Appendix H: Warwick Evidence Diagnosis of LTBI Report

Please note note that this document will undergo external peer review before it is published in the *Health Technology Assessment* series.

Tuberculosis Clinical Guideline commissioned by the NIHR HTA Programme on behalf of the National Institute for Health and Care Excellence: Final Report

Title of project

Accurate diagnosis of latent Tuberculosis in children, in people who are immunocompromised or at risk from immunosuppression, and recent arrivals from countries with a high incidence of Tuberculosis: systematic review and economic evaluation

Name of External Assessment Group (EAG) and project lead

Produced by: Warwick Evidence

Lead author: Peter Auguste

Co-authors: Alexander Tsertsvadze

Joshua Pink

Rachel Court

Farah Seedat

Tara Gurung

Karoline Freeman

Sian Taylor-Phillips

Clare Walker

Jason Madan

Ngianga-Bakwin Kandala

Aileen Clarke

Paul Sutcliffe

Correspondence to: Dr Paul Sutcliffe

Deputy Director for Warwick Evidence

Populations, Evidence and Technologies

Division of Health Sciences

Warwick Medical School

University of Warwick

Coventry CV4 7AL

Tel: 02476 150189

Pre-peer review version – 06/03/2015

Email: p.a.sutcliffe@warwick.ac.uk

Date completed: 27 February 2015

Source of funding:

This report was commissioned by the NIHR HTA Programme as project number 13/178/01.

Ngianga-Bakwin Kandala and Aileen Clarke are also supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care West Midlands at University Hospitals Birmingham NHS Foundation Trust

Declared competing interests of authors:

Aileen Clarke is Professor of Health Sciences, Warwick Medical School, University of Warwick, UK and is on the editorial board of HTA and NIHR Journals Library.

Professor Lalvani is inventor for several patents underpinning T cell-based diagnosis. The ESAT-6/CFP-10 IFN-gamma ELISpot assay (IGRA) was commercialised by an Oxford University spin-out company (T-SPOT.TB®, Oxford Immunotec Ltd, Abingdon, UK) in which the University of Oxford and Professor Lalvani have minority shares of equity and royalty entitlements. Professor Lalvani commented on the draft protocol and no further input was provided thereafter

Rider on responsibility for report:

The views expressed in this report are those of the authors and not necessarily those of the NIHR HTA Programme. Any errors are the responsibility of the authors.

This report should be referenced as follows:

TBC

Contributions of authors:

Paul Sutcliffe (Associate Professor) co-ordinated the review. Farah Seedat (PhD medical student), Alexander Tsertsvadze (Senior Research Fellow) and Clare Walker (Visiting Academic

2

Clinical Fellow in Public Health) wrote the background section of the report. Rachel Court (Information Specialist) developed the search strategy and undertook the searches. Alexander Tsertsvadze, Paul Sutcliffe, Karoline Freeman (Research Fellow), Tara Gurung (Research Fellow) and Peter Auguste (Research Associate) conducted the clinical effectiveness systematic review (screening and retrieving papers, assessing against the inclusion criteria, appraising the quality of papers and abstracting information from papers for synthesis). Alexander Tsertsvadze conducted the clinical effectiveness analysis and Ngianga-Bakwin Kandala (Principle Research Fellow) and Sian Taylor-Phillips (Senior Research Fellow) provided support with the clinical effectiveness analysis. Alexander Tsertsvadze and Karoline Freeman wrote the clinical effectiveness results section. Peter Auguste and Alexander Tsertsvadze conducted the cost effectiveness systematic review. Peter Auguste and Joshua Pink (Assistant Professor) conducted the health economic analysis. Alexander Tsertsvadze, Paul Sutcliffe, Clare Walker, Peter Auguste and Aileen Clarke (Professor of Public Health) wrote the discussion section. Aileen Clarke provided clinical and methodological input. All authors were involved in writing draft and final versions of the report.

Table of contents

List of tables		8
List of figure	s	11
List of abbre	viations	15
Glossary		19
Abstract		23
Scientific sur	nmary	25
Plain English	summary	34
1 Backgro	ound	36
1.1 Ove	erview	36
1.2 Aet	iology and pathology of TB	36
1.3 Act	ive TB	37
1.4 Me	asurement of latent TB infection	38
1.4.1	Treatment of LTBI	39
1.5 Inc	idence, prevalence, and epidemiology	39
1.5.1	Place of birth and ethnic minorities	40
1.5.2	Geographical difference	40
1.5.3	Age and gender difference	41
1.5.4	Immunosuppression and TB	41
1.5.5	Social risk factors	42
1.6 Imp	pact of health problem	42
1.6.1	Significance for patients	42
1.6.2	Significance for the NHS	43
1.7 Cui	rent service provision	43
1.7.1	Management of LTBI	43
1.8 Cui	rent service cost	48
1.9 Vai	riation in services and/or uncertainty about best practice	49
1.9.1	Limitations of LTBI screening tests	49
1.9.2	Diagnostic accuracy of LTBI tests	49
1.9.3	Treatment of LTBI	50
1.10 Rel	evant national guidelines, including National Service Frameworks	50
1.11 Des	scription of technology under assessment	
1.11.1	Summary of intervention	51
1.11.2	Screening tests for LTBI in special sub-groups at risk	
1.12 Cui	rent usage in the NHS	53

2	Def	finitio	n of decision problem	55
3	Cli	nical e	effectiveness methods	56
	3.1	Iden	tification and selection of studies	56
	3.1.	.1	Search strategy for clinical effectiveness	56
	3.1.	.2	Inclusion and exclusion of relevant studies	57
	3.2	Stud	y selection strategy	59
	3.3	Data	extraction strategy	60
	3.4	Stud	y quality assessment	60
	3.5	Data	synthesis and analysis	61
	3.6	Ove	rall quality of evidence	63
	3.7	Deri	vation of summary measures of diagnostic accuracy	63
4	Cli	nical e	effectiveness results	64
	4.1	Nun	ber of studies identified	64
	4.2	Desc	cription of included studies and synthesis	66
	4.3	Chil	dren	66
	4.3.	.1	Description of baseline characteristics	66
	4.3.	.1.2	Exposure	74
	4.3.	.2	Study quality	93
	4.3.		Comparative performance of tests (diagnostic accuracy indices for identifying LTBI) -	
	chil	ldren		95
	4.3.		Summary of children	
	4.4	Imm	unocompromised people	126
	4.4.	.1	Description of baseline characteristics – qualitative synthesis in text and tables	126
	4.4.	.2	Study quality	178
	4.4.	.3	$Comparative\ performance\ of\ tests\ (diagnostic\ accuracy\ indices\ for\ identifying\ LTBI)\ .$	
	4.4.	.4	Summary of Immunocompromised studies	224
	4.5	Rece	ent arrivals from countries with a high incidence of TB	226
	4.5.	.1	Description of baseline characteristics	226
	4.5.	.2	Study quality	236
	4.5.	.3	$Comparative\ performance\ of\ tests\ (diagnostic\ accuracy\ indices\ for\ identifying\ LTBI)\ .$	237
	4.5.	.4	Sensitivity and specificity	240
	4.5.	.5	Summary of studies on recent arrivals from countries with a high incidence of TB	249
	4.6	Ove	rall summary of results	250
5	Sys	stemat	ic review of economic evaluation studies	252
	5.1	Iden	tification and selection of studies	252
	5.1.	.1	Search methods for cost-effectiveness	252
	5.1.	.2	Data extraction	254

	5.1	.3	Quality assessment	254
	5.1	.4	Data synthesis	254
	5.2	Res	ults	254
	5.3	Sun	nmary of the general approaches to modelling LTBI	257
	5.3	3.1	Children	257
	5.3	3.2	Immunocompromised	258
	5.3	3.3	Recently arrivals from countries with high incidence of TB	261
	5.4	Cha	racteristics of included studies	268
	5.5	Qua	lity assessment of the modelling methods	270
	5.5	5.1	Structure	270
	5.5	5.2	Key model input parameters	270
	5.5	5.3	Uncertainty and assumptions	272
	5.6	Con	clusion	272
6	He	alth e	conomics methods and results	274
	6.1	Obj	ective	274
	6.2	Dev	eloping the model structure	274
	6.2	2.1	Model assumptions	286
	6.3	Data	a required for the model	286
	6.3	8.1	Prevalence	286
	6.3	3.2	Performance of screening tests (sensitivity and specificity)	287
	6.3	3.3	Resource use and costs	290
	6.4	Out	comes	293
	6.5	Ana	lysis	293
	6.5	5.1	Probabilistic sensitivity analysis	293
	6.6	Res	ults of the cost-effectiveness modelling	295
	6.6	5.1	Model 1: Children	295
	6.6	5.2	Model 2: Immunocompromised	300
	6.6	5.3	Model 3: Recent arrivals from countries with a high incidence of Tuberculosis	305
	6.7	Exp	loring sensitivity and specificity	310
	6.8	Disc	cussion and conclusion	312
7	Dis	scussi	on	314
	7.1	Mai	n findings	314
	7.1	.1	Clinical effectiveness review	314
	7.1	.2	Cost-effectiveness review	316
	7.1	.3	Economic evaluation	316
	7.2	Cur	rent findings compared to those from other systematic reviews	317

	7.3	Current results compared to those from other cost-effectiveness studies	317
	7.4	Strengths and limitations of the evidence	319
	7.5	Strengths and limitations of the current reviews and economic evaluation	320
8	Con	clusion	322
	8.1	Implications for service provision and local commissioning	323
	8.2	Suggested research priorities	323
9	Ack	nowledgements	325
1() R	eferences	326
11	l A	ppendices	338
	11.1	Appendix 1. Search strategies and results 2011	338
	11.2	Appendix 2. Search strategies and results 2014	342
	11.3	Appendix 3. Data extraction sheet for included primary study reports	348
	11.4	Appendix 4. Quality assessement and risk of bias	352
	11.5	Appendix 5. Literature review list of excluded studies and reason(s) for exclusion $(N = 424)$	357
	11.6	Appendix 6. Included studies for clinical effectiveness 2011	389
	11.7	Appendix 7. ClinicalTrials.gov and WHO ICTRP list of excluded studies (N = 31)	417
	11.8	Appendix 8. Included on going trials that compared IGRAs with TST (N = 20)	420
	11.9	Appendix 9. Data extraction for included studies	423
	11.10	Appendix 10. Included studies and incidence of tuberculosis ²²⁷	706
	11.11	Appendix 11. List of excluded studies with reason(s)	709
	11.12	Appendix 12. Data extraction sheet for included cost effectiveness studies	711
	11.13	Appendix 13. Critical appraisal of the economic evaluation using the CHEERS checklist	738
		Appendix 14. Critical appraisal of the economic models using an adapted Philips et al., 2004 ist	
		Appendix 15. Information required to derive diagnostic accuracy of various screening by ation	.746
		Appendix 16. Illustrative structures for the immunocompromised, recent arrivals from countries incidence of active TB and general population	
		Appendix 17. Resources used to derive unit cost for the treatment of LTBI and TB and mode parameters	
	11.18	Appendix 18. WinBUGS code	771

List of tables

Table 1. Unit costs for LTBI diagnosis and treatment 48
Table 2. Baseline characteristics of studies in children and adolescents (incidence studies)
Table 3. Baseline characteristics of studies in children and adolescents (exposure studies)
Table 4. Summary assessment of risk of bias (ROB) for included incidence studies in children (adapted
from Hayden et al., 2013) ⁸⁹
Table 5. Summary of quality assessment for the included children exposure studies (adapted from Dinnes
et al., 2007) ⁴³ 94
Table 6. Comparison of the test performance - diagnostic accuracy indices for identifying LTBI
(incidence studies)96
Table 7. Comparison of the test performance – diagnostic accuracy indices for identifying LTBI
(exposure studies)
Table 8. Association between test positivity and BCG vaccination (exposure studies) subgroup of interest
- children and adolescents
Table 9. Between-test concordance and discordance (exposure studies and incidence)
Table 10. Baseline characteristics of studies in immunocompromised patients (incidence studies) 128
Table 11. Baseline characteristics of studies in immunocompromised patients (exposure studies)143
Table 12. Summary assessment of risk of bias (ROB) for the included immunocompromised incidence
studies (adapted from Hayden et al., 2013) ⁸⁸
Table 13. Summary of quality assessment for the included immunocompromised exposure studies
(adapted from Dinnes et al., 2007) ⁴³
Table 14. Comparison of the test performance - diagnostic accuracy indices for identifying LTBI
(incidence studies)
Table 15. Comparison of the test performance – diagnostic accuracy indices for identifying LTBI
(exposure studies)
Table 16. Association between test positivity and BCG vaccination (exposure studies)218
Table 17. Between-test concordance and discordance (exposure + incidence studies – 32 more recent
studies)
Table 18. Baseline characteristics of studies on recent arrivals from countries with a high incidence of TB
(incidence studies)
Table 19. Baseline characteristics of studies on recent arrivals from countries with a high incidence of TB
(exposure studies)
Table 20. Summary assessment of risk of bias (ROB) for the included studies on recent arrivals from
countries with a high incidence of TB (adapted from Hayden et al., 2013) ⁸⁸ 236

Table 21. Summary of quality assessment for the studies on recent arrivals from countries with a night	
incidence of TB (adapted from Dinnes et al., 2007) ⁴³	
Table 22. Incidence of active TB for studies on recent arrivals from countries with a high incidence of	
Table 23. Comparison of the test performance – diagnostic accuracy indices for identifying LTBI	. 238
(exposure studies) in recent arrivals from countries with a high incidence of TB	242
Table 24. Association between test positivity and BCG vaccination (exposure studies) in recent arrival	
from countries with a high incidence of TB	
Table 25. Between-test concordance and discordance (exposure studies and incidence studies) in recent	
arrivals from countries with a high incidence of TB	. 248
Table 26. Summary characteristics of the models comparing IGRAs and TST in identifying LTBI in	
children, immunocompromised and recently arrived immigrants	
Table 27. Diagnostic accuracy of various tests for diagnosing LTBI that progresses to active TB	. 289
Table 28. Model input parameters required for the population with children	. 290
Table 29. Mean costs and cost breakdown, based on single simulation using mean parameter values	
(2012/13 prices)	. 295
Table 30. Mean QALYs and LYG (discounted) and incidence of active TB and number of secondary	
infections	. 295
Table 31. Results from the analysis based on cost per diagnostic error avoided (2012/13 prices)	. 296
Table 32. Results from the analysis based on cost per QALY (2012/13 prices)	. 297
Table 33. Univariate sensitivity analyses	. 298
Table 34. Mean costs and cost breakdown, based on single simulation using mean parameter values	
(2012/13 prices)	. 301
Table 35. Mean QALYs and LYG (discounted) and incidence of active TB and number of secondary	
infections	. 301
Table 36. Results from the analysis based on cost per diagnostic error avoided (2012/13 prices)	. 302
Table 37. Results from the analysis based on cost per QALY (2012/13 prices)	. 302
Table 38. Univariate sensitivity analyses	. 303
Table 39. Mean costs and cost breakdown, based on single simulation using mean parameter values	
(2012/13 prices)	. 306
Table 40. Mean QALYs and LYG (discounted) and incidence of active TB and number of secondary	
infections	. 306
Table 41. Results from the analysis based on cost per diagnostic error avoided (2012/13 prices)	
Table 42. Results from the analysis based on cost per OALY (2012/13 prices)	

Table 43. Univariate sensitivity analyses	308
Table 44. Results of the linear regression model	312
Table 45. Ovid MEDLINE(R) 1946 to April Week 1 2014, searched on 09/04/2014	342
Table 46. Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations April 08, 2014, searche	ed on
09/04/2014	343
Table 47. Ovid Embase 1980 to 2014 Week 14, searched on 09/04/2014	343
Table 48. Cochrane Library via Wiley, searched on 09/04/2014	344
Table 49. Science Citation Index Expanded (SCI-EXPANDED)1970-present and Conference	
Proceedings Citation Index- Science (CPCI-S)1990-present via Web of Knowledge, searched of	n
09/04/2014	345
Table 50. Quality assessment for the exposure studies (adapted from Dinnes et al., 2007) ⁴³	352
Table 51. Definition for risk of bias ratings for each domain of bias – The Quality In Prognosis S	tudies
(QUIPS) tool (adapted from Hayden et al., 2013) ⁸⁹	356
Table 52. List of excluded studies from the clinical effectiveness review	357
Table 53. Studies included for the clinical effectiveness review 2011	389
Table 54. Studies with immunocompromised patients included in CG117	395
Table 55. Studies with people from countries with high tuberculosis prevalence included in CG11	17406
Table 56. ClinicalTrials.gov and WHO ICTRP list of excluded studies	417
Table 57. Included on going trials that compared IGRAs with TST	420
Table 58. Included studies and incidence of tuberculosis	706
Table 59. List of excluded studies from the cost-effectiveness review	709
Table 60. CHEERS quality assessment checklist for economic evaluation studies	738
Table 61. Philips' quality assessment checklist for studies that include an economic model	740
Table 62. Information used to derive sensitivity in the children population	746
Table 63. Information used to derive specificity in the children population	746
Table 64. Information used to derive sensitivity in the immunocompromised population	747
Table 65. Information used to derive specificity in the immunocompromised population	748
Table 66. Information required to derive sensitivity in the recently arrived population	749
Table 67. Information required to derive specificity in the recently arrived population	749
Table 68. Treatment for LTBI	765
Table 69. Treatment for tuberculosis	766
Table 70. Model input parameters required for the immunocompromised population	767
Table 71. Model input parameters required for the recent arrivals population	769
Table 72. Variables and descriptions used in the WinBUGS model	771

List of figures

Figure 1. Care pathway of LTBI screening ⁵⁰	47
Figure 2. PRISMA study flow diagram of newly identified studies since 2011 (CG117) ¹⁰	65
Figure 3. Pooled ratio of cumulative incidence ratios (QFT-GIT vs. TST 5mm) in children	100
Figure 4. Pooled ratio of cumulative incidence ratios (QFT-GIT vs. TST 10mm) in children	100
Figure 5. Forest plot of sensitivity based on incidence of active TB (QFT-GIT/G) in children	101
Figure 6. Forest plot of sensitivity based on incidence of active TB (TST) in children	101
Figure 7. Forest plot of specificity based on incidence of active TB (QFT-GIT-G) in children	102
Figure 8. Forest plot of specificity based on incidence of active TB (TST) in children	102
Figure 9. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low r	risk
exposure in children	112
Figure 10. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT vs. TST 5mm based on high risk and	l
low risk exposure in children	113
Figure 11. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT vs. TST 10-15mm based on high risk	ζ
and low risk exposure in children	113
Figure 12. Pooled ratio of diagnostic odds ratio (R-DOR) of TSPOT vs. TST 10-15mm based on high i	risk
and low risk exposure in children	113
Figure 13. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low	7
risk exposure (Community based contact studies only) in children	114
Figure 14. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low	7
risk exposure (Hospital based studies only) in children	114
Figure 15. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low	7
risk exposure (studies conducted in high burden countries) in children	115
Figure 16. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low	7
risk exposure (studies conducted in low burden countries) in children	115
Figure 17. Forest plot of sensitivity based on exposure groups (QFT-GIT) in children	116
Figure 18. Forest plot of sensitivity based on exposure groups (TST) in children	117
Figure 19. Forest plot of sensitivity based on exposure groups (TST 5mm) in children	117
Figure 20. Forest plot of sensitivity based on exposure groups (TST 10mm) in children	118
Figure 21. Forest plot of specificity based on exposure groups (QFT-GIT) in children	118
Figure 22. Forest plot of specificity based on exposure groups (TST) in children	119
Figure 23. Forest plot of specificity based on exposure groups (TST 5mm) in children	119
Figure 24. Forest plot of specificity based on exposure groups (TST 10mm) in children	120

Figure 25. Forest plot of sensitivity based on incidence of active TB (IGRA) in immunocompromised
patients
Figure 26. Forest plot of sensitivity based on incidence of active TB (TST) in immunocompromised
patients
Figure 27. Forest plot of specificity based on incidence of active TB (IGRA) in immunocompromised
patients
Figure 28. Forest plot of specificity based on incidence of active TB (TST) in immunocompromised
patients
Figure 29. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRAs vs. TST in all studies based on high
risk and low risk exposure in immunocompromised patients
Figure 30. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT-GIT/G vs. TST 5mm based on high risk
and low risk exposure in immunocompromised patients
Figure 31. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT-GIT/G vs. TST 10mm based on high
risk and low risk exposure in immunocompromised patients
Figure 32. Pooled ratio of diagnostic odds ratio (R-DOR) of TSPOT vs. TST 5mm based on high risk and
low risk exposure in immunocompromised patients
Figure 33. Pooled ratio of diagnostic odds ratio (R-DOR) of TSPOT vs. TST 10mm based on high risk
and low risk exposure in immunocompromised patients211
Figure 34. Forest plot of sensitivity based on exposure groups (IGRA) in immunocompromised patients
212
Figure 35. Forest plot of sensitivity based on exposure groups (TSPOT) in immunocompromised patients
213
Figure 36. Forest plot of sensitivity based on exposure groups (TST 5mm) in immunocompromised
patients
Figure 37. Forest plot of sensitivity based on exposure groups (TST 10mm) in immunocompromised
patients
Figure 38. Forest plot of specificity based on exposure groups (IGRA) in immunocompromised patients
215
Figure 39. Forest plot of specificity based on exposure groups (TSPOT) in immunocompromised patients
216
Figure 40. Forest plot of specificity based on exposure groups (TST 5mm) in immunocompromised
patients
Figure 41. Forest plot of specificity based on exposure groups (TST 10mm) in immunocompromised
patients

Figure 42. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT-GIT vs. TST (5mm or 10mm) based on
high risk and low risk exposure in recent arrivals from countries with a high incidence of TB240
Figure 43. Forest plot of sensitivity based on incidence of active TB (QFT-GIT) in recent arrivals from
countries with a high incidence of TB
Figure 44. Forest plot of sensitivity based on incidence of active TB (TST) in recent arrivals from
countries with a high incidence of TB
Figure 45. Forest plot of specificity based on incidence of active TB (QFT-GIT) in recent arrivals from
countries with a high incidence of TB
Figure 46. Forest plot of specificity based on incidence of active TB (TST) in recent arrivals from
countries with a high incidence of TB
Figure 47. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST 10mm based on high risk and
low risk exposure in recent arrivals from countries with a high incidence of TB246
Figure 48. PRISMA study flow diagram
Figure 49. Decision tree structure for the children population
Figure 50. Pathway for the IGRA alone diagnostic strategy (IGRA alone strategy) in children280
Figure 51. Pathway for the TST alone diagnostic strategy (TST alone strategy) in children281
Figure 52. Pathway for the diagnostic strategy TST positive followed by IGRA in children282
Figure~53.~Decision~tree~structure~for~the~children~population~receiving~simultaneous~testing~strategy~~283
Figure 54. Pathway for the children population receiving simultaneous testing strategy
Figure 55. Dynamic transmission model
Figure 56. Cost-effectiveness acceptability curve for the immunocompromised population, showing the
proportion of simulations in which each strategy is the most cost-effective, at different willingness-to-pay
thresholds
Figure 57. Cost-effectiveness acceptability curve for the immunocompromised population, showing the
proportion of simulations in which each strategy is the most cost-effective, at different willingness-to-pay
thresholds
Figure 58. Cost-effectiveness acceptability curve for the recently arrived population, showing the
proportion of simulations in which each strategy is the most cost-effective, at different willingness-to-pay
thresholds
Figure 59. Sensitivity and specificity, plotted against costs, QALYs and net monetary benefit (at £20,000
per QALY), for each of the six strategies in the children population311
Figure 60. Decision tree pathway for the immunocompromised population
$Figure\ 61.\ Pathway\ for\ the\ IGRA\ alone\ diagnostic\ strategy\ in\ the\ immunocompromised\ population\\ 751$
Figure 62. Pathway for the TST alone diagnostic strategy in the immunocompromised population 752

Figure 63. Pathway for the diagnostic strategy IGRA negative followed by TST in the	
immunocompromised population	753
Figure 64. Pathway for the diagnostic strategy IGRA and TST in the immunocompromised population	754
Figure 65. Decision tree structure for recent arrivals from countries with a high incidence of active TB	755
Figure 66. Pathway for IGRA alone diagnostic strategy in recent arrivals population	756
Figure 67. Pathway for the TST alone diagnostic strategy in the recent arrival population	757
Figure 68. Pathway for the diagnostic strategy TST positive followed by IGRA in the recent arrivals	
population	758
Figure 69. Pathway for the diagnostic strategy of IGRA and TST in the recent arrival population	759
Figure 70. Decision tree structure for general population.	760
Figure 71. Pathway for the diagnostic strategy of IGRA alone in the general population	761
Figure 72. Pathway for the diagnostic strategy of TST alone in the general population	762
Figure 73. Pathway for the diagnostic strategy of TST +ve followed by IGRA in the general population	n
	763
Figure 74. Pathway for the diagnostic strategy of IGRA and TST in the general population	764
Figure 75. Sample traces of chains for sensitivity of TST (≥ 5mm) where convergence/mixing looks	
reasonable	775
Figure 76. Sample traces of chains for specificity of TST (< 5mm) where convergence/mixing looks	
reasonable	776
Figure 77. Sample traces of chains for sensitivity of TST (≥ 10mm)	776
Figure 78. Sample traces of chains for specificity of TST (< 10mm)	776
Figure 79. Sample traces of chains for sensitivity of QFT-GIT	777
Figure 80. Sample traces of chains for specificity of QFT-GIT	777

List of abbreviations

AFB Acid fast bacilli

BCG Bacillus Calmette–Guérin
BTS British Thoracic Society
CD4 Cluster of differentiation 4
CEA Cost-effectiveness analysis

CEAC Cost-effectiveness acceptability curve

CENTRAL Cochrane Central Register of Controlled Trials

CFP Culture filtrate protein
CG Clinical guideline
CI Confidence interval

CIR Cumulative incidence ratio

CRF Compound risk factor

CT Computerised tomography

CXR Chest X-ray

DARE Database of Abstracts of Reviews of Effects

DMARD Disease-modifying anti-rheumatic drug

DOH Department of Health
DOT Direct observed therapy

DOTS Directly observed therapy short course

DORa Adjusted diagnostic odds ratio

ECDC European Centre for Disease Prevention and Control

ELISA Enzyme-linked immunosorbent assay

ELISPOT Enzyme-Linked Immunospot EMBASE Excerpta Medica dataBASE

EQ-5D European Quality of Life-5 Dimensions

ESAT-6 Early secretion antigen target-6

ESLD End-stage liver disease
ESRD End stage renal disease

ETS Enhanced tuberculosis surveillance

FPR False positive rate
FNR False negative rate

GRADE Grading of Recommendations, Assessment, Development, and Evaluation

H Hour

HC Hepatitis C

HCT Hematopoietic stem cell transplant
HIV Human immunodeficiency virus
HRQL Health related quality of life

HTA Health technology assessment

ICTRP International Clinical Trials Registry Platform

ICER Incremental cost-effectiveness ratio

IDRR Incidence density rate ratio

IFN-γ Gamma interferon

IGRAs Interferon-gamma (IFN- γ) release assays

IQR Interquartile range

JSNA Joint Strategic Needs Assessment

IBD Inflammatory bowel disease

IMID Immune-mediated inflammatory disease

KTP Kidney transplantation patient
KTR Kidney transplant recipients

LE Lupus erythematosus

LTBI Latent tuberculosis infection

LT Liver transplant

MEDLINE Medical Literature Analysis and Retrieval System Online

MDR-TB Multi-Drug Resistant Tuberculosis

MeSH Medical subject heading

Mos Months

MRC Medical Research Council
MTB Mycobacterium tuberculosis

MTX methotrexate

N Number

NA Not applicable
NR Not reported

NHS National Health Service

NHS EED NHS Economic Evaluation Database

NICE National Institute for Health and Care Excellence

NIHR National Institute for Health Research

NOID Notification of infectious diseases

NPV Negative predictive value

NTM Non tuberculous mycobacteria

OR Odds ratio

PHE Public health England
PKT Post kidney transplant
PPD Purified protein derivative
PPV Positive predictive value

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PSA Probabilistic sensitivity analysis

PSS Personal Social Services

P-Y Person year

QALY Quality adjusted life-year

QFT QuantiFERON-TB
QFT-G QuantiFERON-Gold

QFT-GIT QuantiFERON-Gold in Tube
QUIPS Quality in Prognosis Studies

R-CIR Ratio of cumulative incidence ratio

R-DORs Ratio of diagnostic odds ratios

R-IDRR Ratio of incidence density rate ratio

RCT Randomised controlled trial
REPEC Research Papers in Economics

ROB Risk of bias

ROC Receiver operated characteristic

RTR Renal transplant recipient

SA Sensitivity analysis

SCI-EXPANDED Science Citation Index Expanded

SD Standard deviation

SN Sensitivity

SOTC Solid organ transplantation candidate

SP Specificity
TB Tuberculosis

TNF Tumor necrosis factors
TST Tuberculin skin test

XDR-TB Extensively drug-resistant TB

Yrs Years

WHO World Health Organization

WHO ICTRP WHO International Clinical Trials Registry Platform

WTP Willingness-to-pay

Glossary

Acid fast bacilli

Bacteria which, having been stained with a dye, retain their colour in acid alcohol. Used as a technique for microscopic detection of mycobacteria.

Active tuberculosis

Infection with mycobacteria of the *M. tuberculosis* complex, where mycobacteria are growing and causing symptoms and signs of disease. This is distinct from latent TB, where mycobacteria are present, and may be dormant, but are not causing disease. The symptoms of disease include weakness, weight loss, fever, no appetite, chills and sweating at night. Other symptoms of TB disease depend on where in the body the bacteria are growing. If TB is in the lungs (pulmonary TB), the symptoms may include a cough, pain in the chest, and coughing up blood. (Source: www.hpa.org.uk).

Adherence

The term adherence refers to the patient's ability or choice to adhere to a treatment regimen. Also see "Concordance".

Algorithm (in guidelines)

A flow chart of the clinical decision pathway described in the guideline, where decision points are represented with boxes, linked by arrows.

Atypical mycobacteria

Mycobacteria other than those of the *M. tuberculosis* complex.

Bacille Calmette-Guerin vaccine

A vaccine for TB named after the French scientists Calmette and Guerin. (Source: www.hpa.org.uk).

Cochrane Review

A systematic review of the evidence from randomised controlled trials relating to a particular health problem or healthcare intervention, produced by the Cochrane Collaboration. Available electronically as part of the Cochrane Library.

Cohort study

A retrospective or prospective follow-up study. Groups of individuals to be followed up are defined on the basis of presence or absence of exposure to a suspected risk factor or intervention. A cohort study can be comparative, in which case two or more groups are selected on the basis of differences in their exposure to the agent of interest.

Compliance

The extent to which a patient complies with a recommended treatment regimen. In recent years use of the term compliance has been discouraged due to its connotations of patient subservience. (See "Concordance" and "Adherence").

Concordance

Concordance is a concept reflecting agreement between clinicians and patient on the best course of managing a disease, and adherence to that course until alternatives are agreed on and adopted.

Concordance

The percentage of agreement between two tests.

Confidence interval

A range of values which contains the true value for the population with a stated "confidence" (conventionally 95%). The interval is calculated from sample data, and generally straddles the sample estimate. The 95% confidence value means that if the study, and the method used to calculate the interval, is repeated many times, then 95% of the calculated intervals will actually

Contact (domestic, close, casual, and workplace)

A person who has spent time with a person with infectious TB. (Source: www.hpa.org.uk).

Cost-effectiveness analysis

An economic study design in which consequences of different interventions are measured using a single outcome, usually in natural units (for example, life-years gained, deaths avoided, heart attacks avoided, cases detected. Alternative interventions are then compared in terms of cost per unit of effectiveness.

Cost-utility analysis

A form of cost-effectiveness analysis in which the units of effectiveness are quality-adjusted life-years

(QALYs).

Culture

The process of growing TB bacteria from sputum or other samples for identification and diagnosis.

Discordance

The percentage of disagreement between two tests.

Gamma-interferon test (correctly, Interferon-gamma)

A blood test used to diagnose latent TB (which may be used as an alternative, or an addition, to tuberculin skin tests) based on detecting the response of white blood cells to TB antigens.

High-incidence country

Following the widely used threshold, any country with an incidence equal to or greater than 40 cases per 100,000 population per year. A similar definition is made for areas within countries and may be used o decide on local need for vaccination, for instance for neonatal BCG vaccination.

Immunocompromised

Immunocompromised refers to an individual who has a significantly impaired immune system. For instance this may be due to prolonged steroid use, TNF- α antagonists, anti-rejection therapy, the use of immunosuppression-causing medication or co morbid states that affect the immune system, for example HIV, chronic renal disease, many haematological and solid cancers and diabetes.

Infectious TB

Active sputum smear-positive pulmonary tuberculosis, i.e. with acid fast bacilli visible on microscopy. Active TB affecting other parts of the respiratory tract or oral cavity, though rare, is also considered infectious.

Latent tuberculosis

Infection with mycobacteria of the *M. tuberculosis* complex, where the bacteria are alive but not currently causing active disease. Also known as latent TB infection, or LTBI.

Mantoux test

A type of tuberculin skin test in which tuberculin is injected intracutaneously. The injection site is

examined for signs of an immune response after 2–3 days. (Also see "Tuberculin skin test" and "Heaf test").

Multidrug-resistant TB

Tuberculosis resistant to isoniazid and rifampicin, with or without any other resistance.

Mycobacterium tuberculosis complex (M. TB Complex)

The related mycobacterial species *M. tuberculosis*, *M. bovis* and *M. africanum* which can cause tuberculosis in humans.

Skin test

See "Tuberculin skin test".

Smear-positive

See "Sputum smear-positive".

Specificity (of a test)

The proportion of individuals classified as negative by the gold (or reference) standard, who are correctly identified by the study test.

Sputum

Mucus expelled from the bronchi and lungs by coughing (or retrieved from gastric washings, see above) Sputum is examined for TB bacteria by microscopic examination of a stained smear; part of the sputum can also be used for culture.

Sputum smear-positive ("Smear positive")

Respiratory tuberculosis in which mycobacteria ('acid-fast bacilli', AFB) have been seen in a stained smear of sputum examined under a microscope. (Source: www.hpa.org.uk).

Abstract Background

Tuberculosis (TB) is a major cause of morbidity and mortality globally. Nearly one-third of the world's population is infected with *Mycobacterium tuberculosis* (MTB) with an annual incidence of nine million new cases and two million deaths worldwide.

Objectives

To investigate the clinical effectiveness and cost-effectiveness of screening tests (IGRAs and TST) in latent tuberculosis infection (LTBI) diagnosis in three population groups: children, immunocompromised people, and those who have recently arrived to the UK from high incidence countries. All these groups are at higher risk of progression from LTBI to active TB.

Data sources

Electronic databases including MEDLINE, EMBASE, The Cochrane Library, Current Controlled Trials, and others were searched and updated in December 2014.

Review methods

English language studies evaluating head-to-head effectiveness of commercially available tests used for identifying LTBI in children, immunocompromised people, and recent arrivals to the UK were eligible for inclusion. The two included interventions were IGRAs (QuantiFERON-TB Gold-In-Tube (QFT-GIT) and T-SPOT.TB) and the comparator was TST 5mm or 10mm alone or plus IGRA. Two independent reviewers screened all identified records, undertook quality assessment and data synthesis. A de novo model, structured in two stages was developed to compare the cost-effectiveness of diagnostic strategies.

Results

A total of 6,687 records were screened of which 54 (53 unique studies) were included and a further 37 additional studies from CG117. The majority of included studies compared strength of association for QFT-GIT/G IGRA vs. TST (5mm or 10mm) in relation to incidence of active TB or prior TB exposure. Ten studies reported evidence on decision analytical models to determine the cost-effectiveness of IGRAs compared with TST for the diagnosis of LTBI.

In the children population, TST (\geq 5mm) negative followed by QFT-GIT strategy was the most cost-effective strategy with an incremental cost-effectiveness ratio (ICER) of £18,900 per QALY gained. In the immunocompromised population, the QFT-GIT negative followed by TST (\geq 5mm) strategy was the

most cost-effective strategy with an ICER of approximately £18,700 per QALY gained. In the recently arrived population, the TST (\geq 5mm) alone strategy was less costly and more effective than TST (\geq 5mm) positive followed by QFT-GIT, T-SPOT.TB and QFT-GIT alone testing strategies.

Limitations

The limitations in evidence (e.g., absence of gold standard in LTBI diagnosis, risk of bias in individual studies, scarcity of evidence, test administration/interpretation, variation in the exposure-based definitions of LTBI construct, limitations of the screening tests) and heterogeneity in IGRA performance relative to TST limits the extent of applicability of the review findings.

Conclusions

Given the current evidence available, the cost-effectiveness results showed that TST (\geq 5mm) negative followed by QFT-GIT was the most cost-effective strategy in children, QFT-GIT negative followed by TST (\geq 5mm) in an immunocompromised population and TST (\geq 5mm) for recent arrivals in diagnosing LTBI that progresses to active TB. These results should be interpreted with caution, given the limitations identified.

Study registration

This study is registered as PROSPERO 32014000500.

Funding

The National Institute for Health Research Health Technology Assessment programme.

Scientific summary

Background

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The timely identification and prophylactic treatment of people with latent tuberculosis infection (LTBI) is of public health and clinical importance. Unfortunately, there is no diagnostic gold standard for identification of LTBI. Instead, the available screening tests provide indirect and imperfect information. There are two types of tests in use in the UK: 1) the tuberculin skin test (TST) read at two levels (5mm and 10mm) and 2) the interferon gamma (IFN- γ) release assays (IGRAs).

In this review we updated a previous clinical guideline (CG117) and investigated the clinical effectiveness and cost-effectiveness of screening tests (IGRAs and TST) in LTBI diagnosis in three population groups: children, immunocompromised people, and those who have recently arrived to the UK from high incidence countries. All these groups are at higher risk of progression from LTBI to active TB.

This review addressed the following questions: Which diagnostic strategy is most clinically and costeffective in accurately identifying latent TB

- in children?
- in people who are immunocompromised?
- in people who are recent arrivals from countries with a high incidence of TB?

Methods

Clinical effectiveness

Search strategy

Search strategies comprised the following main elements: a) search of electronic bibliographic databases (MEDLINE, EMBASE, the Cochrane Library, the Science Citation Index and Conference Proceedings, HEED, etc.) (updated on 2 December 2014); b) contact with experts in the field; c) scrutiny of references of included studies and systematic reviews; and d) screening of manufacturers' and other relevant websites.

Study eligibility criteria

English language studies evaluating and comparing head to head effectiveness of commercially available tests used for identifying people with LTBI were eligible for inclusion in the review.

Populations

- Children (both genders, age < 18 years, immunocompetent)
- Immunocompromised or at risk of immunosuppression (both genders, any age, transplant recipients, HIV, renal disease, haematological disease, autoimmune disease, recipients of anti-TNF-α treatment, steroids, or cyclosporins)
- People recently arrived from regions with a high incidence/prevalence of TB (both genders, any age, immunocompetent, areas with estimated incidence 40 per 100,000 or greater)

Intervention

Two IGRAs:

- QuantiFERON-TB Gold In Tube (QFT-GIT) (old version: QuantiFERON-TB Gold [QFT-G])
- T-SPOT.TB

Comparator

• TST 5mm or 10mm (Mantoux test) alone or plus IGRA (one- or two-step testing)

Outcome

Associations between test results and validity constructs for LTBI:

- Progression to active TB
- Prior exposure to *Mycobacterium tuberculosis* (MTB; defined by proximity, duration, geographic location, or dose-response gradient)
- People at low risk of MTB or healthy populations

Study

- Randomised controlled trials, retrospective or prospective cohort studies
- Cross sectional or case-control studies

Economics

- Decision-analytic models investigating cost-effectiveness
- Costs studies

Exclusions

• Studies using test results as proxies for LTBI

- Non-commercial/in-house IGRAs, 1st generation QFT, or tests unavailable in UK
- Studies reporting only between-test agreement

Study selection, data extraction and quality assessment

Two independent reviewers, screened all identified records. Disagreements were resolved by discussion and recourse to a third reviewer.

Similarly relevant data were extracted independently and disagreements resolved by recourse to a third reviewer. For each test, summary parameters (e.g., sensitivity, specificity, diagnostic odds ratios, cumulative incidence ratios, percent concordance, kappa statistic) with corresponding measures of variability (95% CIs, p-value) were extracted or calculated (e.g., using construct validity categories of exposure levels or progression to active TB, where data permitted).

Risk of bias and methodological quality were also assessed independently using QUIPS and a modified tool by Dinnes et al. (2007) for incidence and exposure studies and CHEERS and Philips' checklists for economics studies.

Data synthesis and analysis

Predictive values for IGRAs and TST for progression to active TB (incidence studies), degree of association of IGRAs and TST results with prior exposure to MTB (defined by proximity, duration, or dose-response gradient), and compared specificity of IGRAs and TST in healthy populations were assessed. We measured concordance/discordance between IGRAs and TST.

Summary effectiveness measures were pooled using a random effects model. Heterogeneity was determined visually and by the I^2 statistic, and Chi-square test (two tailed, $p \le 0.10$). Subgroup analyses (by TST threshold, IGRA type, setting, TB burden and clinical condition) were undertaken to explore heterogeneity. Calculations were performed with MetaDisC version 1.4 (Madrid, Spain) and Stata.

Cost-effectiveness

A de novo model structured in two stages (decision tree and infectious disease model) was developed in R (version 3.1.1) to compare the cost-effectiveness of diagnostic strategies. The first stage included pathways following testing for one-year before entering the second stage – an infectious disease model. Four diagnostic strategies were examined for each population:

- TST alone
- IGRA alone
- Combinations of sequential TST and IGRA
- Simultaneous testing

For the infectious disease stage the following states were modelled:

- Active TB
- LTBI treated for LTBI
- LTBI untreated
- No TB/LTBI treated for LTBI
- No TB/LTBI untreated

Information required to parameterise the model included prevalence, sensitivity and specificity, adverse events, resource use and costs, and utilities. We used clinical information from the review. We used Bayesian MCMC to estimate study prevalence and test performance accounting for the underlying prevalence in each of the studies in the evidence base. We then made a further assumption about the relationship between prevalence in the studies and that in the decision population. In the models, we used QFT-GIT as the base-case values for the analysis.

Resource use and costs were obtained from the cost-effectiveness review, NHS reference costs 2012/13, the NHS drug tariffs and from clinical experts. Costs were adjusted to 2012/2013 prices. The simulation was run for 100 years, with 3.5% discount rates and with an NHS and PSS perspective. A utility decrement of 0.15 was applied to Health Survey for England values for people who received treatment for active TB.

Outcomes were expressed as incremental cost effectiveness ratios (ICER) for cost per quality adjusted life-year (QALY) and cost per diagnostic error avoided. Univariate and probabilistic sensitivity analyses were undertaken.

Results

Clinical effectiveness

We identified 6,687 records. After removing duplicates, 3,757 records were screened, of which fifty-four (53 unique studies) were included. We included 37 additional studies from CG117.

The majority of included studies compared strength of association for QFT-GIT/G IGRA vs. TST (5mm or 10mm) in relation to incidence of active TB or prior TB exposure (e.g., proximity to, relationship with an active case or weighted exposure score). Seven of the 15 incidence group studies had high risk of bias, six moderate risk and two had low risk of bias. Twenty-nine of the 38 exposure studies were of lower quality.

Children

Results of 27 studies were:

- Incidence studies:
 - o TST-5mm: there was no difference with QFT-GIT (2 studies; pooled ratio of cumulative incidence ratio (R-CIR) = 1.12, 95% CI: 0.72, 1.75)
 - o TST-10mm: QFT-GIT was better (3 studies; pooled R-CIR = 4.33, 95% CI: 1.32, 14.23)
- Sensitivity and specificity:
 - o TST-5mm: IGRA (QFT-GIT/G) had a similar range of sensitivity (48%-100% vs. 57%-100%) and slightly better specificity (49%-90% vs 45%-65%)
 - o TST 10mm: IGRA had a higher range of sensitivity (48%-100% vs 30%-56%), and a slightly lower specificity (49%-90% vs. 63%-93%)
- Exposure studies IGRA performed better compared to TST 5mm/10mm in 14 studies:
 - o Pooled ratio of diagnostic odds (R-DOR) = 1.98, 95% CI: 1.19, 3.28; $I^2 = 89\%$
- Subgroup analyses (stratified by TB burden setting):
 - o In low TB burden settings: IGRAs were superior to TST 5mm/10mm (6 studies: pooled R-DOR = 4.74, 95% CI: 2.15, 10.44)
 - In high TB burden settings there was no difference (8 studies; pooled R-DOR = 1.13,
 95% CI: 0.78, 1.65)

Immunocompromised people

The 48 studies were stratified into: HIV, solid organ transplantation candidates, post kidney transplantation, hemodialysis (end stage renal disease), immune-mediated inflammatory diseases before anti-TNF- α therapy, Hepatitis C, and lupus erythematosus.

- Incidence studies:
 - In the two studies reporting data: R-CIR estimates were non-significant with wide 95%
- Exposure studies:
 - o IGRAs performed better than TST 5mm/10mm in people with

- Hemodialysis (4 studies; pooled R-DOR = 2.53, 95% CI: 1.48, 4.34)
- Hepatitis C (R-DOR = 8.45, 95% CI: 3.71, 19.24)
- TST 10 mm performed significantly better for people with
 - HIV/AIDS compared to QFT-GIT (2 studies; pooled R-DOR = 0.35, 95% CI: 0.15, 0.83)
- Sub-group analysis (stratified by condition): R-DOR estimates were nonsignificant/inconclusive with wide 95% CI in people with
 - o lupus erythematosus
 - \circ immune-mediated inflammatory diseases before anti-TNF- α therapy,
 - o solid organ transplantation candidates
 - o kidney transplant recipients

Recently arrived people from high TB burden areas

Results of 15 studies were:

- Incidence studies:
 - TST 5mm/10mm showed no significant difference with QFT-GIT (2 studies; pooled R-CIR = 1.57, 95% CI: 0.52, 4.76)
 - TST 10mm showed no significant difference with T.SPOT.TB (R-CIR=0.37, 95% CI: 0.10, 1.41)
- Exposure studies:
 - TST 10mm: there was no significant difference with QFT-GIT (3 studies; pooled R-DOR
 = 0.96 CI: 0.69, 1.33)

Cost-effectiveness

Ten relevant studies were identified, and all performed well against frameworks for best practice for reporting economic evaluations.

Bayesian meta-analysis of relevant studies gave the following values for use in the models:

	Sensitivity, % (95% credible interval)	Specificity, % (95% credible interval)
Children		
TST (≥ 5mm)	72.80 (60.59 – 72.94)	49.03 (47.96 – 50.08)
TST (≥ 10mm)	53.51 (38.21 – 67.69)	74.81 (34.34 – 76.18)

QFT-GIT	68.84 (58.56 – 78.20)	61.03 (60.30 – 61.76)
T-SPOT.TB	50.00 (2.45 – 97.64)	77.58 (67.38 – 86.40)
Immunocompromised		
TST (≥ 5mm)	32.42 (11.19 – 58.48)	74.22 (72.88 – 75.57)
TST (≥ 10mm)	16.82 (2.52 – 38.99)	83.97 (78.99 – 88.31)
QFT-GIT	55.48 (24.73 – 83.73)	82.27 (80.52 – 83.96)
T-SPOT.TB	66.65 (35.17 – 0.9144)	68.46 (63.46 – 73.37)
Recently arrived		
TST (≥ 5mm)	93.56 (77.86 – 99.77)	50.11 (47.90 – 52.29)
QFT-GIT	59.15 (35.84 – 81.42)	79.29 (77.80 – 80.73)
T-SPOT.TB	70.01 (39.78 – 92.42)	39.92 (34.39 – 45.54)

Model outputs - ICERS: cost per QALY and cost per diagnostic error avoided

- In children:
 - TST (≥ 5mm) negative followed by QFT-GIT strategy was the most cost-effective with an ICER of £18,900 per quality adjusted life-year gained
 - T-SPOT.TB was the most cost effective with an ICER of approximately £2700 per diagnostic error avoided when compared to TST (≥ 10mm)
- In immunocompromised people:
 - QFT-GIT negative followed by TST (≥ 5mm) was the most cost-effective with an ICER of approximately £18,700 per QALY
 - QFT-GIT positive followed by TST (≥ 5mm) was the most cost-effective with an ICER of approximately £300 when compared to TST (≥ 10mm)
- In the recently arrived population:
 - TST (≥ 5mm) alone strategy was the most-cost-effective with ICER of approximately £1500 per QALY when compared to QFT-GIT
 - TST (≥ 5mm) positive followed by QFT-GIT strategy was the most cost-effective with an ICER of approximately £700 per diagnostic error avoided compared to the QFT-GIT alone strategy

Discussion

Summary of results

In children, the limited evidence suggested that TST 5mm was the best in predicting LTBI. TST (≥ 5mm) negative followed by QFT-GIT strategy was the most cost-effective strategy.

IGRAs appeared to outperform TST in low versus high TB burden countries, a finding which is consistent with a growing body of evidence showing reduced sensitivity and specificity of IGRAs in these settings. This type of effect modification could be explained by higher frequency of exposure to MTB, different transmission dynamics, malnutrition, co-morbidity, co-infection with HIV or helminthic infection.

For immunocompromised people most of the evidence was insufficient and inconsistent. There was large variation in the performance of IGRA compared to TST across different clinical subgroups. QFT-GIT and T-SPOT.TB performed better than TST 5mm/10mm for people undergoing haemodialysis and those with hepatitis C. In contrast, QFT-GIT was significantly worse than TST 10 mm in people with HIV/AIDS. This observation could potentially be explained by T lymphocyte depletion. For other clinical subgroups of immunocompromised people evidence was inconclusive due to high uncertainty around statistically non-significant effect estimates. The QFT-GIT negative followed by TST (≥ 5mm) strategy was the most cost effective in this group with an ICER of approximately £18,700 per QALY.

Amongst recently arrived people from countries with a high TB burden, there was no significant difference in the performance of IGRAs compared to TST in identifying LTBI. The TST (\geq 5mm) alone strategy was the most cost-effective with an ICER of approximately £1500 per QALY.

Strengths and Limitations

The findings of this review warrant a cautious interpretation. The evidence was inconclusive in large part due to unexplained heterogeneity, poor reporting, missing data, and great uncertainty around the effect estimates for the association between test results and the constructs of validity for LTBI. With no 'gold standard' and inadequate definition of construct validity for LTBI (e.g., definitions of prior exposure may not represent the true presence of LTBI), exposure misclassification was probably an important issue.

Other factors that may have contributed to this variability are study setting, type of population, type of test, prior BCG vaccination, and the limitations of screening tests (inter-/intra-rater variability in interpretation of test results, boosting, conversion, reversion, different cut-offs for test positivity, assay manufacturing, pre-analytical processing, and/or incubation delay). Apart from these issues, various sources of methodological bias may have independently distorted the review findings. For example, the study findings may have been biased due to lack of blinding, selection bias, partial verification bias due to incomplete outcome data assessment, and incorporation bias.

Strengths of the cost effectiveness assessment include the building of a de novo two-stage model and the use of review findings (coupled with Bayesian meta-analysis) to derive summary estimates of diagnostic accuracy although we did not adjust for BCG status due to lack of data. A number of assumptions were made including that TST was costed similarly for those which were read and those which were not. Resource use was estimated with input from our clinical advisors.

Implications

Findings should be viewed by clinicians and policy makers cautiously because of the limited evidence, the lack of a gold standard diagnostic test and the assumptions made. Clinicians should be mindful of the variation in performance of the different testing strategies amongst different populations.

Research priorities

- 1. Is the inconsistent performance of IGRAs in high vs. low TB settings replicable?
- 2. Prospective studies are needed for people at high risk for TB to assess progression to active TB.
- 3. The relative benefits of two-step vs. single testing with different combinations of IGRAs and TST should be investigated.
- For retrospective or cross-sectional studies a standard set of component exposures to aid
 classification into high vs. low risk for LTBI is needed, alongside identification of more accurate
 markers of LTBI.

Plain English summary

Tuberculosis (TB) is one of the biggest causes of illness and death worldwide. The majority of people with TB are not infectious and have no symptoms; they are considered to have latent tuberculosis infection (LTBI). People with LTBI are at 5%-10% risk for developing active TB during their lifetime. The risk of LTBI getting worse is higher in young children and in people co-infected with human immunodeficiency virus (HIV) or in those who are immunocompromised due to other conditions or long-term use of immunosuppressant medications.

There are two types of tests used to identify LTBI in the UK: 1) the tuberculin skin test (TST) which can be read at 5mm or 10 mm and 2) the interferon gamma release assays (IGRAs: one type of which is QFT-GIT). This review examines the clinical and cost effectiveness of TST and IGRAs to detect LTBI in children, in people who have low or compromised immunity either due to disease such as HIV or due to medications for other conditions, and in recent arrivals from countries with a high incidence of TB.

We undertook systematic reviews and we updated and analysed the clinical evidence about the different tests since the last clinical guideline (CG117, 2009), was produced and we built a model to determine the most cost-effective approach for identifying LTBI.

We identified 53 new studies plus 37 studies from CG117. There were twenty on-going studies. For the cost effectiveness review we found 10 published models, almost all related to people with compromised immunity with very little data on children and recent arrivals.

The studies that compared IGRAs with TST in children showed no difference between IGRAs (QFT-GIT) and TST-5mm. However, QFT-GIT performed better than TST-10mm in identifying LTBI or predicting the risk of active TB and our meta-analysis confirmed this.

In people with low immunity, the IGRA and TST performed better at identifying people who didn't have LTBI than people who did have LTBI. There was a wide range of results from different tests between individual studies.

For people recently arrived in the UK from high incidence countries, there was no evidence to suggest that IGRAs performed better than TST at identifying LTBI.

The economic model takes into account costs as well as effectiveness and these varied between the different populations. The model showed that in children the TST (5mm) used sequentially and followed by QFT-GIT if negative had the highest probability of being cost-effective. For people with compromised immunity, the QFT-GIT test used sequentially and followed by TST (5mm) if negative was the most cost-effective. For the recently arrived population, the TST (5mm) alone was the most cost-effective.

The evidence for each subgroup of patients was limited and future research needs to be devoted to defining LTBI more clearly so that measures to detect and deal with it can be strengthened.

1 Background

1.1 Overview

Tuberculosis (TB) is a major cause of morbidity and mortality globally. Nearly one third of the world's population is infected with *Mycobacterium tuberculosis* (MTB) with an annual incidence of nine million new cases and two million deaths worldwide. TB ranks as the second leading cause of death from an infectious disease.¹⁻³

In the UK, the prevalence of TB steadily decreased until the mid-1980s, but has started to rise over last 20 years, especially in ethnic minorities born in places with high TB prevalence.^{4,5} Between 1998 and 2009, annual tuberculosis notifications rose in the UK by 44%, from 6,167 to 8,900 cases.^{4,6} Since 2005, this rate has remained high leading to projections that in 2 years there will be more TB cases in the UK than in the US⁷ thereby posing a major public health challenge. The re-emergence has been largely driven by recently arriving immigrants through re-activation of latent infection and/or acquiring new infection as a result of their maintaining links with high prevalence countries.

1.2 Aetiology and pathology of TB

TB infection is transmitted to a healthy person through the air by inhaling respiratory fluids/sputum droplets with MTB discharged by a person with active TB. The infected sputum droplets can dry and form into droplet nuclei, which can float in the air for a long period of time and penetrate the host. TB can be transmitted through other routes including ingestion (e.g., from drinking unpasteurised cow's milk) and inoculation (e.g., Prosector's wart); although such cases are rare in the UK.

Once the bacterium is inhaled, the droplet nuclei travel through the mouth or nasal passages to the upper respiratory tract, bronchi, and finally the alveoli of the lungs. The bacteria grow slowly and multiply in the alveoli over several weeks. Sometimes a small number of tubercle bacilli enter the bloodstream and spread throughout the body such as the bones, lymph nodes, or brain. In over 80% of cases, the immune system kills and removes the bacteria from the body. If the immune system does not kill the bacteria, macrophages within the immune system ingest and surround the tubercle bacilli within 2-8 weeks. The cells form a barrier shell, that keeps the bacteria suppressed and under control. The immune system keeps the bacteria inactive resulting in latent tuberculosis infection (LTBI). These cases who have LTBI do not exhibit any clinical, radiological or bacteriological evidence of the pathogen. They are not infectious and may remain asymptomatic. However, the latent infection may reactivate later in life causing the individual to develop symptoms and become infectious. It has been estimated that people with LTBI are

at 5%-10% risk for developing active TB during their lifetime. ^{12, 13} Therefore this large pool of LTBI is an important reservoir of infection. ^{8, 12}

If the immune system cannot keep the bacteria suppressed or the barrier fails later, the bacilli begin to multiply and the individual develops active TB disease. Individuals who have active TB are infectious and each can spread MTB to up to 10-15 close contacts within a year. The pathogen affects primarily the lungs (pulmonary TB), but this process can also involve other organs of the human body (extrapulmonary TB). In the UK in 2012, pulmonary TB accounted for about 53% of all TB cases.

The period between infection and first signs of illness (incubation period) varies between eight weeks to decades. The greatest chance of progressing to a disease is within the first two years after infection, where approximately 50% of the 5-10 per cent lifetime risk occurs. ¹⁵ The risk of infection and progression to active TB disease depends mostly on the host's immune functioning as well as duration and proximity of exposure to a source afflicted with active MTB. ¹⁶ Therefore certain population groups have a higher lifetime risk of developing TB. These vulnerable groups with low immunity and/or high exposure, include long-term care facility workers, people born or coming from countries of high prevalence of TB, infants, children, HIV-infected persons, people with close contacts suspected of having active TB or those living in confined facilities (e.g., prison, homeless shelters). ⁵ These groups are particularly important as a reservoir of latent infection that could re-activate, and explain the trends observed for TB in UK. ¹⁷

1.3 Active TB

When infection with MTB becomes active TB disease, the symptoms that occur are non-specific and depend on the site of TB infection. ^{18, 19} Common signs and symptoms of active pulmonary TB may include chronic cough for weeks or months, accompanied by the coughing up of blood or blood-stricken mucus, pain in the chest, weight loss, intermittent fever, and/or night sweats, poor appetite, chills, weakness or fatigue, and listlessness. ^{1, 18, 20} The clinical diagnosis of TB is based on TB-characteristic clinical signs and symptoms, chest X-ray examination, and microscopy of tissue biopsy or sputum samples. Definitive diagnosis of TB, however, is made through the identification of MTB in clinical samples (e.g., pus, tissue biopsy, sputum) using culture. ^{21, 22} TB is difficult to culture, and takes several weeks for a definitive result.

TB is a curable disease, however treatment is long and requires adherence even through the side effects of treatment.²³ In the UK, most MTB infections are sensitive to the antibiotics used.¹⁰ The routine

management of active pulmonary TB includes a combination of antibiotics (e.g., isoniazid, rifampicin, pyrazinamide, and ethambutol) given over the duration of six months. Although patients start to feel better after two months of treatment and are not infectious any longer, it is vital that they complete their treatment. This ensures that the TB bacteria are completely killed off, preventing the return of symptoms and the risk of bacteria becoming drug-resistant. Treatment of drug-resistant forms of TB is less effectiveness, requires longer than six months, and causes greater side effects. 10, 26

1.4 Measurement of latent TB infection

Unfortunately, there is no diagnostic gold standard for identification of individuals with LTBI. Instead, the available screening tests for LTBI provide indirect assessment of the presence of LTBI by relying on a host's immunological response to TB antigens.²⁷ In addition, none of the available LTBI tests can accurately differentiate between people with LTBI and active TB.¹¹

There are two types of commercially available tests used to identify LTBI in the UK: 1) the tuberculin skin test (TST) and 2) the gamma interferon (IFN- γ) release assays (IGRAs). Until recently, the TST (introduced by Mantoux in 1907) has been the only standard test used for the identification of LTBI. The administration of TST involves an intradermal injection of purified protein derivative (PPD) in the forearm. The immune response (i.e., delayed hypersensitivity caused by T cells) to the TST is determined 48 to 72 hours after the injection by measuring the transverse diameter (in mm) of skin induration. There is no international agreement on cut-off values for the definition of a positive tuberculin reaction. The choice amongst commonly used cut-off values (e.g., diameter of induration \geq 5 mm, \geq 10 mm, or \geq 15 mm) depends on an individual's risk factor profile for TB. Usually, a lower cut-off value of \geq 5 mm is used for individuals at higher risk of TB (e.g., patients with organ transplants, immunocompromised patients, patients with HIV, persons who have recent contacts with an active TB patient) and a higher cut-off value of \geq 10 mm is applied for individuals at lower risk of TB (e.g., high risk racial minorities, children, recently arrived immigrants from high prevalence countries, patients with diabetes, malignancies, or renal failure). The administration of the TST is relatively cheap and does not require a laboratory, but does require a skilled operator.

IGRAs have been recently developed as alternative screening tests for LTBI. There are two types of IGRAs: QuantiFERON-TB Gold In Tube (QFT-GIT; Cellestis/Qiagen, Carnegie, Australia) [old version: QuantiFERON-TB Gold (QFT-G)] and T-SPOT.TB (Oxford Immunotec, Abingdon, UK). Both tests are commercially available in UK. The QFT is a whole-blood test based on an enzyme-linked immunosorbent assay (ELISA), whereas T-SPOT.TB test uses peripheral blood mononuclear cells and is

based on an enzyme-linked immunosorbent spot (ELISPOT) assay.¹¹ Both tests measure CD4 cell-released gamma interferon (IFN- γ) response to MTB-specific antigens (early secretion antigen target-6 [ESAT-6], culture filtrate protein-10 [CFP-10], and tb7.7) in vitro blood samples.^{12, 13, 16}

1.4.1 Treatment of LTBI

The aim of LTBI treatment is to prevent MTB bacteria from developing into active TB disease. Before treatment, all individuals found to have LTBI need to be tested for active TB. For individuals in whom active TB is ruled out, the prophylactic treatment of choice is isoniazid. For adults and children, the treatment should be for between three to six months depending upon treatment regime. For individuals affected by HIV treatment has to be for six months. Rifampicin for four months is the second line drug that can be used as an alternative in individuals who are resistant to isoniazid or at high risk of side effects from isoniazid.¹⁶

1.5 Incidence, prevalence, and epidemiology

All forms of active TB are legally notifiable by the physician making or suspecting the diagnosis under the Public Health (Control of Disease) Act 1984 in England and Wales. It first became a statutory requirement to notify TB cases in 1913. Known as the Notifications of Infectious Diseases system (NOIDs), it continues to play a valuable role in the surveillance of TB, however the information collected is limited, and trends within subgroups of the population cannot be monitored. ²⁸

In 1999, the Enhanced Tuberculosis Surveillance system (ETS) was established to collect more detailed information of annual TB cases including patient information of age, sex, ethnic group, country of birth, and site of disease, NHS region, and treatment outcomes. It has been reported that the enhanced TB surveillance system reflects the true incidence of TB better than the NOIDs as many measures are used to ensure quality standards are met annually, thereby providing a corrected analysis of TB cases. ²⁹ In 2012, completeness of data was 100% for mandatory fields and approximately 91% across other key fields for England, and 89% for Wales. ⁵ This system provides the most comprehensive, timely, and accurate information on active TB incidence in the UK, ²⁸ and is therefore robust.

There is no national system that collects data for latent TB infection. For this reason there are no robust data for LTBI, although we can predict that for every person with active TB there are likely to be several with undiagnosed LTBI. Therefore, it seems reasonable to extrapolate from active TB and make the assumption that LTBI will follow a similar epidemiological pattern.

Rates of active TB peaked during the early 1900s with an annual incidence rate of approximately 320 per 100,000. The rate declined dramatically until at least 1987 to as low as 10.1 per 100,000 population per year. However, since the 1980s, the incidence rate began reversing and has reached highs of between 13.6-14.4 per 100,000 since 2005.⁵ The most recent figures in 2012 report a total of 8,751 active TB cases across the UK, giving an incidence rate of 13.9 per 100,000.⁵ The burden of TB is highest in England, where in 2012, there were 8,130 cases of active TB, a rate of 15.2 per 100,000 whereas in Wales, there were 136 active TB cases, a rate of 4.4 per 100,000.⁵ Between 2010 and 2011, a total of 436 people died of TB in the UK.⁵

1.5.1 Place of birth and ethnic minorities

The re-emergence of TB has been attributed to international migration, as recently arriving migrants have accounted for the majority of TB cases since 2000. In 2011 and 2012, foreign-born individuals constitute 73% of reported TB cases.⁵ It is reported there is a 98% increase in the number of TB cases from individuals born overseas.^{4, 6, 30} The rate of TB amongst the non UK-born population is 80 per 100,000, which is almost 20 times the rate in the UK-born. Almost half of the cases born outside the UK were diagnosed within five years of coming to the UK with another 30% diagnosed within two years.⁵ Sixty per cent of foreign-born cases originated from South Asia, followed by 22% from Sub-Saharan Africa. With respect to countries of origin, India (31%), Pakistan (18%) and Somalia (6%) are the most common. Similarly, a higher proportion of non-UK born cases (above 50%) present with extra-pulmonary TB compared to UK born cases (31%).³¹

Among UK-born individuals, the highest rate of TB is in ethnic minority groups. The largest proportion of cases is from the Indian ethnicity (27%), followed by White (21%) and then Pakistani (17%). The highest rates of TB are found in Indian, Pakistani and Black ethnic groups.⁵ It has been indicated that recently arriving immigrants and ethnic minorities are vulnerable as a result of re-activation of latent infection once in the country or acquiring new infection as a result of their maintaining links with high prevalence countries (e.g., may visit rural Pakistan or may have relatives from high prevalence areas visit them).³² Also having diabetes increases the likelihood of reactivation of TB, and is more common in individuals from South East Asia, including the ethnic groups highlighted above.³³

1.5.2 Geographical difference

Since the establishment of the enhanced TB surveillance system, it has been clear that there is a drastic regional variation in the burden of TB. Active TB is highly concentrated in large cities, with London consistently accounting for the highest rates and sharpest increases since the early 1990s. In 2012,

London accounted for almost 40% of all TB cases with an annual rate of 41.8 per 100,000. London has the highest TB rate amongst all high-income European countries.^{34, 35} London is followed by West Midlands with 12% of the burden and a rate of 19.3 per 100,000.⁵ Both London and West Midlands have high rates of immigration.³⁶

Within London, there is great variation between boroughs. Twelve of the 33 local authorities have a rate of 40 per 100,000. The boroughs with the highest rates of TB are Newham at 122 per 100,000 and Brent at 100 per 100,000. However, other boroughs such as Havering and Richmond-upon-Thames have an annual incidence rate lower than 10 per 100,000. Similar to regional variation, borough variation within London may reflect demographic characteristics as Newham and Brent have some of the highest rates of immigrants and ethnic minorities. ³⁸

A similar picture is seen in Birmingham. Rates for Birmingham as a whole have fluctuated between 33.7 and 44.8 cases per 100,000 between 2009 and 2013. In the 4th quarter of 2013 Sandwell and West Birmingham CCG had a rate of 49.6 per 100,000 (43.5-56.4). In Solihull it was 1.9 (0.5-4.9). Again this reflects the ethnic make-up of the areas (expert personal communication).

1.5.3 Age and gender difference

The majority of patients with TB are between 15-44 years of age (60%), followed by patients aged 45-64 years old (21%), and 65 years and above (14%). The lowest proportion are aged 5-14 years (3%) and under five (2%). Although children have a low burden of overall TB cases, once TB is transmitted to them, they are more likely to develop active TB than adult hosts. Most 0-14 year old cases are in the UK-born population from Black African, Pakistani, and White ethnic groups.⁵

1.5.4 Immunosuppression and TB

In addition to young children, the risk of progression from LTBI to active TB is higher in people co-infected with human immunodeficiency virus (HIV), immunocompromised patients due to co-morbidity (e.g., diabetes, malignancy, renal disease) and/or long-term use of immunosuppressant medications (e.g., corticosteroids, tumor necrosis factor-alpha antagonists). The co-infection between HIV and TB infection has been internationally well documented. In the UK, there has been a decrease in the number of co-infected HIV-TB cases from 9% in 2003/04 to 3.6% of TB cases in 2013. This has been in line with general downward trends in HIV and TB in migrants from Sub-Saharan Africa.

1.5.5 Social risk factors

There are defined social factors that contribute to the burden of TB in the UK. These social risk factors include homelessness (2.4%), a history of imprisonment (2.8%), drug (2.8%) and alcohol misuse (3.2%). It is indicated that approximately 7.7% of TB cases present with at least one of these risk factors. These social risk factors are more common in UK-born (13.4%) compared to foreign-born cases (5.4%). Within UK-born cases, almost half with at least one factor are from the White ethnic group (46%).

1.6 Impact of health problem

1.6.1 Significance for patients

For the 5-10% of patients who develop active TB, those with pulmonary TB can suffer extreme pain from the symptoms for weeks to months. Similarly, extra-pulmonary TB can have serious complications for the bones, brain, liver, kidneys, and heart. Tissue damage can be permanent if tuberculosis is not treated early. As result of tissue damage, active TB can be fatal. In addition to the impact on physical functioning, active TB can also have psychosocial impacts, in particular from the isolation experienced during treatment of TB. This can include anxiety, depression, disorientation, feelings of loss of control, and mood swings. A diagnosis of TB can also bring related stigma through which individuals face social and economic consequences.

Treatment of active TB causes many side effects depending on the regimen prescribed. Some symptoms are mild but other side effects can be serious, and potentially life threatening. These can include no appetite, nausea, vomiting, jaundice, fever, abdominal pain, lower chest pain or heartburn, skin rash, bleeding gums and nose, blurred vision, ringing sounds, hearing loss, peripheral neuropathy and hepatotoxicity. Individuals on antiretroviral treatment for HIV may suffer more side effects with certain TB drugs. These side effects cause poor adherence to treatment. If treatment is incomplete active TB is more likely to be complex, drug-resistant, and come with treatments with greater side effects. To avoid the consequences of the disease and the side effects of treatment, it would be easier for patients to undergo LTBI treatment and prevent active disease.

However, the treatment of LTBI uses the same medication, with the same side effects, albeit usually for a shorter period. Adherence to treatment is likely to be a factor as taking medicines when you feel well is much harder than taking them when you feel unwell.

1.6.2 Significance for the NHS

The impact of TB as a health problem is extensive. As TB possesses the capacity to spread through the air to practically anyone, it is a serious public health threat although in practice infection beyond family members or close contacts is unusual. TB is on the increase in the UK and decreasing in the US. It has been estimated that in two to five years the burden of TB in the UK will be higher than the whole of the USA. Furthermore, drug resistant TB is increasing in the UK, which means that transmission of drug resistant strains of TB may continue to increase and complicate the fight against TB in the UK.

The healthcare costs associated with active TB include the cost of diagnosing and treating pulmonary TB, extra-pulmonary TB, MDR-TB and XDR-TB. In the UK, the normal cost of treating a case of active TB is £5,000 but is between £50,000-£70,000 for MDR-TB and can be up to £100,000 for XDR-TB.⁴⁹ Taking 2012 figures, it is estimated that annually TB treatment would cost more than £50 million. Given that LTBI represents a reservoir of potential TB epidemic, it is important to identify and, if appropriate, treat people with LTBI in order to reduce the spread and burden of TB disease.^{13, 18}

1.7 Current service provision

1.7.1 Management of LTBI

The goal of screening for LTBI is to identify individuals who are at high risk of developing active TB who would potentially benefit from prophylactic treatment. In the UK, LTBI screening is recommended for contacts of patients diagnosed with active TB and recently arrived migrants. Contacts include household contacts defined as those who share a bedroom, kitchen, bathroom or sitting room with the index active TB case, as well as boyfriends or girlfriends and frequent visitors to the home. Workplace associates in close proximity to a patient for extended periods may be judged to be household contacts, however the majority of workplace contacts are not screened. Casual contacts should only be assessed if the index case is particularly infectious or the contact case is at increased risk from infection.

Nevertheless, all contacts should be offered information and advice about TB. Similar risk assessments take place in schools, nurseries, institutions such as prisons and hospitals and for aircraft passengers leading to screening of those perceived at risk. 10,50

Active case finding is recommended for recently arrived migrants who have recently arrived in the UK from countries with a TB incidence of 40 per 100,000 or greater. Identification of new migrants is recommended from port of arrival reports, new registrations with primary care, entry to education, and links with statutory or voluntary groups working with new migrants. Healthcare professionals responsible for new migrant screening are advised to coordinate a programme to detect and treat active

and latent TB, provide Bacillus Calmette–Guérin (BCG) vaccination where appropriate and provide relevant referrals and information. Active case finding is also recommended for street homeless, new NHS employees, and prison and remand centres. Commissioners and providers of TB services and other statutory and voluntary organisations are particularly advised to identify and manage TB in hard to reach groups such as the homeless, substance misusers, prisoners and vulnerable migrants.⁵¹

A simplified care pathway for LTBI screening derived from the National Collaborating Centre for Chronic Conditions^{10, 50} is presented in Figure 1 and further details about testing strategies for people being screened for LTBI are provided in Box 1.

Box 1. Testing strategies for people being screened for LTBI

- Generally, individuals are tested for LTBI using TST (Mantoux), IGRA, both, or a dual strategy of TST followed by IGRA. If the results are positive, individuals are assessed for active TB and if this is positive they are treated for active TB and if negative then treated for LTBI. If the results for LTBI are negative, the individual is offered a BCG if under the age of 16 or 16-35 and from sub Saharan Africa or from an area with an incidence of over 500/100 000. Individuals are given information and advice about TB. However different testing and treatment pathways are recommended for different populations, including different age groups, new migrants, and immunocompromised individuals. ^{10,50}
- TST is recommended for contacts above the age of five years for the diagnosis of LTBI. IGRA is recommended for individuals whose TST shows positive results (≥6 mm diameter for those who have not been vaccinated with BCG and ≥15 mm diameter for those who have been vaccinated) or in people for whom TST would be less reliable, such as BCG-vaccinated people. Individuals with a positive IGRA or inconclusive TST are to be referred to specialist TB care. For contacts who are aged two to five years old, a TST should be offered as the initial diagnostic test and if the result if positive taking BCG history into account, they should be referred to a TB specialist for excluding the possibility of active disease and consideration of LTBI treatment or treatment of active TB disease depending on the result. If the result of the TST is negative but the child is a contact of a person with sputum-smear positive disease, then IGRA should be offered after six weeks alongside a repeat TST to increase sensitivity. ^{10,50}
- For child contacts of a with sputum smear positive disease aged four weeks to two years who has not been vaccinated, isoniazid should be started and TST should be performed. If the TST is reported as positive, the child should be assessed for active TB and if active TB is excluded they should then be offered full treatment for latent TB. If the TST is negative (<6 mm induration), isoniazid should be continued for six weeks, after which a repeat TST and IGRA should be performed. If repeat tests are negative, isoniazid should be stopped and BCG offered whereas if either is positive active TB should be assessed and if excluded treatment for LTBI considered. On the other hand, contacts of a person with sputum-smear positive disease aged four weeks to two years who has been vaccinated, TST should be performed and if positive (≥15 mm) the child should be assessed for active TB. If active TB is excluded then the child should be given a regimen of either 3 months of rifampicin and isoniazid or six months of isoniazid. If TST is negative (<15 mm), the TST should be performed with an IGRA after six weeks. If both repeats are negative no further action is needed. If either is positive, active TB has to be excluded, and treatment for LTBI followed. 10,50

- To diagnose LTBI in recently arriving migrants from high incidence countries, for children 5-15 years, TST should be offered and if positive an IGRA should be performed. For individuals 16-35 years, either IGRA alone or in a dual strategy with a TST should be offered. For those older then 35, individual risk and benefits of treatment should be considered before testing. For children under five, TST should be offered and if initial test if positive taking BCG history into account then active TB disease should be excluded and LTBI treatment considered. ^{10, 50}
- Regarding those who are immunocompromised, children should be referred to a TB specialist.
 For people with HIV and CD4 counts less than 200 cells/mm3, or between 200-500 cells/mm3, an IGRA should be offered with concurrent TST. If either is positive active TB should be ruled before LTBI treatment is given. For other people who are immunocompromised, an IGRA should be offered alone or with TST. 10, 50
- Once active TB has been excluded by chest x-ray and examination, individuals should be offered treatment. Individuals 35 years or older who do not have HIV should be assessed further and counselled about treatment because of the increasing risk of hepatotoxicity from medication. Treatment should include either six months of isoniazid or three months of rifampicin and isoniazid for people aged 16-35 not known to have HIV; six months of isoniazid or three months rifampicin and isoniazid.^{10,50}
- Neonates who have been in close contact with people who have sputum-smear positive TB who have not received at least two weeks anti-tuberculosis drug treatment should be started on isoniazid for three months and then TST performed after three months treatment. If the TST is positive, active TB should be assessed and if found negative then isoniazid should be continued for a total of six months. If TST is negative then it should be repeated with IGRA and if both are negative isoniazid should be stopped and BCG vaccination performed. In children above two years of age, three months of rifampicin and isoniazid or six months isoniazid should be given.

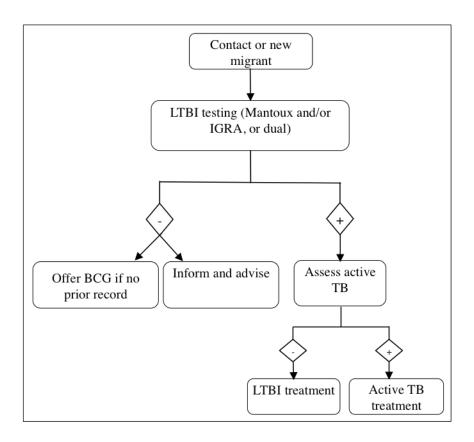


Figure 1. Care pathway of LTBI screening 50

1.8 Current service cost

Estimates for the cost of diagnosing and treating LTBI have been provided by NICE. These costs are based on NICE guidelines in 2006,⁵⁰ and the partial update in 2011.¹⁰ Costs shown include the unit costs of the disposables, time to administer and read tests, and the cost of collecting a blood sample per patient for the tests, which were calculated in 2011. The cost of chemoprophylaxis includes the cost of drugs, active TB tests, consultations, and nurse visits, which was calculated in 2006. BCG costs are also from 2006. Compared to the cost of treating active TB (£5,000 and above), diagnosing and treating LTBI per patient is less costly (see Table 1).

Table 1. Unit costs for LTBI diagnosis and treatment 10

Description	Test type	Unit cost (£)
Cost of tuberculin skin tests	-	16.42
Cost of interferon gamma testing	-	30.34
Household and other close contacts 5 years and older	TST	16.42
New entrants from high incidence countries		
Children under 5		
Children 5-15 years	TST	16.42
Adults 16-34: IGT test alone or dual strategy	TST	16.42
People over 35 - consider individual risk	IGRA or dual	30.34
Household contacts, aged 2-5	TST	16.42
	IGRA If contact with	
	sputum smear positive and	30.34
Contacts 5 years and older - outbreak	TST is negative	
	IGRA	30.34
Immunocompromised HIV CD4 count < 200	TST	16.42
	IGRA test	30.34
	Total	46.76
Immunocompromised HIV CD4 count 200-500	IGRA test or	30.34
	IGRA with concurrent TST	46.76
Cost of complete chemoprophylaxis treatment	-	483.74
BCG Vaccination	-	11.71

1.9 Variation in services and/or uncertainty about best practice

1.9.1 Limitations of LTBI screening tests

The main limitation of TST is its inability to distinguish between reactions caused by MTB vs. BCG vaccination or non-tuberculosis mycobacteria (NTM). The BCG vaccination is routinely used in countries with high TB prevalence to prevent the spread of TB infection in infants and young children. The use of the TST test in such areas results in high false positive rates. The boosting phenomenon, which occurs after repeated TST, may also lead to false positives, thereby limiting specificity of the test. The TST has limited sensitivity when used in certain subpopulations (e.g., people with active TB, immunocompromised patients, the elderly, and people with HIV, malnutrition or renal failure). The above-mentioned limitations are compounded by issues related to the interpretation of test results, which may independently influence false-positive and false-negative rates of the TST (e.g., different cut-off values, PPD dose). Two health visits are required for the completion of TST, which results in missed diagnoses in 10% of cases. Measurement of TST is also dependent on inter-observer variability, which therefore requires adequate training to reduce variability. The SCG vaccination is routinely used in countries of the TST (e.g., different cut-off values, PPD dose).

Because the antigens in the IGRA tests are not present in BCG vaccination and most NTM, the IGRAs are less influenced by previous BCG vaccinations and are less susceptible to false positive NTM reactions, leading to higher specificity of these tests compared to TST. IGRAs also have the advantage of requiring a single patient visit versus the sequential two-step testing required with TST. Automated testing means increasing the objectivity in the interpretation of test results. Finally there is no influence from the boosting effect and so repeat screening is feasible. The IGRAs, however, have their own limitations; specifically, they are more costly and labour-intensive than TST. Moreover, care in blood sampling is required and the time for blood sample storage and analysis is restricted to 8 to 12 hours after collection. Description of the strength of the IGRAs are not provided to 12 hours after collection.

1.9.2 Diagnostic accuracy of LTBI tests

Since the introduction of IGRAs evidence on estimating and comparing the performance of TST and IGRAs in people with LTBI has emerged, however this assessment has been hampered by the absence of a gold standard for the diagnosis of LTBI, which would allow direct calculation of sensitivity and specificity for both types of tests. ^{11, 12, 18, 39, 56-58} Most studies have instead determined associations (e.g., diagnostic odds ratios and other regression-based effect measures) between test results (i.e., TST or IGRAs) and surrogate measures of LTBI such as duration/proximity of exposure to a person with active TB or risk of development or progression from LTBI to active TB (e.g., sensitivity, diagnostic odds ratios, positive and negative predictive values, incidence rate ratios, cumulative incidence ratios). ^{18, 57, 59}

Some studies have assessed and compared specificity of these tests in people at very low risk for MTB (e.g., healthy individuals, residents of low incidence countries)⁵⁶ or compared sensitivity in culture-confirmed individuals with active TB (taken as a surrogate reference standard for LTBI).^{39, 56, 58} Using suboptimal reference standards for diagnostic accuracy testing can lead to overestimation or underestimation of the true accuracy of a test. The degree of concordance (inter-rater or intra-rater agreement; kappa statistic) and discordance between the results of the two tests (IGRAs and TST) has also been used. In general, both pooled sensitivity and specificity values of IGRAs and TST were similarly high in people who are not vaccinated with BCG (> 90%), however the pooled specificity of TST in BCG-vaccinated populations was much lower compared to IGRAs (about 56% vs. 96%).^{11, 52, 56} In contrast, prospective longitudinal studies showed that neither IGRAs nor TST had high prognostic values in predicting risk of progression to active TB.^{11, 18}

1.9.3 Treatment of LTBI

Once patients are diagnosed with LTBI through any of the tests, there are claims of low adherence to chemotherapy treatment. As a result of low adherence, an alternative therapy recommended in the US has been implemented in some hospitals in the UK. It includes a new combination of isoniazid and a long acting rifampicin called rifapentine given weekly for 12 weeks. Each of the 12 doses is directly observed being taken by a treatment supervisor. After LTBI is confirmed and active TB excluded, individuals are assessed for suitability for the rifapentine/isoniazid regimen. Suitability is based on certain criteria including normal renal and liver function, 16 years of age or above, not pregnant, HIV patients not on antiretroviral treatment, agreeable to direct observations, and direct observations are feasible. If suitable, it is prescribed and a TB specialist nurse sets up the direct observations. If it is not suitable, other latent TB treatment is offered. This combination has been found to be as effective as the nine-month daily isoniazid regime used in the US, with higher completion rates, as only 12 doses are needed.

1.10 Relevant national guidelines, including National Service Frameworks

The latest guidelines on the diagnosis, management, and prevention of TB are available from NICE. There is a clinical guideline on the clinical diagnosis and management of tuberculosis, and measures for its prevention and control in 2006,⁵⁰ with a partial update in 2011,¹⁰ as well as public health guidance to identify and manage tuberculosis among hard to reach groups in 2012.⁵¹ The Department of Health (DOH) has also published guidelines for the planning, commissioning and delivery of TB services,⁶² guidelines for testing health care workers,⁶³ a wider action plan for stopping TB in England,⁶⁴ and guidance for the prevention and control of HIV-related and drug resistant TB.⁶⁵ Finally, the British Thoracic Society has published guidelines on the prevention, risk assessment, and management of TB in

adult patients with chronic kidney disease ⁶⁶ and in patients due to start anti-TNF-a treatment, ⁶⁷ management of air travel passengers, ⁶⁸ and the management of opportunist mycobacterial infections. ⁶⁹

1.11 Description of technology under assessment

1.11.1 Summary of intervention

As noted above, screening for LTBI is crucial to curb the re-emergence of TB as the majority of TB cases have latent TB which has been re-activated. Testing and treating high-risk individuals for LTBI would not only prevent active TB illness for the individual but also reduce the transmission of TB, thus reducing the pool of infection.

There is much interest in using IGRA to identify individuals at high risk of LTBI due to the advantages it has over traditional TST particularly that it only requires one visit and that previous BCG status does not interfere with results. For IGRA to replace TST in the current care pathway, it would have to show improved cost-effectiveness relative to TST although in the absence of a gold standard, this is difficult.⁷² Otherwise IGRA may have to be used as complementary to TST as is currently recommended in the national guidelines.¹⁰

The IGRA test takes at least 24 hours, although it can take days depending on the laboratory. TST takes two to three days, as individuals must return to have the test read. In combination, therefore, both tests take several days to be completed. IGRA testing comes at a higher cost than TST and shifts the cost and labour from clinic to laboratory. Both TST and IGRA require specific equipment either for administering the injection or taking a blood sample. In addition, IGRA requires advanced laboratory facilities. Skilled personnel are needed to administer both tests and in the case of TST, are needed to read the result, whereas for IGRA laboratory personnel are needed to process the result. In both cases, patients follow a common pathway where nurses provide the patient with the result, follow up for testing of active TB, and offer treatment and advice. IGRAs can be used in settings similar to TST so long as there is access to a laboratory and pathways are negotiated so the sample can be analysed within 12 hours.

1.11.2 Screening tests for LTBI in special sub-groups at risk

It has been suggested that screening tests applied to presumably healthy populations or persons at low risk for progression to active TB may not be justified given the potential harms due to unnecessary treatment.^{16,75} It is also not feasible or cost effective to universally screen the population as the administrative and clinical costs outweigh the benefits of the TB cases that would be identified.⁴⁵ The

benefits of screening for LTBI using these tests are likely to be maximal in individuals at high risk of contracting MTB (e.g., recently arrived persons from countries with high TB incidence, close contacts with active TB) and those with suspected LTBI who are at high risk of progression to active TB disease and complications associated with the infection (e.g., immunocompromised patients, young children). Since these sub-groups are at higher risk of developing active TB, it is of public health importance to identify LTBI in them.

Studies comparing TST and IGRAs for detecting LTBI in children have mostly demonstrated better specificity for IGRAs as compared to TST. Sa As for sensitivity, it has been shown to be comparable between TST and IGRAs but to vary considerably between studies. Both specificity and sensitivity depend on an implied association between LTBI and exposure to TB (as a proxy for true positive LTBI). The comparative evidence in immunocompromised persons has been too scarce to draw definitive conclusions. One systematic review showed suboptimal but comparable performance between TST and IGRAs for identifying LTBI in HIV-infected patients. In general, based on limited data, the accuracy indices for TST and IGRAs in the subgroups of children and immunocompromised people have been shown to be suboptimal. However, the absence of a gold standard, small samples, indeterminate test results, and heterogeneity between the studies make adequate comparisons between tests difficult. 11, 16

One study has compared TST and the two IGRAs (QFT-GIT and T-SPOT) for detecting LTBI in migrants to the UK. ⁷⁶ However, comparison of the tests was done only by evaluating the positive results of each, concordance between the tests, and the factors associated with positivity. Yields of the test were computed at different incidence thresholds and the cost-effectiveness was estimated. Authors found that TST was positive in 30.3% of individuals who completed screening, QFT-GIT was positive in 16.6% and T-SPOT in 22.5%. The higher rate for TST could be due to the effect of BCG. Although NICE recommends that recently arriving migrants from countries with a TB incidence of 40 per 100,000 should be screened, the report found this would require 97-99% of the cohort to be screened and would identify 98-100% whereas screening migrants from countries with an incidence of 150 per 100,000 would identify 49-71% of LTBI but would only require screening half of the cohort. The two most cost-effective options were to screen recently arriving migrants from countries with a TB incidence greater than 250 per 100,000 with one QFT-GIT (£21,565.3 per case prevented) but as this would miss many cases, and a rate of 150 per 100,000 was recommended as it is only slightly less cost-effective (£31,867 per case prevented) and would prevent an additional 7.8 cases of TB. This was confirmed in a previous study assessing the groups of new migrants in the UK that should be screened for LTBI.⁶ Despite these

findings, it is difficult to draw firm conclusions on the accuracy of identifying LTBI in immigrants, as there was no reference test used for LTBI when comparing the tests.

New evidence is needed to determine the best approaches for identifying LTBI in all three groups of people (children, immunocompromised and recently arrived immigrants from high endemic countries). This will aid in the decision as to whether or not IGRAs should replace or complement TST, and if yes, in which circumstances. There is an on-going large multi-centre cohort study assessing the efficacy and cost-effectiveness of IGRAs compared to TST for predicting active TB in recently arriving migrants to the UK and people who have been in contact with TB cases; results from this study will be available in 2017.⁷⁷

1.12 Current usage in the NHS

The UK National Screening Committee decided that TB screening should be organised locally rather than as a national programme. Therefore the implementation of NICE guidelines on LTBI testing through TST and IGRA has been very ad hoc across the NHS. In London, for example, it is reported that it has not been fully implemented and that current practice is not effective in detecting LTBI.⁴⁹

More recently in March 2014, the Triborough Joint Strategic Needs Assessment (JSNA) reports "However, GP screening has to date been inconsistent and no clear assessment and patient pathway exists for latent TB". Leicester, Leicestershire and Rutland's TB Summary Needs Assessment from December 2013 mentions expanding numbers of cases of LTBI through IGRA testing but calls for a more systematic testing process for testing new entrants to make an impact on active TB cases. Kirklees's JSNA mentions exploring funding to develop IGRA testing, Manchester reports needing to improve LTBI screening.

Control Board's suggested approach in the recent Public Health England (PHE) consultation document Collaborative TB strategy for England. There is not one agreed service model and PHE has recently sponsored several pilot projects ongoing at present looking at the feasibility of screening in different settings. These include the identification of eligible individuals from GP practice lists with invitation for screening at the GP surgery by IGRA, and a more innovative approach where screening for latent TB was carried out by IGRA in a college of further education among self-selected individuals taking part in ESOL classes ⁸² following a campaign of education. Neither of these studies have reported yet, but are expected to show positive result rates of between 17-20% (personal communication from our clinical advisor).

It is difficult to know how many GPs are identifying new entrants and organising testing for them, or how many new entrants are contacting TB services directly for testing. The websites of several community TB⁸³ teams list testing new entrants for LTBI as part of their remit and give a contact number or email address. Birmingham & Solihull Tuberculosis services⁸⁴ has a full page on their website with eligibility criteria, whereas Liverpool Community Health NHS Trust Tuberculosis service⁸⁵ excludes testing of new entrants who are students.

Taking the Coventry and Warwickshire area as a case study the Meridian Practice in Coventry, a specialist service which cares for refugees and asylum seekers, offers IGRA testing to all registered patients (practice manager, Meridian Centre). The Coventry and Warwickshire TB service reports they "indirectly try to identify high TB risk individuals other than identified contacts and offer screening". Apart from supporting the work at the Meridian centre, they also support the Warwickshire programme for looked after children who have an established TB screening programme incorporated into their medical review, and have plans to discuss their programme with Coventry. In addition the Coventry and Warwickshire Partnership Trust commenced a TB screening programme for HIV infected individuals in July 2013 and support the LTBI treatment programme.

In summary, it is difficult to know how much awareness there is for LTBI screening in the primary care setting in the NHS. Pathways are not widely available, if they exist at all. Secondary care specialist services are more aware, but do not employ standard criteria for testing. There is great variability within the system. There is a clear need for new evidence to provide information on the most appropriate strategies available for identifying LTBI in the three sub-groups of interest: children, immunocompromised and recently arrived immigrants from high endemic countries. This evidence will aid in the decision-making process on whether IGRAs should be used as a replacement or as an adjunct to TST for the diagnosis of LTBI in these populations.

The next chapter discusses the decision problem and outlines the key clinical questions and objectives of this work.

2 Definition of decision problem

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The timely identification and prophylactic treatment of people with LTBI is of public health and clinical importance. Unfortunately, there is no diagnostic gold standard for identification of individuals with LTBI who would benefit from such prophylactic treatment. Instead, the available screening tests provide indirect and imperfect assessment of the presence of LTBI. There are two types of tests used to identify LTBI in the UK: 1) the tuberculin skin test (TST) and 2) the gamma interferon (IFN-γ) release assays (IGRAs).

In light of newly emerged evidence (since 2009), this systematic review aimed to compare the clinical effectiveness and cost-effectiveness of screening tests for LTBI (IGRAs and TST) in children, people who are immunocompromised or at risk from immunosuppression, and recent arrivals from countries with a high incidence of TB. To do this we updated the searches since 2009 to identify relevant evidence and incorporate both pre- and post-2009 evidence into the analysis. This review also attempted to determine the most cost-effective approach for identifying LTBI.

The key clinical questions to be considered are:

- 1. Which diagnostic strategy is most clinically and cost-effective in accurately identifying latent TB in children?
- 2. Which diagnostic strategy is most clinically and cost-effective in accurately identifying latent TB in people who are immunocompromised or at risk of immunosuppression?
- 3. Which diagnostic strategy is most clinically and cost-effective in accurately identifying latent TB in people who are recent arrivals from countries with a high incidence of TB?

3 Clinical effectiveness methods

3.1 Identification and selection of studies

3.1.1 Search strategy for clinical effectiveness

Scoping searches were undertaken to inform the development of the overall search strategy. An iterative procedure was used, with input from the searches and included studies of the NICE clinical guideline CG117¹⁰ and methods manuals. Ref. 87 The bibliographic database search strategies focussed on the diagnosis of LTBI using IGRAs compared to other methods and were limited to articles in English that have been added to databases since searches for the equivalent questions in the NICE clinical guideline CG117 were run (7 – 14 December 2009; Appendix 1). The searches automatically picked up comparisons in performance between IGRAs and TSTs, therefore it was not necessary to search independently for comparator technologies (e.g., TSTs). The search strategies used in the major databases are provided in Appendix 2. Bibliographic database searches were undertaken on 9 and 10 April 2014 and were updated on 2 December 2014 using the same strategies. Supplementary searches were undertaken between 10 June 2014 and 5 August 2014 (see Appendix 2 for exact dates).

The search strategy comprised the following main elements:

- Searching of electronic bibliographic databases
- Contact with experts in the field
- Scrutiny of references of included studies and relevant systematic reviews
- Screening of manufacturers' and other relevant websites

Bibliographic databases searched:

MEDLINE (Ovid); MEDLINE In-Process & Other Non-Indexed Citations (Ovid); EMBASE (Ovid); Cochrane Library incorporating Cochrane Database of Systematic Reviews, CENTRAL, DARE and HTA databases (Wiley); Science Citation Index and Conference Proceedings (Web of Science); and Medion.

ClinicalTrials.gov and WHO ICTRP were searched for ongoing and recently completed trials.

Specific conference proceedings, selected with input from a clinical expert, were checked for the last five years. The online resources of relevant organisations were searched. Further details of these searches are provided in Appendix 2.

Citation searches of included studies were undertaken using the Web of Science and Scopus citation search facilities. The reference lists of included studies and relevant systematic reviews were checked. Included papers were checked for errata using PubMed. Identified references were downloaded to bibliographic management software (Endnote X7).

3.1.2 Inclusion and exclusion of relevant studies

3.1.2.1 Inclusion criteria

Primary studies evaluating and comparing head to head effectiveness of commercially available approaches/tests used for identifying people with LTBI

- IGRAs, e.g.,:
 - QuantiFERON-TB Gold In Tube (QFT-G-IT) [old version: QuantiFERON-TB Gold (QFT-G)]
 - o T-SPOT.TB
- TST (i.e., Mantoux test)

Head to head studies involving direct comparison of IGRA and TST only were included.

3.1.2.1.1 Type and language of publication:

- Full text reports published in English
- Abstracts (only if they were companion publications to full text included studies)

3.1.2.1.2 Study design:

- Longitudinal studies (randomized controlled trial, retrospective or prospective cohort study)
- Cross sectional studies, case-control studies

3.1.2.1.3 Population:

- Children (both genders, age < 18 years, immunocompetent) Research Question #1
- People (both genders, any age) who are immunocompromised or at risk from immunosuppression (e.g., transplant recipients or those with HIV, renal disease, diabetes, liver disease, haematological disease, cancer, autoimmune disease, or who are on or about to start anti-TNF-α treatment, steroids, or cyclosporins) Research Question #2
- People (both genders, any age, immunocompetent) who have recently arrived from regions with a
 high incidence/prevalence of TB (countries/territories with an estimated incidence rate of 40 per
 100,000 or greater e.g. those in Africa, Central/South America, Eastern Europe, and Asia) –

Research Question #3

3.1.2.1.4 Intervention:

- Two IGRAs [one- or two-step testing]:
 - QuantiFERON-TB Gold In Tube (QFT-G-IT) [old version: QuantiFERON-TB Gold (QFT-G)]
 - o T-SPOT.TB

3.1.2.1.5 Comparator:

• TST (Mantoux test) alone or plus IGRA [one- or two-step testing]

3.1.2.1.6 Construct validity measures (as a proxy for Outcomes):

- Progression to active TB
- Exposure to MTB defined by proximity, duration, geographic location, or dose-response gradient
- People at low risk of MTB or healthy populations

3.1.2.2 Exclusion criteria

- Studies not comparing IGRAs to TST in regards to the pre-specified construct validity (i.e., incidence of TB, exposure to MTB defined by proximity, duration, geographic location, doseresponse gradient)
- Studies which do not compare the accuracy of tests (IGRAs with TSTs) in head to head comparison in identifying people with LTBI
- Studies (involving children, recently arrived immigrants, or immunocompromised people) which do not report subgroup data separately for each relevant population
- Studies comparing the IGRAs to each other (e.g., QFT-G-IT vs. T-SPOT.TB) in identifying people with LTBI
- Studies which have applied non-commercial IGRAs, in-house IGRAs, older generation IGRAs (e.g., PPD-based 1st generation QuantiFERON-TB), or tests unavailable in UK
- Studies which assess effects of TB treatment on IGRA/TST test results
- Studies which have evaluated and/or compared reproducibility (test and retest) of tests for identifying LTBI
- Studies which do not focus specifically on LTBI (e.g., studies in which the presence of blood culture-positive TB [active TB] is used to estimate sensitivity. 'Active TB' is assumed as the reference standard for 'true presence of LTBI.' However given that active TB and LTBI are two clinically and immunologically distinct forms of TB, this assumption is problematic)
- Studies which use serial testing of IGRAs (or TST) to detect LTBI
- Studies which focus on a specific biomarker (e.g., IP-10)

Systematic/narrative reviews, meta-analyses, case reports, case-series, abstracts (see above 'type
of publication'), commentaries, letters, or editorials

3.1.2.3 Review outcomes

3.1.2.3.1 Diagnostic accuracy measures:

- Measures of association between test (IGRAs, TST) results and construct validity-I (i.e., prognostic value of tests in predicting development/risk of active TB [sensitivity, specificity, false-negative and false-positive rates, positive and negative predictive values, incidence density rate ratios, cumulative incidence ratios]
- Measures of association between test (IGRAs, TST) results and construct validity-II (i.e., exposure status/level to MTB defined by proximity, length of time, type of contact) including dose-response gradient, if applicable [sensitivity, specificity, false-negative and false-positive rates, diagnostic odds ratios, regression-based odds ratios of test positivity]
- Measures of association between test (IGRAs, TST) results and other construct(s) of validity-III (e.g., people at low risk for LTBI; e.g., healthy, residents of low incidence countries) [specificity and false-positive rate]

3.1.2.3.2 Measures of concordance and discordance:

- Agreement (inter-rater, intra-rater) [Kappa statistic, 95% CI]
- Concordance between tests [%, 95% CI]
- Discordance between tests [%, 95% CI]

3.1.2.3.3 Other outcomes:

- Dependence of test positivity (IGRAs, TST) on previous BCG vaccination
- Adverse events
- Likelihood of indeterminate result
- Health–related quality of life

3.2 Study selection strategy

Two independent reviewers, using a pre-specified and piloted questionnaire form, screened all identified bibliographic records for title/abstract (screening level I). Afterwards, full text reports of all potentially relevant records passing screening level I were retrieved and independently reviewed using the same study eligibility criteria (screening level II). Any disagreements over inclusion/exclusion were resolved by discussion between two reviewers or by recourse to a third party reviewer.

3.3 Data extraction strategy

Two reviewers independently extracted relevant data using an a priori defined pre-piloted extraction sheet (Appendix 3). Data extracted was cross-checked and any disagreements were resolved by discussion or by recourse to a third party reviewer. Data extracted included study (e.g., author, country, publication year, design, setting, sample size, follow-up duration, risk of bias items such as blinding, incomplete outcome data), participant (e.g., age, sex, study eligibility criteria, co-morbidity, BCG vaccination status/time, immune status), intervention test/comparator test (type of test/assay used for identification of LTBI, definition of positivity/negativity thresholds/cut-off values for each test, methods of laboratory analysis used for derivation of test results, repeating testing), construct validity (e.g., definition of exposure to MTB in terms of proximity, length of time, and/or type of contact; incidence of progression to active TB, timing of exposure to MTB/incidence of active TB, definition of low risk population, type of summary effect measure).

For individual studies, two by two contingency tables were constructed by cross-tabulating test results (separately for IGRAs and TST) with construct validity responses in relation to exposure level or incidence of progression to active TB. The proportion of subjects with positive and negative test results were extracted. For each test, all summary parameters of interest (see the list of outcomes) with corresponding measures of variability (95% CIs, p-value) were ascertained or calculated, if reported data permits. All relevant summary parameters were entered into the data extraction sheets, evidence and summary tables. Calculated parameters are marked as 'calculated'.

3.4 Study quality assessment

The methodological quality of the studies included in the current review was assessed against the Quality in Prognosis Studies (QUIPS)⁸⁸ and a modified tool used by Dinnes et al. (2007)⁴³ for the incidence and exposure studies, respectively (Appendix 4).

The Quality In Prognosis Studies (QUIPS;⁸⁸ also referred to as the "Methodology checklist: prognostic studies" developed by Hayden and colleagues in the NICE Guidelines Manual 2012)⁸⁷ was used to assess studies reporting diagnostic performance/validation of tests (e.g., sensitivity, specificity, incidence density rate/cumulative incidence ratios, positive/negative predictive values, diagnostic odds ratios, regression-based odds ratios). The QUIPS tool includes assessment of risk of bias (ROB) for six domains of patient selection/participation, study sample attrition, index test measurement, outcome/construct validity measurement, confounding, and statistical analysis/outcome reporting. According to responses to

prompting items, each of the six domains are rated as high, moderate, or low ROB. Then, the overall summary ROB rating for each study is derived based on the domain-specific ROB ratings.

We used a modified tool reported by Dinnes et al. (2007)⁴³ to assess the quality of retrospective/cross sectional studies reporting associations between test results and exposures. The QUIPS tool would not be directly applicable to assessing quality of retrospective/cross-sectional studies of association between test results and exposure, because of the non-prognostic nature of their design (exposure is ascertained retrospectively which is then correlated with test results). Appendix 4 outlines the criteria used to appraise these exposure studies. Each study was assessed for blinding of test results from exposure, description of index test and threshold (TST and IGRA), definition/description of exposure, completeness of verification of exposure and sample attrition. Each study was then awarded an overall quality score defined as:

- Low: Studies with 0 to 2 satisfied [yes response] quality features are classified low quality
- Moderate: Studies with 3 satisfied [yes response] quality features are classified moderate quality
- High: Studies with 4-5 satisfied [yes response] quality features are classified high quality

Study quality was assessed independently by two reviewers (PS and KF). Any disagreements were resolved by discussion or by a third reviewer.

3.5 Data synthesis and analysis

Given the absence of a gold standard for diagnosing LTBI, the performance of tests was compared using alternative methodologies which rely on validation of test results against pre-determined validity constructs (i.e., proxies for a reference standard). Thus, our analyses focussed on the following recommended approaches: we a) evaluated and compared predictive values of IGRAs and TST in relation to construct validity I (i.e., progression rate to active TB), b) evaluated and compared the degree of association/correlation of IGRAs and TST results with construct validity II (i.e., exposure to MTB defined by proximity, duration, or dose-response gradient), c) estimated and compared specificity (or false-positives) of IGRAs and TST in relation to construct validity III (i.e., low risk of MTB or healthy populations), and d) measured the degree of concordance/discordance between IGRAs and TST.^{43, 89-92}

For each index test (TST, IGRAs), if data permitted (either directly reported; if not reported, calculated if possible), relevant statistical parameters of diagnostic test accuracy are presented per individual study. For statistics measuring agreement/disagreement between two tests, values for concordant (both tests positive or negative) and discordant test results (one test negative, the other test positive or vice versa) are

presented, or calculated, if data permitted. Moreover, where possible, likelihood of indeterminate test results was calculated.

The performance of tests (in terms of diagnostic accuracy and concordance) was compared (e.g., IGRA vs. TST) using sensitivity, specificity, positive/negative predictive values, ratio of diagnostic odds ratios (R-DORs), ratio of incidence density rate ratios (or cumulative incidence ratios), regression-based odds ratios, kappa statistic, percent discordance, and likelihood of indeterminate test results. Note that since there is no gold standard for the diagnosis of LTBI, specificity and sensitivity does not have the same meaning as in the conventional paradigm (i.e., against a gold standard), but reflects the performance of tests in relation to pre-determined proxy constructs of validity (i.e., past exposure to TB or future progression to active TB).

The association between BCG vaccination and test performance in terms of specificity was explored by comparing false-positive rates (or odds of false-positivity) of TST and IGRAs in both BCG-vaccinated and unvaccinated individuals (i.e., dependence of false-positive rates on BCG vaccination status).

Summary measures of effectiveness (e.g., sensitivity, specificity, diagnostic odds ratios, ratio of diagnostic odds ratios, ratios of cumulative incidence) were pooled, when deemed appropriate and feasible (based on the absence of clinical/methodological heterogeneity, the same cut-off values of a test, or the absence of test threshold effect on the diagnostic odds ratio) using univariate 93 and/or bivariate random effects meta-analysis models. The presence of heterogeneity across studies was determined using visual inspection of forest plots (of individual study OR and R-DOR estimates and degree of overlap across 95% CIs) and Chi-square test (two tailed, p \leq 0.10). A series of subgroup and sensitivity analyses (see below) were undertaken to explore potential reasons for statistical heterogeneity, if present. Where pooling was not feasible, due to the lack of sufficient data or important clinical/statistical heterogeneity across studies (e.g., significant test threshold effect), the findings from individual studies were summarised qualitatively.

Data synthesis for the summary outcome measures is presented in evidence/summary tables and text as overall and/or stratified by demographic characteristics (e.g., age), TST thresholds (\geq 5mm, \geq 10mm, \geq 15mm), T-Spot vs. QFT, and prevalence/burden of TB in country of origin (high burden vs. low burden). In addition, for people who are immunocompromised or at risk from immunosuppression (**Research Question #2**), where possible, outcomes have been stratified by type of immunosuppression, use of immunosuppressive drugs (e.g., steroids, anti-TNF- α treatment, anti-rheumatic drugs), and co-

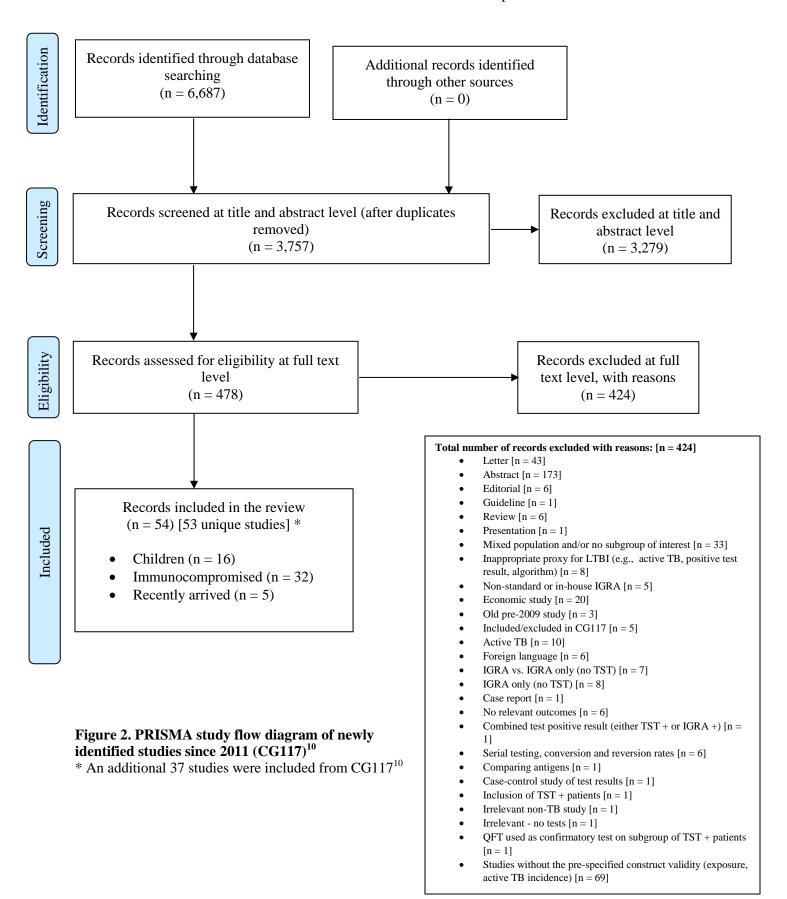
morbidity condition (e.g., HIV, renal disease, diabetes, liver disease, haematological disease, cancer, autoimmune disease, transplant recipients).

Subgroup analysis was planned to be conducted according to BCG vaccination status, TST thresholds (\geq 5mm, \geq 10mm, \geq 15mm), and prevalence of TB in country of origin, if data permitted. For **Research Questions #2**, the comparison of test performance was examined across the subgroups of type of immunosuppression, use of immunosuppressive drugs (e.g., steroids, anti-TNF- α treatment, anti-rheumatic drugs), and co-morbidity condition (e.g., HIV, renal disease, diabetes, liver disease, haematological disease, cancer, autoimmune disease, transplant recipients).

Calculations were performed with MetaDisC version 1.4 (Madrid, Spain)⁹⁷ and Stata.⁹⁸

3.6 Overall quality of evidence

There is no formally accepted and validated approach for the assessment of the overall quality of evidence which would be appropriate to the type of evidence synthesized in this review. The work on the formulation of this approach is still ongoing (Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Working Group (http://www.gradeworkinggroup.org). 99


3.7 Derivation of summary measures of diagnostic accuracy

We used Bayesian meta-analysis to derive sensitivity and specificity for various testing strategies for LTBI in the various population subcategories. The methods and results for this are reported in the Section 6.

4 Clinical effectiveness results

4.1 Number of studies identified

A total of 6,687 bibliographic records were identified through electronic database searches. After removing duplicates, 3,757 records were screened for inclusion. On the basis of title/abstract, 3,279 records were excluded. The remaining 478 records were included for full-text screening. A further 424 records were excluded at the full-text stage. The remaining 54 records (53 unique studies) were considered relevant to the review since the previous NICE clinical guidance work in 2011 (CG117) in 100-153 One study by Rutherford et al. (2012a,b) was presented in two publications. In addition, 37 studies 154-189 were included from CG117 within the current evidence synthesis (see Appendix 6). The study flow and the reasons for exclusion are shown in Figure 2 and Appendix 6. A search of on-going trials was undertaken in different databases (Clinical Trials.gov, WHO ICTRP) up to August 2014. A total of 51 on-going trials were identified. From these, 31 trials were excluded, and the reasons for exclusion are presented in Appendix 7. Twenty on-going trials were considered relevant for inclusion in our synthesis (see Appendix 8).

4.2 Description of included studies and synthesis

In the following sections we describe the baseline characteristics and study quality of the new studies for the three populations of interest: 1) children, 2) immunocompromised and 3) recently arrived for the incidence and exposure studies. Full data extraction sheets including baseline characteristics for all recently identified studies since CG117 are provided in Appendix 9. For each of the three populations we present the synthesis of the evidence in terms of the comparative performance of tests (diagnostic accuracy indices for identifying LTBI) and between-test concordance, discordance, and agreement. Appendix 10 provides the incidence rates of TB for each included study since CG117.

4.3 Children

4.3.1 Description of baseline characteristics

This section included 27 studies (in 28 publications) in children and adolescents, ^{100-111, 146, 148-150, 152, 154-164} of which 11 studies ¹⁵⁴⁻¹⁶⁴ had already been reviewed in CG117 (Appendix 6). Our searches identified 16 additional studies (in 17 publications), ^{100-111, 146, 148-150, 152} five of which investigated the incidence of active TB following testing for LTBI (incidence studies) ^{100-102, 148, 150} and 11 studies (in 12 publications) investigated levels of exposure in relationship to LTBI test outcomes (exposure studies). ^{103-111 146, 149, 152} Two publications ^{108, 109} reported data on the same population and were therefore considered as one study. See Appendix 9 for full data extraction sheets of all new included studies.

4.3.1.1 <u>Incidence studies</u>

Three of the five incidence studies described their population as close contacts of TB cases ^{100, 102, 150} and one study included only TST positive (≥15mm) children with no history of close contact with TB case. ¹⁴⁸ Mahomed et al. (2011a) ¹⁰¹ recruited low risk high school students in a high TB burden country, of whom 25% had current or past household contact of TB. Four studies were carried out in countries with TB vaccination such as South Africa, ¹⁰² Iran, ¹⁰¹ Turkey, ¹⁴⁸ and South Korea. ¹⁵⁰ One study was carried out in Germany in which only 35.7% of participants were BCG vaccinated. ¹⁰⁰ Four studies investigated the agreement of a QFT test with the TST test. ^{100, 101, 102, 150} Four studies compared QFT-GIT with TST in community settings, ^{100,101, 148, 150} whereas, Noorbakhsh et al. (2011) ¹⁰² investigated the agreement between IGRA QFT-G and TST (≥10mm) in a hospital setting. Follow-up to confirm active TB across the five studies ranged from 1 year ¹⁰² to 3.8-4 years. ^{100,101} See Table 2 for further details on these studies.

Table 2. Baseline characteristics of studies in children and adolescents (incidence studies)

		Sub	group of interest – chi	ildren and adolescen	ts		
Study ID (Author name, year, and country)	Study aim, setting, design, follow- up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
Diel, 2011 ¹⁰⁰ Germany [Low]	Study aim: To compare the QFT-GIT with the TST in close contacts of patients with TB and evaluate progression to active TB for up to 4 years Setting: Community based contact study Study design: Prospective cohort study Follow up: 2-4 years Funding source: NR (None of the authors has a financial relationship with a commercial entity that has an	CXR (and computerized tomography), identification of AFB in sputum samples by bronchoscopy or lavage of gastric secretions, conventional culture of M. tuberculosis, nucleic acid amplification assays and/or histopathology, assessment of preceding clinical suspicion of TB. In culture-negative cases, and given a CXR consistent with TB, subsequent clinical and radiographic response to multidrug therapy over an appropriate time course (1–3 months) was considered	Inclusion criteria: Close contacts of smear-positive and subsequently culture-confirmed source MTB index cases; aggregate exposure time of the contact in the 3 months before the diagnosis of respective index case (presumed period of infectiousness > 40 h indoors with shared air) Exclusion criteria: Contacts with an exposure time of < 40 h to the source	Type of tests: IGRA (QFT-GIT) TST Cut-off values/thresholds: IGRA: IFN-g ≥ 0.35 IU/ml TST: >5mm or >10mm	Mean (range or SD) age: 10.4 (4.3) years Female (n [%]): NR Race/ethnicity (n [%]): NR Geographic origin (n[%]): Germany (84 [66.7]) BCG vaccination (n [%]): 45 [35.7] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): 6/104 [5.7] Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]):	Total N or recruited patients: 141 Total N of excluded patients: 15	Assessors of the TST were blinded to QFT results and vice versa. Induration was read by trained and well-experienced public health nurses. If there was a borderline result (e.g., 5 mm exactly), a second reading was performed by a different nurse to verify this result. If there was disagreement, a third nurse read the TST and the consensus result used

		Sut	ogroup of interest – ch	ildren and adolescen	ts		
Study ID (Author name, year, and country)	Study aim, setting, design, follow- up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	interest in the subject of this manuscript)	sufficient to confirm the diagnosis of TB			NR Co-morbidity (n [%]): NR		
Mahomed, 2011a ¹⁰¹ South Africa [High]	Study aim: To compare the predictive value of a baseline TST with that of the QFT-GIT for subsequent microbiologically confirmed TB disease among adolescents. Setting: High school (TB vaccine trial site in the town of Worcester and surrounding villages; high burden of TB) Study design: Longitudinal cohort study Follow up: 3.8 years Funding source:	Two sputum samples for smear microscopy on two separate occasions. If any single sputum was smear positive, a mycobacterial culture, chest x-ray, and HIV test were performed	Inclusion criteria: Adolescents aged 12 to 18 years Exclusion criteria: NR	Type of tests: IGRA-GIT TST (≥5mm) Cut-off values/thresholds: IGRA: ≥ 0.35 IU/mL TST: ≥ 5mm	Mean (range or SD) age: NR Female (n [%]): 2842 [54.2] Race/ethnicity (n [%]): Black: 995 [19.0]; Mixed race: 3839 [73.2]; Indian/white: 410 [7.8] BCG vaccination (n [%]): Yes: 4917 [93.8]; Unknown 281 [5.4] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): 52 [1.0] Chest radiography (yes/no): yes	Total N or recruited patients: 6,363 Total N of excluded patients: 1,119	People with a recent household contact, TB related symptoms, a positive TST ≥10 mm induration or a positive QFT were referred for two sputum smears. If results of either or both were sputum positive for acid fast bacilli, the sputum were cultured, and a chest x-ray and HIV test were undertaken

		Sub	group of interest – ch	ildren and adolescen	ts		
Study ID (Author name, year, and country)	Study aim, setting, design, follow- up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
Metin Timur, 2014 ¹⁴⁸ Turkey [Intermediate]	The Aeras Global TB Vaccine Foundation with some support from the Gates Grand Challenge 6 and Gates Grand Challenge 12 grants for the QFT testing Study aim: To compare QFT-GIT and TST as a diagnosis of LTBI in the children with Bacille Calmette-Guerin (BCG) vaccine Setting: community based Study design: prospective cohort study Follow up: 3 years as outpatients with	Active TB disease was defined both TST and QFT-GIT test positive in a child who had symptoms of TB disease and/or abnormal findings on chest radiograph, CT or proven M. tuberculosis culture, PCR or histopathological examination.	Inclusion criteria: children with positive TST results, children without a history of contact with a TB case, active TB case in the household was not detected through the family screening, children having no medical reason for immunosuppression, children who had diagnosed TB disease without a contact with active TB case	Type of tests: QFT-GIT and TST Cut-off values/thresholds: ≥ 15mm (TST) NR (QFT-GIT)	Clinical examination (yes/no): yes Morbidity (n [%]): NR Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): NR Mean (range or SD) age (years): 94.8 (51.9) months Female (n [%]): 33 [40.7%] Race/ethnicity (n [%]): NR BCG vaccination (n [%]): one BCG scar (69 [85.2%]; two BCG scars (12 [14.8%]) History of anti-TB treatment (n [%]): NR	Total N or recruited patients: NR Total N of excluded patients: NR	

		Sub	group of interest – ch	ildren and adolescer	nts		
Study ID (Author name, year, and country)	Study aim, setting, design, follow- up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	3 months intervals Funding source: NR		Exclusion criteria: NR		Total incidence of active TB (n [%]): none Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): NA Co-morbidity (n [%]): NA Co-morbidity (n [%]): acute appendicitis (1 [1.2%]) Type of during-study treatment (n [%]): no treatment (n=69 children with TST+/QFT results); isoniazid (n=8 children with TST+/QFT+ results but no symptoms – assumed with LTBI); isoniazid, rifampicin and pyrazinamide (n=4 children with		

		Sub	ogroup of interest – ch	ildren and adolescen	ts		
Study ID (Author name, year, and country)	Study aim, setting, design, follow- up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					TST ⁺ /QFT ⁺ results with symptoms –with TB)		
Noorbakhsh, 2011 ¹⁰² Iran [Intermediate]	Study aim: To detect the agreement between TST and QFT-G in young household contacts of cases of proven active pulmonary TB in a BCG-vaccinated population in Tehran, Iran, and to compare subjects progressing to TB with non-progressive subjects. Setting: Pulmonary and infectious	Person diagnosed by an internist in the pulmonary and infectious ward of Rasht hospital. The index cases were confirmed by positive culture for M. tuberculosis or sputum smearpositive TB	Inclusion criteria: All young (< 20 years old) close or household contacts of people (as any person who had lived with the index case for more than 3 months) with confirmed active pulmonary TB and previous BCG vaccination received at birth. The subjects were invited to our research center for clinical and laboratory follow-up Exclusion criteria: Household contacts were excluded if	Type of tests: IGRA (QFT-G) TST (≥10mm) Cut-off values/thresholds: IGRA: NR TST: Induration diameter of ≥10mm	Mean (range or SD) age (years): NR Female (n [%]): 34 [57.6] Race/ethnicity (n [%]): NR BCG vaccination (n [%]): NR History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): 10 [16.9] Chest radiography (yes/no): yes	Total N or recruited patients: NR Total N of excluded patients: NR	
	diseases department of Rasul hospital in Tehran Study design: Cross-sectional		they had been treated for TB in the past year or had a known immunodeficiency state on history or		Clinical examination (yes/no): yes Morbidity (n [%]): NR		

		Sub	group of interest – ch	ildren and adolescen	ts		
Study ID (Author name, year, and country)	Study aim, setting, design, follow- up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Follow up: 1 year Funding source: Research Centre of Paediatric Infectious Diseases, Iran University of Medical Sciences		clinical signs (malignancy, corticosteroid therapy, HIV, etc.)		Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): NR		
Song 2014, South Korea [High]	Study aim: To determine the agreement between IGRA (QFT-GIT) and TST and identify the relationships between the results of these tests and the development of active TB in middle and high school students in close contact with tuberculosis patients in South Korea Setting: community-	NR	Inclusion criteria: Close contacts of identified smear-positive tuberculosis cases with normal chest X-ray aged 11–19 years Exclusion criteria: Participants showing (1) abnormal findings in simple chest radiographs, (2) they had taken immunosuppressive agents or anticancer drugs earlier, and (3) they had been treated with	Type of tests: QFT-GIT and TST Cut-off values/thresholds: 0.35 IU/ml (QFT-GIT) TST (≥10mm, 15mm)	Mean (range or SD) age (years): 15.1 (1.3) Female (n [%]): 1,356 [45.5] Race/ethnicity (n [%]): NR BCG vaccination (n [%]):1,818 [61.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): 23/2,982 [0.77]	Total N or recruited patients: 3,202 Total N of excluded patients: 220	To eliminate the possibility of false-positive IGRA results due to PPD reagents, blood samples were collected before PPD injection

		Suk	bgroup of interest – ch	ildren and adolesce	nts		
Study ID (Author name, year, and country)	Study aim, setting, design, follow- up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Study design: prospective cohort study Follow up: 24 months Funding source: Research of Korea Centers for Disease Control and Prevention		antituberculosis drugs or chemoprophylaxis earlier		Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): NR Co-morbidity (n [%]): NR Type of during-study treatment (n [%]): 5/215 [2.32] (isoniazid)		

Abbreviations: AFB = acid-fast bacilli; BCG = Bacille de Calmette et Guérin; CXR = chest X ray; h = hour; HIV = human immunodeficiency virus; IFN = interferon; IGRA = interferon-gamma release assay; LTBI = latent tuberculosis infection; MTB = Mycobacterium tuberculosis; N = number; NR = not reported; QFT-GIT = QuantiFERON-TB Gold In-Tube; SD = standard deviation; TB = tuberculosis; TST = tuberculosis skin test

4.3.1.2 *Exposure studies*

Eleven studies (in 12 publications) compared one or more QFT test with the TST test in children and adolescents by relating test results to prior levels of exposure (exposure studies). ^{103-111, 146, 149, 152} Five studies were carried out in countries of high TB incidence (Gambia, ¹⁰³ South Africa ^{105, 106} and Indonesia (1 study in 2 publication) ^{108, 109} and Thailand ¹⁵²), two studies in countries of intermediate incidence (Mexico, ¹⁴⁶ Brazil ¹⁴⁹) and four studies in low incidence countries (USA, ^{104, 110} Croatia ¹⁰⁷ and Greece ¹¹¹).

The mean and/or median age of the recruited children was reported in eight $^{104-107,\,110,\,146,\,149,\,152}$ of the 11 studies. $^{103-111,\,146,\,149,\,152}$ Namely, the populations in the studies by Pavic et al. $(2011)^{107}$ and Perez-Porcuna et al. $(2014)^{149}$ had a mean age less than 4 years. The studies by Laniado-Laborin 2014^{146} and Tieu et al. $(2014)^{152}$ included children whose mean age was about 8 years. Cruz et al. $(2011)^{104}$ and Kasambira et al. $(2011)^{105}$ recruited children with the median age of 8.6 and 6 years, respectively. Mahomed et al. $(2011)^{106}$ and Talbot et al. $(2012)^{110}$ investigated adolescents with an age range of 12-18 years and a median age of 20 years, respectively. The reported proportion of females was just above 50% in the majority of studies $^{103-106,\,110,\,146,\,149,\,152}$ and 40% in one study. 107 Eight studies compared QFT-GIT with TST (≥ 5 mm) $^{105,\,106,\,146}$ or TST (≥ 10 mm). $^{107-109,\,149,\,152}$ The T-SPOT.TB test was compared with the TST (≥ 10 mm or ≥ 15 mm) in three studies. $^{104,\,110,\,152}$ Adetifa et al. $(2010)^{103}$ compared three tests (IGRA-GIT, T-SPOT.TB and TST (≥ 10 mm)) while Tsolia et al. $(2010)^{111}$ compared QFT-GIT with TST at two different thresholds (≥ 5 mm and ≥ 10 mm).

Exposure to TB was defined as household contacts in one study 106 and was further categorised by four studies to include sleep proximity 103 (same room / different room), time spent with contact $^{105,\,107}$ (\geq 40h in closed rooms; <6h/day or >7h/day, respectively) or both $^{108,\,109}$ (different room / same room / same bed and <2h/day or 2-8h/day or >8h/day). One study described exposure only as contact with a source case 104 or in terms of country of birth, residence, extended visit to high incidence country, 110 and one study distinguished exposure as either non-household but regular contact or household contact. 111 Three studies used a TB contact score, $^{149,\,152}$ or duration of exposure to TB index case. $^{146,\,149,\,152}$

The study setting was either community based^{103, 105, 106, 110, 149, 152} or hospital based.^{104, 107-109, 111, 146} BCG vaccination was high in six studies,^{105-107, 146, 149, 152} medium in a further three studies,^{103, 104, 108, 109} low in one study¹¹⁰ and not reported in another.¹¹¹ See Table 3 for further details on these studies.

Table 3. Baseline characteristics of studies in children and adolescents (exposure studies)

			roup or microst – cima	ren and adolescents			
(Author	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
2010 ¹⁰³ Gambia [High]	Study aim: To compare T-SPOT.TB, QFT-GIT, and TST for diagnosis of LTBI in Gambian childhood contacts of TB patients Setting: Community- based Study design: Retrospective cohort/cross-sectional study Study Funding source: Medical Research Council (MRC) labs UK	Non exposed: Different house (reference group) Exposed 1: Same house-different room Exposed 2: Same house-same room	Inclusion criteria: Household contacts (< 16 years) of newly diagnosed TB index cases Exclusion criteria: History of treatment for active TB, TB diagnosis within 1 month of recruitment	Type of tests: IGRA (T- SPOT.TB) IGRA (QFT-GIT) TST (≥10mm) Cut-off values/thresholds Definition of test+: IGRA (T- SPOT.TB): ≥6 spots in either the ESAT-6 or CFP- 10 panel after subtracting the number of spots in the negative control panel IGRA (QFT- GIT): ≥0.35 IU/ml TST: ≥10mm induration	Mean (range or SD) age: NR Female (n [%]): 145 [51] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 127/199 [59.1] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes Clinical examination	Recruited (N): 285 Excluded (N): NR	None

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					(yes/no): Yes Morbidity (n [%]): HIV positive (3 [1.1]) Co-morbidity (n [%]): NR Type of during- study treatment		
Cruz, 2011 ¹⁰⁴ US [Low]	Study aim: To compare the performance of T-SPOT.TB with TST in children with different epidemiologic risk factors for tuberculosis Study setting: Pediatric tuberculosis clinics Study design: Retrospective cohort/cross-sectional study Funding source:	Non exposed: No contact with an identifiable source case Exposed 1: Contact with an identifiable source case	Inclusion criteria: Children (aged 1 month to 18 years) with LTBI or TB disease and children uninfected with tuberculosis Exclusion criteria: Children on any TB medication for 2 or more months were not eligible for enrollment	Type of tests: IGRA (T- SPOT.TB) TST (≥15mm) Cut-off values/thresholds Definition of test+: IGRA: ≥ 8 spots TST: ≥15mm induration	(n [%]): NR Mean (range or SD) age: Median 8.6 (range: 1 month to 18 years) Female (n [%]): 94 [51] Race/ethnicity (n [%]): Hispanic 115 [62.5], Non-Hispanic black 36 [19.6], Non-Hispanic white 19 [10.3], Asian 6 [3] Geographic origin (n[%]): Low prevalence regions (US/UK) 121	Recruited (N): NR Excluded (N): NR	Borderline results (5–7 spots) were excluded from concordance analyses but were analyzed separately. A subgroup analysis was performed for specimens with 6 to 7 spots, because these specimens are sometimes considered positive

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Immunotec, Inc				BCG vaccination (n [%]): 68 [37] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): None Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): NR Co-morbidity (n [%]): NA Type of during- study treatment (n [%]): NR		
Kasambira, 2011 ¹⁰⁵ South Africa [High]	Study aim: 1) To determine and compare the prevalence of M. tuberculosis infection	Adult index case type of TB diagnosis Non exposed: Smear-positive	Inclusion criteria: Children aged 6-16 years whose parents and guardians were TB index cases aged	Type of tests: IGRA (QFT-GIT) TST (≥5mm) Cut-off	Mean (range or SD) age (years): Median 6 [3–9] Women (n [%]):	Recruited (N): NR Excluded (N): NR	None

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	as assessed by TST and by QFT-GIT; 2) To assess agreement between the two test methods and identify factors associated with various patterns of test results Study setting: Community based Study design: Retrospective cohort/cross-sectional study (with limited follow-up of 6mos) Funding source: The United States Agency for International Development	TB Exposed 1: Smear-negative, culture-positive TB Exposed 2: Clinical TB Adult index case smear grade Non exposed: Negative Exposed 1: Scanty Exposed 2: 1+ Exposed 3: 2+ Exposed 4: 3+ Exposure to index case during the day Non exposed: Minority of day (< 6 h) Exposed: Majority of day (> 7 h)	≥18 years, with diagnosis of pulmonary TB within the preceding 3 months, willingness to have the child undergo study testing and provision of informed consent Exclusion criteria: Children's prior diagnosis or treatment of active or latent TB	values/thresholds Definition of test+: IGRA: NR TST: Induration of ≥5mm	Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 257 [95] History of anti-TB treatment (n [%]): None Total incidence of active TB (n [%]): NR Chest radiography (yes/no): NR Clinical examination (yes/no): Yes Morbidity (n [%]): HIV 14 [5] Co-morbidity (n [%]): NA Type of during-		

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					study treatment (n [%]): active TB treatment 37 [19] and LTBI treatment 19 [10]		
Laniado- Laborin, 2014 Mexico [intermediate]	Study aim: To compare the prevalence of LTBI between paediatric contacts of drugresistant cases and drug susceptible cases Setting: TB clinic Study design: Cross-sectional/retrospective cohort study Funding source: NR	Non exposed: NR Exposed: Exposure to source Hours/day exposure # of cohabitants # of rooms	Inclusion criteria: Family contacts of culture–proven cases age ≤16 years Exclusion criteria: Subjects with a history of TB, a previous diagnosis of LTBI or the administration of TST in the past year	Type of tests: QFT-GIT TST Cut-off values/thresholds Definition of test+: QFT-GIT≥0.35 IU/ml TST≥5mm	Mean (range or SD) age: drug susceptible 7.79 (4.28) years; drug resistant 7.36 (4.46) years Women (n [%]): 86/173 [50.0] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]):164 [95] History of anti-TB treatment (n [%]): none Total incidence of active TB (n [%]):	Recruited (N): NR Excluded (N): NR	

		Subg	roup of interest – child	ren and adolescents	,		
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): NR Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): 77/173 [44.5] contacts of multidrug susceptible index cases were treated for LTBI with INH or rifampicin. 96/173 [55.5%] contacts of multidrug resistant cases did not receive treatment for LTBI		

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
Mahomed, 2011b ¹⁰⁶ South Africa [High]	Study aim: To determine the prevalence of and predictive factors associated with latent TB infection in adolescents Study setting: High school Study design: Retrospective cohort/cross-sectional study Funding source: The Aeras Global TB Vaccine Foundation and the Gates Grand Challenge 6 and Gates Grand Challenge 12 grants for QuantiFERON testing	Non exposed: No current or prior TB household contact Exposed: Current or prior TB household contact	Inclusion criteria: All adolescents aged 12-18 years Exclusion criteria: Diagnosed with active TB	Type of tests: IGRA (QFT-GIT) TST (≥5mm) Cut-off values/thresholds Definition of test+: IGRA: QFT-GIT ≥ 0.35 IU TST: Induration ≥ 5mm	Mean (range or SD) age: 12-18 years Female (n [%]): 2842 [54.2] Race/ethnicity (n [%]): Indian/White 410 [7.8]; Mixed race 3839 [73.2]; Black 995 [19.0] Geographic origin (n[%]): NR BCG vaccination (n [%]): No 46 [0.9]; yes 4917 [93.8]; Unknown 281 [5.4] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): No	Recruited (N): 6,363 enrolled, 5,244 enrolled for analysis Excluded (N): 13 (an indeterminate QFT results), 639 (TST was not performed with past TB), 22 (TST was not performed with current TB, 22 (diagnosed with active TB)	None

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Clinical examination (yes/no): No		
					Morbidity (n [%]): NR		
					Co-morbidity (n [%]): Chronic allergy related condition e.g. asthma, hay fever, eczema yes 53 [1.0]; No 5191 [99.0]		
					Type of during- study treatment (n [%]): NR		
Pavic, 2011 ¹⁰⁷ Croatia [Low]	Study aim: To evaluate an IGRA for diagnosis of LTBI in BCG –vaccinated	Non exposed: Distant contact was defined as occasional or	Inclusion criteria: Pediatric patient's ≤5 years with documented exposure	Type of tests: IGRA (QFT-GIT) TST (≥10mm)	Mean (range or SD) age: 29 ± 16 months	Recruited (N): 142	Blood samples for QFT-GIT were drawn
	children up to 5 years of age, with documented exposure to active TB	unclear exposure time or <40 h during the presumed period of	(close or distant contact) to a case of active TB. Close contact (household contact with	Cut-off values/thresholds Definition of test+:	Women (n [%]): 57[40.1] Race/ethnicity (n [%]): NR	(N): 1	under standardized condition in our hospital at the same day
	Study setting: Children hospital and general hospital	infectiousness Exposed: Close contact was	aggregate exposure to a patient with active TB of not < 40 h in closed room and	IGRA: ≥ 0.35 IU/mL as recommended by the manufacturer	Geographic origin (n[%]): NR BCG vaccination		as TST. The test was considered

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Study design: Retrospective cohort/cross-sectional study Funding source: None	defined as household contact with aggregate exposure to a patient with active TB ≥40 h in closed rooms	distant contact (occasional or unclear exposure time of <40 h during the presumed period of infectiousness) Exclusion criteria: Children >5 years, immunocompromised children, inadequate blood sampling and diagnosis of active TB	TST: ≥10mm induration	(n [%]): 142 [100] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes Clinical examination (yes/no): NR Morbidity (n [%]): NR Co-morbidity (n [%]): Pneumonia 1 [0.7] Type of during-study treatment (n [%]): NR		indeterminate if the value of the +ve control well was less than 0.5 IU/mL, and/or nil -ve control was more than 8 IU/L.
Perez-Porcuna,	Study aim: To	Time of	Inclusion criteria:	Type of tests:	Mean (range or	Recruited	Experienced
2014 149	evaluate the response of the QFT-GIT and	exposure to the index case	children from 0–6 years of age with	QFT-GIT TST	SD) age: 46 (28.0-64.5) months	(N): 140	laboratory technicians
Brazil	TST tests in young	mues cuse	recent contact with	101	04.5) monuis	Excluded	who were
[intermediate]	children with recent	Non exposed:	an adult symptomatic	Cut-off	Women (n [%]):	(N): 3	unaware of
[exposure to an index	NR	TB index case within	values/thresholds	74 [54.8]	(1,),	the data of the

		Subg	roup of interest – child	ren and adolescents	<u> </u>		
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	case Setting: community-based Study design: cross-sectional/retrospective study Funding source: the Brazilian National Counsel of Technological and Scientific Development, the Foundation of Research Support of the State of Amazonas, and the University of Barcelona. Cellestis Ltd. donated QFT kits.	Exposed: # months (continuous scale covariate) Mycobacterium tuberculosis contact (MTC) score: 0-15 Non exposed: NR Exposed: MTC score (continuous scale covariate) was composed of infectivity of the index case (0-4), the duration of exposure hours per day (0-4), the relationship to the index case (0-4) and the type of exposure (0-3)	the last 12 months Exclusion criteria: Children receiving treatment or prophylaxis for TB	Definition of test+: QFT-GIT ≥0.35 IU/mL TST≥ 10mm	Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 118 [90.8] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): NR Co-morbidity (n [%]): NR		study subjects

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Type of during- study treatment (n [%]): NR		
Rutherford, 2012a-b ^{108, 109} Indonesia [High]	Study aim: To quantify M. TB infection in children living with a smear- positive adult TB case and identify risk factors for TST and QFT-GIT positivity Study setting: Out- patient-based clinic Study design: Retrospective cohort/cross-sectional study Funding source: NR	Characteristics of TB case smear positivity Non exposed: Scanty and 1+ Exposed 1: 2+ Exposed 2: 3+ Relationship to child Non exposed: Other Exposed 1: Uncle Exposed 2: Parent Sleeping proximity to child Non exposed: Different room Exposed 1: Same room Exposed 2: Same bed Time spent with	Inclusion criteria: Child contacts living for more than 3 months with newly diagnosed TB cases (index case) who were smear and CXR positive Exclusion criteria: Child contacts who had received a diagnosis of TB disease within the past year or who were aged <6 months	Type of tests: IGRA (QFT-GIT) TST (≥10mm) Cut-off values/thresholds Definition of test+ IGRA: NR TST: Induration of ≥10mm	Mean (range or SD) age: Median [IQR] 58 [31–81] months Women (n [%]): 152 [50.7] Race/ethnicity (n [%]): Sudanese 284 (93.7), Other 19 (6.3) Geographic origin (n[%]): NR BCG vaccination (n [%]): With scar 221 [73.2], unknown BCG status 30 [9.9] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA	Recruited (N): 320 Excluded (N): 16	None

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
		child (# h/day) Non exposed: <2 Exposed 1: 2-8 Exposed 2: >8			Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes (Children who were symptomatic and test-ve (on either IGRA or TST) were referred to the children's clinic for further assessment according to clinic policy Morbidity (n [%]): NR Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): NR		
Talbot, 2012 ¹¹⁰ US [Low]	Study aim: To test the specificity of TST and the T-SPOT.TB assay among students at low risk for TB	Non exposed: Low-TB exposure risk group	Inclusion criteria: Students with history of exposure to TB Exclusion criteria:	Type of tests: IGRA (T- SPOT.TB) TST (≥15mm)	Mean (range or SD) age: Median 20 (17-47) years Women (n [%]):	Recruited (N): 184 Excluded (N): 4	None

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	exposure Study setting: College health setting Study design: Retrospective cohort/cross-sectional study Funding source: Oxford Immunotec	Exposed: Non-low-TB exposure risk (any history of exposure to TB through country of birth, residence, or visits >3 weeks to high-TB burden areas [>40 cases/100,000 population], or occupational exposure)	NR	Cut-off values/thresholds Definition of test+: IGRA: 5–7 spots borderline, and results with a low mitogen response or a high nil control response are indeterminate TST: Induration > 15mm for students with no risk factors for TB exposure	Pr [53.9] Race/ethnicity (n [%]): US-born 165 [91.7]; White 135 [75] Geographic origin (n[%]): NR BCG vaccination (n [%]): 7 [3.9] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): NR Clinical examination (yes/no): NR Morbidity (n [%]): NR		

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): NR		
Tieu, 2014 ¹⁵² Thailand [high]	Study aim: To compare the performances of the IGRAs (T-Spot.TB, QFT-GIT) and TST at two different cut-off thresholds (10 mm and 15 mm) in Thai children who had recent exposure to an adult index case with TB Setting: community-based Study design: cross-sectional/retrospective	TB contact score (range 6- 19) Non exposed: TB contact score (8-10) Exposed 1: TB contact score (11-12) Exposed 2: TB contact score (13-14) Exposed 3: TB contact score (15-16)	Inclusion criteria: Children between the ages of 2 months and 16 years with recent exposure (defined as having lived with and/or having had close contact with) to adults with active pulmonary TB (confirmed by positive AFB stain, PCR for TB, or TB culture), with or without extrapulmonary TB manifestations	Type of tests: QFT-GIT TST Cut-off values/thresholds Definition of test+: QFT-GIT, TSPOT (NR) TST (10mm or ≥15mm)	Mean (range or SD) age: 7.6 (4.3) years Women (n [%]): 67 [49.3] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 132 [96.4] History of anti-TB treatment (n	Recruited (N): 137 [TB-exposed] Excluded (N): NR	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-month follow-up
	Funding source: investigator-initiated research grant from Tibotec REACH Initiative	TB contact score (range 6- 19) Non exposed: TB contact score (8-12)	Exclusion criteria: Children's caregivers refused study participation, if they were receiving anti-TB medications for TB disease (including		[%]): NR Total incidence of active TB (n [%]): NR Chest radiography		

		Subg	roup of interest – child	ren and adolescent	S		
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
		Exposed: TB contact score (≥13) Relationship to TB index case Non exposed: Relative other contact in household with TB Exposed 1: Second caregiver in household with TB Exposed 2: Primary caregiver in household with TB Duration of average contact per day with TB index case Non exposed:	isoniazid [INH] for latent TB), or if they had recently been diagnosed with active TB		(yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): NR Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): None [for TB exposed]		

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
		0-7 hours					
		Exposed: ≥8 hours Duration of contact with TB					
		index case in last 12 months					
		Non exposed: 0-7 months					
		Exposed: >7 months					
		Index TB case history					
		Non exposed: Sputum acid fast smear negative					
		Exposed: Sputum acid fast smear positive					
Tsolia, 2010 ¹¹¹ Greece [Low]	Study aim: To evaluate and compare the performance of	Contact with an adult TB	Inclusion criteria: Adolescents ≤ 15 years	Type of tests: IGRA (QFT-GIT) TST (≥ 5mm or	Mean (range or SD) age: NR	Recruited (N): 295	Indeterminate results on the QFT-GIT
	the QFT-GIT assay	Non exposed :		≥10mm)	Women (n [%]):	Excluded	were excluded

		Subg	roup of interest – child	ren and adolescents			
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	and the TST among children with active TB or possible latent TB infection in a low endemic country Setting: TB clinic Study design: Retrospective cohort/cross sectional study Funding source: The Bienmoyo Foundation	Non household occasional contact Exposed 1: Non household regular contact Exposed 2: Household contact	Exclusion criteria: NR	Cut-off values/thresholds Definition of test+: IGRA: > 10 IU/mL TST: ≥ 10mm for BCG immunized children ≥ 5mm for non- BCG immunized children	Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): NR History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): NR Co-morbidity (n [%]): NR	(N): 9 (refusal, lost specimen, sample processing delay)	from the analysis

	Subgroup of interest – children and adolescents										
Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure-based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments				
					Type of during- study treatment (n [%]): NR						

Abbreviations: +ve = positive; BCG = Bacille de Calmette et Guérin; ESAT-6 and CFP-10 = Mycobacterium tuberculosis T-cell antigens; h = hour; HIV = human immunodeficiency virus; IGRA = interferon-gamma release assay; LTBI = latent tuberculosis infection; N = number; NR = not reported; QFT-GIT = QuantiFERON-TB Gold In-Tube; SD = standard deviation; TB = tuberculosis; TST = tuberculosis skin test; -ve = negative

4.3.2 Study quality

4.3.2.1 <u>Incidence of active TB (n = 5)</u>

Of the five newly identified active TB incidence studies in children ^{100, 101, 102, 148, 150} three were rated as having a moderate risk of bias (Diel 2011, ¹⁰⁰ Mahomed 2011a, ¹⁰¹ Song 2014 ¹⁵⁰) and two as having a high risk of bias (Noorbakhsh 2011, ¹⁰² Metin Timur 2014 ¹⁴⁸). Most studies had moderate risk of bias for the item misclassification of individuals in relation to construct validity groups. The studies also failed to provide information on prognostic factor and outcome measurement. See Table 4 for further details.

Table 4. Summary assessment of risk of bias (ROB) for included incidence studies in children (adapted from Hayden et al., 2013)⁸⁹

First author, Year, Study ID	Study design	Study Participa tion risk of selection bias	Study Attrition risk of selection bias	Prognostic Factor Measurement risk of exposure measurement bias	Outcome/ Construct Measurement risk of bias in misclassification of individuals in relation to construct validity groups	Study Confounding risk of bias due to confounding	Statistical Analysis and Reporting risk of bias due to analysis and selective reporting	Total ROB high, moderate, low
Diel, 2011 ¹⁰⁰ [Low]	Low	Low	Low	Moderate	Moderate	Low	Low	Moderate ROB
Mahomed, 2011a ¹⁰¹ [High]	Low	Modera te	Moderate	Moderate	Moderate	High	Low	Moderate ROB
Metin Timur, 2014 ¹⁴⁸ [Int ermediate]	Low	High	High	Moderate	Moderate	High	High	High ROB
Noorbakhs h 2011 ¹⁰² [Intermedi ate]	Moderat e	High	High	High	Moderate	High	High	High ROB
Song, 2014 ¹⁵⁰ [Hi gh]	Low	Low	Moderate	Low	High	Moderate	Low	Moderate ROB

4.3.2.2 Exposure levels (n = 11)

The majority of the 11 included exposure studies in children (in 12 publications)^{103-111, 146, 149, 152} identified since CG117 were rated as low quality and only three studies were rated as high quality.^{149, 152, 190} One study was of moderate quality.¹⁴⁶ See Table 5 for further details.

Table 5. Summary of quality assessment for the included children exposure studies (adapted from Dinnes et al., 2007)⁴³

First author, Year, Study ID	Recruitment of subjects consecutive [yes], arbitrary or unreported [no]	Blinding of test results from exposure blinded [yes], not blinded or unreported [no]	Description of index test and threshold adequate [yes], inadequate or unreported [no]	Definition and description of exposure adequate [yes], inadequate or unreported [no]	Sample attrition adequate [yes]#, inadequate or unreported [no]	Overall quality score of satisfactory features [£]
Adetifa, 2010 ¹⁰³ [High]	No	No	Yes	Yes	No	Low quality
Cruz, 2011 ¹⁰⁴ [Low]	No	No	No	No	Yes	Low quality
Kasambira, 2011 ¹⁰⁵ [High]	No	No	No	Yes	Yes	Low quality
Laniado- Laborin, 2014 ¹⁴⁶ [intermediate]	Yes	Yes	Yes	No	No	Moderate quality
Mahomed, 2011b ¹⁰⁶ [High]	No	No	No	No	No	Low quality
Pavic, 2011 ¹⁰⁷ [Low]	Yes	No	Yes	Yes	Yes	High quality
Perez- Porcuna, 2014 ¹⁴⁹ [intermediate]	Yes	Yes	Yes	Yes	No	High quality
Rutherford, 2012 a ¹⁰⁸ b ¹⁰⁹ [High]	No	No	No	Yes	Yes	Low quality
Talbot, 2012 ¹¹⁰ [Low]	No	No	Yes	No	No	Low quality
Tieu, 2014 ¹⁵² [high]	Yes	Yes	No	Yes	Yes	High quality
Tsolia, 2010 ¹¹¹ [Low]	Yes	No	No	No	Yes	Low quality

 $^{^{\#}}$ \geq 90% of participants were included in the follow-up analysis [yes response] and < 90% were classified as "no response"

Please note the following item has been removed from the original Dinnes et al., (2007)⁴³ checklist: "study design" (as all studies were considered are retrospective), this item has been removed. Furthermore, the following item has been added: "sample attrition"

[£] Studies with 1 or 2 "yes" ratings = Low quality; studies with 3 "yes" ratings = Moderate quality; studies with 4 or 5 "yes" ratings = High quality

4.3.3 Comparative performance of tests (diagnostic accuracy indices for identifying LTBI) - children

4.3.3.1 <u>Incidence of active TB</u>

4.3.3.1.1 Ratios of cumulative incidence ratios (R-CIRs):

This section included seven studies: two studies reviewed in CG117^{159, 160} (see Appendix 6) and five more recent studies, three of them published in 2011, ¹⁰⁰⁻¹⁰² and two studies published in 2014. ^{148, 150} (see Appendix 9). For 3 studies (out of the 5 recent studies), ratios of cumulative incidence ratios (R-CIRs) could not be calculated because none of the children developed active TB. ^{148, 159, 160} The R-CIRs in the remaining 4 studies (see summary Table 6) ^{100-102, 150} were pooled in which one analysis compared QFT-GIT to TST 5mm and the other QFT-GIT to TST 10mm (they were pooled separately because TST performance differs according to its threshold). The pooled estimates indicated no significant difference between QFT-GIT and TST 5mm performance (pooled R-CIR = 1.12, 95% CI: 0.72, 1.75), ^{100, 101} (see Figure 3) whereas QFT-GIT was better than TST 10mm in identifying/predicting LTBI (pooled R-CIR = 4.33, 95% CI: 1.32, 14.23) ^{100, 102, 150} (see Figure 4).

Table 6. Comparison of the test performance - diagnostic accuracy indices for identifying LTBI (incidence studies)

		Subgr	oup of interest – childre	en and adolescents		
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	De	evelopment of active TB	
(Author name, year, and country)				CI in 9 IDR in per (95%	R-CIR R-IDRR (95% CI)	
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)
Diel, 2011 ¹⁰⁰ Germany [Low]	N test results QFT-GIT: 106 T-SPOT: NA TST: 106 Test (+/-) QFT-GIT (23/83) T-SPOT (NA) TST≥ 5mm (40/66) TST≥ 10mm (20/86) N indeterminate QFT-GIT: NR T-SPOT: NA TST: NR N lost to follow-up NR	QFT (GIT) SN: 100 (60.97, 100) SP: 84.69 (76.27, 90.5) PPV: 28.57 (13.81, 49.96) NPV: 100 (95.58, 100)	TST ≥ 5mm SN: 100 (60.97, 100) SP: 65.31 (55.47, 73.99) PPV: 15.00 (7.06, 29.07) NPV: 100 (94.34, 100) TST ≥ 10mm SN: 66.67 (30.00, 90.32) SP: 63.27 (53.39, 72.14) PPV: 10.00 (3.96, 23.05) NPV: 96.88 (89.3, 99.14)	QFT (GIT) CI (+): 28.57 (13.81, 49.96) CI (-): 1.20 (0.03, 6.53) CIR: 23.7 (2.57, 110.3)	TST ≥ 5mm CI (+): 15.00 (7.06, 29.07) CI (-): 1.55 (0.04, 8.4) CIR: 9.6 (1.08, 448.2) TST ≥ 10mm CI (+): 10.00 (3.95, 23.05) CI (-):3.12 (0.22, 11.33) CIR: 3.20 (0.61, 16.67)	R-CIR [QFT (GIT)] vs. TST ≥ 5mm 2.47 (0.40, 15.12) R-CIR [QFT (GIT)] vs. TST ≥ 10mm 7.41 (2.06, 26.57)
Mahomed, 2011a ¹⁰¹ South Africa [High]	N test results QFT-GIT: 5244 T-SPOT: NA TST: 5244	QFT (GIT) SN: 75.00 (61.79, 84.77) SP: 49.35 (47.99, 50.71)	TST ≥ 5 mm SN: 76.92 (63.87, 86.28) SP: 45.03 (43.68, 46.39)	QFT (GIT) CI (+): 1.46 (1.07, 1.99) CI (-): 0.50 (0.28, 0.87) CIR: 2.89 (1.55, 5.40)	TST ≥ 5 mm CI (+): 1.38 (1.02, 1.87) CI (-): 0.51 (0.28, 0.90) CIR: 2.71 (1.42, 5.14)	R-CIR [QFT (GIT)] vs. TST ≥ 5mm 1.07 (0.68, 1.68)
	Test (+/-) QFT-GIT (2669/2575)	PPV: 1.46 (1.07, 1.99) NPV: 99.50 (99.14,	PPV: 1.38 (1.02, 1.88) NPV: 99.49 (99.11,	IDR (+): 0.64/100 p-y (0.45, 0.87)	IDR (+): 0.60/100 p-y (0.43, 0.82)	R-IDRR [QFT (GIT)] vs. TST ≥ 5mm

			oup of interest — childre	en and adolescents		
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)		velopment of active TB	
(Author name, year, and country)				CI in 9 IDR in per (95%	R-CIR R-IDRR (95% CI)	
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)
	T-SPOT (NA) TST≥ 5 mm (2894/2350) N indeterminate QFT-GIT: NR T-SPOT: NA TST: NR N lost to follow-up 18%	99.7)	99.71)	IDR (-): 0.22/100 p-y (0.12, 0.38) IDRR: 2.92 (1.58, 5.67)	IDR (-): 0.22/100 p-y (0.11, 0.39) IDRR: 2.73 (1.45, 5.42)	1.07 (0.67, 1.71)
Metin Timur, 2014 ¹⁴⁸ Turkey [Intermediate]	N test results QFT-GIT: 81 T-SPOT: NA TST: 81 Test (+/-) QFT-GIT (12/69) T-SPOT (NA) TST≥ 15 mm (81/0) N indeterminate QFT-GIT: 0 T-SPOT: NA TST: 0	QFT (GIT) SN: NA SP: 100 (95% CI: NR) PPV: NA NPV: 100 (95% CI: NR)	TST ≥ 15 mm SN: NA SP: 0.0 (95% CI: NR) PPV: 0.0 (95% CI: NR) NPV: NA	QFT (GIT) CI (+): NA CI (-): 0.0 (95% CI: NR) CIR: NA	TST ≥ 15 mm CI (+): 0.0 (95% CI: NR) CI (-): NA CIR: NA	R-CIR [QFT (GIT)] vs. TST ≥ 15mm NA

			oup of interest — childre				
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	Development of active TB CI in %, CIR R-CI			
(Author name, year, and country)				C1 in 9 IDR in per (95%	R-CIR R-IDRR (95% CI)		
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)	
	N lost to follow-up NR						
Noorbakhsh, 2011 ¹⁰² Iran [Intermediate]	N test results QFT-G: 59 T-SPOT: NA TST: 58 Test (+/-) QFT-G (18/41) T-SPOT (NA) TST≥ 10 mm (8/50) N indeterminate QFT-G: NR T-SPOT: NA TST: 1 N lost to follow-up NR	QFT (G) SN: 100 (72.25, 100) SP: 83.67 (70.96, 91.49) PPV: 55.56 (33.72, 75.44) NPV: 100 (91.43, 100)	TST ≥ 10 mm SN: 30.00 (10.78, 60.32) SP: 89.58 (77.83, 95.47) PPV: 37.50 (13.68, 69.43) NPV: 86.00 (73.81, 93.05)	QFT (G) CI (+): 55.56 (33.72, 75.44) CI (-): 2.41 (0.06, 12.9) CIR: 22.78 (2.75, 101.1)	TST ≥ 10 mm CI (+): 37.5 (13.49, 69.62) CI (-): 14.00 (6.63, 26.50) CIR: 2.68 (0.86, 8.27)	R-CIR [QFT (G)] vs. TST ≥ 10 mm 8.50 (2.87, 25.17)	
Song, 2014 ¹⁵⁰ South Korea [High]	N test results QFT-GIT: 2966 T-SPOT: NA TST: 2982 Test (+/-) QFT-GIT (317/2649)	QFT (GIT) SN: 47.83 (95% CI: 29.24, 67.04) SP: 89.6 (95% CI: 88.45, 90.65) PPV: 3.47 (95% CI:	TST ≥ 10 mm SN: 56.52 (95% CI: 36.81, 74.37) SP: 78.03 (95% CI: 76.51, 79.49) PPV: 1.96 (95% CI:	QFT (GIT) CI (+): 3.47 (95% CI: 1.87, 6.17) CI (-): 0.45 (95% CI: 0.24, 0.79) CIR: 7.66 (95% CI:	TST ≥ 10 mm CI (+): 1.96 (95% CI: 1.11, 3.36) CI (-): 0.43 (95% CI: 0.22, 0.80) CIR: 4.55 (95% CI:	R-CIR [QFT (GIT)] vs. TST ≥ 10 mm 1.68 (95% CI: 0.94, 3.03)	

Study ID	Test results		oup of interest — childre racy in % (95% CI)		evelopment of active TB	
(Author name, year, and country)	Test results	Test diagnostic accu	11 acy 111 76 (95 76 C1)	CI in 9 IDR in per (959	R-CIR R-IDRR (95% CI)	
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)
	T-SPOT (NA) TST≥ 10 mm (663/2319) TST≥ 15 mm (231/2751)	1.94, 6.10) NPV: 99.55 (95% CI: 99.21, 99.74)	1.14, 3.32) NPV: 99.57 (95% CI: 99.21, 99.77)	3.41, 17.21) OR=7.90 (95% CI: 3.46, 18.06)	2.00, 10.32) OR=4.62 (95% CI: 2.02, 10.58)	(GIT)] TST ≥ 10 mm 1.71 (95% CI: 0.94, 3.11)
	N indeterminate QFT-GIT: 16 T-SPOT: NA TST: 0		TST ≥ 15 mm SN: 56.52 (95% CI: 36.81, 74.37) SP: 92.63 (95% CI: 91.64, 93.52)		TST ≥ 15 mm CI (+): 5.62 (95% CI: 3.23, 9.47) CI (-): 0.36 (95% CI: 0.18, 0.67)	R-CIR [QFT (GIT)] vs. TST ≥ 15 mm 0.49 (95% CI: 0.28, 0.89)
	N lost to follow-up NR		PPV: 5.62 (95% CI: 3.31, 9.38) NPV: 99.64 (95% CI: 99.33, 99.80)		CIR: 15.48 (95% CI: 6.86, 34.92) OR=16.35 (95% CI: 7.08, 37.71)	R-OR [QFT (GIT)] vs. TST ≥ 15 mm 0.48 (95% CI: 0.27, 0.88)

Abbreviations: 95% CI = 95 percent confidence interval; CI = cumulative incidence; CIR = cumulative incidence ratio; GIT = Gold In-Tube; IDR = incidence density rate; IDRR = incidence density rate ratio; N = number; NPV = negative predictive value; PPV = positive predictive value; P-Y = person-year(s); QFT = QuantiFERON-TB; R-CIR = ratio of cumulative incidence ratio; R-IDRR = ratio of incidence density rate ratio; SN = sensitivity; SP = specificity; TB = tuberculosis; TST = tuberculin skin test

			IGRA	TST-5mm		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Diel 2011	0.903	0.924	104	104	6.0%	2.47 [0.40, 15.09]	
Mahomed 2011a	0.064	0.233	5244	5244	94.0%	1.07 [0.68, 1.68]	-
Total (95% CI)			5348	5348	100.0%	1.12 [0.72, 1.75]	*
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.78$, $df = 1$ (P = 0.38); $I^2 = 0\%$							0.01 0.1 1 10 100
Test for overall effect:	Z = 0.51 (P = 0.61)					Favours TST Favours IGRA

Figure 3. Pooled ratio of cumulative incidence ratios (QFT-GIT vs. TST 5mm) in children

			IGRA	TST-10mm		Risk Ratio	Risk	Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI
Diel 2011	2.002	0.651	104	104	28.9%	7.40 [2.07, 26.52]		
Noorbakhsh 2011	2.14	0.553	59	59	31.9%	8.50 [2.88, 25.12]		
Song 2014	0.52	0.3	2966	2982	39.2%	1.68 [0.93, 3.03]		
Total (95% CI)			3129	3145	100.0%	4.33 [1.32, 14.23]		-
Heterogeneity: Tau² = 0.85; Chi² = 9.14, df = 2 (P = 0.01); I² = 78% Test for overall effect: Z = 2.41 (P = 0.02) Test for overall effect: Z = 2.41 (P = 0.02) Test for overall effect: Z = 0.85; Chi² = 9.14, df = 2 (P = 0.01); I² = 78% Test for overall effect: Z = 0.85; Chi² = 9.14, df = 2 (P = 0.01); I² = 78% Test for overall effect: Z = 0.85; Chi² = 9.14, df = 2 (P = 0.01); I² = 78% Test for overall effect: Z = 0.85; Chi² = 9.14, df = 2 (P = 0.01); I² = 78% Test for overall effect: Z = 0.85; Chi² = 9.14, df = 2 (P = 0.01); I² = 78%								10 100 Favours IGRA

Figure 4. Pooled ratio of cumulative incidence ratios (QFT-GIT vs. TST 10mm) in children

4.3.3.1.2 Sensitivity and specificity:

There was a wide variability in sensitivity and specificity of IGRA (QFT-GIT/G) and TST (5mm or 10mm) across newly identified studies. \$^{100-102, 148, 150}\$ The TST sensitivity was higher at 5mm compared to 10mm/15mm, and vice versa, specificity was better at 10mm/15 mm than at 5mm. IGRA (QFT-GIT/G) demonstrated similar sensitivity (range: 48%-100%) and slightly better specificity (range: 49%-90%) compared to TST 5mm (sensitivity range: 57%-100%; specificity range: 45%-65%). Although, sensitivities of IGRA and TST 5mm were higher than that for TST 10mm/15mm (range: 30%-56%), the corresponding specificities of these tests were lower compared to TST 10mm/15mm (63%-93%). The forest plots of sensitivities and specificities were generated and due to high unexplained heterogeneity (not explained by IGRA type and TST threshold, similar diagnostic methods of active TB), no meta-analysis could be performed (see Figure 5, Figure 6, Figure 7, Figure 8).

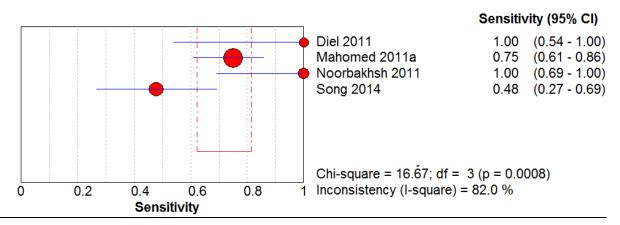


Figure 5. Forest plot of sensitivity based on incidence of active TB (QFT-GIT/G) in children

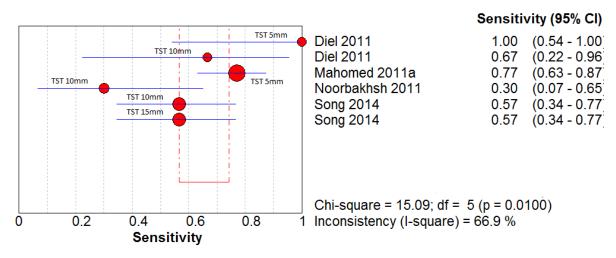


Figure 6. Forest plot of sensitivity based on incidence of active TB (TST) in children

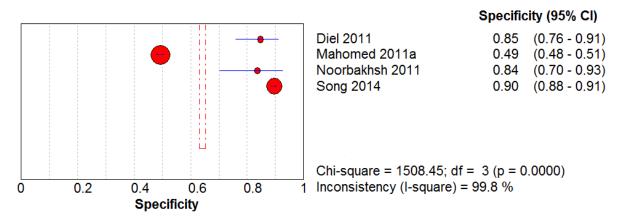


Figure 7. Forest plot of specificity based on incidence of active TB (QFT-GIT-G) in children

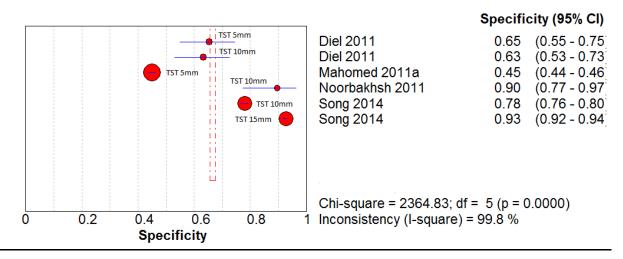


Figure 8. Forest plot of specificity based on incidence of active TB (TST) in children

4.3.3.2 Exposure levels

4.3.3.2.1 Ratios of diagnostic odds ratios (R-DORs):

This section included 17 studies: six studies from CG117^{154, 155, 158, 160-162} (see Appendix 6) and 11 in more recent studies ^{103-111, 146, 149, 152} (see Appendix 9). The association between the screening test results and the risk of LTBI/exposure level measured using the ratio of diagnostic odds ratios (R-DOR; IGRA vs. TST) in individual studies ranged from 0.27¹⁰³ to 11.01.¹¹¹ See summary Table 7 for exposure studies in children.

Table 7. Comparison of the test performance – diagnostic accuracy indices for identifying LTBI (exposure studies)

	Subgroup of interest – children and adolescents									
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	Construct validity						
(Author name,				(i.e., LTBI exposure-based proxy)						
year, and					05% CI)	R-DOR (95% CI)				
country)					reference group)					
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-				
		QFT (GIT/G) and/or		QFT (GIT/G) and/or		GIT/G or T-SPOT)				
		T-SPOT		T-SPOT		vs. TST				
A 1 2010 ¹⁰³	N. 4 14	OPTE (CITE)	TECTE > 10	OPT (CIT)	TECTE > 10	(by threshold)				
Adetifa, 2010 ¹⁰³	N test results	QFT (GIT)	TST ≥ 10 mm Same house/ different	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST				
Gambia [High]	QFT-GIT: 215 T-SPOT: 215	Same house/ different room vs. different	room vs. different	Same house/different	Same house/different	≥ 10 mm Same				
	TST: 215			room vs. different	room vs. different	house/different				
	151: 215	house SN: NR	house SN: NR	house	house	room				
	Tort (1/)	SP: NR	SP: NR	DOR: 1.20 (0.60,	DOR: 2.40 (1.00,	R-DOR: 0.58 (0.28,				
	Test (+/-) QFT-GIT	PPV: NR	PPV: NR	2.60)	5.80)	0.90)				
	(72/143)	NPV: NR	NPV: NR	DORa: 1.50 (0.70,	DORa: 2.90 (1.30,	R-DORa: 0.52 (
	T-SPOT (71/144)	INF V. INK	INF V. INK	3.10)	6.70)	0.29, 0.91)				
	TST ≥ 10 mm			3.10)	0.70)	0.29, 0.91)				
	(57/158)	Same house/same	Same house/same	Same house/same	Same house/same	Same house/same				
	(37/130)	room vs. different	room vs. different	room vs. different	room vs. different	room				
	N indeterminate	house	house	house	house	R-DOR: 0.32 (0.14,				
	QFT-GIT/G: 2	SN: NR	SN: NR	DOR: 3.20 (1.20,	DOR: 10.10 (3.20,	0.69)				
	T-SPOT: 0	SP: NR	SP: NR	9.10)	32.10)	R-DORa: 0.27				
	TST: 0	PPV: NR	PPV: NR	DORa: 4.00 (1.40,	DORa: 15.00 (4.70,	(0.12, 0.59)				
	121.0	NPV: NR	NPV: NR	11.40)	47.20)	(0.12, 0.0)				
				,	,					
		T-SPOT		T-SPOT	T-SPOT	T-SPOT vs. TST ≥				
		Same house/ different		Same	Same	10 mm				
		room vs. different		house/different	house/different	Same				
		house		room vs. different	room vs. different	house/different				
		SN: NR		house	house	room				
		SP: NR		DOR: 2.00 (0.80,	DOR: 2.40 (1.00,	R-DOR: 0.83 (0.43,				
		PPV: NR		5.10)	5.80)	1.60)				
		NPV: NR		DORa: 2.60 (0.90,	DORa: 2.90 (1.30,	R-DORa: 0.90				
				7.10)	6.70)	(0.46, 1.76)				
		Same house/same		Same house/same	Same house/same	Same house/same				

		room vs. different house SN: NR SP: NR PPV: NR NPV: NR		room vs. different house DOR: 5.30 (1.50, 18.50) DORa: 6.60 (1.70, 25.20)	room vs. different house DOR: 10.10 (3.20, 32.10) DORa: 15.00 (4.70, 42.20)	room R-DOR: 0.52 (0.22, 1.25) R-DORa: 0.44 (0.18, 1.09)
Cruz, 2011 ¹⁰⁴ US [Low]	N test results T-SPOT: 163 TST: 163 Test (+/-) T-SPOT (94/69) TST≥ 15 mm (94/69) N indeterminate T-SPOT: 22 TST: 22	T-SPOT Contact with an identifiable source case vs. no such contact SN: NR SP: NR PPV: NR NPV: NR	TST ≥ 15 mm Contact with an identifiable source case vs. no such contact SN: NR SP: NR PPV: NR NPV: NR	T-SPOT Contact with an identifiable source case vs. no such contact DOR: NR DORa: 4.41 (1.78, 10.94)	TST ≥ 15 mm Contact with an identifiable source case vs. no such contact DOR: NR DORa: 0.48 (0.26, 0.91)	T-SPOT vs. TST ≥ 15 mm Contact with an identifiable source case R-DOR: NA R-DORa: 9.19 (5.23, 16.3)
Kasambira, 2011 ¹⁰⁵ South Africa [High]	N test results QFT-GIT: 251 TST: 254 Test (+/-) QFT-GIT (79/172) TST≥ 5 mm (71/183) N indeterminate QFT-GIT: 19 TST: 16	QFT (GIT) Exposure to index case during the majority of day (> 7 hrs) vs. minority of day (< 6 hrs) SN: 29.87 (23.2, 37.52) SP: 71.68 (62.77, 79.17) PPV: 58.97 (47.89, 69.22) NPV: 42.86 (36.01, 49.99)	TST ≥ 5 mm Exposure to index case during the majority of day (> 7 hrs) vs. minority of day (< 6 hrs) SN: 29.79 (22.86, 37.79) SP: 73.64 (64.71, 80.97) PPV: 59.15 (47.54, 69.83) NPV: 45.00 (37.91, 52.30)	QFT (GIT) Exposure to index case during the majority of day (> 7 hrs) vs. minority of day (< 6 hrs) DOR: 1.10 (0.63, 1.80) DORa: 1.30 (0.69, 2.30) Adult index case smear grade (vs. negative) Scanty DOR: 0.30 (0.05, 1.60) DORa: NR	TST ≥ 5 mm Exposure to index case during the majority of day (> 7 hrs) vs. minority of day (< 6 hrs) DOR: 1.20 (0.67, 2.10) DORa: 1.10 (0.58, 2.10) Adult index case smear grade (vs. negative) Scanty DOR: NR DORa: NR	QFT-GIT vs. TST ≥5 mm Exposure to index case during the majority of day (> 7 hrs) R-DOR: 0.92 (0.62, 1.36) R-DORa: 1.18 (0.75, 1.85) Adult index case smear grade (+3) R-DOR: 0.78 (0.40, 1.52) R-DORa: 0.97 (0.27, 3.47)

Laniado- Laborin, 2014 ¹⁴⁶ Mexico [intermediate]	N test results QFT-GIT: 172 TST: 172 Test (+/-) QFT-GIT (71/101) TST≥ 5 mm (136/36) N indeterminate QFT-GIT: 1 TST: 1	QFT (GIT) Exposure to source Hours/day exposure # of cohabitants # of rooms SN: NR SP: NR PPV: NR NPV: NR	TST≥5 mm Exposure to source Hours/day exposure # of cohabitants # of rooms SN: NR SP: NR PPV: NR NPV: NR	DOR: 1.50 (0.70, 3.60) DORa: 5.50 (0.89, 34.70) 2± DOR: 1.50 (0.50, 4.90) DORa: 8.70 (1.20, 62.00) 3± DOR: 3.20 (1.40, 7.40) DORa: 11.40 (1.80, 72.00) QFT (GIT) Exposure to source: DORa: 0.91 (95% CI 0.57, 1.45) Hours/day exposure: DORa: 1.03 (95% CI 0.96, 1.10) # of cohabitants: DORa: 0.91 (95% CI 0.79, 1.05) # of rooms: DORa: 1.12 (95% CI 0.77, 1.61)	DOR: 2.81 (1.20, 6.70) DORa: 7.90 (1.50, 41.00) 2± DOR: 2.90 (0.80, 10.60) DORa: 15.70 (2.60, 92.0) 3± DOR: 4.10 (1.50, 11.10) DORa: 11.70 (2.20, 62.00) TST ≥ 5 mm Exposure to source: NR (p=NR; NS) Hours/day exposure: NR (p=NR; NS) # of cohabitants: NR (p=NR; NS) # of rooms: NR (p=NR; NS)	QFT-GIT vs. TST ≥ 5 mm R-DORa: NA
Mahomed,	N test results	QFT (GIT)	TST≥5 mm	QFT (GIT)	TST ≥ 5 mm	QFT-GIT vs. TST
2011b ¹⁰⁶	QFT-GIT: 5244	Current or prior TB	Current or prior TB	Current or prior TB	Current or prior TB	≥5 mm
South Africa	TST: 5244	household contact vs.	household contact vs.	household contact	household contact	Current or prior TB
[High]		no such contact	no such contact	vs. no such contact	vs. no such contact	household contact
	Test (+/-)	SN: 66.67 (64.09,	SN: 71.32 (68.83,	DOR: 2.40 (2.11,	DOR: 2.52 (2.20,	R-DOR: 0.94 (0.86,
	QFT-GIT	69.15)	73.69)	2.74)	2.88)	1.04)
	(2669/2562)	SP: 54.32 (52.75,	SP: 50.31 (48.74,	DORa: 1.90 (1.70,	DORa: 2.00 (1.70,	R-DORa: 0.95

	TST≥ 5 mm (2894/2350) N indeterminate QFT-GIT: 13 TST: 0	55.88) PPV: 33.27 (31.51, 35.08) NPV: 82.67 (81.16, 84.09)	51.87) PPV: 32.83 (31.14, 34.56) NPV: 83.74 (82.2, 85.18)	2.20)	2.30)	(0.86, 1.05)
Pavic, 2011 ¹⁰⁷ Croatia [Low]	N test results QFT-GIT: 141 TST: 142 Test (+/-) QFT-GIT (18/123) TST≥ 10 mm (24/118) N indeterminate QFT-GIT: 1 TST: 0	QFT (GIT) Close contact (household contact with aggregate exposure to a patient with active TB ≥40 hrs in closed rooms) vs. distant contact (occasional or unclear exposure time or <40 hrs during the presumed period of infectiousness) SN: 19.54 (12.57, 29.08) SP: 98.15 (90.23, 99.67) PPV: 94.44 (74.24, 99.01) NPV: 43.09 (34.68, 51.92)	TST ≥ 10 mm Close contact (household contact with aggregate exposure to a patient with active TB ≥40 hrs in closed rooms) vs. distant contact (occasional or unclear exposure time or <40 hrs during the presumed period of infectiousness) SN: 26.44 (18.31, 36.56) SP: 98.18 (90.39, 99.68) PPV: 95.83 (79.76, 99.26) NPV: 45.76 (37.05, 54.74)	QFT (GIT) Close contact (household contact with aggregate exposure to a patient with active TB ≥40 hrs in closed rooms) vs. distant contact (occasional or unclear exposure time or <40 hrs during the presumed period of infectiousness) DOR: 12.87 (1.66, 99.80) DORa: NR	TST ≥ 10 mm Close contact (household contact with aggregate exposure to a patient with active TB ≥40 hrs in closed rooms) vs. distant contact (occasional or unclear exposure time or <40 hrs during the presumed period of infectiousness) DOR: 19.41 (2.53, 148.40) DORa: NR	QFT-GIT vs. TST ≥ 10 mm Close contact (household contact with aggregate exposure to a patient with active TB ≥40 hrs in closed rooms) R-DOR: 0.66 (0.15, 2.89) R-DORa: NA
Perez-Porcuna, 2014 ¹⁴⁹ Brazil [intermediate]	N test results QFT-GIT: 116 TST: 135 Test (+/-) QFT-GIT (36/80) TST≥ 10mm (47/88) N indeterminate QFT-GIT: 19	QFT (GIT) Time of exposure to the index case (# months) SN: NA SP: NA PPV: NA NPV: NA	TST ≥ 10 mm Time of exposure to the index case (# months) SN: NA SP: NA PPV: NA NPV: NA	QFT (GIT) Time of exposure to the index case (# months) DOR: NR (p=0.024) DORa: NR (p=0.537)	TST ≥ 10 mm Time of exposure to the index case (# months) DOR: NR (p<0.001) DORa: 1.15 (95% CI: 1.04, 1.27; p=0.009) Mycobacterium	QFT-GIT vs. TST ≥ 10 mm Time of exposure to the index case (# months) R-DOR: NA R-DORa: NA

	TST: 0	Mycobacterium tuberculosis contact (MTC) score: 0-15 SN: NA SP: NA PPV: NA NPV: NA	Mycobacterium tuberculosis contact (MTC) score: 0-15 SN: NA SP: NA PPV: NA NPV: NA	tuberculosis contact (MTC) score: 0-15 DOR: NR (p=0.021) DORa: 1.16 (95% CI: 1.01, 1.33; p=0.035)	tuberculosis contact (MTC) score: 0-15 DOR: NR (p<0.001) DORa: 1.29 (95% CI: 1.08, 1.54; p=0.005)	Mycobacterium tuberculosis contact (MTC) score: 0-15 R-DOR: NA R-DORa: 0.90 (95% CI: 0.80, 1.01)
Rutherford, 2012a-b ^{108, 109} Indonesia [High]	N test results QFT-GIT: 290 TST: 302 Test (+/-) QFT-GIT (152/138) TST≥ 10mm (145/157) N indeterminate QFT-GIT: 14 TST: 2	QFT (GIT) Characteristics of TB case smear positivity (3+ vs. Scanty/1+) SN: 62.5 (53.58, 70.65) SP: 59.6 (49.75, 68.73) PPV: 65.22 (56.15, 73.3) NPV: 56.73 (47.14, 65.85)	TST ≥ 10 mm Characteristics of TB case smear positivity (3+ vs. Scanty/1+) SN: 61.9 (53.19, 69.91) SP: 68.27 (58.81, 76.43) PPV: 70.27 (61.21, 77.98) NPV: 59.66 (50.68, 68.04)	QFT (GIT) Characteristics of TB case smear positivity (2+ vs. Scanty/1+) DOR: 1.56 (0.78, 3.11) DORa: NR Characteristics of TB case smear positivity (3+ vs. Scanty/1+) DOR: 2.43 (1.21, 4.86) DORa: 2.28 (1.06, 4.90)	TST ≥ 10 mm Characteristics of TB case smear positivity (2+ vs. Scanty/1+) DOR: 1.80 (0.89, 3.63) DORa: NR Characteristics of TB case smear positivity (3+ vs. Scanty/1+) DOR: 3.35 (1.81, 6.21) DORa: 2.93 (1.59, 5.39)	QFT-GIT vs. TST ≥ 10 mm Characteristics of TB case smear positivity (3+) R-DOR: 0.73 (0.45, 1.17) R-DORa: 0.78 (0.47, 1.28)
		Relationship to child (Parent vs. Other) SN: 61.19 (54.59, 67.4) SP: 77.27 (63.01, 87.16) PPV: 93.06 (87.69, 96.18) NPV: 28.57 (21.22, 37.26)	Relationship to child (Parent vs. Other) SN: 55.9 (49.42, 62.18) SP: 82.22 (68.67, 90.71) PPV: 94.12 (88.82, 96.99) NPV: 26.81 (20.12, 34.76)	Relationship to child (Aunt/Uncle vs. Other) R-DOR: 1.51 (0.44, 5.17) R-DORa: NR Relationship to child (Parent vs. Other) R-DOR: 5.61 (2.40, 13.12) R-DORa: 4.30	Relationship to child (Aunt/Uncle vs. Other) R-DOR: 2.31 (0.77, 6.79) R-DORa: NR Relationship to child (Parent vs. Other) R-DOR: 5.85 (2.56, 13.38) R-DORa: 7.04	Relationship to child (Parent vs. Other) R-DOR: 0.96 (0.52, 1.61) R-DORa: 0.78 (0.47, 1.28)

				(1.48, 12.45)	(2.23, 22.28)	
		Sleeping proximity to child (same bed vs. different room) SN: 59.24 (51.42, 66.61) SP: 59.05 (49.48, 67.97) PPV: 68.38 (60.15, 75.6) NPV: 49.21 (40.63, 57.83)	Sleeping proximity to child (same bed vs. different room) SN: 51.52 (43.94, 59.02) SP: 56.88 (47.51, 65.79) PPV: 64.39 (55.92, 72.05) NPV: 43.66 (35.78, 51.88)	Sleeping proximity to child (same room vs. different room) R-DOR: 1.87 (0.70, 5.02) R-DORa: NR Sleeping proximity to child (same bed vs. different room) R-DOR: 2.01 (1.12, 3.61) R-DORa: 1.45 (0.70, 2.99)	Sleeping proximity to child (same room vs. different room) R-DOR: 1.21 (0.41, 3.53) R-DORa: NR Sleeping proximity to child (same bed vs. different room) R-DOR: 1.35 (0.79, 2.32) R-DORa: NR	Sleeping proximity to child (same bed) R-DOR: 1.47 (1.05, 2.16) R-DORa: NA
		Time spent with child (# hrs/day; >8 vs. <2) SN: 52.00 (44.06, 59.85) SP: 42.55 (29.51, 56.72) PPV: 74.29 (65.17, 81.68) NPV: 21.74 (14.54, 31.21)	Time spent with child (# hrs/day; >8 vs. <2) SN: 47.47 (39.83, 55.22) SP: 41.67 (28.85, 55.72) PPV: 72.82 (63.52, 80.47) NPV: 19.42 (12.94, 28.1)	Time spent with child (# hrs/day; 2-8 vs. <2) R-DOR: 0.78 (0.33, 1.80) R-DORa: NR Time spent with child (# hrs/day; >8 vs. <2) R-DOR: 0.83 (0.38, 1.79) R-DORa: NR	Time spent with child (# hrs/day; 2-8 vs. <2) R-DOR: 0.55 (0.24, 1.24) R-DORa: Time spent with child (# hrs/day; >8 vs. <2) R-DOR: 0.64 (0.31, 1.36) R-DORa: NR	Time spent with child (# >8 hrs/day) R-DOR: 1.30 (0.75, 2.24) R-DORa: NA
Talbot, 2012 ¹¹⁰ US [Low]	N test results T-SPOT: 143 TST: 143 Test (+/-) T-SPOT (5/138) TST≥ 15 mm	T-SPOT Non-low-TB exposure risk vs. low- TB exposure risk group	TST ≥ 15 mm Non-low-TB exposure risk vs. low- TB exposure risk group	T-SPOT Non-low-TB exposure risk vs. low-TB exposure risk group	TST ≥ 15 mm Non-low-TB exposure risk vs. low-TB exposure risk group	T-SPOT vs. TST ≥ 15 mm Non-low-TB exposure risk vs. low-TB exposure risk group
	(6/137) N indeterminate T-SPOT: 15	SN: NR SP: 100 (97.00, 100) PPV: NR NPV: NR	SN: NR SP: 98.39 (94.31, 99.56) PPV: NR	DOR: NR DORa: NR	DOR: NR DORa: NR	R-DOR: NA R-DORa: NA

	TST: 22		NPV: NR			
Tieu, 2014 ¹⁵² Thailand [high]	N test results QFT-GIT: 136	QFT (GIT) TSPOT	TST ≥ 10 mm TST ≥ 15 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST≥10mm
Thanana (mgn)	TSPOT: 136 TST: 136	TB contact score SN: NA	TB contact score SN: NA	TB contact score (≥13 vs. 8-12)	TB contact score (≥13 vs. 8-12)	TB contact score (≥13 vs. 8-12)
	Test (+/-) QFT-GIT (40/96) TSPOT (36/100) TST≥10 mm	SP: NA PPV: NA NPV: NA	SP: NA PPV: NA NPV: NA	DOR: 4.04 (95% CI: 1.81, 8.99)	DOR: 2.59 (95% CI: 1.28, 5.23)	R-DOR: 1.56 (95% CI: 0.91, 2.69) R-DORa: 0.90 (95%
	(88/48) TST≥15 mm (48/88)			DORa: 1.98 (95% CI: 0.64, 6.11)	DORa: 2.21 (95% CI: 0.99, 4.98)	CI: 0.44, 1.82) QFT-GIT vs.
	N indeterminate QFT-GIT: 0			TSPOT TB contact score	TST ≥ 15 mm TB contact score	TST≥15mm TB contact score (≥13 vs. 8-12)
	TSPOT: 0 TST: 0			(≥13 vs. 8-12) DOR: 3.50 (95% CI: 1.57, 7.81)	(≥13 vs. 8-12) DOR: 2.19 (95% CI: 1.09, 4.43)	R-DOR: 1.84 (95% CI: 1.07, 3.18)
				DORa: 3.15 (95% CI: 1.35, 7.34)	DORa: 0.83 (95% CI: 0.35, 1.99)	R-DORa: 2.39 (95% CI: 1.15, 4.93)
						TSPOT vs. TST≥10mm TB contact score (≥13 vs. 8-12)
						R-DOR: 1.35 (95% CI: 0.78, 2.33)
						R-DORa: 1.43 (95% CI: 0.78, 2.59)
						TSPOT vs. TST≥15mm TB contact score (≥13 vs. 8-12)

						R-DOR: 1.60 (95% CI: 0.93, 2.75) R-DORa: 3.80 (95% CI: 2.04, 7.05)
Tsolia, 2010 ¹¹¹	N test results	QFT (GIT)	$TST \ge 5 \text{ mm}$	QFT (GIT)	TST ≥ 5 mm	QFT-GIT vs. TST
Greece [Low]	QFT-GIT: 95 TST: 99 Test (+/-) QFT-GIT (32/63) TST≥ 5 mm (55/44) N indeterminate QFT-GIT: 4 TST: 0	Contact with an adult TB (non-household regular vs. non-household occasional) SN: 33.33 (18.64, 52.18) SP: 90.91 (62.26, 98.38) PPV: 90.00 (59.58, 98.21) NPV: 35.71 (20.71, 54.17)	Contact with an adult TB (non-household regular vs. non-household occasional) SN: 64.29 (45.83, 79.29) SP: 36.36 (15.17, 64.62) PPV: 72.00 (52.42, 85.72) NPV: 28.57 (11.72, 54.65)	Contact with an adult TB (non-household regular vs. non-household occasional) DOR: 5.00 (0.55, 45.39) DORa: NR	Contact with an adult TB (non-household regular vs. non-household occasional) DOR: 1.03 (0.24, 4.39) DORa: NR	≥ 5 mm Contact with an adult TB (non- household regular) R-DOR: 4.85 (95% CI: 1.26, 18.69) R-DORa: NA
		Contact with an adult TB (household vs. non-household occasional) SN: 38.6 (27.06, 51.57) SP: 90.91 (62.26, 98.38) PPV: 95.65 (79.01, 99.23) NPV: 22.22 (12.54, 36.27)	Contact with an adult TB (household vs. non-household occasional) SN: 50.00 (37.73, 62.27) SP: 36.36 (15.17, 64.62) PPV: 81.08 (65.79, 90.52) NPV: 11.76 (4.67, 26.62)	Contact with an adult TB (household vs. non-household occasional) DOR: 6.28 (0.75, 52.56) DORa: NR	Contact with an adult TB (household vs. non-household occasional) DOR: 0.57 (0.15, 2.15) DORa: NR	Contact with an adult TB (household regular) R-DOR: 11.02 (3.07, 39.60) R-DORa: NA

Abbreviations: 95% CI = 95 percent confidence interval; DOR = diagnostic odds ratio; DORa = adjusted diagnostic odds ratio; GIT = Gold In-Tube; N = number; NPV = negative predictive value; PPV = positive predictive value; QFT = QuantiFERON-TB; R-DOR = ratio of diagnostic odds ratio; R-DORa = adjusted ratio of diagnostic odds ratio; SN = sensitivity; SP = specificity; TB = tuberculosis; TST = tuberculin skin test

The updated meta-analysis included 14 studies: six studies from CG117^{154, 155, 158, 160-162} (see Appendix 6) and eight more recent studies published in 2009 and onwards^{103-109, 111, 152} (see Appendix 9). One study¹¹⁰ did not provide sufficient information to calculate the R-DOR, therefore this study could not be included in the meta-analysis. In a random effects meta-analysis of 14 studies,^{103-109, 111, 152, 154, 155, 158, 160-162} of which two studies used T-SPOT.TB^{104, 158} and the remaining 12 studies used QFT-GIT (or G), the pooled R-DOR showed a significantly stronger association for IGRAs compared to TST in relation to a risk of LTBI/exposure level (pooled R-DOR = 1.98, 95% CI: 1.19, 3.28; I² = 89%) (Figure 9).

			IGRA	TST		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Adetifa 2010	-1.321	0.405	215	215	7.9%	0.27 [0.12, 0.59]	
Brock 2004	0.657	0.712	85	85	5.6%	1.93 [0.48, 7.79]	 •
Chun 2008	0.113	0.609	71	71	6.3%	1.12 [0.34, 3.69]	
Cruz 2011	2.217	0.286	163	163	8.7%	9.18 [5.24, 16.08]	
Hansted 2009	0.939	0.541	97	97	6.8%	2.56 [0.89, 7.38]	 •
Higuchi 2009	1.498	0.6	313	306	6.4%	4.47 [1.38, 14.50]	
Kasambira 2011	-0.025	0.647	267	251	6.0%	0.98 [0.27, 3.47]	
Lighter 2009	2.311	0.603	174	174	6.4%	10.08 [3.09, 32.88]	_
Mahomed 2011b	-0.051	0.051	5231	5244	9.7%	0.95 [0.86, 1.05]	+
Okada 2008	0.737	0.556	195	195	6.7%	2.09 [0.70, 6.21]	+-
Pavic 2011	-0.41	0.751	141	142	5.3%	0.66 [0.15, 2.89]	
Rutherford 2012	0.4	0.182	290	302	9.3%	1.49 [1.04, 2.13]	-
Tieu 2014	0.444	0.277	136	136	8.8%	1.56 [0.91, 2.68]	 -
Tsolia 2010	2.399	0.652	68	71	6.0%	11.01 [3.07, 39.52]	
Total (95% CI)			7446	7452	100.0%	1.98 [1.19, 3.28]	•
Heterogeneity: Tau² =	0.68; Chi ² = 116.1	6, df = 1	3 (P <	0.0000	1); I² = 89	1%	0.01 0.1 1 10 100
Test for overall effect:			•				0.01 0.1 1 10 100 Favours TST Favours IGRA

Figure 9. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low risk exposure in children

Heterogeneity was high (I² = 89%) and the sources of heterogeneity were explored through subgroup analyses in regards to burden of TB incidence, IGRA type, TST threshold, and study setting. The simultaneous meta-analytic stratification by IGRA type (QFT-GIT/G and TSPOT) and TST threshold (5mm, 10-15mm) (Figure 10, Figure 11, Figure 12) as well as study setting (community-based contact and hospital-based studies) did not help to explain the presence of heterogeneity (i.e., heterogeneity persisted in these analyses) (see Figure 13, Figure 14).

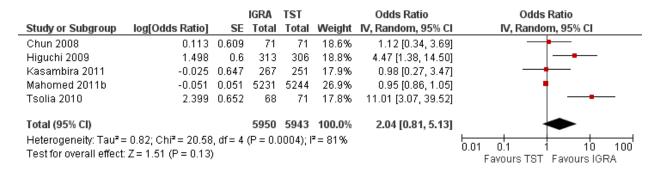


Figure 10. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT vs. TST 5mm based on high risk and low risk exposure in children

			IGRA	TST		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Adetifa 2010	-1.321	0.405	215	215	15.8%	0.27 [0.12, 0.59]	
Brock 2004	0.657	0.712	85	85	11.0%	1.93 [0.48, 7.79]	 •
Lighter 2009	2.311	0.603	174	174	12.6%	10.08 [3.09, 32.88]	
Okada 2008	0.737	0.556	195	195	13.3%	2.09 [0.70, 6.21]	+-
Pavic 2011	-0.41	0.751	141	142	10.4%	0.66 [0.15, 2.89]	
Rutherford 2012	0.4	0.182	290	302	19.0%	1.49 [1.04, 2.13]	 •
Tieu 2014	0.612	0.277	136	136	17.8%	1.84 [1.07, 3.17]	-
Total (95% CI)			1236	1249	100.0%	1.48 [0.75, 2.95]	•
Heterogeneity: Tau² =	0.61; Chi ^z = 30.26		0.01 0.1 1 10 100				
Test for overall effect:	Z = 1.13 (P = 0.26))					Favours TST Favours IGRA

Figure 11. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT vs. TST 10-15mm based on high risk and low risk exposure in children

Study or Subgroup	log[Odds Ratio]	SE	IGRA Total	TST Total	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
Adetifa 2010	-1 321	0.405	215	215	24.9%	0.27 [0.12, 0.59]	
							<u> </u>
Cruz 2011		0.286	163	163	25.8%	9.18 [5.24, 16.08]	
Hansted 2009	0.939	0.541	97	97	23.6%	2.56 [0.89, 7.38]	
Tieu 2014	0.301	0.277	136	136	25.8%	1.35 [0.79, 2.33]	†
Total (95% CI)			611	611	100.0%	1.72 [0.39, 7.62]	
Heterogeneity: Tau² =	: 2.16; Chi² = 55.21	, df = 3		0.01 0.1 1 10 10			
Test for overall effect:	Z = 0.71 (P = 0.48))					Favours TST Favours IGRA

Figure 12. Pooled ratio of diagnostic odds ratio (R-DOR) of TSPOT vs. TST 10-15mm based on high risk and low risk exposure in children

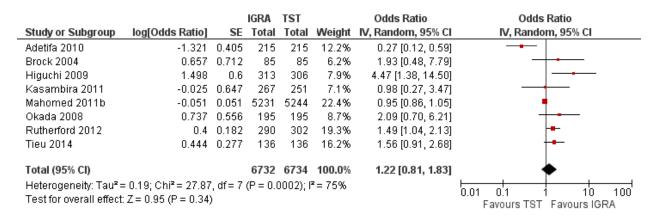


Figure 13. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low risk exposure (Community based contact studies only) in children

			IGRA	TST		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Chun 2008	0.113	0.609	71	71	16.2%	1.12 [0.34, 3.69]	
Cruz 2011	2.217	0.286	163	163	20.7%	9.18 [5.24, 16.08]	-
Hansted 2009	0.939	0.541	97	97	17.2%	2.56 [0.89, 7.38]	 •
Lighter 2009	2.311	0.603	174	174	16.3%	10.08 [3.09, 32.88]	_ -
Pavic 2011	-0.41	0.751	141	142	14.1%	0.66 [0.15, 2.89]	
Tsolia 2010	2.399	0.652	68	71	15.5%	11.01 [3.07, 39.52]	
Total (95% CI)			714	718	100.0%	3.78 [1.53, 9.36]	•
Heterogeneity: Tau² = Test for overall effect:		0.01 0.1 1 10 100 Favours TST Favours IGRA					

Figure 14. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low risk exposure (Hospital based studies only) in children

However, the subgroup analysis by country of burden explained some (but not all) of the observed heterogeneity and revealed an interesting trend showing no difference between IGRAs and TST in identifying LTBI across studies conducted in countries of high TB burden (pooled R-DOR = 1.13, 95% CI: 0.78, 1.65; $I^2 = 71$) (see Figure 15 and Figure 16).

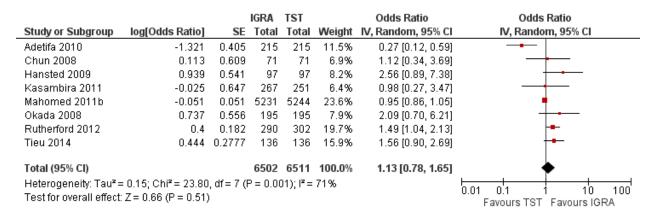


Figure 15. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low risk exposure (studies conducted in high burden countries) in children

In contrast, IGRA was significantly superior to TST in identifying LTBI in the settings of low TB burden (pooled R-DOR = 4.74, 95% CI: 2.15, 10.44; $I^2 = 67\%$) (see Figure 16).

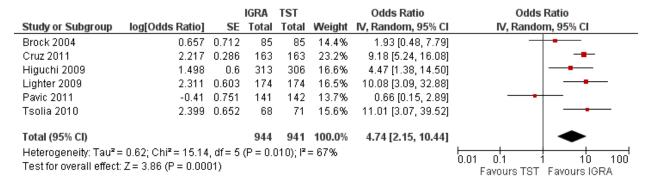


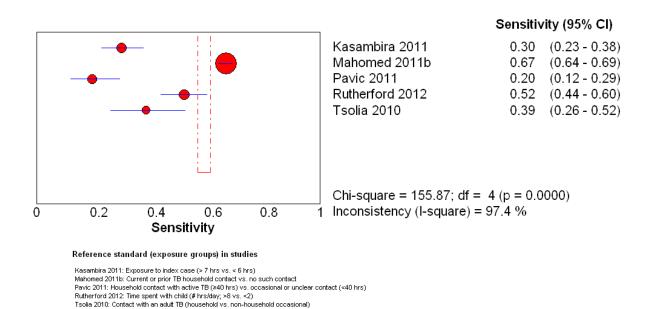
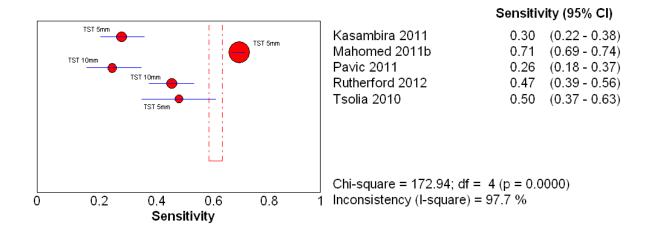
Figure 16. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST based on high risk and low risk exposure (studies conducted in low burden countries) in children

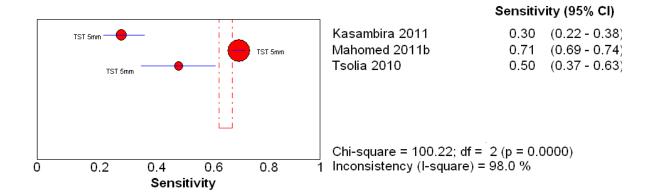
In five studies, trends for exposure gradient (across more than two ordinal exposure groups) for IGRA and TST were explored with respect to sleeping proximity (same house/same room, same house/different room, different house), 103, 108, 109 adult index case type of TB diagnosis, 105 adult index case smear grade (negative, scanty, 1+, 2+, 3+), 105, 108, 109 duration of exposure to index case (time spent with child), 105, 108, 109, 152 relationship to index case (parent, aunt/uncle, other), 108, 109, 152 TB contact score (score-based categories), 152 and type of contact (household, non-household regular, occasional). 111 In general, for both tests IGRA and TST, there was an increasing trend in DORs across the exposure groups. In two studies, this trend was absent for both tests in relation to duration of exposure to index case 108, 109 and for TST in relation to type of contact. 111 See Appendix 9 for full extraction sheets.

4.3.3.2.2 Sensitivity and specificity:

Sensitivity and specificity:

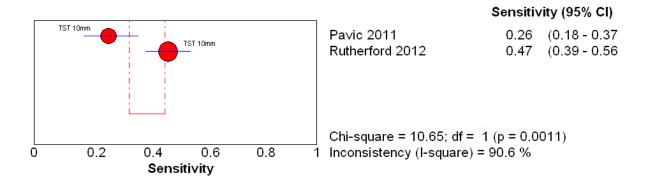
In this analysis, six ^{103, 104, 110, 146, 149, 152} of the included 11 recent studies ^{103-111, 146, 149, 152} failed to provide sufficient information for calculating both sensitivity and specificity. ^{103, 104, 110, 146, 149, 152} There was a wide variability in sensitivity and specificity of IGRA (QFT-GIT/G) and TST (5mm or 10mm) with overlapping values across the five remaining studies ^{105-109, 111} (see Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 23, Figure 24).


Figure 17. Forest plot of sensitivity based on exposure groups (QFT-GIT) in children

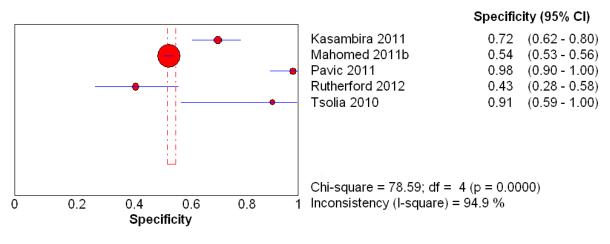
Reference standard (exposure) groups in studies

Kasambira 2011: Exposure to index case (> 7 hrs vs. < 6 hrs)
Mahomed 2011b: Current or prior TB household contact vs. no such contact
Pavic 2011: Household contact with active TB (≥40 hrs) vs. occasional or unclear contact (<40 hrs)
Rutherford 2012: Time spent with child (# hrs/day; >8 vs. <2)
Tsoila 2010: Contact with an adult TB (household vs. non-household occasional)


Figure 18. Forest plot of sensitivity based on exposure groups (TST) in children

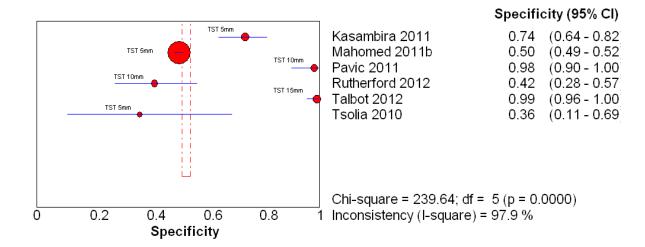
Reference standard (exposure) groups in studies

Kasambira 2011: Exposure to index case (> 7 hrs vs. < 6 hrs)
Mahomed 2011b: Current or prior TB household contact vs. no such contact
Tsolia 2010: Contact with an adult TB (household vs. non-household occasional)


Figure 19. Forest plot of sensitivity based on exposure groups (TST 5mm) in children

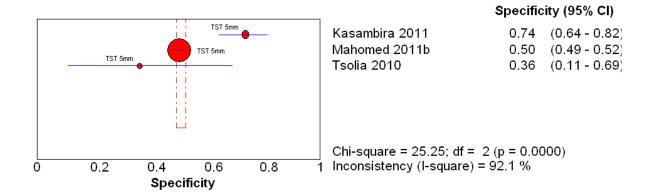
Reference standard (exposure) groups in studies

Pavic 2011: Household contact with active TB (≥40 hrs) vs. occasional or unclear contact (<40 hrs) Rutherford 2012: Time spent with child (# hrs/day; >8 vs. <2)


Figure 20. Forest plot of sensitivity based on exposure groups (TST 10mm) in children

Reference standard (exposure groups) in studies

Kasambira 2011: Exposure to index case (> 7 hrs vs. < 6 hrs)
Mahomed 2011b: Current or prior TB household contact vs. no such contact
Pavic 2011: Household contact with active TB (≥40 hrs) vs. occasional or unclear contact (<40 hrs)
Rutherford 2012: Time spent with child (# hrs/day, >8 vs. <2)
Tsolia 2010: Contact with an adult TB (household vs. non-household occasional)


Figure 21. Forest plot of specificity based on exposure groups (QFT-GIT) in children

Reference standard (exposure) groups

Kasambira 2011: Exposure to index case (> 7 hrs vs. < 6 hrs)
Mahomed 2011b: Current or prior TB household contact vs. no such contact
Pavic 2011: Household contact with active TB (240 hrs) vs. occasional or unclear contact (<40 hrs)
Rutherford 2012: Time spent with child (# hrs/day; >8 vs. <2)
Talbot 2012: Non-low-TB exposure risk vs. low-TB exposure risk group
Tsolia 2010: Contact with an adult TB (household vs. non-household occasional)

Figure 22. Forest plot of specificity based on exposure groups (TST) in children

Reference standard (exposure) groups

Kasambira 2011: Exposure to index case (> 7 hrs vs. < 6 hrs)
Mahomed 2011b: Current or prior TB household contact vs. no such contact
Tsolia 2010: Contact with an adult TB (household vs. non-household occasional)

Figure 23. Forest plot of specificity based on exposure groups (TST 5mm) in children

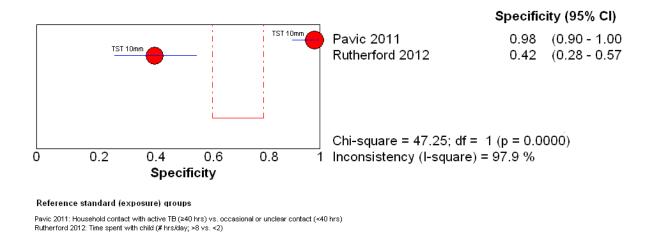


Figure 24. Forest plot of specificity based on exposure groups (TST 10mm) in children

Both QFT-GIT/G and TST (5mm or 10mm) demonstrated better specificity (range: 36%-98%) than sensitivity (range: 20%-71%). There was no clear numerical pattern indicating the superiority of IGRA over TST (or vice versa) with respect to sensitivity and specificity. Forest plots of sensitivities and specificities showed a great extent of heterogeneity not explained by IGRA type and/or TST threshold), therefore, no meta-analysis was performed.

4.3.3.2.3 Influence of BCG vaccination status on test positivity:

In this analysis, four ^{107, 110, 146, 152} of the included 11 recent studies ^{103-111, 146, 149, 152} did not report any information needed to determine whether or not the BCG vaccination status influenced the odds of test positivity differentially for IGRAs and TST. ^{107, 110} Of the seven remaining studies reporting this evidence, ^{103-106, 108, 109, 111, 149} only three demonstrated significantly increased ORs for TST positivity in relation to BCG vaccination status (range of ORs: 1.16-20.34). ^{104, 106, 111} The odds of test positivity for IGRAs across the seven studies ^{103-106, 108, 109, 111, 149} were not significantly different between the BCG vaccinated vs. non-vaccinated groups (see summary Table 8). One study with a relatively large sample size and narrow confidence intervals demonstrated more conclusively that BCG vaccination status was associated with an increased odds of test positivity for TST (OR = 1.16, 95% CI: 1.0, 1.33) but not for IGRA (OR = 0.99, 95% CI: 0.86, 1.12). ¹⁰⁶

Table 8. Association between test positivity and BCG vaccination (exposure studies) subgroup of interest – children and adolescents

Study ID Sample size (Author name, year, and (N)		Type of IGRA TST induration threshold	1	and BCG vaccination status (OR, 95% CI)
country) [burden]			Crude/unadjusted	Adjusted
Adetifa, 2010 ¹⁰³	199	QFT-GIT	1.10 (95% CI: 0.60, 2.00)	NR
Gambia [Low]	199	T-SPOT	1.10 (95% CI: 0.61, 2.09)	NR
	199	TST-10mm	0.89 (95% CI: 0.50, 1.70)	NR
Cruz, 2011 ¹⁰⁴	NR	T-SPOT	0.69 (95% CI: 0.37, 1.31)	NR
US [Low]	NR	TST-15mm	4.32 (95% CI: 1.02, 18.35)	NR
Kasambira, 2011 ¹⁰⁵	262	QFT-GIT	0.62 (95% CI: 0.08, 4.76)	0.83 (95% CI: 0.08, 8.33) adjusted
South Africa [High]	247	5mm	0.38 (95% CI: 0.05, 2.85)	0.52 (95% CI: 0.06, 4.00) adjusted
Laniado-Laborin, 2014 ¹⁴⁶ Mexico [Intermediate]	172	QFT-GIT	NR	NR
	172	TST-5mm	NR	NR
Mahomed, 2011b ¹⁰⁶	3554	QFT-GIT	0.99 (95% CI: 0.86, 1.12)	NR
South Africa [High]	3554	TST-5mm	1.16 (95% CI 1.00, 1.33)	NR
Pavic, 2011 ¹⁰⁷	NR	QFT-GIT	NR	NR
Croatia [Low]	NR	TST-10mm	NR	NR
Perez-Porcuna, 2014 ¹⁴⁹ Brazil [Intermediate]	116	QFT-GIT	3.89 (95% CI: 0.46, 32.33)	NR
	135	TST-10mm	1.85 (95% CI: 0.36, 9.36)	NR
Rutherford, 2012a-b ^{108, 109}	260	QFT-GIT	0.51 (95% CI: 0.26, 1.00)	0.60 (95% CI: 0.26, 1.38) adjusted
Indonesia [High]	272	TST-10mm	0.68 (95% CI: 0.35, 1.35)	NR
Talbot, 2012 ¹¹⁰	NR	T-SPOT	NR	NR
US [Low]	NR	TST-15mm	NR	NR
Tieu, 2014 ¹⁵²	136	QFT-GIT	NR	NR
Thailand [High]	136	TST-10mm	NR	NR
	136	T-SPOT	NR	NR
	136	TST-15mm	NR	NR
Tsolia, 2010 ¹¹¹ Greece	NR	QFT-GIT	0.19 (95% CI: 0.06, 0.60)	NR
[Low]	NR	TST-5mm	20.34 (95% CI: 5.60, 73.89)	NR

Abbreviations: 95% CI = 95 percent confidence interval; GIT = Gold In-Tube; N = number; NR = not reported; QFT = QuantiFERON-TB; TB = tuberculosis; TST = tuberculin skin test

4.3.3.3 Between-test concordance, discordance, and agreement

This section included five studies reviewed in CG117^{154-157, 162} (see Appendix 6) and 16 more recent studies^{100-111, 146, 148-150, 152} (see Appendix 9). The agreement kappa statistic was not available for four studies.^{100, 102, 104, 148} There was a wide variation in kappa statistic across 21 studies, ranging from 0.13¹¹¹ to 0.91¹¹¹ (see summary Table 9). In post-2009 studies,^{101, 103, 105-111} the ranges of kappa statistic according to specific TST threshold and IGRA type were as follows: QFT-GIT vs. TST 5mm (range: 0.27-0.91), QFT-GIT vs. TST 10mm (range: 0.13-0.64), and TSPOT vs. TST 10mm (range: 0.53-0.71). According to one study, both between-test percent concordance and kappa statistic were lower amongst participants with BCG vaccination history (concordance: 46.5%, kappa: 0.16) compared to those without such history (concordance: 96.20%, kappa: 0.91).¹¹¹

Table 9. Between-test concordance and discordance (exposure studies and incidence)

		Subgroup of interes	st – children and adolescen	ts	
Study ID (Author name, year, and country) [burden]	Sample size (N) total or by subgroup	Type of IGRA vs. TST induration threshold	Concordance (%) 95% CI	Discordance (%) 95% CI	Agreement kappa 95% CI
Adetifa, 2010 ¹⁰³ Gambia [Low]	217	QFT-GIT vs. 10mm	80.00 (74.15, 84.80)	20.00 (15.2, 25.85)	0.52 (0.39, 0.65)
	215	T-SPOT vs. 10mm	80.47 (74.65, 85.21)	19.53 (14.79, 25.35)	0.53 (0.40, 0.66)
Cruz, 2011 ¹⁰⁴ US [Low]	NR	T-SPOT vs. 15mm	NR	NR	NR
Kasambira, 2011 ¹⁰⁵	254	QFT-GIT vs. 5mm	86.86 (81.96, 90.59)	13.14 (9.41, 18.04)	0.68 (0.56, 0.81)
South Africa [High]	254	QFT-GIT vs. 10mm	85.59 (80.54, 89.5)	14.41 (10.5, 19.46)	0.64 (0.51, 0.76)
Laniado-Laborin, 2014 ¹⁴⁶ Mexico [Intermediate]	172	QFT-GIT vs. 5mm	59.88 (52.42, 66.92)	40.12 (33.08, 47.58)	0.27 (0.17, 0.38)
Mahomed, 2011b ¹⁰⁶	NR	QFT-GIT vs. 5mm	84.8 (NR)	NR	0.70 (0.68, 0.71)
South Africa [High]	NR	QFT-GIT vs. 10mm	81.4 (NR)	NR	0.63 (0.61, 0.65)
	NR	QFT-GIT vs. 15mm	64.3 (NR)	NR	0.30 (0.27, 0.32)
Metin Timur, 2014 ¹⁴⁸ Turkey [Intermediate]	81	QFT-GIT vs. 15mm	NR	NR	NR
Pavic, 2011 ¹⁰⁷ Croatia [Low]	141	QFT-GIT vs. 10mm	89.36 (83.19, 93.45)	10.64 (6.554, 16.81)	0.59 (0.42, 0.75)
Perez-Porcuna, 2014 ¹⁴⁹ Brazil [Intermediate]	116	QFT-GIT vs.	71.55 (62.75, 78.97)	28.44 (21.03, 37.25)	0.35 (0.16, 0.53)
Rutherford, 2012a-b ^{108, 109} Indonesia [High]	292	QFT-GIT vs.	80.48 (75.55, 84.62)	19.52 (15.38, 24.45)	0.61 (0.49, 0.72)
Song, 2014 ¹⁵⁰ South Korea [High]	2982	QFT-GIT vs.	82.6 (81.2, 83.92)	17.4 (16.08, 18.80)	0.38 (0.34, 0.42)
zoum moreu [mgm]	2982	QFT-GIT vs.	92.52 (91.51, 93.41)	7.48 (6.59, 8.48)	0.55 (0.50, 0.61)
Talbot, 2012 ¹¹⁰ US [Low]	143	T-SPOT vs. 15mm	97.9 (94.01, 99.28)	2.01 (0.72, 5.99)	0.71 (0.55, 0.88)
Tieu, 2014 ¹⁵² Thailand [High]	131	QFT-GIT vs. 10mm	59.54 (50.98, 67.56)	40.46 (32.44, 49.02)	0.29 (0.18, 0.40)
2 0 1	131	QFT-GIT vs. 15mm	79.39 (71.67, 85.43)	20.61 (14.57, 28.33)	0.53 (0.38, 0.69)

		Subgroup of interes	t – children and adolescen	ts	
Study ID	Sample size	Type of IGRA	Concordance (%) 95%	Discordance (%) 95%	Agreement kappa 95%
(Author name, year, and	(N) total or by	vs. TST	CI	CI	CI
country) [burden]	subgroup	induration			
		threshold			
	131	T-SPOT vs. 10mm	55.73 (47.18, 63.95)	44.27 (36.05, 52.82)	0.23 (0.12, 0.34)
	131	T-SPOT vs. 15mm	78.63 (70.84, 84.78)	21.37 (15.22, 29.16)	0.51 (0.35, 0.66)
Tsolia, 2010 ¹¹¹ Greece [Low]	99	QFT-GIT vs. 5mm	71.58 (61.81, 79.67)	28.42 (20.33, 38.19)	0.45 (0.27, 0.63)
	43 with BCG	QFT-GIT vs.	46.50 (NR)	NR	$0.13 \ (p = 0.06)$
	history	10mm			
	52 no BCG history	QFT-GIT vs. 5mm	96.20 (NR)	NR	0.91 (p = 0.06)
Diel, 2011 ¹⁰⁰	NR	QFT-GIT vs. 5/10	NR	NR	NR
Germany [Low]		mm			
Mahomed, 2011a ¹⁰⁶	5244	QFT-GIT vs. 5 mm	84.80 (83.80, 85.75)	15.20 (14.25, 16.20)	0.69 (0.66, 0.72)
South Africa [High]			, , , , , , , , , , , , , , , , , , , ,	, , , , , ,	
Noorbakhsh, 2011 ¹⁰²	NR	QFT-G vs. 10 mm	NR	NR	NR
Iran [Intermediate]		-			

Abbreviations: 95% CI = 95 percent confidence interval; GIT = Gold In-Tube; N = number; NR = not reported; QFT = QuantiFERON-TB; TB = tuberculosis; TST = tuberculin skin test

4.3.4 Summary of children

Although there is a limited amount of evidence, the three prospective studies suggested no significant difference between QFT-GIT and TST-5mm (pooled R-CIR = 1.12, 95% CI: 0.72, 1.75). QFT-GIT performed significantly better than TST-10mm in identifying LTBI or predicting risk of active TB (pooled R-CIR = 4.33, 95% CI: 1.32, 14.23). In five newly identified prospective studies investigating the incidence of active TB, there was a wide variability in sensitivity and specificity of IGRA (QFT-GIT/G) and TST (5mm or 10mm). Due to high unexplained heterogeneity (not explained by IGRA type and TST threshold, similar diagnostic methods of active TB), no meta-analysis could be performed. IGRA (QFT-GIT/G) demonstrated similar sensitivity (range: 48%-100%) and slightly better specificity (range: 49%-90%) compared to TST 5mm (sensitivity range: 57%-100%; specificity range: 45%-65%). Although, sensitivities of IGRA and TST 5mm were higher than that for TST 10mm/15mm (range: 30%-56%), the corresponding specificities of these tests were lower compared to TST 10mm/15mm (63%-93%).

