EVIDENCE REVIEW & ECONOMIC ANALYSIS OF EXCESS WINTER DEATHS

for the National Institute for Health and Care Excellence (NICE)

Review 1

Factors determining vulnerability to winter- and coldrelated mortality/morbidity

London School of Hygiene & Tropical Medicine

Public Health England

University College London

Glossary

Excoss winter	By convertion established by Curwon for the UK^{1} the deaths not device the
Excess winter death (EWD)	By convention established by Curwen for the UK, ¹ the deaths per day in the four coldest 'winter' months (December, January, February, March for the northern hemisphere), minus the deaths per day over other, 'non-winter' months, all divided by the average deaths per day over the non-winter months
	$\frac{\sum_{deaths} [Dec, Jan, Feb, Mar]}{120} - \frac{\sum_{deaths} [Aug, Sep, Oct, Nov, Apr, May, Jun, Jul]}{245}$ $\frac{\sum_{deaths} [Aug, Sep, Oct, Nov, Apr, May, Jun, Jul]}{245}$
Fuel poverty	The traditional definition of fuel poverty was said to apply if a household needs to spend more than 10% of its income on fuel to maintain a satisfactory heating regime (usually 21 degrees for the main living area, and 18 degrees for other occupied rooms).
	 However, the UK government has recently set out a new definition which it intends to adopt under the Low Income High Costs (LIHC) framework.² Under the new definition, a household is said to be in fuel poverty if: Its required fuel costs are above the national median level At that level of expenditure the household would be left with a residual income below the official poverty line
Lag (time series studies)	The lag in time series studies refers to the time lag (delay), usually measured in days, between exposure and health effect. This refelects the fact that, for example, cold outdoor temperature today may not only affect mortality today (lag 0) but also tomorrow (lag 1 day), the day after that (lag 2 days) and so forth. Typically, cold effects on health are observed for periods of two weeks or more following the day of cold.
Socio-economic group	The group to which an individual belongs by virtue of his or her social and economic position — usually classified on the basis of occupation. Groups are typically defined to reflect a broad ranking of income and 'social status': e.g. professional groups; managers; non-manual workers; skilled manual workers; semi-skilled workers; and unskilled workers.
Standard Assessment Procedure (SAP) rating	An index (measured on a logarithmic scale) that reflects the cost of heating unit floor area under a standard heating regime. ³ The scale goes from 1 (highly inefficient) to 100 (highly efficient). The index depends on the rate of heat loss from the dwelling, determined by building fabric, degree of insulation, ventilation, and the cost of supplying heat, determined by heating efficiency, fuel price, and solar gain. It is not affected by characteristics of the household occupying the dwelling (e.g. household size, heating patterns, temperatures).
Time-series study	In the context used in this report, a time series study is one which examines the relationship between the occurrence (count) of health events, such as deaths, hospital admissions or emergency room attendance, usually measured at daily level, and variation in environmental factors measured as similar temporal resolution. ⁴
	Time-series studies commonly entail analysis of several years of daily health event data which are approximately Poisson distributed, overdispersed (i.e. where variance is greater than the mean), and positively autocorrelated. Analyses of such data in relation to outdoor temperature provide the usual

basis for attribution of deaths to heat and cold. The (time-varying)
confounding factors for such analyses include season, long term trends,
outdoor air pollution and periods of influenza. Population characteristics such
as age, gender, socio-economic status are best thought of as potential effect-
modifiers and not as confounders.

Abbreviations

- A&E Accident and emergency AF Atrial fibrillation BMI **Body Mass Index** CI Confidence interval (95%) CMD Common mental disorder COPD Chronic obstructive pulmonary disease COLD Chronic obstructive lung disease CVD Cardiovascular disease DJF December, January, February (UK/northern hemisphere temperate region 'winter') December, January, February, March: EWD months of winter DJFM ED **Enumeration district** EHS **English Housing Survey** EHCS **English House Condition Survey** EWD Excess winter death F Female Forced expiratory volume in 1 second (lung function) FEV_1 GHQ **General Health Questionnaire** JJA June, July, August (UK/northern hemisphere temperate region 'summer') HSE Health Survey for England International Classification of Diseases ('ICD-9': 9th revision, 'ICD-10': 10th revision) ICD Μ Male March, April, May (UK/northern hemisphere temperate region 'spring') MAM MTS Mental test score OR Odds ratio PEFR Peak exploratory flow rate ΡM Particulate matter (air pollutant) PICH Primary intra-cerebral haemorrhage QoL Quality of Life RH **Relative humidity** Radon Rn RR **Relative risk** SAP Standard Assessment Procedure SON September, October, November (UK/northern hemisphere temperature region 'autumn') Tmax Maximum daily temperature Tmin Minimum daily temperature VOC Volatile organic compound w.r.t. with respect to YLD Years Lived with Disability
- YLL Years of life lost

Contents

E>	ecutive	e summary	6
1	Intro	oduction	9
	1.1	Context	9
	1.2	Aim	9
	1.3	Research questions	9
2	Met	hods	11
3	Find	lings	15
	Summa	ary of evidence Error! Boo	kmark not defined.
	Specifi	ic vulnerability factors	
	(1) \	Variations between populations/countries	
	(2) T	Frends in vulnerability to excess winter death over time	35
	(3) P	Personal vulnerability factors	
	(4) C	Cause-of-death/morbidity	41
	(5) S	Socio-demographic factors	53
	(6) H	Housing factors including fuel poverty	57
	Quality	y of quantitative studies	66
	Finding	gs into context	67
	Implica	ations of findings	67
	Limitat	tions of the evidence and gaps	68
	Limitat	tions of the review and potential impact on findings	68
4	Con	clusions	69
A	opendic	ces	73
	Appen	dix 1: Review team	73
	Appen	dix 2: Search strategies	76
	Appen	dix 3: Bibliography of included studies	120
	Appen	dix 4: Excluded studies	
	Appen	dix 5: Evidence tables	
	Appen	dix 6: Examples of quality assessment checklists used	268

Executive summary

- Background England has a large winter excess of mortality and morbidity which is generally viewed as indicating avoidable vulnerability to the effects of cold weather and other winter-related phenomena. However evidence remains limited on the determinants of vulnerability particularly in relation to socio-economic factors including fuel poverty, and the role of thermally inefficient housing. This review was undertaken to identify populations vulnerable to the consequences of cold temperatures and poorly heated or expensive to heat homes, and to identify the factors that contribute to vulnerability and how these factors interact.
- Methods A literature search was undertaken in October 2013 on a wide range of databases and grey literature sources including, among others, MEDLINE, Social Policy and Practice, Social Science Citation Index, HMIC, PsycINFO, Avery Index and ICONDA International. The search strategies were developed using a combination of subject indexing and free text search terms. Searches were limited to the last twenty years (1993-2013) and to English language publications only. Quantitative observational studies from OECD countries, excluding intervention studies, were selected for inclusion. Studies were summarized and assessed for quality of evidence by two independent assessors, and their results reported by narrative synthesis.
- Results One hundred and thirty nine studies were selected for inclusion. They were heterogeneous in terms of study design, setting and quality of evidence. They were scrutinised for evidence relating to a range of personal and other potential vulnerability factors for seasonal- and cold-related mortality/morbidity. The seasonal fluctuation in mortality/morbidity and the strength of association with low outdoor temperature appears to be greater in England than it is in Scandinavia and selected countries of northern continental Europe. Correlation studies suggest that the seasonal and cold-related excess of mortality/morbidity is lower in settings that have greater protection against low outdoor temperatures because of better thermal efficiency standards of housing and the thermal quality of clothing worn by the population. A number of personal vulnerability factors were identified including age. Women appear to have slightly greater risk than men. There was insufficient evidence to draw conclusions about the effect of ethnicity. Rural populations appear to have no greater risk than urban populations. A wide range of disease outcomes show evidence of seasonal variation and to have a relationship with low outdoor temperatures, but the evidence is strongest for cardiorespiratory outcomes. The risk of slips and falls also shows some degree of seasonal fluctuation, but with more modest increases in risk in the elderly population than in working age groups during periods of cold or inclement weather. The available evidence suggests a generally flat or weak relationship between socio-economic status and risk of winter/coldrelated mortality/morbidity. There is limited direct and indirect evidence to suggest that the thermal efficiency of housing and fuel poverty are important determinants of vulnerability.

Conclusions The review identified a number of factors that appear to contribute to vulnerability to seasonal- and cold-related mortality/morbidity, which can help in the development of health protection strategies. The relative flatness of the relationship with socio-economic factors, the importance of age, and the wide range of health outcomes affected, suggest that the risk of winter- and cold-related mortality/morbidity is fairly widely distributed, especially in the elderly population, which has bearing on the targeting of interventions. The evidence of this review needs to be interpreted alongside the evidence of subsequent reviews which includes evidence on interventions.

Roles in the review process

The search strategy was developed by Steve Duffy and Paul Wilkinson in consultation with NICE. The selection of studies to include in the review was made by James Milner and Paul Wilkinson, with additional input from Payel Das and Ben Armstrong. All contributed to summarizing of the research evidence and the assessment of the quality of published studies, with individual contributors assessing studies in their area of expertise. All studies were independently reviewed by Paul Wilkinson as well as by at least one other member of the review team, and assessment scores agreed where necessary.

Conflicts of interest

All members of the research team undertake research relevant to the subject of this review, and have received and continue to receive, research funding from a range of funding organizations. These have included:

- The European Commission
- The European Climate Foundation
- UK Government departments
- The UK Research Councils (EPSRC, ESRC, MRC, NERC)
- The Wellcome Trust

1 Introduction

1.1 Context

This is the first part of the 2013/14 review for NICE on excess winter death and morbidity. Its focus is on vulnerability to excess winter deaths and morbidity and the health risks associated with cold weather and cold homes. The review examines the current state of the evidence, focusing on quantitative epidemiologic studies.

England has a large seasonal fluctuation in mortality and morbidity, with rates highest during the winter months. Much of this winter excess of mortality/morbidity appears to be related to the effects of exposure to low ambient temperatures, which have been shown in the scientific literature to be associated with a range of adverse health outcomes.^{5 6} There are local and national initiatives aimed at reducing this burden including through actions targeted at vulnerable population groups and through strategies aimed at reducing fuel poverty and housing-related risks.

The contribution of potential vulnerability factors to excess winter- and cold-related mortality/morbidity continue to be debated. Much attention has been drawn to the issue of fuel poverty,⁷ which was subject to the 2012 'Hills review' *Getting the measure of fuel poverty*.⁸ Cold homes and fuel poverty were also the focus of a 2011 report by the Marmot Review Team, which set out the case for action on housing to help alleviate the burdens of winter and cold-related illness and mortality. Action to improve energy efficiency in the housing sector is also an objective to meet climate change mitigation targets.

However, the evidence about many potential determinants remains inconclusive. Although there is strengthening evidence about a range of housing and behavioural factors, the importance of socio-economic status has been unclear, for example.^{9 10}

1.2 Aim

To identify at risk populations vulnerable to the consequences of cold temperatures and poorly heated or expensive to heat homes.

1.3 Research questions

The review represents an analysis of epidemiological data which highlights i) the intrinsic and extrinsic characteristics of populations at risk of excess winter deaths and related health consequences and ii), how these characteristics interact with each other.

Specific questions

• Which subpopulations are more vulnerable to cold temperatures and poorly heated or expensive-to-heat homes?

• What factors contribute to vulnerability and how do these factors interact with each other?

We interpreted these questions as needing to identify and quantify the contribution of factors that explain variations in seasonal and/or specific cold-related health burdens, including those of snow and ice, with respect to person, time or place. This included specific interest in the potential variations by (modifying effects of) time-period, age, sex, gender, ethnicity, illness, socio-economic deprivation/fuel poverty, and housing quality.

2 Methods

Literature searches were undertaken to identify studies primarily about excess winter deaths. The searches were also designed to identify studies about seasonal morbidity, fuel poverty, cold housing, energy efficient housing, winter related accidents and health forecasting.

The literature search involved searching a wide range of databases in October 2013 and grey literature resources. The search strategies were developed using a combination of subject indexing and free text search terms. Search terms were identified through discussion between the research team, by scanning background literature and 'key articles' already known to the research team, and by browsing database thesauri. The searches were limited to the last twenty years (1993-2013) and to English language publications only.

The following databases and resources were searched:

- MEDLINE and MEDLINE In-Process
- EMBASE
- Social Policy & Practice
- Science Citation Index (SCI)
- Social Science Citation Index (SSCI)
- Conference Proceedings Citation Index- Science (CPCI-S)
- Conference Proceedings Citation Index- Social Science & Humanities (CPCI-SSH)
- Health Management Information Consortium (HMIC)
- PsycINFO
- Cochrane Database of Systematic Reviews (CDSR)
- Database of Abstracts of Reviews of Effects (DARE)
- Cochrane Central Register of Controlled Trials (CENTRAL)
- Health Technology Assessment (HTA) database
- NHS Economic Evaluation Database (NHS EED)
- EconLit
- CEA (Cost-Effectiveness Analysis) Registry
- RePEc: Research papers in Economics
- Campbell Library
- Trials Register of Promoting Health Interventions (TRoPHI)
- Database of Promoting Health Effectiveness Reviews (DoPHER)
- Scopus
- Avery Index
- ICONDA International
- PsycEXTRA
- NICE Evidence
- OpenGrey
- RIBA Catalogue (Royal Institute of British Architects)
- NYAM Grey Literature Report (New York Academy of Medicine)

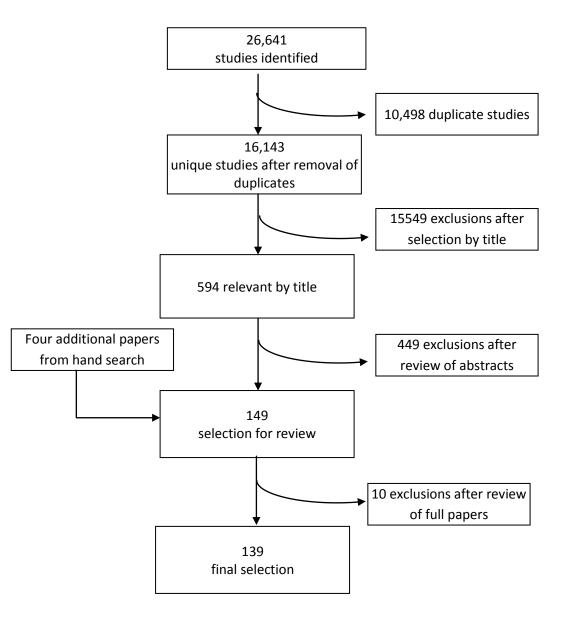
Details of the MEDLINE and other database search strategies and their results are given in Appendix 2.

As a number of databases were searched, some degree of duplication resulted. The titles and abstracts of bibliographic records were downloaded and imported into EndNote bibliographic management software to allow removal of duplicate records and subsequent processing.

In addition, searches were made of selected relevant websites including:

- <u>http://www.eagacharitabletrust.org/</u> (EAGA Charitable Trust)
- <u>http://www.euro.who.int/en/health-topics/environment-and-health/Housing-and-health</u> (The World Health Organization Regional Office for Europe)
- <u>http://www.energysavingtrust.org.uk/</u> (The Energy Saving Trust)
- <u>http://www.cse.org.uk/</u> (The Centre for Sustainable Energy)

Inclusion/exclusion criteria for review


Inclusion

- Quantitative primary research papers reporting evidence on factors relating to vulnerability to winter or cold-related mortality/morbidity (including the effects of snow and ice)
- Studies of populations in countries which are members of the Organization of Economic Cooperation and Development (OECD)
- Publication year 1993 onwards
- English language

Exclusion

- Studies reporting only seasonal variation in health or cold-related impacts without additional reference to vulnerability factors
- Intervention studies (evidence of interventions studies will be reported in subsequent reviews)
- Qualitative studies (qualitative evidence relating to interventions will be reported in subsequent reviews)
- Studies of seasonal influenza (except with respect to its contribution to excess winter death)
- Studies published as conference abstracts only (without fuller paper or extended abstract)

Flow chart of number of studies identified from different sources and numbers excluded at different stages of process and reasons for exclusion

Quality appraisal processes including consistency checking within and between appraisers, moderation at data extraction and analysis stages

Quality appraisal was made using the criteria and process for assessing quantitative observational studies and qualitative studies as outlined in the *Methods for the development of NICE public health guidance (third edition) Sept 2012.* See Appendix 6.

All evidence summaries were extracted by one reviewer and agreed/supplemented by the second reviewer. There was generally good agreement between reviewers.

Various studies did not contain results that could be expressed as relative risks or equivalent, and published data in some cases did not allow the extraction or calculation of confidence intervals. Key statistics were reproduced in the most appropriate form to represent the original data.

Criteria for applicability.

Studies were included if they contained data relevant to <u>effect modification of any seasonal or cold-related exposure-response function or of risk falls/injuries on snow or ice – i.e. they include at least two sets of risk functions for different groups/characteristics. There was no restriction in terms of health outcome or study design (except for the exclusion of intervention and qualitative study designs.)</u>

Studies which reported seasonal fluctuations or temperature-response functions without evidence relevant to effect modification (e.g. no subgroups by age or results classified by an ecological socioeconomic parameter etc) were not included. Nor were studies included that reported data on physiological parameters only. There are many such papers, and a very restrictive definition was applied to achieve a clearer focus and keep the overall number of papers manageable.

We selected papers from countries in the Organization of Economic Cooperation and Development, but also including Taiwan as a high income country. In addition, we did not include evidence derived from intervention studies, including from 'natural experiments,' which is separately considered in subsequent reviews.

Methods of synthesis and data presentation.

The selected literature is extremely heterogeneous and unsuitable for summary using formal metaanalytical methods. Instead, we summarize the studies using narrative summary. In addition the direction of associations for a range of potential vulnerabilities are summarized in Table 1 using a set of headings that indicate different potential vulnerability factors, including personal factors (age, sex, ethnicity), different disease outcomes, socio-demographic factors (urban/rural, deprivation) and factors relating to housing and fuel poverty. In this table the arrows indicate the direction of effect for each particular risk factor. For example, under the 'age' heading, an 'up-arrow' (\uparrow) indicates increasing winter-/cold-related risk at older age, a 'down-arrow' (\downarrow) decreasing risk at older age and a double headed horizontal arrow (\leftrightarrow) evidence of no appreciable change in risk with age. Where an arrow is enclosed in brackets, it signifies mixed evidence or a statistically insignificant result or one that is suggestive only.

3 Findings

Many studies contribute evidence relevant to a number of potential vulnerability factors and the following text considers different factors in turn. In cases where there are multiple studies relevant to the particular factor, the most important and relevant will be briefly described, and the other studies listed with brief commentary on the degree to which they support overall conclusions.

Table 1 below lists all the included studies by year of publication, with the quality ratings and an indication of the evidence they include using arrows to give a broad indication of the main reported associations in each case. Many studies contribute evidence in relation to more than one vulnerability factor. More detailed summaries of these papers are given in Apendix 5.

The evidence is summarized with regard to variations between populations, trends over time, personal vulnerability factors (age, gender, ethnicity), cause-of-death/morbidity, socio-demographic factors, and housing anf fuel poverty.

Table 1. Qualitative sum	mary o	of evid	lence.	Papers	are o	rdered	d by ye	ear of	public	ation	(most	recer	nt first) and	then a	lphab	etical								
Arrows indicate the dire					•					•	•				-								•		
explanatory factor, a 'dow	wn-arr	·ow' (·	↓) de	creasing	; risk a	and a	double	e head	ded ho	orizon	tal arr	ow (<	→) evi	idence	e of no	o appr	eciabl	le chai	nge in	risk. V	Where	an ai	row i	s encl	osed
in brackets, it signifies m	ixed e	videno	ce or a	a statisti	cally i	nsigni	ficant	resul	t or oi	ne tha	nt is su	iggesti	ive on	ly. Fo	or varia	ables	witho	ut ord	ler, a j	plus si	gn (+)	indica	ates e	videno	e of
variation across groups.	Yellow	' highl	ightin	g is to ai	d read	dabilit	y only	and h	nas no	inter	oretat	ional s	signfic	ance.											
Study (ordered by year	Ref	Valio	dty																						1
then authors)	no.																								
		Internal	External	Setting	Time trends	Country (region) comparisons	Climate	Age: change in risk with older age	Gender: difference of women vs men	Ethnicity: effect of non-white populations	Rurality: effect in rural vs urban areas	Pre-exisiting disease	Cardiovascular	Stroke	Respiratory	Falls / fractures	Mental illness	Other	Deprivation	Fuel poverty	Housing	Housing tenure: rented (vs OO)	Nursing homes	Other vulnerability factors	Snow-ice
<u>2013</u>																									
Atsumi A et al. <i>Circ J</i> 2013; 77(7): 1854-61	11	++	+	JPN				\downarrow					↑	↑				↑							
Callaly E et al. <i>Euro J Int</i> <i>Med</i> 2013; 24(6) :546- 51	12	+	+	IRE									↑		↑			↑	\Leftrightarrow						
de'Donato FK et al. <i>PLoS One</i> 2013; 8(4): e61720.	13	++	+	ITA				(个)					↑		←										
de Vries R et al. <i>J Publ</i> <i>Hlth</i> 2013; 35(3): 361-6	14	+	+	ENG																(个)					
Gomez-Acebo et al. <i>Publ HIth</i> 2013; 127(3): 252-8	15	++	+	ESP				↑	\leftrightarrow				↑	↑				↑							

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	cVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Hajat S et al. Department of Health; 2013	16	++	++	ENG				Ŷ	↑				↑		¢	↑		↑	\Rightarrow						
McAllister et al. <i>Prim</i> <i>Care Resp J</i> 2013; 22(3): 296-9	17	+	++	SCO											↑				¢						
McGuinn et al. <i>Int J</i> <i>Biometeorol</i> 2013; 57(5): 655-62	18	++	+	ENG				Ŷ					↑												
Madrigano J et al. <i>Epidemiology</i> 2013; 24(3): 439-46	19	++	+	USA									¢						(↔)						
Modarres R et al. Int J Biometeorol 2013;	20	++	+	CAN																					
Romero-Ortuno et al. <i>Ir</i> <i>J Med Sci</i> 2013; 182 : 513-8	21	+	+	IRE														↑							
Tseng CM et al. <i>PLoS</i> <i>One</i> 2013; 8(3): e57066	22	+	+	TAI				(个)							↑										
Webb et al. <i>JECH</i> 2013; 67: 280-5	23	+	+	ENG											↑						\uparrow	Ŷ			
<u>2012</u>																									
Barnett AG et al. Environ Res 2012; 112: 218-24	24	++	++	USA									↑		↑										
Hales et al. JECH 2012; 66:379-84	25	+	+	NZ				↑	↔	\Leftrightarrow	\rightarrow								\uparrow			\uparrow			
Hori et al. <i>Int J Environ</i> <i>HIth Res</i> 2012; 22(5): 416-430	26	++	+	ESP																					

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Miron et al. <i>Int J</i> <i>Biometeorol</i> 2012; 56(1): 145-52	27	+	+	ESP	Ŷ														(↓)						
Modarres R et al. <i>Bone</i> 2012; 50(4): 909-16	20	+	+	CAN												↑									
Morabito M. <i>Sci Total</i> <i>Environ</i> 2012; 441: 28- 40	28			ITA				Ŷ																	
Morency P et al. <i>Can J</i> <i>Publ Hlth</i> 2012; 103(3) :218-22	29	+	+	CAN												↑									
Office for National Statistics. 2012	30	+	+	E&W	\downarrow	()		↑	↑				↑		↑			↑							
Phu Pin S. J Am Med Dir Assoc 2012; 13(3):309.e1-7	31	+	-	FRA				↑															↑		
Turner LR et al. <i>BMJ</i> <i>Open</i> 2012; 2(4)	32	++	++	AUS									↑		↑										
von Klot S et al. <i>Environ</i> <i>Health</i> 2012; 11: 74	33	++	+	USA	()																				
Wichmann J et al. <i>Environ Health</i> 2012; 11: 19	34	+	++	DNK				\rightarrow	\rightarrow				←						\rightarrow						
<u>2011</u>																									
Beynon C et al. <i>Environ</i> <i>Health</i> 2011; 10(1): 60	35	+	+	ENG												↑									\uparrow
Gallerani M et al. <i>Clin</i> <i>Cardiol</i> 2011; 34(6): 389	36	-	-	ITA				\leftrightarrow	↔				↑												
Morabito M et al. <i>Stroke</i> 2011; 42(3): 593- 600	37	+	+	ΙΤΑ				(个)						↑											

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	cVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Magalhaes R <i>Cerebrovasc Dis</i> 2011; 32(6): 542-51	38	++	++	POR										¢											
Murray IR et al. <i>Injury</i> 2011; 42(7): 687-90	39	+	+	SCO												←									\uparrow
Nielsen J et al. BMC Infect Dis 2011; 11: 350	40	++	++	DEN																					
Office for National Statistics. 2011	41	+	+	E&W	\downarrow	()		↑	↑				↑		↑			↑							
Parsons N et al. <i>Emerg</i> <i>Med J</i> 2011; 28(10): 851-5	42	+	++	UK												¢									+
Rocklov J et al. <i>OEM</i> 2011; 68(7): 531-6	43	++	+	SWE									↑		\leftrightarrow										
Turner RM et al. Osteoporos Intl 2011; 22(4): 1183-9	44	+	+	AUS												↑									
Wu PC et al. <i>OEM</i> 2011; 68(7): 525-30	45	+	+	TAW				↑			\uparrow		↑												

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
<u>2010</u>																									
Barnett AG et al. Environ Res 2010; 110(6):604-11	40	++	++	USA																					
Bayentin L et al. <i>Int J</i> <i>Health Geogr</i> 2010; 9: 5	47	+	+	CAN									↑						¢						
Bhaskaran K et al. <i>BMJ</i> 2010; 341: c3823	48	++	++	E&W				↑				\uparrow	↑												
Chen VY et al. <i>Sci</i> <i>Total Environ</i> 2010; 408(9): 2042-9	49	+	-	TAW							÷		↑						\Rightarrow						
Gomez-Acebo I et al. <i>Publ Health</i> 2010; 124: 398-403	50	+	+	ESP				\$																	
Harris J et al. NatCen/EAGA Charitable Trust; 2010	51	++	++	ENG									\Leftrightarrow				↑				↑				
Iniguez et al. <i>Int J Env</i> <i>Res Publ Hlth</i> 2010; 7: 3196-10	52	+	+	ESP			¢						↑		↑										
Montero et al. <i>Sci</i> <i>Total Environ</i> 2010; 408: 5768-74	53	++	+	ESP																					
Rau R et al. Princeton University 2010	54	+	+	USA															\Leftrightarrow						
<u>2009</u>																									
Abrignani MG et al. Int J Cardiol 2009; 137(2): 123-9	55	-	-	ITA				¢	¢				¢												

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Anderson & Bell. Epidemiology 2009; 20(2):205-213	56	++	++	USA			¢			(个	\Rightarrow								(⇔)						
Bryden C et al. <i>Respir</i> <i>Med</i> 2009; 103(4): 558-6	57	+	+	ENG											↑										
Croxford B. Oxford: Routledge, 2009; 142- 54	58	+/	+/-	EUR											↑		↑	¢			¢				
Ekamper P et al. <i>Demogr Res</i> 2009; 21: 385-425	59	+	+	NRL	\downarrow			¢																	
Fearn V & Carter J. Health Stat 2009; 44: 69-79	60	+	+	E&W																					
Kysely J et al. <i>BMC</i> <i>Public Health</i> 2009; 9: 19	61	+	+	CZR				\rightarrow	(↔)				←												
Makinen TM et al. <i>Respir Med</i> 2009; 103(3): 456-62	62	+	+	FIN											↑										
Tenias JM et al. <i>Bone</i> 2009; 45(4): 794-8	63	+	+	ESP												←									
Yang TC et al. <i>Sci</i> <i>Total Environ</i> 2009; 407(10): 3421-4	64	-	-	TAW			\uparrow						←												
<u>2008</u>	65																								
Analitis A et al. <i>AJE</i> 2008; 168(12): 1397- 1408	65	++	+/+ +	EUR			↑	↑					↑	↑	↑										

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Barnes M et al. NatCen/EAGA/Shelter , 2008	66	+	+	ENG											↑		↑				\uparrow				
Brock A. <i>Health Stat</i> 2008; 40: 66-76	67	+	+	E&W																					
Jimenez-Conde et al. <i>Cerebrovsc Dis</i> 2008; 26: 348-54	68	+	+	ESP										↑											
Jordan RE et al. Br J Gen Pract 2008; 58(551): 400-2	69	++	++	ENG											↑				\Leftrightarrow					↑	
Osman LM et al. <i>Eur J</i> <i>Publ Hlth</i> 2008; 18: 399-405	70	+	+												↑						¢				
Rocklov, Forsberg. Scand J Publ HIth 2008; 36: 516-23	71	++	++	SWE				¢					↑		↑										
<u>2007</u>																									
Bischoff-Ferrari et al. Osteop Intl 2007; 18: 1225-33	72	++	++	USA			↑	\checkmark								↑									
Davie GS, et al. BMC Public Health 2007; 7: 263	73	+	+	NZ	\leftrightarrow	\Leftrightarrow			←	\$			¢		←				\Leftrightarrow						
Hajat S et al. <i>OEM</i> 2007; 64(2): 93-100	74	++	++	E&W		+		↑	\leftrightarrow				↑		↑			↑	\uparrow				↑		
Medina-Ramon & Schwartz. <i>OEM</i> 2007; 64(12): 827-33	75	++	++	USA			\Leftrightarrow						ſ												

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Morris C. NISRA 2007; Occasional Paper 25	76	+	++	NI	Ŷ						(个)		¢		↑					(个)	(个)				
Myint PK et al. <i>Neuroepidemiol</i> 2007; 28(2): 79-85	77	+	++	ENG				↑						¢											
<u>2006</u>	= 0																								
Carson C et al. <i>AJE</i> 2006; 164(1): 77-84	78	+	++	ENG	\checkmark								↑		↑			↑							
Diaz J et al. <i>Intl J</i> <i>Biometeorol</i> 2006; 50(6) 342-8	79	++	+	ESP					↑									↑							
Frank DA et al. <i>Pediatrics</i> 2006; 118 (5): e1293-1302	80	+	+	USA																↑					
Gerber Y, et al. <i>JACC</i> 2006; 48(2) :287-92	81	+	+	USA								\rightarrow	↑												
Medina-Ramon et al. EHP 2006; 114: 1331-6	82	++	+	USA				(个)	↔	\$		\Leftrightarrow	↑	¢	≎										
Misailidou M et al. Eur J Card Prev Rehb 2006; 13: 846-8	83	+	+	GRE				↑	\Rightarrow				←												
Morabito M et al. <i>Environ Res</i> 2006; 102(1): 52-60	84	+	+	ITA			(个)																		
Reinikainen et al. Acta Anaes Scand 2006; 50: 706-11	85	++	+	FIN											Ŷ			¢							
Southern DA et al. <i>Can J Cardiol</i> 2006; 22(1): 59-61	86	+	+/-	CAN									(个)												(个)

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	cvd	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Wang H et al. <i>J Med</i> <i>Sci</i> 2006; 55(2): 45-51	87	+	+	JPN									↑												(个)
2005																									
Barnett et al. <i>JECH</i> 2005; 59: 551-7	88	+	+	INT			↑		↑			\leftrightarrow	↑												
Basu R, et al. <i>Epidemiology</i> 2005; 16(1): 58-66	89	+	+	USA									\leftrightarrow												
Cagle, Hubbard. Ann Hum Biol. 2005; 32(4): 525-37	90	+	+	USA									↑												
Carder M et al. <i>OEM</i> 2005; 62(10): 702-10	91	++	++	SCO				↑					↑		↑			↑							
Diaz J et al. <i>Int J</i> <i>Biometeorol</i> 2005; 49(3): 179-83	92	+	+	ESP				\leftrightarrow					↑		↑										
Heyman B et al. <i>Housing Studies</i> 2005; 20(4): 649-64	93	-	-	sco																	¢				
Howieson, Hogan. J R Soc Prom Hlth 2005; 125:18-22	94	-	-	sco															¢						
Mirchandani S et al. <i>Orthopedics</i> 2005; 28(2): 149-55	95	+	+	USA												↑									
Morabito M et al. <i>Int</i> <i>J Cardiol</i> 2005; 105(3): 288-93	96	+	+	ΙΥΤΑ									↑												

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	cVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Rudge J, Gilchrist R. J Public Health 2005; 27(4): 353-8	97	++	++	ENG											↑					\uparrow					
Schwartz J. Epidemiology 2005; 16(1): 67-72	98	++	++	USA				↑	↑	↑					↑										
<u>2004</u>																									
Aronow & Ahn. J Ger A Biol Sci Med Sci 2004; 59: 146-7	99	-	+	USA									↑										+		
Goodman P et al. EHP 2004; 112: 179-85	10 0	++	+	IRE				↑					↑		↑			↑							
Hajat S, et al. Eur J Epidemiol 2004; 19(10): 959-68	10 1	+	++	ENG									\leftrightarrow		↑										
Maheswaran R et al. <i>Public Health</i> 2004; 118(3): 167-76	10 2	+	+	ENG	\checkmark			¢	↑				↑		¢				¢						
Panagiotakos DB et al. <i>Intl J Cardiol</i> 2004; 94: 229-33	10 3	+	+	GRE				↑	↑				↑												
Wilkinson P et al. <i>BMJ</i> 2004; 329(7467): 647	10 4	++	++	UK				(↔)	↑			\Leftrightarrow	\Leftrightarrow		↑				\Leftrightarrow		\uparrow			\Leftrightarrow	
<u>2003</u>																									
Crawford JR & Parker MJ. <i>Injury</i> 2003; 34(3): 223-5	10 5	++	++	ENG												↑									
Donaldson & Keatinge. <i>JECH</i> 2003; 57(10) :790-1	10 6	+	+	E&W					↔										\$						

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Healy JD. <i>JECH</i> 2003; 57(10): 784-9	10 7	+	+	EUR		+	\uparrow												\uparrow	\uparrow	\uparrow				
Hong YC, et al. <i>Epidemiology</i> 2003; 14(4): 473-8	10 8	+	+	KOR				¢	¢					↑										←	
Johnson H, Griffiths C. <i>Health Stat</i> 2003; 20: 19-24	10 9	+	++	E&W	\checkmark																				
O'Neill et al. <i>AJE</i> 2003; 157(12): 1074- 82	11 0	++	++	USA																					
Sullivan S et al. EAGA Charitable Trust; 2003	11 1	-	+	ENG																	(个)				
<u>2002</u>																									
Braga AL et al. <i>EHP</i> 2002; 110(9): 859-63	11 2	++	++	USA			+						↑		↑										
Chesser TJ, et al. Age Ageing 2002; 31(5): 343-8	11 3	++	++	ENG												\$									
Curriero FC et al. <i>AJE</i> 2002; 155(1): 80-7	11 4	++	++	USA			\leftarrow												(个)		(个)				
Lawlor DA et al. <i>JECH</i> 2002; 56(5): 373-4	11 5	+	+	ENG							\Leftrightarrow								\Leftrightarrow						
Mitchell R et al. Int J Epidemiol 2002; 31(4): 831-8	11 6	+	+	UK									↑								←				
Stewart S et al. <i>JACC</i> 2002; 39(5): 760-	11 7	+	++	sco				ſ	(个)				ſ												

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
<u>2001</u>																									
Aylin P et al. Int J Epidemiol 2001; 30(5): 1100-8	11 8	+	++	UK				←											\uparrow		(个)				
Donaldson et al. Int J Biometeorol 2001; 45(1): 45-51 2001;	11 9	+	+	EUR																				↑	
Huynen MM et al. <i>EHP</i> 2001; 109(5): 463-70	12 0	++	++	NRL				↑					¢		↑			↑							
Nafstad P et al. Eur J Epidemiol 2001; 17(7):621-7 2001	12	+	+	NOR									↑		↑										
van Rossum et al. <i>Int J</i> <i>Epidemiol</i> 2001; 30(5): 1109-16	12 2	+	++	ENG				\$				¢	↑											\leftrightarrow	
Watkins SJ et al. J Public Health Med 2001; 23: 237-41	12 3	-	+	ENG									↑						\Leftrightarrow						
Wilkinson P et al. Policy press Bristol; 2001	12 4	+	+	ENG				↑	↑				↑		↑				\Leftrightarrow		↑	Ŷ			
<u>2000</u>	12																								
Bulajic-Kopjar M. <i>Inj</i> <i>Prev</i> 2000; 6(1): 16-9	12 5	+	+	NOR												↑									\uparrow
Clinch JP, Healy JD. JECH 2000; 54(9): 719- 20	12 6	-	+	NOR/ IRE		¢							↑		↑										
Gemmell I et al. Interntl J Epidemiol 2000; 29(2): 274-9	12 7	+	+	SCO	Ŷ								↑	↑	↑				\Leftrightarrow						

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Keatinge et al. <i>Int J</i> <i>Circumpolar HIth</i> 2000; 59: 154-9	12 8	+	+	EUR		\uparrow															${\rightarrow}$			↑	
Lawlor DA, et al. J Publ Hlth Med 2000; 22(2): 176-81	12 9	+	+	ENG															\$						
<u>1999</u>																									
Donaldson GC et al. <i>Eur Respir J</i> 1999; 13(4): 844-9	13 0	+	+	ENG											¢										
Gorjanc ML et al. <i>AJE</i> 1999; 49(12): 1152-60	13 1	+	+	USA				1()	(个)				↑	↑	↑										
Jacobsen SJ et al. Osteoporos Intl 1999; 9(3): 254-9	13 2	++	++	USA												↑									Ŷ
Shah S, Peacock J. JECH 1999; 53(8): 499- 502	13 3	+	+	ENG															¢						
Sheth T et al. <i>JACC</i> 1999; 33(7): 1916-9	13 4	+	+	CAN				↑					↑	↑											
<u>1998</u>	10																								
Levy AR et al. Epidemiology 1998; 9(2): 172-7	13 5	++	+	CAN				\rightarrow	\rightarrow							←									
<u>1997</u>																									
Ballester F et al. Intl J Epidemiol 1997; 26(3):551-61 1997;	13 6	+	+	ESP				↑					↑		Ŷ			↑							
Bjornstig U et al. <i>Accid Anal Prev</i> 1997; 29(2): 211-5	13 7	+	+	SWE				↑	↑							↑									↑

		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Christophersen O. Popul Trends 1997; (90):11-7	13 8	+	+	E&W																					
Donaldson GC, Keatinge WR. <i>JECH</i> 1997; 51(6): 643-8	13 9	+	+	ENG									¢		¢										
Donaldson GC, Keatinge WR. <i>BMJ</i> 1997; 315: 1055-6	14 0	+	+	ENG	\downarrow																				
Seretakis D et al. <i>JAMA</i> 1997; 278(12): 1012-4	14 1	-	+	USA	(↓)																				
The Eurowinter Group. Lancet 1997; 349:1341-6 1 1	14 2	+	+	EUR																					
<u>1995</u>																									
Jacobsen SJ, et al. <i>AJE</i> 1995; 141(1): 79-83	14 3	++	++	USA				(↓)								↑									\uparrow
Laake K, Sverre JM. <i>Age Ageing</i> 1996; 25(5): 343-8	14 4	+	+	NOR/E& W		\uparrow		↑																	
Langford, Bentham. Intl J Biometeorol 1995; 38: 141-7	14 5	+	+	ENG									↑	¢	¢										
Lau EM et al. <i>Aust J</i> <i>Publ Hlth</i> 1995; 19(1): 76-80	14 6	++	++	AUS												↑									
<u>1994</u>																									
Parker & Martin. Eur J Epidemiol 1994; 10(4):441-2 1994;	14 7	+	+	ENG												\Leftrightarrow									

<u>1993</u>		Internal	External	Setting	Time trends	Country	Climate	Age	Gender	Ethnicity	Rurality:	Prio r dis	CVD	Stroke	Respiratory	Falls	mental	Other	Depriv	Fuel poverty	Housing	H tenure:	Nursing home	Other factors	Snow-ice
Kunst AE et al. AJE 1993; 137(3): 331-41	14 8	+	+	NRL									↑		↑			↑							
Macey & Schneider. Gerontologist 1993; 33: 497-500	14 9	+	+	USA					\checkmark	¢	¢														

Specific vulnerability factors

(1) Variations between populations/countries

The fact that England has a substantial seasonal fluctuation in mortality with a peak in winter is well established and is the primary motivation for the review in this topic area. The numbers based on the simple Excess Winter Death (EWD) index have been regularly reported by the Office for National Statistics (see for example the reports of 2012³⁰ and 2011⁴¹). Studies that report variations in winter or cold-related mortality/morbidity within or between countries help to inform the question of the determinants of excess winter death. Those that include data for England (UK) as well as other countries provide more direct evidence on the degree to which the English population is more vulnerable to the effects of winter/low temperatures than populations in neighbouring areas of continental Europe and particularly Scandinavia.

A range of studies provide evidence relevant to these questions. They include studies of two country comparisons -- of England & Wales vs Norway (Lake and Sverre 1996,¹⁴⁴ quality rating +/+) and of Ireland vs Norway (Clinch and Healy 2000,¹²⁶ rating -/+) as well as multi-country comparisons within the European region (Healy 2003,¹⁰⁷ +/+; the Eurowinter Group 1997,¹⁴² +/+, and Keatinge et al 2000,¹²⁸ (+/+). Time-series studies that quantify the relationship of mortality or morbidity with outdoor temperature have compared the relationships in cities or regions within countries. These include a study of cities of Spain (Iniguez et al 2010,⁵² +/+) and of the United States (Curriero et al 2002,¹¹⁴ ++/++; Braga et al 2002,¹¹² ++/++; Medina-Ramon and Schwartz 2007,⁷⁵ ++/++; Anderson and Bell 2009,⁵⁶ ++/++) as well as across Europe (Analitis et al 2008,⁶⁵ rating ++/++) and worldwide (Barnett et al 2005, +/+).⁸⁸

Early studies raised hypotheses about the contrasting differences in the burden of winter-related mortality in different settings, but provided only limited and indirect, ecological evidence relevant to the explanations for those differences. A 1996 study by Laaki and Sverre,¹⁴⁴ showed that the excess winter mortality (defined for the four months of December to March) in England and Wales was markedly higher than in Norway, and that the relative excess showed a steeper correlation with monthly temperature in the four winter months, while the relationship between excess winter mortality and influenza was similar in the two populations. Though not based on modern time-series methods, this study suggested a smaller vulnerability to temperature in Norway despite otherwise broadly similar populations in England and Wales and Norway. The authors did not offer likely causal explanations for the greater winter mortality in England & Wales. A year 2000 study by Clinch and Healy comparing Ireland and Norway,¹²⁶ pointed to the similarity of the two populations in terms of similar crude and proportionate mortality rates for cardiovascular and respiratory disease, but a much greater relative excess winter mortality for these two cause-of-death groups in Ireland. They hypothesized poor housing standards in Ireland as a possible important contributory factor. This hypothesis was further developed by an ecological analysis by Healy in 2003,¹⁰⁷ who compared the coefficients of seasonal variation in mortality (CSVM, a variant of the excess winter death index) across 14 countries of the European Union (EU-14). The CSVM, 1988-97, in the EU-14 was highest in countries to the west and south of Europe with milder winters – Portugal, Spain, Ireland, the UK, Greece – and lowest in Finland, Germany, the Netherlands, Denmark and Luxembourg with comparatively harsher winters (Table 2).

Country	Seasonal variation in mortality (95% CI)
Austria	0.14 (0.12 to 0.16)
Belgium	0.13 (0.09 to 0.17)
Denmark	0.12 (0.10 to 0.17)
Finland	0.10 (0.07 to 0.13)
France	0.13 (0.11 to 0.15)
Germany	0.11 (0.09 to 0.13)
Greece	0.18 (0.15 to 0.21)
Ireland	0.21 (0.18 to 0.24)
Italy	0.16 (0.14 to 0.18)
Luxembourg	0.12 (0.08 to 0.16)
Netherlands	0.11 (0.09 to 0.13)
Portugal	0.28 (0.25 to 0.31)
Spain	0.21 (0.19 to 0.23)
UK	0.18 (0.16 to 0.20)
Mean	0.16 (0.14 to 0.18)

Table 2. Coefficient of seasonal variation in mortality (CSVM) and 95% confidence intervals in EU-14, 1988-97. Data from Healy.¹⁰⁷

Through cross-country comparisons, Healy also noted that the thermal efficiency standards in housing were poorer in countries demonstrating the highest excess winter death (Portugal, Greece, Ireland, the UK). Socioeconomic indicators of wellbeing (poverty, income inequality, deprivation, and fuel poverty) were also associated with cross country levels of excess winter mortality.¹⁰⁷

Earlier work by the Eurowinter Group (1997)¹⁴² (rating +/+) assessed the question of the degree to which the increase in deaths per day per 1°C fall in temperature below 18°C varied across Europe. They found that the percentage increase in all-course mortality for each 1°C fall in temperature was greater in the warmer regions than in colder regions (e.g. Athens 2.15% (95% CI 1.20, 3.10) versus South Finland 0.27% (95% CI 0.15, 0.40%)). Moreover, for an equivalent outdoor temperature (7°C) the mean living room temperature was somewhat lower in Athens (19.2°C) than in South Finland (21.7°C). People in cooler climates were also likely to protect themselves more against the cold with appropriate clothing. The conclusion of the Eurowinter Group was that mortality increases to a greater extent with a given fall in temperature in regions with warmer winters, and that populations in such regions (including the UK) have cooler homes at a given low outdoor temperature and are likely to wear less thermally protective clothing than those from cooler climates. This argument was further developed in Keatinge et al 2000,¹²⁸ which showed that for those aged 65-74, high levels of protection against indoor and outdoor cold at given outdoor temperatures were found mainly in countries with cold winters, and were associated with low levels of excess mortality at a given level of outdoor cold. The authors concluded that 'regions such as London that had poor protection against cold and/or high baseline mortalities had higher levels of winter excess mortality than expected for the coldness of their winters.'128

More recent comparisons using more sophisticated time series methods with appropriate control for season and distributed lag models have been made as part of the PHEWE project. Analitis et al 2008,⁶⁵ compared the effects of cold weather on mortality in 15 European cities from the North to South of Europe including (among others) London and Dublin, Helsinki and Stockholm in the North and Athens, Barcelona and Valencia in the South. They found clear evidence that a decrease in temperature was associated with an increase in total natural deaths, and in deaths from cardiovascular, respiratory and cerebro-vascular causes. (The meta-analytic results suggested largely monotonic increases in risk as apparent temperature fell without clear evidence of a threshold.) As Keatinge had found, there was evidence that the increase in risk per degree Celsius fall in temperature was greater in the warmer (Southern) cities. The exposure-response relationship in London (the only city representing England) was near to the middle of the distribution across the 15 cities, though point estimates for Helsinki and Stockholm were lower.

A similar conclusion was reached by Barnett et al (2005)⁸⁸ in relation to cold periods and coronary events based on an analysis of data from 21 countries using the World Health Organisation's MONICA data for 1980 to 1995. Coronary event rates increased more in populations living in warmer climates than populations living in cold climates, where the increases were relatively slight.

Other studies have compared variations across cities within individual countries. Iniguez et al (2010)⁵² examined the temperature-mortality association in 13 Spanish cities from across a wide range of climatic and socio-demographic conditions. Most cities showed a V-shaped temperaturemortality relationship, with the minimum mortality temperature (the vertex of the V) at generally higher temperatures in cities with warmer climates. Again, the cold effects were also greater in cities with warmer climates but lesser in cities with higher temperature variability. Similarly, Curriero et al (2002)¹¹⁴ analysed the temperature-mortality association for 11 large eastern US cities, 1973-1994, using log-linear regression analysis for time-series data and found clear cold temperature-mortality relationships which varied with latitude, with a greater effect of colder temperatures on mortality risk in more southern (warmer) cities. Also in the United States, a 2007 study by Medina-Ramón and Schwartz⁷⁵ analysed patterns of mortality in 50 cities in relation to extremes of cold defined in percentile terms, and found them to be fairly homogeneous across cities with different climates (though heat effects were more heterogeneous). Braga et al 2002,¹¹² showeed that greater variance of winter temperature was associated with larger effects for cold days on respiratory deaths. Another US study (Anderson and Bell 2009⁵⁶) found a degree of heterogeneity in effects from city to city that suggests that weather-mortality relationships from one community may not be applicable in another, but they also concluded that there is evidence of acclimatization to local climatic conditions (because of the smaller spatial variations of temperature effect in relation to relative temperature (percentiles) compared with absolute temperature).

Taken together, the evidence of these studies is that in a European context at least there are variations in the excess winter death index (EWDI) and in the steepness of the exposure-response relationships for cold that suggest greater cold temperature-mortality impact in populations with generally milder winter climates, including the UK, which inversely correlate with various measures of adaptation to low temperatures in terms of housing and clothing. However, it is worth noting the following in relation to the interpretation of this comparative evidence:

- (i) The EWDI is a useful but relatively simple measure of winter harm that does not take account of the different temperature distributions in different climatic settings. Thus, while in England, the coldest months of winter are mostly concentrated in the months of December to March, the cold periods are more prolonged in Scandinavia which may somewhat dilute the relative excess for those same 'winter' months.
- (ii) The steepness of the exposure-response relationship for cold reflects only one aspect of the impact of cold, and does not take account of the distribution of temperatures which vary from setting to setting. This is relevant for two reasons. Firstly, a given (absolute) temperature may be at very different percentile points on the distribution of temperatures for different populations. This prompts some researchers to study exposure-response relationships using temperatures defined in relative (percentile) rather than absolute terms (as Medina-Ramón and Schwartz did). Thus, what may be a relatively extreme low temperature for England is likely to be much less exceptional for Scandinavian and other countries with harsher winters. Secondly, even if the exposure-response relationship is shallower in settings with colder climates, the fact that such settings have more cold days and greater extremes of cold, will tend to increase their overall cold-attributable burden of mortality compared to areas with milder temperatures. (Recall that the cold attributable burden is the product both of the risk at given levels of low temperature and the frequency with which those low temperatures occur, so many days of low temperature will increase the total attributable burden.)

Within England and Wales, analyses of routine data by the Office for National Statistics (2012, 2011) show that there are region to region variations in excess winter deaths, but no clear patterns of geographical trends. ^{30 41} Analysis of data by region of England for the 2013 Evaluation of England's Cold Weather Plan (CWP), shows relatively subtle variations in thresholds and exposure-response functions for different regions.¹⁶

ji olili Hujut et ul 2015.		
Region:	Threshold	% change in deaths (95% CI)
	(°C)	
North East	6	3.99 (2.74, 5.23)
North West	5	2.82 (2.04, 3.61)
Yorkshire & Humberside	5	4.22 (3.15, 5.31)
East Midlands	7	4.11 (3.16, 5.07)
West Midlands	7	4.38 (3.43, 5.34)
East England	4	5.39 (4.43, 6.35)
London	5	3.96 (3.21, 4.71)
South East	5	2.66 (1.98, 3.34)
South West	8	3.35 (2.43, 4.28)

Table 3. Percentage change in deaths for every 1°C decrease in temperature below the 'cold threshold'. Data from Hajat et al 2013.¹⁶

ES1.1 Summary evidence statement -- variations between populations and countries

15 studies provide strong evidence relating to the overall relationship between temperature and excess winter deaths in various countries and show a link between winter temperatures and the difference between summer and winter temperatures. There is strong evidence from six studies (-/+ $(^{126})' +/+ (^{107 144 88 142})$ one ++/++⁶⁵) showing a relatively higher rate of EWD in countries with milder winters than in those with colder winters. The role of housing standards (107) and appropriate

clothing (¹⁴²) is hypothesized as being important by some. This is supported by moderate evidence from three studies looking at variations within countries (+/+ ^{52,} ++/++ ¹¹⁴ ⁷⁵). Two (from Spain, ⁵² and the US¹¹⁴) found that effects of cold were greater in cities with warmer climates (⁵² ¹¹⁴) but lesser in cities with higher temperature variability (⁵²). Medina-Ramon (⁷⁵) found that the effect of extreme cold (defined as a percentile) was homogeneous across cities with different climates, suggesting that only the unusualness of the cold temperature (and not its absolute value) had a substantial impact on mortality. Three studies (+/+ ³⁰, ^{41,} and ++/++ ⁷⁴) looked at differences between regions within England and Wales. Two ³⁰, ^{41,} found no clear patterns of geographical trends and one⁷⁴ found relatively subtle variations in thresholds and exposure functions for different regions.

