Appendix M: WinBUGS code

All WinBUGS code used in this guideline was based on specimens given in the NICE Decision Support Unit’s series of Technical Support Documents (TSDs) on evidence synthesis, especially TSD2 and TSD5.

M.1 Relative effects syntheses

M.1.1 Dichotomous data; binomial likelihood; logit link

M.1.1.1 Fixed effects

```
model {
  for (i in 1:NumStudies) {
    # indexes studies
    mu[i] ~ dnorm(0, .0001)                           # vague priors for all trial baselines
    for (j in 1:NumArms[i]) {                         # indexes arms
      k[i,j] ~ dbin(p[i,j], N[i,j])                   # binomial likelihood
      logit(p[i,j]) <- mu[i] + d[Rx[i,j]] - d[Rx[i,1]] # model for linear predictor
      rhat[i,j] <- p[i,j] * N[i,j]                   # expected value of the numerators
      dev[i,j] <- 2 * (k[i,j] * (log(k[i,j]) - log(rhat[i,j])) + (N[i,j] - k[i,j]) * (log(N[i,j] - k[i,j]) - log(N[i,j] - rhat[i,j]))) # deviance contribution
    }
    # close arm loop
    resdev[i] <- sum(dev[i,1:NumArms[i]])            # summed deviance contribution
  }                                                  # close study loop
  totresdev <- sum(resdev[])                         # total deviance
  d[1] <- 0                                          # effect is 0 for reference treatment
  for (j in 2:NumRx) {                               # indexes treatments
    d[j] ~ dnorm(0, .0001)                           # vague priors for treatment effects
  }                                                  # close treatment loop

  # Provide estimates of treatment effects T[j] on the natural (probability) scale
  # Given a Mean Effect, meanA, for 'standard' treatment A,
  # with precision (1/variance) precA
  AMean ~ dnorm(meanA, precA)
  APred ~ dnorm(predA, predPrecA)
  for (j in 1:NumRx) {
    logit(Tmean[j]) <- AMean + d[j]
    logit(Tpred[j]) <- APred + d[j]
  }

  # pairwise ORs and LORs for all possible pair-wise comparisons
  for (c in 1:(NumRx-1)) {
    for (j in (c+1):NumRx) {
      lOR[c,j] <- (d[j] - d[c])
      OR[c,j] <- exp(lOR[c,j])
    }
  }

  # ranking on relative scale
  for (j in 1:NumRx) {
    rk[j] <- blnHiGood*(NumRx+1-rank(d[j])) + (1-blnHiGood)*rank(d[j],j)
    best[j] <- equals(rk[j],1)                          # probability that treat j is best
  }
  for (h in 1:NumRx) {
    pRk[h,j] <- equals(rk[j],h)                       # probability that treat j is hth best
  }
}
```
M.1.1.2 Random effects

Binomial likelihood, logit link
Random effects model for multi-arm trials
based on
Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework
for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
http://www.nicedsu.org.uk

model {
 for(i in 1:NumStudies) {
 mu[i] ~ dnorm(0, .0001)
 delta[i,1] <- 0
 w[i,1] <- 0
 for(j in 1:NumArms[i]) {
 k[i,j] ~ dbin(p[i,j], N[i,j])
 logit(p[i,j]) <- mu[i] + delta[i,j]
 rhat[i,j] <- p[i,j] * N[i,j]
 dev[i,j] <- 2 * (k[i,j] * (log(k[i,j])-log(rhat[i,j])) + (N[i,j]-k[i,j]) * (log(N[i,j]-k[i,j])-log(N[i,j]-rhat[i,j])))
 }
 for (j in 2:NumArms[i]) {
 delta[i,j] ~ dnorm(md[i,j],taud[i,j])
 md[i,j] <- d[Rx[i,j]] - d[Rx[i,1]] + sw[i,j]
 taud[i,j] <- tau *2*(j-1)/j
 multi-arm trial correction)
 multi-arm trial correction)
 w[i,j] <- (delta[i,j] - d[Rx[i,j]] + d[Rx[i,1]])
 sw[i,j] <- sum(w[i,1:j-1])/(j-1)
 }
 }
 resdev[i] <- sum(dev[i,1:NumArms[i]])
 totresdev <- sum(resdev[])
 d[1]<-0
 for(j in 2:NumRx) {
 d[j] ~ dnorm(0, .0001)
 }
 sdu ~ dunif(RFXpriorParam1, RFXpriorParam2)
 sdn ~ dnorm(RFXpriorParam1, RFXpriorParam2)
 sdl ~ dlnorm(RFXpriorParam1, RFXpriorParam2)
 sd <- sdu * equals(RFXpriorD,1) + sdn * equals(RFXpriorD,2) + sdl * equals(RFXpriorD,3)
 tau <- pow(sd,-2)
 # Provide estimates of treatment effects T[k] on the natural (probability) scale
 Tmean ~ dnorm(meanA, precA)
 Tpred ~ dnorm(predA, predPrecA)
 for (j in 1:NumRx) {
 logit(Tmean[j]) <- AMean + d[j]
 logit(Tpred[j]) <- APred + d[j]
 }
 # pairwise ORs and LORs for all possible pair-wise comparisons
 for(c in 1:(NumRx-1)) {
 for (j in (c+1):NumRx) {
 LOR[c,j] <- [d[j]-d[c]]
 OR[c,j] <- exp(d[j]-d[c])
 }
 }
 # ranking on relative scale
 for(j in 1:NumRx) {
 rk[j] <- blnHiGood*(NumRx+1-rank(d[],j)) + (1-blnHiGood)*rank(d[],j))
 best[j] <- equals(rk[j],1)
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rk[j],h)
 }
 }
}
M.1.2 Dichotomous data; binomial likelihood; cloglog link

