National Clinical Guideline Centre

Consultation

Sepsis

Sepsis: the recognition, diagnosis and management of sepsis

NICE guideline <number> Appendices I-O January 2016

Draft for consultation

Commissioned by the National Institute for Health and Care Excellence

Sepsis

Disclaimer

Healthcare professionals are expected to take NICE clinical guidelines fully into account when exercising their clinical judgement. However, the guidance does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of each patient, in consultation with the patient and, where appropriate, their guardian or carer.

Copyright

National Clinical Guideline Centre, 2016

Funding National Institute for Health and Care Excellence

Contents

Appendices	5
Appendix I: Economic evidence tables	5
Appendix J: GRADE tables	
Appendix K: Forest plots	44
Appendix L: Excluded clinical studies	115
Appendix M:Excluded health economic studies	153
Appendix N: Research recommendations	155
Appendix O: NICE technical team	161
References: Appendix I-O	

1 Appendices

2 Appendix I: Economic evidence tables

I.1 Scoring systems

4 None.

National Clinical Guideline Centre, 2016

Л

I.2 Signs and symptoms

6 None.

I.3 Blood tests

8 None.

I.4 Lactate

10 None.

L5 Serum creatinine

- 12 None.
- **L6** Disseminated intravascular coagulation
- 14 None.

Antimicrobial treatment

None.

IV fluid administration L8

None.

Escalation of care

None.

National Clinical Guideline Centre, 2016 Inotropic agents and vasopressors

22 None.

Supplemental oxygen 1.11

24 None.

Use of bicarbonate 1.12

26 None.

Early goal-directed therapy (EGDT) 1.13

28

Study	Mouncey 2015 ⁸²⁶			
Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis: CUA (health outcome: QALYs)	Population: Patients with early signs of	Total costs (mean per patient):	QALYs (mean per patient): Intervention 1: 0.054	ICER (Intervention 2 versus Intervention 1): Intervention 2 dominated (more expensive

Study design: Within trial analysis (RCT)

Approach to analysis:

Analysis of individual level data for mortality and EQ-5D. Unit costs were applied to resource use.

Perspective: UK NHS

Time horizon/Follow-up 90 days QoL follow up Treatment effect duration: Resuscitation protocol was followed for 6 hours

Discounting: Costs: NR; Outcomes: NR septic shock

Patient characteristics:

N = 1251 Mean age: invtn 1 = 64.3 (15.5), intvn 2 = 66.4 (14.6) Male: invtn 1 = 58.6%, intvn 2 = 57%

Intervention 1:

Usual care The usual care group continued to receive monitoring, investigation and treatment as determined by the clinician.

Intervention 2:

Early Goal Directed Therapy (EGDT).

Following a resuscitation protocol involving central venous catheter insertion with central venous oxygen saturation monitoring capability and intensive therapy of other interventions Intervention 1: £11,424 Intervention 2: £12,414 Incremental (2–1): £989 (95% Cl: -726 to 2,705; p=NR)

Currency & cost year: 2012 UK pounds

Cost components incorporated:

Equipment and consumables – 2 monitors
capable of oxygen
saturation monitoring
assumed to be needed per
hospital. Costs of
consumables including the
catheter capable of
monitoring, pressure
transducers.
Blood products and
dobutamine

- Staff time to deliver the protocol; time for vascular catheter insertion and time for monitoring patients (assumed 10 minutes of nurse time per hr of the resus protocol). Staff time for training, assumed to be 20 minutes per ED staff member every 5 years (5 years assumed to be the life Intervention 2: 0.054 Incremental (2–1): -0.001 (95% CI: -0.006 to 0.005); p=0.85)

and less benefit)

Probability Intervention 2 cost-effective (£20K/30K threshold): 12%/12% (read from graph)

Sepsis

Economic evidence tables

Analysis of uncertainty:

Some form of PSA undertaken ^(a) to generate cost effectiveness plane and cost effectiveness acceptability curve. 500 estimates obtained.

Sensitivity analyses undertaken include:

- Manufacturer list price used for monitoring machines instead of discounted price used in base case

- Staff monitoring time varied from 10 minutes per hour in the base case to 5 and 15 minutes.

- Location of protocol implementation; if protocol is implemented in the ED, staffneed to be trained but in critical care they do not. Sensitivity analysis assumed that the protocol was implemented either exclusively in the ED or critical care.

- Re-admission data in the base case was gathered both from the health services questionnaire sent out and the Intensive Care National Audit & Research Centre Case Mix Programme Database. In a sensitivity analysis only the database was used to avoid any potential double counting.

- Baseline covariates were adjusted for components of the Mortality in Emergency Department Sepsis (MEDS) score

Economic evidence tables

of the protocol) - Hospital stay/ICU stay - Re-admissions

- Costs and QALYs were assumed to be gamma distributed, compared to normally distributed in the base case.

EGDT remained cost-ineffective in all sensitivity analyses.

Data sources

Health outcomes: Mortality data taken from the RCT (proMISe trial) alongside the economic evaluation.

Quality-of-life weights: EQ-5D scores were elicited at 90 days, assuming an EQ-5D score of zero at randomisation, and a linear interpolation between randomisation and 90 days. Zero QALYs were assumed for people who died before 90 days.

Cost sources: Costs of monitor and central venous catheter with monitoring capability was derived from the manufacturer. These costs are over 50% discount on list prices. It was assumed each site would require 2 monitors which would have a lifespan on average of 5 years. Monitor costs per patient were calculated by dividing the total costs of the monitors (£4000) by the expected number of eligible patients over 5 years. Annual number of eligible patients calculated by taking average number of potentially eligible patients per site per year from the trial screening log data (23 patients per site per year). Some consumables sourced from hospital finance departments. Training costs per patient per hour derived from total training costs per site divided by eligible patients over 5 years. Blood products from NHS blood and transplant price list 2012. Drugs from BNF 2012. Staff costs and outpatient and community health service costs from PSSRU 2012. Hospital stay costs from NHS reference costs 2012.

Comments

Source of funding: NR Limitations: Adverse events not taken account of in cost effectiveness analysis (either their treatment costs or impact on QoL). Methodology behind probabilistic analysis unclear. Short time horizon.

Overall applicability(d): Directly applicable Overall quality: potentially serious limitations

29 Abbreviations: 95% CI: 95% confidence interval; CUA: cost-utility analysis; da: deterministic analysis; EQ-5D: Euroqol 5 dimensions (scale: 0.0 [death] to 1.0 [full health], negative values mean

30 worse than death); ICER: incremental cost-effectiveness ratio; NR: not reported; pa: probabilistic analysis; PSSRU: Personal Social Services Research Unit; QALYs: quality-adjusted life years

(a) The paper states incremental costs and QALYs were estimated using 'a seemingly unrelated regression model', and they used 'the estimates of the means, variances and the covariance from the regression model to generate 500 estimates of incremental costs and QALYs from the joint distribution of these endpoints'. By generating a cost effectiveness plane and cost

33 effectiveness acceptability curve this implies some kind of probabilistic analysis was done but the methodology quoted isn't clear.

I.14 Monitoring

35 None.

Patient education, information and support National Clinical Guideline Centre, 2016

None.

Training and education

Study	Suarez 2011 ¹⁰⁷⁵			
Study details	Population & interventions	Costs	Health outcomes	Cost-effectiveness
Economic analysis: CEA/CUA (health outcome: Life Years Gained and QALYs) Study design: Within trial analysis Approach to analysis: Pre- education program cohort (2 months before program) was compared to a post education program cohort (4 months after program). Program consisted of a 2 month educational program of training physicians and nursing staff from the emergency department, medical, and surgical wards, and ICU in early recognition of severe sepsis and the treatments in the Surviving Sepsis Campaign (SSC) protocol. Unit costs applied to prospective study data. Multivariable regression models were used to adjust for baseline	Population: Patients with severe sepsis Patient characteristics: N = 2319 ^(b) Mean age = 62.2 (SD: 16.3) Male = 60.8% Intervention 1: Pre-intervention cohort, the 2 months prior to the educational program Intervention 2: Post intervention cohort, the 4 months following educational program.	Total costs (mean per patient): Intervention 1: £14,427 Intervention 2: £15,906 Incremental (2–1): £1,479 (95% CI: NR; p=NR) Currency & cost year: 2006 Spanish Euros presented here as 2006 UK pounds ^(c) Cost components incorporated: Unit costs for emergency visits, surgical and medical ward daily stays, and ICU daily stays. Cost associated with the pharmacological and non- pharmacological interventions of the SSC protocol. One of the goals of the SSC protocol is	QALYs (mean per patient): Intervention 1: 3.75 Intervention 2: 4.12 Incremental (2–1): 0.37 (95% CI: 0.02-0.73; p=NR) Life Years Gained (mean per patient): Intervention 1: 5.44 Intervention 2: 5.98 Incremental (2–1): 0.54 (95% CI: 0.02-1.05; p=NR)	ICER (Intervention 2 versus Intervention 1): £5,476 per QALY gained (the 'adjusted' ICER) (pa) 95% CI: NR Probability Intervention 2 cost-effective (£20K threshold): 94% (read off graph) Probabilistic analysis was undertaken using non parametric bootstrapping with 2000 replications. Analysis of uncertainty: One way sensitivity analyses undertaken include: - Changing the rate for sepsis survivors from 0.51 to 0.39. Making this value even more restrictive. - Quality of life weight was changed from 0.69 to 0.75. - The ICER was also calculated for different utility values. Only for very low utility values (lower than 0.2) was the ICER more than £20,000 (read off graph). - Discounting of Life Years Gained and

differences of costs, QALYs, and Life Years Gained.

Perspective: Spanish healthcare system perspective.

Time horizon/Follow-up: Post intervention cohort was a 4 month period after intervention introduced. Costs were only considered up until hospital discharge. Lifetime horizon for life years. Treatment effect duration:^(a) 4

months (post intervention cohort) **Discounting:** Costs: NA; Health outcomes: 3% maintaining glucose control; the average cost per patient reported in a cost effectiveness analysis of insulin therapy was used. Patients who achieved the goal were applied the cost of the intensive therapy group, and patients who did not meet the goal were applied the cost of the conventional therapy group. QALYs was changed from 3% to 0%. - Discounting of Life Years Gained and QALYs was changed from 3% to 5%.

- The cost of the education and training program and cost of staff time spent attending the sessions was not included in base case. These costs were included in a sensitivity analysis.

All sensitivity analyses generated results similar to that of the base case.

Data sources

Health outcomes: Mortality and resource use data derived from a cohort before and after study (Ferrer 2008⁴⁵⁰). Age and gender specific life expectancy for each survivor taken from the 2006 Spanish like expectancy tables. These were adjusted using the estimated reduction rate for sepsis survivors of 0.51⁹⁴⁴.

Quality-of-life weights: The quality of lie weight used was 0.69. This utility weight was obtained from a study of 6 month survivors of severe sepsis using the EQ-5D.³⁹⁵

Cost sources: unit costs for emergency visits, surgical and medical ward daily stays, and ICU daily stays were from the Spanish National Health Institute. Pharmacological intervention costs from the SSC protocol were from the Spanish physician's desk reference. Non-pharmacological intervention costs were obtained from their suppliers. Insulin therapy cost was the average cost per patient from a cost effectiveness study on insulin therapy¹¹²⁰ (\leq 144 for intensive therapy and \leq 72 for conventional therapy). All prices in the study were adjusted to 2006 values using the Spanish consumer price index. Long term costs after discharge were not included. The costs of the training program were not included in the base case, but were included in a sensitivity analysis (\leq 54,270).

Comments

Source of funding: Supported by a grant from the Instituto de Salud Carlos III. **Limitations:** Only includes short term costs. Data on effectiveness from a cohort study, not RCT. Base case did not include cost if the intervention itself. Methodology not always clear; particularly around where adjusted ICER comes from. **Other:** The paper states that both the incremental costs and incremental QALYs/Life Years Gained were 'obtained by adjusting multivariable regression models to take into account possible baseline imbalances'. The ICER that is reported in the study is stated to be the 'adjusted ICER' (6,428 Euros or £5,476). It is unclear whether the 'adjusted' ICER reported is the deterministic or probabilistic ICER, however the paper states the ICER in the text (as well as a table) then immediately in the next sentence states that

Overall applicability: Partially applicable^(d) **Overall quality**^(e) Potentially serious limitations

Abbreviations: CEA: cost-effectiveness analysis; 95% CI: 95% confidence interval; CUA: cost-utility analysis; EQ-5D: Eurogol 5 dimensions (scale: 0.0 [death] to 1.0 [full health], negative values mean worse than death); ICER: incremental cost-effectiveness ratio; NR: not reported; pa: probabilistic analysis; QALYs: quality-adjusted life years

- (a) The post intervention cohort are those that would benefit from the 'treatment effect' of the education program. This cohort included patients during the 4 month period after the intervention. The time horizon for health outcome was lifetime so life expectancy was applied to the survivors. Therefore there is an assumption being made about the continuation of the study effect because life years will continue to vary between arms as different numbers of people will be alive in the pre and post intervention cohorts. The utility being applied to the groups is the same because the utility is the utility of sepsis survivors and is not impacted by the intervention except by the impact on mortality.
- (b) Note that the study this economic evaluation is based on is included in the clinical review (Ferrer2008) and the number of patients included in the study is higher than that reported here because there was also a third observation period (one year after the pre intervention group, to test the longevity of the education program) included in the clinical paper that is separate to the pre and post intervention cohorts.
- (c) Converted using 2006 purchasing power parities ⁸⁸² 48
- 49 (d) Directly applicable / Partially applicable / Not applicable 50
 - (e) Minor limitations / Potentially serious limitations / Very serious limitations

11

39

40

41

42

43

44

45

46

47

51

52 Appendix J: GRADE tables

L1 Scoring systems

54 None.

L² Signs and symptoms

56 None.

占3 Blood tests

58 None.

占4 Lactate

60 None.

b5 Serum creatinine

62 None.

b6 Disseminated intravascular coagulation (DIC)

64

65 **Table 1: Disseminated intravascular coagulation (DIC) and all-cause mortality**

			Quality asso		No of patients		Effect		Quality	Importance		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	DIC	Control	OR (95% CI)	Absolute	-	
28-day mort	tality - Gando 2008									•		
1	observational studies	very serious ¹	no serious inconsistency	very serious ²	no serious imprecision	none	65	264	1.22 (1.00 to 1.49)	_4	VERY LOW	CRITICAL
28-day mort	tality - Gando 2013			•								
1	observational studies	very serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	292	332	1.28 (1.14 to 1.44)	_4	VERY LOW	CRITICAL
28-day mort	tality - Ogura 2014									•		
1	observational studies	very serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	292	332	1.73 (1.09 to 2.75)	_4	VERY LOW	CRITICAL
In-hospital	mortality - Gando 2	007								<u>, </u>		
1	observational studies	very serious ¹	no serious inconsistency	no serious indirectness	serious ³	none	11	34	4.22 (1.42 to 12.59)	_4	VERY LOW	CRITICAL
In-hospital	mortality - Gando 2	007A		1	1	1					1	1

1		,	no serious inconsistency	no serious indirectness	serious ³	none	20	28	40.50 (4.54 to 360.98)	_4	VERY LOW	CRITICAL	
In-hospital mortality - Ogura 2014													
1		,	no serious inconsistency	no serious indirectness	no serious imprecision	none	292	332	1.55 (1.01 to 2.37)	_4	VERY LOW	CRITICAL	

66 67 ¹ Risk of bias mainly due to the lack of evidence that physicians treating patients were blinded to the DIC status. The assumed lack of blinding means that knowledge of DIC could affect treatment, which

would possibly affect outcome.

² The majority of the evidence included an indirect population (downgraded by one increment) or a very indirect population (downgraded by two increments)

³ Downgraded by 1increment due to a very imprecise result expressed by a very wide confidence interval
 ⁴ N/A as only adjusted or unadjusted OR was provided

68 69 70

Antimicrobial treatment J.7

72 Table 2: <1 hour versus >1 hour (adult population)

			Quality asse	No of patients		Effect	:	Quality	Importance			
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<1h versus >1h (multivariable analysis)	Control	OR (95% CI)	Absolute	-	
Mortality	•							•				
	observational studies				no serious imprecision	none	-	-	OR 0.87 (0.81 to 0.94)	_2	VERY LOW	CRITICAL
Mortality -	ICU setting		·		·							

Sepsis	
GRADE	tables

6	observational studies				no serious imprecision	none	-	-	Not estimable	_2	VERY LOW	CRITICAL		
Mortality -	Mortality - ED setting													
2	observational studies			no serious indirectness	serious ³	none	-	-	Not estimable	_2	VERY LOW	CRITICAL		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Absolute effect not estimable as the crude event rate for the control group was not provided ³ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs 74 75

Table 3: <2 hours versus >2 hours (adult population)

			Quality asso	essment	No of patients		Effec	t	Quality	Importance		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<2h versus >2h (multivariable analysis)	Control	OR (95% CI)	Absolute	-	Importance
Mortality												
	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.73 (0.51 to 1.04)	_3	VERY LOW	CRITICAL
Mortality -	ICU setting	•	•	•		•		•				

1	observational studies		no serious indirectness	serious ²	none	-	-	OR 0.14 (0.02 to 0.88)	_3	VERY LOW	CRITICAL
Mortality -	ED setting										
3	observational studies			no serious imprecision	none	-	-	OR 0.78 (0.54 to 1.12)	_3	VERY LOW	CRITICAL

78 79 80 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

81

82 Table 4: <3 hours versus >3 hours (adult population)

			Quality assess		No of patients		Effec	t	Quality	Importance		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<3h versus >3h (multivariable analysis)	Control	OR (95% CI)	Absolute	-	
Mortality												
	observational studies			no serious indirectness	serious²	none	-	-	OR 0.7 (0.57 to 0.86)	_3	VERY LOW	CRITICAL
Mortality -	ICU setting		•					•				
1	observational	serious ¹	no serious	no serious	serious ²	none	-	-	OR 0.8 (0.6 to	_3	VERY	CRITICAL

	studies		inconsistency	indirectness					1.07)		LOW	
Mortality -	ED setting	1	1	<u> </u>				<u> </u>	<u> </u>			
	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.62 (0.47 to 0.82)	_3	VERY LOW	CRITICAL

83 84 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

85

86

87 Table 5: <4 hours versus >4 hours (adult population)

			Quality assess	sment			No of patients		Effec	t	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<4h versus >4h (multivariable analysis)	Control	OR (95% CI)	Absolute	-	importanoc
Mortality												
	observational studies				very serious²	none	3/25 (12%)	2/16 (12.5%)	OR 1.03 (0.49 to 2.14)	-3	VERY LOW	CRITICAL
Mortality -	ED setting											
	observational studies				very serious²	none	-	-	OR 1.03 (0.49 to 2.14)	<u>-</u> 3	VERY LOW	CRITICAL

88 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

89 90 ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

91

Table 6: <5 hours versus >5 hours (adult population) 92

			Quality assess	sment			No of patients		Effec	t	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<5h versus >5h (multivariable analysis)	Control	OR (95% CI)	Absolute		
Mortality												
2	observational studies			no serious indirectness	very serious ²	none	-	-	OR 1.07 (0.24 to 4.77)	_3	VERY LOW	CRITICAL
Mortality -	ED setting											
2	observational studies				very serious ²	none	-	-	OR 1.07 (0.24 to 4.77)	_3	VERY LOW	CRITICAL

93 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

94 95

96

Table 7: <6 hours versus >6 hours (adult population) 97

Quality assessment No of patients Effect Quality Importance

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	<6h versus >6h (multivariable analysis)	Control	OR (95% CI)	Absolute		
Mortality												
	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.72 (0.58 to 0.9)	_3	VERY LOW	CRITICAL
Mortality -	ICU setting							<u>.</u>				
	observational studies	serious ¹		no serious indirectness	serious ²	none	-	-	OR 0.79 (0.57 to 1.08)	_3	VERY LOW	CRITICAL
Mortality -	ED setting											
	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.67 (0.5 to 0.9)	<u>_</u> 3	VERY LOW	CRITICAL

98 99 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

100 101 ⁴ I2=60% (p=0.11)

102

103 Table 8: Hourly treatment delay (ICU, adult population)

|--|

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Hourly treatment delay (ICU)	Control	OR (95% CI)	Absolute		
In-hospital	mortality											
	observational studies				no serious imprecision	none	-	-	OR 1.12 (1.1 to 1.14)	_2	⊕000 VERY LOW	CRITICAL

104 105

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Absolute effect not estimable as the crude event rate for the control group was not provided

106 Table 9: Parenteral antibiotics prior to admission to hospital

			Quality assess	sment			No of patients Effect					Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Parenteral antibiotics prior to admission to hospital (GP)	Control	OR (95% CI)	Absolute	quality	
Mortality												
4		· ·		no serious indirectness	very serious ²	none	-	-	OR 0.58 (0.21 to 1.58)	_3	VERY LOW	CRITICAL

107 108 109

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided

110 Table 10: <1 hour versus >1 hour (PICU, paediatric population)

			Quality asses	sment			No of patients Effect					Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Parenteral antibiotics prior to admission to hospital (GP)	Control	OR (95% CI)	Absolute		F
Mortality	•	•	•		•							
4					very serious ²	none	-	-	OR 0.6 (0.13 to 2.86)	_3	VERY LOW	CRITICAL

111 112 113 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided

Table 11: <2 hours versus >2 hours (PICU, paediatric population) 114

			Quality assess	sment			No of patients Effect					Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Parenteral antibiotics prior to admission to hospital (GP)	Control	OR (95% CI)	Absolute		F
Mortality												
4		· ·			very serious ²	none	-	-	OR 0.41 (0.13 to 1.35)	_3	VERY LOW	CRITICAL

Sepsis	
GRADE	tables

115 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ³ Absolute effect not estimable as the crude event rate for the control group was not provided 116 117

118 Table 12: <3 hours versus >3 hours (PICU, paediatric population)

			Quality assess	sment			No of patients Effect					Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Parenteral antibiotics prior to admission to hospital (GP)	Control	OR (95% CI)	Absolute	quality	
Mortality												
4	observational studies			no serious indirectness	serious ²	none	-	-	OR 0.25 (0.08 to 0.79)	_3	VERY LOW	CRITICAL

119 120 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided 121

122 Table 13: <4 hours versus >4 hours (PICU, paediatric population)

			Quality asses	sment			No of patients Effect					Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Parenteral antibiotics prior to admission to hospital (GP)	Control	OR (95% CI)	Absolute		
Mortality		•										
		very serious ¹		no serious indirectness	serious ²	none	-	-	OR 0.28 (0.1	_3	VERY	CRITICAL

Sepsis **GRADE** tables

				to 0.81)	LOW	
						1

123 124 125 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

³ Absolute effect not estimable as the crude event rate for the control group was not provided

IV fluid administration 12.8

127

128 Table 14: Clinical evidence profile: 6% HES versus 0.9% saline in adults with sepsis

			Quality asses	ssment			No of patier	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	6% HES versus 0.9% saline	Control	Relative (95% Cl)	Absolute		
90-day mo	ortality											
	randomised trials			no serious indirectness	serious ²	none		224/945 (23.7%)		17 more per 1000 (from 19 fewer to 59 more)	LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias 129

130 ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

131

Table 15: Clinical evidence profile: Crystalloid versus colloid plus crystalloid in adults with severe sepsis 132

Quality assessment No of patients Effect Quality Importance

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Crystalloid versus colloid + crystalloid	Control	Relative (95% CI)	Absolute		
Hospital n	nortality											
				no serious indirectness	serious ²	none	101/235 (43%)	121/258 (46.9%)		38 fewer per 1000 (from 117 fewer to 56 more)	VERY LOW	CRITICAL
ICU morta	lity											
		1			very serious ²	none	72/235 (30.6%)	99/258 (38.4%)	``	77 fewer per 1000 (from 146 fewer to 8 more)	VERY LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs 133 134

135

Table 16: Clinical evidence profile: 20% albumin versus 6% HES in adults with severe sepsis 136

			Quality asse	ssment			No of patien	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	20% albumin versus 6% HES	Control	Relative (95% Cl)	Absolute		
28-day mo	rtality											

Sepsis **GRADE** tables

1	randomised trials		 very serious ²	none	4/30 (13.3%)	6/26 (23.1%)	```	97 fewer per 1000 (from 189 fewer to 192 more)	VERY LOW	CRITICAL
										i

137 138 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

139

140 Table 17: Clinical evidence profile: 4% albumin versus 0.9% Sodium Chloride BP in adults with severe sepsis

			Quality asse	essment			No of patients			Effect		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	4% albumin versus 0.9% Sodium Chloride BP	Control	Relative (95% Cl)	Absolute	Quality	Importance
28-day mo	ortality (univa	riate analysis	5)					•				
	randomised trials			no serious indirectness	serious ²	none		217/615 (35.3%)	RR 0.87 (0.74 to 1.02)	46 fewer per 1000 (from 92 fewer to 7 more)	LOW	CRITICAL
28-day mo	ortality (multiv	variate analys	sis)								I	
				no serious indirectness	no serious imprecision	none	137/452 (30.3%)	166/467 (35.5%)	OR 0.71 (0.52 to 0.97)	_3	HIGH	CRITICAL

141 142 143 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs
 ³ Adjusted odds ratio

144

145 **Table 18:** Clinical evidence profile: Albumin versus crystalloids in adults with sepsis

			Quality asses	sment			No of patie	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Albumin versus crystalloids	Control	Relative (95% Cl)	Absolute	quality	importantoo
Mortality	•							•				
1		no serious risk of bias	no serious inconsistency		no serious imprecision	none	710/1937 (36.7%)	763/1941 (39.3%)	RR 0.93 (0.86 to 1.01)	28 fewer per 1000 (from 55 fewer to 4 more)	MODERATE	CRITICAL

146 ¹ Downgraded by 1 increment because of differences regarding the study population

147 Table 19: Clinical evidence profile: Albumin versus colloids in adults with sepsis

			Quality assess	nent			No of patier	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Albumin versus colloids	Control	Relative (95% Cl)	Absolute		
Mortality		·										
1	randomised trials		no serious inconsistency	serious ²	serious ³	none		58/156 (37.2%)	RR 1.02 (0.76 to 1.36)	7 more per 1000 (from 89 fewer to 134 more)	VERY LOW	CRITICAL

Sepsis
GRADE tables

- 148 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias
- ² Downgraded by 1 increment because of differences regarding the study population
 ³ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs 149 150

Table 20: Clinical evidence profile: Packed red blood cells (PRBC) plus EGDT versus EGDT only in adults with septic shock 151

			Quality assess	ment			No of patie	nts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	PRBC + EGDT versus EGDT	Control	Relative (95% Cl)	Absolute		
Hospital n	nortality											
			no serious inconsistency		very serious ¹	none	14/34 (41.2%)	20/59 (33.9%)		71 more per 1000 (from 98 fewer to 366 more)	VERY LOW	CRITICAL

152 ¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

153 Table 21: Clinical evidence profile: Red blood cells (RBC) for low threshold (≤7g/dl) versus high threshold (≤9g/dl) in adults with septic shock

			Quality asses	sment			No of patien	ts		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	RBC at low versus high threshold	Control	Relative (95% Cl)	Absolute		·
90-day mo	ortality											
			no serious inconsistency		no serious imprecision	none	216/502 (43%)	223/496 (45%)	RR 0.97 (0.84 to 1.11)	13 fewer per 1000 (from 72 fewer to 49	MODERATE	CRITICAL

Sepsis	
GRADE	tables

									more)		
90-day mo	ortality - >70 y	ears of age									
			no serious inconsistency	no serious imprecision	none	93/173 (53.8%)	98/185 (53%)		5 more per 1000 (from 85 fewer to 122 more)		CRITICAL
90-day mo	ortality - 70 ye	ars or young	jer								
			no serious inconsistency	no serious imprecision	none		125/311 (40.2%)	RR 0.93 (0.77 to 1.13)	28 fewer per 1000 (from 92 fewer to 52 more)	MODERATE	CRITICAL

154 ¹ Intervention does not fall within the 6-hour time frame

155 Table 22: Clinical evidence profile: 0-2 litres versus 2-4 litres of fluids in adults with severe sepsis

			Quality assess	sment			No of pat	ients	Relative (95% CI) Absolute 2/186 RR 1.05 (0.84 22 more per 1000 (from 7			Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	0-2L versus 2-4L	Control	Relative (95% Cl)	Absolute	quanty	importance
Hospital m	spital mortality											
	observational studies	· · ·		no serious indirectness	serious ²	none	97/210 (46.2%)	82/186 (44.1%)			VERY LOW	CRITICAL
ICU mortal	CU mortality											

Sepsis **GRADE** tables

	observational studies	very serious ¹	no serious inconsistency	no serious indirectness	serious ²	none		66/186 (35.5%)	```	39 fewer per 1000 (from 117 fewer to 60 more)	VERY LOW	CRITICAL
		conouc					(01170)	(00.070)				

156 157 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 23: Clinical evidence profile: 0-2 litres versus >4 litres of fluids in adults with severe sepsis 158

			Quality assess	sment			No of pat	ients		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	0-2L versus >4L	Control	Relative (95% Cl)	Absolute	quanty	
Hospital m	ortality											
		very serious ¹		no serious indirectness	serious ²	none	97/210 (46.2%)	45/100 (45%)	RR 1.03 (0.79 to 1.33)	13 more per 1000 (from 94 fewer to 149 more)	VERY LOW	CRITICAL
ICU mortal	lity	•										
		very serious ¹		no serious indirectness	serious ²	none	66/210 (31.4%)	41/100 (41%)	RR 0.77 (0.56 to 1.04)	94 fewer per 1000 (from 180 fewer to 16 more)	VERY LOW	CRITICAL

159 160 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 24: Clinical evidence profile: 2-4 litres versus >4 litres of fluids in adults with severe sepsis 161

Quality assessment	No of patients	Effect	Quality In	mportance
--------------------	----------------	--------	------------	-----------

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	2-4L versus >4L	Control	Relative (95% CI)	Absolute		
Hospital m	ortality											
		· ·		no serious indirectness	very serious²	none	82/186 (44.1%)	45/100 (45%)	RR 0.98 (0.75 to 1.28)	9 fewer per 1000 (from 112 fewer to 126 more)	VERY LOW	CRITICAL
ICU mortal	lity											
		1		no serious indirectness	serious ²	none	66/186 (35.5%)	45/100 (45%)	RR 0.79 (0.59 to 1.05)	94 fewer per 1000 (from 185 fewer to 22 more)	VERY LOW	CRITICAL

162 163 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

Table 25: Clinical evidence profile: High volume (20-40ml Ringer lactate/kg) versus low volume (20ml Ringer lactate/kg) in children with septic shock 164

			Quality as	sessment			No of patier	nts		Effect		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	High volume versus low volume	Control	Relative (95% Cl)	Absolute	Quality	Importance
Cumulativ	ve 72-hour su	rvival										
1	randomised	serious ¹	no serious	no serious	no serious	none	52/74	55/73	RR 0.93 (0.77	53 fewer per 1000 (from	MODERATE	CRITICAL

trials	inconsistency	indirectness	imprecision	(70.3%)	(75.3%)	to 1.14)	173 fewer to 105 more)	

165 ¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

169 Escalation of care

167 None.

J110 Inotropic agents and vasopressors

169 Table 26: Clinical evidence profile: Norepinephrine versus vasopressin for adults with septic shock

			Quality asses	ssment			No of patients			Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine versus vasopressin	Control	Relative (95% CI)	Absolute		mportaneo
28-day m	ortality		-	_								
			no serious inconsistency	no serious indirectness	serious ¹	none	150/382 (39.3%)	140/396 (35.4%)		39 more per 1000 (from 25 fewer to 117 more)	MODERATE	CRITICAL
90-day m	ortality	•						<u> </u>				
			no serious inconsistency	no serious indirectness	serious ¹	none	188/379 (49.6%)	172/392 (43.9%)		57 more per 1000 (from 13 fewer to 136 more)	MODERATE	CRITICAL

ICU morta	ICU mortality													
	randomised trials				very serious ¹	none	13/25 (52%)	11/28 (39.3%)	RR 1.26 (0.72 to 2.21)	102 more per 1000 (from 110 fewer to 475 more)	VERY LOW	CRITICAL		
Requiring	ı renal replac	ement thera	py at 48 hours											
	randomised trials				very serious ¹	none	8/15 (53.3%)	5/15 (33.3%)	RR 1.6 (0.68 to 3.77)	200 more per 1000 (from 107 fewer to 923 more)	VERY LOW	NOT IMPORTANT		
New onse	et of tachyarrl	hythmias							·					
	randomised trials				very serious ¹	none	4/15 (26.7%)	1/15 (6.7%)	RR 4 (0.5 to 31.74)	200 more per 1000 (from 33 fewer to 1000 more)	VERY LOW	NOT IMPORTANT		

170 171

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

172

173 Table 27: Norepinephrine versus dopamine for adults with septic shock

			Quality as	sessment			No of patients	5		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine versus dopamine	Control	Relative (95% CI)	Absolute		

28-day m	28-day mortality												
1		very serious ¹	no serious inconsistency	no serious indirectness	serious ²	none	51/118 (43.2%)	67/134 (50%)	RR 0.86 (0.66 to 1.13)	70 fewer per 1000 (from 170 fewer to 65 more)	VERY LOW	CRITICAL	
Mortality	Aortality												
3	randomised trials	very serious ¹	no serious inconsistency	no serious indirectness	serious ²	none	23/40 (57.5%)	28/40 (70%)	RR 0.82 (0.59 to 1.15)	126 fewer per 1000 (from 287 fewer to 105 more)	VERY LOW	CRITICAL	
Hospital ı	nortality												
1		very serious ¹	no serious inconsistency	no serious indirectness	very serious ²	none	7/16 (43.8%)	10/16 (62.5%)	RR 0.7 (0.36 to 1.37)	188 fewer per 1000 (from 400 fewer to 231 more)	VERY LOW	CRITICAL	
Incidence	of arrhythmi	as											
1		very serious ¹	no serious inconsistency		no serious imprecision	none	14/118 (11.9%)	51/134 (38.1%)	RR 0.31 (0.18 to 0.53)	263 fewer per 1000 (from 179 fewer to 312 fewer)	LOW	NOT IMPORTANT	
Length of	stay in the h	ospital (B	etter indicated by	lower values)	·								
1		very serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	118	134	-	MD 0.7 lower (4.36 lower to 2.96 higher)	LOW	IMPORTANT	

Sepsis **GRADE** tables

Length o	Length of stay on the ICU (Better indicated by lower values)											
1		1			no serious imprecision	none	118	134	-	MD 0.7 higher (1.15 lower to 2.55 higher)	LOW	IMPORTANT

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs 174

175

176

177 Table 28: Norepinephrine versus epinephrine for adults with septic shock

			Quality asses	sment			No of patients			Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine versus epinephrine	Control	Relative (95% CI)	Absolute	quanty	
28-day mo	28-day mortality											
				no serious indirectness	serious ¹	none	24/82 (29.3%)	17/76 (22.4%)	RR 1.31 (0.76 to 2.24)	69 more per 1000 (from 54 fewer to 277 more)	MODERATE	CRITICAL
90-day mo	ortality							•				
				no serious indirectness	serious ¹	none	30/82 (36.6%)	23/74 (31.1%)	RR 1.18 (0.76 to 1.83)	56 more per 1000 (from 75 fewer to 258 more)	MODERATE	CRITICAL

178 ¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

179 **Table 29: Dopexamine versus dopamine for adults with septic shock**

			Quality asses	sment	No of patients	6	Effect			Importance		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Dopexamine versus dopamine	Control	Relative (95% Cl)	Absolute		
28-day mo	ortality						•				•	
1					very serious ¹	none	5/20 (25%)	4/21 (19%)	RR 1.31 (0.41 to 4.2)	59 more per 1000 (from 112 fewer to 610 more)	LOW	CRITICAL

180 ¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

181

182 Table 30: Norepinephrine plus dobutamine versus epinephrine for adults with septic shock

			Quality ass	essment		No of patients		Effect				
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine + dobutamine versus epinephrine	Control	Relative (95% Cl)	Absolute	Quality	Importance
28-day m	28-day mortality											
		no serious risk of bias		no serious indirectness	serious ¹	none	58/169 (34.3%)	64/161 (39.8%)	RR 0.86 (0.65 to 1.14)	56 fewer per 1000 (from 139 fewer to 56 more)		CRITICAL

90-day r	mortality											
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	85/169 (50.3%)	84/161 (52.2%)	RR 0.96 (0.78 to 1.19)	21 fewer per 1000 (from 115 fewer to 99 more)	HIGH	CRITICAL
'-day m	ortality		I	1		1		<u> </u>		L	1 1	
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	34/169 (20.1%)	40/161 (24.8%)	RR 0.81 (0.54 to 1.21)	47 fewer per 1000 (from 114 fewer to 52 more)	MODERATE	CRITICAL
I4-day r	nortality											
I	randomised trials		no serious inconsistency	no serious indirectness	serious ¹	none	44/169 (26%)	56/161 (34.8%)	RR 0.75 (0.54 to 1.04)	87 fewer per 1000 (from 160 fewer to 14 more)	MODERATE	CRITICAL
Nortalit	y		L	1		1		<u> </u>		L	1 1	
2	randomised trials	very serious ²	no serious inconsistency	no serious indirectness	very serious ¹	none	13/26 (50%)	13/26 (50%)	RR 1 (0.58 to 1.71)	0 fewer per 1000 (from 210 fewer to 355 more)	VERY LOW	CRITICAL
Mortalit	y at discharge	from ICU	I	1		·		1		L	ı	
1	randomised trials		no serious inconsistency	no serious indirectness	no serious imprecision	none	75/169 (44.4%)	75/161 (46.6%)	RR 0.95 (0.75 to 1.21)	23 fewer per 1000 (from 116 fewer to 98 more)	HIGH	CRITICAL

	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	82/169 (48.5%)	84/161 (52.2%)	RR 0.93 (0.75 to 1.15)	37 fewer per 1000 (from 130 fewer to 78 more)	HIGH	CRITICAL
mbe	r of serious ad	lverse event	s during catecho	plamine infusior	1			. 1		·		
	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	41/169 (24.3%)	43/161 (26.7%)	RR 0.91 (0.63 to 1.31)	24 fewer per 1000 (from 99 fewer to 83 more)	LOW	NOT IMPORTAI
								<u> </u>				
ımbe	r of serious ad	lverse event	s after catechola	amine infusion								

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

185

186 Table 31: Norepinephrine plus dopexamine versus norepinephrine plus epinephrine for adults with septic shock

			Quality asses	ssment			No of patients			Effect		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine + dopexamine versus epinephrine	Control	Relative (95% Cl)	Absolute	Quality	Importance

28-day m	ortality											
		no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	2/12 (16.7%)	3/10 (30%)	RR 0.56 (0.11 to 2.7)	132 fewer per 1000 (from 267 fewer to 510 more)	LOW	CRITICAL
90-day m	ortality											
		no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	3/12 (25%)	4/10 (40%)	RR 0.62 (0.18 to 2.16)	152 fewer per 1000 (from 328 fewer to 464 more)	LOW	CRITICAL

187 ¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

188

189 Table 32: Norepinephrine plus epinephrine versus norepinephrine plus dobutamine for adults with septic shock

	Quality assessment						No of patients Effect			Effect		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Norepinephrine + epinephrine versus norepinephrine + dobutamine	Control	Relative (95% Cl)	Absolute	Quality	Importance
28-day m	ortality											
		no serious risk of bias			very serious ¹	none	15/30 (50%)	16/30 (53.3%)	RR 0.94 (0.57 to 1.53)	32 fewer per 1000 (from 229 fewer to 283 more)	LOW	CRITICAL

SOFA s	core at start (I	Better indic	ated by lower va	llues)	-	-						
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.8 higher (2.31 lower to 3.91 higher)	MODERATE	IMPORTANT
SOFA s	core at 24 hou	rs (Better i	ndicated by lowe	er values)	1							
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.7 higher (2.41 lower to 3.81 higher)	MODERATE	IMPORTANT
SOFA s	core at 48 hou	rs (Better i	ndicated by lowe	er values)								
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.6 higher (2.49 lower to 3.69 higher)	MODERATE	IMPORTANT
SOFA s	core at 72 hou	rs (Better i	ndicated by lowe	er values)		1			L		1	
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.6 higher (2.72 lower to 3.92 higher)	-	IMPORTANT
SOFA s	core at 96 hou	rs (Better i	ndicated by lowe	er values)		,					,	
1	randomised trials	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	30	30	-	MD 0.8 higher (2.62 lower to 4.22 higher)	-	IMPORTANT

Acute co	oronary syndr	ome										
		no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	1/30 (3.3%)	1/30 (3.3%)	RR 1 (0.07 to 15.26)	0 fewer per 1000 (from 31 fewer to 475 more)	LOW	NOT IMPORTANT
Arrhythn	nias											
1		no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	4/30 (13.3%)	6/30 (20%)	RR 0.67 (0.21 to 2.13)	66 fewer per 1000 (from 158 fewer to 226 more)	LOW	NOT IMPORTANT
Cerebral	stroke	1		•	1							
		no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ²	none	0/30 (0%)	0/30 (0%)	-	-	LOW	NOT IMPORTANT
_imb isc	haemia											
		no serious risk of bias	no serious inconsistency	no serious indirectness	very serious ¹	none	2/30 (6.7%)	3/30 (10%)	RR 0.67 (0.12 to 3.71)	33 fewer per 1000 (from 88 fewer to 271 more)	LOW	NOT IMPORTANT

190 ¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MIDs

J111 Supplemental oxygen

192 None.

J142 Use of bicarbonate

194 Table 33: Clinical evidence profile: bicarbonate versus no bicarbonate (28-day mortality)

	Quality assessment						No of patients Effect			Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Bicarbonate versus no bicarbonate	Control	Relative (95% Cl)	Absolute	Quanty	importance
28-day mo	ortality											
1	observational studies	- 1		no serious indirectness	very serious ²	none	10/36 (27.8%)	12/36 (33.3%)	```	57 fewer per 1000 (from 197 fewer to 227 more)	VERY LOW	CRITICAL

195 *1 Case-control study. Small sample size*

196 2 Confidence interval crossed both standard MIDs

197 Table 34: Clinical evidence profile: bicarbonate versus no bicarbonate (Duration of critical care stay; Time to reversal of shock)

			Quality ass	essment			Median	[95% CI]		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Bicarbonate group	Control group	Relative (95% CI)	Absolute	Quanty	Importance
Duration o	of critical care sta	у										
		very serious ¹	not estimable ²	no serious indirectness	not estimable ²	none	44.5 [34-54] Hours	55 [39-60] Hours	-	-	VERY LOW	IMPORTANT
Time to re	versal of shock		•	•	•	•	••				•	
		very serious ¹	not estimable ²	no serious indirectness	not estimable ²	none	11.5 [6.0-16.0] days	16.0 [13.5-19.0] days	-	-	VERY LOW	MPORTANT

198 1 Case-control study. Small sample size

199 2 Non-parametric results

J213 Early goal-directed therapy (EGDT)

201 Table 9: Clinical evidence profile: EGDT versus Usual care

Quality assessment	No of patients	Effect	Quality	Importance	
--------------------	----------------	--------	---------	------------	--

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	EGDT versus Control	Control	Relative (95% CI)	Absolute		
Primary n	nortality outco	ome of ea	ch study		1		,I				<u> </u>	
5	randomised trials	serious ¹	serious ²	no serious indirectness	no serious imprecision	none	495/2134 (23.2%)	582/2601 (22.4%)	RR 1.01 (0.9 to 1.12)	2 more per 1000 (from 22 fewer to 27 more)	LOW	CRITICAL
90-day m	ortality				1		J J					
3	randomised trials	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	460/1820 (25.3%)	598/2243 (26.7%)	RR 0.99 (0.89 to 1.11)	3 fewer per 1000 (from 29 fewer to 29 more)	MODERATE	CRITICAL
ICU admi	ssion				1		· · · · · · · · · · · · · · · · · · ·					
3	randomised trials		serious inconsistency	no serious indirectness	no serious imprecision	none	1677/1856 (90.4%)	1902/2324 (81.8%)	RR 1.11 (1.09 to 1.14)	91 more per 1000 (from 75 more to 116 more)	LOW	CRITICAL
ICU lengt	h of stay for p	atient adr	mitted to ICU (day	s) (Better indicat	ted by lower val	ues)	<u> </u>		1	<u> </u>		
4	randomised trials	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	1825	2051	-	MD 0.02 lower (0.47 lower to 0.43 higher)	MODERATE	IMPORTAN
ICU lengt	h of stay for p	atient adr	nitted to ICU (day	s) - New Subgro	up (Better indica	ated by lower valu	es)		<u> </u>	<u> </u>		
4	randomised trials	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	1825	2051	-	MD 0.02 lower (0.47 lower to 0.43 higher)	MODERATE	IMPORTANT
² Downgrad o o	ded by 1 or 2 in The point estir The confidenc	ncrements nate varies e intervals	because: s widely across stud	dies, unexplained ow minimal or no o	by subgroup ana overlap, unexplair			majority of the	e evidence was	s at very high risk of bia	S	

Sepsis GRADE tables

J214 Monitoring

209 None.

J215 Patient education, information and support

211 None.

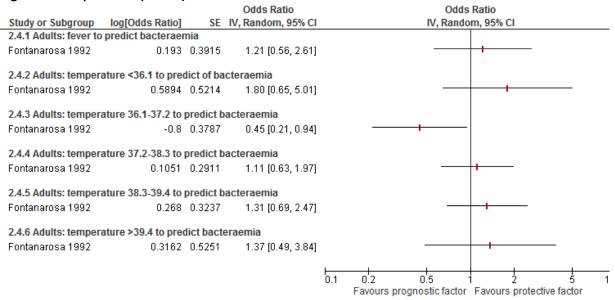
J₂16 Training and education

213 None.

- 214
- 215 216
- 210
- 217
- 218
- 219

Appendix K: Forest plots

K₂1 Scoring systems


222 None.

K₂2 Signs and symptoms

224

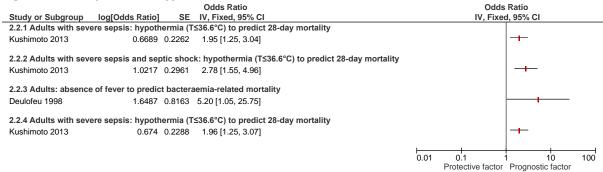
K2251 Temperature

Figure 1: Temperature (adults)

Figure 2: Temperature (children)

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.1.1 Neonates: temp	erature symptoms to	o predi	ct EOS	
Hofer 2012A	1.7918 0).2198	6.00 [3.90, 9.23]	
1.1.2 Children (3-36 r	n):T ≥39°C to predict	t pneun	nococcal bacteraemia	
Kuppermann 1998	0.571 0).1941	1.77 [1.21, 2.59]	-+-
1.1.5 Children (3-36m): T=40.0-40.4 vs T=3	39.0-39	.4 to predict bacteraemia	
Lee 1998A	0.6419 0).2651	1.90 [1.13, 3.19]	-+
1.1.6 Children (3-36m): T=40.5-40.9 vs T=3	39.0-39	.4 to predict bacteraemia	
Lee 1998A	0.9555 0	.2806	2.60 [1.50, 4.51]	-+-
1.1.7 Children (3-36m): T=41.0-42.0 vs T=3	39.0-39	.4 to predict bacteraemia	
Lee 1998A	1.3083	0.34	3.70 [1.90, 7.20]	
				0.01 0.1 1 10 100

Protective factor Prognostic factor


Figure 3: Temperature (children, immunocompromised)

		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.2.1 Children <18y: T	>39°C to predict SBI		
Ammann 2003	0.239 0.3999	1.27 [0.58, 2.78]	
1.2.2 Children<17y wi	th malignancy: T≥39.8°C t	o predict bacteraemia	
Ammann 2004	1.1632 0.3866	3.20 [1.50, 6.83]	- + -
1.2.3 Children<17y wi	th malignancy: At least 3	past episodes of fever or neutropenia to predict bacteraemia	
Ammann 2004	0.6419 0.2789	1.90 [1.10, 3.28]	-+-
1.2.4 Children<17y wi	th malignancy: At least 2	past episodes of fever or neutropenia with SBI to predict bacteraemia	
Ammann 2004	0.6931 0.305	2.00 [1.10, 3.64]	-+-
1.2.5 Children<17y wi	th malignancy: At least 2	past episodes of fever or neutropenia with bacteraemia to predict bacteraemia	
Ammann 2004	1.0986 0.4675	3.00 [1.20, 7.50]	+
			0.01 0.1 1 10 100

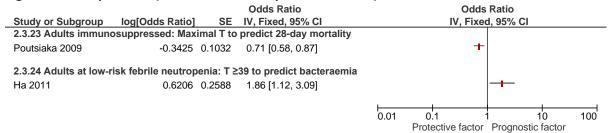

Protective factor Prognostic factor

Figure 4: Temperature (fever, adults) **Odds Ratio Odds Ratio** IV, Fixed, 95% CI Study or Subgroup log[Odds Ratio] SE IV, Fixed, 95% CI 2.1.1 Adults with sepsis: Hyperthermia to predict progression to septic shock. Glickman 2010 0.2311 0.1078 1.26 [1.02, 1.56] 2.1.2 Adults with fever in ED: T>39.9 to predict community-onset bacteraemia Lee 2012A 0.9858 0.4879 2.68 [1.03, 6.97] 2.1.3 Older patients: T≥38.5 to predict bacteraemia Pfitzenmeyer 1995 (RR) 0.9002 0.4593 2.46 [1.00, 6.05] 2.1.4 Adults in ICU: T>38°C or <36°C to predict sepsis Chen 2014 1.1591 0.3343 3.19 [1.66, 6.14] 0.01 100 0.1 10 Protective factor Prognostic factor

Figure 5: Temperature (hypothermia, adults)

Figure 6: Temperature (fever, immunocompromised adults)

		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI
2.5.1 Adults: <36.5C	to predict mortality		
Weinkove 2015	0.6523 0.1835	1.92 [1.34, 2.75]	
2.5.2 Adults: 36.5-37.	4C to predict mortality		
Weinkove 2015	0 0	Not estimable	
2.5.3 Adults: 37.5-39.	4C to predict mortality		
Weinkove 2015	-0.0943 0.1055	0.91 [0.74, 1.12]	+
2.5.4 Adults: >39.4C	to predict mortality		
Weinkove 2015	0.1906 0.1398	1.21 [0.92, 1.59]	+
			Protective factor Prognostic factor

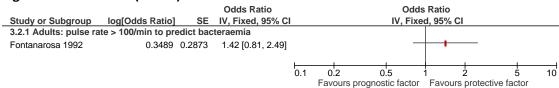
Figure 7: Temperature (early peak temperature, neutropenic sepsis, adults)

Note: normothermia (36.5-37.4C) functions as the reference

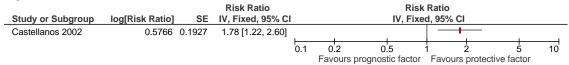
228

229

Figure 8: Temperature (early peak temperature, non-neutropenic sepsis, adults)


		Odds Ratio	Odds	Ratio
Study or Subgroup	log[Odds Ratio] SE	IV, Fixed, 95% Cl	IV, Fixed	d, 95% Cl
2.6.1 Adults: <36.5C t	o predict mortality			
Weinkove 2015	0.4511 0.0336	1.57 [1.47, 1.68]		+
2.6.2 Adults: 36.5-37.	4C to predict mortality			
Weinkove 2015	0 0	Not estimable		
2.6.3 Adults: 37.5-39.	4C to predict mortality			
Weinkove 2015	-0.1625 0.0246	0.85 [0.81, 0.89]	t	
2.6.4 Adults: >39.4C t	o predict mortality			
Weinkove 2015	-0.1863 0.0586	0.83 [0.74, 0.93]	+	
			0.01 0.1	1 10 100 Prognostic factor
				i iognostic idetol

Note: normothermia (36.5-37.4C) functions as the reference


230

K2212 Heart rate

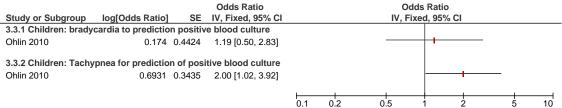

Figure 9: Heart rate (adults)

Figure 10: Heart rate (children – risk ratio)

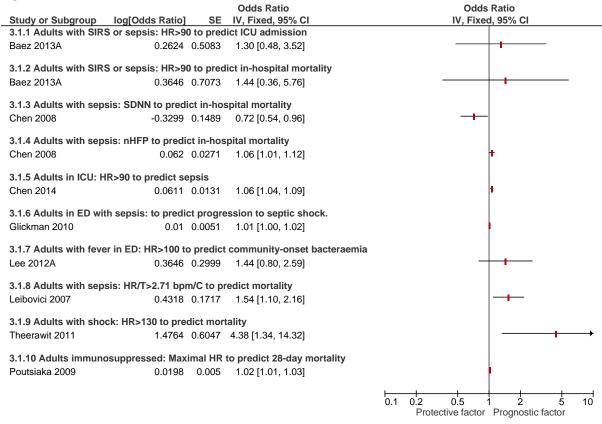


Figure 11: Heart rate (children – odds ratios)

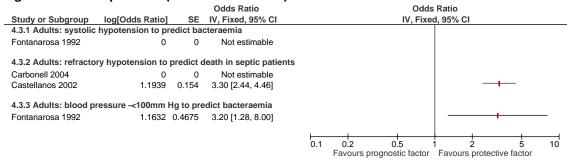

Favours prognostic factor Favours protective factor

Figure 12: Heart rate

K2223 Blood pressure

Figure 13: Blood pressure (adults – odd ratios)

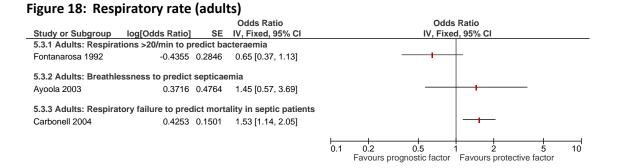
Figure 14: Blood pressure (adults – risk ratios)

•		•							
			Risk Ratio			Risk	Ratio		
Study or Subgroup	log[Risk Ratio]	SE	IV, Fixed, 95% CI			IV, Fixed	l, 95% Cl		
4.4.1 Adults: systolic	blood pressure f	o predic	t death in septic patients						
Castellanos 2002	0.7275	0.2106	2.07 [1.37, 3.13]						
				0.1	0.2	0.5 1	ż	5	10

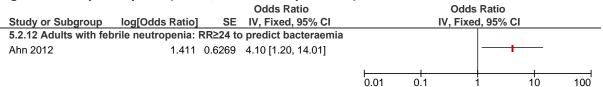
Favours prognostic factor Favours protective factor

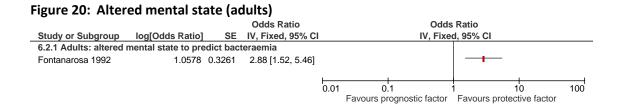
Figure 15: Blood pressure (children)

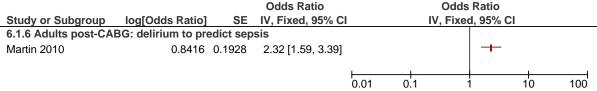
Study or Subgroup	log[Odds Ratio]	Odds Ratio Odds g[Odds Ratio] SE IV, Fixed, 95% CI IV, Fixed										
4.6.1 Children: blood	pressure/skin colo	ur to pro	edict positive blood cult	ture								
Ohlin 2010	0.8961	0.3194	2.45 [1.31, 4.58]									
				0.1	0.2	0.5	1 2	5				
					Favours p	rognostic facto	Favours prot	ective factor				


Figure 16: Blood pressure (adults)

	•	Odds Ratio	Odds Ratio
Study or Subgroup log[Odd		IV, Fixed, 95% CI	IV, Fixed, 95% Cl
4.1.1 Adults with SIRS or sepsis	s: MAP<65 for ICU	J admission	
Baez 2013A	0.3853 0.5205	1.47 [0.53, 4.08]	
4.1.2 Adults with SIRS or sepsis	s: MAP<65 for in-l	hospital mortality	
Baez 2013A	0.5188 0.5169	1.68 [0.61, 4.63]	
2010/1	0.0100 0.0100	1.00 [0.01, 1.00]	
4.1.3 Adults in ICU with septic s	shock: SAP (cut o	ff: 100) day 2 for in-hospital mortality	
Benchekroune 2008	1.6094 0.6143	5.00 [1.50, 16.67]	— + — –
	•	ff: 50) day 2 for in-hospital mortality	
Benchekroune 2008	2.0281 0.6811	7.60 [2.00, 28.88]	
4.1.5 Adultsin ICU with septic s	hock: SAP (cut of	f: 100) day 3 for in-hospital mortality	
Benchekroune 2008	1.8871 0.6353	6.60 [1.90, 22.93]	— + — –
		(FO) day 2 for in boardel montality	
		ff: 50) day 3 for in-hospital mortality	
Benchekroune 2008	3.4965 1.0641 3	33.00 [4.10, 265.63]	
4.1.7 Adults with fever in ED: S	BP<90 to predict	community-onset bacteraemia	
Lee 2012A	1.2782 0.3784	3.59 [1.71, 7.54]	
4.1.10 Adulto with four in ED.	DDD -60 to prodict	k community anost kostarosmia	
4.1.10 Adults with fever in ED: I			
Lee 2012A	0.9042 0.3158	2.47 [1.33, 4.59]	
4.1.11 Adults with sepsis: DBP	(continuous varia	ble, increment of 10 mmHg) to predict mortalit	y l
Leibovici 2007	-0.4005 0.0396	0.67 [0.62, 0.72]	• • • •
			0.01 0.1 1 10 100
			Protective factor Prognostic factor
			6

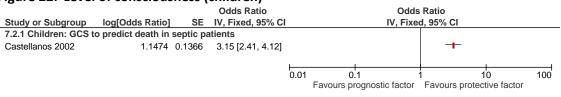

Figure 17: Blood pressure (adults, immunocompromised)


K2234 Respiratory rate

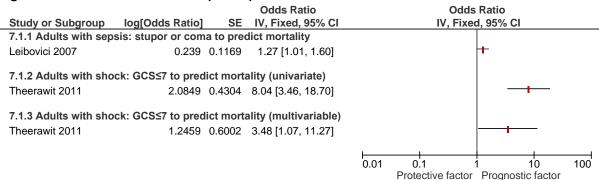

Figure 19: Respiratory rate (adults, immunocompromised)

K2245 Altered mental state

Figure 21: Altered mental state



Protective factor Prognostic factor


Protective factor Prognostic factor

K2356 Level of consciousness

Figure 22: Level of consciousness (children)

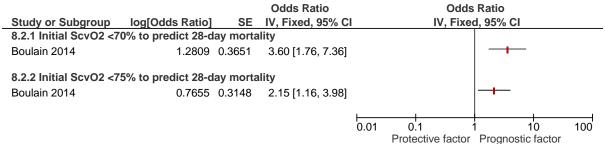
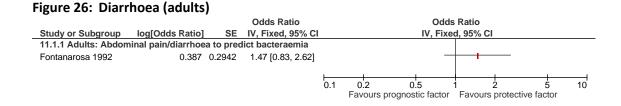


Figure 23: Level of consciousness (adults)

K267 Oxygen saturation


Figure 24: initial ScvO2

K2278 Urine output

Figure 25: Urine output (children) Odds Ratio Odds Ratio IV, Fixed, 95% CI Study or Subgroup log[Odds Ratio] SE IV, Fixed, 95% CI 9.1.1 Children: Oliguria to predict death in septic patients Castellanos 2002 1.6174 0.3701 5.04 [2.44, 10.41] 0.1 2 5 0.2 0.5 10 Favours prognostic factor Favours protective factor

K2289 Diarrhoea

Kas Blood tests

- 240 Note: studies for coupled sensitivity/specificity are listed in alphabetical order. Setting, target
- condition, and actual cut-off value reported by each study are included in the study name.

K2321 CRP, adults

Figure 27: Sensitivity and specificity for CRP. Cut off up to ≥5 mg/l (Adults. Hospital setting)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Hambach 2002. Infection. Immunoc. (5 mg/l)	54	84	0	4	1.00 [0.93, 1.00]	0.05 [0.01, 0.11]	
Moreira 2010. Hospital+ fever. Sepsis (0.011 mg/l)	44	13	6	47	0.88 [0.76, 0.95]	0.78 [0.66, 0.88]	0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

243

Figure 28: Sensitivity and specificity for CRP. Cut off up to ≥5 mg/l (Adults. ICU setting)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hillas 2010. Day 1. ICU. Severe S. (0.0152 mg/l)	19	8	3	15	0.86 [0.65, 0.97]	0.65 [0.43, 0.84]		
Hillas 2010. Day 7. ICU. Severe S.(0.01575 mg/l)	17	7	1	20	0.94 [0.73, 1.00]	0.74 [0.54, 0.89]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

244

Figure 29: Sensitivity and specificity for CRP. Cut off between >5 and >20 mg/l (Adults. ED setting)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Adams 2005. ED. Bacteraemia (10 mg/l)	70	934	4	205	0.95 [0.87, 0.99]	0.18 [0.16, 0.20]		•
de Kruif 2010. ED. Bacterial infection (9 mg/l)	58	2	10	0	0.85 [0.75, 0.93]	0.00 [0.00, 0.84]		
Kim 2014A. ED. Mortality (8.88 mg/l)	15	37	3	74	0.83 [0.59, 0.96]	0.67 [0.57, 0.75]		
Kim 2014A. ED. Sepsis (6.84 mg/l)	35	34	5	59	0.88 [0.73, 0.96]		0 0.2 0.4 0.6 0.8 1	

245

Figure 30: Sensitivity and specificity for CRP. Cut off between ≥20 and >50 mg/l (Adults. Hospital setting)

Study	ТР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gaini 2006A. Hospital. Sepsis/SS (38 mg/l)	110	15	28	21	0.80 [0.72, 0.86]	0.58 [0.41, 0.74]		
Muller 2010. Hosp. with CAP. Bacteraemia (20 mg/l)	70	775	3	77	0.96 [0.88, 0.99]	0.09 [0.07, 0.11]		
Nakamura 2009. Hospt+fever. Bacteraemia (35 mg/l)	49	30	16	21	0.75 [0.63, 0.85]	0.41 [0.28, 0.56]		
Yonemori 2001. Neutropenia. infection (68 .6 mg/l)	14	38	5	38	0.74 [0.49, 0.91]	0.50 [0.38, 0.62]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 31: Sensitivity and specificity for CRP. Cut off between ≥20 and >50 mg/l (Adults. ICU setting)

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% Cl)
 Specificity (95% Cl)

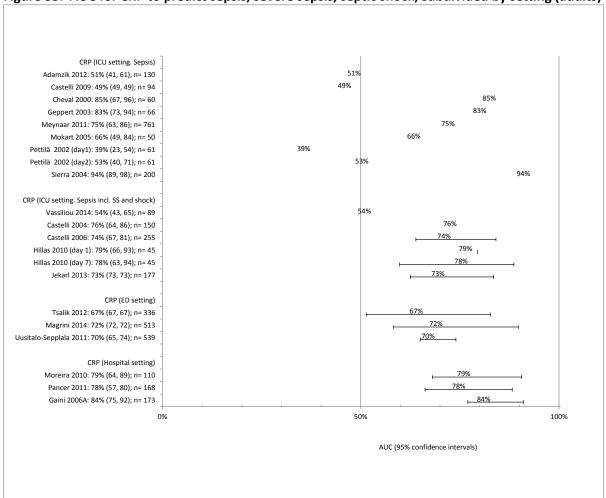
247

248

Figure 32: Sensitivity and specificity for CRP. cut off ≥50 mg/l (Adults. ED setting)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Aalto 2004 BSI. ED. Systemic infection (125 mg/l)	11	15	2	64	0.85 [0.55, 0.98]	0.81 [0.71, 0.89]	_	
Kim 2011. ED (neutropenia). Bacteraemia (100 mg/l)	22	81	16	167	0.58 [0.41, 0.74]	0.67 [0.61, 0.73]		
Kim 2015B. ED. Mortality (67.5 mg/dl)	159	333	28	149	0.85 [0.79, 0.90]	0.31 [0.27, 0.35]	-	-
Tsalik 2012. ED. Sepsis (1000 mg/l)	43	91	29	174	0.60 [0.47, 0.71]	0.66 [0.60, 0.71]		
Tsalik 2012. ED. Sepsis (2000 mg/l)	22	31	49	233	0.31 [0.21, 0.43]	0.88 [0.84, 0.92]		-
Tsalik 2012. ED. Sepsis (400 mg/l)	59	162	13	103	0.82 [0.71, 0.90]	0.39 [0.33, 0.45]		

249


Figure 33: Sensitivity and specificity for CRP. cut off ≥50 mg/l (Adults. Hospital setting)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gaini 2006A. Hospital. Sepsis/SS (100 mg/l)	87	2	50	33	0.64 [0.55, 0.72]	0.94 [0.81, 0.99]		
Gaini 2006A. Hospital. Sepsis/SS (50 mg/l)	99	13	39	22	0.72 [0.63, 0.79]	0.63 [0.45, 0.79]		
Hambach 2002. Infection. Immunoc. (100 mg/l)	45	34	9	54	0.83 [0.71, 0.92]	0.61 [0.50, 0.72]		
Hambach 2002. Infection. Immunoc. (150 mg/l)	37	23	17	65	0.69 [0.54, 0.80]	0.74 [0.63, 0.83]		
Hambach 2002. Infection. Immunoc. (50 mg/l)	51	52	3	36	0.94 [0.85, 0.99]	0.41 [0.31, 0.52]		
Kofoed 2007. Hospt. Bacterial infection (60 mg/l)	101	14	16	20	0.86 [0.79, 0.92]	0.59 [0.41, 0.75]		
Muller 2010. Hosp. with CAP. Bacteraemia (100mg/l)	59	571	14	281	0.81 [0.70, 0.89]	0.33 [0.30, 0.36]		-
Muller 2010. Hosp. with CAP. Bacteraemia (200mg/l)	45	307	28	545	0.62 [0.50, 0.73]	0.64 [0.61, 0.67]		•
Muller 2010. Hosp. with CAP. Bacteraemia (50 mg/l)	65	699	8	153	0.89 [0.80, 0.95]	0.18 [0.15, 0.21]		-
Pancer 2011. Sepsis. Hospital (52 mg/l)	26	41	9	51	0.74 [0.57, 0.88]	0.55 [0.45, 0.66]		
Stucker 2005. Hospt, elderly. Infect. (3000 mg/l)	46	107	4	60	0.92 [0.81, 0.98]	0.36 [0.29, 0.44]		
Yonemori 2001. Neutropenia. infection (68 .6 mg/l)	6	23	6	61	0.50 [0.21, 0.79]	0.73 [0.62, 0.82]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

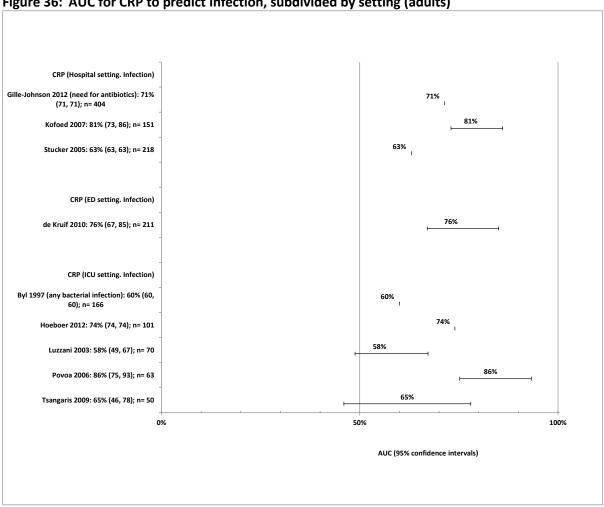

250

Figure 34: Sensitivity and specificity for CRP. cut off more than ≥50 mg/l (Adults. ICU setting)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Castelli 2004. ICU. Sepsis/SS (128 mg/l)	22	21	11	96	0.67 [0.48, 0.82]	0.82 [0.74, 0.89]		
Castelli 2006. ICU. Sepsis, SS, shock (128 mg/l)	68	19	43	125	0.61 [0.52, 0.70]	0.87 [0.80, 0.92]		-
Cheval 2000. ICU. Sepsis (10000 mg/l)	30	17	2	11	0.94 [0.79, 0.99]	0.39 [0.22, 0.59]		—
Hoboer 2012. ICU+fever. Bloodstream inf. (196mg/l)	11	36	1	54	0.92 [0.62, 1.00]	0.60 [0.49, 0.70]		
Jekarl 2013. ICU. Sepsis, SS, S. shock. (55 mg/l)	13	66	3	95	0.81 [0.54, 0.96]	0.59 [0.51, 0.67]	_	
Meynaar 2011. ICU. Sepsis (50 mg/l)	277	343	42	103	0.87 [0.83, 0.90]	0.23 [0.19, 0.27]	-	• •
Mokart 2005. ICU, post-op. Sepsis (93000 mg/l)	10	10	6	24	0.63 [0.35, 0.85]	0.71 [0.53, 0.85]		
Oberhoffer 1999A. ICU. Mortality (198 mg/l)	38	37	20	148	0.66 [0.52, 0.78]	0.80 [0.74, 0.86]		
Povoa 2005. Infection. ICU (87 mg/l)	71	26	5	158	0.93 [0.85, 0.98]	0.86 [0.80, 0.91]		
Shaaban 2010. ICU. Infection (70 mg/l)	28	6	2	32	0.93 [0.78, 0.99]	0.84 [0.69, 0.94]		
Sierra 2004. ICU. Sepsis (80 mg//)	105	11	6	77	0.95 [0.89, 0.98]	0.88 [0.79, 0.94]	-	
Tsangaris 2009. ICU. Infection (1000 mg/l)	16	10	11	13	0.59 [0.39, 0.78]	0.57 [0.34, 0.77]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 35: AUC for CRP to predict sepsis, severe sepsis, septic shock, subdivided by setting (adults)

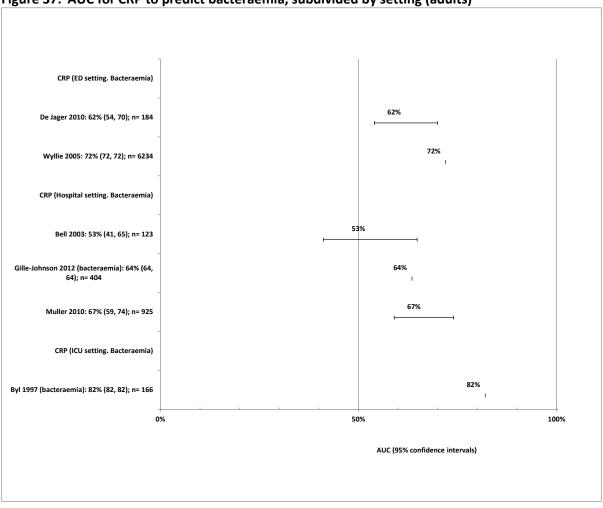
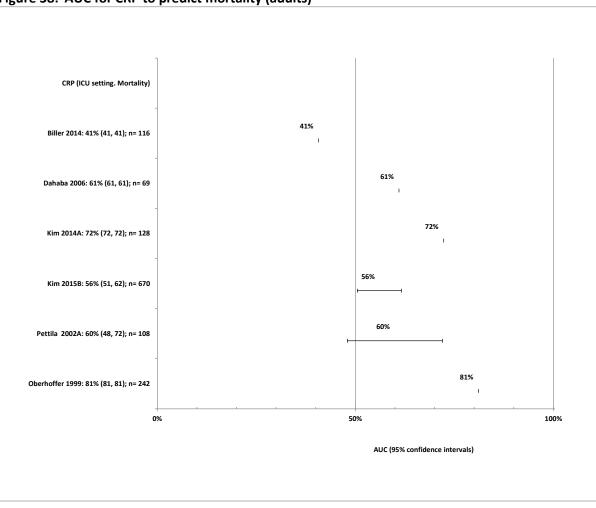
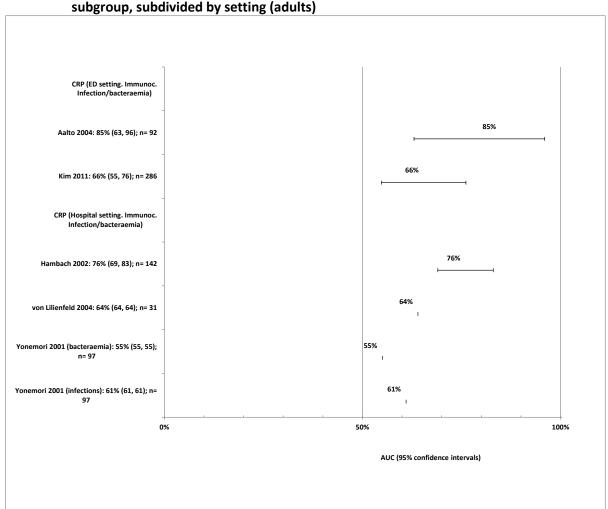




Figure 37: AUC for CRP to predict bacteraemia, subdivided by setting (adults)

Figure 39: AUC for CRP to predict bacteraemia or infection, in the immunocompromised subgroup, subdivided by setting (adults)

256

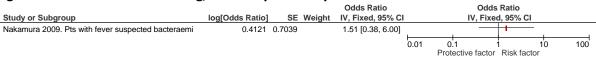

257

Figure 40: Odds ratio. CRP≥3 mg/ml

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV	, Fixe	d, 95% Cl		
Stucker 2005. Infection. Hospital elderly pts.	1.2238	0.5802		3.40 [1.09, 10.60]		1			_	
					0.01	0.1 Protective	factor	1 Risk factor	10	100

258

Figure 41: Odds ratio. CRP>3.5 mg/dl. 21-day mortality

Figure 42: Odds ratio. CRP>3.5 mg/dl. Bacteraemia

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Nakamura 2009. Pts with fever suspected bacteraemi	0.708	0.3983	2.03 [0.93, 4.43]	
			F (0.01 0.1 1 10 100
				Protective factor Risk factor

261

Figure 43: Odds ratio. CRP>8 mg/l

			Odds Ratio		Odds Ratio				
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% CI			
Leth 2013. Bloodstream infection. Hospital	1.8017	1.0205	6.06 [0.82, 44.78]		-				
				0.01	0.1 Protective factor	1 1 Risk factor	0 100		

262

Figure 44: Odds ratio. CRP>10 mg/dl

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		1	V, Fixed	d, 95% CI		
Kim 2011. Bacteraemia. ED with febrile neutropenia	-0.2231	0.4924		0.80 [0.30, 2.10]	0.01 F	0.1 Protective	e factor	I 10 Risk factor)	100

263

Figure 45: CRP>100 mg/L on day 3

Study or Subgroup	log[Odds Ratio]	SE Weight	Odds Ratio IV, Fixed, 95% CI				Ratio d, 95% Cl		
Devran 2012. ICU. Mortality.	0.9933 (0.4011	2.70 [1.23, 5.93]	—		, 		1	
				0.01	0 Prote	1 ective factor	1 1 Risk factor	0	100

264

Figure 46: CRP ratio: follow-up/ initial value ≥0.7

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV,	Fixed	l, 95% Cl		
Ha 2011. Bacteraemia. Hospital	2.9507	1.3637		19.12 [1.32, 276.86]		1				
					0.01	0.1	1		10	100
						Protective f	actor	Risk facto	r	

265

K2862 CRP, children

Figure 47: Sensitivity and specificity for CRP <20 mg/l, ED setting (children)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Manzano 2011 (17.7 mg/l) no UTI SBI	42	85	6	195	0.88 [0.75, 0.95]	0.70 [0.64, 0.75]		-
Manzano 2011 (17.7 mg/l) SBI	51	86	3	188	0.94 [0.85, 0.99]	0.69 [0.63, 0.74]		-
Pulliam 2001 (7 mg/l) SBI	11	1	1	57	0.92 [0.62, 1.00]	0.98 [0.91, 1.00]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

268

Figure 48: Sensitivity and specificity for CRP >5 to <20 mg/l, PICU setting (children)

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Rey 2007 (5.65 mg/l) Sepsis/SS/Septic shock	90	80	35	154	0.72 [0.63, 0.80]	0.66 [0.59, 0.72]		-
Rey 2007 (6.55 mg/l) Sepsis/SS/Septic shock	80	63	45	171	0.64 [0.55, 0.72]		0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

269

Figure 49: Sensitivity and specificity for CRP 20 to <50 mg/l, ED setting (children)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Andreola 2007 (20 mg/l) SBI	79	75	15	239	0.84 [0.75, 0.91]	0.76 [0.71, 0.81]		-
Fernandezlopez 03 (23 mg/l) SBI	262	27	67	82	0.80 [0.75, 0.84]	0.75 [0.66, 0.83]	-	
Freyne 2013 (20 mg/l) SBI/Sepsis	36	0	6	2	0.86 [0.71, 0.95]	1.00 [0.16, 1.00]		
Freyne 2013 (20 mg/l) Severe infection	17	5	17	8	0.50 [0.32, 0.68]	0.62 [0.32, 0.86]		—
Galetto-Lacour 2003 (40 mg/l) SBI	23	15	6	55	0.79 [0.60, 0.92]	0.79 [0.67, 0.87]		
Isaacman 2002 Bacteraemia	18	43	11	184	0.62 [0.42, 0.79]	0.81 [0.75, 0.86]		-
Lacour 2011 (40 mg) SBI	26	57	3	170	0.90 [0.73, 0.98]	0.75 [0.69, 0.80]		-
Pratt 2007 FWS more12 h (30 mg/l) SBI	11	23	0	40	1.00 [0.72, 1.00]	0.63 [0.50, 0.75]		
Pratt 2007 FWS-/=12 h (30 mg/l) SBI	4	10	2	29	0.67 [0.22, 0.96]	0.74 [0.58, 0.87]	_	
Segal 2014 (21 mg/l) fever -/= 24 h Bacteraemia	74	62	29	208	0.72 [0.62, 0.80]	0.77 [0.72, 0.82]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

270

Figure 50: Sensitivity and specificity for CRP 20 to <50 mg/l, PICU setting (children)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Enguix 2001 (22.1 mg/l) Sepsis	29	7	4	30	0.88 [0.72, 0.97]	0.81 [0.65, 0.92]		
Hatheril 1999 (20 mg/l) Septic shock	71	37	7	60	0.91 [0.82, 0.96]	0.62 [0.51, 0.72]		
Hatherill 1999 (40 mg) Septic shock	66	21	16	71	0.80 [0.70, 0.88]	0.77 [0.67, 0.85]		
Simon 2008 (20 mg/l) Bacterial SIRS	24	30	1	9	0.96 [0.80, 1.00]	0.23 [0.11, 0.39]		
Simon 2008 (40 mg/l) Bacterial SIRS	28	26	1	8	0.97 [0.82, 1.00]	0.24 [0.11, 0.41]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

271

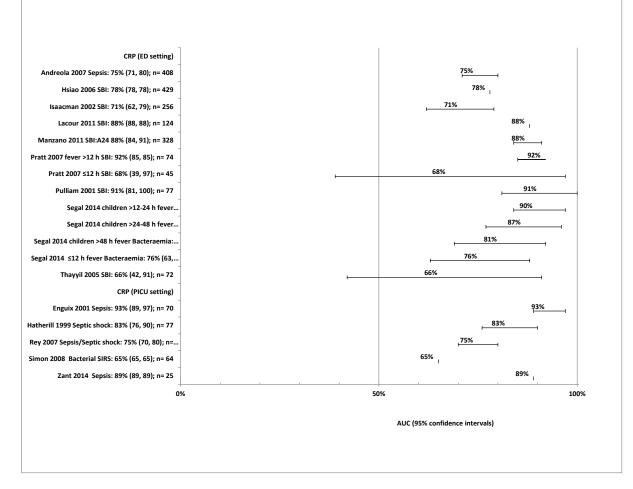
Figure 51: Sensitivity and specificity for CRP ≥50 mg/l, ED setting (children)

			Sensitivity (95% CI)	Specificity (95% CI)
3 224	0.68 [0.58, 0.77]	0.83 [0.78, 0.87]		-
33 243	0.68 [0.58, 0.77]	0.90 [0.86, 0.93]		-
21 254	0.80 [0.71, 0.87]			
33	3 243	3 243 0.68 [0.58, 0.77]	3 243 0.68 [0.58, 0.77] 0.90 [0.86, 0.93] 1 254 0.80 [0.71, 0.87] 0.94 [0.91, 0.97]	3 243 0.68 [0.58, 0.77] 0.90 [0.86, 0.93]

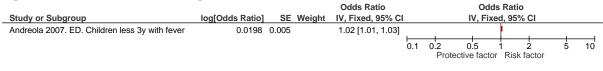
Figure 52: Sensitivity and specificity for CRP ≥50 mg/l, hospital setting (children)

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Shaoul 2008 (85 mg/l) Infection	35	82	15	220	0.70 [0.55, 0.82]	0.73 [0.67, 0.78]		
Thayyil 2005 (50 mg/l) SBI	6	20	2	44	0.75 [0.35, 0.97]		0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

273


Figure 53: Sensitivity and specificity for CRP ≥50 mg/l, PICU setting (children)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hatherhil 1999 (50 mg/l) Septic shock	58	20	18	78	0.76 [0.65, 0.85]	0.80 [0.70, 0.87]		
Simon 2008 (60 mg/l) Bacterial SIRS	31	9	0	3	1.00 [0.89, 1.00]		0 0.2 0.4 0.6 0.8 1	


274

275

Figure 55: Odds ratio. CRP>32 ng/mL. SBI

277

Figure 56: Odds ratio. CRP (Each 1mg/dL increase). OBI

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI	I IV, Fixed, 95% CI
Isaacman 2002. ED. Children 3-36m with fever	0.1133	0.0378	1.12 [1.04, 1.21]	+
				0.1 0.2 0.5 1 2 5 10
				Protective factor Risk factor

278

K2393 CRP, neonates

Figure 57: Sensitivity and specificity for CRP, CRP ≤5 mg/l, hospital setting (neonates)

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Nosrati 2014 (2 mg/l) SBI	43	247	5	106	0.90 [0.77, 0.97]	0.30 [0.25, 0.35]		-
Nosrati 2014 (4 mg/l) SBI	42	219	6	134	0.88 [0.75, 0.95]			

280

Figure 58: Sensitivity and specificity for CRP, CRP ≤5 mg/l, NICU setting (neonates)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Edgar 2010 (0.4 mg/l) Infection	42	6	17	7	0.71 [0.58, 0.82]	0.54 [0.25, 0.81]		
Sherwin 2008 (18 pg/ml) Sepsis	64	10	94	159	0.41 [0.33, 0.49]	0.94 [0.89, 0.97]		0 0.2 0.4 0.6 0.8 1

281

Figure 59: Sensitivity and specificity for CRP, CRP >5 to <20 mg/l, ED setting (neonates)

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bressan 2010 fever less12h (20 mg/l) SBI	12	5	13	69	0.48 [0.28, 0.69]	0.93 [0.85, 0.98]		
Bressan 2010 fever more12h (20 mg/l) SBI	5	2	0	51	1.00 [0.48, 1.00]			
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

282

Figure 60: Sensitivity and specificity for CRP, CRP >5 to <20 mg/l, hospital setting (neonates)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Nosrati 2014 (10 mg/l) SBI	40	138	8	215	0.83 [0.70, 0.93]	0.61 [0.56, 0.66]		-
Nosrati 2014 (6 mg/l) SBI	41	187	7	166	0.85 [0.72, 0.94]	0.47 [0.42, 0.52]		

Figure 61: Sensitivity and specificity for CRP, CRP >5 to <20 mg/l, NICU setting (neonates)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Enguix 2001 (6.1 mg/l) Bacterial Sepsis	18	4	1	23	0.95 [0.74, 1.00]	0.85 [0.66, 0.96]		
Jacquot 2009 (10 mg/l) Sepsis	14	7	14	41	0.50 [0.31, 0.69]			0 0.2 0.4 0.6 0.8 1

284

Figure 62: Sensitivity and specificity for CRP, CRP ≥20 to <50 mg/l, ED setting (neonates)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gomez 2010 (20 mg/l) SBI	24	248	8	738	0.75 [0.57, 0.89]	0.75 [0.72, 0.78]		-
Olaciregui 2009 (20 mg/l) SBI	52	42	30	223	0.63 [0.52, 0.74]	0.84 [0.79, 0.88]		-
Olaciregui 2009 (20 mg/l) Sepsis	8	86	7	246	0.53 [0.27, 0.79]	0.74 [0.69, 0.79]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

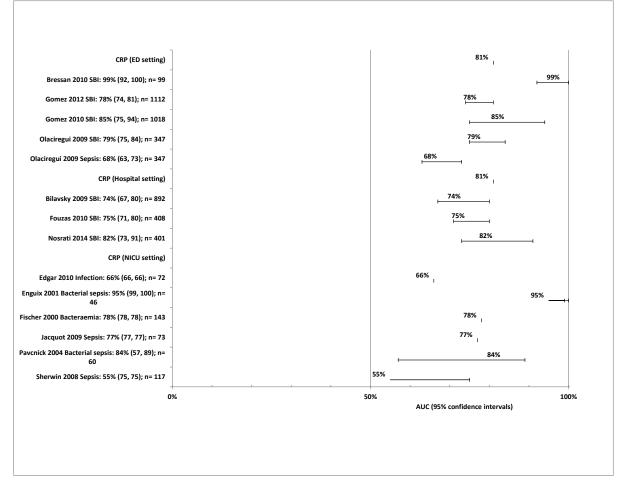
285

Figure 63: Sensitivity and specificity for CRP, CRP ≥20 to < 50 mg/l, hospital setting (neonates)

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bilavsky 2009 (20 mg/l) SBI	45	63	57	727	0.44 [0.34, 0.54]	0.92 [0.90, 0.94]		-
Bilavsky 2009 (40 mg/l) SBI	57	142	45	648	0.56 [0.46, 0.66]	0.82 [0.79, 0.85]		-
Fouzas 2010 (20 mg/l) SBI	53	6	50	39	0.51 [0.41, 0.61]	0.87 [0.73, 0.95]		
Nosrati 2014 (20 mg/ml) SBI	45	63	57	727	0.44 [0.34, 0.54]	0.92 [0.90, 0.94]		•
Nosrati 2014 (30 mg/ml) SBI	57	142	45	648	0.56 [0.46, 0.66]	0.82 [0.79, 0.85]		•
Nosrati 2014 (40 mg/ml) SBI	53	6	50	39	0.51 [0.41, 0.61]	0.87 [0.73, 0.95]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

286

Figure 64: Sensitivity and specificity for CRP, CRP ≥20 to < 50 mg/l, NICU setting (neonates)

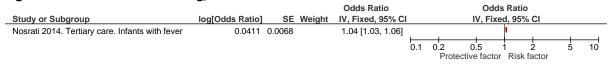

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Pavcnick 2004 (23 mg/l) SIRS/Sepsis	23	3	10	24	0.70 [0.51, 0.84]		0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

287

Figure 65: Sensitivity and specificity for CRP, CRP ≥50 mg/l, ED setting (neonates)

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gomez 2010 (70 mg/l) SBI	22	61	10	925	0.69 [0.50, 0.84]			

Figure 67: Odds ratio. CRP. SBI


Study or Subgroup	log[Odds Ratio]	SE Wei		s Ratio xed, 95% Cl			-		Ratio , 95%	CI		
Bilavsky 2009. Hosp. Infants less 3m with fever	0.1906	0.0349	1.21	[1.13, 1.30]					+			
					0.1	0.2 Prot	0.5 tective fac	1 ctor	Risk fa	2 actor	5	10

290

Figure 68: Odds ratio. CRP >1.0 mg/dl. Late onset sepsis

			Risk Ratio			Risk Ratio		
Study or Subgroup	log[Risk Ratio]	SE Weight	IV, Fixed, 95% CI		IV	, Fixed, 95%	6 CI	
Makhoul 2006. NICU. Neonates with suspectrd sepsis	1.0473 0	.3924	2.85 [1.32, 6.15]				-	
				0.01	0.1	1	10	100
					Protective	factor Risk	factor	

Figure 69: Odds ratio. CRP>2 mg/l. SBI

292

Figure 70: Odds ratio. CRP≥30mg/l. SBI

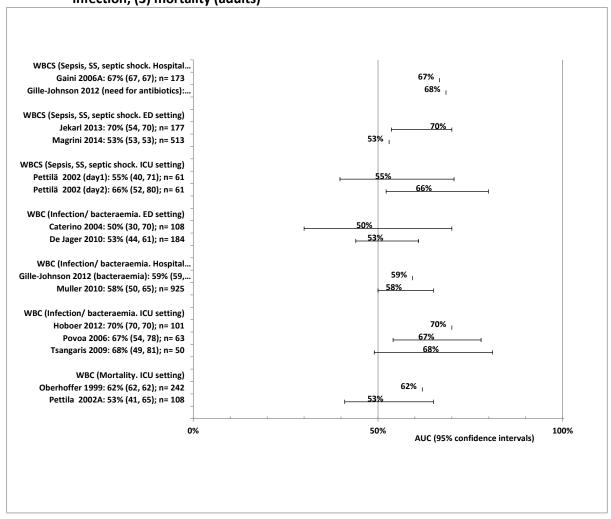
-	-			Odds Ratio			Od	ds Ra	tio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fix	ed, 9	5% CI		
Olaciregui 2009. ED. Neonates with fever	1.8871	0.3537		6.60 [3.30, 13.20]							<u>→</u>
					0.1	0.2	0.5	1	2	5	10
						Prot	tective facto	or Ri	sk factor		

K2954 WBC, adults

Figure 71: Sensitivity and specificity for WBC, hospital setting (adults)

WBC<1 x10 ⁹ /L		
Study	TP FP FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Svaldi 2001. immunocomp. Sepsis, SS, septic shock	23 15 13 22 0.64 [0.46, 0.79] 0.59 [0.42, 0.75]	
WBC<4 or >12 x10 ⁹ /L		0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Study TP FP	FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Stucker 2005. Hospital, elderly. Infection 15 18	35 150 0.30 [0.18, 0.45] 0.89 [0.84, 0.94]	0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
WBC<5 or >20 x10 ⁹ /L		0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Study TP	FP FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Muller 2010. Hospital, with CAP. Bacteraemia 16	136 57 716 0.22 [0.13, 0.33] 0.84 [0.81, 0.86]	
WBC>1x 10 ⁹ /L		
Study	TP FP FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Svaldi 2001. immunocomp. Sepsis, SS, septic shock	34 15 2 22 0.94 [0.81, 0.99] 0.59 [0.42, 0.75]	

296


Figure 72: Sensitivity and specificity for WBC, ED setting (adults)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Caterino 2004. ED. Bacteraemia	24	23	10	44	0.71 [0.53, 0.85]			

297

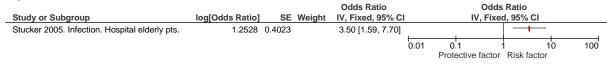
Figure 73: Sensitivity and specificity for WBC, ICU setting (adults)

WBC<4 x10 ⁹ /L	
Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Cavallazzi 2010. ICU. Infection 4 4 38 99 0.10 [0.03, 0.23] 0.96 [0.90, 0.99]	
٥	0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
WBC>11x10 ⁹ /L	
Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Jekarl 2013. ICU. Sepsis, SS, S. shock 10 69 6 92 0.63 [0.35, 0.85] 0.57 [0.49, 0.65]	
9.	0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
WBC >12 x10 ⁹ /L	
Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Cavallazzi 2010. ICU. Infection 22 42 20 61 0.52 [0.36, 0.68] 0.59 [0.49, 0.69]	
Tsangaris 2009. ICU. Infection 18 13 9 10 0.67 [0.46, 0.83] 0.43 [0.23, 0.66]	
WBC>15x10 ⁹ /L	0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Oberhoffer 1999A. ICU. Mortality 16 40 32 158 0.33 [0.20, 0.48] 0.80 [0.74, 0.85]	
WBC >20.3 x 10 ⁹ /L	0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Study TP FP FN TN Sensitivity (95% CI) Specificity (95% C	
Hoboer 2012. ICU+fever. Bloodstream infection 7 14 5 74 0.58 [0.28, 0.85] 0.84 [0.75, 0.97	1]
	0 0.2 0.4 0.0 0.0 1 0 0.2 0.4 0.0 0.0 1

Figure 74: AUC for WBC to predict (1) sepsis, severe sepsis, septic shock; (2) bacteraemia or infection; (3) mortality (adults)

298

Figure 75: Odds ratio. WBC count > 12,000/mm³

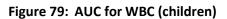

			Odds Ratio		Odd	s Ratio	
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV, Fixe	ed, 95% Cl	
Freund 2012. Sepsis, SS, Septic shock. ED	0.6043 0	.2282	1.83 [1.17, 2.86]				
				0.01	0.1	1 1	100
					Protective factor	Risk factor	

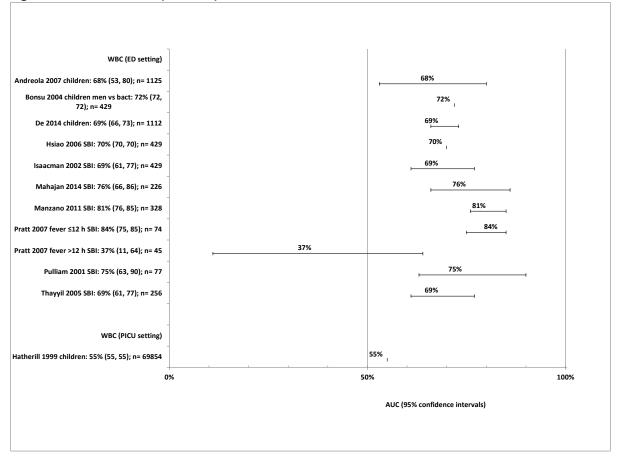
299

Figure 76: WCC <4 or >20 (x10⁹/l)

			Odds Ratio		Ode	ls Ratio		
Study or Subgroup	log[Odds Ratio]	SE Wei	ght IV, Fixed, 95% CI		IV, Fix	ed, 95% CI		
Patterson 2012. Bacteraemia. ED with pneumonia	-0.4943	1.2573	0.61 [0.05, 7.17]					
				0.01	0.1	1	10	100
					Protective facto	or Risk facto	r	

Figure 77: WBC≤4000 or ≥12000/mm³




301

K3825 WBC, children

Figure 78: Sensitivity and specificity for WBC, ED setting (children)

-	-		-				-			
WBC <5 x 10 ⁹ /l										
Study TP FP	FN	TN S	Sensi	tivitv (95% CI)	Specificity	(95% C	SI)	Sensitivity (95% CI)	Specificity (95% CI)
-	128 7				0, 0.04]		.90, 0.94	,	_	
Rudilisky 2009 3DI (less 3) 1 00	120 /	00	0.0	1 [0.0	0, 0.04]	0.92 [0	.50, 0.5	+]		0 0.2 0.4 0.6 0.8 1
WBC <5 - >20 x 10 ⁹ /l									0 0.2 0.4 0.0 0.0 1	0 0.2 0.4 0.0 0.0 1
Study	TP	FP	FN	TN S	Sensitivit	ty (95% CI)	Specif	icity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Rudinsky 2009 SBI (less 5 or more 15)	61	291	68 5			0.38, 0.56]	•	6 [0.63, 0.69]	.	· · · · · · · · · · · · · · · · · · ·
						,		- [,]	0 0 2 0 4 0 6 0 8 1	0 0.2 0.4 0.6 0.8 1
WBC ≥5 - <15 x 10 ⁹ /I									0 012 011 010 010 1	
Study		TF	P FI	P FN	TN S	ensitivity (9	95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Andreola 2007 Sepsis		80	D 16	5 14	149	0.85 [0.76	. 0.921	0.47 [0.42, 0.53]		
Manzano 2011 children no UTI SBI		35	5 79	9 13	201	0.73 [0.58		0.72 [0.66, 0.77]		
Manzano 2011 SBI		44	4 80) 10	194	0.81 0.69	0.91	0.71 [0.65, 0.76]		
Pratt 2007 FWS -/=12 h (3 mg/l) SBI		3	3 26	3	13	0.50 0.12	, 0.88]	0.33 [0.19, 0.50]		
Pratt 2007 FWS more 12 h (3 mg/l) SBI		11	1 33	3 0	30	1.00 [0.72	, 1.00]	0.48 [0.35, 0.61]		
Pulliam 2001 SBI		ę	9 2 [.]	I 5	42	0.64 [0.35	, 0.87]	0.67 [0.54, 0.78]	_	
Rudinsky 2009 SBI (more 10)		93	3 454	4 36	402	0.72 [0.64	, 0.80]	0.47 [0.44, 0.50]		-
Segal 2014 children fever 12-24 h Bacte	raemia	ı () () ()	0	Not est	imable	Not estimable		
									0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
WBC ≥15 x 10 ⁹ /I										
Study	TP	FP	FN	TN	Sensit	ivity (95% C	CI) Spe	cificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
De 2014 SBI (greater 15)	336	763	378	2416		7 [0.43, 0.5	, .	0.76 [0.74, 0.77]		
De 2014 SBI (greater 20)	186		528	2861		6 [0.23, 0.29		0.90 [0.89, 0.91]	· · · · · · · · · · · · · · · · · · ·	
Isaacman 2002 Bacteraemia	20	45	9	182		9 [0.49, 0.85		0.80 [0.74, 0.85]		-
Mahajan 2014 SBI	17		13	148		7 [0.37, 0.75		0.76 [0.70, 0.82]		
Nademi 2001 (15) Infection/SBI/Sepsis	4		37	95		0 [0.03, 0.23		0.95 [0.89, 0.98]		-
Nademi 2001 (20) Infection/SBI/Sepsis	12	7	29	93		9 0.16, 0.40		0.93 [0.86, 0.97]		-
Pratt 2007 FWS -/=12 h (15) SBI	1	13	5	26	0.1	7 0.00, 0.64	4]	0.67 [0.50, 0.81]	-	
Pratt 2007 FWS -/=12 h (17.5) SBI	1	10	5	29	0.1	7 [0.00, 0.64	4j	0.74 [0.58, 0.87]		
Pratt 2007 FWS -/=12 h (3 mg/l) SBI	1	13	5	26	0.1	7 [0.00, 0.64	4 <u>]</u>	0.67 [0.50, 0.81]		
Pratt 2007 FWS more 12 h (15) SBI	9	20	2	43	0.8	2 [0.48, 0.98	3]	0.68 [0.55, 0.79]	_	
Pratt 2007 FWS more 12 h (17.5) SBI	8	13	3	50	0.7	3 [0.39, 0.94	1]	0.79 [0.67, 0.89]	_	
Rudinsky 2009 SBI (more 15)	93	454	36	402	0.7	2 [0.64, 0.80	0]	0.47 [0.44, 0.50]		-
Rudinsky 2009 SBI (more 20)	21	60	108	796		6 [0.10, 0.24		0.93 [0.91, 0.95]		•
Rudinsky 2009 SBI (more 25)	0		129	839		0 [0.00, 0.03		0.98 [0.97, 0.99]	•	•
Thayyil 2005 children SBI	32	4	32	4	0.5	0 [0.37, 0.63	3]	0.50 [0.16, 0.84]		
									0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 80: Odds ratio. WBC<15 x103 cells/mm3. SBI