This evidence includes comparisons within England and Wales and between England and other countries as well as comparisons between non UK countries. As a result it is considered to be applicable to the UK.

(2) Trends in vulnerability to excess winter death over time

Evidence on the change in excess winter deaths for England and Wales, 1950/51-2011/12, by year and five-year central moving average, has been published by the Office for National Statistics (2012, rating +/+).³⁰ The data show a progressive decline, albeit with some fluctuation, since the early 1950s, when the annual winter excess was around 70,000 deaths, to an annual average of 26,400 excess winter deaths each year between 2000/01 and 2011/12.³⁰ The data suggest some degree of levelling off in the decline over the last decade or so.

A decline over time was also reported by Maheswaran et al (2004, rating +/+)¹⁰² who analysed the pattern of excess winter mortality, 1981 to 1999, and emergency hospital admissions in the South Yorkshire Coalfields Health Action Zone: the excess winter mortality ratios decreased significantly over the 18-year period for cardiovascular disease and for all other causes.¹⁰² In Scotland, Gemmell and colleagues (2000,¹²⁷ rating +/+) reported a fall in seasonal variation in mortality from around 38% in 1981-1983 to around 26% in 1991-1993. Although there was no clear evidence of a relationship between socioeconomic status and seasonal mortality, the extent of the fall in seasonal variation was greater in deprived areas than in affluent areas.¹²⁷

A study by Carson and colleagues (2006,⁷⁸ rating +/+) suggests that the decline in excess winter deaths in London, and specifically of cold-related deaths, has occurred across the 20th century. This decline has occurred against a background of an ageing population but progressive socio-economic improvement, a small rise in average winter temperatures, and appreciable changes in health and health care, especially for key temperature-sensitive (cardio-respiratory) diseases.

The long-term decline in excess winter deaths seen in England has also been observed in other settings, though the evidence is somewhat mixed. Miron and colleagues $(2012,^{27} \text{ rating } +/+)$ analysed the effects of cold on mortality in Castile-La Mancha, 1975 to 2003, and found that while there was no clear trend in cold-related mortality thresholds, there was evidence of a reduction in the lagged effects of cold on mortality, which the authors attributable to improvement in socio-economic conditions over the study period.²⁷

A 150 year study of temperature-related excess mortality in the Dutch population by Ekamper et al 2009,⁵⁹ (rating +/+) identified a decline in cold effects in infants from about 1930, but an increasing cold effect in the 75+ group (details not shown) and no clear upward or downward trend over time in cold effects overall. Similarly a study of excess winter mortality in New Zealand (Davie 2007, rating +/+) over the relatively short period, 1980-2000, provided no clear evidence of decline in risk.⁷³

Thus, there appears to have been a progressive and substantial decline in winter death and vulnerability to cold in England (UK), which has been seen in some other populations. But the evidence does not allow clear understanding of the reason for the decline other than that it has occurred alongside fairly major socio-economic and lifestyle changes, including in housing quality.

ES1.2 Summary evidence statement – time trends

Seven studies examine time trends in excess winter deaths, 4 (all +) in the UK^{30 102 127 78} and 3 (all +) internationally.^{27 59 73} These studies provide strong evidence of a reduction in excess winter deaths in the countries of the UK when looked at: across England and Wales,³⁰ within the South Yorkshire Coalfields HAZ,¹⁰² in Scotland¹²⁷ and in London.⁷⁸ International evidence is more mixed, with 1 + study from Spain²⁷ showing a reduction in the lagged effects of cold on mortality, 1 + from the Netherlands⁵⁹ showing a decline in cold effects in infants but an increase in effects on 75+ age groups and 1 + from New Zealand⁷³ providing no clear evidence of a decline.

(3) Personal vulnerability factors

<u>Age</u>

There have been many studies on the relationship between winter- and cold-related mortality and age. Most studies of seasonal patterns and time-series studies of temperature effects have reported results by age-subgroups. Among the studies selected for this review, such evidence has been reported in studies from England,¹⁶ ¹⁸ ⁷⁷ ¹⁰² ¹²² ¹²⁴ England and Wales,³⁰ ⁴¹ ⁴⁸ ¹⁶ Scotland,⁹¹ ¹¹⁷ the UK (Britain),¹⁰⁴ ¹¹⁸ Ireland,¹⁰⁰ the Czech Republic,⁶¹ Denmark,³⁴ France,³¹ Greece,⁸³ ¹⁰³ Italy,¹³ ²⁸ ³⁶ ³⁷ ⁵⁵ the Netherlands,⁵⁹ ¹²⁰ Norway,¹⁴⁴ Spain,¹⁵ ⁵⁰ ⁹² ¹³⁶ Sweden,⁷¹ ¹³⁷ and Europe,⁶⁵ as well as studies from Japan,¹¹ South Korea,¹⁰⁸ Taiwan,²² ⁴⁵ and New Zealand,²⁵ and from Canada¹³⁴ ¹³⁵ and the USA.⁷² ⁸² ⁹⁸ ¹³¹ ¹⁴³

The vast majority of these studies report winter- or cold-related mortality which is greater at older ages, though with a few exceptions. The exceptions include a Japanese study (the Ibaraki Prefectural Health Study, Atsumi et al 2013¹¹) of the relationship between cold temperature and cardiovascular mortality, which assessed effect modification by individual characteristics. In a country with the world's longest life expectancy, their results showed that subjects younger than 80 years (as well as those with hyperglycemia) were more susceptible to cold temperature than older patients. ¹¹

Another exception is a Danish case-crossover study of Wichmann et al (2012, 34 ++/++) of apparent temperature and acute myocardial infarction hospital admissions in Copenhagen which reported greater susceptibility to cold risk in the 19-65 year age-group (as well as in men and those in the highest SES group), while a study of cardiovascular mortality in the Czech Republic (Kysely et al 2009,⁶¹ rating +/+) found associations with cold spells in all age groups (25-59, 60-69, 70-79 and 80+ years) and in both men and women, but with relative mortality effects that were most pronounced in middle-aged men (25-59 years).⁶¹

Younger age also appears to be associated with risk of hip fracture in relation to inclement weather in some settings. For example, a Canadian study of hip fracture in Montreal (Levy et al 1998,¹³⁵ rating ++/+) reported freezing rain as a particular risk factor and that the association of inclement weather with hip fracture was stronger among younger men and women than for older persons.¹³⁵ Similarly, a US study by Jacobsen et al (1999,¹⁴³ rating ++/++) of hip fracture incidence among women aged 45 years and older in Rochester, Minnesota, 1952 to 1989, found the risk of hip fracture was increased on days with snow or freezing rain, but among women aged 75 years and older, the effect of ice and snow were not strongly related to fracture occurrence. It is possible these risks for hip fracture are greater in younger adults because of activity patterns which mean working age adults are more likely to go out in inclement conditions than older adults.

Most other studies are broadly consistent in reporting increases in risk of winter- or cold-related mortality and morbidity with age, particularly for cardio-respiratory illnesses. This is true in both relative terms (the elderly have a greater relative risk of excess winter death or a stronger association with low outdoor temperature) and in terms of absolute numbers of cases. Because the death rates rise steeply with age, even a constant excess winter ratio would mean substantially larger numbers of attributable deaths per 100,000 population at older ages.

The evidence for England and Wales is clear. The 2012 ONS report³⁰ suggests that in 2011/12 the majority of excess winter deaths occurred among those aged 75 and over in both sexes, with females aged 85 and over having the greatest number of excess winter deaths. This report is based on analyses of routine mortality registrations for England and Wales by region using the standard definition of excess winter death.

A 2001 report on winter mortality in England linked to the English House Conditions Survey (EHCS) showed a clear pattern of increasing relative risk with age,¹²⁴ with just 1.3% excess deaths in winter the 0-44 years age group, 18.9% in the 45-46 age-group, 21.0% in the 65-74 age group, 22.6% in the 75-84 age group and 30% in those aged 85 years or more. The relative risk for excess winter death in those aged 85 years or more was 1.28 (1.13, 1.46) times that in the 0-44 age group (p-value for trend across age groups <0.001).

A daily time-series analyses of regional mortality data for England undertaken for the a recent evaluation of the Cold Weather Plan (CWP) for England (Hajat et al 2013,¹⁶ rating ++/++) confirm a rise across age-groups (0-64, 65-74, 75-84, 85+) in the relative risk associated with a 1°C drop in temperature below the cold threshold.¹⁶

ES1.3 Summary evidence statement – age

49 included studies have examined the influence of age on excess winter deaths (14 from parts of the UK - 6 from England ($2 + +^{16} + , 4 + ^{77} + 102 + ^{122} + 122 + 124$), 4 from England and Wales ($1 + + ^{74}$, $2 + ^{41} + ^{30}$, $1 + + ^{48}$) 2 from Scotland ($1 + + ^{91}$, $1 + ^{117}$) and 2 from Britain ($1 + + ^{104}$, $1 + ^{118}$)), 6 from Italy ($3 + ^{13} + ^{28} + ^{37}$, $1 + ^{48}$) -/+ 36) 5 from the USA ($4 + + ^{72} + ^{28} + ^{98} + ^{143} + ^{131}$), 4 from Spain ($1 + ^{15}$, $3 + ^{50} + ^{22} + ^{36}$), 1 from France ($+^{31}$), Greece ($1 + ^{83} + ^{103}$), the Netherlands ($1 + ^{59}$, $1 + ^{120}$), Japan ($1 + ^{11}$), Taiwan (both + $^{22} + ^{45}$), Sweden ($1 + + ^{71}$, $1 + ^{137}$), Canada ($1 + ^{134}$, $1 + + ^{135}$), 1 + + each from Ireland 100 , Denmark ³⁴ and Europe, 65 1 + each from the Czech Republic, 61 Norway, 144 South Korea, 108 New Zealand. 25

All apart from 5^{61 34 11 135 143} found greater winter or cold related mortality at older ages. This is the case for both relative and absolute numbers.

2 of the 5 studies showing higher risk at younger age looked at hip fractures and found either a higher risk among younger men and women ($^{135, ++}$) or no strong relationship with age ($^{143 ++}$). A Danish case-crossover study ($^{34 ++}$) found greater susceptibility to myocardial infarction among 19-65 year olds and a study in the Czech Republic ($^{61, +}$) found that relative mortality effects were most pronounced in middle-aged men.

The evidence for England and England and Wales shows the majority of excess winter deaths occurring in those aged 75 and over, with the greatest number among women aged 85 and over (³⁰, ⁺). A report linked to the English House Conditions Survey found a relative risk for those aged 85 and over of 1.28 (1.13, 1.46) compared to those aged 0-44 (^{124, +}). Analysis of the Cold Winter Plan evaluation¹⁶ confirms a rise across age groups in the relative risk associated with a 1⁰C drop in temperature below the cold threshold. This threshold varies by region but is around 6⁰C.

<u>Gender</u>

As for age, there have been innumerable studies reporting on variations in risk of winter- or coldrelated mortality/morbidity by gender, including studies in England,^{102 124} England & Wales,^{30 41 106} the UK,¹⁰⁴ Scotland,¹¹⁷ Czech Republic,⁶¹ Denmark,³⁴ Greece,^{83 103} Italy,^{36 55} Spain,^{15 79} Sweden,¹³⁷ S Korea,¹⁰⁸ New Zealand,^{25 73} Canada,¹³⁵ USA,^{82 98 131 149} and internationally.⁸⁸

The evidence on the difference between men and women is somewhat mixed however. In England and Wales, the ONS analyses of routine mortality registrations (ONS 2011,³⁰ and ONS 2012,⁴¹ both rated +/+) indicate women have higher levels of risk of excess winter death than men, as does a 2001 analysis by Wilkinson et al (+/+) of winter mortality patterns in England: unadjusted relative risk for women compared with men of 1.03 (1.02-1.05).¹²⁴ However, a higher proportion of the female population of England and Wales are aged 75 and over (9.2 per cent compared with 6.4 per cent of males in 2011) and 85 years and over (where women outnumber men two to one). Given the strong effect of age on winter death, this difference may wholly, or partially, explain the higher number of excess winter deaths in women.³⁰ Time-series analyses by Hajat et al 2007,⁷⁴ rating ++/++, of mortality patterns in England and Wales, found very little difference between men and women in the shape of the mortality function with cold.

Donaldson and Keatinge's (2003) analysis of cold-related mortality in England and Wales¹⁰⁶ (rating +/+) provided results stratified by age and sex, which show lower cold mortality risk in men than women in social class 5 (unskilled) in the 50-59 year age-group. This risk difference was less pronounced and not statistically significant in the 65-74 (retired population) age-group. These authors interpret this pattern as indicating a possible protective effect of work-related factors in men in social class 5, which was not observed in social class 1 (professional). Ecological analyses of excess winter mortality and emergency hospital admissions in the South Yorkshire Coalfields Health Action Zone by Maheswaran and colleagues (2004,¹⁰² rating +/+) found that the winter excess ratios were lower in men than in women for both respiratory mortality P<0.05 and respiratory hospital admissions P<0.0001. A Scottish study found greater seasonal variation in women than men for heart failure,¹¹⁷ especially at older ages.

One of the few studies to have examined gender differences with confounder adjustment at individual level was an analysis of data from a cohort of elderly people from UK general practices (Wilkinson et al 2004,¹⁰⁴ rating ++/++). This study found a small excess of risk in women (RR of 1.08 (0.99 to 1.19) after adjustment for region and age), which was slightly stronger (1.11 (1.01 to 1.23)) after additional adjustment for medications, symptoms, whether living alone and deprivation group.

The international study of coronary events based on WHO MONICA data from a 21 country registry with the UK represented by Belfast, (Barnett et al 2005,⁸⁸ rating +/+) reported an age-adjusted cold-related excess risk for women relative to men of 1.07 (1.03, 1.11). All populations showed a higher risk for women, and the differences in risk between men and women had a linear relation with mean daily temperature.⁸⁸

Most other studies have not included detailed confounder adjustment, but have reported generally small excess risks for women compared with men, including an Italian (Sicilian) study by Abrignani et al 2009,⁵⁵ rating -/-; a New Zealand study by Davie et al 2007,⁷³ rating +/+; a Spanish study by Diaz et al 2006,⁷⁹ rating ++/+; a US study by Schwartz 2005,⁹⁸ rating ++/++; a study by Panagiotakos 2004,¹⁰³ rating +/+, of daily admisisons for non-fatal acute coronary syndromes (ACS) to emergency units of hospitals in the greater Athens area, January 2001 to August 2002; a study by Hong et al 2003,¹⁰⁸ rating +/+, of ischemic stroke onset and decrease in temperature over a 3-year period in Incheon, Korea; a Swedish study by Bjornstig et al 1997,¹³⁷ rating +/+, of slipping on snow and ice. Several other studies have reported no clear difference: a study by Gomez-Acebo et al 2013,¹⁵ rating ++/+, of the relationship between low winter temperatures and mortality due to cancer, cardiovascular diseases and respiratory diseases in Cantabria (northern Spain); a study by Hales and colleagues 2012,²⁵ rating +/+, of seasonal mortality in New Zealand; a study by Gallerani et al 2011, rating -/-, of seasonal variation in heart failure hospitalization in Ferrara; a US study by Medina-Ramon et al 2006,⁸² rating ++/+, involving a case-only analysis of daily mortality and weather data from 50 U.S. cities for 1989-2000; an ecological study in rural Greece by Misailidou et al 2006,⁸³ rating +/+, of the effect of ambient temperature on morbidity from acute coronary syndromes (ACS).

Exceptions among the studies included in this review were studies by Levy et al 2006 of hip fracture in relation to weather in Montreal,¹³⁵ rating ++/+, and a study by Macey and Schneider 1993,¹⁴⁹ rating +/+, of temperature-related deaths in people aged 60 years or more, who found a male bias for deaths from cold. A Czech study reported that cold spells were associated with positive mean excess cardiovascular mortality in all age groups in both men and women, but that the relative

mortality effects were most pronounced and most direct in middle-aged men (25–59 years).⁶¹. A Danish case-crossover study of acute myocardial infarction hospital admissions in Copenhagen, found that greatest relative susceptibility to cold was observed in men in the 19-65 year old group.³⁴

ES1.4 Summary evidence statement – gender

Twenty five included studies consider the role of gender: 7 are from the UK (2 + from England^{102 124}, three + from England & Wales^{30 74 106}, one + from Scotland¹¹⁷ and 1 ++ from the UK¹⁰⁴) 4 from the USA (2 ++^{82 98} and 2 + ^{131 149}), 2 each from New Zealand (1 + ^{25 73}), Greece (1 +/-⁸³, one +¹⁰³), Italy (1 +/-³⁶, 1 -⁵⁵), Spain (both ++ ^{15 79}), 1 + each from Czech Republic,⁶¹ Sweden,¹³⁷ South Korea,¹⁰⁸ internationally⁸⁸ and 1 ++ each from Denmark³⁴ and Canada.¹³⁵

Of these, one study found an increase in hip fractures in men compared to women $(^{135, ++})$ and one a male bias for deaths from cold in those aged 60+ $(^{149, +})$, while two others reported greater relative risks in men compared to women: one of cardiovascular mortality in the Czech Rebublic $(+)^{61}$ and one of acute myocardial infarction in Denmark $(++)^{34}$. The other studies found small excess risks for women $(^{30\ 102\ 73\ 124\ 13\ 55\ 137\ 108\ 98\ 79})$ or no clear difference $(^{74\ 83\ 36\ 15\ 25\ 106})$. Two studies have adjusted for potential confounders, including age. These found a small excess of risk in women $(1.11, 1.01\ to\ 1.23\ in\ a\ study\ from\ UK\ general\ practice\ ^{104,++}\ and\ 1.07\ (1.03,\ 1.11)\ in\ an\ international\ study\ of\ coronary\ events\ ^{88,+}$.

Ethnicity

There have been few studies of winter-/cold-related mortality/morbidity in relation to ethnic group, and the evidence is too limited to draw firm conclusions, especially given no direct evidnce for England. A factor in this paucity of evidence is likely to be the limited data and power for testing variations in seasonal or cold-related risk by ethnic group.

Two studies from New Zealand of uncertain relevance to England, by Davie et al 2007 (+),⁷³ and by Hales et al 2012 (+),²⁵ found no evidence that patterns of EWM differed by ethnicity, specifically no clear variation in relation to Maori, Pacific or Asian populations compared with ethnic Europeans.²⁵

In the United States, Medina-Ramon et al 2006, (++/+), reported evidence that the black population was more at risk of heat-related risk but not of cold,⁸² while Anderson and Bell 2009, in an analysis of data from 107 cities, rating ++/++, reported higher susceptibility to cold for communities with a higher percentage of African Americans.⁵⁶ Schwartz 2005,⁹⁸, rating ++/++, also reported greater vulnerability among the non-white (US) population to cold based on a case-only analysis (OR 1.25; 1.12-1.40). Macey and Schneider 1993,¹⁴⁹ reported slightly greater risk among non-white populations for heat-related mortality, but not for cold, in an elderly US population based on a limited correlation analysis.

ES1.5 Summary evidence statement – ethnicity

6 studies have considered the effect of ethnic group on cold or winter mortality or morbidity, providing inconsistent results. 2 studies are from New Zealand ($1 + ^{73} ^{25}$) and 4 from the US ($3 + + ^{56} ^{82}$ ⁹⁸ and $1 + ^{149}$). 2 studies from New Zealand (+),^{73 25} found no evidence that patterns of EWM differed by ethnicity, specifically no clear variation in relation to Maori, Pacific or Asian populations compared with ethnic Europeans.

In the United States, Medina-Ramon⁸² reported evidence that the black population was more at risk of heat-related risk but not of cold while Anderson and Bell,⁵⁶ in an analysis of data from 107 cities, reported higher susceptibility to cold for communities with a higher percentage of African Americans. Schwartz,⁹⁸ also reported greater vulnerability among the non-white (US) population to cold based on a case-only analysis (OR 1.25; 1.12-1.40). Macey and Schneider¹⁴⁹ reported some evidence of excess cold risk in an elderly US population based on a limited correlation analysis.

(4) Cause-of-death/morbidity

The literature review presented in this report was not designed to capture all studies which provide evidence of any seasonal fluctuation or temperature relationship in mortality or morbidity for specific causes. That would be an overwhelming literature (we estimate thousands of studies) whose collective evidence would reinforce the broad point that many specific conditions, including many infectious diseases, various forms of injury/fall risk, and many categories of chronic disease occurrence have been found in some settings at least to exhibit some form of temporal parttern across the year, sometimes with a temperature relationship. Not only would a comprehensive review be impractical because of the volume of potential studies, but it would be difficult meaningfully to synthesize the very heterogenous literature based on a wide range of study types, definitions and analytical approaches.

Here we have a much more limited objective, therefore, namely to give a broad overview of the patterns of seasonality or temperature-related disease risk, excluding infectious disease categories, observed in the very selective literature gathered for this review of vulnerability by person or place – which specifically did not include studies that only reported patterns of seasonality or temperature dependence without reference to modifying factors. The literature is therefore extremely selective with regard to the potential pool of studies of seasonality and temperature influence on illness, and cannot therefore be viewed as comprehensive or even as fully representative of the wider literature. The reported studies should rather be interpreted as indicative examples. Nonetheless, even from this very limited literature, it is possible to make observations about the categories of illness which, quantitatively make the largest overall contribution to winter- and cold-related mortality/morbidity, including the categories of most relevance to winter death and morbidity in England.

Most studies of winter- or cold-related mortality/morbidity that have examined cause-of-death/morbidity groups, have usually done so using fairly large disease groupings, in part because of

the power requirements to examine effect variation for more specific causes. The evidence suggests that in most settings the major disease groupings show association with low temperature, including cardiovascular disease and major subgroups, respiratory disease (especially chronic obstructive pulmonary disease, COPD), external causes (injuries), and other causes including malignancy. Among the reviewed studies which provide evidence for specific causes are the following:

Cardio-respiratory and other chronic disease

All papers in this review to some degree address the issue of seasonal variations in health or temperature dependence. The most commonly studied outcomes, especially in time series studies (necessary for temperature attribution) are cardio-respiratory outcomes. The principal relevant studies from this review are summarized in the table below, together with their validity ratings.

All of those listed under the heading of cardiovascular disease showed some evidence of association with cold temperature and/or the winter season. The findings are nearly as universally positive for respiratory outcomes. However, Rocklov et al 2011,⁴³ showed no clear evidence for association with respiratory mortality, and the study by Medina-Ramon et al 2006⁸² found little evidence that COPD as a presenting condition, or of pneumonia as the primary cause of death, were modifiers of the effect of extreme temperature on mortality (though cardiovascular mortality and cardiac arrest as the primary cause of death were associated with higher risk to extreme cold).

Almost by definition, studies negative for an overall temperature or season effect would be unlikely to be included in the review as there would not be an effect with which to investigate effect modification (vulnerability). Hence the very positive (seasonal or cold effect) balance of evidence of these studies does not properly reflect the true balance of findings of main effects in the literature at large. Nonetheless, the range of studies in terms of design and geography does capture the fact that there is a large body of evidence to suggest that cold temperatures, and the winter season in particular, is associated with risk of cardio-respiratory mortality and morbidity. That is fairly evident in that tabulations of routine statistics, such as those produced annually by the Office for National Statistics, repeatedly demonstrate the large winter (December to March) excess in mortality, most of which is made up of cardio-respiratory causes^{30,41}.

Causes other than the cardio-respiratory group and its subcategories are also often tabulated, though typically as 'other' (i.e. non-cardiuorespiratory) causes, and usually report positive associations with winter/cold. Studies in England,^{16 78} England and Wales,³⁰ Scotland,⁹¹ Ireland,^{12 100} Finland,⁷⁹ The Netherlands,¹⁴⁸ Spain,^{15 79 136} Japan (hyperglycaemia as effect modifier for cardiovascular outcome),¹¹ and The United States⁵⁶ fall in this category among reviewed studies.

Table 2. Summary of the main studies within the reviewed papers that have addressed cardiovascular and respiratory outcomes.

				Vali	idity
				Int	Ext
<u>Cardiovas</u>	<u>cular disease</u>				
England	Hajat et al 2013 ¹⁶	Mortality and hospital admissions (epidemiological analyses for the 2013 CWP evaluation)	Time series	++	++
	McGuinn et al 2013 ¹⁸	Activation of implanatable cardiac defibrillators (a marker of severe or life-threatening cardiac arrhythmia), SE England	Time series	++	+
	Carson et al 2006 ⁷⁸	Changing patterns of weather- sensitive disease over the 20 th century, London	Time series	+	++
	Maheswaran et al 2004 ¹⁰²	Excess winter mortality and emergency hospital admissions in the South Yorkshire Coalfields Health Action Zone for cardiovascular (as well as respiratory and other causes)	Excess winter mortality/ad mission	+	+
	Wilkinson et al 2001 ¹²⁴	Excess winter death for cardiovascular (as well as respiratory and other) causes	EWDI	+	+
	Donaldson and Keatinge 1997 ¹³⁹	Mortality from ischaemic heart and cerebrovascular disease (as well as respiratory disease)	Poisson analysis of low temperature days	+	+
England and	Office for National Statistics 2012 ³⁰	Analyses of routine mortality registration data by region	Seasonal (EWDI	+	+
Wales	Office for National Statistics 2011 ⁴¹	Analyses of routine mortality registration data by region	Seasonal (EWDI	+	+
	Bhaskaran et al 2010 ⁴⁸	Myocardial infarction in England and Wales	Time series	++	++
	Hajat et al 2007 ⁷⁴	Temperature-relatd mortality from cardiovascular (as well as from respiratory and external causes)	Time series	++	++
	Langford and Bentham 1995 ¹⁴⁵	Death rates from all causes and ischaemic heart disease and cerebrovascular disease (as well as from chronic bronchitis, pneumonia).	Time series	+	+
Northern Ireland	Morris et al 2007 ⁷⁶	Circulatory (and respiratory) death	Monthly analyses	+	++
Ireland	Callaly et al 2013 ¹²			+	+
Czech Republic	Kysely et a2009l ⁶¹	Cardiovascular mortality	Analysis of cold spells	+	+
Denmark	Wichmann et al 2012	Acute myocardial infarction admission	Case cross over	++	++
Italy	de Donato et al 2013 ¹³	Mortality and emergency room	Cold spells	++	+

		attendance: cardiovascular disease			[
		and various subcategories (as well as			
		all natural causes, respiratory causes			
	Gallerani et al 2011 ³⁶	and injuries) Heart failure	Seasonal	+	_
		Acute myocardial infarction	Daily	т	_
	Abrignani et al 2009 ⁵⁵	admissions	correlation	-	-
Spain		Mortality from cardiovascular disease	Case	++	+
Spuin	Gomez-Acebo et al 2013 ¹⁵	(as well as respiratory diseases and		++	+
	Gomez-Acebo et al 2013	cancer)	crossover		
	Iniguez et al 2010 ⁵²	cardio-respiratory mortality	Time series	-	-
Sweden			Time series	+	+
Sweuen	Rocklov et al 2011 ⁴³	Cardiovascular (and respiratory and		++	+
	ROCKIOV et al 2011	noncardio-respiratory) mortality, Stockholm	(by season)		
	Desklass and Family and		Time e e evice		
	Rocklov and Forsberg	Cardiovascular and respiratory	Time series	++	++
-	2008 ⁷¹	mortality, Stockholm	T		
Europe	Analitis et al 2008 ⁶⁵	Cardiovascular, cerebrovascular (and	Time series	++	++
		respiratory) deaths			┣—
Japan	ALC 11 10040 ¹¹	Cardiovascular mortality	Case cross-	++	+
	Atsumi et al 2013 ¹¹		over of		
			cohort		
Taiwan	Wu et al 2011 ⁴⁵	Cardiovascular mortality	Spatial	+	+
			regression		
	Chen et al 2010 ⁴⁹	Cardiovascular mortality	Spatial	+	-
			regression		
	Yang et al 2009 ⁶⁴	Cardiovascular mortality	Spatial	-	-
New		Mortality by cause (diseases of the	Seasonal	+	+
Zealand	Davie et al 2007 ⁷³	circulatory system accounted for 47%	(monthly)		
		of all	analysis		
		excess winter deaths from 1996–2000			
		with mortality from diseases of the			
		respiratory system			
		accounting for 31%)			
Australia		Ambulance attendance for	Time series	++	++
	Turner et al 2012 ³²	cardiovascular (and respiratory)			
		conditions			
Canada	Bayentin et al 2010 ⁴⁷	Hospital admission for ischaemic heart	Time series	+	+
		disease	(+spatial)		
USA		Acute myocardial infarction	Case	++	+
	Madrigano et al 2013 ¹⁹	occurrence (in Worcester (MA)	crossover		
		metropolitan area)			
	Barnett et al 2012 ²⁴	Cardiovascular (as well as rewpiratory)	Time series +	++	+-
		mortality	Bayes model		
		Cardiovascular (as well as respiratory)	Time series	++	+-
	Anderson and Bell 2009 ⁵⁶	mortality.			
		107 US communities			
		Mortality from myocardial infarction	Case	++	+-
		and cardiac arrest.	crossover		
	Medina-Ramon et al 2007		0.000010.		
	Medina-Ramon et al 2007	50 US cities	0.000000		

England	Hajat et al 2013 ¹⁶	Mortality and hospital admissions (epidemiological analyses for the 2013)	Time series	++	++
		CWP evaluation)			
	Bryden et al 2009 ⁵⁷	Hospital admissions for exacerbations of chronic obstructive pulmonary	Analysis of high risk weeks	+	+
	Jordan et al 2008 ⁶⁹	disease (COPD) Winter hospital admission for respiratory disease	Case control	++	++
	Carson et al 2006 ⁷⁸	Respiratory mortality: changing patterns of weather-sensitive disease over the 20 th century, London	Time series	+	++
	Rudge and Gilchrist 2005 ⁹⁷	Emergency hospital episodes for all respiratory diagnosis codes, London borough of Newham	Small area analysis of winter excess	++	++
	Maheswaran et al 2004 ¹⁰²	Excess winter mortality and emergency hospital admissions in the South Yorkshire Coalfields Health Action Zone for respiratory (as well as cardiovascular and other causes)	Excess winter mortality/ad mission	+	+
	Wilkinson et al 2001 ¹²⁴	Excess winter death for cardiovascular (as well as respiratory and other) causes	EWDI	+	+
	Donaldson et al 1999 ¹³⁰	Lung function and symptoms in chronic obstructive pulmonary disease (in relation to low temperature)	Survey analysed in relation to daily characteristi cs	+	+
	Donaldson and Keatinge 1997	Mortality from respiratory disease (as well as ischaemic heart and cerebrovascular disease)	Poisson analysis of low temperature effects	+	+
England and Wales	Office for National Statistics 2012 ³⁰	Analyses of routine mortality registration data by region	Seasonal (EWDI)	+	+
	Langford and Bentham 1995 ¹⁴⁵	Death rates from all causes and from chronic bronchitis, pneumonia (as well as ischaemic heart disease and cerebrovascular disease).	Time series	+	+
	Hajat et al 2007 ⁷⁴	Temperature-relatd mortality from respiratory (as well as from cardiovascular and external causes)	Time series	++	++
UK	Hajat et al 2004 ¹⁰¹	GP consultations for respiratory conditions by elderly people	Time series	+	++
	Wilkinson et al 2004 ¹⁰⁴	Excess winter death in relation to pre- existing illness for respiratory conditions	EWDI	++	++
Scotland	McAllister et al 2013 ¹⁷	Winter hospital admissions with COPD	Season differences	+	++
	Carder et al 2005 ⁹¹	Cardiorespiratory mortality	Time series	++	++

	Gemmell et al 2000 ¹²⁷	Mortality from respiratory disorders (as well as cardiovascular and	Weekly time series	+	+
Northern	Morris et al 2007 ⁷⁶	ischaemic heart disease) Respiratory (and circulatory) death	Monthly	+	++
Ireland			analyses		
Ireland	Callaly et al 2013 ¹²	30-day hospital mortality and hospital presentation for chronic obstructive disease, pneumonia (as well as epilepsy/seizures and congestive heart failure)	Seasonal and cold-related variation	+	+
	Goodman et al 2004 ¹⁰⁰	Cardiovascular (as well as respiratory and other) mortality	Time series	++	+
	Clinch and Healy 2000 ¹²⁶	Mortality from respiratory disease (and cardiovascular disease)	Proportionat e and relative winter excess	-	+
Finland	Makinen et al 2009 ⁶²	Respiratory infections in relation to low temperature	Time series	+	+
	Reinikainen et al 2006 ⁸⁵	Intensive care mortality: respiratory failure was increased in winter	Seasonal comparison	++	+
Italy	de Donato et al 2013 ¹³	Mortality and emergency room attendance: respiratory causes (as well as cardiovascular disease and all natural causes and injuries)	Cold spells	++	+
Netherla nds	Huynen et al 2001 ¹²⁰	Mortality: respiratory (as well as cardiovascular and from cancer)	Time series	++	++
	Kunst et al 1993 ¹⁴⁸	Mortality from respiratory (as well as cardiovascular, cancer, external and other) causes	Time series	+	+
Norway	Nafstad et al 2001 ¹²¹	Mortality from respiratory (as well as cardiovascular, gastrointestinal and all) causes	Time series	+	+
Spain	Gomez-Acebo et al 2013 ¹⁵	Mortality from respiratory diseases (as well as cardiovascular disease and cancer)	Case crossover	++	+
	Iniguez et al 2010 ⁵²	cardio-respiratory mortality	Time series	+	+
	Diaz et al 2005 ⁹²	Mortality from respiratory (as well as circulatory and all) causes	Time series	+	+
	Ballester et al 1997 ¹³⁶	Mortality from respiratory diseases (as well as circulatory, malignant tumours and all causes except external ones) in relation to cold	Time series	+	+
Sweden	Rocklov et al 2011 ⁴³	Respiratory (as well as cardiovascular and noncardio-respiratory) mortality, Stockholm – negative for respiratory association	Time series (by season)	++	+
	Rocklov and Forsberg 2008 ⁷¹	Respiratory and cardiovascular mortality, Stockholm	Time series	++	++
Europe	Analitis et al 2008 ⁶⁵	Respiratory (as well as cardiovascular, and cerebrovascular deaths)	Time series	++	++

Japan		Cardiovascular mortality	Case cross-	++	+
	Atsumi et al 2013 ¹¹		over of cohort		
Taiwan	Tseng et al 2013 ²²	Exacerbation of COPD	Case crossover	+	+
New Zealand	Davie et al 2007 ⁷³	Mortality by cause (diseases of the circulatory system accounted for 47% of all excess winter deaths from 1996–2000 with mortality from diseases of the respiratory system accounting for 31%)	Seasonal (monthly) analysis	+	+
Australia	Turner et al 2012 ³²	Ambulance attendance for respiratory and cardiovascular) conditions	Time series	++	++
USA	Barnett et al 2012 ²⁴	Respiratory (as well as cardiovascular mortality)	Time series + Bayes model	++	++
	Anderson and Bell 2009 ⁵⁶	Respiratory (as well as cardiovascular) mortality. 107 US communities	Time series	++	++
	Medina-Ramon et al 2006 ⁸²	Mortality from pneumonia (as well as stroke, cardiovascular disease, myuocardial infarction and cardiac arrest)	Case only analysis	++	+
	Schwartz 2005 ⁹⁸	Mortality during extreme temperature (low and high): COPD predictive of vulnerability (but diabetes, myocardial infarction, pneumonia and congestive heart failure not statistically associated)	Case only analysis	++	++
	Braga et al 2002 ¹¹²	Deaths from pneumonia, COPD (not clearly associated with cold) – as well as myocardial infarction and cardiovascular disease mortality	Time series	++	++
	Gorjanc et al 1999 ¹³¹	Deaths and deaths due respiratory disease (as well as ischemic heart disease, cerebrovascular diseases) in relation to low temperature and snowfall.	Time series	+	+

Where various disease outcomes have been analysed using the same methods for the same population, the picture is usually that the steepest exposure-response relationship is seen for respiratory outcomes, cardiovascular outcomes are intermediate, and non-cardio-respiratory outcomes show the least steep (but generally still statistically significant) exposure-response relationships -- see for example¹⁶ ⁷⁴ ⁶⁵ ⁵⁶ ⁹¹ ¹⁰⁰ Further details of these individual studies are recorded in appendix 5, but the European study by Analitis and colleagues is typical. His study showed that a 1 degrees C decrease in temperature was associated with the following mortality risks

All natural deaths:	1.35% (95% CI: 1.16, 1.53)
Cardiovascular death:	1.72% (95% CI: 1.44, 2.01)

Respiratory death:3.30% (95% Cl: 2.61, 3.99)Cerebrovascular death:1.25% (95% Cl: 0.77, 1.73)

Similarly, the study by Goodman and colleagues ¹⁰⁰ found the following estimates for the percent increase in cumulative 40-day mortality for each 1°C decrease in mean temperature: cardiovascular death 2.5% (95% CI 2.0–3.0%), respiratory 6.7% (95%CI 5.8–7.6%) and other 1.5% (95% CI 0.90–2.0%).

Although cardio-vascular outcomes typically have a less steep association with low temperature than respiratory disease, it may nonetheless account for a larger burden of cold-attributable mortality because of the greater underlying frequency of cardiovascular death.

ES1.6 Summary evidence statement – (non-infectious disease) mortality and morbidity cause

The search strategy for this review was not aimed at identification of all studies examining seasonal or low temperature-related impact on health by cause. Summary of the highly selected subsample used to examine vulnerability questions is therefore inappropriate. However, within that subsample, there are sufficient numbers of highly quality positive studies to conclude very good evidence for seasonal and cold impacts on cardio-respiratory outcomes and other non-infectious disease causes. Such studies include many directly relevant to England, including six studies in England (including three time series studies) (++ or +/++) ¹⁶ ¹⁸ ⁷⁸ and three other designs (+)¹⁰² ¹²⁴ ¹³⁹, as well as three further time series for England and Wales (++) (myocardial infarction) ⁴⁸ (mortality) ⁷⁴ ¹⁴⁵ and national analyses of routine data for seasonal excess (+) by the Office for National Statistics, and one further study (+) for Northern Ireland.

Very similar findings apply to respiratory outcomes, and include the same time series as for cardiovascular disease with the exception of Bhaskaran et al 2010 and McGuinn 2013, together with studies focued on COPD, $^{57}(+)$ a primary care study of respiratory disease $(++)^{69}$ and a small area ecological study of respiratory hospital admission. 97 and a study of lung function $^{130}(+)$.

Six ++ included studies (2 from England ++¹⁶⁷⁴, 1 each from US, ⁵⁶ Europe⁶⁵, Scotland⁹¹, and Ireland¹⁰⁰) look at various disease outcomes using the same methods for the same population. These show that the steepest exposure-response relationship is for respiratory outcomes, followed by cardiovascular outcomes and then non-cardio-respiratory outcomes. Although this association is the least steep it is generally still statistically significant. However, due to the larger number of cardiovascular deaths, the cold attributable mortality is likely to be greatest for cardiovascular outcomes.

Injuries and falls: season, temperature, snow and ice

Regional analyses of cold-related mortality and hospital admission in England,¹⁶ show evidence of an increase of risk of falls in association with low outdoor temperatures, but not of injuries overall or of injuries to the hip and thigh (odds ratio close to 1.0). More detailed analyses examined the effect of periods of heavy snowfall during the winters of 2009/10 and 2010/11, as measured by depth of resting snow. The two periods analysed were associated with an increase in A&E visits of 23.9% (95% CI 2.3, 8.7) for the diagnosis category 'dislocation/fracture/joint injury or amputation' compared with expected levels at those times of the year. Increases were observed

during similar snowfall periods in other regions also (table 3). In all cases, the 2nd snow period was associated with a lower impact than the 1st snow period, even when average snow depth measurement was higher during the 2nd event. When further examined in more detail for the North East region, by age-groups, the increases among the elderly were modest, as well as among children (for which numbers peaked in the summer months for this diagnosis category), but were substantial among those of working age (16-64 years) where the highest relative increases were observed: with increases of 33.7% (95% CI 25.0, 42.8) and 11.3% (95% CI 7.1, 15.7) for the two snow periods respectively. Increases were not observed for A&E visits due to cardiovascular or respiratory causes or for all-cause visits during the snow periods.

Beynon and colleagues,³⁵ examined the relationship between temperature and emergency hospital admissions for falls on snow and ice in England, using regional emergency admission Hospital Episode Statistics for the winters of 2005/06 to 2009/10. They found overall, a (log-linear) increase in the rate of emergency hospital admissions for falls on snow and ice as temperature falls, with the highest rate of admissions among the elderly and particularly men aged 80 and over (rising to around 1 per thousand resident population). The total inpatient cost of falls on snow and ice in the 2009/10 winter was estimated at £42 million.

In a study of patients presenting with fractures to two adult and one paediatric accident and emergency departments and a minor injuries unit covering a combined population of 778,367 in Edinburgh, UK, Murray and colleagues,³⁹ investigated the relationship between severe weather warnings, the frequency of fractures, and fracture related workload. They found evidence of statistically significant increases in fractures with cold and inclement weather, mostly low-energy fractures treated with day-case surgery or in fracture clinics. However, the number of patients treated as inpatients for fractures showed a less clear pattern. Hip fractures were not associated with weather. Correlations with maximum daily outdoor temperature in 2008/09 and 2009/10 were: for attendances -0.05 and +0.03; for fractures overall -0.29 and -0.52 (both statistically significant); for fracture admissions -0.24 and -0.46 (the latter statistically significant); and for hip fractures -0.04 and -0.21. Severe weather warnings for icy roads were associated with a 40% (95% confidence limits 20-52%) increase in fractures.

Parsons,⁴² undertook a cross-sectional study of the relationship between daily trauma admissions and observed weather variables, using data from the Trauma Audit and Research Network of England and Wales covering 21 accident and emergency departments (ED) located across England, linked to data from the UK Met Office. The study included all patients arriving at one of the selected ED, with a subsequent death, inpatient stay of greater than 3 days, inter-hospital transfer or requiring critical care between 1 January 1996 and 31 December 2006. There were strong seasonal trends in both paediatric and adult trauma admissions (higher in summer). Each 1 degree Celsius rise in maximum daily temperature was associated with a relative risk for admission of 1.003 (1.000 to 1.007) in adults and 1.019 (1.014 to 1.025) for children. The relative risk for a change in minimum daily temperature was 0.994 (0.990 to 0.998) – equivalent to a 3.2% increase in adult admissions for a five degree Celsius fall in temperature, e.g. due to a severe night time frost. Also the presence of snow increased adult trauma admissions by 7.9%.

Crawford and Parker,¹⁰⁵ analysed a prospective series of 3034 consecutive hip fracture patients admitted to a single unit in the United Kingdom over a 12-year period. More hip fractures occurred

during the winter 867 (55.3%) than summer 693 (41.7%) (p=0.002). There was an increase in the number of extracapsular fractures (p=0.006) and tendency to a higher mortality for those patients admitted in the winter months, but no statistically significant difference in patient characteristics between the winter and summer seasons (including age, mean mental test score, mean mobility score, mean total hospital stay).

Chesser et al¹¹³ examined the relationship between the incidence of fractures and daily temperature, months of the year and season in a consecutive series of 818 patients 65+ years of age, who presented to one district general hospital with a fracture of the proximal femur. Somewhat limited in size and not based on formal time-series methods, the results suggested no significant association of fractures with temperatures, changes of temperature, season or month of the year, and no statistically significant difference in the characteristics of patients (age, sex, pre-injury mobility, residence, functional and mental scores) presenting in different seasons or temperature ranges. However, patients presenting in winter months had a significantly longer inpatient stay.

Negative findings in relation to seasonal and weather-related variation were also reported by a small study of 429 patients with a hip fracture that showed that, that other than for ground frost, there was no significant association between the prevailing weather conditions or seasonality in hip fracture.¹⁴⁷

Elsewhere, Tenias and colleagues have presented a case crossover analysis of the short-term relationship between meteorological variables and hip fractures in people over 45 years of age for a health area of the Autonomous Region of Valencia, Spain, 1996–2005.⁶³ There were more cases in the autumn and winter months. The case-crossover analysis showed a significant relationship between the daily duration of wind and the incidence of hip fractures (OR 1.32 CI 95% 1.10-1.58 for the windiest quartile of days vs the least windy), but no other statistically significant associations for other meteorological variables, including temperature. The results were comparable across different subgroups classified by age, sex, and type of fracture.

A Swedish study in the Umea health district¹³⁷ examined slipping on ice or snow during winter which occurred at a rate of 3.5 injuries per 1000 inhabitants per year, with the highest age-specific rate among the elderly. Most injured were elderly women. Half of all injuries were fractures; two thirds for women 50 years and over, mostly of an upper extremity. The authors concluded that "injury reducing measures, such as more effective snow clearing, sand and salt spreading in strategic areas, better slip preventive aids on shoes, and 'padding' of older women, would reduce the injuries and their consequences."

From Australia, an observational study by Turner and colleagues⁴⁴ examined the relationship between mean daily air temperature and fall-related hip fracture hospitalisations for the period 1 July 1998 to 31 December 2004, in the Sydney region of New South Wales, Australia. After adjustment for season, day-of-week effects, long-term trend and autocorrelation, hip fracture rates were found to be higher in both males and females aged 75+ years when there is a lower air temperature: rate ratios for a 1 degree Celsius increase in temperature of 0.98 (95% CI 0.96, 0.99) in men aged 75-84 years, 0.98 (0.96, 1.00) in men 85+ years; 0.99 (0.98, 1.00) in women 75-84, and 0.98 (0.97, 0.99) 85+ years. These results are broadly consistent with, but extend, the results of an earlier analysis of hip fracture rates in New South Wales (data for 1981, 1983, 1986, 1988, 1989 and

1990), which showed a seasonal pattern in hip fracture rates, with a trough in the summer and a peak in the winter.¹⁴⁶ The investigators found that mean daily minimum temperature was independently and consistently associated with the monthly rates of hip fracture in both younger and older people.

In the US, Bischoff-Ferrari and colleagues,⁷² investigated seasonal variation in the incidence of four common fractures, and their association with weather variables in a population-based analysis of individuals age 65 and older, from 5% sample of the US Medicare population, residing in 50 US states 1 July 1986 to 30 June 1990. The study examined fractures of the hip, the distal forearm, the proximal humerus and the ankle. All fractures were most frequent in winter and lowest in summer (p < 0.05 at all sites). Winter peaks were more pronounced in warm climate states, in men, and in those younger than 80 years old. In winter, total snowfall was associated with a reduced risk of hip fracture (-5% per 20 inches) but an increased risk of non-hip fractures (6-12%; p < 0.05 at all sites).

A study by Mirchandani et al⁹⁵ examined the effect of weather and seasonality on hipfracture (femoral neck or intertrochanteric region) incidence in adults >=65 years in New York City, 1985 to 1996. They found hip fractures were more likely to occur in the winter than in any of the other seasons (p<.001), and were correlated with minimum daily temperature (r=.167, p<.001), daily wind speed (r=.166, p<.001), maximum daily temperature (r=.155, P<.001), minutes of sunshine (r=.067, P<.01), and average relative humidity (r=.033, P=.03). A greater number of hip fractures occurred in colder months, with ambient temperature rather than any adverse circumstances related to rain or snowfall associated most closely to injury.

Jacobsen et al examined the contribution of weather to the seasonality of distal forearm fractures in a population-based study in Rochester, Minnesota, 1952-89.¹³² Such fractures were more frequent in the winter among men and women 35 years of age or older, which was partially explained by a greater relative risk of distal forearm fractures on days with freezing rain (1.65; 95% CI 1.28-2.13) or snow (1.42; 95% CI 1.17-1.74) among women under 65 years of age and on days with freezing rain (1.63; 95% CI 1.23-2.17) among older women. The authors concluded that the greater seasonality of forearm compared with hip fractures is explained by the fact that more of them occur out-of-doors, though factors additional to weather also play a role in the seasonal variation.

The same group also studied the association of weather factors with seasonality in hip fracture among women aged 45 years and older in Rochester, Minnesota, 1952 to 1989.¹⁴³ The risk of hip fracture was increased on days with snow (relative risk 1.41, 95% CI 1.10, 1.81) or freezing rain (RR 1.82, 95% CI 1.27, 2.62), and the elevated risk of hip fracture in winter, compared with summer (RR = 1.44, 95% CI 1.0, 2.09) was reduced after controlling for weather (RR = 1.16, 95% CI 0.81, 1.65). Among women aged 75 years and older, ice and snow were not strongly related to fracture occurrence.

In Canada, a study by Morency et al ²⁹ based on ambulance records, reported that 72% of the outdoor falls were explicitly attributed to ice and/or snow and/or slipping. Three episodes of excess falls, representing 47% of all outdoor falls, were preceded by rain and followed by falling temperatures, or were concomitant with freezing rain.

Also in Canada a time series study by Modarres and colleagues ²⁰ examined the association of climate variables and hip fracture (n=22855 cases of hip fracture, 75.8% female) in patients, 40-74 and 75+ years, with hip fracture in Montreal, Quebec, 1993-2004. Their models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as principal influencing variables on the time-varying mean and variance of the hip fracture rate; find that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions at their 'worst'; and observe that the association of climate variables and hip fracture does not seem to change linearly, but to increase exponentially under harsh climate conditions. The climatic/meteorological conditions for Montreal are appreciably different from those of the UK, and the sophisticated analysis make clear interpretation difficult.

In a further Canadian study, Levy et al¹³⁵ investigated the relationship between inclement weather and the risk of hip fracture using hospitalization data on all hip fractures (n=18,455) in Montreal, 1982 to 1992, linked to weather data on the amount of snow, rain, and freezing rain and outdoor temperature. They observed a cyclical pattern, with the peak of hip fractures in mid-December among women and the first week of January among men. The pattern was less pronounced among women than men, with peak-to-trough ratios of 1.2 and 1.4, respectively. Days with lower temperatures, snow, and freezing rain were associated with increased rates of hip fracture. The relative risk (relative to days > 5 Celsius without precipitation) of days with any freezing precipitation was 1.14 (1.04, 1.24). The association between inclement weather and hip fractures was stronger among younger persons in both women and men. The authors speculate about the possible additional influence of slower reaction times in winter and winter bone loss as contributory mechanisms, or other (low) temperature effects.