M.1.2.1 Fixed effects

Binomial likelihood, cloglog link
Fixed effects model for multi-arm trials
based on
Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework
for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
http://www.nicedsu.org.uk

model {
 for(i in 1:NumStudies) { # indexes studies
 mu[i] ~ dnorm(0, .0001) # vague priors for all trial baselines
 for(j in 1:NumArms[i]) { # indexes arms
 k[i,j] ~ dbin(p[i,j],N[i,j]) # binomial likelihood
 cloglog(p[i,j]) <- log(Yrs[i]/1) + mu[i] + d[Rx[i,j]] - d[Rx[i,1]] # model for linear predictor
 rhat[i,j] <- p[i,j] * N[i,j] # expected value of the numerators
 dev[i,j] <- 2 * (log(k[i,j]) * (log(k[i,j]) - log(rhat[i,j]))
 + (N[i,j] - k[i,j]) * (log(N[i,j] - k[i,j]) - log(N[i,j] - rhat[i,j])))
 # deviance contribution
 }
 }
 resdev[i] <- sum(dev[i,1:NumArms[i]]) # summed deviance contribution
 totresdev <- sum(resdev[]) # total residual deviance
}

d[1]<-0 # effect is 0 for reference treatment
for(j in 2:NumRx) { # indexes treatments
 d[j] ~ dnorm(0, .0001) # vague priors for treatment effects
}

totresdev <- sum(resdev[]) # close study loop

totresdev <- sum(resdev[]) # close study loop

d[1]<-0 # effect is 0 for reference treatment
for(j in 2:NumRx) { # indexes treatments
 d[j] ~ dnorm(0, .0001) # vague priors for treatment effects
}

totresdev <- sum(resdev[]) # close study loop

Provide estimates of treatment effects T[j] on the natural (probability) scale
Given a Mean Effect, meanA, for 'standard' treatment A,
with precision (1/variance) precA, over a time period timeA

AMean ~ dnorm(meanA, precA)
APred ~ dnorm(predA, predPrecA)
for (j in 1:NumRx) {
 cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
 cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
}

pairwise HRs and LHRs for all possible pair-wise comparisons
for (c in 1:(NumRx-1)) {
 for (j in (c+1):NumRx) {
 lHR[c,j] <- d[j] - d[c]
 log(HR[c,j]) <- lHR[c,j]
 }
}

ranking on relative scale
for (j in 1:NumRx) {
 rX[j] <- 1blnHiGood*(NumRx+1.rank(d[,j])) + (1-blHiGood)*rank(d[,j])
 best[j] <- equals(rX[j],1) # probability that treat j is best
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rX[j],h) # probability that treat j is hth best
 }
}

M.1.2.2 Random effects

Binomial likelihood, cloglog link
Random effects model for multi-arm trials
based on
Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework
for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
http://www.nicedsu.org.uk

model {
 for(i in 1:NumStudies) { # indexes studies
 mu[i] ~ dnorm(0, .0001) # vague priors for all trial baselines
 delta[i,1] <- 0 # effect is zero for control arm
 for(j in 1:NumArms[i]) { # indexes arms
 k[i,j] ~ dbin(p[i,j],N[i,j]) # binomial likelihood
 cloglog(p[i,j]) <- log(Yrs[i]/1) + mu[i] + d[Rx[i,j]] - d[Rx[i,1]] # model for linear predictor
 rhat[i,j] <- p[i,j] * N[i,j] # expected value of the numerators
 dev[i,j] <- 2 * (log(k[i,j]) * (log(k[i,j]) - log(rhat[i,j]))
 + (N[i,j] - k[i,j]) * (log(N[i,j] - k[i,j]) - log(N[i,j] - rhat[i,j])))
 # deviance contribution
 }
 }
 resdev[i] <- sum(dev[i,1:NumArms[i]]) # summed deviance contribution
 totresdev <- sum(resdev[]) # total residual deviance
}

d[1]<-0 # effect is 0 for reference treatment
for(j in 2:NumRx) { # indexes treatments
 d[j] ~ dnorm(0, .0001) # vague priors for treatment effects
}

totresdev <- sum(resdev[]) # close study loop

d[1]<-0 # effect is 0 for reference treatment
for(j in 2:NumRx) { # indexes treatments
 d[j] ~ dnorm(0, .0001) # vague priors for treatment effects
}

totresdev <- sum(resdev[]) # close study loop

Provide estimates of treatment effects T[j] on the natural (probability) scale
Given a Mean Effect, meanA, for 'standard' treatment A,
with precision (1/variance) precA, over a time period timeA

