):337-342
- 492 George J, Bleasdale S, Singleton SJ. Causes and prognosis of delirium in elderly patients admitted to a district general hospital. Age and Ageing. 1997; 26(6):423-427
- 493 Gerber K. Surviving sepsis: a trust-wide approach. A multi-disciplinary team approach to implementing evidence-based guidelines. Nursing in Critical Care. 2010; 15(3):141-151
- 494 Gerdes JS, Polin RA. Sepsis screen in neonates with evaluation of plasma fibronectin. Pediatric Infectious Disease Journal. 1987; 6(5):443-446
- 495 Gerdtz MF, Waite R, Vassiliou T, Garbutt B, Prematunga R, Virtue E. Evaluation of a multifaceted intervention on documentation of vital signs at triage: a before-and-after study. Emergency Medicine Australasia. 2013; 25(6):580-587
- 496 Ghiorghis B, Geyid A, Haile M. Bacteraemia in febrile out-patient children. East African Medical Journal. 1992; 69(2):74-77
- 497 Ghosh S, Mittal M, Jaganathan G. Early diagnosis of neonatal sepsis using a hematological scoring system. Indian Journal of Medical Sciences. 2001; 55(9):495-500
- 498 Giamarellos-Bourboulis EJ, Norrby-Teglund A, Mylona V, Savva A, Tsangaris I, Dimopoulou I et al. Risk assessment in sepsis: a new prognostication rule by APACHE II score and serum soluble urokinase plasminogen activator receptor. Critical Care. 2012; 16(4):R149
- 499 Giannazzo G, Tola F, Vanni S, Bondi E, Pepe G, Grifoni S. Prognostic indexes of septic syndrome in the emergency department. Internal and Emergency Medicine. 2006; 1(3):229-233
- 500 Gille-Johnson P, Hansson KE, Gardlund B. Clinical and laboratory variables identifying bacterial infection and bacteraemia in the emergency department. Scandinavian Journal of Infectious Diseases. 2012; 44(10):745-752
- 501 Girardis M, Rinaldi L, Donno L, Marietta M, Codeluppi M, Marchegiano P et al. Effects on management and outcome of severe sepsis and septic shock patients admitted to the intensive care unit after implementation of a sepsis program: a pilot study. Critical Care. 2009; 13(5):R143
- 502 Giulieri S, Chapuis-Taillard C, Jaton K, Cometta A, Chuard C, Hugli O et al. CSF lactate for accurate diagnosis of community-acquired bacterial meningitis. European Journal of Clinical Microbiology and Infectious Diseases. 2015; 34(10):2049-2055
- 503 Glassford NJ, Schneider AG, Xu S, Eastwood GM, Young H, Peck L et al. The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Medicine. 2013; 39(10):1714-1724
- 504 Goerlich CE, Wade CE, McCarthy JJ, Holcomb JB, Moore LJ. Validation of sepsis screening tool using StO2 in emergency department patients. Journal of Surgical Research. 2014; 190(1):270-275
- Gogos CA, Lekkou A, Papageorgiou O, Siagris D, Skoutelis A, Bassaris HP. Clinical prognostic markers in patients with severe sepsis: A prospective analysis of 139 consecutive cases. Journal of Infection. 2003; 47(4):300-306

- Goitein KJ, Rein JJ, Gornstein A. Scoring system to assess disease severity in children. Intensive Care Medicine. 1985; 11(1):20-25
- Goldhill DR, McNarry AF. Physiological abnormalities in early warning scores are related to mortality in adult inpatients. British Journal of Anaesthesia. 2004; 92(6):882-884
- 508 Goldhill DR, McNarry AF, Mandersloot G, McGinley A. A physiologically-based early warning score for ward patients: the association between score and outcome. Anaesthesia. 2005; 60(6):547-553
- 509 Gomez J, Garcia-Vazquez E, Banos R, Canteras M, Ruiz J, Banos V et al. Predictors of mortality in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: The role of empiric antibiotic therapy. European Journal of Clinical Microbiology and Infectious Diseases. 2007; 26(4):239-245
- Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Medicine. 2010; 36(1):83-91
- Gordon AC, Wang N, Walley KR, Ashby D, Russell JA. The cardiopulmonary effects of vasopressin compared with norepinephrine in septic shock. Chest. 2012; 142(3):593-605
- 512 Gordon A, Jeffery HE. Antibiotic regimens for suspected late onset sepsis in newborn infants. Cochrane Database of Systematic Reviews. 2005; Issue 3:CD004501. DOI:10.1002/14651858.CD004501.pub2
- 513 Goulet H, Andre S, Sahakian GD, Freund Y, Khelifi G, Claessens YE et al. Accuracy of oxygen tissue saturation values in assessing severity in patients with sepsis admitted to emergency departments. European Journal of Emergency Medicine. 2014; 21(4):266-271
- 514 Grander W, Mullauer K, Koller B, Tilg H, Dunser M. Heart rate before ICU discharge: a simple and readily available predictor of short- and long-term mortality from critical illness. Clinical Research in Cardiology. 2013; 102(8):599-606
- Granier S, Owen P, Pill R, Jacobson L. Recognising meningococcal disease in primary care: Qualitative study of how general practitioners process clinical and contextual information. BMJ. 1998; 316(7127):276-279
- Granja C, Povoa P, Lobo C, Teixeira-Pinto A, Carneiro A, Costa-Pereira A. The predisposition, infection, response and organ failure (Piro) sepsis classification system: results of hospital mortality using a novel concept and methodological approach. PloS One. 2013; 8(1):e53885
- Greenberg DN, Yoder BA. Changes in the differential white blood cell count in screening for group B streptococcal sepsis. Pediatric Infectious Disease Journal. 1990; 9(12):886-889
- Griffin MP, Lake DE, Moorman JR. Heart rate characteristics and laboratory tests in neonatal sepsis. Pediatrics. 2005; 115(4):937-941
- Griffin MP, Lake DE, O'Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatric Research. 2007; 61(2):222-227
- Griffiths JR, Kidney EM. Current use of early warning scores in UK emergency departments. Emergency Medicine Journal. 2012; 29(1):65-66

- Groeneveld ABJ, Navickis RJ, Wilkes MM. Update on the comparative safety of colloids: a systematic review of clinical studies. Annals of Surgery. 2011; 253(3):470-483
- Grozdanovski K, Milenkovic Z, Demiri I, Spasovska K. Prediction of outcome from communityacquired severe sepsis and septic shock in tertiary-care university hospital in a developing country. Critical Care Research and Practice. 2012; 2012:182324
- 523 Gu W-J, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Medicine. 2015; 41(10):1862-1863
- Guclu E, Durmaz Y, Karabay O. Effect of severe sepsis on platelet count and their indices. African Health Sciences. 2013; 13(2):333-338
- 525 Guerra WF, Mayfield TR, Meyers MS, Clouatre AE, Riccio JC. Early detection and treatment of patients with severe sepsis by prehospital personnel. Journal of Emergency Medicine. 2013; 44(6):1116-1125
- 526 Guibourdenche J, Bedu A, Petzold L, Marchand M, Mariani-Kurdjian P, Hurtaud-Roux MF et al. Biochemical markers of neonatal sepsis: value of procalcitonin in the emergency setting. Annals of Clinical Biochemistry. 2002; 39(Pt 2):130-135
- Guidet B, Mosqueda GJ, Priol G, Aegerter P. The COASST study: cost-effectiveness of albumin in severe sepsis and septic shock. Journal of Critical Care. France 2007; 22(3):197-203
- Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Critical Care. 2012; 16(3):R94
- 529 Guido M, Quattrocchi M, Zizza A, Pasanisi G, Pavone V, Lobreglio G et al. Molecular approaches in the diagnosis of sepsis in neutropenic patients with haematological malignances. Journal of Preventive Medicine and Hygiene. 2012; 53(2):104-108
- 530 Guillois B, Donnou MD, Sizun J, Bendaoud B, Youinou P. Comparative study of four tests of bacterial infection in the neonate. Total neutrophil count, CRP, fibrinogen and C3d. Biology of the Neonate. 1994; 66(4):175-181
- Guirgis FW, Khadpe JD, Kuntz GM, Wears RL, Kalynych CJ, Jones AE. Persistent organ dysfunction after severe sepsis: A systematic review. Journal of Critical Care. 2014; 29(3):320-326
- 532 Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. Journal of the American Medical Informatics Association. 2014; 21(2):315-325
- Guo Y, Yan K-P. Prognostic significance of urine neutrophil gelatinase-associated lipocalin in patients with septic acute kidney injury. Experimental and Therapeutic Medicine. 2011; 2(6):1133-1139
- Guo YW, Wu TE, Chen HS. Prognostic factors of mortality among patients with severe hyperglycemia. American Journal of Managed Care. 2015; 21(1):e9-e22

- 535 Gurnani PK, Patel GP, Crank CW, Vais D, Lateef O, Akimov S et al. Impact of the implementation of a sepsis protocol for the management of fluid-refractory septic shock: A single-center, before-and-after study. Clinical Therapeutics. 2010; 32(7):1285-1293
- Gutovitz S, Papa L, Jimenez E, Falk J, Wieman L, Sawyer S et al. Protein C as an early biomarker to distinguish pneumonia from sepsis. Journal of Critical Care. 2011; 26(3):330-12
- Guven H, Altintop L, Baydin A, Esen S, Aygun D, Hokelek M et al. Diagnostic value of procalcitonin levels as an early indicator of sepsis. American Journal of Emergency Medicine. 2002; 20(3):202-206
- Gwak MH, Jo S, Jeong T, Lee JB, Jin YH, Yoon J et al. Initial serum lactate level is associated with inpatient mortality in patients with community-acquired pneumonia. American Journal of Emergency Medicine. 2015; 33(5):685-690
- Ha SO, Park SH, Park JS, Huh JW, Lim C-M, Koh Y et al. Fraction of immature granulocytes reflects severity but not mortality in sepsis. Scandinavian Journal of Clinical and Laboratory Investigation. 2015; 75(1):36-43
- 540 Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M et al. Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013; 346:f839
- Haase N, Wetterslev J, Winkel P, Perner A. Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post hoc analyses of a randomized clinical trial. Intensive Care Medicine. 2013; 39(12):2126-2134
- 542 Haase NRS. Hydroxyethyl starch in sepsis. Danish Medical Journal. 2014; 61(1):B4764
- Hachimi-Idrissi S, Corne L, Ramet J. Evaluation of scoring systems in acute meningococcaemia. European Journal of Emergency Medicine. 1998; 5(2):225-230
- Haines C, Perrott M, Weir P. Promoting care for acutely ill children-development and evaluation of a paediatric early warning tool. Intensive and Critical Care Nursing. 2006; 22(2):73-81
- Haj-Hassan TA, Thompson MJ, Mayon-White RT, Ninis N, Harnden A, Smith LF et al. Which early 'red flag' symptoms identify children with meningococcal disease in primary care? British Journal of General Practice: the Journal of the Royal College of General Practitioners. 2011; 61(584):e97-104
- Hall LG, Oyen LJ, Taner CB, Cullinane DC, Baird TK, Cha SS et al. Fixed-dose vasopressin compared with titrated dopamine and norepinephrine as initial vasopressor therapy for septic shock. Pharmacotherapy. 2004; 24(8):1002-1012
- 547 Hall TC, Bilku DK, Al-Leswas D, Horst C, Dennison AR. Biomarkers for the differentiation of sepsis and SIRS: the need for the standardisation of diagnostic studies. Irish Journal of Medical Science. 2011; 180(4):793-798
- 548 Hammond NE, Spooner AJ, Barnett AG, Corley A, Brown P, Fraser JF. The effect of implementing a modified early warning scoring (MEWS) system on the adequacy of vital sign documentation. Australian Critical Care. 2013; 26(1):18-22

- 549 Hamzic-Mehmedbasic A, Rasic S, Rebic D, Durak-Nalbantic A, Muslimovic A, Dzemidzic J. Renal Function Outcome Prognosis in Septic and Non-septic Acute Kidney Injury Patients. Medical Archives. 2015; 69(2):77-80
- Han J, Liang Hp. Clinical significance of scoring system for systemic inflammatory response syndrome. Chinese Journal of Traumatology. 2006; 9(5):316-320
- Hanson LA, Jodal U, Sabel KG, Wadsworth C. The diagnostic value of C-reactive protein. Pediatric Infectious Disease. 1983; 2(2):87-89
- Hanzelka KM, Yeung SC, Chisholm G, Merriman KW, Gaeta S, Malik I et al. Implementation of modified early-goal directed therapy for sepsis in the emergency center of a comprehensive cancer center. Supportive Care in Cancer. 2013; 21(3):727-734
- Harbarth S, Ferriere K, Hugonnet S, Ricou B, Suter P, Pittet D et al. Epidemiology and prognostic determinants of bloodstream infections in surgical intensive care. Archives of Surgery. 2002; 137(12):1353-1359
- Hariharan P, Kabrhel C. Sensitivity of erythrocyte sedimentation rate and C-reactive protein for the exclusion of septic arthritis in emergency department patients. Journal of Emergency Medicine. 2011; 40(4):428-431
- Harrigan S, Hurst D, Lee C, Christie V, Wolfe RB, Morrical D et al. Developing and implementing quality initiatives in the ICU: strategies and outcomes. Critical Care Nursing Clinics of North America. 2006; 18(4):469-4ix
- Hashavya S, Benenson S, Ergaz-Shaltiel Z, Bar-Oz B, Averbuch D, Eventov-Friedman S. The use of blood counts and blood cultures to screen neonates born to partially treated group B
 Streptococcus-carrier mothers for early-onset sepsis: is it justified? Pediatric Infectious Disease Journal. 2011; 30(10):840-843
- Hayakawa M, Gando S, Hoshino H. A prospective comparison of new Japanese criteria for disseminated intravascular coagulation: New Japanese criteria versus ISTH criteria. Clinical and Applied Thrombosis/Hemostasis. 2007; 13(2):172-181
- Hazan G, Ben-Shimol S, Fruchtman Y, Abu-Quider A, Kapelushnik J, Moser A et al. Clinical and laboratory parameter dynamics as markers of blood stream infections in pediatric oncology patients with fever and neutropenia. Journal of Pediatric Hematology/Oncology. 2014; 36(5):e275-e279
- 559 Hegadi SS, Kalpana S. Comparative evaluation of blood culture and C-reactive protein (CRP) detection in the diagnosis of neonatal sepsis". International Journal of Pharma and Bio Sciences. 2015; 6(2):B1366-B1371
- Hengst JM. The role of C-reactive protein in the evaluation and management of infants with suspected sepsis. Advances in Neonatal Care. 2003; 3(1):3-13
- Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-time early warning score (TREWScore) for septic shock. Science Translational Medicine. 2015; 7(299):299ra122
- Heper Y, Akalin EH, Mistik R, Akgoz S, Tore O, Goral G et al. Evaluation of serum C-reactive protein, procalcitonin, tumor necrosis factor alpha, and interleukin-10 levels as diagnostic and prognostic parameters in patients with community-acquired sepsis, severe sepsis, and septic shock. European Journal of Clinical Microbiology and Infectious Diseases. 2006; 25(8):481-491

- Herasevich V, Pieper MS, Pulido J, Gajic O. Enrollment into a time sensitive clinical study in the critical care setting: results from computerized septic shock sniffer implementation. Journal of the American Medical Informatics Association. 2011; 18(5):639-644
- Herbst A, Wolner-Hanssen P, Ingemarsson I. Maternal fever in term labour in relation to fetal tachycardia, cord artery acidaemia and neonatal infection. British Journal of Obstetrics and Gynaecology. 1997; 104(3):363-366
- Hermans MAW, Leffers P, Jansen LM, Keulemans YC, Stassen PM. The value of the Mortality in Emergency Department Sepsis (MEDS) score, C reactive protein and lactate in predicting 28-day mortality of sepsis in a Dutch emergency department. Emergency Medicine Journal. 2012; 29(4):295-300
- 566 Hernandez G, Pedreros C, Veas E, Bruhn A, Romero C, Rovegno M et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. Journal of Critical Care. 2012; 27(3):283-288
- Hernandez G, Regueira T, Bruhn A, Castro R, Rovegno M, Fuentealba A et al. Relationship of systemic, hepatosplanchnic, and microcirculatory perfusion parameters with 6-hour lactate clearance in hyperdynamic septic shock patients: an acute, clinical-physiological, pilot study. Annals of Intensive Care. 2012; 2(1):44
- Hernandez-Bou S, Trenchs V, Batlle A, Gene A, Luaces C. Occult bacteraemia is uncommon in febrile infants who appear well, and close clinical follow-up is more appropriate than blood tests. Acta Paediatrica, International Journal of Paediatrics. 2015; 104(2):e76-e81
- Herzum I, Renz H. Inflammatory markers in SIRS, sepsis and septic shock. Current Medicinal Chemistry. 2008; 15(6):581-587
- 570 Hetem DJ, de Ruiter SC, Buiting AG, Kluytmans JA, Thijsen SF, Vlaminckx BJ et al. Preventing Staphylococcus aureus bacteremia and sepsis in patients with Staphylococcus aureus colonization of intravascular catheters: a retrospective multicenter study and meta-analysis. Medicine. 2011; 90(4):284-288
- 571 Higgins A. Raising awareness of neutropenic sepsis risk in ambulatory patients. Cancer Nursing Practice. 2008; 7(9):34-38
- Hillas G, Vassilakopoulos T, Plantza P, Rasidakis A, Bakakos P. C-reactive protein and procalcitonin as predictors of survival and septic shock in ventilator-associated pneumonia. European Respiratory Journal. 2010; 35(4):805-811
- 573 Hisamuddin E, Hisam A, Wahid S, Raza G. Validity of C-reactive protein (CRP) for diagnosis of neonatal sepsis. Pakistan Journal of Medical Sciences. 2015; 31(3):527-531
- 574 Hisamuddin NARN, Azlan K. The use of laboratory and physiological parameters in predicting mortality in sepsis induced hypotension and septic shock patients attending the emergency department. Medical Journal of Malaysia. 2012; 67(3):259-264
- 575 Hitti EA, Lewin JJ, III, Lopez J, Hansen J, Pipkin M, Itani T et al. Improving door-to-antibiotic time in severely septic emergency department patients. Journal of Emergency Medicine. 2012; 42(4):462-469

- 576 Ho KM, Lee KY, Dobb GJ, Webb SAR. C-reactive protein concentration as a predictor of inhospital mortality after ICU discharge: a prospective cohort study. Intensive Care Medicine. 2008; 34(3):481-487
- 577 Ho LO, Li H, Shahidah N, Koh ZX, Sultana P, Hock Ong ME. Poor performance of the modified early warning score for predicting mortality in critically ill patients presenting to an emergency department. World Journal of Emergency Medicine. 2013; 4(4):273-278
- Hoen B, Viel JF, Gerard A, Dureux JB, Canton P. Mortality in pneumococcal meningitis: a multivariate analysis of prognostic factors. European Journal of Medicine. 1993; 2(1):28-32
- Holme H, Bhatt R, Koumettou M, Griffin MAS, Winckworth LC. Retrospective evaluation of a new neonatal trigger score. Pediatrics. 2013; 131(3):e837-e842
- 580 Holst LB, Haase N, Wetterslev J, Wernerman J, Aneman A, Guttormsen AB et al. Transfusion requirements in septic shock (TRISS) trial comparing the effects and safety of liberal versus restrictive red blood cell transfusion in septic shock patients in the ICU: protocol for a randomised controlled trial. Trials. 2013; 14:150
- Hoppensteadt D, Tsuruta K, Cunanan J, Hirman J, Kaul I, Osawa Y et al. Thrombin generation mediators and markers in sepsis-associated coagulopathy and their modulation by recombinant thrombomodulin. Clinical and Applied Thrombosis/Hemostasis. 2014; 20(2):129-135
- Hoppensteadt D, Tsuruta K, Hirman J, Kaul I, Osawa Y, Fareed J. Dysregulation of inflammatory and hemostatic markers in sepsis and suspected disseminated intravascular coagulation. Clinical and Applied Thrombosis/Hemostasis. 2015; 21(2):120-127
- Hoppensteadt D, Tsuruta K, Cunanan J, Hirman J, Kaul I, Osawa Y et al. Thrombin generation mediators and markers in sepsis-associated coagulopathy and their modulation by recombinant thrombomodulin. Clinical and Applied Thrombosis/Hemostasis. 2014; 20(2):129-135
- Horeczko T, Green JP. Emergency department presentation of the pediatric systemic inflammatory response syndrome. Pediatric Emergency Care. 2013; 29(11):1153-1158
- Hortmann M, Heppner HJ, Popp S, Lad T, Christ M. Reduction of mortality in communityacquired pneumonia after implementing standardized care bundles in the emergency department. European Journal of Emergency Medicine. 2014; 21(6):429-435
- Hoste EAJ, Lameire NH, Vanholder RC, Benoit DD, Decruyenaere JMA, Colardyn FA. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. Journal of the American Society of Nephrology. 2003; 14(4):1022-1030
- 587 Houck PM, Bratzler DW, Nsa W, Ma A, Bartlett JG. Timing of antibiotic administration and outcomes for Medicare patients hospitalized with community-acquired pneumonia. Archives of Internal Medicine. 2004; 164(6):637-644
- Housinger TA, Brinkerhoff C, Warden GD. The relationship between platelet count, sepsis, and survival in pediatric burn patients. Archives of Surgery. 1993; 128(1):65-67
- Howell MD, Donnino M, Clardy P, Talmor D, Shapiro NI. Occult hypoperfusion and mortality in patients with suspected infection. Intensive Care Medicine. 2007; 33(11):1892-1899