Although snow and ice contribute to the risk of falls and injuries, the relationship is more complex when stratified by age and type of injury risk, and may vary by geographical setting/climate conditions. Overall, there is a steep increase in the rate of emergency hospital admissions for falls on snow and ice as temperature falls,³⁵ though in the UK seasonal fluctuation is generally modest. Hip fractures, at least among elderly groups, appear to have a comparatively weak relationship with cold/icy weather in the UK,³⁹ ¹⁰⁵ ¹¹³ ¹⁴⁷ and the large majority of falls resulting in fractured hip occur indoors. Fractures of other bones (especially distal forearm) are more strongly linked to cold/icy weather,¹³² but the greater increase is in younger, working-age adults than the elderly. Some effect occurs on risks in children, but children have greater overall levels of fracture risk in summer, probably because of outdoor activities. International evidence, especially from North America, suggests greater increase in risk in more extreme icy weather.¹³⁵

ES1.7 Summary evidence statements – falls and injuries

18 studies looked at seasonal variations in falls and injuries (7 from the UK ($3 + 1^{16} = 105 = 113^{13}$, $4 + 3^{35} = 39 = 42^{147}$), 4 from the US ($3 + 1^{72} = 143 = 132^{132}$, one $+ 9^{5}$), 3 from Canada ($2 + 2^{29} = 20^{10}$, one $+ 1^{135}$) 2 from Australia ($1 + 4^{44}$, $1 + 1^{146}$) and one each from Spain⁶³ and Sweden¹³⁷ (both +)). Although snow and ice contribute to the risk of falls and injuries, the relationship is more complex when stratified by age and type of injury risk, and may vary by geographical setting/climate conditions. Overall, there is a steep increase in the rate of emergency hospital admissions for falls on snow and ice as temperature

falls,³⁵ though in the UK seasonal fluctuation is generally modest. Hip fractures, at least among elderly groups, appear to have a comparatively weak relationship with cold/icy weather in the UK³⁹ ¹⁰⁵ ¹¹³ ¹⁴⁷ and the large majority of falls resulting in fractured hip occur indoors. Fractures of other bones (especially distal forearm) are more strongly linked to cold/icy weather, ¹³² but the greater increase is in younger, working-age adults rather than the elderly. Some effect occurs on risks in children, but children have greater overall levels of fracture risk in summer, probably because of outdoor activities. International evidence, especially from North America, suggests greater increase in risk in more extreme icy weather.¹³⁵

(5) Socio-demographic factors

Rurality

Despite a common assumption that rural populations are more likely to be at risk of cold exposure and hence of cold-related mortality and morbidity, the evidence for the UK and England in particular suggests no material difference in the vulnerability to cold by urban-rural status. That was the conclusion of a 2002 study by Lawlor and colleagues,¹¹⁵ rating +/+, who examined the pattern of winter mortality in the South West Region of England, using data aggregated over a five year period 1994–1998: there was no clear evidence of trend across quintile of population density (persons.km⁻²) in terms of the 'seasonality ratio' – the ratios being 116.32, 117.02, 117.10, 115.90, and 116.42 for each of the five quintiles of increasing population density (p-value for trend =0.3).

More recent and statistically powerful time-series analyses using national (English) data linked to small-area markers of urban-rural status have also shown no clear evidence of association between rurality and cold-related mortality (Hajat et al 2013,¹⁶ rating ++/++, Hajat et al 2007,⁷⁴, rating ++/++) or morbidity (hospital admission) (Hajat et al 2013¹⁶).

Morris and colleagues (2007), rating +/++, have provided indirect evidence of *potential* vulnerability for winter death in some rural areas of Northern Ireland, but the empirical evidence for this is weak.⁷⁶

Elsewhere, in a study in New Zealand, Hales and colleagues (2012), rating ++/+, using data of record linkage from five censuses, provide evidence that *urban* dwellers are at greater risk of excess winter death than those of rural areas,²⁵ though it is unclear how those results would translate to England. However, in an ecological spatial analysis of data from Taiwan, Wu and colleagues (2011), rating +/+, found evidence that elevated cardiovascular mortalities after cold events were inversely associated with 'medical resources availability and the degree of urbanisation'⁴⁵ while in the US, Macey reported that "elders living in nonmetropolitan areas were disproportionately likely to suffer deaths from temperature-related causes", though the analytical basis and interpretation of this result are somewhat unclear (rating +/+).¹⁴⁹

Overall, the evidence appears to be against greater vulnerability to winter- or cold-related mortality/morbidity in rural areas, especially in England which has some of the better empirical research, though the evidence base remains thin.

ES1.8 Summary evidence statement – rurality

Seven studies consider issues of rurality, including 3 UK studies (2 from England, 1 ++ ¹⁶, 1 + ¹¹⁵ and 1+ from Northern Ireland⁷⁶). 4 others (all +) come from New Zealand,²⁵ Taiwan^{45 49} and the US.¹⁴⁹ Overall, the evidence appears to be against greater vulnerability to winter- or cold-related mortality/morbidity in rural areas, especially in England which has some of the better empirical research, though the evidence base remains thin.

Socio-economic status

Evidence on the effect of socio-economic status in relation to excess winter mortality/morbidity is also mixed.

Studies that provide the most robust and pertinent evidence for England suggest overall no greater risk among more deprived populations. The recent time-series analysis of regional emergency hospital admissions data for England by Hajat and colleagues (2013), rating ++/++, found no evidence of effect modification of the cold-risk by area-level measures of deprivation.¹⁶ Indeed, in this analysis the most deprived quintile was associated with the lowest point estimate of cold-related relative risk.

This finding is broadly consistent with an earlier similar analysis by Hajat and colleagues,⁷⁴, rating ++/++, of post-coded mortality data for England and Wales, 1993 and 2003, in which vulnerability to cold was found not to be modified by deprivation, except in rural populations where cold effects were slightly stronger in more deprived areas.

Lack of gradient in cold risk with socio-economic deprivation was found also in earlier studies by Lawlor and colleagues. In their 2000 analysis of data for Bradford,¹²⁹ rating +/+, no clear pattern of trend was observed in age-standardized excess winter mortality in relation to enumeration district markers of socio-economic deprivation based on 1991 census-derived 'Super Profile groups'. In a subsequent analysis based on the data for a larger regional population of South West England (Lawlor et al 2002,¹¹⁵ rating +/+) no trend was observed in relation to the Townsend index of socio-economic status, with the seasonality ratio having almost identical point estimates in the first and last quintile of deprivation (115.28 and 115.87 respectively, p-value for trend across quintiles = 0.6). ^{115 115} An earlier study by Shah and Peacock (1999),¹³³ rating +/+, of deaths of Croydon residents, 1990-1995, also showed no evidence of a relation between age- and sex-standardised seasonality ratios and Townsend scores for all deaths, cardiovascular deaths or respiratory deaths, and no interaction between Townsend score and temperature in the model of ward mortality rates.

These findings are in line with those of other analyses of data in England, including of a case-control study of social factors on winter hospital admission for respiratory disease based on data from 79 general practices in central England (Jordan et al 2008,⁶⁹ rating ++/++) and an analysis of mortality, 1981 to 1999, and emergency hospital admissions, 1990 to 1999, in the South Yorkshire Coalfields Health Action Zone (Maheswaran et al 2004,¹⁰² rating +/+) where deprivation was again classified using the enumeration district Townsend index. In a national (Great Britain) small-area analysis at electoral ward level of mortality in men and women aged 65 and over, between 1986 and 1996, Aylin and colleagues 2001,¹¹⁸ rating +/++, identified little association between winter mortality and

socio-economic deprivation. A similar conclusion was reached by Watkins and colleagues 2001,¹²³ rating -/+, who studied patterns of hospital admissions data for the Metropolitan Borough of Stockport, analysing winter and summer differences in ACORN-specific, age- and sex-standardized hospital admissions for ischaemic heart disease. In the latter study, the authors hypothesized that the lack of scoio-economic gradient may in part reflect the relatively high admission rates in the summer months for more deprived populations.

Strong evidence for lack of socio-economic gradient in excess winter death comes from a population cohort study (119,389 person years of follow up) based on 106 general practices from the Medical Research Council trial of assessment and management of older people in Britain (Wilkinson et al 2004,¹⁰⁴ rating ++/++). With control for individual level risk factors, there was no evidence that the winter:non-winter ratio of mortality varied in relation to socio-economic factors. Similarly, a 2001 report based on analysis of mortality data, 1986-1996, linked at postcode level to the English House Conditions Survey (Wilkinson et al 2001,¹²⁴ rating +/+), showed no evidence that the winter:non-winter mortality ratio was related to socio-economic group. Indeed, the point estimates of winter excess mortality were marginally *greater* in households where the head of household was from professional or managerial groups than they were in households where the head was a semi- or unskilled labourer, though this may in part reflect confounding by age (higher socio-economic groups have somewhat older populations).¹⁰⁴

Donaldson and Keatinge 2003,¹⁰⁶ rating +/+, offered a more nuanced interpretation of socioeconomic patterns based on their analysis of cold related mortality, 1998–2000, in England and Wales at ages 65–74 and 50–59. These authors found that in men of working age (50–59), cold related mortality was low in social class V compared with that in any other social class, but that it was high in social class V in men of the retired age group (65–74). Moreover, in social class V, but not class I, cold mortality in men of working age was also low compared with women or housewives of the same class and age group. Their interpretation of these findings is that (working) manual labourers are in part protected against the effect of daytime cold stress by their physical activity, independently of the home environment and income.

In Scotland, a tentative and limited correlation analysis based on the Scottish Index of Multiple Deprivation (SIMD), ⁹⁴ rating -/-, has been used to suggest an association between excess winter death and deprivation, while a more sophisticated time-series regression analysis of seasonal variation in mortality in Scotland, 1981 and 1993 (Gemmell et al 2000,¹²⁷ rating +/+), found little evidence of link to socio-economic status. In Ireland, Callaly et al,¹² rating +/+, in an analysis of all emergency medical admissions to St James' Hospital, Dublin, 2002-2011, found that although deprivation was a univariate and multivariate predictor of overall mortality, it was not related to seasonal variation.

On the other hand, in a month by month analysis of all COPD admissions (ICD10 codes J40-J44 and J47) for 2001-2010 for all Scottish residents, McAllister and colleagues found evidence of stronger associations between low outdoor temperature and admission in the more deprived quintiles.¹⁷ In Canada, Bayentin and colleagues found evidence that the effects of meteorological variables on the daily admissions rate for ischaemic heart disease (IHD) were more pronounced in regions with high deprivation index.⁴⁷ In the US, Curriero found that two indicators of socioeconomic status (percentage of persons without a high school education and percentage of those living in poverty)

were associated with increased mortality effects of high temperature, but not cold.¹¹⁴ Similarly, Madrigano and co-workers showed that persons living in areas with greater poverty were more susceptible to heat but (by implication, though not explicitly reported) not to cold,¹⁹ while Anderson and Bell, observed no variation in risk of cold mortality in relation to community level markers of income or unemployment.⁵⁶ In a novel analysis of US individual death records, 1989 to 2006, Rau and colleagues could not detect any noteworthy differences in the seasonality of deaths from heart and respiratory disease in relation to socioeconomic group.⁵⁴

In New Zealand, Davie et al reported no evidence to suggest that patterns of EWM differed by ethnicity, region or local-area based deprivation level,⁷³ though Hales and colleagues in their analysis of mortality data linked to records from five censuses, showed that after adjusting for age, sex, census year, ethnicity and tenure, those in the lowest tertile of income were at increased risk of winter death compared to those in the highest tertile (odds ratio 1.13 (95% CI 1.08 to 1.19)).²⁵ In a spatial analysis of data for Taiwan, Chen provided evidence that the effects of meteorological variables on the daily IHD admissions rate were more pronounced in regions with high smoking prevalence and high deprivation index.⁴⁹

In contrast, the case crossover analysis by Wichmann and colleagues of hospital admissions for acute myocardial infarction in Copenhagen found that the highest SES group seemed to be more susceptible in the cold period.³⁴

As reported briefly above, in a cross-country analysis of excess winter death in 14 European countries, Healy showed an ecological association between country-level parameters of socio-economic development (as well as of housing thermal efficiency) and (lower) risk of winter mortality.¹⁰⁷

Overall, notwithstanding some reports of links to socio-economic status, the most direct and secure evidence relevant for England suggests no appreciable socio-economic gradient in winter- or cold-related risk.

ES1.9 Summary evidence statement – socio-economic status

26 studies look at socio-economic status. Of these, 15 are from the UK (12 from England/England and Wales (4 ++ ^{74 16 69}, 7 + ^{128 102 124 118 115 129 133}, 1 +/-¹²³), 3+ from Scotland (^{127 17 94})). A further 4 are from the US (3++ ^{114 56 19}, 1 + ⁴⁷), 2 from New Zealand (1 + ^{25 73}) and 1 each from Ireland, ¹² + Canada, ⁴⁷ + Taiwan, ⁴⁹ ++ Denmark, ³⁴ ++ and Europe.¹⁰⁷+).

4 studies provide evidence to suggest that deprived groups suffered greater effects of cold (^{25 49 47} ¹⁷), 2 studies suggest a higher rate of admission for MI⁶¹ and risk of winter mortality¹⁰⁷ in groups with higher measures of higher socioeconomic status or development. 1 study from England and Wales found a lower rate of mortality in working age men in social class V compared to other social classes.¹²⁸

Overall, notwithstanding some reports of links to socio-economic status, the most direct and secure evidence relevant for England ^{74 16 102 124 104 118} ^{69 129 115 133 123} suggests no appreciable socio-economic gradient in winter- or cold-related risk.

(6) Housing factors including fuel poverty

There is limited robust evidence on the relationship between housing factors and winter- or coldrelated mortality and morbidity in large part because of the large sample size needed to test housing as a *an effect modifier* of the winter/non-winter ratio in mortality or morbidity.

(i) Central heating

Among UK research, an early ecological study of seasonal mortality, 1986-1996, in men and women aged 65 and over by Aylin and colleagues¹¹⁸ was based on ward-level data for Great Britain. Their analyses suggested that lack of central heating was associated with a higher risk of dying in winter (odds ratio = 1.016 (1.009, 1.022). These authors noted that selected housing variables derived from the English House Condition Survey showed little agreement with census-derived variables at electoral ward level. Subsequently, Wilkinson and colleagues,¹²⁴ linked data from the English House Conditions Survey to mortality statistics and observed a modest but not statistically significant difference in excess winter death in those without central heating.

In the US, Curriero et al¹¹⁴ undertook time-series analyses of the association between temperature and mortality for 11 large eastern US cities, 1973–1994, and explored city-level (ecological) characteristics associated with variations in this temperature-mortality relation. Although not statistically significant, the percentage of homes with heating was associated with a reduction in the steepness of the cold slope, but this (interaction) effect was more substantially attenuated after additional controlled for latitude (since heating is strongly correlated with latitude).

ES1.10 Summary evidence statement - central heating

Three studies (1 + UK,^{118 124} 1 ++ US¹⁷) looked at the association of heating or central heating with health. Using ward level data Aylin¹¹⁸ found a higher risk of dying in winter with lack of central heating (OR 1.016, 1.009, 1.022). A small excess was also obsewrved in a study by Wilkinson et al 2001,¹²⁴ (+). Curriero¹⁷ found a non-significant reduction in the steepness of the slope relating temperature and mortality across 11 eastern US cities. This interaction was reduced when latitude was controlled for.

(ii) House conditions, including thermal efficiency, temperature and fuel poverty

The 2001 study by Wilkinson and colleagues¹²⁴ provides relatively detailed evidence relating excess winter death to housing conditions. It examined seasonal mortality in England, 1986-1996, with death records linked by postcode of residence (14 households per postcode) to data from the 1991 English House Conditions Survey. Among its chief findings were that:

- The ratio of winter:non-winter mortality was slightly higher in properties with poorer energy efficiency as measured by the Standard Assessment Procedure (SAP) rating
- There was evidence of a clear gradient of risk of excess winter death with age of property, with people living in dwellings with a more recent build date having lower risk than those

living in older dwellings. Age of property has a strong correlation with standards of energy efficiency. A key result of the multivariable analyses is given below:

Multi-variable analyses of the risk of Excess Winter Death in relation to property age (adjusted for age, sex, socio-economic group and presence of central heating):

Property age	Relative risk for EWD
Pre 1850	1
1850-99	0.97 (0.83 – 1.12)
1900-18	0.93 (0.80 – 1.09)
1919-44	0.96 (0.83 – 1.11)
1945-64	0.96 (0.83 – 1.11)
1965-80	0.87 (0.75 – 1.01)
Post 1980	0.82 (0.68 – 0.98)
	(p=0.001 for trend)

Table 3. Extract of data from Wilkinson et al 2001.¹²⁴ Multivariable adjusted risks of excess winter death in relation to property age.

There was evidence of a trend in the ratio of winter:non-winter mortality in relation to indoor temperature. Indoor temperature estimates (usually for only one dwelling per postcode) were based on a 'standardization' procedure of simultaneous spot indoor and outdoor measurements in which an adjusted indoor temperature was estimated through a regression approach: the mid-afternoon temperature on a day with maximum outdoor temperature of 5 degrees Celsius – referred to as the Standardized Indoor Temperature (SIT). In unadjusted analyses, the seasonal increase in mortality in homes in the quartile with lowest SITs was 1.20 (1.09, 1.32) times that of in homes in the warmest quartile of SITs (p=0.002 for trend).

In further analyses, daily time series methods were used to characterize the steepness of the (low) temperature-mortality relationship in relation to the Standardized Indoor Temperature. This showed that the relationship between outdoor temperature and mortality was steeper among residents of homes with low SITs than among those living in warmer homers, i.e. for each degree Celsius fall in *outdoor* temperature, the percentage rise in mortality was greater in those living in cold homes (low SITs) compared with those living in warm homes (high SITs).

Other evidence from this study (Tables 4, 5 & especially 6 from Wilkinson et al 2001¹²⁴) showed that multi-variable adjusted determinants of (standardized) low indoor temperatures included: size of household (warmer in larger families, 0.5 deg C range of temperature differences between warmest and coolest in relation to household size); property age (strong effect, older properties colder: range of temperature difference 1.2 deg C); absence of central heating (strong effect: temperature difference 1.1 deg C); dissatisfaction with heating system (very strong effect: range of temperature difference 1.8 deg C (most vs least satisfied)); and minimum standardized heating costs (strong effect: range of temperature difference 1.1 deg C). Variation of temperatures in relation to household income was fairly modest – only 0.25 degree Celsius difference between the lowest and highest quartile of income.

People in social or local authority housing tend to have low standardized heating costs¹²⁴ compared with owner occupiers or those in privately rented accommodation, and comparatively high estimated Standardized Indoor Temperatures, probably because of newer more energy efficient stock and the higher frequncy of flats and dwellings sharing communal heating systems. But those in social or local authority housing (and those with low household income) showed greater decline in SITs as standardized heating costs rose.

The same group subsequently published a study based on an analysis of data from a cohort of elderly people from 106 general practices in the Medical Research Council trial of assessment and management of older people in Britain.¹⁰⁴ There was little evidence that the ratio of winter:non-winter mortality varied by geographical region, age, or any of the personal, socioeconomic, or clinical factors examined except for gender and self-reported history of respiratory illness (see above). More specifically, in relation to housing/indoor environment, there was no evidence that the winter:non-winter ratio of mortality was higher in those who lived alone (OR 0.94 (0.88 to 1.02)), or who reported difficulty making ends meet (OR 0.96 (0.88, 1.06)) or difficulty keeping the house warm ('sometimes:' OR 0.98 (0.87 to 1.11), 'often:' OR 1.14 (0.89 to 1.46)).

In 2002, Mitchell and colleagues presented an analysis of data from cross-sectional observational studies from 5663 participants of the Health and Lifestyle Survey (HALS) to examine the relationship between exposure to colder climate and housing quality, and second the relationship of colder climate and housing quality with risk of hypertension.¹¹⁶ They reported that people in colder areas are more likely to live in poor quality housing and that the combination of colder climate plus residence in worse quality housing raises significantly the risk of diastolic hypertension (OR 1.45, 95% Cl 1.18, 1.77) and, more weakly, systolic hypertension (1.25, 95% Cl 1.01, 1.53).

A similar more recent study by De Vries and Blane¹⁴ examined the inter-relationship between climate, fuel poverty and health, using individual data (n = 7160) on respiratory health, hypertension, depressive symptoms and self-rated health derived from the 2008/09 wave of the English Longitudinal Study of Ageing. These data were linked to weather data for 89 English counties and unitary authorities. In multilevel regression models they report that variation in individual risk of fuel poverty was not explained by variations in average temperature (climate), but that fuel poverty was significantly related to worse health for two of the four health outcomes studied (respiratory health and depressive symptoms). In models without terms for climate interaction, the coefficient for the difference in peak expiratory flow in people living in fuel poverty was -9.22 (-16.8, -1.61) l/min; and the odds ratio for depression 1.37 (1.17, 1.61).

In a relatred analysis, Webb et al.²³ also report a study on housing conditions and respiratory health using data from the second wave of the English Longitudinal Study of Ageing. The measure of fuel poverty was based on the proportion of the total annual net household income respondents reported spending on fuel (including electricity, gas, solid fuel and all other fuels). Multivariate regression methods were used to test the associations of housing factors with respiratory health while accounting for the potential effect of other factors, including social class, previous life-course housing conditions and childhood respiratory health. The authors found that older people who were in fuel poverty had significantly worse respiratory health as measured by peak expiratory flow rates: difference in peak expiratory flow (PEF) in the fully adjusted model -8.79* (-16.46, -1.11) l/min. But

after accounting for the same covariates, fuel poverty had no association with other measures of respiratory health (forced expiratory volume in 1 second, forced vital capacity and presence of obstructive defect).

Rudge and Gilchrist reported a small area ecological study of the variation in the winter excess of emergency hospital episodes for all respiratory diagnosis codes in the London Borough of Newham.⁹⁷ This was a population-based study of 25,000 residents aged >or=65 years using on Hospital Episode Statistics data, 1993-1997, anonymized at enumeration district (ED) level (average of 220 households, or 460 persons per ED). The excess winter morbidity ratio (for emergency hospital admission) was examined in relation to an ED-level composite marker of Fuel Poverty Risk (FPR) based on the following factors:

- low income: households receiving Council Tax Benefit (LBN data), this benefit being available to householders of all tenures;
- age: households including pensioners (1991 Census*);
- poor housing: extent of homes with energy efficiency ratings below the 1991 national average;
- under-occupation (where small households occupy relatively large homes for their needs): from combined Census variables: households of one or two persons only and households with ≥5 rooms.

Using FPR as a two-level factor (high and non-high), their analysis provides odds ratios for higher winter/summer ratios in relation to the FPR binary variable for two of four years studied: 1993 OR 1.7 (1.1, 2.7) and 1996, OR 1.6 (0.9, 2.8). In a regression with grouped EDs, having allowed for FPR, no other variables contribute to the difference between winter and summer morbidity counts. This analysis did not adjust for possibly confounding modifiers, in particular age, but given the analysis is based on those aged 65+, the FPR results are probably still largely robust.

A study based on two questionnaire surveys of residents in social housing in Torbay, Devon, 2000 and 2001, investigated relationships between home characteristics and respondent health.¹¹¹ The questionnaire elicited information on both the physical conditions in the house or flat and the physical and mental health of its occupants. Although univariate associations were observed between housing characteristics reflecting aspects of energy inefficiency (cold home, dampness, mould) and selected illnesses, in multivariable analyses, none of these housing conditions were clearly associated with any of the major physical conditions or minor illnesses analysed, with the exception of the General Health Questionnaire (GHQ) score in relation to mould (but not cold).

In a study of relatively deprived households in North East England based on a survey in 2000 and a follow-up in 2001, respondent-assessed health and health behaviours and administered SF36 health questionnaire score were analysed in relation to measures of energy efficiency (SAP rating) and satisfaction with home heating among other parameters.⁹³ Respondent health was significantly and independently associated with lower satisfaction with home heating and worse SAP rating. In the full logistic regression model, a unit decrease (worsening) in SAP score was associated with a 1.03 (1.01-1.05) odds of having poorer respondent-assessed health.

Other research, based on the Family and Children Study, entailed the annual follow-up of a sample of English children (n=6431 followed up annually), 2001 to 2005, using caregiver interviews for

children under 11-years and self-completed questionnaires for adolescents. ⁶⁶ The study focused on the relationship between poor housing including 'inadequate heating,' and child health. This study found that the longer children live in 'bad housing,' the greater the frequency of a range of adverse outcomes. In relation to inadequate heating, two notable findings were: that the percentage of children with chest, breathing, asthma or bronchitis problems increased with the number of years they had lived in an inadequately heated home (3-5 years 15%, 1-2 years 11%, 0 years 7%), as did the percentage of children with four or more negative "Every Child Matters" (ECM) outcomes (3-5 years: 28%, 1-2 years: 9%, 0 years: 4%). These associations may reflect broader socio-economic associations.

A non-intervention observational study which examined mental health in relation to measures of fuel poverty was based on secondary analysis of data from the Adult Psychiatric Morbidity Survey 2006/7 (APMS).⁵¹ A key outcome was that of common mental disorder (CMD), classified on the basis of the Clinical Interview Schedule - Revised (CIS-R), which was related to measures of fuel poverty as indicated by whether the respondent reported being thermally comfortable and of having fuel-related financial strain. Among those who said worry about cost meant that they had used less fuel than was necessary to heat the home in the past year there was increased prevalence of CMD (OR 1.77 (1.46, 2.16)); and likewise among those who reported a cold home (or unable keep their home warm enough in winter) (OR 1.85 (1.33, 2.58). (Presence of mould, though not directly a fuel poverty measure, was also associated with CMD and with physical health condition in last year.)

A cross-sectional observational study by Osman and colleagues⁷⁰ concentrated on patients with chronic obstructive pulmonary disease (COPD) living in their own homes. Living room (LR) and bedroom (BR) temperatures were measured at 30 min intervals over 1 week using electronic dataloggers, and patients' health status measured with the St George's Respiratory Questionnaire (SGRQ) and EuroQol: EQ VAS. Of the 148 patients who consented to temperature monitoring, poorer respiratory health status was significantly associated (P = 0.01) with fewer days with 9 h of warmth at 21 degrees Celsius in the living room (independently of age, lung function, smoking and outdoor temperatures). Bedroom temperatures with at least 9 h at 18C and living room total hours of warmth at 21C showed a trend to association but were not significant at the required 0.01 level. There was no clear evidence of association with measures of indoor temperature for activity limitation scores, impact score or EQ visual analogue scores.

Studies of winter death that have made multi-country comparisons within Europe have included the previously mentioned studies of the Eurowinter Group. ¹²⁸ ¹⁴² Their evidence in relation to housing suggests that, especially for the oldest groups studied (those aged 65-74), high levels of protection against indoor and outdoor cold at given outdoor temperatures were found mainly in countries with cold winters, and were associated with low levels of excess mortality at a given level of outdoor cold. Regions such as London that had poor protection against cold and/or high baseline mortalities had higher levels of winter excess mortality than expected for the coldness of their winters.¹²⁸ Although indirect associations, their findings suggest various cold-exposure markers (standardized to conditions of 7 degrees Celsius mean daily temperature) are related to cold-related mortality from all causes, ischaemic heart disease, respiratory disease and, to lesser extent, cardiovascular disease. In relation to the indoor environment, bedroom heating of >= 4 hours/d and living room

temperature were both associated with (lower risk of) cold-related all-cause mortality (coefficients of -0.8 (p=0.002) and -0.3 (p<0.001) respectively).

These data broadly fit with the ecological analyses of the coefficient of seasonal variation in mortality (CSVM) in 14 European countries undertaken by Healy.¹⁰⁷ This study reports moderate associations (in inter-country comparisons) between the CSVM and measures of thermal efficiency, including significant associations for cavity wall insulation, double glazing, and floor insulation (regression model results for CSVM on country level markers of: cavity wall β =-2.56, p=0.02; double glazing β =-0.31, p=0.02, but floor insulation β =1.01, p=0.03).

Other European comparative data come from the LARES Survey (Large analysis and Review of European Housing and Health Status) coordinated by the World Health Organization European Office for Environment and Health. This surveyed the condition of 3373 dwellings and the health status of their 8519 inhabitants in eight European cities: Angers (F), Bonn (D), Bratislava (SK), Budapest (HU), Ferreira do Alentejo (POR), Forli (IT), Geneva (CH), Vilnius (LT) (approximately 400 dwellings, 1000 inhabitants per city). Analyses by Croxford⁵⁸ focused on the association of cold homes with selected outcomes, with four variables used as indicators of poor hygrothermal conditions: reported cold in winter; dissatisfaction with insulation; dissatisfaction with heating system; dissatisfaction with draughts. The analyses were based on prevalence data rather than on seasonal variations in health, and the nature of confounder adjustment was not clear. However in multivariable logistic regression models associations were reported as follows: respiratory symptoms in children were 2.1 (1.0, 4.38) times more prevalent if dissatisfied with heating system and 4 times less prevalent (OR=0.25 (CI 0.13-0.49) if dissatisfied with draughts; and in seniors respiratory symptoms were 1.97 times more prevalent if house cold in winter (OR:1.97, CI:1.03-3.76) and 2.39 times more prevalent if dissatisfied with insulation (OR:2.39, CI:1.07-5.36). Arthirtis symptoms (in seniors) were 1.92 times more prevalent if the house was cold in winter (OR:1.92, Cl:1.16-3.16). And belief that mental health problems are related to dwelling was less prevalent in children if dissatisfied with insulation (OR:0.13, CI:0.02-0.99), and more prevalent in adults if the house cold in winter (OR:1.79, CI:1.07-2.98), they were dissatisfied with insulation (OR:1.67, CI:1-2.81); or dissatisfied with heating system (OR:1.82, CI:1.14-2.91). There were no reported associations for cardiovascular problems.

ES1.11 Summary evidence statement – housing conditions including thermal efficiency

6 UK studies (1 + Great Britain-wide,¹¹⁶ 5 England (1 ++ ¹⁰⁴ 2+ ¹²⁴ ⁶⁶, 2- ¹¹¹ ⁹³) and 2 comparative studies across Europe¹⁰⁷ (+) ⁵⁸(+/-) looked at various aspects of housing conditions. Wilkinson¹²⁴ found a slightly higher ratio of winter:non-winter deaths in houses with poorer SAP ratings and a study in North East England⁹³ found a significant and independent association with respondent-assessed health and poorer SAP ratings and lower satisfaction with home heating. Wilkinson also found a clear gradient of risk of EWD in relation to property age (p=0.001 for trend). The combination of colder climate and residence in worse quality housing significantly raised the risk of diastolic (OR 1.45; 1.18, 1.77) and systolic (1.25; 1.01,1.53) hypertension.¹¹⁶ In children,⁶⁶ the longer a child lives in 'bad housing' the greater the frequency of a range of adverse outcomes, notably chest, breathing, asthma or bronchitis (3-5yrs 15%, 1-2 yrs 11%, 0 years 7%) and 4 or more negative 'Every Child Matters' outcomes (3-5 yrs 28%, 1-2 yrs 9%, 0 yrs 4%). The authors note these associations may reflect broader socio-economic associations. A study in Torbay¹¹¹ found univariate

associations between housing characteristics reflecting energy inefficiency and selected illnesses but no clear associations between housing conditions and major physical conditions or minor illnesses in multivariate analyses (with the exception of GHQ in relation to mould). A study of older people in Britain¹⁰⁴ (++) found no evidence of higher winter:non-winter mortality in those who lived alone (OR 0.96; 0.88, 1.06), who reported difficulty in making ends meet (OR 0.98; 0.97, 1.11) or difficulty in keeping the house warm ('sometimes': OR 0.98; 0.87, 1.11; 'often': 1.14; 0.89, 1.46).

An ecological analysis of the coefficient of seasonal variation in mortality in 14 European countries¹⁰⁷ (+) found moderate associations with measures of thermal efficiency, including significant associations for cavity wall insulation (β =-2.56, p=0.02), double glazing (β =-0.31, p=0.02) and floor insulation (β =1.01, p=0.03). An analysis of prevalence of selected outcomes with 4 variables used as indicators of poor hygrothermal conditions⁵⁸ found respiratory symptoms 2.1 times (1.0, 4.38) more prevalent in children if dissatisfied with heating systems and 4 times (0.13, 0.49) less prevalent if dissatisfied with draughts; in seniors respiratory symptoms were 1.97 (1.03, 3.76) times more prevalent if the house was cold in winter and 2.39 (1.07, 5.36) if dissatisfied with insulation. Arthritis symptoms in seniors were 1.92 (1.16, 3.16) times more prevalent if the house was cold in winter. Belief that mental health problems were less prevalent in children if dissatisfied with insulation (OR 0.13; 0.02, 0.99) but more prevalent in adults if the house was cold in winter (1.79; 1.07, 2.98), if they were dissatisfied with insulation (1.67; 1.0, 2.81) or dissatisfied with the heating system (1.82; 1.14, 2.91).

ES1.12 Summary evidence statement – fuel poverty

4 English studies examine aspects of fuel poverty (2 ++^{51 97} and 2+^{23 14}) which consider respiratory and mental health conditions. A study of emergency hospital episodes for respiratory diagnoses from Newham⁹⁷ found an association with a composite fuel poverty risk measure for 2 of 4 years studied: 1993 (OR 1.7; 1.1, 2.7) and 1996 (OR 1.6; 0.9, 2.8). Two other studies found significant differences in peak expiratory flow with measures of fuel poverty. One study, from the English Longitudinal Study of Ageing,¹⁴ found a difference of -9.22 (-16.8, -1.61)l/min. The other, also from the English Longitudinal Study of Ageing, found that older people in fuel poverty had significantly worse peak expiratory flow (-8.79; -16.46, -1.11)l/min.²³

For mental health outcomes, De Vries and Blane¹⁴ found an odds ratio for depression of 1.37 (1.17, 1.61). A study using the Adult Psychiatric Morbidity Survey 2006/7⁵¹ found increased prevalence of common mental disorder of 1.77 (1.46, 2.16) in those who said worry had meant they used less fuel than necessary to heat the home and 1.85 (1.33, 2.58) in those who reported a cold home (or unable to keep their home warm enough in winter).

ES1.13 Summary evidence statement – temperature

Four + studies (2 from England^{124 70} 2 European comparisons^{128 142}) provide information on home temperature and health outcomes. Indirect associations from the Eurowinter Group^{128 142} suggest various cold-exposure markers (standardized to conditions of 7° C mean daily temperature) are related to cold-related mortality from all causes, ischaemic heart disease, respiratory disease and, to lesser extent, cardiovascular disease. In relation to the indoor environment, bedroom heating of >= 4 hours/d and living room temperature were both associated with (lower risk of) cold-related all-

cause mortality (coefficients of -0.8 (p=0.002) and -0.3 (p<0.001) respectively). Studies from England found, in unadjusted analyses, the seasonal increase in mortality in homes in the quartile with lowest SITs was 1.20 (1.09, 1.32) times that of in homes in the warmest quartile of SITs (p=0.002 for trend) and that the relationship between outdoor temperature and mortality was steeper among residents of homes with low SITs than among those living in warmer homers, i.e. for each degree Celsius fall in outdoor temperature, the percentage rise in mortality was greater in those living in cold homes (low SITs) compared with those living in warm homes (high SITs).¹²⁴ A cross sectional study of patients with COPD patients in Scotland found poor respiratory health status was significantly associated (P = 0.01) with fewer days with 9 h of warmth at 21°C in the living room (independently of age, lung function, smoking and outdoor temperatures).⁷⁰ Bedroom temperatures with at least 9 h at 18°C and living room total hours of warmth at 21°C showed a trend to association but were not significant at the required 0.01 level. There was no clear evidence of association with measures of indoor temperature for activity limitation scores, impact score or EQ visual analogue scores. Patients who were continuing smokers were more vulnerable to reduction in warmth.

(iii) Housing tenure

Various studies have reported variations in risk in relation to housing tenure (as distinct from housing quality). The evidence has been reported above (Wilkinson et al 2001¹²⁴ (+)) about the comparison of home heating and standardized heating costs which tend to be lower in the more recent build dwellings in the social/local authority sector.

Studies from New Zealand reported greater risk of winter death in renter vs owner occupier households OR 1.05 (95% CI 1.01, 1.10),²⁵ a another from the UK reports poorer respiratory function in non-owner households,²³ and greater risk of common mental disorder in social renting households.²³ A study from France³¹ points to higher risk of excess winter death among residents of nursing homes. In England and Wales the risk among nursing home residents for cold death appears not to be higher than among the general elderly population, though it is relatively high for heat risk.⁷⁴

ES1.14 Summary evidence statement -- housing tenure

5 studies consider some aspect of housing tenure (3 from England, 1 ++^{74 23,} 1 +¹²⁴, from New Zealand²⁵ (+) and from France (+). Studies from England¹²⁴ suggest that people in social or local authority housing tend to have lower standardised heating costs (and higher standardised indoor temperatures) compared to owner occupiers or those in private rented accommodation, and another suggest poorer respiratory function.²³ They also show a greater decline in SIT as standardised heating costs rise. 2 studies provide mixed evidence on risk among residents of nursing homes. An English study⁷⁴ found no greater risk of cold related death among nursing home residents compared to other elderly populations (but a relatively high heat risk) while a study from France³¹ found a higher risk among residents of nursing homes. A New Zealand study suggests greater risk of winter death (OR 1.05; 1.01, 1.1),²⁵ poorer respiratory function in non-owner households and greater risk of common mental disorders in social renting households.⁸⁹

(iv) Expenditure trade-off

A further insight from the US relates to the issue of the trade-off between expenditure on heating and on food.⁸⁰ In the Children's Sentinel Nutrition Assessment Project from June 1998 to December 2004, caregivers with children 3 years of age in 2 emergency departments and 3 primary care clinics in 5 urban sites participated in cross-sectional surveys regarding household demographics, child's lifetime history of hospitalizations, and, for the past 12 months, household public assistance program participation and household food insecurity, measured by the US Food Security Scale. It examined the influence of the Low Income Home Energy Assistance Program (LIHEAP) which is aimed at providing financial support for home heating, medically necessary home cooling, and weather-related supply shortage emergencies (targeted at "vulnerable households with the highest home energy needs" defined as those including an individual with disabilities, a frail elder, or one member who is a young child). It served nearly 5 million US households in 2004 with average household income less than \$8000 a year. After control for potential confounding variables, including receipt of other means-tested programs, children in households not receiving the Low Income Home Energy Assistance Program had greater adjusted odds of being at aggregate nutritional risk for growth problems, defined as children with weight-for-age below the 5th percentile or weight-for-height below the 10th percentile.

ES1.15 Summary evidence statement – expenditure trade-offs

One US study⁸⁰ (+) considered the issue of trade-off between expenditure on heating and on food. After control for potential confounding variables, including receipt of other means-tested programs, children in households not receiving the Low Income Home Energy Assistance Program had greater adjusted odds of being at aggregate nutritional risk for growth problems, defined as children with weight-for-age below the 5th percentile or weight-for-height below the 10th percentile.

Summary

• Which subpopulations are more vulnerable to cold temperatures and poorly heated or expensive-to-heat homes?

The evidence above shows that those vulnerable to the adverse health effects of cold temperatures are quite widely distributed in the population, but are predominantly the elderly population, with small additional risks in women (versus men). Anyone vulnerable to almost any underlying medical condition is at risk, but especially those with (or at risk of) respiratory and cardiovascular diseases. The risk of falls during periods of low temperature or inclement weather (especially freezing conditions) appears to increase, especially for working age groups. There is little evidence on which to base the assessment of risk in relation to ethnicity. Rural populations appear to be a little more at risk than urban populations, and socio-economic gradients appear to be shallow. There is some evidence that people living in energy inefficient and thus hard to heat homes are at greater

vulnerability to cold-related impacts, including (cardiovascular) mortality, respiratory illness and common mental disorder.

People living in poorly heated or expensive to heat homes include those living in less energy-efficient older properties, commonly in the owner occupier or privately rented sector. Although there are appreciable numbers of hard to heat homes in social and local authority housing, in general such housing has better than average energy efficiency characteristics.

• What factors contribute to vulnerability and how do these factors interact with each other?

The factors contributing to vulnerability to winter- and cold-related mortality/morbidity are indicated above. There is insufficient evidence to make a clear quantitative assessment of the relative contributions of different personal and housing-related risk factors, but it would be reasonable to assume broadly multiplicative risks i.e. that, for example, the relative risk associated with inefficient housing would multiply the relative risks associated with individual personal characteristics such as age and sex. Where individual factors combine, therefore, a starting assumption would be that the joint risk could be represented by the product of the relative risks associated with each individual factor. Some individual factors will tend to cluster (e.g. age, sex and pre-existing illness), but there appears to be relatively weak association between personal factors and housing quality.

Quality of quantitative studies

The studies included in this review were quite varied in terms of their design, specific research focus and settings, and also in their quality. Many of the studies included were not specifically designed to test questions of vulnerability to excess winter mortality/morbidity, which adds to the difficulty of interpreting their evidence.

The nature of the question itself (vulnerability to winter-/cold-related mortality/morbidity) poses particular epidemiological challenges as it requires study of *effect modification* in the *seasonal variation* in outcomes or in cold-attributable outcomes. This places additional demands on epidemiological designs and statistical power, and it is for this reason that in many areas there is a paucity of high-quality research studies, particularly in areas with 'hard' outcomes such as mortality and hospital admission. Thus, while there are many very good quality time-series studies based on state-of-the-art methods that provide fairly robust evidence about temperature-response relationships for a range of disease outcomes, their evidence is often more limited in relation to effect modifiers that may be tested using simple ecological parameters (e.g. the use of city characteristics to test variation in the slope of temperature-mortality functions).

In relation to housing and fuel poverty, a common difficulty is the wide range of correlated potential explanatory factors and the complexity of ensuring adequate control of confounding. There are usually strong correlations between housing quality, socio-economic circumstances and a wide

range of social variables all of which have potential bearing on health outcomes. Moreover, in relation to housing studies, it is seldom that studies are designed specifically to look at winterrelated problems rather than the relationship between housing quality and health in general. For this review, our primary interest is in the energy efficiency of housing and the degree to which the indoor environment during cold winter months influences health, rather than the broader issue of how health may be influenced by dampness and mould for example (even though mould may in part be a function of low indoor temperatures). Few studies have the requisite data or the very specific analytical focus to answer such questions directly.

For this reason, much of the evidence base is somewhat indirect and its quality more limited than desirable.

Findings into context

The findings of this review provide evidence on the role of individual and other characteristics in determining vulnerability to winter-/cold-related mortality and morbidity. The evidence is fairly robust and clear in relation to such factors as age and sex, but rather less clear and somewhat counterintuitive (or at least against common assumption) in relation to such factors as rurality and low socio-economic status (for which the evidence is equivocal or broadly negative that they contribute to vulnerability). In other areas, the evidence is too limited or contradictory to draw firm conclusions (e.g. in relation to selected child health outcomes).

Nonetheless, the findings do support the widely held notion that England has a substantial burden of mortality and morbidity attributable to seasonal factors and/or the specific effects of low temperature. This is a burden that appears to be higher than it need be given comparisons with some other European countries and the evidence of its decline over time which presumably reflects the effect of a range of social, economic and health-related improvements.

The review's evidence therefore lends support to the wide array of initiatives at local and national level that attempt to reduce excess winter death and morbidity through different forms of intervention. However, the findings suggest that the risk of excess winter deaths and morbidity is quite widely distributed in the population and not very heavily concentrated in a relatively small population subgroup in fuel poverty or only in people with specific forms of underlying illness.

Implications of findings

The review has identified a number of demographic and other characteristics to be associated with risk of winter-/cold-related mortality and morbidity. They include age (risk is generally highest at older ages, with less clear but suggestive evidence for selected child outcomes), female gender, and risks in relation to a wide range of disease outcomes, especially cardiorespiratory illnesses (presumably reflecting the fact that vulnerability arises in relation to a wide range of underlying medical conditions).

The fact that the evidence is unclear in relation to socio-economic deprivation and to some extent even fuel poverty, means that intervention strategies that are aimed only at low income and fuel poor households will not address a substantial part of the population burden of winter- and cold-related mortality/morbidity. An absent or shallow socio-economic gradient implies that the burden of winter-/cold-related mortality morbidity is relatively widely distributed across social strata and hence is unlikely to be *mainly* a function of (fuel) poverty, even if fuel poverty is an important factor. The limited evidence about any greater risk in rural areas has evident bearing on the gepgraphical targeting of prevention strategies, given the appreciable burdens in in urban settings.

The importance of the energy efficiency of housing -- a physical determinant of average indoor temperatures during cold weather -- is a somewhat different factor from that of fuel poverty. There is limited direct and indirect evidence that it is an important determinant of vulnerability to the adverse health consequences of cold, which fits with broader understanding of likely pathophysiological pathways. Comparisons with populations elsewhere in Europe, especially Scandinavia, suggests that vulnerability to the effects of outdoor cold would likely be reduced by improvement in the thermal properties of housing. Although not a focus of this review, it is relevant to note that interventions in home energy efficiency are targets for action in pursuit of climate change mitigation (by helping to reduce energy use in dwellings) and energy security objectives.

Limitations of the evidence and gaps

As mentioned below, this review considered evidence only from quantitative studies and has excluded interventions. It therefore has not included all forms of evidence relevant to the question of vulnerability to excess winter mortality/morbidity.

In nearly all areas it would be desirable to have more and higher quality research evidence, which remains limited for most questions. In particular it would be desirable to have additional evidence on:

- the effect of housing quality as determinants of cold-related adverse health outcomes
- the interaction of socio—economic deprivation and fuel poverty with other potential determinants of vulnerability
- evidence in relation to child health
- impacts of fuel poverty/poor housing on mental well-being

Limitations of the review and potential impact on findings

This review was limited to quantitative non-intervention related observational studies. Evidence from intervention studies, including qualitative research, will be considered in a subsequent review. Such evidence from intervention studies may provide further insight into issues of vulnerability to seasonal and cold-related mortality/morbidity, in particular in relation to housing factors and their influence on disease symptoms and mental health status.

A limitation of the review was the need to apply a very restrictive interpretation of the inclusion criteria, specifically limiting the selection of papers to studies that had a very direct and specific focus on variations in risk (effect modification) of seasonal or temperature-related mortality/morbidity. A great many more studies than were included report research on seasonal variations in health and their relation to weather variables, and it could be argued that all such studies contribute in some measure to our understanding of vulnerability to seasonal- and coldrelated outcomes. However, we applied a narrow interpretation for reasons of practicality and to help achieve relatively clear focus. It is likely that other reviewers would identify a somewhat different set of studies for inclusion from among the relatively large potential pool identified through the search strategy – because of the sometimes subtle distinction between a study which merely reports seasonal or temperature effects (which alone was not sufficient for inclusion) from ones which consider the issue of vulnerability directly. Of particular note we did not include studies of a specific cause-of-death if they did not also address an issue of vulnerability - implying variation with regard to personal characteristics etc. The two independent reviewers identified appreciably larger lists of abstracts for further consideration for inclusion but then applied a relatively narrow definition.

Limiting the review to papers from OECD countries is unlikely to have excluded much literature relevant to England given that vulnerability factors are likely to be somewhat specific to the level of economic development and climatic pattern. Factors such as housing are likely to be quite location specific, for which English or at least UK data are therefore much more important. However, data from other countries, and especially international comparison data, are likely to be informative with regard to general patterns of association (e.g. between energy efficiency and temperature-related impacts).

Limiting the review to publication from 1993 onwards has excluded some relevant past literature. However, the importance of particular determinants of seasonal and cold-related mortality/morbidity, for example housing quality, is almost certain to be changing over time, and it is appropriate to concentrate on literature from more recent years.

It is a limitation that the research question was itself very broad and thus the relevant literature very heterogeneous, which precluded formal meta-analysis.

4 **Conclusions**

- There is consistent evidence from multiple studies of substantial seasonality of mortality and morbidity in England. Time series studies provide strong consistent evidence that exposure to low ambient temperature is one of the key factors driving such seasonality, with clear low temperature-response functions for many disease outcomes, especially cardio-respiratory mortality/morbidity.
- The degree of seasonal fluctuation in mortality/morbidity and the strength of association with low outdoor temperature, appears to be greater in England than it is in Scandinavia and selected countries of the northern continental Europe. Correlation studies suggest that the seasonal and

cold-related excess of mortality/morbidity is lower in settings that have greater protection against low outdoor temperatures because of better thermal efficiency standards of housing and the thermal quality of clothing worn by the population.

- There has been a progressive reduction in vulnerability to seasonal- and cold-related mortality in England over many decades. Although the evidence is insufficient quantitatively to apportion those improvements to specific factors, they are likely to relate to a broad range of socioeconomic and other improvements, including improvements in health care. The trend of decline adds evidence that seasonality in health and vulnerability to cold can be diminished, and that the level of seasonality and strength of the low temperature-mortality/morbidity relationships are markers of sub-optimal health protection.
- Age is probably the single most important determinant of vulnerability to winter- and coldrelated mortality/morbidity. This is true not only in relative terms but especially in absolute terms, as the underlying death rates from most causes rise progressively with age. Thus the population burden of winter- and cold-related mortality/morbidity is dominantly a problem that affects the elderly population. Although there are some outcomes that may affect children in particular, such as respiratory symptoms and adverse effects of housing on mental well-being, younger population groups, including children, generally have lower risk of adverse mortality and morbidity outcomes than older population groups.
- There is reasonably consistent evidence from a number of studies that women have slightly
 greater vulnerability to winter- and cold-related mortality/morbidity than men. However, this
 may in part be explained by their older age (women have a longer life expectancy than men and
 are overrepresented among the oldest age groups in the population), though there is some
 evidence that they have slightly greater vulnerability even when age and other confounding
 factors are taken into account. However the difference in vulnerability is relatively small
 (properly no more than a few percent).
- There is insufficient evidence to draw conclusions about variations in vulnerability to winter- and cold-related mortality/morbidity by ethnic group in England.
- Although there are relatively few studies, the published research does not provide clear and consistent evidence that the risk of winter- and cold-related mortality/morbidity is greater in rural than in urban areas. Some rural populations may nonetheless be at particular risk because of their isolation, limited access to fuel sources or other reasons, but there is insufficient evidence to conclude that urban populations are in general any less vulnerable than rural populations.
- Many disease outcomes show seasonal increases during winter and have clear exposureresponse relationships with low outdoor temperatures. Cardiorespiratory outcomes appear to have relatively strong associations with cold, but even mortality from malignancies and external causes also show association with cold. This suggests that many forms of illness and many pathophysiological pathways can be adversely affected by cold and other winter-related factors. Respiratory conditions, especially chronic obstructive pulmonary disease, appear to have a comparatively steep temperature-response functions, but because of their greater underlying prevalence, the attributable burdens of mortality and morbidity are greatest for cardiovascular outcomes despite their somewhat shallower relationships with low ambient temperature.