The updated meta-analysis of 14 studies showed a significantly stronger association for IGRAs compared to TST in relation to a risk of LTBI/exposure level (pooled R-DOR = 1.98, 95% CI: 1.19, 3.28; $I^2 = 89\%$). The subgroup analysis by country of burden explained some (but not all) of the observed heterogeneity and revealed a trend showing no difference between IGRAs and TST in identifying LTBI across studies conducted in countries of high TB burden (pooled R-DOR = 1.13, 95% CI: 0.78, 1.65; $I^2 = 71$). In contrast, IGRA was significantly superior to TST in identifying LTBI in the settings of low TB burden (pooled R-DOR = 4.74, 95% CI: 2.15, 10.44; $I^2 = 67\%$). In five studies both tests revealed strong associations of increasing order across exposure gradient for most exposures (sleeping proximity, adult index case type of TB diagnosis, adult index case smear grade, TB contact score, and relationship to index case).

There was limited evidence whether or not the BCG vaccination status influenced the odds of test positivity differentially for IGRAs and TST. Out of seven studies reporting relevant data, only three demonstrated significantly increased ORs for TST positivity in relation to BCG vaccination status (range of ORs: 1.16-20.34). The odds of test positivity for IGRAs across the 6 studies were not significantly different between the BCG vaccinated vs. non-vaccinated groups. One large study showed there was a statistically significant association between BCG vaccination status and an increased odds of test positivity for TST (OR = 1.16, 95% CI: 1.0, 1.33) but not for IGRA (OR = 0.99, 95% CI: 0.86, 1.12).

There was a wide variation in kappa statistic across 17 studies (five studies from CG117 and 12 more recent studies), ranging from 0.13 to 0.91. In post-2009 studies, ^{101, 103, 105-111} the ranges of kappa statistic

according to specific TST threshold and IGRA type were as follows: QFT-GIT vs. TST 5mm (range: 0.27-0.91), QFT-GIT vs. TST 10mm (range: 0.13-0.64), and TSPOT vs. TST 10mm (range: 0.53-0.71).

4.4 Immunocompromised people

4.4.1 Description of baseline characteristics – qualitative synthesis in text and tables

This section included 48 studies. 112-140, 147, 151, 153, 165-180 Our searches identified 32 studies 112-140, 147, 151, 153 in immunocompromised patients of which eight investigated the incidence of active TB following testing for LTBI (incidence studies) 112-117, 147, 153 and 24 investigated levels of exposure in relationship to LTBI test outcomes (exposure studies). 118-140, 151 An additional 16 studies 165-180 in immunocompromised patients were identified in CG117.

4.4.1.1 Incidence studies

Eight studies compared an IGRA test with the TST test in immunocompromised people. 112-117 Reasons for immunodeficiency (condition and procedure) varied across studies. We identified the following subpopulations: 1) HIV patients, 2) haematopoietic stem cell transplantation candidates or recipients, 3) post kidney transplantation patients, 4) haemodialysis in end stage renal disease and 5) patients with immunemediated inflammatory disease before anti-tumour necrosis factor (TNF) alpha therapy. The studies which were included are described below according to these sub-populations. See Table 10 for further details on these studies.

One study compared the T-SPOT.TB with the TST (\geq 5mm) in a retrospective case study in HIV patients with a median age of 33 years and 31.1% females. The study was carried out in a community setting in Switzerland with a follow up of two years. The proportion of BCG vaccinated participants was not reported.

Moon et al. $(2013)^{113}$ compared QFT-GIT with TST (\geq 5mm) in haematopoietic stem cell transplantation candidates in a prospective cohort study in a hospital setting in South Korea. The mean age of patients was 47 years and 44% were female. The median follow-up to assess for active TB was 0.8 years (0.1-2.6). BCG vaccination was high at 82%. Another study by Lee et al. 2014^{147} compared QFT-GIT with TST (\geq 5mm or \geq 10mm) in haematopoietic stem cell transplant recipient patients who were followed-up for a median of 1.3 years. The patients' mean age was 42.3 years, 47% were female, and 91% of the sample had BCG scars. ¹⁴⁷

Patients with post kidney transplantation were investigated by Kim et al. $(2011)^{114}$ in a prospective cohort study comparing IGRA T-SPOT.TB with TST (≥ 10 mm). The setting was a tertiary-care hospital in South Korea. The age range reported was 40-46 years and 46% of participants were female. Patients were followed up for a median of 14 months. 79% of patients were BCG vaccinated.

Three studies investigated IGRA and TST in haemodialysis patients with end-stage renal disease. ^{115, 116, 153} Tests compared were QFT-GIT vs. TST (\geq 5mm), ¹¹⁵ T-SPOT.TB vs. TST (\geq 10mm), ¹⁵³ and QFT-G, T-SPOT.TB vs. TST (two step; \geq 10mm). ¹¹⁶ Anibarro et al. (2012) ¹¹⁵ undertook a prospective cohort study in a Spanish dialysis unit following a TB outbreak in the dialysis centre. Lee et al. (2009) ¹¹⁶ carried out a prospective, matched cohort study in Taiwan. The setting was unreported. The mean age and proportion of females of included patients was 62 years and 40% in Anibarro et al. (2012) ¹¹⁵ 44 years and 66% in Sherkat et al. (2014), ¹⁵³ and 54 years and 38% in Lee et al. (2009). ¹¹⁶ The follow–up across the three studies ranged from 1.5 ¹¹⁵ to two years. ¹¹⁶ The proportion of BCG vaccinated patients was low in Anibarro et al. (2012) ¹¹⁵ (13.5%), medium in Sherkat et al. 2014 (2014) ¹⁵³ (27.3%), and high with 82.8% in Lee et al. (2009). ¹¹⁶

Chang et al. (2011)¹¹⁷ compared QFT-GIT with TST (≥10mm) in a prospective cohort study in patients with immune-mediated inflammatory diseases investigated for LTBI before the treatment with anti-TNF alpha. The study setting was a hospital in South Korea. Patients were followed-up for a median of 18 months. The median age of patients was 39 years, 41% were female and 59% were BCG vaccinated.

Table 10. Baseline characteristics of studies in immunocompromised patients (incidence studies)

	Subgrou	p of interest – imn	nunocompromised	people (specified by 1	main condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
HIV							
Elzi, 2011 ¹¹² Switzerland [Low]	Study aim: To evaluate the sensitivity of T-SPOT.TB in comparison to TST to identify HIV-infected individuals with latent TB Setting: Community-based cohort Study design: Retrospective case only study (no control group) Follow up: 2 years Funding source: Grants/honoraria received from private manufacturers (Abbott, Bristol-Myers Squibb, Gilead, GlaxoSmithKline,	NR	Inclusion criteria: NR Exclusion criteria: NR	Type of tests: IGRA (T- SPOT.TB) TST (≥ 5mm) Cut-off values/thresholds: IGRA: ≥ 6 spots in either of both Panel A and B; where the positive control was < 20 spots, or the negative control ≥ 10 spots, the test was scored as indeterminate TST: ≥5mm	Mean (range or SD) age: Median of 33 (IQR: 31-42) years Female (n [%]): 20/64 [31] Race/ethnicity (n [%]): White 29/64 [45.3] Geographic origin (n[%]): NR BCG vaccination (n [%]): NR History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): NR	Total N of recruited patients: 64 Total N of excluded patients: None – however, the total N of patients with valid results for both IGRA and TST was 44	T-SPOT.TB was retrospectively performed using frozen viable lymphocytes of HIV- infected individuals stored within 6 months before culture- confirmed TB occurred This retrospective case only study does not allow an estimate of the incidence of active TB between test positive vs. negative
	Merck, Roche. M. Hoffmann, Janssen,				Clinical examination (yes/no): NR		groups from baseline (no

	Subgrou	ıp of interest – imi	munocompromised	people (specified by	main condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Pfizer)				Morbidity (n [%]): HIV Co-morbidity (n		denominators provided)
Haamatanajat	 ic stem cell transplantat	ion condidates			[%]): NR		
Moon,	Study aim:	NR	Inclusion	Type of tests:	Mean (range or SD)	Total N of	Blood samples
2013 ¹¹³ South Korea [High]	To compare the QFT-GIT with the TST in Hematopoietic stem cell transplant (HCT) candidates for detecting latent TB infection Setting: Asan Medical Center Study design: Prospective cohort study Follow up: Median 0.8 years (IQR: 0.1–	INK	criteria: All adult patients admitted for HCT Exclusion criteria: NR	Igra (QFT-GIT) TST (≥ 5mm) Cut-off values/thresholds: IGRA: According to manufacturer TST: ≥5mm	Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 201 [82] History of anti-TB treatment (n [%]): 10 [4]	recruited patients: NR Total N of excluded patients: 52 patients died and 2 were lost to follow up during follow-up	were collected before performing the TST to avoid a possible boosting effect of the TST on the QFT-GIT test. The lab technicians did not know the results of TST
	Funding source: Basic Science Research Program through the National Research Foundation				Total incidence of active TB (n [%]): 2 [0.80] Chest radiography (yes/no): yes Clinical examination		

	Subgrou	ıp of interest – imm	unocompromised	people (specified by	main condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	(NRF) funded by the Ministry of Education, Science and Technology (MEST) (grant 2010-0005898)				(yes/no): yes Morbidity (n [%]): Acute myelogenous leukemia 72 [30], Acute lymphoblastic leukemia 28 [11], Chronic myelogenous leukemia 4 [2], Aplastic anemia 17 [7], Myelodysplastic syndrome 19 [8], Non-Hodgkin's lymphoma 58 [24], Hodgkin's lymphoma 3 [1], Multiple myeloma 38 [16], Plasmacytoma 2 [1], Others 3 [1] Co-morbidity (n [%]): Diabetes mellitus 25 [10], Hypertension 38 [16], Chronic kidney disease 21 [9], ESRD with dialysis 1 [0.4], Hepatitis 16 [7], HIV infection 0 [0.0], Non-hematologic malignancy 9 [4] Type of during-study treatment (n [%]):		

	Subgrov	ıp of interest – immı	unocompromised	people (specified by 1	main condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Cyclosporine 71 [29], Cyclosporine-MTX 65 [27], Cyclosporine- corticosteroid 8 [3], Corticosteroid therapy 111 [46]		
	c stem cell transplantat	_			1.5 (GD)	T	T
Lee, 2014 ¹⁴⁷ South Korea [High]	Study aim: To test the hypothesis that hematopoietic stem cell transplant (HCT) recipients who are QFT-TB positive develop active TB more frequently than QFT-TB negative or indeterminate patients; to evaluate whether the QFT-TB assay can predict active TB development in HCT recipients without any clinical risk factors for LTBI Setting: tertiary hospital-based Study design: Prospective cohort study	Chest x-ray, a sputum AFB smear and CT scan (pulmonary TB)	Inclusion criteria: adult patients admitted for allogeneic HCT Exclusion criteria: patients with history of close contact with active TB, history of untreated or inadequate treated TB, and the radiograph evidence of old TB. Patients who refused informed	Type of tests: QFT-GIT and TST Cut-off values/thresholds: QFT-GIT: NR TST (≥5mm or ≥10mm)	Mean (range or SD) age: 42.3 (13.8) years Female (n [%]): 183 [46.8] Race/ethnicity (n [%]): Asians (409 [100]) Geographic origin (n[%]): NR BCG vaccination (n [%]): 353 [90.7%]) History of anti-TB treatment (n [%]): none Total incidence of active TB (n [%]): 8/391 [2.04%] Chest radiography (yes/no): yes	Total N of recruited patients: 409 Total N of excluded patients: 18	

	Subgrou	p of interest – immu	ınocompromised	people (specified by r	nain condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Follow up: median of 1.3 (IQR: 0.6-2.3) years Funding source: supported by grant from the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning		presence of active TB, presence of skin disease that precluded the TST (between January 2010 and December 2011), and pediatric HCT candidates (<16 years old)		Clinical examination (yes/no): NR Morbidity (n [%]): HCT recipients Co-morbidity (n [%]): Acute or chronic graft-versus-host disease (151 [38.6]); diabetes mellitus (32 [8.2]); liver cirrhosis (4[1.0]); solid organ transplant (2[0.5]); HIV (0)		
Post kidney tra		1	1	1	1	1	T
Kim, 2011 ^{f14} South Korea [High]	Study aim: To assess whether an ELISPOT assay is capable of predicting active TB	Symptoms/signs, sputum AFB smear, and a CT scan	Inclusion criteria: KT patients (age≥16 years) with TST –	Type of tests: IGRA (T- SPOT.TB) TST (≥10mm)	Mean (range or SD) age: 40.4-46.0 years Female (n [%]): 126 [46.3]	Total N of recruited patients: 324	The development of TB after KT was observed by attending
	development in kidney transplant (KT) recipients with negative TST results and without LTBI risk factors Setting: Tertiary-care hospital		(<10mm) and without TB risk factors (history of close contact with TB case, abnormal CXR, history of untreated or inadequately	Cut-off values/thresholds: IGRA: NR TST: ≥10mm induration 48–72 h after injection, and in accordance with Korea Centers for	Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 215 [79.0]	rotal N of excluded patients: 52 - the total N of patients with valid results for both IGRA and TST was 242	surgeons, nephrologists and infectious diseases specialists blind to the results of ELISPOT assays, to avoid a
	Study design:		treated TB,	Diseases Control	History of anti-TB		verification

ĺ	Subgrou	p of interest – imm	unocompromised	people (specified by	main condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Prospective cohort study Follow up: Median 14 month (IQR: 8-19) Funding source: Basic Science Research Program through National Research Foundation funded by the Ministry of Education, Science and Technology grant 2008-E00136		newly infected persons) Exclusion criteria: Refusal of informed consent, presence of active TB, presence of skin disease that precluded TST, pediatric renal transplant candidates (<16 years old), TB risk factors, and presence of any contraindicatio n for KT (e.g. malignancy)	and Prevention guidelines	treatment (n [%]): None Total incidence of active TB (n [%]): 4/272 [1.47] (incidence rate: 0.83 per person- years, 95% CI: 0.23, 2.12) Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): Glomerulonephritis 72 [26.5], hypertension 65 [23.9], diabetes mellitus 48 [17.6], unknown 58 [21.3], polycystic kidney 12 [4.4], other 11 [4.0] Co-morbidity (n [%]): NR		bias
Hemodialysis i	in end-stage renal diseas	se (ESRD)		<u> </u>		1	
Anibarro, 2012 ¹¹⁵ Spain [Low]	Study aim: To compare IGRA with TST in patients with ESRD after a	Microscopic examination of sputum and sputum culture	Inclusion criteria: All patients who attended	Type of tests: IGRA (QFT-GIT) TST (≥5mm)	Mean (range or SD) age: 62 (16.8) Female (n [%]): 21	Total N of recruited patients: 58 Total N of	Study does not mention how soon after the result will be

	Subgroup of interest – immunocompromised people (specified by main condition/procedure)									
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments			
	TB outbreak at a dialysis centre Setting: Outbreak investigation Study design: Prospective cohort study Follow up: 18 months Funding source: University of Vigo and Sudoefeder (IMMUNONET-SOE1/P1/E014)		the dialysis unit while index case was on duty Exclusion criteria: Patients who had a previous +ve TST test	Cut-off values/thresholds: IGRA: 0.35 IU/mL TST: ≥ 5mm, a second test was performed five days later if the first TST-1 was <5 mm	Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 7 [13.5] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): None Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): End stage renal disease 58 [100] Co-morbidity (n [%]): Diabetes mellitus 8 [15.4]	excluded patients: 6	read for the second TST			

	Subgrou	p of interest – immu	ınocompromised	people (specified by r	nain condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
Lee, 2009 ¹¹⁶ Taiwan [High]	Study aim: To compare QFT-G, T-SPOT.TB, and TST in terms of their ability to diagnose LTBI in end stage renal disease (ESRD) patients, and to determine the prevalence of LTBI in ESRD patients compared with healthy controls, the risk factors for QFT- G and TST positivity, and the predictive value of a positive QFT-G, ELISPOT, or TST for active TB disease over a two- year period Setting: NR Study design: Prospective, matched, double cohort study Follow up: Two-year follow-up Funding source:	Asymptomatic cases are diagnosed with a chest x-ray, and symptomatic cases are diagnosed with a sputum TB smear, culture and chest radiography	Inclusion criteria: Patients with ESRD Exclusion criteria: NR	Type of tests: IGRA (QFT-G) T- SPOT TST (two step; ≥ 10mm) Cut-off values/thresholds: IGRA: (QFT-G): according to analysis software, available for download from the Cellestis Ltd website (T-SPOT.TB): NR TST: ≥ 10mm induration for ESRD patients and BCG-unvaccinated individuals, ≥ 15mm induration for BCG- vaccinated, healthy individuals	Mean (range or SD) age: 53.8 (34.4-77.7) Female (n [%]): 24 [37.5] Race/ethnicity (n [%]): NR Geographic origin (n[%]): Kaohsiung BCG vaccination (n [%]): 53 [82.8] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes Clinical examination (yes/no): NR Morbidity (n [%]): End stage renal dialysis Co-morbidity (n [%]): NR	Total N of recruited patients: 64 Total N of excluded patients: 0	NA

	Subgrou	ıp of interest – immu	inocompromised	people (specified by 1	nain condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	National health research institutes, Department of Health, Executive Yuan, republic of China (NHRI-CN- CL-094-PP13) and Kaohsiung Veterans General Hospital, Kaohsuing, Taiwan (VGHKS95-012)						
Sherkat, 2014 ¹⁵³ Iran [Intermediate]	Study aim: To compare IGRA (T-SPOT.TB) and TST test in detection of LTBI in kidney transplant candidates and evaluate the agreement between the two tests Setting: hospital-based Study design: Prospective cohort study Follow up: 21 months (follow-up included 9 months prophylactic	NR	Inclusion criteria: Candidates for receiving a kidney transplant Exclusion criteria: Active TB, history of prior TB or isoniazid prophylactic treatment, refusal to continue prophylactic treatment, symptoms of isoniazid-induced	Type of tests: IGRA (T- SPOT.TB) TST (≥10mm) Cut-off values/thresholds: T-SPOT.TB: NR TST (≥10mm)	Mean (range or SD) age: 44 (15.5) years Female (n [%]): 15 [66] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 12 [27.3] History of anti-TB treatment (n [%]): none Total incidence of active TB (n [%]):	Total N of recruited patients: NR Total N of excluded patients: NR	

	Subgrou	p of interest – immu	ınocompromised	people (specified by r	nain condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	treatment and 12 months post transplantation) Funding source: none		hepatitis or drug reaction		1/44 [2.27] Chest radiography (yes/no): NR Clinical examination (yes/no): yes		
					Morbidity (n [%]): end stage renal disease Co-morbidity (n		
					[%]): dialysis (30 [68.2]), hypertension (10 [22.7]), diabetes (10 [22.7]), obstructive uropathy (6 [13.6]),		
Immuno modi	ated inflammatory disea	sees (IMID) before o	nti TNE alpha th	LONO DAY	polycystic kidney (6 [13.6]), other renal etiologies (17 [38.6]), others (3 [6.8])		
	Study aim: To	Medical history	Inclusion	Type of tests:	Mean (range or SD)	Total N of	Both the TST
Chang, 2011 ¹¹⁷ South Korea [High]	evaluate usefulness of IGRA for the diagnosis of LTBI in	(current symptoms, prior history of	criteria: Inflammatory arthritis	IĞRA (QFT-GIT) TST (≥10mm)	age: 39 (median) Female (n [%]): 44	recruited patients:	and QFT-IT were performed on
	arthritis patients who received TNF antagonists in South Korea	treatment for tuberculosis, and recent history of contact with a	including rheumatoid arthritis and ankylosing	Cut-off values/thresholds: IGRA: ≥0.35	[41] Race/ethnicity (n [%]): Asian	Total N of excluded patients: 1	as the screening examination in
	Setting: Hospital-	case of active TB) and TST	spondylitis who visited	IU/mL	Geographic origin		all patients before

	Subgrou	up of interest – immu	ınocompromised	people (specified by	main condition/procedure	e)	
Study ID (Author name, year, and country)	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Study design: Prospective cohort study Follow up: 18 months (median) Funding source: IN- SUNG Foundation for Medical Research (CA98051)	(according to the recommendation of the Korea Food and Drug Administration)	our facility to evaluate LTBI before starting TNF antagonist Exclusion criteria: Active TB	TST: 10mm induration after 48– 72 h	(n[%]): NR BCG vaccination (n [%]): 63 [59] History of anti-TB treatment (n [%]): 4 [3.8] Total incidence of active TB (n [%]): 1 [0.9%] patient had active TB at recruitment and was excluded from the study Chest radiography (yes/no): NR Clinical examination (yes/no): yes Morbidity (n [%]): Rheumatoid arthritis 46 [43] and ankylosing spondylitis 61 [57] Co-morbidity (n [%]): NR		initiating TNF antagonists

Abbreviations: TB = tuberculosis; NR = not reported; N = number; IGRA = interferon-gamma release assay; QFT-GIT = QuantiFERON-TB Gold In-Tube; TST = tuberculosis skin test; BCG = Bacille de Calmette et Guérin; LTBI = latent tuberculosis infection; SD = standard deviation; ESRD = early stage renal

disease; +ve = positive; HIV = human immunodeficiency virus; HCT = hematopoietic stem cell transplant; MTX = methotrexate; KT = kidney transplant; AFB = acid-fast bacillus; CT = computerised tomography; CXR = chest x ray; IQR = interquartile range; QFT-G = QuantiFERON-TB Gold; TNF = tumor necrosis factor

4.4.1.2 Exposure studies

Twenty-four newly identified studies compared an IGRA test with the TST test in immunocompromised people relating test outcome to prior level of exposure. All studies within this group were therefore classed as having either a retrospective cohort or cross-sectional design. Reasons for immunodeficiency (condition and procedure) varied across studies. We identified the following subpopulations: 1) HIV patients, 2) solid organ transplantation candidates, 3) post kidney transplantation patients, 4) patients on haemodialysis for end stage renal disease, 5) patients with immune-mediated inflammatory diseases before anti-TNF alpha therapy, 6) patients with hepatitis C and 7) lupus erythematosus patients. The included studies are described below according to these sub-populations. See Table 11 for further details on these studies.

Three studies assessed the test performance of different IGRA tests compared to TST tests in patients with HIV. ^{123, 134, 151} Chkhartishvili et al. (2013) ¹²³ compared QFT-GIT and T-SPOT.TB with TST (≥5mm) in HIV patients recruited from a national referral centre for HIV in Georgia where the non-exposed had no household member treated for TB and the exposed group did have a household member treated for active TB. Mutsvangwa et al. (2010) ¹³⁴ compared T-SPOT.TB with TST at the ≥10mm cut-off value in HIV positive household contacts of TB cases identified in a factory in Zimbabwe. The non-exposed control consisted of contacts of factory workers without TB. Souza et al. (2014) ¹⁵¹ compared QFT-GIT with TST (≥5mm) in adults living with HIV and/or acquired immunodeficiency syndrome (AIDS) in outpatient sexually transmitted disease public clinics in a low TB incidence urban area (11.1/100.000 inhabitants). The rate of BCG vaccination across the three studies ranged from 76% ¹⁵¹ to 94%. ¹²³ The proportion of females ranged from 28% ¹⁵¹ to 89%. ¹³⁴ The median age reported for only two studies ranged from 38¹²³ to 40 years. ¹⁵¹

Four studies compared either QFT-GIT^{118, 122, 129} or T-SPOT.TB¹²⁸ with TST at the cut-off level of ≥5mm, ¹²² ≥10mm^{118, 129} or both¹²⁸ in solid organ transplantation candidates. All four studies were hospital based. Two studies were undertaken in South Korea, ^{128, 129} one in Iran¹¹⁸ and one in Spain. ¹²² The mean age ranged from 39.9 years¹¹⁸ to 47 years, ¹²⁹ 56.4 years¹²² or not reported. ¹²⁸ The proportion of females was close to 50% in two studies ^{118, 129} and less than 25% in one study. ¹²² One study did not report gender. ¹²⁸ BCG vaccination was high in studies from Korea (78% ¹²⁸ and 91% ¹²⁹) as well as in the study from Iran (91%) ¹¹⁸ but low in the Spanish study (31.6%). ¹²² Exposure to TB was universally defined as a history of (close) contact with active TB. Two studies also included newly acquired TB¹²⁸ or a history of active TB as a risk factor for LTBI. ^{128, 129} The non-exposed group consisted of participants without contact or low risk of LTBI.

Hadaya et al. $(2013)^{126}$ and Kim et al. $(2013)^{130}$ compared one or more IGRA tests with TST in patients post kidney transplantation. Hadaya et al. $(2013)^{126}$ compared QFT-GIT, T-SPOT.TB and TST (\geq 5 mm) in a Swiss hospital and Kim et al. $(2013)^{130}$ compared QFT-GIT with TST (\geq 10mm) in South Korean kidney transplant recipients. Exposure was defined as close contact with TB patient or prior TB according to 1) chest x-ray¹²⁶ or 2) history of treated TB or abnormal chest x-ray.¹³⁰

Four studies investigated the agreement between IGRA and TST tests in patients on haemodialysis for end-stage renal disease. ^{119, 120, 124, 137} Three studies compared QFT-GIT with TST (≥10mm) ^{119, 120, 124} and one compared QFT-G with TST (≥10mm). ¹³⁷ Chung et al. (2010) ¹²⁴ additionally investigated the T-SPOT.TB. Three studies reported the setting to be hospital based ^{119, 120, 124} while one study did not report the study setting. ¹³⁷ BCG vaccination of the study participants was low in the study from Saudi Arabia (14%) ¹¹⁹ and medium in the two studies from Turkey (49% ¹²⁰ and 72% ¹³⁷) and the study from South Korea (67%). ¹²⁴ The mean age of study participants was similar across all four studies (58, ¹¹⁹ 52, ¹²⁰ 54 ¹²⁴ and 56 years ¹³⁷) and the gender distribution within the studies was balanced (52% females, ¹¹⁹ 50% females, ¹²⁰ 43% females ¹²⁴ and 53% females ¹³⁷). Exposure to TB was not well defined. Three studies described exposure as (close) contact with a TB case ^{119, 120, 124} while one study ¹³⁷ specified the contact as household contact or working in the same room with the TB case. History of active TB was included as a risk factor in the exposure group in two studies. ^{124, 137} The comparison group included people who were at low risk of LTBI.

Patients with immune-mediated inflammatory diseases before anti-TNF alpha treatment were recruited in nine studies comparing IGRA with TST tests. $^{121, 125, 127, 131-133, 135, 136, 140}$ The combination of tests investigated varied greatly among studies. Three studies compared QFT-GIT with TST (\geq 5mm), $^{121\ 127, 136}$ while one study 140 additionally included the T-SPOT.TB. One study did not provide the threshold for a positive TST test that was compared to QFT-GIT, 133 one study compared QFT-GIT with the TST test at two different thresholds (\geq 5mm and \geq 10mm) for different sub-groups of patients, 135 one study 131 compared QFT-G with the T-SPOT.TB and TST (\geq 5mm), and two studies compared the T-SPOT.TB with the TST at either only the \geq 5mm threshold 125 or two different thresholds (\geq 5mm and \geq 10mm). 132 All studies were undertaken in low TB incidence countries either in Europe $^{121,\ 125,\ 131-133,\ 135,\ 136,\ 140}$ or the USA. 127 And all studies were hospital based. BCG vaccination was low in studies undertaken in Spain (26 6% 121 1 and 19 8% 136 9, the USA (34 8%), 127 7 Germany (13 8%) 131 1 and the UK (22 8%). 133 1 It was higher in studies from France (78 8%) 125 2 and Greece (76 8%) 140 3 and considerable higher in studies from Switzerland (90 8%) 132 2 and Austria (100 8%). 135 3 Gender was generally well balanced in the studies with two possible exceptions: Laffitte et al. (20 109) 132 2 recruited a population with only 30% females and Hsia et al. (20 121) had a

proportion of females of 66%. One study¹³³ investigated children with a median age of 8.9 years while the participants' mean age in the remaining studies ranged from 37 years¹³⁵ to 52 years.¹⁴⁰ Exposure to TB was not well defined in any of the studies. High risk of LTBI was described as a history of contact with a TB case in the majority of studies.^{121, 125, 131-133, 135, 136, 140} Additional risk factors reported were origin or residence in a high incidence country^{127, 132, 135, 136, 140} and a history of active TB.^{121, 125, 131} The non-exposed group was generally described as having no history of TB contact.

Shen et al. (2012)¹³⁸ compared a T-SPOT.TB test with the TST (≥5mm) in Hepatitis C patients in a university hospital in China. The mean age and proportion of females were 40 years and 47%. BCG vaccination was not reported in this study and exposure was loosely defined as a history of exposure versus no exposure to TB.

Takeda et al. (2011)¹³⁹ evaluated the agreement between the QFT-2G with the TST (≥10mm) in a hospital in Japan in patients with Lupus erythematosus. The mean age and proportion of females were 38 years and 82%. BCG vaccination of participants was not reported in this study and exposure to TB was defined as a household TB contact. This was combined with other LTBI risk factors and compared to a group without LTBI risk factors.

Table 11. Baseline characteristics of studies in immunocompromised patients (exposure studies)

	Subgr	roup of interest — im	munocompromised	people (specified by	y main condition/proce		
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
HIV			•	•	•		-
Chkhartishvil i, 2013 ¹²³ Georgia [High]	Study aim: To assess the performance of two commercially available IGRAs (QFT-GIT and T-SPOT.TB) compared to the TST for the diagnosis of LTBI in HIV-infected patients, and to identify risk factors for LTBI in effort to improve the TB prevention and care among HIV patients Setting: National referral institution for HIV diagnosis, treatment and care Study design: Retrospective/cross-sectional study Funding source:	Non exposed: No household member treated for TB Exposed 1: Household member treated for TB Exposed 2: NA	Inclusion criteria: Age ≥18 years old, confirmed HIV infection, and ability to provide written informed consent Exclusion criteria: Patients with a history of active TB disease Exclusion criteria: NR	Type of tests: IGRA (QFT-GIT) IGRA (T-SPOT.TB) TST (≥ 5 mm) Cut-off values/threshold s Definition of test+: IGRA (QFT-GIT): Interferon- gamma response to TB antigens minus the negative control was ≥ 0.35 IU/ml and also > 25% of the negative control, indeterminate if either the negative control had a result of > 8 IU/ml or the positive control	Mean (range or SD) age: Median 38.0 (range 32.8-43.8) Female (n [%]): 81 [33.75] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 219 [94%] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA Chest radiography (yes/no): NR Clinical examination	Recruited (N): NR Excluded (N): NR	Blood was drawn for the IGRAs prior to the placement of the TST
	The U.S. Civilian Research and			had a result of < 0.5 IU/ml.	(yes/no): NR		

					y main condition/proce		
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
country	Development Foundation award; the National Institutes of Health Fogarty International Center through the Emory AIDS International Training and Research Program award and the Emory-Georgia Tuberculosis Research Training Program award	buseu proxy)		IGRA (T-SPOT.TB): ≥ 6 spot forming cells, or twice the nil control, indeterminate if nil control spot count was > 10 spot forming cells or if the reading in the positive control was < 20 spot forming cells TST: ≥ 5 mm of induration	Morbidity (n [%]): HIV Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): NR		
Mutsvangwa, 2010 ¹³⁴ Zimbabwe [High]	Study aim: To test for LTBI using T-SPOT.TB and TST, correlated test results with TB exposure in household contacts of TB cases and to assess the impact of HIV co-infection on test results in these contacts Setting: NR Study design:	Non exposed: Contact of index control (no TB) Exposed 1: Contact of index TB case Exposed 2: NA	Inclusion criteria: All consenting individuals over the age of 10 years living with the TB cases (index case household contacts) and those (household contacts of controls) living with controls (no TB); TB cases were sampled	Type of tests: IGRA (T- SPOT.TB) TST (≥10mm) Cut-off values/threshold s Definition of test+: IGRA: NR TST: ≥10 mm, if <10 mm second TST after 7-14 days	Mean (range or SD) age: NR Female (n [%]): 65 [89.0] Race/ethnicity (n [%]): NR Geographic origin (n[%]): Sub-Saharan Africa BCG vaccination (n [%]): 63 [86.0]	Recruited (N): NR Excluded (N): NR	Persons performing and reading the assays were blind to all personal identifiers and TST results
	Retrospective		from factories in	auys	History of anti-TB		

					y main condition/proced		
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
•	cohort/cross-sectional study Funding source: The Wellcome Trust		Harare and controls samples randomly from the same factories. Exclusion criteria: NR		treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): NR Clinical examination (yes/no): NR Morbidity (n [%]): HIV infected Co-morbidity (n [%]): NR Type of during-study treatment (n		
Souza, 2014 ¹⁵¹ Brazil [intermediate]	Study aim: To evaluate the added value of QFT-GIT over the TST for detecting LTBI among persons living with HIV/AIDS; also to explore the factors associated with a positive QFT-GIT	Non exposed: No history of contact with index case Exposed: History of contact with index case	Inclusion criteria: People with HIV/AIDS over 17 years who were not submitted to TST in the previous five weeks Exclusion criteria: Patients	Type of tests: IGRA (QFT-GIT) TST (≥5mm) Cut-off values/threshold s Definition of test+: QFT-GIT: ≥0.35	[%]): NR Mean (range or SD) age: median 40 (IQR: 32–46) years Female (n [%]): 85 [28.3] Race/ethnicity (n [%]): NR Geographic origin	Recruited (N): NR Excluded (N): NR	

	Subgr	roup of interest – im	munocompromised	people (specified b	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	and with discordant QFT-GIT/TST results Setting: outpatient clinics Study design: Retrospective cohort/cross-sectional study Funding source: Fundacao de Apoio a Pesquisa do Distrito Federal,		with history of other immunosuppressi on conditions (severe AIDS-related opportunistic infections, acute viral infections, those submitted to any vaccination in the previous two months, and those using immunosuppressi ve drugs), patients with present or past active TB and those with a history of a previous positive TST	UI/mL TST (≥5mm)	(n[%]): NR BCG vaccination (n [%]): 228 [76.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA Chest radiography (yes/no): NR Clinical examination (yes/no): NR Morbidity (n [%]): HIV/AIDS (300 [100]) Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): NR		
Solid organ tr Ahmadinejad , 2013 ¹¹⁸ Iran	Study aim: To compare the QFT and TST in	Non exposed: No history of exposure to active	Inclusion criteria: SOT candidates who	Type of tests: IGRA (QFT- GIT)	Mean (range or SD) age: 39.9 (12.7)	Recruited (N): 187	For prevention of potential

Study ID	Study aim, setting,	Definition of	Study	Type and	y main condition/proced Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and		LTBI exposure-	exclusion	tests compared		participants	
country)		based proxy)	criteria	_			
[Intermediate]	diagnosis of LTBI in solid organ transplant (SOT) candidates (kidney, liver, lung) Setting: Tertiary care teaching hospital Study design: Cross sectional/retrospecti ve cohort study	TB Exposed 1: Exposure history to active TB Exposed 2: NA	were referred to the transplant clinic Exclusion criteria: (i) Failure to return to the clinic for reading the results of TST within 5 days of the initial intradermal injection, or (ii) unwillingness to	TST (≥10mm) Cut-off values/threshold s Definition of test+: IGRA: NR TST: Induration ≥10 mm	Female (n [%]):76 [46.3] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]):151 [92.1] History of anti-TB treatment (n [%]):	Excluded (N): 23 (dropouts)	boosting effect of TST on QFT, blood sampling and purified protein derivative injection were done simultaneous ly for all patients
	Funding source: Tehran University of Medical Sciences and Health Services grant		continue the study at any stage		Total incidence of active TB (n [%]):1/164 [0.6] Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes Morbidity (n [%]): End-stage renal disease 64 [39.0], chronic hepatic failure 97 [59.2],		

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proced	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Co-morbidity (n [%]): NA Type of during-		
					study treatment (n [%]): Patients with positive TST received chemoprophylaxis with 300 mg		
					isoniazid for 9 months; immunosuppressive medication 24 [14.6]		
Casas, 2011b ¹²²	Study aim: To compare the	Non exposed: No risk factors for	Inclusion criteria: All	Type of tests: IGRA (QFT-	Mean (range or SD) age: 56.4 (7.6)	Recruited (N): 110	NA
Spain [Low]	performance of the TST and the QFT-IT test in detecting latent TB infection	TB Exposed 1: Risk factors for TB	patients with ESLD who were being considered for LT were	GIT) TST (2 step; ≥5mm)	Female (n [%]): 23 [24.2]	Excluded (N): 15 (previous TB infection, HIV,	
	in patients with end- stage liver disease (ESLD) requiring liver transplant (LT)	(previous contact with TB, abnormal chest X-rays, birth	invited to participate in the study	Cut-off values/threshold s Definition of test+:	Race/ethnicity (n [%]): Spanish (89 [93.7])	dropouts, anti- TNF-alpha agents, incomplete IGRA results)	
	Setting: Hospital- based	or prolonged residence in a country with a high TB burden,	Exclusion criteria: Patients younger than 18 years, patients	IGRA: Interferon-c level ≥0.35 IU/mL	Geographic origin (n[%]): Born or residing in a country with a high TB		
	Study design: Retrospective/cross- sectional study	alcoholism, drug abuse, a previous stay in prison, and involvement	with a previous history of TB, patients who had recently been	(the M. tuberculosis—specific antigen tube minus the	burden 6 [6.3] BCG vaccination (n [%]): 30 [31.6]		
	Funding source: Grants from the	with health care)	tested with the TST, and patients	nil tube) and indeterminate	History of anti-TB		

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Spanish Ministry for Health and Consumer Affairs and the Carlos III Health Institute through the Fund for Health Investigations (PI070810, 2007-2010) and from the Carlos III Health Institute and Spanish Federation for Rare Diseases through the Spanish Network for Research in Infectious Diseases; research grant from the University of Barcelona	Exposed 2: NA	with known immunosuppressi ve conditions	[interferon-c level < 0.5 (the mitogen tube minus the nil tube) or > 8.0 IU/mL (the nil tube)] Plasma samples with indeterminate results were retested TST: Induration ≥ 5 mm at 48 to 72 hours in accordance with the national transplant guidelines	treatment (n [%]): None Total incidence of active TB (n [%]): NA Chest radiography (yes/no): Yes Clinical examination (yes/no): NR Morbidity (n [%]): Cirrhosis 52 [54.7], hepatocellular carcinoma 35 [36.8], and other hepatopathies 8 [8.4] Co-morbidity (n [%]): Diabetes mellitus 28 [29.5], chronic pulmonary obstructive disease 3 [3.2], renal failure 12 [12.6] Type of during-study treatment (n [%]): NR		
Kim, 2010 ¹²⁸ South Korea [High]	Study aim: To compare the results of the ELISPOT	Non exposed: No LTBI group	Inclusion criteria: Kidney transplant adult	Type of tests: IGRA (T- SPOT.TB)	Mean (range or SD) age: NR	Recruited (N): 213	All blood samples were collected

(Author name, year, and design validity (i.e., inclusion/ threshold(s) of at locuntry) criteria participants' positivity threshold(s) of tests compared tests compared country	Characteristics of study participants at baseline	N of recruited and excluded study	Comments
name, year, and country) design validity (i.e., inclusion/ threshold(s) of exclusion tags compared tests compared country) threshold(s) of tests compared tests compared country			
and country) LTBI exposure- exclusion tests compared criteria			
country) based proxy) criteria		participants	
		P	
with those of the TST in renal transplant candidates before transplantation in a country with an intermediate TB burden Setting: Clinic based Study design: Retrospective/crosssectional study Funding source: Korea Research Foundation Foundation TST (≥10mm) Cut-off values/threshold s Definition of test+: IGRA: As recommended by manufacturer bacilli smear and infection (recent to rouge on the stub) suction of the tuberculin skin test to positive status) TST (≥10mm) Ra (Cut-off values/threshold s Definition of test+: IGRA: As recommended by manufacturer bacilli smear and induration 48-72h after injection TST: ≥10 mm) Settion: TST: ≥10 mm induration of test+: IGRA: As recommended by manufacturer bacilli smear and induration 48-72h after injection TST: ≥10 mm induration of test+: To one with a person with TB within the last year, (ii) abnormal chest radiograph findings were on inadequately treated TB, or (iv) newly acquired infection (recent to rouge out active pulmonary TB Exposed 2: NA To one in transplantation TST (≥10mm) Ra (I% Values/threshold substinct the state) TST: ≥10 mm induration 48-72h after injection TST: ≥10 mm induration 48-72h after injection TST: ≥10 mm induration 48-72h after injection To one induced the spot values/threshold substinct and country in a proposed problems. The substinct in the last year, (ii) abnormal chest radiograph findings were observed, a sput under a computed to rule out active pulmonary TB To one induced the substinct in the last year, (ii) abnormal chest radiograph findings were recommended by manufacturer in induration 48-72h after injection TST ≥10 mm indured in fest radiograph findings were performed to rule out active pulmonary TB To one induced in fest radiograph findings were performed to rule out active pulmonary TB To one induced in fest radiograph findings were performed to rule out active pulmonary TB	Fotal incidence of active TB (n [%]):	Excluded (N): 4 (n = 1 refusal, n = 1 active TB, n = 2 cancer)	before TST to avoid the possible boosting effect of TST on the ELISPOT assay

Study ID	Study aim, setting,	Definition of	Study	Type and	y main condition/proce Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	Comments
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and	uesign	LTBI exposure-	exclusion	tests compared	at baseine	participants	
country)		based proxy)	criteria	tests compared		participants	
country)		basea proxy)	Critcria		[%]): Isoniazid for 9		
					months immediately		
					after renal		
					transplantation 5 [19]		
Kim,	Study aim: To	Non exposed: No	Inclusion	Type of tests:	Mean (range or SD)	Recruited (N):	NA
2013b ¹²⁹	compare the results	LTBI group	criteria: Kidney	IGRA (QFT-	age: 47 (20–69)	NR	
South Korea	of the TST and		transplant adult	GIT)	g (=0 0)		
[High]	QFT-GIT as	Exposed 1: (1)	candidates before	TST (≥10mm)	Female (n [%]): 55	Excluded (N):	
	methods for	Patients with a	transplantation		[43.6]	NR	
	screening for LTBI	history of LTBI	1	Cut-off			
	and determined the	or active TB; (2)	Exclusion	values/threshold	Race/ethnicity (n		
	agreement between	patients with	criteria: NR	s Definition of	[%]): NR		
	the TST and QFT-	abnormal chest		test+:	·		
	GIT in renal	radiograph			Geographic origin		
	transplant	findings		IGRA:	(n [%]): NR		
	candidates before	consistent with		IFN-c response			
	transplantation in a	previously healed		of TB antigen	BCG vaccination (n		
	country with an	TB; and (3)		minus that of the	[%]): 115 [91.3]		
	intermediate TB	patients with a		Nil tube \ge 0.35			
	burden	history of close		IU/mL and ≥25	History of anti-TB		
		contact with		% of the negative	treatment (n [%]):		
	Setting: Clinic	active pulmonary		control value	NR		
	based	TB patients					
		within the past			Total incidence of		
	Study design:	year		TST: induration	active TB (n [%]):		
	Retrospective/cross-	- 10 xx		≥10 mm after	NR		
	sectional study	Exposed 2: NA		48–72 h			
	F 11				Chest radiography		
	Funding source:				(yes/no): yes		
	Grant of the				Clinical		
	Korean Health				Clinical		
	Technology R&D				examination		
	Project, Ministry for				(yes/no): yes		
	Health, Welfare and						

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Family Affairs, Republic of Korea				Morbidity (n [%]): End-stage renal disease 100 [79.4] hemodialysis, 12 [9.5] PD peritoneal dialysis, no dialysis 14 [11.1] Co-morbidity (n [%]): Hypertension 60 (47.6), Diabetes 31 (24.6) Type of during- study treatment (n [%]): NR		
Patients post	kidney transplantatio				,/		
Hadaya, 2013 ¹²⁶ Switzerland [Low]	Study aim: To compare the diagnostic performance of the TST and two IGRAs (T-SPOT.TB and QFT-GIT) in renal transplant recipients (RTRs) under stable immunosuppression Setting: Geneva University Hospital	Non exposed: No risk for LTBI Exposed 1: Risk for LTBI: Chest X-ray suggestive of prior infection (calcified granuloma or adenopathy, suggestive fibrotic scars) and/or close contact with TB patient	Inclusion criteria: > 18 years, being able to provide informed consent, having had a renal transplant at least 12 months before inclusion, and having a stable immunosuppressi on Exclusion	Type of tests: IGRA (QFT-GIT) IGRA (T-SPOT.TB) TST: (≥5 mm) Cut-off values/threshold s Definition of test+: IGRA (QFT-GIT): according to manufacturer	Mean (range or SD) age: 59.0 (13.2) Female (n [%]): 84 (42.0) Race/ethnicity (n [%]): NR Geographic origin (n[%]): High incidence of TB in country of origin 24 [12.0]	Recruited (N): 205 Excluded (N): 5 (indeterminate IGRAs)	Blood samplings for determinatio n of M. tuberculosis- specific QGIT (Cellestis) and interferon-F- secreting T cells (T- SPOT.TB (Oxford
	Study design: Retrospective cohort/cross-	Exposed 2: NA	criteria: Treatment for acute rejection	IGRA (T- SPOT.TB):	BCG vaccination (n [%]): 155 [77.5]		Immunotec) were performed

					y main condition/proce		
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
Country)	sectional study Funding source: Ligue Pulmonaire Genevoise a non- profit organisation	baseu proxy)	within the preceding 3 months and signs or symptoms of acute infection	according to manufacturer TST: ≥ 5 mm transverse diameter, measured 48 to 72h after injection	History of anti-TB treatment (n [%]): Active therapy 9 [4.5], LTBI treatment 12 [6.0] Total incidence of active TB (n [%]): NA Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): Renal transplant recipients Co-morbidity (n [%]): NR Type of during-study treatment (n [%]): NR Type of during-study treatment (n [%]): Prednisone 88 [44.0], Tacrolimus, 127 [63.5], Cyclosporine 41 [20.5] Mycophenolate mofetil 159 [79.5], Azathioprine 17 [8.5], Sirolimus 12		simultaneous ly

Ctude ID		Definition of			y main condition/proced Characteristics of	N of recruited	Comments
Study ID (Author name, year, and country)	Study aim, setting, and design	construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	study participants at baseline	and excluded study participants	Comments
					[6.0]		
Kim, 2013c ¹³⁰ South Korea [High]	Study aim: To compare the QFT-GIT with the tuberculin skin test (TST) for screening of LTBI in kidney transplant recipients (KTRs) Setting: NR Study design: Retrospective cohort/cross-sectional study (with prospective part) Funding source: Korea health care technology R & D project, ministry for health, welfare and family affair, republic of Korea	Non exposed: NR Exposed 1: History of treated tuberculosis Exposed 2: Abnormal chest radiograph	Inclusion criteria: Kidney transplant recipients Exclusion criteria: NR	Type of tests: IGRA (QFT-GIT) TST (≥10mm) Cut-off values/threshold s Definition of test+: IGRA: ≥ 0.35 IU/mL and ≥ 25% in the presence of TB-specific antigen minus that of the Nil tude TST: Induration ≥10 mm at 48 to 72 h after the injection	Mean (range or SD) age: 44.7 ±11.5 Female (n [%]): 41 (38) Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): NR History of anti-TB treatment (n [%]): 3 [2.8] Total incidence of active TB (n [%]): 1 [0.9] Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]):NR Co-morbidity (n	Recruited (N): 109 Excluded (N): 4 with indeterminate QFT-GIT results (excluded for analysis)	NR

	Subgi	oup of interest – im	munocompromised	people (specified by	y main condition/proced	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					[%]): Glomerulonephritis 19 [17.4]; hypertensive nephrosclerosis 11 [10.1]; diabetes mellitus 31 [28.4]; Unknown 34 [31.2]; polycystic kidney disease 2 [1.8]; Others 12 [11.0] Type of during- study treatment (n		
Hemodialysis	in patients with end s	l tage renal disease			[%]): NR		1
Al Jahdali, 2013 ¹¹⁹ Saudi Arabia [Low]	Study aim: To compare the performance of the QTF-GIT test and the TST for detecting LTBI among hemodialysis patients and to investigate the agreement between these 2 tests in the detection of TB infection in a population showing an intermediate TB prevalence	Non exposed: No high likelihood of LTBI Exposed 1: High likelihood of LTBI (contact with TB case, abnormal chest X-ray, DM, immunosuppressa nt in the last 12 months, failed kidney transplant or BMI ≤20) Exposed 2: NA	Inclusion criteria: Hemodialysis patients Exclusion criteria: NR	Type of tests: IGRA (QFT-GIT) TST (≥10mm) Cut-off values/threshold s Definition of test+: IGRA: 0.35 IU/ml or more for the relationship ([IFN-γ in the TB antigen tube]−[IFN-γ in the negative	Mean (range or SD) age: 58.42 (17.65) Female (n [%]): 103 [51.5] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 28 [14.0] History of anti-TB treatment (n [%]): NR	Recruited (N): 215 Excluded (N): 15 (active TB)	IGRA blood was collected before the administratio n of the TST

	Subgi	roup of interest – im	munocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
V	Setting: Outpatient hemodialysis unit hospital-based Study design: Retrospective cohort/cross-sectional study Funding source: No funding sources			control tube]) If the IFN- γ level was <0.35 IU/ml in the TB antigen tube and the mitogen control was positive (≥0.5 IU/ml), the test was recorded as negative	Total incidence of active TB (n [%]): NA Chest radiography (yes/no): yes Clinical examination (yes/no): yes		
				TST: Induration of ≥10mm for LTBI. Results with < 10mm second TST within 3—6 weeks positive if either the 1st or 2nd test showed a response of ≥10mm	Morbidity (n [%]): Hemodialysis patients Co-morbidity (n [%]): Diabetic nephropathy 127 [63.5], kidney transplant failed 21 [10.5], NR 52 [26.0] Type of during- study treatment (n [%]): Immunosuppressant in the last 12months 2 [1.0]		
Ates, 2009 ¹²⁰ Turkey [Intermediate]	Study aim: To assess the efficacy of QTF-GIT test for detection of LTBI and determine the	Non exposed: No tuberculosis exposure Exposed 1:	Inclusion criteria: Hemodialysis patients 18 years or older	Type of tests: IGRA (QFT- GIT) TST (≥10mm)	Mean (range or SD) age: 51.9 (16.2) Female (n [%]): 137 [50.0]	Recruited (N): 290 Excluded (N): 15 (rejected tests,	Observers were blinded to the results of the TST

Study ID	Study aim, setting,	Definition of	Study	Type and	y main condition/proce Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and	8	LTBI exposure-	exclusion	tests compared		participants	
country)		based proxy)	criteria	,			
•	degree of agreement	Tuberculosis		Cut-off		improper blood	
	between the results	exposure	Exclusion	values/threshold	Race/ethnicity (n	sampling, and	
	of TST and QTF-	1	criteria: The	s Definition of	[%]): NR	unsuccessful	
	GIT tests in	Exposed 2: NA	patients	test+:		phlebotomy)	
	hemodialysis	_	diagnosed with		Geographic origin		
	patients		active	IGRA:	(n[%]): NR		
			tuberculosis and	According to the			
	Setting: Outpatient		receiving	QTF-GIT	BCG vaccination (n		
	hemodialysis		treatment for the	analysis	[%]): 134 [48.72]		
	hospital centers		last 12 months, or	software			
			taking		History of anti-TB		
	Study design:		immunosuppressi	TST: Induration	treatment (n [%]):		
	Retrospective		ve medicine or	diameter of ≥10	17 [7.4%]		
	cohort/cross-		younger than 18	mm			
	sectional study		years old were		Total incidence of		
			excluded from the		active TB (n [%]):		
	Funding source:		present study		NA		
	Grant from						
	University of Dicle				Chest radiography		
					(yes/no): yes		
					Clinical		
					Clinical examination		
					(yes/no): yes		
					(yes/no): yes		
					Morbidity (n [%]):		
					Hemodialysis		
					1101110010119515		
					Co-morbidity (n		
					[%]): NR		
					[]/· - · - ·		
					Type of during-		
					study treatment (n		
					[%]): NR		

Study ID	Study aim, setting,	Definition of	Study	Type and	y main condition/proced Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and	uesign	LTBI exposure-	exclusion	tests compared	ut buscille	participants	
country)		based proxy)	criteria	tests compared		participants	
	Study aim: To	Non exposed:	Inclusion	Type of tests:	Mean (range or SD)	Recruited (N):	NA
Chung, 2010a ¹²⁴	compare two	Low risk	criteria:	IGRA (QFT-	age: 54.1 (14.4)	NR	IVA
South Korea	IGRAs (QFT and T-	LOW IISK	Haemodialysis	GIT)	age. 34.1 (14.4)	INIC	
[High]	SPOT.TB)	Exposed 1: High-	patients with	IGRA (T-	Female (n [%]): 71	Excluded (N):	
[IIIgII]	simultaneously with	risk group for	ESRD	SPOT.TB)	[42.5]	NR	
	the TST for their	latent TB	LSKD	TST (≥10 mm)	[42.3]	INIC	
	diagnostic efficacy	infection	Exclusion	151 (<u>></u> 10 mm)	Race/ethnicity (n		
	for latent TB	consisted of	criteria: Patients	Cut-off	[%]): NR		
	infection in Korea,	patients with a	who had taken	values/threshold	[/0]). IVIX		
	an intermediate TB-	history of close	empirical anti-TB	s Definition of	Geographic origin		
	burden country	contact with TB	medications and	test+:	(n[%]): NR		
	burden country	patients, old TB	patients taking	icsiT.	(II[/0]). IVIX		
	Setting: Medical	lesions on CXR,	anti-TB	IGRA (QFT): As	BCG vaccination (n		
	Centre	or a history of TB	medication for	previously	[%]): 111 [67.3]		
	Centre	infection	active TB	described.	[70]). 111 [07.3]		
	Study design:	micetion	infection	described.	History of anti-TB		
	Retrospective	Exposed 2: NA	micetion	IGRA (T-	treatment (n [%]):		
	cohort/cross-	Exposed 2. 1471		SPOT.TB): As	NR		
	sectional study			previously	1414		
	sectional study			described	Total incidence of		
	Funding source:			described	active TB (n		
	Funding from the			TST: ≥10 mm	[%]):NA		
	Gil Medical Centre			size of the mean	[/0]/•1 1/1		
	On Moulear Contro			values of	Chest radiography		
				two	(yes/no): yes		
				measurements	(300,10). 300		
					Clinical		
					examination		
					(yes/no): yes		
					(300,10). 300		
					Morbidity (n [%]):		
					ESRD due to		
					Diabetes mellitus 67		
					[40.1], Hypertension		1

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proced	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					18 [10.8], Glomerulonephritis 12 [7.2], Others 11 [6.6], Unknown 59 [35.3]		
					Co-morbidity (n [%]): History of cancer 12 [7.2], Cardiac disease 46 [27.5], Cerebrovascular accident 13 [7.8], History of TB infection 21 [12.6] Type of during-study treatment (n		
					[%]): Immunosuppressant medication 9 [5.4]		
Seyhan, 2010 ¹³⁷ Turkey [Intermediate	Study aim: To compare the results of QFT-G with TST for detecting LTBI in hemodialysis	(1) History of active TB Non exposed: No prior history of active TB	Inclusion criteria: Haemodialysis patients	Type of tests: IGRA (QFT-G) TST (≥ 10mm)	Mean (range or SD) age: 56.2±15.3 Female (n [%]): 53	Recruited (N): NR Excluded (N): NR	Blood was collected before TST placement
	patients Setting: NR	Exposed 1: Prior history of active TB	Exclusion criteria: Suspicion of active TB	values/threshold s Definition of test+:	Race/ethnicity (n [%]): NR		People with an initial induration of less than
	Study design: Retrospective cohort/cross- sectional study	(2) Contact of the patient with TB Non exposed: No	infection, use of immunosuppressi ve drugs, and other known	IGRA: ≥0.35 IU/mL of IFN-γ in the TB antigen tube minus the	Geographic origin (n[%]): NR BCG vaccination (n		10mm were administered a second TST one week

	Subgr	oup of interest – im	munocompromised	people (specified b	y main condition/proce	dure)	
Study ID	Study aim, setting,	Definition of	Study	Type and	Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and		LTBI exposure-	exclusion	tests compared		participants	
country)		based proxy)	criteria				
	Funding source:	previous contact	immunodeficienc	negative control	[%]): 72 [72]		later to cause
	None	of the patient	y status (human	tube			a potential
		with TB cases	immunodeficienc		History of anti-TB		booster
			y virus [HIV],	$TST: \ge 10$ mm	treatment (n [%]):		response.
		Exposed 1:	malignancy	induration	NR		Results from
		Previous contact					the two-step
		of the patient			Total incidence of		testing were
		with TB cases			active TB (n [%]):		used in all
		(details of any			NR		further
		contact with a					analyses
		person			Chest radiography		
		having TB,			(yes/no): yes		
		individuals who					
		had household			Clinical		
		contact with or			examination		
		who had worked			(yes/no): NR		
		in the same					
		rooms as patients			Morbidity (n [%]):		
		with smear-			NR		
		positive					
		pulmonary TB,			Co-morbidity (n		
		and elapsed time			[%]): NR		
		after the contact)			Type of during-		
					study treatment (n		
		(3) chest			[%]): NR		
		radiograph					
		changes					
		Non exposed:					
		No chest					
		radiograph					
		changes					
		consistent with					
		old TB					

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author	Study aim, setting, and	Definition of construct	Study participants'	Type and positivity	Characteristics of study participants	N of recruited and excluded	Comments
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and		LTBI exposure-	exclusion	tests compared		participants	
country)		based proxy)	criteria				
		Exposed 1: Chest					
		radiograph					
		changes					
		consistent with old TB					
T	:		o and TNE almba th				
Casas,	iated inflammatory di Study aim: To	Non exposed: No	Inclusion	Type of tests:	Mean (range or SD)	Recruited (N):	NA
2011a ¹²¹	assess the	risk factors for	criteria: Patients	IGRA (QFT-	age: 49.1 [12.9]	323	INA
Spain [Low]	prevalence of LTBI	TB infection	with immune-	GIT)	age: 49.1 [12.9]	323	
Spain [Low]	obtained by the	1 D IIIICCIIOII	mediated	$TST (\geq 5mm)$	Female (n [%]): 109	Excluded (N): n	
	whole blood-based	Exposed 1: Risk	inflammatory	151 (<u>~</u> 311111)	[50.9]	= 9 (no IMID: n =	
	QFT-GIT and TST	factors for TB	diseases (IMID)	Cut-off	[50.7]	2 and problems	
	in patients with	infection (birth or	before anti–TNF-	values/threshold	Race/ethnicity (n	with QFT-GIT	
	IMID, and second,	residence for ≥6	α therapy	s Definition of	[%]): NR	plasma sample	
	to determine	months in a high	a merupy	test+:	[,0],01,11	storage: n = 7)	
	whether QFT-GIT	TB incidence	Exclusion		Geographic origin		
	performs in the	country, TB	criteria: NR	IGRA:	(n [%]): Born in a		
	same way as in	contact, prior		According to	high TB incidence		
	healthy people	prison stay,		manufacturer,	country 16 [7.5]		
		intravenous drug		indeterminate			
	Setting: Outpatient	abuse, health care		results were	BCG vaccination (n		
	clinics	worker, abnormal		retested	[%]): 56 [26.2]		
		chest X-ray, and					
	Study design:	history of past		TST: Induration	History of anti-TB		
	Retrospective	TB)		of ≥5 mm at 48–	treatment (n [%]):		
	cohort/cross-			72 h	NR		
	sectional study	Exposed 2: NA					
	T 1				Total incidence of		
	Funding source:				active TB (n [%]):		
	The first author				NA		
	received research				Chart and Paragraph		
	grant from the				Chest radiography		
	University				(yes/no): NR		
	Barcelona (October	ĺ	ĺ			1	

	Subgr	roup of interest – im	munocompromised	people (specified by	y main condition/proced	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
County	2006–January 2010). This study was supported by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III- FEDER, Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008)	Dusku proaj			Clinical examination (yes/no): NR Morbidity (n [%]): Rheumatoid arthritis 91 [42.5]; Cutaneous psoriasis 57 [26.6]; Spondylarthropathies 29 [13.6]; Psoriatic arthropathy 21 [9.8]; Inflammatory bowel disease 14 [6.5]; Others 2 [0.9] Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): Immunosuppressive treatment 163 [76.2]; Corticosteroids 91 [42.5]; Methotrexate 91 [42.5]; Leflunomide 36 [16.8]; Cyclosporine A 22 [10.3]; azathioprine/efalizum ab 13 [6.1]		
Costantino, 2013 ¹²⁵ France	Study aim: To compare TST and IGRA results in	Non exposed: No CRF of LTBI	Inclusion criteria: Patients with rheumatoid	Type of tests: IGRA (T- SPOT.TB)	Mean (range or SD) age: 51.0 (39.0–59.0)	Recruited (N): NR	To avoid any potential boosting

Study ID	Study aim, setting,	Definition of	Study	Type and	Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and		LTBI exposure-	exclusion	tests compared		participants	
country)		based proxy)	criteria	_		-	
	screening for LTBI in a large population of patients with chronic inflammatory arthritis requiring biologic treatment and to investigate predictive factors of results of these 2 tests, with special attention for indeterminate IGRA results Setting: Rheumatology Department of Nancy University Hospital Study design: Retrospective cohort/cross- sectional study Funding source: NR			TST (≥ 5 mm) Cut-off values/threshold s Definition of test+: IGRA: ≥ 6 spots, indeterminate if the negative control spot count yielded more than 10 spots or if the positive control spot count yielded fewer than 20 spots TST: induration diameter of ≥5 mm	Female (n [%]): 321 [57.0] Race/ethnicity (n [%]): NR Geographic origin (n[%]): Birth in endemic zone of TB (52 [9.2]) BCG vaccination (n [%]): 439 [78.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA Chest radiography (yes/no): yes Clinical examination (yes/no): yes Morbidity (n [%]): Rheumatoid arthritis	Excluded (N): NR	effect of TST on IGRA results, all T-SPOT.TB assays were performed before initiating TST

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
V					Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): DMARD 277 [49.2], Corticosteroids 254 [45.1], NSAID 255		
Hsia, 2012 ¹²⁷ USA [Low]	Study aim: To evaluate the	Non exposed: North America	Inclusion criteria: No	Type of tests: IGRA (QFT-	[45.4] Mean (range or SD) age: 48.58 (12.6)	Recruited (N): 2303	NA
	performance of an IGRA versus the standard TST as a screening tool for LTBI prior to the	Exposed 1: Western Europe Exposed 2: Asia	history of latent/active TB prior to screening (except in GO- AFTER, which	GIT) TST (≥5mm) Cut-off values/threshold	Female (n [%]): 1515 [65.7] Race/ethnicity (n [%]): NR	Excluded (N): NR	
	initiation of anti- tumor necrosis factor therapy in	Exposed 3: Eastern Europe	allowed the inclusion of patients with a	s Definition of test+:	Geographic origin (n[%]): North		
	patients with autoimmune inflammatory diseases	Exposed4: Latin America	history of latent TB who had been treated within the last 3 years) and	IGRA: According to manufacturer TST: According to the local	America 962 [41.8], Western Europe 440 [19.1], Eastern Europe 432 [18.8], Latin America 203		
	Setting: NR		having no signs or symptoms of active TB or no	country guidelines for	[8.8, Asia 266 [11.6]		
	Study design: Retrospective cohort/cross-		recent close contact with anyone with	defining an immunosuppress ed host or	BCG vaccination (n [%]): 788 [34.2]		
	sectional study		active TB. All patients were	induration ≥5mm	History of anti-TB treatment (n [%]):		
	Funding source: Johnson & Johnson,		required to have a chest radiograph,		317 [13.8]		

	Subgi	roup of interest – im	nmunocompromised	people (specified by	y main condition/proced	lure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	honoraria from Genentech, Pfizer, Celgene, Corrona, Amgen, Bristol- Myers Squibb, and Janssen		obtained within 3 months before the first dose of study agent, that showed no evidence of active TB or old inactive TB		Total incidence of active TB (n [%]): NR Chest radiography (yes/no): Yes Clinical examination		
			Exclusion criteria: NR		(yes/no): Yes Morbidity (n [%]): Rheumatoid arthritis 1,542 [67.0], Psoriatic arthritis 405 [17.6], Ankylosing spondylitis 356 [15.5] Co-morbidity (n [%]): NR Type of during-		
					study treatment (n [%]): Methotrexate 571 [24.8], Corticosteroids 1,000 [43.4]		
Kleinert, 2012 ¹³¹ Germany [Low]	Study aim: To compare the utility of IGRA and TST in LTBI screening in a large cohort of patients with	Non exposed: None of the compound risk factors (CRF) were present	Inclusion criteria: Patients with rheumatic diseases Exclusion	Type of tests: IGRA (QFT-G) IGRA (T- SPOT.TB) TST (≥5mm)	Mean (range or SD) age: Mean age range (50.8-59.5) Female (n [%]): 937 [61.3]	Recruited (N): NR Excluded (N): None	All patients received one type of IGRA, either T-SPOT.TB
	rheumatic diseases	Exposed 1: A	criteria: NR	Cut-off			or QFT,

Study ID	Study aim, setting,	Definition of	Study	Type and	y main condition/proce Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	Comments
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and		LTBI exposure-	exclusion	tests compared		participants	
country)		based proxy)	criteria			P	
	receiving	CRF defined as		values/threshold	Race/ethnicity (n		depending on
	immunosuppressive	the presence of at		s Definition of	[%]): NR		what was
	therapy	least one of these		test+:			available in
		three risk factors:			Geographic origin		the
	Setting: Hospital-	1) history of prior		IGRA (QFT-G):	(n [%]): NR		correspondin
	based	TB, 2) close		NR			g laboratory
		contact to a			BCG vaccination (n		glaboratory
	Study design:	patient with TB,		IGRA (T-	[%]): 204 [13.3]		
	Retrospective	or 3) CXR		SPOT.TB): ≥6			
	cohort study	suggestive of		spots	History of anti-TB		
		LTBI			treatment (n [%]):		
	Funding source:	- 14 374		TST: ≥5 mm	NR		
	Abbott, Pfizer,	Exposed 2: NA		skin induration			
	Roche and Wyeth,				Total incidence of		
	Chugai, Cellestis Ltd, Oxford				active TB (n [%]): NA		
	Immunotec Ltd,				Chest radiography		
	Pharmore Ltd, and				(yes/no): yes		
	Roche				(yes/110). yes		
	Roche				Clinical		
					examination		
					(yes/no): yes		
					Morbidity (n [%]):		
					852 [55.7]		
					rheumatoid arthritis		
					(RA), 294 [19.2]		
					ankylosing		
					spondylitis (AS), 215		
					[14.0] psoriatic		
					arthritis (PsA), 92		
					[6.0] undifferentiated		
					spondyloarthropathy		
					(SpA), and 76 [5.0]		

Study ID	Study aim, setting,	Definition of	Study	Type and	y main condition/proced Characteristics of	N of recruited	Comments
(Author name, year, and country)	and design	construct validity (i.e., LTBI exposure- based proxy)	participants' inclusion/ exclusion criteria	positivity threshold(s) of tests compared	study participants at baseline	and excluded study participants	Comments
					various other rheumatologic disorders Co-morbidity (n [%]): NR Type of during- study treatment (n		
					[%]): Immunosuppressive therapy (not specified)		
Laffitte, 2009 ¹³² Switzerland	Study aim: (i) To determine the frequency of LTBI	Non exposed: No probable LTBI	Inclusion criteria: Patients with moderate to	Type of tests: IGRA (T- SPOT.TB)	Mean (range or SD) age: 48 (17–74)	Recruited (N): NR	NA
[Low]	in a population of patients with psoriasis before	Exposed 1: Probable LTBI defined as having	severe psoriasis qualifying for anti-TNF-a	TST (≥5mm) TST (≥10mm)	Female (n [%]): 15 [30]	Excluded (N): NR	
	anti-TNF treatment, (ii) to compare the TST with T-	a history of definite exposure to a case of active	therapy Exclusion	Cut-off values/threshold s Definition of	Race/ethnicity (n [%]): NR		
	SPOT.TB for detecting LTBI, and	tuberculosis and /or having a chest	criteria: NR	test+:	Geographic origin (n[%]): High TB		
	(iii) to evaluate the tolerance and effectiveness of	X-ray suggestive of prior tuberculosis		IGRA: NR TST: Induration	incidence in country of origin 10 [20]		
	treatment for LTBI under anti-TNF	infection (granulomas,		diameter ≥5mm or ≥10mm	BCG vaccination (n [%]): 45 [90]		
	therapy in our patients.	calcified adenopathy) and /or originating			History of anti-TB treatment (n [%]):		
	Setting : Hospitalbased	from a high- incidence country			Total incidence of		

	Subgi	roup of interest – im	munocompromised	people (specified by	y main condition/proced	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Study design: Retrospective cohort/cross- sectional study Funding source: NR	(defined as > 40 cases in 100 000 per year) Exposed 2: NA			active TB (n [%]): None Chest radiography (yes/no): Yes Clinical examination (yes/no): NR Morbidity (n [%]): Psoriasis Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): 12 patients treated for LTBI (9 with rifampicin and 3 with isoniazid) before anti TNF		
Maritsi, 2011 ¹³³ UK [Low]	Study aim: To describe the findings of QFT-GIT test when applied to a paediatric rheumatology population and to assess the efficacy of this test versus the methods	Non exposed: Low-risk group Exposed 1: High-risk group (TB risk evaluation was performed using the questionnaire formulated by the United States	Inclusion criteria: Children on infliximab since 2007 Exclusion criteria: NR	Type of tests: IGRA (QFT- GIT) TST (NR) Cut-off values/threshold s Definition of test+: IGRA: NR	Mean (range or SD) age: Median age 8.9 years (1.5 to 13 years) Female (n [%]): 12 [52.1] Race/ethnicity (n [%]): Caucasian [55], Afro-Caribbean	Recruited (N): 27 Excluded (N): 4 (no record of the QTB test)	Authors suggested that results for the QFT- GIT are reported as positive, negative and indeterminate

Subgrou	up of interest – im	munocompromised	people (specified b	y main condition/proced	dure)	
Study ID (Author and design and I	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
previously used for the exclusion of TB infection prior to starting anti-TNFα treatment	Pediatric Tuberculosis Collaborative Group, 2004) Exposed 2: NA		TST: NR	[19], Asian [26] Geographic origin (n[%]): NR BCG vaccination (n [%]): 5 [22] History of anti-TB treatment (n [%]): 5 [22] Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes Clinical examination (yes/no): no Morbidity (n [%]): NR Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): 5 [22] methotrexate, 23 [100[infliximab		

Study ID	Study aim, setting,	Definition of	Study	Type and	y main condition/proced Characteristics of	N of recruited	Comments
(Author	and	construct	participants'	positivity	study participants	and excluded	
name, year,	design	validity (i.e.,	inclusion/	threshold(s) of	at baseline	study	
and		LTBI exposure-	exclusion	tests compared		participants	
country)		based proxy)	criteria	•		1	
Papay,	Study aim: To	Non exposed:	Inclusion	Type of tests:	Mean (range or SD)	Recruited (N):	NA
Papay, 2011 ¹³⁵	evaluate the impact	NR	criteria: IBD	IGRA (QFT-	age: Age at screening	208	
Austria	of immune-		patients	GIT)	36.6 ± 11.3		
[Low]	modulatory	Exposed 1:		TST		Excluded (N):	
	treatment on results	Origin from a	Exclusion		Female (n [%]): 107	NR	
	from TST and	high-prevalent	criteria: NR	Cut-off	[51.4]		
	IGRA in IBD	country		values/threshold			
	patients before			s Definition of	Race/ethnicity (n		
	starting therapy	Exposed 2:		test+:	[%]): NR		
	with a biologic	History of contact					
	agent.	with active TB		IGRA: ≥0.35	Geographic origin		
				IU/mL	(n [%]): NR		
	Setting: Outpatient	Exposed 3: Chest					
	clinic	x-ray indicative		TST: People	BCG vaccination (n		
		of LTBI		with IM	[%]): All subjects		
	Study design:			induration ≥5mm	underwent BCG		
	Retrospective			People with IBD	vaccination during		
	cohort/cross-			>10 mm	childhood		
	sectional study						
					History of anti-TB		
	Funding source:				treatment (n [%]):		
	NR				NR		
					Total incidence of		
					active TB (n [%]):		
					Medically confirmed		
					active TB 1 [0.5]		
					Chest radiography		
					(yes/no): yes		
					Clinical		
					examination		
			1		(yes/no): NR		

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
J. T.					Morbidity (n [%]): Crohn's disease 152 [73.1]; Ulcerative colitis 56 [26.9] Co-morbidity (n [%]): NR Type of during- study treatment (n [%]): Immunotherapy		
Ramos, 2013 ¹³⁶ Spain [Low]	Study aim: 1) To evaluate the performance of QFT-GIT compared with the TST for the diagnosis of LTBI in patients with immune-mediated inflammatory disease (IMID) before TNF-a antagonist therapy, 2) to evaluate the impact of immunosuppressive therapy on QFT-GIT and TST performance in different IMID Setting: Outpatient infectious diseases clinic of a	Non exposed: Not born in a TB endemic area / no contact with TB patients Exposed 1: Born in a TB endemic area / contact with TB patients Exposed 2: NA	Inclusion criteria: All adults (age C 15 years) candidates for anti-TNF-a therapy who attended the clinic Exclusion criteria: NR	Type of tests: IGRA (QFT-GIT) TST (≥5mm) Cut-off values/threshold s Definition of test+: IGRA: ≥0.35 IU/ml; indeterminate if (1) the negative control was ≥8.0 IU/ml or (2) the positive control was <0.5 IU/ml or if IFN-c level was ≥0.10 IU/ml but <0.35 IU/ml	Mean (range or SD) age: Median 52 (16–82) Female (n [%]): 73 [47.7] Race/ethnicity (n [%]): NR Geographic origin (n[%]): Born in a TB endemic area 8 [5.2] BCG vaccination (n [%]): 29 [19] History of anti-TB treatment (n [%]): 5 [3.3] Total incidence of active TB (n [%]):	Recruited (N): NR Excluded (N): NR	QFG and TST were performed simultaneous ly in a blinded fashion

	Subgr	oup of interest – in	nmunocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	university hospital Study design: Retrospective cohort/cross- sectional study Funding source: Grants from Conselleria de Sanidad (051/2007), and FIS (PI08/90778)			TST: Induration diameter > 5 mm	NR Chest radiography (yes/no): Yes Clinical examination (yes/no): NR Morbidity (n [%]): Rheumatoid arthritis (RA) 53 [43.6], psoriasis/psoriatic arthritis 45 [29.4], inflammatory bowel diseases (IBD) 25 [16.3], spondyloarthropathy (SA) 22 [14.4], severe hidradenitis 3 [2.0], systemic lupus erythematosus 2 [1.3], polymyositis 1 [0.6], sarcoidosis 1 [0.6], and mixed connective tissue disease 1 [0.6] Co-morbidity (n [%]): NR		
					Type of during- study treatment (n [%]):		

					y main condition/proced		T
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
country		Sasca prong)			Immunosuppressive drug 91 [59.5] (methotrexate 57 [37.3], corticosteroids 28 [18.3], leflunomide 21 [13.7], azathioprine 19 [12.4],		
I					cyclosporine 6 [3.9])		
Vassilopoulo s, 2011 ¹⁴⁰ Greece [Low]	Study aim: To compare the latest IGRAs (QFT-GIT and T-SPOT.TB assays) and TST for LTBI diagnosis in rheumatic patients starting anti –TNF treatment Setting: Outpatient Rheumatology Clinic of Hippokration	(1) History of TB contact Non exposed: No history of previous TB contact Exposed 1: History of previous TB contact (2) Chest x-ray Non exposed:	Inclusion criteria: Patients with various rheumatic diseases who were seen at the Outpatient Rheumatology Clinic of Hippokration General Hospital (2nd Department of Medicine, Athens University	Type of tests: IGRA (QFT- GIT) IGRA (T- SPOT.TB) TST (≥ 5mm) Cut-off values/threshold s Definition of test+: IGRA: NR	Mean (range or SD) age: 52 ±16 Female (n [%]): 90 [58] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 81 [76]	Recruited (N): 157 Excluded (N): 2 (indeterminate QFT-GIT results from the analysis: spondyloarthropat hy related to ulcerative colitis on high dose methylprednisolon e)	The blood draw for both IGRAs was performed just prior to TST application in order to avoid potential interference with the IGRA results
	General Hospital Study design: Retrospective cohort study/cross- sectional study Funding source: Supported in part by research grants from the Hellenic	Chest x-ray without signs suggestive of old TB Exposed 1: Chest x-ray suggestive of old TB (3) Risk factor for TB	School of Medicine, Athens, Greece) and scheduled for anti-TNF treatment Exclusion criteria: Patients with active TB, a history of	TST: Induration ≥5mm	History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes		

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proce	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
county	Society for Rheumatology and the Special Account for Research Grants, National and Kapodistrian University of Athens, Athens, Greece	Non exposed: No risk factor for TB (≥ 1) Exposed 1: Any risk factor for TB (≥ 1) including: age >50 years, chest X-ray suggestive of old/healed TB, contact with a person with TB, and birth or residence in a country with a high TB prevalence (non-Greek nationality)	treatment with anti-TB agents, including isoniazid for LTBI, or a history of previous treatment with anti-TNF agents or other biologics		Clinical examination (yes/no): NR Morbidity (n [%]): NR Co-morbidity (n [%]): 15 [21.4] Type of during-study treatment (n [%]): Immunosuppressive therapy (DMARDs/steroids: 98 [63]; DMARDs: 80 [52]; steroids 66 [43])		
Hepatitis C							
Shen, 2012 ¹³⁸ China [High]	Study aim: To evaluated the diagnostic value of ELISPOT measuring interferon-Y in hepatitis C patients with LTBI Setting: University	Non exposed: No history of TB exposure and no clinical symptoms (n = 39) Exposed 1: History of exposure to	Inclusion criteria: Hepatitis patients with (TB exposure group- patients who had history of exposure to TB and did not do clinical diagnosis of TB, with	Type of tests: IGRA (T- SPOT.TB): ELISPOT TST (≥5 mm) Cut-off values/threshold s Definition of test+:	Mean (range or SD) age: TB exposure group (n = 40) 42.9± 18.6); no TB exposure group (n = 39) 37.8 ±17.6 Female (n [%]): TB exposure 37 [47]; no TB exposure 17 [45]	Recruited (N): NR Excluded (N): NR	NA
	hospital Study design:	tuberculosis (suspected having TB, but no	obvious clinical symptoms; non- TB exposure	IGRA: NR	Race/ethnicity (n [%]): NR		

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proced	dure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Retrospective study Funding source: None	symptoms of TB, n = 31) Exposed 2: NA	group- patients who had no history of exposure to TB and no clinical symptoms; TB group-patients who were clinically diagnosed with TB and with apparent clinical symptoms) Exclusion criteria: NR	TST: Induration ≥5 mm	Geographic origin (n[%]): NR BCG vaccination (n [%]): NR History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography (yes/no): yes Clinical examination (yes/no): Yes Morbidity (n [%]): Hepatitis C Co-morbidity (n [%]): Heart disease , Diabetes, liver cirrhosis, solid tumor, chronic renal failure Type of during-study treatment (n [%]): NR		
Lupus erythe		T	1	1	1	1	
Takeda, 2011 ¹³⁹	Study aim: To evaluate whether	Non exposed: Without risk of	Inclusion criteria: SLE	Type of tests: IGRA (QFT-2G)	Mean (range or SD) age: 38.3 (15.2)	Recruited (N): NR	NA

Study ID	Study aim, setting,	Definition of		Type and	y main condition/proce Characteristics of	N of recruited	Comments
(Author	and	construct	Study participants'	positivity	study participants	and excluded	Comments
`			inclusion/		at baseline		
name, year,	design	validity (i.e.,	exclusion/	threshold(s) of	at basenne	study	
and		LTBI exposure-	criteria	tests compared		participants	
country)	OFT OC 's section	based proxy)		TCT (> 10)	E1- ([0/1)- 50		
Japan [Low]	QFT-2G is useful in	LTBI	patients; non-SLE	TST (≥10 mm)	Female (n [%]): 58	Eld-d(N)	
	detecting LTBI in systemic lupus	Exposed 1: With	connective tissue disease	Cut-off	[81.7]	Excluded (N): NR	
		risk factors for	disease		Do oo lotharioitaa (a	INK	
	erythematosus		Exclusion	values/threshold s Definition of	Race/ethnicity (n		
	(SLE) patients	LTBI (history of household TB	criteria: NR		[%]): NR		
	Setting: Hospital	contact; chest X	criteria: NK	test+:	Caaguanhia auigin		
	based	ray suggestive of		IGRA: ≥ 0.35	Geographic origin (n[%]): NR		
	Dascu	previous TB		IU/mL	(H[/0]). INK		
	Study design:	showing nodules,		10/IIIL	BCG vaccination (n		
	Retrospective	fibrotic scars,		TST: ≥10 mm,	[%]): NR		
	cohort/cross-	calcified		according to the	[/ 0] /• 1 11 1		
	sectional study	granulomas, basal		usual criterion of	History of anti-TB		
	sectional study	thickening;		the TST in Japan	treatment (n [%]):		
	Funding source:	history of active		the 151 in supun	NR		
	NR	TB)			111		
	1111	12)			Total incidence of		
		Exposed 2: NA			active TB (n [%]):		
		Exposed 2. 1 (1)			NA		
					1111		
					Chest radiography		
					(yes/no): yes		
					V		
					Clinical		
					examination		
					(yes/no): yes		
					Morbidity (n [%]):		
					SLE		
1							
1					Co-morbidity (n		
					[%]): NR		
I							
					Type of during-		

	Subgr	oup of interest – im	munocompromised	people (specified by	y main condition/proced	lure)	
Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					study treatment (n [%]): Corticosteroids 37 [52.1], immunosuppressive drugs 19 [26.8], prednisolone pulse therapy 2 [2.8], NSAIDs or no therapy 13 [18.3]		

Abbreviations: TB = tuberculosis; NR = not reported; N = number; IGRA = Interferon-Gamma Release Assay; QFT-GIT = QuantiFERON-TB Gold In-Tube; TST = Tuberculosis Skin Test; BCG = Bacille de Calmette et Guérin; LTBI = latent tuberculosis infection; SD = standard deviation; ESRD = early stage renal disease; +ve = positive; HIV = human immunodeficiency virus; HCT = hematopoietic stem cell transplant; KTR = kidney transplant recipients; CXR = chest x ray; QFT-G = QuantiFERON-TB Gold; TNF = tumor necrosis factor; SOR = solid organ transplant; LT = liver transplant; ESLD = end-stage liver disease; RTR = renal transplant recipient; IFN = interferon; IMID = immune-mediated inflammatory disease; CRF = compound risk factor; IBD = inflammatory bowel disease; DMARD = disease-modifying anti-rheumatic drug; AIDS=acquired immunodeficiency syndrome

4.4.2 Study quality

4.4.2.1 <u>Incidence of active TB</u>

Of the eight included incidence studies ¹¹²⁻¹¹⁷ concerning immunocompromised patients identified since CG117, ¹⁰ one ¹¹⁴ had a low risk of bias (ROB) rating, three studies ^{113, 115, 147} had a moderate ROB rating, and four studies ^{112, 116, 117, 153} had high ROB rating. Potential ROB due to confounding was noted in five included studies. ^{112, 115-117} ¹⁵³ Overall, most of the studies had appropriate study designs, study attrition and statistical analysis and reporting. See Table 12 for further details.

Table 12. Summary assessment of risk of bias (ROB) for the included immunocompromised incidence studies (adapted from Hayden et al., 2013)⁸⁸

First author, Year, Study ID	Study design	Study Participation risk of selection bias	Study Attrition risk of selection bias	Prognostic Factor Measurement risk of exposure measurement bias	Outcome/Construct Measurement risk of bias in misclassification of individuals in relation to construct validity groups	Study Confounding risk of bias due to confounding	Statistical Analysis and Reporting risk of bias due to analysis and selective reporting	Total ROB high, moderate, low
Anibarro, 2012 ¹¹⁵ [Low]	Low	Low	Low	Moderate	Moderate	High	Low	Moderate ROB
Chang, 2011 ¹¹⁷ [High]	Low	Moderate	Low	Moderate	High	High	Low	High ROB
Elzi, 2011 ¹¹² [Low]	High	High	Low	Low	Moderate	High	Low	High ROB
Kim, 2011 ¹¹⁴ [High]	Low	Low	Low	Low	Low	Moderate	Low	Low ROB
Lee, 2009 ¹¹⁶ [High]	Low	High	Low	Low	Moderate	High	Low	High ROB
Lee, 2014 ¹⁴⁷ [High]	Low	High	Moderate	Moderate	Moderate	Low	Low	Moderate ROB
Moon, 2013 ¹¹³ [High]	Low	Moderate	Low	Moderate	Moderate	Moderate	Low	Moderate ROB
Sherkat, 2014 ¹⁵³ [Intermediate]	Low	High	High	Moderate	High	High	Moderate	High ROB

4.4.2.2 Exposure levels

Of the 24 included exposure studies^{118-140, 151} concerning immunocompromised patients identified since CG117, 19 studies^{118, 120-124, 126-134,138-140, 151} were identified as low quality and the remaining 5 studies^{119, 125, 135-137} were rated as moderate quality. However, all studies failed to identify blinding of the test results

from exposure and only two studies^{124, 137} provided adequate description of exposure. See Table 13 for further details.

Table 13. Summary of quality assessment for the included immunocompromised exposure studies (adapted from Dinnes et al., 2007)⁴³

First author, Year, Study ID	Recruitment of subjects consecutive [yes], arbitrary or unreported [no]	Blinding of test results from exposure blinded [yes], not blinded or unreported [no]	Description of index test and threshold adequate [yes], inadequate or unreported	Definition and description of exposure adequate [yes], inadequate or unreported	Sample attrition adequate [yes]#, inadequate or unreported [no]	Overall quality score of satisfactory features [£]
Ahmadinejad, 2013 ¹¹⁸	Yes	No	[no] No	[no] No	No	Low quality
[Intermediate] Al Jahdali, 2013 ¹¹⁹ [Low]	Yes	No	Yes	No	Yes	Moderate quality
Ates, 2009 ¹²⁰ [Intermediate]	No	No	No	No	No	Low quality
Casas, 2011a ¹²¹ [Low]	No	No	No	No	Yes	Low quality
Casas, 2011b ¹²² [Low]	Yes	No	Yes	No	No	Low quality
Chkhartishvili, 2013 ¹²³ [High]	No	No	Yes	No	Yes	Low quality
Chung, 2010a ¹²⁴ [High]	No	No	No	Yes	Yes	Low quality
Costantino, 2013 ¹²⁵ [Low]	Yes	No	Yes	No	Yes	Moderate quality
Hadaya, 2013 [Low]	No	No	No	No	Yes	Low quality
Hsia, 2012 ¹²⁷ [Low]	No	No	No	No	Yes	Low quality
Kim, 2010 ¹²⁸ [High]	Yes	No	No	No	Yes	Low quality
Kim, 2013b ¹²⁹ [High]	No	No	Yes	No	Yes	Low quality
Kim, 2013c ¹³⁰ [High]	No	No	Yes	No	No	Low quality
Kleinert, 2012 ¹³¹ [Low]	No	No	No	No	Yes	Low quality
Laffitte, 2009 ¹³² [Low]	Yes	No	No	No	Yes	Low quality
Maritsi, 2011 ¹³³ [Low]	Yes	No	No	No	No	Low quality
Mutsvangwa, 2010 ¹³⁴ [High]	No	No	No	No	Yes	Low quality
Papay, 2011 ¹³⁵ [Low]	Yes	No	Yes	No	Yes	Moderate quality

First author, Year, Study ID	Recruitment of subjects consecutive [yes], arbitrary or unreported [no]	Blinding of test results from exposure blinded [yes], not blinded or unreported [no]	Description of index test and threshold adequate [yes], inadequate or unreported [no]	Definition and description of exposure adequate [yes], inadequate or unreported [no]	Sample attrition adequate [yes]#, inadequate or unreported [no]	Overall quality score of satisfactory features [£]
Ramos, 2013 ¹³⁶ [Low]	Yes	No	Yes	No	Yes	Moderate quality
Seyhan, 2010 ¹³⁷ [Intermediate]	No	No	Yes	Yes	Yes	Moderate quality
Shen, 2012 ¹³⁸ [High]	No	No	Yes	No	Yes	Low quality
Souza, 2014 ¹⁵¹ [intermediate]	Yes	Yes	No	No	No	Low quality
Takeda, 2011 ¹³⁹ [Low]	No	No	Yes	No	Yes	Low quality
Vassilopoulos, 2011 ¹⁴⁰ [Low]	Yes	No	No	No	Yes	Low quality

 $^{^{\#}}$ \geq 90% of participants were included in the follow-up analysis [yes response] and < 90% were classified as "no response"

Please note the following item has been removed from the original Dinnes et al., (2007)⁴³checklist: "study design" (as all studies were considered are retrospective), this item has been removed. Furthermore, the following item has been added: "sample attrition"

[£] Studies with 1 or 2 "yes" ratings = Low quality; studies with 3 "yes" ratings = Moderate quality; studies with 4 or 5 "yes" ratings = High quality

4.4.3 Comparative performance of tests (diagnostic accuracy indices for identifying LTBI)

4.4.3.1 <u>Incidence of active TB</u>

4.4.3.1.1 Ratios of cumulative incidence ratios (R-CIRs):

This section included eight newly identified studies. ¹¹²⁻¹¹⁷ ^{147, 153} For six of the eight studies, ^{112, 114, 115, 117, 147, 153} R-CIRs were not available due to zero events and/or unreported incidence data for either or both compared tests. Therefore, MA of R-CIRs could not be performed. Only two studies (in stem cell transplant candidates and haemodialysis/end stage renal disease) reported sufficient data for calculating R-CIRs and these were not combined because of different clinical conditions and TST thresholds. ^{113, 116} (see Table 14). In both of these studies the reported R-CIRs comparing IGRAs (QFT-G/GIT or T-SPOT.TB) with TST were not statistically significant (with 95% CIs), rendering these results as inconclusive. Only one study, ¹⁴⁷ showed that QFT-GIT performed better than TST (at 5mm or 10mm threshold) in identifying people with LTBI (incidence of active TB in QFT-GIT positives vs. TST positives: 11.54% vs. 0.0%).

Table 14. Comparison of the test performance - diagnostic accuracy indices for identifying LTBI (incidence studies)

	S	Subgroup of interest – in	nmunocompromised peo	ople (specify main condition	on/procedure)		
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	De	evelopment of active TB		
(Author name, year, and country)			_		CI in %, CIR IDR in per P-Y, IDRR (95% CI)		
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)	
Anibarro, 2012 ¹¹⁵ Spain [Low]	N test results QFT-GIT: 52 TST: 52 Test (+/-) QFT-GIT (18/34) TST≥ 5 mm (11/41) N indeterminate QFT-GIT: 0 TST: 0 N lost to follow-up 4	QFT (GIT) SN: NA SP: NA PPV: NA NPV: 100 (89.28, 100)	TST ≥ 5 mm SN: NA SP: NA PPV: NA NPV: 100 (89.28, 100)	QFT (GIT) CI (+): NA CI (-): 0/32 (0.00) CIR: NA IDR (+): NR IDR (-): NR IDRR: NA	TST ≥ 5 mm CI (+):NA CI (-): 0/32 (0.00) CIR: NA IDR (+): NR IDR (-): NR IDRR: NA	R-CIR [QFT (GIT)] vs. TST ≥ 5 mm NA R-IDRR [QFT (GIT)] vs. TST ≥ 5 mm NA	
Chang, 2011 ¹¹⁷ South Korea [High]	N test results QFT-GIT: 100 TST: 107 Test (+/-) QFT-GIT (36/64) TST≥10 mm (36/71) N indeterminate QFT-GIT: 7	QFT (GIT) SN: NA SP: 100 (94.8, 100) PPV: NA NPV: 100 (94.8, 100)	TST ≥ 10 mm SN: NA SP: 77.14 (66.05, 85.41) PPV: 0/16 (0.0) NPV: 100 (93.4, 100)	QFT (GIT) CI (+): NA CI (-): 0/64 (0.00) CIR: NA IDR (+): NR IDR (-): NR IDRR: NR	TST ≥ 10 mm CI (+): 0/16 (0.00) CI (-): 0/54 (0.00) CIR: NA IDR (+): NR IDR (-): NR IDRR: NR	R-CIR [QFT (GIT)] vs. TST ≥ 10 mm NA R-IDRR [QFT (GIT)] vs. TST ≥ 10 mm NA	

Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	De	evelopment of active TB	
(Author name, year, and country)				IDR in per (95%	%, CIR • P-Y, IDRR % CI)	R-CIR R-IDRR (95% CI)
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)
	TST: 0					
	N lost to follow-up 0					
Elzi, 2011 ¹¹² Switzerland [Low]	N test results T-SPOT: 43 TST: 44 Test (+/-) T-SPOT (25/18) TST≥ 5 mm (22/22) N indeterminate T-SPOT: 21 TST: 0 N lost to follow-up NR	T-SPOT SN: 58.14 (43.33, 71.62) SP: NA PPV: NA NPV: NA T-SPOT and TST ≥ 5 mm SN: 65.91 (51.14, 78.12) SP: NA PPV: NA NPV: NA NPV: NA	TST ≥ 5 mm SN: 50.00 (35.83, 64.17) SP: NA PPV: NA NPV: NA	T-SPOT CI (+): NA CI (-): NA CIR: NA IDR (+): NA IDR (-): NA IDRR: NA T-SPOT and TST ≥ 5 mm CI (+): NA CI (-): NA CIR: NA IDR (+): NA CIR: NA IDR (+): NA IDR (+): NA IDR (-): NA IDRR: NA	TST ≥ 5 mm CI (+): NA CI (-): NA CIR: NA IDR (+): NA IDR (-): NA IDRR: NA	R-CIR (T-SPOT) vs. TST ≥ 5 mm NA R-IDRR (T- SPOT) vs. TST ≥ 5 mm NA R-CIR (T-SPOT and TST) vs. TST ≥ 5 mm NA R-IDRR (T- SPOT and TST) vs. TST ≥ 5 mm NA
Kim, 2011 ¹¹⁴ South Korea [High]	N test results T-SPOT: 242 TST: 272	T-SPOT SN: 100 (51.01, 100.00) SP: 71.84 (65.82,	TST ≥ 10 mm SN: NA SP: NA PPV: NA	T-SPOT CI (+): 5.63 (2.21, 13.61) CI (-): 0/171 (0.0)	TST ≥ 10 mm CI (+): NA CI (-): 1.47 (0.43, 3.85) CIR: NA	R-CIR (T-SPOT) vs. TST ≥ 10 mm NA
	Test (+/-) T-SPOT (71/171) TST≥ 10 mm (0/272)	77.18) PPV: 5.63 (2.21, 13.61) NPV: 100 (97.80, 100)	NPV: 98.53 (96.28, 99.43)	CIR: NA IDR (+):3.28/100 p-y (0.89, 8.39) IDR (-): 0.00/100 p-y	IDR (+): NA IDR (-): 0.83/100 p-y (0.23, 2.12) IDRR: NA	R-IDRR (T- SPOT) vs. TST ≥ 10 mm NA

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	G. 1 TD				ople (specify main condition		
$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	Study ID	Test results	Test diagnostic accu	racy in % (95% CI)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	name, year,				IDR in per	P-Y, IDRR	R-CIR R-IDRR (95% CI)
IDR difference: 3.3/100 P-y (1.3, 5.3) IDR difference: 3.3/100 IDR difference: 3.3/1	[burden]		QFT (GIT/G) and/or	TST (by threshold)	QFT (GIT/G) and/or T-		IGRA vs. TST (by threshold)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		indeterminate T-SPOT: 30 TST: 0 N lost to			IDR difference: 3.3/100		
N lost to SPC	Taiwan	2 N test results QFT-G: 30 T-SPOT: 32 TST: 32 Test (+/-) QFT-G (12/18) T-SPOT (15/17) TST≥ 10 mm (20/12) N indeterminate QFT-G: 2 T-SPOT: 0	SN: 100 (20.65, 100) SP: 60.00 (44.00, 77.31) PPV: 8.33 (1.49, 35.39) NPV: 100 (82.41, 100) T-SPOT SN: 0.00 (0.00, 65.76) SP: 50.00 (33.15, 66.85) PPV: 0.00 (0.00, 20.39) NPV: 88.24 (65.66,	step) SN: 50.00 (9.45, 90.55) SP: 36.67 (21.87, 54.49) PPV: 5.00 (0.89, 23.61) NPV: 100 (74.12,	CI (+): 8.33 (1.49, 35.39) CI (-): 5.56 (5.40, 27.29) CIR: 1.55 (0.02, 124.2) IDR (+): 3.40 per 100/p-y (NR) IDR (-): NR IDRR: NA T-SPOT CI (+): 6.67 (0.17, 31.9) CI (-): 11.76 (2.03, 35.59)	step) CI (+): 5.00 (0.89, 23.61) CI (-): 9.09 (0.23, 41.3) CIR: 0.55 (0.01, 47.06) IDR (+): NR IDR (-): NR	R-CIR [QFT (G)] vs. TST ≥ 10 mm (two-step) 2.82 (95% CI: 0.13, 62.64) R-IDRR [QFT (G)] vs. TST ≥ 10 mm (two-step) NA R-CIR (T-SPOT) vs. TST ≥ 10 mm (two-step) 1.04 (95% CI: 0.06, 17.34)
IDRR: NA	147	follow-up 0			IDR (+): NR IDR (-): NR IDRR: NA		R-IDRR (T- SPOT) vs. TST ≥ 10 mm (two-step) NA

Study ID	Test results	Test diagnostic acci	racy in % (95% CI)	De	evelopment of active TB	
(Author name, year, and country)		C	•	CI in S IDR in per	%, CÎR P-Y, IDRR % CI)	R-CIR R-IDRR (95% CI)
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)
South Korea [High]	QFT-GIT: 159 TST: 169 Test (+/-) QFT-GIT (26/133) TST≥ 5 mm (19/150) TST≥10 mm (12/157) N indeterminate QFT-GIT: 10 TST: 0 N lost to follow-up: 0	SN: 60.00 (23.07, 88.24) SP: 85.06 (78.59, 89.84) PPV: 11.54 (4.00, 28.98) NPV: 98.5 (94.68, 99.59)	SN: 0.0 (0.0, 43.45) SP: 88.41 (82.61, 92.46) PPV: 0.0 (0.0, 16.82) NPV: 96.67 (92.43, 98.57) TST ≥ 10 mm SN: 0.0 (95% CI: 0.0, 43.45) SP: 92.68 (87.65, 95.77) PPV: 0.0% (0.0, 24.25) NPV: 96.82 (92.76, 98.63)	CI (+): 11.54 (3.17, 29.80) CI (-):1.50 (0.07, 5.66) CIR: 7.67 (1.34, 43.67) IDR (+): 5.43 per 100 p-y (1.12, 15.88) IDR (-): 0.80 per 100 p-y (0.10, 2.88) IDRR: 6.78 per 100 p-y (NR)	CI (+): 0.0 (0.0, 19.79) CI (-): 3.33 (1.22, 7.77) CIR: 0.0 IDR (+): 0 per 100 p-y (0.00, 8.41) IDR (-): 1.79 per 100 p-y (0.58, 4.18) IDRR: 0 per 100 p-y (NR) TST ≥ 10 mm CI (+): 0.0 (0.0, 28.20) CI (-): 3.18 (1.16, 7.43) CIR: 0.0 IDR (+): 0.0 per 100 p-y (0.0, 14.93) IDR (-): NR IDRR: NA	(GIT) vs. TST ≥ 5 mm NA R-IDRR [QFT (GIT)] vs. TST ≥ 5 mm NA R-CIR [QFT (GIT)] vs. TST ≥ 10 mm NA R-IDRR [QFT (GIT)] vs. TST ≥ 10 mm NA
Moon, 2013 ¹¹³ South Korea [High]	N test results QFT-GIT: 210 TST: 244 Test (+/-)	QFT (GIT) SN: 50.00 (9.45, 90.55) SP: 81.25 (75.4, 85.97)	TST ≥ 5 mm SN: 0.00 (0.00, 65.76) SP: 83.88 (78.73, 87.98) PPV: 0.00 (0.00, 8.96)	QFT (GIT) CI (+): 2.50 (0.44, 12.88) CI (-): 0.58 (0.00, 3.59) CIR: 4.25 (0.27, 66.49)	TST ≥ 5 mm CI (+): 2.56 (0.06, 13.5) CI (-): 0.97 (0.03, 3.71) CIR: 2.63 (0.04, 51.4)	R-CIR [QFT (GIT)] vs. TST ≥ 5 mm 1.62 (0.16, 16.18)
	QFT-GIT (40/170) TST≥ 5 mm (39/205)	85.97) PPV: 2.50 (0.44, 12.88) NPV: 99.41 (96.74, 99.9)	NPV: 99.02 (96.51, 99.73)	IDR (+): 2.80/100 p-y (0.07, 15.81) IDR (-): NR	IDR (+): 0/100 p-y (0.00, 8.00) IDR (-): NR	R-IDRR [QFT (GIT)] vs. TST ≥ 5 mm 1.62 (0.16, 16.18)

	S	Subgroup of interest – in	nmunocompromised peo	ople (specify main condition	on/procedure)		
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	Development of active TB			
(Author name, year, and country)				CI in ^c IDR in per (95%	R-CIR R-IDRR (95% CI)		
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)	
	N indeterminate QFT-GIT: 34 TST: 0 N lost to			IDRR: NA	IDRR: NA		
	follow-up 2						
Sherkat, 2014 ¹⁵³ Iran [Intermediate]	N test results T-SPOT: 44 TST: 44 Test (+/-) T-SPOT (6/38) TST≥ 10 mm (8/36) N indeterminate T-SPOT: NR TST: NR	T-SPOT SN: 100 (20.65, 100) SP: 88.37 (75.52, 94.93) PPV: 16.67 (3.00, 56.35) NPV: 100 (90.82, 100)	TST ≥ 10 mm SN: 100 (20.65, 100) SP: 83.72 (70.03, 91.88) PPV: 12.5 (2.24, 47.09) NPV: 100 (90.36, 100)	T-SPOT CI (+): 16.67 (3.00, 56.35) CI (-): 0.0 (0.00, 10.93) CIR: NA	TST ≥ 10 mm CI (+): 12.5 (0.11, 47.09) CI (-): 0.0 (0.00, 11.47) CIR: NA	R-CIR (T-SPOT) vs. TST ≥ 10 mm NA	
	N lost to follow-up: 1						

Abbreviations: N = number; SN = sensitivity; SP = specificity; PPV = positive predictive value; NPV = negative predictive value; CI = cumulative incidence; CIR = cumulative incidence ratio; IDR = incidence density rate; IDRR = incidence density rate ratio; TB = tuberculosis; R-CIR = ratio of cumulative incidence ratio; R-IDRR = ratio of incidence density rate ratio; QFT = QuantiFERON-TB; GIT = Gold In-Tube; TST = tuberculin skin test; P-Y = person-year(s); 95% CI = 95 percent confidence interval

4.4.3.1.2 Sensitivity and specificity:

This section included eight newly identified studies. ^{112-117, 147, 153} The study by Anibarro and colleagues did not report test performance parameters of sensitivity and specificity. ¹¹⁵ Across the remaining seven studies, there was a wide variability and the absence of clear pattern in the estimates of sensitivity (IGRA/TST range: 0%-100%) (Figure 25 & Figure 26) and specificity (IGRAs range: 50%-88%; TST range: 37%-93%) (see Figure 27, Figure 28). Some or all of this variation was due to zero count events (unstable estimates), underlying differences in study populations/conditions, and TST thresholds. No meta-analysis was performed given the observed heterogeneity.

Figure 25. Forest plot of sensitivity based on incidence of active TB (IGRA) in immunocompromised patients

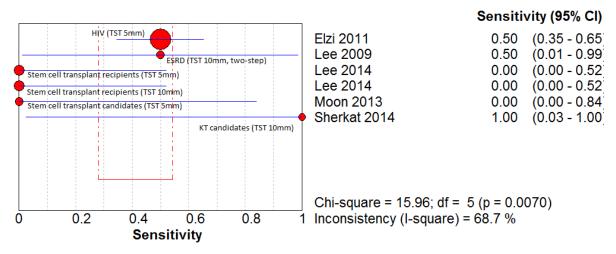


Figure 26. Forest plot of sensitivity based on incidence of active TB (TST) in immunocompromised patients

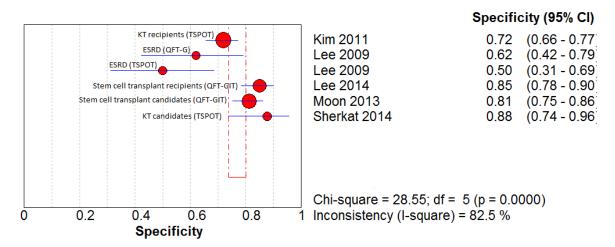


Figure 27. Forest plot of specificity based on incidence of active TB (IGRA) in immunocompromised patients

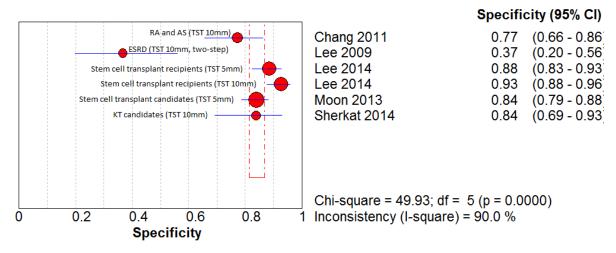


Figure 28. Forest plot of specificity based on incidence of active TB (TST) in immunocompromised patients

4.4.3.2 Exposure levels

4.4.3.2.1 Ratios of diagnostic odds ratios (R-DORs):

This section included 26 studies: two studies from CG117^{172, 178} and 24 more recent studies^{118-140, 151} (see Table 15). The association between the screening test results and the risk of LTBI/exposure measured using the ratio of diagnostic odds ratios (R-DOR; IGRA vs. TST) in individual studies ranged from 0.07¹²⁹ to 8.45.¹³⁸ R-DORs for three studies could not be estimated due to missing data.^{118, 130, 133}

Table 15. Comparison of the test performance – diagnostic accuracy indices for identifying LTBI (exposure studies)

		group of interest – imm		(specify main condition		
Study ID	Test results	Test diagnostic accu	uracy in % (95% CI)		Construct validity	
(Author					LTBI exposure-based	proxy) R-DOR (95% CI)
name, year,					DOR (95% CI)	
and country)					; reference group)	
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)
Ahmadinejad, 2013 ¹¹⁸	N test results QFT-GIT: 159	QFT (GIT)	TST ≥ 10 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST ≥ 10 mm
Iran [Intermediate]	TST: 164 Test (+/-) QFT-GIT (33/126) TST≥10 mm (26/138) N indeterminate QFT-GIT: 5 TST: 0	Exposure history to active TB vs. no such history SN: 0.00 SP: 78.57 (71.44, 84.32) PPV: 0.00 NPV: 96.03 (91.05, 98.29)	Exposure history to active TB vs. no such history SN: 0.00 SP: 83.65 (77.12, 88.59) PPV: 0.00 NPV: 96.38 (91.8, 98.44)	Exposure history to active TB vs. no such history DOR: 0.00 DORa: NR	Exposure history to active TB vs. no such history DOR: 0.00 DORa: NR	Exposure history to active TB vs. no such history R-DOR: NA R-DORa: NA
Al Jahdali, 2013 ¹¹⁹ Saudi Arabia [Low]	N test results QFT-GIT: 200 TST: 200 Test (+/-) QFT-GIT (65/135) TST≥ 10 mm (26/174) N indeterminate QFT-GIT: NR TST: NR	QFT (GIT) High likelihood of LTBI vs. no high likelihood of LTBI SN: 33.12 (26.00, 41.00) SP: 69.57 (55.19, 80.92) PPV: 78.46 (67.03, 86.71) NPV: 23.70 (17.32, 31.54)	TST ≥ 10 mm (two- step) High likelihood of LTBI vs. no high likelihood of LTBI SN: 12.34 (8.04, 18.47) SP: 84.78 (71.78, 92.43) PPV: 73.08 (53.92, 86.3) NPV: 22.41 (16.85, 29.17)	QFT (GIT) High likelihood of LTBI vs. no high likelihood of LTBI DOR: 1.13 (0.55, 2.31) DORa: NR	TST ≥ 10 mm (two- step) High likelihood of LTBI vs. no high likelihood of LTBI DOR: 0.78 (0.31, 2.00) DORa: NR	QFT-GIT vs. TST ≥ 10 mm (two-step) High likelihood of LTBI vs. no high likelihood of LTBI R-DOR: 1.45 (0.79, 2.64) R-DORa: NA

	Sub	group of interest – immı	inocompromised people	(specify main condition	on/procedure)	
Study ID (Author	Test results	Test diagnostic accu	racy in % (95% CI)	(i.e.,	Construct validity LTBI exposure-based	proxy)
name, year,				DOR (R-DOR (95% CI)	
and country)					; reference group)	
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.
		T-SPOT		and/or T-SPOT		TST
						(by threshold)
Ates, 2009 ¹²⁰	N test results	QFT (GIT)	TST ≥ 10 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST ≥
Turkey	QFT-GIT: 246	Q11 (G11)	101 _ 10 11111	Q11 (G11)	101 _ 10	10 mm
[Intermediate]	TST: 259	TB exposure vs. No	TB exposure vs. No	TB exposure vs. No	TB exposure vs. No	TB exposure vs. No
		TB exposure	TB exposure	TB exposure	TB exposure	TB exposure
	Test (+/-)	SN: 58.82 (36.01,	SN: 29.41 (13.28,	DOR: 1.68 (0.62,	DOR: 0.74 (0.25,	R-DOR: 2.27 (1.07,
	QFT-GIT	78.39)	53.13)	4.58)	2.17)	4.81)
	(115/131)	SP: 54.15 (47.68,	SP: 64.05 (57.83,	DORa: 1.30 (0.43,	DORa: 0.49 (0.17,	R-DORa: 2.65 (1.21,
	TST≥ 10 mm	60.48)	69.83)	3.91)	1.45)	5.82)
	(92/167)	PPV: 8.69 (4.79,	PPV: 5.43 (2.34,			
		15.27)	12.10)			
	N indeterminate	NPV: 94.66 (89.38,	NPV: 92.81 (87.86,			
	QFT-GIT: 29 TST: 16	97.39)	95.84)			
Casas,	N test results	QFT (GIT)	TST ≥ 5 mm	QFT (GIT)	TST ≥ 5 mm	QFT-GIT vs. TST ≥
2011a ¹²¹	QFT-GIT: 214	(011)		(311)		5 mm
Spain [Low]	TST: 214	Risk factors for TB	Risk factors for TB	Risk factors for TB	Risk factors for TB	Risk factors for TB
_		infection vs. No Risk	infection vs. No Risk	infection vs. No	infection vs. No Risk	infection vs. No Risk
	Test (+/-)	factors for TB	factors for TB	Risk factors for TB	factors for TB	factors for TB
	QFT-GIT	infection	infection	infection	infection	infection
	(45/157)	SN: NR	SN: NR	DOR: 2.50 (1.20,	DOR: 2.80 (1.40,	R-OR: 0.89 (0.54,
	$TST \ge 5 \text{ mm}$	SP: NR	SP: NR	5.10)	5.50)	1.48)
	(52/162)	PPV: NR NPV: NR	PPV: NR NPV: NR	DORa: 2.90 (1.30,	DORa: 2.90 (1.40,	R-ORa: 1.00 (0.58,
	N indeterminate	NPV: NK	NPV: NK	6.30)	6.00)	1.73)
	OFT-GIT: 12					
	TST: 0					
Casas,	N test results	QFT (GIT)	TST ≥ 5 mm (two-	QFT (GIT)	TST ≥ 5 mm (two-	QFT-GIT vs. TST ≥
$2011b^{122}$	QFT-GIT: 95		step)		step)	5 mm (two-step)
Spain [Low]	TST: 95	Risk factors for TB	Risk factors for TB	Risk factors for TB	Risk factors for TB	Risk factors for TB
		infection vs. No Risk	infection vs. No Risk	infection vs. No	infection vs. No Risk	infection vs. No Risk

	Sub	group of interest – imm	inocompromised people	(specify main condition		
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)		Construct validity	
(Author					LTBI exposure-based	
name, year,					95% CI)	R-DOR (95% CI)
and country)					; reference group)	
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.
		T-SPOT		and/or T-SPOT		TST
						(by threshold)
	Test (+/-)	factors for TB	factors for TB	Risk factors for TB	factors for TB	factors for TB
	QFT-GIT (42/51)	infection	infection	infection	infection	infection
	TST≥ 5 mm	SN: 45.00 (33.09,	SN: 50.00 (37.73,	DOR: 1.66 (0.66,	DOR: 1.25 (0.50,	R-DOR: 1.33 (0.74,
	(44/51)	57.51)	62.27)	3.33)	2.50)	2.38)
		SP: 57.14 (40.86,	SP: 60.00 (43.57,	DORa: 1.50 (0.50,	DORa: 1.80 (0.60,	R-DORa: 0.83 (0.39,
	N indeterminate	72.02)	74.45)	4.10)	5.10)	1.79)
	QFT-GIT: 2	PPV: 64.29 (49.17,	PPV: 68.18 (53.44,			
	TST: 0	77.01)	80.00)			
		NPV: 37.74 (25.94,	NPV: 41.18 (28.75,			
		51.19)	54.83)			
Chkhartishvili, 2013 ¹²³	N test results QFT-GIT: 237	QFT (GIT)	TST≥5 mm	QFT (GIT)	TST ≥5 mm	QFT-GIT vs. TST ≥ 5 mm
Georgia	T-SPOT: 218	Household member	Household member	Household member	Household member	Household member
[High]	TST: 236	treated for TB vs. No	treated for TB vs. No	treated for TB vs.	treated for TB vs. No	treated for TB vs. No
		household member	household member	No household	household member	household member
	Test (+/-)	treated for TB	treated for TB	member treated for	treated for TB	treated for TB
	QFT-GIT	SN: NR	SN: NR	TB	DOR: 1.48 (0.39,	R-OR: 0.29 (0.10,
	(70/167)	SP: NR	SP: NR	DOR: 0.43 (0.09,	5.62)	0.82)
	T-SPOT (56/162)	PPV: NR	PPV: NR	1.97)	DORa: NR	R-ORa: NA
	TST≥ 5 mm	NPV: NR	NPV: NR	DORa: NR		
	(41/195)	_ ~ ~ ~				T-SPOT vs. $TST \ge$
		T-SPOT		T-SPOT		5 mm
	N indeterminate	SN: NR		Household member		Household member
	QFT-GIT: 3	SP: NR		treated for TB vs.		treated for TB vs. No
	T-SPOT: 22	PPV: NR		No household		household member
	TST: 4	NPV: NR		member treated for		treated for TB
				TB		R-OR: 1.00 (0.40,
				DOR: 1.48 (0.44, 5.00)		2.51) R-ORa: NA
				DORa: NR		K-OKa: NA
Chung	N toot waguita	QFT (GIT)	TST ≥ 10 mm		TST ≥ 10 mm	OFT C va TCT >
Chung,	N test results	Qr 1 (GH)	151 ≥ 10 mm	QFT (GIT)	151 ≥ 10 mm	QFT-G vs. $TST \ge$

	Sub	group of interest – immu	inocompromised people	(specify main condition	on/procedure)	
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)		Construct validity	
(Author					LTBI exposure-based	
name, year,					95% CI)	R-DOR (95% CI)
and country)					; reference group)	
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.
		T-SPOT		and/or T-SPOT		TST
						(by threshold)
2010a ¹²⁴	QFT-G: 146	High-risk for LTBI vs.	High-risk for LTBI vs.	High-risk for LTBI	High-risk for LTBI	10 mm
South Korea	T-SPOT: 146	low-risk for LTBI	low-risk for LTBI	vs. low-risk for	vs. low-risk for LTBI	High-risk for LTBI
[High]	TST: 146	SN: 52.94 (30.96,	SN: 11.76 (3.28,	LTBI	DOR: 0.44 (0.09,	vs. low-risk for LTBI
		73.84)	34.34)	DOR: 1.96 (0.71,	2.03)	R-OR: 4.45 (1.72,
	Test (+/-)	SP: 63.57 (54.98,	SP: 76.74 (68.75,	5.43)	DORa: NR	11.51)
	QFT-G (56/90)	71.37)	83.20)	DORa: NR		R-DORa: NA
	T-SPOT (83/63)	PPV: 16.07 (8.69,	PPV: 6.25 (1.73,			
	TST≥ 10 mm	27.81)	20.15)	T-SPOT		T-SPOT vs. $TST \ge$
	(32/114)	NPV: 91.11 (83.43,	NPV: 86.84 (79.42,	High-risk for LTBI		10 mm
		95.43)	91.86)	vs. low-risk for		High-risk for LTBI
	N indeterminate			LTBI		vs. low-risk for LTBI
	QFT-G: NR	T-SPOT		DOR: 0.64 (0.23,		R-DOR: 1.45 (0.56,
	T-SPOT: NR	High-risk for LTBI vs.		1.76)		3.76)
	TST: NR	low-risk for LTBI		DORa: NR		R-DORa: NA
		SN: 47.06 (26.16,				
		69.04)				
		SP: 41.86 (33.70,				
		50.49)				
		PPV: 9.64 (4.96,				
		17.88)				
		NPV: 85.71 (75.03,				
		92.30)				
Costantino,	N test results	T-SPOT	TST ≥ 5 mm	T-SPOT	TST≥5 mm	T-SPOT vs. TST ≥
2013 ¹²⁵	T-SPOT: 475					5 mm
France [Low]	TST: 514	Conventional risk	Conventional risk	Conventional risk	Conventional risk	Conventional risk
		factors for LTBI vs. no	factors for LTBI vs. no	factors for LTBI vs.	factors for LTBI vs.	factors for LTBI vs.
	Test (+/-)	risk factors for LTBI	risk factors for LTBI	no risk factors for	no risk factors for	no risk factors for
	T-SPOT	SN: 47.92 (34.47,	SN: 63.27 (49.27,	LTBI	LTBI	LTBI
	(122/353)	61.67)	75.34)	DOR: 3.05 (1.65,	DOR: 3.13 (1.70,	R-DOR: 0.97 (0.63,
	TST≥ 5 mm	SP: 76.81 (72.58,	SP: 64.52 (60.06,	5.60)	5.77)	1.51)
	(196/318)	80.57)	68.73)	DORa: 2.70 (1.49,	DORa: 1.95 (1.13,	R-DORa: 1.38 (0.92,

		<u> </u>	unocompromised people	(specify main condition		
Study ID	Test results	Test diagnostic acco	uracy in % (95% CI)		Construct validity	
(Author				(i.e., LTBI exposure-based proxy)		
name, year,					(95% CI)	R-DOR (95% CI)
and country)				(vs. non-exposed; reference group)		
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.
		T-SPOT		and/or T-SPOT		TST
						(by threshold)
	N indeterminate	PPV: 18.85 (12.9,	PPV: 15.82 (11.37,	4.89)	3.36)	2.09)
	T-SPOT: 88	26.70)	21.58)			
	TST: 49	NPV: 92.92 (89.75,	NPV: 94.34 (91.23,			
		95.16)	96.39)			
Hadaya, 2013 ¹²⁶	N test results	QFT (GIT)	TST ≥5 mm	QFT (GIT)	$TST \ge 5 \text{ mm}$	QFT-GIT vs. TST ≥
	QFT-GIT: 202					5 mm
Switzerland	T-SPOT: 203	Risk for LTBI vs. No	Risk for LTBI vs. No	Risk for LTBI vs.	Risk for LTBI vs. No	Risk for LTBI vs. No
[Low]	TST: 200	risk for LTBI	risk for LTBI	No risk for LTBI	risk for LTBI	risk for LTBI
		SN: 33.30 (19.60,	SN: 7.10 (1.50, 19.50)	DOR: 2.01 (1.25,	DOR: 1.73 (0.41,	R-DOR: 1.16 (0.51,
	Test (+/-)	49.50)	SP: 95.50 (90.80,	2.76)	7.24)	2.66)
	QFT-GIT	SP: 80.10 (72.90,	98.20)	DORa: NR	DORa: NR	R-DORa: NA
	(47/155)	86.20)	PPV: NR			
	T-SPOT (41/162)	PPV: NR	NPV: 78.40 (71.70,	T-SPOT		T-SPOT vs. TST ≥
	TST≥ 5 mm	NPV: 81.10 (73.80,	84.20)	Risk for LTBI vs.		5 mm
	(9/191)	87.00)		No risk for LTBI		Risk for LTBI vs. No
				DOR: 3.02 (1.36,		risk for LTBI
	N indeterminate	T-SPOT		6.71)		R-DOR: 1.75 (0.76,
	QFT-GIT: 3	SN: 33.30 (19.60,		DORa: NR		4.04)
	T-SPOT: 2	49.50)				R-DORa: NA
	TST: 0	SP: 85.50 (78.90,				
		90.70)				
		PPV: NR				
		NPV: 81.90 (75.00,				
		87.60)				
Hsia, 2012 ¹²⁷	N test results	QFT (GIT)	TST ≥ 5 mm	QFT (GIT)	TST ≥ 5 mm	QFT-GIT vs. TST
USA [Low]	QFT-GIT: 2241	Geographic study	Geographic study	Western Europe vs.	Western Europe vs.	≥5 mm
	TST: 2282	location	location	North America	North America	Western Europe vs.
		SN: NR	SN: NR	DOR: NR	DOR: NR	North America
	Test (+/-)	SP: NR	SP: NR	DORa: 3.41 (1.99,	DORa: 2.10 (1.30,	R-DOR: NA
	QFT-GIT	PPV: NR	PPV: NR	5.83)	3.38)	R-DORa:1.62 (1.13,
	(160/2081)	NPV: NR	NPV: NR	,		2.34)

		<u> </u>	inocompromised people	(specity main condition		
Study ID	Test results	Test diagnostic accu	ıracy in % (95% CI)		Construct validity	
(Author					LTBI exposure-based	
name, year,					(95% CI)	R-DOR (95% CI)
and country)				(vs. non-exposed; reference group)		
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.
		T-SPOT		and/or T-SPOT		TST
						(by threshold)
	TST≥ 5 mm			Latin America vs.	Latin America vs.	Latin America vs.
	(215/2067)			North America	North America	North America
				DOR: NR	DOR: NR	R-DOR: NA
	N indeterminate			DORa: 3.43 (1.64,	DORa: 1.56 (0.80,	R-DORa: 2.20 (1.32,
	QFT-GIT: 41			7.19)	3.05)	3.66)
	TST: 0					
				Eastern Europe vs.	Eastern Europe vs.	Eastern Europe vs.
				North America	North America	North America
				DOR: NR	DOR: NR	R-DOR: NA
				DORa: 3.58 (1.93,	DORa: 0.95 (0.53,	R-DORa: 3.77 (2.44,
				6.63)	1.70)	5.81)
				Asia vs. North	Asia vs. North	Asia vs. North
				America DOR: NR	America DOR: NR	America
				DORa: 8.48 (4.78,	DORa: 7.47 (4.61,	R-DOR: NA
				15.03)	12.08)	R-DORa: 1.14 (0.77,
				,	,	1.66)
Kim, 2010 ¹²⁸	N test results	T-SPOT	TST ≥ 5 mm	T-SPOT	TST ≥ 5 mm	T-SPOT vs. TST ≥
South Korea	T-SPOT: 184					5 mm
[Low]	TST≥5mm: 209	Risk group for LTBI	Risk group for LTBI	Risk group for	Risk group for LTBI	Risk group for LTBI
	TST≥10mm:209	vs. No risk group for	vs. No risk group for	LTBI vs. No risk	vs. No risk group for	vs. No risk group for
		LTBI	LTBI	group for LTBI	LTBI	LTBI
	Test (+/-)	SN: 52.63 (31.71,	SN: 36.36 (19.73,	DOR: 2.35 (0.90,	DOR: 2.17 (0.85,	R-DOR: 1.02 (0.52,
	T-SPOT (65/119)	72.67)	57.05)	6.12)	5.54)	2.03)
	TST≥ 5mm	SP: 66.67 (59.17,	SP: 79.14 (72.76,	DORa: 2.38 (0.87,	DORa: 2.11 (0.82,	R-DORa: 1.08 (0.55,
	(47/162)	73.41)	84.35)	6.52)	5.46)	2.15)
	$TST \ge 10$ mm	PPV: 15.38 (8.57,	PPV: 17.02 (8.88,			
	(21/188)	26.06)	30.14)		$TST \ge 10 \text{ mm}$	T-SPOT vs. TST ≥
		NPV: 92.44 (86.25,	NPV: 91.36 (86.02,		Risk group for LTBI	10 mm
	N indeterminate	95.97)	94.78)		vs. No risk group for	Risk group for LTBI
	T-SPOT: 25				LTBI	vs. No risk group for

Study ID	Test results	<u> </u>	(specify main condition/procedure)				
Study ID (Author	1 est results	Test diagnostic accuracy in % (95% CI)		Construct validity (i.e., LTBI exposure-based proxy)			
`					(95% CI)	R-DOR (95% CI)	
name, year,						K-DOK (95% CI)	
and country) [burden]		ICDA	mam a a a a a a		l; reference group)		
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G	
		QFT (GIT/G) and/or T-SPOT		QFT (GIT/G)		or T-SPOT) vs. TST	
		1-5PO1		and/or T-SPOT			
	TST≥5mm: 0		TST ≥10 mm		DOD: 2.22 (0.67	(by threshold) LTBI	
	TST\geq 10mm: 0				DOR: 2.22 (0.67,		
	151≥10mm; 0		Risk group for LTBI		7.32)	R-DOR: 1.00 (0.46,	
			vs. No risk group for		DORa: 2.12 (0.60,	2.19)	
			LTBI		7.49)	R-DORa: 1.06 (0.48,	
			SN: 18.18 (7.31, 38.52)			2.31)	
			SP: 90.91 (85.92,				
			94.25)				
			PPV: 19.05 (7.66,				
			40.00)				
			NPV: 90.43 (85.37,				
			93.86)				
Kim, 2013b ¹²⁹	N test results	QFT (GIT)	$TST \ge 10 \text{ mm}$	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST ≥	
South Korea	QFT-GIT: 120	Q11 (G11)	151 <u>=</u> 10 mm	QII (GII)	151 <u>-</u> 10 mm	10 mm	
[High]	TST: 119	Risk group for LTBI	Risk group for LTBI	Risk group for	Risk group for LTBI	Risk group for LTBI	
[111811]	151.11)	vs. No risk group for	vs. No risk group for	LTBI vs. No risk	vs. No risk group for	vs. No risk group for	
	Test (+/-)	LTBI	LTBI	group for LTBI	LTBI	LTBI	
	QFT-GIT (53/67)	SN: 73.33 (48.05,	SN: 86.67 (62.12,	DOR: 4.13 (1.23,	DOR: 61.1 (12.03,	R-DOR: 0.07 (0.02,	
	TST≥10 mm	89.1)	96.26)	13.82)	310.4)	0.19)	
	(35/91)	SP: 60.00 (50.44,	SP: 90.38 (83.2,	DORa: 4.62 (1.15,	DORa: NR	R-DORa: NA	
	, ,	68.86)	94.69)	18.64)			
	N indeterminate	PPV: 20.75 (12.00,	PPV: 56.52 (36.81,	,			
	QFT-GIT: 6	33.46)	74.37)				
	TST: 7	NPV: 94.03 (85.63,	NPV: 97.92 (92.72,				
		97.65)	99.43)				
Kim, 2013c ¹³⁰	N test results	QFT (GIT)	TST ≥ 10 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST ≥	
South Korea	QFT-GIT: 102					10 mm	
[High]	TST: 93	History of treated	History of treated	History of treated	History of treated	History of treated	
		tuberculosis vs. no	tuberculosis vs. no	tuberculosis vs. no	tuberculosis vs. no	tuberculosis vs. no	
	Test (+/-)	such history	such history	such history	such history	such history	
	QFT-GIT (21/81)	SN: 100 (34.24, 100)	SN: NR	DOR: NR	DOR: NR	R-DOR: NA	

Subgroup of interest – immunocompromised people (specify main condition/procedure)							
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	Construct validity (i.e., LTBI exposure-based proxy)			
(Author							
name, year,					95% CI)	R-DOR (95% CI)	
and country)			T		; reference group)		
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G	
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.	
		T-SPOT		and/or T-SPOT		TST	
						(by threshold)	
	TST≥ 10 mm	SP: 81.32 (72.10,	SP: NR	DORa: 9.21 (NR)	DORa: NR (NS)	R-DORa: NA	
	(12/81)	88.00)	PPV: NR				
	N indeterminate	PPV: 10.53 (2.93,	NPV: NR	Abnormal chest	Abnormal chest	Abnormal chest	
	QFT-GIT: 4	31.39)		radiograph vs. No	radiograph vs. No	radiograph vs. No	
	TST: 0	NPV: 100 (95.06, 100)	Abnormal chest	abnormal chest	abnormal chest	abnormal chest	
			radiograph vs. No	radiograph	radiograph	radiograph	
		Abnormal chest	abnormal chest	DOR: 13.69 (1.33,	DOR: NR	R-DOR: NA	
		radiograph vs. No	radiograph	140.30)	DORa: NR (NS)	R-DORa: NA	
		abnormal chest	SN: NR	DORa: 27.95 (1.22,	, ,		
		radiograph	SP: NR	636.62)			
		SN: 75.00 (30.06,	PPV: NR	,			
		95.44)	NPV: NR				
		SP: 82.02 (72.77,					
		88.62)					
		PPV: 15.79 (5.52,					
		37.57)					
		NPV: 98.65 (92.73,					
		99.76)					
Kleinert,	N test results	QFT (G)	TST ≥ 5 mm	QFT (G)	TST ≥ 5 mm	QFT-G vs. TST ≥	
2012^{131}	QFT-G: 685	Q11(0)		QII (G)		10 mm	
Germany	T-SPOT: 844	Presence of compound	Presence of compound	Presence of	Presence of	Presence of	
[Low]	TST: 1529	risk factor vs. Absence	risk factor vs. Absence	compound risk	compound risk factor	compound risk factor	
[LOW]	151. 152)	of compound risk	of compound risk	factor vs. Absence	vs. Absence of	vs. Absence of	
	Test (+/-)	factor	factor	of compound risk	compound risk factor	compound risk factor	
	QFT-G (50/635)	SN: 16.67 (9.02,	SN: 39.34 (31.13,	factor	DOR: 6.65 (4.42,	R-DOR: 0.43 (0.28,	
	T-SPOT (70/774)	28.74)	48.21)	DOR: 2.88 (1.31,	9.99)	0.68)	
	$TST \ge 5 \text{ mm}$	SP: 93.5 (91.3, 95.17)	SP: 91.12 (89.52,	6.29)	DORa: 6.20 (4.08,	R-DORa: 0.42 (0.26,	
	(173/1356)	PPV: 18.00 (9.77,	92.49)	DORa: 2.63 (1.15,	9.44)	0.68)	
	(1/3/1330)	30.8)	PPV: 27.75 (21.61,	5.98)	2. 14)	0.00)	
	N indeterminate	NPV: 92.91 (90.65,	34.85)	J.70)			
	QFT-G + T-	94.66)	NPV: 94.54 (93.2,		1		

Study ID (Author	Test results	group of interest – immu Test diagnostic accu	racy in % (95% CI)	Construct validity (i.e., LTBI exposure-based proxy)		
name, year,				DOR ((95% CI)	R-DOR (95% CI)
and country)				(vs. non-exposed	l; reference group)	
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.
		T-SPOT		and/or T-SPOT		TST
	SPOT: 80	T. CDOT	95.63)	T CDOT		(by threshold)
	TST: NR	T-SPOT Presence of compound	95.63)	T-SPOT Presence of		T-SPOT vs. TST ≥ 10 mm
	151: NK	risk factor vs. Absence		compound risk		Presence of
		of compound risk		factor vs. Absence		compound risk factor
		factor		of compound risk		vs. Absence of
		SN: 35.29 (25.00,		factor		compound risk factor
		47.16)		DOR: 8.65 (4.84,		R-DOR: 1.30 (0.91,
		SP: 94.07 (92.18,		15.46)		1.87)
		95.53)		DORa: 8.74 (4.83,		R-DORa: 1.41 (0.97,
		PPV: 34.29 (24.25,		15.82)		2.04)
		45.96)				
		NPV: 94.32 (92.45,				
		95.74)				
Laffitte,	N test results	T-SPOT	TST ≥ 5 mm	T-SPOT	$TST \ge 5 \text{ mm}$	T -SPOT vs. $TST \ge$
2009 ¹³²	T-SPOT: 50	D I II I I I I I I I I I I I I I I I I	D 1 11 1 TEDY AV	D 1 11 1 TD1	D 1 11 1 TDD1	5 mm
Switzerland	TST≥ 5 mm: 50	Probable LTBI vs. No	Probable LTBI vs. No	Probable LTBI vs.	Probable LTBI vs.	Probable LTBI vs.
[Low]	TST≥ 10 mm:50	probable LTBI	probable LTBI	No probable LTBI	No probable LTBI	No probable LTBI
	Test (+/-)	SN: 36.36 (19.73, 57.05)	SN: 50.00 (30.72, 69.28)	DOR: 7.43 (1.38, 39.90)	DOR: 3.00 (0.93, 9.70)	R-DOR: 3.52 (1.25, 9.96)
	T-SPOT (10/40)	SP: 92.86 (77.35,	SP: 67.86 (49.34,	DORa: NR	DORa: NR	R-DORa: NA
	$TST \ge 5 \text{ mm}$	98.02)	82.07)	DORa. NK	DOKa. NK	K-DOKa. NA
	(20/30)	PPV: 80.00 (49.02,	PPV: 55.00 (34.21,		TST ≥10 mm	T-SPOT vs. TST ≥
	$TST \ge 10 \text{ mm}$	94.33)	74.18)		Probable LTBI vs.	10 mm
	(18/32)	NPV: 65.00 (49.51,	NPV: 63.33 (45.51,		No probable LTBI	Probable LTBI vs.
		77.87)	78.13)		DOR: 2.08 (0.64,	No probable LTBI
	N indeterminate	,			6.73)	R-DOR: 1.69 (0.58,
	T-SPOT: NR		TST ≥ 10 mm		DORa: NR	4.89)
	TST≥ 5 mm: NR		Probable LTBI vs. No			R-DORa: NA
	TST≥ 10 mm: NR		probable LTBI			
			SN: 54.55 (34.66,			
			73.08)			

Study ID (Author	Test results	Test diagnostic accu	iracy in % (95% CI)	(i.e.,	proxy) R-DOR (95% CI)	
name, year, and country)					l; reference group)	K-DOK (95% CI)
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)
			SP: 78.57 (60.46, 89.79) PPV: 66.67 (43.75, 83.72) NPV: 68.75 (51.43, 82.05)			
Maritsi, 2011 ¹³³	N test results QFT-GIT: 23	QFT (GIT)	TST ≥ NR mm	QFT (GIT)	TST ≥ NR mm	QFT-GIT vs. TST≥NR mm
UK [Low]	TST: 14 Test (+/-) QFT-GIT (1/20) TST≥ NR mm (0/14)	High-risk group vs. Low risk group SN: 33.33 (6.15, 79.23) SP: 100 (82.41, 100) PPV: 100 (20.65, 100)	High-risk group vs. Low risk group SN: 0.00 (0.00, 56.15) SP: 100 (74.12, 100) PPV: NA NPV: 78.57 (52.41,	High-risk group vs. Low risk group DOR: NA DORa: NA	High-risk group vs. Low risk group DOR: NA DORa: NA	High-risk group vs. Low risk group R-DOR: NA R-DORa: NA
	N indeterminate QFT-GIT: 2 TST: 0	NPV: 90.00 (69.9, 97.21)	92.43)			
Mutsvangwa, 2010 ¹³⁴ Zimbabwe [High]	N test results T-SPOT: 73 TST: 73	T-SPOT Contact of index TB case vs. contact of	TST ≥10 mm (two- step) Contact of index TB case vs. contact of	T-SPOT Contact of index TB case vs. contact	TST ≥ 10 mm (two- step) Contact of index TB case vs. contact of	T-SPOT vs. TST ≥ 10 mm (two-step) Contact of index TB case vs. contact of
	Test (+/-) T-SPOT (22/51) TST≥ 10 mm (33/40)	index control SN: 34.55 (23.36, 47.75) SP: 83.33 (60.78,	index control SN: 49.09 (36.38, 61.92) SP: 66.67 (43.75,	of index control DOR: 2.64 (0.67, 10.27) DORa: NR	index control DOR: 1.93 (0.63, 5.87) DORa: NR	index R-DOR: 1.37 (0.56, 3.36) R-DORa: NA
	N indeterminate T-SPOT: NR TST: NR	94.16) PPV: 86.36 (66.66, 95.25) NPV: 29.41 (18.71,	83.72) PPV: 81.82 (65.61, 91.39) NPV: 30.00 (18.07,			

Study ID (Author name, year,	Test results	Test diagnostic accu	racy in % (95% CI)	(i.e.,	proxy) R-DOR (95% CI)	
and country)				(vs. non-exposed	l; reference group)	
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)
		43.0)	45.43)			,
		Smear status of index case (Smear-, culture + vs. Smear-, culture -) SN: NR SP: NR PPV: NR NPV: NR Smear status of index case (Smear +, culture + vs. Smear-, culture -) SN: NR SP: NR PPV: NR NPV: NR	Smear status of index case (Smear-, culture + vs. Smear-, culture -) SN: NR SP: NR PPV: NR NPV: NR Smear status of index case (Smear +, culture + vs. Smear-, culture -) SN: NR SP: NR PPV: NR NPV: NR	Smear status of index case (Smear-, culture + vs. Smear-, culture -) DOR: 1.60 (0.20, 12.69) DORa: 1.87 (0.22, 16.16) Smear status of index case (Smear +, culture + vs. Smear-, culture -) DOR: 4.80 (1.05, 21.91) DORa: 5.36 (1.11, 25.93)	Smear status of index case (Smear-, culture + vs. Smear-, culture -) DOR: 1.50 (0.24, 9.46) DORa: 1.09 (0.13, 9.42) Smear status of index case (Smear +, culture + vs. Smear-, culture -) DOR: 3.50 (0.88, 13.93) DORa: 3.43 (0.76 to 15.52)	Smear status of index case (Smear-, culture + vs. Smear-, culture -) R-DOR: 1.07 (0.26, 4.39) R-DORa: 1.72 (0.36, 8.06) Smear status of index case (Smear +, culture + vs. Smear-, culture -) R-DOR: 1.37 (0.48, 3.91) R-DORa: 1.56 (0.51,
Papay, 2011 ¹³⁵	N test results	QFT (GIT)	TST ≥ 5 mm	QFT (GIT)	TST≥5 mm	4.76) QFT-GIT vs. TST ≥
Austria [Low]	QFT-GIT: 192 TST: 192	Presence of risk factors vs absence of	Presence of risk factors vs absence of	Presence of risk factors vs absence	Presence of risk factors vs absence of	5 mm Presence of risk factors vs absence of
	Test (+/-) QFT-GIT/G	risk factors SN: 13.85 (7.45,	risk factors SN: 21.74 (13.64,	of risk factors	risk factors	risk factors
	(15/177) TST≥ 5 mm (26/166)	24.27) SP: 95.28 (90.08, 97.82)	32.82) SP: 92.09 (86.38, 95.52)	DOR: 3.24 (1.10, 9.54) DORa: NR	DOR: 3.23 (1.39, 7.49) DORa: NR	R-DOR: 1.00 (0.50, 2.02) R-DORa: NA
	N indeterminate	PPV: 60.00 (35.75, 80.18)	PPV: 57.69 (38.95, 74.46)			

	Subgroup of interest – immunocompromised people (specify main condition/procedure)								
Study ID (Author	Test results	Test diagnostic accu	racy in % (95% CI)	(i.e.,	Construct validity LTBI exposure-based	proxy)			
name, year,					95% CI)	R-DOR (95% CI)			
and country)					; reference group)				
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)			
	QFT-GIT/G: 0 TST: 0	NPV: 68.36 (61.18, 74.76)	NPV: 70.33 (63.33, 76.49)						
		Origin from a high- incidence country vs origin from a low- incidence country SN: 14.29 (5.69, 31.49) SP: 93.29 (88.39, 96.21) PPV: 26.67 (10.9, 51.95) NPV: 86.44 (80.62, 90.72)	Origin from a high-incidence country vs origin from a low-incidence country SN: 37.93 (22.69, 56) SP: 91.62 (86.64, 94.86) PPV: 42.31 (25.54, 61.05) NPV: 90.11 (84.91, 93.65)	Origin from a high- incidence country vs origin from a low-incidence country DOR: 2.32 (0.68, 7.87) DORa: NR	Origin from a high- incidence country vs origin from a low- incidence country DOR: 6.68 (2.67, 16.73) DORa: NR	Origin from a high- incidence country vs origin from a low- incidence country R-DOR: 0.35 (0.16, 0.76) R-DORa: NA			
		History of contact with index case vs no history of contact SN: 20.00 (5.668, 50.98) SP: 92.86 (88.16, 95.78) PPV: 13.33 (3.736, 37.88) NPV: 95.48 (91.34, 97.69)	History of contact with index case vs no history of contact SN: 36.36 (15.17, 64.62) SP: 88.83 (83.67, 92.51) PPV: 15.38 (6.15, 33.53) NPV: 96.15 (92.27, 98.12)	History of contact with index case vs no history of contact DOR: 3.25 (0.62, 16.91) DORa: NR	History of contact with index case vs no history of contact DOR: 4.54 (1.23, 16.78) DORa: NR	History of contact with index case vs no history of contact R-DOR: 0.72 (0.24, 2.10) R-DORa: NA			
Ramos, 2013 ¹³⁶	N test results QFT-GIT: 153	QFT (GIT)	TST ≥ 5 mm	QFT (GIT)	TST ≥ 5 mm	QFT-GIT vs. TST ≥ 5 mm			
Spain [Low]	TST: 153	Contact of index TB case vs. contact of	Contact of index TB case vs. contact of	Contact of index TB case vs. contact	Contact of index TB case vs. contact of	Contact of index TB case vs. contact of			

Study ID (Author	Test results	<u> </u>	unocompromised people uracy in % (95% CI)	Construct validity (i.e., LTBI exposure-based proxy)			
name, year,					95% CI)	R-DOR (95% CI)	
and country)					; reference group)	(
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)	
	Test (+/-) QFT-GIT (15/137)	index control SN: 42.86 (15.82, 74.95)	index control SN: 57.14 (25.05, 84.18)	of index control DOR: 8.31 (1.66,	index control DOR: 3.66 (0.78,	index control	
	(13/137) TST $\geq 5 \text{ mm}$ (43/110)	74.93) SP: 91.72 (86.09, 95.20) PPV: 20.00 (7.04,	SP: 73.29 (65.58, 79.8) PPV: 9.30 (3.67, 21.6)	DOR: 8.31 (1.00, 41.56) DORa: NR	17.08) DORa: NR	R-DOR: 2.27 (0.73, 7.08) R-DORa: NA	
	N indeterminate QFT-GIT: 1 T-SPOT: 0 TST: 0	45.19) NPV: 97.08 (92.73, 98.86)	NPV: 97.27 (92.29, 99.07) Born in an endemic	Born in an endemic country vs not born in an endemic country	Born in an endemic country vs not born in an endemic country	Born in an endemic country vs not born in an endemic country	
		Born in an endemic country vs not born in an endemic country SN: 50.00 (21.52,	country vs not born in an endemic country SN: 50.00 (21.52, 78.48)	DOR: 12.09 (2.65, 55.07) DORa: NR	DOR: 2.72 (0.65, 11.40) DORa: NR	R-DOR: 4.44 (1.53, 12.89) R-DORa: NA	
		78.48) SP: 92.36 (86.84, 95.68)	SP: 73.1 (65.36, 79.66) PPV: 9.30 (3.67,				
		PPV: 26.67 (10.90, 51.95) NPV: 97.08 (92.73, 98.86)	21.60) NPV: 96.36 (91.02, 98.58)				
Seyhan, 2010 ¹³⁷	N test results QFT-GIT: 100	QFT (GIT)	TST ≥ 10 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST ≥ 10 mm	
Turkey [Intermediate]	TST: 100	Previous contact with an index case vs no	Previous contact with an index case vs no	Previous contact with an index case	Previous contact with an index case vs no	Previous contact with an index case vs	
•	Test (+/-) QFT-GIT: (43/57)	contact SN: 76.92 (49.74,	contact SN: 46.15 (23.21,	vs no contact	contact	no contact R-DOR: 3.01 (1.20,	
	TST≥ 10 mm (34/66)	91.82) SP: 62.07 (51.57,	70.86) SP: 67.82 (57.43,	DOR: 5.45 (1.40,	DOR: 1.81(0.55,	7.56) R-DORa: NA	
	N indeterminate	71.55) PPV: 23.26 (13.15,	76.7) PPV: 17.65 (8.349,	21.27) DORa: NA	5.87) DORa: NA		

	Subgroup of interest – immunocompromised people (specify main condition/procedure)								
Study ID (Author	Test results	Test diagnostic accu	racy in % (95% CI)	(i.e.,	Construct validity LTBI exposure-based	proxy)			
name, year,					(95% CI)	R-DOR (95% CI)			
and country)					l; reference group)				
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G			
		QFT (GIT/G) and/or T-SPOT		QFT (GIT/G) and/or T-SPOT		or T-SPOT) vs. TST			
						(by threshold)			
	QFT-GIT: NA	37.74)	33.51)	Previous TB	Previous TB disease	Previous TB disease			
	TST: 0	NPV: 94.74 CI (85.63,	NPV: 89.39 (79.69,	disease vs no	vs no previous	vs no previous			
		98.19)	94.77)	previous disease DOR: 4.46 (0.85,	disease DOR: 1.18, (0.26,	disease R-DOR: 3.78 (1.21,			
		Previous TB disease	Previous TB disease	23.31)	5.26)	11.83)			
		vs no previous disease	vs no previous disease	DORa: NA	DORa: NA	R-DORa: NA			
		SN: 75.0 (40.93,	SN: 37.5 (13.68,						
		92.85)	69.43)						
		SP: 59.78 (49.57,	SP: 66.3 (56.17,						
		69.22)	75.14)						
		PPV: 13.95 (6.556,	PPV: 8.824 (3.047,						
		27.26)	22.96)						
		NPV: 96.49 (88.08,	NPV: 92.42 (83.46,						
120		99.03)	96.72)						
Shen, 2012 ¹³⁸	N test results	T-SPOT	TST ≥ 5 mm	T-SPOT	$TST \ge 5 \text{ mm}$	T-SPOT vs. $TST \ge$			
China [High]	T-SPOT: 70	G 1 TTD 1	G 1770 1	G 1500	G 1 FFD	5 mm			
	TST: 70	Suspected TB disease	Suspected TB disease	Suspected TB	Suspected TB	Suspected TB			
	TD 4 (: 1)	vs no suspected TB	vs no suspected TB	disease vs no	disease vs no	disease vs no			
	Test (+/-)	SN: 70.97 (53.41,	SN: 61.29 (43.82,	suspected TB	suspected TB	suspected TB			
	T-SPOT (26/44) TST≥ 5 mm	83.90) SP: 89.74 (76.42,	76.27) SP: 61.54 (45.9,	DOR: 21.39 (5.87,	DOR: 2.53 (0.96,	R-DOR: 8.45 (3.71,			
	(34/36)	95.94)	75.11)	77.93)	6.67)	19.28)			
	(34/30)	PPV: 84.62 (66.47,	PPV: 55.88 (39.45,	DORa: NA	DORa: NA	R-DORa: NA			
	N indeterminate	93.85)	71.12)	DORa. NA	DOKa. NA	R-DOKa. NA			
	T-SPOT: 0	NPV: 79.55 (65.5,	NPV: 66.67 (50.33,						
	TST: 0	88.85)	79.79)						
Souza, 2014 ¹⁵¹	N test results	QFT-GIT	TST ≥ 5 mm	QFT-GIT	TST≥5 mm	QFT-GIT vs.			
Brazil	QFT-GIT: 299	History of contact with	History of contact with	History of contact	History of contact	$TST \ge 5 \text{ mm}$			
[intermediate]	TST: 300	index case vs. no	index case vs. no	with index case vs.	with index case vs.	History of contact			
-		history of contact with	history of contact with	no history of	no history of contact	with index case vs.			
	Test (+/-)	index case	index case	contact with index	with index case	no history of contact			

	Subgroup of interest – immunocompromised people (specify main condition/procedure)								
Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	Construct validity (i.e., LTBI exposure-based proxy)					
(Author									
name, year,					95% CI)	R-DOR (95% CI)			
and country)			T		l; reference group)				
[burden]		IGRA	TST (by threshold)	IGRA	TST (by threshold)	IGRA (QFT-GIT/G			
		QFT (GIT/G) and/or		QFT (GIT/G)		or T-SPOT) vs.			
		T-SPOT		and/or T-SPOT		TST			
	OFT CIT	CN, 0.0 (0.00, 0.00)	CNL 2.96 (0.50, 14.52)		DOD: 0.02 (0.11	(by threshold) with index case			
	QFT-GIT	SN: 0.0 (0.00, 9.89)	SN: 2.86 (0.50, 14.53)	case	DOR: 0.93 (0.11, 7.61)	with index case			
	(14/285) TST≥ 5 mm	SP: 94.96 (91.57, 97.03)	SP: 96.91 (94.02, 98.43)	DOR: 0.50 (0.06,	DORa: 1.21 (0.13,	R-DOR: 0.54 (0.12,			
	(10/290)	PPV: 0.0 (0.00, 22.81)	PPV: 11.11 (1.99,	4.24)	11.16)	2.49)			
	(10/290)	NPV: 87.5 (83.11,	43.5)	DORa: NR	11.10)	R-DORa: NA			
	N indeterminate	90.87)	NPV: 88.07 (83.79,	DOKa. NK		K-DOKa. NA			
	QFT-GIT: 1	90.67)	91.34)						
	TST: 0		71.54)						
Takeda,	N test results	QFT (GIT)	TST ≥ 10 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST ≥			
2011 139	QFT-GIT: 71	,			_	10 mm			
Japan [Low]	TST: 43	Risk of LTBI vs no	Risk of LTBI vs no	Risk of LTBI vs no	Risk of LTBI vs no	Risk of LTBI vs no			
		risk of LTBI	risk of LTBI	risk of LTBI	risk of LTBI	risk of LTBI			
	Test (+/-)	SN: 11.11 (10, 32.80)	SN: 7.14 (1.27, 31.47)			R-DOR: 3.61 (0.59,			
	QFT-GIT: (2/46)	SP:100.00 (88.65,	SP: 93.10 (78.04,	DOR: 3.75 (0.31,	DOR: 1.04 (0.08,	21.99)			
	TST≥ 10 mm	100.00)	98.09)	44.6)	12.53)	R-DORa: NA			
	(3/40)	PPV: 100.00 (34.24,	PPV: 33.33(6.15,	DORa: NA	DORa: NA				
		100.00)	79.23)						
	N indeterminate	NPV: 65.22 (53.45,	NPV: 67.50 CI (52.02,						
	QFT-GIT: 23	75.38)	79.92)						
	T-SPOT: NA								
37 '1 1	TST: 0	TE CENOTE	TECHT > #	TE CIDOTE	TECTE > #	TE CIDOTE TECTES			
Vassilopoulos, 2011 ¹⁴⁰	N test results QFT-GIT: 157	T-SPOT	TST ≥ 5 mm	T-SPOT	TST ≥ 5 mm	T-SPOT vs. TST ≥ 5 mm			
Greece [Low]	T-SPOT: 157	TB exposure vs no	TB exposure vs no	TB exposure vs no	TB exposure vs no	TB exposure vs no			
Greece [LOW]	TST: 157	exposure vs no	exposure vs no	exposure vs no	exposure vs no	exposure vs no			
	151.157	caposuic	caposure	CAPOSUIC	CAPOSUIC	R-DOR: 0.55 (0.26,			
	Test (+/-)	SN: 25.00 (11.19,	SN: 50.00 (29.93,	DOR: 0.99, (0.33,	DOR: 1.81 (0.70,	1.14)			
	QFT-GIT	46.87)	70.07)	2.92)	4.66)	R-DORa: NA			
	(32/123)	SP: 74.81 (66.88,	SP: 64.44, (56.07,	DORa: NA	DORa: NA				
	T-SPOT (39/116)	81.38)	72.02						
	TST≥ 5 mm	PPV: 12.82(5.60,	PPV: 17.24 (9.64,						

	Subgroup of interest – immunocompromised people (specify main condition/procedure)								
Study ID (Author	Test results	Test diagnostic accu	ıracy in % (95% CI)	(i.e.,	Construct validity (i.e., LTBI exposure-based proxy)				
name, year, and country)				DOR (95% CI) l; reference group)	R-DOR (95% CI)			
[burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)			
	(58/97) N indeterminate QFT-GIT: 2 T-SPOT: 2 TST: 2	26.71) NPV: 87.07 (79.76, 92.00) QFT (GIT) TB exposure vs no exposure SN: 15.00 (5.23, 36.04) SP: 78.52 (70.85, 84.61) PPV: 9.37 (3.24, 24.22) NPV: 86.18 (78.98, 91.19)	28.91) NPV: 89.69 (82.05, 94.3)	QFT (GIT) TB exposure vs no exposure DOR: 0.64 (0.17, 2.35) DORa: NA		QFT-GIT vs. TST ≥ 5 mm TB exposure vs no exposure R-DOR: 0.35 (0.15, 0.81) R-DORa: NA			

Abbreviations: N = number; SN = sensitivity; SP = specificity; PPV = positive predictive value; NPV = negative predictive value; DOR = diagnostic odds ratio; DORa = adjusted diagnostic odds ratio; R-DOR = ratio of diagnostic odds ratio; R-DORa = adjusted ratio of diagnostic odds ratio; TB = tuberculosis; 95% CI = 95 percent confidence interval; QFT = QuantiFERON-TB; GIT = Gold In-Tube; TST = tuberculin skin test

The forest plot analysis of R-DORs from the remaining 21 studies is stratified according to specific conditions/procedures (HIV, solid organ transplantation candidates, post kidney transplantation, haemodialysis – end stage renal disease, immune-mediated inflammatory diseases before anti-TNF- α therapy, Hepatitis C, and lupus erythematosus) (Figure 29). There was a significant amount of heterogeneity across all subgroups of participants except for haemodialysis in whom IGRA (QFT-GIT) was more strongly associated with exposure groups than TST 10mm (Pooled R-DOR = 2.53, 95% CI: 1.48, 4.34; I^2 =40%). Similarly, in participants with hepatitis C, IGRA (TSPOT) outperformed TST 5mm in detecting LTBI (R-DOR = 8.45, 95% CI: 3.71, 19.24).

Within-subgroup heterogeneity by IGRA type (QFT-GIT, TSPOT) and TST threshold (5mm, 10mm, 15mm) could not be examined for most subgroups due to sparse data. The underlying differences in the definition/measurement of exposure and differential performance of tests across the disease spectrum may have additionally contributed to the non-uniformity observed in the R-DOR estimates (see Figure 30, Figure 31, Figure 32, Figure 33). For example, for participants with immune-mediated inflammatory diseases before anti-TNF- α therapy, the non-uniformity persisted even after accounting for the type of IGRA (QFT-GIT) and TST threshold (5mm) (pooled R-DOR = 0.90, 95% CI: 0.52, 1.54; $I^2 = 80\%$) (see Figure 30). However, the stratification by IGRA type and TST threshold revealed that, TST 5mm was better than IGRA (QFT-GIT) in detecting LTBI in participants with HIV (Pooled R-DOR=0.35, 95% CI: 0.15, 0.83; $I^2=0\%$) (see Figure 30). Based on the results from two studies of solid organ transplantation candidates, there was no significant difference between the performance of IGRAs (T-SPOT.TB¹²⁸ and OFT-GIT¹²²) and TST (5mm) in relation to the identification of LTBI (see Figure 30, Figure 32, and Figure 33). In contrast, in another study of solid organ transplantation candidates, TST 10mm outperformed QFT-GIT (R-DOR=0.07, 95% CI: 0.02, 0.19) (see Figure 30). ¹²⁹ In two studies, the performance of OFT-GIT did not significantly differ from that of TST among participants with lupus erythematosus (QFT-GIT vs. TST 10mm; R-DOR=3.60, 95% CI: 0.59, 21.96)¹³⁹ and kidney transplant recipients (QFT-GIT vs. TST 5mm; R-DOR=1.16, 95% CI: 0.51, 2.66)¹²⁶ (see Figure 30, Figure 31).

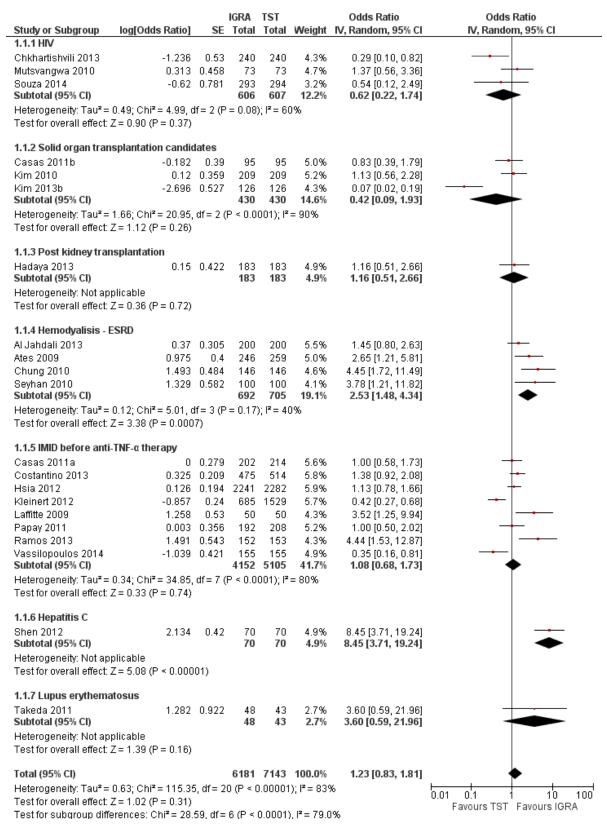


Figure 29. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRAs vs. TST in all studies based on high risk and low risk exposure in immunocompromised patients

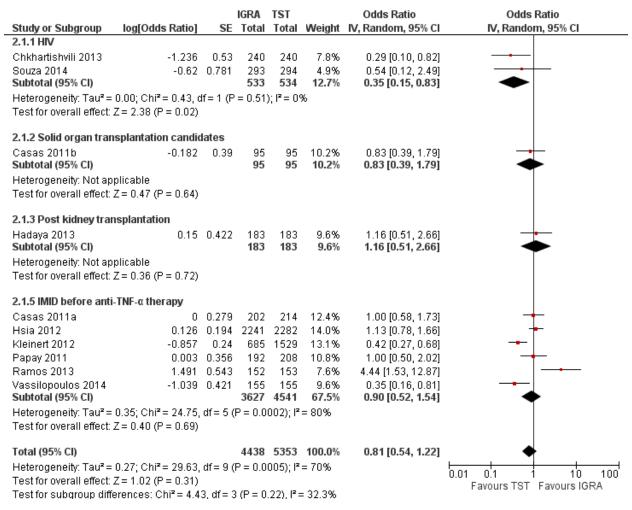


Figure 30. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT-GIT/G vs. TST 5mm based on high risk and low risk exposure in immunocompromised patients

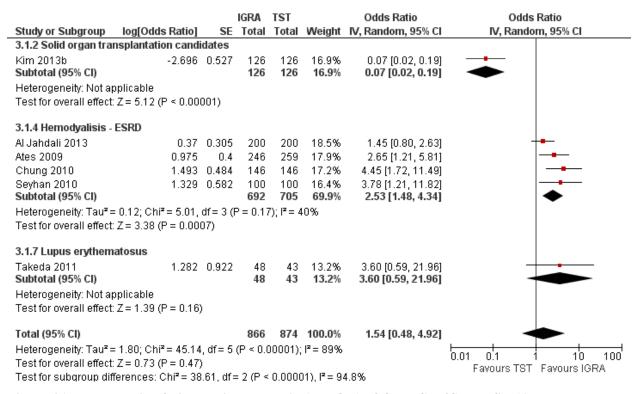


Figure 31. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT-GIT/G vs. TST 10mm based on high risk and low risk exposure in immunocompromised patients

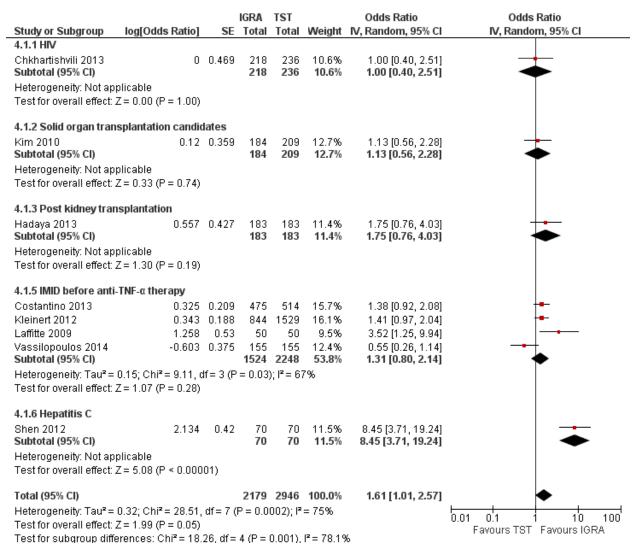


Figure 32. Pooled ratio of diagnostic odds ratio (R-DOR) of TSPOT vs. TST 5mm based on high risk and low risk exposure in immunocompromised patients

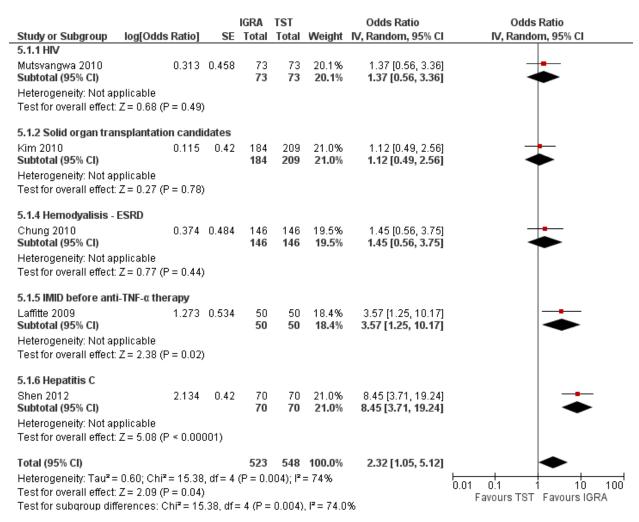


Figure 33. Pooled ratio of diagnostic odds ratio (R-DOR) of TSPOT vs. TST 10mm based on high risk and low risk exposure in immunocompromised patients

Sensitivity and specificity

This section incorporates 24 newly identified recent studies ^{118-140, 151} (Table 15). Three studies did not report sensitivity and specificity parameters for both IGRA and TST^{121, 123, 127} and one study ¹³⁰ reported them for only TST. The forest plots for the remaining 21 studies displayed a wide variability in sensitivity (IGRAs range: 0%-75%; TST-5mm range: 0%-61%; TST-10mm range: 0%-87%) and specificity (IGRAs range: 57%-100%; TST-5mm range: 62%-96%; TST-10mm range: 64%-93%). The heterogeneity persisted even after stratifying the estimates by the type of IGRA (QFT-GIT, TSPOT) and TST threshold (5mm, 10mm). Of the two IGRAs, QFT-GIT/G demonstrated markedly wider variation in the estimates of specificity and sensitivity than TSPOT. In general, for both IGRA and TST, specificity tended to be greater than sensitivity (see Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, Figure 41). The absence of any clear pattern in the distribution of sensitivity and specificity values reflect

underlying between-study differences in study populations/conditions, settings, and variation in exposure definitions and measurement. In light of the observed heterogeneity, no meta-analysis was undertaken.

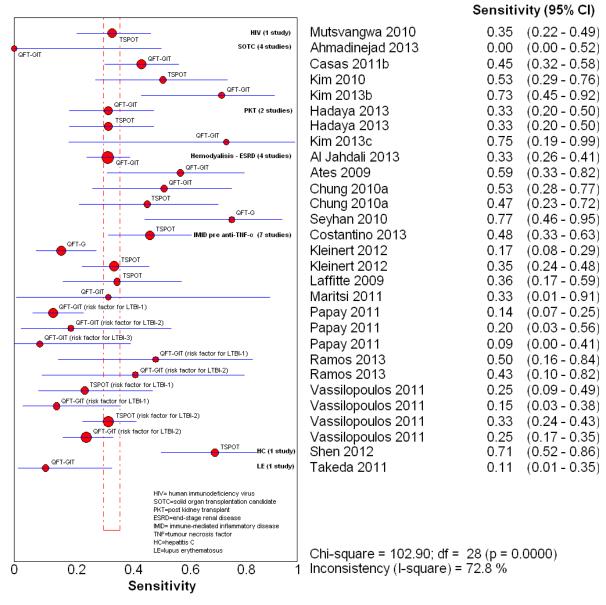


Figure 34. Forest plot of sensitivity based on exposure groups (IGRA) in immunocompromised patients

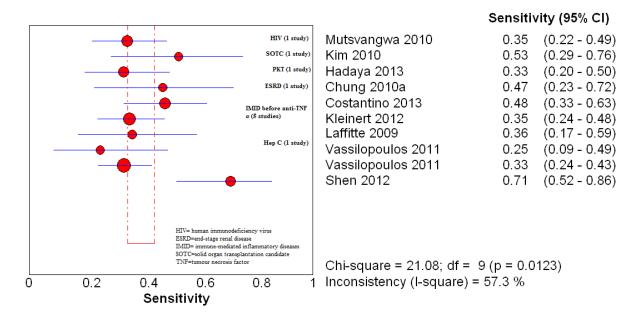


Figure 35. Forest plot of sensitivity based on exposure groups (TSPOT) in immunocompromised patients

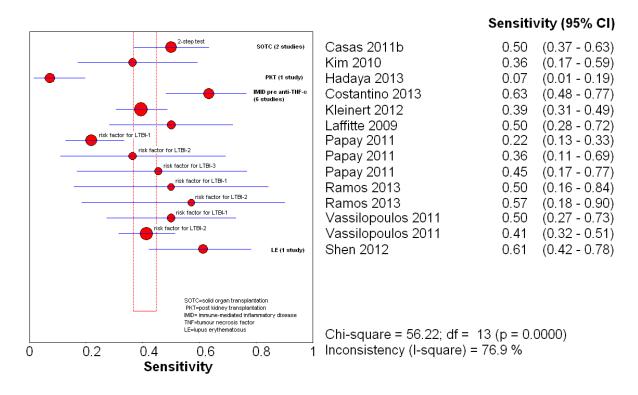


Figure 36. Forest plot of sensitivity based on exposure groups (TST 5mm) in immunocompromised patients

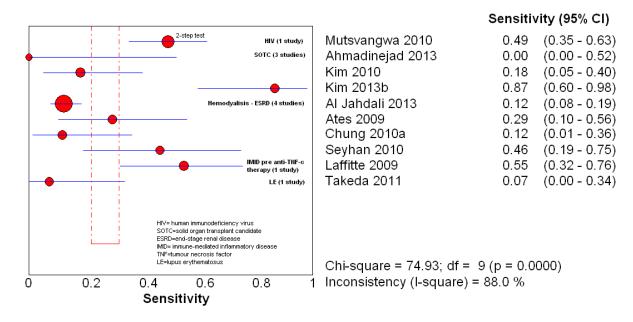


Figure 37. Forest plot of sensitivity based on exposure groups (TST 10mm) in immunocompromised patients

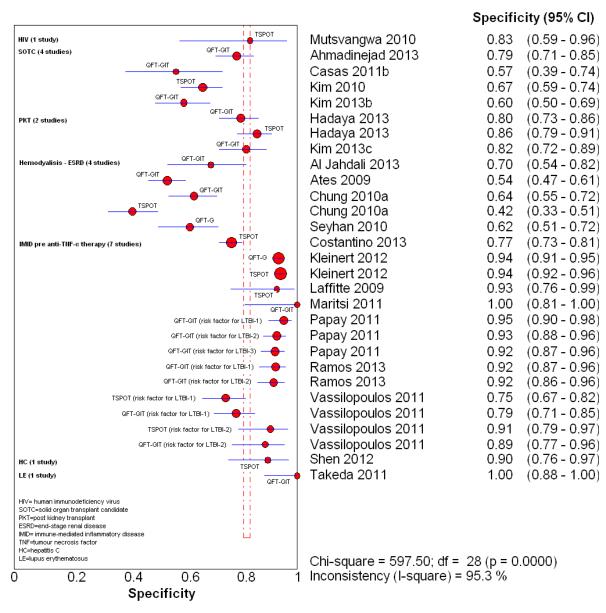


Figure 38. Forest plot of specificity based on exposure groups (IGRA) in immunocompromised patients

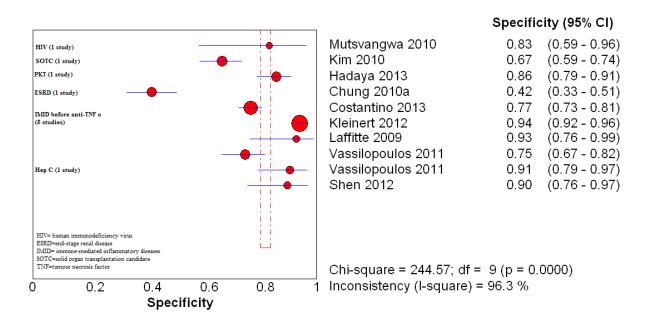


Figure 39. Forest plot of specificity based on exposure groups (TSPOT) in immunocompromised patients

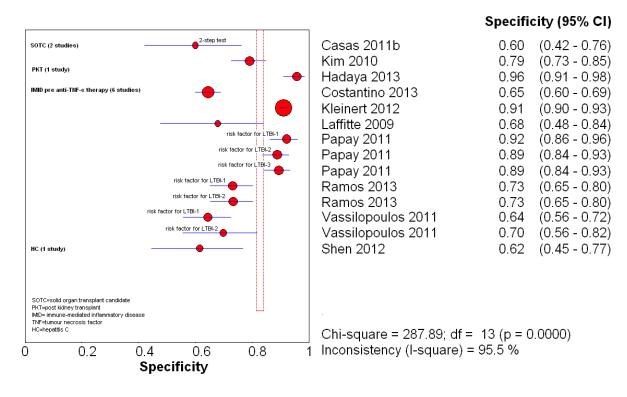


Figure 40. Forest plot of specificity based on exposure groups (TST 5mm) in immunocompromised patients

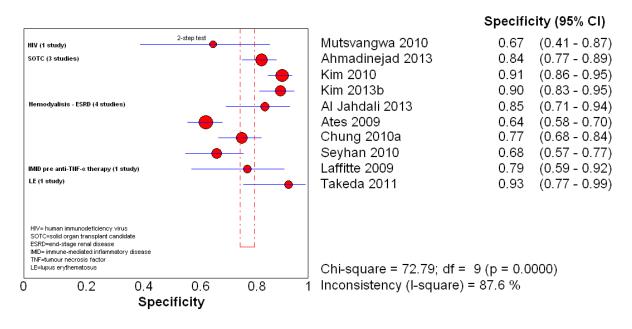


Figure 41. Forest plot of specificity based on exposure groups (TST 10mm) in immunocompromised patients

4.4.3.2.2 Influence of BCG vaccination status on test positivity:

Of the 24 newly identified studies included in this section, $^{118-140, 151}$ only $14^{118, 120-123, 125, 127-129, 131, 132, 136, 137, 140}$ reported on the association between test positivity and BCG vaccination status. Overall, there was no evidence indicating differential effect of BCG vaccination status on IGRA and TST positivity. $^{118, 120-123, 128, 129, 131, 132, 135-140}$ In other words, the odds of test positivity for IGRA and TST were not significantly different between the BCG vaccinated vs. non-vaccinated groups (Table 16). Only one study demonstrated significantly increased OR for TST-10mm positivity (OR = 4.28, 95% CI: 1.35, 13.64) as opposed to a non-significant OR for IGRA (OR = 1.89, 95% CI: 0.75, 4.73) in relation to BCG vaccination status. 137

Table 16. Association between test positivity and BCG vaccination (exposure studies)

Subgroup of interest – immunocompromised people (specify main condition/procedure)								
Study ID	Sample size	Type of IGRA	Association between test positi	vity and BCG vaccination status				
(Author name, year, and country)	(N)	TST induration	OR, 9	95% CI)				
[burden]		threshold	Crude/unadjusted	Adjusted				
Ahmadinejad, 2013 ¹¹⁸	159	QFT-GIT	0.38 (95% CI: 0.11, 1.24)	NR				
Iran [Intermediate]	164	TST-10mm	0.60 (95% CI: 0.15, 2.34)	NR				
Al Jahdali, 2013 ¹¹⁹	NA	QFT-GIT	NR	NR				
Saudi Arabia [Low]	NA	TST-10mm (two-step)	NR	NR				
Ates, 2009 ¹²⁰	246	QFT-GIT	1.13 (95% CI: 0.68, 1.86)	1.14 (95% CI: 0.68, 1.92)				
Turkey [Intermediate]	259	TST-10mm	0.85 (95% CI: 0.51, 1.43)	0.87 (95% CI: 0.50, 1.51)				
Casas, 2011a ¹²¹	214	QFT-GIT	1.20 (95% CI: 0.50, 3.20)	NR				
Spain [Low]	214	TST-5mm	1.70 (95% CI: 0.90, 3.40)	1.50 (95% CI: 0.70, 3.40)				
Casas, 2011b ¹²²	95	QFT-GIT	0.62 (95% CI: 0.26, 1.42)	NR				
Spain [Low]	95	TST-5mm (two-step)	0.83 (95% CI: 0.35, 2.00)	NR				
Chkhartishvili, 2013 ¹²³	240	QFT-GIT	1.41 (95% CI: 0.38, 5.29)	NR				
Georgia [High]	240	T-SPOT	1.78 (95% CI: 0.38, 8.28)	NR				
	240	TST-5mm	2.55 (95% CI: 0.32, 20.18)	NR				
Chung, 2010a ¹²⁴	146	QFT-GIT	NR	NR				
South Korea [High]	146	T-SPOT	NR	NR				
	146	TST-10mm	NR	NR				
Costantino, 2013 ¹²⁵	563	T-SPOT	NR	0.39 (95% CI: 0.24, 0.62)				
France [Low]	563	TST-5mm	NR	NR (p = 0.11, NS)				
Hadaya, 2013 ¹²⁶	183	QFT-GIT	NR	NR				
Switzerland [Low]	183	T-SPOT	NR	NR				
	183	TST-5mm	NR	NR				
Hsia, 2012 ¹²⁷	2029	QFT-GIT	NR	1.00 (95% CI: 0.66, 1.51) adjusted				
USA [Low]	2029	TST-5mm	NR	2.47 (95% CI: 1.71, 3.55) adjusted				
Kim, 2010 ¹²⁸	184	T-SPOT	0.69 (95% CI: 0.36, 1.34)	NR				
South Korea [High]	209	TST-5mm	1.25 (95% CI: 0.55, 2.82)	NR				
	209	TST-10mm	0.89 (95% CI: 0.31, 2.58)	NR				
Kim, 2013b ¹²⁹	120	QFT-GIT	1.94 (95% CI: 0.48, 7.91)	2.32 (95% CI: 0.50, 10.66)				
South Korea [High]	119	TST-10mm	2.56 (95% CI: 0.31, 21.06)	3.32 (95% CI: 0.38, 28.97)				
Kim, 2013c ¹³⁰	93	QFT-GIT	NR	NR				
South Korea [High]	93	TST-10mm	NR	NR				
Kleinert, 2012 ¹³¹	685	QFT-G	NR	0.43 (95% CI: 0.17, 1.10)				
Germany [Low]	844	T-SPOT	NR	1.07 (95% CI: 0.47, 2.43)				

	_		people (specify main condition/proc	
Study ID	Sample size	Type of IGRA		tivity and BCG vaccination status
(Author name, year, and country)			1	95% CI)
[burden]		threshold	Crude/unadjusted	Adjusted
122	1529	TST-5mm	3.17 (95% CI: 2.19, 4.58)	2.95 (95% CI: 2.00, 4.35)
Laffitte, 2009 ¹³²	50	T-SPOT	1.00 (95% CI: 0.01, 10.07)	NR
Switzerland [Low]	50	TST-5mm	2.92 (95% CI: 0.30, 28.29)	NR
	50	TST-10mm	2.43 (95% CI: 0.25, 23.57)	NR
Maritsi, 2011 ¹³³	NR	QFT-GIT	NR	NR
UK [Low]	NR	TST-NR mm	NR	NR
Mutsvangwa, 2010 ¹³⁴	NR	T-SPOT	NR	NR
Zimbabwe [High]	NR	TST-10mm (two-step)	NR	NR
Papay, 2011 ¹³⁵	192	QFT-GIT	NR	NR
Austria [Low]	192	TST-5mm	NR	NR
Ramos, 2013 ¹³⁶	153	QFT-GIT	NR	5.10 (95% CI: 1.50, 17.50)
Spain [Low]	153	TST-5mm	NR	2.40 (95% CI: 1.01, 5.80)
Seyhan, 2010 ¹³⁷	100	QFT-G	NR	NR
Turkey [Intermediate]	100	TST-10mm	NR	4.10 (95% CI: 1.30, 13.90)
Shen, 2012 ¹³⁸	70	T-SPOT	NR	NR
China [High]	70	TST-5mm	NR	NR
Souza, 2014 ¹⁵¹ Brazil [Intermediate]	299	QFT-GIT	NR	NR
	300	TST-5mm	NR	NR
Takeda, 2011 ¹³⁹	71	QFT-2G	NR	NR
Japan [Low]	43	TST-10mm	NR	NR
Vassilopoulos, 2011 ¹⁴⁰	157	T-SPOT	0.75, 95% CI (NR; p = 0.45)	0.51, 95% CI (NR; p = 0.17)
Greece [Low]	157	TST	1.36, 95% CI (NR; p = 0.39)	1.43, 95% CI (NR; p = 0.34)
	157	QFT-GIT	1.14, 95% CI (NR; p = 0.76)	1.05, 95% CI (NR; p = 0.90)

Abbreviations: TB = tuberculosis; NR = not reported; N = number; QFT = QuantiFERON-TB; GIT = Gold In-Tube; TST = tuberculin skin test; 95% CI = 95 percent confidence interval

4.4.3.3 Between-test concordance, discordance, and agreement

This section included 16 studies reviewed in CG117¹⁶⁵⁻¹⁸⁰ (see Appendix 6) and 32 more recent studies $^{112-140 \ 147, \ 151, \ 153}$ reviewed in this update (see Appendix 9). Overall (in CG117 and its update), there were nine studies conducted in people with HIV, $^{112, \ 123, \ 134, \ 151, \ 165, \ 168-170, \ 179}$ three studies in people with hematologic disorders, $^{113, \ 147, \ 173}$ four studies in solid organ transplantation candidates, $^{118, \ 122, \ 128, \ 129}$ three studies in people who underwent kidney transplantation, $^{114, \ 126, \ 130}$ seven studies in people with end-stage renal disease/haemodialysis, $^{115, \ 116, \ 119, \ 120, \ 124, \ 137, \ 153}$ one study in hepatitis C, 138 one study in lupus erythematosus, 139 and 18 studies in patients with immune-mediated inflammatory diseases before anti-TNF- α therapy (rheumatoid arthritis, rheumatic or inflammatory diseases). $^{117, \ 121, \ 125, \ 127, \ 131-133, \ 135, \ 136, \ 140, \ 166, \ 167, \ 172, \ 174, \ 176-178, \ 180}$ The remaining two studies looked at patients with chronic liver 171 and mixed conditions (HIV with liver transplantation). 175

The data on between-test concordance, discordance, and agreement from 32 more recent studies are presented in Table 17. Six^{114, 124, 131, 133, 138, 139} of the 32 studies did not report this data (Table 17). Overall percent concordance and kappa ranges between QFT-GIT and TST according to each condition were as follows: HIV (concordance: 75%-96%; kappa: 0.29-0.48), hematologic disorders (concordance: 70.6%-80%; kappa: 0.09-0.16), solid organ transplantation candidates (concordance: 65%-80%; kappa: 0.19-0.57), post kidney transplantation (concordance: 80%; kappa: 0.09-0.27), end-stage renal disease/haemodialysis (concordance: 60%-86.4%; kappa: 0.21-0.49), and immune-mediated inflammatory diseases before anti-TNF-α therapy (concordance: 60%-93%; kappa: 0.08-0.56) (see Table 17).

Table 17. Between-test concordance and discordance (exposure + incidence studies – 32 more recent studies)

			ised people (specify main		1 .
Study ID (Author name, year, and country) [burden]	Sample size (N) total or by subgroup	Type of IGRA vs. TST induration threshold	Concordance (%) 95% CI	Discordance (%) 95% CI	Agreement kappa 95% CI
		•	HIV		
Chkhartishvili, 2013 ¹²³	233	QFT-GIT vs. 5mm	74.25 (68.27, 79.44)	25.75 (20.56, 31.73)	0.29 (0.16, 0.42)
Georgia [High]	217	TSPOT vs. 5mm	75.12 (68.96, 80.4)	24.88 (19.6, 31.04)	0.22 (0.07, 0.29)
Elzi, 2011 ¹¹² Switzerland [Low]	32	TSPOT vs. 5mm	56.25 (39.33, 71.83)	43.75 (28.17, 60.67)	0.12 (-0.22, -0.46)
Mutsvangwa, 2010 ¹³⁴	Total	TSPOT vs. 10mm	NR	NR	NR
Zimbabwe [High]		(two-step)			
	55 TB index case	TSPOT vs. 10mm	70.91 (57.86, 81.23)	29.09 (18.77, 42.14)	0.41 (0.16, 0.66)
	contacts	(two-step)	50.00 (40.40.05.5)	25.50 (12.5.50.05)	0.20 (0.12 0.70)
	18 Control index contacts	TSPOT vs. 10mm (two-step)	72.22 (49.13, 87.5)	27.78 (12.5, 50.87)	0.28 (-0.13, 0.70)
Souza, 2014 ¹⁵¹ Brazil [Intermediate]	299	QFT-GIT vs. 5mm	96.00 (93.12, 97.69)	4.01 (2.31, 6.88)	0.48 (0.37, 0.59)
	he	matopoietic stem cel	l transplantation cand	idates	l
Moon, 2013 ¹¹³ South Korea	210	QFT-GIT vs. 5mm	73.81 (67.47, 79.29)	26.19 (20.71, 32.53)	0.09 (-0.04, -0.22)
[High]	210	QFT-GIT vs. 10mm	78.57 (72.53, 83.58)	21.43 (16.42, 27.47)	0.15 (0.02, 0.27)
	176 with BCG	QFT-GIT vs. 5mm	74.43 (67.51, 80.31)	25.57 (19.69, 32.49)	0.13, (-0.02, 0.27)
	history				
	34 no BCG history	QFT-GIT vs. 5mm	70.59 (53.83, 83.17)	29.41 (16.83, 46.17)	-0.10 (-0.35, 0.14)
			ll transplantation recij		
Lee, 2014 ¹⁴⁷ South Korea	159	QFT-GIT vs. 5mm	79.87 (72.97, 85.37)	20.13 (14.63, 27.03)	0.16 (0.01, 0.31)
[High]	159	QFT-GIT vs. 10mm	NR	NR	NR
		Solid organ trans	splantation candidates		
Ahmadinejad, 2013 ¹¹⁸ Iran [Intermediate]	159	QFT-GIT vs. 10mm	79.87 (72.97, 85.37)	20.13 (14.63, 27.03)	0.32 (0.17, 0.47)
Casas, 2011b ¹²² Spain [Low]	95	QFT-GIT vs. 5mm (two-step)	78.95 (69.71, 85.94)	36.36 (24.93, 49.58)	0.57 (0.37, 0.77)
Kim, 2010 ¹²⁸ South Korea	184 total	TSPOT vs. 10mm	71.2 (64.27, 77.25)	28.8 (22.75, 35.73)	0.23 (0.12, 0.34)
[High]	145 BCG vaccinated	TSPOT vs. 10mm	70.34 (62.46, 77.18)	29.66 (22.82, 37.54)	0.19 (0.06, 0.31)
Kim, 2013b ¹²⁹ South Korea [High]	119	QFT-G vs. 10mm	65.49 (56.34, 73.61)	34.51 (26.39, 43.66)	0.26 (0.10, 0.41)

		Post kidnev	transplantation		
Kim, 2011 ¹¹⁴ South Korea [High]	NR	NR	NR	NR	NR
Hadaya, 2013 ¹²⁶ Switzerland	200	QFT-GIT vs. 5mm	NR	NR	0.11 (P = 0.010)
[Low]	200	TSPOT vs. 5mm	NR	NR	0.09 (P = 0.034)
Kim, 2013c ¹³⁰ South Korea [High]	93	QFT-G vs. 10mm	79.57 (70.28, 86.51)	20.43 (13.49, 29.72)	0.27 (0.07, 0.46)
		Haemodi	alysis - ESRD	•	•
Anibarro, 2012 ¹¹⁵ Spain	52	QFT-GIT vs. 5mm	71.15 (57.73, 81.67)	28.85 (18.33, 42.27)	0.21 (0.04, 0.37)
[Low]	52	QFT-GIT vs. 5mm (two step TST)	78.85 (65.97, 87.76)	21.15 (12.24, 34.03)	0.49 (0.22, 0.74)
Lee, 2009 ¹¹⁶ Taiwan [High]	32	QFT-G vs. 10mm (two step TST)	60.00 (NR)	40.00 (NR)	0.25 (-0.06, -0.56)
	32	TSPOT vs. 10mm (two step TST)	65.60 (NR)	34.40 (NR)	0.32 (-0.01, -0.65)
Al Jahdali, 2013 ¹¹⁹ Saudi Arabia [Low]	200	QFT-GIT vs. 10mm (two-step)	75.50 (69.10, 80.94)	24.50 (19.06, 30.90)	0.34 (0.22, 0.45)
Ates, 2009 ¹²⁰ Turkey [Indeterminate]	230	QFT-GIT vs.10mm	67.83 (61.54, 73.53)	32.17 (26.47, 38.46)	0.34 (0.21, 0.47)
Chung, 2010a ¹²⁴ South Korea	146	QFT-G vs. 10mm	NR	NR	NR
[High]	146	TSPOT vs. 10mm	NR	NR	NR
Seyhan, 2010 ¹³⁷ Turkey [Indeterminate]	100	QFT-GIT vs.10mm	65.00 (55.25, 73.64)	35.00 (26.36, 44.75)	0.27 (0.07, 0.46)
Sherkat, 2014 ¹⁵³ Iran [intermediate]	44	TSPOT vs. 10mm	86.36 (73.29, 93.6)	13.64 (6.40, 26.71)	0.49 (0.20, 0.78)
	1	IMID before a	nti-TNF-α therapy		-
Casas, 2011a ¹²¹ Spain [Low]	202	QFT-GIT vs.5mm	84.16 (78.49, 88.55)	15.84 (11.45, 21.51)	0.56 (0.42, 0.70)
Chang, 2011 ¹¹⁷ South Korea	100	QFT-GIT vs. 10mm	67.0 (57.31, 75.44)	33.0 (24.56, 42.69)	0.26 (0.07, 0.45)
[High]	42 RA sample	QFT-GIT vs. 10mm	76.20 (61.47, 86.52)	23.80 (13.48, 38.53)	0.46 (0.21, 0.72)
	58 AS sample	QFT-GIT vs. 10mm	60.34 (47.49, 71.91)	39.66 (28.09, 52.51)	0.14 (-0.10, 0.39)
Costantino, 2013 ¹²⁵ France	444 total	TSPOT vs. 5mm	62.84 (58.25, 67.2)	37.16 (32.8, 41.75)	0.16 (0.07, 0.25)
[Low]	NR BCG vaccinated	TSPOT vs. 5mm	NR	NR	0.15 (NR)
	NR BCG non- vaccinated	TSPOT vs. 5mm	NR	NR	0.22 (NR)
Hsia, 2012 ¹²⁷ USA [Low]	2282 total	QFT-GIT vs. 5mm	NR	NR	0.22 (0.15, 0.27)
,	781 BCG vaccinated	QFT-GIT vs. 5mm	82.84 (80.04, 85.32)	17.16 (14.68, 19.96)	0.20 (0.13, 0.27)
	1248 BCG non- vaccinated	QFT-GIT vs. 5mm	93.11 (91.57, 94.39)	6.89 (5.61, 8.43)	0.32 (0.26, 0.37)

Kleinert, 2012 ¹³¹ Germany	685	QFT-G vs. 5mm	NR	NR	NR					
[Low]	844	TSPOT vs. 5mm	NR	NR	NR					
Laffitte, 2009 ¹³² Switzerland	50	TSPOT vs. 5mm	72.00 (58.33, 82.53)	28.00 (17.47, 41.67)	0.36 (0.12, 0.61)					
[Low]										
Maritsi, 2011 ¹³³ South Africa	NR	QFT-G vs. NR mm	NR	NR	NR					
[High]										
Papay, 2011 ¹³⁵ Austria [Low]	192	QFT-GIT vs. 5mm	84.90 (79.15, 89.27)	15.10 (10.73, 20.85)	0.21 (0.07, 0.34)					
Ramos, 2013 ¹³⁶ Spain [Low]	90	QFT-GIT vs. 5mm	75.56 (65.75, 83.27)	24.44 (16.73, 34.25)	0.08 (-0.05, 0.22)					
Vassilopolous, 2014 ¹⁴⁰	155	QFT-GIT vs. 5mm	63.87 (56.06, 71.01)	36.13 (28.99, 43.94)	0.15 (0.01, 0.29)					
Greece [Low]	155	TSPOT vs. 5mm	71.0 (63.38, 77.54)	29.03 (22.46, 36.62)	0.34 (0.17, 0.50)					
Hepatitis C										
Shen, 2012 ¹³⁸ China [High]	70	TSPOT vs. 5mm	NR	NR	NR					
Lupus erythematosus										
Takeda, 2011a ¹³⁹ Japan [Low]	Takeda, 2011a ¹³⁹ Japan [Low] NR QFT-GIT vs. 10mm NR NR NR									

Abbreviations: 95% CI = 95 percent confidence interval; QFT = QuantiFERON-TB; GIT = Gold In-Tube; TST = tuberculin skin test

Four studies reported between-test agreement parameters by BCG vaccination status, ^{113, 125, 127, 128} three of which showed lower percent concordance and kappa values for BCG vaccinated vs. non-vaccinated participants ^{125, 127, 128} (see Table 17).

4.4.3.4 <u>Indeterminate test results</u>

This section included three studies reviewed in CG117 (see Appendix 6) and 31 more recent studies (see above the previous section) (see Appendix 9). Of the recent studies, six did not report this outcome. 119, 124, 131, 132, 134, 153

The proportion of indeterminate results according to each condition and type of IGRA test ranged as follows: HIV (QFT-GIT: 0.30%-17.87%; TSPOT: 32.80%), $^{112, 123, 151, 168, 169, 179}$ hematologic disorders (QFT-GIT: 6.00%-13.93%), $^{113, 147}$ solid organ transplantation candidates (QFT-GIT: 2.11%-4.76%; TSPOT: 11.96%) $^{118, 122, 128, 129}$ post kidney transplantation (QFT-GIT: 1.64%-4.30%; TSPOT: 11%), $^{114, 126, 130}$ end-stage renal disease/haemodialysis (QFT-GIT: 0%-10.55%; TSPOT: 0%), $^{115, 116, 120, 137}$ immune-mediated inflammatory diseases before anti-TNF- α therapy (QFT-GIT: 0%-7.69%; TSPOT: 0%-15.63%), $^{117, 121, 125, 127, 135, 136, 140}$ hepatitis C (TSPOT: 0%), 138 and lupus erythematosus (QFT-GIT: 32.39%). 139

4.4.4 Summary of Immunocompromised studies

This section included 48 studies: 16 studies reviewed in CG117 (see Appendix 6) and 32 more recent studies published in 2009 or onwards (see Appendix 9). The studies were stratified and analysed according to the following subgroups: HIV, solid organ transplantation candidates, post kidney transplantation, haemodialysis – end stage renal disease, immune-mediated inflammatory diseases before anti-TNF-α therapy, Hepatitis C, and lupus erythematosus. The majority of the more recent studies were rated as being at moderate/high risk of bias (incidence studies) or being of moderate/low methodological quality (exposure studies).

Only two of eight studies reported sufficient data for calculating R-CIRs to compare the performance of IGRA and TST in predicting the incidence of active TB. The R-CIR estimates in both studies were non-significant with very wide 95% CIs, thereby rendering their interpretation inconclusive. These studies were not combined because TST was used with different thresholds and one study used two-step TST.

Across the 32 newly identified studies, there was a wide variability and the absence of clear pattern in the estimates of sensitivity and specificity. In general, for both IGRA and TST, specificity tended to be

greater than sensitivity. Some or all of the observed variation was due to zero count events (unstable estimates), underlying differences in study populations/conditions, settings, variation in exposure definitions and measurement, and TST thresholds. The heterogeneity persisted even after stratifying the estimates by the type of IGRA (QFT-GIT, TSPOT) and TST threshold (5mm, 10mm). In light of the observed heterogeneity, no meta-analysis was undertaken.

The association between the screening test results and the risk of LTBI/exposure level measured with ratio of diagnostic odds ratios (R-DOR; IGRA vs. TST) in individual studies ranged from 0.07 to 8.45. The forest plot analysis of R-DORs included 21 studies and revealed significant amount of heterogeneity across all subgroups of participants except for haemodialysis in whom IGRA (QFT-GIT) was more strongly associated with exposure groups than TST 10mm (Pooled R-DOR = 2.53, 95% CI: 1.48, 4.34). Similarly, in participants with hepatitis C, IGRA (TSPOT) outperformed TST 5mm in detecting LTBI (R-DOR = 8.45, 95% CI: 3.71, 19.24). For most subgroups the within-subgroup heterogeneity by IGRA type (QFT-GIT, TSPOT) and TST threshold (5mm, 10mm, 15mm) could not be examined due to sparse data. In people with HIV/AIDS, TST 10 mm performed significantly better than QFT-GIT (Pooled R-DOR = 0.35, 95% CI: 0.15, 0.83). For the remaining subgroups (e.g., lupus erythematosus, solid organ transplantation candidates, kidney transplant recipients), the performance of QFT-GIT did not significantly differ from that of TST (wide 95% CIs and inconclusive results).

Overall there was no evidence indicating a differential effect of BCG vaccination status on IGRA and TST positivity in the 14 newly identified studies reporting the association between test positivity and BCG vaccination status. Only one study demonstrated significantly increased OR for TST-10mm positivity (OR = 4.28, 95% CI: 1.35, 13.64) as opposed to the non-significant OR for IGRA (OR = 1.89, 95% CI: 0.75, 4.73) in relation to BCG vaccination status.

Overall percent concordance and kappa ranges between QFT-GIT and TST according to each condition were as follows: HIV (concordance: 75%-96%; kappa: 0.29-0.48), hematologic disorders (concordance: 70.6%-80%; kappa: 0.09-0.16), solid organ transplantation candidates (concordance: 65%-80%; kappa: 0.19-0.57), post kidney transplantation (concordance: 80%; kappa: 0.09-0.27), end-stage renal disease/haemodialysis (concordance: 60%-86.4%; kappa: 0.21-0.49), and immune-mediated inflammatory diseases before anti-TNF-α therapy (concordance: 60%-93%; kappa: 0.08-0.56). Three studies reported between-test agreement parameters by BCG vaccination status, which showed lower percent concordance and kappa values for BCG vaccinated vs. non-vaccinated participants.

4.5 Recent arrivals from countries with a high incidence of TB

4.5.1 Description of baseline characteristics

This section included 15 studies in total. ^{141-145, 164, 181-189} Our searches identified five studies ¹⁴¹⁻¹⁴⁵ in individuals that had recently arrived from mainly high TB incidence countries: two investigated the incidence of active TB following testing for LTBI (incidence studies) ^{141, 142} and three investigated levels of exposure in relationship to LTBI test outcomes (exposure studies). ¹⁴³⁻¹⁴⁵ An additional 10 studies ^{164, 181-189} in recently arrived immigrants were identified in CG117. Details of the additional studies included from CG117 can be found in Appendix 6.

4.5.1.1 Incidence studies

Two studies ^{141, 142} investigated the agreement of a QFT test with the TST in individuals recently arrived from high TB incidence countries, one from Norway ¹⁴¹ and the second one from the Netherlands. ¹⁴² Both studies were prospective cohorts in design and were community based. Follow-up ranged from 23 to 32 months in Harstadt et al. (2010). ¹⁴¹ Kik et al. (2010) ¹⁴² followed up participants for 24 months.

Type of tests compared were QFT-GIT and TST with cut-off values of ≥6mm and ≥15mm¹⁴¹ and QFT-GIT, T-SPOT.TB and TST (≥ 10mm and ≥ 15mm). Around 25% 141 and 44% 142 of patients in the studies were female. The mean age ranged from 16 to 45 years 142 and 18 to >50 years. In Kik et al (2010) 142 about 8% of the study population originated from Europe/North America, another 8% from South America, 36% from Asia, approximately 29% from African countries other than sub-Saharan countries and 17% from sub-Saharan Africa. 1.5% of participants were of unknown geographic origin. In this study the proportion of patients who had received BCG vaccination was high at 81%. In Harstadt et al. (2010) 141 13% of participants tested were from Europe, 42% from Africa, a further 42% from Asia, and 3% from other countries. BCG vaccination was not reported in this study. See Table 18 for further details on these studies.

Table 18. Baseline characteristics of studies on recent arrivals from countries with a high incidence of TB (incidence studies)

Study ID (Author name, year, and country) [burden]	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
Harstad, 2010 ¹⁴¹ Norway [Low]	Study aim: To compare PPV and NPV between QFT-GIT and the TST in asylum seekers in Norway Setting: Community-based Study design: Prospective cohort study Follow up: 23-32 months Funding source: Norwegian Health Association; The Regional Health Authorities	NR	Inclusion criteria: Asylum seekers aged ≥18 years Exclusion criteria: Active TB	Type of tests: IGRA (QFT-GIT) TST Cut-off values/thresholds: IGRA: NR TST: ≥6mm and ≥15mm	Mean (range or SD) age: 18–34 years (n = 587), 35– 49 years (n = 201), and ≥50 years (n = 35) Female (n [%]): 206 [25.0] Race/ethnicity (n [%]): NR Geographic origin (n[%]): Europe 103[12.5], Africa 347[42.0], Asia 346[42.0], other 27[3.3] BCG vaccination (n [%]): NR History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): 9/823 [1.1] Chest radiography (yes/no): Yes	Total N or recruited patients: NR Total N of excluded patients: NR	NA

Study ID (Author name, year, and country) [burden]	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Clinical examination (yes/no): NR		
					Morbidity (n [%]): NA		
					Co-morbidity (n [%]): NA		
Kik, 2010 ¹⁴² Netherlands [Low]	Study aim: To assess the PPV and NPV, sensitivity and specificity for TB disease of QFT- GIT, T-SPOT.TB and TST in immigrant individuals in the Netherlands who were recently exposed to infectious pulmonary TB patients Setting: Community-based Study design: Prospective cohort study Follow up: 24	Contacts diagnosed with TB ≥ 3 months after the diagnosis of the index patient were considered to be incident cases, whereas TB cases diagnosed < 3 months after the diagnosis of the index patient were considered to be co- prevalent and were excluded from the analysis. The	Inclusion criteria: Close contacts (aged ≥16 years and born in a TB endemic country) of sputum smear- positive pulmonary TB patients who tested positive on TST (≥5mm) Exclusion criteria: Contacts with known conditions associated with an increased risk of progression to disease (including diabetes and HIV infection) and	Type of tests: IGRA (QFT-GIT), IGRA (T- SPOT.TB), TST Cut-off values/thresholds: IGRA: Two-tube format positive test was defined as ≥ 0.35 IU/mL-1 IGRA (T- SPOT.TB): According to the manufacturer TST: ≥ 10mm and ≥ 15mm	Mean (range or SD) age: Range: 16–24 (n = 53 [15.6%]), range: 25–34 (n = 80 [23.6%]), range: 35–44 (n = 115 [33.9%]), and range: ≥45 (n = 91 [26.8%]) Female (n [%]): 147 [43.4] Race/ethnicity (n [%]): NR Geographic origin (n[%]): Europe/North America 27 [8.0], South America 27 [8.0], South America 27 [8.0], Asia 123 [36.3], Other Africa 98 [28.9], Sub-Saharan Africa 59	Total N or recruited patients: 433 Total N of excluded patients: 91(furthermore, five contacts were excluded in the secondary analysis, since their follow-up started12 months before August 1, 2008)	NA
	months	diagnosis of	individuals who		[17.4], Unknown 5		

Study ID (Author name, year, and country) [burden]	Study aim, setting, design, follow-up duration, and funding source	Method(s) of diagnosis of active TB	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	Funding source:	TB disease	were given		[1.5]		
	Unrestricted grants	was based on	preventive				
	from the	chest	treatment		BCG vaccination		
	Netherlands	radiography,			(n [%]): 274 [80.8]		
	Organization for	symptoms,					
	Health Research	smear and/or			History of anti-TB		
	and Development	culture results			treatment (n [%]):		
					None		
					Total incidence of active TB (n [%]): 9/339 [2.65]		
					Chest radiography (yes/no): Yes		
					Clinical		
					examination		
					(yes/no): Yes		
					Morbidity (n [%]): NR Co-morbidity (n [%]): NR		

Abbreviations: TB = tuberculosis; NR = not reported; N = number; IGRA = Interferon-gamma release assay; QFT-GIT = QuantiFERON-TB Gold In-Tube; TST = tuberculosis skin test; BCG = Bacille de Calmette et Guérin; LTBI = latent tuberculosis infection; SD = standard deviation; HIV = human immunodeficiency virus; PPV = positive predictive value; NPV = negative predictive value

4.5.1.2 Exposure studies

Three studies compared an IGRA test with the TST test in recent arrivals from countries with a high incidence of TB relating test outcome to prior level of exposure. 143-145 All studies within this group were therefore classed as having either a retrospective cohort or cross-sectional design. The tests compared were QFT-GIT and TST (≥10mm), ¹⁴³⁻¹⁴⁵ while Lucas et al. (2010) ¹⁴³ also tested the T-SPOT.TB. The studies were undertaken in community settings in Australia ¹⁴³ and Italy. ^{144, 145} Lucas et al. (2010) ¹⁴³ studied children with a mean age of 7.5 years from Africa (78%) and Asia (22%) where the exposed group had definite or suspected household TB contact and the unexposed did not. BCG vaccination in this cohort was 69%. Participants in the Italian studies were young adults of whom 55% were females in Orlando et al. (2010)¹⁴⁴ but only 4% were females in Saracino et al. (2009)¹⁴⁵ Immigrants arrived from Latin America (50%), Eastern Europe (27%), Africa (16%) and Asia (7%) in one study ¹⁴⁴ and from Africa (48%), Eastern Mediterranean countries (47%), Europe (3%) and South-East Asia (2%) in the other. 145 While the former study reported an overall very low rate of BCG vaccination (6%), 144 the latter study did not report BCG vaccination of participants. 145 Both studies defined exposure groups by geographical area of origin and the level of TB burden 145 or TB prevalence 144 in the country of origin. In addition, Orlando et al. (2010)¹⁴⁴ specified a third exposed group as contacts of TB cases and compared with an unexposed group without TB contact. See Table 19 for further details on these studies.

Table 19. Baseline characteristics of studies on recent arrivals from countries with a high incidence of TB (exposure studies)

Lucas, 2010 ¹⁴³ Australia Low Australia Low To compare IGRAs and TST for the diagnosis of LTB1 in recently resettled refugee children Setting: Community based Sudy design: Retrospective cohort/cross sectional study Funding source: Oxford Immunotech Funding source: Oxford Immunotech Australia Low To compare Gordan Contact Children aged from 5 months to 16 years from refugee families on none attending the Migrant Health Unit Exposed 1: Definite/suspected refugee children Exposed 2: NA Exclusion criteria: Not reported Exclusion criteria: Not reported Exclusion criteria: TST (≥10mm) Funding source: Oxford Immunotech Funding source	Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
these cut-off values for children at increased risk (yes/no): Yes	1	To compare IGRAs and TST for the diagnosis of LTBI in recently resettled refugee children Setting: Community based Study design: Retrospective cohort/cross sectional study Funding source: Oxford	contact Non exposed: none Exposed 1: Definite/suspected	Children aged from 5 months to 16 years from refugee families attending the Migrant Health Unit Exclusion criteria: Not	IGRA (T- SPOT.TB) IGRA (QFT-GIT) TST (≥10mm) Cut-off values/thresholds Definition of test+: IGRA (T- SPOT.TB): NR IGRA (QFT- GIT): NR TST: ≥10 mm given that all children originated from high prevalence countries ≥15 mm if children were <5 years old and had received BCG, 5mm was subtracted from these cut-off values for	SD) age: 7.5 (2.8-11.9) Female (n [%]): 260 [49.6] Race/ethnicity (n [%]): NR Geographic origin (n[%]): African(411 [78.4] and Asian 113 [21.56] BCG vaccination (n [%]): 361 [69.0] History of anti- TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR Chest radiography	524 Excluded (N):	NA

Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
			for TB infection (such as household contacts) and for those >1 year of age	Clinical examination (yes/no): Yes Morbidity (n [%]): Malaria 486 [92.7], hepatitis B 356 [68.0], hepatitis C 492 [94.0], schistosomiasis 431 [82.2] Co-morbidity (n [%]): NR Type of during-study treatment (n		
Study aim: To compare the efficiency and efficacy of TST and QFT-GIT for the detection of LTBI in recent immigrants from highly endemic countries Setting:	(1) Continent Non exposed: Africa (reference group) Exposed 1: Asia Exposed 2: East Europe Exposed 3: Latin America (2) TB prevalence Non exposed:	Inclusion criteria: NR Exclusion criteria: Active TB	Type of tests: IGRA (QFT-GIT) TST (≥10mm) Cut-off values/thresholds Definition of test+: IGRA: Positive if the INF-c value after stimulation with TB-antigen minus the value in	Mean (range or SD) age: Median 35.3 years (IQR: 27.7–44.5) Female (n [%]): 630 [55.7] Race/ethnicity (n [%]): NR Geographic	Recruited (N): NR Excluded (N): NR	NA
_	Study aim: To compare the efficiency and efficacy of TST and QFT-GIT for the detection of LTBI in recent immigrants from highly endemic countries	setting, and design Construct validity (i.e., LTBI exposure-based proxy) Study aim: To compare the efficiency and efficacy of TST and QFT-GIT for the detection of LTBI in recent immigrants from highly endemic countries Setting: (1) Continent Non exposed: Africa (reference group) Exposed 1: Asia Exposed 2: East Europe Exposed 3: Latin America (2) TB prevalence Non exposed:	Study aim: To compare the efficiency and efficacy of TST and QFT-GIT for the detection of LTBI in recent immigrants from highly endemic countries Study aim: To compare the efficiency and efficacy of TST and QFT-GIT for the detection of LTBI in recent immigrants from highly endemic countries Setting: Construct validity (i.e., LTBI exposure-based proxy) Participants' inclusion/ exclusion criteria: NR Exposed: Africa (reference group) Exposed 1: Asia Exposed 2: East Europe Exposed 3: Latin America TB Exposed 3: Latin America Countries (2) TB prevalence Non exposed:	Study aim: To compare the efficiency and efficacy of TST and QFT-GIT for the detection of LTBI in recent immigrants from highly endemic countries Study aim: To the detection of LTBI in recent immigrants from highly endemic countries Study aim: To compare the efficiency and efficacy of TST and QFT-GIT for the detection of LTBI in recent immigrants from highly endemic countries Setting: Non exposed: Non exposed: Africa (reference group) Exposed 1: Asia Exposed 2: East Europe immigrants from highly endemic countries Setting: Non exposed: Non exposed: Africa (reference group) Exposed 3: Latin America Participants' inclusion criteria For TB infection (such as household contacts) and for those >1 year of age Exposed: NR NR Study aim: To compare the exclusion criteria: NR Exclusion criteria: Active TST (≥10mm) Exclusion criteria: Type of tests: IGRA (QFT-GIT) TST (≥10mm) Cut-off values/thresholds Definition of test+: IGRA: Positive if the INF-c value after stimulation with TB-antigen minus the value in	setting, and design Construct validity (i.e., LTBI exposure-based proxy) Exclusion criteria	setting, and design Construct validity (i.e., LTBH exposure-based proxy) Construct validity (i.e., LTBH exposure-based proxy)

Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
	based (outpatient ward) Study design: Retrospective cohort/cross- sectional study Funding source: The Provincia di Milano, Assessorato alle Politiche Sociali	group) Exposed 1: 50- 200 Exposed 2: >200 (3) Contact with TB patient Non exposed: No (reference group) Exposed 1: Yes		was ≥0.35 UI/ml TST: ≥ 10 mm of induration in persons recently arrived from highly endemic areas	Latin America 562 [49.73], Eastern Europe 308 [27.26], Africa 181 [16.02%], Asia 79 [6.99] BCG vaccination (n [%]):72 [6.37], unknown 46 [4.07] History of anti- TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes Morbidity (n [%]): NR Co-morbidity (n [%]): NR		

Study ID (Author name, year, and country) [burden]	Study aim, setting, and design	Definition of construct validity (i.e., LTBI exposure- based proxy)	Study participants' inclusion/ exclusion criteria	Type and positivity threshold(s) of tests compared	Characteristics of study participants at baseline	N of recruited and excluded study participants	Comments
					Type of during-study treatment (n [%]): treatment for LTBI was offered to 57 of the 79 eligible patients according to standard guidelines		
Saracino, 2009 ¹⁴⁵ Italy [Low]	Study aim: To evaluate the agreement between QFT-GIT and TST for latent TB screening in a population of recent immigrants to Italy from high-incidence countries Setting: Community-based Study design: Retrospective cohort/cross-sectional study Funding	(1) Born in a country with a TB burden (N cases per 100,000) Non exposed: NR Exposed 1: 30-100 Exposed 2: 101-200 Exposed 3: >301 (2) Region of origin Non exposed: NR Exposed 1: African	Inclusion criteria: Recent (less than two months) immigrants to Italy Exclusion criteria: Active TB, HIV	Type of tests: IGRA (QFT-GIT) TST (≥10mm) Cut-off values/thresholds Definition of test+: IGRA: Positive if the IFN-γ level was above the cut-off test value (≥0.35 IU/mL) TST: After 72 hours if ≥10mm (≥5mm and ≥15mm were used for comparison)	Mean (range or SD) age: 27.1 (6.2) Female (n [%]): 11 [4] Race/ethnicity (n [%]): NR Geographic origin (n[%]): African 135 [48.4], Eastern Mediterranean 131 [46.95], European 7 [2.5], South-East Asian 6 [2.2] BCG vaccination (n [%]): NR	Recruited (N): NR Excluded (N): NR	NA

Study ID (Author name, year, and country)	Study aim, setting, and design	Definition of construct validity (i.e.,	Study participants' inclusion/	Type and positivity threshold(s) of	Characteristics of study participants at	N of recruited and excluded study	Comments
[burden]		LTBI exposure-	exclusion criteria	tests compared	baseline	participants	
	source: NR	Exposed 2: Eastern Mediterranean			History of anti- TB treatment (n [%]): NR		
		Exposed 3: European			Total incidence of active TB (n [%]): NA		
		Exposed 4: South-East Asian			Chest radiography (yes/no): Yes		
					Clinical examination (yes/no): NR		
					Morbidity (n [%]): NR		
					Co-morbidity (n [%]): NR		
					Type of during-study treatment (n		
Alilian Latina TD			Low ICD A Control		[%]): NR	L'EEDON TO CA	

Abbreviations: TB = tuberculosis; NR = not reported; N = number; IGRA = interferon-gamma release assay; QFT-GIT = QuantiFERON-TB Gold In-Tube; TST = tuberculosis skin test; BCG = Bacille de Calmette et Guérin; LTBI = latent tuberculosis infection; SD = standard deviation; HIV = human immunodeficiency virus; IFN = interferon

4.5.2 Study quality

4.5.2.1 <u>Incidence of active TB (n = 2)</u>

Only one study provided adequate description about study design, study participants, study attrition, statistical analysis and reporting therefore, this study was judged to have low risk of bias. Another study was judged as being at high risk of bias due to selection, confounding and partial selecting reporting of results (see Table 20 for further details).