AMean ~ dnorm(meanA, precA)
APred ~ dnorm(predA, predPrecA)
for (j in 1:NumRx) {
 cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
 cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
}

pairwise HRs and LHRs for all possible pair-wise comparisons
for (c in 1:(NumRx-1)) {
 for (j in (c+1):NumRx) {
 lHR[c,j] <- d[j] - d[c]
 log(HR[c,j]) <- lHR[c,j]
 }
}

ranking on relative scale
for (j in 1:NumRx) {
 rX[j] <- 1blnHiGood*(NumRx+1.rank(d[,j])) + (1-blHiGood)*rank(d[,j])
 best[j] <- equals(rX[j],1) # probability that treat j is best
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rX[j],h) # probability that treat j is hth best
 }
}
w[i,1] < 0 # multi-arm adjustment = zero for ctrl
for (j in 1:NumArms[i]) { # indexes arms
 k[i,j] ~ dbin(p[i,j],N[i,j]) # binomial likelihood
cloglog(p[i,j]) <- log(Yrs[i] / 1) + mu[i] + delta[i,j] # model for linear predictor
 rhat[i,j] <- 2 * (k[i,j] / log(Yrs[i] / 1) + N[i,j]) # expected value of the numerators
 dev[i,j] <- 2 * (k[i,j] * (log(k[i,j]) - log(rhat[i,j]) + N[i,j] - k[i,j]) * (log(N[i,j] - k[i,j]) - log(N[i,j] - rhat[i,j]))) # deviance contribution
}
for (j in 2:NumArms[i]) { # indexes arms
 delta[i,j] ~ dnorm(md[i,j],taud[i,j]) # trial-specific LOR distributions
 md[i,j] <- d[Rx[i,j]] - d[Rx[i,1]] + sw[i,j] # mean of LOR distributions (with multi-arm trial correction)
 taud[i,j] <- tau * 2 * (j - 1) / j # precision of LOR distributions (with multi-arm trial correction)
 w[i,j] <- (delta[i,j] - d[Rx[i,j]] + d[Rx[i,1]]) # adjustment for multi-arm RCTs
 sw[i,j] <- sum(w[i,1:j-1]) / (j - 1) # cumulative adjustment for multi-arm trials
}
resdev[i] <- sum(dev[i,1:NumArms[i]]) # summed deviance contribution
}
totresdev <- sum(resdev[]) # total residual deviance
d[1] <- 0 # effect is 0 for reference treatment
for (j in 2:NumRx) { # indexes treatments
 d[j] ~ dnorm(0, .0001) # vague priors for treatment effects
}
sdu ~ dunif(RFXpriorParam1, RFXpriorParam2) # uniform between-trial prior
sdn ~ dnorm(RFXpriorParam1, RFXpriorParam2) # normal between-trial prior
sdl ~ dlnorm(RFXpriorParam1, RFXpriorParam2) # lognormal between-trial prior
sd <- sdu * equals(RFXpriorD, 1) + sdn * equals(RFXpriorD, 2) + sdl * equals(RFXpriorD, 3) # select correct between-trial prior
tau <- pow(sd, -2) # between-trial precision
Provide estimates of treatment effects T[j] on the natural (probability) scale
Given a Mean Effect, meanA, for 'standard' treatment A,
with precision (1/variance) precA, over a time period timeA
AMean ~ dnorm(meanA, precA)
APred ~ dnorm(predA, predPrecA)
for (j in 1:NumRx) {
cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
}
pairwise HRs and LHRs for all possible pair-wise comparisons
for (c in 1:(NumRx - 1)) {
 for (j in (c + 1):NumRx) {
 lHR[c,j] <- d[j] - d[c]
 log(HR[c,j]) <- lHR[c,j]
 }
}
ranking on relative scale
for (j in 1:NumRx) {
 rk[j] <- b1nHiGood * (NumRx + 1 - rank(d[], j)) + (1 - b1nHiGood) * rank(d[], j) # probability that treat j is best
 best[j] <- equals(rk[j], 1)
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rk[j], h) # probability that treat j is hth best
 }
}

M.1.3 Rate data; Poisson likelihood; log link

M.1.3.1 Fixed effects

Poisson likelihood, log link
Fixed effects model for multi-arm trials
based on
Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework
for Pairwise and Network Meta-Analysis of Randomized Controlled Trials. 2011.
http://www.nicedsu.org.uk
model {