- 590 Hsiao AL, Chen L, Baker MD. Incidence and predictors of serious bacterial infections among 57to 180-day-old infants. Pediatrics. 2006; 117(5):1695-1701
- 591 Huggan PJ. Severe sepsis: take care, take part. Internal Medicine Journal. 2011; 41(1a):13-18
- Hui C, Neto G, Tsertsvadze A, Yazdi F, Tricco AC, Tsouros S et al. Diagnosis and management of febrile infants (0-3 months). Evidence Report/Technology Assessment. 2012;(205):1-297
- 593 Hurtado FJ, Nin N. The role of bundles in sepsis care. Critical Care Clinics. 2006; 22(3):521-529
- 594 Iba T, Saitoh D. Efficacy of antithrombin in preclinical and clinical applications for sepsisassociated disseminated intravascular coagulation. Journal of Intensive Care. 2014; 2(1):66
- 595 Iba T, Saitoh D, Gando S, Thachil J. The usefulness of antithrombin activity monitoring during antithrombin supplementation in patients with sepsis-associated disseminated intravascular coagulation. Thrombosis Research. 2015; 135(5):897-901
- Iglesias J, Marik PE, Levine JS, Norasept IS, I. Elevated serum levels of the type I and type II receptors for tumor necrosis factor-alpha as predictive factors for ARF in patients with septic shock. American Journal of Kidney Diseases. 2003; 41(1):62-75
- 597 Inal MT, Memis D, Kargi M, Sut N. Prognostic value of indocyanine green elimination assessed with LiMON in septic patients. Journal of Critical Care. 2009; 24(3):329-334
- Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Critical Care Medicine. 1999; 27(7):1369-1377
- 599 Ireland S, Larkins S, Kandasamy Y. Group B streptococcal infection in the first 90 days of life in North Queensland. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2014; 54(2):146-151
- 600 Irwin AD, Drew RJ, Marshall P, Nguyen K, Hoyle E, Macfarlane KA et al. Etiology of childhood bacteremia and timely antibiotics administration in the emergency department. Pediatrics. 2015; 135(4):635-642
- 601 Iscimen R, Cartin-Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Critical Care Medicine. 2008; 36(5):1518-1522
- Isfandiaty R, Harimurti K, Setiati S, Roosheroe AG. Incidence and predictors for delirium in hospitalized elderly patients: a retrospective cohort study. Acta Medica Indonesiana. 2012; 44(4):290-297
- 603 Ishikura H, Nishida T, Murai A, Nakamura Y, Irie Y, Tanaka J et al. New diagnostic strategy for sepsis-induced disseminated intravascular coagulation: A prospective single-center observational study. Critical Care. 2014; 18(1)
- 604 Ismail NH, Lieu PK, Lien CT, Ling ML. Bacteraemia in the elderly. Annals of the Academy of Medicine, Singapore. 1997; 26(5):593-598
- 605 Iwashyna TJ, Netzer G, Langa KM, Cigolle C. Spurious inferences about long-term outcomes: the case of severe sepsis and geriatric conditions. American Journal of Respiratory and Critical Care Medicine. 2012; 185(8):835-841

- Jacob ST, Banura P, Baeten JM, Moore CC, Meya D, Nakiyingi L et al. The impact of early monitored management on survival in hospitalized adult Ugandan patients with severe sepsis: a prospective intervention study. Critical Care Medicine. 2012; 40(7):2050-2058
- Jacobs RF, Sowell MK, Moss MM, Fiser DH. Septic shock in children: bacterial etiologies and temporal relationships. Pediatric Infectious Disease Journal. 1990; 9(3):196-200
- Jaderling G, Bell M, Martling CR, Ekbom A, Bottai M, Konrad D. ICU admittance by a rapid response team versus conventional admittance, characteristics, and outcome. Critical Care Medicine. 2013; 41(3):725-731
- 609 Jaimes F, Farbiarz J, Alvarez D, Martinez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Critical Care. 2005; 9(2):R150-R156
- Jain NK, Jain VM, Maheshwari S. Clinical profile of neonatal sepsis. Kathmandu University Medical Journal. 2003; 1(2):117-120
- Jain S, Sinha S, Sharma SK, Samantaray JC, Aggrawal P, Vikram NK et al. Procalcitonin as a prognostic marker for sepsis: a prospective observational study. BMC Research Notes. 2014; 7:458
- James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999; 354(9177):505-508
- Jansen TC. Lactate revisited: Is lactate monitoring beneficial for ICU patients? Netherlands Journal of Critical Care. 2011; 15(1):13-18
- Jansen TC, van Bommel J, Bakker J. Blood lactate monitoring in critically ill patients: a systematic health technology assessment. Critical Care Medicine. 2009; 37(10):2827-2839
- Janum SH, Sovso M, Gradel KO, Schonheyder HC, Nielsen H. C-reactive protein level as a predictor of mortality in liver disease patients with bacteremia. Scandinavian Journal of Gastroenterology. 2011; 46(12):1478-1483
- Jarvis S, Kovacs C, Briggs J, Meredith P, Schmidt PE, Featherstone PI et al. Aggregate National Early Warning Score (NEWS) values are more important than high scores for a single vital signs parameter for discriminating the risk of adverse outcomes. Resuscitation. 2015; 87:75-80
- Jat KR, Jhamb U, Gupta VK. Serum lactate levels as the predictor of outcome in pediatric septic shock. Indian Journal of Critical Care Medicine. 2011; 15(2):102-107
- Jeddi R, Achour M, Amor RB, Aissaoui L, Bouteraa W, Kacem K et al. Factors associated with severe sepsis: prospective study of 94 neutropenic febrile episodes. Hematology. 2010; 15(1):28-32
- 619 Jeon K, Shin TG, Sim MS, Suh GY, Lim SY, Song HG et al. Improvements in compliance with resuscitation bundles and achievement of end points after an educational program on the management of severe sepsis and septic shock. Shock. 2012; 37(5):463-467
- Jeschke MG, Finnerty CC, Kulp GA, Kraft R, Herndon DN. Can we use C-reactive protein levels to predict severe infection or sepsis in severely burned patients? International Journal of Burns and Trauma. 2013; 3(3):137-143

- Jesmin S, Wada T, Gando S, Sultana SS, Zaedi S. The dynamics of angiogenic factors and their soluble receptors in relation to organ dysfunction in disseminated intravascular coagulation associated with sepsis. Inflammation. 2013; 36(1):186-196
- Jiang L, Feng B, Gao D, Zhang Y. Plasma concentrations of copeptin, C-reactive protein and procalcitonin are positively correlated with APACHE II scores in patients with sepsis. Journal of International Medical Research. 2015; 43(2):188-195
- Jiang L, Jiang S, Zhang M, Zheng Z, Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PloS One. 2014; 9(12):e114666
- Jo S, Lee JB, Jin YH, Jeong TO, Yoon JC, Jun YK et al. Modified early warning score with rapid lactate level in critically ill medical patients: the ViEWS-L score. Emergency Medicine Journal. 2013; 30(2):123-129
- Jones AE, Focht A, Horton JM, Kline JA. Prospective external validation of the clinical effectiveness of an emergency department-based early goal-directed therapy protocol for severe sepsis and septic shock. Chest. 2007; 132(2):425-432
- Jones AE, Puskarich MA. The Surviving Sepsis Campaign guidelines 2012: update for emergency physicians. Annals of Emergency Medicine. 2014; 63(1):35-47
- Jones AE, Saak K, Kline JA. Performance of the Mortality in Emergency Department Sepsis score for predicting hospital mortality among patients with severe sepsis and septic shock. American Journal of Emergency Medicine. 2008; 26(6):689-692
- Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303(8):739-746
- Jones GR. Assessment criteria in identifying the sick sepsis patient. Journal of Infection. 1998; 37 Suppl 1:24-29
- Jordan JA, Durso MB. Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. Journal of Clinical Microbiology. 2000; 38(7):2574-2578
- Juncal VR, Britto Neto LAd, Camelier AA, Messeder OHC, Farias AMdC. Clinical impact of sepsis at admission to the ICU of a private hospital in Salvador, Brazil. Jornal Brasileiro De Pneumologia. 2011; 37(1):85-92
- Junhasavasdikul D, Theerawit P, Kiatboonsri S. Association between admission delay and adverse outcome of emergency medical patients. Emergency Medicine Journal. 2013; 30(4):320-323
- 633 Juutilainen A, Hamalainen S, Pulkki K, Kuittinen T, Nousiainen T, Jantunen E et al. Biomarkers for bacteremia and severe sepsis in hematological patients with neutropenic fever: Multivariate logistic regression analysis and factor analysis. Leukemia and Lymphoma. 2011; 52(12):2349-2355
- Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical Infectious Diseases. 2003; 37(6):745-751

- Kang MJ, Shin TG, Jo IJ, Jeon K, Suh GY, Sim MS et al. Factors influencing compliance with early resuscitation bundle in the management of severe sepsis and septic shock. Shock. 2012; 38(5):474-479
- Kang YR, Um SW, Koh WJ, Suh GY, Chung MP, Kim H et al. Initial lactate level and mortality in septic shock patients with hepatic dysfunction. Anaesthesia and Intensive Care. 2011; 39(5):862-867
- Karam O, Tucci M, Ducruet T, Hume HA, Lacroix J, Gauvin F et al. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatric Critical Care Medicine. 2011; 12(5):512-518
- 638 Karambin M, Zarkesh M. Entrobacter, the most common pathogen of neonatal septicemia in rasht, iran. Iranian Journal of Pediatrics. 2011; 21(1):83-87
- 639 Kasem AJ, Bulloch B, Henry M, Shah K, Dalton H. Procalcitonin as a marker of bacteremia in children with fever and a central venous catheter presenting to the emergency department. Pediatric Emergency Care. 2012; 28(10):1017-1021
- 640 Katsimpardi K, Papadakis V, Pangalis A, Parcharidou A, Panagiotou JP, Soutis M et al. Infections in a pediatric patient cohort with acute lymphoblastic leukemia during the entire course of treatment. Supportive Care in Cancer. 2006; 14(3):277-284
- 641 Katz JA, Mustafa MM, Bash RO, Cash JV, Buchanan GR. Value of C-reactive protein determination in the initial diagnostic evaluation of the febrile, neutropenic child with cancer. Pediatric Infectious Disease Journal. 1992; 11(9):708-712
- 642 Kaul M, Snethen J, Kelber ST, Zimmanck K, Maletta K, Meyer M. Implementation of the Bedside Paediatric Early Warning System (BedsidePEWS) for nurse identification of deteriorating patients. Journal for Specialists in Pediatric Nursing. 2014; 19(4):339-349
- 643 Kaur G, Vinayak N, Mittal K, Kaushik JS, Aamir M. Clinical outcome and predictors of mortality in children with sepsis, severe sepsis, and septic shock from Rohtak, Haryana: A prospective observational study. Indian Journal of Critical Care Medicine. 2014; 18(7):437-441
- 644 Kayange N, Kamugisha E, Mwizamholya DL, Jeremiah S, Mshana SE. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. BMC Pediatrics. 2010; 10:39
- 645 Kellett J, Kim A. Validation of an abbreviated VitalpacTM Early Warning Score (ViEWS) in 75,419 consecutive admissions to a Canadian regional hospital. Resuscitation. 2012; 83(3):297-302
- 646 Kellie SP, Scott MJ, Cavallazzi R, Wiemken TL, Goss L, Parker D et al. Procedural and educational interventions to reduce ventilator-associated pneumonia rate and central line-associated blood stream infection rate. Journal of Intensive Care Medicine. 2014; 29(3):165-174
- 647 Kellner P, Prondzinsky R, Pallmann L, Siegmann S, Unverzagt S, Lemm H et al. Predictive value of outcome scores in patients suffering from cardiogenic shock complicating AMI: APACHE II, APACHE III, Elebute-Stoner, SOFA, and SAPS II. Medizinische Klinik, Intensivmedizin Und Notfallmedizin. 2013; 108(8):666-674
- 648 Kenzaka T, Okayama M, Kuroki S, Fukui M, Yahata S, Hayashi H et al. Use of a semiquantitative procalcitonin kit for evaluating severity and predicting mortality in patients with sepsis. International Journal of General Medicine. 2012; 5:483-488

- 649 Keshet R, Boursi B, Maoz R, Shnell M, Guzner-Gur H. Diagnostic and prognostic significance of serum C-reactive protein levels in patients admitted to the Department of Medicine. American Journal of the Medical Sciences. 2009; 337(4):248-255
- 650 Kessler A, Grunert C, Wood WG. The limitations and usefulness of C-reactive protein and elastase-alpha1-proteinase inhibitor complexes as analytes in the diagnosis and follow-up of sepsis in newborns and adults. European Journal of Clinical Chemistry and Clinical Biochemistry. 1994; 32(5):365-368
- Khan RA, Bakry MM, Islahudin F. Appropriate Antibiotic Administration in Critically III Patients with Pneumonia. Indian Journal of Pharmaceutical Sciences. 2015; 77(3):299-305
- Khaskheli MN, Baloch S, Sheeba A. Risk factors and complications of puerperal sepsis at a tertiary healthcare centre. Pakistan Journal of Medical Sciences. 2013; 29(4):972-976
- Khassawneh M, Hayajneh WA, Kofahi H, Khader Y, Amarin Z, Daoud A. Diagnostic markers for neonatal sepsis: comparing C-reactive protein, interleukin-6 and immunoglobulin M. Scandinavian Journal of Immunology. 2007; 65(2):171-175
- Khassawneh M, Khader Y, Abuqtaish N. Clinical features of neonatal sepsis caused by resistant Gram-negative bacteria. Pediatrics International. 2009; 51(3):332-336
- Khatib R, Saeed S, Sharma M, Riederer K, Fakih MG, Johnson LB. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. European Journal of Clinical Microbiology and Infectious Diseases. 2006; 25(3):181-185
- Khurana V, Gambhir IS, Kishore D. Evaluation of delirium in elderly: a hospital-based study. Geriatrics and Gerontology International. 2011; 11(4):467-473
- Khwannimit B, Bhurayanontachai R. The performance of customised APACHE II and SAPS II in predicting mortality of mixed critically ill patients in a Thai medical intensive care unit.

 Anaesthesia and Intensive Care. 2009; 37(5):784-790
- Kibuuka A, Byakika-Kibwika P, Achan J, Yeka A, Nalyazi JN, Mpimbaza A et al. Bacteremia among febrile ugandan children treated with antimalarials despite a negative malaria test. American Journal of Tropical Medicine and Hygiene. 2015; 93(2):276-280
- 659 Kienast J, Juers M, Wiedermann CJ, Hoffmann JN, Ostermann H, Strauss R et al. Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. Journal of Thrombosis and Haemostasis. 2006; 4(1):90-97
- 660 Kiers HD, Griesdale DEG, Litchfield A, Reynolds S, Gibney RTN, Chittock D et al. Effect of early achievement of physiologic resuscitation goals in septic patients admitted from the ward on the kidneys. Journal of Critical Care. 2010; 25(4):563-569
- 661 Kim CS, Kristopaitis RJ, Stone E, Pelter M, Sandhu M, Weingarten SR. Physician education and report cards: Do they make the grade? Results from a randomized controlled trial. American Journal of Medicine. 1999; 107(6):556-560
- Kim HK. Changes in plasma levels of natural anticoagulants in disseminated intravascular coagulation: high prognostic value of antithrombin and protein C in patients with underlying sepsis or severe infection. Annals of Laboratory Medicine. 2014; 34(2):85-91

- Kim HJ, Son YK, An WS. Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis: a retrospective analysis. PloS One. 2013; 8(6):e65283
- 664 Kim JY, Yoon J, Lim CS, Choi BM, Yoon S-Y. Clinical significance of platelet-associated hematological parameters as an early supplementary diagnostic tool for sepsis in thrombocytopenic very-low-birth-weight infants. Platelets. 2015; 26(7):620-626
- Kim KS, Kim K, Jo YH, Kim TY, Lee JH, Lee SJ et al. A simple model to predict bacteremia in women with acute pyelonephritis. Journal of Infection. 2011; 63(2):124-130
- 666 Kim LE, Jeffe DB, Evanoff BA, Mutha S, Freeman B, Fraser J. Improved compliance with universal precautions in the operating room following an educational intervention. Infection Control and Hospital Epidemiology. 2001; 22(8):522-524
- Kim YJ, Kim SI, Hong KW, Kim YR, Park YJ, Kang MW. Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: impact of appropriate antimicrobial therapy. Journal of Korean Medical Science. 2012; 27(5):471-475
- 668 Kim YA, Ha EJ, Jhang WK, Park SJ. Early blood lactate area as a prognostic marker in pediatric septic shock. Intensive Care Medicine. 2013; 39(10):1818-1823
- Kimmoun A, Ducrocq N, Mory S, Delfosse R, Muller L, Perez P et al. Cardiac contractile reserve parameters are related to prognosis in septic shock. BioMed Research International. 2013; 2013:930673
- 670 Kinasewitz GT, Yan SB, Basson B, Comp P, Russell JA, Cariou A et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Critical Care. 2004; 8(2):R82-R90
- 671 Kinasewitz GT, Zein JG, Lee GL, Nazir SA, Taylor J. Prognostic value of a simple evolving disseminated intravascular coagulation score in patients with severe sepsis. Critical Care Medicine. 2005; 33(10):2214-2221
- 672 Kirschenbaum LA, Lopez WC, Ohrum P, Tsen A, Khazin J, Astiz ME. Effect of recombinant activated protein C and low-dose heparin on neutrophil-endothelial cell interactions in septic shock. Critical Care Medicine. 2006; 34(8):2207-2212
- Kite P, Millar MR, Gorham P, Congdon P. Comparison of five tests used in diagnosis of neonatal bacteraemia. Archives of Disease in Childhood. 1988; 63(6):639-643
- 674 Klein M, Weksler N, Borer A, Koyfman L, Kesslin J, Gurman GM. Terlipressin facilitates transport of septic patients treated with norepinephrine. Israel Medical Association Journal. 2006; 8(10):691-693
- Kleinpell R, Schorr CA. Targeting sepsis as a performance improvement metric: role of the nurse. AACN Advanced Critical Care. 2014; 25(2):179-186
- 676 Ko HF, Tsui SS, Tse JW, Kwong WY, Chan OY, Wong GC. Improving the emergency department management of post-chemotherapy sepsis in haematological malignancy patients. Hong Kong Medical Journal. 2015; 21(1):10-15
- 677 Kobayashi S, Gando S, Morimoto Y, Nanzaki S, Kemmotsu O. Serial measurement of arterial lactate concentrations as a prognostic indicator in relation to the incidence of disseminated