		Odds Ratio		Odds Ratio		
Study or Subgroup	log[Odds Ratio] SE Wei	ight IV, Fixed, 95% CI	IV	, Fixed, 95% C	1	
Trautner 2006. ED. Children less 18y with fever	-0.2485 0.5004	0.78 [0.29, 2.08]				
		H	0.1 0.2 0.5	5 1 2	5	10
			Risk	factor Protectiv	ve factor	

304

K3856 WBC, neonates

Figure 81: Sensitivity and specificity for WBC $\leq 5 \times 10^9$ /l, ED setting (neonates)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bonsu 2003 Bacteraemia (5)	30	3547	8	187	0.79 [0.63, 0.90]		0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 82: Sensitivity and specificity for WBC $\leq 5 \times 10^9$ /l, NICU setting (neonates)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hornik 2012 Sepsis (1) Hornik 2012 Sepsis (5)	10 688			62701 60257	0.00 [0.00, 0.00] 0.07 [0.06, 0.08]	1.00 [1.00, 1.00] 0.96 [0.96, 0.96]	• • • • • • • • • • • • • • • • • • • •	0 0.2 0.4 0.6 0.8 1

Figure 83: Sensitivity and specificity for WBC >5 to <20 x 10⁹/l, ED setting (neonates)

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bonsu 2003 Bacteraemia (10)	23	2166	15	1568	0.61 [0.43, 0.76]	0.42 [0.40, 0.44]		•
Bonsu 2003 Bacteraemia (15)	17	821	21	2913	0.45 [0.29, 0.62]	0.78 [0.77, 0.79]		
Fouzas 2010 SBI	54	10	49	35	0.52 [0.42, 0.62]	0.78 [0.63, 0.89]	0 0.2 0.4 0.6 0.8 1	

307

Figure 84: Sensitivity and specificity for WBC 20 to <50 x 10⁹/l, ED setting (neonates)

TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
49	126	53	664	0.48 [0.38, 0.58]	0.84 [0.81, 0.87]		•
22	40	80	751	0.22 [0.14, 0.31]	0.95 [0.93, 0.96]		
9	261	29	3473	0.24 [0.11, 0.40]	0.93 [0.92, 0.94]		•
5	75	33	3659	0.13 [0.04, 0.28]	0.98 [0.97, 0.98]		
2	37	36	3697	0.05 [0.01, 0.18]	0.99 [0.99, 0.99]		
	49 22 9 5	49 126 22 40 9 261 5 75	49 126 53 22 40 80 9 261 29 5 75 33	49 126 53 664 22 40 80 751 9 261 29 3473 5 75 33 3659	49 126 53 664 0.48 [0.38, 0.58] 22 40 80 751 0.22 [0.14, 0.31] 9 261 29 3473 0.24 [0.11, 0.40] 5 75 33 3659 0.13 [0.04, 0.28]	49 126 53 664 0.48 [0.38, 0.58] 0.84 [0.81, 0.87] 22 40 80 751 0.22 [0.14, 0.31] 0.95 [0.93, 0.96] 9 261 29 3473 0.24 [0.11, 0.40] 0.93 [0.92, 0.94] 5 75 33 3659 0.13 [0.04, 0.28] 0.98 [0.97, 0.98]	49 126 53 664 0.48 [0.38, 0.58] 0.84 [0.81, 0.87] 22 40 80 751 0.22 [0.14, 0.31] 0.95 [0.93, 0.96] 9 261 29 3473 0.24 [0.11, 0.40] 0.93 [0.92, 0.94] 5 75 33 3659 0.13 [0.04, 0.28] 0.98 [0.97, 0.98]

308

Figure 85: Sensitivity and specificity for WBC 20 to <50 x 10⁹/l, NICU setting (neonates)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hornik 2012 Sepsis (20)	2222	12791	7612	49911	0.23 [0.22, 0.23]	0.80 [0.79, 0.80]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

309

Figure 86: Sensitivity and specificity for WBC <5 or ≥15 x 10⁹/l, ED setting (neonates)

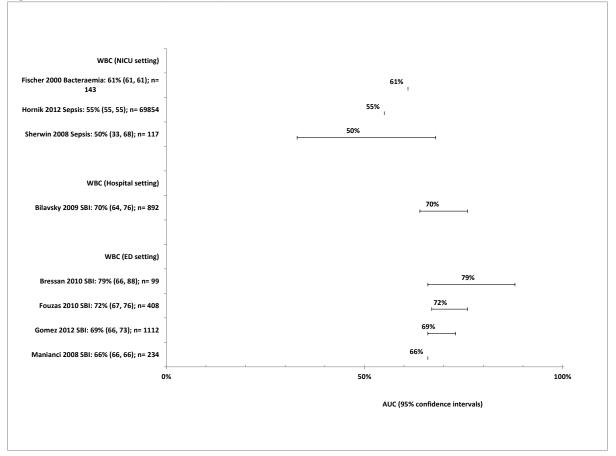
Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bilvasky 2009 SBI	51	174	51	616	0.50 [0.40, 0.60]	0.78 [0.75, 0.81]		•
Bonsu 2003 Bacteraemia	25	1046	13	2688	0.66 [0.49, 0.80]	0.72 [0.71, 0.73]		
Bressan 2010 fever less 12h SBI	7	9	18	65	0.28 [0.12, 0.49]	0.88 [0.78, 0.94]		
Bressan 2010 fever more 12h SBI	4	5	1	46	0.80 [0.28, 0.99]	0.90 [0.79, 0.97]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

310

Figure 87: Sensitivity and specificity for WBC >50 x 10⁹/l, NICU setting (neonates)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hornik 2012 Sepsis (50)	9736	627	98	62075	0.99 [0.99, 0.99]		0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 88: Sensitivity and specificity for WBC <5 or $\geq 20 \times 10^9$ /l, ED setting (neonates)


Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bonsu 2003 Bacteraemia	17	448	21	3286	0.45 [0.29, 0.62]		0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

312

Figure 89: Sensitivity and specificity for WBC <4.0 or ≥20 or x 10⁹/l, NICU setting (neonates)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Sherwin 2008 Sepsis	24	55	96	164	0.20 [0.13, 0.28]	0.75 [0.69, 0.80]		

Figure 90: AUC for WBC (neonates)

313

Figure 91: Odds ratio. WBC. SBI

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Bilavsky 2009. Hosp. Infants less 3m with fever	0.0953	0.0189	1.10 [1.06, 1.14]	, , , , † , , , ,
				0.1 0.2 0.5 1 2 5 10
				Protective factor Risk factor

Figure 92: Odds ratio. WCC (103/µl). SBI

315

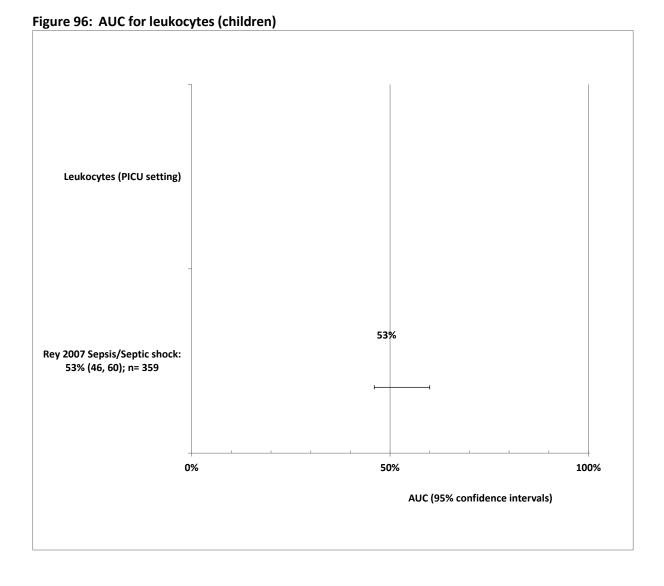
K367 Leucocytes, adult

Figure 93: Odds ratio. Leukocyte count (multivariable analysis)

				Odds Ratio			Oc	lds Rat	io		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fi	xed, 95	5% CI		
de Kruif 2010. ED. Bacterial infection	0.1178 0	0.0616		1.13 [1.00, 1.27]				+			
					0.1	0.2	0.5	1	2	5	10
						Prote	ective fac	or Ris	k factor		

317

Figure 94: Odds ratio. Leukocyte count≥4.0x10⁹/l or ≤12.0x10⁹/l


			Odds Ratio			Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		I	/, Fixed, 95%	CI	
Leth 2013. Bloodstream infection. Hospital	0.0677	0.2654	1.07 [0.64, 1.80]					
				0.01	0.1	1	10	100
					Protective	factor Risk f	actor	

318

K3398 Leucocytes, children

Figure 95: Sensitivity and specificity for leucocytes, ED setting (children)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Galetto-Lacour 2003 SBI	16	20	13	50	0.55 [0.36, 0.74]	0.71 [0.59, 0.82]		
Lacour 2011 SBI	20	52	9	175	0.69 [0.49, 0.85]	0.77 [0.71, 0.82]		0 0.2 0.4 0.6 0.8 1

K3319 Leucocytes, neonates

Figure 97: Sensitivity and specificity for leucocytes, ED setting (neonates)

Leukocytes > 10 x 10	0 ⁹ /I							
Study	TP	FP	FN	ΤN	Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI)	Specificity (95% CI)
Olaciregui 2009 SBI	60	111	22	154	0.73 [0.62, 0.82]	0.58 [0.52, 0.64]		
Leukocytes > 15 x 10	0 ⁹ /I							
Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Olaciregui 2009 SBI	8	10	12	52	0.40 [0.19, 0.64]	0.84 [0.72, 0.92]		

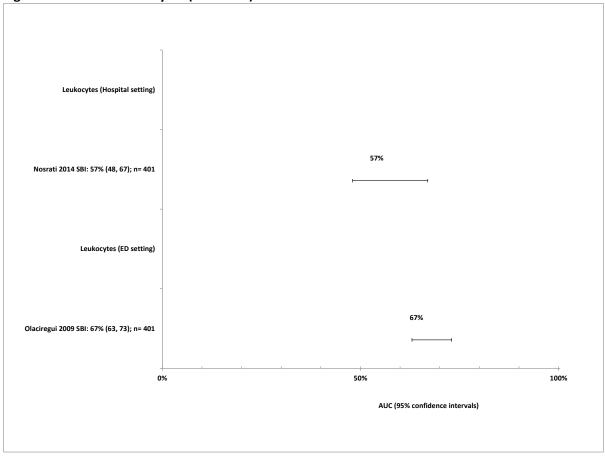
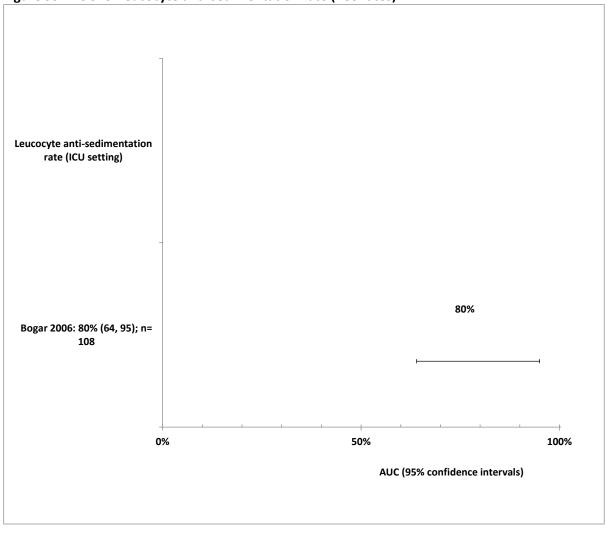



Figure 98: AUC for leucocytes (neonates)

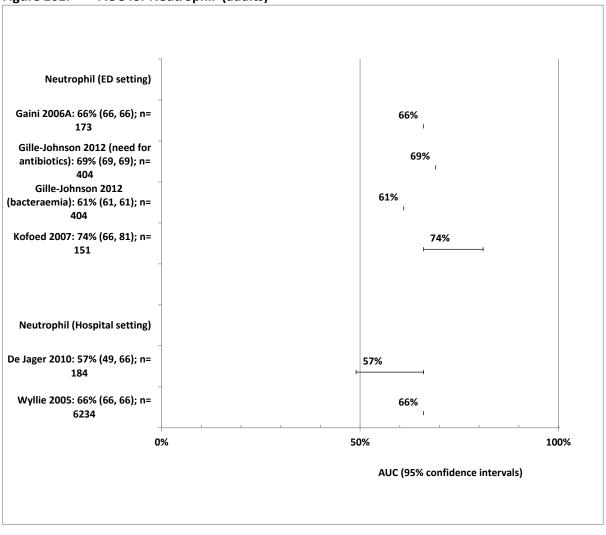


Figure 99: AUC for leucocyte anti-sedimentation rate (neonates)

322

K.32B0 Neutrophil, adults

Study TP FP FN TN Sensitivity (95% Cl) Specificity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl)

Figure 101: AUC for Neutrophil (adults)

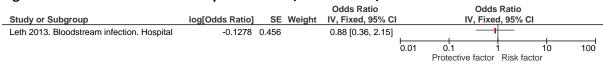
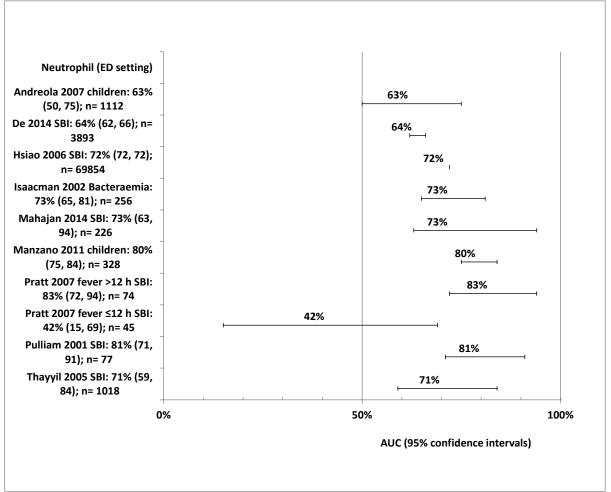

324

Figure 102: Odds ratio. Neutrophils >80%

Study or Subgroup	log[Odds Ratio]	SE V	Veiaht	Odds Ratio IV, Fixed, 95% CI				Ratio 1. 95% CI		
Study of Subgroup		36 1	vergrit	IV, FIXEU, 93 /8 CI			IV, FIXED	1, 33 /0 01		
Chase 2012. Bacteraemia. ED	0.5653	0.1168		1.76 [1.40, 2.21]	+					
					0.01	0			10	100
						Prote	ective factor	Risk facto	or	

325

Figure 103: Odds ratio. Neutrophils≥2.0x10⁹/l or ≤7.0x10⁹/l



K.321/1 Neutrophil, children

Figure 104: Sensitivity and specificity for neutrophil count, ED setting (children)

Neutrophil count >0.5 - <2.5 x 10 ⁹ /l											
Study TP F	P F	יד א	N S	ensiti	ivity (95% CI) Specifi	city (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)			
Fernandezlopez 2003 SBI 148 2	24 153	3 12				3 [0.76, 0.89]					
Neutrophil count ≥2.5 - 6 x 10 ⁹ /l							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1			
Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)			
Manzano 2011 children no UTI SBI	41	79	14	195	0.75 [0.61, 0.85]	0.71 [0.65, 0.76]		-			
Manzano 2011 SBI	47	110	7	164	0.87 [0.75, 0.95]	0.60 [0.54, 0.66]					
Neutrophil count >6 x 10 ⁹ /l							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1			
Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI) Sensitivity (95% CI)	Specificity (95% CI)			
Andreola 2007 Sepsis	77	118	17	196	0.82 [0.73, 0.89]	0.62 [0.57, 0.68]		-			
Isaacman 2002 Bacteraemia	20	48	9	179	0.69 [0.49, 0.85]	0.79 [0.73, 0.84]		-			
Mahajan 2014 (10) SBI	49	2	16	5	0.75 [0.63, 0.85]	0.71 [0.29, 0.96]					
Mahajan 2014 (13) SBI	8	11	21	185	0.28 [0.13, 0.47]	0.94 [0.90, 0.97]		-			
Pratt 2007 FWS -/=12 h (10) SBI	1	10	5	29	0.17 [0.00, 0.64]	0.74 [0.58, 0.87]					
Pratt 2007 FWS -/=12 h (11) SBI	1	7	5	32	0.17 [0.00, 0.64]	0.82 [0.66, 0.92]					
Pratt 2007 FWS -/=12 h (12) SBI	1	6	5	33	0.17 [0.00, 0.64]	0.85 [0.69, 0.94]					
Pratt 2007 FWS more 12 h (10) SBI	7	12	4	51	0.64 [0.31, 0.89]	0.81 [0.69, 0.90]					
Pratt 2007 FWS more 12 h (11) SBI	6	12	5	51	0.55 [0.23, 0.83]	0.81 [0.69, 0.90]					
Pratt 2007 FWS more 12 h (12) SBI	6	10	5	53	0.55 [0.23, 0.83]	0.84 [0.73, 0.92]					
Pulliam 2001 SBI	10	15	4	48	0.71 [0.42, 0.92]	0.76 [0.64, 0.86]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1			

Figure 106: Odds ratio. ANC (Each cell increase of 1000x103/l). OBI

Study or Subgroup	log[Odds Ratio]	SE Weig	Odds Ratio ht IV, Fixed, 95% CI				dds Ra ixed, 9			
Isaacman 2002. ED. Children 3-36m with fever	0.1398	0.0368	1.15 [1.07, 1.24]				+	1		
				0.1	0.2 Pro	0.5 tective fac	1 tor Ri	2 sk factor	5	10

330

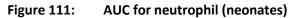
Figure 107: Odds ratio. ANC<10 x103 cells/mm³. SBI

				Odds Ratio			Od	ds Ra	atio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fix	(ed, 9	5% CI		
Trautner 2006. ED. Children less 18y with fever	0.1044	0.5082		1.11 [0.41, 3.01]					-		
					0.1	0.2	0.5	1	2	5	10
							Risk facto	or Pr	otective	factor	

K.3322 Neutrophil, neonates

Figure 108:	Sensitivity and specificity for neutrophil, ED setting (neonates)
-------------	---

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bressan 2010 fever less 12h SBI	5	2	20	72	0.20 [0.07, 0.41]	0.97 [0.91, 1.00]		
Bressan 2010 fever more 12h SBI	5	0	0	51	1.00 [0.48, 1.00]	1.00 [0.93, 1.00]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1


Figure 109: Sensitivity and specificity for neutrophil, NICU setting (neonates)

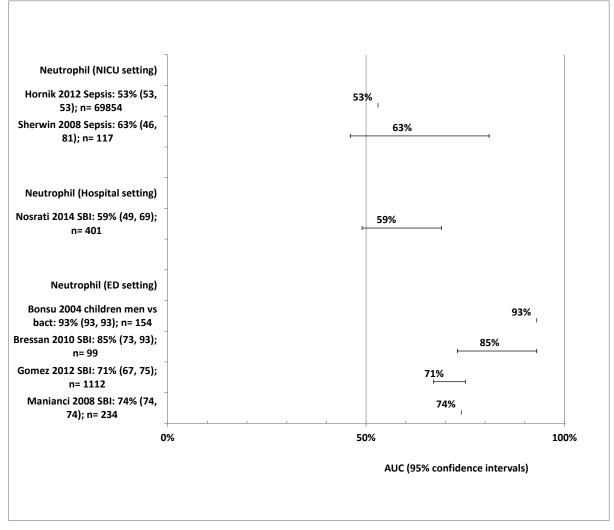
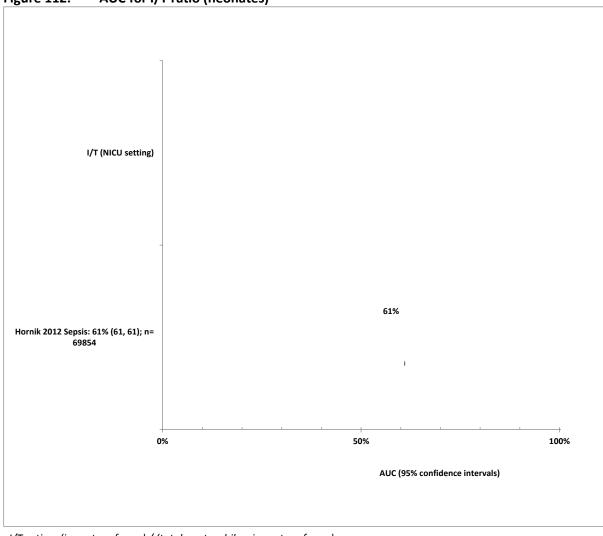
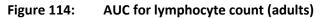

Neutrophil count <1 x 10 ⁹ /l, NICU setting												
Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)				
Hornik 2012 Sepsis	236	1254	9598	61448	0.02 [0.02, 0.03]	0.98 [0.98, 0.98]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1				
Neutrophil count <1.	5 x 10	⁹ /I, NIC	CU sett	ing								
Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)				
Hornik 2012 Sepsis	492	2508	9342	60194	0.05 [0.05, 0.05]	0.96 [0.96, 0.96]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1				
Neutrophil count >10	0 x 10	/I, NIC	U setti	ng								
Study	TP	FP	FN T	N Sen	sitivity (95% CI) Spec	cificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)				
Sherwin 2008 Sepsis	41	14	84 18	7 (0.33 [0.25, 0.42] 0	.93 [0.89, 0.96]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1				

Figure 110: Sensitivity and specificity for I/T ratio, NICU setting (neonates)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hornik 2012 Sepsis (0.20)	5310	24454	4524	38248	0.54 [0.53, 0.55]	0.61 [0.61, 0.61]		•
Hornik 2012 Sepsis (0.25)	4229	18184	5605	44518	0.43 [0.42, 0.44]	0.71 [0.71, 0.71]	•	•
Hornik 2012 Sepsis (0.50)	1278	4389	8556	58313	0.13 [0.12, 0.14]	0.93 [0.93, 0.93]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

I/T ratio = (immature forms) / (total neutrophils + immature forms)




Figure 112: AUC for I/T ratio (neonates)

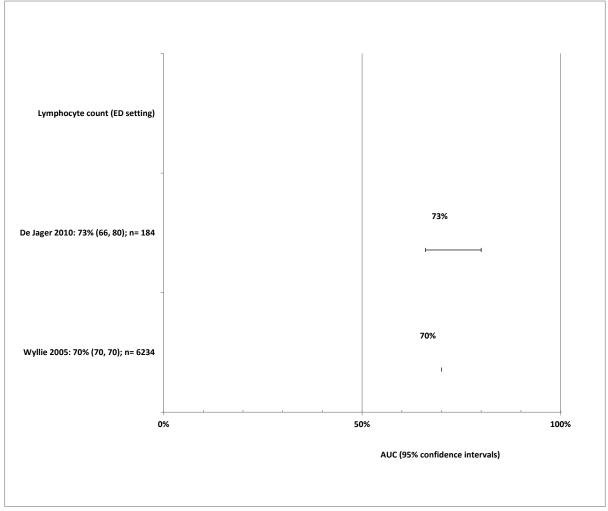
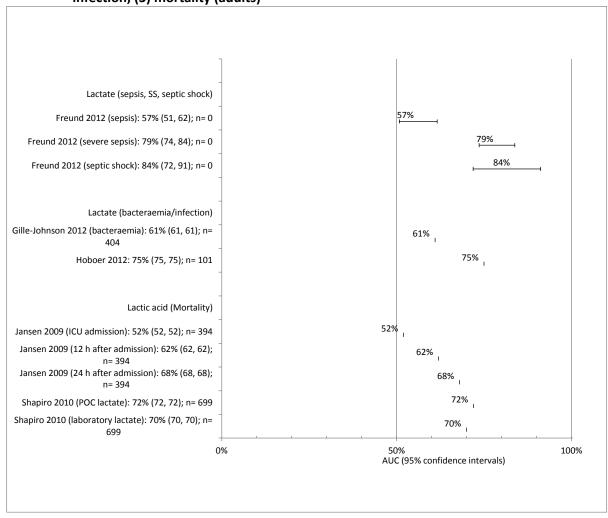

I/T ratio = (immature forms) / (total neutrophils + immature forms)

Figure 113: Odds ratio. I/T >2. Late onset sepsis

			Risk Ratio			Risk Rati	io	
Study or Subgroup	log[Risk Ratio]	SE Weight	IV, Fixed, 95% CI		IV,	Fixed, 95	5% CI	
Makhoul 2006. NICU. Neonates with suspectrd sepsis	1.5872	0.3474	4.89 [2.48, 9.66]				<u> </u>	
				0.01	0.1	1	10	100
					Protective f	actor Ris	sk factor	

K.3383 Lymphocytes, adults


K.3324 Lymphocytes, children and neonates

340 None

K.3415 Lactate, adults

Figure 115: Sensitivity and specificity for lactate, ICU setting (adults)

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hoboer 2012. ICU+fever. Bloodstream inf.(1.7 mg/l)	10	35	2	54	0.83 [0.52, 0.98]	0.61 [0.50, 0.71]		

Figure 116: AUC for lactate to predict (1) sepsis, severe sepsis, septic shock; (2) bacteraemia or infection; (3) mortality (adults)

342

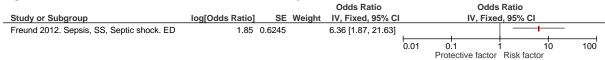
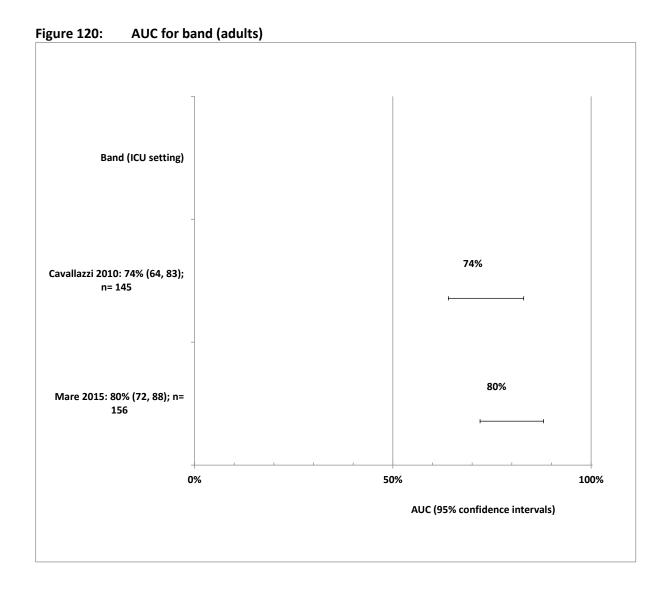

343

Figure 117: Odds ratio. Lactate>2mmol/l (severe sepsis)

			Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% CI	
Freund 2012. Sepsis, SS, Septic shock. ED	2.3869	0.262	10.88 [6.51, 18.18]			-+	
				0.01	0.1	1 10	100
					Protective factor	Risk factor	

344

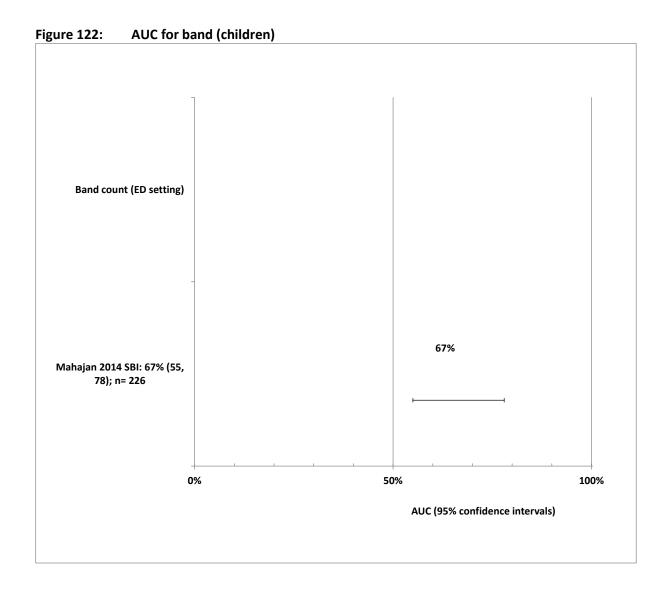
Figure 118: Odds ratio. Lactate>2mmol/l (septic shock)


K.3466 Lactate, children and neonates

- 347 None
- K.3487 Band, adults

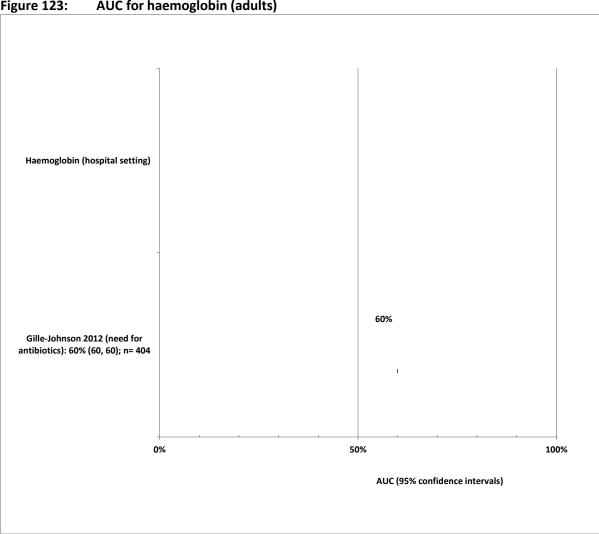
Figure 119:Sensitivity and specificity for band, ICU setting (adults)

Band >8.5%


Study Mare 2015. ICU. Sepsis Band >10%		FP 27	FN 9		itivity (95% CI) 85 [0.73, 0.93]		ficity (95% Cl) 72 [0.61, 0.80]	Sensitivity (95% Cl)	Specificity (95% CI)
Study Cavallazzi 2010. ICU. Infe	ction			1 TN 95	Sensitivity (95 0.43 [0.28,	,	1 20		Specificity (95% Cl)

K.3498 Band, children

Figure 121: Sensitivity and specificity for band count, ED setting (children)


Band count >1.8 x 10 ⁹ /I									
Study TP	FP	FN	TN	Sens	itivity (95% CI)	Specif	ficity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Mahajan 2014 SBI 6	7	24	187	0	.20 [0.08, 0.39]	0.9	96 [0.93, 0.99]		
Band count ≥1.5 x 10 ⁹ /I								0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Study	TF	P FF	P FN	TN	Sensitivity (95	% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Galetto-Lacour 2003 SBI	3	35	5 26	65	0.10 [0.02, 0).27]	0.93 [0.84, 0.98]	-	
Lacour 2011 SBI	8	3 20) 21	207	0.28 [0.13, 0).47]	0.91 [0.87, 0.95]		-
Mahajan 2014 SBI	6	5 13	3 25	180	0.19 [0.07, 0).37]	0.93 [0.89, 0.96]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

K.3509 Band, neonates

351 None

Haemoglobin, adults K.3520

AUC for haemoglobin (adults) Figure 123:

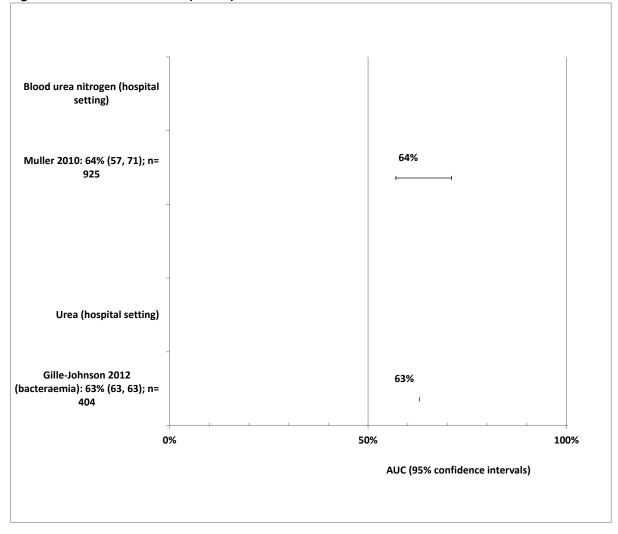
353

Figure 124: Odds ratio. Hb ≤100 g/l

		Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio] SE Weig	ht IV, Fixed, 95% CI	IV, Fixed, 95% CI	
Patterson 2012. Bacteraemia. ED with pneumonia	-0.3425 1.0628	0.71 [0.09, 5.70]		
		0.01	0.1 1 10 Protective factor Risk factor	100

354

Haemoglobin, children and neonates K.35251


356 None

K.35272 Urea, adults

Figure 125: Sensitivity and specificity for blood urea nitrogen >11 mM, hospital setting (adults)

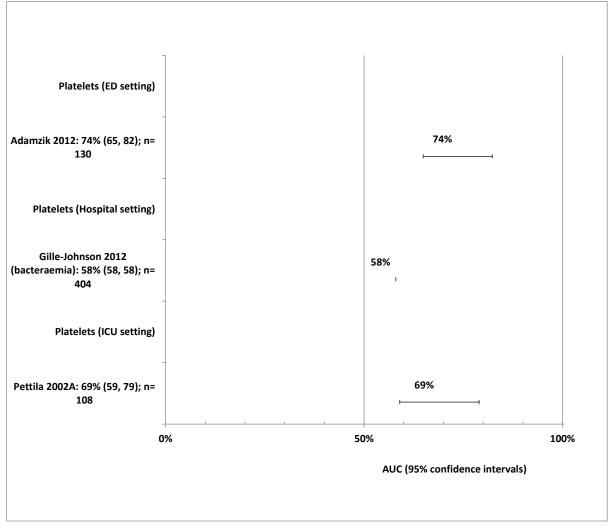
Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Muller 2010. Hospital, with CAP. Bacteraemia	23	187	50	665	0.32 [0.21, 0.43]			

Figure 126: AUC for urea (adults)

- K.3528 Urea, children and neonates
 - 359 None

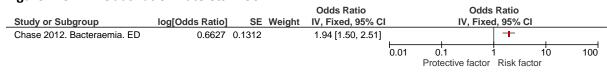
K.3624 Creatinine, adults

361


Sepsis Forest plots

K.3625 Creatinine, children and neonates

364 None.


K.3626 Platelets, children

366

Figure 128: Odds ratio. Platelets <150

Sepsis Forest plots

K.3627 Platelets, children

369 None.

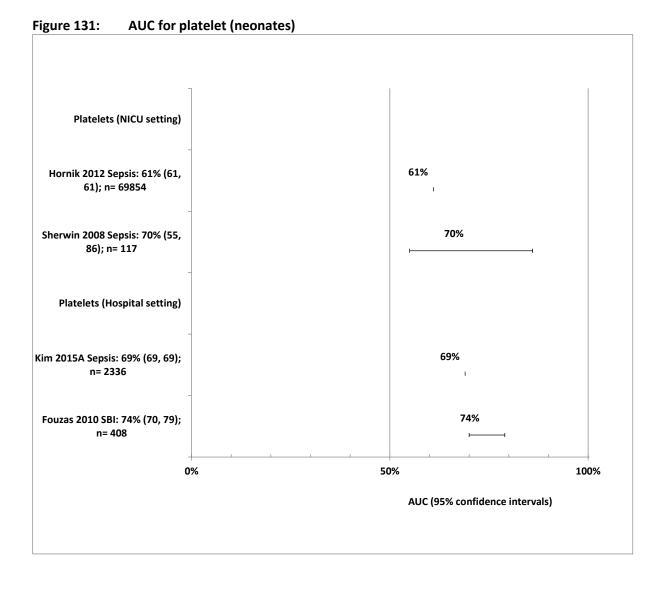

K.3728 Platelets, neonates

Figure 129: Sensitivity and specificity for platelet, ED setting (neonates)

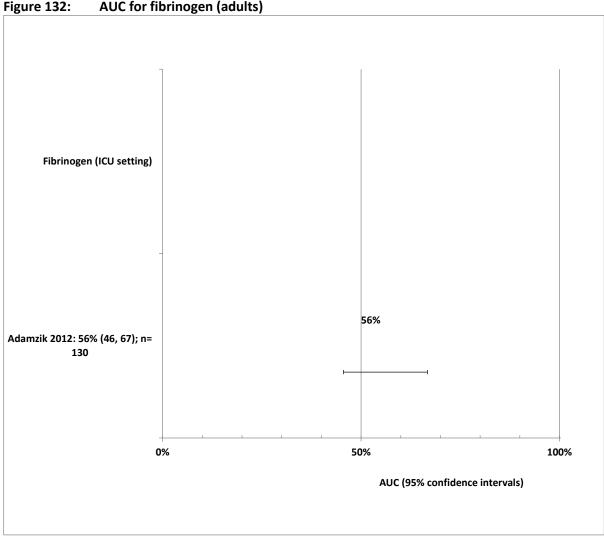
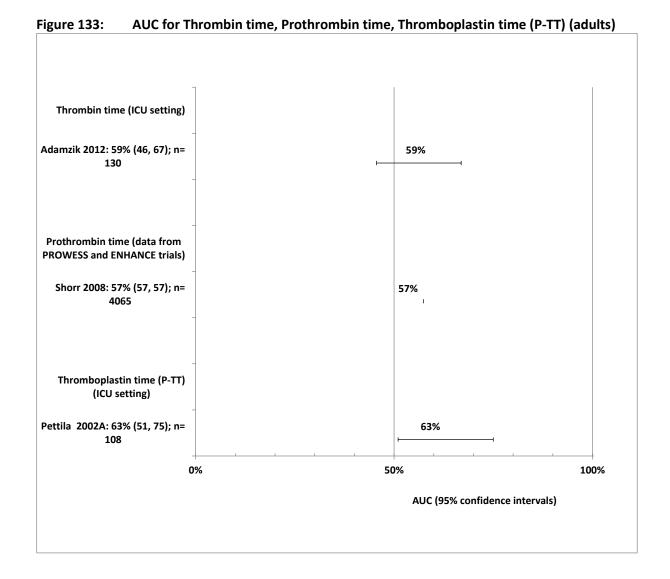

Platelet count ≥400 x 10 ⁹/l, ED setting TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study 0.44 [0.30, 0.60] Fouzas 2010 SBI 88 25 15 20 0.85 [0.77, 0.92] Platelet count ≥450 x 10 ⁹/l, ED setting Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0.71 [0.56, 0.84] Fouzas 2010 SBI 85 13 18 32 0.83 [0.74, 0.89] Platelet count ≥500 x 10 ⁹/l, ED setting TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study 0.78 [0.63, 0.89] Fouzas 2010 SBI 54 10 49 35 0.52 [0.42, 0.62] Platelet count ≥600 x 10 ⁹/l, ED setting TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study 0.91 [0.79, 0.98] Fouzas 2010 SBI 23 4 80 41 0.22 [0.15, 0.32]

Figure 130: Sensitivity and specificity for platelet $\leq 100 \times 10^9$ /l, NICU setting (neonates)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Hornik 2012 Sepsis	2252	6897	7582	55805	0.23 [0.22, 0.24]	0.89 [0.89, 0.89]	•	•
Sherwin 2008 Sepsis	24	55	96	164	0.20 [0.13, 0.28]	0.75 [0.69, 0.80]		

Fibrinogen, adults K.3729



AUC for fibrinogen (adults) Figure 132:

Fibrinogen, children and neonates K.3730

374 None.

K.3251 Thrombin time, adults

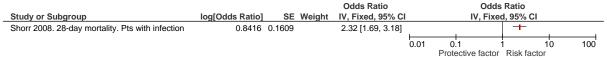
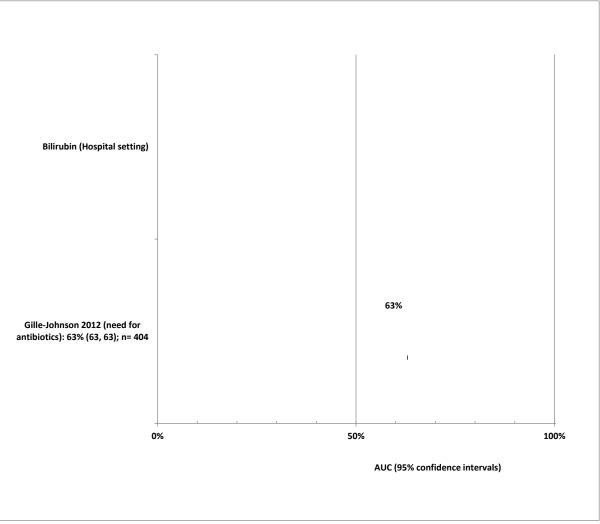

376

Figure 134: Odds ratio. Photothrombin time (seconds)

	CI	Odds Ratio Fixed, 95% C			Odds Ratio IV, Fixed, 95% CI	Weight	SE	log[Odds Ratio]	tudy or Subgroup
		+			1.89 [1.38, 2.58]		0.1588	0.6366	horr 2008. 28-day mortality. Pts with infection
10	10 actor	1 ctor Risk fac	0.1 Protective factor	0.01					
		1 ctor Risk fac		0.01					

377

Figure 135: Anti-thrombin III (%)



K.3732 Thrombin time, children and neonates

380 None.

K.3833 Bilirubin, adults

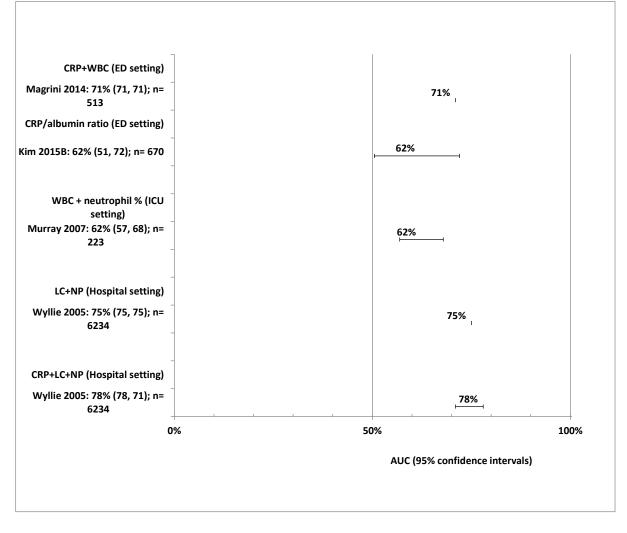

- K.3824 Bilirubin, children and neonates
 - 383 None.
- K.3835 Combination of tests, adults

Figure 137: Sensitivity and specificity for combination of tests (adults)

Band >10% & WBC >12 x10⁹/L

Study	TP FP FN TN	Sensitivity (95% CI) Spec	cificity (95% CI) Sensitivity (95% CI)	Specificity (95% CI)
Cavallazzi 2010. ICU. Infection	11 3 31 100	0.26 [0.14, 0.42]	0.97 [0.92, 0.99]	
CRP/albumin ratio >5.09 mg/c	(ED admission)		0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
5	(
Study TP FP FN	FN Sensitivity (95%	% CI) Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Kim 2015B 115 188 73 2	94 0.61 [0.54, 0	0.68] 0.61 [0.56, 0.65]		
			0 0.2 0.4 0.6 0.6 1	0 0.2 0.4 0.6 0.6 1

Figure 138: AUC for combination of tests (adults)

I	Figure 139: Odds	s ratio. CRP/albumin rat	tio at	admission >5	.0 9 n	ng/dl				
				Hazard Ratio	Hazar	Hazard Ratio				
	Study or Subgroup	log[Hazard Ratio] SE We	eight	IV, Fixed, 95% CI			IV, Fixe	d, 95% C		
	Kim 2015B. Mortality. ED	0.0583 0.0189		1.06 [1.02, 1.10]						
					0.01	0.1 Prote	1 ctive factor	l Risk fac	10 tor	100

Study or Subgroup log[Odds Ratio] SE Weight IV, Fixed, 95% CI IV, Fixed, 95% CI Green 2011. Sepsis. ED. Suspected infection 0.3221 0.4423 1.38 [0.58, 3.28] 1

0.01

0.1

Protective factor Risk factor

100

10

388

Figure 141: Odds ratio. CRP >10.0 mg/dl and lactate ≥4.0 mmol/l

-				Odds Ratio		Od	ds Ratio	,	
Study or Subgroup	log[Odds Ratio]	SE	Weight				ed, 95%		
Green 2011. Sepsis. ED. Suspected infection	2.5128	0.3033		12.34 [6.81, 22.36]				-+-	
					0.01	0.1	1	10	100
						Protective fact	or Risk	factor	

389

Figure 142: Odds ratio. CRP >10.0 mg/dl and lactate <4.0 mmol/l

			Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI			IV, Fixe	d, 95% Cl		
Green 2011. Sepsis. ED. Suspected infection	0.6471	0.2287	1.91 [1.22, 2.99]						
				0.01	0.	1	1	10	100
					Prote	ctive factor	Risk facto	or	

390

K.3936 Combination of tests, children

Figure 143: Sensitivity and specificity for combination of tests, ED setting (children)

CRP ≥3.1 mg/l or WBC >17	7.1 x	10 ⁹	/I						
Study	-	ΓР	FP	FN	ΤN	Sensitivity (95%	CI) Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Isaacman 2002 Bacteraemia	a	22	95	7	132	0.76 [0.56, 0.9	0] 0.58 [0.51, 0.65]		
CRP ≥3.6 mg/l x or ANC >⁄	10.5 >	c 10	⁹ /I						
Study	-	ΓР	FP	FN	ΤN	Sensitivity (95%	CI) Specificity (95% CI) Sensitivity (95% CI)	Specificity (95% CI)
Isaacman 2002 Bacteraemia	a :	23	114	6	114	0.79 [0.60, 0.9	92] 0.50 [0.43, 0.57]		
Leukocyte count ≥15 x 10	⁹ /l oi	r ba	nd co	ount	≥ 1.5 :	x 10 ⁹ /l			
Study	ΤР	FP	FN	ΤN	Se	nsitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Galetto-Lacour 2003 SBI	16	20	13	50		0.55 [0.36, 0.74]	0.71 [0.59, 0.82]		
Lacour 2011 SBI	20	52	9	175		0.69 [0.49, 0.85]	0.77 [0.71, 0.82]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 144: Sensitivity and specificity for combination of tests, PICU setting (children)

CRP >30 mg/l and ANC >10 x 10° /l or WBC >15 x 10° /l

Study Shaoul 2008 Bacteraemia CRP >30 mg/l and ANC >10	42	157	8	97	0.84 [0.71, 0.93]	0.38 [0.32, 0.44]	Specificity (95% Cl)
Study Shaoul 2008 Bacteraemia		FP 41			Sensitivity (95% CI) 0.36 [0.23, 0.51]		Specificity (95% CI)

K.3927 Combination of tests, neonates

393 None.

Ka4 Lactate

395 None.

Ka5 Serum creatinine

Figure 145: Serum creatinine level increase per 0.1 mg/dl: 28-day mortality

			Odds Ratio		Ode	ds Ratio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI		IV, Fix	ced, 95% Cl		
Leedahl 2014. Septic shock ICU	-0.1278	0.055	0.88 [0.79, 0.98]		-	+		
				0.1 0.2	0.5		<u> </u>	10
			0		ased mortality	y Increased	mortality	10

Figure 146: Initial serum creatinine >3.0 mg/dl: in-hospital mortality

			Odds Ratio			Odd	s Ratio			
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI			IV, Fix	ed, 95%	СІ		
Shmuely 2000. Bacteraemia ED	0.5306 0	.2707	1.70 [1.00, 2.89]					+ <u>.</u>		
			-	0.1	0.2	0.5	1	2	5	10
				Init	ial serum crea	tinine ≤3.0 mg/dl	Initial s	serum creatir	nine >3.0 mg/	dl

Figure 147: Initial serum creatinine >0.7 mg/dl: in-hospital mortality

			Odds Ratio			Ode	Is Ratio	D		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI			IV, Fix	ed, 95%	% CI		
Shapiro 2010. Suspected sepsis ED	0.239 0	.3999	1.27 [0.58, 2.78]				+			
				0.1	0.2	0.5	1	2	5	10
				1	nitial serum cre	atinine ≤0.7 mg/dl	Initia	al serum creatini	ne >0.7 mg/dl	

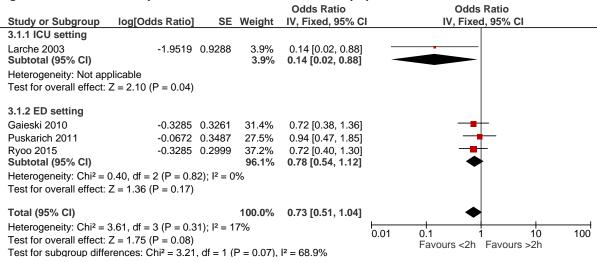
Figure 148: Initial serum creatinine >1.7 mg/dl: in-hospital mortality

			Odds Ratio			Odds	s Ratio		
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI			IV, Fixe	d, 95% Cl		
Shapiro 2010. Suspected sepsis ED	1.0784 0	0.2795	2.94 [1.70, 5.08]						
				0.1	0.2	0.5	1 2	5	10
				Ini	tial serum crea	atinine ≤1.7 mg/dl	Initial serum creation	nine >1.7 mg/o	al

Ka6 Disseminated intravascular coagulation (DIC)

Figure 149: 28-day mortality (multivariable analysis)

			Odds Ratio			Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	IV, Fixed, 95% CI			IV, Fixed, 95% CI	I	
1.1.1 Multivariable analysis								
Gando 2008.DIC	0.2013	0.1007	1.22 [1.00, 1.49]			+		
Gando 2013.Severe sepsis	0.2484	0.0594	1.28 [1.14, 1.44]			+		
Ogura 2014.Severe sepsis	0.5499	0.2347	1.73 [1.09, 2.75]					
				L				
				0.05	0.2	1	5	20
						No DIC DIC		


Figure 150: In-hospital mortality (multivariable and univariable analyses)

			Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	IV, Fixed, 95% Cl			IV, Fixed	d, 95% C		
1.2.1 Multivariable analysis									
Gando 2007.SIRS/sepsis	1.441	0.557	4.22 [1.42, 12.59]					-	
Ogura 2014. Severe sepsis	0.4357	0.2182	1.55 [1.01, 2.37]						
1.2.2 Univariable analysis									
Gando 2007A.SIRS/sepsis	3.7013	1.1161	40.50 [4.54, 360.98]						
				H					
				0.05	0.2	No DIC	I DIC	5	20

Figure 151: Mortality: <1 hour versus >1 hour, adult population

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.2.1 ICU setting				
Bloos 2014	-0.0408 0.1	1685 5.4%	0.96 [0.69, 1.34]	_ _
Ferrer 2009	-0.4005 0.1	1493 6.9%	0.67 [0.50, 0.90]	_ _
Ferrer 2014	-0.0726 0.0	0459 72.7%	0.93 [0.85, 1.02]	
Kumar 2006	-0.5128 0.2	2038 3.7%	0.60 [0.40, 0.89]	
Ryoo 2015	-0.2107 0.2	2999 1.7%	0.81 [0.45, 1.46]	
Yokota 2014	-0.2601 0.1	1374 8.1%		
Subtotal (95% CI)		98.5%	0.88 [0.81, 0.95]	•
Heterogeneity: Chi ² = 9	9.62, df = 5 (P = 0.09);	l² = 48%		
Test for overall effect:	Z = 3.25 (P = 0.001)			
4.0.0 ED				
1.2.2 ED setting				
Gaieski 2010	-0.6733 0.4			
Puskarich 2011	-0.5978 0.4			
Subtotal (95% CI)		1.5%	0.53 [0.28, 0.99]	
	0.01, df = 1 (P = 0.91);	$l^2 = 0\%$		
Test for overall effect:	Z = 2.00 (P = 0.05)			
Total (95% CI)		100.0%	0.87 [0.81, 0.94]	
· · ·	1015 df 7 (D 010)		0.07 [0.01, 0.04]	
0,	12.15, df = 7 (P = 0.10)	I, I ⁻ = 42 ∕o		0.1 0.2 0.5 1 2 5 10
Test for overall effect:	()	1 (D 0 11)	12 60 00/	Favours <1h Favours >1h
rest for subgroup diffe	rences: Chi ² = 2.51, df	= 1 (P = 0.11)	, I ² = 00.2 <i>%</i>	

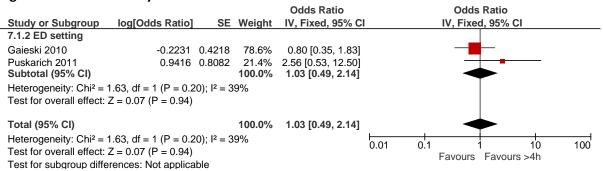


Figure 152: Mortality <2 hours versus >2 hours, adult population

Figure 153: Mortality <3 hours versus >3 hours

-	-			Odds Ratio		Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% C	l	IV, Fixed, 95% CI		
5.1.1 ICU setting								
Ferrer 2009 Subtotal (95% CI)	-0.2231	0.1468	48.3% 48.3%	0.80 [0.60, 1.07] 0.80 [0.60, 1.07]		↓		
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 1.52 (P = 0.13)							
5.1.2 ED setting								
Gaieski 2010	-0.4463	0.3537	8.3%	0.64 [0.32, 1.28]				
Joo 2014	-0.6162	0.236	18.7%	0.54 [0.34, 0.86]		_		
Lueangarun 2012	-0.6539	0.2966	11.8%	0.52 [0.29, 0.93]				
Puskarich 2011	0.4154	0.4561	5.0%	1.51 [0.62, 3.70]				
Ryoo 2015 Subtotal (95% CI)	-0.4943	0.3621	7.9% 51.7%	0.61 [0.30, 1.24] 0.62 [0.47, 0.82]		•		
Heterogeneity: Chi ² =	4.54, df = 4 (P = 0.3	84); l² = 1	2%					
Test for overall effect:	Z = 3.38 (P = 0.000	7)						
Total (95% CI)			100.0%	0.70 [0.57, 0.86]		•		
Heterogeneity: Chi ² =	6.12, df = 5 (P = 0.3	80); l ² = 1	8%				<u> </u>	
Test for overall effect:	Z = 3.49 (P = 0.000	5)			0.1 0.2	2 0.5 1 2 Favours <3h Favours >3h	5	10
Test for subgroup diffe	erences: Chi ² = 1.57	, df = 1 (P = 0.21),	l ² = 36.5%		Favouis Son Favouis Son		

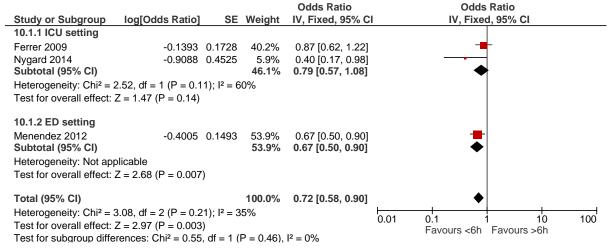

Figure 154: Mortality <4 hours versus >4 hours

Figure 155: Mortality <5 hours versus >5 hours

Study or Subgroup	log[Odds Ratio]	SE	Weiaht	Odds Ratio IV, Fixed, 95% C	Odds Ratio
9.1.1 ED setting					
Gaieski 2010	-0.1508	1.0037	57.5%	0.86 [0.12, 6.15]	· · · · · · · · · · · · · · · · · · ·
Puskarich 2011 Subtotal (95% CI)	0.3716	1.1674	42.5% 1 00.0%	1.45 [0.15, 14.29] 1.07 [0.24, 4.77]	
Heterogeneity: Chi ² = 0 Test for overall effect: 2		'3); l² = 0	%		
Total (95% CI)			100.0%	1.07 [0.24, 4.77]	
Heterogeneity: Chi ² = 0 Test for overall effect: Test for subgroup diffe	Z = 0.09 (P = 0.93)		%		0.01 0.1 1 10 100 Favours Favours >5h

Figure 156: In-hospital mortality <6 hours versus >6 hours

K4001 Hourly treatment delay

Figure 157: In-hospital mortality for hourly treatment delay

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] S	E Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Kumar 2006	0.1124 0.007	3 100.0%	1.12 [1.10, 1.14]	
Total (95% CI)		100.0%	1.12 [1.10, 1.14]	•
Heterogeneity: Not app	licable			
Test for overall effect:	Z = 15.40 (P < 0.00001)			0.7 0.85 1 1.2 1.5
	= 15.40 (1 < 0.00001)			Decreased mortality Increased mortality

K4012 Parenteral antibiotics prior to admission to hospital

Figure 158: Mortality

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% CI	
Cartwright 1992	-0.5473	0.5112	100.0%	0.58 [0.21, 1.58]				
Total (95% CI)			100.0%	0.58 [0.21, 1.58]				
Heterogeneity: Not app Test for overall effect: 2					0.01	0.1 Favours antibiotics	1 10 Favours no antibiotics	100

K4023 PICU setting, paediatric population

Figure 159: PICU mortality: <1 hour versus >1 hour

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] SE	E Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Weiss 2014	-0.5125 0.7971	100.0%	0.60 [0.13, 2.86]	
Total (95% CI)		100.0%	0.60 [0.13, 2.86]	
Heterogeneity: Not app Test for overall effect: 2				+ + + + + + + + + + + + + + + + + + +

Figure 160: PICU mortality: <2 hours versus >2 hours

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	l, 95% Cl	
Weiss 2014	-0.8867	0.6059	100.0%	0.41 [0.13, 1.35]			_	
Total (95% CI)			100.0%	0.41 [0.13, 1.35]			-	
Heterogeneity: Not app Test for overall effect: 2					0.01	0.1 1 Favours <2h	10 Favours >2h	100

Figure 161: PICU mortality: <3 hours versus >3 hours

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Weiss 2014	-1.3665 0.	.575 100.0%	0.25 [0.08, 0.79]	
Total (95% CI)		100.0%	0.25 [0.08, 0.79]	
Heterogeneity: Not app Test for overall effect: 2				0.01 0.1 1 10 100 Favours <3h Favours >3h

Figure 162: PICU mortality: <4 hours versus >4 hours

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl	
Weiss 2014 (univariable)	-1.2801	0.5475	100.0%	0.28 [0.10, 0.81]				
Total (95% CI)			100.0%	0.28 [0.10, 0.81]				
Heterogeneity: Not applicat	ble				H	+	1 1	
Test for overall effect: Z = 2		.1 Favours <4h	1 10 Favours >4h					

K₁**8** IV fluid administration

K4841 6% HES versus 0.9% saline in adults with sepsis

K.8051 Mortality at 28 days

406 Figure 163: Mortality at 90 days

	6% HI	ES	0.9% sa	line		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Myburgh 2012	248	976	224	945	100.0%	1.07 [0.92, 1.25]	
Total (95% CI)		976		945	100.0%	1.07 [0.92, 1.25]	•
Total events	248		224				
Heterogeneity: Not app	olicable						1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
Test for overall effect:	Z = 0.87 (l	P = 0.3	9)				Favours 6% HES Favours 0.9% saline

407 408

K4892 Crystalloid versus colloid plus crystalloid in adults with severe sepsis

K.8.201 Mortality at 28 days

Figure 164:	Hospi	ital n	nortality								
	Crystal	loid	Colloid + crys	stalloid		Risk Ratio		Ri	sk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, F	ixed, 95% Cl		
McInthyre 2007A	101	235	121	258	100.0%	0.92 [0.75, 1.12]		-			
Total (95% CI)		235		258	100.0%	0.92 [0.75, 1.12]			•		
Total events	101		121								
Heterogeneity: Not ap	plicable						0.1	0.2 0.5			10
Test for overall effect:	Z = 0.87 (F	P = 0.38	3)				0.1	Favours Crystallo	d Favours Co	lloid + cryst	

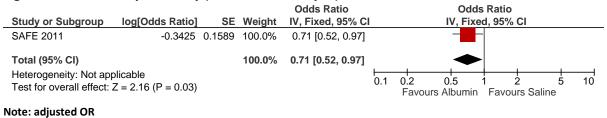
411

Figure 165:	ICU m	norta	lity										
	Crystal	loid	Colloid + cry	stalloid		Risk Ratio			Risk	Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fix	ed, 95%	CI		
McInthyre 2007A	72	235	99	258	100.0%	0.80 [0.62, 1.02]							
Total (95% CI)		235		258	100.0%	0.80 [0.62, 1.02]			-				
Total events	72		99										
Heterogeneity: Not ap	olicable					F.		0.2		<u> </u>	<u> </u>	<u> </u>	
Test for overall effect:	Z = 1.79 (F	P = 0.07	7)			0.	. 1		0.5 rs Crystalloid	Favours	∠ s Colloid	ວ + crysta	10 al

K4823 20% albumin versus 6% HES in adults with severe sepsis

K.8.331 Mortality at 28 days

Figure 166:	28-day mor	tality				
	Albumin	Colloid	- HES		Risk Ratio	Risk Ratio
Study or Subgroup	Events Tot	al Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Dolecek 2009	4 3	0 6	26	100.0%	0.58 [0.18, 1.83]	
Total (95% CI)	3	0	26	100.0%	0.58 [0.18, 1.83]	
Total events Heterogeneity: Not a Test for overall effec		.35)				0.1 0.2 0.5 1 2 5 10 Favours Albumin Favours HES


K4844 4% albumin versus 0.9% Sodium Chloride BP in adults with severe sepsis

K.8.1451 Mortality at 28 days

Figure 167: 28-day mortality (univariate analysis) **Risk Ratio** Risk Ratio Albumin Saline Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% Cl M-H, Fixed, 95% CI SAFE 2011 185 615 100.0% 0.87 [0.74, 1.02] 603 217 Total (95% CI) 603 615 100.0% 0.87 [0.74, 1.02] Total events 185 217 Heterogeneity: Not applicable 0.1 2 10 0.2 0.5 5 Test for overall effect: Z = 1.70 (P = 0.09) Favours Albumin Favours Saline

416

Figure 168: 28-day mortality (multivariate analysis)

K48万 Albumin versus crystalloids in adults with sepsis

K.8.581 Mortality at 28 days

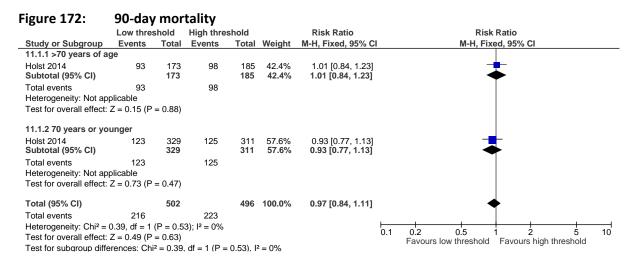
Figure 169:	Mortality										
	Albumin	Crystall	oids		Risk Ratio		F	Risk Ratio			
Study or Subgroup	Events Total	Events	Total	Weight	M-H, Fixed, 95% Cl		М-Н,	Fixed, 959	6 CI		
Patel 2014	710 1937	763	1941	100.0%	0.93 [0.86, 1.01]						
Total (95% CI)	1937		1941	100.0%	0.93 [0.86, 1.01]			•			
Total events Heterogeneity: Not a	710 pplicable	763				F			<u> </u>	<u> </u>	
Test for overall effect	t: Z = 1.70 (P = 0.0	9)				0.1	0.2 0.5 Favours Albu	1 min Favo	2 urs Crys	5 stalloids	10

K4896 Albumin versus colloids in adults with sepsis

K.8201 Mortality at 28 days

Figure 170: Mortality

	Albun	nin	Colloi	ds		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95% CI
Patel 2014	54	143	58	156	100.0%	1.02 [0.76, 1.36]		
Total (95% CI)		143		156	100.0%	1.02 [0.76, 1.36]		•
Total events	54		58					
Heterogeneity: Not ap Test for overall effect:	•	P = 0.9	2)				⊢ 0.1	I 0.2 0.5 1 2 5 10 Favours Albumin Favours Colloids


K4817 Packed red blood cells (PRBC) plus EGDT versus EGDT only in adults with septic shock

K.8221 Mortality at 28 days

Figure 171:	Hospital	mort	tality									
	PRBC +	EGDT	EGD	т		Risk Ratio			Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C			M-H, Fix	ed, 95% Cl		
Fuller 2010	14	34	20	59	100.0%	1.21 [0.71, 2.08]						
Total (95% CI)		34		59	100.0%	1.21 [0.71, 2.08]						
Total events Heterogeneity: Not a Test for overall effec		= 0.48)	20				⊢ 0.1 Fa	0.2 vours PR	0.5 BC + EGDT	1 2 Favours E	GDT	10

K4838Red blood cells (RBC) for low threshold (≤7 g/dl) versus high threshold (≤9 g/dl) in adults424with septic shock

K.8251 Mortality at 28 days

K48@ 0-2 litres versus 2-4 litres of fluid in adults with severe sepsis

K.82971 Mortality at 28 days

Figure 173: Hospital mortality

•	•		•				
	0-2L	-	2-4L	-		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
McInthyre 2007A	97	210	82	186	100.0%	1.05 [0.84, 1.30]	
Total (95% CI)		210		186	100.0%	1.05 [0.84, 1.30]	◆
Total events	97		82				
Heterogeneity: Not ap Test for overall effect:		P = 0.6	7)				0.1 0.2 0.5 1 2 5 10 Favours 0-2L Favours 2-4L

Figure 174:	ICU mor	tality	,				
	0-2L	-	2-4L	-		Risk Ratio	Risk Ratio
Study or Subgroup	b Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
McInthyre 2007A	66	210	66	186	100.0%	0.89 [0.67, 1.17]	
Total (95% CI)		210		186	100.0%	0.89 [0.67, 1.17]	•
Total events Heterogeneity: Not a Test for overall effect		P = 0.3	66 9)				0.1 0.2 0.5 1 2 5 10 Favours 0-2L Favours 4L

K.82E0 0-2 litres versus >4 litres of fluids in adults with severe sepsis

K.84301 Mortality at 28 days

Figure 175:	Hospital	mor	tality				
	0-2L	-	>4L			Risk Ratio	Risk Ratio
Study or Subgroup	D Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	I M-H, Fixed, 95% CI
McInthyre 2007A	97	210	45	100	100.0%	1.03 [0.79, 1.33]	
Total (95% CI)		210		100	100.0%	1.03 [0.79, 1.33]	•
Total events	97		45				
Heterogeneity: Not							0.1 0.2 0.5 1 2 5 10
Test for overall effe	ct: Z = 0.20 (P = 0.8	4)				Favours 0-2L Favours >4L

431

Figure 176: ICU mortality

0							
	0-2L	>4L			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
McInthyre 2007A	66	210	41	100	100.0%	0.77 [0.56, 1.04]	
Total (95% CI)		210		100	100.0%	0.77 [0.56, 1.04]	•
Total events	66		41				
Heterogeneity: Not ap Test for overall effect:		P = 0.0	9)				H H H H H H 0.1 0.2 0.5 1 2 5 10 Favours 0-2L Favours >4L

K.8321 2-4 litres versus >4 litres of fluids in adults with severe sepsis

K.841331 Mortality at 28 days

Figure 177: Hospital mortality

0	•						
	2-4L	-	>4L			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
McInthyre 2007A	82	186	45	100	100.0%	0.98 [0.75, 1.28]	
Total (95% CI)		186		100	100.0%	0.98 [0.75, 1.28]	•
Total events	82		45				
Heterogeneity: Not ap	plicable						- - - - - - - - - -
Test for overall effect:	Z = 0.15 (P = 0.8	8)				Favours 2-4L Favours >4L

Figure 178: ICU mortality

	2-4L	-	>4L			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
McInthyre 2007A	66	186	45	100	100.0%	0.79 [0.59, 1.05]	
Total (95% CI)		186		100	100.0%	0.79 [0.59, 1.05]	•
Total events	66		45				
Heterogeneity: Not app Test for overall effect:		P = 0.1	1)				0.1 0.2 0.5 1 2 5 10 Favours 2-4L Favours >4L

K.8352 High volume (20-40 ml Ringer lactate/kg) versus low volume (20 ml Ringer lactate/kg) in children with septic shock

K.8413271 Mortality at 28 days

Figure 179: **Cumulative 72-hour survival** 20-40ml RL per kg 20ml RL per kg **Risk Ratio Risk Ratio** Study or Subgroup Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% Cl Events 73 100.0% Santhanam 2008 52 0.93 [0.77, 1.14] 74 55 Total (95% CI) 74 73 100.0% 0.93 [0.77, 1.14] 55 Total events 52 Heterogeneity: Not applicable 0.1 0.2 0.5 ż 5 10 Test for overall effect: Z = 0.69 (P = 0.49) Favours High Favours Low

438

K9 Escalation of care

440 None.

K410 Inotropic agents and vasopressors

K.1021 Norepinephrine versus vasopressin for adults with septic shock

K.10/131 Mortality

Figure 180:	28-day	mort	ality				
	Norepinep	ohrine	Vasopre	essin		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Russell 2008	150	382	140	396	100.0%	1.11 [0.93, 1.33]	
Total (95% CI)		382		396	100.0%	1.11 [0.93, 1.33]	
Total events	150		140				
Heterogeneity: Not ap	olicable					-	
Test for overall effect:	Z = 1.13 (P =	= 0.26)					Favours Norepinephrine Favours Vasopressin

Figure 181: 90-day mortality

	Norepinep	ohrine	Vasopre	ssin		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fi	xed, 95% C	I	
Russell 2008	188	379	172	392	100.0%	1.13 [0.97, 1.31]					
Total (95% CI)		379		392	100.0%	1.13 [0.97, 1.31]			•		
Total events	188		172								
Heterogeneity: Not ap Test for overall effect:		= 0.11)					0.1 0.2 Favo	2 0.5 urs Norepinephrine	1 2 Favours	Vasopressin	10

Sepsis Forest plots

445 Figure 182: ICU mortality

		Norepinep	Vasopre	essin		Risk Ratio	Risk Ratio	
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
	Lauzier 2006	3	10	3	13	24.6%	1.30 [0.33, 5.12]	
	Morelli 2009 (TERLIVAP)	10	15	8	15	75.4%	1.25 [0.69, 2.26]	
	Total (95% CI)		25		28	100.0%	1.26 [0.72, 2.21]	
	Total events	13		11				
110	Heterogeneity: $Chi^2 = 0.00$, Test for overall effect: $Z = 0$: 0%				0.1 0.2 0.5 1 2 5 10 Favours Norepinephrine Favours Vasopressin
446								

447

K.10/A182 Adverse events

449 Figure 183: Requiring renal replacement therapy

Study or Subgroup	Events	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Morelli 2009 (TERLIVAP)	8	15	5	15	100.0%	1.60 [0.68, 3.77]	
Total (95% CI)		15		15	100.0%	1.60 [0.68, 3.77]	
Total events	8		5				
Heterogeneity: Not applicat	ble						
Test for overall effect: Z = 1	.07 (P = 0.28	3)					Favours Norepinephrine Favours Vasopressin

451

450

452 Figure 184: New onset of tachyarrhythmias

	Norepinephrine			ssin		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Morelli 2009 (TERLIVAP)	4	15	1	15	100.0%	4.00 [0.50, 31.74]	
Total (95% CI)		15		15	100.0%	4.00 [0.50, 31.74]	
Total events	4		1				
Heterogeneity: Not applicab	ole						0.01 0.1 1 10 100
Test for overall effect: Z = 1	.31 (P = 0.19	9)					Favours Norepinephrine Favours Vasopressin

454 Note: this forest plot has a different scale

455

453

K.1062 Norepinephrine versus dopamine for adults with septic shock

K.145271 Mortality

458 Figure 185: 28-day mortality

	Norepinep	Doparr	nine		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Patel 2010	51	118	67	134	100.0%	0.86 [0.66, 1.13]	
Total (95% CI)		118		134	100.0%	0.86 [0.66, 1.13]	•
Total events	51		67				
Heterogeneity: Not app	plicable						0.1 0.2 0.5 1 2 5 10
Test for overall effect: $Z = 1.07$ (P = 0.29)							Favours Norepinephrine Favours Dopamine

461 Figure 186: All-cause mortality

	Norepinep	Norepinephrine Dopamine				Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Marik 1994	5	10	6	10	21.4%	0.83 [0.37, 1.85]	
Mathur 2007	14	25	19	25	67.9%	0.74 [0.49, 1.11]	
Ruokonen 1993	4	5	3	5	10.7%	1.33 [0.58, 3.09]	
Total (95% CI)		40		40	100.0%	0.82 [0.59, 1.15]	
Total events	23		28				
Heterogeneity: Chi ² =	1.55, df = 2 (F	P = 0.46)	; l ² = 0%				
Test for overall effect:	Z = 1.15 (P =	0.25)					0.1 0.2 0.5 1 2 5 10 Favours Norepinephrine Favours Dopamine

463 Figure 187: Hospital mortality

	Norepinep	Dopam			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Martin 1993	7	16	10	16	100.0%	0.70 [0.36, 1.37]	
Total (95% CI)		16		16	100.0%	0.70 [0.36, 1.37]	-
Total events	7		10				
Heterogeneity: Not ap	plicable						0.01 0.1 1 10 100
Test for overall effect:	Z = 1.04 (P =	= 0.30)					0.01 0.1 1 10 100 Favours Norepinephrine Favours Dopamine

464 465

462

K.1063 Duration of hospital stay

467 Figure 188: Length of stay in hospital

		Norepinephrine			Dopamine				Mean Difference		Mean Di	fference		
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fixed	d, 95% CI		
	Patel 2010	13.5	13.3	118	14.2	16.3	134	100.0%	-0.70 [-4.36, 2.96]					
	Total (95% CI)			118			134	100.0%	-0.70 [-4.36, 2.96]					
468	Heterogeneity: Not applicable Test for overall effect: $Z = 0.38$ (P = 0.71)									-10 - Favours N	5 (prepinephrine) Favours Dop	5 amine	10

469

K.1004 Duration of critical care stay

471 Figure 189: ICU length of stay

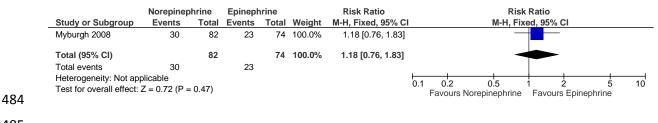
		Norep	Dopamine				Mean Difference	Mean Difference			
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
	Patel 2010	7.5	7.6	118	6.8	7.3	134	100.0%	0.70 [-1.15, 2.55]		
	Total (95% CI)			118			134	100.0%	0.70 [-1.15, 2.55]		
	Heterogeneity: Not ap									-10 -5 0 5 10	
472	Test for overall effect:	Z = 0.74	(P = 0.	46)						Favours Norepinephrine Favours Dopamine	
473											

K.1045 Adverse events

475 Figure 190: Incidence of arrhythmias

	Norepinep	hrine	Dopam	nine		Risk Ratio			Ris	k Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl			M-H, Fiz	xed, 95%	CI		
Patel 2010	14	118	51	134	100.0%	0.31 [0.18, 0.53]							
Total (95% CI)		118		134	100.0%	0.31 [0.18, 0.53]							
Total events	14		51										
Heterogeneity: Not app	plicable							0.2	0.5		<u> </u>	+	
Test for overall effect:	Z = 4.25 (P <	: 0.0001))				Fa		pinephrine	Favours	z Bopamin	e	

K.1086 Norepinephrine versus epinephrine for adults with septic shock


K.10.7691 Mortality

480 Figure 191: 28-day mortality

	Norepinep	hrine	Epinepł	nrine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Myburgh 2008	24	82	17	76	100.0%	1.31 [0.76, 2.24]	
Total (95% CI)		82		76	100.0%	1.31 [0.76, 2.24]	
Total events	24		17				
Heterogeneity: Not app	plicable						
Test for overall effect:	Z = 0.98 (P =	= 0.33)					Favours Norepinephrine Favours Epinephrine

481 482

483 Figure 192: 90-day mortality

485

K.1067 Dopexamine versus dopamine for adults with septic shock

K.14871 Mortality at 28 days

488 Figure 193: 28-day mortality

		Dopexa	mine	Dopan	nine		Risk Ratio	Risk Ratio				
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI				
	Schmoelz 2006	5	20	4	21	100.0%	1.31 [0.41, 4.20]					
	Total (95% CI)		20		21	100.0%	1.31 [0.41, 4.20]					
	Total events	5		4								
	Heterogeneity: Not ap	plicable										
489	Test for overall effect:	Z = 0.46 (F	P = 0.65)				Favours Dopexamine Favours Dopamine				
490												

K.1018 Norepinephrine plus dobutamine versus epinephrine for adults with septic shock

K.109821 Mortality

493 Figure 194: 7-day mortality

		Norepi + dobuta	Epineph	nrine		Risk Ratio	Risk Ratio	
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
	Annane 2007 (CATS)	34	169	40	161	100.0%	0.81 [0.54, 1.21]	
	Total (95% CI)		169		161	100.0%	0.81 [0.54, 1.21]	-
	Total events	34		40				
494	Heterogeneity: Not appli Test for overall effect: Z							Image: Norepi + dobutam. Favours Epinephrine

495

496 Figure 195: 14-day mortality

		Norepi + dobuta	amine	Epineph	nrine		Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
	Annane 2007 (CATS)	44	169	56	161	100.0%	0.75 [0.54, 1.04]	
	Total (95% CI)		169		161	100.0%	0.75 [0.54, 1.04]	◆
	Total events Heterogeneity: Not appl			56				
497	Test for overall effect: Z	= 1.72 (P = 0.09)						Favours Norepi + dobutam. Favours Epinephrine

498

499 Figure 196: 28-day mortality

		Norepi + dobutam		Epineph			Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Γotal	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
	Annane 2007 (CATS)	58	169	64	161	100.0%	0.86 [0.65, 1.14]	
	Total (95% CI)		169		161	100.0%	0.86 [0.65, 1.14]	-
	Total events	58		64				
	Heterogeneity: Not appl	icable						
500	Test for overall effect: Z	= 1.02 (P = 0.31)						0.1 0.2 0.5 1 2 5 10 Favours Norepi + dobutam. Favours Epinephrine

501

502 Figure 197: 90-day mortality

	Norepi + dobut	amine	Epineph	nrine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Annane 2007 (CATS)	85	169	84	161	100.0%	0.96 [0.78, 1.19]	
Total (95% CI)		169		161	100.0%	0.96 [0.78, 1.19]	
Total events Heterogeneity: Not appl Test for overall effect: Z			84				0.1 0.2 0.5 1 2 5 10 Favours Norepi + dobutam. Favours Epinephrine

503 504

505 Figure 198: All-cause mortality

	Norepi + dobut	amine	Epineph	nrine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Levy 1997	8	15	9	15	69.2%	0.89 [0.47, 1.67]	
Seguin 2002	5	11	4	11	30.8%	1.25 [0.45, 3.45]	
Total (95% CI)		26		26	100.0%	1.00 [0.58, 1.71]	
Total events	13		13				
Heterogeneity: Chi2 = 0	0.32, df = 1 (P = 0	.57); l ² =	0%				
Test for overall effect:	Z = 0.00 (P = 1.00))					0.1 0.2 0.5 1 2 5 10 Favours Norepi + dobutam. Favours Epinephrine

506

507

508 Figure 199: Mortality at discharge from the ICU

	Norepi + dobuta	mine	Epineph	nrine		Risk Ratio			Risk	Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fix	ed, 95% C	;1		
Annane 2007 (CATS)	75	169	75	161	100.0%	0.95 [0.75, 1.21]			-	-			
Total (95% CI)		169		161	100.0%	0.95 [0.75, 1.21]							
Total events	75		75										
Heterogeneity: Not appl							0.1 0	2 0	5	1 :	 2	5	10
Test for overall effect: Z	2 = 0.40 (P = 0.69)							rs Norepi + de		Favours	Epinephrine		

509 510

511 Figure 200: Mortality at discharge from the hospital

		Norepi + dobuta	amine	Epinepl	hrine		Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
	Annane 2007 (CATS)	82	169	84	161	100.0%	0.93 [0.75, 1.15]	
	Total (95% CI)		169		161	100.0%	0.93 [0.75, 1.15]	•
	Total events Heterogeneity: Not app			84				0.1 0.2 0.5 1 2 5 10
512	Test for overall effect: Z	Z = 0.66 (P = 0.51)						Favours Norepi + dobutam. Favours Epinephrine
513								

K.10.342 Adverse events

515 Figure 201: Number of adverse events during catecholamine infusion

		Norepi + dobuta		Epineph			Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
	Annane 2007 (CATS)	41	169	43	161	100.0%	0.91 [0.63, 1.31]	
	Total (95% CI)		169		161	100.0%	0.91 [0.63, 1.31]	-
	Total events	41		43				
	Heterogeneity: Not appl	licable						
	Test for overall effect: Z							0.1 0.2 0.5 1 2 5 10
516		. = 0.01 (1 = 0.01)						Favours Norepi + dobutam. Favours Epinephrine
510								
517								

518 Figure 202: Number of adverse events after catecholamine infusion

	Norepi + dobuta	imine	Epineph	nrine		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	I M-H, Fixed, 95% CI
Annane 2007 (CATS)	13	169	12	161	100.0%	1.03 [0.49, 2.19]	_
Total (95% CI)		169		161	100.0%	1.03 [0.49, 2.19]	
Total events	13		12				
Heterogeneity: Not appli	icable						
Test for overall effect: Z	= 0.08 (P = 0.93)						0.1 0.2 0.5 1 2 5 10 Favours Norepi + dobutam. Favours Epinephrine

520

519

K.\$019 Norepinephrine plus dopexamine versus epinephrine for adults with septic shock

K.162921 Mortality

523 Figure 203: 28-day mortality

	Norepi + dopexa		Epineph			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Seguin 2006	2	12	3	10	100.0%	0.56 [0.11, 2.70]	
Total (95% CI)		12		10	100.0%	0.56 [0.11, 2.70]	
Total events	2		3				
Heterogeneity: Not appl	licable						
Test for overall effect: Z	L = 0.73 (P = 0.47)						0.1 0.2 0.5 1 2 5 1 Favours Norepi + dopex. Favours Epinephrine

525

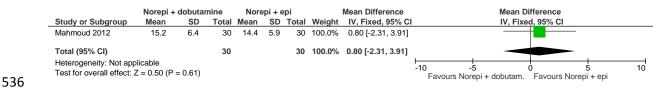
524

526 Figure 204: 90-day mortality

		Norepi + dopexa	mine	Epineph	nrine		Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
	Seguin 2006	3	12	4	10	100.0%	0.63 [0.18, 2.16]	
	Total (95% CI)		12		10	100.0%	0.63 [0.18, 2.16]	
	Total events Heterogeneity: Not ap Test for overall effect:			4				
527								Favours Norepi + dopex. Favours Epinephrine

528

K.10290 Norepinephrine plus epinephrine versus norepinephrine plus dobutamine for adults with sale septic shock


K.1053011 Mortality at 28 days

532 Figure 205: 28-day mortality

	Norepi + dobu	tamine	Norepi -	+ epi		Risk Ratio			Risk	Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fix	(ed, 95% C			
Mahmoud 2012	15	30	16	30	100.0%	0.94 [0.57, 1.53]							
Total (95% CI)		30		30	100.0%	0.94 [0.57, 1.53]							
Total events	15		16										
Heterogeneity: Not app							0.1	0.2	0.5	1	2	5	10
Test for overall effect:	Z = 0.26 (P = 0.80)	J)					Fa	vours Nor	epi + dobutam.	Favours	Norepi +	epi	

K.10513042 Number of organs supported

535 Figure 206: SOFA score at start

537

533

538 Figure 207: SOFA score at 24 hours

	Norepi +	dobutal			epi + e			Mean Difference			Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fix	ed, 95% Cl		
Mahmoud 2012	14.6	6.1	30	13.9	6.2	30	100.0%	0.70 [-2.41, 3.81]					
Total (95% CI)			30			30	100.0%	0.70 [-2.41, 3.81]					
Heterogeneity: Not app									⊢ -10	-5	0		
Test for overall effect: 2	Z = 0.44 (P	= 0.66)								orepi + dobutam.	Favours Nor	epi + epi	

539 540

541 Figure 208: SOFA score at 48 hours

	Norepi +	dobuta	nine	Nore	epi + e	pi		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Mahmoud 2012	14.4	6.3	30	13.8	5.9	30	100.0%	0.60 [-2.49, 3.69]	
Total (95% CI)			30			30	100.0%	0.60 [-2.49, 3.69]	
Heterogeneity: Not appli	icable								
Test for overall effect: Z	= 0.38 (P	= 0.70)							-10 -5 0 5 1 Favours Norepi + dobutam. Favours Norepi + epi

543

542

544 Figure 209: SOFA score at 72 hours

		Norepi +	dobutar	nine	Nore	epi + e	epi		Mean Difference	Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
	Mahmoud 2012	14.1	7	30	13.5	6.1	30	100.0%	0.60 [-2.72, 3.92]	
545	Total (95% CI) Heterogeneity: Not app Test for overall effect: 2		= 0.72)	30			30	100.0%	0.60 [-2.72, 3.92]	-10 -5 0 5 10 Favours Norepi + dobutam. Favours Norepi + epi

546

Sepsis Forest plots

547 Figure 210: SOFA score at 96 hours

		Norepi +	dobutar	mine	Nore	epi+e	pi		Mean Difference	Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
	Mahmoud 2012	13.5	6.9	30	12.7	6.6	30	100.0%	0.80 [-2.62, 4.22]	
548	Total (95% CI) Heterogeneity: Not app Test for overall effect: 2		= 0.65)	30			30	100.0%	0.80 [-2.62, 4.22]	-10 -5 0 5 10 Favours Norepi + dobutam. Favours Norepi + epi

549

K.105503 Adverse events

551 Figure 211: Acute coronary syndrome

		Norepi + dobuta	Norepi -	⊦ ері		Risk Ratio	Risk Ratio		
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI	
	Mahmoud 2012	1	30	1	30	100.0%	1.00 [0.07, 15.26]		
	Total (95% CI)		30		30	100.0%	1.00 [0.07, 15.26]		
552	Total events Heterogeneity: Not app Test for overall effect: 2			1				0.01 0.1 1 10 Favours Norepi + dobutarn. Favours Norepi + epi	100

553 Note: this forest plot has a different scale

554

555 Figure 212: Arrhythmias

	Norepi + dobut		Norepi -			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Mahmoud 2012	4	30	6	30	100.0%	0.67 [0.21, 2.13]	
Total (95% CI)		30		30	100.0%	0.67 [0.21, 2.13]	
Total events	4		6				
Heterogeneity: Not app	licable						
Test for overall effect: 2	Z = 0.69 (P = 0.49	9)					0.1 0.2 0.5 1 2 5 Favours Norepi + dobutam. Favours Norepi + epi

557

556

558 Figure 213: Cerebral stroke

		Norepi + dobut	Norepi + dobutamine				Risk Ratio			Risk Ratio					
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			М-Н,	Fixe	d, 95%	CI		
	Mahmoud 2012	0	30	0	30		Not estimable								
	Total (95% CI)		30		30		Not estimable								
	Total events	0		0											
559	Heterogeneity: Not app Test for overall effect:								0.2 urs Norep	0.5 i + dobuta	1 m.	Favour	2 s Norep	5 i + epi	10

560

561 Figure 214: Limb ischaemia

		Norepi + dobutan	nine	Norepi -	⊦ ері		Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
	Mahmoud 2012	2	30	3	30	100.0%	0.67 [0.12, 3.71]	
	Total (95% CI)		30		30	100.0%	0.67 [0.12, 3.71]	
	Total events Heterogeneity: Not app	2 Nicable		3				
562	Test for overall effect:							0.1 0.2 0.5 1 2 5 10 Favours Norepi + dobutam. Favours Norepi + epi

K.11 Supplemental oxygen

None.

K.12 Use of bicarbonate

Figure 215: Bicarbonate versus no bicarbonate in sepsis. 28-day mortality

	Bicarbo	nate	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	CI M-H, Fixed, 95% CI
Elsolh 2010	10	36	12	36	100.0%	0.83 [0.41, 1.68]	
Total (95% CI)		36		36	100.0%	0.83 [0.41, 1.68]	-
Total events	10		12				
Heterogeneity: Not ap Test for overall effect:		P = 0.61)				0.01 0.1 1 10 100 Favours bicarbonate Favours [no bicarbonate

K.13 Early goal-directed therapy (EGDT)

K.13.1 The effect of EGDT versus a non-EGDT resuscitation strategy for people presenting to the ED with septic shock

K.13.1.1 Mortality

Figure 216: Primary mortality outcome of each study

	Favours	EGDT	Favours C	ontrol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fixed, 95% Cl
ARISE Investigators 2014	147	792	150	796	28.6%	0.98 [0.80, 1.21]		
Jones 2010	34	150	25	150	4.8%	1.36 [0.86, 2.16]		
ProCESS Investigators 2014	92	439	167	902	20.9%	1.13 [0.90, 1.42]		-+ -
ProMISe Investigators 2015	184	623	181	620	34.6%	1.01 [0.85, 1.20]		+
Rivers 2001	38	130	59	133	11.1%	0.66 [0.47, 0.91]		_ -
Total (95% CI)		2134		2601	100.0%	1.01 [0.91, 1.12]		•
Total events	495		582					
Heterogeneity: Chi ² = 9.08, df = Test for overall effect: Z = 0.12	6%				0.2	0.5 1 2 5 Favours EGDT Favours Control		

Figure 217: 90-day mortality

	Favours	EGDT	Favours C	ontrol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI Year	M-H, Fixed, 95% Cl
ProMISe Investigators 2015	184	623	181	620	35.8%	1.01 [0.85, 1.20]	_
ProCESS Investigators 2014	129	405	267	827	34.7%	0.99 [0.83, 1.17] 2014	
ARISE Investigators 2014	147	792	150	796	29.5%	0.98 [0.80, 1.21] 2014	
Total (95% CI)		1820		2243	100.0%	1.00 [0.90, 1.11]	
Total events	460		598				
Heterogeneity: Chi ² = 0.05, df =	= 2 (P = 0.9	7); l ² = 0 ⁴	%			-	0.7 0.85 1 1.2 1.5
Test for overall effect: Z = 0.09	(P = 0.93)						0.7 0.85 1 1.2 1.5 Favours EGDT Favours Control

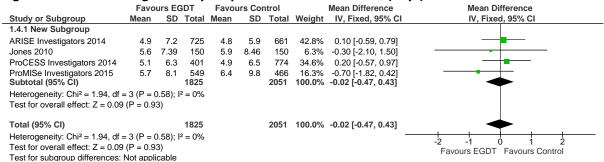

K.13.1.2 ICU Utilisation

Figure 218: ICU admission^a

	Favours	EGDT	Favours C	ontrol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
ARISE Investigators 2014	725	792	661	796	35.2%	1.10 [1.06, 1.14]	
ProCESS Investigators 2014	401	439	774	902	34.8%	1.06 [1.02, 1.11]	_ - ₽-
ProMISe Investigators 2015	551	625	467	626	30.1%	1.18 [1.12, 1.25]	
Total (95% CI)		1856		2324	100.0%	1.11 [1.05, 1.18]	•
Total events	1677		1902				
Heterogeneity: Tau ² = 0.00; Ch	i ^z = 9.99, df	= 2 (P =	= 0.007); I ² =	: 80%			
Test for overall effect: Z = 3.74	(P = 0.0002))					Favours EGDT Favours Control

a: ICU admission refers to the rate of ICU admission from ED; 'favours EGDT means a lower ICU admission rate for the EGDT group and 'favours control' means a higher ICU admission rate for the EDGT group in the given trial.

Figure 219: ICU length of stay for patients admitted to ICU (days)

K.14 Monitoring

None.

K.15 Patient education, information and support

None.

K.16 Training and education

None.