National Institute for Health and Care Excellence, 2015
for(i in 1:NumStudies) {
 mu[i] ~ dnorm(0, .0001) # indexes studies
 for (j in 1:NumArms[i]) { # indexes arms
 r[i,j] ~ dpois(theta[i,j]) # Poisson likelihood
 log(lambda[i,j]) <- lambda[i,j] * E[i,j] # failure rate * exposure
 dev[i,j] <- 2 * ((theta[i,j]-r[i,j]) + r[i,j] * log(r[i,j] / theta[i,j])) # deviance contribution
 # model for linear predictor
 resdev[i] <- sum(dev[i,1:NumArms[i]]) # summed deviance contribution
 }
 totresdev <- sum(resdev[]) # total residual deviance
}

d[i]<-0 # effect is 0 for reference treatment
for (j in 2:NumRx) {
 d[j] ~ dnorm(0, .0001) # vague priors for treatment effects
 } # close treatment loop

Provide estimates of treatment effects T[j] on the natural (probability) scale
Given a Mean Effect, meanA, for ’standard’ treatment A,
with precision (1/variance) precA, over a time period timeA
AMean ~ dnorm(meanA, precA)
APred ~ dnorm(predA, predPrecA)
for (j in 1:NumRx) {
 cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
 cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
 } # pairwise HRs and LHRs for all possible pair-wise comparisons
for (c in 1:(NumRx-1)) { # based on
 for (j in (c+1):NumRx) { # Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
 lHR[c,j] <- d[j] - d[c] # mean of LOR distributions
 log(HR[c,j]) <- lHR[c,j]
 }
 } # ranking on relative scale
for (j in 1:NumRx) { # Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
 rk[j] <- blnHiGood*(NumRx+1-rank(d[],j)) + (1-blnHiGood)*rank(d[],j) # probability that treat j is best
 best[j] <- equals(rk[j],1)
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rk[j],h) # probability that treat j is hth best
 }
 } # Random effects

Poisson likelihood, log link
Random effects model for multi-arm trials
based on
Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework
for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
http://www.nicedsu.org.uk
model {
 for(i in 1:NumStudies) {
 mu[i] ~ dnorm(0, .0001) # indexes studies
 delta[i,1] ~ dnorm(0, .0001) # effect is zero for control arm
 w[i,1] ~ dnorm(0, .0001) # multi-arm adjustment = zero for ctrl
 for (j in 1:NumArms[i]) { # indexes arms
 r[i,j] ~ dpois(theta[i,j]) # Poisson likelihood
 log(lambda[i,j]) <- lambda[i,j] * E[i,j] # failure rate * exposure
 dev[i,j] <- 2 * ((theta[i,j]-r[i,j]) + r[i,j] * log(r[i,j] / theta[i,j])) # deviance contribution
 # model for linear predictor
 for (h in 1:NumRx) {
 md[i,j] ~ dnorm(md[i,j],taud[i,j]) # mean of LOR distributions (with multi-arm trial correction)
 md[i,j] <- d[Rx[i,j]] - d[Rx[i,1]] + sw[i,j]
 }
 }
 }
 }
```plaintext
# precision of LOR distributions (with multi-arm trial correction)
taud[i,j] <- tau *2*(j-1)/j

# adjustment for multi-arm RCTs
w[i,j] <- (delta[i,j] - d[Rx[i,j]]) + d[Rx[i,1]]

# cumulative adjustment for multi-arm trials
sw[i,j] <- sum(w[i,1:j-1])/(j-1)

resdev[i] <- sum(dev[i,1:NumArms[i]])  # summed deviance contribution

totresdev <- sum(resdev[])  # total residual deviance

d[1]<-0  # effect is 0 for reference treatment
for (j in 2:NumRx) {
  d[j] ~ dnorm(0,.0001)  # indexes treatments
}

dsu ~ dunif(RFXpriorParam1, RFXpriorParam2)  # uniform between-trial prior
sdn ~ dnorm(RFXpriorParam1, RFXpriorParam2)  # normal between-trial prior
sdl ~ dlnorm(RFXpriorParam1, RFXpriorParam2)  # lognormal between-trial prior
sd <- sd u * equals(RFXpriorD,1) + sdn * equals(RFXpriorD,2) + sdl * equals(RFXpriorD,3)  # select correct between-trial prior

tau <- pow(sd, -2)  # between-trial precision

# Provide estimates of treatment effects T[j] on the natural (probability) scale
# Given a Mean Effect, meanA, for 'standard' treatment A,
# with precision (1/variance) precA, over a time period timeA
AMean ~ dnorm(meanA, precA)
APred ~ dnorm(predA, predPrecA)
for (j in 1:NumRx) {
  cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
  cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
}

# pairwise HRs and LHRs for all possible pair-wise comparisons
for (c in 1:(NumRx-1)) {
  for (j in (c+1):NumRx) {
    lHR[c,j]     <- d[j] - d[c]
    log(HR[c,j]) <- lHR[c,j]
  }
}

# ranking on relative scale
for (j in 1:NumRx) {
  rk[j]       <- blnHiGood*(NumRx+1-rank(d[])) + (1-blnHiGood)*rank(d[],j)
}

totresdev <- sum(resdev[])

d[1]<-0  # effect is 0 for reference treatment
for (j in 2:NumRx) {
  d[j] ~ dnorm(0,.0001)  # indexes treatments
}

dsu ~ dunif(RFXpriorParam1, RFXpriorParam2)  # uniform between-trial prior
sdn ~ dnorm(RFXpriorParam1, RFXpriorParam2)  # normal between-trial prior
sdl ~ dlnorm(RFXpriorParam1, RFXpriorParam2)  # lognormal between-trial prior
sd <- sd u * equals(RFXpriorD,1) + sdn * equals(RFXpriorD,2) + sdl * equals(RFXpriorD,3)  # select correct between-trial prior

tau <- pow(sd, -2)  # between-trial precision
```