- intravascular coagulation in patients with systemic inflammatory response syndrome. Surgery Today. 2001; 31(10):853-859
- 678 Kocabas E, Sarikcioglu A, Aksaray N, Seydaoglu G, Seyhun Y, Yaman A. Role of procalcitonin, C-reactive protein, interleukin-6, interleukin-8 and tumor necrosis factor-alpha in the diagnosis of neonatal sepsis. Turkish Journal of Pediatrics. 2007; 49(1):7-20
- 679 Kocazeybek B, Kucukoglu S, Oner YA. Procalcitonin and C-reactive protein in infective endocarditis: correlation with etiology and prognosis. Chemotherapy. 2003; 49(1-2):76-84
- 680 Kohli V, Singhi S, Sharma P, Ganguly NK. Value of serum C-reactive protein concentrations in febrile children without apparent focus. Annals of Tropical Paediatrics. 1993; 13(4):373-378
- Kohn MA, Newman MP. What white blood cell count should prompt antibiotic treatment in a febrile child? Tutorial on the importance of disease likelihood to the interpretation of diagnostic tests. Medical Decision Making. 2001; 21(6):479-489
- Koksal N, Harmanci R, Cetinkaya M, Hacimustafaoglu M. Role of procalcitonin and CRP in diagnosis and follow-up of neonatal sepsis. Turkish Journal of Pediatrics. 2007; 49(1):21-29
- 683 Kollef MH, Micek ST. Using protocols to improve patient outcomes in the intensive care unit: focus on mechanical ventilation and sepsis. Seminars in Respiratory and Critical Care Medicine. 2010; 31(1):19-30
- 684 Kono T, Otsuka M, Ito M, Misawa M, Hoshioka A, Suzuki M et al. Negative C-reactive protein in children with bacterial infection. Pediatrics International. 1999; 41(5):496-499
- Koyama K, Madoiwa S, Nunomiya S, Koinuma T, Wada M, Sakata A et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: A prospective observational study. Critical Care. 2014; 18(1)
- 686 Krediet T, Gerards L, Fleer A, van Stekelenburg G. The predictive value of CRP and I/T-ratio in neonatal infection. Journal of Perinatal Medicine. 1992; 20(6):479-485
- 687 Krediet TG, van Lelyveld N, Vijlbrief DC, Brouwers HA, Kramer WL, Fleer A et al. Microbiological factors associated with neonatal necrotizing enterocolitis: protective effect of early antibiotic treatment. Acta Paediatrica. 2003; 92(10):1180-1182
- 688 Krishna BV, Nadgir SD, Tallur SS. Immunoglobulin-M estimation and C-reactive protein detection in neonatal septicemia. Indian Journal of Pathology and Microbiology. 2000; 43(1):35-40
- 689 Krishna U, Joshi SP, Modh M. An evaluation of serial blood lactate measurement as an early predictor of shock and its outcome in patients of trauma or sepsis. Indian Journal of Critical Care Medicine. 2009; 13(2):66-73
- 690 Kumar A, Schupp E, Bunnell E, Ali A, Milcarek B, Parrillo JE. Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Critical Care. 2008; 12(2):R35
- 691 Kumar N, Thomas N, Singhal D, Puliyel JM, Sreenivas V. Triage score for severity of illness. Indian Pediatrics. 2003; 40(3):204-210

- 692 Kumar R, Musoke R, Macharia WM, Revathi G. Validation of c-reactive protein in the early diagnosis of neonatal sepsis in a tertiary care hospital in Kenya. East African Medical Journal. 2010; 87(6):255-261
- 693 Kung CT, Su CM, Chang HW, Cheng HH, Hsiao SY, Tsai TC et al. Serum adhesion molecules as outcome predictors in adult severe sepsis patients requiring mechanical ventilation in the emergency department. Clinical Biochemistry. 2014; 47(15):38-43
- 694 Kung CT, Su CM, Chang HW, Cheng HH, Hsiao SY, Tsai TC et al. The prognostic value of leukocyte apoptosis in patients with severe sepsis at the emergency department. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2015; 438:364-369
- 695 Kushimoto S, Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K et al. Clinical course and outcome of disseminated intravascular coagulation diagnosed by Japanese Association for Acute Medicine criteria: Comparison between sepsis and trauma. Thrombosis and Haemostasis. 2008; 100(6):1099-1105
- 696 Kushimoto S, Shibata Y, Koido Y, Kawai M, Yokota H, Yamamoto Y. The clinical usefulness of procalcitonin measurement for assessing the severity of bacterial infection in critically ill patients requiring corticosteroid therapy. Journal of Nippon Medical School. 2007; 74(3):236-240
- 697 Kyr M, Fedora M, Elbl L, Kugan N, Michalek J. Modeling effect of the septic condition and trauma on C-reactive protein levels in children with sepsis: a retrospective study. Critical Care. 2007; 11(3):R70
- 698 Kyriacos U, Jelsma J, Jordan S. Monitoring vital signs using early warning scoring systems: a review of the literature. Journal of Nursing Management. 2011; 19(3):311-330
- 699 Laborada G, Rego M, Jain A, Guliano M, Stavola J, Ballabh P et al. Diagnostic value of cytokines and C-reactive protein in the first 24 hours of neonatal sepsis. American Journal of Perinatology. 2003; 20(8):491-501
- 700 Lacaze-Masmonteil T, Rosychuk RJ, Robinson JL. Value of a single C-reactive protein measurement at 18 h of age. Archives of Disease in Childhood Fetal and Neonatal Edition. 2014; 99(1):F76-F79
- 701 Laham JL, Breheny PJ, Gardner BM, Bada H. Procalcitonin to predict bacterial coinfection in infants with acute bronchiolitis: a preliminary analysis. Pediatric Emergency Care. 2014; 30(1):11-15
- 702 Lam HS, Ng PC. Biochemical markers of neonatal sepsis. Pathology. 2008; 40(2):141-148
- 703 Lam TS, Mak PSK, Siu WS, Lam MY, Cheung TF, Rainer TH. Validation of a Modified Early Warning Score (MEWS) in emergency department observation ward patients. Hong Kong Journal of Emergency Medicine. 2006; 13(1):24-30
- 704 Lampin ME, Rousseaux J, Botte A, Sadik A, Cremer R, Leclerc F. Noradrenaline use for septic shock in children: doses, routes of administration and complications. Acta Paediatrica. 2012; 101(9):e426-e430
- Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. European Heart Journal. 2012; 33(7):895-903

- 706 Landesberg G, Levin PD, Gilon D, Goodman S, Georgieva M, Weissman C et al. Myocardial Dysfunction in Severe Sepsis and Septic Shock: No Correlation With Inflammatory Cytokines in Real-life Clinical Setting. Chest. 2015; 148(1):93-102
- To Lannergard A, Viberg A, Cars O, Karlsson MO, Sandstrom M, Larsson A. The time course of body temperature, serum amyloid A protein, C-reactive protein and interleukin-6 in patients with bacterial infection during the initial 3 days of antibiotic therapy. Scandinavian Journal of Infectious Diseases. 2009; 41(9):663-671
- Total Larosa JA, Ahmad N, Feinberg M, Shah M, Dibrienza R, Studer S. The use of an early alert system to improve compliance with sepsis bundles and to assess impact on mortality. Critical Care Research and Practice. 2012; 2012:980369
- To Larsen GY, Mecham N, Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage. Pediatrics. 2011; 127(6):e1585-e1592
- 710 Laterre PF, Garber G, Levy H, Wunderink R, Kinasewitz GT, Sollet JP et al. Severe communityacquired pneumonia as a cause of severe sepsis: data from the PROWESS study. Critical Care Medicine. 2005; 33(5):952-961
- 711 Laupland KB, Zahar JR, Adrie C, Minet C, Vesin A, Goldgran-Toledano D et al. Severe hypothermia increases the risk for intensive care unit-acquired infection. Clinical Infectious Diseases. 2012; 54(8):1064-1070
- 712 Lavigne-Lissalde G, Lefrant J-Y, Jaber S, Castelli C, Constantin J-M, Albanes J et al. Prospective validation of clini-biological parameters including initial hemostasis, which improve the prediction of death at 1 month among patients with septic shock: Sepsicoag study. Journal of Thrombosis and Haemostasis. 2015; 13:766
- Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993; 270(24):2957-2963
- 714 LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Critical Care Medicine. 2000; 28(8):2729-2732
- 715 Lee CC, Wu CJ, Chi CH, Lee NY, Chen PL, Lee HC et al. Prediction of community-onset bacteremia among febrile adults visiting an emergency department: rigor matters. Diagnostic Microbiology and Infectious Disease. 2012; 73(2):168-173
- 716 Lee KH, Hui KP, Lim TK, Tan WC. Acute physiology and chronic health evaluation (APACHE II) scoring in the Medical Intensive Care Unit, National University Hospital, Singapore. Singapore Medical Journal. 1993; 34(1):41-44
- 717 Lee SW, Hong YS, Park DW, Choi SH, Moon SW, Park JS et al. Lactic acidosis not hyperlactatemia as a predictor of in hospital mortality in septic emergency patients. Emergency Medicine Journal. 2008; 25(10):659-665
- 718 Lee SJ, Ramar K, Park JG, Gajic O, Li G, Kashyap R. Increased fluid administration in the first three hours of sepsis resuscitation is associated with reduced mortality: a retrospective cohort study. Chest. 2014; 146(4):908-915
- 719 Lefrant JY, Muller L, Raillard A, Jung B, Beaudroit L, Favier L et al. Reduction of the severe sepsis or septic shock associated mortality by reinforcement of the recommendations bundle: a multicenter study. Annales Francaises D'Anesthesie Et De Reanimation. 2010; 29(9):621-628

- Leichtle SW, Kaoutzanis C, Brandt MM, Welch KB, Purtill MA. Tissue oxygen saturation for the risk stratification of septic patients. Journal of Critical Care. 2013; 28(6):1111-1115
- 721 Leli C, Cardaccia A, Ferranti M, Cesarini A, D'Alo F, Ferri C et al. Procalcitonin better than C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in predicting DNAemia in patients with sepsis. Scandinavian Journal of Infectious Diseases. 2014; 46(11):745-752
- Levy B, Nace L, Bollaert PE, Dousset B, Mallie JP, Larcan A. Comparison of systemic and regional effects of dobutamine and dopexamine in norepinephrine-treated septic shock. Intensive Care Medicine. 1999; 25(9):942-948
- 723 Levy B, Dusang B, Annane D, Gibot S, Bollaert PE, College Interregional des Reanimateurs du Nord-Est. Cardiovascular response to dopamine and early prediction of outcome in septic shock: a prospective multiple-center study. Critical Care Medicine. 2005; 33(10):2172-2177
- Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Critical Care Medicine. 2010; 38(2):367-374
- Li L, Zhu Z, Chen J, Ouyang B, Chen M, Guan X. Diagnostic value of soluble triggering receptor expressed on myeloid cells-1 in critically-ill, postoperative patients with suspected sepsis.

 American Journal of the Medical Sciences. 2013; 345(3):178-184
- 726 Liaw YS, Yu CJ, Wu HD, Yang PC. Comparison of inflammatory cytokine concentration and physiologic parameters in septic shock. Journal of the Formosan Medical Association. 1997; 96(9):685-690
- 727 Lichtenstern C, Brenner T, Bardenheuer HJ, Weigand MA. Predictors of survival in sepsis: what is the best inflammatory marker to measure? Current Opinion in Infectious Diseases. 2012; 25(3):328-336
- 728 Lim WH, Lien R, Huang YC, Chiang MC, Fu RH, Chu SM et al. Prevalence and pathogen distribution of neonatal sepsis among very-low-birth-weight infants. Pediatrics and Neonatology. 2012; 53(4):228-234
- 729 Lin MY, Weinstein RA, Hota B. Delay of active antimicrobial therapy and mortality among patients with bacteremia: impact of severe neutropenia. Antimicrobial Agents and Chemotherapy. 2008; 52(9):3188-3194
- 730 Lin SM, Huang CD, Lin HC, Liu CY, Wang CH, Kuo HP. A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock (Augusta, Ga). 2006; 26(6):551-557
- 731 Lin S-M, Wang Y-M, Lin H-C, Lee K-Y, Huang C-D, Liu C-Y et al. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Critical Care Medicine. 2008; 36(3):683-689
- Lin Y-C, Chen T-L, Ju H-L, Chen H-S, Wang F-D, Yu K-W et al. Clinical characteristics and risk factors for attributable mortality in Enterobacter cloacae bacteremia. Journal of Microbiology, Immunology and Infection. 2006; 39(1):67-72

- 733 Linder A, Akesson P, Inghammar M, Treutiger CJ, Linner A, Sunden-Cullberg J. Elevated plasma levels of heparin-binding protein in intensive care unit patients with severe sepsis and septic shock. Critical Care. 2012; 16(3):R90
- Lissalde-Lavigne G, Combescure C, Muller L, Bengler C, Raillard A, Lefrant J-Y et al. Simple coagulation tests improve survival prediction in patients with septic shock. Journal of Thrombosis and Haemostasis. 2008; 6(4):645-653
- 735 Liu FY, Qin J, Wang RX, Fan XL, Wang J, Sun CY et al. A prospective validation of national early warning score in emergency intensive care unit patients at Beijing. Hong Kong Journal of Emergency Medicine. 2015; 22(3):137-144
- 736 Liu V, Morehouse JW, Soule J, Whippy A, Escobar GJ. Fluid volume, lactate values, and mortality in sepsis patients with intermediate lactate values. Annals of the American Thoracic Society. 2013; 10(5):466-473
- 737 Liu W, Peng L, Hua S. Clinical significance of dynamic monitoring of blood lactic acid, oxygenation index and C-reactive protein levels in patients with severe pneumonia. Experimental and Therapeutic Medicine. 2015; 10(5):1824-1828
- 138 Lobo RD, Levin AS, Oliveira MS, Gomes LMB, Gobara S, Park M et al. Evaluation of interventions to reduce catheter-associated bloodstream infection: continuous tailored education versus one basic lecture. American Journal of Infection Control. 2010; 38(6):440-448
- 739 Lobo RD, Levin AS, Gomes LMB, Cursino R, Park M, Figueiredo VB et al. Impact of an educational program and policy changes on decreasing catheter-associated bloodstream infections in a medical intensive care unit in Brazil. American Journal of Infection Control. 2005; 33(2):83-87
- 740 Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clinical Infectious Diseases. 2003; 36(11):1418-1423
- 741 Lodise TP, Jr., Patel N, Kwa A, Graves J, Furuno JP, Graffunder E et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrobial Agents and Chemotherapy. 2007; 51(10):3510-3515
- 742 Lorente L, Martin MM, Abreu-Gonzalez P, de la Cruz T, Ferreres J, Sole-Violan J et al. Serum melatonin levels are associated with mortality in severe septic patients. Journal of Critical Care. 2015; 30(4):860-866
- 743 Lorente L, Martin MM, Abreu-Gonzalez P, Dominguez-Rodriguez A, Labarta L, Diaz C et al. Sustained high serum malondialdehyde levels are associated with severity and mortality in septic patients. Critical Care. 2013; 17(6):R290
- 744 Lorente L, Martin MM, Borreguero-Leon JM, Sole-Violan J, Ferreres J, Labarta L et al. Sustained high plasma plasminogen activator inhibitor-1 levels are associated with severity and mortality in septic patients. Thrombosis Research. 2014; 134(1):182-186
- Lorente L, Martin MM, Sole-Violan J, Blanquer J, Labarta L, Diaz C et al. Association of sepsisrelated mortality with early increase of TIMP-1/MMP-9 ratio. PloS One. 2014; 9(4):e94318

- 746 Ludikhuize J, Borgert M, Binnekade J, Subbe C, Dongelmans D, Goossens A. Standardized measurement of the Modified Early Warning Score results in enhanced implementation of a Rapid Response System: a quasi-experimental study. Resuscitation. 2014; 85(5):676-682
- 747 Ludikhuize J, Smorenburg SM, de Rooij SE, de Jonge E. Identification of deteriorating patients on general wards; measurement of vital parameters and potential effectiveness of the Modified Early Warning Score. Journal of Critical Care. 2012; 27(4):424-13
- Lupei MI, Beilman GJ, Chipman JG, Mann HJ. Changes in vasopressin use and outcomes in surgical intensive care unit patients with septic shock. Chirurgia. 2009; 104(5):575-581
- Luz Fiusa MM, Costa-Lima C, de Souza GR, Vigorito AC, Penteado Aranha FJ, Lorand-Metze I et al. A high angiopoietin-2/angiopoietin-1 ratio is associated with a high risk of septic shock in patients with febrile neutropenia. Critical Care. 2013; 17(4):R169
- 750 Lyle N, Boyd J. The potential for PCR based testing to improve diagnosis and treatment of sepsis. Current Infectious Disease Reports. 2013; 15(5):372-379
- 751 Ma P-L, Peng X-X, Du B, Hu X-L, Gong Y-C, Wang Y et al. Sources of heterogeneity in trials reporting hydroxyethyl starch 130/0.4 or 0.42 associated excess mortality in septic patients: A systematic review and meta-regression. Chinese Medical Journal. 2015; 128(17):2374-2382
- 752 MacArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Teoh L et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clinical Infectious Diseases. 2004; 38(2):284-288
- 753 MacKay GJ, Molloy RG, O'Dwyer PJ. C-reactive protein as a predictor of postoperative infective complications following elective colorectal resection. Colorectal Disease. 2011; 13(5):583-587
- 754 Mackintosh N, Rainey H, Sandall J. Understanding how rapid response systems may improve safety for the acutely ill patient: learning from the frontline. BMJ Quality and Safety. 2012; 21(2):135-144
- 755 MacRedmond R, Hollohan K, Stenstrom R, Nebre R, Jaswal D, Dodek P. Introduction of a comprehensive management protocol for severe sepsis is associated with sustained improvements in timeliness of care and survival. Quality and Safety in Health Care. 2010; 19(5):e46
- 756 Madoiwa S, Nunomiya S, Ono T, Shintani Y, Ohmori T, Mimuro J et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. International Journal of Hematology. 2006; 84(5):398-405
- 757 Magudumana MO, Ballot DE, Cooper PA, Trusler J, Cory BJ, Viljoen E et al. Serial interleukin 6 measurements in the early diagnosis of neonatal sepsis. Journal of Tropical Pediatrics. 2000; 46(5):267-271
- 758 Mahavanakul W, Nickerson EK, Srisomang P, Teparrukkul P, Lorvinitnun P, Wongyingsinn M et al. Feasibility of modified surviving sepsis campaign guidelines in a resource-restricted setting based on a cohort study of severe S. aureus sepsis [corrected]. PloS One. 2012; 7(2):e29858
- 759 Maher ER, Robinson KN, Scoble JE, Farrimond JG, Browne DR, Sweny P et al. Prognosis of critically-ill patients with acute renal failure: APACHE II score and other predictive factors. Quarterly Journal of Medicine. 1989; 72(269):857-866