- Evidence in relation to the risk of falls is somewhat mixed. At younger ages the risk of injuries
 and fractures appears to be greatest in summer rather than winter months. However cold
 weather, and periods of snow and ice in particular, generally appear to be associated with an
 increase in risk of falls and fractures. However the increase in risk seems to be relatively modest
 in the elderly population (perhaps because they choose not to go outdoors in inclement
 conditions) and relatively greater in the working age population, presumably because they have
 less possibility to avoid exposure. Periods of low temperature and inclement weather appear in
 general to be associated with a greater increase in fractures and injuries to the forearm, and
 relatively modest change in the risk of hip fractures, most of which occur indoors.
- Several studies from England and elsewhere have shown surprisingly weak relationship between socio-economic status and risk of winter/cold-related mortality/morbidity. The evidence is not entirely consistent, and some apparently negative studies had relatively limited statistical power. Nonetheless the majority of studies, including some fairly large studies, suggest that there is at most only a weak or indeed a slightly negative relationship between socio-economic status and risk of winter- and cold-related mortality/morbidity (i.e. higher risks in less deprived groups). There may be various reasons for this counterintuitive observation. It is noteworthy however that a comparatively high proportion of people from lower income groups or in social or local authority housing live in dwellings that are relatively energy-efficient (more of them are flats and/or were built relatively recently to higher energy efficiency standards) and their predicted winter indoor temperatures are on average higher than those of the owner occupier population or those in privately rented accommodation. It is also worth noting that even if lower socio-economic groups do not have a greater winter-or cold-related excess of mortality/morbidity than high socio-economic groups, their higher underlying age specific death rates mean that a similar seasonal increase in risk gives rise to a greater excess number of deaths/cases of morbidity. Thus, the burden of excess winter mortality/morbidity is not heavily concentrated in socio-economically deprived populations, but is rather quite widely distributed. But targeting action on socio-economically disadvantaged populations would nonetheless contribute to reducing inequalities in health.
- Evidence about housing quality as a determinant of vulnerability to winter- and cold-related mortality/morbidity is limited and somewhat heterogeneous. Nonetheless, evidence particularly from record linkage studies in the UK suggest that energy efficiency of housing is an important determinant of vulnerability to cold-related health risks, and this is consistent with evidence from inter-country ecological comparisons that suggest lower seasonal variation and cold-related mortality in settings with high degrees of protection against cold in the indoor environment and through behavioural and other factors. This would also seem consistent with the observation that the groups most vulnerable to cold namely the elderly spend a high proportion of their time indoors at home. Evidence from cross-sectional surveys of the relationship between fuel poverty and selected health outcomes is difficult to interpret but provides useful suggest evidence that fuel poverty and cold homes have adverse impact on a range of morbidity health outcomes including mental well-being.
- The evidence of this review will need to be interpreted alongside the evidence of subsequent reviews that include evidence on intervention studies and qualitative data. Its evidence about the determinants of vulnerability to winter- and cold-related mortality/morbidity should provide useful background but the development of intervention strategies requires consideration of a

much wider range of evidence and criteria than have been considered in this part of the overall review.

It is apparent that the scientific literature on winter- and cold-related mortality/morbidity
remains limited in many areas and is quite heterogeneous. There would be considerable value in
further research that helps to clarify the evidence in relation to the determinants and effect
modifiers of the risk of winter- and cold-related mortality/morbidity. Prominent gaps remain on
the role of thermal efficiency in housing, on fuel poverty, and on selected morbidity outcomes
including mental well-being, especially in children.

Appendices

Appendix 1: Review team

The review team and their expertise are summarized in the table below.

Person	Experience and expertise
(institution)	
LSHTM	
Paul Wilkinson (Professor of Environmental	Researcher in environmental epidemiology with long-standing interest in excess winter deaths, with multiple contributions in this area particularly for the UK.
Epidemiology)	Expertise: topic expertise (excess winter death), study design and methods for quantifying the effect of seasonal/cold-related risks and modification by social, environmental and other factors.
Ben Armstrong (Professor in Epidemiological Statistics)	Epidemiological statistician with thirty years experience in environmental and occupational health research, including multiple publications on weather, climate and health, several of which are methodological contributions. Previously member of the Committee on the Medical Effects of Air Pollution (2000-2010).
	Expertise: statistical aspects, especially with regard to the methods and interpretation of time-series studies and methods used to quantify and attribute health effects to cold and seasonal influences, and their modification by social, environmental and other factors.
John Cairns	Economist with more than 35 years research experience, more than 25 years
(Professor of	specialising in health economics. Previously led a team of health economists
Health	undertaking economic modelling for cancer guidelines.
Economics)	
	Expertise: economic assessment: cost-benefit analysis
Zaid Chalabi	Mathematical modeller with wide expertise in environmental health risk assessment,
(Senior	health impact analysis, cost-effectiveness analysis, value of information and uncertainty
Lecturer in in	analyses, and decision analysis.
Health Impact	
Analysis and Modelling)	Expertise: evidence regarding cost-effectiveness (CE) of methods to identify at risk populations; CE of interventions to prevent excess mortality & morbidity; CE of systems for delivery and implementation of approaches to prevent excess mortality & morbidity
Shakoor Hajat	Medical statistician with long-standing interest in temperature (heat- and cold-)related
(Senior	impacts on health. Expertise in time series and related analyses in this field and has
Lecturer in	undertaken reviews of published evidence for European research projects.
Epidemiology	Currently involved in an evaluation of the Department of Health Cold Weather Plan for
and Medical	England.
Statistics)	
	Expertise: epidemiological evidence review, especially with regard to studies of
	temperature and seasonal variations in risk and the effect of interventions
Lorelei Jones	A health services researcher with long-standing interests in UK health policy and health
(Research	services, especially the sociology of health service organisation. Previously a research
fellow)	fellow on the NICE clinical guideline for diabetes in pregnancy she has extensive
	experience of systematic reviews and guideline development. Currently has a core role
	in the on-going Evaluation of the National Cold Weather Plan for England.

	Expertise: literature review especially with regard to behavioural responses and interventions
James Milner (Research Fellow)	Research interests involving modelling the interactions between the urban environment and health, including the effects on health of air pollutants, and indoor air quality and housing. Has also developed techniques to assess the health impacts of changes in environmental exposures due to climate change mitigation policies in different sectors of society, including the housing sector.
	Expertise: modelling of health impacts, especially with regard to housing related health risks
Mark Petticrew (Professor of Public Health Evaluation)	Researcher with long-standing interests in evidence-based policymaking, systematic reviews, and the evaluation of the health effects of social policies. He is an editor of the new Cochrane Public Health Review Group, and is closely involved in the Cochrane/Campbell Health Equity Field. He has co-authored Petticrew M, Roberts H (2006) <i>Systematic Reviews in the Social Sciences: A practical guide</i> . Oxford: Blackwell Publishing)
	Expertise: methods for systematic review and assessment of evidence for policy.
Noah Scovronick (doctoral	Researcher with expertise in environmental epidemiology, and specifically health impacts modelling and the ancillary effects of climate mitigation strategies.
student)	Expertise: health impact and climate health studies
Health Protection	n Agency (Public Health England)
Sotiris Vardoulakis	Senior researcher at Public Health England where he leads the Air Pollution and Climate Change Group at the Centre for Radiation, Chemical and Environmental Hazards (CRCE). He was the lead author of the Health Effects of Climate Change in the UK (2012) report commissioned by the Department of Health. Expertise in indoor and outdoor air pollution and temperature effects on health. Expertise: health impact and vulnerability assessment methods
Bernd Eggen	Principal Climate Change Scientist in the Air Pollution and Climate Change Group of the CRCE, at Public Health England. He has extensive experience in environmental modelling, including of climate change and climate change adaptation, in both public (Met Office Hadley Centre) and private sector (Halcrow, Schlumberger). Expertise: methods for health impact assessment and vulnerability to the consequences of adverse weather, including cold
UCL	
Mike Davies (Professor of Building Physics and the Environment)	Mike Davies extensive research experience in the monitoring and modelling of building performance and seeks to understand how buildings can optimally minimise their production of CO2 whilst maintaining healthy and comfortable conditions. He leads the team which are the UK representatives for the International Energy Agency Annex 55 work which aims to address the uncertainties associated with attempted improvements to the energy efficiency of national housing stocks.
	Expertise: indoor environment and the impact of interventions affecting exposures relevant to human health
Ian Hamilton (Research Associate)	Ian Hamilton is a Researcher at the UCL Energy Institute, with research focused on energy use in the urban environment, including the impact of energy efficiency interventions in the domestic stock. He is a principal researcher on the EPSRC 'New

	Empirically-Based Models of Energy Use in the Building Stock' and he is working with the London School of Hygiene and Tropical Medicine to develop a model for DECC that quantifies the health impact of introducing energy efficiency measures within the UK's housing stock. Expertise: modelling of housing-related indoor exposures, health impacts and costs of interventions
Payel Das (Research Associate)	 Payel Das is a research associate in the Bartlett School of Graduate Studies at UCL. Her research focuses on determining optimal energy efficient solutions for residential dwellings through a combination of building physics models examining indoor environmental quality, assessment of health impacts resulting from stock decarbonization, and techniques to understand uncertainty in model inputs. Expertise: modelling of housing-related indoor exposures, health impacts and costs of interventions
Jonathan Taylor (Research Associate) York	Jonathan Taylor is a post-doctoral research associate in the Complex Built Environment Systems Group, at the Bartlett School of Graduate Studies, UCL. His research focuses the indoor environment and impacts on health.
Steve Duffy (Information Analyst)	Information analyst with extensive experience of the development and implementation of search methods for literature review. Expertise: database searches/literature review

Appendix 2: Search strategies

Literature searches were undertaken to identify studies primarily about excess winter deaths. The searches were also designed to identify studies about seasonal morbidity, fuel poverty, cold housing, energy efficient housing, winter related accidents, and health forecasting.

The search strategies were devised using a combination of indexed subject heading terms and free text search terms appearing in the title and/or abstracts of database records. Search terms were identified through discussion between the research team, by scanning background literature and 'key articles' already known to the project team, and by browsing database thesauri.

The searches were limited by date range to the last 20 years (1993 to the present), and to English language publications only. The final MEDLINE search strategy was peer reviewed for accuracy by another Information Specialist based at CRD (Melissa Harden).

The literature searches involved searching a wide range of databases covering health, social care, mental health, economics, environmental issues, and architecture. The following databases and resources were searched:

- MEDLINE and MEDLINE In-Process
- EMBASE
- Social Policy & Practice
- Science Citation Index (SCI)
- Social Sciences Citation Index (SSCI)
- Conference Proceedings Citation Index-Science (CPCI-S)
- Conference Proceedings Citation Index-Social Science & Humanities (CPCI-SSH)
- Health Management Information Consortium (HMIC)
- PsycINFO
- Cochrane Database of Systematic Reviews (CDSR)
- Database of Abstracts of Reviews of Effects (DARE)
- Cochrane Central Register of Controlled Trials (CENTRAL)
- Health Technology Assessment (HTA) database
- NHS Economic Evaluation Database (NHS EED)
- EconLit
- CEA (Cost-Effectiveness Analysis) Registry
- RePEc: Research Papers in Economics
- Campbell Library
- Trials Register of Promoting Health Interventions (TRoPHI)
- Database of Promoting Health Effectiveness Reviews (DoPHER)
- Scopus
- Avery Index to Architectural Periodicals
- ICONDA International
- PsycEXTRA

- NICE Evidence
- OpenGrey
- RIBA Catalogue (Royal Institute of British Architects)
- NYAM Grey Literature Report (New York Academy of Medicine)

As a number of databases were searched, some degree of duplication resulted. In order to manage this issue, the titles and abstracts of bibliographic records were downloaded and imported into EndNote bibliographic management software and duplicate records removed.

Databases and resources searched

Resource	Interface/url	Date range	Search	Results	
			date		
MEDLINE and MEDLINE In-	OvidSP	1946-2013/Sep	23 Sep	8451	
Process		week 2	2013		
EMBASE	OvidSP	1974-2013/week	24 Sep	5445	
		38	2013		
Social Policy & Practice	OvidSP	1890s-201307	30 Sep	1357	
			2013		
Science Citation Index (SCI)	Web of Science	1900-2013/09/27	2 Oct	4433	
			2013		
Social Sciences Citation	Web of Science	1956-2013/09/27	2 Oct	1291	
Index (SSCI)			2013		
Conference Proceedings	Web of Science	1990-2013/09/27	2 Oct	238	
Citation Index-Science			2013		
(CPCI-S)					
Conference Proceedings	Web of Science	1990-2013/09/27	2 Oct	112	
Citation Index-Social			2013		
Science & Humanities					
(CPCI-SSH)					
Health Management	OvidSP	1979-2013/Mar	30 Sep	352	
Information Consortium			2013		
(HMIC)					
PsycINFO	OvidSP	1806-2013/Sep	30 Sep	829	
		week 4	2013		
Cochrane Database of	Wiley Online Library; The	2013: Issue 9/12	1 Oct	22	
Systematic Reviews (CDSR)	Cochrane Library		2013		
Database of Abstracts of	Wiley Online Library; The	2013: Issue 3/4	1 Oct	7	
Reviews of Effects (DARE)	Cochrane Library		2013		
Cochrane Central Register	Wiley Online Library; The	2013: Issue 9/12	1 Oct	554	
of Controlled Trials	Cochrane Library		2013		
(CENTRAL)					
Health Technology	Wiley Online Library; The	2013: Issue 3/4	1 Oct	1	
Assessment (HTA) database	Cochrane Library		2013		
NHS Economic Evaluation	Wiley Online Library; The	2013: Issue 3/4	1 Oct	8	
Database (NHS EED)	Cochrane Library		2013		
EconLit	OvidSP	1961-2013/Aug	30 Sep	745	
			2013		
CEA Registry	www.cearegistry.org	3 Oct 2013	3 Oct	0	
J ,			2013		
RePEc	http://repec.org/	3 Oct 2013	3 Oct	119	
-			2013	-	
Campbell Library	http://www.campbellcollabo	3 Oct 2013	3 Oct	1	

	ration.org/library.php		2013	
TRoPHI	EPPI-Centre	3 Oct 2013	3 Oct	8
			2013	
DoPHER	EPPI-Centre	3 Oct 2013	3 Oct	5
			2013	
OpenGrey	http://www.opengrey.eu/	3 Oct 2013	3 Oct	45
			2013	
NHS Evidence	https://www.evidence.nhs.u	18 Oct 2013	18 Oct	67
	k/		2013	
RIBA Catalogue	http://riba.sirsidynix.net.uk/	18 Oct 2013	18 Oct	26
	uhtbin/webcat		2013	
NYAM Grey Literature	http://www.greylit.org/	18 Oct 2013	18 Oct	0
Report			2013	
Scopus	Elsevier	1823-2013/Oct	21 Oct	1696
			2013	
Avery Index	ProQuest	1934-2013/Oct	24 Oct	244
			2013	
ICONDA International	Ovid	1976-2013/Oct	25 Oct	492
			2013	
PsycEXTRA	Ovid	1908-2013/Oct	25 Oct	93
			2013	
TOTAL			26,641	
TOTAL after deduplication			16,143	

Search strategies

MEDLINE and MEDLINE In-Process (OvidSP). 1946-2013/Sep week 2. Searched 23 September 2013.

- 1 exp Cold Temperature/ (60709)
- 2 Snow/ or Ice/ (4363)
- 3 1 or 2 (64253)
- 4 exp Death/ (114941)
- 5 exp Mortality/ or mo.fs. (576727)
- 6 exp Morbidity/ (373172)
- 7 Risk Factors/ (567327)
- 8 or/4-7 (1396264)
- 9 3 and 8 (1725)
- 10 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (788)
- 11 (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (239)
- 12 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (1273)
- 13 ((cold or colder) adj4 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or related or excess or excessive or severe or severity or extreme)).ti,ab. (6057)
- 14 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$).ti,ab. (3171249)
- 15 13 and 14 (1243)
- 16 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab. (472)
- 17 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (177)
- 18 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (343)
- 19 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (75)
- 20 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (194)
- 21 Seasons/ and (Death/ or Mortality/ or Morbidity/ or Risk Factors/) (5119)
- 22 (season\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab. (1222)
- 23 or/9-12,15-22 (11237)
- 24 ((fuel or energy or gas or electricity) adj3 (poverty or poor or afford or affordable or
- affordability or tariff\$)).ti,ab. (455)
- 25 (winter adj3 fuel).ti,ab. (14)
- 26 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (19)
- 27 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (44)
- 28 ((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (177)

29 or/24-28 (705)

- 30 exp Housing/ (25422)
- 31 exp Cold Temperature/ (60709)
- 32 Heating/ (4100)
- 33 30 and (31 or 32) (433)

34 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (129)

35 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (682)

36 ((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or household\$ or housing)).ti,ab. (505)

37 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (17)

38 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (39)

39 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (48)

40 ((energy adj3 efficien\$) and (home or homes or house or houses or household\$ or housing)).ti,ab. (117)

41 ((energy adj3 efficien\$) and (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab. (53)

42 (home energy adj3 (program\$ or assist\$)).ti,ab. (3)

43 (insulat\$ adj4 (home or homes or house or houses or household\$ or housing)).ti,ab. (86)

44 (insulat\$ adj4 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (8)

(Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company Obligation).ti,ab.(21)

- 46 thermal comfort.ti,ab. (558)
- 47 or/33-46 (2481)
- 48 exp Accidents/ (138538)
- 49 exp *"Wounds and Injuries"/ (547370)
- 50 Snow/ or Ice/ (4363)
- 51 *Seasons/ (14654)
- 52 (48 or 49) and (50 or 51) (607)

53 ((fall or falls or falling or slip or slips or slipping) adj3 (winter or snow or ice or weather or season\$)).ti,ab. (1558)

54 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj3 (winter or snow or ice or weather or season\$)).ti,ab. (881)

55 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab. (5)

56 or/52-55 (2913)

57 Forecasting/ and Weather/ (174)

58 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab. (224)

- 59 health forecast\$.ti,ab. (18)
- 60 or/57-59 (392)
- 61 23 or 29 or 47 or 56 or 60 (17234)
- 62 exp Animals/ not Humans/ (4031668)
- 63 (exp Plants/ or exp Plant Structures/ or exp Plant Physiological Phenomena/) not humans/ (447136)
- 64 (comment or editorial or letter).pt. (1234425)
- 65 61 not (62 or 63 or 64) (13264)

66 limit 65 to (english language and yr="1993 -Current") (9279)

NB. After removal of duplicate records the final results total was 8451

Key:

/	subject heading (MeSH)
exp	explode subject heading (MeSH)
.ti,ab.	searches are restricted to the title and abstract fields
adj	searches for adjacent terms
adj3	searches for terms within three words of each other
\$	truncation symbol
\$1	truncation restricted to one character
or/1-4	combine sets 1 to 4 using OR

Embase (OvidSP). 1974-2013/week 38. Searched 24 September 2013.

- 1 *winter/ (4511)
- 2 *cold/ (9790)
- 3 *snow/ or *ice/ (2997)
- 4 or/1-3 (17247)
- 5 exp *death/ (100114)
- 6 exp *mortality/ (81918)
- 7 exp *morbidity/ (17192)
- 8 *risk factor/ (25240)
- 9 or/5-8 (211937)
- 10 4 and 9 (236)
- 11 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (926)
- 12 (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (291)

13 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab.(1478)

- 14 ((cold or colder) adj3 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or
- related or excess or excessive or severe or severity or extreme)).ti,ab. (6539)
- 15 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$).ti,ab. (4143060)
- 16 14 and 15 (1398)
- 17 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab. (556)
- 18 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (217)
- 19 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (397)
- 20 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (93)
- 21 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (232)
- 22 *season/ and (exp *death/ or exp *mortality/ or exp *morbidity/ or *risk factor/) (487)

23 (season\$ adj2 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab. (759)

24 or/10-13,16-23 (6277)

25 ((fuel or energy or gas or electricity) adj3 (poverty or poor or afford or affordable or affordability or tariff\$)).ti,ab. (632)

26 (winter adj3 fuel).ti,ab. (20)

27 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (22)

28 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (64)

29 ((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or

voucher\$)).ti,ab. (246) 30 or/25-29 (979)

31 *housing/ (7070)

- 32 *cold/ (9790)
- 33 *heating/ (3074)
- 34 31 and (32 or 33) (117)

35 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (155)

36 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (887)

37 ((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or household\$ or housing)).ti,ab. (604)

38 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (20)

39 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (63)

40 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (70)

41 ((energy adj3 efficien\$) and (home or homes or house or houses or household\$ or housing)).ti,ab. (163)

42 ((energy adj3 efficien\$) and (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab. (85)

43 (home energy adj3 (program\$ or assist\$)).ti,ab. (3)

44 (insulat\$ adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (94)

45 (insulat\$ adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (16)

46 (Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company Obligation).ti,ab.(31)

47 thermal comfort.ti,ab. (694)

- 48 or/34-47 (2838)
- 49 exp *accident/ (74718)

50 exp *injury/ or exp *fracture/ (841006)

- 51 *snow/ or *ice/ (2997)
- 52 *season/ (10421)
- 53 (49 or 50) and (51 or 52) (481)

54 ((fall or falls or falling or slip or slips or slipping) adj2 (winter or snow or ice or weather or season\$)).ti,ab. (1748)

55 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj2 (winter or snow or ice or weather or season\$)).ti,ab. (702)

56 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab. (9)

- 57 or/53-56 (2878)
- 58 *forecasting/ and *weather/ (52)
- 59 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab. (396)
- 60 health forecast\$.ti,ab. (22)
- 61 or/58-60 (442)
- 62 24 or 30 or 48 or 57 or 61 (13179)
- 63 (editorial or letter or note).pt. (1872994)
- 64 62 not 63 (12925)
- 65 limit 64 to human (7380)
- 66 limit 65 to (english language and yr="1993 -Current") (5445)

Key:

- / subject heading (EMTREE)
- exp explode subject heading (EMTREE)
- * focus subject heading (EMTREE)
- .ti,ab. searches are restricted to the title and abstract fields
- adj searches for adjacent terms
- adj3 searches for terms within three words of each other
- \$ truncation symbol
- \$1 truncation restricted to one character
- or/1-4 combine sets 1 to 4 using OR

Social Policy & Practice (OvidSP). 1890s-201307. Searched 30 September 2013.

- 1 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab,de. (64)
- 2 (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab,de. (12)
- 3 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab,de. (28)
- 4 ((cold or colder) adj4 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or related or excess or excessive or severe or severity or extreme)).ti,ab,de. (46)
- 5 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab,de. (48)
- 6 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,de. (13)
- 7 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,de. (5)
- 8 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,de. (14)
- 9 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,de. (9)
- 10 (season\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab,de. (23)
- 11 or/1-10 (160)
- 12 (fuel adj3 (poverty or poor or afford or affordable or affordability or tariff\$)).ti,ab,de. (469)
- 13 (winter adj3 fuel).ti,ab,de. (42)
- 14 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab,de. (43)
- 15 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab,de.

(26)

16 ((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab,de. (57)

17 or/12-16 (556)

18 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,de. (64)

19 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,de. (528)

20 ((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or houses or households or housing)).ti,ab,de. (162)

21 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,de. (3)

22 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,de. (24)

23 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,de. (4)

24 (energy efficienc\$ adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,de. (343)

25 (energy efficienc\$ adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab,de. (75)

26 (home energy adj3 (program\$ or assist\$)).ti,ab,de. (6)

27 (insulat\$ adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,de. (265)

28 (insulat\$ adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,de. (16)

29 (Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company Obligation).ti,ab,de. (122)

30 thermal comfort.ti,ab,de. (32)

31 or/18-30 (1146)

32 ((fall or falls or falling or slip or slips or slipping) adj3 (winter or snow or ice or weather or season\$)).ti,ab,de. (2)

33 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj3 (winter or snow or ice or weather or season\$)).ti,ab,de. (6)

34 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab,de. (2)

35 or/32-34 (10)

36 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab,de. (13)

37 health forecast\$.ti,ab,de. (1)

38 36 or 37 (14)

39 11 or 17 or 31 or 35 or 38 (1590)

40 limit 39 to yr="1993 -Current" (1357)

Key:

.ti,ab,de.	searches are restricted to the title, abstract and descriptor fields
adj	searches for adjacent terms
adj3	searches for terms within three words of each other

\$	truncation symbol
\$1	truncation restricted to one character
or/1-4	combine sets 1 to 4 using OR

Science Citation Index (SCI) (Web of Science). 1900 – 2013-09-27. Searched 2 October 2013.

# 34	<u>4,433</u>	(#33) AND Document Types=(Article OR Book OR Book Chapter OR
		Meeting Abstract OR Proceedings Paper OR Review)
		Databases=SCI-EXPANDED Timespan=1993-2013
# 33	<u>4,743</u>	#27 NOT #32
		Databases=SCI-EXPANDED Timespan=1993-2013
# 32	<u>14,445,591</u>	#28 or #29 or #30 or #31
		Databases=SCI-EXPANDED Timespan=1993-2013
# 31	<u>7,053,047</u>	SU=(Agriculture or "Astronomy & Astrophysics" or "Biochemistry &
		Molecular Biology" or "Biodiversity & Conservation" or Chemistry or
		Crystallography or Electrochemistry or "Energy & Fuels" or
		Entomology or "Evolutionary Biology" or Fisheries or "Food Science &
		Technology" or Forestry or "Geochemistry & Geophysics" or Geology
		or "Marine & Freshwater Biology" or "Medical Laboratory Technology"
		or Oceanography or Parasitology or"Plant Sciences" or Spectroscopy
		or "Veterinary Sciences" or Zoology)
		Databases=SCI-EXPANDED Timespan=1993-2013
# 30	<u>11,740,697</u>	WC=(Agricultural or Agriculture or Agronomy or Astronomy or
		Astrophysics or Biochemistry or "Biodiversity Conservation" or
		"Molecular Biology" or Chemistry or "Computer Science" or Ecology or
		"Energy & Fuels" or Engineering or Entomology or "Evolutionary
		Biology" or Fisheries or "Food Science & Technology" or Forestry or
		Genetics or Heredity or Geology or Geosciences or Horticulture or
		"Marine & Freshwater Biology" or "Materials Science" or
		"Meteorology & Atmospheric Sciences" or Mineralogy or "Mining &
		Mineral Processing" or Oceanography or Parasitology or Physics or
		"Plant Sciences" or "Soil Science" or Spectroscopy or "Veterinary
		Sciences" or "Water Resources" or Zoology)
		Databases=SCI-EXPANDED Timespan=1993-2013
# 29	<u>1,751,630</u>	TS=(tree or trees or woodland or forest or forests or plant or plants or
		leaf or leaves or soil or agriculture or agricultural or agronomy or crop
		or crops or grass or grasses)
		Databases=SCI-EXPANDED Timespan=1993-2013
# 28	<u>3,144,056</u>	TS=(rat or rats or mouse or mice or murine or hamster or hamsters or
		animal or animals or dogs or dog or canine or pig or pigs or cats or
		bovine or cow or cattle or sheep or ovine or porcine or monkey or
		monkeys or hen or hens or chicken or chickens or poultry or rabbit or
		rabbits or fish or fishes or salmon or bird or birds or insect or insects)
		Databases=SCI-EXPANDED Timespan=1993-2013

# 27	<u>18,313</u>	#8 or #12 or #20 or #26
# 27	10,313	Databases=SCI-EXPANDED Timespan=1993-2013
# 26	3,464	#21 or #22 or #23 or #24 or #25
# 20	<u>3,404</u>	
# 25	24	Databases=SCI-EXPANDED Timespan=1993-2013 TS=("health forecast*")
# 25	<u>24</u>	
	4 700	Databases=SCI-EXPANDED Timespan=1993-2013
# 24	<u>1,788</u>	TS=(("forecast" or "alert" or "alerts" or "warning" or "warnings" or
		"alarm" or "alarms") NEAR/3 ("cold" or "colder" or "weather" or
		"winter" or "met office" or "meteorological office"))
	4.5	Databases=SCI-EXPANDED Timespan=1993-2013
# 23	<u>15</u>	TS=((grit or gritted or gritting or gritter*) NEAR/3 (road* or pavement*
		or sidewalk* or driveway* or pathway* or path*1))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 22	<u>1,217</u>	TS=(("accident" or "accidents" or "injury" or "injuries" or "injured" or
		fracture*) NEAR/3 ("winter" or "snow" or "ice" or "weather"))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 21	<u>443</u>	TS=(("falls" or "falling" or "slip" or "slips" or "slipping") NEAR/3
		("winter" or "snow" or "ice" or "weather"))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 20	<u>2,873</u>	#13 or #14 or #15 or #16 or #17 or #18 or #19
		Databases=SCI-EXPANDED Timespan=1993-2013
# 19	<u>193</u>	TS=("Warm Front" or "Warm Deal" or "Green Deal" or "Warm Zone"
		or "Energy Company Obligation")
		Databases=SCI-EXPANDED Timespan=1993-2013
# 18	<u>272</u>	TS=(insulat* NEAR/3 (home or homes or house or houses or
		household* or housing or accommodation* or rent or rents or rented
		or tenancy or tenancies or dwelling*))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 17	<u>13</u>	TS=("home energy " NEAR/3 (program* or assist*))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 16	<u>332</u>	TS=("energy efficien*" NEAR/3 (home or homes or house or houses or
		household* or housing or accommodation* or rent or rents or rented
		or tenancy or tenancies or dwelling* or domestic*))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 15	<u>119</u>	TS=(damp NEAR/3 (home or homes or house or houses or household*
		or housing or accommodation* or rent or rents or rented or tenancy
		or tenancies or dwelling*))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 14	<u>1,758</u>	TS=((warm* or heat* or underheat* or temperature*) NEAR/2 (home
		or homes or house or houses or household* or housing or
		accommodation* or rent or rents or rented or tenancy or tenancies or
		dwelling*))
		Databases=SCI-EXPANDED Timespan=1993-2013
I		TS=((cold or freez* or frozen) NEAR/3 (home or homes or house or

		houses or household* or housing or accommodation* or rent or rents
		-
		or rented or tenancy or tenancies or dwelling*))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 12	<u>1,073</u>	#9 or #10 or #11
		Databases=SCI-EXPANDED Timespan=1993-2013
# 11	<u>500</u>	TS=(("heating" or gas or electricity) NEAR/2 (payment* or allowance*
		or benefit* or grant* or voucher*))
		Databases=SCI-EXPANDED Timespan=1993-2013
# 10	<u>246</u>	TS=((winter or cold or weaher) NEAR/3 (payment* or allowance* or
		benefit* or grant* or voucher*))
		Databases=SCI-EXPANDED Timespan=1993-2013
#9	<u>334</u>	TS=("fuel" NEAR/3 (winter or poverty or poor or afford or affordable
		or affordability or tariff*))
		Databases=SCI-EXPANDED Timespan=1993-2013
#8	<u>11,193</u>	#1 or #4 or #5 or #6 or #7
		Databases=SCI-EXPANDED Timespan=1993-2013
# 7	<u>1,678</u>	TS=(season* NEAR/2 (death* or fatalit* or mortalit* or morbidit* or
		"risk" or "risks" or vulnerabl* or suceptib*))
		Databases=SCI-EXPANDED Timespan=1993-2013
#6	<u>1,552</u>	TS=((winter or weather or temperature* or cold or colder) NEAR/2
		(vulnerab* or "risk" or "risks" or suceptib*))
		Databases=SCI-EXPANDED Timespan=1993-2013
#5	<u>1,719</u>	TS=((excess or excessive or severe or severity or exposure) NEAR/3
		winter)
		Databases=SCI-EXPANDED Timespan=1993-2013
#4	<u>1,365</u>	#2 and #3
		Databases=SCI-EXPANDED Timespan=1993-2013
#3	<u>2,799,726</u>	TS=(death* or fatalit* or mortalit* or morbidit* or illness* or
		disease*)
		Databases=SCI-EXPANDED Timespan=1993-2013
# 2	<u>13,498</u>	TS=((cold or colder) NEAR/2 (spell* or season* or month* or period*
		or condition* or event or related or excess or excessive or severe or
		severity or extreme))
		Databases=SCI-EXPANDED Timespan=1993-2013
#1	<u>5,890</u>	TS=((winter or weather or temperature*) NEAR/3 (death* or fatalit*
		or mortalit* or morbidit* or illness* or disease*))
		Databases=SCI-EXPANDED Timespan=1993-2013

Key:

- TS Topic (searches terms in Title, Abstract, Author Keywords and Keywords Plus fields)
- SU Research Area (specific fields of study)
- WC Web of Science Category (specific fields of study)
- NEAR searches for adjacent terms

NEAR/3 searches for terms within three words of each other

- * truncation symbol
- " " phrase search

Social Sciences Citation Index (SSCI) (Web of Science). 1956 – 2013-09-27. Searched 2 October 2013.

# 34	<u>1,291</u>	(#33) AND Document Types=(Article OR Book OR Book Chapter OR
		Meeting Abstract OR Proceedings Paper OR Review)
		Databases=SSCI Timespan=1993-2013
# 33	<u>1,399</u>	#27 NOT #32
		Databases=SSCI Timespan=1993-2013
# 32	<u>364,512</u>	#28 or #29 or #30 or #31
		Databases=SSCI Timespan=1993-2013
# 31	<u>80,352</u>	SU=(Agriculture or "Astronomy & Astrophysics" or "Biochemistry &
		Molecular Biology" or "Biodiversity & Conservation" or Chemistry or
		Crystallography or Electrochemistry or "Energy & Fuels" or Entomology or
		"Evolutionary Biology" or Fisheries or "Food Science & Technology" or
		Forestry or "Geochemistry & Geophysics" or Geology or "Marine &
		Freshwater Biology" or "Medical Laboratory Technology" or
		Oceanography or Parasitology or "Plant Sciences" or Spectroscopy or
		"Veterinary Sciences" or Zoology)
		Databases=SSCI Timespan=1993-2013
# 30	<u>212,424</u>	WC=(Agricultural or Agriculture or Agronomy or Astronomy or
		Astrophysics or Biochemistry or "Biodiversity Conservation" or
		"Molecular Biology" or Chemistry or "Computer Science" or Ecology or
		"Energy & Fuels" or Engineering or Entomology or "Evolutionary Biology"
		or Fisheries or "Food Science & Technology" or Forestry or Genetics or
		Heredity or Geology or Geosciences or Horticulture or "Marine &
		Freshwater Biology" or "Materials Science" or "Meteorology &
		Atmospheric Sciences" or Mineralogy or "Mining & Mineral Processing"
		or Oceanography or Parasitology or Physics or "Plant Sciences" or "Soil
		Science" or Spectroscopy or "Veterinary Sciences" or "Water Resources"
		or Zoology)
		Databases=SSCI Timespan=1993-2013
# 29	<u>115,582</u>	TS=(tree or trees or woodland or forest or forests or plant or plants or
		leaf or leaves or soil or agriculture or agricultural or agronomy or crop or
		crops or grass or grasses)
		Databases=SSCI Timespan=1993-2013
# 28	<u>83,105</u>	TS=(rat or rats or mouse or mice or murine or hamster or hamsters or
		animal or animals or dogs or dog or canine or pig or pigs or cats or bovine
		or cow or cattle or sheep or ovine or porcine or monkey or monkeys or
		hen or hens or chicken or chickens or poultry or rabbit or rabbits or fish
		or fishes or salmon or bird or birds or insect or insects)

		Databases=SSCI Timespan=1993-2013
# 27	2,123	#8 or #12 or #20 or #26
		Databases=SSCI Timespan=1993-2013
# 26	259	#21 or #22 or #23 or #24 or #25
		Databases=SSCI Timespan=1993-2013
# 25	<u>16</u>	TS=("health forecast*")
		Databases=SSCI Timespan=1993-2013
# 24	<u>92</u>	TS=(("forecast" or "alert" or "alerts" or "warning" or "warnings" or
		"alarm" or "alarms") NEAR/3 ("cold" or "colder" or "weather" or "winter"
		or "met office" or "meteorological office"))
		Databases=SSCI Timespan=1993-2013
# 23	<u>4</u>	TS=((grit or gritted or gritting or gritter*) NEAR/3 (road* or pavement* or
		sidewalk* or driveway* or pathway* or path*1))
		Databases=SSCI Timespan=1993-2013
# 22	<u>127</u>	TS=(("accident" or "accidents" or "injury" or "injuries" or "injured" or
		fracture*) NEAR/3 ("winter" or "snow" or "ice" or "weather"))
		Databases=SSCI Timespan=1993-2013
# 21	<u>29</u>	TS=(("falls" or "falling" or "slip" or "slips" or "slipping") NEAR/3 ("winter"
		or "snow" or "ice" or "weather"))
		Databases=SSCI Timespan=1993-2013
# 20	<u>557</u>	#13 or #14 or #15 or #16 or #17 or #18 or #19
# 10	11	Databases=SSCI Timespan=1993-2013
# 19	<u>11</u>	TS=("Warm Front" or "Warm Deal" or "Green Deal" or "Warm Zone" or "Energy Company Obligation")
		Databases=SSCI Timespan=1993-2013
# 18	44	TS=(insulat* NEAR/3 (home or homes or house or houses or household*
# 10	44	or housing or accommodation* or rent or rents or rented or tenancy or
		tenancies or dwelling*))
		Databases=SSCI Timespan=1993-2013
# 17	<u>8</u>	TS=("home energy " NEAR/3 (program* or assist*))
	_	Databases=SSCI Timespan=1993-2013
# 16	210	TS=("energy efficien*" NEAR/3 (home or homes or house or houses or
		household* or housing or accommodation* or rent or rents or rented or
		tenancy or tenancies or dwelling* or domestic*))
		Databases=SSCI Timespan=1993-2013
# 15	<u>17</u>	TS=(damp NEAR/3 (home or homes or house or houses or household* or
		housing or accommodation* or rent or rents or rented or tenancy or
		tenancies or dwelling*))
		Databases=SSCI Timespan=1993-2013
# 14	<u>239</u>	TS=((warm* or heat* or underheat* or temperature*) NEAR/2 (home or
		homes or house or houses or household* or housing or accommodation*
		or rent or rents or rented or tenancy or tenancies or dwelling*))
		Databases=SSCI Timespan=1993-2013
# 13	<u>92</u>	TS=((cold or freez* or frozen) NEAR/3 (home or homes or house or

		houses or household* or housing or accommodation* or rent or rents or
		rented or tenancy or tenancies or dwelling*))
	207	Databases=SSCI Timespan=1993-2013
# 12	<u>287</u>	#9 or #10 or #11
		Databases=SSCI Timespan=1993-2013
# 11	<u>150</u>	TS=(("heating" or gas or electricity) NEAR/2 (payment* or allowance* or
		benefit* or grant* or voucher*))
		Databases=SSCI Timespan=1993-2013
# 10	<u>19</u>	TS=((winter or cold or weaher) NEAR/3 (payment* or allowance* or
		benefit* or grant* or voucher*))
		Databases=SSCI Timespan=1993-2013
#9	<u>122</u>	TS=("fuel" NEAR/3 (winter or poverty or poor or afford or affordable or
		affordability or tariff*))
		Databases=SSCI Timespan=1993-2013
#8	<u>1,150</u>	#1 or #4 or #5 or #6 or #7
		Databases=SSCI Timespan=1993-2013
# 7	277	TS=(season* NEAR/2 (death* or fatalit* or mortalit* or morbidit* or
		"risk" or "risks" or vulnerabl* or suceptib*))
		Databases=SSCI Timespan=1993-2013
#6	<u>319</u>	TS=((winter or weather or temperature* or cold or colder) NEAR/2
		(vulnerab* or "risk" or "risks" or suceptib*))
		Databases=SSCI Timespan=1993-2013
#5	<u>166</u>	TS=((excess or excessive or severe or severity or exposure) NEAR/3
		winter)
		Databases=SSCI Timespan=1993-2013
#4	<u>135</u>	#2 and #3
		Databases=SSCI Timespan=1993-2013
#3	284,868	TS=(death* or fatalit* or mortalit* or morbidit* or illness* or disease*)
		Databases=SSCI Timespan=1993-2013
# 2	<u>693</u>	TS=((cold or colder) NEAR/2 (spell* or season* or month* or period* or
		condition* or event or related or excess or excessive or severe or severity
		or extreme))
		Databases=SSCI Timespan=1993-2013
#1	439	TS=((winter or weather or temperature*) NEAR/3 (death* or fatalit* or
		mortalit* or morbidit* or illness* or disease*))
		Databases=SSCI Timespan=1993-2013

Key:

TS Topic (searches terms in Title, Abstract, Author Keywords and Keywords Plus fields)

SU Research Area (specific fields of study)

WC Web of Science Category (specific fields of study)

NEAR searches for adjacent terms

NEAR/3 searches for terms within three words of each other

* truncation symbol

" " phrase search

Conference Proceedings Citation Index-Science (CPCI-S) (Web of Science). 1990 – 2013-09-27. Searched 2 October 2013.

# 33	238	#27 NOT #32
	200	Databases=CPCI-S Timespan=1993-2013
# 32	4,622,783	#28 or #29 or #30 or #31
	<u>-1)022)/00</u>	Databases=CPCI-S Timespan=1993-2013
# 31	1,199,928	SU=(Agriculture or "Astronomy & Astrophysics" or "Biochemistry &
" 51	1,100,020	Molecular Biology" or "Biodiversity & Conservation" or Chemistry or
		Crystallography or Electrochemistry or "Energy & Fuels" or Entomology
		or "Evolutionary Biology" or Fisheries or "Food Science & Technology"
		or Forestry or "Geochemistry & Geophysics" or Geology or "Marine &
		Freshwater Biology" or "Medical Laboratory Technology" or
		Oceanography or Parasitology or "Plant Sciences" or Spectroscopy or
		"Veterinary Sciences" or Zoology)
		Databases=CPCI-S Timespan=1993-2013
# 30	4,304,050	WC=(Agricultural or Agriculture or Agronomy or Astronomy or
# 50	4,304,030	Astrophysics or Biochemistry or "Biodiversity Conservation" or
		"Molecular Biology" or Chemistry or "Computer Science" or Ecology or
		"Energy & Fuels" or Engineering or Entomology or "Evolutionary
		Biology" or Fisheries or "Food Science & Technology" or Forestry or
		Genetics or Heredity or Geology or Geosciences or Horticulture or
		"Marine & Freshwater Biology" or "Materials Science" or "Meteorology
		& Atmospheric Sciences" or Mineralogy or "Mining & Mineral
		Processing" or Oceanography or Parasitology or Physics or "Plant
		Sciences" or "Soil Science" or Spectroscopy or "Veterinary Sciences" or
		"Water Resources" or Zoology)
# 29	250 620	Databases=CPCI-S Timespan=1993-2013
# 29	<u>350,620</u>	TS=(tree or trees or woodland or forest or forests or plant or plants or
		leaf or leaves or soil or agriculture or agricultural or agronomy or crop
		or crops or grass or grasses)
# 20	252 120	Databases=CPCI-S Timespan=1993-2013
# 28	<u>353,128</u>	TS=(rat or rats or mouse or mice or murine or hamster or hamsters or
		animal or animals or dogs or dog or canine or pig or pigs or cats or
		bovine or cow or cattle or sheep or ovine or porcine or monkey or
		monkeys or hen or hens or chicken or chickens or poultry or rabbit or
		rabbits or fish or fishes or salmon or bird or birds or insect or insects)
# 27	772	Databases=CPCI-S Timespan=1993-2013
# 27	<u>723</u>	#8 or #12 or #20 or #26
# 20	210	Databases=CPCI-S Timespan=1993-2013
# 26	<u>219</u>	#21 or #22 or #23 or #24 or #25
		Databases=CPCI-S Timespan=1993-2013

# 25	4	TI=("health forecast*")
# 25	<u>4</u>	
# 24	100	Databases=CPCI-S Timespan=1993-2013
# 24	<u>133</u>	TI=(("forecast" or "alert" or "alerts" or "warning" or "warnings" or
		"alarm" or "alarms") NEAR/3 ("cold" or "colder" or "weather" or
		"winter" or "met office" or "meteorological office"))
		Databases=CPCI-S Timespan=1993-2013
# 23	0	TI=((grit or gritted or gritting or gritter*) NEAR/3 (road* or pavement*
		or sidewalk* or driveway* or pathway* or path or paths))
		Databases=CPCI-S Timespan=1993-2013
# 22	<u>61</u>	TI=(("accident" or "accidents" or "injury" or "injuries" or "injured" or
		fracture*) NEAR/3 ("winter" or "snow" or "ice" or "weather"))
		Databases=CPCI-S Timespan=1993-2013
# 21	<u>22</u>	TI=(("falls" or "falling" or "slip" or "slips" or "slipping") NEAR/3 ("winter"
		or "snow" or "ice" or "weather"))
		Databases=CPCI-S Timespan=1993-2013
# 20	<u>198</u>	#13 or #14 or #15 or #16 or #17 or #18 or #19
		Databases=CPCI-S Timespan=1993-2013
# 19	<u>3</u>	TI=("Warm Front" or "Warm Deal" or "Green Deal" or "Warm Zone" or
		"Energy Company Obligation")
		Databases=CPCI-S Timespan=1993-2013
# 18	<u>34</u>	TI=(insulat* NEAR/3 (home or homes or house or houses or household*
		or housing or accommodation* or rent or rents or rented or tenancy or
		tenancies or dwelling*))
		Databases=CPCI-S Timespan=1993-2013
# 17	<u>1</u>	TI=("home energy " NEAR/3 (program* or assist*))
		Databases=CPCI-S Timespan=1993-2013
# 16	<u>41</u>	TI=("energy efficien*" NEAR/3 (home or homes or house or houses or
		household* or housing or accommodation* or rent or rents or rented
		or tenancy or tenancies or dwelling* or domestic*))
		Databases=CPCI-S Timespan=1993-2013
# 15	<u>6</u>	TI=(damp NEAR/3 (home or homes or house or houses or household*
		or housing or accommodation* or rent or rents or rented or tenancy or
		tenancies or dwelling*))
		Databases=CPCI-S Timespan=1993-2013
# 14	<u>89</u>	TI=((warm* or heat* or underheat* or temperature*) NEAR/2 (home or
		homes or house or houses or household* or housing or
		accommodation* or rent or rents or rented or tenancy or tenancies or
		dwelling*))
		Databases=CPCI-S Timespan=1993-2013
# 13	27	TI=((cold or freez* or frozen) NEAR/3 (home or homes or house or
		houses or household* or housing or accommodation* or rent or rents
		or rented or tenancy or tenancies or dwelling*))
		Databases=CPCI-S Timespan=1993-2013
# 12	31	#9 or #10 or #11
		I

		Databases=CPCI-S Timespan=1993-2013
# 11	23	TI=(("heating" or gas or electricity) NEAR/2 (payment* or allowance* or
<i>π 11</i>	23	benefit* or grant* or voucher*))
		Databases=CPCI-S Timespan=1993-2013
# 10	<u>5</u>	TI=((winter or cold or weaher) NEAR/3 (payment* or allowance* or
# 10	2	benefit* or grant* or voucher*))
		Databases=CPCI-S Timespan=1993-2013
#0	2	
#9	<u>3</u>	TI=(fuel NEAR/3 (winter or poverty or poor or afford or affordable or
		affordability or tariff*))
	270	Databases=CPCI-S Timespan=1993-2013
#8	<u>278</u>	#1 or #4 or #5 or #6 or #7
		Databases=CPCI-S Timespan=1993-2013
#7	<u>42</u>	TI=(season* NEAR/3 (death* or fatalit* or mortalit* or morbidit* or
		"risk" or "risks" or vulnerabl* or suceptib*))
		Databases=CPCI-S Timespan=1993-2013
#6	<u>70</u>	TI=((winter or weather or temperature* or cold or colder) NEAR/3
		(vulnerab* or "risk" or "risks" or suceptib*))
		Databases=CPCI-S Timespan=1993-2013
# 5	<u>20</u>	TI=((excess or excessive or severe or severity or exposure) NEAR/3
		winter)
		Databases=CPCI-S Timespan=1993-2013
#4	<u>10</u>	#2 and #3
		Databases=CPCI-S Timespan=1993-2013
#3	<u>197</u>	TI=((cold or colder) NEAR/2 (spell* or season* or month* or period* or
		condition* or event or related or excess or excessive or severe or
		severity or extreme))
		Databases=CPCI-S Timespan=1993-2013
# 2	<u>134,816</u>	TI=(death* or fatalit* or mortalit* or morbidit* or illness* or disease*)
		Databases=CPCI-S Timespan=1993-2013
#1	<u>147</u>	TI=((winter or weather or temperature*) NEAR/3 (death* or fatalit* or
		mortalit* or morbidit* or illness* or disease*))
		Databases=CPCI-S Timespan=1993-2013

Key:

TS Topic (searches terms in Title, Abstract, Author Keywords and Keywords Plus fields)

SU Research Area (specific fields of study)

WC Web of Science Category (specific fields of study)

NEAR searches for adjacent terms

NEAR/3 searches for terms within three words of each other

* truncation symbol

" " phrase search

Conference Proceedings Citation Index-Social Science & Humanities (CPCI-SSH) (Web of Science). 1990 – 2013-09-27. Searched 2 October 2013.