M.1.4 Mixed dichotomous and rate data; binomial likelihood with cloglog link and Poisson likelihood with log link

M.1.4.1 Fixed effects

```plaintext
# Effectiveness model for mixed dichotomous and count data
# Binomial likelihood, cloglog link / Poisson likelihood, log link
# Fixed effects
# based on
# Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
# NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework
# for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
# http://www.nicedsu.org.uk

model {
  for(i in 1:NumStudiesD) {
    mu[i] ~ dnorm(0,.0001)  # indexes studies with dichotomous data
    # vague priors for all trial baselines
    for (j in 1:NumArms[i]) {
      k[i,j] ~ dbin(p[i,j],N[i,j])  # binomial likelihood
      cloglog(p[i,j]) <- log(Yrs[i]/1) + mu[i] + d[Rx[i,j]] - d[Rx[i,1]]  # model for linear predictor
      rhat[i,j] <- p[i,j] * N[i,j]  # expected value of the numerators
      dev[i,j] <- 2 * (k[i,j] * (log(k[i,j])-log(rhat[i,j])) + (N[i,j]-k[i,j]) * (log(N[i,j]-k[i,j]))) - log(N[i,j]-rhat[i,j]))  # deviance contribution
    }
  }

  # Provide estimates of treatment effects T[j] on the natural (probability) scale
  # Given a Mean Effect, meanA, for 'standard' treatment A,
  # with precision (1/variance) precA, over a time period timeA
  AMean ~ dnorm(meanA, precA)
  APred ~ dnorm(predA, predPrecA)
  for (j in 1:NumRx) {
    cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
    cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
  }

  # pairwise HRs and LHRs for all possible pair-wise comparisons
  for (c in 1:(NumRx-1)) {
    for (j in (c+1):NumRx) {
      lHR[c,j]     <- d[j] - d[c]
      log(HR[c,j]) <- lHR[c,j]
    }
  }

  # ranking on relative scale
  for (j in 1:NumRx) {
    rk[j]       <- blnHiGood*(NumRx+1-rank(d[])) + (1-blnHiGood)*rank(d[],j)
  }
  # probability that treat j is best
  for (h in 1:NumRx) {
    pRk[h,j]  <- equals(rk[j],h)  # probability that treat j is hth best
  }
```
WinBUGS code

for (i in 1:NumStudiesC) {
 resdev[i] <- sum(dev[i,1:NumArms[i]])
}

for (i in 1:NumStudiesD) {
 mu[i] ~ dnorm(0, .0001)
 w[i] <- 0
 for (j in 1:NumArms[i]) {
 k[i,j] ~ dbin(p[i,j],N[i,j])
 cloglog(p[i,j]) <- log(Yrs[i]/1) + mu[i] + delta[i,j]
 rhat[i,j] <- p[i,j] * N[i,j]
 dev[i,j] <- 2 * (k[i,j] - log(k[i,j]) + log(N[i,j]/1) + mu[i] + delta[i,j])
 }
}

for (i in 1:NumStudiesC) {
 mu[i + NumStudiesD] ~ dnorm(0, .0001)
 for (j in 1:NumArms[i]) {
 r[i,j] ~ dpois(theta[i,j])
 theta[i,j] <- lambda[i,j] * E[i,j]
 log(lambda[i,j]) <- mu[i + NumStudiesD] + d[RxC[i,j]] - d[RxC[i,1]]
 dev[i + NumStudiesD,j] <- 2 * ((theta[i,j]-r[i,j]) + r[i,j] * log(r[i,j] / theta[i,j]))
 }
 resdev[i + NumStudiesD] <- sum(dev[i + NumStudiesD,1:NumArmsC[i]])
}