- 760 Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO et al. Mortality after fluid bolus in African children with severe infection. New England Journal of Medicine. 2011; 364(26):2483-2495
- 761 Malbrain MLNG, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiology Intensive Therapy. 2014; 46(5):361-380
- 762 Malik A, Hui CPS, Pennie RA, Kirpalani H. Beyond the complete blood cell count and C-reactive protein: a systematic review of modern diagnostic tests for neonatal sepsis. Archives of Pediatrics and Adolescent Medicine. 2003; 157(6):511-516
- 763 Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L et al. Central venous-toarterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. European Journal of Anaesthesiology. 2014; 31(7):371-380
- Mandell IM, Bynum F, Marshall L, Bart R, Gold JI, Rubin S. Pediatric Early Warning Score and unplanned readmission to the pediatric intensive care unit. Journal of Critical Care. 2015; 30(5):1090-1095
- 765 Mann-Salinas EA, Baun MM, Meininger JC, Murray CK, Aden JK, Wolf SE et al. Novel predictors of sepsis outperform the American Burn Association sepsis criteria in the burn intensive care unit patient. Journal of Burn Care and Research. 2013; 34(1):31-43
- 766 Mann-Salinas LE, Engebretson J, Batchinsky Al. A complex systems view of sepsis: implications for nursing. Dimensions of Critical Care Nursing. 2013; 32(1):12-17
- 767 Mannan MA, Shahidullah M, Noor MK, Islam F, Alo D, Begum NA. Utility of C-reactive protein and hematological parameters in the detection of neonatal sepsis. Mymensingh Medical Journal. 2010; 19(2):259-263
- 768 Manucha V, Rusia U, Sikka M, Faridi MMA, Madan N. Utility of haematological parameters and C-reactive protein in the detection of neonatal sepsis. Journal of Paediatrics and Child Health. 2002; 38(5):459-464
- 769 Manzano S, Bailey B, Girodias JB, Galetto-Lacour A, Cousineau J, Delvin E. Impact of procalcitonin on the management of children aged 1 to 36 months presenting with fever without source: a randomized controlled trial. American Journal of Emergency Medicine. 2010; 28(6):647-653
- 770 Manzon C, Barrot L, Besch G, Barbot O, Desmettre T, Capellier G et al. Capillary lactate as a tool for the triage nurse among patients with SIRS at emergency department presentation: a preliminary report. Annals of Intensive Care. 2015; 5:7
- 771 Marecaux G, Pinsky MR, Dupont E, Kahn RJ, Vincent JL. Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Medicine. 1996; 22(5):404-408
- 772 Mariano F, Cantaluppi V, Stella M, Romanazzi GM, Assenzio B, Cairo M et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Critical Care. 2008; 12(2):R42
- 773 Mark DG, Morehouse JW, Hung YY, Kene MV, Elms AR, Liu V et al. In-hospital mortality following treatment with red blood cell transfusion or inotropic therapy during early goal-

- directed therapy for septic shock: a retrospective propensity-adjusted analysis. Critical Care. 2014; 18(5):496
- 774 Marra AR, Bearman GML, Wenzel RP, Edmond MB. Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa. BMC Infectious Diseases. 2006; 6
- 775 Marshall JC. The surviving sepsis campaign. Surgical Infections. 2009; 10(2):187
- 776 Marshall JC. The PIRO (predisposition, insult, response, organ dysfunction) model: toward a staging system for acute illness. Virulence. 2014; 5(1):27-35
- 777 Martensson J, Bell M, Oldner A, Xu S, Venge P, Martling C-R. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Medicine. 2010; 36(8):1333-1340
- 778 Martensson J, Martling CR, Oldner A, Bell M. Impact of sepsis on levels of plasma cystatin C in AKI and non-AKI patients. Nephrology, Dialysis, Transplantation. 2012; 27(2):576-581
- 779 Martin C, Viviand X, Leone M, Thirion X. Effect of norepinephrine on the outcome of septic shock. Critical Care Medicine. 2000; 28(8):2758-2765
- 780 Martinez-Albarran M, Perez-Molina JdJ, Gallegos-Castorena S, Sanchez-Zubieta F, Del Toro-Arreola S, Troyo-Sanroman R et al. Procalcitonin and C-reactive protein serum levels as markers of infection in a pediatric population with febrile neutropenia and cancer. Pediatric Hematology and Oncology. 2009; 26(6):414-425
- 781 Marzouk O, Bestwick K, Thomson AP, Sills JA, Hart CA. Variation in serum C-reactive protein across the clinical spectrum of meningococcal disease. Acta Paediatrica. 1993; 82(9):729-733
- 782 Massion PB, Peters P, LeDoux D, Zimermann V, Canivet J-L, Massion PP et al. Persistent hypocoagulability in patients with septic shock predicts greater hospital mortality: Impact of impaired thrombin generation. Intensive Care Medicine. 2012; 38(8):1326-1335
- 783 Mathers NJ, Pohlandt F. Diagnostic audit of C-reactive protein in neonatal infection. European Journal of Pediatrics. 1987; 146(2):147-151
- 784 Mato AR, Luger SM, Heitjan DF, Mikkelsen ME, Olson E, Ujjani C et al. Elevation in serum lactate at the time of febrile neutropenia (FN) in hemodynamically-stable patients with hematologic malignancies (HM) is associated with the development of septic shock within 48 hours. Cancer Biology and Therapy. 2010; 9(8):585-589
- 785 Matok I, Vard A, Efrati O, Rubinshtein M, Vishne T, Leibovitch L et al. Terlipressin as rescue therapy for intractable hypotension due to septic shock in children. Shock. 2005; 23(4):305-310
- 786 Matsumura Y, Nakada Ta, Abe R, Oshima T, Oda S. Serum procalcitonin level and SOFA score at discharge from the intensive care unit predict post-intensive care unit mortality: a prospective study. PloS One. 2014; 9(12):e114007
- 787 Matuschak GM. Supranormal oxygen delivery in critical illness. New Horizons. 1997; 5(3):233-
- 788 Mazul-Sunko B, Zarkovic N, Vrkic N, Antoljak N, Bekavac Beslin M, Nikolic Heitzler V et al. Proatrial natriuretic peptide (1-98), but not cystatin C, is predictive for occurrence of acute

- renal insufficiency in critically ill septic patients. Nephron Clinical Practice. 2004; 97(3):c103-c107
- 789 Mazur LJ, Kozinetz CA. Diagnostic tests for occult bacteremia: temperature response to acetaminophen versus WBC count. American Journal of Emergency Medicine. 1994; 12(4):403-406
- 790 McGaughey J, Blackwood B, O'Halloran P, Trinder TJ, Porter S. Realistic Evaluation of Early Warning Systems and the Acute Life-threatening Events--Recognition and Treatment training course for early recognition and management of deteriorating ward-based patients: research protocol. Journal of Advanced Nursing. 2010; 66(4):923-932
- 791 McGillicuddy DC, Tang A, Cataldo L, Gusev J, Shapiro NI. Evaluation of end-tidal carbon dioxide role in predicting elevated SOFA scores and lactic acidosis. Internal and Emergency Medicine. 2009; 4(1):41-44
- 792 McKenzie MS, Howell MD. Using lactate to detect occult hypoperfusion in sepsis. International Journal of Intensive Care. 2009; 16(1):12-15
- 793 McKinley BA, Moore LJ, Sucher JF, Todd SR, Turner KL, Valdivia A et al. Computer protocol facilitates evidence-based care of sepsis in the surgical intensive care unit. Journal of Trauma. 2011; 70(5):1153-1157
- 794 McNally SJ, MacKinnon M, Hawkins M. Practical barriers to the implementation of early goal directed therapy in the UK: trainee skills and awareness. Scottish Medical Journal. 2009; 54(3):22-24
- 795 Meehan TP, Fine MJ, Krumholz HM, Scinto JD, Galusha DH, Mockalis JT et al. Quality of care, process, and outcomes in elderly patients with pneumonia. JAMA. 1997; 278(23):2080-2084
- 796 Mei YQ, Ji Q, Liu H, Wang X, Feng J, Long C et al. Study on the relationship of APACHE III and levels of cytokines in patients with systemic inflammatory response syndrome after coronary artery bypass grafting. Biological and Pharmaceutical Bulletin. 2007; 30(3):410-414
- 797 Meidani M, Khorvash F, Abolghasemi H, Jamali B. Procalcitonin and quantitative C-reactive protein role in the early diagnosis of sepsis in patients with febrile neutropenia. South Asian Journal of Cancer. 2013; 2(4):216-219
- 798 Meisner M, Tschaikowsky K, Hutzler A, Harig F, Von der EJ. Postoperative plasma concentrations of procalcitonin and C-reactive protein in patients undergoing cardiac and thoracic surgery with and without cardiopulmonary bypass. Cardiovascular Engineering. 1998; 3(3-4):174-178
- 799 Mencacci A, Leli C, Cardaccia A, Meucci M, Moretti A, D'Alo F et al. Procalcitonin predicts realtime PCR results in blood samples from patients with suspected sepsis. PloS One. 2012; 7(12):e53279
- 800 Menon MS, Marwah S, Mehta M, Dipak AD. Diagnostic accuracy of c-reactive protein in immunocompromised patients with sepsis in intensive care units. National Journal of Physiology, Pharmacy and Pharmacology. 2015; 5(3):166-169
- 801 Mesquida J, Espinal C, Gruartmoner G, Masip J, Sabatier C, Baigorri F et al. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Medicine. 2012; 38(4):592-597

- 802 Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F et al. Central venous-toarterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Critical Care. 2015; 19(1):126
- 803 Metsvaht T, Pisarev H, Ilmoja ML, Parm U, Maipuu L, Merila M et al. Clinical parameters predicting failure of empirical antibacterial therapy in early onset neonatal sepsis, identified by classification and regression tree analysis. BMC Pediatrics. 2009; 9:72
- 804 Meyer J, Fritz Z, Burton H, Ward C, Simpson A, Ahmed V. Towards 'sepsis with optimal treatment': evaluating the sepsis care pathway in acute medicine and identifying scope for systems improvement. Acute Medicine. 2013; 12(1):5-12
- 805 Micek ST, Shah P, Hollands JM, Shah RA, Shannon WD, Kollef MH. Addition of vasopressin to norepinephrine as independent predictor of mortality in patients with refractory septic shock: an observational study. Surgical Infections. 2007; 8(2):189-200
- 806 Miguel-Bayarri V, Casanoves-Laparra EB, Pallas-Beneyto L, Sancho-Chinesta S, Martin-Osorio LF, Tormo-Calandin C et al. Prognostic value of the biomarkers procalcitonin, interleukin-6 and C-reactive protein in severe sepsis. Medicina Intensiva. 2012; 36(8):556-562
- 807 Mikkelsen ME, Miltiades AN, Gaieski DF, Goyal M, Fuchs BD, Shah CV et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Critical Care Medicine. 2009; 37(5):1670-1677
- 808 Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock. 2013; 40(5):375-381
- 809 Miller RR, Dong L, Nelson NC, Brown SM, Kuttler KG, Probst DR et al. Multicenter implementation of a severe sepsis and septic shock treatment bundle. American Journal of Respiratory and Critical Care Medicine. 2013; 188(1):77-82
- 810 Mimoz O, Benoist JF, Edouard AR, Assicot M, Bohuon C, Samii K. Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Medicine. 1998; 24(2):185-188
- Mintegi S, Benito J, Sanchez J, Azkunaga B, Iturralde I, Garcia S. Predictors of occult bacteremia in young febrile children in the era of heptavalent pneumococcal conjugated vaccine. European Journal of Emergency Medicine. 2009; 16(4):199-205
- Mistry RD, Wedin T, Balamuth F, McGowan KL, Ellison AM, Nelson KA et al. Emergency department epidemiology of pneumococcal bacteremia in children since the institution of widespread PCV7 vaccination. Journal of Emergency Medicine. 2013; 45(6):813-820
- Mitra AK, Albert MJ, Alam AN. Bacteraemia and meningitis among hospital patients with diarrhoea. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1993; 87(5):560-563
- Mobin UR, Shaikh I, Bazai SU, Shaheen A. Frequency and susceptibility of organisms causing neonatal sepsis. Pakistan Journal of Medical and Health Sciences. 2012; 6(4):976-978

- 815 Mohan A, Shrestha P, Guleria R, Pandey RM, Wig N. Development of a mortality prediction formula due to sepsis/severe sepsis in a medical intensive care unit. Lung India. 2015; 32(4):313-319
- Mok K, Christian MD, Nelson S, Burry L. Time to Administration of Antibiotics among Inpatients with Severe Sepsis or Septic Shock. Canadian Journal of Hospital Pharmacy. 2014; 67(3):213-219
- 817 Mokart D, Merlin M, Sannini A, Brun JP, Delpero JR, Houvenaeghel G et al. Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. British Journal of Anaesthesia. 2005; 94(6):767-773
- 818 Monette J, Miller MA, Monette M, Laurier C, Boivin JF, Sourial N et al. Effect of an educational intervention on optimizing antibiotic prescribing in long-term care facilities. Journal of the American Geriatrics Society. 2007; 55(8):1231-1235
- 819 Montiel-Jarquin A, Lascarez-Lagunas I, Sanchez-Gasca C, Lascarez-Lagunas L, Garcia-Cano E, Gomez-Conde E et al. Lactate clearance is a prognostic factor in patients on shock state. European Journal of General Medicine. 2012; 9(2):98-103
- Moon KT. What is the best vasopressor for the treatment of shock? American Family Physician. 2010; 82(11):1395
- Moore LJ, Jones SL, Kreiner LA, McKinley B, Sucher JF, Todd SR et al. Validation of a screening tool for the early identification of sepsis. Journal of Trauma. 2009; 66(6):1539-7
- Morelli A, Ertmer C, Lange M, Broeking K, Orecchioni A, Rocco M. Effects of simultaneously infused terlipressin and dobutamine in septic shock. Critical Care. 2007; 11(Suppl 2):33
- Morelli A, Ertmer C, Lange M, Dünser M, Rehberg S, Aken H et al. Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: the DOBUPRESS study. British Journal of Anaesthesia. 2008; 100(4):494-503
- Moreno R, Vincent JL, Matos R, Mendonca A, Cantraine F, Thijs L et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Medicine. 1999; 25(7):686-696
- Morimatsu H, Singh K, Uchino S, Bellomo R, Hart G. Early and exclusive use of norepinephrine in septic shock. Resuscitation. 2004; 62(2):249-254
- 826 Moseson EM, Zhuo H, Chu J, Stein JC, Matthay MA, Kangelaris KN et al. Intensive care unit scoring systems outperform emergency department scoring systems for mortality prediction in critically ill patients: a prospective cohort study. Journal of Intensive Care. 2014; 2:40
- 827 Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD et al. Trial of early, goal-directed resuscitation for septic shock. New England Journal of Medicine. 2015; 372(14):1301-1311
- Muller B, Becker KL, Schachinger H, Rickenbacher PR, Huber PR, Zimmerli W et al. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Critical Care Medicine. 2000; 28(4):977-983

- Muller MC, Meijers JCM, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: A systematic review. Critical Care. 2014; 18(1)
- 830 Muller RB, Haase N, Lange T, Wetterslev J, Perner A. Acute kidney injury with hydroxyethyl starch 130/0.42 in severe sepsis. Acta Anaesthesiologica Scandinavica. 2015; 59(3):329-336
- Mullner M, Urbanek B, Havel C, Losert H, Waechter F, Gamper G. Vasopressors for shock. Cochrane Database of Systematic Reviews. 2004;(3):CD003709
- 832 Munoz P, Simarro N, Rivera M, Alonso R, Alcala L, Bouza E. Evaluation of procalcitonin as a marker of infection in a nonselected sample of febrile hospitalized patients. Diagnostic Microbiology and Infectious Disease. 2004; 49(4):237-241
- 833 Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009; 136(1):102-109
- 834 Murphy K, Weiner J. Use of leukocyte counts in evaluation of early-onset neonatal sepsis. Pediatric Infectious Disease Journal. 2012; 31(1):16-19
- Musikatavorn K, Thepnimitra S, Komindr A, Puttaphaisan P, Rojanasarntikul D. Venous lactate in predicting the need for intensive care unit and mortality among nonelderly sepsis patients with stable hemodynamic. American Journal of Emergency Medicine. 2015; 33(7):925-930
- 836 Mustafa S, Farooqui S, Waheed S, Mahmood K. Evaluation of C-reactive protein as early indicator of blood culture positivity in neonates. Pakistan Journal of Medical Sciences. 2005; 21(1):69-73
- 837 Mustard J, Bohnen JMA, Haseeb S, Kasina R. C-reactive protein levels predict postoperative septic complications. Archives of Surgery. 1987; 122(1):69-73
- Naher BS, Mannan MA, Noor K, Shahiddullah M. Role of serum procalcitonin and C-reactive protein in the diagnosis of neonatal sepsis. Bangladesh Medical Research Council Bulletin. 2011; 37(2):40-46
- Nanda SK, Suresh DR. Plasma lactate as prognostic marker of septic shock with acute respiratory distress syndrome. Indian Journal of Clinical Biochemistry. 2009; 24(4):433-435
- Nassau J. Managing patients with sepsis in the general ward environment. Professional Nurse. 2003; 18(11):618-620
- Natarajan G, Monday L, Scheer T, Lulic-Botica M. Timely empiric antimicrobials are associated with faster microbiologic clearance in preterm neonates with late-onset bloodstream infections. Acta Paediatrica. 2014; 103(10):e418-e423
- Naved SA, Siddiqui S, Khan FH. APACHE-II score correlation with mortality and length of stay in an intensive care unit. Journal of the College of Physicians and Surgeons Pakistan. 2011; 21(1):4
- Neely AN, Smith WL, Warden GD. Efficacy of a rise in C-reactive protein serum levels as an early indicator of sepsis in burned children. Journal of Burn Care and Rehabilitation. 1998; 19(2):102-105
- Neely AN, Fowler LA, Kagan RJ, Warden GD. Procalcitonin in pediatric burn patients: an early indicator of sepsis? Journal of Burn Care and Rehabilitation. 2004; 25(1):76-80

- Nejat M, Pickering JW, Walker RJ, Westhuyzen J, Shaw GM, Frampton CM et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Critical Care. 2010; 14(3):R85
- Nelson JL, Smith BL, Jared JD, Younger JG. Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis. Annals of Emergency Medicine. 2011; 57(5):500-504
- Ng PC. Diagnostic markers of infection in neonates. Archives of Disease in Childhood Fetal and Neonatal Edition. 2004; 89(3):F229-F235
- Ng PC, Lam HS. Diagnostic markers for neonatal sepsis. Current Opinion in Pediatrics. 2006; 18(2):125-131
- 849 Nguyen HB, Oh J, Otero RM, Burroughs K, Wittlake WA, Corbett SW. Standardization of severe sepsis management: a survey of methodologies in academic and community settings. Journal of Emergency Medicine. 2010; 38(2):122-30, quiz
- Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S et al. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Annals of Emergency Medicine. 2006; 48(1):28-54
- 851 Nguyen HB, Corbett SW, Steele R, Banta J, Clark RT, Hayes SR et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Critical Care Medicine. 2007; 35(4):1105-1112
- 852 Nguyen HB, Daniel-Underwood L, Van Ginkel C, Wong M, Lee D, Lucas AS et al. An educational course including medical simulation for early goal-directed therapy and the severe sepsis resuscitation bundle: an evaluation for medical student training. Resuscitation. 2009; 80(6):674-679
- 853 Nguyen HB, Kuan WS, Batech M, Shrikhande P, Mahadevan M, Li CH et al. Outcome effectiveness of the severe sepsis resuscitation bundle with addition of lactate clearance as a bundle item: a multi-national evaluation. Critical Care. 2011; 15(5):R229
- 854 Nguyen HB, Loomba M, Yang JJ, Jacobsen G, Shah K, Otero RM et al. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock. Journal of Inflammation. 2010; 7:6
- Nguyen SQ, Mwakalindile E, Booth JS, Hogan V, Morgan J, Prickett CT et al. Automated electronic medical record sepsis detection in the emergency department. PeerJ. 2014; 2:e343
- Nickerson EK, Wuthiekanun V, Wongsuvan G, Limmathurosakul D, Srisamang P, Mahavanakul W et al. Factors predicting and reducing mortality in patients with invasive Staphylococcus aureus disease in a developing country. PLoS ONE [Electronic Resource]. 2009; 4(8):e6512
- 857 Nie X, Wu B, He Y, Huang X, Dai Z, Miao Q et al. Serum procalcitonin predicts development of acute kidney injury in patients with suspected infection. Clinical Chemistry and Laboratory Medicine. 2013; 51(8):1655-1661
- Nijman RG, Vergouwe Y, Thompson M, van VM, van Meurs AH, van der Lei J et al. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: diagnostic study. BMJ (Clinical Research Ed). 2013; 346:f1706