Appendix L: Excluded clinical studies

L.1 Scoring systems

ReferenceReason for exclusionAdrie 2009 ²⁷ Setting (ICU)Acharya 2007 ¹⁸ Setting (ICU)Alt-Oufella 2011 ⁴² Setting (ICU)Alberti 2005 ⁵⁰ Setting (ICU)Alberti 2005 ⁷⁰ Setting (ICU)Alberti 2005 ⁷⁰ Setting (ICU)Annell 1996 ⁷⁶ Setting (ICU)Arregui 1991 ⁷⁹ Setting (ICU)Artero 2010 ¹⁰¹ Not scoring toolArregui 1991 ⁷⁹ Setting (ICU)Ausania 2015 ¹⁰⁶ Not scoring toolBagshaw 2012 ¹²⁰² Not scoring toolBagshaw 2012 ¹²⁰³ Not scoring toolBans 2012 ¹³¹ Not scoring toolBarriere 1995 ¹⁴⁹ Systematic review including ICU settingBaurgartner 1992 ¹⁵⁷ Setting (ICU)Bassetti 2014 ¹³³ Setting (ICU)Baver 2015 ¹³⁰ Development of a new scoring system, not externally validatedBeck 2014 ¹⁵⁴ Setting (ICU)Behdad 2006 ¹⁵⁴ PopulationBencome 1996 ¹⁵⁹ Setting (ICU)Billeter 2009 ¹³³ Setting (ICU)Behdad 2006 ¹³⁴ Diagnostic accuracy of PCY, not a scoring systemBuils 2000 ²³⁴ Setting (ICU)Brunkorst 2000 ²³⁴ Setting (ICU)Brunkorst 2000 ²³⁴ Setting (ICU)Charles 208 ²⁸⁵⁰ Setting (ICU)Charles 208 ²⁸⁶¹ Setting (ICU)Charles 208 ²⁸⁶² Setting (ICU)Charles 208 ²⁸⁶⁴ Setting (ICU)Charles 208 ²⁸⁶⁴ Setting (ICU)Charles 208 ²⁸⁶⁴ Setting (ICU)Charles 208 ²⁸⁶⁴ Setting (IC	Table 35: Studies exclude	ed from the clinical review
Acharya 2007 ¹⁸ Setting (ICU)Ait-Oufella 2011 ¹² Setting (ICU)Albeut 2005 ³⁹ Setting (ICU)Alsous 2000 ⁷⁰ Setting (ICU)Anon 1999 ¹ Not scoring toolArnell 1996 ⁶⁶ Setting (ICU)Arregui 1991 ⁵⁹ Setting (ICU)Arregui 1991 ⁵⁹ Setting (ICU)Artero 2010 ¹⁰¹ Setting (ICU)Artero 2010 ¹⁰² Not scoring toolBagshaw 2012 ¹⁰⁵⁰ Not scoring toolBagshaw 2012 ¹¹⁰⁰ Not scoring toolBagshaw 2012 ¹²¹¹ Not scoring toolBarriere 1995 ¹³⁴⁹ Systematic review including ICU settingBaungartner 1992 ¹²⁵⁷ Setting (ICU)Bayer 2015 ¹⁴⁶⁰ Development of a new scoring system, not externally validatedBeck 2014 ¹³⁵³ Setting (ICU)Behdad 2006 ¹⁴⁴ PopulationBencosme 1996 ¹⁴⁹⁹ Setting (ICU)Blieter 2001 ¹⁵⁴⁰ Outcomes not analysed for scoring toolBoniatti 2011 ¹²¹² Setting (ICU)Bunkhorst 2000 ²³⁴ Diagnostic accuracy of PCY, not a scoring systemBuist 2000 ²³⁴ Setting (ICU)Brunkhorst 2000 ²³⁴ Setting (ICU)Burus 1989 ³⁴⁴ Not scoring tool (theory behind the development of ASESPSIS)Cale 2012 ²⁴⁹ Systematic review with different protocolCalvaro 1998 ²⁵⁰ Setting (ICU)Charlas 2002 ²⁸⁶ Setting (ICU) </th <th>Reference</th> <th>Reason for exclusion</th>	Reference	Reason for exclusion
Alt-Oufella 2011*2Setting (ICU)Alberti 2005*9Setting (ICU)Alsous 2000*0Setting (ICU)Anon 1999*1Not scoring toolArregui 1996*6Setting (ICU)Arregui 1991*9Setting (ICU)Artero 2010*01Setting (ICU)Ausania 2015*06Not scoring toolBagshaw 2012*100Not scoring tool (biomarkers)Bains 2012*11Not scoring toolBarreer 1995*48Systematic review including ICU settingBaurgartner 1992*157Setting (ICU)Basetti 2014*13Setting (ICU)Basetti 2014*14Not scoring toolBarreer 1995*49Systematic review including ICU settingBassetti 2014*53Setting (ICU)Basetti 2014*54Development of a new scoring system, not externally validatedBeck 2014*55Setting (ICU)Behdad 2006*184PopulationBencosme 1996*189Outcomes not analysed for scoring toolBilleter 2001*22Not scoring toolBoniatti 2011*24Setting (ICU)Bonig 2000*234Diagnostic accuracy of PCY, not a scoring systemBuist 2000*234Diagnostic accuracy of PCY, not a scoring systemBuist 2000*234Setting (ICU)Byrne 1989*44Not scoring tool (theory behind the development of ASESPSIS)Calle 2012*249Systematic review with different protocolCalvano 1998*50Setting (ICU)Charles 2008*28Setting (ICU)Charles 2008*28Setting (ICU)Charles 2008*28Setting (ICU)Charles 2008*28Setting (I	Adrie 2009 ²⁷	Setting (ICU)
Alberti 2005Setting I(CU)Alsous 200070Setting (ICU)Anon 19991Not scoring toolArregui 1991796Setting (ICU)Arregui 1991797Setting (ICU)Arter 20101071Setting (ICU)Arter 20101071Setting (ICU)Ausania 20151076Not scoring toolBagshaw 201212707Not scoring tool (biomarkers)Bains 20121378Not scoring toolBarrer 19951497Setting (ICU)Barrer 19951497Setting (ICU)Bassetti 20141453Setting (ICU)Bassetti 20141453Setting (ICU)Basetti 20141453Setting (ICU)Behdad 20061464PopulationBencome 19961669Setting (ICU)Behdad 20061464PopulationBencome 19961669Setting (ICU)Billeter 20011521Not scoring toolBoinatti 20117721Setting (ICU)Boniatti 20117721Setting (ICU)Boniatti 20117721Setting (ICU)Buits 20002131Setting (ICU)Buits 20002131Setting (ICU)Buits 20002132Setting (ICU)Borniatti 20117723Setting (ICU)Buits 20002234Setting (ICU)Calvano 19987500Setting (ICU)Charles 2008234Setting (ICU)Charles 2008234 <td< td=""><td>Acharya 2007¹⁸</td><td>Setting (ICU)</td></td<>	Acharya 2007 ¹⁸	Setting (ICU)
Alsous 2000 ⁷⁰ Setting (ICU)Anon 1999 ¹ Not scoring toolArrell 1996 ⁹⁶ Setting (ICU)Arregul 1991 ²⁹ Setting (ICU)Artero 2010 ¹⁰¹ Setting (ICU)Ausania 2015 ¹⁰⁶ Not scoring toolBagshaw 2012 ²²⁰ Not scoring toolBang 2005 ¹³⁸ Not scoring toolBarriere 1995 ¹⁴⁹ Systematic review including ICU settingBaumgartner 1992 ¹⁵⁷⁷ Setting (ICU)Bassetti 2014 ¹⁵³ Setting (ICU)Baye 2015 ¹⁶⁰ Development of a new scoring system, not externally validatedBeck 2014 ¹⁶³ Setting (ICU)Behda 2006 ¹⁵⁴ PopulationBencosme 1996 ¹⁵⁹ Outcomes not analysed for scoring toolBoniatti 2011 ¹²¹ Setting (ICU)Boniatti 2001 ²³⁴ Diagnostic accuracy of PCY, not a scoring systemBuist 2000 ²³⁸ Setting (ICU)Buist 2000 ²³⁸ Setting (ICU)Buist 2000 ²³⁸ Setting (ICU)Caluano 1998 ⁵⁵⁰ Setting (ICU)Caluano 1998 ⁵⁵⁰ Setting (ICU)Chan 2005 ²⁸⁰ Setting (ICU)Cha	Ait-Oufella 2011 ⁴²	Setting (ICU)
Anon 19991Not scoring toolArnell 1996 ⁹⁶ Setting (ICU)Arregui 1991 ¹⁹ Setting (ICU)Artero 2010 ¹⁰¹ Setting (ICU)Autero 2010 ¹⁰¹ Setting (ICU)Autero 2010 ¹⁰¹ Setting (ICU)Ausania 2015 ¹⁰⁶ Not scoring toolBagshaw 2012 ¹²¹⁰ Not scoring toolBang 2005 ¹³⁸ Not scoring toolBarriere 1995 ¹⁴⁹ Systematic review including ICU settingBaumgartner 1992 ¹⁵⁷ Setting (ICU)Bassetti 2014 ¹⁵³ Setting (ICU)Basetti 2014 ¹⁵³ Setting (ICU)Bayer 2015 ¹⁶⁰ Development of a new scoring system, not externally validatedBeck 2014 ¹⁶³ Setting (ICU)Behdad 2006 ¹⁶⁴ PopulationBencome 1996 ¹⁶⁹ Setting (ICU)Billeter 2009 ¹⁸⁹ Outcomes not analysed for scoring toolBoniatti 2011 ¹²² Setting (ICU)Boniatti 2011 ¹²² Setting (ICU)Brunkhorst 2000 ²³⁴ Diagnostic accuracy of PCY, not a scoring systemBuist 2000 ²³⁴ Setting (ICU)Calle 2012 ²⁴⁹ Systematic review with different protocolCalvano 1998 ⁵⁷⁰ Setting (ICU)Chan 2005 ²⁸⁶ Setting (ICU)Chanacos ²⁸⁶ Sett	Alberti 2005 ⁵⁹	Setting (ICU)
Arnell 1996**Setting (ICU)Arregui 1991**Setting (ICU)Artero 2010***Setting (ICU)Ausania 2015***Not scoring toolBagshaw 2012****Not scoring tool (biomarkers)Bains 2012***Not scoring toolBarg 2005***Not scoring toolBarrere 1992****Systematic review including ICU settingBassetti 2014***Systematic review including ICU settingBassetti 2014***Setting (ICU)Bayer 2015***Setting (ICU)Bayer 2015***Setting (ICU)Bayer 2015***Setting (ICU)Behdad 2006***PopulationBencosme 1996***Outcomes not analysed for scoring toolBlieter 2009***Not scoring toolBoinatti 2011***Not scoring toolBoniatti 2011***Setting (ICU)Boniatti 2011***Not scoring toolBoniatti 2011***Setting (ICU)Boniatti 2010***Setting (ICU)Brunkhorst 2000***Diagnostic accuracy of PCY, not a scoring systemBuist 2000***Systematic review with different protocolCalvano 1988***Setting (ICU)Chan 2005***Setting (ICU)Chan 2005***Setting (ICU)Chana 2007***Setting (ICU)Chana 2007***Setting (ICU)Chana 2007*** <td>Alsous 2000⁷⁰</td> <td>Setting (ICU)</td>	Alsous 2000 ⁷⁰	Setting (ICU)
Arregui 1991Setting (ICU)Artero 2010Setting (ICU)Ausania 2015Not scoring toolBagshaw 2012Not scoring tool (biomarkers)Bains 2012Not scoring toolBang 2005Setting (ICU)Barriere 1995Systematic review including ICU settingBaurngartner 1992Systematic review including ICU settingBayer 2015Setting (ICU)Bayer 2015Development of a new scoring system, not externally validatedBeck 2014Setting (ICU)Bayer 2015Setting (ICU)Behdad 2006Setting (ICU)Behdad 2006Setting (ICU)Beleker 2009Setting (ICU)Billeter 2009Setting (ICU)Boniatti 2011Setting (ICU)Boniatti 2011Setting (ICU)Brunkhorst 2000Setting (ICU)Brunkhorst 2000Setting (ICU)Buist 2000Setting (ICU)Buist 2000Setting (ICU)Buist 2000Setting (ICU)Buist 2000Setting (ICU)Buist 2000Setting (ICU)Calvano 1998Setting (ICU)Chan 2005Setting (ICU)Chan 2005Setting (ICU)Chan 2005Setting (ICU)Chan 2005Setting (ICU)Chan 2007Setting (IC	Anon 1999 ¹	Not scoring tool
Artero 2010 ¹⁰¹ Setting (ICU)Ausania 2015 ¹⁰⁶ Not scoring toolBagshaw 2012 ¹²⁰ Not scoring tool (biomarkers)Bains 2012 ¹³¹ Not scoring toolBarriere 1995 ¹⁴⁹ Systematic review including ICU settingBaungartner 1995 ¹⁴⁹ Systematic review including ICU settingBaungartner 1995 ¹⁴⁹ Setting (ICU)Basesti 2014 ¹⁵³ Setting (ICU)Bayer 2015 ¹⁶⁰ Development of a new scoring system, not externally validatedBeck 2014 ¹⁶³ Setting (ICU)Behdad 2006 ¹⁶⁴ PopulationBencosme 1996 ¹⁶⁹ Setting (ICU)Billeter 2009 ¹⁸⁹ Outcomes not analysed for scoring toolBoniatti 2011 ²¹² Setting (ICU)Bonig 2000 ²¹³ Setting (ICU)Brunkhorst 2000 ²³⁴ Diagnostic accuracy of PCY, not a scoring systemBuist 2000 ²³⁴ Setting (ICU)Byrne 1989 ²⁴⁴ Not scoring tool (theory behind the development of ASESPSIS)Calle 2012 ²⁴⁹ Systematic review with different protocolCalvano 1998 ²²⁶⁰ Setting (ICU)Charlas 2008 ²⁸⁶ Setting (ICU)Charlas 2001 ²⁸⁸ Setting (ICU)Charlas 20	Arnell 1996 ⁹⁶	Setting (ICU)
Ausania 2015Not scoring toolBagshaw 2012Not scoring tool (biomarkers)Bains 2012Not scoring toolBarriere 1995Not scoring toolBarriere 1995Systematic review including ICU settingBaumgartner 1992Systematic review including ICU settingBaumgartner 1992Setting (ICU)Bassetti 2014Development of a new scoring system, not externally validatedBeck 2014Setting (ICU)Bahda 2006Development of a new scoring system, not externally validatedBeck 2014Setting (ICU)Behdad 2006Setting (ICU)Billeter 2009Setting (ICU)Billeter 2009Not scoring toolBleeker 2001Not scoring toolBoniatti 2011Setting (ICU)Boniatti 2011Setting (ICU)Brunkhorst 2000Setting (ICU)Brunkhorst 2000Diagnostic accuracy of PCY, not a scoring systemBuist 2000Setting (ICU)Burne 1989Systematic review with different protocolCalle 2012Systematic review with different protocolCalla 2007Setting (ICU)Charles 2008Setting (ICU) <td>Arregui 1991⁹⁹</td> <td>Setting (ICU)</td>	Arregui 1991 ⁹⁹	Setting (ICU)
Bagshaw 2012120Not scoring tool (biomarkers)Bains 2012131Not scoring toolBarriere 1995138Not scoring toolBarriere 1995149Systematic review including ICU settingBaumgartner 1992157Setting (ICU)Bassetti 2014153Setting (ICU)Bayer 2015160Development of a new scoring system, not externally validatedBeck 2014163Setting (ICU)Behdad 2006164PopulationBencosme 1996169Setting (ICU)Billeter 2009189Outcomes not analysed for scoring toolBleeker 2001192Not scoring toolBoniatti 2011212Setting (ICU)Boniatti 20102131Setting (ICU)Brunkhorst 2000213Setting (ICU)Byrne 1989244Diagnostic accuracy of PCY, not a scoring systemBuist 2000286Setting (ICU)Charles 2008286Setting (ICU)Chen 2012286Setting (ICU)Chen 2012286Setting (ICU)Chen 2012286Setting (ICU)Chen 2012286Setting (ICU)Chen 2012286Setting (ICU)Chen 2012286 <td>Artero 2010¹⁰¹</td> <td>Setting (ICU)</td>	Artero 2010 ¹⁰¹	Setting (ICU)
Bains 2012Not scoring toolBang 2005Not scoring toolBarriere 1995Systematic review including ICU settingBaumgartner 1992Systematic review including ICU settingBaumgartner 1992Systematic review including ICU settingBassetti 2014Setting (ICU)Bayer 2015Development of a new scoring system, not externally validatedBeck 2014Development of a new scoring system, not externally validatedBeck 2014PopulationBencosme 1996Setting (ICU)Billeter 2009Setting (ICU)Billeter 2009Not scoring toolBoniatti 2011Setting (ICU)Boniatti 2011Setting (ICU)Brunkhorst 2000Setting (ICU)Byrne 1989Setting (ICU)Byrne 1989Setting (ICU)Byrne 1989Setting (ICU)Calle 2012Systematic review with different protocolCalvano 1998Setting (ICU)Chan 2005Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Chen 2011Setting (ICU)Chen 2006Setting (ICU)Chen 2006Setting (ICU)Chen 2006Setting (ICU)Chen 2008Setting (ICU)Chen 2008Setting (ICU)Chen 2006Setting (ICU)Chen 2006Setting (ICU)Chen 2006Setting (ICU)Chen 2006Setting (ICU) <td>Ausania 2015¹⁰⁶</td> <td>Not scoring tool</td>	Ausania 2015 ¹⁰⁶	Not scoring tool
Bang 2005 ¹³⁸ Not scoring toolBarriere 1995 ¹⁴⁹ Systematic review including ICU settingBaumgartner 1992 ¹⁵⁷ Setting (ICU)Bassetti 2014 ¹⁵³ Setting (ICU)Bayer 2015 ¹⁶⁰ Development of a new scoring system, not externally validatedBeck 2014 ¹⁶³ Setting (ICU)Behdad 2006 ¹⁶⁴ PopulationBencosme 1996 ¹⁶⁹ Setting (ICU)Billeter 2009 ¹⁸⁹ Outcomes not analysed for scoring toolBeleker 2001 ¹⁹² Not scoring toolBoniatti 2011 ²¹² Setting (ICU)Bonig 2000 ²¹³ Setting (ICU)Brunkhorst 2000 ²³⁴ Diagnostic accuracy of PCY, not a scoring systemBuist 2000 ²²⁸ Setting (ICU)Byrne 1989 ²⁴⁴ Not scoring tool (theory behind the development of ASESPSIS)Calle 2012 ²⁴⁹ Systematic review with different protocolCalvano 1998 ²⁵⁰ Setting (ICU)Charles 2008 ²⁸⁶ Setting (ICU)Charles 2008 ²⁸⁶ Setting (ICU)Charles 2008 ²⁸⁶ Setting (ICU)Chen 2011 ²⁹⁸ Setting (ICU)Chen 2006 ²⁹² Setting (ICU)Chen 2002 ²⁹⁶ Setting (ICU	Bagshaw 2012 ¹²⁰	Not scoring tool (biomarkers)
Barriere 1995Systematic review including ICU settingBaumgartner 1992Setting (ICU)Bassetti 2014Setting (ICU)Bayer 2015Development of a new scoring system, not externally validatedBeck 2014Setting (ICU)Behdad 2006PopulationBencosme 1996Setting (ICU)Billeter 2009Setting (ICU)Billeter 2009Not scoring toolBoniatti 2011Setting (ICU)Boniatti 2011Setting (ICU)Boniatti 2011Setting (ICU)Brunkhorst 2000Setting (ICU)Brunkhorst 2000Setting (ICU)Byrne 1989Setting (ICU)Byrne 1989Setting (ICU)Byrne 1989Setting (ICU)Byrne 1989Setting (ICU)Calle 2012Systematic review with different protocolCalvano 1998Setting (ICU)Chan 2005Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Chaval 2007Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Chen 2011Setting (ICU)Chen 2006Setting (ICU)Chen 2012Setting (ICU) <td>Bains 2012¹³¹</td> <td>Not scoring tool</td>	Bains 2012 ¹³¹	Not scoring tool
Baumgartner 1992 ¹⁵⁷ Setting (ICU)Bassetti 2014 ¹⁵³ Setting (ICU)Bayer 2015 ¹⁶⁰ Development of a new scoring system, not externally validatedBeck 2014 ¹⁶³ Setting (ICU)Behdad 2006 ¹⁶⁴ PopulationBencosme 1996 ¹⁶⁹ Setting (ICU)Billeter 2009 ¹⁸⁹ Outcomes not analysed for scoring toolBleeker 2001 ¹⁹² Not scoring toolBoniatti 2011 ²¹² Setting (ICU)Bonig 2000 ²¹³ Setting (ICU)Brunkhorst 2000 ²³⁴ Diagnostic accuracy of PCY, not a scoring systemBuist 2000 ²³⁸ Setting (ICU)Byrne 1989 ²⁴⁴ Not scoring tool (theory behind the development of ASESPSIS)Calle 2012 ²⁴⁹ Systematic review with different protocolCalvano 1998 ²⁵⁰ Setting (ICU)Chan 2005 ²⁸⁰ Setting (ICU)Charles 2008 ²⁸⁶ Setting (ICU)Charles 2008 ²⁸⁸ Setting (ICU)Charles 2008 ²⁸⁸ Setting (ICU)Chen 2011 ²⁹⁹ Setting (ICU)Chen 2012 ²⁹⁶ Setting (ICU)Chen 2012 ²⁹⁵ Setting (ICU)Chen 2012 ²⁹⁶ Outcomes not analysed in relation to scoring	Bang 2005 ¹³⁸	Not scoring tool
Bassetti 2014Setting (ICU)Bayer 2015Development of a new scoring system, not externally validatedBeck 2014Setting (ICU)Behdad 2006PopulationBencosme 1996Setting (ICU)Billeter 2009Setting (ICU)Billeter 2009Not scoring toolBleeker 2001Not scoring toolBoniatti 2011Setting (ICU)Boniatti 2011Setting (ICU)Boniatti 2012Setting (ICU)Boniatti 2000Setting (ICU)Brunkhorst 2000Setting (ICU)Byrne 1989Diagnostic accuracy of PCY, not a scoring systemBuist 2000Setting (ICU)Byrne 1989Systematic review with different protocolCalle 2012Setting (ICU)Chan 2005Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Chavla 2007Setting (ICU)Chen 2011Setting (ICU)Chen 2012Setting (SICU)Chen 2012Setting (SICU)Chen 2012Setting (SICU) <tr< td=""><td>Barriere 1995¹⁴⁹</td><td>Systematic review including ICU setting</td></tr<>	Barriere 1995 ¹⁴⁹	Systematic review including ICU setting
Bayer 2015Development of a new scoring system, not externally validatedBeck 2014Setting (ICU)Behdad 2006PopulationBencosme 1996Setting (ICU)Billeter 2009Outcomes not analysed for scoring toolBleker 2001Not scoring toolBoniatti 2011Setting (ICU)Boniatti 2011Setting (ICU)Boniatti 2012Setting (ICU)Boniatti 2000Setting (ICU)Boniatti 2000Setting (ICU)Brunkhorst 2000Setting (ICU)Byrne 1989Setting (ICU)Byrne 1989Systematic review with different protocolCalle 2012Setting (ICU)Chan 2005Setting (ICU)Chan 2005Setting (ICU)Charles 2008Setting (ICU)Charles 2008Setting (ICU)Chen 2011Setting (ICU)Chen 2011Setting (ICU)Chen 2012Setting (ICU)Chen 2008Setting (ICU)Chen 2012Setting (SICU)Chen 2012Setting (SICU)Chen 2012Setting (SICU)Chen 2012Setting (SICU)Chen 2012<	Baumgartner 1992 ¹⁵⁷	Setting (ICU)
Beck 2014163Setting (ICU)Behdad 2006164PopulationBencosme 1996169Setting (ICU)Billeter 2009189Outcomes not analysed for scoring toolBleeker 2001192Not scoring toolBoniatti 2011212Setting (ICU)Bonig 2000213Setting (ICU)Brunkhorst 2000234Diagnostic accuracy of PCY, not a scoring systemBuist 2000238Setting (ICU)Byrne 1989244Not scoring tool (theory behind the development of ASESPSIS)Calle 2012249Systematic review with different protocolCalvano 1998250Setting (ICU)Charles 2005280Setting (ICU)Charles 2007288Setting (ICU)Charles 2007288Setting (ICU)Charles 2008286Setting (ICU)Charles 2008286Setting (ICU)Chen 2011298Setting (ICU)Chen 2001299Setting (ICU)Chen 2006B292Setting (ICU)Chen 2006B292Setting (ICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Bassetti 2014 ¹⁵³	Setting (ICU)
Behdad 2006164PopulationBencosme 1996169Setting (ICU)Billeter 2009189Outcomes not analysed for scoring toolBleeker 2001192Not scoring toolBoniatti 2011212Setting (ICU)Bonig 2000213Setting (ICU)Brunkhorst 2000238Setting (ICU)Byrne 1989244Not scoring tool (theory behind the development of ASESPSIS)Calle 2012249Systematic review with different protocolCalvano 1998250Setting (ICU)Charles 2008286Setting (ICU)Charles 2008286Setting (ICU)Charles 2008286Setting (ICU)Charles 2008286Setting (ICU)Chen 2011298Setting (ICU)Chen 2011298Setting (ICU)Chen 2006B292Setting (ICU)Chen 2006B292Setting (ICU)Chen 2006B292Setting (ICU)Chen 2012266Outcomes not analysed in relation to scoring tool	Bayer 2015 ¹⁶⁰	Development of a new scoring system, not externally validated
Bencosme 1996 ¹⁶⁹ Setting (ICU)Billeter 2009 ¹⁸⁹ Outcomes not analysed for scoring toolBleeker 2001 ¹⁹² Not scoring toolBoniatti 2011 ²¹² Setting (ICU)Bonig 2000 ²¹³ Setting (ICU)Brunkhorst 2000 ²³⁴ Diagnostic accuracy of PCY, not a scoring systemBuist 2000 ²³⁸ Setting (ICU)Byrne 1989 ²⁴⁴ Not scoring tool (theory behind the development of ASESPSIS)Calle 2012 ²⁴⁹ Systematic review with different protocolCalvano 1998 ²⁵⁰ Setting (ICU)Chan 2005 ²⁸⁰ Setting (ICU)Charles 2008 ²⁸⁶ Setting (ICU)Charles 2008 ²⁸⁶ Setting (ICU)Chen 2011 ²⁹⁸ Setting (ICU)Chen 2014 ²⁹¹ Setting (ICU)Chen 1994 ²⁹¹ Setting (SICU)Chen 2012 ²⁹⁶ Outcomes not analysed in relation to scoring tool	Beck 2014 ¹⁶³	Setting (ICU)
Billeter 2009189Outcomes not analysed for scoring toolBleeker 2001192Not scoring toolBoniatti 2011212Setting (ICU)Bonig 2000213Setting (ICU)Brunkhorst 2000234Diagnostic accuracy of PCY, not a scoring systemBuist 2000238Setting (ICU)Byrne 1989244Not scoring tool (theory behind the development of ASESPSIS)Calle 2012249Systematic review with different protocolCalvano 1998250Setting (ICU)Chan 2005280Setting (ICU)Charles 2008286Setting (ICU)Charles 2008286Setting (ICU)Chen 2011298Setting (ICU)Chen 2011298Setting (ICU)Chen 2012296Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Behdad 2006 ¹⁶⁴	Population
Bleeker 2001Not scoring toolBoniatti 2011Setting (ICU)Bonig 2000Setting (ICU)Brunkhorst 2000Diagnostic accuracy of PCY, not a scoring systemBuist 2000Setting (ICU)Byrne 1989Not scoring tool (theory behind the development of ASESPSIS)Calle 2012Systematic review with different protocolCalvano 1998Setting (ICU)Chan 2005Setting (ICU)Charles 2008Setting (ICU)Charles 2007Setting (ICU)Chen 2011Setting (ICU)Chen 2006BSetting (ICU)Chen 1994Setting (ICU)Chen 1994Setting (ICU)Chen 2006BSetting (SICU)Chen 2002Setting (SICU)Chen 2002Setting (SICU)Chen 2012Setting (SICU)Setting SICUSetting (SICU)<	Bencosme 1996 ¹⁶⁹	Setting (ICU)
Boniatti 2011212Setting (ICU)Bonig 2000213Setting (ICU)Brunkhorst 2000234Diagnostic accuracy of PCY, not a scoring systemBuist 2000238Setting (ICU)Byrne 1989244Not scoring tool (theory behind the development of ASESPSIS)Calle 2012249Systematic review with different protocolCalvano 1998250Setting (surgical ICU)Chan 2005280Setting (ICU)Charles 2008286Setting (ICU)Charles 2007288Setting (ICU)Chen 2011298Setting (ICU)Chen 2006B292Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Billeter 2009 ¹⁸⁹	Outcomes not analysed for scoring tool
Bonig 2000213Setting (ICU)Brunkhorst 2000234Diagnostic accuracy of PCY, not a scoring systemBuist 2000238Setting (ICU)Byrne 1989244Not scoring tool (theory behind the development of ASESPSIS)Calle 2012249Systematic review with different protocolCalvano 1998250Setting (surgical ICU)Chan 2005280Setting (ICU)Charles 2008286Setting (ICU)Chavla 2007288Setting (ICU)Chen 2011298Setting (ICU)Chen 1994291Setting (ICU)Chen 1994291Setting (ICU)Chen 2012286Setting (ICU)Chen 2006B292Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Bleeker 2001 ¹⁹²	Not scoring tool
Brunkhorst 2000234Diagnostic accuracy of PCY, not a scoring systemBuist 2000238Setting (ICU)Byrne 1989244Not scoring tool (theory behind the development of ASESPSIS)Calle 2012249Systematic review with different protocolCalvano 1998250Setting (surgical ICU)Chan 2005280Setting (ICU)Charles 2008286Setting (ICU)Chawla 2007288Setting (ICU)Chen 2011298Setting (ICU)Chen 2006B292Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Boniatti 2011 ²¹²	Setting (ICU)
Buist 2000238Setting (ICU)Byrne 1989244Not scoring tool (theory behind the development of ASESPSIS)Calle 2012249Systematic review with different protocolCalvano 1998250Setting (surgical ICU)Chan 2005280Setting (ICU)Charles 2008286Setting (ICU)Chawla 2007288Setting (ICU)Chen 2011298Setting (ICU)Chen 2011298Setting (ICU)Chen 1994291Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Bonig 2000 ²¹³	Setting (ICU)
Byrne 1989Not scoring tool (theory behind the development of ASESPSIS)Calle 2012Systematic review with different protocolCalvano 1998Setting (surgical ICU)Chan 2005Setting (ICU)Charles 2008Setting (ICU)Chawla 2007Setting (ICU)Chen 2011Setting (ICU)Chen 2008Setting (ICU)Chen 20068Setting (ICU)Chen 20068Setting (ICU)Chen 20068Setting (ICU)Chen 20068Setting (ICU)Chen 20068Setting (ICU)Chen 20068Setting (ICU)Chen 2012Setting (ICU)Chen 2012Setting (ICU)Chen 2012Setting (ICU)Chen 2012Setting (ICU)Chen 2012Setting (SICU)Chen 2012Setting (SICU)Chen 2012Outcomes not analysed in relation to scoring tool	Brunkhorst 2000 ²³⁴	Diagnostic accuracy of PCY, not a scoring system
Calle 2012249Systematic review with different protocolCalvano 1998250Setting (surgical ICU)Chan 2005280Setting (ICU)Charles 2008286Setting (ICU)Chawla 2007288Setting (ICU)Chen 2011298Setting (ICU)Chen 2006B292Setting (ICU)Chen 1994291Setting (ICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Buist 2000 ²³⁸	Setting (ICU)
Calvano 1998Setting (surgical ICU)Chan 2005Setting (ICU)Charles 2008Setting (ICU)Chawla 2007Setting (ICU)Chen 2011Setting (ICU)Chen 20068Setting (ICU)Chen 1994Setting (ICU)Chen 1994Setting (ICU)Chen 2012Setting (ICU)Chen 2012Setting (ICU)Chen 1994Setting (ICU)Chen 2012Setting (SICU)Chen 2012Setting (SICU)Chen 2012Outcomes not analysed in relation to scoring tool	Byrne 1989 ²⁴⁴	Not scoring tool (theory behind the development of ASESPSIS)
Chan 2005Setting (ICU)Charles 2008Setting (ICU)Chawla 2007Setting (ICU)Chen 2011Setting (ICU)Chen 2006BSetting (ICU)Chen 1994Setting (ICU)Chen 1994Setting (ICU)Chen 2012Setting (SICU)Chen 2012Outcomes not analysed in relation to scoring tool	Calle 2012 ²⁴⁹	Systematic review with different protocol
Charles 2008286Setting (ICU)Chawla 2007288Setting (ICU)Chen 2011298Setting (ICU)Chen 2006B292Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool		Setting (surgical ICU)
Chawla 2007Setting (ICU)Chen 2011Setting (ICU)Chen 2006BSetting (ICU)Chen 1994Setting (ICU)Chen 2012Setting (SICU)Chen 2012Outcomes not analysed in relation to scoring tool		Setting (ICU)
Chen 2011298Setting (ICU)Chen 2006B292Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Charles 2008 ²⁸⁶	Setting (ICU)
Chen 2006B292Setting (ICU)Chen 1994291Setting (SICU)Chen 2012296Outcomes not analysed in relation to scoring tool	Chawla 2007 ²⁸⁸	Setting (ICU)
Chen 1994Setting (SICU)Chen 2012Outcomes not analysed in relation to scoring tool	Chen 2011 ²⁹⁸	Setting (ICU)
Chen 2012 ²⁹⁶ Outcomes not analysed in relation to scoring tool	Chen 2006B ²⁹²	Setting (ICU)
,	Chen 1994 ²⁹¹	Setting (SICU)
Close 2011 ³¹⁹ Not scoring tool		Outcomes not analysed in relation to scoring tool
	Close 2011 ³¹⁹	Not scoring tool

Coolorsity 2015Development of a new scoring system, not externally validatedCool 5992Setting (PCU)Couto-Alves 2013Setting (PCU)Croce 1992Setting (PCU)Dabar 2015ComparisonDabar 2014Setting (PCU)Dabar 2014Setting (PCU)Dabar 2015Setting (PCU)Daved 2015Setting (PCU)Deleon 2005Setting (PCU)Dellinger 1988Setting (PCU)Dellinger 1988Setting (PCU)Dellinger 1988Setting (PCU)Dellinger 1988Setting (PCU)Dellinger 1988Setting (PCU)Delsar 2014Setting (PCU)Eisen 2006Setting (PCU)Eisen 2006Setting (PCU)Eisen 2016Setting (PCU)Eisen 2016Setting (PCU)Eisen 2016Setting (PCU)Eisen 2016Setting (PCU)Forg 2013Setting (PCU)Forg 2013Setting (PCU)Forg 2013Setting (PCU)Garcia Paez 2008Not scoring systemGolden 1085Setting (PCU)Garcia Paez 2008Setting (PCU)Garcia Paez 2008Setting (PCU)Garcia Paez 2008Setting (PCU)HanzalosSetting (PCU)Garcia Paez 2008Setting (PCU)HanzalosSetting (PCU)HanzalosSetting (PCU)Garcia Paez 2008Setting (PCU)HanzalosSetting (PCU)HanzalosSetting (PCU)HanzalosSetting (PCU)HanzalosSetting (Reference	Reason for exclusion
Cook 1992 ²⁴⁷ Setting (ICU)Couto-Alves 2013 ³³⁴ Setting (post-trauma). Outomes not analysed in relation to scores at admissionDabar 2015 ³⁴⁵ ComparisonDabh 2014 ³⁴⁵ Setting (ICU)Da 2014 ²⁴³ Setting (ICU)De Azevedo 2015 ⁵⁷⁷ Setting (ICU)Delinger 1988 ¹⁷³ Setting (ICU)Delinger 1988 ¹⁷⁴ Setting (ICU)Delinger 1988 ¹⁷⁵ Setting (ICU)Delinger 1988 ¹⁷⁵ Setting (ICU)Derka 1996 ¹⁷⁴ Setting (ICU)Derka 1996 ¹⁷⁴ Setting (ICU)Derka 1996 ¹⁷⁴ Setting (ICU)Derka 1996 ¹⁷⁴ Setting (ICU)Eisen 2006 ⁴¹³ Not scoring systemElias 2015 ⁴¹⁶ Setting (ICU)Ernapara 1988 ⁴¹⁹⁹ Setting (ICU)Forea 2013 ⁴¹⁶ Setting (ICU)Forea 2013 ⁴¹⁶ Setting (ICU)Forea 2013 ⁴¹⁶ Setting (ICU)Forea 2013 ⁴¹⁶ Setting (ICU)Garcia Paez 2008 ⁴⁶³ Not scoring systemGottein 1985 ⁵⁶⁶ Setting (ICU)Goraza 2013 ⁵²⁶ Setting (ICU)Graza 2013 ⁵²⁶ Setting (ICU)Hani 2005 ⁵³⁷ Setting (ICU)Jiang 2015 ⁵³⁷ Setting (ICU)Jiang 2015 ⁵³⁷ Setting (ICU)Jiang	Coslovsky 2015 ³³²	Development of a new scoring system, not externally validated
Couto-Alves 2013 ³⁴⁴ Setting (PCU)Croce 1992 ¹⁴⁶ Setting (post-traums). Outcomes not analysed in relation to scores at admissionDabar 2015 ³⁴⁵ ComparisonDabhi 2014 ⁴⁴⁶ Setting (ICU)Das 2014 ⁴⁵¹ Setting (ICU)De Azevedo 2013 ⁵⁵⁷ Setting (ICU)Deleon 2005 ⁵⁵¹ Setting (ICU)Deleon 2005 ⁵⁵¹ Setting (ICU)Deleon 2005 ⁵⁵¹ Setting (ICU)Derkx 1996 ⁴⁷⁹ Setting (ICU)Desi 2013 ⁷⁷⁰ Setting (ICU)Desi 2013 ⁷⁷¹ Setting (ICU)Eisen 2006 ¹¹¹ Not scoring systemElias 2015 ⁴⁴⁶ Setting (ICU)Emparanza 1988 ⁴¹³⁹ Setting (ICU)Ender 2014 ⁴⁴⁵ Setting (ICU)Foreg 2013 ⁴⁴⁶ Setting (ICU)Foreg 2014 ⁴⁴⁵ Setting (ICU)Furdado 2012 ⁴⁷² Setting (ICU)Furdado 2012 ⁴⁷² Setting (ICU)Garcia Paez 2008 ⁴⁴⁶ Not scoring systemGoitein 1985 ⁵⁶⁶ Setting (ICU)Grozanovski 2012 ⁵⁷⁵ Setting (ICU)Grozanovski 2012 ⁵⁷⁶ Not scoring systemGoitein 1985 ⁵⁶⁶ Setting (ICU)Hahmi-Idriss 1998 ⁵⁴³ Setting (ICU)James 2005 ⁵⁷⁴ Setting (ICU)James 2005 ⁵⁷⁵ Setting (ICU)James 2005 ⁵⁷⁴ Setting (ICU) <tr< td=""><td></td><td></td></tr<>		
Croce 1992**6Setting (post-trauma). Outcomes not analysed in relation to scores at admissionDabar 2015**6ComparisonDabhi 2014**6Setting (CU)Das 2014**6Setting (CU)Da 2014**6Setting (CU)De Azevedo 2015**7Setting (ICU)Delinger 1988**7Setting (ICU)Delinger 1988**7Setting (ICU)Destra 1967*7Setting (ICU)Destra 2005**1Not scoring systemElias 2005**1Not scoring systemElias 2015**6Setting (ICU)Destra 1988**7Setting (ICU)Escobar 2014**7Setting (ICU)Escobar 2014**7Setting (ICU)Elias 2015**6Setting (ICU)Erias 2015**6Setting (ICU)Erias 2015**6Setting (ICU)Forg 2013**6Setting (ICU)Garcia Paez 2008**8Not scoring systemGarcia Paez 2008**8Not scoring systemGarcia Paez 2008**8Setting (ICU)Gorg 2003**6Setting (ICU)Gorg 2003**6Setting (ICU)Han 2006**6Narrative reviewHenry 2015**7Setting (ICU)Han 2006**8Narrative reviewHenry 2015**7Setting (ICU)Jaines 2005**6Not coring systemHolm 2015**7Setting (ICU)Jaines 2005**6Narrative reviewHenry 2015**7Setting (ICU)Han 2006**8Not coring systemHolm 2015**7Setting (ICU)Jaines 2005**6Setting (ICU)Jaines 2005**6Setting (ICU) <t< td=""><td></td><td></td></t<>		
admissionDabar 2015***0ComparisonDabhi 2014***6Setting (ICU)Das 2014***5Setting and when scores taken (post-surgical)De Azevedo 2015**7Setting (ICU)Deleon 2005***5Setting (ICU)Delinger 1988**5Setting (ICU)Derkx 1996***8Setting (ICU)Desai 2013***5Setting (ICU)Desai 2013***6Setting (ICU)Desai 2013***6Setting (ICU)Eisen 2006***1Not scoring systemEilas 2015**6Setting (ICU)Excobar 2014***7Score immediately after birth (prior to hospital discharge)Eros 2001***6Setting (ICU)Foreg 2013***6Setting (ICU)Garcia Paez 2004***1Not scoring systemForeg 2013***6Setting (ICU)Garcia Paez 2004***1Not scoring systemGottan 1285***6Setting (ICU)Gogos 2003***6Not scoring systemGottan 1285***6Setting (ICU)Han 2006***1Setting (ICU)Han 2006***1Setting (ICU)Han 2006***1Setting (ICU)Han 2006***2Setting (ICU)Han 2006***1Setting (ICU)Han 2006***1Setting (ICU)Han 2006***1Setting (ICU)Han 2006***1Setting (ICU)Han 2006***2Setting (ICU)Han 2006***2Setting (ICU)Han 2006***2Setting (ICU)Jana 2005***2Setting (ICU)Jana 2005***2Setting (ICU)Jana 2005***2Setting (ICU)Janes 2005***3S		
Dabhi 2014363Setting (ICU)Das 2014353Setting and when scores taken (post-surgical)De Azevedo 2015167Setting (ICU)Delon 2005363Setting (ICU)Delinger 198375Setting (ICU)Derka 1996378Setting (ICU)Derka 1996378Setting (ICU)Desai 2013377Setting (ICU)Eisen 2006411Not scoring systemElias 20154165Setting (ICU)Eroparanza 1988419Setting (ICU)Eroparanza 1988419Setting (ICU)Fores 2013465Score immediately after birth (prior to hospital discharge)Fores 2013465Setting (ICU)Fores 2013465Setting (ICU)Garcia Paez 2004644Not scoring systemGolzein 1985566Setting (ICU)Garcia Paez 2004644Setting (ICU)Gorapa 201355Not scoring systemGolzein 1985566Setting (ICU)Grazia 201356Setting (ICU)Hachimi-Idriss 199357Setting (ICU)Han 2005560Narctive reviewHenry 2015561Setting (ICU)Hullas 2010727Setting (ICU)Hullas 20105727Setting (ICU)Hullas 20105727Setting (ICU)Jaines 2005660Narctive reviewHolme 2013575Setting (ICU)Jaines 2005667Not scoring systemHolme 2013575Setting (ICU)Jaines 2005667Setting (ICU)Jaines 2005667Setting (ICU)Jaines 2005667Setting (ICU)Jaines 2005667Setting (ICU)Kumar 2003677Se		
Des 2014*33Setting and when scores taken (post-surgical)De Azevedo 2015*357Setting (ICU)Deleon 2005*343Setting (ICU)Delinger 1988*757Setting (ICU)Derkx 1996*778Setting (ICU)Derkx 1996*778Setting (ICU)Desai 2013*779Setting (ICU)Eisen 2006*41Not scoring systemElias 2015*16Setting (ICU)Emparanza 1988*173Setting (ICU)Ergo 2014*16Setting (ICU)Fores 2001*16Setting (ICU)Fores 2001*17Setting (ICU)Fores 2001*18Setting (ICU)Fores 2001*19Setting (ICU)Garcia Paez 2008*14Not scoring systemGiamarellos-Bourbouls 2012*278Setting (ICU)Gogos 2003*05Not scoring systemGoitein 1985*08Setting (ICU)Granja 2013*26Setting (ICU)Granja 2013*26Setting (ICU)Granja 2013*27Setting (ICU)Han 2005*08Not scoring systemGoitein 1985*08Setting (ICU)Han 2005*09Not scoring systemGolden 1985*08Setting (ICU)Han 2005*09Not scoring systemHolme 2013*27Setting (ICU)Han 2005*09Not scoring systemHolme 2013*29Setting (ICU)Han 2005*09Outcomes not analysedJaines 2005*09Outcomes not analysedJaines 2005*09Incorrect study designKaur 2014*24Setting (ICU)Kellenz 2013*27Setting (ICU)Kellenz 2013*27Setting (ICU)	Dabar 2015 ³⁴⁵	Comparison
De Azevedo 2015Setting (ICU)Deleon 2005Setting (ICU)Dellinger 1988Setting (ICU)Derka 1996Setting (ICU)Derka 1996Setting (ICU)Desai 2013Setting (ICU)Desai 2013Setting (ICU)Elias 2015Setting (ICU)Emparanza 1988Setting (ICU)Enozobar 2014Setting (ICU)Enozobar 2014Setting (ICU)Fore 2001Setting (ICU)Fores 2001Setting (ICU)Fores 2001Setting (ICU)Garcia Paez 2008Setting (ICU)Garcia Paez 2008Not scoring systemGiamarellos-Bourboulis 2012Setting (ICU)Gogos 2003Setting (ICU)Gogos 2003Setting (ICU)Granja 2013Setting (ICU)Granja 2013Setting (ICU)Hard 2005Setting (ICU)Hole 2013Setting (ICU)Jaimes 2005Setting (ICU)Jaimes 2005Setti	Dabhi 2014 ³⁴⁶	Setting (ICU)
Deleon 2005 ²⁸³ Setting (PCU)Delinger 1988 ²⁷⁵ Setting (ICU)Derkx 1996 ³⁷⁸ Setting (ICU)Desal 2013 ³⁷⁹ Setting (ICU)Eisa 2005 ⁴¹⁴ Not scoring systemElias 2015 ⁴¹⁵ Setting (ICU)Emparanz 1988 ⁴¹⁹ Setting (ICU)Escobar 2014 ⁴²⁸ Score immediately after birth (prior to hospital discharge)Foreg 2013 ⁴⁴⁶ Setting (ICU)Fores 2001 ⁴⁴⁵¹ Setting (ICU)Fores 2001 ⁴⁴⁵¹ Setting (ICU)Garcia Paez 2008 ⁴⁵⁴ Not scoring systemGiamarellos-Bouroluis 2012 ⁴⁸⁹ Setting (ICU)Gorgo 2003 ³⁰⁵ Not scoring systemGorala 2013 ¹¹⁶ Setting (ICU)Grazia Paez 2008 ⁴⁵⁴ Not scoring systemGordin 1985 ⁵⁰⁶ Setting (ICU)Grazia 2013 ⁵¹⁶ Setting (ICU)Hachimi-Idrissi 1998 ⁵⁴³ Setting (ICU)Hany 2015 ⁵⁵¹ Setting (ICU)Holm 2013 ⁵⁷² Setting (ICU)Holm 2013 ⁵⁷³ Setting (ICU)Jaines 2005 ⁶⁶⁹ Setting (ICU), population (neonates)Jaines 2005 ⁶⁷⁹ Setting (ICU), population (neonates)Jaines 2005 ⁶⁷⁹ Setting (ICU)Jaines 2005 ⁶⁷⁷ Setting (ICU)Jaines 2005 ⁶⁷⁷ Setting (ICU)Jaines 2005 ⁶⁷⁷ Setting (ICU)Kunar 2003 ⁶¹⁸ Setting (ICU)Kunar 2003 ⁶¹⁹ Setting (ICU)Kunar 2003 ⁶¹⁹ Setting (ICU)Kunar 2003 ⁶¹⁷ Setting (ICU)Kunar 2003 ⁶¹⁷ Setting (ICU)Kunar 2003 ⁶¹⁷⁵ Setting (ICU)<	Das 2014 ³⁵³	Setting and when scores taken (post-surgical)
Delinger 1988Setting (ICU)Derkx 1996Setting (ICU)Eisal 2013Setting (ICU)Eisal 2006Not scoring systemElias 2015Setting (ICU)Emparaza 1988Setting (ICU)Escobar 2014Serting (ICU)Forg 2013Setting (ICU)Fores 2001Setting (ICU)Furdad 2012Setting (ICU)Furdad 2012Setting (ICU)Garcia Paez 2008Not scoring systemGiamarellos-Bourboulis 2012Setting (ICU)Gogos 2003Not scoring systemGoitein 1985Setting (ICU)Gorzanovski 2012Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Hong 2013Setting (ICU)Hong 2013Setting (ICU)Han 2006Narrative reviewHong 2013Setting (ICU)Han 2006Not scoring systemHong 2013Setting (ICU)Hong 2013Setting (ICU)Han 2006Narrative reviewHong 2013Setting (ICU)Jaimes 2005Outcomes not analysedJaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Kellen 2013Setting (ICU)Jaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Kuar 2014Setting (ICU)<	De Azevedo 2015 ³⁵⁷	Setting (ICU)
Derkx 1996 ³⁷⁸ Setting (ICU)Desai 2013 ³⁷⁹ Setting (MICU)Elias 2006 ⁴¹¹ Not scoring systemElias 2015 ⁴¹⁶ Setting (ICU)Emparanza 1988 ⁴¹⁹ Setting (ICU)Escobar 2014 ⁴²⁹ Score immediately after birth (prior to hospital discharge)Feng 2013 ⁴⁴⁶ Setting (ICU)Fores 2001 ⁴⁶¹ Setting (ICU)Fora 2001 ⁴⁶¹ Setting (ICU)Garcia Paez 2008 ⁴⁸⁴ Not scoring systemGiamarellos-Bourboulis 2012 ⁴⁹⁹ Setting (ICU)Gogos 2003 ⁵⁰⁵ Not scoring systemGoitein 1985 ⁵⁰⁶ Setting (ICU)Grozdanovski 2012 ⁵²² Setting (ICU)Grozdanovski 2012 ⁵²² Setting (ICU)Han 2006 ⁵⁰³ Narrative reviewHenry 2015 ⁵¹⁴ Setting (ICU)Han 2005 ⁵⁰⁵ Setting (ICU)Han 2005 ⁵⁰⁶ Setting (ICU)Han 2005 ⁵⁰⁷ Setting (ICU)Han 2005 ⁵⁰⁸ Setting (ICU)Han 2005 ⁵⁰⁹ Setting (ICU)Han 2005 ⁵⁰⁹ Setting (ICU)Jaimes 2005 ⁶⁰⁹ Setting (ICU)Jaimes 2005 ⁶⁰⁹ Setting (ICU)Jaimes 2005 ⁶⁰⁹ Setting (ICU)Jaimes 2005 ⁶⁰⁹ Setting (ICU)Jones 2008 ⁶²⁷ Incorrect study designKura 2003 ⁶⁶⁷ Setting (ICU)Kumar 2003 ⁶⁶⁷ <td>Deleon 2005³⁶³</td> <td>Setting (PICU)</td>	Deleon 2005 ³⁶³	Setting (PICU)
DesiSetting (MICU)Eisen 2006 ⁴¹¹ Not scoring systemElias 2015 ⁴¹⁶ Setting (ICU)Emparanza 1988 ⁴¹⁹ Setting (ICU)Escobar 2014 ⁴²⁹ Score immediately after birth (prior to hospital discharge)Feng 2013 ⁴⁴⁶ Setting (ICU)Flores 2001 ⁴⁴⁷ Setting (ICU)Flores 2001 ⁴⁴⁷ Setting (ICU)Garcia Paez 2008 ⁴⁵⁴ Not scoring systemGiamarellos-Bourboulis 2012 ⁴⁹⁹ Setting (ICU)Gogos 2003 ⁵⁰⁵ Not scoring systemGiamarellos-Bourboulis 2012 ⁴⁹⁹ Setting (ICU)Gogos 2003 ⁵⁰⁵ Not scoring systemGoitein 1985 ⁵⁰⁶ Setting (ICU)Granja 2013 ⁵¹⁶ Setting (ICU)Granja 2013 ⁵¹⁶ Setting (ICU)Hachimi-Idrissi 1998 ⁵¹³ Setting (ICU)Han 2005 ⁵⁰⁵ Setting (ICU)Hone 2013 ⁵⁷⁹ Setting (ICU)Holme 2013 ⁵⁷⁹ Setting (ICU)Jaines 2005 ⁶⁰⁷⁹ Setting (ICU)Jaines 2005 ⁶⁰⁷⁹ Setting (ICU)Jaines 2005 ⁶⁰⁷⁹ Setting (ICU)Jaines 2005 ⁶⁰⁷⁹ Setting (ICU)Jones 2008 ⁸²⁷¹ Incorrect study designKuar 2014 ⁶⁴⁵⁰ Setting (ICU)Kumar 2003 ⁶⁵⁷¹ Setting (ICU)Kumar 2003 ⁶⁵⁷¹ Setting (ICU)Kumar 2003 ⁶⁵⁷² Setting (ICU)Jaines 2005 ⁶⁷³ Setting (ICU)Jaines 2005 ⁶⁷⁴¹ Setting (ICU)Jaines 2005 ⁶⁷⁵² Setting (ICU)Kumar 2003 ⁶⁵⁷⁴ Setting (ICU)Kumar 2003 ⁶⁵⁷⁵ Setting (ICU)Kumar 2003 ⁶⁵⁷⁵ </td <td>Dellinger 1988³⁷⁵</td> <td>Setting (ICU)</td>	Dellinger 1988 ³⁷⁵	Setting (ICU)
Eisen 2006 ⁴¹¹ Not scoring systemElias 2015 ⁴¹⁶ Setting (ICU)Emparanza 1988 ⁴¹⁹ Setting (PICU)Escobar 2014 ⁴²⁹ Score immediately after birth (prior to hospital discharge)Feng 2013 ⁴⁴⁶ Setting (ICU)Flores 2001 ⁴⁶¹ Setting (ICU)Fores 2004 ⁴⁴² Setting (ICU)Garcia Paez 2008 ⁴⁴⁴ Not scoring systemGiamarellos-Bourboulis 2012 ⁴⁷² Setting (ICU)Gogos 2003 ⁵⁰⁵ Not scoring systemGoitein 1985 ⁵⁰⁶ Setting (ICU)Granja 2013 ⁵¹⁶ Setting (ICU)Grazdanovski 2012 ⁵²² Setting (ICU)Hachimi-Idrissi 1998 ⁵⁴³ Setting (ICU)Han 2006 ⁵⁵⁰ Narrative reviewHenry 2015 ⁵⁶¹ Setting (ICU)Holm 2013 ⁵⁷⁹ Setting (ICU)Holm 2013 ⁵⁷⁹ Setting (ICU)Jaimes 2005 ⁶⁶⁰ Outcomes not analysedJaines 2005 ⁶⁶⁰ Setting (ICU)Jaines 2005 ⁶⁷⁷ Setting (ICU)Jaines 2005 ⁶⁷⁸ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴⁴ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴⁴ Setting (ICU)Kuar 2014 ⁶⁴⁵ Setting (ICU)Kuar 2014 ⁶⁴⁷ Setting (ICU)Kuar 2014 ⁶⁴⁷ Setting (ICU)Kuar 2014 ⁶⁴⁷ Setting (ICU)Kuar 2014 ⁶⁴⁷⁵ Setting (ICU) <tr< td=""><td>Derkx 1996 378</td><td>Setting (ICU)</td></tr<>	Derkx 1996 378	Setting (ICU)
Elias 2015 ⁴¹⁶ Setting (ICU)Emparanza 1988 ⁴¹⁹ Setting (PICU)Escobar 2014 ⁴²⁹ Score immediately after birth (prior to hospital discharge)Feng 2013 ⁴⁴⁶ Setting (ICU)Flores 2001 ⁴⁶¹ Setting (ICU)Garcia Paez 2008 ⁴⁸⁴ Not scoring systemGiamarellos-Bourboulis 2012 ⁴⁷² Setting (ICU)Gogos 2003 ⁵⁰⁵ Not scoring systemGoitain 1985 ⁵⁰⁶ Setting (ICU)Grzapa 2013 ⁵¹⁵ Setting (ICU)Grzapa 2013 ⁵¹⁶ Setting (ICU)Grzapa 2013 ⁵¹⁶ Setting (ICU)Hachimi-Idrissi 1998 ⁵⁴³ Setting (ICU)Hachimi-Idrissi 1998 ⁵⁴³ Setting (ICU)Han 2006 ⁵⁵⁰ Narative reviewHenry 2015 ⁵²¹ Setting (ICU)Holme 2013 ⁵⁷⁹ Setting (ICU)Holme 2013 ⁵⁷⁹ Setting (ICU)Jaimes 2005 ⁶⁰⁹ Outcomes not analysedJaimes 2005 ⁶⁷⁹ Setting (ICU)Jaimes 2005 ⁶⁷⁹ Setting (ICU)Jaimes 2005 ⁶⁷⁹ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴⁴ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴⁴ Setting (ICU)Kumar 2003 ⁶⁷¹ Setting (ICU)Kumar 2003 ⁶⁷¹ Setting (ICU)Kumar 2003 ⁶⁷¹ Setting (ICU)Kumar 2015 ⁷⁰⁵ Setting (ICU)Kumar 2015 ⁷⁰⁵ Setting (ICU)Kumar 2015 ⁷⁰⁵ Setting (ICU)Kumar 2015 ⁷⁰⁵ Setting (ICU)<	Desai 2013 ³⁷⁹	Setting (MICU)
Emparanza 1988*19Setting (PICU)Escobar 2014*29Score immediately after birth (prior to hospital discharge)Feng 2013*46Setting (ICU)Flores 2001*401Setting (ICU)Furtado 2012*77Setting (ICU)Garcia Paez 2008*84Not scoring systemGiamarellos-Bourboulis 2012 *89Setting (ICU)Gogos 2003*05Not scoring systemGoitein 1985*06Setting (PICU)Granja 2013*16Setting (ICU)Grozdanovski 2012*22Setting (ICU)Hachmi-Idrissi 1998*34Setting (ICU)Hong 2005*05Not scoring systemHong 2015*27Setting (ICU)Hong 2015*28Setting (ICU)Hong 2015*29Setting (ICU)Hone 2013*379Setting (ICU)Holme 2013*379Setting (ICU), population (neonates)Inal 2009*37Setting (ICU), population (neonates)Jaimes 2005*09Outcomes not analysedJones 2008*27Setting (ICU)Kaur 2014*43Setting (ICU)Kuar 2014*43Setting (ICU)Kuar 2013*44Setting (ICU)Kuar 2013*44Se	Eisen 2006 ⁴¹¹	Not scoring system
Escobar 2014Score immediately after birth (prior to hospital discharge)Feng 2013Setting (ICU)Flores 2001Setting (ICU)Furtado 2012Setting (ICU)Garcia Paez 2008Not scoring systemGiamarellos-Bourboulis 2012Setting (ICU)Gogos 2003Setting (ICU)Goitein 1985Setting (ICU)Gorta Paez 2008Setting (ICU)Gorta Paez 2008Setting (ICU)Goitein 1985Setting (ICU)Goitein 1985Setting (ICU)Granja 2013Setting (ICU)Granda 2013Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Han 2006Narrative reviewHenry 2015Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU), population (neonates)Inal 2009Setting (ICU), population (neonates)Jaimes 2005Setting (ICU)Jones 2008Setting (ICU)Jones 2008Setting (ICU)Jones 2008Setting (ICU)Jones 2008Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (ICU)Kumar 2003Setting (Elias 2015 ⁴¹⁶	Setting (ICU)
Feng 2013 ⁴⁴⁶ Setting (ICU)Flores 2001 ⁴⁵¹ Setting (ICU)Furtado 2012 ⁴⁷² Setting (ICU)Garcia Paez 2008 ⁴⁸⁴ Not scoring systemGiamarellos-Bourboulis 2012 ⁴⁹⁸ Setting (ICU)Gogos 2003 ⁵⁰⁵ Not scoring systemGoitein 1985 ⁵⁰⁶ Setting (PICU)Granja 2013 ⁵¹⁶ Setting (ICU)Grozdanovski 2012 ⁵²² Setting (ICU)Hachimi-Idrissi 1998 ⁵⁴³ Setting (ICU)Han 2006 ⁵⁵⁰ Narrative reviewHenry 2015 ⁵⁶¹ Setting (ICU)Holme 2013 ⁵⁷² Setting (ICU)Holme 2013 ⁵⁷³ Setting (ICU)Holme 2013 ⁵⁷⁹ Setting (ICU), population (neonates)Inal 2005 ⁶⁰⁹ Outcomes not analysedJaimes 2005 ⁶⁰⁹ Setting (ICU)Jones 2008 ⁶²⁷ Incorrect study designKaur 2014 ⁶⁴³ Setting (ICU)Kellner 2013 ⁶⁴⁷ Setting (ICU)Kumanimit 2009 ⁶⁵⁷⁷ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kumar 2013 ⁶⁷² Setting (ICU)Kumar 2013 ⁶⁷³ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU included in outcome with ward)Landesberg 2015 ⁷⁰⁶ No prognostic scoresLegall 1993 ⁷¹³ Setting (ICU)	Emparanza 1988 ⁴¹⁹	Setting (PICU)
Flores 2001Setting (ICU)Furtado 2012Setting (ICU)Garcia Paez 2008Not scoring systemGiamarellos-Bourboulis 2012Setting (ICU)Gogos 2003Not scoring systemGoitein 1985Setting (PICU)Granja 2013Setting (ICU)Grozdanovski 2012Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Han 2006Setting (ICU)Han 2005Narrative reviewHenry 2015Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU)Jaimes 2005Setting (ICU), population (neonates)Inal 2005Outcomes not analysedJaimes 2005Setting (ICU)Jaimes 2005Setting (ICU)Kaur 2014Setting (ICU)Kuar 2013Setting (ICU) included in outc	Escobar 2014 ⁴²⁹	Score immediately after birth (prior to hospital discharge)
Furtado 2012Setting (ICU)Garcia Paez 2008Not scoring systemGiamarellos-Bourboulis 2012Setting (ICU)Gogos 2003Setting (ICU)Gojtein 1985Setting (ICU)Granja 2013Setting (ICU)Grozdanovski 2012Setting (ICU)Hachimi-Idrissi 2012Setting (ICU)Hachimi-Idrissi 2013Setting (ICU)Han 2006Setting (ICU)Han 2006Setting (ICU)Henry 2015Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU)Jaimes 2005Setting (ICU)Joines 2005Setting (ICU)Joines 2005Setting (ICU)Joines 2005Setting (ICU)Joines 2005Setting (ICU)Kaur 2014Setting (ICU)Kuar 2013Setting (ICU)Kwannimit 2009Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kuar 2013Setting (ICU)Kuar 2013Setting (ICU)Kuar 2013Setting (ICU)Kuar 2013Setting (ICU)Kuar 2003Setting (ICU)	Feng 2013 ⁴⁴⁶	Setting (ICU)
Garcia Paez 2008 ⁴⁸⁴ Not scoring systemGiamarellos-Bourboulis 2012Setting (ICU)Gogos 2003 ⁵⁰⁵ Not scoring systemGoiten 1985 ⁵⁰⁶ Setting (PLU)Granja 2013 ⁵¹⁶ Setting (ICU)Grozdanovski 2012 ⁵²² Setting (ICU)Hachimi-Idrissi 1998 ⁵⁴³ Setting (ICU)Har 2006 ⁵⁵⁰ Narative reviewHenry 2015 ⁵⁶¹ Setting (ICU)Hillas 2010 ⁵⁷² Setting (ICU)Holen 1993 ⁵⁷⁸ Setting (ICU)Holen 2013 ⁵⁷⁹ Setting (ICU), population (neonates)Inal 2009 ⁵⁹⁷ Setting (ICU)Jaimes 2005 ⁶⁰⁹ Outcomes not analysedJaineg 2015 ⁶²² Setting (ICU)Jones 2008 ⁶²⁷ Setting (ICU)Kaur 2014 ⁶⁴³ Setting (ICU)Kuar 2014 ⁶⁴³ Setting (ICU)Kuara 2003 ⁶⁹¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kuara 2015 ⁷²⁶ Setting (ICU)Landesberg 2015 ⁷²⁶ No prognostic scoresLegall 1993 ⁷¹³ Setting (ICU)	Flores 2001 ⁴⁶¹	Setting (ICU)
Giamarellos-Bourboulis 2012 498Setting (ICU)Gogos 2003 505Not scoring systemGoitein 1985 506Setting (PICU)Granja 2013 516Setting (ICU)Grozdanovski 2012 522Setting (ICU)Hachimi-Idrissi 1998 543Setting (ICU)Han 2006 550Narrative reviewHenry 2015 561Setting (ICU)Holme 2013 572Setting (ICU)Holme 2013 573Setting (ICU)Holme 2013 574Setting (ICU), population (neonates)Inal 2009 597Setting (ICU)Jaimes 2005 609Outcomes not analysedJones 2008 627Incorrect study designKaur 2014 643Setting (ICU)Khwannimit 2009 ⁶⁵⁷¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU)Landesberg 2015 ⁷⁰⁶ No prognostic scoresLegall 1993 ⁷¹³ Setting (ICU)	Furtado 2012 ⁴⁷²	Setting (ICU)
Gogos 2003Not scoring systemGoitein 1985Setting (PICU)Granja 2013Setting (ICU)Grozdanovski 2012Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Han 2006Narrative reviewHenry 2015Setting (ICU)Hillas 2010Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU)Holme 2013Setting (ICU), population (neonates)Inal 2009Setting (ICU), population (neonates)Jaimes 2005Outcomes not analysedJones 2008Setting (ICU)Iones 2008Setting (ICU)Kaur 2014Setting (ICU)Kwannimit 2009Setting (ICU)Kumar 2003Setting (ICU) <tr< td=""><td>Garcia Paez 2008⁴⁸⁴</td><td>Not scoring system</td></tr<>	Garcia Paez 2008 ⁴⁸⁴	Not scoring system
Goitein 1985 506Setting (PICU)Granja 2013 516Setting (ICU)Grozdanovski 2012 522Setting (ICU)Hachimi-Idrissi 1998 543Setting (ICU)Han 2006 550Narrative reviewHenry 2015 561Setting (ICU)Hillas 2010 572Setting (ICU)Hoen 1993 578Not scoring systemHolme 2013 579Setting (NICU), population (neonates)Inal 2009 597Setting (ICU)Jaimes 2005 609Outcomes not analysedJones 2008 627Incorrect study designKaur 2014 643Setting (ICU)Kellner 2013 647Setting (ICU)Khwannimit 2009 657Setting (ICU)Kumar 2003 691Setting (ICU)Landesberg 2015 706No prognostic scoresLegal 1993 713Setting (ICU)	Giamarellos-Bourboulis 2012 498	Setting (ICU)
Granja 2013Grund (CU)Grozdanovski 2012Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Han 2006Narrative reviewHenry 2015Setting (ICU)Hillas 2010Setting (ICU)Holme 2013Setting (ICU), population (neonates)Holme 2013Setting (ICU), population (neonates)Inal 2009Setting (ICU)Jaimes 2005Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (ICU)Kellner 2013Setting (ICU)Setting (ICU)Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (ICU)Kumar 2003Setting (ICU)Landesberg 2015Setting (ICU)Legal 1993Setting (ICU)	Gogos 2003 ⁵⁰⁵	Not scoring system
Grozdanovski 2012Setting (ICU)Hachimi-Idrissi 1998Setting (ICU)Han 2006Narrative reviewHenry 2015Setting (ICU)Hillas 2010Setting (ICU)Holme 1993Setting (ICU)Holme 2013Setting (ICU), population (neonates)Holme 2013Setting (ICU)Jaimes 2005Outcomes not analysedJiang 2015Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (ICU)Kellner 2013Setting (ICU)Jones 2008Setting (ICU)Kuar 2014Setting (ICU)Kumar 2009Setting (ICU)Kumar 2003Setting (ICU)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Goitein 1985 ⁵⁰⁶	Setting (PICU)
Hachimi-Idrissi 1998Setting (ICU)Han 2006Narrative reviewHenry 2015Setting (ICU)Hillas 2010Setting (ICU)Hoen 1993Not scoring systemHolme 2013Setting (ICU), population (neonates)Inal 2009Setting (ICU)Jaimes 2005Outcomes not analysedJiang 2015Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (ICU)Kellner 2013Setting (ICU)Jones 2008Setting (ICU)Jones 2008Setting (ICU)Kellner 2013Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Granja 2013 ⁵¹⁶	Setting (ICU)
Han 2006Narrative reviewHenry 2015Setting (ICU)Hillas 2010Setting (ICU)Hoen 1993Not scoring systemHolme 2013Setting (NICU), population (neonates)Inal 2009Setting (ICU)Jaimes 2005Outcomes not analysedJaines 2008Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (ICU)Kellner 2013Setting (ICU)Kellner 2013Setting (ICU)Kellner 2013Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU included in outcome with ward)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Grozdanovski 2012 ⁵²²	Setting (ICU)
Henry 2015Setting (ICU)Hillas 2010Setting (ICU)Hoen 1993Not scoring systemHolme 2013Setting (NICU), population (neonates)Inal 2009Setting (ICU)Jaimes 2005Outcomes not analysedJaing 2015Setting (ICU)Jones 2008Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (ICU)Kellner 2013Setting (ICU)Khwannimit 2009Setting (ICU)Kumar 2003Setting (ICU)Landesberg 2015Setting (ICU included in outcome with ward)Langl 1993Setting (ICU)Legall 1993Setting (ICU)	Hachimi-Idrissi 1998 ⁵⁴³	Setting (ICU)
Hillas 2010Setting (ICU)Hoen 1993Not scoring systemHolme 2013Setting (NICU), population (neonates)Inal 2009Setting (ICU)Jaimes 2005Outcomes not analysedJiang 2015Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (PICU)Kellner 2013Setting (ICU)Khwannimit 2009Setting (ICU)Kumar 2003Setting (ICU)Landesberg 2015Setting (ICU included in outcome with ward)Legall 1993Setting (ICU)	Han 2006 ⁵⁵⁰	Narrative review
Hoen 1993Not scoring systemHolme 2013Setting (NICU), population (neonates)Inal 2009Setting (ICU)Jaimes 2005Outcomes not analysedJiang 2015Setting (ICU)Jones 2008Setting (ICU)Jones 2008Incorrect study designKaur 2014Setting (ICU)Kellner 2013Setting (ICU)Kellner 2013Setting (ICU)Kumar 2009Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU) included in outcome with ward)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Henry 2015 ⁵⁶¹	Setting (ICU)
Holme 2013Setting (NICU), population (neonates)Inal 2009Setting (ICU)Jaimes 2005Outcomes not analysedJiang 2015Setting (ICU)Jones 2008Incorrect study designKaur 2014Setting (PICU)Kellner 2013Setting (ICU)Kumar 2009Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU)Kumar 2003Setting (ICU) included in outcome with ward)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Hillas 2010 ⁵⁷²	Setting (ICU)
Inal 2009Setting (ICU)Jaimes 2005Outcomes not analysedJiang 2015Setting (ICU)Jones 2008Setting (ICU)Kaur 2014Setting (PICU)Kellner 2013Setting (ICU)Khwannimit 2009Setting (ICU)Kumar 2003Setting (ICU)Landesberg 2015Setting (ICU included in outcome with ward)Legall 1993Setting (ICU)	Hoen 1993 ⁵⁷⁸	Not scoring system
Jaimes 2005Outcomes not analysedJiang 2015Setting (ICU)Jones 2008Incorrect study designKaur 2014Setting (PICU)Kellner 2013Setting (ICU)Khwannimit 2009Setting (ICU)Kumar 2003Setting (ICU)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Holme 2013 ⁵⁷⁹	Setting (NICU), population (neonates)
Jiang 2015Setting (ICU)Jones 2008Incorrect study designKaur 2014Setting (PICU)Kellner 2013Setting (ICU)Khwannimit 2009Setting (ICU)Kumar 2003Setting (ICU) included in outcome with ward)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Inal 2009 ⁵⁹⁷	Setting (ICU)
Jones 2008Incorrect study designKaur 2014Setting (PICU)Kellner 2013Setting (ICU)Khwannimit 2009Setting (ICU)Kumar 2003Setting (ICU) included in outcome with ward)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Jaimes 2005 ⁶⁰⁹	Outcomes not analysed
Kaur 2014 643Setting (PICU)Kellner 2013 647Setting (ICU)Khwannimit 2009 657Setting (ICU)Kumar 2003 691Setting (ICU included in outcome with ward)Landesberg 2015 706No prognostic scoresLegall 1993 713Setting (ICU)	Jiang 2015 ⁶²²	Setting (ICU)
Kellner 2013 ⁶⁴⁷ Setting (ICU)Khwannimit 2009 ⁶⁵⁷ Setting (ICU)Kumar 2003 ⁶⁹¹ Setting (ICU included in outcome with ward)Landesberg 2015 ⁷⁰⁶ No prognostic scoresLegall 1993 ⁷¹³ Setting (ICU)	Jones 2008 ⁶²⁷	Incorrect study design
Khwannimit 2009657Setting (ICU)Kumar 2003691Setting (ICU included in outcome with ward)Landesberg 2015706No prognostic scoresLegall 1993713Setting (ICU)	Kaur 2014 ⁶⁴³	Setting (PICU)
Kumar 2003Setting (ICU included in outcome with ward)Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Kellner 2013 ⁶⁴⁷	Setting (ICU)
Landesberg 2015No prognostic scoresLegall 1993Setting (ICU)	Khwannimit 2009 ⁶⁵⁷	Setting (ICU)
Legall 1993 ⁷¹³ Setting (ICU)	Kumar 2003 ⁶⁹¹	Setting (ICU included in outcome with ward)
	Landesberg 2015 ⁷⁰⁶	No prognostic scores
Lee 1993 ⁷¹⁶ Setting (ICU)	Legall 1993 ⁷¹³	Setting (ICU)
	Lee 1993 ⁷¹⁶	Setting (ICU)

Maher 1989***Setting (CU)Mara 2006***Setting (CU)Marshall 2014***Narative reviewMcGillicudV 2009***Not diagnostic accuracy of a scoring systemMei 2007***Not diagnostic accuracy of a scoring systemMohan 2015***Setting (CU)Moren 0199***Setting (CU)Oda 2000***Setting (CU)Oda 2000***Development of a new scoring system, not externally validatedPaul 2007***Not astudyPaul 2007***Not orality predictorPilz 191***Setting (PCU)Pollock 191***Setting (PCU)Pollock 191***Setting (CU)Pollock 191***Setting (CU)Pollock 191***Setting (CU)Pollock 199***Setting (CU)Riker 200***Setting (CU)Riker 200***Setting (CU)Riker 200***Setting (CU)Riker 199***Setting (CU)Riker 199***Setting (CU)Rosener 2002***Setting (CU)Rosener 2002***Setting (CU)Roy 199***Setting (CU)Solari 2003***Setting (CU)Solari 2004***Setting (CU)Silapio 2003***Setting (PCU)Silapio 2003***Setting (PCU)Silapio 2003***Setting (CU)Silapio 2003**	Reference	Reason for exclusion
Marshall 2014Narrative reviewMGGillicuddy 2009Not diagnostic accuracy of a scoring systemMei 2007Not diagnostic accuracy of a scoring systemMohan 2015Setting (ICU)Noreno 1999Setting (ICU)Naved 2011Setting (ICU)Naved 2001Setting (ICU)Paul 2006Setting (ICU)Paul 2006Setting (ICU)Paul 2007Not mortality predictorPaul 2007Not a studyPollock 1991Setting (ICU)Pollock 1991Setting (ICU)Pollock 1991Setting (ICU)Pollock 1992Setting (ICU)Pollock 1992Setting (ICU)Pollock 1992Setting (ICU)Pollock 1992Setting (ICU)Rikar 2013Setting (ICU)Rikar 2013Setting (ICU)Rikar 2013Setting (ICU)Rikar 2013Setting (ICU)Rousi 2002Setting (ICU)Rousi 2003Setting (ICU)Rousi 2003Setting (ICU)Rousi 2003Setting (ICU)Rousi 2003Setting (ICU)Souting 2003Setting (ICU)Souting 2004Not scoring toolSilva 20013Systematic review with different protocolSilva 20013Systematic review with different protocolSilva 20013Systematic review with different protocolSilva 20013Not a scoring toolVincent 2015Setting (ICU)Silva 2004Not a scoring toolVincent 2014Not a scoring toolVincent 2014Not a	Maher 1989 ⁷⁵⁹	Setting (ICU)
Marshall 2014Narrative reviewMcGillicuddy 2009Not diagnostic accuracy of a scoring systemMei 2007Not diagnostic accuracy of a scoring systemMohan 2015Setting (ICU)Noreno 1999Setting (ICU)Naved 2011Setting (ICU)Naved 2011Setting (ICU)Paul 2006Setting (ICU)Paul 2006Setting (ICU)Paul 2007Not mortality predictorPaul 2007Not a studyPollock 1997Setting (ICU)Pollock 1997Setting (ICU)Pollock 1997Setting (ICU)Que 2015Setting (ICU)Que 2015Setting (ICU)Que 2015Setting (ICU)Que 2015Setting (ICU)Que 2015Setting (ICU)Richards 2018Setting (ICU)Richards 2018Setting (ICU)Richards 2018Setting (ICU)Richards 2018Setting (ICU)Rousi 2007Setting (ICU)Rousi 2007Setting (ICU)Rousi 2007Setting (ICU)Rousi 2007Setting (ICU)Rousi 2007Setting (ICU)Souting 2002Setting (ICU)Souting 2003Setting (ICU)Souting 2004Systematic review with different protocolSouting 2005Setting (ICU) <t< td=""><td>Marra 2006a⁷⁷⁴</td><td>Setting (ICU)</td></t<>	Marra 2006a ⁷⁷⁴	Setting (ICU)
Mei 2007 ⁷⁹⁶ Not diagnostic accuracy of a scoring systemMohan 2015 ⁸¹⁵ Setting (ICU)Moreno 1999 ⁸²⁵³ Setting (ICU)Naved 2011 ⁸⁴¹ Setting (ICU)Paul 2006 ⁸⁰³ Development of a new scoring system, not externally validatedPaul 2007 ⁸⁰⁵ Not mortality predictorPilz 1991 ⁷²⁶⁰ Not a studyPollock 1991 ⁷²⁶⁵ Setting (ICU)Pollock 1991 ⁷²⁶⁵ Setting (ICU)Pollock 1991 ⁷²⁶⁵ Setting (ICU)Presterl 1997 ⁷³⁵⁷ Setting (ICU)Que 2015 ⁸⁴⁶⁵ Setting (ICU)Rhee 2009 ⁷⁹⁵⁶ Setting (ICU)Richards 2011 ⁸⁴⁶⁶ Setting (ICU)Richards 2011 ⁸⁴⁶⁵ Setting (ICU)Rosen 2002 ⁸⁹⁶⁴ Setting (ICU)Rosen 2002 ⁸⁹⁶⁴ Setting (ICU)Rosen 2002 ⁸⁹⁶⁴ Setting (ICU)Sotting (ICU)Stating (ICU)Shapiro 2009 ¹⁰²⁴ Not scoring toolSuita 2001a ¹⁰²⁷ Setting (ICU)Smith 2008 ¹⁰⁴⁷⁷ Systematic review with different protocolSmith 2008 ¹⁰⁴⁷⁷ Setting (ICU)Talelski 2015 ¹¹¹⁷⁴ Development of a new scoring system, not externally validatedvan de Voorde 2013 ¹¹¹⁴⁰ Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴⁴ Not a scoring toolVincent 2011 ¹¹⁴⁴ <td< td=""><td>Marshall 2014776</td><td>Narrative review</td></td<>	Marshall 2014776	Narrative review
Mohan 2015 ⁸¹³ Setting (ICU)Moreno 1999 ⁸²³ Setting (ICU)Naved 2011 ⁸⁴¹ Setting (ICU)Oda 2000 ⁸⁶⁹ Setting (ICU)Paul 2008 ⁷⁰³ Development of a new scoring system, not externally validatedPaul 2007 A ⁹⁰⁵ Not mortality predictorPilz 1991 ⁷⁹³⁰ Not a studyPollock 1991 ⁷²⁶⁵ Setting (PCU)Pollock 1991 ⁷²⁷⁵ Setting (ICU)Pollock 1991 ⁷²⁷⁵ Setting (ICU)Rike 2009 ⁶⁶⁶ Setting (ICU)Rike 2009 ⁶⁶⁷ Setting (ICU)Riker 2009 ⁶⁶⁷ Setting (ICU)Riker 2009 ⁶⁶⁸ Setting (ICU)Riker 2009 ⁶⁶⁹ Setting (ICU)Riker 2009 ⁶⁶⁹ Setting (ICU)Rogel 1996 ⁷¹³ Setting (ICU)Rogel 1996 ⁸¹¹ Setting (ICU)Rosenberg 2002 ⁸⁸⁶ Setting (ICU)Routsi 2007 ⁸⁸⁸ Setting (ICU)Shapiro 2009 ¹⁰²⁴⁴ Not scoring toolSilva 2001 ¹⁰²⁴⁷ Sytematic review with different protocolSinth 2008 ¹⁰⁴⁷⁷ Setting (ICU)Silva 2001 ¹¹¹⁷² Development of a new scoring system, not externally validatedVan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Changes in score not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Not a studyVincent 2011 ¹¹⁴⁴ Not a studyVincent 2011 ¹¹⁴⁵ Not a studyVincent 2011 ¹¹⁴⁶ Not scoring toolVincent 2011 ¹¹⁴⁷ Setting (ICU)Vincent 2011 ¹¹⁴⁴ Not a study	McGillicuddy 2009 ⁷⁹¹	Not diagnostic accuracy of a scoring system
Mohan 2015 ⁸¹³ Setting (ICU)Moreno 1999 ⁸²³ Setting (ICU)Naved 2011 ⁸⁴¹ Setting (ICU)Oda 2000 ⁸⁶⁹ Setting (ICU)Paul 2008 ⁷⁰³ Development of a new scoring system, not externally validatedPaul 2007 A ⁹⁰⁵ Not mortality predictorPilz 1991 ⁷⁹³⁰ Not a studyPollock 1991 ⁷²⁶⁵ Setting (PCU)Pollock 1991 ⁷²⁷⁵ Setting (ICU)Pollock 1991 ⁷²⁷⁵ Setting (ICU)Rike 2009 ⁶⁶⁶ Setting (ICU)Rike 2009 ⁶⁶⁷ Setting (ICU)Riker 2009 ⁶⁶⁷ Setting (ICU)Riker 2009 ⁶⁶⁸ Setting (ICU)Riker 2009 ⁶⁶⁹ Setting (ICU)Riker 2009 ⁶⁶⁹ Setting (ICU)Rogel 1996 ⁷¹³ Setting (ICU)Rogel 1996 ⁸¹¹ Setting (ICU)Rosenberg 2002 ⁸⁸⁶ Setting (ICU)Routsi 2007 ⁸⁸⁸ Setting (ICU)Shapiro 2009 ¹⁰²⁴⁴ Not scoring toolSilva 2001 ¹⁰²⁴⁷ Sytematic review with different protocolSinth 2008 ¹⁰⁴⁷⁷ Setting (ICU)Silva 2001 ¹¹¹⁷² Development of a new scoring system, not externally validatedVan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Changes in score not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Not a studyVincent 2011 ¹¹⁴⁴ Not a studyVincent 2011 ¹¹⁴⁵ Not a studyVincent 2011 ¹¹⁴⁶ Not scoring toolVincent 2011 ¹¹⁴⁷ Setting (ICU)Vincent 2011 ¹¹⁴⁴ Not a study	Mei 2007 ⁷⁹⁶	Not diagnostic accuracy of a scoring system
Naved 2011Setting (ICU)Oda 2000Setting (ICU)Paul 2006Development of a new scoring system, not externally validatedPaul 2006Not mortality predictorPaul 2007Not a studyPollock 1997Setting (IPCU)Pollock 1997Setting (IPCU)Presterl 1997Setting (IPCU)Presterl 1997Setting (ICU)Rue 2009Setting (ICU)Richards 2011Setting (ICU)Richards 2011Setting (ICU)Richards 2011Setting (ICU)Richards 2011Setting (ICU)Roge 1996Setting (ICU)Roge 1996Setting (ICU)Roge 1996Setting (ICU)Roge 1996Setting (ICU)Roge 1996Setting (ICU)Roge 1996Setting (ICU)Rosenbeorg 2002Setting (ICU)Shapiro 2005Setting (ICU)Shapiro 2005Setting (ICU)Sina 2001Systematic review with different protocolSina 2001Systematic review with different protocolSina 2001Systematic review with different protocolSina 2001Setting (ICU)Umscheid 2015Development of a new scoring system, not externally validatedvan de Voorde 2013Outcomes not analysed in relation to scores at admissionVincent 2011Not a studyVincent 2011Not a studyVincent 2011Not a studyVincent 2011Not a studyVincent 2011Setting (ICU)Wincent 2011Setting (ICU)Vincent 2011		Setting (ICU)
Oda 2000 ⁶⁶⁹ Setting (ICU)Paul 2006 ⁵⁰³ Development of a new scoring system, not externally validatedPaul 2007A ⁸⁰⁵ Not mortality predictorPill 291 ²²⁰ Not a studyPollock 1991 ²⁸²⁶ Setting (PCU)Pollock 1997 ⁹²⁵⁵ Setting (ICU)Que 2015 ⁸⁴⁵ Setting (ICU)Rice 2009 ⁶⁶⁵ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Rosenberg 2002 ⁸⁶⁶ Setting (ICU)Shapiro 2009 ¹⁰³⁴ Not scoring toolSilva 2001a ¹⁰³⁷ Setting (ICU)Smith 2008 ¹⁰⁴⁷ Systematic review with different protocolSilva 2013 ¹⁰³⁷ Setting (ICU)Tafeiski 2015 ¹⁰⁸⁵ Setting (ICU)Tafeiski 2015 ¹⁰⁸⁵ Setting (ICU)Tafeiski 2015 ¹⁰⁸⁵ Setting (ICU)Uncent 2011 ¹¹¹⁴¹ Development of a new scoring system, not externally validatedVincent 2011 ¹¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹¹⁴² Not a studyVincent 2011 ¹¹¹⁴⁴ Not a studyVincent 2011 ¹¹¹⁴⁰ Not a studyVincent 2011 ¹¹⁴¹ Not a studyVincent 2011 ¹¹⁴¹ <t< td=""><td>Moreno 1999⁸²³</td><td></td></t<>	Moreno 1999 ⁸²³	
Oda 2000 ⁶⁶⁹ Setting (ICU)Paul 2006 ⁵⁰³ Development of a new scoring system, not externally validatedPaul 2007A ⁸⁰⁵ Not mortality predictorPill 291 ²²⁰ Not a studyPollock 1991 ²⁸²⁶ Setting (PCU)Pollock 1997 ⁹²⁵⁵ Setting (ICU)Que 2015 ⁸⁴⁵ Setting (ICU)Rice 2009 ⁶⁶⁵ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Rosenberg 2002 ⁸⁶⁶ Setting (ICU)Shapiro 2009 ¹⁰³⁴ Not scoring toolSilva 2001a ¹⁰³⁷ Setting (ICU)Smith 2008 ¹⁰⁴⁷ Systematic review with different protocolSilva 2013 ¹⁰³⁷ Setting (ICU)Tafeiski 2015 ¹⁰⁸⁵ Setting (ICU)Tafeiski 2015 ¹⁰⁸⁵ Setting (ICU)Tafeiski 2015 ¹⁰⁸⁵ Setting (ICU)Uncent 2011 ¹¹¹⁴¹ Development of a new scoring system, not externally validatedVincent 2011 ¹¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹¹⁴² Not a studyVincent 2011 ¹¹¹⁴⁴ Not a studyVincent 2011 ¹¹¹⁴⁰ Not a studyVincent 2011 ¹¹⁴¹ Not a studyVincent 2011 ¹¹⁴¹ <t< td=""><td>Naved 2011⁸⁴¹</td><td>Setting (ICU)</td></t<>	Naved 2011 ⁸⁴¹	Setting (ICU)
Paul 2007A ⁸⁰⁵ Not mortality predictorPilz 1991 ⁹²⁰ Not a studyPollock 1991 ⁹²⁵ Setting (PICU)Pollock 1997 ⁹²⁵ Setting (ICU)Prester 1997 ⁹²⁵ Setting (ICU)Que 2015 ⁹⁴⁵ Setting (ICU)Rhee 2009 ⁹⁶⁵ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Risen 1996 ⁹⁷³ Setting (ICU)Roge 1996 ⁹⁸¹ Setting (ICU)Roge 2002 ⁹⁸⁶ Setting (ICU)Rosenberg 2002 ⁹⁸⁶ Setting (ICU)Routs 2007 ⁸⁸³ Setting (ICU)Routs 2007 ⁸⁸⁴ Setting (ICU)Shapiro 2009 ¹⁰²⁴ Not scring toolSilta 2001 ¹⁰³⁷ Setting (ICU)Silta 2001 ⁸⁰⁴ Systematic review with different protocolSinth 2008 ¹⁰⁴⁴ Systematic review with different protocolSinth 2008 ¹⁰⁴⁵ Setting (ICU)Silta 2014 ¹¹⁰⁵ Not a scring toolUeda 2014 ¹¹¹⁴ Setting (ICU)Uncent 2011 ¹¹⁴² Outcomes not analysed in relation to scring toolVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scring toolVincent 2011 ¹¹⁴² Not a scring toolVincent 2011 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁵ Setting (ICU)Vincent 2013 ¹¹⁴⁴ Setting (ICU)Vincent 2013 ¹¹⁴⁵ Not a studyVincent 2013 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁵ Setting (ICU)Vincent 2013 ¹¹⁴⁵ Setting (ICU)Vincent 2013 ¹¹⁴⁶ Sett		
Paul 2007A ⁸⁰⁵ Not mortality predictorPilz 1991 ⁹²⁰ Not a studyPollock 1991 ⁹²⁵ Setting (PICU)Pollock 1997 ⁹²⁵ Setting (ICU)Prester 1997 ⁹²⁵ Setting (ICU)Que 2015 ⁹⁴⁵ Setting (ICU)Rhee 2009 ⁹⁶⁵ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Risen 1996 ⁹⁷³ Setting (ICU)Roge 1996 ⁹⁸¹ Setting (ICU)Roge 2002 ⁹⁸⁶ Setting (ICU)Rosenberg 2002 ⁹⁸⁶ Setting (ICU)Routs 2007 ⁸⁸³ Setting (ICU)Routs 2007 ⁸⁸⁴ Setting (ICU)Shapiro 2009 ¹⁰²⁴ Not scring toolSilta 2001 ¹⁰³⁷ Setting (ICU)Silta 2001 ⁸⁰⁴ Systematic review with different protocolSinth 2008 ¹⁰⁴⁴ Systematic review with different protocolSinth 2008 ¹⁰⁴⁵ Setting (ICU)Silta 2014 ¹¹⁰⁵ Not a scring toolUeda 2014 ¹¹¹⁴ Setting (ICU)Uncent 2011 ¹¹⁴² Outcomes not analysed in relation to scring toolVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scring toolVincent 2011 ¹¹⁴² Not a scring toolVincent 2011 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁵ Setting (ICU)Vincent 2013 ¹¹⁴⁴ Setting (ICU)Vincent 2013 ¹¹⁴⁵ Not a studyVincent 2013 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁴ Not a studyVincent 2013 ¹¹⁴⁵ Setting (ICU)Vincent 2013 ¹¹⁴⁵ Setting (ICU)Vincent 2013 ¹¹⁴⁶ Sett	Paul 2006 ⁹⁰³	Development of a new scoring system, not externally validated
Pollock 1991*26Setting (PICU)Pollock 1997*25Setting (PICU)Presterl 1997*25Setting (ICU)Que 2015*45Setting (ICU)Rhee 2009*65Setting (ICU)Richafs 2011*66Setting (ICU)Rixen 1996 ⁷³³ Setting (ICU)LeGall1993*13Setting (ICU)Rosenberg 2002*86Setting (ICU)Routsi 2001*86Setting (ICU)Routsi 2001*86Setting (ICU)Shapiro 2009*104Not scoring toolSitva 2001*1057Setting (ICU)Sitva 2001*1157Development of a new scoring system, not externally validatedUeda 2014*114Setting (ICU)Umscheid 2015*1117Development of a new scoring system, not externally validatedVincent 2011*1142Outcomes not analysed in relation to scores at admissionVincent 2011*1142Not a studyVincent 2003*1139Not a studyVincent 2003*1139Not scoring toolVincent 2003*1139Setting (pot-s		Not mortality predictor
Pollock 1997 ⁹²⁵ Setting (PICU)Presterl 1997 ⁹³⁵ Setting (ICU)Que 2015 ⁹⁴⁵ Setting (ICU)Rhee 2009 ⁹⁶⁵ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Richards 2011 ⁹⁶⁷³ Setting (ICU)Rogy 1996 ⁹⁸¹¹ Setting (ICU)Rogenberg 2002 ⁹⁸⁶⁶ Setting (ICU)Rosenberg 2002 ⁹⁸⁶⁶ Setting (ICU)Routs 2007 ⁹⁸⁸ Setting (ICU)Routs 2007 ⁹⁸⁸ Setting (ICU)Shapiro 2009 ¹⁰²⁴ Not scoring toolSilva 2001 ¹⁰³⁷ Setting (PICU)Smith 2008 ¹⁰⁴⁷ Systematic review with different protocolSmith 2008 ¹⁰⁴⁷ Systematic review with different protocolTafelski 2015 ¹⁰⁸⁵ Setting (ICU)Unscheid 2013 ¹¹¹⁹ Outcomes not analysed in relation to scoring toolVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Not a studyVincent 2003 ¹¹⁴³ Not a studyVincent 2003 ¹¹⁴³ Not a studyVincent 2003 ¹¹⁴⁴ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2008 ¹¹⁷⁷ Setting (PICU)	Pilz 1991 ⁹²⁰	Not a study
Presterl 1997 ⁹³⁵ Setting (ICU)Que 2015 ⁹⁴⁶ Setting (ICU)Rhee 2009 ⁹⁶⁵ Setting (ICU)Richards 2011 ⁹⁶⁶ Setting (ICU)Richards 2011 ⁹⁶⁷³ Setting (ICU)Rogy 1996 ⁹³¹ Setting (ICU)Rogenberg 2002 ⁹⁸⁶ Setting (ICU)Rosenberg 2002 ⁹⁸⁶ Setting (ICU)Routi 2007 ⁹⁸⁸ Setting (ICU)Shairo 2009 ¹⁰²⁴ Not scoring toolSilva 2001a ¹⁰³⁷ Setting (PICU)Smith 2008 ¹⁰⁴⁷ Systematic review with different protocolSmith 2008 ¹⁰⁴⁷ Systematic review with different protocolTafelski 2015 ¹⁰⁸⁵ Setting (ICU)Udea 2014 ¹¹¹⁴ Setting (ICU)Unscheid 2015 ¹¹¹⁷⁷ Development of a new scoring system, not externally validatedvan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Changes in score not analysed in relation to scores at admissionVincent 2003 ¹¹³⁹ Not a studyVincent 2003 ¹¹³⁹ Not a studyVincent 2003 ¹¹³⁹ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wong 2018 ¹¹⁷⁷ Setting (PICU)Wong 2018 ¹¹⁷⁷ Setting (PICU)	Pollock 1991 ⁹²⁶	Setting (PICU)
Que 2015 ³⁴⁵ Setting (ICU)Rhee 2009 ⁶⁶⁵ Setting (ICU)Richards 2011 ³⁶⁶ Setting (ICU)Rixen 1996 ⁹⁷³ Setting (ICU)LeGall1993 ⁷¹³ Setting (ICU)Rogy 1996 ⁹⁸¹ Setting (ICU)Rosenberg 2002 ⁹⁸⁶ Setting (ICU)Routsi 2007 ⁹⁸⁸ Setting (ICU)Routsi 2007 ⁹⁸⁸ Setting (ICU)Shapiro 2009 ¹⁰²⁴ Not scoring toolSilva 2001a ¹⁰³⁷ Setting (PICU)Smith 2008 ¹⁰⁴⁷ Systematic review with different protocolSmith 2008 ¹⁰⁴⁷ Systematic review with different protocolTafelski 2015 ¹⁰⁸⁵ Setting (ICU)Ueda 2014 ¹¹¹⁴⁰ Setting (ICU)Umscheid 2015 ¹¹¹⁷ Development of a new scoring system, not externally validatedvan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2003 ¹¹³⁹ Not a studyVincent 2003 ¹¹³⁹ Not a studyVincent 2003 ¹¹³⁹ Not a studyVincent 2003 ¹¹³⁹ Not a studyVialon 2008 ¹¹³⁷⁰ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (PCU)Wilson 1990 ¹¹⁷⁰ Setting (PCU)Wong 2004 ¹¹⁷⁸ Setting (PICU)	Pollock 1997 ⁹²⁵	Setting (PICU)
Rhee 2009Setting (ICU)Richards 2011Setting (ICU)Rixen 1996Setting (ICU)LeGall1993Setting (ICU)Rogy 1996Setting (ICU)Rosenberg 2002Setting (ICU)Routsi 2007Setting (ICU)Routsi 2007Setting (ICU)Shapiro 2009Setting (ICU)Sitva 2001a ¹⁰³⁷ Setting (ICU)Sitva 2001a ¹⁰³⁷ Setting (ICU)Smith 2008 ¹⁰⁴⁶ Systematic review with different protocolSmith 2008 ¹⁰⁴⁷ Systematic review with different protocolTafelski 2015 ¹⁰⁸⁵ Setting (ICU)Tafelski 2015 ¹¹¹⁷⁵ Not a scoring toolUeda 2014 ¹¹¹⁴⁴ Setting (ICU)Umscheid 2015 ¹¹¹⁴⁷ Development of a new scoring system, not externally validatedvan de Voorde 2013Outcomes not analysed in relation to scores at admissionVincent 2011Not a studyVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2003Not a studyVincent 2003Not a studyVincent 2003Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wong 2008 ¹¹¹⁷⁷ Setting (ICU)Wong 2008 ¹¹¹⁷⁸ Setting (ICU)	Presterl 1997 ⁹³⁵	Setting (ICU)
Richards 2011966Setting (ICU)Rixen 1996973Setting (ICU)LeGall1993713Setting (ICU)Rogy 1996981Setting (surgical ICU)Rosenberg 2002986Setting (ICU)Routsi 2007988Setting (ICU)Shapiro 20091024Not scoring toolSilva 20011037Setting (PCU)Smith 20081046Systematic review with different protocolSmith 20081047Systematic review with different protocolTafelski 20151085Setting (ICU)Tafelski 20151085Setting (ICU)Ueda 2014114Setting (ICU)Uscheid 20151117Development of a new scoring system, not externally validatedVincent 20151117Outcomes not analysed in relation to scores at admissionVincent 20111142Not a studyVincent 20131139Not a studyVincent 19961141Not a studyVincent 20031143Not a studyVincent 20031143Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901177Setting (ICU)Ving 200811177Setting (ICU)Ving 200811177Setting (ICU)Vilson 19901177Setting (ICU)Vilson 19901176Setting (ICU)Vilson 19901177Setting (ICU)Vilson 19901177Setting (ICU)Ving 200811177Setting (ICU)Ving 200811	Que 2015 ⁹⁴⁵	Setting (ICU)
Richards 2011966Setting (ICU)Rixen 1996973Setting (ICU)LeGall1993713Setting (ICU)Rogy 1996981Setting (surgical ICU)Rosenberg 2002986Setting (ICU)Routsi 2007988Setting (ICU)Shapiro 20091024Not scoring toolSilva 20011037Setting (PCU)Smith 20081046Systematic review with different protocolSmith 20081047Systematic review with different protocolTafelski 20151085Setting (ICU)Tafelski 20151085Setting (ICU)Ueda 2014114Setting (ICU)Uscheid 20151117Development of a new scoring system, not externally validatedVincent 20151117Outcomes not analysed in relation to scores at admissionVincent 20111142Not a studyVincent 20131139Not a studyVincent 19961141Not a studyVincent 20031143Not a studyVincent 20031143Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901170Setting (ICU)Vilson 19901177Setting (ICU)Ving 200811177Setting (ICU)Ving 200811177Setting (ICU)Vilson 19901177Setting (ICU)Vilson 19901176Setting (ICU)Vilson 19901177Setting (ICU)Vilson 19901177Setting (ICU)Ving 200811177Setting (ICU)Ving 200811	Rhee 2009 ⁹⁶⁵	Setting (ICU)
LeGall1993Setting (ICU)Rogy 1996Setting (surgical ICU)Rosenberg 2002Setting (ICU)Routsi 2007Setting (ICU)Shapiro 2009Not scoring toolSilva 2001aSetting (PICU)Smith 2008Setting (PICU)Smith 2008Systematic review with different protocolSmith 2008Setting (ICU)Smith 2008Systematic review with different protocolSmith 2008Systematic review with different protocolSmith 2008Setting (ICU)Tafelski 2015Setting (ICU)Tafelski 2015Setting (ICU)Ueda 2014Not a scoring toolUeda 2014Outcomes not analysed in relation to scoring toolVincent 2015Not a studyVincent 2011Not a studyVincent 2013Not a studyVincent 2003Setting (ICU)Wang 2010Setting (ICU)Wilson 1990Setting (ICU)Wong 2008Setting (ICU)Wong 2008Setting (ICU)Wong 2008Setting (ICU)Wong 2008Setting (ICU)Wong 2008Setting (ICU)Wong 2008Setting (ICU)Setting (ICU)Setting (ICU)Setting (ICU)Setting (ICU)Setting (ICU)Setting (ICU)Setting (ICU)<	Richards 2011 ⁹⁶⁶	Setting (ICU)
Rogy 1996 ³⁸¹ Setting (surgical ICU)Rosenberg 2002 ³⁸⁶ Setting (ICU)Routsi 2007 ⁹⁸⁸ Setting (ICU)Shapiro 2009 ¹⁰²⁴ Not scoring toolSilva 2001a ¹⁰³⁷ Setting (PICU)Smith 2008 ¹⁰⁴⁶ Systematic review with different protocolSmith 2008 ¹⁰⁴⁷ Systematic review with different protocolTafelski 2015 ¹⁰⁸⁵ Setting (ICU)Tafelski 2014 ¹¹¹⁴⁰ Setting (ICU)Udda 2014 ¹¹¹⁴¹ Setting (ICU)Umscheid 2015 ¹¹¹⁷¹ Development of a new scoring system, not externally validatedVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Changes in score not analysed in regards to admissionVincent 2003 ¹¹³⁹ Not a studyVincent 2003 ¹¹³⁹ Not scoring toolVincent 2003 ¹¹³⁹ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (ICU)Wong 2008 ¹¹⁷⁷ Setting (ICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Rixen 1996 ⁹⁷³	Setting (ICU)
Rosenberg 2002Setting (ICU)Routsi 2007Setting (ICU)Shapiro 2009Not scoring toolSilva 2001aNot scoring toolSilva 2001aSetting (PCU)Smith 2008Systematic review with different protocolSmith 2008Systematic review with different protocolSmith 2008Systematic review with different protocolSmith 2008Systematic review with different protocolTafelski 2015Setting (ICU)Tasi 2014Not a scoring toolUeda 2014Setting (ICU)Umscheid 2015Development of a new scoring system, not externally validatedVan de Voorde 2013Outcomes not analysed in relation to scoring toolVincent 2011Outcomes not analysed in relation to scores at admissionVincent 1996Not a studyVincent 1008Not a studyVincent 2003Setting (ICU)Wang 2010Setting (ICU)Wilson 1990Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008Setting (ICU)Wong 2008Setting (ICU)Wong 2008Setting (ICU)Wong 2008Setting (ICU)Setting (ICU)Setting (ICU)Wong 2008Setting (ICU)Setting (ICU)	LeGall1993 ⁷¹³	Setting (ICU)
Routsi 2007Setting (ICU)Shapiro 2009Not scoring toolSilva 2001a ¹⁰³⁷ Setting (PICU)Smith 20081046Systematic review with different protocolSmith 20081047Systematic review with different protocolSmith 20081047Systematic review with different protocolTafelski 20151085Setting (ICU)Tasi 20141105Not a scoring toolUeda 2014 ¹¹¹⁴ Setting (ICU)Umscheid 2015 ¹¹¹⁷ Development of a new scoring system, not externally validatedVincent 2011Outcomes not analysed in relation to scoring toolVincent 2011Not a studyVincent 1096Not a studyVincent 2003Not scoring toolVincent 2001Setting (ICU)Vincent 2003Not scoring toolVincent 1096Not a studyVincent 2003Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (ICU)Wong 2008 ¹¹⁷⁷ Setting (ICU)Wong 2014 ¹¹⁷⁸ Setting (ICU)	Rogy 1996 ⁹⁸¹	Setting (surgical ICU)
Shapiro 20091024Not scoring toolSilva 2001a1037Setting (PICU)Smith 20081046Systematic review with different protocolSmith 20081047Systematic review with different protocolTafelski 20151085Setting (ICU)Tsai 20141105Not a scoring toolUeda 20141114Setting (ICU)Umscheid 20151117Development of a new scoring system, not externally validatedVan de Voorde 20131119Outcomes not analysed in relation to scores at admissionVincent 20111142Changes in score not analysed in regards to admissionVincent 20031143Not a studyVincent 20031143Not scoring toolVialon 20081139Setting (ICU)Wilson 19901170Setting (ICU)Wilson 19901170Setting (ICU)Wilson 19901170Setting (ICU)Wong 20081177Setting (PICU)Wong 20081177Setting (PICU)Wong 20141178Setting (PICU)	Rosenberg 2002 ⁹⁸⁶	Setting (ICU)
Silva 2001a ¹⁰³⁷ Setting (PICU)Smith 2008 ¹⁰⁴⁶ Systematic review with different protocolSmith 20081 ⁰⁴⁷ Systematic review with different protocolTafelski 2015 ¹⁰⁸⁵ Setting (ICU)Tsai 2014 ¹¹⁰⁵ Not a scoring toolUeda 2014 ¹¹¹⁴ Setting (ICU)Umscheid 2015 ¹¹¹⁷ Development of a new scoring system, not externally validatedVan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scores at admissionVincent 2011 ¹¹⁴² Changes in score not analysed in regards to admissionVincent 2003 ¹¹⁴³ Not a studyVincent 2003 ¹¹⁴³ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Routsi 2007 ⁹⁸⁸	Setting (ICU)
Smith 2008Systematic review with different protocolSmith 2008BSystematic review with different protocolTafelski 2015Setting (ICU)Tsai 2014Not a scoring toolUeda 2014Setting (ICU)Umscheid 2015Development of a new scoring system, not externally validatedVan de Voorde 2013Outcomes not analysed in relation to scores at admissionVincent 2011Changes in score not analysed in regards to admissionVincent 2013Not a studyVincent 2003Not a studyVincent 2003Setting (ICU)Wang 2010Setting (ICU)Wang 2010Setting (ICU)Wilson 1990Setting (ICU)Wong 2008Setting (ICU)Wong 2014Setting (PICU)Setting (PICU)Setting (PICU)	Shapiro 2009 ¹⁰²⁴	Not scoring tool
Smith 2008B ¹⁰⁴⁷ Systematic review with different protocolTafelski 2015 ¹⁰⁸⁵ Setting (ICU)Tsai 2014 ¹¹⁰⁵ Not a scoring toolUeda 2014 ¹¹¹⁴ Setting (ICU)Umscheid 2015 ¹¹¹⁷ Development of a new scoring system, not externally validatedvan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scoring toolVincent 2011 ¹¹⁴² Outcomes not analysed in regards to admissionVincent 2011A ¹¹⁴² Changes in score not analysed in regards to admissionVincent 1996 ¹¹⁴¹ Not a studyVincent 2003 ¹¹⁴³ Not scoring toolViallon 2008 ¹¹³⁹ Setting (ICU)Wang 2010 ¹¹⁵⁶ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Silva 2001a ¹⁰³⁷	Setting (PICU)
Tafelski 2015 ¹⁰⁸⁵ Setting (ICU)Tsai 2014 ¹¹⁰⁵ Not a scoring toolUeda 2014 ¹¹¹⁴ Setting (ICU)Umscheid 2015 ¹¹¹⁷ Development of a new scoring system, not externally validatedvan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scoring toolVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011A ¹¹⁴² Changes in score not analysed in regards to admissionVincent 1996 ¹¹⁴¹ Not a studyVincent 2003 ¹¹⁴³ Not a studyVialon 2008 ¹¹³⁹ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores atWong 2008 ¹¹⁷⁷ Setting (PICU)	Smith 2008 ¹⁰⁴⁶	Systematic review with different protocol
Tsai 2014 ¹¹⁰⁵ Not a scoring toolUeda 2014 ¹¹¹⁴ Setting (ICU)Umscheid 2015 ¹¹¹⁷ Development of a new scoring system, not externally validatedvan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scoring toolVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011A ¹¹⁴² Changes in score not analysed in regards to admissionVincent 2011A ¹¹⁴² Not a studyVincent 2003 ¹¹⁴³ Not a studyVialon 2008 ¹¹³⁹ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Smith 2008B ¹⁰⁴⁷	Systematic review with different protocol
Ueda 2014 ¹¹¹⁴ Setting (ICU)Umscheid 2015 ¹¹¹⁷ Development of a new scoring system, not externally validatedvan de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scoring toolVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011A ¹¹⁴² Changes in score not analysed in regards to admissionVincent 1996 ¹¹⁴¹ Not a studyVincent 2003 ¹¹³³ Not a studyViallon 2008 ¹¹³⁹ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)	Tafelski 2015 ¹⁰⁸⁵	Setting (ICU)
Umscheid 2015Development of a new scoring system, not externally validatedvan de Voorde 20130utcomes not analysed in relation to scoring toolVincent 20110utcomes not analysed in relation to scores at admissionVincent 2011A ¹¹⁴² Outcomes not analysed in regards to admissionVincent 1996Not a studyVincent 2003 ¹¹⁴³ Not a studyViallon 2008 ¹¹³⁹ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Tsai 2014 1105	Not a scoring tool
van de Voorde 2013 ¹¹¹⁹ Outcomes not analysed in relation to scoring toolVincent 2011 ¹¹⁴² Outcomes not analysed in relation to scores at admissionVincent 2011A ¹¹⁴² Changes in score not analysed in regards to admissionVincent 1996 ¹¹⁴¹ Not a studyVincent 2003 ¹¹⁴³ Not a studyViallon 2008 ¹¹³⁹ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Ueda 2014 ¹¹¹⁴	Setting (ICU)
Vincent 20111142Outcomes not analysed in relation to scores at admissionVincent 2011AChanges in score not analysed in regards to admissionVincent 19961141Not a studyVincent 2003Not a studyVialon 2008Not scoring toolWang 2010Setting (ICU)Wilson 1990Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008Setting (PICU)Wong 2014Setting (PICU)	Umscheid 2015 ¹¹¹⁷	Development of a new scoring system, not externally validated
Vincent 2011A ¹¹⁴² Changes in score not analysed in regards to admissionVincent 1996 ¹¹⁴¹ Not a studyVincent 2003 ¹¹⁴³ Not a studyViallon 2008 ¹¹³⁹ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	van de Voorde 2013 1119	Outcomes not analysed in relation to scoring tool
Vincent 19961141Not a studyVincent 2003Not a studyViallon 2008Not a studyViallon 2008Not scoring toolWang 2010Setting (ICU)Wilson 1990Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008Setting (PICU)Wong 2014Setting (PICU)Setting (PICU)Setting (PICU)	Vincent 2011 1142	Outcomes not analysed in relation to scores at admission
Vincent 2003 ¹¹⁴³ Not a studyViallon 2008 ¹¹³⁹ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Vincent 2011A ¹¹⁴²	Changes in score not analysed in regards to admission
Viallon 2008 ¹¹³⁹ Not scoring toolWang 2010 ¹¹⁵⁶ Setting (ICU)Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)	Vincent 1996 ¹¹⁴¹	Not a study
Wang 20101156Setting (ICU)Wilson 19901170Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 20081177Setting (PICU)Wong 20141178Setting (PICU)		Not a study
Wilson 1990 ¹¹⁷⁰ Setting (post-surgical). Outcomes not analysed in relation to scores at admissionWong 2008 ¹¹⁷⁷ Setting (PICU)Wong 2014 ¹¹⁷⁸ Setting (PICU)		Not scoring tool
admissionWong 20081177Setting (PICU)Wong 20141178Setting (PICU)		Setting (ICU)
Wong 2014 ¹¹⁷⁸ Setting (PICU)	Wilson 1990 ¹¹⁷⁰	
		Setting (PICU)
Wunder 2004 ¹¹⁷⁹ Setting (ICU)		Setting (PICU)
	Wunder 2004 ¹¹⁷⁹	Setting (ICU)