totresdev <- sum(resdev[])

d[1]<-0

for (j in 2:NumRx) {
 d[j] ~ dnorm(0, .0001)
}

Provide estimates of
treatment effects T[j] on the natural (probability) scale
Given a Mean Effect, meanA, for 'standard' treatment A,
with precision (1/variance) precA, over a time period timeA
AMean ~ dnorm(meanA, precA)
APred ~ dnorm(predA, predPrecA)
for (j in 1:NumRx) {
 cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
 cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
}

pairwise HRs and LHRs for all possible pairwise comparisons
for (c in 1:(NumRx-1)) {
 for (j in (c+1):NumRx) {
 lHR[c,j] <- d[j] - d[c]
 log(HR[c,j]) <- -lHR[c,j]
 }
}

ranking on relative scale
for (j in 1:NumRx) {
 rk[j] <- blnHiGood*(NumRx+1-rank(d[],j)) + (1-blnHiGood)*rank(d[],j)
 best[j] <- equals(rk[j],1)
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rk[j],h)
 }
}

M.1.4.2 Random effects

model {
 for (i in 1:NumStudiesD) {
 mu[i] ~ dnorm(0, .01)
 delta[i,1] <- 0
 w[i,1] <- 0
 }
 for (j in 1:NumArms[i]) {
 k[i,j] ~ dbin(p[i,j],N[i,j])
 cloglog(p[i,j]) <- log(Yrs[i]/1) + mu[i] + delta[i,j]
 rhat[i,j] <- p[i,j] * N[i,j]
 dev[i,j] <- 2 * (k[i,j] - log(k[i,j]) - log(rhat[i,j]))
 + (N[i,j]-k[i,j]) * log(N[i,j]-k[i,j])
 - log(N[i,j]-rhat[i,j]))
 dev[i,j] <- dev[i,j] / dev[i,1]
 }
 for (i in 1:NumStudiesC) {
 mu[i + NumStudiesD] ~ dnorm(0, .0001)
 for (j in 1:NumArms[i]) {
 r[i,j] ~ dpois(theta[i,j])
 theta[i,j] <- lambda[i,j] * E[i,j]
 log(lambda[i,j]) <- mu[i + NumStudiesD] + d[RxC[i,j]] - d[RxC[i,1]]
 dev[i + NumStudiesD,j] <- 2 * ((theta[i,j]-r[i,j]) + r[i,j] * log(r[i,j] / theta[i,j]))
 }
 }
 resdev[i + NumStudiesD] <- sum(dev[i + NumStudiesD,1:NumArmsC[i]])
 totresdev <- sum(resdev[])
 for (j in 1:NumRx) {
 d[j] ~ dnorm(0, .0001)
 }
 # Effectiveness model for mixed dichotomous and count data
 # Binomial likelihood, cloglog link / Poisson likelihood, log link
 # Random effects
 # based on
 # Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
 # NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework
 # for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
 # http://www.nicedsu.org.uk
 mu[i] ~ dnorm(0, .01)
 delta[i,1] <- 0
 w[i,1] <- 0
 for (j in 1:NumArms[i]) {
 k[i,j] ~ dbin(p[i,j],N[i,j])
 cloglog(p[i,j]) <- log(Yrs[i]/1) + mu[i] + delta[i,j]
 rhat[i,j] <- p[i,j] * N[i,j]
 dev[i,j] <- 2 * (k[i,j] - log(k[i,j]) - log(rhat[i,j]))
 + (N[i,j]-k[i,j]) * log(N[i,j]-k[i,j])
 - log(N[i,j]-rhat[i,j]))
 dev[i,j] <- dev[i,j] / dev[i,1]
 }
 for (i in 1:NumStudiesC) {
 mu[i + NumStudiesD] ~ dnorm(0, .0001)
 for (j in 1:NumArms[i]) {
 r[i,j] ~ dpois(theta[i,j])
 theta[i,j] <- lambda[i,j] * E[i,j]
 log(lambda[i,j]) <- mu[i + NumStudiesD] + d[RxC[i,j]] - d[RxC[i,1]]
 dev[i + NumStudiesD,j] <- 2 * ((theta[i,j]-r[i,j]) + r[i,j] * log(r[i,j] / theta[i,j]))
 }
 }
 resdev[i + NumStudiesD] <- sum(dev[i + NumStudiesD,1:NumArmsC[i]])
 totresdev <- sum(resdev[])
 for (j in 1:NumRx) {
 d[j] ~ dnorm(0, .0001)
 }
 # Provide estimates of
treatment effects T[j] on the natural (probability) scale
 # Given a Mean Effect, meanA, for 'standard' treatment A,
 # with precision (1/variance) precA, over a time period timeA
 AMean ~ dnorm(meanA, precA)
 APred ~ dnorm(p, predPrecA)
 for (j in 1:NumRx) {
 cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
 cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
 }
 # pairwise HRs and LHRs for all possible pairwise comparisons
 for (c in 1:(NumRx-1)) {
 for (j in (c+1):NumRx) {
 lHR[c,j] <- d[j] - d[c]
 log(HR[c,j]) <- -lHR[c,j]
 }
 }
 # ranking on relative scale
 for (j in 1:NumRx) {
 rk[j] <- blnHiGood*(NumRx+1-rank(d[],j)) + (1-blnHiGood)*rank(d[],j)
 best[j] <- equals(rk[j],1)
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rk[j],h)
 }
 }
WinBUGS code