Table 20. Summary assessment of risk of bias (ROB) for the included studies on recent arrivals from countries with a high incidence of TB (adapted from Hayden et al., 2013)⁸⁸

First author, Year, Study ID	Study design	Study Participation risk of selection bias	Study Attrition risk of selection bias	Prognostic Factor Measurement risk of exposure measurement bias	Outcome/Construct Measurement risk of bias in misclassification of individuals in relation to construct validity groups	Study Confounding risk of bias due to confounding	Statistical Analysis and Reporting risk of bias due to analysis and selective reporting	Total ROB high, moderate, low
Harstad, 2010 ¹⁴¹ [Low]	Low	High	Low	High	Moderate	High	High	High ROB
Kik, 2010 ¹⁴² [Low]	Low	Low	Low	Low	Low	Low	Low	Low ROB

4.5.2.2 Exposure levels (n = 3)

All of the three exposure studies¹⁴³⁻¹⁴⁵ identified since CG117 concerning recent arrivals from countries with a high incidence of TB were rated as low quality.¹⁴³⁻¹⁴⁵ There was a lack of blinding of test result from exposure, inadequate description of exposure and in all three studies, there was inadequate reporting of sample attrition (see Table 21 for further details).

Table 21. Summary of quality assessment for the studies on recent arrivals from countries with a high incidence of TB (adapted from Dinnes et al., 2007)⁴³

First author, Year, Study ID	Recruitment of subjects consecutive [yes], arbitrary or unreported [no]	Blinding of test results from exposure blinded [yes], not blinded or unreported [no]	Description of index test and threshold adequate [yes], inadequate or unreported [no]	Definition and description of exposure adequate [yes], inadequate or unreported [no]	Sample attrition adequate [yes]#, inadequate or unreported [no]	Overall quality score of satisfactory features [£]
Lucas, 2010 ¹⁴³ [Low]	Yes	No	No	No	No	Low quality
Orlando, 2010 ¹⁴⁴ [Low]	Yes	No	Yes	No	No	Low quality
Saracino, 2009 ¹⁴⁵ [Low]	No	No	Yes	No	No	Low quality

 $^{^{\#}}$ \geq 90% of participants were included in the follow-up analysis [yes response] and < 90% were classified as "no response"

Please note the following item has been removed from the original Dinnes et al., (2007)⁴³ checklist: "study design" (as all studies were considered are retrospective), this item has been removed. Furthermore, the following item has been added: "sample attrition"

4.5.3 Comparative performance of tests (diagnostic accuracy indices for identifying LTBI)

4.5.3.1 Incidence of active TB (new studies n = 2)

4.5.3.1.1 Ratios of cumulative incidence ratios (R-CIRs):

This section included 2 studies which followed-up participants for the development of active TB. $^{141, 142}$ Both studies correlated IGRA (QFT-GIT 140 QFT-G and TSPOT 141) and TST results with cumulative incidence of active TB. The resulting CIRs for QFT-GIT were not significantly different from that for TST-5mm (R-CIR = 2.55, 95% CI: 0.57, 11.40) 141 and TST-10mm (R-CIR = 0.87, 95% CI: 0.17, 4.56). 142 See Table 22. Similarly, in the latter study, 141 the CIR for TSPOT vs. TST-15mm was not significant (R-CIR=0.37, 95% CI: 0.10, 1.41).

[£] Studies with 1 or 2 "yes" ratings = Low quality; studies with 3 "yes" ratings = Moderate quality; studies with 4 or 5 "yes" ratings = High quality

Table 22. Incidence of active TB for studies on recent arrivals from countries with a high incidence of TB

Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	Development of active TB			
(Author name, year, and				IDR in per	%, CIR P-Y, IDRR % CI)	R-CIR R-IDRR (95% CI)	
country) [burden]		IGRA QFT (GIT/G) and/or T-SPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA vs. TST (by threshold)	
Harstad, 2010 ¹⁴¹ Norway [Low]	N test results QFT-GIT/G: 823 T-SPOT: 823 TST: 823 Test (+/-) QFT-GIT/G (246/577) TST ≥ 6 mm (426/395) TST ≥15 mm (128/693) N indeterminate QFT-GIT/G: NR TST: NR N lost to follow-up: NR	QFT (GIT/G) SN: 88.89 (56.5,98.01) SP: 71.46 (68.25,74.47) PPV: 3.36 NPV: 99.83 (99.02, 99.97)	TST ≥ 6 mm SN: 88.89 (56.5, 98.01) SP: 49.19 (45.74, 52.65) PPV: 1.92 (0.98, 3.75) NPV: 99.75 (98.58, 99.96) TST ≥ 15 mm SN: 33.33 (12.06, 64.58) SP: 85.32 (82.71, 87.60) PPV: 2.48 (0.84, 7.03) NPV: 99.13 (98.12, 99.6)	QFT (GIT/G) CI (+): 3.36 (1.71, 6.49) CI (-):0.17 (0.00, 1.08) CIR: 19.39 (2.43, 154.2) IDR (+): NR IDR (-): NR IDRR: NR	TST ≥ 6 mm CI (+):1.92 (0.98, 3.75) CI (-):0.25 (0.00, 1.57) CIR: 7.61 (0.95, 60.59) IDR (+): NR IDR (-):NR IDRR: NR TST ≥ 15 mm CI (+):2.48 (0.84, 7.03) CI (-):0.86 (0.35, 1.92) CIR: 2.86 (0.725, 11.28) IDR (+): NR IDR (-):NR IDR (-):NR	R-CIR [QFT (GIT/G)] vs. TST ≥ 6 mm 2.55(95% CI: 0.57, 11.40) R-IDRR [QFT (GIT/G)] vs. TST ≥ 6 mm NR R-CIR [QFT(GIT/G)] vs. TST ≥ 15 mm 0.38(95% CI: 0.11, 1.34) R-IDRR [QFT(GIT/G)] vs. TST ≥ 15 mm NR	
Kik, 2010 ¹⁴² The Netherlands [Low]	N test results QFT-GIT/G: 339 T-SPOT: 339 TST: 339	QFT (GIT/G) SN: 62.50 (30.57, 86.32) SP: 45.77 (40.38, 51.25) PPV: 2.80 (1.20, 6.40) NPV: 98.0 (94.20,	TST ≥ 10 mm SN: 100.00 (70.08, 100.00) SP: 15.45 (11.95, 19.75) PPV: 3.12 (1.65, 5.83) NPV: 100.00 (93.00,	QFT (GIT/G) CI (+): 2.80 (1.20, 6.40) CI (-): 2.00 (0.42, 6.02) CIR: 1.39 (0.34, 5.74) IDR (+): NR IDR (-): NR	TST ≥ 10 mm CI (+): 3.12 (1.65, 5.83) CI (-):1.96 (0.05, 10.4) CIR: 1.59 (0.21, 71.2) IDR (+): NR IDR (-): NR	R-CIR [QFT (GIT/G)] vs. TST ≥ 10 mm 0.87 (95% CI: 0.17, 4.56) R-IDRR [QFT	
	QFT-GIT/G	99.31)	100.00)	IDRR: NR	IDRR: NR	(GIT/G)] vs.	

Study ID	Test results	Test diagnostic accu	racy in % (95% CI)	De	evelopment of active TB	
(Author name, year,				CI in ⁹ IDR in per	R-CIR R-IDRR	
and					6 CI)	(95% CI)
country)		IGRA	TST (by threshold)	IGRA	TST	
[burden]		QFT (GIT/G) and/or		QFT (GIT/G) and/or T-	(by threshold)	IGRA vs. TST
		T-SPOT		SPOT		(by threshold)
	(178/149)	T-SPOT	TST ≥ 15mm	T-SPOT	TST ≥ 15 mm	TST ≥ 10 mm
	T-SPOT	SN: 5.00 (40.93,	SN: 87.5 (52.91,	CI (+):3.31 (1.52, 7.04)	CI (+):3.80 (1.85, 7.64)	NR
	(181/118)	92.85)	97.76)	CI (-):1.69 (0.08, 6.35)	CI (-):0.72 (0.00, 4.39)	
	TST ≥10 mm	SP: 39.86 (34.4,	SP: 43.63 (38.25,	CIR: 1.95 (0.40, 9.52)	CIR: 5.25 (0.65, 42.17)	R-CIR (T-SPOT)
	(288/51)	45.58)	49.16)			vs.
	$TST \ge 15 \text{ mm}$	PPV: 3.31 (1.52, 7.04)	PPV: 3.80 (1.85, 7.64)	IDR (+): NR	IDR (+): NR	$TST \ge 15 \text{ mm}$
	(184/138)	NPV: 98.31 (94.03,	NPV: 99.28 (96.01,	IDR (-): NR	IDR (-): NR	0.37(0.10, 1.41)
		99.53)	99.87)	IDRR: NR	IDRR: NR	
	N					R-IDRR (T-
	indeterminate					SPOT) vs.
	QFT-GIT/G: 12					$TST \ge 15 \text{ mm}$
	T-SPOT: 40					NR
	TST ≥10 mm: 0					
	TST ≥15mm: 0					
	N lost to					
	follow-up					

Abbreviations: N = number; SN = sensitivity; SP = specificity; PPV = positive predictive value; NPV = negative predictive value; CI = cumulative incidence; CIR = cumulative incidence ratio; IDR = incidence density rate; IDRR = incidence density rate ratio; TB = tuberculosis; R-CIR = ratio of cumulative incidence ratio; R-IDRR = ratio of incidence density rate ratio; QFT = QuantiFERON-TB; GIT = Gold In-Tube; TST = tuberculin skin test; P-Y = person-year(s); 95% CI = 95 percent confidence interval

The pooled estimate of R-CIR across the two studies indicated no significant difference between QFT-GIT and TST (5mm or 10mm) (pooled R-CIR = 1.57, 95% CI: 0.52, 4.76) (Figure 42).

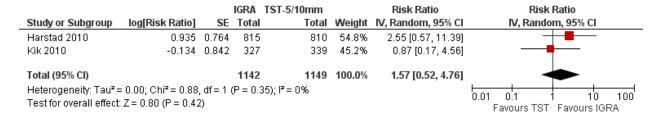


Figure 42. Pooled ratio of diagnostic odds ratio (R-DOR) of QFT-GIT vs. TST (5mm or 10mm) based on high risk and low risk exposure in recent arrivals from countries with a high incidence of TB

4.5.4 Sensitivity and specificity

This section incorporates two newly identified recent studies. ^{141, 142} There was a homogeneity in sensitivity of both QFT-GIT (pooled sensitivity: 76%, 95% CI: 50, 93; I² = 30.8%) and TST 5mm/10mm (pooled sensitivity: 94%, 95% CI: 73, 100; I² = 30.8%). In contrast, specificity estimates for QFT-GIT (71% and 46%; I² = 98.4%) and TST (49% and 15%; I² = 99.2%) were heterogeneous and these estimates could not be pooled (Figure 43, Figure 44, Figure 45, Figure 46). In summary, QFT-GIT demonstrated greater specificity values (range: 46%-71%) compared to TST (range: 15%-49%), but lower sensitivity (pooled estimate: 76%) compared to TST (pooled estimate: 94%). One study showed TST-15mm to have performed better than TSPOT both in terms of sensitivity (87% vs. 75%) and specificity (44% vs. 40%). ¹⁴²

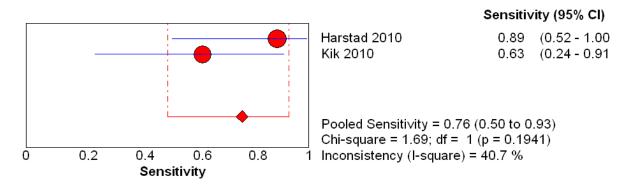


Figure 43. Forest plot of sensitivity based on incidence of active TB (QFT-GIT) in recent arrivals from countries with a high incidence of TB

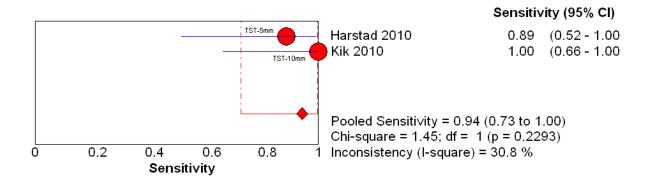


Figure 44. Forest plot of sensitivity based on incidence of active TB (TST) in recent arrivals from countries with a high incidence of TB

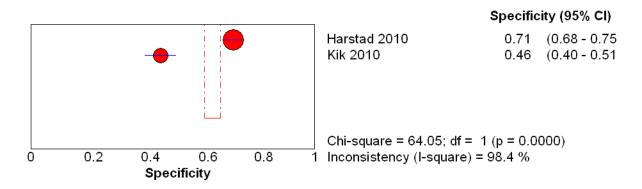


Figure 45. Forest plot of specificity based on incidence of active TB (QFT-GIT) in recent arrivals from countries with a high incidence of TB



Figure 46. Forest plot of specificity based on incidence of active TB (TST) in recent arrivals from countries with a high incidence of TB

4.5.4.1 Exposure levels

4.5.4.1.1 Ratios of diagnostic odds ratios (R-DORs):

Seven of the 10 studies reviewed in CG117 (see Appendix 6) found significant strong associations presented as DORs for both IGRA and TST (5mm, 10mm, 15mm) across exposure gradient groups defined as place of birth, racial group, country prevalence. ^{164, 183, 184, 186-189} The estimates of R-DORs comparing IGRA to TST across these studies ranged from 0.14¹⁸⁹ to 0.98. ¹⁸⁶ Since the CG117 report did not provide the 95% confidence intervals around these estimates, it is not clear what the predictive performance of IGRA relative to TST is in terms of identifying LTBI. As for the studies identified in the present review, one study showed that IGRA compared to TST was more strongly correlated with the exposure groups of geographic origin (Latin America/East Europe vs. Africa; R-DOR: 1.42) and TB prevalence (>200/50-200 per 100,000 vs. <50 per 100,000; R-DOR range: 1.88-1.91), but this correlation across the two tests was similar for contact with TB case (R-DOR = 1.13, 95% CI: 0.85, 1.49). ¹⁴⁴ In two other studies, ^{143, 145} the comparisons of IGRA and TST in relation to exposure to TB (R-DOR = 0.60, 95% CI: 0.32, 1.12) and birth in TB burden country (R-DOR = 1.00, 95% CI: 0.60, 1.66), were not statistically significant (see Table 23).

Table 23. Comparison of the test performance – diagnostic accuracy indices for identifying LTBI (exposure studies) in recent arrivals from countries with a high incidence of TB

Study ID (Author	Test results	Test diagnostic acc		Construct validity (i.e., LTBI exposure-based proxy)			
name, year,			-)	DOR (9:		R-DOR (95% CI)	
and country)				(vs. non-exposed;		, ,	
[burden]		IGRA QFT (GIT/G) and/or TSPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)	
Lucas, 2010 ¹⁴³	N test results	QFT (GIT)	TST ≥ 10 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs.	
Australia	QFT-GIT: 460					TST ≥ 10 mm	
[Low]	T-SPOT: 420	High exposure	High exposure	High exposure level vs	High exposure level vs	High exposure level vs	
	TST: 304	level vs low exposure level	level vs low exposure level	low exposure level	low exposure level	low exposure level	
	Test (+/-)			Low	Low	Low	
	QFT-GIT	SN: NR	SN: NR	DOR: 2.40 (95% CI:	DOR: 4.00 (95% CI:	R-DOR: 0.60 (95%CI:	
	(45/345)	SP: NR	SP: NR	1.00, 5.80)	1.70, 9.50)	0.32, 1.12)	
	T-SPOT	PPV: NR	PPV: NR	DORa: NA	DORa: NA	R-DORa: NA	
	(38/374)	NPV: NR	NPV: NR				
	TST≥ 10 mm			Low	Low	Low	
	(54/250)	T-SPOT	T-SPOT	DOR: 2.50 (95% CI:	DOR: 4.00 (95% CI:	R-DOR: 0.63 (95% CI:	
		SN: NR	SN: NR	0.90, 6.50)	1.70, 9.50)	0.32, 1.22)	
	N indeterminate	SP: NR	SP: NR	DORa: NA	DORa: NA	R-DORa: NA	
	QFT-GIT/G: 70	PPV: NR	PPV: NR				
	T-SPOT: 8	NPV: NR	NPV: NR				
	TST: 0						
	N lost to follow-						
	up						
Orlando, 2010 ¹⁴⁴	N test results QFT-GIT: 1130	QFT (GIT)	TST ≥ 10 mm	QFT (GIT)	TST ≥ 10 mm	QFT-GIT vs. TST ≥ 10 mm	
Italy [Low]	T-SPOT:	Asian continent vs	Asian continent	Asian continent vs	Asian continent vs	Asian continent vs	
	TST: 1129	African continent	vs African continent	African continent	African continent	African continent	
	Test (+/-)	SN: NR		DOR: 1.61 (0.90, 2.88)	DOR: 0.91 (0.50, 1.64)	R-DOR: 1.77 (1.16,	
	QFT-GIT/G	SP: NR	SN: NR	DORa: 1.07 (0.52, 2.23)	DORa: 0.72 (0.34,	2.70)	
	(337/778)	PPV: NR	SP: NR		1.53)	R-DORa: 1.49 (0.87,	
	TST≥ 10 mm	NPV: NR	PPV: NR			2.53)	

Study ID (Author					Construct validity , LTBI exposure-based page	roxy)
name, year, and country)		,		DOR (9 (vs. non-exposed;	5% CI)	R-DOR (95% CI)
[burden]		IGRA QFT (GIT/G) and/or TSPOT	TST (by threshold)	IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)
	(407/492) N indeterminate QFT-GIT:15 TST: 0 N lost to follow- up TST: 230 (dropouts)	Latin America vs Africa SN: NR SP: NR PPV: NR NPV: NR TB prevalence Contact with TB case vs. no contact SN: NR SP: NR PPV: NR NPV: NR	NPV: NR Latin America vs Africa SN: NR SP: NR PPV: NR NPV: NR TB prevalence Contact with TB case vs. no contact SN: NR SP: NR PPV: NR NPV: NR	Latin America vs Africa DOR: 1.46 (0.99, 2.16) DORa: 0.81 (0.46, 1.42) TB prevalence Contact with TB case vs. no contact DOR: 2.54 (1.82, 3.54) DORa: 2.11 (1.47, 3.03)	Latin America vs Africa DOR: 0.86 (0.59, 1.26) DORa: 0.57 (0.33, 1.00) TB prevalence Contact with TB case vs. no contact DOR: 1.87 (1.30, 2.69) DORa: 1.87 (1.24, 2.80)	Latin America vs Africa R-DOR: 1.70 (1.29, 2.24) R-DORa: 1.42 (0.95, 2.24) TB prevalence Contact with TB case vs. no contact DOR: 1.36 (1.06, 1.75) DORa: 1.13 (0.85, 1.49)
Saracino, 2009 ¹⁴⁵ Australia [Low]	N test results QFT-GIT/G: 452 TST: 452 Test (+/-) QFT-GIT/G (107/172) TST≥ 10 mm (72/207) N indeterminate QFT-GIT/G: 173 TST: 173 N lost to follow-	QFT (GIT/G) Region of origin vs region of origin SN: NR SP: NR PPV: NR NPV: NR	TST ≥ 10 mm Region of origin vs region of origin SN: NR SP: NR PPV: NR NPV: NR	QFT (GIT/G) Region of origin vs region of origin DOR:NR DORa: NA	TST ≥ 10 mm Region of origin vs region of origin DOR: NR DORa: NA	QFT-GIT/G vs. TST ≥ 10 mm Region of origin vs region of origin R-DOR: NR R-DORa: NA

Study ID (Author name, year,	Test results	Test diagnostic accuracy in % (95% CI)		DOR (95	Construct validity (i.e., LTBI exposure-based property CI)	
and country) [burden]		IGRA QFT (GIT/G) and/or TSPOT	TST (by threshold)	(vs. non-exposed; IGRA QFT (GIT/G) and/or T- SPOT	TST (by threshold)	IGRA (QFT-GIT/G or T-SPOT) vs. TST (by threshold)
	up QFT-GIT/G: 169 TST: 169					

Abbreviations: N = number; SN = sensitivity; SP = specificity; PPV = positive predictive value; NPV = negative predictive value; DOR = diagnostic odds ratio; DORa = adjusted diagnostic odds ratio; R-DOR = ratio of diagnostic odds ratio; R-DORa = adjusted ratio of diagnostic odds ratio; TB = tuberculosis; 95% CI = 95 percent confidence interval; QFT = QuantiFERON-TB; GIT = Gold In-Tube; TST = tuberculin skin test

Based on the meta-analysis of the three studies, ¹⁴³⁻¹⁴⁵ the pooled R-DOR for IGRA (QFT-GIT) vs. TST-10mm (contact with TB case, exposure to TB, birth in TB burden country) was not statistically significant suggesting that there is no evidence that IGRA performs better than TST in identifying LTBI in this population. (Figure 47) (R-DOR = 0.96 CI: 0.69, 1.33).



Figure 47. Pooled ratio of diagnostic odds ratio (R-DOR) of IGRA vs. TST 10mm based on high risk and low risk exposure in recent arrivals from countries with a high incidence of TB

4.5.4.1.2 Sensitivity, specificity, PPV, and NPV:

None of the three studies reported these parameters and there was not sufficient information to derive 2 by 2 table cell counts in order to calculate sensitivity and specificity values.

4.5.4.1.3 Influence of BCG vaccination status on test positivity:

Of the three newly identified studies, $^{143-145}$ only one reported the association between test positivity and BCG vaccination status. 143 Given the study results, there was no evidence indicating a differential effect of BCG vaccination status on IGRA (QFT, TSPOT) and TST positivity. Namely, the odds of test positivity for QFT-GIT (OR = 1.70, 95% CI: 0.80, 3.60), TSPOT (OR = 1.80, 95% CI: 0.80, 4.00), and TST (OR = 1.70, 95% CI: 0.80, 3.50) were not significantly different between the BCG vaccinated vs. non-vaccinated groups (see Table 24).

Table 24. Association between test positivity and BCG vaccination (exposure studies) in recent arrivals from countries with a high incidence of TB

	Subgroup of interest – – newly arrived people								
Study ID (Author name, year, and country)	Sample size (N)	size TST vaccinati		test positivity and BCG tion status 95% CI)					
[burden]		threshold	Crude/unadjusted	Adjusted					
Lucas, 2010 ¹⁴³ Australia [Low]	420	QFT-GIT	1.70 (95% CI: 0.80, 3.60)	NR					
	460	T-SPOT	1.80 (95% CI: 0.80, 4.00)	NR					
	304	TST: ≥10mm	1.70 (95% CI: 0.80, 3.50)	NR					
Orlando, 2010 ¹⁴⁴	1130	QFT-GIT	NR	NR					
Italy [Low]	1129	TST: ≥10mm	NR	NR					
Saracino, 2009 ¹⁴⁵	452	QFT-GIT	NR	NR					
Australia [Low]	452	TST: ≥10mm	NR	NR					

Abbreviations: TB = tuberculosis; NR = not reported; N = number; QFT = QuantiFERON-TB; GIT = Gold In-Tube; TST = tuberculin skin test; 95% CI = 95 percent confidence interval

4.5.4.2 Between-test concordance, discordance, and agreement

This relevant evidence was reported for nine CG117 studies ^{164, 181-186, 188, 189} (see Appendix 6) and three newly identified studies ¹⁴³⁻¹⁴⁵ (see Appendix 9). In overall samples, the percent concordance between IGRA and TST-10mm ranged from 63.6% ¹⁸⁶ to 84.2%. ¹⁸⁸ The corresponding concordance between IGRA and TST-5mm was similar and ranged from 60.7% ¹⁸⁶ to 90%. ¹⁸⁹ The kappa values between IGRA and TST (regardless of TST threshold and BCG vaccination status) ranged from 0.08 to 0.68, ¹⁸⁶ most of them below the value of 0.45. Both concordance and kappa were greater amongst BCG unvaccinated (or total sample) vs. vaccinated only ^{144, 164, 181-184, 186, 188} (see Table 25 for agreement; see Appendix 6 for CG117 studies).

Table 25. Between-test concordance and discordance (exposure studies and incidence studies) in recent arrivals from countries with a high incidence of TB

Study ID (Author name, year, and country) [burden]	Sample size (N) total or by subgroup	Type of IGRA vs. TST induration threshold	Concordance (%) 95% CI	Discordance (%) 95% CI	Agreement kappa 95% CI
Lucas, 2010 ¹⁴³	NR	T-SPOT vs 10mm	NR	NR	0.45 (0.38, 0.53)
Australia [Low]	NR	QFT-GIT vs 10mm	NR	NR	0.46 (0.39, 0.53)
Orlando, 2010 ¹⁴⁴	887	QFT-GIT vs 10mm	70.46 (67.32, 73.43)	29.53 (NR)	0.38 (NR)
Italy [Low]	56 BCG vaccinated	QFT-GIT vs 10mm	66.07 (52.09, 77.84)	33.92 (NR)	0.35 (NR)
	789 unvaccinated	QFT-GIT vs 10mm	71.36 (68.04, 74.46)	28.64 (NR)	0.40 (NR)
Saracino, 2009 ¹⁴⁵ Australia [Low]	279 total	QFT-GIT vs 10mm	70.97 (65.39, 75.98)	29.03 (24.02, 34.61)	0.35 (0.23, 0.46)
Harstad, 2010 ¹⁴¹	823	QFT-GIT vs 10mm	NR	NR	NR
Norway [Low]	823	QFT-GIT vs 15mm	NR	NR	NR
Kik, 2010 ¹⁴² The Netherlands [Low]	433	QFT-GIT vs 10mm	NR	NR	NR GIRLS

Abbreviations: 95% CI = 95 percent confidence interval; QFT = QuantiFERON-TB; GIT = Gold InTube; TST = tuberculin skin test

4.5.5 Summary of studies on recent arrivals from countries with a high incidence of TB Two studies which correlated IGRA (QFT-GIT and TSPOT) and TST results with cumulative incidence of active TB showed no significant difference in CIRs for QFT-GIT vs. TST-5mm (R-CIR = 2.55, 95% CI: 0.57, 11.40) and QFT-GIT vs. TST-10mm (R-CIR = 0.87, 95% CI: 0.17, 4.56). The pooled estimate of R-CIRs across the two studies was not significant (pooled R-CIR = 1.57, 95% CI: 0.52, 4.76). Based on two studies, QFT-GIT demonstrated greater specificity values (range: 46%-71%) compared to TST (range: 15%-49%), but lower sensitivity (pooled estimate: 76%) compared to TST (pooled estimate: 94%). One study showed TST-15mm to have performed better than TSPOT both in terms of sensitivity (87% vs. 75%) and specificity (44% vs. 40%).

Seven of the 10 studies reviewed in CG117 found significant strong associations presented as DORs for both IGRA and TST (5mm, 10mm, 15mm) across exposure gradient groups defined as place of birth, racial group, country prevalence. However, the R-DORs comparing IGRA to TST across these studies ranged from 0.14 to 0.98. Since the CG117 report did not provide the 95% confidence intervals, it is not clear what the predictive performance of IGRA relative to TST was in terms of identifying LTBI. Based on the meta-analysis of the three more recent studies, the pooled R-DOR for IGRA (QFT-GIT) vs. TST-10mm (contact with TB case, exposure to TB, birth in TB burden country) was not statistically significant, suggesting no evidence of IGRA performing better than TST in identifying LTBI.

Given the results from one study, there was no evidence indicating a differential effect of BCG vaccination status on IGRA (QFT, TSPOT) and TST positivity. The odds of test positivity for QFT-GIT (OR = 1.70, 95% CI: 0.80, 3.60), TSPOT (OR = 1.80, 95% CI: 0.80, 4.00), and TST (OR = 1.70, 95% CI: 0.80, 3.50) were not significantly different between the BCG vaccinated vs. non-vaccinated groups.

Based on nine CG117 and three newly identified studies, overall percent concordance between IGRA and TST-10mm ranged from 63.6% to 84.2%. The corresponding concordance between IGRA and TST-5mm was similar (range: 60.7%-90%). Most kappa values between IGRA and TST (regardless of TST threshold and BCG vaccination status) were below the value of 0.45. Both concordance and kappa were greater amongst BCG unvaccinated.

4.6 Overall summary of results

We identified 53 more recent studies. Risk of bias was assessed for 15 studies which evaluated the incidence of active TB and methodological quality was assessed for the remaining 38 studies which correlated test results with prior TB exposure. Seven of the 15 studies (incidence group studies) were identified as having high risk of bias, six as moderate risk of bias and the remaining two as low risk of bias. All had important drawbacks in design, methods, and poor reporting. Of the 38 studies (exposure group studies), 29 were generally of lower quality, six were of moderate quality and three were of high quality.

Children

Although the limited evidence in children showed no significant difference between QFT-GIT and TST-5mm (pooled R-CIR = 1.12, 95% CI: 0.72, 1.75), QFT-GIT performed significantly better than TST-10mm in predicting risk of active TB (pooled R-CIR = 4.33, 95% CI: 1.32, 14.23). IGRA (QFT-GIT/G) demonstrated a similar sensitivity (range: 48%-100%) and a slightly better specificity (range: 49%-90%) when compared to TST 5mm (sensitivity range: 57%-100%; specificity range: 45%-65%). Although, sensitivities of IGRA and TST 5mm were higher than that for TST 10mm (range: 30%-56%), the corresponding specificities of these tests were lower compared to TST 10mm (63%-93%). Evidence from exposure studies suggested the superiority of IGRAs over TST in identifying LTBI in the low TB burden setting (pooled R-DOR = 4.74, 95% CI: 2.15, 10.44) as compared to the high TB settings (pooled R-DOR = 1.13, 95% CI: 0.78, 1.65).

Immunocompromised people

In terms of LTBI diagnosis, IGRAs (QFT-GIT or T-SPOT.TB) performed better than TST 5mm/10mm in people receiving haemodialysis (Pooled R-DOR = 2.53, 95% CI: 1.48, 4.34) and people with hepatitis C (R-DOR = 8.45, 95% CI: 3.71, 19.24). In contrast, for patients with HIV/AIDS, TST 10 mm performed significantly better than QFT-GIT (Pooled R-DOR = 0.35, 95% CI: 0.15, 0.83). The comparative evidence on the performance of IGRAs and TST for the remaining subgroups (e.g., lupus erythematosus, solid organ transplantation candidates, kidney transplant recipients) was inconclusive due to high uncertainty around the effect estimates.

Recent arrivals

Overall, based on studies of incidence, there was no significant difference between the performance of QFT-GIT and TST 5mm/10mm in identifying LTBI among newly arrived people from high TB burden countries (Pooled R-CIR = 1.57, 95% CI: 0.52, 4.76). Similarly, there was no significant difference between T.SPOT.TB and TST-10mm in predicting LTBI (R-CIR=0.37, 95% CI: 0.10, 1.41). Likewise, the pooled result showed no significant difference between QFT-GIT and TST 10mm for the associations with prior TB exposure (Pooled R-DOR = 0.96 CI: 0.69, 1.33).

The studies identified in this review were highly heterogeneous in terms of types of tests for LTBI, TST cut-off levels, study settings, and definitions of constructs for prior TB exposure for defining LTBI. Prior exposure to TB was highly variable and ill-defined, lacking a description of duration and proximity of contact to index TB cases. Overall, while the number of studies identified was substantial, extensive heterogeneity across many potential test performance modifier factors (e.g., study methodology, test administration, study populations, and exposure-based construct definition) precluded a more meaningful subgroup analysis due to the scarcity of evidence for each subgroup.

5 Systematic review of economic evaluation studies

5.1 Identification and selection of studies

5.1.1 Search methods for cost-effectiveness

A comprehensive search of the health care literature for published economic evaluations, cost studies and utility studies was performed. The purpose of this search was to identify the literature on the suitability of existing cost-effectiveness models and model design, and also to identify studies which reported costs and health-related quality of life (HRQL) data for use in generating cost per quality-adjusted life years (QALYs).

The main cost-effectiveness search was developed and conducted as part of the wider systematic review which aimed to compare both the clinical effectiveness and cost-effectiveness of screening tests (IGRAs and TST) for LTBI in high risk groups: in children, in immunocompromised people or those at risk from immunosuppression, and in people who are recent arrivals from countries with a high incidence of active TB. The bibliographic database search strategies for the main cost-effectiveness search were the same as those run for the clinical effectiveness review and focussed on the diagnosis of LTBI using IGRAs compared to other methods. Searches were limited to articles in English and included articles that have been added to databases since the health economics searches for the equivalent questions in the NICE clinical guideline CG117 were run (5 – 6 January 2010, Appendix 1). These searches automatically picked up comparisons between IGRAs and TSTs, therefore it was not necessary to search independently for comparator technologies (e.g., TSTs). These searches were not restricted by study type, therefore an economics search filter was not required. The search strategies are provided in Appendix 1. Details of the databases and other sources searched are provided in the clinical effectiveness section (Section 3.1). Additional databases searched for cost-effectiveness were:

- Research Papers in Economics (REPEC)
- CEA Registry
- HEED (Wiley)

A separate search in Medline was performed to identify existing cost-effectiveness model designs for LTBI. The search strategy is available in Appendix 1.

5.1.1.1 Inclusion and exclusion of relevant studies

5.1.1.1.1 Inclusion criteria

To be included in the review, the following criteria were applied:

5.1.1.1.2 Population

- Research question #1: Children (both genders, age < 18 years, immunocompetent)
- Research question #2: People (both genders, any age) who are immunocompromised or at risk from immunosuppression (e.g., transplant recipients or those with HIV, renal disease, diabetes, liver disease, haematological disease, cancer, autoimmune disease, or who are on or about to start anti-TNF-α treatment, steroids, or cyclosporins)
- Research question #3: People (both genders, any age, immunocompetent) who have recently arrived from regions with a high incidence/prevalence of TB (countries/territories with an estimated incidence rate of 40 cases per 100,000 or greater e.g. those in Africa, Central/South America, Eastern Europe, and Asia)

5.1.1.1.3 Intervention

InterFERON gamma release assays (IGRAs) (QuantiFERON-TB Gold (QFT-G),
 QuantiFERON-TB Gold In Tube (QFT-GIT) and T-SPOT.TB

5.1.1.1.4 Comparator

• Tuberculin skin test (TST) (Mantoux method)

5.1.1.1.5 Outcome measures

• The main outcome measure is the cost per quality adjusted life-year. Other outcomes such as correct diagnosis of LTBI and cost per active TB case prevented were also considered

5.1.1.1.6 Study design

 Studies comprising a formal economic evaluation involving direct comparison between IGRAs (QFT-G, QFT-GIT or T-SPOT.TB) with TST and include a decision analytic model in identifying people with LTBI

5.1.1.1.7 Type and language of publication

- Full text reports published in English
- Abstracts (only if they are companion publications to full text included studies)

From the initial search of the literature, two reviewers (PA and AT) reviewed the titles and abstracts from the citations retrieved. Full texts of potentially relevant articles were read, and those that were considered model-based economic evaluations were reviewed (see Figure 48).

5.1.2 Data extraction

The data extraction was conducted by one reviewer (PA) and further cross-checked by a second reviewer (AT). Any disagreements were resolved by discussion or by recourse to a third party reviewer. Data were extracted from the included studies on study details (title, author and year of study), baseline characteristics (population, intervention, comparator and outcomes), methods (study perspective, time horizon, discount rate, measure of effectiveness current, assumptions and analytical methods), results (study parameters, base-case and sensitivity analysis results), discussion (study findings, limitations of the models and generalizability) and other (source of funding and conflicts of interests). The completed data extraction sheets are presented in Appendix 12.

5.1.3 Quality assessment

The quality of the studies included in the current review was assessed against the Consolidated Health Economic Reporting Standards (CHEERS)¹⁹¹ and the Philips' checklist, ¹⁹² respectively.

The economic evaluations were appraised against a framework for best practice for reporting economic evaluation studies developed by the CHEERS task force. The CHEERS assessment tool comprises six dimensions which include title and abstract, introduction, methods, results, discussion and other. Under these dimensions, a series of questions check whether the criteria have been clearly reported (see Appendix 13). Additionally, the models were critically appraised against a framework for best practice for reporting decision-analytical models developed by Phillips and colleagues. The Phillips' quality assessment tool comprises two main dimensions, structure of the model and data used to parameterize the model. Under these dimensions several questions assess whether the criteria has been clearly reported (see Appendix 14).

Study quality was assessed by one reviewer (PA) and cross-checked by a second reviewer (AT). Any disagreements were resolved by discussion or by recourse to a third party reviewer.

5.1.4 Data synthesis

Information extracted from the included studies were summarised and presented in Table 26. These findings on individual studies were compared narratively, and recommendations for the future modelling of LTBI are discussed.

5.2 Results

The literature search identified 5,959 records through electronic database searches and other sources. After removing duplicates, 3057 records were screened for inclusion. On the basis of title and abstract, 3,032 records were excluded. The remaining 25 records were included for full-text

screening. A further 15 articles were excluded at the full-text stage, and the reasons for exclusion are shown in Figure 48 and presented in Appendix 11. The literature search identified 10 studies ^{10, 76, 193-200} which included a decision-analytical model to estimate the cost-effectiveness of IGRAs compared with TST in diagnosing people who are at high risk of LTBI.

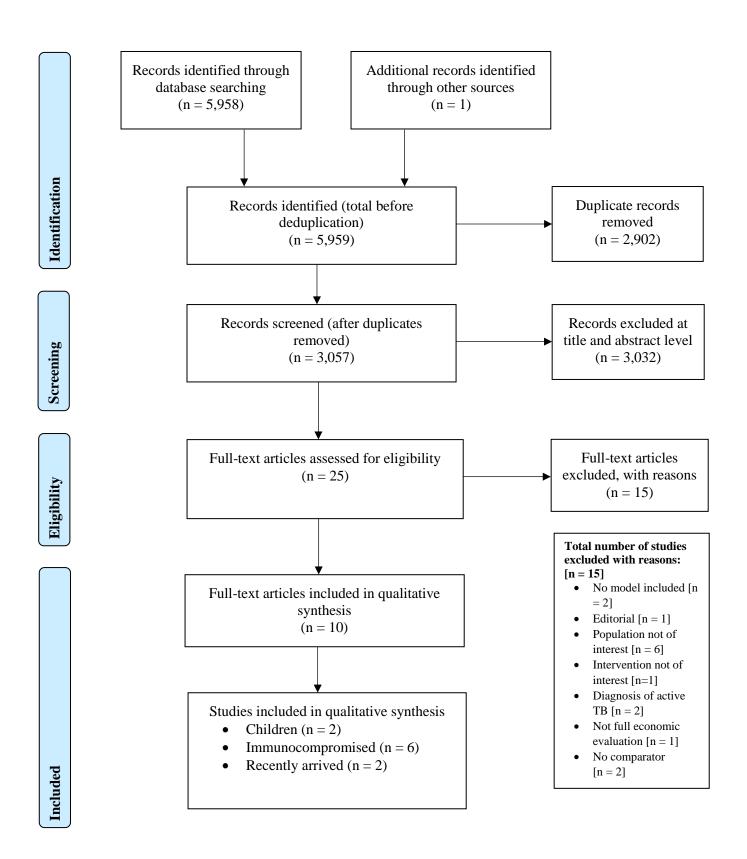


Figure 48. PRISMA study flow diagram

5.3 Summary of the general approaches to modelling LTBI

Below we present the general modelling approaches used for the diagnosis of LTBI by population of interest.

5.3.1 Children

Kowada (2012)

Kowada et al. (2012)¹⁹⁴ estimated the cost-effectiveness of using Quantiferon Gold-In-Tube compared with the tuberculin skin test and chest x-ray for the diagnosis of LTBI in children. The author developed a decision tree structure with Markov nodes to demonstrate the clinical pathway children would undergo for the diagnosis and treatment of LTBI. The model started with a hypothetical cohort of children receiving one of three diagnostic strategies (QFT-GIT alone, TST alone or chest x-ray). The model structure continued with children being in the 'LTBI'/'initial active TB' or no 'LTBI' health states, characterised by the prevalence of the disease. On positive test results, children received a chest x-ray to confirm initial active TB. Children who received a negative result on the chest x-ray were treated for LTBI. Children who adhered to LTBI treatment could develop isoniazid-induced hepatotoxicity (INH-induced hepatotoxicity). For the state-transition model, children entered the model at the 'no LTBI' health state and could remain or progress to 'LTBI', 'TB' or 'dead' health states overtime. Data required to populate the model were obtained from published sources. Estimates on sensitivity and specificity of tests in this population were obtained from a meta-analysis of developed-country studies. Cost data from published sources were adjusted to 2009 Japanese yen and converted to US dollars. The analysis was conducted from the societal perspective and the base case results were expressed as an incremental cost-effectiveness ratio (ICER) based on the outcome of cost per quality-adjusted life-years (cost per QALY) gained. Kowada et al. (2012)¹⁹⁴ conducted oneand two-way sensitivity analyses and populated with data to run the model probabilistically to represent the uncertainty in key model input parameters. The base-case results demonstrated that the OFT-GIT alone strategy was less costly and more effective than the TST alone strategy.

Mandalakas (2013)

Mandalakas et al. (2013)²⁰⁰ used a decision tree structure with Markov nodes to estimate the health and economic outcomes of five screening strategies for the diagnosis of *M tuberculosis* in young household contacts with an index case. The model started with a cohort of children aged < 5 years who received one of five diagnostic strategies (no test, TST alone, IGRA alone, TST positive followed by IGRA and TST negative followed by IGRA, and continued with children being in the 'LTBI/ initial active TB' or 'no LTBI/no initial TB' health states, characterised by the prevalence of the disease. Children with positive test results were eligible for treatment for LTBI, and could either

accept of refuse treatment. For the Markov model, children entered the model at the LTBI health state, and could progress to no infection, initial infection, subsequent infection due to future exposures, pulmonary TB, disseminated TB, TB death and death from other causes. The analysis was conducted from the third party payer and societal perspectives, and the base case results were reported in terms of an ICER based on the outcome cost per life-year saved (LYS). Base-case results indicate that for 0-2 year olds, the no testing strategy was the dominant strategy whilst for 3-5 year olds, an IGRA following a negative TST was the most effective strategy but not cost-effective compared to no testing. The authors conducted one-way sensitivity analyses to determine the impact of data uncertainties on the results.

5.3.2 Immunocompromised

Kowada (2010)

Kowada et al. (2010)¹⁹³ used a decision tree structure with Markov nodes to assess the cost-effectiveness of using QFT-GIT alone compared with TST alone to diagnose LTBI in patients with rheumatoid arthritis. The model simulated a pathway for a hypothetical cohort of people with rheumatoid arthritis being screened for LTBI, and the cost-effectiveness was estimated over a lifetime horizon. The model started with a cohort of people aged 40 years who received either diagnostic strategy, and continued with people being in the 'LTBI/initial active TB' or 'no LTBI/no initial TB' health state, characterised by the prevalence of the disease. People with positive or negative results on the TST or positive QFT-GIT received a chest x-ray to detect active TB. If active TB was detected people received treatment for active TB. If active TB was not detected, people received treatment for LTBI. Here the author assumed that chest-ray to diagnose initial active TB was 100% sensitive and specific. People who adhered to LTBI treatment were at risk of developing INH-induced hepatotoxicity. Kowada et al. (2010)¹⁹³ presented an illustrative Markov structure to depict the transitions that could occur between health states. From the structure, people could enter the model from the no LTBI, LTBI or TB health states.

The information required to populate the model were obtained from published sources. However, the author has not provided comment/discussion on the sources of prevalence of LTBI in this population. Information on the sensitivity and specificity of the tests were obtained from secondary sources and a meta-analysis. All costs included in the model were reported in 2009 Japanese yen and converted to US dollars using the same price year. The primary outcome measure of effectiveness was QALYs gained over a lifetime horizon, however, the author has not elaborated on the descriptive tools used to value these health states. All costs and benefits were discounted at 3% per annum. The analysis was conducted from the societal perspective and results presented in terms of an incremental cost-effectiveness ratio expressed as cost per QALYs gained. Kowada conducted one-way and two-way

sensitivity analyses by changing key model input parameters to determine the impact on the deterministic results. Additionally, probabilistic sensitivity analysis (PSA) was undertaken, but the distributions and the cost-effectiveness acceptability curve were not presented. The author demonstrated that QFT-GIT alone was the most cost-effective strategy for the diagnosis of LTBI in people undergoing haemodialysis. The results from the sensitivity analyses showed that the base-case results were robust to changes in model input parameters. Results from the probabilistic analysis showed that IGRA was the preferred option with 100% probability of being cost-effective compared to TST at society's willingness-to-pay of US\$50,000 per QALY.

Kowada (2013)

In this study Kowada et al. (2013)¹⁹⁵ used a decision tree structure with Markov nodes to assess the costs and effects of using QFT-GIT alone, TST alone and chest x-ray alone to diagnose LTBI in patients being screened for haemodialysis. The model simulated a pathway for a hypothetical cohort of people with haemodialysis being screened, and the cost-effectiveness was estimated over a lifetime horizon. The model started with a cohort of people who received one of three diagnostic tests. People with positive results on the TST or QFT-GIT received a chest x-ray to detect active TB. If active TB was detected people received treatment for active TB. If active TB was not detected, people received treatment for LTBI. The author assumed that chest-ray to diagnose initial active TB was 100% sensitive and specific. People who adhered to LTBI treatment were at risk of developing Isoniazid-induced hepatitis. Kowada et al. (2013)¹⁹⁵ did not present the illustrative Markov structure, but stated the clinical health states, but no further comment was made on how people progressed through these health states. The information required to populate the model was obtained from published sources. The author conducted a review of the literature, but did not state if the accuracy of the tests was derived from a meta-analysis. The primary outcome measure of effectiveness was QALYs gained, however, the author has not elaborated on the descriptive tools used to value these health states. The analysis was conducted from the societal perspective and results presented in terms of an incremental cost-effectiveness ratio expressed as cost per QALYs gained. Kowada et al. (2013)¹⁹⁵ conducted one-way and two-way sensitivity analyses by changing key model input parameters to determine the impact on the deterministic results. Additionally, probabilistic sensitivity analysis (PSA) was undertaken, but the distributions and the cost-effectiveness acceptability curve were not presented. The author demonstrated that QFT-GIT alone was the most cost-effective strategy for the diagnosis of LTBI in haemodialysis people.

Laskin (2013)

Laskin et al. (2013)¹⁹⁷ used a decision tree structure with Markov nodes to determine the most cost-effective screening strategy for children with new-onset idiopathic nephrotic syndrome. The decision tree component of the model represented the pathway children would undertake in a 6-month time

period before they entered into the Markov model. Here, the longer term events were simulated over a lifetime horizon with three-month cycle lengths. The starting point of the model was a hypothetical cohort of new-onset of nephrotic syndrome being tested. Children who received a positive test result were treated for LTBI and were at risk of developing hepatitis. The starting points of the Markov model were derived from the proportion of children with negative TST/IGRA results, children who LTBI treatment was successful, and those who LTBI treatment had failed. The authors assumed that effective LTBI treatment provided long-term protection against LTBI/TB. Data required to populate the model were obtained from published sources. The analyses were conducted from the societal perspective applying an annual discount rate of 3% on costs and benefits. Indirect costs incurred in the analysis included travel time and loss of productivity. Base-case results showed that the no screen strategy was least costly and more effective that other strategies. The results from this study should be interpreted with caution because the discounted and undiscounted costs were similar. Results from the sensitivity analysis showed that the results were robust when indirect medical costs were excluded from the analysis. Results were sensitive to changes in the prevalence of LTBI in this population, with the questionnaire followed by IGRA screening strategy to be the most cost-effective strategy at a prevalence of >4.9%. Results from the probabilistic analysis showed that at a prevalence of 1.1%, no screening compared with IGRA was the preferred screening option, but the authors have not stated at what willingness-to-pay value.

Swaminath (2013)

Swaminath et al. (2013)¹⁹⁹ used a decision tree structure to estimate the costs and benefits of using QuantiFERON-Gold (QFT-G) alone compared to TST alone for the diagnosis of LTBI in people with inflammatory bowel disease (IBD). The model simulated a cohort of people with moderate to severe active Crohn's disease being treated with immunosuppressive medication. The starting point of the model was a cohort of people who received one of two tests. The structure started from disease status (LTBI/no LTBI) followed by test results. On positive test results, people received treatment for LTBI, and could further develop INH-induced hepatitis, and survived or died from this event. People who were false negative, could have re-activated TB, and could survive or die from this event. People who were false positive received treatment and could further develop INH-induced hepatitis. The authors suggested that people with indeterminate results on the QFT-G would immediately receive a second QFT-G test immediately. However, this pathway was not shown in the decision tree structure. Data required to populate the model were obtained from secondary sources. The prevalence of LTBI in this population was obtained from World Health Organization (WHO). Sensitivity and specificity of tests were derived based on information obtained from a few sources, and not a literature review. The analysis was conducted from the health payer perspective and results presented in terms costs of false negative cases avoided, TB reactivations and deaths avoided. The authors conducted one-way

sensitivity analyses around key model input parameters. Swaminath and colleagues suggested that QFT-G was less costly and more effective than the TST in this population.

5.3.3 Recently arrivals from countries with high incidence of TB Pareek (2013)

Pareek et al. (2013)⁷⁶ used a decision tree structure to simulate the costs and benefits of using T-SPOT.TB alone, OFT-GIT alone, TST plus confirmatory T-SPOT.TB (if TST positive) or TST plus confirmatory QFT-GIT (if TST positive) for screening immigrants for LTBI. The illustrative model structure presented by the authors in the supplementary appendix was illegible. Hence, further comment/appraisal on the structure/pathways could not be made. The authors suggested that immigrants who were symptomatic at initial screening or had a positive IGRA/TST result were referred for a chest x-ray and further clinical assessment. Immigrants with a positive IGRA and/or positive TST result and a normal chest x-ray without any symptoms of suggesting active TB were considered to have LTBI. For a positive TST test, cut-offs of \geq 6mm and \geq 15mm were used for BCG-unvaccinated and BCG-vaccinated participants, respectively. Additionally, the authors used a non-stratified cut-off of ≥ 10 mm to suggest a positive TST. The data required to populate the model were obtained from an observational study undertaken by the authors, and from published sources. To be included in the observational study, participants were recently arrived (within the last five years) immigrants to the UK, aged \geq 16 years (with symptoms of TB) or from a country with a TB incidence of $\geq 40/100$, 000 (asymptomatic). Information on the prevalence of LTBI was derived from immigrants aged ≤35 years who had been tested with the three screening tests. Cost data from published sources were inflated to 2010 prices using the Consumer Prices Index. The analysis was undertaken from the UK NHS perspective in a primary care setting. The outcome measures included in the analyses were the number of cases of active TB avoided and the number of LTBI cases needed to be treated to prevent one case of active TB, over a 20-year time horizon. The results are presented as cost per active TB cases avoided. Both costs and benefits were discounted at 3.5% per annum. Pareek et al. (2013)⁷⁶ conducted sensitivity analyses on key model input parameters (prevalence of LTBI, progression rate from LTBI to active TB, reducing the specificity, proportion of immigrants accepting and adhering to LTBI treatment). Base-case results showed that the screening strategy of no port-of-entry chest x-ray and screening with one-step QFT-GIT was cost-effective with an ICER of 21,570 per case of active TB avoided, in immigrants whose country of origin had an incidence of TB of 250 per 100,000. For immigrants whose country of origin had an incidence of TB of 150 per 100,000 or lower, the strategy was not cost-effective (at £30,000 per QALY. Results from the sensitivity analyses showed that varying the prevalence of the cohort and the progression rate from LTBI to active TB increased the cost-effectiveness of using the one-step QFT-GIT. Reducing the specificity of test resulted in the one-step T-SPOT.TB becoming the most cost-effective strategy.

Reducing the proportion of people accepting and adhering to LTBI treatment lead to higher costeffectiveness estimates.

CG117

The authors of CG117¹⁰ used a decision tree structure to compare the costs and effects between four testing strategies (TST alone, IGRA alone, TST followed by IGRA and no test, to provide information and advice only) for the diagnosis of LTBI in immigrants from countries with a high prevalence of active TB. The model started with a cohort of recently arrived immigrants who received one of four testing strategies. In the TST/IGRA alone strategies, people who received a positive test result were treated for LTBI. Conversely, a proportion of people who had negative test results were given BCGvaccination. In the combination strategy, people who tested positive on the TST received a QFT test. Immigrants who had a positive QFT result were treated for LTBI, and of those with negative results, a proportion were given a BCG vaccination. The end-point of the model is the proportion of people developing TB having received a BCG vaccination or treatment for LTBI. Data required to populate the model were obtained from published sources. Sensitivity of tests were derived based on two publications, and an average value was used as an estimate. Costs included in the model were those related to the UK NHS and Personal Social Services (PSS). All costs were presented in pounds sterling in 2008/09 prices. Costs obtained from published sources were inflated using the hospital and community Health Services Pay and Price Index. The results showed that TST positive followed by IGRA, and IGRA alone testing strategies were associated with ICERs below £30, 000 per QALY compared with no testing strategy. The results from the sensitivity analyses showed that varying the cost of an IGRA (£50 to £60) changed the direction of the cost-effectiveness results.

Table 26. Summary characteristics of the models comparing IGRAs and TST in identifying LTBI in children, immunocompromised and recently arrived immigrants

Study ID (First author, year, and country)	Aim of the study	Study characteristics (study design, perspective, setting	Intervention	Outcome measure(s)	Model type	Health states	Results (base case and sensitivity analysis)
Children							
Kowada, 2012, ¹⁹⁴ Japan	To assess the cost- effectiveness of school-based TB screening using QFT-GIT versus the TST and CXR	Cost-effectiveness analysis, societal perspective, setting not reported	QFT-GIT	Cost per QALY	Decision tree structure to model the short term events followed by a Markov modelling structure	Healthy, LTBI, TB and dead	QFT-GIT was less costly and more effective than TST strategy
Mandalakas, 2013, ²⁰⁰ South Africa	To estimate the health and economic outcomes of five TB screening strategies	Cost-effectiveness analysis, third party payer and societal perspectives	IGRA (QFT, T-SPOT.TB)	Cost per LYS	Decision tree structure to model the short term events followed by a Markov modelling structure	LTBI health state, and could progress to no infection, initial infection, subsequent infection due to future exposures, pulmonary TB, disseminated TB, TB death and death from other causes	In the 0-2 cohort, no testing strategy dominated other strategies In the 0-3 cohort, the TST –ve followed by IGRA was the most - effective with a reported ICER of approximately US\$233 000 per LYS versus no testing
Immunocompromised							
Kowada, 2010, 193 Japan	To assess the cost- effectiveness of QFT-GIT versus TST for TB screening of RA patients prior to	Cost-effectiveness analysis, societal perspective, setting not reported	QFT-GIT	Cost per QALY	Decision tree model with Markov nodes	No LTBI, LTBI, TB and death	QFT-GIT was less costly and more effective than TST strategy. At society's WTP per QALY, the

Study ID (First author, year, and country)	Aim of the study	Study characteristics (study design, perspective, setting	Intervention	Outcome measure(s)	Model type	Health states	Results (base case and sensitivity analysis)
	initiation of TNFα antagonist therapy						probability of QFT- GIT testing strategy has a 100% probability of being cost-effective compared to the TST
Kowada, 2013, 195 Japan	To assess the cost- effectiveness of QFT-GIT compared with the TST and the CXR for TB screening of haemodialysis	Cost- effectiveness, societal perspective, setting not reported	QFT-GIT	Cost per QALY	Decision tree model with Markov nodes	Maintenance dialysis with no disorder, maintenance dialysis with LTBI, maintenance dialysis with TB and death	QFT-GIT was dominant compared to TST testing strategy. Results from the SA showed that the base-case results were sensitive to the BCG vaccination rate. At all WTP thresholds, the probability of QFT-GIT testing strategy has a 100% probability of being cost-effective compared to the TST
Kowada, 2014, 196 Japan	To assess the cost effectiveness for TB screening of high risk HIV positive pregnant women by using IGRAs compared to the TST in low	Cost-effectiveness analysis, health service perspective, low incidence of TB country, but setting not reported	1) TST alone, 2) QFT alone, 3) T- SPOT.TB, 4) TST followed by QFT and 5) TST followed by T- SPOT.TB	Cost per QALY	Decision tree model with Markov nodes	Non-LTBI and non-TB, LTBI, non MDR-TB, MDR-TB and dead	Base-case results showed that the T- SPOT.TB is less costly and was more effective compared to other strategies. SA showed that the

Study ID (First author, year, and country)	Aim of the study	Study characteristics (study design, perspective, setting	Intervention	Outcome measure(s)	Model type	Health states	Results (base case and sensitivity analysis)
	incidence countries						cost-effectiveness was sensitive to the sensitivity of T- SPOT.TB, the sensitivity of QFT, specificity of T- SPOT.TB and the specificity of QFT in close contacts
Laskin, 2013, 197 USA	To determine the most cost-effective LTBI screening strategy before long-term steroid therapy in a child with new-onset idiopathic nephrotic syndrome	Cost-effectiveness analysis, societal perspective, setting not reported	IGRAs	Cost per QALY	Decision tree structure to model the short term events followed by a Markov modelling structure	Well, LTBI, TB, nephrotic relapse and dead) for the longer-term events	Base-case results showed that IGRA was less costly and produced moderately more QALYs compared to universal TST
Linas, 2011, 198 USA	To estimate the cost-effectiveness of LTBI screening using the TST and IGRAs	Cost-effectiveness analysis, health service, setting not reported	IGRAs and TST	Number needed to screen to prevent one case of active TB, life expectancy, quality-adjusted life expectancy	Markov model	LTBI with INH, LTBI no INH, INH related hepatitis, < six months INH, 6- 8 months INH, nine months INH, Active TB, post active TB and death	Base-case results showed that people who are taking immunosuppressive medications, neither TST nor IGRA screening was costeffective versus the no screening strategy. Similar results were reported for people with ESRD.
Swaminath, 2013, 199	To compare the	Cost-	QFT-G	Cost per false	Decision tree	True positive,	Base-case results

Study ID (First author, year, and country)	Aim of the study	Study characteristics (study design, perspective, setting	Intervention	Outcome measure(s)	Model type	Health states	Results (base case and sensitivity analysis)
USA	performance of TST and QFT-G got screening LTBI among immunosuppressed IBD patients based on prevalence, mortality risk reactivation TB, and costs	effectiveness, health care payer, setting not reported		negative cases of LTBI avoided, cost per TB deaths avoided, cost per reactivation TB avoided (this can be derived from the information provided)	model	true negative, false positive, false negative, hepatitis, survive/death hepatitis	showed that QFT-G dominated the TST strategy. Additionally, the use of QFT-G would avoid 30 false-negative cases, 4.92 TB reactivations and 1.4 deaths compared with TST
Recently arrived CG117, 2011, 10 UK	To compare the cost and effects of four strategies of testing for people suspected with LTBI in England and Wales	Cost-effectiveness analysis, NHS and Personal Social Services (PSS)	1) TST, 2) IGRA, 3) TST followed by IGRA for people with positive TST and 4) no test (to inform and advise only)	Cost per QALY	Decision tree model	Test results, treatment for LTBI, treatment for TB	Results showed that TST +ve followed by IGRA and IGRA testing strategies were associated with ICERs below £30, 000 per QALY compared with no testing. The results from the sensitivity analyses showed that varying the cost of an IGRA (£50 to £60) changes the direction of the cost-effectiveness
Pareek, 2013, ⁷⁶ UK	To assess the cost- effectiveness of LTBI screening using different	Cost-effectiveness analysis, NHS, primary care setting	1) T-SPOT.TB alone, 2) QFT- GIT alone, 3) TST plus	Cost per case of active TB avoided	Decision tree model	The illustrative modelling structure was presented in a	results Results showed that screening of recently arrived immigrants from

Study ID (First author, year, and country)	Aim of the study	Study characteristics (study design, perspective, setting	Intervention	Outcome measure(s)	Model type	Health states	Results (base case and sensitivity analysis)
	screening modalities at different incidence thresholds in a primary care setting, with and without CXR screening on arrival at port of entry		confirmatory T- SPOT.TB (if TST positive), and 4) TST plus confirmatory QFT-GIT (if TST positive)			supplementary web-appendix, but unfortunately, these structures were illegible	countries of origin with moderate (not defined) TB incidence is likely to be cost-effective by the use of onestep IGRA testing compared to other screening strategies

BCG, Bacillus Calmette–Guérin; CXR, Chest x-ray, ESRD, End-stage renal disease; HIV, Human immunodeficiency virus; IGRA, Interferon-gamma release assay; INH, Isoniazid; LTBI, Latent tuberculosis infection; LYS, Life-year saved; NHS, National Health Service; PSS, Personal Social Services; QALY, Quality adjusted life-years, QFT-G, QuantiFERON-Gold; QFT-GIT, QuantiFERON Gold-In-Tube; RA, Rheumatoid arthritis; SA, Sensitivity analysis; TB, Tuberculosis; TST, Tuberculin skin test; WTP, Willingness-to-pay

5.4 Characteristics of included studies

The characteristics of the models included in these evaluations are summarised in Table 26. All of the ten included studies used an economic model to determine the cost-effectiveness of various strategies for the diagnosis of LTBI. Four ¹⁹³⁻¹⁹⁶ economic evaluations were conducted in Japan, three ^{197, 199, 201} studies in USA, two ^{10, 76} studies in the UK, and one study ²⁰⁰ in South Africa. Three studies ¹⁹³⁻¹⁹⁵ compared QFT-GIT only with TST only, two studies ^{197, 201} compared IGRA with TST, but have not suggested the type of IGRA being used, one study ¹⁹⁹ compared QFT-G only with TST only and four studies ^{10, 76, 196, 200} compared various testing strategies (TST alone, QFT alone, QFT-GIT alone, T-SPOT.TB, TST followed by QFT and TST followed by T-SPOT.TB, TST –ve followed by IGRA) for the diagnosis of LTBI. Two ^{194, 200} economic evaluations were conducted in a population with children, six ^{193, 195-197, 199, 201} evaluations were conducted in the immunocompromised population and two ^{10, 76} were conducted in the recently arrived population.

From the outcomes reported, six^{10, 193-197} studies reported their results in terms of cost per quality-adjusted life-years only, three studies^{76, 199, 200} reported their results in terms of cost per life-year saved (LYS), cost per false negative cases of LTBI avoided, cost per TB deaths avoided, cost per reactivation TB avoided or cost per TB avoided and one study,²⁰¹ their outcomes were based on number needed to screen to prevent one case of active TB, life expectancy, quality-adjusted life-years gained. From the base-case results reported in these studies, the general consensus was that IGRAs were less costly and more effective than other strategies.

Most of the decision-analytical models^{193-197, 200} used for the analyses were decision tree structures with Markov nodes, three studies^{10, 76, 199} used decision tree structures alone and one study²⁰¹ used a Markov model alone to show diagnostic strategies for detecting LTBI and progression to active TB overtime. Three models started from individuals with LTBI which progresses to active TB/no LTBI, followed by the probability of test results, four models started from test result followed by LTBI diagnosis and one model was unclear. The health states included in the models, represented those that people would experience while being screened for LTBI. In the model with a cohort of children, the health states included healthy, LTBI, TB and dead. There was some variation in the health states for the immunocompromised population, this may be due to various diseases/conditions when trying to assess which diagnostic strategy is cost-effective for the diagnosis of LTBI. In the models with a cohort of recently arrived people, the health states included test results, treatment for LTBI and treatment for TB. One of the model structures was illegible in this population.

Model time horizons ranged from one year to lifetime. In the models with children, the time horizon was lifetime (up to 80-years) with cycle lengths of six months' and one-year. In the models with immunocompromised cohorts, the time horizons ranged from one-year to lifetime, with three-month

or one-year cycle lengths and in the recently arrived cohort, the time horizons ranged from 15-years to 20-years, with annual cycle lengths. Authors justified that their time horizons chosen were long enough to measure the costs and benefits of these diagnostic strategies.

Resource use and costs included in the economic analysis depended on the perspective taken. All studies clearly stated the perspective or viewpoint the analysis was undertaken. Five studies ^{10, 76, 196, 199, 201} conducted their analyses from the UK NHS or other national health payer perspective, and the remaining five studies ^{193-195, 197, 200} conducted their analyses from the societal perspective. The five models ^{10, 76, 196, 199, 201} that presented results based on the health payer perspective, included direct costs related to the health service (cost of diagnostic tests, chest x-ray and sputum examinations, treatment for LTBI/active TB and treatment for INH-induced hepatotoxicity). From the five models ^{193-195, 197, 200} that presented results based on the societal perspective, three models ¹⁹³⁻¹⁹⁵ have not included indirect costs or loss of productivity.

From the outcomes reported, six studies ^{10, 193-197} reported their results in terms of cost per quality-adjusted life-years only, three studies ^{76, 199, 200} reported their results in terms of cost per life-year saved (LYS), cost per false negative cases of LTBI avoided, cost per TB deaths avoided, cost per reactivation TB avoided or cost per TB avoided and one study²⁰¹ their outcomes were based on number needed to screen to prevent one case of active TB, life expectancy and cost per QALYs gained. From the studies that reported results in terms of QALYs, utility values were obtained based on published sources in order to derive QALY estimates. These studies have referenced the original source of utility values, but have not elaborated on which descriptive system was used to values these health states.

Due to the uncertainty around key model input parameters and assumptions made in the models, all authors conducted sensitivity analyses. Five studies ^{10, 76, 199-201} conducted deterministic (one- and two-way) sensitivity analyses alone. The remaining studies ¹⁹³⁻¹⁹⁷ conducted both deterministic and probabilistic sensitivity analyses (PSAs). Sensitivity analyses were conducted around changing the prevalence of LTBI in these populations, test accuracies (sensitivity and specificity) of diagnostic tests, cost of IGRAs, return rates for TST and varying the progression rate from LTBI to active TB.

This review will be used to inform model development for the diagnosis of LTBI in three populations. Here we outline an appraisal of the modelling structures, data used to parameterize these models, and the handling of uncertainty. We also consider issues when deriving key model input parameters (prevalence, sensitivity/specificity of diagnostic tests and combination strategies).

5.5 Quality assessment of the modelling methods

We present a summary of the reporting quality of the studies included in the current review against the Philips' checklist in Appendix 14. 192

5.5.1 Structure

The structure of the models included in this review were generally of good quality. According to best practice for developing model structures, studies clearly stated their decision problems and perspective of the analysis, their objectives of the model, which were consistent with the decision problem, and the structures which represented the clinical pathway people will follow while being screened for LTBI. However, there were some structural issues noticed; three studies Kowada 2010, 193 Kowada 2012 194 and Kowada 2013 195 conducted their analyses from the societal perspective, but have not included indirect costs or loss of productivity in the analyses. Studies general stated the location of their analyses, but not their setting, and this may have the impact on the generalizability of results. Illustrative model structures were also presented in the majority of the studies, but one study 164, their model structure was illegible. All studies clearly stated and justified their time horizon and cycle lengths.

All authors justified their choice of model structure which represented coherent pathways of LTBI disease and its treatment. Six models ^{10, 193-197} used decision tree structures with Markov nodes for their analyses, three studies ^{76, 199, 200} used decision tree structures alone and one study ²⁰¹ used a Markov model alone. From the studies identified, four studies ^{10, 76, 195-197} modelled from the test result first, followed by LTBI diagnosis, while six studies ^{76, 193, 194, 199-201} modelled from LTBI, followed by test result. One study (CG117¹⁰) included a proportion of people returning to have their TST result read. One study ¹⁹⁹ included a proportion of people with indeterminate test results on an IGRA, and assumed that they would receive a second IGRA immediately (not shown in the decision tree). All studies included a chest x-ray to confirm if active TB was present. All studies included treatment for LTBI and TB. As a result of adhering to LTBI treatment, all studies included a proportion of people developing INH-induced hepatotoxicity, but have not included any other adverse event from adhering to TB treatment. Studies ^{193-197, 200} which included a Markov model generally used similar health states (no LTBI, LTBI, active TB, re-infection, disseminated TB and dead) to show the possible transitions over time.

5.5.2 *Key model input parameters*

The methods used to identify relevant information to populate the models were satisfactory in most studies. Studies stated that a literature review was undertaken, but did not specify the purpose/aim of the review, i.e., to search the literature to inform on the data inputs and/or to inform on their model

structure or model design. All studies provided references for their model inputs, but were not clear on the choices between data sources or the quality of information used in the models. This may have been a result of a paucity of information in the literature.

In the six models^{76, 193, 194, 199-201} which started from known disease status, information required at this point was the prevalence of LTBI in the population. Most models used secondary sources to obtain a point estimate or to derive an estimate on the prevalence of LTBI, but have not elaborated on what the prevalence represents (prevalence of LTBI in contact tracing, prevalence of LTBI based on occasional screening in the population of interest or prevalence of LTBI that would develop to active TB). Additionally, studies that have used multiple sources were not transparent on the methods used to derive an estimate on the prevalence of LTBI.

Test characteristics on TST and IGRAs were required for the majority of the models. Most studies have undertaken a literature review, and derived an estimate on sensitivity and specificity based on sources identified. Most studies have elaborated on the methods used to derive sensitivity and specificity. These methods included calculating an estimate based on an average of sensitivity (and specificity) obtained from the literature, obtaining estimates from sources that conducted a meta-analysis or using Bayesian statistics to calculate an estimate on sensitivity and specificity based on confirmed TB cases. All studies that used Bayesian statistics, acknowledged that there is no gold standard test available for the diagnosis of LTBI in these populations, and provided equations used to derive sensitivity and specificity. Studies that included a combination strategy, for example, TST +ve followed by IGRA have not elaborated on the methods used to derive the sensitivity and specificity of a test conditional on an initial positive/negative result.

All costs required for the models have been justified and referenced. Costs obtained from published literature were inflated using the appropriate indices. All authors clearly stated the unit costs used in the models, but some authors have not elaborated on the resource use to estimate the unit costs, especially for the treatment of LTBI/active TB. All authors stated the perspective of the analyses, but in some studies, the costs included did not reflect the viewpoint/perspective of the analyses. All authors, where necessary, discounted costs and benefits using the appropriate rates.

In the models that reported their results in terms of QALYs, authors provided references used to obtain the utility weights. However, the majority of the authors have not elaborated on the descriptive tools/measures used to value these health states in these populations. Hence, uncertainty arises concerning the methods/tools used to value these health states. Additionally, authors have not elaborated on if the source of utility information obtained was relevant to their population of interest.

5.5.3 *Uncertainty and assumptions*

Uncertainty is unavoidable in economic modelling. Briggs and Gray (1999) and Philips et al. (2004) have outlined methods to handle the four main types of uncertainty (methodological, structural, parameter and generalizability). 192, 202 All models have attempted to address uncertainty, but none of these studies addressed all types of uncertainty. All models have undertaken univariate or multivariate sensitivity analysis on key model input parameters. Four studies 193-196 have also undertaken probabilistic sensitivity analysis for joint uncertainty in model parameters to assess the impact on base-case results.

In order to have a workable model structure to conduct these analyses, most studies clearly stated their simplifying assumptions, except the model developed by Kowada et al. (2014), ¹⁹⁶ these assumptions were unclear. In general, these assumptions outlined in the studies appeared to be feasible, but strong in some cases. One study ⁷⁶ assumed that testing with an IGRA would not lead to an indeterminate result. Whilst in NICE (2011), ¹⁰ the authors assumed that treatment of LTBI/TB was adhered by the population, and it would not lead to any adverse events.

The evidence-base here offers insight on the decision analytical models available to determine the

5.6 Conclusion

cost-effectiveness of IGRA compared with TST for the diagnosis of LTBI in children, immunocompromised and people from countries with high incidence of active TB. We identified ten model-based economic evaluations across these three populations. The majority of these models were in the immunocompromised or immunosuppressed population. These results highlight that the evidence available for the other two populations is sparse. The majority of the models used decision tree structures with Markov nodes to simulate a cohort of people being tested for LTBI. We appraised these models against frameworks on best practice for reporting an economic evaluation and economic modelling. In general, all models performed well in terms of defining the decision problem, including the study perspective, outlining the choice of comparators, presenting an illustrative model structure and providing a clear outline of the assumptions. These models all add to existing literature, but are subject to limitations. First, the majority of the studies indicated the location of the study but have not stated the setting of the analysis and this may limit the generalizability of the results. Second, the majority of the studies used QALYs as their outcome measure and have referenced the source of their utility values. However, authors have not provided commentary on the descriptive tools used to value these health states. Third, the perspective of the analysis was stated in all studies, however, some of the resource use and costs reported did not reflect the viewpoint of the analysis. Fourth, the majority of the studies were transparent of the methods used to identify information to populate the models, but it was unclear on any assessment used on the

quality of the information. Finally, all models have explored uncertainty around key model input parameters, but no attempt was made to explore methodological, structural or generalizability. Other concerns relate to the derivation of prevalence, test accuracy and transition probabilities; most studies have not elaborated on these statistical/pre-model analyses.

In chapter 6, we outline the development of a de novo model which is structured against two stages to inform on the cost-effectiveness of various strategies for the diagnosis of LTBI in our populations of interest.

6 Health economics methods and results

6.1 Objective

The objective of the economic evaluation was to compare the cost-effectiveness of various screening strategies for the diagnosis of LTBI in immunocompetent children, people who are immunocompromised or at risk of immunosuppression, and people who are recent arrivals from countries with a high incidence of active TB.

Currently in the UK, the following strategies are recommended to diagnose people with LTBI:

Children

 Offer a Mantoux test to children aged 2-15 years. If positive, follow-up with an interferongamma test.

Immunocompromised

For people who are HIV negative, offer an interferon-gamma test alone or an interferon-gamma test with a concurrent Mantoux test. If either test is positive, perform a clinical assessment to exclude active TB and treat

Recently arrived

Offer an interferon-gamma test alone or a dual strategy for people aged 16-35 years. If either
test is positive, refer to TB specialist to exclude active TB and treat

General population

 Offer interferon-gamma test alone or interferon-gamma testing for people whose Mantoux testing shows positive results

6.2 Developing the model structure

To assess the cost-effectiveness of various strategies for the diagnosis of LTBI, we developed an economic model using R (version 3.1.1).

The model was developed with clinical input, and represents, as far as possible, the clinical pathways people would take whilst being screened for LTBI. The model structure is presented in Figure 49. The model was structured in two stages, diagnosis of LTBI and disease progression to active TB. The first stage of the model represents the clinical pathway people would take in a one-year time period before entering the infectious disease model. For this stage, we used a decision tree structure for the diagnosis of LTBI. Four diagnostic strategies were examined in the model for each population:

- Tuberculin skin test (TST) alone
- Interferon-gamma release assay (IGRA) alone
- Combinations of TST and IGRA
- Simultaneous testing

The model begins with people receiving one of these diagnostic strategies (see Figure 49). The branches to the right of the decision node (square symbol) represent the strategies being compared. People begin in one of the possible health states to the right of the chance node (circle symbol). The decision tree is modelled from individuals who have LTBI that progresses to active TB/no LTBI, followed by the probability of test results. However, in clinical practice, the test result is known before LTBI is diagnosed. Modelling the test result first followed by disease category or vice versa makes no mathematical difference in terms of the expected values calculated for each diagnostic strategy. Below we describe each strategy in detail.

TST alone strategy: When screening with TST, an individual may or may not return to have the test result interpreted (TST not read). Adults with positive TST results (induration ≥ 5mm/10mm) are assessed for initial active TB by a chest x-ray and sputum examination. Children with positive TST results are assessed for active TB by a chest x-ray and, if that is positive, a gastric lavage procedure. People who have a positive result on the chest x-ray and sputum examination are treated for active TB. We assumed here that the chest x-ray and sputum examination are 100% accurate at diagnosing people who have initial active TB. People who adhered to TB treatment in the immunocompromised or recently arrived population may develop hepatitis, and can survive or die from this adverse event. In the model with a cohort of children, we assumed that they would not develop hepatitis because it's a rare adverse event in this population. People who have a negative result on the chest x-ray and sputum examination (LTBI) can either accept or refuse to be treated for LTBI. People who have accepted LTBI treatment may adhere/not adhere to treatment. If the TST is not read or the TST is negative, the individual is not followed-up.

IGRA alone strategy: When screening with IGRA alone, an individual may have a determinate or indeterminate result. Adults with determinate results and who are IGRA positive are assessed for initial active TB by a chest x-ray and sputum examination. Children with positive TST results are assessed for active TB by a chest x-ray and, if that is positive, a gastric lavage procedure. People who have a positive result on the chest x-ray and sputum examination are treated for active TB. People who have a negative result on the chest x-ray and sputum examination (LTBI) can either accept or refuse to be treated for LTBI. People who have accepted LTBI treatment can adhere or not adhere to treatment. People with an indeterminate IGRA result receive a second IGRA test which is the same

as the initial IGRA. If the IGRA is negative or both IGRAs are indeterminate, the individual is not followed-up.

Combined strategy: For the children and recently arrived population, people who had their TST results interpreted and are positive, receive an IGRA test. Children with determinate, positive IGRA results receive a chest x-ray, and if positive, receive the gastric lavage procedure before a sputum examination for the assessment of active TB. Children with negative chest x-ray/sputum examination results are either treated or not treated for LTBI. Children with indeterminate results receive a second IGRA, which is the same as the initial IGRA. If the TST is not read or the TST is negative, the individual is not followed-up. Recent arrivals with determinate, positive IGRA results are assessed for active TB by a chest x-ray and sputum examination. If there is a positive result on the chest x-ray and sputum examination, people are treated for active TB. People who have a negative result on the chest x-ray and sputum examination (LTBI), can either accept or refuse to be treated for LTBI. If people accept LTBI treatment, they may adhere/not adhere to treatment. People with an indeterminate IGRA result receive a second IGRA test which is the same as the initial IGRA. These people follow similar pathways as those who received one IGRA test. At most, people will receive two IGRAs. If the TST result has not been read, the TST result is negative, the IGRA is negative or both IGRAs are indeterminate, the individual is not followed-up.

Conversely, in the immunocompromised group, people receive an IGRA test first. If the result on the IGRA is positive, people receive a chest x-ray and sputum examination to detect initial active TB. If there is a positive result on the chest x-ray and sputum examination people are treated for active TB. If the result is negative, people can accept or refuse treatment for LTBI. People who have accepted and adhered to LTBI treatment may develop hepatitis, and can survive or die from this adverse event.

Individuals with negative IGRA results undergo a TST test. People here follow similar pathways for those who received the TST alone strategy. People with an indeterminate IGRA result receive a second IGRA test which is the same as the initial IGRA. These people follow similar pathways as those who received one IGRA test. At most, people will receive two IGRAs. People with a negative IGRA or two indeterminate results, a negative TST result or the TST result has not been read are not followed up.

Simultaneous testing strategy: When screening with an IGRA and TST, people can have a combination of test results: a determinate result on the IGRA and TST read, a determinate result and TST not read, an indeterminate result and TST read or an indeterminate result and TST not read. Children with positive results on either test receive a chest x-ray, and if positive, receive the gastric lavage procedure and sputum examination to detect initial active TB. For the other populations,

people with a positive result on either test receive a chest x-ray, and if positive, receive a sputum examination to detect active TB. If the IGRA result is indeterminate and the TST is not read, the individual is not followed-up.

Stage two of the model is a disease progression model, looking at progression between no TB/LTBI, LTBI that will progress to active TB, and active TB, as well as secondary infections in other individuals caused by people with active TB. The basic model structure is shown in Figure 55. This structure is the same for people who are/aren't being treated for latent/active TB, though the transmission probabilities are different in each of these cases. The outputs of the decision tree are used to determine proportions of people who start in each state, specifically:

- 1) Active TB
- 2) LTBI treated for LTBI
- 3) LTBI untreated
- 4) No TB/LTBI treated for LTBI
- 5) No TB/LTBI untreated

The model used was a discrete event simulation, modelling individual patients, built using R (version 3.1.1). An initial simulation, starting with identical cohort of 500,000 individuals in each arm, was run using the mean values of each parameter. In order to account for parameter uncertainty, we also ran a Monte Carlo simulation, consisting of 2,000 different sampled parameter sets, each run on a starting sample of 100,000 individuals. An individual's event risks at any time point are determined by their age, TB status and current treatment, and remain constant until one of these factors changes.

People who begin the model with LTBI and are not treated will develop active TB at a later point (from the definition of LTBI in our model as LTBI that progresses to active TB). The mean delay between the diagnostic test and progression to active TB was estimated from the systematic review, with individual activation times simulated assuming a constant activation rate over time. People who begin the model with LTBI and are treated for LTBI have a certain probability of not developing active TB in the future (the effectiveness of the treatment – assumed to be six months of isoniazid), with activation times for those whose treatment is unsuccessful sampled as above.

Age specific all-cause mortality rates are taken from UK-specific data in the Human Mortality Database, ²⁰⁴ and applied to all individuals in the model. Age specific utilities, for individuals without TB, were calculated using data from the Health Survey for England. ²⁰⁵ When an individual develops active TB, they have an immediate, age specific probability of death, over that of all-cause mortality. Recovery rates from active TB were calculated from the mean length of an active TB episode,

assuming a constant probability of recovery over time. Individuals with resolved TB have an annual probability of relapse, with subsequent activations having the same probabilities as the initial episode.

For each TB activation (primary or relapse), individuals generate a certain numbers of secondary cases of LTBI that will progress to active TB, sampled from a Poisson distribution. These cases are assumed to occur in the general population, hence the age of the secondarily infected individuals was simulated from the average age distribution of active TB cases in the UK. These secondary cases were assumed to be identical (in terms of probability of death, average length of active TB episode, utility loss, number of secondary cases generated) to similarly aged individuals in the initial population. We did not simulate secondary cases of LTBI that do not progress to active TB, as we have also not considered these in our initial population.

As the model is run, any new cases of LTBI infection generated are included in the disease progression model from that time forward. Costs and QALYs are accrued by individuals according to the lengths of time they spend in each state of the model. Unlike a traditional economic model, it is not possible to continue running the simulation until all individuals have died, as there is a continuous stream of new individuals being added as a result of new infections. Consequently, the simulation will be run for 100 years, with discounting meaning that any results over a longer time horizon than this are unlikely to make a meaningful difference to the outcome. The parameters for the discrete event simulation are presented in Table 28, Table 70 and Table 71 for the children, immunocompromised and recently arrived populations, respectively.

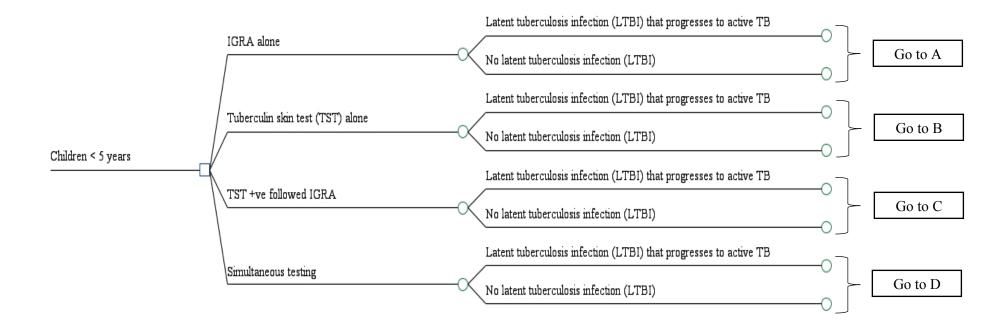


Figure 49. Decision tree structure for the children population

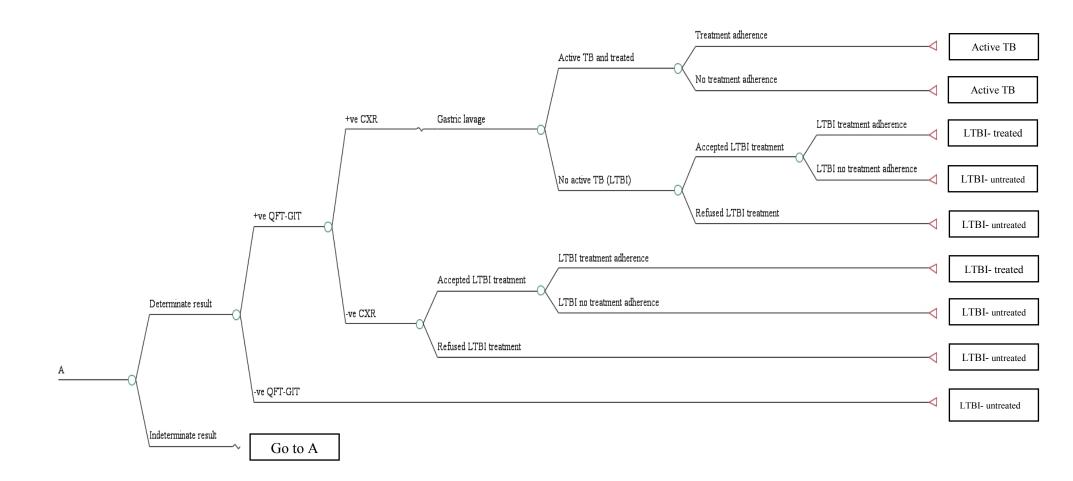


Figure 50. Pathway for the IGRA alone diagnostic strategy (IGRA alone strategy) in children

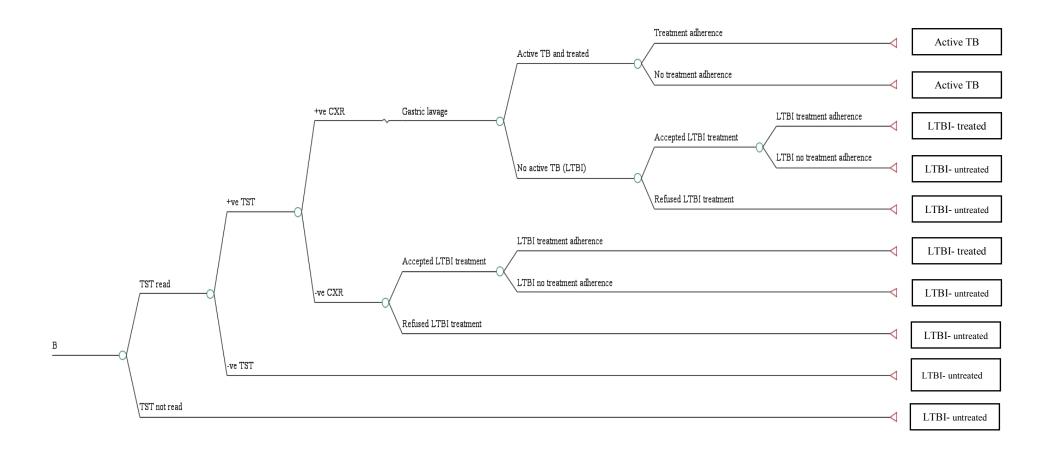


Figure 51. Pathway for the TST alone diagnostic strategy (TST alone strategy) in children

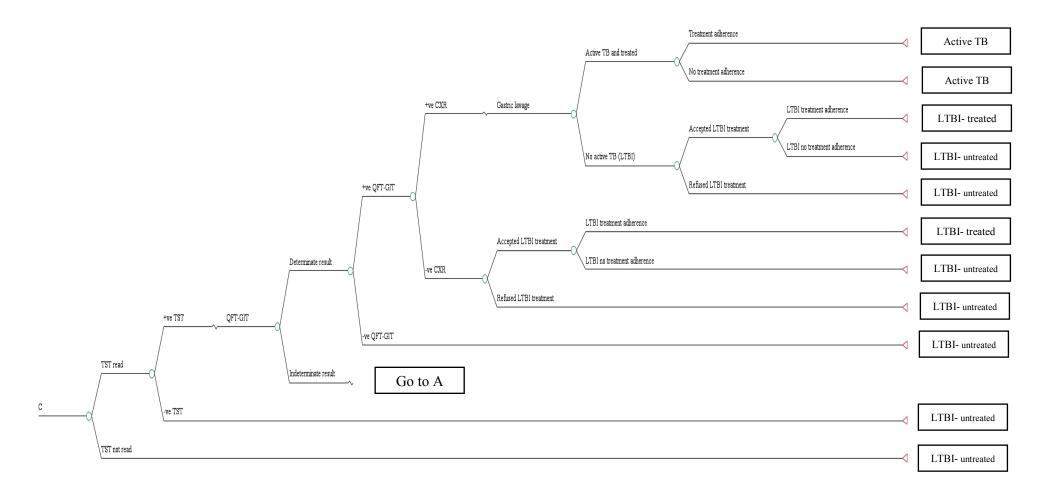


Figure 52. Pathway for the diagnostic strategy TST positive followed by IGRA in children

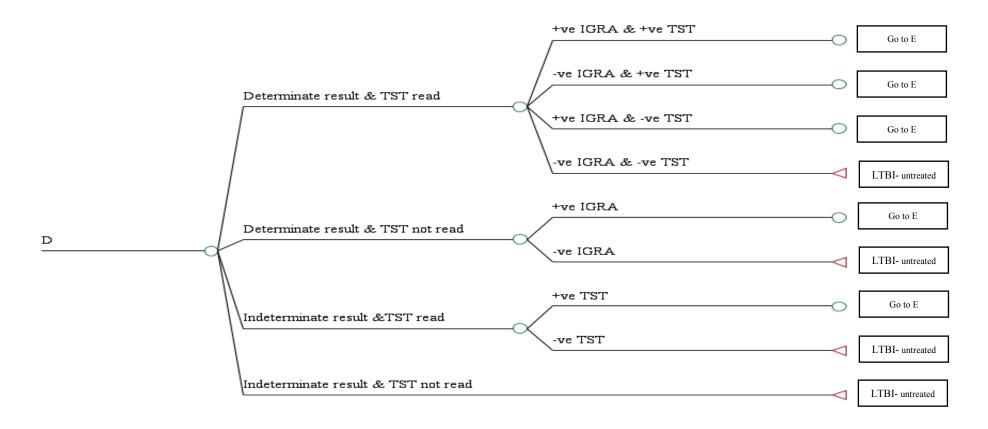


Figure 53. Decision tree structure for the children population receiving simultaneous testing strategy

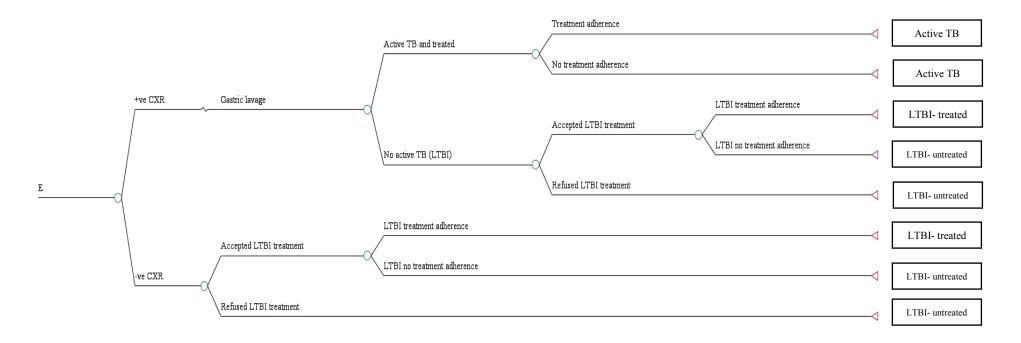


Figure 54. Pathway for the children population receiving simultaneous testing strategy

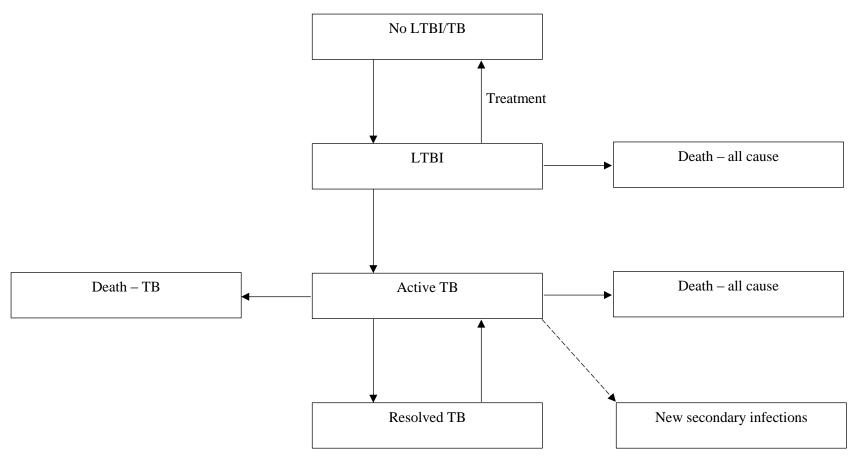


Figure 55. Dynamic transmission model

6.2.1 Model assumptions

A number of assumptions were required to develop a workable model structure to enable the analyses to be undertaken. These assumptions are:

- 1. We assumed that our population is similar to the population in the clinical effectiveness studies, but excluding studies with a high incidence of active TB
- 2. People being assessed for initial active TB have a chest x-ray, and if positive, receive a sputum examination
- 3. Children being assessed for initial active TB have a chest x-ray, and if positive, undergo a gastric lavage procedure
- 4. The sputum examination is 100% accurate when diagnosing initial active TB
- 5. Individuals with a second indeterminate or false negative result on the IGRA test are at the same risk of developing active TB
- 6. People who have been diagnosed with initial TB accept treatment
- 7. People who do not adhere to LTBI treatment take medication for one month
- 8. People who do not adhere to LTBI treatment are not at risk of developing INH-induced hepatotoxicity
- 9. People who do not adhere to active TB treatment, take medication for one month
- 10. Children are not at risk of developing hepatitis as a result of treatment for active TB or LTBI
- 11. No health loss experienced by people with LTBI who do not progress to active TB

6.3 Data required for the model

The model was populated with clinical information from the current effectiveness review, and supplemented with information from secondary sources. Information required to parameterise the model included prevalence, sensitivity and specificity, adverse events, resource use and costs, and utilities. We acknowledge here that there is no gold standard test for LTBI diagnosis. Hence, we have used clinical information from studies in this review which report information on the confirmed cases of active TB (incidence to active TB for untreated LTBI).

All of the data available in the children population were based on studies where there was prior contact with an index case. We therefore, restricted our analysis to this population both due to the lack of data and because it was thought unlikely a general screening programme for all children, irrespective of contact, would ever be introduced.

6.3.1 Prevalence

In this analysis, prevalence was defined as the proportion of people who have LTBI that will progress to active TB, assuming they are not treated. We derived estimates for this LTBI prevalence criteria,

based on empirical data from the three cohorts separately. We used WinBUGS software (version 1.4.3) to conduct Bayesian Markov chain Monte Carlo simulation to derive the prevalence of LTBI in each cohort using the following formula:

Probability of a positive result = $(Test\ sensitivity*Prevalence\ of\ LTBI) + ((1-Test\ specificity)*(1-Prevalence\ of\ LTBI))$

Re-arranging the above equation for prevalence of LTBI:

Prevalence of LTBI = Probability of a positive result – (1- Test specificity)/((Test sensitivity) - (1 – Test specificity))

In order to avoid overestimating the prevalence of LTBI that progresses to active TB, we excluded studies which have a high incidence (\geq 40 cases per 100,000) of active TB. For the recently arrived population, we derived the prevalence from all studies on recently arrivals in the clinical effectiveness review for people with LTBI who progressed to active TB.

6.3.2 Performance of screening tests (sensitivity and specificity)

The sensitivity and specificity of various strategies were derived based on information obtained information from longitudinal studies on people who received testing and further developed active and further developed active TB. Therefore, our calculated sensitivity and specificity represent sensitivity and specificity of detecting people with LTBI that will progress to active TB, not the sensitivity and specificity of detecting LTBI in general. Bayesian MCMC was used to derive posterior distributions for test performance assuming weakly informative priors to derive the sensitivity and specificity of diagnostic tests by population. Estimates for sensitivity and specificity were derived for $TST (\geq 5mm)$, $TST (\geq 10mm)$, QFT-GIT and T-SPOT.TB.

To synthesize the clinical evidence in WinBUGS, there were three main components of the model: the statistical model, priors and data. See Appendix 18 for the WinBUGS code for our three populations of interest.

Statistical model

In our models we have used distributions to represent the unknown variables in the model. For the evidence synthesis for children, immunocompromised, and recent arrivals we have used the binomial distribution in order to derive the sensitivity and specificity of TST, QFT-G, QFT-GIT and T-SPOT.TB. We have chosen the binomial distribution because we were interested in the probability p of the number of successes (people with positive/negative results that progressed to active TB) from n number of longitudinal studies.

First, we were interested in the probability p_{pos} of the number of positive test results from n longitudinal studies. Second, the probability p_{apos} of the number of positive results that progressed to active TB from n number of positive test results. Likewise, we are interested in the probability p_{aneg} of the negative results that progressed to active TB.

Logical expressions were built into the model to represent the relationship between the probability of a positive result, prevalence of LTBI, test sensitivity and test specificity (see Appendix 18).

We initially explored both fixed- and random-effects models. However, for two of the populations (children and immunocompromised), the random effects models did not converge (most likely due to a number of studies where either zero or only a very small number of people progressed to active TB). Hence, for consistency, we used the fixed-effects model for the three populations.

Priors

We stated in the WinBUGS model the prior distribution to be used. We have chosen the uniform distribution because the number of positive/negative test results are equally likely to be observed, and these results have an equal probability of occurring. In our WinBUGS code, we have added a logic expression to inform the model that the sensitivity of TST (\geq 5mm) > TST (\geq 10mm) > TST (\geq 15mm). Likewise, the specificity of TST (< 5mm) < TST (< 10mm) < TST (< 15mm). We have included this logic expression because the TST is a single test with various cut-off thresholds for a positive result, and by definition, the TST (\geq 5mm) would be more sensitive and less specific than TST (>10/15mm).

Data

Observed data from longitudinal studies identified in the clinical effectiveness review were entered into the model in a list format. Data included the number of people being tested, number of people with positive results, number of people with positive results, and untreated, that developed active TB and the number of people with negative results who further developed active TB. Table 62 - Table 67 in the appendices show the information obtained from the clinical effectiveness studies. The term NA (Not applicable) was used to represent any missing values. After compiling the model, we provided values in order to generate initial values.

In order to get accurate posterior probabilities, we used 60,000 simulations; a burn-in period of 30,000 simulations was used. Output from the remaining 30,000 simulations represented the posterior mean, along with its posterior standard deviation, posterior median and 95% credible intervals. Convergence of the model was assessed using a visual inspection of the sample trace plots (see Appendix 18).

Results of the meta-analysis are presented in Table 27. The sensitivity and specificity of TST (\geq 5mm) for the diagnosis of LTBI in children was estimated at 72.80% and 49.03%, respectively. In the immunocompromised group, we derived estimates of 32.42% and 74.22% for the sensitivity and specificity of TST (\geq 5mm), respectively. In the recently arrived group, we derived estimates of 93.56% and 50.11% for the sensitivity and specificity of TST (\geq 5mm), respectively. In the models we have not stratified by BCG-status, hence, we used a cut-off of \geq 5mm to define a positive TST.

Similar methods were used to derive the sensitivity and specificity for TST in these populations. The sensitivity and specificity of QFT-GIT for the diagnosis of LTBI in children was estimated at 68.84% and 61.03%, respectively. In the models, we used QFT-GIT as the base-case values for the analysis because the majority of the studies compared QFT-GIT with TST. In the immunocompromised group, we derived estimates of 55.48% and 82.27% for the sensitivity and specificity, respectively. In the recently arrived group, we derived estimates of 59.15% and 79.29% for the sensitivity and specificity, respectively.

Table 27. Diagnostic accuracy of various tests for diagnosing LTBI that progresses to active TB

	Sensitivity, % (95% credible interval)	Specificity, % (95% credible interval)
Children	(3570 Creatible litter var)	(75 % Credible interval)
TST (≥ 5mm)	72.80 (60.59 – 72.94)	49.03 (47.96 – 50.08)
TST (≥ 10mm)	53.51 (38.21 – 67.69)	74.81 (34.34 – 76.18)
QFT-GIT	68.84 (58.56 – 78.20)	61.03 (60.30 – 61.76)
T-SPOT.TB	50.00 (2.45 – 97.64)	77.58 (67.38 – 86.40)
Immunocompromis	sed	
TST (≥ 5mm)	32.42 (11.19 – 58.48)	74.22 (72.88 – 75.57)
TST (≥ 10mm)	16.82 (2.52 – 38.99)	83.97 (78.99 – 88.31)
QFT-GIT	55.48 (24.73 – 83.73)	82.27 (80.52 – 83.96)
T-SPOT.TB	66.65 (35.17 – 0.9144)	68.46 (63.46 – 73.37)
Recently arrived	,	
TST (≥ 5mm)	93.56 (77.86 – 99.77)	50.11 (47.90 – 52.29)
QFT-GIT	59.15 (35.84 – 81.42)	79.29 (77.80 – 80.73)
T-SPOT.TB	70.01 (39.78 – 92.42)	39.92 (34.39 – 45.54)

6.3.3 Resource use and costs

The resource use and cost included were those directly incurred by the NHS. Costs for diagnostic tests, chest x-rays, gastric lavage, sputum examination, treatment of LTBI/TB and Isoniazid (INH)induced hepatitis were all included in the analysis. Societal costs: indirect costs, loss of productivity or cost of death were not included in the analysis. Unit costs are presented in Table 28. The majority of the cost information used in the analyses was obtained from secondary sources. Cost for QFT-GIT (testing kit, consumables, processing and phlebotomy) and TST (disposables, administration and reading) were obtained from Pooran et al. (2010). 206 Estimated costs for the chest x-ray, gastric lavage procedure and sputum examination were obtained from the NHS reference costs 2012/13²⁰⁷. Estimated costs for the treatment of LTBI were obtained from the NHS drug tariff 2014 and in consultation with a clinical expert (see Appendix 17). 208 Cost for the treatment of TB were obtained from Bothamley et al. (2002) (see Appendix 17). Management of LTBI included further blood tests (full blood count and liver function tests), outpatient visits to doctor and nurse, and treating with Isoniazid 300mg daily for six months. Estimated costs for treating INH-induced hepatitis were obtained from Pareek et al. (2013). All costs were adjusted to 2012/2013 prices using the Hospital and Community Health Service (HCHS) pay and price index Curtis et al. (2013)²¹⁰ and discounted at a rate of 3.5% per annum, as recommended by National Institute for Health and Care Excellence (NICE).

Table 28. Model input parameters required for the population with children

Variable	Base-case value	Range for SA	PSA distribution	Reference(s)
Probabilities				
Prevalence of LTBI	0.0288	0.0206 - 0.0384	#	
Sensitivity TST (≥5mm)	0.7280	0.6059 - 0.7294	#	
Specificity TST (<5mm)	0.4903	0.4796 - 0.5008	#	
Sensitivity TST (≥10mm)	0.5351	0.3821 - 0.6769	#	
Specificity TST (>10mm)	0.7481	0.3434 - 0.7618	#	
Sensitivity QFT- GIT	0.6884	0.5856 - 0.7820	#	Derived from clinical
Specificity QFT- GIT	0.6103	0.6030 - 0.6176	#	effectiveness
Sensitivity T- SPOT.TB	0.500	0.0245 - 0.9764	#	
Specificity T- SPOT.TB	0.7758	0.6738 - 0.8640	#	
Sensitivity of QFT-GIT conditional on +ve TST (LTBI arm)	0.6775	0.4674 - 0.9233	#	
Specificity of	0.3213	0.3073 - 0.3353	#	

Variable	Base-case value	Range for SA	PSA distribution	Reference(s)
QFT-GIT				
conditional on				
+ve TST (No				
LTBI arm)				
Sensitivity of	0.7031	0.1122 - 0.9921	#	
QFT-GIT				
conditional on -				
ve TST (LTBI				
arm)				
Specificity of	0.9108	0.9013 - 0.9200	#	
QFT-GIT				
conditional on -				
ve TST (No				
LTBI arm)				211
Sensitivity of	0.7800	Not reported	Not varied	Kumar et al. (2005) ²¹¹
CXR for				
diagnosing				
active TB	0.5100	XX .	XX	77 (200 - 211
Specificity of	0.5100	Not reported	Not varied	Kumar et al. $(2005)^{211}$
CXR for				
diagnosing				
active TB	0.07		Data (972 27)	Danissa J. france T. o. 1 to
Determinate OFT GIT	0.97	-	Beta (873,27)	Derived from Laskin et al. (2013) ¹⁹⁷
QFT-GIT Determinate T-	0.97		Pote (872-27)	Derived from Laskin
SPOT.TB	U.71	-	Beta (873,27)	et al. (2013) ¹⁹⁷
Probability of	0.9400	0.6 - 1.00	Beta (164,10.5)	Pareek et al. (2013)
TST read	U.⊅ 1 UU	0.0 - 1.00	Deta (104,10.3)	1 arcen et al. (2013)
Probability of	0.00001	_	Not varied	Laskin et al. (2013) ¹⁹⁷
initial active TB	3.00001		110t variou	Luskiii et al. (2013)
TB treatment	1.0000	-	Not varied	Pareek et al. (2013) ⁷⁶
adherence				(2010)
Accepting LTBI	0.9400	0.50 - 1.00	Beta (141,9)	CG117 (2011) ¹⁰
treatment			` ' /	` '
Adherence to	0.8000	0.50 - 0.90	Beta (41,10)	Kowada (2013) ¹⁹⁵
LTBI treatment				. ,
INH hepatitis	0.0040	0.001 - 0.010	Beta (2.7,664)	Assumption
after TB				-
treatment				_
Death from INH	0.00002	0.00001 - 0.0001	Beta (0.5,25125)	Pooran et al. (2010) ²⁰⁶
hepatitis				
Transmission mo				
Proportion still	0.345	-	Lognormal	White and Jit
infected post			(-1.065,0.842)	$(2015)^{212}$
LTBI treatment	0.2	0.1.0.2	·	D 1 . 1 . 2011)6
Average number	0.2	0.1-0.3	Lognormal	Pareek et al. (2011) ⁶
of secondary			(-1.609,0.354)	
cases from one				
index case	200		I	Olmon -14 -1
Average delay	2.88	-	Lognormal	Okuonghae et al., (2013) ²¹³
from infection to			(1.058,0.333)	(2013)
activation				
(secondary				
cases) Annualised	0.013	0.004 - 0.025	Beta (7,513)	Oxlade et al. (2011) ²¹⁴
reactivation rate	0.013	0.004 - 0.023	Deta (7,313)	Oxiaue et al. (2011)
from resolved				
TB				
Case fatality rate	0.0477	_	Beta (628,12543)	Croft et al. (2008) ²¹⁵
Case fatality fate	0.07//		Dem (020,12343)	Croft & al. (2000)

Variable	Base-case value	Range for SA	PSA distribution	Reference(s)
for active TB (0-				
4 years) Case fatality rate	0.0034	-	Beta (1,290)	Croft et al. (2008) ²¹⁵
for active TB (5- 14 years) Case fatality rate	0.0018	_	Beta (1,564)	Croft et al. (2008) ²¹⁵
for active TB (15-44 years)			, ,	, ,
Case fatality rate for active TB	0.0476	-	Beta (125,2500)	Croft et al. (2008) ²¹⁵
(45-64 years) Case fatality rate for active TB (65+years)	0.1755	-	Beta (413,1940)	Croft et al. (2008) ²¹⁵
Resource use and	costs			
TST	17.48		Not varied	Pooran et al. (2010) ²⁰⁶
QFT-GIT	48.73		Not varied	Pooran et al. (2010) ²⁰⁶
T-SPOT.TB	59.57		Not varied	Pooran et al. (2010) ²⁰⁶
Chest x-ray	35.00		Not varied	NHS costs 2012/13 ²⁰⁷
Gastric lavage procedure	916.00		Not varied	NHS costs 2012/13 ²⁰⁷
Sputum examination	7.00		Not varied	NHS costs 2012/13 ²⁰⁷
Cost of adherence to active TB treatment	5461.12		Gamma (10.41,524.6)	Bothamley et al. (2002) ²⁰⁹
Cost of non- adherence to active TB treatment	910.19		Not varied	Assumption
Cost of	677.07		Uniform	NHS drug tariff
adherence to LTBI treatment			(511.69,842.45)	$(2014)^{208}$
Cost of non-	112.85		Uniform	Assumption
adherence to LTBI treatment			(85.24,140.41)	
Treatment of INH-induced	389.51		Gamma (7.13,55.64)	Pareek et al. (2013) ⁷⁶
hepatitis				
Utility decremen Active TB	$\frac{ts}{0.15^{\dagger}}$	Not reported	Gamma (11.2,0.0134)	Derived from
(whilst on treatment)	0.13	rioi reported	Gamilia (11.2,0.0134)	Kowada (2012) ¹⁹⁴
Treatment for LTBI	0.001	- 	Uniform (0,0.002)	Derived from Kowada (2012) ¹⁹⁴
Other				
Discount rate per annum (costs	3.5%			
and QALYs) IGRA, Interferon-ga	mma release assay; IN	H, Isoniazid; LTBI, La	tent tuberculosis infection; QF	Γ-G, QuantiFERON Gold;

IGRA, Interferon-gamma release assay; INH, Isoniazid; LTBI, Latent tuberculosis infection; QFT-G, QuantiFERON Gold; QFT-GIT, QuantiFERON Gold-In-Tube; SA, Sensitivity analysis; TB, tuberculosis; TST, Tuberculin skin test;

[†] QALY decrement for people being treated for active TB

[#] Calculated from posterior distributions generated by Markov Chain Monte Carlo (MCMC)

6.4 Outcomes

Two different outcome measures were used in the analysis, QALYs and diagnostic error avoided. To calculate QALYs, the age-related utility weights for the general population were obtained from the Health Survey for England 2012,²⁰⁵ and the utility decrement of 0.15 for people who received treatment for active TB was derived from the published literature.¹⁹⁴ With respect to the diagnostic error avoided, we did not require any effectiveness information, the true positive and true negative cases were given the value of one and we reserved the value of zero for an error (false positives and false negatives) in the diagnosis.

6.5 Analysis

The models were constructed to assess the cost-effectiveness of various strategies for the diagnosis of LTBI in three populations (children, immunocompromised and recently arrived). The models estimated the mean costs and effects associated with each diagnostic strategy. For the children population, we began with a hypothetical cohort of children aged five years, whilst for the recently arrived and immunocompromised populations, the starting distributions were representative of the UK recent arrival, and UK general populations, respectively. The analysis was undertaken from an NHS perspective in a primary care setting, and outcomes reported as incremental cost effectiveness ratios (ICER), expressed in terms of cost per diagnostic error avoided and cost per QALY gained. Since using QALYs allows trade-offs between the harms of false negatives and false positives, which are treated as equal in a cost per error avoided analysis, our primary conclusions are drawn from the ICERs for QALYs. Univariate and probabilistic sensitivity analyses were undertaken to assess to impact of the uncertainty of model input parameters.

6.5.1 Probabilistic sensitivity analysis

Probabilistic sensitivity analysis (PSA) was undertaken to determine the joint uncertainty in key model input parameters of prevalence, sensitivity and specificity, and expected QALYs. We have undertaken PSA based on an outcome of cost per QALY only. In probabilistic sensitivity analysis, each model parameter is assigned a distribution reflecting the amount and pattern of its variation, and cost-effectiveness results are calculated by simultaneously selecting random values from each distribution. 2,000 sets of parameters were simulated, each of which was run on a starting cohort of 100,000 individuals. Because of the considerable heterogeneity of the studies included in our meta-analysis, results from the PSA, which explicitly includes the impact of that uncertainty, were considered to provide more plausible estimates of costs and outcomes than our single simulation based on mean parameter values. Therefore, costs and outcomes used to produce ICERs were calculated as the means of the costs and outcomes in each of the 2,000 PSA simulations. The

distributions used in the PSA are presented in Table 28. We also calculated probabilities that each strategy is the most cost-effective, at a willingness-to-pay of £20,000/QALY.

6.6 Results of the cost-effectiveness modelling

The base-case results of the diagnostic strategies based on the outcomes cost per diagnostic error avoided and cost per QALY gained cost for the population with children, immunocompromised and recent arrivals from countries with a high incidence of active TB are presented in Table 29 to Table 43.

6.6.1 Model 1: Children

Results from our 250,000 patient simulations, based on the mean values of each parameter, are presented in tables A and B. Table 29 shows the mean per patient cost (including both the initial cohort and subsequent secondary cases) for each of the six strategies, as well as breakdowns of the total into diagnosis, LTBI treatment, active TB and hepatitis costs. Table 30 shows incidence rates of active TB in the initial cohort, numbers of secondary infections, mean life years and mean QALYs, for each of the strategies.

Table 29. Mean costs and cost breakdown, based on single simulation using mean parameter values (2012/13 prices)

Strategy	Mean costs (£)	Mean diagnosis	Mean LTBI	Mean active	Mean
		costs (£)*	costs (£)*	TB costs	hepatitis
				(£)*	costs (£)*
TST (≥ 5mm)	362.47	58.28	192.57	111.55	0.07
TST (≥ 10mm)	298.42	48.02	119.89	130.42	0.09
QFT-GIT	357.38	83.61	160.22	113.48	0.07
T-SPOT.TB	328.97	80.90	113.21	134.76	0.10
TST (≥ 5mm) +ve then QFT-GIT	360.47	83.16	134.23	142.98	0.10
TST (≥ 5mm) –ve then QFT-GIT	389.24	114.98	196.17	78.03	0.06

^{*}Percentages are all relative to the costs of the TST (≤ 5 mm) strategy

Table 30. Mean QALYs and LYG (discounted) and incidence of active TB and number of secondary infections

Strategy	Mean QALYs	Iean QALYs Mean life years Number of active		Number of active
	(discounted)	(discounted)	TB cases (initial	TB cases
			cohort)	(secondary)
TST (≥ 5mm)	23.095	27.036	4722	1133
TST (≥ 10mm)	23.090	27.035	5521	1332
QFT-GIT	23.093	27.036	4804	1149
T-SPOT.TB	23.091	27.036	5620	1349
TST (≥ 5mm) +ve then QFT-GIT	23.091	27.036	5653	1367

TST (≥ 5mm) –ve	23.097	27.037	4150	996
then QFT-GIT				

^{*}Percentages are all relative to the outcomes of the TST (≤ 5mm) strategy

Our primary results, based on our 2,000 Monte Carlo simulations, are presented in Table 31 (diagnostic accuracy) and Table 32 (QALYs). Considering diagnostic accuracy, the TST (\geq 10mm) alone strategy dominated the TST (\geq 5mm) –ve followed by QFT-GIT, TST (\geq 5mm), QFT-GIT, TST (\geq 5mm) +ve followed by QFT-GIT strategies. The TST strategy has a mean cost of approximately £272 with corresponding diagnostic errors of 0.2449, compared with a mean cost of approximately £306 and 0.2322 diagnostic errors for the T-SPOT.TB alone strategy. The ICER of T-SPOT.TB compared to TST (\geq 10mm) presented indicates the additional cost required to avoid one diagnostic error. Results for the simultaneous testing strategy and the TST (\geq 10mm) followed by QFT-GIT are not presented because these results have been dominated by sequential and TST (\geq 5mm) followed by QFT-GIT, respectively.

Table 31. Results from the analysis based on cost per diagnostic error avoided (2012/13 prices)

Strategy	Mean cost*	Incremental costs (£)	False positives	False negatives	Effectiveness (diagnostic errors)*	Incremental diagnostic error	ICER (£)
TST –ve followed by QFT- GIT	361.42	N/A	0.5032	0.0040	0.5072	N/A	Dominated
TST (≥ 5mm)	339.26	-22.16	0.4654	0.0084	0.4740	-0.0332	Dominated
QFT-GIT	324.07	-15.19	0.3790	0.0091	0.3880	-0.0860	Dominated
TST +ve followed by QFT- GIT	324.12	0.05	0.3040	0.0154	0.3194	-0.0686	Dominated
TST (≥ 10mm)	271.66	-52.46	0.2307	0.0142	0.2449	-0.0745	N/A
T- SPOT.TB	306.09	34.43	0.2172	0.0150	0.2322	-0.0127	2,711.02

^{*}Results only include the initial test population simulated and not secondary cases, as diagnostic accuracy is only a relevant criterion for people in the initial, tested, population

The QALY outcomes of our Monte Carlo simulations showed that the TST (\geq 10mm) diagnostic strategy alone was the least costly and TST (\geq 5mm) –ve followed by QFT-GIT was the most effective strategy for the diagnosis of LTBI in this population. The QFT-GIT alone diagnostic strategy had a mean cost of £361 with corresponding QALYs of 23.095 compared with a mean cost of £371 and 23.0968 QALYs for the TST (\geq 5mm) alone strategy. The ICER of £11,255 presented indicates the additional cost required to gain an extra QALY. Results in terms of the joint uncertainty in the expected mean costs and QALYs showed that TST (\geq 5mm) –ve followed by QFT-GIT the most cost-

effective strategy, at a willingness-to-pay of £20,000 per QALY, in 32% of the simulations, followed by the TST (\geq 5mm) (27%) and the QFT-GIT (21%).

Table 32. Results from the analysis based on cost per QALY (2012/13 prices)

Strategy	Mean cost* (£)	Incremental costs (£)	Mean QALYs*	Incremental QALYs	ICER (£)	Probability most cost- effective
TST(≥ 10mm)	300.21	N/A	23.088	N/A	N/A	0.032
T-SPOT.TB	332.46	32.25	23.091	0.003	Extended dominated	0.122
TST (≥ 5mm) +ve followed by QFT-GIT	366.45	33.99	23.092	0.001	Dominated	0.045
QFT-GIT	361.03	-5.42	23.095	0.002	8,249 (versus TST(≥ 10mm)	0.210
TST (≥ 5mm)	371.14	10.09	23.096	0.001	11,255 (versus QFT- GIT)	0.269
TST (≥ 5mm) -ve followed by QFT-GIT	393.03	21.89	23.097	0.001	18,871	0.322

^{*}Results are for the initial simulated population, and any secondary TB cases generated. These values are based on the mean of the PSA simulations, to take into account parameter uncertainty.

Results of our univariate sensitive analyses are presented in

^{*}Based on a willingness to pay of £20,000/QALY; results derived from PSA simulations.

Table 33. We present costs and QALYs, in each scenario, for each of the three most effective strategies (QFT-GIT, TST (\geq 5mm) and (TST \geq 5mm -ve followed by QFT-GIT). We also show which of the three strategies was the most cost-effective, assuming a willingness-to-pay of £20,000 per QALY, in each of these scenarios. In the majority of scenarios, as in our base case, the TST (\geq 5mm) -ve followed by QFT-GIT was the most cost-effective strategy, at a threshold of £20,000 per QALY. However, decreases in prevalence, the sensitivity of the TST, the effectiveness of LTBI treatment, or the disutility associated with active TB, as well as increases in the sensitivity of the QFT-GIT being the most cost-effective option. Conversely, decreases in the sensitivity of the QFT-GIT lead to the TST (\geq 5mm) being selected as the most cost-effective option.

Table 33. Univariate sensitivity analyses

Parameter	Value	Costs	QALYs	Costs	QALYs	Costs	QALYs	Most
varied	Value	(QFT-	(QFT-	(TST ≥	(TST ≥	(TST ≥	(TST≥	cost-
		GIT)	GIT)	5mm)	5mm)	5mm -	5mm -	effective
						ve	ve	strategy
						followed	followed	(£20,000
						by	by	per
						QFT-	QFT-	QALY)
Daga agga		361.03	23.095	371.17	23.096	GIT) 393.03	GIT) 23.097	TST
Base-case		301.03	23.093	3/1.1/	23.090	393.03	23.097	(≥ 5mm)
								(<u>≥</u> 311111) -ve
								followed
								by QFT-
								GIT
Prevalence	0.0206	329.42	23.104	336.83	23.104	363.87	23.105	QFT-
								GIT
	0.0384	397.36	23.087	406.60	23.091	422.86	23.093	TST
								(≥ 5mm)
								-ve followed
								by QFT-
								GIT
Sensitivity:	QFT-GIT:	368.16	23.089	363.76	23.096	397.13	23.095	TST
IGRAs	0.5856							(≥ 5mm)
	QFT-GIT							
	following							
	-ve TST:							
	0.1122	2.50.50	22.100	255.12	22.00.5	200 74	22.000	0.575
	QFT-GIT: 0.7820	369.69	23.100	357.12	23.096	388.54	32.099	QFT- GIT
	QFT-GIT							GH
	following							
	-ve TST:							
	0.9921							
Specificity:	QFT-GIT:	368.46	23.095	363.76	23.096	393.43	23.097	TST
IGRAs	0.6030							(≥ 5mm)
	QFT-GIT							-ve
	following							followed
	-ve TST: 0.9013							by QFT- GIT
	QFT-GIT:	354.02	23.095	379.48	23.096	393.98	23.097	TST
	0.6176	334.02	23.073	317.40	23.070	373.76	23.071	(≥ 5mm)
	QFT-GIT							-ve
	following							followed
	-ve TST:							by QFT-
	0.9200							GIT
Sensitivity:	TST:	361.03	23.095	379.54	23.095	395.48	23.096	QFT-
TST ≥ 5mm	0.6059	261.02	22.007	260.47	26,000	202.62	22.000	GIT
	TST: 0.7294	361.03	23.095	368.47	36.098	392.62	23.099	TST (> 5mm)
	0.7474							(≥ 5mm) -ve
								followed
								by QFT-
								GIT
Specificity:	TST:	361.03	23.095	374.27	23.096	395.75	23.097	QFT-
$TST \ge 5mm$	0.4796							GIT
	TST:	361.03	23.095	361.28	23.096	383.20	23.097	TST
	0.5008							(≥ 5mm)

Parameter varied	Value	Costs (QFT- GIT)	QALYs (QFT- GIT)	Costs (TST ≥ 5mm)	QALYs (TST ≥ 5mm)	Costs (TST ≥ 5mm - ve followed by QFT- GIT)	QALYs (TST ≥ 5mm - ve followed by QFT- GIT)	Most cost- effective strategy (£20,000 per QALY)
								-ve followed by QFT- GIT
Effectiveness of LTBI treatment	0.392	384.94	23.092	395.23	23.093	420.81	23.093	QFT- GIT
	0.805	349.73	32.097	358.29	23.099	377.78	23.100	TST (≥ 5mm) -ve followed by QFT- GIT
Cost of LTBI treatment	511.69	321.89	23.095	324.13	23.096	345.11	23.097	TST (≥ 5mm) -ve followed by QFT- GIT
	842.45	400.17	23.095	418.21	23.096	440.95	23.097	TST (≥ 5mm) -ve followed by QFT- GIT
Cost of active TB treatment	2664.38	302.91	23.095	314.25	23.096	343.07	23.097	TST (≥ 5mm)
	9244.44	419.15	23.095	428.09	23.096	432.99	23.097	TST (≥ 5mm) -ve followed by QFT- GIT
Utility decrement – active TB	0.75	361.03	23.090	371.17	23.091	393.03	23.092	TST (≥ 5mm) -ve followed by QFT- GIT
	0.95	361.03	23.099	371.17	23.099	393.03	23.100	QFT- GIT
Number of secondary TB cases per index case	0	324.07	23.105	339.26	23.105	361.42	23.106	QFT- GIT

Finally, Figure 56 presents cost-effectiveness acceptability curves for each of the same three strategies, showing the proportion of simulations in which each has the highest net-benefit, at different willingness-to-pay thresholds.

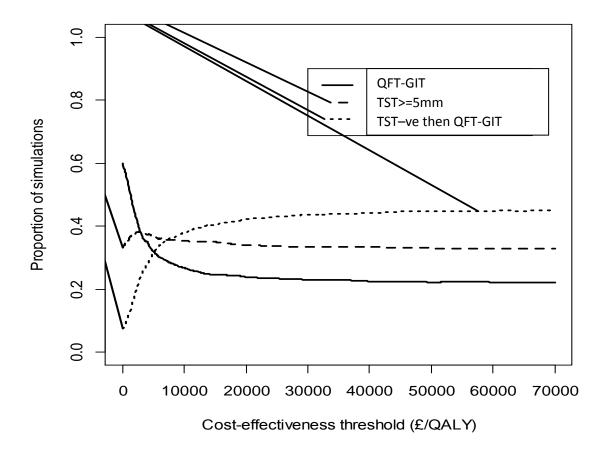


Figure 56. Cost-effectiveness acceptability curve for the children population, showing the proportion of simulations in which each strategy is the most cost-effective, at different willingness-to-pay thresholds

6.6.2 Model 2: Immunocompromised

Results from our 250,000 patient simulations, based on the mean values of each parameter, are presented in Table 34 and Table 35. Table 34 shows the mean per patient cost (including both the initial cohort and subsequent secondary cases) for each of the six strategies, as well as breakdowns of the total into diagnosis, LTBI treatment, active TB and hepatitis costs. Table 35 shows incidence rates of active TB in the initial cohort, numbers of secondary infections, mean life years and mean QALYs, for each of the strategies.

Table 34. Mean costs and cost breakdown, based on single simulation using mean parameter values (2012/13 prices)

Strategy	Mean costs (£)	Mean diagnosis	Mean LTBI	Mean active	Mean
		costs (£)*	costs (£)*	TB costs	hepatitis
				(£)*	costs (£)*
TST (≥ 5mm)	272.79	28.59	127.86	116.00	0.35
TST (≥ 10mm)	266.96	24.35	88.91	153.50	0.20
QFT-GIT	252.93	58.67	97.50	96.52	0.24
T-SPOT.TB	287.83	61.04	134.28	92.10	0.41
QFT-GIT +ve then TST (≥ 5mm)	286.49	67.91	63.95	154.51	0.12
QFT-GIT –ve then TST (≥ 5mm)	315.00	79.99	145.50	89.08	0.43

Table 35. Mean QALYs and LYG (discounted) and incidence of active TB and number of secondary infections

Strategy	Mean QALYs	Mean life years	Number of active	Number of active
	(discounted)	(discounted)	TB cases (initial	TB cases
			cohort)	(secondary)
TST (≥ 5mm)	15.527	33.018	4826	1158
TST (≥ 10mm)	15.526	33.017	5228	1251
QFT-GIT	15.532	33.018	4086	987
T-SPOT.TB	15.532	33.018	3772	902
QFT-GIT +ve then TST (≥ 5mm)	15.526	33.017	5271	1254
QFT-GIT –ve then TST (≥ 5 mm)	15.534	33.018	3671	886

Our primary results, based on our 2,000 Monte Carlo simulations, are presented in Table 36 (diagnostic accuracy) and Table 37 (QALYs). Considering diagnostic accuracy, QFT-GIT dominated the QFT-GIT -ve followed by TST (\geq 5mm), T-SPOT.TB and TST (\geq 5mm) strategies. The TST (\geq 10mm) strategy has a mean cost of approximately £236 with corresponding diagnostic errors of 0.1641, compared with a mean cost of approximately £253 and 0.1047 diagnostic errors for the QFT-GIT +ve followed by TST (\geq 5mm) strategy. The ICER of £297 per diagnostic error avoided for the QFT-GIT +ve followed by TST (\geq 5mm) strategy versus the TST (\geq 10mm) strategy shows the additional cost required to avoid a diagnostic error. We have not presented the results for the simultaneous testing strategies because these strategies were dominated by the equivalent sequential strategies.

Table 36. Results from the analysis based on cost per diagnostic error avoided (2012/13 prices)

Strategy	Mean cost*	Incremental costs (£)	False positives	False negatives	Effectiveness (diagnostic errors)*	Incremental diagnostic error	ICER (£)
QFT-GIT -ve TST (≥ 5mm)	287.77	N/A	0.3100	0.0066	0.3166	N/A	Dominated
T- SPOT.TB	252.01	-35.76	0.3080	0.0072	0.3152	-0.0018	Dominated
TST (≥ 5mm)	249.33	-2.68	0.2371	0.0155	0.2526	-0.0626	Dominated
QFT-GIT	234.41	-14.92	0.1734	0.0084	0.1814	-0.0712	N/A
TST (≥ 10mm)	236.11	1.70	0.1474	0.0167	0.1641	-0.0173	98.27 (versus QFT-GIT)
QFT-GIT +ve TST	253.77	17.66	0.0876	0.0171	0.1047	-0.0594	297.31 (versus TST (≥ 10mm)

^{*}Results only include the initial test population simulated and not secondary cases, as diagnostic accuracy is only a relevant criterion for people in the initial, tested, population

The QALY outcomes of our Monte Carlo simulations showed that TST (\geq 10mm), QFT-GIT +ve followed by TST (\geq 5mm), and TST (\geq 5mm) were dominated by the QFT-GIT alone strategy which has a mean cost of £259 with corresponding QALYs of 15.526. The ICER reported for the T-SPOT.TB alone strategy shows the additional costs required to gain one extra QALY, versus the QFT-GIT strategy. At a willingness-to-pay of £20,000 per QALY, the QFT-GIT –ve followed by TST (\geq 5mm) had the highest net-benefit in the largest proportion of simulation (40%), followed by the T-SPOT.TB (25%) and the QFT-GIT alone (20%). All other strategies had the largest net benefit in fewer than 7% of the simulations.

Table 37. Results from the analysis based on cost per QALY (2012/13 prices)

Strategy	Mean cost*	Incremental costs (£)	Mean QALYs*	Incremental QALYs	ICER (£)	Probability most cost- effective
TST (≥ 10mm)	269.42	N/A	15.516	N/A	Dominated	0.046
QFT-GIT +ve TST (≥ 5mm)	289.31	19.89	15.516	0.000	Dominated	0.052
TST (≥ 5mm)	276.01	-13.30	15.517	0.001	Dominated	0.067
QFT-GIT	258.61	-17.40	15.523	0.006	N/A	0.187
T-SPOT.TB	280.90	12.29	15.524	0.001	10,402.63 (versus QFT- GIT)	0.249
QFT-GIT – ve TST (≥ 5mm)	318.26	37.36	15.526	0.002	18,746.01 (versus T- SPOT.TB)	0.399

^{*}Results are for the initial simulated population, and any secondary TB cases generated. These values are based on the mean of the PSA simulations, to take into account parameter uncertainty.

^{*}Based on a willingness to pay of £20,000/QALY; results derived from PSA simulations.

Results of our univariate sensitive analyses are presented in Table 38. We present costs and QALYs, in each scenario, for each of the three strategies which were not strictly dominated by another strategy in our primary results. We also show which of the three strategies was the most cost-effective, assuming a willingness-to-pay of £20,000 per QALY, in each of these scenarios. In scenarios where the importance of test sensitivity is equal to or higher than the base case, the QFT-GIT -ve followed by TST (≥ 5mm) is consistently the most cost-effective strategy, at £20,000 per QALY. In scenarios where the relative importance of test specificity is increased (by decreasing LTBI prevalence, decreasing the effectiveness of LTBI treatment, increasing the cost of LTBI treatment, decreasing the cost of active TB, or ignoring the impact of secondary TB cases), the QFT-GIT often becomes the most cost-effective strategy.

Table 38. Univariate sensitivity analyses

Parameter varied	Value	Costs (QFT- GIT)	QALYs (QFT- GIT)	Costs (T- SPOT.TB)	QALYs (T- SPOT.TB)	Costs (QFT- GIT – ve TST (≥ 5mm))	QALYs (QFT- GIT – ve TST (≥ 5mm))	Most cost- effective strategy (£20,000 per QALY)
Base-case		258.61	15.523	280.90	15.524	318.26	15.526	QFT-GIT –ve TST (≥ 5mm)
Prevalence	0.0152	228.77	15.537	258.47	15.537	293.19	15.539	QFT-GIT
	0.0306	301.73	15.508	315.09	15.510	355.47	15.513	QFT-GIT -ve TST (≥ 5mm)
Sensitivity: IGRAs	QFT-GIT: 0.2473 T- SPOT.TB: 0.3517	275.95	15.516	295.74	15.517	330.35	15.522	QFT-GIT -ve TST (≥ 5mm)
	QFT-GIT: 0.8373 T- SPOT.TB: 0.9144	243.54	15.529	271.36	15.530	308.81	15.531	QFT-GIT
Specificity: IGRAs	QFT-GIT: 0.8052 T- SPOT.TB: 0.6346	268.55	15.523	305.26	15.524	324.82	15.526	QFT-GIT -ve TST (≥ 5mm)
	QFT-GIT: 0.8396 T- SPOT.TB: 0.7331	247.43	15.523	268.69	15.524	312.34	15.526	QFT-GIT
Sensitivity: TST ≥ 5mm	TST following –ve IGRA: 0.0121	258.61	15.523	280.90	15.524	321.89	15.526	QFT-GIT -ve TST (≥ 5mm)
	TST	258.61	15.523	280.90	15.524	314.87	15.526	QFT-GIT

Parameter varied	Value	Costs (QFT- GIT)	QALYs (QFT- GIT)	Costs (T- SPOT.TB)	QALYs (T- SPOT.TB)	Costs (QFT- GIT – ve TST (≥ 5mm))	QALYs (QFT- GIT – ve TST (≥ 5mm))	Most cost- effective strategy (£20,000 per QALY)
	following -ve IGRA: 0.7989							-ve TST (≥ 5mm)
Specificity: TST ≥ 5mm	TST following –ve IGRA: 0.3909	258.61	15.523	280.90	15.524	342.16	15.526	T- SPOT.TB
	TST following –ve IGRA: 0.4993	258.61	15.523	280.90	15.524	291.20	15.526	QFT-GIT -ve TST (≥ 5mm)
Effectiveness of LTBI treatment (proportion of active TB prevented)	0.392	272.49	15.518	294.85	15.519	334.58	15.521	QFT-GIT
	0.805	249.77	15.528	273.12	15.530	309.56	15.534	QFT-GIT -ve TST (≥ 5mm)
Cost of LTBI treatment	511.69	235.90	15.523	249.62	15.524	284.37	15.526	QFT-GIT -ve TST (≥ 5mm)
Cost of active TB treatment	842.45 2664.38	281.32 207.18	15.523 15.523	312.18 233.73	15.524 15.524	352.15 272.64	15.526 15.526	QFT-GIT QFT-GIT
	9244.44	323.48	15.523	344.70	15.524	379.97	15.526	QFT-GIT -ve TST (≥ 5mm)
Utility decrement – active TB	0.75	258.61	15.520	280.90	15.522	318.26	15.524	QFT-GIT -ve TST (≥ 5mm)
	0.95	258.61	15.526	280.90	15.526	318.26	15.528	QFT-GIT -ve TST (≥ 5mm)
Number of secondary TB cases per index case	0	234.41	15.536	252.01	15.536	287.77	15.38	QFT-GIT

Finally, Figure 57 presents cost-effectiveness acceptability curves for each of the three non-dominated treatment strategies, showing the proportion of simulations in which each has the highest net-benefit, at different willingness-to-pay thresholds.

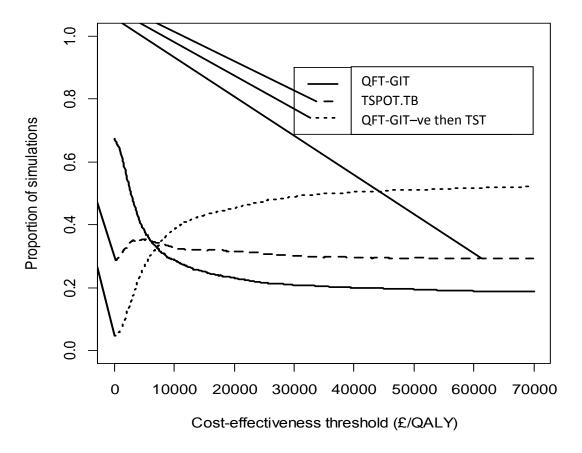


Figure 57. Cost-effectiveness acceptability curve for the immunocompromised population, showing the proportion of simulations in which each strategy is the most cost-effective, at different willingness-to-pay thresholds

6.6.3 Model 3: Recent arrivals from countries with a high incidence of Tuberculosis Model 3: Recently arrived

Results from our 250,000 patient simulations, based on the mean values of each parameter, are presented in Table 39 and Table 40. Table 39 shows the mean per patient cost (including both the initial cohort and subsequent secondary cases) for each of the six strategies, as well as breakdowns of the total into diagnosis, LTBI treatment, active TB and hepatitis costs. Table 40 shows incidence rates of active TB in the initial cohort, numbers of secondary infections, mean life years and mean QALYs, for each of the strategies.

Table 39. Mean costs and cost breakdown, based on single simulation using mean parameter values (2012/13 prices)

Strategy	Mean costs (£)	Mean diagnosis	Mean LTBI	Mean active	Mean
		costs (£)*	costs (£)*	TB costs	hepatitis
				(£)*	costs (£)*
TST (≥ 5mm)	310.00	34.19	203.04	72.09	0.68
QFT-GIT	295.11	57.72	114.42	122.50	0.47
T-SPOT.TB	432.95	77.45	259.89	94.74	0.86
TST (≥ 5mm) +ve then QFT-GIT	310.83	78.88	101.04	130.07	0.84
TST (≥ 5mm) -ve then QFT-GIT	363.64	74.15	219.87	68.91	0.72

^{*}Percentages are all relative to the costs of the TST (≤ 5mm) strategy

Table 40. Mean QALYs and LYG (discounted) and incidence of active TB and number of secondary infections

Strategy	Mean QALYs	Mean life years	Number of active	Number of active
	(discounted)	(discounted)	TB cases (initial	TB cases
			cohort)	(secondary)
TST (≥ 5mm)	19.929	24.160	2883	705
QFT-GIT	19.924	24.158	4329	1041
T-SPOT.TB	19.922	24.158	4289	998
TST (≥ 5mm) +ve then QFT-GIT	19.915	24.157	4522	1091
TST (≥ 5mm) -ve then QFT-GIT	19.931	24.160	2756	660

^{*}Percentages are all relative to the outcomes of the TST (≤ 5 mm) strategy

Our primary results, based on our 2,000 Monte Carlo simulations, are presented in Table 41(diagnostic accuracy) and Table 42 (QALYs). Considering diagnostic accuracy, the QFT-GIT alone strategy was the least costly and the TST (≥ 5mm) +ve followed by the QFT-GIT strategy was the most effective. The QFT-GIT strategy has a mean cost of approximately £266 with corresponding diagnostic errors of 0.2113, compared with a mean cost of approximately £277 and 0.1955 diagnostic errors for the QFT-GIT alone strategy. The ICER reported for the TST (≥ 5mm) +ve followed by the QFT-GIT strategy compared to QFT-GIT alone strategy shows the additional cost of £692 for avoiding one diagnostic error. We have not presented the results for the simultaneous testing strategies because these strategies were dominated by the equivalent sequential strategies.

Table 41. Results from the analysis based on cost per diagnostic error avoided (2012/13 prices)

Strategy	Mean cost*	Incremental costs (£)	False positives	False negatives	Effectiveness (diagnostic	Incremental diagnostic	ICER (£)
	(£)				errors)*	error	
T-	374.60	N/A	0.5669	0.0071	0.5740	N/A	Dominated
SPOT.TB							
TST (≥	325.81	-48.79	0.4680	0.0016	0.4696	-0.1044	Dominated
5mm) -ve							
QFT-GIT							
TST (≥	277.46	-48.35	0.4566	0.0025	0.4391	-0.0305	Dominated
5mm)							
QFT-GIT	265.87	-11.59	0.2015	0.0098	0.2113	-0.2278	N/A
TST (≥	276.80	10.93	0.1846	0.0109	0.1955	-0.0158	691.77
5mm)							
+ve QFT-							
GIT							

^{*}Results only include the initial test population simulated and not secondary cases, as diagnostic accuracy is only a relevant criterion for people in the initial, tested, population

The QALY outcomes of our Monte Carlo simulations showed that the QFT-GIT strategy dominated the TST (\geq 5mm) +ve followed by QFT-GIT and T-SPOT.TB strategies. TST (\geq 5mm) had a mean cost of £299 with corresponding 19.922 QALYs. TST (\geq 5mm) -ve followed by QFT-GIT strategy was more expensive than the TST (\geq 5mm) strategy with corresponding 19.923 QALYs, with an ICER of £58,720. At a willingness-to-pay of £20,000 per QALY, the TST (\geq 5mm) had the highest net-benefit in the largest proportion of simulation (47%), then the TST (\geq 5mm) -ve followed by QFT-GIT (28%) and the QFT-GIT alone (18%) All other strategies had the largest net benefit in fewer than 5% of the simulations.

Table 42. Results from the analysis based on cost per QALY (2012/13 prices)

Strategy	Mean cost*	Incremental	Mean	Incremental	ICER (£)	Probability
	(£)	costs (£)	QALYs*	QALYs		most cost-
						effective
TST (≥	300.10	N/A	19.909	N/A	Dominated	0.032
5mm) +ve						
QFT-GIT						
T-SPOT.TB	400.12	100.02	19.915	0.006	Dominated	0.042
QFT-GIT	291.13	-108.99	19.917	0.002	N/A	0.177
TST (≥	298.75	7.62	19.922	0.005	1,524	0.469
5mm)						
TST (≥	353.47	54.72	19.923	0.001	58,720	0.280
5mm) -ve						
QFT-GIT						

^{*}Results are for the initial simulated population, and any secondary TB cases generated. These values are based on the mean of the PSA simulations, to take into account parameter uncertainty.

Results of our univariate sensitive analyses are presented in Table 43. We present costs and QALYs, in each scenario, for both of the strategies which were not strictly dominated by another strategy in our primary results. We also show which of the three strategies was the most cost-effective, assuming a willingness-to-pay of £20,000 per QALY, in each of these scenarios. In the majority of scenarios,

^{*}Based on a willingness to pay of £20,000/QALY; results derived from PSA simulations.

as in our base case, the TST (\geq 5mm) alone was the most cost-effective strategy. However, decreases in the prevalence of LTBI, increases in the sensitivity of the QFT-GIT, and decreases in the sensitivity of the TST, all led to strategies involving the QFT-GIT becoming the most cost-effective.

Table 43. Univariate sensitivity analyses

Parameter varied	Value	Costs (QFT- GIT)	QALYs (QFT- GIT)	Costs (TST ≥ 5mm)	QALYs (TST ≥ 5mm)	Costs (TST ≥ 5mm -ve followed by QFT- GIT)	QALYs (TST ≥ 5mm -ve followed by QFT- GIT)	Most cost- effective strategy (£20,000 per QALY)
Base-case		291.13	19.917	298.75	19.922	353.47	19.923	TST (≥ 5mm)
Prevalence	0.0150	250.19	19.930	271.80	19.931	326.65	19.932	QFT- GIT
	0.0345	342.56	19.904	331.53	19.910	389.21	19.912	TST (≥ 5mm)
Sensitivity: IGRAs	QFT-GIT: 0.3584 QFT-GIT following –ve TST: 0.0225	309.31	19.913	298.75	19.922	354.82	19.922	TST (≥ 5mm)
	QFT- GIT: 0.8172 QFT-GIT following -ve TST: 0.9724	271.22	19.921	298.75	19.922	353.18	19.923	QFT- GIT
Specificity: IGRAs	QFT- GIT: 0.7780 QFT-GIT following -ve TST: 0.9555	299.23	19.917	298.75	19.922	355.66	19.923	TST (≥ 5mm)
	QFT-GIT: 0.8073 QFT-GIT following –ve TST: 0.9893	283.62	19.918	298.75	19.922	349.92	19.923	TST (≥ 5mm)
Sensitivity: TST ≥ 5mm	TST: 0.7786	291.13	19.917	303.86	19.920	354.48	19.922	(TST ≥ 5mm -ve followed by QFT-GIT)
	TST: 0.9977	291.13	19.917	297.08	19.924	352.08	19.924	TST (≥ 5mm)
Specificity: TST ≥ 5mm	TST: 0.4790	291.13	19.917	311.44	19.922	363.91	19.923	TST (≥ 5mm)
	TST: 0.5229	291.13	19.917	288.84	19.922	344.32	19.923	TST (≥ 5mm)

Parameter varied	Value	Costs (QFT- GIT)	QALYs (QFT- GIT)	Costs (TST ≥ 5mm)	QALYs (TST ≥ 5mm)	Costs (TST ≥ 5mm -ve followed by QFT- GIT)	QALYs (TST ≥ 5mm -ve followed by QFT- GIT)	Most cost- effective strategy (£20,000 per QALY)
Effectiveness of LTBI treatment	0.392	302.35	19.915	311.22	19.918	369.71	19.919	TST (≥ 5mm)
	0.805	283.73	19.919	279.48	19.925	334.96	19.926	TST (≥ 5mm)
Cost of LTBI treatment	511.69	264.48	19.917	251.46	19.922	302.26	19.923	TST (≥ 5mm)
	842.45	317.78	19.917	346.04	19.922	404.68	19.923	TST (≥ 5mm)
Cost of active TB treatment	2664.38	228.40	19.917	261.83	19.922	318.18	19.923	TST (≥ 5mm)
	9244.44	375.99	19.917	348.69	19.922	401.21	19.923	TST (≥ 5mm)
Utility decrement – active TB	0.75	291.13	19.911	298.75	19.917	353.47	19.918	TST (≥ 5mm)
	0.95	291.13	19.923	298.75	19.926	353.47	19.927	TST (≥ 5mm)
Number of secondary TB cases per index case	0	265.87	19.928	277.46	19.931	325.81	19.932	TST (≥ 5mm)

Finally, Figure 58 presents cost-effectiveness acceptability curves for each of the three non-dominated treatment strategies, showing the proportion of simulations in which each has the highest net-benefit, at different willingness-to-pay thresholds.

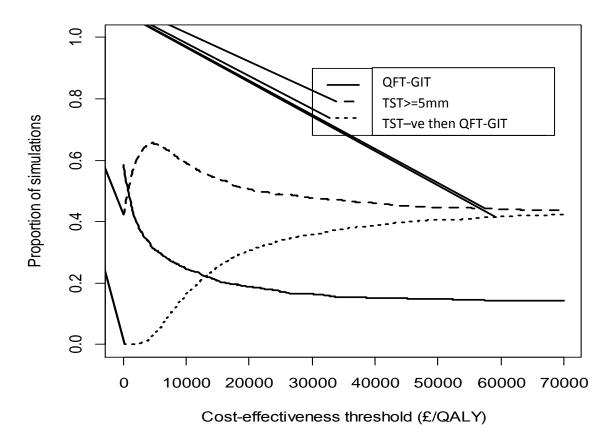


Figure 58. Cost-effectiveness acceptability curve for the recently arrived population, showing the proportion of simulations in which each strategy is the most cost-effective, at different willingness-to-pay thresholds

6.7 Exploring sensitivity and specificity

Clearly, one of the key drivers of differences between models is sensitivity and specificity. To illustrate the impact these parameters have on the outputs of our model, Figure 59 shows graphs of sensitivity and specificity, plotted against costs, QALYs and net monetary benefit (at £20,000 per QALY), for each of the six strategies that were simulated in the children population.

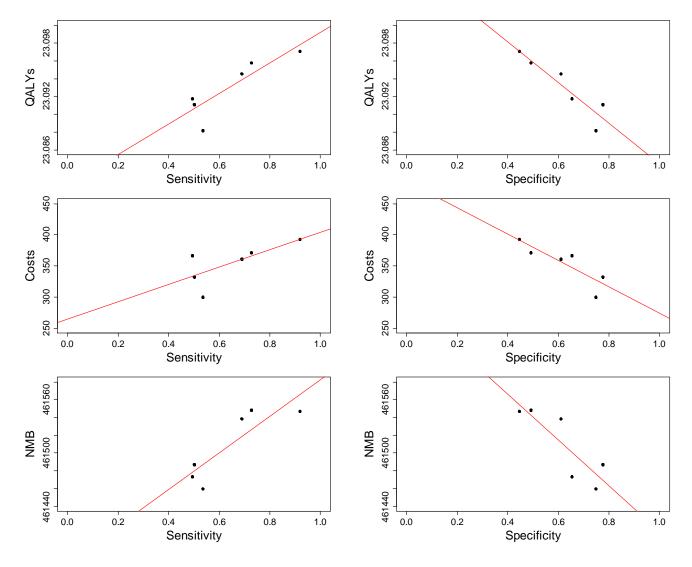


Figure 59. Sensitivity and specificity, plotted against costs, QALYs and net monetary benefit (at £20,000 per QALY), for each of the six strategies in the children population

These graphs show the, at first sight, counter intuitive result that increased specificity is associated with lower QALYs and lower NMB, whilst higher sensitivity is associated with higher costs. This is due to the high levels of correlation between sensitivity and specificity (specifically, higher sensitivity is associated with lower specificity) in the strategies that were simulated. Therefore, both sets of graphs are in fact showing the same result, namely that as sensitivity increases and specificity decreases, this leads to higher QALYs, higher costs and, on balance, a higher net monetary benefit. To try and remove the effect of this sensitivity/specificity correlation we, instead of using the different strategies, can use the outputs of the PSA simulations for one of these strategies. This gives us 2,000 realisations of sensitivity, specificity, cost and QALYs, and since each of these sensitivity/specificity pairs is a sample from the posterior distribution of our MCMC, we would expect lower correlations between sensitivity and specificity than from comparing between different strategies. We then run a

linear regression model, with sensitivity and specificity as the predictor variables, for costs and QALYs. The results of this regression model are shown in Table 44.

Table 44. Results of the linear regression model

Parameter	Costs	QALYs	
Intercept	578.72	23.080	
Sensitivity	-0.99	0.00015	
Specificity	-2.60	0.00001	

In this model, where we have jointly estimated the impact of both sensitivity and specificity on outcomes, the results are much more intuitive. Increases in both sensitivity and specificity lead to increases in QALYs and decreases in costs, with increases in sensitivity providing the largest QALY gains, and increases in specificity the largest cost reductions. It should be noted that the output data from the PSA simulation very likely do not conform to the necessary assumptions (linearity, additivity etc.) for linear regression, and the models contain a lot of noise due to the impact of varying other parameters, so the actual values of these parameters should be treated with extreme caution. Nevertheless, they do give an indicative picture of what the key drivers of difference between the models are.

6.8 Discussion and conclusion

The results based on the outcome of cost per diagnostic error avoided showed that the TST (≥ 10 mm) dominated all strategies except T-SPOT.TB strategy alone in the children population. T-SPOT.TB compared to TST (≥ 10mm) was more effective, but more expensive, with an ICER of approximately £2,711 per diagnostic error avoided. A breakdown of the effectiveness showed that T-SPOT.TB had less false positive cases (0.2172) compared to TST (\geq 10mm) (0.2307), but a larger number of false negative cases (0.0150) in a cohort of children. If T-SPOT.TB strategy were to be used in this population to diagnose LTBI that progress to active TB, this would lead to a slight reduction in the number of children being over treated for LTBI. In the immunocompromised population, QFT-GIT dominated QFT-GIT negative followed by TST, T-SPOT.TB and TST (≥ 5mm) in terms of diagnostic errors avoided. Results showed that QFT-GIT resulted in less false positives and less false negatives compared to these strategies. With the use of TST (\geq 10mm) in this population, this strategy was more effective, with overall diagnostic errors avoided of 0.1641. A breakdown of this effectiveness showed that TST (≥ 10mm) resulted in less false positives, but more false negative results. Likewise, with the use of the combination strategy QFT-GIT positive followed by TST (≥ 5mm) produced less false positive results, but more false negative results. In the recent arrivals from countries with a high incidence of TB, QFT-GIT dominated the T-SPOT.TB, TST (≥ 5mm) negative followed by QFT-

GIT, and TST (\geq 5mm) strategies. TST (\geq 5mm) positive followed by QFT-GIT had an ICER of £692 per diagnostic error avoided versus QFT-GIT, with more false negatives and less false positives.

The cost per QALY outcomes are summarised in terms of the probability of each strategy being the most cost-effective (at a given threshold). We used a threshold of £20,000 per QALY, a standard threshold that is used in the UK. Results in terms of the children population shows that TST (\geq 5mm) is marginally more effective than the QFT-GIT alone strategy, with an ICER of approximately £11,255 per QALY, and has a 27% probability of being the most cost-effective strategy at £20,000 per QALY. The most effective strategy is TST (\geq 5mm) negative followed by QFT-GIT, which is the most cost-effective strategy in 32% of the simulations. Results in the immunocompromised population shows that QFT-GIT negative followed by TST (\geq 5mm) was the most effective strategy with an ICER of approximately £18,746 compared to T-SPOT.TB, and is the most cost-effective strategy in 40% of the simulations. In the recent arrivals population, TST (\geq 5mm) dominated the TST (\geq 5mm) positive followed by QFT-GIT, T-SPOT.TB and QFT-GIT alone strategies and had a probability of 47% of being cost-effective at £20,000 per QALY.

Based on the current clinical evidence on people with LTBI without treatment that progressed to active TB, and expert opinion used to develop the model structures, the results demonstrate that TST (≥ 5 mm) was slightly more cost-effective than QFT-GIT in the children population. In the immunocompromised population results based on cost per QALY showed that QFT-GIT negative followed by TST (≥ 5 mm) was the most cost-effective strategy. In the recent arrivals population the results based on cost per QALY showed that TST (≥ 5 mm) dominated the TST (≥ 5 mm) positive followed by QFT-GIT, T-SPOT.TB and QFT-GIT alone strategies.

7 Discussion

The purpose of the current review was to compare the clinical- and cost-effectiveness of new screening tests for LTBI (IGRAs with TST) in children, people who are immunocompromised or at risk from immunosuppression, and recent arrivals from countries with a high incidence of TB. We aimed to address the following questions:

- 1. Which diagnostic strategy is most clinically and cost-effective in accurately identifying latent TB in children?
- 2. Which diagnostic strategy is most clinically and cost-effective in accurately identifying latent TB in people who are immunocompromised or at risk of immunosuppression?
- 3. Which diagnostic strategy is most clinically and cost-effective in accurately identifying latent TB in people who are recent arrivals from countries with a high incidence of TB?

In this Chapter, the principal findings of the clinical and cost-effectiveness review and economic evaluation are interpreted alongside an assessment of the strengths and limitations of the review and the individual studies. Areas of uncertainty, implications for further research and implications for practice are highlighted.

7.1 Main findings

7.1.1 Clinical effectiveness review

There is no gold standard for accurate diagnosis of LTBI. The existing screening tests for LTBI (IGRAs and TST) provide indirect assessment of the presence of LTBI by relying on a host's immunological response to TB antigens. The evaluation of comparative effectiveness of IGRAs and TST in accurately identifying LTBI has been a challenging task because of the absence of a gold standard for direct estimation of the screening tests' accuracy indices (i.e., sensitivity and specificity) and the tests' own limitations. ^{11-13, 16, 27, 55, 56} To address this issue, many studies have tried to estimate and compare the measures of association between the test results (i.e., TST and/or IGRAs) and constructs of validity for LTBI (e.g., duration/proximity of exposure to a person with active TB, risk of development of active TB). ^{11, 18, 57, 59}

This review identified and appraised a large amount of evidence (53 new studies since CG117 and 37 studies from CG117) comparing IGRAs with TST for identifying LTBI in children, immunocompromised people, and recently arrived immigrants from countries with high TB incidence. Overall, the limited evidence from prospective studies in children showed no significant difference between the performance of QFT-GIT and TST 5mm in predicting LTBI. However, QFT-GIT was significantly better than TST 10mm in predicting LTBI. In children, IGRA (QFT-GIT/G) demonstrated similar sensitivity and slightly better specificity compared to TST 5mm. Moreover,

IGRAs tended to have a greater sensitivity but lower specificity compared to TST 10mm/15mm. Since the predictive value of the test is a function of its sensitivity, the greater predictive ability of IGRA compared to TST 10mm in predicting LTBI (as proxy of developing active TB) could be explained by better sensitivity of the former. Based on the exposure studies in children, IGRAs outperformed TST in identifying LTBI in the settings of low TB burden but not in the settings of high TB burden. This finding is consistent with growing body of evidence showing reduced sensitivity and specificity of IGRAs in high vs. low TB burden areas, the former represented mostly by developing countries where BCG vaccination is given at birth. 43, 58, 217-219 This heterogeneity in the test performance could be explained by higher frequency of exposure to MTB, different transmission dynamics, malnutrition, co-morbidity, people co-infected with HIV, exposure to NTMs, and helminthic infection in high TB burden settings. 103, 218, 219 Moreover, in high TB burden settings (mostly developing countries), specificity of TST is not greatly reduced because BCG is given mostly at birth without repeating it. In contrast, in some low burden settings (e.g., developed countries), BCG vaccination with booster shots may be offered after infancy which is known to compromise TST specificity. 218

Evidence comparing IGRAs to TST in predicting the incidence of active TB in immunocompromised people was insufficient and inconclusive. The meta-analytic forest plot of 21 exposure-based studies showed large variation in the performance of IGRA compared to TST across different clinical subgroups. In general, QFT-GIT and T-SPOT.TB performed better than TST 5mm/10mm in identifying LTBI among people undergoing haemodialysis and those with hepatitis C. In contrast, in patients with HIV/AIDS, QFT-GIT was significantly worse than TST 10 mm in identifying LTBI. One explanation of this finding would be reduced sensitivity of IGRA to detect LTBI due to CD4+ T lymphocyte depletion in people with HIV-induced immunosuppression, leading to high proportion of indeterminate IGRA results. Interestingly, it is not clear if QFT-GIT and TST are differentially affected by CD4 depletion. ^{39, 218, 220, 221} Evidence on the comparative performance of IGRAs to TST in people with lupus erythematosus, immune-mediated inflammatory diseases before anti-TNF- α therapy, solid organ transplantation candidates, and kidney transplant recipients was inconclusive due to high uncertainty around the statistically non-significant effect estimates. The agreement between IGRA and TST in immunocompromised people was low.

There was no significant difference in the performance of IGRAs compared to TST in identifying LTBI amongst recently arrived people from countries with high TB burden. QFT-GIT demonstrated greater specificity but lower sensitivity compared to TST. Similarly, there was no evidence indicating differential effect of BCG vaccination status on IGRA (QFT, T-SPOT.TB) and TST positivity. Limited evidence indicated that both concordance and kappa were greater amongst BCG unvaccinated (or total sample) vs. BCG vaccinated people.

In general, the degree of agreement (measured by kappa statistic) between IGRAs and TST across the three subgroups of children, immunocompromised people, and recently arrived people from high TB burden areas was low. Several studies indicated better between-test (IGRAs vs. TST) concordance percent and agreement in unvaccinated vs. BCG vaccinated people. The higher rates of discordance between IGRAs and TST in BCG vaccinated populations could be explained by TST having reduced specificity (i.e., higher false positive rates) due to its cross-reactivity with antigens that are common to both MTB and BCG vaccine. Overall, there was no clear and convincing evidence indicating a differential effect of BCG vaccination status on IGRA and TST positivity. The evidence, if reported, was conflicting and inconclusive, with most studies indicating non-significant differences in the odds of test positivity (with great uncertainties) for IGRAs and TST between BCG vaccinated vs. BCG non-vaccinated people.

7.1.2 Cost-effectiveness review

Ten studies reported evidence on decision analytical models to determine the cost-effectiveness of IGRAs compared with TST for the diagnosis of LTBI in the three populations of interest. ^{10, 76, 193-197, 199-201} The majority of these models were in the immunocompromised population. These results highlight that there is a paucity pf evidence available for children and recently arrived populations. The majority of the models used decision tree structures with Markov nodes to simulate a cohort of people being tested for LTBI.

We appraised these models against frameworks for best practice for reporting model-based economic evaluation. All performed well in terms of defining the decision problem, including the study perspective, outlining the choice of comparators, presenting an illustrative model structure and providing a clear outline of the assumptions. These models all add insight to existing literature, but were subjected to some limitations. First, the majority of the studies stated the location of the study but not the setting of the analysis and this may limit the generalizability of the results. Second, the majority of the studies used QALYs as their outcome measure, but did not elaborate on the descriptive tool used to value health states. Third, the perspective of the analysis was stated in all studies, but the resource use and costs reported did not reflect the viewpoint of the analysis in some studies. Finally, all models have explored uncertainty around key model input parameters, but no attempt was made to explore methodological, generalizability or structural uncertainty. Other concerns relate to the derivation of prevalence, test accuracy and transition probabilities; most studies have not elaborated on these statistical/pre-model analyses.

7.1.3 Economic evaluation

In the children population, the TST –ve followed by QFT-GIT had the lowest proportion of false negatives, and the T-SPOT.TB the lowest proportions of false positives and overall errors. The TST(\geq

10mm) was the strategy with the lowest overall cost, whilst the TST (\geq 5mm) -ve followed by QFT-GIT had the highest QALYs, was the most cost-effective (at £20,000 per QALY), and had the highest probability of being the most cost-effective strategy.

In the immunocompromised population, the QFT-GIT negative followed by TST (\geq 5mm) had the lowest proportion of false negatives, and the QFT-GIT positive followed by TST the lowest proportions of false positives and overall errors. The QFT-GIT was the strategy with the lowest overall cost, whilst the QFT-GIT negativee followed by TST (\geq 5mm) had the highest QALYs, was the most cost-effective (at £20,000 per QALY), and had the highest probability of being the most cost-effective strategy.

In the recently arrived population, the TST negative followed by QFT-GIT had the lowest proportion of false negatives, and the TST positive followed by QFT-GIT the lowest proportions of false positives and overall errors. The QFT-GIT was the strategy with the lowest overall cost, the TST (\geq 5mm) negative followed by QFT-GIT had the highest QALYs, and the TST (\geq 5mm) was the most cost-effective (at £20,000 per QALY), and had the highest probability of being the most cost-effective strategy.

7.2 Current findings compared to those from other systematic reviews

In general, our findings agreed with those from the other three systematic reviews^{58, 89, 219} in showing IGRAs' improved specificity and a greater ability to predict LTBI relative to TST in the settings of low (but not high) TB burden in children. All three previous reviews also highlight the lack or insufficient amount of evidence and heterogeneity in estimates, methodology, and clinical characteristics across the studies which were reviewed.

The findings of this review could not be directly compared to those of several previously published systematic reviews due to the following reasons: a) our review results were stratified by children, immunocompromised people, and recently arrived people from high TB burden countries, whereas others do not use these three populations ^{18, 43, 56, 57, 217, 222}; b) we do not use prevalent culture-positive active TB as a proxy for LTBI; ^{39, 217, 220} c) one review included in-house IGRAs which we did not; ²²² d) one review QFT-GIT compared to T-SPOT.TB only; ²²⁰ or e) two reviews reported no relevant outcomes. ^{223, 224}

7.3 Current results compared to those from other cost-effectiveness studies

When comparing our model with others from the literature, it is important to note that our definitions of sensitivity and specificity are not the same as those used in most studies. In the absence of a gold

standard, we have used LTBI that progresses to active TB, rather than any LTBI as in previous published papers, and hence the numbers derived for sensitivity and specificity are not comparable. Also, most of these other papers did not include sequential testing as a possible strategy, so we are only able to restrict our comparisons to the results for the TST and IGRA alone strategies.

In the immunocompromised population, previous studies ^{193, 195, 197, 199} indicated that when using a single test, IGRAs were preferable to TST, a conclusions which our results concur with. In the children population our results agree with those of Mandalakas et al²⁰⁰ in finding that the TST negative followed by IGRA strategy was the most effective, but disagree with those of Kowada et al¹⁹⁴, who found the QFT-GIT to be more cost-effective than the TST, the opposite of our conclusion. Finally, in the recently arrived population, Pareek et al⁷⁶ found QFTs to be more cost-effective than TST, whilst we found the reverse, with the TST (≥ 5mm) the most cost-effective strategy.

Reasons for these differences, other than those which always apply (different populations modelled, different parameter values used etc.) can also be found in the different underlying structures of the models. First, Kowada et al¹⁹⁴ only considered primary cases of TB and not secondary infections, From our univariate sensitivity analyses in the children population, we see that when we set our seconadry infection rate to zero, we also find the QFT-GIT to be the most cost-effective strategy. When comparing IGRAs to TST, Pareek and colleagues used TST measured indurations of 10mm and 6/15mm (stratified by BCG status). Our results for the recently arrived population are based on an induration of 5mm, a value not modelled in the Pareek study, and therefore differences in conclusions may be explained by these thresholds used.

It is important to note that our model is designed only to evaluate which is the most cost-effective diganostic strategy, conditional on a decision having been made to test. It does not say anything about whether testing itself, versus no testing, is cost-effective and should be undertaken in these populations. Research addressing this question (testing/no testing) has recently been published ²¹². Their model and ours were built to address fundamentally different questions, in different populations, and hence the results obtained from them cannot be directly compared. In particular, the inclusion criteria for studies in the two reviews were entirely different (ours included only TSTs versus IGRAs, theirs only treatment versus no treatment) and hence papers included in one review will have been specifically excluded from the other.

Considering parameter inputs to the models, identical parameter values were used for the effectiveness of LTBI treatment, and case-fatality rates for active TB, with very similar values used for costs of active TB, it differing by only 2%. Costs of managing hepatitis differed more substantially (aound £200), but since Isoniazid-induced hepatitis contributed only a small fraction to the costs in

our model, this is unlikely to make a major impact. Since progression to active TB was calculated using different methods in the two models, it is not possible to compare the input parameters direcetly. However, by restricting to a subsample of the full population which can be extracted from both models, we can compare the number of active TB cases each predicts, to see if these numbers are similar. In particular, for a sample of 51-65 years olds with a positive TST, the Imperial model presdicts 2,091 cases per 100,000 in treated patiens, and 5,928 per 100,000 in untreated. Our model, in contrast, predicts 1,736 cases per 100,000 in treated, and 5,372 per 100,000 in untreated. These differenes are most likely explained simply from the different data used to populate the two models. However, if one were to believe the incidence from their study to be more accurate, this would have the effect of increasing the prevalance of LTBI in the starting population of ours, the net effects of which can be explored from our uniariate sensitivity analyses.

7.4 Strengths and limitations of the evidence

The assessment, comparison, and interpretation of the clinical effectiveness of the existing tests in identifying LTBI is hampered by the absence of a gold standard for diagnosing LTBI. The evidence relied mostly on indirect measures of association derived between the test results (i.e., TST and/or IGRAs) and constructs of validity for LTBI (e.g., duration/proximity of exposure to a person with active TB, risk of development of active TB). Moreover, the existing commercially available screening tests for LTBI are imperfect in that they provide a host's immunological response to TB antigens, which may be affected by a number of factors other than LTBI and which differ from study to study (such as prior BCG vaccination, inter-/intra-rater variability in interpretation of test results, boosting, conversion, reversion, different cut-offs for test positivity, assay manufacturing, pre-analytical processing, and/or incubation delay). Thus, the findings of this review warrant a cautious interpretation.

Although we appraised and summarised a large amount of evidence, much of it was inconclusive due to unexplained heterogeneity in the effect estimates, poor reporting, missing data, and great uncertainty around the effect estimates for the association between test results and the constructs of validity for LTBI. One of the difficulties in the assessment and interpretation of the test performance (IGRA vs. TST) in correctly detecting LTBI is the inconsistent use of definitions for high vs. low risk for LTBI (i.e., construct of validity). The heterogeneity in the measures of association between test results and prior exposure to TB observed even at within-study level could be due to inadequate definition of construct of validity for LTBI (e.g., prior exposure definition may not represent the true presence of LTBI), exposure misclassification (e.g., not all people exposed to a TB case will become infected), or both. Furthermore, some but not all of the observed heterogeneity in the parameters of test performance (e.g., sensitivity, specificity, diagnostic odds ratios, between-test agreement) could be explained by study setting, type of population, type of test, and the outcome characteristics.

Heterogeneity especially with regards to the sensitivity and specificity estimates derived from prior TB exposure-based categories could not be explained, thereby rendering some of our findings inconclusive. These factors were compounded by the scarcity of evidence in stratified analyses by population, type of IGRA test, and TST threshold.

Another concern in interpreting the evidence relates to risk of bias and methodological quality of the individual studies. In general, most studies were rated as being at high or moderate risk of bias (incidence studies) or low methodological quality (exposure studies). Apart from the issues highlighted above various sources of bias may have independently distorted the review findings and their interpretation. For example, results from the studies we reviewed may have been biased due to diagnostic review bias (i.e., lack of blinding or knowledge of IGRA/TST result influencing the ascertainment of exposure status or diagnosis of incident active TB), selection bias (i.e., study sample distorted with respect to prior TB exposure or disease spectrum due to inadequate sampling frame, participant recruitment, non-participation, and exclusions at study baseline), partial verification bias (incomplete outcome data assessment due to indeterminate IGRA results, missing TB exposure, withdrawals and/or losses to follow-up), and incorporation bias (i.e., incorporation of IGRA/TST result as criteria for the diagnosis of LTBI or incident active TB). ^{18, 43, 88, 225}

Although results from the incidence studies merit more credibility given their prospective design and standard and uniform ascertainment of the outcome (i.e., diagnosis of incident active TB), this evidence was scarce, the studies were of small sample size, and their follow-up was not long enough to document and evaluate the test predictive ability more reliably. Moreover, the use of 'incident case of active TB' as the validity construct for the presence of LTBI may also lead to misclassification since not all LTBI cases will develop into active TB or some seemingly incident active TB cases (assumed to have developed from LTBI) may actually be people with newly acquired TB infection (prevalent active TB cases).

7.5 Strengths and limitations of the current reviews and economic evaluation

We undertook a systematic review to identify all relevant studies providing evidence on clinical-effectiveness of IGRAs compared to TST for identifying LTBI in the pre-specified populations. The main strength of the current review was the application of systematic comprehensive search, study screening, data extraction, use of relevant quality/ROB assessment tools for different study designs, and stratified analyses (by children, immunocompromised people, recently arrived people from high TB burden countries, subgroups defined by clinical condition, type of IGRAs, TST threshold, high vs. low TB burden area, study setting). Our review, unlike other systematic reviews, ^{39, 217, 220} avoided including studies which used invalid constructs for LTBI such as culture-confirmed active TB. Instead, this review focused on studies which defined the construct of LTBI either through incidence

of active TB or study participants' prior exposure to respective index TB cases (e.g., risk categories defined by exposure proximity, duration, and/or relationship to index TB case).

Our economic evaluation analyses are based on test accuracy data obtained from the current clinical effectiveness review, which represents the best available information on the accuracy of tests for LTBI which progresses to active TB. Our analyses represent the work of a multidisciplinary team which includes input from clinical experts to develop the model structure. Additionally, considerable efforts were made to identify the most appropriate model input parameters to be used in the decision analytic model.

The main limitation of the clinical effectiveness review is that full additional data extraction and quality assessment was not undertaken for studies included in CG117. 10 Moreover, due to a lack of relevant reported evidence, it was not possible to evaluate the effectiveness of the two-step testing procedure (using both IGRAs plus TST) for identifying people with LTBI. Another limitation was our inability to stratify the study findings by BCG vaccination status, since even though this may have been an important distinguishing feature in the effectiveness of the different tests, the individual study publications failed to report their results separately for vaccinated and un-vaccinated populations. The proportion of people vaccinated with BCG varied considerably in the included studies such that, it was not possible to dichotomize populations into e.g., vaccinated vs. non-vaccinated. And further stratification by BCG status was anyway not feasible due to the scarcity of the data. With regards to the economic evaluation, we applied a unit cost for people being tested with TST. Unit cost includes the cost of test, consumables, administering the test and reading the result. We applied this cost to people who had their TST result read and those who did not have their result read. This has the effect of inflating the cost of an unread TST. In addition, the model takes into account the need for two clinic visits for TST, however, it does not take into account the need for skilled operators and the wide intra-observer variability in interpretation. IGRAs require one visit, need less skilled personnel for interpretation and have less reliance on observer interpretation. Second, to our knowledge there are no systematic reviews on the accuracy of chest x-ray for identifying people who have active TB. In our model, we have used the sensitivity and specificity from Kumar et al. (2005)²¹¹ on the accuracy of chest x-ray for identifying the presence/absence of active TB in our three populations. This may have the impact of over/underestimating the diagnostic accuracy of chest x-rays in these populations. Third, detailed resource use information on the treatment for LTBI was unavailable in the literature. We therefore estimated resource use for LTBI treatment using input from our clinical advisors derive and this may result in either over or under estimation.

8 Conclusion

The review draws attention to the clinical effectiveness evidence published since CG117. The research adds to the existing literature but highlights the poor quality in the evidence. Surprisingly, the results show that the two different generations of tests are broadly equivalent, although results vary in the number of different settings and sub-groups. The limitations in evidence (e.g., absence of gold standard in LTBI diagnosis, risk of bias in individual studies, scarcity of evidence, test administration/interpretation, variation in the exposure-based definitions of LTBI construct, limitations of the screening tests) and heterogeneity in IGRA performance relative to TST limits the applicability of the review findings. Generally, the findings from population-based setting studies conducted in countries of low TB burden would be more applicable to the UK's routine general practice of LTBI screening. The findings of this review underscore the variability of test performance across clinical conditions within immunocompromised population, thereby limiting the extent of applicability of test results from one subgroup (e.g., HIV, rheumatoid arthritis) to another (e.g., hepatitis C, lupus erythematosus) within immunocompromised people.

The review of the cost-effectiveness evidence brings attention to the methods available, prior to developing a model structure to determine the cost-effectiveness of IGRA compared with TST for the diagnosis of LTBI. These models offer insight, and in general, performed well against the frameworks on best practice for reporting a model-based economic evaluation, but were subjected to some limitations. Areas of concern included the perspective of the analysis, the handling of uncertainty in the models, derivation of prevalence, test accuracy and transition probabilities; most studies have not elaborated on these statistical/pre-model analyses.

In the population of children who have had contact with an index case, the results based on the outcome cost per diagnostic error avoided showed that the TST (\geq 10mm) dominated all strategies except T-SPOT.TB strategy alone. T-SPOT.TB compared to TST (\geq 10mm) was more effective, but more expensive, with an ICER of approximately £2710 per diagnostic error avoided. Results in terms of the children population showed that TST (\geq 5mm) was slightly more effective than QFT-GIT alone strategy, with an ICER of approximately £11,260 per QALY, and has a 26.9% probability of being cost-effective at £20,000 per QALY.

In the immunocompromised population, QFT-GIT dominated QFT-GIT negative followed by TST, T-SPOT.TB and TST (\geq 5mm) in terms of diagnostic errors avoided. With the use of the combination strategy QFT-GIT positive followed by TST (\geq 5mm) was the most effective strategy. Results in terms of cost per QALY showed that QFT-GIT negative followed by TST (\geq 5mm) was the most

effective strategy with an ICER of approximately £18,750 compared to T-SPOT.TB, and had a 40% probability of being cost-effective.

In the recent arrivals from countries with a high incidence of TB, QFT-GIT dominated all strategies except TST (\geq 5mm) positive followed by QFT-GIT. TST (\geq 5mm) positive followed by QFT-GIT strategy was more costly and resulted in more diagnostic errors avoided with an ICER of approximately £690 compared to the QFT-GIT alone strategy. Results in terms of cost per QALY, QFT-GIT dominated T-SPOT.TB and TST (\geq 5mm) positive followed by QFT-GIT strategies, and had an 18% probability of being cost-effective at a willingness-to-pay of £20,000 per QALY. The TST (\geq 5mm) had the highest (47%) probability of being cost-effective at a willingness-to-pay of £20,000.

8.1 Implications for service provision and local commissioning

The results of the health economic analysis shows which diagnostic strategy is likely to be the most cost-effective for the diagnosis of LTBI which progresses to active TB.

Our results do not show if screening compared with no screening is likely to be cost-effective nor does it demonstrate which IGRA (e.g. QFT-GIT vs T-SPOT.TB) is more cost effective.

Our findings should be interpreted by clinicians, commissioners and policy makers with caution because of the limited evidence, the lack of gold standard diagnostic test and assumptions made. Clinicians should be mindful of the variation in performance of the different testing strategies amongst different populations.

8.2 Suggested research priorities

A key priority is to conduct research in both high and low TB burden in order to explore and confirm whether the inconsistent performance of IGRAs in high vs. low TB burden countries is real or whether it represents a chance finding. The natural history of the condition needs to be clarified. Prospective population-based studies with an adequate sample size and follow-up should be conducted in people at high risk for TB. These studies should employ standard diagnostic methodology and criteria for ascertaining incident cases of active TB. Research is also needed to clarify the role of serial as opposed to single cross-sectional testing in light of the comparative effectiveness of IGRAs and TST for diagnosis of LTBI; future studies need to evaluate the utility of two-step vs. single testing in order to maximise both sensitivity and specificity for identifying people with LTBI.

Consensus-based standard criteria or a multivariable risk prediction model for the construct of LTBI should be developed. This would provide a standard set of all the component exposures to classify people into high vs. low risk for LTBI. This would improve retrospective or cross-sectional studies of prior TB exposure by facilitating standardized definitions across different studies, and would allow for more objective comparison of IGRAs with TST in terms of detecting LTBI in subgroups of interest.

There is very little evidence on the roles of IGRAs and TST for the diagnosis of LTBI in different clinical subgroups of immunocompromised people (e.g., HIV, hepatitis C, solid organ transplant recipients, rheumatoid arthritis) and future research could be directed at clarifying this. Finally, more efforts need to be directed at identifying new more accurate markers of LTBI.

9 Acknowledgements

We would like to thank our clinical and methodological advisors for their consideration and support during the development and preparation of this review: Dr Martin Dedicoat, Professor Jeremy Hawker, Professor Ajit Lalvani, and Professor Graham Medley.

We thank Dr. Mark Jit and Dr. Peter White for providing information from their model (ahead of publication) in order to compare health economic results.

We also thank the members of the NICE Guideline Development Group (GDG) with particular thanks to Andrew Hayward, Ibrahim Abubakar, Michael Eisenhut, Gabriel Rogers, Chris Gibbons, Hugh McGuire, Margaret Derry and Michael Heath, together they provided continuous clinical and health economic support.

10 References

- 1. World Health Organization. Global tuberculosis report 2013. Geneva, Switzerland: World Health Organization; 2013.
- 2. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. *JAMA*. 1999;**282**(7):677-86.
- 3. Dolin PJ, Raviglione MC, Kochi A. Global tuberculosis incidence and mortality during 1990-2000. *Bull World Health Organ*. 1994;**72**(2):213-20.
- 4. Anderson L, Moore J, Kruijshaar M, Pedrazzoli D, Bradshaw L, Crofts J, *et al.* Tuberculosis in the UK: report on tuberculosis surveillance and control in the UK 2010. London: Health Protection Agency, 2010.
- 5. Pedrazzoli D. Tuberculosis in the UK: Annual report on tuberculosis surveillance in the UK, 2013. London: Public Health England; 2013.
- 6. Pareek M, Watson JP, Ormerod LP, Kon OM, Woltmann G, White PJ, *et al.* Screening of immigrants in the UK for imported latent tuberculosis: a multicentre cohort study and cost-effectiveness analysis. *Lancet Infect Dis.* 2011;**11**(6):435-44.
- 7. Public Health England. Collaborative tuberculosis strategy for England 2014 to 2019: For consultation.2014 [cited 01/07/14]; Available from: http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317140970182.
- 8. Centers for Disease Control and Prevention (CDC). Transmission and Pathogenesis of Tuberculosis. Core Curriculum on Tuberculosis: What the Clinician Should Know. 6th ed. Atlanta (GA): CDC; 2013.
- 9. Doran P, Carson J, Costello E, More SJ. An outbreak of tuberculosis affecting cattle and people on an Irish dairy farm, following the consumption of raw milk. *Ir Vet J* 2009;**62**(6):390.
- 10. National Collaborating Centre for Chronic Conditions, Centre for Clinical Practice at NICE. Tuberculosis: clinical diagnosis and management of tuberculosis, and measures for its prevention and control. CG117. London: National Institute for Health and Clinical Excellence; 2011 [cited 27/02/2014]; Available from: http://www.ncbi.nlm.nih.gov/books/NBK97852/.
- 11. Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, *et al.* Gamma Interferon Release Assays for Detection of Mycobacterium tuberculosis Infection. *Clin Microbiol Rev.* 2014;**27**(1):3-20.
- 12. Al-Orainey IO. Diagnosis of latent tuberculosis: Can we do better? *Ann Thorac Med* 2009;**4**(1):5-9.
- 13. Herrera V, Perry S, Parsonnet J, Banaei N. Clinical application and limitations of interferongamma release assays for the diagnosis of latent tuberculosis infection. *Clin Infect Dis*. 2011;**52**(8):1031-7.
- 14. World Health Organisation. Tuberculosis: Factsheet 104.2014 October 2014 [cited 08/01/15]; Available from: http://www.who.int/mediacentre/factsheets/fs104/en/.
- 15. Taylor Z NC, Blumberg HM, for the American Thoracic Society; Centers for Disease Control and Prevention; and Infectious Diseases Society of America. Controlling tuberculosis in the United States. Recommendations from the American Thoracic Society, CDC, and the Infectious Diseases Society of America *MMWR Recomm Rep.* 2005;**54**(RR-12):1–81.
- 16. Hauck FR, Neese BH, Panchal AS, El-Amin W. Identification and management of latent tuberculosis infection. *Am Fam Physician*. 2009;**79**(10):879-86.
- 17. Bakhshi SS, Hawker J, Ali S. The epidemiology of tuberculosis by ethnic group in Birmingham and its implications for future trends in tuberculosis in the UK. *Ethnicity & health*. 1997;**2**(3):147-53.
- 18. Rangaka MX, Wilkinson KA, Glynn JR, Ling D, Menzies D, Mwansa-Kambafwile J, *et al.* Predictive value of interferon-gamma release assays for incident active tuberculosis: a systematic review and meta-analysis. *Lancet Infect Dis.* 2012;**12**(1):45-55.
- 19. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. *J Clin Epidemiol*. 2005;**58**(10):982-90.

- 20. Centers for Disease Control and Prevention (CDC). Diagnosis of Tuberculosis Disease. Core Curriculum on Tuberculosis: What the Clinician Should Know. 6th ed. Atlanta (GA): CDC; 2013.
- 21. Cunningham J, Perkins M, Mwaluko G, Wringe A, Todd J, Glynn JR, *et al.* Diagnostics for tuberculosis: global demand and market potential. *Lancet*. 2007;**369**(9561):612-3.
- 22. Kumar V, Abbas AK, Fausto N, Mitchell RN. Robbins Basic Pathology 8th ed. Philadelphia, PA: Saunders Elsevier; 2007.
- 23. Tuberculosis: What You Need To Know. Washington DC: U.S. Department of Agriculture, Food Safety and Inspection Service, 1997.
- 24. Chaulk C, Kazandjian V. Directly observed therapy for treatment completion of pulmonary tuberculosis: Consensus Statement of the Public Health Tuberculosis Guidelines Panel. *JAMA*. 1998;**279**(12):943-8.
- 25. Chaulet P. Treatment of tuberculosis: Case holding until cure. WHO/TB/83.141. Geneva: World Health Organization, 1983.
- 26. GBC Health. Drug resistant TB: Why it matters.2011 [cited 08/01/15]; Available from: http://www.gbchealth.org/system/documents/category_1/7/GBCHealth%20Issue%20Brief_Drug-Resistant%20TB.pdf?1311656059.
- 27. American Thoracic Society. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. *Am J Respir Crit Care Med.* 2000;**161**(4 Pt 1):1376-95.
- 28. Public Health England. UK tuberculosis (TB) surveillance data.2014 [cited 01/07/14]; Available from:
- $\underline{http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Tuberculosis/TBUKSurveillanceData/.}$
- 29. Health Protection Agency. Statutory notifications of tuberculosis *CDR Weekly*. 2004;**14**(30).
- 30. EuroTB. Total TB cases and TB notification rates, 1995–2006, WHO European Region.2006 [cited 27/02/14]; Available from: http://www.eurotb.org/slides/2008/TBCases_Rates1995-2006.pdf.
- 31. Health Protection Agency (HPA). Migrant Health: Infectious diseases in non-UK born populations in England, Wales, and Northern Ireland. A baseline report 2006. London: HPA Centre for Infections, 2006.
- 32. McCarthy OR. Asian immigrant tuberculosis--the effect of visiting Asia. *British journal of diseases of the chest*. 1984;**78**(3):248-53.
- 33. Moore-Gillon J. Diabetes and tuberculosis: a gathering storm? *Thorax*. 2010;**65**(7):571-2.
- 34. The ongoing problem of tuberculosis in the UK. *The Lancet*. 2013;**381**(9876):1431.
- 35. Kirby T. Tuberculosis rates unacceptably high in UK cities. *The Lancet Infectious Diseases*. 2013;**13**(10):836-7.
- 36. Rienzo C, Vargas-Silva C. Migrants in the UK Overview. The Migration Observatory 2013 [cited 01/07/14]; Available from: http://www.migrationobservatory.ox.ac.uk/briefings/migrants-uk-overview.
- 37. Anderson C, Anderson S, Kanagarajah S, Hamblion E. Tuberculosis in London: Annual review (2011 data) London: Health Protection Agency, Regional Epidemiology Unit, 2012.
- 38. Krausova A, Vargas-Silva C. London: Census Profile. The Migration Observatory; 2013 [cited 01/07/14]; Available from: http://www.migrationobservatory.ox.ac.uk/briefings/london-census-profile.
- 39. Cattamanchi A, Smith R, Steingart KR, Metcalfe JZ, Date A, Coleman C, *et al.* Interferongamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. *J Acquir Immune Defic Syndr* 2011;**56**(3):230-8.
- 40. Pawlowski A, Jansson M, Sköld M, Rottenberg M, Källenius G. Tuberculosis and HIV Co-Infection. *PLoS Pathog*. 2012;**8**(2):e1002464.
- 41. Sharma S, Mohan A, Kadhiravan T. HIV-TB co-infection: epidemiology, diagnosis & management. *Indian J Med Res.* 2005;**121**(4):550-67.
- 42. McShane H. Co-infection with HIV and TB: double trouble. *Int J STD AIDS*. 2005;**16**(2):95-101.

- 43. Dinnes J, Deeks J, Kunst H, Gibson A, Cummins E, Waugh N, *et al.* A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. *Health Technol Assess* 2007;**11**(3):1-196.
- 44. Vyas JM. Pulmonary tuberculosis. Medline Plus; 2013 [cited 01/07/15]; Available from: http://www.nlm.nih.gov/medlineplus/ency/article/000077.htm.
- 45. Marra CA, Marra F, Cox VC, Palepu A, Fitzgerald JM. Factors influencing quality of life in patients with active tuberculosis. *Health Qual Life Outcomes*. 2004;**2**:58.
- 46. Thorn P. Overcoming Tuberculosis: A handbook for patients. Geneva, Switzerland: Stop TB Partnership; 2007 [cited 01/07/15]; Available from:
- $\underline{http://www.stoptb.org/assets/documents/resources/publications/acsm/overcoming TB.pdf.}$
- 47. Courtwright A, Turner AN. Tuberculosis and stigmatization: pathways and interventions. *Public Health Rep.* 2010;**125 Suppl 4**:34-42.
- 48. The Facts About Tuberculosis. Rockville, US: Substance Abuse and Mental Health Services Administration, Center for Substance Abuse Treatment, 1995.
- 49. Case for Change: TB Services in London. London: London Health Programmes, 2011.
- 50. National Collaborating Centre for Chronic Conditions, Centre for Clinical Practice at NICE. Tuberculosis: clinical diagnosis and management of tuberculosis, and measures for its prevention and control. CG33. London: National Institute for Health and Clinical Excellence; 2006 [cited 05/08/14]; Available from: http://www.nice.org.uk/guidance/CG033.
- 51. National Institute for Health and Care Excellence. Identifying and managing tuberculosis among hard-to-reach groups. PH37.2012 [cited 01/07/14]; Available from: http://www.nice.org.uk/guidance/ph37.
- 52. Diel R, Nienhaus A, Lange C, Schaberg T. Cost-optimisation of screening for latent tuberculosis in close contacts. *The European respiratory journal*. 2006;**28**(1):35-44.
- 53. Chaparas SD, Vandiviere HM, Melvin I, Koch G, Becker C. Tuberculin test. Variability with the Mantoux procedure. *Am Rev Respir Dis.* 1985;**132**(1):175-7.
- 54. Perez-Stable EJ, Slutkin G. A demonstration of lack of variability among six tuberculin skin test readers. *Am J Public Health*. 1985;**75**(11):1341-3.
- 55. Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. *Lancet*. 2000;**356**(9235):1099-104.
- 56. Menzies D, Pai M, Comstock G. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. *Ann Intern Med.* 2007;**146**(5):340-54.
- 57. Diel R, Goletti D, Ferrara G, Bothamley G, Cirillo D, Kampmann B, *et al.* Interferon-gamma release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. *Eur Respir J.* 2011;**37**(1):88-99.
- 58. Machingaidze S, Wiysonge CS, Gonzalez-Angulo Y, Hatherill M, Moyo S, Hanekom W, *et al.* The utility of an interferon gamma release assay for diagnosis of latent tuberculosis infection and disease in children: a systematic review and meta-analysis. *Pediatr Infect Dis J.* 2011;**30**(8):694-700.
- 59. Girardi E, Angeletti C, Puro V, Sorrentino R, Magnavita N, Vincenti D, *et al.* Estimating diagnostic accuracy of tests for latent tuberculosis infection without a gold standard among healthcare workers. *Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.* 2009;**14**(43):pii=19373.
- 60. Ahitan M, Smith G. Latent Tuberculosis Treatment with Rifapentine and Isoniazid by Directly Observed Therapy. Birmingham: Heart of England NHS Foundation Trust; 2013 [cited 01/07/14]; Available from: http://tuberculosis.heartofengland.nhs.uk/wp-content/uploads/g2.pdf.
- 61. Recommendations for Use of an Isoniazid-Rifapentine Regimen with Direct Observation to Treat Latent Mycobacterium tuberculosis Infection. *Morbidity and Mortality Weekly Report*. 2011;**60**(48):1650-3.
- 62. Tuberculosis prevention and treatment: a toolkit for planning, commissioning and delivering high-quality services in England. United Kingdom: Department of Health, 2007.
- 63. Health clearance for tuberculosis, hepatitis B, hepatitis C and HIV: New healthcare workers. United Kingdom: Department of Health, 2007.
- 64. Stopping Tuberculosis in England: An action plan from the Chief Medical Officer. United Kingdom: Department of Health, 2004.

- 65. The Interdepartmental Working Group on Tuberculosis: The prevention and control of tuberculosis in the United Kingdom. United Kingdom: Department of Health, 1998.
- 66. British Thoracic Society Standards of Care C, Joint Tuberculosis C, Milburn H, Ashman N, Davies P, Doffman S, *et al.* Guidelines for the prevention and management of Mycobacterium tuberculosis infection and disease in adult patients with chronic kidney disease. *Thorax*. 2010;**65**(6):557-70.
- 67. BTS recommendations for assessing risk and for managing Mycobacterium tuberculosis infection and disease in patients due to start anti-TNF-alpha treatment. *Thorax*. 2005;**60**(10):800-5.
- 68. Managing passengers with respiratory disease planning air travel: British Thoracic Society recommendations. *Thorax*. 2002;**57**(4):289-304.
- 69. Subcommittee of the Joint Tuberculosis Committee of the British Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee guidelines 1999. *Thorax*, 2000;**55**(3):210-8.
- 70. Model of Care: TB services in London. London, United Kingdom: London Health Programmes, National Health Service.
- 71. Menzies D, Al Jahdali H, Al Otaibi B. Recent developments in treatment of latent tuberculosis infection. *Indian J Med Res.* 2011;**133**:257-66.
- 72. Trajman A, Steffen RE, Menzies D. Interferon-Gamma Release Assays versus Tuberculin Skin Testing for the Diagnosis of Latent Tuberculosis Infection: An Overview of the Evidence. *Pulm Med.* 2013;**2013**:601737.
- 73. Interferon Gamma Release Assay (IGRA) testing for tuberculosis (TB) Questions & Answers (Q&As). United Kingdom: Health Protection Agency.
- 74. Kawamura LM. IGRAs in public health practice: Economic issues. *International Journal of Tuberculosis and Lung Disease*. 2010;**14**(6 SUPPL. 1):S60-S3.
- 75. Landry J, Menzies D. Preventive chemotherapy. Where has it got us? Where to go next? *Int J Tuberc Lung Dis.* 2008;**12**(12):1352-64.
- 76. Pareek M, Bond M, Shorey J, Seneviratne S, Guy M, White P, *et al.* Community-based evaluation of immigrant tuberculosis screening using interferon gamma release assays and tuberculin skin testing: observational study and economic analysis. *Thorax.* 2013;**68**(3):230-9.
- 77. Prognostic value of interferon gamma release assays in predicting active tuberculosis among individuals with, or at risk of, latent tuberculosis infection (Project record). 2010 [cited; Available from: http://o-onlinelibrary.wiley.com.pugwash.lib.warwick.ac.uk/o/cochrane/clhta/articles/HTA-32010000399/frame.html.
- 78. Junghans C, Anya I, Brodie C, Carter S. Joint Strategic Needs Assessment (JSNA) Tuberculosis (TB): an epidemiological analysis and review of service provision in Hammersmith and Fulham, Kensington and Chelsea, and Westminster. Triborough JSNA reports.2014 [cited 04/08/14]; Available from:
- http://www.jsna.info/sites/default/files/Tuberculosis%20%28TB%29%20JSNA%202014.pdf.
- 79. Theaker S. Tuberculosis summary needs assessment. Leicester, Leicestershire and Rutland. TB Strategy Board, Leicester City Council.2013 [cited 08/07/2014]; Available from: www.leicester.gov.uk/EasySiteWeb/GatewayLink.aspx?alId=222528.
- 80. Kirklees Joint Strategic Needs Assessment (JSNA): Infectious disease and human immunodeficiency virus (HIV).2014 [cited 04/08/2014]; Available from: http://www.kirklees.gov.uk/you-
- kmc/partners/health/jsna/pdf/KirkleesJSNAInfectiousdiseaseandHIV.pdf.
- 81. Manchester City Council JSNA: Tuberculosis (TB) 2014 [cited 04/08/2014]; Available from: http://www.manchester.gov.uk/info/500230/joint_strategic_needs_assessment/6110/tuberculosis_tb.
- 82. Dedicoat M. Birmingham and Solihull tuberculosis service: South and City Colleage Birmingham tackles TB.2014 [cited 04/08/2014]; Available from: http://tuberculosis.heartofengland.nhs.uk/south-city-college-birmingham-tackles-tb/.
- 83. Nishiyama N, Mori H, Kobara H, Rafiq K, Fujihara S, Katou K, *et al.* Esophageal anthracosis with tuberculous lymphadenitis confirmed on transesophageal endoscopic ultrasound-guided fineneedle aspiration. *Intern Med.* 2014;**53**(6):577-80.
- 84. Birmingham and Solihull TB services. Should I be screened for TB?2014 [cited 04/08/2014]; Available from: http://tuberculosis.heartofengland.nhs.uk/tb-you/should-i-be-screened-for-tb/.

- 85. Liverpool Community Health NHS Trust. Tuberculosis (TB) service 2014 [cited 08/04/2014]; Available from: http://www.liverpoolcommunityhealth.nhs.uk/health-services/tb_service.htm.
- 86. National Institute for Health and Care Excellence. Diagnostics Assessment Programme manual. London: National Institute for Health and Care Excellence; 2011 [cited 18/03/2014]. Available from: http://www.nice.org.uk/media/A0B/97/DAPManualFINAL.pdf.
- 87. National Institute for Health and Clinical Excellence. The guidelines manual.2012 [cited 18/03/2013]; Available from: http://publications.nice.org.uk/the-guidelines-manual-pmg6.
- 88. Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. *Ann Intern Med.* 2013;**158**(4):280-6.
- 89. Ling DI, Zwerling AA, Steingart KR, Pai M. Immune-based diagnostics for TB in children: what is the evidence? *Paediatr Respir Rev.* 2011;**12**(1):9-15.
- 90. Reitsma JB, Rutjes AW, Khan KS, Coomarasamy A, Bossuyt PM. A review of solutions for diagnostic accuracy studies with an imperfect or missing reference standard. *J Clin Epidemiol*. 2009;**62**(8):797-806.
- 91. Trikalinos TA, Balion CM. Chapter 9: options for summarizing medical test performance in the absence of a "gold standard". *J Gen Intern Med*. 2012;**27 Suppl 1**:S67-S75.
- 92. Rutjes AW, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PM. Evaluation of diagnostic tests when there is no gold standard. A review of methods. *Health Technol Assess*. 2007;**11**(50):iii, ix-51.
- 93. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;**7**(3):177-88.
- 94. Deeks JJ. Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests. *BMJ*. 2001;**323**(7305):157-62.
- 95. Deville WL, Buntinx F, Bouter LM, Montori VM, de Vet HC, van der Windt DA, *et al.* Conducting systematic reviews of diagnostic studies: didactic guidelines. *BMC Med Res Methodol*. 2002;**2**:9.
- 96. Irwig L, Macaskill P, Glasziou P, Fahey M. Meta-analytic methods for diagnostic test accuracy. *J Clin Epidemiol*. 1995;**48**(1):119-30.
- 97. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. *BMC Med Res Methodol*. 2006;**6**:31.
- 98. Harbord RM, Whiting P. metandi: Meta-analysis of diagnostic accuracy using hierarchical logistic regression. *Stata Journal*. 2009;**9**(2):211-29.
- 99. Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT, Tougas ME, *et al.* Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. *Systematic reviews*. 2013;**2**(1):71.
- 100. Diel R, Loddenkemper R, Niemann S, Meywald-Walter K, Nienhaus A. Negative and positive predictive value of a whole-blood interferon- release assay for developing active tuberculosis: an update. *American Journal of Respiratory & Critical Care Medicine*. 2011;**183**(1):88-95.
- 101. Mahomed H, Hawkridge T, Verver S, Abrahams D, Geiter L, Hatherill M, *et al.* The tuberculin skin test versus QuantiFERON TB Gold in predicting tuberculosis disease in an adolescent cohort study in South Africa. [Erratum appears in PLoS One. 2011;6(6).
- doi:10.1371/annotation/b371be66-de38-4ed6-b440-d27c9d7e552c]. PLoS ONE. 2011;6(3):e17984.
- 102. Noorbakhsh S, Mousavi J, Barati M, Shamshiri AR, Shekarabi M, Tabatabaei A, *et al.* Evaluation of an interferon-gamma release assay in young contacts of active tuberculosis cases. *East Mediterr Health J.* 2011;**17**(9):714-8.
- 103. Adetifa IM, Ota MO, Jeffries DJ, Hammond A, Lugos MD, Donkor S, *et al.* Commercial interferon gamma release assays compared to the tuberculin skin test for diagnosis of latent Mycobacterium tuberculosis infection in childhood contacts in the Gambia. *Pediatric Infectious Disease Journal*. 2010;**29**(5):439-43.
- 104. Cruz AT, Geltemeyer AM, Starke JR, Flores JA, Graviss EA, Smith KC. Comparing the tuberculin skin test and T-SPOT.TB blood test in children. *Pediatrics*. 2011;**127**(1):e31-8.
- 105. Kasambira TS, Shah M, Adrian PV, Holshouser M, Madhi SA, Chaisson RE, *et al.* QuantiFERON-TB Gold In-Tube for the detection of Mycobacterium tuberculosis infection in children with household tuberculosis contact. *International Journal of Tuberculosis & Lung Disease*. 2011;**15**(5):628-34.

- 106. Mahomed H, Hawkridge T, Verver S, Geiter L, Hatherill M, Abrahams DA, *et al.* Predictive factors for latent tuberculosis infection among adolescents in a high-burden area in South Africa. *International Journal of Tuberculosis & Lung Disease*. 2011;**15**(3):331-6.
- 107. Pavic I, Topic RZ, Raos M, Aberle N, Dodig S. Interferon- release assay for the diagnosis of latent tuberculosis in children younger than 5 years of age. *Pediatric Infectious Disease Journal*. 2011;**30**(10):866-70.
- 108. Rutherford ME, Hill PC, Maharani W, Apriani L, Sampurno H, van Crevel R, *et al.* Risk factors for Mycobacterium tuberculosis infection in Indonesian children living with a sputum smearpositive case. *International Journal of Tuberculosis & Lung Disease*. 2012;**16**(12):1594-9.
- 109. Rutherford ME, Nataprawira M, Yulita I, Apriani L, Maharani W, van Crevel R, *et al.* QuantiFERON-TB Gold In-Tube assay vs. tuberculin skin test in Indonesian children living with a tuberculosis case. *International Journal of Tuberculosis & Lung Disease*. 2012;**16**(4):496-502.
- 110. Talbot EA, Harland D, Wieland-Alter W, Burrer S, Adams LV. Specificity of the tuberculin skin test and the T-SPOT.TB assay among students in a low-tuberculosis incidence setting. *J Am Coll Health*. 2012;**60**(1):94-6.
- 111. Tsolia MN, Mavrikou M, Critselis E, Papadopoulos NG, Makrinioti H, Spyridis NP, *et al.* Whole blood interferon- release assay is a useful tool for the diagnosis of tuberculosis infection particularly among Bacille Calmette Guerin-vaccinated children. *Pediatric Infectious Disease Journal.* 2010;**29**(12):1137-40.
- 112. Elzi L, Steffen I, Furrer H, Fehr J, Cavassini M, Hirschel B, *et al.* Improved sensitivity of an interferon-gamma release assay (T-SPOT.TB) in combination with tuberculin skin test for the diagnosis of latent tuberculosis in the presence of HIV co-infection. *BMC infectious diseases*. 2011;**11**:319.
- 113. Moon SM, Lee SO, Choi SH, Kim YS, Woo JH, Yoon DH, *et al.* Comparison of the QuantiFERON-TB Gold In-Tube test with the tuberculin skin test for detecting latent tuberculosis infection prior to hematopoietic stem cell transplantation. *Transpl Infect Dis.* 2013;**15**(1):104-9.
- 114. Kim SH, Lee SO, Park JB, Park IA, Park SJ, Yun SC, *et al.* A prospective longitudinal study evaluating the usefulness of a T-cell-based assay for latent tuberculosis infection in kidney transplant recipients.[Erratum appears in Am J Transplant. 2011 Nov;11(11):2541]. *Am J Transplant*. 2011;**11**(9):1927-35.
- 115. Anibarro L, Trigo M, Feijoo D, Rios M, Palomares L, Pena A, *et al.* Value of the tuberculin skin testing and of an interferon-gamma release assay in haemodialysis patients after exposure to M. tuberculosis. *BMC infectious diseases*. 2012;**12**:195.
- 116. Lee SSJ, Chou KJ, Su IJ, Chen YS, Fang HC, Huang TS, *et al.* High prevalence of latent tuberculosis infection in patients in end-stage renal disease on hemodialysis: Comparison of quantiFERON-TB GOLD, ELISPOT, and tuberculin skin test. *Infection*. 2009;**37**(2):96-102.
- 117. Chang B, Park HY, Jeon K, Ahn JK, Cha HS, Koh EM, *et al.* Interferon- release assay in the diagnosis of latent tuberculosis infection in arthritis patients treated with tumor necrosis factor antagonists in Korea. *Clin Rheumatol.* 2011;30(12):1535-41.
- 118. Ahmadinejad Z, Azmoudeh Ardalan F, Razzaqi M, Davoudi S, Jafarian A. QuantiFERON-TB Gold In-Tube test for diagnosis of latent tuberculosis (TB) infection in solid organ transplant candidates: a single-center study in an area endemic for TB. *Transpl Infect Dis.* 2013;**15**(1):90-5.
- 119. Al Jahdali H, Ahmed AE, Balkhy HH, Baharoon S, Al Hejaili FF, Hajeer A, *et al.* Comparison of the tuberculin skin test and Quanti-FERON-TB Gold In-Tube (QFT-G) test for the diagnosis of latent tuberculosis infection in dialysis patients. *J Infect Public Health.* 2013;**6**(3):166-72.
- 120. Ates G, Ozekinci T, Yildiz T, Danis R. Comparison of interferon-gamma release assay versus tuberculin skin test for latent tuberculosis screening in hemodialysis patients. *Biotechnol Biotechnol Equip*. 2009;**23**(2):1242-6.
- 121. Casas S, Andreu A, Juanola X, Bordas X, Alcaide F, Moure R, *et al.* Diagnosis of tuberculosis infection by tuberculin skin test and a whole-blood interferon- release assay in patients considered for anti-tumor necrosis factor-alpha therapy. *Diagn Microbiol Infect Dis.* 2011a;**71**(1):57-65.
- 122. Casas S, Munoz L, Moure R, Castellote J, Guerra MR, Gonzalez L, *et al.* Comparison of the 2-step tuberculin skin test and the quantiFERON-TB Gold In-Tube Test for the screening of tuberculosis infection before liver transplantation. *Liver Transpl.* 2011b;**17**(10):1205-11.

- 123. Chkhartishvili N, Kempker RR, Dvali N, Abashidze L, Sharavdze L, Gabunia P, *et al.* Poor agreement between interferon-gamma release assays and the tuberculin skin test among HIV-infected individuals in the country of Georgia. *BMC infectious diseases*. 2013;**13**:513.
- 124. Chung WK, Zheng ZL, Sung JY, Kim S, Lee HH, Choi SJ, *et al.* Validity of interferon-release assays for the diagnosis of latent tuberculosis in haemodialysis patients. *Clin Microbiol Infect*. 2010;**16**(7):960-5.
- 125. Costantino F, de Carvalho Bittencourt M, Rat AC, Loeuille D, Dintinger H, Bene MC, *et al.* Screening for latent tuberculosis infection in patients with chronic inflammatory arthritis: discrepancies between tuberculin skin test and interferon- release assay results. *J Rheumatol.* 2013;**40**(12):1986-93.
- 126. Hadaya K, Bridevaux PO, Roux-Lombard P, Delort A, Saudan P, Martin PY, *et al.* Contribution of interferon- release assays (IGRAs) to the diagnosis of latent tuberculosis infection after renal transplantation. *Transplantation*. 2013;**95**(12):1485-90.
- 127. Hsia EC, Schluger N, Cush JJ, Chaisson RE, Matteson EL, Xu S, *et al.* Interferon- release assay versus tuberculin skin test prior to treatment with golimumab, a human anti-tumor necrosis factor antibody, in patients with rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis. *Arthritis Rheum.* 2012;**64**(7):2068-77.
- 128. Kim SH, Lee SO, Park IA, Park SJ, Choi SH, Kim YS, *et al.* Diagnostic usefulness of a T cell-based assay for latent tuberculosis infection in kidney transplant candidates before transplantation. *Transpl Infect Dis.* 2010;**12**(2):113-9.
- 129. Kim SY, Jung GS, Kim SK, Chang J, Kim MS, Kim YS, *et al.* Comparison of the tuberculin skin test and interferon- release assay for the diagnosis of latent tuberculosis infection before kidney transplantation. *Infection*. 2013b;**41**(1):103-10.
- 130. Kim JS, Cho JH, Park GY, Kang YJ, Kwon O, Choi JY, *et al.* Comparison of QuantiFERON-TB Gold with tuberculin skin test for detection of latent tuberculosis infection before kidney transplantation. *Transplant Proc.* 2013c;**45**(8):2899-902.
- 131. Kleinert S, Tony HP, Krueger K, Detert J, Mielke F, Rockwitz K, *et al.* Screening for latent tuberculosis infection: performance of tuberculin skin test and interferon- release assays under real-life conditions. *Ann Rheum Dis.* 2012;**71**(11):1791-5.
- 132. Laffitte E, Janssens JP, Roux-Lombard P, Thielen AM, Barde C, Marazza G, *et al.* Tuberculosis screening in patients with psoriasis before antitumour necrosis factor therapy: comparison of an interferon-gamma release assay vs. tuberculin skin test. *Br J Dermatol.* 2009;**161**(4):797-800.
- 133. Maritsi D, Al-Obadi M, Brogan PA, Eleftheriou D, Dixon GL. The Performance of Quantiferon TB Gold In-Tube as a Screening Tool in Paediatric Rheumatology prior to Initiation of Infliximab: A Single Centre's Experience. *ISRN rheumatol*. 2011;**2011**:pii:505171.
- 134. Mutsvangwa J, Millington KA, Chaka K, Mavhudzi T, Cheung YB, Mason PR, *et al.* Identifying recent Mycobacterium tuberculosis transmission in the setting of high HIV and TB burden. *Thorax*. 2010;**65**(4):315-20.
- 135. Papay P, Eser A, Winkler S, Frantal S, Primas C, Miehsler W, *et al.* Factors impacting the results of interferon- release assay and tuberculin skin test in routine screening for latent tuberculosis in patients with inflammatory bowel diseases. *Inflamm Bowel Dis.* 2011;**17**(1):84-90.
- 136. Ramos JM, Masia M, Rodriguez JC, Lopez C, Padilla S, Robledano C, *et al.* Negative effect of immunosuppressive therapy in the performance of the QuantiFERON gold in-tube test in patients with immune-mediated inflammatory diseases. *Clin Exp Med.* 2013;**13**(3):177-86.
- 137. Seyhan EC, Sokucu S, Altin S, Gunluoglu G, Trablus S, Yilmaz D, *et al.* Comparison of the QuantiFERON-TB Gold In-Tube test with the tuberculin skin test for detecting latent tuberculosis infection in hemodialysis patients. *Transpl Infect Dis.* 2010;**12**(2):98-105.
- 138. Shen KS, Zhang KY, Wang F, Yu L, Zhang SQ, Zhao WJ, *et al.* Diagnostic value of an IFN-gamma ELISPOT assay to detect latent tuberculosis infection in hepatitis C patients. *Afr J Microbiol Res.* 2012;**6**(8):1736-41.
- 139. Takeda N, Nojima T, Terao C, Yukawa N, Kawabata D, Ohmura K, *et al.* Interferon-gamma release assay for diagnosing Mycobacterium tuberculosis infections in patients with systemic lupus erythematosus. *Lupus*. 2011;**20**(8):792-800.