L.2 Signs and symptoms

Table 36: Studies excluded from the clinical review

Reference	Reason for exclusion
Aalto 2004 ¹⁰	No relevant outcomes and does not match review question (blood test)
Abrahamsen 2013 ¹⁴	No relevant outcomes
Abudu 2002 ¹⁵	No relevant outcomes and does not match review question (no signs and symptoms considered)
Acosta 2012 ¹⁹	Inappropriate study design (case control)
Adam 2013 ²⁰	Not a study
Adams 1993 ²²	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes) Incorrect study design (case-control study)
Adejuyigbe 2001 ²³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Aebi 1996 ²⁹	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Ahkee 1997 ³⁴	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Ahn 2013A ³⁷	No relevant outcomes and does not match review question (blood test)
Aina-Mumuney 2007 ⁴⁰	No relevant outcomes and does not match review question (foetal monitoring on neonatal outcomes) Incorrect study design (case-control study)
Akpede 1993 ⁴⁴	No relevant outcomes and does not match review question (no signs and symptoms considered)
Akpede 1994 ⁴³	No relevant outcomes and does not match review question (prediction of meningitis in children with fever and seizure)
Al Jarousha 2008 ⁴⁶	Incorrect study design (case-control study)
Alam 2014 52	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Alberti 2005 ⁵⁹	No relevant outcomes
Alexander 1998 ⁶¹	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Alexander 1999 ⁶²	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Aliberti 2008 ⁶⁵	No relevant outcomes and does not match review question (prediction of clinical failure related to CAP)
Aliberti 2015 ⁶⁴	No relevant outcomes and does not match review question
Almuneef 2000 ⁶⁷	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Altunhan 2011 ⁷¹	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Alves 2010 ⁷³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Alves 2011 ⁷²	No relevant outcomes and does not match review question (no signs and symptoms considered)

Reference	Reason for exclusion
Ammann 2013 75	Setting not relevant.
Andersen 2004 ⁷⁸	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Andrews 2012 ⁸²	Systematic review with different protocol
Angsuwat 2010 ⁸⁴	No analysis on relevant outcomes.
Anon 2007 ³	Abstract only
Antonow 1998 ⁸⁶	No relevant outcomes and does not match review question (inappropriate comparisons)
Ariffin 2002 ⁹²	No relevant outcomes
Arsura 1998 ¹⁰⁰	No relevant outcomes and does not match review question (RDS). Sample size
Asiimwe 2015 ¹⁰²	No relevant analysis (no predictor analysis)
Ayoola 2003 ¹¹²	No relevant analysis.
Babay 2005 ¹¹³	No relevant outcomes and does not match review question (not a prognostic study; 8% of patients had sepsis)
Bagshaw 2007 ¹²⁹	No analysis on relevant outcomes. No relevant outcomes and does not match review question
Bagshaw 2008 ¹²⁶	No relevant outcomes and does not match review question (sepsis as risk factor for acute kidney injury)
Bang 2005b ¹³⁷	No relevant analysis.
Barati 2013 ¹⁴¹	No relevant outcomes and does not match review question (diagnostic accuracy of brain natriuretic peptide)
Barie 2004 ¹⁴⁵	No relevant outcomes and does not match review question (identification of source of infection)
Barnaby 2002 ¹⁴⁶	No relevant outcomes
Bas 2011 ¹⁵¹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Baskaran 2008 ¹⁵²	No relevant outcomes and does not match review question (no signs and symptoms considered)
Bastos 1993 ¹⁵⁴	Does not match review question (GCS as predictor of mortality in any non-traumatic ICU admission; 3% had sepsis)
Bayer 2015 ¹⁶⁰	No relevant analysis (no signs and symptoms analysed)
Bejan 2014A ¹⁶⁶	No relevant analysis.
Bekhof 2013 ¹⁶⁷	Population does not match protocol (preterm infants)
Benito 2013 ¹⁷²	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Bernstein 2007 ¹⁸¹	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Bettiol 2012 ¹⁸²	Cochrane review
Bettiol 2012 ¹⁸³	Cochrane review
Beuchee 2009 ¹⁸⁴	Population does not match protocol (preterm infants)
Bilavsky 2009 ¹⁸⁷	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Bilbault 2004 ¹⁸⁸	Does not match review question (gene expression)
Bizzarro 2011 ¹⁹⁰	No relevant outcomes and does not match review question (RDS)
Bleeker 2007 ¹⁹¹	Does not match review question (diagnostic accuracy of a tool to predict bacteraemia)

Reference	Reason for exclusion
Bochicchio 2001 ¹⁹⁵	Does not match review question (SIRS score to predict risk of infection)
Bochud 1994 ¹⁹⁶	Systematic review with different protocol
Boersma 1999 ¹⁹⁷	Does not match review question (review on discriminant rules to predict mortality in patients with community acquired pneumonia)
Bogar 2006 ¹⁹⁸	Does not match review question (diagnostic accuracy of PCT and leucocyte anti-sedimentation rate to predict bacteraemia)
Boland 1994 ²⁰⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Bonadio 1990 ²⁰⁷	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Bonadio 1992 ²⁰⁹	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Bonadio 1993 ²⁰⁶	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Bonadio 1993B ²¹⁰	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered, identification of pathogen)
Bonadio 1993C ²⁰⁸	No relevant outcomes and does not match review question (diagnostic accuracy of Young Infant Observation Scale to predict infection)
Bonig 2000 ²¹³	Does not match review question (blood tests)
Bonsu 2003 ²¹⁴	Does not match review question (diagnostic accuracy of WBC to predict bacteraemia)
Boockvar 2013 ²¹⁵	No relevant outcomes and does not match review question (predictors of delirium)
Bossink 1998 ²²⁰	No relevant outcomes
Bossink 1999 ²¹⁷	No relevant outcomes and does not match review question (development of model)
Bossink 2001 ²¹⁸	No relevant outcomes
Bozzetti 1991 ²²³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Bressan 2012 ²²⁸	Does not match review question (diagnostic accuracy of PCT, CRP, WBC to predict serious bacterial infection)
Bressan 2012A ²²⁷	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Breuling 2015 ²²⁹	No relevant analysis (no diagnostic accuracy data)
Brunkhorst 2000 ²³⁴	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Byer 2006 ²⁴²	Does not match review question (prediction of hypotension or toxic shock syndrome in patients with fever and erythroderma)
Caksen 2000 ²⁴⁶	No relevant outcomes and does not match review question (distribution of patients according to symptoms for septic arthritis and osteomyelitis)
Caljouw 2011 248	No relevant outcomes and does not match review question
Carbonell 2008 ²⁵²	No relevant outcomes and does not match review question
Carrieri 2003 ²⁵⁶	No relevant outcomes and does not match review question
Chaboyer 2008 ²⁷⁴	Does not match review question (prediction of adverse events after discharge from ICU; sepsis: 22%)
Chan 2014 ²⁸¹	No relevant outcomes and does not match review question (biomarker profiling for the prediction of neutropenic fever)

Reference	Reason for exclusion
Chen 1992 289	No relevant outcomes and does not match review question
Chen 2002 ²⁹³	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Chen 2007 ³⁰⁰	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Chen 2012B ²⁹⁹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Chen 2014 ²⁹⁰	No relevant outcomes and does not match review question
Chia 1991 ³⁰³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Chisti 2010 ³⁰⁶	Population not relevant (those with diarrhoea only in Bangladesh)
Chiu 1997 ³⁰⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Churgay 1994 ³¹¹	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Chwals 1994 ³¹³	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Clemmer 1992 ³¹⁸	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Coburn 2012 ³²¹	Systematic review with different protocol.
Comstedt 2009 ³²⁵	No relevant outcomes and does not match review question (no signs and symptoms considered)
Corona 2004 ³²⁹	No relevant outcomes and does not match review question
Craig 2010 335	Outcomes reported only in figure.
D'Orio 1990 ³⁴²	No relevant outcomes.
da Silvia 2007 ³⁴³	No relevant outcomes and does not match review question (diagnostic accuracy of PCT)
Dalegrave 2012 ³⁴⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Damas 1997 ³⁵⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Daoud 1995 352	No relevant outcomes and does not match review question
Day 1992 ³⁵⁶	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
de Macedo 2003 ³⁶⁴	No relevant outcomes.
De 2013 ³⁷⁰	No relevant outcomes and does not match review question (review traffic light system for predicting serious bacterial infections)
De2014 ³⁷¹	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Devaux 1992 ³⁸³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Dewhurst 2008 ³⁸⁶	Population does not match protocol (preterm infants)
Dickinson 2010 ³⁸⁹	Incorrect study design (narrative review)
Diepold 2008 ³⁹⁰	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests: IL-6 and IL-8)
Dior 2014 ³⁹³	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)

Reference	Reason for exclusion
Dorio 1990 ³⁴²	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Drewry 2013 ³⁹⁸	Incorrect study design (case-control study)
Drewry 2015 399	No relevant analysis (no predictor analysis)
Drvar 2013 ⁴⁰²	No relevant outcomes and does not match review question
Dunser 2009 ⁴⁰⁸	No relevant outcomes reported
Dwyer 2011 ⁴⁰⁹	No relevant outcomes and does not match review question (diagnostic accuracy of prediction rules)
Ebersoldt 2007 ⁴¹⁰	Systematic review with different protocol
Elbanks 1993 ⁴³³	No relevant outcomes and does not match review question
Elting 1992 ⁴¹⁸	No relevant outcomes and does not match review question
Escobar 2000 ⁴²⁸	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Fairchild 2010 ⁴³⁷	Incorrect study design (narrative paper)
Fairchild 2013A ⁴³⁶	Incorrect study design (narrative paper)
Falguera 2009 ⁴³⁹	No relevant outcomes
Farley 1993 ⁴⁴²	No relevant outcomes and does not match review question
Fernandez-Perez 2005447	Review with different protocol
Fialkow 2006 ⁴⁵¹	No relevant outcomes and does not match review question
Figueroa-Damian 1999 452	No relevant outcomes and does not match review question
Filbin 2014 453	No relevant outcomes and does not match review question
Finfer 2004 ⁴⁵⁴	No relevant outcomes and does not match review question
Fleming 2011 ⁴⁶⁰	Does not match protocol (no relevant analysis or outcomes)
Fok 1998 ⁴⁶³	No relevant outcomes and does not match review question (RDS). Setting not relevant
Galanakis 2002 ⁴⁷⁴	No relevant outcomes and does not match review question (RDS)
Galetto-Lacour 2010 ⁴⁷⁵	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Gallagher 1994 ⁴⁷⁶	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Garra 2005 ⁴⁹⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Gavazzi 2005 ⁴⁹¹	No relevant outcomes and does not match review question (no signs and symptoms considered)
George 1997 ⁴⁹²	No relevant outcomes and does not match review question (predictors of delirium)
Ghiorghis 1992 ⁴⁹⁶	Incorrect study design (case-control study)
Gille-Johnson 2012 ⁵⁰⁰	No relevant outcome
Goerlich 2014 ⁵⁰⁴	No relevant outcomes and does not match review question (no signs and symptoms considered)
Gogos 2003 ⁵⁰⁵	Does not match protocol (no relevant analysis or outcomes)
Goulet 2014 ⁵¹³	No relevant outcomes and does not match review question (no signs and symptoms considered)
Grander 2013 ⁵¹⁴	Does not match review question (prediction of mortality from critical illness, 8% sepsis)
Griffin 2005 ⁵¹⁸	No relevant outcomes (results from multivariable analysis available in

Reference	Reason for exclusion
	graphic form only)
Griffin 2007 ⁵¹⁹	No relevant outcomes (results from multivariable analysis available in graphic form only)
Guo 2015 ⁵³⁴	No relevant population (not people with sepsis)
Haj-Hassan 2011 ⁵⁴⁵	No relevant outcome
Hashavya 2001 ⁵⁵⁶	No relevant outcomes and does not match review question (blood test)
Hazan 2014 ⁵⁵⁸	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests to predict serious bacterial infection)
Herbst 1997 ⁵⁶⁴	No relevant outcomes and does not match review question (maternal risk factors on neonatal outcomes)
Hernandez 2012 ⁵⁶⁶	No relevant outcomes and does not match review question (predictors of resuscitation)
Horeczko 2013 ⁵⁸⁴	No relevant outcomes and does not match review question
Housinger 1993 588	No relevant outcomes and does not match review question (blood test)
Hsiao 2006 590	Outcomes not relevant (no analysis)
Ireland 2014 ⁵⁹⁹	No relevant outcomes and does not match review question (maternal predictors). Inappropriate comparison
Isfandiaty 2012 ⁶⁰²	No relevant outcomes and does not match review question (sepsis as a predictor of delirium)
Ismail 1997 ⁶⁰⁴	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered; prediction of nosocomial bacteraemia)
lwashyna 2012 ⁶⁰⁵	No relevant outcomes and does not match review question
Jacobs 1990A ⁶⁰⁷	No relevant outcomes and does not match review question (no signs and symptoms considered)
Jain 2003 ⁶¹⁰	No relevant outcomes and does not match review question
Jeddi 2010 ⁶¹⁸	No relevant outcomes and does not match review question (diagnostic accuracy of blood tests)
Juncal 2011 ⁶³¹	No relevant outcomes
Karambin 2011 638	No relevant outcomes and does not match review question
Katsimpardi 2006 ⁶⁴⁰	Does not match review question (assessment of infectious complications in paediatric patients with acute lymphoblastic leukaemia)
Kayange 2010 ⁶⁴⁴	No relevant outcomes and does not match review question (inappropriate comparison)
Khaskheli 2013 ⁶⁵²	No relevant outcomes and does not match review question (no signs and symptoms considered)
Khassawneh 2009 ⁶⁵⁴	No relevant outcomes and does not match review question (inappropriate comparison)
Khurana 2011 ⁶⁵⁶	No relevant outcomes and does not match review question
Kibuuka 2015 ⁶⁵⁸	Incorrect population (malaria population)
Kim 2011A ⁶⁶⁵	No relevant outcomes and does not match review question (no signs and symptoms considered)
Kimmoun 2013 ⁶⁶⁹	No relevant outcomes
Landesberg 2012 ⁷⁰⁵	No relevant outcomes
Lannergard 2009 ⁷⁰⁷	Does not match review question (evaluation of biomarkers as prognostic tools for the decision to stop antibiotic therapy or to investigate oral step- down therapy after an initial course of empiric intravenous cefuroxime or a combination of cefuroxime and tobramycin)

Reference	Reason for exclusion
Laterre 2005 ⁷¹⁰	No relevant outcomes and does not match review question (no signs and
	symptoms considered)
Laupland 2012 ⁷¹¹	No relevant outcomes
LeDoux 2000 ⁷¹⁴	No relevant outcomes and does not match review question (effect of
740	vasopressor therapy)
Lefrant 2010 719	No relevant outcomes and does not match review question (scoring tool)
Leichtle 2013 ⁷²⁰	No relevant outcomes and does not match review question (no signs and symptoms considered)
Levy 2005 ⁷²³	No relevant outcomes and does not match review question
Liaw 1997 ⁷²⁶	No relevant outcomes and does not match review question
Lim 2012 ⁷²⁸	Inappropriate population (pre-term infants)
Mann-Salinas 2013 ⁷⁶⁵	Incorrect study design (case-control study)
Mesquida 2012 ⁸⁰¹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Metsvaht 2009 ⁸⁰³	No relevant outcomes and does not match review question (antimicrobial)
Mikkelsen 2013 ⁸⁰⁸	No relevant outcomes and does not match review question (development of ARDS in patients with sepsis)
Mitra 1993 813	Setting not relevant
Mobin 2012 ⁸¹⁴	No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)
Nimri 2001 ⁸⁵⁹	No relevant outcomes and does not match review question (no signs and symptoms considered)
O'Leary 2015 ⁸⁶⁴	Incorrect population
Oostenbrink 2012 ⁸⁷⁸	No relevant outcomes
Ozalay 2006 ⁸⁸⁸	No relevant analysis
Papaioannou 2012 ⁸⁹⁰	No relevant outcomes reported
Piazza 2004 919	No relevant outcomes and does not match review question
Pontet 2003 ⁹²⁷	No relevant outcomes reported
Pope 2010 ⁹²⁸	No relevant outcomes and does not match review question (no signs and symptoms considered)
Quach 2008 943	No relevant outcomes and does not match review question (scoring tool)
Rackoff 1996 ⁹⁴⁶	No relevant outcomes and does not match review question (no signs and symptoms considered)
Ranes 2006 ⁹⁴⁹	No relevant outcomes and does not match review question (no signs and symptoms considered)
Razzaq 2013 ⁹⁵⁶	No relevant outcomes and does not match review question (no signs and symptoms considered)
Rehman 2014 ⁹⁵⁸	Incorrect study design (narrative study)
Ronco 1994 982	No analysis of relevant variables
Santolaya 2008 ⁹⁹⁹	No relevant outcomes and does not match review question (prognostic value of blood tests)
Schultz 2013 ¹⁰⁰⁹	No relevant outcomes reported
Sevastos 2008 ¹⁰²⁰	No relevant outcomes and does not match review question
Shani 2008 ¹⁰²¹	No relevant outcomes and does not match review question (RDS)
Shapiro 2009 ¹⁰²⁴	Does not match protocol (sepsis scores)

Singh 2003Population does not match protocol (preterm infants)Sirvent 2013No relevant outcomes and does not match review question (scoring tool)Smith 1997No relevant outcomes and does not match review questionSole-vidan 2011No relevant outcomes and does not match review questionSomogyi-Zalud 2000No relevant outcomes and does not match review questionSpanos 2010No relevant outcomesSpruig 2006No relevant outcomes and does not match review question (no signs and symptoms considered)Stathakis 2007No relevant outcomes and does not match review question (no signs and symptoms considered)Sturuelens 1991No relevant outcomes and does not match review question (no signs and symptoms considered)Sturuelens 2006No relevant outcomes and does not match review question (no signs and symptoms considered)Sturuelens 1991No relevant outcomes and does not match review questionSturuelens 2009Review with different protocolThompson 2009Review with different protocol.Torres 1991No relevant outcomes and does not match review question (no signs and symptoms considered)No relevant outcomes and does not match review question (no signs and symptoms considered)Tores 1991No relevant outcomes and does not match review question (no signs and symptoms considered)No relevant outcomes and does not match review question (no signs and symptoms considered)No relevant outcomes and does not match review question (no signs and symptoms considered)No relevant outcomes and does not match review question (no signs and symptoms considered)No relevant outcomes and does not m	Reference	Reason for exclusion
Smith 1997No relevant outcomes and does not match review question (review to determine the rate of bacteraemia in women with pyelonephritis)Sole-vidan 2011No relevant outcomes and does not match review questionSomogyi-Zalud 2000No relevant outcomes and does not match review questionSpanos 2010No relevant outcomesSpruijt 2013No relevant outcomesSpruijt 2013No relevant outcomesSpruijt 2013No relevant outcomes and does not match review question (no signs and symptoms considered)Stathakis 2007Incorrect study design (case-control study)Suchyta 1997Incorrect study design (case-control study)Suchyta 1997No relevant outcomes and does not match review questionTayek 2012Review with different protocolThompson 2009Review with different protocol.Torres 1991No relevant outcomes and does not match review question (no signs and symptoms considered)Van den Bruel 2010No relevant outcomes and does not match review question (no signs and symptoms considered)Van den Bruel 2010No relevant outcomes and does not match review question (no signs and symptoms considered)Van den Bruel 2010No relevant outcomes and does not match review question (no signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no signs and sym	Singh 2003 ¹⁰⁴²	Population does not match protocol (preterm infants)
intermediationintermediationSole-vidan 2011No relevant outcomes and does not match review questionSomogyi-Zalud 2000No relevant outcomes and does not match review questionSpanos 2010No relevant outcomesSpruijt 2013No relevant outcomesSpruijt 2013No relevant outcomesSpruijt 2014No relevant outcomes and does not match review question (no signs and symptoms considered)Stathakis 2007No relevant outcomes and does not match review question (no signs and symptoms considered)Sturelens 1991Incorrect study design (case-control study)Suchyta 1997Review with different protocolThai 2012No relevant outcomes and does not match review questionThai 2012No relevant outcomes and does not match review questionThompson 2009Case studyThompson 2010Review with different protocol.Torres 1991No relevant outcomes and does not match review question (no signs and symptoms considered)You pell 2000No relevant outcomes and does not match review question (no signs and symptoms 2010Torres 1991No relevant outcomes and does not match review question (no signs and symptoms considered)You pell 2001No relevant outcomes and does not match review question (no signs and symptoms considered)Vand Bruel 2010No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vand Signs 2005No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Values 2001No relevant outcomes	Sirvent 2013 1043	No relevant outcomes and does not match review question (scoring tool)
Somogyi-Zalud 2000No relevant outcomes and does not match review questionSpanos 2010No relevant outcomesSpruijt 2013No relevant outcomes and does not match review question (no signs and symptoms considered)Stathakis 2007No relevant outcomes and does not match review question (no signs and symptoms considered, only blood markers)Struelens 1991Incorrect study design (case-control study)Suchyta 1997No relevant outcomes and does not match review questionTayek 2012No relevant outcomes and does not match review questionThal 2012No relevant outcomes and does not match review questionThayek 2012No relevant outcomes and does not match review questionThompson 2009Review with different protocolThompson 2001EditorialTorres 1991Review with different protocol.Toweill 20001101No relevant outcomes and does not match review question (no signs and symptoms considered)Van den Bruel 20101121Systematic reviewVandissel 20051123No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014No relevant outco	Smith 1997 ¹⁰⁵¹	
Spanos 20101061No relevant outcomesSpruijt 20131063No relevant outcomes and does not match review question (no signs and symptoms considered)Stathakis 20071005No relevant outcomes and does not match review question (no signs and symptoms considered, only blood markers)Struelens 19911070Incorrect study design (case-control study)Suchyta 1997 ¹⁰⁷⁸ No relevant outcomes and does not match review questionTayek 2012 ¹⁰⁹⁰ Review with different protocolThai 2012 ¹⁰⁹⁴ No relevant outcomes and does not match review questionThompson 2009 ¹⁰⁹⁵ Cates studyThompson 2010 ¹⁰⁹⁵ EditorialTorres 1991 ¹⁰⁷⁹⁰ Review with different protocol.Torres 1991 ¹⁰⁷⁹⁰ Review nut ductomes and does not match review question (no signs and symptoms considered)Torres 1991 ¹⁰⁷⁹⁰ Review nut ductomes and does not match review question (no signs and symptoms considered)Torres 1991 ¹⁰⁷⁹⁰ No relevant outcomes and does not match review question (no signs and symptoms considered)Vandissel 2000 ¹¹²¹ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vandissel 2005 ¹¹²³ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vang 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (no signs and symptoms considered)Vang 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (no signs and symptoms considered)Vang 2009 ¹¹⁵⁶ No relevant outcomes and does not match review question (no s	Sole-vidan 2011 ¹⁰⁵³	No relevant outcomes and does not match review question
Spruijt 2013No relevant outcomesSprung 2006No relevant outcomes and does not match review question (no signs and symptoms considered)Stathakis 2007No relevant outcomes and does not match review question (no signs and symptoms considered, only blood markers)Struelens 1991Incorrect study design (case-control study)Suchyta 1997*No relevant outcomes and does not match review questionTayek 2012***********************************	Somogyi-Zalud 2000 1056	No relevant outcomes and does not match review question
Sprung 2006 ¹⁰⁶⁴ No relevant outcomes and does not match review question (no signs and symptoms considered)Stathakis 2007 ¹⁰⁶⁵ No relevant outcomes and does not match review question (no signs and symptoms considered, only blood markers)Struelens 1991 ¹⁰⁷⁰ Incorrect study design (case-control study)Suchyta 1997 ¹⁰⁷⁸ No relevant outcomes and does not match review questionTayek 2012 ¹⁰⁹⁰ Review with different protocolThai 2012 ¹⁰⁹⁴ No relevant outcomes and does not match review questionThompson 2009 ¹⁰⁹⁶ Case studyThompson 2010 ¹⁰⁹⁵ EditorialTorres 1991 ¹⁰⁹⁹ Review with different protocol.Tores 1991 ¹⁰⁹⁹ No relevant outcomes and does not match review question (no signs and symptoms considered)Van den Bruel 2010 ¹¹²¹ Systematic reviewVan den Bruel 2010 ¹¹²¹ Systematic reviewVanduspal 2002 ¹¹²³ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014 ¹¹⁴	Spanos 2010 ¹⁰⁶¹	No relevant outcomes
Image: consider of the second secon	Spruijt 2013 ¹⁰⁶³	No relevant outcomes
interfactsymptoms considered, only blood markers)Struelens 1991 ¹⁰⁷⁰ Incorrect study design (case-control study)Suchyta 1997 ¹⁰⁷⁸ No relevant outcomes and does not match review questionTayek 2012 ¹⁰⁹⁰ Review with different protocolThai 2012 ¹⁰⁹⁴ No relevant outcomes and does not match review questionThompson 2009 ¹⁰⁹⁵ Case studyThompson 2010 ¹⁰⁹⁵ EditorialTorres 1991 ¹⁰⁹⁹ Review with different protocol.Torres 1991 ¹⁰⁹⁹ Review with different protocol.Torres 1991 ¹⁰⁹⁹ No relevant outcomes and does not match review question (no signs and symptoms considered)Yan den Bruel 2010 ¹¹²¹ Systematic reviewVan den Bruel 2010 ¹¹²¹ Systematic reviewVandissel 2005 ¹¹²³ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no uni- or symptoms considered)Vyles 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (no uni- or symptoms considered)Wang 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)Wojkowskamach 2012 ¹¹⁷⁴ No relevant outcomes and does not match review question (no signs and symptoms considered)Wojlo ¹¹⁸⁰ No relevant outcomes and does not match review question (no signs and symptoms considered)Wojlo ¹¹⁸¹ No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)Wang 2009 ¹¹⁵⁵ No relevant outcomes and does not match r	Sprung 2006 ¹⁰⁶⁴	
Suchyta 1997No relevant outcomes and does not match review questionTayek 2012Review with different protocolThai 2012No relevant outcomes and does not match review questionThompson 2009Case studyThompson 2010EditorialTorres 1991Review with different protocol.Toweill 2000No relevant outcomes and does not match review question (no signs and symptoms considered)Tsering 2011No relevant outcomes and does not match review question (no signs and symptoms considered)Van den Bruel 2010Systematic reviewVandeisel 2005No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2013No relevant outcomes and does not match review question (no signs and s	Stathakis 2007 ¹⁰⁶⁵	
Tayek 2012Review with different protocolThai 2012No relevant outcomes and does not match review questionThompson 2009Case studyThompson 2010EditorialTorres 1991Review with different protocol.Toweill 2000No relevant outcomes and does not match review question (no signs and symptoms considered)Tsering 2011No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Van den Bruel 2010No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wojkowskamach 2012No relevant outcomes and does not match review question (no signs and symptoms considered)Vojkowskamach 2012No relevant outcomes and does not match review question (no signs and symptoms considered)Vi 2011No relevant outcomes and does not match review question (no signs and symptoms considered)Vi 2011No relevant outcomes and does not match review question (no signs and symptoms considered)Vi 2011No rel	Struelens 1991 ¹⁰⁷⁰	Incorrect study design (case-control study)
Thai 20121094No relevant outcomes and does not match review questionThompson 20091096Case studyThompson 20101095EditorialTorres 19911099Review with different protocol.Toweill 20001101No relevant outcomes and does not match review question (no signs and symptoms considered)Tsering 20111108No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Van den Bruel 20101121Systematic reviewVandissel 20051123No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 20121137No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 20141148No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 20121137No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 20141148No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 20091155No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 20121174Inappropriate population (hospitalised LBW newborns)Xi 20101180No relevant outcomes and does not match review question (ARDS)Yang 20131159No relevant outcomes and does not match review question (ARDS)Yang 20131150No relevant outcomes and does not match review question (ARDS)Yang 20131150	Suchyta 1997 ¹⁰⁷⁸	No relevant outcomes and does not match review question
Thompson 2009Case studyThompson 2010EditorialTorres 1991Review with different protocol.Toweill 2000No relevant outcomes and does not match review question (no signs and symptoms considered)Tsering 2011No relevant outcomes and does not match review questionVan den Bruel 2010Systematic reviewVandissel 2005No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 2012Inappropriate population (hospitalised LBW newborns)Xi 2010No relevant outcomes and does not match review question (ARDS)Yang 2013No relevant outcomes and does not match review question (ARDS)Yang 2013No relevant outcomes and does not match review question (ARDS)Yang 2013No relevant outcomes and does not match review question (ARDS)<	Tayek 2012 ¹⁰⁹⁰	Review with different protocol
Thompson 20101099EditorialTorres 19911099Review with different protocol.Toweill 20001101No relevant outcomes and does not match review question (no signs and symptoms considered)Tsering 20111108No relevant outcomes and does not match review questionVan den Bruel 201011121Systematic reviewVandissel 20051123No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 20141148No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 20141148No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 20141148No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 20141148No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 20091155No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 20121174Inappropriate population (hospitalised LBW newborns)Xi 201011180No relevant outcomes and does not match review question (ARDS)Yang 20131190No relevant outcomes and does not match review question (ARDS)Yang 20131190No relevant outcomes and does not match review question (ARDS)Yu 20111200No relevant outcomes and does not match review question (blood test)	Thai 2012 ¹⁰⁹⁴	No relevant outcomes and does not match review question
Torres 1991Review with different protocol.Toweill 2000No relevant outcomes and does not match review question (no signs and symptoms considered)Tsering 2011No relevant outcomes and does not match review questionVan den Bruel 2010Systematic reviewVandissel 2005No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Vyles 2014No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2009No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2011No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2013No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2013No relevant outcomes and does not match review question (no signs and symptoms considered)Wang 2013No relevant outcomes and does no	Thompson 2009 ¹⁰⁹⁶	Case study
Toweill 2000 ¹¹⁰¹ No relevant outcomes and does not match review question (no signs and symptoms considered)Tsering 2011 ¹¹⁰⁸ No relevant outcomes and does not match review questionVan den Bruel 2010 ¹¹²¹ Systematic reviewVandissel 2005 ¹¹²³ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012 ¹¹³⁷ No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)Wojkowskamach 2012 ¹¹⁷⁴ Inappropriate population (hospitalised LBW newborns)Xi 2010 ¹¹⁸⁰ No relevant outcomes and does not match review question (no signs and symptoms considered)Yahav 2015 ¹¹⁸⁴ No relevant outcomes and does not match review question (inappropriate comparisons)Yahav 2012 ¹¹⁹⁹ No relevant outcomes and does not match review question (ARDS)Yosuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (ARDS)	Thompson 2010 ¹⁰⁹⁵	Editorial
symptoms considered)Tsering 2011 ¹¹⁰⁸ No relevant outcomes and does not match review questionVan den Bruel 2010 ¹¹²¹ Systematic reviewVandissel 2005 ¹¹²³ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012 ¹¹³⁷ No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)Waskerwitz 1981 ¹¹⁵⁹ No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 2012 ¹¹⁷⁴ Inappropriate population (hospitalised LBW newborns)Xi 2010 ¹¹⁸⁰ No relevant outcomes and does not match review question (inappropriate comparisons)Yahav 2015 ¹¹⁸⁴ No relevant outcomes and does not match review question (ARDS)Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Torres 1991 ¹⁰⁹⁹	Review with different protocol.
Van den Bruel 20101121Systematic reviewVandissel 20051123No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 20121137No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 20141148No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 20091155No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)Waskerwitz 19811159No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 20121174Inappropriate population (hospitalised LBW newborns)Xi 20101180No relevant outcomes and does not match review question (inappropriate comparisons)Yang 20131190No relevant analysis (no analysis of predictors)Yang 20131190No relevant outcomes and does not match review question (ARDS)Yossuck 20021199Inappropriate population (newborn)Yu 20111200No relevant outcomes and does not match review question (ARDS)	Toweill 2000 ¹¹⁰¹	
Vandissel 2005 ¹¹²³ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Venugopal 2012 ¹¹³⁷ No relevant outcomes and does not match review question (no signs and symptoms considered)Vyles 2014 ¹¹⁴⁸ No relevant outcomes and does not match review question (no uni- or multi-variable analysis for signs and symptoms considered)Wang 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)Waskerwitz 1981 ¹¹⁵⁹ No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 2012 ¹¹⁷⁴ Inappropriate population (hospitalised LBW newborns)Xi 2010 ¹¹⁸⁰ No relevant outcomes and does not match review question (inappropriate comparisons)Yahav 2015 ¹¹⁸⁴ No relevant outcomes and does not match review question (ARDS)Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (ARDS)	Tsering 2011 ¹¹⁰⁸	No relevant outcomes and does not match review question
Image: Construct of the state of the stat	Van den Bruel 2010 ¹¹²¹	Systematic review
Image: considered by the symptoms considered by the solution of the symptoms considered by the symptoms consymptoms consistered by the sympt	Vandissel 2005 ¹¹²³	
Multi-variable analysis for signs and symptoms considered)Wang 2009 ¹¹⁵⁵ No relevant outcomes and does not match review question (predicting mortality in patients with bacteraemia)Waskerwitz 1981 ¹¹⁵⁹ No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 2012 ¹¹⁷⁴ Inappropriate population (hospitalised LBW newborns)Xi 2010 ¹¹⁸⁰ No relevant outcomes and does not match review question (inappropriate comparisons)Yahav 2015 ¹¹⁸⁴ No relevant analysis (no analysis of predictors)Yang 2013 ¹¹⁹⁰ No relevant outcomes and does not match review question (ARDS)Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Venugopal 2012 ¹¹³⁷	
Morelative in patients with bacteraemia)Waskerwitz 1981 ¹¹⁵⁹ No relevant outcomes and does not match review question (no signs and symptoms considered)Wojkowskamach 2012 ¹¹⁷⁴ Inappropriate population (hospitalised LBW newborns)Xi 2010 ¹¹⁸⁰ No relevant outcomes and does not match review question (inappropriate comparisons)Yahav 2015 ¹¹⁸⁴ No relevant analysis (no analysis of predictors)Yang 2013 ¹¹⁹⁰ No relevant outcomes and does not match review question (ARDS)Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Vyles 2014 ¹¹⁴⁸	
symptoms considered)Wojkowskamach 2012 ¹¹⁷⁴ Inappropriate population (hospitalised LBW newborns)Xi 2010 ¹¹⁸⁰ No relevant outcomes and does not match review question (inappropriate comparisons)Yahav 2015 ¹¹⁸⁴ No relevant analysis (no analysis of predictors)Yang 2013 ¹¹⁹⁰ No relevant outcomes and does not match review question (ARDS)Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Wang 2009 ¹¹⁵⁵	
Xi 2010 ¹¹⁸⁰ No relevant outcomes and does not match review question (inappropriate comparisons)Yahav 2015 ¹¹⁸⁴ No relevant analysis (no analysis of predictors)Yang 2013 ¹¹⁹⁰ No relevant outcomes and does not match review question (ARDS)Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Waskerwitz 1981 ¹¹⁵⁹	
(inappropriate comparisons)Yahav 2015 ¹¹⁸⁴ No relevant analysis (no analysis of predictors)Yang 2013 ¹¹⁹⁰ No relevant outcomes and does not match review question (ARDS)Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Wojkowskamach 2012 ¹¹⁷⁴	Inappropriate population (hospitalised LBW newborns)
Yang 2013No relevant outcomes and does not match review question (ARDS)Yossuck 2002Inappropriate population (newborn)Yu 2011No relevant outcomes and does not match review question (blood test)	Xi 2010 ¹¹⁸⁰	
Yossuck 2002 ¹¹⁹⁹ Inappropriate population (newborn)Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Yahav 2015 ¹¹⁸⁴	No relevant analysis (no analysis of predictors)
Yu 2011 ¹²⁰⁰ No relevant outcomes and does not match review question (blood test)	Yang 2013 ¹¹⁹⁰	No relevant outcomes and does not match review question (ARDS)
	Yossuck 2002 ¹¹⁹⁹	Inappropriate population (newborn)
Zaidi 1999 ¹²⁰² No relevant outcomes and does not match review question		No relevant outcomes and does not match review question (blood test)
	Zaidi 1999 ¹²⁰²	No relevant outcomes and does not match review question

L.3 Blood tests

Table 37: Studies excluded fro	
Study	Exclusion reason
Abdollahi 2012 ¹²	Invalid country
Aboud 2010 ¹³	Case-control study
Adamik 2000 ²¹	Invalid diagnostic tests
Adhikari 1986 ²⁴	Invalid outcomes
Adib 2012 ²⁵	Invalid country
Agrawal 2008 ³²	Invalid country
Agyeman 2011 ³³	Invalid population
Ahmed 2005 ³⁵	Invalid country
Ahn 2012 ³⁶	Invalid diagnostic tests
Aikawa 2005 ³⁸	Invalid population
Aimoto 2014 ³⁹	Invalid population
AI 2011 ⁴⁷	Invalid diagnostic tests
Alamgir 2006 ⁵⁵	Invalid analysis
Albright 2015 ⁶⁰	Invalid diagnostic tests
Al-Majali 2004 ⁴⁸	Invalid country
Al-Nawas 1996 ⁴⁹	Invalid outcomes
Al-Nawas 1996A ⁵⁰	Procalcitonin
Altunhan 2011 ⁷¹	Invalid country
Alves 2010 ⁷³	Invalid diagnostic tests
Al-Zwaini 2009 ⁵¹	Invalid country
Ambalavanan 2005 ⁷⁴	Invalid population
Anbar 1986 ⁷⁷	Invalid outcomes
Ando 2012 ⁷⁹	Invalid analysis
Anwer 2000 ⁸⁸	Invalid country
Aquino 2012 ⁹⁰	Invalid outcomes
Arkader 2006 ⁹³	Invalid country
Arnalich 1999 ⁹⁵	No prognostic or diagnostic data
Arnon 2007 ⁹⁸	Invalid analysis
Aube 1992 ¹⁰⁵	Published before 1999
Aydemir 2014 ¹⁰⁹	Invalid country
Aydin 2013 ¹¹¹	Invalid country
Aydin 2014 ¹¹⁰	Invalid country
Bakker 1996 ¹³²	No data given
Balci 2003 ¹³³	Invalid country
Ballot 2004 ¹³⁵	Procalcitonin
Baorto 2001 ¹⁴⁰	Invalid population
Barati 2008 ¹⁴³	Procalcitonin
Barati 2015 ¹⁴²	Invalid country
Baron 1989 ¹⁴⁸	Invalid outcomes
Bates 1990 ¹⁵⁶	Invalid outcomes
Becchi 2008 ¹⁶¹	Invalid outcomes
Bender 2008 ¹⁷¹	Procalcitonin
Benitz 1998 ¹⁷³	Invalid setting
Benuck 1983 ¹⁷⁵	Invalid outcomes
Berger 1995 ¹⁷⁶	Invalid setting
Berkman 2009 ¹⁷⁹	Invalid diagnostic tests
Bernstein 2007 ¹⁸¹	Invalid outcomes
Bhaandari 2014 ¹⁸⁵	Invalid diagnostic tests
Bianchi 2004 ¹⁸⁶	Invalid clagnostic tests
	invalia country

Decker 2001Invalid polationBloomendah 2002Invalid polationBloomendah 2002Invalid polationBloomendah 2002Invalid countryBoskabad 2010 ²¹⁶ Case-control studyBossink 1398 ²¹⁰ Published before 1999Bossink 1398 ²¹⁰ Invalid outcomesBrieley 2003 ³⁰¹ ProcalcitoninBroner 1990 ²²²¹ Invalid settingBuck 1394 ²¹⁶ Invalid polationBuck 1394 ²¹⁶ Invalid polationBy 1397 ²¹⁰ Published before 1999Caldas 2008 ³⁷¹ ProcalcitoninBroner 1990 ²²²¹ Invalid populationBuck 1394 ²¹⁶ Invalid populationCalvan 1998 ²²⁰ Invalid populationCarrol 2002 ⁵⁷³ Invalid populationCarrol 2002 ⁵⁷⁴ Invalid populationCarrol 2002 ⁵⁷³ Invalid populationCasabo Flores 2006 ⁵⁸⁴ Invalid populationCasabo Flores 2006 ⁵⁸⁴ Invalid populationCasabo 200 ⁵⁷³ Invalid populationCasabo 200 ⁵⁷⁴ Invalid countryChababan 200 ⁵⁷³ Invalid countryChababan 200 ⁵⁷⁴ Invalid populationCharles 200 ³⁸⁴ Invalid population<	Bleeker 2001 ¹⁹²	Involid analysis
Blos 2014Bloic 2014Anrative reviewBojic 2014Invalid countryBoskabadi 2010Case-cortol studyBossink 1998Published before 1999Bossink 1998Invalid diagnostic testsBossink 2007Invalid outcomesBriefley 2009Narrative reviewBrocks 2007ProcalcitoninBroner 1990Invalid before 1999Caldas 2008Narrative reviewBroner 1991Invalid populationBuck 1994Invalid populationBuck 1994Invalid populationCarrol 2002Invalid populationCarrol 2007Invalid populationCarrol 2007Invalid populationCarrol 2007Invalid populationCarrol 2007Invalid populationCarrol 2007Invalid countryChalupa 2011Invalid countryChalupa 2011Invalid countryChalupa 2011Invalid countryChalupa 2011Invalid countryChar 2002Invalid countryChar 2002Invalid countryChar 2002Invalid countryChar 2003Invalid countryChar 2004Invalid countryChar 2004Invalid countryChar 2004Invalid country		Invalid analysis
Bojic 2014 ³⁹³ Invalid countryBoskabadi 2010 ³¹⁶ Case-control studyBossink 1999A ¹¹⁹ Invalid diagnostic testsBossink 1999A ¹¹⁹ Invalid diagnostic testsBossink 2007 ³⁷⁰ Narrative reviewBrodet 2009 ³⁷⁰ Narrative reviewBrodet 2009 ³⁷¹ ProcalcitoninBroner 1999 ¹²¹ Invalid settingBuck 1994 ⁷⁵⁰ Invalid settingBuck 1994 ⁷⁵⁰ Invalid populationBy 1997 ⁵²¹ Published before 1999Caldas 2008 ⁴⁷⁷ Not EnglishCalvano 1998 ⁷⁵⁰ Invalid diagnostic testsCarrol 2002 ²⁵⁷ Invalid populationCarrol 2002 ⁴⁵⁸ ProcalcitoninCarrol 2002 ⁴⁵⁹ Invalid populationCarrol 2002 ⁴⁵⁹ Invalid populationCharlo 201 ⁴⁵⁹ Invalid populationCharlo 201 ⁴⁵⁹ Invalid countryCharlo 201 ⁴⁵⁹ Invalid countryCharlo 201 ⁴⁵⁹ Invalid countryCharlo 2014 ⁴⁵⁹ Invalid countr		
Boskabadi 2010 ⁷¹⁶ Case-control studyBossink 1998 ⁷⁴⁰ Published before 1999Bossink 1998 ⁷⁴⁰ Invalid diagnostic testsBossink 2001 ⁷¹⁸ Invalid diagnostic testsBossink 2001 ⁷¹⁸ Narative reviewBrierley 2009 ⁷³⁰ Narative reviewBrodska 2005 ⁷¹¹ ProcalcitoninBroner 1990 ⁷³² Invalid settingBuck 1994 ⁷⁴⁰ Invalid populationBuck 1994 ⁷⁵¹ Published before 1999Caldas 2008 ⁴⁷⁷ Not EnglishCarlot 2002 ⁵⁷⁷ Invalid diagnostic testsCarrol 2002 ⁵⁷⁸ Invalid populationCarrol 2002 ⁵⁷⁹ Invalid populationCarrol 2002 ⁵⁷⁹ Invalid populationCarrol 2002 ⁵⁷⁹ Invalid populationCarrol 2005 ⁷⁷² Invalid populationCasado-Flores 2006 ⁷⁷² Invalid populationCasado 2013 ⁷⁷⁹ Invalid populationCasado 2013 ⁷⁷⁹ Invalid populationCasado 2013 ⁷⁷¹ Invalid countryCekmez 2013 ⁷⁷³ Invalid populationChalupa 2011 ⁷⁵⁵ Invalid outcomesChalupa 2011 ⁷⁵⁶ Invalid outcomesChar 1997 ⁷⁵⁷ Invalid outcomesCharles 2008 ³⁴⁶ Invalid countryCharles 2008 ³⁴⁶ Invalid countryChen 2014 ⁴⁴⁰ Invalid countryChen 2014 ⁴⁵¹ Invalid dapostic testsCouto-Alves 2013 ³⁵⁴ <td></td> <td></td>		
Bossink 1998 ²²⁰ Published before 1999Bossink 2001 ²¹³ Invalid diagnostic testsBossink 2001 ²³⁰ Narrative reviewBrodet 1990 ²³¹ Invalid outcomesBrodet 1991 ²³¹ Invalid settingBuck 1994 ²³⁶ Invalid populationByl 1997 ²⁴⁸ Published before 1999Caldas 2008 ⁸⁷⁷ Not EnglishCalvan 01988 ²⁵⁰ Invalid diagnostic testsCarrol 2002 ⁵²⁷ Invalid diagnostic testsCarrol 2002 ⁵²⁸ Invalid opulationCarrol 2002 ⁵²⁹ Invalid ountryCaladas 2008 ²⁷¹ Invalid ountryCaladas 2008 ²⁷² Invalid countryCaladas 2008 ²⁷³ Invalid countryCelik 2010 ²⁷² Invalid countryCelik 2010 ²⁷³ Invalid countryChababa 2002 ²⁸⁴ Invalid countryChababa 2002 ²⁸⁵ Invalid countryChan 2002 ²⁸⁶ Invalid countryChan 2002 ²⁸⁷ Invalid countryChan 2002 ²⁸⁸ Invalid countryCharles 2008 ²⁸⁰ Invalid countryChan 2002 ²⁸¹ Invalid countryCharles 2008 ²⁸³ Invalid countryCharles 2008 ²⁸⁴ Invalid countryCharles 2008 ²⁸⁵ Invalid countryCharles 2008 ²⁸⁶ Invalid countryCharles 2008	-	
Bossink 1999A ³¹⁹ Invalid outcomesBossink 2001 ²¹⁰ Narattve reviewBrodska 2009 ²³¹ Narattve reviewBrodska 2009 ²³³ Invalid settingBruck 1994 ³⁶ Invalid opulationBruck 1994 ³⁶ Invalid opulationBy 1997 ²⁴³ Published before 1999Caldas 2008 ²⁴⁷ Not EnglishCalvano 1998 ²⁵⁰ Invalid opulationCarlot 2002 ³²⁵ Invalid opulationCarrol 2002 ³²⁶ ProcalcitoninCarrol 2002 ³²⁶ Invalid opulationCasado-Flores 2006 ²⁶²² Invalid opulationCasalis 2013 ²⁶⁴ Invalid opulationCasalis 2013 ²⁷⁴ Invalid opulationCasalis 2013 ²⁷⁴ Invalid outryCelik 2010 ²⁷¹ Invalid outryCelik 2010 ²⁷² Invalid outryCelabana 2009 ²⁷³ Invalid outryChabana 2009 ²⁷³ Invalid outryChabana 2009 ²⁷³ Invalid outryChan 2002 ³⁸⁵ Invalid countryChan 2002 ³⁸⁵ Invalid countryChan 2002 ³⁸⁵ Invalid countryChan 2004 ³⁸⁴ Invalid countryChan 2004 ³⁸⁴ Invalid countryChan 2004 ³⁸⁴ Invalid countryCharles 2008 ³⁸⁶ Invalid countryChen 2014 ²⁸⁷⁵ Invalid country <td></td> <td></td>		
Bossink 2001248Invalid outcomesBrierley 2009300Narrative reviewBrodska 2009313ProcalcitoninBroner 1990333Invalid settingBuck 1994344Invalid populationBuck 1994345Published before 1999Caldas 2008447Not EnglishCalvano 19983701Invalid diagnostic testsCarrol 2002457Invalid diagnostic testsCarrol 2002457Invalid diagnostic testsCarrol 2002457Invalid populationCarrol 2002457Invalid populationCarrol 2002457Invalid populationCasado-Flores 20065622Invalid populationCasado-Flores 20065622Invalid dopulationCasado-Flores 20065622Invalid populationCasado-Flores 20065622Invalid populationCasado-Flores 20065622Invalid populationChaban 2009373Invalid countryChaban 2009373Invalid countryChan 2002384Invalid countryChan 2002384Invalid countryChan 2002384Invalid countryChan 2002384Invalid countryChan 2002384Invalid countryChan 201395Invalid countryChen 2014784Invalid countryChen 2014784Invalid countryChen 2014785Invalid countryChen 2014784Invalid countryChen 2014785Invalid countryChen 2014786Invalid countryChen 2014786Invalid countryChen 2014786Invalid diagnostic testsCouter 2003345Procacitonin <tr< td=""><td></td><td></td></tr<>		
Brierley 2009 ²³⁰ Narrative reviewBrodska 2009 ²³¹ ProcalcitoninBrocher 1999 ⁷³⁵ Invalid populationBuck 1994 ²³⁶ Invalid populationBuck 1994 ²³⁷ Published before 1999Caldas 2008 ²⁴⁷ Not EnglishCalvano 1998 ²⁵⁹ Invalid jagnostic testsCarrol 2002 ²⁵⁷ Invalid populationCarrol 2002 ⁷⁵⁸ ProcalcitoninCarrol 2002 ⁷⁵⁸ Invalid populationCasado-Flores 2006 ²⁵²² Invalid populationCasado-Flores 2006 ²⁵²³ Invalid idagnostic testsCekmez 2011 ²⁷⁰ Invalid countryCekmez 2011 ²⁷⁰ Invalid countryCekmez 2011 ²⁷⁰ Invalid outornesChaubaa 2009 ²⁷³ Invalid outornesChaubaa 2009 ²⁷³ Invalid outornesChaubaa 2002 ³⁸⁴ Invalid countryChaubaa 2002 ³⁸⁵ Invalid countryChaubaa 2002 ³⁸⁴ Invalid countryChan 2001 ³⁸⁵ Invalid countryChen 2014 ²⁸⁴ Invalid countryChen 2014 ²⁸⁴ Invalid countryChen 2014 ²⁸⁴ Invalid diagnostic testsCountryInvalid analysisChen 2014 ²⁸⁴ Invalid diagnostic testsCountryInvalid analysisChen 2014 ²⁸⁴ Invalid diagnostic testsCountryInvalid diagnostic testsCountryInvalid diagnostic testsCountry <td></td> <td>-</td>		-
Brodska 2009ProcalcitoninBroner 1990Invalid settingBroner 1990Invalid populationByl 1997Published before 1999Caldas 2008Invalid diagnostic testsCarol 2002Invalid diagnostic testsCarrol 2002ProcalcitoninCarrol 2002Invalid populationCarrol 2002Invalid populationCarrol 2002Invalid populationCarrol 2002Invalid populationCasado-Flores 2006Invalid countryCalaba 2009Invalid countryCelik 2010Invalid countryCelik 2010Invalid countryCelik 2010Invalid countryChalupa 2011Invalid countryChalupa 2012Invalid countryChalupa 2012Invalid countryChalupa 2012Invalid countryChalupa 2012Invalid countryChalupa 2012Narrative reviewChan 202Invalid countryChan 202Narrative reviewChan 2012Narrative reviewChen 2014Invalid countryChen 2014Invalid anlysisClase		
Broner 1990 ²³³ Invalid settingBuck 1994 ²⁸⁶ Invalid populationBult 1994 ²⁸⁷ Published before 1999Caldas 2008 ²⁴⁷ Not EnglishCalvan 1998 ²⁵⁰ Invalid diagnostic testsCarrol 2002 ²⁵⁷ Invalid populationCarrol 2002 ⁵³⁹ Invalid populationCarrol 2002 ⁵⁴⁹ Invalid populationCasado-Flores 2005 ⁶⁵² Invalid populationCasalis 2013 ⁵⁶³ Invalid diagnostic testsCeknez 2011 ²⁷⁰ Invalid countryCelik 2010 ⁷⁷¹ Invalid outryCelik 2007 ⁷⁷³ Invalid outryChaban 2009 ⁷⁷³ Invalid outromesChan 1997 ⁷⁷⁹ Invalid countryChan 2004 ²⁸⁴ Invalid countryChan 2014 ²⁸⁵ Invalid countryChan 2014 ²⁸⁶ Invalid countryChen 2014 ²⁸⁷ Narrative reviewChen 2014 ²⁸⁵ Invalid countryChen 2014 ²⁸⁵ Invalid countryChen 2014 ²⁸⁶ Invalid countryChen 2014 ²⁸⁷ Invalid analysisClaesens 2010 ³¹⁶ Invalid analysisClaesens 2010 ³¹⁶ Invalid analysisClaesens 2010 ³¹⁶ Invalid diagnostic testsContenti 2015A ²⁸⁶ Invalid diagnostic testsContenti 2015A ²⁸⁶ Invalid diagnostic testsContenti 2014 ³¹¹ Invalid diagnostic tests <t< td=""><td></td><td></td></t<>		
Buck 1994 ²⁸⁶ Invalid populationByl 1997 ²⁴³ Published before 1999Caldas 2008 ²⁴⁷ Not EnglishCaldas 2008 ²⁴⁷ Invalid diagnostic testsCarrol 2002 ²⁵⁷ Invalid populationCarrol 2002 ²⁵⁸⁹ Invalid populationCasado-Flores 2006 ³⁴² Invalid populationCasado-Flores 2006 ³⁴² Invalid populationCasado-Flores 2006 ³⁴² Invalid countryCelik 2010 ²⁷¹ Invalid countryCelik 2010 ²⁷¹ Invalid countryChabap 2009 ²⁷³ Invalid outcomesChabap 2009 ²⁷³ Invalid outcomesChan 2002 ²⁸⁸ Invalid outcomesChan 2002 ²⁸⁹ Invalid countryChan 2002 ²⁸⁴ Invalid countryChan 2002 ²⁸⁵ Invalid countryChan 2002 ²⁸⁶ Invalid countryChan 2002 ²⁸⁶ Invalid countryChan 2011 ²⁸⁷ Narrative reviewChen 2011 ²⁸⁸ Narrative reviewChen 2011 ²⁸⁹ Invalid countryChen 2014 ²⁸⁴ Invalid analysisClassens 2010 ¹¹⁶ Invalid analysisClassens 2010 ¹¹⁶ Invalid analysisClassens 2010 ¹¹⁸ Invalid analysisClassens 2010 ¹³¹⁴ Invalid diagnostic testsCouto 207 ³⁴⁴ Invalid diagnostic testsCouto 207 ³⁴⁴ Invalid diagnostic testsCouto	Brodska 2009 ²³¹	
Byl 1997*43Published before 1999Caldas 2008*47Not EnglishCalvano 1998*250Invalid diagnostic testsCarrol 2002*277Invalid populationCarrol 2002*279Invalid populationCarrol 2005*279Invalid populationCarrol 2005*279Invalid populationCasado-Flores 2005*42Invalid populationCasado-Flores 2005*42Invalid diagnostic testsCekmez 2011*270Invalid countryCelkk 2010*271Invalid countryChaban 2009*73Invalid populationChaban 2009*73Invalid populationChan 2002*283Invalid populationChan 2002*283Invalid countryChan 2002*284Invalid countryChan 2002*285Invalid countryChan 2002*286Invalid countryCharles 2008*286Invalid countryCharles 2008*286Invalid countryCharles 2008*286Invalid countryCharles 2008*286Invalid countryCharles 2008*286Invalid countryChen 2014*284Invalid countryChen 2014*284Invalid countryChen 2014*285Invalid analysisClaessens 2010*286Invalid diagnostic testsCounter 2014*		-
Caldas 2008 ³⁴⁷ Not EnglishCalvano 1998 ²⁵⁰ Invalid diagnostic testsCarrol 2002 ²⁵⁷ Invalid populationCarrol 2004 ²⁵⁸ ProcalcitoninCarrol 2005 ²⁵⁹ Invalid populationCasado-Flores 2006 ²⁶² Invalid populationCasalts 2013 ²⁶⁵ Invalid diagnostic testsCekmez 2011 ²⁷⁰ Invalid countryCelk 2010 ⁷¹ Invalid countryChabaa 2009 ²⁷³ Invalid analysisChauna 2009 ²⁷³ Invalid outcomesChan 2002 ²⁸³ Invalid countryChan 2002 ²⁸⁴ Invalid countryChan 2001 ²⁷⁵ Invalid countryChan 2001 ²⁷⁶ Invalid countryChan 2001 ²⁷⁷ Invalid countryChan 2001 ²⁸⁴ Invalid countryChan 2001 ²⁷⁵ Narrative reviewChan 2011 ²⁸² Narrative reviewChen 2014 ²⁸⁴ Invalid countryChen 2014 ²⁸⁴ Invalid analysisClasses 2010 ³¹⁵ Invalid analysisClasses 2010 ³¹⁵ Invalid analysisClasses 2010 ³¹⁶ Invalid diagnostic testsContent 2015A ²⁸⁴ Invalid diagnostic testsContent 2015A ²⁸⁵ Invalid diagnostic testsContent 2015A ²⁸⁶ Invalid diagnostic testsCouto 2007 ³³⁴ Invalid diagnostic testsCouto 2007 ³³⁴⁴ Invalid diagnostic testsCouto 2007 ³³⁴⁴ Invalid diagnostic test		Invalid population
Calvano 1998 ³⁵⁰ Invalid diagnostic testsCarrol 2002 ⁵³⁹ Invalid populationCarrol 2005 ⁵³⁹ Invalid populationCasado-Flores 2006 ⁸²² Invalid populationCasado-Flores 2006 ⁸²³ Invalid diagnostic testsCekmez 2014 ²⁷⁰ Invalid countryCekmez 2014 ²⁷⁰ Invalid countryChaban 2009 ²⁷³ Invalid outcomesChalupa 2011 ²⁷⁶ Invalid outcomesChan 2002 ⁸³⁰ Invalid countryChan 2002 ⁸⁴³ Invalid countryChan 2002 ⁸⁴³ Invalid countryChan 2004 ²⁸⁴ Invalid countryChan 2004 ²⁸⁴ Invalid outcomesChan 2004 ²⁸⁴ Invalid countryChan 2004 ²⁸⁴ Invalid countryChan 2004 ²⁸⁵ Invalid countryChan 2004 ²⁸⁶ Invalid countryChan 2014 ²⁸⁷ Narrative reviewChan 2014 ²⁸⁵ Invalid countryChen 2014 ²⁸⁵ Invalid countryChen 2014 ²⁸⁵ Invalid countryChen 2014 ²⁸⁵ Invalid countryChen 2014 ²⁸⁵ Invalid analysisClassens 2010 ³¹⁶ Invalid analysisClassens 2010 ³¹⁵ Invalid analysisClassens 2010 ³¹⁵ Invalid diagnostic testsContent 2015 ³⁴⁴ Invalid diagnostic testsContent 2015 ³⁴⁵⁴ Invalid diagnostic testsContent 2015 ³⁴⁵⁵ Invalid diagnostic testsContent 2015 ³⁴⁵⁶ Invalid diagnostic testsContent 2015 ³⁴⁵⁶ Invalid diagnostic testsContent 2015 ³⁴⁵⁶ Invalid diagnostic testsContent 2015 ³⁴⁵	Byl 1997 ²⁴³	Published before 1999
Carrol 2002Invalid populationCarrol 2003ProcalcitoninCarrol 2003Invalid populationCasado-Flores 2006Invalid populationCasado-Flores 2006Invalid populationCasado-Flores 2007Invalid diagnostic testsCekmez 2011Invalid countryCelik 2010Invalid countryChabaa 2009Invalid countryChabaa 2009Invalid countryChabaa 2009Invalid countryChabaa 2009Invalid countryChan 2002Invalid countryChan 2004Invalid countryChan 2004Invalid countryChan 2004Invalid countryChan 2004Invalid countryChan 2004Invalid countryChan 2004Invalid countryChan 2014Invalid countryChan 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid populationCless 2003Invalid populationCless 2003Invalid analysisClassens 2010Invalid diagnostic testsContent 2015A34Invalid diagnostic testsContent 2015A34 <td></td> <td>Not English</td>		Not English
Carrol 2002A ²⁵⁸ ProcalcitoninCarrol 2005 ²⁵⁹ Invalid populationCasado-Flores 2006 ²⁵² Invalid populationCasalis 2013 ²⁵⁸ Invalid diagnostic testsCekmez 2011 ²⁷⁰ Invalid countryCelik 2010 ²⁷¹ Invalid countryChaban 2009 ²⁷³ Invalid analysisChalupa 2011 ²⁷⁵ Invalid countryChan 1997 ²⁷⁹ Invalid countryChan 2002 ²⁸⁴ Invalid countryChan 2002 ²⁸⁴ Invalid countryChan 2002 ²⁸⁴ Invalid countryChan 2002 ²⁸⁴ Invalid countryChan 2002 ²⁸⁵ Invalid countryChan 2010 ²⁷⁷ Narrative reviewCharles 2008 ²⁸⁶ Invalid countryChen 2014 ²⁹⁴ Invalid analysisClassens 2010 ¹¹⁶ Invalid analysisClassens 2010 ¹¹⁶ Invalid analysisClassens 2010 ¹¹⁸ Invalid diagnostic testsContent 2015 ³²⁶ Invalid diagnostic testsContent 2015 ³²⁶ Invalid diagnostic testsContent 2015 ³²⁶ Invalid diagnostic testsCouto-Alves 2013 ³³⁴ Invalid diagnostic testsCouto-Alves 2013 ³⁴⁴ Invalid diagnostic testsCouto-Alves 2013 ³⁵⁴ Invalid diagnostic testsDa 3liva 2007A ³⁴⁴ Invalid populationDa 1012 ⁴⁵⁶ Invalid diagnostic testsDa 3liva 2007A ³		Invalid diagnostic tests
Carrol 2005Invalid populationCasalis 2013Invalid populationCazalis 2013Invalid diagnostic testsCekmez 2011Invalid countryCelik 2010Invalid ountryChaban 2009Invalid outcomesChalupa 2011Invalid outcomesChan 1997Invalid outcomesChan 2004Invalid countryChan 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid analysisClassens 2010Invalid analysisClassens 2010Invalid analysisClassens 2013Invalid analysisCortegiani 2014Invalid diagnostic testsContent 2015A ³²⁶ Invalid diagnostic testsContent 2015A ³²⁶ Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007A ³⁴⁴ Invalid diagnostic testsCouto 2007A ³⁴⁴ Invalid diagnostic testsDatin 2014Invalid diagnostic testsCouto 2007A ³⁴⁴ Invalid diagnosti		Invalid population
Casado-Flores 2005 ³⁶² Invalid idagnostic testsCasadis 2013 ³⁷⁶⁸ Invalid diagnostic testsCekmez 2011 ²⁷⁰ Invalid countryChaban 2009 ²⁷³ Invalid outoryChaban 2009 ²⁷³ Invalid outcomesChalupa 2011 ²⁷⁶ Invalid outcomesChan 1997 ⁷⁷⁹ Invalid outcomesChan 2002 ²⁸³ Invalid outryChan 2002 ²⁸³ Invalid countryChan 2001 ²⁸⁴ Invalid outryChan 2001 ²⁸⁵ Invalid outcomesCharles 2008 ²⁸⁶⁵ Invalid outcomesChen 2010 ²⁹⁷ Narrative reviewChen 2010 ²⁹⁷ Narrative reviewChen 2014 ²⁹⁴ Invalid outryChen 2014 ²⁹⁴ Invalid countryChen 2014 ²⁹⁵ Invalid countryChen 2014 ²⁹⁵ Invalid countryChes 2003 ³⁰⁵ Invalid analysisClassens 2010 ³¹⁶ Invalid analysisClassens 2010 ³¹⁶ Invalid analysisClassens 2010 ³¹⁶ Invalid analysisContenti 2015A ³²⁶ Invalid diagnostic testsContenti 2015A ³²⁶ Invalid diagnostic testsCouto-Alves 2013 ³³⁴ Invalid diagnostic testsCouto-Alves 2013 ³³⁴ Invalid diagnostic testsCouto-Alves 2013 ³³⁴ Invalid analysisDasilva 2007A ³⁴⁴ Invalid diagnostic testsDasilva 2007A ³⁴⁴ Invalid diagnostic		Procalcitonin
Cazalis 2013Invalid diagnostic testsCekmez 2011Invalid countryCelik 2010Invalid countryChabaa 2009Invalid analysisChabaa 2009Invalid analysisChalupa 2011Invalid outcomesChan 1997Invalid countryChan 2002Invalid countryChan 2004Invalid countryChan 2014Invalid countryChan 2010Invalid countryChan 2014Invalid countryChen 2014Invalid analysisClassens 2010Invalid analysisClassens 2013Invalid analysisClassens 2013Invalid analysisColighan 2004ProcalcitoninCoggins 2013Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2014Invalid diagnostic testsCouto 2017Invalid diagnostic testsCouto 2013Invalid diagnostic testsCouto 2013Invalid diagnostic testsCouto 2013 <td< td=""><td>Carrol 2005²⁵⁹</td><td>Invalid population</td></td<>	Carrol 2005 ²⁵⁹	Invalid population
Cekmez 2011Invalid countryCelik 2010Invalid countryChabap 2009Invalid analysisChalupa 2011Invalid analysisChalupa 2011Invalid outcomesChan 1997Invalid populationChan 2002Invalid countryChan 2004Invalid countryCharles 2008Invalid countryCharles 2008Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid countryChen 2014Invalid acountryChen 2014Invalid analysisClaessen 2010Invalid analysisClaessen 2010Invalid analysisColtec'n 2004Invalid analysisColtal 2014Invalid diagnostic testsContent 2015Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid analysisCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid analysisCouto 2007Invalid analysisCouto 2007Invalid diagnostic testsCout	Casado-Flores 2006 ²⁶²	Invalid population
Celik 2010 ²⁷¹ Invalid countryChaaban 2009 ²⁷³ Invalid analysisChalupa 2011 ²⁷⁶ Invalid outcomesChan 1997 ²⁷⁹ Invalid countryChan 2002 ²⁸³ Invalid countryChan 2004 ²⁸⁴ Invalid countryChan 2004 ²⁸⁴ Invalid countryChan 2011 ²⁸² Narrative reviewCharles 2008 ²⁸⁶ Invalid outcomesChen 2010 ²⁷⁷ Narrative reviewChen 2010 ²⁷⁷ Narrative reviewChen 2014 ²⁹⁴ Invalid countryChen 2014 ²⁹⁵ Invalid countryChen 2014 ²⁹⁶ Invalid countryChen 2014 ²⁹⁷ Narrative reviewChen 2014 ²⁹³ Invalid countryChen 2014 ²⁹⁴ Invalid countryChen 2014 ²⁹⁵ Invalid countryChesa 2003 ³⁰⁵ Invalid populationClaessens 2010 ³¹⁶ Invalid analysisClaessens 2010 ³¹⁶ Invalid apostic testsContenti 2015A ³²⁶ Invalid diagnostic testsContenti 2015A ³²⁶ Invalid diagnostic testsCouto 2007 ³³³ Invalid diagnostic testsCouto 2007 ³³³ Invalid diagnostic testsCouto 2012 ³⁴⁴ Invalid populationCraig 2010 ³⁵⁵ Invalid populationDavis 2015 ³⁵⁴ Invalid populationDavis 2015 ³⁵⁴ Invalid populationDavis 2015 ³⁵⁴ Invalid populationDe 1998 ⁸⁰⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe lager 2013 ³⁵⁸ Invalid study designDe lager 2013 ³⁵⁴ Invalid study design <t< td=""><td>Cazalis 2013²⁶⁸</td><td>Invalid diagnostic tests</td></t<>	Cazalis 2013 ²⁶⁸	Invalid diagnostic tests
Chaaban 2009Invalid analysisChalupa 2011Invalid outcomesChan 1997Invalid outcomesChan 1997Invalid countryChan 2002Invalid countryChan 2004Invalid countryChan 2004Invalid countryChan 2004Narrative reviewChan 2014Invalid outcomesChan 2010Narrative reviewChan 2014Invalid countryChen 2014Invalid analysisCless 2000Invalid analysisClassens 2010Invalid analysisClassens 2013Invalid diagnostic testsContent 2015AInvalid diagnostic testsCortegiani 20143Invalid diagnostic testsCorteagiani 20143Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid analysisDation 2012Invalid analysisDation 2012Invalid analysisCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid analysisDation 2012Invalid analysisDation 2012Invalid analysisDation 2012 <t< td=""><td>Cekmez 2011²⁷⁰</td><td>Invalid country</td></t<>	Cekmez 2011 ²⁷⁰	Invalid country
Chalupa 2011276Invalid outcomesChan 1997279Invalid populationChan 200283Invalid countryChan 2004284Invalid countryChan 2011282Narrative reviewCharls 2008286Invalid outcomesCharls 2008286Invalid outcomesChen 2010297Narrative reviewChen 2014234Invalid countryChen 2014234Invalid countryChen 2014235Invalid countryChen 2014236Invalid countryChen 2014236Invalid countryChen 2014237Invalid countryChen 2014236Invalid countryChen 2014237Invalid countryChen 2014236Invalid analysisClaessens 2010316Invalid analysisClaessens 2010316Invalid analysisClaessens 2010317ProcalcitoninCogins 2013323Invalid diagnostic testsContent 2015A324Invalid diagnostic testsContent 2015A325Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007334Invalid diagnostic testsDa Silva 2007A344Invalid populationDatinz 2012345Invalid analysisDavis 2015354Invalid analysisDavis 2015354Invalid countryDe 1998469Invalid countryDe 1998469Invalid study designDe 1998469Invalid study designDe 192014372Invalid study design	Celik 2010 ²⁷¹	Invalid country
Chan 1997 279Invalid populationChan 2002 284Invalid countryChan 2011 282Narrative reviewCharles 2008 286Invalid outcomesCharles 2008 286Invalid outcomesChen 2010 297Narrative reviewChen 2014 294Invalid countryChen 2014 295Invalid analysisClaessen 2010 305Invalid analysisClaessen 2010 316Invalid diagnostic testsContenti 2015A 325Invalid diagnostic testsCouto 2007 334Invalid diagnostic testsCouto 2007 335Invalid diagnostic testsCouto 2013 344Invalid diagnostic testsDa Silva 2007A 344Invalid populationDation 2012 349Invalid analysisDation 2012 349Invalid analysisDation 2012 349Invalid analysisDation 2013 344Invalid populationDation 2013 345Invalid countryDe 1382 2013 345Invalid countryDe 1383 2013 345Invalid co	Chaaban 2009 ²⁷³	Invalid analysis
Chan 1997 279Invalid populationChan 2002 284Invalid countryChan 2011 282Narrative reviewCharles 2008 286Invalid outcomesCharles 2008 286Invalid outcomesChen 2010 297Narrative reviewChen 2014 294Invalid countryChen 2014 295Invalid analysisClaessen 2010 305Invalid analysisClaessen 2010 316Invalid diagnostic testsContenti 2015A 325Invalid diagnostic testsCouto 2007 334Invalid diagnostic testsCouto 2007 335Invalid diagnostic testsCouto 2013 344Invalid diagnostic testsDa Silva 2007A 344Invalid populationDation 2012 349Invalid analysisDation 2012 349Invalid analysisDation 2012 349Invalid analysisDation 2013 344Invalid populationDation 2013 345Invalid countryDe 1382 2013 345Invalid countryDe 1383 2013 345Invalid co	Chalupa 2011 ²⁷⁶	
Chan 2002Invalid countryChan 2004Invalid countryChan 2011Narrative reviewChan 2011Narrative reviewCharles 2008Invalid outcomesChen 2010Narrative reviewChen 2014Invalid countryChen 2013Invalid analysisClac'h 2004Invalid analysisCollighan 2004Invalid diagnostic testsContenti 2015AInvalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto 2007Invalid populationDalion 2012Invalid populationDalion 2012Invalid populationDalion 2012Invalid populationDalion 2012Invalid populationDalion 2013Invalid countryDe 1398Invalid countryDe 1398Invalid study designDe 1398Invalid study designDe		Invalid population
Chan 2004284Invalid countryChan 2011282Narrative reviewCharles 2008286Invalid outcomesChen 2010297Narrative reviewChen 2014294Invalid countryChen 2014F01Invalid countryChesa 2000304ProcalcitoninClaessens 2010315Invalid analysisClaessens 2010316Invalid analysisColighan 2004324Invalid diagnostic testsContenti 2015A325Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007334Not relevant to review questionCraig 2010355Invalid diagnostic testsDa Silva 2007A344Invalid populationDaton 2012 ³⁴⁹ Invalid analysisDavis 2015354Invalid populationDaton 2012 ³⁴⁹ Invalid analysisDavis 2015354Invalid populationDe 1998369Invalid countryde Azevedo 2015357Invalid countryDe 1988369Invalid countryDe 1988369Invalid countryDe 1988369Invalid study designDe 19823013354Invalid countryDe 1983304Invalid countryDe 1983304Invalid countryDe 1983304Invalid countryDe 1983304Invalid countryDe 1983304Invalid country <td></td> <td></td>		
Chan 2011282Narrative reviewCharles 2008286Invalid outcomesChen 2010297Narrative reviewChen 2014234Invalid countryChen 2014E301Invalid countryChen 2014F295Invalid countryChen 2014F295Invalid countryCheisa 2000304ProcalcitoninChiesa 2003305Invalid analysisClaessens 2010316Invalid analysisClaessens 2010317ProcalcitoninCoggins 2013323Invalid analysisCollighan 2004324Invalid diagnostic testsContenti 2015A325Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto -Alves 2013344Not relevant to review questionCraig 2010355Invalid diagnostic testsDa Silva 2007A344Invalid populationDation 2012349Invalid analysisDavis 2015354Invalid ocuntryDe 1998369Invalid countryDe 1998369Invalid countryDe 1998369Invalid study designDe Jager 2010362Invalid study designDe Jager 2010362Invalid study designDe Jager 2010362Invalid study designDe Jager 2010372Invalid population		
Charles 2008Invalid outcomesChen 2010Narrative reviewChen 2014Invalid countryChen 2014EInvalid countryChen 2014FInvalid countryChen 2014FInvalid countryChen 2014FInvalid countryChen 2014FInvalid countryCheisa 2000 ³⁰⁴ ProcalcitoninChiesa 2003 ³⁰⁵ Invalid analysisClaessens 2010 ³¹⁶ Invalid populationClec'n 2004 ³¹⁷ ProcalcitoninCogins 2013 ³²³ Invalid analysisCollighan 2004 ³²⁴ Invalid diagnostic testsContenti 2015A ³²⁶ Invalid diagnostic testsCouto 2007 ³³³ Invalid diagnostic testsCouto 2007 ³³³ Invalid diagnostic testsCouto 2007 ³³⁴ Invalid diagnostic testsDa Silva 2007A ³⁴⁴ Invalid populationDation 2012 ³⁴⁹ Invalid inalysisDavis 2015 ³⁵⁴ Invalid populationDation 2012 ³⁴⁹ Invalid countryDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe 198 ²⁶² Invalid study designDe 1998 ²⁶² Invalid study designDe 1991Invalid study designDe 1901Invalid study designDe 1902Invalid study designDe 1902Invalid study designDe 1904Invalid population		· ·
Chen 2010 ²⁹⁷ Narrative reviewChen 2014 ²⁹⁴ Invalid countryChen 2014E ³⁰¹ Invalid countryChen 2014F ²⁹⁵ Invalid countryChiesa 2000 ³⁰⁴ ProcalcitoninChiesa 2003 ³⁰⁵ Invalid analysisClaessens 2010 ³¹⁶ Invalid populationClec'h 2004 ³¹⁷ ProcalcitoninCogins 2013 ³²³ Invalid analysisCollighan 2004 ³²⁴ Invalid diagnostic testsContenti 2015A ²²⁶ Invalid diagnostic testsCottegiani 2014 ³³¹ Invalid diagnostic testsCouto 2007 ³³³ Invalid diagnostic testsCouto 2007 ³³⁴ Not relevant to review questionCraig 2010 ³⁵⁵ Invalid diagnostic testsDa Silva 2007A ³⁴⁴ Invalid populationDation 2012 ³⁴⁹ Invalid outcomesDavis 2015 ³⁵⁴ Invalid populationDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid countryDe Jager 2010 ³⁵² Invalid study designDe biane 2014 ³⁷² Invalid study design	Charles 2008 ²⁸⁶	
Chen 2014Invalid countryChen 2014EInvalid countryChen 2014F295Invalid countryChiesa 2000306ProcalcitoninChiesa 2003305Invalid analysisClaessens 20103316Invalid populationClec'h 2004317ProcalcitoninCoggins 2013323Invalid analysisCollighan 2004324Invalid diagnostic testsContenti 20154333Invalid diagnostic testsContenti 20154333Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007334Invalid diagnostic testsCouto 2007335Invalid diagnostic testsCouto 2007334Not relevant to review questionCraig 2010355Invalid diagnostic testsDa silva 2007A344Invalid populationDaton 2012349Invalid populationDaton 2012354Invalid populationDator 2015354Invalid countryde Azevedo 2015357Invalid countryDe Blasi 2013358Invalid study designDe Jager 2010362Invalid study designDebiane 20143772Invalid population		
Chen 2014E ³⁰¹ Invalid countryChen 2014F ²⁵⁵ Invalid countryChiesa 2000 ³⁰⁴ ProcalcitoninChiesa 2003 ³⁰⁵ Invalid analysisClaessens 2010 ³¹⁶ Invalid populationClec'h 2004 ³¹⁷ ProcalcitoninCoggins 2013 ³²³ Invalid analysisCollighan 2004 ³²⁴ Invalid diagnostic testsContenti 2015A ³²⁶ Invalid diagnostic testsCortegiani 2014 ³³¹ Invalid diagnostic testsCouto 2007 ³³³ Invalid diagnostic testsCouto 2007 ³³⁴ Invalid diagnostic testsCouto 2007 ³³⁵ Invalid diagnostic testsDa Silva 2007A ³⁴⁴ Invalid diagnostic testsDa Silva 2007A ³⁴⁴ Invalid populationDaton 2012 ³⁴⁹ Invalid analysisDavis 2015 ³⁵⁴ Invalid populationDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid study designDe Jager 2010 ³⁶² Invalid study designDebiane 2014 ³⁷² Invalid population		
Chen 2014F295Invalid countryChiesa 2000304ProcalcitoninChiesa 2003305Invalid analysisClaessens 2010316Invalid populationClec'h 2004317ProcalcitoninCoggins 2013323Invalid analysisCollighan 2004324Invalid analysisContenti 2015A326Invalid diagnostic testsContenti 2015A326Invalid diagnostic testsCortegiani 2014331Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto-Alves 2013334Not relevant to review questionCraig 2010335Invalid diagnostic testsDa Silva 2007A344Invalid analysisDation 2012349Invalid analysisDavis 2015354Invalid opulationDe 1998369Invalid countryde Azevedo 2015357Invalid countryDe Blasi 2013358Invalid study designDe Jager 2010362Invalid study designDebiane 2014372Invalid population		
Chiesa 2000304ProcalcitoninChiesa 2003305Invalid analysisClaessens 2010316Invalid populationClec'h 2004317ProcalcitoninCoggins 2013323Invalid analysisCollighan 2004324Invalid diagnostic testsContenti 2015A326Invalid diagnostic testsCortegiani 2014331Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007333Invalid diagnostic testsCouto 2007334Invalid diagnostic testsCouto 2007335Invalid diagnostic testsDa Silva 2007A344Invalid diagnostic testsDation 2012349Invalid analysisDavis 2015354Invalid populationDe 1998369Invalid countryDe Blasi 2013358Invalid countryDe Blasi 2013358Invalid study designDe Jager 2010362Invalid study designDe blane 2014372Invalid population		
Chiesa 2003Invalid analysisClaessens 2010Invalid populationClec'h 2004ProcalcitoninCoggins 2013Invalid analysisCollighan 2004Invalid analysisContenti 2015AInvalid diagnostic testsContenti 2015AInvalid diagnostic testsCortegiani 2014Invalid diagnostic testsCouto 2007Invalid diagnostic testsDasilva 2007AInvalid diagnostic testsDasilva 2007AInvalid populationDation 2012Invalid populationDe 1998Invalid countryDe Blasi 2013Invalid countryDe Blasi 2013Invalid study designDe Jager 2010Invalid study designDebiane 2014Invalid population		·
Claessens 2010 ³¹⁶ Invalid populationClec'h 2004 ³¹⁷ ProcalcitoninCoggins 2013 ³²³ Invalid analysisCollighan 2004 ³²⁴ Invalid diagnostic testsContenti 2015A ³²⁶ Invalid diagnostic testsCortegiani 2014 ³³¹ Invalid outcomesCouto 2007 ³³³ Invalid diagnostic testsCouto 2007 ³³⁴ Not relevant to review questionCraig 2010 ³³⁵ Invalid diagnostic testsDa Silva 2007A ³⁴⁴ Invalid opulationDalton 2012 ³⁴⁹ Invalid analysisDavis 2015 ³⁵⁴ Invalid populationDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid study designDe Jager 2010 ³⁶² Invalid study designDebiane 2014 ³⁷² Invalid population	$Chiesa 2003^{305}$	
Clec'h 2004 ³¹⁷ ProcalcitoninCoggins 2013 ³²³ Invalid analysisCollighan 2004 ³²⁴ Invalid diagnostic testsContenti 2015A ³²⁶ Invalid diagnostic testsCortegiani 2014 ³³¹ Invalid outcomesCouto 2007 ³³³ Invalid diagnostic testsCouto 2007 ³³⁴ Invalid diagnostic testsCouto-Alves 2013 ³³⁴ Not relevant to review questionCraig 2010 ³³⁵ Invalid diagnostic testsDa Silva 2007A ³⁴⁴ Invalid populationDalton 2012 ³⁴⁹ Invalid analysisDavis 2015 ³⁵⁴ Invalid populationDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid study designDe Jager 2010 ³⁶² Invalid study designDebiane 2014 ³⁷² Invalid population	Classens 2010^{316}	
Coggins 2013Invalid analysisCollighan 2004Invalid diagnostic testsContenti 2015AInvalid diagnostic testsCortegiani 2014Invalid outcomesCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto-Alves 2013Not relevant to review questionCraig 2010Invalid diagnostic testsDa Silva 2007AInvalid diagnostic testsDaton 2012Invalid populationDatis 2015Invalid countryDe J998Invalid countryDe Blasi 2013Invalid study designDe Jager 2010Invalid study designDebiane 2014Invalid population		
Collighan 2004Invalid diagnostic testsContenti 2015AInvalid diagnostic testsCortegiani 2014Invalid outcomesCouto 2007Invalid diagnostic testsCouto 2007Invalid diagnostic testsCouto-Alves 2013Invalid diagnostic testsCouto-Alves 2013Invalid diagnostic testsCouto-Alves 2013Invalid diagnostic testsDa Silva 2007AInvalid diagnostic testsDa Silva 2007AInvalid populationDalton 2012Invalid analysisDavis 2015Invalid countryde Azevedo 2015Invalid countryDe Blasi 2013Invalid study designDe Jager 2010Invalid study designDebiane 2014Invalid population		
Contenti 2015A ³²⁶ Invalid diagnostic testsCortegiani 2014 ³³¹ Invalid outcomesCouto 2007 ³³³ Invalid diagnostic testsCouto-Alves 2013 ³³⁴ Not relevant to review questionCraig 2010 ³³⁵ Invalid diagnostic testsDa Silva 2007A ³⁴⁴ Invalid populationDalton 2012 ³⁴⁹ Invalid analysisDavis 2015 ³⁵⁴ Invalid populationDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid study designDe Jager 2010 ³⁶² Invalid study designDebiane 2014 ³⁷² Invalid population		
Cortegiani 2014Invalid outcomesCouto 2007Invalid diagnostic testsCouto-Alves 2013Not relevant to review questionCraig 2010Invalid diagnostic testsDa Silva 2007AInvalid diagnostic testsDalton 2012Invalid populationDalton 2012Invalid populationDavis 2015Invalid populationDe 1998Invalid countryde Azevedo 2015Invalid countryDe Blasi 2013Invalid study designDe Jager 2010Invalid study designDebiane 2014Invalid population	Contenti 2015 A^{326}	
Couto 2007333Invalid diagnostic testsCouto-Alves 2013334Not relevant to review questionCraig 2010335Invalid diagnostic testsDa Silva 2007A344Invalid populationDalton 2012349Invalid analysisDavis 2015354Invalid populationDe 1998369Invalid countryde Azevedo 2015357Invalid countryDe Blasi 2013358Invalid study designDe Jager 2010362Invalid study designDe Jager 2014372Invalid population		-
Couto-Alves 2013Not relevant to review questionCraig 2010Invalid diagnostic testsDa Silva 2007AInvalid populationDalton 2012Invalid analysisDavis 2015Invalid populationDe 1998Invalid populationDe 1998Invalid countryde Azevedo 2015Invalid countryDe Blasi 2013Invalid study designDe Jager 2010Invalid study designDebiane 2014Invalid population		
Craig 2010335Invalid diagnostic testsDa Silva 2007A344Invalid populationDalton 2012349Invalid analysisDavis 2015354Invalid populationDe 1998369Invalid countryde Azevedo 2015357Invalid countryDe Blasi 2013358Invalid study designDe Jager 2010362Invalid study designDebiane 2014372Invalid population		-
Da Silva 2007A ³⁴⁴ Invalid populationDalton 2012 ³⁴⁹ Invalid analysisDavis 2015 ³⁵⁴ Invalid populationDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid study designDe Jager 2010 ³⁶² Invalid study designDebiane 2014 ³⁷² Invalid population		
Dalton 2012349Invalid analysisDavis 2015354Invalid populationDe 1998369Invalid countryde Azevedo 2015357Invalid countryDe Blasi 2013358Invalid study designDe Jager 2010362Invalid study designDebiane 2014372Invalid population		
Davis 2015 ³⁵⁴ Invalid populationDe 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid study designDe Jager 2010 ³⁶² Invalid study designDebiane 2014 ³⁷² Invalid population		
De 1998 ³⁶⁹ Invalid countryde Azevedo 2015 ³⁵⁷ Invalid countryDe Blasi 2013 ³⁵⁸ Invalid study designDe Jager 2010 ³⁶² Invalid study designDebiane 2014 ³⁷² Invalid population	Dalton 2012	-
de Azevedo 2015357Invalid countryDe Blasi 2013358Invalid study designDe Jager 2010362Invalid study designDebiane 2014372Invalid population		
De Blasi 2013Invalid study designDe Jager 2010Invalid study designDebiane 2014Invalid population		
De Jager 2010362Invalid study designDebiane 2014372Invalid population		
Debiane 2014 ³⁷² Invalid population		
	De Jager 2010 ³⁰²	
Degroot 2014 ³⁰¹ Invalid diagnostic tests		
	Degroot 2014 ³⁰¹	Invalid diagnostic tests