- 859 Nijman RG, Zwinkels RLJ, van Veen M, Steyerberg EW, van der Lei J, Moll HA et al. Can urgency classification of the Manchester triage system predict serious bacterial infections in febrile children? Archives of Disease in Childhood. 2011; 96(8):715-722
- Nimri LF, Rawashdeh M, Meqdam MM. Bacteremia in children: etiologic agents, focal sites, and risk factors. Journal of Tropical Pediatrics. 2001; 47(6):356-360
- Noritomi DT, Ranzani OT, Monteiro MB, Ferreira EM, Santos SR, Leibel F et al. Implementation of a multifaceted sepsis education program in an emerging country setting: clinical outcomes and cost-effectiveness in a long-term follow-up study. Intensive Care Medicine. 2014; 40(2):182-191
- 862 Nunes TSO, Ladeira RT, Bafi AT, de Azevedo LCP, Machado FR, Freitas FGR. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation. Annals of Intensive Care. 2014; 4:25
- Nuntrarumit P, Pinkaew O, Kitiwanwanich S. Predictive values of serial C-reactive protein in neonatal sepsis. Journal of the Medical Association of Thailand. 2002; 85 Suppl 4:S1151-S1158
- Nurnberger W, Kries R, Bohm O, Gobel U. Systemic meningococcal infection: which children may benefit from adjuvant haemostatic therapy? Results from an observational study. European Journal of Pediatrics. 1999; 158 Suppl 3:S192-S196
- O'Leary F, Hayen A, Lockie F, Peat J. Defining normal ranges and centiles for heart and respiratory rates in infants and children: a cross-sectional study of patients attending an Australian tertiary hospital paediatric emergency department. Archives of Disease in Childhood. 2015;
- 866 O'Neill R, Morales J, Jule M. Early goal-directed therapy (EGDT) for severe sepsis/septic shock: which components of treatment are more difficult to implement in a community-based emergency department? Journal of Emergency Medicine. 2012; 42(5):503-510
- 867 Oba Y, Lone NA. Mortality benefit of vasopressor and inotropic agents in septic shock: a Bayesian network meta-analysis of randomized controlled trials. Journal of Critical Care. 2014; 29(5):706-710
- 868 Oberhoffer M, Karzai W, Meier-Hellmann A, Bogel D, Fassbinder J, Reinhart K. Sensitivity and specificity of various markers of inflammation for the prediction of tumor necrosis factor-alpha and interleukin-6 in patients with sepsis. Critical Care Medicine. 1999; 27(9):1814-1818
- Obritsch MD, Jung R, Fish DN, MacLaren R. Effects of continuous vasopressin infusion in patients with septic shock. Annals of Pharmacotherapy. 2004; 38(7-8):1117-1122
- 870 Oda S, Hirasawa H, Sugai T, Shiga H, Nakanishi K, Kitamura N et al. Comparison of Sepsis-related Organ Failure Assessment (SOFA) score and CIS (cellular injury score) for scoring of severity for patients with multiple organ dysfunction syndrome (MODS). Intensive Care Medicine. 2000; 26(12):1786-1793
- Oermann MH, McInerney SM. An evaluation of sepsis Web sites for patient and family education. Plastic Surgical Nursing. 2007; 27(4):192-196
- Ogura H, Gando S, Saitoh D, Takeyama N, Kushimoto S, Fujishima S et al. Epidemiology of severe sepsis in Japanese intensive care units: A prospective multicenter study. Journal of Infection and Chemotherapy. 2014; 20(3):157-162

- 873 Oh D, Jang MJ, Lee SJ, Chong SY, Kang MS, Wada H. Evaluation of modified non-overt DIC criteria on the prediction of poor outcome in patients with sepsis. Thrombosis Research. 2010; 126(1):18-23
- Okabayashi K, Wada H, Ohta S, Shiku H, Nobori T, Maruyama K. Hemostatic markers and the sepsis-related organ failure assessment score in patients with disseminated intravascular coagulation in an intensive care unit. American Journal of Hematology. 2004; 76(3):225-229
- Oldroyd C, Day A. The use of pediatric early warning scores in the emergency department. Journal of Emergency Nursing: JEN. 2011; 37(4):374-424
- 876 Oliveira CF, Botoni FA, Oliveira CRA, Silva CB, Pereira HA, Serufo JC et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Critical Care Medicine. 2013; 41(10):2336-2343
- 877 Oliveira NS, Silva VR, Castelo JS, Elias-Neto J, Pereira FEL, Carvalho WB. Serum level of cardiac troponin I in pediatric patients with sepsis or septic shock. Pediatric Critical Care Medicine. 2008; 9(4):414-417
- Onder AM, Chandar J, Billings AA, Simon N, Diaz R, Francoeur D et al. Comparison of early versus late use of antibiotic locks in the treatment of catheter-related bacteremia. Clinical Journal of American Society of Nephrology: CJASN. 2008; 3(4):1048-1056
- Oostenbrink R, Thompson M, Steyerberg EW. Barriers to translating diagnostic research in febrile children to clinical practice: a systematic review. Archives of Disease in Childhood. 2012; 97(7):667-672
- Opal SM, Dellinger RP, Vincent JL, Masur H, Angus DC. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C?*. Critical Care Medicine. 2014; 42(7):1714-1721
- Opiyo N, Molyneux E, Sinclair D, Garner P, English M. Immediate fluid management of children with severe febrile illness and signs of impaired circulation in low-income settings: a contextualised systematic review. BMJ Open. 2014; 4(4):e004934
- Orbegozo Cortes D, Santacruz C, Donadello K, Nobile L, Taccone FS. Colloids for fluid resuscitation: what is their role in patients with shock? Minerva Anestesiologica. 2014; 80(8):963-969
- Organisation for Economic Co-operation and Development (OECD). Purchasing power parities (PPP). 2015. Available from: http://www.oecd.org/std/ppp [Last accessed: 10 November 2015]
- Orji EO, Fatusi AA, Makinde NO, Adeyemi BA, Onwudiegwu U. Impact of training on the use of partograph on maternal and perinatal outcome in peripheral health centers. Journal of the Turkish German Gynecology Association. 2007; 8(2):148-152
- Ortqvist A, Hedlund J, Wretlind B, Carlstrom A, Kalin M. Diagnostic and prognostic value of Interleukin-6 and C-reactive protein in community-acquired pneumonia. Scandinavian Journal of Infectious Diseases. 1995; 27(5):457-462
- Ostrowski SR, Windelov NA, Ibsen M, Haase N, Perner A, Johansson PI. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: A prospective study. Journal of Critical Care. 2013; 28(3):317

- Ottestad E, Boulet JR, Lighthall GK. Evaluating the management of septic shock using patient simulation. Critical Care Medicine. 2007; 35(3):769-775
- 888 Ouellette DR, Shah SZ. Comparison of outcomes from sepsis between patients with and without pre-existing left ventricular dysfunction: a case-control analysis. Critical Care. 2014; 18(2):R79
- Ozalay M, Ozkoc G, Akpinar S, Hersekli MA, Tandogan RN. Necrotizing soft-tissue infection of a limb: clinical presentation and factors related to mortality. Foot and Ankle International. 2006; 27(8):598-605
- Pandey NR, Bian YY, Shou ST. Significance of blood pressure variability in patients with sepsis. World Journal of Emergency Medicine. 2014; 5(1):42-47
- Papaioannou VE, Chouvarda IG, Maglaveras NK, Pneumatikos IA. Temperature variability analysis using wavelets and multiscale entropy in patients with systemic inflammatory response syndrome, sepsis, and septic shock. Critical Care. 2012; 16(2)
- Parish B, Cooksley T, Haji-Michael P. Effectiveness of early antibiotic administration in septic patients with cancer. Acute Medicine. 2013; 12(4):196-200
- Park BH, Kang YA, Park MS, Jung WJ, Lee SH, Lee SK et al. Delta neutrophil index as an early marker of disease severity in critically ill patients with sepsis. BMC Infectious Diseases. 2011; 11
- Park DW, Kwak DS, Park YY, Chang Y, Huh JW, Lim CM et al. Impact of serial measurements of lysophosphatidylcholine on 28-day mortality prediction in patients admitted to the intensive care unit with severe sepsis or septic shock. Journal of Critical Care. 2014; 29(5):882-11
- 895 Park JH, Choi SH, Chung JW. The impact of early adequate antimicrobial therapy on 14-day mortality in patients with monomicrobial Pseudomonas aeruginosa and Acinetobacter baumannii bacteremia. Journal of Infection and Chemotherapy. 2013; 19(5):843-849
- 896 Park JH, Lee J, Park YS, Lee CH, Lee SM, Yim JJ et al. Prognostic value of central venous oxygen saturation and blood lactate levels measured simultaneously in the same patients with severe systemic inflammatory response syndrome and severe sepsis. Lung. 2014; 192(3):435-440
- 897 Park KJ, Kim HJ, Hwang SC, Lee SM, Lee YH, Hahn MH et al. The imbalance between coagulation and fibrinolysis is related to the severity of the illness and the prognosis in sepsis. Korean Journal of Internal Medicine. 1999; 14(2):72-77
- Parshuram CS, Bayliss A, Reimer J, Middaugh K, Blanchard N. Implementing the Bedside Paediatric Early Warning System in a community hospital: A prospective observational study. Paediatrics and Child Health. 2011; 16(3):e18-e22
- 899 Parshuram CS, Duncan HP, Joffe AR, Farrell CA, Lacroix JR, Middaugh KL et al. Multicentre validation of the bedside paediatric early warning system score: a severity of illness score to detect evolving critical illness in hospitalised children. Critical Care. 2011; 15(4):R184
- 900 Parsons EC, Hough CL, Seymour CW, Cooke CR, Rubenfeld GD, Watkins TR et al. Red blood cell transfusion and outcomes in patients with acute lung injury, sepsis and shock. Critical Care. 2011; 15(5):R221

- 901 Patel A, Waheed U, Brett SJ. Randomised trials of 6 % tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: Systematic review and meta-analysis. Intensive Care Medicine. 2013; 39(5):811-822
- Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002; 96(3):576-582
- 903 Patterson C, Maclean F, Bell C, Mukherjee E, Bryan L, Woodcock T et al. Early warning systems in the UK: variation in content and implementation strategy has implications for a NHS early warning system. Clinical Medicine. 2011; 11(5):424-427
- 904 Paul M, Andreassen S, Nielsen AD, Tacconelli E, Almanasreh N, Fraser A et al. Prediction of bacteremia using TREAT, a computerized decision-support system. Clinical Infectious Diseases. 2006; 42(9):1274-1282
- Paul M, Kariv G, Goldberg E, Raskin M, Shaked H, Hazzan R et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Antimicrobial Chemotherapy. 2010; 65(12):2658-2665
- 906 Paul M, Nielsen AD, Goldberg E, Andreassen S, Tacconelli E, Almanasreh N et al. Prediction of specific pathogens in patients with sepsis: Evaluation of TREAT, a computerized decision support system. Journal of Antimicrobial Chemotherapy. 2007; 59(6):1204-1207
- 907 Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and metaanalysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrobial Agents and Chemotherapy. 2010; 54(11):4851-4863
- 908 Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ et al. Goal-directed resuscitation for patients with early septic shock. New England Journal of Medicine. 2014; 371(16):1496-1506
- 909 Pearson G, Duncan H. Early warning systems for identifying sick children. Paediatrics and Child Health. 2011; 21(5):230-233
- 910 Pechorsky A, Nitzan Y, Lazarovitch T. Identification of pathogenic bacteria in blood cultures: comparison between conventional and PCR methods. Journal of Microbiological Methods. 2009; 78(3):325-330
- 911 Peduzzi P, Shatney C, Sheagren J, Sprung C. Predictors of bacteremia and gram-negative bacteremia in patients with sepsis. The Veterans Affairs Systemic Sepsis Cooperative Study Group. Archives of Internal Medicine. 1992; 152(3):529-535
- Peigne V, Azoulay E, Coquet I, Mariotte E, Darmon M, Legendre P et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Critical Care. 2013; 17(6)
- 913 Peltola H, Saarinen UM, Siimes MA. C-reactive protein in rapid diagnosis and follow-up of bacterial septicemia in children with leukemia. Pediatric Infectious Disease. 1983; 2(5):370-373
- Perner A, Smith SH, Carlsen S, Holst LB. Red blood cell transfusion during septic shock in the ICU. Acta Anaesthesiologica Scandinavica. 2012; 56(6):718-723

- 915 Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. New England Journal of Medicine. 2012; 367(2):124-134
- Pestana D, Espinosa E, Sanguesa-Molina JR, Ramos R, Perez-Fernandez E, Duque M et al. Compliance with a sepsis bundle and its effect on intensive care unit mortality in surgical septic shock patients. Journal of Trauma-Injury Infection and Critical Care. 2010; 69(5):1282-1287
- 917 Pfitzenmeyer P, Decrey H, Auckenthaler R, Michel JP. Predicting bacteremia in older patients. Journal of the American Geriatrics Society. 1995; 43(3):230-235
- 918 Phua J, Ho BC, Tee A, Chan KP, Johan A, Loo S et al. The impact of clinical protocols in the management of severe sepsis: a prospective cohort study. Anaesthesia and Intensive Care. 2012; 40(4):663-674
- Phua J, Lim HF, Tay CK, Aung NW. Public awareness of sepsis and stroke in Singapore: a population-based survey. Annals of the Academy of Medicine, Singapore. 2013; 42(6):269-277
- 920 Piazza O, Boccia MC, Iasiello A, Storti MP, Tufano R, Triassi M. Candidemia in Intensive Care patients. Risk factors and mortality. Minerva Anestesiologica. 2004; 70(1-2):63-69
- 921 Pilz G, Gurniak T, Bujdoso O, Werdan K. A basic program for calculation of APACHE II and Elebute scores and sepsis evaluation in intensive care medicine. Computers in Biology and Medicine. 1991; 21(3):143-159
- Pinilla JC, Hayes P, Laverty W, Arnold C, Laxdal V. The C-reactive protein to prealbumin ratio correlates with the severity of multiple organ dysfunction. Surgery. 1998; 124(4):799-6
- Plambech MZ, Lurie AI, Ipsen HL. Initial, successful implementation of sepsis guidelines in an emergency department. Danish Medical Journal. 2012; 59(12):A4545
- 924 Plataki M, Kashani K, Cabello-Garza J, Maldonado F, Kashyap R, Kor DJ et al. Predictors of acute kidney injury in septic shock patients: an observational cohort study. Clinical Journal of the American Society of Nephrology. 2011; 6(7):1744-1751
- 925 Plowright C. Sepsis A Guide for Patients and Relatives. Nursing in Critical Care. 2013; 18(3):157
- Pollack MM, Patel KM, Ruttimann UE. The Pediatric Risk of Mortality III--Acute Physiology Score (PRISM III-APS): a method of assessing physiologic instability for pediatric intensive care unit patients. Journal of Pediatrics. 1997; 131(4):575-581
- 927 Pollock E, Ford-Jones EL, Corey M, Barker G, Mindorff CM, Gold R et al. Use of the Pediatric Risk of Mortality score to predict nosocomial infection in a pediatric intensive care unit. Critical Care Medicine. 1991; 19(2):160-165
- 928 Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. Journal of Critical Care. 2003; 18(3):156-163
- Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter Study of Central Venous Oxygen Saturation (ScvO2) as a Predictor of Mortality in Patients With Sepsis. Annals of Emergency Medicine. 2010; 55(1):40

- 930 Potter E, Brostoff J, Kapila A. Reducing deaths from sepsis. Clinical Risk. 2011; 17(4):123-125
- Poukkanen M, Wilkman E, Vaara ST, Pettila V, Kaukonen K-M, Korhonen A-M et al. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: Data from the prospective observational FINNAKI study. Critical Care. 2013; 17(6)
- Povoa P. C-reactive protein: A valuable marker of sepsis. Intensive Care Medicine. 2002; 28(3):235-243
- Povoa P, Almeida E, Moreira P, Fernandes A, Mealha R, Aragao A et al. C-reactive protein as an indicator of sepsis. Intensive Care Medicine. 1998; 24(10):1052-1056
- Povoa P, Coelho L, Almeida E, Fernandes A, Mealha R, Moreira P et al. Pilot study evaluating C-reactive protein levels in the assessment of response to treatment of severe bloodstream infection. Clinical Infectious Diseases. 2005; 40(12):1855-1857
- 935 Povoa PR, Carneiro AH, Ribeiro OS, Pereira AC, Portuguese Community-Acquired Sepsis Study Group. Influence of vasopressor agent in septic shock mortality. Results from the Portuguese Community-Acquired Sepsis Study (SACiUCI study). Critical Care Medicine. 2009; 37(2):410-416
- 936 Presterl E, Staudinger T, Pettermann M, Lassnigg A, Burgmann H, Winkler S et al. Cytokine profile and correlation to the APACHE III and MPM II scores in patients with sepsis. American Journal of Respiratory and Critical Care Medicine. 1997; 156(3 Pt 1):825-832
- 937 Pro CI, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA et al. A randomized trial of protocol-based care for early septic shock. New England Journal of Medicine. 2014; 370(18):1683-1693
- 938 Prys-Picard CO, Shah SK, Williams BD, Cardenas VJ, Sharma G. Outcomes of patients on multiple vasoactive drugs for shock. Journal of Intensive Care Medicine. 2013; 28(4):237-240
- 939 Prytherch DR, Smith GB, Schmidt PE, Featherstone PI. ViEWS--Towards a national early warning score for detecting adult inpatient deterioration. Resuscitation. 2010; 81(8):932-937
- Puntis JW, Holden CE, Smallman S, Finkel Y, George RH, Booth IW. Staff training: a key factor in reducing intravascular catheter sepsis. Archives of Disease in Childhood. 1991; 66(3):335-337
- Purdy FR, Tweeddale MG, Merrick PM. Association of mortality with age of blood transfused in septic ICU patients. Canadian Journal of Anaesthesia. 1997; 44(12):1256-1261
- Puskarich MA, Trzeciak S, Shapiro NI, Arnold RC, Heffner AC, Kline JA et al. Prognostic value and agreement of achieving lactate clearance or central venous oxygen saturation goals during early sepsis resuscitation. Academic Emergency Medicine. 2012; 19(3):252-258
- 943 Qu J, L X, Liu Y, Wang X. Evaluation of procalcitonin, C-reactive protein, interleukin-6 & serum amyloid A as diagnostic biomarkers of bacterial infection in febrile patients. Indian Journal of Medical Research. 2015; 141(3):315-321
- 944 Quach JL, Downey AW, Haase M, Haase-Fielitz A, Jones D, Bellomo R. Characteristics and outcomes of patients receiving a medical emergency team review for respiratory distress or hypotension. Journal of Critical Care. 2008; 23(3):325-331

- 945 Quartin AA, Schein RM, Kett DH, Peduzzi PN. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group. JAMA. 1997; 277(13):1058-1063
- 946 Que YA, Guessous I, Dupuis-Lozeron E, Alves de Oliveira CR, Ferreira Oliveir C, Graf R et al. Prognostication of Mortality in Critically III Patients With Severe Infections. Chest. 2015; 148(3):674-682
- 947 Rackoff WR, Gonin R, Robinson C, Kreissman SG, Breitfeld PB. Predicting the risk of bacteremia in childen with fever and neutropenia. Journal of Clinical Oncology. 1996; 14(3):919-924
- 948 Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Critical Care Medicine. 2014; 42(7):1585-1591
- 949 Rampal T, Jhanji S, Pearse RM. Using oxygen delivery targets to optimize resuscitation in critically ill patients. Current Opinion in Critical Care. 2010; 16(3):244-249
- 950 Ranes JL, Gordon SM, Chen P, Fatica C, Hammel J, Gonzales JP et al. Predictors of long-term mortality in patients with ventilator-associated pneumonia. American Journal of Medicine. 2006; 119(10):897-899
- 951 Ranzani OT, Zampieri FG, Forte DN, Azevedo LCP, Park M. C-reactive protein/albumin ratio predicts 90-day mortality of septic patients. PloS One. 2013; 8(3):e59321
- Raoofi R, Salmani Z, Moradi F, Sotoodeh A, Sobhanian S. Procalcitonin as a marker for early diagnosis of sepsis. American Journal of Infectious Diseases. 2014; 10(1):1-6
- 953 Rast AC, Knobel D, Faessler L, Kutz A, Felder S, Laukemann S et al. Use of procalcitonin, C-reactive protein and white blood cell count to distinguish between lower limb erysipelas and deep vein thrombosis in the emergency department: A prospective observational study. Journal of Dermatology. 2015; 42(8):778-785
- 954 Ravishankar K. Laboratory diagnosis of neonatal sepsis. Journal of Neonatology. 2009; 23(1):48-52
- Passistantes P, Shah AM, Bhat R. Correlation of interleukin-6, serum lactate, and C-reactive protein to inflammation, complication, and outcome during the surgical course of patients with acute abdomen. Journal of Interferon and Cytokine Research. 2011; 31(9):685-690
- 956 Raza S, Ali Baig M, Chang C, Dabas R, Akhtar M, Khan A et al. A prospective study on red blood cell transfusion related hyperkalemia in critically ill patients. Journal of Clinical Medicine Research. 2015; 7(6):417-421
- 957 Razzaq A, Iqbal Quddusi A, Nizami N. Risk factors and mortality among newborns with persistent pulmonary hypertension. Pakistan Journal of Medical Sciences. 2013; 29(5):1099-1104
- 958 Reed L, Carroll J, Cummings A, Markwell S, Wall J, Duong M. Serum lactate as a screening tool and predictor of outcome in pediatric patients presenting to the emergency department with suspected infection. Pediatric Emergency Care. 2013; 29(7):787-791
- 959 Rehman T, Deboisblanc BP. Persistent fever in the ICU. Chest. 2014; 145(1):158-165