# 33	112	#27 NOT #32
# 55	<u>112</u>	
	120 100	Databases=CPCI-SSH Timespan=1993-2013
# 32	<u>120,196</u>	#28 or #29 or #30 or #31
		Databases=CPCI-SSH Timespan=1993-2013
# 31	<u>11,270</u>	SU=(Agriculture or "Astronomy & Astrophysics" or "Biochemistry &
		Molecular Biology" or "Biodiversity & Conservation" or Chemistry or
		Crystallography or Electrochemistry or "Energy & Fuels" or Entomology or
		"Evolutionary Biology" or Fisheries or "Food Science & Technology" or
		Forestry or "Geochemistry & Geophysics" or Geology or "Marine &
		Freshwater Biology" or "Medical Laboratory Technology" or
		Oceanography or Parasitology or "Plant Sciences" or Spectroscopy or
		"Veterinary Sciences" or Zoology)
		Databases=CPCI-SSH Timespan=1993-2013
# 30	<u>105,727</u>	WC=(Agricultural or Agriculture or Agronomy or Astronomy or
		Astrophysics or Biochemistry or "Biodiversity Conservation" or
		"Molecular Biology" or Chemistry or "Computer Science" or Ecology or
		"Energy & Fuels" or Engineering or Entomology or "Evolutionary Biology"
		or Fisheries or "Food Science & Technology" or Forestry or Genetics or
		Heredity or Geology or Geosciences or Horticulture or "Marine &
		Freshwater Biology" or "Materials Science" or "Meteorology &
		Atmospheric Sciences" or Mineralogy or "Mining & Mineral Processing"
		or Oceanography or Parasitology or Physics or "Plant Sciences" or "Soil
		Science" or Spectroscopy or "Veterinary Sciences" or "Water Resources"
		or Zoology)
		Databases=CPCI-SSH Timespan=1993-2013
# 29	<u>17,347</u>	TS=(tree or trees or woodland or forest or forests or plant or plants or
		leaf or leaves or soil or agriculture or agricultural or agronomy or crop or
		crops or grass or grasses)
		Databases=CPCI-SSH Timespan=1993-2013
# 28	<u>6,472</u>	TS=(rat or rats or mouse or mice or murine or hamster or hamsters or
		animal or animals or dogs or dog or canine or pig or pigs or cats or bovine
		or cow or cattle or sheep or ovine or porcine or monkey or monkeys or
		hen or hens or chicken or chickens or poultry or rabbit or rabbits or fish
		or fishes or salmon or bird or birds or insect or insects)
		Databases=CPCI-SSH Timespan=1993-2013
# 27	<u>226</u>	#8 or #12 or #20 or #26
		Databases=CPCI-SSH Timespan=1993-2013
# 26	<u>39</u>	#21 or #22 or #23 or #24 or #25
		Databases=CPCI-SSH Timespan=1993-2013
# 25	<u>1</u>	TS=("health forecast*")
		Databases=CPCI-SSH Timespan=1993-2013
# 24	<u>22</u>	TS=(("forecast" or "alert" or "alerts" or "warning" or "warnings" or
		"alarm" or "alarms") NEAR/3 ("cold" or "colder" or "weather" or "winter"

		or "met office" or "meteorological office"))
		Databases=CPCI-SSH Timespan=1993-2013
# 22	1	•
# 23	<u>1</u>	TS=((grit or gritted or gritting or gritter*) NEAR/3 (road* or pavement* or
		sidewalk* or driveway* or pathway* or path*1))
		Databases=CPCI-SSH Timespan=1993-2013
# 22	<u>11</u>	TS=(("accident" or "accidents" or "injury" or "injuries" or "injured" or
		fracture*) NEAR/3 ("winter" or "snow" or "ice" or "weather"))
		Databases=CPCI-SSH Timespan=1993-2013
# 21	<u>5</u>	TS=(("falls" or "falling" or "slip" or "slips" or "slipping") NEAR/3 ("winter"
		or "snow" or "ice" or "weather"))
		Databases=CPCI-SSH Timespan=1993-2013
# 20	<u>78</u>	#13 or #14 or #15 or #16 or #17 or #18 or #19
		Databases=CPCI-SSH Timespan=1993-2013
# 19	0	TS=("Warm Front" or "Warm Deal" or "Green Deal" or "Warm Zone" or
		"Energy Company Obligation")
		Databases=CPCI-SSH Timespan=1993-2013
# 18	<u>12</u>	TS=(insulat* NEAR/3 (home or homes or house or houses or household*
		or housing or accommodation* or rent or rents or rented or tenancy or
		tenancies or dwelling*))
		Databases=CPCI-SSH Timespan=1993-2013
# 17	<u>2</u>	TS=("home energy " NEAR/3 (program* or assist*))
		Databases=CPCI-SSH Timespan=1993-2013
# 16	<u>31</u>	TS=("energy efficien*" NEAR/3 (home or homes or house or houses or
		household* or housing or accommodation* or rent or rents or rented or
		tenancy or tenancies or dwelling* or domestic*))
		Databases=CPCI-SSH Timespan=1993-2013
# 15	0	TS=(damp NEAR/3 (home or homes or house or houses or household* or
		housing or accommodation* or rent or rents or rented or tenancy or
		tenancies or dwelling*))
		Databases=CPCI-SSH Timespan=1993-2013
# 14	<u>26</u>	TS=((warm* or heat* or underheat* or temperature*) NEAR/2 (home or
		homes or house or houses or household* or housing or accommodation*
		or rent or rents or rented or tenancy or tenancies or dwelling*))
		Databases=CPCI-SSH Timespan=1993-2013
# 13	<u>13</u>	TS=((cold or freez* or frozen) NEAR/3 (home or homes or house or
		houses or household* or housing or accommodation* or rent or rents or
		rented or tenancy or tenancies or dwelling*))
		Databases=CPCI-SSH Timespan=1993-2013
# 12	<u>27</u>	#9 or #10 or #11
		Databases=CPCI-SSH Timespan=1993-2013
# 11	<u>17</u>	TS=(("heating" or gas or electricity) NEAR/2 (payment* or allowance* or
		benefit* or grant* or voucher*))
		Databases=CPCI-SSH Timespan=1993-2013
# 10	1	TS=((winter or cold or weaher) NEAR/3 (payment* or allowance* or
L		

		benefit* or grant* or voucher*))
		Databases=CPCI-SSH Timespan=1993-2013
#9	<u>9</u>	TS=("fuel" NEAR/3 (winter or poverty or poor or afford or affordable or
		affordability or tariff*))
		Databases=CPCI-SSH Timespan=1993-2013
#8	<u>87</u>	#1 or #4 or #5 or #6 or #7
		Databases=CPCI-SSH Timespan=1993-2013
#7	<u>12</u>	TS=(season* NEAR/2 (death* or fatalit* or mortalit* or morbidit* or
		"risk" or "risks" or vulnerabl* or suceptib*))
		Databases=CPCI-SSH Timespan=1993-2013
#6	<u>34</u>	TS=((winter or weather or temperature* or cold or colder) NEAR/2
		(vulnerab* or "risk" or "risks" or suceptib*))
		Databases=CPCI-SSH Timespan=1993-2013
# 5	<u>20</u>	TS=((excess or excessive or severe or severity or exposure) NEAR/3
		winter)
		Databases=CPCI-SSH Timespan=1993-2013
#4	<u>7</u>	#2 and #3
		Databases=CPCI-SSH Timespan=1993-2013
#3	<u>12,795</u>	TS=(death* or fatalit* or mortalit* or morbidit* or illness* or disease*)
		Databases=CPCI-SSH Timespan=1993-2013
# 2	<u>88</u>	TS=((cold or colder) NEAR/2 (spell* or season* or month* or period* or
		condition* or event or related or excess or excessive or severe or severity
		or extreme))
		Databases=CPCI-SSH Timespan=1993-2013
#1	<u>17</u>	TS=((winter or weather or temperature*) NEAR/3 (death* or fatalit* or
		mortalit* or morbidit* or illness* or disease*))
		Databases=CPCI-SSH Timespan=1993-2013

Key:

- TS Topic (searches terms in Title, Abstract, Author Keywords and Keywords Plus fields)
- SU Research Area (specific fields of study)
- WC Web of Science Category (specific fields of study)

NEAR searches for adjacent terms

NEAR/3 searches for terms within three words of each other

- * truncation symbol
- " " phrase search

HMIC (OvidSP). 1979-2013/March. Searched 30 September 2013.

- 1 exp Winter/ (180)
- 2 Snow/ or Ice/ (4)
- 3 1 or 2 (183)
- 4 exp Death/ (2782)
- 5 exp Mortality/ (5160)

6 exp Morbidity/ (3077)

7 exp Risk factors/ (3899)

8 or/4-7 (12869)

9 3 and 8 (30)

- 10 exp "Cold as cause of disease"/ (48)
- 11 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (58)
- 12 (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (6)

13 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab.(20)

14 ((cold or colder) adj4 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or related or excess or excessive or severe or severity or extreme)).ti,ab. (52)

- 15 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab. (49)
- 16 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (11)
- 17 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (17)
- 18 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (2)
- 19 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (6)
- 20 exp Seasonal factors/ and (Death/ or Mortality/ or Morbidity/ or Risk Factors/) (20)

21 (season\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab. (39)

22 or/9-21 (224)

23 exp Fuel poverty/ (40)

24 ((fuel or energy or gas or electricity) adj3 (poverty or poor or afford or affordable or affordability or tariff\$)).ti,ab. (79)

- 25 (winter adj3 fuel).ti,ab. (6)
- 26 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (3)
- 27 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (10)
- 28 ((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or

voucher\$)).ti,ab. (12)

- 29 or/23-28 (118)
- 30 exp Housing/ (3183)
- 31 exp Winter/ or exp Seasonal Factors/ (286)
- 32 exp building climatic services/ (390)
- 33 warmth/ (36)
- 34 30 and (31 or 32 or 33) (17)

35 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (26)

36 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (64)

37 ((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or household\$ or housing)).ti,ab. (24)

38 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (2)

39 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (0)

40 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (0)

41 ((energy adj3 efficien\$) and (home or homes or house or houses or household\$ or housing)).ti,ab. (38)

42 ((energy adj3 efficien\$) and (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab. (12)

43 (home energy adj3 (program\$ or assist\$)).ti,ab. (1)

44 (insulat\$ adj4 (home or homes or house or houses or household\$ or housing)).ti,ab. (9)

45 (insulat\$ adj4 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (0)

46 (Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company Obligation).ti,ab.(4)

- 47 thermal comfort.ti,ab. (10)
- 48 or/34-47 (150)
- 49 exp Accidents/ (2703)
- 50 exp wounds & injuries/ (2186)
- 51 Winter/ or Snow/ or Ice/ (183)
- 52 exp seasonal factors/ (131)
- 53 (49 or 50) and (51 or 52) (0)
- 54 exp Weather hazards/ (51)

55 ((fall or falls or falling or slip or slips or slipping) adj3 (winter or snow or ice or weather or season\$)).ti,ab. (9)

56 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj3 (winter or snow or ice or weather or season\$)).ti,ab. (5)

57 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab. (0)

- 58 or/53-57 (65)
- 59 exp Weather/ and exp Forecasting/ (4)

60 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab. (18)

- 61 health forecast\$.ti,ab. (9)
- 62 or/59-61 (26)
- 63 22 or 29 or 48 or 58 or 62 (482)
- 64 limit 63 to yr="1993 -Current" (352)

Key:

- / subject heading
- exp explode subject heading
- .ti,ab. searches are restricted to the title and abstract fields
- adj searches for adjacent terms
- adj3 searches for terms within three words of each other
- \$ truncation symbol
- \$1 truncation restricted to one character
- or/1-4 combine sets 1 to 4 using OR

PsycINFO (OvidSP). 1806-2013/Sep week 4. Searched 30 September 2013.

- 1 temperature effects/ or cold effects/ (3080)
- 2 "death and dying"/ (21318)
- 3 exp Morbidity/ (2616)
- 4 risk factors/ (41469)
- 5 1 and (2 or 3 or 4) (21)
- 6 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (37)
- 7 (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. (17)

8 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab.(57)

9 ((cold or colder) adj4 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or related or excess or excessive or severe or severity or extreme)).ti,ab. (531)

- 10 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$).ti,ab. (314094)
- 11 9 and 10 (55)
- 12 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab. (86)
- 13 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (32)
- 14 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (20)
- 15 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (25)
- 16 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. (13)
- 17 seasonal variations/ and ("death and dying"/ or exp Morbidity/ or risk factors/) (78)
- 18 (season\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab. (110)

19 or/5-8,11-18 (490)

- 20 ((fuel or energy or gas or electricity) adj3 (poverty or poor or afford or affordable or affordability or tariff\$)).ti,ab. (85)
- 21 (winter adj3 fuel).ti,ab. (0)
- 22 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (9)
- 23 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (2)
- 24 ((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. (20)
- 25 or/20-24 (115)
- 26 housing/ and (Temperature effects/ or cold effects/) (4)
- 27 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (17)

28 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. (93)

29 ((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or household\$ or housing)).ti,ab. (17)

30 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (2)

31 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (4)

32 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (1)

33 ((energy adj3 efficien\$) and (home or homes or house or houses or household\$ or housing)).ti,ab. (37)

34 ((energy adj3 efficien\$) and (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab. (9)

35 (home energy adj3 (program\$ or assist\$)).ti,ab. (7)

36 (insulat\$ adj4 (home or homes or house or houses or household\$ or housing)).ti,ab. (12)

37 (insulat\$ adj4 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. (0)

(Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company Obligation).ti,ab.(2)

39 or/26-38 (185)

40 (exp accidents/ or exp Injuries/) and exp Seasonal Variations/ (22)

41 ((fall or falls or falling or slip or slips or slipping) adj3 (winter or snow or ice or weather or season\$)).ti,ab. (372)

42 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj3 (winter or snow or ice or weather or season\$)).ti,ab. (78)

43 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab. (0)

44 or/40-43 (463)

45 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab. (87)

46 health forecast\$.ti,ab. (1)

47 45 or 46 (88)

48 19 or 25 or 39 or 44 or 47 (1312)

49 limit 48 to (human and english language and yr="1993 -Current") (829)

Key:

/ subject heading

- .ti,ab. searches are restricted to the title and abstract fields
- adj searches for adjacent terms
- adj3 searches for terms within three words of each other

\$ truncation symbol

\$1 truncation restricted to one character

or/1-4 combine sets 1 to 4 using OR

Cochrane Library: CDSR, DARE, CENTRAL, NHS EED and HTA (Wiley). 2013:Issue 9/12 and 3/4. Searched 1 October 2013.

#1 MeSH descriptor: [Cold Temperature] explode all trees 1110

#2 MeSH descriptor: [Snow] this term only 5

- #3 MeSH descriptor: [Ice] this term only 83
- #4 #1 or #2 or #3 1181
- #5 MeSH descriptor: [Death] explode all trees 1500
- #6 MeSH descriptor: [Mortality] explode all trees 10049
- #7 [mh /MO] 20804

#8 MeSH descriptor: [Morbidity] explode all trees 10513

#9 MeSH descriptor: [Risk Factors] this term only 17598

#10 #5 or #6 or #7 or #8 or #9 46439

#11 #4 and #10 35

#12 (winter near/4 (death* or fatalit* or mortalit* or morbidit* or illness* or disease*)):ti,ab,kw
 26

#13 (weather near/3 (death* or fatalit* or mortalit* or morbidit* or illness* or disease*)):ti,ab,kw5

#14 (temperature* near/3 (death* or fatalit* or mortalit* or morbidit* or illness* or disease*)):ti,ab,kw 131

#15((cold or colder) near/4 (spell* or season* or month* or period* or condition* or event orevents or related or excess or excessive or severe or severity or extreme)):ti,ab,kw280

#16 (death* or fatalit* or mortalit* or morbidit* or illness* or disease*):ti,ab,kw 173933
#17 #15 and #16 92

#18 ((excess or excessive or severe or severity or exposure) near/3 winter):ti,ab,kw 18

#19 (winter near/4 (vulnerab* or risk or risks or suceptib*)):ti,ab,kw 5

#20 (temperature* near/3 (vulnerab* or risk or risks or suceptib*)):ti,ab,kw 26

#21 (weather near/3 (vulnerab* or risk or risks or suceptib*)):ti,ab,kw 3

#22 ((cold or colder) near/3 (vulnerab* or risk or risks or suceptib*)):ti,ab,kw 17

#23 MeSH descriptor: [Seasons] this term only 707

#24 MeSH descriptor: [Death] this term only 64

#25 MeSH descriptor: [Mortality] this term only 390

#26 MeSH descriptor: [Morbidity] this term only 664

#27 MeSH descriptor: [Risk Factors] this term only 17598

 #28
 #24 or #25 or #26 or #27
 18533

#29 #23 and #28 43

#30 (season* near/3 (death* or fatalit* or mortalit* or morbidit* or risk or risks or vulnerabl* or suceptib*)):ti,ab,kw68

 #31
 #11 or #12 or #13 or #14 or #17 or #18 or #19 or #20 or #21 or #22 or #29 or #30
 411

#32((fuel or energy or gas or electricity) near/3 (poverty or poor or afford or affordable or
affordability or tariff*)):ti,ab,kw18

#33 (winter near/3 fuel):ti,ab,kw 0

#34 (winter near/3 (payment* or allowance* or benefit* or grant* or voucher*)):ti,ab,kw 3

#35 ((cold or weather) near/3 (payment* or allowance* or benefit* or grant* or voucher*)):ti,ab,kw 10

#36 ((heat* or gas or electricity) near/3 (payment* or allowance* or benefit* or grant* or voucher*)):ti,ab,kw 21

#37 #32 or #33 or #34 or #35 or #36 51

#38 MeSH descriptor: [Housing] explode all trees 252

#39 MeSH descriptor: [Cold Temperature] explode all trees 1110

#40 MeSH descriptor: [Heating] this term only 120

#41 #38 and (#39 or #40) 12

#42 ((cold or freez* or frozen) near/3 (home or homes or house or houses or household* or housing)):ti,ab,kw3

#43 ((warm* or heat* or underheat* or temperature*) near/3 (home or homes or house or houses or household* or housing)):ti,ab,kw48

#44 ((damp* or humid* or mold or moldy or mould or mouldy or condensation*) near/3 (home
or homes or house or houses or household* or housing)):ti,ab,kw25

#45 ((cold or freez* or frozen) near/3 (accommodation* or rent or rents or rented or tenancy or tenancies or dwelling*)):ti,ab,kw 0

#46 ((warm* or heat* or underheat* or temperature*) near/3 (accommodation* or rent or rents or rented or tenancy or tenancies or dwelling*)):ti,ab,kw2

#47 ((damp or humid or mold or moldy or mould or mouldy) near/3 (accommodation* or rent or rents or rented or tenancy or tenancies or dwelling*)):ti,ab,kw 0

#48 ((energy near/3 efficien*) and (home or homes or house or houses or household* or housing)):ti,ab,kw6

#49 ((energy near/3 efficien*) and (accommodation* or rent or rents or rented or tenancy or tenancies or dwelling* or domestic*)):ti,ab,kw 0

#50 ("home energy" near/3 (program* or assist*)):ti,ab,kw 0

#51 (insulat* near/4 (home or homes or house or houses or household* or housing)):ti,ab,kw8

#52 (insulat* near/4 (accommodation* or rent or rents or rented or tenancy or tenancies or dwelling*)):ti,ab,kw

#53 ("Warm Front" or "Warm Deal" or "Green Deal" or "Warm Zone" or "Energy Company Obligation"):ti,ab,kw

#54 "thermal comfort":ti,ab,kw 60

#41 or #42 or #43 or #44 or #45 or #46 or #47 or #48 or #49 or #50 or #51 or #52 or #53 or
#54 137

#56 MeSH descriptor: [Accidents] explode all trees 4421

#57 MeSH descriptor: [Wounds and Injuries] explode all trees 14069

#58 MeSH descriptor: [Snow] this term only 5

#59 MeSH descriptor: [Ice] this term only 83

#60 MeSH descriptor: [Seasons] this term only 707

#61 (#56 or #57) and (#58 or #59 or #60) 55

#62 ((fall or falls or falling or slips or slipping) near/3 (winter or snow or ice or weather or season*)):ti,ab,kw67

#63 ((accident* or injury or injuries or injured or fracture* or trauma*) near/3 (winter or snow or ice or weather or season*)):ti,ab,kw 17

#64 ((grit or gritted or gritting or gritter*) near/3 (road* or pavement* or sidewalk* or driveway* or pathway* or path or paths)):ti,ab,kw 0

#65 #61 or #62 or #63 or #64 137

#66 MeSH descriptor: [Forecasting] this term only 455

#67 MeSH descriptor: [Weather] this term only 25

#68 #66 and #67 1

#69 ((forecast* or alert* or warning* or alarm*) near/3 (cold or colder or weather or winter or "met office" or "meteorological office")):ti,ab,kw
7

#70 health next forecast*:ti,ab,kw 3

#71 #68 or #69 or #70 10

 #72
 #31 or #37 or #55 or #65 or #71
 722

#73 #31 or #37 or #55 or #65 or #71 from 1993 598

Key:

neyi	
MeSH descriptor	subject heading (MeSH)
explode all trees	explode subject heading (MeSH)
:ti,ab,kw	searches are restricted to the title, abstract and keyword fields
near	searches for adjacent terms
near/3	searches for terms within three words of each other
*	truncation symbol

EconLit (OvidSP). 1961-2013/Aug. Searched 30 September 2013.

- 1 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab,kw. (12)
- 2 (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab,kw. (18)
- 3 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or
- disease\$)).ti,ab,kw. (13)
- 4 ((cold or colder) adj4 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or related or excess or excessive or severe or severity or extreme)).ti,ab,kw. (115)
- 5 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$).ti,ab,kw. (13550)
- 6 4 and 5 (12)
- 7 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab,kw. (7)
- 8 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,kw. (3)
- 9 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,kw. (20)
- 10 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,kw. (139)
- 11 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab,kw. (4)
- 12 (season\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab,kw. (44)
- 13 or/1-3,6-12 (253)
- 14 (fuel adj3 (poverty or poor or afford or affordable or affordability or tariff\$)).ti,ab,kw. (87)
- 15 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab,kw. (3)
- 16 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab,kw.(6)
- 17 ((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab,kw. (132)
- 18 or/14-17 (227)
- 19 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,kw. (15)
- 20 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,kw. (80)
- 21 ((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or households or housing)).ti,ab,kw. (13)
- 22 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,kw. (1)
- 23 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,kw. (6)

24 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,kw. (1)

25 (energy efficienc\$ adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,kw. (88)

26 (energy efficienc\$ adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab,kw. (18)

27 (home energy adj3 (program\$ or assist\$)).ti,ab,kw. (2)

28 (insulat\$ adj3 (home or homes or house or houses or household\$ or housing)).ti,ab,kw. (20)

29 (insulat\$ adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab,kw. (0)

30 (Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company Obligation).ti,ab,kw. (8)

31 thermal comfort.ti,ab,kw. (21)

32 or/19-31 (245)

33 ((fall or falls or falling or slip or slips or slipping) adj3 (winter or snow or ice or weather or season\$)).ti,ab,kw. (33)

34 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj3 (winter or snow or ice or weather or season\$)).ti,ab,kw. (4)

35 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab,kw. (0)

36 or/33-35 (37)

37 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab,kw. (66)

38 health forecast\$.ti,ab,kw. (1)

39 37 or 38 (67)

40 13 or 18 or 32 or 36 or 39 (793)

41 limit 40 to yr="1993 -Current" (745)

Key:

.ti,ab,kw. searches are restricted to the title, abstract and keyword fields

adj searches for adjacent terms

adj3 searches for terms within three words of each other

\$ truncation symbol

\$1 truncation restricted to one character

or/1-4 combine sets 1 to 4 using OR

CEA Registry (www.cearegistry.org). Searched 3 October 2013.

The Basic search option only allows one word/phrase at a time: searched each line separately and then browsed for potentially useful records.

winter	1 (0 potentially relevant)
snow	2 (0 potentially relevant)
weather	1 (0 potentially relevant)
season	33 (0 potentially relevant: mostly about influenza vaccination)

seasonal	16 (0 potentially relevant: mostly about influenza vaccination)	
fuel	1 (0 potentially relevant)	
housing3 (0 potentially relevant)		
energy	15 (0 potentially relevant)	
falls	37 (0 potentially relevant: general falls prevention, not winter specific)	
forecast	19 (0 potentially relevant)	

RePEc (http://repec.org/). Searched 3 October 2013.

IDEAS search interface

(winter | weather | temperature) + (death | deaths | fatality | fatalities | mortality) In: Title Publication Date Range: 1993 to 2013 20 records retrieved

(winter | weather | temperature) + (death | deaths | fatality | fatalities | mortality)
In: Abstract
Publication Date Range: 1993 to 2013
127 records retrieved

(season | seasonal) + (death | deaths | fatality | fatalities | mortality) In: Title Publication Date Range: 1993 to 2013 *4 records retrieved*

(season | seasonal) + (death | deaths | fatality | fatalities | mortality) In: Abstract Publication Date Range: 1993 to 2013 75 records retrieved

("fuel poverty" | "winter fuel" | "winter payment" | "cold payment" | "weather payment" | "winter payments" | "cold payments" | "weather payments") In: Title Publication Date Range: 1993 to 2013 32 records retrieved

("fuel poverty" | "winter fuel" | "winter payment" | "cold payment" | "weather payment" | "winter payments" | "cold payments" | "weather payments") In: Abstract Publication Date Range: 1993 to 2013 65 records retrieved

"cold home" | "cold homes" | "cold house" | "cold houses" | "cold household*" | "cold housing" In: Title Publication Date Range: 1993 to 2013 8 records retrieved

"cold home" | "cold homes" | "cold house" | "cold houses" | "cold household*" | "cold housing" In: Abstract Publication Date Range: 1993 to 2013 *3 records retrieved*

"warm home" | "warm homes" | "warm house" | "warm houses" | "warm households" | "warm housing" | "warmer home" | "warmer homes" | "warmer house" | "warmer houses" | "warmer households" | "warmer housing" In: Title Publication Date Range: 1993 to 2013 2 records retrieved

"warm home" | "warm homes" | "warm house" | "warm houses" | "warm households" | "warm housing" | "warmer home" | "warmer homes" | "warmer house" | "warmer houses" | "warmer households" | "warmer housing" In: Abstract Publication Date Range: 1993 to 2013 *O records retrieved*

"heating home" | "heating homes" | "heating house" | "heating houses" | "heating households" | "heating housing" | "Warm Front" | "Warm Deal" | "Green Deal" | "Warm Zone" | "Energy Company Obligation" In: Title Publication Date Range: 1993 to 2013 9 records retrieved

"heating home" | "heating homes" | "heating house" | "heating houses" | "heating households" | "heating housing" | "Warm Front" | "Warm Deal" | "Green Deal" | "Warm Zone" | "Energy Company Obligation" In: Abstract Publication Date Range: 1993 to 2013 12 records retrieved

"damp home" | "damp homes" | "damp house" | "damp houses" | "damp household*" | "damp housing" In: Title Publication Date Range: 1993 to 2013 *O records retrieved*

"damp home" | "damp homes" | "damp house" | "damp houses" | "damp household*" | "damp housing" In: Abstract Publication Date Range: 1993 to 2013 1 record retrieved

"energy efficient home" | "energy efficiency home" | "energy efficient homes" | "energy efficiency homes" | "energy efficient house" | "energy efficiency house" | "energy efficient houses" | "energy efficiency houses" | "energy efficient households" | "energy efficiency households" | "energy efficient housing" | "energy efficiency housing" In: Title Publication Date Range: 1993 to 2013 *6 records retrieved*

"energy efficient home" | "energy efficiency home" | "energy efficient homes" | "energy efficiency homes" | "energy efficient house" | "energy efficiency house" | "energy efficient houses" | "energy efficiency houses" | "energy efficient households" | "energy efficiency households" | "energy efficient housing" | "energy efficiency housing" In: Abstract Publication Date Range: 1993 to 2013 15 records retrieved

("energy efficient" | "energy efficiency") + cost In: Title Publication Date Range: 1993 to 2013 34 records retrieved [NB almost 600 records when searched in Abstract]

"winter falls" | "winter accidents" | "winter injuries" | "seasonal falls" | " seasonal accidents" | " seasonal injuries" In: Title Publication Date Range: 1993 to 2013 *O records retrieved*

"winter falls" | "winter accidents" | "winter injuries" | "seasonal falls" | " seasonal accidents" | " seasonal injuries" In: Abstract Publication Date Range: 1993 to 2013 *O records retrieved*

"health forecast" | "health forecasts" | "health forecasting" In: Title Publication Date Range: 1993 to 2013 *1 record retrieved*

"health forecast" | "health forecasts" | "health forecasting" In: Abstract Publication Date Range: 1993 to 2013

1 record retrieved

Key:

| OR

+ AND

" " phrase search

Campbel Library (http://www.campbellcollaboration.org/library.php). Searched 3 October 2013.

title is winter OR weather OR season* OR temperature OR cold OR colder	0
·	0
· · · ·	0
	0
•	2
	1
title is damp* OR mold* OR mould*	0
keywords is damp* OR mold* OR mould*	0
title is "energy efficient" OR "energy efficiency"	0
	0
title is falls OR falling OR slip OR slips OR slipping	0
keywords is falls OR falling OR slip OR slips OR slipping	0
title is accident* OR injury OR injuries OR injured OR fracture*	3
keywords is accident* OR injury OR injuries OR injured OR fracture*	2
title is forecast*	0
keywords is forecast*	0
title is winter OR weather OR season* OR temperature OR cold OR colder or	6
keywords is winter OR weather OR season* OR temperature OR cold OR colder or	
title is fuel or keywords is fuel or title is house OR houses OR housing or keywords	
is house OR houses OR housing or title is damp* OR mold* OR mould* or	
keywords is damp* OR mold* OR mould* or title is "energy efficient" OR "energy	
efficiency" or keywords is "energy efficient" OR "energy efficiency" or title is falls	
OR falling OR slip OR slips OR slipping or keywords is falls OR falling OR slip OR	
slips OR slipping or title is accident* OR injury OR injuries OR injured OR fracture*	
or keywords is accident* OR injury OR injuries OR injured OR fracture* or title is	
forecast* or keywords is forecast*	
	keywords is damp* OR mold* OR mould* title is "energy efficient" OR "energy efficiency" keywords is "energy efficient" OR "energy efficiency" title is falls OR falling OR slip OR slips OR slipping keywords is falls OR falling OR slip OR slips OR slipping title is accident* OR injury OR injuries OR injured OR fracture* keywords is accident* OR injury OR injuries OR injured OR fracture* title is forecast* keywords is forecast* title is winter OR weather OR season* OR temperature OR cold OR colder or keywords is winter OR weather OR season* OR temperature OR cold OR colder or title is fuel or keywords is fuel or title is house OR houses OR housing or keywords is house OR houses OR housing or title is damp* OR mold* OR mould* or keywords is damp* OR mold* OR mould* or title is "energy efficient" OR "energy efficiency" or keywords is "energy efficient" OR "energy efficiency" or keywords is "energy efficient" OR "energy efficiency" or keywords is neergy efficient OR "energy efficient" OR season slips OR slip OR slips OR slipping or keywords is falls OR falling OR slip OR slips OR slipping or title is accident* OR injury OR injuries OR injured OR fracture* or keywords is accident* OR injury OR injuries OR injured OR fracture* or title is

NB. Only 1 record was retrieved; the other 5 records were irrelevant

Key:

title	searches are restricted to the title field
keywords	searches are restricted to the keywords field
*	truncation symbol
	phrase search

Trials Register of Promoting Health Interventions (TRoPHI) (EPPI-Centre database interface). Searched 3 October 2013.

Freetext: "winter death*" OR "winter fatalit*" OR "winter mortalit*" OR "winter morbidit*" OR "winter illness*" OR "winter disease*" 0 Freetext: "weather death*" OR "weather fatalit*" OR "weather mortalit*" OR "weather morbidit*" OR "weather illness*" OR "weather disease*" 0 Freetext: "temperature* death*" OR "temperature* fatalit*" OR "temperature* mortalit*" OR "temperature* morbidit*" OR "temperature* illness*" OR "temperature* disease*" 0 Freetext: "cold* death*" OR "cold* fatalit*" OR "cold* mortalit*" OR "cold* morbidit*" OR "cold* illness*" OR "cold* disease*" 0 Freetext: (excess OR excessive OR severe OR severity OR exposure) AND (winter OR weather OR "temperature*" OR cold OR colder) 9 Freetext: ("vulnerab*" or risk OR risks OR "suceptib*") AND (winter OR weather OR "temperature*" OR cold OR colder) 8 Freetext: "season*" AND ("death*" OR "fatalit*" OR "mortalit*" OR "morbidit*" OR "risk*" OR "vulnerabl*" OR "suceptib*") 17 Freetext: "fuel poverty" OR "winter fuel" OR "winter payment*" OR "cold payment*" OR "weather payment*" 0 Freetext: (cold OR "freez*" OR frozen) AND (home OR homes OR house OR houses OR "household*" OR housing) 1 Freetext: ("warm*" OR "heat*" OR "underheat*" OR "temperature*" OR "insulat*") AND (home OR homes OR house OR houses OR "household*" OR housing) 8 Freetext: ("damp*" OR "mold*" OR "mould*") AND (home OR homes OR house OR houses OR "household*" OR housing) 2 Freetext: "energy efficien*" OR "home energy" OR "Warm Front" OR "Warm Deal" OR "Green Deal" OR "Warm Zone" OR "Energy Company Obligation" OR "thermal comfort" 0 Freetext: (falls OR falling OR slip OR slips OR slipping) AND (winter OR snow OR ice OR weather OR "season*") 2 Freetext: ("accident*" OR injury OR injuries OR injured OR "fracture*" OR "trauma*") AND (winter OR snow OR ice OR weather OR "season*") 9 Freetext: ("forecast*" OR "alert*" OR "warning*" OR "alarm*") AND (cold OR colder OR weather OR winter OR "met office" OR "meteorological office") 1 Freetext: "health forecast*" 0 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 44

NB. Only 8 records were retrieved; the other 36 records were irrelevant

Key:

Freetext	searches are restricted to the text fields (title, author and abstract)
TTEELEAL	searches are restricted to the text helds (the, author and abstract)

- * truncation symbol
- " " phrase search
- " *" ensures truncation search works

Database of Promoting Health Effectiveness Reviews (DoPHER) (EPPI-Centre database interface). Searched 3 October 2013.

Freetext: "winter death*" OR "winter fatalit*" OR "winter mortalit*" OR "winter morbidit*" OR "winter illness*" OR "winter disease*" 0 Freetext: "weather death*" OR "weather fatalit*" OR "weather mortalit*" OR "weather morbidit*" OR "weather illness*" OR "weather disease*" 0 Freetext: "temperature* death*" OR "temperature* fatalit*" OR "temperature* mortalit*" OR "temperature* morbidit*" OR "temperature* illness*" OR "temperature* disease*" 0 Freetext: "cold* death*" OR "cold* fatalit*" OR "cold* mortalit*" OR "cold* morbidit*" OR "cold* illness*" OR "cold* disease*" 0 Freetext: (excess OR excessive OR severe OR severity OR exposure) AND (winter OR weather OR "temperature*" OR cold OR colder) 2 Freetext: ("vulnerab*" or risk OR risks OR "suceptib*") AND (winter OR weather OR "temperature*" OR cold OR colder) 5 Freetext: "season*" AND ("death*" OR "fatalit*" OR "mortalit*" OR "morbidit*" OR "risk*" OR "vulnerabl*" OR "suceptib*") 3 Freetext: "fuel poverty" OR "winter fuel" OR "winter payment*" OR "cold payment*" OR "weather payment*" 0 Freetext: (cold OR "freez*" OR frozen) AND (home OR homes OR house OR houses OR "household*" OR housing) 1 Freetext: ("warm*" OR "heat*" OR "underheat*" OR "temperature*" OR "insulat*") AND (home OR homes OR house OR houses OR "household*" OR housing) 6 Freetext: ("damp*" OR "mold*" OR "mould*") AND (home OR homes OR house OR houses OR "household*" OR housing) 2 Freetext: "energy efficien*" OR "home energy" OR "Warm Front" OR "Warm Deal" OR "Green Deal" OR "Warm Zone" OR "Energy Company Obligation" OR "thermal comfort" 3 Freetext: (falls OR falling OR slip OR slips OR slipping) AND (winter OR snow OR ice OR weather OR "season*") 0 Freetext: ("accident*" OR injury OR injuries OR injured OR "fracture*" OR "trauma*") AND (winter OR snow OR ice OR weather OR "season*") 2 Freetext: ("forecast*" OR "alert*" OR "warning*" OR "alarm*") AND (cold OR colder OR weather OR winter OR "met office" OR "meteorological office") 0 Freetext: "health forecast*" 0 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 14 NB. Only 5 records were retrieved; the other 9 records were irrelevant

Key:

Freetext	searches are restricted to the text fields (title, author and abstract)
TICCICAL	scarches are restricted to the text fields (the, author and abstract)

- * truncation symbol
- " " phrase search
- " *" ensures truncation search works

OpenGrey (http://www.opengrey.eu/). Searched 3 October 2013.

("winter death*" OR "winter fatalit*" OR "winter mortalit*" OR "winter morbidit*" OR "winter illness*" OR "winter disease*" OR "fuel poverty" OR "winter fuel" OR "winter payment*" OR "cold payment*" OR "weather payment*" OR "cold home" OR "cold homes" OR "cold house" OR "cold houses" OR "cold household*" OR "cold housing" OR "warm* home" OR "warm* homes" OR "warm* homes" OR "warm* house" OR "warm* houses" OR "warm* houses" OR "warm* houses" OR "warm* house" OR "warm* houses" OR "heat* household*" OR

Key:

- * truncation symbol
- " " phrase search

NHS Evidence (https://www.evidence.nhs.uk/). Searched 18 October 2013.

Limited by 'Types of information': Drug/Medicines Management; Drug Costs; Commissioning Guides; Evidence Summaries; Grey literature; Guidelines; Health Technology Assessments; Policy and Service Development; Population Needs Assessment; Primary Research; Systematic Reviews - *Not* Population Intelligence; Patient Information

"winter deaths" OR "winter death"

"winter mortality" OR "winter morbidity"

"fuel poverty"

"weather payments" OR "weather payment"

"cold homes" OR "cold house" OR "cold houses" OR "cold housing"

"energy efficient homes" OR "energy efficient house" OR "energy efficient houses" OR "energy efficient housing"

"home energy" OR "home insulation"

"Warm Front" OR "Warm Deal" OR "Green Deal" OR "Warm Zone" OR "Energy Company Obligation" "winter fall" OR "winter falls" OR "winter accident" OR "winter accidents"

"weather forecast" OR "weather forecasts" OR "weather forecasting" OR "weather alert" OR "weather alerts"

"health forecast" OR "health forecasts" OR "health forecasting"

Key:

" " phrase search

RIBA Catalogue (http://riba.sirsidynix.net.uk/uhtbin/webcat). Searched 15 October 2013.

Advanced Search Keyword(s)

winter ADJ death\$ (winter OR temperature\$ OR cold OR colder) AND mortalit\$ (winter OR temperature\$ OR cold OR colder) AND morbidit\$ (winter OR weather OR temperature\$ OR cold OR colder) AND (vulnerab\$ OR risk OR risks OR suceptib\$)

fuel ADJ poverty

(cold OR freez\$ OR frozen) ADJ (home OR homes OR house OR houses OR household\$ OR housing) (warm\$ OR heat\$ OR underheat\$ OR temperature\$) (home OR homes OR house OR houses OR household\$ OR housing)

(damp\$ OR humid\$ OR mold\$ OR mould\$) ADJ (home OR homes OR house OR houses OR household\$ OR housing)

(energy ADJ efficien\$) AND (home OR homes OR house OR houses OR household\$ OR housing) (energy ADJ efficien\$) AND (home OR homes OR house OR houses OR household\$ OR housing) (home ADJ energy) AND (program\$ OR assist\$)

1993 - 2013

Key:

ADJ adjacent terms

\$ truncation symbol

NYAM Grey Literature Report (http://www.greylit.org/). Searched 18 October 2013.

Each line was searched separately

winter death winter mortality winter morbidity fuel poverty weather payments weather payment cold homes cold house cold housing energy efficient home energy efficient house home energy home insulation winter falls winter accident weather forecast weather alert

Scopus (Elsevier). 1823-2013/Oct. Searched 18 October 2013.

Advanced search

((TITLE-ABS-KEY("Warm Front" OR "Warm Deal" OR "Green Deal" OR "Warm Zone" OR "Energy Company Obligation")) OR (TITLE-ABS-KEY("winter falls" OR "winter accident*" OR "winter injur*")) OR (TITLE-ABS-KEY("health forecast*")) OR ((TITLE-ABS-KEY("winter death" OR "winter fatalit*" OR "winter mortalit*" OR "winter morbidit*")) OR (TITLE-ABS-KEY(weather W/2 (death* OR fatalit* OR mortalit* OR morbidit*))) OR (TITLE-ABS-KEY("season* death" OR "season* fatalit*" OR "season* mortalit*" OR "season* morbidit*")) OR (TITLE-ABS-KEY((winter OR weather OR cold OR colder) W/2 (vulnerab* OR risk OR risks OR suceptib*))) OR (TITLE-ABS-KEY("fuel poverty" OR "winter fuel" OR "winter payment*" OR "winter allowance*" OR "weather payment*" OR "weather allowance*")) OR (TITLE-ABS-KEY((cold OR freez* OR frozen) W/2 (home OR homes OR house OR houses OR household* OR housing))) OR (TITLE-ABS-KEY("energy efficien*" W/2 (home OR homes OR house OR houses OR household* OR housing))) OR (TITLE-ABS-KEY("home energy" W/2 (program* OR assist*)))) AND NOT ((ALL((rat OR rats OR mouse OR mice OR murine OR hamster OR hamsters OR animal OR animals OR dogs OR dog OR canine OR pig OR pigs OR cats OR bovine OR cow OR cattle OR sheep OR ovine OR porcine))) OR (ALL((monkey OR monkeys OR hen OR hens OR chicken OR chickens OR poultry OR rabbit OR rabbits OR fish OR fishes OR salmon OR bird OR birds OR insect OR insects))) OR (ALL((tree OR trees OR woodland OR forest OR forests OR plant OR plants OR leaf OR leaves OR soil OR agriculture OR agricultural OR agronomy OR crop OR crops OR grass OR grasses)))) AND (LIMIT-TO(PUBYEAR, 2014) OR LIMIT-TO(PUBYEAR, 2013) OR LIMIT-TO(PUBYEAR, 2012) OR LIMIT-TO(PUBYEAR, 2011) OR LIMIT-TO(PUBYEAR, 2010) OR LIMIT-TO(PUBYEAR, 2009) OR LIMIT-TO(PUBYEAR, 2008) OR LIMIT-TO(PUBYEAR, 2007) OR LIMIT-TO(PUBYEAR, 2006) OR LIMIT-TO(PUBYEAR, 2005) OR LIMIT-TO(PUBYEAR, 2004) OR LIMIT-TO(PUBYEAR, 2003) OR LIMIT-TO(PUBYEAR, 2002) OR LIMIT-TO(PUBYEAR, 2001) OR LIMIT-TO(PUBYEAR, 2000) OR LIMIT-TO(PUBYEAR, 1999) OR LIMIT-TO(PUBYEAR, 1998) OR LIMIT-TO(PUBYEAR, 1997) OR LIMIT-TO(PUBYEAR, 1996) OR LIMIT-TO(PUBYEAR, 1995) OR LIMIT-TO(PUBYEAR, 1994) OR LIMIT-TO(PUBYEAR, 1993)) AND (LIMIT-TO(LANGUAGE, "English")) AND (LIMIT-TO(SUBJAREA, "DECI") OR LIMIT-TO(SUBJAREA, "MEDI") OR LIMIT-TO(SUBJAREA, "ENVI") OR LIMIT-TO(SUBJAREA, "SOCI") OR LIMIT-TO(SUBJAREA, "BUSI") OR LIMIT-TO(SUBJAREA, "NURS") OR LIMIT-TO(SUBJAREA, "ECON") OR LIMIT-TO(SUBJAREA, "PSYC") OR LIMIT-TO(SUBJAREA, "HEAL") OR LIMIT-TO(SUBJAREA, "PHAR") OR LIMIT-TO(SUBJAREA, "DECI") OR LIMIT-TO(SUBJAREA, "MULT"))

Key:	
SUBJAREA	Subject Areas
TITLE-ABS-KEY	searches are restricted to the title, abstract and keyword fields
W	searches for adjacent terms
W/3	searches for terms within three words of each other
*	truncation symbol
н н	phrase search

Avery Index to Architectural Periodicals (ProQuest). 1934-2013/Oct. Searched 24 October 2013.

TI,AB(winter NEAR/4 (death* OR fatality* OR mortality* OR morbidity* OR illness* OR disease*)) OR (TI,AB(winter NEAR/4 (death* OR fatality* OR mortality* OR morbidity* OR illness* OR disease*)) OR (TI,AB(weather NEAR/3 (death* OR fatality* OR mortality* OR morbidity* OR illness* OR disease*)) OR TI,AB(weather NEAR/3 (death* OR fatality* OR mortality* OR morbidity* OR illness* OR disease*)) OR TI,AB(temperature* NEAR/3 (death* OR fatality* OR mortality* OR morbidity* OR illness* OR disease*)))) OR TI,AB((cold OR colder) NEAR/4 (spell* OR season* OR month* OR period* OR condition* OR event*1 OR related OR excess OR excessive OR severe OR severity OR extreme)) OR TI,AB((excess OR excessive OR severe OR severity OR exposure) NEAR/3 winter) OR TI,AB(winter NEAR/4 (vulnerable* OR risk*1 OR suceptib*)) OR TI,AB(temperature* NEAR/3 (vulnerable* OR risk*1 OR suceptib*)) OR TI,AB(weather NEAR/3 (vulnerable* OR risk*1 OR suceptib*)) OR TI,AB((cold OR colder) NEAR/3 (vulnerable* OR risk*1 OR suceptib*)) OR TI,AB(season* NEAR/3 (death* OR fatality* OR mortality* OR morbidity* OR risk*1 OR vulnerable* OR suceptib*)) OR TI,AB(fuel NEAR/3 (poverty OR poor OR afford OR affordable OR affordability OR tariff)) OR TI,AB(winter NEAR/3 fuel) OR TI,AB(winter NEAR/3 (payment* OR allowance* OR benefit* OR grant* OR voucher*)) OR TI,AB((cold OR weather) NEAR/3 (payment* OR allowance* OR benefit* OR grant* OR voucher*)) OR TI,AB((cold OR free* OR frozen) NEAR/3 (home OR homes OR house OR houses OR household* OR housing)) OR TI,AB((warm* OR heat* OR underseat* OR temperature*) NEAR/3 (home OR homes OR houses OR houses OR household* OR housing)) OR TI,AB((damp* OR humid* OR mold OR mould OR mould OR mouldy OR condensation*) NEAR/3 (home OR homes OR house OR houses OR household* OR housing)) OR TI,AB((cold OR free* OR frozen) NEAR/3 (accommodation* OR rent OR rents OR rented OR tenancy OR tenancies OR dwelling*)) OR TI,AB((warm* OR heat* OR underseat* OR temperature*) NEAR/3 (accommodation* OR rent OR rents OR rented OR tenancy OR tenancies OR dwelling*)) OR TI,AB((damp* OR humid* OR mold OR moldy OR mould OR mouldy OR condensation*) NEAR/3 (accommodation* OR rent OR rents OR rented OR tenancy OR tenancies OR dwelling*)) OR TI,AB("energy efficien* home" OR "energy efficien* homes" OR "energy efficien* house" OR "energy efficien* houses" OR "energy efficien* household*" OR "energy efficien* housing") OR TI,AB("energy efficien* accommodation*" OR "energy efficien* rent" OR "energy efficien* rents" OR "energy efficien* rented" OR "energy efficien* tenancy*" OR "energy efficien* tenancies" OR "energy efficien* dwelling*" OR "energy efficien* domestic*") OR TI,AB("home energy program*" OR "home energy assist*") OR TI,AB("Warm Front" OR "Warm Deal" OR "Green Deal" OR "Warm Zone" OR "Energy Company Obligation") OR TI,AB("thermal comfort") OR TI,AB((falls OR falling) NEAR/3 (winter OR snow OR ice OR weather)) OR TI,AB((accident* OR injury OR injuries OR injured OR fracture* OR trauma*) NEAR/3 (winter OR snow OR ice OR weather)) OR TI,AB((grit OR gritted OR gritting OR gritter*) NEAR/3 (road* OR pavement* OR sidewalk* OR driveway* OR pathway* OR path*1)) OR TI,AB((forecast* OR alert* OR warning* OR alarm*) NEAR/3 (cold OR colder OR weather OR winter OR "met office" OR "meteorological office")) OR TI,AB("health forecast*")

Kev:

Key.	
TI,AB	searches are restricted to the title and abstract fields
NEAR	searches for adjacent terms
NEAR/3 searche	es for terms within three words of each other
*	truncation symbol
*1	truncation restricted to one character

н н phrase search

ICONDA International (Ovid). 1976-2013/Oct. Searched 25 October 2013.

- 1 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. 3 2
- (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. 2

3 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab.0

4 ((cold or colder) adj4 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or related or excess or excessive or severe or severity or extreme)).ti,ab. 246

5 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$).ti,ab.
2252
6 4 and 5 0

7 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab. 39

8 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 5

9 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 13

10 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 17

11 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 3

12 (season\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab.7

13 1 or 2 or 3 or 6 or 7 or 8 or 9 or 10 or 11 or 12 87

14 ((fuel or energy or gas or electricity) adj3 (poverty or poor or afford or affordable or affordability or tariff\$)).ti,ab. 116

15 (winter adj3 fuel).ti,ab. 1

16 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. 4

17 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab.8

18((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ orvoucher\$)).ti,ab.46

19 14 or 15 or 16 or 17 or 18 174

20 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. 36

21 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. 396

22 ((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or household\$ or housing)).ti,ab. 88

23 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. 2

24 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. 52

25 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. 9

26 (energy efficien\$ adj3 (home or homes or house or houses or household\$ or housing)).ti,ab.
 294

27 (energy efficien\$ adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab. 30

28 (home energy adj2 (program\$ or assist\$)).ti,ab. 2

29 (insulat\$ adj2 (home or homes or house or houses or household\$ or housing)).ti,ab. 103

30(insulat\$ adj2 (accommodation\$ or rent or rents or rented or tenancy or tenancies or
dwelling\$)).ti,ab.35

31(Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company
Obligation).ti,ab.12

32 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 1009

33 ((falls or falling or slip or slips or slipping) adj3 (winter or snow or ice or weather)).ti,ab. 15

34 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj3 (winter or snow or ice or weather)).ti,ab. 34

35 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab. 2

36 33 or 34 or 35 51

37 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab. 50

38 health forecast\$.ti,ab. 0

- 39 37 or 38 50
- 40 13 or 19 or 32 or 36 or 39 1353
- 41 limit 40 to (english and yr="1993 -Current") 492

Key:

- .ti,ab. searches are restricted to the title and abstract fields
- adj searches for adjacent terms
- adj3 searches for terms within three words of each other
- \$ truncation symbol
- \$1 truncation restricted to one character
- or/1-4 combine sets 1 to 4 using OR

PsycEXTRA (Ovid). 1908-2013/Oct. Searched 25 October 2013.

- 1 (winter adj4 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab. 3
- 2 (weather adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab.4

3 (temperature\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$)).ti,ab.2

4 ((cold or colder) adj4 (spell\$ or season\$ or month\$ or period\$ or condition\$ or event\$1 or related or excess or excessive or severe or severity or extreme)).ti,ab. 51

- 5 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or illness\$ or disease\$).ti,ab.
 20625
 6 4 and 5 8
- 7 ((excess or excessive or severe or severity or exposure) adj3 winter).ti,ab. 3
- 8 (winter adj4 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 3
- 9 (temperature\$ adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 2
- 10 (weather adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 7
- 11 ((cold or colder) adj3 (vulnerab\$ or risk\$1 or suceptib\$)).ti,ab. 5
- 12 (season\$ adj3 (death\$ or fatalit\$ or mortalit\$ or morbidit\$ or risk\$1 or vulnerabl\$ or suceptib\$)).ti,ab. 1
- 13 or/1-3,6-12 33
- 14 ((fuel or energy or gas or electricity) adj3 (poverty or poor or afford or affordable or affordability or tariff\$)).ti,ab. 5
- 15 (winter adj3 fuel).ti,ab. 0
- 16 (winter adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab. 0

17 ((cold or weather) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ or voucher\$)).ti,ab.1

18((heat\$ or gas or electricity) adj3 (payment\$ or allowance\$ or benefit\$ or grant\$ orvoucher\$)).ti,ab.3

19 or/14-18 9

20 ((cold or freez\$ or frozen) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. 0

21 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (home or homes or house or houses or household\$ or housing)).ti,ab. 14

((damp\$ or humid\$ or mold or moldy or mould or mouldy or condensation\$) adj3 (home or homes or house or household\$ or housing)).ti,ab.

23 ((cold or freez\$ or frozen) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. 0

24 ((warm\$ or heat\$ or underheat\$ or temperature\$) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. 0

25 ((damp or humid or mold or moldy or mould or mouldy) adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$)).ti,ab. 0

26 (energy efficien\$ adj3 (home or homes or house or houses or household\$ or housing)).ti,ab.0

27 (energy efficien\$ adj3 (accommodation\$ or rent or rents or rented or tenancy or tenancies or dwelling\$ or domestic\$)).ti,ab. 0

28 (home energy adj2 (program\$ or assist\$)).ti,ab. 6

29 (insulat\$ adj2 (home or homes or house or houses or household\$ or housing)).ti,ab. 0

30(insulat\$ adj2 (accommodation\$ or rent or rents or rented or tenancy or tenancies or
dwelling\$)).ti,ab.0

31(Warm Front or Warm Deal or Green Deal or Warm Zone or Energy Company
Obligation).ti,ab.0

32 thermal comfort.ti,ab. 13

33 or/20-32 34

34 ((falls or falling or slip or slips or slipping) adj3 (winter or snow or ice or weather)).ti,ab. 5

35 ((accident\$ or injury or injuries or injured or fracture\$ or trauma\$) adj3 (winter or snow or ice or weather)).ti,ab. 24

36 ((grit or gritted or gritting or gritter\$) adj3 (road\$ or pavement\$ or sidewalk\$ or driveway\$ or pathway\$ or path\$1)).ti,ab. 0

37 or/34-36 29

38 ((forecast\$ or alert\$ or warning\$ or alarm\$) adj3 (cold or colder or weather or winter or met office or meteorological office)).ti,ab. 28

39 health forecast\$.ti,ab. 0

40 or/38-39 28

41 13 or 19 or 33 or 37 or 40 126

42 limit 41 to (english language and yr="1993 -Current") 93

Key:

.ti,ab. searches are restricted to the title and abstract fields

adj searches for adjacent terms

- adj3 searches for terms within three words of each other
- \$ truncation symbol
- \$1 truncation restricted to one character
- or/1-4 combine sets 1 to 4 using OR

Appendix 3: Bibliography of included studies

1. Curwen M. Excess winter mortality: a British phenomenon? *Health Trends* 1990/91; **22**(4): 169-75.

2. Department of Energy and Climate Change (DECC). Fuel poverty report -- updated Augist 2013. London: DECC, 2013.

3. Department of Energy and Climate Change (DECC). Standard Assessment Procedure. 22 January 2013 2013. https://www.gov.uk/standard-assessment-procedure (accessed 6 September 2013.

4. Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression studies in environmental epidemiology. *International journal of epidemiology* 2013.

5. Yu W, Mengersen K, Wang X, et al. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence *Int J Biometeorol* 2012; **56**: 569-81.

6. Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S. Ambient temperature and morbidity: a review of epidemiological evidence. *Environ Health Perspect* 2012; **120**(1): 19-28.

7. Liddell C, Morris C. Fuel Poverty and Human Health: A Review of Recent Evidence. *Energy Policy* 2010; **38**(6): 2987-97.

8. Hills J. Getting the measure of fuel poverty. Final report of the HIlls review of fuel poverty. CASE report 72. London LSE/Dept Energy and Climate Change, 2012.

9. Barnard LF, Baker MG, Hales S, Howden-Chapman PL. Excess winter morbidity and mortality: do housing and socio-economic status have an effect? *Rev Environ Health* 2008; **23**(3): 203-21.

10. Tanner LM, Moffatt S, Milne EM, Mills SD, White M. Socioeconomic and behavioural risk factors for adverse winter health and social outcomes in economically developed countries: a systematic review of quantitative observational studies. *J Epidemiol Community Health* 2013; **67**(12): 1061-7.

11. Atsumi A, Ueda K, Irie F, et al. Relationship between cold temperature and cardiovascular mortality, with assessment of effect modification by individual characteristics: Ibaraki Prefectural Health Study. *Circ J* 2013; **77**(7): 1854-61.

12. Callaly E, Mikulich O, Silke B. Increased winter mortality: The effect of season, temperature and deprivation in the acutely ill medical patient. *Eur* 2013; **24**(6): 546-51.

13. de'Donato FK, Leone M, Noce D, Davoli M, Michelozzi P. The impact of the February 2012 cold spell on health in Italy using surveillance data. *PLoS ONE* 2013; **8**(4): e61720.

14. de Vries R, Blane D. Fuel poverty and the health of older people: the role of local climate. *J Public Health (Oxf)* 2013; **35**(3): 361-6.

15. Gomez-Acebo I, Llorca J, Dierssen T. Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: a case-crossover study. *Public Health* 2013; **127**(3): 252-8.

16. Hajat S, Chalabi P, Jones L, Wilkinson P, Erens B, Mays N. Evaluation Of The Implementation And Health-Related Impacts Of The National Cold Weather Plan For England (interim report to the Dept of Health). London: Department of Health, 2013.

17. McAllister DA, Morling JR, Fischbacher CM, Macnee W, Wild SH. Socioeconomic deprivation increases the effect of winter on admissions to hospital with COPD: retrospective analysis of 10 years of national hospitalisation data. *Prim* 2013; **22**(3): 296-9.

18. McGuinn L, Hajat S, Wilkinson P, et al. Ambient temperature and activation of implantable cardioverter defibrillators. *Int J Biometeorol* 2013; **57**(5): 655-62.

19. Madrigano J, Mittleman MA, Baccarelli A, et al. Temperature, myocardial infarction, and mortality: effect modification by individual- and area-level characteristics. *Epidemiology* 2013; **24**(3): 439-46.

20. Modarres R, Ouarda TB, Vanasse A, Orzanco MG, Gosselin P. Modeling seasonal variation of hip fracture in Montreal, Canada. *Bone* 2012; **50**(4): 909-16.

21. Romero-Ortuno R, Tempany M, Dennis L, O'Riordan D, Silke B. Deprivation in cold weather increases the risk of hospital admission with hypothermia in older people. *Ir J Med Sci* 2013; **182**(3): 513-8.

22. Tseng CM, Chen YT, Ou SM, et al. The effect of cold temperature on increased exacerbation of chronic obstructive pulmonary disease: a nationwide study. *PLoS ONE* 2013; **8**(3): e57066.

23. Webb E, Blane D, de Vries R. Housing and respiratory health at older ages. *J Epidemiol Community Health* 2013; **67**(3): 280-5.

24. Barnett AG, Hajat S, Gasparrini A, Rocklov J. Cold and heat waves in the United States. *Environ Res* 2012; **112**: 218-24.

25. Hales S, Blakely T, Foster RH, Baker MG, Howden-Chapman P. Seasonal patterns of mortality in relation to social factors. *J Epidemiol Community Health* 2012; **66**(4): 379-84.

26. Hori A, Hashizume M, Tsuda Y, Tsukahara T, Nomiyama T. Effects of weather variability and air pollutants on emergency admissions for cardiovascular and cerebrovascular diseases. *Int J Environ Health Res* 2012; **22**(5): 416-30.

27. Miron IJ, Montero JC, Criado-Alvarez JJ, Linares C, Diaz J. Intense cold and mortality in Castile-La Mancha (Spain): study of mortality trigger thresholds from 1975 to 2003. *Int J Biometeorol* 2012; **56**(1): 145-52.

28. Morabito M, Crisci A, Moriondo M, et al. Air temperature-related human health outcomes: current impact and estimations of future risks in Central Italy. *Sci Total Environ* 2012; **441**: 28-40.

29. Morency P, Voyer C, Burrows S, Goudreau S. Outdoor falls in an urban context: winter weather impacts and geographical variations. *Can J Public Health* 2012; **103**(3): 218-22.

30. Office for National Statistics. Excess winter mortality in England and Wales, 2011/12 (provisional) and 2010/11 (final). 2012.

31. Phu Pin S, Golmard JL, Cotto E, Rothan-Tondeur M, Chami K, Piette F. Excess winter mortality in France: influence of temperature, influenza like illness, and residential care status. *J Am Med Dir Assoc* 2012; **13**(3): 309.e1-7.

32. Turner LR, Connell D, Tong S. Exposure to hot and cold temperatures and ambulance attendances in Brisbane, Australia: a time-series study. *BMJ Open* 2012; **2**(4).

33. von Klot S, Zanobetti A, Schwartz J. Influenza epidemics, seasonality, and the effects of cold weather on cardiac mortality. *Environ Health* 2012; **11**: 74.

34. Wichmann J, Ketzel M, Ellermann T, Loft S. Apparent temperature and acute myocardial infarction hospital admissions in Copenhagen, Denmark: a case-crossover study. *Environ Health* 2012; **11**: 19.

35. Beynon C, Wyke S, Jarman I, et al. The cost of emergency hospital admissions for falls on snow and ice in England during winter 2009/10: a cross sectional analysis. *Environ Health* 2011; **10**: 60.

36. Gallerani M, Boari B, Manfredini F, Manfredini R. Seasonal variation in heart failure hospitalization. *Clin Cardiol* 2011; **34**(6): 389-94.

37. Morabito M, Crisci A, Vallorani R, Modesti PA, Gensini GF, Orlandini S. Innovative approaches helpful to enhance knowledge on weather-related stroke events over a wide geographical area and a large population. *Stroke* 2011; **42**(3): 593-600.

38. Magalhaes R, Silva MC, Correia M, Bailey T. Are stroke occurrence and outcome related to weather parameters? Results from a population-based study in northern portugal. *Cerebrovasc Dis* 2011; **32**(6): 542-51.

39. Murray IR, Howie CR, Biant LC. Severe weather warnings predict fracture epidemics. *Injury* 2011; **42**(7): 687-90.

40. Nielsen J, Mazick A, Glismann S, Molbak K. Excess mortality related to seasonal influenza and extreme temperatures in Denmark, 1994-2010. *BMC Infect Dis* 2011; **11**: 350.

41. Office for National Statistics. Excess winter mortality in England and Wales, 2010/11 (provisional) and 2009/10 (final). 2011.

42. Parsons N, Odumenya M, Edwards A, Lecky F, Pattison G. Modelling the effects of the weather on admissions to UK trauma units: a cross-sectional study. *Emerg Med J* 2011; **28**(10): 851-5.

43. Rocklov J, Ebi K, Forsberg B. Mortality related to temperature and persistent extreme temperatures: a study of cause-specific and age-stratified mortality. *Occup Environ Med* 2011; **68**(7): 531-6.

44. Turner RM, Hayen A, Dunsmuir WT, Finch CF. Air temperature and the incidence of fall-related hip fracture hospitalisations in older people. *Osteoporos Int* 2011; **22**(4): 1183-9.

45. Wu PC, Lin CY, Lung SC, Guo HR, Chou CH, Su HJ. Cardiovascular mortality during heat and cold events: determinants of regional vulnerability in Taiwan. *Occup Environ Med* 2011; **68**(7): 525-30.

46. Barnett AG, Tong S, Clements AC. What measure of temperature is the best predictor of mortality? *Environ Res* 2010; **110**(6): 604-11.

47. Bayentin L, El Adlouni S, Ouarda TB, Gosselin P, Doyon B, Chebana F. Spatial variability of climate effects on ischemic heart disease hospitalization rates for the period 1989-2006 in Quebec, Canada. *Int J Health Geogr* 2010; **9**: 5.

48. Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, Smeeth L. Short term effects of temperature on risk of myocardial infarction in England and Wales: time series regression analysis of the Myocardial Ischaemia National Audit Project (MINAP) registry. *Bmj* 2010; **341**: c3823.

49. Chen VY, Wu PC, Yang TC, Su HJ. Examining non-stationary effects of social determinants on cardiovascular mortality after cold surges in Taiwan. *Sci Total Environ* 2010; **408**(9): 2042-9.

50. Gomez-Acebo I, Dierssen-Sotos T, Llorca J. Effect of cold temperatures on mortality in Cantabria (Northern Spain): a case-crossover study. *Public Health* 2010; **124**(7): 398-403.

51. Harris J, Hall J, Meltzer H, Jenkins R, Oreszczyn T, McManus S. Health, mental health and housing conditions in England London: National Centre for Social Research / EAGA Charitable Trust, 2010.

52. Iniguez C, Ballester F, Ferrandiz J, et al. Relation between temperature and mortality in thirteen Spanish cities. *Int J Environ Res Public Health* 2010; **7**(8): 3196-210.

53. Montero JC, Miron IJ, Criado-Alvarez JJ, Linares C, Diaz J. Mortality from cold waves in Castile--La Mancha, Spain. *Sci Total Environ* 2010; **408**(23): 5768-74.

54. Rau R, Gampe J, Eilers PH, Marx BD. Socioeconomic differences in seasonal mortality in the United States. Extended abstract. Population Association of America, 2011. Washington DC 31 March - 2 April 2011: Princeton University; 2010.

55. Abrignani MG, Corrao S, Biondo GB, et al. Influence of climatic variables on acute myocardial infarction hospital admissions. *Int J Cardiol* 2009; **137**(2): 123-9.

56. Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. *Epidemiology* 2009; **20**(2): 205-13.

57. Bryden C, Bird W, Titley HA, Halpin DM, Levy ML. Stratification of COPD patients by previous admission for targeting of preventative care. *Respir Med* 2009; **103**(4): 558-65.

58. Croxford B. The effect of cold homes on health: evidence from the LARES study. In: Ormandy D, ed. Housig and health in Europe: the WHO LARES project. Oxford: Routledge; 2009: 142-54.

59. Ekamper P, van Poppel F, van Duin C, Garssen J. 150 Years of temperature-related excess mortality in the Netherlands. *Demogr Res* 2009; **21**: 385-425.

60. Fearn V, Carter J. Excess winter mortality in England and Wales, 2008/09 (provisional) and 2007/08 (final). *Health stat* 2009; (44): 69-79.

61. Kysely J, Pokorna L, Kyncl J, Kriz B. Excess cardiovascular mortality associated with cold spells in the Czech Republic. *BMC Public Health* 2009; **9**: 19.

62. Makinen TM, Juvonen R, Jokelainen J, et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. *Respir Med* 2009; **103**(3): 456-62.

63. Tenias JM, Estarlich M, Fuentes-Leonarte V, Iniguez C, Ballester F. Short-term relationship between meteorological variables and hip fractures: An analysis carried out in a health area of the Autonomous Region of Valencia, Spain (1996-2005). *Bone* 2009; **45**(4): 794-8.

64. Yang TC, Wu PC, Chen VY, Su HJ. Cold surge: a sudden and spatially varying threat to health? *Sci Total Environ* 2009; **407**(10): 3421-4.

65. Analitis A, Katsouyanni K, Biggeri A, et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. *Am J Epidemiol* 2008; **168**(12): 1397-408.

66. Barnes M, Butt S, Tomaszewski W. The dynamics of bad housing: the impact of bad housing on the living standards of children. London: National Centre for Social Research, EAGA partnership, Shelter; 2008.

67. Brock A. Excess winter mortality in England and Wales, 2007/08 (provisional) and 2006/07 (final). *Health stat* 2008; (40): 66-76.

68. Jimenez-Conde J, Ois A, Gomis M, et al. Weather as a trigger of stroke. Daily meteorological factors and incidence of stroke subtypes. *Cerebrovasc Dis* 2008; **26**(4): 348-54.

69. Jordan RE, Hawker JI, Ayres JG, et al. Effect of social factors on winter hospital admission for respiratory disease: a case-control study of older people in the UK. *Br J Gen Pract* 2008; **58**(551): 400-2.

70. Osman LM, Ayres JG, Garden C, Reglitz K, Lyon J, Douglas JG. Home warmth and health status of COPD patients. *Eur J Public Health* 2008; **18**(4): 399-405.

71. Rocklov J, Forsberg B. The effect of temperature on mortality in Stockholm 1998--2003: a study of lag structures and heatwave effects. *Scand J Public Health* 2008; **36**(5): 516-23.

72. Bischoff-Ferrari HA, Orav JE, Barrett JA, Baron JA. Effect of seasonality and weather on fracture risk in individuals 65 years and older. *Osteoporos Int* 2007; **18**(9): 1225-33.

73. Davie GS, Baker MG, Hales S, Carlin JB. Trends and determinants of excess winter mortality in New Zealand: 1980 to 2000. *BMC Public Health* 2007; **7**: 263.

74. Hajat S, Kovats RS, Lachowycz K. Heat-related and cold-related deaths in England and Wales: who is at risk? *Occup Environ Med* 2007; **64**(2): 93-100.

75. Medina-Ramon M, Schwartz J. Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. *Occup Environ Med* 2007; **64**(12): 827-33.

76. Morris C. Fuel poverty, climate and mortality in Northern Ireland 1980-2006 (NISRA Occasional Paper 25): Statistics and Research Branch, Department for Social Development, Ormeau Road, Belfast BT7 2JA; 2007.

77. Myint PK, Vowler SL, Woodhouse PR, Redmayne O, Fulcher RA. Winter excess in hospital admissions, in-patient mortality and length of acute hospital stay in stroke: a hospital database study over six seasonal years in Norfolk, UK. *Neuroepidemiology* 2007; **28**(2): 79-85.

78. Carson C, Hajat S, Armstrong B, Wilkinson P. Declining vulnerability to temperature-related mortality in London over the 20th century. *Am J Epidemiol* 2006; **164**(1): 77-84.

79. Diaz J, Linares C, Tobias A. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group. *Int J Biometeorol* 2006; **50**(6): 342-8.

80. Frank DA, Neault NB, Skalicky A, et al. Heat or eat: the Low Income Home Energy Assistance Program and nutritional and health risks among children less than 3 years of age. *Pediatrics* 2006; **118**(5): e1293-302.

81. Gerber Y, Jacobsen SJ, Killian JM, Weston SA, Roger VL. Seasonality and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted County, Minnesota, 1979 to 2002. *J Am Coll Cardiol* 2006; **48**(2): 287-92.

82. Medina-Ramon M, Zanobetti A, Cavanagh DP, Schwartz J. Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. *Environ Health Perspect* 2006; **114**(9): 1331-6.

83. Misailidou M, Pitsavos C, Panagiotakos DB, Chrysohoou C, Stefanadis C. Short-term effects of atmospheric temperature and humidity on morbidity from acute coronary syndromes in free of air pollution rural Greece. *Eur J Cardiovasc Prev Rehabil* 2006; **13**(5): 846-8.

84. Morabito M, Crisci A, Grifoni D, et al. Winter air-mass-based synoptic climatological approach and hospital admissions for myocardial infarction in Florence, Italy. *Environ Res* 2006; **102**(1): 52-60.

85. Reinikainen M, Uusaro A, Ruokonen E, Niskanen M. Excess mortality in winter in Finnish intensive care. *Acta Anaesthesiol Scand* 2006; **50**(6): 706-11.

86. Southern DA, Knudtson ML, Ghali WA, Investigators A. Myocardial infarction on snow days: incidence, procedure, use and outcomes. *Can J Cardiol* 2006; **22**(1): 59-61.

87. Wang H, Matsumura M, Kakehashi M, Eboshida A. Effects of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Hiroshima City, Japan. *Hiroshima J Med Sci* 2006; **55**(2): 45-51.

88. Barnett AG, Dobson AJ, McElduff P, et al. Cold periods and coronary events: an analysis of populations worldwide. *J Epidemiol Community Health* 2005; **59**(7): 551-7.

89. Basu R, Dominici F, Samet JM. Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods. *Epidemiology* 2005; **16**(1): 58-66.

90. Cagle A, Hubbard R. Cold-related cardiac mortality in King County, Washington, USA 1980-2001. *Ann Hum Biol* 2005; **32**(4): 525-37.

91. Carder M, McNamee R, Beverland I, et al. The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland. *Occup Environ Med* 2005; **62**(10): 702-10.

92. Diaz J, Garcia R, Lopez C, Linares C, Tobias A, Prieto L. Mortality impact of extreme winter temperatures. *Int J Biometeorol* 2005; **49**(3): 179-83.

93. Heyman B, Harrington BE, Merleau-Ponty N, Stockton H, Ritchie N, Allan TF. Keeping Warm and Staying Well: Does Home Energy Efficiency Mediate the Relationship between Socio-economic Status and the Risk of Poorer Health? *Housing Studies* 2005; **20**(4): 649-64.

94. Howieson SG, Hogan M. Multiple deprivation and excess winter deaths in Scotland. *J R Soc Promot Health* 2005; **125**(1): 18-22.

95. Mirchandani S, Aharonoff GB, Hiebert R, Capla EL, Zuckerman JD, Koval KJ. The effects of weather and seasonality on hip fracture incidence in older adults. *Orthopedics* 2005; **28**(2): 149-55.

96. Morabito M, Modesti PA, Cecchi L, et al. Relationships between weather and myocardial infarction: a biometeorological approach. *Int J Cardiol* 2005; **105**(3): 288-93.

97. Rudge J, Gilchrist R. Excess winter morbidity among older people at risk of cold homes: a population-based study in a London borough. *J Public Health (Oxf)* 2005; **27**(4): 353-8.

98. Schwartz J. Who is sensitive to extremes of temperature?: A case-only analysis. *Epidemiology* 2005; **16**(1): 67-72.

99. Aronow WS, Ahn C. Elderly nursing home patients with congestive heart failure after myocardial infarction living in new york city have a higher prevalence of mortality in cold weather and warm weather months. *J Gerontol A Biol Sci Med Sci* 2004; **59**(2): 146-7.

100. Goodman PG, Dockery DW, Clancy L. Cause-specific mortality and the extended effects of particulate pollution and temperature exposure. *Environ Health Perspect* 2004.

101. Hajat S, Bird W, Haines A. Cold weather and GP consultations for respiratory conditions by elderly people in 16 locations in the UK. *Eur J Epidemiol* 2004; **19**(10): 959-68.

102. Maheswaran R, Chan D, Fryers PT, McManus C, McCabe H. Socio-economic deprivation and excess winter mortality and emergency hospital admissions in the South Yorkshire Coalfields Health Action Zone, UK. *Public Health* 2004; **118**(3): 167-76.

103. Panagiotakos DB, Chrysohoou C, Pitsavos C, et al. Climatological variations in daily hospital admissions for acute coronary syndromes. *Int J Cardiol* 2004; **94**(2-3): 229-33.

104. Wilkinson P, Pattenden S, Armstrong B, et al. Vulnerability to winter mortality in elderly people in Britain: population based study. *Bmj* 2004; **329**(7467): 647.

105. Crawford JR, Parker MJ. Seasonal variation of proximal femoral fractures in the United Kingdom. *Injury* 2003; **34**(3): 223-5.

106. Donaldson GC, Keatinge WR. Cold related mortality in England and Wales; influence of social class in working and retired age groups. *J Epidemiol Community Health* 2003; **57**(10): 790-1.

107. Healy JD. Excess winter mortality in Europe: a cross country analysis identifying key risk factors. *J Epidemiol Community Health* 2003; **57**(10): 784-9.

108. Hong YC, Rha JH, Lee JT, Ha EH, Kwon HJ, Kim H. Ischemic stroke associated with decrease in temperature. *Epidemiology* 2003; **14**(4): 473-8.

109. Johnson H, Griffiths C. Estimating excess winter mortality in England Wales. *Health stat* 2003; **20**: 19-24.

110. O'Neill MS, Zanobetti A, Schwartz J. Modifiers of the temperature and mortality association in seven US cities. *Am J Epidemiol* 2003; **157**(12): 1074-82.

111. Sullivan S, Somerville M, Hyland M, Barton A, on behalf of the Torbay Healthy Housing Group. The Riviera Housing and Health Survey. Kendall: EAGA Charitable Trust, 2003.

112. Braga ALF, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 US cities. *Environ Health Perspect* 2002; **110**(9): 859-63.

113. Chesser TJ, Howlett I, Ward AJ, Pounsford JC. The influence of outside temperature and season on the incidence of hip fractures in patients over the age of 65. *Age Ageing* 2002; **31**(5): 343-8.

114. Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA. Temperature and mortality in 11 cities of the eastern United States. *Am J Epidemiol* 2002; **155**(1): 80-7.

115. Lawlor DA, Maxwell R, Wheeler BW. Rurality, deprivation, and excess winter mortality: an ecological study. *J Epidemiol Community Health* 2002; **56**(5): 373-4.

116. Mitchell R, Blane D, Bartley M. Elevated risk of high blood pressure: climate and the inverse housing law. *Int J Epidemiol* 2002; **31**(4): 831-8.

117. Stewart S, McIntyre K, Capewell S, McMurray JJ. Heart failure in a cold climate. Seasonal variation in heart failure-related morbidity and mortality. *J Am Coll Cardiol* 2002; **39**(5): 760-6.

118. Aylin P, Morris S, Wakefield J, Grossinho A, Jarup L, Elliott P. Temperature, housing, deprivation and their relationship to excess winter mortality in Great Britain, 1986-1996. *Int J Epidemiol* 2001; **30**(5): 1100-8.

119. Donaldson GC, Rintamaki H, Nayha S. Outdoor clothing: its relationship to geography, climate, behaviour and cold-related mortality in Europe. *Int J Biometeorol* 2001; **45**(1): 45-51.

120. Huynen MM, Martens P, Schram D, Weijenberg MP, Kunst AE. The impact of heat waves and cold spells on mortality rates in the Dutch population. *Environ Health Perspect* 2001; **109**(5): 463-70.

121. Nafstad P, Skrondal A, Bjertness E. Mortality and temperature in Oslo, Norway, 1990-1995. *Eur J Epidemiol* 2001; **17**(7): 621-7.

122. van Rossum CT, Shipley MJ, Hemingway H, Grobbee DE, Mackenbach JP, Marmot MG. Seasonal variation in cause-specific mortality: are there high-risk groups? 25-year follow-up of civil servants from the first Whitehall study. *Int J Epidemiol* 2001; **30**(5): 1109-16.

123. Watkins SJ, Byrne D, McDevitt M. Winter excess morbidity: is it a summer phenomenon? *J Public Health Med* 2001; **23**(3): 237-41.

124. Wilkinson P, Landon M, Armstrong B, et al. Cold comfort: the social and environmental determinants of excess winter deaths in England, 1986-96. Bristol: Policy Press; 2001.

125. Bulajic-Kopjar M. Seasonal variations in incidence of fractures among elderly people. *Inj Prev* 2000; **6**(1): 16-9.

126. Clinch JP, Healy JD. Housing standards and excess winter mortality. *J Epidemiol Community Health* 2000; **54**(9): 719-20.

127. Gemmell I, McLoone P, Boddy FA, Dickinson GJ, Watt GC. Seasonal variation in mortality in Scotland. *Int J Epidemiol* 2000; **29**(2): 274-9.

128. Keatinge WR, Donaldson GC, Bucher K, et al. Winter mortality in relation to climate. *Int J Circumpolar Health* 2000; **59**(3-4): 154-9.

129. Lawlor DA, Harvey D, Dews HG. Investigation of the association between excess winter mortality and socio-economic deprivation. *J Public Health Med* 2000; **22**(2): 176-81.

130. Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. *Eur Respir J* 1999; **13**(4): 844-9.

131. Gorjanc ML, Flanders WD, VanDerslice J, Hersh J, Malilay J. Effects of temperature and snowfall on mortality in Pennsylvania. *Am J Epidemiol* 1999; **149**(12): 1152-60.

132. Jacobsen SJ, Sargent DJ, Atkinson EJ, O'Fallon WM, Melton LJ, 3rd. Contribution of weather to the seasonality of distal forearm fractures: a population-based study in Rochester, Minnesota. *Osteoporos Int* 1999; **9**(3): 254-9.

133. Shah S, Peacock J. Deprivation and excess winter mortality. *J Epidemiol Community Health* 1999; **53**(8): 499-502.

134. Sheth T, Nair C, Muller J, Yusuf S. Increased winter mortality from acute myocardial infarction and stroke: the effect of age. *J Am Coll Cardiol* 1999; **33**(7): 1916-9.

135. Levy AR, Bensimon DR, Mayo NE, Leighton HG. Inclement weather and the risk of hip fracture. *Epidemiology* 1998; **9**(2): 172-7.

136. Ballester F, Corella D, Perez-Hoyos S, Saez M, Hervas A. Mortality as a function of temperature. A study in Valencia, Spain, 1991-1993. *Int J Epidemiol* 1997; **26**(3): 551-61.

137. Bjornstig U, Bjornstig J, Dahlgren A. Slipping on ice and snow--elderly women and young men are typical victims. *Accid Anal Prev* 1997; **29**(2): 211-5.

138. Christophersen O. Mortality during the 1996/7 winter. *Popul Trends* 1997; (90): 11-7.

139. Donaldson GC, Keatinge WR. Early increases in ischaemic heart disease mortality dissociated from and later changes associated with respiratory mortality after cold weather in south east England. *J Epidemiol Community Health* 1997; **51**(6): 643-8.

140. Donaldson GC, Keatinge WR. Mortality related to cold weather in elderly people in southeast England, 1979-94. *Bmj* 1997; **315**(7115): 1055-6.

141. Seretakis D, Lagiou P, Lipworth L, Signorello LB, Rothman KJ, Trichopoulos D. Changing seasonality of mortality from coronary heart disease. *Jama* 1997; **278**(12): 1012-4.

142. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. *Lancet* 1997; **349**(9062): 1341-6.

143. Jacobsen SJ, Sargent DJ, Atkinson EJ, O'Fallon WM, Melton LJ, 3rd. Population-based study of the contribution of weather to hip fracture seasonality. *Am J Epidemiol* 1995; **141**(1): 79-83.

144. Laake K, Sverre JM. Winter excess mortality: a comparison between Norway and England plus Wales. *Age Ageing* 1996; **25**(5): 343-8.

145. Langford IH, Bentham G. The potential effects of climate change on winter mortality in England and Wales. *Int J Biometeorol* 1995; **38**(3): 141-7.

146. Lau EM, Gillespie BG, Valenti L, O'Connell D. The seasonality of hip fracture and its relationship with weather conditions in New South Wales. *Aust J Public Health* 1995; **19**(1): 76-80.

147. Parker MJ, Martin S. Falls, hip fractures and the weather. *Eur J Epidemiol* 1994; **10**(4): 441-2.

148. Kunst AE, Looman CW, Mackenbach JP. Outdoor air temperature and mortality in The Netherlands: a time-series analysis. *Am J Epidemiol* 1993; **137**(3): 331-41.

149. Macey SM, Schneider DF. Deaths from excessive heat and excessive cold among the elderly. *Gerontologist* 1993; **33**(4): 497-500.

Appendix 4: Excluded studies

The following nine studies were excluded after review of the *full* paper – in each case because they were judged not to have direct evidence on the issue of vulnerability/effect modification in relation to cold related risks.

1. Saez M, Sunyer J, Tobias A, Ballester F, Anto JM. Ischaemic heart disease mortality and weather temperature in Barcelona, Spain. Eur J Public Health. 2000; 10(1): 58-63.

2. Ghebre MA, Wannamethee SG, Rumley A, Whincup PH, Lowe GD, Morris RW. Prospective study of seasonal patterns in hemostatic factors in older men and their relation to excess winter coronary heart disease deaths. J Thromb Haemost. 2012; 10(3): 352-8.

3. Cheng CS, Campbell M, Li Q, Li GL, Auld H, Day N, et al. Differential and combined impacts of extreme temperatures and air pollution on human mortality in south-central Canada. Part I: historical analysis. Air Qual Atmos Health. 2008; 1(4): 209-22.

4. Hong YC, Kim H, Oh SY, Lim YH, Kim SY, Yoon HJ, et al. Association of cold ambient temperature and cardiovascular markers. Sci Total Environ. 2012; 435-436: 74-9.

5. Brown G, Fearn V, Wells C. Exploratory analysis of seasonal mortality in England and Wales, 1998 to 2007. Health stat. 2010; (48): 58-80.

6. Pattenden S, Nikiforov B, Armstrong BG. Mortality and temperature in Sofia and London. J Epidemiol Community Health. 2003; 57(8): 628-33.

7. Laaidi M, Laaidi K, Besancenot JP. Temperature-related mortality in France, a comparison between regions with different climates from the perspective of global warming. Int J Biometeorol. 2006; 51(2): 145-53.

8. Goldberg MS, Gasparrini A, Armstrong B, Valois MF. The short-term influence of temperature on daily mortality in the temperate climate of Montreal, Canada. Environ Res. 2011; 111(6): 853-60.

9. Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet. 1994; 343(8895): 435-9.

Appendix 5: Evidence tables

Ref no.	Study & citation	Aim of study	Study design		lidity core	Population and setting	Classifying exposure	Outcomes	Methods of analysis	Results	Notes
				Int	Ext		CAPOSUIC		anarysis		
2013											
	Atsumi A, Ueda K, Irie F, Sairenchi T, Iimura K, Watanabe H, et al. Relationship between cold temperature and cardiovascular mortality, with assessment of effect modification by individual characteristics: Ibaraki Prefectural Health Study. Circ J. 2013; 77(7): 1854- 61. ¹¹	To determine susceptibility to cold temperature- related cardiovascular mortality.	Case cross- over	++	+	3,593 subjects from the Ibaraki Prefectural Health Study who died of cardiovascular disease (mean follow-up 9.7+/-4.0 years)	Daily values of meteorologic al variables (from the Japan Meteorologic al Agency)	Mortality and by subgroup: cardiovascular, stroke	Time-stratified case cross-over(year- month-d.o.w. strata)., adj for RH. "V" model a priori apex at 27C (=85%ile). Lags 0,,10 "separately". Effect modification examined by age (<80,>=80), obesity, smoking, alcohol, hypertension, hyperglycaemia.	Adjusted ORs per 1C decrease in daily maximum temperature over the day of death and the 2 days prior to this day were: Cardiovascular 1.018 (1.003-1.034) Stroke 1.025 (1.003-1.048) (Not cardiac disease) Sub-groups with significantly higher risk: age <80 CVD 1.034 (1.012-1.056) hyperglycemia 1.076 (1.023-1.131) stroke Other subgroup differences were not significant. Authors' conclusion: younger age and hyperglycemia enhance susceptibility to cold temperature-related cardiovascular death	
12	Callaly E, Mikulich O, Silke B. Increased winter mortality: The effect of season, temperature and deprivation in the acutely ill medical patient. Eur. 2013; 24(6): 546-	To examine variations in seasonal morality among all emergency medical admissions to St James' Hospital, Dublin, exploring the	Observational study	+	+	All emergency medical admissions to St James' Hospital, Dublin, 2002- 2011	Seasonal classification	Emergency medical admission; 30-day mortality	Comparison of admission rates, patient characteristics, and 30-day hospital mortality	 30-day in-hospital mortality was lowest in autumn (7.5%) and highest in winter (9.6%). Winter admission had 17% (p=0.009) increased unadjusted risk of a death by day 30 (OR 1.17: 95% CI 1.07, 1.28). A clinical classification system identified that chronic obstructive disease, pneumonia, epilepsy/seizures and congestive heart 	Limitations relate to linear regres with temperature function. Temperature exposures and char temperature locally and air quali not accounted for. Excess winter period chosen by arbitrary winter period. 30 day ir hospital deaths is somewhat arb

	······································										
	51. ¹²	effects of								failure had more presentations in the	
		ambient								winter.	Generalisable to hospital admissi
		temperature,									England.
		deprivation								Multivariate analysis found that winter was	
		markers, case-								not an independent predictor (OR 1.08: 95%	
		mix, co-								CI 0.97, 1.19). Predictors including illness	
		morbidity and								severity and the Charlson Index accounted	
		illness severity.								for the increased risk of winter admission.	
										The minimum daily temperature	
										independently predicted outcome; there	
										was a 20% increased in-hospital death rate	
										when it was colder (OR 1.20: 95% Cl 1.09,	
										1.33; p<0.001). Deprivation was a univariate	
										and multivariate (OR 1.22 95%CI 1.07, 1.39;	
										p=0.002) predictor of mortality, but did not show marked seasonal variation.	
										Authors' conclusion: Patients admitted in	
										the winter have an approximate 17%	
										increased risk of an in-hospital death by	
										30days; this is related to cold along with	
										increased illness severity and co-morbidity	
										burden. The disease profile is different with	
										winter admissions.	
13	de'Donato FK,	To estimate	Analysis of	++	+	Italy: data	Days of the	Mortality	Excess mortality	An overall 1578 (+25%) excess deaths	
	Leone M, Noce	the impact of	data from the			from a	cold spell:		was calculated as	among the 75+ age group was	
	D, Davoli M,	the February	rapid			national daily	defined as	For Rome, a	the difference	recorded in the 14 cities that registered	
	Michelozzi P.	2012 cold	surveillance			mortality	days when	cause-specific	between observed	a cold spell in February 2012. A	
	The impact of	spell in Italy	systems.			surveillance	mean	analysis using the	and expected daily	statistically significant excess in	
	the February	(characterized				system,	temperatures	Regional	values.	mortality was observed in several cities	
	2012 cold spell	by extremely				operational	were below	Mortality Registry		ranging from +22% in Bologna to +58%	
	on health in	low				since 2004 in	the 10(th)	and the		in Torino.	
	Italy using	temperatures				34 cities.	percentile of	emergency visits			
	surveillance	and heavy				5+ 0105.	the February	(ER) surveillance		Cause-specific analyses for Rome	
	data. PLoS ONE.	snowfall) on					distribution	system		showed a statistically significant excess	
	2013; 8(4):	health in					for more than			in mortality among the 75+ age group	
	e61720.	Italian cities					three days.			for:	
										respiratory disease (+64%)	
										COPD (+57%)	
										cardiovascular disease (+20%)	
										ischemic heart disease (14%)	
										other heart disease (+33%).	
										other heart uisease (+33%).	

14	de Vries R, Blane D. Fuel poverty and the	To investigate the association	Semi- ecological cohort study	+	+	Analysis of data from the 2008/09 wave	Individuals were classified for	Individual data on: - respiratory	Multilevel regression models were used to test (i)	Similar results were observed for ER visits. Individual risk of fuel poverty varied across counties. However, this variation was not explained by
	poverty and the health of older people: the role of local climate. J Public Health (Oxf). 2013; 35(3): 361-6. ¹⁴	association between climate and fuel poverty as it relates to the health of older people.	cohort study			2008/09 wave of the English Longitudinal Study of Ageing, a panel study of people aged 50+. ELSA is a stratified random sample designed to be representativ e. Of 8643 participants, 1483 excluded for missing data, leaving N=7160. Final sample seems representativ e.	classified for climate using UK Met Office data for 89 English counties and unitary authorities. Climate measure based on minimum winter temperature and mean monthly rainfall. Fuel poverty was defined as individuals with total fuel expenditures in excess of 10% of household income. Included measures of age, gender,	- respiratory health (peak expiratory flow) - hypertension (blood pressure) - depressive symptoms (questionnaire) - self-rated health	were used to test (i) the association between local climate and fuel poverty risk, and (ii) the association between local climate and the effect of fuel poverty on health (adjusted for age, gender, height, smoking status and household income).	variation was not explained by differences in climate. Fuel poverty was significantly related to worse health for respiratory health, β = -9.22 (-16.83,-1.61) and depressive symptoms, OR = 1.37 (1.17,1.61), but not hypertension or self-rated health. No significant effect of climate on the association of fuel poverty with these outcomes. Authors' conclusion: although there is regional variation in England in both the risk of fuel poverty and its effects on health, this variation is not explained by differences in rainfall and winter temperatures.
							height, smoking status and net weekly			

							household income.			
15	Gomez-Acebo I, Llorca J, Dierssen T. Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: a case- crossover study. Public Health. 2013; 127(3): 252-8. ¹⁵	To investigate the relationship between low winter temperatures and mortality due to cancer, cardiovascular (CVD) and respiratory diseases	Case- crossover study	++	+	Deaths (n=3948) from one of the three causes in the population of Cantabria (northern Spain), 2004- 2005. Only included municipalities with at least 10,000 inhabitants (68% of the regional population). Data from National Institute of Statistics.	Minimum temperature (linkage to local monitoring station)	Cause-specific mortality: Cardiovascular Respiratory Cancer	Conditional logistic regression, stratified by age, sex, and delay of exposure to low temperatures. Three lags explored (0, 0-3, 0-6).	There was an inverse dose-response relationship between temperature and mortality in the three causes of death studied; this result was consistent across genders and age groups. For all observations, CVD had the highest odds ratio at lag 0-6 and cancer at lag 0. Effects on respiratory disease were relatively similar at all lags but also highest at lag 0. Odds ratios by subgroup (Minimum temperature $<5^{th}$ percentile versus > 5^{th} percentile. Authors reported associations at all three lags, but the below reports only the lag with the greatest effect and/or most complete sub-group analysis): <i>Cardiovascular, lag 0-6:</i> Age 15-64: 12.67 (2.6,61.62) Age 65-74: 7.43 (2.45-22.59) Age 275: 3.8 (2.83,5.09) Male: 3.9 (2.51,6.06) Female: 4.75 (3.25,6.92) <i>Respiratory, lag 0-3:</i> Age 15-64: Not reported Age 65-74:14.34 (1.57,130.89) Age 2 75: 2.84 (1.74,4.62) Male: 4.11 (2.13,7.91) Female: 5.15 (2.21,12.02) <i>Cancer, lag 0:</i> Age 15-64: 2 (0.18,22.06) Age 65-74: 1.5 (0.25,8.98) Age 2 75: 1.7.9 (2.38,134.81)

		- 1	-			1		1	1		
										Male: 3.9 (1.06,14.39)	
										Female: 6.38 (1.42,28.63)	
										Authors note: "There is a striking	
										association between the extreme cold	
										temperatures and mortality from	
										cancer, not previously reported, which	
										is more remarkable in the elderly.	
										These results could be explained by a	
										harvesting effect in which the cold acts	
										as a trigger of death in terminally ill	
										patients at high risk of dying a few days	
										or weeks later."	
10	⁵ Hajat S, Chalabi	To assess the	Time-series	++	++	Mortality data	Weather data	All-cause and	Regionally-stratified	Evidence of increase in mortality and	
	P, Wilkinson P,	implementati	and other			for England by	(temperature)	cause-specific	time-series	(less marked) hospital admissions with	
	Erens B, Jones L					region, 1996-	from region-	mortality, hospital	analyses.	low outdoor temperatures in all	
	Mays N.	Weather Plan	routine			2006 [to be	specific	admissions, A&E	Subgroups by age,	regions. Thresholds (for cold effect on	
	Evaluation Of	(CWP) in	population			updated to	meteorologic	visits due to falls	cause.	mortality) vary by region, but are at	
	The	2012/13, in	health data			2011].	al monitoring			around 6 deg Celsius.	
	Implementation	parallel with				Emergency	stations		Confounding		
	And Health-	analysis of				hospital			<u>control</u> : (time	All large cause-of-death categories	
	Related Impacts					admissions			series) seasonality,	affected, especially cardiovascular	
	Of The National					data for 1997-			day of week,	disease (largest attributable burden)	
	Cold Weather	relationships				2011, and			[influenza – when	and respiratory death (greatest relative	
	Plan For	and trends				A&E visits			updated]	risk for a 1 deg Celsius decrease in	
	England	over time.				data for 2007-				temperature below the cold threshold).	
	London:					2011.					
	Department of									Rise in risk with age.	
	Health; 2013. ¹⁶										
										Increased A&E visits from falls occur	
										with snow and ice at all ages, but	
										greatest relative increase in the	
										working age population – not the	
										elderly who show only a small increase	
										in risk during periods of lying snow, nor	
										the young, whose greatest risk of	
										fracture occurs in the summer months.	
										The large majority of cold-deaths occur	
										on days that are NOT at the extreme of	
											-

										the temperature distribution and	
										therefore not on days when alerts are	
										issued by the CWP.	
17	McAllister DA,	To investigate	Observational	+	++	All COPD	Season.	Hospital	Calculation of rates	Absolute differences in admission rates	
	Morling JR,	whether the	study			admissions		admission for	and (absolute) rate	between winter and summer increased	Author noted limitations
	Fischbacher	relationship	,			(ICD10 codes	Temperature	COPD	differences and the	with greater deprivation.	
	CM, Macnee W,	between				J40-J44 and	(meteorologic		proportion of risk	0 1	This work is limited by the use of
	Wild SH.	season/tempe				J47) 2001-	al data)		during winter	In the most deprived quintile, in	average temperatures across
	Socioeconomic	rature and				2010 for all	,		attributable to main	winter:	the country and therefore does r
	deprivation	admission to				Scottish	Time-		effects and		account of significant
	increases the	hospital with				residents by	invariant		interactions.	19.4% (95% CI 17.3% to 21.4%) of	regional variation or the effects of maximum/minimum
	effect of winter	chronic				month of	classifier			admissions were attributable to	temperatures.
	on admissions	obstructive				admission	(effect		Monthly rates of	season/deprivation interaction,	
	to hospital with	pulmonary					modifier):		admission by		
	COPD:	disease					2009 Scottish		average daily	61.2% (95% CI 59.5% to 63.0%) to	
	retrospective	(COPD) differs					Index of		minimum	deprivation alone, and	
	analysis of 10	with					Multiple		temperatures were		
	years of	deprivation.					Deprivation		plotted for each	5.2% (95% CI 4.3% to 6.0%) to winter	
	national						(SIMD)		quintile of SIMD.	alone.	
	hospitalisation						quintile				
	data. Prim.									Lower average daily minimum	
	2013; 22(3): 296-9. ¹⁷									temperatures over a month were	
	290-9.									associated with higher admission rates, with stronger associations evident in	
										the more deprived quintiles.	
										the more deprived quintiles.	
										Authors' conclusions: winter and	
										socioeconomic deprivation-related	
										factors appear to act synergistically,	
										increasing the rate of COPD admissions	
										to hospital more among deprived	
										people than among affluent people in	
										winter than in the summer months.	
										Similar associations were observed for	
										admission rates and temperatures.	
										Interventions effective at reducing	
										winter admissions for COPD may have	
1										potential for greater benefit if	
10				ļ						delivered to more deprived groups	
18	McGuinn L,	To investigate	Case-	++	+	Patients with	Daily outdoor	ICD activation	Fixed stratum case-	For every 1 degrees C decrease in	

			•			-		-			
	Hajat S,	the degree to	crossover			implanted	temperature		crossover analysis.	ambient temperature, risk of	
	Wilkinson P,	which	study			cardiac	based on	Modifiers: age,		ventricular arrhythmias up to 7 days	
	Armstrong B,	weather				defibrillators	linkage of	sex, drug use,	Distributed lag	later increased by 1.2% (-0.6, 2.9%).	
	Anderson HR,	influences the				(ICDs) London	individual to	diagnosis, severity	model 0-7 days.		
	Monk V, et al.	occurrence of				and the South	data from			Patients over the age of 65 exhibited	
	Ambient	serious				of England,	nearest		Spline and linear	the higher risk	
	temperature	cardiac				1993-2005	meteorologic		threshold	>= 65 years 3.1% (0.6-5.5)	
	and activation	arrhythmias					al monitoring			< 65years -1.5% (-3.6-1.5).	
	of implantable	,					stations based			p(interaction)=0.02	
	cardioverter						on postcode				
	defibrillators.						of residence			Other modifiers were not significant,	
	Int J									but power was limited.	
	Biometeorol.									but power was inniced.	
	2013; 57(5):									Authors note: "This provides evidence	
	655-62. ¹⁸									about a mechanism for some cases of	
										low-temperature cardiac death, and	
										suggests a possible strategy for	
										reducing risk among selected cardiac	
										patients by encouraging behaviour	
										modification to minimise cold	
										exposure."	
19	Madrigano J,	To examine	Case-	++	+	The	Daily mean	Acute MI	Conditional logistic	A decrease in an interquartile range in	
	Mittleman MA,	the	crossover			Worcester	apparent	occurrence	regression models	apparent temperature during cold	
	Baccarelli A,	association				Heart Attack	temperature		where the	months was associated with an	
	Goldberg R,	between				Study, a	(derived from	All-cause in-	individual was the	increased risk of acute MI on the same	
	Melly S, von	temperature				community-	the Worcester	hospital and post-	conditioning factor.	day (hazard ratio = 1.15 (1.01, 1.31).	
	Klot S, et al.	and				wide	airport	discharge	_		
	Temperature,	occurrence of				investigation	meteorologic	mortality.	Control days were	Extreme cold (<5 th percentile) during	
	myocardial	acute				of acute MI in	al station)		in the same month	the 2 days prior was associated with an	
	infarction, and	myocardial				residents of			and year.	increased risk of acute MI: HR 1.36	
	mortality: effect	infarction				the Worcester	<u>Effect</u>			(1.07, 1.74).	
	modification by	(MI), as well				metropolitan	modifiers		First examined		
	individual- and	as subsequent				area,	Socio-		acute MI and then	Found no association between	
	area-level	mortality.				Massachusett	demographic		examined	temperature and acute MI during	
	characteristics.					s, USA.	characteristics		subsequent	warm months in the population as a	
	Epidemiology.	Also to					, medical		mortality.	whole, although there were certain	
	2013; 24(3):	investigation		1		Medical	history,			susceptible groups (see below).	
								1	1		
	439-46. ¹⁹	potential				records were	smoking		Controlled for day		
						records were from 5 study	smoking status, clinical		Controlled for day of the week, air	There were no associations with	
		potential					-			There were no associations with temperature and subsequent mortality	

area-level	other year	, and physical	humidity.	in those who previously had an acute	
effect	from 1995-	environment.	-	MI, but extreme hot temperatures in	
modifiers.	2003) and		Ran separate	the 2-day and 4-day moving averages	
inouncis.	limited to	Also	models for warmer	preceding death were associated with	
	adults 25	controlled for	and colder months.		
			and colder months.	mortality. HRs were 1.44 (1.06, 1.96)	
	years and	ozone and		and 1.41 (1.00,1.98), respectively).	
	older.	fine			
		particulate		In terms of effect modification, the	
		matter.		below showed statistical significance in	
				tests for interaction.	
				Susceptibility to decreases in	
				temperature in cold months:	
				- Those with prior acute MI: 1.46	
				(1.14, 1.87) The second s	
				- Those without a lake/reservoir	
				within 400m: 1.20 (1.04-1.39)	
				· · · · ·	
				Susceptibility to MI from extreme heat	
				 At least 14% of families below 	
				the poverty line: 1.30 (0.90,2.14)	
				- Those in more urban areas: 1.48	
				(0.88-2.49)	
				-	
				Increased likelihood of dying from	
				higher temperatures in warm months	
				(in acute MI survivors)	
				- Younger (<65) patients: 1.32	
				(0.65-2.68)	
				- Patients with Q-wave acute MI:	
				1.61 (0.92-2.82)	
				 Those in areas with >14% of 	
				families below the poverty line:	
				1.22 (0.74,2.01)	
				Increased likelihood of dying from	
				extreme heat	
				 Previously diagnosed heart 	
				failure: 2.15 (1.41,3.26)	
				10101C. 2.13 (1.71,3.20)	
	1 1	1			

21	Romero-Ortuno R, Tempany M, Dennis L, O'Riordan D, Silke B. Deprivation in cold weather increases the risk of hospital admission with hypothermia in older people. Ir J Med Sci. 2013; 182(3): 513-8. ²¹	To investigate whether material deprivation in cold weather increases the risk of hypothermia and contributes to excess winter mortality in older Irish people.	Case-control study (comparison of characteristics of hypothermic patients with a random sample of 200 age and gender- matched non- hypothermic patients in the same setting).	+	+	Patient series from tertiary teaching hospital, St James's Hospital Dublin, Ireland (urban). Of all community- dwelling (without nursing home address) patients, those experiencing	Material deprivation as measured by the Irish National Deprivation Index (NDI). <u>Effect</u> <u>modifiers/</u> <u>confounders</u> Year, season, mean air temperature on day of admission, comorbidity,	Hypothermia (defined as a body temperature < 35 deg C).	Chi-squared or 2- sided Fisher's exact tests used to compare dichotomous variables. Mann-Whitney U test used to compare continuous variables. Binary logistic regression model used to identify predictors of	 Associations were not found in many other socio-demographic and city-level characteristics or with other aspects of the built environment. 80 patients presented with hypothermia. No statistically significant differences in major diagnostic categories between non-hypothermic and hypothermic groups. Hypothermic patients presented in colder days (mean 8.8 vs. 10.8 C, P<0.001) were less likely to present in summer (P<0.002) and more likely to present in winter (P=0.010). They were more likely to be admitted earlier in the series (P=0.025). Patients admitted with hypothermia were more likely to be admitted to HDU or ICU (P=0.040) 	Authors mention that they control for influenza in an and that coastal air temperat data may underestimate innet temperature extremes.
						admission between 1 January 2002 to 31 December 2010, >=65 years, and with a body temperature <35 deg C at time of admission	categories		gender, mean air temperature on the day of admission, year of admission, comorbidity, major diagnostic categories, and NDI.	was higher than non-hypothermic patients (50% vs. 17%, P<0.001). The significant predictors of hypothermia were year of admission (OR=0.83, 95%CI 0.72-0.94, P=0.005) and the interaction NDI* air temperature on the day of admission (OR=1.03, 95% CI 1.01-1.06, P=0.033). Authors' conclusion: the NDI could be an adequate tool to target fuel poverty in older people.	
						were selected.					
22	Tseng CM, Chen YT, Ou SM, Hsiao YH, Li SY,	To determine the effect of air	Case- crossover study	+	+	Taiwan: National Health	Meteorologic al variables from the	COPD exacerbation	Conditional logistic regression model, with subgroup	Odds ratios of exacerbation of chronic obstructive pulmonary disease in relation to meteorological variable	A number of remaining confounders related to exter exposures (air quality and url

Wang SJ, et al.	temperature		Insurance	Taiwan	analyses by			temperatures) along with sea
The effect of	and other		registry data	Central	stratifying on	OR 95% CI p Value	9	influenza occurrence are not
cold	meteorologic		(COPD	Weather	patient	For, sequentially:		adjusted for.
temperature on	al factors on		admission),	Bureau	characteristics,	3-day Average*		The findings are not generalized
increased	COPD		January 1999		including age, sex,	7-day Average**		to the UK population but rem
exacerbation of	exacerbation.		to December		vaccination and use	14-day Average+		interest.
chronic			2009		of inhaled medicine	28-day Average++		
obstructive								
pulmonary						Mean temperature		
disease: a						1.039 1.007-1.071	0.015	
nationwide						1.055 1.021-1.089	0.001	
study. PLoS						1.075 1.038-1.114	< 0.001	
One. 2013; 8 (3): e57066. ²²						1.099 1.058-1.141	< 0.001	
e57066. ²²						1.106 1.063-1.152	<0.001	
						Temperature variation		
						1.009 1.001-1.017	0.040	
						1.014 1.003-1.025	0.016	
						1.016 1.002-1.031	0.029	
						1.011 0.993-1.030	0.218	
						1.011 0.987-1.035	0.365	
						Relative humidity,%		
						0.996 0.994–0.999	0.003	
						0.996 0.993-0.999	0.004	
						0.995 0.991-0.998	0.005	
						0.998 0.993-1.002	0.346	
						1.001 0.996-1.007	0.662	
						Barometric pressure		
						1.005 1.000-1.009	0.036	
						1.005 1.001-1.010	0.030	
						1.008 1.003-1.014	0.003	
						1.011 1.005-1.017	< 0.001	
						1.014 1.007-1.020	< 0.001	
						Wind speed, m/s		
						1.007 0.989–1.026	0.429	
						1.007 0.983-1.031	0.574	
						1.021 0.989–1.054	0.194	
						1.025 0.985-1.067	0.221	
						1.029 0.979-1.082	0.255	
						Sunshine, hours/day		
						1.007 1.001-1.012	0.012	

	01–1.015 0.022
	00–1.018 0.041
	92–1.015 0.593
	72–1.003 0.110
	2 1.005 0.110
	f exacerbation of chronic
	ulmonary disease in
	eteorological variables.
	prological data of the
same day and	2 previous days.
**Mean meter	eorological data of the
	l 6 previous days.
	prological data of the
	1 13 previous days.
	eorological data of the
	27 previous days.
#Decrease per	r 5°C.
Odds ratios of	f exacerbation of chronic
obstructive pu	ulmonary disease with a
5°C decrease	in mean temperature#
	age, sex, vaccination and
inhaled medic	
OR 95%	6 CI p Value
For, sequentia	
3-day Average	
7-day Average	
14-day Averag	
28-day Averag	ge++
Modifier	
Age[greater, o	double equals]65
	22–1.126 0.005
	42–1.158 0.001
	69–1.210 <0.001
	73–1.239 <0.001
	40–1.237 0.005
Age<65	

						1.029	0.919–1.154	0.618	
						1.079	0.954-1.220	0.225	
						1.043	0.903-1.204	0.568	
						1.109	0.940-1.308	0.220	
						1.134	1.040-1.237	0.005	
						Male			
						1.056	1.004-1.111	0.036	
						1.084	1.025–1.145	0.004	
						1.113	1.043-1.188	0.001	
						1.141	1.058-1.230	0.001	
						1.141	1.022-1.226	0.015	
						Female	1.022-1.220	0.015	
							1 000 1 221	0.022	
						1.110	1.009-1.221	0.033	
						1.143	1.030-1.268	0.012	
						1.161	1.028-1.310	0.016	
						1.169	1.017-1.344	0.028	
						1.075	0.910-1.271	0.395	
						Received	d vaccination+		
						1.054	0.972-1.143	0.200	
						1.075	0.984-1.173	0.108	
						1.158	1.043-1.286	0.006	
						1.221	1.081-1.380	0.001	
						1.181	1.018-1.371	0.028	
							received vaccinatio		
						1.074	1.018-1.134	0.010	
						1.107	1.044-1.174	0.001	
						1.112	1.039–1.191	0.002	
						1.119	1.034–1.211	0.005	
						1.084	0.986-1.192	0.095	
							d inhaled medicine*		
						0.998	0.819–1.216	0.981	
							0.932-1.290	0.981	
						1.036			
						1.044	0.806-1.353	0.742	
						1.126	0.826-1.535	0.453	
						1.091	0.740-1.608	0.659	
							inhaled medicine*		
						1.070	1.020-1.122	0.006	
						1.105	1.049-1.164	<0.001	
						1.127	1.060-1.198	< 0.001	
						1.146	1.068-1.229	<0.001	
•	•	•	•		•				

 -	 			 		
					1.110 1.020–1.208 0.016	
					Odds ratios of exacerbation of chronic	
					obstructive pulmonary disease with a	
					5°C decrease in mean temperature	
					# stratified by age, sex, vaccination and	
					inhaled medicine.	
					#Adjusted for relative humidity,	
					barometric pressure, wind speed, and	
					duration of sunshine.	
					*Received inhaled medicine, including	
					inhaled long-acting ß2 agonist, long-	
					acting muscarinic antagonist or/and	
					inhaled corticosteroid for more than 28	
					days within 6 months before the index	
					day.	
					+Received vaccination within one year	
					before the event.	
					In summary: a 1°C decrease in air	
					temperature was associated with a	
					0.8% (1.015, 1.138) increase in the	
					exacerbation rate on event-days.	
					With a 5°C decrease in mean	
					temperature, the cold temperature	
					(28-day average temperature) had a	
					long-term effect on the exacerbation of	
					COPD (odds ratio (OR): 1.106 (1.063,	
					1.152)	
					Elderly patients and those who did not	
					receive inhaled medication tended to	
					suffer an exacerbation when the mean	
					temperature dropped 5°C.	
					Higher barometric pressure, more	
					hours of sunshine, and lower humidity	
					were associated with an increase in	
					COPD exacerbation.	