Dettmer 2015 ³⁸¹
Devran 2012 ³⁸⁵
DeWerra 1997 ³⁶⁸
Dhanalakshmi 2015 ³⁸⁷
Dierkes 2009 ³⁹¹
Diez-Padrisa 2012 ³⁹²
Dornbusch 2003 ³⁹⁴
Draz 2013 ³⁹⁶
Drees 2012 ³⁹⁷
Drumheller 2012 ⁴⁰¹
Du 2002 ⁴⁰³
Du 2003 ⁴⁰⁴
Du 2014 ⁴⁰⁵
Elawady 2014 ⁴¹⁵
El-Maghraby 2007 ⁴¹⁴
Endo 2008 ⁴²⁰
Engel 1998 ⁴²¹
Ersoy 2007 ⁴²⁵
Escobar 2015 ⁴²⁷
ESCODAR 2015
Fan 1989 ⁴⁴⁰
Feng 2012 ⁴⁴⁵
Fisher 2000 ⁴⁵⁶
Fleischhack 2000 ⁴⁵⁸
Fleischhack 2000A ⁴⁵⁹
Galetto-Lacour 2010 ⁴⁷⁵
Garcia 2007 ⁴⁸⁵
Garland 2003 ⁴⁸⁷
Gerdes 1987 ⁴⁹⁴
Ghosh 2001 ⁴⁹⁷
Gille-Johnson 2012 ⁵⁰⁰
Greenberg 1990 ⁵¹⁷
Gu 2015 ⁵²³
Guclu 2013 ⁵²⁴
Guibourdenche 2002 ⁵²⁶
Guido 2012 ⁵²⁹
Guillois 1994 ⁵³⁰
Gutovitz 2011 ⁵³⁶
Guven 2002 ⁵³⁷
Hall 2011 ⁵⁴⁷
Hanson 1983 ⁵⁵¹
Hariharan 2011 ⁵⁵⁴
Hegadi 2015 ⁵⁵⁹
Hengst 2003 ⁵⁶⁰
Heper 2006 ⁵⁶²
Heper 2006
Hermans 2012 565
Hernandez-Bou 2015 ⁵⁶⁸
Herzum 2008 ⁵⁶⁹
Hisamuddin 2015 ⁵⁷³
Ho 2008 ⁵⁷⁶
Hoppensteadt 2014A ⁵⁸³
Hoppensteadt 2015 ⁵⁸²
Hui 2012 ⁵⁹²
Iba 2014 ⁵⁹⁴

Invalid comparison Invalid country Published before 1999 Invalid country Invalid diagnostic tests Invalid country Procalcitonin Invalid diagnostic tests Invalid diagnostic tests Invalid diagnostic tests Invalid outcomes Invalid country Invalid country Invalid country Invalid country Invalid analysis Invalid diagnostic tests Invalid outcomes Animal study Invalid outcomes Invalid country Invalid study design Invalid population Invalid population Invalid study design Invalid diagnostic tests Invalid population Invalid setting Invalid country Invalid outcomes Invalid outcomes Invalid analysis Invalid study design Invalid analysis Invalid outcomes Invalid population Invalid comparison Procalcitonin Narrative review Invalid study design Invalid outcomes Invalid country Invalid study design Invalid outcomes Invalid outcomes Invalid population Narrative review Invalid country Invalid population Invalid diagnostic tests Invalid diagnostic tests Invalid study design Narrative review

Jain 2014⁶¹¹ James 1999⁶¹² Jansen 2009⁶¹⁴ Janum 2011⁶¹⁵ Jat 2011⁶¹⁷ Jeschke 2013⁶²⁰ Jordan 2000⁶³⁰ Juutilainen 2011A⁶³³ Kasem 2012⁶³⁹ Katz 1992⁶⁴¹ Keshet 2009⁶⁴⁹ Keßler 1994⁶⁵⁰ Khassawneh 2007⁶⁵³ Kim 2013A⁶⁶⁸ Kirschenbaum 2006⁶⁷² Kite 1988⁶⁷³ Kobayashi 2001⁶⁷⁷ Kocabas 2007⁶⁷⁸ Kocazeybek 2003⁶⁷⁹ Kohli 1993⁶⁸⁰ Kohn 2001⁶⁸¹ Koksal 2007⁶⁸² Kono 1999⁶⁸⁴ Krediet 1992⁶⁸⁶ Krishna 2000⁶⁸⁸ Kumar 2010⁶⁹² Kushimoto 2007⁶⁹⁶ Kyr 2007⁶⁹⁷ Laborada 2003⁶⁹⁹ Lacaze-Masmonteil 2014⁷⁰⁰ Laham 2014⁷⁰¹ Lam 2008⁷⁰² Larsen 2011⁷⁰⁹ Lee 2012A⁷¹⁵ Leli 2014⁷²¹ Lichtenstern 2012⁷²⁷ Luz Fiusa 2013⁷⁴⁹ Lyle 2013⁷⁵⁰ MacKay 2011A⁷⁵³ Magudumana 2000⁷⁵⁷ Malik 2003762 Mannan 2010⁷⁶⁷ Manucha 2002⁷⁶⁸ Manzano 2010⁷⁶⁹ Manzon 2015⁷⁷⁰ Marecaux 1996⁷⁷¹ Martinez-Albarran 2009780 Marzouk 1993⁷⁸¹ Mathers 1987⁷⁸³ Mazur 1994⁷⁸⁹ McKenzie 2009⁷⁹² Meidani 2013⁷⁹⁷ Meisner 1998A⁷⁹⁸

Invalid country Narrative review Invalid study design Invalid outcomes Invalid country Invalid analysis Invalid diagnostic tests Invalid population Procalcitonin Invalid population Invalid population Invalid outcomes Invalid country Invalid outcomes Invalid outcomes Invalid population Invalid outcomes Invalid country Invalid population Invalid country Invalid study design Invalid country Invalid outcomes Invalid setting Invalid country Invalid country Invalid outcomes Invalid diagnostic tests Invalid diagnostic tests Invalid analysis Invalid population Invalid study design Invalid outcomes Invalid analysis Procalcitonin Narrative review Invalid country Narrative review Invalid outcomes Invalid population Systematic review Invalid country Invalid country Procalcitonin Invalid diagnostic tests Invalid outcomes Invalid country Invalid population Invalid setting Invalid outcomes Invalid study design Cross-sectional study Invalid population

Mencacci 2012⁷⁹⁹ Menon 2015⁸⁰⁰ Mimoz 1998⁸¹⁰ Mintegi 2009⁸¹¹ Mistry 2013⁸¹² Montiel-Jarquin 2012⁸¹⁸ Munoz 2004⁸³¹ Murphy 2012A⁸³³ Mustafa 2005⁸³⁵ Mustard 1987⁸³⁶ Naher 2011⁸³⁷ Neely 1998⁸⁴² Neely 2004⁸⁴³ Ng 2004A⁸⁴⁶ Ng 2006⁸⁴⁷ Nijman 2011⁸⁵⁸ Nijman 2013⁸⁵⁷ Nuntnarumit 2002⁸⁶² Oberhoffer 1999⁸⁶⁷ Oliveira 2008⁸⁷⁶ Oliveira 2013⁸⁷⁵ Opal 2014⁸⁷⁹ Örtqvist 1995⁸⁸⁴ Park 2014⁸⁹⁵ Park 2014B⁸⁹³ Pechorsky 2009⁹⁰⁹ Peduzi 1992⁹¹⁰ Peltola 1983⁹¹² Pfitzenmeyer 1995⁹¹⁶ Pinilla 1998⁹²¹ Povoa 1998⁹³² Povoa 2002⁹³¹ Povoa 2005⁹³³ Qu 2015⁹⁴² Ranzani 2013⁹⁵⁰ Raoofi 2014⁹⁵¹ Rast 2015⁹⁵² Ravishankar 2009⁹⁵³ Ravishankaran 2011⁹⁵⁴ Reed 2013⁹⁵⁷ Resch 2003⁹⁶² Riche 2003⁹⁶⁷ Riedel 2011⁹⁶⁹ Riedel 2012⁹⁶⁸ Rondina 201⁹⁸³ Rønnestad 1999⁹⁸⁴ Sakha 2008⁹⁹⁴ Samraj 2013⁹⁹⁷ Santolaya 2008⁹⁹⁹ Sauer 2003¹⁰⁰² Schreiber 2013¹⁰⁰⁸ Schwarz 2000¹⁰¹⁰ Scott 2012¹⁰¹²

Invalid diagnostic tests Invalid country Invalid outcomes Invalid population Invalid population Invalid country Procalcitonin Invalid analysis Invalid country Invalid population Invalid country Invalid setting Invalid diagnostic tests Narrative review Narrative review Invalid outcomes Invalid analysis Invalid country Invalid outcomes Invalid outcomes Invalid comparison Narrative review Invalid outcomes Invalid population Invalid diagnostic tests Invalid outcomes Invalid setting Invalid population Published before 1999 Invalid population Published before 1999 Narrative review Invalid analysis Invalid country Invalid country Procalcitonin Invalid population Invalid study design Invalid country Invalid analysis Invalid population Invalid population Procalcitonin Procalcitonin Invalid diagnostic tests Invalid analysis Invalid country Narrative review Invalid country Invalid intervention Invalid outcomes Invalid analysis

Invalid outcomes

Seigel 2012 ¹⁰¹³	Involid outcomes
Shaw 1991 ¹⁰²⁵	Invalid outcomes
Shine 1985 ¹⁰²⁹	Case-control study
	Invalid analysis
Shorr 2010 ¹⁰³¹	Invalid analysis
Sierra 2007 ¹⁰³⁴	Systematic review
Silveira 1999 ¹⁰³⁸	Invalid population
Simms 1992 ¹⁰³⁹	Invalid diagnostic tests
Sivula 2015 ¹⁰⁴⁴	Invalid diagnostic tests
Somech 2000 ¹⁰⁵⁵	Invalid outcomes
Sonawane 2014 ¹⁰⁵⁷	Invalid country
Spasova 2005 ¹⁰⁶²	Invalid outcomes
Steinbach 2007 ¹⁰⁶⁶	Invalid population
Struelens 1988 ¹⁰⁶⁹	Invalid outcomes
Su 2012B ¹⁰⁷⁴	Invalid country
Su 2014 ¹⁰⁷²	Invalid country
Sucilathangam 2012 ¹⁰⁷⁹	Invalid country
Suri 1991 ¹⁰⁸²	Invalid country
Tegtmeyer 1992 ¹⁰⁹¹	Invalid outcomes
Toh 2003A ¹⁰⁹⁷	Invalid analysis
Tong 2015 ¹⁰⁹⁸	Invalid diagnostic tests
Tschaikowsky 2011 ¹¹⁰⁷	Invalid outcomes
Tugrul 2002 ¹¹¹¹	Invalid country
Turi 2013 ¹¹¹³	Invalid diagnostic tests
Ueda 2014 ¹¹¹⁴	Not relevant to review question
1116	
Ulla 2013	Invalid diagnostic tests
Ulla 2013 ¹¹¹⁶ Van den Bruel 2011 ¹¹²²	Invalid diagnostic tests Invalid study design
Van den Bruel 2011 ¹¹²²	Invalid study design
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹	Invalid study design Invalid diagnostic tests
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³	Invalid study design
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵	Invalid study design Invalid diagnostic tests Invalid diagnostic tests
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2009 ¹¹⁵³	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2019 ¹¹⁵³ West 2012 ¹¹⁶⁴	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2009 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid country
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2019 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸ Xie 2013 ¹¹⁸¹	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid outcomes Invalid diagnostic tests
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2010 ¹¹⁵¹ Waliullah 2009 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸ Xie 2013 ¹¹⁸¹ Yan 2001 ¹¹⁸⁸	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid outcomes Invalid diagnostic tests Invalid diagnostic tests
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2009 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸ Xie 2013 ¹¹⁸¹ Yan 2001 ¹¹⁸⁸ Yentis 1995 ¹¹⁹³	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid outcomes Invalid diagnostic tests Invalid outcomes Invalid outcomes Invalid outcomes
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2010 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸ Xie 2013 ¹¹⁸¹ Yan 2001 ¹¹⁸⁸ Yentis 1995 ¹¹⁹³ Yilmaz 2003 ¹¹⁹⁵	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid outcomes Invalid diagnostic tests Invalid outcomes Invalid outcomes Invalid outcomes Invalid outcomes
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2010 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸ Xie 2013 ¹¹⁸¹ Yan 2001 ¹¹⁸⁸ Yentis 1995 ¹¹⁹³ Yilmaz 2003 ¹¹⁹⁵ Yin 2011 ¹¹⁹⁷	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid outcomes Invalid diagnostic tests Invalid outcomes Invalid outcomes Invalid outcomes Invalid outcomes Invalid outcomes
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2009 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸ Xie 2013 ¹¹⁸¹ Yan 2001 ¹¹⁸⁸ Yentis 1995 ¹¹⁹³ Yilmaz 2003 ¹¹⁹⁵ Yin 2011 ¹¹⁹⁷ Zant 2014 ¹²⁰⁴	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid outcomes Invalid diagnostic tests Invalid outcomes Invalid outcomes
Van den Bruel 2011 ¹¹²² Vassiliou 2015A ¹¹²⁹ Venkataseshan 2007 ¹¹³³ Ventetuolo 2008 ¹¹³⁵ Venugopal 2014 ¹¹³⁶ Verbakel 2014 ¹¹³⁸ Viallon 2008 ¹¹³⁹ Volante 2004 ¹¹⁴⁵ Wacharasint 2012 ¹¹⁴⁹ Waliullah 2010 ¹¹⁵¹ Waliullah 2010 ¹¹⁵³ West 2012 ¹¹⁶⁴ Wilkinson 2009 ¹¹⁶⁸ Xie 2013 ¹¹⁸¹ Yan 2001 ¹¹⁸⁸ Yentis 1995 ¹¹⁹³ Yilmaz 2003 ¹¹⁹⁵ Yin 2011 ¹¹⁹⁷	Invalid study design Invalid diagnostic tests Invalid diagnostic tests Narrative review Narrative review Study protocol Invalid diagnostic tests Narrative review Invalid analysis Invalid country Invalid country Invalid country Invalid country Invalid outcomes Invalid diagnostic tests Invalid outcomes Invalid outcomes Invalid outcomes Invalid outcomes Invalid outcomes

L.4 Lactate

Table 38: Studies excluded from the clinical review		
Study		Reason for exclusion

Study	Reason for exclusion
Aitofella 2012 ⁴¹	AUC data but no sensitivity or specificity data
Berger 2013 ¹⁷⁸	Hyperlactaemia was an outcome not a predictor
Bollaert 2003 ²⁰⁵	No diagnostic accuracy data; relativistic OR/RR data only
Breuling 2015 ²²⁹	No diagnostic accuracy data; relativistic OR/RR data only
Brodska 2013 ²³²	No diagnostic accuracy data; relativistic OR/RR data only
Casagandra 2015 ²⁶³	AUC data but no sensitivity or specificity data
Chen 2014F ³⁰²	Study conducted in non OECD country (China)
Cicarelli 2007 ³¹⁴	Study conducted in a developing country (Brazil)
Contenti 2015 ³²⁶	No protocol outcomes
Gao 2014 ⁴⁸³	Study conducted in a developing country (China)
Giannazzo 2006 ⁴⁹⁹	No diagnostic accuracy data; relativistic OR/RR data only
Giulieri 2015 ⁵⁰²	Target disease was community-acquired meningitis
Gwak 2015 ⁵³⁸	Target disease was community-acquired pneumonia
Hermans 2012 ⁵⁶⁵	AUC data but no sensitivity or specificity data
Hernandez 2012A ⁵⁶⁷	No protocol outcomes
Hisamuddin 2012 ⁵⁷⁴	Study conducted in a developing country (Malaysia)
Howell 2007A ⁵⁸⁹	No diagnostic accuracy data; relativistic OR/RR data only
Jansen 2011 ⁶¹³	Non-systematic review with different inclusion criteria (prognostic value of lactate, non-sepsis specific)
Jones 2010 ⁶²⁸	No relevant to protocol
Kang 2011 ⁶³⁶	Wrong population
Kim 2015B ⁶⁶⁴	Outcomes not relevant to this review
Kobayashi 2001 ⁶⁷⁷	No diagnostic accuracy data; relativistic OR/RR data only
Krishna 2009 ⁶⁸⁹	No protocol outcomes
Kung 2014 ⁶⁹³	No diagnostic accuracy data
Kung 2015 ⁶⁹⁴	AUC data but no sensitivity or specificity data
Lee 2008 ⁷¹⁷	No diagnostic accuracy data; relativistic OR/RR data only
Li 2013A ⁷²⁵	Li 2013A ⁷²⁵
Liu 2015 ⁷³⁷	Target condition was severe pneumonia, and country was non OECD (China)
Linder 2012 ⁷³³	No protocol outcomes
Lorente 2013 ⁷⁴³	No diagnostic accuracy data; relativistic OR/RR data only
Lorente 2014A ⁷⁴⁴	No diagnostic accuracy data; relativistic OR/RR data only
Lorente 2014B ⁷⁴⁵	No protocol outcomes
Lorente 2015A ⁷⁴⁵	Not protocol biomarker
Lorente 2015 ⁷⁴²	AUC data but no sensitivity or specificity data
Mallat 2014A ⁷⁶³	No diagnostic accuracy data; relativistic OR/RR data only
Manzon 2015 ⁷⁷⁰	AUC data but no sensitivity or specificity data
Mato 2010 ⁷⁸⁴	No protocol outcomes
Matsumura 2014 ⁷⁸⁶	ICU population but did not have sepsis
Mesquida 2015 ⁸⁰²	No diagnostic accuracy data; relativistic OR/RR data only
Miguelbayarri 2012 ⁸⁰⁶	No diagnostic accuracy data; relativistic OR/RR data only
Mikkelsen 2009 ⁸⁰⁷	No diagnostic accuracy data; relativistic OR/RR data only
Muller 2000 ⁸²⁷	Target condition was sepsis – not a worsening of existing

Reason for exclusion
sepsis
No diagnostic accuracy data
No protocol outcomes
No diagnostic accuracy data; relativistic OR/RR data only
Not relevant to the protocol
Case control study
AUC data but no sensitivity or specificity data
Study conducted in a developing country (South Korea)
Insufficient data for analysis
No diagnostic accuracy data; relativistic OR/RR data only
AUC data but no sensitivity or specificity data
No diagnostic accuracy data
Study did not evaluate lactate specifically
No diagnostic accuracy data; relativistic OR/RR data only
AUC data but no sensitivity or specificity data
No diagnostic accuracy data; relativistic OR/RR data only
No diagnostic accuracy data; relativistic OR/RR data only
No diagnostic accuracy data; relativistic OR/RR data only
Study conducted in a developing country (Egypt)
Study conducted in a developing country (China)

L.5 Serum creatinine

Table 39:	Studies excluded from the clinical review
-----------	---

Study	Reason for exclusion
Badin 2011 ¹¹⁶	Not protocol biomarker
Bagshaw 2013 ¹¹⁹	Not protocol biomarker
Bagshaw 2010 ¹²⁴	Not protocol biomarker
Bagshaw 2007 ¹²³	No protocol outcomes
Bagshaw 2007 ¹²⁸	Not protocol biomarker
Bagshaw 2006 ¹²²	Not protocol biomarker
Bagshaw 2006 ¹²⁷	Not protocol population
Basu 2011 ¹⁵⁵	No protocol outcomes
Carbonell 2004 ²⁵¹	Not protocol biomarker
Cartinceba 2012 ²⁶¹	SR with no protocol outcomes
Chawla 2005 ²⁸⁷	No outcomes of interest
De 2004 ³⁵⁹	Not protocol study type
Desouza 2014 ³⁶⁷	Study conducted in developing country
Dinardo 2013 ³⁸⁸	No protocol outcomes
Drey 2015 ⁴⁰⁰	No protocol outcomes
Elfarghali 2012 ⁴¹³	No protocol outcomes
Glassford 2013 ⁵⁰³	No protocol outcomes

National Clinical Guideline Centre, 2016

Guo 2011 ⁵³³	Study conducted in developing country
Hamzic-Mehmedbasic 2015 549	Study conducted in non-OECD country
Hoste 2003 ⁵⁸⁶	No protocol outcomes
Iglesias 2003 ⁵⁹⁶	Not protocol population
Kiers 2010 ⁶⁶⁰	No protocol outcomes
Mariano 2008 ⁷⁷²	Not protocol biomarker
Martensson 2010 ⁷⁷⁷	Not protocol biomarker
Martensson 2012 ⁷⁷⁸	No protocol outcomes
Mazulsunko 2004 ⁷⁸⁸	No protocol outcomes
Nejat 2010 ⁸⁴⁴	No protocol outcomes
Nie 2013 ⁸⁵⁶	Not protocol biomarker
Plataki 2011 ⁹²³	No protocol outcomes
Poukkanen 2013 ⁹³⁰	No protocol outcomes
Soni 2009 ¹⁰⁵⁹	Not protocol population
Su 2011 ¹⁰⁷³	Study conducted in developing country
Suh 2013 ¹⁰⁸⁰	No protocol outcomes
Terzi 2014 ¹⁰⁹²	No protocol outcomes
Vanmassenhove2013 ¹¹²⁷	Not protocol biomarker
Walshe 2009 ¹¹⁵⁴	No protocol outcomes
Waring 2011 ¹¹⁵⁷	SR with no protocol outcomes
Wheeler 2008 ¹¹⁶⁵	No protocol outcomes
Wong 2015 ¹¹⁷⁶	Not protocol biomarker
Yamashita 2014 ¹¹⁸⁷	Not protocol population
Yegenaga 2004 ¹¹⁹²	No protocol outcomes
Zhang 2015 ¹²⁰⁸	Not protocol study type
Zhou ¹²¹⁵	Study conducted in non OECD country

L.6 Disseminated intravascular coagulation (DIC)

Table 40: Studies excluded from the clinical review

Study	Reason for exclusion
Angstwurm 2006 ⁸³	Not protocol study design
Brenner 2012 ²²⁵	Not protocol study design
Cauchie 2006 ²⁶⁷	Not protocol population
Dempfle 2004 ³⁷⁷	Not protocol study design
Ersoy 2007 ⁴²⁵	Not protocol risk factor
Gamper 2001 ⁴⁷⁷	Not protocol population
Gando 1999 ⁴⁸⁰	Not protocol study design
Gando 2002 ⁴⁷⁹	Not protocol study design
Gando 2006 ⁴⁷⁸	Not protocol study design
Gando 2009 ⁴⁸¹	Not protocol study design
Gogos 2003 ⁵⁰⁵	Not protocol risk factor
Gomez 2007 ⁵⁰⁹	Not protocol risk factor
Guirgis 2014 ⁵³¹	SR not protocol risk factor

Ha 2015***Not protocol study designHarbarth 2002***Not protocol study designHayakwa 2007***Not protocol study designHoppensteadt 2014***Iba 2015***Not protocol study designIba 2015***Not protocol study designIshimura 2014***Not protocol study designIserin 2013***Not protocol study designKienast 2006***Not protocol study designKinase 2005***Not protocol study designKinase 2006***Not protocol study designKinasewitz 2005***Not protocol study designKinasewitz 2006***Not protocol study designKinasewitz 2006***Not protocol study designKoayaab 12016***Not protocol study designKusasewitz 2006***Not protocol study designKusasewitz 2006***Not protocol study designKusasewitz 2006***Not protocol study designKushimoto 2008***Not protocol study designLavigne-Lissalde 2015***Conference abstractLin 2006****Not protocol study designMadoiwa 2006***Not protocol study designMadoiwa 2006***Not protocol risk factorMuller 2014***Not protocol risk factorMuller 2014***Not protocol risk factorMuller 2014***Not protocol study designOf study 2006***Not protocol risk factorNot protocol study designNot protocol risk factorMuller 2014***Not protocol risk factorMuller 2014***Not protocol risk factorPartogo ***Not protocol s	Study	Reason for exclusion
Hayakawa 2007Not protocol study designHoppensteadt 2014SeinIba 2015Not protocol study designIshimura 2014Not protocol study designJesmin 2013Not protocol study designKeneka 2012Not protocol study designKinast 2006Not protocol study designKinast 2006Not protocol study designKinasewitz 2005Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKopama 2014Not protocol study designKopama 2014Not protocol study designKopama 2014Not protocol study designKopama 2014Not protocol study designKushimota 2008Not protocol study designKushimota 2008Not protocol study designLin 2006Not protocol study designMadoiwa 2006Not protocol study designMassion 2012Not protocol study designMulie 2014Not protocol study designMulie 2014Not protocol study designMulie 2014Not protocol study designNot protocol study designNot protocol study designMulie 2014Not protocol study designNot protocol s	Ha 2015 ⁵³⁹	Not protocol study design
Hoppensteadt 2014 581Not protocol study designIba 2015 595Not protocol study designIshimura 2014 603Not protocol study designJesmin 2013 521Not protocol study designKieneka 2012 648Not protocol study designKina 2014 662Not protocol study designKinasewitz 2005 671Not protocol study designKinasewitz 2004 670Not protocol study designKobayashi 2001 677Not protocol study designKobayashi 2001 677Not protocol study designKobayashi 2001 677Not protocol study designKushimoto 2008 695Not protocol study designLavigne-Lissalde 2015 712Conference abstractLin 2006 773Not protocol study designLin 2008 773Not protocol study designMadoiwa 2006 776Not protocol study designMadoiwa 2007 786Not protocol study designMassion 2012 782Not protocol study designMuller 2014 471Not protocol study designOgura 2014 471Not protocol study designOkabayashi 2004 873Not protocol study designPark 2011 892Not protocol study desi	Harbarth 2002 ⁵⁵³	Not protocol study design
Iba 2015Not protocol study designIshimura 2014Not protocol study designJesmin 2013Not protocol study designKieneka 2012Not protocol study designKienast 2006Not protocol study designKinasewitz 2005Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKobayashi 2004Not protocol study designKobayashi 2004Not protocol study designKusasewitz 2008Not protocol study designKusasewitz 2008Not protocol study designKushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2008Not protocol study designMadiowa 2006Not protocol risk factorMulier 2014Not protocol risk factorMulier 2014Not protocol study designOgura 2014Not protocol study designOkabayashi 2004Not protocol study designSaracco 2011Not protocol study designPark 2019<	Hayakawa 2007 ⁵⁵⁷	Not protocol study design
Ishimura 2014Not protocol study designJesmin 2013Not protocol risk factorKeneka 2012Not protocol study designKienast 2006Not protocol study designKimasewitz 2005Not protocol study designKinasewitz 2005Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKobayashi 2001Not protocol study designKobayashi 2001Not protocol study designKobayashi 2001Not protocol study designKobayashi 2003Not protocol study designKushimoto 2008Not protocol study designLavigne-LissaldeConference abstractLin 2006Not protocol study designLissaldelavigne 2008Not protocol study designMadoiwa 2006Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol study designOlyara 2014Not protocol risk factorMuller 2014Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designPark 1019Not protocol study designPark 2013Not protocol study designSawamura 2009Not protocol study de	Hoppensteadt 2014 581	Not protocol study design
Jesmin 2013Not protocol risk factorKeneka 2012Not protocol study designKienast 2006Not protocol study designKinasewitz 2005Not protocol risk factorKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKobayashi 2001Not protocol study designKosawa 2014Not protocol study designKosawa 2014Not protocol study designKushimoto 2008Not protocol study designLavigne-Lissalde 2015Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol study designOkabayashi 2004Not protocol risk factorStrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2014Not protocol study designSavamura 2009Not protocol study designSavam	lba 2015 ⁵⁹⁵	Not protocol study design
Keneka 2012Not protocol study designKienast 2006Not protocol study designKim 2014Not protocol risk factorKinasewitz 2005Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKobayashi 2001Not protocol study designKoyama 2014Not protocol study designKushimoto 2008Not protocol study designKushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2008Not protocol study designMadoiwa 2006Not protocol risk factorMadoiwa 2006Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designPark 1999Not protocol study designPark 2018Not protocol study designPark 2018Not protocol study designPark 2018Not protocol study designPark 2018Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study design<	Ishimura 2014 ⁶⁰³	Not protocol study design
Kienast 2006Not protocol study designKim 2014Not protocol risk factorKinasewitz 2005Not protocol study designKinasewitz 2004Not protocol study designKinasewitz 2004Not protocol study designKobayashi 2001Not protocol study designKobayashi 2001Not protocol study designKushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2006Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designMadoiwa 2008Not protocol study designMadoiwa 2008Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol study designOgura 2014Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designPark 1999Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSaraaco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study design </td <td>Jesmin 2013⁶²¹</td> <td>Not protocol risk factor</td>	Jesmin 2013 ⁶²¹	Not protocol risk factor
Kim 2014Not protocol risk factorKinasewitz 2005Not protocol study designKinasewitz 2004Not protocol study designKobayashi 2001Not protocol study designKobayashi 2001Not protocol risk factorKushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2006Not protocol study designLin 2006Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designMadoiwa 2006Not protocol risk factorMadoiwa 2006Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol study designOkabayashi 2004Not protocol risk factorOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSavamura 2009Not protocol study designSava	Keneka 2012 ⁶⁴⁸	Not protocol study design
Kinasewitz 2005Not protocol study designKinasewitz 2004Not protocol study designKobayashi 2001Not protocol study designKoyama 2014Not protocol study designKushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2006Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol study designMuller 2014Not protocol risk factorMuller 2014Not protocol study designOgura 2014Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designPark 1999Not protocol study designPark 2011Not protocol study designPark 2013Not protocol study designPark 2013Not protocol study designPark 2013Not protocol study designSaracco 2011Not protocol study designSaracco 2011Not protocol study designSaraaco 2011Not protocol study designSaraa	Kienast 2006 ⁶⁵⁹	Not protocol study design
Kinasewitz 2004 670Not protocol study designKobayashi 2001 677Not protocol study designKushimoto 2008 695Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006 722Not protocol study designLin 2008 731Not protocol study designLin 2008 731Not protocol study designMadoiwa 2006 756Not protocol study designMadoiwa 2006 756Not protocol study designMuller 2014 828Not protocol risk factorMuller 2014 828Not protocol risk factorOgura 2014 871Not protocol study designOkabayashi 2004 873Not protocol study designOktaposloNot protocol study designOktaposloNot protocol risk factorOkabayashi 2004 873Not protocol study designOktaposloNot protocol study designPark 1999 896Not protocol study designPark 2013 892Not protocol study designParacco 2011 1000Not protocol study designSavamura 2009 1003Not protocol study designSavamura 2009 1003 <td>Kim 2014⁶⁶²</td> <td>Not protocol risk factor</td>	Kim 2014 ⁶⁶²	Not protocol risk factor
Kobayashi 2001Not protocol study designKoyama 2014Not protocol risk factorKushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol study designOgura 2014Not protocol study designOkabayashi 2004Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSavamura 2009Not protocol study design </td <td>Kinasewitz 2005⁶⁷¹</td> <td>Not protocol study design</td>	Kinasewitz 2005 ⁶⁷¹	Not protocol study design
Koyama 2014Not protocol risk factorKushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designLissaldelavigne 2008Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol study designOgura 2014Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol study designOstrowski 2013Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSavamura 2009Not protocol study designSavamura 2009Not protocol study designSavamura 2009Not protocol study designSeki 2013Not protocol study designSeki 2013Not protocol study designSavamura 2009Not protocol study designSavamura 2009Not protocol study designSavamura 2009Not protocol study designSeki 2013Not protocol study designSavamura 2009Not protocol study designSavamura 2009Not protocol study design <t< td=""><td>Kinasewitz 2004⁶⁷⁰</td><td>Not protocol study design</td></t<>	Kinasewitz 2004 ⁶⁷⁰	Not protocol study design
Kushimoto 2008Not protocol study designLavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2008Not protocol study designLin 2008Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol risk factorMuller 2014Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol study designOkabayashi 2004Not protocol study designOkstoryski 2013Not protocol study designOkstoryski 2013Not protocol study designOstrowski 2013Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSaka Nut 2003Not protocol study designSawamura 2009Not protocol study d	Kobayashi 2001 ⁶⁷⁷	Not protocol study design
Lavigne-Lissalde 2015Conference abstractLin 2006Not protocol study designLin 2008Not protocol study designLissaldelavigne 2008Not protocol study designMadoiwa 2006Not protocol study designMadoiwa 2006Not protocol risk factorMassion 2012Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol risk factorOgura 2014Not protocol study designOkabayashi 2004Not protocol risk factorOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSeki 2013Not protocol study designSakashi 2015Not protocol study design	Koyama 2014 ⁶⁸⁵	Not protocol risk factor
Lin 2006732Not protocol study designLin 2008731Not protocol study designLissaldelavigne 2008734Not protocol study designMadoiwa 2006756Not protocol risk factorMassion 2012782Not protocol risk factorMuller 2014 ⁸²⁸ Not protocol risk factorOgura 2014 ⁸⁷¹ Not protocol study designOkabayashi 2004 ⁸⁷³ Not protocol study designOkrowski 2013 ⁸⁸⁵ Not protocol risk factorPark 1999 ⁸⁹⁶ Not protocol risk factorPark 2011 ⁸⁹² Not protocol study designPark 2013 ⁹¹¹ Not protocol study designSaracco 2011 ¹⁰⁰⁰ Not protocol study designSawamura 2009 ¹⁰⁰⁴ Not protocol study designSawamura 2009 ¹⁰⁰³ Not protocol study designSeki 2013 ⁰¹⁵ Not protocol study designTakahashi 2015 ¹⁰⁸⁶ Not protocol study design	Kushimoto 2008 ⁶⁹⁵	Not protocol study design
Lin 2008Not protocol study designLissaldelavigne 2008Not protocol study designMadoiwa 2006Not protocol risk factorMassion 2012Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol study designOh 2010Not protocol study designOkabayashi 2004Not protocol study designOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPark 2013Not protocol study designPark 2011Not protocol study designSavamura 2009Not protocol study designSavamura 2009Not protocol study designSeki 2013Not protocol study designSeki 2013Not protocol study designSavamura 2009Not protocol study design <td>Lavigne-Lissalde 2015⁷¹²</td> <td>Conference abstract</td>	Lavigne-Lissalde 2015 ⁷¹²	Conference abstract
Lissaldelavigne 2008Not protocol study designMadoiwa 2006Not protocol risk factorMassion 2012Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol study designOb 2010Not protocol study designOkabayashi 2004Not protocol risk factorOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSakahshi 2015Not protocol study designSakahshi 2015Not protocol study design	Lin 2006 ⁷³²	Not protocol study design
Madoiwa 2006Not protocol risk factorMassion 2012Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol study designOh 2010Not protocol study designOkabayashi 2004Not protocol populationOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designTakahashi 2015Not protocol study design	Lin 2008 ⁷³¹	Not protocol study design
Massion 2012Not protocol risk factorMuller 2014Not protocol risk factorOgura 2014Not protocol study designOh 2010Not protocol study designOkabayashi 2004Not protocol study designOkabayashi 2004Not protocol populationOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSakahashi 2015Not protocol study design	Lissaldelavigne 2008 ⁷³⁴	Not protocol study design
Muller 2014Not protocol risk factorOgura 2014Not protocol study designOh 2010Not protocol study designOkabayashi 2004Not protocol populationOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPark 2011Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSakahashi 2015Not protocol study designSour 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSour 2009Not protocol study designSeki 2013Not protocol study designSub 2009Not protocol study designS	Madoiwa 2006 ⁷⁵⁶	Not protocol risk factor
Ogura 2014 ⁸⁷¹ Not protocol study designOh 2010 ⁸⁷² Not protocol study designOkabayashi 2004 ⁸⁷³ Not protocol populationOstrowski 2013 ⁸⁸⁵ Not protocol risk factorPark 1999 ⁸⁹⁶ Not protocol study designPark 2011 ⁸⁹² Not protocol study designPeigne 2013 ⁹¹¹ Not protocol study designSaracco 2011 ¹⁰⁰⁰ Not protocol study designSawamura 2009 ¹⁰⁰⁴ Not protocol study designSawamura 2009 ¹⁰⁰³ Not protocol study designSeki 2013 ¹⁰¹⁵ Not protocol study designTakahashi 2015 ¹⁰⁸⁶ Not protocol study design	Massion 2012782	Not protocol risk factor
Oh 2010Not protocol study designOkabayashi 2004Not protocol populationOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPeigne 2013Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSeki 2013Not protocol study designSeki 2013Not protocol study designSovamura 2009Not protocol study designSovamura 2009Not protocol study designSeki 2013Not protocol study designSeki 2013Not protocol study designSovamura 2009Not protocol study designSeki 2013Not protocol study designSovamura 2009Not protocol study designSovamura 2015Not protocol study designSov	Muller 2014 ⁸²⁸	Not protocol risk factor
Okabayashi 2004Not protocol populationOstrowski 2013Not protocol risk factorPark 1999Not protocol study designPark 2011Not protocol study designPeigne 2013Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSakamura 2009Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designSeki 2013Not protocol study designSolo protocol study designNot protocol study designSeki 2013Not protocol study design	Ogura 2014 ⁸⁷¹	Not protocol study design
Ostrowski 2013 ⁸⁸⁵ Not protocol risk factorPark 1999 ⁸⁹⁶ Not protocol study designPark 2011 ⁸⁹² Not protocol study designPeigne 2013 ⁹¹¹ Not protocol study designSaracco 2011 ¹⁰⁰⁰ Not protocol study designSawamura 2009 ¹⁰⁰⁴ Not protocol study designSawamura 2009 ¹⁰⁰³ Not protocol study designSeki 2013 ¹⁰¹⁵ Not protocol study designTakahashi 2015 ¹⁰⁸⁶ Not protocol study design	Oh 2010 ⁸⁷²	Not protocol study design
Park 1999 896Not protocol study designPark 2011 892Not protocol study designPeigne 2013 911Not protocol study designSaracco 2011 1000Not protocol study designSawamura 2009 1004Not protocol study designSawamura 2009 1003Not protocol study designSeki 2013 1015Not protocol study designTakahashi 2015Not protocol study design	Okabayashi 2004 ⁸⁷³	Not protocol population
Park 2011 ⁸⁹² Not protocol study designPeigne 2013 ⁹¹¹ Not protocol study designSaracco 2011 ¹⁰⁰⁰ Not protocol study designSawamura 2009 ¹⁰⁰⁴ Not protocol study designSawamura 2009 ¹⁰⁰³ Not protocol study designSeki 2013 ¹⁰¹⁵ Not protocol study designTakahashi 2015 ¹⁰⁸⁶ Not protocol study design	Ostrowski 2013 ⁸⁸⁵	Not protocol risk factor
Peigne 2013Not protocol study designSaracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designTakahashi 2015Not protocol study design	Park 1999 ⁸⁹⁶	Not protocol study design
Saracco 2011Not protocol study designSawamura 2009Not protocol study designSawamura 2009Not protocol study designSeki 2013Not protocol study designTakahashi 2015Not protocol study design	Park 2011 ⁸⁹²	Not protocol study design
Sawamura 2009 ¹⁰⁰⁴ Not protocol study designSawamura 2009 ¹⁰⁰³ Not protocol study designSeki 2013 ¹⁰¹⁵ Not protocol study designTakahashi 2015 ¹⁰⁸⁶ Not protocol study design	Peigne 2013 ⁹¹¹	Not protocol study design
Sawamura 2009 ¹⁰⁰³ Not protocol study designSeki 2013 ¹⁰¹⁵ Not protocol study designTakahashi 2015 ¹⁰⁸⁶ Not protocol study design	Saracco 2011 ¹⁰⁰⁰	Not protocol study design
Seki 2013Not protocol study designTakahashi 2015Not protocol study design	Sawamura 2009 ¹⁰⁰⁴	Not protocol study design
Takahashi 2015 ¹⁰⁸⁶ Not protocol study design	Sawamura 2009 ¹⁰⁰³	Not protocol study design
	Seki 2013 ¹⁰¹⁵	Not protocol study design
	Takahashi 2015 ¹⁰⁸⁶	Not protocol study design
Voves 2006 ¹¹⁴⁷ Not protocol study design	Voves 2006 ¹¹⁴⁷	Not protocol study design
Yamakawa 2013 ¹¹⁸⁵ Not protocol study design		Not protocol study design

L.7 Antimicrobial treatment

Table 41: Studies excluded from the clinical review

Reference	Reason for exclusion
Bagshaw 2009 ¹²¹	Not relevant outcomes

Reference	Reason for exclusion
Band 2011 ¹³⁶	Comparison does not match protocol (patients who presented to the ED by ambulance versus patients who arrived by alternative means)
Barochia 2010 ¹⁴⁷	Setting does not match protocol (review on the use of bundles in patients with septic shock)
Beck 2014A ¹⁶²	Comparison does not match protocol (time to vasopressor initiation in patients with septic shock)
Behrendt 1999 ¹⁶⁵	Comparison does not match protocol (appropriate therapy within 48 hours versus after 48 hours)
Degoricija 2006 ³⁷³	No relevant outcomes, comparison does not match protocol
Erbay 2009 ⁴²³	Comparison does not match protocol (appropriate treatment within 24 hours versus after 24 hours)
Gabram 1993 ⁴⁷³	No relevant outcomes, study population does not match protocol (trauma patients)
Garcia-Saenz 2002 ⁴⁸⁶	Full text not available. Not in English language.
Garnacho-Montero 2003 ⁴⁸⁹	Comparison does not match protocol (adequate versus non-adequate empirical antimicrobial therapy; no time to antibiotics)
Garnacho-Montero 2006 ⁴⁸⁸	Comparison does not match protocol (appropriate treatment within 24 hours versus after 24 hours)
Gordon 2005 ⁵¹²	Comparison does not match protocol (not time to antibiotics)
Hanzelka 2013 ⁵⁵²	Setting does not match protocol (implementation of an EGDT protocol for cancer patients)
Hetem 2011 ⁵⁷⁰	Comparison does not match protocol (under 24 hours versus after 24 hours)
Hortmann 2014 ⁵⁸⁵	Comparison does not match protocol (time to antibiotics not analysed)
Houck 2004 ⁵⁸⁷	Study population does not match protocol (proportion of patients with sepsis not clearly mentioned)
lscimen 2008 ⁶⁰¹	No relevant outcomes and does not match review protocol
Irwin 2015 ⁶⁰⁰	No relevant outcome
Jacob 2012 ⁶⁰⁶	Wrong population
Kang 2003 ⁶³⁴	Comparison does not match protocol (under 24 hours versus after 24 hours)
Khan 2015 ⁶⁵¹	No relevant intervention (over 24 hours)
Khatib 2006A ⁶⁵⁵	Comparison does not match protocol (not early versus delayed treatment)
Kim 2012C ⁶⁶⁷	Comparison does not match protocol (adequate versus inadequate treatment)
Ko 2015 ⁶⁷⁶	Setting does not match protocol (implementation of a door-to- antibiotics time)
Krediet 2003 ⁶⁸⁷	No relevant outcomes
Lin 2008 ⁷²⁹	Comparison does not match protocol (under 24 hours versus after 24 hours)
Lodise 2007 ⁷⁴¹	Comparison does not match protocol (appropriate treatment up to 52 hours)
Lodise 2003 ⁷⁴⁰	Comparison does not match protocol (under 44.75 hours versus after 44.75 hours)
MacArthur 2004 ⁷⁵²	Comparison does not match protocol (adequate versus inadequate treatment)

Reference	Reason for exclusion
MacRedmond 2010 ⁷⁵⁵	Setting does not match protocol (implementation of a sepsis management protocol)
Meehan 1997 ⁷⁹⁵	Study population does not match protocol (proportion of patients with sepsis not clearly mentioned)
Natarajan 2014 ⁸⁴⁰	No data reported
Nguyen 2006A ⁸⁴⁹	Study design does not match protocol (review with different protocol)
Nguyen 2007B ⁸⁵⁰	Setting does not match protocol (implementation of a sepsis bundle)
Nguyen 2010 ⁸⁴⁸	Study design does not match protocol
Nickerson 2009 ⁸⁵⁵	Comparison does not match protocol (median delay is 3 days)
Onder 2008 ⁸⁷⁷	Not relevant outcomes
Parish 2013 ⁸⁹¹	Setting does not match protocol (assessing a nurse-led protocol)
Park 2013 ⁸⁹⁴	Comparison does not match protocol (adequate antimicrobial therapy within 3 days)
Paul 2010 ⁹⁰⁴	Study population does not match protocol (12% sepsis)
Paul 2010A ⁹⁰⁶	Comparison does not match protocol (assesses appropriate antibiotics)
Pestana 2010 ⁹¹⁵	No relevant outcomes, study population does not match protocol
Rehmani 2014 ⁹⁵⁹	Setting does not match protocol (assessing an antibiotic protocol)
Rodriguez-Pardo 2015 ⁹⁸⁰	No relevant outcomes, study population does not match protocol
Ronnestad 2005 ⁹⁸⁵	Study design does not match protocol (survey), not relevant (no info on antibiotics intervention)
Sainio 1995 ⁹⁹³	Not relevant review question
Schweizer 2010 ¹⁰¹¹	Comparison does not match protocol (adequate versus inadequate treatment)
Shime 2010 ¹⁰²⁸	Intervention does not match protocol (antibiotics up to 48 hours)
Shorr 2011 ¹⁰³⁰	Comparison does not match protocol (appropriate therapy versus inadequate; no time to antibiotics)
Siddiqui 2009 ¹⁰³²	Comparison does not match protocol (no comparison)
Siddiqui 2010 ¹⁰³³	Cochrane review does not include RCT evidence
Silber 2003 ¹⁰³⁵	Study population does not match protocol (proportion of patients with sepsis not clearly mentioned)
Sterling 2015 ¹⁰⁶⁷	Unclear methodology
Strang 1992 ¹⁰⁶⁸	Incorrect study design (survey data)
Studnek 2012 ¹⁰⁷¹	Setting does not match protocol (EGDT paper)
Sweet 2010 ¹⁰⁸³	Setting does not match protocol (study assesses protocol and not timing of antibiotics)
Talmor 2008 ¹⁰⁸⁸	Setting does not match protocol (EGDT paper)
The ProCESS Investigators 2014 ⁹³⁶	Setting does not match protocol (EGDT paper)
Tumbarello 2007 ¹¹¹²	Comparison does not match protocol (examines inadequate antibiotics)
Uittenbogaard 2014 ¹¹¹⁵	No relevant outcomes and does not match review protocol
Vanparidon 2015 ¹¹²⁴	No relevant analysis (effect size per minute)
Venkatesh 2013 ¹¹³⁴	No relevant outcomes
Waterer 2006 ¹¹⁶⁰	Study population does not match protocol (no sepsis)
Yahav 2013 ¹¹⁸³	Review with different inclusion criteria (pneumonia population)
Zahar 2011 ¹²⁰¹	Comparison does not match protocol (appropriate treatment within

Reference

Reason for exclusion

24 hours versus after 24 hours)

L.8 IV fluid administration

Study	Exclusion reason
Abulebda 2014 ¹⁶	Incorrect interventions
Andre 2010 ⁸¹	Incorrect interventions
Andre 2011 ⁸⁰	Incorrect interventions
Annane 2013 ⁸⁵	Incorrect interventions
Apibunyopas 2014 ⁸⁹	Paper not available
America 2012 ⁹⁷	
Arnold 2013 ⁹⁷	No relevant outcome
Bagshaw 2013 ¹²⁵	Not guideline condition
Bansal 2013 ¹³⁹	Invalid inclusion criteria
Bayer 2011 ¹⁵⁹	Incorrect interventions
Bayer 2012 ¹⁵⁸	Incorrect interventions
Boldt 1995 ²⁰²	No relevant outcome
Boldt 1996 ²⁰¹	Incorrect interventions
Boldt 1996 ²⁰³	Incorrect interventions
Boldt 1998 ²⁰⁴	Incorrect interventions
Boyd 2011 ²²²	Incorrect interventions
Brunkhorst 2008 ²³⁵	Incorrect interventions
Busund 1993 ²⁴¹	Incorrect interventions
Caironi 2014 ²⁴⁵	Incorrect interventions
Cardoso 2010 ²⁵³	Incorrect interventions
Carlsen 2011 ²⁵⁵	Incorrect interventions
Casserly 2011 ²⁶⁴	Incorrect interventions
Castellanos-ortega 2010 ²⁶⁵	Incorrect interventions
Chang 2014 ²⁸⁵	No relevant outcome
Chen 2014 ²⁹⁴	Incorrect interventions
Chong 2014 ³⁰⁸	Incorrect interventions
Chopra 2011 ³⁰⁹	Incorrect interventions
Chuesakoolvanich 2007 ³¹⁰	Not study design
Coen 2014 ³²²	Inappropriate comparison
Crowe 2010 ³³⁹	Inappropriate comparison
Cui 2012 ³⁴¹	Not English
De oliveira 2008 ³⁶⁶	Inappropriate comparison
Delaney 2011 ³⁷⁴	Incorrect interventions
Dubin 2010 ⁴⁰⁷	No relevant outcome
El solh 2008 ⁴¹²	Inappropriate comparison
Ernest 1999 ⁴²⁴	No relevant outcome
Estrada 2013 ⁴³²	Commentary
Fang 2008 ⁴⁴¹	No relevant outcome
Femling 2014 ⁴⁴³	Incorrect interventions
Ferrer 2009 ⁴⁴⁹	incorrect interventions

National Clinical Guideline Centre, 2016

5 in few 200 (⁴⁵⁴	
Finfer 2004 ⁴⁵⁴	Incorrect interventions
Ford 2012 ⁴⁶⁵	No relevant outcome
Fuller 2012 ⁴⁷⁰	No relevant outcome
Groeneveld 2011 ⁵²¹	Incorrect interventions
Guidet 2012 ⁵²⁸	Incorrect interventions
Gurnani 2010 ⁵³⁵	Incorrect interventions
Haase 2013 ⁵⁴¹	No relevant outcome
Haase 2013 ⁵⁴⁰	Incorrect interventions
Haase 2014 ⁵⁴²	Incorrect interventions
Holst 2013 ⁵⁸⁰	Study protocol
Jacob 2012 ⁶⁰⁶	Not study population
Jiang 2014 ⁶²³	Incorrect interventions
Jones 2007 ⁶²⁵	Inappropriate comparison
Karam 2011 ⁶³⁷	Incorrect interventions
Lee 2014 ⁷¹⁸	Incorrect interventions
Lefrant 2010 ⁷¹⁹	Incorrect interventions
Lin 2006 ⁷³⁰	Incorrect interventions
Liu 2013 ⁷³⁶	Incorrect interventions
Ma 2015 ⁷⁵¹	Systematic review
Maitland 2011 ⁷⁶⁰	Not guideline condition
Malbrain 2014 ⁷⁶¹	Not guideline condition
Miller 2013 ⁸⁰⁹	Incorrect interventions
Muller 2015 ⁸²⁹	Incorrect interventions
Murphy 2009 ⁸³²	Incorrect interventions
Nunes 2014 ⁸⁶¹	No relevant outcome
Nurnberger 1999 ⁸⁶³	Incorrect interventions
O'neill 2012 ⁸⁶⁵	Incorrect interventions
Opiyo 2014 ⁸⁸⁰	Incorrect interventions
Orbegozo cortes 2014 ⁸⁸¹	Not guideline condition
Parsons 2011 ⁸⁹⁹	Incorrect interventions
Patel 2013 ⁹⁰⁰	Incorrect interventions
Peake 2014 ⁹⁰⁷	Incorrect interventions
Perner 2012 ⁹¹⁴	Incorrect interventions
Perner 2012 ⁹¹³	Incorrect interventions
Purdy 1997 ⁹⁴⁰	No relevant outcome
Raghunathan 2014 ⁹⁴⁷	Incorrect interventions
Raza 2015 ⁹⁵⁵	Not review population
Reiter 2013 ⁹⁶¹	Incorrect interventions
Rewari 2014 ⁹⁶⁴	Abstract only
Rinaldi 2013 ⁹⁷⁰	Incorrect interventions
Rivers 2001 ⁹⁷²	Incorrect interventions
Rochwerg 2014 ⁹⁷⁸	No relevant outcome
Rochwerg 2015 ⁹⁷⁷	Network meta-analysis with different study protocol
Rosland 2014 ⁹⁸⁷	Incorrect interventions
Serpa neto 2014 ¹⁰¹⁹	No relevant outcome
Smith 2012 ¹⁰⁵⁰	Incorrect interventions
Surat 2014 ¹⁰⁸¹	Paper not available
Surat 2014 ¹⁰⁸¹	Paper not available Inappropriate comparison
Surat 2014 ¹⁰⁸¹ Trof 2010 ¹¹⁰² Upadhyay 2005 ¹¹¹⁸	Paper not available Inappropriate comparison No relevant outcome

Vanparidon 2015 ¹¹²⁴	Invalid analysis
Veneman 2004 ¹¹³²	No relevant outcome
Wawrzeniak 2015 ¹¹⁶¹	Inappropriate comparison
Wiedermann 2008 ¹¹⁶⁷	Incorrect interventions
Wittbrodt 2013 ¹¹⁷³	Incorrect interventions
Xu 2014 ¹¹⁸²	Incorrect interventions
Yang 2010 ¹¹⁸⁹	Not English
Yealy 2014 ¹¹⁹¹	Incorrect interventions
Zhang 2015 ¹²⁰⁶	Incorrect interventions
Zhong 2013 ¹²¹¹	No relevant outcome

L.9 Escalation of care

Table 43: Studies excluded from the clinical review

Study	Exclusion reason
Alsolamy 2014 ⁶⁹	Invalid intervention
Austin 2014 ¹⁰⁷	Invalid population
Chamberlain 2015 ²⁷⁸	Invalid analysis
Esteban 2007 ⁴³¹	Invalid comparison
Evans 2014 ⁴³⁴	Invalid population
Femling 2014 ⁴⁴³	Invalid comparison
Fendler 2012 ⁴⁴⁴	Invalid intervention
Jaderling 2013 ⁶⁰⁸	Invalid comparison
Junhasavasdikul 2013 ⁶³²	Invalid population
Robert 2000 ⁹⁷⁴	Invalid outcome
Takeyama 2012 ¹⁰⁸⁷	Invalid intervention
Vinson 2014 ¹¹⁴⁴	Invalid intervention

L.10 Inotropic agents and vasopressors

Table 44: Studies excluded from this clinical review

Study	Exclusion reason
Acevedo 2009 ¹⁷	Abstract
Agrawal 2011 ³⁰	No relevant outcome
Agrawal 2012 ³¹	Invalid study design
Albanese 2004 ⁵⁷	No relevant outcome
Albanèse 2005 ⁵⁶	Incorrect interventions
Anantasit 2014 ⁷⁶	Retrospective analysis of VASST trial
Anwar 2002 ⁸⁷	Not available
Avni 2015 ¹⁰⁸	Systematic review
Backer 2012 ¹¹⁵	Systematic review
Bahloul 2014 ¹³⁰	Inappropriate comparison

Study	Exclusion reason
Barton 1996 ¹⁵⁰	No relevant outcome
Boulain 2009 ²²¹	Invalid study design
Cardoso 2010 ²⁵³	Incorrect interventions
Cha 2004 ²⁷²	Not English
Daley 2013 ³⁴⁸	Invalid study design
Dunser 2009 ⁴⁰⁸	No relevant outcome
El solh 2008 ⁴¹²	Incorrect interventions
Elmenesy 2008 ⁴¹⁷	Not available
Gordon 2010 ⁵¹⁰	Invalid study population
Gordon 2012 ⁵¹¹	No relevant outcome
Hall 2004 ⁵⁴⁶	Invalid study design
Klein 2006 ⁶⁷⁴	Not relevant setting
Kumar 2008 ⁶⁹⁰	Inappropriate comparison
Lampin 2012 ⁷⁰⁴	Inappropriate comparison
Levy 1999 ⁷²²	No relevant outcome
Levy 2005 ⁷²³	Inappropriate comparison
Lin 2006 ⁷³⁰	Inappropriate comparison
Lupei 2009 ⁷⁴⁸	Inappropriate comparison
Mark 2014 ⁷⁷³	Inappropriate comparison
Martin 2000 ⁷⁷⁹	Incorrect interventions
Matok 2005 ⁷⁸⁵	Incorrect interventions
Micek 2007 ⁸⁰⁵	Invalid study design
Moon 2010 ⁸¹⁹	Not guideline condition
Morelli 2007 ⁸²¹	Abstract
Morelli 2008 ⁸²²	Incorrect interventions
Morimatsu 2004 ⁸²⁴	Inappropriate comparison
Mullner 2004 ⁸³⁰	Cochrane review (outdated)
Oba 2014 ⁸⁶⁶	Systematic review
Obritsch 2004 ⁸⁶⁸	Inappropriate comparison
O'neill 2012 ⁸⁶⁵	Inappropriate comparison
Patel 2002 ⁹⁰¹	No relevant outcome
Povoa 2009 ⁹³⁴	Inappropriate comparison
Prys-picard 2013 ⁹³⁷	Inappropriate comparison
Rodriguez-nunez 2006 ⁹⁷⁹	Incorrect interventions
Russell 2009 ⁹⁹¹	Inappropriate comparison
Russell 2013 ⁹⁹⁰	Not review population
Sakr 2006 ⁹⁹⁵	Inappropriate comparison
Serpa neto 2012 ¹⁰¹⁸	Incorrect interventions
Shapiro 2006 ¹⁰²³	Incorrect interventions
Soong 2011 ¹⁰⁶⁰	Inappropriate comparison
Tourneux 2008 ¹¹⁰⁰	Inappropriate comparison
Tsapenko 2013 ¹¹⁰⁶	Inappropriate comparison
Tsuneyoshi 2001 ¹¹⁰⁹	Invalid study design

Study	Exclusion reason
Vasu 2012 ¹¹³⁰	Systematic review
Waechter 2014 ¹¹⁵⁰	Inappropriate comparison
Wilkman 2013 ¹¹⁶⁹	Inappropriate comparison
Yildizdas 2008 ¹¹⁹⁴	Incorrect interventions
Zhang 2015 ¹²⁰⁶	Inappropriate comparison
Zhao 2012 ¹²¹⁰	Not English
Zhou 2013 ¹²¹²	Not English
Zhou 2014 ¹²¹³	Systematic review
Zhou 2015 ¹²¹⁴	Systematic review

L.11 Supplemental oxygen

Reference	Reason for exclusion
Alia 1999 ⁶³	Inappropriate comparison (therapy with normal targeted value of oxygen delivery versus targeted oxygen delivery index)
Balk 2004 ¹³⁴	Inappropriate study design (narrative paper)
Bellomo 2008 ¹⁶⁸	Inappropriate study design (commentary)
Crone 1994 ³³⁸	Inappropriate study design (letter to the editor)
Duarte 2005 ⁴⁰⁶	Inappropriate study design (narrative review)
Erstad 1994 ⁴²⁶	Review with different protocol
Esen 1992 430	Inappropriate intervention (artificial ventilation)
Ferrer 200 ⁴⁴⁸	Inappropriate population (acute hypoxemic respiratory failure) and incorrect comparison (non invasive ventilation versus oxygen using high concentration sources)
Freebairn 1997 ⁴⁶⁶	Inappropriate interventions (vecuronium or saline closed-loop infusion)
Ince 1999 ⁵⁹⁸	Review with different protocol
Matuschak 1997787	Review with different protocol
Rampal 2010 ⁹⁴⁸	Review with different protocol
Russell 1995 ⁹⁸⁹	Inappropriate study design (narrative review)
Textoris 2011 1093	Inappropriate intervention (local hospital protocol)
Vincent 1995 ¹¹⁴⁰	Inappropriate study design (narrative review)

Table 45: Studies excluded from the clinical review

L.12 Use of bicarbonate

Table 46: Studies excluded from the clinical review

Reference	Reason for exclusion
Kim 2013 ⁶⁶³	Population not relevant to review question (61% of patients had sepsis as cause of lactic acidosis; 67 % of the population received bicarbonate therapy)
Velissaris 2015 ¹¹³¹	Literature review

L.13 Early goal-directed therapy (EGDT)

None.

L.14 Monitoring

Table 47: Studies excluded from the clinical review (use of scoring systems)

Reference	Reason for exclusion
Abbott 2015 ¹¹	Intervention does not match protocol (not for monitoring: comparison of NEWS and PARS)
	Population does not match protocol (not sepsis specific: all patients admitted to the acute assessment unit)
Adshead 2009 ²⁸	Incorrect study design (narrative article)
Akre 2010 ⁴⁵	Intervention does not match protocol (not for monitoring: external validation or PEWS and calculation of median time from critical PEWS to rapid response team) Population does not match protocol (not sepsis specific: hospitalised paediatric patients, respiratory, infectious disease, cancer, cardiac,
	digestive)
Alam 2014A ⁵³	Intervention does not match protocol (not for monitoring: systematic review on ability of EWS to identify patients at risk of deterioration) Population does not match protocol (not sepsis specific: ED and ward patients)
Alam 2015 ⁵⁴	Intervention does not match protocol (not for monitoring: validation of NEWS to predict adverse outcome)
	Population does not match protocol (not sepsis specific: all ED patients with an emergency severity index of 2 and 3 not triaged to the resuscitation room)
Albert 2011 ⁵⁸	Intervention does not match protocol (not for monitoring: development of a modified EWS)
	Population does not match protocol (not sepsis specific: cardiac, respiratory, neurological, sepsis (1.3%))
Alrawi 2013 ⁶⁸	Intervention does not match protocol (not for monitoring: to assess ability of MEWS to predict mortality)
	Population does not match protocol (not sepsis specific: acutely ill nursing home residents)
Anon 2014B ⁹	Incorrect study design (narrative article)
Armagan 2008 ⁹⁴	Intervention does not match protocol (not for monitoring: validation of MEWS)
	Population does not match protocol (not sepsis specific: all ED patients)
Ausania 2015 ¹⁰⁶	Intervention does not match protocol (not for monitoring: multivariable analysis of risk factors associated with morbidity and mortality)
	Population does not match protocol (not sepsis specific: post-operative patients)
Bayer 2015 ¹⁶⁰	Intervention does not match protocol (not for monitoring: development of a new scoring system, not externally validated) Population does not match protocol (not sepsis specific: all patients
224	admitted to ED)
Bradman 2008 ²²⁴	Intervention does not match protocol (not for monitoring: to see if PEWS

Reference	Reason for exclusion
	could determine at triage children who needed admission or who could be discharged at home)
	Population does not match protocol (not sepsis specific: all children attending the paediatric emergency department)
Badriyah 2014 ¹¹⁷	Intervention does not match protocol (not for monitoring: validation of NEWS) Population does not match protocol (not sepsis specific: all patients
Breslin 2014 ²²⁶	admitted to the medical assessment unit) Intervention does not match protocol (to establish that higher PEWS at
DIESIII 2014	time of ED disposition decision is associated with need for higher levels of care at ED disposition, not for monitoring) Population does not match protocol (not sepsis specific: ED patients)
Burch 2008 ²³⁹	Intervention does not match protocol (to evaluate the utility of MEWS as a triage tool, not for monitoring) Population does not match protocol (not sepsis specific: medical patients
ol i l l i oct 2 75	presenting to the ED)
Chaiyakulsil 2015 ²⁷⁵ Cei 2009 ²⁶⁹	Population does not meet protocol (not sepsis) Intervention does not match protocol (to identify patients at risk of
Cei 2009	deterioration, not for monitoring) Population does not match protocol (not sepsis specific: all patients admitted to a medical ward)
Churpek 2013 ³¹²	Intervention does not match protocol (to discuss risk scores for use on the general inpatient wards to predict mortality, ICU transfer and cardiac arrest, not for monitoring) Population does not match protocol (not sepsis specific: patients on
215	general wards)
Cildir 2013 ³¹⁵	Intervention does not match protocol (not for monitoring: to evaluate the ability of MEDS, MEWS and the Charlson comorbidity index (CCI) to predict prognosis in patients who are diagnosed in sepsis)
Corfield 2014 ³²⁸	Intervention does not match protocol (not for monitoring: to determine, in patients with sepsis, whether a single NEWS on ED arrival is a predictor of mortality, or ICU admission)
Correia 2014 ³³⁰	Intervention does not match protocol (not for monitoring: EWS score at - 72h, -24h and -12h in patients transferred from the ward to the ER) Population does not match protocol (not sepsis specific: cardiovascular,
Dawes 2014 ³⁵⁵	respiratory, neurological, renal or other clinical reasons) Intervention does not match protocol (not for monitoring: ability of the
Dawes 2014	Worthing PSS score, calculated using VitalPAC, to predict mortality.)
	Population does not match protocol (not sepsis specific: all patients admitted to the Acute Medical Unit)
De Meester 2013A ³⁶⁵	Intervention does not match protocol (monitoring for serious adverse events after ICU discharge) Population does not match protocol (not sepsis specific: surgical and medical ICU patients)
Ennis 2014 ⁴²²	Intervention does not match protocol (not for monitoring: evaluate the effectiveness of PEWS to early detect clinical deterioration) Population does not match protocol (not sepsis specific: acutely ill children in hospital)
Fairclough 2009 ⁴³⁸	Intervention does not match protocol (not for monitoring: use of MEWS to predict mortality in acute medical admission unit)
	Population does not match protocol (not sepsis specific: only 12% of

Reference	Reason for exclusion
	patients had sepsis)
Finlay 2014 ⁴⁵⁵	Intervention does not match protocol (not for monitoring: MEWS to predict mortality) Population does not match protocol (not sepsis specific: general medical- surgical patients)
Friedman 2015 ⁴⁶⁷	Incorrect study design (narrative review)
Fuijkschot 2015 ⁴⁶⁹	Intervention does not match protocol (not for monitoring: PEWS to identify patients for PICU admission) Population does not match protocol (not sepsis specific: all patients receiving emergency medical interventions at the paediatric wards; all patients admitted to paediatric oncology ward)
Goldhill 2004 ⁵⁰⁷	Intervention does not match protocol (not for monitoring: physiological variables to predict mortality)
	Population does not match protocol (not sepsis specific: all patients in non-obstetric bed area)
Goldhill 2005 ⁵⁰⁸	Intervention does not match protocol (not for monitoring: physiological variables and Patient-At-Risk score to predict mortality) Population does not match protocol (not sepsis specific: outreach service database)
Griffiths 2012 ⁵²⁰	Incorrect study design (survey)
Haines 2006 ⁵⁴⁴	Intervention does not match protocol (not for monitoring: to develop and evaluate a clinical and physiologically based for identification of acutely ill children in ward areas) Population does not match protocol (not sepsis specific)
Hammond 2013 ⁵⁴⁸	Intervention does not match protocol (not for monitoring: to assess any change in combination or individual vital signs frequency before and after MEWS implementation) Population does not match protocol (not sepsis specific: ICU patients with
11 204 r ⁵⁶¹	three diagnostic groups: cardiovascular, respiratory and gastrointestinal)
Henry 2015 ⁵⁶¹	Outcome does not match protocol (diagnostic accuracy data)
Ho 2013 ⁵⁷⁷	Intervention does not match protocol (not for monitoring: MEWS to predict mortality and ICU admission) Population does not match protocol (not sepsis specific: critically ill patients who require continuous ECG monitoring)
Holme 2013 ⁵⁷⁹	Intervention does not match protocol (not for monitoring: To design and validate an objective clinical scoring system to identify unwell neonates) Population does not match protocol (not sepsis specific: all neonates >35 weeks' gestation admitted to the NICU)
Jarvis 2015A ⁶¹⁶	Intervention does not match protocol (not for monitoring: use of NEWS to calculate risk of death and adverse outcome) Population does not match protocol (not sepsis specific: all patients admitted to hospital)
Jo 2013 ⁶²⁴	Intervention does not match protocol (not for monitoring: to examine whether the predictive value of EWS could be improved by including rapid lactate levels, and to compare the modified EWS with the pre- existing risk scoring systems)
Kaul 2014 ⁶⁴²	Incorrect study design (survey)
Kellett 2012 ⁶⁴⁵	Intervention does not match protocol (not for monitoring: validation of an abbreviated Vitalpac Early Warning Score)
	Population does not match protocol (not sepsis specific: includes surgical

Reference	Reason for exclusion
	patients, medical, cardiac, oncology, renal and stroke patients)
Kyriacos 2011 ⁶⁹⁸	Intervention does not match protocol (not for monitoring: review the validity of EWS/MEWS) Population does not match protocol (not sepsis specific: population not specified)
Lam 2006 ⁷⁰³	Intervention does not match protocol (not for monitoring: applicability of MEWS for the emergency department observation ward to predict serious outcome) Population does not match protocol (not sepsis specific: patients with
Liu 2015 ⁷³⁵	cardiac or gastrointestinal symptoms, or dizziness) Intervention does not match protocol (not for monitoring: validation of National EWS in emergency intensive care unit) Population does not match protocol (not sepsis specific: neurological, cardiovascular, respiratory, gastrointestinal and other diseases)
Ludikhuize 2012 ⁷⁴⁷	Intervention does not match protocol (not for monitoring: effectiveness of MEWS to predict cardiopulmonary arrest, ICU admission, death, emergency surgery) Population does not match protocol (not sepsis specific: patients on general wards)
Ludikhuize 2014 ⁷⁴⁶	Intervention does not match protocol (not for monitoring: implementation of a RRs protocol) Population does not match protocol (not sepsis specific: hospitalised patients)
Mandell 2015 ⁷⁶⁴	Population does not match protocol (not sepsis population)
Moseson 2014 ⁸²⁵	Intervention does not match protocol (not for monitoring: comparison of APACHE II, APACHE III, SAPS II, MEWS, REMS, PEDS to predict mortality) Population does not match protocol (not sepsis specific: critically ill patients admitted to the ICU with one of the following diagnosis category: respiratory, cardiovascular, infectious disease, neurology, gastrointestinal, other)
Oldroyd 2011 ⁸⁷⁴	Incorrect study design (narrative article)
Parshuram 2011 ⁸⁹⁷	Intervention does not match protocol (not for monitoring: before-and- after study to evaluate the effect of implementation of the Bedside PEWS) Population does not match protocol (not sepsis specific: all paediatric patients)
Parshuram 2011A ⁸⁹⁸	Repeated measures analysis showed that the Bedside PEWS increased over the 24 hours before urgent ICU admission or code blue event from a baseline mean score of 5.3, 20-24h before clinical deterioration, to 8.4 in the last 4 h Population does not match protocol (not sepsis specific: all paediatric patients, case-control study)
Patterson 2011 ⁹⁰²	Incorrect study design (survey)
Pearson 2011 ⁹⁰⁸	Incorrect study design (narrative article)
Prytherch 2010 ⁹³⁸	Intervention does not match protocol (not for monitoring: to develop a validated, paper-based, aggregate weighted track and trigger system (AWTTS) for the detection of patient deterioration) Population does not match protocol (not sepsis specific: database of acute medical admissions)
Reini 2012 ⁹⁶⁰	Intervention does not match protocol (not for monitoring: to assess
	ability of MEWS, SAPS III, and SOFSA to predict ICU mortality)

Population does not match protocol (not sepsis specific: only 13% of participants had sepsis. ICU setting)Seiger 2013 ¹⁰¹⁴ Intervention does not match protocol (not for monitoring: review to evaluate ability of PEWS to predict hospitalisation and ICU admission) Population does not match protocol (not sepsis specific: all children presenting to the ED with the following problems: trauma, gastrointestinal, FWS, dyspnea, wounds, neurologic, urinary tract problems, local infection/abscess, rash, ear, nose, throat, other)Silcock 2015 ¹⁰³⁶ Intervention does not match protocol (not for monitoring: validation of NEWS in identifying patients at risk of death or deterioration in the pre- hospital setting) Population does not match protocol (not sepsis specific: unselected pre- hospital patients)Skaletzky 2012 ¹⁰⁴⁵ Intervention does not match protocol (not sepsis specific: all patients admitted to medical-surgical wards. Case-control study)Smith 2013 ¹⁰⁴⁸ Intervention does not match protocol (not for monitoring: evaluate the ability of NEWS to detect mortality and ICU admission) Population does not match protocol (not sepsis specific: patients admitted to the medical assessment unit)Smith 2014 ¹⁰⁴⁹ Intervention does not match protocol (not for monitoring: review on the validity of EWS) Population does not match protocol (not for monitoring: review on the validity of EWS) Population does not match protocol (not sepsis specific: patients admitted to the medical assessment unit)
evaluate ability of PEWS to predict hospitalisation and ICU admission) Population does not match protocol (not sepsis specific: all children presenting to the ED with the following problems: trauma, gastrointestinal, FWS, dyspnea, wounds, neurologic, urinary tract problems, local infection/abscess, rash, ear, nose, throat, other)Silcock 2015 ¹⁰³⁶ Intervention does not match protocol (not for monitoring: validation of NEWS in identifying patients at risk of death or deterioration in the pre- hospital setting) Population does not match protocol (not sepsis specific: unselected pre- hospital patients)Skaletzky 2012 ¹⁰⁴⁵ Intervention does not match protocol (not for monitoring: validation of a modified PEWS) Population does not match protocol (not sepsis specific: all patients admitted to medical-surgical wards. Case-control study)Smith 2013 ¹⁰⁴⁸ Intervention does not match protocol (not for monitoring: evaluate the ability of NEWS to detect mortality and ICU admission) Population does not match protocol (not sepsis specific: patients admitted to the medical assessment unit)Smith 2014 ¹⁰⁴⁹ Intervention does not match protocol (not for monitoring: review on the validity of EWS)
NEWS in identifying patients at risk of death or deterioration in the pre- hospital setting)Population does not match protocol (not sepsis specific: unselected pre- hospital patients)Skaletzky 20121045Intervention does not match protocol (not for monitoring: validation of a modified PEWS) Population does not match protocol (not sepsis specific: all patients admitted to medical-surgical wards. Case-control study)Smith 20131048Intervention does not match protocol (not for monitoring: evaluate the ability of NEWS to detect mortality and ICU admission) Population does not match protocol (not sepsis specific: patients admitted to the medical assessment unit)Smith 20141049Intervention does not match protocol (not for monitoring: review on the validity of EWS)
modified PEWS)Population does not match protocol (not sepsis specific: all patients admitted to medical-surgical wards. Case-control study)Smith 2013Intervention does not match protocol (not for monitoring: evaluate the ability of NEWS to detect mortality and ICU admission) Population does not match protocol (not sepsis specific: patients admitted to the medical assessment unit)Smith 2014Intervention does not match protocol (not for monitoring: review on the validity of EWS)
Smith 2013Intervention does not match protocol (not for monitoring: evaluate the ability of NEWS to detect mortality and ICU admission) Population does not match protocol (not sepsis specific: patients admitted to the medical assessment unit)Smith 2014Intervention does not match protocol (not for monitoring: review on the validity of EWS)
Smith 2014 ¹⁰⁴⁹ Intervention does not match protocol (not for monitoring: review on the validity of EWS)
surgical inpatients)
So 2015 ¹⁰⁵² Intervention does not match protocol (to detect weather ED monitoring by MEWS is better than nurse clinical judgement in changing the patient's ED management plan) Population does not match protocol (not sepsis specific: all patients being held in the ED observation area because of access block to the following specialty wards: medical, general surgery, neurosurgery and clinical oncology)
Solevag 2013Intervention does not match protocol (not for monitoring: to assess the correlation of modified PEWS results with other indicators of severe illness)Population does not match protocol (not sepsis specific: injury, congenital cardiovascular disease, acquired cardiovascular disease, neurological disease, renal disease including urinary tract infection, gastrointestinal disease, respiratory, other infection, miscellaneous including dehydration and diabetes ketoacidosis)
Subbe 2001Intervention does not match protocol (not for monitoring: validation of a modified EWS)Population does not match protocol (not sepsis specific: all medical emergency admissions admitted to the medical admissions unit)
Tafelski 2015Intervention does not match protocol (not for monitoring: application of three different PIRO systems)
Tucker 2009Intervention does not match protocol (not for monitoring: validation of PEWS)Population does not match protocol (not sepsis specific: most common diagnosis were asthma exacerbation, bronchiolitis and pneumonia)
Van Rooijen 2013Intervention does not match protocol (not for monitoring: evaluation of the threshold value for the EWS on general wards)

Reference	Reason for exclusion
	Population does not match protocol (not sepsis specific: all patients on medical and surgical wards)
Vorwerk 2009 ¹¹⁴⁶	Intervention does not match protocol (not for monitoring: to determine the efficacy of the abbreviated MEDS score (without neutrophil bands), and MEWS in predicting mortality in adult ED patients with sepsis)
Yoo 2015 ¹¹⁹⁸	Intervention does not match protocol (not for monitoring: to determine whether use of a combination of MEWS and lactate enhances prediction of ICU transfer and mortality in hospitalized patients with severe sepsis/septic shock)

L.15 Patient education, information and support

Table 48: Studies excluded from the clinical review

Reference	Reason for exclusion
Flynn 2012 ⁴⁶²	SR includes studies in wrong population
Higgins 2008 ⁵⁷¹	Wrong population
Jeon 2012 ⁶¹⁹	Wrong intervention
Obermann 2007 ⁸⁷⁰	Wrong intervention
Plowright 2013 ⁹²⁴	Wrong study type
Yamamoto 1997 ¹¹⁸⁶	Wrong intervention

L.16 Education and training

Table 49: Studies excluded from the clinical review

Reference	Reason for exclusion
Adler 2007 ²⁶	Not relevant to review question
Allen 2011 ⁶⁶	Not relevant to review question
Anon 2008 ⁴	Not relevant to review question
Anon 2005A ²	Not relevant to review question
Anon 2007 ³	Comment
Anon 2008F ⁵	Not relevant to review question
Anon 2010 ⁶	Not relevant to review question.
Anon 2010A ⁷	Comment
Anon 2013D ⁸	Comment
Arabi 2014 ⁹¹	Expert opinion
Assuncao 2010 ¹⁰³	No detail about how training was carried out
Assuncao 2014 ¹⁰⁴	No detail about how training was carried out
Austin 2014 ¹⁰⁷	Not relevant to review question
Bach 1996 ¹¹⁴	Not relevant to review question.
Berger 2010 ¹⁷⁷	Not education/training.
Bond 2013 ²¹¹	No detail about how training was carried out
Bridgewater 2014	Critical care nursing education/degree

Reference	Reason for exclusion
Bruce 2011 ⁷⁹³	Protocol. Not on education/training
Buckley 2010 ²³⁷	Implementation of a protocol, not any details of training
Burney 2012 ²⁴⁰	Not relevant to review question
Baez 2013 ¹¹⁸	not relevant to review question/not enough details in paper
Barbieri 2013 ¹⁴⁴	Quality improvement initiatives, do not explain specific training or
	education
Benczo 2004 ¹⁷⁰	Not related to sepsis
Benson 2014 ¹⁷⁴	Early recognition, not training
Berg 2013 ¹⁸⁰	No details of how implemented/training
Capp 2011 ⁴⁶⁴	No details of training provided
Carlbom 2007 ²⁵⁴	Survey on barriers which may inform a training intervention but no training intervention
Casserly 2011 ²⁶⁴	Implementation of a Sepsis Intervention Programme, but no details on training
Chamberlain 2006 ²⁷⁷	Short summary
Carter 2007 ²⁶⁰	Outcomes not adequately measured
Castro2008 ²⁶⁶	Comparison of 2 intervention protocols, but no details on training
Chen 2013 ¹²⁰⁹	Impact of an education programme on patient outcomes. Details of training and education programme not included
Coba 2011 ³²⁰	Outcomes not adequately measured
Croft 2014 ³³⁷	Not relevant to review question.
Cruz 2012 ³⁴⁰	Not relevant to review question.
Daniels 2010	No details of training provided
Daniels 2011 ³⁵¹	States staff underwent training on sepsis 6 but no details of training provided
De Groot 2012 ³⁶⁰	No details of training provided.
Demmel 2010 ³⁷⁶	Not relevant to review question.
Desmond 2013 ³⁸⁰	Not relevant population.
Deutsch 2014 ³⁸²	Conference abstract
Devita 2007 ³⁸⁴	GDG ref. Comment on review
Fadale 2014 ⁴³⁵	Not relevant to review question. Training about vasopressor titration.
Fitzpatrick 2014 ⁴⁵⁷	Not relevant to review question. Wrong study design.
Fuchs 2015 ⁴⁶⁸	Conference abstract
Funk 2009 ⁴⁷¹	Review proposes and discusses barriers and RRS but does not present actual results of effectiveness of these.
Gannon 2011 ⁴⁸²	Not relevant to review question.
Gerber 2010 ⁴⁹³	Not relevant to review question.
Gerdtz2013 ⁴⁹⁵	GDG ref. Not relevant to review question
Girardis 2009 ⁵⁰¹	Not relevant to review question. Development and implementation of a protocol. No details given on the training and education.
Granier 1998 ⁵¹⁵	Not relevant to review question.
Greenspoon 1994	Implementation of a protocol.
Guerra 2013 ⁵²⁵	No detail about how training was carried out
Gultepe 2014 ⁵³²	Not relevant to review question
Harrigan 2006 ⁵⁵⁵	GDG ref. Not relevant to review question.

Herasevich 2011 ⁵⁶³	Not relevant to review question.
Hitti 2012 ⁵⁷⁵	No details of training provided.
Huggan 2011 ⁵⁹¹	summary
Hurtado 2006 ⁵⁹³	summary of bundles in surviving sepsis campaign
Jeon 2012 ⁶¹⁹	GDG ref. Not relevant to review question. Implementation of a protocol. No details given on the training and education.
Jones 1998 ⁶²⁹	Comment on sepsis and SIRS definitions
Jones 2014 ⁶²⁶	Not relevant to review question.
Kang 2012 ⁶³⁵	Not relevant to review question.
Kellie 2014 ⁶⁴⁶	Not relevant to review question.
Kim 2001 ⁶⁶⁶	Prevention of infection for HCP
Kim 1999 ⁶⁶¹	Not relevant to review question.
Kleinpell 2014 ⁶⁷⁵	comment on SSC and bundles, not original research
Kollef 2010 ⁶⁸³	GDG ref. Not relevant to review question. Implementation of a protocol. No details given on the training and education.
Larosa 2012 ⁷⁰⁸	Not relevant to review question. No details given on the training and education.
Launay 2011	No details of training provided.
Levy 2010 ⁷²⁴	No detail about what was how training/education carried out.
Levy 2014	No detail about what was how training/education carried out.
Lobo 2005 ⁷³⁹	GDG ref. Prevention of catheter-related infections, not about raising awareness of identification/ management of sepsis
Lobo 2010 ⁷³⁸	Prevention of catheter-related infections, not about raising awareness of identification/ management of sepsis
Mackintosh 2012754	GDG ref. Not relevant to review question. Not about education/training
Mahavanakul 2012 ⁷⁵⁸	Not relevant to review question.
McGaughey 2010 ⁷⁹⁰	GDG ref. Wrong study design (protocol). Not relevant to review question. Not about education/training
Mann-Salinas 2014 ⁷⁶⁶	Description of sepsis in theory
Marshall 2009 ⁷⁷⁵	Conference abstract
Mckinley 2011 ⁷⁹³	Implemented protocol but no details of how implemented/training
McNally 2009794	Not relevant to review question.
Meyer 2013 ⁸⁰⁴	No training implementation/analysis
Mok 2014 ⁸¹⁶	Not relevant to review question
Monette 2007 ⁸¹⁷	Not relevant to review question.
Moore 2009 ⁸²⁰	Sensitivity and specificity of sepsis screening protocol
Nassau 2003 ⁸³⁹	Summary/comment, not original research
Nelson 2011 ⁸⁴⁵	Not relevant to review question.
Nguyen 2014 ⁸⁵⁴	Not relevant to review question.
Nguyen 2009 ⁸⁵¹	Not relevant to review question.
Noritomi 2014 ⁸⁶⁰	Protocol implementation. No detail about what was included/how training/education carried out
Orji 2007 ⁸⁸³	Not relevant to review question
Ottestad 2007 ⁸⁸⁶	Scores performance in identifying sepsis but not implementing any training

Patocka 2014No details of training provided.Phua 2013 ²¹⁷⁷ Not relevant to review question.Phua 2013 ²¹⁸⁴ Not relevant to review question.Plambech 2012 ²⁰² Protocol implementation. No detail about what was included in the training.Potter 2011 ⁵⁷⁹ Editorial articlePresas 2010Not relevant to review question.Puntis 1991 ⁵⁹⁷ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisReuben 2006 ⁶⁶³ Not relevant to review question.Ricon 2011 ⁵⁷⁹ Not relevant to review question.Robson 2008 ⁷⁹⁶ Not relevant to review question.Saluh 2008 ⁵⁹⁶ Not relevant to review question.Saluh 2008 ⁵⁹⁶ Not relevant to review question.Santana 2008 ⁵⁹⁷⁸ Not relevant to review question.Sarani 2008 ⁵⁹⁶ Not relevant to review question.Sarani 2008 ⁵⁹⁷⁹ Not relevant to review question.Scherar 2011 ⁵⁰⁷⁰ Implementation of a protocol, not any details of trainingSecoare 2013 ⁵⁰⁷⁹ Prevention of infection, not about raising awareness of identification/management of sepsisSecoare 2013 ⁵¹⁷⁹ Not relevant to review question.Shearer 2010 ⁵¹⁷⁹ <td< th=""><th>Reference</th><th>Reason for exclusion</th></td<>	Reference	Reason for exclusion
Phua 2013 ¹⁹³ Not relevant to review question. Planabed 2012 ¹⁹³² Protocol implementation. No detail about what was included in the training. Potter 2011 ¹⁹²⁹ Editorial article Prass 2010 Not relevant to review question. Puntis 1991 ¹⁹³⁹ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsis Reuben 2006 ¹⁸⁵⁵ Not relevant to review question. Rincon 2011 ¹⁹⁷¹ No details of how implemented/training Robson 2008 ¹⁷⁷⁶ Not relevant to review question. Robson 2008 ¹⁷⁷⁶ Not relevant to review question. Salluh 2008 ¹⁹⁷⁶ Not relevant to review question. Salluh 2008 ¹⁹⁷⁶ Not relevant to review question. Salluh 2008 ¹⁹⁷⁶ Not relevant to review question. Saluh 2008 ¹⁹⁷⁰ Not relevant to review question. Saver 2011 ¹⁰⁷⁰ Not training/education. Scharam 2011 ¹⁰⁷⁰⁷ Not training/education. Scharam 2011 ¹⁰⁷⁰⁷ Implementation of a protocol, not any details of training Sever 2015 ¹⁰⁷⁰⁸ Conference abstract Scharam 2011 ¹⁰⁷⁷ Implementation of a protocol, not any details of training Sheerer 2013 ¹⁰⁷⁰⁸	Patocka 2014	
Phua 2013Not relevant to review question.Plambech 2012Protocol implementation. No detail about what was included in the training.Potter 2011Editorial articlePrasas 2010Not relevant to review question.Puntis 1991Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisReuben 2006Not relevant to review question.Rincon 2011No details of how implemented/trainingRobson 2008Not relevant to review question.Salluh 2008Not relevant to review question.Salluh 2008Not relevant to review question.Salluh 2008Not relevant to review question.Saluh 2008Not relevant to review question.Santana 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Not relevant to review questionSaveyer 2011Not training/education.Scherer 2015Conference abstratScharm 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Not relevant to review question.Shearer 2012Not relevant to review question.Shearer 2012Not relevant to review question.Shearer 2013Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2011Implementation of a pr	Phua 2012 ⁹¹⁷	
Plambech 2012***Protocol Implementation. No detail about what was included in the training.Potter 2011***Editorial articlePrasas 2010Not relevant to review question.Puntis 1991***Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisReuben 2008***Not relevant to review question.Rincon 2011***No details of how implemented/trainingRobson 2007***Not relevant to review question.Salluh 2008***Not relevant to review question.Saluh 2008***Not relevant to review question.Saluh 2008***Not relevant to review question.Santana 2008***Not relevant to review question.Santana 2008***Not relevant to review questionSantana 2008***Not relevant to review questionSawyer 2011***Not relevant to review questionSawyer 2011***Implementation of a protocol, not any details of trainingSenerlaberger 2009***Not relevant to review question.Shearer 2012****Not relevant to review question.Shearer 2012****Not relevant to review question.Shearer 2012*****Not relevant to review question.Shearer 2010****Not relevant to review question.Shearer 2010****No details of training.Tromp 2009****Not relevant to review question.Van 212**********No details of training.<	Phua 2013 ⁹¹⁸	
Potter 2011training.Potter 2011Editorial articlePrasas 2010Not relevant to review question.Puntis 1991Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisReuben 2006Not relevant to review question.Rincon 2011No details of how implemented/trainingRobson 2006Not relevant to review question.Robson 2007Not relevant to review question.Salluh 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarania 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Not relevant to review questionSarenz 2011Not trelevant to review questionSarenz 2013Not trelevant to review questionSarenz 2013Not trelevant to review questionSarenz 2011Not trelevant to review questionSheare 2013Not relevant to review question.Sheare 2013Not relevant to review question.Sheare 2013Not relevant to review question.Sheare 2012Not relevant to review question.Sheare 2012Not relevant to review question.Sheare 2012Not relevant to review question.Sheare 2013Implementation of a protocol, not any details of trainingTromp 2010No details of training.Tromp 2010No details of training.<	Plambech 2012 ⁹²²	
Prasas 2010Not relevant to review question.Puntis 1991Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisReuben 2006Not relevant to review question.Rincon 2011Not relevant to review question.Robson 2008Not relevant to review question.Saluh 2008Not relevant to review question.Saluh 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Conference abstractSchram 2011Not relevant to review questionSaver 2011Not relevant to review questionSaver 2011Not relevant to review questionScheer 2015Conference abstractSchram 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Implementation of a protocol, not any details of trainingSheerer 2000Implementation of a protocol, not any details of trainingTromp 2001Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2001Not relevant to review question.Valgren 2014No detail about what was how training/education carried out.Valgren 2014No detail about what was how training/education carried out.Valgren 2014No trelevant to review question.Valgren 2014Not relevant to review question.Valgren 2014		training.
Puntis 1991***Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisReuben 2006***aNot relevant to review question.Rincon 2011***1No details of how implemented/trainingRobson 2008***6Not relevant to review question.Salluh 2008***6Not relevant to review question.Salluh 2008***6Not relevant to review question.Salluh 2008***6Not relevant to review question.Sartana 2008***6Not relevant to review question.Sartana 2008***6Not relevant to review questionSarani 2008***6Not training/education.Scheer 2015****6Conference abstractSchramm 2011***********************************	Potter 2011 ⁹²⁹	Editorial article
Identification/management of sepsisReuben 2006 ⁹⁸³ Not relevant to review question.Rincon 2011 ⁹⁷¹ No details of how implemented/trainingRobson 2008 ⁹⁷⁶ Not relevant to review question.Salluh 2008 ⁹⁸⁶ Not relevant to review question.Salluh 2008 ⁹⁸⁶ Not relevant to review question.Salluh 2008 ⁹⁸⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008 ¹⁰⁰¹ Not relevant to review question.Savyer 2011 ¹⁰⁰⁵ Not training/education.Scheer 2015 ¹⁰⁰⁶ Conference abstractScheram 2011 ¹⁰⁰⁷ Implementation of a protocol, not any details of trainingSemelsberger 2009 ¹⁰¹⁶ Prevention of aprotocol, not any details of trainingShearer 2012 ¹⁰²⁶ Not relevant to review question.Shearer 2012 ¹⁰²⁶ Not relevant to review question.Shearer 2010 ¹⁰²⁷ GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012 ¹⁰²⁶ Not celevant to review question.Sherert 2000 ¹⁰²⁷ GDG ref. Prevention of a protocol, not any details of trainingTromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2010 ¹¹⁰⁴ Implementation of two sepsis screening tools, not any details of trainingTromp 2011 ¹¹⁰⁴ Implementati		Not relevant to review question.
Rincon 2011No details of how implemented/trainingRobson 2008Not relevant to review question.Robson 2007Not relevant to review question.Sallub 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Not relevant to review questionSawyer 2011Not relevant to review questionSawyer 2011Not relevant to review questionSawyer 2011Not relevant to review questionSchram 2011Not relevant to review questionSchram 2011Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSecane 2013Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisShearer 2012GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2014Implementation of a protocol, not any details of trainingTromp 2015Implementation of a protocol, not any details of trainingTromp 2016Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details	Puntis 1991 ⁹³⁹	
Robson 2008Not relevant to review question.Robson 2007Not relevant to review question.Salluh 2008Not relevant to review question.Santana 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Not relevant to review question.Savyer 2011Not relevant to review question.Savyer 2011Not training/education.Scheer 2015Not training/education.Scheer 2015Conference abstractSchramm 2011Implementation of a protocol, not any details of trainingSeeane 2013Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSecane 2013Implementation of a protocol, not any details of trainingShearer 2012Not relevant to review question.Shererz 2000Sol ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2012Implementation of a protocol, not any details of trainingTrafelski 2010No detail about what was how training/education carried out.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009States what can be done but does not show results of it being doneWeaver 2003General ICU not SepsisWolbrink 2014GDG ref. Comment. No stud	Reuben 2006 ⁹⁶³	Not relevant to review question.
Robson 2007Not relevant to review question.Salluh 2008Not relevant to review question.Santana 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Not relevant to review questionSawyer 2011Not relevant to review questionSawyer 2011Not relevant to review questionScheer 2015Conference abstractSchram 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSecoane 2013Implementation of a protocol, not any details of trainingShearer 2012GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012GDG ref. Prevention of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of two sepsis screening tools, not any details of trainingVarten 2014No detail about what was how training/education carried out.van Dijck 2009Specific sepsis prevention programmeWeaver 2003Specific sepsis	Rincon 2011 ⁹⁷¹	No details of how implemented/training
Salluh 2008Not relevant to review question.Santana 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Not trelevant to review questionSawyer 2011Not trelevant to review questionSawyer 2011Not training/education.Scheer 2015Conference abstractSchramm 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSecoane 2013Implementation of a protocol, not any details of trainingShearer 2012Not relevant to review question.Shearer 2012GDG ref. Prevention of infection, not about raising awareness of identification/ management of sepsisSmith 2012Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 2010Not trelevant to review question.van Dijck 2009Not relevant to review question.Warren 2003Specific sepsis prevention programmeWeaver 2003States what can be done but does not show results of it being doneWeinert 2008General ICU not SepsisWolbrink 2014GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of burdes of tarining the severe sepsis/septic shock. No details of education programme <t< td=""><td>Robson 2008⁹⁷⁶</td><td>Not relevant to review question.</td></t<>	Robson 2008 ⁹⁷⁶	Not relevant to review question.
Santana 2008Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSarani 2008Not relevant to review questionSawyer 2011Not relevant to review questionSawyer 2011Not training/education.Scheer 2015Conference abstractSchramm 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Implementation of a protocol, not any details of trainingSecane 2013Not relevant to review question.Shearer 2012Soft and the relevant to review question.Shearer 2000GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2012Implementation of a protocol, not any details of trainingWaren 2003Not relevant to review question.van Zanten 2014No detail about what was how training/education carr	Robson 2007 ⁹⁷⁵	Not relevant to review question.
identification/management of sepsisSarani 20081001Not relevant to review questionSawyer 20111005Not training/education.Scheer 20151006Conference abstractScherr 20111007Implementation of a protocol, not any details of trainingSemelsberger 20091016Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSecoane 20131017Implementation of a protocol, not any details of trainingShearer 20121026Not relevant to review question.Sherert 20001027GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 20121050Implementation of a protocol, not any details of trainingTromp 20091103No details of training.Tromp 20101104Implementation of a protocol, not any details of trainingTromp 201011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingVan Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁶³ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶⁴ States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶⁵ General ICU not SepsisW	Salluh 2008 ⁹⁹⁶	Not relevant to review question.
Sawyer 2011Not training/education.Scheer 2015Conference abstractSchramm 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSeoane 2013Implementation of a protocol, not any details of trainingShearer 2012Not relevant to review question.Shearer 2012GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTrafelski 2010Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009Implementation of two sepsis screening tools, not any details of trainingWarren 2003General ICU not SepsisWeaver 2003GDG ref. Comment. No study undertakenWinters 2013GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of care for managing patients with severe sepsis/septic sho	Santana 2008 ⁹⁹⁸	
Scheer 2015Conference abstractSchramm 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSeoane 2013Implementation of a protocol, not any details of trainingShearer 2012Scoare 2013Shearer 2012GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSherert 2000GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTafelski 2010Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009Not relevant to review question.Wallgren 2014No detail about what was how training/education carried out.Wallgren 2014Specific sepsis prevention programmeWeaver 2003General ICU not SepsisWolbrink 2014GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007SDG ref. Comment. No study undertakenWinterbottom 20	Sarani 2008 ¹⁰⁰¹	Not relevant to review question
Schramm 2011Implementation of a protocol, not any details of trainingSemelsberger 2009Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSeoane 2013Implementation of a protocol, not any details of trainingShearer 2012Shearer 2012Shearer 2012GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012Implementation of a protocol, not any details of trainingTromp 2009Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTafelski 2010Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009Not relevant to review question.Wallgren 2014Not relevant to review question.Wallgren 2014Specific sepsis prevention programmeWeaver 2003General ICU not SepsisWolbrink 2014GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No d	Sawyer 2011 ¹⁰⁰⁵	Not training/education.
Semelsberger 2009 ¹⁰¹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisSeoane 2013 ¹⁰¹⁷ Implementation of a protocol, not any details of trainingShearer 2012 ¹⁰²⁶ Not relevant to review question.Sherertz 2000 ¹⁰²⁷ GDG ref. Prevention of infection, not about raising awareness of identification/management of sepsisSmith 2012 ¹⁰⁵⁰ Implementation of a protocol, not any details of trainingTromp 2009 ¹⁰⁰³ No details of training.Tromp 2010 ¹⁰⁴⁴ Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 2010 ¹⁰⁸⁴ Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinters 2013 ¹¹⁷² GDG ref. Comment. No study undertakenWinterbottom 2011 ¹¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Scheer 2015 ¹⁰⁰⁶	Conference abstract
identification/management of sepsisSeoane 2013 ¹⁰¹⁷ Implementation of a protocol, not any details of trainingShearer 2012 ¹⁰²⁶ Not relevant to review question.Sherertz 2000 ¹⁰²⁷ GDG ref. Prevention of infection, not about raising awareness of identification/ management of sepsisSmith 2012 ¹⁰⁵⁰ Implementation of a protocol, not any details of trainingTromp 2009 ¹¹⁰³ No details of training.Tromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 2010 ¹⁰⁸⁴ Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁶³ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶⁴ States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinterbottom 2011 ¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Schramm 2011 ¹⁰⁰⁷	Implementation of a protocol, not any details of training
Shearer 20121026Not relevant to review question.Sherertz 20001027GDG ref. Prevention of infection, not about raising awareness of identification/ management of sepsisSmith 20121050Implementation of a protocol, not any details of trainingTromp 20091103No details of training.Tromp 20101104Implementation of a protocol, not any details of trainingTromp 2010Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 20101084Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 20091126Not relevant to review question.Wallgren 20141152Implementation of two sepsis screening tools, not any details of trainingWarren 20031162States what can be done but does not show results of it being doneWeinert 20081163General ICU not SepsisWolbrink 20141175describes platform but no results of effect in practiceWinterbottom 20111171Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 20071196Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Semelsberger 2009 ¹⁰¹⁶	-
Sherertz 2000 ¹⁰²⁷ GDG ref. Prevention of infection, not about raising awareness of identification/ management of sepsisSmith 2012 ¹⁰⁵⁰ Implementation of a protocol, not any details of trainingTromp 2009 ¹¹⁰³ No details of training.Tromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 2010 ¹⁰⁸⁴ Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶² States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinterbottom 2011 ¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Seoane 2013 ¹⁰¹⁷	Implementation of a protocol, not any details of training
identification/ management of sepsisSmith 20121050Implementation of a protocol, not any details of trainingTromp 20091103No details of training.Tromp 20101104Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 20101084Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 20091126Not relevant to review question.Wallgren 20141152Implementation of two sepsis screening tools, not any details of trainingWarren 20031158Specific sepsis prevention programmeWeaver 20031163General ICU not SepsisWolbrink 20141175describes platform but no results of effect in practiceWinters 20131172GDG ref. Comment. No study undertakenWinterbottom 20111171Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 20071196Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Shearer 2012 ¹⁰²⁶	Not relevant to review question.
Tromp 2009 ¹¹⁰³ No details of training.Tromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 2010 ¹⁰⁸⁴ Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶² States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinters 2013 ¹¹⁷² GDG ref. Comment. No study undertakenWinterbottom 2011 ¹¹⁷¹ Implementation of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Sherertz 2000 ¹⁰²⁷	-
Tromp 2010 ¹¹⁰⁴ Implementation of a protocol, not any details of trainingTromp 2011Implementation of a protocol, not any details of trainingTafelski 2010 ¹⁰⁸⁴ Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶² States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinters 2013 ¹¹⁷² GDG ref. Comment. No study undertakenWinterbottom 2011 ¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Smith 2012 ¹⁰⁵⁰	Implementation of a protocol, not any details of training
Tromp 2011Implementation of a protocol, not any details of trainingTafelski 2010 ¹⁰⁸⁴ Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶² States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinters 2013 ¹¹⁷² GDG ref. Comment. No study undertakenWinterbottom 2011 ¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Tromp 2009 ¹¹⁰³	No details of training.
Tafelski 2010Not relevant to review question.van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009Not relevant to review question.Wallgren 2014Implementation of two sepsis screening tools, not any details of trainingWarren 2003Specific sepsis prevention programmeWeaver 2003States what can be done but does not show results of it being doneWeinert 2008General ICU not SepsisWolbrink 2014GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Tromp 2010 ¹¹⁰⁴	Implementation of a protocol, not any details of training
van Zanten 2014No detail about what was how training/education carried out.van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶² States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinters 2013 ¹¹⁷² GDG ref. Comment. No study undertakenWinterbottom 2011 ¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Tromp 2011	Implementation of a protocol, not any details of training
van Dijck 2009 ¹¹²⁶ Not relevant to review question.Wallgren 2014 ¹¹⁵² Implementation of two sepsis screening tools, not any details of trainingWarren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶² States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinters 2013 ¹¹⁷² GDG ref. Comment. No study undertakenWinterbottom 2011 ¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Tafelski 2010 ¹⁰⁸⁴	Not relevant to review question.
Wallgren 2014Implementation of two sepsis screening tools, not any details of trainingWarren 2003Specific sepsis prevention programmeWeaver 2003States what can be done but does not show results of it being doneWeinert 2008General ICU not SepsisWolbrink 2014describes platform but no results of effect in practiceWinters 2013GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007No details of training provided.	van Zanten 2014	No detail about what was how training/education carried out.
Warren 2003 ¹¹⁵⁸ Specific sepsis prevention programmeWeaver 2003 ¹¹⁶² States what can be done but does not show results of it being doneWeinert 2008 ¹¹⁶³ General ICU not SepsisWolbrink 2014 ¹¹⁷⁵ describes platform but no results of effect in practiceWinters 2013 ¹¹⁷² GDG ref. Comment. No study undertakenWinterbottom 2011 ¹¹⁷¹ Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	van Dijck 2009 ¹¹²⁶	Not relevant to review question.
Weaver 2003States what can be done but does not show results of it being doneWeinert 2008General ICU not SepsisWolbrink 2014describes platform but no results of effect in practiceWinters 2013GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Wallgren 2014 ¹¹⁵²	Implementation of two sepsis screening tools, not any details of training
Weinert 2008General ICU not SepsisWolbrink 2014describes platform but no results of effect in practiceWinters 2013GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Warren 2003 ¹¹⁵⁸	Specific sepsis prevention programme
Wolbrink 2014describes platform but no results of effect in practiceWinters 2013GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.		States what can be done but does not show results of it being done
Winters 2013GDG ref. Comment. No study undertakenWinterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Weinert 2008 ¹¹⁶³	General ICU not Sepsis
Winterbottom 2011Implementation of bundle of care for managing patients with severe sepsis/septic shock. No details of education programmeYilmaz 2007Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.	Wolbrink 2014 ¹¹⁷⁵	describes platform but no results of effect in practice
sepsis/septic shock. No details of education programmeYilmaz 2007 ¹¹⁹⁶ Prevention of catheter-related infections, not about raising awareness of identification/management of sepsisYurkova 2011No details of training provided.		GDG ref. Comment. No study undertaken
identification/management of sepsisYurkova 2011No details of training provided.	Winterbottom 2011 ¹¹⁷¹	
	Yilmaz 2007 ¹¹⁹⁶	
Zaffar 2009Not relevant to review question.	Yurkova 2011	No details of training provided.
	Zaffar 2009	Not relevant to review question.