- 140. Vassilopoulos D, Tsikrika S, Hatzara C, Podia V, Kandili A, Stamoulis N, *et al.* Comparison of two gamma interferon release assays and tuberculin skin testing for tuberculosis screening in a cohort of patients with rheumatic diseases starting anti-tumor necrosis factor therapy. *Clin Vaccine Immunol.* 2011;**18**(12):2102-8.
- 141. Harstad I, Winje BA, Heldal E, Oftung F, Jacobsen GW. Predictive values of QuantiFERON-TB Gold testing in screening for tuberculosis disease in asylum seekers. *International Journal of Tuberculosis & Lung Disease*. 2010;**14**(9):1209-11.
- 142. Kik SV, Franken WP, Mensen M, Cobelens FG, Kamphorst M, Arend SM, *et al.* Predictive value for progression to tuberculosis by IGRA and TST in immigrant contacts. *European Respiratory Journal*. 2010;**35**(6):1346-53.
- 143. Lucas M, Nicol P, McKinnon E, Whidborne R, Lucas A, Thambiran A, *et al.* A prospective large-scale study of methods for the detection of latent Mycobacterium tuberculosis infection in refugee children. *Thorax*. 2010;**65**(5):442-8.
- 144. Orlando G, Merli S, Cordier L, Mazza F, Casazza G, Villa AM, *et al.* Interferon-gamma releasing assay versus tuberculin skin testing for latent tuberculosis infection in targeted screening programs for high risk immigrants. *Infection*. 2010;**38**(3):195-204.
- 145. Saracino A, Scotto G, Fornabaio C, Martinelli D, Faleo G, Cibelli D, *et al.* QuantiFERON-TB Gold In-Tube test (QFT-GIT) for the screening of latent tuberculosis in recent immigrants to Italy. *New Microbiol.* 2009;**32**(4):369-76.
- 146. Laniado-Laborin R, Cazares-Adame R, Volker-Soberanes ML, Del Portillo-Mustieles C, Villa-Rosas C, Oceguera-Palao L, *et al.* Latent tuberculous infection prevalence among paediatric contacts of drug-resistant and drug-susceptible cases. *International Journal of Tuberculosis and Lung Disease*. 2014;**18**(5):515-9+i.
- 147. Lee YM, Lee SO, Choi SH, Kim YS, Woo JH, Kim DY, *et al.* A prospective longitudinal study evaluating the usefulness of the interferon-gamma releasing assay for predicting active tuberculosis in allogeneic hematopoietic stem cell transplant recipients. *J Infect*. 2014;**69**(2):165-73.
- 148. Metin Timur O, Tanir G, Oz FN, Bayhan GI, Aydin Teke T, Tuygun N. Comparison of QuantiFERON-TB gold in-tube test with tuberculin skin test in children who had no contact with active tuberculosis case. *Tuberk.* 2014;62(2):116-21.
- 149. Perez-Porcuna TM, Ascaso C, Malheiro A, Abellana R, Martins M, Sardinha JFJ, *et al.* Mycobacterium tuberculosis infection in young children: Analyzing the performance of the diagnostic tests. *PLoS ONE*. 2014:**9**(5):e97992.
- 150. Song SE, Yang J, Lee KS, Kim H, Kim YM, Kim S, *et al.* Comparison of the tuberculin skin test and interferon gamma release assay for the screening of tuberculosis in adolescents in close contact with tuberculosis TB patients. *PLoS ONE*. 2014;**9**(7):e100267.
- 151. Souza JMO, Evangelista MDSN, Trajman A. Added value of quantiFERON TB-gold in-tube for detecting latent tuberculosis infection among persons living with HIV/AIDS. *Biomed Res Int*. 2014;**2014**:pii:294963.
- 152. Tieu HV, Suntarattiwong P, Puthanakit T, Chotpitayasunondh T, Chokephaibulkit K, Sirivichayakul S, *et al.* Comparing interferon-gamma release assays to tuberculin skin test in thai children with tuberculosis exposure. *PLoS ONE*. 2014;**9**(8):e105003.
- 153. Sherkat R, Yaran M, Shoaie P, Mortazavi M, Shahidi S, Hamidi H, *et al.* Concordance of the tuberculin skin test and T-SPOT().TB test results in kidney transplant candidates. *Journal of Research in Medical Sciences*. 2014;**19**(Suppl 1):S26-9.
- 154. Brock I, Weldingh K, Lillebaek T, Follmann F, Andersen P. Comparison of tuberculin skin test and new specific blood test in tuberculosis contacts. *Am J Respir Crit Care Med*. 2004;**170**(1):65-9.
- 155. Chun JK, Kim CK, Kim HS, Jung GY, Lee TJ, Kim KH, *et al.* The role of a whole blood interferon-gamma assay for the detection of latent tuberculosis infection in Bacille Calmette-Guerin vaccinated children. *Diagn Microbiol Infect Dis.* 2008;**62**(4):389-94.
- 156. Connell TG, Curtis N, Ranganathan SC, Buttery JP. Performance of a whole blood interferon gamma assay for detecting latent infection with Mycobacterium tuberculosis in children. *Thorax*. 2006;**61**(7):616-20.

- 157. Connell TG, Ritz N, Paxton GA, Buttery JP, Curtis N, Ranganathan SC. A three-way comparison of tuberculin skin testing, QuantiFERON-TB gold and T-SPOT.TB in children. *PLoS ONE*. 2008;**3**(7):e2624.
- 158. Hansted E, Andriuskeviciene A, Sakalauskas R, Kevalas R, Sitkauskiene B. T-cell-based diagnosis of tuberculosis infection in children in Lithuania: a country of high incidence despite a high coverage with bacille Calmette-Guerin vaccination. *BMC Pulm Med*. 2009;**9**:41.
- 159. Higuchi K, Kondo S, Wada M, Hayashi S, Ootsuka G, Sakamoto N, *et al.* Contact investigation in a primary school using a whole blood interferon-gamma assay. *J Infect*. 2009;**58**(5):352-7.
- 160. Higuchi K, Harada N, Mori T, Sekiya Y. Use of QuantiFERON-TB Gold to investigate tuberculosis contacts in a high school. *Respirology*. 2007;**12**(1):88-92.
- 161. Lighter J, Rigaud M, Eduardo R, Peng CH, Pollack H. Latent tuberculosis diagnosis in children by using the QuantiFERON-TB Gold In-Tube test. *Pediatrics*. 2009;**123**(1):30-7.
- 162. Okada K, Mao TE, Mori T, Miura T, Sugiyama T, Yoshiyama T, *et al.* Performance of an interferon-gamma release assay for diagnosing latent tuberculosis infection in children. *Epidemiol Infect.* 2008;**136**(9):1179-87.
- 163. Tsiouris SJ, Coetzee D, Toro PL, Austin J, Stein Z, El-Sadr W. Sensitivity analysis and potential uses of a novel gamma interferon release assay for diagnosis of tuberculosis. *J Clin Microbiol*. 2006;**44**(8):2844-50.
- 164. Winje BA, Oftung F, Korsvold GE, Mannsaker T, Jeppesen AS, Harstad I, *et al.* Screening for tuberculosis infection among newly arrived asylum seekers: comparison of QuantiFERONTB Gold with tuberculin skin test. *BMC infectious diseases*. 2008;**8**:65.
- 165. Balcells ME, Perez CM, Chanqueo L, Lasso M, Villanueva M, Espinoza M, *et al.* A comparative study of two different methods for the detection of latent tuberculosis in HIV-positive individuals in Chile. *Int J Infect Dis.* 2008:**12**(6):645-52.
- 166. Bartalesi F, Vicidomini S, Goletti D, Fiorelli C, Fiori G, Melchiorre D, *et al.* QuantiFERON-TB Gold and the TST are both useful for latent tuberculosis infection screening in autoimmune diseases. *Eur Respir J.* 2009;**33**(3):586-93.
- 167. Cobanoglu N, Ozcelik U, Kalyoncu U, Ozen S, Kiraz S, Gurcan N, *et al.* Interferon-gamma assays for the diagnosis of tuberculosis infection before using tumour necrosis factor-alpha blockers. *Int J Tuberc Lung Dis.* 2007;**11**(11):1177-82.
- 168. Jones S, de Gijsel D, Wallach FR, Gurtman AC, Shi Q, Sacks H. Utility of QuantiFERON-TB Gold in-tube testing for latent TB infection in HIV-infected individuals. *Int J Tuberc Lung Dis*. 2007;**11**(11):1190-5.
- 169. Luetkemeyer AF, Charlebois ED, Flores LL, Bangsberg DR, Deeks SG, Martin JN, *et al.* Comparison of an interferon-gamma release assay with tuberculin skin testing in HIV-infected individuals. *Am J Respir Crit Care Med.* 2007;**175**(7):737-42.
- 170. Mandalakas AM, Hesseling AC, Chegou NN, Kirchner HL, Zhu X, Marais BJ, *et al.* High level of discordant IGRA results in HIV-infected adults and children. *Int J Tuberc Lung Dis.* 2008;**12**(4):417-23.
- 171. Manuel O, Humar A, Preiksaitis J, Doucette K, Shokoples S, Peleg AY, *et al.* Comparison of quantiferon-TB gold with tuberculin skin test for detecting latent tuberculosis infection prior to liver transplantation. *Am J Transplant*. 2007;**7**(12):2797-801.
- 172. Matulis G, Juni P, Villiger PM, Gadola SD. Detection of latent tuberculosis in immunosuppressed patients with autoimmune diseases: performance of a Mycobacterium tuberculosis antigen-specific interferon gamma assay. *Ann Rheum Dis.* 2008;**67**(1):84-90.
- 173. Piana F, Codecasa LR, Cavallerio P, Ferrarese M, Migliori GB, Barbarano L, *et al.* Use of a T-cell-based test for detection of tuberculosis infection among immunocompromised patients. *Eur Respir J.* 2006;**28**(1):31-4.
- 174. Ponce de Leon D, Acevedo-Vasquez E, Alvizuri S, Gutierrez C, Cucho M, Alfaro J, *et al.* Comparison of an interferon-gamma assay with tuberculin skin testing for detection of tuberculosis (TB) infection in patients with rheumatoid arthritis in a TB-endemic population. *J Rheumatol.* 2008;**35**(5):776-81.

- 175. Richeldi L, Losi M, D'Amico R, Luppi M, Ferrari A, Mussini C, *et al.* Performance of tests for latent tuberculosis in different groups of immunocompromised patients. *Chest.* 2009;**136**(1):198-204.
- 176. Schoepfer AM, Flogerzi B, Fallegger S, Schaffer T, Mueller S, Nicod L, *et al.* Comparison of interferon-gamma release assay versus tuberculin skin test for tuberculosis screening in inflammatory bowel disease. *The American journal of gastroenterology*. 2008;**103**(11):2799-806.
- 177. Shovman O, Anouk M, Vinnitsky N, Arad U, Paran D, Litinsky I, *et al.* QuantiFERON-TB Gold in the identification of latent tuberculosis infection in rheumatoid arthritis: a pilot study. *International Journal of Tuberculosis & Lung Disease*. 2009;**13**(11):1427-32.
- 178. Soborg B, Ruhwald M, Hetland ML, Jacobsen S, Andersen AB, Milman N, *et al.* Comparison of screening procedures for Mycobacterium tuberculosis infection among patients with inflammatory diseases. *J Rheumatol.* 2009;**36**(9):1876-84.
- 179. Talati NJ, Seybold U, Humphrey B, Aina A, Tapia J, Weinfurter P, *et al.* Poor concordance between interferon-gamma release assays and tuberculin skin tests in diagnosis of latent tuberculosis infection among HIV-infected individuals. *BMC infectious diseases*. 2009;**9**:15.
- 180. Vassilopoulos D, Stamoulis N, Hadziyannis E, Archimandritis AJ. Usefulness of enzymelinked immunospot assay (Elispot) compared to tuberculin skin testing for latent tuberculosis screening in rheumatic patients scheduled for anti-tumor necrosis factor treatment. *J Rheumatol*. 2008;**35**(7):1271-6.
- 181. Brodie D, Lederer DJ, Gallardo JS, Trivedi SH, Burzynski JN, Schluger NW. Use of an interferon-gamma release assay to diagnose latent tuberculosis infection in foreign-born patients. *Chest.* 2008;**133**(4):869-74.
- 182. Carvalho AC, Pezzoli MC, El-Hamad I, Arce P, Bigoni S, Scarcella C, *et al.* QuantiFERON-TB Gold test in the identification of latent tuberculosis infection in immigrants. *J Infect*. 2007;**55**(2):164-8.
- 183. Diel R, Nienhaus A, Lange C, Meywald-Walter K, Forssbohm M, Schaberg T. Tuberculosis contact investigation with a new, specific blood test in a low-incidence population containing a high proportion of BCG-vaccinated persons. *Respir Res.* 2006;**7**:pii: 77.
- 184. Diel R, Loddenkemper R, Meywald-Walter K, Niemann S, Nienhaus A. Predictive value of a whole blood IFN-gamma assay for the development of active tuberculosis disease after recent infection with Mycobacterium tuberculosis. *Am J Respir Crit Care Med.* 2008;**177**(10):1164-70.
- 185. Franken WP, Timmermans JF, Prins C, Slootman EJ, Dreverman J, Bruins H, *et al.* Comparison of Mantoux and QuantiFERON TB Gold tests for diagnosis of latent tuberculosis infection in Army personnel. *Clin Vaccine Immunol.* 2007;**14**(4):477-80.
- 186. Janssens JP, Roux-Lombard P, Perneger T, Metzger M, Vivien R, Rochat T. Contribution of a IFN-gamma assay in contact tracing for tuberculosis in a low-incidence, high immigration area. *Swiss Med Wklv.* 2008:**138**(39-40):585-93.
- 187. Kik SV, Franken WP, Arend SM, Mensen M, Cobelens FG, Kamphorst M, *et al.* Interferongamma release assays in immigrant contacts and effect of remote exposure to Mycobacterium tuberculosis. *Int J Tuberc Lung Dis.* 2009;**13**(7):820-8.
- 188. Nienhaus A, Schablon A, Bacle CL, Siano B, Diel R. Evaluation of the interferon-gamma release assay in healthcare workers. *Int Arch Occup Environ Health*. 2008;**81**(3):295-300.
- 189. Porsa E, Cheng L, Seale MM, Delclos GL, Ma X, Reich R, *et al.* Comparison of a new ESAT-6/CFP-10 peptide-based gamma interferon assay and a tuberculin skin test for tuberculosis screening in a moderate-risk population. *Clin Vaccine Immunol*. 2006;**13**(1):53-8.
- 190. Park SY, Jeon K, Um SW, Kwon OJ, Kang ES, Koh WJ. Clinical utility of the QuantiFERON-TB Gold In-Tube test for the diagnosis of active pulmonary tuberculosis. *Scand J Infect Dis.* 2009;**41**(11-12):818-22.
- 191. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, *et al.* Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. *Eur J Health Econ*. 2013;**14**(3):367-72.
- 192. Philips Z, Ginnelly L, Sculpher M, Claxton K, Golder S, Riemsma R, *et al.* Review of guidelines for good practice in decision-analytic modelling in health technology assessment. *Health Technol Assess.* 2004;**8**(36):iii-iv, ix-xi, 1-158.

- 193. Kowada A. Cost effectiveness of interferon-gamma release assay for tuberculosis screening of rheumatoid arthritis patients prior to initiation of tumor necrosis factor-alpha antagonist therapy. *Molecular diagnosis & therapy*. 2010;**14**(6):367-73.
- 194. Kowada A. Cost effectiveness of interferon-gamma release assay for school-based tuberculosis screening. *Molecular diagnosis & therapy*. 2012;**16**(3):181-90.
- 195. Kowada A. Cost effectiveness of the interferon- release assay for tuberculosis screening of hemodialysis patients. *Nephrol Dial Transplant*. 2013;**28**(3):682-8.
- 196. Kowada A. Cost effectiveness of interferon- release assay for TB screening of HIV positive pregnant women in low TB incidence countries. *J Infect*. 2014;**68**(1):32-42.
- 197. Laskin BL, Goebel J, Starke JR, Schauer DP, Eckman MH. Cost-effectiveness of latent tuberculosis screening before steroid therapy for idiopathic nephrotic syndrome in children. *Am J Kidney Dis.* 2013;**61**(1):22-32.
- 198. Linas BP, Wong AY, Freedberg KA, Horsburgh CR, Jr. Priorities for screening and treatment of latent tuberculosis infection in the United States. *American Journal of Respiratory & Critical Care Medicine*. 2011;**184**(5):590-601.
- 199. Swaminath A, Bhadelia N, Wang YC. Cost-effectiveness of QuantiFERON testing before initiation of biological therapy in inflammatory bowel disease. *Inflamm Bowel Dis.* 2013;**19**(11):2444-9.
- 200. Mandalakas AM, Hesseling AC, Gie RP, Schaaf HS, Marais BJ, Sinanovic E. Modelling the cost-effectiveness of strategies to prevent tuberculosis in child contacts in a high-burden setting. *Thorax*. 2013;**68**(3):247-55.
- 201. Linas BP, Wong AY, Freedberg KA, Horsburgh CR. The cost effectiveness of tuberculin skin test and interferon gamma release assay screening for latent tuberculosis infection in the U.S. *American Journal of Respiratory and Critical Care Medicine*. 2011;**183** (1 MeetingAbstracts).
- 202. Briggs AH, Gray AM. Handling uncertainty when performing economic evaluation of healthcare interventions. *Health Technol Assess*. 1999;**3**(2):1-134.
- 203. Hunink M, Glasziou P. Decision making in health and medicine: integrating evidence and values. Cambridge: Cambridge University Press; 2001.
- 204. Human mortality database.[cited 06/02/2015]; Available from: http://www.mortality.org/.
- 205. Health Survey for England 2012. Health and Social Care Information Centre; 2013 [cited 02/11/2014]; Available from: http://www.hscic.gov.uk/catalogue/PUB13218.
- 206. Pooran A, Booth H, Miller RF, Scott G, Badri M, Huggett JF, *et al.* Different screening strategies (single or dual) for the diagnosis of suspected latent tuberculosis: a cost effectiveness analysis. *BMC polm.* 2010;**10**:7.
- 207. Department of Health. NHS reference costs 2012 to 2013.2013 [cited 21/11/2014]; Available from: https://www.gov.uk/government/publications/nhs-reference-costs-2012-to-2013.
- 208. NHS Electronic Drug Tariff: February 2015. NHS Business Services Authority; 2015 [cited 19/02/15]; Available from: http://www.ppa.org.uk/edt/February_2015/mindex.htm.
- 209. Bothamley GH, Rowan JP, Griffiths CJ, Beeks M, McDonald M, Beasley E, *et al.* Screening for tuberculosis: the port of arrival scheme compared with screening in general practice and the homeless. *Thorax*. 2002;**57**(1):45-9.
- 210. Curtis L. Unit Costs of Health and Social Care London: Personal Social Services Research Unit; 2013 [cited 01/12/2014]; Available from: http://www.pssru.ac.uk/project-pages/unit-costs/2013/.
- 211. Kumar N, Bhargava SK, Agrawal CS, George K, Karki P, Baral D. Chest radiographs and their reliability in the diagnosis of tuberculosis. *JNMA*; *journal of the Nepal Medical Association*. 2005;**44**(160):138-42.
- 212. White P, Jit M. What is the cost-effectiveness of latent tuberculosis infection (LTBI) treatment with different regimens? London: Imperial College Consultants, Forthcoming 2015.
- 213. Okuonghae D. A mathematical model of tuberculosis transmission with heterogeneity in disease susceptibility and progression under a treatment regimen for infectious cases. *Applied Mathematical Modelling*. 2013;**37**:6786-808.
- 214. Oxlade O, Schwartzman K, Benedetti A, Pai M, Heymann J, Menzies D. Developing a tuberculosis transmission model that accounts for changes in population health. *Med Decis Making*. 2011;**31**(1):53-68.

- 215. Crofts JP, Pebody R, Grant A, Watson JM, Abubakar I. Estimating tuberculosis case mortality in England and Wales, 2001-2002. *Int J Tuberc Lung Dis.* 2008;**12**(3):308-13.
- 216. Office of National Statistics. Population and migration data catalogue.2014 [cited 05/02/2014]; Available from: http://www.ons.gov.uk/ons/guide-method/compendiums/compendium
- 217. Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. *Ann Intern Med.* 2008;**149**(3):177-84.
- 218. Dheda K, Van Zyl Smit R, Badri M, Pai M. T-cell interferon- release assays for the rapid immunodiagnosis of tuberculosis: Clinical utility in high-burden vs. low-burden settings. *Curr Opin Pulm Med.* 2009;**15**(3):188-200.
- 219. Mandalakas AM, Detjen AK, Hesseling AC, Benedetti A, Menzies D. Interferon-gamma release assays and childhood tuberculosis: systematic review and meta-analysis. *International Journal of Tuberculosis & Lung Disease*. 2011;**15**(8):1018-32.
- 220. Santin M, Munoz L, Rigau D. Interferon- release assays for the diagnosis of tuberculosis and tuberculosis infection in HIV-infected adults: a systematic review and meta-analysis. *PLoS ONE*. 2012;**7**(3):e32482.
- 221. Sarrazin H, Wilkinson KA, Andersson J, Rangaka MX, Radler L, van Veen K, *et al.* Association between tuberculin skin test reactivity, the memory CD4 cell subset, and circulating FoxP3-expressing cells in HIV-infected persons. *J Infect Dis.* 2009;**199**(5):702-10.
- 222. Diel R, Loddenkemper R, Nienhaus A. Predictive value of interferon- release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. *Chest.* 2012;**142**(1):63-75.
- 223. Song GG, Bae SC, Lee YH. Interferon-gamma release assays versus tuberculin skin testing in patients with rheumatoid arthritis. *International journal of rheumatic diseases*. 2013;**16**(3):279-83.
- 224. Shahidi N, Fu YT, Qian H, Bressler B. Performance of interferon-gamma release assays in patients with inflammatory bowel disease: a systematic review and meta-analysis. *Inflamm Bowel Dis*. 2012;**18**(11):2034-42.
- 225. Schmidt RL, Factor RE. Understanding sources of bias in diagnostic accuracy studies. *Archives of pathology & laboratory medicine*. 2013;**137**(4):558-65.
- 226. Winje BA, Oftung F, Korsvold GE, Mannsaker T, Ly IN, Harstad I, *et al.* School based screening for tuberculosis infection in Norway: comparison of positive tuberculin skin test with interferon-gamma release assay. *BMC infectious diseases*. 2008;**8**:140.
- 227. Public Health England. World Health Organization (WHO) estimates of tuberculosis incidence by rate, 2012 (sorted by rate).2014 [cited 01/07/2014]; Available from: http://www.hpa.org.uk/web/HPAweb&HPAweb&tandard/HPAweb_C/1195733837507.
- 228. British National Formulary (BNF) 66. London: BMJ Group, Pharmaceutical Press; 2013.

11 Appendices

11.1 Appendix 1. Search strategies and results 2011

Main searches

Diagnosis of latent TB using M. tuberculosis-specific antigens interferon gamma release assays

The following sources were searched to answer questions relating to the diagnosis of latent TB using *M. tuberculosis*-specific antigens (ESAT-6, CFP 10, and TB7.7) interferon gamma release assays (IGTs), including the following commercially available assays:

- QuantiFERON-TB Gold In-Tube
- QuantiFERON-TB Gold
- I T-SPOT.TB.

The diagnostic utility of these assays, alone or in combination with a tuberculin skin test, will be compared with tuberculin skin test alone.

The database searches were undertaken between the 7th and 14th December 2009.

Databases searched:

- EMBASE (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)
- Cinahl (EBSCO)
- DARE (CRD)
- HTA (CRD)
- Cochrane Library (Wiley)
- Cochrane Register of Diagnostic Test Accuracy Studies (Wiley)
- Medion
- ARIF

The MEDLINE search strategy is presented below. It was translated for use in the databases listed above.

Ovid MEDLINE(R) <1950 to November Week 3 2009>

```
1 (laten* adj3 (tb* or tubercul*)).tw.
```

- 2 ltb*.tw.
- 3 Tuberculosis, Pulmonary/
- 4 Tuberculosis/
- 5 Mycobacterium tuberculosis/
- 6 or/1-5 (123029)
- 7 IGRA*.tw.
- 8 IGT*.tw.
- 9 (interferon adj3 gamma adj3 (release* or test* or assay*)).tw.
- 10 ((y-interferon or interferon-y) adj3 (release* or assay* or test*)).tw.
- 11 (quantiferon adj3 gold*).tw.
- 12 (quantiferon adj3 (in tube or test*)).tw.

```
13 OFT*.tw.
14 t spot*.tw.
15 Interferon-gamma/
16 (enzyme* adj3 link* adj3 immunosorbent adj3 (test* or assay*)).tw.
17 ELISA*.tw.
18 (ELISPOT* or (enzyme* adj3 link* adj3 immunospot)).tw.
19 (ESAT6* or ESAT-6* or ESAT 6*).tw.
20 (early adj3 secret* adj3 antigen adj3 target-6).tw.
21 (CFP10* or (culture adj3 filtrate adj3 protein-10)).tw.
22 "TB7.7".tw.
23 Fluorospot*.tw.
24 "region of difference".tw.
25 Enzyme-Linked Immunosorbent Assay/
26 or/7-25
27 6 and 26
28 mass screening/
29 (screen* adj3 (program* or mass or population* or disease*)).tw.
30 28 or 29
31 30 and 6
32 27 or 31
33 Animals/ not Humans/
34 32 not 33
35 limit 34 to english language
```

Health economics

The following sources were searched to identify economic evaluations and quality of life data relating to interferon gamma release assays (IGTs) for latent tuberculosis:

- Health Economic Evaluations Database HEED (Wiley)
- NHS Economic Evaluation Database NHS EED (Wiley and CRD website)
- EMBASE (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)

The searches were undertaken on 5th and 6th January 2009.

The MEDLINE search strategy is presented below. It was translated for use in other databases.

Ovid MEDLINE(R) <1950 to December Week 4 2009>

```
1 (laten* adj3 (tb* or tubercul*)).tw.
2 ltb*.tw.
3 Tuberculosis, Pulmonary/
4 Tuberculosis/
5 Mycobacterium tuberculosis/
6 or/1-5
7 IGRA*.tw.
8 IGT*.tw.
9 (interferon adj3 gamma adj3 (release* or test* or assay*)).tw.
10 ((y-interferon or interferon-y) adj3 (release* or assay* or test*)).tw.
11 (quantiferon adj3 gold*).tw.
12 (quantiferon adj3 (in tube or test*)).tw.
```

```
13 OFT*.tw.
14 t spot*.tw.
15 Interferon-gamma/
16 (enzyme* adj3 link* adj3 immunosorbent adj3 (test* or assay*)).tw.
17 ELISA*.tw.
18 (ELISPOT* or (enzyme* adj3 link* adj3 immunospot)).tw.
19 (ESAT6* or ESAT-6* or ESAT 6*).tw.
20 (early adj3 secret* adj3 antigen adj3 target-6).tw.
21 (CFP10* or (culture adj3 filtrate adj3 protein-10)).tw.
22 "TB7.7".tw.
23 Fluorospot*.tw.
24 "region of difference".tw.
25 Enzyme-Linked Immunosorbent Assay/ [Double click to insert footer here] 23 of 315
26 or/7-25
27 6 and 26
28 mass screening/
29 (screen* adj3 (program* or mass or population* or disease*)).tw.
30 28 or 29
31 30 and 6
32 27 or 31
33 Animals/ not Humans/
34 32 not 33
35 limit 34 to english language
36 Economics/
37 exp "Costs and Cost Analysis"/
38 Economics, Dental/
39 exp Economics, Hospital/
40 exp Economics, Medical/
41 Economics, Nursing/
42 Economics, Pharmaceutical/
43 Budgets/
44 exp Models, Economic/
45 Markov Chains/
46 Monte Carlo Method/
47 Decision Trees/
48 econom$.tw.
49 cba.tw.
50 cea.tw.
51 cua.tw.
52 markov$.tw.
53 (monte adj carlo).tw.
54 (decision adj2 (tree$ or analys$)).tw.
55 (cost or costs or costing$ or costly or costed).tw.
56 (price$ or pricing$).tw.
57 budget$.tw.
58 expenditure$.tw.
59 (value adj2 (money or monetary)).tw.
60 (pharmacoeconomic$ or (pharmaco adj economic$)).tw.
61 or/36-60
```

62 "Quality of Life"/ 63 quality of life.tw. 64 "Value of Life"/

65 Quality-Adjusted Life Years/66 quality adjusted life.tw.

67 (galy\$ or gald\$ or gale\$ or gtime\$).tw.

- 68 disability adjusted life.tw. (571)
- 69 daly\$.tw.
- 70 Health Status Indicators/
- 71 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or short form thirtysix or short form thirtysix or short form thirtysix.).tw.
- 72 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw. [Double click to insert footer here] 24 of 315
- 73 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw.
- 74 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw.
- 75 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw.
- 76 (euroqol or euro qol or eq5d or eq 5d).tw.
- 77 (qol or hql or hqol or hrqol).tw.
- 78 (hye or hyes).tw.
- 79 health\$ year\$ equivalent\$.tw.
- 80 utilit\$.tw.
- 81 (hui or hui1 or hui2 or hui3).tw.
- 82 disutili\$.tw.
- 83 rosser.tw.
- 84 quality of wellbeing.tw.
- 85 quality of well-being.tw.
- 86 qwb.tw.
- 87 willingness to pay.tw.
- 88 standard gamble\$.tw.
- 89 time trade off.tw.
- 90 time tradeoff.tw.
- 91 tto.tw.
- 92 or/62-91
- 93 61 or 92
- 94 35 and 93

11.2 Appendix 2. Search strategies and results 2014

The objective of the search strategy was to identify literature on the diagnosis of LTBI using IGRAs compared to other methods. The following sources were searched: Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Cochrane Library via Wiley, Science Citation Index Expanded (SCI-EXPANDED), Conference Proceedings Citation Index- Science (CPCI-S), Medion, ClinicalTrials.gov, WHO ICTRP, conferences and websites.

The bibliographic database searches were undertaken on 9th and 10th April, 2014 and were updated on 2nd December 2014 using the same strategies. Supplementary searches were undertaken between 10th June and 5th August 2014.

Table 45. Ovid MEDLINE(R) 1946 to April Week 1 2014, searched on 09/04/2014

1	(laten* adj3 (tb* or tubercul*)).tw.	2701
2	ltb*.tw.	6939
3	tubercul*.tw.	158617
4	Tuberculosis/	51049
5	Latent Tuberculosis/	866
6	Tuberculosis, Pulmonary/	63874
7	Mycobacterium tuberculosis/	35401
8	1 or 2 or 3 or 4 or 5 or 6 or 7	195420
9	quantiferon*.tw.	819
10	QFT*.tw.	557
11	t spot*.tw.	261
12	exp Enzyme-Linked Immunosorbent Assay/	122317
13	Interferon-gamma Release Tests/	377
14	((interferon* or IFN*) adj3 gamma* adj3 (release* or test* or assay*)).tw.	3856
15	((y-interferon or interferon-y) adj3 (release* or test* or assay*)).tw.	7
16	IGRA*.tw.	448
17	9 or 10 or 11 or 12 or 13 or 14 or 15 or 16	126234
18	8 and 17	3840
19	Latent Tuberculosis/di	576
20	18 or 19	4061
21	Animals/ not Humans/	3812070
22	20 not 21	3480
23	limit 22 to english language	3014
24	limit 23 to ed=20091207-20140409	1288

Update search Dec 2014

Ovid MEDLINE(R) 1946 to November Week 3 2014, searched on 02/12/20 Search above re-run with the following limit:

Line 24 = limit 23 to ed=20140312-20141202: **222**

Total

1288 + 222 =**1510**

Table 46. Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations April 08, 2014, searched on 09/04/2014

1	(laten* adj3 (tb* or tubercul*)).tw.	312
2	ltb*.tw.	340
3	tubercul*.tw.	10405
4	1 or 2 or 3	10625
5	quantiferon*.tw.	121
6	QFT*.tw.	83
7	t spot*.tw.	42
8	(enzyme* adj3 link* adj3 (immunosorbent or immunospot) adj3 (test* or assay*)).tw.	3522
9	((interferon* or IFN*) adj3 gamma* adj3 (release* or test* or assay*)).tw.	148
10	((y-interferon or interferon-y) adj3 (release* or test* or assay*)).tw.	1
11	IGRA*.tw.	102
12	5 or 6 or 7 or 8 or 9 or 10 or 11	3778
13	4 and 12	281
14	limit 13 to english language	263

Update search Dec 2014

Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations December 01, 2014, searched on 02/12/2014

Search above re-run with the following limit:

Line 15 = limit 14 to ed=20140312-20141202: 19

Total

263 + 19 =**282**

Table 47. Ovid Embase 1980 to 2014 Week 14, searched on 09/04/2014

1	(laten* adj3 (tb* or tubercul*)).tw.	3880
2	ltb*.tw.	8397
3	tubercul*.tw.	175055
4	tuberculosis/	87819
5	latent tuberculosis/	1696
6	lung tuberculosis/	62789
7	Mycobacterium tuberculosis/	47234
8	1 or 2 or 3 or 4 or 5 or 6 or 7	227447
9	quantiferon*.tw.	1477
10	QFT*.tw.	871

11	t spot*.tw.	442
12	enzyme linked immunospot assay/	5911
13	*enzyme linked immunosorbent assay/	14220
14	exp interferon gamma release assay/	1062
15	((interferon* or IFN*) adj3 gamma* adj3 (release* or test* or assay*)).tw.	1925
16	((y-interferon or interferon-y) adj3 (release* or test* or assay*)).tw.	12
17	IGRA*.tw.	841
18	9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17	23387
19	8 and 18	3410
20	latent tuberculosis/di	573
21	19 or 20	3619
22	animal/ not human/	1176853
23	21 not 22	3556
24	limit 23 to english language	3171
25	limit 24 to dd=20091207-20140409	2280
26	limit 24 to em=200900-201414	2482
27	25 or 26	2483

Update search Dec 2014

Embase 1980 to 2014 Week 48, searched on 02/12/2014

Re-ran search above with the following limits:

Line 25 = limit 24 to dd=20140409-20141202: 364

Line 26 = limit 24 to em=201414-201448: 387

Line 27 = 25 or 26: **387**

Total

2483 + 387 =**2870**

Table 48. Cochrane Library via Wiley, searched on 09/04/2014

#1	(laten* near/3 (tb* or tubercul*)):ti,ab,kw	186
#2	ltb*:ti,ab,kw	270
#3	tubercul*:ti,ab,kw	3404
#4	MeSH descriptor: [Tuberculosis] this term only	598
#5	MeSH descriptor: [Latent Tuberculosis] this term only	53
#6	MeSH descriptor: [Tuberculosis, Pulmonary] this term only	824
#7	MeSH descriptor: [Mycobacterium tuberculosis] this term only	306
#8	#1 or #2 or #3 or #4 or #5 or #6 or #7	3632
#9	quantiferon*:ti,ab,kw	44
#10	QFT*:ti,ab,kw	22
#11	t next spot*:ti,ab,kw	15
#12	MeSH descriptor: [Enzyme-Linked Immunosorbent Assay] explode all trees	2107
#13	MeSH descriptor: [Interferon-gamma Release Tests] this term only	31
#14	((interferon* or IFN*) near/3 gamma* near/3 (release* or test* or	164
	assay*)):ti,ab,kw	
#15	((y-interferon or interferon-y) near/3 (release* or test* or assay*)):ti,ab,kw	0
#16	IGRA*:ti,ab,kw	22

#17	#9 or #10 or #11 or #12 or #13 or #14 or #15 or #16	2260
#18	#8 and #17	145
#19	MeSH descriptor: [Latent Tuberculosis] this term only and with qualifier(s):	31
	[Diagnosis - DI]	
#20	#18 or #19	154
#21	#18 or #19 Publication Date from 2009 to 2014	108

All Results (108)

Cochrane Reviews (0)

Other Reviews (19)

Trials (**53**)

Methods Studies (0)

Technology Assessments (6)

Economic Evaluations (30)

Cochrane Groups (0)

Update search Dec 2014

Cochrane Library via Wiley, searched on 02/12/2014

Search above re-run with the following limit:

Line 21= #18 or #19 Publication Year from 2014 to 2014: **11**

All Results (11)

Cochrane Reviews (0)

All Review Protocol

Other Reviews (3)

Trials (7)

Methods Studies (0)

Technology Assessments (0)

Economic Evaluations (1)

Cochrane Groups (0)

<u>Total</u>

108 + 11 = 119

Table 49. Science Citation Index Expanded (SCI-EXPANDED) --1970-present and Conference Proceedings Citation Index- Science (CPCI-S) --1990-present via Web of Knowledge, searched on 09/04/2014

# 14	(#13) AND LANGUAGE: (English) Indexes=SCI-EXPANDED, CPCI-S	1,608
	Timespan=2009-2014	
# 13	#4 and #12 Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	3,139
# 12	#5 or #6 or #7 or #8 or #9 or #10 or #11 Indexes=SCI-EXPANDED, CPCI-S	63,467
	Timespan=All years	
# 11	TS=IGRA* Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	601
# 10	TS=((y-interferon or interferon-y) NEAR/3 (release* or test* or assay*))	5
	Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	
#9	TS=((interferon* or IFN*) NEAR/3 gamma* NEAR/3 (release* or test* or	5,812
	assay*)) Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	
# 8	TS=(enzyme* NEAR/3 link* NEAR/3 (immunosorbent or immunospot)	56,262
	NEAR/3 (test* or assay*)) Indexes=SCI-EXPANDED, CPCI-S	
	Timespan=All years	
# 7	TS=((t-spot*) OR (t NEAR/1 spot*)) Indexes=SCI-EXPANDED, CPCI-S	464

	Timespan=All years	
# 6	TS=QFT* Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	1,894
# 5	TS=quantiferon* Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	949
# 4	#1 or #2 or #3 Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	108,863
# 3	TS=tubercul* Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	103,332
# 2	TS=ltb*Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	6,278
# 1	TS=(laten* NEAR/3 (tb or tubercul*)) Indexes=SCI-EXPANDED, CPCI-S Timespan=All years	3,314

Update search Dec 2014

Science Citation Index Expanded (SCI-EXPANDED) --1970-present and Conference Proceedings Citation Index- Science (CPCI-S) --1990-present via Web of Knowledge, searched on 02/12/2014 Search above re-run with the following limit:

Timespan=2014

#14 = 277

Total

3,314 + 277 = 3591

Medion, searched on 10/06/2014

Search 1

Searched in subset of Medion – Systematic reviews of diagnostic studies Signssymp - selected:

- divers, other, general,
- Laboratory tests

Abstract:

Tuberculosis

Total: 33

Search 2

Searched in subset of Medion – Systematic reviews of diagnostic studies Signssymp - selected:

- divers, other, general,
- Laboratory tests

Abstract:

tb

Total: 37

Both searches

Total of both searches after duplicates removed: 47

Saved to Word and removed 19 pre 2009 reviews, leaving: 28

Checked against results of other database searching in endnote and removed 11 duplicates.

Total unique records: 17

WHO ICTRP, searched on 05/08/2014

Advanced search

(quantiferon* or QFT* or t-spot* or interferon* or IFN* or gamma* or y-interferon or interferon-y or IGRA*) in Title

AND

(tuberculosis or latent tb) in Condition

Total: 10

ClinicalTrials.gov, searched on 05/08/2014

(quantiferon* OR QFT* OR t-spot* OR interferon* OR IFN* OR gamma* OR y-interferon OR interferon-y OR IGRA*) AND (tuberculosis or "latent tb")

Excluded unknown status

Total: 41

Conferences

Specific conference proceedings, selected with input from a clinical expert, were checked for the last five years. Search date: 24th and 25th June 2014.

- European Scientific Conference on Applied Infectious Disease Epidemiology (ESCAIDE) http://ecdc.europa.eu/en/ESCAIDE/about ESCAIDE/Pages/previous conferences.aspx
- Public Health England Annual Conference (previously HPA Annual Conference)
 https://www.phe events.org.uk/hpa/frontend/reg/thome.csp?pageID=117557&eventID=286&eventID=286
 (previously HPA Annual Conference)
- 5 Nations Health Protection Conference http://5nations.org.uk/?page_id=44
- Federation of Infection Society http://fis-infection.org.uk/ (eg http://www.actiononinfection.com/abstracts-and-poster-walk/)
- British Thoracic Society https://www.brit-thoracic.org.uk/bts-learning-hub/bts-summer-and-winter-meetings/summer-meeting-2014/
- Annual Conferences of the Union North America Region http://www.bc.lung.ca/association_and_services/union.html

Websites

Websites of specific organisations, selected with input from a clinical expert, were checked for relevant literature. Search date: 25th June 2014.

- Public Health England (including old Health protection Agency site)
 https://www.gov.uk/government/organisations/public-health-england and http://www.hpa.org.uk/
- CDC (Atlanta) http://www.cdc.gov/
- European Centre for Disease Prevention and Control (ECDC)
 http://www.ecdc.europa.eu/en/Pages/home.aspx and
 http://www.ecdc.europa.eu/en/activities/diseaseprogrammes/programme_tuberculosis/Pages/index.aspx
- World Health Organization (WHO) http://www.who.int/en/ and http://dosei.who.int/uhtbin/cgisirsi/tXRt5009vL/245820007/60/86/X
- British Thoracic Society (BTS) https://www.brit-thoracic.org.uk/
- Cellestis (manufacturer of QuantiFERON-TB Gold) www.cellestis.com/
- Oxford Immunotec (manufacturer of T-SPOT.TB test) <u>www.oxfordimmunotec.com/</u>

11.3 Appendix 3. Data extraction sheet for included primary study reports

Name of first reviewer:

Name of second reviewer:

Study details

First author surname year of publication:

Country:

Study design:

Study setting (e.g., outbreak investigation, community-based - specify):

Number of centres:

Total length of follow up (if applicable):

Funding (government/private/manufacturer/other - specify):

Aim of the study

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Participants

Recruitment dates:

Total N of recruited patients:

Inclusion criteria:

Exclusion criteria:

Total N of excluded patients:

Total N of patients tested with both IGRA and TST:

Total N of patients with valid results for both IGRA and TST:

Methods of active TB diagnosis (if applicable):

Outcomes (study-based) list:

Characteristics of participants (total study sample)

Mean (range or SD) age (years):

Women (n [%]):

Race/ethnicity (n [%]):

Geographic origin (n[%]):

BCG vaccination (n [%]):

History of anti-TB treatment (n [%]):

Total incidence of active TB (n [%]):

Chest radiography (yes/no):

Clinical examination (yes/no):

Morbidity (n [%]):

Co-morbidity (n [%]):

Type of during-study treatment (n [%]):

Number of patients tested

•	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (specify):					
TST:					
Test 3 (specify)					

Total N of patients with valid results for both IGRA and TST:

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group

Non-exposed	
Exposed 1 (specify):	
Exposed 2 (specify):	
Exposed 3 (specify):	

Exposed 4 (specify):	:							
Tosts								
Tests Assay used methodology, t for test measure manufacture.		, timing irement,	Cut-off values/thresho Definition of te	lds				
IGRA								
TST								
Association between	n test resul	lts and incid	lence of ac	tive TB (if applie	cable)			
	IGRA				TST			
	Incide	nce of	Total		Incide	Incidence of Tota		
	active	e TB			active	e TB		
	Yes	No			Yes	No		
IGRA +				TST +				
IGRA -				TST -				
indeterminate				indeterminate				
Total				Total				
		Test per	rformance	parameters				
	IGRA				TST			
Sensitivity =				Sensitivity =				
Specificity =				Specificity =				
PPV =				PPV =				
NPV =				NPV =				
Cumulative Incidence				Cumulative Incidence _{TST+} =				
Cumulative Incidence				Cumulative Incidence _{TST} . =				
Cumulative Incidence		A =			Cumulative Incidence Ratio _{TST} =			
Incidence density rat				Incidence density rate _{TST+} =				
Incidence density rat					Incidence density rate _{TST-} = Incidence density rate ratio _{TST} =			
Incidence density rat						10 _{TST} =		
D (' C 1 ('			etween tes	sts (IGRA vs. TS	I ')			
Ratio of cumulative								
Ratio of incidence de	•	ratios =						
Other reported meas		4	.14	l£TD	(261	! 1 -1 - \		
ASSOCIA		een test rest	iits and iev	els of TB exposu	re (11 appi TST	icabie)		
	IGRA	ure level	Total			ure level	Total	
	High/Ye		1 Otal		High/Yes		Total	
IGRA +	Tilgii/ Te	S LOW/NO		TST +	Tilgii/ Tes	LOW/INO		
IGRA -	+			TST -			+	
indeterminate	+			indeterminate			†	
Total	1			Total			1	
10001		Test ne	rformance	parameters				
	IGRA	z est pe			TST			
Sensitivity =				Sensitivity =				
Specificity =				Specificity =				
PPV =				PPV =				
NPV =				NPV =				
DOR (for T ⁺ calculated) =				DOR (for T ⁺ calculated) =				
OR (crude; for T ⁺ reported) =				OR (crude; for T ⁺ reported) =				
OR (regression-based; reported) =				OR (regression-based; reported) =				
List of covariates:				List of covariates:				
Other reported measure =				Other reported measure =				

	~		· (ZOD · FIOR)				
Comparison between tests (IGRA vs. TST)							
	Ratio of DORs (for T ⁺ calculated) =						
Ratio of OR (crude; for T ⁺ reported) =							
Ratio of ORs (regression-based; reported) =							
Other reported measure =							
Between-test agreement,							
	ed by TS	<u>Γ cut-off value,</u>	BCG vaccination status, and/	or condition			
Total sample	1						
		TST +	TST -	Total			
IGRA +							
IGRA -							
indeterminate							
Total							
Description							
Sample definition (e.g., tot	al, if strati	fied by BCG or	condition – specify):				
TST + threshold:							
Parameters							
Kappa =							
% concordance =							
% discordance =							
Stratification (specify gro	up 1)						
		TST +	TST -	Total			
IGRA +							
IGRA -							
indeterminate							
Total							
Description	•						
Sample definition (e.g., tot	al, if strati	fied by BCG or	condition – specify):				
TST + threshold:		•	•				
Parameters							
Kappa =							
% concordance =							
% discordance =							
Stratification (specify gro	oup 2)						
` •		TST +	TST -	Total			
IGRA +							
IGRA -							
indeterminate							
Total							
Description							
Sample definition (e.g., tot	al. if strati	fied by BCG or	condition – specify):				
TST + threshold:	,						
Parameters							
Kappa =							
% concordance =							
% discordance =							
		Other ou	tcomes				
Test and cut-off (if applic	able)	Adverse even		Health related			
rest and out on (ii uppine	<i>ubic</i>)	(specify)	55 111 (/ 0)	quality of life			
		~		mean score			
				(SD) (specify)			
IGRA:				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
TST:							

Test 3 (specify):				
	Conclusions			
Authors:				
Reviewers:				
Abbreviations: DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; PPV = positive predictive value; NPV = negative predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation				

11.4 Appendix 4. Quality assessement and risk of bias

Table 50. Quality assessment for the exposure studies (adapted from Dinnes et al., 2007)⁴³

First author, Year, Study ID	Recruitment of subjects consecutive [yes], arbitrary or unreported [no]	Blinding of test results from exposure blinded [yes], not blinded or unreported [no]	Description of index test and threshold adequate [yes], inadequate or unreported [no]	Definition and description of exposure adequate [yes], inadequate or unreported [no]	Sample attrition adequate [yes]#, inadequate or unreported [no]	Overall score of satisfactory features (%)

 $^{^{\#}}$ \geq 90% of participants were included in the follow-up analysis [yes response] and < 90% were classified as "no response"

[£] Studies with 1 or 2 "yes" ratings = Low quality; studies with 3 "yes" ratings = Moderate quality; studies with 4 or 5 "yes" ratings = High quality

Please note the following item has been removed from the original Dinnes et al., (2007) checklist: "study design" (as all studies were considered are retrospective), this item has been removed. Furthermore, the following item has been added: "sample attrition"

Risk of bias (ROB) for the incidence studies (adapted from Hayden et al., $2013)^{89}$

Study ID (first author, year, ref id):

Reviewer 1: Reviewer 2:

Domain of bias	Question	Issues to consider for judging overall rating of ROB	Comments (if issue not satisfied)	Rating (yes, partial, no, unsure)	ROB (high, moderate, low)
Study design	Prospective	Prospective (low			
	(yes/no)?	ROB), cross sectional			
		(moderate ROB), case-			
		control (high ROB)			
Study Participation	Does the	The source population			
(risk of selection	study sample	is adequately described			
bias)	adequately	The sampling frame			
	represent the	and recruitment is			
	population of	adequately described			
	interest?	The period and place			
		of recruitment are			
	How likely it	adequately described			
	is that	Inclusion and			
	relationship	exclusion criteria is			
	between test	adequately described			
	result and	The baseline study			
	outcome is	sample is adequately			
	different for	described			
	participants	Adequate participation			
	vs. eligible	in the study by eligible			
	non-	individuals			
	participants?	Participants were			
		consecutively enrolled			
Study Attrition	Does the	Response rate (i.e.,			
(risk of selection	study data	proportion of study			
bias)	available	sample completing the			
	(participants	study and providing			
	not lost to	outcome data) is			
	follow-up)	adequate			
	adequately	Attempts to collect			
	represent the	information on			
	study	participants who			
	sample?	dropped out are			
	II o 121 1 24	described			
	How likely it	Reasons for loss to			
	is that	follow-up are provided			
	relationship between test	Participants lost to			
	results and	follow-up are			
	outcome are	adequately described			
	different for	for key characteristics			
	completing	There are no important			
	and non-	differences between			
	anu non-	key characteristics and			

Domain of bias	Question	Issues to consider for	Comments	Rating	ROB
		judging overall rating of ROB	(if issue not	(yes,	(high,
		OI KUD	satisfied)	partial, no,	moderate, low)
			satisfica	unsure)	1011)
	completing	outcomes in		0.22.00.20	
	participants)?	participants who			
	_	completed the study			
		and those who did not			
Prognostic Factor	Was the test	A clear definition or			
Measurement	measured in a	description of the test			
(risk of exposure	similar way	is provided (e.g., type,			
measurement bias)	for all	assay, threshold for			
	participants?	positivity, and method of measurement)			
	How likely it	Method of test conduct			
	is that the	was adequate and test			
	measurement	results were			
	or knowledge	ascertained adequately			
	of outcome	(e.g., raters were			
	influenced	blinded to outcomes in			
	the test	relation to construct			
	results?	validity, previous test			
		ratings, clinical or			
		other characteristics			
		not intended to be a			
		part of the test)			
		Test thresholds used			
		are appropriate			
		The method and setting			
		of the test			
		measurement is the			
		same for all study			
		participants Adequate proportion of			
		the study sample has			
		complete data of the			
		test results			
		Appropriate methods			
		of imputation are used			
		for missing data on test			
		results			
Outcome/Construct	Was the	A clear definition of			
Measurement	outcome of	outcome is provided,			
(risk of bias in	interest (i.e.,	including duration of			
misclassification of	exposure to	follow-up and level			
individuals in	MTB,	and extent of the			
relation to	incidence of	outcome construct			
construct validity	active TB, definition of	The method of			
groups)	low risk	outcome measurement used is valid and			
	population)	reliable to limit			
	measured in a	misclassification bias			
	similar way	(e.g., blinded			
	Similar way	(c.g., omittee			

Domain of bias	Question	Issues to consider for judging overall rating of ROB	Comments (if issue not satisfied)	Rating (yes, partial, no, unsure)	ROB (high, moderate, low)
	for all	measurement, adequate		unsurcy	
	participants?	methods of			
		outcome/construct			
	How likely is	ascertainment –			
	differential	exposure proximity			
	measurement	plus duration			
	of outcome	considered)			
	(e.g., outcome	The method and setting			
	measurement	of outcome/construct			
	related to the	measurement is the			
	test results)?	same for all study			
		participants			
Study Confounding	Were	All important			
(risk of bias due to	important	confounders, including			
confounding)	potential	treatments (key			
	confounding	variables in conceptual			
	factors	mode) are defined and			
	appropriately	measured			
	accounted	All important			
	for?	confounders are			
		accounted for at the			
	How likely is	design and/or analysis			
	bias due to	stage			
	confounding?				
Statistical Analysis	Was the	There is sufficient			
and Reporting	statistical	presentation of data to			
(risk of bias due to	analysis	assess the adequacy of			
analysis and	appropriate,	the analysis			
selective reporting)	and all	The strategy for model			
	primary	building (i.e., inclusion			
	outcomes	of variables in the			
	were	statistical model) is			
	reported?	appropriate and is			
	ITown liles let is	based on a conceptual			
	How likely is bias related	framework or model			
	to the	The selected statistical			
	statistical	model is adequate for			
		the design of the study			
	analysis and	There is no selective			
	presentation of results?	reporting of results			
	Total ROB (high, medium, low)				
POR - rick of bigg		10tai KO	o (mgn, meal	uIII, 10W)	
ROB = risk of bias					

Table 51. Definition for risk of bias ratings for each domain of bias – The Quality In Prognosis Studies (QUIPS) tool (adapted from Hayden et al., 2013)⁸⁹

Domain of bias	Definition for ROB ratings			
	High risk of bias	Moderate risk of bias	Low risk of bias	
Study Design	Case-control study	Cross-sectional study	Prospective cohort study	
Study Participation	The relationship between	The relationship	The relationship between	
	the test results and	between the test	the test results and	
	construct/outcome is	results and outcome	outcome is unlikely to be	
	very likely to be different	may be different for	different for participants	
	for participants and	participants and	and eligible	
	eligible nonparticipants	eligible	nonparticipants	
		nonparticipants		
Study Attrition	The relationship between	The relationship	The relationship between	
	the test results and	between the test	the test results and	
	construct/outcome is	results and	outcome is unlikely to be	
	very likely to be different	construct/outcome	different	
	for completing and	may be different for	for completing and	
	noncompleting	completing and	noncompleting	
	participants	noncompleting	participants	
D 41 D 4	TT1	participants	TDI C.1	
Prognostic Factor	The measurement of the	The measurement of	The measurement of the	
Measurement	test is very likely to be	the test may be	test is unlikely to	
	different for different	different for different	be different for different	
	levels of the	levels of the	levels of the	
	outcome/construct of	outcome/construct of	outcome/construct of	
0.4	interest	interest	interest	
Outcome	The measurement of the	The measurement of	The measurement of the	
Measurement/Construct	outcome/construct is	the outcome/construct	outcome/construct is	
	very likely to be different related to the baseline	may be different	unlikely to be different related to the baseline	
	level of the test	related to the baseline level of the test	level of the test	
Carder Conformations	The observed association	The observed	The observed association	
Study Confounding	between the test and the	association between	between the test and the	
	outcome/construct is	the test and the	outcome/construct is	
		outcome/construct	unlikely to be distorted by	
	very likely to be distorted by another	may be distorted by	another factor related to	
	factor related to PF and	another factor related	prognostic factor and	
	outcome	to prognostic factor	outcome	
	outcome	and outcome	outcome	
Statistical Analysis and	The reported results are	The reported results	The reported results are	
Reporting	very likely to be spurious	may be spurious or	unlikely to be spurious or	
	or biased related to	biased related to	biased related to analysis	
	analysis or reporting	analysis or reporting	or reporting	

11.5 Appendix 5. Literature review list of excluded studies and reason(s) for exclusion (N=424)

Table 52. List of excluded studies from the clinical effectiveness review

N	Study	Reason(s) for exclusion
1.	Abud-Mendoza, C., et al. (2010). "Should tuberculin skin test be positive to give latent tuberculosis treatment before tumor necrosis factor-alpha inhibitors in selected patients in developing countries?" <u>Journal of Rheumatology</u> 37(3): 672-673; author reply 673.	Letter
2.	Abu-Taleb, A. M., et al. (2011). "Interferon-gamma release assay for detection of latent tuberculosis infection in casual and close contacts of tuberculosis cases." <u>Eastern Mediterranean</u> Health Journal 17(10): 749-753.	Mixed population and/or no subgroup of interest
3.	Ahmadinejad, Z., et al. (2012). "Diagnosis of latent tuberculosis infection in candidates for kidney transplantation (comparison of two tests)." Acta Medica Iranica 50(5): 305-310.	No construct validity
4.	Altet-Gomez, N., et al. (2011). "Diagnosing TB infection in children: analysis of discordances using in vitro tests and the tuberculin skin test." <u>European Respiratory Journal</u> 37(5): 1166-1174.	Combined test positive result (TST and IGRA tests +s) for ORs
5.	American College Health, A. (2011). "Tuberculosis screening and targeted testing of college and university students." <u>Journal of American College Health</u> 59(7): 670-677.	Guideline
6.	Andrisani, G., et al. (2013). "Comparison of Quantiferon-TB Gold versus tuberculin skin test for tuberculosis screening in inflammatory bowel disease patients." <u>Journal of Gastrointestinal & Liver Diseases</u> 22(1): 21-25.	No construct validity
7.	Anibarro, L., et al. (2011). "Tuberculin skin test and interferon- release assay show better correlation after the tuberculin 'window period' in tuberculosis contacts." <u>Scandinavian Journal</u> of Infectious <u>Diseases</u> 43(6-7): 424-429.	Mixed population and/or no subgroup of interest
8.	Anonymous (2010). "Proceedings of the Second Global Symposium on Interferon-Gamma Release Assays. Dubrovnik, Croatia. May 30-June 1, 2009." <u>International Journal of Tuberculosis & Lung Disease</u> 14 Suppl 1: S3-70.	Abstract
9.	Baboolal, S., et al. (2010). "Comparison of the QuantiFERON-TB Gold assay and tuberculin skin test to detect latent tuberculosis infection among target groups in Trinidad & Tobago." Pan American Journal of Public Health 28(1): 36-42.	Inappropriate proxy for LTBI
10.	Basu Roy, R., et al. (2012). "Identifying predictors of interferon-release assay results in pediatric latent tuberculosis: a protective role of bacillus Calmette-Guerin?: a pTB-NET collaborative study." American Journal of Respiratory & Critical Care Medicine 186(4): 378-384.	No construct validity
11.	Belard, E., et al. (2011). "Prednisolone treatment affects the performance of the QuantiFERON gold in-tube test and the tuberculin skin test in patients with autoimmune disorders screened for latent tuberculosis infection." <u>Inflammatory Bowel Diseases</u> 17(11): 2340-2349.	No construct validity

12.	Bergot, E., et al. (2012). "Observational study of QuantiFERON-	Mixed population
	TB gold in-tube assay in tuberculosis contacts in a low incidence	and/or no subgroup of
	area." PLoS ONE [Electronic Resource] 7(8): e43520.	interest
13.	Bienek, D. R. and C. K. Chang (2009). "Evaluation of an	Mixed population
	interferon-gamma release assay, T-SPOT.TB, in a population	and/or no subgroup of
	with a low prevalence of tuberculosis." <u>International Journal of</u>	interest
	Tuberculosis & Lung Disease 13(11): 1416-1421.	
14.	Bottger, E. C. (2012). "Interferon- release assays and the risk of	Letter
	developing active tuberculosis." American Journal of	
	Respiratory & Critical Care Medicine 185(7): 786-787; author	
	reply 787.	
15.	Bua, A., et al. (2013). "Tuberculin skin test and QuantiFERON	No construct validity
	in children." New Microbiologica 36(2): 153-156.	
16.	Camlar, S. A., et al. (2011). "Performance of tuberculin skin test	No construct validity
	and interferon gamma assay for the diagnosis of latent	
	tuberculosis infection in juvenile idiopathic arthritis." Clinical	
	<u>Rheumatology</u> 30(9): 1189-1193.	
17.	Campainha, S., et al. (2012). "Negative predictive value of TST	Letter
	and IGRA in anti-TNF treated patients." European Respiratory	
	<u>Journal</u> 40(3): 790-791.	
18.	Carvalho, A. C., et al. (2013). "Contact investigation based on	IGRA vs. IGRA only
	serial interferon-gamma release assays (IGRA) in children from	(no TST)
	the hematology-oncology ward after exposure to a patient with	
	pulmonary tuberculosis." <u>Infection</u> 41(4): 827-831.	
19.	Cassone, A., et al. (2012). "High rate of Quantiferon positive	Review
	and tuberculin negative tests in infants born at a large Italian	
	university hospital in 2011: a cautionary hypothesis." Pathogens	
	and Global Health 106(1): 8-11.	
20.	Cheallaigh, C. N., et al. (2013). "Interferon gamma release	No construct validity
	assays for the diagnosis of latent TB infection in HIV-infected	
	individuals in a low TB burden country." PLoS ONE [Electronic	
21	Resource] 8(1): e53330.	ICD A ICD A 1
21.	Chou, C. H., et al. (2009). "Comparison of 2 interferon-gamma	IGRA vs. IGRA only
	assays and Roche Cobas Amplicor Mycobacterium tuberculosis	(no TST)
	assay for rapid diagnosis of tuberculosis among patients with	
	suspected tuberculosis in Taiwan." <u>Journal of Microbiology</u> ,	
22.	Immunology & Infection 42(3): 251-257. Chung, W. K., et al. (2010b). "Serial testing of interferon-	Comical teactions
22.	gamma-release assays for the diagnosis of latent tuberculosis in	Serial testing, conversion and
	, ,	
23.	hemodialysis patients." <u>Journal of Infection</u> 61(2): 144-149. Connell, D. W., et al. (2011). "A comparison between interferon	reversion rates Letter
۷۵.	gamma release assays and the tuberculin skin test in the contact	Lettel
	tracing of patients with chronic kidney disease." Thorax 66(8):	
	729-730; author reply 730.	
24.	Connell, T. G., et al. (2010). "Indeterminate interferon-gamma	Letter
	release assay results in children." <u>Pediatric Infectious Disease</u>	Letter
	Journal 29(3): 285-286.	
25.	Critselis, E., et al. (2012). "The effect of age on whole blood	No construct validity
25.	interferon-gamma release assay response among children	1.0 construct variatty
	investigated for latent tuberculosis infection." <u>Journal of</u>	
	Pediatrics 161(4): 632-638.	
26.	Dagnew, A. F., et al. (2012). "Diagnosis of latent tuberculosis	Mixed population
	infection in healthy young adults in a country with high	and/or no subgroup of
	tuberculosis burden and BCG vaccination at birth." BMC	interest
L	<u> </u>	1

	Decembra Notes 5, 415	
27	Research Notes 5: 415.	A -di TD
27.	Davies, M. A., et al. (2009). "Detection of tuberculosis in HIV-	Active TB
	infected children using an enzyme-linked immunospot assay."	
20	AIDS 23(8): 961-969.	No construct volidity
28.	de Andrade Lima, E., et al. (2011). "Evaluation of an IFN-	No construct validity
	gamma assay in the diagnosis of latent tuberculosis in patients with psoriasis in a highly endemic setting." Acta Dermato-	
	Venereologica 91(6): 694-697.	
29.	de Kantor, I. N. (2011). "Diagnosis of latent tuberculosis	Letter
29.	infection in BCG-vaccinated subjects in China." <u>International</u>	Letter
	<u> </u>	
	Journal of Tuberculosis & Lung Disease 15(11): 1560-1561; author reply 1561.	
30.	Del Tedesco, E., et al. (2011). "Does anti-TNF therapy influence	Letter
30.		Letter
	the performance of mycobacterium tuberculosis antigen-specific	
	interferon-gamma assays? A French multicenter experience."	
21	Inflammatory Bowel Diseases 17(8): 1824.	T -44 - 11
31.	Denholm, J. T. (2013). "Immigration screening for latent tuberculosis infection." Medical Journal of Australia 199(10):	Letter
	654.	
32.	Denholm, J. T. (2013). "Immigration screening for latent	Letter
32.	tuberculosis infection." Medical Journal of Australia 198(10):	Letter
	524.	
33.	Deuffic-Burban, S., et al. (2010). "Cost-effectiveness of	Economic study
33.	QuantiFERON-TB test vs. tuberculin skin test in the diagnosis	Economic study
	of latent tuberculosis infection." <u>International Journal of</u>	
	Tuberculosis & Lung Disease 14(4): 471-481.	
34.	Diel, R., et al. (2009). "Enhanced cost-benefit analysis of	Economic study
34.	strategies for LTBI screening and INH chemoprevention in	Leononne study
	Germany." Respiratory Medicine 103(12): 1838-1853.	
35.	Dilektasli, A. G., et al. (2010). "Is the T-cell-based interferon-	Mixed population
	gamma releasing assay feasible for diagnosis of latent	and/or no subgroup of
	tuberculosis infection in an intermediate tuberculosis-burden	interest
	country?" <u>Japanese Journal of Infectious Diseases</u> 63(6): 433-	
	436.	
36.	Doberne, D., et al. (2011). "Preanalytical delay reduces	No relevant outcomes;
	sensitivity of QuantiFERON-TB gold in-tube assay for detection	population ineligible
	of latent tuberculosis infection." <u>Journal of Clinical</u>	
	<u>Microbiology</u> 49(8): 3061-3064.	
37.	Dowdy, D. W. and Golub, J. E. (2012). "Tests for latent	Letter
	tuberculosis infection and isoniazid preventive therapy." The	
	<u>Lancet Infectious Diseases</u> 12(11): 827-828.	
38.	Dyrhol-Riise, A. M., et al. (2010). "Diagnosis and follow-up of	Mixed population
	treatment of latent tuberculosis; the utility of the QuantiFERON-	and/or no subgroup of
	TB Gold In-tube assay in outpatients from a tuberculosis low-	interest
	endemic country." <u>BMC Infect Dis</u> 10: 57.	
39.	Garcia-Elorriaga, G., et al. (2013). "Interferon in patients with	No construct validity
	HIV/AIDS and suspicion or latent tuberculosis infection." Asian	
	Pacific Journal of Tropical Medicine 6(2): 135-138.	
40.	Garcia-Gasalla, M., et al. (2013). "Use of Quantiferon-TB-Gold	No construct validity
	in Tube test for detecting latent tuberculosis in patients	
	considered as candidates for anti-TNF therapy in routine clinical	
	practice." Enfermedades Infecciosas y Microbiologia Clinica	
	31(2): 76-81.	XX
41.	Garcovich, S., et al. (2012). "Clinical applicability of	No construct validity

	Quantiferon-TB-Gold testing in psoriasis patients during long-	
	term anti-TNF-alpha treatment: a prospective, observational	
	study." Journal of the European Academy of Dermatology &	
	<u>Venereology</u> 26(12): 1572-1576.	
42.	Gautam, M., et al. (2012). "Tuberculosis infection in the	Letter
	indigenous elderly White UK population: a study of IGRAs."	
	International Journal of Tuberculosis & Lung Disease 16(4):	
	564.	
43.	Gilham, L., et al. (2011). "Tuberculosis screening before	Letter
	biologics – T-SPOT for all?" <u>Journal of Rheumatology</u> 38(1):	
	179.	
44.	Girlanda, S., et al. (2010). "ELISPOT-IFN-gamma assay instead	Non-standard or in-
	of tuberculin skin test for detecting latent Mycobacterium	house IGRA
	tuberculosis infection in rheumatic patients candidate to anti-	
	TNF-alpha treatment." Clinical Rheumatology 29(10): 1135-	
	1141.	
45.	Gogus, F., et al. (2010). "Comparison of tuberculin skin test and	No construct validity
	QuantiFERON-TB gold in tube test in patients with chronic	-
	inflammatory diseases living in a tuberculosis endemic	
	population." Clinical & Experimental Medicine 10(3): 173-177.	
46.	Gonzalez-Salazar, F., et al. (2011). "Snapshot of Quantiferon TB	Mixed population
	gold testing in Northern Mexico." <u>Tuberculosis</u> 91 Suppl 1: S34-	and/or no subgroup of
	37.	interest
47.	Goujon, C., et al. (2012). "Diagnosis of latent tuberculosis	Case report
	infection (LTBI) before anti-TNF-alpha treatmentthe	_
	tuberculin skin test is useful." <u>European Journal of Dermatology</u>	
	22(5): 701-702.	
48.	Grare, M., et al. (2010). "QuantiFERON-TB Gold In-Tube as	No construct validity
	help for the diagnosis of tuberculosis in a French pediatric	•
	hospital." <u>Diagnostic Microbiology & Infectious Disease</u> 66(4):	
	366-372.	
49.	Greveson, K., et al. (2013). "Yield and cost effectiveness of	IGRA only (no TST)
	mycobacterial infection detection using a simple IGRA-based	
	protocol in UK subjects with inflammatory bowel disease	
	suitable for anti-TNFalpha therapy." <u>Journal of Crohn's & colitis</u>	
	7(5): 412-418.	
50.	Griffin, D. W. and Kelly, M. D. (2013). "Immigration screening	Editorial
	for latent tuberculosis infection." Medical Journal of Australia	
	199(10): 654.	
51.	Grinsdale, J. A., et al. (2011). "Programmatic impact of using	Mixed population
	QuantiFERON-TB Gold in routine contact investigation	and/or no subgroup of
	activities." <u>International Journal of Tuberculosis & Lung Disease</u>	interest
	15(12): 1614-1620.	
52.	Gupta, D., et al. (2011). "Interferon gamma release assay	Active TB
	(QuantiFERON-TB Gold In Tube) in patients of sarcoidosis	
	from a population with high prevalence of tuberculosis	
	infection." Sarcoidosis Vasculitis & Diffuse Lung Diseases	
	28(2): 95-101.	
53.	Hanta, I., et al. (2012). "Detection of latent tuberculosis infection	No construct validity
	in rheumatologic diseases before anti-TNFalpha therapy:	
	tuberculin skin test versus IFN- assay." Rheumatology	
	<u>International</u> 32(11): 3599-3603.	
54.	Hardy, A. B., et al. (2010). "Cost-effectiveness of the NICE	Economic study
i	guidelines for screening for latent tuberculosis infection: the	

	QuantiFERON-TB Gold IGRA alone is more cost-effective for	
55.	immigrants from high burden countries." <u>Thorax</u> 65(2): 178-180. Hatemi, G., et al. (2012). "Quantiferon-TB Gold in tube assay	No construct validity
	for the screening of tuberculosis before and during treatment with tumor necrosis factor alpha antagonists." <u>Arthritis Research</u> & Therapy 14(3): R147.	
56.	He, D., et al. (2013). "High incidence of tuberculosis infection in rheumatic diseases and impact for chemoprophylactic prevention of tuberculosis activation during biologics therapy." Clinical & Vaccine Immunology: CVI 20(6): 842-847.	IGRA only (no TST)
57.	Helwig, U., et al. (2012). "Corticosteroids and immunosuppressive therapy influence the result of QuantiFERON TB Gold testing in inflammatory bowel disease patients." <u>Journal of Crohn's & colitis</u> 6(4): 419-424.	IGRA only (no TST)
58.	Hernandez-Garduno, E. (2011). "The positive predictive value of T-spot.TB and tuberculin skin test in patients with silicosis." American Journal of Respiratory & Critical Care Medicine 183(2): 277; author reply 277-278.	Letter
59.	Hernandez-Garduno, E. (2011). "An update: the predictive value of QuantiFERON-TB-Gold In-Tube assay and the tuberculin skin test." <u>American Journal of Respiratory & Critical Care Medicine</u> 183(3): 414; author reply 414-415.	Letter
60.	Hernandez-Garduno, E. and G. G. Huitron Bravo (2013). "The predictive value of interferon- release assays and tuberculin skin test: what about those not vaccinated with Bacillus Calmette-Guerin?" Chest 143(5): 1514-1515.	Letter
61.	Higuchi, K., et al. (2012). "Comparison of specificities between two interferon-gamma release assays in Japan." <u>International</u> <u>Journal of Tuberculosis & Lung Disease</u> 16(9): 1190-1192.	IGRA vs. IGRA only (no TST)
62.	Hill, P. C., et al. (2006). "Surprisingly high specificity of the PPD skin test for M. tuberculosis infection from recent exposure in The Gambia." PLoS ONE [Electronic Resource] 1: e68.	Old pre-2009 study
63.	Hoffmann, M., et al. (2010). "Assessment of an Interferongamma release assay for the diagnosis of latent tuberculosis infection in haemodialysis patient." <u>Swiss Medical Weekly</u> 140(19-20): 286-292.	No construct validity
64.	Huang, Y. W., et al. (2010). "Latent tuberculosis infection among close contacts of multidrug-resistant tuberculosis patients in central Taiwan." <u>International Journal of Tuberculosis & Lung Disease</u> 14(11): 1430-1435.	Mixed population and/or no subgroup of interest
65.	Inanc, N., et al. (2009). "Agreement between Quantiferon-TB gold test and tuberculin skin test in the identification of latent tuberculosis infection in patients with rheumatoid arthritis and ankylosing spondylitis." <u>Journal of Rheumatology</u> 36(12): 2675-2681.	Included/excluded in CG117
66.	Ingram, P. R., et al. (2009). "Latent tuberculosis infection in travelers: is there a role for screening using interferon-gamma release assays?" <u>Journal of Travel Medicine</u> 16(5): 352-356.	Review
67.	Jacobs, S., et al. (2011). "The tuberculin skin test is unreliable in school children BCG-vaccinated in infancy and at low risk of tuberculosis infection." Pediatric Infectious Disease Journal 30(9): 754-758.	No relevant outcomes; only TST+ included
68.	Jeong, Y. J., et al. (2012). "Positive tuberculin skin test or interferon-gamma release assay in patients with radiographic	Mixed population and/or no subgroup of

	lesion suggesting old healed tuberculosis." <u>Journal of Korean</u>	interest
	Medical Science 27(7): 761-766.	merest
69.	Jo, K. W., et al. (2012). "Poor correlation between tuberculin skin tests and interferon- assays in close contacts of patients with multidrug-resistant tuberculosis." Respirology 17(7): 1125-1130.	Mixed population and/or no subgroup of interest
70.	Katsenos, S., et al. (2011). "Use of interferon-gamma release assay for latent tuberculosis infection screening in older adults exposed to tuberculosis in a nursing home." <u>Journal of the American Geriatrics Society</u> 59(5): 858-862.	Mixed population and/or no subgroup of interest
71.	Kawamura, L. M., et al. (2012). "Interferon- release assays for prediction of tuberculosis." <u>The Lancet Infectious Diseases</u> 12(8): 584.	Letter
72.	Kim, E. Y., et al. (2009). "Performance of the tuberculin skin test and interferon-gamma release assay for detection of tuberculosis infection in immunocompromised patients in a BCG-vaccinated population." <u>BMC Infect Dis</u> 9: 207.	No construct validity
73.	Kim, J. H., et al. (2013a). "Factors influencing discrepancies between the QuantiFERON-TB gold in tube test and the tuberculin skin test in Korean patients with rheumatic diseases." Seminars in Arthritis & Rheumatism 42(4): 424-432.	No construct validity
74.	Klein, M., et al. (2013). "Quantiferon TB Gold and tuberculin skin tests for the detection of latent tuberculosis infection in patients treated with tumour necrosis factor alpha blocking agents." Clinical & Experimental Rheumatology 31(1): 111-117.	No construct validity
75.	Kleinert, S., et al. (2010). "Comparison of two interferon-gamma release assays and tuberculin skin test for detecting latent tuberculosis in patients with immune-mediated inflammatory diseases." <u>Annals of the Rheumatic Diseases</u> 69(4): 782-784. Endnote Record ID: 623 [1]	Letter
76.	Kowada, A. (2010). "Cost effectiveness of interferon-gamma release assay for tuberculosis screening of rheumatoid arthritis patients prior to initiation of tumor necrosis factor-alpha antagonist therapy." Mol Diagn Ther 14(6): 367-373.	Economic study
77.	Kowada, A. (2012). "Cost effectiveness of interferon-gamma release assay for school-based tuberculosis screening." Mol Diagn Ther 16(3): 181-190.	Economic study
78.	Kowada, A. (2013). "Cost effectiveness of the interferon- release assay for tuberculosis screening of hemodialysis patients." Nephrology Dialysis Transplantation 28(3): 682-688.	Economic study
79.	Kwakernaak, A. J., et al. (2011). "A comparison of an interferon-gamma release assay and tuberculin skin test in refractory inflammatory disease patients screened for latent tuberculosis prior to the initiation of a first tumor necrosis factor alpha inhibitor." Clinical Rheumatology 30(4): 505-510.	No construct validity
80.	Lange, B., et al. (2010). "Indeterminate results of a tuberculosis-specific interferon-gamma release assay in immunocompromised patients." <u>European Respiratory Journal</u> 35(5): 1179-1182.	Letter
81.	Laskin, B. L., et al. (2013). "Cost-effectiveness of latent tuberculosis screening before steroid therapy for idiopathic nephrotic syndrome in children." <u>American Journal of Kidney Diseases</u> 61(1): 22-32.	Economic study
82.	Latorre, I., et al. (2010). "IFN- response on T-cell based assays in HIV-infected patients for detection of tuberculosis infection." <u>BMC Infect Dis</u> 10: 348.	No construct validity

83. Lee, S. S., et al. (2010). "High prevalence of latent tuberculosis infection in dialysis patients using the interferon-gamma release assay and uberculin skin test." Clinical Journal of The American Society of Nephrology; CJASN 5(8): 1451-1457. 84. Legesse, M. et al. (2011). "Community-based cross-sectional survey of latent tuberculosis infection in Afar pastoralists, Ethiopia, using QuantiFERON-TB Gold In-Tube and tuberculin skin test." BMC Infect Dis 11: 89. 85. Legesse, M., et al. (2012). "Association of the level of IFN-produced by T cells in response to Mycobacterium tuberculosis-specific antigens with the size of skin test indurations among individuals with latent tuberculosis in a highly tuberculosis-endemic setting." International Immunology 24(2): 71-78. 86. Leung, C. C. (2012). "Tests for prediction of active tuberculosis." The Lancet Infectious Diseases 12(1): 6-8. 87. Lienhardt, C., et al. (2010). "Evaluation of the prognostic value of IFN-gamma release assay and tuberculin skin test in household contacts of infectious tuberculosis cases in Senegal. [Erratum appears in PLoS One. 2010;5(12) doi: 10.1371/annotation/6a2/481-75a.4163-88bc-731c6112fct7 Note: Diadhiou, Roger [corrected to Diadhiou, Raymond]]." PLoS ONE IElectronic Resource] 5(5): e10508. 88. Lighter-Fisher, J. and A. M. Surette (2012). "Performance of an interferon-gamma release assay to diagnose latent tuberculosis infection during pregnancy. [Erratum appears in Obstet Gynecol. 2012 Aug; 120(2) Pt. 1;399]." Obsteticis & Gynecology 119(6): 1088-1095. 89. Linas, B. P., et al. (2011). "Priorities for screening and treatment Journal of Respiratory & Critical Care Medicine 184(5): 590-601. 90. Losi, M., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Macda, T., et al. (2011). "Evaluation of performance of QuantiferRoN-TB Gold in Japanese rheumatoid arrhritis patients: Journal of Infection. & Ch			
survey of latent tuberculosis infection in Afar pastoralists, Ethiopia, using QuantiFERON-TB Gold In-Tube and tuberculin skin test: "BMC Infect Dis 11: 89. 85. Legesse, M., et al. (2012). "Association of the level of IFN-produced by T cells in response to Mycobacterium tuberculosis specific antigens with the size of skin test indurations among individuals with latent tuberculosis in a highly tuberculosis-endemic setting." International Immunology 24(2): 71-78. 86. Leung, C. C. (2012). "Tests for prediction of active tuberculosis." The Lancet Infectious Diseases 12(1): 6-8. 87. Lienhardt, C., et al. (2010). "Evaluation of the prognostic value of IFN-gamma release assay and tuberculin skin test in household contacts of infectious tuberculosis cases in Senegal. [Erratum appears in PLoS One. 2010:5(12) doi: 10.1371/annotation/foa24/81-75a-4163-88bc-731c6112fcf7 Note: Diadhiou, Roger [corrected to Diadhiou, Raymondl]." PLoS ONE [Electronic Resource] 5(5): e10508. 88. Lighter-Fisher, J. and A. M. Surette (2012). "Performance of an interferon-gamma release assay to diagnose latent tuberculosis infection during pregnancy. [Erratum appears in Obstet Gynecol. 2012 Aug; 120(2) Pt 1):3991." Obstetrics & Gynecology 119(6): 1088-1095. 89. Linas, B. P., et al. (2011). "Priorities for screening and treatment of latent tuberculosis infection in the United States." American Journal of Respiratory & Critical Care Medicine 184(5): 590-601. 90. Losi, M., et al. (2011). "Tuberculosis infection in foreign-born children: a screening survey based on skin and blood testing." International Journal of Tuberculosis & Lung Disease 15(9): 1182-1184, i. 91. Maden, E., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Maeda, T., et al. (2011). "Comportance of quantiferon assessing latent tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infec		infection in dialysis patients using the interferon-gamma release assay and tuberculin skin test." <u>Clinical Journal of The American Society of Nephrology: CJASN</u> 5(8): 1451-1457.	•
produced by T cells in response to Mycobacterium tuberculosis- specific antigens with the size of skin test indurations among individuals with latent tuberculosis in a highly tuberculosis- endemic setting." International Immunology 24(2): 71-78. 86. Leung, C. C. (2012). "Tests for prediction of active tuberculosis." The Lancet Infectious Diseases 12(1): 6-8. 87. Lienhardt, C., et al. (2010). "Evaluation of the prognostic value of IFN-gamma release assay and tuberculin skin test in household contacts of infectious tuberculosis cases in Senegal, [Erratum appears in PLoS One. 2010;5(12) doi: 10.1371/annotation/6aa24f81-7f3a-4163-b8bc-731c6112fcf7 Note: Diadhiou, Roger [corrected to Diadhiou, Raymond]]." PLoS ONE [Electronic Resource] 5(5): e10508. 88. Lighter-Fisher, J. and A. M. Surette (2012). "Performance of an interferon-gamma release assay to diagnose latent tuberculosis infection during pregnancy. [Erratum appears in Obstet Gynecol. 2012 Aug; 120(2 Pt 1):399]. "Obstetrics & Gynecology 119(6): 1088-1095. 89. Linas, B. P., et al. (2011). "Priorities for screening and treatment of latent tuberculosis infection in the United States." American Journal of Respiratory & Critical Care Medicine 184(5): 590- 601. 90. Losi, M., et al. (2011). "Tuberculosis infection in foreign-born children: a screening survey based on skin and blood testing." International Journal of Tuberculosis & Lung Disease 15(9): 1182-1184, i. 91. Maden, E., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Maeda, T., et al. (2011). "Comparison of QuantifERON-TB Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-G	84.	survey of latent tuberculosis infection in Afar pastoralists, Ethiopia, using QuantiFERON-TB Gold In-Tube and tuberculin skin test." <u>BMC Infect Dis</u> 11: 89.	and/or no subgroup of
Record R	85.	produced by T cells in response to Mycobacterium tuberculosis- specific antigens with the size of skin test indurations among individuals with latent tuberculosis in a highly tuberculosis-	and/or no subgroup of
of IFN-gamma release assay and tuberculin skin test in household contacts of infectious tuberculosis cases in Senegal, [Erratum appears in PLoS One. 2010;5(12) doi: 10.1371/annotation/6aa24f81-7f3a-4163-b8bc-731c6112fcf7 Note: Diadhiou, Roger [corrected to Diadhiou, Raymond]]." PLoS ONE [Electronic Resource] 5(5): e10508. 88. Lighter-Fisher, J. and A. M. Surette (2012). "Performance of an interferon-gamma release assay to diagnose latent tuberculosis infection during pregnancy. [Erratum appears in Obstet Gynecol. 2012 Aug;120(2 Pt 1):399]." Obstetrics & Gynecology 119(6): 1088-1095. 89. Linas, B. P., et al. (2011). "Priorities for screening and treatment of latent tuberculosis infection in the United States." American Journal of Respiratory & Critical Care Medicine 184(5): 590-601. 90. Losi, M., et al. (2011). "Tuberculosis infection in foreign-born children: a screening survey based on skin and blood testing." International Journal of Tuberculosis & Lung Disease 15(9): 1182-1184, i. 91. Maden, E., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Maeda, T., et al. (2010). "Usefulness and limitations of QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients: proposal to decrease the lower cutoff level for assessing latent tuberculosis infection." Modern Rheumatology 20(1): 18-23. 93. Maeda, T., et al. (2011). "Comparison of QuantiFERON-TB Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.	86.	Leung, C. C. (2012). "Tests for prediction of active	Editorial
interferon-gamma release assay to diagnose latent tuberculosis infection during pregnancy. [Erratum appears in Obstet Gynecol. 2012 Aug;120(2 Pt 1):399]." Obstetrics & Gynecology 119(6): 1088-1095. 89. Linas, B. P., et al. (2011). "Priorities for screening and treatment of latent tuberculosis infection in the United States." American Journal of Respiratory & Critical Care Medicine 184(5): 590-601. 90. Losi, M., et al. (2011). "Tuberculosis infection in foreign-born children: a screening survey based on skin and blood testing." International Journal of Tuberculosis & Lung Disease 15(9): 1182-1184, i. 91. Maden, E., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Maeda, T., et al. (2010). "Usefulness and limitations of QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients: proposal to decrease the lower cutoff level for assessing latent tuberculosis infection." Modern Rheumatology 20(1): 18-23. 93. Maeda, T., et al. (2011). "Comparison of QuantiFERON-TB Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.		of IFN-gamma release assay and tuberculin skin test in household contacts of infectious tuberculosis cases in Senegal.[Erratum appears in PLoS One. 2010;5(12) doi: 10.1371/annotation/6aa24f81-7f3a-4163-b8bc-731c6112fcf7 Note: Diadhiou, Roger [corrected to Diadhiou, Raymond]]." PLoS ONE [Electronic Resource] 5(5): e10508.	and/or no subgroup of interest
of latent tuberculosis infection in the United States." American Journal of Respiratory & Critical Care Medicine 184(5): 590- 601. 90. Losi, M., et al. (2011). "Tuberculosis infection in foreign-born children: a screening survey based on skin and blood testing." International Journal of Tuberculosis & Lung Disease 15(9): 1182-1184, i. 91. Maden, E., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Maeda, T., et al. (2010). "Usefulness and limitations of QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients: proposal to decrease the lower cutoff level for assessing latent tuberculosis infection." Modern Rheumatology 20(1): 18-23. 93. Maeda, T., et al. (2011). "Comparison of QuantiFERON-TB Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.	88.	interferon-gamma release assay to diagnose latent tuberculosis infection during pregnancy.[Erratum appears in Obstet Gynecol. 2012 Aug;120(2 Pt 1):399]." Obstetrics & Gynecology 119(6):	and/or no subgroup of
children: a screening survey based on skin and blood testing." International Journal of Tuberculosis & Lung Disease 15(9): 1182-1184, i. 91. Maden, E., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Maeda, T., et al. (2010). "Usefulness and limitations of QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients: proposal to decrease the lower cutoff level for assessing latent tuberculosis infection." Modern Rheumatology 20(1): 18-23. 93. Maeda, T., et al. (2011). "Comparison of QuantiFERON-TB Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.	89.	of latent tuberculosis infection in the United States." <u>American</u> <u>Journal of Respiratory & Critical Care Medicine</u> 184(5): 590-	Economic study
91. Maden, E., et al. (2011). "Evaluation of performance of quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica 34(4): 351-356. 92. Maeda, T., et al. (2010). "Usefulness and limitations of QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients: proposal to decrease the lower cutoff level for assessing latent tuberculosis infection." Modern Rheumatology 20(1): 18-23. 93. Maeda, T., et al. (2011). "Comparison of QuantiFERON-TB Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.	90.	children: a screening survey based on skin and blood testing." <u>International Journal of Tuberculosis & Lung Disease</u> 15(9):	No construct validity
QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients: proposal to decrease the lower cutoff level for assessing latent tuberculosis infection." Modern Rheumatology 20(1): 18- 23. 93. Maeda, T., et al. (2011). "Comparison of QuantiFERON-TB Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.	91.	quantiferon assay and tuberculin skin test in end stage renal disease patients receiving hemodialysis." New Microbiologica	No construct validity
Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." Journal of Infection & Chemotherapy 17(6): 842-848. 94. Mahan, C. S., et al. (2011). "Concordance of a positive tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.	92.	Maeda, T., et al. (2010). "Usefulness and limitations of QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients: proposal to decrease the lower cutoff level for assessing latent tuberculosis infection." Modern Rheumatology 20(1): 18-	for LTBI; definition includes prior active
tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." International Journal of Tuberculosis & Lung Disease 15(2): 174-178, i.	93.	Gold and the tuberculin skin test for detecting previous tuberculosis infection evaluated by chest CT findings in Japanese rheumatoid arthritis patients." <u>Journal of Infection & Chemotherapy</u> 17(6): 842-848.	No construct validity
	94.	tuberculin skin test and an interferon gamma release assay in bacille Calmette-Guerin vaccinated persons." <u>International</u>	and/or no subgroup of
	95.		Economic study

		1
	targeted and sequential screening strategies for latent	
	tuberculosis." International Journal of Tuberculosis & Lung	
	<u>Disease</u> 15(9): 1223-1230, i.	
96.	Mandalakas, A. M., et al. (2011). "Can we accurately diagnose	Letter
	tuberculosis infection in children?" Pediatric Infectious Disease	
	<u>Journal</u> 30(9): 817-818.	
97.	Mandalakas, A. M., et al. (2013a). "Modelling the cost-	Economic study
	effectiveness of strategies to prevent tuberculosis in child	
	contacts in a high-burden setting." Thorax 68(3): 247-255.	
98.	Mandalakas, A. M. and D. Menzies (2011). "Is screening	Editorial
	immigrants for latent tuberculosis cost-effective?" The Lancet	
	Infectious Diseases 11(6): 418-419.	
99.	Mandalakas, A. M., et al. (2013b). "Detecting tuberculosis	No construct validity;
	infection in HIV-infected children: a study of diagnostic	two samples on
	accuracy, confounding and interaction." Pediatric Infectious	exposure (HIV+ and
	<u>Disease Journal</u> 32(3): e111-118.	HIV-) were lumped
100.	Mariette, X., et al. (2012). "Influence of replacing tuberculin	No construct validity
	skin test with ex vivo interferon release assays on decision to	
	administer prophylactic antituberculosis antibiotics before anti-	
	TNF therapy." Annals of the Rheumatic Diseases 71(11): 1783-	
	1790.	
101.	Marques, C. D., et al. (2009). "Evaluation of an interferon	Inappropriate proxy
	gamma assay in the diagnosis of latent tuberculosis infection in	for LTBI
	patients with rheumatoid arthritis." Rheumatology International	
	30(1): 57-62.	
102.	Martin, J., et al. (2010). "Comparison of interferon {gamma}	IGRA vs. IGRA only
	release assays and conventional screening tests before tumour	(no TST)
	necrosis factor {alpha} blockade in patients with inflammatory	
	arthritis." Annals of the Rheumatic Diseases 69(1): 181-185	
103.	Martyn-Simmons, C. L., et al. (2013). "Evaluating the use of the	No construct validity
	interferon- response to Mycobacterium tuberculosis-specific	
	antigens in patients with psoriasis prior to antitumour necrosis	
	factor-alpha therapy: a prospective head-to-head cross-sectional	
	study." British Journal of Dermatology 168(5): 1012-1018	
104.	Mendez-Echevarria, A., et al. (2012). "Interferon- release assay	No construct validity;
	for the diagnosis of tuberculosis in children." <u>Archives of</u>	only for IGRA
105	Disease in Childhood 97(6): 514-516.	LCD 4 1 (TCT)
105.	Milman, N., et al. (2011). "Quantiferon test for tuberculosis	IGRA only (no TST)
	screening in sarcoidosis patients." <u>Scandinavian Journal of</u>	
100	Infectious Diseases 43(9): 728-735.	NT
106.	Minguez, S., et al. (2012). "Interferon-gamma release assays in	No construct validity
	the detection of latent tuberculosis infection in patients with	
	inflammatory arthritis scheduled for anti-tumour necrosis factor	
107	treatment." Clinical Rheumatology 31(5): 785-794.	T -44- ii
107.	Molicotti, P., et al. (2012). "Performance of QuantiFERON TB	Letter
	in a student population at low risk of tuberculosis." <u>Journal of</u> Infection in Daysloping Countries 6(1): 100, 101	
100	Infection in Developing Countries 6(1): 100-101.	Lattan
108.	Moran Mendoza, O. (2011). "Interferon- release assays for the	Letter
	diagnosis of latent Mycobacterium tuberculosis infection."	
	European Respiratory Journal 38(5): 1237-1238; author's reply	
100	1238-1239.	A ative TD
109.	Moyo, S., et al. (2011). "Tuberculin skin test and QuantiFERON	Active TB
	assay in young children investigated for tuberculosis in South	
	Africa." <u>International Journal of Tuberculosis & Lung Disease</u>	1

	15(9): 1176-1181, i.	
110.	Mrozek, N., et al. (2011). "Tuberculosis screening before	Letter
110.	biologic therapy. Comment about the article entitled "role for	Letter
	interferon-gamma release assays in latent tuberculosis screening	
	before TNF-alpha antagonist therapy" by Liote H et al." Joint,	
	Bone, Spine: Revue du Rhumatisme 78(6): 655-656; author	
	reply 656-657.	
111.	Murakami, S., et al. (2009). "Screening of tuberculosis by	Case-control study of
	interferon-gamma assay before biologic therapy for rheumatoid	test results
	arthritis." <u>Tuberculosis</u> 89(2): 136-141.	
112.	Nellore, A. and C. N. Kotton (2013). "Screening strategies for	Letter
	tuberculosis in children with kidney disease: what is cost-	
	effective?" American Journal of Kidney Diseases 61(1): 3-5.	
113.	Nguyen, M. Q. and J. Green-McKenzie (2012). "What are the	Editorial
	differences between the tuberculin skin test and the	
	QuantiFERON-TB Gold test?" <u>Journal of Occupational &</u>	
	Environmental Medicine 54(9): 1177-1178.	
114.	Nkurunungi, G., et al. (2012). "Determining Mycobacterium	No construct validity
	tuberculosis infection among BCG-immunised Ugandan children	
	by T-SPOT.TB and tuberculin skin testing." PLoS ONE	
	[Electronic Resource] 7(10): e47340.	
115.	Ohnishi, T. (2011). "Comparison of QuantiFERON-TB Gold	Letter
	and the tuberculin skin test for the detection of previous	
	tuberculosis infection evaluated by chest CT findings in	
	Japanese rheumatoid arthritis patients." <u>Journal of Infection &</u>	
	<u>Chemotherapy</u> 17(6): 849-850.	
116.	Oni, T., et al. (2012). "Smoking, BCG and employment and the	Non-standard or in-
	risk of tuberculosis infection in HIV-infected persons in South	house IGRA
	Africa." PLoS ONE [Electronic Resource] 7(10): e47072.	
117.	Onur, H., et al. (2012). "Comparison of quantiferon test with	Inappropriate proxy
	tuberculin skin test for the detection of tuberculosis infection in	for LTBI
110	children." <u>Inflammation</u> 35(4): 1518-1524.	¥
118.	Ormerod, L. P. (2013). "Further evidence supporting	Letter
	programmatic screening for, and treatment of latent TB Infection	
	(LTBI) in new entrants to the UK from high TB prevalence	
110	countries." Thorax 68(3): 201.	Economic stud-
119.	Pareek, M., et al. (2013). "Community-based evaluation of	Economic study
	immigrant tuberculosis screening using interferon release assays	
	and tuberculin skin testing: observational study and economic analysis." Thorax 68(3): 230-239.	
120.	Pattnaik, S., et al. (2012). "Agreement between skin testing and	No construct validity
120.	QuantiFERON-TB Gold In-Tube assay (QFT-TB) in detecting	THO CONSTIUCT VARIABLY
	latent tuberculosis infection among household contacts in India."	
	Indian Journal of Tuberculosis 59(4): 214-218.	
121.	Petrescu, L., et al. (2010). "Tuberculin skin test, interferon-	No construct validity
141.	gamma assay, and T cells subpopulations in hemodialysis	130 construct varialty
	patients." <u>Journal of Renal Nutrition</u> 20(5 Suppl): S109-117.	
122.	Pooran, A., et al. (2010). "Different screening strategies (single	Economic study
122.	or dual) for the diagnosis of suspected latent tuberculosis: a cost	Leonomic study
	effectiveness analysis." <u>BMC Pulmonary Medicine</u> 10: 7.	
123.	Qumseya, B. J., et al. (2011). "QuantiFERON TB gold testing	No construct validity
123.	for tuberculosis screening in an inflammatory bowel disease	110 construct varianty
	cohort in the United States." <u>Inflammatory Bowel Diseases</u>	
	17(1): 77-83.	
	1 - (-),	<u>l</u>

124.	Ramos, J. M., et al. (2012). "Contribution of interferon gamma release assays testing to the diagnosis of latent tuberculosis	Inappropriate proxy for LTBI
	infection in HIV-infected patients: a comparison of QuantiFERON-TB Gold In Tube, T-SPOT.TB and tuberculin skin test." BMC Infect Dis 12: 169.	
125.	Riazi, S., et al. (2012). "Rapid diagnosis of Mycobacterium	Active TB
123.	tuberculosis infection in children using interferon-gamma	Active 1B
	release assays (IGRAs)." <u>Allergy & Asthma Proceedings</u> 33(3):	
	217-226.	
126.	Ringrose, J. S., et al. (2011). "Detecting latent tuberculosis	No relevant outcomes
120.	infection during anti-tumor necrosis factor therapy." Clinical &	140 Televant outcomes
	Experimental Rheumatology 29(5): 790-794.	
127.	Santin, M., et al. (2011). "Detection of latent tuberculosis by the	Mixed population
127.	tuberculin skin test and a whole-blood interferon- release assay,	and/or no subgroup of
	and the development of active tuberculosis in HIV-seropositive	interest for construct
	persons." <u>Diagnostic Microbiology & Infectious Disease</u> 69(1):	validity
	59-65.	
128.	Sattah, M. V., et al. (2012). "Interferon-gamma release assay T-	Letter
	SPOT.TB and HIV-related tuberculosis." <u>International Journal</u>	
	of Tuberculosis & Lung Disease 16(2): 281-282.	
129.	Sayarlioglu, H., et al. (2011). "QuantiFERON-TB Gold test for	No construct validity
	screening latent tuberculosis infection in hemodialysis patients."	
	<u>Tuberkuloz ve Toraks</u> 59(2): 105-110.	
130.	Schneider, W. J., et al. (2011). "QuantiFERON-TB testing for	Letter
	latent tuberculosis infection in low-prevalence countries: making	
	the most of an imperfect process." <u>Infection Control & Hospital</u>	
	<u>Epidemiology</u> 32(10): 1055.	
131.	Serrano-Escobedo, C. J., et al. (2013). "Performance of	Mixed population
	tuberculin skin test compared to QFT-IT to detect latent TB	and/or no subgroup of
	among high-risk contacts in Mexico." <u>Archives of Medical</u>	interest
120	Research 44(3): 242-248.	011 2000 (1
132.	Seshadri, C., et al. (2008). "Low sensitivity of T-cell based	Old pre-2009 study
	detection of tuberculosis among HIV co-infected Tanzanian in-	
122	patients." East African Medical Journal 85(9): 442-449.	No construct validity
133.	Setiawati, L., et al. (2011). "Effect of BCG vaccination and non-tuberculous Mycobacterium infection on interferon gamma	No construct validity
	specific assay and a tuberculin skin test among children with a	
	tuberculosis contact in Surabaya, Indonesia." Southeast Asian	
	Journal of Tropical Medicine & Public Health 42(6): 1460-1468.	
134.	Shah, M., et al. (2012). "Programmatic impact of	Mixed population
131.	QuantiFERON-TB Gold In-Tube implementation on latent	and/or no subgroup of
	tuberculosis diagnosis and treatment in a public health clinic."	interest
	PLoS ONE [Electronic Resource] 7(5): e36551.	
135.	Shanaube, K., et al. (2011). "Risk factors associated with	Mixed population
	positive QuantiFERON-TB Gold In-Tube and tuberculin skin	and/or no subgroup of
	tests results in Zambia and South Africa." PLoS ONE	interest
	[Electronic Resource] 6(4): e18206.	
136.	Shovman, O., et al. (2009). "QuantiFERON-TB Gold in the	Included/excluded in
	identification of latent tuberculosis infection in rheumatoid	CG117
	arthritis: a pilot study." <u>International Journal of Tuberculosis &</u>	
		1
	<u>Lung Disease</u> 13(11): 1427-1432.	
137.	Simsek, H., et al. (2010). "Comparison of tuberculin skin testing	Mixed population
137.		Mixed population and/or no subgroup of interest

138.	Singanayagam, A., et al. (2013). "Evaluation of screening methods for identification of patients with chronic rheumatological disease requiring tuberculosis chemoprophylaxis prior to commencement of TNF-alpha antagonist therapy." Thorax 68(10): 955-961.	Inappropriate proxy for LTBI
139.	Song, Q., et al. (2012a). "Evaluation of a new interferon-gamma release assay and comparison to tuberculin skin test during a tuberculosis outbreak." <u>International Journal of Infectious</u> <u>Diseases</u> 16(7): e522-526.	Non-standard or in- house IGRA
140.	Song, S., et al. (2012b). "Performance of confirmatory interferon- release assays in school TB outbreaks." Chest 141(4): 983-988.	QFT used as confirmatory test on subgroup of TST + patients
141.	Soysal, A., et al. (2012). "Diagnosing latent tuberculosis infection in haemodialysis patients: T-cell based assay (T-SPOT.TB) or tuberculin skin test?" Nephrology Dialysis Transplantation 27(4): 1645-1650.	No construct validity
142.	Starke, J. R. (2012). "Interferon- release assays for the diagnosis of tuberculosis infection in children." <u>Journal of Pediatrics</u> 161(4): 581-582.	Letter
143.	Stefan, D. C., et al. (2010). "Interferon-gamma release assays for the detection of Mycobacterium tuberculosis infection in children with cancer." <u>International Journal of Tuberculosis & Lung Disease</u> 14(6): 689-694.	No construct validity
144.	Steffen, R. E., et al. (2013). "Cost-effectiveness of Quantiferon-TB Gold-in-Tube versus tuberculin skin testing for contact screening and treatment of latent tuberculosis infection in Brazil." PLoS ONE [Electronic Resource] 8(4): e59546.	Economic study
145.	Sultan, B., et al. (2013). "Comparison of two interferon-gamma release assays (QuantiFERON-TB Gold In-Tube and T-SPOT.TB) in testing for latent tuberculosis infection among HIV-infected adults." <u>International Journal of STD & AIDS</u> 24(10): 775-779.	IGRA vs. IGRA only (no TST)
146.	Talati, N. J., et al. (2011). "Diagnosis of latent tuberculosis infection among HIV discordant partners using interferon gamma release assays." <u>BMC Infect Dis</u> 11: 264.	No construct validity
147.	Tannus Silva, D. G., et al. (2012). "Latent tuberculosis in rheumatoid arthritis: evaluating cellular response and high-resolution computed tomography." <u>Archivos de Bronconeumologia</u> 48(5): 144-149.	No construct validity
148.	Tebruegge, M., et al. (2013). "Interferon- release assays for the diagnosis of tuberculosis in children." <u>Archives of Disease in Childhood</u> 98(3): 239-240.	Letter
149.	Theodoropoulos, N., et al. (2012). "Use of the QuantiFERON-TB Gold interferon-gamma release assay for screening transplant candidates: a single-center retrospective study." <u>Transplant Infectious Disease</u> 14(1): 1-8.	IGRA only (historical TST)
150.	Thomas, B., et al. (2011). "Concordance between tuberculin skin test and interferon- assay and interferon- response to mitogen in pediatric tuberculosis contacts." <u>Pediatric Pulmonology</u> 46(12): 1225-1232.	No construct validity
151.	Thomas, T. A., et al. (2010). "Malnutrition and helminth infection affect performance of an interferon gamma-release assay." Pediatrics 126(6): e1522-1529.	No construct validity

152.	Uluk, T., et al. (2013). "Evaluation of an interferon-gamma release assay in children with suspected tuberculosis in Papua New Guinea." <u>Pediatric Infectious Disease Journal</u> 32(2): 187-189.	No construct validity
153.	Wassie, L., et al. (2013). "Parasitic infection may be associated with discordant responses to QuantiFERON and tuberculin skin test in apparently healthy children and adolescents in a tuberculosis endemic setting, Ethiopia." <u>BMC Infect Dis</u> 13: 265.	No construct validity
154.	Weinfurter, P., et al. (2011). "Predictors of discordant tuberculin skin test and QuantiFERON-TB Gold In-Tube results in various high-risk groups." <u>International Journal of Tuberculosis & Lung Disease</u> 15(8): 1056-1061.	No construct validity
155.	Wolf, T., et al. (2013). "Tuberculosis skin test, but not interferonreleasing assays is affected by BCG vaccination in HIV patients." <u>Journal of Infection</u> 66(4): 376-380.	No construct validity
156.	Xie, X., et al. (2011). "A T-cell-based enzyme-linked immunospot assay for tuberculosis screening in Chinese patients with rheumatic diseases receiving infliximab therapy." Clinical & Experimental Medicine 11(3): 155-161.	No construct validity
157.	Yilmaz, N., et al. (2012). "Comparison of QuantiFERON-TB Gold test and tuberculin skin test for the identification of latent Mycobacterium tuberculosis infection in lupus patients." <u>Lupus</u> 21(5): 491-495.	No construct validity
158.	Zhao, J., et al. (2011). "Low agreement between the T-SPOT.TB assay and the tuberculin skin test among college students in China." <u>International Journal of Tuberculosis & Lung Disease</u> 15(1): 134-136.	No construct validity
159.	Pareek, M., et al. (2011). "Screening of immigrants in the UK for imported latent tuberculosis: a multicentre cohort study and cost-effectiveness analysis." <u>Lancet Infect Dis</u> 11(6): 435-444.	Economic study
160.	Shah, M., et al. (2012). "QuantiFERON-TB gold in-tube implementation for latent tuberculosis diagnosis in a public health clinic: a cost-effectiveness analysis." <u>BMC Infect Dis</u> 12: 360.	Economic study

Pre-MEDLINE and other databases search results table

N	Study	Reason for exclusion
161.	(2011). "Erratum: Interferon-gamma release assays for diagnosis	Letter
	of latent tuberculosis infection: Evidence in immune-mediated	
	inflammatory disorders (Current Opinion in Rheumatology)."	
	Current Opinion in Rheumatology 23(5): 504.	
162.	(2012). "Society for Adolescent Health and Medicine Annual	Irrelevant
	Meeting: Impact of Trauma on Teens: Building the Safety Net	
	2012." Journal of Adolescent Health 1).	
163.	(2013). "40th Annual Conference Abstracts, APIC 2013."	Abstract
	American Journal of Infection Control 1). Endnote Record ID:	
	2071 [1,3]	
164.	(2013). "World Tuberculosis Day Symposium 2012."	Abstract
	<u>Tuberculosis</u> 93 (1).	
165.	Abdel-Nabi, E. A., et al. (2014). "QuantiFERON vs. tuberculin	No construct validity
	testing in detection of latent tuberculous infection among	
	chronic renal failure patients." Egyptian Journal of Chest	
	<u>Diseases and Tuberculosis</u> 63(1): 161-165.	

166.	Abdel-Samea, S. A., et al. (2013). "Comparative study between using QuantiFERON and tuberculin skin test in diagnosis of	Mixed population and/or no subgroup of
	Mycobacterium tuberculosis infection." Egyptian Journal of Chest Diseases and Tuberculosis 62(1): 137-143	interest
167.	Abraham, B. and Jacob, R. (2013). "Monitoring and	Abstract
107.	management of latent tuberculosis in IBD patients on antitnf	Tiostract
	therapy: A case series." American Journal of Gastroenterology	
	108: S521-S522.	
168.	Aggarwal, P. and Aggarwal, D. (2012). "Performance of an	Letter
	interferon-gamma release assay to diagnose latent tuberculosis	
	infection during pregnancy." Obstetrics & Gynecology 120(2 Pt	
	1): 398; author reply 398.	
169.	Ahmad, M. and Pesola, G. R. (2010). "False-positive	Abstract
150	QuantiFERON Gold tests." Chest 138 (4).	A1
170.	Ahmadinejad, Z., et al. (2010). "Evaluation of QuantiFERON-	Abstract
	gold (tuberculin skin test) for the identification of latent	
	tuberculosis infection in would-be transplant recipient patients referring to an Iranian transplant clinic from September 2007 to	
	December 2008." Clinical Microbiology and Infection 16: S542.	
171.	Akpaka, P. E., et al. (2010). "Evaluation of cost and methods for	Abstract
1,1.	detecting latent tuberculosis infection among target individual	Tiostract
	groups in Trinidad & Tobago." <u>International Journal of</u>	
	Infectious Diseases 14: e148.	
172.	Alberte-Castineiras, A., et al. (2012). "Discordant	Abstract
	QuantiFERON-TB Gold In-Tube and tuberculin skin test results	
	in various high-risk groups." Clinical Microbiology and	
	<u>Infection</u> 18: 548.	
173.	Andrisani, G., et al. (2010). "Tubercolosis screening in Italian	Abstract
	patients affected by inflammatory bowel disease: Comparison of	
	quantiFERON-tb gold versus tuberculin skin test." <u>Digestive and</u>	
174	<u>Liver Disease</u> 42: S181-S182.	A1 , ,
174.	Arias, M., et al. (2011). "Performance of two interferon-gamma	Abstract
	release assays (T-SPOT.TB and QuantiFERON-TB Gold in Tube) increase diagnostic yield of tuberculin skin testing for	
	detection of latent tuberculosis in patients with inflammatory	
	bowel disease." Gastroenterology 1): S691.	
175.	Atanassova, A. and Kotzev, I. (2013). "Screening for	Abstract
	tuberculosis in patients candidates for anti-TNF terapy in IBD."	
	Journal of Gastroenterology and Hepatology 28: 141.	
176.	Awan, S., et al. (2012). "Can Quanti-FERON-TB replace TST	Abstract
	(mantoux) as a screening tool prior to (biologics) anti-TNF	
	therapy." <u>Irish Journal of Medical Science</u> 181: S75.	
177.	Bakir, M., et al. (2009). "Use of T cell-based diagnosis of	Inappropriate proxy
	tuberculosis infection to optimize interpretation of tuberculin	for LTBI
	skin testing for child tuberculosis contacts." <u>Clinical Infectious</u>	
170	<u>Diseases</u> 48(3): 302-312.	II
178.	Behar, S. M., et al. (2009). "Use of the T-SPOT.TB assay to	Inclusion of TST +
	detect latent tuberculosis infection among rheumatic disease patients on immunosuppressive therapy." <u>Journal of</u>	patients
	Rheumatology 36(3): 546-551.	
179.	Belard, E., et al. (2010). "Effects of corticosteroid treatment on	Abstract
1,7,	the performance of quantiFERON gold in-tube test in the	110011401
	screening of latent tuberculosis infection." <u>Gastroenterology</u> 1):	
	S523.	

180.	Bergamini, B. M., et al. (2009). "Performance of commercial	IGRA vs. IGRA only
	blood tests for the diagnosis of latent tuberculosis infection in	(no TST)
	children and adolescents."	
181.	Berry, M. P. R., et al. (2009). "Systems biology approaches	Abstract
	characterise the host response to tuberculosis." Thorax 64: A10.	
182.	Bianchi, L., et al. (2009). "Interferon-gamma release assay	No construct validity
	improves the diagnosis of tuberculosis in children." Pediatric	
	Infectious Disease Journal 28(6): 510-514.	
183.	Blandinieres, A., et al. (2013). "QuantiFERON to diagnose	No construct validity
	infection by Mycobacterium tuberculosis: performance in infants	
	and older children." <u>Journal of Infection</u> 67(5): 391-398.	
184.	Blandinieres, A., et al. (2012). "Deficient IFN-gamma response	Abstract
	to Mycobacterium tuberculosis antigens in infants improved	
	since 1 year of age." <u>Immunology</u> 137: 727-728.	
185.	Borkowska, D., et al. (2011). "Interferon-gamma assays T-	Mixed population
	SPOT.TB for the diagnosis of latent tuberculosis infection	and/or no subgroup of
		interest
186.	Borra, H., et al. (2009). "Reliability of tuberculosis screening	Abstract
	tests in patients receiving tumor necrosis factor antagonist	
	therapy in a united states rheumatology clinic." Arthritis and	
	Rheumatism 60: 137.	
187.	Bortlik, M., et al. (2009). "Usefulness of the quantiFERON TB	Abstract
	gold test in assessing the necessity for TB prophylaxis in IBD	
	patients treated with biologicals." <u>Gastroenterology</u> 1): A197.	
188.	Bottger, E. C. (2012). "Interferon-gamma Release Assays and	Abstract
	the Risk of Developing Active Tuberculosis." <u>American Journal</u>	
	of Respiratory and Critical Care Medicine 185(7): 786-787.	
189.	Brebner, J., et al. (2010). "Questionable utility of T-SPOT	Abstract
	testing in a TB exposure incident on a clinical haematology	
100	unit." <u>Thorax</u> 65: A103.	¥
190.	Bruzzese, E., et al. (2009). "Gamma interferon release assays for	Letter
	diagnosis of tuberculosis infection in immune-compromised	
	children in a country in which the prevalence of tuberculosis is	
101	low." Journal of Clinical Microbiology 47(7): 2355-2357.	No relevent outcomes
191.	Bua, A., et al. (2012). "Epidemic of tuberculosis in a high school	No relevant outcomes
	in Northern Sardinia." <u>International Journal of Mycobacteriology</u>	
192.	1(3): 161-163. Bumbacea, D., et al. (2011). "New immunodiagnostic tests for	Abstract
192.	latent and active tuberculosis." Revista Romana De Medicina De	Austract
	Laborator 19(3): 267-278.	
193.	Buonsenso, D., et al. (2012). "Evaluation of a mathematical	Letter
173.	model proposed to predict the diagnosis of tuberculosis in	Letter
	children with cervical lymph node enlargement." <u>International</u>	
	Journal of Pediatric Otorhinolaryngology 76(7): 1068-1070.	
194.	Buonsenso, D., et al. (2012). "Pediatric tuberculosis in two	Abstract
1711	tertiary hospitals in Rome: A 20-year retrospective study."	12000000
	Archives of Disease in Childhood 97: A11-A12.	
195.	Burgos, J. L., et al. (2009). "Targeted screening and treatment	Economic study
	for latent tuberculosis infection using QuantiFERON-TB Gold is	
	cost-effective in Mexico." <u>International Journal of Tuberculosis</u>	
	and Lung Disease 13(8): 962-968.	
196.	Cagan Appak, Y., et al. (2013). "Comparison of tuberculin skin	Foreign language
	testing and in vitro interferon-gamma release assay test for	(Turkish)
	diagnosis of latent tuberculosis in children <u>Journal of Medical</u>	,
_		

	Sciences 33(6): 1402-1407.	
197.	Cagatay, T. (2012). "The role of IGRA tests and tuberculin test for determination of latent tuberculosis in TNF-alpha antagonist users (candidates) TNF-alpha antagonisti kullanacak hastalarda latent tuberkulozun belirlenmesinde IGRA testleri (quantiFERON-elispot) ve ppd'nin yeri." <u>Turk Dermatoloji Dergisi</u> 6(2): 62-64.	Foreign language Turkish
198.	Capocci, S., et al. (2011). "Screening for latent TB in HIV: Are nice & bhiva guidance effective?" Thorax 66: A21-A22.	Abstract
199.	Capocci, S., et al. (2012). "Is testing for latent tuberculosis infection in an UK HIV clinic cost effective?" <u>HIV Medicine</u> 13: 44.	Abstract
200.	Casas, S., et al. (2010). "Diagnosis of tuberculosis infection in patients awaiting transplantation." <u>Clinical Microbiology and</u> Infection 16: S73.	Abstract
201.	Castaneda-Hernandez, D. M., et al. (2012). "Importance of the use of interferon-gamma release assays in the epidemiological surveillance of tuberculosis <u>Revista Medica de Chile</u> 140(1): 128-129.	Abstract
202.	Cetin, E. A., et al. (2012). "QuantiFERON-TB gold test may be more advantageous than tuberculin skin test for screening latent tuberculosis infection in psychiatry clinics <u>Balkan Medical Journal</u> 29(1): 115-116.	Abstract
203.	Chang, B., et al. (2010). "Interferon-gamma assay in the diagnosis of latent tuberculosis infection in arthritis patients treated with tumor necrosis factor antagonists in Korea." <u>American Journal of Respiratory and Critical Care Medicine</u> 181 (1 MeetingAbstracts).	Abstract
204.	Chawla, H., et al. (2010). "Use of the interferon-gamma release assay blood test to confirm latent tuberculosis infection in tuberculin skin test -positive immIGRAnts: Our experience at a connecticut pulmonary clinic." <u>American Journal of Respiratory and Critical Care Medicine</u> 181 (1 MeetingAbstracts).	Abstract
205.	Chen, J. W., et al. (2010). "Evaluation of a T-cell-based enzymelinked immunospot assay for monitoring tuberculosis in patients with rheumatic diseases receiving Infliximab therapy." International Journal of Rheumatic Diseases 13: 87.	Abstract
206.	Chen, Q. F., et al. (2011). "Interferon- release assays screening for latent tuberculosis screening: A cost-effectiveness analysis." Chinese Journal of Evidence-Based Medicine 11(7): 768-774.	Foreign language (Chinese)
207.	Chun, J. K., et al. (2010). "The role of a whole blood interferon-releasing assay for the tracing of tuberculosis infection in bacilli Calmette Guerin vaccinated children." <u>International Journal of Infectious Diseases</u> 14: e312.	Abstract
208.	Clark, B. J., et al. (2009). "Detection of Latent Tuberculosis Infection in Patients with End Stage Renal Disease: Interferon-Gamma Release Assays Versus Tuberculin Skin Test." American Journal of Respiratory and Critical Care Medicine 179: 1.	Abstract
209.	Connell, D. W., et al. (2009). "Comparison between interferongamma release assays and the tuberculin skin test in the diagnosis of tuberculosis in patients with renal disease." Thorax 64: A108.	Abstract
210.	Connell, T., et al. (2009). "Interferon- release assays for the	Abstract

	diagnosis of tuberculosis." <u>Pediatric Infectious Disease Journal</u> 28(8): 758-759.	
211.	Costantino, F., et al. (2010). "High level of disease activity in chronic inflammatory rheumatisms increases the rate of indeterminate interferon-gamma-release assay results for latent tuberculosis infection detection." <u>Arthritis and Rheumatism</u> 62: 768.	Abstract
212.	Davarpanah, M. A., et al. (2009). "Association between PPD and quantiFERON gold TB Test in TB infection and disease among HIV-Infected individuals in Southern Iran." <u>Iranian Red Crescent Medical Journal</u> 11(1): 71-75.	Included/excluded in CG117
213.	De Francisco, R., et al. (2011). "Interferon-gamma release assays (T-SPOT.TB and QuantiFERON-TB GOLD in tube) versus tuberculin skin testing for detection of latent tuberculosis in patients with inflammatory bowel disease." <u>Journal of Crohn's and Colitis</u> 5 (1): S52-S53.	Abstract
214.	De Leon, D. P. (2010). "Comparison of IGRAs with TST for the detection of LTBI in RA patients in a TB endemic population." <u>International Journal of Tuberculosis and Lung Disease</u> 14(6 SUPPL. 1): S40-S41.	Abstract
215.	Del Tedesco, E., et al. (2010). "Interferon gamma release assay (IGRA) and/or tuberculin skin test (TST) in inflammatory bowel disease population: Discordance and performance. Best strategy for detecting tuberculosis." <u>Gastroenterology</u> 1): S672-S673.	Abstract
216.	Delgado Naranjo, J., et al. (2011) Comparative performance of QuantiFERON(®)-TB Gold IT versus tuberculin skin test among contact investigations for latent tuberculosis infection. Medicina clínica 137, 289-296 DOI: 10.1016/j.medcli.2010.11.036	Foreign language (Spanish)
217.	Demkow, U. (2011). "Interferon gamma based tests as a new tool in diagnosis of latent tuberculosis	Editorial
218.	Denholm, J. T. and A. C. Street (2010). "Diagnosis and management of latent tuberculosis infection." Medicine Today 11(3): 72-76.	Review
219.	Diel, R. (2013). "The Predictive Value of Interferon-gamma Release Assays and Tuberculin Skin Test What About Those Not Vaccinated With Bacillus Calmette-Guerin? Response." Chest 143(5): 1515-1516.	Abstract
220.	Dominguez, J. and I. Latorre (2008). "Role of the T-cell interferon-gamma release assays in preventing reactivation of latent tuberculosis infection in immunosuppressed patients in treatment with anti-TNF agents." <u>Journal of Crohn's & colitis</u> 2(3): 250-254.	Old pre-2009 study
221.	Eather, G., et al. (2012). "Comparison of tuberculin skin test with an interferon-gamma release assay (IGRA) in screening for latent tuberculosis infection in a low prevalence population." Respirology 17: 17.	Abstract
222.	Eisenhut, M. and Fidler, K. (2014). "Performance of Tuberculin Skin Test Measured against Interferon Gamma Release Assay as Reference Standard in Children." <u>Tuberculosis Research & Treatment Print</u> 2014: 413459.	Review
223.	Elzi, L., et al. (2009). "Low sensitivity of an Interferon-gamma releasing assay (Elispot-TB (TM)) for the diagnosis of latent tuberculosis in HIV-Infected individuals." <u>Swiss Medical</u>	Abstract

		T
22.4	Weekly 139(9-10): 39S-39S.) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
224.	Erkens, C. G., et al. (2014). "Added value of interferon-gamma	Mixed population
	release assays in screening for tuberculous infection in the	and/or no subgroup of
	Netherlands." <u>International Journal of Tuberculosis & Lung</u>	interest
225	<u>Disease</u> 18(4): 413-420.	Non standard on in
225.	Evans, L. C., et al. (2009). "IFN-gamma Release Assays Improve Detection of Latent Tuberculosis Infection in	Non-standard or in- house IGRA
	Tuberculin-Anergic Candidates for Anti-TNF-alpha Blockade."	House IGRA
	American Journal of Respiratory and Critical Care Medicine	
	179: 1.	
226.	Fernandez, S., et al. (2013). "Use of interferon-gamma release	Abstract
220.	assay (IGRA) and tuberculin skin test (TST) for tuberculosis	Tiostract
	screening in patients candidates for anti-TNF terapy in	
	inflammatory bowel disease (IBD)." Journal of Crohn's and	
	<u>Colitis</u> 7: S58.	
227.	Ferrara, G., et al. (2009). "Interferon-gamma-release assays	Mixed population
	detect recent tuberculosis re-infection in elderly contacts."	and/or no subgroup of
	International Journal of Immunopathology and Pharmacology	interest
	22(3): 669-677.	
228.	Fontana, R. and Jafri S. M. R. (2010). "Diagnosis and	Abstract
	management of latent tuberculosis identified by the	
	quantiFERON assay in liver transplant patients." American	
	Journal of Transplantation 10: 97.	
229.	Francois, C., et al. (2013). "Cost effectiveness analysis of	Abstract
	strategies using new immunological diagnostic tests of latent	
	tuberculosis infection before anti-TNF therapy." Annals of the	
222	Rheumatic Diseases 72.	D . 1
230.	Gao, K. K., et al. (2011). "Comparison of detection	Foreign language
	performances between two kits for mycobacterium tuberculosis	(Chinese)
	infection." <u>Journal of Shanghai Jiaotong University (Medical</u>	
231.	Science) 31(10): 1440-1443. Gao, Y., et al. (2011). "Evaluation of latent Mycobacterium	Abstract
231.	tuberculosis infection screening using TSPOT.TB assay and	AUSHACI
	TST in IMID patients prior to initiation of anti-TNF alpha	
	therapy." <u>International Journal of Infectious Diseases</u> 15: S103.	
232.	Garcia-Garcia, J. M., et al. (2010). "Comparison of tuberculin	Abstract
232.	skin test and QuantiFERON-TB-gold in tube in the diagnosis of	Tiobilact
	Latent Tuberculosis Infection (LTBI) in a prospective	
	community study of contacts." American Journal of Respiratory	
	and Critical Care Medicine 181 (1 MeetingAbstracts).	
233.	Garcia-Pedrazuela, M., et al. (2012). "Evaluation of the use of	Abstract
	QuantiFERON TB-Gold in the routine setting at a university	
	hospital, 2007-2011." Clinical Microbiology and Infection 18:	
	544.	
234.	Garfein, R. S., et al. (2010). "Latent tuberculosis among persons	IGRA only (no TST)
	at risk for infection with HIV, Tijuana, Mexico." Emerging	
	Infectious Diseases 16(5): 757-763.	
235.	Gomes, C. M. F., et al. (2013). "Clinical performance of 4	Abstract
	methods for detecting latent tuberculosis infection (LTbI) in	
	patients with active chronic inflammatory arthritis taking	
	TNFalpha blockers." <u>Arthritis and Rheumatism</u> 65: S1063.	
236.	Gonzalez-Diaz, V., et al. (2013). "Efficiency of interferon-	Abstract
	release assay for screening for latent tuberculosis in patients with	
	systemic lupus erythematosus." <u>Lupus</u> 22 (1): 48.	

237.	Goto, N., et al. (2010). "How do we manage kidney transplant recipients with latent tuberculosis infection (LTBI)?" <u>American Journal of Transplantation</u> 10: 426.	Abstract
238.	Gray, J. M., et al. (2011). "Improvement in latent tuberculosis testing of HIV patients after switching from the tuberculin skin test to QuantiFERON-TB Gold-In-Tube." American Journal of Respiratory and Critical Care Medicine 183 (1 MeetingAbstracts).	Abstract
239.	Greveson, K., et al. (2012). "Comparative cost-effectiveness of IGRA to detect latent TB infection in UK inflammatory bowel disease patients initiating anti-TNFalpha agents." Thorax 67: A87-A88.	Abstract
240.	Guidi, L., et al. (2010). "Screening inflammatory bowel disease patients for latent tubercolosis in Italy: Comparison of quantiFERON-TB gold versus tuberculin skin test." <u>Gastroenterology</u> 1): S526.	Abstract
241.	Hadaya, K., et al. (2013). "Contribution of interferon gamma release assays to the diagnosis of latent tuberculosis infection after renal transplantation." <u>Respiration</u> 85 (6): 590.	Abstract
242.	Hanjiu, W., et al. (2013). "Application of the T-SPOT.TB assay to identify tuberculosis infection in children." <u>Acta Medica Mediterranea</u> 29(3): 443-446.	No relevant outcomes
243.	Hashemi Shahri, M., et al. (2012). "To compare the performance of Quanti-FERON with the tuberculin skin test for identifying latent tuberculosis infection." <u>Iranian Journal of Epidemiology</u> 7(4): 57-65.	Foreign language (Persian)
244.	Hasunuma, T., et al. (2010). "Focused Conference Group: P09 - Nflammation and immunopharmacology: New tools for old diseases comparison of positive reaction of tuberculin skin test and quantiFERON among healthy adult males in Japan." Basic and Clinical Pharmacology and Toxicology 107: 321-322.	Abstract
245.	Hayes and Inc (2012) Interferon-gamma release assays for tuberculosis (Structured abstract). Health Technology Assessment Database	Abstract
246.	Hesseling, A. C., et al. (2009a). "The predictive value of the ELIspot-based interferonrelease assay for tuberculosis disease." Annals of Internal Medicine 150(6): 428-429.	Letter
247.	Hesseling, A. C., et al. (2009b). "Highly discordant T cell responses in individuals with recent exposure to household tuberculosis." <u>Thorax</u> 64(10): 840-846.	No construct validity
248.	Higuchi, K., et al. (2009). "Comparison of performance in two diagnostic methods for tuberculosis infection." Medical Microbiology and Immunology 198(1): 33-37.	IGRA vs. IGRA only (no TST)
249.	Hofland, R., et al. (2012). "Should screening for latent tuberculosis infection be repeated after travel to tuberculosis endemic areas in patients treated with tnf-alpha inhibitor therapy?" <u>Gastroenterology</u> 1): S249.	Abstract
250.	Horsburgh, C. R. and Rubin, E. J. (2011). "Latent tuberculosis infection in the United States." New England Journal of Medicine 364(15): 1441-1448.	Editorial
251.	Horvat, R. T. and M. Pentella (2012). "From the Arm to the Test Tube: Laboratory's New Role in Tuberculosis Testing." <u>Clinical Microbiology Newsletter</u> 34(15): 117-125.	Review
252.	Hosker, H. S. R., et al. (2009). "How useful are interferon-	Abstract

	gamma release assays in cases of suspected tuberculosis?"	
	Thorax 64: A108.	
253.	Hsia, E. C., et al. (2010). "QuantiFERON-TB Gold In-Tube test	Abstract
233.	versus tuberculin skin test across RA, PsA, and AS patients prior	Austract
	to treatment with golimumab, a human anti-TNF antibody."	
	Arthritis and Rheumatism 62: 908.	
254.	Iqbal, A. Z., et al. (2014). "Cost-effectiveness of Using	Economic study
	QuantiFERON Gold (QFT-G)() versus Tuberculin Skin Test	
	(TST) among U.S. and Foreign Born Populations at a Public	
	Health Department Clinic with a Low Prevalence of	
	Tuberculosis." <u>Public Health Nursing</u> 31(2): 144-152.	
255.	Jackson, C., et al. (2013). "Diabetes and latent tuberculosis	Abstract
	infection: Nested case-control study within the PREDICT	
	cohort." Thorax 68: A31-A32.	
256.	James, P. M., et al. (2014). "The performance of quantiFERON-	No construct validity
	TB gold in-tube (QFT-IT) test compared to tuberculin skin test	,
	(TST) in detecting latent tuberculosis infection (LTBI) in the	
	presence of HIV coinfection in a high TB-burden area with	
	BCG-vaccinated population." <u>Journal of the International</u>	
	Association of Providers of AIDS Care 13(1): 47-55.	
257.	Jan Wu, Y. J., et al. (2013). "Different cut off of tuberculin skin	Abstract
	test in latent tuberculosis screening in systemic lupus	
	erythematosus, rheumatoid arthritis and ankylosing spondylitis	
	with an intermediate tuberculosis burden population." Annals of	
	the Rheumatic Diseases 72.	
258.	Jegal, Y., et al. (2009). "The Significance of Whole Blood	Abstract
	Interferon-gamma Assay in Patients with History of Pulmonary	
	Tuberculosis." <u>American Journal of Respiratory and Critical</u>	
	Care Medicine 179: 1.	
259.	Jeong, J. C., et al. (2014). "Utility of QuantiFERON-TB Assay	IGRA only (no TST)
	for Prediction of Tuberculosis Development in Kidney	for construct validity
	Transplant Patients in an Intermediate-Tuberculosis-Burden	
	Country: Lack of Evidence for Enhanced Prediction for Short-	
	Term Tuberculosis Development." <u>Transplantation</u>	
260.	Endnote Record ID: 1506 [1,3] Jeong, Y., et al. (2011). "Prevalence of latent tuberculosis	Abatuaat
200.	infection in patients with radiographic lesions suggesting old	Abstract
	healed tuberculosis." <u>American Journal of Respiratory and</u>	
	Critical Care Medicine 183 (1 MeetingAbstracts).	
261.	Jordan, N., et al. (2009). "QuantiFERON gold screening for	Abstract
201.	latent tuberculosis-cost comparison with mantoux testing."	Hostract
	Rheumatology 48: i70.	
262.	Jung, Y. J., et al. (2014). "The 'either test positive' strategy for	No construct validity
202.	latent tuberculous infection before anti-tumour necrosis factor	1 to construct variatey
	treatment." International Journal of Tuberculosis & Lung	
	<u>Disease</u> 18(4): 428-434.	
263.	Kadavath, S., et al. (2013). "Effectiveness of combining	Abstract
	tuberculin skin test and interferon gamma release assays as a	
	screening strategy for detecting latent tuberculosis infection in	
	high risk patients with systemic lupus erythematosus." Annals of	
	the Rheumatic Diseases 72: 478-478.	
264.	Kalyoncu, U., et al. (2013). "Comparison of quantiFERON-TB	Abstract
	test and TST in routine practice during anti-TNF treatment."	
	Annals of the Rheumatic Diseases 72.	

265.	Karabela, S., et al. (2009). "QuantiFERON TB Gold assay in tuberculosis diagnosis in patients from areas with high and low	Abstract
	TB incidence." Clinical Microbiology and Infection 15: S669-S670.	
266.	Karabela, S., et al. (2009). "QuantiFERON TB Gold in tube	Abstract
	assay for TB diagnosis: A two-year experience." Clinical	
	Microbiology and Infection 15: S392-S393. Endnote Record ID: 4028 [1,3]	
267.	Karimi, A., et al. (2009). "Discrepancy between whole blood	Abstract
207.	interferon gamma assay and tuberculin skin test for diagnosis of	Hostract
	latent TB infection in BCG vaccinated children." <u>IUBMB Life</u>	
	61 (3): 314.	
268.	Kariminia, A., et al. (2009). "Comparison of quantiFERON TB-	Mixed population
	G-test to TST for detecting latent tuberculosis infection in a	and/or no subgroup of
	high-incidence area containing BCG-vaccinated population."	interest
260	Journal of Evaluation in Clinical Practice 15(1): 148-151.	A1
269.	Kashyap, R. S., et al. (2014). "Latent TB Infection Diagnosis in Population Exposed to TB Subjects in Close and Poor Ventilated	Abstract
	High TB Endemic Zone in India." PLoS ONE [Electronic	
	Resource] 9(3): e89524.	
270.	Kawamura, L. M. (2010). "IGRAs in public health practice:	Economic study
	Economic issues." <u>International Journal of Tuberculosis and</u>	·
	<u>Lung Disease</u> 14(6 SUPPL. 1): S60-S63.	
271.	Kenney, A., et al. (2011). "Physicians inconsistently perform	Abstract
	tuberculosis screening in Inflammatory Bowel Disease patients	
	managed with anti-TNF agents." <u>Inflammatory Bowel Diseases</u> 17: S45.	
272.	Ketenci, A., et al. (2013). "Comparison of whole blood gamma	Abstract
272.	interferon assay and tuberculin skin testing in tuberculosis	Tiostruct
	contacts." Respirology 18: 71.	
273.	Khalilzadeh, S., et al. (2010). "Role of quantiFERON-TB test in	No construct validity
	detection of children infected with mycobacterium tuberculosis."	
	<u>Tanaffos</u> 9(3): 22-27.	
274.	Kiet, G., et al. (2012). "Comparing T-SPOT and tuberculosis	Abstract
	skin testing screening methods for treatment acceptance and cost	
275.	efficacy." <u>Journal of Adolescent Health</u> 1): S68. Kik, S. (2009). "Predictive value of IGRAs." <u>Enfermedades</u>	Abstract
213.	Emergentes 11(4): 178-179.	Abstract
276.	Kim, C., et al. (2013). "Comparison of quantiFERON-TB gold	Abstract
	with tuberculin skin test for detecting latent tuberculosis	
	infection before kidney transplantation." <u>American Journal of</u>	
	<u>Transplantation</u> 13: 341.	
277.	Kim, E. Y., et al. (2009). "Performance of tuberculosis skin test	Abstract
	and inferferon- release assay for detection of tuberculosis	
	infection in immunocompromised patients in an intermediate burden country." Respirology 14: A188.	
278.	Kim, H., et al. (2010). "Clinical usefulness of Elispot assay for	Abstract
270.	diagnosis of tuberculosis in a Korean population." Clinical	Tiobilact
	Microbiology and Infection 16: S545.	
279.	Kim, J. H., et al. (2013). "Evaluation of the usefulness of	Abstract
	interferon-gamma release assays and tuberculin skin test for	
	detection of latent mycobacterium tuberculosis infection in	
	Korean rheumatic patients with biologic agents." Arthritis and	
	Rheumatism 65: S560.	

280.	Kleinert, S., et al. (2010). "Screening for latent tuberculosis	Abstract
	infection (LTBI) performance of tuberculous skin test and	
	interferon-gamma release assays (IGRA) under real life	
	conditions." <u>Arthritis and Rheumatism</u> 62: 782.	
281.	Kowada, A. (2010). "Cost effectiveness of IGRAs assays in	Abstract
	Japan." <u>International Journal of Tuberculosis and Lung Disease</u>	
	14(6 SUPPL. 1): S59-S60.	
282.	Kowada, A. (2013) Cost effectiveness of interferon-gamma	Abstract
	release assay for TB screening of HIV positive pregnant women	
	in low TB incidence countries (Provisional abstract). <u>Journal of</u>	
	<u>Infection</u> epub	
283.	Kruczak, K., et al. (2009). "QuantiFERON-TBGIT (QFT) vs	Abstract
	TST in Diagnosis of Latent Tuberculosis (TB) Infection (LTBI)	
	in Vaccinated Population in Poland." American Journal of	
	Respiratory and Critical Care Medicine 179: 1.	
284.	Kruczak, K., et al. (2010). "QuantiFERON-Tbgit (QFT) vs	Abstract
	tuberculosis skin test (TST) in diagnosis of latent tuberculosis	
	(Tb) infection (LTBI) in patients treated by oral	
	glucocorticosteroids." American Journal of Respiratory and	
207	Critical Care Medicine 181 (1 MeetingAbstracts).	A1
285.	Kumar, P., et al. (2013). "Basic and clinical immunology-3019.	Abstract
	Gamma interferon release assay for diagnosis of latent	
	tuberculosis-comparison with TB skin test." World Allergy	
206	Organization Journal 6.	A - 4' TD
286.	Lagrange, P. H., et al. (2013). "A toolbox for tuberculosis (TB)	Active TB
	diagnosis: an Indian multicentric study (2006-2008). Evaluation	
	of QuantiFERON-TB gold in tube for TB diagnosis." <u>PLoS</u> <u>ONE [Electronic Resource]</u> 8(9): e73579.	
287.	Lee, J. and J. Jung (2010). "Comparison of quantiferon-TB gold	Abstract
267.	assay with tuberculin skin test in korean children." <u>Journal of</u>	Austract
	Allergy and Clinical Immunology 1): AB152.	
288.	Lee, J. H., et al. (2014). "Poor agreement between	No construct validity
200.	QuantiFERON-TB Gold test and tuberculin skin test results for	110 construct varianty
	the diagnosis of latent tuberculosis infection in rheumatoid	
	arthritis patients and healthy controls." <u>Korean Journal of Internal</u>	
	Medicine 29(1): 76-84.	
289.	Lee, S. J. (2012). "Risk factors for latent tuberculosis infection	Abstract
	in close contacts of active tuberculosis patients in South Korea."	
	Respirology 17: 130.	
290.	Lee, S. S. J., et al. (2012). "Positive predictive value of	Abstract
	Interferon-gamma release assay for incident active tuberculosis	
	in HIV-infected persons." Retrovirology 9: 1.	
291.	Lee, S. S. J., et al. (2013). "Prediction of the risk of active	Abstract
	tuberculosis in HIV-infection with an interferon-gamma release	
	assay." <u>Lancet</u> 382: 16-16.	
292.	Lee, T., et al. (2010). "Diagnosis of latent tuberculosis infection	Abstract
	by using the QuantiFERON-TB Gold in-tube test in children	
	whose household contact has contagious pulmonary tuberculosis	
	disease." <u>International Journal of Infectious Diseases</u> 14: e307.	
293.	Leung, C. C., et al. (2011). "Evaluation of the T Spot-TB Test	Abstract
	in the targeted screening of close contacts of smear-positive	
	tuberculosis patients." American Journal of Respiratory and	
	Critical Care Medicine 183 (1 MeetingAbstracts).	
294.	Lim, S., et al. (2011). "Risk of latent tuberculosis infection	Abstract

	following exposure to active tuberculosis in at-risk children with	
295.	rheumatic diseases." <u>Internal Medicine Journal</u> 41: 32. Lim, S. C., et al. (2011). "Risk of latent tuberculosis in at-risk	Abstract
296.	children with rheumatic diseases." <u>Pediatric Rheumatology</u> 9. Linas, B. P., et al. (2011). "The cost effectiveness of tuberculin skin test and interferon gamma release assay screening for latent tuberculosis infection in the U.S." <u>American Journal of Respiratory and Critical Care Medicine</u> 183 (1 MeetingAbstracts).	Abstract
297.	Lindemann, M., et al. (2009). "Diagnosis of tuberculosis infection in patients awaiting liver transplantation." <u>Human Immunology</u> 70(1): 24-28.	No relevant outcomes
298.	Ling, D. I., et al. (2010). "Interferon-gamma release assay for pediatric tuberculosis: Does it impact diagnostic and treatment decisions?" <u>American Journal of Respiratory and Critical Care Medicine</u> 181 (1 MeetingAbstracts).	Abstract
299.	Liza, M. I., et al. (2010). "Anti-TNFa therapy and tuberculosis risk: A two-centre experience." <u>International Journal of Rheumatic Diseases</u> 13: 90.	Abstract
300.	Lombardi, G., et al. (2012). "Tuberculosis infection in young children: A screening based on skin and blood testing." <u>Clinical</u> Microbiology and Infection 18: 548.	Abstract
301.	Lopez, Y., et al. (2013). "Correlation between the response to Mycobacterium tuberculosis antigens and the tuberculin skin test in patients with rheumatoid arthritis in Colombia." <u>Biomedica</u> 33(2): 226-232.	No construct validity
302.	Losi, M., et al. (2011). "Role of the QFT-IT assay for the diagnosis of latent tuberculosis infection among adult immigrants." American Journal of Respiratory and Critical Care Medicine 183 (1 MeetingAbstracts).	Abstract
303.	Losi, M., et al. (2010). "Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in patients with rheumatic diseases." <u>Clinical Microbiology and Infection</u> 16: S543.	Abstract
304.	Machado, J., et al. (2011). "Diagnosis of latent tuberculosis in patients with inflammatory bowel disease: Prospective comparison between tuberculin skin test and IGRA test QuantiFERON TB-Gold." Journal of Crohn's and Colitis 5 (1): S64.	Abstract
305.	Machado Jr, A., et al. (2009). "Analysis of discordance between the tuberculin skin test and the interferon-gamma release assay." International Journal of Tuberculosis and Lung Disease 13(4): 446-453.	Mixed population and/or no subgroup of interest
306.	Mahomed, H. (2010). "Predictive value of the TST vs. QuantiFERON-TB gold in-tube in adolescents in a high-burden setting." <u>International Journal of Tuberculosis and Lung Disease</u> 14(6 SUPPL. 1): S48-S49.	Presentation
307.	Manosa, M., et al. (2013). "Current incidence of active tuberculosis in IBD patients treated with anti-TNF agents: Still room for improvement." <u>Journal of Crohn's and Colitis</u> 7(10): e499-e500.	Letter
308.	Mardani, M., et al. (2014). "Performance of QuantiFERON TB Gold Test Compared With the Tuberculin Skin Test for Detecting Latent Tuberculosis Infection in Lung and Heart	No construct validity

	Transplant Condidates "Emparimental & Clinical	
	Transplant Candidates." Experimental & Clinical	
	Transplantation: Official Journal of the Middle East Society for	
200	Organ Transplantation 12(2): 129-132.	41
309.	Mardani, M., et al. (2009). "Accuracy of QuantiFERON-TB	Abstract
	Gold test versus Tuberculin Skin test to detect latent tuberculosis	
	infection in HIV-positive individuals in Iran." Clinical	
210	Microbiology and Infection 15: S391-S392.	1. 1.
310.	Mardani, M., et al. (2010). "Performance of QuantiFERON-TB	No construct validity
	Gold test compared to tuberculin skin test in detecting latent	
	tuberculosis infection in HIV- positive individuals in Iran."	
211	Annals of Thoracic Medicine 5(1): 43-46.	
311.	Mariette, X., et al. (2010). "Before beginning anti-TNF, a better	Abstract
	targeted screening and a twice decrease frequency of latent	
	tuberculosis (TB) with IFN gamma release assays (IGRA)	
	compared with tuberculin skin test. Results in 396 patients from	
	the etat study." <u>Arthritis and Rheumatism</u> 62: 376.	
312.	Maritsi, D., et al. (2011). "Assessment of quantiferon as a	Abstract
	screening tool prior to initiation of infliximab: A single centre's	
	perspective." Clinical and Experimental Rheumatology 29 (2):	
	402-403.	
313.	Marra, F., et al. (2008). "Cost-effectiveness of a new interferon-	Economic study
	based blood assay, QuantiFERON-TB Gold, in screening	
	tuberculosis contacts." <u>International Journal of Tuberculosis and</u>	
	<u>Lung Disease</u> 12(12): 1414-1424.	
314.	Martinez-Morillo, M., et al. (2013). "Interferon-gamma release	Abstract
	assays in rheumatic patients: Baseline study and in the course of	
	anti-tumor necrosis factor-alpha agents." Annals of the	
	Rheumatic Disease 71.	
315.	Martinez-Morillo, M., et al. (2011). "Interferon-release assays in	Abstract
	rheumatic patients: Baseline study and in the course of anti-	
	tumor necrosis factor-agents." <u>Arthritis and Rheumatism</u> 1).	
316.	Mateo, L., et al. (2009). "Usefulness of in vitro interferon-	Abstract
	release assays (IGRAS) for diagnosis of latent tuberculosis	
	infection in rheumatic patients scheduled for anti-TNF-	
	treatment." Arthritis and Rheumatism 60: 996.	
317.	Matsubara, J. (2010). "Indeterminate and positivity rates of a	Abstract
	commercially available enzymelinked immunospot (ELISPOT)	
	blood test in at-risk groups for tuberculosis infection." American	
	Journal of Infection Control 38 (5): E48-E49.	
318.	Matsubara, J. (2010). "Indeterminate and positivity rates of the	Abstract
	T-Spot.TB test in at-risk individuals screened for tuberculosis	
	infection." American Journal of Respiratory and Critical Care	
210	Medicine 181 (1 MeetingAbstracts).	A1
319.	Mehta, B., et al. (2011). "Combining tuberculin skin test and	Abstract
	interferon gamma release assays for latent tuberculosis infection	
	screening may be necessary for the exclusion of latent	
	tuberculosis in a high risk individuals with rheumatoid arthritis."	
220	Arthritis and Rheumatism 1).	A 144
320.	Mehta, B., et al. (2013). "A proposed effective strategy to	Abstract
	screening latent TB infection in RA patients." Annals of the	
221	Rheumatic Disease 71.	A1
321.	Melath, S., et al. (2014). "Screening for latent TB in patients	Abstract
	with rheumatic disorders prior to biologic agents in a 'high-risk'	
	TB population: comparison of two interferon gamma release	

	·	
	assays." Rheumatology International 34(1): 149-150.	
322.	Mendes, M. A., et al. (2013). "Contact screening in tuberculosis:	Mixed population
	Can we identify those with higher risk?" European Respiratory	and/or no subgroup of
	<u>Journal</u> 41(3): 758-760.	interest
323.	Mendoza, O. M. (2011). "Interferon-gamma release assays for	Letter
	the diagnosis of latent Mycobacterium tuberculosis infection."	
	European Respiratory Journal 38(5): 1237-1238.	
324.	Meyssonnier, V., et al. (2012). "Performance of Quantiferon (R)	Active TB
	for the diagnosis TB." Medecine et Maladies Infectieuses	
	42(12): 579-584.	
325.	Milburn, H., et al. (2011). "A comparison between interferon	Letter
	gamma release assays and the tuberculin skin test in the contact	
	tracing of patients with chronic kidney disease response."	
	<u>Thorax</u> 66(8): 730-730.	
326.	Miller, R. F., et al. (2011). "Comparison of two interferon-	Abstract
320.	gamma release assays (Quantiferon-TB gold in-tube and t-	Tiostract
	spot.TB) in screening for latent tuberculosis infection (LTBI)	
	among hiv-infected adults attending an inner london hiv clinic."	
	Thorax 66: A72-A73.	
327.	Ministro, P., et al. (2011). "Diagnosis of latent tuberculosis in	Abstract
327.	patients with inflammatory bowel disease: Prospective	Tiostract
	comparison between tuberculin skin test and Interferon Gamma	
	Release Assay (IGRA) test." <u>Gastroenterology</u> 1): S776.	
328.	Mittal, C. and Kaur, N. (2013). "QuantiFERON TB gold testing	Abstract
326.	for latent tuberculosis is more frequently indeterminate in	Abstract
	patients with inflammatory bowel disease." <u>Inflammatory Bowel</u>	
	Diseases 19: S62.	
329.	Mount, C., et al. (2011). "Mantoux or gamma interferon	Abstract
329.	(IGRA)-which test is best in children?" Thorax 66: A138-A139.	Abstract
330.	Mulder, C., et al. (2013). "Predictive Value of the Tuberculin	IGRA only (no TST)
330.	Skin Test among Newly Arriving Immigrants." PLoS ONE	
	[Electronic Resource] 8(3).	
331.	Munoz, L., et al. (2012). "Prevention of tuberculosis associated	Abstract
331.	with tumour necrosis factor antagonists. An 8-year observational	Austract
	cohort study." <u>Clinical Microbiology and Infection</u> 18: 33.	
332.		Abstract
332.	Neira-Munoz, E., et al. (2008). "Extensive transmission of mycobacterium tuberculosis among children on a school bus."	Abstract
	•	
222	Pediatric Infectious Disease Journal 27(9): 836-837.	A 1- atmost
333.	Ni Cheallaigh, C., et al. (2010). "Sensitivity, specificity and	Abstract
	inter-test agreement of interferon-gamma release assays for the	
	diagnosis of latent tuberculosis infection in HIV-infected	
	individuals with advanced immunodeficiency." Clinical	
224	Microbiology and Infection 16: S72.	T
334.	Nicol, M. P., et al. (2009). "Comparison of T-SPOT. TB assay	Inappropriate proxy
	and tuberculin skin test for the evaluation of young children at	for LTBI
	high risk for tuberculosis in a community setting." Pediatrics	
225	123(1): 38-43.	A 1 4 4
335.	Noorbakhsh, S., et al. (2012). "Evaluation of the agreement	Abstract
	between Quantiferon-TB assay and Tuberculin skin test in TB	
	infected cases: Tehran, Iran." <u>International Journal of Infectious</u>	
226	<u>Diseases</u> 16: e288.	A1
336.	Novak, S., et al. (2009). "Tuberculosis among patients treated	Abstract
	with anti TNF inhibitors prior and after the use of Quantiferon	
	test." <u>Clinical and Experimental Rheumatology</u> 27 (5): 710.	

337.	O'Flynn, E., et al. (2012). "Quantiferon testing in mantoux negative patients commencing anti-TNF therapy identifies additional at risk patients." <u>Irish Journal of Medical Science</u> 181: S58.	Abstract
338.	Ong, S. Y., et al. (2012). "How good are we at screening for infections prior to anti-TNF-alpha therapy?" <u>Journal of Gastroenterology and Hepatology</u> 27: 113-114.	Abstract
339.	Oon, H. and B. Yeo (2013). "The interferon-gamma release assay: Experience from a tertiary dermatology center in the tropics." Journal of the American Academy of Dermatology 1): AB135.	Abstract
340.	Ortakayla, M., et al. (2012). "Concordance of the interferon-i release assay (IGRA) and the tuberculin skin test (TST) for the screening of tuberculosis infection in the inflammatory rheumatic disease (IRD) population." Chest 1).	Abstract
341.	Ozbek, S., et al. (2013). "Detection of latent tuberculosis infection in rheumatologic diseases before anti-TNFalpha therapy: Tuberculin skin test versus IFN- assay." <u>Arthritis and Rheumatism</u> 65: S577.	Abstract
342.	Ozen Alahdab, Y., et al. (2011). "Interferon-gamma release assay or tuberculin skin test in inflammatory bowel disease patients which is reliable." <u>Journal of Crohn's and Colitis</u> 5 (1): S53.	Abstract
343.	Painter, J. A., et al. (2013). "Tuberculosis screening by tuberculosis skin test or QuantiFERON-TB Gold In-Tube Assay among an immigrant population with a high prevalence of tuberculosis and BCG vaccination." PLoS ONE [Electronic Resource] 8(12): e82727.	Active TB
344.	Paluch-Oles, J., et al. (2013). "Identification of latent tuberculosis infection in rheumatic patients under consideration for treatment with anti-TNF-alpha agents." <u>Archives of Medical Science</u> 9(1): 112-117.	No construct validity
345.	Papay, P., et al. (2009). "Immunosuppressive (IS) therapy impacts the results of QuantiFERON and tuberculin skin test in routine screening for latent tuberculosis (LTB) in patients with inflammatory bowel diseases (IBD)." Gastroenterology 1): A195.	Abstract
346.	Pareek, M., et al. (2011). "Community-based evaluation of immigrant TB screening using interferon gamma release assays and tuberculin skin testing: Yields and cost-effectiveness." Thorax 66: A20.	Abstract
347.	Pareek, M., et al. (2009). "Modelling the health impact and cost-effectiveness of screening new entrants to the UK for latent tuberculosis infection." <u>Journal of Infection</u> 59 (6): S442.	Abstract
348.	Patel, D., et al. (2012). "Screening for latent tuberculosis in patients starting anti-TNF therapy." Rheumatology (United Kingdom) 51: iii175.	Abstract
349.	Pease, E., et al. (2013). "Does the dual-testing strategy underdiagnose latent TB infection in HIV-infected individuals? A 1-year experience in a TB high-incidence area in the UK." <u>HIV Medicine</u> 14: 69.	Abstract
350.	Perez-Escolano, E., et al. (2009). "Comparison of an interferongamma release assay with tuberculin skin test for the diagnosis of tuberculosis infection in a contact investigation." <u>Clinical</u>	Abstract

	Microbiology and Infection 15: S392.	
351.	Perez-Escolano, E., et al. (2010). "Comparison of QuantiFERON TB Gold with tuberculin skin test for the diagnosis of	Abstract
	tuberculosis infection in risk groups." <u>Clinical Microbiology and Infection</u> 16: S542-S543.	
352.	Pesola, G. R., et al. (2011). "Quantiferon gold in tube latent	Abstract
	tuberculosis testing in low risk healthy adults." <u>American</u> <u>Journal of Respiratory and Critical Care Medicine</u> 183 (1	
	MeetingAbstracts).	
353.	Pullar, N. D., et al. (2014). "Low prevalence of positive	No construct validity
	interferon-gamma tests in HIV-positive long-term immigrants in	
	Norway." <u>International Journal of Tuberculosis & Lung Disease</u> 18(2): 180-187.	
354.	Punal Rioboo, J. and T. Queiro Verdes (2010) Interferon-gamma	Abstract
33 1.	release assays (IGRAs) for diagnosis of latent tuberculosis	Tiostract
	infection and active tuberculosis (Structured abstract). Health	
	<u>Technology Assessment Database</u>	
355.	Qin, L. L., et al. (2013). "T-SPOT.TB for detection of	No construct validity
	tuberculosis infection among hematological malignancy patients	
	and hematopoietic stem cell transplant recipients." <u>Asian Pacific</u> <u>Journal of Cancer Prevention: Apjcp</u> 14(12): 7415-7419.	
356.	Richeldi, L., et al. (2008). "Prior tuberculin skin testing does not	Letter
220.	boost QuantiFERON-TB results in paediatric contacts."	Letter
	European Respiratory Journal 32(2): 524-525.	
357.	Rotar, Z. and M. Tomsic (2013). "Performance of a two-step	Abstract
	latent tuberculosis screening algorithm in patients with	
	rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis	
	prior to treatment with tumor necrosis alpha inhibitors: Prospective observational data from the Biorx.Si registry."	
	Arthritis and Rheumatism 65: S578.	
358.	Sauzullo, I., et al. (2010). "Usefulness of interferon-gamma	Abstract
	release assays for latent tuberculosis screening in patients	
	candidate for TNF-a therapy." Clinical Microbiology and	
	Infection 16: S72.	
359.	Sauzullo, I., et al. (2009). "Detection of M. Tuberculosis	Abstract
	infection by interferon-gamma release assays: A comparative study in HIV-infected patients and in immunosuppressed	
	candidates for anti-TNF-alpha therapy." <u>HIV Medicine</u> 10: 155-	
	156.	
360.	Schichter-Konfino, V. and Toubi, E. (2014). "Interferon-a-	Abstract
	release assay prevents unnecessary tuberculosis therapy in	
	individuals with positive tuberculin skin test." <u>Journal of Allergy</u>	
261	and Clinical Immunology 1): AB244.	Abatuaat
361.	Seagar, A. L., et al. (2010). "Assessment of the use of the Quantiferon-TB gold in-tube assay for the diagnosis of TB	Abstract
	infection in Lothian, Scotland." Clinical Microbiology and	
	Infection 16: S544.	
362.	Sester, M., et al. (2011). "Head-to-head analysis of M.	Abstract
	Tuberculosis interferon- release assays (IGRAs) and skin-testing	
	in immunocompromised patients: Interim analysis of a European	
	multicenter TBNET study." <u>American Journal of</u> <u>Transplantation</u> 11: 115.	
	L LEAUSDIANTATION LL' LLD	1
363.	Shakak, A. O., et al. (2011). "Latent tuberculosis infections	Abstract

	surrogate markers in developing countries." <u>Clinical Chemistry</u> and Laboratory Medicine 49: S541-S541.	
364.	Sharma, N. (2009). "ELISpot as a predictor for development of tb in children with tb contact." Thorax 64(4): 320.	Abstract
365.	Soborg, B. (2010). "Comparison of screening procedures for LTBI among patients with inflammatory diseases." <u>International Journal of Tuberculosis and Lung Disease</u> 14(6 SUPPL. 1): S38-S40.	Included/excluded in CG117
366.	Stavri, H. R., et al. (2010). "Prospective Comparison of Two Brands of Tuberculin Skin Tests and Quantiferon-TB Gold intube Assay Performances for Tuberculosis Infection in Hospitalized Children." Medica 5(4): 271-276.	Active TB
367.	Swaminath, A., et al. (2012). "Quantiferon testing is superior to tuberculosis skin test (TST) in identifying latent TB in immunosuppressed patients with inflammatory bowel disease: A decision analysis." <u>American Journal of Gastroenterology</u> 107: S688.	Abstract
368.	Swaminath, A., et al. (2013). "Cost-effectiveness of QuantiFERON testing before initiation of biological therapy in inflammatory bowel disease." <u>Inflammatory Bowel Diseases</u> 19(11): 2444-2449.	Economic study
369.	Tavast, E., et al. (2009). "IGRA tests perform similarly to TST but cause no adverse reactions: pediatric experience in Finland." BMC Research Notes 2: 9.	Active TB
370.	Tavast, E., et al. (2012). "Immunosuppression Adversely Affects TST but Not IGRAs in Patients with Psoriasis or Inflammatory Musculoskeletal Diseases." <u>International journal of rheumatology</u> 2012: 381929.	Non-standard or in- house IGRA
371.	Triverio, P. A., et al. (2009). "Interferon-gamma release assays versus tuberculin skin testing for detection of latent tuberculosis in chronic haemodialysis patients." <u>Nephrology Dialysis</u> <u>Transplantation</u> 24(6): 1952-1956.	Included/excluded in CG117
372.	Van Zyl-Smit, R. N., et al. (2011). "Immunodiagnosis of latent TB in HIV-infected persons in a high burden setting." <u>American Journal of Respiratory and Critical Care Medicine</u> 183 (1 MeetingAbstracts).	Abstract
373.	Vassilopoulos, D., et al. (2009). "Comparison of two interferongamma release assays to tuberculin skin testing for latent tuberculosis screening in rheumatic patients starting anti-TNF treatment." <u>Arthritis and Rheumatism</u> 60: 1907.	Abstract
374.	Velizarova, S. A., et al. (2009). "To what extent T-SPOT.TB could be used in the diagnosis of tuberculosis in children exposed to the infection?" European Journal of Immunology 39: S217.	Abstract
375.	Vortia, E., et al. (2013). "Use of the quantiferon-TB gold in-tube test for latent tuberculosis screening in children with inflammatory bowel disease treated with infliximab." <u>Gastroenterology</u> 1): S887.	Abstract
376.	Wang, H., et al. (2013). "Clinical value of a whole blood interferon- release assay for the diagnosis of Mycobacterium tuberculosis infection during antitubercular treatment." <u>Experimental and Therapeutic Medicine</u> 6(2): 455-458.	Active TB
377.	Wiwanitkit, V. (2010). "QuantiFERON-TB gold test versus tuberculin skin test." <u>Annals of Thoracic Medicine</u> 5(2): 119.	Abstract

378.	Wollman, J., et al. (2013). "The effect of the severity of psoriasis	Abstract
	on screening for latent tuberculosis: A comparison study	
	between psoriasis and rheumatoid arthritis patients." Annals of	
	the Rheumatic Disease 71.	
379.	Wong, S. H., et al. (2013). "Tuberculosis screening with	Abstract
	interferon-gamma release assay in inflammatory bowel disease	
	in a tuberculosis-endemic population." <u>Gastroenterology</u> 1):	
	S418.	
380.	Yilmaz, N., et al. (2009). "Comparison of quantiferon-tb gold	Abstract
	test and tuberculin skin test for identification of latent	
	mycobacterium tuberculosis infection in lupus patients."	
	Arthritis and Rheumatism 60: 286.	
381.	Zapantis, E., et al. (2013). "What is the optimal screening test to	Abstract
	detect latent tuberculosis infection in high risk patients with	
	systemic lupus erythematosus? Findings from a U.S Inner City	
	high-risk SLE cohort." <u>Lupus</u> 22 (1): 61.	
382.	Zelinkova, Z., et al. (2013). "Effectiveness of the screening for	Abstract
	latent tuberculosis in inflammatory bowel disease patients with	
	previous BCG vaccination." <u>Gastroenterology</u> 1): \$413-\$414.	
383.	Zlnay, M., et al. (2013). "The risk of tuberculosis in patients	Abstract
	with ankylosing spondylitis during anti-TNF therapy: Data from	
	national database in Slovakia." Annals of the Rheumatic	
	<u>Diseases</u> 72.	

December 2014 update

Number	Reference	Exclude
384.	Al Wakeel, J. S., M. Al Ghonaim, A. Al Suwaida, et al. (2014).	Abstract
	"The use of quantiferon TB gold in-tube test in screening latent	
	and active tuberculosis among saudi dialysis patients."	
	Nephrology Dialysis Transplantation 29: iii477-iii478.	
385.	Al-Taweel, T., M. Pai, M. Strohl, T. Bessissow, A. Bitton, E. G.	Abstract
	Seidman and W. Afif (2014). "A pilot study of optimal	
	screening for latent tuberculosis in patients with inflammatory	
	bowel disease." <u>Gastroenterology</u> 1): S-582.	
386.	Arenas Miras, M. D. M., C. Hidalgo-Tenorio, P. Jimenez-Gamiz	No construct validity
	and J. Jimenez-Alonso (2014). "Diagnosis of latent tuberculosis	Immunocompromised:
	in patients with systemic lupus erythematosus: T.SPOT.TB	concordance
	versus tuberculin skin test." <u>BioMed Research International</u>	information
	2014(291031).	
387.	Arstikyte, I., I. Butrimiene, R. Zablockis and A. Venalis (2014).	Abstract
	"The value of the Quantiferon TB Gold In-Tube test in the	
	identification of latent tuberculosis in rheumatic patients before	
	treatment with TNF-alpha blockers in Vilnius University	
	Hospital Santariskiu Clinics." <u>Scandinavian Journal of</u>	
	Rheumatology 43: 44-45.	
388.	Belknap, R. and C. L. Daley (2014). "Interferon-gamma release	Review
	assays." Clinics in Laboratory Medicine 34(2): 337-349.	
389.	Bennett, A., J. Ashby, M. Curtiss, N. Pal, T. Wambaa and S.	Abstract
	Menzies (2014). "Does the tuberculin skin test increase the	
	detection of tb infection when screening Hiv positive patients?	
	Three years' experience in a district general hospital." Thorax	
	69: A209.	
390.	Calzada-Hernandez, J., A. Noguera Julian, S. Ricart Campos, R.	Abstract
	Bou Torrent, E. Iglesias Jimenez, M. I. Gonzalez Fernandez, J.	

Number	Reference	Exclude
	Sanchez Manubens, V. Torrente Segarra, L. Rozas Quesada, F.	
	J. Martin Carpi and J. Anton Lopez (2013). "PReS-FINAL-	
	2265: Tuberculosis in pediatric patients who are receiving anti-	
	TNF agents." Pediatric Rheumatology 11.	
391.	Chuke, S. O., N. T. Yen, K. F. Laserson, N. H. Phuoc, N. A.	No construct validity
	Trinh, D. T. Nhung, V. T. Mai, A. D. Qui, H. H. Hai, T. H. Loan	Recently arrived:
	le, W. G. Jones, W. C. Whitworth, J. J. Shah, J. A. Painter, G. H.	concordance
	Mazurek and S. A. Maloney (2014). "Tuberculin Skin Tests versus Interferon-Gamma Release Assays in Tuberculosis	information
	Screening among Immigrant Visa Applicants." <u>Tuberculosis</u>	
	Research & Treatment Print 2014: 217969.	
392.	Cruz, A. T. and J. R. Starke (2014). "Relationship Between	- No valid construct
3,2.	Tuberculin Skin Test (TST) Size and Interferon Gamma Release	validity for LTBI
	Assay (IGRA) Result: When Should Clinicians Obtain IGRAs in	(prior TB is not a
	Children With Positive TSTs?" Clinical Pediatrics 53(12): 1196-	construct of LTBI)
	1199.	- Study aim was
		compare the tests in
		predicting chest X ray
		result suggesting the
200		presence of MTB
393.	Duman, N., S. Ersoy-Evans, O. Karadag, S. Ascioglu, B. Sener,	Exclude- no construct
	S. Kiraz and S. Sahin (2014). "Screening for latent tuberculosis	validity
	infection in psoriasis and psoriatic arthritis patients in a	
	tuberculosis-endemic country: A comparison of the Quantiferon- TB Gold In-Tube test and tuberculin skin test." International	
	Journal of Dermatology 53(10): 1286-1292.	
394.	Elfrink, F., A. van den Hoek, M. E. Mensen and G. J. B. Sonder	Repeat testing
	(2014). "Screening travellers to high-endemic countries for	8
	infection with Mycobacterium tuberculosis using interferon	
	gamma release assay; a prospective study." BMC Infect Dis	
	14(1).	
395.	Elmahdy, M. M. G. F., S. Helal, M. Yonan and R. Saher (2014).	Abstract
	"Tuberculin skin test and Quantiferon test for detection of latent	
	Mycobacterium tuberculosis." <u>International Journal of Infectious</u>	
396.	Diseases 21: 349.	Abstract
390.	Golovics, P. A., A. Szabo, M. Mandel, A. Gyurcsanyi, K. Kristof, Z. Vegh, A. Mohas, B. Szilagyi, Z. Kurti, B. Csako, L.	Abstract
	Kissof, Z. Vegil, A. Monas, B. Szhagyi, Z. Kutti, B. Csako, L. Kiss, B. Lovasz, K. Gecse and P. Lakatos (2014). "Is the	
	tuberculin skin test alone accurate in moderate-to-severe BCG	
	vaccinated patients with inflammatory bowel disease to test for	
	latent tuberculosis?" <u>Journal of Crohn's and Colitis</u> 8: S144.	
397.	Islam, S., J. Grinsdale, L. Bristow and J. Higashi (2014).	Letter to the editor
	"Tuberculin Skin Test and Quantiferon Performance, and	
	Testing of Populations at Low Risk for Tuberculosis Infection."	
	<u>Clinical Infectious Diseases</u> 59(8).	
398.	Jenum, S., D. A. Hokey, T. M. Doherty, H. M. S. Grewal, B.	Comparing antigens
	Lindtjorn, A. C. Hesseling, A. Jacob, F. L. Jahnsen, J. Kenneth,	
	A. V. Kurpad, R. Macaden, J. Nelson, S. Sumithra, M. Vaz and	
	V. Cardenas (2014). "The frequencies of IFN+IL2+TNFalpha+	
	PPD-specific CD4+CD45RO+ T-cells correlate with the	
	magnitude of the Quantiferon gold in-tube response in a	
	prospective study of healthy Indian adolescents." PLoS ONE	
	[Electronic Resource] 9(7).	

Number	Reference	Exclude
399.	Julian, A. N., J. A. Lopez, J. Calzada-Hernandez, E. N. Cuadros,	Abstract
	M. J. M. Pena and F. J. M. Carpi (2014). "Diagnosis of	
	tuberculosis infection in pediatric patients treated with inhibitors	
	of the tumour necrosis factor alpha. A multicenter national study	
	comparing tuberculin skin test and igra tests." Pediatric	
	Rheumatology 12.	
400.	Marquez, C., G. Chamie, J. Achan, A. F. Luetkemeyer, M.	Abstract
	Kyohere, G. Dorsey, M. R. Kamya, E. D. Charlebois and D. V.	
	Havlir (2014). "Tuberculosis Infection in Early Childhood in	
	Uganda and the Influence of HIV Exposure." <u>Topics in Antiviral</u>	
101	Medicine 22 (e-1): 47-48.	
401.	Mathad, J. S., R. Bhosale, S. Kanade, P. Deshpande, V.	Abstract
	Kulkarni, N. Nevrekar, V. Mave, N. Suryavanshi, N. Gupte and	
	A. Gupta (2014). "Effect of HIV On Latent TB Screening of	
	Pregnant Women in Pune, India." <u>Topics in Antiviral Medicine</u>	
402	22 (e-1): 425-426.	Donulation amastes the
402.	McMullen, S. E., D. A. Pegues, F. S. Shofer, A. C. Sheller and E. R. Wigner (2014) "Performance of quanti FEPON TR gold	Population greater than
	E. B. Wiener (2014). "Performance of quanti FERON-TB gold and tuberculin skin test relative to subjects' risk of exposure to	18 years
	tuberculosis." <u>Clinical Infectious Diseases</u> 58(9): 1260-1266.	
403.	Mendy, A., A. N. Albatineh, E. R. Vieira and J. Gasana (2014).	Letter to editor
403.	"Higher Specificity of Tuberculin Skin Test Compared With	Letter to editor
	Quantiferon-TB Gold for Detection of Exposure to	
	Mycobacterium tuberculosis." <u>Clinical Infectious Diseases</u>	
	59(8).	
404.	Nassiri, A. A. and P. Tabarsi (2014). "Re: Interferon-gamma	Letter
	release assay agreement with tuberculin skin test in pretransplant	
	screening for latent tuberculosis in a high-prevalence country."	
	<u>Iranian Journal of Kidney Diseases</u> 8(5): 432-433.	
405.	O'Flynn, E., M. Haroon, M. O. Neill and O. FitzGerald (2014).	Abstract
	"Performance and benefits of replacing Mantoux test with	
	Quantiferon in screening for latent TB in patients prior to anti	
	TNF therapy." <u>Irish Journal of Medical Science</u> 183: S105-S105.	
406.	O'Flynn, E., M. Haroon, M. O'Neill, A. Ahmad and O.	Abstract
	FitzGerald (2014). "Performance and benefits of replacing	
	mantoux test with quantiferon in screening for latent TB in	
	patients prior to anti-TNF therapy." Annals of the Rheumatic	
407	Diseases 73.	A1
407.	Opris, D., D. Mazilu, I. Saulescu and R. Ionescu (2014). "Is	Abstract
	tuberculosis screening sufficient for preventing TB reactivation in biologic treated patients?" <u>Annals of the Rheumatic Diseases</u>	
	73.	
408.	O'Shea, M. K., T. E. Fletcher, N. J. Beeching, M. Dedicoat, D.	Military recruits
100.	Spence, H. McShane, A. F. Cunningham and D. Wilson (2014).	Tillital y 1001ulus
	"Tuberculin skin testing and treatment modulates interferon-	
	gamma release assay results for latent tuberculosis in migrants."	
	PLos ONE [Electronic Resource] 9(5).	
409.	Panchal, R. K., I. Browne, P. Monk, G. Woltmann and P. Haldar	No comparison
	(2014). "The effectiveness of primary care based risk	between IGRA and
	stratification for targeted latent tuberculosis infection screening	TST
	in recent immigrants to the UK: a retrospective cohort study."	
	<u>Thorax</u> 69(4): 354-362.	
410.	Pease, E., A. Ainley, M. Curtiss, T. Wambaa, J. Ashby, S.	Poster

Number	Reference	Exclude
	Dawson and S. Menzies (2013). "Does the dual testing strategy	
	under-diagnose latent tuberculosis infection in UK HIV-infected	
	individuals?: A one year experience in a tuberculosis high	
	incidence area." <u>International Journal of STD and AIDS</u> 24: 56.	
411.	Prignano, F., A. Bartoloni, F. Bartalesi, A. Gori, F. Ricceri, A.	Letter
	Cavallo, L. Attala and A. Mantella (2014). "Latent tuberculosis	
	infection in psoriasis and other dermatological immunomediated	
	diseases: A combined approach by Quantiferon-TB Gold and	
	tuberculin skin tests." <u>International Journal of Dermatology</u>	
442	53(8): e372-e374.	
412.	Rose, W., I. Kitai, F. Kakkar, S. E. Read, M. A. Behr and A.	Repeat testing,
	Bitnun (2014). "Quantiferon Gold-in-tube assay for TB	proportion of people
	screening in HIV infected children: Influence of quantitative	had self- read TST
412	values." BMC Infect Dis 14(1).	results
413.	Sanchez Riera, L., N. Wilson, M. Al Izzi, I. Hussein, S. Nuhaily,	Abstract
	N. Qahtani, N. Ibrahim, R. Aneja, T. Khan, S. Gonuguntla, H. Maashari, S. Waheeduddin and M. Al Maini (2014).	
	"Quantiferon-tb more useful than tuberculin skin test for latent	
	tuberculosis screening: A hospital experience." Annals of the	
	Rheumatic Diseases 73.	
414.	Santoro-Lopes, G. (2014). "Screening for latent tuberculosis	Letter to the editor
717.	infection in low-incidence areas." <u>American Journal of</u>	Letter to the editor
	Transplantation 14(7): 1709.	
415.	Savaj, S., J. Savoj, M. Ranjbar and F. Sabzghabaei (2014).	No construct validity
	"Interferon-gamma release assay agreement with tuberculin skin	
	test in pretransplant screening for latent tuberculosis in a high-	
	prevalence country." <u>Iranian Journal of Kidney Diseases</u> 8(4):	
	329-332.	
416.	Scholman, T., M. Straub, U. Sester, D. Wagner and M. Sester	Abstract
	(2010). "Analysis of agreement between IGRAs and tuberculin	
	skin-testing by the use of PPD as the same antigen."	
	<u>Transplantation</u> 90: 540.	
417.	Senturk, T., G. Sargin, M. Telli, S. Cildag, I. Akdam and E.	Abstract
	Ceylan (2014). "Comparison of diagnostic test for latent	
	Tuberculosis infection." <u>International Journal of Rheumatic</u>	
410	Diseases 17: 103.	NY . 1 . 1 . C
418.	Shokrollahi, M. R., S. Noorbaksh, L. Nasehi and Z. Movahedi	Not population of
	(2014). "Diagnosis of latent tuberculosis in individuals with	interest
	recent exposure: tuberculin skin test versus interferon-gamma	
	release assay." <u>British Journal of Biomedical Science</u> 71(3): 125-126.	
419.	Soare, A., C. Mihai, A. M. Gherghe, R. Dobrota, S. Pintilie, M.	Abstract
717.	Milicescu, I. Ancuta, A. Martin, L. Macovei, C. Ciofu, M. Sasu,	Austract
	V. Stoica and M. Bojinca (2014). "Preventing active	
	tuberculosis in rheumatoid arthritis patients receiving TNF	
	inhibitors: TB screening at baseline is not enough." Annals of	
	the Rheumatic Diseases 73.	
420.	Sztajnbok, F., N. L. Boechat, S. K. Oliveira, S. B. Ribeiro, M. C.	Repeat testing at 3 and
	Rodrigues, C. Diniz, F. C. D. N. Sztajnbok and C. C. Sant'Anna	12 months
	(2013). "PReS-FINAL-2054: Latent tuberculosis infection in	
	patients with juvenile idiopathic arthritis undergoing	
	methotrexate therapy: A longitudinal study with TST and	
	ELISPOT." Pediatric Rheumatology 11.	

Number	Reference	Exclude
421.	Sztajnbok, F., N. L. F. Boechat, S. B. Ribeiro, S. K. F. Oliveira,	Repeat testing at 3 and
721.	D. C. N. Sztajnbok and C. C. Sant'Anna (2014). "Tuberculin	12 months
	skin test and ELISPOT/T. SPOT.TB in children and adolescents	12 months
	with juvenile idiopathic arthritis." Pediatric Rheumatology	
	12(1).	
422.	Verhagen, L. M., M. Maes, J. A. Villalba, A. d'Alessandro, L. P.	Repeat testing
	Rodriguez, M. F. Espana, P. W. M. Hermans and J. H. de Waard	
	(2014). "Agreement between Quantiferon-TB Gold In-Tube and	
	the tuberculin skin test and predictors of positive test results in	
	Warao Amerindian pediatric tuberculosis contacts." BMC Infect	
	<u>Dis</u> 14(1).	
423.	Zelinkova, Z., M. Zakuciova, L. Gombosova, E. Veseliny, M.	Abstract
	Horakova, P. Lietava, K. Palencikova, B. Kadleckova, M.	
	Gregus, K. Gregusova, I. Pav, T. Hlavaty, T. Koller, J. Toth, M.	
	Hlista, I. Bunganic, J. Zan, I. Mincik and M. Huorka (2014).	
	"Screening for latent tuberculosis is effective but does not fully	
	protect against tuberculosis reactivation during anti-TNF	
	treatment in areas with high background incidence of	
	tuberculosis." <u>Journal of Crohn's and Colitis</u> 8: S212.	
424.	Zelinkova, Z., M. Zakuciova, L. Gombosova, E. Veseliny, M.	Abstract
	Horakova, P. Lietava, K. Palencikova, B. Kadleckova, M.	
	Gregus, K. Gregusova, I. Pav, T. Hlavaty, T. Koller, J. Toth, M.	
	Hlista, B. Ivan, J. Zan and M. Huorka (2014). "Screening for	
	latent tuberculosis is effective but does not fully protect against	
	tuberculosis reactivation during antitnf treatment in areas with	
	high background incidence of tuberculosis." <u>Gastroenterology</u>	
	1): S-585.	

11.6 Appendix 6. Included studies for clinical effectiveness 2011

Table 53. Studies included for the clinical effectiveness review 2011

Bibliography Reference (Ref ID)	Study type/Country of study/Origin of participants/BCG vaccination.	Number/Age /Patient Characteristics	Exposure Status/Contact/Gr adient	Type of Test	Reference standard	Sensitivity and Specificity Modified measure of effect	Positive and Negative predictive values	Source of Funding	Additional Comments
Brock, I., Weldingh, K., Lillebaek, T., Follmann, F., & Andersen, P. 2004 ¹⁵⁴	Observational. Done in Denmark on Danish School population	125 Mean age of 17 years. 85 not BCG vaccinated. Subjects nearest contact case also 17 asked to participate	Stratified by high and low exposure. High exposure contained individuals with close contact to the index case either through household, school class or local choir that index case regularly attended. Low exposure was comprised of 40 students from 2 other classes at the school with no connection to the index case	IGRA(QFTG)	TST PPD RT23 (2 tuberculin units were used)	Determined concordance between the tests in both levels of exposure. And also in both BCG and non BCG vaccinated individuals. Overall kappa = 0.866	Not determined	Not reported	Study demonstrated that IGRA is similar in performance in to TST in detecting LTBI in young non BCG vaccinated individuals.
Chun, J.K., Kim, C.K., Kim, H.S., Jung, G.Y., Lee, T.J., Kim, K.H., & Kim, D.S. 2008	Observational conducted in South Korea	Age up to 15 years. Patients visiting a children's hospital. All children but one had been BCG vaccinated.	Divided into four groups according to contact status. 1. Close contact group residing in the same house as active tb index case. 2. Casual contact group; those with exposure outside household. 3. Control group; TST positive	IGRA(QFTG)	TST PPD RT23 (2 tuberculin units were used)	Close contacts: Kappa 0.19 for 5mm and 0.529 for 10mm. (B) Kappa 0.378 for 10mm. A significantly higher rate of positive QFTG results was evident for the close contact group. 8/42, 19% as compared with	Not determined	Not reported	Authors found that in children with no exposure to TB, the QFTG was positive in only one of the 65 children, although all of them were positive by the TST at 5mm and 64.6% at 10mm. They also found that there was a significant relationship between higher responses to

			healthy children with no contact history. 4. Children with symptoms suggestive of tuberculosis as a potential cause			the control group 3 subjects 1/65, 1.5% p<0.05. Majority of indeterminate QFTG results were from group 4 who were suffering from medical conditions that could be associated with impaired immune function at the time of testing			mitogen-positive control and increasing age of the children
Connell, T.G., Curtis, N., Ranganathan, S.C., & Buttery, J.P. 2006 ¹⁵⁶	Observational study. Australia. Some children born in high prevalence countries 52%	Children less than 18years with a high risk of latent TB infection.	Contact with high risk as defined by siblings or parents recently diagnosed with TB disease, clinical suspicion of TB disease and those recently immigrated from high prevalence of TB	IGRA(QFTG) 0.35IU/ml positive response	TST PPD 10 IU of tuberculin. Positive if 15mm in individuals with evidence of prior BCG, > 5mm in TB contacts regardless of BCG and > for all others	Concordance between TST and IGRA poor overall k = 0.3. 70% of TST positives were negative by IGRA. 65% of TST positives had a known TB contact.	Not determined	John Burge Trust. Victoria Australia	Recommended further studies to clarify predictive values.
Connell, T.G., Ritz, N., Paxton, G.A., Buttery, J.P., Curtis, N., & Ranganathan, S.C. 2008 ¹⁵⁷	Observational study. Australia/ Australia and some born in high prevalence countries. 52% BCG vaccinated	96 children from 6months of age to 19 years. Children who were at risk of latent tb or with suspected tb infection were eligible for inclusion. At risk was defined as a recent TB contact and/or recent immigration from	38 participants had LTBI TST positive with no additional symptoms. 49 patients TST negative with no confirmation of active TB. Contacts were either household or non-household	IGRA(QFTG), T-SPOT.TB	TST PPD 10 IU of tuberculin. Positive >10mm in	Out of 100 patients, 38 were TST positive of which 16 were household contacts 6 non household contacts and 6 had no known contacts to active TB. 49 were TST negative, of which 10 were	Authors conclude the need for longitudinal studies for determination of predictive values	Not reported	Interesting how latent and uninfected participants were defined. LTBI: those who were TST positive but with no other symptoms and chest radiograph not suggestive of TB. Uninfected: defined as a well-child with negative TST or child with symptoms

		a country of high prevalence of TB.				household contacts, 1 non- household contact and 38 had no known contacts with active TB.			potentially suggestive of TB but in whom investigations for TB were negative or a child with an alternative diagnosis and complete recovery in the absence of specific TB treatment
Hansted, E., Andriuskevicien e, A., Sakalauskas, R., Kevalas, R., & Sitkauskiene, B. 2009 ¹⁵⁸	Observational study done in Lithuania. All participants were BCG vaccinated	10 to 17 year olds	Study subjects who had been in contact with a case of infectious TB were divided into three groups. 1) Culture confirmed 2) High risk group; those living with a family member with infectious TB or having contact with such a person at school. Those this group were free from symptoms. Low risk; those who have no identifiable risk of TB(no known risk of contact with Tb patient, no symptoms and no complaints	IGRA(TSPOT.TB)	TST Mantoux test SSI PPD RT- 23, 2TU positive if >10mm	60% high risk TST positive. 17.8% IGRA positive. Calculated RR 3.375. For the low risk 65.4% were TST positive while 9.6% were IGRA positive. Calculated RR 6.8. The total number of discordant results was 54 out of 97 subjects in both high risk and low risk populations. Out of 61 TST positive patients 51 were IGRA negative.	Not recorded	No records of funding	Authors conclude that identifying latent TB in children using this method is useful, especially in countries like Lithuania which have a high incidence of TB despite a high coverage with BCG vaccination
Higuchi, K., Harada, N., Mori, T., & Sekiya, Y. 2007 ¹⁶⁰	Observational prospective. Japan. Japanese students all BCG vaccinated	349 15-16years. Patients were all male and previously BCG vaccinated. They attended the same	Students stratified into two groups those with close contact (sharing of classes with index case; 210)	QFTG. Considered positive when > 0.35 IU/ml	TST (defined standard test dose of tuberculin PPD equivalent to 2.5 tuberculin units). Erythma	The distribution of TST responses in both close and limited contacts was similar. (p = 0.20)	Follow up of 91 students with positive TST but negative QFGT showed no signs of	Ministry of Health Labour and Welfare Japan	Partial verification only patients with positive TST were tested with QFTG. Authors suggest that similar positive rates

		high school as a student diagnosed with active tb	and those with limited contact (not attending classes with the index case; 139)		used instead of induration. An erythma of >30mm considered positive for a BCG vaccinated individual		active tb after 3.5 years of follow up		of TST in both strata of exposed groups suggest limited transmission of MTB.
Higuchi, K., Kondo, S., Wada, M., Hayashi, S., Ootsuka, G., Sakamoto, N., & Harada, N. 2009 ¹⁶⁰	Prospective Observational study Japan/ Participants from Japan BCG vaccination done	313 participants between the ages of 8-12 years. In a Japanese School	Participants were exposed to an index case in the school. Close contact participants were those who had daily contact (at 90hours contact. Casual participants: total of less than 18hours	IGRA (QFTG) 0.35IU/ml positive response	TST 0.1ml(PPD NIPPON BCG Manufacturing Tokyo Japan) Equivalent to 3 TU PPD-S	QFTG positivity in close contacts 9.8% as compared with 1.8% in casual contacts p = 0.02. TST(5mm) positivity in close contacts 52.6% as compared with 67.2% (p = 0.078).TST (10mm) 34.2% compared with 28.7% (p = 0.488)	positive after 1	Not recorded	Authors suggest that QFT has the same performance characteristics in 8-12 years olds as adults. Suggestion of testing contacts three months after the end of exposure as an appropriate and sensitive approach.
Lighter, J., Rigaud, M., Eduardo, R., Peng, C.H., & Pollack, H. 2009 ¹⁶¹	Observational prospective	253 Children below 18 years (Mean age 9) Age stratified as follows <24 mo, 24-59mo, 60mo. Recruited from the well child clinic, paediatric chest clinic and paediatric inpatient ward. 42% were female.72 received a single vaccination, 59 had visible BCG scars	Level of exposure graded as minimal (No known risk), low/moderate risk factors (birth in or travel to a disease-endemic region and/or living with a household member with specific risks (emigrating from a disease-endemic region, having HIV, or having a history of	QFTG. Considered positive when > 0.35 IU/ml and >25% than nil control value	TST (Mantoux technique). Considered positive with induration of >10mm	Proportion of QFTG positive results for children with increasing gradients of M tuberculosis exposure Minimal- 0% of TST+and -ve Low/moderate 6% of TST-ve and 19% TST+ were QFTG+. High 0% of TST –ve and 100% of TST+ case were QFTG+.	Not determined	Pott's memorial foundation and the Thrasher Research Fund	Cut off of 0.35IU/ml not validated especially for very young children who produce on average less interferon gamma than school aged children and adults

			imprisonment, homelessness, or intravenous drug use). High (Known direct contact with tuberculosis index case)						
Okada, K., Mao, T.E., Mori, T., Miura, T., Sugiyama, T., Yoshiyama, T., Mitarai, S., Onozaki, I., Harada, N., Saint, S., Kong, K.S., & Chhour, Y.M. 2008 ¹⁶²	Observational / Japan	They used 161 index cases and 217 contacts 5 years and below.	Contacts stratified by varying risk of infection as classified by smear and culture result of index cases. A. Smear -ve with positive or negative culture. B. Smear positive grade 1+ including scanty smear. C Smear positive grade 2+ D. Smear positive grade 3+	IGRA(QFTG) 0.35IU/ml positive response	TST 0.1ml(PPD NIPPON BCG Manufacturing Tokyo Japan) Equivalent to 2.5TU PPD-S	Measured concordance rates and kappa values by smear positivity of index cases and by age of children. Concordance 0.87, 0.906, 0.837, 0.893 and 0.877 overall, kappa 0.308, 0.711, 0.536, 0.774 and 0.626 overall. Also measured multivariate odds ratios for positive results for both TST and QFTG. The following covariates were analysed. Gender, age, BCG scar, Period from final contact and Smear positivity.	Not determined	Japan Internationa l Cooperatio n Agency	Smear positivity of index cases was the most important factor for positivity of both TST and QFTG
Tsiouris, S.J., Austin, J., Toro, P., Coetzee, D., Weyer, K.,	Observational/United States/ South Africa	1741 5-15years. Mean age of	Participants grouped according to the status of contact	IGRA(QFTG)	TST PPD RT23 (2 tuberculin units were used)	Univariate analysis showed the likelihood of having a positive	Not determined	Aeras Global TB vaccine foundation.	IGRA performed well without indeterminate results. The inability to

Stein, Z., & El-Sadr, W.M. 2006 ¹⁶³	Cross sectional	14.15 year olds	they were living with. A. Current case of active TB in the household. B. Past case of active TB.C. Current and past case of active TB.	IGP A (OFTC)	TST PPD RT23	IGRA increased with increasing age (p = 0.011) as did having a TST > 10mm. Overall agreement increased with increasing cut off of TST 0.52, 0.56 and 0.62 for 5, 10 and 15mm respectively.	Not determined	Division of	obtain adequate blood specimen from 16.7% of participants is a drawback which is likely to be true of any whole-blood based paediatric test.
Winje, B.A., Oftung, F., Korsvold, G.E., Mannsaker, T., Ly, I.N., Harstad, I., Dyrhol-Riise, A.M., & Heldal, E. 2008 ²²⁶	Cross sectional study/Norway/ Determined by presence of scar	14-15 year olds	Factors associated with latent TB investigated include. Origin, gender, exposure to tuberculosis, travel history. Children grouped into western born, second generation and first generation	IGRA(QFTG) 0.35IU/ml positive	TST PPD RT23 (2 tuberculin units were used)	9% of 511 TST positive children were IGRA positive. They determined adjusted Odds ratios for a positive IGRA for origin of child and exposure. 0.9(0.3-2.4) and 3.3(1.6-6.2) for second generation and first generation respectively as compared with Western born. 2.9(1.1-7.6) Comparing exposure to non-exposure of TB	Not determined	Division of infectious disease control at the Norwegian Institute of Public Health.	The authors conclude that factors other than TB infection are widely contributing to positive TST results in this group and indicate the improved IGRA specificity for latent TB

Immunocompromised

Table 54. Studies with immunocompromised patients included in CG117

(Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test	Index Test	Specificit of effect/I				d Measure		Source of Funding	Comments
Perez, C.M., Chanqueo, L., Lasso, M., Villanueva, M., Espinoza, M., Villarroel, L., & Garcia, P. 2008 ¹⁶⁵	Observational study of individuals from Chile.HIV Positive patients Mean CD4 Count 393/µl (range 100-977) 116 mean age 38.8 years (Range 21-71). Older age, history of previous the disease, previous known exposure to a case of active pulmonary the healthcare workers or individuals working with homeless people, residence in prison,	dose of PPD RT23)	IGRA(QFT)	TST+ TST- They also positive L TB risk fa	ive indiv IGRA 9 8 17 performe	iduals + IGF 2 90 92 ed univar	A- 7 1 9 1	OT 1 8 09	Not determined	Supported by a grant from the Department of the Pontificia University of Chile. IGRA were supplied at reduced price by Cellestis	Authors observed that, multivariate analysis confirmed that past TB was independently associated with a positive TST (p = 0.016) as well as a higher CD4 count (p = 0.044). For IGRA past tb was the only factors significantly associated with a positive result. (p = 0.041)
Goletti, D., Fiorelli, C., Fiori, G., Melchiorre, D., Tortoli, E., Mantella, A., Benucci, M., Girardi, E., Cerinic, M.M., & Bartoloni, A.	398 participants with rheumatic diseases requiring the use of biological drugs in Italy. Participants were treated with systemic corticosteroids, conventional DMARDs, and TNF alpha inhibitors. Risk factors associated with LTBI included birth or residence in high prevalence area, close contact with to patients with sputum positive TB.	TST(5units PPD)	IGRA(QFT)	TST+ TST- Tot Also press associatio IGRA and No of Risks 0 1 >2	IGRA + 39 13 52 ented Od n of risk	35 306 341 ds ratios a factors fo	7 3 3 adjusting	19 93 for the	Not determined	Not recorded	Until further data are available on the implication of discordant TST/IGRA results, a strategy of simultaneous TST and IGRA testing in populations with low prevalence of BCG vaccination should maximise the sensitivity of LTBI diagnosis

(Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test	Index Test	Specificity & Sensitivity or Modified Measure of effect/Measures of agreement		Source of Funding	Comments
Cobanoglu, N., Ozcelik, U., Kalyoncu, U., Ozen, S., Kiraz, S., Gurcan, N., Kaplan, M., Dogru, D., Yalcin, E., Pekcan, S., Kose, M., Topaloglu, R., Besbas, N., Bakkaloglu, A.,	106 divided into groups 1 and 2. Group 1 (38 healthy individuals), Group 2 (68 patients with chronic inflammatory diseases) 87% of these patients were on immunosuppressive medications such as	TST 0.1ml (5TU) of PPD	IGRA(QFT)	Results stratified by age to adjust for supposed BCG effect. < 25years (57 participants) Group 1 9/25 Discordant results All TST+ IGRA – Group 2 17/32 Discordant results 16 (TST+ IGRA -) 1 (TST- IGRA +) >25years (40 participants) Group1 4/11 Discordant results 3(TST+ IGRA -) 1(TST- IGRA+) Group 2 13/29 Discordant results All 13 (TST+ IGRA-) 9 had IGRA indeterminate results of whom 7 were immunocompromised	Not determined	Not recorded	Authors say study should be accepted as a basis for the design of future studies that will be helpful for physicians to decide whether the IGRA is more sensitive than TST to detect LTBI before the use of TNF α blockers.
F.R., Gurtman, A.C., Shi, Q., &	207 HIV infected individuals with a mean age of 47 years. 52% were male. They were also stratified according to CD4 count <100, 19; 101-199, 24; 200-499, 88; >500, 70. Study conducted in Mount Sinai medical centre in New York. United States	TST 0.1ml (STU PPD)	IGRA (QFT)	Overall concordance between IGRA and TST results IGRA Ind - + Tot TST- 10 172 6 188 TST+ 0 8 5 13 10 180 11 201 Ind = Indeterminate	Not determined	QuantiFERON kits donated by Cellestis	IGRA is able to distinguish between indeterminate tests and those that are truly negative. In contrast, a negative TST does not differentiate between individuals who are anergic and those who might have a truly negative TST.

Bibliography (Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test	Index Test	Specifici of effect/				ied Measure	Positive and Negative predictive values	Source of Funding	Comments
E.D., Flores, L.L.	294 HIV infected patients sampled from two cohorts based in the United States. 55% of participants had lived or worked in homeless shelter, prison, hospital, or a drug rehab unit or were born in a country with high TB incidence, or had had contact with an active tb case.	TST (5TU PPD)	IGRA (QFT)	IG Results v	+ - TOT	wing over T + 8 10 18	erall results ST	TOT 19 177 196	Not determined	Not recorded	Authors noted that until further data are available on the implication of discordant TST and IGRA results, a strategy of simultaneous TST and QFT testing where feasible would maximize potential LTBI diagnoses in HIV infected patients

(Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test		Specificity & So of effect/Measu			ed Measure		Source of Funding	Comments
A.C., Chegou, N.N., Kirchner, H.L., Zhu, X., Marais, B.J., Black, G.F.,	in this study. 23 children and 20 adults. The mean age of adults was 18.7 years where as the mean for children was 4.4years. Study was conducted in	TST(2TU 0.1ml PPD RT23)	IGRA (QFT & T.SPOT))	All Children Adults All Children Adults	TSPOT TSPOT TSPOT TSPOT TST - 29.7 39.1 14.3	+ T 1 1 1 7 7 C T 2 2	As SPOT - SST + 0.8 3.0 1.1 DFT- SST+ 6.9 5.0 8.6	Not determined	and Melinda	Authors commented that no indeterminate results were observed in children with a CD4 count higher than adults. Adults with indeterminate results tended to have low CD4 counts and negative TST results.
Preiksaitis, J., Doucette, K., Shokoples, S., Peleg, A.Y., Cobos, I., & Kumar, D. 2007 ¹⁷¹	153 patients with chronic liver disease who were candidates for liver transplant. Patients had various risk factors such as contact with active tb patient, born or stay in country with high prevalence tb. Study was conducted in a preliver transplant clinic in Canada	TST	IGRA (QFT)	IGRA+ 25 IGRA- 12 Total 37 10mm cut off	ST+ 3	TST- 9 95 104 TST- 16 98 114 t 12/153 =	Total 34 107 141 Total 34 107 141 141 17.8%		Test kits provided by Cellestis Ltd	Authors conclude that study demonstrates that IGRA and TST performed similarly for the diagnosis of LTBI in a population with end stage liver disease.

Bibliography (Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test		of effect/	Measures			Measure	Negative predictive values	Source of Funding	Comments
Matulis, G., Juni, P., Villiger, P.M.,	142 participants of which 126 received	TST (2TU 0.1ml PPD	IGRA(QFT)	Overall re	esults					Study funded by Swiss	They did a multivariate analysis which did not include analysis for the participants which had
& Gadola, S.D.	immunosuppressive	RT23)			TST+	TST-	Un	tot		commission for Rheumatic Disease and the	
2008 ¹⁷²	therapy. 50% were female.			IG+	10	5	2	17			
	Anti TNF, DMARDS and			IG-	34	60	23	117			two or more
	corticosteroids were the			Ind	2	4	2	8	Swiss National	immunosuppressant	
	medicines they received. The mean age was 48 years.			Tot	46	69	27	142		Science Foundation	medications
	Study was conducted in a University Hospital in Berne Switzerland.			ratios CORTIC NO) OR IGRA OR TST DMARD OR IGRA OR TST: TNFa IN	ate analys COSTERC A = 1.11(0 = 0.74(0.3 S TREAT A = 2.34(0 = 0.75(0.3 (HIBITO) A = 0.19 (30-4.14) 32-1.72) TMENT (.52-10.6) 2-1.77) RS	ATMENT	Γ (YES,		roundation	

(Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test	Index Test	of effect/Measures of agreement						Source of Funding	Comments
Piana, F., Ruffo, C.L., Baldan, R.,	138 immunosuppressed haematology patients in	TST 0.1ml (5TU) of	IGRA (T- SPOT.TB)	Overall r	esult IGRA					T-SPOT.TB kits provided by	It was important to determine whether the
Miotto, P., Ferrarese, M., & Cirillo, D.M.	Italy. All patients were identified as nosocomial contacts of a case of smear	Siebert PPD	,		+	-	Ind	Ins T cell	Tot	Oxford Immunotech	higher apparent prevalence of infection found with IGRA was
2007 ¹⁷³	positive TB. No			TST+	21	3	0	0	24		due to the TST being
	information on graded			TST-	34	57	5	2	98		falsely negative due to
	exposure. Study was conducted in a			No res	6	8	1	1	16		anergy, or to the IGRA being falsely positive in a
	Chemotherapy unit in Italy.			Tot	61	68	6	3	138		number of patients.
				Ind = In Ins = Ins No res = Results a count. Patholog ³) IGRA 44 Non Path	No results of strate (<4	at alt ified by $3x10^3$ E TST	or>10.82	X10 ³ WE VE			

(Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics		Index Test	Specificity & Sensitivity or Modified Measure of effect/Measures of agreement Positive and Negative predictive values Source of Funding	Comments
Acevedo- Vasquez, E., Alvizuri, S., Gutierrez, C., Cucho, M., Alfaro, J., Perich, R., Sanchez- Torres, A., Pastor,	Cross sectional study conducted in Peru. 106 Rheumatoid arthritis patients, of whom 73% were receiving methotrexate and 91%, were receiving prednisolone at a dose of less than 10mg daily. They also recruited 97 controls	TST(Mantoux method. 2TU dose of PPD RT23)	IGRA (QFT)	Not determined Not recorded	Authors concede that a limitation of the study was the lack of a gold standard method for diagnosing LTBI. They attempted to compensate for this by evaluating both diagnostic tests in RA patients and matched controls. Data indicate that IGRA more accurate than the TST in RA patients but cannot determine absolute sensitivity of both tests

Ref id) Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test		of effect/	Measures	•	Modified Mea ment	asure	Negative predictive values	Source of Funding	Comments
Richeldi, L., Losi, M., D'Amico, R., Luppi, M., Ferrari, A., Mussini, C., Codeluppi, M., Cocchi, S., Prati, F., Paci, V., Meacci, M., Meccugni, B., Rumpianesi, F., Roversi, P., Cerri, S., Luppi, F., Ferrara, G., Latorre, I., Gerunda, G.E., Torelli, G., Esposito, R., & Fabbri, L.M. 2009 ¹⁷⁵ 369 participants who were prospectively enrolled into the following immunosuppressed groups. Liver transplantation candidates, Chronically HIV infected patients and patients with hematologic malignancies. Study participants were evaluated in a referral centre in Italy. Only about 3.6% patients were BCG vaccinated.		IGRA (T- SPOT.TB) & (QFT)	HM Hem HIV Hum TSP T-SI	LTC 120 20 100 32 87 1 28 80 12 er Transplatologic lan Immuni	Malignand nodeficier te result			Not determined		Study shows that the performance of IGRA, both in terms of rates of positive results and in diagnostic agreement varies greatly across different categories of patients who are at increased risk of TB reactivation. Because of the importance of targeting such high-risk groups, for effective TB control, we advise caution when interpreting the results of IGRA among immunosuppressed patients

(Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test	Index Test	Specificit of effect/				l Measure	Positive and Negative predictive values	Source of Funding	Comments
Flogerzi, B., Fallegger, S., Schaffer, T., Mueller, S.,	212 participants consisting of 114 crohns disease, 44 ulcerative colitis 10 indeterminate colitis and 44 controls. Study was conducted in Switzerland	TST(2TU 0.1ml PPD RT23)	IGRA(QFT)	Overall re Diag IBD Cont IBD = Int	N 168	BCG +ve -ve +ve -ve y Bowel	Igra+ 12/ 118 2/50 3/33 1/11 Disease	Tst+ 27/ 118 3/50 17/33 2/11	Not determined	Not recorded	Authors concluded that the application of TST for detecting LTBI is limited in RA patients by the frequent presence of anergy. Combined IGRA assay and TST can aid in detecting LTBI in RA patients receiving adalimumab therapy
Shovman, O., Anouk, M., Vinnitsky, N., Arad, U., Paran, D., Litinsky, I., Caspi, D., & Elkayam, O. 2009 ¹⁷⁷	Study performed in Israel. 35 rheumatoid arthritis patients and 15 controls	TST(2TU 0.1ml PPD RT23)	IGRA(QFT)	RA Control RA Control RA = Rhe	+ve 45 15	-v 17 7 A results b -v 60 87	by percent e	Anergy 37 78	Not determined	Not recorded	The authors commented that the high rate of indeterminate results reduces the clinical utility of IGRA and questions its use in the diagnosis of LTBI in rheumatoid arthritis patients.

Bibliography (Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test			ensitivity or Modifi res of agreement	ed Measure	Positive and Negative predictive values	Source of Funding	Comments
Soborg, B., Ruhwald, M., Hetland, M.L., Jacobsen, S., Andersen, A.B., Milman, N., Thomsen, V.O., Jensen, D.V., Koch, A., Wohlfahrt, J., & Ravn, P. 2009 ¹⁷⁸	302 patients with inflammatory disease were included. 153 had rheumatoid arthritis, 40 spondyloarthropathies 51 sarcoidosis, and 58 participants presenting with other conditions such as psoriatic arthritis. Patients either received DMARDS or corticosteroid treatment. The study was conducted in Rheumatology department of the Heart centre in Copenhagen Denmark		IGRA(QFT)	the associations infection and tes TST. CORTICOSTE NO) RR IGRA = 0.5(RR TST = 0.4(0)	5.1-1.0) 5.ATMENT (YES, N. (0.3-1.7) 7.7-2.3) (<500 > 500) 0.2-3.2) 0.7-3.3) te	vant to TB IGRA or NT (YES. IO)	Not recorded	Not recorded	Interesting that authors stated that study was not designed to address the question of disease progression, as protocol recommended prophylactic treatment to test-positive patients.
				US Guideline	9 9				
						ST+			
				IGRA-	159 5'	7			
				IGRA+	9 9				

Bibliography (Ref id)	Number of participants. Type of study/Country of origin. Immunocompromised Condition/Medicines. Risk factors. Characteristics	Reference Test	Index Test	Specificity & Sensitivity or Modified Measure of effect/Measures of agreement		Source of Funding	Comments
	336 HIV positive patients of mean age of 42 years. Patients had a past med history of LTBI, diabetes mellitus, chronic renal insufficiency, history of malignancy, anytime smoker and Intravenous drug use. Study done in the US.	TST 0.1ml (5TU) of Siebert PPD	IGRA (TSPOT.TB AND QFT)	Reported a CD4 count of < 200 as associated with an indeterminate result for both IGRAs OR = 3.6(1.9,6.8)		Partly supported by Centers for Disease Control and Prevention (CDC)	Authors commented that given the results of the study and the limited data currently available it was unclear if IGRAs can be used alone for the diagnosis of LTBI in HIV infected individuals
Hadziyannis, E.,	Observational study Some were on DMARD and various other immunosuppressive medicines such as steroids. 70 participants with various rheumatic diseases with a mean age 60 years. The study was conducted in an Outpatients rheumatology clinic in Athens Greece	method. 2TU dose of PPD RT23)	IGRA (T- SPOT.TB	Overall results showing discordant and concordant results between tests TST	Not determined	Not recorded	Authors concluded that at this point based on the available data, replacement of the TST by the TSPOT cannot definitely be recommended. More data examining the tests cost, feasibility and reproducibility as well as the outcome of anti TNF treated rheumatic patients with discordant TST/TSPOT results are needed before recommendations can be made.

Recent arrivals from countries with a high incidence of TB

Table 55. Studies with people from countries with high tuberculosis prevalence included in CG117

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
Brodie, D., Lederer, D.J., Gallardo, J.S., Trivedi, S.H., Burzynski, J.N., & Schluger, N.W. 2008 ¹⁸¹	Prospective	123	Not specificall y recorded.	United States/ Does not mention countries of origin of immigrant s	Patients over 5 years old. Study group were those who had had contact with active TB patients and controls were those who had not had any contact. A lot of the patients were recent immigrants with a high rate BCG vaccination	IGRA (ESAT-6 and CFP-10)	TST	Overall agreement between TSPOT.tb and TST was 64% and the kappa value was 0.33(0.19-0.48). For BCG vaccinated people it was 56% (43-68) and 0.22(0.06-0.37) respectively. In non-vaccinated people it was 82%(68-96) and 0.64(0.38-0.91)	Yes	Oxford Immunotech	Does not mention how they determined either those with ATB or LTBI. Used contact status as surrogate for LTBI and used that as Gold standard. Does not give indication of prevalence or incidence of countries of origin of immigrants
Diel, R., Loddenkemp er, R., Meywald- Walter, K., Niemann, S.,	Observation al prospective study.	1794	Incidence of TB in Hamburg, Germany reported to be	Germany/ Noted as 'foreign born' but cases progressin	Close contacts of sputum-smear positive cases with at least 40 hours	IGRA (ESAT- 6, CFP-10) (QFTGinTube	TST (Threshold 5mm and 10mm)	Overall kappa statistics 0.276 and 0.119 and 0.616 for	Not determined	No declared sponsor	Specific countries of origin of migrants not mentioned.

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
& Nienhaus, A. 2008 ¹⁸⁴			10.8/10 ⁵ .	g to TB documente d as from Turkey, Angola	exposure in a closed room. Age range between 0 to 60 years, with most (87.5%) falling between the 16 to 50 range. 28% were migrants from 29 different countries			BCG vaccinated and non BCG respectively. For the concordance the values were 69.2%, 44.2% and 90.7% respectively. Odds Ratio for a positive test if foreign born adjusted for BCG vaccination, Age and exposure time were determined as follows. TST 5mm 5.81 (3.6- 9.1), 10mm 5.2 (3.2- 8.4), QFT 2.28 (1.3- 3.9)			
Diel, R., Nienhaus, A., Lange, C., Meywald- Walter, K.,	Observation al prospective study.	311	TB incidence rate in Hamburg 12/100000	Germany/ 25 different countries including	Close contacts of sputum-smear positive cases. Contacts with	IGRA (ESAT-6, CFP-10) (QFTGinTube	TST 5mm = 137/309 TST (28/137	Overall Kappa statistics 0.2 CI(0.14- 0.23)	No data	No sponsor	For QFT only Origin is an independent predictor of a positive test result.

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
Forssbohm, M., & Schaberg, T. 2006 ¹⁸³			Immigrant s from countries with incidence of at least 20/100000	former Soviet Union and Turkey.	less than 40hours contact time were excluded. Mean age 28.5 years Previous BCG vaccination 157 (50.8%) Foreign/Germ an (27.1%/72.9)		Positive by IGRA) 10mm = 64/309 15mm = 25/309	Concordant results 197/309 (63.8%). Positive result 169/172(98.2%) Negative result 28/137 (20.4%) Concordanc e for 5mm between BCG vacc 38.9% k = 0.08(0.026-0.08). Not vacc 89.5% k = 0.58(0.4-0.68) for 10mm 77.1% k = 0.35 (0.24-0.35) for No BCG and 94.1% k = 0.68 (0.46-0.81) for BCG. For TST(5mm) OR = 5.4, TST(10mm) 7.3 and 4.7 QFT			For TST BCG vaccination also acts an independent predictor. Study does not mention how the specific countries or how recent migrants had been in the country.

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
Franken, W.P., Timmermans , J.F., Prins, C., Slootman, E.J., Dreverman, J., Bruins, H., van Dissel, J.T., & Arend, S.M. 2007 ¹⁸⁵	Prospective Cross sectional study	909	Range from <10, 10-49,50- 99,100- 199>200) per 100000	Netherland s/ Bosnia Kyrgystan Iraq and Afghanista n.	Army personnel who had returned from mission (738) in high incidence countries compared with new recruits (171) who had not been on mission.	IGRA QFGinTube (ESAT-6 CFP-10, TB7.7)	TST (Threshold 10mm and 15mm)	Discordance and concordance between tests. Overall concordance and kappa values were determined to be 82% and 0.19 respectively for 10mm cut off and 92.3% and 0.24 respectively for 15mm TST cut off.	No data		Study not clear with regard to the definition of LTBI.
Janssens, J.P., Roux- Lombard, P., Perneger, T., Metzger, M., Vivien, R., & Rochat, T. 2008 ¹⁸⁶	Observation al prospective study.	295	TB Incidence 20/10 ⁵ in Geneva. Incidence in countries from which immigrant s originated between (50- >100)/10 ⁵	Switzerlan d/ Countries not specified but categorise d by incidence	Mean age 40 years (range 16-83 years) Foreign born 73.9% (218) Contacts were exposed to Cavitary TB 105 (35.6%) Non-cavitary TB 168 (56.9%) Pulmonary TB 22 (7.5%)	IGRA (ESAT- 6,CFP-10,) (T- SPOT.TB)	TST Induration 5mm 173(58.6 %) 10mm 148(50.2 %) 61mm (20.7%)	Overall concordant results showed 60.7% TST 5mm, 63.6% 10mm, 63.9% 15mm.Kapp a values were 0.24, 0.27 and 0.19 respectively. BCG Nonvaccinated subjects	Not determined	Ligue Pulmonaire Genevoise	Countries of origin of foreign born nationals not listed. Not very specific of exclusion of positive results if any of chest xray. In the analysis they did not mention if they adjusted for immunocompromi sed individuals. They were only 6%. The TB incidence of

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
								concordant results were 78.4%, 76.5% and 78.4% respectively while kappa values were 0.47, 0.41 and 0.28 for 5mm, 10mm and 15mm respectively when comparing with IGRA .aOR for Gender, BCG and incidence in country of origin (<50/10 ⁵ is used as baseline) showed these variables were independent predictors of a positive result 2.07 (1.22-3.51), 2.98 (1.39-6.41) 3.67 (1.40-1.90)			Geneva from where they recruited was 20/10 ⁵ . They did not use that as the baseline value in calculations.