Webb 7, baile10 kealing10 kealing <th>22</th> <th></th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	22		1	1	1	1						
Housing and respiratory health at older ages. J Community objectively Health. 2013; 67(3): 280-5.23association between conditions and objectively measured respiratory health in a large general population sample of older people in England.of the English Longitudinal Study of Ageing.and relevant covariateswere used to test the association potenties covariatesowere duest respiratory health while accounting for the potential effect of other shousing conditions and conditions and childhood respiratory health.Author reported limitations advant reported housing conditions and respiratory health in a large general population sample of older people in England.of the English Study of Ageing.and relevant covariateswere used to test the association potential effect of other factors; including social comes housing conditions and childhood respiratory health.Author reported limitations to have entrely accounting for covariates, these factors had no indicantly worse respiratory health. Self-reported housing problems were not consistently associated with respiratory health in a large general population sample of older people in England.Author reported limitations to have entrely accounting for to have entrely accounting for the potential effect of orther factors; including social constend with fue poverty and living in rented accommodation, may be harmful to some aspects of respiratory health.Author reported limitations to have entrely accounting to have measures of inducing social constend with respiratory health.Housing provery difficult or work difficultHealth w	23	Webb E, Blane	To examine	Population	+	+	England:	Housing	respiratory health	Multivariate	Older people who were in fuel poverty	
respiratory health at older ages. J Epidemiol Community Health. 2013; 67(3): 280-5. 23between housing conditions and objectively measured respiratory health in a large general population sample of older people in England.Longitudinal Study of Ageing.covariates covariatesthe association between contemporary housing conditions and respiratory health while accounting for the potential effect of older people in England.respiratory health as measured by peak deprivation to determine to have entrely accounted fo influence of other aspects of deprivation. We recognise th housing conditions and respiratory health while potential effect of older people in England.respiratory health in a large general population sample of older people in England.respiratory health in a large general population sample of older people in England.Longitudinal Study of Ageing.covariates covariatesthe association between covariates, the associated with fuel poverty and living in rented accommodation, may be harmful to some aspects of respiratory health.diguestication of the passociated with fuel poverty did not distinguish owered do to smore than 10% of their incom fuel to preserve an adequate of warmt (as defined by the WHO), from those who spent		D, de Vries R.	the	survey:			second wave	conditions,		regression methods	or who did not live in a home they	
health at older ages. J Epidemiol Community 0bjectively Health. 2013; 67(3): 280-5.23housing conditions and objectively measured respiratory health in a large general population sample of older people in England.Study of Ageing.between contemporary contemporary housing conditions and respiratory health while potential effect of older people in England.Adjusting for social class is ur to have entirely accounted fo to have entirely accounted fo influence of other aspects of health while potential effect of older people in England.Adjusting for social class is ur to have entirely accounted fo deprivation. We recognise th health while potential effect of older people in England.Adjusting for social class is ur to have entirely accounted fo deprivation. We recognise th health while potential effect of older people in England.Adjusting for social class is ur to have entirely accounted fo deprivation. We recognise th health while potential effect of older people in England, praticularly those associated with respiratory erative in potential effect of older people in England, some aspects of respiratory health.Adjusting for social class is ur to have entirely accounted fo to housing conditions and respiratory health.Health at older bound in England.Health at older and epoile in England.Study of A single of older people in England.Study of A single of older people in England.Adjusting for social class is ur consistently associated with respiratory health.Health at older bound respiratory health.Health at older accounting social course housing conditions and childh		Housing and	association				of the English	and relevant		were used to test	owned had significantly worse	Author reported limitations
ages. J Epidemiol Community Health. 2013; 67(3): 280-5.23conditions and objectively measured respiratory health in a large general population sample of older people in England.Ageing.Ageing.to have entirely accounted for housing conditions and respiratory health while accounting for the potential effect of other factors; in England.to have entirely accounted for influence of other aspects of respiratory health. Self-reported health while accounting for the potential effect of other factors; in England.to have entirely accounted for influence of other aspects of respiratory health. Self-reported health while accounting for the potential effect of other factors; in England.to have entirely accounted for influence of other aspects of for covariates, these factors had no effect on any other measures of influence of other aspects of respiratory health. Self-reported health while accounting for the potential effect of other factors; in England.to have entirely accounted for influence of other aspects of housing conditions and respiratory health.ages. J Epidemiol (all of a people in England.Ageing.Ageing.Ageing.For covariates, these factors had no effect on any other measures of consist hubing consist hubing in rented accommodation, may be harmful to some aspects of respiratory health.to have entirely accounted for influence of other aspects of respiratory health.ages. J boundEpidemiol in England.Ageing.Ageing.Ageing.to have entirely accounted for health in a large poneral poneral difficultion some aspects of respiratory health.to have entirely acc		respiratory	between				Longitudinal	covariates		the association	respiratory health as measured by peak	
Epidemiol Community Health. 2013; 67(3): 280-5.23and objectively measured respiratory health in a large general population sample of older people in England.and consisting feasibility associated with respiratory health in a large general population sample of older people in England.feasibility associated with respiratory health in a large general population sample of older people in England.feasibility associated with respiratory health in a large general population sample of older people in England.full consist of the respiratory health.effect on any other measures of respiratory health. Self-reported housing roother aspects of deprivation. We recognise th housing roother potential effect of other factors; including social course housing conditions and childhood respiratory health.effect on any other measures of respiratory health. Self-reported deprivation to determine respiratory health.Kerter accounting for the older people in England.influence of other aspects of deprivation to determine respiratory healthand respiratory health in a large general population sample of older people in England, older people in England, in England.authors' conclusions: housing poverty and living in rented accommodation, may be harmful to poverty and		health at older	housing				Study of			between	expiratory flow rates. After accounting	Adjusting for social class is ur
Community Health. 2013; 67(3): 280-5.23objectively measured respiratory health in a large general population sample of older people in England.objectively measured respiratory health in a large general population sample of older people in England.objectively measured respiratory health in a large general population sample of older people in England.and respiratory health while accounting for the potential effect of consistently associated with respiratory health.deprivation. We recognise th limitation of this research, an outcome detain and deprivation to determine respiratory health.Community Health. 2013; 67(3): 280-5.23objectively measures of housing consistently associated with respiratory health in a large general population sample of older people in England.and respiratory health while accounting for the potential effect of course housing conditions of older people in England, accommodation, may be harmful to poverty aditiving in rented accommodation, may be harmful to poverty aditiving in respiratory health.WHO), from those who spent		ages. J	conditions				Ageing.			contemporary	for covariates, these factors had no	to have entirely accounted fo
Health. 2013; 67(3): 280-5.23measured respiratory health in a large general population sample of older people in England.measured respiratory health in a large general population sample of older people in England.health while accounting for the potential effect of other factors; including sociald conditions and conditions and childhood respiratory health.housing problems were not consistently associated with respiratory health.limitation of this research, an future work using more detai measures of housing condition and deprivation to determine predictors of respiratory health.Health. 2013; balth in a large general population sample of older people in England.Authors' conclusions: housing conditions of older people in England, predictors of respiratory health.Ilmitation of this research, an future work using more detai measures of housing condition and deprivation to determine predictors of respiratory health.Health. 2013; balthImitation of this research, and fuelt operserve an adequate of warmth (as defined by the WHO), from those who spentIlmitation of this research, an future work using more detai measures of housing conditions of older people in England, poverty and living in rented accommodation, may be harmful to some aspects of respiratory health.Ilmitation of this research, an future work using more detail measures of housing predictors of respiratory health.		Epidemiol	and							housing conditions	effect on any other measures of	influence of other aspects of
67(3): 280-5. 23respiratory health in a large general population sample of older people in England.67(3): 280-5. 23respiratory health in a large general population sample of older people in England.future work using more detai measures of housing condition and deprivation to determine relative importance as indep course housing consistently associated with respiratory health.future work using more detai measures of housing condition and deprivation to determine relative importance as indep particularly those associated with fuel poverty and living in rented accommodation, may be harmful to respiratory health.Autors' conclusions: housing poverty and living in rented accommodation, may be harmful to more than 10% of their inceded to sp more than		Community	objectively							and respiratory	respiratory health. Self-reported	deprivation. We recognise th
health in a large general potential effect of health. measures of housing condition large general population and deprivation to determine and deprivation to determine sample of sample of conditions of older people in England, predictors of respiratory heal older people in England. in England. poverty and living in rented some aspects of respiratory health. respiratory health. in England. in England. in England. poverty and living in rented some aspects of respiratory health. in Mealth in a in England. in England. in England. in England. poverty and living in rented some aspects of respiratory health. in Mealth in a in England. in England. in England. poverty did not and istinguish in Mealth in A in England. in England. in England. poverty did not and istinguish in Mealth in A in England. in England. in England. poverty did not and istinguish in Mealth in A in England. in England. in England. poverty did not an istinguish in Mealth in England. in England. in England. poverty did not an istinguish		Health. 2013;	measured							health while	housing problems were not	limitation of this research, an
health in a large general potential effect of health. measures of housing condition large general population and deprivation to determine including social Authors' conclusions: housing relative importance as indeper sample of older people older people conditions and poverty and living in rented poverty and living in rented additional limitation of the peotential effect of in England. in England. in England. in England. poverty and living in rented some aspects of respiratory health. in England. in England. in England. in England. poverty did not distinguish in Measures of housing condition in England. poverty did not distinguish in Measures of housing conditions in England. poverty and living in rented some aspects of respiratory health. in England. in England. in England. in England. poverty did not distinguish in Measures of housing condition in England. poverty did not distinguish in England. in England. poverty did not distinguish in Conditions and poverty and living in rented poverty did not distinguish in Conditions engli const in Eng		67(3): 280-5. ²³	respiratory							accounting for the	consistently associated with respiratory	future work using more detai
population sample of older people in England. population sample of older people population sample of older people population sample of older people population sample of older people population predictors of respiratory heal additional limitation of the predictors of respiratory heal odditional limitation of the predictors of respiratory heal course housing poverty and living in rented additional limitation of the predictors of respiratory heal additional limitation of the predictors of respiratory health. respiratory health. poverty and living in rented some aspects of respiratory health. households that needed to spiratory fuel to preserve an adequate of warmth (as defined by the WHO), from those who spent			health in a							potential effect of	health.	measures of housing condition
sample of older people in England.predictors of respiratory heal additional limitation of the pr study was that our measure of ocourse housing conditions and childhood respiratory health.class, previous life- particularly those associated with fuel accommodation, may be harmful to some aspects of respiratory health.predictors of respiratory heal additional limitation of the pr study was that our measure of more than 10% of their incon fuel to preserve an adequate of warmth (as defined by the WHO), from those who spent			large general							other factors;		and deprivation to determine
older people in England. olegen peoplei in England. older peoplei			population							including social	Authors' conclusions: housing	relative importance as indepe
older people in England. olegen peoplei in England. older peoplei			sample of							class, previous life-	conditions of older people in England,	predictors of respiratory heal
childhood accommodation, may be harmful to respiratory health.			older people							course housing	particularly those associated with fuel	additional limitation of the pr
childhood accommodation, may be harmful to respiratory health.			in England.							conditions and	poverty and living in rented	study was that our measure of
respiratory health. some aspects of respiratory health. households that needed to sp more than 10% of their incon fuel to preserve an adequate of warmth (as defined by the WHO), from those who spent			-							childhood	accommodation, may be harmful to	poverty did not distinguish
more than 10% of their incon fuel to preserve an adequate of warmth (as defined by the WHO), from those who spent										respiratory health.	-	
of warmth (as defined by the WHO), from those who spent										. ,		-
of warmth (as defined by the WHO), from those who spent												fuel to preserve an adequate
WHO), from those who spent												of warmth (as defined by the

Continued...

Appe	Appendix 5 table continued: 2012 studies.												
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes		
	-	-		Int	Ext		-		-				
2012													
24	Barnett AG, Hajat S, Gasparrini A, Rocklov J. Cold and heat waves in the United States. Environ Res. 2012; 112: 218-24. ²⁴	To examine the cold and heat waves on mortality and how the risk of death depended on the temperature threshold used to define a wave, and a wave's timing, duration and intensity.	Time series	++	++	99 US cities, 1987-2000	We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95- 99 percentiles.	Mortality	The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature.	In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. There was even evidence of a decreased risk during the coldest waves. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season: for every 50 days after October 1 (i.e. from before the winter season) the increases in deaths associated with a cold wave decreased by -1.26% (95% CI - 0.03, -2.39%) Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build-up in the susceptible pool or a lack of preparedness for extreme temperatures.			
25	Hales S, Blakely T, Foster RH, Baker MG, Howden- Chapman P. Seasonal patterns of mortality in relation to social factors. J Epidemiol Community	To investigate whether excess winter mortality varies with social factors in New Zealand. XXXX	Seasonal analysis of synthetic cohorts	+	+	New Zealand records from 1981, 1986, 1991, 1996 and 2001 censuses probabilistical ly linked to 3 years of subsequent mortality data creating five	Seasonal definition: winter (JJA) vs summer (DJF). Data for deaths in spring and autumn were discarded.	All-cause mortality as well as deaths from infections, cardiovascular disease, respiratory disease, cancer and accidents. Models also included variables	Logistic regression analysis of the risk of dying in winter compared to summer in relation to census characteristics. The model generates coefficients (and hence odds ratios)	There was an excess winter mortality of 22%. ORs for all-cause mortality adjusted for age, sex, census year, ethnicity, tenure Age 30s 0.915 (0.830, 1.009) 40s 0.948 (0.885, 1.016) 50s 1.011 (0.960, 1.064) 60s 1.067 (1.026, 1.109) 70s 1			

Health. 2012;		cohort studies	for age, sex,	that directly			
66(4): 379-84. ²⁵		of the New	ethnicity, census	estimate variation	<u>Sex</u>		
		Zealand adult	year, education	in excess winter	F	1	
		population	status, marital	mortality.	М	1.010 (0.976, 1.044)	
		(age 30-74	status, housing				
		years at	tenure, income,	Only included	Tertile o	of income	
		census) each	rurality and	participants with	Highest	1	
		with 3 years'	neighbourhood	data on all	Middle	1.052 (1.001, 1.106)	
		follow-up	deprivation.	covariates.		1.13 (1.08, 1.19)	
		There were 75		Separate analyses	Tenure		
		138 eligible		were conducted for	Home o	wners 1	
		mortality		all causes of death	Renters	1.054 (1.009, 1.100)	
		records, 58		and for cause			
		683 with		subgroups.	Rurality		
		complete data		0 1	-	1	
		on social			Urban	1.056 (1.015, 1.097)	
		variables.					
					There w	ere also no significant	
						ions with census period,	
						y, education, marital status or	
						urhood deprivation.	
					- 0		
					The stro	ongest associations were seen	
						ctious diseases, rather than	
						ory, respiratory, cancer and	
						auses, but the majority of social	
						ause-specific disease pairs had	
						nfidence intervals overlapping	
					one.		
					Authors	note: "There was an increased	
						ying in winter for most New	
						ers, but more so among low-	
						people, those living in rented	
						nodation and those living in	
						xact causal mechanisms are not	
						out possibly include correlated	
						nealth status, low indoor	
					-	atures and household	
					tempera		

Image: Constraint of the seriesImage: Constraint of the serie	
Hashizume, et al. "Effects of al. "Effects of air pollutants on emergencythe effect of ambientApril 2006 – March 2010pressure and air pollution from local al stations.hospital admission models allowing for overdispersion.emergency admissions per 1 deg C decrease in temp: All-cause (lag 0-4): 3.24% (1.25, 5.18) Acute coronary syndrome and heart failure (lag 0-4): 7.83% (2.06, 13.25)Hashizume, et al. "Effects of weather variability and air pollutants on emergencyand air pollutants onOnly patients transported by ambulancemeteorologic al stations.Poisson regression models allowing for overdispersion.emergency admissions per 1 deg C decrease in temp: All-cause (lag 0-4): 3.24% (1.25, 5.18) Acute coronary syndrome and heart failure (lag 0-4): 7.83% (2.06, 13.25)	
al. "Effects of weatherambient temperature, air pollutants onMarch 2010air pollution from local only patientsadmission (n=4355) by each type of stroke and cardiovascularmodels allowing for overdispersion.decrease in temp: All-cause (lag 0-4): 3.24% (1.25, 5.18) Acute coronary syndrome and heart failure (lag 0-4): 7.83% (2.06, 13.25)al. "Effects of weatherair pressure and air emergencyand air pollutants onOnly patients transported by ambulanceadmission meteorologic al stations.models allowing for cardiovascular diseasedecrease in temp: overdispersion.All-cause (lag 0-4): 7.83% (2.06, 13.25) control: season,Acute coronary syndrome and heart failure (lag 0-4): 7.83% (2.06, 13.25)	
weathertemperature,temperature,from local(n=4355) by eachoverdispersion.All-cause (lag 0-4): 3.24% (1.25, 5.18)variability andair pressureair pressureOnly patientsmeteorologictype of stroke andAcute coronary syndrome and heartair pollutants onand airand airby ambulanceby ambulancecardiovascularConfounderfailure (lag 0-4): 7.83% (2.06, 13.25)Intracerebral haemorrhage (lag 0-3):	
variability and air pollutants onair pressureOnly patients transported by ambulancetype of stroke and cardiovascularAcute coronary syndrome and heart failure (lag 0-4): 7.83% (2.06, 13.25)emergencypollutants onby ambulanceonly patients transportedcardiovascular diseaseConfounder cardiovascularfailure (lag 0-4): 7.83% (2.06, 13.25)Intracerebral haemorrhage (lag 0-3):	
air pollutants on emergencyand airtransported by ambulanceal stations.cardiovascular diseaseConfounder control: season,failure (lag 0-4): 7.83% (2.06, 13.25)Intracerebral haemorrhage (lag 0-3):	
emergency pollutants on by ambulance disease control: season, Intracerebral haemorrhage (lag 0-3):	
	1
cardiovascular emergency excludes non- pollutant data public holidays, Cerebral infarction (lag 0-4): 11.71%	
and admissions residents. were imputed influenza and (4.1, 19.89)	
cerebrovascular for different by multiple respiratory syncytial	
diseases." Int J types of linear virus. Increase of emergency admissions risk	
Environ Health stroke and regression also noted in relation to decrease in air	
Res 2012; 22(5): cardiovascular models. Fitted natural cubic pressure. There were some pollutant-	
416-430. ²⁶ disease. disease relationships, but for most	
graphs of the pairs the confidence intervals were	
temperature- wide and were consistent with no	
Modifiers: admission association.	
individual-	
level age, significance was In the sub-group analysis, temperature	
cause-of- <0.05 in the spline changes strongly affected males and	
death model, fit linear those over 74 years old, with an	
threshold models. increase of 4.87 (2.13, 7.53) and 3.96%	
(1.44, 6.42), respectively, for every 1	
Subgroups by age, deg C decrease.	
cause.	
Overall, cerebrovascular diseases	
tended to be more sensitive to	
temperature than cardiovascular	
diseases.	
²⁷ Miron IJ, To study the Time series + + Five towns in Met station Daily deaths Mortality residuals A cold-related mortality trigger	
Montero JC, modification Castile-La data counts after application of threshold of -3C was obtained for Unusual analys	is makes asses
Criado-Alvarez of the lagged Mancha, 1975 ARIMA models to Ciudad Real for the period 1990-2003. of robustness	
JJ, Linares C, effects of cold to 2003 the mortality data The number of significant lags	
Diaz J. Intense on mortality were correlated (p<0.05) in the CCFs declined every 10	
cold and with similarly years in Toledo (5-2-0), Cuenca (4-2-0),	
mortality in (with the Albacete (4-3-0) and Ciudad Real (3-2-	
Castile-La novelty of temperatures (from 1). This meant that, while the trend in	
Mancha (Spain): also Cold-related mortality trigger	

				r	,						
	study of	approaching							March).	thresholds in the region could not be	
	mortality trigger	this aspect in							Results for the	ascertained, it was possible to establish	
	thresholds from	terms of							periods 1975-1984,	a reduction in the lagged effects of cold	
	1975 to 2003.	mortality							1985-1994 and	on mortality, attributable to the	
	Int J	trigger							1995-2003 were	improvement in socio-economic	
	Biometeorol.	thresholds??)							then compared.	conditions over the study period.	
	2012; 56(1):									Evidence was shown of the effects of	
	145-52. ²⁷									cold on mortality.	
20	Modarres R,	To study	The seasonal	+	+	Female and	Meteorologic	Hip fracture	Complex times	The simple Pearson correlation	
	Ouarda TB,	examined and	ARIMA time			male patients	al parameters		series methods	coefficients between meteorological	
	Vanasse A,	modelled the	series			aged 40-74	•Max	Results separately	were used to	variables such as temperature, snow	Weather very different to UK
	Orzanco MG,	seasonal	modelling			and 75+	temperature	for:	investigate trend,	depth, rainfall depth and day length	,
	Gosselin P.	variation of				years,	•Min		though association	and HFr are significant.	
	Modeling	monthly				Montreal,	temperature	• F1: females, 40-	of HFr with		
	seasonal	population				Quebec	•Mean	74 years	metereology and	The seasonality in HFr indicated sharp	
	variation of hip	based hip				province,	temperature	• <u>F2</u> : females, 75+	season appeared	difference between winter (higher) and	
	fracture in	fracture rate				Canada, 1993-	•Rainfall	vears	described and	summer time.	
	Montreal,	(HFr) time				2004.			tested using simple	summer time.	
	Canada. <i>Bone</i>	series				2004.	depth	• <u>M1</u> : males, 40-	bivariate	Younger (-74) people had more	
	2012; 50 (4):909-	301103					Number of	74 years	techinques	pronounced seasonality, though this	
	2012, 50 (4).909- 16. ²⁰						days with	• <u>M2</u> : males, 75+	techniques		
	10.						rain	years		difference was not quantified or tested	
							 Snow depth 			statistically.	
							 Number of 				
							days with				
							snow				
							 Precipitation 				
							depth				
							Number days				
							with				
							precipitation				
							Max snow				
							 Wax show depth 				
							•				
							• Min snow				
							depth				
							 Mean wind 				
							speed				
							 Hours of 				
							sunshine				
28	Morabito M,	To evaluate	Time series			Ten main	Daily average	Non-accidental	Generalized	The cumulative impact (over a lag-	
	Crisci A,	current and	and health			cities in	air	mortality and	additive and	period of 30 days) of the effects of cold	

			1	1			1	1	1		
	Moriondo M,	future impact	impact			Tuscany	temperatures	hospitalizations	distributed lag	and especially heat, was mainly	
	Profili F,	of	modelling			(Central Italy),			models to	significant for mortality in the very	
	Francesconi P,	temperature	study			1999-2008			characterize the	elderly, with a higher impact on coastal	
	Trombi G, et al.	on human							relationships	plain than inland cities: 1 C	
	Air	health in							between	decrease/increase in temperature	
	temperature-	different							temperature and	below/above the threshold was	
	related human	geographical							health outcomes	associated with a 2.27% (95% CI: 0.17-	
	health	areas							stratified by age:	4.93) and 15.97% (95% CI: 7.43-24.51)	
	outcomes:								<65, 65-74 and	change in mortality respectively in the	
	current impact								>=75	coastal plain cities.	
	and estimations										
	of future risks in								Application of		
	Central Italy. Sci								health impact		
	Total Environ.								methods using		
	2012; 441: 28- 40. ²⁸								high-resolution city-		
	40.								specific climatologic		
									A1B scenarios		
									centred on 2020		
29	Manager	To describe	Ohaamatianal			Data an falla	NA stars and a sta	E a lla manufata a	and 2040	During the study and 12270 fells	New second falls was been taken
25	Morency P,	To describe	Observational	+	+	Data on falls,	Meteorologic	Falls requiring	Descriptive analyses	During the study period, 3270 falls	Non-severe falls not requiring
	Voyer C,	the	study of ambulance			including	al conditions	ambulance	only.	required ambulance interventions, of	ambulance attendance are no
	Burrows S,	demographic,	records			location	(temperature,	attendance, taken		which 960 occurred outdoors. Most	reported.
	Goudreau S.	spatial and	records			(outside or at	precipitation	from pre-hospital		people injured outdoors were under 65	Land use data not available in
	Outdoor falls in	temporal				home) and	levels) and	intervention		years of age (59%). Mapping showed a	locations.
	an urban	distribution of				geographic	land use data	reports.		concentration of outdoor falls in	Confidence intervals and
	context: winter	outdoor falls				coordinates,	were used for			central neighbourhoods and on	significance not included in
	weather	in Laval and				were	descriptive			commercial streets in Montreal. Three	analysis.
	impacts and	Montreal				obtained from	analysis and			episodes of excess falls, representing	Potential bias in groups towa
	geographical	Island				ambulance	mapping.			47% of all outdoor falls, were preceded	individuals able to leave their
	variations. Can J	(Canada) in				services				by rain and followed by falling	homes, and those who are m
	Public Health.	relation to				(December 1,				temperatures, or were concomitant	likely to require ambulance
	2012; 103(3): 218-22. ²⁹	meteorologic				2008 to				with freezing rain.	attendance should they fall.
	218-22.	al conditions.				january 31,					The proportion of households
						2009). Age				72% of the outdoor falls were explicitly	owning a car is higher on Mo
						and gender				attributed to ice and/or snow and/or	Island than in Laval, meaning
						were included				slipping by the ambulance attendant.	people need to walk rather the
						in the					drive. A number of unmeasured
						analysis.					
											environmental factors could
											influence falls.

30	Office for	To report	Descriptive	+	+	England and	Seasonal	Mortality	Descriptive reports	• There were an estimated 24,000	
	National	provisional	analysis of			Wales,	definition.	,	and analysis of	excess winter deaths in England and	
	Statistics.	figures of	routine data			20011/12 and			historical trends	Wales in 2011/12 – an 8 per cent	Restricted to standard EWM
	Excess winter	excess winter				2010/11, and	Also by		from 1950/51	reduction compared with the previous	method.
	mortality in	deaths (also				historical	temperature.		onwards	winter.	
	England and	referred to as				trend since				• As in previous years, there were	
	Wales, 2011/12	excess winter				1950/51			Figures are	more excess winter deaths in females	
	(provisional)	mortality –							presented by sex,	than in males in 2011/12.	
	and 2010/11	, EWM) in							age, region and	• Between 2010/11 and 2011/12 male	
	(final). 2012. ³⁰	, England and							cause of death.	excess winter deaths decreased from	
		Wales for the								11,270 to 10,700, and female deaths	
	See also: Office	winter period							Figures on	from 14,810 to 13,300.	
	for National	2011/12, and							temperature and	• The majority of deaths occurred	
	Statistics.	final figures							influenza incidence	among those aged 75 and over; there	
	Excess winter	for the winter							are also provided to	were 19,500 excess winter deaths in	
	mortality in	period							add context to the	this age group in 2011/12 compared	
	, England and	2010/11.							mortality figures.	with 4,500 in the under 75-year-olds.	
	Wales, 2010/11	,							, 0	• The excess winter mortality index	
	(provisional)									was highest in London in 2011/12,	
	and 2009/10									whereas in 2010/11 it was highest in	
	(final). 2011. ³⁰									Wales. Wales had one of the lowest	
										levels of excess winter mortality in the	
										2011/12 winter, second only to the	
										North East of England.	
31	Phu Pin S,	To examine	Observational	+	-	France, 1988-	Month	Mortality	Coefficients of	There was an annual winter excess	
	Golmard JL,	the monthly	study of			2007			Seasonal Variations	death of 23,836 (+/- 7951) (mean +/- 1	
	Cotto E,	variation in	monthly						in Mortality	standard deviation) cases.	Confounders related to air qu
	Rothan-	mortality in in	mortality						(CSVMs) were		and socio-economic status m
	Tondeur M,	France, 1988-	patterns						calculated using	On average, CSVM in France	not included. Season 'winter
	Chami K, Piette	2007 <i>,</i> with							monthly mortality	was+14.94% (13.54 [12.03; 19.70])	periods not tested.
	F. Excess winter	particular							data from 1998 to	(mean, median, and interquartile	
	mortality in	focus on							2007 in France.	intervals).	The findings are only modera
	France:	excess winter							CSVM was a		generalisable to the UK popu
1	influence of	death							percentage	Multivariate analysis results revealed	
	temperature,								representing the	that several factors contributed to the	
	influenza like								excess death rate	CSVM: sociodemographics, such as age	
	illness, and								from December to	(CSVM higher for the population older	
	residential care								March inclusively,	than 75) and death location (CSVM	
	status. J Am								against average,	higher in nursing homes),	
	Med Dir Assoc.								monthly mortality	environmental factors, such as the	

			r		1	1	1		7	1	
	2012; 13(3):								from the other 8	severity of the winter season (per	
	309.e1-7. ³¹								non-winter months.	monthly minimal temperature), and	
										estimated number of influenza-like	
										illnesses (ILI).	
									Univariate and		
									multivariate	Correlation between observed and	
									analyses were	predicted CSVMs was extremely	
									performed to	consistent (R(2)= 0.91).	
									identify risk factors		
									of increased winter	Authors' conclusion: there was a	
									mortality, including	fundamental belief that residents in	
									socio-demographic	nursing homes were well protected	
									and environmental	from cold spells and their	
									parameters	consequences. Our results revealed	
										this to be a mere misperception.	
										Author's limitations: In data sources,	
										the number of ILI was indeed an	
										extrapolation from a national scale of	
										data listed by a representative	
										sampling of general practitioners	
										spread across the French metropolitan	
										areas. Meteorological data were taken	
										from information registered in Paris;	
										applying the data to the whole country	
										might be considered debatable.	
										Despite this short- fall, the statistical	
										approaches remain the same.	
32	Turner LR,	To investigate	Ecological	++	++	Population	Meterological	Total ambulance	Generalised	There were statistically significant	
	Connell D, Tong	the effect of	time-series			study:	observations	attendances; plus	additive models	relationships between mean	Data on ambulance attendan
	S. Exposure to	hot and cold	study			Brisbane,	of mean daily	- cardiovascular, -		temperature and ambulance	for admin purposes so risk of
	hot and cold	temperatures	- /			Australia.	temperature	respiratory		attendances for all categories.	misclassification is greater for
	temperatures	on ambulance					and humidity	- other non-			outcome than for others. Loc
	and ambulance	attendances						traumatic		Cold effects were delayed and longer	of attendance may not repres
	attendances in							attendances		lasting than those of heat with a 1.30%	location of exposure
	Brisbane,									(0.87% to 1.73%) increase in total	
	Australia: a									attendances for a 1 degrees C decrease	
	time-series									below the threshold (2-15 days lag).	
	study. BMJ									Harvesting was observed following	
	Open. 2012;									initial acute periods of heat effects but	
	2(4). ³²									not for cold effects.	
	-17/-		l		I	I	I	I	I		

				1							
22										Authors note: "This study shows that both hot and cold temperatures led to increases in ambulance attendances for different medical conditions. Our findings support the notion that ambulance attendance records are a valid and timely source of data for use in the development of local weather/health early warning systems."	
33	von Klot S,	To determine	Multi-site	++	+	48 US cities	Ambient	Cardiac death	Quasi-Poisson	Controlling for influenza admissions	
	Zanobetti A,	how much of	time series	1		The authors	temperature	(ICD 9 390–429,	regression models	provided a more parsimonious model	
	Schwartz J.	the seasonal		1		obtained counts of	(daily mean)	ICD 10 I01-I51) and Influenza	estimating the	with better Generalized Cross-	
	Influenza epidemics,	pattern in cardiac				daily cardiac		Hospital	association between daily	Validation, lower residual serial correlation, and better captured	
	seasonality, and	deaths could				deaths and of		Admissions	cardiac mortality	Winter peaks.	
	the effects of	be explained		1		emergency		(urgent and	and temperature.		
	cold weather on	by influenza		1		hospital		emergency		The temperature-response function	
	cardiac	, epidemics,		1		admissions of		hospital	All models included	was not greatly affected by adjusting	
	mortality.	whether that		1		the elderly		admissions	cubic regression	for influenza.	
	Environ Health.	allowed a				for influenza		with primary or	splines of same		
	2012; 11: 74. ³³	more		1		during 1992-		secondary causes	day relative	The pooled estimated increase in risk	
		parsimonious		1		2000.		of influenza	humidity and air	for a temperature decrease from 0 to -	
		control for		1				(ICD 9 487) of	pressure with two	5C was 1.6% (95% confidence interval	
		season than traditional						persons age 65 years and older)	degrees of freedom each	(Cl) 1.1-2.1%).	
		spline models,						years and older)	and of temperature	Influenza accounted for 2.3% of cardiac	
		and whether		1					with four degrees	deaths over this period.	
		such control		1					of		
		changed the		1					freedom, as well as	Authors' conclusions: the results	
		short term		1					day of the week as	suggest that including epidemic data	
		association		1					categorical variable.	explained most of the irregular	
		with		1					Trend and	seasonal pattern (about 18% of the	
		temperature.							seasonality were	total seasonal variation), allowing more	
				1					modelled in two	parsimonious models than when	
				1					different ways.	adjusting for seasonality only with	
										smooth functions of time. The effect of cold temperature is not confounded by	
										epidemics.	
		1	1	1	1	1	L		1	cpidemies.	

34	Wichmann, J.,	To quantify	Case cross-	++	++	Copenhagen,	Meteorologic	acute myocardial	Case-crossover of	It was observed that an apparent	
	M. Ketzel, et al.	the	over			1 January	al and air	infarction (AMI)	daily 3-hour	protective effect of high maximum	Confounders related to air
	(2012).	temperature-				1999-31	pollution data		maximum apparent	apparent temperature (Tapp _{max}) on	pollution and adjustment for
	"Apparent	acute				December	were		temperature	AMI admissions in the cold period of -	public holidays and influenza
	temperature	myocardial				2006,	collected at a		(Tapp(max)) and	1.5% per 1°C (95% Cl: -2.6%0.5%).	applied. Lags for temperatur
	and acute	infarction				stratified in	fixed single		AMI hospital	The association was not statistically	were related to incidence ons
	myocardial	(AMI)				warm (April-	urban		admissions.	significant the warm period (-0.6% per	Multiple modelling approach
	infarction	relationship,				September)	background		Adjusted for public	1°C (95% CI: -1.6% - 0.3%)).	were used to confirm associa
	hospital					and cold	monitor for		holidays, influenza;		The findings are generalizable
	admissions in	[Sixteen				(October-	the		PM(10), NO(2) and	Model comparisons were undertaken.	the UK population
	Copenhagen,	studies				March)	monitored		CO was investigated	The GAM and GEE analyses (with and	
	Denmark: a	reported				periods.	period.			without adjusting for pollutants)	
	case-crossover	inconsistent							Effect modification	confirmed the protective effect of an	
	study." Environ	results and							by age, sex and SES	increase in Tappmax in the cold period,	
	Health 11: 19. ³⁴	two							explored.	with somewhat weaker associations	
		considered								than those of the case-crossover	
		confounding								analyses. Although some of the	
		by air								associations were weaker or stronger	
		pollution. We								than in the case- crossover analysis, all	
		addressed								warm season associations were still	
		some of the								insignificant in the GAM analysis. In the	
		methodologic								warm period the GEE analysis indicated	
		al limitations								that all associations were significantly	
		of the								protective and generally stronger than	
		previous			'					those of the case-crossover analyses.	
		studies in this			1						
		study.]			1						

Appe	ndix 5 table conti	nued: 2011 stud	dies								
Ref	Study	Aim of study	Study design	Vali	dity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>2011</u>											
35	Beynon C, Wyke S, Jarman I, Robinson M, Mason J, Murphy K, et al. The cost of emergency hospital admissions for falls on snow and ice in England during winter 2009/10: a cross sectional analysis. Environmental Health. 2011; 10(1): 60. ³⁵	To describe the relationship between temperature and emergency hospital admissions for falls on snow and ice in England, identify the age and gender of those most likely to be admitted, and estimate the inpatient costs of these admissions during the 2009/10 winter	Correlation (regression) study	+	+	Whole population: England, 2005/06 to 2009/10	Region specific temperatures	Emergency hospital admission for falls on snow and ice. Subgroups by age, gender, region.	Regionally stratified correlation (regression) of episodes of emergency admissions for falls on snow and ice with mean winter temperature by region Calculation of inpatient costs of admissions in the 2009/10 winter for falls on snow and ice using Healthcare Resource Group costs and Admitted Patient Care 2009/10 National Tariff Information	Emergency hospital admissions due to falls on snow and ice varied considerably across years; the number was 18 times greater in 2009/10 (N = 16,064) than in 2007/08 (N = 890). There is an exponential increase [Ln(rate of admissions) = 0.456 - 0.463*(mean weekly temperature)] in the rate of emergency hospital admissions for falls on snow and ice as temperature falls. The rate of admissions in 2009/10 was highest among the elderly and particularly men aged 80 and over. The total inpatient cost of falls on snow and ice in the 2009/10 winter was 42 million GBP. Emergency hospital admissions for falls on snow and ice vary greatly across winters, and according to temperature, age and gender. The cost of these admissions in England in 2009/10 was considerable. With responsibility for health improvement moving to local councils, they will have to balance the cost of public health measures like gritting with the healthcare costs associated with falls. The economic burden of falls on snow and ice is substantial; keeping surfaces clear of snow and ice is a public health priority.	Confounders related to influe and other co-morbidities not included. 'Event' information gritting and snow manageme major factor in 2009/10 slips falls. The findings are applicable to England
36	Gallerani M, Boari B, Manfredini F, Manfredini R. Seasonal	To determine whether a seasonal variation exists for	Seasonal analysis	+/-	+/-	All cases of HF admissions to Ferrara Hospital, January 2002	Season definition	Hospital admission for heart failure: 15,954 patients with the ICD-9-	Analysis of monthly cases with categorization into four 3-month (seasonal) intervals,	Hospital admissions for HF were most frequent in winter (28.4%) and least in summer (20.4%). Significant peak in January for total	Significant elderly tourist popula included. Authors noted limitati common to retrospective studies on ICD-9 coding. Authors also ur

	variation in heart failure hospitalization. Clin Cardiol. 2011; 34 (6): 389-94. ³⁶	heart failure (HF) hospitalizatio n				to December 2009		CM codes of HF (420-429).	adjusted for number of days, and the average number of admissions per month Subgroup analyses by: gender, age, cardiovascular risk factors, patients' outcome	cases and all subgroups considered. No clear evidence of differences by gender, age, fatal cases, presence of hypertension and diabetes mellitus, patients' outcome, and order of ICD-9 codes (first diagnosis, accessory diagnosis).	caution in caution in the interpre of hospitalization data.
37	Morabito M, Crisci A, Vallorani R, Modesti PA, Gensini GF, Orlandini S. Innovative approaches helpful to enhance knowledge on weather-related stroke events over a wide geographical area and a large population. Stroke. 2011; 42(3): 593- 600. ³⁷	To investigate weather- related stroke events through the use of an innovative source of weather data (Reanalysis) together with an original statistical approach to quantify the prompt/delay ed health effects of both cold and heat exposures.	Time series	+	+	Tuscany (central Italy), 1997 to 2007. Hospitalizatio ns stratified by age (65 years; >=65 years).	Daily average air temperature (meteorologic data from the Reanalysis 2 Archive)	Daily stroke hospitalizations (ICD 9 430 to 438)	Generalized linear and additive models and an innovative modeling approach, the constrained segmented distributed lag model, were applied.	Both daily averages and day-to-day changes of air temperature and geopotential height (a measure that approximates the mean surface pressure) were selected as independent predictors of all stroke occurrences. In particular, a 5C temperature decrease was associated with 1.9% and 16.5% increase of all stroke and primary intracerebral haemorrhage, respectively, of people >=65 years of age. A general short-term cold effect on hospitalizations limited to 1 week after exposure was observed and, for the first time, a clear harvesting effect (deficit of hospitalization) for cold- related primary intra-cerebral hemorrhage was described. Day-to-day changes of meteorologic parameters disclosed characteristic U- and J- shaped relationships with stroke occurrences.	
38	Magalhaes R, Silva MC, Correia M,	To determine whether stroke	Time series	++	++	Population of 86,023 residents in	Daily temperature, humidity and	Stroke and subtypes.	Poisson regression model, with tests for interaction	PICH incidence 11.8% (3.8, 20.4%) increase for each degree drop in the diurnal temperature range in the	

	eding day.
stroke and outcome Porto, from local intracerebral	
	idence 3.9% (1.6, 6.3%), and
	o-embolic IS 5.0% (0.2, 10.1%)
	ase for a 1°C drop in minimum
	erature.
parameters? the al Office data)	
Results from a association All patients Ischaemic stroke* Incident	ence of TACIs followed the IS
population- varies by with a first- (IS): 21.6%, with pattern	rn while for PACIs and POCIs
based study in stroke type ever stroke: the following there w	were stronger effects of longer
northern 19.6% subtypes: hazard	d periods and no association was
Portugal. primary - total anterior found f	d for LACIs.
Cerebrovasc intracerebral circulation	
	elative risk of a fatal versus a non-
542-51. ³⁸ (PICH), 75.3% - partial anterior fatal st	stroke increased by 15.5% (95%
ischaemic circulation CI: 6.1-	1-25.4%) for a 1°C drop in
stroke infarcts (PACIs) maxim	num temperature over the
- posterior previou	ous day <u>.</u>
circulation	<i>/</i> -
infarcts (POCIs)	
- lacunar infarcts	
(LACIs).	
*Ischaemic stroke	
(IS) defined	
according to the	
Oxfordshire	
Community Stroke	
Project classification	
and the Trial of Org 10172 in Acute	
Stroke Treatment	
(TOAST) criteria	
	son correlations between weather Author noted limitations
	racture-related workload for Dec The relatively short study per
	/Jan 2009 and Dec2009/Jan2010 may preclude generalisability
weather between series of A&E to two adult team at Royal •Fracture correlations	other possible confounders
warnings severe attendances and one Botanic admissions	
	08/09 09/10 I contributing to fracture burd
predict fracture weather Daediatric Gardens Hip fractures Maxim	_
	mum air temperature such as an increase in steroid
epidemics. warnings, the A&E Edinburgh):	mum air temperaturesuch as an increase in steroididances-0.05+0.03COPD sufferers were not expl
epidemics. warnings, the Injury A&E Edinburgh): Attend epidemics. frequency of A&E Edinburgh): Attend	mum air temperaturesuch as an increase in steroididances-0.05+0.03COPD sufferers were not expl

90. ³⁹	fracture-		injuries unit,	●Min		Hip fractures	-0.04	-0.21	specifically analyses the u
	related		Edinburgh, UK	temperature		Minimum air temp			cause of each attendance
	workload		(combined	•Ground		Attendances	-0.10	-0.03	required.
			population	temperature		Fractures	-0.20	-0.51***	- 1
			covered:	•State of		Fract admissions	-0.08	-0.32*	
			778,367),	ground		Hip fractures	+0.12	+0.01	
			over a 2-	 Icy roads 		Ground temperatu			
			month winter	warning		Attendances	-0.07	-0.04	
			period: Dec	 Heavy snow 		Fractures	-0.17*	-0.47***	
			2008/Jan	warning		Fract admissions	-0.03	-0.30*	
			2009 and Dec			Hip fractures	+0.16	-0.01	
			2009/Jan			State of ground ^a			
			2010			Attendances	+0.30	+0.14	
						Fractures	+0.32	+0.38**	
						Fract admissions	+0.21	+0.31*	
						Hip fractures	+0.06	+0.14	
						Icy roads weather			
						Attendances	+0.30*	-0.15	
						Fractures	+0.48***		
						Fract admissions	+0.36**		
						Hip fractures	+0.14	+0.16	
						Heavy snow weath			
						Attendances	-0.02	+0.17	
						Fractures	+0.14	+0.17	
						Fract admissions	+0.27*	+0.02	
						Hip fractures	+0.24	+0.19	
						Rain			
						Attendances	-0.08	+0.03	
						Fractures	+0.07	+0.01	
						Fract admissions	+0.14	-0.04	
						Hip fractures	+0.04	-0.09	
						a			
						^a — 3 ordinal categor			
						snow but no ice, nei	her ice nor	snow	
						- Cian ifine at in succ			
						 Significant increase cold and inclement 			
						low-energy fractu			
						case surgery or in			
						number of patien			
						inpatients for frac			
							luies ulu		