Reference	Reason for exclusion
Zuhlke 2013 ¹²¹⁷	Public education, not health professionals.

Appendix M: Excluded health economic studies

M.1 Scoring systems

None.

M.2 Signs and symptoms

None.

M.3 Blood tests

None.

M.4 Lactate

None.

M.5 Serum creatinine

None.

M.6 Disseminated intravascular coagulation (DIC)

None.

M.7 Antimicrobial treatment

None.

M.8 IV fluid administration

Table 50: Studies excluded from the economic review

Reference	Reason for exclusion
GUIDET 2007 ⁵²⁷	This study was selectively excluded due to a combination of applicability and methodological limitations.
	Health outcomes were not expressed as QALYs. Time horizon may not be sufficient to capture all benefits and costs if benefits persist beyond 5 years. The associated RCT (SAFE Study) is just 1 of 7 included studies in the clinical review, which also has limitations because the treatment effect used in the cost effectiveness paper is a post hoc analysis and the treatment effect in the severe sepsis group was not found to be significant.

M.9 Escalation of care

None.

Sepsis Excluded health economic studies

M.10 Inotropic agents and vasopressors

None.

M.11 Supplemental oxygen

None.

M.12 Use of bicarbonate

None.

M.13 Early goal-directed therapy

None.

M.14 Monitoring

None.

M.15 Patient education, information and support

None.

M.16 Education and training

None.

Appendix N: Research recommendations

N.1 Creation of a UK Sepsis Registry

Research question:

A UK sepsis registry should be established to collect clinical and epidemiological data to provide information to support clinical audit and to inform the research agenda.

Why this is important:

The lack of robust UK based epidemiological studies and a lack of coordinated service evaluation within the NHS has been clear throughout the guideline development process. The development of a UK register would allow collection of information about where sepsis is being treated, patient interventions and patient outcomes. This would support audit, provide comparative information for clinicians about performance of institutions and provide population based statistics on epidemiology of sepsis. Complex healthcare interventions, such as Trauma services, have benefited greatly from robust, standardised and centralised registries that have gathered epidemiological, service evaluation and outcome data. Subsequent improvements in services have then been developed in a data driven strategy.

The mortality and morbidity and service complexity associated with severe infection justifies a similar investment in an NHS Registry for patients with severe infection, gathering data on all patients meeting the NICE high risk criteria.

PICO question	The questions that a registry could help answer are: What is the epidemiology of life threatening sepsis in the UK? How and where is life threatening sepsis treated? What important safety monitors need to be in place to capture unintended consequences? Would co-ordinated service evaluation linked to a Sepsis Registry lead to better patient care?
Importance to patients or the population	The interventions recognised in this guideline as a standard of care for sepsis require timely, coordinated, and robust healthcare services. Process and patient outcome improvement can only occur if based on standardised data systems that inform us of epidemiological, clinical and outcome trends. There is a lack of evidence to support any particular service improvement methodology in sepsis but coordinated efforts to provide longitudinal data on process and outcome would help with this.
Relevance to NICE guidance	Provide baseline data on impact of sepsis in UK population and help inform future guidance on effective service improvement methodologies
Relevance to the NHS	Will provide assurance of guideline implementation which (along with mechanisms such as CQUIN) will drive service improvement. Will provide measures of local and population based epidemiology to inform service design and resourcing.
National priorities	National Sepsis CQUIN NHS Ombudsman Report into Sepsis Sign up to Safety NHSE priorities
Current evidence base	There is a lack of current national sepsis statistics with poor coding of episodes of sepsis and limited knowledge of UK sepsis epidemiology

Equality	None Relevant
Study design	Service evaluation and audit
	Epidemiological primary research
Feasibility	Information governance and Caldicott issues will need to be addressed.
	Centralised registry will need to be funded in line with other similar databases.
Other comments	A variety of known local service evaluation and audit methods could be adapted for national use.
Importance	 High: the research is essential to inform future updates of key recommendations in the guideline.

N.2 A complex service evaluation of implementation of NICE Sepsis guideline

Research question:

What effect will the NICE Sepsis guideline have on patient care processes and outcome in the UK over the next 5 years?

Why this is important:

Implementation of the NICE Sepsis guideline will be a challenge to the NHS. A robust evaluation of how NHS service providers adhere to the recommended care processes and the effect of implementation needs to be carried out.

A complex evaluation is required to understand the effect of guidelines on services and on patient outcomes. Evaluation should include assessment of costs and cost effectiveness, the use of a universal audit tool for sepsis patient care that includes evaluation of pre-hospital and secondary care and monitoring of broad spectrum antibiotic use, development of multi-resistant organisms and incidence of antibiotic related infection such as C. Difficile.

00	· · ·
PICO question	What effect will the NICE Sepsis guideline have on patient care processes and outcome in the UK over the next 5 years?
Importance to patients or the population	The interventions recognised in this guideline as a standard of care for sepsis require timely, coordinated, and robust healthcare services. This is a complex intervention that needs assessment as such to allow changes to care to be monitored and evaluated to ensure improvement in care for people with sepsis.
Relevance to NICE guidance	Inform NICE of clinical effectiveness of guideline implementation and inform guideline updates.
Relevance to the NHS	Will provide information on guideline implementation which (along with mechanisms such as CQUIN) will drive service improvement.
National priorities	National Sepsis CQUIN NHS Ombudsman Report into Sepsis Sign up to Safety NHSE priorities
Current evidence base	Not applicable
Equality	None Relevant
Study design	Complex evaluation using the principles of process evaluation
Feasibility	Information governance and Caldicott issues will need to be addressed. The evaluation is feasible.
Other comments	

Importance

• High: the research is essential to inform NICE and local commissioners in gaps or difficulties in implementation of the guideline

N.3 Use of biomarkers to diagnose and initiate treatment

Research question:

What is the clinical and cost effectiveness of procalcitonin (PCT) point-of-care tests at initial triage compared for diagnosis of serious infection and the initiation of appropriate antibiotic therapy?

Why this is important:

There is an urgent clinical need for accurate biomarkers of serious bacterial infection (SBI) which provide early diagnosis of SBI, and prompt clinical interventions to improve outcomes. The current tests used in the NHS (white cell count and C-reactive protein) are non-specific and not sensitive enough. Biomarker-guided initiation and termination of antibiotic therapy might be an effective strategy to reduce unnecessary antibiotic use and help prevent further multidrug resistance. The recent NICE Diagnostic Guidance (DG18) on Procalcitonin for diagnosing and monitoring sepsis has shown there is not enough evidence in this area.

00		
PICO question	Population: Adults and children with suspected sepsis at triage in the UK Index test: PCT Comparison: CRP Outcomes: time to diagnosis of sepsis, antibiotic exposure (initiation of appropriate antibiotic therapy), duration of hospital stay, duration of ICU stay, adverse clinical outcomes (for example mortality, antibiotic-related adverse events)	
Importance to patients or the population	The rapid and accurate determination of the presence or absence of systematic infection is important for patients' clinical outcomes and also to reduce unnecessary exposure to antibiotics.	
Relevance to NICE guidance	Further research on PCT would provide a stronger evidence base in order for NICE to issue clear guidance for diagnosis of children, young people and adults with suspected sepsis	
Relevance to the NHS	Antimicrobial stewardship is important for the NHS and accurate identification of the need for antibiotics would allow more targeted use of antibiotics. Better stratification of disease severity will reduce morbidity and mortality, and reduce NHS costs.	
National priorities	National Sepsis CQUIN NHS Ombudsman Report into Sepsis Sign up to Safety NHSE priorities UK Five Year Antimicrobial Resistance Strategy 2013 to 2018	
Current evidence base	The current evidence for PCT is is limited. The current evidence for CRP is considered in Chapter 8 of the full guideline.	
Equality	There are no equality issues.	
Study design	PCT and CRP would be evaluated by standard methods including specificities, sensitivities, receiver operator curves (ROCs) or area under the curves (AUC) for diagnosis of sepsis. Assessment of initiation of appropriate antibiotic therapy would be evaluated by hazard ratios, odds ratios and/or relative risk for duration	

	of hospital stay, duration of ICU stay, and adverse clinical outcomes.
Feasibility	The study is feasible as currently CRP is routinely tested in people with suspected sepsis.
Other comments	The study may attract commercial funders in the diagnostics arena including companies developing novel PCT assays.
Importance	 High: the research is essential to inform future updates of key recommendations in the guideline.

N.4 Validation of clinical early warning scores in pre-hospital and emergency care settings

Research question:

Can early warning scores for example NEWS (national early warning scores for adults) and PEWS (paediatric early warning score) be used to improve the detection of sepsis and facilitate prompt and appropriate clinical response in pre-hospital settings and in emergency departments?

Why this is important:

Delay in detecting and treating sepsis increases mortality. Early detection and appropriate management will reduce morbidity and mortality and will reduce NHS costs by reducing critical care admissions, inappropriate antimicrobial use and length of hospital stay. No high quality data exist on the validation or use of early warning scores in pre-hospital settings or in the emergency department settings. The use of scores might improve communication between pre-hospital settings and hospital settings and allow recognition of people who need more urgent assessment.

PICO question	Population: non-hospital based patients (both those totally managed in primary care and those who are transferred to secondary care), and patients managed in the emergency room with suspected sepsis in the UK. Intervention: (1) NEWS and (2) PEWS scores to direct care Comparison: No use of score to direct care Outcomes: referral rates, adverse clinical outcomes (for example mortality)
Importance to patients or the population	Timely diagnosis of sepsis and detection of worsening symptoms will improve patient outcomes.
Relevance to NICE guidance	Research would provide evidence to enable NICE to make recommendations on the use of NEWS and PEWS in the pre-hospital setting, emergency room or secondary care setting.
Relevance to the NHS	Prompt and early recognition of people with sepsis is critical to reducing morbidity and mortality and reducing NHS costs.
National priorities	NICE CG 50 Acutely ill patient in hospital: research recommendation re the sensitivity and specificity of track and trigger systems in various clinical settings NCEPOD Think Sepsis: recommends a standardised approach to vital signs monitoring in primary care, such as NEWS to help in the prioritisation of emergency care Ombudsman report 'Time to Kill': recommends the development of clinical tools highly predictive of sepsis to be used in primary care
Current evidence base	The development of the NICE guideline on sepsis found no evidence for use of validated tools in the pre-hospital or emergency room settings, and limited evidence in the emergency room and secondary care setting (chapter 6 of the guideline)

Equality	There are no equality issues.	
Study design	Cluster randomised trial, or, if not feasible due to widespread NHS implementation following NCEPOD recommendation, observational score validation to establish:	
	whether scores taken in primary/community care or the emergency room can differentiate patients requiring immediate escalation of care from those who can be managed less aggressively	
	whether scores taken solely in the community can add to GPs or other health professional add to their assessments and clinical experience	
	whether scores help communication between primary and secondary care and ambulances	
	Whether scores in emergency room stings reduce the volume of empirical antimicrobial prescription, reduce critical care admissions, reduce length of stay or mortality	
Feasibility	Baseline physiological measurements are already routinely taken in primary care but it is not usual practice to measure all the parameters and calculate a NEWS or PEWS score. It would require education and training of clinicians.	
	In emergency room is feasible as baseline physiological measurements are routinely taken.	
Other comments		
Importance	 High: The research is essential to inform future updates of key recommendations in the guideline. 	

N.5 Derivation of clinical decision rules in suspected sepsis

Research question:

Is it possible to derive and validate a set of clinical decision rules or a predictive tool to rule out sepsis which can be applied to patients presenting to hospital with suspected sepsis.

Why this is important:

In primary care and emergency departments people with suspected sepsis are often seen by relatively inexperienced doctors. Many of these people will be in low and medium risk groups but evidence is lacking as to who can be sent home safely and who needs intravenous or oral antibiotics. The consequences of getting the decision making wrong can be catastrophic and therefore many patients are potentially over-investigated and admitted inappropriately. Current guidance is dependent on use of individual variables informed by low quality evidence.

PICO question	Population: Adults and children presenting to hospital with suspected sepsis in UK.	
	Intervention: Derivation of history and physiological variables as well the application of diagnostic testing to be applied to patients fulfilling the inclusion criteria.	
	Comparison: Normal practice/ guidelines.	
	Outcome: diagnosis of sepsis, length of hospital stay, adverse clinical events (for example mortality)	
Importance to patients or the population	Errors are still made with clinical decisions making in patients with suspected sepsis. Delays in initiating treatments can unfortunately lead to life-threatening consequences. Evidence based clinical decision rules would support safer decision making and improve patient safety	
Relevance to NICE guidance	Would help to influence future guidelines in the moderate to low risk group.	
Relevance to the NHS	Safer patient care. Cost reductions to allow early discharge of appropriate patients.	
National priorities	Sepsis is high on the national agenda. Mortality rates are high and life- threatening treatments are occasionally omitted or delayed due to poor clinical decision making.	
Current evidence base	The development of the NICE guideline on sepsis suggested that the current available evidence in this area is of poor quality and not fit for purpose.	
Equality	None Relevant	
Study design	Prognostic observational cohort study to identify risk factors for developing sepsis, and then validation of derived prediction tool in separate cohorts.	
Feasibility	The research is feasible as comparable research has been achieved for other presentations, for example chest pains, DVTsGI Bleeds, headache, and head injuries	
Other comments	The difficulty of diagnosing sepsis is the lack of an acceptable, recognised gold standard from which to work. Gold standard for a study may need to be developed by a Delphi method.	
Importance	 High: the research is essential to inform future updates of key recommendations in the guideline. 	

Appendix O: NICE technical team

Name	Role
Sharon Summers-Ma	Guideline Lead
Martin Allaby	Clinical Advisor
Judith Thornton	Technical Lead (until November 2015)
Bhash Naidoo	Technical Lead (HE)
Caroline Keir	Guideline Commissioning Manager
Helen Dickinson	Guideline Coordinator
Gareth Haman	Editor
Rachel O'Mahony	Technical Lead (December 2015-present)
Laura Sadler	PIP Lead
Andrew Gyton	Project Manager

References: Appendix I-O

- Clinical prediction of serious bacterial infections in young infants in developing countries. The WHO Young Infants Study Group. Pediatric Infectious Disease Journal. 1999; 18(10 Suppl):S23-S31
- 2 Learn new ways to treat, monitor septic patients. ED Nursing. 2005; 8(9):102-104
- 3 Scoring system for CAP predicts severe disease. Journal of Family Practice. 2007; 56(2):92
- 4 Award-winning program slashes sepsis mortalities. ED Management. 2008; 20(6):64-67
- 5 Hospital's sepsis program initiative boosts safety. Healthcare Risk Management. 2008; 30(3):32-34
- 6 Answer/evaluation form: SIRS: a systematic approach to medical-surgical nurses to stop the progression to sepsis. Medsurg Nursing. 2010; 19(1):16
- 7 GPs fail to recognise symptoms of meningitis and septicaemia. Emergency Nurse. 2010; 18(4):4
- 8 Use early warning scores to detect sepsis... "Nurses urged to be alert to dangers of sepsis," nursingtimes.net. Nursing Times. 2013; 109(37):9
- 9 Impact of early warning systems on patient outcomes. Centre for Reviews and Dissemination (CRD), 2014. Available from: http://www.york.ac.uk/media/crd/effectiveness-matters-September-2014-earlywarningsystems.pdf
- 10 Aalto H, Takala A, Kautiainen H, Repo H. Laboratory markers of systemic inflammation as predictors of bloodstream infection in acutely ill patients admitted to hospital in medical emergency. European Journal of Clinical Microbiology and Infectious Diseases. 2004; 23(9):699-704
- 11 Abbott TEF, Vaid N, Ip D, Cron N, Wells M, Torrance HDT et al. A single-centre observational cohort study of admission National Early Warning Score (NEWS). Resuscitation. 2015; 92:89-93
- 12 Abdollahi A, Shoar S, Nayyeri F, Shariat M. Diagnostic Value of Simultaneous Measurement of Procalcitonin, Interleukin-6 and hs-CRP in Prediction of Early-Onset Neonatal Sepsis. Mediterranean Journal of Hematology and Infectious Diseases. 2012; 4(1):e2012028
- 13 Aboud MI, Waise MMA, Shakerdi LA. Procalcitonin as a marker of neonatal sepsis in intensive care units. Iranian Journal of Medical Sciences. 2010; 35(3):205-210
- 14 Abrahamsen SK, Haugen CN, Rupali P, Mathai D, Langeland N, Eide GE et al. Fever in the tropics: aetiology and case-fatality - a prospective observational study in a tertiary care hospital in South India. BMC Infectious Diseases. 2013; 13:355
- 15 Abudu A, Sivardeen KAZ, Grimer RJ, Pynsent PB, Noy M. The outcome of perioperative wound infection after total hip and knee arthroplasty. International Orthopaedics. 2002; 26(1):40-43
- 16 Abulebda K, Cvijanovich NZ, Thomas NJ, Allen GL, Anas N, Bigham MT et al. Post-ICU admission fluid balance and pediatric septic shock outcomes: a risk-stratified analysis. Critical Care Medicine. 2014; 42(2):397-403

- 17 Acevedo JG, Fernandez J, Escorsell A, Mas A, Gines P, Arroyo V. Clinical efficacy and safety of terlipressin administration in cirrhotic patients with septic shock. Journal of Hepatology. 2009; 50(Suppl No 1):S73
- 18 Acharya SP, Pradhan B, Marhatta MN. Application of "the Sequential Organ Failure Assessment (SOFA) score" in predicting outcome in ICU patients with SIRS. Kathmandu University Medical Journal. 2007; 5(4):475-483
- 19 Acosta CD, Bhattacharya S, Tuffnell D, Kurinczuk JJ, Knight M. Maternal sepsis: a Scottish population-based case-control study. BJOG. 2012; 119(4):474-483
- 20 Adam N, Kandelman S, Mantz J, Chretien F, Sharshar T. Sepsis-induced brain dysfunction. Expert Review of Anti-Infective Therapy. 2013; 11(2):211-221
- 21 Adamik B, Kubler-Kielb J, Golebiowska B, Gamian A, Kubler A. Effect of sepsis and cardiac surgery with cardiopulmonary bypass on plasma level of nitric oxide metabolites, neopterin, and procalcitonin: correlation with mortality and postoperative complications. Intensive Care Medicine. 2000; 26(9):1259-1267
- Adams WG, Kinney JS, Schuchat A, Collier CL, Papasian CJ, Kilbride HW et al. Outbreak of early onset group B streptococcal sepsis. Pediatric Infectious Disease Journal. 1993; 12(7):565-570
- Adejuyigbe EA, Adeodu OO, Ako-Nai KA, Taiwo O, Owa JA. Septicaemia in high risk neonates at a teaching hospital in Ile-Ife, Nigeria. East African Medical Journal. 2001; 78(10):540-543
- 24 Adhikari M, Coovadia HM, Coovadia YM, Smit SY, Moosa A. Predictive value of C-reactive protein in neonatal septicaemia. Annals of Tropical Paediatrics. 1986; 6(1):37-40
- Adib M, Bakhshiani Z, Navaei F, Saheb F.F., Fouladi S, Kazemzadeh H. Procalcitonin: a reliable marker for the diagnosis of neonatal sepsis. Iranian Journal of Basic Medical Sciences. 2012; 15(2):777-782
- 26 Adler MD, Trainor JL, Siddall VJ, McGaghie WC. Development and evaluation of high-fidelity simulation case scenarios for pediatric resident education. Ambulatory Pediatrics. 2007; 7(2):182-186
- 27 Adrie C, Francais A, Alvarez-Gonzalez A, Mounier R, Azoulay E, Zahar JR et al. Model for predicting short-term mortality of severe sepsis. Critical Care. 2009; 13(3):R72
- 28 Adshead N, Thomson R. Use of a paediatric early warning system in emergency departments. Emergency Nurse. 2009; 17(1):22-25
- 29 Aebi C, Ahmed A, Ramilo O. Bacterial complications of primary varicella in children. Clinical Infectious Diseases. 1996; 23(4):698-705
- 30 Agrawal A, Gupta A, Consul S, Shastri P. Comparative study of dopamine and norepinephrine in the management of septic shock. Saudi Journal of Anaesthesia. 2011; 5(2):162-166
- 31 Agrawal A, Singh VK, Varma A, Sharma R. Therapeutic applications of vasopressin in pediatric patients. Indian Pediatrics. 2012; 49(4):297-305
- 32 Agrawal S, Sachdev A, Gupta D, Chugh K. Platelet counts and outcome in the pediatric intensive care unit. Indian Journal of Critical Care Medicine. 2008; 12(3):102-108

- 33 Agyeman P, Aebi C, Hirt A, Niggli FK, Nadal D, Simon A et al. Predicting bacteremia in children with cancer and fever in chemotherapy-induced neutropenia: results of the prospective multicenter SPOG 2003 FN study. Pediatric Infectious Disease Journal. 2011; 30(7):e114-e119
- 34 Ahkee S, Srinath L, Ramirez J. Community-acquired pneumonia in the elderly: association of mortality with lack of fever and leukocytosis. Southern Medical Journal. 1997; 90(3):296-298
- 35 Ahmed Z, Ghafoor T, Waqar T, Ali S, Aziz S, Mahmud S. Diagnostic value of C- reactive protein and haematological parameters in neonatal sepsis. Journal of the College of Physicians and Surgeons--Pakistan. 2005; 15(3):152-156
- 36 Ahn S, Lee YS, Chun YH, Lim KS, Kim W, Lee JL. Predictive factors of bacteraemia in low-risk patients with febrile neutropenia. Emergency Medicine Journal. 2012; 29(9):715-719
- Ahn S, Lee YS, Lim KS, Lee JL. Adding procalcitonin to the MASCC risk-index score could improve risk stratification of patients with febrile neutropenia. Supportive Care in Cancer. 2013; 21(8):2303-2308
- 38 Aikawa N, Fujishima S, Endo S, Sekine I, Kogawa K, Yamamoto Y et al. Multicenter prospective study of procalcitonin as an indicator of sepsis. Journal of Infection and Chemotherapy. 2005; 11(3):152-159
- 39 Aimoto M, Koh H, Katayama T, Okamura H, Yoshimura T, Koh S et al. Diagnostic performance of serum high-sensitivity procalcitonin and serum C-reactive protein tests for detecting bacterial infection in febrile neutropenia. Infection. 2014; 42(6):971-979
- 40 Aina-Mumuney AJ, Althaus JE, Henderson JL, Blakemore MC, Johnson EA, Graham EM. Intrapartum electronic fetal monitoring and the identification of systemic fetal inflammation. Journal of Reproductive Medicine. 2007; 52(9):762-768
- 41 Ait-Oufella H, Joffre J, Boelle PY, Galbois A, Bourcier S, Baudel JL et al. Knee area tissue oxygen saturation is predictive of 14-day mortality in septic shock. Intensive Care Medicine. 2012; 38(6):976-983
- 42 Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J et al. Mottling score predicts survival in septic shock. Intensive Care Medicine. 2011; 37(5):801-807
- 43 Akpede GO, Abiodun PO, Ambe JP, Jacob DD. Presenting features of bacterial meningitis in young infants. Annals of Tropical Paediatrics. 1994; 14(3):245-252
- 44 Akpede GO, Abiodun PO, Sykes RM. Pattern of infections in children under-six years old presenting with convulsions associated with fever of acute onset in a children's emergency room in Benin City, Nigeria. Journal of Tropical Pediatrics. 1993; 39(1):11-15
- 45 Akre M, Finkelstein M, Erickson M, Liu M, Vanderbilt L, Billman G. Sensitivity of the pediatric early warning score to identify patient deterioration. Pediatrics. 2010; 125(4):e763-e769
- Al Jarousha AMK, El Qouqa IA, El Jadba AHN, Al Afifi AS. An outbreak of Serratia marcescens septicaemia in neonatal intensive care unit in Gaza City, Palestine. Journal of Hospital Infection. 2008; 70(2):119-126
- 47 Al W, I, Rivera J, Cairo J, Hachem R, Raad I. Comparing clinical and microbiological methods for the diagnosis of true bacteraemia among patients with multiple blood cultures positive for coagulase-negative staphylococci. Clinical Microbiology and Infection. 2011; 17(4):569-571

- 48 Al-Majali RM. White blood cell count, absolute neutrophil count, as predictors of hidden bacterial infections in febrile children 1-18 months of age without focus. Pakistan Journal of Medical Sciences. 2004; 20(2):97-100
- 49 Al-Nawas B, Krammer I, Shah PM. Procalcitonin in diagnosis of severe infections. European Journal of Medical Research. 1996; 1(7):331-333
- 50 Al-Nawas B, Shah PM. Procalcitonin in patients with and without immunosuppression and sepsis. Infection. 1996; 24(6):434-436
- 51 Al-Zwaini EJ. C-reactive protein: a useful marker for guiding duration of antibiotic therapy in suspected neonatal septicaemia? Eastern Mediterranean Health Journal. 2009; 15(2):269-275
- 52 Alam MM, Saleem AF, Shaikh AS, Munir O, Qadir M. Neonatal sepsis following prolonged rupture of membranes in a tertiary care hospital in Karachi, Pakistan. Journal of Infection in Developing Countries. 2014; 8(1):67-73
- 53 Alam N, Hobbelink EL, van Tienhoven AJ, van de Ven PM, Jansma EP, Nanayakkara PWB. The impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review. Resuscitation. 2014; 85(5):587-594
- 54 Alam N, Vegting IL, Houben E, van Berkel B, Vaughan L, Kramer MHH et al. Exploring the performance of the national early warning Score (NEWS) in a European emergency department. Resuscitation. 2015; 90:111-115
- 55 Alamgir S, Volkova NB, Peterson MW. Prognostic value of low blood glucose at the presentation of E. coli bacteremia. American Journal of Medicine. 2006; 119(11):952-957
- 56 Albanèse J, Leone M, Delmas A, Martin C. Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Critical Care Medicine. 2005; 33(9):1897-1902
- 57 Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C. Renal effects of norepinephrine in septic and nonseptic patients. Chest. 2004; 126(2):534-539
- 58 Albert BL, Huesman L. Development of a modified early warning score using the electronic medical record. Dimensions of Critical Care Nursing. 2011; 30(5):283-292
- 59 Alberti C, Brun-Buisson C, Chevret S, Antonelli M, Goodman SV, Martin C et al. Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. American Journal of Respiratory and Critical Care Medicine. 2005; 171(5):461-468
- 60 Albright CM, Ali TN, Lopes V, Rouse DJ, Anderson BL. Lactic acid measurement to identify risk of morbidity from sepsis in pregnancy. American Journal of Perinatology. 2015; 32(5):481-486
- 61 Alexander JM, Gilstrap LC, Cox SM, McIntire DM, Leveno KJ. Clinical chorioamnionitis and the prognosis for very low birth weight infants. Obstetrics and Gynecology. 1998; 91(5 Pt 1):725-729
- 62 Alexander JM, McIntire DM, Leveno KJ. Chorioamnionitis and the prognosis for term infants. Obstetrics and Gynecology. 1999; 94(2):274-278
- 63 Alia I, Esteban A, Gordo F, Lorente JA, Diaz C, Rodriguez JA et al. A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest. 1999; 115(2):453-461

- 64 Aliberti S, Bellelli G, Belotti M, Morandi A, Messinesi G, Annoni G et al. Delirium symptoms during hospitalization predict long-term mortality in patients with severe pneumonia. Aging Clinical and Experimental Research. 2015;
- 65 Aliberti S, Amir A, Peyrani P, Mirsaeidi M, Allen M, Moffett BK et al. Incidence, etiology, timing, and risk factors for clinical failure in hospitalized patients with community-acquired pneumonia. Chest. 2008; 134(5):955-962
- 66 Allen LB, Allen M, Lesa RF, Richardson GE, Eggett DL. Rheumatic fever in Samoa: education as prevention. Pacific Health Dialog. 2011; 17(1):107-118
- Almuneef M, Alalola S, Ahmed S, Memish Z, Khan MY, Alshaalan M. The changing spectrum of Group B streptococcal (GBS) infection in infants of Saudi Arabia. Journal of Chemotherapy. 2000; 12(1):48-52
- 68 Alrawi YA, Parker RA, Harvey RC, Sultanzadeh SJ, Patel J, Mallinson R et al. Predictors of early mortality among hospitalized nursing home residents. QJM. 2013; 106(1):51-57
- 69 Alsolamy S, Al Salamah M, Al Thagafi M, Al-Dorzi HM, Marini AM, Aljerian N et al. Diagnostic accuracy of a screening electronic alert tool for severe sepsis and septic shock in the emergency department. BMC Medical Informatics and Decision Making. 2014; 14:105
- 70 Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000; 117(6):1749-1754
- 71 Altunhan H, Annagur A, Ors R, Mehmetoglu I. Procalcitonin measurement at 24 hours of age may be helpful in the prompt diagnosis of early-onset neonatal sepsis. International Journal of Infectious Diseases. 2011; 15(12):e854-e858
- 72 Alves BE, Montalvao SAL, Aranha FJP, Lorand-Metze I, De Souza CA, Annichino-Bizzacchi JM et al. Time-course of sFlt-1 and VEGF-A release in neutropenic patients with sepsis and septic shock: a prospective study. Journal of Translational Medicine. 2011; 9:23
- 73 Alves BE, Montalvao SAL, Aranha FJP, Siegl TFG, Souza CA, Lorand-Metze I et al. Imbalances in serum angiopoietin concentrations are early predictors of septic shock development in patients with post chemotherapy febrile neutropenia. BMC Infectious Diseases. 2010; 10:143
- 74 Ambalavanan N, Ross AC, Carlo WA. Retinol-binding protein, transthyretin, and C-reactive protein in extremely low birth weight (ELBW) infants. Journal of Perinatology. 2005; 25(11):714-719
- 75 Ammann RA, Bodmer N, Simon A, Agyeman P, Leibundgut K, Schlapbach LJ et al. Serum concentrations of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the risk of adverse events in pediatric patients with cancer and fever in neutropenia. Journal of the Pediatric Infectious Diseases Society. 2013; 2(2):155-161
- 76 Anantasit N, Boyd JH, Walley KR, Russell JA. Serious adverse events associated with vasopressin and norepinephrine infusion in septic shock. Critical Care Medicine. 2014; 42(8):1812-1820
- 77 Anbar RD, Richardson-de C, V, O'Malley PJ. Difficulties in universal application of criteria identifying infants at low risk for serious bacterial infection. Journal of Pediatrics. 1986; 109(3):483-485

- 78 Andersen J, Christensen R, Hertel J. Clinical features and epidemiology of septicaemia and meningitis in neonates due to Streptococcus agalactiae in Copenhagen County, Denmark: a 10 year survey from 1992 to 2001. Acta Paediatrica. 2004; 93(10):1334-1339
- 79 Ando K, Kato H, Kotani T, Ozaki M, Arimura Y, Yagi J. Plasma leukocyte cell-derived chemotaxin 2 is associated with the severity of systemic inflammation in patients with sepsis. Microbiology and Immunology. 2012; 56(10):708-718
- 80 Andre S, Taboulet P, Elie C, Milpied N, Nahon M, Kierzek G et al. Febrile neutropenia in French emergency departments: Results of an analysis of practice in a prospective multicentre survey. Annales Francaises De Medecine D'Urgence. 2011; 1(4):232-242
- 81 Andre S, Taboulet P, Elie C, Milpied N, Nahon M, Kierzek G et al. Febrile neutropenia in French emergency departments: results of a prospective multicentre survey. Critical Care. 2010; 14(2):R68
- 82 Andrews T, Thompson M, Buckley DI, Heneghan C, Deyo R, Redmond N et al. Interventions to influence consulting and antibiotic use for acute respiratory tract infections in children: a systematic review and meta-analysis. PloS One. 2012; 7(1):e30334
- 83 Angstwurm MWA, Dempfle C-E, Spannagl M. New disseminated intravascular coagulation score: A useful tool to predict mortality in comparison with Acute Physiology and Chronic Health Evaluation II and Logistic Organ Dysfunction scores. Critical Care Medicine. 2006; 34(2):314-320
- 84 Angsuwat M, Kavar B, Lowe AJ. Early detection of spinal sepsis. Journal of Clinical Neuroscience. 2010; 17(1):59-63
- Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013; 310(17):1809-1817
- 86 Antonow JA, Hansen K, McKinstry CA, Byington CL. Sepsis evaluations in hospitalized infants with bronchiolitis. Pediatric Infectious Disease Journal. 1998; 17(3):231-236
- 87 Anwar M, Adams R. Effect of vasopressin on hemodynamic profile in patients with septic shock. American Journal of Respiratory and Critical Care Medicine. 2002; 165(Suppl 8):A710
- 88 Anwer SK, Mustafa S. Rapid identification of neonatal sepsis. JPMA Journal of the Pakistan Medical Association. 2000; 50(3):94-98
- 89 Apibunyopas Y. Mortality rate among patients with septic shock after implementation of 6hour sepsis protocol in the emergency department of Thammasat University Hospital. Journal of the Medical Association of Thailand. 2014; 97 Suppl 8:S182-S193
- 90 Aquino VM, Cost C, Gomez A, Bowers DC, Ramilo O, Ahmad N et al. Predictive value of interleukin-5 and monocyte chemotactic protein-1 for bacteremia in children with febrile neutropenia. Journal of Pediatric Hematology/Oncology. 2012; 34(6):e241-e245
- 91 Arabi Y, Alamry A, Levy MM, Taher S, Marini AM. Improving the care of sepsis: Between system redesign and professional responsibility: A roundtable discussion in the world sepsis day, September 25, 2013, Riyadh, Saudi Arabia. Annals of Thoracic Medicine. 2014; 9(3):134-137

- 92 Ariffin H, Navaratnam P, Lin HP. Surveillance study of bacteraemic episodes in febrile neutropenic children. International Journal of Clinical Practice. 2002; 56(4):237-240
- 93 Arkader R, Troster EJ, Lopes MR, Junior RR, Carcillo JA, Leone C et al. Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Archives of Disease in Childhood. 2006; 91(2):117-120
- Armagan E, Yilmaz Y, Olmez OF, Simsek G, Gul CB. Predictive value of the modified Early
 Warning Score in a Turkish emergency department. European Journal of Emergency Medicine.
 2008; 15(6):338-340
- 95 Arnalich F, Lopez J, Codoceo R, Jim nez M, Madero R, Montiel C. Relationship of plasma leptin to plasma cytokines and human survivalin sepsis and septic shock. Journal of Infectious Diseases. 1999; 180(3):908-911
- 96 Arnell TD, De VC, Chang L, Bongard F, Stabile BE. Admission factors can predict the need for ICU monitoring in gallstone pancreatitis. American Surgeon. 1996; 62(10):815-819
- 97 Arnold RC, Sherwin R, Shapiro NI, O'Connor JL, Glaspey L, Singh S et al. Multicenter observational study of the development of progressive organ dysfunction and therapeutic interventions in normotensive sepsis patients in the emergency department. Academic Emergency Medicine. 2013; 20(5):433-440
- 98 Arnon S, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R, Dolfin T. Serum amyloid A: an early and accurate marker of neonatal early-onset sepsis. Journal of Perinatology. 2007; 27(5):297-302
- 99 Arregui LM, Moyes DG, Lipman J, Fatti LP. Comparison of disease severity scoring systems in septic shock. Critical Care Medicine. 1991; 19(9):1165-1171
- 100 Arsura EL, Bellinghausen PL, Kilgore WB, Abraham JJ, Johnson RH. Septic shock in coccidioidomycosis. Critical Care Medicine. 1998; 26(1):62-65
- 101 Artero A, Zaragoza R, Camarena JJ, Sancho S, Gonzalez R, Nogueira JM. Prognostic factors of mortality in patients with community-acquired bloodstream infection with severe sepsis and septic shock. Journal of Critical Care. 2010; 25(2):276-281
- 102 Asiimwe SB, Abdallah A, Ssekitoleko R. A simple prognostic index based on admission vital signs data among patients with sepsis in a resource-limited setting. Critical Care. 2015; 19:86
- 103 Assuncao M, Akamine N, Cardoso GS, Mello PVC, Teles JM, Nunes AL et al. Survey on physicians' knowledge of sepsis: do they recognize it promptly? Journal of Critical Care. 2010; 25(4):545-552
- 104 Assuncao MSC, Teich V, Shiramizo SCPL, Araujo DV, Carrera RM, Serpa Neto A et al. The costeffectiveness ratio of a managed protocol for severe sepsis. Journal of Critical Care. 2014; 29(4):692-696
- 105 Aube H, Milan C, Blettery B. Risk factors for septic shock in the early management of bacteremia. American Journal of Medicine. 1992; 93(3):283-288
- 106 Ausania F, Guzman Suarez S, Alvarez Garcia H, Senra del Rio P, Casal Nunez E. Gallbladder perforation: morbidity, mortality and preoperative risk prediction. Surgical Endoscopy. 2015; 29(4):955-960

- 107 Austin DM, Sadler L, McLintock C, McArthur C, Masson V, Farquhar C et al. Early detection of severe maternal morbidity: a retrospective assessment of the role of an Early Warning Score System. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2014; 54(2):152-155
- 108 Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A. Vasopressors for the Treatment of Septic Shock: Systematic Review and Meta-Analysis. PloS One. 2015; 10(8):e0129305
- 109 Aydemir G, Cekmez F, Kalkan G, Fidanci MK, Kaya G, Karaoglu A et al. High serum 25hydroxyvitamin D levels are associated with pediatric sepsis. Tohoku Journal of Experimental Medicine. 2014; 234(4):295-298
- 110 Aydin B, Dilli D, Zenciroglu A, Karadag N, Beken S, Okumus N. Mean platelet volume and uric acid levels in neonatal sepsis. Indian Journal of Pediatrics. 2014; 81(12):1342-1346
- 111 Aydin B, Dilli D, Zenciroglu A, Kaya O, Bilaloglu E, Okumus N et al. Comparison of a rapid bedside test with a central laboratory analysis for C-reactive protein in newborn infants with suspicion of sepsis. Clinical Laboratory. 2013; 59(9-10):1045-1051
- 112 Ayoola OO, Adeyemo AA, Osinusi K. Aetiological agents, clinical features and outcome of septicaemia in infants in Ibadan. West African Journal of Medicine. 2003; 22(1):30-34
- 113 Babay HA, Twum-Danso K, Kambal AM, Al-Otaibi FE. Bloodstream infections in pediatric patients. Saudi Medical Journal. 2005; 26(10):1555-1561
- 114 Bach JF, Chalons S, Forier E, Elana G, Jouanelle J, Kayemba S et al. 10-year educational programme aimed at rheumatic fever in two French Caribbean islands. Lancet. 1996; 347(9002):644-648
- 115 Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Critical Care Medicine. 2012; 40(3):725-730
- 116 Badin J, Boulain T, Ehrmann S, Skarzynski M, Bretagnol A, Buret J et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Critical Care. 2011; 15(3):R135
- 117 Badriyah T, Briggs JS, Meredith P, Jarvis SW, Schmidt PE, Featherstone PI et al. Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). Resuscitation. 2014; 85(3):418-423
- 118 Baez AA, Hanudel P, Perez MT, Giraldez EM, Wilcox SR. Prehospital Sepsis Project (PSP): knowledge and attitudes of United States advanced out-of-hospital care providers. Prehospital and Disaster Medicine. 2013; 28(2):104-106
- 119 Bagshaw SM, Bennett M, Devarajan P, Bellomo R. Urine biochemistry in septic and non-septic acute kidney injury: A prospective observational study. Journal of Critical Care. 2013; 28(4):371-378
- 120 Bagshaw SM, Haase M, Haase-Fielitz A, Bennett M, Devarajan P, Bellomo R. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrology Dialysis Transplantation. 2012; 27(2):582-588

- 121 Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Medicine. 2009; 35(5):871-881
- 122 Bagshaw SM, Mortis G, Godinez-Luna T, Doig CJ, Laupland KB. Renal recovery after severe acute renal failure. International Journal of Artificial Organs. 2006; 29(11):1023-1030
- 123 Bagshaw SM, Bellomo R. Early diagnosis of acute kidney injury. Current Opinion in Critical Care. 2007; 13(6):638-644
- 124 Bagshaw SM, Bennett M, Haase M, Haase-Fielitz A, Egi M, Morimatsu H et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Medicine. 2010; 36(3):452-461
- 125 Bagshaw SM, Chawla LS. Hydroxyethyl starch for fluid resuscitation in critically ill patients. Canadian Journal of Anaesthesia. 2013; 60(7):709-713
- 126 Bagshaw SM, George C, Bellomo R, ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Critical Care. 2008; 12(2):R47
- 127 Bagshaw SM, Langenberg C, Bellomo R. Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. American Journal of Kidney Diseases. 2006; 48(5):695-705
- 128 Bagshaw SM, Langenberg C, Haase M, Wan L, May CN, Bellomo R. Urinary biomarkers in septic acute kidney injury. Intensive Care Medicine. 2007; 33(7):1285-1296
- 129 Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clinical Journal of the American Society of Nephrology. 2007; 2(3):431-439
- 130 Bahloul M, Tounsi A, Ben Algia N, Chaari A, Chtara K, Dammak H et al. Does change of catecholamine use improve the outcome of patients with shock admitted to intensive care unit? American Journal of Therapeutics. 2014; 21(5):358-365
- 131 Bains HS, Soni RK. A Simple Clinical Score "TOPRS" to Predict Outcome in Pediatric Emergency Department in a Teaching Hospital in India. Iranian Journal of Pediatrics. 2012; 22(1):97-101
- 132 Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. American Journal of Surgery. 1996; 171(2):221-226
- 133 Balcl C, Sungurtekin H, Gurses E, Sungurtekin U, Kaptanoglu B. Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit. Critical Care. 2003; 7(1):85-90
- 134 Balk RA. Optimum treatment of severe sepsis and septic shock: Evidence in support of the recommendations. Disease-a-Month. 2004; 50(4):168-213
- 135 Ballot DE, Perovic O, Galpin J, Cooper PA. Serum procalcitonin as an early marker of neonatal sepsis. South African Medical Journal. 2004; 94(10):851-854
- 136 Band RA, Gaieski DF, Hylton JH, Shofer FS, Goyal M, Meisel ZF. Arriving by emergency medical services improves time to treatment endpoints for patients with severe sepsis or septic shock. Academic Emergency Medicine. 2011; 18(9):934-940

- 137 Bang AT, Bang RA, Reddy MH, Baitule SB, Deshmukh MD, Paul VK et al. Simple clinical criteria to identify sepsis or pneumonia in neonates in the community needing treatment or referral. Pediatric Infectious Disease Journal. 2005; 24(4):335-341
- 138 Bang AT, Bang RA, Reddy MH, Baitule SB, Deshmukh MD, Paul VK et al. Simple clinical criteria to identify sepsis or pneumonia in neonates in the community needing treatment or referral. Pediatric Infectious Disease Journal. 2005; 24(4):335-341
- 139 Bansal M, Farrugia A, Balboni S, Martin G. Relative survival benefit and morbidity with fluids in severe sepsis - a network meta-analysis of alternative therapies. Current Drug Safety. 2013; 8(4):236-245
- 140 Baorto EP, Aquino VM, Mullen CA, Buchanan GR, DeBaun MR. Clinical parameters associated with low bacteremia risk in 1100 pediatric oncology patients with fever and neutropenia. Cancer. 2001; 92(4):909-913
- 141 Barati M, Farnia L, Eshaghi MA, Talebi-Taher M, Farhadi N. Diagnostic performance of brain natriuretic peptide in patients suspected to Sepsis. Archives of Clinical Infectious Diseases. 2013; 8(4)
- 142 Barati M, Shekarabi M, Chobkar S, Talebi-Taher M, Farhadi N. Evaluation of diagnostic value of soluble urokinase-type plasminogen activator receptor in sepsis. Archives of Clinical Infectious Diseases. 2015; 10(1)
- 143 Barati M, Alinejad F, Bahar MA, Tabrisi MS, Shamshiri AR, Bodouhi NN et al. Comparison of WBC, ESR, CRP and PCT serum levels in septic and non-septic burn cases. Burns. 2008; 34(6):770-774
- 144 Barbieri JS, Fuchs BD, Fishman N, Cutilli CC, Umscheid CA, Kean C et al. The Mortality Review Committee: a novel and scalable approach to reducing inpatient mortality. Joint Commission Journal on Quality and Patient Safety. 2013; 39(9):387-395
- 145 Barie PS, Hydo LJ, Eachempati SR. Causes and consequences of fever complicating critical surgical illness. Surgical Infections. 2004; 5(2):145-159
- Barnaby D, Ferrick K, Kaplan DT, Shah S, Bijur P, Gallagher EJ. Heart rate variability in emergency department patients with sepsis. Academic Emergency Medicine. 2002; 9(7):661-670
- 147 Barochia AV, Cui X, Vitberg D, Suffredini AF, O'Grady NP, Banks SM et al. Bundled care for septic shock: an analysis of clinical trials. Critical Care Medicine. 2010; 38(2):668-678
- 148 Baron MA, Fink HD, Cicchetti DV. Blood cultures in private pediatric practice: an eleven-year experience. Pediatric Infectious Disease Journal. 1989; 8(1):2-7
- 149 Barriere SL, Lowry SF. An overview of mortality risk prediction in sepsis. Critical Care Medicine. 1995; 23(2):376-393
- 150 Barton P, Garcia J, Kouatli A, Kitchen L, Zorka A, Lindsay C et al. Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest. 1996; 109(5):1302-1312

- 151 Bas AY, Demirel N, Aydin M, Zenciroglu A, Tonbul A, Tanir G. Pneumococcal meningitis in the newborn period in a prevaccination era: a 10-year experience at a tertiary intensive care unit. Turkish Journal of Pediatrics. 2011; 53(2):142-148
- 152 Baskaran ND, Gan GG, Adeeba K. Applying the Multinational Association for Supportive Care in Cancer risk scoring in predicting outcome of febrile neutropenia patients in a cohort of patients. Annals of Hematology. 2008; 87(7):563-569
- 153 Bassetti M, Righi E, Ansaldi F, Merelli M, Trucchi C, De Pascale G et al. A multicenter study of septic shock due to candidemia: outcomes and predictors of mortality. Intensive Care Medicine. 2014; 40(6):839-845
- 154 Bastos PG, Sun X, Wagner DP, Wu AW, Knaus WA. Glasgow Coma Scale score in the evaluation of outcome in the intensive care unit: findings from the Acute Physiology and Chronic Health Evaluation III study. Critical Care Medicine. 1993; 21(10):1459-1465
- 155 Basu RK, Standage SW, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ et al. Identification of candidate serum biomarkers for severe septic shock-associated kidney injury via microarray. Critical Care. 2011; 15(6):R273
- 156 Bates DW, Cook EF, Goldman L, Lee TH. Predicting bacteremia in hospitalized patients. A prospectively validated model. Annals of Internal Medicine. 1990; 113(7):495-500
- 157 Baumgartner JD, Bula C, Vaney C, Wu MM, Eggimann P, Perret C. A novel score for predicting the mortality of septic shock patients. Critical Care Medicine. 1992; 20(7):953-960
- 158 Bayer O, Reinhart K, Kohl M, Kabisch B, Marshall J, Sakr Y et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Critical Care Medicine. 2012; 40(9):2543-2551
- 159 Bayer O, Reinhart K, Sakr Y, Kabisch B, Kohl M, Riedemann NC et al. Renal effects of synthetic colloids and crystalloids in patients with severe sepsis: a prospective sequential comparison. Critical Care Medicine. 2011; 39(6):1335-1342
- 160 Bayer O, Schwarzkopf D, Stumme C, Stacke A, Hartog CS, Hohenstein C et al. An early warning scoring system to identify septic patients in the prehospital setting: The PRESEP score. Academic Emergency Medicine. 2015; 22(7):868-871
- 161 Becchi C, Pillozzi S, Fabbri LP, Al MM, Caciapuoti C, Della BC et al. The increase of endothelial progenitor cells in the peripheral blood: A new parameter for detecting onset and severity of sepsis. International Journal of Immunopathology and Pharmacology. 2008; 21(3):697-705
- 162 Beck V, Chateau D, Bryson GL, Pisipati A, Zanotti S, Parrillo JE et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Critical Care. 2014; 18(3):R97
- 163 Beck V, Chateau D, Bryson GL, Pisipati A, Zanotti S, Parrillo JE et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Critical Care. 2014; 18(3):R97
- 164 Behdad A, Hosseinpour M. Evaluation of Systemic Inflammatory Response Syndrome (SIRS) score as a predictor of mortality in trauma patients. European Journal of Trauma. 2006; 32(5):464-467

- 165 Behrendt G, Schneider S, Brodt HR, Just-Nubling G, Shah PM. Influence of antimicrobial treatment on mortality in septicemia. Journal of Chemotherapy. 1999; 11(3):179-186
- Bejan C, Loghin I, Rosu F, Dorobat G, Dorobat CM. Clinical features and evolution of organ dysfunctions in sepsis. Revista Medico-Chirurgicala a Societatii De Medici Si Naturalisti Din Iasi. 2014; 118(1):71-74
- 167 Bekhof J, Reitsma JB, Kok JH, Van Straaten IHLM. Clinical signs to identify late-onset sepsis in preterm infants. European Journal of Pediatrics. 2013; 172(4):501-508
- 168 Bellomo R, Reade MC, Warrillow SJ. The pursuit of a high central venous oxygen saturation in sepsis: Growing concerns. Critical Care. 2008; 12(2)
- 169 Bencosme A, Warner A, Healy D, Verme C. Prognostic potential of cytokines, nitrates, and APACHE II score in sepsis. Annals of Clinical and Laboratory Science. 1996; 26(5):426-432
- 170 Benczo C, Gaudy D, White TM. "Keeping each patient safe": quality safety teaching/learning packets. Joint Commission Journal on Quality and Safety. 2004; 30(12):676-680
- 171 Bender L, Thaarup J, Varming K, Krarup H, Ellermann-Eriksen S, Ebbesen F. Early and late markers for the detection of early-onset neonatal sepsis. Danish Medical Bulletin. 2008; 55(4):219-223
- 172 Benito J, Luaces-Cubells C, Mintegi S, Astobiza E, Martinez-Indart L, Valls-Lafont A et al. Lack of value of midregional pro-adrenomedullin and C-terminal pro-endothelin-1 for prediction of severe bacterial infections in infants with fever without a source. European Journal of Pediatrics. 2013; 172(11):1441-1449
- 173 Benitz WE, Han MY, Madan A, Ramachandra P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics. 1998; 102(4):E41
- 174 Benson L, Hasenau S, O'Connor N, Burgermeister D. The impact of a nurse practitioner rapid response team on systemic inflammatory response syndrome outcomes. Dimensions of Critical Care Nursing. 2014; 33(3):108-115
- 175 Benuck I, David RJ. Sensitivity of published neutrophil indexes in identifying newborn infants with sepsis. Journal of Pediatrics. 1983; 103(6):961-963
- 176 Berger C, Uehlinger J, Ghelfi D, Blau N, Fanconi S. Comparison of C-reactive protein and white blood cell count with differential in neonates at risk for septicaemia. European Journal of Pediatrics. 1995; 154(2):138-144
- 177 Berger T, Birnbaum A, Bijur P, Kuperman G, Gennis P. A Computerized Alert Screening for Severe Sepsis in Emergency Department Patients Increases Lactate Testing but does not Improve Inpatient Mortality. Applied Clinical Informatics. 2010; 1(4):394-407
- 178 Berger T, Green J, Horeczko T, Hagar Y, Garg N, Suarez A et al. Shock index and early recognition of sepsis in the emergency department: pilot study. Western Journal of Emergency Medicine. 2013; 14(2):168-174
- 179 Berkman M, Ufberg J, Nathanson LA, Shapiro NI. Anion gap as a screening tool for elevated lactate in patients with an increased risk of developing sepsis in the Emergency Department. Journal of Emergency Medicine. 2009; 36(4):391-394

- 180 Bernatsky S, Clarke AE, Labrecque J, von Scheven E, Schanberg LE, Silverman ED. Cancer risk in childhood-onset systemic lupus. Arthritis Research and Therapy. 2013; 15(6):R198
- 181 Bernstein LH, Devakonda A, Engelman E, Pancer G, Ferraraf J, Rucinski J et al. The role of procalcitonin in the diagnosis of sepsis and patient assignment to medical intensive care. Journal of Clinical Ligand Assay. 2007; 30(3-4):98-104
- 182 Bettiol S, Thompson MJ, Roberts NW, Perera R, Heneghan CJ, Harnden A. Symptomatic treatment of the cough in whooping cough. Cochrane Database of Systematic Reviews. 2010;(1):CD003257
- 183 Bettiol S, Wang K, Thompson MJ, Roberts NW, Perera R, Heneghan CJ et al. Symptomatic treatment of the cough in whooping cough. Cochrane Database of Systematic Reviews. 2012; 5:CD003257
- 184 Beuchee A, Carrault G, Bansard JY, Boutaric E, Betremieux P, Pladys P. Uncorrelated randomness of the heart rate is associated with sepsis in sick premature infants. Neonatology. 2009; 96(2):109-114
- 185 Bhandari V. Effective biomarkers for diagnosis of neonatal sepsis. Journal of the Pediatric Infectious Diseases Society. 2014; 3(3):234-245
- 186 Bianchi RA, Silva NA, Natal ML, Romero MC. Utility of base deficit, lactic acid, microalbuminuria, and C-reactive protein in the early detection of complications in the immediate postoperative evolution. Clinical Biochemistry. 2004; 37(5):404-407
- 187 Bilavsky E, Yarden-Bilavsky H, Ashkenazi S, Amir J. C-reactive protein as a marker of serious bacterial infections in hospitalized febrile infants. Acta Paediatrica. 2009; 98(11):1776-1780
- Bilbault P, Lavaux T, Lahlou A, Uring-Lambert B, Gaub MP, Ratomponirina C et al. Transient Bcl 2 gene down-expression in circulating mononuclear cells of severe sepsis patients who died
 despite appropriate intensive care. Intensive Care Medicine. 2004; 30(3):408-415
- 189 Billeter A, Turina M, Seifert B, Mica L, Stocker R, Keel M. Early serum procalcitonin, interleukin-6, and 24-hour lactate clearance: Useful indicators of septic infections in severely traumatized patients. World Journal of Surgery. 2009; 33(3):558-566
- 190 Bizzarro MJ, Jiang Y, Hussain N, Gruen JR, Bhandari V, Zhang H. The impact of environmental and genetic factors on neonatal late-onset sepsis. Journal of Pediatrics. 2011; 158(2):234-238
- 191 Bleeker SE, Derksen-Lubsen G, Grobbee DE, Donders ART, Moons KGM, Moll HA. Validating and updating a prediction rule for serious bacterial infection in patients with fever without source. Acta Paediatrica. 2007; 96(1):100-104
- 192 Bleeker SE, Moons KG, Derksen-Lubsen G, Grobbee DE, Moll HA. Predicting serious bacterial infection in young children with fever without apparent source. Acta Paediatrica. 2001; 90(11):1226-1232
- 193 Blommendahl J, Janas M, Laine S, Miettinen A, Ashorn P. Comparison of procalcitonin with CRP and differential white blood cell count for diagnosis of culture-proven neonatal sepsis. Scandinavian Journal of Infectious Diseases. 2002; 34(8):620-622
- 194 Bloos F, Reinhart K. Rapid diagnosis of sepsis. Virulence. 2014; 5(1):154-160

- 195 Bochicchio GV, Napolitano LM, Joshi M, McCarter RJJ, Scalea TM. Systemic inflammatory response syndrome score at admission independently predicts infection in blunt trauma patients. Journal of Trauma. 2001; 50(5):817-820
- 196 Bochud PY, Calandra T, Francioli P. Bacteremia due to viridans streptococci in neutropenic patients: a review. American Journal of Medicine. 1994; 97(3):256-264
- 197 Boersma WG. Assessment of severity of community-acquired pneumonia. Seminars in Respiratory Infections. 1999; 14(2):103-114
- 198 Bogar L, Molnar Z, Kenyeres P, Tarsoly P. Sedimentation characteristics of leucocytes can predict bacteraemia in critical care patients. Journal of Clinical Pathology. 2006; 59(5):523-525
- 199 Bojic S, Kotur-Stevuljevic J, Kalezic N, Jelic-Ivanovic Z, Stefanovic A, Palibrk I et al. Low paraoxonase 1 activity predicts mortality in surgical patients with sepsis. Disease Markers. 2014; 2014:427378
- 200 Boland GW, Lee MJ, Leung J, Mueller PR. Percutaneous cholecystostomy in critically ill patients: early response and final outcome in 82 patients. American Journal of Roentgenology. 1994; 163(2):339-342
- 201 Boldt J, Heesen M, Muller M, Pabsdorf M, Hempelmann G. The effects of albumin versus hydroxyethyl starch solution on cardiorespiratory and circulatory variables in critically ill patients. Anesthesia and Analgesia. 1996; 83(2):254-261
- 202 Boldt J, Heesen M, Welters I, Padberg W, Martin K, Hempelmann G. Does the type of volume therapy influence endothelial-related coagulation in the critically ill? British Journal of Anaesthesia. 1995; 75(6):740-746
- 203 Boldt J, Muller M, Heesen M, Neumann K, Hempelmann GG. Influence of different volume therapies and pentoxifylline infusion on circulating soluble adhesion molecules in critically ill patients. Critical Care Medicine. 1996; 24(3):385-391
- 204 Boldt J, Muller M, Mentges D, Papsdorf M, Hempelmann G. Volume therapy in the critically ill: is there a difference? Intensive Care Medicine. 1998; 24(1):28-36
- 205 Bollaert PE, Fieux F, Charpentier C, Levy B. Baseline cortisol levels, cortisol response to corticotropin, and prognosis in late septic shock. Shock. 2003; 19(1):13-15
- 206 Bonadio WA, Hagen E, Rucka J, Shallow K, Stommel P, Smith D. Efficacy of a protocol to distinguish risk of serious bacterial infection in the outpatient evaluation of febrile young infants. Clinical Pediatrics. 1993; 32(7):401-404
- 207 Bonadio WA, Hegenbarth M, Zachariason M. Correlating reported fever in young infants with subsequent temperature patterns and rate of serious bacterial infections. Pediatric Infectious Disease Journal. 1990; 9(3):158-160
- 208 Bonadio WA, Hennes H, Smith D, Ruffing R, Melzer-Lange M, Lye P et al. Reliability of observation variables in distinguishing infectious outcome of febrile young infants. Pediatric Infectious Disease Journal. 1993; 12(2):111-114
- 209 Bonadio WA, Smith D, Carmody J. Correlating CBC profile and infectious outcome. A study of febrile infants evaluated for sepsis. Clinical Pediatrics. 1992; 31(10):578-582

- 210 Bonadio WA, Webster H, Wolfe A, Gorecki D. Correlating infectious outcome with clinical parameters of 1130 consecutive febrile infants aged zero to eight weeks. Pediatric Emergency Care. 1993; 9(2):84-86
- 211 Bond CM, Djogovic D, Villa-Roel C, Bullard MJ, Meurer DP, Rowe BH. Pilot study comparing sepsis management with and without electronic clinical practice guidelines in an academic emergency department. Journal of Emergency Medicine. 2013; 44(3):698-708
- 212 Boniatti MM, Cardoso PRC, Castilho RK, Vieira SRR. Is hyperchloremia associated with mortality in critically ill patients? A prospective cohort study. Journal of Critical Care. 2011; 26(2):175-179
- 213 Bonig H, Schneider DT, Sprock I, Lemburg P, Gobel U, Nurnberger W. 'Sepsis' and multi-organ failure: predictors of poor outcome after hematopoietic stem cell transplantation in children. Bone Marrow Transplantation. 2000; 25 Suppl 2:S32-S34
- 214 Bonsu BK, Chb M, Harper MB. Identifying febrile young infants with bacteremia: is the peripheral white blood cell count an accurate screen? Annals of Emergency Medicine. 2003; 42(2):216-225
- 215 Boockvar K, Signor D, Ramaswamy R, Hung W. Delirium during acute illness in nursing home residents. Journal of the American Medical Directors Association. 2013; 14(9):656-660
- Boskabadi H, Maamouri G, Afshari JT, Ghayour-Mobarhan M, Shakeri MT. Serum interleukin 8 level as a diagnostic marker in late neonatal sepsis. Iranian Journal of Pediatrics. 2010; 20(1):41-47
- 217 Bossink AW, Groeneveld AB, Hack CE, Thijs LG. The clinical host response to microbial infection in medical patients with fever. Chest. 1999; 116(2):380-390
- 218 Bossink AW, Groeneveld AB, Koffeman GI, Becker A. Prediction of shock in febrile medical patients with a clinical infection. Critical Care Medicine. 2001; 29(1):25-31
- 219 Bossink AW, Groeneveld AB, Thijs LG. Prediction of microbial infection and mortality in medical patients with fever: plasma procalcitonin, neutrophilic elastase-alpha1-antitrypsin, and lactoferrin compared with clinical variables. Clinical Infectious Diseases. 1999; 29(2):398-407
- Bossink AW, Groeneveld J, Hack CE, Thijs LG. Prediction of mortality in febrile medical patients: How useful are systemic inflammatory response syndrome and sepsis criteria? Chest. 1998; 113(6):1533-1541
- 221 Boulain T, Runge I, Bercault N, Benzekri-Lefevre D, Wolf M, Fleury C. Dopamine therapy in septic shock: detrimental effect on survival? Journal of Critical Care. 2009; 24(4):575-582
- 222 Boyd JH, Forbes J, Nakada Ta, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Critical Care Medicine. 2011; 39(2):259-265
- Bozzetti F, Bonfanti G, Regalia E, Cozzaglio L, Callegari L. A new approach to the diagnosis of central venous catheter sepsis. Journal of Parenteral and Enteral Nutrition. 1991; 15(4):412-416

- 224 Bradman K, Maconochie I. Can paediatric early warning score be used as a triage tool in paediatric accident and emergency? European Journal of Emergency Medicine. 2008; 15(6):359-360
- 225 Brenner T, Schmidt K, Delang M, Mehrabi A, Bruckner T, Lichtenstern C et al. Viscoelastic and aggregometric point-of-care testing in patients with septic shock Cross-links between inflammation and haemostasis. Acta Anaesthesiologica Scandinavica. 2012; 56(10):1277-1290
- 226 Breslin K, Marx J, Hoffman H, McBeth R, Pavuluri P. Pediatric early warning score at time of emergency department disposition is associated with level of care. Pediatric Emergency Care. 2014; 30(2):97-103
- 227 Bressan S, Berlese P, Mion T, Masiero S, Cavallaro A, Da Dalt L. Bacteremia in feverish children presenting to the emergency department: a retrospective study and literature review. Acta Paediatrica. 2012; 101(3):271-277
- 228 Bressan S, Gomez B, Mintegi S, Da Dalt L, Blazquez D, Olaciregui I et al. Diagnostic performance of the lab-score in predicting severe and invasive bacterial infections in well-appearing young febrile infants. Pediatric Infectious Disease Journal. 2012; 31(12):1239-1244
- 229 Breuling T, Tschiedel E, Grose-Lordemann A, Hunseler C, Schmidt C, Niemann F et al. Septic shock in children in an urban area in Western Germany--outcome, risk factors for mortality and infection epidemiology. Klinische Padiatrie. 2015; 227(2):61-65
- 230 Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Critical Care Medicine. 2009; 37(2):666-688
- 231 Brodska H, Drabek T, Malickova K, Kazda A, Vitek A, Zima T et al. Marked increase of procalcitonin after the administration of anti-thymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study. Critical Care. 2009; 13(2):R37
- 232 Brodska H, Malickova K, Valenta J, Fabio A, Drabek T. Soluble receptor for advanced glycation end products predicts 28-day mortality in critically ill patients with sepsis. Scandinavian Journal of Clinical and Laboratory Investigation. 2013; 73(8):650-660
- 233 Broner CW, Polk SA, Sherman JM. Febrile infants less than eight weeks old. Predictors of infection. Clinical Pediatrics. 1990; 29(8):438-443
- 234 Brunkhorst FM, Wegscheider K, Forycki ZF, Brunkhorst R. Procalcitonin for early diagnosis and differentation of SIRS, sepsis, severe sepsis, and septic shock. Intensive Care Medicine, Supplement. 2000; 26(2):S148-S152
- Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. New England Journal of Medicine.
 2008; 358(2):125-139
- 236 Buck C, Bundschu J, Gallati H, Bartmann P, Pohlandt F. Interleukin-6: a sensitive parameter for the early diagnosis of neonatal bacterial infection. Pediatrics. 1994; 93(1):54-58

- 237 Buckley JD, Joyce B, Garcia AJ, Jordan J, Scher E. Linking residency training effectiveness to clinical outcomes: a quality improvement approach. Joint Commission Journal on Quality and Patient Safety. 2010; 36(5):203-208
- 238 Buist M, Gould T, Hagley S, Webb R. An analysis of excess mortality not predicted to occur by APACHE III in an Australian level III intensive care unit. Anaesthesia and Intensive Care. 2000; 28(2):171-177
- 239 Burch VC, Tarr G, Morroni C. Modified early warning score predicts the need for hospital admission and inhospital mortality. Emergency Medicine Journal. 2008; 25(10):674-678
- 240 Burney M, Underwood J, McEvoy S, Nelson G, Dzierba A, Kauari V et al. Early detection and treatment of severe sepsis in the emergency department: identifying barriers to implementation of a protocol-based approach. Journal of Emergency Nursing: JEN. 2012; 38(6):512-517
- 241 Busund R, Straume B, Revhaug A. Fatal course in severe meningococcemia: clinical predictors and effect of transfusion therapy. Critical Care Medicine. 1993; 21(11):1699-1705
- 242 Byer RL, Bachur RG. Clinical deterioration among patients with fever and erythroderma. Pediatrics. 2006; 118(6):2450-2460
- 243 Byl B, Deviere J, Saint-Hubert F, Zech F, Gulbis B, Thys J-P. Evaluation of tumor necrosis factoralpha, interleukin-6 and C-reactive protein plasma levels as predictors of bacteremia in patients presenting signs of sepsis without shock. Clinical Microbiology and Infection. 1997; 3(3):306-313
- 244 Byrne DJ, Malek MM, Davey PG, Cuschieri A. Postoperative wound scoring. Biomedicine and Pharmacotherapy. 1989; 43(9):669-673
- 245 Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M et al. Albumin replacement in patients with severe sepsis or septic shock. New England Journal of Medicine. 2014; 370(15):1412-1421
- 246 Caksen H, Ozturk MK, Uzum K, Yuksel S, Ustunbas HB, Per H. Septic arthritis in childhood. Pediatrics International. 2000; 42(5):534-540
- 247 Caldas JPS, Marba STM, Blotta MHSL, Calil R, Morais SS, Oliveira RTD. Accuracy of white blood cell count, C-reactive protein, interleukin-6 and tumor necrosis factor alpha for diagnosing late neonatal sepsis. Jornal De Pediatria. 2008; 84(6):536-542
- 248 Caljouw MA, den Elzen WP, Cools HJ, Gussekloo J. Predictive factors of urinary tract infections among the oldest old in the general population. A population-based prospective follow-up study. BMC Medicine. 2011; 9:57
- 249 Calle P, Cerro L, Valencia J, Jaimes F. Usefulness of severity scores in patients with suspected infection in the emergency department: a systematic review. Journal of Emergency Medicine. 2012; 42(4):379-391
- 250 Calvano SE, Coyle SM, Barbosa KS, Barie PS, Lowry SF. Multivariate analysis of 9 diseaseassociated variables for outcome prediction in patients with sepsis. Archives of Surgery. 1998; 133(12):1347-1350

- 251 Carbonell N, Blasco M, Ferreres J, Blanquer J, Garcia-Ramon R, Mesejo A et al. Sepsis and SOFA score: related outcome for critically ill renal patients. Clinical Nephrology. 2004; 62(3):185-192
- 252 Carbonell-Estrany X, Figueras-Aloy J, Salcedo-Abizanda S, Rosa-Fraile M, Castrillo Study Group. Probable early-onset group B streptococcal neonatal sepsis: a serious clinical condition related to intrauterine infection. Archives of Disease in Childhood Fetal and Neonatal Edition. 2008; 93(2):F85-F89
- 253 Cardoso T, Carneiro AH, Ribeiro O, Teixeira-Pinto A, Costa-Pereira A. Reducing mortality in severe sepsis with the implementation of a core 6-hour bundle: Results from the Portuguese community-acquired sepsis study (SACiUCI study). Critical Care. 2010; 14(3)
- 254 Carlbom DJ, Rubenfeld GD. Barriers to implementing protocol-based sepsis resuscitation in the emergency department--results of a national survey. Critical Care Medicine. 2007; 35(11):2525-2532
- 255 Carlsen S, Perner A, East Danish Septic Shock Cohort Investigators. Initial fluid resuscitation of patients with septic shock in the intensive care unit. Acta Anaesthesiologica Scandinavica. 2011; 55(4):394-400
- 256 Carrieri MP, Stolfi I, Moro ML, Italian Study Group on Hospital Acquired Infections in Neonatal Intensive Care Units. Intercenter variability and time of onset: two crucial issues in the analysis of risk factors for nosocomial sepsis. Pediatric Infectious Disease Journal. 2003; 22(7):599-609
- 257 Carrol ED, Newland P, Riordan FAI, Thomson APJ, Curtis N, Hart CA. Procalcitonin as a diagnostic marker of meningococcal disease in children presenting with fever and a rash. Archives of Disease in Childhood. 2002; 86(4):282-285
- 258 Carrol ED, Thomson APJ, Hart CA. Procalcitonin as a marker of sepsis. International Journal of Antimicrobial Agents. 2002; 20(1):1-9
- 259 Carrol ED, Newland P, Thomson APJ, Hart CA. Prognostic value of procalcitonin in children with meningococcal sepsis. Critical Care Medicine. 2005; 33(1):224-225
- 260 Carter C. Implementing the severe sepsis care bundles outside the ICU by outreach. Nursing in Critical Care. 2007; 12(5):225-230
- 261 Cartin-Ceba R, Kashiouris M, Plataki M, Kor DJ, Gajic O, Casey ET. Risk factors for development of acute kidney injury in critically ill patients: a systematic review and meta-analysis of observational studies. Critical Care Research and Practice. 2012; 2012:691013
- 262 Casado-Flores J, Blanco-Quiros A, Nieto M, Asensio J, Fernandez C. Prognostic utility of the semi-quantitative procalcitonin test, neutrophil count and C-reactive protein in meningococcal infection in children. European Journal of Pediatrics. 2006; 165(1):26-29
- 263 Casagranda I, Vendramin C, Callegari T, Vidali M, Calabresi A, Ferrandu G et al. Usefulness of suPAR in the risk stratification of patients with sepsis admitted to the emergency department. Internal and Emergency Medicine. 2015; 10(6):725-730
- 264 Casserly B, Baram M, Walsh P, Sucov A, Ward NS, Levy MM. Implementing a collaborative protocol in a sepsis intervention program: lessons learned. Lung. 2011; 189(1):11-19
- 265 Castellanos-Ortega A, Suberviola B, Garcia-Astudillo LA, Holanda MS, Ortiz F, Llorca J et al. Impact of the Surviving Sepsis Campaign protocols on hospital length of stay and mortality in

septic shock patients: Results of a three-year follow-up quasi-experimental study. Critical Care Medicine. 2010; 38(4):1036-1043

- 266 Castro R, Regueira T, Aguirre ML, Llanos OP, Bruhn A, Bugedo G et al. An evidence-based resuscitation algorithm applied from the emergency room to the ICU improves survival of severe septic shock. Minerva Anestesiologica. 2008; 74(6):223-231
- 267 Cauchie P, Cauchie C, Boudjeltia KZ, Carlier E, Deschepper N, Govaerts D et al. Diagnosis and prognosis of overt disseminated intravascular coagulation in a general hospital -- meaning of the ISTH score system, fibrin monomers, and lipoprotein-C-reactive protein complex formation. American Journal of Hematology. 2006; 81(6):414-419
- 268 Cazalis MA, Friggeri A, Cave L, Demaret J, Barbalat V, Cerrato E et al. Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. Critical Care. 2013; 17(6):R287
- 269 Cei M, Bartolomei C, Mumoli N. In-hospital mortality and morbidity of elderly medical patients can be predicted at admission by the Modified Early Warning Score: a prospective study. International Journal of Clinical Practice. 2009; 63(4):591-595
- 270 Cekmez F, Canpolat FE, Cetinkaya M, Aydinoz S, Aydemir G, Karademir F et al. Diagnostic value of resistin and visfatin, in comparison with C-reactive protein, procalcitonin and interleukin-6 in neonatal sepsis. European Cytokine Network. 2011; 22(2):113-117
- 271 Celik IH, Demirel FG, Uras N, Oguz SS, Erdeve O, Biyikli Z et al. What are the cut-off levels for IL-6 and CRP in neonatal sepsis? Journal of Clinical Laboratory Analysis. 2010; 24(6):407-412
- 272 Cha KC, Hwang SO, Oh SB, Kim SH, Ji HJ, Kim H. Comparison of Two Titration Methods of Vasopressor Infusion to Correct Septic Shock. Journal of the Korean Society of Emergency Medicine. 2004; 15(4):280-285
- 273 Chaaban H, Singh K, Huang J, Siryaporn E, Lim YP, Padbury JF. The role of inter-alpha inhibitor proteins in the diagnosis of neonatal sepsis. Journal of Pediatrics. 2009; 154(4):620-622
- Chaboyer W, Thalib L, Foster M, Ball C, Richards B. Predictors of adverse events in patients after discharge from the intensive care unit. American Journal of Critical Care. 2008; 17(3):255-264
- 275 Chaiyakulsil C, Pandee U. Validation of pediatric early warning score in pediatric emergency department. Pediatrics International. 2015; 57(4):694-698
- 276 Chalupa P, Beran O, Herwald H, Kasprikova N, Holub M. Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection. 2011; 39(5):411-417
- 277 Chamberlain D, Hunt T, Hany A. Severe sepsis in intensive care patients is not identified by intensive care clinicians within 24 hours of admission. Australian Critical Care. 2006; 19(4):148
- Chamberlain DJ, Willis E, Clark R, Brideson G. Identification of the severe sepsis patient at triage: A prospective analysis of the Australasian Triage Scale. Emergency Medicine Journal. 2015; 32(9):690-697
- 279 Chan DK, Ho LY. Usefulness of C-reactive protein in the diagnosis of neonatal sepsis. Singapore Medical Journal. 1997; 38(6):252-255

- 280 Chan KPW, Low JGH, Raghuram J, Fook-Chong SMC, Kurup A. Clinical characteristics and outcome of severe melioidosis requiring intensive care. Chest. 2005; 128(5):3674-3678
- 281 Chan SM, Chadwick J, Young DL, Holmes E, Gotlib J. Intensive serial biomarker profiling for the prediction of neutropenic Fever in patients with hematologic malignancies undergoing chemotherapy: a pilot study. Hematology Reports. 2014; 6(2):5466
- 282 Chan T, Gu F. Early diagnosis of sepsis using serum biomarkers. Expert Review of Molecular Diagnostics. 2011; 11(5):487-496
- 283 Chan YL, Liao HC, Tsay PK, Chang SS, Chen JC, Liaw SJ. C-reactive protein as an indicator of bacterial infection of adult patients in the emergency department. Chang Gung Medical Journal. 2002; 25(7):437-445
- 284 Chan YL, Tseng CP, Tsay PK, Chang SS, Chiu TF, Chen JC. Procalcitonin as a marker of bacterial infection in the emergency department: an observational study. Critical Care. 2004; 8(1):R12-R20
- 285 Chang DW, Huynh R, Sandoval E, Han N, Coil CJ, Spellberg BJ. Volume of fluids administered during resuscitation for severe sepsis and septic shock and the development of the acute respiratory distress syndrome. Journal of Critical Care. 2014; 29(6):1011-1015
- 286 Charles PE, Ladoire S, Snauwaert A, Prin S, Aho S, Pechinot A et al. Impact of previous sepsis on the accuracy of procalcitonin for the early diagnosis of blood stream infection in critically ill patients. BMC Infectious Diseases. 2008; 8
- 287 Chawla LS, Abell L, Mazhari R, Egan M, Kadambi N, Burke HB et al. Identifying critically ill patients at high risk for developing acute renal failure: a pilot study. Kidney International. 2005; 68(5):2274-2280
- 288 Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL et al. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clinical Journal of the American Society of Nephrology. 2007; 2(1):22-30
- 289 Chen CW, Jong GM, Shiau JJ, Hsiue TR, Chang HY, Chuang YC et al. Adult bacteremic pneumonia: bacteriology and prognostic factors. Journal of the Formosan Medical Association. 1992; 91(8):754-759
- 290 Chen C-M, Cheng K-C, Chan K-S, Yu W-L. Age may not influence the outcome of patients with severe sepsis in intensive care units. International Journal of Gerontology. 2014; 8(1):22-26
- Chen FG, Koh KF. Septic shock in a surgical intensive care--validation of multiorgan and APACHE II scores in predicting outcome. Annals of the Academy of Medicine, Singapore. 1994; 23(4):447-451
- 292 Chen J-S, Ko W-J, Yu H-Y, Lai L-P, Huang S-C, Chi N-H et al. Analysis of the outcome for patients experiencing myocardial infarction and cardiopulmonary resuscitation refractory to conventional therapies necessitating extracorporeal life support rescue. Critical Care Medicine. 2006; 34(4):950-957
- 293 Chen KT, Ringer S, Cohen AP, Lieberman E. The role of intrapartum fever in identifying asymptomatic term neonates with early-onset neonatal sepsis. Journal of Perinatology. 2002; 22(8):653-657

- 294 Chen M, Wang B, Xu Y, Deng Z, Xue H, Wang L et al. Diagnostic value of serum leptin and a promising novel diagnostic model for sepsis. Experimental and Therapeutic Medicine. 2014; 7(4):881-886
- 295 Chen Q, Shi J, Fei A, Wang F, Pan S, Wang W. Neutrophil CD64 expression is a predictor of mortality for patients in the intensive care unit. International Journal of Clinical and Experimental Pathology. 2014; 7(11):7806-7813
- 296 Chen R, Yan ZQ, Feng D, Luo YP, Wang LL, Shen DX. Nosocomial bloodstream infection in patients caused by Staphylococcus aureus: drug susceptibility, outcome, and risk factors for hospital mortality. Chinese Medical Journal. 2012; 125(2):226-229
- 297 Chen SCA, Kontoyiannis DP. New molecular and surrogate biomarker-based tests in the diagnosis of bacterial and fungal infection in febrile neutropenic patients. Current Opinion in Infectious Diseases. 2010; 23(6):567-577
- 298 Chen SJ, Chao TF, Chiang MC, Kuo SC, Chen LY, Yin T et al. Prediction of patient outcome from Acinetobacter baumannii bacteremia with Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) II scores. Internal Medicine. 2011; 50(8):871-877
- 299 Chen WC, Tsai KD, Chen CH, Lin MS, Chen CM, Shih CM et al. Role of gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU. Internal and Emergency Medicine. 2012; 7(1):53-58
- Chen WL, Kuo CD. Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Academic Emergency Medicine. 2007; 14(5):392-397
- 301 Chen YX, Li CS. Risk stratification and prognostic performance of the predisposition, infection, response, and organ dysfunction (PIRO) scoring system in septic patients in the emergency department: a cohort study. Critical Care. 2014; 18(2):R74
- 302 Chen YX, Li CS. Lactate on emergency department arrival as a predictor of mortality and site-ofcare in pneumonia patients: a cohort study. Thorax. 2015; 70(5):404-410
- 303 Chia F, Malathi I, Low EH. The importance of septic work-up in the febrile neonate. Journal of the Singapore Paediatric Society. 1991; 33(3-4):159-164
- 304 Chiesa C, Pacifico L, Rossi N, Panero A, Matrunola M, Mancuso G. Procalcitonin as a marker of nosocomial infections in the neonatal intensive care unit. Intensive Care Medicine. 2000; 26 Suppl 2:S175-S177
- 305 Chiesa C, Pellegrini G, Panero A, Osborn JF, Signore F, Assumma M et al. C-reactive protein, interleukin-6, and procalcitonin in the immediate postnatal period: Influence of illness severity, risk status, antenatal and perinatal complications, and infection. Clinical Chemistry. 2003; 49(1):60-68
- 306 Chisti MJ, Saha S, Roy CN, Salam MA. Predictors of bacteremia in infants with diarrhea and systemic inflammatory response syndrome attending an urban diarrheal treatment center in a developing country. Pediatric Critical Care Medicine. 2010; 11(1):92-97
- 307 Chiu CH, Lin TY, Bullard MJ. Identification of febrile neonates unlikely to have bacterial infections. Pediatric Infectious Disease Journal. 1997; 16(1):59-63

- 308 Chong SL, Ong GY, Venkataraman A, Chan YH. The golden hours in paediatric septic shockcurrent updates and recommendations. Annals of the Academy of Medicine, Singapore. 2014; 43(5):267-274
- 309 Chopra A, Kumar V, Dutta A. Hypertonic versus normal saline as initial fluid bolus in pediatric septic shock. Indian Journal of Pediatrics. 2011; 78(7):833-837
- 310 Chuesakoolvanich K. Septic death in adults at Surin Hospital: an investigation of real-life clinical practice vs. empirical guidelines. Journal of the Medical Association of Thailand. 2007; 90(10):2039-2046
- 311 Churgay CA, Smith MA, Blok B. Maternal fever during labor--what does it mean? Journal of the American Board of Family Practice. 1994; 7(1):14-24
- 312 Churpek MM, Yuen TC, Edelson DP. Risk stratification of hospitalized patients on the wards. Chest. 2013; 143(6):1758-1765
- 313 Chwals WJ, Fernandez ME, Jamie AC, Charles BJ, Rushing JT. Detection of postoperative sepsis in infants with the use of metabolic stress monitoring. Archives of Surgery. 1994; 129(4):437-442
- 314 Cicarelli DD, Vieira JE, Bensenor FEM. Lactate as a predictor of mortality and multiple organ failure in patients with the systemic inflammatory response syndrome. Revista Brasileira De Anestesiologia. 2007; 57(6):630-638
- 315 Cildir E, Bulut M, Akalin H, Kocabas E, Ocakoglu G, Aydin SA. Evaluation of the modified MEDS, MEWS score and Charlson comorbidity index in patients with community acquired sepsis in the emergency department. Internal and Emergency Medicine. 2013; 8(3):255-260
- 316 Claessens YE, Schmidt J, Batard E, Grabar S, Jegou D, Hausfater P et al. Can C-reactive protein, procalcitonin and mid-regional pro-atrial natriuretic peptide measurements guide choice of inpatient or out-patient care in acute pyelonephritis? Biomarkers In Sepsis (BIS) multicentre study. Clinical Microbiology and Infection. 2010; 16(6):753-760
- 317 Clec'h C, Ferriere F, Karoubi P, Fosse JP, Cupa M, Hoang P et al. Diagnostic and prognostic value of procalcitonin in patients with septic shock. Critical Care Medicine. 2004; 32(5):1166-1169
- 318 Clemmer TP, Fisher CJJ, Bone RC, Slotman GJ, Metz CA, Thomas FO. Hypothermia in the sepsis syndrome and clinical outcome. The Methylprednisolone Severe Sepsis Study Group. Critical Care Medicine. 1992; 20(10):1395-1401
- 319 Close RM, Ejidokun OO, Verlander NQ, Fraser G, Meltzer M, Rehman Y et al. Early diagnosis model for meningitis supports public health decision making. Journal of Infection. 2011; 63(1):32-38
- 320 Coba V, Whitmill M, Mooney R, Horst HM, Brandt M-M, Digiovine B et al. Resuscitation Bundle Compliance in Severe Sepsis and Septic Shock: Improves Survival, Is Better Late than Never. Journal of Intensive Care Medicine. 2011; 26(5):304-313
- 321 Coburn B, Morris AM, Tomlinson G, Detsky AS. Does this adult patient with suspected bacteremia require blood cultures? JAMA. 2012; 308(4):502-511

- 322 Coen D, Cortellaro F, Pasini S, Tombini V, Vaccaro A, Montalbetti L et al. Towards a less invasive approach to the early goal-directed treatment of septic shock in the ED. American Journal of Emergency Medicine. 2014; 32(6):563-568
- 323 Coggins SA, Wynn JL, Hill ML, Slaughter JC, Ozdas-Weitkamp A, Jalloh O et al. Use of a computerized C-reactive protein (CRP) based sepsis evaluation in very low birth weight (VLBW) infants: a five-year experience. PloS One. 2013; 8(11):e78602
- 324 Collighan N, Giannoudis PV, Kourgeraki O, Perry SL, Guillou PJ, Bellamy MC. Interleukin 13 and inflammatory markers in human sepsis. British Journal of Surgery. 2004; 91(6):762-768
- 325 Comstedt P, Storgaard M, Lassen AT. The Systemic Inflammatory Response Syndrome (SIRS) in acutely hospitalised medical patients: a cohort study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2009; 17:67
- 326 Contenti J, Corraze H, Lemoel F, Levraut J. Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients. American Journal of Emergency Medicine. 2015; 33(2):167-172
- 327 Cook DJ, Guyatt GH, McIlroy W, Reeve BK, Willan A, Pearl RG. Serum cortisol: A predictor of mortality in sepsis? Journal of Intensive Care Medicine. 1992; 7(2):84-89
- 328 Corfield AR, Lees F, Zealley I, Houston G, Dickie S, Ward K et al. Utility of a single early warning score in patients with sepsis in the emergency department. Emergency Medicine Journal. 2014; 31(6):482-487
- 329 Corona A, Wilson AP, Grassi M, Singer M. Prospective audit of bacteraemia management in a university hospital ICU using a general strategy of short-course monotherapy. Journal of Antimicrobial Chemotherapy. 2004; 54(4):809-817
- 330 Correia N, Rodrigues RP, Sa MC, Dias P, Lopes L, Paiva A. Improving recognition of patients at risk in a Portuguese general hospital: results from a preliminary study on the early warning score. International Journal of Emergency Medicine. 2014; 7:22
- 331 Cortegiani A, Russotto V, Montalto F, Foresta G, Accurso G, Palmeri C et al. Procalcitonin as a marker of Candida species detection by blood culture and polymerase chain reaction in septic patients. BMC Anesthesiology. 2014; 14:9
- 332 Coslovsky M, Takala J, Exadaktylos AK, Martinolli L, Merz TM. A clinical prediction model to identify patients at high risk of death in the emergency department. Intensive Care Medicine. 2015; 41(6):1029-1036
- 333 Couto RC, Barbosa JAA, Pedrosa TMG, Biscione FM. C-reactive protein-guided approach may shorten length of antimicrobial treatment of culture-proven late-onset sepsis: an intervention study. Brazilian Journal of Infectious Diseases. 2007; 11(2):240-245
- 334 Couto-Alves A, Wright VJ, Perumal K, Binder A, Carrol ED, Emonts M et al. A new scoring system derived from base excess and platelet count at presentation predicts mortality in paediatric meningococcal sepsis. Critical Care. 2013; 17(2):R68
- 335 Craig JC, Williams GJ, Jones M, Codarini M, Macaskill P, Hayen A et al. The accuracy of clinical symptoms and signs for the diagnosis of serious bacterial infection in young febrile children: prospective cohort study of 15 781 febrile illnesses. BMJ. 2010; 340:c1594