close arm loop
for (j in 2:NumArms[i]) {
 delta[i,j] ~ dnorm(md[i,j],taud[i,j]) # trial-specific LHR distributions
 md[i,j] <- d[Rx[i,j]] - d[Rx[i,1]] + sw[i,j] # mean of LHR distributions (with multi-arm trial correction)
 taud[i,j] <- tau *2*(j-1)/j # precision of LOR distributions (with multi-arm trial correction)
 w[i,j] <- (delta[i,j] - d[Rx[i,j]] + d[Rx[i,1]]) # adjustment for multi-arm RCTs
 sw[i,j] <- sum(w[i,1:j-1])/(j-1) # cumulative adjustment for multi-arm trials
}
resdev[i] <- sum(dev[i,1:NumArms[i]]) # summed deviance contribution
}

for(i in 1:NumStudiesC) { # indexes studies with count data
 mu[i + NumStudiesD] ~ dnorm(0, .01) # vague priors for all trial baselines
 delta[i + NumStudiesD,1] ~ 0 # effect is zero for control arm
 w[i + NumStudiesD,1] ~ 0 # multi-arm adjustment = zero for ctrl
 for (j in 1:NumArmsC[i]) { # indexes arms
 r[i,j] ~ dpois(theta[i,j]) # Poisson likelihood
 theta[i,j] <- lambda[i,j] * E[i,j] # failure rate * exposure
 log(lambda[i,j]) <- mu[i + NumStudiesD] + delta[i + NumStudiesD,j] # model for linear predictor
 dev[i + NumStudiesD,j] <- 2 * ((theta[i,j] - r[i,j]) + r[i,j] * log(r[i,j] / theta[i,j])) # deviance contribution
 }
 for (j in 2:NumArmsC[i]) { # indexes arms
 delta[i + NumStudiesD,j] ~ dnorm(md[i + NumStudiesD,j],taud[i + NumStudiesD,j]) # trial-specific LHR distributions
 md[i + NumStudiesD,j] <- d[RxC[i,j]] - d[RxC[i,1]] + sw[i + NumStudiesD,j] # mean of LHR distributions (with multi-arm trial correction)
 taud[i + NumStudiesD,j] <- tau *2*(j-1)/j # precision of LOR distributions (with multi-arm trial correction)
 w[i + NumStudiesD,j] <- (delta[i + NumStudiesD,j] - d[RxC[i,j]] + d[RxC[i,1]]) # adjustment for multi-arm RCTs
 sw[i + NumStudiesD,j] <- sum(w[i + NumStudiesD,1:j-1])/(j-1) # cumulative adjustment for multi-arm trials
 }
 resdev[i + NumStudiesD] <- sum(dev[i + NumStudiesD,1:NumArmsC[i]]) # summed deviance contribution
}
totresdev <- sum(resdev[]) # total residual deviance

d[1]<-0 # effect is 0 for reference treatment
for (j in 2:NumRx) { # indexes treatments
 d[j] ~ dnorm(0, .0001) # vague priors for treatment effects
 sdu ~ dunif(RFXpriorParam1, RFXpriorParam2) # uniform between-trial prior
 sdn ~ dnorm(RFXpriorParam1, RFXpriorParam2) # normal between-trial prior
 sdl ~ dlnorm(RFXpriorParam1, RFXpriorParam2) # lognormal between-trial prior
 sd <- sdu * equals(RFXpriorD,1) + sdn * equals(RFXpriorD,2) + sdl * equals(RFXpriorD,3) # select correct between-trial prior
 tau <- pow(sd,-2) # between-trial precision

 # Provide estimates of treatment effects T[j] on the natural (probability) scale
 # Given a Mean Effect, meanA, for 'standard' treatment A,
 # with precision 1/variance precA, over a time period timeA
 #AMean ~ dnorm(meanA, precA)
 #APred ~ dnorm(predA, predPrecA)
 for (j in 1:NumRx) {
 cloglog(Tmean[j]) <- log(YrsA) + AMean + d[j]
 cloglog(Tpred[j]) <- log(YrsA) + APred + d[j]
 }