- 960 Rehmani RS, Memon JI, Al-Gammal A. Implementing a collaborative sepsis protocol on the time to antibiotics in an emergency department of a saudi hospital: quasi randomized study. Critical Care Research and Practice. 2014; 2014:410430
- 961 Reini K, Fredrikson M, Oscarsson A. The prognostic value of the Modified Early Warning Score in critically ill patients: a prospective, observational study. European Journal of Anaesthesiology. 2012; 29(3):152-157
- Reiter N, Wesche N, Perner A. The majority of patients in septic shock are transfused with fresh-frozen plasma. Danish Medical Journal. 2013; 60(4):A4606
- 963 Resch B, Gusenleitner W, Muller WD. Procalcitonin and interleukin-6 in the diagnosis of early-onset sepsis of the neonate. Acta Paediatrica. 2003; 92(2):243-245
- 964 Reuben AD, Appelboam AV, Higginson I, Lloyd JG, Shapiro NI. Early goal-directed therapy: a UK perspective. Emergency Medicine Journal. 2006; 23(11):828-832
- 965 Rewari V. Does albumin replacement improve outcome in critically ill patients with severe sepsis or septic shock? National Medical Journal of India. 2014; 27(3):145-147
- 966 Rhee JY, Kwon KT, Ki HK, Shin SY, Jung DS, Chung DR et al. Scoring systems for prediction of mortality in patients with intensive care unit-acquired sepsis: a comparison of the Pitt bacteremia score and the Acute Physiology and Chronic Health Evaluation II scoring systems. Shock. 2009; 31(2):146-150
- 967 Richards G, Levy H, Laterre PF, Feldman C, Woodward B, Bates BM et al. CURB-65, PSI, and APACHE II to assess mortality risk in patients with severe sepsis and community acquired pneumonia in PROWESS. Journal of Intensive Care Medicine. 2011; 26(1):34-40
- 968 Riche FC, Cholley BP, Laisne MJ, Vicaut E, Panis YH, Lajeunie EJ et al. Inflammatory cytokines, C reactive protein, and procalcitonin as early predictors of necrosis infection in acute necrotizing pancreatitis. Surgery. 2003; 133(3):257-262
- 969 Riedel S. Procalcitonin and the role of biomarkers in the diagnosis and management of sepsis. Diagnostic Microbiology and Infectious Disease. 2012; 73(3):221-227
- 970 Riedel S, Melendez JH, An AT, Rosenbaum JE, Zenilman JM. Procalcitonin as a marker for the detection of bacteremia and sepsis in the emergency department. American Journal of Clinical Pathology. 2011; 135(2):182-189
- 971 Rinaldi L, Ferrari E, Marietta M, Donno L, Trevisan D, Codeluppi M et al. Effectiveness of sepsis bundle application in cirrhotic patients with septic shock: A single-center experience. Journal of Critical Care. 2013; 28(2):152-157
- 972 Rincon TA, Bourke G, Seiver A. Standardizing sepsis screening and management via a tele-ICU program improves patient care. Telemedicine Journal and E-Health. 2011; 17(7):560-564
- 973 Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England Journal of Medicine. 2001; 345(19):1368-1377
- 974 Rixen D, Siegel JH, Friedman HP. "Sepsis/SIRS," physiologic classification, severity stratification, relation to cytokine elaboration and outcome prediction in posttrauma critical illness. Journal of Trauma. 1996; 41(4):581-598

- 975 Robert J, Fridkin SK, Blumberg HM, Anderson B, White N, Ray SM et al. The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infection Control and Hospital Epidemiology. 2000; 21(1):12-17
- 976 Robson W, Beavis S, Spittle N. An audit of ward nurses' knowledge of sepsis. Nursing in Critical Care. 2007; 12(2):86-92
- 977 Robson WP, Daniel R. The Sepsis Six: helping patients to survive sepsis. British Journal of Nursing. 2008; 17(1):16-21
- 978 Rochwerg B, Alhazzani W, Gibson A, Ribic CM, Sindi A, Heels-Ansdell D et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Medicine. 2015; 41(9):1561-1571
- 979 Rochwerg B, Alhazzani W, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Annals of Internal Medicine. 2014; 161(5):347-355
- 980 Rodriguez-Nunez A, Lopez-Herce J, Gil-Anton J, Hernandez A, Rey C, RETSPED Working Group of the Spanish Society of Pediatric Intensive Care. Rescue treatment with terlipressin in children with refractory septic shock: a clinical study. Critical Care. 2006; 10(1):R20
- 981 Rodriguez-Pardo D, Almirante B, Fernandez-Hidalgo N, Pigrau C, Ferrer C, Planes AM et al. Impact of prompt catheter withdrawal and adequate antimicrobial therapy on the prognosis of hospital-acquired parenteral nutrition catheter-related bacteraemia. Clinical Microbiology and Infection. 2015; 20(11):1205-1210
- 982 Rogy MA, Oldenburg HSA, Coyle S, Trousdale R, Moldawer LL, Lowry SF. Correlation between acute physiology and chronic health evaluation (APACHE) III scope and immunological parameters in critically ill patients with sepsis. British Journal of Surgery. 1996; 83(3):396-400
- 983 Ronco JJ, Belzberg A, Phang PT, Walley KR, Dodek PM, Russell JA. No differences in hemodynamics, ventricular function, and oxygen delivery in septic and nonseptic patients with the adult respiratory distress syndrome. Critical Care Medicine. 1994; 22(5):777-782
- 984 Rondina MT, Carlisle M, Fraughton T, Brown SM, Miller RR, Harris ES et al. Platelet-monocyte aggregate formation and mortality risk in older patients with severe sepsis and septic shock. Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2015; 70(2):225-231
- 985 Ronnestad A, Abrahamsen TG, Gaustad P, Finne PH. C-reactive protein (CRP) response patterns in neonatal septicaemia. APMIS. 1999; 107(6):593-600
- 986 Ronnestad A, Abrahamsen TG, Medbo S, Reigstad H, Lossius K, Kaaresen PI et al. Septicemia in the first week of life in a Norwegian national cohort of extremely premature infants. Pediatrics. 2005; 115(3):e262-e268
- 987 Rosenberg AL. Recent innovations in intensive care unit risk-prediction models. Current Opinion in Critical Care. 2002; 8(4):321-330
- 988 Rosland RG, Hagen MU, Haase N, Holst LB, Plambech M, Madsen KR et al. Red blood cell transfusion in septic shock clinical characteristics and outcome of unselected patients in a prospective, multicentre cohort. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2014; 22:14

- 989 Routsi C, Pratikaki M, Sotiropoulou C, Platsouka E, Markaki V, Paniara O et al. Application of the sequential organ failure assessment (SOFA) score to bacteremic ICU patients. Infection. 2007; 35(4):240-244
- 990 Russell JA. Oxygen consumption/oxygen delivery relationships are not altered in critically ill patients. Seminars in Respiratory and Critical Care Medicine. 1995; 16(5):403-418
- 991 Russell JA, Fjell C, Hsu JL, Lee T, Boyd J, Thair S et al. Vasopressin compared with norepinephrine augments the decline of plasma cytokine levels in septic shock. American Journal of Respiratory and Critical Care Medicine. 2013; 188(3):356-364
- 992 Russell JA, Walley KR, Gordon AC, Cooper DJ, Hébert PC, Singer J et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Critical Care Medicine. 2009; 37(3):811-818
- Ryoo SM, Kim WY, Sohn CH, Seo DW, Koh JW, Oh BJ et al. Prognostic value of timing of antibiotic administration in patients with septic shock treated with early quantitative resuscitation. American Journal of the Medical Sciences. 2015; 349(4):328-333
- 994 Sainio V, Kemppainen E, Puolakkainen P, Taavitsainen M, Kivisaari L, Valtonen V et al. Early antibiotic treatment in acute necrotising pancreatitis. Lancet. 1995; 346(8976):663-667
- 995 Sakha K, Husseini MB, Seyyedsadri N. The role of the procalcitonin in diagnosis of neonatal sepsis and correlation between procalcitonin and C-reactive protein in these patients. Pakistan Journal of Biological Sciences: PJBS. 2008; 11(14):1785-1790
- 996 Sakr Y, Reinhart K, Vincent JL, Sprung CL, Moreno R, Ranieri VM et al. Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely III Patients (SOAP) Study. Critical Care Medicine. 2006; 34(3):589-597
- 997 Salluh JIF, Bozza PT, Bozza FA. Surviving sepsis campaign: A critical reappraisal. Shock. 2008; 30(SUPPL. 1):70-72
- 998 Samraj RS, Zingarelli B, Wong HR. Role of biomarkers in sepsis care. Shock. 2013; 40(5):358-365
- 999 Santana SL, Furtado GHC, Wey SB, Medeiros EAS. Impact of an education program on the incidence of central line-associated bloodstream infection in 2 medical-surgical intensive care units in Brazil. Infection Control and Hospital Epidemiology. 2008; 29(12):1171-1173
- 1000 Santolaya ME, Alvarez AM, Aviles CL, Becker A, King A, Mosso C et al. Predictors of severe sepsis not clinically apparent during the first twenty-four hours of hospitalization in children with cancer, neutropenia, and fever: a prospective, multicenter trial. Pediatric Infectious Disease Journal. 2008; 27(6):538-543
- 1001 Saracco P, Vitale P, Scolfaro C, Pollio B, Pagliarino M, Timeus F. The coagulopathy in sepsis: significance and implications for treatment. Pediatric Reports. 2011; 3(4):e30
- 1002 Sarani B, Brenner SR, Gabel B, Myers JS, Gibson G, Phillips J et al. Rapid response systems: the stories. Improving sepsis care through systems change: the impact of a medical emergency team. Joint Commission Journal on Quality & Patient Safety. 2008; 34(3):179-182
- 1003 Sauer M, Tiede K, Fuchs D, Gruhn B, Berger D, Zintl F. Procalcitonin, C-reactive protein, and endotoxin after bone marrow transplantation: Identification of children at high risk of morbidity and mortality from sepsis. Bone Marrow Transplantation. 2003; 31(12):1137-1142

- 1004 Sawamura A, Gando S, Hayakawa M, Hoshino H, Kubota N, Sugano M. Effects of antithrombin III in patients with disseminated intravascular coagulation diagnosed by newly developed diagnostic criteria for critical illness. Clinical and Applied Thrombosis/Hemostasis. 2009; 15(5):561-566
- 1005 Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T et al. Application of the Japanese Association for Acute Medicine disseminated intravascular coagulation diagnostic criteria for patients at an early phase of trauma. Thrombosis Research. 2009; 124(6):706-710
- 1006 Sawyer AM, Deal EN, Labelle AJ, Witt C, Thiel SW, Heard K et al. Implementation of a real-time computerized sepsis alert in nonintensive care unit patients. Critical Care Medicine. 2011; 39(3):469-473
- 1007 Scheer C, Fuchs C, Vollmer M, Rehberg S, Kuhn SO, Abel P et al. Sep-6: Sustained reduction of intensive scare- and hospital length of stay for severe sepsis and septic shock patients by a continuous quality improvement program over 7.5 years. Shock. 2015; 44 Suppl 2:15
- 1008 Schramm GE, Kashyap R, Mullon JJ, Gajic O, Afessa B. Septic shock: a multidisciplinary response team and weekly feedback to clinicians improve the process of care and mortality. Critical Care Medicine. 2011; 39(2):252-258
- 1009 Schreiber J, Nierhaus A, Braune SA, de Heer G, Kluge S. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Medizinische Klinik, Intensivmedizin Und Notfallmedizin. 2013; 108(4):311-318
- 1010 Schultz L, Walker SAN, Elligsen M, Walker SE, Simor A, Mubareka S et al. Identification of predictors of early infection in acute burn patients. Burns. 2013; 39(7):1355-1366
- 1011 Schwarz S, Bertram M, Schwab S, Andrassy K, Hacke W. Serum procalcitonin levels in bacterial and abacterial meningitis. Critical Care Medicine. 2000; 28(6):1828-1832
- 1012 Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC et al. Empiric antibiotic therapy for Staphylococcus aureus bacteremia may not reduce in-hospital mortality: a retrospective cohort study. PLoS ONE [Electronic Resource]. 2010; 5(7):e11432
- 1013 Scott HF, Donoghue AJ, Gaieski DF, Marchese RF, Mistry RD. The utility of early lactate testing in undifferentiated pediatric systemic inflammatory response syndrome. Academic Emergency Medicine. 2012; 19(11):1276-1280
- 1014 Seigel TA, Cocchi MN, Salciccioli J, Shapiro NI, Howell M, Tang A et al. Inadequacy of temperature and white blood cell count in predicting bacteremia in patients with suspected infection. Journal of Emergency Medicine. 2012; 42(3):254-259
- 1015 Seiger N, Maconochie I, Oostenbrink R, Moll HA. Validity of different pediatric early warning scores in the emergency department. Pediatrics. 2013; 132(4):e841-e850
- 1016 Seki Y, Wada H, Kawasugi K, Okamoto K, Uchiyama T, Kushimoto S et al. A prospective analysis of disseminated intravascular coagulation in patients with infections. Internal Medicine. 2013; 52(17):1893-1898
- 1017 Semelsberger CF. Educational interventions to reduce the rate of central catheter-related bloodstream infections in the NICU: a review of the research literature. Neonatal Network. 2009; 28(6):391-395

- 1018 Seoane L, Winterbottom F, Nash T, Behrhorst J, Chacko E, Shum L et al. Using quality improvement principles to improve the care of patients with severe sepsis and septic shock. Ochsner Journal. 2013; 13(3):359-366
- 1019 Serpa Neto A, Nassar AP, Cardoso SO, Manetta JA, Pereira VGM, Esposito DC et al. Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Critical Care. 2012; 16(4):R154
- 1020 Serpa Neto A, Veelo DP, Peireira VGM, de Assuncao MSC, Manetta JA, Esposito DC et al. Fluid resuscitation with hydroxyethyl starches in patients with sepsis is associated with an increased incidence of acute kidney injury and use of renal replacement therapy: a systematic review and meta-analysis of the literature. Journal of Critical Care. 2014; 29(1):185-187
- 1021 Sevastos N, Manesis EK, Savvas SP, Galiatsatos N, Papatheodoridis GV, Archimandritis AJ. Changes of liver and muscle enzymes activity in patients with rigor. European Journal of Internal Medicine. 2008; 19(2):109-114
- 1022 Shani L, Weitzman D, Melamed R, Zmora E, Marks K. Risk factors for early sepsis in very low birth weight neonates with respiratory distress syndrome. Acta Paediatrica. 2008; 97(1):12-15
- 1023 Shapiro NI, Fisher C, Donnino M, Cataldo L, Tang A, Trzeciak S et al. The feasibility and accuracy of point-of-care lactate measurement in emergency department patients with suspected infection. Journal of Emergency Medicine. 2010; 39(1):89-94
- 1024 Shapiro NI, Howell MD, Talmor D, Lahey D, Ngo L, Buras J et al. Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Critical Care Medicine. 2006; 34(4):1025-1032
- 1025 Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R, Osborn TM et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Critical Care Medicine. 2009; 37(1):96-104
- 1026 Shaw AC. Serum C-reactive protein and neopterin concentration in patients with viral or bacterial infection. Journal of Clinical Pathology. 1991; 44(7):596-599
- staff from following protocols? An analysis of the incidence and factors behind the failure of bedside clinical staff to activate the rapid response system in a multi-campus Australian metropolitan healthcare service. BMJ Quality and Safety. 2012; 21(7):569-575
- 1028 Sherertz RJ, Ely EW, Westbrook DM, Gledhill KS, Streed SA, Kiger B et al. Education of physicians-in-training can decrease the risk for vascular catheter infection. Annals of Internal Medicine. 2000; 132(8):641-648
- 1029 Shime N, Kosaka T, Fujita N. The importance of a judicious and early empiric choice of antimicrobial for methicillin-resistant Staphylococcus aureus bacteraemia. European Journal of Clinical Microbiology and Infectious Diseases. 2010; 29(12):1475-1479
- 1030 Shine B, Gould J, Campbell C. Serum C-reactive protein in normal and infected neonates. Clinica Chimica Acta. 1985; 148(2):97-103

- 1031 Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH. Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Critical Care Medicine. 2011; 39(1):46-51
- 1032 Shorr AF, Janes JM, Artigas A, Tenhunen J, Wyncoll DLA, Mercier E et al. Randomized trial evaluating serial protein C levels in severe sepsis patients treated with variable doses of drotrecogin alfa (activated). Critical Care. 2010; 14(6):R229
- 1033 Siddiqui S, Salahuddin N, Raza A, Razzak J. How early do antibiotics have to be to impact mortality in severe sepsis? A prospective, observational study from an emergency department. Journal of Ayub Medical College, Abbottabad: JAMC. 2009; 21(4):106-110
- 1034 Siddiqui S, Razzak J. Early versus late pre-intensive care unit admission broad spectrum antibiotics for severe sepsis in adults. Cochrane Database of Systematic Reviews. 2010; Issue 10:CD007081. DOI:10.1002/14651858.CD007081.pub2
- 1035 Sierra R. C-reactive protein and procalcitonin as markers of infection, inflammatory response, and sepsis. Clinical Pulmonary Medicine. 2007; 14(3):127-139
- 1036 Silber SH, Garrett C, Singh R, Sweeney A, Rosenberg C, Parachiv D et al. Early administration of antibiotics does not shorten time to clinical stability in patients with moderate-to-severe community-acquired pneumonia. Chest. 2003; 124(5):1798-1804
- 1037 Silcock DJ, Corfield AR, Gowens PA, Rooney KD. Validation of the National Early Warning Score in the prehospital setting. Resuscitation. 2015; 89:31-35
- 1038 Silva PS, Fonseca MC, Iglesias SB, Carvalho WB, Bussolan RM, Freitas IW. Comparison of two different severity scores (Paediatric Risk of Mortality [PRISM] and the Glasgow Meningococcal Sepsis Prognostic Score [GMSPS]) in meningococcal disease: preliminary analysis. Annals of Tropical Paediatrics. 2001; 21(2):135-140
- 1039 Silveira RC, Procianoy RS. Evaluation of interleukin-6, tumour necrosis factor-alpha and interleukin-1beta for early diagnosis of neonatal sepsis. Acta Paediatrica. 1999; 88(6):647-650
- 1040 Simms HH, D'Amico R. Intra-abdominal sepsis alters tumor necrosis factor-alpha and interleukin-1 beta binding to human neutrophils. Critical Care Medicine. 1992; 20(1):11-16
- 1041 Singer AJ, Taylor M, LeBlanc D, Williams J, Thode HCJ. ED bedside point-of-care lactate in patients with suspected sepsis is associated with reduced time to iv fluids and mortality. American Journal of Emergency Medicine. 2014; 32(9):1120-1124
- 1042 Singh RK, Baronia AK, Sahoo JN, Sharma S, Naval R, Pandey CM et al. Prospective comparison of new Japanese Association for Acute Medicine (JAAM) DIC and International Society of Thrombosis and Hemostasis (ISTH) DIC score in critically ill septic patients. Thrombosis Research. 2012; 129(4):e119-e125
- 1043 Singh SA, Dutta S, Narang A. Predictive clinical scores for diagnosis of late onset neonatal septicemia. Journal of Tropical Pediatrics. 2003; 49(4):235-239
- 1044 Sirvent JM, Carmen de la Torre M, Lorencio C, Tache A, Ferri C, Garcia-Gil J et al. Predictive factors of mortality in severe community-acquired pneumonia: a model with data on the first 24h of ICU admission. Medicina Intensiva. 2013; 37(5):308-315