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
								respectively for TST 5mm. Only incidence in country of origin showed the significant association with a positive result for TST 10mm 2.22 (1.15-4.27) and 3.84 (1.61-9.20) for 50-99/10 ⁵ and >100/10 ⁵ respectively. <50/10 ⁵ was baseline. For IGRA, age by 10 year increments and incidence in			
								country of origin were the independent predictors of a positive result. 1.30 (1.06-1.6) for age and 2.17 (1.13-			

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
								4.15) and 2.62 (1.18- 5.82) respectively for two categories of incidence.			
Kik, S.V., Franken, W.P., Arend, S.M., Mensen, M., Cobelens, F.G., Kamphorst, M., van Dissel, J.T., Borgdorff, M.W., & Verver, S. 2009 ¹⁸⁷	Observation al Retrospecti ve study	821	Not specificall y recorded.	Netherland s/ South America, Asia, Sub Saharan Africa	Participants aged above 16 years. Close contacts of sputum smear positive TB patients. Foreign born and second generation immigrants.	IGRA (QGIT, TSPOT.TB) (ESAT-6, CFP- 10,TB7.7)	TST (Threshold 5mm 10mmand 15mm)	Associations between test results and remote exposure, defined as birth outside Europe and North America. Attributable Fraction to particular risk factors calculated. Overall kappa values TST 15mm 0.418 for QFT and 0.379 for TSPOT.TB. For 10mm they were 0.198 and 0.190 respectively. Agreement values were 71.3% and	No data	Netherlands Organisation for Health Research and Development	Partial verification was performed on those with TST more than 5mm. Possibility of inclusion of patients with past active TB infections. Vague about the level of contact. Does not indicate duration of contact with infected individuals. Does not mention what they did with positive or negative CXRs. They don't mention how deduced LTBI

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
								69.9% for QFT and			
								TSPOT.TB			
								respectively			
								for 15mm.			
								For 10mm			
								they were			
								62.1% and			
								64.9%			
								respectively. The			
								continent of			
								birth was the			
								only			
								variable			
								which was			
								independentl			
								y associated			
								with a			
								positive			
								result for TST 10mm,			
								p value for			
								trend 0.031.			
								Both QFT			
								and			
								TSPOT.tb			
								also showed			
								a positive			
								result			
								independentl			
								y associated with			
								continent of			
								birth and			
								age			
Nienhaus, A.,	Observation	1040	Incidence	Germany/	Study	IGRA	TST	Agreement	No data	No sponsor	Although study

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
Schablon, A., & Diel, R. 2008 ¹⁸⁸	al Cross sectional/ retrospectiv e		of TB in Germany reported to be < 6/100000 and >20/1000 00 in countries from where the immigrant s originated.	Germany Turkey, Eastern Europe and Africa	population 1040 healthy individuals. Mean age of 31.6 years 61.8% female, 25.4% foreign born, 43.4% had previous BCG vaccination. 41.8% HCW.	(QFTBG) Threshold level 0.35IU/ml Positive result 100/1033	(Threshold 5mm 311/1033(30.1%) 10mm = 191/1033(18.5%) 15mm = 69/1033 (6.7%)	5mm 74.8%, 10mm 84.2%, 15mm 89.8%. Kappa Statistics 5mm (0.26) 10mm (0.37) 15mm (0.33.) BCG vacc. 5mm(0.12) 10mm(0.28) 15mm(0.34) No vacc 5mm(0.5) 10mm(0.54) 15mm(0.3) aOR for positive TST(10mm) for foreign birthplace was 4.6(3.21- 6.53) as compared with German birth, for QFT it was 2.6(1.71- 4.09)		reported	states the population consisted of health persons they have said nothing to rule out symptomless TB by chest Xray. TST at 10mm could possibly be confounded by gender foreign birthplace and BCG vaccination. QFT on could be confounded by age and foreign birthplace. TST+/QFT-discordance is associated with foreign birthplace. Authors explain that such discordance might be explained by resolved or old TB infections that are detected by TST and not QFT.
Porsa, E., Cheng, L.,	Cross sectional/	474	TB prevalenc	United States/	Adult inmates above 18	IGRA (ESAT-6 and	TST Induration	Kappa statistics for	Not determined	Health Resources and	On logistic regression African

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
Seale, M.M., Delclos, G.L., Ma, X., Reich, R., Musser, J.M., & Graviss, E.A. 2006 ¹⁸⁹	Observation al		e in United States <10/10 ⁵ of foreign born the prevalenc e reported 25- 300/10 ⁵	Mexico, Jamaica, Nicaragua, Ecuador, El Salvador, Honduras, The Philippines and Brazil.	years of age. 114 female, 295 male. 370 born in the United States 39 Foreign born. 344 patients had prior incarceration. There was a mix of Caucasian African- American and Hispanic ethnicities	CFP- 10)(QFGInTu be)	10mm	discordance and concordance between TST and QFGT.Adju sted Odds Ratios calculated to determine which factors including Ethnicity, Old age, foreign birth and prior incarceratio n were more associated with Discordance		Services Administration Bureau of health professions Grant. Kits provided by Cellestis	American ethnicity only variable associated with positive results for both assays. Mentioned that positive IGRA indicates more recent and ongoing infection while positive TST indicates a remote infection in the past. Hence sensitivity appeared better in TSTs than IGRAs
Winje, B.A., Oftung, F., Korsvold, G.E., Mannsaker, T., Jeppesen, A.S., Harstad, I., Heier, B.T., & Heldal, E. 2008 ¹⁶⁴	Observation al Cross sectional/ retrospectiv e	1000	TB incidence rate in Norway 6.3/10000	Norway/ Iraq, Somalia, Russia, Iran, Eritrea, Afghanista n, Sub Saharan Africa	Asylum seekers. At least 18 years of age. 75.1% male and 24.9% female.	IGRA (ESAT-6 and CFP- 10)(QFGInTu be)	TST (Threshold 6mm) 460/912(5 0.4%) 10mm 311/921(3 4.1%) 15mm(15. 5%)	Agreement 72% for 6mm 79% 10mm 78% 15mm. Kappa 6mm 0.43(0.37- 0.49) 10mm 0.51(0.45- 0.57) 15mm 0.39(0.32- 0.47) statistics 0.43(0.37-	Not determined		Definite prevalence or incidence not recorded for countries of origin. For QFT, BCG vaccination and gender were not independent predictors of a positive result while country of origin and age group and level of

Bibliographi c Reference (Ref ID)	Stud Type	Number of Participan ts	Prevalenc e/ Incidence	Country of Study/ Origin of participan ts	Participant Characteristi cs	Type of Test	Reference Standard	Sensitivity and Specificity/ Modified Measure of Effect	Positive/ Negative Predictive values or Modified	Source of Funding	Additional comments
								0.49). aOR continent of origin with Asia as baseline for TST 15mm 3.8 and 3.3 for QFT			exposure independently predicted a positive test. For TST 15mm the variables which independently predicted a positive result were gender, country of origin and level of exposure

11.7 Appendix 7. ClinicalTrials.gov and WHO ICTRP list of excluded studies (N = 31)

Table 56. ClinicalTrials.gov and WHO ICTRP list of excluded studies

Study	Title	Recruitment status	URL	Reason(s) for exclusion
1.	Screening for Latent Tuberculosis Infection (LTBI) in US Army Recruits	Active, not recruiting	http://ClinicalTrials.gov/show/NCT00804713	Army recruits
2.	Diagnosis of Tuberculosis Infection in Health Care Workers Using Ex-vivo Interferon-gamma Assay	Completed	http://ClinicalTrials.gov/show/NCT01007396	Healthcare workers, active TB
3.	Comparison of the Quantiferon®-TB GOLD (in Tube) Assay With Tuberculin Skin Testing for Detecting Latent Tuberculosis Infection in Patients With Chronic Liver Disease Being Evaluated for or Awaiting Liver Transplantation	Withdrawn	http://ClinicalTrials.gov/show/NCT00424684	Withdrawn
4.	Surveillance and Follow-up for Latent Tuberculosis Infection and Risk of Developing Active Tuberculosis in Patients Receiving Long-term Dialysis	Completed	http://ClinicalTrials.gov/show/NCT01311999	No comparison between IGRAs and TST
5.	Improving Latent Tuberculosis (TB) Diagnosis in Thai Children	Completed	http://ClinicalTrials.gov/show/NCT00947609	
6.	QuantiFERON®-TB Gold In-Tube for the Diagnosis of Tuberculosis Infection in Contact Tracing Study.	Active, not recruiting	http://ClinicalTrials.gov/show/NCT01223534	No subgroup of interest
7.	Quantiferon for Detection of Latent Tuberculosis in Healthcare Workers	Completed	http://ClinicalTrials.gov/show/NCT00797836	Healthcare workers
8.	Is Tuberculin Skin Testing Effective in Screening for Latent Tuberculosis (TB) in Elderly Residents of Nursing Homes?	Completed	http://ClinicalTrials.gov/show/NCT00756808	No subgroup of interest
9.	Quantiferon Gold Test for Detecting Tuberculosis (TB) Infection in HIV/AIDS Patients in South Africa	Not recruiting yet	http://ClinicalTrials.gov/show/NCT02119130	Active TB
10.	Diagnosis and Treatment of Co-infection With Human Immunodeficiency Virus /Latent Tuberculosis Infection (HIV/TBL)	Active, not recruiting	http://ClinicalTrials.gov/show/NCT01875952	No comparison between IGRAs and TST

11.	The Role of IGRA in Screening and Monitoring for TB During Anti TNF Therapy in IBD	Recruiting	http://ClinicalTrials.gov/show/NCT02135289	No comparison between IGRAs and TST
12.	Immune Response to Mycobacterium Tuberculosis Infection	Completed	http://ClinicalTrials.gov/show/NCT00257907	Active TB
13.	Performance of IGRAs for TB Infection Diagnosis in Elderly	Recruiting	http://ClinicalTrials.gov/show/NCT01895582	Active TB
14.	Monthly Follow up of Interferon Gamma Releasing Assay (IGRA) Among Health-care Workers Treating Tuberculosis (TB) Patients	Completed	http://ClinicalTrials.gov/show/NCT01121068	Healthcare workers
15.	Vitamin A Supplementation for Modulation of Mycobacterium Tuberculosis Immune Responses in Latent Tuberculosis	Withdrawn	http://ClinicalTrials.gov/show/NCT00558480	Withdrawn
16.	Diagnosis of Latent Tuberculosis(TB) Infection in Health Care Workers Using TST and Whole Blood Interferon-γ Assay	Completed	http://ClinicalTrials.gov/show/NCT00962793	Healthcare workers
17.	Latent Tuberculosis Infection in Bone Marrow Transplant Recipients	Completed	http://ClinicalTrials.gov/show/NCT01021124	No comparison between IGRAs and TST
18.	Conversion Rate of (TST) Tuberculin Skin Test and Quantiferon-TB Gold In Tube Assay in Health Care Workers	Completed	http://ClinicalTrials.gov/show/NCT01376843	Healthcare workers
19.	Determining Risk in Latent Tuberculosis	Terminated	http://ClinicalTrials.gov/show/NCT01571739	Study terminated
20.	Treatment of Latent Tuberculosis Infection With Isoniazid	Completed	http://ClinicalTrials.gov/show/NCT00293228	Focus on the effect of treatment
21.	Effects of Vitamin D Supplementation on Antimycobacterial Immunity	Completed	http://ClinicalTrials.gov/show/NCT00157066	Focus on the effect of treatment
22.	A Phase I/IIa Safety & Immunogenicity of AERAS-456 in HIV-Negative Adults With & Without Latent Tuberculosis Infection (C-035-456)	Recruiting	http://ClinicalTrials.gov/show/NCT01865487	Comparing antigen and placebo
23.	Isoniazid (INH) Treatment Based on ELISPOT Assay	Completed	http://ClinicalTrials.gov/show/NCT01087190	Focus on the effect of treatment
24.	A Safety and Immunogenicity Trial With an Adjuvanted TB Subunit Vaccine (Ag85B-ESAT-6 +	Completed	http://ClinicalTrials.gov/show/NCT01049282	Comparing antigens

	IC31)			
25.	IFN-gamma-releasing Assay Based Approach in Patients With Suspected Tuberculous Peritonitis	Recruiting	NCT02175134	Diagnosis of tuberculous peritonitis
26.	Investigational research (clinical trial) to compare CT-b, which is a new test to diagnose tuberculosis, with 2 standard tests (PPD and QuantiFERON)	Authorised	EUCTR2011-005617-36-ES	Active TB
27.	Ensayo clínico de dos estrategias para la toma de decisiones terapéuticas en el estudo de contactos de tuberculosis: estrategia estándar, basada en la prueba de la tuberculina (PT) sola frente a la combinación de PT y QuantiFERON-TB-Gold in-Tube.	Authorised	EUCTR2009-017430-49-ES	Not English language
28.	Interferon-Gamma Release Assays in Tuberculosis (TB) - HIV Co-infected Children	Recruiting	NCT00604617	Active TB
29.	Screening for Latent Tuberculosis in Healthcare Workers With Quantiferon-Gold Assay: A Cost- Effectiveness Analysis	Recruiting	NCT00449345	Healthcare workers and Economic analysis
30.	Use TST and QFT-RD1 Test to Monitor the Tuberculous Infection in Patients, Close Contact People and Health Care Workers	Recruiting	NCT00311220	Healthcare workers
31.	Diagnosis of Active Tuberculosis by ELISPOT	Recruiting	NCT00174083	Active TB

11.8 Appendix 8. Included on going trials that compared IGRAs with TST (N = 20)

Table 57. Included on going trials that compared IGRAs with TST

Study	Title	Recruitment	URL
1.	Interferon Gamma Release Assays (IGRA) Testing Versus Tuberculin Skin Test in	Status Completed	http://ClinicalTrials.gov/show/NCT016 08685
	Renal Transplant Recipients		08083
2.	Latent Tuberculosis in Second Generation Immigrants From High Risk Countries Compare to Low-risk Young Israeli Adults	Not yet recruiting	http://ClinicalTrials.gov/show/NCT020 73669
3.	Evaluation of 2 Interferon γ Assays in the Diagnosis of Latent Tuberculosis in HIV-infected Patients. ANRS EP 40 QUANTI SPOT	Completed	http://ClinicalTrials.gov/show/NCT006 47205
4.	The Usefulness of Interferon- γ Release Assays and Tuberculin Skin Test for Detection of Latent Tuberculosis Infection	Recruiting	http://ClinicalTrials.gov/show/NCT016 85905
5.	Use of a Gamma-IFN Assay in Contact Tracing for Tuberculosis in a Low- Incidence, High Immigration Area	Completed	http://ClinicalTrials.gov/show/NCT005 57765
6.	Detection of Latent Tuberculosis in Hemodialysis Patients	Completed	http://ClinicalTrials.gov/show/NCT006 95734
7.	Improving Latent Tuberculosis (TB) Diagnosis in Thai Children	Completed	http://ClinicalTrials.gov/show/NCT009 47609
8.	Is Tuberculin Skin Testing Effective in Screening for Latent Tuberculosis in Patients With HIV?	Completed	http://ClinicalTrials.gov/show/NCT007 63295
9.	Prevalence of Latent Tuberculosis (TB) Infection Diagnosed by Interferon-gamma Release Assay and Tuberculin Skin Tests in Patients With Old Healed TB	Completed	http://ClinicalTrials.gov/show/NCT010 99098
10.	T Cell Interferon-gamma Release Assay (TIGRA) in Immunocompromised	Recruiting	http://ClinicalTrials.gov/show/NCT007 07317

	Individuals		
11.	A Study on Changes in IFN-gamma Levels Following Anti-TNF Treatment in Patients Undergoing Serial QuantiFERON-TB Gold In-Tube	Completed	http://ClinicalTrials.gov/show/NCT014 75409
12.	Medical and Economical Impact of IGRAs Diagnosis of Latent Tuberculosis in HIV- infected Patients	Completed	http://ClinicalTrials.gov/show/NCT008 05272
13.	Comparison of Quantiferon-TB Gold Assay With Tuberculin Skin Testing in Patients With Chronic Liver Disease	Completed	http://ClinicalTrials.gov/show/NCT004 02402
14.	Tuberculosis (TB) Screening for the Diagnosis of Latent TB in Immunocompromised Populations	Completed	http://ClinicalTrials.gov/show/NCT001 34342
15.	Impact of New Immunological Diagnosis Tests of Latent Tuberculosis Before Anti TNF Therapy	Completed	http://ClinicalTrials.gov/show/NCT008 11343
16.	Latent Tuberculosis Infection in Cancer Patients	Completed	http://ClinicalTrials.gov/show/NCT005 07754
17.	Latent Tuberculosis Infection in Renal Transplant Recipients	Completed	http://ClinicalTrials.gov/show/NCT006 82045
18.	Prognostic Value of Interferon Gamma Release Assays in Predicting Active Tuberculosis Among Individuals With, or at Risk of, Latent Tuberculosis Infection (PREDICT)	Not yet recruiting	http://clinicaltrials.gov/show/NCT0116 2265
19.	Comparison of the Tuberculin Skin Test (TST) and QuantiFERON ®-TB Gold Test (QFT-G) In Patients With Rheumatoid Arthritis Being Considered for Anti-TNF- Alpha Therapy	Recruiting	NCT00925249
20.	Quantiferon-TB Gold in the Assessment of Latent TB in Patients Candidate to Treatment or Treated With TNFa	Recruiting	NCT00491933

Antagonists		

11.9 Appendix 9. Data extraction for included studies

Children

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Adetifa 2010¹⁰³

Country: Gambia

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Community-based

Number of centres: NR

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Medical Research Council (MRC) labs

UK

Aim of the study

To compare TSPOT, QFT-GIT, and TST for diagnosis of LTBI in Gambian childhood contacts of TB patients

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: NR

Total N of recruited patients: 285

Inclusion criteria: Household contacts (< 16 yrs) of newly diagnosed TB index cases

Exclusion criteria: History of treatment for active TB, TB diagnosis within 1 month of recruitment

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 215 (for TST) and 245 (for IGRAs)

Methods of active TB diagnosis (if applicable): Sputum smears and mycobacterial cultures

examined using standard methods

Outcomes (**study-based**) **list:** Agreement; associations of test results with risk factors; combining two tests to explore gains in sensitivity and loss in specificity

Characteristics of participants (total study sample)

Mean (range or SD) Age (years): NR

Women (n [%]): 145 [51] Race/ethnicity (n [%]):NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): 127/199 [59.1] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes Morbidity (n [%]): HIV positive (3 [1.1])

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	NR	72	143	2	215

IGRA N	3	71	144	0	215
(TSPO					
T):					
TST N	?	57	158	0	215
(≥10m					
m):	Λ	NA	NI A	NA	NI A
Test 3 N. (specif	A	NA	NA	NA	NA
y):					
	patients with valid res	sults for bo	oth IGRA	and TST: 215 for all three te	sts
	ps of exposure to TB				~
				p – sleep proximity	
Non-	Different house (ref			p sieep prominey	
exposed		0101100 810	P)		
Exposed 1	Same house – differ	ent room			
(specify):					
Exposed 2	Same house – same	room			
(specify):	37.4				
Exposed 3	NA				
(specify): Exposed 4	NA				
(specify):	NA				
Tests					
	Assay used, meth	odology, ti	ming for	Cut-off	Other
	test measureme			values/thresholds	information
				Definition of test+	
IGRA	Carried out according	-		Where the negative	NA
IGRA (TSPOT)	Carried out according instructions. The sp	ot unit cou	nting	Where the negative control had 0-5 spots, a	NA
	Carried out according instructions. The space performed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was	NA
	Carried out according instructions. The sp	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as \geq 6 spots in	NA
	Carried out according instructions. The space performed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or	NA
	Carried out according instructions. The space performed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after	NA
	Carried out according instructions. The space performed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of	NA
	Carried out according instructions. The space performed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after	NA
	Carried out according instructions. The space performed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel	NA
	Carried out according instructions. The space performed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in	NA
	Carried out according instructions. The sperformed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel,	NA
	Carried out according instructions. The sperformed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel	NA
	Carried out according instructions. The sperformed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least	NA
	Carried out according instructions. The sperformed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots	NA
	Carried out according instructions. The sperformed using EL	ot unit cou ISPOT rea	nting	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least	NA
	Carried out according instructions. The sperformed using EL	ot unit cou JISPOT rea Germany)	nting ider (AID	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel	NA NA
(TSPOT)	Carried out according instructions. The sperformed using EL GmbH, Strassburg, Carried out according instructions. IFN gas	ot unit cou. ISPOT rea Germany) ng to manu mma level	nting ider (AID facturer's s	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel to obtain a positive result	
(TSPOT)	Carried out according instructions. The sperformed using EL GmbH, Strassburg, Carried out according instructions. IFN gameasured using Dynamics and according instructions.	ot unit cou ISPOT rea Germany) ng to manu mma level nex ELISA	nting ider (AID facturer's s reader	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel to obtain a positive result Positive result was	
(TSPOT)	Carried out according instructions. The sperformed using EL GmbH, Strassburg, Carried out according instructions. IFN gas measured using Dynver. 6.0 (Dynex Technology)	ot unit cou ISPOT rea Germany) ng to manu mma level nex ELISA	nting ider (AID facturer's s reader	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel to obtain a positive result Positive result was	
IGRA (QFT-GIT)	Carried out according instructions. The sperformed using EL GmbH, Strassburg, Carried out according instructions. IFN gas measured using Dynver. 6.0 (Dynex Tec Sussex, UK)	ot unit cou JISPOT rea Germany) ng to manu mma level nex ELISA chnologies,	facturer's s reader West	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel to obtain a positive result Positive result was defined as ≥0.35 IU/ml	NA
IGRA (QFT-GIT)	Carried out according instructions. The sperformed using EL GmbH, Strassburg, Carried out according instructions. IFN gas measured using Dynver. 6.0 (Dynex Tectsussex, UK) Carried out with 2 Tectsussex.	ot unit cou. ISPOT rea Germany) Ing to manu Ing to m	facturer's s reader West	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel to obtain a positive result Positive result was defined as ≥0.35 IU/ml	
IGRA (QFT-GIT)	Carried out according instructions. The sperformed using EL GmbH, Strassburg, Carried out according instructions. IFN gas measured using Dyrver. 6.0 (Dynex Tec Sussex, UK) Carried out with 2 Tec Statens Serum Institutions.	ng to manu mma level nex ELISA chnologies,	facturer's s reader West T23, nagen,	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel to obtain a positive result Positive result was defined as ≥0.35 IU/ml	NA
IGRA (QFT-GIT)	Carried out according instructions. The sperformed using EL GmbH, Strassburg, Carried out according instructions. IFN gas measured using Dynver. 6.0 (Dynex Tectsussex, UK) Carried out with 2 Tectsussex.	ng to manu mma level nex ELISA chnologies, TU (PPD R tut, Copenhately after b	facturer's s reader West T23, nagen, lood	Where the negative control had 0-5 spots, a positive result was defined as ≥6 spots in either the ESAT-6 or CFP-10 panel after subtracting the number of spots in the negative control panel In case of >6 spots in negative control panel, ESAT-6 or CFP-10 panel had to contain at least twice the number of spots in negative control panel to obtain a positive result Positive result was defined as ≥0.35 IU/ml	NA

Association	n between to	est results	and inciden	ce of active TB	(if applicabl	e)		
	IGI				TS			
	Incidence Tl		Total		Incidence	of active 7	ΓB Total	
	Yes	No			Yes	No		
IGRA +	NA	NA	NA	TST +	NA NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indetermi	NA	NA	NA	Indeterminate		NA	NA	
nate								
Total	NA	NA	NA	Total	NA	NA	NA	
			Test perfor	rmance param				
	IGI	RA			TS	ST		
Sensitivity				Sensitivity = 1				
Specificity	= NA			Specificity =	NA			
PPV = NA				PPV = NA				
NPV = NA	<u> </u>			NPV = NA				
Cumulative	e Incidence 10	GRA+ = NA		Cumulative In	ncidence TST+	= NA		
Cumulative	e Incidence 10	$_{GRA-} = NA$		Cumulative In	ncidence TST-	= NA		
Cumulative	Incidence F	Ratio _{IGRA} =	: NA	Cumulative In	ncidence Ratio	$o_{TST} = NA$		
Incidence of	lensity rate 10	$_{GRA+} = NA$		Incidence den	sity rate TST+	=NA		
Incidence of	lensity rate 10	$_{GRA-} = NA$		Incidence den	sity rate TST-	= NA		
	lensity rate r		NA	Incidence den	sity rate ratio	$_{TST} = NA$		
Other repor	rted measure	$I_{IGRA} = NA$		Other reported	d measure _{TST}	= NA		
•				veen tests (IGR				
Ratio of cu	mulative inc			<u> </u>	,			
	cidence dens							
	rted measure	•						
1				11 1 67		•••	1	
			test results	and levels of T			ole)	
	IGRA (QI		TD + 1		TST (≥1		TD + 1	
	Sleep pro		Total		Sleep pro		Total	
	Same	Differ			Same	Differe		
	house –	ent			house –	nt		
	same	house			same room	house		
*GD .	room	10		mam		10		
IGRA +	14	19	33	TST +	15	10	25	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
Indetermi	NR	NR	NR	Indeterminat	NR	NR	NR	
nate	3.770	1	21.7	e	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) TO	21.7	
Total	NR	NR	215	Total	NR	NR	215	
			Test perfor	rmance param				
~	IGR	RA			TS	T		
Sensitivity				Sensitivity = N				
Specificity	= NR			Specificity = N	NR			
PPV = NR				PPV = NR				
NPV = NR				NPV = NR				
DOR (for 7	Γ^+ calculated) = NR		DOR (for T ⁺ c				
Same hous	se same roor	n vs. Diffe	rent	Same house s				
house				OR (crude; for T^+ reported) = 10.10 (95% CI: 3.20,				
OR (crude;	for T ⁺ repor	ted) = 3.20	(95% CI:	32.10)				
1.20, 9.10)								
Same hous	se same roor	n vs. Diffe	rent	Same house s	ame room vs	. Different	house	
house				OR (regression	n-based; repoi	ted) = 15.0	00 (95% CI:	
				·				

OR (regi	ression-based;	reported) =	= 4.00 (95	5% 4.					
CI: 1.40, 11.40)					List of covariates: age, sex, ethnic group				
List of covariates: age, sex, ethnic group									
Other reported measure = NR					ther reported	measure = NR			
		Com	parison	betwee	n tests (IGR	A vs. TST)			
Ratio of	DORs (for T ⁺	calculated) = NA						
Ratio of	OR (crude; fo	r T ⁺ reporte	ed) = 0.58	3 (0.28,	0.90)				
Ratio of	ORs (regressi	on-based; 1	reported)	= 0.52	(0.29, 0.91)				
Other re	ported measur	e = NA							
	Association	on between	n test res	ults an	d levels of Tl	B exposure (if	applicable)		
	IGRA (TS	SPOT)				TST (≥10m	m)		
	Sleep pr	oximity	Total			Sleep proxi	nity	Total	
	Same	Differ				Same	Differe		
	house –	ent				house –	nt		
	different	house				different	house		
	room					room			
IGRA +	39	18	57	TST -	H	32	10	42	
IGRA -	NR	NR	NR	TST -		NR	NR	NR	
Indeterm	ni NR	NR	NR	Indete	erminate	NR	NR	NR	
nate									
Total	NR	NR	215	Total		NR	NR	215	
			Test pe	erform	ance parame	ters			
	IGR	4				TST			
Sensitivi	ty = NR			Sensi	tivity = NR				
Specific	-				ficity = NR				
PPV = N				PPV = NR					
NPV = N				NPV = NR					
	r T ⁺ calculated	•		DOR (for T^+ calculated) = NR					
	ouse different	room vs.		Same house different room vs. Different house					
Differen				OR (crude; for T^+ reported) = 2.40 (95% CI: 1.00, 5.80)					
	de; for T ⁺ repo	rted) = 2.0	0 (95%						
CI: 0.80				~	N 1 1166 4 TN-66 41				
	ouse different	room vs.		Same house different room vs. Different house					
	t house	. 1	2.60	OR (regression-based; reported) = 2.90 (95% CI: 1.30,					
. •	ression-based;	reported) =	= 2.60	6.70)					
-	: 0.90, 7.10)	.1 •		List of covariates: age, sex, ethnic group					
	ovariates: age,		c group	0.1		ND			
Otner re	ported measur				reported mea				
Datic of	DORs (for T ⁺		_	betwee	n tests (IGR	A vs. 151)			
	OR (crude; fo		·	2(0.42	1 60)				
	OR (crude, 10								
	ported measur		eporteu)	_ 0.90(0.40, 1.70)				
Other re			n tost ros	ulte on	d levels of Ti	B exposure (if	annlicable)		
		(TSPOT)	ii test i es	uits aii	u levels of 11	TST (≥1			
	Sleep pro	,	Tot	a1			roximity	Total	
	Same	Differen	100	***		Same house		1000	
	house –	t house				- same	house		
	same room	t mouse				room	nouse		
IGRA	14	18	32)	TST +	15	10	25	
+	* 1	10	32	-	1221				
IGRA	NR	NR	NF	₹	TST -	NR	NR	NR	
_								,	

Indeter	NR	NR	NR	Indetermina	ı NR	NR	NR	
minate	1414	TVIC	1110	te		TVIC	1414	
Total	NR	NR	215	Total	NR	NR	215	
			Test perf	ormance parameters				
	IC	GRA			TST			
Sensitiv	· ·			Sensitivity =				
Specific				Specificity:	= NR			
PPV = N				PPV = NR				
NPV = 1				NPV = NR				
DOR (fo	or T ⁺ calculated	l) = NR		DOR (for T	$^{+}$ calculated) = 1	NR .		
	ouse same room				e same room vs			
	de; for T ⁺ repor	ted) = 5.30	(95% CI:		for T ⁺ reported)	= 10.10 (95%	CI: 3.20,	
1.50, 18				32.10)				
Same ho	ouse same room	m vs. Differ	rent house		e same room vs			
OR (reg	ression-based;	reported) =	6.60 (95%	OR (regress	sion-based; repor	rted) = 15.00 (95% CI:	
CI: 1.70	, 25.20)			4.70, 47.20))			
	ovariates: age,		group	List of cova	riates: age, sex,	ethnic group		
Other re	ported measure				ted measure = N	R		
				tween tests (IGR	A vs. TST)			
Ratio of	DORs (for T ⁺	calculated)	= NA					
Ratio of	OR (crude; for	T ⁺ reported	d = 0.52(0)	0.22, 1.25)				
				0.44(0.18, 1.09)				
	ported measure			, , ,				
			test result	ts and levels of T	B exposure (if a	pplicable)		
	IGRA (T				TST (≥10m			
	Sleep pro		Total	` ,			Total	
	Same house	Differen			Same house	Different		
	- same	t house			- same	house		
	room	0 110 010 0			room	110000		
IGRA	14	18	32	TST +	15	10	25	
+								
IGRA	NR	NR	NR	TST -	NR	NR	NR	
_								
Indeter	NR	NR	NR	Indeterminate	NR	NR	NR	
minate		·						
Total	NR	NR	215	Total	NR	NR	215	
			Test perf	ormance parame	eters			
	IGR	A	*	•	TST			
Sensitiv				Sensitivity = NR				
Specific	ity = NR			Specificity = NR				
PPV = N				PPV = NR				
NPV = 1				NPV = NR				
	or T ⁺ calculated) = NR		$DOR ext{ (for T}^+ ext{ calculated)} = NR$				
	ouse same room		rent	Same house san		ferent house		
house	, and partie 1 001	, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,		OR (crude; for T			3.20.	
	de; for T ⁺ repor	ted) = 5.30	(95%	32.10)		0 (>0 /0 01.		
CI: 1.50		, 5.50	1200					
	ouse same roo	m vs. Differ	rent	Same house san	ne room vs. Dif	ferent house		
house				OR (regression-l			CI: 4.70.	
	ression-based;	reported) =	6.60	47.20)	, F 0100a)	- 122 (22/0	,	
	: 1.70, 25.20)	r		List of covariate	s: age, sex, ethn	ic group		
	ovariates: age,	sex, ethnic	group		,	6 - F		
	ported measure		υ · ″r	Other reported n	neasure = NR			
I I I I I I I I I I I I I I I I I	r stica mousuit	- 141		_ Juil Topolica II	1111			

		Comp	arison between te	sts (IGRA vs.	TST)		
Ratio of I	OORs (for T ⁺ ca			005 (10121 15)	101)		
	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `) = 0.52 (0.22, 1.2)	5)			
			ported = 0.44 (0.1)				
	orted measure		(11	- , ,			
, and a sp			veen test results a	nd BCG statu	s (if applicable)		
		GRA			TST		
	BCG sta		Total		BCG status		Total
	Yes	No	2000		Yes	No	1000
IGRA +	NR	NR	NR	TST +	NR	NR	NR
IGRA -	NR	NR	NR	TST -	NR	NR	NR
Indeter	NR	NR	NR	Indetermi	NR	NR	NR
minate	1110	111	1111	nate	1110	111	1110
Total	NR	NR	NR	Total	NR	NR	NR
			Test performance	parameters			
	I	GRA	•	Ī	TST		
DOR (for	T ⁺ calculated)			DOR (for T-	+ calculated) _{TST} =	NR	
			10 (95% CI: 0.60,		for T + reported) =		95% CI:
2.00)	, 1	/ \(\).	, ,	0.50, 1.70)	1 /	`	
	e; for T ⁺ reporte	$(ed)_{TSPOT} = 1$	1.10 (95% CI:				
0.61, 2.09							
OR (regre	ession-based; re	ported) _{IGR}	$_{A} = NR$	OR (regress	ion-based; reporte	d) _{TST} =	NR
List of co	variates:			List of covar	riates:		
Other rep	orted measure	= NR		Other report	ed measure = NR		
Between-	test agreemen	t, concord	ance, and discord	ance (if appli	cable)		
			ST cut-off value,			condi	tion
Total san	nple: QFT-GI	Γ					
		TST (≥10n	nm) +		TST -		Total
IGRA		43		29			72
(QFT-GI	Γ)						
+							
IGRA		14			129		143
(QFT-GI	Γ)						
-							_
Indetermi	na	NR		NR			2
te							215
Total							217
Descripti		1.10		11.1	10 \ 1 27	O.T.	
			tified by BCG or	condition – spe	ecity): total – QFT	-GIT	
	reshold: ≥10mm	<u>n</u>					
Paramete		200 0 ===					
	0.52 (95% CI: 0						
	dance = 80.009						
	lance = 20.00%						
			ance, and discord ST cut-off value, 1			· condi	tion
	nple : TSPOT						
		TST (≥10n	nm) +		TST -		Total
IGRA		43	,		28		71
(TSPOT)	+				-		. =
IGRA		14			130		144
(TSPOT)	-						-
Indetermi		0			0		0

to .			1	1	
te Total		57	158		215
		31	158		215
Description	: ::::::::::::::::::::::::::::::::::::	Lifetantified by DCC a	n and dition and if the Total	1 TCDOT	
TST + thresho		i, ii stratified by BCG o	r condition – specify): Total	1-13PO1	
Parameters	ola. ≥10IIIII				
	(050/ CI, 0 40	1.0.66)			
	(95% CI: 0.40	95% CI: 74.65, 85.21)			
	`	5% CI: 14.79, 25.35)			
	e = 19.55% (9. n (specify grou				
Stratification	i (specify grou	TST +	TST -		Total
IGRA +		NR	NR		NR
IGRA -		NR	NR NR		NR
Indetermina		NR NR	NR NR		NR NR
		NK	NR		NK
te Total		ND	ND		ND
		NR	NR		NR
Description	:tian (a.a. tata	Lifetantified by DCC a	n andition anaifalt ND		
TST + thresho	` ` `	i, ii stratified by BCG o	r condition – specify): NR		
	old: NK				
Parameters ND					
Kappa = NR	. ND				
% concordance					
% discordanc		a \			
Stratification	ı (specify grou		The state of the s		TD + 1
ICD 4		TST +	TST -		Total
IGRA +		NR	NR NB		NR
IGRA -		NR	NR		NR
Indetermina		NR	NR		NR
te		ND	MD		NID
Total		NR	NR		NR
Description	•••	Life wiff 11 DCC	1'.' 'C \ NID		
		i, if stratified by BCG o	r condition – specify): NR		
TST + thresho	ola: NK				
Parameters					
Kappa = NR	ND				
% concordance					
% discordanc	e = NK	041	-4		
T414	- CC (*C	Other of		TT 141 1 - 4	1
Test and cut-	-OII (II	Adverse events n/N (%0)	Health relat	
applicable)		(specify)		quality of lif	
ICDA.			NR	score (SD) (s	
IGRA:					
TST: NR NR					
Test 3 (specif	(y):	Canala	NR	NR	
Authors		Conclu	USIUIIS		
Authors:	t mannanai	the 2 tests man of it.	tasts was offeeted by and a	DCC was aire -	ion
	t responsive of	the 5 tests; none of the	tests was affected by prior	beg vaccinat	1011
Reviewers:	moto occasion	hatman TCDOT TO	OT and OFT TOT. TODO	T and TOT -	240 555 5 115
			ST and QFT vs. TST; TSPC		ere more

vaccination

Abbreviations: DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; PPV = positive predictive value; NPV = negative

strongly correlated with sleep proximity than QFT; none of the tests was influenced by BCG

predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Study details

First author surname year of publication: Cruz 2011¹⁰⁴

Country: US

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Pediatric tuberculosis clinics

Number of centres: 3

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Cellestis, Ltd, Oxford Immunotec, Inc

Aim of the study

To compare the performance of 1 IGRA, the T-SPOT.TB assay with the tuberculin skin test (TST) in children with different epidemiologic risk factors for tuberculosis

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: 2005 to 2006 **Total N of recruited patients:** NR

Inclusion criteria: Children (aged 1 month to 18 years) with LTBI or tuberculosis disease and

children uninfected with tuberculosis

Exclusion criteria: Children on any tuberculosis medication for 2 or more months were not eligible

for enrollment

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 215 (22 did not have valid results)

Total N of patients with valid results for both IGRA and TST: 193 (of these, 30 had diagnosis of TB)

Methods of active TB diagnosis (if applicable): Children with tuberculosis disease was subcategorized as those with confirmed or clinically diagnosed tuberculosis. Children with confirmed tuberculosis had a positive culture or polymerase chain reaction result for Mycobacterium tuberculosis. Clinically diagnosed case subjects were defined as children without positive mycobacterial culture results who had radiographic or clinical findings consistent with tuberculosis and at least 1 or more of the following: (1) exposure to a known tuberculosis case; (2) a positive TST result (≥5 mm); or (3) histopathologic findings compatible with tuberculosis (eg, caseating granulomas)

and the exclusion of reasonable alternative diagnoses

Outcomes (study-based) list: Agreement, exposure-based

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median 8.6 (range: 1 mo to 18 yrs)

Women (n [%]): 94 [51]

Race/ethnicity (n [%]): Hispanic 115 [62.5], Non-Hispanic black 36 [19.6], Non-Hispanic white 19

[10.3], Asian 6 [3]

Geographic origin (n[%]): Low prevalence regions (US/UK) (121 [65.7])

BCG vaccination (n [%]): 68 [37]

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): None

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NA

Type of during-study treatment (n [%]): NR

Number of patients tested

Number of patients tested								
	Total N	Total N	Total N	Total N	Total N			
	(tested)	(test+)	(test-)	(indeterminate)	(test results			

			1			9.11.		
ICDA	105	0.4	60		22	available)		
IGRA (TSPOT):	185 (30 TB pts not counted)	94	69		22	163		
TST (≥15mm):	185 (30 TB pts not counted)	94	69)	22	163		
Test 3	NA	NA	N/	A	NA	NA		
(specify)	 nts with valid res	ulta fon ha	th ICD	and T	ST. 162			
Levels/groups of	f exposure to TB	Definition						
Non-exposed	No contact with				oup			
Exposed 1	contact with an i							
(specify):	Contact with an i	uciniiiaoic	source c	asc				
Exposed 2	NA							
(specify):	1471							
Exposed 3	NA							
(specify):	1471							
Exposed 4	NA							
(specify):	1111							
Tests								
1000	Assay used, met	hodology.	timing	Cut	-off values/thresholds	Other		
	for test me				Definition of test+	information		
IGRA	The commercial		e T-	Spots	were counted manually	NA		
(TSPOT)	SPOT.TB assay	•			ng a microscope and			
	Immunotec, Oxfo		d	•	med by using an			
	Kingdom) was p	erformed v	within 5	automa	ated plate counter by the			
	hours of specime	en collectio	on in	manufacturer. Assays with 8 or				
	the laboratory of	1 of the			pots were considered			
	investigators (per	r manufact	urer	positiv	e, and assays with less			
	instructions. Brie				spots were considered			
	used 2 M tubercu			_	ve. Borderline results			
	antigens, early se		-		pots) were excluded			
	target 6-kDa pro				oncordance analyses but			
	and culture filtra				nalyzed separately. A			
	(CFP10), to stim		ieron-	_	oup analysis was			
	production in wa		vd.		med for specimens with spots, because these			
	enumerated perip				nens are sometimes			
	was drawn from				ered positive			
	old or older and		•		ationally.			
	children younger			mem	monany.			
	Peripheral blood	-						
	cells were counter							
	standardized cell							
	added in the assa							
	low T-cell volum	-						
	cell reactivity wa	as confirme	ed by a					
	positive mitogen							
	(phytohemagglut							
	control was used	•	У					
	nonspecific cell a	activation						

TST (≥15mm)	T (>15mm) Trained clinic or health					TSTs were considered positive NA				
department personnel placed						=				
	interpreted Mantoux tests.									
	Transverse induration was					of 15 mm or more, 10 mm or more for children with chronic				
	measured at 48 to 72 hours and									
			ccording			_	at high risk	_		
	American Thoracic Society mm or more for children with									
	criteri						disease or			
						•	ompromise			
							n with iden			
						source ca	ses			
Association betw	veen te	st resu	lts and in	cidenc	e of ac	ctive TB (if	applicable	e)		
		RA						ST		
		ence of	f I	Γotal				ence of	Total	
		ve TB						e TB		
	Yes	No					Yes	No		
IGRA +	NA	NA		NA		TST +	NA	NA	NA	
IGRA -	NA	NA		NA		TST -	NA	NA	NA	
Indeterminate	NA	NA		NA	Ir	ndeterminat	e NA	NA	NA	
Total	NA	NA		NA		Total	NA	NA	NA	
			Test	perforr	nance	paramete	rs			
		RA						CST		
Sensitivity = NA						ensitivity =				
Specificity = NA					Specificity = NA					
PPV = NA					PPV = NA					
NPV = NA					NPV = NA					
Cumulative Incid	lence _{IG}	$_{RA+}=N$	JA .		Cumulative Incidence $_{TST+} = NA$					
Cumulative Incid	lence _{IG}	$_{RA-}=N$	ÍΑ		Cumulative Incidence $_{TST-} = NA$					
Cumulative Incid	lence R	atio _{IGR}	$_{\rm A} = {\rm NA}$		Cumulative Incidence Ratio $_{TST} = NA$					
Incidence density	rate _{IGI}	$_{RA+}=N$	ΙA		Incidence density rate $_{TST+} = NA$					
Incidence density					Incidence density rate $_{TST-} = NA$					
Incidence density	rate ra	tio _{IGR}	A = NA		Incidence density rate ratio $_{TST} = NA$					
Other reported m	easure				Other reported measure $_{TST} = NA$					
					en tes	sts (IGRA	vs. TST)			
Ratio of cumulat										
Ratio of incidence		•	ratios = N	NA						
Other reported m				•		1 0 000				
				esults a	nd lev	els of TB			ble)	
10	GRA (T			Total			TST≥1		Total	
	High/	posure	level Low/No	Total		-	High/Yes	re level	Total	
ICD A				NID	TST			Low/N		
IGRA +	NR NE		NR NB	NR ND			NR NB	NR ND	NR NB	
IGRA -	NR NE		NR ND	NR ND	TST		NR	NR ND	NR ND	
Indeterminate Total	NR		NR NB	NR NR		terminate	NR ND	NR NR	NR NB	
1 Otal	NR		NR		Tota		NR	INK	NR	
	IGR	• A	Test	periori	nance	paramete	rs TS	T		
Sensitivity = NR		M			Sano	itivity = NI		1		
Specificity = NR PPV = NR						Specificity = NR PPV = NR				
PPV = NR NPV = NR										
	mle4: 4\	_ NID			$NPV = NR$ $DOR ext{ (for T}^+ ext{ calculated)} = NR$					
DOR (for T ⁺ calc			ID							
OR (crude; for T	reporte	eu) = N	NI		OR (crude; for T^+ reported) = NR					

OR (regression	-based: rep	orted = 4.4	1 [95%	OR (regression-based	: reporte	d = 0.48	8 [95% CI:	
CI: 1.78, 10.94])				OR (regression-based; reported) = 0.48 [95% CI: 0.26, 0.91]					
List of covariates: NR					List of covariates: NR				
Other reported		NR			r reported measu				
			ison betwe	ts (IGRA vs. TS					
Ratio of DORs	(for T ⁺ calc				(
Ratio of OR (cr	•								
				9 (95%	CI: 5.23, 16.3)				
Other reported			, , , , , , , , , , , , , , , , , , ,	()070					
o mor reported			en test resi	ılts an	nd BCG status (i	f annlica	nble)		
	IG		on test lest	uito ui	la De G status (1	TS			
	BCG		Tota	1		BCG		Total	
	Yes	No				Yes	No		
IGRA +	NR	NR	NR		TST +	NR	NR	NR	
IGRA -	NR	NR	NR		TST -	NR	NR	NR	
Indeterminate	NR	NR	NR		Indeterminate	NR	NR	NR	
Total	NR	NR	NR		Total	NR	NR	NR	
20141	. 111			nance	parameters	. 111	1111	111	
	IG		or periori		parameters	TS	Т		
DOR (for T ⁺ ca					DOR (for T+ ca			₹	
OR (crude; for					OR (crude; for '2.29, 9.95]				
OR (regression	hasad: ran	orted)	- 0 60 [050	V ₀		based: re	anorted)		
CI: 0.37, 1.31]	basea, rep	orted) IGRA -	- 0.07 [757	U	OR (regression-based; reported) $_{TST} = 4.32$ [95% CI: 1.02,				
List of covariate	es: NR				18.35]				
List of Covariat	C5. TVIC				List of covariat	es: NR			
Other reported	measure – 1	NR			Other reported		– NR		
•			ce and di	scords	ance (if applicab				
					SCG vaccination		and/or c	ondition	
Total sample		<u> </u>				,			
•		TST +			TST -			Total	
IGRA +		NR			NR			NR	
IGRA -		NR			NR			NR	
Indeterminate		NR			NR			NR	
Total		NR			NR			NR	
Description		- 1,21						1 (11	
	on (e.g., tot	al. if stratif	ied by BC	G or c	ondition – specify	v): total			
TST + threshold		, 11 5010011	<u> </u>	0 01 0	specii.	<i>)</i> , , , , , , , , , , , , , , , , , , ,			
Parameters	<u>1011111</u>								
Kappa = NR									
% concordance	= NR								
% discordance									
Stratification (oup 1)							
(TST +			TST -			Total	
IGRA +		NR			NR			NR	
IGRA -		NR			NR			NR	
Indeterminate		NR			NR			NR	
Total		NR			NR			NR	
Description		1111		1	1111			2,20	
	on (e.g. tot	al if stratif	ied by BC	Gorce	ondition – specif	v)· NR			
TST + threshold		, 11 5114111	La by DC	5 01 0	onardon specif	, , , , , , , ,			
Parameters	ω, 1 1 1 \								
	Kappa = NR								

% concordance = NR								
% discordance = NI	% discordance = NR							
Stratification (specify group 2)								
	TST +	TST -	Total					
IGRA +	NR	NR	NR					
IGRA -	NR	NR	NR					
Indeterminate	NR	NR	NR					
Total	NR	NR	NR					
D ' 4'			_					

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes									
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)							
IGRA:	NR	NR							
TST:	NR	NR							
Test 3 (specify):	Test 3 (specify): NR NR								
	Conclusions								

Authors

T-SPOT.TB was more specific than the TST for children who were immunized with BCG. Contact with a source case was associated with T-SPOT.TB result but not TST

Reviewers:

BCG influenced TST but not TSPOT in terms of false positives; TSPOT performed better than TST in terms of the association with exposure (contact with TB case)

Abbreviations: DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; PPV = positive predictive value; NPV = negative predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Study details

First author surname year of publication: Kasambira 2011¹⁰⁵

Country: South Africa

Study design: Retrospective cohort/cross-sectional study (with limited follow-up of 6 months) **Study setting** (e.g., outbreak investigation, community-based - specify): Community based

Number of centres: 3

Total length of follow up (if applicable): 6 months

Funding (government/private/manufacturer/other - specify): The United States Agency for International Development

Aim of the study

To determine and compare the prevalence of M. tuberculosis infection as assessed by TST and by QFT-GIT. Secondary objectives were to assess agreement between the two test methods and identify factors associated with various patterns of test results

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: October 2006 and December 2009

Total N of recruited patients: NR

Inclusion criteria: Children aged 6-16 years whose parents/guardians were TB index cases aged ≥18 years, with diagnosis of pulmonary TB within the preceding 3 months, willingness to have the child undergo study testing and provision of informed consent

Exclusion criteria: Children's prior diagnosis or treatment of active or latent TB.

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 270

Total N of patients with valid results for both IGRA and TST: 254

Methods of active TB diagnosis (if applicable): Microbiological tests, histopathology, clinician diagnosis or a combination of these. Performance of diagnostic testing for adult TB suspects was not a component of this study, and diagnoses of pulmonary TB in the adult index cases were made by non-study clinicians. The study team reviewed medical records and interviewed adult index cases to corroborate the diagnosis

Outcomes (**study-based**) **list:** LTBI prevalence, agreement, association of test positivity with different index case- and child-related baseline factors

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median 6 [3–9]

Women (n [%]): 141 [52] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 257 [95]

History of anti-TB treatment (n [%]): None Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): NR Clinical examination (yes/no): Yes Morbidity (n [%]): HIV 14 [5] Co-morbidity (n [%]): NA

Type of during-study treatment (n [%]): Active TB treatment 37 [19%] and LTBI treatment 19 [10%]

Number of patients tested

Trumber of pure	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (GIT):	270	79	172	19	251

TST (≥5 mm):			270	71	183		6		254
Test 3 (specify)		NA NA		l L		IA		NA	
					h IGRA and TS				
Levels/group	os of	exposu			ng order (if appl				
					of exposure grou	_			
			index case B diagno		Adult index of smear grad	Exposure to index case during the day			
Non-exposed			positive T		Negative				y (< 6 h)
Exposed 1		Smear- positive	negative, o	culture-	Scanty		Majority	y of da	y (> 7 h)
(specify): Exposed 2		Clinica			1+		NA		
(specify):		Cillica	1110		1+		NA		
Exposed 3		NA			2+		NA		
(specify):									
Exposed 4		NA			3+		NA		
(specify):									
Tests	<u> </u>								
	1			odology, t nt, manuf	iming for test acturer		Cut-off es/thresh nition of		Other information
IGRA	Δ11	childre	ı underwe	nt OFT-GI	T testing 5–30	_	ts were	icsi+	
(QFT-GIT)				~	d was drawn	calcu			
(211 311)			•	FT-GIT te			iterpreted	l bv	
		•	-	to the man		say softw			
					atrol, mitogen as positive,				
					ssays were		etermina		
			_		at the study site				NIA
					Average interval				NA
	bet	ween bl	ood collec	tion and in	itiation of				
	inc	ubation	was 8.3 m	in (median	5, range 2–60,				
	inte	erquartil	e range 3–	10). Follow	wing stimulation				
	and	l centrifi	agation, ha	rvested pla	asma specimens				
	wei	re stored	l at 4°C fo	r up to 28 o	days prior to				
		ISA test							
TST ≥5 mm					erculin purified		duration		
						2 units, Statens mm was considered			
				•	enmark) was		tive test		NA
			ocutaneous read 48–9		e left forearm and	aurin	g the stud	y	
A aas -:- 1					as of s-4: TIP	<u> </u>	20 kl-1		
Association	betw	een test IGRA		iu mciaen	ce of active TB (п арри	TST		
	ı		ence of	Total		Incid	lence of		Total
			ve TB	1 Otal			ive TB		1 Otal
		Yes	No			Yes	No	1	
IGRA +		NA	NA	NA	TST +	NA	NA		NA
IGRA +		NA	NA	NA	TST -	NA	NA		NA
Indeterminate		NA	NA	NA	Indeterminate		NA		NA
Total		NA	NA	NA	Total	NA	NA		NA
1 3 441					rmance paramet		_ ,		
		IGRA		P-12-01	Paramet		TST		
Sensitivity =	NA	2324			Sensitivity = N	JA			
Specificity =					Specificity = N				
Specificity – IVA					1 ~ F				

PPV = NA		PPV = NA						
NPV = NA				NPV = NA				
Cumulative Incid				Cumulative Inc				
Cumulative Incid				Cumulative Inc				
Cumulative Incid				Cumulative Inc				
Incidence density				Incidence densi	•			
Incidence density				Incidence densi	ity rate _{TST-} =	= NA		
Incidence density				Incidence densi				
Other reported m				Other reported		= NA		
		Compariso	n betwe	een tests (IGRA	vs. TST)			
Ratio of cumulat								
Ratio of incidence	e density rat	te ratios = 1	NA					
Other reported m	easure = NA	1						
Asso	ociation bet	ween test i	results a	nd levels of TB	exposure (i	f applicable)	
IG	RA (QFT-C	GIT)			TST (≥	5mm)		
	Exposu	re level	Total		Exposur	re level	Total	
	High/Yes	Low/No			High/Yes	Low/No		
IGRA +	46	32	78	TST +	42	29	71	
IGRA -	108	81	189	TST -	99	81	180	
Indeterminate	0	0	0	Indeterminate	0	0	0	
Total	154	113	267	Total	141	110	251	
		Test	perfori	nance paramete	ers			
	IGRA		_	TST				
Exposure to ind	ex case dur	ing the day	y (see	Exposure to in	ndex case du	ıring the da	y (see 2 x 2	
2 x 2 above)				above) Sensitiv				
Sensitivity = 46/1 37.52)	154 = 29.879	% (95% CI	: 23.2,	22.86, 37.79)	•		`	
Exposure to ind	ex case dur	ing the day	y (see	Exposure to index case during the day (see 2 x 2				
2 x 2 above)			,	above) Specificity = 81/110 = 73.64% (95% CI:				
Specificity = 81/62.77, 79.17)	113 = 71.689	% (95% CI	:	64.71, 80.97)				
Exposure to ind	ex case dur	ing the day	y (see	Exposure to index case during the day (see 2 x 2				
2 x 2 above)			,	above) PPV = 42/71 = 59.15% (95% CI: 47.54,				
PPV = 46/78 = 5	8.97% (95%	CI: 47.89,		69.83)				
69.22)								
Exposure to ind 2 x 2 above)				Exposure to in above) NPV =				
NPV = 81/189 = 49.99)								
DOR (for T ⁺ calc			d	DOR (for T ⁺ ca			ed	
OR (crude; for T				OR (crude; for T ⁺ reported) =				
Adult index case				Adult index case type of TB diagnosis				
Smear-positive T	B: 1.00 (ref	erence grou	ıp)	Smear-positive TB: 1.00 (reference group)				
Smear-negative,	•	tive TB: 0.	18	Smear-negative, culture-positive TB: 0.17 (95% CI:				
(95% CI: 0.05, 0				0.05, 0.60)				
Clinical TB: 0.81 (95% CI: 0.45, 1.50)				Clinical TB: 0.46 (95% CI: 0.24, 0.89)				
Adult index case	smear grade	2		Adult index cas	se smear gra	de		
Negative: 1.00 (r				Adult index case smear grade Negative: 1.00 (reference group)				
Scanty: 0.3 (95%)	_	•		Scanty: NR	` E	· ·· · · · · · · · · · · · · · · · · ·		
1+: 1.50 (95% C				1+: 2.81 (95%	CI: 1.20. 67	70)		
2+: 1.50 (95% C								
3+: 3.20 (95% C				2+: 2.90 (95% CI: 0.80, 10.60) 3+: 4.10 (95% CI: 1.50, 11.10)				

Exposure to index case during the day	Exposure to index case during the day					
Minority of day $(< 6 \text{ h}) - 1.00$ reference group	Minority of day $(< 6 \text{ h}) - 1.00$ reference group					
Majority of day (> 7 h): 1.1 (95% CI: 0.63,	Majority of day (> 7 h): 1.20 (95% CI: 0.67, 2.10)					
1.80)						
OR (regression-based; reported) =	OR (regression-based; reported) =					
Adult index case type of TB diagnosis	Adult index case type of TB diagnosis					
Smear-positive TB: 1.00 (reference group)	Smear-positive TB: 1.00 (reference group)					
Smear-negative, culture-positive TB: 0.84	Smear-negative, culture-positive TB: 2.70 (95% CI:					
(95% CI: 0.09, 7.80)	0.56, 13.0)					
Clinical TB: 3.90 (95% CI: 0.67, 23.5)	Clinical TB: NR					
Adult index case smear grade	Adult index case smear grade					
Negative: 1.00 (reference group)	Negative: 1.00 (reference group)					
Scanty: NR	Scanty: NR					
1+: 5.50 (95% CI: 0.89, 34.70)	1+: 7.90 (95% CI: 1.50, 41.00)					
2+: 8.70 (95% CI: 1.20, 62.00)	2+: 15.70 (95% CI: 2.60, 92.0)					
3+: 11.40 (95% CI: 1.80, 72.00)	3+: 11.70 (95% CI: 2.20, 62.00)					
Exposure to index case during the day	Exposure to index case during the day					
Minority of day $(< 6 \text{ h}) - 1.00 \text{ reference group}$	Minority of day $(< 6 \text{ h}) - 1.00$ reference group					
Majority of day (> 7 h): 1.30 (95% CI: 0.69,	Majority of day (> 7 h): 1.10 (95% CI: 0.58, 2.10)					
2.30)	List of covariates: NR					
List of covariates: NR						
Other reported measure = NR	Other reported measure = NR					
Comparison between tests (ICDA vs. TST)						

Comparison between tests (IGRA vs. TST)

Ratio of DORs (for T^+ calculated) = NR

Ratio of OR (crude; for T^+ reported) = 0.78 (95% CI: 0.40, 1.52) [Adult index case smear grade: 3+ vs. negative]

Ratio of ORs (regression-based; reported) = 0.97 (95% CI: 0.27, 3.47) [Adult index case smear grade: 3+ vs. negative]

Ratio of OR (crude; for T^+ reported) = 0.92 (0.62, 1.36) [Exposure to index case during the day (>7 h)]

Ratio of ORs (regression-based; reported) = 1.18 (0.75, 1.85) [Exposure to index case during the day (>7 h)]

Other reported measure = NR

Association between test results and BCG status (if applicable)								
IG	fy)		TST (specify)					
	BCG	BCG status			BCG	status	Total	
	Yes	No			Yes	No		
IGRA +	75	2	77	TST +	68	2	70	
IGRA -	182	3	185	TST -	175	2	177	
Indeterminate	0	0	0	Indeterminate	0	0	0	
Total	257	5	262	Total	243	4	247	
		Tes	t perfor	mance parameters	S			
	IGRA				TS	T		
DOR (for T ⁺ calc	ulated) _{IGRA}	= 0.61 (95)	5% CI:	DOR (for T+ calculated) _{TST} = 0.38 (95% CI: 0.05 ,				
0.10, 3.77)				2.81)				
OR (crude; for T ⁺	reported) =	=0.62(959)	% CI:	OR (crude; for T-	+ reported) = 0.38 (95)	5% CI: 0.05,	
0.08, 4.76) referen	nce group f	flipped (ye	s vs.	2.85)				
no)				reference group flipped (yes vs. no)				
OR (regression-based; reported) $_{IGRA} = 0.83$			OR (regression-based; reported) $_{TST} = 0.52$ (95% CI:					
(95% CI: 0.08, 8.	33)			0.06, 4.00)				
reference group f	lipped (yes	vs. no)		reference group f	lipped (ye	s vs. no)		

List of covariates: NR		List of covariates:						
Other reported measur		Other reported measure =	NR					
Between-test agreement, concordance, and discordance (if applicable)								
	This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition							
Total sample	difficulty 151 cut off v	urue, De G vuccination sta	tus, unu, or condition					
Total Sallipic	TST + (≥5mm)	TST -	Total					
IGRA (QFT-GIT) +	56	19	75					
IGRA -	12	149	161					
Indeterminate								
Total	71	183	254					
Description	··							
	., total, if stratified by BC	CG or condition – specify): to	otal					
TST + threshold: ≥5m	•							
Parameters								
Kappa = 0.68 (95% C)	I: 0.56, 0.81) indetermina	te excluded						
% concordance = 205/	/236 = 86.86% (95% CI:	81.96, 90.59) ; indeterminate	e excluded					
		41, 18.04) indeterminate exc						
Stratification (≥10mm								
,	TST +(≥10mm)	TST -	Total					
IGRA +	48	27	75					
IGRA -	7	154	161					
Indeterminate	2	16	18					
Total	57	197	254					
Description								
Sample definition (e.g	., total, if stratified by BC	CG or condition – specify): to	otal					
$TST + threshold: \ge 10r$	nm							
Parameters								
Kappa = $0.64 (95\% C)$								
	236 = 85.59% (95% CI:							
	36 = 14.41% (95% CI: 10	0.5, 19.46)						
Stratification (specify	10 1							
	TST +	TST -	Total					
IGRA +	NR	NR	NR					
IGRA -	NR	NR	NR					
Indeterminate	NR	NR	NR					
Total	NR	NR	NR					
Description								
	., total, if stratified by BC	CG or condition – specify): N	<u>VR</u>					
TST + threshold: NR								
Parameters								
Kappa = NR								
% concordance = NR								
% discordance = NR		,						
Other outcomes								
I	Test and cut-off (if Adverse events n/N (%) Health related quality							
applicable) (specify) of life mean score (SD) (specify)								
IGRA:		NR	NR					
TST:		NR	NR					
Test 3 (specify):		NR	NR					
zosto (specify).	Co	onclusions	2 (2)					
Authors:								
	rculosis infection in paed	iatric contacts was high rega	rdless of the diagnostic					

method used. TST should not be excluded for the detection of paediatric M. tuberculosis infection in this setting, but QFT-GIT may be a feasible alternative in children aged ≥2 years

Reviewers:

Similar performance of TST and IGRA for exposure DORs; BCG did not affect TST or IGRA positivity differentially; TST threshold did not influence the agreement between the two tests *Abbreviations:* DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; PPV = positive predictive value; NPV = negative predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Data extraction sheet for included primary study reports

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Laniado-Laborin 2014¹⁴⁶

Country: Mexico

Study design: Cross-sectional/retrospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Tuberculosis (TB) clinic

Number of centres: one

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): NR

Aim of the study

To compare the prevalence of LTBI between paediatric contacts of drug-resistant cases and drug susceptible cases

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: From August 2011 to June 2013

Total N of recruited patients: NR

Inclusion criteria: Family contacts of culture–proven cases age ≤16 years

Exclusion criteria: Subjects with a history of TB, a previous diagnosis of LTBI or the administration

of TST in the past year

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 173

Total N of patients with valid results for both IGRA and TST: 172

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: concordance between TST and QFT-GIT test, association between

exposure and test results

Characteristics of participants (total study sample)

Mean (range or SD) age (years): drug susceptible (7.79 SD4.28); drug resistant (7.36 SD4.46)

Women (n [%]): 86/173 [50.0%] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): NR

BCG vaccination (n [%]): 164 [95%]

History of anti-TB treatment (n [%]): None

Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes

Clinical examination (yes/no): Yes

Morbidity (n [%]): NA

Co-morbidity (n [%]): NA

Type of during-study treatment (n [%]): 77/173 [44.5%] contacts of multidrug susceptible index cases were treated for LTBI with INH or rifampicin (RMP). 96/173 [55.5%] contacts of multidrug resistant cases did not receive treatment for LTBI

Number of natients tested

rumber of patients test	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	173	71	101	1	172
TST (≥5mm):	173	136	36	1	172

Total N of patients with valid results for both IGRA and TST: 172

Levels/groups of exposure to TB in increasing order (if applicable):

	Defin	ition of ex	posure group	– vai	rious definit	tions (se	ee below)
Non-exposed		NR						,
Exposed 1 (spe	ecify):	Exposure	to source					
Exposed 2 (spe			y exposure					
Exposed 3 (spe		Cohabita						
Exposed 4 (spe		Rooms, n						
Tests		11001115, 1						
Teses	Assav	ısed. metl	nodology, timi	ing	С	ut-off		Other
	_		asurement,	5		thresh	olds	information
		manufa	·		Definit			mormation
IGRA	QuantiFl		d In-Tube assa	av	QFT-GIT			
(QFT-GIT)			EN Inc., Valer	-	considered			
(211 311)	CA, USA		== · · · · · · · · · · · · · · · · · ·	,	if the inter			
	011, 001	-/			response t			
	Each par	ticipant ha	d 73 ml of blo	od	minus the		-	
		hich was p		· ·	control wa	_		
			nufacturer's		and also >			
	instruction				negative c			
					negative in		criteria	
					were not r			
					indetermin	nate if e	ither	
					the negati	ve conti	rol had	
					a result of	>8 IU/1	ml or	
					the positiv	e contr	ol had	
					a result of	<0.5 IU	J/ml	
TST(≥5mm)	TST (5 t	uberculin u	ınits purified		An indura	tion of	≥5 mm	
	protein d	erivative [PPD]; Tuberso	ol,	was consi	dered p	ositive,	
		Pasteur Lt, Toronto, ON,			as every s	subject '	was a	
	-	•	med using the		close contact of a			
			An intradermal		culture-proven case			
		of 0.1 ml						
			volar surface					
			ansverse diame	eter				
		tion was re						
	•		lministration	_				
Association be			nd incidence	of act	tive TB (if a		•	
	IGI		T				(>5mm	
		ence of	Total				ence of	Total
	-	ve TB	-				re TB	
****	Yes	No	37.1		T.C.T.	Yes	No	~ .
IGRA +	NA	NA	NA		TST +	NA	NA	NA
IGRA -	NA	NA	NA		TST -	NA	NA	NA
indeterminate		NA	NA	ınde	eterminate	NA	NA	NA
Total	NA	NA	NA		Total	NA	NA	NA
			Test perform	ance	parameters	<u> </u>		
~	IGI	RA		~			TST	
Sensitivity = N					$\frac{\text{sitivity} = N_A}{\text{sitivity}}$			
Specificity = N	IA .			•	cificity = N	A		
PPV= NA				= NA				
NPV= NA					V= NA			
Cumulative Inc					nulative Inc			
Cumulative Inc					nulative Inc			
Cumulative Inc			NA		nulative Inc			
Incidence dens	ity rate _{IGI}	$t_{A+} = NA$		Incidence density rate $_{TST+} = NA$				

				T				
Incidence densit				Incidence dens				
Incidence densit	•			Incidence density rate ratio $_{TST} = NA$				
Other reported n				Other reported		$\Gamma = NA$		
	Comparison between tests (IGRA vs. TST)							
Ratio of cumula	tive incidenc	e ratios = N	NA					
Ratio of inciden	ce density ra	te ratios = 1	NA					
Other reported n	neasure = NA	A						
•								
Ass	ociation bet	ween test	results a	nd levels of TB	exposure (if	applicable)		
	IGRA-GIT				TST≥5			
	Exposu	e level	Total			sure level	Total	
	High/Yes	Low/No			High/Ye			
IGRA +	NA	NA	NA	TST +	NA	NA NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
indeterminate	NA	NA	NA	indeterminate	NA	NA	NA	
Total	NA NA	NA NA	NA	Total	NA NA	NA NA	NA	
Total	INA	l .	1			INA	NA	
	ICDA	Test	periori	nance paramete				
G tit ti ATE	IGRA			G tit to Aff	TS	<u> </u>		
Sensitivity = NR				Sensitivity = NF				
Specificity = NF	₹			Specificity = NI	₹			
PPV = NR				PPV = NR				
NPV = NR				NPV = NR				
DOR (for T ⁺ cal	culated) = N	R		DOR (for T ⁺ cal				
OR (crude; for T	Γ^+ reported) =	- NR		OR (crude; for T^+ reported) = NR				
OR (regression-	based; report	red) =		OR (regression-based; reported) =				
Exposure to sou	rce: 0.91 (95	% CI 0.57,	1.45)	Exposure to sou	rce: NR (p=	NR; NS)		
Hours/day expos	sure: 1.03 (9:	5% CI 0.96	5, 1.10)	Hours/day expo	sure: NR (p=	=NR; NS)		
# of cohabitants:	: 0.91 (95%	CI 0.79, 1.0)5)	# of cohabitants: NR (p=NR; NS)				
# of rooms: 1.12	2 (95% CI 0.7	77, 1.61)		# of rooms: NR (p=NR; NS)				
List of covariate	s: age, sex, h	istory of		List of covariate	es: age, sex,	history of		
BCG vaccination			,	BCG vaccination, intensity of exposure, exposure				
exposure time of				time of the contacts to a source case, exposure to a				
exposure to a dr				drug-susceptible case, and exposure to a drug-				
exposure to a dr				resistant case				
Other reported n				Other reported measure = NR				
			n betwe	een tests (IGRA				
Ratio of DORs ((10111)				
Ratio of OR (cru	\							
Ratio of OR (cre								
Other reported n		<u> </u>	$a_j - M$					
Omer reported in			toot man	ulta and DCC sta	tua (if and	ioshla)		
		n between	test res	ults and BCG sta				
	IGRA	totus	T-4-1			ST CC status	Total	
	BCG s		Total			CG status	Total	
ICDA	Yes	No	N.T.A	TOT	Yes	No	NT A	
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
indeterminate	NA	NA	NA	indeterminat		NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
		Test	perfori	nance paramete				
	IGRA					ST		
DOR (for T ⁺ cal				$DOR (for T+ calculated)_{TST} = NA$				
$OR (crude; for T^+ reported) = NA$			OR (crude; for T+ reported) = NA					

OR (regression-base	d; reported) _{IGRA} = NA	OR (regression-based; rep	orted) _{TST} = NA	
List of covariates: N	A	List of covariates: NA		
Other reported meas	ure = NA	Other reported measure =	NA	
	ment, concordance, and d			
	tratified by TST cut-off v	alue, BCG vaccination status,	and/or condition	
Total sample				
	TST +≥5mm	TST -	Total	
IGRA +	69	2	71	
IGRA -	67	34	101	
indeterminate	NR	NR	1	
Total	136	36	172	
Description				
Sample definition (e	.g., total, if stratified by BC	CG or condition – specify): total		
$TST + threshold$: ≥ 5	5mm			
Parameters				
Kappa = $0.27 (95\%)$	CI: 0.17, 0.38)			
% concordance = [69	9+34]/172 = 59.88% (95%	CI: 52.42, 66.92)		
	172 = 40.12% (95% CI: 33			
Stratification (spec				
`*	TST +	TST -	Total	
IGRA +	NA	NA	NA	
IGRA -	NA	NA	NA	
indeterminate	NA	NA	NA	
Total	NA	NA	NA	
Description				
	.g., total, if stratified by BC	G or condition – specify): NA		
TST + threshold: NA				
Parameters				
Kappa = NA				
% concordance = NA	A			
% discordance = NA				
Stratification (spec				
Structured (spec	TST +	TST -	Total	
IGRA +	NA	NA	NA	
IGRA -	NA	NA	NA	
indeterminate	NA	NA	NA	
Total	NA	NA	NA	
Description	212.2		1 11 1	
	g total if stratified by BC	2G or condition – specify): NA		
TST + threshold: NA	<u> </u>	of condition specify). 1411		
Parameters	<u> </u>			
Kappa = NA				
% concordance = NA	Δ			
% discordance = NA				
0 discordance – NA				

The only variables predictive of a positive QFT-GIT were older age and TST positivity. Logistic regression analysis with TST as a dependent variable had similar results, with a positive QFT-GIT test as the only predictor of a positive TST (results not shown).

Conclusions

The main finding in our study is that overall prevalence of LTBI in paediatric contacts in our region is high, and not significantly different among contacts of drug-susceptible and those of drug resistant patients

Reviewers:

There was no associations between exposure to TB and GIT test results; likewise for TST (but no results reported); inconclusive results; between test agreement was poor

Abbreviations: DOR=diagnostic odds ratio; 95% CI= 95 percent confidence intervals;

TB=tuberculosis; BCG=Bacillus Calmette–Guérin; PPV= positive predictive value; NPV=negative predictive value; FPR=false positive rate; FNR=false negative rate; SD=standard deviation

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Mahomed 2011b¹⁰⁶

Country: South Africa

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): High schools

Number of centres: 11

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): The Aeras Global TB Vaccine

Foundation and the Gates Grand Challenge 6 and Gates Grand Challenge 12 grants for QuantiFERON

testing

Aim of the study

To determine the prevalence of and predictive factors associated with latent TB infection in adolescents

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children (adolescents in a high TB burden area)

Participants

Recruitment dates: NA

Total N of recruited patients: 6363 enrolled, 5244 enrolled for analysis

Inclusion criteria: All adolescents aged 12-18 years **Exclusion criteria:** Diagnosed with active TB

Total N of excluded patients: 13 (an indeterminate QFT results), 639 (TST was not performed with

past TB), 22 (TST was not performed with current TB, 22 (diagnosed with active TB)

Total N of patients tested with both IGRA and TST: 5244

Total N of patients with valid results for both IGRA and TST: 5244

Methods of active TB diagnosis (if applicable): NA Outcomes (study-based) list: TST and QFT results Characteristics of participants (total study sample)

Mean (range or SD) age (years): 12-18 years

Women (n [%]): 2842 [54.2]

Race/ethnicity (n [%]): Indian/White (410 [7.8]); Mixed race (3839 [73.2]); Black (995 [19.0])

Geographic origin (n[%]): NR

BCG vaccination (n [%]): No (46 [0.9]); yes (4917 [93.8]); unknown (281 [5.4])

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): No Clinical examination (yes/no): No

Morbidity (n [%]): NR

Co-morbidity (n [%]): Chronic allergy related condition e.g. asthma, hay fever, eczema yes (53 [1.0]);

No (5191 [99.0])

Type of during-study treatment (n [%]): NR

Number of patients tested

-	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indetermina te)	Total N (test results available)
IGRA (QFT-GIT):	Unclear	2669	2562	13	5244
TST (≥5mm):	Unclear	2894	2350	0	5244
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 5244

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group

Non-exposed NR

Exposed 1 (spec	: f -,).	Current	or prior TB hou	cahald aa	ntoot				
Exposed 1 (speci	_	BCG sca		senoid co.	macı				
Exposed 2 (speci			orted as being	rivon					
		NA	offied as being	given					
Exposed 4 (specify): NA Tests									
Tests	I A	4	h - J -1 4!!	C	1	- C4	- CC		041
	_		hodology, timi	_		Cut		Ja	Other
	test	measurem	ent, manufact	urer		lues/th efinition			informatio
IGRA	OwantiT	EDON TE	Cald In Tuba	(OET		sult was			n
IGKA	_		Gold In-Tube						NA
	Australi		negie, Victoria,		_	ive if the was ≥ 0	_	-	INA
TST			n either forearn			$\frac{\text{was} \geq 0}{\text{sult was}}$		امسمط	
131			of RT23 (Staten			ive if ir			NA
			en, Denmark).	Sociulii	5mm		iuuraiic	лı <u><</u>	INA
			ST site was read	1 12 06	311111	L			
			uler or a caliper						
		personnel	uici of a camper	, oy					
Association bety			d incidence of	active TR	l (if ar	nlicahl	(ما		
Association bet	IG		u metachee or		(п ар		TST		
		idence of	Total			Incid			Total
		tive TB	Total			of ac			Total
	ac	uve 1D				T			
	Yes	No	-			Yes	No		
IGRA +	NA		NA	TST		NA	NA		NA
IGRA -	NA	_	NA	TST		NA	NA		NA
Indeterminate			NA NA	Indetern			NA		NA NA
macterimiate	INA	INA	IVA	e	imnat	IVA	INA.		IVA
Total	NA	NA	NA	Tota	al	NA	NA		NA
			est performan	ce param	eters	·			
	IG						TST		
Sensitivity = NA				Sensitiv	itv = N		101		
Specificity = NA				Specificity = NA					
PPV = NA	-			PPV = NA					
NPV = NA				NPV = NA					
Cumulative Incid	dence ron	N = NA		Cumulative Incidence $_{TST+} = NA$					
Cumulative Incid									
Cumulative Incid			A	Cumulative Incidence _{TST-} = NA Cumulative Incidence Ratio _{TST} = NA					
Incidence density				Incidence					1111
Incidence density				Incidence		-			
Incidence density			1	Incidence		_			NA
Other reported m				Other re		_			11.1
other reported in	ieusure _{IO}		rison between t				151	1 17 1	
Ratio of cumulat	tive incide			CDCD (101)	<u> </u>	101)			
Ratio of incidence									
Other reported m			-141						
•			and levels of	R evnoer	ire (ci	irrent 4	or nrie	r TR	household
Association	between t	iest resuits	conta	_	(С	arrent (or brio	· ID	Household
IGRA (QFT-GIT) TST≥ 5mm									
Exposure level Total						sure le		Total	
	Yes	No				Yes	N		
IGRA +	888	1781	2669	TST +		950	194		2894
IGRA -	444	2118	2562	TST -		382	19		2350
Indeterminate	0	13	13	Indetern	ninat	0	(0
	L								

			(excluded)	e			
Total	1332	3912	5244	Total	1332	3912	5244
1000	1002			nce parameters	1002	0,12	<u></u>
	IGI				T	CST	
Sensitivity = 888 69.15)			% CI (64.09,	Sensitivity = 95 (68.83, 73.69)	Sensitivity = 950/1332 = 71.32%, 95% CI		
Specificity = 211 55.88)	18/3899 =	54.32%, 9	5% CI (52.75,		968/391	2 = 50.31	%, 95% CI
PPV = 888/2669	= 33.27%	6, 95% CI	(31.51, 35.08)		PPV = 950/2894 = 32.83%, 95% CI (31.14,		
NPV = 2118/256 84.09)	62 = 82.67	⁷ %, 95% C	I (81.16,	NPV = 1968/23 85.18)	350 = 83	3.74%, 95	% CI (82.2,
DOR (for T ⁺ calc 2.71)	culated) =	2.38, 95%	CI (2.09,	DOR (for T ⁺ ca 2.88)	lculated	1) = 2.52,	95% CI (2.20,
OR (crude; for T 2.74)	reported	$\overline{l}) = 2.40, 9$	5% CI (2.11,	OR (crude; for (2.20, 2.88)	T ⁺ repor	rted) = 2.5	52, 95% CI
OR (regression-b (1.70, 2.20)	pased; rep	$\overline{\text{orted}}$) = 1.	90, 95% CI	OR (regression 2.30)	-based;	reported)	= 2.00 (1.70,
List of covariates	s: NR			List of covariat	es: NR		
Other reported m	neasure =	NR		Other reported	measure	e = NR	
			rison between	tests (IGRA vs. 7	rst)		
Ratio of DORs (1	for T+ cal	culated) =	0.94 (95% CI:	0.86, 1.04)			
Ratio of OR (cru	de; for T-	+ reported)	=0.94(95%)	CI: 0.86, 1.04)			
Ratio of ORs (re	gression-l	oased; repo	orted) = 0.95 (9	95% CI: 0.86, 1.05)		
Other reported measure = NR							
•	Associa	tion betwe	en test results	s and BCG status	(if appl	licable)	
J		FT-GIT)				≥ 5mm)	
		CG status	Total			3 status	Total
	Ye	s No	,		Yes	No	
IGRA +	NR	NR	NR	TST +	NR	NR	NR
IGRA -	NR	NR	NR	TST -	NR	NR	NR
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR
Total	2064			Total	2064	1490	3554
				nce parameters			1 2 2 2 .
	IGI				Т	ST	
DOR (for T ⁺ calc				DOR (for T+ ca			A
OR (crude; for T			5% CI (0.86,	OR (crude; for			
1.12)			NID	(1.0, 1.33)	1 1	, 1	NTD
OR (regression-b		orted) _{IGRA}	= NK	OR (regression		reported)	$_{\mathrm{TST}} = \mathbf{NK}$
List of covariates		ND		List of covariat		ND	
Other reported m			7	Other reported		e = NR	
				ordance (if applica e, BCG vaccination		s, and/or	condition
Total sample ≥ 3	5mm						
		TS	ST +	TST -			Total
IGRA + NR				NR			NR
IGRA - NR				NR			NR
Indeterminate NR				NR			NR
Total NR NR NR					NR		
Description							
	n (e.g., to	tal, if strati	fied by BCG o	or condition – spec	ify): tota	al	
	Sample definition (e.g., total, if stratified by BCG or condition − specify): total TST + threshold: ≥ 5mm						
Parameters							

Kappa = 0.70, 95% CI: 0.68, 0.71

% concordance = 84.8% (95% CI NR)

% discordance = NR

Total sample (≥ 10mm)								
	TST +	TST -	Total					
IGRA +	NR	NR	NR					
IGRA -	NR	NR	NR					
Indeterminate	NR	NR	NR					
Total	NR	NR	NR					

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total

TST + threshold: $\geq 10mm$

Parameters

Kappa = 0.63, 95% CI: 0.61, 0.65

% concordance = 81.4% (95% CI NR)

% discordance = NR

Total sample (> 15mm)

	TST +	TST -	Total						
IGRA +	NR	NR	NR						
IGRA -	NR	NR	NR						
Indeterminate	NR	NR	NR						
Total	NR	NR	NR						

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify):

TST + threshold: $\geq 15mm$

Parameters

Kappa = 0.30, 95% CI: 0.27, 0.32

% concordance = 64.3% (95% CI NR)

% discordance = NR

Other outcomes							
Test and cut-off (if	Health related quality						
applicable)	(specify)	of life mean score (SD)					
		(specify)					
IGRA:	NR	NR					
TST:	NR	NR					
Test 3 (specify):	NR	NR					

Conclusions

Authors:

The predictive factor profile for both measures was similar

Reviewers:

TST was slightly influenced by BCG vaccination, but not IGRA; Both tests performed similarly in detection LTBI; 5mm threshold TST had better agreement than 10 and 15mm

Abbreviations: DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette-Guérin; PPV = positive predictive value; NPV = negative predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Study details

First author surname year of publication: Metin Timur 2014¹⁴⁸

Country: Turkey

Study design: prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): community based contact

study

Number of centres: NR

Total length of follow up (if applicable): 3 years as outpatients with 3 months intervals

Funding (government/private/manufacturer/other - specify): NR

Aim of the study

To compare QuantiFeron-TB gold in tube test (QFT-GIT) and tuberculin skin test (TST) as a diagnosis of latent tuberculosis infection in the children with Bacille Calmette-Guerin (BCG) vaccine

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: between 2008 and 2011

Total N of recruited patients: NR

Inclusion criteria: children with positive TST results, children without a history of contact with a TB case, active TB case in the household was not detected through the family screening, children having no medical reason for immunosuppression, children who had diagnosed TB disease without a contact with active TB case

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 81

Total N of patients with valid results for both IGRA and TST: 81

Methods of active TB diagnosis (if applicable): LTBI as defined both TST and QFT-GIT test positive in a children who had no abnormality on the chest x-ray. Active TB disease was defined both TST and QFT-GIT test positive in a child who had symptoms of TB disease and/or abnormal findings on chest radiograph, CT or proven M. tuberculosis culture, PCR or histo- pathological examination.

Outcomes (study-based) list: diagnosis of prevalent TB, incidence of active TB

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 94.8 ±51.9 months (range: 6-193)

Women (n [%]): 33 [40.7%] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): one BCG scar (69 [85.2%]; two BCG scars (12 [14.8%]

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): None

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NA

Co-morbidity (n [%]): acute appendicitis (1 [1.2%])

Type of during-study treatment (n [%]): no treatment (n=69 children with TST⁺/QFT⁻ results); isoniazid (n=8 children with TST⁺/QFT⁺ results but no symptoms – assumed with LTBI); isoniazid, rifampicin and pyrazinamide (n=4 children with TST⁺/QFT⁺ results with symptoms –with TB)

Number of patients tested					
	Total N	Total	Total N	Total N	Total N
	(tested)	N	(test-)	(indeterminate)	(test results
					available)
		(test+)			
ICDA (OFT CIT):	Q1	12	60	0	Q1

TST (≥15mm):		81 81	0 0	81						
Total N of patients with valid results for both IGRA and TST: 81										
Levels/groups of exposure to TB in increasing order (if applicable):										
	Definition of exposure group									
Non-exposed		NA								
Exposed 1 (spec	_	NA								
Exposed 2 (spec		NA								
Exposed 3 (spec		NA								
Exposed 4 (spec	rify):	NA								
Tests	1 .									
	_	sed, methodology,	Cut-off values/thresholds	Other information						
		ning for test	Definition of test+							
		easurement,								
TODA (OFF		anufacturer	A '' 1, 1 C' 1							
IGRA (QFT-		blood samples	A positive result was defined							
GIT)		n in the laboratory,	if the difference in the IFN-γ							
		y were processed by	levels between the test tube							
		ysicians and I according to	and negative control is greater than or equal to							
		according to arer's instructions.	0.35 IU/mL and is greater							
		child, total 3 mL	than 25% of the nil value.							
		od was taken, then	Also for determinate results,							
	blood was		nil control must be < 8.0							
		pecial tubes: gray-	IU/mL							
		control, "nil"),								
	red- (test t	tube), and purple-								
	cap (posit	ive control;								
		oated) tubes. Test								
		ecially designed								
		collection which is								
		th M. tuberculosis-								
		ntigens (ESAT-6,								
		nd a portion of TB								
		e blood was it is essential to								
		dequate shaking for								
	•	o dissolve. They								
		bated at 37°C for 16								
		rs and centrifugation								
		for 15 minutes, then								
	_	as separated. The								
	_	FIFN-γ was								
		by using the QFT								
	ELISA									
TST(≥15mm)		en underwent a TST	When interpreting a TST							
		of purified protein	result, the widest diameter of							
		, according to	induration, not erythema,							
	intraderma	al Mantoux method	was measured in millimetres							
			after 72 hours by trained							
			physician or nurses. TST							
			was considered as positive if							
			an induration was ≥ 15 mm,							
			regardless of BCG							
			vaccination scar numbers							

Association between	en test res	ults and i	incide	nce of	active TB (if an	plicable)			
	IGRA-G						≥15mm)	
	Incide		Т	otal			ence of		Total
	active						ve ТВ		
	Yes	No				Yes	No		
IGRA +	0	0		0	TST +	0	69		69
IGRA -	0	69		5 9	TST -	0	0		0
indeterminate	0	0		0	indeterminate	0	0		0
Total	0	69		5 9	Total	0	69		69
Total	0				nce parameters	1 0	07		0)
	IGRA-G		st peri	lui illai		ТСТ	<u>≥15mm</u>		
Sensitivity = NA	IOIA-OI	L L			Sensitivity = N		<u>_13IIIII</u>		
•	_ 100% (0)5% CI: N	ID)		•		06 (05%	CI: NI	D)
Specificity = 69/69	= 100% (5	95% CI: N	NK)		Specificity = 0				K)
PPV= NA)/ (050/ C	I. ND\			PPV = 0/69 = 0	.0% (95%	o CI: NK	.)	
NPV = 69/69 = 1009					NPV = NA	• 1	0.70	70 0 (20/ /050/
Cumulative Inciden					Cumulative In CI: NR)				J% (95%
Cumulative Inciden CI: NR)	ce _{IGRA-} =	0/69 = 0.0	0% (95	5%	Cumulative In	cidence ₁	$_{\text{CST-}} = \text{NA}$		
Cumulative Inciden	ce Ratio IC	$g_{RA} = NA$			Cumulative In	cidence I	Ratio _{TST}	= NA	
Incidence density ra					Incidence dens				
Incidence density ra					Incidence dens				
Incidence density ra					Incidence dens				
Other reported mean					Other reported	•			
o there reported into			son be	tween	tests (IGRA vs.		131 - 13		
Ratio of cumulative					tests (IGILI VS	101)			
Ratio of incidence of									
Other reported measurement		2 Tat105— 1	17.1						
		woon toct	rocul	te and	levels of TB exp	ocuro (i	fannlige	hla)	
ASSUC	IGRA	ween test	i resur	is and	levels of 1 D ex		ST	ible)	
		ouma larval		Foto1				o1	Total
		sure level s Low/l		Γotal	-		osure lev		Total
ICD A	High/Ye			NT A	TOT .	High/Y		w/No	NT A
IGRA +	NA	NA		NA NA	TST +	NA NA		NA	NA NA
IGRA -	NA	NA		NA	TST -	NA		NA	NA
indeterminate	NA	NA		NA	indeterminate	NA		NΑ	NA
Total	NA	NA —		NA	Total	NA	1	NA.	NA
		Tes	st peri	forma	nce parameters		CE		
~	IGRA						ST		
Sensitivity = NA					Sensitivity = NA				
Specificity = NA					Specificity = NA				
PPV= NA					PPV= NA				
NPV= NA					NPV= NA				
DOR (for T ⁺ calcula					DOR (for T ⁺ calculated) = NA				
OR (crude; for T ⁺ re	= eported) $=$	NA			OR (crude; for T^+ reported) = NA				
OR (regression-based; reported) = NA				OR (regression-based; reported) = NA					
List of covariates: NA				List of covariates: NA					
Other reported measure	sure = NA				Other reported i	neasure =	NA		
•			son be	tween	tests (IGRA vs.				
Ratio of DORs (for									
Ratio of OR (crude:									
Ratio of ORs (regre				NA					
Other reported mean			- 1	14.4					
			n tost	regulta	s and BCG statu	s (if ann	licabla)		
F	1350Clau0	n betwee	n test	i couits	s and DCG statt	э (п арр	iicabie)		

	IGRA				TS	$\overline{\Gamma}$	
	BCG	status	Total		BCG status		Total
	Yes	No			Yes	No	1
IGRA +	NA	NA	NA	TST +	NA	NA	NA
IGRA -	NA	NA	NA	TST -	NA	NA	NA
indeterminate	NA	NA	NA	indeterminate	NA	NA	NA
Total	NA	NA	NA	Total	NA	NA	NA
Total	11/11	L		ce parameters	11/1	1121	1421
	IGRA	1 cst p	CITOTIII		TS	Γ	
DOR (for T ⁺ calcula		A		DOR (for T+ ca			
OR (crude; for T ⁺ re				OR (crude; for			
OR (regression-base	<u> </u>			OR (regression-			= NA
List of covariates: N		IORA TVI		List of covariate		ported) 131	1111
Other reported measurement				Other reported		- NA	
Between-test agree		ordance, a	nd discord			1111	
This table may be						nd/or cond	ition
Total sample		,	,		, , , ,		
		TST +		TST -			Total
IGRA +		NA		NA			NA
IGRA -		NA		NA NA			NA
indeterminate		NA		NA NA			NA
Total		NA		NA NA			NA
Description		1171		1171			11/11
Sample definition (e	e g total if	stratified b	v BCG or o	condition – specify	γ)· ΝΔ		
TST + threshold: N.		stratifica o	y DCG OI (condition specify	<i>)</i> . 1111		
Parameters	<u> </u>						
Kappa = NA							
% concordance = N	Δ						
% discordance = NA							
Stratification (spec)					
Stratification (spec	ny group i	TST +		TST -			Total
IGRA +		NA		NA			NA
IGRA -		NA NA		NA NA			NA NA
indeterminate		NA NA		NA NA			NA
Total		NA NA		NA NA			NA NA
Description		NA.		IVA			NA
Sample definition (e	a g total if	stratified by	y BCG or (condition enecify	7) · N/A		
TST + threshold: N.		stratifica o	y DCG OF C	condition – specify). INA		
Parameters	<u> </u>						
Kappa = NA							
% concordance = N	Λ						
% discordance = N							
Stratification (spec		1					
Siramicanon (spec	my group 2	TST +		TST -			Total
IGRA +		NA		NA			
IGRA -		NA NA				NA NA	
indeterminate		NA NA		NA NA			NA NA
Total		NA NA		NA NA			NA NA
		INA		INA			INA
Description Sample definition (. a. 464a1 !£	otmotifical 1.	v DCC ar	andition are if	.). NI 4		
Sample definition (e		stratified by	y BCG or o	condition – specify): NA		
TST + threshold: N.	A						
Parameters							
Kappa = NA							

% concordance = NA

% discordance = NA

Conclusions

Authors:

Study suggests that confirmation of positive TST results with QFT- GIT test may enhance the accuracy of diagnosing both active TB and LTBI, particularly among BCG vaccinated children. The correct diagnosis of LTBI prevents unnecessary treatment and treatment complications

Reviewers:

None of the 69 children with TST positive results and QFT-GIT negative results developed active TB, indicating better specificity of QFT-GIT vs. TST (100% vs. 0%)

Abbreviations: DOR=diagnostic odds ratio; 95% CI= 95 percent confidence intervals; TB=tuberculosis; BCG=Bacillus Calmette–Guérin; PPV= positive predictive value; NPV=negative predictive value; FPR=false positive rate; FNR=false negative rate; SD=standard deviation

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Pavic 2011¹⁰⁷

Country: Croatia

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Children hospital and

general hospital **Number of centres:** 2

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): None

Aim of the study

To evaluate an IGRA for diagnosis of LTBI in BCG –vaccinated children up to 5 years of age, with documented exposure to active TB

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Younger children with history of exposure to active TB

Participants

Recruitment dates: Between January 2008 and December 2009

Total N of recruited patients: 142

Inclusion criteria: Pediatric patients' ≤5 years of age and a documented exposure (close or distant contact) to a case of active TB. Close contact (household contact with aggregate exposure to a patient with active TB of not < 40 hours in closed room and distant contact (occasional or unclear exposure time of <40 hours during the presumed period of infectiousness)

Exclusion criteria: Children >5 years, immunocompromised children, inadequate blood sampling and diagnosis of active TB

Total N of excluded patients: 1 (diagnosed with pneumonia: data were not included in further statistical analysis)

Total N of patients tested with both IGRA and TST: 142

Total N of patients with valid results for both IGRA and TST: 141

Methods of active TB diagnosis (if applicable): Induration of ≥ 10 mm

Outcomes (**study-based**) **list:** Test results, impact of age and on results of IGRA and level of agreement between IGRA and TST results

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 29 ± 16 months

Women (n [%]): 57 [40.1] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 142 [100] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): NR

Co-morbidity (n [%]): Pneumonia 1 [0.7] Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	142	18	123	1	141
TST (≥10mm):	142	24	118	0	142
Test 3 (specify)	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 142

Levels/group	s of exposu			order (if applicat	ole):				
				exposure group		_			
Non-exposed			Distant contact was defined as occasional or unclear exposure time or < 4						
			hours during the presumed period of infectiousness. Close contact was defined as household contact with aggregate exposure						
Exposed 1 (s)	pecify):			vas defined as household contact with aggregate exposure to ctive $TB \ge 40$ hours in closed rooms					
		_	with active TI	$3 \ge 40$ hours in clo	sed roc	oms			
Exposed 2 (s)		NA							
Exposed 3 (s)		NA							
Exposed 4 (s)	pecify):	NA							
Tests	T .			T		T -			
	_	•	hodology,	Cut-off		Oth	er information		
			asurement,	values/thresh					
TOP		nanufactu		Definition of t		D1 1	1 6 057		
IGRA	QFT-GIT (•	·	$\geq 0.35 \text{ IU/mL as}$			amples for QFT-		
(QFT-GIT)	Chadstone	, Australia	1)	recommended b	y the		re drawn under		
				manufacturer.			dized condition in		
							pital at the same TST. The test was		
							red indeterminate		
							alue of the		
							-control well was		
							n 0.5 IU/mL,		
							nil negative control		
							re than 8 IU/L		
TST≥ 10	Two tubero	culin units	of	Induration ≥ 10	mm	NA			
mm	standardize	ed purified	l protein						
	derivative								
	PPD RT 23	3, Statens	Serum						
	Institute, C	openhage	n, Denmark)						
	injected in	to the vola	ar aspect of						
	the forearn								
			neasured by a						
	trained hea		orker 68 to						
	72 hours la								
Association l			nd incidence (of active TB (if a					
	IGR					TST			
		ence of	Total			ence of	Total		
		ve TB				ve TB			
ICD A	Yes	No	NT A	TOT :	Yes	No	NT A		
IGRA +	NA NA	NA NA	NA NA	TST +	NA	NA NA	NA NA		
IGRA -	NA NA	NA NA	NA NA	TST -	NA	NA NA	NA NA		
Indetermina Total		NA NA	NA NA	Indeterminate	NA NA	NA NA	NA NA		
Total	NA	NA	NA Tagt narforms	Total	NA	NA	NA		
	IGR		1 est periorma	ance parameters		тст			
Consitivity -		A		Sansitivity - N		TST			
Sensitivity = Specificity =				Sensitivity = NA Specificity = NA					
PPV = NA	11/7			PPV = NA	1				
PPV = NA NPV = NA				PPV = NA NPV = NA					
	ncidanca	. — NI A		Cumulative Inci	danca	NI A			
Cumulative In				Cumulative Inci					
Cumulative In			NΙΔ						
Cumulative Incidence der			INA	Cumulative Inci					
Incidence der	isity rate IGR.	$A_{+} = INA$		Incidence densit	iy rate ₁	$_{\Gamma ST+}=\Gamma NA$			

Incidence density	rate ICD	= NA		Incidence dens	ity rate _{тет}	= NA		
Incidence density			ΙA	Incidence dens				
Other reported me		_		Other reported	•			
other reported in	asare _{IO}		rison hetwe	en tests (IGRA v)		
Ratio of cumulativ	ve incide			ch tests (10101 V	,, 1 01)			
Ratio of incidence								
Other reported me			5 1111					
			est results ar	nd levels of TB ex	nosure (cl	ose contact	t)	
	RA (QF		est results ur		TST≥ 1			
10.		ure level	Total		Exposu		Total	
	Close	Distant	10001		Close	Distant	1000	
IGRA +	17	1	18	TST +	23	1	24	
IGRA -	70	53	123	TST -	64	54	118	
Indeterminate	0	1	1	Indeterminate	0	0	0	
			(excluded)					
Total	87	54	141	Total	87	55	142	
		,	Test perform	ance parameters	3			
	IGR				TS	T		
Sensitivity = 17/8			(12.57,	Sensitivity = 23/			8.31, 36.56)	
29.08)		,					,	
Specificity = 53/5 99.67)	4 = 98.1	5%, 95%	(90.23,	Specificity = 54	/55 = 98.18	3%, 95% (9	0.39, 99.68)	
PPV = 17/18 = 94	.44%, 9	5% (74.24	1, 99.01)	PPV = 23/24 = 9	95.83%, 95	% CI (79.7	6, 99.26)	
NPV = 53/123 = 4			,	NPV = 54/118 =				
DOR (for T ⁺ calcu				DOR (for T ⁺ cal				
(1.66, 99.80)				148.40)				
OR (crude; for T ⁺	reported	1) = 1.66,	95% CI	OR (crude; for T	reported)	= 1.75, 95	% CI (0.92,	
(0.92, 3.35) error	•			3.35) error	•			
OR (regression-ba	ased; rep	orted) = N	NR	OR (regression-based; reported) = NR				
List of covariates:	NR			List of covariate	s: NR			
Other reported me	easure =	NR		Other reported n	neasure = 1	NR		
				en tests (IGRA vs	s. TST)			
Ratio of DORs (fo				CI: 0.15, 2.89)				
Ratio of OR (crud	le; for T	reported)	= NA					
Ratio of ORs (reg	ression-	based; rep	orted) = NA					
Other reported me								
	Associa	tion betw	een test resu	lts and BCG stat		,		
	IGRA (10 mm)		
		G status	Total			3 status	Total	
	Yes	No			Yes	No		
IGRA +	NR	NR		TST +	NR	NR	NR	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
Indeterminate	NR	NR		Indeterminate		NR	NR	
Total	NR	NR		Total	NR	NR	NR	
				ance parameters				
		OT/QFT			,	>5 mm)		
DOR (for T ⁺ calcu			NR	DOR _{TST} (for				
OR (crude; for T ⁺				OR (crude; fo				
OR (regression-ba	_			OR (regression		eported) TST	= NR	
OR (regression-ba		orted) _{TSPC}	$_{\rm OT} = NR$	List of covari	ates: NR			
List of covariates:								
Other reported me				Other reporte		= NR		
Between-test agr	eement,	concorda	ance, and dis	cordance (if app	licable)			

This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition							
Total sample							
	TST +	TST -	Total				
IGRA +	14	4	18				
IGRA -	11	112	123				
Indeterminate	0	1	1 (excluded)				
Total	25	116	141				

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Total

TST + threshold: ≥10 mm in duration

Parameters

Kappa = 0.59, 95% CI (0.42, 0.75)

% concordance = 126/141 = 89.36%, 95% CI (83.19, 93.45)

% discordance = 15/141 = 10.64%, 95% CI (6.554, 16.81)

Stratification (specify group 1)

Structure (Special)	8- ° - '		
	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (specify group 2)

	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

	Other outcomes							
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)						
IGRA:	NR	NR						
TST:	NR	NR						
Test 3 (specify):	NR	NR						

Conclusions

Authors:

Authors concluded that in a high-risk population of children \leq 5 years, both the TST and IGRA should be performed and a positive result on either test a suggestive of LTBI

Reviewers:

Tests performed similarly well in identifying LTBI by association with the active TB exposure

Abbreviations: DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; PPV = positive predictive value; NPV = negative predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Study details

First author surname year of publication: Perez-Porcuna 2014¹⁴⁹

Country: Brazil

Study design: Cross-sectional/retrospective

Study setting (e.g., outbreak investigation, community-based - specify): community-based

Number of centres: 2

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): the Brazilian National Counsel of Technological and Scientific Development (CNPq), the Foundation of Research Support of the State of Amazonas (FAPEAM), and the University of Barcelona. Cellestis Ltd. donated QuantiFERON test kits. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Aim of the study

To evaluate the response of the IGRA QuantiFERON-TB Gold In-Tube (QFT) and TST tests in young children with recent exposure to an index case

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: from March 2009 to February 2010

Total N of recruited patients: 140

Inclusion criteria: children from 0-6 years of age with recent contact with an adult symptomatic TB

index case within the last 12 months

Exclusion criteria: Subjects receiving treatment or prophylaxis for TB

Total N of excluded patients: 3

Total N of patients tested with both IGRA and TST: 135

Total N of patients with valid results for both IGRA and TST: 116

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: between-test agreement, discordance, concordance, associations

between different factors and test results

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 46 (28.0; 64.5) months

Women (n [%]): 74 (54.8%) Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): 118 (90.8%) History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NA Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

•	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	135	36	80	19	116
TST : ≥ 10mm	135	47	88	0	135

Total N of patients with valid results for both IGRA and TST: 116

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group – Time of exposure to the index case

Non-exposed	NA								
Exposed (specify):	# months measured as co	ontinuous covariate							
Definition of expo	sure group – mycobacteri	um tuberculosis contact (MTC	c) score: 0-15						
Non-exposed	NA								
Exposed (specify):	MTC score measured as continuous covariate. The score is composed of infectivity of the index case (0–4), the duration of exposure hours per day								
	infectivity of the index case (0–4), the duration of exposure hours per day								
	(0–4), the relationship to the index case (0–4) and the type of exposure (0–3)								
T4	[3)								
Tests	A ggay yagad	Assay used, Cut-off values/thresholds Other							
	Assay used, methodology, timing	Definition of test+	information						
	for test measurement,	Definition of test	mormation						
	manufacturer								
IGRA [QFT-GIT]	The QFT (Cellestis,	The result was positive							
,	Carnegie, Australia)	(QFT+) if the net value of							
	was	IFN-c to the TB antigens							
	carried out and	(after subtracting the							
	interpreted according	negative control) was							
	to the manufacturer's	\geq 0.35 U/mL and \geq 25% of							
	instructions	the value of the negative							
	was considered	control, independently of							
	indeterminate if there	the response of the							
	was excessive IFN-c production with the	mitogen.							
	negative control tube	The result was negative if							
	\$8.0 IU/mL	the net value of the IFN-c							
	ψο.ο το/ πιΣ	was <0.35 IU/mL and							
		mitogen response was	.						
		sufficient (≥0.50 IU/mL).	Experienced						
			laboratory technicians who						
		The result was	were unaware of						
		indeterminate if there was	the data of the						
		excessive IFN-c production	study subjects						
		with the negative control	, ,						
		tube ≥8.0 IU/mL							
		(indeterminate hypereactive) or with							
		insufficient net mitogen							
		response <0.50 IU/mL plus							
		insufficient net response of							
		the TB antigen < 0.35							
		IU/mL (indeterminate							
		hyporeactive)							
		W							
		When the QFT result was							
		indeterminate the test was							
		repeated to confirm the result							
TST ≥ 10mm	The TST was	≥ 10mm positivity	Experienced						
INI_ IVIIIII	performed with an	threshold	laboratory						
	intradermic injection of		technicians who						
	2 tuberculin units (TU)	according to the protocols	were unaware of						
	of PPD RT23 (Statens	of the WHO	the data of the						
	Serum Institut,		study subjects						

	(Copenhagei	1	\geq 5-9 mm weak r	eaction			
			nd read 72	≥ 10 mm strong re				
		ours therea			action			
Association bety				active TB (if appli	cable)			
Association bet	IGRA		includince of a		TST			
	Incidence		Total		Inciden	ce of	Γotal	
	active '		Total		active		ı otai	
	Yes	No			Yes	No		
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
indeterminate	NA NA	NA	NA NA	indeterminate	NA	NA NA	NA	
Total	NA NA	NA NA	NA NA	Total	NA NA	NA NA	NA	
Total	INA			ce parameters	IVA	IVA	INA	
	IGRA		t periorman		TST			
Sensitivity = NA		1		Sensitivity = NA				
Specificity = NA				Specificity = NA				
PPV = NA	<u> </u>			PPV = NA	1			
NPV = NA				NPV = NA				
	donos -	- NI A		_	donas	_ NI A		
Cumulative Incid				Cumulative Inc				
Cumulative Incid				Cumulative Inc				
Cumulative Incid								
Incidence density				Incidence densi				
Incidence density				Incidence densi				
Incidence density				Incidence density rate ratio _{TST} = NA Other reported measure _{TST} = NA				
Other reported m			1 4			$_{\mathrm{T}}=\mathbf{N}\mathbf{A}$		
Datis of augustas				ests (IGRA vs. TS)1)			
Ratio of cumulat								
Ratio of incidence			NA					
Other reported m			14 11	1 CTD	(°C	1. 11.		
			resuits and i	evels of TB expos				
_	IGRA (QFT		Total		TST (≥10)		Total	
	Exposure		Total		_	e level (# of	Total	
	months of to the inc				months of exposure to the index case)			
					High/Yes			
ICD A	High/Yes	Low/No		TCT		_	NID	
IGRA + IGRA -	NR NR	NR NR	NR NR	TST +	NR NR	NR NR	NR NR	
				indeterminate				
indeterminate Total	NR NR	NR NR	NR NR	Total	NR NR	NR NR	NR ND	
1 Otal	INK			ce parameters	NIK	INK	NR	
	IGRA		ı periorman	ce parameters	TST			
Canaitivity - NA				Consitivity - NA				
Sensitivity = NA				Sensitivity = NA				
Specificity = NA	<u> </u>			Specificity = NA				
PPV = NA				PPV = NA				
NPV = NA			NPV = NA	1 (1)	A.T. A			
DOR (for T ⁺ calculated)= NA OR (crude; for T ⁺ reported)= NR (p=0.024)			DOR (for T ⁺ calc			201)		
				OR (crude; for T				
OR is associated		it increase	10 # Of	OR is associated		ınıt increase	ın#ot	
exposure months		. 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(- 0.525)	exposure months			(050/ CT	
OR (regression-b				OR (regression-b		rtea) = 1.15	(95% CI	
OR is associated		it increase	10 # Of	1.04, 1.27; $p = 0$		mit incress:	in # af	
exposure months	•			OR is associated with one unit increase in # of				
List of covariates	a. ND			exposure months				

List of consider MD								
Oth an man auto dun	· · · · · · · · · · · · · · · · · · ·	,			List of covariates: NR Other reported measure = NR			
Other reported n			1 4	*		K		
D. C. CDOD				tests (IGRA vs. TS	ST)			
Ratio of DORs (
Ratio of OR (cru								
Ratio of ORs (re		_	d = NA					
Other reported n								
Ass	sociation bet	ween test 1	esults and l	levels of TB expos				
	IGRA (QFT	-GIT)			TST (≥10n	ım)		
	Exposure le	evel (MTC	Total		Exposure level Tota		Total	
	score)					score)		
	High/Yes	Low/No			High/Yes	Low/No		
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
indeterminate	NR	NR	NR	indeterminate	NR	NR	NR	
Total	NR	NR	NR	Total	NR	NR	NR	
		Test	performan	ce parameters				
	IGRA			1	TST			
Sensitivity = NA		·		Sensitivity = NA				
Specificity = NA				Specificity = NA	·			
PPV= NA	1			PPV= NA	. ·			
NPV= NA				NPV= NA				
DOR (for T ⁺ cale	ovloted) – N	Λ						
			021)	`	DOR (for T^+ calculated) = NA			
OR (crude; for T				OR (crude; for T^+ reported) = NR (p<0.001)				
OR is associated	with one un	it increase	in MTC	OR is associated with one unit increase in #				
score	1 .	1) 1.16	(0.50) CI	MTC score				
OR (regression-based; reported) = 1.16 (95% CI			OR (regression-based; reported) = 1.29 (95% CI					
1.01, 1.33; $p = 0$		•, •	MEG	1.08, 1.54 ; $p = 0.005$) OR is associated with one unit increase in MTC				
OR is associated with one unit increase in MTC								
score			score	List of covariates: NR				
List of covariates: NR								
Other reported n					Other reported measure = NR			
				tests (IGRA vs. TS	ST)			
Ratio of DORs (
Ratio of OR (cru								
		_	d = 0.90 (95)	5% CI: 0.80, 1.01)				
Other reported n								
	Associatio	n between	test results	and BCG status (i	if applicabl	le)		
IGRA (GIT)			TST (10mm)					
	BCG s	tatus	Total		BCC	3 status	Total	
	Yes	No			Yes	No		
IGRA +	35	1	36	TST +	37	2	39	
IGRA -	72	8	80	TST -	70	7	77	
indeterminate	NR	NR	NR	indeterminate	NR	NR	NR	
Total	107	9	116	Total	107	9	116	
Test performance parameters IGRA TST								
DOR (for T ⁺ calculated) _{IGRA} = 3.89 (95% CI:			DOR (for T+ calculated) _{TST} = 1.85 (95%)					
0.46, 32.33)			CI: 0.36, 9.36)					
OR (crude; for T^+ reported) = NR			OR (crude; for T+ reported) = NR					
OR (regression-based; reported) _{IGRA} = NR			OR (regression-based; reported) $_{TST} = NR$					
List of covariates:			List of covariates:					
Other reported measure = NR Other reported measure = NR								

Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition				
Total sample				
	TST + (≥10mm)	TST -	Total	
IGRA +	21	15	36	
IGRA -	18	62	80	
indeterminate	8	11	19	
Total	47	88	135	

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total

 $TST + threshold: \ge 10mm$

Parameters

Kappa = 0.35 (95% CI: 0.16, 0.53) p<0.001

% concordance = [21+62]/116=71.55 (95% CI: 62.75, 78.97)

% discordance = [18+15]/116 = 28.44 (95% CI: 21.03, 37.25)

Stratification (specify group 1):

	TST +	TST -	Total
IGRA +	NA	NA	NA
IGRA -	NA	NA	NA
indeterminate	NA	NA	NA
Total	NA	NA	NA

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NA

TST + threshold: NA

Parameters

Kappa = NA

% concordance = NA

% discordance = NA

Stratification	(specify	group	2):
ou admidation	(BPCCII,	5-000	_,•

bu aunication (specif	group = j.		
	TST +	TST -	Total
IGRA +	NA	NA	NA
IGRA -	NA	NA	NA
indeterminate	NA	NA	NA
Total	NA	NA	NA

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NA

TST + threshold: NA

Parameters

Kappa = NA

% concordance = NA

% discordance = NA

Conclusions

Authors:

We observed that the results of both tests were related to the intensity of exposure, although, as previously reported, the TST was more strongly influenced by exposure than QFT. Another factor we observed was that TST+ results were related to a greater time of exposure while the same was not observed for QFT. Likewise, we did not observe any association between the TST results and the presence of a BCG scar. Analysis of our data supports the contention that QFT probably undergoes more rapid conversion (step from negative to positive) after primary infection than the TST and would explain most of the discordant test results in this group

Reviewers

Both the TST and QFT were associated with the intensity of exposure (MTC score) with only the TST being significantly associated with the time of exposure (regression-based analyses). Concordance

between the TST and QFT (excluding the indeterminate cases) was fair (Kappa = 0.35); presence of BCG scar did not significantly influence the odds of TST or IGRA

Abbreviations: DOR=diagnostic odds ratio; 95% CI= 95 percent confidence intervals; TB=tuberculosis; BCG=Bacillus Calmette–Guérin; PPV= positive predictive value; NPV=negative predictive value; FPR=false positive rate; FNR=false negative rate; SD=standard deviation

Study details

First author surname year of publication: Rutherford 2012a¹⁰⁸ and Rutherford 2012b¹⁰⁹ (same study but plus

neighborhood contacts; agreement analysis)

Country: Indonesia

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Out-patient-based clinic

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): NR

Aim of the study

aimed to quantify M. tuberculosis infection in children living with a smear-positive adult TB case and identify risk

factors for TST and QFT-GIT positivity

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: NR

Total N of recruited patients: 320

Inclusion criteria: Child contacts living for more than 3 months with newly diagnosed TB cases (index case) who

were smear and chest X-ray (CXR) positive

Exclusion criteria: Child contacts who had received a diagnosis of TB disease within the past year or who were

aged <6 months were excluded (the latter due to known poor parental acceptability of blood collection)

Total N of excluded patients: 16 (active TB)

Total N of patients tested with both IGRA and TST: 304

Total N of patients with valid results for both IGRA and TST: 288

Methods of active TB diagnosis (if applicable): Active TB was defined by CXR findings consistent with TB according to the consultants

Outcomes (study-based) list: Association of test positivity with exposure factors (Rutherford 2012a), agreement

(Rutherford 2012b)

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median [IQR] 58 [31–81] months

Women (n [%]): 152 [50.7]

Race/ethnicity (n [%]): Sundanese (284 [93.7]), Other (19 [6.3])

Geographic origin (n[%]): NR

BCG vaccination (n [%]): With scar (221 [73.2]), unknown BCG status (30 [9.9])

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes

Clinical examination (yes/no): Yes (Children who were symptomatic and test-negative (on either IGRA or TST)

were referred to the children's clinic for further assessment according

to clinic policy

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

Trumber of patients tested	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	304	152	138	14	290
TST (≥10mm):	304	145	157	2	302
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 288

Levels/groups	of exposure	to TB i	n increasi	ing order (if app	licable):				
	Definiti	on of ex	posure gr	oup – Character	ristics of TB	case smeal	r positivity		
Non-exposed			Scanty an	d 1+			•		
Exposed 1 (spe	ecify):		2+						
Exposed 2 (spe			3+						
Definition of exposure group – Relationship to child									
Non-exposed	Non-exposed Other								
Exposed 1 (spe	Exposed 1 (specify): Aunt/uncle								
Exposed 2 (specify): Parent									
		Definiti	on of exp	osure group – Sl	eeping proxi	mity to ch	ild		
Non-exposed									
Exposed 1 (spe	ecify):		Same roo	m					
Exposed 2 (spe	ecify):		Same bed						
	De	finition	of exposu	re group – Time	spent with o	child (# hrs	s/day)		
Non-exposed			< 2						
Exposed 1 (spe	ecify):		2 - 8						
Exposed 2 (spe	ecify):		> 8						
Tests									
	Assay					values/th	Cut-off values/thresho lds Definition		
IGRA (QFT-GIT)	ml was immutogen an placed in a centrifuged was conductive.	F-GIT, 3 ml of venous blood was collected into a syringe; 1 immediately transferred to each of the QFT-GIT tubes (nil, and antigen). The tubes were vigorously hand-shaken and an incubator within 3 h. Incubated samples were ged and stored at 4°C for up to 1 month. The QFT-GIT assay ducted and interpreted according to the manufacturer's ons using specific software					NA		
TST (≥10mm)	using two t Biofarma®	uberculi , Bandu	n units of ng, Indone	purified protein of	Ing blood collection derivative (PPD; RT23 was measured 48–72 h y doctor An induration of ≥10 mm was considered positive			m	NA
Association be				nce of active TB		e)			
		IGRA					TST		
		acti	ence of ve TB	Total		Т	e of active		Total
IGRA		Yes	No	NT A	TOT :	Yes	No		NT A
ΠiRΔ		NA	NA	NA	TST +	NA NA	NA NA		NA NA
	I	TAT A	N.T.A		TST -	NA	NA		NA
IGRA		NA	NA NA	NA NA	+	TA T A	-+		
IGRA Indeterm	inate	NA	NA	NA	Indetermi nate	NA	NA		NA
IGRA	inate		NA NA	NA NA	Indetermi nate Total	NA NA	-+		NA NA
IGRA Indeterm	inate	NA NA	NA NA	NA	Indetermi nate Total		NA NA		
IGRA Indeterm	inate	NA	NA NA	NA NA	Indetermi nate Total		NA		
IGRA Indeterm	inate	NA NA	NA NA	NA NA	Indetermi nate Total	NA	NA NA		
IGRA Indeterm Total Sensitivity = N Specificity = N	inate l	NA NA	NA NA	NA NA	Indetermi nate Total parameters Sensitivity Specificity	NA = NA	NA NA		
IGRA Indeterm Total Sensitivity = N	inate l	NA NA	NA NA	NA NA	Indetermi nate Total parameters Sensitivity	NA = NA	NA NA		
IGRA Indeterm Total Sensitivity = N Specificity = N	inate l	NA NA	NA NA	NA NA	Indetermi nate Total parameters Sensitivity Specificity	NA = NA	NA NA		
IGRA Indeterm Total Sensitivity = N Specificity = N PPV = NA	A A	NA NA IGRA	NA NA	NA NA	Indeterminate Total parameters Sensitivity Specificity PPV = NA	NA = NA = NA	NA NA TST		
IGRA Indeterm Total Sensitivity = N Specificity = N PPV = NA NPV = NA	A A Cidence IGRA+	NA NA IGRA = NA	NA NA	NA NA	Indeterminate Total parameters Sensitivity Specificity PPV = NA NPV = NA	NA = NA = NA Incidence	NA NA TST TST		
IGRA Indeterm Total Sensitivity = N Specificity = N PPV = NA NPV = NA Cumulative Inc	A A A A A A A A A A A A A A A A A A A	NA NA IGRA = NA = NA	NA NA Te	NA NA	Indeterminate Total parameters Sensitivity Specificity PPV = NA NPV = NA Cumulative	NA = NA = NA Incidence Incidence	NA NA TST TST TST- = NA TST- = NA	NA	

Incidence density rate $_{IGRA-} = NA$ Incidence density rate $_{TST-} = NA$									
Incidence densit				Incidence d					
Other reported n		-		Other reported measure $_{TST} = NA$					
•	Comparison between tests (IGRA vs. TST)								
Ratio of cumula	tive inc	idence			`	,			
Ratio of inciden	ce dens	ity rate	ratios = NA						
Other reported measure = NA									
•			n between te	st results and lev	vels of TB exp	osure (if a	pplicable	<u>e)</u>	
	IG	RA (Q	FT-GIT)			TST	Γ (≥10mn	n)	
		Exposu	re level	Total		Exp	osure lev	el	Total
	cha	aracteris	stics of TB			character	ristics of T	ΓB case	
		ca	se			Sme	ar positiv	ity	
		Smear p	ositivity						
	3+	2+	Scanty/1+			3+	2+	Scant	
								y/1+	
IGRA +	75	36	40	152	TST +	78	34	33	145
IGRA -	45	34	59	138	TST -	48	38	71	157
Indeterminate	NR	NR	NR	14 (excluded)	Indetermin	NR	NR	NR	2
					ate				(excluded)
Total	120	70	99	290	Total	126	72	104	302
				est performance	parameters				
		IGI					TST		
Trend in ORs across the gradient of exposure (p = 0.001) Scanty/1+: OR (crude; reported) = 1.00 (reference group) 2+: OR (crude; reported) = 1.56 (95% CI: 0.78, 3.11) 3+: OR (crude: reported) = 2.43 (95% CI: 1.21, 4.86)					Trend in ORs across the gradient of exposure (p = 0.000) Scanty/1+: OR (crude; reported) = 1.00 (reference group)				
					3.19, 69.91) 58.81, 77.98) 68.04) 2.02, 6.04) CI: 1.81,				
3+ vs. scanty/1+	L		Compan	ison between tes	(IOIMI VS.	101)			
•		calculat	ed) – 0.70 (95	6% CI: 0.47, 1.04)				
3+ vs. scanty/1-		carcurat	- 0.70 (33	70 01. 0.77, 1.04	,				
Ratio of OR (cru	ıde; for	T ⁺ repo	orted) = 0.73 (9	95% CI: 0.45, 1.1	17)				
3+ vs. scanty/1+									
Ratio of ORs (regression-based; reported) = 0.78(95% CI: 0.47, 1.28)									
	_		Other reported measure = NR						
	_		i, reported) =						
	neasure	e = NR	•	st results and lev	vels of TB exp	osure (if a	pplicable	e)	
	neasure As	e = NR sociatio GRA (C	•	st results and lev	vels of TB exp	•	pplicable T (≥10m	•	

	relationship to child					relationship to child			
	parent	Aunt or	Other			parent	Aunt	Other	
		uncle					or		
							uncle		
IGRA +	134	8	10	152	TST +	128	9	8	145
IGRA -	85	19	34	138	TST -	101	19	37	157
Indeterminate	NR	NR	NR	14 (excluded)	Indetermi	NR	NR	NR	2
					nate				(excluded)
Total	219	27	44	290	Total	229	28	45	302
			T	4 P	4				

Test performance parameters

Trend in ORs across the gradient of exposure (p = 0.000)

IGRA

Other: OR (crude; reported) = 1.00 (reference group)

Aunt/uncle: OR (crude; reported) = 1.51 (95% CI: 0.44, 5.17) Parent: OR (crude; reported) = 5.61 (95% CI: 2.40, 13.12)

Parent vs. Other

Sensitivity = 134/219 = 61.19% (95% CI: 54.59, 67.4)

Specificity = 34/44 = 77.27% (95% CI: 63.01, 87.16) PPV = 134/144 = 93.06% (95% CI: 87.69, 96.18)

NPV = 34/119 = 28.57% (95% CI: 21.22, 37.26)

DOR (for T^+ calculated) = 5.36 (95% CI: 2.52, 11.41)

OR (crude; for T^+ reported) = 5.61 (95% CI: 2.40, 13.12)

OR (regression-based; reported) = 4.30 (95% CI: 1.48, 12.45)

List of covariates: marital status of household head, smear

positivity of household head

Other reported measure = NR

Trend in ORs across the gradient of exposure (p =

TST

Other: OR (crude; reported) = 1.00 (reference

group)

Aunt/uncle: OR (crude; reported) = 2.31 (95% CI:

0.77, 6.79

Parent: OR (crude; reported) = 5.85 (95% CI: 2.56,

Parent vs. Other

Sensitivity = 128/229 = 55.9% (95% CI: 49.42, 62.18)

Specificity = 37/45 = 82.22% (95% CI: 68.67, 90.71)

PPV = 128/136 = 94.12% (95% CI: 88.82, 96.99)

NPV = 37/138 = 26.81% (95% CI: 20.12, 34.76) DOR (for T^+ calculated) = 5.86 (95% CI: 2.61,

13.14)

OR (crude; for T^+ reported) = 5.85 (95% CI: 2.56,

13.38)

OR (regression-based; reported) = 7.04 (95% CI:

2.23, 22.28)

List of covariates: marital status and smear

positivity of household head

Other reported measure = NR

Comparison between tests (IGRA vs. TST)

Parent vs. Other

Ratio of DORs (for T^+ calculated) = 0.91 (95% CI: 0.52, 1.61)

Parent vs. Other

Ratio of OR (crude; for T^+ reported) = 0.96 (95% CI: 0.52, 1.75)

Parent vs. Other

Ratio of ORs (regression-based; reported) = 0.61 (95% CI: 0.27, 1.36)

Other reported measure = NR

Association between test results and levels of TB exposure (if applicable)									
IGRA (QFT-GIT)					TST (≥10mm)				
	Exposure level			Total		Е	xposure l	evel	Total
	Sleeping proximity to					Sleeping proximity to child			
	child								
	Same	Same	Different			Same	Same	Different	
	bed	room	room			bed	room	room	
IGRA +	93	15	43	152	TST +	85	13	47	145
IGRA -	64	12	62	138	TST -	80	15	62	157

Indeterminat e	NR	NR	NR	14 (excluded)	Indeterminate	NR	NR	NR	2 (exclud
									ed)
Total	157	27	105	290	Total	165	28	109	302
			r	Test performanc	e parameters				
		IGRA					TST		
Trend in ORs a	across the	gradient	of exposu	re $(p = 0.006)$	Trend in ORs at 0.186)	cross the	gradient	of exposi	ire (p =
Different room group)	: OR (cru	ide; repor	ted) = 1.00	(reference	Different room:	OR (cm	ıde: renor	ted) – 1 (00
Same room: Ol	5% CI: 0.70,	(reference group	•	ide, repor	1.0	.0			
5.02)	(,	1		- · · · · · · · · · · · · · · · · · · ·	Same room: OR		reported)	= 1.21 (9)	95% CI:
Same bed: OR	(crude; re	eported) =	= 2.01 (959	% CI: 1.12,	0.41, 3.53)		•	`	
3.61)		Same bed: OR (2.32)	crude; re	eported) =	= 1.35 (95	% CI: 0.79			
Same bed vs.	different	room							
Sensitivity $= 9$			5% CI: 51	.42, 66.61)	Same bed vs. d	ifferent	room		
Specificity $= 6$	2/105 = 5	59.05% (9	5% CI: 49	.48, 67.97)	Sensitivity = 85	/165 = 5	1.52% (9	5% CI: 43	3.94, 59.02)
PPV = 93/136		•		*	Specificity = 62		,		
NPV = 62/126		,		,	PPV = 85/132 =				
DOR (for T ⁺ ca		NPV = 62/142 = 43.66% (95% CI: 35.78, 51.88)							
OR (crude; for					DOR (for T ⁺ calculated) = 1.40 (95% CI: 0.86, 2.28) OR (crude; for T ⁺ reported) = 1.35 (95% CI: 0.79,				
OR (regression-based; reported) = 1.45 (95% CI: 0.70,					, ,	Γ ⁺ report	ed) = 1.3	5 (95% C	I: 0.79,
2.99)					2.32)	1 d		NID	
List of covariates: case's relationship to child, age of child, smear positivity					OR (regression- List of covariate		eported) =	= NK	
Other reported		– NR			Other reported i		– NR		
Other reported	measure	- 1110	Compa	rison between te	ests (IGRA vs. TS		<u> </u>		
Same bed vs. o	different	room	001111	215011 20011 0011 00	(10111) 50 12	/ _ /			
			= 1.49 (9)	5% CI: 1.04, 2.14	1)				
Same bed vs.									
			ed) = 1.47	(95% CI: 1.05, 2.	16)				
Same bed vs.									
Ratio of ORs (eported) =	- NA					
Other reported									
				est results and le	vels of TB expos	•		,	
		RA (QFT		T . 1			<u>` (≥10mn</u>		/D + 1
		xposure le		Total			xposure le		Total
	1111111	spent with h/day	in Cillia			Time	spent with h/day	in Cillia	
	>8	2-8	<2	_		>8	2-8	<2	
IGRA +	78	46	27	152	TST +	75	42	28	145
IGRA -	72	46	20	138	TST -	83	54	20	157
Indeterminat	NR	NR	NR	14 (excluded)	Indeterminate	NR	NR	NR	2
e									(excluded
Total	150	92	47	290	Total	158	96	48	302
				Test performance	e parameters				
		IGRA					TST		
Trend in ORs a		_	•		Trend in ORs ac	cross the	gradient	of exposi	are (p =
<2 h: OR (crud				• •	0.494)				
2-8 h: OR (crude; reported) = 0.78 (95% CI: 0.33, 1.80)					<2 h: OR (crude	e; reporte	ed) = 1.00	(reference)	ce group)

2-8 h: OR (crude; reported) = 0.78 (95% CI: 0.33, 1.80)

>8 h: OR (crude; reported) = 0.83 (95% CI: 0.38, 1.79)

1.24)

<2 h: OR (crude; reported) = 1.00 (reference group)

2-8 h: OR (crude; reported) = 0.55 (95% CI: 0.24,

>8 vs. <2

Sensitivity = 78/150 = 52.00% (95% CI: 44.06, 59.85)

Specificity = 20/47 = 42.55% (95% CI: 29.51, 56.72)

PPV = 78/105 = 74.29% (95% CI: 65.17, 81.68)

NPV = 20/92 = 21.74% (95% CI: 14.54, 31.21)

DOR (for T^+ calculated) = 0.80 (95% CI: 0.41, 1.55)

OR (crude; for T^+ reported) = 0.83 (95% CI: 0.38, 1.79)

OR (regression-based; reported) = NR

List of covariates: NA

Other reported measure = NR

>8 h: OR (crude; reported) = 0.64 (95% CI: 0.31, 1.36)

>8 vs. <2

Sensitivity = 75/158 = 47.47% (95% CI: 39.83, 55.22)

Specificity = 20/48 = 41.67% (95% CI: 28.85, 55.72)

PPV = 75/103 = 72.82% (95% CI: 63.52, 80.47)

NPV = 20/103 = 19.42% (95% CI: 12.94, 28.1)

DOR (for T^+ calculated) = 0.64 (95% CI: 0.33, 1.24)

OR (crude; for T^+ reported) = 0.64 (95% CI: 0.31,

1.36)

OR (regression-based; reported) = NR

List of covariates: NA

List of covariates: NA

Other reported measure = NR

Comparison between tests (IGRA vs. TST)

>8 vs. <2

Ratio of DORs (for T^+ calculated) = 1.25 (95% CI: 0.77, 2.02)

>8 vs. <2

Ratio of OR (crude; for T^+ reported) = 1.30 (95% CI: 0.75, 2.24)

>8 vs. <2

Ratio of ORs (regression-based; reported) = NA

Other reported measure = NR

Association	between tes	t results and	d BCG status	(if applicable)

				(0		,	
IGRA	(QFT-GI	Γ)	TST (≥10mm)				
	BCG status		Total		BCG status		Total
	Yes	No			Yes	No	
IGRA +	104	34	138	TST +	105	29	134
IGRA -	105	17	122	TST -	116	22	138
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	209	51	260	Total	221	51	272

Test performance parameters

IGRA	TST
DOR (for T^+ calculated) _{IGRA} = 0.49 (95% CI: 0.26, 0.94)	DOR (for T+ calculated) _{TST} = 0.68 (95% CI: 0.37 ,
	1.27)
OR (crude; for T^+ reported) = 0.51 (95% CI: 0.26, 1.00)	OR (crude; for T+ reported) = 0.68 (95% CI: 0.35,
	1.35)
OR (regression-based; reported) $_{IGRA} = 0.60$ (95% CI: 0.26,	OR (regression-based; reported) $_{TST} = NR$

OR (regression-based; reported) $_{IGRA} = 0.60$ (95% CI: 0.26, 1.38)

List of covariates: TB case's relationship to child, marital

status of household head

Other reported measure = NR Other reported measure = NR

Between-test agreement, concordance, and discordance (if applicable)

This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition

Total sample

From Rutherford 2012b	TST +	TST -	Total
IGRA +	121	35	156
IGRA -	22	114	136
Indeterminate	1 (excluded)	6 (excluded)	7 (excluded)
Total	143	149	292

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total (household contacts of TB cases)

TST + threshold: ≥10mm

Parameters

V 0.61 (050) CI 0.40 (7.70		
Kappa = 0.61 (95% CI: 0.49, 0			
% concordance = 235/292 = 80			
% discordance = $57/292 = 19.5$			
Stratification (specify group			
	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR
Description			
	f stratified by BCG or condition -	- specify): NR	
TST + threshold: NR			
Parameters			
Kappa = NR			
% concordance = NR			
% discordance = NR			
Stratification (specify group	1):		
	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR
Description			
	f stratified by BCG or condition -	- specify): NR	
TST + threshold: NR			
Parameters			
Kappa = NR			
% concordance = NR			
% discordance = NR			
Stratification (specify group	1)•		
beratification (speenly group	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR NR	NR	NR
Indeterminate	NR NR	NR	NR
Total	NR NR	NR	NR
Description	IVIX	NK	INIX
	f stratified by BCG or condition -	specify): ND	
TST + threshold: NR	1 stratified by BCG of collution -	- specify). NK	
Parameters Vanna – ND			
Kappa = NR			
% concordance = NR			
% discordance = NR	2)		
Stratification (specify group		TICE:	m - 1
ICD A	TST +	TST -	Total
IGRA +	NR	NR NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR
Description			
	f stratified by BCG or condition -	- specify): NR	
TST + threshold: NR			
Parameters Kappa = NR			

% concordance = NR							
% discordance = NR							
Other outcomes							
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)					
IGRA:	NR	NR					
TST:	NR	NR					
Test 3 (specify):	NR	NR					
	Conclusions						

41

Authors:

In this setting, M. tuberculosis infection by either test was high in children living with a smear-positive TB case. Test positivity was driven by high index case infectivity levels and intimacy of exposure (if the index case was the child contact's parent). Child contacts whose parent was the index case were over four times as likely to be positive by both or either tests. High increased risk of M. tuberculosis infection when the index case is the parent, particularly the mother, has been reported elsewhere. Both the TST and QFT-GIT responded as expected to most hypothesised risk factors, and neither test performed significantly better than the other along any of the gradients

Reviewers:

IGRA and TST performed well showing similar strong associations with a) characteristics of TB case smear positivity and b) relationship to child. IGRA did better than TST for sleeping proximity. Neither test showed association with time spent with child. None of the tests was influenced by BCG status

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Talbot 2012¹¹⁰

Country: US

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): College health setting

Number of centres: 1

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Oxford Immunotec

Aim of the study

To test the specificity of the tuberculin skin test and the T-SPOT.TB assay among students at low risk for TB exposure

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children (student at low risk for TB exposure)

Participants

Recruitment dates: NA

Total N of recruited patients: 184

Inclusion criteria: Students with history of exposure to TB

Exclusion criteria: NR

Total N of excluded patients: 4 (procedural errors at the laboratory)

Total N of patients tested with both IGRA and TST: 180

Total N of patients with valid results for both IGRA and TST: 143

Methods of active TB diagnosis (if applicable): NA Outcomes (study-based) list: Test results, specificity test Characteristics of participants (total study sample)
Mean (range or SD) age (years): Median age 20 [17-47]

Women (n [%]): 97 [53.9]

Race/ethnicity (n [%]): US-born (165 [91.7]); White (135 [75])

Geographic origin (n[%]): NR BCG vaccination (n [%]): 7 [3.9]

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): NR Clinical examination (yes/no): NR

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N	Total	Total N	Total N	Total N
	(tested)	N	(test-)	(indeterminate)	(test results
					available)
		(test+)			
IGRA (T-SPOT.TB):	180	5	138	15	143
TST (> 15mm):	180	6	137	22	143
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 143

Levels/groups of	•		•	1 (*0	10 11 1
AVAIC/GRAIING AT	OVNOCHPA TO	I K IN	increscing	Ardar lit	anniicaniai
LC (CIS/21 Oubs O	LADUSUIC IU	10 111	mu casme	oruci in a	abbiicabic.

Definition of exposure group							
Non-exposed	Low-TB exposure risk group						
Exposed 1 (specify):	Non-low-TB exposure risk (any history of exposure to TB through						
	country of birth,						
	residence, or visits>3 weeks to high–TB burden areas [>40 cases/100,000						

		1	oopulatio	on], or occupa	tional expos	sure)				
Exposed 2 (s	pecify):		NA	,,	r					
Exposed 3 (s			NA							
Exposed 4 (s]	NA							
Tests		"								
	Assa			lology, timing , manufactur				Other information		
IGRA (T-SPOT.TB)	spot. instruct monoming Ficol of counted into a manti-int study p the present ESAT-(positive The PB revealed enzymed interfer substrait results algorith comparison of the present of the	TB accordions for uclear collensity gold, and properticipal sence of 6 and Core mitoged as specific conjugate. Spotensity and the cordensity on the cordensity of the cordens	ording to r use. Pe ells (PB gradient lated at a ne-botto -y antibo nt were f the pro FP-10, a gen contro coducing ots by in- gated sec d a colo s were c d accord e packag ne nil con	TBI by using the manufact ripheral blood MCs) were has centrifugation 2.5 × 105 cells med plate coady. PBMCs fincubated overvided TB antialong with corrol and a nil coat interferon-y cubation with condary antibor-producing erounted, and cling to the appige insert when trol, 8 spots a and below is referenced.	urer's I urvested by n, washed, s per well ted with rom each ernight in gens ntrols ontrol). were an ody for nzyme linical proved e, and above	regate bord with resp	ults with nts of 5– arded as derline, a n a low n conse or arol respondenterminal	7 are and resunitogen a high nonse are	il	NA
TST> 15mm	profess	ionals v rmally a	vho used	ed by trained I the Mantoux g to published		posi an in for s risk	ST was of the students factors for the students for the stud	nere was n > 15m with no	ım	NA
Association	between	test re	sults an	d incidence o	f active TB			e)		
		IGRA						ST		
			ence of re TB No	Total			Incider active Yes			Total
IGRA		NA	NA	NA	TST +		NA	NA		NA
IGRA		NA	NA	NA	TST -		NA	NA		NA
Indetermi	nate	NA	NA	NA	Indetermin	nate	NA	NA		NA
Total		NA	NA	NA	Total		NA	NA		NA
			T	est performa	nce parame	eters				
		IGRA						ST		
Sensitivity =	NA				Sensitivity	$r = \overline{N}A$	4			
Specificity =	NA				Specificity	$v = N \overline{A}$	4			
PPV = NA					PPV = NA					
NPV = NA					NPV = NA	1				
Cumulative l	Incidence	e _{IGRA+} =	NA		Cumulativ		dence TS	$S_{T+} = NA$	1	
Cumulative l					Cumulativ					
Cumulative l				A	Cumulativ					ÍΑ
Incidence de					Incidence					
	-	10141			1		<u>,</u> 1.			

Incidence density rate		ΙΛ.		Incidence den	city rata	— N Λ		
Incidence density rate $_{IGRA} = NA$ Incidence density rate $_{TST} = NA$ Incidence density rate ratio $_{IGRA} = NA$ Incidence density rate ratio $_{TST} = NA$								
Other reported measure $_{IGRA} = NA$ Other reported measure $_{IGRA} = NA$ Other reported measure $_{TST} = NA$								
Other reported measu			b -4			$\Gamma - IVA$		
Ratio of cumulative is				en tests (IGRA v	s. 151)			
Ratio of cumulative in Ratio of incidence de								
	•	141108 –	INA					
Other reported measu		a4 waaw14	a am d law	ala of TD own age	ma (TD arms		~~~~)	
	r-spot.'		s and lev	els of TB exposu	re (1B expo TST≥15		group)	
IGNA (Exposu:		Total		Exposure		Total	
	Non-	Low	Total		Non-low	Low	Total	
	low	LOW			Non-iow	Low		
IGRA (T-	NR	0	NR	TST +	NR	2	NR	
SPOT.TB) +	IVIX	U	INIX	151 +	INIX	2	IVIX	
IGRA (T-	NR	124	NR	TST -	NR	122	NR	
SPOT.TB) -	IVIX	124	INIX	151 -	INIX	122	IVIX	
Indeterminate	NR	NR	0	Indeterminate	NR	NR	0	
Total	NR	124	NR	Total	NR	124	NR	
Total	1110			nance parameter		124	1110	
I	GRA	103	t periorn		TST	1		
Sensitivity = NA	JWI			Sensitivity = NA				
Specificity = $124/124$	= 100.00	0% (95%	CI: 97	Specificity = 12		39% (95%	CI: 94 31	
100.00)	- 100.00	70 (2270	C1. 77,	99.56)	2/124 - 70.5	770 (7570	CI. 74.51,	
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
DOR (for T ⁺ calculate	-d) – NA			$DOR (for T^{+} calculated) = NA$				
OR (crude; for T ⁺ rep		JA		OR (crude; for 7				
OR (regression-based				OR (regression-based; reported) = NA				
List of covariates: NA		*/ 1111		List of covariates: NA				
Other reported measu	re = NR			Other reported measure = NR				
•		omparis	on betwe	en tests (IGRA v				
Ratio of DORs (for T	+ calculat	ed) = NA	1					
Ratio of OR (crude; f	or T ⁺ repo	orted) = 1	NΑ					
Ratio of ORs (regress	sion-based	l; reporte	ed) = NA					
Other reported measu	re = NA							
Ass	ociation	between	test resu	lts and BCG sta	tus (if appli	cable)		
IGR	A (TSPC	OT)			TST (>	15 mm)		
	BCG	status	Total		BCG	status	Total	
	Yes	No			Yes	No		
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
Indeterminate	NR	NR	NR	Indetermina	te NR	NR	NR	
Total	NR	NR	NR	Total	NR	NR	NR	
		Test	t perforn	nance parameter	S			
	IGRA				TS			
DOR (for T ⁺ calculate				DOR _{TST} (fo				
OR (crude; for T ⁺ rep				OR (crude;				
OR (regression-based				OR (regress		eported) _{TS}	$_{\Gamma}=NR$	
OR (regression-based		$(1)_{TSPOT} =$	NR	List of covar	riates: NR			
List of covariates: NF								
Other reported measu				Other report		= NR		
Between-test agreen								
This table may be st	ratified b	y TST c	ut-off va	lue, BCG vaccin	ation status	, and/or c	ondition	

Total sample			
	TST +	TST -	Total
IGRA +	4	1	5
IGRA -	2	136	138
Indeterminate	0	0	0
Total	6	137	143

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Total

TST + threshold: >15mm induration

Parameters

Kappa = 0.71, 95% CI (0.55, 0.88)

% concordance = 140/143 = 97.9%, 95% CI (94.01, 99.28)

% discordance = 3/143 = 2.01%, 95% CI (0.72, 5.99)

Other outcomes								
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)						
IGRA:	NR	NR						
TST:	NR	NR						
Test 3 (specify):	NR	NR						

Conclusions

Authors:

The authors concluded that T-SPOT.TB specificity in a low-TB incidence, largely immunocompetent, non-BCG-vaccinated population, is high. Further research is required to inform on the policy decisions for LTBI screening

Reviewers:

TBSPOT specificity was slightly higher than that of TST

Study details

First author surname year of publication: Tieu 2014¹⁵²

Country: Thailand

Study design: cross-sectional/retrospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): community-based

Number of centres: 3

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): This study was funded by a competitive, investigator-initiated research grant from Tibotec REACH Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Aim of the study

To compare the performances of the IGRAs (T-Spot.TB, QuantiFERON-TB Gold In-tube) and TST at two different cut-off thresholds (10 mm and 15 mm) in Thai children who had recent exposure to an adult index case with TB

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: Between September 2009 and December 2011

Total N of recruited patients: 137 [TB exposed]

Inclusion criteria: Children between the ages of 2 months and 16 years with recent exposure (defined as having lived with and/or having had close contact with) to adults with active pulmonary TB (confirmed by

positive AFB stain, PCR for TB, or TB culture), with or without extra-pulmonary TB manifestations **Exclusion criteria**: Children's caregivers refused study participation, if they were receiving anti-TB medications for TB disease (including isoniazid [INH] for latent TB), or if they had recently been diagnosed with active TB

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 137

Total N of patients with valid results for both IGRA and TST: 136

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: between test agreement, association between prior exposure and test results

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 7.6 (4.3)

Women (n [%]): 67 (49.3) Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): 132 (96.4) History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): None [for TB exposed]

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate	Total N (test results available)
IGRA (QFT-GIT):	136	40	96	0	136
TST :≥10mm	136	88	48	0	136

TST: ≥15mm		136	48	88	0	136			
TSPOT		136	36	100	0	136			
Total N of patients	s with v	valid results	for both IC	GRA and TS	T: 136	•			
Levels/groups of e	xposur	e to TB in i	ncreasing o	rder (if appl	icable):				
1. Definition	of expo	osure group	– TB conta	ct score (rang	ge 6-19)				
Non-exposed TB contact score (8-10)									
Exposed 1 (specify): TB contact score (11-12)									
Exposed 2 (specify): TB contact score (13-14)									
Exposed 3 (specify): TB contact score (15-14) TB contact score (15-16)									
		sure group	– TB conta	ct score (rang	ge 6-19)				
Non-exposed	2. Definition of exposure group – TB contact score (range 6-19) Non-exposed TB contact score (8-12)								
Exposed 1 (specify)):	TB contact	t score (≥13))					
3. Definition					ex case				
Non-exposed	-			in household					
Exposed 1 (specify)):	Second car	regiver in ho	usehold with	TB				
Exposed 2 (specify				ousehold wit					
						with TB index case			
Non-exposed		0-7 hours		.6:	1				
Exposed 1 (specify):	≥8 hours							
			– Duration	of contact w	ith TB index ca	ase in last 12 months			
Non-exposed	<u>-</u> -	≤7 months							
Exposed 1 (specify)):	>7 months							
6. Definition		osure group	– Index TB	case history					
Non-exposed	_		id fast smea						
Exposed 1 (specify)):		id fast smea						
Tests	<i>,</i>	1 ·- F		r					
	Ass	av used, me	thodology.	\mathbf{C}	ut-off	Other information			
	Ass				ut-off thresholds	Other information			
		timing fo		values/		Other information			
IGRA (QFT-	meas	timing fo urement, m	r test	values/ r Definit	thresholds	Other information			
IGRA (QFT- GIT)	meas The c	timing fo urement, m	r test anufacture whole blood	r Definition Results w	thresholds ion of test+	Other information			
	meas The c and p	timing for urement, m children had	r test nanufacture whole blood pod	r Definition Results w	thresholds ion of test+ vere reported e, negative,	Other information			
	meas The c and p mono	timing for urement, me hildren had eripheral blo	r test nanufacture whole blood bod s collection	r Definite Results w as positive	thresholds ion of test+ vere reported re, negative, rminate	Other information Study investigators,			
	meas The c and p mono for th	timing for urement, me children had eripheral blo onuclear cells	r test nanufacture whole blood bood s collection gamma	values/ Definition Results was positive or indetermined.	thresholds ion of test+ vere reported re, negative, rminate g to the				
	meas The c and p mono for th	timing for urement, muchildren had eripheral bloomuclear cells e interferon-	r test nanufacture whole blood bood s collection gamma	r values/ Definition Results was positive or indetermination according	thresholds ion of test+ vere reported re, negative, rminate g to the urers'	Study investigators,			
	meas The c and p mono for th releas	timing for urement, methildren had eripheral bloomuclear cells e interferonse assay (QF	r test nanufacture whole blood bod s collection gamma NGIT) es were sent	r Values/ Definition Results was positive or indeter according manufact guideline	thresholds ion of test+ vere reported re, negative, rminate g to the urers'	Study investigators, site coordinators, and clinicians were blinded to the results of the			
	meas The c and p mono for th releas The b on the	timing for urement, methildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of	r test anufacture whole blood ood s collection gamma (NGIT) es were sent of collection	r Values/ Definition Results was positive or indeter according manufact guideline Positive of	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study			
	meas The c and p mono for th releas The b on the to the	timing for urement, mentildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of alaboratory for urement of the control of	r test anufacture whole blood ood s collection gamma (NGIT) es were sent of collection	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed			
	meas The c and p mono for th releas The b on the to the accor	timing for urement, mentildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of alaboratory fiding to the	r test anufacture whole blood od s collection gamma NGIT) es were sent of collection for testing	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defined.	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
	meas The c and p mono for th releas The b on the to the accor manu	timing for urement, methildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of alaboratory fiding to the facturers' in	r test anufacture whole blood od s collection gamma (NGIT) es were sent of collection for testing	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manufact.	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using facturers'	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed			
	meas The c and p mono for th releas The b on the to the accor manu using	timing for urement, mentioned are the considered bloomuclear cells to interferonse assay (QF) blood sample to same day of a laboratory fing to the facturers' in positive and	r test anufacture whole blood od s collection gamma (NGIT) es were sent of collection for testing	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manufact.	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
	meas The c and p mono for th releas The b on the to the accor manu	timing for urement, mentioned are the considered bloomuclear cells to interferonse assay (QF) blood sample to same day of a laboratory fing to the facturers' in positive and	r test anufacture whole blood od s collection gamma (NGIT) es were sent of collection for testing	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manufact.	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using facturers'	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT)	meas The c and p mono for th releas The b on the to the accor manu using contro	timing for urement, mendidren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of alaboratory fiding to the facturers' in positive and ols	r test anufacture whole blood od s collection gamma NGIT) es were sent of collection for testing astructions d negative	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard	thresholds ion of test+ vere reported te, negative, rminate g to the turers' s cutoff r the tests ned using facturers' guidelines	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th releas The b on the to the accor manu using contre At the	timing for urement, mentildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of a laboratory fiding to the facturers' in positive and ols	r test nanufacture whole blood od s collection gamma (NGIT) es were sent of collection for testing structions d negative	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard guideline The size of the manustandard guideline	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using facturers' guidelines	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT)	meas The c and p mono for th releas The b on the to the accor manu using contre At the	timing for urement, methildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of laboratory fiding to the facturers' in positive and ols e baseline viren had a TS	r test anufacture whole blood od s collection gamma (NGIT) es were sent of collection for testing astructions d negative sit, the T (0.1 ml	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard guideline The size of induration	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using facturers' guidelines of TST n was	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th releas The b on the to the accor manu using contre At the childi soluti	timing for urement, mentildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of a laboratory fiding to the facturers' in positive and ols e baseline viren had a TS on or 10 into	r test anufacture whole blood ood s collection gamma NGIT) es were sent of collection for testing astructions d negative sit, the T (0.1 ml ernational	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard guideline The size of induration determined	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using facturers' guidelines of TST n was ed	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th release The b on the to the accor manu using contro At the childr soluti units	timing for urement, mentildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of a laboratory fiding to the facturers' in positive and ols e baseline viren had a TS on or 10 interest of tuberculing to the facture of tuberculing the facture of tu	r test anufacture whole blood od s collection gamma NGIT) es were sent of collection for testing astructions d negative sit, the T (0.1 ml ernational n purified	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard of the manust	thresholds ion of test+ vere reported e, negative, rminate g to the urers' s cutoff r the tests ned using facturers' guidelines of TST n was ed ring the	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th releas The b on the to the accor manu using contre At the childe soluti units protei	timing for urement, mentildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of a laboratory finding to the facturers' in positive and ols e baseline viren had a TS on or 10 interior tuberculing in derivative	r test anufacture whole blood od s collection gamma NGIT) es were sent of collection for testing astructions d negative sit, the T (0.1 ml ernational n purified) implanted	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard guideline The size of induration determined by measure maximum	thresholds ion of test+ vere reported re, negative, rminate g to the urers' s cutoff r the tests ned using facturers' guidelines of TST n was ed rring the n width (or	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th releas The b on the to the accor manu using contre At the childi soluti units protei on the	timing for urement, mentildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of laboratory finding to the facturers' in positive and ols e baseline viren had a TS on or 10 interest of tuberculing the forearm for the same for the same of tuberculing derivative e forearm for the same of tuberculing the same	r test nanufacture whole blood od s collection gamma (NGIT) es were sent of collection for testing structions d negative sit, the T (0.1 ml ernational n purified o) implanted llowed by	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard guideline The size of induration determined by measure maximum transverse	thresholds ion of test+ vere reported re, negative, rminate g to the surers' s cutoff r the tests ned using facturers' guidelines of TST n was ed ring the n width (or e diameter)	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th releas The b on the accor manu using contre At the childr soluti units protei on the result	timing for urement, methildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of laboratory fiding to the facturers' in positive and ols e baseline viren had a TS on or 10 interest of tuberculing in derivative e forearm for reading by	r test ranufacture whole blood od s collection gamma rNGIT) es were sent of collection for testing estructions d negative sit, the r (0.1 ml ernational n purified e) implanted llowed by trained	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard guideline The size of induration determined by measure maximum transverse of an industrial process.	thresholds ion of test+ vere reported re, negative, rminate g to the surers' s cutoff r the tests ned using facturers' guidelines of TST n was ed ring the n width (or e diameter) surated lesion;	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th release The b on the to the accor manu using contro At the childe soluti units protei on the result health	timing for urement, mendidren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of a laboratory fiding to the facturers' in positive and ols e baseline viren had a TS on or 10 interest on or 10 interest of tuberculing in derivative e forearm for a care person	r test anufacture whole blood od s collection gamma NGIT) es were sent of collection for testing estructions d negative sit, the T (0.1 ml ernational n purified o) implanted llowed by trained anel in 48—	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard of the manust	thresholds ion of test+ vere reported te, negative, rminate te to the turers' s tentoff or the tests ned using facturers' guidelines of TST on was ted or ing the on width (or te diameter) turated lesion; tivity was	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			
GIT) TST≥10mm	meas The c and p mono for th release The b on the to the accor manu using contro At the childe soluti units protei on the result health	timing for urement, methildren had eripheral bloomuclear cells e interferonse assay (QF blood sample e same day of laboratory fiding to the facturers' in positive and ols e baseline viren had a TS on or 10 interest of tuberculing in derivative e forearm for reading by	r test anufacture whole blood od s collection gamma NGIT) es were sent of collection for testing estructions d negative sit, the T (0.1 ml ernational n purified o) implanted llowed by trained anel in 48—	r Values/ Definition Results was positive or indeter according manufact guideline Positive of values for were defit the manustandard of the manust	thresholds ion of test+ vere reported te, negative, rminate te to the turers' s tentoff or the tests ned using facturers' guidelines of TST on was ted or ing the on width (or te diameter) turated lesion; tivity was	Study investigators, site coordinators, and clinicians were blinded to the results of the IGRAs until the study had completed enrollment and 9-			

	nation	al guideline	<u>s</u>						
T-SPOT.TB			whole blood	Results were repo	orted				
1 51 01.11		ripheral blo		as positive, negat					
	_	nuclear cells		or indeterminate	1,10,				
		interferon-							
		e assay (TSI	_	Positive cutoff va	lues				
		(-2-		were defined usin					
	The bl	ood sample	s were sent	the manufacturer	_				
			f collection	standard guidelin					
		laboratory f							
		ling to the	C						
		acturers' in	structions						
	using	positive and	negative						
	contro	ls	_						
Association bety	ween test r	esults and	incidence of	active TB (if appli	cable)				
	IGF	RA			TST	Γ			
	Incide	nce of	Total		Incide		Total		
	active	e TB			active	e TB			
	Yes	No			Yes	No			
IGRA +	NA	NA	NA	TST +	NA	NA	NA		
IGRA -	NA	NA	NA	TST -	NA	NA	NA		
indeterminate	NA	NA	NA	indeterminate	NA	NA	NA		
Total	NA	NA	NA	Total	NA	NA	NA		
			st performan	ce parameters					
	IGF	RA		TST					
Sensitivity = NA				Sensitivity = NA					
Specificity = NA	<u> </u>			Specificity = N.	•				
PPV = NA				PPV = NA					
NPV = NA				NPV = NA					
Cumulative Incid				Cumulative Incidence _{TST+} = NA					
Cumulative Incid				Cumulative Incidence TST- = NA					
Cumulative Incid				Cumulative Incidence Ratio _{TST} = NA					
Incidence density				Incidence density rate _{TST+} = NA					
Incidence density				Incidence density rate _{TST} = NA Incidence density rate ratio _{TST} = NA					
Incidence density				Incidence density rate ratio _{TST} = NA Other reported measure _{TST} = NA					
Other reported m	ieasure _{IGR}		b-4 4	ests (IGRA vs. TS		ST = NA			
Ratio of cumulat	iva inaidar			esis (IGKA vs. 15	1)				
Ratio of cultural									
Other reported m			INA						
			results and l	evels of TB exposi	ıre (if an	nlicable)			
	IGRA (QF		results and i		<u>re (n ap</u> TST (≥10				
		sure level	Total			sure level	Tot	tal	
	High/Ye				High/Ye				
IGRA +	NR	NR	NR	TST +	NR	NR		R	
IGRA -	NR	NR	NR	TST -	NR	NR			
indeterminate	NR	NR	NR	indeterminate	NR	NR			
Total	NR	NR	NR	Total	NR	NR			
		Tes	t performan	ce parameters					
	IGR	A			TST	1			
Sensitivity = NA				Sensitivity = NA					
Specificity = NA				Specificity = NA					
PPV= NA				PPV= NA					
·									

NPV= NA	NPV= NA
$DOR (for T^+ calculated) = NA$	\overline{DOR} (for T^+ calculated) = \overline{NA}
OR (crude; for T ⁺ reported) =	OR (crude; for T ⁺ reported) =
TB contact score (range 6-19)	TB contact score (range 6-19)
Score 8-10 (reference/non-exposed): 1.0	Score 8-10 (reference/non-exposed): 1.0
Score 11-12: 2.00 (95% CI: 0.38, 10.61)	Score 11-12: 3.97 (95% CI: 1.19, 13.28)
Score 13-14: 3.64 (95% CI: 0.75,17.77)	Score 13-14: 4.40 (95% CI: 1.38, 14.08)
Score 15-16: 7.50 (95% CI: 1.35, 41.71)	Score 15-16: 7.33 (95% CI: 1.67,32.21)
TB contact score (range 6-19)	TB contact score (range 6-19)
Score 8-12 (reference/non-exposed): 1.0	Score 8-12 (reference/non-exposed): 1.0
Score ≥13: 4.04 (95% CI: 1.81, 8.99)	Score ≥13: 2.59 (95% CI: 1.28, 5.23)
Relationship to TB index case	Relationship to TB index case
Relative other contact (reference/non-exposed): 1.0	Relative other contact (reference/non-exposed):
Second caregiver: 3.95 (95% CI: 1.50, 10.43)	1.0
Primary caregiver: 3.25 (95% CI: 1.36, 7.77)	Second caregiver: 0.87 (95% CI: 0.34, 2.23)
Duration of everage contact nor describe TD	Primary caregiver: 1.44 (95% CI: 0.61, 3.41)
Duration of average contact per day with TB index case	Duration of average contact per day with TB
0-7 hours (reference/non-exposed): 1.0	index case
≥8 hours: 1.75 (95% CI: 0.78, 4.00)	0-7 hours (reference/non-exposed): 1.0
<u>-6 nours. 1.75 (75% Cr. 0.76, 4.00)</u>	≥8 hours: 2.27 (95% CI: 1.08, 4.76)
Duration of contact with TB index case in last 12	_0 Hours. 2.27 (9570 Cf. 1.00, 1.70)
months	Duration of contact with TB index case in
≤7 months (reference/non-exposed): 1.0	last 12 months
>7 months: 1.96 (95% CI: 0.99, 3.84)	≤7 months (reference/non-exposed): 1.0
	>7 months: 2.04 (95% CI: 1.00, 4.16)
Index TB case history	
Sputum acid fast smear negative (reference/non-	Index TB case history
exposed): 1.0	Sputum acid fast smear negative
Sputum acid fast smear positive: 0.97 (95% CI:	(reference/non-exposed): 1.0
0.27, 3.33)	Sputum acid fast smear positive: 2.38 (95% CI:
	0.49, 11.11)
OR (regression-based; reported) =	OR (regression-based; reported) =
TB contact score (range 6-19)	TB contact score (range 6-19)
Score 8-10 (reference/non-exposed): 1.0	Score 8-10 (reference/non-exposed): 1.0
Score 11-12: NR Score 13-14: NR	Score 11-12: NR Score 13-14: NR
Score 15-14: NR Score 15-16: NR	Score 15-14: NR Score 15-16: NR
SCOIC 13-10. INK	SCOIG 13-10. INK
TB contact score (range 6-19)	TB contact score (range 6-19)
Score 8-12 (reference/non-exposed): 1.0	Score 8-12 (reference/non-exposed): 1.0
Score ≥13: 1.98 (95% CI: 0.64, 6.11)	Score \geq 13: 2.21 (95% CI: 0.99, 4.98)
(, , ,	(22.3 22.3 3.7,,,
Relationship to TB index case	Relationship to TB index case
Relative other contact (reference/non-exposed): 1.0	Relative other contact (reference/non-exposed):
Second caregiver: 3.95 (95% CI: 1.25, 12.52)	1.0
Primary caregiver: 4.07 (95% CI: 1.38, 11.99)	Second caregiver: NR
	Primary caregiver: NR
Duration of average contact per day with TB	
index case	Duration of average contact per day with TB
0-7 hours (reference/non-exposed): 1.0	index case
≥8 hours: NR	0-7 hours (reference/non-exposed): 1.0

Duration of contact with TB index case in last 12

≤7 months (reference/non-exposed): 1.0 >7 months: 1.47 (95% CI: 0.62, 3.44)

Index TB case history

Sputum acid fast smear negative (reference/non-

exposed): 1.0

Sputum acid fast smear positive: NR

List of covariates: NR

Index TB case history

last 12 months

>7 months: NR

Sputum acid fast smear negative (reference/non-exposed): 1.0

Sputum acid fast smear positive: NR

≥8 hours: 1.61 (95% CI: 0.68, 3.84)

Duration of contact with TB index case in

≤7 months (reference/non-exposed): 1.0

List of covariates: NR
Other reported measure =NR

Other reported measure = NR

Comparison between tests (IGRA vs. TST)

Ratio of DORs (for T⁺ calculated)=NA

Ratio of OR (crude; for T⁺ reported)= TB contact score: 13+ vs. 8-12 [GIT vs. TST-10mm]=1.56 (95% CI: 0.91, 2.69)

Ratio of OR (crude; for T+ reported)=TB contact score: 13+ vs. 8-12 [GIT vs. TST-15mm]=1.84 (95% CI: 1.07, 3.18)

Ratio of ORs (regression-based; reported)=TB contact score: 13+ vs. 8-12 [GIT vs. TST-10mm]= 0.90 (95% CI: 0.44, 1.82)

Ratio of ORs (regression-based; reported)=TB contact score: 13+ vs. 8-12 [GIT vs. TST-15mm]=2.39 (95% CI: 1.15, 4.93)

Other reported measure= NR

Association between test results and BCG status (if applicable)											
	IGRA (spe	ecify)	Т	ST (speci	fy)						
	BCG status		Total		BCC	status	Total				
	Yes	No			Yes	No					
IGRA +	NR	NR	NR	TST +	NR	NR	NR				
IGRA -	NR	NR	NR	TST -	NR	NR	NR				
indeterminate	NR	NR	NR	indeterminate	NR	NR	NR				
Total	NR	NR	NR	Total	NR	NR	NR				

Test performance parameters				
IGRA TST				
DOR (for T^+ calculated) _{IGRA} = NR	DOR (for T+ calculated) _{TST} = NR			
OR (crude; for T^+ reported) = NR	OR (crude; for T+ reported) = NR			
OR (regression-based; reported) _{IGRA} = NR	OR (regression-based; reported) $_{TST} = NR$			
List of covariates: NR	List of covariates: NR			
Other reported measure = NR	Other reported measure = NR			

Between-test agreement, concordance, and discordance (if applicable)

This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition

Total sample

_	TST ≥10mm	TST -	Total
IGRA [QFT-GIT] +	36	2	38
IGRA -	51	42	93
indeterminate	NR	NR	NR
Total	87	44	131

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total

TST + threshold: ≥10mm

Parameters

Kappa = 0.29 (95% CI 0.18, 0.40)

% concordance = [36+42]/131=59.54% (95% CI: 50.98, 67.56)

% discordance = 53/131=40.46% (95% CI: 32.44, 49.02) Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition **Total sample** TST -TST ≥15mm Total IGRA [QFT-GIT] + 29 38 9 18 75 93 IGRA indeterminate NR NR NR **Total** 47 84 131 **Description** Sample definition (e.g., total, if stratified by BCG or condition – specify): total TST + threshold: ≥15mm **Parameters** Kappa = 0.53 (95% CI 0.38, 0.69) % concordance = [29+75]/131=79.39% (95% CI 71.67, 85.43) % discordance = 27/131=20.61% (95% CI 14.57, 28.33) Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition **Total sample** TST >10mm TST -Total IGRA [TSPOT] + 32 3 35 55 41 96 IGRA indeterminate NR NR NR Total 87 44 131 Description Sample definition (e.g., total, if stratified by BCG or condition – specify): total TST + threshold: ≥10mm **Parameters** Kappa = 0.23 (95% CI 0.12, 0.34)% concordance = [32+41]/131=55.73% (95% CI 47.18, 63.95) % discordance = 58/131=44.27% (95% CI 36.05, 52.82) Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition **Total sample** TST ≥15mm TST -Total IGRA [TSPOT] + 27 35 8 20 IGRA -76 96 indeterminate NR NR NR 47 84 Total 131 **Description** Sample definition (e.g., total, if stratified by BCG or condition – specify): total TST + threshold: ≥15mm **Parameters**

Kappa = 0.51 (95% CI 0.35, 0.66)

% concordance = [27+76]/131 = 78.63% (95% CI 70.84, 84.78)

% discordance = 28/131 = 21.37% (95% CI 15.22, 29.16)

Stratification (specify group 1):

	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
indeterminate	NR	NR	NR
Total	NR	NR	NR
D			

Description

Sample definition	(e.g., total.	if stratified by	BCG or	condition -	specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (specify group 2):

	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Conclusions

Authors:

Both QFNGIT and T-Spot.TB performed well in our generally healthy Thai pediatric study population with recent exposure to adults with active pulmonary TB, with no indeterminate or equivocal/borderline results. No significant differences were found between the performances of the IGRAs and TST at the two cut-offs with increasing TB exposure. Concordance for positive IGRAs and TST ranged from 42–46% for TST≥10 mm and 62–67% for TST≥15 mm. On multivariable analyses, exposure to household secondary caregiver with TB was associated with positive QFNGIT. Higher TB contact score was associated with positive T-Spot.TB.

Reviewers:

QFT and TSPOT had similar concordance with TST (at both thresholds); however, this concordance was higher when TST threshold was 15mm (vs. 10mm). On average, TSPOT and QFT performed similarly better in relation to TST, especially compared to TST 15mm

Abbreviations: DOR=diagnostic odds ratio; 95% CI= 95 percent confidence intervals;

TB=tuberculosis; BCG=Bacillus Calmette-Guérin; PPV= positive predictive value; NPV=negative predictive value; FPR=false positive rate; FNR=false negative rate; SD=standard deviation

Study details

First author surname year of publication: Tsolia 2010¹¹¹

Country: Greece

Study design: Retrospective cohort/cross sectional study

Study setting (e.g., outbreak investigation, community-based - specify): TB clinic

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): The Bienmoyo Foundation

Aim of the study

To evaluate and compare the performance of the QFT-GIT assay and the TST among children with active TB or possible latent TB infection in a low endemicity setting.

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: 1st January 2007 to 31st December 2003

Total N of recruited patients: 295 Inclusion criteria: Adolescents \leq 15 years

Exclusion criteria: NR

Total N of excluded patients: 9 (refusal, lost specimen, sample processing delay)

Total N of patients tested with both IGRA and TST:

Total N of patients with valid results for both IGRA and TST: 286 (total sample including active

TB patients)

Methods of active TB diagnosis (if applicable): Based on CDC criteria and MTB isolation from

culture

Outcomes (study-based) list: Agreement; association between test results and risk factors

Characteristics of participants (total study sample)

Mean (range or SD) age (years): NR

Women (n [%]): NR Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

Transer of patients tested						
	Total N	Total N	Total	Total N	Total N	
	(tested)	(test+)	N	(indetermina	(test results available)	
			(test-)	te)		
IGRA (QFT-	99 (patients in	32	63	4	95	
GIT):	contact with					
	adult TB)					
TST (≥ 5mm):	99 (patients in	55	44	0	99	
, , ,	contact with					
	adult TB)					
Test 3 (specify):	NA	NA	NA	NA	NA	

Total N of patients with valid results for both IGRA and TST: 95 (patients in contact with adult TB)

Levels/groups of ex	posur	e to TE	in increasing	orde	r (if applical	ole):		
	Defin	ition o	f exposure gro	սթ - (Contact with	an adı	ult TB	
Non-exposed	Non-l	nouseh	old occasional c	onta	et			
Exposed 1	Non-l	nouseh	old regular cont	act				
(specify):			-					
Exposed 2	House	ehold c	ontact					
(specify):								
Exposed 3	NA							
(specify):								
Exposed 4	NA							
(specify):								
Tests								
	Ass	say use	ed, methodolog	v,	Cut-o	ff	Other info	rmation
		ng for	test measuremenufacturer		values/thre s Definition	on of		
					test+			
IGRA (QFT-GIT)	_		Cellestis Limited ictoria, Australi		> 10 IU/mI		Indeterminate the QFT-GIT vexcluded from analysis	were
TST ≥ 5mm or	Purif	ied pro	tein derivative		≥ 10 mm for	r BCG	NA	
≥10mm	(PPD) RT23	(Statens Serun	n	immunized			
	Institut, Copenhagen, children							
	Denn	nark)			\geq 5mm for			
					BCG immu	nized		
					children			
Association betwee			and incidence	of ac	tive TB (if a			
	IGRA						<u>rst</u>	
		lence	Total			Incide	ence of active	Total
	of ac						TB	
	Т						1	
	Yes	No				Yes	No	
IGRA +	NA	NA	NA		TST +	NA	NA	NA
IGRA -	NA	NA	NA		TST -	NA	NA	NA
Indeterminate	NA	NA	NA	Ind	leterminate	NA	NA	NA
Total	NA	NA	NA		Total	NA	NA	NA
			Test perform	ance	parameters	_		
G	IGRA	L		- C			<u> </u>	
Sensitivity = NA					sitivity = NA			
Specificity = NA				-	cificity = NA	<u> </u>		
PPV = NA					V = NA			
NPV = NA					V = NA			
Cumulative Incidend					nulative Incid			
Cumulative Incidend					nulative Inci			
Cumulative Incidend			= NA				atio $_{TST} = NA$	
Incidence density ra	te _{IGRA+}	= NA			dence densit			
Incidence density ra					dence densit			
Incidence density ra	te ratio	IGRA =	NA	Inci	dence densit	y rate ra	tio $_{TST} = NA$	
Other reported meas	ure _{IGR}	$_{A} = \overline{NA}$		Oth	er reported n	neasure	$_{\mathrm{TST}} = \mathrm{NA}$	
		Com	parison betwee	n tes	ts (IGRA vs	. TST)		
Ratio of cumulative	incide	nce rati	os = NA					
Ratio of incidence d	ensity	rate rat	ios = NA					
Other reported meas	ure = N	NΑ						

Total 25 14 0 39 45.83, 5.17, 85.72) 54.65) : 0.24,
25 14 0 39 45.83, 5.17, 85.72) 54.65)
39 45.83, 5.17, 85.72) 54.65)
45.83, 5.17, 85.72) 54.65)
45.83, 5.17, 85.72) 54.65)
5.17, 85.72) 54.65)
5.17, 85.72) 54.65)
5.17, 85.72) 54.65)
85.72) 54.65)
85.72) 54.65)
54.65)
54.65)
case)
, , ,
Total
37
34
0
Ü
71
37.73,
5.17,
00.50
90.52)
5.62)
: 0.15,
33

OR (crude; for T	+ reported) =	NR		$OR (crude; for T^+ reported) = NR$								
OR (regression-based; reported) = NR			•									
List of covariates		5u) – 19	K	OR (regression-based; reported) = NR List of covariates: NA								
Other reported m			• 1 4		er reported me		•					
D C CDOD (rison between			1)						
Ratio of DORs (f				3.07,	, 39.60)							
Ratio of OR (crude; for T^+ reported) = NA												
Ratio of ORs (reg			orted) = NA									
Other reported m												
	Association	n betwo	en test results	and I	BCG status (il		•					
_	IGRA (QI	T-GI				TST≥5ı						
	BCG stat	us	Total			BCG	status	Total				
	Yes	No				Yes	No					
IGRA +	NR	NR	NR		TST +	NR	NR	NR				
IGRA -	NR	NR	NR		TST -	NR	NR	NR				
Indeterminate	NR	NR	NR		Indetermin	NR	NR	NR				
					ate							
Total	NR	NR	NR		Total	NR	NR	NR				
- 5111-			est performan	ce na								
	IGR		est periorinan	ice pu		TST	1					
DOR (for T ⁺ calc					DOR _{TST} (for							
OR (crude; for T					OR (crude; for							
			- 0 10 05% CI					_				
OR (regression-based; reported) _{QFT} = 0.19, 95% CI OR (regression-based; reported) _{TST} = $\frac{10.06 \times 0.60}{10.06 \times 0.60}$				· —								
(0.06, 0.60) 20.34, 95% CI (5.60, 73.89) List of covariates: NR												
							ND					
Other reported m			1 10		Other reporte		= NK					
Between-test agi							1/ 10/					
This table may b	<u>be stratified</u>	by 18	1 cut-off value	, BCC	z vaccination	status, and	1/or condit	ion				
Total sample	T	TECH			TDC/TD			3 . 1				
TCD 4		TST			TST -		<u> </u>	Cotal				
IGRA +		29			3			32				
IGRA -		24			39			63				
Indeterminate		2			2			4				
Total		55			44			99				
Description												
Sample definition	n (e.g., total,	if strat	ified by BCG of	r cond	lition – specify): Total						
TST + threshold:	≥5 mm											
Parameters												
Kappa = $0.45, 95$	5% CI (0.27,	0.63)										
% concordance =	68/95 = 71.	58%, 9	5% CI (61.81, 7	79.67))							
% discordance =												
Stratification (B												
(2)		TST	+		TST -		Т	otal				
IGRA +		NF			NR			NR				
IGRA -		NF			NR			NR				
Indeterminate					NR NR			NR				
mucicininate	1	NR ND										
Total					43							
Total		NF			1112			Description				
Description				·		.). DCC	animet - 1					
Description Sample definition				r cond): BCG va	ccinated					
Description Sample definition TST + threshold:				r cond): BCG va	ccinated					
Description Sample definition TST + threshold: Parameters	≥10 mm			r cond		v): BCG vac	ccinated					
Description Sample definition TST + threshold:	≥10 mm = 0.06)	if strat	ified by BCG or	r cond		y): BCG vac	ecinated					

% discordance = NR					
Stratification (non-BCG vaccinated)					
	TST +	TST -	Total		
IGRA +	NR	NR	NR		
IGRA -	NR	NR	NR		
Indeterminate	NR	NR	NR		
Total	NR	NR	52		

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): BCG vaccinated

TST + threshold: ≥5 mm

Parameters

Kappa = 0.91 (p = 0.06)

% concordance = 50/52 = 96.20% (95% CI NR)

% discordance = NR

Stratification (Household contact)

CITALITICAL (2204D011014 CONTACT)						
	TST +	TST -	Total			
IGRA +	20	2	22			
IGRA -	8	27	35			
Indeterminate	2	1	3			
Total	30	30	60			

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Household contact with TB case

TST + threshold: ≥5 mm

Parameters

Kappa = 0.65, 95% CI (0.39, 0.90)

% concordance = 47/53 = 82.46%, 95% CI (70.63, 90.18)

% discordance = 10/53 = 17.54%, 95% CI (9.81, 29.37)

Stratification (Non-household regular contact)

Strutification (1101 household regular contact)						
	TST +	TST -	Total			
IGRA +	8	1	9			
IGRA -	10	8	18			
Indeterminate	0	1	1			
Total	18	10	28			

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Non-household regular contact with TB case

TST + threshold: >5 mm

Parameters

Kappa = 0.27, 95% CI (-0.03, 0.56)

% concordance = 16/27 = 59.26%, 95% CI (40.73, 75.49)

% discordance = 11/27 = 40.74%, 95% CI (24.51, 59.27)

Stratification (Non-household occasional contact)

	TST +	TST -	Total
IGRA +	1	0	1
IGRA -	6	4	10
Indeterminate	0	0	0
Total	7	4	11

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify):

TST + threshold:

Parameters

Kappa = 0.11, 95% CI (-0.15, 0.37)

% concordance = $5/11 = 45.45$ 9	% concordance = 5/11 = 45.45%, 95% CI (21.27, 71.99)									
% discordance = $6/11 = 54.55$ %	% discordance = 6/11 = 54.55%, 95% CI (28.01, 78.73)									
	Other outcomes									
Test and cut-off (if	Adverse events n/N (%)	Health related								
applicable)	(specify)	quality of life mean								
		score (SD) (specify)								
IGRA:	NR	NR								
TST:	NR	NR								
Test 3 (specify):	NR	NR								

Conclusions

Authors:

QFT may improve the diagnosis of LTBI especially in BCG vaccinated children

Reviewers:

There was a better agreement in BCG non-immunized vs. BCG immunized children; QFT suggested strong associations with TB contact exposure but they were NS; TST was not associated with exposure (contact with TB); odds of TST positivity (unlike QFT-GIT) was greater in BCG vaccinated vs. not vaccinated

Study details

First author surname year of publication: Diel 2011 100

Country: Germany

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Community based contact

study

Number of centres: Multi-center (NR)

Total length of follow up (if applicable): 2-4 yrs

Funding (government/private/manufacturer/other - specify): NR (None of the authors has a financial relationship with a commercial entity that has an interest in the subject of this manuscript)

Aim of the study

To compare the QuantiFERONTB Gold in-tube assay (QFT) with the tuberculin skin test (TST) in close contacts of patients with TB and evaluate progression to active TB for up to 4 years

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children (close contacts of smear-positive index cases)

Participants

Recruitment dates: May 2005 to April 2010

Total N of recruited patients: 141

Inclusion criteria: Close contacts of smear-positive and subsequently culture-confirmed source MTB index cases; aggregate exposure time of the contact in the 3 months before the diagnosis of respective index case (presumed

period of infectiousness > 40 hours indoors with shared air)

Exclusion criteria: Contacts with an exposure time of < 40 hours to the source

Total N of excluded patients: 15

Total N of patients tested with both IGRA and TST: 126

Total N of patients with valid results for both IGRA and TST: 106

Methods of active TB diagnosis (if applicable): CXR (and computerized tomography), identification of AFB in sputum samples by bronchoscopy or lavage of gastric secretions, conventional culture of M. tuberculosis, nucleic acid amplification assays and/or histopathology, assessment of preceding clinical suspicion of TB. In culture-negative cases, and given a CXR consistent with TB, subsequent clinical and radiographic response to multidrug therapy over an appropriate time course (1–3 mo) was considered sufficient to confirm the diagnosis of TB

Outcomes (study-based) list: Incidence of active TB, predictive values of IGRA and TST

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 10.4 (4.3) years

Women (n [%]): NR

Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Germany (84 [66.7])

BCG vaccination (n [%]): 45 [35.7]

History of anti-TB treatment (n [%]): NR

Total incidence of active TB (n [%]): 6/104 [5.7]

Chest radiography (yes/no): Yes

Clinical examination (yes/no): Yes

Morbidity (n [%]): NR

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): anti TB chemoprophylaxis (2/106 [1.8])

Numb	oer	of	pat	tient	ts 1	test	ted

Total N	Total	Total N	Total N	Total N
(tested)	N	(test-)	(indeterminate)	(test results
				available)
	(test+)			

ICDA (OFF	CITE)	100	22		2	NID	•	100	
IGRA (QFT-		126 126	23 40		33 56	NR NR		106 106	
TST (>5mm) TST (>10mm		126	20	NR		106			
Total N of pa					36				
chemoprophy				UKA	anu 181.	104 (2 pa	atients iv	ecciving	
		•	incressing	order	(if annlical	nle):			
Levels/groups of exposure to TB in increasing order (if applicable): Definition of exposure group									
Non-exposed		NR	30111101011 01	capos	ure group				
Exposed 1 (specify): NR									
Exposed 2 (specify): NR									
Exposed 3 (specify): NR									
Exposed 4 (sp	pecify):	NR							
Tests									
			ology, timin		Cut			ther information	
	test me	asurement	, manufactu	rer	values/th				
	D 0				Definition		+		
IGRA		according rer's instru			IFN-g of				
(QFT-GIT)			ctions gie, Australia)	`	IU/ml or g	greater	Asse	essors of the TST	
	(Cellesus	Liu, Carneg	gie, Australia	,				e blinded to QFT	
	The maxir	nal level of	IFN-g accura	ately				lts and vice versa.	
	detected b		II I V B WOOM					ration was read by	
			ml, and thus					ned and well-	
	values gre	ater than th	is are reporte	d as				erienced public th nurses. If there	
	10 IU/ml						11/20	a borderline result	
TST			Mantoux met		TST react		(e o	., 5 mm exactly), a	
			10-GT (Chiro	on				second reading was	
		Marburg, Ge			10mm performed by a				
	•	ent to 5 uninal purified			10mm			erent nurse to	
			protein D-S] standar	d)				fy this result. If	
			ml (2 tuberci					e was	
			ein derivativ					greement, a third	
		tens Serum						the read the TST	
	Copenhag	en, Denmar	k), which is					the consensus lt used	
	•	to Tubercu	lin-10-GT				Tesu	it useu	
	(Chiron B								
Association b			d incidence	of acti	ve TB (if a				
	IGI		T-4-1				(>5mm		
		dence of ive TB	Total			activ	nce of	Total	
	Yes	No				Yes	No		
IGRA +	6	15	21	+ ,	TST +	6	34	40	
IGRA -	0	83	83	_	TST -	0	64	64	
Indetermina		0	0	_	eterminate	0	0	0	
Total	6	98	104		Total	6	98	104	
		T	est perform	ance p	arameters				
	IGI					r	ГSТ		
Sensitivity =				_				CI: 60.97, 100)	
Specificity = 90.5)	83/98 = 84.	69% (95%	CI: 76.27,	Specificity = 64/98 = 65.31% (95% CI: 55.47, 73.99)					
PPV = 6/21 =	28.57% (95	5% CI: 13.8	1, 49.96)	PPV	y = 6/40 = 1	5.00% (95% CI:	7.06, 29.07)	
						NPV = 64/64 = 100% (95% CI: 94.34, 100)			

Cumulative Incid	ence rop : =	6/21 – 28	57%	Cumulative Incidence $_{TST+} = 6/40 = 15.00\%$ (95%)				
(95% CI: 13.81, 4		0/21 - 20	.51/0	CI: 7.06 , 29.07)				
Cumulative Incid CI: 0.03, 6.53)		0/83 = 1.2	0% (95%	Cumulative Ir	Cumulative Incidence _{TST-} = 0/64 = 1.55% (95% CI: 0.04, 8.4)			
Cumulative Incid CI: 2.57, 110.3)	% (95%	Cumulative Ir 1.08, 448.2)	ncidence Ra	ntio $_{TST} = 9.0$	5% (95% CI:			
Incidence density	rate rank =	NR		Incidence den	sity rate men	. = NR		
Incidence density				Incidence den				
Incidence density				Incidence den				
Other reported me				Other reported				
Other reported in			n hetwee	n tests (IGRA v		S1 = 1 11C		
Ratio of cumulati					(5, 151)			
Ratio of incidence				<u> </u>				
Other reported me	•							
Association betw			ncidence	of active TR (if	annlicable)		
Tissociation between	IGRA	ouits und i	<u>iteraterice</u>			10mm)		
	Incidence	e of	Total		Inciden		Total	
	active '		10001		active		20002	
	Yes	No			Yes	No		
IGRA +	6	15	21	TST +	4	36	40	
IGRA -	0	83	83	TST -	2	62	64	
Indeterminate	0	0	0	Indeterminate	e 0	0	0	
Total	6	98	104	Total	6	98	104	
		Test	perform	ance parameter	`s	•		
	IGRA					ST		
Sensitivity = $6/6$	= 100% (959	% CI: 60.9	7, 100)	Sensitivity = 4/6 = 66.67% (95% CI: 30.00, 90.32)				
Specificity = 83/9 90.5)	98 = 84.69%	(95% CI:	76.27,	Specificity = 62/98 = 63.27% (95% CI: 53.39, 72.14)				
PPV = 6/21 = 28.	57% (95% (CI: 13.81, 4	19.96)	PPV = 4/40 = 10% (95% CI: 3.96, 23.05)				
NPV = 83/83 = 10	•			NPV = 62/64 = 96.88% (95% CI: 89.3, 99.14)				
Cumulative Incid (95% CI: 13.81, 4		6/21 = 28	.57%	Cumulative Incidence $_{TST+} = 4/40 = 10.00\%$ (95% CI: 3.958, 23.05)				
Cumulative Incid CI: 0.03, 6.53)		0/83 = 1.2	0% (95%	Cumulative Ir CI: 0.22, 11.3		$_{\Gamma_{-}} = 2/64 = 3$	3.12% (95%	
Cumulative Incid CI: 2.57, 110.3)	ence Ratio _I	$_{\rm GRA} = 23.7^{\circ}$	% (95%			atio $_{TST} = 3.2$	20% (95% CI:	
Incidence density	rate _{IGRA+} =	NR		Incidence den	sity rate _{TST}	$r_{+} = NR$		
Incidence density				Incidence den	•			
Incidence density				Incidence den	sity rate rat	$io_{TST} = NR$		
	(Compariso	n betwee	n tests (IGRA v				
Ratio of cumulati	ve incidence	e ratios = 7	.41(95%	CI: 2.06, 26.57)				
Ratio of incidence	e density rat	e ratios = l	NR					
Other reported me	easure = NR	2						
Asso	ciation bet	ween test i	esults an	d levels of TB e	exposure (if	f applicable	e)	
			TS	T				
	Total		Exposu	re level	Total			
	High/Yes	Low/No			High/Yes	Low/No		
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
		Test	perform	ance parametei	'S			

	IGRA				TST	1		
Sensitivity = NA	IONA			Sensitivity = NA				
Specificity = NA				Specificity = NA				
$\frac{\text{PPV} = \text{NA}}{\text{PPV} = \text{NA}}$				PPV = NA				
NPV = NA				NPV = NA				
DOR (for T ⁺ calc	ulated) – NA	1		DOR (for T ⁺ calcul	lated) – N	J A		
OR (crude; for T				OR (crude; for T ⁺ r				
OR (regression-b				OR (regression-bas				
List of covariates		<i>(a</i>) – 11/1		List of covariates:		100) – 1111	<u>-</u>	
Other reported m				Other reported mea		A		
other reported in			n betwee	en tests (IGRA vs. 7				
Ratio of DORs (f				`				
Ratio of OR (crud	de; for T ⁺ rep	oorted) = N	A					
Ratio of ORs (reg	ression-base	ed; reported	d = NA					
Other reported m	easure = NA							
-	Association	between	test resul	lts and BCG status	(if appli	cable)		
	IGRA				TS	T		
	BCG s	status	Total		BCG	status	Total	
	Yes	No			Yes	No		
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
		Test	perform	ance parameters				
	IGRA				TS			
DOR (for T ⁺ calc				DOR (for T+ ca				
OR (crude; for T				OR (crude; for				
OR (regression-b		$ed)_{IGRA} = N$	NΑ	OR (regression		eported) _{TS}	$_{\Gamma} = NA$	
List of covariates				List of covariat		27.4		
Other reported m			1 1!	Other reported		= NA		
			*	cordance (if applications		and/an a	andition	
Total sample	e straumeu	by 151 ct	11-011 vai	ue, BCG vaccination	on status	, and/or co	<u> Մուսուսու</u>	
Total Sample		TST +		TST -			Total	
IGRA +		NR		NR			NR	
IGRA -		NR		NR			NR	
Indeterminate		NR		NR			NR	
Total		NR		NR			NR	
Description		1111		1112			1111	
<u> </u>	(e.g., total,	if stratified	l by BCG	or condition – spec	ifv):			
TST + threshold:	· U ·)) .			
Parameters								
Kappa = NR								
% concordance =	NR							
% discordance =	NR							
Stratification (sp	ecify group	1)						
` .		TST +		TST -			Total	
IGRA +		NR		NR			NR	
IGRA -		NR		NR			NR	
Indeterminate		NR		NR			NR	
Total		NR		NR			NR	
Description								
Sample definition	(e.g., total,	if stratified	d by BCG	or condition – spec	ify): NR			

TST + threshold: NR			
Parameters			
Kappa = NR			
% concordance = NR			
% discordance = NR			
Stratification (specify	group 2)		
	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR
Description			
Sample definition (e.g.,	total, if stratified by BCC	or condition – specify): NR	
TST + threshold: NR			

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes									
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)							
IGRA:	NR	NR							
TST:	NR	NR							
Test 3 (specify):	NR	NR							
	C 1 •								

Conclusions

Authors:

Results suggest that QFT is more reliable than the TST for identifying those who will soon progress to active TB, especially in children

Reviewers:

Overall, QFT performed better (sensitivity, specificity, predictive values) than TST in identifying LTBI by predicting the occurrence of active TB

Name of first reviewer: Tara Gurung Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Mahomed 2011a¹⁰¹

Country: South Africa

Study design: Longitudinal cohort study

Study setting (e.g., outbreak investigation, community-based - specify): High school (TB vaccine

trial site in the town of Worcester (and surrounding villages) (high burden of TB)

Number of centres: 11

Total length of follow up (if applicable): 3.8 years

Funding (government/private/manufacturer/other - specify): The Aeras Global TB Vaccine Foundation with some support from the Gates Grand Challenge 6 and Gates Grand Challenge 12 grants for the QuantiFERON testing.

Aim of the study

To compare the predictive value of a baseline tuberculin skin test (TST) with that of the QuantiFERON TB Gold (In-tube) assay (QFT) for subsequent microbiologically confirmed TB disease among adolescents.

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Adolescents from high burden TB area

Participants

Recruitment dates: From 2005 to 2006 **Total N of recruited patients:** 6,363

Inclusion criteria: adolescents aged 12 to 18 years

Exclusion criteria: NR

Total N of excluded patients: 1,119 (those with prior or current TB, indeterminate QFT results, or

missing OFT or TST results)

Total N of patients tested with both IGRA and TST: 5,244

Total N of patients with valid results for both IGRA and TST: 5,244

Methods of active TB diagnosis (if applicable): Two sputum samples for smear microscopy on two separate occasions. If any single sputum was smear positive, a mycobacterial culture, chest x-ray, and HIV test were performed

Outcomes (study-based) list: Test results, concordance between TST and QTB, TB disease

incidence rate

Characteristics of participants (total study sample)

Mean (range or SD) age (years): NR

Women (n [%]): 2842 [54.2]

Race/ethnicity (n [%]): Black (995 [19.0]); Mixed race (3839 [73.2]); Indian/white (410 [7.8])

BCG vaccination (n [%]): Yes (4917 [93.8]; Unknown (281 [5.4])

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): 52 [1.0]

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N	Total N (test-)	Total N (indeterminate)	Total N (test results available)
		(test+)			u vanasie)
IGRA (specify): QFT-	5244	2669	2575	NR	5244
GIT					
TST≥5mm:	5244	2894	2350	NR	5244

Test 3 (specify)		NR	NR	NR	NI	₹	NR			
Total N of patient										
Levels/groups of exposure to TB in increasing order (if applicable):										
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			efinition of ex	posure group						
Non-exposed		NA								
Exposed 1 (specify		NA								
Exposed 2 (specify		NA								
Exposed 3 (specify): NA										
Exposed 4 (specify	y):	NA								
Tests		A agu	av vaad	Cut-off	•	Oth	er information			
			ay used,	values/thres		Oth	er imormation			
			ology, timing neasurement,	Definition of						
			ıfacturer	Definition of	iesit					
IGRA		QFT-GIT,		≥ 0.35 IU/mL						
IGM		method, (C		- 0.33 TO/INE						
		Limited, C				NA				
		Victoria, A								
TST		Mantoux r		≥ 5mm		People	with a recent			
		either fore	arm, using 2				old contact, TB			
		tuberculin	units of			related	symptoms, a			
			uration was				e TST ≥10 mm			
			hours later			induration or a positive				
			er or caliper by			QFT were referred for				
		trained personnel,					itum smears. If			
			erum Institut,			results of either or both				
		Denmark)					outum positive for			
						acid fast bacilli, the sputum were cultured,				
						HIV tes	hest x-ray and			
						underta				
Association between	oon tost	reculte and	l incidence of	active TR (if an	nlicah		KCII.			
		T-GIT)	i includince of	active 1D (if ap		<u>c)</u> Γ≥5mm				
10		dence of	Total			ence of	Total			
		ive TB	1000			ve TB	101111			
	Yes	No			Yes	No				
IGRA +	39	2630	2669	TST +	40	2854	2894			
IGRA -	13	2562	2575	TST -	12	2338	2350			
Indeterminate	0	0	0	Indeterminate	0	0	0			
Total	52	5192	5244	Total	52	5192	5244			
		Te	est performan	ce parameters						
	IGR	RA .				TST				
Sensitivity = $39/52$	2 = 75.0	0%, 95% C	I (61.79,	Sensitivity $= 40$	0/52 = 7	$6.92\%, \overline{9}$	95% CI (63.87,			
84.77)				86.28)						
Specificity = 2562 (47.99, 50.71)	/5192 =	49.35%, 95	5% CI	Specificity = 23 (43.68, 46.39)	338/519	02 = 45.0	3%, 95% CI			
PPV = 39/2669 = 1	1.46%, 9	95% CI (1.0)7, 1.99)	PPV = 40/2894	= 1.38	%, 9 <mark>5% (</mark>	CI (1.02, 1.88)			
NPV = 2562/2575 99.7)	= 99.50	%, 95 <mark>% C</mark> I	(99.14,	NPV = 2338/23 99.71)	850 = 99	9.49%, 9	5% CI (99.11,			
Cumulative Incide	nce _{IGRA}	= 39/2669	$\theta = 1.46\%$,	Cumulative Inc	idence	$_{\mathrm{TST}_{+}} = 40$	$\sqrt{2894} = 1.38\%$			
95% CI (1.07, 1.99	9)			95% CI (1.02, 1	1.87)					
Cumulative Incide	HCC IGRA	13/23/3	v – 0.30%,	Cumulative Inc	ruence	$TST_{-}-1Z_{i}$	2330 - U.31%,			

				1				
95% CI (0.28, 0.87		95% CI (0.28, 0.90)						
Cumulative Incide	nce Ratio IG	$_{RA} = 2.89, 9$	95% CI	Cumulative In	ncidence Ra	tio $_{TST} = 2$.	71 (95% CI:	
(1.55, 5.40)				1.42, 5.14)				
Incidence density	rate $_{IGRA+} = 0$	0.64 per 10	0 person	Incidence der	nsity rate TST	$_{+} = 0.60 \text{ pe}$	er 100 person	
years, 95% CI (0.4	15, 0.87)			years, 95% C	I (0.43, 0.82	2)		
Incidence density	rate $_{IGRA-} = 0$).22 per 100) person	Incidence der	nsity rate TST	= 0.22 pe	r 100 person	
years, 95% CI (0.1			_	years, 95% C	I (0.11, 0.39)		
Incidence density	rate ratio _{IGR}	A = 2.92, 93	5% CI	Incidence der	nsity rate rati	$io_{TST} = 2.7$	'3, 95% CI	
(1.58, 5.67)				(1.45, 5.42)				
	C	omparison	between	n tests (IGRA v	s. TST)			
Ratio of cumulativ	e incidence	= 1.07, (95)	% CI: 0.	68, 1.68)				
Ratio of incidence	density rate	ratios = 1.0	07, (95%	CI: 0.67, 1.71)				
Other reported me	asure = NR							
Assoc	ciation betw	een test re	sults and	d levels of TB ex	xposure (if a	applicable)	
	IGRA				TST	Γ		
	Exposu	re level	Total		Exposu	re level	Total	
	High/Yes	Low/No			High/Yes	Low/No		
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
		Test p	erforma	ance parameters	S			
	IGRA				TST	Γ		
Sensitivity = NA				Sensitivity = NA				
Specificity = NA					Specificity = NA			
PPV = NA				PPV = NA	PPV = NA			
NPV = NA				NPV = NA	NPV = NA			
DOR (for T ⁺ calcu	lated) = NA			DOR (for T ⁺ ca	alculated) = 1	NA		
OR (crude; for T ⁺ 1	reported) = 1	NA		OR (crude; for	T ⁺ reported)	= NA		
OR (regression-ba	_			OR (regression			A	
List of covariates:	NA			List of covariat	es: NA			
Other reported me	asure = NA			Other reported	measure = N	NΑ		
•	C	omparison	between	n tests (IGRA v				
Ratio of DORs (fo					Ź			
Ratio of OR (crude			A					
Ratio of ORs (regr	ession-base	d; reported)	= NA					
Other reported me	asure = NA							
Between-test agree	ement, con	cordance,	and disc	ordance (if app	licable)			
This table may be	stratified l	by TST cut	t-off valu	ie, BCG vaccina	ation status	, and/or co	ondition	
Total sample								
		TST +			ST -		Total	
IGRA +		2383		2	86		2669	
IGRA -		511		20	064		2575	
Indeterminate		0			0 0			
Total		2894		23	350		5244	
Description								
Sample definition	(e.g., total, i	f stratified	by BCG	or condition - s ₁	pecify): Tota	ıl		
TST + threshold:	TST + threshold: ≥5 mm induration							
Parameters								
Kappa = 0.6995%								
% concordance = 4		•						
% discordance = 797/5244 = 15.20%, 95% CI (14.25, 16.20)								

Stratification (specify group 1)

	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (specify group 2)

Stratification (specify group 2)							
	TST +	TST -	Total				
IGRA +	NR	NR	NR				
IGRA -	NR	NR	NR				
Indeterminate	NR	NR	NR				
Total	NR	NR	NR				

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes						
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)				
IGRA:	NR	NR				
TST:	NR	NR				
Test 3 (specify):	NR	NR				

Conclusions

Authors:

Based on the findings from this study, these authors concluded/demonstrated that TST and QFT-GIT are equally predictive of progression to active TB in a cohort of adolescents in a high TB burden population. They further stated that their results do not support that QFT-GIT is more superior to TST in its predictive value

Reviewers:

Authors reported that Isoniazid prevention therapy is not standard care for people with LTBI except for children under the age of five years old. TST and QFT-GIT are equally predictive of progression to active TB in a cohort of adolescents in a high TB burden population

Name of first reviewer: Tara Gurung Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Noorbakhsh 2011¹⁰²

Country: Iran

Study design: Cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Pulmonary and infectious

diseases department of Rasul hospital in Tehran

Number of centres: 1

Total length of follow up (if applicable): 1 year

Funding (government/private/manufacturer/other - specify): Research Centre of Paediatric Infectious Diseases, Iran University of Medical Sciences.

Aim of the study

To detect the agreement between TST and QTB in young household contacts (aged < 20 years) of cases of proven active pulmonary TB in a BCG-vaccinated population in Tehran, Islamic Republic of Iran, and to compare subjects progressing to TB with non-progressive subjects

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: 2006-2008 **Total N of recruited patients:** NR

Inclusion criteria: all young (< 20 years old) close or household contacts of people (as any person who had lived with the index case for more than 3 months) with confirmed active pulmonary TB and previous BCG vaccination received at birth. The subjects were invited to our research centre for clinical and laboratory follow-up

Exclusion criteria: Household contacts were excluded if they had been treated for TB in the past year or had a known immunodeficiency state on history or clinical signs (malignancy, corticosteroid therapy, HIV, etc.).

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 58

Methods of active TB diagnosis (if applicable): Person diagnosed by an internist in the pulmonary and infectious ward of Rasht hospital. The index cases were confirmed by positive culture for M. tuberculosis or sputum smear-positive TB

Outcomes (study-based) list: Test results, concordance between TST and QTB, progression to TB disease

Characteristics of participants (total study sample)

Mean (range or SD) age (years): NR

Women (n [%]): 34 [57.6] Race/ethnicity (n [%]): NR BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): 10 [16.9]

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

_	Total N	Total	Total N	Total N	Total N
	(tested)	N	(test-)	(indeterminate)	(test results
					available)
		(test+)			

_					,			
IGRA (QFT-G):		NR	18	41		NR		59
TST (≥ 10mm):		NR	8 50		1		58	
Test 3 (specify) NA NA					NA NA			NA
Total N of patients with valid results for both IGRA and TST: 48								
Levels/groups of	exposur					le):		
			efinition of e	exposur	e group			
Non-exposed	exposed NR							
	Exposed 1 (specify): NR							
Exposed 2 (specif		NR						
Exposed 3 (specif		NR						
Exposed 4 (specif	y):	NR						
Tests					T			
			hodology, ti	ming		Cut-off		Other
	1		asurement,			s/thresl		information
TODA (OTTO O)	T .1	manufa				ition of	test+	NY 1
IGRA (QFT-G)		-	blood sampl		Not repo	orted		NA
			icipants were					
	•		ccording to t					
			truction (Gol					
			ellestis). Firs whole blood					
			uots of antig					
			tigens for 16					
			carbon diox					
			ernight incul					
			s removed from					
	•	•	oncentration					
			ned using the					
	kits			,				
TST (≥ 10mm)	For the	TST a test of	dose (0.1 mL	L) of 5	of 5 A reactive TST was an NA			
	tubercul	lin units of	purified prot	tein				
	derivati	ve solution	(Pasteur Inst	titute,				
			ed intraderm					
		•	et of the fore					
			e needle by t					
	field worker. The induration dia							
			hed weal (no					
A : - 4: h - 4	•		l after 48–72		TD (:6	12 1. 1	-)	
Association between test results and incidence of active TB (if applicable) IGRA (QFT-G) TST≥ 10mm								
1		ence of	Total				nce of	Total
			Total			activ		Total
	Yes	active TB Yes No				Yes	No	
IGRA +	10	8	18	Т	ST +	3	5	8
IGRA -	0	41	41		ST -	7	43	50
Indeterminate	NR	NR	NR		Indeterminate		1	1
Total	10	49	59		otal	10	49	59
Test performance parameters								
	IGR					r	ΓST	
Sensitivity = 10/10 = 100.00%, 95% CI (72.25,			Sensitivity = 3/10 = 30.00%, 95% CI (10.78,					
100.00)			60.32)					
Specificity = 41/49 = 83.67%, 95% CI (70.96,				Specificity = 43/48 = 89.58%, 95% (77.83,				
*				95.47	95.47)			
PPV = 10/18 = 55.56%, 95% CI (33.72, 75.44)				PPV = 3/8 = 37.50%, 95% CI (13.68, 69.43)				

NPV = 41/41 = 10	NPV = 43/50 = 86.00%, 95% CI (73.81, 93.05)							
Cumulative Incide		NPV = $43/30 = 86.00\%$, 95% CI (73.81 , 95.05) Cumulative Incidence $_{TST+} = 3/8 = 37.5\%$, 95%						
95% CI (33.72, 75								
Cumulative Incide		CI (13.49, 69.62) Cumulative Incidence _{TST-} = 7/50 = 14.00%, 95%						
CI: 0.06, 12.9)	ince igra- – o	771 — Z. 7 1	70 (2270	CI (6.63, 26.5		7/30 -	14.0070, 7570	
Cumulative Incide	ence Ratio IGI	$p_A = 22.789$	% (95%	Cumulative I		$tio_{TST} = 2$.	68% (95%	
CI: 2.75, 101.1)	101	AA	(30,70	CI: 0.86, 8.27		151	2272 (5273	
Incidence density	rate _{IGRA+} = l	٧R		Incidence der		₊ = NR		
Incidence density				Incidence der	nsity rate TST	= NR		
Incidence density	rate ratio _{IGR.}	A = NR		Incidence der	nsity rate rat	$io_{TST} = NF$	2	
	Co	omparison	betwee	n tests (IGRA v	s. TST)			
Ratio of cumulativ				2.87, 25.17)				
Ratio of incidence	•	ratios = N	R					
Other reported me								
Assoc		een test re	sults an	d levels of TB e)	
	IGRA				TS			
	Exposur		Total		Exposu		Total	
ICD A	High/Yes	Low/No	NY A	mam	High/Yes	Low/No	NT A	
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA NA	NA	NA	TST -	NA NA	NA	NA NA	
Indeterminate	NA NA	NA NA	NA NA	Indeterminate Total	NA NA	NA NA	NA NA	
Total	INA			ance parameter		NA	INA	
	IGRA	1 est p	Jei 101 III.	ance parameter	TS	<u> </u>		
Sensitivity = NA	IGNA			Sensitivity = NA				
Specificity = NA				Specificity = N				
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
DOR (for T ⁺ calcu	lated) = NA			DOR (for T ⁺ ca	alculated) =	NA		
OR (crude; for T ⁺		NΑ		OR (crude; for				
OR (regression-ba	_			OR (regression			Λ	
List of covariates:				List of covariat		,		
Other reported me	asure = NA			Other reported	measure = N	NΑ		
	C	omparison	betwee	n tests (IGRA v	s. TST)			
Ratio of DORs (fo								
Ratio of OR (crud								
Ratio of ORs (regi		d; reported	= NA					
Other reported me								
Between-test agree This table may be				·		and/or co	andition	
Total sample	e su auneu i	<i>y</i> 151 cu	t-uii vai	ue, DCG vaccin	anon status	, and/or Co	JIIIIIIII	
Total Sample		TST +		Т:	ST -		Total	
IGRA +		NR			NR			
IGRA -		NR			NR		18 41	
Indeterminate		NR			NR NR			
Total		8			51		59	
Description								
Sample definition	(e.g., total, i	f stratified	by BCG	or condition – s	pecify): tota	1		
TST + threshold:	≥10mm							
Parameters								
Kappa = NR								
% concordance = 1								
% discordance = NR								

Stratification (non-progressive)								
	TST +	TST -	Total					
IGRA +	39	4	43					
IGRA -	2	3	5					
Indeterminate	0	0	0					
Total	41	7	48					

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): 49 children who did not progress to active TB

TST + threshold: ≥10mm

Parameters

Kappa = 0.43 (95% CI: 0.15, 0.70)

% concordance = 42/48 = 87.60% (95% CI:75.3, 94.14)

% discordance = 6/48 = 12.5% (95% CI: 5.85, 24.70)

Stratification (specify group 2)

Stratification (speeny group 2)									
	TST +	TST -	Total						
IGRA +	NR	NR	NR						
IGRA -	NR	NR	NR						
Indeterminate	NR	NR	NR						
Total	NR	NR	NR						

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes							
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)					
IGRA:	NR	NR					
TST:	NR	NR					
Test 3 (specify):	NR	NR					

Conclusions

Authors:

From this study, the authors demonstrated that QTB assay can reflect recent rather than remote TB infections compared with TST in an adolescent population who had previously received BCG vaccination

Reviewers:

QFT performed better than TST in detecting LTBI by predicting development of active TB *Abbreviations:* DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; PPV = positive predictive value; NPV = negative predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Study details

First author surname year of publication: Song 2014¹⁵⁰

Country: South Korea

Study design: prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): community-based

Number of centres: 1 (children sampled from 45 schools) Total length of follow up (if applicable): 24 months

Funding (government/private/manufacturer/other - specify): This research was supported by a fund (2008-E00226-00, 2009-E46002-00, 2010-E46003-00, 2011-E46006-00, and 2012-E46001-00) by Research of Korea

Centers for Disease Control and Prevention. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Aim of the study

To determine the agreement between IGRA (OFT-GIT) and TST and identify the relationships between the results of these tests and the development of active tuberculosis in middle and high school students in close contact with tuberculosis patients in South Korea

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Children

Participants

Recruitment dates: Between 2008 and 2012

Total N of recruited patients: 3,202

Inclusion criteria: Close contacts of identified smear-positive tuberculosis cases with normal chest

X-ray aged 11–19 years

Exclusion criteria: Participants showing (1) abnormal findings in simple chest radiographs, (2) they had taken immunosuppressive agents or anticancer drugs earlier, and (3) they had been treated with antituberculous drugs or chemoprophylaxis earlier

Total N of excluded patients: 220 (at baseline)

Total N of patients tested with both IGRA and TST: 2,982

Total N of patients with valid results for both IGRA and TST: 2,966

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: between test agreement, incidence of active TB

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 15.1 (1.3)

Women (n [%]): 1,356 (45.5) Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): 1,818 (61.0) History of anti-TB treatment (n [%]): NR

Total incidence of active TB (n [%]): 23/2,982 (0.77)

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): 5/215 [2.32] (isoniazid)

-	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	2982	317	2649	16	2966
TST ≥10mm	2982	663	2319	0	2982
TST ≥15mm	2982	231	2751	0	2982

Test 3 (specify)	·41 1:1 14 6 1 41 7										
Total N of patients with valid results for both IGRA and TST: 2,966 Levels/groups of exposure to TB in increasing order (if applicable): NA											
Definition of exposure group –											
Non-exposed	NA Definition of C	Aposure group									
Exposed 1 (specify):	NA NA										
Exposed 2 (specify):	NA										
Exposed 3 (specify):	NA NA										
Exposed 4 (specify): NA											
Tests											
	Assay used,	Cut-off	Other information								
	methodology, timing for	values/thresholds									
	test measurement,	Definition of test+									
	manufacturer										
IGRA –[QFT-	QFT Gold In-Tube	A QuantiFERON value									
GIT]	(Cellestis Inc, Valencia,	of 0.35 international									
	CA) tests were performed according to the	units or more was deemed positive									
	manufacturer's	according to									
	instructions. Briefly,	manufacturer's									
	whole blood was	instructions									
	collected by venipuncture										
	from each subject at the										
	date of injection of PPD										
	and incubated for 16-24										
	hours in 3 separate										
	conditions: 1) a mixture		To eliminate the								
	of		possibility of false-								
	3 TB antigens from RD1		positive IGRA results								
	and RD11 (ESAT-6, CFP-10, and		due to PPD reagents, blood samples were								
	TB7.7); 2) a mitogen as a		collected before PPD								
	positive control; and 3) a		injection								
	mock stimulation as a		injection								
	negative control (nil).										
	Following the										
	stimulations, 150 mL of										
	the supernatant was										
	harvested from each tube.										
	Then, 50 mL of each										
	supernatant was used to										
	determine its interferon										
	gamma (IFN-c) concentration by the										
	ELISA										
TST≥10mm	Intradermal injection (0.1	The maximal transverse									
	ml) of 2 tuberculin units	size of induration was									
	of purified protein	read 48–72 hours later									
	derivative (RT 23;	with a ruler or a caliper									
	Statens Serum Institute,	by a research nurse									
	Copenhagen, Denmark)										
	into the anterior surface	≥10mm									
	of the forearm with a	≥15mm									
	disposable syringe and a										

	edle by using							
Association betw			technique	of active TR (if	annlical	alo)		
			of active 1B (II a					
16.	RA (QF'		Tr - 4 - 1		TST≥10mm Incidence of Total			T-4-1
		ence of	Total					Total
		ve TB				e TB		
YGD .	Yes	No		mam	Yes	No		
IGRA +	11	306	317	TST +	13	650		663
IGRA -	12	2637	2649	TST -	10	2309		2319
indeterminate	NR	NR	16	indeterminate	0	0		0
Total	23	2943	2966	Total	23	2959		2982
		,	Test perform	ance parameters	S			
	IGR/	4				TST		
Sensitivity = 11/2 67.04)	3=47.83	% (95% C	CI: 29.24,	Sensitivity =13/	/23=56.5	52% (95	5% CI: 3	6.81, 74.37)
Specificity = 2637 88.45, 90.65)	7/2943=8	39.6% (95	7% CI:	Specificity = 23 79.49)	09/2959	9=78.03	% (95%	CI: 76.51,
PPV= 11/317=3.4	7% (95%	6 CI: 1 94	1 6 10)	PPV= 13/663=1	96% (9	95% CI:	1 14 3	32)
NPV= 2637/2649			,	NPV= 2309/23	-			•
99.74)				1VI V = 2307/23	17–77.3	170 (73	70 C1. 77	7.21, 77.77)
Cumulative Incide (95% CI: 1.87, 6.		$_{+} = 11/31$	7=3.47%	Cumulative Inci	idence _T	ST+ = 13	8/663=1.	96% (95%
Cumulative Incide	ence _{IGRA}	_ = 12/26	49=0.45%	Cumulative Inci	idence _T	$s_{\text{ST-}} = 10$	/2319=0	0.43% (95%
(95% CI: 0.24, 0.7		io -7	66 (050)	CI: 0.22, 0.80)				
Cumulative Incide CI: 3.41, 17.21)			.00 (93%	Cumulative Incidence Ratio _{TST} =4.55 (95% CI: 2.00, 10.32)				
Incidence density				Incidence densi				
Incidence density				Incidence density rate _{TST-} = NR				
Incidence density					Incidence density rate ratio _{TST} = NR			
Other reported me	easure _{IGF}	$_{RA} = OR = 7$	7.90 (95%		Other reported measure $_{TST} = OR = 4.62$ (95% CI:			
CI: 3.46, 18.06)				2.02, 10.58)				
		Compa	arison betwee	en tests (IGRA v	s. TST)			
Ratio of cumulati	ve incide	nce ratios	s=1.68 (95% c	CI: 0.94, 3.03)				
Ratio of incidence	e density	rate ratio	s=NA					
Other reported me	easure= (OR = 1.71	(95% CI: 0.9	94, 3.11)				
Association betw	een test	results a	nd incidence	of active TB (if a	applical	ole)		
		FT-GIT		,		ST≥15ı	mm	
		ence of	Total			Incide	nce of	Total
	activ	e TB				active	e TB	
	Yes	No	1			Yes	No	
IGRA +	11	306	317	TST +	_	13	218	231
IGRA -	12	2637	2649	TST -		10	2741	2751
indeterminate	NR	NR	16	indetermi		0	0	0
Total	23	2943	2966	Total		23	2959	2982
1 Otal	23					23	4937	2902
	IG		rest periorm	ance parameters	•	TST		
Sensitivity = 11/2			CI: 29.24, 67.0	,	=13/23		% (95%	CI: 36.81,
Specificity 2027	7/2042 9	0 60/ (05	0/ CI. 99 45	74.37)	- 2741	/2050 (12 620/	(05% CI.
Specificity = 2637	1/2945=8	9.0% (95	% CI: 88.45,	Specificity		ZY3Y=5	92.03% ((93% CI:
90.65)	70/ /05*	/ OT 10	1 (10)	91.64, 93.5		20/ /0.70	/ CT 2 ′	21 0 20)
PPV= 11/317=3.4				PPV= 13/2				
NPV= 2637/2649	=99.55%	(95% CI	: 99.21, 99.74	NPV= 274 99.80)	1/2751=	99.64%	6 (95% (A: 99.33,

Cumulative Incid	lence IGRA+	Cumulative Incidence $_{TST+} = 13/231=5.62\%$						
(95% CI: 1.87, 6.17)				(95% CI: 3.23, 9.47)				
Cumulative Incidence IGRA- = 12/2649=0.45% (95% CI: 0.24, 0.79)				Cumulative Incidence _{TST-} = 10/2741=0.36% (95% CI: 0.18, 0.67)				
Cumulative Incid		GRA =7.66	6 (95% CI:	Cumulative Inci		тут =15.48	(95%	
3.41, 17.21)	1100 110010 1	0141 7100	(5070 01.	CI: 6.86, 34.92)		131 10110	(>070	
Incidence density	rate IGRA+	-=NR		Incidence densit	ty rate _{TST+} =	NR		
Incidence density	rate IGRA-	= NR		Incidence densit	ty rate _{TST-} =	NR		
Incidence density	rate ratio IC	GRA = NR		Incidence densit	ty rate ratio _T	$_{\rm ST} = NR$		
Other reported m	easure IGRA	A =OR=7.90) (95% CI:	Other reported r	measure _{TST} =	OR=16.35	(95%	
3.46, 18.06)				CI: 7.08, 37.71)	l			
				ests (IGRA vs. TS	T)			
Ratio of cumulat			•	0.28, 0.89)				
Ratio of incidence								
Other reported m								
Asso			esults and le	evels of TB exposu				
	IGRA (spe			,	TST (specify	, , , , , , , , , , , , , , , , , , , ,	,	
	Exposu	_	Total		Exposu		Total	
	High/Yes	Low/No			High/Yes	Low/No		
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
indeterminate	NA	NA	NA	indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
		Test	performanc	e parameters				
	IGRA			TST				
Sensitivity = NA				Sensitivity = NA				
Specificity = NA	-			Specificity = NA				
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
DOR (for T ⁺ calc				DOR (for T^+ calculated) = NA				
OR (crude; for T				OR (crude; for T ⁺ reported) = NA				
OR (regression-b		ed) = NA		OR (regression-based; reported) = NA				
List of covariates				List of covariates: NA				
Other reported m			1 4 4	Other reported measure = NA ests (IGRA vs. TST)				
Ratio of DORs (f			n between te	ests (IGRA vs. 18	1)			
Ratio of OR (cru			<u> </u>					
Ratio of ORs (reg								
Other reported m		_	1) – INA					
Other reported in			act reculte s	and BCG status (if	f applicable			
	IGRA (spe		est results a	,	TST (specify			
	BCG s		Total			status	Total	
	Yes	No	10141		Yes	No	10141	
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
indeterminate	NA	NA	NA	indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
				e parameters				
	IGRA				TST			
$\overline{DOR \text{ (for T}^+ \text{ calculated)}_{IGRA}} = NA$				DOR (for T+ calc		NA		
DOR (for T ⁺ calc					OR (crude; for T + reported) = NA			
DOR (for T ⁺ calc OR (crude; for T				OR (crude; for T	+ reported) =	= NA		
	+ reported) =	NA	A	OR (crude; for Took OR (regression-b			<u> </u>	

	sure = NA	Other reported measure = NA	<u> </u>				
Between-test agree	ement, concordance, and discor	dance (if applicable)					
This table may be	stratified by TST cut-off value,	BCG vaccination status, and/	or condition				
Total sample							
	TST ≥10mm	TST -	Total				
IGRA +	231	86	317				
IGRA -	430						
indeterminate	2	14	16				
Total	663	2,319	2982				
Description		,					
	e.g., total, if stratified by BCG or	condition – specify): total					
$TST + threshold: \ge 1$							
Parameters							
Kappa = $0.38 (95\%)$	CI: 0.342, 0.424)						
**	231+2,219]/2,966 = 82.6% (95% (CI: 81 2 83 92)					
	30+86]/2,966 = 17.4% (95% CI:	,					
	ement, concordance, and discord						
	stratified by TST cut-off value,		or condition				
Total sample	similar of 101 cut-off value,	200 racemution status, and	or condition				
- Juli Sumple	TST ≥15mm	TST -	Total				
IGRA +	163	154	317				
IGRA -	68	2,581	2,649				
indeterminate	0	16	16				
Total	231	2,751	2,982				
Description	231	2,731	2,962				
	e.g., total, if stratified by BCG or	andition specify); total					
$TST + threshold: \ge 1$	<u> </u>	condition – specify), total					
	1 311111						
Parameters 0.55 (050)	CL 0.50 0.61)						
	CI: 0.50, 0.61)						
$\frac{\text{Kappa} = 0.55 (95\%)}{\text{Kappa}}$		OL 01 51 02 41)					
% concordance = [1	163+2581]/2,966 = 92.52% (95%						
% concordance = [1 % discordance = [6	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6						
% concordance = [1 % discordance = [6	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6 cify group 1):	6.59, 8.48)	T . 1				
% concordance = [1 % discordance = [6 Stratification (spec	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1):	6.59, 8.48) TST -	Total				
% concordance = [1 % discordance = [6: Stratification (specification)	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA	6.59, 8.48) TST - NA	NA				
% concordance = [1 % discordance = [6: Stratification (special IGRA + IGRA -	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA	6.59, 8.48) TST - NA NA	NA NA				
% concordance = [1% discordance = [6] Stratification (specific specific spe	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: cify group 1): TST + NA NA NA	6.59, 8.48) TST - NA NA NA	NA NA NA				
% concordance = [1 % discordance = [6: Stratification (special IGRA + IGRA - indeterminate Total	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA	6.59, 8.48) TST - NA NA	NA NA				
% concordance = [1 % discordance = [6: Stratification (specification) IGRA + IGRA - indeterminate Total Description	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: cify group 1): TST + NA NA NA NA NA	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1% discordance = [6% Stratification (specification (specification)] IGRA + IGRA - indeterminate Total Description Sample definition (a)	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA NA NA NA NA NA	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1 % discordance = [6 Stratification (special Stratification (163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA NA NA NA NA NA	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1 % discordance = [6: Stratification (specification (specification) IGRA + IGRA - indeterminate Total Description Sample definition (specification) TST + threshold: N	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA NA NA NA NA NA	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1 % discordance = [6 Stratification (specification (specification) IGRA + IGRA - indeterminate Total Description Sample definition (control of the second of the seco	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA NA NA NA NA NA	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1 % discordance = [6 Stratification (specification (specification) IGRA + IGRA - indeterminate Total Description Sample definition (control of the second of the seco	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA NA NA NA NA NA	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1 % discordance = [6 Stratification (specification (specification) IGRA + IGRA - indeterminate Total Description Sample definition (context of the strength of the streng	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 cify group 1): TST + NA NA NA NA NA NA NA NA	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1% discordance = [6] % discordance = [6] % Stratification (special special sp	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6 cify group 1):	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1% discordance = [6] % discordance = [6] % Stratification (special special sp	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6 cify group 1):	6.59, 8.48) TST - NA NA NA NA NA	NA NA NA				
% concordance = [1 % discordance = [6 Stratification (specification (specification) IGRA + IGRA - indeterminate Total Description Sample definition (cryst + threshold: Northern North	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6 cify group 1): TST + NA NA NA NA NA NA NA A Cify group 2):	TST - NA NA NA NA NA Condition – specify): NA	NA NA NA NA				
% concordance = [1% discordance = [6] % discordance = [6] % Stratification (special special sp	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6 cify group 1): TST + NA NA NA NA NA NA NA Se.g., total, if stratified by BCG or A IA A Cify group 2): TST +	TST - NA NA NA NA Condition – specify): NA	NA NA NA NA				
% concordance = [1 % discordance = [6 Stratification (specification (specification) IGRA + IGRA - indeterminate Total Description Sample definition (continue) TST + threshold: N Parameters Kappa = NA % concordance = Na % discordance = Na Stratification (specification)	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 Cify group 1):	7ST - NA NA NA NA Condition – specify): NA TST - NA NA NA NA NA TST - NA NA	NA				
% concordance = [1 % discordance = [6 Stratification (specification (specification) IGRA + IGRA - indeterminate Total Description Sample definition (continue) TST + threshold: N Parameters Kappa = NA % concordance = N % discordance = N % discordance = N Stratification (specification) IGRA + IGRA - indeterminate	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6 cify group 1): TST + NA NA NA NA NA NA Se.g., total, if stratified by BCG or A IA A Cify group 2): TST + NA NA NA NA NA NA NA NA NA N	TST - NA NA NA Condition – specify): NA TST - NA NA NA NA NA NA NA NA NA	Total NA NA NA NA NA				
% concordance = [18% discordance = [68% discordance = [686	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 0 Cify group 1):	7ST - NA NA NA NA Condition – specify): NA TST - NA NA NA NA NA TST - NA NA	NA				
% concordance = [1% discordance = [6% discordance = [6% Stratification (specification (specification (specification) IGRA + IGRA - Indeterminate Total Description Sample definition (specification) Parameters Kappa = NA % concordance = Na % discordance = Na Stratification (specification) IGRA + IGRA - Indeterminate Total Description	163+2581]/2,966 = 92.52% (95% 8+154]/2,966 = 7.48% (95% CI: 6 cify group 1): TST + NA NA NA NA NA NA Se.g., total, if stratified by BCG or A IA A Cify group 2): TST + NA NA NA NA NA NA NA NA NA N	TST - NA NA NA Condition – specify): NA TST - NA	Total NA NA NA NA NA				

-					
ν	ar	ar	ne	ete	re

Kappa = NA

% concordance = NA

% discordance = NA

Conclusions

Authors:

TST at 15 mm had a higher OR for the development of active tuberculosis compared to TST 10mm and QFT-GIT. The agreement between TST and QFT was better when TST had 15 mm threshold

Reviewers:

Children testing positive on both tests had a greater risk of developing active TB; TST at 15mm performed better in diagnosing LTBI compared to TST 10mm or QFT-GIT; TST 15mm agreed with QFT GIT better than TST 10 mm

Immunocompromised

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Ahmadinejad 2013¹¹⁸

Country: Iran

Study design: Cross sectional/retrospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Tertiary care teaching

hospital

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Tehran University of Medical Sciences

and Health Services grant

Aim of the study

To compare the QFT and TST in diagnosis of LTBI in solid organ transplant (SOT) candidates

(kidney, liver, lung)

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (SOT candidates: kidney, liver, lung)

Participants

Recruitment dates: March 2008 through September 2011

Total N of recruited patients: 187

Inclusion criteria: SOT candidates who were referred to the transplant clinic

Exclusion criteria: (i) failure to return to the clinic for reading the results of TST within 5 days of the

initial intradermal injection, or (ii) unwillingness to continue the study at any stage

Total N of excluded patients: 23 (dropouts)

Total N of patients tested with both IGRA and TST: 164

Total N of patients with valid results for both IGRA and TST:TST (n = 164), IGRA (n = 159)

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: Agreement/disagreement, association between test results and

exposure to active TB

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 39.9 (12.7) yrs

Women (n [%]): 76 [46.3] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 151 [92.1]

History of anti-TB treatment (n [%]): 1/164 [0.6] Total incidence of active TB (n [%]): 1/164 [0.6]

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): End-stage renal disease (64 [39.0]), chronic hepatic failure (97 [59.2]), Pulmonary failure (3 [1.8])

Co-morbidity (n [%]): NA

Type of during-study treatment (n [%]): Patients with positive TST received chemoprophylaxis with 300 mg isoniazid for 9 months; immunosuppressive medication (24 [14.6])

_	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	164	33	126	5	159
TST:	164	26	138	0	164
Test 3 (specify):	NA	NA	NA	NA	NA

Total N	of patien	ts with	valid resu	lts for both IC	GRA and TST:	164			
					rder (if applica				
					xposure group				
Non-exp	osed			y of exposure					
Exposed	l 1 (specif	y):	Exposure	history to acti	ve TB				
Exposed	12 (specif	y):	NA						
Exposed	l 3 (<mark>specif</mark>	y):	NA						
Exposed	Exposed 4 (specify): NA								
Tests									
	•		_	y, timing for nufacturer	Cut- values/th Definition	reshold		Other information	
IGRA (QFT- GIT)	QuantiFI (QFT-Gi		ΓB Gold In	-Tube test	NR				
TST	Blood sample of 3 mL was obtained, and 1 mL was added to each of the 3 tubes designated as the nil, mitogen, and antigen tubes. After vigorous shaking of the tubes, they were sent to the laboratory up to 6 h after acquisition The tubes were reshaken and incubated for 24 h at 37°C. Then the samples were centrifuged at 2000–3000 RCF rate for 15 min, and the resulting plasma samples were kept at >70°C for the measurement of interferon-gamma (IFN-c) with enzyme-linked immunosorbant assay (ELISA)						potential poosting effect of FST on QFT, blood campling and purified protein derivative (PPD) njection were done simultaneously for all		
Associa	48–72h	oon tost	roculte or	nd incidence o	f active TB (if a	nnlical	hle)		
ribbocia	LIGHT DELW	IGR			Luctive ID (II t	-ррпса	TST		
			lence of	Total		Incide	ence of	Total	
			ve TB				ve TB		
		Yes	No	1		Yes	No		
IGR	A+	NA	NA	NA	TST +	NA	NA	NA	
	RA -	NA	NA	NA	TST -	NA	NA	NA	
	minate	NA	NA	NA	Indeterminate	NA	NA	NA	
	otal	NA	NA	NA	Total	NA	NA	NA	
10		4 14 1			nce parameters	1	11/1	1111	
		IGR		est periorina	ne parameters		TST		
Sensitiv	ity = NA	101	-		Sensitivity = N	A	101		
	ity = NA $ity = NA$				Specificity = N				
PPV = N					$\frac{\text{Specificity} = \text{IV}}{\text{PPV} = \text{NA}}$				
NPV = 1					NPV = NA				
	tive Incide	nce res	$\Delta = N\Delta$		Cumulative Inc	ridence		NA	
	tive Incide				Cumulative Inc				
Cumuia	iive meide	IICE IGRA	4 1 N M		Cumulative IIIC	ruciice	TST I	NA.	