 # pairwise HRs and LHRs for all possible pair-wise comparisons
 for (c in 1:(NumRx-1)) {
 for (j in (c+1):NumRx) {
 lHR[c,j] <- d[j] - d[c] # log(1HR[c,j]) <- lHR[c,j]
 }
 }
}
ranking on relative scale
for (j in 1:NumRx) {
 rk[j] <- blnHiGood*(NumRx+1-rank(d[])) + (1-blnHiGood)*rank(d[],j)
 best[j] <- equals(rk[j],1) # probability that treat j is best
 for (h in 1:NumRx) {
 pRk[h,j] <- equals(rk[j],h) # probability that treat j is hth best
 }
}

M.2 Baseline effects syntheses

M.2.1 Dichotomous data; binomial likelihood; logit link
Not used

M.2.2 Dichotomous data; binomial likelihood; cloglog link
Not used

M.2.3 Rate data; Poisson likelihood; log link

M.2.3.1 Fixed effects

Baseline model for rate data
Poisson likelihood, log link
Fixed-effects model
based on
Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
NICE DSU Technical Support Document 5: Evidence synthesis in the baseline
natural history model. 2011.
http://www.nicedsu.org.uk

model {
 for(i in 1:NumStudies) { # indexes studies with count data
 r[i] ~ dpois(theta[i]) # Poisson likelihood
 theta[i] <- exp(m) * (E[i] / 365.24) # event rate * exposure
 } # close study loop
 m ~ dnorm(0, 0.0001) # vague prior for base line
cloglog(prob) <- log(1) + m # posterior mean yearly response rate
}

M.2.3.2 Random effects

Baseline model for rate data
Poisson likelihood, log link
Random-effects model
based on
Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E.
NICE DSU Technical Support Document 5: Evidence synthesis in the baseline
natural history model. 2011.
http://www.nicedsu.org.uk

model {
 for(i in 1:NumStudies) { # indexes studies
 mu[i] ~ dnorm(m, tau.m) # trial-specific baseline with random effects
 r[i] ~ dpois(theta[i]) # Poisson likelihood
 theta[i] <- exp(mu[i]) * (E[i] / 365.24) # event rate * exposure
 } # close study loop
 sd.m ~ dunif(0, 5) # vague prior for SD (baseline)
tau.m ~ pow(sd.m, -2) # between-trial precision (baseline)
m ~ dnorm(0, .0001) # vague prior for mean (baseline)
cloglog(prob) <- log(1) + m # posterior mean yearly response rate
 mu.new ~ dnorm(m, tau.m) # pred. dist. for baseline (log-HR)
cloglog(pred) <- log(1) + mu.new # predictive mean yearly response rate
}
M.2.4 Mixed dichotomous and rate data; binomial likelihood with cloglog link and Poisson likelihood with log link

M.2.4.1 Fixed effects

```winbugs
model {
  for(i in 1:NumStudiesD) {                   # indexes studies with dichotomous data
    k[i]          ~  dbin(p[i], N[i])         # binomial likelihood
    cloglog(p[i]) <- log(Yrs[i]) + m          # model for linear predictor
  }                                         # close study loop
  for(i in 1:NumStudiesC) {                   # indexes studies with count data
    r[i]          ~  dpois(theta[i])          # Poisson likelihood
    theta[i]      <- exp(m) * (E[i] / 365.24) # event rate * exposure
    dummy[i]      <- YrsC[i]                  # not used in this model
  }                                         # close study loop
  m ~  dnorm(0, 0.0001)                       # vague prior for baseline
  cloglog(prob) <- log(1) + m                 # posterior mean yearly response rate
}
```

M.2.4.2 Random effects

```winbugs
model {
  for(i in 1:NumStudiesC + NumStudiesD) {       # indexes studies
    mu[i]         ~  dnorm(m, tau.m)          # trial-specific baseline with random effects
  }                                         # close study loop
  for(i in 1:NumStudiesD) {                   # indexes studies with dichotomous data
    k[i]          ~  dbin(p[i], N[i])         # binomial likelihood
    cloglog(p[i]) <- log(Yrs[i]) / 1 + mu[i]  # model for linear predictor
  }                                         # close study loop
  for(i in 1:NumStudiesC) {                   # indexes studies with count data
    r[i]          ~  dpois(theta[i])          # Poisson likelihood
    theta[i]      <- exp(mu[NumStudiesD+i]) * (E[i] / 365.24) # event rate * exposure
    dummy[i]      <- YrsC[i]                  # not used in this model
  }                                         # close study loop
  sd.m          ~  dunif(0, 5)                # vague prior for SD (baseline)
  tau.m         <-  pow(sd.m, -2)             # between-trial precision (baseline)
  m             ~  dnorm(0, .0001)            # vague prior for mean (baseline)
  cloglog(prob) <- log(1) + m                 # posterior mean yearly response rate
  mu.new        ~  dnorm(m, tau.m)            # pred. dist. for baseline (log-HR)
  cloglog(pred) <- log(1) + mu.new            # predictive mean yearly response rate
}
```