- 1045 Sivula M, Hastbacka J, Kuitunen A, Lassila R, Tervahartiala T, Sorsa T et al. Systemic matrix metalloproteinase-8 and tissue inhibitor of metalloproteinases-1 levels in severe sepsis-associated coagulopathy. Acta Anaesthesiologica Scandinavica. 2015; 59(2):176-184
- 1046 Skaletzky SM, Raszynski A, Totapally BR. Validation of a modified pediatric early warning system score: a retrospective case-control study. Clinical Pediatrics. 2012; 51(5):431-435
- 1047 Smith GB, Prytherch DR, Schmidt PE, Featherstone PI. Review and performance evaluation of aggregate weighted 'track and trigger' systems. Resuscitation. 2008; 77(2):170-179
- 1048 Smith GB, Prytherch DR, Schmidt PE, Featherstone PI, Higgins B. A review, and performance evaluation, of single-parameter "track and trigger" systems. Resuscitation. 2008; 79(1):11-21
- 1049 Smith GB, Prytherch DR, Meredith P, Schmidt PE, Featherstone PI. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation. 2013; 84(4):465-470
- 1050 Smith MEB, Chiovaro JC, O'Neil M, Kansagara D, Quinones AR, Freeman M et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Annals of the American Thoracic Society. 2014; 11(9):1454-1465
- 1051 Smith MJ, Kong M, Cambon A, Woods CR. Effectiveness of antimicrobial guidelines for community-acquired pneumonia in children. Pediatrics. 2012; 129(5):e1326-e1333
- 1052 Smith WR, McClish DK, Poses RM, Pinson AG, Miller ST, Bobo-Moseley L et al. Bacteremia in young urban women admitted with pyelonephritis. American Journal of the Medical Sciences. 1997; 313(1):50-57
- 1053 So SN, Ong CW, Wong LY, Chung JYM, Graham CA. Is the Modified Early Warning Score able to enhance clinical observation to detect deteriorating patients earlier in an Accident & Emergency Department? Australasian Emergency Nursing Journal. 2015; 18(1):24-32
- 1054 Sole-Violan J, Garcia-Laorden MI, Marcos-Ramos JA, de Castro FR, Rajas O, Borderias L et al. The Fc receptor IIA-H/H131 genotype is associated with bacteremia in pneumococcal community-acquired pneumonia. Critical Care Medicine. 2011; 39(6):1388-1393
- 1055 Solevag AL, Eggen EH, Schroder J, Nakstad B. Use of a modified pediatric early warning score in a department of pediatric and adolescent medicine. PloS One. 2013; 8(8):e72534
- 1056 Somech R, Zakuth V, Assia A, Jurgenson U, Spirer Z. Procalcitonin correlates with C-reactive protein as an acute-phase reactant in pediatric patients. Israel Medical Association Journal. 2000; 2(2):147-150
- 1057 Somogyi-Zalud E, Zhong Z, Lynn J, Dawson NV, Hamel MB, Desbiens NA. Dying with acute respiratory failure or multiple organ system failure with sepsis. Journal of the American Geriatrics Society. 2000; 48(5 Suppl):S140-S145
- 1058 Sonawane VB, Gaikwad SU, Kadam NN, Gavhane J. Comparative study of diagnostic markers in neonatal sepsis. Journal of Nepal Paediatric Society. 2014; 34(2):111-114
- 1059 Song YH, Shin TG, Kang MJ, Sim MS, Jo IJ, Song KJ et al. Predicting factors associated with clinical deterioration of sepsis patients with intermediate levels of serum lactate. Shock. 2012; 38(3):249-254

- 1060 Soni SS, Nagarik AP, Adikey GK, Raman A. Using continuous renal replacement therapy to manage patients of shock and acute renal failure. Journal of Emergencies, Trauma, and Shock. 2009; 2(1):19-22
- 1061 Soong JL, Lim WH. Vasopressin and terlipressin in the treatment of vasodilatory septic shock: A systematic review. Proceedings of Singapore Healthcare. 2011; 20(3):208-218
- 1062 Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock. 2010; 33(4):387-391
- 1063 Spasova MI, Terzieva DD, Tzvetkova TZ, Stoyanova AA, Mumdzhiev IN, Yanev IB et al. Interleukin-6, interleukin-8, interleukin-10, and C-reactive protein in febrile neutropenia in children with malignant diseases. Folia Medica. 2005; 47(3-4):46-52
- 1064 Spruijt B, Vergouwe Y, Nijman RG, Thompson M, Oostenbrink R. Vital signs should be maintained as continuous variables when predicting bacterial infections in febrile children. Journal of Clinical Epidemiology. 2013; 66(4):453-457
- 1065 Sprung CL, Sakr Y, Vincent JL, Le Gall JR, Reinhart K, Ranieri VM et al. An evaluation of systemic inflammatory response syndrome signs in the Sepsis Occurrence In Acutely III Patients (SOAP) study. Intensive Care Medicine. 2006; 32(3):421-427
- 1066 Stathakis T, Acworth JP, Barnett AG. Prediction tool for bacteraemia in children aged 3-36 months. Emergency Medicine Australasia. 2007; 19(4):353-358
- 1067 Steinbach G, Bolke E, Schulte am Esch J, Peiper M, Zant R, Schwarz A et al. Comparison of whole blood interleukin-8 and plasma interleukin-8 as a predictor for sepsis in postoperative patients. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2007; 378(1-2):117-121
- 1068 Sterling SA, Miller WR, Pryor J, Puskarich MA, Jones AE. The Impact of Timing of Antibiotics on Outcomes in Severe Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Critical Care Medicine. 2015; 43(9):1907-1915
- 1069 Strang JR, Pugh EJ. Meningococcal infections: reducing the case fatality rate by giving penicillin before admission to hospital. BMJ. 1992; 305(6846):141-143
- 1070 Struelens M, Delville J, Luypaert P, Wybran J. Granulocyte elastase compared to C-reactive protein for early diagnosis of septicemia in critically ill patients. European Journal of Clinical Microbiology and Infectious Diseases. 1988; 7(2):193-195
- 1071 Struelens MJ, Bennish ML, Mondal G, Wojtyniak BJ. Bacteremia during diarrhea: incidence, etiology, risk factors, and outcome. American Journal of Epidemiology. 1991; 133(5):451-459
- 1072 Studnek JR, Artho MR, Garner CL, Jr., Jones AE. The impact of emergency medical services on the ED care of severe sepsis. American Journal of Emergency Medicine. 2012; 30(1):51-56
- 1073 Su CM, Cheng HH, Tsai TC, Hsiao SY, Tsai NW, Chang WN et al. Elevated serum vascular cell adhesion molecule-1 is associated with septic encephalopathy in adult community-onset severe sepsis patients. BioMed Research International. 2014; 2014;598762
- 1074 Su Lx, Feng L, Zhang J, Xiao Yj, Jia Yh, Yan P et al. Diagnostic value of urine sTREM-1 for sepsis and relevant acute kidney injuries: a prospective study. Critical Care. 2011; 15(5):R250

- 1075 Su L, Han B, Liu C, Liang L, Jiang Z, Deng J et al. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infectious Diseases. 2012; 12:157
- 1076 Suarez D, Ferrer R, Artigas A, Azkarate I, Garnacho-Montero J, Goma G et al. Cost-effectiveness of the surviving sepsis campaign protocol for severe sepsis: a prospective nation-wide study in Spain. Intensive Care Medicine. Spain 2011; 37(3):444-452
- 1077 Suarez-Santamaria M, Santolaria F, Perez-Ramirez A, Aleman-Valls MR, Martinez-Riera A, Gonzalez-Reimers E et al. Prognostic value of inflammatory markers (notably cytokines and procalcitonin), nutritional assessment, and organ function in patients with sepsis. European Cytokine Network. 2010; 21(1):19-26
- 1078 Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified Early Warning Score in medical admissions. QJM. 2001; 94(10):521-526
- 1079 Suchyta MR, Clemmer TP, Elliott CG, Orme JFJ, Morris AH, Jacobson J et al. Increased mortality of older patients with acute respiratory distress syndrome. Chest. 1997; 111(5):1334-1339
- 1080 Sucilathangam G, Amuthavalli K, Velvizhi G, Ashihabegum MA, Jeyamurugan T, Palaniappan N. Early diagnostic markers for neonatal sepsis: Comparing procalcitonin (PCT) and C-reactive protein (CRP). Journal of Clinical and Diagnostic Research. 2012; 6(4 SUPPL. 2):627-631
- 1081 Suh SH, Kim CS, Choi JS, Bae EH, Ma SK, Kim SW. Acute kidney injury in patients with sepsis and septic shock: Risk factors and clinical outcomes. Yonsei Medical Journal. 2013; 54(4):965-972
- 1082 Surat T, Viarasilpa T, Permpikul C. The impact of intensive care unit admissions following early resuscitation on the outcome of patients with severe sepsis and septic shock. Journal of the Medical Association of Thailand. 2014; 97 Suppl 1:S69-S76
- 1083 Suri M, Thirupuram S, Sharma VK. Diagnostic and prognostic utility of C-reactive protein, alpha-1-antitrypsin and alpha-2-macroglobulin in neonatal sepsis: a comparative account. Indian Pediatrics. 1991; 28(10):1159-1164
- 1084 Sweet DD, Jaswal D, Fu W, Bouchard M, Sivapalan P, Rachel J et al. Effect of an emergency department sepsis protocol on the care of septic patients admitted to the intensive care unit. Canadian Journal of Emergency Medicine. 2010; 12(5):414-420
- 1085 Tafelski S, Nachtigall I, Deja M, Tamarkin A, Trefzer T, Halle E et al. Computer-assisted Decision Support for Changing Practice in Severe Sepsis and Septic Shock. Journal of International Medical Research. 2010; 38(5):1605-1616
- 1086 Tafelski S, Nachtigall I, Stengel S, Wernecke K, Spies C. Comparison of three models for sepsis patient discrimination according to PIRO: predisposition, infection, response and organ dysfunction. Minerva Anestesiologica. 2015; 81(3):264-271
- 1087 Takahashi G, Shibata S, Ishikura H, Miura M, Fukui Y, Inoue Y et al. Presepsin in the prognosis of infectious diseases and diagnosis of infectious disseminated intravascular coagulation: a prospective, multicentre, observational study. European Journal of Anaesthesiology. 2015; 32(3):199-206

- 1088 Takeyama N, Noguchi H, Hirakawa A, Kano H, Morino K, Obata T et al. Time to initiation of treatment with polymyxin B cartridge hemoperfusion in septic shock patients. Blood Purification. 2012; 33(4):252-256
- 1089 Talmor D, Greenberg D, Howell MD, Lisbon A, Novack V, Shapiro N. The costs and costeffectiveness of an integrated sepsis treatment protocol. Critical Care Medicine. United States 2008; 36(4):1168-1174
- 1090 Tang Y, Choi J, Kim D, Tudtud-Hans L, Li J, Michel A et al. Clinical predictors of adverse outcome in severe sepsis patients with lactate 2-4 mM admitted to the hospital. QJM. 2015; 108(4):279-287
- 1091 Tayek CJ, Tayek JA. Diabetes patients and non-diabetic patients intensive care unit and hospital mortality risks associated with sepsis. World Journal of Diabetes. 2012; 3(2):29-34
- 1092 Tegtmeyer FK, Horn C, Richter A, van Wees J. Elastase alpha 1 proteinase inhibitor complex, granulocyte count, ratio of immature to total granulocyte count, and C-reactive protein in neonatal septicaemia. European Journal of Pediatrics. 1992; 151(5):353-356
- 1093 Terzi I, Papaioannou V, Papanas N, Dragoumanis C, Petala A, Theodorou V et al. Alpha1-microglobulin as an early biomarker of sepsis-associated acute kidney injury: a prospective cohort study. Hippokratia. 2014; 18(3):262-268
- 1094 Textoris J, Fouche L, Wiramus S, Antonini F, Tho S, Martin C et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Critical Care. 2011; 15(4):R176
- 1095 Thai V, Lau F, Wolch G, Yang J, Quan H, Fassbender K. Impact of infections on the survival of hospitalized advanced cancer patients. Journal of Pain and Symptom Management. 2012; 43(3):549-557
- 1096 Thompson M, Van den Bruel A, Verbakel J, Lakhanpaul M, Haj-Hassan T, Stevens R et al. Systematic review and validation of prediction rules for identifying children with serious infections in emergency departments and urgent-access primary care. Health Technol Assess. 2012; 16(15):1-100
- 1097 Thompson MJ, Harnden A, Del MC. Excluding serious illness in feverish children in primary care: restricted rule-out method for diagnosis. BMJ (Clinical Research Ed). 2009; 338:b1187
- 1098 Toh CH, Ticknor LO, Downey C, Giles AR, Paton RC, Wenstone R. Early identification of sepsis and mortality risks through simple, rapid clot-waveform analysis. Implications of lipoprotein-complexed C reactive protein formation. Intensive Care Medicine. 2003; 29(1):55-61
- 1099 Tong X, Cao Y, Yu M, Han C. Presepsin as a diagnostic marker for sepsis: Evidence from a bivariate meta-analysis. Therapeutics and Clinical Risk Management. 2015; 11:1027-1033
- 1100 Torres A, Serra-Batlles J, Ferrer A, Jimenez P, Celis R, Cobo E et al. Severe community-acquired pneumonia. Epidemiology and prognostic factors. American Review of Respiratory Disease. 1991; 144(2):312-318
- 1101 Tourneux P, Rakza T, Abazine A, Krim G, Storme L. Noradrenaline for management of septic shock refractory to fluid loading and dopamine or dobutamine in full-term newborn infants. Acta Paediatrica. 2008; 97(2):177-180

- 1102 Toweill D, Sonnenthal K, Kimberly B, Lai S, Goldstein B. Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock. Critical Care Medicine. 2000; 28(6):2051-2057
- 1103 Trof RJ, Sukul SP, Twisk JWR, Girbes ARJ, Groeneveld ABJ. Greater cardiac response of colloid than saline fluid loading in septic and non-septic critically ill patients with clinical hypovolaemia. Intensive Care Medicine. 2010; 36(4):697-701
- 1104 Tromp M, Bleeker-Rovers CP, van Achterberg T, Kullberg BJ, Hulscher M, Pickkers P. Internal medicine residents' knowledge about sepsis: effects of a teaching intervention. Netherlands Journal of Medicine. 2009; 67(9):312-315
- 1105 Tromp M, Hulscher M, Bleeker-Rovers CP, Peters L, van den Berg DTNA, Borm GF et al. The role of nurses in the recognition and treatment of patients with sepsis in the emergency department: a prospective before-and-after intervention study. International Journal of Nursing Studies. 2010; 47(12):1464-1473
- 1106 Tsai JC-H, Cheng CW, Weng SJ, Huang CY, Yen DH-T, Chen HL. Comparison of risks factors for unplanned ICU transfer after ED admission in patients with infections and those without infections. TheScientificWorldJournal. 2014; 2014:102929
- 1107 Tsalik EL, Jaggers LB, Glickman SW, Langley RJ, van Velkinburgh JC, Park LP et al. Discriminative value of inflammatory biomarkers for suspected sepsis. Journal of Emergency Medicine. 2012; 43(1):97-106
- 1108 Tsapenko MV, Herasevich V, Mour GK, Tsapenko AV, Comfere TBO, Mankad SV et al. Severe sepsis and septic shock in patients with pre-existing non-cardiac pulmonary hypertension: contemporary management and outcomes. Critical Care and Resuscitation. 2013; 15(2):103-109
- 1109 Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C-reactive protein for survival in postoperative patients with severe sepsis. Journal of Critical Care. 2011; 26(1):54-64
- 1110 Tsering DC, Chanchal L, Pal R, Kar S. Bacteriological profile of septicemia and the risk factors in neonates and infants in sikkim. Journal of Global Infectious Diseases. 2011; 3(1):42-45
- 1111 Tsuneyoshi I, Yamada H, Kakihana Y, Nakamura M, Nakano Y, Boyle WA. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Critical Care Medicine. 2001; 29(3):487-493
- 1112 Tucker KM, Brewer TL, Baker RB, Demeritt B, Vossmeyer MT. Prospective evaluation of a pediatric inpatient early warning scoring system. Journal for Specialists in Pediatric Nursing. 2009; 14(2):79-85
- 1113 Tugrul S, Esen F, Celebi S, Ozcan PE, Akinci O, Cakar N et al. Reliability of procalcitonin as a severity marker in critically ill patients with inflammatory response. Anaesthesia and Intensive Care. 2002; 30(6):747-754
- 1114 Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B, Fiori B et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment.[Erratum appears in Antimicrob Agents Chemother. 2007 Sep;51(9):3469]. Antimicrobial Agents and Chemotherapy. 2007; 51(6):1987-1994

- 1115 Turi SK, Von Ah D. Implementation of early goal-directed therapy for septic patients in the emergency department: a review of the literature. Journal of Emergency Nursing: JEN. 2013; 39(1):13-19
- 1116 Ueda T, Aoyama-Ishikawa M, Nakao A, Yamada T, Usami M, Kotani J. A simple scoring system based on neutrophil count in sepsis patients. Medical Hypotheses. 2014; 82(3):382-386
- 1117 Uittenbogaard AJ, de Deckere ER, Sandel MH, Vis A, Houser CM, de Groot B. Impact of the diagnostic process on the accuracy of source identification and time to antibiotics in septic emergency department patients. European Journal of Emergency Medicine. 2014; 21(3):212-219
- 1118 Ulla M, Pizzolato E, Lucchiari M, Loiacono M, Soardo F, Forno D et al. Diagnostic and prognostic value of presepsin in the management of sepsis in the emergency department: a multicenter prospective study. Critical Care. 2013; 17(4):R168
- 1119 Umscheid CA, Betesh J, VanZandbergen C, Hanish A, Tait G, Mikkelsen ME et al. Development, implementation, and impact of an automated early warning and response system for sepsis. Journal of Hospital Medicine. 2015; 10(1):26-31
- 1120 Upadhyay M, Singhi S, Murlidharan J, Kaur N, Majumdar S. Randomized evaluation of fluid resuscitation with crystalloid (saline) and colloid (polymer from degraded gelatin in saline) in pediatric septic shock. Indian Pediatrics. 2005; 42(3):223-231
- 1121 Van de Voorde P, Emerson B, Gomez B, Willems J, Yildizdas D, Iglowstein I et al. Paediatric community-acquired septic shock: results from the REPEM network study. European Journal of Pediatrics. 2013; 172(5):667-674
- 1122 Van den Berghe G, Wouters PJ, Kesteloot K, Hilleman DE. Analysis of healthcare resource utilization with intensive insulin therapy in critically ill patients. Critical Care Medicine. 2006; 34(3):612-616
- 1123 Van den Bruel A, Haj-Hassan T, Thompson M, Buntinx F, Mant D. Diagnostic value of clinical features at presentation to identify serious infection in children in developed countries: a systematic review. Lancet. 2010; 375(9717):834-845
- 1124 Van den Bruel A, Thompson MJ, Haj-Hassan T, Stevens R, Moll H, Lakhanpaul M et al. Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ. 2011; 342:d3082
- 1125 Van Dissel JT, Numan SC, Van't Wout JW. Chills in 'early sepsis': good for you? Journal of Internal Medicine. 2005; 257(5):469-472
- 1126 van Paridon BM, Sheppard C, Garcia G, Joffe AR, Alberta SN. Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care. Critical Care. 2015; 19:293
- 1127 van Rooijen CR, de Ruijter W, van Dam B. Evaluation of the threshold value for the Early Warning Score on general wards. Netherlands Journal of Medicine. 2013; 71(1):38-43
- 1128 Vandijck DM, Blot SI, Vogelaers DP. Implementation of an evidence-based sepsis program in the intensive care unit: Evident or not? Critical Care. 2009; 13(5)