Cumulative Incidence Ratio _{IGRA} = NA										
Incidence density				Incidence density rate _{TST+} = NA						
Incidence density					•					
Incidence density				Incidence density rate $_{TST-} = NA$ Incidence density rate ratio $_{TST} = NA$						
Other reported me				Other reported						
			n betwe	en tests (IGRA v						
Ratio of cumulati				011 00505 (101111)	<u> </u>					
Ratio of incidence										
Other reported me			-							
			esults a	nd levels of TB ex	xposure (if a	pplicable)				
	RA (QFT-G				TST (≥10ı	<u> </u>				
	Exposu	re level	Total		Exposure		Total			
	High/Yes	Low/No			High/Yes	Low/No				
IGRA +	0	33	33	TST +	0	26	26			
IGRA -	5	121	126	TST -	5	133	138			
Indeterminate	0	5	5	Indeterminate	0	0	0			
Total	5	159	164	Total	5	159	164			
		Test	perforn	nance parameter	s					
	IGRA				TST					
Sensitivity = $0/5$ =	= 0.00%			Sensitivity = $0/5$	= 0.00%					
Indeterminate ex				Specificity $= 13$	3/159 = 83.65	5% (95% C	I: 77.12,			
Specificity = 121/	154 = 78.57	% (95% C)	[:	88.59)						
71.44, 84.32)										
Indeterminate in			_							
Specificity = 126/	159 = 79.25	% (95% C	[:							
72.29, 84.82)	00/			DD11 0/2 0	000/					
PPV = 0/33 = 0.00				PPV = 0/26 = 0.		50/ OT 01/	2 00 11			
Indeterminate ex		'0/ CI . 01 0	\ <i>E</i>	NPV = 133/138	= 96.38% (9.	5% CI: 91.8	3, 98.44)			
NPV = 121/126 = 98.29)	96.03% (93	% CI: 91.0	15,							
Indeterminate in	cluded									
NPV = 126/131 =		‰ CI∙ 91 3	88							
98.36)	. 70.1070 (75	70 CI. 71.3	,,							
DOR (for T ⁺ calcu	ulated) = 0.0	00		DOR (for T ⁺ cal	culated = 0.0	00				
OR (crude; for T ⁺				OR (crude; for T^+ reported) = NR						
OR (regression-ba				OR (regression-based; reported) = NR						
List of covariates:				List of covariates:						
Other reported me				Other reported measure = NR						
<u></u>		Compariso	n betwe	en tests (IGRA v						
Ratio of DORs (fo										
Ratio of OR (cruc	le; for T ⁺ rep	orted) = N	R							
Ratio of ORs (reg	ression-base	ed; reported	l) = NR							
Other reported me	easure = NR									
	Association	between t	est resu	lts and BCG sta	tus (if applic	able)				
I(GRA (QFT-				TST (≥1					
	BCG s		Total			status	Total			
	Yes	No			Yes	No				
IGRA +	28	5	33	TST +	23	3	26			
IGRA -	118	8	126	TST -	128	10	138			
Indeterminate	5	0	5	Indeterminat		0	0			
Total	151	13	164	Total	151	13	164			
		Test	perforn	nance parameter						
IGRA TST										

DOR (for T ⁺ calculat 1.24)	(95% CI: 0.11,	DOR (for T+ calculated) _{TST} = 0.60 (95% CI: $0.15, 2.34$)		
OR (crude; for T ⁺ rep	norted) – NR	OR (crude; for T+ reported)	– NR	
	d; reported) $_{IGRA} = NR$	OR (regression-based; report		
List of covariates: NI		List of covariates: NR	151 – 111	
Other reported measu		Other reported measure = NI	₹	
	nent, concordance, and disco			
		e, BCG vaccination status, an	d/or condition	
Total sample	-	,		
•	TST +	TST -	Total	
IGRA +	13	20	33	
IGRA -	12	114	126	
Indeterminate	1	4	5	
Total	26	138	164	
Description				
Sample definition (e.	g., total, if stratified by BCG	or condition – specify): total		
TST + threshold: ≥10)mm			
Parameters				
Indeterminate exclu	ıded			
Kappa = 0.32 (95% C)	CI: 0.17, 0.48)			
Indeterminate inclu				
Kappa = $0.32 (95\% $ C				
Indeterminate exclu				
	7/159 = 79.87% (95% CI: 72.9	97, 85.37)		
Indeterminate inclu				
	1/164 = 79.88% (95% CI: 73.0	09, 85.3)		
	13% (95% CI: 14.63, 27.03)			
Stratification (speci		mam.		
	TST +	TST -	Total	
IGRA +	NR	NR	NR	
IGRA -	NR	NR	NR	
Indeterminate	NR	NR	NR	
Total	NR	NR	NR	
Description				
	- total if atmotified by DCC	or condition – specify). NR		
Sample definition (e.		or condition—specify). Text		
TST + threshold: NR		or condition—specify). Two		
TST + threshold: NR Parameters		specify). Two		
TST + threshold: NR		specify). Two		

% discordance = NR

Stratification (specify group 2)

Structure (Specify	8-04-P =)		
	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes									
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)							
IGRA:	NR	NR							
TST:	NR	NR							
Test 3 (specify):	NR	NR							

Conclusions

Authors:

Considering the fair overall agreement between the 2 tests, and greater ease of the QFT from the patient's point of view, QFT is recommended for detection of LTBI in SOT candidates

Reviewers:

The tests performed similarly in relation to construct of validity (exposure to active TB) in terms of sensitivity (low), specificity (high), DOR (low), and NPV (high); agreement between the tests was fair (0.32); neither test was influenced by BCG status

Study details

First author surname year of publication: Al Jahdali 2013 119

Country: Saudi Arabia

Study design: retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): outpatient hemodialysis unit

hospital-based

Number of centres: one

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): No funding sources

Aim of the study

To compare the performance of the QTF-GIT test and the TST for detecting LTBI among hemodialysis patients and to investigate the agreement between these 2 tests in the detection of tuberculosis infection in a population showing an intermediate TB prevalence

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (hemodialysis patients)

Participants

Recruitment dates: August to December 2010

Total N of recruited patients: 215 **Inclusion criteria:** Hemodialysis patients

Exclusion criteria: NR

Total N of excluded patients: 15 (active TB)

Total N of patients tested with both IGRA and TST: 215

Total N of patients with valid results for both IGRA and TST: 200

Methods of active TB diagnosis (if applicable): positive tuberculosis culture or biopsy showing

granuloma and good response to anti-tuberculosis therapy

Outcomes (study-based) list: test result association with construct of validity (high likelihood of

LTBI) and between-test agreement

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 58.42 (17.65) yrs

Women (n [%]):103 [51.5] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 28 [14.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes Morbidity (n [%]): Hemodialysis patients

Co-morbidity (n [%]): diabetic nephropathy (127 [63.5]), kidney transplant failed (21 [10.5]), NR (52

[26.0])

Type of during-study treatment (n [%]): Immunosuppressant in the last 12mo (2 [1.0])

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	NR	65	135	NR	200
TST (≥10mm):	NR	26	174	NR	200
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 200

Levels/groups of exposure to TB in increasing order (if applicable):

		Defii	nition of e	xnosure gro	up - High likelih	and of I	TRI		
Non-exp	osed			ikelihood of		000 01 1	21111		
	1 (specif				BI (contact with TB case, abnormal chest X-ray,				
Laposed	1 (specif	• .			ant in the last 12 N				
			BMI≤20)	штоварргевы		ri, rance	Ridiley	dansplant of	
Exposed	2 (specif		NA						
-	3 (specif		NA						
	4 (specif	J / -	NA						
Tests	(вресн	<i>3</i> /•	1111						
2 0000	Assav	used, m	ethodolog	y, timing	Cut-off value	Other			
			neasurem		Definitio			information	
			ufacturer	,					
IGRA	Test wa		ned accord	ling to the	A value of 0.35	IU/ml or	more		
10101			nstructions		for the relationsh			e	
				ed in each	TB antigen tube	_	•		
				ontaining	negative control	-	•		
			ontrol), 1 v		considered to be			.	
	_		emaggluti		If the IFN- γ leve			IGRA blood	
			and 1 with		IU/ml in the TB				
			6, CFP-10		the mitogen cont	_		before the	
	_	•	bes were i		$(\geq 0.5 \text{ IU/ml})$, the		•	administration	
			20 h at 37		recorded as nega			of	
	Followi	ng incuba	ation, the t	ubes were				the TST	
			the plasma						
	remove	d from ea	ch tube ar	nd frozen at					
	−20 °C.	Measure	ment of II	FN-γ via					
	ELISA	was subs	equently p	erformed					
	in batch	testing							
TST			ed in this		An induration of	10mm	or more	NA	
			erculin Pu		in transverse dia				
			e (Manto	* *	as the threshold				
	•		nanufactur	ed by	test results as po				
	Sanofi I	Pasteur							
				~ ·	Patients with an				
			o, Ontario,		less than 10mm	•			
			perienced	•	testing were con				
		•		TSTs. Five	negative and wer			1	
			(0.1 ml) of		second TST with				
			derivative ed via intra		to elicit a potenti				
					response. The results obtained from the 2-step testing were used				
	-		volar surfa not have t		in all further ana	_		•	
			ssel. The r		was considered t	-			
			72 h by tl	•	either the 1st or 2	_			
			ring the n		a response of 10:				
	regularl	C/11	a response of 10.	01 1.	11010				
	HD visi		100						
	V151	-							
Associat	tion betw	een test	results an	d incidence	of active TB (if a	pplicab	le)		
		IGR				_	TST		
		Incide	ence of	Total		Incide	ence of	Total	
		activ	e TB			activ	e TB		
		Yes	No			Yes	No		
IGR	A +	NA	NA	NA	TST +	NA	NA	NA	

_								
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
indeterminate	NA	NA	NA	indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
		Test	ance parameter	S				
	IGRA					ST		
Sensitivity = NA				Sensitivity = 1				
Specificity = NA				Specificity = 1	NA			
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
Cumulative Incide	ence _{IGRA+} =	= NA		Cumulative Ir	ncidence TS	$_{\mathrm{T+}}=\mathrm{NA}$		
Cumulative Incide	ence _{IGRA-} =	= NA		Cumulative Ir	ncidence TS	$_{T-} = NA$		
Cumulative Incide	ence Ratio	$_{IGRA} = NA$		Cumulative Ir	cidence R	atio $_{TST} = N$	A	
Incidence density	rate _{IGRA+} =	= NA		Incidence den	sity rate TS	$_{T+} = NA$		
Incidence density				Incidence den	sity rate TS	$T_{-} = NA$		
Incidence density				Incidence den	_		1	
Other reported me				Other reported				
			n betwee	n tests (IGRA v				
Ratio of cumulativ				•				
Ratio of incidence	e density ra	te ratios = N	ΙA					
Other reported me								
			esults an	d levels of TB e	xposure (if	f applicable	e)	
	RA (QFT-				TST (≥		,	
	, <u> </u>	ure level	Total			ıre level	Total	
	High/Yes				High/Yes			
IGRA +	51	14	65	TST +	19	7	26	
IGRA -	103	32	135	TST -	135	39	174	
indeterminate	NR	NR	NR	indeterminate	NR	NR	NR	
Total	154	46	200	Total	154	46	200	
		Test	perform	ance parameter				
	IGRA				TS	T		
Sensitivity = 51/1	54 = 33.12	% (95% CI:	26.00,	Sensitivity = 19	0/154 = 12.	34% (95% (CI: 8.04,	
41.00)		`	,	18.47)				
Specificity = 32/4	6 = 69.57%	6 (95% CI: 5	55.19,	Specificity = 39	9/46 = 84.7	8% (95% C	I: 71.78,	
80.92)		`	Í	92.43)				
PPV = 51/65 = 78	3.46% (95%	6 CI: 67.03,	86.71)	PPV = 19/26 = 73.08% (95% CI: 53.92, 86.3)				
NPV = 32/135 = 2	•			NPV = 39/174 = 22.41% (95% CI: 16.85, 29.17)				
31.54)	`						•	
DOR (for T+ calc	ulated) = 1	.13 (95% C	[: 0.55,	DOR (for T ⁺ ca	lculated) =	0.78 (95%	CI: 0.31,	
2.31)	•	•		2.00)				
OR (crude; for T ⁺	reported) =	= NR		OR (crude; for	T ⁺ reported	l) = NR		
OR (regression-ba	_			OR (regression	_	•	}	
List of covariates:				List of covariat				
Other reported me		R		Other reported	measure =	NR		
			n betwee	n tests (IGRA v				
Ratio of DORs (fo				•	,			
Ratio of OR (crud			•	,				
Ratio of ORs (reg		<u> </u>						
	Other reported measure = NR							
			test resul	ts and BCG sta	tus (if app	licable)		
	IGRA					rst		
		status	Total			G status	Total	
	Yes	No			Yes	No		
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
				•				

ICDA	ND	ND	ND	TCT	ND	ND	ND					
IGRA -	NR	NR	NR	TST -	NR	NR	NR					
indeterminate	NR	NR	NR	indeterminate	NR	NR	NR					
Total	NR	NR	NR	Total	NR	NR	NR					
	Test performance parameters IGRA TST											
DOD (6 FF+ 1	IGRA) ID		DOD (C. T.								
DOR (for T ⁺ calcu				DOR (for T+ ca								
	OR (crude; for T^+ reported) = NR OR (crude; for T^+ reported) = NR											
OR (regression-based; reported) $_{IGRA} = NR$ OR (regression-based; reported) $_{TST} = NR$												
List of covariates: NR List of covariates: NR												
Other reported measure = NR Other reported measure = NR												
Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition												
	e stratified	oy 181 cu	it-oii vaiu	e, BCG vaccination	on status	, and/or co	onaition					
Total sample		TOT .		TDOTE:			TD 4 1					
ICDA		TST +		TST -	•		Total					
IGRA +		21		44			65					
IGRA -		5		130			135					
indeterminate		NR		NR 17.4			NR					
Total		26		174			200					
Description	<u> </u>	C	11 200	11.1	• • • • • • •	1						
	<u> </u>	f stratified	by BCG	or condition – spec	eify): tota	<u>l</u>						
TST + threshold:	≥10mm											
Parameters 0.24 (0.5)	0/ GI 0 22 /	\ 45\										
Kappa = $0.34 (95)$			0/ GT (0)	10.00.04								
% concordance =												
% discordance = 4			CI: 19.06,	30.90)								
Stratification (sp	ecify group		T			T						
TCD 4		TST +		TST -			Total					
IGRA +		NR		NR			NR					
IGRA -		NR		NR			NR					
indeterminate		NR		NR			NR					
Total		NR		NR			NR					
Description	<u> </u>	C	11 200	11.1	:C \ \ \							
		f stratified	by BCG	or condition – spec	11y): NR							
TST + threshold:	NK											
Parameters												
Kappa = NR	NID											
% concordance =												
% discordance = 1		^										
Stratification (sp	ecity group			тет			Takal					
ICD A		TST +		TST -	•		Total					
IGRA +		NR ND		NR NB			NR NB					
IGRA -		NR		NR NB			NR ND					
indeterminate		NR		NR NR			NR ND					
Total		NR		NR			NR					
Description	(1 1	C -1	1.1		ic A NID							
		ı stratıfıec	i by BCG	or condition – spec	11y): NR							
TST + threshold:	INK											
Parameters Vanna – ND												
Kappa = NR	ND											
	% concordance = NR											
% discordance = 1	NK		041-									
Toot and set -00	(: f	A .1		outcomes	Т	TToc141 1	loted and 194					
Test and cut-off	(II	Adve	rse events	II/IN (%)		meaith re	lated quality					

applicable)	(specify)	of life mean score (SD) (specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

The discriminatory ability of the QTF-G test is superior to that of the TST. The QTFG test was more sensitive but less specific than the TST in predicting LTBI

Reviewers:

There was fair agreement between the tests (k = 0.34); In general, QFT-GIT performed better than TST in terms of sensitivity; specificity was higher for TST vs. QFT-GIT

Study details

First author surname year of publication: Ates 2009¹²⁰

Country: Turkey

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Outpatient hemodialysis

hospital centers **Number of centres: 5**

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Grant from University of Dicle

Aim of the study

To assess the efficacy of QTF-GIT test for detection of LTBI and determine the degree of agreement between the results of TST and QTFGIT tests in hemodialysis patients

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (hemodialysis patients)

Participants

Recruitment dates: March 15 and April 15 of 2008

Total N of recruited patients: 290

Inclusion criteria: Hemodialysis patients 18 yrs or older

Exclusion criteria: The patients diagnosed with active tuberculosis and receiving treatment for the last 12 months, or taking immunosuppressive medicine or younger than 18 years old were excluded from the present study

Total N of excluded patients: 15 (rejected tests, improper blood sampling, and unsuccessful

Total N of patients tested with both IGRA and TST: 275

Total N of patients with valid results for both IGRA and TST: 230

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: Agreement, risk factors for positive test

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 51.9 (16.2) yrs

Women (n [%]):137 [50.0] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): 134 [48.72]

History of anti-TB treatment (n [%]): 17 [7.4%]

Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes Morbidity (n [%]): hemodialysis Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N	Total N (test-)	Total N (indeterminate)	Total N (test results available)
		(test+)			
IGRA (QFT-GIT):	275	115	131	29	246
TST (≥10mm):	275	92	167	16	259
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 230

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group

Non-exp	nosed		No Tuber	culosis exposu	re.			
	d 1 (specify			osis exposure				
	d 2 (specify		NA	овів ехровите				
	d 3 (specify		NA					
_	d 4 (specify	/	NA					
Tests	1 + (specify	//•	IIA					
16818	A ccox x	ugad mai	thodolog	timing for	Cut off volu	og/thro	sholds	Other
				y, timing for nufacturer	Cut-off values/thresholds Definition of test+			information
IGRA				ormed in two				mormation
IGKA	_		•	ected first into	According to analysis softw			
				collection	were recorded			
		-		itrol tube, a	negative and i			
		_		id a mitogen	The whole blo			
				ted at 37°C as	just before her			
	soon as po				just before he	modiary	515	Observers were
	incubation							blinded to the
		_		was removed				results of the
				ELISA was				TST
				FN-g was				
				ufacturer's				
				A readout was				
	analyzed							
	software	using the	Q11-011	anarysis				
TST	TST were	adminie	tered and	ite reculte	A skilled nurs	NA		
151				to American	the transverse		iica	1471
				(1). Briefly, a	indurations w		xible	
	trained nu				ruler, and an e			
				e Mantoux	physician veri			
				ion of 0.1 ml	results. A positive TST			
				ed protein	result was defined as an			
	derivative			- F	induration diameter of 10			
				Bulgaria) into	mm or larger			
	the volar			•				
Associa	tion betwe	en test r	esults an	d incidence of	active TB (if ap	plicabl	e)	
			1		\ 1		ΓST	
			ence of	Total			ence of	Total
			e TB				e TB	
		Yes	No	1		Yes	No	
IGI	RA+	NA	NA	NA	TST +	NA	NA	NA
	RA -	NA	NA	NA	TST -	NA	NA	NA
	rminate	NA	NA	NA	Indeterminate	NA	NA	NA
	otal	NA	NA	NA	Total	NA	NA	NA
				est performan				
		IGRA			1	-	ΓST	
Sensitiv	rity = NA	-014			Sensitivity = N.			
	city = NA				Specificity = N			
PPV = I	•				$\frac{\text{PPV} = \text{NA}}{\text{PPV} = \text{NA}}$			
NPV = 1					NPV = NA			
	tive Incide	nce ros :	= NA		Cumulative Inc	idence -	$_{\rm rem.} - N$	A
	tive Incide				Cumulative Inc			
	tive Incide			Δ	Cumulative Inc			
	ce density i			Λ	Incidence densi			
						•		
Incidence density rate $_{IGRA-} = NA$					Incidence density rate _{TST-} = NA			

Incidence density	rate ratio ICB	$_{\Lambda} = NA$		Incidence dei	nsity rate rat	$io_{TST} = NA$	<u> </u>	
Other reported me		Incidence density rate ratio _{TST} = NA Other reported measure _{TST} = NA						
Street reported me			hetwee	tests (IGRA vs. TST)				
Ratio of cumulativ				i tests (101ti)	5. 151)			
Ratio of cumulative Ratio of incidence								
Other reported me	•	14105 – 11	А					
		room togt no	aulta on	d levels of TB e	maguna (if	nnliaghla)	
	RA (QFT-G		suits am	u levels of 1 b e.	xposure (ii a TST≥1()	
IGI			Total				Total	
	Exposur		Total		Exposur		Total	
ICD A	High/Yes		115	TCT	High/Yes		02	
IGRA +	7	105	115	TST +	5	87	92	
IGRA -		124	131	TST -	12 ND	155	167	
Indeterminate	NR	NR	29	Indeterminate	NR	NR	16	
Total			275	Total			275	
		Test	performa	ance parameter		_		
g 1.1 1 10 10 10	IGRA	(O.F.): CT =	5.01	<u> </u>	TS		12.26	
Sensitivity = 10/17 78.39)	7 = 58.82% ((95% CI: 3	6.01,	Sensitivity = $5/6$	17 = 29.41%	6 (95% CI:	13.28,	
Specificity = 124/2 47.68, 60.48)	229 = 54.159	% (95% CI	:	Specificity = 1: 69.83)	55/243 = 64	05% (95%	CI: 57.83,	
PPV = 10/115 = 8.	69% (95% (TI 4 792	15 27)	PPV = 5/92 = 5	3.43% (95%	CI: 2 34 1	2 10)	
NPV = 124/131 = 8.5				$NPV = \frac{3}{52} = \frac{3}{5}$			CI: 87.86,	
97.39)	74.00% (73	70 C1. 67.3	0,	95.84)	J = J2.0170	()3/0	C1. 67.60,	
DOR (for T ⁺ calcu	lated) = 1.69	8 (05% CI:	0.62	DOR (for T^+ calculated) = 0.74 (95% CI: 0.25,				
4.58)	nateu) – 1.00	3 (93/0 CI.	0.02,	2.17)				
OR (crude; for T ⁺ 1	rapartad) — I	NID		$OR \text{ (crude; for T}^+\text{ reported)} = NR$				
OR (regression-ba			1.42	OR (regression-based; reported) = 0.49 (0.17,				
3.91)	sed, reported	u) – 1.30 ((J.43,	. •	-based, repo	11eu) – 0.4	9 (0.17,	
List of covariates:	ND			1.45) List of covariates: NR				
Other reported me		omnarisor	n hetwee	Other reported measure = NR n tests (IGRA vs. TST)				
Ratio of DORs (fo					5. 151)			
Ratio of OR (crude				. 1.07, 1.01)				
Ratio of ORs (regr				95% CI: 1.21.5	82)			
Other reported me		u, reporteu) = 2.03 (75 /0 Cl. 1.21, 5	.02)			
		hetween t	oct rocul	ts and BCG sta	tus (if annli	rahla)		
	IGRA	between	cst i csui	is and DCG sta	TS	•		
	BCG s	rtatue	Total			status	Total	
	Yes		Total		Yes		10141	
ICD A		No	115	TCT		No 47	02	
IGRA +	57	58	115	TST +	45	47	92	
IGRA -	61	70	131	TST -	88 ND	79	167	
Indeterminate	NR	NR	29	Indeterminat	e NR	NR	16	
Total		755	275	Total			275	
	ICDA	Test	performa	ance parameter		T		
DOD (2 5 ± 1	IGRA	1.10 (0.7)	CT 0 ==	D02 (2 =	TS		70.50/ CY	
DOR (for T ⁺ calcu 1.86)	llated) _{IGRA} =	1.13 (95%	CI: 0.68	DOR (for T+ 0.51, 1.43)	calculated)	$_{\text{TST}} = 0.85$ (95% CI:	
OR (crude; for T ⁺)	reported) = 1	NR		OR (crude; f	or T+ report	ed) = NR		
OR (regression-ba			14 (95%				= 0.87 (95%	
CI: 0.68, 1.92)	, 1	, 10101		OR (regression-based; reported) $_{TST} = 0.87$ (95% CI: 0.50, 1.51)				
	List of covariates: NR				List of covariates: NR			
Other reported me				Other reported measure = NR				
Between-test agree		cordance	and disc					
	January Coll	Tor aurice,	HILL GISC	or amire (ii app				

This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition								
Total sample								
	TST +	TST -	Total					
IGRA +	58	49	107					
IGRA -	25	98	123					
indeterminate	NR	NR	29					
Total	NR	NR	NR					
Degenintien								

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total

TST + threshold: ≥10mm

Parameters

Kappa = 0.34 (95% CI: 0.21, 0.47)

% concordance = 156/230 = 67.83% (95% CI: 61.54, 73.53)

% discordance = 74/230 = 32.17% (95% CI: 26.47, 38.46)

Stratification (specify group 1)

Structure (Specify Group 1)									
	TST +	TST -	Total						
IGRA +	NR	NR	NR						
IGRA -	NR	NR	NR						
indeterminate	NR	NR	NR						
Total	NR	NR	NR						

Description

Sample definition (e.g., total, if stratified by BCG or condition - specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (specify group 2)

	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

U	ther	ou	tcoi	mes	
'SP	even	te r	₁ /N	(%)	

Test and cut-off (if applicable)	Adverse events n/N (%)	Health related
	(specify)	quality of life mean
		score (SD) (specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

QTF-GIT is more sensitive than TST in the detection of LTBI among renal dialysis patients; both QTF-GIT and TST results were not correlated with contact to the patients with tuberculosis; we observed no association among the results of both TST & QTF-GIT and BCG vaccination status; agreement between tests was fair (k = 0.34)

Reviewers:

See above

Study details

First author surname year of publication: Casas 2011a¹²¹

Country: Spain

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Outpatient clinics

Number of centres: 4

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): The first author received research grant from the University Barcelona (October 2006–January 2010). This study was supported by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III-FEDER, Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008)

Aim of the study

To assess the prevalence of LTBI obtained by the whole blood-based QFT-GIT and TST in patients with IMID, and second, to determine whether QFT-GIT performs in the same way as in healthy people

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (immune-mediated inflammatory diseases [IMID] before anti–TNF- α therapy)

Participants

Recruitment dates: NR

Total N of recruited patients: 323

Inclusion criteria: Patients with immune-mediated inflammatory diseases (IMID) before anti–TNF-α

therapy

Exclusion criteria: NR

Total N of excluded patients: n = 9 (no IMID: n = 2 and problems with QFT-GIT plasma sample

storage: n = 7)

Total N of patients tested with both IGRA and TST: 323

Total N of patients with valid results for both IGRA and TST: 314 (214 IMID and 100 healthy controls)

Methods of active TB diagnosis (if applicable): NR

Outcomes (**study-based**) **list:** Associations between test positivity and risk factors of LTBI, BCG status, type of treatment; agreement; influence of risk factors on indeterminate results

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 49.1 (12.9)

Women (n [%]): 109 [50.9] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Born in a high TB incidence country (16 [7.5])

BCG vaccination (n [%]): 56 [26.2]

History of anti-TB treatment (n [%]): NR

Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): NR Clinical examination (yes/no): NR

Morbidity (n [%]): Rheumatoid arthritis (91 [42.5]); Cutaneous psoriasis (57 [26.6]);

Spondylarthropathies (29 [13.6]); Psoriatic arthropathy (21 [9.8]); Inflammatory bowel disease (14 [6.5]); Others (2 [0.9])

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Immunosuppressive treatment (163 [76.2]); Corticosteroids (91 [42.5]); Methotrexate (91 [42.5]); Leflunomide (36 [16.8]); Cyclosporine A (22 [10.3]); azathioprine/efalizumab (13 [6.1])

T . T		•			
Niim	hor	of n	ofion	tc '	tested
114111		VI D	auci		LUSLUU

rumber of patients teste	-u				
	Total N	Total	Total N	Total N	Total N

			(tested)	N	(test-)	(indetern	rminate) (test res		test results	
				(4 4 .)				;	available)	
IGRA (QI	et-Ci	٠/٠	214	(test+) 45	157	12		214		
TST (≥5 n		1.)•	214	52	162	0		214		
Test 3 (spe			NA	NA	NA	NA		NA		
		ts with			IGRA and TS			1 17 1		
					order (if appli					
zevels/gre	oups of				p - risk factors		fection			
Non-expos	sed			ctors for TE						
Exposed 1		y):	Risk factor	rs for TB in	fection (birth or	r residence	for ≥6 n	nonth	s in a high	
•	-		TB incider	nce country	, TB contact, pr	rior prison s	stay, intr	aveno	ous drug	
			abuse, hea	th care wo	rker, abnormal o	chest X-ray	, and his	story	of past TB)	
Exposed 2	(specif	y):	NA							
Exposed 3	(specif	y):	NA							
Exposed 4	(specif	y):	NA							
Tests										
	Assa		methodolo			values/thr			Other	
			t measuren		Defi	inition of t	est+		information	
TODA			anufacture						NY A	
IGRA	_		N®-TB Gol		According to		14		NA	
(QFT-		•	vere collecte		manufacture	-				
GIT)			as performe T-6, CFP-1		could be pos					
			hemaggluti							
	_		ısma sample			IFN-γ production. Plasma samples with indeterminate results were				
			alyzed in the			retested				
			l Laboratory		retested	Totalia				
			Departmen							
			ith the man							
	instru									
TST	TST v	vas perf	ormed acco	rding to the	TST was adı	TST was administered and read by NA				
	Manto	oux metl	nod using 2	U of	experienced	experienced staff following the				
	tubero	culin RT	-23 (Statens	s Serum	standard pro	standard protocol (in the left				
	Institu	ite, Cop	enhagen, De	enmark)		forearm and transverse diameter				
					measurement). Any induration of					
						≥5 mm at 48–72 h was considered				
A aga a - 4:	n bat-	2005 4 = -4	mogr-14s	l incid	as positive of active TB (if applicable)					
Associatio	n betw	een test IGR		i incidence	or active 1B (TST			
			ence of	Total			nce of		Total	
			ve TB	1 Otal			e TB		1 otai	
	•	Yes	No			Yes	No			
IGRA	+	NA	NA	NA	TST +	NA	NA		NA	
IGRA		NA	NA	NA	TST -	NA	NA		NA	
indetermi		NA	NA	NA	indeterminat		NA		NA	
Total	-	NA	NA	NA	Total	NA	NA		NA	
					nance paramet					
		IGR					TST			
Sensitivity	= NA				Sensitivity =					
Specificity					Specificity =					
PPV = NA	L				PPV = NA					
NPV = NA	1				NPV = NA					

				_				
Cumulative Incid					Cumulative Incidence $_{TST+} = NA$			
Cumulative Incidence _{IGRA-} = NA				Cumulative Ir	ncidence TST	L = NA		
Cumulative Incid	ence Ratio I	$_{GRA} = NA$		Cumulative Ir	ncidence Ra	tio $_{TST} = N$.	A	
Incidence density	rate _{IGRA+} =	NA		Incidence den	sity rate TST	₊ = NA		
Incidence density				Incidence den				
Incidence density				Incidence den			1	
Other reported m				Other reported	•			
			n betwee	en tests (IGRA v		31		
Ratio of cumulati				21 0000 (10111	(50 15 1)			
Ratio of incidence								
Other reported m			11.1					
			esults ar	nd levels of TB e	exposure (if	applicable	e)	
	RA (QFT-G		esuits ui		TST (≥			
10.	Exposu		Total		Exposur		Total	
	High/Yes		Total	-	High/Yes		Total	
IGRA +	NR	NR	45	TST +	NR	NR	52	
IGRA -	NR	NR	157	TST -	NR	NR	162	
indeterminate	NR	NR	12	indeterminate	0	0	0	
			214	Total	NR	NR	214	
Total	NR	NR				INK	214	
	ICDA	Test	periorn	ance parameter		т		
Canaldiaita ND	IGRA			Camaidiasidas NT	TS'	I		
Sensitivity = NR				Sensitivity = N				
Specificity = NR				Specificity = N	K			
PPV = NR				PPV = NR				
NPV = NR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			NPV = NR				
DOR (for T ⁺ calc			~~	DOR (for T^+ calculated) = NR				
OR (crude; for T	reported) =	2.50 (95%	CI:	OR (crude; for T^+ reported) = 2.80 (95% CI: 1.40,				
1.20, 5.10)				5.50)				
OR (regression-b	ased; reporte	ed) = 2.90 (95%	OR (regression-based; reported) = 2.90 (95% CI:				
CI: 1.30, 6.30)		200		1.40, 6.00)				
List of covariates				List of covariates: age, gender, BCG vaccination,				
vaccination, and i			atment	and immunosuppressive treatment Other reported measure = NR				
Other reported me			T /			NK		
D di CDOD de			n betwee	en tests (IGRA v	vs. TST)			
Ratio of DORs (f			00 (050)	GT 0.54 1.40\				
Ratio of OR (crud			•					
Ratio of ORs (reg			1) = 1.00	(95% CI: 0.58, 1	1./3)			
Other reported me				1. 1.00	1 (10			
			test resu	lts and BCG sta		•		
IG	RA (QFT-0				TST (≥			
	BCG s		Total			status	Total	
	Yes	No			Yes	No		
IGRA +	NR	NR	45	TST +	NR	NR	52	
IGRA -	NR	NR	157	TST -	NR	NR	162	
indeterminate	NR	NR	12	indeterminate		0	0	
Total	NR	NR	214	Total	NR	NR	214	
		Test	perform	ance parameter				
	IGRA				TS	ST		
DOR (for T ⁺ calc				DOR (for T+	$calculated)_T$	$_{\rm ST} = NR$		
OR (crude; for T ⁺ 0.50, 3.20)	reported) =	1.20 (95%	CI:	OR (crude; fo 3.40)	r T+ reporte	$ed) = 1.\overline{70}$	(95% CI: 0.90,	
OR (regression-b		ed) $_{IGRA} = N$	IR.	OR (regressio		ported) _{TST}	= 1.50 (95%	
List of covariates	: NA			CI: 0.70, 3.40)				

		List of covariates: age. go	ender, risk factors for TB,						
	and immunosuppressive treatment								
Other reported measure	= NR	Other reported measure =	= NR						
Between-test agreement, concordance, and discordance (if applicable)									
	tified by TST cut-off va	lue, BCG vaccination statu	ıs, and/or condition						
Total sample									
	TST +	TST -	Total						
IGRA +	32	13	45						
IGRA -	19	138	157						
indeterminate	1 (excluded)	11 (excluded)	12 (excluded)						
Total	51	151	202						
Description	1 'C 'C' 11 DC((1 (II) (III) (202)						
	•	G or condition – specify): to	tal (IMID n = 202)						
TST + threshold: ≥5mn	1								
Parameters	0.42.0.70)								
Kappa = 0.56 (95% CI:		2.40.00.55							
	202 = 84.16% (95% CI: 78 2 = 15.84% (95% CI: 11.4								
Stratification (specify	-	+3, 21.31)							
Stratification (specify	TST +	TST -	Total						
IGRA +	NR	NR	NR						
IGRA -	NR	NR	NR						
indeterminate	NR	NR	NR						
Total	NR	NR	NR						
Description	1111	TVI	1414						
	total if stratified by BCC	G or condition – specify): NI	R						
TST + threshold: NR	total, il stratifica by Bec	s or condition specify). The							
Parameters									
Kappa = NR									
% concordance = NR									
% discordance = NR									
Stratification (specify	group 2)								
` 1	TST +	TST -	Total						
IGRA +	NR	NR	NR						
IGRA -	NR	NR	NR						
indeterminate	NR	NR	NR						
Total	NR	NR	NR						
Description									
	total, if stratified by BCC	G or condition – specify): NI	R						
TST + threshold: NR									
Parameters									
Kappa = NR									
% concordance = NR									
% discordance = NR									
	Other outcomes								
Test and cut-off (if	Adverse even	ts n/N (%)	Health related quality						
applicable)	(specify)		of life mean score						
ICD A		ND	(SD) (specify)						
IGRA: TST:		NR NB	NR ND						
		NR NR	NR NR						
Test 3 (specify):	Carr	nk Iclusions	INK						
Authors:	Con	ICIUSIOIIS							
Authors:									

Reviewers:

Association between immunosuppression therapy and TST positivity (adjusted OR, 0.50, 95% CI 0.24, 1.04; P = 0.07) was lower compared with that for QFT-GIT positivity (adjusted OR 0.53, 95% CI 0.24, 1.19); similar results in corticosteroid users (OR for TST was lower than OR for QFT); immunosuppression therapy was a predictor of indeterminate results (OR 4.87, 95% CI 1.05, 22.60); agreement was 0.56; there was no association between test positivity (for QFT or TST) and BCG status (no influence of BCG status on test positivity); TST and QFT had a similar association with risk of LTBI (risk factor for TB)

Study details

First author surname year of publication: Casas 2011b¹²²

Country: Spain

Study design: Retrospective/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): hospital-based

Number of centres: one

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify) grants from the Spanish Ministry for Health and Consumer Affairs and the Carlos III Health Institute through the Fund for Health Investigations (PI070810, 2007-2010) and from the Carlos III Health Institute and Spanish Federation for Rare Diseases through the Spanish Network for Research in Infectious Diseases; research grant from the University of Barcelona

Aim of the study

To compare the performance of the TST and the QuantiFERON-TB Gold In-Tube (QFT-IT) test (a commercially available, whole blood—based IGRA) in detecting latent TB infection in patients with end-stage liver disease (ESLD) requiring liver transplant (LT)

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people: ESLD patients requiring LT

Participants

Recruitment dates: From July 2008 to July 2010

Total N of recruited patients: 110

Inclusion criteria: All patients with ESLD who were being considered for LT were invited to

participate in the study

Exclusion criteria: Patients younger than 18 years, patients with a previous history of TB, patients who had recently been tested with the TST, and patients with known immunosuppressive conditions **Total N of excluded patients:** 15 (previous TB infection, HIV, dropouts, anti-TNF-alpha agents, incomplete IGRA results)

Total N of patients tested with both IGRA and TST: 95

Total N of patients with valid results for both IGRA and TST: 95

Methods of active TB diagnosis (if applicable): all patients underwent a chest x-ray examination; the findings were defined as normal or abnormal according to the presence or absence of lesions suggestive of past TB

Outcomes (study-based) list: associations between test positivity and risk factors of LTBI, BCG status, agreement

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 56.4 (7.6)

Women (n [%]): 23 [24.2]

Race/ethnicity (n [%]): Spanish (89 [93.7])

Geographic origin (n[%]): Born or residing in a country with a high TB burden (6 [6.3])

BCG vaccination (n [%]): 30 [31.6]

History of anti-TB treatment (n [%]): None Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes

Clinical examination (yes/no): NR

Morbidity (n [%]): Cirrhosis (52 [54.7]), hepatocellular carcinoma (35 [36.8]), and other

hepatopathies (8 [8.4])

Co-morbidity (n [%]): Diabetes mellitus 28 [29.5], chronic pulmonary obstructive disease 3 (3.2), renal failure 12 [12.6]

Type of during-study treatment (n [%]): NR

1 tumber of patients tested											
	Total N	Total	Total N	Total N	Total N						

		(tested)	N (test+		(test-)		(indeterminate)	,	st results vailable)		
			(test+					av	anabie)		
IGRA (Q	(FT-GIT):	95	42	51			2	95			
TST (2 s	tep;	95	44	51			0	95			
≥5mm):											
Test 3 (s)		NA	NA	NA			NA	NA			
		vith valid re									
Levels/gi	Levels/groups of exposure to TB in increasing order (if applicable): Definition of exposure group - risk factors for TB										
NT	1				group -	risk	factors for TB				
Non-expo		No risk fac			iona cont	to at v	with TD abnormal abo	at ** #a*	va himth		
Exposed (specify):							with TB, abnormal che th a high TB burden, a				
(specify)	•						wolvement with health		isiii, urug		
Exposed	2	NA	c vious su	ay III I	J113011, a.	110 111	ivorvement with health	carc)			
(specify):											
Exposed		NA									
(specify)											
Exposed		NA									
(specify)	•										
Tests	1					•					
	_	ed, methodo	- ·	_	or test	C	Cut-off values/thresho	lds	Other		
	mea	asurement,	manufac	turer			Definition of test+		informat ion		
IGRA	The OFT-I	T test was po	erformed	in		Res	sults were scored as		NA		
(QFT-		with the ma					itive [interferon-c leve	1	1111		
GIT)		s. Briefly, 3			L of	$\geq 0.35 \text{ IU/mL}$ (the M.					
		od were filled				tuberculosis-specific antigen					
	tube with n	no antigens (1	the nil tub	oe), a	tube	tube minus the nil tube)],					
		berculosis–s _l				_	gative [interferon-c leve	el <			
		hytohemagg					5 IU/mL (the M.				
		blood sampl					erculosis–specific antig	_			
		t the Mycoba			-		e minus the nil tube)],				
		samples for mmediately l					eterminate [interferon- el < 0.5 (the mitogen to				
	performed	illilediately t	Jerore une	131	was		nus the nil tube) or > 8 .				
	periorined						mL (the nil tube)	.0			
							ording to the production	on of			
							erferon-c. Plasma samp				
						witl	h indeterminate results				
							re retested				
TST (2		as performe					y induration ≥ 5 mm at		NA		
step; ≥		to the Manto					72 hours was considere				
5 mm)	•	otein derivat				_	itive result in accordar				
		s Serum Inst	-	_	gen,		h the national transplan	110			
		In all cases, ed and evalu			nced	gui	delines				
		result for th	-	_	iicca						
		he test was a			ain 7						
	_	later (the 2-s		_							
		considered d		,	-						
Associati				dence	of activ	e TE	3 (if applicable)				
		GRA					TST				
	In	ncidence	Total			-	Incidence of		Total		

	of ac				active	TB		
	T							
	Yes	No			Yes	No		
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indetermina	ate NA	NA	NA	Indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
			Test perform	ance parameter				
	IGR	A		TST				
Sensitivity =	NA			Sensitivity = NA	1			
Specificity =	: NA		Specificity = NA					
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
Cumulative 1	Incidence IGI	$R_{A+} = NA$		Cumulative Inci	dence TST+	= NA		
Cumulative 1				Cumulative Inci				
Cumulative 1			NΑ	Cumulative Inci			A	
Incidence de				Incidence densit				
Incidence de				Incidence densit				
Incidence de			A	Incidence densit			\ \	
Other reporte	•			Other reported n				
o the report			rison hetwe	en tests (IGRA v				
Ratio of cum	ulative incid			ch tests (IOM)	5. 101)			
Ratio of inci								
Other reporte			S – IVA					
			ogt magnilta ar	ad levels of TD o	vnoguno (i	fannliga	bla)	
			est results ar	d levels of TB exposure (if applicable) TST (2 step; ≥ 5 mm)				
IGRA (QFT-GIT) Exposure level Total					<u> </u>			
			Total			ure level	Total	
ICD A	High/Yes	Low/No		TROTT	High/Yes			
IGRA +	27	15	42	TST +	30	14	44	
IGRA -	33	20	53	TST -	30	21	51	
Indetermin	NR	NR	2	Indetermina	0	0	0	
ate		2.5	(excluded)			2.7		
Total	60	35	95	Total	60	35	95	
			est perform	ance parameter				
	IG					ST		
Sensitivity = 57.51)	27/60 = 45.	00% (95%	CI: 33.09,	Sensitivity = 30/60 = 50.00% (95% CI: 37.73, 62.27)				
Specificity = 72.02)	= 20/35 = 57.	14% (95%	CI: 40.86,	Specificity = 21/35 = 60.00% (95% CI: 43.57, 74.45)				
PPV = 27/42	2 = 64.29% (95% CI: 49	0.17, 77.01)	PPV = 30/44 = 68.18% (95% CI: 53.44, 80.00)				
NPV = 20/53	`			NPV = 21/51 = 41.18% (95% CI: 28.75, 54.83)				
DOR (for T ⁺		•		DOR (for T ⁺ calculated) = 1.50 (95% CI: 0.64,				
2.52)			3.49)					
OR (crude; for T^+ reported) = 1.66 (95% CI:			OR (crude; for T^+ reported) = 1.25 (95% CI:					
0.66, 3.33)			0.50, 2.50)					
OR (regression-based; reported) = 1.50 (95% CI:			: OR (regression-based; reported) = 1.80 (95% CI:					
0.50, 4.10)			DCC	0.60, 5.10)				
List of covar	_			List of covariates: age, sex, albumin, BCG status,				
status, Mode		age Liver I	usease	Model for End-Stage Liver Disease (MELD)				
(MELD) sco		110		score				
Other reporte	ed measure =			Other reported		= NR		
	- (0 =1			en tests (IGRA v	s. TST)			
Ratio of DORs (for T^+ calculated) = 0.67 (95% CI: 0.37, 1.24)								

Ratio of OR (cr			` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		\			
Ratio of ORs (regression-based; reported) = 0.83 (95% CI: 0.39, 1.79)								
Other reported measure = NR Association between test results and BCG status (if applicable)								
			test results a	ina BCG status				
	IGI				TST			
		status	Total			G status	Total	
ICD 4	Yes	No	10	TDOTE.	Yes	No	4.4	
IGRA +	11	31	42	TST +	13	31	44	
IGRA -	19	34	53	TST -	17	34	51	
Indeterminate	NR	NR	2 (excluded)	Indeterminat e	0	0	0	
Total	30	65	95	Total	30	65	95	
		Test	performan	e parameters				
	IGI	RA			TST			
DOR (for T ⁺ ca 1.54)	alculated) _{IGR}	A = 0.63 (95)	% CI: 0.26,	DOR (for T+ o	calculat	$(ted)_{TST} = 0$.83 (95% CI:	
OR (crude; for 1.42)	T ⁺ reported)	0 = 0.62 (95%)	6 CI: 0.26,	OR (crude; for 0.35, 2.00)	T+ re	ported) = ().83 (95% CI:	
OR (regression		orted) _{IGRA} = 1	NR	OR (regression			$)_{TST} = NR$	
List of covariat		TD.		List of covaria				
Other reported				Other reported		ire = NR		
	_			dance (if applica		7,	70.0	
•	y be stratifi	ed by TST c	ut-off value	BCG vaccination	on stat	us, and/or	condition	
Total sample	T	mam.		more.		T		
7GD 1		TST +		TST -			Total	
IGRA +		33		9			42	
IGRA -		11		42			53	
Indeterminate		NR		NR 51			2 (excluded)	
Total		44		51			95	
Description		1 10 10	11 500	11.1		1		
		al, if stratifie	d by BCG of	condition – spec	1fy): to	tal		
TST + threshol	$d: \geq 5 \text{ mm}$							
Parameters 2.57	050/ GT 0.0	7. 0.77						
Kappa = 0.57 ((0.50) GT -	2.51.05.04				
% concordance				9.71, 85.94)				
% discordance			(95% CI: 2	1.93, 49.58)				
Stratification	(specify gro		Т	mam				
TCD :		TST +		TST -			Total	
IGRA +		NR		NR			NR	
IGRA -		NR		NR			NR	
Indeterminate		NR		NR NR				
Total		NR		NR NR				
Description								
		al, if stratifie	d by BCG 01	condition - spec	ify): N	R		
TST + threshol	d NR							
Parameters								
Kappa = NR								
% concordance = NR								
% discordance = NR								
Stratification	(specify gro							
		TST +		TST -			Total	
IGRA +		NR		NR			NR	
IGRA -		NR		NR			NR	

Indeterminate	NR	NR	NR				
Total	NR NR NR						
Description							
Sample definition (e.g., total, if stratified by BCG or condition – specify): NR							
TST + threshold: NR							
Parameters							

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes						
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)				
IGRA:	NR	NR				
TST:	NR	NR				
Test 3 (specify):	NR	NR				

Conclusions

Authors:

We conclude that the QFT-IT test and the TST detect latent TB infection at similar rates in patients with ESLD who require LT, but the QFT-IT test performs better in patients with more severe liver disease

Reviewers:

No difference in performance of the two tests irrespective of disease severity; however, in patients with more severe disease (MELD =>18), the QFT positivity rates were higher (OR =0.20, 95% CI: 0.04, 0.70) compared to TST positivity rates (OR = 0.80, 95% CI: 0.20, 2.80)

Study details

First author surname year of publication: Chkhartishvili 2013¹²³

Country: Georgia

Study design: Retrospective/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): National referral institution

for HIV diagnosis, treatment and care

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): the U.S. Civilian Research and Development Foundation (CRDF) award; the NIH/FIC through the Emory AIDS International Training and Research Program award and the Emory-Georgia Tuberculosis Research Training Program award

Aim of the study

To assess the performance of two commercially available IGRAs (QuantiFERON-TB Gold in Tube [QFT-GIT] and TSPOT. TB [TSPOT]) compared to the TST for the diagnosis of LTBI in HIV-infected patients, and to identify risk factors for LTBI in effort to improve the TB prevention and care among HIV patients

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people: HIV patients

Participants

Recruitment dates: November 2009 and June 2011

Total N of recruited patients: NR

Inclusion criteria: Age ≥18 years old, confirmed HIV infection, and ability to provide written

informed consent

Exclusion criteria: Patients with a history of active TB disease

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 240 (QFT, TST), 238 (TSPOT)
Total N of patients with valid results for both IGRA and TST: 237 (QFT), 238 (TST), 218

(TSPOT)

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Agreement, test positivity and risk factor association

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median 38.0 (range 32.8-43.8)

Women (n [%]): 81 [33.75] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): 219 [94%] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): NR Clinical examination (yes/no): NR

Morbidity (n [%]): HIV Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT)	240	70	167	3	237
IGRA (TSPOT)	240	56	162	22	218

TST (≥5 m	m)	240	41 195 4	236						
Total N of patients with valid results for both IGRA and TST: 240										
Levels/groups of exposure to TB in increasing order (if applicable):										
	Definition of exposure group - Household Member treated for TB									
Non-exposed			No household member treated for TB							
Exposed 1 (specify):		Household member treated for TB								
Exposed 2 (s		NA NA								
Exposed 3 (s	- v	NA NA								
Exposed 4 (s	pecity):	NA								
Tests	A cc	ov neod	Cut-off values/thresholds Definition of	Other						
	Assay used, methodology, timing for		test+	information						
		easurement,	test+	mormation						
		ufacturer								
IGRA	Each partic		the QFT-GIT result was considered positive							
(QFT-		tely 12 ml of	if the							
GIT)	* *	vn, which was	interferon-gamma response to TB antigens	Blood was						
		according to	minus the negative control was ≥ 0.35	drawn for						
	the manufa		IU/ml and also > 25% of the negative	the IGRAs						
	instruction	s	control; negative if these criteria were not	prior to the						
			met; and indeterminate if either the	placement						
			negative control had a result of > 8 IU/ml	of the TST						
			or the positive control had a result of < 0.5							
			IU/ml							
IGRA	Each partic		For TSPOT 250,000 peripheral blood							
(TSPOT)		tely 12 ml of	mononuclear cells (PBMCs) were isolated							
	blood drawn, which was performed according to		and plated per well: a nil control, a positive							
	the manufa	•	control containing phytohemagglutinin and							
	instruction		TB specific antigens (CFP-10 and ESAT-6). Spot forming units were counted using	Blood was						
	ilisti uction		AID Eli-Spot Reader System (Autoimmun	drawn for						
			Diagnostika, Germany). The test result was	the IGRAs						
			considered reactive if the response to either	prior to the						
			CFP-10 or ESAT-6 minus the nil control	placement						
			was \geq 6 spot forming cells, or twice the nil	of the TST						
			control. The result was considered							
			indeterminate if nil control spot count was							
			> 10 spot forming cells or if the reading in							
			the positive control was < 20 spot forming							
			cells							
TST		vas performed	An induration of ≥ 5 mm of induration was							
	using the N		considered positive							
		n intradermal								
	injection o									
	purified pr derivative									
	administer									
	volar surfa									
		he transverse								
		f induration								
	was record									
		s 48–72 hours	s							
	after admir									
Association			cidence of active TB (if applicable)							

IGRA TST							
Incidence of Total			Incidence of Total				
	active TB		10001		active TB		10001
	Yes	No			Yes	No	
IGRA +	NA	NA	NA	TST +	NA	NA	NA
IGRA -	NA	NA	NA	TST -	NA	NA	NA
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA
Total	NA	NA	NA	Total	NA	NA	NA
- 5 1112	_ ,			nance parameter			
	IGR		<u>-</u>			TST	
Sensitivity = NA				Sensitivity = N			
Specificity = NA		Specificity = NA					
PPV = NA				PPV = NA			
NPV = NA				NPV = NA			
Cumulative Incid	lence IGRA	$_{\perp} = NA$		Cumulative In	cidence _T	$r_{ST+} = NA$	
Cumulative Incid				Cumulative In			
Cumulative Incid			A	Cumulative In			A
Incidence density				Incidence dens			
Incidence density				Incidence dens			
Incidence density			A	Incidence dens			A
Other reported m				Other reported			
•	10.		ison betwe	en tests (IGRA v		151	
Ratio of cumulati	ive incide	nce ratios	= NA	`			
Ratio of incidenc	e density	rate ratios	= NA				
Other reported m	•						
			st results a	nd levels of TB e	exposure	(if applicab	ole)
	RA (QF)				_	≥ 5 mm	· ·
	Expo	sure level	Total		Expos	sure level	Total
	High/Ye	es Low/N	бо		High/Ye	s Low/No	
IGRA +	NR	NR	70	TST +	NR	NR	41
IGRA -	NR	NR	167	TST -	NR	NR	195
Indeterminate	NR	NR	3	Indeterminate	NR	NR	4
Total	13	227	240	Total	13	227	240
		T	est perfori	nance parameter	rs		
	IGRA	L.			7	ΓST	
Sensitivity = NR				Sensitivity = NF	₹		
Specificity = NR				Specificity = NR			
PPV = NR				PPV = NR			
NPV = NR				NPV = NR			
DOR (for T ⁺ calc				DOR (for T^+ calculated) = NR			
OR (crude; for T	† reported	$(1) = 0.43 (\overline{9})$	5% CI:	OR (crude; for 7	Γ ⁺ reporte	$(ed) = 1.48 (\overline{9})$	5% CI: 0.39,
0.09, 1.97)				5.62)			
OR (regression-b		orted) = N	R	OR (regression-		ported) = NI	R
List of covariates				List of covariate			
Other reported measure = NR Other reported measure = NR							
Comparison between tests (IGRA vs. TST)							
Ratio of DORs (for T^+ calculated) = NA							
Ratio of OR (crud		_					
Ratio of ORs (reg			rted) = NA				
Other reported m							
			st results a	nd levels of TB e			ole)
IG	GRA (TS		T			≥5 mm	
	Expo	sure level	Total		Expos	sure level	Total

	High/Yes	Low/No	1		High/Yes	Low/No		
IGRA +	NR	NR	56	TST +	NR	NR	41	
IGRA -	NR	NR	162	TST -	NR	NR	195	
Indeterminate	NR NR	NR	22	Indeterminate	NR	NR	4	
Total	13	227	240	Total	13	227	240	
Total	13			nance paramete		221	240	
	IGRA	1000	periori		TS	T		
Sensitivity = NR				Sensitivity = N				
Specificity = NR				Specificity = N				
PPV = NR	•			PPV = NR				
NPV = NR				NPV = NR				
DOR (for T ⁺ calc	culated) = N	R		DOR (for T ⁺ ca	alculated) = 1	NR		
OR (crude; for T	,		CI:	OR (crude; for			% CI: 0.39,	
0.44, 5.00)	1 /	`		5.62)	• /	`	,	
OR (regression-b	ased; report	ed) = NR		OR (regression	-based; repo	orted) = NR		
List of covariates				List of covariat		,		
Other reported m	easure = NF	₹		Other reported	measure = N	NR		
		Compariso	n betwe	een tests (IGRA	vs. TST)			
Ratio of DORs (1	for T ⁺ calcul	ated) = NA	1					
Ratio of OR (crude; for T^+ reported) = 1.00 (95% CI: 0.40, 2.51)								
Ratio of ORs (re	gression-bas	ed; reporte	d) = NA	•				
Other reported m	easure = NA	A						
Association between test results and BCG status (if applicable)								
I	GRA (QFT-	GIT)			TST ≥ 5 mm			
	BCG s	tatus	Total			status	Total	
	Yes	No			Yes	No		
IGRA +	NR	NR	70	TST +	NR	NR	41	
IGRA -	NR	NR	167	TST -	NR	NR	195	
Indeterminate	NR	NR	3	Indetermina		NR	4	
Total	173	67	240	Total	173	67	240	
		Test	perforr	nance paramete				
DOD (0 m+ 1	IGRA	1 VD		DOD (0. T		ST		
DOR (for T ⁺ calc	culated) _{IGRA}	= NR	CT	DOR (for T-			(0.50) GT	
OR (crude; for T	reported) =	: 1.41 (95%	CI:		OR (crude; for T+ reported) = 2.55 (95% CI:			
0.38, 5.29)		-d\ 1	ND.	0.32, 20.18)				
OR (regression-b	•	ed) $_{IGRA} = 1$	NK	OR (regression-based; reported) _{TST} = NR				
Other reported m)			List of covariates: NA Other reported measure = NR			
Other reported in			tost rosi	ults and BCG st				
1	IGRA (TSP		icsi I csi			≥ 5 mm		
	BCG s		Total			status	Total	
	Yes	No	Total		Yes	No	1 Otta	
IGRA +	NR	NR	56	TST +	NR	NR	41	
IGRA -	NR	NR	162	TST -	NR	NR	195	
Indeterminate	NR	NR	22	Indetermina		NR	4	
Total	173	67	240	Total	173	67	240	
				nance paramete				
	IGRA					ST		
DOR (for T ⁺ calc		= NR		DOR (for T-				
OR (crude; for T 0.38, 8.28)			CI:	OR (crude; 1 0.32, 20.18)	for T+ repor		(95% CI:	
OR (regression-b		$ed)_{IGRA} = 1$	NR	OR (regress: List of covar	ion-based; re	eported) _{TST}	= NR	
List of covariates. NA								

Other reported measur	re = NR	Other reported measure = NR					
	ent, concordance, and dis	1					
	This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition						
Total sample							
20002 20002	$TST + (\geq 5 \text{ mm})$	TST -	Total				
IGRA (QFT-GIT) +	25	44	69				
IGRA (QFT-GIT) -	16	148	164				
Indeterminate	0	3	3				
Total	41	195	236				
Description	71	173	230				
	total if stratified by RCC	G or condition – specify): QFT-Gl	T (total)				
$TST + threshold$: ≥ 5		of condition – specify). QI-1-Of	1 (total)				
Parameters	.11111						
	I. 0.17. 0.42) coloulated :	ndatamainata ay aludad					
	I: 0.17, 0.42) calculated – i	ndeterminate excluded					
Kappa = $0.29 (95\% C)$		2 27 70 44) coloulated indetermi	note evaluded				
		8.27, 79.44) calculated indetermi					
		56, 31.73) calculated indetermina	ne excluded				
	ent, concordance, and dis	` = = - ′	d/on oo 1:4°				
	raumed by 181 cut-off va	lue, BCG vaccination status, an	u/or condition				
Total sample	TOT 1 (> 5	TOT	T . 1				
IOD A (TODOTT)	$TST + (\geq 5 \text{ mm})$	TST -	Total				
IGRA (TSPOT) +	20	36	56				
IGRA (TSPOT) -	18	143	161				
Indeterminate	3	16	19				
Total	41	195	236				
Description							
	•	G or condition – specify): TSPOT	(total)				
TST + threshold: =>5	mm						
Parameters							
Kappa = $0.27 (95\% C)$	I: 0.14, 0.40) calculated – i	ndeterminate excluded					
Kappa = 0.22 (95% C	I: 0.07, 0.29) reported						
% concordance = 163	/217 = 75.12% (95% CI: 68	8.96, 80.4) calculated–indetermin	ate excluded				
% discordance = $54/2$	17 = 24.88% (95% CI: 19.	6, 31.04) calculated-indetermina	te excluded				
Stratification (specify	y group 1)						
<u>. •</u>	TST +	TST -	Total				
IGRA +	NR	NR	NR				
IGRA -	NR	NR	NR				
Indeterminate	NR	NR	NR				
Total	NR	NR	NR				
Description	5,55	3.02					
	total if stratified by BCC	G or condition – specify): NR					
TST + threshold: NR	.,, <u></u>						
Parameters							
Kappa = NR							
% concordance = NR							
% discordance = NR							
	grann 2)						
Stratification (specify		TOT	Т-4-1				
ICD A	TST +	TST -	Total				
IGRA +	NR	NR	NR				
IGRA -	NR	NR	NR				
Indeterminate	NR	NR	NR				
		NR NR	NR NR				

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes						
Test and cut-off (if applicable)	Health related quality of life mean score (SD) (specify)					
IGRA:	NR	NR				
TST:	NR	NR				
Test 3 (specify):	NR	NR				

Conclusions

Authors:

There was very poor agreement among all tests. This lack of agreement makes it difficult to know which test is superior and most appropriate for LTBI testing among HIV-infected patients; Multivariate analysis did not identify one specific population subgroup at higher risk of LTBI

Reviewers:

There were no differences in the association between the test results for QFT (or TSPOT) vs. TST and risk of LTBI (exposure measured as household member treated for TB); BCG vaccination status did not appear to influence test positivity for either of the tests; agreement measured with kappa was fair

Study details

First author surname year of publication: Chung 2010a¹²⁴

Country: Korea

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Medical Centre

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): funding from the Gil Medical Centre

Aim of the study

Two IGRAs (QFT-GIT and TSPOT) were simultaneously compared with the TST for their diagnostic efficacy for latent TB infection in Korea, an intermediate TB-burden country

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people - haemodialysis patients with end stage renal disease (ESRD)

Participants

Recruitment dates: 1 March to 30 April 2008

Total N of recruited patients: NR

Inclusion criteria: Hemodialysis patients with ESRD

Exclusion criteria: Those patients who had taken empirical anti-TB medications and patients taking

anti-TB medication for active TB infection

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 167 (total), 146 (review-relevant

population), 21 (patients with a cured TB infection)

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list:

Characteristics of participants (total study sample): n = 167

Mean (range or SD) age (years): 54.1 (14.4)

Women (n [%]): 71 [42.5] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 111 [67.3] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): ESRD due to Diabetes mellitus (67 [40.1]), Hypertension (18 [10.8]),

Glomerulonephritis (12 [7.2]), Others (11 [6.6]), Unknown (59 [35.3])

Co-morbidity (n [%]): History of cancer (12 [7.2]), Cardiac disease (46 [27.5]), Cerebrovascular

accident (13 [7.8]), History of TB infection (21 [12.6])

Type of during-study treatment (n [%]): Immunosuppressant medication (9 [5.4])

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	NR	56	90	NR (for $n = 146$)	146
IGRA (TSPOT):	NR	83	63	NR (for $n = 146$)	146
TST ≥10 mm:	NR	32	114	NR (for $n = 146$)	146

Total N of patients with valid results for both IGRA and TST: 146

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group - High vs. low risk

Non-exposed Low risk

Exposed 1 (s)	Exposed 1 (specify): The high-risk group for latent TB infection consisted of patients with a							
					ith TB patients,	old TB	lesions o	n CXR, or a
E12 (• 6			TB infection				
Exposed 2 (s)			NA NA					
Exposed 3 (s)			NA NA					
Exposed 4 (s)	pecny	y): []	NA					
Tests		,		1 4	C 4 66	1 //1		0.0
	As	•	*	ology, timing	Cut-off va			Other
			est measu	•	Denni	tion of 1	test+	information
TODA	XX 71.		nanufactu		D14 C	-1- 44		
IGRA			was extra	-	Results of each			
(QFT-GIT)				two IFN-c	classified as j	•	-	
				performed	or indetermin	iate, as j	previousi	y NA
		_	the manu		described			
			•	Ltd., Carnegie,				
ICDA		toria, Au		n a wf a war a d	Results of each	ah taat v		
IGRA			was also p	performed				
(TSPOT)				nmunotec,	classified as p	•	-	1 1 4
		ord, UK)		illiuliotec,	or indetermine described	iaie, as j	previousi	y
TST				e IGRAs, 2-TU		aritariar	, xxoc >10)
151				vative RT23	mm size of th			
			ım İnstitut				values of	NA
	,		, Denmark	•	two measurements			IVA
				on the volar				
				ntralateral to				
				access. Two				
				e patients'				
				easured the				
				nduration after				
		indepen						
Association l			*	d incidence of	active TB (if ap	plicabl	e)	
		IGR/	4				ΓST	
		Incide	ence of	Total		Incide	ence of	Total
		activ	e TB			activ	re TB	
	•	Yes	No			Yes	No	
IGRA +		NA	NA	NA	TST +	NA	NA	NA
IGRA -		NA	NA	NA	TST -	NA	NA	NA
Indetermina	ıte	NA	NA	NA	Indeterminate	NA	NA	NA
Total		NA	NA	NA	Total	NA	NA	NA
	,			est performan	ce parameters			
		IGR/	4			7	ΓST	
Sensitivity =	NA				Sensitivity = NA			
Specificity = NA			Specificity = NA					
PPV = NA			PPV = NA					
NPV = NA			NPV = NA					
Cumulative I	ncide	nce _{IGRA+}	= NA		Cumulative Inc	idence 1	$_{\text{TST+}} = \text{NA}$	<u> </u>
Cumulative Incidence _{IGRA-} = NA				Cumulative Inc				
Cumulative I				A				
Incidence der					Cumulative Incidence Ratio _{TST} = NA Incidence density rate _{TST+} = NA			
Incidence der					Incidence densi	•		
Incidence der				<u> </u>	Incidence densi			
Other reporte					Other reported	•		
other reported measure 10kA 1111								

			•	(TCD.)	TOTAL		
D 6 1				en tests (IGRA v	s. TST)		
Ratio of cumulativ							
Ratio of incidence		ratios = N	A				
Other reported me			_				
			sults ar	nd levels of TB ex			
IGF	RA (QFT-G				TST≥10		
	Exposur		Total		Exposu		Total
	High/Yes	Low/No			High/Yes	Low/No	
IGRA +	9	47	56	TST +	2	30	32
IGRA -	8	82	90	TST -	15	99	114
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR
Total	17	129	146	Total	17	129	146
Test perfor	mance para	meters (b	ased on	146 patients; 21	with previo	ous TB exc	luded)
	IGRA				TST		
Sensitivity = 9/17 73.84)	= 52.94% (9	95% CI: 30	.96,	Sensitivity = $2/1$	7 = 11.76%	(95% CI: 3	3.28, 34.34)
Specificity = 82/12	29 = 63.57%	(95% CI:	54.98.	Specificity = 99/	$\sqrt{129} = 76.74$	% (95% C	I: 68.75.
71.37)		(,	83.20)		(, , , ,
PPV = 9/56 = 16.0)7% (95% C	I: 8.69, 27.	81)	PPV = 2/32 = 6.	25% (95% C	CI: 1.73, 20	.15)
NPV = 82/90 = 91	` `			NPV = 99/114 =			,
DOR (for T ⁺ calcu				DOR (for T ⁺ cal			
5.43)				2.03)	<u> </u>		,
OR (crude; for T ⁺	•		ed	OR (crude; for T^+ reported) = NA (reported only for			
only for total samp				total sample of 167 patients that included 21			
included 21 previo				previous TB pat			
OR (regression-ba	_			OR (regression-			
(reported only for	•		ients	for total sample	•	nts that inc	luded 21
that included 21 pt		oatients)		previous TB pat			
List of covariates:				List of covariate			
Other reported me				Other reported n		R	
				en tests (IGRA v	s. TST)		
Ratio of DORs (fo			`	CI: 1.72, 11.51)			
Ratio of OR (crud							
Ratio of ORs (regi		d; reported) = NA				
Other reported me							
			sults ar	nd levels of TB ex	<u> </u>	4 4	
IG	RA (TSPO)	•			TST≥10		
	Exposur		Total		Exposu		Total
	High/Yes	Low/No			High/Yes	Low/No	
IGRA +	8	75	83	TST +	2	30	32
IGRA -	9	54	63	TST -	15	99	114
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR
Total	17	129	146	Total	17	129	146
Test perfor		meters (b	ased on	146 patients; 21			luded)
	IGRA				TST		
Sensitivity = 8/17 69.04)	= 47.06% (9	95% CI: 26	.16,	Sensitivity = $2/1$	7 = 11.76%	(95% CI: 3	3.28, 34.34)
Specificity = $54/12$	29 = 41.86%	(95% CI:	33.70,	Specificity = 99/	7/129 = 76.74	₩ (95% C	I: 68.75,
50.49)				83.20)			
PPV = 8/83 = 9.64				PPV = 2/32 = 6.			
NPV = 54/63 = 85	5.71% (95%	CI: 75.03,	92.30)	NPV = 99/114 =	86.84% (95	5% CI: 79.4	12, 91.86)
DOR (for T ⁺ calcu	alg(1) = 0.64	4 (95% CI:	0.23,	DOR (for T ⁺ cal	culated) = 0	.44 (95% C	I: 0.09,
1.76)			2.03)				

OR (crude; for T ⁺	reported) =	NA (repor	ted	OR (crude; for T ⁺ reported) = NA (reported only for				
only for total sam	ple of 167 p	atients that	t	tota	al sample of 167	patients t	hat include	ed 21
included 21 previo	ous TB patie	ents)			vious TB patient	_		
OR (regression-ba				OR	(regression-bas	ed; report	ted) = (repo	orted only
(reported only for			itients		total sample of			
that included 21 p					vious TB patient			
List of covariates:		r/			t of covariates: N			
Other reported me					ner reported mea		?	
other reported me			n hetwee		ests (IGRA vs. T			
Ratio of DORs (fo						.51)		
Ratio of OR (crud				1. U.	30, 3.70)			
Ratio of OR (crud								
			$\mathbf{J}) = \mathbf{N}\mathbf{A}$					
Other reported me			4 4 1	4	IDCC 4.4	/*C 1*	11)	
			test resul	ts a	nd BCG status			
	IGRA (QF'					TST ≥		
	BCG		Total				status	Total
	Yes	No				Yes	No	
IGRA +	NR	NR	47		TST +	NR	NR	30
IGRA -	NR	NR	82		TST -	NR	NR	99
Indeterminate	NR	NR			Indeterminate	NR	NR	
Total	NR	NR	129		Total	NR	NR	129
		Test	performa	ance	e parameters			
	IGRA				TST			
DOR (for T ⁺ calcu	ılated) _{IGRA} =	NR			$DOR (for T+ calculated)_{TST} = NR$			
OR (crude; for T ⁺	reported) =	NA (repor	ted only f	or				
129 low risk patie			•		only for 129 low risk patients that also included			
TB patients)			•		21 previous TB			
OR (regression-ba	sed: reporte	ed) $IGPA = N$	JA		OR (regression			r = NA
(reported only for					(reported only			
included 21 previo					also included 2			
List of covariates:		/			List of covariat		~ F	/
Other reported me					Other reported		= NR	
			test resul	tc a	nd BCG status			
	IGRA (TSP		test resur		na Deg status	TS	•	
	BCG		Total				status	Total
	Yes	No	10141			Yes	No	Total
IGRA +	NR NR	NR	75		TST +	NR	NR	30
IGRA -	NR	NR	54		TST -	NR	NR	99
			J+				NR NR	77
Indeterminate	NR ND	NR NB	129		Indeterminate	NR NB		129
Total	NR	NR			Total	NR	NR	129
		Test	performa	ance	e parameters	- TOO		
D 0 D (0 T 1	IGRA				TST			
$DOR (for T^{+} calculated)_{IGRA} = NR$				$DOR (for T+ calculated)_{TST} = NR$				
OR (crude; for T^+ reported) = NA (reported only for				* * *				
129 low risk patients that also included 21 previou			us	*				
TB patients)				21 previous TB patients)				
OR (regression-based; reported) $_{IGRA} = NA$				OR (regression-based; reported) $_{TST} = NA$				
(reported only for 129 low risk patients that also				(reported only				
included 21 previous TB patients)				also included 21 previous TB patients)				
List of covariates:	NA				List of covariates: NA			
Other reported measure = NR Other reported measure = NR								
Between-test agr	eement, cor	ncordance	, and disc	cord	lance (if applica	ıble)		
This table may be							and/or co	ndition
•								

Total sample						
	TST +	TST -	Total			
IGRA +	NR	NR	NR			
IGRA -	NR	NR	NR			
Indeterminate	NR	NR	NR			
Total	NR	NR	NR			

Sample definition (e.g., total, if stratified by BCG or condition – specify): total of 167

TST + threshold: =>10mm

Parameters

Kappa = NA (reported only for total 167 patient sample that included 21 patients with previous TB)

% concordance = NA

% discordance = NA

Stratification (specify group 1)

	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (specify group 2)

	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

outcomes

Test and cut-off (if applicable)	Adverse events n/N (%)	Health related quality of life	
	(specify)	mean score (SD) (specify)	
IGRA:	NR	NR	
TST:	NR	NR	
Test 3 (specify):	NR	NR	

Conclusions

Authors:

Previous BCG vaccination increased the TST-positive rate in the low-risk group (OR 4.438), whereas it affected neither QFT nor TSPOT. The QFT was associated with the high-risk group (OR 2.578), whereas the TST and TSPOT were not. The frequency of indeterminate results was higher for the QFT (12.6%) compared with the TSPOT (4.8%). In conclusion, the IGRAs can be useful for the diagnosis of latent TB infection in haemodialysis patients

Reviewers:

The only relevant data available in this study was for the association between test positivity and exposure groups (n = 146; which excluded 21 patients with previous TB). All the other analyses (agreement, BCG status influence) were based on a total sample of 167 patients that included 21 patients with previously cured TB

QFT performed better than TST and TSPOT (in DORs) due its higher sensitivity relative to the other tests; TST had better specificity than the two IGRAs

Study details

First author surname year of publication: Costantino 2013¹²⁵

Country: France

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Rheumatology Department

of Nancy University Hospital **Number of centres:** One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): NR

Aim of the study

To compare TST and IGRA results in screening for LTBI in a large population of patients with chronic inflammatory

arthritis requiring biologic treatment and to investigate predictive factors of results of these 2 tests, with special

attention for indeterminate IGRA results

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people: chronic inflammatory arthritis before anti TNF treatment

Participants

Recruitment dates: Between 2005 and 2009

Total N of recruited patients: NR

Inclusion criteria: Patients with rheumatoid arthritis (RA) and spondyloarthritis (SpA)requiring TNF antagonists (first-line therapy or switch)

Exclusion criteria: Patients with previous antituberculous chemoprophylaxis

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 563

Total N of patients with valid results for both IGRA and TST: IGRA (n = 475), TST (n = 514)

Methods of active TB diagnosis (if applicable): NR

Outcomes (**study-based**) **list:** Association between test positivity and conventional risk factors (CRF) of LTBI; agreement; association between test positivity and patient characteristics

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 51.0 (39.0–59.0)

Women (n [%]): 321 [57.0] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Birth in endemic zone of TB (52 [9.2])

BCG vaccination (n [%]): 439 [78.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): Rheumatoid arthritis (293 [52.0]), spondyloarthritis (270 [48.0])

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): DMARD (277 [49.2]), Corticosteroids (254 [45.1]), NSAID (255 [45.4])

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available
IGRA (TSPOT):	563	122	353	88	475
TST (≥ 5 mm):	563	196	318	49	514

Test 3 (sp			NA	NA	NA	NA			NA
						and TST: 56			
Levels/gro						(if applicable		E) - e i Ti) T
Non owner					- conventi	onal risk fact	ors (CRI	t) of LIE	31
Non-expos			No CRF of L		my of active	TD tracted be	form 107	O on not to	easted for at
Exposed 1	(specify				-	TB treated be ths with a con			
					-	th a patient wi		-	•
								1 D, and (Mest
Exposed 2	radiograph suggestive of previous TB infection Exposed 2 (specify): NA								
	Exposed 3 (specify): NA								
Exposed 4			NA						
Tests	<u> </u>								
	Assa	y used	d, method	ology,	Cut-off va	alues/threshol	lds Defir	ition of	Other
		-	est measu			test+			information
		man	ufacturer	•					
IGRA			assays we			ere considered			To avoid any
(TSPOT			ccording to		_	ve control (cel	•		potential
)	manufa	acture	r's instruc	tions		lone) spot cou	•		boosting
						ots (referred to			effect of TST
					_	ontrol) or if the	•		on IGRA
						ell suspension agglutinin) spo			results, all T- SPOT.TB
						aggrutillii) spo 1 20 spots (low			assays were
						For determinate			performed
						assays were in			before
						to the manufa			initiating
						dations by sul		the	TST
						of the negative			
						t spot count be			
						fic antigen ES			
						fic antigen CF		test	
						dered positive		. 4	
						was equal to,			
					_	herwise, the to	est was		
TST ≥ 5	The TS	T wo	s performe	nd with	considered	tion diameter	of 5 mm	or more	NA
131 ≥ 3 mm	5 tuber			zu witii		dered a positiv	-	or more	IVA
111111			ng to 0.1 n	nl of	was consid	acrea a positiv	c test		
	_		ein deriva						
	_	_	anofi Past						
			according						
	Manto	ux me	thod. Tub	erculin					
	was inj	jected	intraderm	ally in					
			and 72 h l						
			skin indur	ation					
	was red			T					
Associatio	n betwe			and incid	lence of act	ive TB (if app		DOTE.	
	1		IGRA		-4-1			rst	TD 4 1
			lence of	Т	otal			ence of	Total
	-		ve TB					ve TB	-
ICD A	 	Yes	No	7	NT A	тет	Yes	No	NT A
IGRA		NA NA	NA NA		NA NA	TST +	NA NA	NA NA	NA NA
IGRA	-	NA	NA	I	NA	131 -	NA	NA	NA

Indeterminate	NA	NA		NA	Inde	etermin	NA	NA		NA
Total	NA	NA		NA	7	ate Fotal	NA	NA		NA
Total	Т	IVA	Test 1		ance paran		IVA	М		11/1
	I	GRA	Test	<u> </u>		<u> </u>	Т	ST		
Sensitivity = NA		J11.1			Sens	sitivity =				
Specificity = NA						cificity =				
PPV = NA						V = NA				
NPV = NA						V = NA				
Cumulative Incidence _{IGRA+} = NA							Incidence	$t_{TST+} = NA$		
Cumulative Incidence _{IGRA} . = NA								$rac{1S1+}{rac{1ST-}} = NA$		
Cumulative Incid			NA					Ratio _{TST}		A
Incidence density								$T_{TST+} = NA$		
Incidence density								$T_{TST-} = NA$		
Incidence density			VA					ratio _{TST} =		
Other reported me								$re_{TST} = NA$		•
outer reported in	ous are ic		arisor) betwee	en tests (IG			131 141		
Ratio of cumulati	ve incid				011 tests (10	101 (5)	101)			
Ratio of incidence										
Other reported me			05 11	11						
Association between test results an					d levels of	TB expo	sure (if a	npplicable)	
IGRA (TSPOT)					TO TO TOTAL OF	1D cape	$TST \ge 5$		<i>)</i>	
	`	osure lev	re1	Total				sure level		Total
	High/Y		w/No	Total			High/Ye		No	1000
IGRA +	23	99	,,,,,,,	122	TST +		31	165		196
IGRA -	25	328		353	TST -		18	300		318
Indeterminate	16	72		88	Indetermin		15	34		49
Total	64	499		563	Total		64	499		563
10141	01	1,77			ance paran		01	177		303
	IGR	A	Test	<u> </u>	unce purun	<u>IICCCI 5</u>	TST	1		
Indeterminate in		11			Indeterm	inate ind				
Sensitivity = $23/6$		94% (95%	6 CI: 2	5.29.				% (95% CI	: 36.	63.
48.18)		`		,	60.42)					
Indeterminate ex	xcluded				Indeterminate excluded					
Sensitivity = 23/4	48 = 47.9	92% (95%	CI: 3	4.47,	Sensitivity = 31/49 = 63.27% (95% CI: 49.27,					
61.67)					75.34)					
Indeterminate in	ıcluded				Indeterminate included					
Specificity = 400	/499 = 8	0.16% (9	5% CI	:	Specificity	y = 334/4	199 = 66.9	93% (95%	CI:	52.69,
76.44, 83.42)					70.92)					
Indeterminate ex	xcluded				Indeterm					
Specificity = 328	/427 = 7	6.81% (9	5% CI	:		y = 300/4	165 = 64.5	52% (95%	CI:	50.06,
72.58, 80.57)					68.73)					
PPV = 23/122 = 18.85% (95% CI: 12.9, 26.70)					PPV = 31/			(11.37	7, 21	.58)
Indeterminate in					Indeterm					
NPV = 400/441 =	= 90.70%	6 (95% C	I: 87.6	3,	NPV = 33			95% CI: 87	7.64,	93.53)
	93.07)			Indeterm					0.5.20)	
	Indeterminate excluded			NPV = 30	0/318 =	94.34% (95% CI: 9.	1.23,	96.39)	
NPV = 328/353 = 92.92% (95% CI: 89.75,										
95.16)	1 1 . 1				T., J. 4	• 4	13 1			
Indeterminate in		- 2 26 (04	50/ C T:	1.20	Indetermi			00 (050/ 4	⊃Ţ. 1	10
DOR (for T ⁺ calc	urated) =	= 2.20 (9:	% CI:	1.50,	DOR (for	1 calcu	iatea) = 1	.90 (95% (ا :اب	.12,
3.95)	volusi sa				3.21)	inata ar-	ماسطمط			
Indeterminate excluded				Indeterm	mate ex	ciuaea				

DOR (for T+ ca	alculated) =	3.05 (95%	CI: 1.65,	DOR (for T+ calculated	= 3.13 (95% CI: 1	.70,
5.60)	,	`	,	5.77)			
OR (crude; for	T ⁺ reported)	= NR		\overline{OR} (crude; for T^+ reported) = \overline{NR}			
OR (regression-) (95%	OR (regression-based; r			% CI:
CI: 1.49, 4.89)			1.13, 3.36)				
List of covariate	es: NR			List of covariates: NR			
Other reported			Other reported measure = NR				
other reported	incusure 1		son betwe	en tests (IGRA vs. TST)	1111		
Ratio of DORs	(for T ⁺ calc			·			
Ratio of OR (cr	,		`				
				3 (95% CI: 0.92, 2.09)			
Other reported	_		, , , , , , , ,	(**************************************			
			n test resu	ılts and BCG status (if a	pplicable`		
	IGRA (TSI				' ≥ 5 mm		
	BCG		Total		_	status	Total
	Yes	No			Yes	No	
IGRA +	80	NR	122	TST +	162	NR	196
IGRA -	NR	NR	353	TST -	NR	NR	318
Indeterminate	NR	NR	88	Indeterminate	NR	NR	49
Total	439	124	563	Total	439	124	563
	107	<u> </u>	1	nance parameters			
	IGRA		F		TST		
DOR (for T ⁺ ca				DOR (for T+ calculated			
OR (crude; for				OR (crude; for T+ repor			
OR (regression-based; reported) $_{IGRA} = 0.39$ OR (regression-based; reported) $_{TST} = NR$ (p =			n =				
(95% CI: 0.24, 0.62) Ok (regression based, reported) _{ISI} = 14k (p = 0.11, NS)			٢				
List of covariate				List of covariates: NR			
Other reported		JR		Other reported measure	= NR		
			ce, and dis	scordance (if applicable)			
	_			lue, BCG vaccination sta		or condit	ion
Total sample		<u>-</u>					
		$TST + \geq 1$	5 mm	TST -		Т	otal
IGRA (TSPOT)) +	59		51			10
IGRA (TSPOT)		114		220		_	334
Indeterminate	, <u> </u>						
Total		173		271		4	144
Description							
	on (e.g., tota	al, if stratifi	ed by BC0	G or condition – specify):	total		
TST + threshold				1 7			
Parameters	_						
Kappa = $0.16 (9)$	95% CI: 0.0	7, 0.25)					
% concordance			95% CI: 58	8.25, 67.2)			
% discordance		`					
Stratification (· ,			
(TST	+	TST -		Т	otal
IGRA +		NR		NR			NR
IGRA -		NR		NR		_	NR
Indeterminate NR			NR			NR.	
Total							
Description		2.					
	on (e.g., tota	al, if stratifi	ed by BCC	G or condition – specify):	BCG vaco	cinated	
TST + threshold	· U	,	, _ , _ ,	· · · · · · · · · · · · · · · · · · ·			
Parameters							

Kappa = 0.15 (95% CI: NA)							
% concordance = NA							
% discordance = NA							
Stratification (BCG not vaccinated)							
	TST +	TST -	Total				
IGRA (TSPOT) +	NR	NR	NR				
IGRA (TSPOT) -	NR	NR	NR				
Indeterminate	NR	NR	NR				
Total	NR	NR	NR				

Sample definition (e.g., total, if stratified by BCG or condition – specify): BCG not vaccinated

TST + threshold: $\geq 5 mm$

Parameters

Kappa = 0.22 (95% CI: NA)

% concordance = NA

% discordance = NA

Other outcomes						
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)				
IGRA:	NR	NR				
TST:	NR	NR				
Test 3 (specify):	NR	NR				
	a					

Conclusions

Authors:

It is confirmed that there is poor agreement between TST and IGRA results, especially in a population largely vaccinated by BCG. The results suggest that IGRA should be included in the strategy to identify LTBI in patients with chronic inflammatory diseases before starting anti-TNF therapy. The data indicate that replacement of TST by IGRA in the screening would have led to a 27% reduction of antibiotics prophylaxis introduction

Reviewers:

T-SPOT.TB was less influenced by BCG than TST; specificity and DOR of T-SPOT.TB was higher than those of TST; sensitivity of TST was slightly higher than that of T-SPOT.TB; kappa for agreement was low, especially for BCG-vaccinated patients

Study details

First author surname year of publication: Hadaya 2013¹²⁶

Country: Switzerland

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Geneva University Hospital

Number of centres: NR

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Ligue Pulmonaire Genevoise, a non-profit organisation

Aim of the study

To compare the diagnostic performance of the TST and two IGRAs (T-SPOT.TB and QuantiFERON Gold In-Tube [QGIT]) in renal transplant recipients (RTRs) under stable immunosuppression

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people - renal transplant recipients (RTRs)

Participants

Recruitment dates: November 2009 and December 2011

Total N of recruited patients: 205

Inclusion criteria: > 18 years, being able to provide informed consent, having had a renal transplant at least 12 months before inclusion, and having a stable immunosuppression.

Exclusion criteria: treatment for acute rejection within the preceding 3 months and signs or symptoms of acute infection

Total N of excluded patients: 5 (indeterminate IGRAs)

Total N of patients tested with both IGRA and TST: 205

Total N of patients with valid results for both IGRA and TST: 200

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Agreement; association of test results with the risk of LTBI

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 59.0 (13.2)

Women (n [%]): 84 (42.0) Race/ethnicity (n [%]): NR

Geographic origin (n[%]): High incidence of TB in country of origin (24 [12.0])

BCG vaccination (n [%]): 155 [77.5]

History of anti-TB treatment (n [%]): Active therapy (9 [4.5]), LTBI treatment (12 [6.0])

Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): Renal transplant recipients

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Prednisone (88 [44.0]), Tacrolimus, (127 [63.5]), Cyclosporine (41 [20.5]) Mycophenolate mofetil (159 [79.5]), Azathioprine (17 [8.5]), Sirolimus (12 [6.0])

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminat e)	Total N (test results available)
IGRA (QFT-GIT):	205	47	155	3	202
IGRA (TSPOT):	205	41	162	2	203
TST (≥5 mm):	205	9	191	0	200

Total N of patients with valid results for both IGRA and TST: 200

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group- Composite outcome 2 (risk for LTBI)

Non-exposed No risk for LTBI

Exposed 1 (specify):		TBI: Chest X-ray s					
	• • • •		athy, suggestive fib	rotic scars) an	d/or close	contact w	ith TB patient	
Exposed 2 (NA						
Exposed 3 (NA						
Exposed 4 (specify):	NA						
Tests				T				
			ology, timing for , manufacturer	Cut values/th Definition	resholds	Oth	Other information	
IGRA	Blood san	nplings for o	letermination of	According to	o the	Blood	samplings for	
(QFT-		ulosis-speci	_	manufacture			nination of M.	
GIT)	according recommen	to the manundations. Pe	essed, and scored afacturer's ripheral venous rocessed by our	recommend	ations	QGIT interfe	culosis-specific (Cellestis) and eron- reting T cells (T-	
		within 3 hr	-				TB (Oxford	
	•						notec) were	
						perfor	med	
						simult	aneously	
IGRA			letermination of	According to		NA		
(TSPOT)			fic interferon-F-	manufacture	-			
	_		POT.TB (Oxford	ord recommendations				
		ec) were pro						
			ne manufacturer's					
			ripheral venous					
		npies were p within 3 hr	rocessed by our					
TST≥5m		as performed intradermally, Results of TST were NA						
m			toux technique,	considered p				
			rified protein	the transvers				
			atens Serum	diameter, m	easured 4	8		
	Institute,	Copenhagen	, Denmark),	to 72 hr afte	r injection	ı,		
	which is t	he biologica	l equivalent of	was $\geq 5 \text{ mm}$	1			
	five units	of US purifi	ied protein					
	derivative							
Association			and incidence of a	ctive TB (if a				
		IGRA				TST		
		lence of	Total			nce of	Total	
	-	ve TB				e TB		
ICD A	Yes	No	NT A	TST +	Yes	No	NT A	
IGRA + IGRA -	NA NA	NA NA	NA NA	TST -	NA NA	NA NA	NA NA	
IGRA - Indetermina	NA NA	NA NA	NA NA	Indetermin	NA NA	NA NA	NA NA	
te	INA	INA	INA	ate	11/1	11/1/	11/7	
Total	NA	NA	NA	Total	NA	NA	NA	
2000			Test performan			- 12 4	2 12 2	
		IGRA				TST		
Sensitivity =				Sensitivity =				
Specificity =				Specificity =				
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
Cumulative	Incidence	$_{IGRA^{+}} = NA$		Cumulative I	ncidence	$_{TST+} = NA$		
Cumulative				Cumulative I				
Cumulative			NA	Cumulative I			= NA	
1000								

Incidence der	sity rate rong	. = NA		Incidence density rate _{TST+} = NA				
Incidence der					•			
Incidence der				Incidence density rate _{TST-} = NA Incidence density rate ratio _{TST} = NA				
Other reporte				Other reported measure $_{TST} = NA$				
Other reporte	d measure _{IGF}		con hotwoon t	tests (IGRA v		ST - IVA		
Ratio of cum	ulative incide			iesis (IGNA v	S. 151)			
Ratio of cum								
Other reporte			TVA.					
			t recults and l	levels of TB e	vnosura (if a	nnlicable)		
	IGRA (Q		results and		TST≥			
	Exposu	•	Total			re level	Total	
	High/Yes	Low/No	1000		High/Yes	Low/No	1000	
IGRA +	14	28	42	TST +	3	6	9	
	(calculated)	(calculated)	(calculated)		(calculated)	(calculated)	(calculated)	
IGRA -	28	113	141	TST -	39	135	174	
	(calculated)	(calculated)	(calculated)		(calculated)	(calculated)	(calculated)	
Indetermina te	NR	NR	3 (excluded)	Indetermin ate	NR	NR	0	
Total	42	141	183	Total	42	141	183	
				ce parameter	S			
	IGI				TS	T		
Sensitivity =	33.30% (95%	CI: 19.60, 4	19.50)	Sensitivity =	7.10% (95%	CI: 1.50, 19	9.50)	
reported					`	•	,	
Specificity = 80.10% (95% CI: 72.90, 86.20)				Specificity = 95.50% (95% CI: 90.80, 98.20)				
reported					`		•	
PPV = 33.33% (95% CI: 21.01, 48.45) calculated				PPV = 33.33	3% (95% CI:	12.06, 64.58) calculated	
NPV = 81.10% (95% CI: 73.80, 87.00) reported				NPV = 78.40	0% (95% CI:	71.70, 84.20))	
DOR (for T ⁺	calculated) =	2.01 (95% C	CI: 0.94,	DOR (for T ⁺	calculated) =	= 1. 73 (95%	CI: 0.41,	
4.32)				7.24)				
OR (crude; fo	or T ⁺ reported) = NR		OR (crude; f	or T reporte	d) = NR		
OR (regression	on-based; rep	orted) = NR			on-based; rej	ported) = NF	2	
List of covari				List of covar	riates: NA			
Other reporte	d measure = 1	NR		Other report	ed measure =	: NR		
				tests (IGRA v	s. TST)			
	`		16 (95% CI: 0	.51, 2.66)				
Ratio of OR (•							
Ratio of ORs	` U	<u> </u>	ed) = NA					
Other reporte								
			t results and l	levels of TB e				
	IGRA (7				TST≥			
	Exposu		Total			re level	Total	
TCD 4	High/Yes	Low/No	2.4	mom.	High/Yes	Low/No		
IGRA +	14	20	34	TST +	3	6	9	
IGRA -	(calculated) 28	(calculated) 121	(calculated) 149	TST -	(calculated) 39	(calculated) 135	(calculated) 174	
IOKA -	(calculated)	(calculated)	(calculated)	151 -	(calculated)	(calculate)	(calculated)	
Indetermina	NR	NR	2 (excluded)	Indetermin	NR	NR	0	
te Total	42	141	102	ate	42	1.4.1	102	
Total	42	L	183	Total ce parameter		141	183	
	IGI		st periorinan	ce par ameter	s TS	T		
Sensitivity =			19 50)	Sensitivity -	7.10% (95%		9.50)	
Specificity =	•		•		= 95.50% (95%		•	
	•						•	
PPV = 41.18% (95% CI: 26.37, 57.78) calculated				PPV = 33.33% (95% CI: 12.06, 64.58) calculated				

NPV = 81.909	% (95% CI: 7	75 00 87 60°	<u> </u>	NPV = 78.40%	(71.70.84	1 20)		
$\frac{1}{1}$ DOR (for T ⁺ c				NPV = 78.40% (71.70, 84.20) DOR (for T ⁺ calculated) = 1.73 (95% CI: 0.41,				
6.71)				7.24)				
OR (crude; for	r T ⁺ reported) = NR			T ⁺ reported	1) = NR		
	OR (regression-based; reported) = NR				OR (crude; for T ⁺ reported) = NR OR (regression-based; reported) = NR			
List of covaria		31000) 1111		List of covariates: NA				
Other reported		NR		Other reported		NR		
Suite reported	<u> </u>		son between	tests (IGRA vs.		1,11		
Ratio of DOR	s (for T ⁺ calc							
Ratio of OR (•	··· · · · · · · · · · · · · · · · · ·				
Ratio of ORs		_						
Other reported	<u> </u>		,					
*	Association between test results and BCG status (if applicable)							
	IGF				TS'	•		
	BCG s	status	Total		BCG	status	Total	
	Yes	No			Yes	No		
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
Indetermina	NR	NR	NR	Indeterminat	NR	NR	NR	
te				e				
Total	NR	NR	NR	Total	NR	NR	NR	
		Te	st performan	ce parameters				
	IGF	RA			TS'	Т		
DOR (for T^+ calculated) _{IGRA} = NR				DOR (for T+ c	alculated) _{TS}	ST = NR		
$OR (crude; for T^+ reported) = NR$			OR (crude; for	T+ reporte	d) = NR			
OR (regression-based; reported) _{IGRA} = NR			OR (regression	-based; rep	orted) $_{TST} = 1$	NR		
List of covariates: NR				List of covaria	tes: NR			
Other reported				Other reported		NR		
				dance (if applic				
		ed by TST	cut-off value,	BCG vaccination	on status, a	and/or condi	ition	
Total sample	<u> </u>			T				
700 + (000 o	~*****	TST	+		ST -		Total	
IGRA (QFT-C	JIT)	NR		l N	IR		47	
+		NID			TD.		152	
IGRA (QFT-C	311)	NR		ľ	√R		153	
indeterminate		NR			JR	27	excluded)	
Total		9			91	3 (6	200	
Description		9		1	71		200	
	tion (a.g. tot	al if etratifi	ed by RCG or	condition – spec	rify): total (n = 200		
TST + thresho		ai, ii su'aull	La by BCG of	condition – spec	11 y j. 101ai (11 – 200)		
	71 u. <u>_</u> JIIIIII							
	Parameters							
Kappa = 0.11 (P = 0.010)								
% concordance	` '							
% concordance	ee = NR							
% discordance	e = NR e = NR	concordanc	e, and discor	dance (if applic	able)			
% discordance Between-test	e = NR e = NR agreement,			dance (if applic		and/or condi	ition	
% discordance Between-test This table ma	e = NR e = NR agreement, ny be stratifi			dance (if applic BCG vaccination		and/or cond	ition	
% discordance Between-test	e = NR e = NR agreement, ny be stratifi	ed by TST	cut-off value,	BCG vaccination	on status, a	and/or cond		
% discordance Between-test This table ma Total sample	e = NR e = NR agreement, ny be stratifi	ed by TST	cut-off value,	BCG vaccination	on status, a	and/or cond	Total	
% discordance Between-test This table ma Total sample IGRA (TSPO)	e = NR e = NR agreement, ay be stratifi	red by TST	cut-off value,	BCG vaccination	on status, a ST - JR	and/or condi	Total	
% discordance Between-test This table ma Total sample	e = NR e = NR agreement, ay be stratifi Γ) + Γ) -	ed by TST	cut-off value,	BCG vaccination	on status, a		Total 41	

Sample definition (e.g., total, if stratified by BCG or condition – specify): total (n = 200)

TST + threshold: >5mm

Parameters

Kappa = 0.09 (P = 0.034)

% concordance = NR

% discordance = NR

Stratification (specify group 1)

Strumenton (speen, group 1)								
	TST +	TST -	Total					
IGRA +	NR	NR	NR					
IGRA -	NR	NR	NR					
Indeterminate	NR	NR	NR					
Total	NR	NR	NR					

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (specify group 2)

_	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Othor	outcomes
LITHER	MITCAMES

	5									
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)								
IGRA:	NR	NR								
TST:	NR	NR								
Test 3 (specify):	NR	NR								

Conclusions

Authors:

Neither the TST nor the IGRAs are sensitive enough in RTRs to exclude a diagnosis of TB or LTBI. Combining IGRAs did not significantly improve sensitivity

Reviewers:

Although low (33.3%), sensitivities of IGRAS were greater than that of TST (7%); agreement between IGRAs and TST was low (kappa = 0.09-0.11)

Study details

First author surname year of publication: Hsia 2012¹²⁷

Country: US

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): NR

Number of centres: 340

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Johnson & Johnson, honoraria from

Genentech, Pfizer, Celgene, Corrona, Amgen, Bristol-Myers Squibb, and Janssen

Aim of the study

To evaluate the performance of an interferon- release assay (IGRA) versus the standard tuberculin skin test (TST) as a screening tool for latent tuberculosis (TB) infection prior to the initiation of anti-tumor necrosis factor therapy in patients with autoimmune inflammatory diseases

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis prior to the initiation of anti–tumor necrosis factor therapy)

Participants

Recruitment dates: NR

Total N of recruited patients: 2303

Inclusion criteria: No history of latent/active TB prior to screening (except in GO-AFTER, which allowed the inclusion of patients with a history of latent TB who had been treated within the last 3 years) and having no signs or symptoms of active TB or no recent close contact with anyone with active TB. All patients were required to have a chest radiograph, obtained within 3 months before the first dose of study agent, that showed no evidence of active TB or old inactive TB.

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 2282

Total N of patients with valid results for both IGRA and TST: 2241

Methods of active TB diagnosis (if applicable): NR Outcomes (study-based) list: Agreement; exposure-based Characteristics of participants (total study sample)

Mean (range or SD) age (years): 48.58 (12.6)

Women (n [%]): 1515 [65.7] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): North America (962 [41.8]), Western Europe (440 [19.1]), Eastern Europe (432 [18.8]), Latin America (203 [8.8]), Asia (266 [11.6])

BCG vaccination (n [%]): 788 [34.2]

History of anti-TB treatment (n [%]): 317 [13.8]

Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): Rheumatoid arthritis (1,542 [67.0]), Psoriatic arthritis (405 [17.6]), Ankylosing

spondylitis (356 [15.5]) Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Methotrexate (571 [24.8]), Corticosteroids (1,000 [43.4])

Number	OI	patients	testea

•	Total N	Tota	Total N	Total N (indeterminate)	Total N
	(tested)	l N	(test-)		(test
					results
		(test			availab
		+)			le)

IGRA (QFT-GIT	·):	2282	160	2081	41				2241		
TST (≥5	5mm):		2282	215	2067	0				2282		
Test 3 (s	specify):		NA	NA	NA	NA				NA		
Total N	of patient	ts with v	alid results	for both	IGRA and	d TST: 2	241					
Levels/g	groups of	exposur	e to TB in ii	creasing	order (if	applicab	le):					
		D	efinition of	exposure	e group – g	geograph	ic regi	on				
Non-exp												
Exposed	ed 1 (specify): Western Europe											
Exposed	sed 2 (specify): Asia											
Exposed	Exposed 3 (specify): Eastern Europe											
Exposed 4 (specify): Latin America												
Tests												
	Assa	y used, i	methodology	y, timing	for test	Cut	off val	lues/thresł	ıolds	Other		
		measu	rement, mai	nufacture	er		Definit	ion of test	+	inform		
										ation		
IGRA			st was the IG				ding to			NA		
(QFT-			andard venip				facture					
GIT)			ngle visit to			Positi	ve resu	lts were				
			the M tuber		•			duplicate				
			T-GIT test a				_	same sam	ple.			
			(4) that was i					nitially				
	_		of this IGRA		•			e on the IG				
			ty. In additio			_		cond samp				
			is the manua			l l	be drawn and tested, and the final results were used to					
			e already pre									
			ple-handling			deterr	nine sti	ıdy eligibil	lity			
			estigational s med the enzy									
			ssay-based									
			ch patient acc									
			iterpretation		, the							
TST			formed acco		he	The T	ST was	s deemed		NA		
101			, using 5 tub			l l		atent TB		1,12		
			lerivative (Pl					ording to t	he			
			3 (Statens Se					guidelines				
	trained h	ealth-cai	e worker red	orded ead	ch patient's		-					
	reaction	to the TS	ST at 48–72	hours afte	er	immu	nosupp	ressed				
	placemen	nt						e absence o				
								nes, accord				
						the pr	esence	of indurati	on 5			
						mm						
Associat	tion betwe		results and	incidence	e of active	TB (if ap	plicab					
			GRA	T	4 - 1		Τ.	TST		Π-4-1		
			dence of	To	otal			dence of		Γotal		
			ive TB					ive TB				
		Yes	No				Ye	No				
ICD	RA +	NA	NA	N	A	TST +	NA	NA		NA		
	RA -	NA	NA NA		A A	TST -	NA	NA NA		NA NA		
	rminate	NA NA	NA NA		A A	Indeter	NA NA	NA NA		NA NA		
muctel	mmatc	11/7	1.47.7	11	11	minate	11/1	11/7		11/1		
Te	otal	NA	NA	N	A	Total	NA	NA		NA		
10	,.uı	ТТА			nance par		11/1	1111	l	1 1/ 1		
		I	GRA	Perron	unce par			TST				

Sensitivity =	NA			Sensit	Sensitivity = NA					
Specificity =	NA			Specif	Specificity = NA					
PPV = NA				PPV =	PPV = NA					
NPV = NA				NPV =	= NA					
Cumulative In	$ncidence_{IGRA+} = NA$			Cumu	lative Inciden	$ce_{TST+} = N$	A			
Cumulative In	$ncidence_{IGRA-} = NA$			Cumu	lative Inciden	$ce_{TST} = NA$	A			
	ncidence Ratio IGRA	= NA			lative Inciden					
Incidence der	nsity rate $_{IGRA+} = NA$	-		Incide	nce density ra	ate $_{TST+} = N$.	A			
	nsity rate $_{IGRA-} = NA$			Incide	nce density ra	ate $_{TST-} = NA$	A			
Incidence der	nsity rate ratio _{IGRA} =	NA		Incide	nce density ra	ate ratio _{TST}	= NA			
Other reporte	d measure $_{IGRA} = NA$	A		Other	reported mea	sure $_{TST} = N$	ΙA			
	Com	parison bet	ween tests	(IGRA v	vs. TST)					
Ratio of cum	ulative incidence rati	ios = NA								
Ratio of incid	lence density rate rat	ios = NA								
Other reporte	d measure = NA									
1	Association between	n test result	s and leve	ls of TB e	xposure (if a	pplicable)				
	IGRA (QFT-G	IT)			TST	≥5 mm				
	Exposure le	evel	Total		Exposur	e level	Total			
	High/Yes	Low/No	1		High/Yes	Low/No				
IGRA +	NR	NR	160	TST +	NR	NR	215			
IGRA -	NR	NR	2081	TST -	NR	NR	2067			
Indetermina	NR	NR	41	Indeter	NR	NR	0			
te				minate						
Total	Vary by geographi	c region	2282	Total	Vary by geo	graphic	2282			
				region						
		Test perfe	ormance n	arameter	'S					
				ui uiiictci			TST			
	IGRA				T	ST				
Sensitivity =	NR			Sensitivi	\mathbf{T} ty = NR	ST				
Specificity =	NR	172.0		Sensitivi Specifici	ty = NR $ty = NR$	ST				
Specificity = PPV = NR	NR			Sensitivi Specifici PPV = N	ty = NR $ty = NR$ IR	ST				
Specificity = PPV = NR NPV = NR	NR NR			Sensitivi Specifici PPV = N NPV = N	T $ty = NR$ $ity = NR$ IR NR					
Specificity = PPV = NR NPV = NR DOR (for T	NR NR calculated) = NR			Sensitivi Specifici PPV = N NPV = N DOR (fo	$ty = NR$ $tty = NR$ tR NR NR $tr T^{+} calculate$	d) = NR				
Specificity = PPV = NR NPV = NR DOR (for T+) OR (crude; for	NR NR $Calculated) = NR$ $Calculated) = NR$ $Calculated) = NR$			Sensitivi Specifici PPV = N NPV = N DOR (for	$ty = NR$ $ty = NR$ IR NR $or T^+ calculate$ $de; for T^+ reported$	d) = NR orted) = NR				
Specificity = PPV = NR NPV = NR DOR (for T+ OR (crude; for OR (regression))	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) =	=		Sensitivi Specifici PPV = N NPV = N DOR (fo OR (crud OR (regr	ty = NR ity = NR IR NR or T ⁺ calculate de; for T ⁺ reporession-based;	d) = NR orted) = NR ; reported) =	=			
Specificity = PPV = NR NPV = NR DOR (for T+ OR (crude; for OR (regression Western Euro	NR NR $Calculated) = NR$ $Calculated) = NR$ $Calculated) = NR$	=		Sensitivi Specifici PPV = N NPV = N DOR (for OR (crue OR (regr Western	ty = NR ty = NR IR IR NR or T ⁺ calculate de; for T ⁺ reporession-based; Europe vs. N	d) = NR orted) = NR ; reported) =	=			
Specificity = PPV = NR NPV = NR DOR (for T ⁺) OR (crude; for OR (regression Western Euro) 1.99, 5.83)	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North Americ	= ca: 3.41 (95%	% CI:	Sensitivi Specifici PPV = N NPV = N DOR (fo OR (crud OR (regr Western (95% CI	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. N : 1.30, 3.38)	d) = NR orted) = NR reported) = orth Americ	= ca: 2.10			
Specificity = PPV = NR NPV = NR DOR (for T ⁺) OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) =	= ca: 3.41 (95%	% CI:	Sensitivi Specifici PPV = N NPV = N DOR (fo OR (crud OR (regi Western (95% CI Latin Ar	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. N : 1.30, 3.38) nerica vs. Non	d) = NR orted) = NR reported) = orth Americ	ea: 2.10			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19)	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America	= ca: 3.41 (95%	% CI: CI: 1.64,	Sensitivi Specifici PPV = N NPV = N DOR (fo OR (crud OR (regi Western (95% CI Latin Ar CI: 0.80,	ty = NR lty = NR lty = NR lR NR or T ⁺ calculate le; for T ⁺ reportession-based; Europe vs. N : 1.30, 3.38) nerica vs. Non 3.05)	d) = NR orted) = NR ; reported) = orth America	= ca: 2.10 :: 1.56 (95%			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euron 1.99, 5.83) Latin Americ 7.19) Eastern Euron	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North Americ	= ca: 3.41 (95%	% CI: CI: 1.64,	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crue OR (regr Western (95% CI Latin Ar CI: 0.80, Eastern I	ty = NR ty = NR IR NR T T calculate de; for T reports ression-based; Europe vs. N 1.30, 3.38) nerica vs. Non 3.05) Europe vs. Non	d) = NR orted) = NR ; reported) = orth America	= ca: 2.10 :: 1.56 (95%			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19) Eastern Euro 1.93, 6.63)	NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America	= ca: 3.41 (95% :: 3.43 (95% a: 3.58 (95%	% CI: CI: 1.64,	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crud OR (regr Western (95% CI Latin An CI: 0.80, Eastern I (95% CI	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based: Europe vs. N : 1.30, 3.38) merica vs. Non 3.05) Europe vs. No. : 0.53, 1.70)	d) = NR orted) = NR reported) = orth America orth America	= ca: 2.10 :: 1.56 (95% a: 0.95			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19) Eastern Euro 1.93, 6.63)	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America	= ca: 3.41 (95% :: 3.43 (95% a: 3.58 (95%	% CI: CI: 1.64,	Sensitivi Specifici PPV = N NPV = N DOR (fo OR (crud OR (regr Western (95% CI Latin Ar CI: 0.80, Eastern I (95% CI Asia vs.	ty = NR ty = NR IR NR T T calculate de; for T reports ression-based; Europe vs. N 1.30, 3.38) nerica vs. Non 3.05) Europe vs. Non	d) = NR orted) = NR reported) = orth America orth America	= ca: 2.10 :: 1.56 (95% a: 0.95			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19) Eastern Euro 1.93, 6.63) Asia vs. North	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95)	= ca: 3.41 (95% :: 3.43 (95% a: 3.58 (95% % CI: 4.78,	% CI: CI: 1.64, CI: 15.03)	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crud OR (regr Western (95% CI Latin An CI: 0.80, Eastern I (95% CI	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based: Europe vs. N : 1.30, 3.38) merica vs. Non 3.05) Europe vs. No. : 0.53, 1.70)	d) = NR orted) = NR reported) = orth America orth America	= ca: 2.10 :: 1.56 (95% a: 0.95			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19) Eastern Euro 1.93, 6.63) Asia vs. North List of covaria	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95) ates: baseline metho	= ca: 3.41 (95% : 3.43 (95% a: 3.58 (95% % CI: 4.78,	% CI: CI: 1.64, CI: 15.03)	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crud OR (regr Western (95% CI Latin An CI: 0.80, Eastern I (95% CI Asia vs. 12.08)	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based: Europe vs. N : 1.30, 3.38) merica vs. Non 3.05) Europe vs. No. : 0.53, 1.70)	d) = NR orted) = NR reported) = orth America orth America orth America orth America	a: 0.95 % CI: 4.61,			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19) Eastern Euro 1.93, 6.63) Asia vs. North List of covaria	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95)	= ca: 3.41 (95% : 3.43 (95% a: 3.58 (95% % CI: 4.78,	% CI: CI: 1.64, CI: 15.03)	Sensitivi Specifici PPV = N NPV = N DOR (for OR (cruce OR (regression Western (95% CI Latin An CI: 0.80, Eastern I (95% CI Asia vs. 12.08) List of co	ty = NR lty = NR lty = NR lR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. N : 1.30, 3.38) nerica vs. Non, 3.05) Europe vs. No. : 0.53, 1.70) North America	d) = NR orted) = NR reported) = orth America orth America orth America orth America orth America	= ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euron 1.99, 5.83) Latin Americ 7.19) Eastern Euron 1.93, 6.63) Asia vs. North	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95) ates: baseline metho	= ca: 3.41 (95% : 3.43 (95% a: 3.58 (95% % CI: 4.78,	% CI: CI: 1.64, CI: 15.03)	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crud OR (regr Western (95% CI Latin An CI: 0.80, Eastern I (95% CI Asia vs. 12.08) List of couse, base	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. No. (3.05)	d) = NR orted) = NR reported) = orth America = ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,				
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19) Eastern Euro 1.93, 6.63) Asia vs. North List of covari steroid use, di vaccination	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95) ates: baseline metho	= ca: 3.41 (95% : 3.43 (95% a: 3.58 (95% % CI: 4.78,	% CI: CI: 1.64, CI: 15.03)	Sensitivi Specifici PPV = N NPV = N DOR (fo OR (crud OR (regi Western (95% CI Latin Ar CI: 0.80, Eastern I (95% CI Asia vs. 12.08) List of couse, base and prior	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. No. (2005) Europe vs. (200	d) = NR orted) = NR creported) = orth America	= ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euro 1.99, 5.83) Latin Americ 7.19) Eastern Euro 1.93, 6.63) Asia vs. North List of covari steroid use, di vaccination	NR NR calculated) = NR or T+ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95) ates: baseline metho isease type, age, and d measure = NR	= ca: 3.41 (95% : 3.43 (95% a: 3.58 (95% % CI: 4.78,	% CI: CI: 1.64, CI: 15.03) baseline	Sensitivi Specifici PPV = N NPV = N DOR (for OR (cruct OR (regression of the cruct OR	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. No. 3.05) Europe vs. No. 3.05) Europe vs. No. Onerica	d) = NR orted) = NR creported) = orth America	= ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euror 1.99, 5.83) Latin Americ 7.19) Eastern Euror 1.93, 6.63) Asia vs. North List of covaring steroid use, divaccination Other reporte	NR NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America be vs. North America be vs. North America a vs. North America be vs. North America	= ca: 3.41 (95% : 3.43 (95% a: 3.58 (95% % CI: 4.78, prior BCG aparison bet) = NA	% CI: CI: 1.64, CI: 15.03) baseline	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crue OR (regr Western (95% CI Latin An CI: 0.80, Eastern I (95% CI Asia vs. 12.08) List of crue use, base and prior Other re	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. No. 3.05) Europe vs. No. 3.05) Europe vs. No. Onerica	d) = NR orted) = NR creported) = orth America	= ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euror 1.99, 5.83) Latin Americ 7.19) Eastern Euror 1.93, 6.63) Asia vs. North List of covariate of cova	calculated) = NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95) ates: baseline metho isease type, age, and d measure = NR Com Rs (for T ⁺ calculated) (crude; for T ⁺ reported)	= ca: 3.41 (95% : 3.43 (95% a: 3.58 (95% % CI: 4.78, trexate use, prior BCG aparison bet	% CI: CI: 1.64, CI: 15.03) baseline	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crue OR (regr Western (95% CI Latin An CI: 0.80, Eastern I (95% CI Asia vs. 12.08) List of crue use, base and prior Other re	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. No. 3.05) Europe vs. No. 3.05) Europe vs. No. Onerica	d) = NR orted) = NR creported) = orth America	= ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Euron 1.99, 5.83) Latin America 7.19) Eastern Euron 1.93, 6.63) Asia vs. North List of covaring steroid use, divaccination Other reported Ratio of DOR (Ratio of OR) Ratio of OR)	calculated) = NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America pe vs. North America th America: 8.48 (95) ates: baseline metho isease type, age, and d measure = NR Com Rs (for T ⁺ calculated) (regression-based; r	= ca: 3.41 (95% a: 3.43 (95% a: 3.58 (95%	% CI: CI: 1.64, CI: 15.03) baseline	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crue) OR (regi Western (95% CI Latin Ar CI: 0.80, Eastern I (95% CI Asia vs. 12.08) List of crue, base and prior Other regi (IGRA v	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. No. 3.05) Europe vs. No. 3.05) Europe vs. No. Onerica	d) = NR orted) = NR creported) = orth America	= ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,			
Specificity = PPV = NR NPV = NR DOR (for T ⁺ OR (crude; for OR (regression Western Europe 1.99, 5.83) Latin America 7.19) Eastern Europe 1.93, 6.63) Asia vs. North List of covaring steroid use, displayed waccination Other reported Ratio of OR (Ratio o	calculated) = NR calculated) = NR or T ⁺ reported) = NR on-based; reported) = ope vs. North America a vs. North America pe vs. North America th America: 8.48 (95) ates: baseline metho isease type, age, and d measure = NR Com Rs (for T ⁺ calculated) (crude; for T ⁺ reported)	= ca: 3.41 (95% :: 3.43 (95% a: 3.58 (95% % CI: 4.78, htrexate use, prior BCG aparison bet) = NA ed) = NA ed) = NA eported) = ca: 1.62 (95%	% CI: CI: 1.64, CI: 15.03) baseline	Sensitivi Specifici PPV = N NPV = N DOR (for OR (crudous of Control of C	ty = NR ty = NR IR NR or T ⁺ calculate de; for T ⁺ reportession-based; Europe vs. No. 3.05) Europe vs. No. 3.05) Europe vs. No. Onerica	d) = NR orted) = NR creported) = orth America	= ca: 2.10 :: 1.56 (95% a: 0.95 % CI: 4.61,			

Eastern Europe					4, 5.81)					
Asia vs. North America: = 1.14 (95% CI: 0.77, 1.66)										
Other reported i										
	Associatio	n between tes	t results	and	BCG status (i	f applic	able)			
	IGRA (QI					TST	≥5 mm			
	BCC	3 status	Tota	ıl		BCG	status	Total		
	Yes	No				Yes	No			
IGRA +	71	72	143		TST +	119	62	181		
IGRA -	NR	NR	1853		TST -	NR	NR	1848		
Indeterminate	9	24	33		Indeterminat e	NR	NR	0		
Total	781	1248	2029		Total	781	1248	2029		
Test performance parameters										
	IGR						ST			
DOR (for T ⁺ cal					DOR (for T+ o					
OR (crude; for 7					OR (crude; for	r T+ rep	orted) = 1	NR		
OR (regression- 0.66, 1.51)	_				OR (regression (95% CI: 1.71		; reported	$)_{TST} = 2.47$		
List of covariate										
steroid use, dise	ease type, age	, and geograph	nic region	n	List of covaria					
					baseline steroi		isease typ	be, age, and		
					geographic reg					
Other reported i					Other reported		re = NR			
Between-test ag This table may	_	•					and/or co	ondition		
Total sample			, , , , , , , , , , , , , , , , , ,	-,						
•		TST +			TST -			Total		
IGRA +		59			101		160			
IGRA -		NR			NR		2081			
Indeterminate		NR			NR			41		
Total		215					2067			2282
Description		_						-		
Sample definition	on (e.g., total	. if stratified by	v BCG o	r con	dition – specify	v): total				
TST + threshold		•	,			,,				
Parameters	<u></u>									
Kappa = $0.22 (9)$	95% CI: 0.15.	. 0.27)								
% concordance		, =:=:/								
% discordance =										
Stratification (n 1): BCG-va	ccinated	1						
Structure (TST +			TST -		1	Total		
IGRA +		28			43			71		
IGRA -		91			619			710		
Indeterminate		0 (excluded)			9 (excluded)	`	9 (excluded)		
Total		119			662	,) (781		
Description		117			002		1	/01		
Sample definition	on (o.g. total	if stratified by	PCG o	r con	dition specify	ı). BCC	voccinat	ad		
TST + threshold		, ii stratified b	y BCG 0	i con	iuition – specify	<i>()</i> . BC O	vaccinau	cu		
	ı. ≥3 IIIII									
Parameters	05% CI 0 12	0.27) aslaulat	od							
Kappa = 0.20 (9)				1 05	22) galaylata d					
% concordance										
% discordance =										
Stratification (specify grou	•	ıı-vaccın	iated				T-4-1		
		TST +			TST -		1	Total		

IGRA +	24	48	72
IGRA -	38	1138	1176
Indeterminate	6 (excluded)	18 (excluded)	24 (excluded)
Total	62	1186	1248

Sample definition (e.g., total, if stratified by BCG or condition – specify): BCG non-vaccinated

TST + threshold: ≥5 mm

Parameters

Kappa = 0.32 (95% CI: 0.26, 0.37) calculated

% concordance = 1162/1248 = 93.11% (95% CI: 91.57, 94.39) calculated

% discordance = 86/1248 = 6.89% (95% CI: 5.61, 8.43) calculated

Other outcomes									
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)							
IGRA:	NR	NR							
TST:	NR	NR							
Test 3 (specify):	NR	NR							

Conclusions

Authors:

Thus, in the absence of a true gold standard test to screen for latent TB infection, results of this large cohort comparison of an IGRA (the QFT-GIT test) and the TST in patients with rheumatic disease suggest that the IGRA provides greater specificity and possibly greater sensitivity than the TST

Reviewers:

BCG vaccination influenced TST but not IGRA (indicating better specificity of IGRA); agreement was higher in BCG non-vaccinated vs. vaccinated patients; exposure-based (geographic location) ORs were stronger for IGRA vs. TST, indicating better specificity and/or sensitivity of IGRA vs. TST *Abbreviations:* DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; PPV = positive predictive value; NPV = negative predictive value; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Study details

First author surname year of publication: Kim 2010¹²⁸

Country: Korea

Study design: Retrospective/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Clinic based

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Korea Research Foundation

Aim of the study

To compare the results of the ELISPOT assay T-SPOT.TB with those of the TST in renal transplant candidates before transplantation in a country with an intermediate TB burden

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (kidney transplant candidates before transplantation)

Participants

Recruitment dates: June 2008 and May 2009

Total N of recruited patients: 213

Inclusion criteria: Kidney transplant adult candidates before transplantation

Exclusion criteria: If abnormal chest radiograph findings were observed, a sputum acid-fast bacilli

smear and a computed tomography scan were performed to rule out active pulmonary TB

Total N of excluded patients: 4 (n = 1 refusal, n = 1 active TB, n = 2 cancer)

Total N of patients tested with both IGRA and TST: 209

Total N of patients with valid results for both IGRA and TST: 184

Methods of active TB diagnosis (if applicable): NA

Outcomes (**study-based**) **list:** Agreement, association of test positivity with risk factors, influence of BCG vaccination

Characteristics of participant (total study sample)

Mean (range or SD) age (years): NR

Women (n [%]): NR

Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR

BCG vaccination (n [%]): 163 [78.0]

History of anti-TB treatment (n [%]): NR

Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes

Clinical examination (yes/no): Yes

Morbidity (n [%]): End-stage renal disease

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Isoniazid for 9 months immediately after renal transplantation (5 [19%])

Number of patients tested

	Total N (tested)	Tota 1 N (test +)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (TSPOT):	209	65	119	25	184
TST (≥5mm):	209	47	162	0	209
TST (≥10mm):	209	21	188	0	209

Total N of patients with valid results for both IGRA and TST: 209

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group – LTBI group

Non-exposed		No LTBI	I group					
				person	with p	ulmona	rv tubercul	osis within the last
Ziiposee i (ope	,011,5) ((i) close contact with a person with pulmonary tuberculosis within the last year, (ii) abnormal chest radiography, (iii) a history of untreated or						
		inadequately treated TB, or (iv) newly acquired infection (recent						
			on of the tuber					`
Exposed 2 (spe	ecify):	NA				•	·	
Exposed 3 (spe		NA						
Exposed 4 (spe	ecify):	NA						
Tests								
	Assay use	ed, metho	dology, timin	g for		Cut		Other
	test me	asuremen	ıt, manufactu	rer			resholds	information
							of test+	
IGRA			blood sample	was			criteria for	
(TSPOT)			patient for the				ative, and	samples were
	ELISPOT						outcomes	
			ponse (i.e., T-				ommended	
	SPOT.TB,		nmunotec, ipheral blood		by the	e manuf	acturer	avoid the possible
	_		PBMC) were					boosting
			heral venous b	alood				effect of TST
			pling, and 2.5					on the
			er well in wel					ELISPOT
			numan IFN-g					assay
	antibody		C					
	The PBMO	were cul	tured at 37°C	for				
	18h, and sp	oots were	counted with a	an				
			pe (ELiSpot04	· HR,				
			stika GmbH,					
	Strassberg,							
TST (≥5mm			que, injecting		The positive criterion for			
or ≥10mm)			d protein deriv	vative				
	RT23 (Stat		n mstitut, ark) intraderma	11x	induration 48-72 h after injection			
	into the for		iik) iiii auciiii	arry	Inject	1011		
Association be			d incidence of	f active	TR (if	annlic	ahle)	
11550clation be	IGRA		d illeldelice of		/ ID (II	аррпс	TST	
		ence of	Total			Incid	lence of	Total
		e TB					ve TB	
	Yes	No				Yes	No	
IGRA +	NA	NA	NA	TS'	T +	NA	NA	NA
IGRA -	NA	NA	NA	TS	Т -	NA	NA	NA
Indeterminate	e NA	NA	NA	Indet	ermin	NA	NA	NA
					te			
Total	NA	NA	NA	1	tal	NA	NA	NA
			est performa	nce par	amete	rs		
	IGRA	A					TST	
Sensitivity = N					tivity =			
Specificity = N	A				ficity =	: NA		
PPV = NA				PPV:				_
NPV = NA	• 1	NT A			= NA	r · 1	**	
Cumulative Inc							$\frac{\text{ce }_{TST+} = N}{N}$	
Cumulative Inc			Δ				$e_{TST} = N_{A}$	
Cumulative Inc			A				ce Ratio _{TS}	
Incidence density rate $_{IGRA+} = NA$				Incidence density rate $_{TST+} = NA$				

Incidence de	encity rate van	- NΔ		Incidence density	v rate max - NA			
Incidence density rate $_{IGRA-} = NA$ Incidence density rate $_{TST-} = NA$ Incidence density rate ratio $_{IGRA} = NA$ Incidence density rate ratio $_{TST} = NA$								
Other reported measure $_{IGRA} = NA$ Other reported measure $_{TST} = NA$								
Other report	ed measure _{IGF}			ests (IGRA vs. T		<u> </u>		
Patio of our	nulative incide			esis (IGNA vs. 1	131)			
	dence density		NA					
	ed measure =		14 11	1 CTD	(*6 1*	11)		
			results and le	evels of TB expo		ble)		
-	IGRA (7		- TD + 1		TST (≥5mm)	1	TD + 1	
	Exposu		Total		Exposure le		Total	
	High/Yes	Low/No			High/Yes	Low/ No		
IGRA +	10	55	65	TST +	8	39	47	
IGRA -	9	110	119	TST -	14	148	162	
Indetermin	3	22	25	Indeterminate	0	0	0	
ate	(excluded)	(excluded)	(excluded)					
Total	22	187	209	Total	22	187	209	
			l	e parameters				
	IGI		perrormane		TST			
_	= 10/19 = 52.63		31.71,		722 = 36.36% (95)	5% CI: 1	9.73,	
72.67)	110/165	(70) (050) 6	N. 50 17	57.05)	40/107 70 140/	(0.50/ 6	NT.	
Specificity = 73.41)	= 110/165 = 66	o.67% (95% C	CI: 59.17,	Specificity = 14 72.76, 84.35)	48/187 = 79.14%	(95% C	A:	
PPV = 10/65	5 = 15.38% (93)	5% CI: 8.57, 2	26.06)	PPV = 8/47 = 1	7.02% (95% CI	: 8.88, 30	0.14)	
NPV = 110/2	119 = 92.44%	(95% (CI: 86.25,	NPV = 148/162 = 91.36% (95% CI:				
95.97)		·		86.02, 94.78)				
DOR (for T ⁺	calculated) =	2.22 (95% C	I: 0.85,	DOR (for T ⁺ ca	alculated) = 2.17	(95% C	I: 0.85,	
5.78)				5.54)				
OR (crude; f	or T ⁺ reported) = 2.35 (95%)	CI: 0.90,	OR (crude; for T^+ reported) = 2.17 (95% CI:				
6.12)	•	,		0.85, 5.54)				
OR (regressi	ion-based; rep	orted) = 2.38	(95% CI:	OR (regression-based; reported) = 2.11 (95%				
0.87, 6.52)				CI: 0.82, 5.46)				
List of covar	riates: age			List of covariates: age				
	ed measure =	NR		Other reported measure = NR				
•		Compariso	n between to	ests (IGRA vs. T				
Ratio of DO	Rs (for T ⁺ calc				,			
	(crude; for T ⁺							
				% CI: 0.56, 2.28)			
	ed measure =		, (>0		,			
			results and le	evels of TB expo	sure (if annlica	ble)		
	IGRA (7		Cours alla I	CAPO	TST (≥10mm)			
	Exposu		Total		Exposure le		Total	
	High/Yes	Low/No	Total		High/Yes	Low/ No	Total	
IGRA +	10	55	65	TST +	4	17	21	
IGRA -	9	110	119	TST -	18	170	188	
Indetermin	3	22(exclud	25(exclud	Indeterminate	0	0	0	
	-	,	`	maeterminate	U	0	0	
ate Total	(excluded)	ed)	ed) 209	Total	22	107	200	
Total	22	187				187	209	
	TOT		performanc	e parameters	more			
G	IGI		21.71	G	TST 19.1997 (9)	-0/ CT -	21	
•	= 10/19 = 52.63	5% (95% CI:	51./1,	•	22 = 18.18% (93)	5% CI: 7	.31,	
72.67)				38.52)				

	10/119 = 92.44	(95% CI: 8.57 4% (95%	CI: 86.25,	PPV = 4/21 = NPV = 170/18		•		
95.97)			•	93.86)		`	,	
1	T calculated	() = 2.22 (95%)	CI: 0.85,	DOR (for T ⁺ c	alculate	d) = 2.22 (95%)	CI: 0.67,	
5.78)		4-1) 2.25 (05	70/ CI. 0.00	7.32)	T+	-4-4) 2.22 (O	50/ CL	
6.12)	e; for 1 repor	ted) = 2.35 (95)	5% CI: 0.90,	OR (crude; for 0.67, 7.32)				
. •		reported) = 2.3	8 (95%	OR (regression		reported) $= 2$.	12 (95%	
CI:0.87, 6	variates: age			CI: 0.60, 7.49) List of covaria				
	orted measure	e = NR		Other reported		e = NR		
o uner rep			son between t	ests (IGRA vs. '				
Ratio of I	OORs (for T ⁺		.00 (95% CI: 0		Í			
	•		1.06 (95% CI	•				
			ted) = 1.12 (95)	6% CI: 0.49, 2.56	5)			
Other rep	orted measure		40 at 14	and DCC + 4	. (:e -	liaah!-\		
			en test results	and BCG status		licable) (≥5mm)		
		status	Total			(∠3mm) CG status	Total	
	Yes	No	Total		Yes	No	Total	
IGRA +	48	17	65	TST +	38	9	47	
IGRA -	97	22	119	TST -	125	37	162	
Indeter	18	7	25	Indeterminat	0	0	0	
minate	(excluded)	(excluded)	(excluded)	e				
Total	163	46	209	Total	163	46	209	
Test performance parameters								
					_			
DOD (for		IGRA		DOD (for T a		<u>rst</u>	(050/	
1.32)	T ⁺ calculated	$\frac{\text{IGRA}}{\text{I}_{\text{IGRA}}} = 0.64 (9)$	5% CI: 0.31,	DOR (for T+ c CI: 0.55, 2.82)	calculate	$d)_{TST} = 1.25$	(95%	
1.32)	T ⁺ calculated	IGRA	5% CI: 0.31,	· ·	calculate	$d)_{TST} = 1.25$	`	
1.32) OR (crude 1.34) OR (regree	e; for T ⁺ reporession-based;	$\frac{\text{IGRA}}{\text{I}_{\text{IGRA}}} = 0.64 (9)$	5% CI: 0.31, 5% CI: 0.36,	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression	calculate T+ rependent	d) _{TST} = 1.25 d) _{TST} = 1.25 (d) d	95% CI:	
1.32) OR (crude 1.34) OR (regree List of co	e; for T ⁺ reporession-based; variates: NA	(GRA) $(I)_{IGRA} = 0.64 (9)$ $(I)_{IGRA} = 0.69 (95)$ $(I)_{IGRA} = 0.69 (95)$	5% CI: 0.31, 5% CI: 0.36,	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria	calculate T+ reponsed; n-based; ttes: NA	d) _{TST} = 1.25 d) _{TST} = 1.25 (d) d d) d) d) d) d) d)	95% CI:	
1.32) OR (crude 1.34) OR (regree List of co	e; for T ⁺ reporession-based; variates: NA orted measure	GGRA $(1)_{IGRA} = 0.64 (9)$ $(2)_{IGRA} = 0.69 (95)$ $(3)_{IGRA} = 0.69 (95)$ $(4)_{IGRA} = 0.69 (95)$ $(5)_{IGRA} = 0.69 (95)$ $(6)_{IGRA} = 0.69 (95)$ $(7)_{IGRA} = 0.69 (95)$ $(8)_{IGRA} = 0.69 (95)$ $(8)_{IGRA} = 0.69 (95)$ $(8)_{IGRA} = 0.69 (95)$ $(9)_{IGRA} = 0.69 (95)$	5% CI: 0.31, 5% CI: 0.36,	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria	calculate T+ reponsed; n-based; tes: NA	d) _{TST} = 1.25 e orted) = 1.25 (e reported) e = NR	95% CI:	
1.32) OR (crude 1.34) OR (regree List of co	e; for T ⁺ reportession-based; evariates: NA orted measure	$(GRA)_{IGRA} = 0.64 (9)_{IGRA} = 0.69 (95)_{IGRA} = 0.60 (95)_{IGRA}$	5% CI: 0.31, 5% CI: 0.36,	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria	r T+ reponsates: NA measures (if app	d) _{TST} = 1.25 d) _{TST} = 1.25 (v reported) d) _{TST} = d d0 = NR licable)	95% CI:	
1.32) OR (crude 1.34) OR (regree List of co	e; for T ⁺ reportession-based; variates: NA orted measure Associated	GGRA $(1)_{IGRA} = 0.64 (9)$ $(2)_{IGRA} = 0.69 (95)$ $(3)_{IGRA} = 0.69 (95)$ $(4)_{IGRA} = 0.69 (95)$ $(5)_{IGRA} = 0.69 (95)$ $(6)_{IGRA} = 0.69 (95)$ $(7)_{IGRA} = 0.69 (95)$ $(8)_{IGRA} = 0.69 (95)$ $(8)_{IGRA} = 0.69 (95)$ $(8)_{IGRA} = 0.69 (95)$ $(9)_{IGRA} = 0.69 (95)$	5% CI: 0.31, 5% CI: 0.36,	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria	r T+ reponsible to the control of th	d) _{TST} = 1.25 e orted) = 1.25 (e reported) e = NR	95% CI:	
1.32) OR (crude 1.34) OR (regree List of co	e; for T ⁺ reportession-based; variates: NA orted measure Associated	$(GRA)_{IGRA} = 0.64 (9)_{IGRA} = 0.69 (95)_{IGRA} = 0.60 (95)_{IGRA}$	5% CI: 0.31, 5% CI: 0.36, = NR	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria	r T+ reponsible to the control of th	$d)_{TST} = 1.25$ orted) = 1.25 ((reported) $_{TST} = 0$ $e = NR$ licable) $(\ge 10 \text{mm})$	95% CI: = NR	
OR (crude 1.34) OR (regree List of cool Other rep	e; for T ⁺ reportession-based; variates: NA orted measure Associated BCG Yes 48	(GRA () _{IGRA} = 0.64 (9 rted) = 0.69 (95 reported) _{IGRA} = e = NR ciation betwee (TSPOT) status No 17	5% CI: 0.31, 5% CI: 0.36, = NR en test results Total 65	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status	r T+ reports (if app TST (B Yes 16	$d)_{TST} = 1.25$ orted) = 1.25 (Sorted) = 1	95% CI: = NR Total 21	
OR (crude 1.34) OR (regree List of co Other rep	e; for T ⁺ reportession-based; variates: NA orted measure Associated Yes 48 97	(GRA ()) _{IGRA} = 0.64 (9 reported) = 0.69 (95 reported) _{IGRA} = 1 e = NR ciation between (TSPOT) status No 17 22	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST -	r T+ reports the second	$d)_{TST} = 1.25$ $ext{orted} = 1.25$ (so reported) $ext{TST} = 1.25$ (so reported) $ext{TST$	95% CI: = NR Total 21 188	
I.32) OR (crude 1.34) OR (regree List of coordinate of coo	e; for T ⁺ reportersion-based; evariates: NA orted measure Associated BCG Yes 48 97	(GRA ()) _{IGRA} = 0.64 (9 reported) = 0.69 (95 reported) IGRA = 1 e = NR ciation between (TSPOT) status No 17 22 7	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat	r T+ reports (if app TST (B Yes 16	$d)_{TST} = 1.25$ orted) = 1.25 (Sorted) = 1	95% CI: = NR Total 21	
I.32) OR (crude 1.34) OR (regree List of concentration of the crude of the cr	e; for T ⁺ reportession-based; evariates: NA orted measures Associated PCG Yes 48 97 18 (excluded)	(GRA ()) _{IGRA} = 0.64 (9 (red) = 0.69 (95 (reported) _{IGRA} = 1 (E = NR (ciation between (TSPOT)) (TSPOT) (status No 17 22 7 (excluded)	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25 (excluded)	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat e	r T+ reponsates: NA measures (if app TST (B) Yes 16 147 0	$d)_{TST} = 1.25$ $e = NR$ $e = N$	95% CI: = NR Total 21 188 0	
I.32) OR (crude 1.34) OR (regree List of coordinate of coo	e; for T ⁺ reportersion-based; evariates: NA orted measure Associated BCG Yes 48 97	(GRA ()) _{IGRA} = 0.64 (9 reported) = 0.69 (95 reported) _{IGRA} = 0.64 (EXEMPT) status No 17 22 7 (excluded)	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25 (excluded) 209	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat e Total	r T+ reports the second	$d)_{TST} = 1.25$ $ext{orted} = 1.25$ (so reported) $ext{TST} = 1.25$ (so reported) $ext{TST$	95% CI: = NR Total 21 188	
I.32) OR (crude 1.34) OR (regree List of concentration of the crude of the cr	e; for T ⁺ reportession-based; evariates: NA orted measure Associates GRA BCG Yes 48 97 18 (excluded) 163	(GRA ()) _{IGRA} = 0.64 (9 reported) = 0.69 (95 reported) _{IGRA} = 0.64 (EXECUTE: 10 10 10 10 10 10 10 10	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25 (excluded) 209	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat e	r T+ reports of the second of	d) _{TST} = 1.25 orted) = 1.25 (some properties)	95% CI: = NR Total 21 188 0	
I.32) OR (crude 1.34) OR (regree List of coordinate Total	e; for T ⁺ reportersion-based; evariates: NA orted measure Associated PCG Yes 48 97 18 (excluded) 163	(GRA ()) _{IGRA} = 0.64 (9 reported) = 0.69 (95 reported) IGRA = 0.64 (TSPOT) Status No 17 22 7 (excluded) 46 Telegraphic Telegraphic T	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25 (excluded) 209 est performance	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat e Total	r T+ reports (if app TST (B Yes 16 147 0 163	$d)_{TST} = 1.25$ $e = NR$ $licable)$ $\geq 10mm)$ $CG \text{ status}$ No 5 41 0 46	95% CI: = NR Total 21 188 0 209	
I.32) OR (crude 1.34) OR (regree List of coordinate Total	e; for T ⁺ reportersion-based; evariates: NA orted measure Associated PCG Yes 48 97 18 (excluded) 163	(GRA ()) _{IGRA} = 0.64 (9 reported) = 0.69 (95 reported) _{IGRA} = 0.64 (EXECUTE: 10 10 10 10 10 10 10 10	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25 (excluded) 209 est performance	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat e Total	r T+ reports (if app TST (B Yes 16 147 0 163	$d)_{TST} = 1.25$ $e = NR$ $licable)$ $\geq 10mm)$ $CG \text{ status}$ No 5 41 0 46	95% CI: = NR Total 21 188 0 209	
I.32) OR (crude 1.34) OR (regree List of coordinate Total DOR (for 1.32) OR (crude 1.32) OR (crude 1.34) OR (crude 1.34) OR (crude 1.34)	e; for T ⁺ reportersion-based; evariates: NA orted measures Associates Asso	(GRA ()) _{IGRA} = 0.64 (9 reported) = 0.69 (95 reported) IGRA = 0.64 (TSPOT) Status No 17 22 7 (excluded) 46 Telegraphic Telegraphic T	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25 (excluded) 209 est performance 5% CI: 0.31,	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat e Total re parameters DOR (for T+ country of the countr	r T+ reponsional report reports (if app TST (app	d) _{TST} = 1.25 orted) = 1.25 (9) reported) $_{TST}$ = 1.25 e = NR licable) (2) ≥10mm) (2) CG status (3) No (4) 5 (4) 41 (0) 46 (1) TST (1) d) _{TST} = 0.89 (9)	95% CI: Total 21 188 0 209	
I.32) OR (crude 1.34) OR (regree List of coordinate Total DOR (for 1.32) OR (crude 1.34)	e; for T ⁺ reported ession-based; evariates: NA orted measure Associated Ass	(GRA ()) _{IGRA} = 0.64 (9) reported) = 0.69 (95) reported) _{IGRA} = 0.64 (7) reported) _{IGRA} = 0.64 (9) reported) _{IGRA} = 0.64 (9)	5% CI: 0.31, 5% CI: 0.36, = NR Total 65 119 25 (excluded) 209 est performance 5% CI: 0.31, 5% CI: 0.36,	CI: 0.55, 2.82) OR (crude; for 0.55, 2.82) OR (regression List of covaria Other reported and BCG status TST + TST - Indeterminat e Total re parameters DOR (for T+ country of the countr	r T+ reports (if app TST (B Yes 16 147 0 163	d) _{TST} = 1.25 orted) = 1.25 (9) reported) $_{TST}$ = $_{CST}$ = NR licable) ≥10mm) CG status No 5 41 0 46 FST d) _{TST} = 0.89 (9) orted) = 0.89 (9)	95% CI: Total 21 188 0 209 95% CI:	

Other reported measure	- NR	Other reported mea	sure – NR	
		scordance (if applicable)		
		alue, BCG vaccination st		
Total sample	atilied by 151 cut-off va	alue, DCG vaccination st	atus, and/or condition	
Total Sample	TST + (≥10mm)	TST -	Total	
IGRA (TSPOT) +	151 + (≥10Hill) 15	48	63	
IGRA (TSPOT) -	5	116	121	
Indeterminate	1 (excluded)	24 (excluded)	25 (excluded)	
Total	20	164	184	
	20	104	184	
Description	4-4-1 if -4-4ifi-11 DC	C 1'' '.C\-	4-4-1	
		G or condition – specify):	totai	
TST + threshold: ≥10n	<u>1m</u>			
Parameters 22 (050) GV	0.10.0.04)			
Kappa = 0.23 (95% CI	<u> </u>			
	184 = 71.2% (95% CI: 64	,		
% discordance = 53/18		CI: 22.75, 35.73)		
Stratification (BCG v				
	TST + (≥10mm)	TST -	Total	
IGRA (TSPOT) +	10	38	48	
IGRA (TSPOT) -	5	92	97	
Indeterminate	NR	NR	NR	
Total	15	130	145	
Description				
•	, total, if stratified by BC	G or condition – specify):	BCG vaccinated	
TST + threshold: ≥10n	Ţ	1 7/		
Parameters				
Kappa = $0.19 (95\% CI)$: 0.06, 0.31)			
**	145 = 70.34% (95% CI: 6	(2.46, 77.18)		
	5 = 29.66% (95% CI: 22.			
Stratification (specify		02, 37.31)		
or armeation (speeny	TST +	TST -	Total	
IGRA +	NR	NR	NR	
IGRA -	NR	NR NR	NR	
Indeterminate	NR NR	NR NR	NR	
Total	NR	NR	NR	
Description	1 'C	G 11:1 16.)	110	
<u> </u>	, total, if stratified by BC	G or condition – specify):	NK	
TST + threshold: NR				
Parameters				
Kappa = NR				
% concordance = NR				
% discordance = NR				
	Othe	r outcomes		
Test and cut-off (if	Adverse event	ts n/N (%)	Health related quality of	
applicable)	(specify)		life mean score (SD)	
			(specify)	
IGRA:		NR	NR	
		NR	NR	
TST:		1111		
		NR	NR	
	Con	NR	NR	
TST: Test 3 (specify): Authors:	Con		NR	

further longitudinal studies are awaited to determine whether the ability of T-SPOT.TB assay to detect

LTBI in renal transplant recipients can better predict the development of TB than can TST after transplantation. Neither univariate nor multivariate analysis showed any association between the clinical risk for LTBI and positivity on TSPOT or TST

Reviewers:

TSPOT had better sensitivity but lower specificity than TST regardless of the two thresholds; the DORs showed similar strength of association with LTBI composite risk factor; BCG status did not influence the test positivity of TST and IGRA differentially, neither did it influence corresponding kappas

Study details

First author surname year of publication: Kim 2013b¹²⁹

Country: Korea

Study design: Retrospective/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Clinic based

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Grant of the Korean Health Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea

Aim of the study

To compare the results of the TST and QFTGIT as methods for screening for LTBI and determined the agreement between the TST and QFT-GIT in renal transplant candidates before transplantation in a country with an intermediate TB burden

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (kidney transplant candidates before transplantation)

Participants

Recruitment dates: May 2010 and February 2012

Total N of recruited patients: NR

Inclusion criteria: Kidney transplant adult candidates before transplantation

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 126

Total N of patients with valid results for both IGRA and TST: 113

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: Agreement, association of test positivity with risk factors, influence of

BCG vaccination

Characteristics of participant (total study sample)

Mean (range or SD) age (years): 47 (20–69)

Women (n [%]): 55 [43.6] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 115 [91.3] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): End-stage renal disease (100 [79.4]), hemodialysis, (12 [9.5]), PD peritoneal

dialysis, no dialysis (14 [11.1])

Co-morbidity (n [%]): Hypertension (60 [47.6]), Diabetes (31 [24.6])

Type of during-study treatment (n [%]): NR

Number of patients tested

	Tot al N (test ed)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	126	53	67	6	120
TST (≥10mm):	126	35	91	7	119
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 113

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group – LTBI group

Non-exposed	No LTBI group								
Exposed 1 (specify):				a history of I	TBI or a	ctive	TB; (2) p	atients	with abnormal
1	chest		•			, , , , 1			
	radiog	raph findii	ngs consistent	t with pre	evious	sly healed	TB; ar	nd (3) patients	
		with a	history of	close contact	with act	ive pu	ılmonary	TB pat	ients within
the past year									
Exposed 2 (spec		NA							
Exposed 3 (spec		NA NA							
Exposed 4 (spec									
Tests	T .					1			_
				gy, timing fo	r test		Cut-off		Other
]	measui	rement, m	anufacturer			ues/thres		information
ICDA (OET	OvertiEl	7DON	TD C 14 I	n Tuba taat			inition of		NA
IGRA (QFT- GIT)	-			n-Tube test amples were		_	ositive QF result wa		NA
GII)	_			for QFT-GIT	,		ned as IFI		
				test according			onse of T		
				s (Cellestis L		_	gen minus		
				lia). Blood sa			ne Nil tub		
				ood collection		≥0.3	5 IU/mL	and	
	(1 mL ea	ch): on	e containir	ng heparin alo	one (Nil	≥25	% of the		
	tube, neg	gative c	ontrol), on	e with		nega	ative cont	rol	
				gen tube, pos		valu	e		
				specific antig	•				
				3 7.7). The thi					
				0 h at 37°C.					
				s measured b	•				
		-	are provide	nosorbent assa	ay.				
			_	calculating t	he				
	results	turer w	us used for	carculating t					
TST (≥5mm		was pe	erformed b	y injecting a	2-TU	The transverse			NA
or ≥10mm)				s Serum Insti		induration site was			
,	Copenha	gen, D	enmark) in	tradermally in	nto the	mea	measured by a		
	forearm,	which	was in acc	ordance with	the	trained nurse in			
	Mantoux	metho	d			mm after 48–72 h			
							ration ≥1		
							defined a		
A		1.	1	1 6 4	TDD /**		tive TST	result	
Association bet		result	s and incid	ience of activ	e IR (if				
	IGRA Incid	ence	Total		Incide		TST active		Total
	of ac		1 Otal		metuel	TB	active		1 Otal
	T					עו			
	Yes	N			Yes		No		
		0					- 10		
IGRA +	NA	N	NA	TST +	NA		NA		NA
		A							
IGRA -	NA	N	NA	TST -	NA	NA NA N		NA	
		A							
Indeterminate	NA	N	NA	Indetermi	NA		NA		NA
		A	+ = :	nate					
Total	NA	N	NA	Total	NA		NA		NA
		A							

Test performance parameters										
IGRA				TST						
					Sensitivity = NA					
					ecificity = NA					
	PPV = NA									
NPV = NA										
	ncidence _{IGRA+}	- NΔ			V = NA mulative Incidence	- NΔ				
	ncidence _{IGRA-}				mulative Incidence					
	ncidence Ratio		NΙΛ		mulative Incidence					
	sity rate _{IGRA+}		IVA		idence density rate					
	isity rate _{IGRA+}				idence density rate					
	sity rate _{IGRA}				idence density rate					
	d measure _{IGRA}		NA.		ner reported measur					
Other reporte	d measure IGRA		orican ba		en tests (IGRA vs					
Ratio of cum	ulative inciden			iwe	ten tests (IGNA vs	. 151)				
	lence density ra									
	$\frac{1}{1}$ d measure = N		08 – INA							
			toot mean	ta a	nd lovels of TD	nogura (if annlis	oblo)			
	IGRA (QFT-		iest resul	is a	nd levels of TB ex	posure (II applica TST (≥10mm)	abie)			
	Exposure 1		Total			Exposure le	ovol	Total		
	High/Yes	Low	Total			High/Yes	Low/	Total		
	High/Tes	/No				nigh/ i es	No			
IGRA +	11	42	53		TST +	13	10	23		
IGRA -	4	63	67		TST -	2	94	96		
Indetermina	1	5	6		Indeterminate	1	6	7		
te	1	3	(exclude	ьd	macterminate	1	0	(exclud		
te			(exclude	cu				ed)		
Total	16	110	126		Total	16	110	126		
Total	10	1		forn	nance parameters	10	110	120		
	IGRA		1 cst pc11		nance parameters	TST				
Sensitivity =	$\frac{13101}{11/15} = 73.339$	% (95%	CI: 48 0							
89.1)	11,10 ,0.00	(5570	C1. 10.00	5, Sensitivity = 13/13 = 00.07/0 (75/0 Cl. 02.12, 70.20)						
	63/105 = 60.00	0% (959	% CI:	Specificity = 94/104 = 90.38% (95% CI: 83.2,						
50.44, 68.86)		(94.69)						
	= 20.75% (959	% CI: 12	2.00,		PPV = 13/23 = 56.52% (95% CI: 36.81, 74.37)					
33.46)	`		,		·					
NPV = 63/67	= 94.03% (95	% CI: 8	5.63,		NPV = 94/96 = 97.92% (95% CI: 92.72, 99.43)					
97.65)										
DOR (for T ⁺	calculated) = 4	.12 (95	% CI: 1.2	23,						
13.82)				310.4)						
· ·	or T ⁺ reported)	= 4.13 ((95% CI:	OR (crude; for T^+ reported) = 0.61 (95% CI: 0.13,						
1.23, 13.82)				2.91) -error						
	on-based; repor	rted) = 4	4.62 (95%							
CI: 1.15, 18.6	•			0.07. 2.20) -error						
	List of covariates: NR					List of covariates: NR				
Other reporte	d measure = N				Other reported me					
					en tests (IGRA vs	. TST)				
	Rs (for T ⁺ calcu			5% (CI: 0.02, 0.19)					
	crude; for T ⁺ r									
	Ratio of ORs (regression-based; reported) = NA									
Other reporte	Other reported measure = NA									
			veen test	rest	ults and BCG statu					
	IGRA (QFT-	GIT)				TST (≥10mm)				

	BCG status		Total	R		G status	Total			
	Yes	No	Total		Yes	No	Total			
IGRA +	50	3	53	TST +	22	1	23			
IGRA -	60	7	67	TST -	86	10	96			
Indetermi	5	1	6	Indetermina	7	0	7			
nate	3	1	(excluded)	te	,		(excluded)			
Total	115	11	126	Total	115	11	126			
Total	113	11		mance parame	<u> </u>	11	120			
	IGRA TST									
DOR (for 7			94 (95% CI:	DOR (for T ⁺ o			(95% CI:			
0.47, 7.91) 0.32, 21.06)										
OR (crude; 0.48, 7.91)	OR (crude; for T^+ reported) = 1.94 (95% CI: OR (crude; for T^+ reported) = 2.56 (95% CI: 0.31,									
	sion-base	d; reported)	$_{\text{IGPA}} = 2.32$		n-based: re	ported) $_{TST} = 3.3$	32 (95% CI:			
(95% CI: 0			GKY	0.38, 28.97)		151				
List of cov				List of covaria	ates: NR					
Other repor				Other reported		: NR				
				iscordance (if a						
				alue, BCG vac		atus, and/or co	ndition			
Total sam	ple									
		TST - (≥10mi		TST -		Т	otal			
IGRA (QF	T-GIT) +	17)	33		50				
IGRA (QF		6		57		63				
Indetermin		0		6		cluded)				
Total		23		96		119				
Descriptio	n									
		g., total, if s	tratified by BC	CG or condition	– specify):	total				
TST + thre					•					
Parameter	·s									
Kappa = 0.	26 (95% (CI: 0.10, 0.4	1)							
			% (95% CI: 50							
			% (95% CI: 26	5.39, 43.66)						
Stratificat	ion (speci	fy group 2)								
			T +	TST -			otal			
IGRA +			IR .	NR			NR			
IGRA -			IR	NR			NR			
Indetermin	ate		IR .	NR			NR			
Total		N	IR	NR			NR			
Descriptio		1.10	101 11 70		10.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
			tratified by BC	CG or condition	– specify):	NK				
TST + thre										
Parameter										
Kappa = N)								
% concorda										
% discorda	nce = NK		Oth	on outcomes						
Test and c	ut_off (if		Otno Adverse events	er outcomes	·	Health related	quality of			
applicable	,		specify)	э ш/т ч (70)		Heann reiated life mean scor	-			
applicable	,		specify)			(specify)				
IGRA:				NR		(speerly) NR				
TST:				NR		NR NR				
Test 3 (spe	ecify):			NR		NR				
Test o (spt	rest 5 (specify).									

Conclusions

Authors:

The positive results for QFT-GIT were associated with risk for LTBI, however not for TST (error); agreement between the two tests was fair

Reviewers

TST better performed than GIT in accuracy measures (sensitivity, PPV, specificity, DOR); BCG did not influence TST and IGRA differentially

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Kim 2013c¹³⁰

Country: Korea

Study design: Retrospective cohort/cross-sectional study (with prospective part) **Study setting** (e.g., outbreak investigation, community-based - specify): NR

Number of centres: NA

Total length of follow up (if applicable): Mean 24.6 \pm 14.4 months

Funding (government/private/manufacturer/other - specify): The Korea health care technology R &

D project, ministry for health, welfare and family affair, republic of Korea.

Aim of the study

To compare the QuantiFERON-TB Gold In tube test (QFT-GIT) with the tuberculin skin test (TST)

for screening of LTBI in kidney transplant recipients (KTRs)

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Kidney transplant recipients (KTRs)

Participants

Recruitment dates: Between July 2008 and July 2012

Total N of recruited patients: 109

Inclusion criteria: Kidney transplant recipients

Exclusion criteria: NR

Total N of excluded patients: 4 with indeterminate QFT-GIT results (excluded for analysis)

Total N of patients tested with both IGRA and TST: 97

Total N of patients with valid results for both IGRA and TST: 93

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: Test results, concordance between TST and QFT-GIT

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 44.7 ± 11.5

Women (n [%]): 41 (38) Race/ethnicity (n [%]): NR Geographic origin (n[%]):NR BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): 3 [2.8] Total incidence of active TB (n [%]):1 [0.9]

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR

Co-morbidity (n [%]): Glomerulonephritis (19 [17.4]); hypertensive nephrosclerosis (11 [10.1]); diabetes mellitus (31 [28.4]); Unknown (34 [31.2]); polycystic kidney disease (2 [1.8]); Others (12 [11.0])

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (specify): QFT-	106	21	81	4	102
GIT					
TST≥10mm:	97	12	81	0	93
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 97

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group

Non-exposed NR

Exposed 1 (s)	necify	<i>i</i>): 1	History o	of treated tubero	zulosis					
Exposed 2 (s)				al chest radiogra						
Exposed 3 (s)			NA	<u> 011050 100010 81</u>						
Exposed 4 (s)			NA							
Tests	<u> </u>									
	Ass	av used	l, metho	dology, timing	Cut-off va	lues/thre	sholds	Other		
				urement,	,	tion of tes		information		
			nanufac			2 32220000				
IGRA	Qua	ntiFER	ON- Go	ld In-Tube	A positive QF	A positive QFT-GIT was defined NA				
			was per		as $\geq 0.35 \text{ IU/r}$	as ≥ 0.35 IU/mL and $\geq 25\%$ in				
		_		nufacturer's	the presence of TB-specific					
			(Celles		antigen minus	that of th	e Nil			
				Australia)	tude					
TST≥10		•		on the volar	The TST was			NA		
mm				by injection of	if the size of t					
				lose of perified	\geq 10 mm at 48	to 72 hou	irs after			
				T-23 according	the injection.					
A age -i-4:			oux met		of action TD (*e					
Association	oetwe			and incidence	of active TB (if a		-			
		IGR Incid		Total		Inciden	ST	Total		
		of ac		Total		active		Total		
		T				active	1 1 1			
		Yes	No			Yes	No			
IGRA +		NA	NA	NA	TST +	NA NA	NA	NA		
IGRA -			NA	TST -	NA	NA	NA			
	Indeterminate NA NA		NA	Indeterminate	NA	NA	NA			
Total		NA	NA	NA	Total	NA	NA	NA		
				Test perform	ance parameters					
		IGR	A	<u> </u>	TST					
Sensitivity =	NA				Sensitivity = NA					
Specificity =	NA				Specificity = NA					
PPV = NA					PPV = NA					
NPV = NA					NPV = NA					
Cumulative In					Cumulative Inc	idence _{TST}	$r_+ = NA$			
Cumulative In	ncide	nce _{IGRA}	L = NA		Cumulative Inc	idence _{TST}	$r_{-} = NA$			
Cumulative In	ncide	nce Rat	io _{IGRA} =	NA	Cumulative Inc			NA		
Incidence der	nsity r	ate _{IGRA}	$_{+} = NA$		Incidence densi	ty rate _{TST}	$r_{+} = NA$			
Incidence der					Incidence density rate _{TST-} = NA					
Incidence der					Incidence density rate ratio $_{TST} = NA$					
Other reporte	d mea	asure _{IGI}			Other reported		ST = NA			
					n tests (IGRA vs	a. TST)				
Ratio of cum										
Ratio of incid				os = NA						
Other reporte				14 33 3	e IIID	T' 4		1 1 1 1		
Associatio				its and levels o	f TB exposure (I			uberculosis)		
	IGR		Γ-GIT)	T . 1		TST≥1		T . 1		
		_	osure	Total		⊏xposu	re level	Total		
	-		vel No	 	-	Vac	Νīο	1		
IGRA +		Yes 2	17	19	TST +	Yes NR	No NR	12		
IGRA +		$\frac{2}{0}$	74	74	TST -	NR	NR	81		
Indeterminate	<u>, </u>	NR	NR	4	Indeterminate	NR	NR	0		
macteriiiiate	,	111/	111/	+	mucicimilate	111/	111/	U		

	1		(1-1-1)				
T-4-1	2	0.1	(excluded)	T-4-1	MD	ND	02
Total	2	91	93 T. 4 C	Total	NR	NR	93
	IGRA		1 est periorm	ance parameter	S TST	ח	
Sansitivity - 2/2 -		50/ CI (24.24.100)	Sensitivity = NI			
Sensitivity = $2/2$ = Specificity = $74/9$				Specificity = NI			
88.00)	1 – 61.32	%, 95%	CI (72.10,	Specificity – Ni	X		
PPV = 2/19 = 10.5	30/ 050/	CI (2.0	2 21 20)	PPV = NR			
NPV = 74/74 = 10.3				NPV = NR			
$\frac{1}{1}$ DOR (for T ⁺ calcu			00, 100)	DOR (for T ⁺ cal	loulated) - N	JD	
OR (crude; for T ⁺)				OR (crude; for			
OR (regression-ba			21 05%	OR (regression-			P (NS)
CI (NR)	seu, repo	rieu) – s	7.21, 9370	List of covariate		(10u) – M	(113)
List of covariates:	NR			List of Covariate			
Other reported me		IR		Other reported i	neasure = N	TR	
Other reported me	abare – r		arison hetwe	en tests (IGRA v			
Ratio of DORs (fo	r T ⁺ calcı			MIDI) CIGIMI V			
Ratio of OR (crude							
Ratio of ORs (regr		_					
Other reported me			1,11				
			lts and levels	of TB exposure	(Abnormal	chest ra	diograph)
	RA (QFT				TST TST≥		
	Expo		Total		Exposure		Total
	lev				1		
	Yes	No			Yes	No	
IGRA +	3	16	19	TST +	NR	NR	12
IGRA -	1	73	74	TST -	NR	NR	81
Indeterminate	0	0	4	Indeterminate	NR	NR	0
			(excluded)				
Total	4	89	93	Total	NR	NR	93
		-	Test perform	ance parameter			
	IGRA			TST			
Sensitivity = 3/4 = 95.44)	75.00%,	95% CI	(30.06,	Sensitivity = NR			
Specificity = 73/89 88.62)	$\theta = 82.02$	%, 95%	CI (72.77,	Specificity = NR			
PPV = 3/19 = 15.7	9% 95%	CI (5.5	2. 37.57)	PPV = NR			
NPV = 73/74 = 98				NPV = NR			
DOR (for T ⁺ calcu 140.30)				$DOR (for T^+ calculated) = NR$			
OR (crude; for T ⁺ 1	reported)	= NR		OR (crude: for '	T ⁺ reported)	= NR	
OR (regression-ba			27.95 95%	OR (crude; for T ⁺ reported) = NR OR (regression-based; reported) = NR (NS)			R (NS)
CI (1.22, 636.62)	, 10p0		, , , , , , , ,	List of covariate		- 111	- (1 10)
List of covariates: NR							
Other reported measure = NR Other reported measure = NR							
			arison betwee	en tests (IGRA v			
Ratio of DORs (fo	r T ⁺ calcı						
Ratio of OR (crude	e; for T ⁺ r	eported	= NR				
Ratio of ORs (regression-based; reported) = NR							
Other reported measure = NR							
	Association between test results and BCG status (if applicable)						
IGR	A (TSPC	T/QFT	<u> </u>		TST (≥	10 mm)	
BCG status Total					BCG	status	Total

			1					
	Yes	No			Yes	No		
	NR	NR	NR	TST +	NR	NR	NR	
	NR	NR	NR	TST -	NR	NR	NR	
	NR	NR	NR	Indeterminate	NR	NR	NR	
Total	NR	NR	NR	Total	NR	NR	NR	
Test performance parameters								
IGRA (TSPOT/QFT) TST (>5 mm)								
DOR (for T^+ calculated) _{TSPOT/QFT} = NR DOR $_{TST}$ (for T^+ calculated) = NR OR (smaller for T^+ represented). NR								
$OR \text{ (crude; for T}^+ \text{ reported)} = NR$ $OR \text{ (crude; for T} + \text{ reported)} = NR$ $OR \text{ (regression-based; reported)}_{OFT} = NR$ $OR \text{ (regression-based; reported)}_{TST} = NR$								
	_					ported) _{TS}	$_{\mathrm{T}}=\mathbf{NR}$	
OR (regression-base		rtea) _{TSPC}	$_{ m T}={ m N}{ m K}$	List of covariate	es: NK			
List of covariates:N Other reported mea		ID.		Other memerted		_ NID		
Between-test agree			ana and disc	Other reported		- INIX		
This table may be						and/ar	oondition	
Total sample	Stratifie	a by 18	or cut-on van	ue, BCG vaccinau	on status	, and/or c	contaition	
Total Sample		тс	T +	TST -			Total	
IGRA +			5	131 -			19	
IGRA -			6	68			74	
Indeterminate			0	0			0	
Total			2	81			93	
Description			2	01			73	
Sample definition (e.g., tota	ıl. if stra	tified by BCG	or condition – spec	eify): Tota	al less Ind	eterminate	
results	c.g., tota	., 5	inica of Boo	or condition spec), 10tt	ar 1055 1110		
$TST + threshold: \ge 1$	10 mm							
Parameters								
Kappa = 0.27, 95% CI (0.07, 0.46)								
% concordance = 74			95% CI (70.28	, 86.51)				
% discordance = 19			•	-				
Stratification (spec	cify gro	up 1)						
		TS	T +	TST -			Total	
IGRA +		N	R	NR			NR	
IGRA -		N	R	NR			NR	
Indeterminate		N	R	NR			NR	
Total		N	R	NR			NR	
Description								
Sample definition (ıl, if stra	tified by BCG	or condition - spec	cify): NR			
TST + threshold: N	R							
Parameters								
Kappa = NR								
% concordance = N								
% discordance = N								
Stratification (spec	cify gro							
			T +	TST -			Total	
IGRA +			R	NR			NR	
IGRA -			R	NR			NR	
Indeterminate			R	NR			NR	
Total		N	R	NR			NR	
Description		1 10			10 \ 7==			
Sample definition (ıl, if stra	titied by BCG	or condition – spec	eify): NR			
TST + threshold: NR								
Parameters Kappa = NR								

% concordance = NR							
% discordance = NR							
Other outcomes							
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)					
IGRA:	NR	NR					
TST:	NR	NR					
Test 3 (specify):	NR	NR					
Conclusions							

Authors:

The authors concluded that there was overall fair agreement between the QFT-GIT and TST. Furthermore, they stated that a superiority of QFT-GIT [and] TST was not demonstrated and this may be a result of the clinical risk factors for LTBI

Reviewers:

No TST based ORs data reported

Study details

First author surname year of publication: Kleinert 2012¹³¹

Country: Germany

Study design: Retrospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Hospital-based

Number of centres: 62

Total length of follow up (if applicable): NA (no prospective follow-up)

Funding (government/private/manufacturer/other - specify): Abbott, Pfizer, Roche and Wyeth,

Chugai, Cellestis Ltd, Oxford Immunotec Ltd, Pharmore Ltd, and Roche

Aim of the study

To compare the utility of IGRA and TST in LTBI screening in a large cohort of patients with rheumatic diseases receiving immunosuppressive therapy

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (rheumatoid arthritis (RA), ankylosing spondylitis (AS), psoriatic arthritis (PsA) prior to the initiation of anti-tumour necrosis factor therapy)

Participants

Recruitment dates: NR

Total N of recruited patients: NR

Inclusion criteria: Patients with rheumatic diseases

Exclusion criteria: NR

Total N of excluded patients: None

Total N of patients tested with both IGRA and TST: 1609

Total N of patients with valid results for both IGRA and TST: 1529 (80 had indeterminate IGRA)

Methods of active TB diagnosis (if applicable): NR

Outcomes (**study-based**) **list:** Influence of risk factors on test results, agreement/disagreement (total, by age, sex, and risk factor), association between test and clinical risk factors for LTBI (construct)

Characteristics of participants (total study sample)

Mean (range or SD) age (years): mean age range (50.8-59.5)

Women (n [%]): 937 [61.3] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 204 [13.3]

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes

Clinical examination (yes/no): Yes

Morbidity (n [%]): 852 [55.7] Rheumatoid arthritis (RA), (294 [19.2]), ankylosing spondylitis (AS) (215 [14.0]), psoriatic arthritis (PsA) (92 [6.0]), undifferentiated spondyloarthropathy (SpA) and (76 [5.0]) various other rheumatologic disorders

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Immunosuppressive therapy (not specified)

Number of patients tested

	Total N (tested)	Total N	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-G):	NR	(test+) 50	635	NR	685
IGRA (TSPOT):	NR	70	774	NR	844
TST (≥5mm):	1609	173	1356	80 (QFT + TSPOT)	1529

Total N of patients with valid results for both IGRA and TST: 1529

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group										
Non-exposed					d risk factors (CRF) were present					
					or (CRF) defined as the presence of at least one of					
					rs: 1) history of prior TB, 2) close contact to a patient					
F 12 (•••		or 3) CXR	sug	ggestive of LTBI					
Exposed 2 (spe		NA								
Exposed 3 (spe		NA								
Exposed 4 (spe Tests	cny):	NA								
Tests	A scay 11	sed metho	ndology	Π	Cut-off			Other	· information	
	Assay used, methodology, timing for test				values/threshold	ls		Other	mormation	
		easuremer		Definition of test+						
	m	anufactur	er							
IGRA (QFT-		on TB Gol		N	R		Al	l patier	nts received one	
G)		red in acco	rdance						GRA, either	
	with cont							POT.T		
	guideline						_		ending on what	
		uppressed pere mainly							able in the iding laboratory	
		•	based on				COI	respor	iding laboratory	
	the two peptide antigens ESAT-6 and CFP-									
	10									
IGRA	TSPOT.T	B (TSPOT	')	Tł	ne cut-off for TSP	OT	Al	l patier	nts received one	
(TSPOT)	administe	red in acco	rdance	pc	positivity was ≥6 spots				GRA, either	
	with contemporary							POT.T		
	guideline								ending on what	
	immunosuppressed patients;							was available in the		
		ere mainly	based on					corresponding laboratory		
	the two po	epuae ESAT-6 an	d CED							
	10	ZSAT-U all	u CIT-							
TST	NR			TS	TST with a diameter of			All patients received a		
					≥5 mm skin induration			T		
				wa	was considered positive					
Association be	tween test	results and	d incidenc	e of	active TB (if ap)	plicab	ole)			
	IGR		1		TST Incidence of Total					
		lence of	Total						Total	
		ve TB					tive			
ICD A	Yes	No	NT A		TOT .	Yes		No	NTA	
IGRA + IGRA -	NA NA	NA NA	NA NA		TST +	NA NA		NA NA	NA NA	
Indeterminate		NA NA	NA NA		Indeterminate	NA		NA NA	NA NA	
Total	NA	NA	NA		Total	NA		NA	NA	
Total	1411		L	mai	nce parameters	1 12 3	•	1121	1171	
	IGR		oo porror				TS	T		
Sensitivity = N.					Sensitivity = NA	Λ				
Specificity = N.	A				Specificity = NA	4				
PPV = NA					PPV = NA					
NPV = NA					NPV = NA					
Cumulative Inc					Cumulative Inci					
Cumulative Inc					Cumulative Incidence _{TST-} = NA					
Cumulative Inc			A		Cumulative Inci					
Incidence densi	ty rate _{IGRA}	₊ = NA			Incidence density rate $_{TST+} = NA$					

Incidence density	Incidence density rate $_{IGRA-} = NA$ Incidence density rate $_{TST-} = NA$							
Incidence density				Incidence density rate ratio _{TST} = NA				
Other reported me				Other reported measure $_{TST} = NA$				
Other reported me			hetween	tests (IGRA vs.		-1171		
Ratio of cumulativ				tests (TORA VS.	101)			
Ratio of camaratry								
Other reported me		14105 – 11	7.1					
		een test re	culte and	levels of TB exp	oosure (if a	nlicable)		
	GRA (QFT-		suits and	levels of TD exp	TST (≥5	_		
1	Exposur	_	Total		Exposur		Total	
	High/Yes	Low/No	Total		High/Yes	Low/No	10.01	
IGRA +	9	41	50	TST +	48	125	173	
IGRA -	45	590	635	TST -	74	1282	1356	
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR	
Total	54	631	685	Total	122	1407	1529	
1 Otal	J 4			nce parameters	144	1407	1347	
T	CDA(OFT		<u>Jerrorina</u>		TCT (> F			
	GRA(QFT-	•)2	Consitivity - 10	$\frac{TST}{(>5)}$		CI. 21 12	
Sensitivity = 9/54 28.74)	= 10.0/% (9	5% CI: 9.0	12,	Sensitivity = 48 48.21)	8/122 = 39.3	4% (93% (ار. 31.13,	
Specificity = 590/	631 = 93.5%	(95% CI:	91.3,	Specificity = 12	282/1407 = 9	91.12%	(95%	
95.17)				CI: 89.52, 92.49	9)			
PPV = 9/50 = 18.00% (95% CI: 9.77, 30.8)				PPV = 48/173 =	= 27.75% (9	5% CI: 21.	61, 34.85)	
NPV = 590/635 = 92.91% (95% CI: 90.65, 94.66)				NPV = 1282/13 95.63)	356 = 94.549	% (95% CI	: 93.2,	
DOR (for T^+ calculated) = 2.88 (95% CI: 1.31,				DOR (for T ⁺ calculated) = 6.65 (95% CI: 4.42,				
6.29)	non out od) 1	NID.		9.99) OR (crude; for T ⁺ reported) = NR				
OR (crude; for T)50/ CI.					
OR (regression-ba 1.15, 5.98)	•	(3) = 2.63	95% CI:	OR (regression-based; reported) = 6.20 (95% CI: 4.08, 9.44)				
List of covariates:	NR			List of covariates: NR				
Other reported me	asure = NR			Other reported measure = NR				
	C	Compariso	n betweer	tests (QFT vs.	TST)			
Ratio of DORs (fo	or T ⁺ calculat	ted) = 0.43	(95% CI:	0.28, 0.68)				
Ratio of OR (crud	e; for T ⁺ rep	orted) = NI	2					
Ratio of ORs (regi	ression-base	d; reported) = 0.42 (9)	95% CI: 0.26, 0.6	58)			
Other reported me	asure = NR							
Assoc	ciation betw	een test re	sults and	nd levels of TB exposure (if applicable)				
I	GRA (TSPC	T)			TST (≥5	mm)		
	Exposu	e level	Total		Exposu	re level	Total	
	High/Yes	Low/No			High/Yes	Low/No		
IGRA +	24	46	70	TST +	48	125	173	
IGRA -	44	730	774	TST -	74	1282	1356	
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR	
Total	68	776	844	Total	122	1407	1529	
		Test 1	oerformai	nce parameters				
I	GRA (TSPC	_			TST (≥5	mm)		
Sensitivity = 24/68 47.16)			5.00,	Sensitivity = 48 48.21)			CI: 31.13,	
Specificity = 730/776 = 94.07% (95% CI: 92.18,				Specificity = 1282/1407 = 91.12% (95% CI:				
95.53)				89.52, 92.49)				
PPV = 24/70 = 34				PPV = 48/173 = 27.75% (95% CI: 21.61, 34.85)				
NPV = 730/774 = 95.74)	94.32%	(95% CI	: 92.45,	NPV = 1282/1356 = 94.54% (95% CI: 93.2, 95.63)				
/				1 /				

15.46) 9.99 OR (crude; for T ⁺ reported) = NR OR (crude; for T+ reported) = NR OR (regression-based; reported) = 8.74 (95% CI: 4.83, 15.82) 4.08, 9.44) List of covariates: NR List of covariates: NR
OR (regression-based; reported) = 8.74 (95% CI: 4.83, 15.82)
4.83, 15.82) List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated) = 1.30 (95% CI: 0.91, 1.87) Ratio of OR (crude; for T ⁺ reported) = NR Ratio of ORs (regression-based; reported) = 1.41 (95% CI: 0.97, 2.04) Other reported measure = NR Association between test results and BCG status (if applicable) IGRA (TSPOT/QFT) BCG status Total Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Total 204 1325 1529 Total 204 1325 1525 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR TST (for T+ calculated) = 3.17 (95 0.47, 1.51)
List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated) = 1.30 (95% CI: 0.91, 1.87) Ratio of OR (crude; for T ⁺ reported) = NR Ratio of ORs (regression-based; reported) = 1.41 (95% CI: 0.97, 2.04) Other reported measure = NR Association between test results and BCG status (if applicable) IGRA (TSPOT/QFT) BCG status Total Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Total Tot
Other reported measure = NRComparison between tests (IGRA vs. TST)Ratio of DORs (for T⁺ calculated) = 1.30 (95% CI: 0.91, 1.87)Ratio of OR (crude; for T⁺ reported) = NRRatio of ORs (regression-based; reported) = 1.41 (95% CI: 0.97, 2.04)Other reported measure = NRAssociation between test results and BCG status (if applicable)IGRA (TSPOT/QFT)TotalBCG statusTotalYesNoYesNoIGRA +14106120TST +50123173IGRA -19012191409TST -15412021356IndeterminateIndeterminateIndeterminateTotal20413251529Test performance parametersIGRA (TSPOT/QFT)TST (≥5 mm)DOR (for T⁺ calculated) TSPOT/QFTDOR $_{TST}$ (for T+ calculated) = 3.17(95)O.47, 1.51)OOR $_{TST}$ (for T+ calculated) = 3.17(95)
Comparison between tests (IGRA vs. TST)Ratio of DORs (for T+ calculated) = 1.30 (95% CI: 0.91, 1.87)Ratio of OR (crude; for T+ reported) = NRRatio of ORs (regression-based; reported) = 1.41 (95% CI: 0.97, 2.04)Other reported measure = NRAssociation between test results and BCG status (if applicable)IGRA (TSPOT/QFT)TST (≥5 mm)BCG statusTotalYes NoIGRA + 14 106 120 TST + 50 123 173IGRA - 190 1219 1409 TST - 154 1202 1356IndeterminateIndeterminateTotal 204 1325 1529 Total 204 1325 1529Test performance parametersIGRA (TSPOT/QFT)TST (≥5 mm)DOR (for T+ calculated) TSPOT/QFT = 0.84 (95% CI: 0.47, 1.51)DOR $_{TST}$ (for T+ calculated) = 3.17 (95)OCI: 2.19, 4.58)
Ratio of DORs (for T ⁺ calculated) = 1.30 (95% CI: 0.91, 1.87) Ratio of OR (crude; for T ⁺ reported) = NR Ratio of ORs (regression-based; reported) = 1.41 (95% CI: 0.97, 2.04) Other reported measure = NR **Association between test results and BCG status (if applicable)* **IGRA (TSPOT/QFT)** **BCG status** Total** **BCG status** Total** **BCG status** **Tota** **Yes** No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate** Total** Total** **Indeterminate** Total** **204 1325 1529 Total 204 1325 1529 **Test performance parameters* **IGRA (TSPOT/QFT)** **Test performance parameters* IGRA (TSPOT/QFT)** **Test performance parameters* **Total** **DOR (for T ⁺ calculated)** **Total** **DOR (for T ⁺ calculated)** **Total** **DOR (for T ⁺ calculated)** **Total** **Total** **DOR (for T ⁺ calculated)** **Total** **Total** **Total** **DOR (for T ⁺ calculated)** **Total** **Total** **Total** **DOR (for T ⁺ calculated)** **Total** **Total** **Total** **DOR (for T ⁺ calculated)** **Total** **Total** **DOR (for T ⁺ calculated)** **Total** **Total** **Total** **DOR (for T ⁺ calculated)** **Total**
Ratio of OR (crude; for T ⁺ reported) = NR Ratio of ORs (regression-based; reported) = 1.41 (95% CI: 0.97, 2.04) Other reported measure = NR Association between test results and BCG status (if applicable) IGRA (TSPOT/QFT)
Ratio of ORs (regression-based; reported) = 1.41 (95% CI: 0.97, 2.04) Other reported measure = NR Association between test results and BCG status (if applicable) IGRA (TSPOT/QFT) BCG status Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Total Test performance parameters IGRA (TSPOT/QFT) Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR _{TST} (for T+ calculated) = 3.17 (95 0.47, 1.51)
Other reported measure = NR Association between test results and BCG status (if applicable) IGRA (TSPOT/QFT) BCG status Total BCG status Total Yes No Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Indeterminate Indeterminate 1529 Total 204 1325 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR TST (for T+ calculated) = 3.17 (95 0.47, 1.51) CI: 2.19, 4.58)
Other reported measure = NR Association between test results and BCG status (if applicable) IGRA (TSPOT/QFT) BCG status Total BCG status Total Yes No Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Indeterminate Indeterminate 1529 Total 204 1325 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR TST (for T+ calculated) = 3.17 (95 0.47, 1.51) CI: 2.19, 4.58)
Association between test results and BCG status (if applicable) IGRA (TSPOT/QFT) BCG status Total BCG status Total Yes No Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Indeterminate Indeterminate 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR $_{TST}$ (for T+ calculated) = 3.17 (95 over 1.51) (95 over 1.52)
IGRA (TSPOT/QFT) TST (≥5 mm) BCG status Total Yes No Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Indeterminate Indeterminate 1529 Total 204 1325 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR $_{TST}$ (for T+ calculated) = 3.17 (95 or 2.19, 4.58)
$ \begin{array}{ c c c c c c } \hline & BCG \ status & Total & BCG \ status & Yes & No \\ \hline \hline & Yes & No & Yes & No \\ \hline \hline & IGRA + & 14 & 106 & 120 & TST + & 50 & 123 & 173 \\ \hline & IGRA - & 190 & 1219 & 1409 & TST - & 154 & 1202 & 1356 \\ \hline & Indeterminate & & Indeterminate & & \\ \hline & Total & 204 & 1325 & 1529 & Total & 204 & 1325 & 1529 \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$
Yes No Yes No IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Indeterminate 100 10
IGRA + 14 106 120 TST + 50 123 173 IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Indeterminate Indeterminate 204 1325 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR _{TST} (for T+ calculated) = 3.17 (95 circle) (95 circle) 0.47, 1.51) CI: 2.19, 4.58)
IGRA - 190 1219 1409 TST - 154 1202 1356 Indeterminate Indeterminate Indeterminate 204 1325 1529 Total 204 1325 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR $_{TST}$ (for T+ calculated) = 3.17 (95 or 1.51) (95 or 1.51)
Indeterminate Indeterminate Total 204 1325 1529 Total 204 1325 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: 0.47, 1.51) DOR $_{TST}$ (for T+ calculated) = 3.17 (95 (95 0.47, 1.51) CI: 2.19, 4.58) (95 (95
Total 204 1325 1529 Total 204 1325 1529 Test performance parameters IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: 0.47, 1.51) DOR _{TST} (for T+ calculated) = 3.17 (95 (95 0.47, 1.51) CI: 2.19, 4.58) (95
Test performance parametersIGRA (TSPOT/QFT)TST (≥5 mm)DOR (for T+ calculated) TSPOT/QFT = $0.84 (95\% CI: 0.47, 1.51)$ DOR TST (for T+ calculated) = $3.17 (95)$
IGRA (TSPOT/QFT) TST (≥5 mm) DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: 0.47, 1.51) DOR $_{TST}$ (for T+ calculated) = 3.17 (95 CI: 2.19, 4.58)
DOR (for T ⁺ calculated) _{TSPOT/QFT} = 0.84 (95% CI: DOR _{TST} (for T+ calculated) = 3.17 (95 0.47, 1.51)
0.47, 1.51) CI: 2.19, 4.58)
OR (regression-based; reported) _{QFT} = 0.43 (95% CI: OR (regression-based; reported) $_{TST}$ = 2.95
0.17, 1.10) (95% CI: 2.00, 4.35)
OR (regression-based; reported) _{TSPOT} = 1.07 (95% List of covariates: NR
CI: 0.47, 2.43) List of covariates: NR
Other reported measure = NR Other reported measure = NR Other reported measure = NR
Between-test agreement, concordance, and discordance (if applicable) This table may be stretified by TST out off value PCC vaccination status and/or condition
This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition
Total sample
TST + (≥5 mm) TST - Total
IGRA (QFT/TSPOT) + 66 54 120
IGRA (QFT/TSPOT) - 107 1302 1409
Indeterminate NR NR NR
Total 173 1356 1529
Description
Sample definition (e.g., total, if stratified by BCG or condition – specify): total
TST + threshold: >5 mm
Parameters
Kappa = 0.39 (95% CI: 0.34, 0.44)
% concordance = 1368/1529 = 89.47% (95% CI: 87.83, 90.91) between IGRA (QFT/TSPOT) vs. T
% concordance = 87.60% (95% CI: NR) between QFT vs. TST (raw 2 x 2 cell counts: NR)
% concordance = 91.10% (95% CI: NR) between TSPOT vs. TST (raw 2 x 2 cell counts: NR)
% discordance = 161/1529 = 10.53% (95% CI: 9.09, 12.17)
Stratification (BCG vaccinated)
TST + TST - Total
IGRA (QFT/TSPOT) + 11 3 14
IGRA (QFT/TSPOT) - 39 152 191
Indeterminate

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): BCG vaccinated

TST + threshold: ≥5 mm

Parameters

Kappa = 0.26 (95% CI: 0.15, 0.37)

% concordance = 163/205 = 79.5% (95% CI: 73.47, 84.47)

% discordance = 42/205 = 20.49% (95% CI: 15.53, 26.53)

Stratification (non-BCG vaccinated)

	TST +	TST -	Total
IGRA (QFT/TSPOT) +	55	51	106
IGRA (QFT/TSPOT) -	68	1150	1218
Indeterminate	NR	NR	NR
Total	123	1201	1324

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): non-BCG vaccinated

TST + threshold:≥5 mm

Parameters

Kappa = 0.43 (95% CI: 0.37, 0.48)

% concordance = 1205/1324 = 91.01% (95% CI: 89.35, 92.44)

% discordance = 119/1324 = 8.98% (95% CI: 7.56, 10.65)

Other outcomes

Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

In patient populations with low rates of TB incidence and BCG vaccination, the use of both TST and IGRA may maximise sensitivity in detecting LTBI but may also reduce specificity; CRF influenced the results for all three of the tests but had less influence on QFT than on the other test systems. By this standard, TSPOT appears to perform better than QFT due to its greater correlation with known LTBI risk factors. Nevertheless, we cannot exclude the possibility that a poorer correlation with clinical risk factors is due to a higher specificity rather than a lower sensitivity. A better understanding of the relative merit of QFT versus TSPOT will require head-to-head tests under real-world conditions

Reviewers:

DOR of TST was higher than DOR for QFT, but it was similar to DOR of TSPOT; BCG influenced TST positivity (odds of TST positivity was higher in BCG vaccinated vs. non-vaccinated; OR>1) but not IGRA positivity (odds of IGRA positivity was the same in BCG vaccinated vs. non-vaccinated; OR = 1); between test agreement was higher in non-vaccinated vs. vaccinated group

Study details

First author surname year of publication: Laffitte 2009¹³²

Country: Switzerland

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Hospital-based

Number of centres: 2

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): NR

Aim of the study

The aim of this study was (i) to determine the frequency of LTBI in a population of patients with psoriasis before anti-TNF treatment, (ii) to compare the TST with T-SPOT.TB for detecting LTBI, and (iii) to evaluate the tolerance and effectiveness of treatment for LTBI under anti-TNF therapy in our patients.

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (patients with psoriasis before anti-TNF treatment)

Participants

Recruitment dates: November 2004 and March 2008

Total N of recruited patients: NR

Inclusion criteria: Patients with moderate to severe psoriasis qualifying for anti-TNF-a therapy

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 50

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Agreement, association between test positivity and selected patient

characteristics

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 48 (17–74)

Women (n [%]): 15 [30] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): High TB incidence in country of origin (10 [20])

BCG vaccination (n [%]): 45 (90)

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): None

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR Morbidity (n [%]): Psoriasis

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): 12 patients treated for LTBI (9 with rifampicin and 3 with isoniazid) before anti TNF

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (TSPOT):	NR	10	40	NR	50
TST (≥5mm):	NR	20	30	NR	50
TST (≥10mm):	NR	18	32	NR	50

Total N of patients with valid results for both IGRA and TST: 50

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure grou	ıp – probable LTBI
-----------------------------	--------------------

Non-exposed No probable LTBI

Exposed 1	Pı	ohable I TE	RI defin	ed as 1	having a history	of definit	e exposii	re to	a case of						
(specify):					having a mstory										
(speeny):															
		tuberculosis infection (granulomas, calcified adenopathy) and/or originating from a high-incidence country (defined as > 40 cases in 100 000 per year)													
Exposed 2	N				<u> </u>				<u>, , , , , , , , , , , , , , , , , , , </u>						
(specify):															
Exposed 3	N	A													
(specify):															
Exposed 4	N	A													
(specify):															
Tests															
		Assay used	-	Cut	-off values/thre		efinition	of	Other						
		methodolog			tes	st+			information						
		iming for t													
		neasureme													
TODA (EGDO)		manufactui	er	ND					NTA						
IGRA (TSPO)	/			NR The Z	TOT 1		i 16 /1		NA NA						
TST (≥ 5mm o	r NR				TST was consideration diameter v				NA						
≥10mm)				>10n		was ≥ 3111	III OI								
Association be	twoon too	t roculte on	d incid	-	of active TB (if	annlicah	la)								
Association be	IG		u meru	ience (active 1D (II		rst								
	Inciden		Total			Incidence of			Total						
	active		Total			active			10111						
	Yes	No				Yes	No								
IGRA +	NA	NA	NA		TST +	NA	NA		NA						
IGRA -	NA	NA	NA		TST -	NA	NA		NA						
Indeterminate	NA	NA	NA		Indeterminate	NA	NA		NA						
Total	NA	NA	NA		Total	NA	NA		NA						
		T	est per	forma	ance parameter	rs									
	IG	RA				ŗ	ГSТ								
Sensitivity = N .	A				Sensitivity $= N$										
Specificity = N	A				Specificity = N	NΑ									
PPV = NA					PPV = NA										
NPV = NA					NPV = NA										
Cumulative Inc					Cumulative In										
Cumulative Inc					Cumulative In										
Cumulative Inc			A		Cumulative In			= NA	A						
Incidence densi	•				Incidence dens										
Incidence densi	•		۸.		Incidence dens			NT A							
Other reported			1		Incidence dens				-						
Other reported	measure _I		ricer L	otyvos	Other reported		TST = INA	1							
Ratio of cumula	ative incid			etweel	n tests (IGRA v	5. 151)									
Ratio of cullula Ratio of incider															
			- 1 1/1												
Other reported measure = NA															
Association between test results and levels of TB exposure (if applicable)															
						TST (>5	(mm)	IGRA (TSPOT) TST (≥5mm)							
	RA (TSF	POT)							Total						
	ERA (TSI Expos	OT) ure level	Tota			Expos	sure level		Total						
IG	ERA (TSI Expos High/Ye	eure level Sure Low/No	Tota	1	T +	Expos High/Ye	sure level								
	ERA (TSI Expos	OT) ure level	Tota	1 TS	T + T -	Expos	sure level		Total 20 30						

Total	22	28	50		Total	22	28	50
		Te	st per	rfoi	rmance parameter	'S		
	IGRA					TST		
Sensitivity = 8/	$\sqrt{22} = 36.36\%$	6 (95% CI:		S	ensitivity = 11/22 =	50.00% (95	5% CI: 30.′	72, 69.28)
19.73, 57.05)								
Specificity = 20	6/28 = 92.86	5% (95% C	I:	S_1	pecificity = 19/28 =	67.86% (95	5% CI: 49.	34, 82.07)
77.35, 98.02)								
PPV = 8/10 = 8	30.00% (95%	6 CI: 49.02	,	P	PV = 11/20 = 55.00)% (95% CI	: 34.21, 74	.18)
94.33)								
NPV = 26/40 =	65.00% (95	5% CI: 49.5	51,	N	IPV = 19/30 = 63.33	3% (95% CI	[: 45.51, 78	5.13)
77.87)	`					`	,	,
DOR (for T ⁺ ca	alculated) = '	7.43 (95%	CI:	D	OR (for T ⁺ calculate	ted) = 2.11 (95% CI: 0.	.67. 6.68)
1.38, 39.87)		,,,,			(,, , , , , , , , , , , , , , , , , , , ,	,,
OR (crude; for	T ⁺ reported)	= 7.43 (95)	5%	Ω	R (crude; for T ⁺ rep	ported = 30	00 (95% CI	. 0 93 9 70)
CI: 1.38, 39.90		7.15 (>2	, , 0		it (crade, for 1 for	301100) 3.0	70 (7570 61	. 0.55, 5.70)
OR (regression		rted) – NR)	0	R (regression-base	d: reported)	– NR	
List of covariat		/1tcu/ = 1414	_		ist of covariates: N		- 1110	
Other reported		JD		_	Other reported measured			
Other reported	ilicasure – 1		con h		veen tests (IGRA v			
Patie of DOPa	(for T ⁺ colo				CI: 1.25, 9.96)	8. 131)		
	•							
		_			5% CI: 0.87, 7.05)			
Ratio of ORs (1		_	tea) =	: IN	A			
Other reported						(2.0		`
			t resu	lts	and levels of TB e	_		e)
IC	GRA (TSPO		1			TST (≥10n		
	Exposu		Tota	ıl		Exposur		Total
	High/Yes	Low/No				High/Yes	Low/No	
IGRA +	8	2	10		TST +	12	6	18
IGRA -	14	26	40		TST -	10	22	32
Indeterminate	NR	NR	NR		Indeterminate	NR	NR	NR
Total	22	28	50		Total	22	28	50
		Te	st per	for	rmance parameter	'S		
	IGRA					TST		
Sensitivity = 8/		6 (95% CI:		Sensitivity = 12/22 = 54.55% (95% CI: 34.66, 73.08)				
19.73, 57.05)	22 – 30.307	0 (2570 C1.			Chistervity — 12/22 —	3 1.33 70 ():	770 CI. 5 I.	30, 73.00)
Specificity = 20	6/28 – 92 86	5% (95% C	Ţ.	S:	pecificity = 22/28 =	- 78 57% (94	5% CI: 60.	46 89 79)
77.35, 98.02)	0/20 = 72.00	770 (7570 C	1.		pecificity = 22/20 =	- 70.5770 ().	370 C1. 00.	1 0, 02.72)
PPV = 8/10 = 8	20 00% (05%	4 CI: 40 02	1	D	PV = 12/18 = 66.67	70% (050% CI	. 12 75 92	72)
94.33)	30.00 /0 (93 /	0 C1. 49.02	·•	1.	1 V = 12/10 = 00.07	70 (9370 CI	. 45.75, 65	. 12)
NPV = 26/40 =	65 000/ (05	50/ CI. 40 4	7.1	NPV = 22/32 = 68.75% (95% CI: 51.43, 82.05)				
	65.00% (93)% CI: 49.3	01,	NF V = 22/32 = 08.73% (93% CI. 31.43, 82.03)				
77.87)	1 1 (1)	7.42.(050)	CI.	Б	OD (C TD ⁺ 1 1 1	1) 4.40.7	050/ OI 1	20, 15,00)
DOR (for T ⁺ ca	aiculatea) =	7.43 (95%	CI:	ע	OOR (for T calculated)	(ea) = 4.40	95% CI: 1.	.28, 15.09)
1.38, 39.87)								
					OR (crude; for T ⁺ rep	ported) = 2.0	งช (95% CI	: 0.64, 6.73)
CI: 1.38, 39.90)								
					R (regression-base		= NR	
	List of covariates: NA List of covariates: NA							
Other reported	measure = N				ther reported meas			
					veen tests (IGRA v	vs. TST)		
Ratio of DORs	(for T ⁺ calc	ulated) = 1	.69 (9	5%	CI: 0.58, 4.89)			
Ratio of OR (c	rude; for T	reported) =	3.57	(95	5% CI: 1.25, 10.18)			
Ratio of ORs (1	regression-b	ased; repor	ted) =	N.	A			
Other reported								
r								

	Associa	ation bet	ween test	t results and BCG statu	s (if app	licable)	
IG	RA (TSP				ST (≥5n		
	BCG	status	Total			3 status	Total
	Yes	No			Yes	No	1
IGRA +	9	1	10	TST +	19	1	20
IGRA -	36	4	40	TST -	26	4	30
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR
Total	45	5	50	Total	45	5	50
2 3 442	1.0	1	L	rformance parameters	1.0	1	
	IGRA				TST		
DOR (for T ⁺ ca CI: 0.01, 10.07	lculated) _I	GRA = 1.0	0 (95%	DOR (for T+ calculated		92 (95% C	I: 0.30, 28.29)
OR (crude; for		d = NR		OR (crude; for T+ repo	orted = N	JR	
OR (regression			$_{\rm DA} = NR$	OR (regression-based;			
List of covariat		ported) IO	KA TIT	List of covariates: NA	горогион	131 111	
Other reported		NR		Other reported measure	r = NR		
Siller reported			ween test	t results and BCG statu		licable)	
T/	GRA (TSP		,, cen test		<u>s (п арр</u> ST (≥10ı		
10	BCG		Total	1)	_ `	inn) 3 status	Total
	Yes	No	1 Otal		Yes	No	10141
IGRA +	9	1	10	TST +	17	1	18
IGRA -	36	4	40	TST -	28	4	32
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR
Total	45	5	50	Total	45	5	50
Total	43]]			43	3	1 30
	ICDA		1 est per	rformance parameters	тет		
DOD (for T ⁺ as	IGRATSTDOR (for T^+ calculated) $_{IGRA} = 1.00$ (95%DOR (for T^+ calculated) $_{TST} = 2.43$ (95% CI: 0.25, 23.5°)						1. 0.25, 22,57)
CI: 0.01, 10.07		GRA - 1.0	0 (93%	DOK (101 1+ carculated	$1)_{TST} - 2.$	43 (93% C	1. 0.23, 23.37)
OR (crude; for		d = ND		OR (crude; for T+ repo	rtad) – N	ID	
OR (regression			– ND	OR (regression-based;			
List of covariat		porteu) _{IG}	RA – INIX	List of covariates: NA	reporteu,	TST — INIX	
Other reported		- NID			ND		
			dansa ar	Other reported measure			
				nd discordance (if applie		.a. a	
	y be strati	mea by 1	151 cut-0	off value, BCG vaccinat	ion statu	is, and/or c	condition
Total sample		FCT (>5		TST -		T	Total
ICD A (TCDOT		<u>ΓST (≥5n</u>	IIII) T				Total
IGRA (TSPOT		8		2			10
IGRA (TSPOT) -	12 ND		28 ND			40 ND
Indeterminate		NR 20		NR 20			NR 50
Total		20		30			50
Description		. 1		DOG 193	· C \	1	
		otal, 11 sti	atified by	BCG or condition – spe	city): tot	al	
TST + threshol	d: ≥5mm						
Parameters			_				
Kappa = 0.36 () calculate	ed			
Kappa = 0.33 (•					
% concordance = 36/50 = 72.00% (95% CI: 58.33, 82.53)							
% discordance			(95% CI:	17.47, 41.67)			
Stratification	(specify g						
		TST		TST -			Total
IGRA +		NR		NR			NR
IGRA -		NR		NR			NR
Indeterminate		NR		NR			NR

Total	NR	NR	NR							
	IVIX	TVIC	INK							
	Description Somple definition (e.g. total if stratified by PCC or condition, enesity), NP									
TST + threshold: NR	Sample definition (e.g., total, if stratified by BCG or condition – specify): NR									
Parameters	<u> </u>									
Kappa = NR										
% concordance = NF	?									
% discordance = NR										
Stratification (speci										
Structure (special	TST +	TST -	Total							
IGRA +	NR	NR	NR							
IGRA -	NR	NR	NR							
Indeterminate	NR									
Total	NR	NR	NR							
Description										
	g., total, if stratified by E	BCG or condition – specify)	: NR							
TST + threshold: NR										
Parameters										
Kappa = NR										
% concordance = NF	?									
% discordance = NR										
	Ot	her outcomes								
Test and cut-off (if	Adverse events	s n/N (%)	Health related quality							
applicable)	(specify)		of life mean score (SD)							
	(specify)									
IGRA:		NR	NR							
TST:										
Test 3 (specify):	Test 3 (specify): NR NR									
Conclusions										
Authors:										

T-SPOT.TB IGRA is strongly associated with the presence of risk factors for LTBI. This association was not found for the TST, and agreement between the T-SPOT.TB and TST was poor, probably because of a high rate of BCG-vaccinated patients (90%) acting as a confounding factor

Reviewers:

T-SPOT.TB IGRA is strongly associated with the presence of risk factors for LTBI (but not TST≥5mm). Strong association was also found for the TST≥10mm. Agreement between the T-SPOT.TB and TST≥5mm was poor. Influence of BCG on test positivity was slightly higher for TST (both thresholds) than TSPOT, but given the small sample and that 90% were BCG vaccinated, there results are inconclusive due to wide CIs

Name of first reviewer: Peter Auguste

Name of second reviewer: Alexander Tsertsvadze

Study details

First author surname year of publication: Maritsi 2011¹³³

Country: UK

Study design: Retrospective case study

Study setting (e.g., outbreak investigation, community-based - specify): Pediatric rheumatology

centre

Number of centres: One centre

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Authors report that there is no source of

funding

Aim of the study

To describe the findings of QTB test when applied to a paediatric rheumatology population and to assess the efficacy of this test versus the methods previously used for the exclusion of TB infection prior to starting anti-TNF α treatment

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (Paediatric Rheumatology prior to Initiation of Infliximab)

Participants

Recruitment dates: NR

Total N of recruited patients: 27

Inclusion criteria: Children on infliximab since 2007

Exclusion criteria: NR

Total N of excluded patients: 4 (no record of the QTB test) **Total N of patients tested with both IGRA and TST:** 27

Total N of patients with valid results for both IGRA and TST: 23

Methods of active TB diagnosis (if applicable):

Outcomes (study-based) list: Test results

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median age 8.9 years (1.5 to 13 years)

Women (n [%]): 12 (52.1)

Race/ethnicity (n [%]): Caucasian [55%], Afro-Caribbean [19%], Asian [26%]

Geographic origin (n[%]): NR BCG vaccination (n [%]): 5 [22%]

History of anti-TB treatment (n [%]): 5 [22] Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): No

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Methotrexate (5 [22]), infliximab (23 [100])

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-	23	1	20	2	23
GIT):					
TST (NR):	14	0	14	0	14
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 23

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group - Risk for LTBI

Non-exposed	I ow-ric	sk group							
Exposed 1			TB risk eva	luation was perfo	rmed usir	g the au	<u>estionnaire</u>		
(specify):	_	High-risk group (TB risk evaluation was performed using the questionnaire formulated by the United States Pediatric Tuberculosis Collaborative							
(speeny).		Group, which was published in 2004 [3])							
Exposed 2	NA		•	2 3/					
(specify):									
Exposed 3	NA								
(specify):									
Exposed 4	NA								
(specify):									
Tests	1								
	-		thodology,			Other	information		
		timing for		values/thres					
			anufacture		f test+				
IGRA (QFT-GIT)			old in-tube	Not reported			suggested that		
		Cellestis C					for the QTB are		
		ia. The me	thodology test have no	\		negative	l as positive,		
	been re	_	est have no	n		indetern			
TST	Not rep			Not reported		Not repo			
Association between			cidence of		nlicabla)	Not Tept	ned		
Association betwee	IGRA	uits allu li	iciuence or	active 1D (II ap)	TS	T.			
	Inciden	ice of	Total		Incide		Total		
	active		1 Otal		activ		Total		
	Yes	No			Yes	No			
IGRA +	NA	NA	NA	TST +	NA	NA	NA		
IGRA -	NA	NA	NA	TST -	NA	NA	NA		
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA		
Total	NA	NA	NA	Total	NA	NA	NA		
		Test	performar	ice parameters					
	IGRA				TS	ST			
Sensitivity = NA				Sensitivity = N	A				
Specificity = NA				Specificity = N	Α				
PPV = NA				PPV = NA					
NPV = NA				NPV = NA					
Cumulative Incider				Cumulative Inc	cidence TS	$T_{T+} = NA$			
Cumulative Incider				Cumulative Inc					
Cumulative Incider				Cumulative Inc					
Incidence density r				Incidence dens					
Incidence density r				Incidence dens					
Incidence density r				Incidence dens					
Other reported mea				Other reported		$_{\text{TST}} = NA$	<u> </u>		
				tests (IGRA vs. 7	IST)				
Ratio of cumulative									
Ratio of incidence			NA .						
Other reported mea			14 7.7	I CITO	(1.1.	• 7	`		
			ults and le	vels of TB expos			oup)		
J	GRA (GI		TD _ 4 1		TST (TP: 4-1		
		ure level	Total	<u> </u>		ure level			
ICD A	High/Yes		_		High/Yes				
IGRA +	1 2	18	1 20	TST +	3	0			
IGRA - Indeterminate	0	2	20	TST - Indeterminate	NR	NF			
mucicininate	l 0		4	mucterminate	1117	11/1	У		

	<u> </u>	1	1	1		<u> </u>	(2112]1142		
Total	3	20	22	Total	2	11	(exclude)		
Total	3	20	23	Total	3	11	14		
Test performance parameters IGRA (exclude indeterminate) TST (exclude indeterminate)									
Sensitivity = 1/3 =			0.22)	Sensitivity = $0/3$			•		
Specificity = 1/3 =				Specificity = 11					
100.00)	- 100.0070	, 93 /0 CI (0	2.41,	100.00)	/11 – 100.00	070, 9370 C	1 (74.12,		
PPV = 1/1 = 100.00	0% 95% CI	(20.65.100	2.00)	PPV = NA					
NPV = 18/20 = 90.	•			NPV = 11/14 = 1	78 57% 95	% CI (52.4	1 92 43)		
$\frac{1}{1}$ DOR (for T ⁺ calculated)			.21)	DOR (for T ⁺ cal			1, 72.43)		
OR (crude; for T ⁺ r				OR (crude; for T					
OR (regression-bas	•			OR (regression-					
List of covariates:		., 111		List of covariate		1111			
Other reported mea				Other reported n		A			
		mparison	between	tests (IGRA vs.					
Ratio of DORs (for				(
Ratio of OR (crude									
Ratio of ORs (regre									
Other reported mea									
		between te	st results	s and BCG status	s (if applica	ıble)			
IGI	RA (TSPOT	'/QFT)			TST (NI	R mm)			
	BCG s	status	Total		BCC	3 status	Total		
	Yes	No			Yes	No			
IGRA +	NR	NR	NR	TST +	NR	NR	NR		
IGRA -	NR	NR	NR	TST -	NR	NR	NR		
Indeterminate	NR	NR	NR	Indeterminat	te NR	NR	NR		
Total	NR	NR	NR	Total	NR	NR	NR		
			erforma	nce parameters					
	RA (TSPOT				TST (NI	,			
DOR (for T ⁺ calcul				DOR _{TST} (for					
OR (crude; for T ⁺ r				OR (crude; f					
OR (regression-bas			_	OR (regressi		eported) _{TST}	$_{\Gamma} = \mathbf{N}\mathbf{R}$		
OR (regression-bas		$I)_{TSPOT} = NI$	₹	List of covar	nates: NR				
List of covariates:				0:1	1	ND			
Other reported mea		1	1 1'	Other reporte		= NK			
Between-test agre This table may be						nd/on oon	dition		
Total sample	straumeu b	y 151 cut-	om varu	e, bcg vaccinau	ion status, a	and/or con	uition		
Total Sample		TST +		TS	 Т _		Total		
IGRA +		NR		N.			NR		
IGRA -		NR		N.			NR		
Indeterminate		NR		N			NR		
Total		NR		N			NR		
Description		1111		11.			2 121		
Sample definition (e.g., total. if	stratified b	y BCG o	or condition – spec	cify): NR				
TST + threshold: N			,	spot	j /• - 111				
Parameters									
Kappa = NR									
% concordance = N	NR								
% discordance = N									
Stratification (spe		1)							
		TST +		TS'	T -		Total		
IGRA +		NR		N.			NR		
	l .								