- 336 Croce MA, Fabian TC, Stewart RM, Pritchard FE, Minard G, Kudsk KA. Correlation of Abdominal Trauma Index and Injury Severity Score with abdominal septic complications in penetrating and blunt trauma. Journal of Trauma. 1992; 32(3):380-388
- 337 Croft CA, Moore FA, Efron PA, Marker PS, Gabrielli A, Westhoff LS et al. Computer versus paper system for recognition and management of sepsis in surgical intensive care. Journal of Trauma and Acute Care Surgery. 2014; 76(2):311-319
- 338 Crone PD, Yu M, Myers SA. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: A prospective, randomized, controlled study [1]. Critical Care Medicine. 1994; 22(9):1512-1513
- 339 Crowe CA, Kulstad EB, Mistry CD, Kulstad CE. Comparison of severity of illness scoring systems in the prediction of hospital mortality in severe sepsis and septic shock. Journal of Emergencies, Trauma, and Shock. 2010; 3(4):342-347
- 340 Cruz AT, Williams EA, Graf JM, Perry AM, Harbin DE, Wuestner ER et al. Test characteristics of an automated age- and temperature-adjusted tachycardia alert in pediatric septic shock. Pediatric Emergency Care. 2012; 28(9):889-894
- 341 Cui JY, Xu HL, Wang AT, Zhu X, Yao GQ, Liu F. Influence of albumin as a resuscitation fluid on the prognosis of patients with sepsis: a meta-analysis. Chinese Critical Care Medicine. 2012; 24(1):18-23
- 342 D'Orio V, Mendes P, Saad G, Marcelle R. Accuracy in early prediction of prognosis of patients with septic shock by analysis of simple indices: prospective study. Critical Care Medicine. 1990; 18(12):1339-1345
- 343 da Silva LPA, Cavalheiro LG, Queiros F, Nova CV, Lucena R. Prevalence of newborn bacterial meningitis and sepsis during the pregnancy period for public health care system participants in Salvador, Bahia, Brazil. Brazilian Journal of Infectious Diseases. 2007; 11(2):272-276
- da Silva PSL, Iglesias SBO, Nakakura CH, de Aguiar VE, de Carvalho WB. The product of platelet and neutrophil counts (PN product) at presentation as a predictor of outcome in children with meningococcal disease. Annals of Tropical Paediatrics. 2007; 27(1):25-30
- 345 Dabar G, Harmouche C, Salameh P, Jaber BL, Jamaleddine G, Waked M et al. Community- and healthcare-associated infections in critically ill patients: a multicenter cohort study. International Journal of Infectious Diseases. 2015; 37:80-85
- 346 Dabhi AS, Khedekar SS, Mehalingam V. A Prospective Study of Comparison of APACHE-IV & SAPS-II Scoring Systems and Calculation of Standardised Mortality Rate in Severe Sepsis and Septic Shock Patients. Journal of Clinical and Diagnostic Research. 2014; 8(10):MC09-MC13
- 347 Dalegrave D, Silva RL, Becker M, Gehrke LV, Friedman G. Relative adrenal insufficiency as a predictor of disease severity and mortality in severe septic shock. Revista Brasileira De Terapia Intensiva. 2012; 24(4):362-368
- 348 Daley MJ, Lat I, Mieure KD, Jennings HR, Hall JB, Kress JP. A comparison of initial monotherapy with norepinephrine versus vasopressin for resuscitation in septic shock. Annals of Pharmacotherapy. 2013; 47(3):301-310

- 349 Dalton HJ, Carcillo JA, Woodward DB, Short MA, Williams MD. Biomarker response to drotrecogin alfa (activated) in children with severe sepsis: results from the RESOLVE clinical trial*. Pediatric Critical Care Medicine. 2012; 13(6):639-645
- 350 Damas P, Canivet JL, de Groote D, Vrindts Y, Albert A, Franchimont P et al. Sepsis and serum cytokine concentrations. Critical Care Medicine. 1997; 25(3):405-412
- 351 Daniels R, Nutbeam T, McNamara G, Galvin C. The sepsis six and the severe sepsis resuscitation bundle: a prospective observational cohort study. Emergency Medicine Journal. 2011; 28(6):507-512
- 352 Daoud AS, Abuekteish F, Obeidat A, el-Nassir Z, al-Rimawi H. The changing face of neonatal septicaemia. Annals of Tropical Paediatrics. 1995; 15(1):93-96
- 353 Das K, Ozdogan M, Karateke F, Uzun AS, Sozen S, Ozdas S. Comparison of APACHE II, P-POSSUM and SAPS II scoring systems in patients underwent planned laparotomies due to secondary peritonitis. Annali Italiani Di Chirurgia. 2014; 85(1):16-21
- 354 Davis J, Christie S, Fairley D, Coyle P, Tubman R, Shields MD. Performance of a Novel Molecular Method in the Diagnosis of Late-Onset Sepsis in Very Low Birth Weight Infants. PloS One. 2015; 10(8):e0136472
- 355 Dawes TR, Cheek E, Bewick V, Dennis M, Duckitt RW, Walker J et al. Introduction of an electronic physiological early warning system: effects on mortality and length of stay. British Journal of Anaesthesia. 2014; 113(4):603-609
- 356 Day D, Ugol JH, French JI, Haverkamp A, Wall RE, McGregor JA. Fetal monitoring in perinatal sepsis. American Journal of Perinatology. 1992; 9(1):28-33
- 357 de Azevedo JRA, Torres OJM, Beraldi RA, Ribas CAPM, Malafaia O. Prognostic evaluation of severe sepsis and septic shock: procalcitonin clearance vs DELTA Sequential Organ Failure Assessment. Journal of Critical Care. 2015; 30(1):219-12
- 358 De Blasi RA, Cardelli P, Costante A, Sandri M, Mercieri M, Arcioni R. Immature platelet fraction in predicting sepsis in critically ill patients. Intensive Care Medicine. 2013; 39(4):636-643
- 359 De Gaetano A, Cortese G, Pedersen MG, Panunzi S, Picchini U, Morelli A. Modeling serum creatinine in septic ICU patients. Cardiovascular Engineering. 2004; 4(2):173-180
- 360 de Groot B, de Deckere ER, Flameling R, Sandel MH, Vis A. Performance of illness severity scores to guide disposition of emergency department patients with severe sepsis or septic shock. European Journal of Emergency Medicine : Official Journal of the European Society for Emergency Medicine. 2012; 19(5):316-322
- 361 de Groot B, Verdoorn RCW, Lameijer J, van der Velden J. High-sensitivity cardiac troponin T is an independent predictor of inhospital mortality in emergency department patients with suspected infection: a prospective observational derivation study. Emergency Medicine Journal. 2014; 31(11):882-888
- de Jager CPC, van Wijk PTL, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC.
 Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Critical Care. 2010; 14(5):R192

- 363 De Leon ALP-P, Romero-Gutierrez G, Valenzuela CA, Gonzalez-Bravo FE. Simplified PRISM III
 score and outcome in the pediatric intensive care unit. Pediatrics International. 2005; 47(1):80 83
- 364 de Macedo JL, Rosa SC, Castro C. Sepsis in burned patients. Revista Da Sociedade Brasileira De Medicina Tropical. 2003; 36(6):647-652
- 365 De Meester K, Das T, Hellemans K, Verbrugghe W, Jorens PG, Verpooten GA et al. Impact of a standardized nurse observation protocol including MEWS after Intensive Care Unit discharge. Resuscitation. 2013; 84(2):184-188
- 366 de Oliveira CF, de Oliveira DSF, Gottschald AFC, Moura JDG, Costa GA, Ventura AC et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Medicine. 2008; 34(6):1065-1075
- 367 de Souza SP, Matos RS, Barros LL, Rocha PN. Inverse association between serum creatinine and mortality in acute kidney injury. Jornal Brasileiro De Nefrologia. 2014; 36(4):469-475
- 368 de Werra I, Jaccard C, Corradin SB, Chiolero R, Yersin B, Gallati H et al. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Critical Care Medicine. 1997; 25(4):607-613
- 369 De A, Saraswathi K, Gogate A, Raghavan K. C-reactive protein and buffy coat smear in early diagnosis of childhood septicemia. Indian Journal of Pathology and Microbiology. 1998; 41(1):23-26
- 370 De S, Williams GJ, Hayen A, Macaskill P, McCaskill M, Isaacs D et al. Accuracy of the "traffic light" clinical decision rule for serious bacterial infections in young children with fever: a retrospective cohort study. BMJ. 2013; 346:f866
- 371 De S, Williams GJ, Hayen A, Macaskill P, McCaskill M, Isaacs D et al. Value of white cell count in predicting serious bacterial infection in febrile children under 5 years of age. Archives of Disease in Childhood. 2014; 99(6):493-499
- 372 Debiane L, Hachem RY, Al Wohoush I, Shomali W, Bahu RR, Jiang Y et al. The utility of proadrenomedullin and procalcitonin in comparison to C-reactive protein as predictors of sepsis and bloodstream infections in critically ill patients with cancer*. Critical Care Medicine. 2014; 42(12):2500-2507
- 373 Degoricija V, Sharma M, Legac A, Gradiser M, Sefer S, Vucicevic Z. Survival analysis of 314 episodes of sepsis in medical intensive care unit in university hospital: impact of intensive care unit performance and antimicrobial therapy. Croatian Medical Journal. 2006; 47(3):385-397
- 374 Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Critical Care Medicine. 2011; 39(2):386-391
- 375 Dellinger EP. Use of scoring systems to assess patients with surgical sepsis. Surgical Clinics of North America. 1988; 68(1):123-145

- 376 Demmel KM, Williams L, Flesch L. Implementation of the pediatric early warning scoring system on a pediatric hematology/oncology unit. Journal of Pediatric Oncology Nursing. 2010; 27(4):229-240
- 377 Dempfle C-E, Lorenz S, Smolinski M, Wurst M, West S, Houdijk WPM et al. Utility of activated partial thromboplastin time waveform analysis for identification of sepsis and overt disseminated intravascular coagulation in patients admitted to a surgical intensive care unit. Critical Care Medicine. 2004; 32(2):520-524
- 378 Derkx HH, van den Hoek J, Redekop WK, Bijlmer RP, van Deventer SJ, Bossuyt PM.
 Meningococcal disease: a comparison of eight severity scores in 125 children. Intensive Care
 Medicine. 1996; 22(12):1433-1441
- 379 Desai S, Lakhani JD. Utility of SOFA and APACHE II score in sepsis in rural set up MICU. Journal of the Association of Physicians of India. 2013; 61(9):608-611
- 380 Desmond NA, Nyirenda D, Dube Q, Mallewa M, Molyneux E, Lalloo DG et al. Recognising and treatment seeking for acute bacterial meningitis in adults and children in resource-poor settings: a qualitative study. PloS One. 2013; 8(7):e68163
- 381 Dettmer M, Holthaus CV, Fuller BM. The impact of serial lactate monitoring on emergency department resuscitation interventions and clinical outcomes in severe sepsis and septic shock: an observational cohort study. Shock. 2015; 43(1):55-61
- 382 Deutsch L, Aggarwal R, Wright A, Stapleton C, Stanley S, Emerson M. PLD.42 'Sepsis Six' -Adaptation of a trust innovation in Maternity. Archives of Disease in Childhood Fetal and Neonatal Edition. 2014; 99 Suppl 1:A118
- 383 Devaux Y, Archimbaud E, Guyotat D, Plotton C, Maupas J, Fleurette J et al. Streptococcal bacteremia in neutropenic adult patients. Nouvelle Revue Francaise D'Hematologie. 1992; 34(2):191-195
- 384 DeVita MA, Bellomo R. The case of rapid response systems: are randomized clinical trials the right methodology to evaluate systems of care? Critical Care Medicine. 2007; 35(5):1413-1414
- 385 Devran O, Karakurt Z, Adiguzel N, Gungor G, Mocin OY, Balci MK et al. C-reactive protein as a predictor of mortality in patients affected with severe sepsis in intensive care unit. Multidisciplinary Respiratory Medicine. 2012; 7(6)
- 386 Dewhurst CJ, Cooke RW, Turner MA. Clinician observation of physiological trend monitoring to identify late-onset sepsis in preterm infants. Acta Paediatrica. 2008; 97(9):1187-1191
- 387 Dhanalakshmi V, Sivakumar ES. Comparative Study in Early Neonates with Septicemia by Blood Culture, Staining Techniques and C - Reactive Protein (CRP). Journal of Clinical and Diagnostic Research. 2015; 9(3):DC12-DC15
- 388 Di Nardo M, Ficarella A, Ricci Z, Luciano R, Stoppa F, Picardo S et al. Impact of severe sepsis on serum and urinary biomarkers of acute kidney injury in critically ill children: an observational study. Blood Purification. 2013; 35(1-3):172-176
- 389 Dickinson A, Qadan M, Polk HCJ. Optimizing surgical care: a contemporary assessment of temperature, oxygen, and glucose. American Surgeon. 2010; 76(6):571-577

- 390 Diepold M, Noellke P, Duffner U, Kontny U, Berner R. Performance of Interleukin-6 and Interleukin-8 serum levels in pediatric oncology patients with neutropenia and fever for the assessment of low-risk. BMC Infectious Diseases. 2008; 8:28
- 391 Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infectious Diseases. 2009; 9:126
- 392 Diez-Padrisa N, Bassat Q, Morais L, O'Callaghan-Gordo C, Machevo S, Nhampossa T et al. Procalcitonin and C-reactive protein as predictors of blood culture positivity among hospitalised children with severe pneumonia in Mozambique. Tropical Medicine and International Health. 2012; 17(9):1100-1107
- 393 Dior UP, Kogan L, Calderon-Margalit R, Burger A, Amsallem H, Elchalal U et al. The association of maternal intrapartum subfebrile temperature and adverse obstetric and neonatal outcomes. Paediatric and Perinatal Epidemiology. 2014; 28(1):39-47
- 394 Dornbusch HJ, Strenger V, Kerbl R, Lackner H, Schwinger W, Sovinz P et al. Procalcitonin and Creactive protein do not discriminate between febrile reaction to anti-T-lymphocyte antibodies and Gram-negative sepsis. Bone Marrow Transplantation. 2003; 32(9):941-945
- 395 Drabinski A, Williams G, Formica C. OBSERVATIONAL EVALUATION OF HEALTH STATE UTILITIES AMONG A COHORT OF SEPSIS PATIENTS. Value in Health.: Blackwell Science Inc. 2001; 4(2):128-129
- 396 Draz NI, Taha SE, Abou Shady NM, Abdel Ghany YS. Comparison of broad range 16S rDNA PCR to conventional blood culture for diagnosis of sepsis in the newborn. Egyptian Journal of Medical Human Genetics. 2013; 14(4):403-411
- 397 Drees M, Kanapathippillai N, Zubrow MT. Bandemia with normal white blood cell counts associated with infection. American Journal of Medicine. 2012; 125(11):1124
- 398 Drewry AM, Fuller BM, Bailey TC, Hotchkiss RS. Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: a case-control study. Critical Care. 2013; 17(5):R200
- 399 Drewry AM, Fuller BM, Skrupky LP, Hotchkiss RS. The presence of hypothermia within 24 hours of sepsis diagnosis predicts persistent lymphopenia. Critical Care Medicine. 2015; 43(6):1165-1169
- 400 Drey M, Behnes M, Kob R, Lepiorz D, Hettwer S, Bollheimer C et al. C-terminal agrin fragment (CAF) reflects renal function in patients suffering from severe sepsis or septic shock. Clinical Laboratory. 2015; 61(1-2):69-76
- 401 Drumheller BC, McGrath M, Matsuura AC, Gaieski DF. Point-of-care urine albumin:Creatinine ratio is associated with outcome in emergency department patients with sepsis: A pilot study. Academic Emergency Medicine. 2012; 19(3):259-264
- 402 Drvar Z, Tonkovic D, Pavlek M, Pavlovic DB, Baronica R, Peric M. Stroke volume variation and pulse pressure variation as predictors of fluid responsiveness in patients with sepsis. Neurologia Croatica. 2013; 62(SUPPL.2):1-4
- 403 Du B, Chen D, Pan J, Li Y. Procalcitonin may be a better predictor of interleukin-6 than conventional inflammatory markers. Critical Care and Shock. 2002; 5(3):177-182

- 404 Du B, Pan J, Chen D, Li Y. Serum procalcitonin and interleukin-6 levels may help to differentiate systemic inflammatory response of infectious and non-infectious origin. Chinese Medical Journal. 2003; 116(4):538-542
- 405 Du J, Li L, Dou Y, Li P, Chen R, Liu H. Diagnostic utility of neutrophil CD64 as a marker for earlyonset sepsis in preterm neonates. PloS One. 2014; 9(7):e102647
- 406 Duarte AG, Bidani A. Evaluating hypoxemia in the critically ill. Journal of Respiratory Diseases. 2005; 26(5):209-219
- 407 Dubin A, Pozo MO, Casabella CA, Murias G, Palizas FJ, Moseinco MC et al. Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. Journal of Critical Care. 2010; 25(4):659-8
- 408 Dunser MW, Ruokonen E, Pettila V, Ulmer H, Torgersen C, Schmittinger CA et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Critical Care. 2009; 13(6):R181
- 409 Dwyer R, Hedlund J, Darenberg J, Henriques-Normark B, Naucler P, Runesdotter S et al. Improvement of CRB-65 as a prognostic scoring system in adult patients with bacteraemic pneumococcal pneumonia. Scandinavian Journal of Infectious Diseases. 2011; 43(6-7):448-455
- 410 Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Medicine. 2007; 33(6):941-950
- 411 Eisen DP, Dean MM, Thomas P, Marshall P, Gerns N, Heatley S et al. Low mannose-binding lectin function is associated with sepsis in adult patients. FEMS Immunology and Medical Microbiology. 2006; 48(2):274-282
- 412 El Solh AA, Akinnusi ME, Alsawalha LN, Pineda LA. Outcome of septic shock in older adults after implementation of the sepsis "bundle". Journal of the American Geriatrics Society. 2008; 56(2):272-278
- 413 El-Farghali OG, El-Raggal NM, Mahmoud NH, Zaina GA. Serum neutrophil gelatinase-associated lipocalin as a predictor of acute kidney injury in critically-ill neonates. Pakistan Journal of Biological Sciences: PJBS. 2012; 15(5):231-237
- 414 El-Maghraby SM, Moneer MM, Ismail MM, Shalaby LM, El-Mahallawy HA. The diagnostic value of C-reactive protein, interleukin-8, and monocyte chemotactic protein in risk stratification of febrile neutropenic children with hematologic malignancies. Journal of Pediatric Hematology/Oncology. 2007; 29(3):131-136
- 415 Elawady S, Botros SK, Sorour AE, Ghany EA, Elbatran G, Ali R. Neutrophil CD64 as a diagnostic marker of sepsis in neonates. Journal of Investigative Medicine. 2014; 62(3):644-649
- 416 Elias KM, Moromizato T, Gibbons FK, Christopher KB. Derivation and validation of the acute organ failure score to predict outcome in critically ill patients: a cohort study. Critical Care Medicine. 2015; 43(4):856-864
- Elmenesy TM, Nassar Y. A randomized double-blind comparative study between short-term norepinephrine and vasopressin infusion in septic shock. Egyptian Journal of Anaesthesia. 2008; 24(4):355-362

- 418 Elting LS, Bodey GP, Keefe BH. Septicemia and shock syndrome due to viridans streptococci: a case-control study of predisposing factors. Clinical Infectious Diseases. 1992; 14(6):1201-1207
- 419 Emparanza JI, Aldamiz-Echevarria L, Perez-Yarza EG, Larranaga P, Jiminez JL, Labiano M et al. Prognostic score in acute meningococcemia. Critical Care Medicine. 1988; 16(2):168-169
- 420 Endo S, Aikawa N, Fujishima S, Sekine I, Kogawa K, Yamamoto Y et al. Usefulness of procalcitonin serum level for the discrimination of severe sepsis from sepsis: a multicenter prospective study. Journal of Infection and Chemotherapy. 2008; 14(3):244-249
- 421 Engel A, Mack E, Kern P, Kern WV. An analysis of interleukin-8, interleukin-6 and C-reactive protein serum concentrations to predict fever, gram-negative bacteremia and complicated infection in neutropenic cancer patients. Infection. 1998; 26(4):213-221
- 422 Ennis L. Paediatric early warning scores on a children's ward: a quality improvement initiative. Nursing Children and Young People. 2014; 26(7):25-31
- 423 Erbay A, Idil A, Gozel MG, Mumcuoglu I, Balaban N. Impact of early appropriate antimicrobial therapy on survival in Acinetobacter baumannii bloodstream infections. International Journal of Antimicrobial Agents. 2009; 34(6):575-579
- 424 Ernest D, Belzberg AS, Dodek PM. Distribution of normal saline and 5% albumin infusions in septic patients. Critical Care Medicine. 1999; 27(1):46-50
- 425 Ersoy B, Nehir H, Altinoz S, Yilmaz O, Dundar PE, Aydogan A. Prognostic value of initial antithrombin levels in neonatal sepsis. Indian Pediatrics. 2007; 44(8):581-584
- 426 Erstad BL. Oxygen transport goals in the resuscitation of critically ill patients. Annals of Pharmacotherapy. 1994; 28(11):1273-1284
- 427 Escobar DA, Botero-Quintero AM, Kautza BC, Luciano J, Loughran P, Darwiche S et al. Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation. Journal of Surgical Research. 2015; 194(1):262-272
- 428 Escobar GJ, Li DK, Armstrong MA, Gardner MN, Folck BF, Verdi JE et al. Neonatal sepsis workups in infants >/=2000 grams at birth: A population-based study. Pediatrics. 2000; 106(2 Pt 1):256-263
- 429 Escobar GJ, Puopolo KM, Wi S, Turk BJ, Kuzniewicz MW, Walsh EM et al. Stratification of risk of early-onset sepsis in newborns > 34 weeks' gestation. Pediatrics. 2014; 133(1):30-36
- 430 Esen F, Telci L, Akpir K, Kesecioglu J, Denkel T, Pembeci K. Oxygen uptake/supply dependency in human sepsis: does it increase the risk of multisystem organ failure? Advances in Experimental Medicine and Biology. 1992; 317:855-861
- 431 Esteban A, Frutos-Vivar F, Ferguson ND, Penuelas O, Lorente JA, Gordo F et al. Sepsis incidence and outcome: contrasting the intensive care unit with the hospital ward. Critical Care Medicine. 2007; 35(5):1284-1289
- 432 Estrada CA, Murugan R. Hydroxyethyl starch in severe sepsis: end of starch era? Critical Care. 2013; 17(2):310
- 433 Eubanks PJ, de Virgilio C, Klein S, Bongard F. Candida sepsis in surgical patients. American Journal of Surgery. 1993; 166(6):617-620

- Evans AB, Kulik D, Banerji A, Boggild A, Kain KC, Abdelhaleem M et al. Imported pediatric malaria at the hospital for sick children, Toronto, Canada: a 16 year review. BMC Pediatrics. 2014; 14:251
- 435 Fadale K, Tucker D, Dungan J, Sabol V. Improving Nurses' Vasopressor Titration Skills and Self-Efficacy via Simulation-Based Learning. Clinical Simulation in Nursing. 2014; 10(6):e291-e299
- 436 Fairchild KD. Predictive monitoring for early detection of sepsis in neonatal ICU patients. Current Opinion in Pediatrics. 2013; 25(2):172-179
- 437 Fairchild KD, O'Shea TM. Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis. Clinics in Perinatology. 2010; 37(3):581-598
- 438 Fairclough E, Cairns E, Hamilton J, Kelly C. Evaluation of a modified early warning system for acute medical admissions and comparison with C-reactive protein/albumin ratio as a predictor of patient outcome. Clinical Medicine. 2009; 9(1):30-33
- 439 Falguera M, Trujillano J, Caro S, Menendez R, Carratala J, Ruiz-Gonzalez A et al. A prediction rule for estimating the risk of bacteremia in patients with community-acquired pneumonia. Clinical Infectious Diseases. 2009; 49(3):409-416
- Fan ST, Teoh-Chan CH, Lau KF. Evaluation of central venous catheter sepsis by differential quantitative blood culture. European Journal of Clinical Microbiology and Infectious Diseases.
 1989; 8(2):142-144
- Fang ZX, Li YF, Zhou XQ, Zhang Z, Zhang JS, Xia HM et al. Effects of resuscitation with crystalloid fluids on cardiac function in patients with severe sepsis. BMC Infectious Diseases. 2008; 8:50
- 442 Farley MM, Harvey RC, Stull T, Smith JD, Schuchat A, Wenger JD et al. A population-based assessment of invasive disease due to group B Streptococcus in nonpregnant adults. New England Journal of Medicine. 1993; 328(25):1807-1811
- 443 Femling J, Weiss S, Hauswald E, Tarby D. EMS patients and walk-in patients presenting with severe sepsis: differences in management and outcome. Southern Medical Journal. 2014; 107(12):751-756
- 444 Fendler W, Klobusinska J, Walenciak L, Mlynarski W, Piotrowski A. Weekend admissions to paediatric/neonatal intensive care units are associated with longer hospitalisation time but not with greater mortality. Anaesthesiology Intensive Therapy. 2012; 44(4):204-207
- Feng L, Zhou X, Su Lx, Feng D, Jia Yh, Xie Lx. Clinical significance of soluble hemoglobin scavenger receptor CD163 (sCD163) in sepsis, a prospective study. PloS One. 2012; 7(7):e38400
- 446 Feng W, Tang C, Guo H, Bao Y, Wen X, Xue T et al. Prognostic value of serum cholinesterase activities in sepsis patients. Hepato-Gastroenterology. 2013; 60(125):1001-1005
- 447 Fernandez-Perez ER, Salman S, Pendem S, Farmer JC. Sepsis during pregnancy. Critical Care Medicine. 2005; 33(10 Suppl):S286-S293
- 448 Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. American Journal of Respiratory and Critical Care Medicine. 2003; 168(12):1438-1444

- 449 Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. American Journal of Respiratory and Critical Care Medicine. 2009; 180(9):861-866
- 450 Ferrer R, Artigas A, Levy MM, Blanco J, Gonzalez-Diaz G, Garnacho-Montero J et al. Improvement in process of care and outcome after a multicenter severe sepsis educational program in Spain. JAMA. 2008; 299(19):2294-2303
- 451 Fialkow L, Fochesatto Filho L, Bozzetti MC, Milani AR, Rodrigues Filho EM, Ladniuk RM et al. Neutrophil apoptosis: a marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Critical Care. 2006; 10(6):R155
- 452 Figueroa-Damian R, Arredondo-Garcia JL, Mancilla-Ramirez J. Amniotic fluid interleukin-6 and the risk of early-onset sepsis among preterm infants. Archives of Medical Research. 1999; 30(3):198-202
- 453 Filbin MR, Hou PC, Massey M, Barche A, Kao E, Bracey A et al. The microcirculation is preserved in emergency department low-acuity sepsis patients without hypotension. Academic Emergency Medicine. 2014; 21(2):154-162
- 454 Finfer S, Bellomo R, Lipman J, French C, Dobb G, Myburgh J. Adult-population incidence of severe sepsis in Australian and New Zealand intensive care units. Intensive Care Medicine. 2004; 30(4):589-596
- 455 Finlay GD, Rothman MJ, Smith RA. Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system. Journal of Hospital Medicine. 2014; 9(2):116-119
- 456 Fisher CJJ, Yan SB. Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Critical Care Medicine. 2000; 28(9 Suppl):S49-S56
- 457 Fitzpatrick D, McKenna M, Rooney K, Beckett D, Pringle N. Improving the management and care of people with sepsis. Emergency Nurse. 2014; 22(1):18-24
- Fleischhack G, Cipic D, Juettner J, Hasan C, Bode U. Procalcitonin-a sensitive inflammation marker of febrile episodes in neutropenic children with cancer. Intensive Care Medicine. 2000; 26 Suppl 2:S202-S211
- 459 Fleischhack G, Kambeck I, Cipic D, Hasan C, Bode U. Procalcitonin in paediatric cancer patients: its diagnostic relevance is superior to that of C-reactive protein, interleukin 6, interleukin 8, soluble interleukin 2 receptor and soluble tumour necrosis factor receptor II. British Journal of Haematology. 2000; 111(4):1093-1102
- 460 Fleming S, Thompson M, Stevens R, Heneghan C, Pluddemann A, Maconochie I et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet (London, England). 2011; 377(9770):1011-1018
- 461 Flores JM, Jimenez PI, Rincon MD, Marquez JA, Navarro H, Arteta D et al. Early risk factors for sepsis in patients with severe blunt trauma. Injury. 2001; 32(1):5-12
- 462 Flynn D, Knoedler MA, Hess EP, Murad MH, Erwin PJ, Montori VM et al. Engaging patients in health care decisions in the emergency department through shared decision-making: A systematic review. Academic Emergency Medicine. 2012; 19(8):959-967

- 463 Fok TF, Lee CH, Wong EM, Lyon DJ, Wong W, Ng PC et al. Risk factors for Enterobacter septicemia in a neonatal unit: case-control study. Clinical Infectious Diseases. 1998; 27(5):1204-1209
- 464 Fokam J, Salpini R, Santoro MM, Cento V, Perno C, Colizzi V. Drug resistance among drug-naive and first-line antiretroviral treatment-failing children in Cameroon. Pediatric Infectious Disease Journal. 2011; 30(12):1062-1068
- 465 Ford N, Hargreaves S, Shanks L. Mortality after fluid bolus in children with shock due to sepsis or severe infection: a systematic review and meta-analysis. PloS One. 2012; 7(8):e43953
- 466 Freebairn RC, Derrick J, Gomersall CD, Young RJ, Joynt GM. Oxygen delivery, oxygen consumption, and gastric intramucosal pH are not improved by a computer-controlled, closedloop, vecuronium infusion in severe sepsis and septic shock. Critical Care Medicine. 1997; 25(1):72-77
- 467 Friedman AM. Maternal Early Warning Systems. Obstetrics and Gynecology Clinics of North America. 2015; 42(2)
- 468 Fuchs C, Scheer C, Vollmer M, Rehberg S, Meissner K, Kuhn SO et al. SEP-5: SUSTAINED REDUCTION OF 90-DAY MORTALITY OF SEVERE SEPSIS AND SEPTIC SHOCK AS A RESULT OF A CONTINUOUS TRAINING PROGRAM FOR PHYSICIANS AND NURSING STAFF. Shock. 2015; 44 Suppl 2:15
- Fuijkschot J, Vernhout B, Lemson J, Draaisma JMT, Loeffen JLCM. Validation of a Paediatric Early Warning Score: first results and implications of usage. European Journal of Pediatrics. 2015; 174(1):15-21
- 470 Fuller BM, Gajera M, Schorr C, Gerber D, Dellinger RP, Parrillo J et al. Transfusion of packed red blood cells is not associated with improved central venous oxygen saturation or organ function in patients with septic shock. Journal of Emergency Medicine. 2012; 43(4):593-598
- 471 Funk D, Sebat F, Kumar A. A systems approach to the early recognition and rapid administration of best practice therapy in sepsis and septic shock. Current Opinion in Critical Care. 2009; 15(4):301-307
- 472 Furtado GH, Wiskirchen DE, Kuti JL, Nicolau DP. Performance of the PIRO score for predicting mortality in patients with ventilator-associated pneumonia. Anaesthesia and Intensive Care. 2012; 40(2):285-291
- 473 Gabram SGA, Quintiliani R, Jacobs LM, Sullivan M, Zhi J, Yuk J et al. The pharmacokinetics of cefotaxime in acutely injured blunt trauma patients: Aeromedical vs emergency department administration. Advances in Therapy. 1993; 10(1):31-39
- 474 Galanakis E, Krallis N, Levidiotou S, Hotoura E, Andronikou S. Neonatal bacteraemia: a population-based study. Scandinavian Journal of Infectious Diseases. 2002; 34(8):598-601
- 475 Galetto-Lacour A, Gervaix A. Identifying severe bacterial infection in children with fever without source. Expert Review of Anti-Infective Therapy. 2010; 8(11):1231-1237
- 476 Gallagher EJ, Brooks F, Gennis P. Identification of serious illness in febrile adults. American Journal of Emergency Medicine. 1994; 12(2):129-133

- 477 Gamper G, Oschatz E, Herkner H, Paul G, Burgmann H, Janata K et al. Sepsis-associated purpura fulminans in adults. Wiener Klinische Wochenschrift. 2001; 113(3-4):107-112
- 478 Gando S, Iba T, Eguchi Y, Ohtomo Y, Okamoto K, Koseki K et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: Comparing current criteria. Critical Care Medicine. 2006; 34(3):625-631
- 479 Gando S, Kameue T, Morimoto Y, Matsuda N, Hayakawa M, Kemmotsu O. Tissue factor production not balanced by tissue factor pathway inhibitor in sepsis promotes poor prognosis. Critical Care Medicine. 2002; 30(8):1729-1734
- 480 Gando S, Nanzaki S, Kemmotsu O. Disseminated intravascular coagulation and sustained systemic inflammatory response syndrome predict organ dysfunctions after trauma: Application of clinical decision analysis. Annals of Surgery. 1999; 229(1):121-127
- 481 Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T et al. Disseminated intravascular coagulation (DIC) diagnosed based on the Japanese Association for Acute Medicine criteria is a dependent continuum to overt DIC in patients with sepsis. Thrombosis Research. 2009; 123(5):715-718
- Gannon M, Qaseem A, Snow V, Snooks Q. Using online learning collaboratives to facilitate practice improvement for COPD: an ACPNet pilot study. American Journal of Medical Quality. 2011; 26(3):212-219
- 483 Gao Y, Li Y, Yu X, Guo S, Ji X, Sun T et al. The impact of various platelet indices as prognostic markers of septic shock. PloS One. 2014; 9(8):e103761
- 484 Garcia Paez JI, Tengan FM, Barone AA, Levin AS, Costa SF. Factors associated with mortality in patients with bloodstream infection and pneumonia due to Stenotrophomonas maltophilia. European Journal of Clinical Microbiology and Infectious Diseases. 2008; 27(10):901-906
- 485 Garcia PCR, Longhi F, Branco RG, Piva JP, Lacks D, Tasker RC. Ferritin levels in children with severe sepsis and septic shock. Acta Paediatrica. 2007; 96(12):1829-1831
- 486 Garcia-Saenz JA, Martin M, Casado A, Perez-Segura P, Manrique I, Flores L et al. Immediate vs. delayed imipenem treatment in cancer patients with profound neutropenia induced by high-dose chemotherapy: results of a randomized study. Revista Espanola De Quimioterapia. 2002; 15(3):257-263
- 487 Garland SM, Bowman ED. Reappraisal of C-reactive protein as a screening tool for neonatal sepsis. Pathology. 2003; 35(3):240-243
- 488 Garnacho-Montero J, Aldabo-Pallas T, Garnacho-Montero C, Cayuela A, Jimenez R, Barroso S et al. Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Critical Care. 2006; 10(4):R111
- 489 Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Critical Care Medicine. 2003; 31(12):2742-2751
- 490 Garra G, Cunningham SJ, Crain EF. Reappraisal of criteria used to predict serious bacterial illness in febrile infants less than 8 weeks of age. Academic Emergency Medicine. 2005; 12(10):921-925

- 491 Gavazzi G, Escobar P, Olive F, Couturier P, Franco A. Nosocomial bacteremia in very old patients: predictors of mortality. Aging Clinical and Experimental Research. 2005; 17(4):337-342
- 492 George J, Bleasdale S, Singleton SJ. Causes and prognosis of delirium in elderly patients admitted to a district general hospital. Age and Ageing. 1997; 26(6):423-427
- 493 Gerber K. Surviving sepsis: a trust-wide approach. A multi-disciplinary team approach to implementing evidence-based guidelines. Nursing in Critical Care. 2010; 15(3):141-151
- 494 Gerdes JS, Polin RA. Sepsis screen in neonates with evaluation of plasma fibronectin. Pediatric Infectious Disease Journal. 1987; 6(5):443-446
- 495 Gerdtz MF, Waite R, Vassiliou T, Garbutt B, Prematunga R, Virtue E. Evaluation of a multifaceted intervention on documentation of vital signs at triage: a before-and-after study.
 Emergency Medicine Australasia. 2013; 25(6):580-587
- 496 Ghiorghis B, Geyid A, Haile M. Bacteraemia in febrile out-patient children. East African Medical Journal. 1992; 69(2):74-77
- 497 Ghosh S, Mittal M, Jaganathan G. Early diagnosis of neonatal sepsis using a hematological scoring system. Indian Journal of Medical Sciences. 2001; 55(9):495-500
- 498 Giamarellos-Bourboulis EJ, Norrby-Teglund A, Mylona V, Savva A, Tsangaris I, Dimopoulou I et al. Risk assessment in sepsis: a new prognostication rule by APACHE II score and serum soluble urokinase plasminogen activator receptor. Critical Care. 2012; 16(4):R149
- 499 Giannazzo G, Tola F, Vanni S, Bondi E, Pepe G, Grifoni S. Prognostic indexes of septic syndrome in the emergency department. Internal and Emergency Medicine. 2006; 1(3):229-233
- 500 Gille-Johnson P, Hansson KE, Gardlund B. Clinical and laboratory variables identifying bacterial infection and bacteraemia in the emergency department. Scandinavian Journal of Infectious Diseases. 2012; 44(10):745-752
- 501 Girardis M, Rinaldi L, Donno L, Marietta M, Codeluppi M, Marchegiano P et al. Effects on management and outcome of severe sepsis and septic shock patients admitted to the intensive care unit after implementation of a sepsis program: a pilot study. Critical Care. 2009; 13(5):R143
- 502 Giulieri S, Chapuis-Taillard C, Jaton K, Cometta A, Chuard C, Hugli O et al. CSF lactate for accurate diagnosis of community-acquired bacterial meningitis. European Journal of Clinical Microbiology and Infectious Diseases. 2015; 34(10):2049-2055
- 503 Glassford NJ, Schneider AG, Xu S, Eastwood GM, Young H, Peck L et al. The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Medicine. 2013; 39(10):1714-1724
- Goerlich CE, Wade CE, McCarthy JJ, Holcomb JB, Moore LJ. Validation of sepsis screening tool using StO2 in emergency department patients. Journal of Surgical Research. 2014; 190(1):270-275
- 505 Gogos CA, Lekkou A, Papageorgiou O, Siagris D, Skoutelis A, Bassaris HP. Clinical prognostic markers in patients with severe sepsis: A prospective analysis of 139 consecutive cases. Journal of Infection. 2003; 47(4):300-306

- 506 Goitein KJ, Rein JJ, Gornstein A. Scoring system to assess disease severity in children. Intensive Care Medicine. 1985; 11(1):20-25
- 507 Goldhill DR, McNarry AF. Physiological abnormalities in early warning scores are related to mortality in adult inpatients. British Journal of Anaesthesia. 2004; 92(6):882-884
- 508 Goldhill DR, McNarry AF, Mandersloot G, McGinley A. A physiologically-based early warning score for ward patients: the association between score and outcome. Anaesthesia. 2005; 60(6):547-553
- 509 Gomez J, Garcia-Vazquez E, Banos R, Canteras M, Ruiz J, Banos V et al. Predictors of mortality in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: The role of empiric antibiotic therapy. European Journal of Clinical Microbiology and Infectious Diseases. 2007; 26(4):239-245
- 510 Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Medicine. 2010; 36(1):83-91
- 511 Gordon AC, Wang N, Walley KR, Ashby D, Russell JA. The cardiopulmonary effects of vasopressin compared with norepinephrine in septic shock. Chest. 2012; 142(3):593-605
- 512 Gordon A, Jeffery HE. Antibiotic regimens for suspected late onset sepsis in newborn infants. Cochrane Database of Systematic Reviews. 2005; Issue 3:CD004501. DOI:10.1002/14651858.CD004501.pub2
- 513 Goulet H, Andre S, Sahakian GD, Freund Y, Khelifi G, Claessens YE et al. Accuracy of oxygen tissue saturation values in assessing severity in patients with sepsis admitted to emergency departments. European Journal of Emergency Medicine. 2014; 21(4):266-271
- 514 Grander W, Mullauer K, Koller B, Tilg H, Dunser M. Heart rate before ICU discharge: a simple and readily available predictor of short- and long-term mortality from critical illness. Clinical Research in Cardiology. 2013; 102(8):599-606
- 515 Granier S, Owen P, Pill R, Jacobson L. Recognising meningococcal disease in primary care: Qualitative study of how general practitioners process clinical and contextual information. BMJ. 1998; 316(7127):276-279
- 516 Granja C, Povoa P, Lobo C, Teixeira-Pinto A, Carneiro A, Costa-Pereira A. The predisposition, infection, response and organ failure (Piro) sepsis classification system: results of hospital mortality using a novel concept and methodological approach. PloS One. 2013; 8(1):e53885
- 517 Greenberg DN, Yoder BA. Changes in the differential white blood cell count in screening for group B streptococcal sepsis. Pediatric Infectious Disease Journal. 1990; 9(12):886-889
- 518 Griffin MP, Lake DE, Moorman JR. Heart rate characteristics and laboratory tests in neonatal sepsis. Pediatrics. 2005; 115(4):937-941
- 519 Griffin MP, Lake DE, O'Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatric Research. 2007; 61(2):222-227
- 520 Griffiths JR, Kidney EM. Current use of early warning scores in UK emergency departments. Emergency Medicine Journal. 2012; 29(1):65-66

- 521 Groeneveld ABJ, Navickis RJ, Wilkes MM. Update on the comparative safety of colloids: a systematic review of clinical studies. Annals of Surgery. 2011; 253(3):470-483
- 522 Grozdanovski K, Milenkovic Z, Demiri I, Spasovska K. Prediction of outcome from communityacquired severe sepsis and septic shock in tertiary-care university hospital in a developing country. Critical Care Research and Practice. 2012; 2012:182324
- 523 Gu W-J, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Medicine. 2015; 41(10):1862-1863
- 524 Guclu E, Durmaz Y, Karabay O. Effect of severe sepsis on platelet count and their indices. African Health Sciences. 2013; 13(2):333-338
- 525 Guerra WF, Mayfield TR, Meyers MS, Clouatre AE, Riccio JC. Early detection and treatment of patients with severe sepsis by prehospital personnel. Journal of Emergency Medicine. 2013; 44(6):1116-1125
- 526 Guibourdenche J, Bedu A, Petzold L, Marchand M, Mariani-Kurdjian P, Hurtaud-Roux MF et al. Biochemical markers of neonatal sepsis: value of procalcitonin in the emergency setting. Annals of Clinical Biochemistry. 2002; 39(Pt 2):130-135
- 527 Guidet B, Mosqueda GJ, Priol G, Aegerter P. The COASST study: cost-effectiveness of albumin in severe sepsis and septic shock. Journal of Critical Care. France 2007; 22(3):197-203
- 528 Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Critical Care. 2012; 16(3):R94
- 529 Guido M, Quattrocchi M, Zizza A, Pasanisi G, Pavone V, Lobreglio G et al. Molecular approaches in the diagnosis of sepsis in neutropenic patients with haematological malignances. Journal of Preventive Medicine and Hygiene. 2012; 53(2):104-108
- 530 Guillois B, Donnou MD, Sizun J, Bendaoud B, Youinou P. Comparative study of four tests of bacterial infection in the neonate. Total neutrophil count, CRP, fibrinogen and C3d. Biology of the Neonate. 1994; 66(4):175-181
- 531 Guirgis FW, Khadpe JD, Kuntz GM, Wears RL, Kalynych CJ, Jones AE. Persistent organ dysfunction after severe sepsis: A systematic review. Journal of Critical Care. 2014; 29(3):320-326
- 532 Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. Journal of the American Medical Informatics Association. 2014; 21(2):315-325
- Guo Y, Yan K-P. Prognostic significance of urine neutrophil gelatinase-associated lipocalin in patients with septic acute kidney injury. Experimental and Therapeutic Medicine. 2011; 2(6):1133-1139
- 534 Guo YW, Wu TE, Chen HS. Prognostic factors of mortality among patients with severe hyperglycemia. American Journal of Managed Care. 2015; 21(1):e9-e22

- 535 Gurnani PK, Patel GP, Crank CW, Vais D, Lateef O, Akimov S et al. Impact of the implementation of a sepsis protocol for the management of fluid-refractory septic shock: A single-center, before-and-after study. Clinical Therapeutics. 2010; 32(7):1285-1293
- 536 Gutovitz S, Papa L, Jimenez E, Falk J, Wieman L, Sawyer S et al. Protein C as an early biomarker to distinguish pneumonia from sepsis. Journal of Critical Care. 2011; 26(3):330-12
- 537 Guven H, Altintop L, Baydin A, Esen S, Aygun D, Hokelek M et al. Diagnostic value of procalcitonin levels as an early indicator of sepsis. American Journal of Emergency Medicine. 2002; 20(3):202-206
- 538 Gwak MH, Jo S, Jeong T, Lee JB, Jin YH, Yoon J et al. Initial serum lactate level is associated with inpatient mortality in patients with community-acquired pneumonia. American Journal of Emergency Medicine. 2015; 33(5):685-690
- 539 Ha SO, Park SH, Park JS, Huh JW, Lim C-M, Koh Y et al. Fraction of immature granulocytes reflects severity but not mortality in sepsis. Scandinavian Journal of Clinical and Laboratory Investigation. 2015; 75(1):36-43
- 540 Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M et al. Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013; 346:f839
- 541 Haase N, Wetterslev J, Winkel P, Perner A. Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post hoc analyses of a randomized clinical trial. Intensive Care Medicine. 2013; 39(12):2126-2134
- 542 Haase NRS. Hydroxyethyl starch in sepsis. Danish Medical Journal. 2014; 61(1):B4764
- 543 Hachimi-Idrissi S, Corne L, Ramet J. Evaluation of scoring systems in acute meningococcaemia. European Journal of Emergency Medicine. 1998; 5(2):225-230
- Haines C, Perrott M, Weir P. Promoting care for acutely ill children-development and evaluation of a paediatric early warning tool. Intensive and Critical Care Nursing. 2006; 22(2):73-81
- Haj-Hassan TA, Thompson MJ, Mayon-White RT, Ninis N, Harnden A, Smith LF et al. Which early 'red flag' symptoms identify children with meningococcal disease in primary care? British Journal of General Practice : the Journal of the Royal College of General Practitioners. 2011; 61(584):e97-104
- 546 Hall LG, Oyen LJ, Taner CB, Cullinane DC, Baird TK, Cha SS et al. Fixed-dose vasopressin compared with titrated dopamine and norepinephrine as initial vasopressor therapy for septic shock. Pharmacotherapy. 2004; 24(8):1002-1012
- 547 Hall TC, Bilku DK, Al-Leswas D, Horst C, Dennison AR. Biomarkers for the differentiation of sepsis and SIRS: the need for the standardisation of diagnostic studies. Irish Journal of Medical Science. 2011; 180(4):793-798
- 548 Hammond NE, Spooner AJ, Barnett AG, Corley A, Brown P, Fraser JF. The effect of implementing a modified early warning scoring (MEWS) system on the adequacy of vital sign documentation. Australian Critical Care. 2013; 26(1):18-22

- 549 Hamzic-Mehmedbasic A, Rasic S, Rebic D, Durak-Nalbantic A, Muslimovic A, Dzemidzic J. Renal Function Outcome Prognosis in Septic and Non-septic Acute Kidney Injury Patients. Medical Archives. 2015; 69(2):77-80
- 550 Han J, Liang Hp. Clinical significance of scoring system for systemic inflammatory response syndrome. Chinese Journal of Traumatology. 2006; 9(5):316-320
- 551 Hanson LA, Jodal U, Sabel KG, Wadsworth C. The diagnostic value of C-reactive protein. Pediatric Infectious Disease. 1983; 2(2):87-89
- 552 Hanzelka KM, Yeung SC, Chisholm G, Merriman KW, Gaeta S, Malik I et al. Implementation of modified early-goal directed therapy for sepsis in the emergency center of a comprehensive cancer center. Supportive Care in Cancer. 2013; 21(3):727-734
- Harbarth S, Ferriere K, Hugonnet S, Ricou B, Suter P, Pittet D et al. Epidemiology and prognostic determinants of bloodstream infections in surgical intensive care. Archives of Surgery. 2002; 137(12):1353-1359
- 554 Hariharan P, Kabrhel C. Sensitivity of erythrocyte sedimentation rate and C-reactive protein for the exclusion of septic arthritis in emergency department patients. Journal of Emergency Medicine. 2011; 40(4):428-431
- 555 Harrigan S, Hurst D, Lee C, Christie V, Wolfe RB, Morrical D et al. Developing and implementing quality initiatives in the ICU: strategies and outcomes. Critical Care Nursing Clinics of North America. 2006; 18(4):469-4ix
- Hashavya S, Benenson S, Ergaz-Shaltiel Z, Bar-Oz B, Averbuch D, Eventov-Friedman S. The use of blood counts and blood cultures to screen neonates born to partially treated group B
 Streptococcus-carrier mothers for early-onset sepsis: is it justified? Pediatric Infectious Disease Journal. 2011; 30(10):840-843
- 557 Hayakawa M, Gando S, Hoshino H. A prospective comparison of new Japanese criteria for disseminated intravascular coagulation: New Japanese criteria versus ISTH criteria. Clinical and Applied Thrombosis/Hemostasis. 2007; 13(2):172-181
- 558 Hazan G, Ben-Shimol S, Fruchtman Y, Abu-Quider A, Kapelushnik J, Moser A et al. Clinical and laboratory parameter dynamics as markers of blood stream infections in pediatric oncology patients with fever and neutropenia. Journal of Pediatric Hematology/Oncology. 2014; 36(5):e275-e279
- 559 Hegadi SS, Kalpana S. Comparative evaluation of blood culture and C-reactive protein (CRP) detection in the diagnosis of neonatal sepsis". International Journal of Pharma and Bio Sciences. 2015; 6(2):B1366-B1371
- 560 Hengst JM. The role of C-reactive protein in the evaluation and management of infants with suspected sepsis. Advances in Neonatal Care. 2003; 3(1):3-13
- 561 Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-time early warning score (TREWScore) for septic shock. Science Translational Medicine. 2015; 7(299):299ra122
- 562 Heper Y, Akalin EH, Mistik R, Akgoz S, Tore O, Goral G et al. Evaluation of serum C-reactive protein, procalcitonin, tumor necrosis factor alpha, and interleukin-10 levels as diagnostic and prognostic parameters in patients with community-acquired sepsis, severe sepsis, and septic shock. European Journal of Clinical Microbiology and Infectious Diseases. 2006; 25(8):481-491

- 563 Herasevich V, Pieper MS, Pulido J, Gajic O. Enrollment into a time sensitive clinical study in the critical care setting: results from computerized septic shock sniffer implementation. Journal of the American Medical Informatics Association. 2011; 18(5):639-644
- 564 Herbst A, Wolner-Hanssen P, Ingemarsson I. Maternal fever in term labour in relation to fetal tachycardia, cord artery acidaemia and neonatal infection. British Journal of Obstetrics and Gynaecology. 1997; 104(3):363-366
- 565 Hermans MAW, Leffers P, Jansen LM, Keulemans YC, Stassen PM. The value of the Mortality in Emergency Department Sepsis (MEDS) score, C reactive protein and lactate in predicting 28day mortality of sepsis in a Dutch emergency department. Emergency Medicine Journal. 2012; 29(4):295-300
- 566 Hernandez G, Pedreros C, Veas E, Bruhn A, Romero C, Rovegno M et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. Journal of Critical Care. 2012; 27(3):283-288
- 567 Hernandez G, Regueira T, Bruhn A, Castro R, Rovegno M, Fuentealba A et al. Relationship of systemic, hepatosplanchnic, and microcirculatory perfusion parameters with 6-hour lactate clearance in hyperdynamic septic shock patients: an acute, clinical-physiological, pilot study. Annals of Intensive Care. 2012; 2(1):44
- 568 Hernandez-Bou S, Trenchs V, Batlle A, Gene A, Luaces C. Occult bacteraemia is uncommon in febrile infants who appear well, and close clinical follow-up is more appropriate than blood tests. Acta Paediatrica, International Journal of Paediatrics. 2015; 104(2):e76-e81
- 569 Herzum I, Renz H. Inflammatory markers in SIRS, sepsis and septic shock. Current Medicinal Chemistry. 2008; 15(6):581-587
- 570 Hetem DJ, de Ruiter SC, Buiting AG, Kluytmans JA, Thijsen SF, Vlaminckx BJ et al. Preventing Staphylococcus aureus bacteremia and sepsis in patients with Staphylococcus aureus colonization of intravascular catheters: a retrospective multicenter study and meta-analysis. Medicine. 2011; 90(4):284-288
- 571 Higgins A. Raising awareness of neutropenic sepsis risk in ambulatory patients. Cancer Nursing Practice. 2008; 7(9):34-38
- 572 Hillas G, Vassilakopoulos T, Plantza P, Rasidakis A, Bakakos P. C-reactive protein and procalcitonin as predictors of survival and septic shock in ventilator-associated pneumonia. European Respiratory Journal. 2010; 35(4):805-811
- 573 Hisamuddin E, Hisam A, Wahid S, Raza G. Validity of C-reactive protein (CRP) for diagnosis of neonatal sepsis. Pakistan Journal of Medical Sciences. 2015; 31(3):527-531
- 574 Hisamuddin NARN, Azlan K. The use of laboratory and physiological parameters in predicting mortality in sepsis induced hypotension and septic shock patients attending the emergency department. Medical Journal of Malaysia. 2012; 67(3):259-264
- Hitti EA, Lewin JJ, III, Lopez J, Hansen J, Pipkin M, Itani T et al. Improving door-to-antibiotic time in severely septic emergency department patients. Journal of Emergency Medicine. 2012; 42(4):462-469

- Ho KM, Lee KY, Dobb GJ, Webb SAR. C-reactive protein concentration as a predictor of inhospital mortality after ICU discharge: a prospective cohort study. Intensive Care Medicine. 2008; 34(3):481-487
- 577 Ho LO, Li H, Shahidah N, Koh ZX, Sultana P, Hock Ong ME. Poor performance of the modified early warning score for predicting mortality in critically ill patients presenting to an emergency department. World Journal of Emergency Medicine. 2013; 4(4):273-278
- 578 Hoen B, Viel JF, Gerard A, Dureux JB, Canton P. Mortality in pneumococcal meningitis: a multivariate analysis of prognostic factors. European Journal of Medicine. 1993; 2(1):28-32
- 579 Holme H, Bhatt R, Koumettou M, Griffin MAS, Winckworth LC. Retrospective evaluation of a new neonatal trigger score. Pediatrics. 2013; 131(3):e837-e842
- 580 Holst LB, Haase N, Wetterslev J, Wernerman J, Aneman A, Guttormsen AB et al. Transfusion requirements in septic shock (TRISS) trial - comparing the effects and safety of liberal versus restrictive red blood cell transfusion in septic shock patients in the ICU: protocol for a randomised controlled trial. Trials. 2013; 14:150
- 581 Hoppensteadt D, Tsuruta K, Cunanan J, Hirman J, Kaul I, Osawa Y et al. Thrombin generation mediators and markers in sepsis-associated coagulopathy and their modulation by recombinant thrombomodulin. Clinical and Applied Thrombosis/Hemostasis. 2014; 20(2):129-135
- 582 Hoppensteadt D, Tsuruta K, Hirman J, Kaul I, Osawa Y, Fareed J. Dysregulation of inflammatory and hemostatic markers in sepsis and suspected disseminated intravascular coagulation. Clinical and Applied Thrombosis/Hemostasis. 2015; 21(2):120-127
- 583 Hoppensteadt D, Tsuruta K, Cunanan J, Hirman J, Kaul I, Osawa Y et al. Thrombin generation mediators and markers in sepsis-associated coagulopathy and their modulation by recombinant thrombomodulin. Clinical and Applied Thrombosis/Hemostasis. 2014; 20(2):129-135
- 584 Horeczko T, Green JP. Emergency department presentation of the pediatric systemic inflammatory response syndrome. Pediatric Emergency Care. 2013; 29(11):1153-1158
- 585 Hortmann M, Heppner HJ, Popp S, Lad T, Christ M. Reduction of mortality in communityacquired pneumonia after implementing standardized care bundles in the emergency department. European Journal of Emergency Medicine. 2014; 21(6):429-435
- 586 Hoste EAJ, Lameire NH, Vanholder RC, Benoit DD, Decruyenaere JMA, Colardyn FA. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. Journal of the American Society of Nephrology. 2003; 14(4):1022-1030
- 587 Houck PM, Bratzler DW, Nsa W, Ma A, Bartlett JG. Timing of antibiotic administration and outcomes for Medicare patients hospitalized with community-acquired pneumonia. Archives of Internal Medicine. 2004; 164(6):637-644
- 588 Housinger TA, Brinkerhoff C, Warden GD. The relationship between platelet count, sepsis, and survival in pediatric burn patients. Archives of Surgery. 1993; 128(1):65-67
- 589 Howell MD, Donnino M, Clardy P, Talmor D, Shapiro NI. Occult hypoperfusion and mortality in patients with suspected infection. Intensive Care Medicine. 2007; 33(11):1892-1899

- 590 Hsiao AL, Chen L, Baker MD. Incidence and predictors of serious bacterial infections among 57to 180-day-old infants. Pediatrics. 2006; 117(5):1695-1701
- 591 Huggan PJ. Severe sepsis: take care, take part. Internal Medicine Journal. 2011; 41(1a):13-18
- 592 Hui C, Neto G, Tsertsvadze A, Yazdi F, Tricco AC, Tsouros S et al. Diagnosis and management of febrile infants (0-3 months). Evidence Report/Technology Assessment. 2012;(205):1-297
- 593 Hurtado FJ, Nin N. The role of bundles in sepsis care. Critical Care Clinics. 2006; 22(3):521-529
- 594 Iba T, Saitoh D. Efficacy of antithrombin in preclinical and clinical applications for sepsisassociated disseminated intravascular coagulation. Journal of Intensive Care. 2014; 2(1):66
- 595 Iba T, Saitoh D, Gando S, Thachil J. The usefulness of antithrombin activity monitoring during antithrombin supplementation in patients with sepsis-associated disseminated intravascular coagulation. Thrombosis Research. 2015; 135(5):897-901
- 596 Iglesias J, Marik PE, Levine JS, Norasept IS, I. Elevated serum levels of the type I and type II receptors for tumor necrosis factor-alpha as predictive factors for ARF in patients with septic shock. American Journal of Kidney Diseases. 2003; 41(1):62-75
- 597 Inal MT, Memis D, Kargi M, Sut N. Prognostic value of indocyanine green elimination assessed with LiMON in septic patients. Journal of Critical Care. 2009; 24(3):329-334
- 598 Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Critical Care Medicine. 1999; 27(7):1369-1377
- 599 Ireland S, Larkins S, Kandasamy Y. Group B streptococcal infection in the first 90 days of life in North Queensland. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2014; 54(2):146-151
- Irwin AD, Drew RJ, Marshall P, Nguyen K, Hoyle E, Macfarlane KA et al. Etiology of childhood bacteremia and timely antibiotics administration in the emergency department. Pediatrics. 2015; 135(4):635-642
- 601 Iscimen R, Cartin-Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Critical Care Medicine. 2008; 36(5):1518-1522
- 602 Isfandiaty R, Harimurti K, Setiati S, Roosheroe AG. Incidence and predictors for delirium in hospitalized elderly patients: a retrospective cohort study. Acta Medica Indonesiana. 2012; 44(4):290-297
- 603 Ishikura H, Nishida T, Murai A, Nakamura Y, Irie Y, Tanaka J et al. New diagnostic strategy for sepsis-induced disseminated intravascular coagulation: A prospective single-center observational study. Critical Care. 2014; 18(1)
- 604 Ismail NH, Lieu PK, Lien CT, Ling ML. Bacteraemia in the elderly. Annals of the Academy of Medicine, Singapore. 1997; 26(5):593-598
- 605 Iwashyna TJ, Netzer G, Langa KM, Cigolle C. Spurious inferences about long-term outcomes: the case of severe sepsis and geriatric conditions. American Journal of Respiratory and Critical Care Medicine. 2012; 185(8):835-841

- 606 Jacob ST, Banura P, Baeten JM, Moore CC, Meya D, Nakiyingi L et al. The impact of early monitored management on survival in hospitalized adult Ugandan patients with severe sepsis: a prospective intervention study. Critical Care Medicine. 2012; 40(7):2050-2058
- 607 Jacobs RF, Sowell MK, Moss MM, Fiser DH. Septic shock in children: bacterial etiologies and temporal relationships. Pediatric Infectious Disease Journal. 1990; 9(3):196-200
- 608 Jaderling G, Bell M, Martling CR, Ekbom A, Bottai M, Konrad D. ICU admittance by a rapid response team versus conventional admittance, characteristics, and outcome. Critical Care Medicine. 2013; 41(3):725-731
- 609 Jaimes F, Farbiarz J, Alvarez D, Martinez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Critical Care. 2005; 9(2):R150-R156
- 610 Jain NK, Jain VM, Maheshwari S. Clinical profile of neonatal sepsis. Kathmandu University Medical Journal. 2003; 1(2):117-120
- 611 Jain S, Sinha S, Sharma SK, Samantaray JC, Aggrawal P, Vikram NK et al. Procalcitonin as a prognostic marker for sepsis: a prospective observational study. BMC Research Notes. 2014; 7:458
- 612 James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999; 354(9177):505-508
- 613 Jansen TC. Lactate revisited: Is lactate monitoring beneficial for ICU patients? Netherlands Journal of Critical Care. 2011; 15(1):13-18
- 614 Jansen TC, van Bommel J, Bakker J. Blood lactate monitoring in critically ill patients: a systematic health technology assessment. Critical Care Medicine. 2009; 37(10):2827-2839
- 615 Janum SH, Sovso M, Gradel KO, Schonheyder HC, Nielsen H. C-reactive protein level as a predictor of mortality in liver disease patients with bacteremia. Scandinavian Journal of Gastroenterology. 2011; 46(12):1478-1483
- 616 Jarvis S, Kovacs C, Briggs J, Meredith P, Schmidt PE, Featherstone PI et al. Aggregate National Early Warning Score (NEWS) values are more important than high scores for a single vital signs parameter for discriminating the risk of adverse outcomes. Resuscitation. 2015; 87:75-80
- 617 Jat KR, Jhamb U, Gupta VK. Serum lactate levels as the predictor of outcome in pediatric septic shock. Indian Journal of Critical Care Medicine. 2011; 15(2):102-107
- 618 Jeddi R, Achour M, Amor RB, Aissaoui L, Bouteraa W, Kacem K et al. Factors associated with severe sepsis: prospective study of 94 neutropenic febrile episodes. Hematology. 2010; 15(1):28-32
- 619 Jeon K, Shin TG, Sim MS, Suh GY, Lim SY, Song HG et al. Improvements in compliance with resuscitation bundles and achievement of end points after an educational program on the management of severe sepsis and septic shock. Shock. 2012; 37(5):463-467
- 620 Jeschke MG, Finnerty CC, Kulp GA, Kraft R, Herndon DN. Can we use C-reactive protein levels to predict severe infection or sepsis in severely burned patients? International Journal of Burns and Trauma. 2013; 3(3):137-143

- 621 Jesmin S, Wada T, Gando S, Sultana SS, Zaedi S. The dynamics of angiogenic factors and their soluble receptors in relation to organ dysfunction in disseminated intravascular coagulation associated with sepsis. Inflammation. 2013; 36(1):186-196
- 622 Jiang L, Feng B, Gao D, Zhang Y. Plasma concentrations of copeptin, C-reactive protein and procalcitonin are positively correlated with APACHE II scores in patients with sepsis. Journal of International Medical Research. 2015; 43(2):188-195
- 523 Jiang L, Jiang S, Zhang M, Zheng Z, Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PloS One. 2014; 9(12):e114666
- Jo S, Lee JB, Jin YH, Jeong TO, Yoon JC, Jun YK et al. Modified early warning score with rapid lactate level in critically ill medical patients: the ViEWS-L score. Emergency Medicine Journal. 2013; 30(2):123-129
- 625 Jones AE, Focht A, Horton JM, Kline JA. Prospective external validation of the clinical effectiveness of an emergency department-based early goal-directed therapy protocol for severe sepsis and septic shock. Chest. 2007; 132(2):425-432
- 626 Jones AE, Puskarich MA. The Surviving Sepsis Campaign guidelines 2012: update for emergency physicians. Annals of Emergency Medicine. 2014; 63(1):35-47
- 627 Jones AE, Saak K, Kline JA. Performance of the Mortality in Emergency Department Sepsis score for predicting hospital mortality among patients with severe sepsis and septic shock. American Journal of Emergency Medicine. 2008; 26(6):689-692
- 628 Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303(8):739-746
- Jones GR. Assessment criteria in identifying the sick sepsis patient. Journal of Infection. 1998;37 Suppl 1:24-29
- 630 Jordan JA, Durso MB. Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. Journal of Clinical Microbiology. 2000; 38(7):2574-2578
- 631 Juncal VR, Britto Neto LAd, Camelier AA, Messeder OHC, Farias AMdC. Clinical impact of sepsis at admission to the ICU of a private hospital in Salvador, Brazil. Jornal Brasileiro De Pneumologia. 2011; 37(1):85-92
- 632 Junhasavasdikul D, Theerawit P, Kiatboonsri S. Association between admission delay and adverse outcome of emergency medical patients. Emergency Medicine Journal. 2013; 30(4):320-323
- Juutilainen A, Hamalainen S, Pulkki K, Kuittinen T, Nousiainen T, Jantunen E et al. Biomarkers for bacteremia and severe sepsis in hematological patients with neutropenic fever:
 Multivariate logistic regression analysis and factor analysis. Leukemia and Lymphoma. 2011; 52(12):2349-2355
- 634 Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical Infectious Diseases. 2003; 37(6):745-751

- 635 Kang MJ, Shin TG, Jo IJ, Jeon K, Suh GY, Sim MS et al. Factors influencing compliance with early resuscitation bundle in the management of severe sepsis and septic shock. Shock. 2012; 38(5):474-479
- 636 Kang YR, Um SW, Koh WJ, Suh GY, Chung MP, Kim H et al. Initial lactate level and mortality in septic shock patients with hepatic dysfunction. Anaesthesia and Intensive Care. 2011; 39(5):862-867
- 637 Karam O, Tucci M, Ducruet T, Hume HA, Lacroix J, Gauvin F et al. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatric Critical Care Medicine. 2011; 12(5):512-518
- 638 Karambin M, Zarkesh M. Entrobacter, the most common pathogen of neonatal septicemia in rasht, iran. Iranian Journal of Pediatrics. 2011; 21(1):83-87
- 639 Kasem AJ, Bulloch B, Henry M, Shah K, Dalton H. Procalcitonin as a marker of bacteremia in children with fever and a central venous catheter presenting to the emergency department. Pediatric Emergency Care. 2012; 28(10):1017-1021
- 640 Katsimpardi K, Papadakis V, Pangalis A, Parcharidou A, Panagiotou JP, Soutis M et al. Infections in a pediatric patient cohort with acute lymphoblastic leukemia during the entire course of treatment. Supportive Care in Cancer. 2006; 14(3):277-284
- 641 Katz JA, Mustafa MM, Bash RO, Cash JV, Buchanan GR. Value of C-reactive protein determination in the initial diagnostic evaluation of the febrile, neutropenic child with cancer. Pediatric Infectious Disease Journal. 1992; 11(9):708-712
- 642 Kaul M, Snethen J, Kelber ST, Zimmanck K, Maletta K, Meyer M. Implementation of the Bedside Paediatric Early Warning System (BedsidePEWS) for nurse identification of deteriorating patients. Journal for Specialists in Pediatric Nursing. 2014; 19(4):339-349
- 643 Kaur G, Vinayak N, Mittal K, Kaushik JS, Aamir M. Clinical outcome and predictors of mortality in children with sepsis, severe sepsis, and septic shock from Rohtak, Haryana: A prospective observational study. Indian Journal of Critical Care Medicine. 2014; 18(7):437-441
- 644 Kayange N, Kamugisha E, Mwizamholya DL, Jeremiah S, Mshana SE. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. BMC Pediatrics. 2010; 10:39
- 645 Kellett J, Kim A. Validation of an abbreviated VitalpacTM Early Warning Score (ViEWS) in 75,419 consecutive admissions to a Canadian regional hospital. Resuscitation. 2012; 83(3):297-302
- 646 Kellie SP, Scott MJ, Cavallazzi R, Wiemken TL, Goss L, Parker D et al. Procedural and educational interventions to reduce ventilator-associated pneumonia rate and central line-associated blood stream infection rate. Journal of Intensive Care Medicine. 2014; 29(3):165-174
- Kellner P, Prondzinsky R, Pallmann L, Siegmann S, Unverzagt S, Lemm H et al. Predictive value of outcome scores in patients suffering from cardiogenic shock complicating AMI: APACHE II, APACHE III, Elebute-Stoner, SOFA, and SAPS II. Medizinische Klinik, Intensivmedizin Und Notfallmedizin. 2013; 108(8):666-674
- 648 Kenzaka T, Okayama M, Kuroki S, Fukui M, Yahata S, Hayashi H et al. Use of a semiquantitative procalcitonin kit for evaluating severity and predicting mortality in patients with sepsis. International Journal of General Medicine. 2012; 5:483-488

- 649 Keshet R, Boursi B, Maoz R, Shnell M, Guzner-Gur H. Diagnostic and prognostic significance of serum C-reactive protein levels in patients admitted to the Department of Medicine. American Journal of the Medical Sciences. 2009; 337(4):248-255
- 650 Kessler A, Grunert C, Wood WG. The limitations and usefulness of C-reactive protein and elastase-alpha1-proteinase inhibitor complexes as analytes in the diagnosis and follow-up of sepsis in newborns and adults. European Journal of Clinical Chemistry and Clinical Biochemistry. 1994; 32(5):365-368
- 651 Khan RA, Bakry MM, Islahudin F. Appropriate Antibiotic Administration in Critically III Patients with Pneumonia. Indian Journal of Pharmaceutical Sciences. 2015; 77(3):299-305
- 652 Khaskheli MN, Baloch S, Sheeba A. Risk factors and complications of puerperal sepsis at a tertiary healthcare centre. Pakistan Journal of Medical Sciences. 2013; 29(4):972-976
- 653 Khassawneh M, Hayajneh WA, Kofahi H, Khader Y, Amarin Z, Daoud A. Diagnostic markers for neonatal sepsis: comparing C-reactive protein, interleukin-6 and immunoglobulin M. Scandinavian Journal of Immunology. 2007; 65(2):171-175
- 654 Khassawneh M, Khader Y, Abuqtaish N. Clinical features of neonatal sepsis caused by resistant Gram-negative bacteria. Pediatrics International. 2009; 51(3):332-336
- 655 Khatib R, Saeed S, Sharma M, Riederer K, Fakih MG, Johnson LB. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. European Journal of Clinical Microbiology and Infectious Diseases. 2006; 25(3):181-185
- 656 Khurana V, Gambhir IS, Kishore D. Evaluation of delirium in elderly: a hospital-based study. Geriatrics and Gerontology International. 2011; 11(4):467-473
- 657 Khwannimit B, Bhurayanontachai R. The performance of customised APACHE II and SAPS II in predicting mortality of mixed critically ill patients in a Thai medical intensive care unit. Anaesthesia and Intensive Care. 2009; 37(5):784-790
- 658 Kibuuka A, Byakika-Kibwika P, Achan J, Yeka A, Nalyazi JN, Mpimbaza A et al. Bacteremia among febrile ugandan children treated with antimalarials despite a negative malaria test. American Journal of Tropical Medicine and Hygiene. 2015; 93(2):276-280
- 659 Kienast J, Juers M, Wiedermann CJ, Hoffmann JN, Ostermann H, Strauss R et al. Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. Journal of Thrombosis and Haemostasis. 2006; 4(1):90-97
- 660 Kiers HD, Griesdale DEG, Litchfield A, Reynolds S, Gibney RTN, Chittock D et al. Effect of early achievement of physiologic resuscitation goals in septic patients admitted from the ward on the kidneys. Journal of Critical Care. 2010; 25(4):563-569
- 661 Kim CS, Kristopaitis RJ, Stone E, Pelter M, Sandhu M, Weingarten SR. Physician education and report cards: Do they make the grade? Results from a randomized controlled trial. American Journal of Medicine. 1999; 107(6):556-560
- 662 Kim HK. Changes in plasma levels of natural anticoagulants in disseminated intravascular coagulation: high prognostic value of antithrombin and protein C in patients with underlying sepsis or severe infection. Annals of Laboratory Medicine. 2014; 34(2):85-91

- 663 Kim HJ, Son YK, An WS. Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis: a retrospective analysis. PloS One. 2013; 8(6):e65283
- 664 Kim JY, Yoon J, Lim CS, Choi BM, Yoon S-Y. Clinical significance of platelet-associated hematological parameters as an early supplementary diagnostic tool for sepsis in thrombocytopenic very-low-birth-weight infants. Platelets. 2015; 26(7):620-626
- 665 Kim KS, Kim K, Jo YH, Kim TY, Lee JH, Lee SJ et al. A simple model to predict bacteremia in women with acute pyelonephritis. Journal of Infection. 2011; 63(2):124-130
- 666 Kim LE, Jeffe DB, Evanoff BA, Mutha S, Freeman B, Fraser J. Improved compliance with universal precautions in the operating room following an educational intervention. Infection Control and Hospital Epidemiology. 2001; 22(8):522-524
- 667 Kim YJ, Kim SI, Hong KW, Kim YR, Park YJ, Kang MW. Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: impact of appropriate antimicrobial therapy. Journal of Korean Medical Science. 2012; 27(5):471-475
- 668 Kim YA, Ha EJ, Jhang WK, Park SJ. Early blood lactate area as a prognostic marker in pediatric septic shock. Intensive Care Medicine. 2013; 39(10):1818-1823
- 669 Kimmoun A, Ducrocq N, Mory S, Delfosse R, Muller L, Perez P et al. Cardiac contractile reserve parameters are related to prognosis in septic shock. BioMed Research International. 2013; 2013:930673
- 670 Kinasewitz GT, Yan SB, Basson B, Comp P, Russell JA, Cariou A et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Critical Care. 2004; 8(2):R82-R90
- 671 Kinasewitz GT, Zein JG, Lee GL, Nazir SA, Taylor J. Prognostic value of a simple evolving disseminated intravascular coagulation score in patients with severe sepsis. Critical Care Medicine. 2005; 33(10):2214-2221
- 672 Kirschenbaum LA, Lopez WC, Ohrum P, Tsen A, Khazin J, Astiz ME. Effect of recombinant activated protein C and low-dose heparin on neutrophil-endothelial cell interactions in septic shock. Critical Care Medicine. 2006; 34(8):2207-2212
- 673 Kite P, Millar MR, Gorham P, Congdon P. Comparison of five tests used in diagnosis of neonatal bacteraemia. Archives of Disease in Childhood. 1988; 63(6):639-643
- Klein M, Weksler N, Borer A, Koyfman L, Kesslin J, Gurman GM. Terlipressin facilitates transport of septic patients treated with norepinephrine. Israel Medical Association Journal. 2006; 8(10):691-693
- 675 Kleinpell R, Schorr CA. Targeting sepsis as a performance improvement metric: role of the nurse. AACN Advanced Critical Care. 2014; 25(2):179-186
- 676 Ko HF, Tsui SS, Tse JW, Kwong WY, Chan OY, Wong GC. Improving the emergency department management of post-chemotherapy sepsis in haematological malignancy patients. Hong Kong Medical Journal. 2015; 21(1):10-15
- 677 Kobayashi S, Gando S, Morimoto Y, Nanzaki S, Kemmotsu O. Serial measurement of arterial lactate concentrations as a prognostic indicator in relation to the incidence of disseminated

intravascular coagulation in patients with systemic inflammatory response syndrome. Surgery Today. 2001; 31(10):853-859

- 678 Kocabas E, Sarikcioglu A, Aksaray N, Seydaoglu G, Seyhun Y, Yaman A. Role of procalcitonin, Creactive protein, interleukin-6, interleukin-8 and tumor necrosis factor-alpha in the diagnosis of neonatal sepsis. Turkish Journal of Pediatrics. 2007; 49(1):7-20
- 679 Kocazeybek B, Kucukoglu S, Oner YA. Procalcitonin and C-reactive protein in infective endocarditis: correlation with etiology and prognosis. Chemotherapy. 2003; 49(1-2):76-84
- 680 Kohli V, Singhi S, Sharma P, Ganguly NK. Value of serum C-reactive protein concentrations in febrile children without apparent focus. Annals of Tropical Paediatrics. 1993; 13(4):373-378
- 681 Kohn MA, Newman MP. What white blood cell count should prompt antibiotic treatment in a febrile child? Tutorial on the importance of disease likelihood to the interpretation of diagnostic tests. Medical Decision Making. 2001; 21(6):479-489
- 682 Koksal N, Harmanci R, Cetinkaya M, Hacimustafaoglu M. Role of procalcitonin and CRP in diagnosis and follow-up of neonatal sepsis. Turkish Journal of Pediatrics. 2007; 49(1):21-29
- 683 Kollef MH, Micek ST. Using protocols to improve patient outcomes in the intensive care unit: focus on mechanical ventilation and sepsis. Seminars in Respiratory and Critical Care Medicine. 2010; 31(1):19-30
- 684 Kono T, Otsuka M, Ito M, Misawa M, Hoshioka A, Suzuki M et al. Negative C-reactive protein in children with bacterial infection. Pediatrics International. 1999; 41(5):496-499
- 685 Koyama K, Madoiwa S, Nunomiya S, Koinuma T, Wada M, Sakata A et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: A prospective observational study. Critical Care. 2014; 18(1)
- 686 Krediet T, Gerards L, Fleer A, van Stekelenburg G. The predictive value of CRP and I/T-ratio in neonatal infection. Journal of Perinatal Medicine. 1992; 20(6):479-485
- 687 Krediet TG, van Lelyveld N, Vijlbrief DC, Brouwers HA, Kramer WL, Fleer A et al. Microbiological factors associated with neonatal necrotizing enterocolitis: protective effect of early antibiotic treatment. Acta Paediatrica. 2003; 92(10):1180-1182
- 688 Krishna BV, Nadgir SD, Tallur SS. Immunoglobulin-M estimation and C-reactive protein detection in neonatal septicemia. Indian Journal of Pathology and Microbiology. 2000; 43(1):35-40
- 689 Krishna U, Joshi SP, Modh M. An evaluation of serial blood lactate measurement as an early predictor of shock and its outcome in patients of trauma or sepsis. Indian Journal of Critical Care Medicine. 2009; 13(2):66-73
- 690 Kumar A, Schupp E, Bunnell E, Ali A, Milcarek B, Parrillo JE. Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Critical Care. 2008; 12(2):R35
- 691 Kumar N, Thomas N, Singhal D, Puliyel JM, Sreenivas V. Triage score for severity of illness. Indian Pediatrics. 2003; 40(3):204-210

- Kumar R, Musoke R, Macharia WM, Revathi G. Validation of c-reactive protein in the early diagnosis of neonatal sepsis in a tertiary care hospital in Kenya. East African Medical Journal. 2010; 87(6):255-261
- 693 Kung CT, Su CM, Chang HW, Cheng HH, Hsiao SY, Tsai TC et al. Serum adhesion molecules as outcome predictors in adult severe sepsis patients requiring mechanical ventilation in the emergency department. Clinical Biochemistry. 2014; 47(15):38-43
- 694 Kung CT, Su CM, Chang HW, Cheng HH, Hsiao SY, Tsai TC et al. The prognostic value of leukocyte apoptosis in patients with severe sepsis at the emergency department. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2015; 438:364-369
- 695 Kushimoto S, Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K et al. Clinical course and outcome of disseminated intravascular coagulation diagnosed by Japanese Association for Acute Medicine criteria: Comparison between sepsis and trauma. Thrombosis and Haemostasis. 2008; 100(6):1099-1105
- 696 Kushimoto S, Shibata Y, Koido Y, Kawai M, Yokota H, Yamamoto Y. The clinical usefulness of procalcitonin measurement for assessing the severity of bacterial infection in critically ill patients requiring corticosteroid therapy. Journal of Nippon Medical School. 2007; 74(3):236-240
- 697 Kyr M, Fedora M, Elbl L, Kugan N, Michalek J. Modeling effect of the septic condition and trauma on C-reactive protein levels in children with sepsis: a retrospective study. Critical Care. 2007; 11(3):R70
- 698 Kyriacos U, Jelsma J, Jordan S. Monitoring vital signs using early warning scoring systems: a review of the literature. Journal of Nursing Management. 2011; 19(3):311-330
- 699 Laborada G, Rego M, Jain A, Guliano M, Stavola J, Ballabh P et al. Diagnostic value of cytokines and C-reactive protein in the first 24 hours of neonatal sepsis. American Journal of Perinatology. 2003; 20(8):491-501
- 700 Lacaze-Masmonteil T, Rosychuk RJ, Robinson JL. Value of a single C-reactive protein measurement at 18 h of age. Archives of Disease in Childhood Fetal and Neonatal Edition. 2014; 99(1):F76-F79
- 701 Laham JL, Breheny PJ, Gardner BM, Bada H. Procalcitonin to predict bacterial coinfection in infants with acute bronchiolitis: a preliminary analysis. Pediatric Emergency Care. 2014; 30(1):11-15
- 702 Lam HS, Ng PC. Biochemical markers of neonatal sepsis. Pathology. 2008; 40(2):141-148
- 703 Lam TS, Mak PSK, Siu WS, Lam MY, Cheung TF, Rainer TH. Validation of a Modified Early Warning Score (MEWS) in emergency department observation ward patients. Hong Kong Journal of Emergency Medicine. 2006; 13(1):24-30
- 704 Lampin ME, Rousseaux J, Botte A, Sadik A, Cremer R, Leclerc F. Noradrenaline use for septic shock in children: doses, routes of administration and complications. Acta Paediatrica. 2012; 101(9):e426-e430
- ⁷⁰⁵ Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. European Heart Journal. 2012; 33(7):895-903

- 706 Landesberg G, Levin PD, Gilon D, Goodman S, Georgieva M, Weissman C et al. Myocardial Dysfunction in Severe Sepsis and Septic Shock: No Correlation With Inflammatory Cytokines in Real-life Clinical Setting. Chest. 2015; 148(1):93-102
- 707 Lannergard A, Viberg A, Cars O, Karlsson MO, Sandstrom M, Larsson A. The time course of body temperature, serum amyloid A protein, C-reactive protein and interleukin-6 in patients with bacterial infection during the initial 3 days of antibiotic therapy. Scandinavian Journal of Infectious Diseases. 2009; 41(9):663-671
- 708 Larosa JA, Ahmad N, Feinberg M, Shah M, Dibrienza R, Studer S. The use of an early alert system to improve compliance with sepsis bundles and to assess impact on mortality. Critical Care Research and Practice. 2012; 2012:980369
- 709 Larsen GY, Mecham N, Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage. Pediatrics. 2011; 127(6):e1585-e1592
- 710 Laterre PF, Garber G, Levy H, Wunderink R, Kinasewitz GT, Sollet JP et al. Severe communityacquired pneumonia as a cause of severe sepsis: data from the PROWESS study. Critical Care Medicine. 2005; 33(5):952-961
- 711 Laupland KB, Zahar JR, Adrie C, Minet C, Vesin A, Goldgran-Toledano D et al. Severe hypothermia increases the risk for intensive care unit-acquired infection. Clinical Infectious Diseases. 2012; 54(8):1064-1070
- 712 Lavigne-Lissalde G, Lefrant J-Y, Jaber S, Castelli C, Constantin J-M, Albanes J et al. Prospective validation of clini-biological parameters including initial hemostasis, which improve the prediction of death at 1 month among patients with septic shock: Sepsicoag study. Journal of Thrombosis and Haemostasis. 2015; 13:766
- 713 Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993; 270(24):2957-2963
- 714 LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Critical Care Medicine. 2000; 28(8):2729-2732
- 715 Lee CC, Wu CJ, Chi CH, Lee NY, Chen PL, Lee HC et al. Prediction of community-onset bacteremia among febrile adults visiting an emergency department: rigor matters. Diagnostic Microbiology and Infectious Disease. 2012; 73(2):168-173
- 716 Lee KH, Hui KP, Lim TK, Tan WC. Acute physiology and chronic health evaluation (APACHE II) scoring in the Medical Intensive Care Unit, National University Hospital, Singapore. Singapore Medical Journal. 1993; 34(1):41-44
- 717 Lee SW, Hong YS, Park DW, Choi SH, Moon SW, Park JS et al. Lactic acidosis not hyperlactatemia as a predictor of in hospital mortality in septic emergency patients. Emergency Medicine Journal. 2008; 25(10):659-665
- 718 Lee SJ, Ramar K, Park JG, Gajic O, Li G, Kashyap R. Increased fluid administration in the first three hours of sepsis resuscitation is associated with reduced mortality: a retrospective cohort study. Chest. 2014; 146(4):908-915
- 719 Lefrant JY, Muller L, Raillard A, Jung B, Beaudroit L, Favier L et al. Reduction of the severe sepsis or septic shock associated mortality by reinforcement of the recommendations bundle: a multicenter study. Annales Francaises D'Anesthesie Et De Reanimation. 2010; 29(9):621-628

- 720 Leichtle SW, Kaoutzanis C, Brandt MM, Welch KB, Purtill MA. Tissue oxygen saturation for the risk stratification of septic patients. Journal of Critical Care. 2013; 28(6):1111-1115
- 721 Leli C, Cardaccia A, Ferranti M, Cesarini A, D'Alo F, Ferri C et al. Procalcitonin better than C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in predicting DNAemia in patients with sepsis. Scandinavian Journal of Infectious Diseases. 2014; 46(11):745-752
- 722 Levy B, Nace L, Bollaert PE, Dousset B, Mallie JP, Larcan A. Comparison of systemic and regional effects of dobutamine and dopexamine in norepinephrine-treated septic shock. Intensive Care Medicine. 1999; 25(9):942-948
- 723 Levy B, Dusang B, Annane D, Gibot S, Bollaert PE, College Interregional des Reanimateurs du Nord-Est. Cardiovascular response to dopamine and early prediction of outcome in septic shock: a prospective multiple-center study. Critical Care Medicine. 2005; 33(10):2172-2177
- 724 Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Critical Care Medicine. 2010; 38(2):367-374
- 725 Li L, Zhu Z, Chen J, Ouyang B, Chen M, Guan X. Diagnostic value of soluble triggering receptor expressed on myeloid cells-1 in critically-ill, postoperative patients with suspected sepsis. American Journal of the Medical Sciences. 2013; 345(3):178-184
- 726 Liaw YS, Yu CJ, Wu HD, Yang PC. Comparison of inflammatory cytokine concentration and physiologic parameters in septic shock. Journal of the Formosan Medical Association. 1997; 96(9):685-690
- 727 Lichtenstern C, Brenner T, Bardenheuer HJ, Weigand MA. Predictors of survival in sepsis: what is the best inflammatory marker to measure? Current Opinion in Infectious Diseases. 2012; 25(3):328-336
- 728 Lim WH, Lien R, Huang YC, Chiang MC, Fu RH, Chu SM et al. Prevalence and pathogen distribution of neonatal sepsis among very-low-birth-weight infants. Pediatrics and Neonatology. 2012; 53(4):228-234
- 729 Lin MY, Weinstein RA, Hota B. Delay of active antimicrobial therapy and mortality among patients with bacteremia: impact of severe neutropenia. Antimicrobial Agents and Chemotherapy. 2008; 52(9):3188-3194
- 730 Lin SM, Huang CD, Lin HC, Liu CY, Wang CH, Kuo HP. A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock (Augusta, Ga). 2006; 26(6):551-557
- 731 Lin S-M, Wang Y-M, Lin H-C, Lee K-Y, Huang C-D, Liu C-Y et al. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Critical Care Medicine. 2008; 36(3):683-689
- 732 Lin Y-C, Chen T-L, Ju H-L, Chen H-S, Wang F-D, Yu K-W et al. Clinical characteristics and risk factors for attributable mortality in Enterobacter cloacae bacteremia. Journal of Microbiology, Immunology and Infection. 2006; 39(1):67-72

- 733 Linder A, Akesson P, Inghammar M, Treutiger CJ, Linner A, Sunden-Cullberg J. Elevated plasma levels of heparin-binding protein in intensive care unit patients with severe sepsis and septic shock. Critical Care. 2012; 16(3):R90
- 734 Lissalde-Lavigne G, Combescure C, Muller L, Bengler C, Raillard A, Lefrant J-Y et al. Simple coagulation tests improve survival prediction in patients with septic shock. Journal of Thrombosis and Haemostasis. 2008; 6(4):645-653
- 735 Liu FY, Qin J, Wang RX, Fan XL, Wang J, Sun CY et al. A prospective validation of national early warning score in emergency intensive care unit patients at Beijing. Hong Kong Journal of Emergency Medicine. 2015; 22(3):137-144
- 736 Liu V, Morehouse JW, Soule J, Whippy A, Escobar GJ. Fluid volume, lactate values, and mortality in sepsis patients with intermediate lactate values. Annals of the American Thoracic Society. 2013; 10(5):466-473
- 737 Liu W, Peng L, Hua S. Clinical significance of dynamic monitoring of blood lactic acid, oxygenation index and C-reactive protein levels in patients with severe pneumonia. Experimental and Therapeutic Medicine. 2015; 10(5):1824-1828
- 738 Lobo RD, Levin AS, Oliveira MS, Gomes LMB, Gobara S, Park M et al. Evaluation of interventions to reduce catheter-associated bloodstream infection: continuous tailored education versus one basic lecture. American Journal of Infection Control. 2010; 38(6):440-448
- 739 Lobo RD, Levin AS, Gomes LMB, Cursino R, Park M, Figueiredo VB et al. Impact of an educational program and policy changes on decreasing catheter-associated bloodstream infections in a medical intensive care unit in Brazil. American Journal of Infection Control. 2005; 33(2):83-87
- 740 Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clinical Infectious Diseases. 2003; 36(11):1418-1423
- 741 Lodise TP, Jr., Patel N, Kwa A, Graves J, Furuno JP, Graffunder E et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrobial Agents and Chemotherapy. 2007; 51(10):3510-3515
- 742 Lorente L, Martin MM, Abreu-Gonzalez P, de la Cruz T, Ferreres J, Sole-Violan J et al. Serum melatonin levels are associated with mortality in severe septic patients. Journal of Critical Care. 2015; 30(4):860-866
- 743 Lorente L, Martin MM, Abreu-Gonzalez P, Dominguez-Rodriguez A, Labarta L, Diaz C et al. Sustained high serum malondialdehyde levels are associated with severity and mortality in septic patients. Critical Care. 2013; 17(6):R290
- 744 Lorente L, Martin MM, Borreguero-Leon JM, Sole-Violan J, Ferreres J, Labarta L et al. Sustained high plasma plasminogen activator inhibitor-1 levels are associated with severity and mortality in septic patients. Thrombosis Research. 2014; 134(1):182-186
- 745 Lorente L, Martin MM, Sole-Violan J, Blanquer J, Labarta L, Diaz C et al. Association of sepsisrelated mortality with early increase of TIMP-1/MMP-9 ratio. PloS One. 2014; 9(4):e94318

- 746 Ludikhuize J, Borgert M, Binnekade J, Subbe C, Dongelmans D, Goossens A. Standardized measurement of the Modified Early Warning Score results in enhanced implementation of a Rapid Response System: a quasi-experimental study. Resuscitation. 2014; 85(5):676-682
- 747 Ludikhuize J, Smorenburg SM, de Rooij SE, de Jonge E. Identification of deteriorating patients on general wards; measurement of vital parameters and potential effectiveness of the Modified Early Warning Score. Journal of Critical Care. 2012; 27(4):424-13
- 748 Lupei MI, Beilman GJ, Chipman JG, Mann HJ. Changes in vasopressin use and outcomes in surgical intensive care unit patients with septic shock. Chirurgia. 2009; 104(5):575-581
- 749 Luz Fiusa MM, Costa-Lima C, de Souza GR, Vigorito AC, Penteado Aranha FJ, Lorand-Metze I et al. A high angiopoietin-2/angiopoietin-1 ratio is associated with a high risk of septic shock in patients with febrile neutropenia. Critical Care. 2013; 17(4):R169
- 750 Lyle N, Boyd J. The potential for PCR based testing to improve diagnosis and treatment of sepsis. Current Infectious Disease Reports. 2013; 15(5):372-379
- 751 Ma P-L, Peng X-X, Du B, Hu X-L, Gong Y-C, Wang Y et al. Sources of heterogeneity in trials reporting hydroxyethyl starch 130/0.4 or 0.42 associated excess mortality in septic patients: A systematic review and meta-regression. Chinese Medical Journal. 2015; 128(17):2374-2382
- 752 MacArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Teoh L et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clinical Infectious Diseases. 2004; 38(2):284-288
- 753 MacKay GJ, Molloy RG, O'Dwyer PJ. C-reactive protein as a predictor of postoperative infective complications following elective colorectal resection. Colorectal Disease. 2011; 13(5):583-587
- 754 Mackintosh N, Rainey H, Sandall J. Understanding how rapid response systems may improve safety for the acutely ill patient: learning from the frontline. BMJ Quality and Safety. 2012; 21(2):135-144
- 755 MacRedmond R, Hollohan K, Stenstrom R, Nebre R, Jaswal D, Dodek P. Introduction of a comprehensive management protocol for severe sepsis is associated with sustained improvements in timeliness of care and survival. Quality and Safety in Health Care. 2010; 19(5):e46
- 756 Madoiwa S, Nunomiya S, Ono T, Shintani Y, Ohmori T, Mimuro J et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. International Journal of Hematology. 2006; 84(5):398-405
- 757 Magudumana MO, Ballot DE, Cooper PA, Trusler J, Cory BJ, Viljoen E et al. Serial interleukin 6 measurements in the early diagnosis of neonatal sepsis. Journal of Tropical Pediatrics. 2000; 46(5):267-271
- 758 Mahavanakul W, Nickerson EK, Srisomang P, Teparrukkul P, Lorvinitnun P, Wongyingsinn M et al. Feasibility of modified surviving sepsis campaign guidelines in a resource-restricted setting based on a cohort study of severe S. aureus sepsis [corrected]. PloS One. 2012; 7(2):e29858
- 759 Maher ER, Robinson KN, Scoble JE, Farrimond JG, Browne DR, Sweny P et al. Prognosis of critically-ill patients with acute renal failure: APACHE II score and other predictive factors. Quarterly Journal of Medicine. 1989; 72(269):857-866

- 760 Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO et al. Mortality after fluid bolus in African children with severe infection. New England Journal of Medicine. 2011; 364(26):2483-2495
- 761 Malbrain MLNG, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiology Intensive Therapy. 2014; 46(5):361-380
- 762 Malik A, Hui CPS, Pennie RA, Kirpalani H. Beyond the complete blood cell count and C-reactive protein: a systematic review of modern diagnostic tests for neonatal sepsis. Archives of Pediatrics and Adolescent Medicine. 2003; 157(6):511-516
- 763 Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L et al. Central venous-toarterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. European Journal of Anaesthesiology. 2014; 31(7):371-380
- 764 Mandell IM, Bynum F, Marshall L, Bart R, Gold JI, Rubin S. Pediatric Early Warning Score and unplanned readmission to the pediatric intensive care unit. Journal of Critical Care. 2015; 30(5):1090-1095
- 765 Mann-Salinas EA, Baun MM, Meininger JC, Murray CK, Aden JK, Wolf SE et al. Novel predictors of sepsis outperform the American Burn Association sepsis criteria in the burn intensive care unit patient. Journal of Burn Care and Research. 2013; 34(1):31-43
- 766 Mann-Salinas LE, Engebretson J, Batchinsky AI. A complex systems view of sepsis: implications for nursing. Dimensions of Critical Care Nursing. 2013; 32(1):12-17
- 767 Mannan MA, Shahidullah M, Noor MK, Islam F, Alo D, Begum NA. Utility of C-reactive protein and hematological parameters in the detection of neonatal sepsis. Mymensingh Medical Journal. 2010; 19(2):259-263
- 768 Manucha V, Rusia U, Sikka M, Faridi MMA, Madan N. Utility of haematological parameters and C-reactive protein in the detection of neonatal sepsis. Journal of Paediatrics and Child Health. 2002; 38(5):459-464
- 769 Manzano S, Bailey B, Girodias JB, Galetto-Lacour A, Cousineau J, Delvin E. Impact of procalcitonin on the management of children aged 1 to 36 months presenting with fever without source: a randomized controlled trial. American Journal of Emergency Medicine. 2010; 28(6):647-653
- 770 Manzon C, Barrot L, Besch G, Barbot O, Desmettre T, Capellier G et al. Capillary lactate as a tool for the triage nurse among patients with SIRS at emergency department presentation: a preliminary report. Annals of Intensive Care. 2015; 5:7
- 771 Marecaux G, Pinsky MR, Dupont E, Kahn RJ, Vincent JL. Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Medicine. 1996; 22(5):404-408
- 772 Mariano F, Cantaluppi V, Stella M, Romanazzi GM, Assenzio B, Cairo M et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Critical Care. 2008; 12(2):R42
- 773 Mark DG, Morehouse JW, Hung YY, Kene MV, Elms AR, Liu V et al. In-hospital mortality following treatment with red blood cell transfusion or inotropic therapy during early goal-

directed therapy for septic shock: a retrospective propensity-adjusted analysis. Critical Care. 2014; 18(5):496