- 1129 Vanmassenhove J, Glorieux G, Hoste E, Dhondt A, Vanholder R, Van Biesen W. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Critical Care. 2013; 17(5):R234
- 1130 Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V. Hemodynamic variables related to outcome in septic shock. Intensive Care Medicine. 2005; 31(8):1066-1071
- 1131 Vassiliou AG, Mastora Z, Jahaj E, Koutsoukou A, Orfanos SE, Kotanidou A. Does serum lactate combined with soluble endothelial selectins at ICU admission predict sepsis development? In Vivo. 2015; 29(2):305-308
- 1132 Vasu TS, Cavallazzi R, Hirani A, Kaplan G, Leiby B, Marik PE. Norepinephrine or dopamine for septic shock: systematic review of randomized clinical trials. Journal of Intensive Care Medicine. 2012; 27(3):172-178
- 1133 Velissaris D, Karamouzos V, Ktenopoulos N, Pierrakos C, Karanikolas M. The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate. Critical Care Research and Practice. 2015; 2015:605830
- 1134 Veneman TF, Oude Nijhuis J, Woittiez AJJ. Human albumin and starch administration in critically ill patients: A prospective randomized clinical trial. Wiener Klinische Wochenschrift. 2004; 116(9-10):305-309
- 1135 Venkataseshan S, Dutta S, Ahluwalia J, Narang A. Low plasma protein C values predict mortality in low birth weight neonates with septicemia. Pediatric Infectious Disease Journal. 2007; 26(8):684-688
- 1136 Venkatesh AK, Avula U, Bartimus H, Reif J, Schmidt MJ, Powell ES. Time to antibiotics for septic shock: evaluating a proposed performance measure. American Journal of Emergency Medicine. 2013; 31(4):680-683
- 1137 Ventetuolo CE, Levy MM. Biomarkers: diagnosis and risk assessment in sepsis. Clinics in Chest Medicine. 2008; 29(4):591-vii
- 1138 Venugopal A. Disseminated intravascular coagulation. Indian Journal of Anaesthesia. 2014; 58(5):603-608
- 1139 Venugopal AA, Szpunar S, Johnson LB. Risk and prognostic factors among patients with bacteremia due to Eggerthella lenta. Anaerobe. 2012; 18(4):475-478
- 1140 Verbakel JY, Lemiengre MB, De Burghgraeve T, De Sutter A, Bullens DMA, Aertgeerts B et al. Diagnosing serious infections in acutely ill children in ambulatory care (ERNIE 2 study protocol, part A): diagnostic accuracy of a clinical decision tree and added value of a point-of-care C-reactive protein test and oxygen saturation. BMC Pediatrics. 2014; 14:207
- 1141 Viallon A, Guyomarc'h S, Marjollet O, Berger C, Carricajo A, Robert F et al. Can emergency physicians identify a high mortality subgroup of patients with sepsis: role of procalcitonin. European Journal of Emergency Medicine. 2008; 15(1):26-33
- 1142 Vincent JL, De Backer D. Oxygen uptake/oxygen supply dependency: fact or fiction? Acta Anaesthesiologica Scandinavica Supplementum. 1995; 107:229-237

- 1143 Vincent J-L, Moreno R, Takala J, Willatts S, De MA, Bruining H et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine. 1996; 22(7):707-710
- 1144 Vincent J-L, Nelson DR, Williams MD. Is worsening multiple organ failure the cause of death in patients with severe sepsis? Critical Care Medicine. 2011; 39(5):1050-1055
- 1145 Vincent J-L, Wendon J, Groeneveld J, Marshall JC, Streat S, Carlet J. The PIRO concept: O is for organ dysfunction. Critical Care. 2003; 7(3):260
- 1146 Vinson DR, Ballard DW, Stevenson MD, Mark DG, Reed ME, Rauchwerger AS et al. Predictors of Unattempted Central Venous Catheterization in Septic Patients Eligible for Early Goal-directed Therapy. Western Journal of Emergency Medicine. 2014; 15(1):67-75
- 1147 Volante E, Moretti S, Pisani F, Bevilacqua G. Early diagnosis of bacterial infection in the neonate. Journal of Maternal-Fetal and Neonatal Medicine. 2004; 16 Suppl 2:13-16
- 1148 Vorwerk C, Loryman B, Coats TJ, Stephenson JA, Gray LD, Reddy G et al. Prediction of mortality in adult emergency department patients with sepsis. Emergency Medicine Journal. 2009; 26(4):254-258
- 1149 Voves C, Wuillemin WA, Zeerleder S. International Society on Thrombosis and Haemostasis score for overt disseminated intravascular coagulation predicts organ dysfunction and fatality in sepsis patients. Blood Coagulation and Fibrinolysis. 2006; 17(6):445-451
- 1150 Vyles D, Sinha M, Rosenberg DI, Foster KN, Tran M, Drachman D. Predictors of serious bacterial infections in pediatric burn patients with fever. Journal of Burn Care and Research. 2014; 35(4):291-295
- 1151 Wacharasint P, Nakada Ta, Boyd JH, Russell JA, Walley KR. Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock. 2012; 38(1):4-10
- 1152 Waechter J, Kumar A, Lapinsky SE, Marshall J, Dodek P, Arabi Y et al. Interaction between fluids and vasoactive agents on mortality in septic shock: a multicenter, observational study. Critical Care Medicine. 2014; 42(10):2158-2168
- 1153 Waliullah SM, Islam MN, Siddika M, Hossain MA, Jahan I, Chowdhury AK. Evaluation of simple hematological screen for early diagnosis of neonatal sepsis. Mymensingh Medical Journal. 2010; 19(1):41-47
- 1154 Wallgren UM, Castren M, Svensson AEV, Kurland L. Identification of adult septic patients in the prehospital setting: a comparison of two screening tools and clinical judgment. European Journal of Emergency Medicine. 2014; 21(4):260-265
- 1155 Walliullah SM, Islam MN, Siddika M, Hossain MA, Chowdhury AK. Role of micro-ESR and I/T ratio in the early diagnosis of neonatal sepsis. Mymensingh Medical Journal. 2009; 18(1):56-61
- 1156 Walshe CM, Odejayi F, Ng S, Marsh B. Urinary glutathione S-transferase as an early marker for renal dysfunction in patients admitted to intensive care with sepsis. Critical Care and Resuscitation. 2009; 11(3):204-209
- 1157 Wang JH, Wang CY, Chi CY, Ho MW, Ho CM, Lin PC. Clinical presentations, prognostic factors, and mortality in patients with Aeromonas sobria complex bacteremia in a teaching hospital: a 5-year experience. Journal of Microbiology, Immunology, and Infection. 2009; 42(6):510-515

- 1158 Wang SL, Wu F, Wang BH. Prediction of severe sepsis using SVM model. Advances in Experimental Medicine and Biology. 2010; 680:75-81
- 1159 Waring WS, Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clinical Toxicology. 2011; 49(8):720-728
- 1160 Warren DK, Zack JE, Cox MJ, Cohen MM, Fraser VJ. An educational intervention to prevent catheter-associated bloodstream infections in a nonteaching, community medical center. Critical Care Medicine. 2003; 31(7):1959-1963
- 1161 Waskerwitz S, Berkelhamer JE. Outpatient bacteremia: Clinical findings in children under two years with initial temperatures of 39.5degree C or higher. Journal of Pediatrics. 1981; 99(2):231-233
- 1162 Waterer GW, Kessler LA, Wunderink RG. Delayed administration of antibiotics and atypical presentation in community-acquired pneumonia. Chest. 2006; 130(1):11-15
- 1163 Wawrzeniak IC, Loss SH, Moraes MCM, De La Vega FL, Victorino JA. Could a protocol based on early goal-directed therapy improve outcomes in patients with severe sepsis and septic shock in the Intensive Care Unit setting? Indian Journal of Critical Care Medicine. 2015; 19(3):159-165
- 1164 Weaver MG. Using active learning strategies to present bloodborne pathogen programs. Journal of School Nursing. 2003; 19(3):181-184
- 1165 Weinert CR, Mann HJ. The science of implementation: changing the practice of critical care. Current Opinion in Critical Care. 2008; 14(4):460-465
- 1166 West BA, Peterside O, Ugwu RO, Eneh AU. Prospective evaluation of the usefulness of Creactive protein in the diagnosis of neonatal sepsis in a sub-Saharan African region.

 Antimicrobial Resistance and Infection Control. 2012; 1(1):22
- 1167 Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Critical Care Medicine. 2008; 36(4):1297-1303
- 1168 Whittaker SA, Fuchs BD, Gaieski DF, Christie JD, Goyal M, Meyer NJ et al. Epidemiology and outcomes in patients with severe sepsis admitted to the hospital wards. Journal of Critical Care. 2015; 30(1):78-84
- 1169 Wiedermann CJ. Systematic review of randomized clinical trials on the use of hydroxyethyl starch for fluid management in sepsis. BMC Emergency Medicine. 2008; 8:1
- 1170 Wilkinson M, Bulloch B, Smith M. Prevalence of occult bacteremia in children aged 3 to 36 months presenting to the emergency department with fever in the postpneumococcal conjugate vaccine era. Academic Emergency Medicine. 2009; 16(3):220-225
- 1171 Wilkman E, Kaukonen KM, Pettila V, Kuitunen A, Varpula M. Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesthesiologica Scandinavica. 2013; 57(4):431-442
- 1172 Wilson AP, Weavill C, Burridge J, Kelsey MC. The use of the wound scoring method 'ASEPSIS' in postoperative wound surveillance. Journal of Hospital Infection. 1990; 16(4):297-309

- 1173 Winterbottom F, Seoane L, Sundell E, Niazi J, Nash T. Improving sepsis outcomes for acutely ill adults using interdisciplinary order sets. Clinical Nurse Specialist CNS. 2011; 25(4):180-185
- 1174 Winters BD, Pronovost PJ. Rapid response systems: should we still question their implementation? Journal of Hospital Medicine. 2013; 8(5):278-281
- 1175 Wittbrodt P, Haase N, Butowska D, Winding R, Poulsen JB. Quality of life and pruritus in patients with severe sepsis resuscitated with hydroxyethyl starch long-term follow-up of a randomised trial. Critical Care. 2013; 17(2)
- 1176 Wojkowska-Mach J, Borszewska-Kornacka M, Domanska J, Gadzinowski J, Gulczynska E, Helwich E et al. Early-onset infections of very-low-birth-weight infants in Polish neonatal intensive care units. Pediatric Infectious Disease Journal. 2012; 31(7):691-695
- 1177 Wolbrink TA, Kissoon N, Burns JP. The development of an internet-based knowledge exchange platform for pediatric critical care clinicians worldwide*. Pediatric Critical Care Medicine. 2014; 15(3):197-205
- 1178 Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT et al. A multibiomarker-based model for estimating the risk of septic acute kidney injury. Critical Care Medicine. 2015; 43(8):1646-1653
- 1179 Wong HR, Cvijanovich N, Wheeler DS, Bigham MT, Monaco M, Odoms K et al. Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock. American Journal of Respiratory and Critical Care Medicine. 2008; 178(3):276-282
- 1180 Wong HR, Weiss SL, Giuliano JSJ, Wainwright MS, Cvijanovich NZ, Thomas NJ et al. Testing the prognostic accuracy of the updated pediatric sepsis biomarker risk model. PloS One. 2014; 9(1):e86242
- 1181 Wunder C, Eichelbronner O, Roewer N. Are IL-6, IL-10 and PCT plasma concentrations reliable for outcome prediction in severe sepsis? A comparison with APACHE III and SAPS II. Inflammation Research. 2004; 53(4):158-163
- 1182 Xi X, Xu Y, Jiang L, Li A, Duan J, Du B et al. Hospitalized adult patients with 2009 influenza A(H1N1) in Beijing, China: risk factors for hospital mortality. BMC Infectious Diseases. 2010; 10:256
- 1183 Xie L-X. New biomarkers for sepsis. Medical Journal of Chinese People's Liberation Army. 2013; 38(1):6-9
- 1184 Xu JY, Chen QH, Xie JF, Pan C, Liu SQ, Huang LW et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Database of Abstracts of Reviews of Effects. 2014;(2):702
- 1185 Yahav D, Leibovici L, Goldberg E, Bishara J, Paul M. Time to first antibiotic dose for patients hospitalised with community-acquired pneumonia. International Journal of Antimicrobial Agents. 2013; 41(5):410-413
- 1186 Yahav D, Schlesinger A, Daitch V, Akayzen Y, Farbman L, Abu-Ghanem Y et al. Presentation of infection in older patients-a prospective study. Annals of Medicine. 2015; 47(4):354-358

- 1187 Yamakawa K, Ogura H, Fujimi S, Morikawa M, Ogawa Y, Mohri T et al. Recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: A multicenter propensity score analysis. Intensive Care Medicine. 2013; 39(4):644-652
- 1188 Yamamoto LG. Application of informed consent principles in the emergency department evaluation of febrile children at risk for occult bacteremia. Hawaii Medical Journal. 1997; 56(11):313-2
- 1189 Yamashita T, Doi K, Hamasaki Y, Matsubara T, Ishii T, Yahagi N et al. Evaluation of urinary tissue inhibitor of metalloproteinase-2 in acute kidney injury: a prospective observational study. Critical Care. 2014; 18(6):716
- 1190 Yan SB, Helterbrand JD, Hartman DL, Wright TJ, Bernard GR. Low levels of protein C are associated with poor outcome in severe sepsis. Chest. 2001; 120(3):915-922
- 1191 Yang J, Liu F, Zhu X. Colloids vs crystalloids in fluid resuscitation for septic shock: a metaanalysis. Chinese Critical Care Medicine. 2010; 22(6):340-345
- 1192 Yang SC, Liao KM, Chen CW, Lin WC. Positive blood culture is not associated with increased mortality in patients with sepsis-induced acute respiratory distress syndrome. Respirology. 2013; 18(8):1210-1216
- 1193 Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F et al. A randomized trial of protocol-based care for early septic shock. New England Journal of Medicine. 2014; 370(18):1683-1693
- 1194 Yegenaga I, Hoste E, Van Biesen W, Vanholder R, Benoit D, Kantarci G et al. Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: results of a prospective study. American Journal of Kidney Diseases. 2004; 43(5):817-824
- 1195 Yentis SM, Soni N, Sheldon J. C-reactive protein as an indicator of resolution of sepsis in the intensive care unit. Intensive Care Medicine. 1995; 21(7):602-605
- 1196 Yildizdas D, Yapicioglu H, Celik U, Sertdemir Y, Alhan E. Terlipressin as a rescue therapy for catecholamine-resistant septic shock in children. Intensive Care Medicine. 2008; 34(3):511-517
- 1197 Yilmaz E, Batislam E, Tuglu D, Kilic D, Basar M, Ozluk O et al. C-reactive protein in early detection of bacteriemia and bacteriuria after extracorporeal shock wave lithotripsy. European Urology. 2003; 43(3):270-274
- 1198 Yilmaz G, Caylan R, Aydin K, Topbas M, Koksal I. Effect of education on the rate of and the understanding of risk factors for intravascular catheter-related infections. Infection Control and Hospital Epidemiology. 2007; 28(6):689-694
- 1199 Yin S, Powell EC, Trainor JL. Serious bacterial infections in febrile outpatient pediatric kidney transplant recipients. Pediatric Infectious Disease Journal. 2011; 30(2):136-140
- 1200 Yoo JW, Lee JR, Jung YK, Choi SH, Son JS, Kang BJ et al. A combination of early warning score and lactate to predict intensive care unit transfer of inpatients with severe sepsis/septic shock. Korean Journal of Internal Medicine. 2015; 30(4):471-477

- 1201 Yossuck P, Preedisripipat K. Neonatal group B streptococcal infection: incidence and clinical manifestation in Siriraj Hospital. Journal of the Medical Association of Thailand. 2002; 85 Suppl 2:S479-S487
- 1202 Yu L, Long D, Wu XL, Yang JH, Yang YC, Feng G. Prognostic significance of urokinase-type plasminogen activator and its receptor in patients with systemic inflammatory response syndrome. World Journal of Emergency Medicine. 2011; 2(3):185-189
- 1203 Zahar JR, Timsit JF, Garrouste-Org, Francais A, Vesin A, Descorps-Declere A et al. Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality.[Erratum appears in Crit Care Med. 2011 Oct;39(10):2392 Note: Vesim, Aurelien [corrected to Vesin, Aurelien]]. Critical Care Medicine. 2011; 39(8):1886-1895
- 1204 Zaidi E, Bachur R, Harper M. Non-typhi Salmonella bacteremia in children. Pediatric Infectious Disease Journal. 1999; 18(12):1073-1077
- 1205 Zanaty OM, Megahed M, Demerdash H, Swelem R. Delta neutrophil index versus lactate clearance: Early markers for outcome prediction in septic shock patients. Alexandria Journal of Medicine. 2012; 48(4):327-333
- 1206 Zant R, Melter M, Knoppke B, Ameres M, Kunkel J. Kinetics of interleukin-6, procalcitonin, and C-reactive protein after pediatric liver transplantation. Transplantation Proceedings. 2014; 46(10):3507-3510
- 1207 Zarkesh M, Sedaghat F, Heidarzadeh A, Tabrizi M, Moghadam KB, Ghesmati S. Diagnostic value of IL-6, CRP, WBC, and absolute neutrophil count to predict serious bacterial infection in febrile infants. Acta Medica Iranica. 2015; 53(7):408-411
- 1208 Zhang L, Zhu G, Han L, Fu P. Early goal-directed therapy in the management of severe sepsis or septic shock in adults: a meta-analysis of randomized controlled trials. BMC Medicine. 2015; 13:71
- 1209 Zhang W, Chen X, Huang L, Lu N, Zhou L, Wu G et al. Severe sepsis: Low expression of the reninangiotensin system is associated with poor prognosis. Experimental and Therapeutic Medicine. 2014; 7(5):1342-1348
- 1210 Zhang Z. Biomarkers, diagnosis and management of sepsis-induced acute kidney injury: a narrative review. Heart, Lung and Vessels. 2015; 7(1):64-73
- 1211 Zhao Y, Tao.L., Jiang D, Chen X, Li P, Ning Y. The -144C/A Polymorphism in the Promoter of HSP90beta Is Associated with Multiple Organ Dysfunction Scores. PloS One. 2013; 8(3)
- 1212 Zhao Y, Wang Q, Zang B. Dopamine versus norepinephrine for septic shock: a systematic review. Chinese Journal of Evidence-Based Medicine. 2012; 12(6):679-685
- 1213 Zhong JZ, Wei D, Pan HF, Chen YJ, Liang XA, Yang ZY et al. Colloid solutions for fluid resuscitation in patients with sepsis: systematic review of randomized controlled trials. Journal of Emergency Medicine. 2013; 45(4):485-495
- 1214 Zhou FH, Song Q. Effectiveness of norepinephrine versus dopamine for septic shock: a meta analysis. Chinese Critical Care Medicine. 2013; 25(8):449-454
- 1215 Zhou FH, Song Q. Clinical trials comparing norepinephrine with vasopressin in patients with septic shock: a meta-analysis. Military Medical Research. 2014; 1:6

- 1216 Zhou F, Mao Z, Zeng X, Kang H, Liu H, Pan L et al. Vasopressors in septic shock: a systematic review and network meta-analysis. Therapeutics and Clinical Risk Management. 2015; 11:1047-1059
- 1217 Zhou J, Li Y, Tang Y, Liu F, Yu S, Zhang L et al. Effect of acute kidney injury on mortality and hospital stay in patient with severe acute pancreatitis. Nephrology. 2015; 20(7):485-491
- 1218 Zimmerman O, Rogowski O, Aviram G, Mizrahi M, Zeltser D, Justo D et al. C-reactive protein serum levels as an early predictor of outcome in patients with pandemic H1N1 influenza A virus infection. BMC Infectious Diseases. 2010; 10
- 1219 Zuhlke LJ, Engel ME. The importance of awareness and education in prevention and control of RHD. Global Heart. 2013; 8(3):235-239