IGRA -	NR	NR	NR					
Indeterminate	NR	NR	NR					
Total	NR	NR	NR					
Description								
Sample definition (e.g., total, if stratified by BCG or condition – specify): NR								
TST + threshold: NR	•							
Parameters								
Kappa = NR								
% concordance = NR								
% discordance = NR								

Stratification (specify group 2)

Stratification (specify group 2)									
	TST +	TST -	Total						
IGRA +	NR	NR	NR						
IGRA -	NR	NR	NR						
Indeterminate	NR	NR	NR						
Total	NR	NR	NR						

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes								
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)						
IGRA:	NR	NR						
TST:	NR	NR						
Test 3 (specify):	NR	NR						

Conclusions

Authors:

The authors concluded that QTB is a useful screening tool for LTBI. Additionally, indeterminate results warrant careful assessment and re-evaluation, but should not preclude from initiation of anti-TNF treatment. Furthermore, the authors suggested that a negative TST in children receiving immunosuppressive treatment is not adequate in excluding LTBI

Reviewers:

Study details

First author surname year of publication: Mutsvangwa 2010¹³⁴

Country: Zimbabwe

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): NR

Number of centres: NR

Total length of follow up (if applicable): NR

Funding (government/private/manufacturer/other - specify): The Wellcome Trust

Aim of the study

We tested for LTBI using ELISpot and TST, correlated test results with TB exposure in household contacts of TB cases and assessed the impact of HIV co-infection on test results in these contacts

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (HIV positive adult contacts)

Participants

Recruitment dates: February 2002 to November 2004

Total N of recruited patients: NR

Inclusion criteria: All consenting individuals over the age of 10 years living with the TB cases (index case household contacts) and those (household contacts of controls) living with controls (no TB), TB cases were sampled from factories in Harare and controls samples randomly from the same factories

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 73 (HIV positives)

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Agreement, association of test positive results with exposure to TB,

degree of TB exposure

Characteristics of participants (total study sample)

Mean (range or SD) age (years): NR

Women (n [%]): 65 [89.0] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Sub-Saharan Africa

BCG vaccination (n [%]): 63 [86.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): NR Clinical examination (yes/no): NR Morbidity (n [%]): HIV infected Co-morbidity (n [%]): NR

Co-morbidity (II [%]): NK

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (TSPOT):	NR	22	51	NR	73
TST (≥10mm):	NR	33	40	NR	73
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 73

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group – household contact

Non-exposed Contact of index control (no TB)

Г 11			C: 1	TD						
Exposed 1	Co	ontact	of inde	x TB case						
(specify):	NT A	A								
Exposed 2	NA	A								
(specify):	NT A									
Exposed 3	NA.	A								
(specify):	NT A	<u> </u>								
Exposed 4	NA.	A								
(specify):		0					0. 1			
> 1				xposure group		mear status	of inde	x cases		
Non-exposed				, culture negati						
Exposed 1	Sm	near i	negative	, culture positi	ve					
(specify):			•.•	4						
Exposed 2	Sm	near p	ositive,	culture positiv	'e					
(specify):										
Tests	1 .				ı					
				odology, timir	ıg	Cut-off			ds	Other
				surement,		Defii	nition of	f test+		information
TODA	D1 1		manufa			EX TO 1				70
IGRA				or ELISpot		ELISpot pl				Persons
(TSPOT)	_	-		ter the TST was		Oxford for				performing
	•		•	says were carri	ea	counting (A	AID, Str	assberg,		and reading
				ewhere.		Germany)				the assays
				ntained no						were blind
	_		gative c							to all
				in (positive						personal
				nedical, Aurora						identifiers
				g/ml or 13 pair						and TST
	_			ach containing						results
			eptide p							
				verlapping 15-						
				ing the length ogenic target-6)1					
				protein-10, on						
				is based. The						
				of each peptide						
	was 10			or each peptide						
TST (two				otocol was used	1	If the first i	ranction	woc <10	<u> </u>	NA
stage;		-	•	e baseline for	1	mm, then a				INA
stage, ≥10mm)	•			ent TST		placed after				
<u> </u>				commended by		were expre				
				units of RT-23		of the two				
				ein derivative) i		sizes ≥ 10 n				
		•	•	Serum Institut,		positive		Consid	crea	
				nark) were	'	positive				
				lly into the						
				read at 48-72h						
				ssment follower						
			led tech							
Association be					f ac	tive TB (if a	pplical	ole)		
		GRA		u		(11 0		TST		
			nce of	Total				nce of		Total
		activ		2 0 0 0 0 0				e TB		
	-	Zes	No				Yes	No		
IGRA +		NA	NA	NA		TST +	NA	NA		NA
10101	1,	11 7	7 47 7	7 11 7		1011	T 47 F	7 17 7		1111

IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
		Tes	t perform	ance parameter				
	IGRA					TST		
Sensitivity = NA				Sensitivity = N				
Specificity = NA				Specificity = N	NΑ			
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
Cumulative Inciden	ice _{IGRA+} =	NA		Cumulative In	cidence T	ST+=NA		
Cumulative Inciden	ice _{IGRA-} =	NA		Cumulative In	cidence T	ST- = NA		
Cumulative Inciden	ce Ratio 1	$G_{GRA} = NA$		Cumulative In	cidence R	$tatio_{TST} = N$	VΑ	
Incidence density ra	ate _{IGRA+} =	: NA		Incidence dens	sity rate TS	$S_{T+} = NA$		
Incidence density ra				Incidence dens	•			
Incidence density ra				Incidence dens			A	
Other reported mea				Other reported				
•			on betwee	en tests (IGRA v				
Ratio of cumulative								
Ratio of incidence of								
Other reported mea	•							
•			results ar	d levels of TB e	xposure (if applicab	ole)	
	RA (TSPO					ım; two sto		
	`	are level	Total			ure level	Total	
	Index	Index	1000		Index	Index	-	
	case	control			case	control		
IGRA +	19	3	22	TST +	27	6	33	
IGRA -	36	15	51	TST -	28	12	40	
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR	
Total	55	18	73	Total	55	18	73	
Total	33			ance parameter		10	7.5	
	IGRA	105	t periorii.			ST		
Sensitivity = 19/55		(95% CI:	23 36	Sensitivity = 27			CI: 36 38	
47.75)	51.5570	(5570 CI.	25.50,	61.92)				
Specificity = 15/18	= 83 33%	(95% CI:	60.78	Specificity = 12/18 = 66.67% (95% CI: 43.75,				
94.16)	- 03.3370	()5/0 C1.	00.70,	83.72)	2/10 — 00.	0170 (2570	CI. 13.73,	
PPV = 19/22 = 86.3	36% (95%	CI: 66 66	. 95 25)	PPV = 27/33 =	81.82% (95% CI: 65	.61, 91 39)	
NPV = 15/51 = 29.4	,			NPV = 12/40 =				
$\frac{1}{1} \frac{1}{1} \frac{1}$				$\frac{1}{1}$ DOR (for T^+ ca				
10.27)		c. (2270 C	2. 0.07,	5.87)		1.75 (75)		
OR (crude; for T ⁺ re	eported) =	: NR		OR (crude; for	T ⁺ reporte	ed = NR		
OR (regression-bas	_			OR (regression			IR .	
List of covariates: N	· 1	,		List of covariat		r 01.00) = 1		
Other reported mea		<u> </u>		Other reported		= NR		
z mer reported med			on betwee	en tests (IGRA v		- 121		
Ratio of DORs (for								
Ratio of OR (crude			•	0.0 0, 0.00)				
Ratio of OR (crude								
Other reported mea								
			results or	nd levels of TB e	xnosure (if annlicah	ole)	
	RA (TSP)		i courto al		_	ım; two-ste	•	
101		ure level	Total	18		ure level	Total	
	High	Low	10141		High	Low	- 10141	
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
10101	7.477	1 417	1 417	101	7.47.	1 41/	7.477	

NR									
Test performance parameters									
Sensitivity = NA									
Sensitivity = NA Specificity = NA									
Specificity = NA									
PPV = NA NPV = NA NPV = NA DOR (for T ⁺ calculated) = NA DOR (for T ⁺ reported) = Smear - culture - = 1.00 (reference group) Smear + culture + = 4.80 (95% CI: 1.05, 21.91) Smear - culture - = 1.00 (reference group) Smear - culture - = 1.00 (reference group) Smear - culture - = 3.50 (95% CI: 0.24, 9.46) Smear - culture - = 3.50 (95% CI: 0.88, 13.93) OR (regression-based; reported) = Smear - culture - = 1.00 (reference group) Smear - culture - = 3.43 (0.76 to 15.52) List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated) = NA									
NPV = NA									
DOR (for T ⁺ calculated) = NA									
OR (crude; for T+ reported) = OR (crude; for T+ reported) = Smear culture = 1.00 (reference group) Smear culture = 1.00 (reference group) Smear culture = 1.60 (95% CI: 0.20, 12.69) Smear culture = 1.50 (95% CI: 0.24, 9.46) Smear culture = 1.50 (95% CI: 1.05, 21.91) Smear culture = 3.50 (95% CI: 0.88, 13.93) OR (regression-based; reported) = OR (regression-based; reported) = Smear culture = 1.00 (reference group) Smear culture = 1.00 (reference group) Smear culture = 1.87 (95% CI: 0.22, 16.16) Smear culture = 1.09 (95% CI: 0.13, 9.42) Smear culture = 3.43 (0.76 to 15.52) List of covariates: NR Other reported measure = NR Other reported measure = NR Comparison between tests (IGRA vs. TST)									
Smear - culture - = 1.00 (reference group) Smear - culture - = 1.00 (reference group) Smear - culture + = 1.60 (95% CI: 0.20, 12.69) Smear - culture + = 1.50 (95% CI: 0.24, 9.46) Smear + culture + = 4.80 (95% CI: 1.05, 21.91) Smear - culture + = 3.50 (95% CI: 0.88, 13.93) OR (regression-based; reported) = OR (regression-based; reported) = Smear - culture - = 1.00 (reference group) Smear - culture - = 1.00 (reference group) Smear - culture + = 1.87 (95% CI: 0.22, 16.16) Smear - culture + = 1.09 (95% CI: 0.13, 9.42) Smear + culture + = 5.36 (95% CI: 1.11, 25.93) Smear - culture + = 3.43 (0.76 to 15.52) List of covariates: NR List of covariates: NR Other reported measure = NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T+ calculated) = NA									
Smear - culture + = 1.60 (95% CI: 0.20, 12.69) Smear - culture + = 1.50 (95% CI: 0.24, 9.46) Smear - culture + = 4.80 (95% CI: 1.05, 21.91) Smear - culture + = 3.50 (95% CI: 0.88, 13.93) OR (regression-based; reported) = Smear - culture - = 1.00 (reference group) Smear - culture + = 1.87 (95% CI: 0.22, 16.16) Smear - culture + = 1.00 (reference group) Smear - culture + = 1.00 (reference group) Smear - culture + = 1.09 (95% CI: 0.13, 9.42) Smear - culture + = 3.43 (0.76 to 15.52) List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T+ calculated) = NA									
Smear + culture + = 4.80 (95% CI: 1.05, 21.91) Smear + culture + = 3.50 (95% CI: 0.88, 13.93) OR (regression-based; reported) = OR (regression-based; reported) = Smear - culture = 1.00 (reference group) Smear - culture = 1.00 (reference group) Smear - culture + = 1.87 (95% CI: 0.22, 16.16) Smear - culture + = 1.09 (95% CI: 0.13, 9.42) Smear + culture + = 3.43 (0.76 to 15.52) Smear + culture + = 3.43 (0.76 to 15.52) List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T+ calculated) = NA									
OR (regression-based; reported) = Smear - culture - = 1.00 (reference group) Smear - culture + = 1.87 (95% CI: 0.22, 16.16) Smear - culture + = 5.36 (95% CI: 1.11, 25.93) Smear - culture + = 3.43 (0.76 to 15.52) List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T+ calculated) = NA									
Smear culture = 1.00 (reference group)									
Smear - culture + = 1.87 (95% CI: 0.22, 16.16) Smear - culture + = 1.09 (95% CI: 0.13, 9.42) Smear + culture + = 5.36 (95% CI: 1.11, 25.93) Smear + culture + = 3.43 (0.76 to 15.52) List of covariates: NR List of covariates: NR Other reported measure = NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T+ calculated) = NA									
Smear $^+$ culture $^+$ = 5.36 (95% CI: 1.11, 25.93) Smear $^+$ culture $^+$ = 3.43 (0.76 to 15.52) List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T $^+$ calculated) = NA									
List of covariates: NR Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T^+ calculated) = NA									
Other reported measure = NR Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated) = NA									
Comparison between tests (IGRA vs. TST) Ratio of DORs (for T^+ calculated) = NA									
Ratio of DORs (for T ⁺ calculated) = NA									
Ratio of OR (crude; for T ⁺ reported) = 1.37 (95% CI: 0.48, 3.91) [Smear + culture + vs. Smear –									
culture –]									
Ratio of ORs (regression-based; reported) = 1.56 (95% CI: 0.51, 4.76) [Smear + culture + vs. Smear - culture -]									
,									
Other reported measure = NA Association between test results and BCG status (if applicable)									
IGRA (specify) TST (specify)									
BCG status Total BCG status Total									
Yes No Yes No									
GRA + NR NR NR TST + NR NR NR									
GRA - NR NR NR TST - NR NR NR									
Indeterminate NR NR NR Indeterminate NR NR NR									
Total NR NR NR Total NR NR NR									
Test performance parameters									
IGRA TST									
$DOR (for T^{+} calculated)_{IGRA} = NR$ $DOR (for T + calculated)_{TST} = NR$									
$OR \text{ (crude; for T}^+\text{ reported)} = NR$ $OR \text{ (crude; for T}^+\text{ reported)} = NR$									
OR (regression-based; reported) $_{IGRA} = NR$ OR (regression-based; reported) $_{TST} = NR$									
List of covariates: NR List of covariates: NR									
Other reported measure = NR Other reported measure = NR									
Other reported measure = NR Other reported measure = NR									
Other reported measure = NR Other reported measure = NR Between-test agreement, concordance, and discordance (if applicable)									
Other reported measure = NR Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition									
Other reported measure = NR Other reported measure = NR Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample									
Other reported measure = NR Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Fotal sample TST + TST - Total									
Other reported measure = NR Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Fotal sample TST + TST - Total GRA + NR NR NR									
Other reported measure = NR Setween-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample TST + TST - Total GRA + NR NR NR GRA - NR NR NR									
Other reported measure = NR									
Other reported measure = NR Other reported measure = NR Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Fotal sample GRA + NR NR NR GRA - NR NR NR Indeterminate NR NR NR Indeterminate NR NR NR Indeterminate NR NR NR Indeterminate NR NR NR									

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (contacts with TB index case):

·	TST + (≥ 10mm)	TST -	Total
IGRA (TSPOT) +	15	4	19
IGRA (TSPOT) -	12	24	36
Indeterminate	NR (excluded)	NR (excluded)	NR (excluded)
Total	27	28	55

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): contacts with TB index case

TST + threshold: ≥10mm

Parameters

Kappa = 0.41 (95% CI: 0.16, 0.66)

% concordance = 39/55 = 70.91% (95% CI: 57.86, 81.23)

% discordance = 16/55 = 29.09% (95% CI: 18.77, 42.14)

Stratification (contacts with control index):

	TST + (≥ 10mm)	TST -	Total
IGRA (TSPOT) +	2	1	3
IGRA(TSPOT) -	4	11	15
Indeterminate	NR (excluded)	NR (excluded)	NR (excluded)
Total	6	12	18

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): contacts with control index TST + threshold: ≥10mm

Parameters

Kappa = 0.28 (95% CI: -0.13, 0.70)

% concordance = 13/18 = 72.22% (95% CI: 49.13, 87.5)

% discordance = 5/18 = 27.78% (95% CI: 12.5, 50.87)

Other outcomes

	other outcomes	
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

Our findings suggest that ELISpot is a more accurate test than TST in HIV-infected persons recently infected with TB in a high-burden setting for both these infections. The increased accuracy of ELISpot testing compared with TST could improve targeting of preventive treatment to HIV-infected recent contacts of TB with LTBI which could further reduce the risk of active TB

Reviewers:

TSPOT performed better than TST in correctly identifying LTBI amongst HIV infected adult contacts due to higher specificity; agreement was higher amongst index case contacts vs. control contacts

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Papay 2011¹³⁵

Country: Austria

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Outpatient clinic

Number of centres: One

Total length of follow up (if applicable): NR

Funding (government/private/manufacturer/other - specify): NR

Aim of the study

To evaluate the impact of IM treatment on results from TST and IGRA in IBD patients before starting therapy with a biologic agent

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Inflammatory bowel disease (IBD) patients

Participants

Recruitment dates: December 2006 to August 2009

Total N of recruited patients: 208 **Inclusion criteria:** IBD patients

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 208

Total N of patients with valid results for both IGRA and TST: 192

Methods of active TB diagnosis (if applicable):

Outcomes (study-based) list: Test results, concordance of TST and IGRA, risk factor for LTB

Characteristics of participants (total study sample)

Mean (range or SD) age (years): age at screening 36.6 ± 11.3

Women (n [%]): 107 [51.4] Race/ethnicity (n [%]): NR Geographic origin (n[%]):NR

BCG vaccination (n [%]): All subjects underwent BCG vaccination during childhood

History of anti-TB treatment (n [%]): NR

Total incidence of active TB (n [%]): Medically confirmed active TB (1 [0.5])

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): Crohn's disease (152 [73.1]); Ulcerative colitis (56 [26.9])

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Immunotherapy

Number of patients tested

	Total N (tested)	Total N	Total N (test-)	Total N (indeterminate)	Total N (test results available)
		(test+)			avanabic)
IGRA (QFT-GIT):	192	15	177	0	192
TST:	192	26	166	0	192
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 192

Levels/groups of exposure to TB in increasing order (if applicable):

	Definition of exposure group
Non-exposed	NR
Exposed 1 (specify):	Origin from a high-prevalent country
Exposed 2 (specify):	History of contact with active TB
Exposed 3 (specify):	Chest x-ray indicative of LTBI

Exposed 4 (spe	cify):	NA								
Tests	U)·									
	method test	meas	used, , timing urement, acturer		Cut-o	ff values/thresh of test+		inition	Other information	
IGRA	QFT-G Carneg	IT, Ce	llestis,		≥0.35	IU/mL			NA	
TST	Tuberce protein RT23, I Institute Denma method	ulin pu deriva Staten e, Cop rk), M	nrified ative (PPI Serum enhagen, antoux	D	consid indura withou test res	ople with IM, TS ered positive if the tion was ≥ 5mm. It IM but have IB sult was >10 mm	he size of For peo SD a posi	ple tive	NA	
Association be			ılts and i	ncide	nce of	active TB (if ap				
	I(ence of ve TB No	То	otal		Incide active Yes	II.	Total	
IGRA +		NA	NA		ΙA	TST +	NA	NA	NA	
IGRA -		NA	NA		IA	TST -	NA	NA	NA	
Indetermin	ate	NA	NA	NA		Indeterminate	NA	NA	NA	
Total		NA	NA		ΙA	Total	NA	NA	NA	
Test performance parameters										
~		GRA				~	TS	ST		
Sensitivity = N						Sensitivity = N.				
Specificity = N.	<u>A</u>					Specificity = N	A			
PPV = NA						PPV = NA				
NPV = NA	• 1	ence NA				NPV = NA	• 1	NT A		
Cumulative Inc						Cumulative Incidence _{TST+} = NA Cumulative Incidence _{TST-} = NA				
	Incidence _{IGRA} = NA Incidence Ratio _{IGRA} = NA									
						Cumulative Inc Incidence densi				
	ity rate $_{IGRA+} = NA$ ity rate $_{IGRA-} = NA$					Incidence densi				
Incidence densi	•					Incidence densi	•			
Other reported						Other reported	•			
other reported	incusure			on bet	ween t	ests (IGRA vs. 7		151 111		
Ratio of cumula	ative inci					(~ - /			
Ratio of incider										
Other reported		-								
			sults and	level	s of TE	8 exposure (Pres	sence of 1	risk fact	ors for LTBI)	
	IGRA (QFT-(GIT)				TST (≥			
	Expo	osure l	evel	To	otal			ure level	Total	
	Yes]	No				Yes	No		
IGRA +	9		6		5	TST +	15	11	26	
IGRA -	56		21		77	TST -	54	128		
Indeterminate	4		12		6 uded)	Indeterminate	0	0	0	
Total	69	1	39	20	08	Total	69	139	208	
			Test	perfo	orman	ce parameters				
	(excludi						TS			
Sensitivity = 9/	65 = 13.8	35% (9	5% CI: 7	7.45, 2	4.27)	Sensitivity = 15 32.82)	5/69 = 21	.74% (9	5% CI: 13.64,	

OR (regression List of covaria Other reported Ratio of DORs Ratio of OR (c Ratio of ORs (Other reported	measure (for T ⁺ c rude; for regression measure	Con calculated T ⁺ report n-based; = NR test resu QFT-GI	d) = 0.35 ed) = N reported	5 (95% CI: R d) = NR	tests (IGRA vs.	TST)	tact with	active TB) Total	
OR (regression List of covaria Other reported Ratio of DORs Ratio of OR (c Ratio of ORs (Other reported	measure s (for T ⁺ c rude; for regression measure between	Con calculated T ⁺ report n-based; = NR test resu QFT-GI	A(t) = 0.35 A(t) = 0.35	5 (95% CI: R d) = NR	tests (IGRA vs. 0.16, 0.76)	TST) cory of contact TST(≥5 i	tact with		
OR (regression List of covaria Other reported Ratio of DORs Ratio of OR (c Ratio of ORs (Other reported	measure s (for T ⁺ c rude; for regression measure between	Con calculated T ⁺ report n-based; = NR test resu	d) = 0.35 ed) = N reported	5 (95% CI: R d) = NR	tests (IGRA vs. 0.16, 0.76)	TST)	tact with	active TB)	
OR (regression List of covaria Other reported Ratio of DORs Ratio of OR (c Ratio of ORs (Other reported	measure (for T ⁺ c rude; for regression measure	Con calculated T ⁺ report n-based; = NR	d) = 0.35 red) = N reported	5 (95% CI: R d) = NR	tests (IGRA vs. 0.16, 0.76)	TST)		active TR)	
OR (regression List of covaria Other reported Ratio of DORs Ratio of OR (c Ratio of ORs (measure s (for T ⁺ c rude; for regression	Con calculated T ⁺ report n-based;	$\frac{1}{1} = 0.35$ $\frac{1}{1} = 0.35$ $\frac{1}{1} = 0.35$	5 (95% CI: R	tests (IGRA vs.				
OR (regression List of covaria Other reported Ratio of DORS Ratio of OR (c	measure (for T ⁺ c rude; for	Con calculated T ⁺ report	$\frac{1}{1} = 0.35$ $\frac{1}{1} = 0.35$ $\frac{1}{1} = 0.35$	5 (95% CI: R	tests (IGRA vs.				
OR (regression List of covaria Other reported Ratio of DORs	measure (for T ⁺ c	Con calculated	(1) = 0.35	5 (95% CI:	tests (IGRA vs.		TVIX		
OR (regression List of covaria Other reported	measure	Con			tests (IGRA vs.		TVIX		
OR (regression List of covaria			ancria-	n hoters			1111		
OR (regression List of covaria		Other reported measure = NR Other reported measure = NR							
OR (regression	List of covariates: NR List of covariates: NR								
OR (regression-based; reported) = NR OR (regression-based; reported) = NR								INK	
$OR \text{ (crude; for } T^+ \text{ reported)} = NR$ $OR \text{ (crude; for } T^+ \text{ reported)} = NR$								NID	
7.87)	7P+	- 1) - 377	`		16.73)	Tr+	() NTP		
DOR (for T ⁺ can	alculated)	= 2.32,	95% CI	(0.68,	DOR (for T ⁺ ca	alculated) =	6.68, 95	% CI (2.67,	
					93.65)				
NPV = 153/17	7 = 86.44	·%, 95 %	CI (80.6	52, 90.72)	NPV = 164/182	$2 = 90.\overline{11\%}$, 95% Cl	(84.91,	
PPV = 4/15 = 2	26.67%,	95% CI (1 <u>0.9,</u> 51	.95)	PPV = 11/26 =	42.31%, 9	5 <u>%</u> CI (2	5.54, 61.05)	
Specificity = 1 96.21)	53/164 =	93.29%,	95% C	I (88.39,	Specificity = 1 94.86)	64/179 = 91	1.62%, 9	5% CI (86.64,	
					56)				
Sensitivity = 4	(excludi				Sensitivity = 1			,	
ICDA	(ovolud:	ng indet			ce parameters	excluding in	ndetown	inata)	
Total		1/				29	179	208	
Total	29	179		(excluded) 208	Total	20	170	200	
Indeterminate	1	15		16	Indeterminate	0	0	0	
IGRA -	24	15:		177	TST -	18	164	182	
IGRA +	4	11		15	TST +	11	15	26	
	Yes	No				Yes	No		
	Exp	osure lev	rel	Total		Exposure level Total			
	IGRA (QFT-GI	T)			TST (≥5	mm)		
1155001401			obuito u	coun	<u>=</u>			11010101100	
Association between test results and levels of TB exposure (origin from a high-incidence									
Ratio of ORs (regression-based; reported) = NR Other reported measure = NR									
Ratio of OR (c					0.50, 2.02)				
Ratio of DORs	(for T ⁺ o				tests (IGRA vs. 5	151)			
Other reported	measure			- l- 04	Other reported		NK		
List of covaria		NID			List of covariat		NID		
1.20, 11.30)					CI: 1.50, 9.60)				
OR (regression	ı-based; r	eported)	= 3.50 (95% CI:	OR (regression		orted) =	3.70 (95%	
10.10)					1.40, 7.50)				
OR (crude; for	T ⁺ report	ted) = 3.2	20 (95%	CI: 1.10,	OR (crude; for	T ⁺ reported	1) = 3.20	(95% CI:	
9.54)	arcurated)	, — J. 4 (7570 CI	. 1.10,	7.49)	curateu <i>)</i> –	. 5.23 (92	, ,u C1, 1,J7,	
DOR (for T ⁺ c	alculated)	0 = 3.24 (95% CI	· 1 10	DOR (for T ⁺ ca	alculated) –	3 23 (95	5% CI: 1 39	
NF V = 121/17	7 – 08.30	170 (93%)	CI: 01	10, /4./0)	NPV = 128/18. $ 76.49 $	∠ = 10.33%	(73% C.	1. 03.33,	
PPV = 9/15 = 0 NPV = 121/17					PPV = 15/26 = NPV = 128/182				
	60.000/ //	250/ CI	25.75.6	10.10)	95.52)	57.600/.60	50/ CI 2	0.05.74.46	
1 07 27 1	21/127 =	95.28%	(95% C	I: 90.08,	Specificity = 1	28/139 = 92	2.09% (9	5% CI: 86.38,	
97.82)	$\frac{1}{1127}$	05 280/	(05% C	I: 00 08	Specificity = 1	28/130 - 02	0 000/4 (0	5% CI: 96 39	

IGRA -		0	160	177	TST -	7	175	182
Indeterminate		8	169 15	16	Indeterminate	$\frac{7}{0}$	175	0
Total		11	197	208	Total	11	197	208
Total		11		11	nce parameters	11	197	208
ICRA (eveludi	ng indeter				xcluding in	determi	nata)
Sensitivity = $2/2$					Sensitivity = $4/1$			
50.98)	10 – 20.	.0070, 2370	C1 (3.0	00,	64.62)	1 = 30.3070), <i>)</i> 5 / 0 C.	1 (13.17,
Specificity = 16	59/182 =	92.86%, 9	5% CI	(88.16,	Specificity = 175	5/197 = 88.	83%, 95%	6 CI (83.67,
95.78)					92.51)			
PPV = 2/15 = 1					PPV = 4/26 = 15			
NPV = 169/177	= 95.48	3%, 95% C	I (91.34	1,	NPV = 175/182	= 96.15%,	95% CI (92.27, 98.12)
97.69)								
DOR (for T ⁺ ca	lculated	() = 3.25, 93	5% CI (0.62,	DOR (for T ⁺ calc	culated) = 4	4.54, 95%	CI (1.23,
16.91)					16.78)	1		
OR (crude; for					OR (crude; for T			
OR (regression-		reported) =	NR		OR (regression-b		rted) = N	R
List of covariates: NR List of covariates: NR								
Other reported measure = NR Other reported measure = NR								
Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated) = 0.72 (95% CI: 0.24, 2.10)								
Ratio of DORS Ratio of OR (cr					0.24, 2.10)			
Ratio of OR (c)								
Other reported i			porteu,) – INA				
			lte and	lovals of	TR avnosura (Ch	act v_rov i	ndicativ	of I TRI)
Association between test results and levels of TB exposure (Chest x-ray indicative of LTBI) IGRA (QFT-GIT) TST(≥5 mm)							e of LIDI)	
		sure level		Total		Exposur		Total
-	Yes	No		Total		Yes	No	Total
IGRA +	1	14		15	TST +	5	21	26
IGRA -	10	167		177	TST -	6	176	182
Indeterminate	0	16		16	Indeterminate	0	0	0
			(ex	xcluded)				
Total	11	197		208	Total	11	197	208
			Test p	erformai	nce parameters			
IGRA	(exclud	ing indeter	rminate	e)		TST	Γ	
Sensitivity = $1/2$	11 = 9.0	9%, 95% (CI (1.62	, 37.74)	Sensitivity = 5/ 71.99)	1/11 = 45.45	5%, 95% (CI (21.27,
Specificity = 16 95.34)	57/181 =	92.27%, 9	5% CI	(87.44,	Specificity = 1' 92.92)	76/197 = 89	9.34%, 9:	5% CI (84.25,
PPV = 1/15 = 6	66% 9	5% CI (1.1	8 29 8	2)	/	19 23% 95	% CI (8 5	50 37 88)
NPV = 167/177					PPV = 5/26 = 19.23%, 95% CI (8.50, 37.88) NPV = 176/182 = 96.7%, 95% CI (93, 98.48)			
DOR (for T ⁺ ca					DOR (for T ⁺ ca			
10.01)		,	`		24.87)	,	,	,
OR (crude; for	T ⁺ repor	ted) = 1.20	, 95% (CI: 0.10,	OR (crude; for	T ⁺ reported	(1) = 6.30,	95% CI:
6.90					1.70, 22.90			
OR (regression-	-based;	reported) =	1.10, 9	5% CI:	OR (regression	-based; rep	orted) =	4.90, 95%
0.10, 7.70					CI: 1.10, 19.9			
List of covariate					List of covariat			
Other reported i	measure				Other reported		NR	
					tests (IGRA vs.	TST)		
Ratio of DORs	•			•				
Ratio of OR (cr								
,		·	eported)	0 = 0.22 (9)	95% CI: 0.06, 0.85	5)		
Other reported i	measure	= NK						

Λs	sociation	hotwoo	n tost ro	culte and l	evels of TB expo	sura (IM t	raatman	f)
Ass		QFT-GI		suits and i	CVCIS OF TID CAPO	TST(≥5		<i>.</i> ,
		sure leve		Total	1	Exposure		Total
	Yes	No	1	Total		Yes	No	Total
IGRA +	7	8		15	TST +	18	8	26
IGRA -	130	47		177	TST -	131	51	182
Indeterminate	12	4		16	Indeterminate	0	0	0
			(6	excluded)			_	
Total	149	59		208	Total	149	59	208
					ce parameters			
		ng indet			DOD (C. TT+	TST		0/ GI 0.05
DOR (for T ⁺ ca 0.92)	alculated) = 0.31 (95% CI	: 0.10,	DOR (for T ⁺ ca 2.14)	llculated) =	0.87 (95	% CI: 0.35,
OR (crude; for 0.90)	T ⁺ report	ted) = 0.3	80 (95%	CI: 0.10,	OR (crude; for	T ⁺ reported) = 0.90	(95% CI:
,	la a a a da u		0.20.7	050/ CI.	0.40, 2.30)	L d	(h a tra	0.00.(050/
OR (regression	i-based; i	eported)	= 0.30 (95% CI:	OR (regression	-based; rep	ortea) =	0.90 (95%
0.10, 0.90) List of covariat	tog: ND				CI: 0.40, 2.60) List of covariat	ag. ND		
Other reported					Other reported			
Other reported			otswoon 1	oct roculte	and BCG status		hla)	
		(specify		est resurts	and DCG status	TST (spe	•	
	IGKA		status	Total		BCG		Total
		Yes	No	10141		Yes	No	Total
IGRA +		NR	NR	NR	TST +	NR	NR	NR
IGRA -		NR	NR	NR	TST -	NR	NR	NR
Indeterminate		NR	NR	NR	Indeterminate	NR	NR	NR
Total		NR	NR	NR	Total	NR	NR	NR
1000		1 121			ce parameters	1,12	1121	1 (11
	I	GRA				TST	1	
DOR (for T ⁺ ca			R		DOR (for T+ ca			
OR (crude; for					OR (crude; for			
OR (regression				R	OR (regression			$\cdot = NR$
List of covariat		1 /	iolai		List of covariates: NR			
Other reported		= NR			Other reported	measure = 1	NR	
			rdance,	and disco	rdance (if applic			
This table may	y be stra	tified by	TST cu	t-off value	, BCG vaccination	on status, a	and/or co	ondition
Total sample								
			TST +	-	TST			Total
IGRA +			157		20			177
IGRA -			9		6			15
Indeterminate			0		0			0
Total			166		26	<u> </u>		192
Description								
			stratified	by BCG o	r condition – spec	cify): total		
TST + threshol	d: ≥5 mr	n						
Parameters	050/ GT	0.07.0.3	4)					
Kappa = 0.21 ,				V OT (50 :	7 00 27 \			
% concordance								
% discordance				CI (10.73,	20.85)			
Stratification	(specify	group 1)		ı		,	1	
TCD 4			TST +		TST			Total
IGRA +			NR		NE			NR
IGRA -		<u> </u>	NR		NF	(NR

NR

NR

Indeterminate	NR	NR	NR
Total	NR	NR	NR
Description			
Sample definition (e.g.,	total, if stratified by BCG	or condition – specify): NR	
TST + threshold: NR			
Parameters			
Kappa = NR			
% concordance = NR			
% discordance = NR			
Stratification (specify g	group 2)		
	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR

NR

NR

Description

Total

Indeterminate

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

NR

NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes					
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)			
IGRA:	NR	NR			
TST:	NR	NR			
Test 3 (specify):	NR	NR			

Conclusions

Authors:

These authors demonstrated that there is an association of positive results from TST and IGRA with the presence of risk factors for LTBI. Additionally, their results showed that there is a negative impact of therapy with IM on IGRA results (not on TST). They further concluded that LTBI screening should be undertaken at the diagnosis of IBD, and before treatment for IM

Reviewers:

IGRA positivity rate was lower in patients on IM vs. no IM treatment; TST was not affected by IM treatment

Study details

First author surname year of publication: Ramos 2013¹³⁶

Country: Spain

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Outpatient infectious

diseases clinic of a university hospital

Number of centres: NR

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Grants from Conselleria de Sanidad (051/2007), and FIS (PI08/90778)

Aim of the study

To evaluate the performance of QFG compared with the TST for the diagnosis of LTBI in patients with immune-mediated inflammatory disease (IMID) before TNF-a antagonist therapy. Additionally, the impact of immunosuppressive therapy on QFG and TST performance in different IMID was evaluated

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (patients with IMID before TNF-a antagonist therapy)

Participants

Recruitment dates: From January 2009 to May 2011

Total N of recruited patients: NR

Inclusion criteria: All adults (age C 15 years) candidates for anti-TNF-a therapy who attended the

clinic

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 153

Total N of patients with valid results for both IGRA and TST: 152

Methods of active TB diagnosis (if applicable): NR

Outcomes (**study-based**) **list:** Agreement; association of test positivity with exposure; influence of immunosuppressive treatment on test positivity and agreement; influence of underlying disease on test positivity

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median 52 (16–82)

Women (n [%]): 73 [47.7] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Born in a TB endemic area (8 [5.2])

BCG vaccination (n [%]): 29 [19]

History of anti-TB treatment (n [%]): 5 [3.3] Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): Rheumatoid arthritis (RA) (53 [43.6]), psoriasis/psoriatic arthritis (45 [29.4]), inflammatory bowel diseases (IBD) (25 [16.3]), spondyloarthropathy (SA) (22 [14.4]), severe hidradenitis (3 [2.0]), systemic lupus erythematosus (2 [1.3]), polymyositis (1 [0.6]), sarcoidosis (1 [0.6]), and mixed connective tissue disease (1 [0.6])

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Immunosuppressive drug (91 [59.5]), methotrexate (57 [37.3]), corticosteroids (28 [18.3]), leflunomide (21 [13.7]), azathioprine (19 [12.4]), cyclosporine (6 [3.9])

N	um	ber	of	pat	tien	ts 1	tesi	ted
---	----	-----	----	-----	------	------	------	-----

-	Total N	Total	Total N	Total N	Total N
	(tested)	N	(test-)	(indeterminate)	(test results

		(tost I				available)
		(test+				
IGRA (QFT-	153	15	137		1	152
GIT):	100	10	15,		1	102
TST (≥5mm):	153	43	110		0	153
Test 3 (specify):	NA	NA	NA		NA	NA
	nts with valid result	s for bot	h IGR	A and	TST: 152	
	exposure to TB in i					
8 1					n a TB endemic area	
Non-exposed	Not born in a TB					
Exposed 1	Born in a TB end	lemic are	ea			
(specify):						
	efinition of exposur	e group	– Hist	tory of	contact with TB patients	S
Non-exposed	No contact with			•		
Exposed 1	Contact with TB	patients				
(specify):		_				
Tests						
	Assay used, met	hodology	y ,		off values/thresholds	Other
	timing for test me		ent,	I	Definition of test+	information
	manufactu					
IGRA (QFT-	For QFG, three aliq				ng to the instructions, the	
GIT)	of undiluted heparin				as considered to be	TST were
	blood were collecte		1		if the IFN-c level after	performed
	tubes: one containing				ion with TB antigens	simultaneousl
	antigens (ESAT-6,				egative control was	y in a blinded
	and TB7.7), a positi	ive contr			J/ml. The test was	fashion
	tube containing				red negative if the IFN-c	
	phytohemagglutinir				as <0.35 IU/ml after	
	negative control tub samples were incub			subtract control	ion of the negative	
	16–20 h at 37°C. Pl			Control		
	samples were then l		ı 1	The test	result was considered to	
	for IFN-c quantifica				erminate if (1) the	
	single-step sandwic	-			e control was ≥8.0 IU/ml	
	ELISA	птурс		_	ne positive control was	
				<0.5 IU	-	
	The test was perform	med		.5.5 10	· 	
	according to the	**	l _N	Moreov	er, the test result was	
	manufacturer's inst	ructions			red to be	
	(Cellestis, Carnegie				diate if IFN-c level was	
		,	,		U/ml but <0.35 IU/ml	
TST(≥5mm)	Study participants v	vere	П	TST wa	s deemed positive if the	QFG and
	injected with 0.1 ml	of	i	indurati	on	TST were
	tuberculin (2 tuberc	ulin unit	s d	diamete	r was more than 5 mm	performed
	of PPD) (Tuberculii	na PPD;				simultaneousl
	Evans 2UT, UCB P	harma, S	S.A.			y in a blinded
	Madrid, Spain) in a					fashion
	with the American	Thoracic				
	Society guidelines.	The				
	transverse skin indu	ıration				
	diameter was measu	ıred				
	48–72h later					

Association be	etween test r	esults and inc	cidence of	f active TB (if a	applicable)		
	IGRA					ST		
		dence of	Total				Total	
	ac	tive TB						
	Yes	s No			Yes	No		
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indetermin	ate NA	NA	NA	Indetermina	NA	NA	NA	
				te				
Total	NA		NA	Total	NA	NA	NA	
			<u>erformai</u>	nce parameters				
~	IGRA			~		ST		
Sensitivity = N				Sensitivity = I				
Specificity = N	NA			Specificity = 1	NA			
PPV = NA				PPV = NA				
NPV = NA				NPV = NA				
Cumulative Inc				Cumulative Ir				
Cumulative Inc				Cumulative In				
Cumulative Inc				Cumulative In				
Incidence dens				Incidence den				
Incidence dens	•			Incidence den				
Incidence dens	•			Incidence den				
Other reported	illeasure _{IGRA}		hotwoon	Other reported		TST – INA		
Ratio of cumul	lativa inciden			tests (IGRA v	5. 151)			
Ratio of cullul Ratio of incide								
Other reported			Λ.					
•			culte and	levels of TB ex	znosure (if	f annlicable)		
11		FT-GIT)	suits and	icveis of TB cz		Γ (≥5mm)		
		ire level	Tota	1		posure level	Total	
	Born in	Not born in	1		Born	_		
	ТВ	TB			ТВ			
	endemic	endemic			enden	nic endemic		
	area	area			area	a area		
IGRA +	4	11	15	TST +	4	39	43	
IGRA -	4	133	137	TST -	4	106	110	
Indeterminat	NR	NR	1	Indetern	ni 0	0	0	
e	(excluded)	(excluded)	(exclude					
Total	8	144	152	Total	8	145	153	
			<u>oerformai</u>	nce parameters	5			
	IG					TST		
Sensitivity $= 4$	/8 = 50.00%	(95% CI: 21.5	52, 78.48)	Sensitiv 78.48)	Sensitivity = 4/8 = 50.00% (95% CI: 21.52, 78.48)			
Specificity = 1	33/144 = 92.3	36% (95% CI	: 86.84, 95	/ I	,			
PPV = 4/15 = 26.67% (95% CI: 10.90, 51.95)			.95)			% (95% CI: 3.6	7, 21.60)	
PPV = 4/15 = 1	NPV = 133/137 = 97.08% (95% CI: 92.73, 98.86)				PPV = 4/43 = 9.30% (95% CI: 3.67, 21.60) NPV = 106/110 = 96.36% (95% CI: 91.02,			
	7 = 97.08% (95% CI: 92.7.	3, 98.80)		100/110 —		/,	
NPV = 133/13				98.58)				
				98.58)	or T ⁺ calcu	lated) = $2.72 (9)$		
NPV = 133/13	alculated) = 1	2.09 (95% CI		.07) 98.58) .07) DOR (for 0.65, 11	or T ⁺ calcu .40)			
$NPV = 133/13$ $DOR (for T^+ case)$	$alculated) = 1$ $T^{+} reported$	2.09 (95% Cl = NR	I: 2.65, 55	.07) 98.58) .07) DOR (for 0.65, 11) OR (cru	or T ⁺ calcu .40) de; for T ⁺	lated) = $2.72 (93)$	5% CI:	

List of cover	riates: age, se	v		List of cov	oriotaci	200	CAV		
Other report		List of covariates: age, sex							
Other report	ed measure –		aan batanaan ta		Other reported measure = NR				
Datic of DO	Do (for T ⁺ col		.44 (95% CI: 1.:	sts (IGRA vs. T	(51)				
	,		`	33, 12.89)					
	(crude; for T								
	s (regression-		tea) = NA						
Other report	ed measure =			1 0 500	(9)	0			
			t results and le	vels of TB expo	-		·		
		(QFT-GIT)	Total		1	_	5mm)	Total	
		sure level	Total			_	ıre level	Total	
	Contact				Conta		No		
	with TB	with Tl	2		with '	ID	contact		
ICDA	2	12	15	TCT	1		with TB	43	
IGRA +	3 4			TST +	3		39		
IGRA -		133	137	TST -			107	110	
Indeterminat		NR	1 1 1 1 1	Indetermi	0		0	0	
e	(excluded	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		7		146	150	
Total	7	145	152	Total	7		146	153	
			st performance	e parameters		TEC	T		
G ::::		GRA	15.00.74.05)	G ::::	4 /7	TS		25.05	
	= 3/7 = 42.869	•	,	84.18)			14% (95% C	•	
Specificity =	133/145 = 9	1.72% (95%	CI: 86.09, 95.2	0) Specificity 65.58, 79.8	Specificity = 107/146 = 73.29% (95% CI:				
PPV - 3/15	= 20.00% (95	6% CI: 7.04	45 19)		PPV = 4/43 = 9.30% (95% CI: 3.67, 21.6)				
	$\frac{20.00\%}{137} = 97.08\%$				NPV = 107/110 = 97.27% (95% CI: 92.29,				
		`	,	99.07)	99.07)				
DOR (for T	calculated) =	= 8.31 (95%	CI: 1.66, 41.56)		DOR (for T ⁺ calculated) = 3.66 (95% CI: 0.78, 17.08)				
OR (crude; f	or T ⁺ reported	d = NR		OR (crude;	for T ⁺	repor	rted) = NR		
OR (regressi	on-based; rep	ported) = 8.0	0 (95% CI: 1.40	OR (regress	OR (regression-based; reported) = 3.20				
47.00)				(95% CI: 0	(95% CI: 0.70, 15.50)				
List of covar	riates: age, se	X		List of cova	List of covariates: age, sex				
Other report	ed measure =	NR		Other repor	Other reported measure = NR				
		Compari	son between te	sts (IGRA vs. T	TST)				
Ratio of DO	Rs (for T ⁺ cal	culated = 2	.27 (95% CI: 0.	73, 7.08)					
Ratio of OR	(crude; for T	reported) =	NA						
Ratio of OR	s (regression-	based; repor	ted) = 2.50 (95%)	6 CI: 0.76, 8.26))		<u></u>		
Other report	ed measure =	NA							
			n test results a	nd BCG status					
		QFT-GIT)			TST	` (≥5ı		1	
	BCG s		Total				CG status	Total	
	Yes	No				Yes	No		
IGRA +	7	8	15	TST +		13	30	43	
IGRA -	22	115	137	TST -		16	94	110	
Indetermi	NR	NR	1	Indeterminate		0	0	0	
nate	(excluded)	(excluded	(excluded)						
Total	29	123	152	Total	,	29	124	153	
2 3 3 4 1	-/		st performance				121	100	
	IC	RA	- Portor munici		ı	TST			
DOR (for T			5% CI: 1.50	DOR (for T+ o				% CI·	
13.91)	DOR (for T^+ calculated) _{IGRA} = 4.57 (95% CI: 1.50, 13.91)					/18	51 2.01 (70		

OR (crude; for T ⁺ reported) = NR	OR (crude; for T+ reported) = NR
OR (regression-based; reported) _{IGRA} = 5.10 (95%	OR (regression-based; reported) $_{TST} = 2.40$
CI: 1.50, 17.50)	(95% CI: 1.01, 5.80)
List of covariates: Age, sex	List of covariates: Age, sex
Other reported measure = NR	Other reported measure = NR

Between-test agreement, concordance, and discordance (if applicable)

This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition

Total sample

	TST + (≥5mm)	TST -	Total
IGRA (QFT-GIT) +	13	2	15
IGRA (QFT-GIT) -	30	107	137
Indeterminate	NR (excluded)	NR (excluded)	1 (excluded)
Total	43	109	152

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total

TST + threshold: ≥5mm

Parameters

Kappa = 0.35 (95% CI: 0.22, 0.48)

% concordance = 120/152 = 78.95% (95% CI: 71.79, 84.67)

% discordance = 32/152 = 21.05% (95% CI: 15.33, 28.21)

$Between\text{-}test\ agreement,\ concordance,\ and\ discordance\ (if\ applicable)$

Patients not receiving immunosuppressant

Total sample

_	TST + (≥5mm)	TST -	Total
IGRA (QFT-GIT) +	11	0	11
IGRA (QFT-GIT) -	10	41	51
Indeterminate	NR (excluded)	NR (excluded)	1 (excluded)
Total	21	41	62

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Patients not receiving immunosuppressant

TST + threshold: ≥5mm

Parameters

Kappa = 0.59 (95% CI: 0.36, 0.82)

% concordance = 52/62 = 83.87% (95% CI: 72.79, 91.00)

% discordance = 10/62 = 16.13% (95% CI: 9.00, 27.21)

$\label{lem:concordance} \textbf{Between-test agreement, concordance, and discordance (if applicable)}$

Patients receiving immunosuppressant

Total sample

	TST + (≥5mm)	TST -	Total
IGRA (QFT-GIT) +	2	2	4
IGRA (QFT-GIT) -	20	66	86
Indeterminate	NR (excluded)	NR (excluded)	1 (excluded)
Total	22	68	90

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Patients receiving immunosuppressant

TST + threshold: ≥5mm

Parameters

Kappa = 0.08 (95% CI: -0.05, 0.22)

% concordance = 68/90 = 75.56% (95% CI: 65.75, 83.27)

% discordance = 22/90 = 24.44% (95% CI: 16.73, 34.25)

Other outcomes

Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

Test positivity odds for QFT was decreased in immunosuppressant recipients vs. those not on immunosuppressant (OR = 0.20, 95% CI: 0.06, 0.80). In contrast, test positivity odds for TST between these groups was similar (OR = 0.70, 95% CI: 0.30, 1.40). Therefore, immunosuppressant therapy impaired preferentially the sensitivity of the QFG test, since the rate of positive results was significantly lower in patients on immunosuppressive therapy

We observed a worse agreement between TST and QFG in patients on immunosuppressive therapy. The TST positive and QFG-negative results in immunosuppressive patients may be explained due to a false positivity of TST related to atypical mycobacteria

In patients with IMID, QFG may have a limited role for screening of LTBI. We found a negative effect of immunosuppressive therapy on QFG performance (sensitivity)

Reviewers:

QFT performed better than TST in correctly identifying LTBI with better specificity (stronger associations with exposures: born in endemic area; contact with TB case); however, QFT test positivity rate (not necessarily sensitivity) was influenced by immunosuppressant therapy, i.e., it was lower in patients on this therapy vs. patients without the therapy. This influence was not observed for TST

BCG vaccination influenced both QFT and TST positivity odds similarly (increased positivity odds in vaccinated vs. not vaccinated for both tests)

Agreement was lower in patients on immunosuppressant therapy vs. without the therapy due to lower specificity of TST vs. QFT

Abbreviations: DOR = diagnostic odds ratio; 95% CI = 95 percent confidence intervals; TB = tuberculosis; BCG = Bacillus Calmette–Guérin; IBD = inflammatory bowel diseases; PPV = positive predictive value; NPV = negative predictive value; RA = rheumatoid arthritis; SA = spondyloarthropathy; FPR = false positive rate; FNR = false negative rate; SD = standard deviation

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Seyhan 2010¹³⁷

Country: Turkey

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): NR

Number of centres: NR

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): None

Aim of the study

To compare the results of QFT-G with TST for detecting LTBI in hemodialysis patients

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Hemodialysis patients

Participants

Recruitment dates: Between November 2008 and December 2008

Total N of recruited patients: NR **Inclusion criteria:** Hemodialysis patients

Exclusion criteria: Suspicion of active TB infection, use of immunosuppressive drugs, and other

known immunodeficiency status (human immunodeficiency virus [HIV], malignancy, etc

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 100

Methods of active TB diagnosis (if applicable):

Outcomes (study-based) list: Test results, TST or QFT-G and risk factors, concordance between

TST and QFT-G test

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 56.2±15.3

Women (n [%]): 53 [53] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 72 [72]

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-G):	100	43	57	0	100
TST (≥10mm):	100	34	66	0	100
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of patients with valid results for both IGRA and TST: 100

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group-1

	Non-exposed	No prior history of active TB		
	Exposed 1 (specify):	xposed 1 (specify): Prior history of active TB		
Definition of exposure group-2				
	Non-exposed	on-exposed No previous contact of the patient with TB cases		

Exposed 1 (spec	1	oerson ha worked i	aving TB, indi	patient with TB ca viduals who had ho oms as patients with the contact)	ousehol	d contac	t with or who had
		1		f exposure group-	3		
Non-exposed	1	No chest		nanges consistent w		ТВ	
Exposed 1 (spec				ges consistent with			
Tests	<u> </u>	2110201100	sio Brupii viidii	500 00110100110 111111	010 12		
Teses	Accay	used m	ethodology,	Cut-off		Ot	her information
	t	iming fone neasure nanufac	or test ment,	values/thresho Definition of t		Ot.	net imormation
ICDA (OFT	QFT-G,			≥0.35 IU/mL of I	FN v	Blood	was collected before
IGRA (QFT- GIT)	Qr1-0,	постерс	nted	in the TB antigen minus the negative control tube was considered to be a positive test result	tube ve		acement.
TST≥ 10mm	Mantou	v method	1 was	\geq 10mm induration		People	with an initial
1912 1911111	Mantoux method was performed intradermally on			considered to be			tion of less than
	the vola			positive test resul			were administered a
			mL (5TU)	positive test resul			TST one week later
			(Intervax			to cause a potential booster	
	Biologic		*				se. Results from the
Ontario, Canada							ep testing were used
			8-72 hours				urther analyses
	after TS	T placer	nent				•
Association bet				ce of active TB (if	applica	ble)	
	IGR	4		·	,	ГSТ	
	Inci	dence	Total		Incide	ence of	Total
	of a	active			active TB		
	,	ГВ					
	Yes	No			Yes	No	
IGRA +	NA	NA	NA	TST +	NA	NA	NA
IGRA -	NA	NA	NA	TST -	NA	NA	NA
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA
Total	NA	NA	NA	Total	NA	NA	NA
			Test perfor	mance parameter	S		
	IGR	4			,	TST	
Sensitivity = NA	4			Sensitivity = NA			
Specificity = N	Α			Specificity = NA			
PPV = NA				PPV = NA			
NPV = NA				NPV = NA			
Cumulative Inc	idence _{IGR}	$_{A+}=\overline{NA}$	·	Cumulative Incid	lence _{TS'}	$_{\Gamma^{+}}=\overline{NA}$	
Cumulative Inc	idence _{IGR}	$_{A-}=\overline{NA}$		Cumulative Incid	ence TS	$_{\Gamma_{-}}=N\overline{A}$	
Cumulative Inc			= NA	Cumulative Incid			= NA
Incidence densi	ty rate _{IGR}	$_{A+} = \overline{NA}$		Incidence density	rate TS	$_{\Gamma^{+}}=\overline{NA}$	
Incidence densi				Incidence density	rate TS	$_{\Gamma} = \overline{NA}$	
Incidence densi	•		NA	Incidence density			NA
Other reported i				Other reported m			
				een tests (IGRA v			
Ratio of cumula	tive incid			`			
Kano of Cumura							

Other reported mea	sure = N	R					
			esults and	l levels of TB exp	osure (Prev	ious TB d	isease)
	(QFT-C			•	TST≥ 1		,
	Expo	sure	Total		Exposur		Total
	Yes	No			Yes	No	
IGRA +	6	37	43	TST +	3	31	34
IGRA -	2	55	57	TST -	5	61	66
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	8	92	100	Total	8	92	100
		7	Test perfo	rmance paramete	ers		
	IGRA				TST	Γ	
Sensitivity = 6/8 = 92.85)	75%, 959	% CI (40	0.93,	Sensitivity = 3/8	= 37.5%, 95	5% CI (13.	68, 69.43)
Specificity = 55/92 (49.57, 69.22)	= 59.789	%, 95%	CI	Specificity = 61/9	92 = 66.3%	95% CI (5	56.17, 75.14)
PPV = 6/43 = 13.95 27.26)	5%, 95%	CI (6.55	56,	PPV = 3/34 = 8.8	324%, 95%	CI (3.047,	22.96)
NPV = 55/57 = 96. 99.03)	49%, 959	% CI (88	3.08,	NPV = 61/66 = 9	2.42%, 95%	CI (83.46	6, 96.72)
DOR (for T ⁺ calcul (0.85, 23.31)	ated) = 4	.46, 95%	6 CI	DOR (for T ⁺ calc	rulated) = 1.	18, 95% C	I (0.26, 5.26)
OR (crude; for T^+ reported) = NR			OR (crude; for T	reported) =	NR (NS)		
OR (regression-based; reported) = 2.06, 95%			OR (regression-b			(NS)	
CI (0.30, 12.80)	, 1	,	,	List of covariates		,	,
List of covariates: 1	NR						
Other reported mea	sure = N	R		Other reported m	easure = NF	}	
		Compa	rison betv	veen tests (IGRA	vs. TST)		
Ratio of DORs (for				CI: 1.21, 11.83)			
Ratio of OR (crude		_					
Ratio of ORs (regre			orted) = N	A			
Other reported mea							
			ılts and le	vels of TB exposu	•		with TB)
IGRA	(QFT-C		TD + 1		TST (≥1		TD . 1
	Expo lev	el	Total		Exposu		Total
YGD .	Yes	No		mam	Yes	No	
IGRA +	10	33	43	TST +	6	28	34
IGRA -	3	54	57	TST -	7	59	66
Indeterminate	0	0	100	Indeterminate	0	0	0
Total	13	87	100	Total	13	87	100
	ICD 4	']	est perfo	rmance paramete		T	
Canaitivity 10/12	IGRA - 76 020	/ 050/ 4	CI (40.74	Consitivity C/1	$\frac{TS'}{12 - 46.150}$		(22.21. 70.96)
Sensitivity = 10/13 91.82)				Sensitivity = 6/1			
Specificity = 54/87 71.55)				Specificity = 59			,
PPV = 10/43 = 23.2 37.74)				PPV = 6/34 = 1			. ,
NPV = 54/57 = 94. 98.19)	74%, 959	% CI (85	.63,	NPV = 59/66 =	89.39%, 95	% CI (79.6	59, 94.77)
DOR (for T ⁺ calcul (1.40, 21.27)	ated) = 5	.45, 95%	6 CI	DOR (for T ⁺ cal	culated) = 1	.81, 95%	CI (0.55, 5.87)

OR (crude; for T ⁺ r	reported)	= NR		OR (crude; for '	T ⁺ reported)	= NR (NS	5)
OR (regression-bas	sed; repor	ted) = 5	.08, 95%	OR (regression-based; reported) = NR (NS)			
CI (1.20, 21.20)	•			List of covariates: NR			
List of covariates:	NR						
Other reported mea	asure = N	R		Other reported	measure = N	R	
•			rison betw	een tests (IGRA			
Ratio of DORs (for	r T ⁺ calcu				,		
Ratio of OR (crude				, , ,			
Ratio of ORs (regre		<u> </u>		1			
Other reported mea							
•			ılts and lev	els of TB exposu	ire (Chest X	-ray with	changes)
	A (QFT-		2205 44214 20 1		TST≥1		- •
1011	Expo		Total		Exposure		Total
	lev		1000				10001
	Yes	No	_		Yes	No	
IGRA +	11	32	43	TST +	4	30	34
IGRA -	5	52	57	TST -	12	54	66
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	16	84	100	Total	16	84	100
1 Otal	10		1	mance paramete		07	100
	IGRA		test perior		TS		
Sensitivity = 11/16		V 050/	CI (44.40	Sensitivity = 4/			(10.19.40.50)
Sensitivity = 11/10 85.84)	0 – 00.73%	70,93% ·	CI (44.40,	Sensitivity = 4/	10 – 23.00%), 95% CI	(10.16, 49.30)
Specificity = 52/84	= 61.909	%, 95%	CI (51.22,	Specificity = 54/84 = 64.29%, 95% CI (53.62, 73.70)			
71.55)		,	,			,	, , ,
PPV = 11/43 = 25.3	58%, 95%	6 CI (14	.93.	PPV = 4/34 = 1	1.76%, 95%	CI (4.67.	26.62)
40.24)	,		,		,,	- (,	,
NPV = 52/57 = 91.	23%, 959	% CI (81	.05.	NPV = 54/66 =	81.82%, 95	% CI (70.	85, 89,28)
96.19)	,	01 (01	,	111 / 01/00	0110270,70	70 01 (70.	00, 00.20)
DOR (for T ⁺ calcul	lated) = 3	.57, 95%	6 CI	DOR (for T ⁺ ca	lculated) = (0.60, 95%	CI (0.18, 2.02)
(1.14, 11.24)					FD ⁺ 1)		<u> </u>
OR (crude; for T ⁺ r	_		0.0.00	OR (crude; for T ⁺ reported) = NR (NS)			
OR (regression-bas	sed; repoi	ted) = 3	.06, 95%	OR (regression-based; reported) = NR (NS)			
CI (2.10, 11.90)				List of covariat	es: NR		
List of covariates:		_					
Other reported mea	asure = N			Other reported		IK	
				een tests (IGRA	vs. TST)		
Ratio of DORs (for				CI: 2.54, 13.91)			
Ratio of OR (crude							
Ratio of ORs (regre		_	orted) = NA	A			
Other reported mea							
A	Association	on betw	een test res	sults and BCG st	tatus (if app	licable)	
IGRA	A (QFT-	GIT)			TST ≥1	0mm	
	BCG	status	Total		BCG	status	Total
	Yes	No			Yes	No	
IGRA +	34	9	43	TST +	30	4	34
IGRA -	38	19	57	TST -	42	24	66
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	72	28	100	Total	72	28	100
		7	Test perfor	mance parameto	ers		
	IGRA				TS	T	
DOR (for T ⁺ calcul		= 1.89 (95% CI:	DOR _{TST} (for T-	+ calculated)	= 4.28 (9	5% CI: 1.35,
0.75, 4.73)				13.64)			

OR (crude; for T ⁺ repor	ted) = NR (NS)	OR (crude; for T+ reported	= NR (SS)		
OR (regression-based; r	$reported)_{QFT} = NR$	OR (regression-based; reported) $_{TST} = 4.10 (1.30,$			
(NS)		13.90)			
List of covariates: NR		List of covariates: NR			
Other reported measure		Other reported measure = N	√R		
		discordance (if applicable)			
•	tified by TST cut-off	value, BCG vaccination stat	us, and/or condition		
Total sample					
	TST +	TST -	Total		
IGRA +	21	22	43		
IGRA -	13	44	57		
Indeterminate	0	0	0		
Total	34	66	100		
Description					
1	•	CG or condition – specify): T	otal		
$TST + threshold: \ge 10m$	nm				
Parameters					
Kappa = 0.27 , 95% CI (
% concordance = $65/10$					
% discordance = 35/100		6.36, 44.75)			
Stratification (BCG va					
	TST +	TST -	Total		
IGRA +	17	17	34		
IGRA -	13	25	38		
Indeterminate	0	0	0		
Total	30	42	72		
Description					
		CG or condition – specify): B	CG		
$TST + threshold$: $\geq 10n$	nm				
Parameters					
Kappa = 0.16 , 95% CI (
% concordance = $42/72$					
% discordance = 30/72		.99, 53.19)			
Stratification (non-BC					
	TST +	TST -	Total		
IGRA +	4	5	9		
IGRA -	0	19	19		
Indeterminate	0	0	0		
Total	4	24	28		
Description					
1	•	CG or condition – specify): U	nvaccinated		
$TST + threshold: \ge 10m$	nm				
Parameters					
Kappa = 0.52, 95% CI	(0.19, 0.84)				
% concordance = 23/28	S = 82.14%, 95% CI (64	4.41, 92.12)			
% discordance = 5/28 =		•			
		ner outcomes			
Test and cut-off (if	Adverse even	ts n/N (%)	Health related quality		
applicable)	(specify)		of life mean score (SD)		
			(specify)		
IGRA:		NR	NR		
TST:		NR	NR		
Test 3 (specify):		NR	NR		

Conclusions

Authors:

These authors concluded that there was poor agreement between TST and QFT-G for LTBI in HD patients. Additionally, unlike the TST, the QFT-G results were significantly related to LTBI risk factors, but not related to the BCG status. They further concluded that QFT-G was a superior to the TST test for detecting LTBI in HD patients

Reviewers:

QFT-GIT performed better than TST in identifying LTBI correctly showing stronger associations between test positivity odds and the exposures. Also, IGRA was not dependent on BCG vaccination unlike TST positivity. Agreement was higher in BCG non vaccinated patients

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Shen 2012¹³⁸

Country: China

Study design: Retrospective study

Study setting (e.g., outbreak investigation, community-based - specify): University hospital

Number of centres: 1

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): None

Aim of the study

To evaluated the diagnostic value of an enzyme-linked immunosorbent spot (ELISPOT) assay measuring interferon-Y in hepatitis C patients with LTBI

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Hepatitis C patients

Participants

Recruitment dates: From January 2009 to December 2010

Total N of recruited patients: NR

Inclusion criteria: Hepatitis patients with (TB exposure group-patients who had history of exposure to TB and did not do clinical diagnosis of TB, with obvious clinical symptoms; non-TB exposure group-patients who had no history of exposure to TB and no clinical symptoms; TB group-patients who were clinically diagnosed with TB and with apparent clinical symptoms)

This review focuses on 70 patients (TB exposure group-patients), n = 31 (suspected LTBI; excluding 9 TB patients) and n = 39 non-exposed patients (no history of exposure to TB and no clinical symptoms)

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 160 (TST and ELISPOT)

Total N of patients with valid results for both IGRA and TST: 160 (TST and ELISPOT)

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: Test results, sensitivity and specificity of TST and ELISPOT

Characteristics of participants (total study sample)

Mean (range or SD) age (years): TB exposure group $n = 40 (42.9 \pm 18.6)$; No TB exposure group (n = 39) 37.8 ± 17.6

Women (n [%]): TB exposure (37 [47]); No TB exposure (17 [45])

Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]):NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes Morbidity (n [%]): Hepatitis C

Co-morbidity (n [%]): Heart disease, diabetes, liver cirrhosis, solid tumor, chronic renal failure

Type of during-study treatment (n [%]): NR

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (TSPOT): ELISPOT	70	26	44	0	70
TST (≥5 mm):	70	34	36	0	70
Test 3 (specify):	NA	NA	NA	NA	NA

Total N of p	atients	s with v	valid resu	ılts for both	IGR	A and TST:			
						er (if applica	ble):		
						osure group	Í		
Non-exposed	d		No histo	ry of TB exp	osure	and no clinic	al symp	otoms (n	= 39)
Exposed 1 (s	specify):	History of	of exposure t	o tub	erculosis (sus	pected l	naving T	B, but no
-			sympton	ns of TB, n =	31)		_	_	
Exposed 2 (s	specify	·):	NA						
Exposed 3 (s	specify	·):	NA						
Exposed 4 (s	specify	·):	NA						
Tests									
	Ass	say use	d, metho	dology, timi	ng	Cut-off val	ues/thr	esholds	Other
		for t	est meas	urement,		Definit	ion of to	est+	information
]	manufac	turer					
IGRA	IFN-	γ ELISI	POT assa	y (Beijing		Not stated			NA
(TSPOT)	Gaok	ke Life	and Tech	nology Inc.,					
	Chin	a) was j	performe	d according t	О.				
				commendation					
TST≥5	TST	was per	rformed b	y intraderma	ıl	TST was co	nsidere	d	NA
mm	injec	tion (M	antoux m	nethod) of 0.1	l	positive wh	en the		
	mL (5U) of	PPD acco	ording to curi	ent	transverse d	iameter	of	
	recor	mmenda	ations. T	he induration	ı	induration v	vas ≥5 r	nm	
	was 1	measure	easured with a ruler by a						
	trained physician 72 hours after the								
	injec	tion							
Association	betwee	en test	results a	nd incidence	of a	ctive TB (if a	pplicat	ole)	
		IGR/	A				i	TST	
		Incide	ence of	Total			Incide	nce of	Total
		activ	e TB				activ	е ТВ	
		Yes	No				Yes	No	
IGRA +	+	NA	NA	NA		TST +	NA	NA	NA
IGRA -	-	NA	NA	NA		TST -	NA	NA	NA
Indetermir	nate	NA	NA	NA	In	determinate	NA	NA	NA
Total		NA	NA	NA		Total	NA	NA	NA
			,	Test perforn	nance	parameters			
		IGR/	1	_			ı	TST	
Sensitivity =	: NA				Se	nsitivity = Na	Α		
Specificity =	NA				Sp	ecificity = N	4		
PPV = NA					PP	V = NA			
NPV = NA					NF	PV = NA			
Cumulative	Inciden	nce _{IGRA}	₊ = NA		Cu	mulative Inc	dence _T	$S_{ST+} = NA$	<u> </u>
Cumulative 2						mulative Inc			
Cumulative 2				NA		mulative Inc			
Incidence de						cidence densi			
Incidence density rate $_{IGRA} = NA$					cidence densi				
Incidence density rate ratio _{IGRA} = NA					Incidence density rate ratio _{TST} = NA				
Other report						her reported i	•		
		· IOR		rison betwe		sts (IGRA vs		101 - 12	
Ratio of cum	nulative	e incide			J-1 00)	(
Ratio of can									
Other report				5 — 11/1					
				oculte and la	vole 4	of TB exposu	ro (Suc	nected T	R disease)
ASSU		RA (TSI		csuits allu le	veis (u in exhosn		pecteu 1 ≥5mm	D uiscast)
	101		sure level	l Total				ure level	Total
		Lybo	suite leve	ı ı Otai			Lybos	uic icvel	1 Otal

	Yes	No			Yes	No	
IGRA +	22	4	26	TST +	19	15	34
IGRA -	9	35	44	TST -	12	24	36
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	31	39	70	Total	31	39	70
Total	31			nance parameter		37	70
	IGRA	10	st periori		TS	$\overline{\mathbf{T}}$	
Sensitivity = 22/31		95% CI	(53.41	Sensitivity = 19/			I (43 82
83.9)				76.27)		•	
Specificity = 35/39 95.94)	= 89.74%	(95% C	I: 76.42,	Specificity = 24/	39 = 61.54	·% (95% C	I: 45.9, 75.11)
PPV = 22/26 = 84.6 93.85)	52% (95%	CI: 66.4	7,	PPV = 19/34 = 5	5.88% (95	% CI: 39.4	15, 71.12)
NPV = 35/44 = 79.	55% (95%	CI: 65.5	5, 88,85)	NPV = 24/36 = 6	66.67% (95	5% CI: 50.	33, 79,79)
DOR (for T ⁺ calcul				DOR (for T ⁺ cale			
5.87, 77.93)	utea) – 21	(7570	CI.	Bott (for 1 cars		2.55 (7570	C1. 0.20, 0.07)
OR (crude; for T ⁺ re				OR (crude; for T			
OR (regression-bas		ed) = NR	-	OR (regression-l		orted) = NF	₹
List of covariates: 1				List of covariate			
Other reported mea				Other reported n		VR	
				een tests (IGRA v	s. TST)		
Ratio of DORs (for				CI: 3.71, 19.28)			
Ratio of OR (crude							
Ratio of ORs (regre	ession-bas	ed; repor	ted) = NA				
Other reported mea	sure = NF	{					
A	ssociatio	n betwee	n test resi	ults and BCG sta	tus (if app	licable)	
IGR/	A (TSPO	T/QFT)			TST (>5 mm)	
	BCG	status	Total		BCG	status	Total
	Yes	No			Yes	No	
IGRA +	NR	NR	NR	TST +	NR	NR	NR
IGRA -	NR	NR	NR	TST -	NR	NR	NR
Indeterminate	NR	NR	NR	Indeterminate	e NR	NR	NR
Total	NR	NR	NR	Total	NR	NR	NR
		Te	st perforr	nance parameter	s		
IGRA	A (TSPO					>5 mm)	
DOR (for T ⁺ calcul				DOR _{TST} (for			
OR (crude; for T ⁺ r				OR (crude; fo			
OR (regression-bas			NR	OR (regression			
OR (regression-bas				List of covari		1 / 10	
List of covariates: 1		7151-01					
Other reported mea		2		Other reporte	d measure	= NR	
Between-test agree			ce, and di				
This table may be				`		ıs, and/or	condition
Total sample							
		TST		TST			Total
IGRA +		NR		NI			NR
						NR	
Indeterminate NR NR NR							
Total	Total NR NR NR						
Description							
Sample definition (if stratif	ied by BC	G or condition – s	pecify): NI	R	
TST + threshold: N	IR						
Parameters							

Kappa = NR						
% concordance = NR						
% discordance = NR						
Stratification (specify	group 1)					
	TST +	TST -	Total			
IGRA +	NR	NR	NR			
IGRA -	NR	NR	NR			
Indeterminate	NR	NR	NR			
Total	NR	NR	NR			
Description						
	total, if stratified by BC	G or condition – specify):	NR			
TST + threshold: NR	•					
Parameters						
Kappa = NR						
% concordance = NR						
% discordance = NR						
Stratification (specify	group 2)					
("]"	TST +	TST -	Total			
IGRA +	NR	NR	NR			
IGRA -	NR	NR	NR			
Indeterminate	NR	NR	NR			
Total	NR	NR	NR			
Description						
-	total, if stratified by BC0	G or condition – specify):	NR			
TST + threshold: NR		<u> </u>	- · · ·			
Parameters						
Kappa = NR						
% concordance = NR						
% discordance = NR						
70 015001001100 1111	Other	r outcomes				
Test and cut-off (if	Adverse events		Health related quality			
applicable)	(specify)	3 11 (7 0)	of life mean score (SD)			
			(specify)			
IGRA:		NR	NR			
TST:		NR NR				
Test 3 (specify):		NR	NR			
	Con	nclusions				
Authors:						
Doggad on the manufic for	41.1 4 41 EL ICDO	T account and a binds diagram	1			

Based on the results from this study the ELISPOT assay had a high diagnostic sensitivity and a low false positive rate in the diagnosis of LTBI. They concluded that the use of this assay may be effective in diagnosing LTBI in this patient group to prevent LTBI developing into active TB

Reviewers:

IGRA performed better than TST for LTBI identification (on all parameters)

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Souza 2014¹⁵¹

Country: Brazil

Study design: cross-sectional/retrospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): outpatient clinics

Number of centres: 8

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): This research was supported by Fundacao de Apoio `a Pesquisa do Distrito Federal, FAPDF funded by SUS-PPSUS Grant no. 193.000.353/2010.

Aim of the study

To evaluate the added value of QFT-GIT over the TST for detecting LTBI among persons living with HIV/AIDS (PLWHA); also to explore the factors associated with a positive QFT-GIT and with discordant QFT-GIT/TST results

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised (HIV/AIDS)

Participants

Recruitment dates: between May 2011 and March 2013

Total N of recruited patients: NR

Inclusion criteria: People with HIV/AIDS over 17 years who were not submitted to TST in the previous five weeks

Exclusion criteria: Patients with history of other immunosuppression conditions (severe AIDS-related opportunistic infections, acute viral infections, those submitted to any vaccination in the previous two months, and those using immunosuppressive drugs), patients with present or past active TB and those with a history of a previous positive TST

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 299

Methods of active TB diagnosis (if applicable): NA

Outcomes (**study-based**) **list:** between test agreement, association between factors and test results (positive, discordant tests)

Characteristics of participants (total study sample)

Mean (range or SD) age (years): median 40 (IQR = 32–46) years

Women (n [%]): 85 [28.3] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 228 [76.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): NR Clinical examination (yes/no): NR Morbidity (n [%]): HIV/AIDS Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT)	300	14	285	1	299
TST: ≥5mm	300	10	290	0	300

Tost 2 (anasifu)									
Test 3 (specify) Total N of patient	c with v	alid racult	s for both I	CDA and TST: 20	0				
Levels/groups of									
				History of contact					
	emmuo	No	ure group –	History of contact	with ind	ex case			
Non-exposed	-)-								
Exposed 1 (specify		Yes							
Exposed 2 (specify		NR NR							
Exposed 4 (specify		NR NR							
Exposed 4 (specify	() :	INK							
Tests									
Tests	Aggaz	unand mad	hadalaav	Cut-off values	/thmaaha	lda	Other		
Assa		timing for	thodology,	Definition		ius	information		
		measuren		Definition	or icsi+		mormation		
		manufact	•						
IGRA (QFT-		FIT was pe		Positive result wa	s consid	ered			
GIT)		ing to the	Hornica	if the difference b		Cica			
OII)		acturer's in	struction	interferon respons					
				antigens and nega		trol			
				was ≥0.35 UI/mL					
				interferon respons	se to TB				
				antigens was ≥25% compared					
				to the negative control					
				response					
				QFT-GIT was con					
					to be indeterminate if the				
				interferon response to the					
				negative control was ≥8UI/mL or <0.5UI/mL compared to the					
					nparea t	o the			
TST≥5mm	Dortici	nonte wore	submitted		positive control Injection and reading of				
151 <u>2</u> 311111		using 0.11		induration 72 to 9		after			
		using 0.11							
	tuberci	`	its of	injection were performed by a trained HCW					
	tubere	ullil)							
				Positive result wa	s TST				
				induration was ≥5					
Association betw	veen tes	t results	and incide			icable)			
	IGR					ST			
		lence of	Total			ence of	Total		
		ive TB				e TB			
	Yes	No			Yes	No	1		
IGRA +	NA	NA	NA	TST +	NA	NA	NA		
IGRA -	NA	NA	NA	TST -	NA	NA	NA		
indeterminate	NA	NA	NA	indeterminate	NA	NA	NA		
Total	NA	NA	NA	Total	NA	NA	NA		
				nce parameters					
	IGR		1		T	ST			
Sensitivity = NA			Sensitivity = NA						
$\frac{\text{Specificity} = \text{NA}}{\text{Specificity} = \text{NA}}$				Specificity = N.					
PPV= NA				PPV= NA					
NPV= NA				NPV= NA					

Cumulative Incider	nce van . – N	JΔ		Cumulative Inc	ridence man	– NΔ		
Cumulative Incider				Cumulative Incidence _{TST+} = NA Cumulative Incidence _{TST-} = NA				
Cumulative Incider				Cumulative Incidence Ratio _{TST} = NA				
Incidence density r				Incidence density rate _{TST+} = NA				
Incidence density r					Incidence density rate $_{TST_{+}}$ = NA Incidence density rate $_{TST_{-}}$ = NA			
Incidence density r				Incidence dens				
Other reported mea			o try o o m	Other reported		- INA		
Datie of consulation		•		tests (IGRA vs	. 151)			
Ratio of cumulative								
Ratio of incidence of Other reported mea		ratios = INA	1					
		40a4 waar	-14a a J	larvala of TD or		ammliaahla	.)	
			mis and	levels of TB ex			<i>:</i>)	
IGR	A (QFT-C		T 70 . 1		TST (≥5r		- TD - 1	
		re level	Total		Exposu		Total	
	High/Yes	Low/No	1.5		High/Yes	Low/No		
IGRA +	0	13	13	TST +	1	8	9	
IGRA -	35	245	280	TST -	34	251	285	
indeterminate	NR	NR	1	indeterminate	0	0	0	
Total	35	258	293	Total	35	259	294	
		Test pe	rforma	nce parameters				
	IGRA				TST			
Sensitivity = 0/35=	Sensitivity = 1/3	35=2.86% (9	95% CI: 0.5	0, 14.53)				
Specificity = 245/258=94.96% (95% CI: 91.57, 97.03)				Specificity =251/259=96.91% (95% CI: 94.02, 98.43)				
PPV= 0/13=0.00%	(95% CI: 0.	0, 22.81)		PPV=1/9= 11.1	1% (95% CI	: 1.99, 43.5)	
NPV= 245/280=87	•).87)	NPV=251/285=	•		•	
DOR (for T ⁺ calcul	ated) = 0.50	(95% CI: 0	.06,	DOR (for T ⁺ cal				
4.24)	ŕ	`		7.61)	,	,	·	
OR (crude; for T ⁺ ro 3.82)	eported)= 0.	49 (95% C	I: 0.06,	OR (crude; for 7.61)	Γ ⁺ reported)=	= 0.92 (95%	CI: 0.11,	
OR (regression-bas	ed: reported)= NR			hased: renoi	rted)= 1 21	(95% CI:	
OK (regression ous	ica, reported	.)— 1111		OR (regression-based; reported)= 1.21 (95% CI: 0.13, 11.16)				
List of covariates: 1	NR			List of covariates: NR				
Other reported mea				Other reported measure =NR				
o there repeated me		narison b	netween	tests (IGRA vs				
Ratio of DORs (for		_		,	. 101)			
Ratio of OR (crude								
Ratio of ORs (regre	·		` _	21. 0.12, 2. 12)				
Other reported mea		i, reported)	- 1 1/1					
		tween tes	t resulte	s and BCG stat	us (if annli	cable)		
	RA (specif		t i Couit.	and BCG state	TST (spe			
10	BCG s	•	Total			status	Total	
	Yes	No	Total		Yes	No	Total	
IGRA +	NA	NA NA	NA	TST +	NA	NA	NA	
IGRA -	NA NA	NA NA	NA NA	TST -	NA NA	NA NA	NA NA	
indeterminate	NA NA	NA NA	NA NA	indeterminate	NA NA	NA NA	NA NA	
							NA NA	
1 Otal	INA					INA	INA	
	ICDA	rest pe	1 IOFIIIA	nce parameters				
DOD (f TP+ 1 1	IGRA	AT A		DOD (fee Tr	TST	NT A		
DOR (for T ⁺ calcul				DOR (for T+ ca				
OR (crude; for T ⁺ re				OR (crude; for			T A	
OR (regression-based; reported) $_{IGRA} = NA$				OR (regression-based; reported) $_{TST} = NA$				

List of covariates: NA		List of covariates: NA			
Other reported measure	= NA	Other reported measure = NA	A		
Between-test agreem	ent, concordance, and	discordance (if applicable)			
This table may be str	atified by TST cut-of	f value, BCG vaccination sta	itus, and/or		
condition					
Total sample					
_	TST +(≥5mm)	TST -	Total		
IGRA +	6	8	14		
IGRA -	4	281	285		
indeterminate	0	1	1		
Total	10	289	299		
Description			·		
Sample definition (e.g.,	total, if stratified by BCC	G or condition – specify): total			
TST + threshold: ≥5mm		¥ ,			
Parameters					
Kappa = 0.48 (95% CI:	0.37, 0.59)				
% concordance = $287/29$		3.12, 97.69)			
% discordance = 12/299		•			
Stratification (specify	<u> </u>	,			
~ · · · · · · · · · · · · · · · · · · ·	TST +	TST -	Total		
IGRA +	NA	NA	NA		
IGRA -	NA	NA	NA		
indeterminate	NA	NA NA	NA		
Total	NA	NA NA	NA		
Description	1111	11/1	1111		
	total if stratified by BCC	G or condition – specify): NA			
TST + threshold: NA	iotal, il stratifica by Bec	specify). 1411			
Parameters					
Kappa = NA					
% concordance = NA					
% discordance = NA					
Stratification (specify	g group 2).				
Stratification (specify	TST +	TST -	Total		
IGRA +	NA	NA	NA		
IGRA -	NA NA	NA NA	NA NA		
indeterminate	NA NA	NA NA	NA NA		
Total	NA NA	NA NA	NA NA		
	IVA	INA	IVA		
Description Sample definition (a.g.	total if atmatified by DCC	G or condition – specify): NA			
TST + threshold: NA	iotai, ii stratified by BCC	3 of collation – specify). NA			
Parameters Variation NA					
Kappa = NA					
% concordance = NA					
% discordance = NA		-1			
A 41	Con	clusions			
Authors:	CC 1 x mx	BI than TST (QFT yielded more	•,••		
THE LEFT GLOBO WAS MAN	TO DITECTIVE TO CETECT I I I	BLIDAN INTUUET VIELDED MOTE I	DOUBLE PROBLEM		

inconclusive regarding the strength of association between test positivity and prior exposure to index

The authors used invalid assumption of test positivity as a marker of LTBI; the results are

Reviewers:

case (ORs and 95% CIs are too wide)

Name of first reviewer: Peter Auguste

Name of second reviewer: Alexander Tsertsvadze

Study details

First author surname year of publication: Takeda 2011

Country: Japan

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Hospital based

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Ministry of Health, Labor, and Welfare

Aim of the study

To evaluate whether QFT-GIT is useful in detecting LTBI in systemic lupus erythematosus (SLE) patients

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (patients with SLE)

Participants

Recruitment dates: July 2006 to September 2008

Total N of recruited patients: NR

Inclusion criteria: Systemic lupus erythematosus (SLE) patients; non-SLE connective tissue disease (rheumatoid arthritis, myositis, vasculitides, systemicscleroderma, Sjoegren's syndrome, Behcet's disease, adult-onset Still's disease)

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 71 (IGRA) and 43 (TST)

Total N of patients with valid results for both IGRA and TST: NR

Methods of active TB diagnosis (if applicable): Positive culture for MTB or a positive result on a polymerase chain reaction test for MTB DNA in any clinical specimen associated with compatible TB symptoms and radiographic findings

Outcomes (**study-based**) **list:** Association of test positivity and risk for LTBI, factors influencing indeterminate QFT results

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 38.3 (15.2)

Women (n [%]): 58 [81.7] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): SLE Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Corticosteroids (37 [52.1]), immunosuppressive drugs (19

[26.8]), prednisolone pulse therapy (2 [2.8]), NSAIDs or no therapy (13 [18.3])

Number of patients tested Total N Total N Total Total N Total N (tested) N (test-) (indeterminate) (test results available) (test+) IGRA (QFT-2G): 71 2 46 23 71 0 43 3 40 **TST** (≥10 mm): 43 Test 3 (specify): NA NA NA NA NA

Total N of patients with valid results for both IGRA and TST: Unclear

Levels/grou	ups of	expost			g order (if applicat	ole):		
	,	1			of exposure group			
Non-expose			Vithout risk					
Exposed 1 ((specify				BI (history of house			
					B showing nodules ening; history of ac			cified
Exposed 2 (specif		ΙΑ		B,J		_/	
Exposed 3 (ΙA					
Exposed 4 (ΙA					
Tests	<u> </u>							
	A	ssay us	ed, method	dology,	Cut-off		Other in	formation
	tim		test measu		values/threshold			
			anufacture		Definition of test			
IGRA	_		-TB Gold (- / /	≥ 0.35 IU/mL			lt if the IFN-γ
(QFT-	Celle	stis, Ca	rnegie, Au	stralia				tigen stimulated
GIT)								35 IU/mL and in
								ells was ≥0.5
						J/mL. Resul	ts were leterminate if	
							el in the antigen	
						imulated we		
								ne IFN-γ level
							the antigen-	•
								ow half of the
						le	vel of the ne	gative control
							as > 0.7 IU/1	
TST≥10	0.1 m	L of tu	berculin pu	rified	≥10 mm, accordin	g N	A	
mm			ative (PPD		to the usual			
			ely 3 tubero		criterion of the TS	ST		
			Nippon BC		in Japan			
			ng, Tokyo,					
			ral surface on the induration					
			e maurano. I hours late					
Association					e of active TB (if a	nnlica	hla)	
Association	1 DCLW	IG		ia metaene	c of active 1D (if a	ppnca	TST	
			dence of	Total		Inc	idence of	Total
			tive TB				ctive TB	
	ļ	Yes	No			Yes	No	
IGRA -	+	NA	NA	NA	TST +	NA	NA	NA
IGRA -	-	NA	NA	NA	TST -	NA	NA	NA
Indetermin	nate	NA	NA	NA	Indeterminate	NA	NA	NA
Total		NA	NA	NA	Total	NA	NA	NA
		-		est perfori	nance parameters			
~		IG	RA		~		TST	
Sensitivity					Sensitivity = N			
Specificity	= NA				Specificity = N	A		
PPV = NA					PPV = NA			
NPV = NA			NT A		NPV = NA	11.	. N.T.A	
Cumulative					Cumulative Inc			
Cumulative				Τ Λ	Cumulative Inc			NΙΛ
Cumulative				A	Cumulative Inc			INA
Incidence d	ensity	iaie _{IGR}	$A_{+} = INA$		Incidence dens	uy rate	$z_{TST+} = NA$	

				<u> </u>					
Incidence density					sity rate $_{TST-} =$				
Incidence density				Incidence density rate ratio $_{TST} = NA$					
Other reported me	easure _{IGRA} =	: NA		Other reported measure $_{TST} = NA$					
	C	Compariso	n betwee	en tests (IGRA v	vs. TST)				
Ratio of cumulati	ve incidence	ratios = N	Α						
Ratio of incidence	e density rate	e ratios = N	ΙA						
Other reported me									
			sults and	d levels of TB ex	posure (risk f	for LTBI)			
	IGRA				TST				
	Exposu	re level	Total	Exposure level Total					
	High/Yes				High/Yes	Low/No			
IGRA +	2	0	2	TST +	1	2	3		
IGRA -	16	30	46	TST -	13	27	40		
Indeterminate	8	15	23	Indeterminate	0	0	0		
Total	26	45	71	Total	14	29	43		
Total	20	1				2)	13		
	IGRA	1681	herrorm	ance parameter	TST				
Including in data		toot mass*	T/O	Consitivity = 1		50/ _C CI (1.2	7 21 47)		
Including indeter				Sensitivity = 1/	14 = 7.14%, 9	3% CI (1.2	7, 31.47)		
Sensitivity = 2/26 24.14)) — 1.10% (9.	570 CI. 2.1	٥,						
Excluding indete	rminata								
Sensitivity = 2/18		050/ CL 2	10						
32.80)	= 11.11% (95% CI: 5.	10,						
	uminata aa	tost mossati		Specificity = 27	7/20 - 02 100/	05% CL (79.04		
Including indeter		_		•	1/29 = 93.10%	, 95% CI (78.04,		
Specificity = 45/4	-3 = 100.00%	0 (93% CI:	92.13,	98.09)					
100.00)	uminata								
Excluding indete		/ (050/ CI.	00 65						
Specificity = 30/3 100.00)	00 = 100.00%	0 (93% CI:	00.03,						
	000/ 050/ 0	T (24 24 1	00.00)	DDV = 1/2 = 22	2 2 2 0 0 5 0 CI	(6.15.70.0	72)		
PPV = 2/2 = 100.0				PPV = 1/3 = 33.33%, 95% CI (6.15, 79.23) NPV = 27/40 = 67.50%, 95% CI (52.02, 79.92)					
Including indeter				NPV = 2//40 = 6/.50%, 95% CI (52.02, /9.92)					
NPV = 45/69 = 65		CI: 55.45,	15.38)						
Excluding indete		CI. 50 77	77 22)						
NPV = 30/46 = 65	,			DOD (C. TT 1.1.1) 104.050/ CV(0.00					
DOR (for T ⁺ calcu	uiated) = 3.7	5 (95% CI	: 0.31,	DOR (for T^+ calculated) = 1.04, 95% CI (0.08,					
44.6)	(1)	NID		12.53)					
OR (crude; for T ⁺				OR (crude; for T^+ reported) = NR					
OR (regression-ba		ea) = NR		OR (regression-based; reported) = NR					
List of covariates:				List of covariat					
Other reported me			_	Other reported					
				en tests (IGRA v	vs. TST)				
Ratio of DORs (fo			•	I: 0.59, 21.99)					
Ratio of OR (cruc	· .								
Ratio of ORs (reg	ression-base	ed; reported	l) = NA						
Other reported me	easure = NR								
	Association	between t	test resu	lts and BCG sta	tus (if applica	ble)			
	RA (TSPO)				TST (>5				
	BCG s		Total			status	Total		
	Yes	No			Yes	No	1		
IGRA +	NA	NA	NA	TST +	NA	NA	NA		
IGRA -	NA	NA	NA	TST -	NA	NA	NA		
Indeterminate	NA	NA	NA	Indetermina		NA	NA		
Total	NA	NA	NA	Total	NA	NA	NA		
		- 1	- 14 -		1111	- 1	1 - 1		

	Test perform	nance parameters			
IGRA	(TSPOT/QFT)		>5 mm)		
DOR (for T ⁺ calculat		DOR TST (for T+ calcul			
OR (crude; for T ⁺ rep		OR (crude; for T+ repo			
OR (regression-based	· · · · · · · · · · · · · · · · · · ·		OR (regression-based; reported) $_{TST} = NA$		
	d; reported) _{TSPOT} = NA	List of covariates: NA			
List of covariates: NA					
Other reported measu		Other reported measure	e = NR		
	nent, concordance, and dis				
		lue, BCG vaccination statu	s, and/or condition		
Total sample		,	,		
-	TST +	TST -	Total		
IGRA +	NR	NR	NR		
IGRA -	NR	NR	NR		
Indeterminate	NR	NR	NR		
Total	NR	NR	NR		
Description	1,121	7,121	7 121		
	g., total, if stratified by BCC	G or condition – specify): NF			
TST + threshold: NR	<u> </u>				
Parameters					
Kappa = NR					
% concordance = NR	!				
% discordance = NR					
Stratification (speci	fy group 1)				
Bullineation (speci	TST +	TST -	Total		
IGRA +	NR	NR	NR		
IGRA -	NR	NR	NR		
Indeterminate	NR	NR	NR		
Total	NR	NR	NR		
Description	TVK	TVIC	1410		
	a total if stratified by RCC	G or condition – specify): NA	\		
TST + threshold: NA		or condition – specify). IV	1		
Parameters					
Kappa = NA					
% concordance = NA					
% discordance = NA					
Stratification (speci					
Strainfeation (speci	TST +	TST -	Total		
IGRA +	NR	NR	NR		
IGRA -	NR	NR	NR		
Indeterminate	NR	NR	NR		
Total	NR	NR NR	NR		
Description	1417	IVIX	TVIX		
	g total if stratified by RCC	G or condition – specify): NF	?		
TST + threshold: NR	<u> </u>	5 of Johnston Speeding). 141	•		
Parameters					
Kappa = NR					
% concordance = NR					
% discordance = NR	-				
70 discordance – TVK	Other	outcomes			
Test and cut-off (if	Adverse even		Health related		
applicable)	(specify)		quality of life mean		
FF -335-27	(-rJ)		score (SD) (specify)		
	l .				

IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

The authors concluded that the QFT-2G test may have more potential to assist in the diagnosis of active MTB infection and LTBI than TST in people who have systemic lupus. Additionally, the authors suggested that the results should be taken in caution in this patient group because one-third of the patients had an indeterminate test result, and care should be taken especially for those patients who have parallel or subsequent flares of the disease

Reviewers:

The authors did not report on the number of people who had valid results for both the IGRA and TST. TST was done on a subsample of 71 patients

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Vassilopolous 2011¹⁴⁰

Country: Greece

Study design: Retrospective cohort study/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Outpatient rheumatology

clinic of Hippokration general hospital

Number of centres: One

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Supported in part by research grants from the Hellenic Society for Rheumatology and the Special Account for Research Grants (SARG), National and Kapodistrian University of Athens, Athens, Greece

Aim of the study

To compare the latest IGRAs (QFT-GIT and T-SPOT.TB assays) and TST for LTBI diagnosis in rheumatic patients starting anti –TNF treatment

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Rheumatic patients starting anti-TNF therapies

Participants

Recruitment dates: Between September 2008 and September 2010

Total N of recruited patients: 157

Inclusion criteria: Patients with various rheumatic diseases who were seen at the Outpatient Rheumatology Clinic of Hippokration General Hospital (2nd Department of Medicine, Athens University School of Medicine, Athens, Greece) and scheduled for anti-TNF treatment

Exclusion criteria: Patients with active TB, a history of treatment with anti-TB agents, including isoniazid (INH) for LTBI, or a history of previous treatment with anti-TNF agents or other biologics

Total N of excluded patients: 2 (indeterminate QFT-GIT results from the analysis:

spondyloarthropathy related to UC on high dose methylprednisolone)

Total N of patients tested with both IGRA and TST: 157

Total N of patients with valid results for both IGRA and TST: 155

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Test results, concordance of agreement between two assays

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 52 ± 16

Women (n [%]): 90 [58] Race/ethnicity (n [%]): NR Geographic origin (n[%]):NR BCG vaccination (n [%]): 81 [76]

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): NR

Co-morbidity (n [%]): 15 [21.4]

Type of during-study treatment (n [%]): Immunosuppressive therapy (DMARDs/steroids (98 [63]);

DMARDs (80 [52]) steroids (66 [43])

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-GIT):	157	32	123	2	155
IGRA (T- SPOT.TB):	157	39	116	2	155

TST (≥ 5mm):			157		58	97		2		155
Total N of pat		th va	alid resu	lts for	both IC	GRA and TS	T: 1	55		
Levels/groups	of expo	sure	to TB i	n incre	easing o	rder (if appli	icab	le):		
						exposure gro	up			
Non-exposed			history							
Exposed 1 (spe	cify):	His	story of p							
						exposure gro				
Non-exposed	•••					suggestive of	old	TB		
Exposed 2 (spe	ecify):	Ch	est x-ray							
NI		NI.				exposure gro	up			
Non-exposed	oif _v).		risk fact				0.00	>50 ***	wa ahaa	t V may an acastiya
Exposed 3 (specify): Any risk factor for T of old/healed TB, con										
country with a high TB pr										
Tests		1 000	#1101 y 1110	w <u>-</u>	т рт	<u> </u>			(contract)	
		Assa	y used,			Cut-off		0	ther inf	formation
			logy, tin	ning	values	thresholds/				
			easuren	_	Def	inition of				
	n	ıanu	facturei	•		test+				
IGRA (QFT-	QFT-C				NR					r both IGRAs was
GIT)			accordin	g to						or to TST
			cturer's							er to avoid
	instruc	ctions	S			potential interference with the results			ice with the IGRA	
IGRA	The T	Γ-SPOT.TB assay NR			NR			The blood draw for both IGRAs was		
(TSPOT)	was pe			say	111		performed just prior to TST			
(151 51)			describe	d						er to avoid
		,				potential interference with the IGRA				
							res	ults		
TST≥ 5mm	Manto	ux m	nethod of	0.1	A TST was NA					
			of purific		considered					
			ivative (positive when the					
			tens Seru		diameter of					
			openhag	en,	transverse induration was ≥					
	Denma	ark)			5mm	uon was ≥				
Association be	tween t	est r	esults ar	nd inci		f active TR (if ar	nnlicahl	le)	
11550CIUCIOII DE		GRA		iu iiici	dence o		<u></u>		rst	
			ence of	To	otal			Incide		Total
			e TB					activ		
	Y	Zes .	No					Yes	No	
IGRA +	N	VΑ	NA	N	NΑ	TST +		NA	NA	NA
IGRA -		ĬΑ	NA		VΑ	TST -		NA	NA	NA
Indeterminat		ΙA	NA		NA .	Indetermina	ate	NA	NA	NA
Total	N	ΙA	NA		NA a	Total		NA	NA	NA
	-	~= .		Test pe	<u>erforma</u>	nce paramet	ers		DOM:	
G W N		GRA	<u> </u>			g ::::::			<u>rst</u>	
Sensitivity = N						Sensitivity				
Specificity = N	A					Specificity	= IN.	A		
PPV = NA $NPV = NA$						PPV = NA NPV = NA				
Cumulative Inc	ridence	~-	— N Δ			NPV = NA Cumulative		idence		Δ
Cumulative Inc						Cumulative				
Cumulative IIIC	ruence I	GRA-	- 1 1/1			Lamuianve	HIC	таспсе т	ST 1 N F	1

Cumulativa Insidan	aa Datia	_ NI A		Cumulativa Ir	saidanaa Da	tio N	Α
Cumulative Incidence Ratio _{IGRA} = NA Incidence density rate _{IGRA+} = NA				Cumulative Incidence Ratio _{TST} = NA			
				Incidence density rate _{TST+} = NA Incidence density rate _{TST-} = NA			
Incidence density ra				Incidence density rate _{TST} = NA Incidence density rate ratio _{TST} = NA			
Incidence density ra				Other reported measure _{TST} = NA			
Other reported meas			14			ST = NA	
Datia of assessable				en tests (IGRA v	S. 151)		
Ratio of cumulative							
Ratio of incidence d		e ranos =	NA				
Other reported meas		44		d lavels of TD or			2)
	(T-SPOT		resuits an	d levels of TB ex	xposure (11 TST≥5		e)
IGNA	Total		Exposur		Total		
	Exposus Yes	No	1 Otal		Yes	No	Total
IGRA +	5	34	39	TST +	10	48	58
IGRA -	15	101	116	TST -	10	87	97
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	20	135	155	Total	20	135	155
Total	20					133	133
	IGRA	res	ı perioriii	ance parameter	S TS	r	
Sensitivity = 5/20 =		05% CL (1	11.10	Sensitivity = 10			T (20.02
46.87)	23.00%,	95% CI (1	11.19,	70.07)	J/20 – 30.00	70, 93% C	1 (29.93,
Specificity = $101/13$	25 – 7/ 21	% 95% (<u>יי</u>		7/135 – 6/ /	1% Q5%	CI (56.07
(66.88, 81.38)	05 – 74.01	70, <i>73</i> 70 C	_1	Specificity = 87/135 = 64.44%, 95% CI (56.07, 72.02)			
PPV = 5/39 = 12.82	% 95% C	1 (5 60 2	6.71)	PPV = 10/58 =	17 24% 95	% CI (9.6/	1 28 91)
$NPV = \frac{101}{116} = 8$				NPV = 87/97 =			
92.00)	7.07/0, 75	70 CI (1)	.70,	111 1 - 07/77 -	07.07/0, 73	70 CI (02.)	05, 74.5)
DOR (for T ⁺ calcula	ted = 0.9	9 95% (T (0.33	DOR (for T ⁺ ca	lculated) =	1.81 95%	CI (0.70
2.92)	ited) – 0.7),)5/0 C	1 (0.55,	4.66)	iculated) —	1.01, 7570	CI (0.70,
OR (crude; for T ⁺ re	norted) =	0 99 95%	6 CI	OR (crude; for	T ⁺ reported)	= 1.81.94	5% CL(NR: n
(NR; p = 0.99)	ported) –	0.77, 757	0 01	= 0.22)	1 reported)	- 1.01, 7.	7,0 CI (1111, p
OR (regression-base	ed: reporte	d = 0.89	. 95% CI	OR (regression-based; reported) = 1.73, 95% CI			
(NR; p = 0.86)	, r		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(NR; p = 0.30)			
List of covariates: N	IR			List of covariates: NR			
Other reported meas				Other reported measure = NR			
•		omparis	on betwee	en tests (IGRA v			
Ratio of DORs (for					,		
Ratio of OR (crude;			,	,			
Ratio of ORs (regres	ssion-base	d; reporte	ed) = NA				
Other reported meas		•					
Associa	ation betw	veen test	results an	d levels of TB ex	xposure (TI	3 exposur	e)
IGRA	A (QFT-G	HT)			TST≥ 5	5mm	
	Exposu	re level	Total		Exposur	e level	Total
	Yes	No			Yes	No	
IGRA +	3	29	32	TST +	10	48	58
IGRA -	17	106	123	TST -	10	87	97
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	20	135	155	Total	20	135	155
		Tes	t perform	ance parameter			
	IGRA				TS		
Sensitivity = 3/20 =	15.00%, 9	95% CI (5	5.23,	Sensitivity = 10	0/20 = 50.00	%, 95% C	I (29.93,
36.04)				70.07)			
Specificity = 106/13	35 = 78.52	%, 95% (CI	Specificity = 87/135 = 64.44%, 95% CI (56.07,			
(70.85, 84.61)				72.02)			

DDV - 2/22 - 0.270	PPV = 3/32 = 9.37%, 95% CI (3.24, 24.22) PPV = 10/58 = 17.24%, 95% CI (9.64, 28.91)							
NPV = 3/32 = 9.37% NPV = 106/123 = 8				PPV = 10/58 = 17.24%, 95% CI (9.64, 28.91) NPV = 87/97 = 89.69%, 95% CI (82.05, 94.3)				
NFV - 100/123 - 8/91.19)	0.10%, 93	% CI (78	.90,	141 V = 87/97 = 89.09/0, 93/0 CI (82.03, 94.3)				
DOR (for T ⁺ calcula	stad) = 0.6	4 05% C	T (0.17	DOD (for T ⁺ as	laulatad) –	1 91 050/	CI (0.70	
2.35)	ileu) – 0.0	4, 95% C	1 (0.17,	DOR (for T ⁺ calculated) = 1.81, 95% CI (0.70, 4.66)				
	norted) -	0.64.050	4 CI	$OR \text{ (crude; for T}^+ \text{ reported)} = 1.81, 95\% \text{ CI (NR; p)}$				
OR (crude; for T^+ reported) = 0.64, 95% CI (NR; $p = 0.5$)				OR (crude; for 1 reported) = 1.81, 95% CI (NR; p $= 0.22$)				
OR (regression-base	05% CI	,						
(NR; p = 0.41)	, 95% CI	OR (regression-based; reported) = 1.73, 95% CI (NP: $p = 0.30$)						
List of covariates: N		(NR; p = 0.30) List of covariates: NR						
Other reported meas		Other reported		JR				
Other reported meas	on hetwee			111				
Ratio of DORs (for T ⁺ calculated) = 0.35 (95% CI: 0.15, 0.81)								
Ratio of OR (crude; for T^+ reported) = NA								
Ratio of ORs (regre								
Other reported meas		u, report	<i>(u)</i> – 1471					
Association betw		eculte an	d levels of	TR evnosure (C	hest v-ray	suggestiv	e of old TR)	
	(T-SPOT		u icveis oi	TD exposure (c	TST≥ :		c or ord TD)	
10101	Exposu		Total		Exposur		Total	
	Yes	No	Total		Yes	No	10111	
IGRA +	4	35	39	TST +	9	49	58	
IGRA -	10	106	116	TST -	5	92	97	
Indeterminate	0	0	0	Indeterminate	0	0	0	
Total	14	141	155	Total	14	141	155	
1000	11			ance parameter		111	100	
		TS	Τ					
Sensitivity = 4/14 =	IGRA 28.57%.	95% CI (1	11.72.	Sensitivity = 9/			(38.76.	
54.65)	_0,0,70,7		· · · · · · · · ·	83.66)	1. 0.1. 2),	0, 20 70 01	(00.70,	
Specificity = 106/14	41 = 75.18	%. 95% (CI	Specificity = 92/141 = 65.25%, 95% CI (57.08,				
(67.44, 81.58)		,		72.61)		,	(,	
PPV = 4/39 = 10.26	%, 95% C	I (4.06, 2	3.58)	,	PPV = 9/58 = 15.52%, 95% CI (8.38, 26.93)			
			NPV = 92/97 = 94.85%, 95% CI (88.5, 97.78)					
						*		
NPV = 106/116 = 9 95.25)	1.38%, 95	% CI (84	.80,		,	•		
		`	•			3.38, 95%	CI (1.07,	
95.25)		`	•	DOR (for T ⁺ ca 10.64)		3.38, 95%	CI (1.07,	
95.25) DOR (for T ⁺ calcula	ated) = 2.2	1, 95% C	I (0.35,	DOR (for T ⁺ ca	lculated) =			
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76)	eported) = 2.2	1, 95% C	EI (0.35,	DOR (for T ⁺ ca 10.64)	lculated) =			
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re	eported) = 2.2	1, 95% C	EI (0.35,	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression	llculated) = T ⁺ reported)	0 = 3.38, 93	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31)	eported) = 2.2	1, 95% C	EI (0.35,	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05)	lculated) = T ⁺ reported) -based; repo	0 = 3.38, 93	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N	eported) = 2.2 eported) = ed; reporte	1, 95% C	EI (0.35,	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat	T ⁺ reported) -based; reported:	0 = 3.38, 93 orted) = 3.5	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31)	ed; reporte NR Sure = NR	1, 95% C 2.21, 95% d) = 0.48	6 CI , 95% CI	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported	T ⁺ reported) -based; reported: es: NR measure = N	0 = 3.38, 93 orted) = 3.5	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported measurements	ed; reporte NR Sure = NR	1, 95% C 2.21, 95% d) = 0.48	EI (0.35, 6 CI , 95% CI on between	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported	T ⁺ reported) -based; reported: es: NR measure = N	0 = 3.38, 93 orted) = 3.5	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas	eported) = 2.2 eported) = ed; reporte IR Sure = NR C T ⁺ calcula	1, 95% C 2.21, 95% d) = 0.48 comparis ted) = 0.6	EI (0.35, 6 CI , 95% CI on betwee	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported	T ⁺ reported) -based; reported: es: NR measure = N	0 = 3.38, 93 orted) = 3.5	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported measurements of DORs (for Ratio of OR (crude;	ed; reported) = ed; reported NR Sure = NR C T ⁺ calcula for T ⁺ rep	1, 95% C 2.21, 95% d) = 0.48 comparis ted) = 0.6 orted) = 1	On betwee 65 (95% C	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported	T ⁺ reported) -based; reported: es: NR measure = N	0 = 3.38, 93 orted) = 3.5	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regression-base)	ed; reported) = ed; reporte NR Sure = NR C T ⁺ calcula for T ⁺ rep ssion-base	1, 95% C 2.21, 95% d) = 0.48 comparis ted) = 0.6 orted) = 1	On betwee 65 (95% C	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported	T ⁺ reported) -based; reported: es: NR measure = N	0 = 3.38, 93 orted) = 3.5	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regresor))	ed; reported) = ed; reported NR Sure = NR C T ⁺ calcular for T ⁺ reported sure = NR	1, 95% C 2.21, 95% d) = 0.48 comparise ted) = 0.6 orted) = 1 d; reported	On between the body of the body of the between the body of the bod	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported en tests (IGRA v I: 0.28, 1.54)	T ⁺ reported) -based; reported: es: NR measure = Nr s. TST)	orted) = 3.5	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regres) Other reported meas Association betw	ed; reported) = ed; reported IR Sure = NR C T ⁺ calcula for T ⁺ rep ssion-base sure = NR een test re	1, 95% C 2.21, 95% d) = 0.48 comparis ted) = 0.6 orted) = 1 d; reporte esults an	On between the body of the body of the between the body of the bod	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported en tests (IGRA v I: 0.28, 1.54)	T ⁺ reported) -based; reported) es: NR measure = N rs. TST)	orted) = 3.5 NR suggestiv	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regres) Other reported meas Association betw	ed; reported) = ed; reported NR Sure = NR C T ⁺ calcula for T ⁺ rep ssion-base sure = NR een test re A (QFT-G	1, 95% C 2.21, 95% d) = 0.48 omparis ted) = 0.6 orted) = 1 d; reporte esults and	On between 55 (95% C) NA ed) = NA	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported en tests (IGRA v I: 0.28, 1.54)	T+ reported) -based; reported) es: NR measure = N s. TST) Chest x-ray TST \(\)	orted) = 3.5 NR suggestiv	5% CI (NR; p 50, 95% CI e of old TB)	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regres) Other reported meas Association betw	ed; reported) = ed; reported NR Sure = NR C T ⁺ calcular for T ⁺ reposion-base sure = NR een test re A (QFT-G Exposure	1, 95% C 2.21, 95% d) = 0.48 comparis ted) = 0.6 orted) = 1 d; reporte esults and	On between the body of the body of the between the body of the bod	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported en tests (IGRA v I: 0.28, 1.54)	T ⁺ reported) -based; reporte	orted) = 3.5 NR suggestiv 5mm e level	5% CI (NR; p	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regresother reported meass) Association betwood IGRA	ed; reported) = ed; reported IR Sure = NR C T ⁺ calcula for T ⁺ rep ssion-base sure = NR een test re A (QFT-G Exposur Yes	1, 95% C 2.21, 95% d) = 0.48 comparis ted) = 0.6 orted) = 1 d; reporte esults and TT) re level No	On between 55 (95% CONA ed) = NA Total	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported en tests (IGRA v I: 0.28, 1.54)	T ⁺ reported) -based; reported -based; reported) -based; reported -	orted) = 3.5 NR suggestiv mm e level No	5% CI (NR; p 50, 95% CI e of old TB) Total	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regree) Other reported meas Association betw IGRA	ported) = 2.2 ported) = ed; reporte NR Sure = NR C T ⁺ calcula for T ⁺ rep ssion-base sure = NR een test re A (QFT-G Exposur Yes 14	1, 95% C 2.21, 95% d) = 0.48 comparise ted) = 0.6 corted) = 1 d; reported esults and tell of the corted of the	On between 65 (95% C) NA ed) = NA d levels of Total 32	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported en tests (IGRA v I: 0.28, 1.54)	T* reported) -based; reported -bas	= 3.38, 95 orted) = 3.5 NR suggestives Smm	5% CI (NR; p 50, 95% CI e of old TB) Total 58	
95.25) DOR (for T ⁺ calcula 4.10) OR (crude; for T ⁺ re (NR; p = 0.76) OR (regression-base (NR; p = 0.31) List of covariates: N Other reported meas Ratio of DORs (for Ratio of OR (crude; Ratio of ORs (regresother reported meass) Association betwood IGRA	ed; reported) = ed; reported IR Sure = NR C T ⁺ calcula for T ⁺ rep ssion-base sure = NR een test re A (QFT-G Exposur Yes	1, 95% C 2.21, 95% d) = 0.48 comparis ted) = 0.6 orted) = 1 d; reporte esults and TT) re level No	On between 55 (95% CONA ed) = NA Total	DOR (for T ⁺ ca 10.64) OR (crude; for = 0.04) OR (regression (NR; p = 0.05) List of covariat Other reported en tests (IGRA v I: 0.28, 1.54)	T ⁺ reported) -based; reported -based; reported) -based; reported -	orted) = 3.5 NR suggestiv mm e level No	5% CI (NR; p 50, 95% CI e of old TB) Total	

Total	24	141	155	Total	14	141	155
Total			1	ance parameter		111	133
	IGRA	105	t periorii		TS	Γ	
Sensitivity = 58.33%		: 38.83, 7	75.53)	Sensitivity = 9/ 83.66)			(38.76,
Specificity = 80.149	% (95% CI	[: 72.8, 8:	5.89)	Specificity = 92 72.61)	2/141 = 65.2	25%, 95%	CI (57.08,
PPV = 33.33% (95% CI: 21.01, 48.45)			PPV = 9/58 = 1	5.52%, 95%	6 CI (8.38,	26.93)	
NPV = 91.87% (959	% CI: 85.6	8, 95.52)		NPV = 92/97 =	94.85%, 95	5% CI (88.	5, 97.78)
DOR (for T ⁺ calculated) = 5.65 (95% CI: 2.27, 14.05)			DOR (for T ⁺ ca 10.64)	lculated) =	3.38, 95%	CI (1.07,	
OR (crude; for T^+ re (NR; $p = 0.44$)				OR (crude; for = 0.04)	•		
OR (regression-base	ed; reporte	d) = 1.29	, 95% CI	OR (regression	-based; repo	orted) $= 3.5$	50, 95% CI
(NR; p = 0.72)				(NR; p = 0.05)			
List of covariates: N				List of covariat			
Other reported meas				Other reported		NR	
				en tests (IGRA v	rs. TST)		
Ratio of DORs (for				I: 0.79, 3.53)			
Ratio of OR (crude;							
Ratio of ORs (regre		d; report	ed) = NA				
Other reported meas		-					
			and level	s of TB exposur			· TB≥1)
IGRA	(T-SPOT				TST≥ 5		
	Exposu		Total		Exposur		Total
YGD .	Yes	No	20	mam.	Yes	No	7 0
IGRA +	34	5	39	TST +	42	16	58
IGRA -	68	48	116	TST -	60	37	97
Indeterminate	0	53	0	Indeterminate	0	0	0
Total	102		155	Total	102	53	155
	IGRA	res	t perioriii	ance parameter		r	
Sensitivity = 34/102		. 95% C	I (24.94.	TST Sensitivity = 42/102 = 41.18%, 95% CI (32.12,			
42.94) Specificity = 48/53				50.88) Specificity = 37/53 = 69.81%, 95% CI (56.46,			
95.9)		`		80.48)			
PPV = 34/39 = 87.1 NPV = 48/116 = 41				PPV = 42/58 = 72.41%, 95% CI (59.80, 82.25) NPV = 37/97 = 38.14%, 95% CI (29.10, 48.09)			
50.48	.30%, 93%) CI (32.6	55,	NFV - 31/91 -	30.14%, 93)% CI (29.	10, 46.09)
DOR (for T ⁺ calcula	$\frac{1}{2}$	0 05% (T (1.75	DOP (for T ⁺ co	lculated) –	1 61 05%	CI (0.70
13.16)	aicu) – 4.0	0, 93 % C	1 (1.73,	DOR (for T ⁺ calculated) = 1.61, 95% CI (0.79, 3.28)			
OR (crude; for T ⁺ re	norted) –	4 80 959	6 CI	$OR \text{ (crude; for T}^+\text{ reported)} = 1.60, 95\% \text{ CI (NR; p)}$			
(NR; p = 0.02)	ported) –	T.00, 757	0 C1	OR (crude; for 1 reported) = 1.00, 95% CI (NR; p $= 0.12$)			
OR (regression-base	ed: reporte	d = NR		OR (regression-based; reported) = NR			
List of covariates: N		<i>a)</i> 1(11		List of covariates: NR			
Other reported measure				Other reported		NR	
		omparis	on betwee	en tests (IGRA v			
Ratio of DORs (for							
Ratio of OR (crude;				· · · · · · · · · · · · · · · · · · ·			
Ratio of ORs (regre							
Other reported measure							
		st results	and level	s of TB exposur	e (any risk	factor for	$TB \ge 1$
	A (QFT-G				TST≥ 5		
				•			

	Exposu	re level	Total		Exposure	e level	Total
	Yes	No	10001		Yes	No	20002
IGRA +	26	6	32	TST +	42	16	58
IGRA -	76	47	123	TST -	60	37	97
Indeterminate	0	0	0	Indeterminate	0	0	0
Total	102	53	155	Total	102	53	155
Total	102			ance parameters	102	33	133
	IGRA	103	t perioriii	ance parameters	TST	<u> </u>	
Sensitivity = 26/102		95% (1	8.03	Sensitivity - 12/			CI (32.12
34.73)			•	Sensitivity = 42/102 = 41.18%, 95% CI (32.12, 50.88)			
Specificity = 47/53 (94.71)	(77.42,	Specificity = 37/80.48)	53 = 69.81	%, 95% C	I (56.46,		
PPV = 26/32 = 81.2	5%, 95%	CI (64.69	, 91.11)	PPV = 42/58 = 7	2.41%, 959	% CI (59.8	30, 82.25)
NPV = 47/123 = 38				NPV = 37/97 = 3		•	
47.03)	ŕ	`	,		,	`	,
DOR (for T ⁺ calcula 6.99)	ated) = 2.6	8, 95% C	CI (1.02,	DOR (for T ⁺ calc 3.28)	culated) =	1.61, 95%	CI (0.79,
OR (crude; for T ⁺ re	norted) –	2 68 95%	6 CI	OR (crude; for T	"+ reported)	- 1 60 94	5% CL(NR: n
(NR; p = 0.04)	porteu) –	2.00, 93/	0 C1	= 0.12)	reported)	- 1.00, 9.	7/0 CI (INK, p
OR (regression-base	ed: renorte	d) – NR		OR (regression-b	ased: reno	rted) – NI	2
List of covariates: N	_	u) – MX		List of covariates		11cu) — 111	· ·
Other reported meas				Other reported m		JP	
Other reported meas		omnonia	on hotavoo			VIX	
Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated) = 1.66 (95% CI: 0.90, 3.07)							
				1. 0.90, 3.07)			
Ratio of OR (crude;							
Ratio of ORs (regre		a; reporte	ea) = NA				
Other reported meas		7 4	4 4 1	u IDCC + +	/*C 1*		
			i test resul	ts and BCG statu			
IGR	A (T-SPO		Total			ST	T-4-1
1		Tariic	LOTAL		BCG	status	Total
	BCG s		Total				
LCD 4	Yes	No		TOTAL CONTRACTOR OF THE CONTRA	Yes	No	50
IGRA +	Yes 24	No 15	39	TST +	Yes 41	No 17	58
IGRA -	Yes 24 79	No 15 37	39 116	TST -	Yes 41 62	No 17 35	97
IGRA - Indeterminate	Yes 24 79 0	No 15 37 0	39 116 0	TST - Indeterminate	Yes 41 62 0	No 17 35 0	97 0
IGRA -	Yes 24 79	No 15 37 0 52	39 116 0 155	TST - Indeterminate Total	Yes 41 62	No 17 35	97
IGRA - Indeterminate Total	Yes 24 79 0 93	No 15 37 0 52 Tes	39 116 0 155	TST - Indeterminate	Yes 41 62 e 0 103	No 17 35 0 52	97 0
IGRA - Indeterminate Total	Yes 24 79 0 93 A (T-SPO	No 15 37 0 52 Tes	39 116 0 155 t perform	TST - Indeterminate Total ance parameters	Yes 41 62 0 103 TST (>	No 17 35 0 52	97 0 155
IGRA - Indeterminate Total IGRA DOR (for T* calculate)	Yes 24 79 0 93 A (T-SPO	No 15 37 0 52 Tes	39 116 0 155 t perform	TST - Indeterminate Total ance parameters 5, DOR TST (for	Yes 41 62 0 103 TST (>	No 17 35 0 52	97 0 155
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calculation 1.59)	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} =	No 15 37 0 52 Tes T.TB) = 0.74, 93	39 116 0 155 t perform 5% CI (0.3	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)	Yes 41 62 e 0 103 TST (>	No 17 35 0 52 55 mm) ted) = 1.36	97 0 155 6, 95% CI
IGRA - Indeterminate Total IGRA DOR (for T* calculate)	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} =	No 15 37 0 52 Tes T.TB) = 0.74, 93	39 116 0 155 t perform 5% CI (0.3	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)	Yes 41 62 9 0 103 TST (> T+ calcula	No 17 35 0 52 55 mm) ted) = 1.36	97 0 155 6, 95% CI
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calcula 1.59) OR (crude; for T ⁺ re	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} =	No 15 37 0 52 Tes T.TB) = 0.74, 95	39 116 0 155 t perform 5% CI (0.3	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39))	Yes 41 62 2 0 103 TST (> T+ calcula or T+ report 0)	No 17 35 0 52 >5 mm) ted) = 1.36	97 0 155 6, 95% CI
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calcula 1.59) OR (crude; for T ⁺ re = 0.45) OR (regression-base CI (NR; p = 0.17)	Yes 24 79 0 93 A (T-SPO nted) _{TSPOT} = ed; reported) =	No 15 37 0 52 Tes T.TB) = 0.74, 95	39 116 0 155 t perform 5% CI (0.3	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39)) OR (regression CI (NR; p = 0.39))	Yes 41 62 9 0 103 TST (> T+ calcula or T+ report 0) 0n-based; re 0.34)	No 17 35 0 52 >5 mm) ted) = 1.36	97 0 155 6, 95% CI 6, 95% CI
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calcula 1.59) OR (crude; for T ⁺ re = 0.45) OR (regression-base CI (NR; p = 0.17) List of covariates: N	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} = ed; reported) =	No 15 37 0 52 Tes T.TB) = 0.74, 95	39 116 0 155 t perform 5% CI (0.3	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39)) OR (regression)	Yes 41 62 9 0 103 TST (> T+ calcula or T+ report 0) 0n-based; re 0.34)	No 17 35 0 52 >5 mm) ted) = 1.36	97 0 155 6, 95% CI 6, 95% CI
IGRA - Indeterminate Total IGR. DOR (for T ⁺ calculation of the second of the secon	Yes 24 79 0 93 A (T-SPO nted) _{TSPOT} = ed; reported R sure = NR	No 15 37 0 52 Tes T.TB) = 0.74, 93 0.75, 95% d) _{TSPOT} =	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95%	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39) OR (regression CI (NR; p = 0.49) List of covariant Country C	Yes 41 62 e 0 103 TST (> T+ calcula or T+ report 0) on-based; re 0.34) ates: NR d measure	No 17 35 0 52 55 mm) ted) = 1.36 eported) TS	97 0 155 6, 95% CI 6, 95% CI
IGRA - Indeterminate Total IGR. DOR (for T ⁺ calculation of the second of the secon	Yes 24 79 0 93 A (T-SPO nted) _{TSPOT} = ed; reported R sure = NR	No 15 37 0 52 Tes T.TB) = 0.74, 93 0.75, 95% d) _{TSPOT} =	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95%	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39)) OR (regression CI (NR; p = 0.49)) List of covariance	Yes 41 62 e 0 103 TST (> T+ calcula or T+ report 0) on-based; re 0.34) ates: NR d measure	No 17 35 0 52 55 mm) ted) = 1.36 eported) TS	97 0 155 6, 95% CI 6, 95% CI
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calculation 1.59) OR (crude; for T ⁺ response 1.45) OR (regression-base CI (NR; p = 0.17) List of covariates: Nother reported measurements 1.45	Yes 24 79 0 93 A (T-SPO nted) _{TSPOT} = ed; reported R sure = NR	No 15 37 0 52 Tes T.TB) = 0.74, 95 0.75, 959 d) _{TSPOT} =	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95%	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39) OR (regression CI (NR; p = 0.49) List of covariant Country C	Yes 41 62 e 0 103 TST (> T+ calcula or T+ repor 0) on-based; re 0.34) ates: NR d measure us (if appli	No 17 35 0 52 55 mm) ted) = 1.36 eported) TS	97 0 155 6, 95% CI 6, 95% CI
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calculation 1.59) OR (crude; for T ⁺ response 1.45) OR (regression-base CI (NR; p = 0.17) List of covariates: Nother reported measurements 1.45	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} = cported) = classical sure = NR sure = NR ssociation	No 15 37 0 52 Tes T.TB) = 0.74, 95 0.75, 959 d) _{TSPOT} =	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95%	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39) OR (regression CI (NR; p = 0.49) List of covariant Country C	Yes 41 62 e 0 103 TST (> T+ calcula or T+ repor 0) on-based; re 0.34) ates: NR d measure us (if appli	No 17 35 0 52 5 mm) tted) = 1.36 eported) Ts = NR (cable)	97 0 155 6, 95% CI 6, 95% CI
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calculation 1.59) OR (crude; for T ⁺ response 1.45) OR (regression-base CI (NR; p = 0.17) List of covariates: Nother reported measurements 1.45	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} = ed; reported) = ed; reporte NR sure = NR ssociation RA (QFT-	No 15 37 0 52 Tes T.TB) = 0.74, 95 0.75, 959 d) _{TSPOT} =	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95%	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39) OR (regression CI (NR; p = 0.49) List of covariant Country C	Yes 41 62 e 0 103 TST (> T+ calcula or T+ repor 0) on-based; re 0.34) ates: NR d measure us (if appli	No 17 35 0 52 55 mm) ted) = 1.36 eported) TS = NR cable)	97 0 155 6, 95% CI 6, 95% CI _{ST} = 1.43, 95%
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calculation 1.59) OR (crude; for T ⁺ response 1.45) OR (regression-base CI (NR; p = 0.17) List of covariates: Nother reported measurements 1.45	Yes 24 79 0 93 A (T-SPO nted) _{TSPOT} = ed; reported R sure = NR ssociation RA (QFT- BCG s	No 15 37 0 52 Tes T.TB) = 0.74, 93 0.75, 959 d) _{TSPOT} = between GIT) status	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95%	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39) OR (regression CI (NR; p = 0.49) List of covariant Country C	Yes 41 62 e 0 103 TST (> T+ calcula or T+ report 0) on-based; re 0.34) ates: NR d measure 1s (if appli	No 17 35 0 52 55 mm) ted) = 1.36 eported) TS = NR (cable) ST status	97 0 155 6, 95% CI 6, 95% CI _{ST} = 1.43, 95%
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calcula 1.59) OR (crude; for T ⁺ re = 0.45) OR (regression-base CI (NR; p = 0.17) List of covariates: N Other reported meas IGR	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} = ed; reported Resociation RA (QFT- BCG s Yes	No 15 37 0 52 Tes T.TB) = 0.74, 93 0.75, 95% d) _{TSPOT} = between GIT) status No	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95% 1 test resul	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39) OR (regression CI (NR; p = 0.49) List of covarion other reporte	Yes 41 62 0 103 TST (> T+ calcular or T+ report on-based; re 0.34) ates: NR d measure us (if appli TST BCG Yes	No 17 35 0 52 55 mm) ted) = 1.36 ted) = 1.36 eported) TS = NR cable) ST status No	97 0 155 6, 95% CI 6, 95% CI Total
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calcula 1.59) OR (crude; for T ⁺ re = 0.45) OR (regression-base CI (NR; p = 0.17) List of covariates: N Other reported meas IGH IGRA +	Yes 24 79 0 93 A (T-SPO nted) = ed; reported RA (grident section of the section	No 15 37 0 52 Tes T.TB) = 0.74, 95 0.75, 959 d) _{TSPOT} = between GIT) status No 10	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95% Total	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39)) OR (regression CI (NR; p = 0.49)) List of covarion Other reporte Its and BCG state TST +	Yes 41 62 9 0 103 TST (> T+ calcula Or T+ report On-based; re 0.34) ates: NR d measure Is (if appli TS BCG Yes 41 62	No 17 35 0 52 55 mm) ted) = 1.36 eported) TS = NR cable) ST status No 17	97 0 155 6, 95% CI 6, 95% CI 8T = 1.43, 95% Total
IGRA - Indeterminate Total IGRA DOR (for T ⁺ calcula 1.59) OR (crude; for T ⁺ re = 0.45) OR (regression-base CI (NR; p = 0.17) List of covariates: N Other reported measurement of the second seco	Yes 24 79 0 93 A (T-SPO ated) _{TSPOT} = cported) = cd; reporte NR sure = NR sociation RA (QFT- BCG s Yes 22 81	No 15 37 0 52 Tes T.TB) = 0.74, 95 0.75, 959 d) _{TSPOT} = between GIT) status No 10 42	39 116 0 155 t perform 5% CI (0.3 6 CI (NR; 0.51, 95% Total 32 123	TST - Indeterminate Total ance parameters 5, DOR TST (for (0.67, 2.74)) p OR (crude; for (NR; p = 0.39)) OR (regression CI (NR; p = 0.40)) List of covarion Other reporte Its and BCG state TST + TST -	Yes 41 62 9 0 103 TST (> T+ calcula Or T+ report On-based; re 0.34) ates: NR d measure Is (if appli TS BCG Yes 41 62	No 17 35 0 52 55 mm) ted) = 1.36 ted) = 1.36 eported) TS = NR cable) ST status No 17 35	97 0 155 6, 95% CI 6, 95% CI Total 58 97

155

	Test performance parameters							
IGRA (C	QFT-GIT)		TST (>5 mm)					
DOR (for T ⁺ calculated) ₀	_{OFT} = 1.14, 95% CI (0.49,	DOR TST (for T+ calculated) :	DOR _{TST} (for T+ calculated) = 1.36, 95% CI					
2.63)		(0.67, 2.74)						
OR (crude; for T^+ reported) = 1.14, 95% CI (NR; p OR (crude; for T^+ reported) = 1.36, 95% CI								
= 0.76)		(NR; p = 0.39)						
OR (regression-based; re	$(ported)_{QFT} = 1.05, 95\% Cl$	OR (regression-based; report	$(ed)_{TST} = 1.43, 95\%$					
(NR; p = 0.90)	-	CI(NR; p = 0.34)						
List of covariates: NR		List of covariates: NR						
Other reported measure =	= NR	Other reported measure = NF	{					
Between-test agreemen	t, concordance, and disco	ordance (if applicable)						
This table may be strat	ified by TST cut-off valu	e, BCG vaccination status, and	l/or condition					
Total sample								
	TST +≥5mm	TST -	Total					
IGRA + (TSPOT)	26	13	39					
IGRA -	32	84 116						
Indeterminate	0	0 0						

97

Description

Total

Sample definition (e.g., total, if stratified by BCG or condition – specify):

58

TST + threshold: ≥5mm

Parameters

Kappa = 0.34 (95% CI: 0.17, 0.50)

% concordance = 110/155 = 71.0% (95% CI: 63.38, 77.54)

% discordance = 45/155 = 29.03% (95% CI: 22.46, 36.62)

Between-test agreement, concordance, and discordance (if applicable)

This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition

Total sample

	TST +≥5mm	TST -	Total
IGRA + (QFT-GIT)	17	15	32
IGRA -	41	82	123
Indeterminate	0	0	0
Total	58	97	155

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total

TST + threshold: ≥5mm

Parameters

Kappa = 0.15 (95% CI: 0.01, 0.29)

% concordance = 99/155 = 63.87% (95% CI: 56.06, 71.01)

% discordance = 56/155 = 36.13% (95% CI: 28.99, 43.94)

Other outcomes					
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)			
IGRA:	NR	NR			
TST:	NR	NR			
Test 3 (specify):	NR	NR			
Conclusions					

Authors:

These authors demonstrated that IGRAs appeared to be correlated better with TB risk than TST and should be included in LTBI screening of patients who are about to commence anti-TNF therapies. Furthermore, they suggested that in view of the high risk of TB in this patient group, a combination of one IGRA and TST is probably more appropriate for LTBI

Reviewers:

Steroid use was negatively associated with a positive QFT-GIT assay

Name of first reviewer: Peter Auguste

Name of second reviewer: Alexander Tsertsvadze

Study details

First author surname year of publication: Anibarro 2012¹¹⁵

Country: Spain

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Outbreak investigation

Number of centres: One

Total length of follow up (if applicable): 18 months

Funding (government/private/manufacturer/other - specify): University of Vigo and SUDOE-FEDER (IMMUNONET-SOE1/P1/E014)

Aim of the study

To compare the results of an IGRA with those for the TST in patients with early stage renal disease (ESRD) after a TB outbreak at a dialysis centre

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised (people undergoing haemodialysis treatment)

Participants

Recruitment dates: NR

Total N of recruited patients: 58

Inclusion criteria: All patients who attended the dialysis unit while index case was on duty

Exclusion criteria: Patients who had a previous +ve TST test

Total N of excluded patients: 6

Total N of patients tested with both IGRA and TST: 52

Total N of patients with valid results for both IGRA and TST: 52

Methods of active TB diagnosis (if applicable): Microscopic examination of sputum and sputum culture

Outcomes (study-based) list: Test results, relationship between TST and erythema, concordance between diagnostic tests

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 62 (16.8)

Total incidence of active TB (n [%]): None

Women (n [%]): 21 [40.4] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 7 [13.5] History of anti-TB treatment (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): End stage renal disease (58 [100]) Co-morbidity (n [%]): Diabetes mellitus (8 [15.4])

Type of during-study treatment (n [%]): Immunosuppressive therapy (8[15.3])

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (specify): QFT-GIT	52	18	34	0	52
TST: (≥5 mm)	52	11	41	0	52
Test 3 (specify):					

Total N of patients with valid results for both IGRA and TST: 52

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group

Non-exposed									
Exposed 1	NA								
•	INA								
(specify): Exposed 2	NA								
•	INA								
(specify):	NA								
Exposed 3	NA								
(specify):	NT A								
Exposed 4	NA								
(specify):									
Tests	1.	_		T ~ .					
	Ass	•	nethodology,	Cut-			Other information		
		_	for test	values/thr					
		measur		Definition	of test+	-			
TOD A	0.55	manufa		0.07.77/					
IGRA			ml of whole	0.35 IU/mL					
		d, blood c							
		•	efore TST,						
		estic Ltd,	Carnegie,						
mam /		tralia	1011/2	mam. •			~		
TST (one and tw			od, 0.1ml (2	$TST \ge 5$ mm, a			Study does not		
step)		of PPD in		test was perfo			mention how soon		
			to the volar	days later if th			after the result will		
			forearm, TST	TST-1 was <5	mm		be read for the		
			h after testing,			1	second TST		
		ens serum	,						
		enhagen, I							
Association betw			d incidence of		_				
	IGR		m . 1	TST≥5mm (two-step)					
		ence of	Total	Incidence of			Total		
		ve TB		active TE					
	Yes	No			Yes	No			
IGRA +	N/A	N/A	11 LTBI	TST +	N/A	N/A	11 LTBI treated		
			treated						
IGRA -	0	32	32	TST -	0	32	32		
Indeterminate	0	0	0	Indeterminate	0	0	0		
Total	0	32	32	Total	0	32	32		
		T	est performan	ce parameters					
	IGR	4				IST			
Sensitivity = N/A				Sensitivity = N_i					
Specificity = N/A				Specificity = N	/A				
PPV = N/A				PPV = N/A					
NPV = 100%, 95%	% CI (89.	28, 100.00))	NPV = 100%, 9	95% CI	(89.28)	3, 100.00)		
Cumulative Incide	ence _{IGRA+}	= N/A		Cumulative Inc	idence 1	$\overline{TST_+} = 1$	N/A		
Cumulative Incide			0	Cumulative Inc					
Cumulative Incide				Cumulative Inc	idence I	Ratio 1	$_{\text{TST}} = N/A$		
Incidence density rate $_{IGRA+} = NR$ Incidence density rate $_{TST+} = NR$									
Incidence density				Incidence densi					
	Incidence density rate ratio $_{IGRA} = NR$ Incidence density rate ratio $_{TST} = NR$								
Comparison between tests (IGRA vs. TST)									
Ratio of cumulative incidence = NA									
Ratio of incidence density rate ratios = NR									
·									
	•	Other reported measure = NR							
Other reported me	easure = N	NR		levels of TB exp	ongura (if ann	licable)		

	IGRA				TS	r	
	Exposu	a laval	Total		Exposu		Total
	High/Yes	Low/No	Total		High/Yes	Low/No	Total
IGRA +	NA	NA	NA	TST +	NA	NA	NA
IGRA -	NA NA	NA NA	NA	TST -	NA NA	NA NA	NA NA
Indeterminate	NA NA	NA	NA	Indeterminate	NA NA	NA NA	NA NA
Total	NA NA	NA NA	NA	Total	NA NA	NA NA	NA NA
Total	INA			ance parameter		INA	INA
	IGRA	1 est j	perioriii	ance parameter	TS	<u> </u>	
Sensitivity = NA	IGNA			Sensitivity = N		<u> </u>	
Specificity = NA				Specificity = N			
PPV = NA				PPV = NA	1 73		
$\frac{11 \text{ V} = 102 \text{ N}}{\text{NPV} = \text{NA}}$				NPV = NA			
DOR (for T ⁺ calcu	ulated) – NA			DOR (for T ⁺ ca	alculated) =	NΔ	
OR (crude; for T ⁺				OR (crude; for			
OR (regression-ba				OR (regression			
List of covariates:		u) – NA		List of covariat		nicu) – NA	
Other reported me				Other reported		JR	
Other reported me		amnaricar	hotwoo	en tests (IGRA v		VIX	
Ratio of DORs (fo			1 Detwee	en tests (IGNA V	5. 151)		
			Δ				
	Ratio of OR (crude; for T ⁺ reported) = NA Ratio of ORs (regression-based; reported) = NA						
Other reported me		u, reporteu) — 1 1 1				
Between-test agree		cordance	and disc	cordance (if any	nlicahla)		
This table may be						and/or co	ndition
Total sample	c sir airricu	oy 151 cu	t-011 vai	uc, DCG vaccin	ation status	5, and/or co	ilaition
Total sample		TST +		T.9	ST -		Total
IGRA +		3			15		18
IGRA -		0					34
Indeterminate		0					0
Total		3					52
Description					.,		
Sample definition	(e.g., total, i	f stratified	by BCG	or condition – s	pecify): tota	l (One-step	TST)
TST + threshold:			-		<u> </u>	- (<u></u>	
Parameters							
Kappa = $0.21, 959$	% CI: 0.04. 0).37					
% concordance =			CI: 57.73	3, 81.67)			
% discordance = 1				· /			
Stratification (sp				, ,			
(8)	, 8 · · · · · · · · · · · · · · · · · ·	TST +		TS	ST -		Total
IGRA +		9		†	9		18
IGRA -		2			32		34
Indeterminate		0			0		0
Total		11		†	 41		52
Description	<u> </u>						
Sample definition (e.g., total, if stratified by BCG or condition – specify): total (Two-step test)							
TST + threshold: ≥ 5mm induration							
Parameters Parameters							
Kappa = $0.49, 95\%$	% CI: 0.22, 0	0.74)					
	% concordance = 41/52 = 78.85% (95% CI: 65.97, 87.76)						
% discordance = 1							
Stratification (sp				· - /			
	- , <u>8 P</u>	/					

TST -

Total

TST +

IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes						
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)				
IGRA:	NR	NR				
TST:	NR	NR				
Test 3 (specify):	NR	NR				

Conclusions

Authors:

This study demonstrated that QFT-GIT had a better sensitivity than TST in detecting latent TB in haemodialysis patients, after exposure to Mycobacterium tuberculosis. TST administered a second time can be performed to increase the sensitivity

Reviewers:

Authors have not presented results stratified by the level of exposure to TB.

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Chang 2011¹¹⁷

Country: South Korea

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Hospital-based

Number of centres: One

Total length of follow up (if applicable): 18 mo (median)

Funding (government/private/manufacturer/other - specify): IN-SUNG Foundation for Medical

Research (CA98051)

Aim of the study

To evaluate the usefulness of IGRA for the diagnosis of LTBI in arthritis patients who received TNF antagonists in South Korea where the incidence of tuberculosis is intermediate (70–90/105 per year) and BCG vaccination is mandatory at birth

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people: Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) before starting TNF antagonist

Participants

Recruitment dates: August 2007–July 2009

Total N of recruited patients: 108

Inclusion criteria: Inflammatory arthritis including RA and AS who visited our facility to evaluate

LTBI before starting TNF antagonist Exclusion criteria: Active TB Total N of excluded patients: 1

Total N of patients tested with both IGRA and TST: 107

Total N of patients with valid results for both IGRA and TST: 100

Methods of active TB diagnosis (if applicable): Medical history (current symptoms, prior history of treatment for tuberculosis, and recent history of contact with a case of active TB) and TST (according to the recommendation of the Korea Food and Drug Administration)

Outcomes (**study-based**) **list:** Test results, concordance/discordance, incidence of active TB, prognostic test accuracy indices (sensitivity, specificity, predictive values, false negative/false positive rates)

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 39 (median)

Women (n [%]): 44 [41] Race/ethnicity (n [%]): Asian Geographic origin (n[%]): NR BCG vaccination (n [%]): 63 [59]

History of anti-TB treatment (n [%]): 4 [3.8] Total incidence of active TB (n [%]): 1 [0.9%]

Chest radiography (yes/no): NR Clinical examination (yes/no): Yes

Morbidity (n [%]): RA (46 [43]) and AS (61 [57])

Co-morbidity (n [%]): NR

Type of during-study treatment: RA (Glucocorticoid: 31/46, Methotrexate: 39/46), AS

(Glucocorticoid: 6/61, Methotrexate: 3/61)

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-IT):	107	36	64	7	100

TDC/TD		107	26		71	0		107
TST:	`	107	36		71	0		107
Test 3 (specify): NA NA Total N of patients with valid results for both IC			CD A	NA L TECTE 1	NA	-	NA	
Levels/groups	of exposu					le):		
NY 1			efinition of	expo	sure group			
Non-exposed	•• `	NA						
Exposed 1 (spe	•	NA						
Exposed 2 (spe		NA						
Exposed 3 (spe		NA						
Exposed 4 (spe	cify):	NA						
Tests	T .							
	_		dology, timi	ng	Cut-off val			Other
	for	test measi			Definit	ion of tes	t+	information
		manufact						
IGRA (QFT-	_		ГВ Gold In-		Positive test			
IT)		(QFT-GIT			defined as \geq	0.35 IU/n	nL	
			gie, Australi	a)				Both the TST
		d according						and QFT-IT
		urer instruc						were performed
TST		was perform			Induration s			on the same day
			arm using th		measured af		h, and	as the screening
			th 2 tubercul	in	we used a 10			examination in
) of purified			induration a		e cut-	all patients
		•	tens Serum		off value for	r the TST		before initiating
			, Denmark).					TNF
		is approxi						antagonists
		t to the inte						
			erculin PPD					
Association be			d incidence	of ac	tive TB (if ap			
	IGR			TST				
		ence of	Total		Incidence of Total			Total
		ve TB				activ		-
	Yes	No				Yes	No	
IGRA +	NA	NA	37 LTBI		TST +	0	16	16
			treated					
IGRA -	0	64	64		TST -	0	54	54
Indeterminate	0	6	6	Ir	ndeterminate	0	0	
Total	0	70	70		Total	0	70	70
		To	est perform	ance	parameters			
	IGR	A				TS	ST	
Sensitivity = N				Sensitivity = NA				
Specificity = 70	$0/70 = 100^{\circ}$	% (95% CI:	94.8, 100)	Sp	ecificity = 54	/70 = 77.1	14 (95%	CI: 66.05,
				85.41)				
PPV = NA PI				PP	V = 0/16 = 0			
NPV = 64/64 =	100% (95	% CI: 94.8,	100)	NPV = 54/54 = 100% (95% CI: 93.4, 100)				
Cumulative Incidence _{IGRA+} = NA			Cumulative Incidence $_{TST+} = 0/16 = 0$					
Cumulative Incidence $_{IGRA-} = 0/64 = 0$			Cumulative Incidence $_{TST-} = 0/54 = 0$					
Cumulative Incidence Ratio _{IGRA} = NA			_	mulative Inci				
Incidence density rate _{IGRA+} = NR			Incidence density rate $_{TST+} = NR$					
Incidence density rate $_{IGRA^{+}} = NR$				Incidence density rate _{TST} = NR				
				Incidence density rate ratio _{TST} = NR				
	Incidence density rate ratio $_{IGRA} = NR$ Incidence density rate ratio $_{TST} = NR$ Other reported measure $_{IGRA} = NR$ Other reported measure $_{TST} = NR$							
5 mill reported			ison betwee				,, ,,,,,	
Comparison between tests (IGRA vs. TST)								

Datio of annualati	::	matica N	Α.				
Ratio of cumulati							
Ratio of incidence			IK .				
Other reported me			•	11 1 0 000	(8.0		
Asso		veen test r	esults ar	nd levels of TB ex		pplicable)	
	IGRA	1 1	TD . 1		TST	1 1	TD + 1
	Exposu		Total		Exposu		Total
*GD .	High/Yes	Low/No		mam	High/Yes	Low/No	
IGRA +	NA	NA	NA	TST +	NA	NA	NA
IGRA -	NA	NA	NA	TST -	NA	NA	NA
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA
Total	NA	NA	NA	Total	NA	NA	NA
		Test	perform	ance parameters			
	IGRA				TST		
Sensitivity = NA				Sensitivity = NA			
Specificity = NA				Specificity = NA	L		
PPV = NA				PPV = NA			
NPV = NA				NPV = NA			
DOR (for T ⁺ calc	ulated) = NA	1		DOR (for T ⁺ calc	culated) = N	A	
OR (crude; for T ⁺	reported) =	NA		OR (crude; for T	+ reported) =	: NA	
OR (regression-ba	ased; reporte	ed) = NA		OR (regression-b	ased; report	ed) = NA	
List of covariates	: NA			List of covariates	s: NA		
Other reported me	easure = NA			Other reported m	easure = NA	1	
*		Comparison	n betwee	en tests (IGRA vs	. TST)		
Ratio of DORs (fe	or T ⁺ calcula	ted) = NA		`	ĺ		
Ratio of OR (cruc	de; for T ⁺ rep	orted) = N	A				
Ratio of ORs (reg							
Other reported me			-,				
			test resu	lts and BCG state	ıs (if applic	able)	
	IGRA		est resu		TS	•	
	BCG s		Tota	1		3 status	Total
	Yes	No	1011		Yes	No	10141
IGRA +	NR	NR	NR	TST +	NR	NR	NR
IGRA -	NR	NR	NR		NR	NR	NR
Indeterminate	NR	NR	NR			NR	NR
Total	NR	NR	NR		NR	NR	NR
Total	INK				INK	INK	INK
	IGRA		periorii	ance parameters	TS	T	
DOD (for T ⁺ color				DOD (for T			
DOR (for T ⁺ calc					+ calculated		
OR (crude; for T			TD.		for T+ repor		MD
OR (regression-ba		$(a)_{IGRA} = N$	K		sion-based; r	eportea) _{TST}	$\Gamma = NK$
List of covariates				List of cova		ND	
Other reported me			7 7*		ted measure	= NK	
				cordance (if appl		1/	1141
	e stratified	by TST cu	it-off val	ue, BCG vaccina	tion status,	and/or con	dition
Total sample							
		TST +		TS			Total
IGRA +		19			7		36
	IGRA - 16 48 64						
Indeterminate		1		ϵ			7
Total		36		7	1		107
Description							
•		if stratified	by BCC	or condition – sp	ecify): total		
mom 1 1 11	> 10mm						

Parameters

Kappa = 0.26, 95% CI: 0.07, 0.45

% concordance = 67/100 = 67.0%, 95% CI: 57.31, 75.44

% discordance = 33/100 = 33.0%, 95% CI: 24.56, 42.69

Rheumatoid arthritis (RA)

	TST +	TST -	Total
IGRA +	8	9	17
IGRA -	1	24	25
Indeterminate	NR	NR	NR
Total	9	33	42

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): RA

TST + threshold: > 10mm

Parameters

Kappa = 0.46, 95% CI: 0.21, 0.72

% concordance = 32/42 = 76.20%, 95% CI: 61.47, 86.52

% discordance = 10/42 = 23.80%, 95% CI: 13.48, 38.53

Ankylosing spondylitis (AS)

J	- ()		
	TST +	TST -	Total
IGRA +	11	8	19
IGRA -	15	24	39
Indeterminate	NR	NR	NR
Total	26	32	58

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Ankylosing spondylitis

TST + threshold: > 10mm

Parameters

Kappa = 0.14, 95% CI: -0.10, 0.39

% concordance = 35/58 = 60.34%, 95% CI: 47.49, 71.91

% discordance = 23/58 = 39.66%, 95% CI: 28.09, 52.51

Other outcomes

Test and cut-off (if	Adverse events n/N (%)	Health related
applicable)	(specify)	quality of life mean
		score (SD) (specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

IGRA performed better in terms of specificity than TST, but several observations of IGRA were indeterminate; in general, the agreement between IGRA and TST was low; better agreement was observed for rheumatoid arthritis and ankylosing spondylitis

Reviewers:

See above

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Elzi 2011¹¹²

Country: Switzerland

Study design: Retrospective case only study (no control group)

Study setting (e.g., outbreak investigation, community-based - specify): Community-based cohort

Number of centres: One

Total length of follow up (if applicable): 2 years

Funding (government/private/manufacturer/other - specify): Grants/honoraria received from private manufacturers (Abbott, Bristol-Myers Squibb, Gilead, GlaxoSmithKline, Merck, Roche. M. Hoffmann, Janssen, Pfizer)

Aim of the study

To evaluate the sensitivity of T-SPOT.TB in comparison to TST to identify HIV-infected individuals with latent TB, who therefore qualify for preventive treatment

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (HIV)

Participants

Recruitment dates: 1993 to 2005 Total N of recruited patients: 64

Inclusion criteria: NR Exclusion criteria: NR

Total N of excluded patients: None

Total N of patients tested with both IGRA and TST: 64

Total N of patients with valid results for both IGRA and TST: 44

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Sensitivity, agreement, influence of age, CD count and other covariates

on test positivity

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median of 33 (IQR: 31-42) yrs

Women (n [%]): 20/64 [31]

Race/ethnicity (n [%]): White 29/64 [45.3]

Geographic origin (n[%]): NR BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): NR Clinical examination (yes/no): NR

Morbidity (n [%]): HIV Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (T-	64	25	18	21	43
SPOT.TB):					
TST: Mantoux	44	22	22	0	44
Test 3 (specify):					

Total N of patients with valid results for both IGRA and TST: 44

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group

Non-exposed	1							
Exposed 1		NA						
(specify):								
Exposed 2		NA						
(specify):								
Exposed 3		NA						
(specify):								
Exposed 4		NA						
(specify):								
Tests			41 1 1		4 0 4 66	1 4		0.41
	Assa			ogy, timing for tes nanufacturer		values/ti nition of	hresholds ? test+	Other informati on
IGRA (T-	T-SF	OT.TB v	was retros	pectively performed	The test r	esult was	<u> </u>	-
SPOT.TB)				phocytes of HIV-		ed "positi	ve" if the	
	infec	ted indiv	iduals sto	red within 6 months			er test well	
	befor	re culture	e-confirme	ed	was ≥ 6 is	n either o	of both	
	TB c	ccurred			Panel A a	ınd B. Tl	ne test	
					result was			
				med by using a	"negative			
			it accordi		and B sho			
				ions. Each patient	Where th			NR
				for the negative	was < 20		the	
				control) and positive			t xyoc	
			bls and 2for the MTB antigens, Panel ≥ 10 spots, the test was scored as "indeterminate"					
	A (L	SA1-0) (and D (Cr	1-10)	scored as	macter	iiiiiate	
	Eval	uating th	e number	of spots obtained				
				nt of the frequency				
				ensitive cells				
TST			NR		≥ 5mm fo	or positiv	ity	NR
Association	betwe	een test r	esults an	d incidence of activ	e TB (if app	licable)	•	
			SPOT.TE		· · · · · ·		(≥ 5mm)	
		Incide	nce of	Total		Incid	lence of	Total
		activ	e TB			act	ive TB	
		Yes	No			Yes	No	
IGRA +		25	NA		TST +	22	NA	
IGRA -		18	NA		TST -	22	NA	
Indetermina	ate	21	NA		Indetermi	0	NA	
T . 1		<i></i>	27.4		nate	4.4	NY 4	
Total		64	NA	4 6	Total	44	NA	
		IC		est performance p	arameters	TOT	(A.F.)	
·- J-4	.4		RA		C i4 ii4		(≥ 5mm)	70/ CT:
indetermina			0/ (050/ 6	TI. 42 22 71 62)	Sensitivity = 35.83, 64.17		50.00% (93	% CI:
indetermina			% (95% C	CI: 43.33, 71.62)	33.83, 04.1	<i>(</i>)		
			% (95% C	CI: 28.06, 51.31)				
Specificity =		. – 57.00	70 (JJ/0 C	20.00, J1.J1)	Specificity:	= NA		
PPV = NA	1 1/ 1				PPV = NA	1111		
NPV = NA					NPV = NA			
Cumulative :	Incide	nce ice A :	= NA		Cumulative	Incidend	$e_{TST} = NA$	
Cumulative					Cumulative			
Cumulative				A	Cumulative			= NA
Incidence de					Incidence d			
		+ IONA+					1017 1,16	

Incidence density rate $_{IGRA-} = NR$ Incidence density rate $_{TST-} = NR$									
	sity rate ratio _{IGI}			Incidence density rate ratio $_{TST} = NA$					4
	l measure _{IGRA} =			Other reported measure _{TST} = NR					
•		omparison	between						
Ratio of cumu	lative incidence			•					
Ratio of incide	ence density rate	e ratios = NR							
Other reported measure = NR									
•	etween test res	ults and inci	dence of	active TB	if a	pplica	ble)		
		m) and IGF							
		Incidence	of active	e TB				Total	
	Y	es		No	О				
TST or	2	9		N/	A			NA	
IGRA +									
TST and	1	5		NA.	A			NA	
IGRA -									
Indetermin	()		N/	A			NA	
ate									
Total	4	4		NA	A			NA	
	Test perf	ormance pa	rameter	s (TST and	d IGR	RA cor	mbined)		
Sensitivity $= 2$	29/44 = 65.91%	(95% CI: 51	.14, 78.1	2)					
Specificity, PI	PV, NPV, others	s = NA							
A	ssociation bety	veen test res	ults and	levels of T	B exp	posur		cable)	
	IGRA		•				TST		
		ure level	Tota				Exposure 1		Total
	High/Yes	Low/No	1			Hig	gh/Yes	Low/N	
								0	
IGRA +	NA	NA	NA	TST +			NA	NA	NA
IGRA -	NA	NA	NA	TST -			NA	NA	NA
Indeterminate	NA	NA	NA	Indeterm te	ina]	NA	NA	NA
Total	NA	NA	NA	Total]	NA	NA	NA
		Test pe	erformai	nce param	eters				
	IGRA	•					TST		
Sensitivity $= N$	ĪΑ			Sensitivit	ty = N	ĪΑ			
Specificity = N	ĪΑ			Specifici					
PPV = NA				PPV = N	A				
NPV = NA				NPV = N	ΙA				
DOR (for T ⁺ c	alculated) = NA	1		DOR (for	r T ⁺ ca	alcula	ted) = NA	1	
OR (crude; for	r T ⁺ reported) =	NA		OR (crud	le; for	· T rep	ported) = 1	NA	
	n-based; reporte			OR (regr	essior	n-base	d; reporte	d = NA	
List of covaria	ites: NA			List of co	ovaria	tes: N	A		
Other reported	l measure = NR			Other rep	orted	l meas	ure = NR		
	C	omparison l	between	tests (IGR	RA vs.	. TST)		
Ratio of DOR	s (for T ⁺ calcula	ted) = NA							
Ratio of OR (d	crude; for T ⁺ rep	orted) = NA							
Ratio of ORs	(regression-base	ed; reported)	= NA						
Other reported	l measure = NA								
	Association	between tes	st results	and BCG	statu	ıs (if a	pplicable	e)	
		RA					TS		
	BCG s	tatus	To	otal				G status	Tot
	Yes	No					Yes	No	al
IGRA +	NR	NR	N	VR	TST	+	NR	NR	NR

IGRA -	NR	NR	NR	TST -	NR	NR	NR					
Indeterminat	NR	NR	NR	Indeterm		NR	NR					
e				inate								
Total	NR	NR	NR	Total	NR	NR	NR					
		Test p	erformance	parameters	·							
	IC	GRA			TST							
DOR (for T ⁺ ca					T+ calculate							
OR (crude; for					le; for T+ rep							
OR (regression-based; reported) $_{IGRA} = NR$ OR (regression-based; reported) $_{TST} =$												
List of covariates: NR NR												
Other memerted	maaauma – NE)			ovariates: NR	no — NID						
Other reported measure = NR Other reported measure = NR Between-test agreement, concordance, and discordance (if applicable)												
				CG vaccination		r conditio	n					
Total sample	be stratified	by ISI cut	-on varue, D	CO vaccination	status, and/o	1 contains	<u> </u>					
Total sample		TST + (≥ 5m	nm)	TS	Γ-	То	tal					
IGRA +	1	10)	7	-		7					
IGRA -		7		8			5					
Indeterminate		5		7			2					
Total		22		22	2	4						
Description												
Sample definiti	on (e.g., total,	if stratified	by BCG or co	ondition – specify	r): total							
TST + threshole	$d: \geq 5$ mm											
Parameters												
Indeterminate												
				Kappa = 0.12 (95% CI: -0.22, - 0.46)								
% concordance = 18/32 = 56.25% (95% CI: 39.33, 71.83)												
		•	•									
% discordance	= 14/32 = 43.	•	•									
% discordance Indeterminate	= 14/32 = 43. included	75% (95% C	•									
% discordance : Indeterminate Kappa = 0.14 (9	= 14/32 = 43. included 95% CI: -0.15	75% (95% C 5, - 0.42)	I: 28.17, 60.6	57)								
% discordance : Indeterminate Kappa = 0.14 (9) % concordance	= 14/32 = 43.° included 95% CI: -0.15 = 25/44 = 57	75% (95% C (, - 0.42) .00% (95% C	I: 28.17, 60.6 CI: 42.22, 70.	32)								
% discordance Indeterminate Kappa = 0.14 (9 % concordance % discordance	= 14/32 = 43.° included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43.°	75% (95% C 5, - 0.42) .00% (95% C 20% (95% C	I: 28.17, 60.6 CI: 42.22, 70.	32)								
% discordance : Indeterminate Kappa = 0.14 (9) % concordance	= 14/32 = 43.° included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43.°	75% (95% C 5, - 0.42) .00% (95% C 20% (95% C	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32)	Γ -	To	tal					
% discordance Indeterminate Kappa = 0.14 (9 % concordance % discordance	= 14/32 = 43.° included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43.°	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1)	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32)		To N						
% discordance : Indeterminate Kappa = 0.14 (9% concordance : % discordance : Stratification (1984 + IGRA -	= 14/32 = 43.° included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43.°	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST +	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS	3		R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance % discordance Stratification (1 IGRA + IGRA - Indeterminate	= 14/32 = 43.° included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43.°	75% (95% C 7, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI	₹ ₹	N N N	R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance : % discordance : Stratification (IGRA + IGRA - Indeterminate Total	= 14/32 = 43.° included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43.°	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI	₹ ₹	N N N	R R					
% discordance Indeterminate Kappa = 0.14 (9 % concordance % discordance Stratification (IGRA + IGRA - Indeterminate Total Description	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group)	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI NI	₹ ₹ ₹	N N N	R R R					
% discordance : Indeterminate Kappa = 0.14 (% concordance : % discordance : Stratification (** IGRA + IGRA - Indeterminate Total Description Sample definiti	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify grou) on (e.g., total,	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI	₹ ₹ ₹	N N N	R R R					
% discordance Indeterminate Kappa = 0.14 (9 % concordance % discordance IGRA + IGRA - Indeterminate Total Description Sample definiti TST + threshold	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify grou) on (e.g., total,	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI NI	₹ ₹ ₹	N N N	R R R					
% discordance of Indeterminate Kappa = 0.14 (9 % concordance of Miscordance of Mi	= 14/32 = 43 included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43 (specify grou) on (e.g., total,	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI NI	₹ ₹ ₹	N N N	R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance	= 14/32 = 43.' included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43.' (specify grou) on (e.g., total, d: NR	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI NI	₹ ₹ ₹	N N N	R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance % discordance Stratification (1 IGRA + IGRA - Indeterminate Total Description Sample definiti TST + threshold Parameters Kappa = NR % concordance	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify grou) on (e.g., total, d: NR	75% (95% C 6, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI NI	₹ ₹ ₹	N N N	R R R					
% discordance findeterminate Kappa = 0.14 (9 % concordance findeterminate findete	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group) on (e.g., total, d: NR = NR = NR	75% (95% C 1, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR NR	I: 28.17, 60.6 CI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI NI	₹ ₹ ₹	N N N	R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance % discordance Stratification (1 IGRA + IGRA - Indeterminate Total Description Sample definiti TST + threshold Parameters Kappa = NR % concordance	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group) on (e.g., total, d: NR = NR = NR	75% (95% C 7, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR NR NR	EI: 42.22, 70. I: 29.68, 57.7	32) (8) TS' NI NI NI ondition – specify	R R R R Y): NR	N N N	R R R R					
% discordance : Indeterminate Kappa = 0.14 (% concordance % discordance : Stratification (** IGRA + IGRA - Indeterminate Total Description Sample definiti TST + threshole Parameters Kappa = NR % concordance % discordance : Stratification (** Stratification (** ** ** ** ** ** ** ** ** **	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group) on (e.g., total, d: NR = NR = NR	75% (95% C 7, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR NR NR TST + NR	EI: 28.17, 60.6 EI: 42.22, 70. I: 29.68, 57.7	32) 38) TST NI NI NI Ondition – specify	R R R R γ): NR	N N N N	R R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance % discordance : Stratification (1	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group) on (e.g., total, d: NR = NR = NR	75% (95% C 7, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR NR NR NR NR	EI: 28.17, 60.6 EI: 42.22, 70. II: 29.68, 57.7	32) (8) TS7 NI NI NI Ondition – specify	R R R R r): NR	N N N N N N N N N N N N N N N N N N N	R R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance % discordance : Stratification (1	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group) on (e.g., total, d: NR = NR = NR	75% (95% C 7, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR NR NR NR NR	EI: 28.17, 60.6 EI: 42.22, 70. II: 29.68, 57.7	32) (8) TS' NI NI NI Ondition – specify TS' NI	R R R R Y): NR	N N N N N N N N N N N N N N N N N N N	R R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance : % discordance : Stratification (9 IGRA + IGRA - Indeterminate Total Description Sample definiti TST + threshold Parameters Kappa = NR % concordance : % discordance : % discordance : Stratification (9 IGRA + IGRA - Indeterminate	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group) on (e.g., total, d: NR = NR = NR	75% (95% C 7, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR NR NR NR NR NR	EI: 28.17, 60.6 EI: 42.22, 70. I: 29.68, 57.7 by BCG or co	32) (8) TS' NI NI NI Ondition – specify TS' NI	R R R R R R R R R R R R R R R R R R R	To N	R R R R					
% discordance : Indeterminate Kappa = 0.14 (9 % concordance % discordance : Stratification (1	= 14/32 = 43. included 95% CI: -0.15 = 25/44 = 57 = 19/44 = 43. (specify group) on (e.g., total, d: NR = NR = NR	75% (95% C 7, - 0.42) .00% (95% C 20% (95% C p 1) TST + NR NR NR NR NR NR NR	EI: 28.17, 60.6 EI: 42.22, 70. I: 29.68, 57.7 by BCG or co	32) (8) TS' NI NI NI Ondition – specify TS' NI	R R R R R R R R R R R R R R R R R R R	N N N N N N N N N N N N N N N N N N N	R R R R					

TST + threshold: NR
Parameters
Kappa = NR
% concordance = NR
% discordance = NR

Other outcomes								
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)						
IGRA:	NR	NR						
TST:	NR	NR						
Test 3 (specify):	NR	NR						

Conclusions

Authors:

T-SPOT.TB has a similar sensitivity to TST to detect latent TB in HIV infected individuals. There was poor agreement between T-SPOT.TB and TST results. The combination of TST and TSPOT. TB (at least one test positive) resulted in improved sensitivity over TST or IGRA alone

Reviewers:

This is a retrospective case only study which does not allow to estimate incidence of active TB between test positive vs. negative groups from baseline (no denominators provided). Likewise, no specificity and predictive values could be estimated; the sample (64 out of 242) may have been highly selected, thus prone to selection bias and limitation in regards to applicability of its results; moreover, for IGRA frozen blood samples were analysed

Study details

First author surname year of publication: Kim 2011¹¹⁴

Country: Korea

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Tertiary-care hospital

Number of centres: One

Total length of follow up (if applicable): median 14 mo (IQR: 8-19)

Funding (government/private/manufacturer/other - specify): Basic Science Research Program through National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (MEST) (grant 2008-E00136

Aim of the study

To assess whether an enzyme-linked immunosorbent spot (ELISPOT) assay is capable of predicting active TB development in kidney transplant (KT) recipients with negative TST results and without LTBI risk factors

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised people (kidney transplant [KT] recipients)

Participants

Recruitment dates: June 2008 and December 2009

Total N of recruited patients: 324

Inclusion criteria: KT patients (age≥16 yrs) with TST – (<10mm) and without TB risk factors (history of close contact with TB case, abnormal CXR, history of untreated or inadequately treated TB, newly infected persons)

Exclusion criteria: Refusal of informed consent, presence of active TB, presence of skin disease that precluded TST, pediatric renal transplant candidates (<16 years old), TB risk factors, and presence of any contraindication for KT (e.g. malignancy)

Total N of excluded patients: 28 (n = 12 refusal, pediatric, pancreas transplants, transplantation not done, donor kidney problem; n = 16 LTBI risk factors who received anti-TB preventive therapy)

Total N of patients tested with both IGRA and TST: 272 (out of 296, 24 with TST + [≥10mm] received anti-TB preventive therapy before KT, leaving 272 KT patients with TST-[<10mm] also tested with IGRA who did not receive anti-TB preventive therapy)

Total N of patients with valid results for both IGRA and TST: 242 (out of 272 patients, 30 had indeterminate IGRA results)

Methods of active TB diagnosis (if applicable): Symptoms/signs, sputum AFB smear, and a CT scan

Outcomes (study-based) list: Development of TB, mortality, KT rejection

Characteristics of participants (total study sample): 272 patients

Mean (range or SD) age (years): Mean age range (40.4-46.0 yrs)

Women (n [%]): 126 (46.3) Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 215 [79.0]

History of anti-TB treatment (n [%]): None

Total incidence of active TB (n [%]): 4/272 [1.47] (incidence rate: 0.83 per person-years, 95% CI: 0.23, 2.12)

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): Glomerulonephritis 72 [26.5], hypertension 65 [23.9], diabetes mellitus 48 [17.6], unknown 58 [21.3], polycystic kidney 12 [4.4], other 11 [4.0]

Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): anti-IL-2 receptor antibodies (238 [87.5]), antithymocyte antibodies (21 [7.7]), rituximab (11 [4.0])

Number of pa	atients tes	ted						
		Total N (tested)	Total N (test+)	Total N (test-)		otal N termin		Total N (test results available)
IGRA (T-		272	71	171		30		242
SPOT.TB):		272	0	272		0		272
(Mantoux):		212	(≥10mm)	(<10mm)		0		212
Test 3 (specif	v):	Nr	NR	NR		NR		NR
				RA and TST: 24	12			1 (11
				ler (if applicabl				
<u> </u>	•		efinition of exp					
Non-exposed	NA							
Exposed 1	NA							
(specify):								
Exposed 2	NA							
(specify):	374							
Exposed 3	NA							
(specify): Exposed 4	NA							
(specify):	INA							
Tests								
Tests	Assav i	sed, method	ology, timing	Cut-off value	s/thresł	nolds		Other
		r test measu		Definition				ormation
		manufactu	,					
IGRA (T-	A peripl	neral venous b	olood sample	NR				levelopment
SPOT.TB)			ich patient for					after KT
		POT assay fo						bserved by
		ng T-cell resp					atteno	•
		B, Oxford Im	imunotec,				surge	
	Abingdo	on, UK)					infect	ologists and
	All bloo	d samples we	ere collected				diseas	
		TST to avoid						alists blind
	•	effect of TS'	•					results of
	ELISPO							POT assays,
		Ž					to avo	-
							verifi	cation bias
TST		was perforn		The positive co			NR	
(Mantoux)		x technique, i		for TST was 1				
		erculin unit) o		greater size of				
	•	protein deriv		48–72 h after i				
		Serum Institu		and in accorda Korea Centers		1		
	_	agen, Denmar mally into the		Diseases Cont				
	muaden	many mio me	TOTEATH	Prevention gui				
Association h	etween te	st results and	l incidence of a	active TB (if ap		2)	<u> </u>	
110001mtion 0		GRA		map.		<u>></u> ≥10mr	n)	
		cidence of	Total		Incid		,	Total
		ctive TB			of ac			
					T			
	Yes	No			Yes	No		
IGRA +	4	67	71	TST +	NA	NA		NA

IGRA -	0	171	171	TST -	4	268		272		
Indeterminate	0	30	30	Indeterminat		0		0		
Total	4	268	272	Total	4	NA	1	NA		
Total	<u>'</u>			ance parameters						
	IGR		ov perrorm		TST					
Sensitivity = 4/4 =			51 01	Sensitivity =						
100.00)	100.007	0 (5570 61.	J1.01,	Schistervity	1111					
Indeterminate exc	cluded			Specificity =	NA					
Specificity = 171/2		.84% (95%	CI: 65.82,							
77.18)										
Indeterminate inc	cluded									
Specificity = 201/2	268 = 75	.00% (95%	CI: 69.49,							
79.81)										
PPV = 4/71 = 5.63	•	CI: 2.21, 13	3.61)	PPV = NA						
Indeterminate ex				NPV = 268/2	272 = 98.3	53% (9	95% CI: 90	5.28,		
NPV = 171/171 =	100.00%	6 (95% CI: 9	97.80,	99.43)						
100.00)										
Indeterminate ind		(050/ CI (00.10							
NPV = 201/201 =	100.00%	(95% CI: 9	98.12,							
100.00) Cumulative Incide	nco	- 1/71 - 5	630/ (050/	Cumulative I	naidanaa		- NI A			
CI: 2.21, 13.61)	IICE IGRA	+ - 4/11 - 3	.03% (33%	Cullidiative I	ncidence	TST+ —	· INA			
Cumulative Incide	nce repa	= 0/171 = 3	X	Cumulative I	ncidence	тст =	4/272 = 1	47%		
	. 0,1,1	•	(95% CI: 0.4)		131-	,,2,,2	, , , ,			
Cumulative Incide	nce Rati	$o_{IGRA} = X$		Cumulative I		Ratio	$_{TST} = NA$			
Incidence density			p-yrs =	Incidence der						
0.0328 p-yrs = 3.2					•					
Indeterminate exc	cluded			Incidence der	nsity rate	TST- =	4/483.25]	p-yrs =		
Incidence density	rate _{IGRA-}	= 0/307.83	p-yrs =	0.0083 p-yrs	0.0083 p-yrs = 0.83/100 p-yrs (95% CI: 0.23,					
0.00/100 p-yrs				2.12)	2.12)					
Indeterminate inc										
Incidence density	rate _{IGRA} .	= 0/361.16	p-yrs =							
0.00/100 p-yrs		37.4		T '1 1	•		27.4			
Incidence density				Incidence der						
Other reported mea		_A =		Other reporte	a measu	re _{TST} =	= NK			
Indeterminate exe		ronco –	- 2 2/100 n							
yrs (95% CI: 1.3, 5		Tence IGRA -	- 3.3/100 p							
Indeterminate inc	,									
Incidence density		erence 1GD A =	= 3.3/100 n	-						
yrs (95% CI: 1.4, 5		- IONA	э о р							
		Comparis	son betwee	n tests (IGRA vs	. TST)					
Ratio of cumulativ	e incide									
Ratio of incidence	density	rate ratios =	NA							
Other reported mea	asure = 1	NA								
Assoc			results an	d levels of TB ex			licable)			
	IGR					rst				
		osure level	Total			osure		Total		
TGD 4	High/Y			mar.	High/		Low/No			
IGRA +	NR			TST +	NR		NR	NR		
IGRA -	NR			TST -	NR		NR NB	NR ND		
Indeterminate	NR			Indeterminate	NR		NR NB	NR ND		
Total	NR	NR	NR	Total	NR		NR	NR		

		Test p	erformar	nce parameters					
	IGRA				TST				
Sensitivity = NR				Sensitivity = NR					
Specificity = NR				Specificity = NR					
PPV = NR				PPV = NR					
NPV = NR	NPV = NR								
DOR (for T ⁺ calcul	lated) = NR			DOR (for T ⁺ calcu	lated) = N	R			
OR (crude; for T ⁺ r		NR		OR (crude; for T ⁺ 1					
OR (regression-bas				OR (regression-bas	_				
List of covariates:		., 1111		List of covariates:		.00)			
Other reported mea				Other reported mea		₹			
Other reported met		nmnarison	hetween	tests (IGRA vs. TS					
Ratio of DORs (for			between	10101 15: 15	(1)				
Ratio of DOR's (for)						
Ratio of ORs (regre									
		ı, reported)	- INIX						
Other reported mea		1 4 4	4 14	IDCC 4.4. (*	e 1° 1	1 \			
		between te	est results	and BCG status (i		oie)			
	IGRA		7D . 1		TST		7 7 . 1		
	BCG s		Total			status	Total		
	Yes	No			Yes	No			
IGRA +	NR	NR	NR	TST +	NR	NR	NR		
IGRA -	NR	NR	NR	TST -	NR	NR	NR		
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR		
Total	NR	NR	NR	Total	NR	NR	NR NR		
		Test p	erformar	ice parameters					
	IGRA				TST				
DOR (for T ⁺ calcul	$lated)_{IGRA} =$	NR		DOR (for T+ cale	culated) _{TS}	$_{\Gamma} = NR$			
OR (crude; for T ⁺ r	eported) = N	٧R		OR (crude; for T	+ reported	l) = NR			
OR (regression-bas	sed; reported	$\frac{1}{10000000000000000000000000000000000$	₹	OR (regression-b	ased; repo	orted) _{TST} =	NR		
List of covariates:	NR			List of covariates	s: NR				
Other reported mea	asure = NR			Other reported m	easure = l	NR			
Between-test agre	ement, con	cordance, a	and disco	rdance (if applicab	ole)				
				e, BCG vaccination		nd/or cond	lition		
Total sample		Ť		,	Í				
-		TST +		TST -		Т	otal		
IGRA +		NR		NR			NR		
IGRA -		NR		NR			NR		
Indeterminate		NR		NR			NR		
Total		NR		NR			NR		
Description		1111		1111					
	e o total i	f stratified l	hy BCG o	r condition – specif	v)· NR				
TST + threshold: N		Stratifica	by Bed o	reonation speen	y). 111C				
Parameters	11/								
Kappa = NR									
	JD								
% concordance = N									
% discordance = N		1)							
Stratification (spe	chy group	,		mam		7.7	2-4-1		
ICD A		TST +		TST -			<u>Cotal</u>		
IGRA +		NR		NR			NR		
IGRA -		NR		NR			NR		
Indeterminate		NR		NR			NR		
Total NR NR NR NR							NR		
		Description							

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Stratification (specify group 2)

Stratification (specif	Strauncation (specify group 2)										
	TST +	TST -	Total								
IGRA +	NR	NR	NR								
IGRA -	NR	NR	NR								
Indeterminate	NR	NR	NR								
Total	NR	NR	NR								

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes							
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean					
		score (SD) (specify)					
IGRA:	NR	NR					
TST:	NR	NR					
Test 3 (specify):	NR	NR					

Conclusions

Authors:

Positive ELISPOT results predict subsequent development of TB in KT recipients in whom LTBI cannot be detected by TST or who lack clinical risk factors for LTBI

Reviewers:

The available data did not allow the proper direct comparison between IGAA and TST (no relevant data for TST positives); however, IGRA correctly identified the incidence of 4 TB cases as opposed to TST which was negative in all 4 TB cases

Name of first reviewer: Peter Auguste Name of second reviewer: Tara Gurung

Study details

First author surname year of publication: Lee 2009¹¹⁶

Country: Taiwan

Study design: Prospective, matched, double cohort study

Study setting (e.g., outbreak investigation, community-based - specify): NR

Number of centres: One

Total length of follow up (if applicable): 2 yrs follow-up

Funding (government/private/manufacturer/other - specify): National health research institutes, Department of Health, Executive Yuan, republic of China (NHRI-CN-CL-094-PP13) and Kaohsiung Veterans General Hospital, Kaohsuing, Taiwan (VGHKS95-012)

Aim of the study

To compare QFT-G, T-SPOT.TB, and TST in terms of their ability to diagnose LTBI in end stage renal disease(ESRD) patients, and to determine the prevalence of LTBI in ESRD patients compared with healthy controls, the risk factors for QFT-G and TST positivity, and the predictive value of a positive QFT-G, ELISPOT, or TST for active TB disease over a two-year period

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised (ESRD)

Participants

Recruitment dates: September 2005 **Total N of recruited patients:** 64 patients **Inclusion criteria:** Patients with ESRD

Exclusion criteria: NR

Total N of excluded patients: None

Total N of patients tested with both IGRA and TST: 32

Total N of patients with valid results for both IGRA and TST: 32

Methods of active TB diagnosis (if applicable): Asymptomatic cases are diagnosed with a chest x-ray, and symptomatic cases are diagnosed with a sputum TB smear, culture and chest radiography **Outcomes (study-based) list:** Primary outcome was LTBI and secondary outcomes was development of active TB, concordance between tests, risk factors for a positive result

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 53.8 (34.4-77.7)

Women (n [%]): 24 [37.5] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Kaohsiung BCG vaccination (n [%]): 53 [82.8] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): End stage renal dialysis

Co-morbidity (n [%]): Diabetes mellitus (7 [10.9])

Type of during-study treatment (n [%]): NR

Number of patients tested

•	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (QFT-G):	32	12	18	2	30
IGRA (ELISPOT):	32	15	17	0	32
TST (≥ 10mm):	32	20	12	0	32

Total N of patients with valid results for both IGRA and TST:

Levels/groups of exposure to TB in increasing order (if applicable						e):		
NY 1	1		efinition of ex	posure	group			
Non-exposed	`	NR						
Exposed 1 (specify		NR						
Exposed 2 (specify		NR						
Exposed 3 (specify		NR						
Exposed 4 (specify	·):	NR						
Tests								
			thodology, tin	ning	_	Cut-off		Other
		for test measurement,			values	thresh(olds	information
			facturer		Definit	tion of t	est+	
IGRA (QFT-			drawn prior to		A QFT-C	3 analysi	is	NA
GIT)	carryin	g out the T	TST. The QFT-	·G	software	availab	le for	
			cording to the		download	d from tl	ne	
	respect	ive manuf	acturer's		Cellestis	Ltd web	site,	
	instruc	tions			was used	for qual	lity	
					control a	ssessme	nt and	
					to calcula	ate the te	est	
	<u> </u>				results			
TSPOT	Whole	blood was	drawn prior to)	NR			NA
	carryin	g out the T	ΓST. The					
	T-SPO	T.TB was	performed					
	accord	ing to the i	espective					
	manufa	acturer's in	structions					
TST (two step; ≥	A two-	step TST ı	using the Mant	oux	≥ 10mm	induratio	on for	NA
10mm)	method	l with two	tuberculin unit	ts of	ESRD pa	itients ar	nd	
	tubercu	ılin RT-23	(PPD RT 23 S	SSI;	I; BCG-unvaccinated			
	Statens	Serum In	stitut, Copenha	igen,	individua	als,		
	Denma	rk) was pe	erformed accor	ding	\geq 15mm induration for			
	to stand	dard proto	col. The reaction	ons	BCG-vaccinated,			
	were re	ad after 4	8–72 h. Second	l	healthy individuals			
	TST te	st was per	formed 1-3 wee	eks				
	later fo	r initial ne	gative TST res	sult				
Association between	en test r	esults and	incidence of	active TB (if applicable)				
I(GRA (Q	FT-G)			TST	(two-st	tep; ≥10	Omm)
	Incid	ence of	Total			Incide	nce of	Total
	activ	ve TB				activ	e TB	
	Yes	No				Yes	No	
IGRA +	1	11	12	Γ	TST +	1	19	20
IGRA -	0	18	18		TST -	1	11	12
Indeterminate	1	1	2		erminate			
			(excluded)					
Total	2	30	32	-	Γotal	2	30	32
			st performano					_
IGRA (ex	xclude ir	determin				Т	ST	
Sensitivity = $1/1$ =			•	Sensi	tivity = 1/			% CI: 9.45,
100.00		,	,	90.55	•		(,,
Specificity = 18/30	= 60.00	%. 95% C	[: 44.00.			/30 = 36	5.67%.	95% CI: 21.87,
77.31	30.00	, , , , , , , , ,	,	54.49	•	., 55 - 50	,	2.0 01. 21.07,
PPV = 1/12 = 8.339	%. 95% (CI: 1 49 3	5.39			.00% 9	5% CI:	0.89, 23 61
NPV = 18/18 = 100				PPV = 1/20 = 5.00%, 95% CI: 0.89, 23.61 NPV = 11/11 = 100.00%, 95% CI:74.12, 100.00				
Cumulative Incider				NPV = 11/11 = 100.00%, 95% CI:74.12, 100.00 Cumulative Incidence _{TST+} = 1/20 = 5.00%, 95%				
CI (1.49, 35.39)	ICC IGRA+	- 1/12 - C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.89, 23.61		51+ - 1/.	20 - 3.0070, 7370
	1CO	- 0/12 - 5	56% (05%				Ω/1	11 - 9 09% (95%
Cumulative Incider	ICC IGRA-	-0/10 = 3	.50% (75%	Cumulative Incidence $_{TST} = 0/11 = 9.09\%$ (95%)				

CI: 5.40, 27.29)				CI: 0.23, 41.3	`		
Cumulative Incide	(95% CI:			tio man - 0.5	5% (95%		
0.02, 124.2)	(<i>)</i> 3/0 C1.	Cumulative Incidence Ratio $_{TST} = 0.55\%$ (95% CI: 0.01, 47.06)					
	roto – 3	2.40 per 10	DVC	Incidence density rate $_{TST+} = NR$			
Incidence density i			JIIS		•		
Incidence density r	Incidence den	•					
Incidence density i				Incidence den			
Other reported mea			1 4	Other reported		ST = NK	
D .: C 1 .:				tests (IGRA vs.	181)		
Ratio of cumulativ				13, 62.64)			
Ratio of incidence		ratios = Ni	K				
Other reported mea		7.	4.7				
Association between			cidence of			. 40)	
10	GRA (TSPC		 1	TS		<u>p; ≥10mm)</u>	- 1
	Incidence		Total		Inciden		Total
	active 7				active		
	Yes	No			Yes	No	
IGRA +	0	15	15	TST +	1	19	20
IGRA -	2	15	17	TST -	1	11	12
Indeterminate	0	0	0	Indeterminate		0	0
Total	2	30	32	Total	2	30	32
		Test p	erformar	nce parameters			
	IGRA				TS		
Sensitivity = $0/2$ =	0.00% (95%	6 CI: 0.00,	65.76)	Sensitivity = 1 90.55)	1/2 = 50.009	% (95% CI:	9.45,
Specificity = 15/30 66.85)	0 = 50.00% (95% CI: 33	3.15,	Specificity = 1 54.49	11/30 = 36.0	67%, 95% C	CI: 21.87,
	0/ (050/ CI.	0.00.20.20	<u>))</u>		5.000/ 050	/ CI, 0.90 /	02 61
PPV = 0/15 = 0.00				PPV = 1/20 =			
NPV = 15/17 = 88				NPV = 11/11			
Cumulative Incide	$_{\mathrm{IGRA+}} = 0$	0/13 = 0.07	% (93%	Cumulative In		$t_{+} = 1/20 = 3$.00%, 93%
CI: 0.17, 31.9)	maa – 2	/17 _ 11 74	50/ (050/	CI (0.89, 23.6		_ 0/11 _ 0	000/ (050/
Cumulative Incidence $_{IGRA-} = 2/17 = 11.76\%$ (95% CI: 2.03, 35.59)				Cumulative In		0/11 - 9	.09% (93%
	naa Datia	- O 570/	(050/ CI.	CI: 0.23, 41.3		tio _ 0.5	50/ (050/
Cumulative Incide	nce Kano _{IGI}	$R_{A} = 0.37\%$	(93% CI:			$_{\text{TST}} = 0.3$	3% (93%
0.01, 12.1)	N	ID		CI: 0.01, 47.0	•	NID	
Incidence density i				Incidence den			
Incidence density i				Incidence den	•		
Incidence density i				Incidence den			
Other reported mea			h otres on	Other reported		ST = NK	
Datio of augustadian				tests (IGRA vs.	151)		
Ratio of cumulativ				00, 17.34)			
Ratio of incidence	•	ranos = NI	K				
Other reported mea		4 4	14 7	1 1 6700	(*6	1. 11)	
Assoc		een test re	suits and	levels of TB exp			
	IGRA	1 1	TD 4 1	_	TST		TF 4 1
	Exposu		Total			re level	Total
High/Yes Low/No				TOTE :	High/Yes	Low/No	NT 4
IGRA +	NA	NA	NA	TST +	NA	NA	NA
IGRA -	NA	NA	NA	TST -	NA NA	NA	NA
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA
Total	NA	NA To 1	NA	Total	NA	NA	NA
	TOD 1	Test p	erformar	nce parameters	FER CY-	,	
G 1,1 1, 371	IGRA			g	TST		
Sensitivity = NA				Sensitivity = N	A		

		T =						
Specificity = NA								
PPV = NA $PPV = NA$								
NPV = NA		NPV = NA						
DOR (for T ⁺ calculated)		DOR (for T^+ calculated) = NA						
OR (crude; for T ⁺ reporte	·	OR (crude; for T^+ reported) = NA						
OR (regression-based; re	eported) = NA	OR (regression-based; reported)	= NA					
List of covariates: NA		List of covariates: NA						
Other reported measure		Other reported measure = NA						
		tests (IGRA vs. TST)						
Ratio of DORs (for T ⁺ c								
Ratio of OR (crude; for '								
Ratio of ORs (regression	n-based; reported) = NA							
Other reported measure								
	t, concordance, and disc							
	ified by TST cut-off valu	e, BCG vaccination status, and/o	r condition					
Total sample								
	TST +	TST -	Total					
IGRA (QFT-G) +	NR	NR	12					
IGRA (QFT-G) -	NR	NR	18					
Indeterminate	NR	NR	2					
Total	20	12	32					
Description								
Sample definition (e.g.,	total, if stratified by BCG	or condition – specify): Total						
$TST + threshold$: $\geq 10m$	m induration for ESRD pa	tients and BCG-unvaccinated patie	nts					
Parameters								
Kappa = 0.25 , 95% CI (-	-0.06,- 0.56)							
% concordance = 60.0%								
% discordance = NR (40	0.0%)							
Stratification (ESRD or	n hemodialysis)							
,	TST +	TST -	Total					
IGRA (ELISPOT) +	NR	NR	15					
IGRA (ELISPOT)-	NR	NR	17					
Indeterminate	NR	NR	0					
Total	20	12	32					
Description								
	total, if stratified by BCG	or condition – specify): ESRD on h	emodialysis					
		tients and BCG-unvaccinated paties						
Parameters	•	1						
Kappa = 0.3295% CI (-	0.01, -0.65)							
% concordance = 65.6%	, ,							
% discordance = NR (34	.4%)							
Stratification (specify g								
(~ F) E	TST +	TST -	Total					
IGRA +	NA	NA	NA					
IGRA -	NA	NA	NA					
Indeterminate	NA	NA	NA					
Total	NA	NA	NA					
Description	'	- 122	_ ,1 2					
	total, if stratified by BCG	or condition – specify): NA						
TST + threshold: NA	, ii suumieu oj Beo	openij). I i i						
Parameters								
Kappa = NA								
% concordance = NA								
, o concordance – 14/1								

% discordance = NA								
Other outcomes								
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)						
IGRA:	NR	NR						
TST:	NR	NR						
Test 3 (specify):	NR	NR						
	Canalusians							

Conclusions

Authors:

This pilot study compared test results of TST, QFT-G, and ELISPOT and showed that there was moderate agreement between QFT-G and ELISPOT, but fair agreement between TST and either QFT-G or ELISPOT

Reviewers:

Study details

First author surname year of publication: Lee 2014 147

Country: South Korea

Study design: Prospective longitudinal study

Study setting (e.g., outbreak investigation, community-based - specify): tertiary hospital-based

Number of centres: One

Total length of follow up (if applicable): 391 patients followed up for 581.7 person –years; median

duration 1.3 years (IQR 0.6-2.3)

Funding (government/private/manufacturer/other - specify): supported by grant from the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning

Aim of the study

To test the hypothesis that hematopoietic stem cell transplant (HCT) recipients who are QFT-TB positive develop active TB more frequently than QFT-TB negative or indeterminate patients; to evaluate whether the QFT-TB assay can predict active TB development in HCT recipients without any clinical risk factors for LTBI

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Hematopoietic stem cell transplant (HCT) recipients

Participants

Recruitment dates: January 2010 and December 2012. Resulting cohort observed until June 2013.

Total N of recruited patients: 409

Inclusion criteria: adult patients admitted for allogeneic HCT

Exclusion criteria: patients with history of close contact with active TB, history of untreated or inadequate treated TB, and the radiograph evidence of old TB. Patients who refused informed consent, presence of active TB, presence of skin disease that precluded the TST (between January 2010 and December 2011), and pediatric HCT candidates (<16 years old)

Total N of excluded patients: 18

Total N of patients tested with both IGRA and TST: 169

Total N of patients with valid results for both IGRA and TST: 159

Methods of active TB diagnosis (if applicable): chest x-ray, a sputum AFB smear and CT scan (pulmonary TB)

Outcomes (study-based) list: development of active TB Characteristics of participants (total study sample)

Mean (range or SD) age (years): 42.3 [13.8]

Women (n [%]): 183 [46.8%]

Race/ethnicity (n [%]): Korean 409 [100%]

Geographic origin (n[%]): NR

BCG vaccination (n [%]): History of scars (353 [90.7%])

History of anti-TB treatment (n [%]): None

Total incidence of active TB (n [%]): 8/391 [2.04%]

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): HCT

Co-morbidity (n [%]): Acute or chronic graft-versus-host disease (151 [38.6%]); diabetes mellitus (32 [8.2%]); liver cirrhosis (4[1.0%]); Solid organ transplant (2[0.5%]); HIV (0)

Type of during-study treatment (n [%]): isoniazid prophylaxis to 5/409 [1.22%] patients with clinical risk factors for LBTI (who were excluded from the analyses)

Number of patients tested					
	Total N	Total	Total N	Total N	Total N
	(tested)	N	(test-)	(indeterminate)	(test results
					available)
		(test+)			·

IGRA (QFT-GI	(T)	391	45	315	31			360
1 st year enrollm			13	313		-		300
IGRA (QFT-GI		169	26	133	10)		159
2 nd year enrolln								
TST (>5mm):		169	19	150	0			169
2 nd year enrolln	nent cohort	:						
TST (>10mm):		169	12	157	0			169
2 nd year enrolln	nent cohort	:						
Total N of patie	nts with va	lid results	for both IG	RA an	d TST: 15	9		
Levels/groups o	f exposure	to TB in i	ncreasing or	rder (if	applicable	e):		
		De	efinition of e	xposur	e group			
Non-exposed		NA						
Exposed 1 (spec	ify):	NA						
Exposed 2 (spec	•	NA						
Exposed 3 (spec		NA						
Exposed 4 (spec	ify):	NA						
Tests								
			dology, timi			t-off		er information
	test mea	asuremen	t, manufactı	ırer		hresholds		
					Definitio	on of test-	+	
IGRA (QFT-			blood sampl		NR			
GIT)			patient for th					
	_	ssay (Cell	estis, Carneg	gie,				
	Victoria,	and place	ed directly int	to				
	three 1 mI			10				
	respective		_					
	•	•	creted antige	nic				
			AT)-6, culture					
)-10 and TB					
	_		(a mitogen u					
		~~	nd (3) saline					
			ontrol). The	`				
	samples w	ere incuba	ited at 37°C f	or 16-				
	18 h, then	processed	and tested for	or				
	quantitativ	e interfero	on-g levels					
		•	was interpret	ed				
	_		nufacturer's					
		s. All blood samples were						
	_		ior to the TST to avoid a					
			fect of the TS	on on				
TCT>5	the QFT-T		mad by the		The posit	irra	The	manulta of TCTa
TST≥5mm ≥10mm			med by the	_ TI	The posit			results of TSTs
_1VIIIII	Mantoux technique, injecting a 2-TU dose of purified protein derivative				TST was			e measured by crained nurse
	RT23 (Statens Serum Institut,				greater in			rumou murse
Copenhagen, Denmark) in				nallv	48-72h at		-	
	into the fo		,		injection			
Association bety			incidence of	f active		plicable)		
	GRA [QF]				.= (up)	TST (≥	5mm)	
		ence of	Total	1		Incider		Total
		ve TB				active		
	Yes	No				Yes	No	
IGRA +	3	23	26]	ΓST +	0	19	19

IGRA -	2	131	133	TST -	5	145	150
indeterminate	0	10	10	indeterminate	0	0	0
Total	5	154	159	Total	5	164	169
10001				ce parameters		10.	10)
IG	RA (QF)		or periorina.	TST≥5mm			
Sensitivity = $3/5 = 6$			3.07, 88.24)	Sensitivity = 0/5			: 0.0, 43.45)
Specificity =131/15 89.84)				Specificity = 14 92.46)			· ·
PPV= 3/26=11.54%	6 (95% C	I: 4 00 28	(88)	PPV= 0/19=0.0	% (95%	CI: 0.0	16.82)
NPV= 131/133=98			•	NPV=145/150=			,
Cumulative Incider CI: 3.17, 29.80)				Cumulative Inci			
Cumulative Incider	1Ce van	- 2/133-1	50% (95%	Cumulative Inci	idence -	- 5/1 ⁴	50-3 33% (95%
CI: 0.07, 5.66)	ICC IGRA-	- 2/133-1.	3070 (3370	CI: 1.22, 7.77)	idence 1	ST 5/ 1.	30-3.3370 (3370
Cumulative Incider	nce Ratio	$_{\rm IGRA} = 7.6$	7 (95% CI:	Cumulative Inci	idence F	Ratio _{TST} :	= 0.0
1.34, 43.67)	oto -	- 5 12 man	100 - **	Incidence densi	tri mata	- O no	100 ·· (050/
Incidence density r (95% CI: 1.12, 15.8		= 5.43 per	100 p-y	Incidence densir CI: 0.00, 8.41)	ty rate _T	$_{\rm ST+}=0$ pe	er 100 p-y (95%
Incidence density r (95% CI: 0.10, 2.88		= 0.80 per	100 p-y	Incidence densition (95% CI: 0.58,		$_{ST-} = 1.79$	9 per 100 p-y
Incidence density r		$_{\rm CDA} = 6.78$	ner 100 n-v			atio rer=0	0.00 per 100 p-y
(95% CI: NR)	ate ratio i	GRA — 0.70	per 100 p-y	(95% CI: NR)	ty rate r	atio 151—	0.00 pci 100 p-y
Other reported mea				Other reported i			
rate difference: 4.7 1.10, 8.30)	per 100 p	person-yea	rs (95% CI:	rate difference: -1.79 per 100 person-years (95% CI: NR)			
1.10, 0.30)		Comparis	son hetween t	tests (IGRA vs. 7	rst)		
Ratio of cumulative				icsts (Total Vs. 1	(DI)		
Ratio of incidence							
Other reported mea							
Association betwe	en test re	esults and	incidence of	active TB (if app	olicable)	
IG	RA [QF]	r-GIT]			TST (2	≥10mm)	
	Incide	ence of	Total		Incide	ence of	Total
	activ	ve TB			activ	e TB	
	Yes	No			Yes	No	
IGRA +	3	23	26	TST +	0	12	12
IGRA -	2	131	133	TST -	5	152	157
indeterminate	0	10	10	indeterminate	0	0	0
Total	5	154	159	Total	5	164	169
			st performan	ce parameters			
	IGRA					ST	
Sensitivity = $3/5 = 6$	-			Sensitivity = $0/3$			
Specificity =131/15 89.84)	54= 85.06	5% (95% C	CI: 78.59,	Specificity = 152/164= 92.68% (95% CI: 87.65, 95.77)			
PPV= 3/26=11.54%	6 (95% C	I: 4.00, 28	3.98)	PPV = 0/12 = 0.0)% (95%	6 CI: 0.0,	, 24.25)
NPV= 131/133=98	.5% (95%	6 CI: 94.68	3, 99.59)	NPV=152/157=	96.82%	(95% C	I: 92.76, 98.63)
Cumulative Incider CI: 3.17, 29.80)	nce _{IGRA+} :	= 3/26=11	.54% (95%	Cumulative Inci	idence _T	$s_{ST+} = 0/1$	2=0.0% (95%
Cumulative Incider	nce _{IGRA-} =	= 2/133=1.	50% (95%	Cumulative Inci	idence _T	$s_{ST-} = 5/13$	57=3.18% (95%
CI: 0.07, 5.66)				CI: 1.16, 7.43)			
Cumulative Incider 1.34, 43.67)	nce Ratio	$_{\rm IGRA} = 7.6^{\circ}$	7 (95% CI:	Cumulative Inci	idence F	Ratio _{TST} :	= 0.0
Incidence density r (95% CI: 1.12, 15.8		= 5.43 per	100 p-y	Incidence densi	ty rate _T	ST+=0.09	% (95% CI: 0.0,
7570 01. 1.12, 13.0	,			1 11/2/			

Other reported measure rcR, a incidence density rate ratio rcR, a incidence density rate ratio rcR, a incidence density rate ratio rcR, a incidence density rate difference: 4.7 per 100 person-years (95% CI: 1.0), 8.30	Incidence density r		80 per 100	р-у	Incidence den	sity rate _{TST}	= NR			
Other reported measure										
Tate difference: -3, 18 per 100 person-years (95% CI: 1.10, 8.30)										
Ci NR		orted measure _{IGRA} = incidence density Other reported measure _{TST} == incidence density								
Ratio of cumulative incidence ratios = NA	rate difference: 4.7	* * * · ·			rate difference: -3.18 per 100 person-years (95					
Ratio of cumulative incidence ratios = NA										
Ratio of incidence density rate ratios= NA					tests (IGRA vs.	TST)				
Association between test results and levels of TB exposure (if applicable) IGRA	Ratio of cumulative	e incidence ra	atios = NA							
Association between test results and levels of TB exposure (if applicable) IGRA	Ratio of incidence	density rate r	ratios= NA							
TGRA										
Exposure level High/Yes Low/No	Associ	iation betwe	en test res	ults and	l levels of TB exp	osure (if ap	plicable)			
High/Yes Low/No High/Yes Low/No IGRA + NA NA NA NA TST + NA NA NA NA IGRA - NA NA NA NA Indeterminate NA NA NA NA Indeterminate NA NA NA NA NA Indeterminate NA NA NA NA NA NA NA N		IGRA			-	TST	-			
High/Yes Low/No High/Yes Low/No IGRA + NA NA NA NA TST + NA NA NA NA IGRA - NA NA NA NA Indeterminate NA NA NA NA Indeterminate NA NA NA NA NA Indeterminate NA NA NA NA NA NA NA N		Exposur	e level	Total		Exposui	re level	Total		
IGRA +		_								
IGRA -	IGRA +	Ŭ		NA	TST +			NA		
Indeterminate										
Total										
Sensitivity = NA	Total	11/1				1171	1121	1 1/2 1		
		ICDA	1 est pe	1101 IIIa	lice parameters	тст				
Specificity = NA	Canaitivity NA	IGNA			Canaldinida N					
PPV= NA	•				•					
NPV= NA					•	A				
DOR (for T ⁺ calculated)= NA										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
OR (regression-based; reported)= NA List of covariates: NA Other reported measure = NA Other reported measure = NA Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated)= NA Ratio of OR (crude; for T ⁺ reported)= NA Ratio of ORs (regression-based; reported) = NA Other reported measure= NA Other reported measure= NA Association between test results and BCG status (if applicable) IGRA BCG status Yes No IGRA + NA NA NA TST + NA NA NA NA IGRA - NA NA NA TST - NA NA NA NA Indeterminate NA NA NA TST - NA NA NA NA Total NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA NA NA NA TOTAL NA NA NA TOTAL NA										
List of covariates: NA Other reported measure = NA Other reported measure = NA Comparison between tests (IGRA vs. TST) Ratio of DORs (for T ⁺ calculated)= NA Ratio of OR (crude; for T ⁺ reported)= NA Other reported measure= NA Association between test results and BCG status (if applicable) IGRA										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $)= NA		. •		rted)= NA			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	Other reported mea						A			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Co	mparison l	between	tests (IGRA vs.	TST)				
$ \begin{array}{ c c c c } \hline Ratio of ORs (regression-based; reported) = NA \\ \hline Other reported measure= NA \\ \hline \hline & & & & & & & & & & & & & & & & &$	Ratio of DORs (for	· T ⁺ calculate	ed)= NA							
	Ratio of OR (crude	; for T ⁺ repor	rted)= NA							
	Ratio of ORs (regre	ession-based:	; reported)	= NA						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	A	ssociation b	etween tes	st result	s and BCG statu	s (if applica	ible)			
$ \begin{array}{ c c c c c } \hline & BCG \ status \\ \hline Yes & No \\ \hline \\ IGRA + & NA & NA & NA & TST + & NA & NA & NA \\ \hline IGRA - & NA & NA & NA & TST - & NA & NA & NA \\ \hline indeterminate & NA & NA & NA & Indeterminate & NA & NA & NA \\ \hline Total & NA & NA & NA & Total & NA & NA & NA \\ \hline \\ \hline \hline Total & NA & NA & NA & Total & NA & NA & NA \\ \hline \hline \\ \hline DOR \ (for T^+ \ calculated)_{IGRA} = NA & DOR \ (for T^+ \ calculated)_{TST} = NA \\ \hline OR \ (crude; \ for T^+ \ reported) = NA & OR \ (crude; \ for T^+ \ reported) = NA \\ \hline OR \ (regression-based; \ reported)_{IGRA} = NA & OR \ (regression-based; \ reported)_{TST} = NA \\ \hline List \ of \ covariates: \ NA & List \ of \ covariates: \ NA \\ \hline Other \ reported \ measure = NA & Other \ reported \ measure = NA \\ \hline \hline \textbf{Between-test agreement, concordance, and discordance \ (if \ applicable) \\ \hline \textbf{This table may be stratified by TST \ cut-off \ value, BCG \ vaccination \ status, \ and/or \ condition \\ \hline \hline \ Total \ sample \\ \hline \end{array}$							•			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			tatus	Total				Total		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
IGRA -NANANATST -NANANAindeterminateNANANANANANANATotalNANANANANATest performance parametersIGRATSTDOR (for T^+ calculated) $_{IGRA} = NA$ DOR (for T^+ calculated) $_{TST} = NA$ OR (crude; for T^+ reported) = NAOR (regression-based; reported) $_{IGRA} = NA$ List of covariates: NAOther reported measure = NABetween-test agreement, concordance, and discordance (if applicable)This table may be stratified by TST cut-off value, BCG vaccination status, and/or conditionTotal sample	IGRA +			NA	TST +	-	+ +	NA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Total NA NA NA NA Total NA										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Otal	11/7				INA	11/1	11/7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ICDA	rest pe	riorma	nce parameters	TO	т			
OR (crude; for T ⁺ reported) = NA OR (regression-based; reported) IGRA = NA List of covariates: NA Other reported measure = NA Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample	DOD (for T+1 1		T.A.		DOD (6 T					
OR (regression-based; reported) IGRA = NA List of covariates: NA Other reported measure = NA Detween-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample										
List of covariates: NA Other reported measure = NA Other reported measure = NA Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample		_						37.4		
Other reported measure = NA Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample			$_{IGRA} = NA$				eported) _{TST}	= NA		
Between-test agreement, concordance, and discordance (if applicable) This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample										
This table may be stratified by TST cut-off value, BCG vaccination status, and/or condition Total sample							= NA			
Total sample										
		stratified by	y TST cut-	off valu	e, BCG vaccinat	tion status, a	and/or cond	lition		
TST +≥5mm TST - Total	Total sample									
			TST +≥5m	m	TS	ST -		Total		

IGRA +	6	20	26
IGRA -	12	121	133
indeterminate	1	9	10
Total	18	141	159

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total

TST + threshold: ≥5mm

Parameters

Kappa = 0.16 (95% CI: 0.01, 0.31)

% concordance = $127/\overline{159} = 79.87\%$ (95% CI: 72.97, 85.37)

% discordance = 32/159 = 20.13% (95% CI: 14.63, 27.03)

Stratification (specify group 1)

` 1	1 /		
	TST +	TST -	Total
IGRA +	NA	NA	NA
IGRA -	NA	NA	NA
indeterminate	NA	NA	NA
Total	NA	NA	NA

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NA

TST + threshold: NA

Parameters

Kappa = NA

% concordance = NA

% discordance = NA

Stratification (specify group 2)

Structure (Specify Stoup 2)									
	TST +	TST -	Total						
IGRA +	NA	NA	NA						
IGRA -	NA	NA	NA						
indeterminate	NA	NA	NA						
Total	NA	NA	NA						

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NA

TST + threshold: NA

Parameters

Kappa = NA

% concordance = NA

% discordance = NA

Conclusions

Authors:

Positive QFT predicts the incidence of active TB, whereas positive TST does not

Reviewers:

QFT performed better than TST at 5 or 10mm in predicting LTBI; sensitivity of QFT was better than that for TST at both thresholds; between test agreement was poor

Abbreviations: DOR=diagnostic odds ratio; 95% CI= 95 percent confidence intervals;

TB=tuberculosis; BCG=Bacillus Calmette-Guérin; PPV= positive predictive value; NPV=negative predictive value; FPR=false positive rate; FNR=false negative rate; SD=standard deviation

Name of first reviewer: Tara Gurung Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Moon 2013¹¹³

Country: Korea

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Asan Medical Center

Number of centres: One

Total length of follow up (if applicable): Median 0.8 years (IQR: 0.1–2.6)

Funding (government/private/manufacturer/other - specify): Basic science research program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (MEST) (grant 2010-0005898

Aim of the study

To compare the QFT-GIT with the TST in HCT candidates for detecting LTBI

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Hematopoietic stem cell transplant (HCT) candidates

Participants

Recruitment dates: Between April 2009 and July 2011

Total N of recruited patients: NR

Inclusion criteria: All adult patients admitted for HCT

Exclusion criteria: NR

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: 244

Total N of patients with valid results for both IGRA and TST: 210

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Test results, concordance between the TST and QFT-GIT results,

development of tuberculosis

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 47 (35-55)

Women (n [%]): 107 [44] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 201 [82]

History of anti-TB treatment (n [%]): 10 [4] Total incidence of active TB (n [%]): 2 [0.80]

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): Acute myelogenous leukemia (72 [30]), acute lymphoblastic leukemia (28 [11]), chronic myelogenous leukemia (4 [2]), aplastic anemia (17 [7]), myelodysplastic syndrome (19 [8]), non-hodgkin's lymphoma (58 [24]), hodgkin's lymphoma (3 [1]), multiple myeloma (38 [16]), plasmacytoma (2 [1]), others (3 [1])

Co-morbidity (n [%]): Diabetes mellitus (25 [10]), hypertension (38 [16]), chronic kidney disease (21 [9]), ESRD with dialysis (1 [0.4]), hepatitis (16 [7]), HIV infection (0 [0.0]), non-hematologic malignancy (9 [4])

Type of during-study treatment (n [%]): Cyclosporine (71 [29]), cyclosporine-MTX (65 [27]), cyclosporine-corticosteroid (8 [3]), corticosteroid therapy (111 [46])

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (specify): QFT-	244	40	170	34	210

		1						<u> </u>	
GIT			244	20	205			244	
TST: ≥5mm			244	39	205	0		244	
Test 3 (specif		:41	NA	NA NA	NA GRA and TST: 2	NA		NA	
Levels/group	s or exp	osur			order (if applical exposure group)ie):			
Non-exposed			NA I	Jenningii oi	exposure group				
Exposed 1 (sp	ecify).		NA						
	posed 2 (specify): NA								
	Exposed 3 (specify): NA								
Exposed 4 (sp			NA						
Tests									
	Ass	sav u	sed, meth	odology,	Cut-off	•	Oth	er information	
				surement,	values/thres	holds			
			anufactur	-	Definition of	test+			
IGRA	QFT-0	GIT (Cellestis L	imited,	We used the crit	eria for	Blood	samples were	
(QFT-GIT)	carneg	gie, A	ustralia		positive, negative			ted before	
					indeterminate or			ming the TST to	
					recommended b	y the		a possible	
					manufacturer			ng effect of the	
								on the QFT-GIT The lab technicians	
								ot know the results	
							of TS		
TST (≥	The T	ST w	as carried	out using	> 5mm induration	on 48-	NR	1	
5mm)				e, injecting	72h after injecti		1,11		
			e of purific		J				
	deriva	itive l	RT23 (Stat	ens Serum					
				Denmark)					
			lly into the						
Association b				d incidence (of active TB (if a				
			T-GIT)	TD + 1	TST≥5mm Incidence of Total				
			ence of	Total				Total	
			ve TB			activ Yes			
IGRA +	1	Yes 1	No 39	40	TST +	0	No 39	39	
IGRA -		1	169	170	TST -	2	203	205	
Indeterminat	e	0	34	34	Indeterminate	0	0	0	
		-		(excluded)				-	
Total		2	208	210	Total	2	242	244	
			T	est performa	ance parameters				
		IGR	A				TST		
Sensitivity = 1								CI (0.00, 65.76)	
Specificity = 169/208 = 81.25%, 95% CI (75.4,					03/242 =	83.88%	6 (95% CI: 78.73,		
85.97)				87.98)	0.000/ /2	<u> </u>	0.0.000		
PPV = 1/40 = 2.50%, 95% CI (0.44, 12.88)				PPV = 0/39 = 0/39 = 0/39			,		
NPV = 169/170 = 99.41%, 95% CI (96.74, 99.9)				NPV = 203/20	5 = 99.02	2% (95%	6 CI: 96.51,		
Cumulativa I	voiden e e		_ 1/40	2.500/. (0.44	99.73)	oidonas	- 0/º	20 - 2 560/ (050/	
Cumulative In 12.88)	iciuelice	□ IGRA	₊ - 1/40 =	2.30% (U.44,	CI: 0.06, 13.5)	Cumulative Incidence $_{TST+} = 0/39 = 2.56\%$ (95%			
Cumulative In	cidence	2 102 :	= 1/170 -	= 0.58%			$_{\rm err} - 2/2$	205 = 0.97% (95%	
95% CI (0.00,		- IGRA	1/1/0 -	- 0.5070,	CI: 0.03, 3.71)		51 2/2	200 - 0.71/0 (75/0	
Cumulative In		e Rati	$io_{IGRA} = 4.$	25, 95% CI			Ratio _{тет}	= 2.63% (95%	
Cumurative II	CIUCIICE	Nat	10 _{IGRA} – 4.	43, 73% CI	Cumulative Incidence Ratio $_{TST} = 2.63\%$ (95%				

(0.27, 66.49)	(0.27, 66.49) CI: 0.04, 51.4)							
Incidence density	rate _{IGRA+} =	2.80 per 10	00	Incidence density rate $_{TST+} = 0$ per 100 person-				
person-years, 95%				years, 95% CI (0.00, 8.00)				
Incidence density				Incidence density rate $_{TST-} = NR$				
Incidence density				Incidence density rate ratio _{TST} = NR				
			n betwee	n tests (IGRA v		151		
Ratio of cumulativ					20 10 1)			
Ratio of incidence density rate ratios = 1.62% (95% CI: 0.16, 16.18)								
Other reported me						% CI: -2.39	. 8.001: NS	
				d levels of TB ex				
12000	IGRA	, 0011 0050 1			TST			
	Exposur	e level	Total		Exposu		Total	
	High/Yes	Low/No			High/Yes			
IGRA +	NA	NA	NA	TST +	NA	NA	NA	
IGRA -	NA	NA	NA	TST -	NA	NA	NA	
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA	
Total	NA	NA	NA	Total	NA	NA	NA	
Total	11/1			ance parameter		1171	1171	
	IGRA	Test	periorin	ance parameter	TST			
Sensitivity = NA	IOM			Sensitivity = N				
Specificity = NA				Specificity = N				
PPV = NA				PPV = NA	7.1			
NPV = NA				NPV = NA				
$NPV = NA$ $NPV = NA$ $DOR (for T^+ calculated) = NA$ $DOR (for T^+ calculated)$					lculated) = 1	NΙΔ		
OR (crude; for T ⁺				OR (crude; for T^+ reported) = NA				
OR (crude, for f				OR (regression				
List of covariates:		$\mathbf{u} = \mathbf{N}\mathbf{A}$		List of covariat	_	nieu) – NA		
						Τ Λ		
Other reported me			n hotwoo	Other reported n tests (IGRA v		NA.		
Ratio of DORs (fo			II Detwee	II tests (IORA v	5. 151)			
Ratio of OR (crud			Δ					
Ratio of OR (erus								
Other reported me			1) – 11/1					
Between-test agr			and dia	andana (if ann	liaabla)			
This table may b						and/or co	ndition	
Total sample (≥5			t OII vai	uc, Beg vacem	ation status	, 4114/01 60	<u>nation</u>	
Total sample (<u>-</u> 3	IIIII IIIqui 2	TST +		Т	ST -		Total	
IGRA +		9			81		40	
IGRA -		24		146			170	
Indeterminate		6			28	3/1	(excluded)	
Total		33		177 210				
Description				1	7 7		210	
	(e.g. total	if stratified	by BCG	or condition s	pacify): total	l (indatarmi	inata	
Sample definition (e.g., total, if stratified by BCG or condition – specify): total (indeterminate excluded)								
TST + threshold: \geq 5mm induration								
Parameters Kappa = 0.09, 95% CI (-0.04, - 0.22) indeterminate excluded								
Kappa similar if indeterminate considered as QFT-negative								
	% concordance = 155/210 = 73.81%, 95% CI (67.47, 79.29) % discordance = 55/210 = 26.19%, 95% CI (20.71, 32.53)							
% discordance = 3 Stratification (≥1			CI (20.7	1, 34.33)				
Su auncauon (2)	o min maur	,		TO	T		Total	
ICD A		TST + 8			<u>8T - </u>		Total	
IGRA +		ð			04		40	

IGRA -	13	157	170
Indeterminate	4	30	34 (excluded)
Total	21	189	210

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): total (indeterminate excluded)

TST + threshold: ≥ 10mm induration

Parameters

Kappa = 0.15, 95% CI (0.02, 0.27) indeterminate excluded

Kappa similar if indeterminate considered as QFT-negative

% concordance = 165/210 = 78.57%, 95% CI (72.53, 83.58)

% discordance = 45/210 = 21.43%, 95% CI (16.42, 27.47)

Stratification (Patients with BCG scars)

	$TST + \ge 5mm$	TST -	Total
IGRA +	9	23	32
IGRA -	22	122	144
Indeterminate	0	0	0
Total	31	145	176

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Patients with BCG scars

TST + threshold: ≥5 mm induration

Parameters

Kappa = 0.13, 95% CI (-0.02, 0.27)

Kappa similar if threshold ≥10 mm

% concordance = 131/176 = 74.43%, 95% CI (67.51, 80.31)

% discordance = 45/176 = 25.57%, 95% CI (19.69, 32.49)

Stratification (Patients without BCG scars or history of BCG vaccination)

	TST≥ 5mm +	TST -	Total					
IGRA +	0	8	8					
IGRA -	2	24	26					
Indeterminate	0	0	0					
Total	2	32	34					

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): Patients without BCG scars or history of BCG vaccination

 $TST + threshold: \ge 5mm induration$

Parameters

Kappa = -0.10, 95% CI (-0.35, 0.14)

Kappa similar if threshold ≥10 mm

% concordance = 70.59%, 95% CI (53.83, 83.17)

% discordance = 29.41%, 95% CI (16.83, 46.17)

Other outcomes

Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NA	NA

Conclusions

Authors:

The authors demonstrated that the frequencies of positive outcomes in the two TB screening tests were similar, but the overall agreement between the TST and the QFT-GIT test was poor, regardless of BCG vaccination.