- 774 Marra AR, Bearman GML, Wenzel RP, Edmond MB. Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa. BMC Infectious Diseases. 2006; 6
- 775 Marshall JC. The surviving sepsis campaign. Surgical Infections. 2009; 10(2):187
- 776 Marshall JC. The PIRO (predisposition, insult, response, organ dysfunction) model: toward a staging system for acute illness. Virulence. 2014; 5(1):27-35
- 777 Martensson J, Bell M, Oldner A, Xu S, Venge P, Martling C-R. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Medicine. 2010; 36(8):1333-1340
- 778 Martensson J, Martling CR, Oldner A, Bell M. Impact of sepsis on levels of plasma cystatin C in AKI and non-AKI patients. Nephrology, Dialysis, Transplantation. 2012; 27(2):576-581
- 779 Martin C, Viviand X, Leone M, Thirion X. Effect of norepinephrine on the outcome of septic shock. Critical Care Medicine. 2000; 28(8):2758-2765
- 780 Martinez-Albarran M, Perez-Molina JdJ, Gallegos-Castorena S, Sanchez-Zubieta F, Del Toro-Arreola S, Troyo-Sanroman R et al. Procalcitonin and C-reactive protein serum levels as markers of infection in a pediatric population with febrile neutropenia and cancer. Pediatric Hematology and Oncology. 2009; 26(6):414-425
- 781 Marzouk O, Bestwick K, Thomson AP, Sills JA, Hart CA. Variation in serum C-reactive protein across the clinical spectrum of meningococcal disease. Acta Paediatrica. 1993; 82(9):729-733
- 782 Massion PB, Peters P, LeDoux D, Zimermann V, Canivet J-L, Massion PP et al. Persistent hypocoagulability in patients with septic shock predicts greater hospital mortality: Impact of impaired thrombin generation. Intensive Care Medicine. 2012; 38(8):1326-1335
- 783 Mathers NJ, Pohlandt F. Diagnostic audit of C-reactive protein in neonatal infection. European Journal of Pediatrics. 1987; 146(2):147-151
- 784 Mato AR, Luger SM, Heitjan DF, Mikkelsen ME, Olson E, Ujjani C et al. Elevation in serum lactate at the time of febrile neutropenia (FN) in hemodynamically-stable patients with hematologic malignancies (HM) is associated with the development of septic shock within 48 hours. Cancer Biology and Therapy. 2010; 9(8):585-589
- 785 Matok I, Vard A, Efrati O, Rubinshtein M, Vishne T, Leibovitch L et al. Terlipressin as rescue therapy for intractable hypotension due to septic shock in children. Shock. 2005; 23(4):305-310
- 786 Matsumura Y, Nakada Ta, Abe R, Oshima T, Oda S. Serum procalcitonin level and SOFA score at discharge from the intensive care unit predict post-intensive care unit mortality: a prospective study. PloS One. 2014; 9(12):e114007
- 787 Matuschak GM. Supranormal oxygen delivery in critical illness. New Horizons. 1997; 5(3):233 238
- 788 Mazul-Sunko B, Zarkovic N, Vrkic N, Antoljak N, Bekavac Beslin M, Nikolic Heitzler V et al. Proatrial natriuretic peptide (1-98), but not cystatin C, is predictive for occurrence of acute

renal insufficiency in critically ill septic patients. Nephron Clinical Practice. 2004; 97(3):c103-c107

- 789 Mazur LJ, Kozinetz CA. Diagnostic tests for occult bacteremia: temperature response to acetaminophen versus WBC count. American Journal of Emergency Medicine. 1994; 12(4):403-406
- 790 McGaughey J, Blackwood B, O'Halloran P, Trinder TJ, Porter S. Realistic Evaluation of Early Warning Systems and the Acute Life-threatening Events--Recognition and Treatment training course for early recognition and management of deteriorating ward-based patients: research protocol. Journal of Advanced Nursing. 2010; 66(4):923-932
- 791 McGillicuddy DC, Tang A, Cataldo L, Gusev J, Shapiro NI. Evaluation of end-tidal carbon dioxide role in predicting elevated SOFA scores and lactic acidosis. Internal and Emergency Medicine. 2009; 4(1):41-44
- 792 McKenzie MS, Howell MD. Using lactate to detect occult hypoperfusion in sepsis. International Journal of Intensive Care. 2009; 16(1):12-15
- 793 McKinley BA, Moore LJ, Sucher JF, Todd SR, Turner KL, Valdivia A et al. Computer protocol facilitates evidence-based care of sepsis in the surgical intensive care unit. Journal of Trauma. 2011; 70(5):1153-1157
- 794 McNally SJ, MacKinnon M, Hawkins M. Practical barriers to the implementation of early goal directed therapy in the UK: trainee skills and awareness. Scottish Medical Journal. 2009; 54(3):22-24
- 795 Meehan TP, Fine MJ, Krumholz HM, Scinto JD, Galusha DH, Mockalis JT et al. Quality of care, process, and outcomes in elderly patients with pneumonia. JAMA. 1997; 278(23):2080-2084
- 796 Mei YQ, Ji Q, Liu H, Wang X, Feng J, Long C et al. Study on the relationship of APACHE III and levels of cytokines in patients with systemic inflammatory response syndrome after coronary artery bypass grafting. Biological and Pharmaceutical Bulletin. 2007; 30(3):410-414
- 797 Meidani M, Khorvash F, Abolghasemi H, Jamali B. Procalcitonin and quantitative C-reactive protein role in the early diagnosis of sepsis in patients with febrile neutropenia. South Asian Journal of Cancer. 2013; 2(4):216-219
- 798 Meisner M, Tschaikowsky K, Hutzler A, Harig F, Von der EJ. Postoperative plasma concentrations of procalcitonin and C-reactive protein in patients undergoing cardiac and thoracic surgery with and without cardiopulmonary bypass. Cardiovascular Engineering. 1998; 3(3-4):174-178
- 799 Mencacci A, Leli C, Cardaccia A, Meucci M, Moretti A, D'Alo F et al. Procalcitonin predicts realtime PCR results in blood samples from patients with suspected sepsis. PloS One. 2012; 7(12):e53279
- 800 Menon MS, Marwah S, Mehta M, Dipak AD. Diagnostic accuracy of c-reactive protein in immunocompromised patients with sepsis in intensive care units. National Journal of Physiology, Pharmacy and Pharmacology. 2015; 5(3):166-169
- 801 Mesquida J, Espinal C, Gruartmoner G, Masip J, Sabatier C, Baigorri F et al. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Medicine. 2012; 38(4):592-597

- 802 Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F et al. Central venous-toarterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Critical Care. 2015; 19(1):126
- 803 Metsvaht T, Pisarev H, Ilmoja ML, Parm U, Maipuu L, Merila M et al. Clinical parameters predicting failure of empirical antibacterial therapy in early onset neonatal sepsis, identified by classification and regression tree analysis. BMC Pediatrics. 2009; 9:72
- 804 Meyer J, Fritz Z, Burton H, Ward C, Simpson A, Ahmed V. Towards 'sepsis with optimal treatment': evaluating the sepsis care pathway in acute medicine and identifying scope for systems improvement. Acute Medicine. 2013; 12(1):5-12
- 805 Micek ST, Shah P, Hollands JM, Shah RA, Shannon WD, Kollef MH. Addition of vasopressin to norepinephrine as independent predictor of mortality in patients with refractory septic shock: an observational study. Surgical Infections. 2007; 8(2):189-200
- 806 Miguel-Bayarri V, Casanoves-Laparra EB, Pallas-Beneyto L, Sancho-Chinesta S, Martin-Osorio LF, Tormo-Calandin C et al. Prognostic value of the biomarkers procalcitonin, interleukin-6 and C-reactive protein in severe sepsis. Medicina Intensiva. 2012; 36(8):556-562
- 807 Mikkelsen ME, Miltiades AN, Gaieski DF, Goyal M, Fuchs BD, Shah CV et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Critical Care Medicine. 2009; 37(5):1670-1677
- 808 Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock. 2013; 40(5):375-381
- 809 Miller RR, Dong L, Nelson NC, Brown SM, Kuttler KG, Probst DR et al. Multicenter implementation of a severe sepsis and septic shock treatment bundle. American Journal of Respiratory and Critical Care Medicine. 2013; 188(1):77-82
- 810 Mimoz O, Benoist JF, Edouard AR, Assicot M, Bohuon C, Samii K. Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Medicine. 1998; 24(2):185-188
- 811 Mintegi S, Benito J, Sanchez J, Azkunaga B, Iturralde I, Garcia S. Predictors of occult bacteremia in young febrile children in the era of heptavalent pneumococcal conjugated vaccine. European Journal of Emergency Medicine. 2009; 16(4):199-205
- 812 Mistry RD, Wedin T, Balamuth F, McGowan KL, Ellison AM, Nelson KA et al. Emergency department epidemiology of pneumococcal bacteremia in children since the institution of widespread PCV7 vaccination. Journal of Emergency Medicine. 2013; 45(6):813-820
- 813 Mitra AK, Albert MJ, Alam AN. Bacteraemia and meningitis among hospital patients with diarrhoea. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1993; 87(5):560-563
- 814 Mobin UR, Shaikh I, Bazai SU, Shaheen A. Frequency and susceptibility of organisms causing neonatal sepsis. Pakistan Journal of Medical and Health Sciences. 2012; 6(4):976-978

- 815 Mohan A, Shrestha P, Guleria R, Pandey RM, Wig N. Development of a mortality prediction formula due to sepsis/severe sepsis in a medical intensive care unit. Lung India. 2015; 32(4):313-319
- Mok K, Christian MD, Nelson S, Burry L. Time to Administration of Antibiotics among Inpatients with Severe Sepsis or Septic Shock. Canadian Journal of Hospital Pharmacy. 2014; 67(3):213-219
- 817 Monette J, Miller MA, Monette M, Laurier C, Boivin JF, Sourial N et al. Effect of an educational intervention on optimizing antibiotic prescribing in long-term care facilities. Journal of the American Geriatrics Society. 2007; 55(8):1231-1235
- 818 Montiel-Jarquin A, Lascarez-Lagunas I, Sanchez-Gasca C, Lascarez-Lagunas L, Garcia-Cano E, Gomez-Conde E et al. Lactate clearance is a prognostic factor in patients on shock state. European Journal of General Medicine. 2012; 9(2):98-103
- 819 Moon KT. What is the best vasopressor for the treatment of shock? American Family Physician. 2010; 82(11):1395
- 820 Moore LJ, Jones SL, Kreiner LA, McKinley B, Sucher JF, Todd SR et al. Validation of a screening tool for the early identification of sepsis. Journal of Trauma. 2009; 66(6):1539-7
- 821 Morelli A, Ertmer C, Lange M, Broeking K, Orecchioni A, Rocco M. Effects of simultaneously infused terlipressin and dobutamine in septic shock. Critical Care. 2007; 11(Suppl 2):33
- 822 Morelli A, Ertmer C, Lange M, Dünser M, Rehberg S, Aken H et al. Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: the DOBUPRESS study. British Journal of Anaesthesia. 2008; 100(4):494-503
- 823 Moreno R, Vincent JL, Matos R, Mendonca A, Cantraine F, Thijs L et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Medicine. 1999; 25(7):686-696
- 824 Morimatsu H, Singh K, Uchino S, Bellomo R, Hart G. Early and exclusive use of norepinephrine in septic shock. Resuscitation. 2004; 62(2):249-254
- 825 Moseson EM, Zhuo H, Chu J, Stein JC, Matthay MA, Kangelaris KN et al. Intensive care unit scoring systems outperform emergency department scoring systems for mortality prediction in critically ill patients: a prospective cohort study. Journal of Intensive Care. 2014; 2:40
- 826 Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD et al. Trial of early, goal-directed resuscitation for septic shock. New England Journal of Medicine. 2015; 372(14):1301-1311
- 827 Muller B, Becker KL, Schachinger H, Rickenbacher PR, Huber PR, Zimmerli W et al. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Critical Care Medicine. 2000; 28(4):977-983
- 828 Muller MC, Meijers JCM, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: A systematic review. Critical Care. 2014; 18(1)
- 829 Muller RB, Haase N, Lange T, Wetterslev J, Perner A. Acute kidney injury with hydroxyethyl starch 130/0.42 in severe sepsis. Acta Anaesthesiologica Scandinavica. 2015; 59(3):329-336

- 830 Mullner M, Urbanek B, Havel C, Losert H, Waechter F, Gamper G. Vasopressors for shock. Cochrane Database of Systematic Reviews. 2004;(3):CD003709
- 831 Munoz P, Simarro N, Rivera M, Alonso R, Alcala L, Bouza E. Evaluation of procalcitonin as a marker of infection in a nonselected sample of febrile hospitalized patients. Diagnostic Microbiology and Infectious Disease. 2004; 49(4):237-241
- 832 Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009; 136(1):102-109
- 833 Murphy K, Weiner J. Use of leukocyte counts in evaluation of early-onset neonatal sepsis. Pediatric Infectious Disease Journal. 2012; 31(1):16-19
- 834 Musikatavorn K, Thepnimitra S, Komindr A, Puttaphaisan P, Rojanasarntikul D. Venous lactate in predicting the need for intensive care unit and mortality among nonelderly sepsis patients with stable hemodynamic. American Journal of Emergency Medicine. 2015; 33(7):925-930
- 835 Mustafa S, Farooqui S, Waheed S, Mahmood K. Evaluation of C-reactive protein as early indicator of blood culture positivity in neonates. Pakistan Journal of Medical Sciences. 2005; 21(1):69-73
- 836 Mustard J, Bohnen JMA, Haseeb S, Kasina R. C-reactive protein levels predict postoperative septic complications. Archives of Surgery. 1987; 122(1):69-73
- Naher BS, Mannan MA, Noor K, Shahiddullah M. Role of serum procalcitonin and C-reactive protein in the diagnosis of neonatal sepsis. Bangladesh Medical Research Council Bulletin. 2011; 37(2):40-46
- 838 Nanda SK, Suresh DR. Plasma lactate as prognostic marker of septic shock with acute respiratory distress syndrome. Indian Journal of Clinical Biochemistry. 2009; 24(4):433-435
- Nassau J. Managing patients with sepsis in the general ward environment. Professional Nurse.
 2003; 18(11):618-620
- 840 Natarajan G, Monday L, Scheer T, Lulic-Botica M. Timely empiric antimicrobials are associated with faster microbiologic clearance in preterm neonates with late-onset bloodstream infections. Acta Paediatrica. 2014; 103(10):e418-e423
- 841 Naved SA, Siddiqui S, Khan FH. APACHE-II score correlation with mortality and length of stay in an intensive care unit. Journal of the College of Physicians and Surgeons Pakistan. 2011; 21(1):4
- 842 Neely AN, Smith WL, Warden GD. Efficacy of a rise in C-reactive protein serum levels as an early indicator of sepsis in burned children. Journal of Burn Care and Rehabilitation. 1998; 19(2):102-105
- 843 Neely AN, Fowler LA, Kagan RJ, Warden GD. Procalcitonin in pediatric burn patients: an early indicator of sepsis? Journal of Burn Care and Rehabilitation. 2004; 25(1):76-80
- 844 Nejat M, Pickering JW, Walker RJ, Westhuyzen J, Shaw GM, Frampton CM et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Critical Care. 2010; 14(3):R85
- 845 Nelson JL, Smith BL, Jared JD, Younger JG. Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis. Annals of Emergency Medicine. 2011; 57(5):500-504

- 846 Ng PC. Diagnostic markers of infection in neonates. Archives of Disease in Childhood Fetal and Neonatal Edition. 2004; 89(3):F229-F235
- 847 Ng PC, Lam HS. Diagnostic markers for neonatal sepsis. Current Opinion in Pediatrics. 2006; 18(2):125-131
- 848 Nguyen HB, Oh J, Otero RM, Burroughs K, Wittlake WA, Corbett SW. Standardization of severe sepsis management: a survey of methodologies in academic and community settings. Journal of Emergency Medicine. 2010; 38(2):122-30, quiz
- 849 Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S et al. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Annals of Emergency Medicine. 2006; 48(1):28-54
- 850 Nguyen HB, Corbett SW, Steele R, Banta J, Clark RT, Hayes SR et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Critical Care Medicine. 2007; 35(4):1105-1112
- 851 Nguyen HB, Daniel-Underwood L, Van Ginkel C, Wong M, Lee D, Lucas AS et al. An educational course including medical simulation for early goal-directed therapy and the severe sepsis resuscitation bundle: an evaluation for medical student training. Resuscitation. 2009; 80(6):674-679
- 852 Nguyen HB, Kuan WS, Batech M, Shrikhande P, Mahadevan M, Li CH et al. Outcome effectiveness of the severe sepsis resuscitation bundle with addition of lactate clearance as a bundle item: a multi-national evaluation. Critical Care. 2011; 15(5):R229
- 853 Nguyen HB, Loomba M, Yang JJ, Jacobsen G, Shah K, Otero RM et al. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock. Journal of Inflammation. 2010; 7:6
- 854 Nguyen SQ, Mwakalindile E, Booth JS, Hogan V, Morgan J, Prickett CT et al. Automated electronic medical record sepsis detection in the emergency department. PeerJ. 2014; 2:e343
- Nickerson EK, Wuthiekanun V, Wongsuvan G, Limmathurosakul D, Srisamang P, Mahavanakul W et al. Factors predicting and reducing mortality in patients with invasive Staphylococcus aureus disease in a developing country. PLoS ONE [Electronic Resource]. 2009; 4(8):e6512
- 856 Nie X, Wu B, He Y, Huang X, Dai Z, Miao Q et al. Serum procalcitonin predicts development of acute kidney injury in patients with suspected infection. Clinical Chemistry and Laboratory Medicine. 2013; 51(8):1655-1661
- 857 Nijman RG, Vergouwe Y, Thompson M, van VM, van Meurs AH, van der Lei J et al. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: diagnostic study. BMJ (Clinical Research Ed). 2013; 346:f1706
- 858 Nijman RG, Zwinkels RLJ, van Veen M, Steyerberg EW, van der Lei J, Moll HA et al. Can urgency classification of the Manchester triage system predict serious bacterial infections in febrile children? Archives of Disease in Childhood. 2011; 96(8):715-722
- 859 Nimri LF, Rawashdeh M, Meqdam MM. Bacteremia in children: etiologic agents, focal sites, and risk factors. Journal of Tropical Pediatrics. 2001; 47(6):356-360

- 860 Noritomi DT, Ranzani OT, Monteiro MB, Ferreira EM, Santos SR, Leibel F et al. Implementation of a multifaceted sepsis education program in an emerging country setting: clinical outcomes and cost-effectiveness in a long-term follow-up study. Intensive Care Medicine. 2014; 40(2):182-191
- 861 Nunes TSO, Ladeira RT, Bafi AT, de Azevedo LCP, Machado FR, Freitas FGR. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation. Annals of Intensive Care. 2014; 4:25
- 862 Nuntnarumit P, Pinkaew O, Kitiwanwanich S. Predictive values of serial C-reactive protein in neonatal sepsis. Journal of the Medical Association of Thailand. 2002; 85 Suppl 4:S1151-S1158
- 863 Nurnberger W, Kries R, Bohm O, Gobel U. Systemic meningococcal infection: which children may benefit from adjuvant haemostatic therapy? Results from an observational study. European Journal of Pediatrics. 1999; 158 Suppl 3:S192-S196
- 864 O'Leary F, Hayen A, Lockie F, Peat J. Defining normal ranges and centiles for heart and respiratory rates in infants and children: a cross-sectional study of patients attending an Australian tertiary hospital paediatric emergency department. Archives of Disease in Childhood. 2015;
- 865 O'Neill R, Morales J, Jule M. Early goal-directed therapy (EGDT) for severe sepsis/septic shock: which components of treatment are more difficult to implement in a community-based emergency department? Journal of Emergency Medicine. 2012; 42(5):503-510
- Oba Y, Lone NA. Mortality benefit of vasopressor and inotropic agents in septic shock: a
 Bayesian network meta-analysis of randomized controlled trials. Journal of Critical Care. 2014;
 29(5):706-710
- 867 Oberhoffer M, Karzai W, Meier-Hellmann A, Bogel D, Fassbinder J, Reinhart K. Sensitivity and specificity of various markers of inflammation for the prediction of tumor necrosis factor-alpha and interleukin-6 in patients with sepsis. Critical Care Medicine. 1999; 27(9):1814-1818
- 868 Obritsch MD, Jung R, Fish DN, MacLaren R. Effects of continuous vasopressin infusion in patients with septic shock. Annals of Pharmacotherapy. 2004; 38(7-8):1117-1122
- 869 Oda S, Hirasawa H, Sugai T, Shiga H, Nakanishi K, Kitamura N et al. Comparison of Sepsisrelated Organ Failure Assessment (SOFA) score and CIS (cellular injury score) for scoring of severity for patients with multiple organ dysfunction syndrome (MODS). Intensive Care Medicine. 2000; 26(12):1786-1793
- 870 Oermann MH, McInerney SM. An evaluation of sepsis Web sites for patient and family education. Plastic Surgical Nursing. 2007; 27(4):192-196
- 871 Ogura H, Gando S, Saitoh D, Takeyama N, Kushimoto S, Fujishima S et al. Epidemiology of severe sepsis in Japanese intensive care units: A prospective multicenter study. Journal of Infection and Chemotherapy. 2014; 20(3):157-162
- 872 Oh D, Jang MJ, Lee SJ, Chong SY, Kang MS, Wada H. Evaluation of modified non-overt DIC criteria on the prediction of poor outcome in patients with sepsis. Thrombosis Research. 2010; 126(1):18-23

- 873 Okabayashi K, Wada H, Ohta S, Shiku H, Nobori T, Maruyama K. Hemostatic markers and the sepsis-related organ failure assessment score in patients with disseminated intravascular coagulation in an intensive care unit. American Journal of Hematology. 2004; 76(3):225-229
- 874 Oldroyd C, Day A. The use of pediatric early warning scores in the emergency department. Journal of Emergency Nursing: JEN. 2011; 37(4):374-424
- 875 Oliveira CF, Botoni FA, Oliveira CRA, Silva CB, Pereira HA, Serufo JC et al. Procalcitonin versus Creactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Critical Care Medicine. 2013; 41(10):2336-2343
- Oliveira NS, Silva VR, Castelo JS, Elias-Neto J, Pereira FEL, Carvalho WB. Serum level of cardiac troponin I in pediatric patients with sepsis or septic shock. Pediatric Critical Care Medicine. 2008; 9(4):414-417
- 877 Onder AM, Chandar J, Billings AA, Simon N, Diaz R, Francoeur D et al. Comparison of early versus late use of antibiotic locks in the treatment of catheter-related bacteremia. Clinical Journal of American Society of Nephrology: CJASN. 2008; 3(4):1048-1056
- Oostenbrink R, Thompson M, Steyerberg EW. Barriers to translating diagnostic research in febrile children to clinical practice: a systematic review. Archives of Disease in Childhood. 2012; 97(7):667-672
- 879 Opal SM, Dellinger RP, Vincent JL, Masur H, Angus DC. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C?*. Critical Care Medicine. 2014; 42(7):1714-1721
- 880 Opiyo N, Molyneux E, Sinclair D, Garner P, English M. Immediate fluid management of children with severe febrile illness and signs of impaired circulation in low-income settings: a contextualised systematic review. BMJ Open. 2014; 4(4):e004934
- 881 Orbegozo Cortes D, Santacruz C, Donadello K, Nobile L, Taccone FS. Colloids for fluid resuscitation: what is their role in patients with shock? Minerva Anestesiologica. 2014; 80(8):963-969
- 882 Organisation for Economic Co-operation and Development (OECD). Purchasing power parities (PPP). 2015. Available from: http://www.oecd.org/std/ppp [Last accessed: 10 November 2015]
- 883 Orji EO, Fatusi AA, Makinde NO, Adeyemi BA, Onwudiegwu U. Impact of training on the use of partograph on maternal and perinatal outcome in peripheral health centers. Journal of the Turkish German Gynecology Association. 2007; 8(2):148-152
- 884 Ortqvist A, Hedlund J, Wretlind B, Carlstrom A, Kalin M. Diagnostic and prognostic value of Interleukin-6 and C-reactive protein in community-acquired pneumonia. Scandinavian Journal of Infectious Diseases. 1995; 27(5):457-462
- 885 Ostrowski SR, Windelov NA, Ibsen M, Haase N, Perner A, Johansson PI. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: A prospective study. Journal of Critical Care. 2013; 28(3):317
- 886 Ottestad E, Boulet JR, Lighthall GK. Evaluating the management of septic shock using patient simulation. Critical Care Medicine. 2007; 35(3):769-775

- 887 Ouellette DR, Shah SZ. Comparison of outcomes from sepsis between patients with and without pre-existing left ventricular dysfunction: a case-control analysis. Critical Care. 2014; 18(2):R79
- 888 Ozalay M, Ozkoc G, Akpinar S, Hersekli MA, Tandogan RN. Necrotizing soft-tissue infection of a limb: clinical presentation and factors related to mortality. Foot and Ankle International. 2006; 27(8):598-605
- Pandey NR, Bian YY, Shou ST. Significance of blood pressure variability in patients with sepsis.
 World Journal of Emergency Medicine. 2014; 5(1):42-47
- 890 Papaioannou VE, Chouvarda IG, Maglaveras NK, Pneumatikos IA. Temperature variability analysis using wavelets and multiscale entropy in patients with systemic inflammatory response syndrome, sepsis, and septic shock. Critical Care. 2012; 16(2)
- 891 Parish B, Cooksley T, Haji-Michael P. Effectiveness of early antibiotic administration in septic patients with cancer. Acute Medicine. 2013; 12(4):196-200
- 892 Park BH, Kang YA, Park MS, Jung WJ, Lee SH, Lee SK et al. Delta neutrophil index as an early marker of disease severity in critically ill patients with sepsis. BMC Infectious Diseases. 2011; 11
- 893 Park DW, Kwak DS, Park YY, Chang Y, Huh JW, Lim CM et al. Impact of serial measurements of lysophosphatidylcholine on 28-day mortality prediction in patients admitted to the intensive care unit with severe sepsis or septic shock. Journal of Critical Care. 2014; 29(5):882-11
- 894 Park JH, Choi SH, Chung JW. The impact of early adequate antimicrobial therapy on 14-day mortality in patients with monomicrobial Pseudomonas aeruginosa and Acinetobacter baumannii bacteremia. Journal of Infection and Chemotherapy. 2013; 19(5):843-849
- 895 Park JH, Lee J, Park YS, Lee CH, Lee SM, Yim JJ et al. Prognostic value of central venous oxygen saturation and blood lactate levels measured simultaneously in the same patients with severe systemic inflammatory response syndrome and severe sepsis. Lung. 2014; 192(3):435-440
- 896 Park KJ, Kim HJ, Hwang SC, Lee SM, Lee YH, Hahn MH et al. The imbalance between coagulation and fibrinolysis is related to the severity of the illness and the prognosis in sepsis. Korean Journal of Internal Medicine. 1999; 14(2):72-77
- Parshuram CS, Bayliss A, Reimer J, Middaugh K, Blanchard N. Implementing the Bedside
 Paediatric Early Warning System in a community hospital: A prospective observational study.
 Paediatrics and Child Health. 2011; 16(3):e18-e22
- 898 Parshuram CS, Duncan HP, Joffe AR, Farrell CA, Lacroix JR, Middaugh KL et al. Multicentre validation of the bedside paediatric early warning system score: a severity of illness score to detect evolving critical illness in hospitalised children. Critical Care. 2011; 15(4):R184
- 899 Parsons EC, Hough CL, Seymour CW, Cooke CR, Rubenfeld GD, Watkins TR et al. Red blood cell transfusion and outcomes in patients with acute lung injury, sepsis and shock. Critical Care. 2011; 15(5):R221
- 900 Patel A, Waheed U, Brett SJ. Randomised trials of 6 % tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: Systematic review and meta-analysis. Intensive Care Medicine. 2013; 39(5):811-822

- 901 Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002; 96(3):576-582
- 902 Patterson C, Maclean F, Bell C, Mukherjee E, Bryan L, Woodcock T et al. Early warning systems in the UK: variation in content and implementation strategy has implications for a NHS early warning system. Clinical Medicine. 2011; 11(5):424-427
- 903 Paul M, Andreassen S, Nielsen AD, Tacconelli E, Almanasreh N, Fraser A et al. Prediction of bacteremia using TREAT, a computerized decision-support system. Clinical Infectious Diseases. 2006; 42(9):1274-1282
- 904 Paul M, Kariv G, Goldberg E, Raskin M, Shaked H, Hazzan R et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Antimicrobial Chemotherapy. 2010; 65(12):2658-2665
- 905 Paul M, Nielsen AD, Goldberg E, Andreassen S, Tacconelli E, Almanasreh N et al. Prediction of specific pathogens in patients with sepsis: Evaluation of TREAT, a computerized decision support system. Journal of Antimicrobial Chemotherapy. 2007; 59(6):1204-1207
- 906 Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and metaanalysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrobial Agents and Chemotherapy. 2010; 54(11):4851-4863
- 907 Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ et al. Goal-directed resuscitation for patients with early septic shock. New England Journal of Medicine. 2014; 371(16):1496-1506
- 908 Pearson G, Duncan H. Early warning systems for identifying sick children. Paediatrics and Child Health. 2011; 21(5):230-233
- 909 Pechorsky A, Nitzan Y, Lazarovitch T. Identification of pathogenic bacteria in blood cultures: comparison between conventional and PCR methods. Journal of Microbiological Methods. 2009; 78(3):325-330
- 910 Peduzzi P, Shatney C, Sheagren J, Sprung C. Predictors of bacteremia and gram-negative bacteremia in patients with sepsis. The Veterans Affairs Systemic Sepsis Cooperative Study Group. Archives of Internal Medicine. 1992; 152(3):529-535
- Peigne V, Azoulay E, Coquet I, Mariotte E, Darmon M, Legendre P et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Critical Care. 2013; 17(6)
- 912 Peltola H, Saarinen UM, Siimes MA. C-reactive protein in rapid diagnosis and follow-up of bacterial septicemia in children with leukemia. Pediatric Infectious Disease. 1983; 2(5):370-373
- 913 Perner A, Smith SH, Carlsen S, Holst LB. Red blood cell transfusion during septic shock in the ICU. Acta Anaesthesiologica Scandinavica. 2012; 56(6):718-723
- 914 Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. New England Journal of Medicine. 2012; 367(2):124-134

- 915 Pestana D, Espinosa E, Sanguesa-Molina JR, Ramos R, Perez-Fernandez E, Duque M et al. Compliance with a sepsis bundle and its effect on intensive care unit mortality in surgical septic shock patients. Journal of Trauma-Injury Infection and Critical Care. 2010; 69(5):1282-1287
- 916 Pfitzenmeyer P, Decrey H, Auckenthaler R, Michel JP. Predicting bacteremia in older patients. Journal of the American Geriatrics Society. 1995; 43(3):230-235
- 917 Phua J, Ho BC, Tee A, Chan KP, Johan A, Loo S et al. The impact of clinical protocols in the management of severe sepsis: a prospective cohort study. Anaesthesia and Intensive Care. 2012; 40(4):663-674
- 918 Phua J, Lim HF, Tay CK, Aung NW. Public awareness of sepsis and stroke in Singapore: a population-based survey. Annals of the Academy of Medicine, Singapore. 2013; 42(6):269-277
- 919 Piazza O, Boccia MC, Iasiello A, Storti MP, Tufano R, Triassi M. Candidemia in Intensive Care patients. Risk factors and mortality. Minerva Anestesiologica. 2004; 70(1-2):63-69
- 920 Pilz G, Gurniak T, Bujdoso O, Werdan K. A basic program for calculation of APACHE II and Elebute scores and sepsis evaluation in intensive care medicine. Computers in Biology and Medicine. 1991; 21(3):143-159
- 921 Pinilla JC, Hayes P, Laverty W, Arnold C, Laxdal V. The C-reactive protein to prealbumin ratio correlates with the severity of multiple organ dysfunction. Surgery. 1998; 124(4):799-6
- 922 Plambech MZ, Lurie AI, Ipsen HL. Initial, successful implementation of sepsis guidelines in an emergency department. Danish Medical Journal. 2012; 59(12):A4545
- 923 Plataki M, Kashani K, Cabello-Garza J, Maldonado F, Kashyap R, Kor DJ et al. Predictors of acute kidney injury in septic shock patients: an observational cohort study. Clinical Journal of the American Society of Nephrology. 2011; 6(7):1744-1751
- 924 Plowright C. Sepsis A Guide for Patients and Relatives. Nursing in Critical Care. 2013; 18(3):157
- 925 Pollack MM, Patel KM, Ruttimann UE. The Pediatric Risk of Mortality III--Acute Physiology Score (PRISM III-APS): a method of assessing physiologic instability for pediatric intensive care unit patients. Journal of Pediatrics. 1997; 131(4):575-581
- 926 Pollock E, Ford-Jones EL, Corey M, Barker G, Mindorff CM, Gold R et al. Use of the Pediatric Risk of Mortality score to predict nosocomial infection in a pediatric intensive care unit. Critical Care Medicine. 1991; 19(2):160-165
- 927 Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. Journal of Critical Care. 2003; 18(3):156-163
- 928 Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter Study of Central Venous Oxygen Saturation (ScvO2) as a Predictor of Mortality in Patients With Sepsis. Annals of Emergency Medicine. 2010; 55(1):40
- 929 Potter E, Brostoff J, Kapila A. Reducing deaths from sepsis. Clinical Risk. 2011; 17(4):123-125
- 930 Poukkanen M, Wilkman E, Vaara ST, Pettila V, Kaukonen K-M, Korhonen A-M et al. Hemodynamic variables and progression of acute kidney injury in critically ill patients with

severe sepsis: Data from the prospective observational FINNAKI study. Critical Care. 2013; 17(6)

- 931 Povoa P. C-reactive protein: A valuable marker of sepsis. Intensive Care Medicine. 2002; 28(3):235-243
- 932 Povoa P, Almeida E, Moreira P, Fernandes A, Mealha R, Aragao A et al. C-reactive protein as an indicator of sepsis. Intensive Care Medicine. 1998; 24(10):1052-1056
- 933 Povoa P, Coelho L, Almeida E, Fernandes A, Mealha R, Moreira P et al. Pilot study evaluating Creactive protein levels in the assessment of response to treatment of severe bloodstream infection. Clinical Infectious Diseases. 2005; 40(12):1855-1857
- 934 Povoa PR, Carneiro AH, Ribeiro OS, Pereira AC, Portuguese Community-Acquired Sepsis Study Group. Influence of vasopressor agent in septic shock mortality. Results from the Portuguese Community-Acquired Sepsis Study (SACiUCI study). Critical Care Medicine. 2009; 37(2):410-416
- 935 Presterl E, Staudinger T, Pettermann M, Lassnigg A, Burgmann H, Winkler S et al. Cytokine profile and correlation to the APACHE III and MPM II scores in patients with sepsis. American Journal of Respiratory and Critical Care Medicine. 1997; 156(3 Pt 1):825-832
- 936 Pro CI, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA et al. A randomized trial of protocol-based care for early septic shock. New England Journal of Medicine. 2014; 370(18):1683-1693
- 937 Prys-Picard CO, Shah SK, Williams BD, Cardenas VJ, Sharma G. Outcomes of patients on multiple vasoactive drugs for shock. Journal of Intensive Care Medicine. 2013; 28(4):237-240
- 938 Prytherch DR, Smith GB, Schmidt PE, Featherstone PI. ViEWS--Towards a national early warning score for detecting adult inpatient deterioration. Resuscitation. 2010; 81(8):932-937
- 939 Puntis JW, Holden CE, Smallman S, Finkel Y, George RH, Booth IW. Staff training: a key factor in reducing intravascular catheter sepsis. Archives of Disease in Childhood. 1991; 66(3):335-337
- 940 Purdy FR, Tweeddale MG, Merrick PM. Association of mortality with age of blood transfused in septic ICU patients. Canadian Journal of Anaesthesia. 1997; 44(12):1256-1261
- 941 Puskarich MA, Trzeciak S, Shapiro NI, Arnold RC, Heffner AC, Kline JA et al. Prognostic value and agreement of achieving lactate clearance or central venous oxygen saturation goals during early sepsis resuscitation. Academic Emergency Medicine. 2012; 19(3):252-258
- 942 Qu J, L X, Liu Y, Wang X. Evaluation of procalcitonin, C-reactive protein, interleukin-6 & serum amyloid A as diagnostic biomarkers of bacterial infection in febrile patients. Indian Journal of Medical Research. 2015; 141(3):315-321
- 943 Quach JL, Downey AW, Haase M, Haase-Fielitz A, Jones D, Bellomo R. Characteristics and outcomes of patients receiving a medical emergency team review for respiratory distress or hypotension. Journal of Critical Care. 2008; 23(3):325-331
- Quartin AA, Schein RM, Kett DH, Peduzzi PN. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group. JAMA. 1997; 277(13):1058-1063

- Que YA, Guessous I, Dupuis-Lozeron E, Alves de Oliveira CR, Ferreira Oliveir C, Graf R et al.
 Prognostication of Mortality in Critically III Patients With Severe Infections. Chest. 2015; 148(3):674-682
- 946 Rackoff WR, Gonin R, Robinson C, Kreissman SG, Breitfeld PB. Predicting the risk of bacteremia in childen with fever and neutropenia. Journal of Clinical Oncology. 1996; 14(3):919-924
- 947 Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Critical Care Medicine. 2014; 42(7):1585-1591
- 948 Rampal T, Jhanji S, Pearse RM. Using oxygen delivery targets to optimize resuscitation in critically ill patients. Current Opinion in Critical Care. 2010; 16(3):244-249
- Ranes JL, Gordon SM, Chen P, Fatica C, Hammel J, Gonzales JP et al. Predictors of long-term mortality in patients with ventilator-associated pneumonia. American Journal of Medicine. 2006; 119(10):897-899
- 950 Ranzani OT, Zampieri FG, Forte DN, Azevedo LCP, Park M. C-reactive protein/albumin ratio predicts 90-day mortality of septic patients. PloS One. 2013; 8(3):e59321
- 951 Raoofi R, Salmani Z, Moradi F, Sotoodeh A, Sobhanian S. Procalcitonin as a marker for early diagnosis of sepsis. American Journal of Infectious Diseases. 2014; 10(1):1-6
- 952 Rast AC, Knobel D, Faessler L, Kutz A, Felder S, Laukemann S et al. Use of procalcitonin, Creactive protein and white blood cell count to distinguish between lower limb erysipelas and deep vein thrombosis in the emergency department: A prospective observational study. Journal of Dermatology. 2015; 42(8):778-785
- Ravishankar K. Laboratory diagnosis of neonatal sepsis. Journal of Neonatology. 2009; 23(1):48 52
- 954 Ravishankaran P, Shah AM, Bhat R. Correlation of interleukin-6, serum lactate, and C-reactive protein to inflammation, complication, and outcome during the surgical course of patients with acute abdomen. Journal of Interferon and Cytokine Research. 2011; 31(9):685-690
- 955 Raza S, Ali Baig M, Chang C, Dabas R, Akhtar M, Khan A et al. A prospective study on red blood cell transfusion related hyperkalemia in critically ill patients. Journal of Clinical Medicine Research. 2015; 7(6):417-421
- 956 Razzaq A, Iqbal Quddusi A, Nizami N. Risk factors and mortality among newborns with persistent pulmonary hypertension. Pakistan Journal of Medical Sciences. 2013; 29(5):1099-1104
- 957 Reed L, Carroll J, Cummings A, Markwell S, Wall J, Duong M. Serum lactate as a screening tool and predictor of outcome in pediatric patients presenting to the emergency department with suspected infection. Pediatric Emergency Care. 2013; 29(7):787-791
- 958 Rehman T, Deboisblanc BP. Persistent fever in the ICU. Chest. 2014; 145(1):158-165
- 959 Rehmani RS, Memon JI, Al-Gammal A. Implementing a collaborative sepsis protocol on the time to antibiotics in an emergency department of a saudi hospital: quasi randomized study. Critical Care Research and Practice. 2014; 2014:410430

- 960 Reini K, Fredrikson M, Oscarsson A. The prognostic value of the Modified Early Warning Score in critically ill patients: a prospective, observational study. European Journal of Anaesthesiology. 2012; 29(3):152-157
- 961 Reiter N, Wesche N, Perner A. The majority of patients in septic shock are transfused with fresh-frozen plasma. Danish Medical Journal. 2013; 60(4):A4606
- 962 Resch B, Gusenleitner W, Muller WD. Procalcitonin and interleukin-6 in the diagnosis of earlyonset sepsis of the neonate. Acta Paediatrica. 2003; 92(2):243-245
- 963 Reuben AD, Appelboam AV, Higginson I, Lloyd JG, Shapiro NI. Early goal-directed therapy: a UK perspective. Emergency Medicine Journal. 2006; 23(11):828-832
- 964 Rewari V. Does albumin replacement improve outcome in critically ill patients with severe sepsis or septic shock? National Medical Journal of India. 2014; 27(3):145-147
- 965 Rhee JY, Kwon KT, Ki HK, Shin SY, Jung DS, Chung DR et al. Scoring systems for prediction of mortality in patients with intensive care unit-acquired sepsis: a comparison of the Pitt bacteremia score and the Acute Physiology and Chronic Health Evaluation II scoring systems. Shock. 2009; 31(2):146-150
- 966 Richards G, Levy H, Laterre PF, Feldman C, Woodward B, Bates BM et al. CURB-65, PSI, and APACHE II to assess mortality risk in patients with severe sepsis and community acquired pneumonia in PROWESS. Journal of Intensive Care Medicine. 2011; 26(1):34-40
- 967 Riche FC, Cholley BP, Laisne MJ, Vicaut E, Panis YH, Lajeunie EJ et al. Inflammatory cytokines, C reactive protein, and procalcitonin as early predictors of necrosis infection in acute necrotizing pancreatitis. Surgery. 2003; 133(3):257-262
- 968 Riedel S. Procalcitonin and the role of biomarkers in the diagnosis and management of sepsis. Diagnostic Microbiology and Infectious Disease. 2012; 73(3):221-227
- 969 Riedel S, Melendez JH, An AT, Rosenbaum JE, Zenilman JM. Procalcitonin as a marker for the detection of bacteremia and sepsis in the emergency department. American Journal of Clinical Pathology. 2011; 135(2):182-189
- 970 Rinaldi L, Ferrari E, Marietta M, Donno L, Trevisan D, Codeluppi M et al. Effectiveness of sepsis bundle application in cirrhotic patients with septic shock: A single-center experience. Journal of Critical Care. 2013; 28(2):152-157
- 971 Rincon TA, Bourke G, Seiver A. Standardizing sepsis screening and management via a tele-ICU program improves patient care. Telemedicine Journal and E-Health. 2011; 17(7):560-564
- 972 Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England Journal of Medicine. 2001; 345(19):1368-1377
- 973 Rixen D, Siegel JH, Friedman HP. "Sepsis/SIRS," physiologic classification, severity stratification, relation to cytokine elaboration and outcome prediction in posttrauma critical illness. Journal of Trauma. 1996; 41(4):581-598
- 974 Robert J, Fridkin SK, Blumberg HM, Anderson B, White N, Ray SM et al. The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infection Control and Hospital Epidemiology. 2000; 21(1):12-17

- 975 Robson W, Beavis S, Spittle N. An audit of ward nurses' knowledge of sepsis. Nursing in Critical Care. 2007; 12(2):86-92
- 976 Robson WP, Daniel R. The Sepsis Six: helping patients to survive sepsis. British Journal of Nursing. 2008; 17(1):16-21
- 977 Rochwerg B, Alhazzani W, Gibson A, Ribic CM, Sindi A, Heels-Ansdell D et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Medicine. 2015; 41(9):1561-1571
- 978 Rochwerg B, Alhazzani W, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Annals of Internal Medicine. 2014; 161(5):347-355
- 979 Rodriguez-Nunez A, Lopez-Herce J, Gil-Anton J, Hernandez A, Rey C, RETSPED Working Group of the Spanish Society of Pediatric Intensive Care. Rescue treatment with terlipressin in children with refractory septic shock: a clinical study. Critical Care. 2006; 10(1):R20
- 980 Rodriguez-Pardo D, Almirante B, Fernandez-Hidalgo N, Pigrau C, Ferrer C, Planes AM et al. Impact of prompt catheter withdrawal and adequate antimicrobial therapy on the prognosis of hospital-acquired parenteral nutrition catheter-related bacteraemia. Clinical Microbiology and Infection. 2015; 20(11):1205-1210
- 981 Rogy MA, Oldenburg HSA, Coyle S, Trousdale R, Moldawer LL, Lowry SF. Correlation between acute physiology and chronic health evaluation (APACHE) III scope and immunological parameters in critically ill patients with sepsis. British Journal of Surgery. 1996; 83(3):396-400
- 982 Ronco JJ, Belzberg A, Phang PT, Walley KR, Dodek PM, Russell JA. No differences in hemodynamics, ventricular function, and oxygen delivery in septic and nonseptic patients with the adult respiratory distress syndrome. Critical Care Medicine. 1994; 22(5):777-782
- 983 Rondina MT, Carlisle M, Fraughton T, Brown SM, Miller RR, Harris ES et al. Platelet-monocyte aggregate formation and mortality risk in older patients with severe sepsis and septic shock. Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2015; 70(2):225-231
- 984 Ronnestad A, Abrahamsen TG, Gaustad P, Finne PH. C-reactive protein (CRP) response patterns in neonatal septicaemia. APMIS. 1999; 107(6):593-600
- 985 Ronnestad A, Abrahamsen TG, Medbo S, Reigstad H, Lossius K, Kaaresen PI et al. Septicemia in the first week of life in a Norwegian national cohort of extremely premature infants. Pediatrics. 2005; 115(3):e262-e268
- 986 Rosenberg AL. Recent innovations in intensive care unit risk-prediction models. Current Opinion in Critical Care. 2002; 8(4):321-330
- 987 Rosland RG, Hagen MU, Haase N, Holst LB, Plambech M, Madsen KR et al. Red blood cell transfusion in septic shock - clinical characteristics and outcome of unselected patients in a prospective, multicentre cohort. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2014; 22:14
- 988 Routsi C, Pratikaki M, Sotiropoulou C, Platsouka E, Markaki V, Paniara O et al. Application of the sequential organ failure assessment (SOFA) score to bacteremic ICU patients. Infection. 2007; 35(4):240-244

- 989 Russell JA. Oxygen consumption/oxygen delivery relationships are not altered in critically ill patients. Seminars in Respiratory and Critical Care Medicine. 1995; 16(5):403-418
- 990 Russell JA, Fjell C, Hsu JL, Lee T, Boyd J, Thair S et al. Vasopressin compared with norepinephrine augments the decline of plasma cytokine levels in septic shock. American Journal of Respiratory and Critical Care Medicine. 2013; 188(3):356-364
- 991 Russell JA, Walley KR, Gordon AC, Cooper DJ, Hébert PC, Singer J et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Critical Care Medicine. 2009; 37(3):811-818
- 992 Ryoo SM, Kim WY, Sohn CH, Seo DW, Koh JW, Oh BJ et al. Prognostic value of timing of antibiotic administration in patients with septic shock treated with early quantitative resuscitation. American Journal of the Medical Sciences. 2015; 349(4):328-333
- 993 Sainio V, Kemppainen E, Puolakkainen P, Taavitsainen M, Kivisaari L, Valtonen V et al. Early antibiotic treatment in acute necrotising pancreatitis. Lancet. 1995; 346(8976):663-667
- 994 Sakha K, Husseini MB, Seyyedsadri N. The role of the procalcitonin in diagnosis of neonatal sepsis and correlation between procalcitonin and C-reactive protein in these patients. Pakistan Journal of Biological Sciences: PJBS. 2008; 11(14):1785-1790
- 995 Sakr Y, Reinhart K, Vincent JL, Sprung CL, Moreno R, Ranieri VM et al. Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely III Patients (SOAP) Study. Critical Care Medicine. 2006; 34(3):589-597
- 996 Salluh JIF, Bozza PT, Bozza FA. Surviving sepsis campaign: A critical reappraisal. Shock. 2008; 30(SUPPL. 1):70-72
- 997 Samraj RS, Zingarelli B, Wong HR. Role of biomarkers in sepsis care. Shock. 2013; 40(5):358-365
- 998 Santana SL, Furtado GHC, Wey SB, Medeiros EAS. Impact of an education program on the incidence of central line-associated bloodstream infection in 2 medical-surgical intensive care units in Brazil. Infection Control and Hospital Epidemiology. 2008; 29(12):1171-1173
- 999 Santolaya ME, Alvarez AM, Aviles CL, Becker A, King A, Mosso C et al. Predictors of severe sepsis not clinically apparent during the first twenty-four hours of hospitalization in children with cancer, neutropenia, and fever: a prospective, multicenter trial. Pediatric Infectious Disease Journal. 2008; 27(6):538-543
- 1000 Saracco P, Vitale P, Scolfaro C, Pollio B, Pagliarino M, Timeus F. The coagulopathy in sepsis: significance and implications for treatment. Pediatric Reports. 2011; 3(4):e30
- 1001 Sarani B, Brenner SR, Gabel B, Myers JS, Gibson G, Phillips J et al. Rapid response systems: the stories. Improving sepsis care through systems change: the impact of a medical emergency team. Joint Commission Journal on Quality & Patient Safety. 2008; 34(3):179-182
- 1002 Sauer M, Tiede K, Fuchs D, Gruhn B, Berger D, Zintl F. Procalcitonin, C-reactive protein, and endotoxin after bone marrow transplantation: Identification of children at high risk of morbidity and mortality from sepsis. Bone Marrow Transplantation. 2003; 31(12):1137-1142
- 1003 Sawamura A, Gando S, Hayakawa M, Hoshino H, Kubota N, Sugano M. Effects of antithrombin III in patients with disseminated intravascular coagulation diagnosed by newly developed

diagnostic criteria for critical illness. Clinical and Applied Thrombosis/Hemostasis. 2009; 15(5):561-566

- 1004 Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T et al. Application of the Japanese Association for Acute Medicine disseminated intravascular coagulation diagnostic criteria for patients at an early phase of trauma. Thrombosis Research. 2009; 124(6):706-710
- 1005 Sawyer AM, Deal EN, Labelle AJ, Witt C, Thiel SW, Heard K et al. Implementation of a real-time computerized sepsis alert in nonintensive care unit patients. Critical Care Medicine. 2011; 39(3):469-473
- 1006 Scheer C, Fuchs C, Vollmer M, Rehberg S, Kuhn SO, Abel P et al. Sep-6: Sustained reduction of intensive scare- and hospital length of stay for severe sepsis and septic shock patients by a continuous quality improvement program over 7.5 years. Shock. 2015; 44 Suppl 2:15
- 1007 Schramm GE, Kashyap R, Mullon JJ, Gajic O, Afessa B. Septic shock: a multidisciplinary response team and weekly feedback to clinicians improve the process of care and mortality. Critical Care Medicine. 2011; 39(2):252-258
- 1008 Schreiber J, Nierhaus A, Braune SA, de Heer G, Kluge S. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Medizinische Klinik, Intensivmedizin Und Notfallmedizin. 2013; 108(4):311-318
- 1009 Schultz L, Walker SAN, Elligsen M, Walker SE, Simor A, Mubareka S et al. Identification of predictors of early infection in acute burn patients. Burns. 2013; 39(7):1355-1366
- 1010 Schwarz S, Bertram M, Schwab S, Andrassy K, Hacke W. Serum procalcitonin levels in bacterial and abacterial meningitis. Critical Care Medicine. 2000; 28(6):1828-1832
- 1011 Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC et al. Empiric antibiotic therapy for Staphylococcus aureus bacteremia may not reduce in-hospital mortality: a retrospective cohort study. PLoS ONE [Electronic Resource]. 2010; 5(7):e11432
- 1012 Scott HF, Donoghue AJ, Gaieski DF, Marchese RF, Mistry RD. The utility of early lactate testing in undifferentiated pediatric systemic inflammatory response syndrome. Academic Emergency Medicine. 2012; 19(11):1276-1280
- 1013 Seigel TA, Cocchi MN, Salciccioli J, Shapiro NI, Howell M, Tang A et al. Inadequacy of temperature and white blood cell count in predicting bacteremia in patients with suspected infection. Journal of Emergency Medicine. 2012; 42(3):254-259
- 1014 Seiger N, Maconochie I, Oostenbrink R, Moll HA. Validity of different pediatric early warning scores in the emergency department. Pediatrics. 2013; 132(4):e841-e850
- 1015 Seki Y, Wada H, Kawasugi K, Okamoto K, Uchiyama T, Kushimoto S et al. A prospective analysis of disseminated intravascular coagulation in patients with infections. Internal Medicine. 2013; 52(17):1893-1898
- 1016 Semelsberger CF. Educational interventions to reduce the rate of central catheter-related bloodstream infections in the NICU: a review of the research literature. Neonatal Network. 2009; 28(6):391-395

- 1017 Seoane L, Winterbottom F, Nash T, Behrhorst J, Chacko E, Shum L et al. Using quality improvement principles to improve the care of patients with severe sepsis and septic shock. Ochsner Journal. 2013; 13(3):359-366
- 1018 Serpa Neto A, Nassar AP, Cardoso SO, Manetta JA, Pereira VGM, Esposito DC et al. Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Critical Care. 2012; 16(4):R154
- 1019 Serpa Neto A, Veelo DP, Peireira VGM, de Assuncao MSC, Manetta JA, Esposito DC et al. Fluid resuscitation with hydroxyethyl starches in patients with sepsis is associated with an increased incidence of acute kidney injury and use of renal replacement therapy: a systematic review and meta-analysis of the literature. Journal of Critical Care. 2014; 29(1):185-187
- 1020 Sevastos N, Manesis EK, Savvas SP, Galiatsatos N, Papatheodoridis GV, Archimandritis AJ. Changes of liver and muscle enzymes activity in patients with rigor. European Journal of Internal Medicine. 2008; 19(2):109-114
- 1021 Shani L, Weitzman D, Melamed R, Zmora E, Marks K. Risk factors for early sepsis in very low birth weight neonates with respiratory distress syndrome. Acta Paediatrica. 2008; 97(1):12-15
- 1022 Shapiro NI, Fisher C, Donnino M, Cataldo L, Tang A, Trzeciak S et al. The feasibility and accuracy of point-of-care lactate measurement in emergency department patients with suspected infection. Journal of Emergency Medicine. 2010; 39(1):89-94
- 1023 Shapiro NI, Howell MD, Talmor D, Lahey D, Ngo L, Buras J et al. Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Critical Care Medicine. 2006; 34(4):1025-1032
- 1024 Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R, Osborn TM et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Critical Care Medicine. 2009; 37(1):96-104
- 1025 Shaw AC. Serum C-reactive protein and neopterin concentration in patients with viral or bacterial infection. Journal of Clinical Pathology. 1991; 44(7):596-599
- 1026 Shearer B, Marshall S, Buist MD, Finnigan M, Kitto S, Hore T et al. What stops hospital clinical staff from following protocols? An analysis of the incidence and factors behind the failure of bedside clinical staff to activate the rapid response system in a multi-campus Australian metropolitan healthcare service. BMJ Quality and Safety. 2012; 21(7):569-575
- 1027 Sherertz RJ, Ely EW, Westbrook DM, Gledhill KS, Streed SA, Kiger B et al. Education of physicians-in-training can decrease the risk for vascular catheter infection. Annals of Internal Medicine. 2000; 132(8):641-648
- 1028 Shime N, Kosaka T, Fujita N. The importance of a judicious and early empiric choice of antimicrobial for methicillin-resistant Staphylococcus aureus bacteraemia. European Journal of Clinical Microbiology and Infectious Diseases. 2010; 29(12):1475-1479
- 1029 Shine B, Gould J, Campbell C. Serum C-reactive protein in normal and infected neonates. Clinica Chimica Acta. 1985; 148(2):97-103

- 1030 Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH. Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Critical Care Medicine. 2011; 39(1):46-51
- 1031 Shorr AF, Janes JM, Artigas A, Tenhunen J, Wyncoll DLA, Mercier E et al. Randomized trial evaluating serial protein C levels in severe sepsis patients treated with variable doses of drotrecogin alfa (activated). Critical Care. 2010; 14(6):R229
- 1032 Siddiqui S, Salahuddin N, Raza A, Razzak J. How early do antibiotics have to be to impact mortality in severe sepsis? A prospective, observational study from an emergency department. Journal of Ayub Medical College, Abbottabad: JAMC. 2009; 21(4):106-110
- 1033 Siddiqui S, Razzak J. Early versus late pre-intensive care unit admission broad spectrum antibiotics for severe sepsis in adults. Cochrane Database of Systematic Reviews. 2010; Issue 10:CD007081. DOI:10.1002/14651858.CD007081.pub2
- 1034 Sierra R. C-reactive protein and procalcitonin as markers of infection, inflammatory response, and sepsis. Clinical Pulmonary Medicine. 2007; 14(3):127-139
- 1035 Silber SH, Garrett C, Singh R, Sweeney A, Rosenberg C, Parachiv D et al. Early administration of antibiotics does not shorten time to clinical stability in patients with moderate-to-severe community-acquired pneumonia. Chest. 2003; 124(5):1798-1804
- 1036 Silcock DJ, Corfield AR, Gowens PA, Rooney KD. Validation of the National Early Warning Score in the prehospital setting. Resuscitation. 2015; 89:31-35
- 1037 Silva PS, Fonseca MC, Iglesias SB, Carvalho WB, Bussolan RM, Freitas IW. Comparison of two different severity scores (Paediatric Risk of Mortality [PRISM] and the Glasgow Meningococcal Sepsis Prognostic Score [GMSPS]) in meningococcal disease: preliminary analysis. Annals of Tropical Paediatrics. 2001; 21(2):135-140
- 1038 Silveira RC, Procianoy RS. Evaluation of interleukin-6, tumour necrosis factor-alpha and interleukin-1beta for early diagnosis of neonatal sepsis. Acta Paediatrica. 1999; 88(6):647-650
- 1039 Simms HH, D'Amico R. Intra-abdominal sepsis alters tumor necrosis factor-alpha and interleukin-1 beta binding to human neutrophils. Critical Care Medicine. 1992; 20(1):11-16
- 1040 Singer AJ, Taylor M, LeBlanc D, Williams J, Thode HCJ. ED bedside point-of-care lactate in patients with suspected sepsis is associated with reduced time to iv fluids and mortality. American Journal of Emergency Medicine. 2014; 32(9):1120-1124
- 1041 Singh RK, Baronia AK, Sahoo JN, Sharma S, Naval R, Pandey CM et al. Prospective comparison of new Japanese Association for Acute Medicine (JAAM) DIC and International Society of Thrombosis and Hemostasis (ISTH) DIC score in critically ill septic patients. Thrombosis Research. 2012; 129(4):e119-e125
- 1042 Singh SA, Dutta S, Narang A. Predictive clinical scores for diagnosis of late onset neonatal septicemia. Journal of Tropical Pediatrics. 2003; 49(4):235-239
- 1043 Sirvent JM, Carmen de la Torre M, Lorencio C, Tache A, Ferri C, Garcia-Gil J et al. Predictive factors of mortality in severe community-acquired pneumonia: a model with data on the first 24h of ICU admission. Medicina Intensiva. 2013; 37(5):308-315

- 1044 Sivula M, Hastbacka J, Kuitunen A, Lassila R, Tervahartiala T, Sorsa T et al. Systemic matrix metalloproteinase-8 and tissue inhibitor of metalloproteinases-1 levels in severe sepsisassociated coagulopathy. Acta Anaesthesiologica Scandinavica. 2015; 59(2):176-184
- 1045 Skaletzky SM, Raszynski A, Totapally BR. Validation of a modified pediatric early warning system score: a retrospective case-control study. Clinical Pediatrics. 2012; 51(5):431-435
- 1046 Smith GB, Prytherch DR, Schmidt PE, Featherstone PI. Review and performance evaluation of aggregate weighted 'track and trigger' systems. Resuscitation. 2008; 77(2):170-179
- 1047 Smith GB, Prytherch DR, Schmidt PE, Featherstone PI, Higgins B. A review, and performance evaluation, of single-parameter "track and trigger" systems. Resuscitation. 2008; 79(1):11-21
- 1048 Smith GB, Prytherch DR, Meredith P, Schmidt PE, Featherstone PI. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation. 2013; 84(4):465-470
- 1049 Smith MEB, Chiovaro JC, O'Neil M, Kansagara D, Quinones AR, Freeman M et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Annals of the American Thoracic Society. 2014; 11(9):1454-1465
- 1050 Smith MJ, Kong M, Cambon A, Woods CR. Effectiveness of antimicrobial guidelines for community-acquired pneumonia in children. Pediatrics. 2012; 129(5):e1326-e1333
- 1051 Smith WR, McClish DK, Poses RM, Pinson AG, Miller ST, Bobo-Moseley L et al. Bacteremia in young urban women admitted with pyelonephritis. American Journal of the Medical Sciences. 1997; 313(1):50-57
- 1052 So SN, Ong CW, Wong LY, Chung JYM, Graham CA. Is the Modified Early Warning Score able to enhance clinical observation to detect deteriorating patients earlier in an Accident & Emergency Department? Australasian Emergency Nursing Journal. 2015; 18(1):24-32
- 1053 Sole-Violan J, Garcia-Laorden MI, Marcos-Ramos JA, de Castro FR, Rajas O, Borderias L et al. The Fc receptor IIA-H/H131 genotype is associated with bacteremia in pneumococcal community-acquired pneumonia. Critical Care Medicine. 2011; 39(6):1388-1393
- 1054 Solevag AL, Eggen EH, Schroder J, Nakstad B. Use of a modified pediatric early warning score in a department of pediatric and adolescent medicine. PloS One. 2013; 8(8):e72534
- 1055 Somech R, Zakuth V, Assia A, Jurgenson U, Spirer Z. Procalcitonin correlates with C-reactive protein as an acute-phase reactant in pediatric patients. Israel Medical Association Journal. 2000; 2(2):147-150
- 1056 Somogyi-Zalud E, Zhong Z, Lynn J, Dawson NV, Hamel MB, Desbiens NA. Dying with acute respiratory failure or multiple organ system failure with sepsis. Journal of the American Geriatrics Society. 2000; 48(5 Suppl):S140-S145
- 1057 Sonawane VB, Gaikwad SU, Kadam NN, Gavhane J. Comparative study of diagnostic markers in neonatal sepsis. Journal of Nepal Paediatric Society. 2014; 34(2):111-114
- 1058 Song YH, Shin TG, Kang MJ, Sim MS, Jo IJ, Song KJ et al. Predicting factors associated with clinical deterioration of sepsis patients with intermediate levels of serum lactate. Shock. 2012; 38(3):249-254

- 1059 Soni SS, Nagarik AP, Adikey GK, Raman A. Using continuous renal replacement therapy to manage patients of shock and acute renal failure. Journal of Emergencies, Trauma, and Shock. 2009; 2(1):19-22
- 1060 Soong JL, Lim WH. Vasopressin and terlipressin in the treatment of vasodilatory septic shock: A systematic review. Proceedings of Singapore Healthcare. 2011; 20(3):208-218
- 1061 Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock. 2010; 33(4):387-391
- 1062 Spasova MI, Terzieva DD, Tzvetkova TZ, Stoyanova AA, Mumdzhiev IN, Yanev IB et al. Interleukin-6, interleukin-8, interleukin-10, and C-reactive protein in febrile neutropenia in children with malignant diseases. Folia Medica. 2005; 47(3-4):46-52
- 1063 Spruijt B, Vergouwe Y, Nijman RG, Thompson M, Oostenbrink R. Vital signs should be maintained as continuous variables when predicting bacterial infections in febrile children. Journal of Clinical Epidemiology. 2013; 66(4):453-457
- 1064 Sprung CL, Sakr Y, Vincent JL, Le Gall JR, Reinhart K, Ranieri VM et al. An evaluation of systemic inflammatory response syndrome signs in the Sepsis Occurrence In Acutely III Patients (SOAP) study. Intensive Care Medicine. 2006; 32(3):421-427
- 1065 Stathakis T, Acworth JP, Barnett AG. Prediction tool for bacteraemia in children aged 3-36 months. Emergency Medicine Australasia. 2007; 19(4):353-358
- 1066 Steinbach G, Bolke E, Schulte am Esch J, Peiper M, Zant R, Schwarz A et al. Comparison of whole blood interleukin-8 and plasma interleukin-8 as a predictor for sepsis in postoperative patients. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2007; 378(1-2):117-121
- 1067 Sterling SA, Miller WR, Pryor J, Puskarich MA, Jones AE. The Impact of Timing of Antibiotics on Outcomes in Severe Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Critical Care Medicine. 2015; 43(9):1907-1915
- 1068 Strang JR, Pugh EJ. Meningococcal infections: reducing the case fatality rate by giving penicillin before admission to hospital. BMJ. 1992; 305(6846):141-143
- 1069 Struelens M, Delville J, Luypaert P, Wybran J. Granulocyte elastase compared to C-reactive protein for early diagnosis of septicemia in critically ill patients. European Journal of Clinical Microbiology and Infectious Diseases. 1988; 7(2):193-195
- 1070 Struelens MJ, Bennish ML, Mondal G, Wojtyniak BJ. Bacteremia during diarrhea: incidence, etiology, risk factors, and outcome. American Journal of Epidemiology. 1991; 133(5):451-459
- 1071 Studnek JR, Artho MR, Garner CL, Jr., Jones AE. The impact of emergency medical services on the ED care of severe sepsis. American Journal of Emergency Medicine. 2012; 30(1):51-56
- 1072 Su CM, Cheng HH, Tsai TC, Hsiao SY, Tsai NW, Chang WN et al. Elevated serum vascular cell adhesion molecule-1 is associated with septic encephalopathy in adult community-onset severe sepsis patients. BioMed Research International. 2014; 2014:598762
- 1073 Su Lx, Feng L, Zhang J, Xiao Yj, Jia Yh, Yan P et al. Diagnostic value of urine sTREM-1 for sepsis and relevant acute kidney injuries: a prospective study. Critical Care. 2011; 15(5):R250

- 1074 Su L, Han B, Liu C, Liang L, Jiang Z, Deng J et al. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infectious Diseases. 2012; 12:157
- 1075 Suarez D, Ferrer R, Artigas A, Azkarate I, Garnacho-Montero J, Goma G et al. Cost-effectiveness of the surviving sepsis campaign protocol for severe sepsis: a prospective nation-wide study in Spain. Intensive Care Medicine. Spain 2011; 37(3):444-452
- 1076 Suarez-Santamaria M, Santolaria F, Perez-Ramirez A, Aleman-Valls MR, Martinez-Riera A, Gonzalez-Reimers E et al. Prognostic value of inflammatory markers (notably cytokines and procalcitonin), nutritional assessment, and organ function in patients with sepsis. European Cytokine Network. 2010; 21(1):19-26
- 1077 Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified Early Warning Score in medical admissions. QJM. 2001; 94(10):521-526
- 1078 Suchyta MR, Clemmer TP, Elliott CG, Orme JFJ, Morris AH, Jacobson J et al. Increased mortality of older patients with acute respiratory distress syndrome. Chest. 1997; 111(5):1334-1339
- 1079 Sucilathangam G, Amuthavalli K, Velvizhi G, Ashihabegum MA, Jeyamurugan T, Palaniappan N. Early diagnostic markers for neonatal sepsis: Comparing procalcitonin (PCT) and C-reactive protein (CRP). Journal of Clinical and Diagnostic Research. 2012; 6(4 SUPPL. 2):627-631
- 1080 Suh SH, Kim CS, Choi JS, Bae EH, Ma SK, Kim SW. Acute kidney injury in patients with sepsis and septic shock: Risk factors and clinical outcomes. Yonsei Medical Journal. 2013; 54(4):965-972
- 1081 Surat T, Viarasilpa T, Permpikul C. The impact of intensive care unit admissions following early resuscitation on the outcome of patients with severe sepsis and septic shock. Journal of the Medical Association of Thailand. 2014; 97 Suppl 1:S69-S76
- 1082 Suri M, Thirupuram S, Sharma VK. Diagnostic and prognostic utility of C-reactive protein, alpha-1-antitrypsin and alpha-2-macroglobulin in neonatal sepsis: a comparative account. Indian Pediatrics. 1991; 28(10):1159-1164
- 1083 Sweet DD, Jaswal D, Fu W, Bouchard M, Sivapalan P, Rachel J et al. Effect of an emergency department sepsis protocol on the care of septic patients admitted to the intensive care unit. Canadian Journal of Emergency Medicine. 2010; 12(5):414-420
- 1084 Tafelski S, Nachtigall I, Deja M, Tamarkin A, Trefzer T, Halle E et al. Computer-assisted Decision Support for Changing Practice in Severe Sepsis and Septic Shock. Journal of International Medical Research. 2010; 38(5):1605-1616
- 1085 Tafelski S, Nachtigall I, Stengel S, Wernecke K, Spies C. Comparison of three models for sepsis patient discrimination according to PIRO: predisposition, infection, response and organ dysfunction. Minerva Anestesiologica. 2015; 81(3):264-271
- 1086 Takahashi G, Shibata S, Ishikura H, Miura M, Fukui Y, Inoue Y et al. Presepsin in the prognosis of infectious diseases and diagnosis of infectious disseminated intravascular coagulation: a prospective, multicentre, observational study. European Journal of Anaesthesiology. 2015; 32(3):199-206

- 1087 Takeyama N, Noguchi H, Hirakawa A, Kano H, Morino K, Obata T et al. Time to initiation of treatment with polymyxin B cartridge hemoperfusion in septic shock patients. Blood Purification. 2012; 33(4):252-256
- 1088 Talmor D, Greenberg D, Howell MD, Lisbon A, Novack V, Shapiro N. The costs and costeffectiveness of an integrated sepsis treatment protocol. Critical Care Medicine. United States 2008; 36(4):1168-1174
- 1089 Tang Y, Choi J, Kim D, Tudtud-Hans L, Li J, Michel A et al. Clinical predictors of adverse outcome in severe sepsis patients with lactate 2-4 mM admitted to the hospital. QJM. 2015; 108(4):279-287
- 1090 Tayek CJ, Tayek JA. Diabetes patients and non-diabetic patients intensive care unit and hospital mortality risks associated with sepsis. World Journal of Diabetes. 2012; 3(2):29-34
- 1091 Tegtmeyer FK, Horn C, Richter A, van Wees J. Elastase alpha 1 proteinase inhibitor complex, granulocyte count, ratio of immature to total granulocyte count, and C-reactive protein in neonatal septicaemia. European Journal of Pediatrics. 1992; 151(5):353-356
- 1092 Terzi I, Papaioannou V, Papanas N, Dragoumanis C, Petala A, Theodorou V et al. Alpha1microglobulin as an early biomarker of sepsis-associated acute kidney injury: a prospective cohort study. Hippokratia. 2014; 18(3):262-268
- 1093 Textoris J, Fouche L, Wiramus S, Antonini F, Tho S, Martin C et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Critical Care. 2011; 15(4):R176
- 1094 Thai V, Lau F, Wolch G, Yang J, Quan H, Fassbender K. Impact of infections on the survival of hospitalized advanced cancer patients. Journal of Pain and Symptom Management. 2012; 43(3):549-557
- 1095 Thompson M, Van den Bruel A, Verbakel J, Lakhanpaul M, Haj-Hassan T, Stevens R et al. Systematic review and validation of prediction rules for identifying children with serious infections in emergency departments and urgent-access primary care. Health Technol Assess. 2012; 16(15):1-100
- 1096 Thompson MJ, Harnden A, Del MC. Excluding serious illness in feverish children in primary care: restricted rule-out method for diagnosis. BMJ (Clinical Research Ed). 2009; 338:b1187
- 1097 Toh CH, Ticknor LO, Downey C, Giles AR, Paton RC, Wenstone R. Early identification of sepsis and mortality risks through simple, rapid clot-waveform analysis. Implications of lipoproteincomplexed C reactive protein formation. Intensive Care Medicine. 2003; 29(1):55-61
- 1098 Tong X, Cao Y, Yu M, Han C. Presepsin as a diagnostic marker for sepsis: Evidence from a bivariate meta-analysis. Therapeutics and Clinical Risk Management. 2015; 11:1027-1033
- 1099 Torres A, Serra-Batlles J, Ferrer A, Jimenez P, Celis R, Cobo E et al. Severe community-acquired pneumonia. Epidemiology and prognostic factors. American Review of Respiratory Disease. 1991; 144(2):312-318
- 1100 Tourneux P, Rakza T, Abazine A, Krim G, Storme L. Noradrenaline for management of septic shock refractory to fluid loading and dopamine or dobutamine in full-term newborn infants. Acta Paediatrica. 2008; 97(2):177-180

- 1101 Toweill D, Sonnenthal K, Kimberly B, Lai S, Goldstein B. Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock. Critical Care Medicine. 2000; 28(6):2051-2057
- 1102 Trof RJ, Sukul SP, Twisk JWR, Girbes ARJ, Groeneveld ABJ. Greater cardiac response of colloid than saline fluid loading in septic and non-septic critically ill patients with clinical hypovolaemia. Intensive Care Medicine. 2010; 36(4):697-701
- 1103 Tromp M, Bleeker-Rovers CP, van Achterberg T, Kullberg BJ, Hulscher M, Pickkers P. Internal medicine residents' knowledge about sepsis: effects of a teaching intervention. Netherlands Journal of Medicine. 2009; 67(9):312-315
- 1104 Tromp M, Hulscher M, Bleeker-Rovers CP, Peters L, van den Berg DTNA, Borm GF et al. The role of nurses in the recognition and treatment of patients with sepsis in the emergency department: a prospective before-and-after intervention study. International Journal of Nursing Studies. 2010; 47(12):1464-1473
- 1105 Tsai JC-H, Cheng CW, Weng SJ, Huang CY, Yen DH-T, Chen HL. Comparison of risks factors for unplanned ICU transfer after ED admission in patients with infections and those without infections. TheScientificWorldJournal. 2014; 2014:102929
- 1106 Tsapenko MV, Herasevich V, Mour GK, Tsapenko AV, Comfere TBO, Mankad SV et al. Severe sepsis and septic shock in patients with pre-existing non-cardiac pulmonary hypertension: contemporary management and outcomes. Critical Care and Resuscitation. 2013; 15(2):103-109
- 1107 Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C-reactive protein for survival in postoperative patients with severe sepsis. Journal of Critical Care. 2011; 26(1):54-64
- 1108 Tsering DC, Chanchal L, Pal R, Kar S. Bacteriological profile of septicemia and the risk factors in neonates and infants in sikkim. Journal of Global Infectious Diseases. 2011; 3(1):42-45
- 1109 Tsuneyoshi I, Yamada H, Kakihana Y, Nakamura M, Nakano Y, Boyle WA. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Critical Care Medicine. 2001; 29(3):487-493
- 1110 Tucker KM, Brewer TL, Baker RB, Demeritt B, Vossmeyer MT. Prospective evaluation of a pediatric inpatient early warning scoring system. Journal for Specialists in Pediatric Nursing. 2009; 14(2):79-85
- 1111 Tugrul S, Esen F, Celebi S, Ozcan PE, Akinci O, Cakar N et al. Reliability of procalcitonin as a severity marker in critically ill patients with inflammatory response. Anaesthesia and Intensive Care. 2002; 30(6):747-754
- 1112 Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B, Fiori B et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-betalactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment.[Erratum appears in Antimicrob Agents Chemother. 2007 Sep;51(9):3469]. Antimicrobial Agents and Chemotherapy. 2007; 51(6):1987-1994
- 1113 Turi SK, Von Ah D. Implementation of early goal-directed therapy for septic patients in the emergency department: a review of the literature. Journal of Emergency Nursing: JEN. 2013; 39(1):13-19

- 1114 Ueda T, Aoyama-Ishikawa M, Nakao A, Yamada T, Usami M, Kotani J. A simple scoring system based on neutrophil count in sepsis patients. Medical Hypotheses. 2014; 82(3):382-386
- 1115 Uittenbogaard AJ, de Deckere ER, Sandel MH, Vis A, Houser CM, de Groot B. Impact of the diagnostic process on the accuracy of source identification and time to antibiotics in septic emergency department patients. European Journal of Emergency Medicine. 2014; 21(3):212-219
- 1116 Ulla M, Pizzolato E, Lucchiari M, Loiacono M, Soardo F, Forno D et al. Diagnostic and prognostic value of presepsin in the management of sepsis in the emergency department: a multicenter prospective study. Critical Care. 2013; 17(4):R168
- 1117 Umscheid CA, Betesh J, VanZandbergen C, Hanish A, Tait G, Mikkelsen ME et al. Development, implementation, and impact of an automated early warning and response system for sepsis. Journal of Hospital Medicine. 2015; 10(1):26-31
- 1118 Upadhyay M, Singhi S, Murlidharan J, Kaur N, Majumdar S. Randomized evaluation of fluid resuscitation with crystalloid (saline) and colloid (polymer from degraded gelatin in saline) in pediatric septic shock. Indian Pediatrics. 2005; 42(3):223-231
- 1119 Van de Voorde P, Emerson B, Gomez B, Willems J, Yildizdas D, Iglowstein I et al. Paediatric community-acquired septic shock: results from the REPEM network study. European Journal of Pediatrics. 2013; 172(5):667-674
- 1120 Van den Berghe G, Wouters PJ, Kesteloot K, Hilleman DE. Analysis of healthcare resource utilization with intensive insulin therapy in critically ill patients. Critical Care Medicine. 2006; 34(3):612-616
- 1121 Van den Bruel A, Haj-Hassan T, Thompson M, Buntinx F, Mant D. Diagnostic value of clinical features at presentation to identify serious infection in children in developed countries: a systematic review. Lancet. 2010; 375(9717):834-845
- 1122 Van den Bruel A, Thompson MJ, Haj-Hassan T, Stevens R, Moll H, Lakhanpaul M et al. Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ. 2011; 342:d3082
- 1123 Van Dissel JT, Numan SC, Van't Wout JW. Chills in 'early sepsis': good for you? Journal of Internal Medicine. 2005; 257(5):469-472
- 1124 van Paridon BM, Sheppard C, Garcia G, Joffe AR, Alberta SN. Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care. Critical Care. 2015; 19:293
- 1125 van Rooijen CR, de Ruijter W, van Dam B. Evaluation of the threshold value for the Early Warning Score on general wards. Netherlands Journal of Medicine. 2013; 71(1):38-43
- 1126 Vandijck DM, Blot SI, Vogelaers DP. Implementation of an evidence-based sepsis program in the intensive care unit: Evident or not? Critical Care. 2009; 13(5)
- 1127 Vanmassenhove J, Glorieux G, Hoste E, Dhondt A, Vanholder R, Van Biesen W. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Critical Care. 2013; 17(5):R234

- 1128 Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V. Hemodynamic variables related to outcome in septic shock. Intensive Care Medicine. 2005; 31(8):1066-1071
- 1129 Vassiliou AG, Mastora Z, Jahaj E, Koutsoukou A, Orfanos SE, Kotanidou A. Does serum lactate combined with soluble endothelial selectins at ICU admission predict sepsis development? In Vivo. 2015; 29(2):305-308
- 1130 Vasu TS, Cavallazzi R, Hirani A, Kaplan G, Leiby B, Marik PE. Norepinephrine or dopamine for septic shock: systematic review of randomized clinical trials. Journal of Intensive Care Medicine. 2012; 27(3):172-178
- 1131 Velissaris D, Karamouzos V, Ktenopoulos N, Pierrakos C, Karanikolas M. The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate. Critical Care Research and Practice. 2015; 2015:605830
- 1132 Veneman TF, Oude Nijhuis J, Woittiez AJJ. Human albumin and starch administration in critically ill patients: A prospective randomized clinical trial. Wiener Klinische Wochenschrift. 2004; 116(9-10):305-309
- 1133 Venkataseshan S, Dutta S, Ahluwalia J, Narang A. Low plasma protein C values predict mortality in low birth weight neonates with septicemia. Pediatric Infectious Disease Journal. 2007; 26(8):684-688
- 1134 Venkatesh AK, Avula U, Bartimus H, Reif J, Schmidt MJ, Powell ES. Time to antibiotics for septic shock: evaluating a proposed performance measure. American Journal of Emergency Medicine. 2013; 31(4):680-683
- 1135 Ventetuolo CE, Levy MM. Biomarkers: diagnosis and risk assessment in sepsis. Clinics in Chest Medicine. 2008; 29(4):591-vii
- 1136 Venugopal A. Disseminated intravascular coagulation. Indian Journal of Anaesthesia. 2014; 58(5):603-608
- 1137 Venugopal AA, Szpunar S, Johnson LB. Risk and prognostic factors among patients with bacteremia due to Eggerthella lenta. Anaerobe. 2012; 18(4):475-478
- 1138 Verbakel JY, Lemiengre MB, De Burghgraeve T, De Sutter A, Bullens DMA, Aertgeerts B et al. Diagnosing serious infections in acutely ill children in ambulatory care (ERNIE 2 study protocol, part A): diagnostic accuracy of a clinical decision tree and added value of a point-of-care Creactive protein test and oxygen saturation. BMC Pediatrics. 2014; 14:207
- 1139 Viallon A, Guyomarc'h S, Marjollet O, Berger C, Carricajo A, Robert F et al. Can emergency physicians identify a high mortality subgroup of patients with sepsis: role of procalcitonin. European Journal of Emergency Medicine. 2008; 15(1):26-33
- 1140 Vincent JL, De Backer D. Oxygen uptake/oxygen supply dependency: fact or fiction? Acta Anaesthesiologica Scandinavica Supplementum. 1995; 107:229-237
- 1141 Vincent J-L, Moreno R, Takala J, Willatts S, De MA, Bruining H et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine. 1996; 22(7):707-710
- 1142 Vincent J-L, Nelson DR, Williams MD. Is worsening multiple organ failure the cause of death in patients with severe sepsis? Critical Care Medicine. 2011; 39(5):1050-1055

- 1143 Vincent J-L, Wendon J, Groeneveld J, Marshall JC, Streat S, Carlet J. The PIRO concept: O is for organ dysfunction. Critical Care. 2003; 7(3):260
- 1144 Vinson DR, Ballard DW, Stevenson MD, Mark DG, Reed ME, Rauchwerger AS et al. Predictors of Unattempted Central Venous Catheterization in Septic Patients Eligible for Early Goal-directed Therapy. Western Journal of Emergency Medicine. 2014; 15(1):67-75
- 1145 Volante E, Moretti S, Pisani F, Bevilacqua G. Early diagnosis of bacterial infection in the neonate. Journal of Maternal-Fetal and Neonatal Medicine. 2004; 16 Suppl 2:13-16
- 1146 Vorwerk C, Loryman B, Coats TJ, Stephenson JA, Gray LD, Reddy G et al. Prediction of mortality in adult emergency department patients with sepsis. Emergency Medicine Journal. 2009; 26(4):254-258
- 1147 Voves C, Wuillemin WA, Zeerleder S. International Society on Thrombosis and Haemostasis score for overt disseminated intravascular coagulation predicts organ dysfunction and fatality in sepsis patients. Blood Coagulation and Fibrinolysis. 2006; 17(6):445-451
- 1148 Vyles D, Sinha M, Rosenberg DI, Foster KN, Tran M, Drachman D. Predictors of serious bacterial infections in pediatric burn patients with fever. Journal of Burn Care and Research. 2014; 35(4):291-295
- 1149 Wacharasint P, Nakada Ta, Boyd JH, Russell JA, Walley KR. Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock. 2012; 38(1):4-10
- 1150 Waechter J, Kumar A, Lapinsky SE, Marshall J, Dodek P, Arabi Y et al. Interaction between fluids and vasoactive agents on mortality in septic shock: a multicenter, observational study. Critical Care Medicine. 2014; 42(10):2158-2168
- 1151 Waliullah SM, Islam MN, Siddika M, Hossain MA, Jahan I, Chowdhury AK. Evaluation of simple hematological screen for early diagnosis of neonatal sepsis. Mymensingh Medical Journal. 2010; 19(1):41-47
- 1152 Wallgren UM, Castren M, Svensson AEV, Kurland L. Identification of adult septic patients in the prehospital setting: a comparison of two screening tools and clinical judgment. European Journal of Emergency Medicine. 2014; 21(4):260-265
- 1153 Walliullah SM, Islam MN, Siddika M, Hossain MA, Chowdhury AK. Role of micro-ESR and I/T ratio in the early diagnosis of neonatal sepsis. Mymensingh Medical Journal. 2009; 18(1):56-61
- 1154 Walshe CM, Odejayi F, Ng S, Marsh B. Urinary glutathione S-transferase as an early marker for renal dysfunction in patients admitted to intensive care with sepsis. Critical Care and Resuscitation. 2009; 11(3):204-209
- 1155 Wang JH, Wang CY, Chi CY, Ho MW, Ho CM, Lin PC. Clinical presentations, prognostic factors, and mortality in patients with Aeromonas sobria complex bacteremia in a teaching hospital: a 5-year experience. Journal of Microbiology, Immunology, and Infection. 2009; 42(6):510-515
- 1156 Wang SL, Wu F, Wang BH. Prediction of severe sepsis using SVM model. Advances in Experimental Medicine and Biology. 2010; 680:75-81
- 1157 Waring WS, Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clinical Toxicology. 2011; 49(8):720-728

- 1158 Warren DK, Zack JE, Cox MJ, Cohen MM, Fraser VJ. An educational intervention to prevent catheter-associated bloodstream infections in a nonteaching, community medical center. Critical Care Medicine. 2003; 31(7):1959-1963
- 1159 Waskerwitz S, Berkelhamer JE. Outpatient bacteremia: Clinical findings in children under two years with initial temperatures of 39.5degree C or higher. Journal of Pediatrics. 1981; 99(2):231-233
- 1160 Waterer GW, Kessler LA, Wunderink RG. Delayed administration of antibiotics and atypical presentation in community-acquired pneumonia. Chest. 2006; 130(1):11-15
- 1161 Wawrzeniak IC, Loss SH, Moraes MCM, De La Vega FL, Victorino JA. Could a protocol based on early goal-directed therapy improve outcomes in patients with severe sepsis and septic shock in the Intensive Care Unit setting? Indian Journal of Critical Care Medicine. 2015; 19(3):159-165
- 1162 Weaver MG. Using active learning strategies to present bloodborne pathogen programs. Journal of School Nursing. 2003; 19(3):181-184
- 1163 Weinert CR, Mann HJ. The science of implementation: changing the practice of critical care. Current Opinion in Critical Care. 2008; 14(4):460-465
- 1164 West BA, Peterside O, Ugwu RO, Eneh AU. Prospective evaluation of the usefulness of Creactive protein in the diagnosis of neonatal sepsis in a sub-Saharan African region. Antimicrobial Resistance and Infection Control. 2012; 1(1):22
- 1165 Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Critical Care Medicine. 2008; 36(4):1297-1303
- 1166 Whittaker SA, Fuchs BD, Gaieski DF, Christie JD, Goyal M, Meyer NJ et al. Epidemiology and outcomes in patients with severe sepsis admitted to the hospital wards. Journal of Critical Care. 2015; 30(1):78-84
- 1167 Wiedermann CJ. Systematic review of randomized clinical trials on the use of hydroxyethyl starch for fluid management in sepsis. BMC Emergency Medicine. 2008; 8:1
- 1168 Wilkinson M, Bulloch B, Smith M. Prevalence of occult bacteremia in children aged 3 to 36 months presenting to the emergency department with fever in the postpneumococcal conjugate vaccine era. Academic Emergency Medicine. 2009; 16(3):220-225
- 1169 Wilkman E, Kaukonen KM, Pettila V, Kuitunen A, Varpula M. Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesthesiologica Scandinavica. 2013; 57(4):431-442
- 1170 Wilson AP, Weavill C, Burridge J, Kelsey MC. The use of the wound scoring method 'ASEPSIS' in postoperative wound surveillance. Journal of Hospital Infection. 1990; 16(4):297-309
- 1171 Winterbottom F, Seoane L, Sundell E, Niazi J, Nash T. Improving sepsis outcomes for acutely ill adults using interdisciplinary order sets. Clinical Nurse Specialist CNS. 2011; 25(4):180-185
- 1172 Winters BD, Pronovost PJ. Rapid response systems: should we still question their implementation? Journal of Hospital Medicine. 2013; 8(5):278-281

- 1173 Wittbrodt P, Haase N, Butowska D, Winding R, Poulsen JB. Quality of life and pruritus in patients with severe sepsis resuscitated with hydroxyethyl starch long-term follow-up of a randomised trial. Critical Care. 2013; 17(2)
- 1174 Wojkowska-Mach J, Borszewska-Kornacka M, Domanska J, Gadzinowski J, Gulczynska E, Helwich E et al. Early-onset infections of very-low-birth-weight infants in Polish neonatal intensive care units. Pediatric Infectious Disease Journal. 2012; 31(7):691-695
- 1175 Wolbrink TA, Kissoon N, Burns JP. The development of an internet-based knowledge exchange platform for pediatric critical care clinicians worldwide*. Pediatric Critical Care Medicine. 2014; 15(3):197-205
- 1176 Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT et al. A multibiomarkerbased model for estimating the risk of septic acute kidney injury. Critical Care Medicine. 2015; 43(8):1646-1653
- 1177 Wong HR, Cvijanovich N, Wheeler DS, Bigham MT, Monaco M, Odoms K et al. Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock. American Journal of Respiratory and Critical Care Medicine. 2008; 178(3):276-282
- 1178 Wong HR, Weiss SL, Giuliano JSJ, Wainwright MS, Cvijanovich NZ, Thomas NJ et al. Testing the prognostic accuracy of the updated pediatric sepsis biomarker risk model. PloS One. 2014; 9(1):e86242
- 1179 Wunder C, Eichelbronner O, Roewer N. Are IL-6, IL-10 and PCT plasma concentrations reliable for outcome prediction in severe sepsis? A comparison with APACHE III and SAPS II. Inflammation Research. 2004; 53(4):158-163
- 1180 Xi X, Xu Y, Jiang L, Li A, Duan J, Du B et al. Hospitalized adult patients with 2009 influenza A(H1N1) in Beijing, China: risk factors for hospital mortality. BMC Infectious Diseases. 2010; 10:256
- 1181 Xie L-X. New biomarkers for sepsis. Medical Journal of Chinese People's Liberation Army. 2013; 38(1):6-9
- 1182 Xu JY, Chen QH, Xie JF, Pan C, Liu SQ, Huang LW et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Database of Abstracts of Reviews of Effects. 2014;(2):702
- 1183 Yahav D, Leibovici L, Goldberg E, Bishara J, Paul M. Time to first antibiotic dose for patients hospitalised with community-acquired pneumonia. International Journal of Antimicrobial Agents. 2013; 41(5):410-413
- 1184 Yahav D, Schlesinger A, Daitch V, Akayzen Y, Farbman L, Abu-Ghanem Y et al. Presentation of infection in older patients-a prospective study. Annals of Medicine. 2015; 47(4):354-358
- 1185 Yamakawa K, Ogura H, Fujimi S, Morikawa M, Ogawa Y, Mohri T et al. Recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: A multicenter propensity score analysis. Intensive Care Medicine. 2013; 39(4):644-652
- 1186 Yamamoto LG. Application of informed consent principles in the emergency department evaluation of febrile children at risk for occult bacteremia. Hawaii Medical Journal. 1997; 56(11):313-2

- 1187 Yamashita T, Doi K, Hamasaki Y, Matsubara T, Ishii T, Yahagi N et al. Evaluation of urinary tissue inhibitor of metalloproteinase-2 in acute kidney injury: a prospective observational study. Critical Care. 2014; 18(6):716
- 1188 Yan SB, Helterbrand JD, Hartman DL, Wright TJ, Bernard GR. Low levels of protein C are associated with poor outcome in severe sepsis. Chest. 2001; 120(3):915-922
- 1189 Yang J, Liu F, Zhu X. Colloids vs crystalloids in fluid resuscitation for septic shock: a metaanalysis. Chinese Critical Care Medicine. 2010; 22(6):340-345
- 1190 Yang SC, Liao KM, Chen CW, Lin WC. Positive blood culture is not associated with increased mortality in patients with sepsis-induced acute respiratory distress syndrome. Respirology. 2013; 18(8):1210-1216
- 1191 Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F et al. A randomized trial of protocol-based care for early septic shock. New England Journal of Medicine. 2014; 370(18):1683-1693
- 1192 Yegenaga I, Hoste E, Van Biesen W, Vanholder R, Benoit D, Kantarci G et al. Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: results of a prospective study. American Journal of Kidney Diseases. 2004; 43(5):817-824
- 1193 Yentis SM, Soni N, Sheldon J. C-reactive protein as an indicator of resolution of sepsis in the intensive care unit. Intensive Care Medicine. 1995; 21(7):602-605
- 1194 Yildizdas D, Yapicioglu H, Celik U, Sertdemir Y, Alhan E. Terlipressin as a rescue therapy for catecholamine-resistant septic shock in children. Intensive Care Medicine. 2008; 34(3):511-517
- 1195 Yilmaz E, Batislam E, Tuglu D, Kilic D, Basar M, Ozluk O et al. C-reactive protein in early detection of bacteriemia and bacteriuria after extracorporeal shock wave lithotripsy. European Urology. 2003; 43(3):270-274
- 1196 Yilmaz G, Caylan R, Aydin K, Topbas M, Koksal I. Effect of education on the rate of and the understanding of risk factors for intravascular catheter-related infections. Infection Control and Hospital Epidemiology. 2007; 28(6):689-694
- 1197 Yin S, Powell EC, Trainor JL. Serious bacterial infections in febrile outpatient pediatric kidney transplant recipients. Pediatric Infectious Disease Journal. 2011; 30(2):136-140
- 1198 Yoo JW, Lee JR, Jung YK, Choi SH, Son JS, Kang BJ et al. A combination of early warning score and lactate to predict intensive care unit transfer of inpatients with severe sepsis/septic shock. Korean Journal of Internal Medicine. 2015; 30(4):471-477
- 1199 Yossuck P, Preedisripipat K. Neonatal group B streptococcal infection: incidence and clinical manifestation in Siriraj Hospital. Journal of the Medical Association of Thailand. 2002; 85 Suppl 2:S479-S487
- 1200 Yu L, Long D, Wu XL, Yang JH, Yang YC, Feng G. Prognostic significance of urokinase-type plasminogen activator and its receptor in patients with systemic inflammatory response syndrome. World Journal of Emergency Medicine. 2011; 2(3):185-189
- 1201 Zahar JR, Timsit JF, Garrouste-Org, Francais A, Vesin A, Descorps-Declere A et al. Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not

associated with mortality.[Erratum appears in Crit Care Med. 2011 Oct;39(10):2392 Note: Vesim, Aurelien [corrected to Vesin, Aurelien]]. Critical Care Medicine. 2011; 39(8):1886-1895

- 1202 Zaidi E, Bachur R, Harper M. Non-typhi Salmonella bacteremia in children. Pediatric Infectious Disease Journal. 1999; 18(12):1073-1077
- 1203 Zanaty OM, Megahed M, Demerdash H, Swelem R. Delta neutrophil index versus lactate clearance: Early markers for outcome prediction in septic shock patients. Alexandria Journal of Medicine. 2012; 48(4):327-333
- 1204 Zant R, Melter M, Knoppke B, Ameres M, Kunkel J. Kinetics of interleukin-6, procalcitonin, and C-reactive protein after pediatric liver transplantation. Transplantation Proceedings. 2014; 46(10):3507-3510
- 1205 Zarkesh M, Sedaghat F, Heidarzadeh A, Tabrizi M, Moghadam KB, Ghesmati S. Diagnostic value of IL-6, CRP, WBC, and absolute neutrophil count to predict serious bacterial infection in febrile infants. Acta Medica Iranica. 2015; 53(7):408-411
- 1206 Zhang L, Zhu G, Han L, Fu P. Early goal-directed therapy in the management of severe sepsis or septic shock in adults: a meta-analysis of randomized controlled trials. BMC Medicine. 2015; 13:71
- 1207 Zhang W, Chen X, Huang L, Lu N, Zhou L, Wu G et al. Severe sepsis: Low expression of the reninangiotensin system is associated with poor prognosis. Experimental and Therapeutic Medicine. 2014; 7(5):1342-1348
- 1208 Zhang Z. Biomarkers, diagnosis and management of sepsis-induced acute kidney injury: a narrative review. Heart, Lung and Vessels. 2015; 7(1):64-73
- 1209 Zhao Y, Tao.L., Jiang D, Chen X, Li P, Ning Y. The -144C/A Polymorphism in the Promoter of HSP90beta Is Associated with Multiple Organ Dysfunction Scores. PloS One. 2013; 8(3)
- 1210 Zhao Y, Wang Q, Zang B. Dopamine versus norepinephrine for septic shock: a systematic review. Chinese Journal of Evidence-Based Medicine. 2012; 12(6):679-685
- 1211 Zhong JZ, Wei D, Pan HF, Chen YJ, Liang XA, Yang ZY et al. Colloid solutions for fluid resuscitation in patients with sepsis: systematic review of randomized controlled trials. Journal of Emergency Medicine. 2013; 45(4):485-495
- 1212 Zhou FH, Song Q. Effectiveness of norepinephrine versus dopamine for septic shock: a meta analysis. Chinese Critical Care Medicine. 2013; 25(8):449-454
- 1213 Zhou FH, Song Q. Clinical trials comparing norepinephrine with vasopressin in patients with septic shock: a meta-analysis. Military Medical Research. 2014; 1:6
- 1214 Zhou F, Mao Z, Zeng X, Kang H, Liu H, Pan L et al. Vasopressors in septic shock: a systematic review and network meta-analysis. Therapeutics and Clinical Risk Management. 2015; 11:1047-1059
- 1215 Zhou J, Li Y, Tang Y, Liu F, Yu S, Zhang L et al. Effect of acute kidney injury on mortality and hospital stay in patient with severe acute pancreatitis. Nephrology. 2015; 20(7):485-491

- 1216 Zimmerman O, Rogowski O, Aviram G, Mizrahi M, Zeltser D, Justo D et al. C-reactive protein serum levels as an early predictor of outcome in patients with pandemic H1N1 influenza A virus infection. BMC Infectious Diseases. 2010; 10
- 1217 Zuhlke LJ, Engel ME. The importance of awareness and education in prevention and control of RHD. Global Heart. 2013; 8(3):235-239