Reviewers:

The overall agreement between the TST and the QFT-GIT test was poor, regardless of BCG vaccination and TST threshold; tests were similar in detecting LTBI through predicting incidence of active TB (risk difference NS)

Study details

First author surname year of publication: Sherkat 2014¹⁵³

Country: Iran

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Hospital-based

Number of centres: NR

Total length of follow up (if applicable): 21 months (FU included 9 months prophylactic treatment

and 12 months post transplantation)

Funding (government/private/manufacturer/other - specify): Nil

Aim of the study

To compare IGRA (T-SPOT .TB) and TST test in detection of LTBI in kidney transplant candidates and evaluate the agreement between the two tests

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Immunocompromised (kidney transplant candidates – end stage renal disease)

Participants

Recruitment dates: March 2010 to February 2011

Total N of recruited patients: NR

Inclusion criteria: Candidates for receiving a kidney transplant

Exclusion criteria: Active pulmonary and extrapulmonary TB, history of prior TB or isoniazid prophylactic treatment, refusal to continue prophylactic treatment, symptoms of isoniazid-induced hepatitis or drug reaction

Total N of excluded patients: NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 44

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: between test agreement, incidence of active TB

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 44 (15.5)

Women (n [%]): 15 [66] Race/ethnicity (n [%]): NR Geographic origin (n[%]): NR BCG vaccination (n [%]): 12 [27.3]

History of anti-TB treatment (n [%]): None Total incidence of active TB (n [%]): 1/44 [2.27]

Chest radiography (yes/no): NR Clinical examination (yes/no): Yes

Morbidity (n [%]): End stage renal disease

Co-morbidity (n [%]): Dialysis (30 [68.2]), hypertension (10 [22.7]), diabetes (10 [22.7]), obstructive uropathy (6 [13.6]), polycystic kidney (6 [13.6]), other renal etiologies (17 [38.6]), others (3 [6.8]) Type of during-study treatment (n [%]): isoniazid prophylaxis (10 [22.7])

Number of natients tested

Number of patients tested								
	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)			
IGRA (TSPOT):	NR	6	38	NR	44			
TST :≥10mm	NR	8	36	NR	44			
Togt 2 (gracify)								

Total N of patients with valid results for both IGRA and TST: 44

Levels/groups of ex	posure to '	TB in incre	easing order	(if applicable):

Definition of exposure group – NA

Non-exposed

Exposed 1 (specify):	NR
Exposed 2 (specify):	NR
Exposed 3 (specify):	NR
Exposed 4 (specify):	NR

Tests			
	Assay used, methodology, timing	Cut-off	Other
	for test measurement,	values/thresholds	information
-~-	manufacturer	Definition of test+	
IGRA	T-SPOT .TB assay (Oxford		
[TSPOT]	Immunotec, Oxford, UK) was		
	performed according to the		
	manufacturers' recommendation		
	and defined as positive, negative or		
	indeterminate based on manufacturers' recommended		
	criteria. Briefly, before the TST, 8 ml peripheral venous blood was		
	collected and processed within 4 h.		
	The peripheral blood mononuclear		
	cells) were isolated by standard		
	ficoll-hypaque density-gradient		
	centrifugation. The PBMCs were		
	counted and adjusted to a cell		
	number of $2.5 \times 10 \text{ PBMCs/1 ml.}$		
	Four wells of the 96-well Microtitre		
	plates (nil control, positive control,		
	panel A and panel B), precoated		
	with monoclonal antibody to		
	gamma IFN, were seeded with 100		
	μ l of 2.5 × 10 PBMCs/well. Two		
	wells contained different peptide		
	antigens (ESAT-6 [panel A] and		
	CFP-10 [panel B]), the nil control		
	well contained the cell in medium		
	alone, and the positive control well		
	contained the cell that was		
	stimulated with		
	phytohemagglutinin. After the		
	appropriate incubation time (16-20		
	h) at in a humidified incubator at		
	37°C and 5% CO, the plates were		
	washed with phosphate-buffered		
	saline (PBS) four times. An		
	appropriate volume of conjugate		
	working solution was prepared (1:200 dilution in PBS) for the		
	secondary incubation (60 min at 2-		
	8°C) after which the wells was		
	washed again (×4), as suggested		
	above. Results are presented as the		
	number of spot-forming cells and		
	the reaction was observed visually		
TST≥10mm	TST was performed using the 5 IU	If induration size was	
TOICIONN	151 was performed using the 5 to	ii iiidatatioii size was	

pu	rified protei	n derivative	e (PPD)		≥10 mm, test	was		
(Pasteur Institute, Tehran, Iran)				considered positive as				
	jection into t				recommended			
	rearm intrad				guidelines (M	linistry of		
	rsonnel. A p				Health and M			
	fined by the				Education)			
	ot the erythe			D	,			
	-72 h after t		•					
Association between				of act	tive TB (if ap	plicable)		
IG	RA [TSPO]	Γ]				TST≥10r	nm	
	Incidenc	e of T	otal			Incidence	e of	Total
	active 7	ГВ				active '	ГВ	
	Yes	No				Yes	No	
IGRA +	1	5	6		TST +	1	7	8
IGRA -	0	38	38		TST -	0	36	36
indeterminate	NR	NR	NR	in	determinate	NR	NR	NR
Total	1	43	44		Total	1	43	44
		Test p	erforma	ance	parameters			
	IGRA					TST		
Sensitivity = $1/1$ = 1	100% (95%	CI: 20.65, 1	.00)	Sen	sitivity = $1/1$ =	100% (95%	6 CI: 20.65,	100)
Specificity = 38/43	3=88.37% (9	5% CI: 75.	52,	Spe	cificity = $36/4$	3=83.72%	(95% CI: 70	0.03,
94.93)				91.8	38)			
PPV= 1/6=16.67% (95% CI: 3.00, 56.35)					PPV= 1/8=12.5% (95% CI: 2.24, 47.09)			
NPV= 38/38=100% (95% CI: 90.82, 100)					NPV= 36/36=100% (95% CI: 90.36, 100)			
Cumulative Incidence _{IGRA+} = 1/6=16.67% (95%				Cumulative Incidence $_{TST+} = 1/8 = 12.5\%$ (95% CI:				
CI: 3.00, 56.35)				0.11, 47.09)				
Cumulative Incide	$nce_{IGRA} = 0$	/38=0.00 (9	95%	Cumulative Incidence $_{TST-} = 0/36 = 0.00$ (95% CI:				
CI: 0.00, 10.93)				0.00, 11.47)				
Cumulative Incide				Cun	nulative Incide	ence Ratio	$_{\Gamma ST} = NA$	
Incidence density	rate _{IGRA+} =N	IR		Inci	dence density	rate $_{TST+}=1$	NR	
Incidence density					dence density			
Incidence density	rate ratio _{IGR.}	A = NA		Inci	dence density	rate ratio _T	ST = NA	
Other reported me	asure _{IGRA} =1	VR .		Oth	er reported me	easure _{TST} =	NR	
			between	n test	ts (IGRA vs. '	TST)		
Ratio of cumulativ								
Ratio of incidence	•	ratios=NA						
Other reported me								
			sults and	d lev	els of TB expo			
I	GRA (specif				Г	TST (spe		
	Exposu		Total		<u> </u>		re level	Total
TGD.	High/Yes	Low/No		4_		High/Yes	Low/No	
IGRA +	NA	NA	NA		ST +	NA	NA	NA
IGRA -	NA	NA	NA	_	ST -	NA	NA	NA
indeterminate	NA	NA	NA	_	determinate	NA	NA	NA
Total	NA	NA	NA		otal	NA	NA	NA
	-~-	Test p	erforma	ance	parameters			
g 111	IGRA				•.• • •=	TST		
Sensitivity = NA					ensitivity = NA			
Specificity = NA				Specificity = NA				
PPV= NA				_	PV= NA			
NPV= NA				NPV= NA				
DOR (for T ⁺ calcu					OR (for T ⁺ cal			
OR (crude; for T ⁺ reported)= NA				OR (crude; for T ⁺ reported)= NA				

OR (regression-bas	sed; reporte	ed) = NA		OR (regression-based; reported) = NA			
List of covariates:	NA			List of covariates: NA			
Other reported mea	asure = NA			Other reported me	asure = N	A	
	C	Compariso	n between	tests (IGRA vs. TS	ST)		
Ratio of DORs (for	r T ⁺ calcula	ted) = NA					
Ratio of OR (crude	e; for T ⁺ rep	orted) = N	A				
Ratio of ORs (regre							
Other reported mea	asure = NA						
•			est results	s and BCG status (i	f applica	ble)	
	GRA (TSPO				ST (≥10ı	•	
	`	status	Total			status	Total
	Yes	No			Yes	No	
IGRA +	2	4	6	TST +	2	6	8
IGRA -	10	28	38	TST -	10	26	36
indeterminate	NR	NR	NR	indeterminate	NR	NR	NR
Total	12	32	44	Total	12	32	44
1 000			1	nce parameters		<u> </u>	
	IGRA	1000	perrorma		TST		
DOR (for T ⁺ calcul		1 40 (95%	CI: 0.22	DOR (for T+ calcu		- 0.86 (959	6 CI: 0 14
8.85)	iatea/IGRA—	1.40 (2270	C1. 0.22,	5.03)	114104/151	– 0.00 (<i>)</i> 5 /	0 C1. 0.14,
OR (crude; for T^+ reported)= NR (p=0.658) OR (crude; for T^+ reported) = NR (p=1.00)				.00)			
OR (regression-based; reported) _{IGRA} = NR			OR (regression-based; reported) $_{TST} = NR$				
List of covariates:		-/ IOKA -		List of covariates:			
Other reported mea				Other reported me		R	
Between-test agreement, concordance, and discordance (if applicable)							
<u> </u>				e, BCG vaccination		nd/or cond	lition
Total sample		<u> </u>		-,			
		TST +≥10	mm	TST -			Total
IGRA [TSPOT] +		4		2			6
IGRA [TSPOT] -		4		34			38
indeterminate		NR		NR			NR
Total		8		36			44
Description							
Sample definition ((e.g. total	if stratified	hy BCG o	or condition – specif	v)· Total		
TST + threshold: ≥		II strutifica	by Bee	r condition speen	<i>y)</i> . 10tti		
Parameters	.1011111						
Kappa = $0.49 (95\%)$	6 CI: 0 20	0.78)					
% concordance = 3			1.73.29.9	3 6)			
% discordance = 6/		`					
Stratification (spe			0.40, 20.7	1)			
Stratification (spe	chy group	TST +		TST -			Total
IGRA +		NA		NA			NA
IGRA -		NA NA		NA NA			NA NA
indeterminate		NA NA		NA NA			NA NA
Total		NA NA		NA NA			NA NA
Description		11/7		INA			11/A
-	(e.g. total	if stratified	by RCG o	or condition – specif	v)· NIA		
TST + threshold: N		ıı suanneu	by BCO (n condition – specii	y /. 11/A		
Parameters	1/7						
Kappa = NA							
% concordance = N	JΛ						
% discordance = N							
Stratification (spe		2)•					
Straumcation (spe	eny group	4):					

	TST +	TST -	Total
IGRA +	NA	NA	NA
IGRA -	NA	NA	NA
indeterminate	NA	NA	NA
Total	NA	NA	NA

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NA

TST + threshold: NA

Parameters

Kappa = NA

% concordance = NA

% discordance = NA

Conclusions

Authors:

In kidney transplant candidates both TST and T-SPOT .TB test were comparable for the diagnosis of LTBI with reasonable agreement between the tests. However, further studies are needed to determine the ability of T-SPOT .TB test to detect LTBI and to evaluate the need for prophylaxis in these patients

Reviewers:

There was no evidence indicating the superiority of IGRA over TST or vise versa in detecting LTBI; the between test agreement was good; BCG status did not influence TST differentially from TSPOT

Abbreviations: DOR=diagnostic odds ratio; 95% CI= 95 percent confidence intervals;

TB=tuberculosis; BCG=Bacillus Calmette–Guérin; PPV= positive predictive value; NPV=negative predictive value; FPR=false positive rate; FNR=false negative rate; SD=standard deviation

Recently arrived

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Lucas 2010¹⁴³

Country: Australia

Study design: Retrospective cohort/cross sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Community based

Number of centres: NR

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): Oxford Immunotech.

Aim of the study

Comparative study of IGRAs and TST for the diagnosis of LTBI in 524 recently resettled refugee children

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Recently arrived people

Participants

Recruitment dates: January 2007 and March 2008

Total N of recruited patients: 524

Inclusion criteria: Children aged from 5 months to 16 years from refugee families attending the Migrant

Health Unit

Exclusion criteria: NR

Total N of excluded patients: Incomplete TSPOT (n = 57) and TST (n = 37)

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 239 (three tests)

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: Association of test positivity with exposure, agreement

 $Characteristics \ of \ participants \ (total \ study \ sample)$

Mean (range or SD) age (years): 7.5 (2.8-11.9)

Women (n [%]): 260 [49.6] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): African (411 [78.4]) and Asian (113 [21.56])

BCG vaccination (n [%]): 361 [69.0] History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NR

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): Malaria (486 [92.7]), hepatitis B (356 [68.0]), hepatitis C (492 [94.0]),

schistosomiasis (431 [82.2]) Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)
IGRA (TSPOT):	420 completed tests	38	374	8	412
IGRA (QFT-GIT):	460 completed tests	45	345	70	390
TST:	304 completed tests	54	250	0	304

Total N of patients with valid results for both IGRA and TST: 239

T 1 '	-	1	TD : .		(*6 1* 1.7 \					
Levels/group	s of exp				r (if applicable):					
N		Definition of exposure group – Household TB contact none								
Non-exposed			definite/suspected							
Exposed 1		definite/suspected								
(specify):		NIA								
Exposed 2		NA	NA							
(specify):		27.4	NY A							
Exposed 3		NA	NA							
(specify):										
Exposed 4		NA								
(specify):										
Tests						4.5		Other		
	Assa			gy, timing		Cut-off values/thresholds				
			measuren	•	Definition of test+			information		
	7 1		ufacturer							
IGRA			the manuf		Inconclusive as			NA		
(TSPOT)			nl of blood		by an inability t	•				
			-SPOT.TB	•	due to inadequa					
				rs when 2-3	mononuclear ce					
			depending	on ease of	after PBMC sep					
	venepi	uncture			background, ma					
					red blood cell c					
						Indeterminate assays were defined				
					as a low mitogen-positive control response or a high response to the					
					_					
ICDA	A 2	1 -1: 4 .	£ 1.1 1		negative control Indeterminate assays were defined			NT A		
IGRA			of blood w					NA		
(QFT-GIT)				d the assay	as a high IFNg					
	was performed according to the				negative contro					
	manufacturers' protocols				response to mite the absence of a					
					response	i positive ai	nigen			
TST≥10mm	ТСТ 13	vac perfor	med with	nurified	NR			NA		
131 <u>~</u> 10mm			ve (PPD) b					IVA		
	administration of 5 tuberculin units following the Mantoux method. The									
	transverse diameter of skin induration									
		easured a		i induiduon						
Association b				cidence of ac	tive TB (if appli	cable)				
		IGRA				TST	7			
	Incidence of Total					Inciden	ce of	Total		
	active TB active TB					TB				
		Yes	No							
IGRA +	-	NA	NA	NA	TST +	Yes NA	No NA	NA		
IGRA -		NA	NA	NA	TST -	NA	NA	NA		
Indeterminate NA NA NA		Indeterminate	NA	NA	NA					
Total NA NA NA					Total	NA	NA	NA		
2 0 0001				ce parameters						
		IGRA	100	perroriman		TST	٦			
Sensitivity = NA					Sensitivity = NA					
Specificity = NA				Specificity = NA Specificity = NA						
PPV = NA				PPV = NA						
NPV = NA				NPV = NA						
Cumulative Incidence $_{IGRA+} = NA$				Cumulative Incidence $_{TST+} = NA$						

Cumulative Incidence _{IGRA} - = NA				Cumulative Incidence $_{TST-} = NA$				
Cumulative Incidence Ratio _{IGRA} = NA				Cumulative Incidence Ratio _{TST} = NA				
Incidence density rate $_{IGRA+} = NA$				Incidence density rate _{TST+} = NA				
Incidence density rate $_{IGRA^{+}} = IVI$				Incidence density rate _{TST+} = NA				
Incidence density rate ratio _{IGRA} = NA					•			
·				Incidence density rate ratio $_{TST} = NA$ Other reported measure $_{TST} = NA$				
Other reported measure _{IGRA} = NA						- NA		
D .: C 1 .: :			etween	tests (IGRA vs. 7	151)			
Ratio of cumulative incidence ratios = NA								
Ratio of incidence density rate ratios = NA								
Other reported measure = NA Association between test results and levels of TB exposure (if applicable)								
			lts and	levels of TB expo				
IGI	RA (TSPOT		1		TST (≥10			
	Exposu		Total	Exposure level Total				
	High/Yes	Low/No			High/Yes	Low/No		
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
Indeterminate	NR	NR	8	Indeterminate	NR	NR	0	
Total	NR	NR	NR	Total	NR	NR	NR	
		Test per	forman	ce parameters				
	IGRA				TST			
Sensitivity = NR	10111			Sensitivity = NF				
Specificity = NR				Specificity = NI				
$\frac{\text{Specificity} = \text{TVR}}{\text{PPV} = \text{NR}}$				PPV = NR				
NPV = NR								
	al) NIA			NPV = NR				
DOR (for T ⁺ calculate) (050) CI 0	. 00	DOR (for T^+ calculated) = NA				
OR (crude; for T ⁺ reported) = 2.50 (95% CI: 0.90, 6.50)				OR (crude; for T ⁺ reported) = 4.00 (95% CI: 1.70, 9.50)				
OR (regression-based; reported) = NR				OR (regression-	based; repoi	rted) = NR		
List of covariates: NA				List of covariate	s: NA			
Other reported measure = NR				Other reported r	neasure = N	R		
	Cor	mparison be	etween	tests (IGRA vs. 7	ΓST)			
Ratio of DORs (for T	+ calculated)	= NA						
Ratio of OR (crude; f	or T ⁺ reporte	ed = 0.63 (9)	5% CI:	0.32, 1.22)				
Ratio of ORs (regress				· · · · · · · · · · · · · · · · · · ·				
Other reported measu	•							
		en test resul	lts and	levels of TB expo	sure (if ani	nlicable)		
	A (QFT-GI		105 4414		TST (≥10			
1010		re level	Total		Exposu		Total	
	High/Yes	Low/No	Total		High/Yes		1000	
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR ND	NR ND	NR	TST -	NR ND	NR ND	NR	
Indeterminate	NR	NR	70	Indeterminate	NR	NR	0 ND	
Total	NR	NR	NR	Total	NR	NR	NR	
Test performance parameters								
IGRA				TST				
Sensitivity = NR			Sensitivity = NR					
Specificity = NR				Specificity = NR				
PPV = NR				PPV = NR				
NPV = NR				NPV = NR				
DOR (for T^+ calculated) = NA				DOR (for T ⁺ calculated) = NA				
OR (crude; for T ⁺ reported) = 2.40 (95% CI: 1.00,			OR (crude; for T^+ reported) = 4.00 (95% CI: 1.70,					
5.80)			9.50)					
OR (regression-based; reported) = NR			OR (regression-based; reported) = NR					

List of covariates: NA				List of covariates:	NΛ			
Other reported measure = NR Other reported measure = NR						JR		
Comparison between tests (IGRA vs. TST)								
Ratio of DORs (for T ⁺ calculated) = NA								
Ratio of OR (crude; for T^+ reported) = 0.60 (95% CI: 0.32, 1.12)								
Ratio of ORs (regression-based; reported) = NA								
Other reported measur		4	4 4 14	IDCC 4.4. (°	e 1.	11\		
	ssociation b RA (TSPOT		test result	s and BCG status (i				
IGN	Total		TST (≥10 mm) BCG status Total					
	BCG st		Total				1 Otai	
ICDA	Yes	No	ND	TOT	Yes	No	ND	
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
Indeterminate	NR	NR	70	Indeterminate	NR	NR	70	
Total	NR	NR	NR	Total	NR	NR	NR	
	TODA	Test	performa	nce parameters	TD C/TE	,		
DOD (for Tt11-4)	IGRA			DOD (for Translation	TST			
DOR (for T ⁺ calculate			T 0.00	DOR (for T+ calcu			70/ CI 0 00	
OR (crude; for T ⁺ repo	,	`	,	OR (crude; for T+ 3.50)	•			
OR (regression-based		$_{GRA} = NI$	3	OR (regression-ba		$rted)_{TST} = 1$	NR	
List of covariates: NA				List of covariates: NA				
Other reported measure = NR Other reported measure = NR								
Association between test results and BCG status (if applicable)								
IGR A	A (QFT-GI	T)		TST (≥10 mm)				
	BCG st	atus	Total		BCC	status	Total	
	Yes	No			Yes	No		
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR	NR	NR	TST -	NR	NR	NR	
Indeterminate	NR	NR	70	Indeterminate	NR	NR	70	
Total	NR	NR	NR	Total	NR	NR	NR	
		Test	performa	nce parameters				
	IGRA		1		TST	1		
$\begin{array}{ccc} & & & & & & & & & & & & \\ DOR (for T^+ calculated)_{IGRA} = NA & & & DOR (for T+ calculated)_{TST} = NA \end{array}$								
OR (crude; for T ⁺ repo			CI: 0.80,	OR (crude; for T+			5% CI: 0.80,	
3.60)	,	`	,	3.50)	1 /		,	
OR (regression-based	; reported) 10	GRA = NI	₹	OR (regression-ba	sed; repo	$rted)_{TST} = 1$	NR	
List of covariates: NA		List of covariates: NA						
Other reported measur	re = NR			Other reported me	asure = N	R .		
Between-test agreement, concordance, and discordance (if applicable)								
This table may be str						d/or condi	tion	
Total sample								
$TST + \ge 10mm \qquad TST - \qquad Total$						Total		
IGRA (TSPOT) +	NR			NR			NR	
IGRA (TSPOT) -	NR			NR			NR	
Indeterminate	NR			NR			NR	
Total	NR NR NR							
Description								
Sample definition (e.g., total, if stratified by BCG or condition – specify): Total								
TST + threshold: ≥10			•	· F · · · - 2/				
Parameters								
Kappa = $0.45 (95\% C)$	I: 0.38, 0.53	3)						
% concordance = NR								
70 CONCOLUANCE = INK								

% discordance = NR								
Between-test agreement	concor	dance and discord	ance (if applical	ala)				
This table may be strati					condition			
Total sample	illed of	181 cut oil value, 1	· · · · · · · · · · · · · · · · · · ·	Status, and of				
Total sample	TS	T +>10mm	TS	T -	Total			
IGRA (QFT-GIT) +	- 10	NR		R	NR			
IGRA (QFT-GIT) -		NR		R	NR			
Indeterminate		NR		R	NR			
Total		NR		R	NR			
escription								
Sample definition (e.g., to	otal. if st	ratified by BCG or c	ondition – specif	v): total				
TST + threshold: ≥10mm		ratifica by Boo of c	ondition speed	<i>y)</i> . total				
Parameters Parameters	-							
Kappa = $0.46 (95\% \text{ CI: } 0)$	39 0 53	3)						
% concordance = NR	1.57, 0.00	·)						
% discordance = NR								
Stratification (specify g	roun 1):							
btrutification (speeny g	10 up 1).	TST +	TS	T -	Total			
IGRA +		NR		R	NR			
IGRA -		NR		R	NR			
Indeterminate		NR	NR		NR			
Total		NR	NR		NR			
Description		1111	1.	11	1111			
Sample definition (e.g., t	otal. if st	ratified by BCG or c	ondition – specif	v): NR				
TST + threshold: NR	oui, ii s	racinica of Bee of c	ondition specific	3). 1 (11				
Parameters								
Kappa = NR								
% concordance = NR								
% discordance = NR								
Stratification (specify g	roup 2):							
Structure (Speeding 8	- (- p -)	TST +	TS	T -	Total			
IGRA +		NR	NR		NR			
IGRA -		NR		NR				
Indeterminate		NR		R	NR NR			
Total		NR	NR		NR			
Description		1,41			2,20			
Sample definition (e.g., t	otal. if st	ratified by BCG or c	ondition – specif	v): NR				
TST + threshold: NR	o (41, 11 b)	zaviiiou ej 200 ei c	эрсси	.)) • • • • • • • • • • • • • • • • •				
Parameters								
Kappa = NR								
% concordance = NR								
% discordance = NR								
		Other ou	tcomes					
Test and cut-off (if appl	licable)	Adverse events n/N (%)		Health related quality of life				
rest and cut on (ii applicable)		(specify)		mean score (SD) (specify)				
IGRA:		NR		NR				
TST:		NR		NR				
Test 3 (specify):		NR NR		NR				
rest 3 (specify).				1117				

Conclusions

Authors:

The two IGRAs showed similar positivity rates across all age groups. Both IGRAs gave an unacceptably high proportion of inconclusive results. Failed tests were the primary cause of inconclusive T-SPOT.TB assays whereas indeterminate results were the primary cause of inconclusive QFT-GIT assays. It is

reasonable to screen using either IGRA with follow-up by the alternative if the test fails. In general, the QFT-GIT is the preferred option for non-African populations but the T-SPOT.TB is recommended when there are epidemiological and/or clinical high risk factors for TB infection. However, both IGRAs have methodological and performance characteristics that limit their usefulness in refugee children, highlighting the need for continued development of screening strategies

Reviewers:

Three tests performed similarly

Study details

First author surname year of publication: Orlando 2010¹⁴⁴

Country: Italy

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Community-based

(outpatient ward)

Number of centres: NR

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): The Provincia di Milano, Assessorato alle Politiche Sociali

Aim of the study

To compare the efficiency and efficacy of TST and QFT-IT for the detection of LTBI in recent immigrants from highly endemic countries by intention-to-treat (strategy efficiency) and per-protocol (test efficacy) analyses; this was achieved through the assessment of LTBI prevalence using the one-step TST and QFT-IT, analysis of test results' association, determinants of drop-out and influence of variables related to increased risk of TB exposure on the TST or QFT-IT strategy

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Recently arrived people

Participants

Recruitment dates: July 2005 and July 2007

Total N of recruited patients: NR

Inclusion criteria: NR

Exclusion criteria: Active TB **Total N of excluded patients:** NR

Total N of patients tested with both IGRA and TST: 1130

Total N of patients with valid results for both IGRA and TST: 899

Methods of active TB diagnosis (if applicable): Clinical evaluation and chest X-rays were

performed by experienced pneumologists

Outcomes (study-based) list: Agreement, association of test positivity with exposure

Characteristics of participants (total study sample)

Mean (range or SD) age (years): Median 35.3 years (IQR: 27.7–44.5)

Women (n [%]): 630 [55.7] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Latin America (562 [49.73]), Eastern Europe (308 [27.26]), Africa (181

[16.02%]), Asia (79 [6.99])

BCG vaccination (n [%]): 72 [6.37], Unknown (46 [4.07])

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): Treatment for LTBI was offered to 57 of the 79 eligible

patients according to standard guidelines

Number of patients tested

Total N Total N Total N Total N Total N (test+) (indeterminate) (tested) (test-) (test results available) IGRA (OFT-15 1130 337 778 1115 (undetermined) GIT): **TST** (≥10mm): 1129 407 (≥10mm) 492 230 (dropouts) 899

Test 3 (specify):	NA NA	NA NA	NA
	with valid results for both IGRA		
Levels/groups of ex	xposure to TB in increasing order		
	Definition of exposure gr	coup - Continent	
Non-exposed	Africa (reference group)		
Exposed 1	Asia		
(specify):			
Exposed 2	East Europe		
(specify):			
Exposed 3	Latin America		
(specify):	7 0 11		
XX 1	Definition of exposure group – 7	TB prevalence	
Non-exposed	<50 (reference group)		
Exposed 1	50-200		
(specify):	200		
Exposed 2	>200		
(specify):	D 69 141 6	4 4 14 FDD 41 4	
NT 1	Definition of exposure group – c	ontact with TB patient	
Non-exposed	No (reference group)		
Exposed 1	Yes		
(specify):			
Tests		C 4 66 1 41 1 11	041
	Assay used, methodology,	Cut-off values/thresholds	Other
	timing for test measurement,	Definition of test+	information
IGRA	manufacturer QuantiFERON-TB Gold In-	The results were defined	NA
IGNA	Tube (QFT-IT) test (Cellestis	positive if the INF-c value	INA
	Limited, Victoria, Australia): 1	after stimulation with TB-	
	ml of blood was drawn directly	antigen minus the value in	
	into QFT-IT blood collection	the Nilcontrol was ≥0.35	
	tubes coated with saline (Nil-	UI/ml and ≥25% of Nil;	
	control), peptides of ESAT-6,	negative if value of TB-	
	CFP-10 and TB7.7(p4) proteins	antigen minus Nil was<0.35	
	(MTB specific antigens—TB-	UI/ml or if that difference	
	antigen) and phytohaemaglutinin	was ≥0.35 UI/ml and <25%	
	(PHA) (Mitogen-control)	of Nil, with Mitogen minus	
	() (Nil ≥0.5 UI/ml;	
	After overnight incubation at	indeterminate for TB antigen	
	37°C, blood collection tubes	minus Nil<0.35 UI/ml or	
	were centrifuged for 15 min at	≥0.35 UI/ml and <25% of	
	2,000–3,000g and stored at -	Nil, with Mitogen minus	
	80°C before testing. The	Nil<0.5 UI/ml, or every time	
	concentration of IFN-c (IU/ml)	Nil was >0.8 UI/ml	
	was determined using an ELISA		
	assay		
	QFT-GIT Analysis Software		
	Version 2.50 (Cellestis Limited,		
	Victoria, Australia) was used to		
	analyse raw data and calculate		
	results		
TST	For TST, 0.1 mL (5U) of	A TST \geq 10 mm of	NA
	tuberculin purified protein	induration was considered	
•	derivative (Biocine test PPD	positive in persons recently	

	Liofilo	Novartic	Vaccines	and arrived fr	om high	ly endemic			
	ry chachine	·							
	_	ostics) was	to the forea	areas					
		•	e asked to						
			uation of t						
	_		ersensitivi	7					
			f the indur						
Association between			ters) 72 h			Ja)			
Association between		esuits and	incidence	or active 1B (if a					
	IGRA	c	TD + 1			<u> FST</u>	TD . 1		
		ence of	Total		Incid		Total		
	activ	ve TB			of ac				
	37	NT			T				
ICDA	Yes	No	NT A	TOTE :	Yes	No	NIA		
IGRA +	NA	NA	NA	TST +	NA	NA	NA		
IGRA -	NA	NA	NA	TST -	NA	NA	NA		
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA		
Total	NA	NA	NA	Total	NA	NA	NA		
Test performance parameters									
G W. W. NA	IGRA			G 'd' 'd NI		<u>rst</u>			
Sensitivity = NA				Sensitivity = NA					
Specificity = NA				Specificity = NA	4				
PPV = NA				PPV = NA					
NPV = NA				NPV = NA					
Cumulative Inciden				Cumulative Incidence TST+ = NA					
Cumulative Inciden				Cumulative Inci					
Cumulative Inciden			1	Cumulative Inci			NA		
Incidence density ra	te _{IGRA+} :	= NA		Incidence densit					
Incidence density ra				Incidence densit					
Incidence density ra	te ratio _I	$_{GRA} = NA$		Incidence densit	ty rate ra	tio $_{TST} = N$	A		
Other reported meas				Other reported measure _{TST} = NA					
				en tests (IGRA v	s. TST)				
Ratio of cumulative									
Ratio of incidence d			= NA						
Other reported meas									
			t results a	nd levels of TB ex		·	ble)		
IGRA	(QFT-		1			≥10mm)			
		ntinent	Total	_		tinent	Total		
YGD .	Asia			mam	Asia	Africa	7.70		
IGRA +	NR	NR		TST +	NR	NR	NR		
IGRA -	NR	NR		TST -	NR	NR	NR		
Indeterminate	NR	NR		Indeterminate	NR	NR	NR		
Total	79	181	260	Total	79	181	260		
	Test performance parameters								
	(QFT-	GIT)				≥10mm)			
Sensitivity = NR				Sensitivity = NR					
Specificity = NR				Specificity = NR					
PPV = NR				PPV = NR					
NPV = NR				NPV = NR					
DOR (for T ⁺ calcula	ted) = N	IR		DOR (for T ⁺ calculated) =					
Asia vs. Africa						Asia vs. Africa			
OR (crude; for T ⁺ re	ported) :	= 1.61 (95	% CI:	OR (crude; for T^+ reported) = 0.91 (95% CI: 0.50,					
0.90, 2.88)				1.64)					

A . A							1		
Asia vs. Africa	المصدمينات	1.07.0	050/	Asia vs. Africa					
OR (regression-base	ea; reportea) = 1.07 (95%	OR (regression-based; reported) = 0.72 (95% CI:					
CI: 0.52, 2.23)	m			0.34, 1.53)					
List of covariates: N				List of covariates: NR Other reported measure = NR					
Other reported meas			. 1 4			NK			
Datio of DODa (for '			n betwe	en tests (IGRA	vs. 151)				
Ratio of DORs (for			77 (050/	CL 1 16 2 70)					
Ratio of OR (crude;					2.52)				
Ratio of ORs (regres		; reported	1) = 1.49	9 (95% CI: 0.87, .	2.55)				
Other reported meas		on tost m	ogulta o	nd levels of TB	ovnoguro (i	fannligal	hla)		
	(QFT-GI		esuits a	lu levels of 1 D (exposure (i ≥≤ TST		ole)		
IGKA	Conti	•	Total		Conti		Total		
	East	Africa	Totai		East	Africa	Total		
	Europe	Airica			Europe	Airica			
IGRA +	NR	NR	NR	TST +	NR	NR	NR		
IGRA -	NR	NR	NR	TST -	NR	NR	NR		
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR		
Total	308	181	489	Total	308	181	489		
Total	300			nance paramete	L	101	407		
IGRA	(QFT-GI		periorii		TST (≥	10mm)			
Sensitivity = NR	1 (211 01)			Sensitivity = N	•	i ommij			
Specificity = NR				Specificity = N					
PPV = NR				PPV = NR					
NPV = NR				NPV = NR					
DOR (for T ⁺ calcula	ted) = NR			DOR (for T ⁺ ca	lculated) =	NR			
East Europe vs. Af				East Europe v					
OR (crude; for T ⁺ re		46 (95%	CI:	OR (crude; for		= 0.83	95% CI: 0.55,		
0.96, 2.23)	,	`		1.25)		`	,		
East Europe vs. Af	rica			East Europe v	s. Africa				
OR (regression-base	ed; reported)	= 1.68 (95%	OR (regression-based; reported) = 1.19 (95% CI:					
CI: 0.91, 3.08)				0.66, 2.14)					
List of covariates: N	IR .			List of covariates: NR					
Other reported meas	sure = NR			Other reported measure = NR					
			n betwe	een tests (IGRA vs. TST)					
Ratio of DORs (for									
Ratio of OR (crude;			`						
Ratio of ORs (regres		; reported	1) = 1.41	(95% CI: 0.92,	2.18)				
Other reported meas									
			esults a	nd levels of TB o			ble)		
IGRA	(QFT-GI				TST (≥				
	Conti		Total		Conti		Total		
	Latin	Africa			Latin	Africa			
YCD 4	America			mam	America	3 ***	1 770		
IGRA +	NR	NR	NR	TST +	NR	NR	NR		
IGRA -	NR	NR	NR	TST -	NR	NR	NR		
Indeterminate	NR 562	NR	NR	Indeterminate	NR	NR	NR		
Total	562	181	743	Total	562	181	743		
TOP	IGRA (QFT-GIT)					mance parameters			
	(QFT-GI)	L)		TST (≥10mm)					
Sensitivity = NR				Sensitivity = NR					
				•					
Specificity = NR PPV = NR				Specificity = N PPV = NR					

NPV = NR				NPV = NR						
DOR (for T^+ calculated) = NR DOR (for T^+ calculated) = NR										
Latin America vs. A				Latin America		1111				
OR (crude; for T ⁺ re		16 (05%	CI	OR (crude; for) = 0.86 ()	05% CI: 0 50			
0.99, 2.16)	ported = 1.	.40 (7370	CI.	1.26)	1 reported,) – 0.00 ()5/0 C1. 0.5),			
Latin America vs. A	\ frico			Latin America	ve Africa					
OR (regression-base) = 0.81 (05%	OR (regression-		ortod) = 0	57 (05% CI:			
CI: 0.46, 1.42)	a, reported) – 0.61 (93/0	0.33, 1.00)	-based, repo	<i>n</i> (eu) – 0	.37 (93% CI.			
List of covariates: N	D			List of covariate	og: ND					
				Other reported		ND				
Other reported meas		mnorico	n hotavo	en tests (IGRA		NK				
Ratio of DORs (for			II betwe	en tests (IGNA)	VS. 131)					
Ratio of DORs (for Ratio of OR (crude;			70 (05%	CI: 1.20, 2.24)						
Ratio of OR (crude,					2.24)					
		; reported	1) = 1.42	(93% CI: 0.93, 2	2.24)					
Other reported meas		4 4	14	11 1 6770	(*)	e 1• 1	11)			
			esuits ai	nd levels of TB e			Die)			
IGRA	TB prev		Total		TST (≥		TT - 4 - 1			
	alence	Total								
ICD 4	50-200	< 50	NID	mam.	50-200	<50	ND			
IGRA +	NR	NR	NR	TST +	NR	NR	NR			
IGRA -	NR	NR	NR	TST -	NR	NR	NR			
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR			
Total	NR	NR	NR	Total	NR	NR	NR			
			perforn	nance parameter						
	(QFT-GI	Γ)			TST (≥	l0mm)				
Sensitivity = NR				Sensitivity = N						
Specificity = NR				Specificity = N	R					
PPV = NR				PPV = NR						
NPV = NR				NPV = NR						
DOR (for T ⁺ calcula	ted) = NR			DOR (for T ⁺ ca	lculated) =	NR				
50-200 vs. <50				50-200 vs. <50						
OR (crude; for T ⁺ re	ported) = 1.	.76 (95%	CI:	OR (crude; for	T ⁺ reported	= 0.66 (95% CI: 0.44,			
1.10, 2.80)				1.01)						
50-200 vs. <50				50-200 vs. <50						
OR (regression-base	d; reported) = 1.34 (95%	OR (regression-	-based; repo	orted) = 0	.70 (95% CI:			
CI: 0.72, 2.49)				0.39, 1.25)						
List of covariates: N				List of covariate						
Other reported meas				Other reported		NR				
			n betwe	en tests (IGRA v	vs. TST)					
Ratio of DORs (for		,								
Ratio of OR (crude;			,							
Ratio of ORs (regres		; reported	(1) = 1.91	(95% CI: 1.24, 2	2.95)					
Other reported meas										
Associa	tion betwe	en test r	esults a	nd levels of TB e	exposure (i	f applica	ble)			
IGRA	(QFT-GI		1		TST (≥					
	TB prev		Total		TB prev		Total			
	>200	< 50		>200 <50						
IGRA +	NR	NR	NR							
IGRA -	NR	NR	NR	NR TST - NR NR NF						
Indeterminate	NR	NR	NR	NR Indeterminate NR NR NR						
Total	NR	NR	NR	Total	NR	NR	NR			
		Test	nerforn	nance parameter	rs					
		1 CSt	Perrorn	tunce pur unicte.						

G 11 1 17				G					
Sensitivity = NR				Sensitivity = N					
Specificity = NR				Specificity = NR					
PPV = NR				PPV = NR					
NPV = NR				NPV = NR					
DOR (for T ⁺ calcula	ted) = NR			DOR (for T ⁺ ca	lculated) =	NR			
>200 vs. <50				>200 vs. <50					
OR (crude; for T ⁺ re	ported) = 2.	31 (95%	CI:	OR (crude; for	T ⁺ reported)	= 0.99 (9)	95% CI: 0.66,		
1.48, 3.61)				1.48)					
>200 vs. <50				>200 vs. <50					
OR (regression-base	d; reported	= 2.72 (95%	OR (regression-	-based; repo	orted) = 1	.45 (95% CI:		
CI: 1.70, 5.02)				0.80, 2.62)					
List of covariates: N				List of covariate					
Other reported meas				Other reported		NR			
			<u>n betwe</u>	en tests (IGRA v	vs. TST)				
Ratio of DORs (for									
Ratio of OR (crude;									
Ratio of ORs (regres		; reported	1) = 1.88	(95% CI: 1.25, 2	2.83)				
Other reported meas	ure = NA								
Associa	tion betwe	en test r	esults a	nd levels of TB e	exposure (if	f applical	ble)		
IGRA	(QFT-GI	Γ)			TST (≥1	10mm)			
	Contact v	vith TB	Total		Contact v	vith TB	Total		
	cas	e			cas	e			
	Yes	No			Yes	No			
IGRA +	NR	NR	NR	TST +	NR	NR	NR		
IGRA -	NR	NR	NR	TST -	NR	NR	NR		
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR		
Total	NR	NR	NR	Total	NR	NR	NR		
		Test		nance parameter	rs				
IGRA	(QFT-GI		•	•	TST (≥1	10mm)			
Sensitivity = NR		,		Sensitivity = N		,			
Specificity = NR				Specificity = N					
PPV = NR				PPV = NR					
NPV = NR				NPV = NR					
DOR (for T ⁺ calcula	ted) = NR			DOR (for T ⁺ ca	lculated) =	NR			
Contact vs. No cont				Contact vs. No		1111			
OR (crude; for T ⁺ re		54 (95%	CI·	OR (crude; for		0 = 1.87	95% CI: 1 30		
1.82, 3.54)	ported) – 2.	.51 (7570	CI.	2.69)	1 reported,	<i>,</i> – 1.07 (.	75 70 C1. 1.50,		
Contact vs. No con	tact			Contact vs. No	contact				
OR (regression-base		= 2.11 (95%	OR (regression-		orted) = 1	87 (95% CI·		
CI: 1.47, 3.03)	a, reported	, 2.11 (2070	1.24, 2.80)	ousea, repo	1100)	.07 (2270 C1.		
List of covariates: N	R			List of covariate	es: NR				
Other reported meas				Other reported		VR			
onici reported meas		mnarico	n betwe	en tests (IGRA		111			
Ratio of DORs (for '			I BUNC	en tess (IOIA)	101)				
Ratio of DORs (for Ratio of OR (crude;			36 (95%	CI: 1.06 1.75)					
Ratio of OR (crude,			•		1 49)				
Other reported meas		, reported	<i>ij</i> — 1.13	(7570 CI. U.05),	1.7 <i>/)</i>				
		notario en 1	toat maa-	lts and DCC sta	tug (if an-	licable			
AS		jetween 1	iest rest	esults and BCG status (if applicable) TST					
	IGRA	totus	Ta4a1				Total		
	BCG s		Total						
ICDA	Yes	No	N.T.	TOTAL	Yes	No	NID		
IGRA + IGRA -	NR	NR	NR	TST +	NR NB	NR	NR		
ι π ÷ν Λ	NR	NR	NR	TST -	NR	NR	NR		

				T			T				
Indeterminate	NR	NR	NR	Indeterminate	NR NR	NR	NR				
Total	NR	NR	NR	Total	NR	NR					
		Test	<u>perform</u>	ance parameters							
	IGRA				TS						
DOR (for T ⁺ calcula				DOR (for T+ cal							
OR (crude; for T ⁺ re	_			OR (crude; for T							
OR (regression-base		$_{\rm IGRA} = N$	IR.	OR (regression-		ported) T	$_{ST} = NR$				
List of covariates: N	R			List of covariate	s: NR						
Other reported meas	ure = NR			Other reported n	neasure =	= NR					
Between-test agree	ment, conc	ordance	, and disc	cordance (if applic	able)						
This table may be s	tratified by	y TST cu	ıt-off val	ue, BCG vaccinati	on statu	s, and/o	r condition				
Total sample											
_		TST +		TST -			Total				
IGRA +		NR		NR			NR				
IGRA -		NR		NR			NR				
Indeterminate		NR		NR			NR				
Total		NR		NR			887				
Description		1111		1111			007				
Sample definition (e	g total if	etratifie	l by RCC	or condition spe	cify). To	tal					
TST + threshold: ≥ 1		Stratified	i by BCO	or condition – spe	ciry). 10	tai					
Parameters	Milli										
	CL ND)										
Kappa = $0.38 (95\%)$		1.60/ (0.5	0/ CI /7	20, 72, 42)							
% concordance = 62		•		•							
% discordance = 262			% CI: NR	.)							
Stratification (BCC	<i>yaccinate</i>										
		TST +		TST -			Total				
IGRA +		NR		NR			NR				
IGRA -		NR		NR			NR				
Indeterminate		NR		NR			NR				
Total		NR		NR			56				
Description											
Sample definition (e	.g., total, if	stratified	l by BCG	or condition - spe	cify): BC	CG vaccii	nated				
TST + threshold: \geq 1	0mm										
Parameters											
Kappa = $0.35 (95\%)$	CI: NR)										
% concordance = 37	$\sqrt{56} = 66.07$	% (95%	CI: 52.09	9, 77.84)							
% discordance = 19/	$\sqrt{56} = 33.92^{\circ}$	% (95% (CI: NR)								
Stratification (BCC											
`		TST +		TST -			Total				
IGRA +		NR		NR			NR				
IGRA -		NR		NR			NR				
Indeterminate		NR		NR			NR				
Total		NR		NR			789				
		1117		1111			707				
	Description Sample definition (e.g., total, if stratified by BCG or condition – specify): BCG non-vaccinated										
$TST + threshold: \ge 1$		suamice	i oy bee	or condition – spe	спу <i>)</i> . вС	O HOH-V	accinateu				
	MIIIIII										
Parameters	CI. ND										
Kappa = $0.40 (95\%)$		260/ /05	0/ 01 60	04.74.46							
% concordance = 56											
% discordance = 226	5/789 = 28.6	54% (959		<u>′</u>							
Other outcomes											
Test and cut-off (if	applicable			nts n/N (%)			related quality				
		(spe	cify)			of life m	ean score (SD)				

		(specify)
IGRA:	NR	NR
TST:	NR	NR
Test 3 (specify):	NR	NR

Conclusions

Authors:

Continent of origin, class of TB prevalence in the country of origin and contacts with TB patients were found to be significantly associated with the probability of TST and QFT-IT positive result; The drawback of the TST screening strategy in recent immigrants from highly endemic countries is due to low sensitivity/specificity of the test and to high drop-out rate with an overall significant lowering in strategy efficacy/efficiency. Disagreement is due to differences in sensitivity/specificity and in rate of drop-out which is higher for the TST

Reviewers:

Kappa was influenced by BCG status which was higher in non-vaccinated people; QFT performed better than TST in relation to contact with TB and TB prevalence; TST was better than QFT in relation to continent

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Saracino 2009¹⁴⁵

Country: Italy

Study design: Retrospective cohort/cross-sectional study

Study setting (e.g., outbreak investigation, community-based - specify): Community-based

Number of centres: NR

Total length of follow up (if applicable): NA

Funding (government/private/manufacturer/other - specify): NR

Aim of the study

To evaluate the agreement between QFT-GIT and TST for latent TB screening in a population of recent immigrants to Italy from high-incidence countries

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Recently arrived people

Participants

Recruitment dates: September 2004 and December 2005

Total N of recruited patients: NR

Inclusion criteria: Recent (less than two months) immigrants to Italy

Exclusion criteria: Active TB, HIV **Total N of excluded patients:** NR

Total N of patients tested with both IGRA and TST: 452

Total N of patients with valid results for both IGRA and TST: 279

Methods of active TB diagnosis (if applicable): NA

Outcomes (study-based) list: Agreement, associations of test positivity and risk factors (born in a

country of TB burden, region of origin)

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 27.1 (6.2)

Women (n [%]): 11 [4] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): African (135 [48.4]), Eastern Mediterranean (131 [46.95]), European (7

[2.5]), South-East Asian (6 [2.2]) BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): NR Total incidence of active TB (n [%]): NA

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): NR

Number of patients tested

	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indetermi nate)	Total N (test results available)
IGRA (QFT-GIT):	452	107	172	173 (169 dropouts and 4 HIV/active TB)	279
TST (≥10mm):	452	72	207	173 (169 dropouts and 4	279

						l I	HIV/active				
							ГВ)				
Total N of n	atients w	ith valid	l results for	both I(GRA	and TST: 2					
						r (if applicab					
Levels/grou	ps of cap	osuic to					ic).				
Non-exposed	Definition of exposure group n-exposed NR										
		30-10	0								
Exposed 1 (s											
Exposed 2 (s		101-2									
Exposed 3 (s	1 0/	201-3	00								
Exposed 4 (s	specify):	>301									
				ure gro	up –	Region of or	rigin				
Non-exposed		NR									
Exposed 1 (s			ican								
Exposed 2 (s	specify):	Eas	tern Mediter	ranean							
Exposed 3 (s	specify):	Eur	ropean								
Exposed 4 (s	specify):	Sou	ıth-East Asia	ın							
Tests											
	Assay ı	ısed, me	thodology, t	timing f	for	Cut	-off		Other		
		,	nent, manuf	_		values/th	resholds	inf	formation		
			,			Definition	n of test+				
IGRA	QFT-GI	T (Celle	stis, Carnegi	e,		the test was					
(QFT-	-		erformed, ac		to	positive if the	ne IFN-γ				
GIT)			r's instruction			level was ab					
0)			of whole hep		1	cut-off test v					
		_	es, one conta		-	(≥0.35 IU/m					
			negative cont	_	I	(_0.55 10/11					
			ing three M								
			6, CFP-10 a								
	_		kept at roor		• /						
	_		a maximum o					NA			
	•		ncubated at 3								
			tubes were t								
			the plasma r		ı						
		_	perform the								
			for TB-spec		•						
		•	rected by sul		σ						
			ed for the res								
		controls		pective							
TST			stered by inj	ecting (1 1	Skin indurat	ion was	NA			
(≥10mm)			ard test dose		7.1	evaluated af		11/7			
(<u>~10mm</u>)			TU) of PPD	(3		hours and co					
			D®; Chiron	Sr1		positive if ≥					
	,		Italy) accord		he	Cut-off poin					
		x method		.110	mm and 15						
	1viuiitou.	A IIICUIOC	•		respectively						
Association	hotwoon	tost ross	ılte ond inci	of oc	used for comparison active TB (if applicable)						
ASSUCIATION	Detween	IGRA	iits allu ilici	dence (n ac	пле тр (п ар	ppiicable) TST	ı			
			on of active	Tat	<u>ո</u> 1				Total		
		ıncıaer	Incidence of active Total				Incidence		Total		
			TB				of active				
		X 7	N.T.	4			TB	D.T.			
*~~		Yes	No			The Care	Yes	No	***		
IGRA		NA	NA	NA NA		TST +	NA	NA	NA		
IGRA	-	NA	NA	1	TST -	NA	NA	NA			

In	determi	nate	NA	NA	N	A I	ndetermi ate	n NA	NA	A	NA	
	Total		NA	NA	N	A	Total	NA	N.A		NA	
	1000		1,12				nce parameters					
			IGRA						TST			
Sensi	tivity =	NA				S	Sensitivity	V = NA				
Speci	ificity =	NA				S	Specificity	y = NA				
	= NA						PPV = NA					
	= NA						NPV = NA					
			$e_{IGRA+} = N$					e Incidence				
			$e_{IGRA-} = N$					e Incidence				
			Ratio _{IGR}					e Incidence			NA	
			$t_{IGRA+} = N$					density rate				
			$rac{1}{1} IGRA- = N$					density rate				
Incid	ence der	isity rate	ratio _{IGRA}		7 /			density rate	e ratio _{TS}	$_{\rm T} = N$	Α	
D = 4.	- C	-1-4'			n between	n tests (IGRA VS	s. TST)				
			ncidence r									
			nsity rate i re = NA	tatios = f	NA							
Otnei				on toot w	oculta on	d lavala	of TR or	posure (if	annligal	olo)		
	P		on betwee	en test f	csults all	u ieveis	or 1D ex	aposure (n TS'		Jie)		
	1		ure level		Total		Fyn	osure level		Т	otal	
		•	of origin		Total		_	on of origin		1	Otai	
	Sout	Euro	Easter	Afric			Sout	Europe	Easter	A		
	h-	pe	n	a			h-	Europe	n	fri		
	East	PC	Medite	u			East		Medit	ca		
	Asia		rranea				Asia		errane			
			n						an			
IG	NR	NR	NR	NR	107	TST	NR	NR	NR	N	72	
RA						+				R		
+							TCT ND ND ND N 207					
IG	NR	NR	NR	NR	172	TST -	NR	NR	NR	N	207	
RA										R		
T 1	NID	ND	NID	ND	172	T., 1.4	NID	ND	NID	NT	172	
Ind	NR	NR	NR	NR	173 (exclu	Indet ermin	NR	NR	NR	N R	173 (exclude	
eter min					ded)	ate				IX	d)	
ate					ucu)	ate					(u)	
Tot	6	7	131	135	279	Total	6	7	131	13	279	
al		'						<i>'</i>		5		
	1	1		Test	performa	ance pa	rameters	S				
			GRA					TS	Γ			
Sensi	tivity =					Sensit	ivity = N					
	ificity =						ficity = N					
	= NA					PPV =	•					
NPV = NA							= NA					
	•		ed) = NA					lculated) =				
			orted) =			OR (crude; for T+ reported) =						
			5% CI: 0.6			Africa: OR = 1.10, 95% CI: 0.60, 1.90						
		terranea	n: OR = 1	.00, 95%	6 CI:	Eastern Mediterranean: OR = 0.80, 95% CI: 0.50,						
0.60,		1.20.0	50/ OT 0:	20 7 22		1.40 Europe: OR = 4.00, 95% CI: 0.70, 27.80						
			5% CI: 0.2		.01			•				
South	1-East A	s1a: OR	=0.30,95	% CI: 0	.01,	South	-East Asi	a: $OR = 0.6$	w, 9% C	1: 0.1	0, 5.20	

2.90						1						
		n haaad	· mamamtad) -	- NID		OD (magnism	board		.d) = N	D		
	_		; reported)	= NK		OR (regression		•	(a) = N	K		
	of covari					List of covariates: NA Other reported measure = NR						
Other	r reporte	d measu	re = NR		•							
D ::	CDOD	, (C. FD:				n tests (IGRA vs	5. TST					
			+ calculated			GY 0 (1 1 0 5) F		2				
						CI: 0.61, 1.35) [Africa	vs. refer	rence gr	roup		
			ion-based; 1	eporte	$1 = \mathbf{N}\mathbf{A}$							
Other			re = NA									
	A	ssociati	on betweer	ı test re	esults and	d levels of TB ex	_			e)		
			(QFT-GIT)				Γ (≥10m	ım)			
		•	ure level		Total		xposur				Total	
	Born		untry with a	TB		Born in a co		with a T	B burd	en		
			ırden			(# cases per 10	0,000)					
	(# case	s per 10										
	>301	201-	101-200	30-			>30	201-	101	30-	72	
		300		100			1	300	-	100		
									200			
IG	NR	NR	NR	NR	107	TST +	NR	NR	NR	NR	207	
RA												
+												
IG	NR	NR	NR	NR	172	TST -	NR	NR	NR	NR	173	
RA											(excl	
-											uded	
)	
Ind	NR	NR	NR	NR	173	Indeterminate	NR	NR	NR	NR	279	
eter					(exclu							
min					ded)							
ate												
Tot	54	197	15	12	279	Total	54	197	15	12	72	
al												
					Test	performance pa	ramete	ers				
]	GRA				TS'	Т				
Sensi	tivity =	NA				Sensitivity = N	A					
Speci	ificity =	NA				Specificity = N	A					
	= NA					PPV = NA						
	= NA					NPV = NA						
		calculate	ed) = NA			DOR (for T ⁺ ca	lculate	d = NA	\			
			or T+ repor	ted) = 1	1.20.	30-100: OR (c				= 3.00), 95%	
	CI: 0.30			,	,	CI: 0.80, 11.8			F/		,,,,,,,,	
			for T+ repor	rted) =	0.80.	101-200: OR (d	crude: f	or T+ re	eported	() = 1.0	0.	
	CI: 0.20		32 2 . 1 0 po		,	95% CI: 0.20, 3	-	1 AV	. r 51.00	, 1.0	~ 7	
			for T+ repor	rted) =	1.00.	201-300: OR (d		or T+ re	eported	0.8	0.	
	CI: 0.60		-31 1 1 10po		,	95% CI: 0.40, 1			- p 51 tou	, 5.0	٠,	
			T+ reported	1) = 1.0	0. 95%	>301: OR (crud		T+ repo	rted) =	1.00.	95%	
	.50, 2.00		1 i Toponio	-, 1.0	J, 7570	CI: 0.50, 2.10	, 101	- 10po		1.00,		
			; reported) =	= NR		OR (regression	-based	renorte	d = N	R		
	of covari			. 111		List of covariat		•	, — IN	- `		
	r reporte					Other reported						
Other	reporte	a measu		narico	ı hetwee	n tests (IGRA vs						
Ratio	of DOE	e (for T	com colculated			II tests (IGNA V	, 131 ,					
		-				CI: 0.60, 1.66) [- - - - - -	ra rafar	noo ~	oup ¹		
						C1. 0.00, 1.00) [<u>/301 \</u>	s. ieiere	once gr	oupj		
Kano	of OKS	(regress	ion-based; 1	eporte	y = NA							

Other reported i	measure = N	A							
1			est results and	BCG	stati	ıs (if applical	ole)		
IGRA (specify))]	TST (specify)			
	BC	G status	Total			BCG status		Total	
	Yes	No				Yes	No		
IGRA +	NR	NR	NR	TST	Γ+	NR	NR	NR	
IGRA -	NR	NR	NR	TST	Γ-	NR	NR	NR	
Indeterminate	NR	NR	NR	Inde	eter	NR	NR	NR	
				min	ate				
Total	NR	NR	NR	Tota		NR	NR	NR	
			performance p	<u>aram</u>	eters				
		GRA					TST		
DOR (for T ⁺ ca	lculated) _{IGRA}	= NR			DOR	(for T+ calcu	$lated)_{T}$	ST = NR	
OR (crude; for '					OR (crude; for T+	reporte	d) = NR	
OR (regression-	-based; repor	$ted)_{IGRA} = N$	IR		OR (regression-ba	sed; rep	orted) _{TST} =	
List of covariate	es: NR				NR				
						of covariates:			
Other reported i						r reported me	asure =	NR	
Between-test a	_								
This table may	be stratifie	d by TST cu	it-off value, BO	CG va	ccina	tion status, a	nd/or o	condition	
Total sample							1		
		TST +	-			ST -		Total	
IGRA +		49				58		107	
IGRA -		23				149		172	
Indeterminate		NR]	NR	173 (excluded)		
Total		72			2	207		279	
Description									
Sample definition		l, if stratified	l by BCG or cor	nditio	n – sp	ecify): Total			
TST + threshold	d: ≥10mm								
Parameters									
Kappa = 0.35 (9)	95% CI: 0.23	, 0.46)							
% concordance	= 198/279 =	70.97% (95	% CI: 65.39, 75	5.98)					
% discordance	= 81/279 = 2	9.03% (95%	CI: 24.02, 34.6	51)					
Stratification (specify grou								
		TST +	_		T	ST -		Total	
IGRA +		NR				NR		NR	
IGRA -		NR				NR		NR	
Indeterminate		NR				NR		NR	
Total		NR				NR		NR	
Description									
Sample definition	` U .	l, if stratified	by BCG or con	nditio	n - sp	ecify): NR			
TST + threshold	d: NR								
Parameters									
Kappa = NR									
% concordance									
% discordance									
Stratification (specify grou								
		TST +	_			ST -	1	Total	
IGRA +		NR]	NR		NR	
IGRA -		NR				NR		NR	
Indeterminate		NR		-]	NR		NR	
Total		NR				NR		NR	
Description									

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = \overline{NR}

% discordance = NR

Oth	Other outcomes							
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)						
IGRA:	NR	NR						
TST:	NR	NR						
Test 3 (specify):	NR	NR						

Conclusions

Authors:

The findings indicate that QFT-GIT could be useful for screening recent immigrants with a high rate of unavailable TST results. The overall agreement between QFT-GIT and TST was 70.9%, with a k statistics of 0.35. No single demographic characteristic including sex, age, region of origin and TB burden in the country of origin, was associated with TST and/or QFT-GIT positivity

Reviewers:

None of the risk factors was associated with test positivity of either IGRA or TST

Name of first reviewer: AlexanderTsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Harstad 2010¹⁴¹

Country: Norway

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Community - based

Number of centres: NR

Total length of follow up (if applicable): 23-32 months

Funding (government/private/manufacturer/other - specify): Norwegian Health Association; The

Regional Health Authorities

Aim of the study

To compare PPV and NPV between QuantiFERON®-TB Gold (QFT-G) and the TST in asylum

seekers in Norway

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Recently arrived people

Participants

Recruitment dates: September 2005 to June 2006

Total N of recruited patients: NR

Inclusion criteria: Asylum seekers aged ≥18 years

Exclusion criteria: Active TB **Total N of excluded patients:** NR

Total N of patients tested with both IGRA and TST: NR

Total N of patients with valid results for both IGRA and TST: 823

Methods of active TB diagnosis (if applicable): NR

Outcomes (study-based) list: PPV and NPV

Characteristics of participants (total study sample)

Mean (range or SD) age (years): 18-34 yrs (n = 587), 35-49 yrs (n = 201), and ≥ 50 yrs (n = 35)

Women (n [%]): 206 [25.0] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Europe (103[12.5]), Africa (347[42.0]), Asia (346[42.0]), other (27[3.3])

BCG vaccination (n [%]): NR

History of anti-TB treatment (n [%]): NR

Total incidence of active TB (n [%]): 9/823 [1.1]

Chest radiography (yes/no): Yes Clinical examination (yes/no): NR

Morbidity (n [%]): NA Co-morbidity (n [%]): NA

Type of during-study treatment (n [%]): NR

Number of patients tested

1 talliot of patients tested								
	Total N (tested)	Total N (test+)	Total N (test-)	Total N (indeterminate)	Total N (test results available)			
IGRA (QFT-GIT):	NR	246	577	NR	823			
TST:	NR	426 (≥	395	NR	821			
		6mm)	(<6mm)					
		128	693					
		(≥15mm)	(<15mm)					
Test 3 (specify):	NA	NA	NA	NA	NA			

Total N of patients with valid results for both IGRA and TST:

Levels/groups of exposure to TB in increasing order (if applicable):

Definition of exposure group

Non-exposed NA

Exposed 1 (speci	• /	NA						
Exposed 2 (speci								
Exposed 3 (speci	•							
Exposed 4 (specify): NA								
Tests								
	Assa	y used, met	thodolog	gy,	Cut-off		Oth	er information
	timing	for test me	easurem	ent,	values/thresl	holds		
		manufact	urer		Definition of	test+		
IGRA	QuantiF	ERON-TB			NR		NA	
	Gold In-	Tube, Celle	estis Ltd,					
	Carnegie	e, VIC, Aus	tralia)					
TST	TSTs (pr	urified prote	ein deriv	ative	≥ 6mm		NA	
	RT 23, 2	tuberculin	units [T	U]	≥15mm			
	from Sta	tens Serum	Institute	e ,				
	Copenha	igen, Denm	ark)					
Association betw			d incide	nce of a	active TB (if ap	plicab	le)	
I	GRA (QI	T-GIT)				TST	` ≥ 6mm	
		dence of	Tota	ıl		Incide	ence of	Total
	act	ive TB				activ	e TB	
	Yes	No				Yes	No	
IGRA +	8	230	238	3	TST +(≥	8	407	415
					6mm)			
IGRA -	1	576	577	7	TST -	1	394	395
					(<6mm)			
Indeterminate	NR	NR	NR		Indeterminate	NR	NR	NR
Total	9	806	815	5	Total	9	801	810
		To	est perfo	rmano	ce parameters			
	IGR	A				,	TST	
Sensitivity = 8/9	= 88.89%	(95% CI:	56.5, 98	.01)	Sensitivity = 8/9	9 = 88.8	39% (95%	6 CI: 56.5, 98.01)
Specificity = 576	/806 = 71	1.46% (95%	CI: 68.					(95% CI: 45.74,
74.47)					52.65)			
PPV = 8/238 = 3.	.36% (95	% CI: 1.71,	6.49)]	PPV = 8/415 = 1.92% (95% CI: 0.98, 3.75)			
NPV = 576/577 =	99.83%	(95% CI: 9	9.02,]	NPV = 394/395	= 99.7	5% (95%	CI: 98.58, 99.96)
99.97)								
Cumulative Incid	ence _{IGRA}	_+ = 8/238 =	:	(Cumulative Inci	idence -	$_{\Gamma ST+}=8/4$	115 = 1.92% (95%
3.36% (95% CI:	1.71, 6.49	9)		(CI: 0.98, 3.75)			
Cumulative Incid	ence _{IGRA}	_ = 1/577 =		•	Cumulative Inci	idence -	$_{\Gamma ST-}=1/3$	95 = 0.25% (95%
0.17% (95% CI:	0.00, 1.08	3)			CI: 0.00, 1.57)			
Cumulative Incid	ence Rat	io _{IGRA} =		•	Cumulative Inci	idence 1	Ratio _{TST}	=
19.39 (95% CI: 2	.43, 154.	2)		,	7.61 (95% CI: 0	0.95, 60	.59)	
Incidence density	rate _{IGRA}	$_{+} = NR$]	Incidence densi	ty rate	$_{\Gamma ST^{+}}=NF$	₹
Incidence density	rate _{IGRA}	$_{-} = NR$]	Incidence densi	ty rate	$_{\Gamma ST-}=NR$	
Incidence density	rate ratio	$o_{IGRA} = NR$	_]	Incidence densi	ty rate 1	atio _{TST} =	= NR
Other reported m	easure _{IGI}	RA = NR			Other reported i	measure	$e_{TST} = \overline{NR}$	<u> </u>
		Comparisor	betwee	n tests	(IGRA vs. TS	T≽6mı	n)	
Ratio of cumulati	ve incide	ence ratios =	= 2.55(95	5% CI:	0.57, 11.40)			
Ratio of incidenc	e density	rate ratios	= NR					
Other reported m	easure =	NR						
Association betw	veen test	results and	d incide	nce of a	active TB (if ap	plicab	le)	
				ST (≥ 1				
		Incid	lence of	active '	TB			Total
		Yes			No			
TST + (≥		3			118			121

15mm)							
TST -(< 15mm)		6		686		692	
Indeterminate		NR		NR	_	NR	
Total		9		804	_	813	
10141			ance na	rameters (TST	> 15mm)	013	
Sensitivity = 3/9 =					_ 1011111)		
Specificity = $686/8$							
PPV = 3/121 = 2.4				07.00)			
NPV = 686/692 =	•		-				
Cumulative Incide				CI: 0.84, 7.03)			
Cumulative Incide							
Cumulative Incide	nce Ratio IG	$_{RA} = 2.86$ (95% CI:	0.725, 11.28)			
Incidence density				,			
Incidence density							
Incidence density							
,			ween te	sts (IGRA vs. T	ST≥15mm)		
Ratio of cumulativ							
Ratio of incidence				. ,			
Other reported me	•						
Assoc	ciation betw	een test re	sults an	d levels of TB ex	xposure (if	applicable)
	IGRA				TST		
	Exposu	re level	Total		Exposur	e level	Total
	High/Yes	Low/No			High/Yes	Low/No	
IGRA +	NA	NA	NA	TST +	NA	NA	NA
IGRA -	NA	NA	NA	TST -	NA	NA	NA
Indeterminate	NA	NA	NA	Indeterminate	NA	NA	NA
Total	NA	NA	NA	Total	NA	NA	NA
		Test p	oerform	ance parameter			
	IGRA				TST	Γ	
Sensitivity = NA				Sensitivity = N .			
Specificity = NA				Specificity = NA			
PPV = NA				PPV = NA			
NPV = NA				NPV = NA			
DOR (for T ⁺ calcu				DOR (for T ⁺ ca			
OR (crude; for T ⁺)				OR (crude; for			
OR (regression-ba		a) = NA		OR (regression		rted) = NA	
List of covariates:				List of covariat		т А	
Other reported me			1 /	Other reported		NA	
Dadia af DOD (C			betwee	n tests (IGRA v	s. 151)		
Ratio of DORs (fo			•				
Ratio of OR (crude							
Ratio of ORs (regr		u; reported	j = INA				
Other reported me		h .4 4	and w 1	4s and DCC . 4	4 (:F 1°	aabla)	
1	Association IGRA	between to	est resul	ts and BCG sta			
	BCG s	tatue	Total			ST S status	Total
	Yes	No	1 Otal		Yes	No	1 Otal
IGRA +	NR	NR	NR	TST +	NR	NR	NR
IGRA -	NR NR	NR	NR	TST -	NR	NR NR	NR
Indeterminate	NR	NR	NR	Indetermina		NR	NR
Total	NR	NR	NR	Total	NR NR	NR	NR
10111	1111			ance parameter		1414	1111
	IGRA	Test	, c1 101 III	unce parameter		ST	
	IUKA 151						

DOR (for T ⁺ calculated)	NGD - NR	DOR (for T+ calculated	$\frac{1}{1}$		
OR (crude; for T^+ reported) = NR			OR (crude; for T+ reported) = NR		
OR (regression-based; reported) _{IGRA} = NR		OR (regression-based; reported) TST = NR			
List of covariates: NR		RA – M	List of covariates: NR	reported) TST = TVIX	
Other reported measure	– NR		Other reported measure	- NR	
		dance and disc	cordance (if applicable)	<i>y</i> – 1410	
			ue, BCG vaccination statu	s. and/or condition	
Total sample	unica by 1	SI CUC OII (UI	ue, 200 yucemunon statu	Sy diray of Collaboration	
10th Shirpic	, r	ΓST +	TST -	Total	
IGRA +		NR	NR	NR	
IGRA -		NR	NR	NR	
Indeterminate		NR	NR	NR	
Total		NR	NR	NR	
Description					
	total, if str	ratified by BCG	or condition – specify): NR	<u> </u>	
TST + threshold: NR	,		T J		
Parameters					
Kappa = NR					
% concordance = NR					
% discordance = NR					
Stratification (specify	group 1)				
		ΓST +	TST -	Total	
IGRA +		NR	NR	NR	
IGRA -		NR	NR	NR	
Indeterminate		NR	NR	NR	
Total		NR	NR	NR	
Description					
Sample definition (e.g.,	total, if str	ratified by BCG	or condition – specify): NR	2	
TST + threshold: NR					
Parameters					
Kappa = NR					
% concordance = NR					
% discordance = NR					
Stratification (specify	group 2)				
	7	ΓST +	TST -	Total	
IGRA +		NR	NR	NR	
IGRA -		NR	NR	NR	
Indeterminate		NR	NR	NR	
Total		NR	NR	NR	
Description					
Sample definition (e.g.,	total, if str	ratified by BCG	or condition - specify): NR	2	
TST + threshold: NR					
Parameters					
Kappa = NR					
% concordance = NR					
% discordance = NR					
		Other	outcomes		
Test and cut-off (if app	olicable)	Adverse even	ts n/N (%)	Health related quality	
		(specify)		of life mean score	
				(SD) (specify)	
IGRA:			NR	NR	
TST:			NR	NR	
Test 3 (specify):		NR NR			

Conclusions

Authors:

Neither PPV nor NPV differed significantly from the corresponding values for TST

Reviewers:

Small sample; differences in follow up between test positives and negatives may have biased the results; some cases may have been prevalent (not incident)

Name of first reviewer: Alexander Tsertsvadze Name of second reviewer: Peter Auguste

Study details

First author surname year of publication: Kik 2010¹⁴² (companion: Kik 2009)

Country: The Netherlands

Study design: Prospective cohort study

Study setting (e.g., outbreak investigation, community-based - specify): Community-based

Number of centres: Multicenter (n = 15)Total length of follow up (if applicable): 24 mo

Funding (government/private/manufacturer/other - specify): Unrestricted grants from the Netherlands Organization for Health Research and Development (ZonMw; the Hague, the Netherlands)

Aim of the study

To assess the positive/negative predictive values (PPV/NPV), sensitivity, and specificity for TB disease of QFT-GIT, T-SPOT.TB1 and TST in immigrant individuals in the Netherlands who were recently exposed to infectious pulmonary TB patients

Subgroup of interest (i.e., children, recently arrived people, immunocompromised people)

Recently arrived people

Participants

Recruitment dates: April 2005 to July 2007

Total N of recruited patients: 433

Inclusion criteria: Close contacts (aged ≥16 yrs and born in a TB endemic country) of sputum smear-positive pulmonary TB patients who tested positive on TST (≥5mm)

Exclusion criteria: Contacts with known conditions associated with an increased risk of progression to disease (including diabetes and HIV infection) and individuals who were given preventive

treatment

Total N of excluded patients: 94 (TST<5mm)

Total N of patients tested with both IGRA and TST: 339

Total N of patients with valid results for both IGRA and TST: 327

Methods of active TB diagnosis (if applicable): Contacts diagnosed with $TB \ge 3$ months after the diagnosis of the index patient were considered to be incident cases, whereas TB cases diagnosed < 3 months after the diagnosis of the index patient were considered to be co-prevalent and were excluded from the analysis. The diagnosis of TB disease was based on chest radiography, symptoms, smear and/or culture results

Outcomes (study-based) list: PPV/NPV, sensitivity, and specificity for the incidence of TB disease for QFT-GIT, T-SPOT.TB1 and TST

Characteristics of participants (total study sample)

Mean (range or SD) age (years): n = 53 [15.6%] (range: 16–24), n = 80 [23.6%] (range: 25–34), n = 115 [33.9%] (range: 35–44), and n = 91 [26.8%] (range: ≥ 45)

Women (n [%]): 147 [43.4] Race/ethnicity (n [%]): NR

Geographic origin (n[%]): Europe/North America (27 [8.0]), South America (27 [8.0]), Asia (123

[36.3]), Other Africa (98 [28.9]), Sub-Saharan Africa (59 [17.4]), Unknown (5 [1.5])

BCG vaccination (n [%]): 274 [80.8] History of anti-TB treatment (n [%]): None Total incidence of active TB (n [%]): 9/339 [2.65]

Chest radiography (yes/no): Yes Clinical examination (yes/no): Yes

Morbidity (n [%]): NR Co-morbidity (n [%]): NR

Type of during-study treatment (n [%]): None

Number of patients tested

Number of patients tested							
	Total N	Total	Total N	Total N	Total N		
	(tested)	N	(test-)	(indeterminate)	(test results		

			(test+)				available)
IGRA (QFT-GI	Γ)	339	178	149	12		327
IGRA (T-SPOT	TB)	339	181	118	40		299
TST (≥10mm)		339	288	51	0		339
TST (≥15mm)		322	184	138	0		322
Total N of patier	nts with v	alid results f	for both IG	RA and TST:	TST (n = 1)	339), QF	T-GIT (n =
327), and T-SPO	Γ.TB (n =	= 299)			`	/. ~	`
Levels/groups of			creasing or	der (if applica	ble):		
	_			xposure group	,		
Non-exposed		NA					
Exposed 1 (special	fy):	NA					
Exposed 2 (speci		NA					
Exposed 3 (speci	fy):	NA					
Exposed 4 (speci		NA					
Tests	<u> </u>						
	Assa	y used, meth	odology.	Cut-off va	lues/thres	holds	Other
		for test mea			ion of tes		information
	ا آ	manufactui	,				
IGRA (QFT-	Perform	ed according		Two-tube fo	rmat posit	ive test	NA
GIT)		ons of the ma					
,	and test	ed in a single	laboratory	IU/mL-1			
		University M	•				
		Leiden, the N					
IGRA (T-		ed according		Interpretation of results was			NA
SPOT.TB)	instructi	ons of the ma	nufacturers	according to the latest criteria			
·	and test	ed in a single	laboratory	defined by the manufacturer			
	(Leiden	University M	ledical				
	Center,	Leiden, the N	(etherlands				
TST	two tube	erculin units,	purified	≥ 10mm	_		
	protein	derivative RT	23 in	≥ 15mm			
		30; Statens					
		nstitute, Cope	_				
		k) and read a					
Association betw			ncidence of	f active TB (if a			
I	GRA(QF	T-GIT)			TST≥	≥10mm	
		lence of	Total			ence of	Total
	_	ve TB				e TB	
	Yes	No			Yes	No	
IGRA +	5	173	178	TST +	9	279	288
IGRA -	3	146	149	TST -	0	51	51
Indeterminate	1	11	12	Indeterminate		0	0
Total	9	330	339	Total	9	330	339
				nce parameters			
		<u>indetermina</u>	•			ST	
Sensitivity = $5/8$	= 62.50%	(95% CI: 30	.57,	Sensitivity = 9	$\theta/9 = 100.0$	00% (95	% CI: 70.08,
	86.32) 100.00)					050/ 07 11 07	
Specificity = 146/319 = 45.77% (95% CI: 40.38, Specificity = 51/330 = 15.45% (95% CI: 11				95% CI: 11.95,			
51.25)	000/ /07		40)	19.75)	0.1007	250/ 25	1.67.7.00
PPV = 5/178 = 2.	-			PPV = 9/288 = 3.12% (95% CI: 1.65, 5.83)			
NPV = 146/149 =	= 98.0% (95% CI: 94.2	0, 99.31)	NPV = 51/51	= 100.00%	6	(95% CI: 93.00,
0 1		F 14 F 0 - 5	000/	100.00)	• 1	0.75	00 2.122/
Cumulative Incid		$_{+} = 5/178 = 2.$.80%	Cumulative Incidence $_{TST+} = 9/288 = 3.12\%$			
(95% CI: 1.20, 6.40)				(95% CI: 1.65	, 5.83)		

Cumulativa Inaida	- 2	1/1/0 - 2 00	70/	Cumulativa In	aidanaa	_ 0/51 _ 1	06 (05%	
Cumulative Incidence $_{IGRA-} = 3/149 = 2.00\%$ (95% CI: 0.42, 6.02)				Cumulative Incidence $_{TST-} = 0/51 = 1.96 (95\%)$				
Cumulative Incide		– 1 30 (0	05% CI:		CI:0.21, 10.4)			
0.34, 5.74)	nce Kano IG	RA – 1.39 (3	75 /0 C1.	0.21, 71.2)	Cumulative Incidence Ratio _{TST} = 1.59 (95% CI: 0.21, 71.2)			
Incidence density	rate $_{IGRA+} = 1$	VR		Incidence den	sity rate TST	= NR		
Incidence density				Incidence den				
Incidence density				Incidence den				
Other reported me				Other reported				
			between	n tests (IGRA vs		1 =		
Ratio of cumulativ					,,			
Ratio of incidence								
Other reported me	asure = NR							
Association between	een test resu	ılts and inc	idence	of active TB (if a	pplicable)			
	RA (T-SPOT				TST≥1	5mm		
	Incidenc	e of	Total		Inciden	ce of	Total	
	active 7	ГВ			active	TB		
	Yes	No			Yes	No		
IGRA +	6	175	181	TST +	7	177	184	
IGRA -	2	116	118	TST -	1	137	138	
Indeterminate	1	39	40	Indeterminate		0	0	
Total	9	330	339	Total	8	314	322	
705 L (ance parameters		ъ		
	cluding inde			G ::: :. 5	TS'		52.01.07.76	
Sensitivity = $6/8$ =	: /5.00% (95	% C1: 40.9	3,	Sensitivity = 7	7/8 = 87.5%	(95% CI: :	52.91, 97.76)	
92.85)	201 – 20.960	/ (050/ CI.	24.4	Cnacificity - 1	Specificity = 137/314 = 43.63% (95% CI: 38.25,			
Specificity = 116/2 45.58)	291 = 39.809	% (93% CI:	34.4,	49.16)	137/314 = 4	3.03% (93	% CI: 38.23,	
PPV = 6/181 = 3.3	81% (95% C	I 1 52 7 0	1)	PPV = 7/184 =	- 3 80% (05	% CI: 1.85	(7.64)	
NPV = 98.31% (93			")	NPV = 137/13				
111 7 = 30.5170 (3.	570 CI. 7 1.0.	3, 77.33)		99.87)	70 – 77 .2 070	()570 CI.	, , ,	
Cumulative Incide	$ence_{IGRA+} = 0$	5/181 = 3.3	1%	Cumulative In	cidence TST	= 7/184 =	3.80%	
(95% CI: 1.52, 7.0				(95% CI: 1.85				
Cumulative Incide		2/118 = 1.69	9%	Cumulative In		= 1/138 =	0.72% (95%	
(95% CI: 0.08, 6.3	(5)			CI:0.00, 4.39)				
Cumulative Incide	nce Ratio IGI	$_{RA} = 1.95 (9)$	95% CI:	Cumulative In	cidence Rat	$_{\text{TST}} = 5.2$	25 (95% CI:	
0.40, 9.52)				0.65, 42.17)				
Incidence density				Incidence den				
Incidence density				Incidence den	•			
Incidence density			_	Incidence den	•	$o_{TST} = NR$		
				n tests (IGRA vs	. TST)			
Ratio of cumulativ				Z1: 0.10, 1.41)				
Ratio of incidence	•	ratios = NI	Κ					
Other reported me		4 . 4	14	111 C.T.D.	(*6	1' 11		
ASSOC		een test re	suits an	d levels of TB ex	posure (11 a TST			
	IGRA	na larval	Total				Total	
	Exposur High/Yes	Low/No	Total		High/Yes	re level Low/No	Total	
IGRA +	NR	NR	NR	TST +	NR	NR	NR	
IGRA -	NR	NR NR	NR	TST -	NR	NR	NR	
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR	
Total	NR	NR	NR	Total	NR	NR	NR	
2000	1111			ance parameters		1111	1111	
	IGRA			parameters	TST	1		

G ':' ': ND				C 'd' 'd NID			
Sensitivity = NR	·			Sensitivity = NR			
				Specificity = NR			
PPV = NR				PPV = NR			
NPV = NR				NPV = NR			
DOR (for T ⁺ calcu				DOR (for T ⁺ calcul			
OR (crude; for T ⁺	_			OR (crude; for T ⁺ r	_		
OR (regression-ba		d = NR		OR (regression-bas		ted) = NR	
List of covariates:				List of covariates:			
Other reported me				Other reported mea		R	
			<u>between</u>	tests (IGRA vs. T	ST)		
Ratio of DORs (fo							
Ratio of OR (crud		•					
Ratio of ORs (reg		d; reported) = NR				
Other reported me	asure = NR						
	Association	between to	est results	s and BCG status (if applica	able)	
	IGRA				TS		
	BCG s	status	Total		BCG	status	Total
	Yes	No			Yes	No	
IGRA +	NR	NR	NR	TST +	NR	NR	NR
IGRA -	NR	NR	NR	TST -	NR	NR	NR
Indeterminate	NR	NR	NR	Indeterminate	NR	NR	NR
Total	NR	NR	NR	Total	NR	NR	NR
		Test p	oerforma:	nce parameters			
	IGRA				TS'	Τ	
DOR (for T ⁺ calcu	$lated)_{IGRA} =$	NR		$DOR (for T+ calculated)_{TST} = NR$			
OR (crude; for T ⁺				OR (crude; for T+ reported) = NR			
OR (regression-ba			R	OR (regression-			= NR
List of covariates:		, 10101		List of covariate		, , , , , ,	
Other reported me	asure = NR			Other reported	measure =	= NR	
•		cordance,	and disco	ordance (if applica			
				e, BCG vaccination		and/or co	ndition
Total sample							
_		TST +		TST -			Total
IGRA +		NR		NR			NR
IGRA -		NR		NR			NR
Indeterminate		NR		NR			
Total		NR		NR		NR	
Description							
Sample definition	(e.g., total, i	f stratified	by BCG o	or condition – speci	fy): NR		
TST + threshold:	NR			•			
Parameters							
Kappa = NR							
% concordance =	NR						
% discordance = N	NR						
Stratification (sp		1)					
		TST +		TST -			Total
IGRA +		NR		NR			NR
IGRA -		NR		NR			NR
Indeterminate		NR		NR			NR
Total		NR		NR			NR
Description							
	(e.g., total. i	f stratified	by BCG o	or condition – speci	fy): NR		
TST + threshold:			., = = = = (speci	J / 122		

Parameters			
Kappa = NR			
% concordance = NR			
% discordance = NR			
Stratification (specify	group 2)		
	TST +	TST -	Total
IGRA +	NR	NR	NR
IGRA -	NR	NR	NR
Indeterminate	NR	NR	NR
Total	NR	NR	NR

Description

Sample definition (e.g., total, if stratified by BCG or condition – specify): NR

TST + threshold: NR

Parameters

Kappa = NR

% concordance = NR

% discordance = NR

Other outcomes								
Test and cut-off (if applicable)	Adverse events n/N (%) (specify)	Health related quality of life mean score (SD) (specify)						
IGRA:	NR	NR						
TST:	NR	NR						
Test 3 (specify):	NR	NR						
	Q 1 4							

Conclusions

Authors:

PPVs of QFT-GIT and T-SPOT.TB for subsequent development of TB disease during the first 2 yrs after a contact investigation were comparable to that of the TST, irrespective of the TST cut off (10 or 15 mm)

Reviewers:

The three tests demonstrated similar performance in predicting active TB incidence (PPV and sensitivity); TST (≥15mm) and QFT-GIT demonstrated better specificity compared to TST (≥15mm) and TSPOT.TB

11.10 Appendix 10. Included studies and incidence of tuberculosis 227

Table 58. Included studies and incidence of tuberculosis

Author, country	Category	Estimated rate per 100,000 population
Study in children and adoles Diel 2011 ¹⁰⁰	cents (incidence studies)	
Diel 2011 ¹⁰⁰	Low incidence	5.6
Germany		
Mahomed 2011a ¹⁰⁶	High incidence	1003
South Africa		
Metin Timur 2014 ¹⁴⁸	Intermediate incidence	22
Turkey		
Noorbakhsh 2011 ¹⁰²	Intermediate incidence	21
Iran		
Song 2014 ¹⁵⁰	High incidence	409
South Korea		
Study in children and adoles	cents (exposure studies)	
Study in children and adoles Adetifa 2010 ¹⁰³	High incidence	284
Gambia		
Cruz 2011 ¹⁰⁴	Low incidence	3.6
US		
Kasambira 2011 ¹⁰⁵	High incidence	1003
South Africa		
Laniado-Laborın 2014 ¹⁴⁶	Intermediate incidence	23
Mexico		
Mahomed 2011b ¹⁰⁶	High incidence	1003
South Africa		
Pavic 2011 ¹⁰⁷	Low incidence	14
Croatia		
Perez-Porcuna 2014 ¹⁴⁹	Intermediate incidence	46
Brazil		
Rutherford 2012a-b ^{108, 109}	High incidence	185
Indonesia		
Talbot 2012 ¹¹⁰	Low incidence	3.6
US		
Tieu 2014 ¹⁵²	High incidence	119
Thailand		
Tsolia 2010 ¹¹¹	Low incidence	4.5
Greece		
Study in immunocompromis	sed people (incidence studies)	
Anibarro 2012 ¹¹⁵	Low incidence	14
Spain		•
Chang 2011 ¹¹⁷	High incidence	409
South Korea	6	
Elzi 2011 ¹¹²	Low incidence	6
Switzerland		
Kim 2011 ¹¹⁴	High incidence	409
South Korea		
Lee 2009 ¹¹⁶	High incidence	73
Taiwan		
Lee 2014 ¹⁴⁷	High incidence	409
South Korea		-
Moon 2013 ¹¹³	High incidence	409

South Korea		
Sherkat 2014 ¹⁵³	Intermediate incidence	21
Iran		
Study in immunocompromised	people (exposure studies)	1
Ahmadinejad 2013 ¹¹⁸	Intermediate incidence	21
Iran		
Al Jahdali 2013 ¹¹⁹	Low incidence	15
Saudi Arabia		
Ates 2009 ¹²⁰	Intermediate incidence	22
Turkey		
Casas 2011a ¹²¹	Low incidence	14
Spain		
Casas 2011b ¹²²	Low incidence	14
Spain		
Chkhartishvili 2013 ¹²³	High incidence	116
Georgia		
Chung 2010a ¹²⁴	High incidence	409
South Korea		
Costantino 2013 ¹²⁵	Low incidence	8.2
France		
Hadaya 2013 ¹²⁶	Low incidence	6
Switzerland		
Hsia 2012 ¹²⁷	Low incidence	3.6
USA		
Kim 2010 ¹²⁸	High incidence	409
South Korea		
Kim 2013b ¹²⁹	High incidence	409
South Korea		
Kim 2013c ¹³⁰	High incidence	409
South Korea		
Kleinert 2012 ¹³¹	Low incidence	5.6
Germany		
Laffitte 2009 ¹³²	Low incidence	6
Switzerland		
Maritsi 2011 ¹³³	Low incidence	15
UK		
Mutsvangwa 2010 ¹³⁴	High incidence	562
Zimbabwe		
Papay, 2011 ¹³⁵	Low incidence	7.9
Austria	T	
Ramos, 2013 ¹³⁶	Low incidence	14
Spain 2010 ¹³⁷	T , 1' , '1	22
Seyhan, 2010 ¹³⁷	Intermediate incidence	22
Turkey	TTiple to at J	02
Shen, 2012 ¹³⁸	High incidence	83
China Souza 2014 ¹⁵¹	Intermediate incidence	46
Brazil	intermediate incidence	40
Takeda, 2011 ¹³⁹	Low incidence	19
	Low incluence	19
Japan Vassilopoulos, 2011 ¹⁴⁰	Low incidence	4.5
Greece Vassilopoulos, 2011	Low incluence	4.3
	from high andomic TD a	ountries (incidence studies)
Study in recently arrived people from high endemic TB countries (incidence studies)		

Harstad, 2010 ¹⁴¹	Low incidence	7.5
Norway		
Kik, 2010 ¹⁴²	Low incidence	6.3
The Netherlands		
Study in recently arrived people from high endemic countries (exposure studies)		
Lucas, 2010 ¹⁴³	Low incidence	6.5
Australia		
Orlando, 2010 ¹⁴⁴	Low incidence	6.7
Italy		
Saracino, 2009 ¹⁴⁵	Low incidence	6.7
Italy		

Low incidence: defined as countries with an incidence of TB below 20 cases per 100,000 population (Mor 2008, Heldal 2008)

Intermediate incidence: defined as countries with an incidence of TB more than or 20 but less than 40 cases per 100,000

High incidence: defined as countries with an incidence of TB more than 40 cases per 100,000

11.11 Appendix 11. List of excluded studies with reason(s)

Table 59. List of excluded studies from the cost-effectiveness review

Number	Study	Reason(s) for exclusion
1.	Burgos, J. L., et al. (2009). "Targeted screening and treatment for latent tuberculosis infection using QuantiFERON-TB Gold is cost-effective in Mexico." International Journal of Tuberculosis and Lung Disease 13(8): 962-968.	No comparator
2.	Deuffic-Burban, S., et al. (2010). "Cost-effectiveness of QuantiFERON-TB test vs. tuberculin skin test in the diagnosis of latent tuberculosis infection." International Journal of Tuberculosis & Lung Disease 14(4): 471-481.	Close contacts
3.	Diel, R., et al. (2009). "Enhanced cost-benefit analysis of strategies for LTBI screening and INH chemoprevention in Germany." Respiratory Medicine 103(12): 1838-1853.	Cost analysis
4.	Hardy, A. B., et al. (2010). "Cost-effectiveness of the NICE guidelines for screening for latent tuberculosis infection: the QuantiFERON-TB Gold IGRA alone is more cost-effective for immigrants from high burden countries." Thorax 65(2): 178-180.	No economic model
5.	Iqbal, A. Z., et al. (2014). "Cost-effectiveness of Using QuantiFERON Gold (QFT-G) versus Tuberculin Skin Test (TST) among U.S. and Foreign Born Populations at a Public Health Department Clinic with a Low Prevalence of Tuberculosis." Public Health Nursing 31(2): 144-152.	No economic model
6.	Jit Mark, Stagg Helen R, Aldridge Robert W, White Peter J, Abubakar Ibrahim. Dedicated outreach service for hard to reach patients with tuberculosis in London: observational study and economic evaluation BMJ 2011; 343:d5376	Active TB
7.	Kawamura, L. M. (2010). "IGRAs in public health practice: Economic issues." International Journal of Tuberculosis and Lung Disease 14(6 SUPPL. 1): S60-S63.	Letter to editor
8.	Langley, I., B. Doulla, H. H. Lin, K. Millington and B. Squire (2012). "Modelling the impacts of new diagnostic tools for tuberculosis in developing countries to enhance policy decisions." Health Care Management Science 15(3): 239-253.	Active TB
9.	Mancuso, J. D., et al. (2011). "Cost-effectiveness analysis of targeted and sequential screening strategies for latent tuberculosis." International Journal of Tuberculosis & Lung Disease 15(9): 1223-1230, i.	Military recruits
10.	Pareek, M., et al. (2011). "Screening of immigrants in the UK for imported latent tuberculosis: a multicentre cohort study and cost-effectiveness analysis." Lancet Infect Dis 11(6): 435-444.	No comparator
11.	Pooran, A., et al. (2010). "Different screening strategies (single or dual) for the diagnosis of suspected latent tuberculosis: a cost effectiveness analysis." BMC Pulmonary Medicine 10: 7.	Close contacts
12.	Shah, M., et al. (2012). "QuantiFERON-TB gold in-tube implementation for latent tuberculosis diagnosis in a public health clinic: a cost-effectiveness analysis." BMC Infect Dis 12: 360.	TST-positive referrals
13.	Steffen, R. E., et al. (2013). "Cost-effectiveness of QuantiFERON-TB Gold-in-Tube versus tuberculin skin testing for contact screening and treatment of latent tuberculosis infection in Brazil." PLoS ONE [Electronic Resource] 8(4): e59546.	Immunocompetent close contacts

14.	van der Have M, Oldenburg B, Fidder HH, Belderbos TD,	Intervention not of
	Siersema PD, van Oijen MG. Optimizing screening for tuberculosis	interest
	and hepatitis B prior to starting tumor necrosis factor-alpha	
	inhibitors in Crohn's disease. Dig Dis Sci. 2014;59(3):554-63.	
15.	Verma, G., et al. (2013). "Tuberculosis screening for long-term	Compared
	care: a cost-effectiveness analysis." International Journal of	screening strategies
	Tuberculosis & Lung Disease 17(9): 1170-1177.	(no screening, LTBI
		screening and active
		TB screening)

11.12 Appendix 12. Data extraction sheet for included cost effectiveness studies

Date:	
-------	--

Name of first reviewer: Name of second reviewer:

Study details	
Study title	
First author	
Co-authors	
Source of publication Journal yy;vol(issue):pp	
Language	
Publication type	
Baseline characteristics	
Population	
Intervention(s)	
Comparator(s)	
Outcome(s)	
Study design	
Methods	
Target population and subgroups	
Setting and location	
Study perspective	
Comparators	
Time horizon	
Discount rate	
Outcomes	
Measurement of effectiveness	
Measurement and valuation of preference based outcomes	
Resource use and costs	
Currency, price date and conversion	
Model type	
Assumptions	
Analytical methods	
Results	
Study parameters	
Incremental costs and outcomes	
Characterising uncertainty	
Discussion	

Study findings		
Limitations		
Generalizability		
Other		
Source of funding		
Conflicts of interest		
Comments		
Authors conclusion		
Reviewer's conclusion		

Date: 18th August, 2014
Name of first reviewer: Peter Auguste
Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Cost-effectiveness of interferon-gamma release assay for tuberculosis screening of rheumatoid arthritis patients prior to initiation of tumour necrosis factor-α antagonist therapy
First author	Kowada
Co-authors	None
Source of publication Journal yy;vol(issue):pp Language	Molecular diagnosis and therapy 2010;14(16):367-373 English language
Publication type	Journal article
Baseline characteristics	
Population	Immunocompromised (Rheumatoid arthritis patients prior to tumour necrosis factor-α (TNF- α) therapy
Intervention(s)	QuantiFERON gold-in-tube (QFT-GIT)
Comparator(s)	Tuberculin skin test (TST)
Outcome(s)	Cost per quality-adjusted life-year (cost per QALY)
Study design	Cost-effectiveness analysis
Methods	
Setting and location	Not reported
Study perspective	Societal perspective
Time horizon	Lifetime horizon with one-year time cycle lengths
Discount rate	3% per annum
Measurement of effectiveness	Quality-adjusted life-years
Measurement and valuation of preference based outcomes	Not reported
Resource use and costs	Screening test for QFT-GIT and TST, costs for treatment of LTBI/TB and adverse events
Currency, price date and conversion	US dollars, costs were adjusted to 2009 Japanese Yen and converted to US dollars in 2009, 1 US\$ = 93 Japanese Yen
Model type	Decision tree model with Markov nodes (No LTBI, LTBI, TB and death)
Assumptions	The sensitivities for QFT-GIT and TST in people with rheumatoid arthritis are assumed to be lower than the sensitivities for an immunocompetent population.
Analytical methods	The author conducted one-way and two-way sensitivity analyses by changing key model input parameters to determine the impact on the deterministic results. Additionally, probabilistic sensitivity analysis (PSA) was undertaken to determine the uncertainty in the key model input parameters
Results	
Study parameters	Sensitivity and specificity for QFT and TST. Other parameters included probability of successful treatment, probability of recurrence of active TB

	after TB adherence to rate of treatment
Incremental costs and outcomes	In the base-case analysis, QFT was less costly and more effective than TST, US\$1040 vs. US\$1820 and 23.0350 vs. 22.9815 QALYs, respectively
Characterising uncertainty	The results from the PSA showed that at society's willingness-to-pay per QALY, the probability of QFT testing strategy has a 100% probability of being cost-effective compared to the TST strategy
Discussion	
Study findings	The results showed/demonstrated that QFT was less costly and more effective than TST strategy
Limitations	 The sensitivities for QFT-GIT and TST in people with rheumatoid arthritis are assumed to be lower than the sensitivities for an immunocompetent population There was a lack of information to populate the model on the natural history of TB regarding QFT-GIT conversion and reversion rate A paucity of information exists on the incidence of LTBI and active TB in people with rheumatoid arthritis treated with TNF-α antagonists and this may have an impact on the results
Generalizability	The model presented here may be useful to determine the cost-effectiveness of QFT-GIT compared with TST for the diagnosis of LTBI in patients with rheumatoid arthritis prior to TNF-α treatment. The results presented here suggested that QFT is the dominant strategy compared to TST alone, but some of the key inputs are questionable, for example the utility value of 0.9 for nonfatal TB in people with rheumatoid arthritis. This utility value appears to be high for people who have rheumatoid arthritis. The model may be useful, but these results should be interpreted with caution
Other	
Source of funding	No source of funding
Conflicts of interest	No conflicts of interest
Comments	In table 1, Kowada presented the utility value of non-fatal TB, but have not presented other utility values for other health states Additionally, the starting age of the hypothetical cohort is 40 years, but the author included information on the mortality due to people ages 20-29 years and 30-39 years
	The author conducted probabilistic sensitivity analysis (PSA) on the outcome measure of cost per QALY. However, the distributions placed around the key model inputs have not been reported
Authors conclusion	

The author concluded that the QFT testing strategy is more effective and less costly than TST testing strategy for diagnosing LTBI in people with rheumatoid arthritis prior to treatment with TNF-α antagonists for both BCG vaccinated and unvaccinated groups

Reviewer's conclusion

The author used an appropriate modelling technique to demonstrate the cost-effectiveness of QFT compared to TST in people with rheumatoid arthritis. Various key health states which relate to LTBI/TB have been included in the model structure, but there is some uncertainty in key model input parameters. The authors have attempted to address this uncertainty by using sensitivity analysis and PSA, but have not presented information on the distribution used around these model parameters. Hence, we believe that these results should be interpreted with caution

Date: 15 August 2014
Name of first reviewer: Peter Auguste
Name of second reviewer: Alexander Tsertsvadze

Study details		
Study title	Cost-effectiveness of interferon-gamma release assay for school-based tuberculosis screening	
First author	Kowada	
Co-authors	None	
Source of publication Journal yy;vol(issue):pp	Molecular diagnosis and therapy 2012;16(3):181-190	
Language	English Language	
Publication type	Journal article	
Baseline characteristics		
Population	Children/adolescents: Immunocompetent children/adolescents aged 16-19 years old; Students divided into BCG-vaccinated individuals and non BCG-vaccinated individuals	
Intervention(s)	QFT-GIT, chest x-ray	
Comparator(s)	TST	
Outcome(s)	Cost per quality-adjusted life-years	
Study design	Cost-effectiveness analysis	
Methods		
Setting and location	Not reported	
Study perspective	Societal perspective	
Time horizon	Life time horizon (up to 80 years old), one-year cycle length	
Discount rate	3% discount rate per annum	
Measurement of effectiveness	Quality-adjusted life-years (QALYs)	
Measurement and valuation of preference based outcomes	Not reported	
Resource use and costs	Cost of TST and QFT screening and cost of treatment and adverse events	
Currency, price date and conversion	2009 Japanese yen, converted to US\$, using the OECD purchasing power parity rate in 2009	
Model type	Markov model (Healthy, LTBI, TB and dead)	
Assumptions	The author assumed a high prevalence of LTBI in the Japanese population	
Analytical methods	One-way and two-way sensitivity analyses were performed on key model input parameters	
	Probabilistic sensitivity analyses was undertaken to address the uncertainty around key model input parameters and was based on the outcome measure of cost per quality-adjusted life-year	
Results		
Study parameters	Sensitivity and specificity for QFT, TST and chest x-ray. Other parameters included probability of successful treatment, probability of recurrence of active TB after TB adherence to rate of treatment	
Incremental costs and outcomes	In the 16-year old sub-group QFT was less costly and more effective than	

	TST, US\$628 vs. US\$944 and 29.6984 vs. 29.6977 QALYs, respectively
Characterising uncertainty	Results from the sensitivity analyses showed that the results were robust to changes made to model input parameters. From the PSA, the author suggested that there was a 100% probability that QFT was cost-effective compared to TFT at all society's willingness-to-pay levels
Discussion	
Study findings	Base-case results showed that in the 16-year old sub-group the QFT test was cheaper and produced a moderate benefit in terms of QALYs
Limitations	 The author assumed that the prevalence of LTBI was high in this Japanese population, this estimate was based on the TST positivity rates The Markov model did not include health states for people who received treatment for LTBI The distress for LTBI testing was not measured in this study.
Generalizability	The author suggested that the results may be applicable to other countries where school-based TB testing is being conducted
Other	
Source of funding	No sources of funding
Conflicts of interest	No conflicts of interest
Comments	The author mentioned that in 2008 over 95% of the population had received BCG vaccination at least once. Specificity of TST were stratified by BCG-vaccinated and non-BCG vaccinated people, however, this was not done for QFT or chest x-ray
Authors conclusion	

Authors conclusion

The author demonstrated that the use of QFT provided greater benefits than screening with TST or chest x-ray in terms of lower costs and identifying more cases of LTBI in this population

Reviewer's conclusion

The author used an appropriate modelling technique to demonstrate the cost-effectiveness of QFT compared to TST. There were some limitations in the model which the author alluded to, for example, not including health states where people have received treatment for LTBI/TB. The author did not state the study setting within which the analysis would be undertaken, hence compromising the generalizability of these results. Additionally, we assumed the perspective of the study was the societal perspective because the author suggested that indirect costs relating to loss of productivity would be included, these costs were not reported in this paper. We did not think it would have been necessary to include indirect costs due to loss of productivity because these children/adolescents are assumed to be full-time students

Date: 18th August, 2014
Name of first reviewer: Peter Auguste
Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Cost-effectiveness of interferon-y release assay for tuberculosis screening of hemodialysis patients
First author	Kowada
Co-authors	None
Source of publication Journal yy;vol(issue):pp	Nephrology Dialysis Transplantation 2013;28:682-688
Language	English language
Publication type	Journal article
Baseline characteristics	
Population	Immunocompromised (haemodialysis patients 40 years of age); sub-groups for people who were BCG-vaccinated
Intervention(s)	QFT-GIT,
Comparator(s)	Tuberculin skin test (TST), chest x-ray (CXR)
Outcome(s)	Cost per quality-adjusted life-year (Cost per QALY)
Study design	Cost-effectiveness analysis
Methods	
Setting and location	Not reported
Study perspective	Societal perspective
Time horizon	Lifetime horizon
Discount rate	3% per annum for costs and benefits
Measurement of effectiveness	QALY
Measurement and valuation of preference based outcomes	Not reported
Resource use and costs	Direct (inpatient/outpatient) and indirect (loss of productivity) costs, screening costs for QFT, TST and CXR. Other costs included treatment for active TB, costs of smear and culture examinations of sputum and treatment of adverse events
Currency, price date and conversion	US\$, 2012, costs adjusted to 2012 Japanese Yen, then converted to US dollars, using the OECD purchasing power parity rate in 2009
Model type	Markov model (maintenance dialysis with no disorder, maintenance dialysis with LTBI, maintenance dialysis with TB and death)
Assumptions	 Kowada assumed that the risk of TB-related mortality in ESRD patients will increase with age Key model input parameters (probability of developing TB from LTBI, adherence rate of standard treatment, the probability of treatment-induced hepatitis, the efficacy if the standard treatment, and the recurrence of active TB after treatment) were assumed/derived Further assumptions were on the sensitivity and specificity of QFT, TST and CXR
Analytical methods	The author conducted one-way and two-way sensitivity analyses by changing key model input parameters to determine the impact on the

	deterministic results. Additionally, probabilistic sensitivity analysis (PSA) was undertaken to determine the uncertainty in the key model input parameters
Results	
Study parameters	Sensitivity and specificity for QFT, TST and chest x-ray. Other parameters included probability of successful treatment, probability of recurrence of active TB after TB adherence to rate of treatment
Incremental costs and outcomes	In the base-case analysis, QFT was less costly and more effective than TST, US\$7690 vs. US\$9340 and 4.1926 vs. 4.1854 QALYs, respectively
Characterising uncertainty	One-way sensitivity analysis The cost effectiveness of the QFT compared with the TST was sensitive to the BCG vaccination rate. TST strategy was more cost-effective than QFT strategy at the willingness-to-pay level of US\$50,000 per QALY gained when the BCG vaccination rate was 0.18 or lower
	Probabilistic sensitivity analysis The cost-effectiveness acceptability curve of 40-year-old patients by Monte Carlo simulations for 10,000 trials demonstrated that the QFT was the most cost-effective, with a value of 100% at all willingness-to-pay level compared with TST and CXR strategies
Discussion	
Study findings	Base-case results showed that the QFT test was cheaper and produced a moderate benefit in terms of QALYs. The QFT testing strategy was dominant compared to TST testing strategy
Limitations	 No gold standard to diagnose LTBI in the end stage renal disease (ESRD) population Paucity of information on the sensitivity and specificity of QFT-GIT and TST in people with ESRD The parameters included in the model may be changeable in more precise investigations of TB dynamics
Generalizability	The model presented here may be useful to determine the cost-effectiveness of QFT-GIT compared with TST/CXR for the diagnosis of LTBI, but given the limitations highlighted on the key model input parameters, results should be interpreted here with caution
Other	,
Source of funding	Not reported
Conflicts of interest	None declared
Comments	Author has not provided an illustrative structure of the Markov nodes used in the model. The author mentioned that in the TST testing strategy, BCG − vaccinated people with an induration of ≥5mm and unvaccinated people would have undergone a CXR. However, this has not been illustrated in the model. The author conducted PSA around the outcome measure cost per QALY. However, the distributions used around key model input parameters were not stated in this paper. Additionally, the cost-effectiveness acceptability curve was not provided in this paper
Authors conclusion	
The results demonstrated that that QFT screening strategy produced greater benefits in terms of QALYs and lower costs compared to TST/CXR for people who have ESRD Reviewer's conclusion	

The author used an appropriate modelling technique to demonstrate the cost-effectiveness of QFT compared to TST/CXR in people with ESRD. The author did not state the study setting within which the analysis would be undertaken, hence compromising the generalizability of these results. Additionally, we assumed the perspective

of the study was the societal perspective because the author suggested that indirect costs relating to loss of productivity would be included, these costs were not reported in this paper

Date: 21st August, 2014
Name of first reviewer: Peter Auguste
Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Cost-effectiveness of interferon-gamma release assay for TB screening of HIVE positive pregnant women in low TB incidence countries
First author	Kowada
Co-authors	None
Source of publication Journal yy;vol(issue):pp	Journal of infection 2014;68:32-42
Language	English language
Publication type	Journal article
Baseline characteristics	
Population	Immunosuppression (HIV positive pregnant women). Immunosuppressed (20-year old HIV positive pregnant women) four sub-groups were analysed: non-BCG vaccinated cohort during pregnancy, BCG-vaccinated cohort during pregnancy, non-BCG vaccinated cohort postpartum period and BCG vaccinated cohort in postpartum period
Intervention(s)	Five strategies 1) TST alone, 2) QFT alone, 3) T-SPOT.TB, 4) TST followed by QFT and 5) TST followed by T-SPOT.TB
Comparator(s)	See above five compared strategies
Outcome(s)	Cost per QALY
Study design	Cost-effectiveness analysis
Setting and location	Hypothetical cohort followed until age 50 years in three most common screening situations; close contacts, immigrants from high burden countries and occasional screening in low TB incidence countries
Methods	L
Study perspective	Health service perspective
Comparators	TST alone
Time horizon	30-year time horizon with yearly cycles
Discount rate	3% per annum for costs and benefits
Measurement of effectiveness	QALY
Measurement and valuation of preference based outcomes	Not reported
Resource use and costs	Screening test for TST, QFT, T-SPOT.TB, chest x-ray, costs for treatment of LTBI/TB and adverse events (Hepatitis).
Currency, price date and conversion	US\$, 2012, 1US\$ = ¥ 103.9 (OECD purchasing power parity rate in 2012)
Model type	Markov model (Non-LTBI and non-TB, LTBI, non MDR-TB, MDR-TB and Dead)
Assumptions	Not clearly stated
Analytical methods	The author conducted one-way sensitivity analyses by changing key model input parameters to determine the impact on the deterministic results. Additionally, probabilistic sensitivity analysis (PSA) was undertaken to

	determine the uncertainty in the key model input parameters
Results	, , _* * *
Study parameters	Probability of having LTBI among HIV positive pregnant women, incidence of TB among HIV positive pregnant, increased mortality among HIV positive pregnant women, probability of successful treatment, adherence rate of treatment, sensitivity and specificity for TST, QFT, T-SPOT.TB and chest x-ray
Incremental costs and outcomes	The results from the base-case analysis showed that T-SPOT.TB was least costly and more effective with an incremental cost of US\$ 596 and incremental QALYs of 0.00705 compared with TST in HIV positive pregnant women (non-BCG vaccinated) in close contacts
Characterising uncertainty	Results from the one-way sensitivity analysis showed that the cost-effectiveness was sensitive to the sensitivity of T-SPOT.TB, the sensitivity of QFT, specificity of T-SPOT.TB and the specificity of QFT in close contacts during pregnancy and other changes in key model input parameters The results from the PSA showed that at society's willingness-to-pay per QALY, there was a 100% probability that TST followed by QFT strategy is likely to be cost-effective compared to other testing strategies
Discussion	
Study findings	The results showed that the T-SPOT.TB is less costly and was more effective compared to other strategies
Limitations	 There were some assumptions which the author acknowledged:- The probability estimates used in the model were obtained from different countries Estimates on sensitivity and specificity of IGRAs and TST were values based on meta-analysis of published literature and assumptions made. The author further suggested that there is little evidence to suggest the impact of pregnancy on the sensitivity/specificity of IGRAs and TST to diagnose LTBI. The cost of the side effect by MDR-TB therapy was not calculated in the model The use of chemoprophylaxis for pregnant women is still a controversial issue A paucity of information on the incidence of TB in pregnant women and the prevalence of LTBI in HIV positive pregnant women
Generalizability	Given the assumptions and the limitations, the model presented may be generalizable in a population with women who are pregnant and have HIV
Other	
Source of funding	Author reported no source of funding
Conflicts of interest	Author reported no conflict of interest
Comments	None
Authors conclusion	
Kowada concluded that the use of countries with low incidence of T	GIGRA to screen for TB in HIV positive pregnant women is cost-effective in B
Reviewer's conclusion	
	useful to inform on the cost-effectiveness of IGRAs compared with TST for group. The author has used an appropriate modelling structure to show LTBI

Date: 18th August 2014 Name of first reviewer: Peter Auguste Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Cost-effectiveness of latent tuberculosis screening before steroid therapy for idiopathic nephrotic syndrome in children
First author	Laskin
Co-authors	J Goebel, JR Starke, DP Schauer
Source of publication Journal yy;vol(issue):pp	American journal of kidney diseases 2013;61(1):22-32
Language	English language
Publication type	Journal article
Baseline characteristics	
Population	Immunosuppressed (Idiopathic nephrotic syndrome in children): children up to five years old with idiopathic syndrome
Intervention(s)	Interferon-gamma release assays (second model)
Comparator(s)	Tuberculin skin test
Outcome(s)	Marginal cost per quality-adjusted life-years (cost per QALY)
Study design	Cost-effectiveness analysis
Methods	
Setting and location	Not reported
Study perspective	Societal perspective
Time horizon	Life-time horizon with a three-month cycle length
Discount rate	3% per annum on costs and benefits
Measurement of effectiveness	Quality- adjusted life-years
Measurement and valuation of preference based outcomes	Not reported
Resource use and costs	Screening tests, nephrotic onset, nephrotic relapse and treatment of LTBI/TB
Currency, price date and conversion	US\$, 2010 prices
Model type	Decision tree structure to model the short term events followed by a Markov modelling structure (Well, LTBI, TB, nephrotic relapse and dead) for the longer-term events
Assumptions	 Children in the model are assumed to be adherent to the medication Initial risk of reactivation decreases by 10% per decade Children can only develop active TB on one occasion throughout their lifetime After presentation with LTBI, children were not allowed to be screened again for LTBI In the model, children did not develop multidrug-resistant disease Authors assumed that people surviving acute infection have decreased lung function, hence, lower utility values
Analytical methods	These authors conducted one-way and two-way sensitivity analyses by changing key model input parameters to determine the impact on the deterministic results. Additionally, probabilistic sensitivity analysis (PSA) was undertaken to determine the uncertainty in the key model input

	parameters
Results	
Study parameters	Screening test characteristics, prevalence, nephrotic onset, nephrotic relapse, mortality and treatment of LTBI/TB
Incremental costs and outcomes	In the base-case analysis, universal IGRA was less costly and more effective than universal TST, US\$2300 vs. US\$2480 and 29.3355 vs. 29.3347 QALYs, respectively. However the 'no screening' strategy dominated the other strategies (universal IGRA, universal TST) being less costly and more effective
Characterising uncertainty	The base-case results were robust when indirect medical costs were excluded from the analysis
	In the secondary model, targeted screening with a questionnaire followed by IGRA was cost-effective compared with no screening at a prevalence >4.9%
Discussion	
Study findings	These authors demonstrated that universal IGRA was less costly and produced moderately more QALYs compared to universal TST
Limitations	 Lack of gold standard for the diagnosis of LTBI in this patient population The authors acknowledged that indeterminate results and the need for venepuncture. They suggested that indeterminate results which can lead to false-negative results in children may have an impact on the overall results
Generalizability	The model presented here may be useful to determine the cost-effectiveness of IGRAs compared with TST for the diagnosis of LTBI in children with idiopathic nephrotic syndrome. The results presented here suggested that the 'no screen' strategy was the dominant strategy compared to universal IGRA and universal TST alone. However, these results should be interpreted with caution because the discounted and undiscounted costs were similar in the base case results
Other	
Source of funding	No source of funding to conduct study has been stated
Conflicts of interest	No conflicts of interest declared
Comments	A discount rate of 3% per annum was applied both to the costs and benefits. These authors presented results both on the undiscounted and discounted costs and benefits. From these results presented, the undiscounted and discounted costs are identical.
	These authors have not distinguished between the IGRAs being used in the model. They justified this by suggesting that the use of IGRAs in this population has not yet been approved
Authors conclusion	

Authors conclusion

Based on the results, these authors demonstrated that at a LTBI prevalence of 1.1%, both universal testing and targeted TST testing are not cost-effective prior to commencing treatment for five-year olds who are newly diagnosed with idiopathic nephrotic syndrome

Reviewer's conclusion

The model used here may be useful, and adds to the existing literature to demonstrate the various screening strategies for the diagnosis of LTBI in a population at risk of immunosuppression. The model includes key health states to show the disease progression of LTBI. Given the limitations outlined by the authors, these results showed that the no screening strategy dominated other strategies compared in the model. However, these results should be interpreted with caution because the undiscounted and discounted costs are similar

Date: 19th August, 2014 Name of first reviewer: Peter Auguste Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Priorities for screening and treatment of latent tuberculosis infection in the United States
First author	Linas
Co-authors	AY Wong, KA Freedberg and CR Horsburgh
Source of publication Journal yy;vol(issue):pp	American journal respiratory and critical care medicine 2011;184:590-601
Language	English language
Publication type	Journal article
Baseline characteristics	
Population	Various risk groups (immunocompromised and recently arrived immigrants)
Intervention(s)	Interferon-gamma release assays (IGRAs), Tuberculin skin test (TST)
Comparator(s)	No screening
Outcome(s)	Number needed to screen to prevent one case of active TB, life expectancy, quality-adjusted life expectancy
Study design	Cost-effectiveness analysis
Methods	
Setting and location	Setting not reported
Study perspective	Health service
Time horizon	Lifetime horizon
Discount rate	3% per annum for costs and benefits
Measurement of effectiveness	Health-related quality of life
Measurement and valuation of preference based outcomes	Euroqol five dimensions (EQ-5D) and Medical Outcomes Study (SF-36)
Resource use and costs	Costs for screening LTBI with TST, IGRA, costs of treatment of LTBI and active TB, costs of treatment of adverse events
Currency, price date and conversion	US\$, 2011
Model type	Markov model (health states included, LTBI with Isoniazid (INH), LTBI no INH, INH related hepatitis, < 6 months INH, 6-8 months INH, 9 months INH, Active TB, post active TB and death)
Assumptions	 People who did not return for TST reading were not eligible for INH therapy Approximately 10% of TST-positive persons lose their skin test reactivity over a decade of follow-up. People here are believed to have self-cured. These authors assumed that a 10% reduction in the rate of reactivation each year The health-related quality of life for people cured for active TB was assumed to be the same for healthy people High-risk groups for screening were already identified and managed by existing resources, and did not require programmatic costs associated with expanded screening interventions
Analytical methods	Authors conducted one- and two-way sensitivity analysis by varying all

	model input parameters to explore the uncertainty in these parameter estimates
Results	
Study parameters	Estimates of the prevalence of true LTBI in each risk-group, sensitivity and specificity for IGRA and TST, probability of people with TST +ve who start INH treatment, probability of INH-related hepatitis and utility values for various health states
Incremental costs and outcomes	People who had end-stage renal disease (ESRD), the reported ICER for TST screen compared to no screen was \$824, 500 and \$1, 168, 300 for the IGRA strategy compared with no screen
	In the base-case analysis, for people who are HIV-infected, TST screen was marginally more costly and more effective than the no screen option with an ICER of \$12, 800. In this same sub-group, IGRA was marginally more costly and more effective than the no screen option with an ICER of \$23, 800
	For people who were on immunosuppressive medication, the reported ICER for TST screen compared to no screen was \$129,000 and \$227,900 for the IGRA screen compared with no screen
	For people who were recent immigrant adults, TST screening strategy dominated the no screen strategy. Whilst IGRA was marginally more costly and more effective than the no screen strategy with an ICER of \$35, 200
Characterising uncertainty	Various sensitivity analyses were conducted. Results from the sensitivity analysis showed that increasing the reactivation TB rate in people who are immunosuppressive reduced the ICER to below \$100,000 per QALY. Additionally, increasing the proportion of people with INH-induced hepatitis did not have an impact on the results. The base-case results were sensitive to changes in the health-related quality of life of people treated for active TB. The authors applied a 10% decrement on utility instead of assuming people returned to full health. The results demonstrated that screening with IGRA or TST the ICER was less than \$100,000 per QALY
Discussion	
Study findings	Based on the results reported by these authors, people who are taking immunosuppressive medications, TST screen was not likely to be cost-effectives to the no screening strategy. Similar results were reported for people with ESRD
Limitations	There were some limitations to which the authors acknowledged
	 There are no prospective observational data in the united stated to inform on the rate of reactivation TB. The availability of INH prophylaxis for patients with identified LTBI renders natural history cohorts unethical There is no gold standard available to confirm the diagnosis of LTBI The model included direct medical costs, but not indirect costs, such as loss of productivity time and transportation costs
Generalizability	Authors may have used information relevant to setting and location that the study was conducted. However, they have not reported the setting the analysis was undertaken. Hence, compromising the generalizability of the results
Other	
Source of funding	Supported by the National Institute of Allergy and Infectious Diseases (K01AI073193, K24AI062476, R37AI42006)
Conflicts of interest	No conflicts of interest declared

Comments

The model presented here adds to the existing literature on the cost-effectiveness of IGRA compared to TST for the diagnosis of LTBI in various high-risk populations. The model incorporates key health states for the treatment pathway for people being screened and treated for LTBI. Table 3 presents the base-case results, these authors have presented information on the number needed to screen to prevent a case of active TB, discounted lifetime costs per person, undiscounted per person life expectancy, discounted per person quality-adjusted life expectancy (in months) and cost per QALY. From this table of results, we question the authors' values to estimate the ICER given the values presented in this table

Authors conclusion

These authors concluded that the use of IGRA in screening people who are close contacts, infected with HIV, and foreign-born is likely to be cost-effective when compared to TST

Reviewer's conclusion

The model seems useful and adds to the existing literature on the diagnosis of LTBI. However, these authors have not suggested which IGRA is being used in the model. In terms of diagnosing LTBI, the sensitivity and/or specificity may differ between these populations

Date: 28th August, 2014
Name of first reviewer: Peter Auguste
Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Clinical diagnosis and management of tuberculosis, and measures for its prevention and control: cost-effectiveness analysis of interferon gamma release assay (IGRA) testing for latent tuberculosis
First author	CG117
Co-authors	Not applicable
Source of publication Journal yy;vol(issue):pp	Clinical guideline
Language	English language
Publication type	Clinical guideline
Baseline characteristics	
Population	Recently arrived adults from high endemic countries with active TB
Intervention(s)	IGRA, tuberculin (TST) followed by IGRA for people with +ve TST results, no testing
Comparator(s)	TST
Outcome(s)	Cost per quality adjusted life-year (cost per QALY)
Study design	Cost-effectiveness analysis
Methods	
Setting and location	UK
Study perspective	National Health Service (NHS) and Personal Social Service (PSS) perspective
Time horizon	15-year time horizon
Discount rate	3.5% per annum on costs and benefits
Measurement of effectiveness	QALY
Measurement and valuation of preference based outcomes	Not reported
Resource use and costs	Cost of assessment of active TB, cost of tests (IGRA and TST), cost of treatment (LTBI and active TB)
Currency, price date and conversion	UK £ sterling, 2008/2009 prices
Model type	Decision tree structure
Assumptions	 Authors used a decision tree model structure which does not take into account the dynamic transmission of tuberculosis. Assumed that each primary case of active TB is associated with a fixed number of secondary cases People who did not have a TST test result were assumed to have the same prevalence of LTBI and of active disease as those who do An average time delay of 0.5 years before people with LTBI who go on to develop active TB For people without current LTBI or active TB who develop TB later in life, authors assumed this will occur after an average time delay of 0.5 years The number of secondary cases is assumed to be reduced when the index case is detected through contact tracing

	 Side-effects as a result of treatment were ignored People who started treatment for LTBI/TB were assumed to have adhere to treatment
Analytical methods	One-way and two-way sensitivity analyses were performed on key model input parameters (costs of the IGRA, return rate of the TST results, secondary cases, test accuracies, varying the prevalence of LTBI and varying the transformation from LTBI to active TB)
Results	
Study parameters	Prevalence of LTBI in population, proportion of infected people with active TB. Proportion of TST results read, sensitivity and specificity (IGRA and TST), cost of assessment of active TB, cost of tests, cost of treatment
Incremental costs and outcomes	TST/IGRA compared with the no testing strategy was more costly and produced more QALYs, £316 vs. £403 and 9.08686 vs. 9.99015, respectively. IGRA compared with no testing strategy was more costly, and produced more QALYs. Both strategies were likely to be cost-effective with incremental cost-effectiveness ratios (ICERs) below the £30, 000 per QALY threshold
Characterising uncertainty	There was no impact on the results when the return rate for TST test results where changed. The increase in the number of secondary cases had a positive effect on the cost-effectiveness results. Results from varying the accuracy of the tests showed that at high levels of specificity of an IGRA test the results showed to be cost-effective at £20, 000 per QALY. For the TST test alone, when the specificity was increased to 80% or above, the results showed to be cost-effective. Conversely, the specificity of the combined strategy needed to be low to achieve £20, 000 per QALY
Discussion	
Study findings	The results showed that TST +ve followed by IGRA and IGRA testing strategies were associated with ICERs below £30, 000 per QALY compared with no testing strategy. The results from the sensitivity analyses showed that varying the cost of an IGRA (£50 to £60) changes the direction of the cost-effectiveness results
Limitations	The model used here is subject to limitations, but these were not acknowledged by the authors
Generalizability	The model structure used here may be helpful to show the cost-effectiveness between testing strategies for LTBI in this population. The authors have stated assumptions made in the model but have not fully accounted for uncertainty in the analyses, hence compromising the generalizability of the model
Other	
Source of funding	NICE
Conflicts of interest	Not reported
Comments	The model here adds to the existing literature on the use of IGRA and TST for the diagnosis of LTBI in the recently arrived immigrants from high prevalence of TB countries. The model structure used here, along with some of the assumptions are subject to limitations which were not highlighted by the authors
Authors conclusion	
These authors concluded that IGR effective	A and the TST followed by IGRA testing strategies are likely to be cost-
Reviewer's conclusion	

Given the assumptions and the limitations of the model, these results demonstrated that TST +ve followed by IGRA and IGRA testing strategies are likely to be cost-effective in a population with people from high endemic TB countries. The decision tree structure may be subject to some limitations, for example, introducing too much static for people developing active TB

Date: 15th August 2014 Name of first reviewer: Peter Auguste Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Modelling the cost-effectiveness of strategies to prevent tuberculosis in child contacts in a high-burden setting
First author	A Mandalakas
Co-authors	A Hesseling, R Gie, H Schaaf, B Marais
Source of publication Journal yy;vol(issue):pp	Thorax 2012;68(3):247-255
Language	English Language
Publication type	Journal article
Inclusion criteria/study eligibil	ity/PICOS
Population	Children
Intervention(s)	QFT and T-SPOT.TB
Comparator(s)	TST
Outcome(s)	Cost per life year saved (LYS)
Study design	Cost-effectiveness analysis
Methods	
Setting and location	High-burden TB setting
Study perspective	Provider and societal perspectives
Comparators	TST alone, IGRA alone, +ve TST followed by IGRA and -ve TST followed by IGRA
Time horizon	15 year time horizon
Discount rate	3% discount rate per annum
Measurement of effectiveness	Life years saved
Measurement and valuation of preference based outcomes	Not applicable
Resource use and costs	Tests for infection, chest radiography, culture, HIV testing, in/outpatient visits, laboratory tests, treatment for LTBI and TB
Currency, price date and conversion	US dollars, 2009 prices, conversion not stated
Model type	Decision tree structure with Markov nodes (no infection, re-infection, LTBI, PTB, disseminated TB, death and death from other causes)
Assumptions	When used as a confirmatory test following an accurate tuberculin skin test (TST), the interferon γ release assay (IGRA) is 100% accurate (sensitive and specific) Test properties do not vary by age The duration of protection offered by a 6-month course of IPT is limited to the initial exposure and for the duration of treatment only Following Mycobacterium tuberculosis infection and completion of IPT, children remain M tuberculosis infected Following the initial exposure, children cannot progress from the M tuberculosis infection state to active disease states unless they are re-infected Children with a history of household TB exposure have the same subsequent annual risk of infection as calculated by formal surveys in the setting

	Children can only progress to the TB death state from the pulmonary or disseminated TB states. The disseminated disease state includes TB meningitis and other forms of non-pulmonary TB Children have the same risk of disease progression following each subsequent TB exposure Isoniazid-related adverse events are negligible/rare in children
Results	
Study parameters	Sensitivity and specificity for TST, IGRA, TST +ve followed by IGRA, TST -ve followed by IGRA. Transition probabilities between health states
Incremental costs and outcomes	In the 0-2 cohort, the no testing strategy dominated other strategies, it was least costly and most effective
	In the 0-3 cohort, the TST –ve followed by IGRA was the most cost-effective with a reported ICER of approximately US\$233 000 per LYS
Characterising uncertainty	One-way sensitivity analysis In the 0-2 cohort, TST –ve followed by IGRA strategy was the most effective strategy when reducing the sensitivity of TST In the 3-5 cohort, the no testing strategy dominated the TST –ve followed by IGRA when increasing the estimates of sensitivity of TST Increasing the rates of LTBI, the IGRA after negative TST became more effective that the no testing strategy in both age cohorts
Discussion	
Study findings	In the 0-2 cohort, the no testing strategy dominated other strategies. In the 3-5 cohort, the TST –ve strategy followed by IGRA was the most cost-effective
Limitations	Test performance estimates were derived from studies that examined the test accuracy for the identification of TB disease. These authors assumed that IPT usage was similar across strategies
Generalizability	Unclear
Other	
Source of funding	Thrasher Research Fund
Conflicts of interest	No conflicts of interest
Comments	Authors have not conducted probabilistic sensitivity analysis
Authors conclusion	1
Companies for TD infortion and an	

Screening for TB infection and provision of IPT in young children < 5 years is highly cost-effective

Reviewer's conclusion

These authors used an appropriate modelling technique to estimate the cost-effectiveness of various strategies for the prevention of TB. The model was subject to some limitations, for which the authors acknowledge and the impact these would have made to the results. Authors have conducted one-way sensitivity analysis, but have not undertaken probabilistic sensitivity analysis to show the joint parameter uncertainty and its impact on the base-case results

Date: 20th August, 2014 Name of first reviewer: Peter Auguste Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Community-based evaluation of immigrant tuberculosis screening using interferon-gamma release assays and tuberculin skin testing: observational study and economic analysis
First author	M Pareek 2013
Co-authors	M Bond, J Shorey, S Seneviratne et al.
Source of publication Journal yy;vol(issue):pp	Thorax 201;68:230-239
Language	English language
Publication type	Journal article
Baseline characteristics	
Population Intervention(s)	Recently arrived immigrants to the UK: Recently arrived immigrants to the UK (arrival within the last five years, aged ≥ 16 years (with symptoms of TB) or from a country with a TB incidence of ≥ 40/100 000 (asymptomatic) T-SPOT.TB alone, QFT-GIT alone, TST plus confirmatory T-SPOT.TB (if
	TST positive), and TST plus confirmatory QFT-GIT (if TST positive)
Comparator(s)	No screen
Outcome(s)	Cost per case of active TB avoided
Study design	Cost-effectiveness analysis
Methods	
Setting and location	Primary care setting and UK
Study perspective	National health service (NHS) perspective
Time horizon	20-year time horizon
Discount rate	3.5% per annum for costs and benefits
Measurement of effectiveness	Cases of active TB
Measurement and valuation of preference based outcomes	Not applicable
Resource use and costs	Costs for screening LTBI with TST, IGRA, costs of treatment of LTBI and active TB, costs of treatment of adverse events
Currency, price date and conversion	UK £ sterling, 2010
Model type	Decision tree model
Assumptions	A number of assumptions were made for which the authors acknowledged:-
	 Immigrants are screened for LTBI once at the start of the time horizon Tuberculin skin test positivity is classified as per UK guidelines (≥6mm in BCG unvaccinated and ≥15mm in BCG vaccinated All IGRA results are determinate and no repeat testing is required The proportion of immigrants with HIV is reflective of the HIV prevalence in their country of origin A proportion of immigrants with LTBI are infected by a resistant strain of Mycobacterium tuberculosis A proportion of active tuberculosis cases are drug-resistant Amongst those individuals identified with LTBI and treated with

	chemoprophylaxis, a three month course of rifampicin and isoniazid is considered to have equivalent efficacy to six months of isoniazid
	8) Individuals who commence chemoprophylaxis and subsequently develop drug-induced liver injury which does not resolve are assumed to only complete 4 weeks of therapy which affords no reduction in the risk of progressing from LTBI to active TB
	9) No individuals who develop drug induced liver injury die due to this adverse effect
	10) Equal proportions of HIV negative and positive immigrants develop drug-induced liver injury from chemoprophylaxis
	11) Chemoprophylaxis will have no efficacy in those immigrants who have a resistant strain causing their LTBI
	12) An individual with LTBI who has completed successful chemoprophylaxis is assumed to have cleared the infection with Mycobacterium tuberculosis and will not experience any further
	outcomes during the time course of the model (such as reinfection) 13) An individual who does not have LTBI on arrival in the UK does not become infected during the time-period considered by the model
	14) Drug sensitive and drug resistant strains are assumed to be equally transmissible (in other words drug resistance does not result in any fitness cost)
	15) There is no HIV acquisition within the cohort during the time horizon of the model
	16) Data on the test performance of the IGRA was based on the most recent meta-analysis obtained from meta-analyses where sensitivity was calculated using culture-confirmed active TB as the reference standard whilst specificity was calculated from BCG-vaccinated individuals at low risk of infection
	 17) Point estimates for test sensitivity were assumed to be different for HIV positive individuals 18) All individuals diagnosed with drug-sensitive active tuberculosis are assumed to accept treatment for active TB and to complete the 6 month course of drugs 19) All individuals diagnosed with drug-resistant active tuberculosis are assumed to accept treatment for active TB and to complete the course of drugs
Analytical methods	Authors conducted one-way sensitivity analyses on key model input parameters to explore the impact on the results of the cost-effectiveness
Results	
Study parameters	HIV prevalence, drug-resistant tuberculosis, sensitivity and specificity of various screening tests, prevalence of LTBI and progression rate from LTBI to active tuberculosis disease
Incremental costs and outcomes	Base-case results of the cost-effectiveness showed that the screening strategy no port-of-entry chest x-ray and screening with one-step QFT-GIT was cost-effective with an ICER of 21,570 per case of TB avoided and the no port-of-entry chest x-ray and screening with one-step QFT-GIT was cost-effective, with an ICER of £31,870 per case of active TB avoided. These strategies were cost-effective in immigrants whose country of origin had an incidence of TB of 250/100,000 and 150/100,000, respectively
Characterising uncertainty	Results from the sensitivity analyses showed that varying some key model input parameters affected the ICER for each of the strategies, but the order of the cost-effectiveness results remained the same. The authors found that varying the diagnostic specificity of the different screening tests. Reducing the specificity of the screening strategies resulted in high ICERs. Additionally, changing the proportion of immigrants who commenced, and

	adhered ti treated also had an impact of the results, making them less cost- effective. Furthermore, the estimates for ICERs were sensitive to changes in the costs of screening tests
Discussion	
Study findings	Using the decision analytical model, these authors demonstrated that screening of recently arrived immigrants from countries of origin with moderate (not defined) TB incidence is likely to be cost-effective by the use of one-step IGRA testing for LTBI
Limitations	There were some limitations to which the authors have acknowledged while undertaking this study. They highlighted that the sample size was relatively small and not all of the immigrants received the three tests. Additionally, other areas in the UK may have a greater number of immigrants compared to the areas that have been included in the study. Finally, in line with the UK guidelines, the HIV status of immigrants was not tested
Generalizability	The model structure used here may be helpful to show the cost-effectiveness between testing strategies for LTBI in this population. The authors have stated assumptions made in the model, and have used information relevant to the setting in which the analyses were undertaken
Other	
Source of funding	This study was conducted at St. Mary's Hospital, Imperial College Healthcare NHS Trust which is supported by the NIHR Biomedical Research Centre funding scheme. Westminster Primary Care Trust provided funding for this project
Conflicts of interest	AL is inventor for patents underpinning T-cell-based diagnosis. The ESAT-6/CFP-10 ELISpot was commercialised by an Oxford University spin-out company (Oxford Immunotec, Abingdon, UK) in which Oxford University and Professor Lalvani have a minority share of equity. All other authors have no conflict of interest
Comments	Drug induced liver injury as a result of treatment for active TB/LTBI. The authors suggested that this may be a rare occurrence in this population. However, they have not included other adverse events such as hepatitis C
	Authors have not conducted any probabilistic sensitivity analysis
	The illustrative modelling structure was presented in a supplementary web- appendix, but unfortunately, these figures were illegible
Authors conclusion	

The authors concluded that immigrant screening may be cost-effective in the UK by removing the mandatory chest x-ray on arrival of immigrants and to screen for LTBI with an IGRA. They suggested that this screening should be undertaken in recently arrived people from countries where the incidence is greater than 250, 150 or 40 cases per 100,000 of active TB

Reviewer's conclusion

These authors evaluated, with the aid of a decision analytical model, the cost-effectiveness of various screening strategies for LTBI. They have collected data to inform on the performance (sensitivity and specificity) of these test based on immigrants from three areas in the UK. The methods used to undertake these analyses seem to be robust, but due to the illegibility of the modelling structure, it was difficult to appraise the model

Date: 22nd August, 2014
Name of first reviewer: Peter Auguste
Name of second reviewer: Alexander Tsertsvadze

Study details	
Study title	Cost-effectiveness of quantiferon testing before indication of biological therapy in inflammatory bowel disease
First author	A Swaminath
Co-authors	N Bhadelia and C Wang
Source of publication Journal yy;vol(issue):pp	Inflammatory bowel diseases 2013;19(11):2444-2449
Language	English language
Publication type	Journal article
Baseline characteristics	
Population	Immunosuppression (inflammatory bowel disease before anti-TNF-α): Hypothetical cohort of people with moderate to severe active Crohn's disease currently being treated with immunomodulators or prednisone
Intervention(s)	QuantiFERON- Gold (QFT-G)
Comparator(s)	Tuberculin skin test (TST)
Outcome(s)	Cost per false negative cases of LTBI avoided, cost per TB deaths avoided, cost per reactivation TB avoided (this can be derived from the information provided)
Study design	Cost-effectiveness analysis
Methods	
Setting and location	Not reported
Study perspective	Health care payer
Time horizon	One-year time horizon
Discount rate	Not applicable
Measurement of effectiveness	Reduction of reactivation of tuberculosis (TB), death from reactivation of TB, false positive test results
Measurement and valuation of preference based outcomes	Not applicable
Resource use and costs	Costs for screening LTBI with QFT-G, TST, costs of treatment of LTBI and , costs of treatment of adverse events, survival of reactivation and death from reactivation
Currency, price date and conversion	US\$, price year unknown
Model type	Decision tree structure
Assumptions	 If the model showed superiority of testing within the first year, benefits will increase over longer periods An indeterminate test result would lead to a second test immediately A second indeterminate result would lead to a consultation rather than treatment with anti-TNF-α Some outcomes were not modelled because they were considered rare: secondary cases of TB from reactivation, reactivation TB despite successful treatment with INH, outcomes resulting from indeterminate tests or non-adherence with LTBI prophylaxis

	5) The authors suggested that multidrug resistance is rare in the USA, hence this was not modelled
Analytical methods	Authors conducted one-way sensitivity analysis by varying key model input parameters to explore the uncertainty in these parameter estimates. Two-way sensitivity analyses were also conducted and the results were presented in an online supplement of the paper
Results	
Study parameters	Estimates of the prevalence of true LTBI in the USA, sensitivity and specificity for QFT-G and TST, anergy TST in immunosuppressed people, reactivation TB with biological exposure, probability of death from reactivation, side-effect (hepatitis) of INH treatment, probability of surviving from hepatitis, costs (QFT-G, TST, LTBI treatment, survival of reactivation and death from reactivation)
Incremental costs and outcomes	In a cohort of 1000 immunosuppressed IBD people being screened for LTBI, the QFT-G strategy was cheaper than the TST strategy, \$84, 850 compared with \$156, 370, respectively. The use of QFT-G would avoid 30 false-negative cases, 4.92 TB reactivations and 1.4 deaths compared with TST
Characterising uncertainty	From the sensitivity analysis, the QFT-G strategy continued to dominate the TST strategy by varying key model input parameters. The authors suggested that the results would change at extreme values, but these variations are unlikely to be unrealistic in reality
Discussion	
Study findings	The base-case results showed that QFT-G dominated the TST strategy. QFT-G was least costly, and produced greater benefits
Limitations	 The accuracy of the model structure to reflect what happens in reality is based on the model input parameters used. There is no gold standard for the diagnosis of LTBI. The costs used in the model are specific to the USA
Generalizability	The generalizability of these results may be compromised here because of the lack of reporting on the setting and location and not presenting the cost-
	year for which these costs represent
Other	year for which these costs represent
Other Source of funding	year for which these costs represent Dr. Wang is partially funded by NIH grant KM1 CA156709-01
Source of funding	Dr. Wang is partially funded by NIH grant KM1 CA156709-01

Based on the results of the cost-effectiveness analysis, they concluded that the QFT-G strategy dominated TST in this population, and suggested that QFT-G should be the choice of testing strategy for identifying LTBI in people who are immunosuppressed

Reviewer's conclusion

This model adds to the existing literature on the diagnosis of LTBI in an immunosuppressed population. The model is subject to some limitations to which the authors acknowledged. However, the generalizability of the model is somewhat compromised by no suggesting the study setting within which the analyses were conducted, and the cost year was not mentioned. Furthermore, these authors have not stated in this paper the index used to

inflate the cost information that was obtained from published sources

11.13 Appendix 13. Critical appraisal of the economic evaluation using the CHEERS checklist

Table 60. CHEERS quality assessment checklist for economic evaluation studies

Assessment	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al.,	Linas et al.,	Mandala kas et	NICE CG117 ¹	Pareek et al.,	Swamin ath et
					2013 ¹⁹⁷	2011 ¹⁹⁸	al., 2013 ²⁰⁰	0	2013 ⁷⁶	al., 2014 ¹⁹⁹
Title	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Abstract	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Introduction										
Background and objectives	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Methods										
Target population and subgroups	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Setting and location	UNC	UNC	UNC	UNC	UNC	UNC	Y	Y	Y	Y
Study perspective	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Comparators	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Time horizon	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Discount rate	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Choice of health outcomes	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Measurement of effectiveness	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Measurement and valuation of preference-based outcomes	N	N	N	N	N	Y	N/A	N	Y	Y
Estimating resources and costs	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Currency, price date, and conversion	Y	Y	Y	Y	Y	Y	Y	Y	Y	UNC
Choice of model	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Assumptions	Y	Y	Y	UNC	Y	Y	Y	Y	Y	Y
Analytical methods	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Results										
Study parameters	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Incremental costs and outcomes	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Characterising uncertainty	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Discussion										
Study findings	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Limitations	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Assessment	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al., 2013 ¹⁹⁷	Linas et al., 2011 ¹⁹⁸	Mandala kas et al., 2013 ²⁰⁰	NICE CG117 ¹	Pareek et al., 2013 ⁷⁶	Swamin ath et al., 2014 ¹⁹⁹
Generalizability	Y	Y	UNC	Y	UNC	UNC	UNC	Y	Y	N
Other										
Source of funding	Y	Y	UNC	Y	Y	Y	Y	Y	Y	Y
Conflicts of interest	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
N- No; N/A- Not Applicable; Y- Yes; UNC-Unclear		•	•	•	•	•		•	•	

11.14 Appendix 14. Critical appraisal of the economic models using an adapted Philips et al., 2004 checklist

Table 61. Philips' quality assessment checklist for studies that include an economic model

DI						Str	udies				
Philips'	criteria	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al., 2013 ¹⁹⁷	Linas et al., 2011 ¹⁹⁸	Mandalak as et al., 2013 ²⁰⁰	NICE CG117 ¹⁰	Pareek et al., 2013 ⁷⁶	Swaminath et al., 2014 ¹⁹⁹
STRUC	TURE	3									
1.	Is there a clear statement of the decision problem?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2.	Is the objective of the model specified and consistent with the stated decision problem?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3.	Is the primary decision maker specified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
4.	Is the perspective of the model stated clearly?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
5.	Are the model inputs consistent with the stated perspective?	N	N	N	Y	Y	Y	Y	Y	Y	Y
6.	Has the scope of the model been stated and justified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7.	Are the outcomes of the model consistent with the perspective, scope and overall objective of the model?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
8.	Is the structure of the model consistent with a coherent theory of the health condition under evaluation?	Y	Y	Y	Y	Y	Y	Y	Y	UNC	Y
9.	Are the sources of the data used to develop the structure of the model specified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
10.	Are the causal relationships described by the model structure justified appropriately?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
11.	Are the structural assumptions	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

DI III II					St	udies				
Philips' criteria	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al., 2013 ¹⁹⁷	Linas et al., 2011 ¹⁹⁸	Mandalak as et al., 2013 ²⁰⁰	NICE CG117 ¹⁰	Pareek et al., 2013 ⁷⁶	Swaminath et al., 2014 ¹⁹⁹
transparent and justified?										
Are the structural assumptions reasonable given the overall objective, perspective and scope 12. of the model?	Y	Y	Y	Y	Y	Y	Y	N	Y	Y
Is there a clear definition of the options under evaluation?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Have all feasible and practical options been evaluated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
Is there justification for the exclusion of feasible options?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N
Is the chosen model type appropriate given the decision problem and specified casual 16. relationships within the model?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Is the time horizon of the model sufficient to reflect all important 17. differences between the options?		Y	Y	Y	Y	Y	Y	Y	Y	Y
Are the time horizon of the model, the duration of treatment and the duration of treatment described and justified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Do the disease states (state transition model) or the pathway (decision tree model) reflect the underlying biological process of the disease in question and the 19. impact of interventions?	v	Y	Y	Y	Y	Y	Y	Y	Y	Y
Is the cycle length defined and justified in terms of the natural 20. history of disease?	Y	Y	Y	Y	Y	N/A	Y	N/A	N/A	N/A

D1 '11' 4	•,					St	udies				
Philips	criteria	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al., 2013 ¹⁹⁷	Linas et al., 2011 ¹⁹⁸	Mandalak as et al., 2013 ²⁰⁰	NICE CG117 ¹⁰	Pareek et al., 2013 ⁷⁶	Swaminath et al., 2014 ¹⁹⁹
21.	Are the data identification methods transparent and appropriate given the objectives of the model?	UNC	Y	UNC	Y	Y	Y	Y	Y	Y	Y
22.	Where choices have been made between data sources are these justified appropriately?	UNC	UNC	UNC	UNC	UNC	UNC	UNC	UNC	UNC	UNC
23.	Has particular attention been paid to identifying data for the important parameters of the model?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
24.	Has the quality of the data been assessed appropriately?	UNC	UNC	UNC	UNC	UNC	UNC	UNC	UNC	UNC	UNC
25.	Where expert opinion has been used are the methods described and justified?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
26.	Is the data modelling methodology based on justifiable statistical and epidemiological techniques?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
27.	Is the choice of baseline data described and justified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
28.	Are transition probabilities calculated appropriately?	Y	Y	Y	Y	Y	N/A	Y	N/A	Y	N/A
29.	Has a half-cycle correction been applied to both costs and outcomes?	N	N	N	N	N	N	N	N	N	N
30.	If not, has the omission been justified?	N	N	N	N	N	N	N	N	N	N
31.	If relative treatment effects have been derived from trial data, have they been synthesised using appropriate techniques?	N/A	N/A	N/A	N/A	N/A	N/A	UNC	N/A	N/A	N/A

DI ''' 1	•. •					St	udies				
Philips'	criteria	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al., 2013 ¹⁹⁷	Linas et al., 2011 ¹⁹⁸	Mandalak as et al., 2013 ²⁰⁰	NICE CG117 ¹⁰	Pareek et al., 2013 ⁷⁶	Swaminath et al., 2014 ¹⁹⁹
32.	Have the methods and assumptions used to extrapolate short-term results to final outcomes been documented and justified?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
33.	Have alternative extrapolation assumptions been explored through sensitivity analysis?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
34.	Have assumptions regarding the continuing effect of treatment once treatment is complete been documented and justified?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
35.	Have alternative assumptions regarding the continuing effect of treatment been explored through sensitivity analysis	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
36.	Are the costs incorporated into the model justified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
37.	Has the source for all costs been described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
38.	Have discount rates been described and justified given the target decision maker?	Y	Y	Y	Y	Y	Y	Y	Y	Y	N/A
39.	Are the utilities incorporated into the model appropriate?	Y	Y	Y	Y	Y	Y	N/A	Y	N/A	N/A
40.	Is the source of utility weights referenced?	Y	Y	Y	Y	Y	Y	N/A	Y	N/A	N/A
41.	Are the methods of derivation for the utility weights justified?	UNC	UNC	UNC	UNC	UNC	Y	N/A	UNC	N/A	N/A
42.	Have all data incorporated into the model been described and referenced in sufficient detail?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

DI II	•,					St	udies				
Philips'	criteria	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al., 2013 ¹⁹⁷	Linas et al., 2011 ¹⁹⁸	Mandalak as et al., 2013 ²⁰⁰	NICE CG117 ¹⁰	Pareek et al., 2013 ⁷⁶	Swaminath et al., 2014 ¹⁹⁹
43.	Has the use of mutually inconsistent data been justified (i.e. are assumptions and choices appropriate?)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
44.	Is the process of data incorporation transparent?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
45.	If data have been incorporated as distributions, has the choice of distributions for each parameter been described and justified?	N	N	N	N	Y	N/A	N/A	N/A	N/A	N/A
46.	If data have been incorporated as distributions, is it clear that second order uncertainty is reflected?	UNC	UNC	UNC	UNC	Y	N/A	N/A	N/A	N/A	N/A
47.	Have the four principal types of uncertainty been addressed?	N	N	N	N	N	N	N	N	N	N
48.	If not, has the omission of particular forms of uncertainty been justified?	N	N	N	N	N	N	N	N	N	N
49.	Have methodological uncertainties been addressed by running alternative versions of the model with different methodological assumptions?	N	N	N	Y	N/A	N	N	N	Y	N
50.	Is there evidence that structural uncertainties have been addressed via sensitivity analysis?	N	N	N	N	N	N	N	N	N	N
51.	Has heterogeneity been dealt with by running the model separately for different sub-groups?	Y	Y	Y	Y	Y	N	Y	N	Y	N/A
52.	Are the methods of assessment of parameter uncertainty appropriate?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

ta are incorporated as point nates, are the ranges used for tivity analysis stated clearly	Kowada 2010 ¹⁹³	Kowada 2012 ¹⁹⁴	Kowada 2013 ¹⁹⁵	Kowada 2014 ¹⁹⁶	Laskin et al.,	Linas et	Mandalak	NICE	Pareek et	Swaminath
nates, are the ranges used for					2013 ¹⁹⁷	al., 2011 ¹⁹⁸	as et al., 2013 ²⁰⁰	CG117 ¹⁰	al., 2013 ⁷⁶	et al., 2014 ¹⁹⁹
ustified?	Y	Y	Y	Y	Y	Y	UNC	Y	Y	Y
ere evidence that the ematical logic of the model een tested thoroughly before	UNC	UNC	UNC	UNC	UNC	UNC	UNC	Y	UNC	UNC
any counterintuitive results the model explained and fied?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
e model has been calibrated nst independent data, have differences been explained ustified?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
e the results been compared those of previous models any differences in results ained?	Y	Y	Y	N/A	Y	N	Y	N	Y	N
e e ar t	matical logic of the model en tested thoroughly before by counterintuitive results he model explained and ed? model has been calibrated at independent data, have fferences been explained stified? the results been compared those of previous models by differences in results	matical logic of the model en tested thoroughly before my counterintuitive results he model explained and ed? model has been calibrated at independent data, have fferences been explained stified? the results been compared mose of previous models my differences in results ned? UNC N/A Y	matical logic of the model en tested thoroughly before The results he model explained and ed? The model has been calibrated at independent data, have fferences been explained stified? The results been compared those of previous models my differences in results ned?	matical logic of the model en tested thoroughly before The results he model explained and ed? The model has been calibrated at independent data, have fferences been explained stified? The results been compared those of previous models my differences in results ned?	matical logic of the model en tested thoroughly before UNC UNC UNC UNC UNC UNC UNC UN	matical logic of the model en tested thoroughly before UNC UNC UNC UNC UNC UNC UNC UN	matical logic of the model en tested thoroughly before UNC UNC UNC UNC UNC UNC UNC UN	matical logic of the model en tested thoroughly before UNC UNC UNC UNC UNC UNC UNC UN	matical logic of the model en tested thoroughly before UNC UNC UNC UNC UNC UNC UNC UN	matical logic of the model en tested thoroughly before UNC UNC UNC UNC UNC UNC UNC UN

11.15 Appendix 15. Information required to derive diagnostic accuracy of various screening by population

Children

Table 62. Information used to derive sensitivity in the children population

Test	Total tested	Number of positives	Number of positives that developed active TB	Length of follow-up (years)	Source
QFT-G	306	6	0		
TST (≥ 5mm)	306	200	0	3	Higuchi et al., 2009
TST (≥ 10mm)	306	90	0		200)
QFT-GIT	104	21	6		
TST (≥ 5mm)	104	40	6	2 - 4	Diel et al., 2011
TST (≥ 10mm)	104	40	4		
QFT-GIT	5244	2669	39	3.8	Mahomed et al.,
TST (≥ 5mm)	5244	2894	40	3.6	2011a
QFT-G	59	18	10		Noorbakhsh et
TST (≥ 10mm)	59	8	3	1	al., 2011
QFT-GIT	2966	317	11		
TST (≥ 10mm)	2982	663	13	2	Song et al., 2014
TST (≥ 15mm)	2982	231	13		

Table 63. Information used to derive specificity in the children population

Test	Total tested	Number of negatives	Number of negatives that developed active TB	Length of follow-up (years)	Source
QFT-G	306	300	0	3	Higuchi et al., 2009
TST (< 5mm)	306	106	0		
TST (< 10mm)	306	216	0		
QFT-GIT	104	83	0		
TST (< 5mm)	104	64	0	2 - 4	Diel et al., 2011
TST (< 10mm)	104	64	2		

QFT-GIT	5244	2575	13	3.8	Mahomed et al., 2011a
TST (< 5mm)	5244	2350	12		
QFT-G	59	41	0	1	Noorbakhsh et al., 2011
TST (< 10mm)	59	50	7		
QFT-GIT	2966	2649	12		
TST (< 10mm)	2982	2319	10	2	Song et al., 2014
TST (< 15mm)	2982	2751	10		

Immunocompromised

Table 64. Information used to derive sensitivity in the immunocompromised population

Test	Total tested	Number of positives	Number of positives that developed active TB	Length of follow-up (years)	Source
T-SPOT.TB	265	89	4	1.17	Vim at al. 2011
TST (≥ 5mm)	288	26	1	(median)	Kim et al., 2011
QFT-G	30	12	1		
T-SPOT.TB	32	15	0	2	Lee et al., 2009
TST (≥ 10mm)	32	20	1		
QFT-GIT	210	40	1	0.9 (madian)	Moon et al.,
TST (≥ 5mm)	244	39	0	0.8 (median)	2013
QFT-GIT	159	26	3		
TST (≥ 10mm)	169	19	0	1.3 (median)	Lee et al., 2014
TST (≥ 15mm)	169	12	0		
T-SPOT.TB	44	6	1	1.75	Sherkat et al.,
TST (≥ 10mm)	44	8	1	1.75	2014

 $Table\ 65.\ Information\ used\ to\ derive\ specificity\ in\ the\ immunocompromised\ population$

Test	Total tested	Number of negatives	Number of negatives that developed active TB	Length of follow-up (years)	Source
T-SPOT.TB	265	176	0	1.17	Kim et al., 2011
TST (< 5mm)	288	262	3	(median)	
QFT-G	30	18	0		
T-SPOT.TB	32	17	2	2	Lee et al., 2009
TST (< 10mm)	32	12	1		
QFT-GIT	210	170	1	0.8 (median)	Moon et al., 2013
TST (< 5mm)	244	205	2		
QFT-GIT	159	133	2		
TST (≥ 10mm)	169	150	5	1.3 (median)	Lee et al., 2014
TST (≥ 15mm)	169	157	5		
T-SPOT.TB	44	38	0	1.75	Sherkat et al., 2014
TST (≥ 10mm)	44	36	0		

Recently arrived

Table 66. Information required to derive sensitivity in the recently arrived population

Test	Total tested	Number of positives	Number of positives that developed active TB	Length of follow-up (years)	Source
QFT-GIT	815	238	8	2.67	Harstad et al., 2010
TST (≥ 6mm)	810	415	8		
QFT-GIT	327	178	5	2	Kik et al., 2010
T-SPOT.TB	299	181	6		
TST (≥ 15mm)	322	184	7		

Table 67. Information required to derive specificity in the recently arrived population

Test	Total tested	Number of negatives	Number of negatives that developed active TB	Length of follow-up (years)	Source
QFT-GIT	815	577	1	2.67	Harstad et al., 2010
TST (≥ 6mm)	810	395	1		
QFT-GIT	327	149	3	2	Kik et al., 2010
T-SPOT.TB	299	118	2		
TST (≥ 15mm)	322	138	1		

11.16 Appendix 16. Illustrative structures for the immunocompromised, recent arrivals from countries with a high incidence of active TB and general population

Immunocompromised or people at risk of immunosuppression

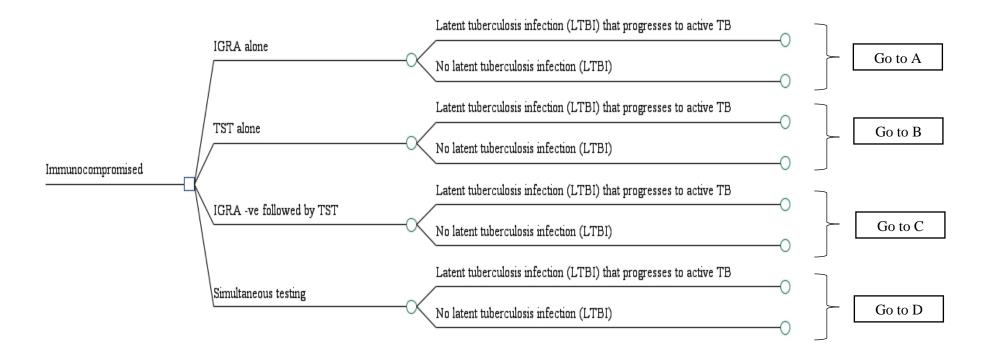


Figure 60. Decision tree pathway for the immunocompromised population

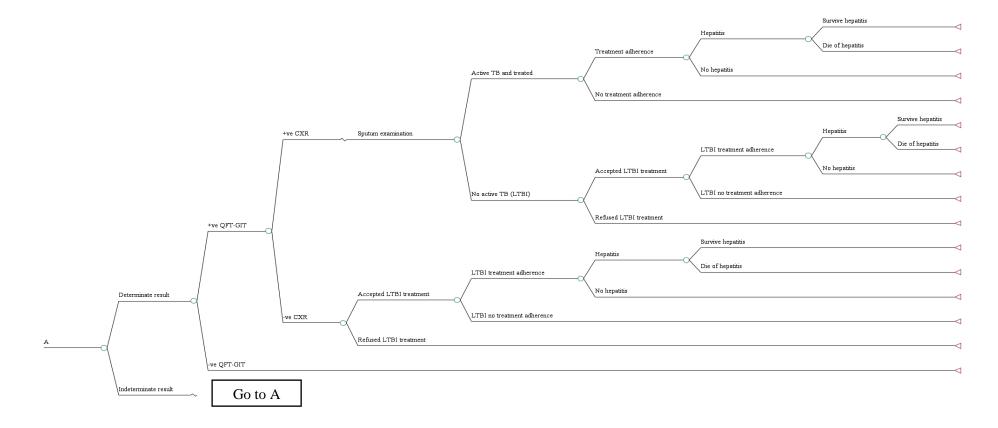


Figure 61. Pathway for the IGRA alone diagnostic strategy in the immunocompromised population

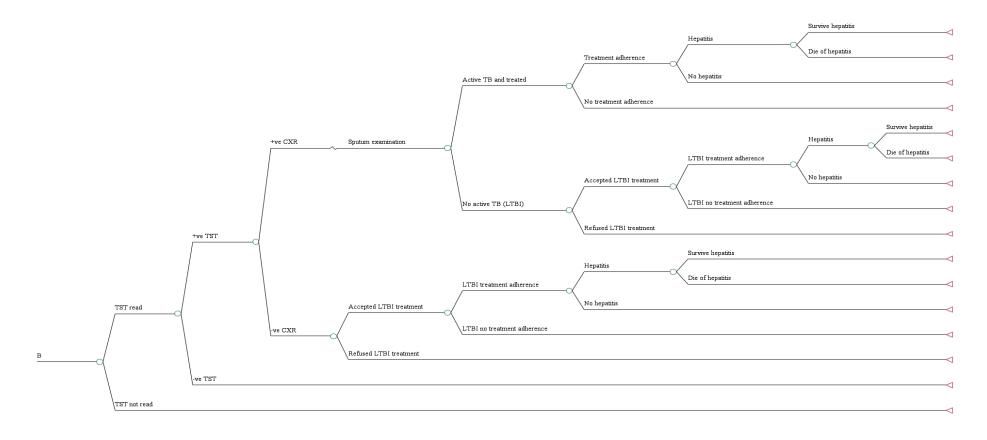


Figure 62. Pathway for the TST alone diagnostic strategy in the immunocompromised population

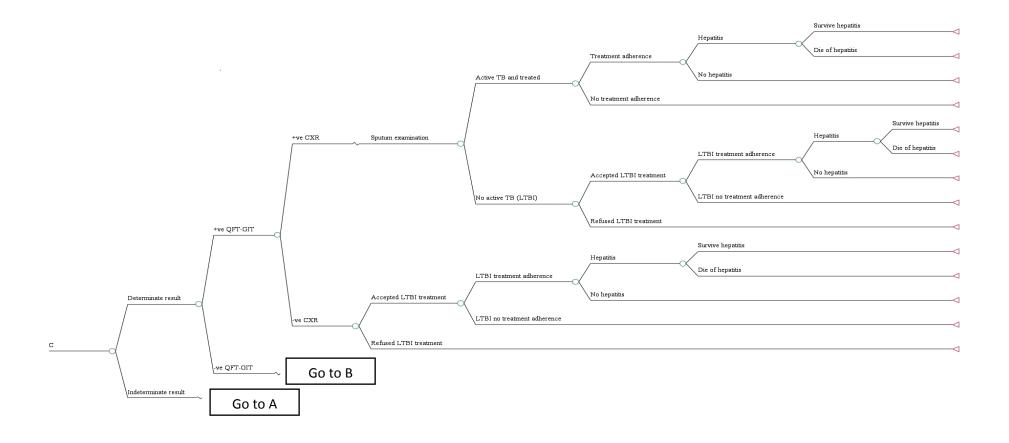


Figure 63. Pathway for the diagnostic strategy IGRA negative followed by TST in the immunocompromised population

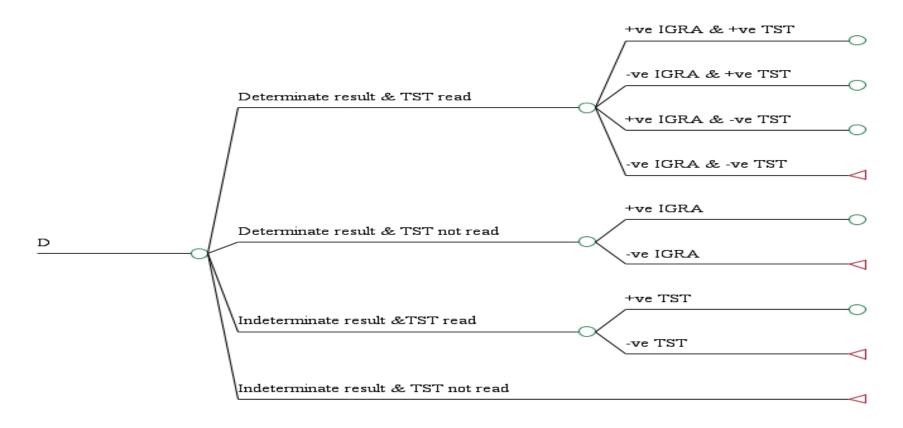


Figure 64. Pathway for the diagnostic strategy IGRA and TST in the immunocompromised population

Recent arrivals from countries with a high incidence of active TB

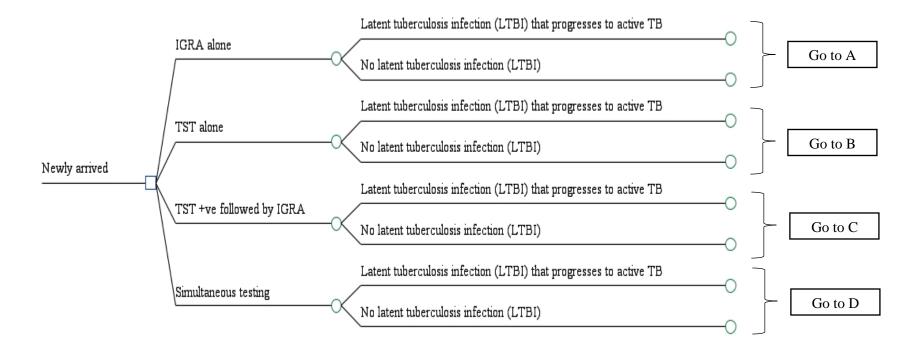


Figure 65. Decision tree structure for recent arrivals from countries with a high incidence of active TB

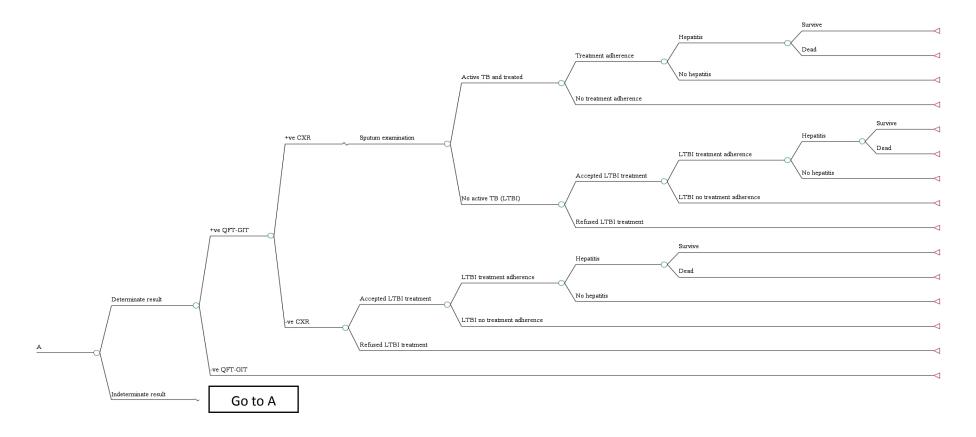


Figure 66. Pathway for IGRA alone diagnostic strategy in recent arrivals population

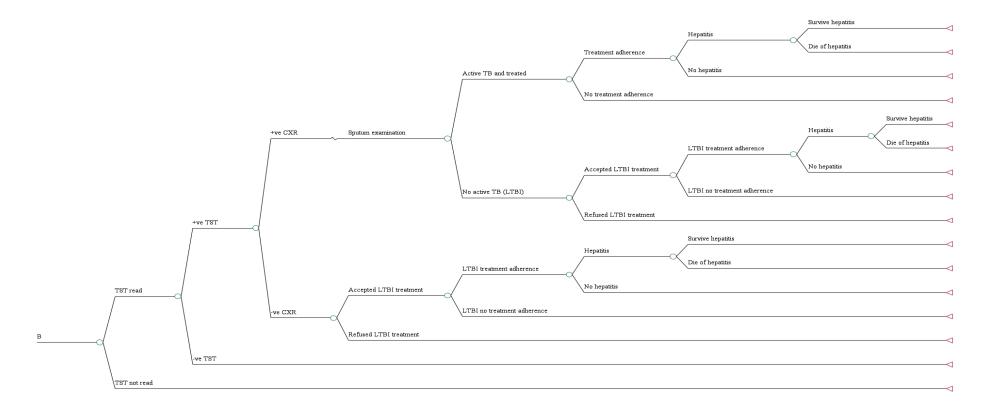


Figure 67. Pathway for the TST alone diagnostic strategy in the recent arrival population

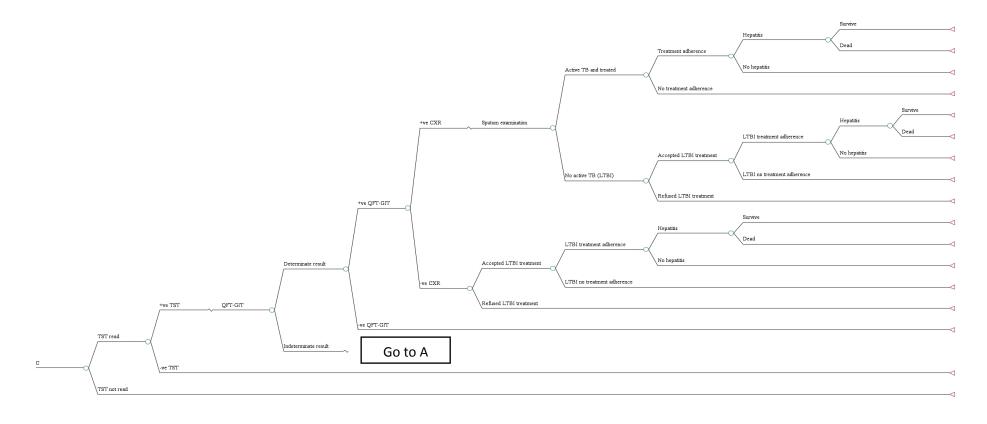


Figure 68. Pathway for the diagnostic strategy TST positive followed by IGRA in the recent arrivals population

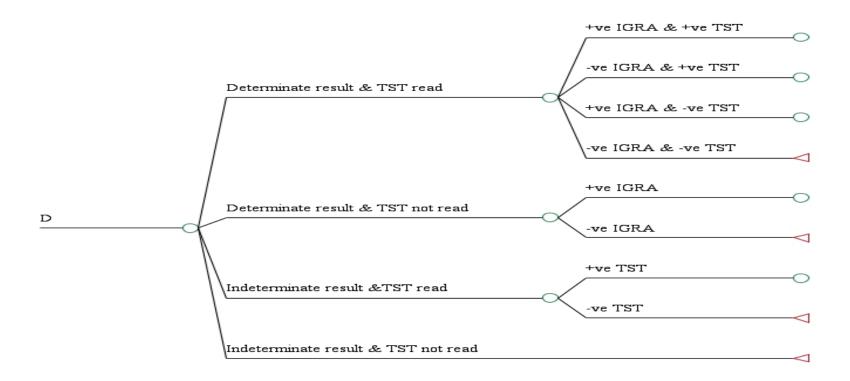


Figure 69. Pathway for the diagnostic strategy of IGRA and TST in the recent arrival population

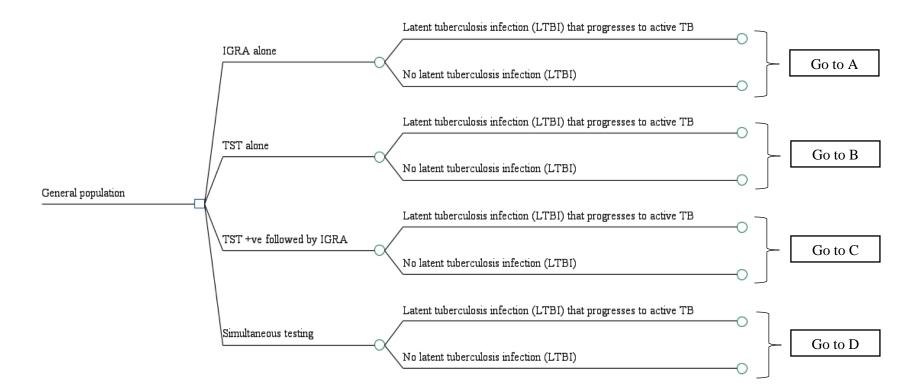


Figure 70. Decision tree structure for general population

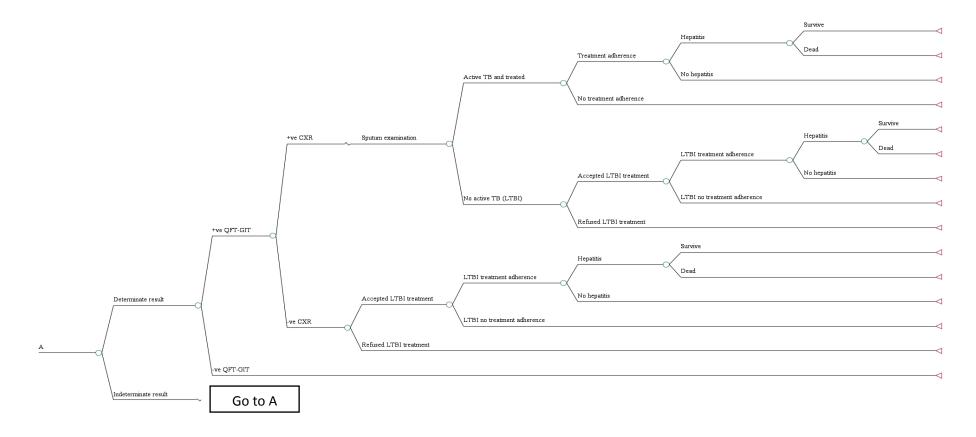


Figure 71. Pathway for the diagnostic strategy of IGRA alone in the general population

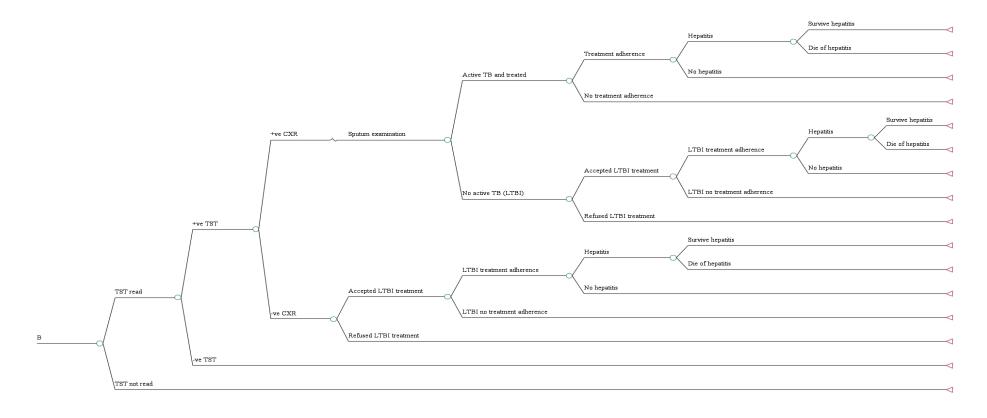


Figure 72. Pathway for the diagnostic strategy of TST alone in the general population

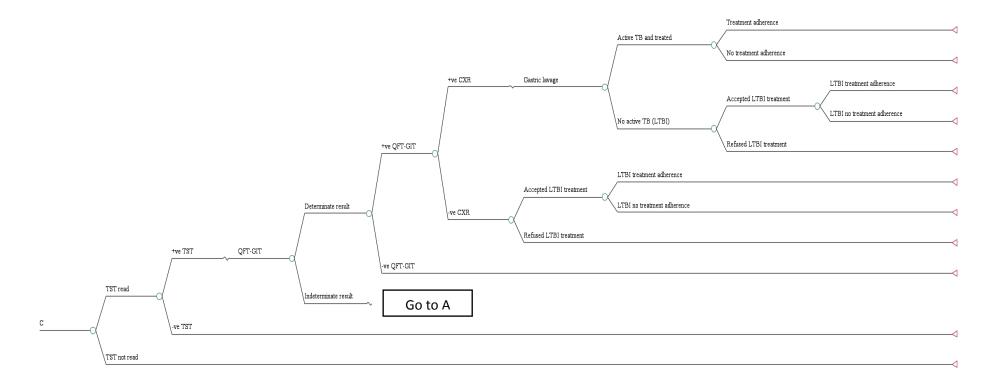


Figure 73. Pathway for the diagnostic strategy of TST +ve followed by IGRA in the general population

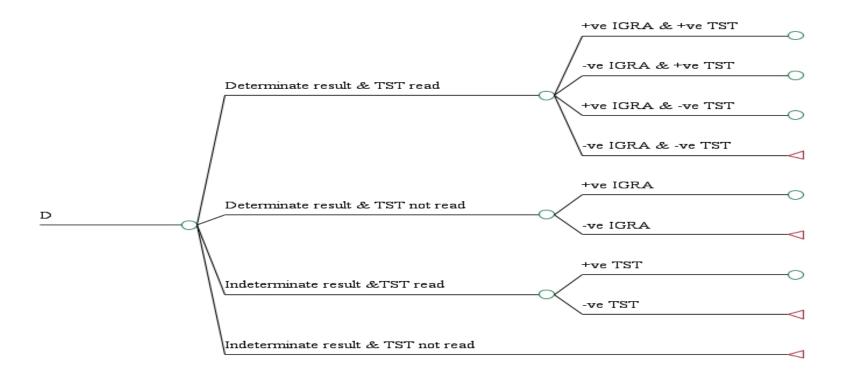


Figure 74. Pathway for the diagnostic strategy of IGRA and TST in the general population

11.17 Appendix 17. Resources used to derive unit cost for the treatment of LTBI and TB and model input parameters

Table 68. Treatment for LTBI

Resource use	Quantity	Description	Unit costs (£,2013)	Source
Investigations	•			•
Full blood count	2	DAPS08- phlebotomy	£4	Assumptions and consultation
Liver function tests	4	DAPS08- phlebotomy	£4	with clinical expert on the
Outpatient visits	2 visits	Weighted average of all outpatient procedures	£135	number of FBC, LFTs and outpatient visits NHS reference costs 2012/13 ²⁰⁷ Curtis 2013 ²¹⁰
Nurse contact (in-clinic) ¹	3 visits	15 minutes	£12.25	Assumption and consultation with clinical expert; Curtis 2013 ²¹⁰
Drug treatment				
Isoniazid (6H)	18pks (28 tab 100mg per pack)	Six months of Isoniazid ²	£19.24	NHS electronic drug tariff
Estimated cost for treatment of LTBI per person £				£677.07 (6H)

¹We assumed a nurse specialist employed on the NHS scale agenda for change Band 6 point 27 would require 15 minutes of contact time with an LTBI patient

²Based on people requiring 300mg daily for six months.
³People who refuse treatment are informed and advised. We assumed a nurse specialist employed on the NHS scale agenda for change Band 6 point 27 would require 15 minutes to inform and advise an individual

Table 69. Treatment for tuberculosis

Resource use	Quantity	Description	Unit costs (£,2013)	Source
Investigations			•	
Chest x-ray	3	DAPF- direct access plain film		NHS reference
Sputum examination	6	DAPS07- microbiology	7	costs 2012/13 ²⁰⁷
Full blood count	2	DAPS08- phlebotomy	4	
Liver function tests	8	DAPS08- phlebotomy	4	
Inpatient stay	7.28 days	DZ14E- Pulmonary, Pleural or Other Tuberculosis, with CC Score 0-1	492	Bothamley et al. (2002) ²⁰⁹
Outpatient visits	8 visits	Weighted average of all outpatient procedures	135	
Drug treatment				
Ethambutol	6pks	(1200mg daily for two months) 256.44		BNF 2013-14 ²²⁸
Pyrazinamide	8pks	(2g daily for two months)	250.80	BNF 2013-14 ²²⁸
Rifinah (300/150)	6pks	Two tablets daily for six months	126.12	BNF 2013-14 ²²⁸
Estimated cost for treatment of active TB per person				£5461.12

 ${\bf Table~70.~Model~input~parameters~required~for~the~immunocompromised~population}$

Variable	Base-case	Range for SA	PSA Distribution	Reference(s)
	value			
Probabilities				
Prevalence of LTBI	0.0222	0.0152 -	#	
		0.0306		
Sensitivity TST (≥5mm)	0.3242	0.1119 –	#	
		0.5848		
Specificity TST (<5mm)	0.7422	0.7288-0.7557	#	
Sensitivity TST (≥10mm)	0.1682	0.0252-0.3899	#	
Specificity TST (>10mm)	0.8397	0.7899-0.8831	#	Derived from our
Sensitivity QFT-GIT	0.5548	0.2473-0.8373	#	clinically effectiveness
Specificity QFT-GIT	0.8227	0.8052-0.8396	#	study
Sensitivity T-SPOT.TB	0.6665	0.3517-0.9144	#	
Specificity T-SPOT.TB	0.6846	0.6346-0.7331	<i></i> #	
Sensitivity of TST conditional	0.2775	0.0121-0.7989	" Not varied	
on -ve QFT-GIT (LTBI arm)		0.0121 0.7707		
Specificity of TST conditional on -ve QFT-GIT (No LTBI	0.4465	0.3909-0.4993	Not varied	
arm)				
Sensitivity of TST conditional on +ve QFT-GIT (LTBI arm)	0.4206	0.0023-0.3891	Not varied	
Specificity of TST conditional	0.8058	0.00006-	Not varied	
on +ve QFT-GIT (No LTBI arm)		0.8058		
Determinate QFT-GIT	0.97	-	Beta(873,27)	Derived from
				Laskin et al. (2013) ¹⁹⁷
Determinate T-SPOT.TB	0.97	-	Beta(873,27)	(2013) Derived from
			, ,	Laskin et al.
Probability of TST read	0.9400	0.6 - 1.00	Beta(164,10.5)	(2013) ¹⁹⁷ Pareek et al.
•			, ,	$(2013)^{76}$
Probability of initial active TB	0.00001	-	Not varied	Laskin et al. (2013) ¹⁹⁷
TB treatment adherence	1.0000	-	Not varied	Pareek et al.
Accepting LTBI treatment	0.9400	0.50 - 1.00	Beta(141,9)	(2013) ⁷⁶ CG117 (2011) ¹⁰
Adherence to LTBI treatment	0.8000	0.50 - 0.90	Beta(41,10)	Kowada (2013) ¹⁹⁵
INH hepatitis after TB	0.0040	0.001 - 0.010	Beta(2.7,664)	Assumption
treatment INH hepatitis after LTBI	0.0040	0.001 - 0.010	Beta(2.7,664)	Laskin et al.
treatment	0.00002	0.00001		$(2013)^{197}$
Death from INH hepatitis	0.00002	0.00001- 0.0001	Beta(0.5,25125)	Pooran et al., (2010) ²⁰⁶
Transmission model parameter	S			, ,
Proportion still infected post LTBI treatment	0.345	-	Lognormal (-1.065,0.842)	White and Jit (2015) ²¹²
Average number of secondary	0.2	0.1-0.3	Lognormal	Pareek et al.
cases from one index case	• 00		(-1.609,0.354)	$(2011)^6$
Average delay from infection to activation	2.88	-	Lognormal (1.058,0.333)	Okuonghae et al. (2013) ²¹³
acuvation			(1.036,0.333)	(2013)

Base-case	Range for SA	PSA Distribution	Reference(s)
value			
0.013	0.004-0.025	Beta(7,513)	Oxlade et al. (2011) ²¹⁴
0.0477	-	Beta(628,12543)	Croft et al. (2008) ²¹⁵
0.0034	-	Beta(1,290)	Croft et al. (2008) ²¹⁵
0.0018	-	Beta(1,564)	Croft et al. (2008) ²¹⁵
0.0476	-	Beta(125,2500)	Croft et al. (2008) ²¹⁵
0.1755	-	Beta(413,1940)	Croft et al. (2008) ²¹⁵
17.48		Not varied	Pooran et al. (2010) ²⁰⁶
48.73		Not varied	Pooran et al. (2010) ²⁰⁶
59.57		Not varied	Pooran et al. (2010) ²⁰⁶
35.00		Not varied	NHS costs 2012/13 ²⁰⁷
7.00		Not varied	NHS costs 2012/13 ²⁰⁷
5461.12		Gamma(10.41,524.6)	Bothamley et al. (2002) ²⁰⁹
910.19		Not varied	Assumption
677.07		Uniform(511.69,842.45)	NHS drug tariff (2014) ²⁰⁸
112.85		Uniform(85.24,140.41)	Assumption
389.51		Gamma(7.13,55.64)	Pareek et al. (2013) ⁷⁶
0.15 [†] 0.0010	Not reported Not reported	Gamma(11.2,0.0134) Uniform(0,0.002)	Derived from Kowada (2012) ¹⁹⁶
		. (-,****-/	· ()
3.5%			
	0.013 0.0477 0.0034 0.0018 0.0476 0.1755 17.48 48.73 59.57 35.00 7.00 5461.12 910.19 677.07 112.85 389.51	0.013	0.013 0.004-0.025 Beta(7,513) 0.0477 - Beta(628,12543) 0.0034 - Beta(1,290) 0.0018 - Beta(1,564) 0.0476 - Beta(125,2500) 0.1755 - Beta(413,1940) 17.48 Not varied 48.73 Not varied 59.57 Not varied 7.00 Not varied 5461.12 Gamma(10.41,524.6) 910.19 Not varied 677.07 Uniform(511.69,842.45) 112.85 Uniform(85.24,140.41) 389.51 Gamma(7.13,55.64) 0.15 [†] Not reported Gamma(11.2,0.0134) Uniform(0,0.002) Uniform(0,0.002)

BNF, British National Formulary; IGRA, Interferon-gamma release assay; INH, Isoniazid; LTBI, Latent tuberculosis infection; QFT-G, QuantiFERON Gold; QFT-GIT, QuantiFERON Gold-In-Tube; SA, Sensitivity analysis; TB, tuberculosis; TST, Tuberculin skin test;

^{*} Management of LTBI in children includes drug treatment alone

[†] QALY decrement for people being treated for active TB

^{*}Calculated from posterior distributions generated by Markov Chain Monte Carlo (MCMC)

Table 71. Model input parameters required for the recent arrivals population

Variable	Daga saga	Dames for CA	DCA Distribution	Deference (a)
Variable	Base-case value	Range for SA	PSA Distribution	Reference(s)
Probabilities				
Prevalence of LTBI	0.0237	0.0150-0.0345	#	
Sensitivity TST (≥5mm)	0.9356	0.7786-0.9977	#	
Specificity TST (<5mm)	0.5011	0.4790-0.5229	#	
Sensitivity QFT-GIT	0.5915	0.3584-0.8172	#	
Specificity QFT-GIT	0.7929	0.7780-0.8073	#	Derived from our
Sensitivity T-SPOT.TB	0.7001	0.3978-0.9242	#	clinically
Specificity T-SPOT.TB	0.3992	0.3439-0.4554	#	effectiveness study
Sensitivity of QFT-GIT conditional on +ve TST (LTBI arm)	0.6009	0.3465-0.8514	#	stady
Specificity of QFT-GIT conditional on +ve TST (No LTBI arm)	0.6102	0.5775-0.6421	#	
Sensitivity of QFT-GIT conditional on -ve TST (LTBI arm)	0.4807	0.0225-0.9724	#	
Specificity of QFT-GIT conditional on -ve TST (No LTBI arm)	0.9746	0.9555-0.9893	#	
Sensitivity of CXR for diagnosing active TB	0.7800	Not reported	Not varied	Kumar et al. (2005) ²¹¹
Specificity of CXR for diagnosing active TB	0.5100	Not reported	Not varied	Kumar et al. (2005) ²¹¹
Determinate QFT-GIT	0.97	-	Beta(873,27)	Derived from Laskin et al. (2013) ¹⁹⁷
Determinate T-SPOT.TB	0.97	-	Beta(873,27)	Derived from Laskin et al. (2013) ¹⁹⁷
Probability of TST read	0.9400	0.6 - 1.00	Beta(164,10.5)	Pareek et al. (2013) ⁷⁶
Probability of initial active TB	0.00001	-	Not varied	Laskin et al. (2013) ¹⁹⁷
TB treatment adherence	1.0000	-	Not varied	Pareek et al. (2013) ⁷⁶
Accepting LTBI treatment	0.9400	0.50 - 1.00	Beta(141,9)	CG117 (2011) ¹⁰
Adherence to LTBI treatment	0.8000	0.50 - 0.90	Beta(41,10)	Kowada (2013) ¹⁹⁵
INH hepatitis after TB treatment	0.0040	0.001 - 0.010	Beta(2.7,664)	Assumption
INH hepatitis after LTBI	0.0040	0.001 - 0.010	Beta(2.7,664)	Laskin et al. (2013) ¹⁹⁷
treatment				
Death from INH hepatitis	0.00002	0.00001- 0.0001	Beta(0.5,25125)	Pooran et al. (2010) ²⁰⁶
Transmission model paramete			Υ 1	XX71 ', 1 X'.
Proportion still infected post LTBI treatment	0.345	-	Lognormal (-1.065,0.842)	White and Jit (2015) ²¹²
Average number of secondary	0.2	0.1-0.3	Lognormal	Pareek et al.

Variable	Base-case	Range for SA	PSA Distribution	Reference(s)
	value			
cases from one index case			(-1.609,0.354)	$(2011)^6$
Average delay from infection to activation	2.88	-	Lognormal (1.058,0.333)	Okuonghae et al. (2013) ²¹³
Annualised reactivation rate from resolved TB	0.013	0.004-0.025	Beta(7,513)	Oxlade et al. (2011) ²¹⁴
Case fatality rate for active TB (0-4 years)	0.0477	-	Beta(628,12543)	Croft et al. (2008) ²¹⁵
Case fatality rate for active TB (5-14 years)	0.0034	-	Beta(1,290)	Croft et al. (2008) ²¹⁵
Case fatality rate for active TB (15-44 years)	0.0018	-	Beta(1,564)	Croft et al. (2008) ²¹⁵
Case fatality rate for active TB (45-64 years)	0.0476	-	Beta(125,2500)	Croft et al. (2008) ²¹⁵
Case fatality rate for active TB (65+ years)	0.1755	-	Beta(413,1940)	Croft et al. (2008) ²¹⁵
Resource use and costs				
TST	17.48		N/A	Pooran et al. (2010) ²⁰⁶
QFT-GIT	48.73		N/A	Pooran et al. (2010) ²⁰⁶
T-SPOT.TB	59.57		N/A	Pooran et al. (2010) ²⁰⁶
Chest x-ray	35.00		N/A	NHS costs 2012/13 ²⁰⁷
Sputum examination	7.00		N/A	NHS costs 2012/13 ²⁰⁷
Cost of adherence to active TB treatment	5461.12		Gamma(10.41,524.6)	Bothamley et al. (2002) ²⁰⁹
Cost of non-adherence to active TB treatment	910.19		Not varied	Assumption
Adherence to LTBI treatment	677.07		Uniform(511.69,842.45)	NHS drug tariff 2014 ²⁰⁸
Cost of non-adherence to LTBI treatment	112.85		Gamma(85.24,140.41)	Assumption
Treatment of INH-induced hepatitis	389.51		Gamma(7.13,55.64)	Pareek et al. (2013) ⁷⁶
Utility decrements				
Active TB (whilst on treatment) Treatment for LTBI	0.15 [†] 0.001	Not reported Not reported	Gamma(11.2,0.0134) Uniform(0,0.002)	Derived from Kowada (2012) ¹
Other		•	. ,	
Discount rate per annum (costs and QALYs)	3.5%			

BNF, British National Formulary; IGRA, Interferon-gamma release assay; INH, Isoniazid; LTBI, Latent tuberculosis infection; N/A, Not applicable; QFT-G, QuantiFERON Gold; QFT-GIT, QuantiFERON Gold-In-Tube; SA, Sensitivity analysis; TB, tuberculosis; TST, Tuberculin skin test; † QALY decrement for people being treated for active TB

[#] Calculated from posterior distributions generated by Markov Chain Monte Carlo (MCMC)

11.18 Appendix 18. WinBUGS code

In this Appendix we report on the WinBUGS code used in the evidence synthesis for the children population. The WinBUGS codes used for the immunocompromised and recently arrived populations are very similar, but using different sample data. Table 72 shows the variables with descriptions used in the models.

Table 72. Variables and descriptions used in the WinBUGS model

Variable name	Description
Prev	Prevalence
pposQFTG	Probability of a positive QFT-G result
sensQFTG	Sensitivity of QFT-G
specQFTG	Specificity of QFT-G
ATBposQFTG	Number of active TB cases given a positive result on QFT-G
pATBposQFTG	Probability of active TB given a positive result on QFT-G
ATBnegQFTG	Number of active TB cases given a negative result on QFT-G
pATBnegQFTG	Probability of active TB given a negative result on QFT-G
pposQFTGIT	Probability of a positive QFT-GIT result
sensQFTGIT	Sensitivity of QFT-GIT
specQFTGIT	Specificity of QFT-GIT
ATBposQFTGIT	Number of active TB cases given a positive result on QFT-GIT
pATBposQFTGIT	Probability of active TB given a positive result on QFT-GIT
ATBnegQFTGIT	Number of active TB cases given a negative result on QFT-GIT
pATBnegQFTGIT	Probability of active TB given a negative result on QFT-GIT
pposTSPOTTB	Probability of a positive T-SPOT.TB result
sensTSPOTTB	Sensitivity of T-SPOT.TB
specTSPOTTB	Specificity of T-SPOT.TB
ATBposTSPOTTB	Number of active TB cases given a positive result on T-SPOT.TB
pATBposTSPOTTB	Probability of active TB given a positive result on T-SPOT.TB
ATBnegTSPOTTB	Number of active TB cases given a negative result on T-SPOT.TB
pATBnegTSPOTTB	Probability of active TB given a negative result on T-SPOT.TB
pposTST5	Probability of a positive TST5 result
sensTST5	Sensitivity of TST5
specTST5	Specificity of TST5
ATBposTST5	Number of active TB cases given a positive result on TST5
pATBposTST5	Probability of active TB given a positive result on TST5
ATBnegTST5	Number of active TB cases given a negative result on TST5
pATBnegTST5	Probability of active TB given a negative result on TST5
pposTST10	Probability of a positive TST10 result
sensTST10	Sensitivity of TST10
specTST10	Specificity of TST10
ATBposTST10	Number of active TB cases given a positive result on TST10
pATBposTST10	Probability of active TB given a positive result on TST10
ATBnegTST10	Number of active TB cases given a negative result on TST10
pATBnegTST10	Probability of active TB given a negative result on TST10
pposTST15	Probability of a positive TST15 result
sensTST15	Sensitivity of TST15
specTST15	Specificity of TST15
ATBposTST15	Number of active TB cases given a positive result on TST15
pATBposTST15	Probability of active TB given a positive result on TST15
ATBnegTST15	Number of active TB cases given a negative result on TST15
pATBnegTST15	Probability of active TB given a negative result on TST15
TST5QFTGIT	Probability of positive QFT-GIT following a positive result on TST5
TST10QFTGIT	Probability of positive QFT-GIT following a positive result on TST10

Children

```
model{
for (study in 1:Nstudy){
prev[study] <- mprev
#Binomial link between the number of positive results and probability of a positive result
rplusTST10[study] ~dbin(pposTST10[study],Npats[study,1])
rminusTST10[study] <- Npats[study,1] - rplusTST10[study]</pre>
pposTST10[study] <- prev[study]*sensTST10 + (1-prev[study])*(1-specTST10)
ATBposTST10[study]~dbin(pATBposTST10[study],rplusTST10[study])
pATBposTST10[study] <- prev[study]*sensTST10/pposTST10[study]
ATBnegTST10[study]~dbin(pATBnegTST10[study],rminusTST10[study])
pATBnegTST10[study] <- prev[study]*(1-sensTST10)/(prev[study]*(1-sensTST10)+specTST10*(1-sensTST10)
prev[study]))
rplusTST10IT[study] ~dbin(pposTST10IT[study],Npats[study,2])
rminusTST10IT[study] <- Npats[study,2] - rplusTST10IT[study]
pposTST10IT[study] <- prev[study]*sensTST10IT + (1-prev[study])*(1-specTST10IT)
ATBposTST10IT[study]~dbin(pATBposTST10IT[study],rplusTST10IT[study])
pATBposTST10IT[study] <- prev[study]*sensTST10IT/pposTST10IT[study]
ATBnegTST10IT[study]~dbin(pATBnegTST10IT[study],rminusTST10IT[study])
pATBnegTST10IT[study] <- prev[study]*(1-sensTST10IT)/(prev[study]*(1-
sensTST10IT)+specTST10IT*(1-prev[study]))
rplusTSPOTTB[study] ~dbin(pposTSPOTTB[study],Npats[study,3])
rminusTSPOTTB[study] <- Npats[study,3] - rplusTSPOTTB[study]
pposTSPOTTB[study] <- prev[study]*sensTSPOTTB + (1-prev[study])*(1-specTSPOTTB)
ATBposTSPOTTB[study]~dbin(pATBposTSPOTTB[study],rplusTSPOTTB[study])
pATBposTSPOTTB[study] <- prev[study]*sensTSPOTTB/pposTSPOTTB[study]
ATBnegTSPOTTB[study]~dbin(pATBnegTSPOTTB[study],rminusTSPOTTB[study])
pATBnegTSPOTTB[study] <- prev[study]*(1-sensTSPOTTB)/(prev[study]*(1-
sensTSPOTTB)+specTSPOTTB*(1-prev[study]))
rplusTST10[study] ~ dbin(pposTST10[study], Npats[study,4])
rminusTST10[study] <- Npats[study,4] - rplusTST10[study]</pre>
pposTST10[study] <- prev[study]*sensTST10 + (1-prev[study])*(1-specTST10)
ATBposTST10[study]~dbin(pATBposTST10[study],rplusTST10[study])
pATBposTST10[study] <- prev[study]*sensTST10/pposTST10[study]
ATBnegTST10[study]~dbin(pATBnegTST10[study],rminusTST10[study])
```

```
pATBnegTST10[study] <- prev[study]*(1-sensTST10)/(prev[study]*(1-sensTST10)+specTST10*(1-sensTST10)
prev[study]))
rplusTST10[study] ~dbin(pposTST10[study],Npats[study,5])
rminusTST10[study] <- Npats[study,5] - rplusTST10[study]
pposTST10[study] <- prev[study]*sensTST10 + (1-prev[study])*(1-specTST10)
ATBposTST10[study]~dbin(pATBposTST10[study],rplusTST10[study])
pATBposTST10[study] <- prev[study]*sensTST10/pposTST10[study]
ATBnegTST10[study]~dbin(pATBnegTST10[study],rminusTST10[study])
pATBnegTST10[study] <- prev[study]*(1-sensTST10)/(prev[study]*(1-sensTST10)+specTST10*(1-sensTST10)
prev[study]))
rplusTST15[study] ~dbin(pposTST15[study].Npats[study,6])
rminusTST15[study] <- Npats[study,6] - rplusTST15[study]
pposTST15[study] <- prev[study]*sensTST15 + (1-prev[study])*(1-specTST15)
ATBposTST15[study]~dbin(pATBposTST15[study],rplusTST15[study])
pATBposTST15[study] <- prev[study]*sensTST15/pposTST15[study]
ATBnegTST15[study]~dbin(pATBnegTST15[study],rminusTST15[study])
pATBnegTST15[study] <- prev[study]*(1-sensTST15)/(prev[study]*(1-sensTST15)+specTST15*(1-
prev[study]))
}
for (i in 1:N.cs){
rplusTST10TST10IT[i]~dbin(pplusTST10TST10IT[i],rplusTST10[cs.index[i]])
pplusTST10TST10IT[i] <-prev[cs.index[i]]*sensTST10*cpos.sensTST10IT5+((1-specTST10)*(1-
prev[cs.index[i]])*(1-cpos.specTST10IT5))/pposTST10[cs.index[i]]
rnegTST10TST10IT[i]~dbin(pnegTST10TST10IT[i],rminusTST10[cs.index[i]])
pnegTST10TST10IT[i] <-((1-prev[cs.index[i]])*specTST10*cneg.specTST10IT5+(1-
sensTST10)*prev[cs.index[i]]*(1-cneg.sensTST10IT5))/((1-
prev[cs.index[i]])*specTST10+prev[cs.index[i]]*(1-sensTST10))
}
for (i in 1:N.cs2){
rplusTST10TST10IT[i]~dbin(pplusTST10TST10IT[i],rplusTST10[cs2.index[i]])
pplusTST10TST10IT[i] <-prev[cs2.index[i]]*sensTST10*cpos.sensTST10IT10+((1-specTST10)*(1-
prev[cs2.index[i]])*(1-cpos.specTST10IT10))/pposTST10[cs2.index[i]]
rnegTST10TST10IT[i]~dbin(pnegTST10TST10IT[i],rminusTST10[cs2.index[i]])
pnegTST10TST10IT[i] <-((1-prev[cs2.index[i]])*specTST10*cneg.specTST10IT10+(1-
sensTST10)*prev[cs2.index[i]]*(1-cneg.sensTST10IT10))/((1-
prev[cs2.index[i]])*specTST10+prev[cs2.index[i]]*(1-sensTST10))
```

```
}
sensTST10IT <- cpos.sensTST10IT5*sensTST10 + cneg.sensTST10IT5*(1-sensTST10)
specTST10IT <- cpos.specTST10IT5*(1-specTST10) + cneg.specTST10IT5*(specTST10)
#Prior at baseline
sensTST10~dunif(0,1)
specTST10~dunif(0.1)
logit(sensTST10)<-logit(sensTST10)-dsens510
dsens510\sim dunif(0.5)
logit(specTST10)<-logit(specTST10)+dspec510
dspec510\sim dunif(0,5)
sensTST15~dunif(0,1)
specTST15~dunif(0,1)
sensTST10\sim dunif(0,1)
specTST10\sim dunif(0,1)
sensTSPOTTB~dunif(0,1)
specTSPOTTB~dunif(0,1)
cpos.sensTST10IT5~dunif(0,1)
cpos.specTST10IT5~dunif(0,1)
cneg.sensTST10IT5~dunif(0,1)
cneg.specTST10IT5~dunif(0,1)
cpos.sensTST10IT10~dunif(0,1)
cpos.specTST10IT10~dunif(0,1)
cneg.sensTST10IT10~dunif(0,1)
cneg.specTST10IT10~dunif(0,1)
mprev \sim dbeta(1,1)
}
```

#Sample data from the clinical evidence

 $\label{eq:list_objective} \begin{tabular}{list(Nstudy=13,Npats=structure(.Data=c(84,84,73,84,84,84,306,306,306,306,306,306,306,104,104,104,104,104,104,5244,5244,5244,5244,5244,5244,59,59,59,59,59,59,69,69,69,69,69,69,69,204,204,204,204,204,195,195,195,195,195,195,195,184,184,184,184,184,184,1073,1073,1073,1073,1073,1073,1073,1074,104,104,104,104,104,50,50,50,50,50,50,50,2982,2966,2982,2982,2982,2982),.Dim=c(13,6)),N.cs=6,cs.index=c(1,4,6,9,10,11),N.cs2=4,cs2.index=c(7,8,12,13),\\ \end{tabular}$

rplusTST10TST10IT = c(27,28,30,231), rnegTST10TST10IT = c(85,143,18,2219))

#Sample initial values

list(dsens510=0.5,dspec510=0.5)

The robustness of the model was assessed by examining the convergence diagnostics for evidence of when the simulation appears to mix. This was examined based on visual inspection of the sample trace plots. A burn-in period of 30,000 simulations was used followed by a further 30,000 simulations.

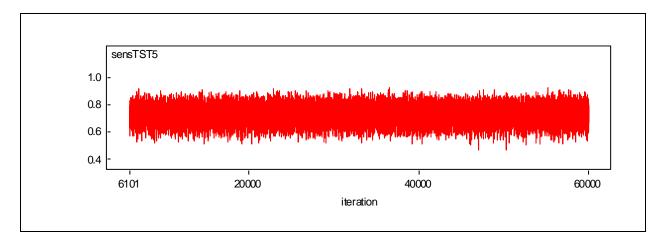


Figure 75. Sample traces of chains for sensitivity of TST (\geq 5mm) where convergence/mixing looks reasonable

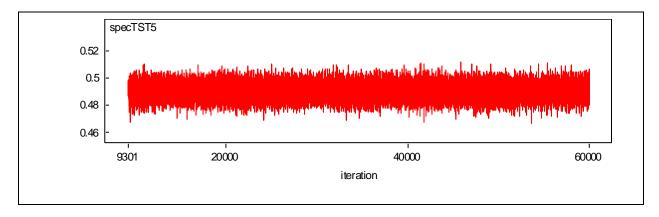


Figure 76. Sample traces of chains for specificity of TST (< 5 mm) where convergence/mixing looks reasonable

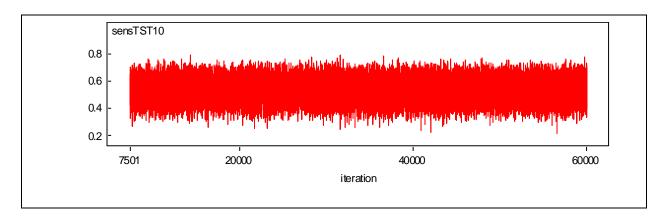


Figure 77. Sample traces of chains for sensitivity of TST (≥ 10mm)

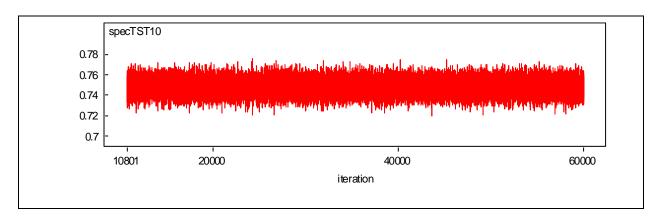


Figure 78. Sample traces of chains for specificity of TST (< 10mm)

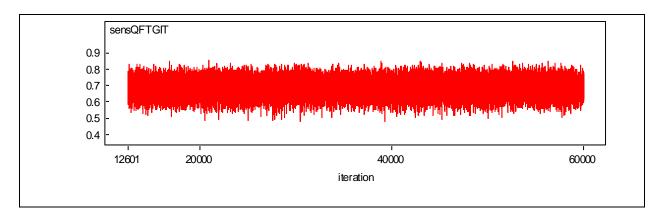


Figure 79. Sample traces of chains for sensitivity of QFT-GIT

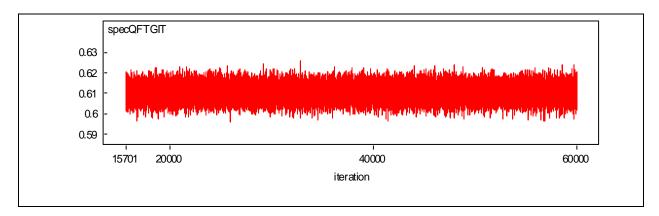


Figure 80. Sample traces of chains for specificity of QFT-GIT