-			1	T			1	1	[
											increase.	
											• Hip fractures were not associated with	
											weather.	
											 Severe weather warnings for icy roads 	
											were predictive of fracture epidemics	
											(p<0.01) with an associated 40% (20,	
											52%) increase in fractures.	
	40	Nielsen J,	To estimate	Time series	++	++	Denmark over	Ambient	All-cause	Multivariable time-	The median ILI-attributable mortality	
		Mazick A,	mortality				the seasons	temperature	mortality	series model with	per 100,000 population was 35 (range	
		Glismann S,	related to				1994/95 to	data from		activity of influenza-	6 to 100) per season which	
		Molbak K.	influenza and				2009/10.	Danish		like illness (ILI) and	corresponds to findings from	
		Excess mortality	periods with					weather		excess	comparable countries.	
		related to	extreme					stations.		temperatures as		
		seasonal	temperatures					Mean over		explanatory	Overall, 88% of these deaths occurred	
		influenza and						daily		variables.	among persons >= 65 years of age. The	
		extreme						temperatures		Controlled for:	median influenza-associated mortality	
		temperatures in						from all		trend, season, age,	per 100,000 population was 26 (range	
		Denmark, 1994-						weather		and gender.	0 to 73), slightly higher than estimates	
		2010. BMC						stations was			based on pneumonia and influenza	
		Infect Dis. 2011;						used as the		Two estimates of	cause-specific mortality as estimated	
		11: 350. ⁴⁰						overall Danish		excess mortality	from other countries.	
								temperature		related to influenza		
								for that day.		were obtained: (1)	There was a tendency of declining	
								Weekly		ILI-attributable	mortality over the years. The influenza	
								temperatures		mortality modelled	A(H3N2) seasons of 1995/96 and	
								were		directly on ILI-	1998/99 stood out with a high	
								calculated as		activity, and (2)	mortality, whereas the A(H3N2) 2005/6	
								the mean		influenza-	season and the 2009 A(H1N1) influenza	
								over the		associated mortality	pandemic had none or only modest	
								week, as was		based on an	impact on mortality. Variations in	
								the weekly		influenza-index,	mortality were also related to extreme	
								min and max		designed to mimic	temperatures: cold winters periods and	
								temperatures.		the influenza	hot summers periods were associated	
										transmission.	with excess mortality.	
								Influenza-like				
								illness reports			Authors' conclusion: it is doable to	
								as indicator of			model influenza-related mortality	
								influenza			based on data on all-cause mortality	
								activity			and ILI, data that are easily obtainable	
L											in many countries and less subject to	

										bias and subjective interpretation than	
										cause-of-death data. Further work is	
										needed to understand the variations in	
										mortality observed across seasons and	
										in particular the impact of vaccination	
										against influenza	
41	Office for	To report	Descriptive	+	+	England and	Seasonal	Mortality	Descriptive reports	 There were an estimated 25,700 	
	National	provisional	analysis of			Wales,	definition.		and analysis of	excess winter deaths in England and	Restricted to standard EWM
	Statistics.	figures of	routine data			2010/11 and			historical trends	Wales in 2010/11, virtually unchanged	method.
	Excess winter	excess winter				2009/10	Also by		from 1950/51	from the previous winter.	
	mortality in	deaths (also					temperature.		onwards	 As in previous years, there were 	
	England and	referred to as								more excess winter deaths in females	
1	Wales, 2010/11	excess winter							Figures are	than in males in 2010/11.	
	(provisional)	mortality –							presented by sex,	• Between 2009/10 and 2010/11 male	
	and 2009/10	EWM) in							age, region and	excess winter deaths increased to	
	(final). 2011.41	England and							cause of death.	11,200, but female deaths fell to	
	· · /	Wales for the								14,400.	
		winter period							Figures on	• The majority of deaths occurred	
		2010/11, and							temperature and	among those aged 75 and over;	
		final figures							influenza incidence	however, deaths in this age group fell	
		for the winter							are also provided to	between 2009/10 and 2010/11,	
		period							add context to the	whereas deaths in persons aged under	
		2009/10.							mortality figures.	75 increased.	
		2003/10.							mortanty lightes.	• The excess winter mortality index	
										was highest in Wales in 2010/11,	
										whereas in the two previous winters it	
										was highest in the South East of	
42						_				England.	
42	Parsons N,	To assess the	Observational	+	++	Twenty-one	UK	Daily counts of	Multivariate	There were strong seasonal trends in	
1	Odumenya M,	relationship	(cross-			accident and	Meteorologic	adult and	regression analysis	paediatric ((2) likelihood ratio test	
	Edwards A,	between daily	sectional)			emergency	al Office.	paediatric trauma		p<0.001), and adult (p=0.016) trauma	
1	Lecky F,	trauma	study.			departments		admissions.		admissions.	
	Pattison G.	admissions				(ED) located					
	Modelling the	and observed				across		(All patients		For adults, each rise of 5C in the	
1	effects of the	weather				England: data		arriving at one of		maximum daily temperature and each	
1	weather on	variables				from Trauma		the selected ED,		additional 2 h of sunshine caused	
1	admissions to					Audit and		with a		increases in trauma admissions of 1.8%	
	UK trauma					Research		subsequent		and 1.9%. Effects in the paediatric	
	units: a cross-					Network of		death, inpatient		group were considerably larger, with	
	sectional study.					England and		stay of greater		similar increases in temperature and	
L			•							· · · · · ·	

Emerg Med J.Wales, 1than 3 days, inter-hours of sunshine causing increases in2011; 28(10):January 1996hospital transfertrauma admissions of 10% and 6%.851-5.4251or requiringEach drop of 5C in the minimum dailyDecembercritical care)temperature, eg, due to a severe night	
851-5. ⁴² to 31 or requiring Each drop of 5C in the minimum daily	
December critical care) temperature egidue to a severe night	
2006. time frost, caused adult trauma	
admissions to increase by 3.2%. Also	
the presence of snow increased adult	
trauma admissions by 7.9%.	
Authors' conclusion: clear associations	
(with weather) that have direct	
application for planning and resource	
management in UK ED.	
⁴³ Rocklov J, Ebi K, To establish Time series ++ + Stockholm Ambient Cause-specific Time-series Poisson Persistent extremely high temperature	
Forsberg B. time-series County temperature mortality and regression models, was associated with additional deaths,	
Mortality models in (Sweden), from the age-stratified adjusting for time and the risk of death increased	
related to which the 1990-2002 Stockholm mortality in trends and significantly per day of extended heat	
temperature effects of central Stockholm county potential exposure.	
and persistent persistent monitoring from the Swedish confounders, to	
extreme extreme station. cause of death study the effects of Extreme exposure to heat was	
temperatures: a temperature and associated with higher death rates in	
study of cause- and Included I	
specific and temperature multiple Looked at all- extreme death, compared with a rise in	
age-stratified in general can temperature cause (excluding temperature. temperature (see below).	
mortality. be variables as external),	
Occup Environ disentangled. well as cardiovascular Data were analysed The relative risk (RR) associated with a	
Med. 2011; Add were analysed interelative risk (Mit) associated with a humidity and (CVD), respiratory separately for 1 deg C increase in minimum apparent	
68(7): 531-6. ⁴³ air pollution. and other causes. winter and summer. temperature in summer (lag 0-1) was	
significant for:	
Computed Conducted The effects of All-cause mortality: 1.006 (1.001,	
indexes of the stratified analyses temperature and 1.010	
maximum and by age group. extreme persistent Non CVD/respiratory mortality: 1.007 minimum temperature were (1.001, 1.013)	
temperature. simultaneously. The confidence intervals included 1 for	
CVD, respiratory, and ages 0-44, 45-64	
Tested lags 0- 1.0.6 and 65-79.	
1, 0-6, and 0-	
13. The RR associated with day number in	
sequence of persistent extreme heat in	

				A	Also		summer was significant for:	
				e	examined		All-cause mortality: 1.024 (1.010,	
				ir	impact of		1.038)	
				p	persistent		Non CVD/respiratory mortality: 1.023	
				e	extreme		(1.003, 1.042)	
				t	temperatures,		Ages 65-79: 1.028 (1.004, 1.052)	
					defined as a		Ages 80+: 1.021 (1.002, 1.040)	
					sequence of		0	
					consecutive		In terms of cold, there was an increase	
					days above		in mortality for certain causes of death,	
					the 98 th		but not when stratified by age group:	
					percentile or			
					below the 2 nd .		The relative risk (RR) associated with a	
					Accumulation		1 deg C decrease in minimum apparent	
					assumed only		temperature in winter (lag 0-1) was	
					to start on the		significant for:	
					second day of		All-cause mortality: 1.006 (1.001,	
					the extreme		1.010)	
				t	temperatures.		CVD mortality: 1.014 (1.008, 1.020)	
					Adjusted for		Persistent extreme cold did not show	
					air pollution,		an additional effect on mortality.	
					year, month,			
					weekday,		Furthermore, the impact of warm and	
					holiday. Also		cold temperatures decreases within	
					evaluated		the season, while the impact of	
					adjustment		persistent extremely high	
					for within and		temperatures remains similar	
					between year		throughout the summer.	
				t	time trends.			
							Confounding or interaction with air	
				C	Controlled for		pollution was not apparent.	
				fl	flu in models			
				o	of cold effects		Authors' conclusions: the mortality	
				ir	n winter.		impact of persistence of extreme high	
							temperatures to increase	
							proportionally to the length of the heat	
							episode in addition to the effects of	
							temperature based on the	
							temperature-mortality relationship.	
L	1	1	1	I L			temperature mortanty relationships	

44 Turner RM, Hayen A, Dunsmuir WT, Finch CF. Air temperature and the incidence of fall-related hip fracture	To investigate whether there is an association between mean daily air temperature and fall- related hin	Cross- sectional time-series study,	+	+	Admissions between 1 July 1998 to 31 December 2004, inclusive, with a Sydney resident's address (60%	Mean daily ambient air temperature calculated by averaging data from 22 weather stations spread across	Fall-related hip fracture hospitalisations from New South Wales Admitted Patients Data Collection.	Poisson regression used to model daily fall-related hip fracture hospitalisation counts, adjusting for seasonal trend, day-of-week effects, long-term	Thus, the additional effect of persistent extreme heat was found to be important to incorporate for models of mortality related to ambient temperatures to avoid negatively biased attributed risks, especially for cardiovascular mortality. Moreover, the effects associated with non- extreme temperatures may decline as the pool of fragile individuals shrink as well as due to acclimatisation/adaptation. However, a similar decline was not observed for the effects associated with extreme heat episodes. Lower daily air temperature was significantly associated with higher fall- related hip fracture hospitalisations in 75+-year-olds: men aged 75-84 years, rate ratio (RR) for a 1 deg C increase in temperature of 0.98 with 95% confidence interval (0.96, 0.99) men 85+ years RB = 0.98 (0.96, 1.00)	Authors mention that admiss only included month/day not inclusion of patients via resid address not which hospital admitted to; date of admissic assumed to be date of injury. Deprivation and influenza/ott illness illness not accounted f
Hayen A, Dunsmuir WT, Finch CF. Air temperature and the incidence of	whether there is an association between mean daily air temperature	sectional time-series	+	+	between 1 July 1998 to 31 December 2004, inclusive, with a Sydney	ambient air temperature calculated by averaging data from 22 weather	fracture hospitalisations from New South Wales Admitted Patients Data	used to model daily fall-related hip fracture hospitalisation counts, adjusting for seasonal trend,	Lower daily air temperature was significantly associated with higher fall- related hip fracture hospitalisations in 75+-year-olds: men aged 75-84 years, rate ratio (RR) for a 1 deg C increase in temperature of 0.98 with 95% confidence interval	only included month/day not inclusion of patients via resid address not which hospital admitted to; date of admissic assumed to be date of injury.

45	Wu PC, Lin CY,	To identify	Spatial	+	+	Taiwan, 1994	Cold events	Cardiovascular	Spatial regression of	Authors' conclusions: after adjustment for season, day-of-week effects, long- term trend and autocorrelation, fall- related hip fracture hospitalisation rates are higher in both males and females aged 75+ years when there is a lower air temperature. <u>Urbanization</u>	
	Lung SC, Guo	vulnerable	regression			to 2003:	(from	mortality (two	mean	Metropolitan regions had substantially	
	HR, Chou CH, Su	regions with	models			island-wide	temperature	weeks before and	cardiovascular	lower mortality than rural areas after	
	HJ.	underlying				analysis	monitoring	after cold events)	mortality 2 weeks	cold events.	
	Cardiovascular	susceptibility					data)		before and after		
	mortality during	and poor							cold events on area-	Negative association between	
	heat and cold	adaptive							based	mortality after cold events and	
	events:	capability in							temperature,	urbanisation, and the availability of	
	determinants of	response to							demographic and	medical resources.	
	regional	cold and heat							socio-economic		
	vulnerability in	events in							parameters	Authors note: "These data suggest	
	Taiwan. Occup Environ Med.	Taiwan								that urban areas have a greater	
	2011; 68(7):									adaptive capability than rural areas, plausibly because people in urban	
	525-30. ⁴⁵									areas have a higher socio-economic	
	525 50.									status and more medical resources."	
										status and more medical resources.	
										Also states that "Health statistics	
										shows that the overall mortality in	
										aborigine townships is about 70%	
										higher than in the general population	
										in Taiwan."	
	•			•	•						

Арре	ndix 5 table conti	nued: 2010 stu	dies								
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>2010</u>	<u>)</u>										
46	Barnett AG, Tong S, Clements AC. What measure of temperature is the best predictor of mortality? Environ Res. 2010; 110 (6): 604-11. ⁴⁶	To examine which measure of temperature is the best predictor of mortality	Multi-site time series	++	++	Population mortality data from 107 US cities (National Morbidity and Mortality Air Pollution Study), 1987- 2000	Meteorologic al parameters: mean, minimum and maximum temperature with and without humidity, and apparent temperature and the Humidex.	All-cause mortality	Poisson regression with over- dispersion to model a non-linear temperature effect and a non-linear lag structure	Large differences in the best temperature measure between age groups, seasons and cities, and there was no one temperature measure that was superior to the others. The strong correlation between different measures of temperature means that, on average, they have the same predictive ability. The best temperature measure for new studies can be chosen based on practical concerns, such as choosing the measure with the least amount of missing data.	
47	Bayentin L, El Adlouni S, Ouarda TB, Gosselin P, Doyon B, Chebana F. Spatial variability of climate effects on ischemic heart disease hospitalization rates for the period 1989- 2006 in Quebec, Canada. Int J Health Geogr. 2010; 9 : 5. ⁴⁷	To examine the short- term effect of climate conditions on the incidence of ischemic heart disease (IHD	Time series	+	+	18 health regions of Quebec, Canada, 1989- 2006	Meteorologic al classification (temperature) from local monitoring stations (Environment Canada's National Climate Archive)	Hospital admission with ischaemic heat disease (IHD)	GAM model to fit standardized daily hospitalization rates for IHD and their relationship with climatic conditions up to two weeks prior to the day of admission <u>Confounder</u> <u>control</u> : Abstract: "controlling for time trends, day of the season and gender". However no details were given .	Cold temperatures during winter months were associated with an increase of up to 12% in the daily hospital admission rate for IHD but showed decreased risks in some areas. In most regions, exposure to a continuous period of cold was more harmful than just one isolated day of extreme weather. For men, the risk was higher (1.03% to 12.32%) in the 45-64 years age group in most regions, compared to older men (0.53% to 2.98%). In most regions, the annual maximum of daily IHD admissions for 65 years old was reached earlier in the season for both genders and both seasons	Author identified limitations: - no data on patient history, personal characteristics, co- morbidity - limitations of smoking and deprivation data allowed only qualitative analysis - no assessment of role of air pollution

			T				1	1		
										compared to younger age groups.
										The effects of meteorological variables on the daily IHD admissions rate were more pronounced in regions with: high smoking prevalence high deprivation index.
48	Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, Smeeth L. Short term effects of temperature on risk of myocardial infarction in England and Wales: time series regression analysis of the Myocardial Ischaemia National Audit Project (MINAP) registry. Bmj. 2010; 341:	To examine the short term relation between ambient temperature and risk of myocardial infarction.	Daily time series	++	++	15 conurbations in England and Wales: 84,010 hospital admissions for myocardial infarction recorded in the Myocardial Ischaemia National Audit Project during 2003-6 (median 57 events a day).	Ambient temperature	Change in risk of myocardial infarction associated with a 1 degrees C difference in temperature, including effects delayed by up to 28 days.	Time series regression	Smoothed graphs revealed a broadly linear relation between temperature and myocardial infarction, which was well characterised by log-linear models without a temperature threshold: each 1 degrees C reduction in daily mean temperature was associated with a 2.0% (95% confidence interval 1.1% to 2.9%) cumulative increase in risk of myocardial infarction over the current and following 28 days, the strongest effects being estimated at intermediate lags of 2-7 and 8-14 days: increase per 1 degrees C reduction 0.6% (95% confidence interval 0.2% to 1.1%) and 0.7% (0.3% to 1.1%), respectively.Adults aged 75-84 and those with previous coronary heart disease seemed more vulnerable to the effects of cold than other age groups (P for
	c3823. ⁴⁸									interaction 0.001 or less in each case), whereas those taking aspirin were less vulnerable (P for interaction 0.007). Authors' conclusions: increases in risk of myocardial infarction at colder ambient temperatures may be one driver of cold related increases in overall mortality, but an increased risk of myocardial infarction at higher

									temperatures was not detected. The risk of myocardial infarction in vulnerable people might be reduced by the provision of targeted advice or other interventions, triggered by forecasts of lower temperature.	
49	Chen VY, Wu PC, Yang TC, Su HJ. Examining non-stationary effects of social determinants on cardiovascular mortality after cold surges in Taiwan. Sci Total Environ. 2010; 408 (9): 2042-9. ⁴⁹	To examine the ecological associations between various social determinants and cardiovascular mortality after cold surges	Spatial regression of responses to 'cold surges'	+	Townships of Taiwan, 1997 to 2003	'Cold surges' (see Yang et al, 2009, below) <u>Modifiers</u> Five social determinants derived from 2000 Taiwan Census data were explored: social disadvantage lack of economic opportunity 'stability' sensitive group (including age and disability) rurality	Cardiovascular mortality	Geographically- weighted Poisson regression. Modifiers treated as covariates.	Immediate increase in cardiovascular mortality after 'cold surges' All five determinants tested were related to cardiovascular mortality rates after cold surges. Social disadvantage (3.8% increase), stability (5.8%), sensitivity (10.9% for each quartile of sensitivity), and rurality (4.8%) all contributed to mortality. Lack of opportunity did not have a significant effect. Cardiovascular mortality varied spatially Sensitivity accounted for the largest influence on relative risk <u>Relative Risks</u> Sensitivity (3 rd) 1.208 (1.162,1.256) Sensitivity (3 rd) 1.254 (1.184-1.327) Sensitivity (3 rd) 1.254 (1.184-1.327) Sensitivity (4 th) 1.327 (1.222-1.441) Disadvantage 1.038 (1.002, 1.075) Lack opportunity 0.996 (0.977, 1.016) Stability 1.057 (1.026, 1.088) Rurality (2rd) 1.130 (1.078, 1.184) Rurality (3rd) 1.138 (1.064, 1.216) Rurality (4th) 1.146 (1.049,	Limitations include: potential ecological bias; the modifying effect of air pollution was unaccounted for; and the stu not use age-sex adjusted mon It is possible that severe case would be transferred to a larg hospital, outside of the local township areas and that mor would be biased towards the locations. The basis behind th modifiers is not well explaine

	T								1	1
	<u> </u> '	<u> </u>		<u> </u>	<u> </u>	<u> </u>				1.251)
50	Gomez-Acebo I, Dierssen-Sotos T, Llorca J. Effect of cold temperatures on mortality in Cantabria (Northern Spain): a case- crossover study. Public Health. 2010; 124(7): 398-403. ⁵⁰	To determine the impact of low temperatures on mortality in a Spanish region that includes both rural and urban areas.	Case- crossover study.	+	+	Cantabria, a Spanish region which includes both rural and urban areas (total population of 572,824), in 2004-2005	Ambient temperature (cold). Several indicators were used for cold weather: maximum, minimum and mean temperature; effective temperature (ET); net effective temperature (NET); and windchill	Mortality (all cause?)	Conditional logistic regression, adjusting for humidity and wind speed. Odds ratios for several cold weather indicators were estimated. Zero- to 6-day lags in the temperature effect were considered.	Temperatures lower than the 5th percentile were strongly associated with mortality compared with temperatures above the 5th percentile (OR 3.40, 95% confidence interval 2.95- 3.93 for 6-day lag). All temperature indices show a negative association with mortality; for instance, the maximum temperature had ORs of 0.71, 0.58, 0.32 and 0.16 for Quintiles 2-5 (reference: Quintile 1). This effect was common to all age groups. Authors' conclusions: cold weather is strongly associated with mortality in small cities and rural areas
51	Harris J, Hall J, Meltzer H, Jenkins R, Oreszczyn T, McManus S. Health, mental health and housing conditions in England London: National Centre for Social Research / EAGA Charitable Trust; 2010. ⁵¹	To explore to what extent various aspects of fuel related poverty are associated with poor mental health, specifically presence of common mental disorders (CMDs) such as anxiety and depression;	Population survey	++	++	England: population survey. Stratified probability sample of households in England: 7461 residents aged >=16 years (57% of eligible households)	index. Measures of fuel poverty as indicated by whether the respondent reported being thermally comfortable and of having fuel-related financial strain.	Common mental disorder (CMD), classified on the basis of the Clinical Interview Schedule - Revised (CIS-R)	Multivariable regressions methods	Fuel poverty and common mental disorder N OR (95% CI) Used less fuel No 6245 1 No 6245 1 Yes 1088 1.77 (1.46, 2.16) Cold home No 6983 1 Yes 319 1.85 (1.33, 2.58) Mould No 6697 1 Yes 626 1.52 (1.19, 1.94) Fuel poverty and physical health condition in last year N OR (95% CI) Mould No 6617 1 1 1

		and physical illness								Yes6631.38 (1.14, 1.67)Fuel poverty and whether respondent had cardiovascular disease in the last yearPresence of CVD YesYesNoStatSigUsed less fuel2014Cold home53Fuel debt74NSMould99NS	
52	Iniguez C, Ballester F, Ferrandiz J, Perez-Hoyos S, Saez M, Lopez A, et al. Relation between temperature and mortality in thirteen Spanish cities. Int J Environ Res Public Health. 2010; 7(8): 3196-210. ⁵²	To examine the shape of the age- specific and cause-specific association between ambient temperature and mortality in 13 Spanish cities.	Cross- sectional time-series study.	+	+	Population in 13 Spanish cities over at least three consecutive years between 1990 and 1996.	Daily mean ambient temperature (average of daily minimum and maximum) and daily mean humidity (mean of values at 0, 7, 13 and 18 hours in current day) were obtained from airport meteorologic al station located closest to the city centre. <u>Effect</u>	Total mortality, cardio-respiratory mortality, and mortality among people 70 years old or over,	A Poisson generalised additive model for association between ambient temperature and each outcome for each city. Significance of temperature evaluated using likelihood ratio test. Temperature value linked with minimum mortality (MMT) and slopes before and after turning point (MMT) were estimated by linear regression. Impact of cold and heat expressed as percentage change in mortality for	The relationship between temperature and total mortality was significant in nine of the 13 cities, including the most populated (no p-value). Focusing on significant associations, the relationship between temperature and mortality was V or U-shaped, with largest effects (steeper slopes) for cardio-respiratory deaths (no p-value). MMTs were generally higher in cities with warmer climates. Cold and heat effects also depended on climate: effects were greater in hotter cities but lesser in cities with higher variability. The effect of heat was greater than the effect of cold. The effect of cold and MMT was, in general, greater for cardio-respiratory mortality than for total mortality, while the effect of heat was, in general, greater among the elderly.	Authors note that a limitation the study may be the low pow when analysing series with a number of events.

_				r								
								modifier		temperature		
								<70 and >70		change of 1 ºC.		
								Confounders				
								PM10/black				
								smoke/total				
								suspended				
								particles, daily				
								incidence of				
								influenza,				
								day-of-week,				
								holiday days,				
								unusual				
					1			events,				
								secular				
								trends,				
								seasonality,				
								lagged effects				
								of				
								temperature				
								and humidity.				
	53	Montero JC,	To quantify	Time series	++	+	Five towns in	Met station	Daily deaths	Mortality residuals	There were two mortality peaks: a	Unusual analysis makes asses
		Miron IJ,	the rise in				Castile-La	data	counts	after application of	short-term peak (with a lag of 3 to 7	of robustness of results diffic
		Criado-Alvarez	mortality due				Mancha, 1975			ARIMA models to	days); and a longer term peak (of under	
		JJ, Linares C,	to extreme				to 2003			the mortality data	two weeks). Excess mortality during	
		Diaz J. Mortality	cold and the				10 2000			were correlated	cold waves was around 10% per degree	
		from cold waves	factors that							with similarly	centigrade below the threshold	
		in CastileLa	determine the							filtered	temperature for all the provinces	
			relationship							temperatures (from	except Guadalajara, where an increase	
		Mancha, Spain.	•									
		Sci Total	between							November to	of only 4.61% was detected. Mortality	
		Environ. 2010;	these		1					March).	increased in response to rises in cold-	
		408(23): 5768-	variables.		1						wave duration and relative humidity.	
		74. ⁵³			1					Adj for Month and	Cold waves that were longer or	
					1					flu	occurring at the end of the "winter"	
					1						season caused the greatest mortality.	
					1					Lags with strongest		
					1					cross-correlations		
					1					were selected for		
										presentation.	Authors' conclusions: daily mortality in	
_				1				1	1		,	1

					1			1		
										Castile - La Mancha increases during
										cold waves.
54	Rau R, Gampe J,	To analyse	Observational	+	+	USA: analysis	Seasonality	Deaths from heart	Analysis of seasonal	Contrasting seasonality in deaths of
	Eilers PH, Marx	whether	study:			of individual		diseases and	fluctuations over	people with "high" and "low"
	BD.	people from	seasonal			death		respiratory	age and time	education in our preliminary analysis,
	Socioeconomic	lower	analysis of			records, 1989		diseases		there were no noteworthy differences
	differences in	socioeconomi	routine data			– 2006, from				in seasonality between the
	seasonal	c groups not				the National		(which constitute		socioeconomic groups.
	mortality in the	only suffer				Center for		40% of the 41.9		
	United States.	from higher				Health		million deaths		
	Extended	mortality but				Statistics.		which occurred in		
	abstract.	are also						the US between		
	Population	exposed to						1989 and 2006)		
	Association of	higher								
	America, 2011.	seasonal								
	Washington DC	fluctuations in								
	31 March - 2	mortality.								
	April 2011:									
	Princeton									
	University,									
	2010.54									

Арре	ndix 5 table conti	nued: 2009 stu	dies								
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
2009	<u>)</u>										
	Corrao S, Biondo GB, Renda N, Braschi A, Novo G, et al. Influence of climatic variables on acute myocardial infarction hospital admissions. Int J Cardiol. 2009; 137 (2): 123-9. ⁵⁵	To determine the influence of seasonal variations and weather on AMI hospital admissions.	Time series and tests for seasonality	-	-	Patients (2822 men and 1096 women) admitted to a single hospital for acute myocardial infarction (AMI) in western Sicily, 1987-1998.	Meteorologic al parameters (temperature, humidity, wind force and direction, precipitation, hours of sunshine, daily rain, and atmospheric pressure) from local monitoring station	Hospital admission for AMI	Multivariate Poisson regression of daily AMI admissions on weather conditions The final model was built controlling for multicollinearity and interaction between variables.	Significant winter peak in AMI.Seasonal variations were not consistent across age and sex groups.Significant association between AMI admissions and minimum daily temperature and maximum daily humidity.Relative risks Minimum temperature MalesMales0.95 (0.92, 0.98) FemalesO.91 (0.86-0.95)Max relative humidity Males0.97 (0.94-0.99) FemalesPemales0.94 (0.90-0.98)No significant association between heat and incidence of AMI, or wind or rain.Environmental temperature and humidity may play an important role in the pathogenesis of AMI.	Reviewer comment Not full methods of time-seri Same authors also provide sin analysis for admission for ang pectoris to the same hospital separately reported here.
56	Anderson, B. G. and M. L. Bell (2009). "Weather- related mortality: how heat, cold, and heat waves affect mortality in the United	To examine temperature- related mortality across the USA	Time series	++	++	107 US communities Mainly urban Data for (whole) population	Met station observations	death	Times series regression analysis adjusting for seasonal and other time trends (7df/y spline) and d.o.w.	Cold-related mortality was most associated with a longer lag (average of current day up to 25 days previous), with a 4.2% (3.2%-5.3%) increase in risk comparing the first and 10th percentile temperatures for the community. This relative cold risk increment was higher in persons aged 75+ (about 6%, from Fig 4) than in 0-64 and 65-74	

57	States." Epidemiology 20(2): 205- 213. ⁵⁶ Bryden C, Bird W, Titley HA, Halpin DM, Levy ML. Stratification of COPD patients by previous admission for targeting of preventative care. Respir Med. 2009; 103(4): 558-6. ⁵⁷	To examine risk stratification of COPD patients (for winter admission) and how interventions should be targeted to prevent admissions	Observational (retrospective cohort population- based) study of risk- stratified COPD patients	+	+	COPD admissions(n= 80,291), 1997-2003, in three Strategic Health Authorities, England: Cheshire & Merseyside, Birmingham and the Black Country, and Norfolk, Suffolk and Cambridgeshi re SHAs	Stratified into three groups according to the number of admissions during the previous year: 0 (NIL) 1-2 (MOD) >or=3 (FRQ)	Hospital admission (COPD exacerbation)	Patients admitted during winter (1 November-31 March) were stratified into three groups according to the number of admissions during the previous year: 0 (NIL), 1-2 (MOD) or >or=3 (FRQ). Winter weeks were classified as "average", "above average", "high", or "very high" risk, compared with the long-term mean	groups (about 2.5% in both). This relative cold risk increment was higher in warmer communities. (+27% across IQR of mean winter temp) Higher susceptibility to cold was identified for communities with a higher percentage of African Americans (+11%). The risk of admission during winter FRQ 40% MOD 12% NIL patients contributed to 70% of winter admissions, and 90% of the variation between "average" and "very high" weeks, versus 9% and 1% for MOD and FRQ. Author note: "Patients with no previous admissions have lower individual risk, but contribute to a high overall utilisation of health care resources and should be targeted to prevent admissions. Focusing upon high-risk patients (frequent attenders or more severe) may only reduce a small proportion of admissions, and	: Confounders such as influenz other co-morbidities is not accounted for, issues related temperature and air quality a included. Further limitations to coding of COPD in HES, and potential un-detected/ repor COPD events. The findings are applicable to study area, more adjustment needed to make generalisable England.
										therefore clinicians should ensure that all COPD patients receive appropriate therapy to reduce risk of exacerbations."	
58	Croxford B. The effect of cold homes on health: evidence from the LARES	To improve knowledge of the impacts of existing housing conditions on	House and household surveys	+/ -	+/-	Survey of the condition of 3373 dwellings and the health status of	Four survey variables selected as indicative of 'poor hygro- thermal	Four major categories of outcome: (1) any cardio vascular illness	Logistic regression model with fixed effect control for city. Confounding	Summary results of statistically significant associations between measures of cold homes and health. Results of multi-variable logistic regression	Reviewer comments: Analyses based on overall prevalence not on seasonality symptoms or cold-attribution

study. In:	health and	8519	conditions:'	(doctor-	variables included:	Reported	d respiratory problems	Cross-sectional comparison
Ormandy D,	mental	inhabitants in		diagnosed	personal	Child	2.1 times MORE prevalent if	
editor. Housig	and physical	eight	- Temperature	hypertension,	age, sex, height,		dissatisfied with heating	Unclear which confounder
and health in	well-being	European	cold in	heart attack,	weight, Body Mass		system (OR:2.1, CI:1.0-4.38);	variables included in final mo
Europe: the		cities:	winter?	strokes;	Index (BMI),		4 times LESS prevalent if	
WHO LARES	(LARES study:	Angers (F)	- Dissatisfied		smoking status,		dissatisfied with draughts	
project. Oxford:	<u>Large A</u> nalysis	Bonn (D)	with	(2) any	alcohol		(OR:0.25, CI:0.13-0.49)	
Routledge;	and <u>R</u> eview of	Bratislava (SK)	Insulation?	respiratory health	consumption,	Adult	None	
2009. p. 142-	<u>E</u> uropean	Budapest	- Dissatisfied	problem	exercise status;	Seniors	1.97 times MORE prevalent if	
54. ⁵⁸	housing and	(HU)	with heating	(doctor-	household		house cold in winter	
	health <u>S</u> tatus)	Ferreira do	system?	diagnosed acute	socio-economic		(OR:1.97, CI:1.03-3.76); 2.39	
		Alentejo	- Dissatisfied	bronchitis,	status, no. of		times MORE prevalent if	
		(POR)	with	wheezing and	inhabitants, SALSA		dissatisfied with insulation	
		Forli (IT)	draughts?	whistling;	mental health		(OR:2.39, CI:1.07-5.36)	
		Geneva (CH)			indicator; fuel poor;			
		Vilnius (LT).		(3) any arthritis/	perceptions	Reporte	d cardiovascular problems	
		Broad aim:		rheumatic pain	problems with cold	Child	N/A (too few events)	
		400 dwellings,		(self-reported)	in winter,	Adult	None	
		1000			dissatisfaction with	Seniors	None	
		inhabitants		(4) belief that	heating,			
		per city.		specific health	dissastisfaction with		d arthritis problems	
				problems	thermal insulation,	Child	N/A (too few cases)	
		Average		affecting mental	dissatisfaction with	Adult	None	
		response rate		health are related	draughtiness,	Seniors	1.92 times MORE prevalent if	
		over all cities:		to dwelling	mouldy or damp		house cold in winter	
		44.2% of the			home		(OR:1.92, CI:1.16-3.16)	
		eligible		(this is related				
		sample of		to four questions			at mental health problems are	
		households.		in the survey that			o dwelling	
				together can be		Child	7.7 times LESS prevalent if	
				used to generate			dissatisfied with insulation	
				a score for mental			(OR:0.13, CI:0.02-0.99)	
				health		Adult	1.79 times MORE prevalent if	
				called the SALSA			house cold in winter Cold	
				score, see the			(OR:1.79, CI:1.07-2.98); 1.67	
				chapter on			times MORE prevalent if	
				mental health for			dissatisfied with insulation	
				more details)			(OR:1.67, CI:1-2.81); 1.82	
							times MORE prevalent if	
							dissatisfied with heating	

Poppel F, van Duic, Garsen, nature of the temperature- related excess related excess related excess andtaling 22005, 12: 1305 - values ability in the Netherlands. Demogr Res. 22007, 12: 1305 - values ability in 425. ³¹ into the temperature- related excess indicating variability in the Netherlands. Demogr Res. 22005, 12: 1305 - values ability in 425. ³¹ into the temperature- related excess indicating variability in terms ability over a long period. into the temperature- related excess indicating variability in terms ability over a long period. into the temperature- indicating variability in terms ability over a long period. into the temperature variability over a long period. into the temperature variability over a long period. into the temperature variability over a long period. into the variability variability over a long period. into the variability variability variability over a long period. into the variability variabilit	-				1		r	T				
P ream read read read read read/particle rea												
19 Example P, van Duin C, Garsen Duin C, Garsen Duin C, Garsen Duin C, Garsen motality in the J. 150 Years of temperature- motality in the sectors in Daty time temperature- motality in the sectors in Daty time eries + + + + + + + + + + + + + + + + + + +											,	
1 Duin C, Garssen Interventure mortality mortality association mortality mortality association period. Individual adath records, 1855. Individual death records, 1855. Indintrecords, 1855. Individual de	59	Ekamper P, van	To gain insight	Daily time	+	+	The	Daily	Mortality	Negative binomial		Pre-adjustment for season m
1.150 Years of temperature mortality in the (including tables) 21:385- 2005; 21:385- 2425: ³⁰ 1.150 Years of temperature mortality in the (including tables) 21:385- 2005; 21:385- 2005; 21:385- 2425: ³⁰ 1.150 Years of tables 1.150		Poppel F, van		series			Netherlands:	temperature		regression analysis;		remove some cold effect.
1 temperature- mortality in the mortality in the Demogr Res. 2009; 21: 385- 0 vulnerability) 425." mortality influcting factors 2009; 21: 385- 0 vulnerability) 425." influcting factors vulnerability) 425." temperature- influcting factors vulnerability) 425." influcting factors vulnerability factors			nature of the									
elated excess, mortality in the Netherlands. Demogr Res. 2009; 21: 385- 425; ³⁰ association indicating vera long period. association factors indicating vera long period. association factors indicating vera long period. association factors indicating vera long period. association factors indicating vera long period. infants fant and older persons (especially 75+), but similar in men and women. for seasonality and trend by preliminary removal of sine-cosine wave and time spline infants fant and older persons (especially 75+), but similar in men and women. for seasonality and infants fant and vera long infants fant and vera presented by 25-year period. Authors identified a decline in cold effects in infants fant and void 1930, and an increasing cold effect in the 75- group (details not show a clear upward or downward trend over time in cold effects overal. *** To present inclusified and estimated analysis of routine (FWD) * + verases winter excess winter inclusified a seasonal study: seasonal analysis of routine for optimal study: seasonal analysis of routine for optimal subjects overal. * + verases ind factors subjects overal. * the figure by sex, age analysis of routine for optimal analysis of routine for 2005/08 in th ighest ince 12092/08. * the estimated 36,700 excess winter to 2006/09, and yeases winter deaths in England and Wales in 2008/09 in the lights ince 12008/09 is the lights ince 12008/09 is the lights ince 12008/09 is the lights ince 12007/08. * the estimated as could effect in the 75+ group wortal ty the dath since 12007/08. * the estimated 36,700 excess winter to 2008/09 is the lights ince 12008/09 is the lights ince											• • • •	-
Importative in the line line line line line line line lin												time may be due to many fac
Netherlands. Demogr Res. 2009; 21: 385- 425."Factors indicating winerability over a long period.Dutch provinces.Dutch provinces.For seasonality and trend by provinces.Lag interval specific coefficients were preliminary removal of sine-cosine wave and time spineLag interval specific coefficients were presented by 25-year period. Authors identified a decline in cold effects in infrast from about 1930, and an increasing cold effect in the 75-yerop (details not show). Inspection of the upward or downward trend over time in cold effects overall.Restricted to standard EWW were some analysis of routine60Fearn V, Carter I. Excess winter mortality in wales, 2008/09.To present study: seasonal mortality data++England and Wales (EWD)Mortality and Soverman Auges analysis of (EWD)Figures by sex, age, analysis (EWD)Restricted to standard EWW method.60Perestrict routine mortality in and 2007/08 (for annual 0NS reports)Costor of the mortality data+++England, and Wales analysis of to utine mortality data++-England, and Wales and analysis of (EWD)++-England, and Wales and analysis of (EWD)++ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Demogr Res. 2009; 21: 385- 425.**indicating vulnerability over a long period.Image: set and set										-	75+), but similar in men and women.	
2009; 21: 385- 425. ⁹ vulnerability) over a long period. vulnerability period.											Lag interval specific coefficients were	
425. ⁵⁹ over a long period. of sine-cosine wave and time spline identified a decline in cold effects in infants from about 1930, and an increasing cold effect in the 75+ group (details not shown). Inspection of the data presented did not show a clear upward or downward trend over time in cold effects overall. 60 Fearn V, Carter Tor present Tor provisional England and figures for wales, 2008/09 excess winter daths in England and sharts for about 1930, and an increasing cold effect overall. over a long period. * the ware an estimated 36,700 excess winter deaths in England and an analysis of routine mortality data * the seasonal analysis (EWD) Mortality Figures by sex, age, and Government office Region of England, and Wales are prosented for the final figures for excess winter deaths in England and Wales are prosented for the winter period stat. 2009; (A4): 69-79. ⁶⁰ for the winter for the winter period stat. 2009; (A4): 69-79. ⁶⁰ for the winter period stat. 2007/08 for annual ONS reports) * the winter period easts in coursed and time spline and analysis of routine mortality data for the winter period annot be coursed winter deaths in males. The majority of these deaths cocurred among those aged 75 and over. * the set mated a figures for annual ONS reports) * the set mated and main figures for annual ONS reports) * the set mated annotable of the winter england and Wales, and annualyses of set to the winter england and Wales, and annualyses of set to the winter england and Wales, and annualyses of set to the winter england and Wales, and annualyses of set to the winter england and Wales, and the set to the winter englan			-				protineesi					
60Fearn V, Carter J. Excess winter mortality in estimated and 2007/08To present figures for analyses ofObservational study: seasonal analysis of routine mortality in estimated analyses of* + t estimated figures for seasonal analysesEngland and WalesMortality analysis (EWD)Figures by sex, age, analysis (EWD)• Three were an estimated 36,700 excess winter provisional analysesRestricted to standard EWV wales60Fearn V, Carter J. Excess winter (provisional) and 2007/08To present figures for analyses ofObservational study: seasonal analyses of+ t+ tEngland and walesMortality analysis (EWD)Figures by sex, age, analysis (EWD)• Three were an estimated 36,700 excess winter mortality data• Three were an estimated 36,700 excess winter data in England and Wales are presented for the five-year period 2004/05 to 2008/09, and final figures for the winter deaths cause of death from 2007/08 for annual ONS reports)• The winter data final figures for the winter deaths analyses of• H estimated and wales, and analyses of• H estimated and wales analyses• H estimated and wales analyse and wales analyses• H estimated a		425. ⁵⁹										
end Rearn V, Carter To present Observational study: seasonal Mortality Figures by sex, age, and 3000 of the data presented did not show a clear upward or downward trend over time in cold effects overall. • The ewrera a estimated 36,700 • Restricted to standard EWN 60 Fearn V, Carter To present provisional study: seasonal analysis • The ewrera a estimated 36,700 • Restricted to standard EWN Males, 2008/09 routine mortality data mortality data * * * * England, and Wales are presented for the five-year priod 2004/05 to 2008/09, and by and Wales are presented for the five-year priod 2004/05 to 2008/09, and by and for ewrera 15,300 excess winter deaths in males and 21,400 • The ewrera 0.500 excess winter deaths in males and 21,400 • In 2008/09 its the highest since are 300 over. 69-79. ⁶⁰ Subsequent annual ONS 2007/08 for annual ONS 2007/08 for annual ONS • In 2008/09 its for and site of excess winter deaths in females. The majority of these deaths occurred amort be add 75 and over. • In 2008/09 its the add 35 and over. • In 2008/09 its the add 35 and over.			period.							and time spline	infants from about 1930, and an	
endRestricted to standard EWIV mortality in England and stat 20097/08To present provisional estimated figures for mortality in excess winter figures for estimated figures for estimated figures for mortality in excess winter figures for estimated figures for excess winter mortality in excess winter figures for excess winter mortality in excess winter figures for excess winter figures for excess winter figures for excess winter figures for excess winter figures for excess winter figures for excess winter for the winter provisional stat 2009; (44): 2008/09, and final figures for the winter period 2007/08Observational stat 2009; (44): 2007/08, and final figures for the winter period 2007/08 (final figures for the winter period 2007/08 (final figures of for the winter period 2007/08 for deaths nanual ONS reports)To present possible divide and the secand and mortality dataMortality the subsequent analysisMortality the subsequent analysis• The secand and mortality data• The secand and mortality data </td <td></td>												
ecc												
Image: constraint of the sector of the sec											•	
60 Fearn V, Carter J. Excess winter mortality in England and Wales, 2008/09 To present provisional study: To present study: To present study: To present seasonal analysis + + England and Wales Mortality Figures by sex, age, and Government Office Region of England, and Wales are presented for the five-year period 2004/05 to • There were an estimated 36,700 excess winter deaths in England and Wales in 2008/09. This is an increase for 2007/08. • There were an estimated 36,700 excess winter deaths in England and Wales are presented for the five-year period 2004/05 to • There were an estimated 36,700 excess winter deaths in England and Wales are presented for the five-year period 2004/05 to • There were an estimated 36,700 excess winter deaths in England and Wales are presented for the five-year period 2004/05 to • There were an estimated 36,700 excess winter deaths in Call and Wales are presented for the five-year period 2008/09, and by cause of death from 2005/06 to • The estimate of excess winter deaths in 2008/09 there were 15,300 excess winter deaths in males and 21,400 excess winter deaths in challes. The majority of these deaths occurred among those aged 75 and over. 69 Period 2007/08 for annual ONS reports) Curring in England and Wales, and analyses of England and Wales, and analyses of England and Wales, and												
J. Excess winter mortality in end gand and (gues for (provisional)provisional estimated seasonal analysis of mortality in excess winter (provisional)provisional seasonal analysis of mortality mortality mortality dataWales analysis of mortality dataanalysis (EWD)and Government Office Region of England, and Males are presented for the five-year period 2008/09, and by cause of death from 2008/09, and by cause of death from 2008/09, and by cause of death from 2005/06 to 2008/09, and by cause of death from 2005/06 to 2007/08.excess winter deaths in England and Wales in 2008/09. This is an increase of 49 per cent compared with figures in 2008/09 is the highest since 1999/2000.Restricted to standard EWM method.69-79. 60 50-79. 60 50-79. 60 50-79. 60 50-79. 60mortality data for the winter for the winter for the winter annual ONS reports)mortality data for the winter annual ONS deaths manual ONS deaths manual ONSwales, and analyses ofmortality data for the winter for the winter for the winter annual ONSstat.s for the winter for the winter annual ONS mainterstat.s for the winter for the winter for the winter for the winter for the winter for the winter for the winter frequencieswales, and annual ONS for the winterstat.s for the winter for the winter for the winter for the winter for the winter frequenciesstat.s for the winter for the winter for the winter for the winter for the winter frequencieswales, and analyses ofmortality data for the winter for the winter for the winter <td>60</td> <td>Fearn V. Carter</td> <td>To present</td> <td>Observational</td> <td>+</td> <td>+</td> <td>England and</td> <td>Seasonal</td> <td>Mortality</td> <td>Figures by sex. age.</td> <td></td> <td></td>	60	Fearn V. Carter	To present	Observational	+	+	England and	Seasonal	Mortality	Figures by sex. age.		
mortality in England and (figures for (provisional)estimated figures for analysis of routineseasonal analysis of routine(EWD)Office Region of England, and Wales are presented for the five-year periodWales in 2008/09. This is an increase of 49 per cent compared with figures for 2007/08.method.(final). Health (final). Health (final). Health (69-79. ⁶⁰ mortality datamortality datamortality datamortality datamortality data(See also subsequent annual ONS reports)period subsequent and wales and for the winter annual ONS2007/08 for final figures for the winter beriodperiod subsequent annual ONSgenod final figures for the winter beriodfinal figures for the winter beriodfinal figures for the winter for the wintermortality datamethod.(See also annual ONS reports)period subsequent and wales and analyses ofcenter for the winter for the winterfinal figures for the winter for the winterfinal figures for the winterfinal f			•				-					Restricted to standard EWM
Wales, 2008/09excess winter mortality and 2007/08routine mortality mortality dataroutine mortality dataand 2007/08(EWM) for the (final). Health stat. 2009; (44): 69-79.60(EWM) for the final figures for the winterand Wales are presented for the five-year period 2008/09, and by cause of death from 2005/06 to 2007/08.The estimate of excess winter deaths in 2008/09 is the highest since 1999/2000.(See also subsequent annual ONS reports)period England and Wales, and analyses ofImage: set of the set		mortality in	estimated	seasonal				(EWD)		Office Region of	-	method.
(provisional) and 2007/08 (final). Health stat. 2009; (44): 69-79. ⁶⁰ mortality datamortality datapresented for the five-year period 2004/05 to 2008/09, and by cause of death from 2005/06 to 2007/08.• The estimate of excess winter deaths in 2008/09 is the highest since 1999/2000.(See also subsequent annual ONS reports)period deaths cocurring in England and Wales, and analyses ofProvisional winter period subsequent• The estimate of excess winter deaths in 2008/09 is the highest since 1999/2000.• In 2008/09 there were 15,300 excess winter deaths in males and 21,400 excess winter deaths of remeases. The majority of these deaths occurred among those aged 75 and over.		-	-							0 ,		
and 2007/08(EWM) for the winter periodin 2008/09 is the highest since 1999/2000.(final). Healthwinter period2008/09, and final figures for the winter2008/09, and by cause of death from 2005/06 toin 2008/09 is the highest since 1999/2000.(See alsoperiodperiod2007/08 for annual ONSperiodin females. The majority of these deaths occurred among those aged 75 and over.Number of the winter erportsccurring in England and Wales, and analyses ofcurrent annual ONScurrent annual on analyses of												
(final). Healthwinter periodstat. 2009; (44):2008/09, and69-79. 60final figuresfor the winterfor the winter(See alsoperiodsubsequent2007/08 forannual ONSdeathsoccurring inreports)cocurring inEngland andWales, andanalyses of				mortality data						•		
stat. 2009; (44): 69-79. ⁶⁰ 2008/09, and final figures for the winter2008/09, and by cause of death from 2005/06 to 2007/08.• In 2008/09 there were 15,300 excess winter deaths in males and 21,400 excess winter deaths in females. The majority of these deaths occurred among those aged 75 and over.(See also subsequent annual ONS reports)period deaths• In 2008/09 there were 15,300 excess winter deaths in females. The majority of these deaths occurred among those aged 75 and over.Regland and Wales, and analyses of• In 2008/09 there were 15,300 excess winter deaths in females. The majority of these deaths occurred among those aged 75 and over.												
69-79.60final figures for the winter(See alsoperiodsubsequent2007/08 for annual ONSannual ONSdeathsreports)occurring in England and Wales, and analyses of			•									
for the winter for the winter (See also period subsequent 2007/08 for annual ONS deaths reports) occurring in England and Wales, and analyses of		69-79. ⁶⁰										
Image: See also period peri											,	
subsequent annual ONS reports) 2007/08 for deaths among those aged 75 and over. annual ONS reports) occurring in England and Wales, and analyses of Image: Comparison of the co		(See also	period									
reports) occurring in England and Wales, and analyses of			•									
England and Wales, and analyses of												
Wales, and analyses of Image: Constraint of the second s		reports)	-									
analyses of			-									
historical			historical									
trends in												

61	Kysely J, Pokorna L, Kyncl J, Kriz B. Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health. 2009; 9: 19. ⁶¹	EWM from 1950/51 to 2008/09. To assess the association between cardiovascular mortality and winter cold spells, examined in individual age groups groups (25-59, 60-69, 70-79 and 80+ years) and in both men and women	Observational study of excess cardiovascular mortality using standardised Health statistics (accounting for sociodemogra phic changes) and influenza epidemics removed.	+	+	Population of the Czech Republic, 1986-2006, stratified according to age and gender	Cold spells were defined as periods of days on which air temperature does not exceed -3.5 degrees C. Excess cardiovascular mortality was determined after the influenza epidemics, long-term changes and the seasonal cycle in mortality had been removed.	Mean relative excess CVD mortality for all age groups and both genders.	Excess mortality was calculated as the difference between observed and expected daily values. For cases less than 100, excess mortality was calculated using the lower and upper limit factors for a Poisson- distributed variable; for cases greater than 100, the normal approximation was used. Confounding influence of influenza epidemics, long- term changes and the seasonal cycle in mortality controlled for.	Cold spells were associated with relative mean excess cardiovascular mortality in all age groups in men (6.3%, 4.2-8.3) and women (6.3%, 4.4- 8.2). The relative mortality effects were most pronounced in middle-aged men (25-59 years)(13.8%, 8.4-19.1), which contrasts with majority of studies on cold-related mortality in other regions, potentially due to occupational exposure. The rate of excess mortality was significantly higher in men aged 25-59, and in both men and women aged 70 and above (2-tailed t-test, p<0.001) during cold episodes. The estimated excess mortality during the severe cold spells in January 1987 (+274 cardiovascular deaths) is comparable to that attributed to the most severe heat wave in this region in 1994.Relative mean excess mortality (%) 25-59yrs, M25-59 yrs, F6.9 (-2.5; 17.4) 60-69 yrs, F60-69 yrs, F7.5 (1.9; 13.6) 70-79 yrs, F70-79 yrs, F7.5 (4.1; 10.8) 80+ yrs, M8.5 (5.0; 12.2) 80+ yrs, F7.3 (4.9; 9.7)	Occupational exposure to col considered, and may contribu the increased risk in young m not seen in other studies. Removal of mortality during epidemics of influenza may re the mortality rate of those in brackets most susceptible to influenza. Income or disability was not considered. Study supported by the Czech Science Foundation
	widkinen Tivi,	ro examine	Conort	+	+	A population	outdoor	Diagnosed KIT	Analysis of	The mean average daily temperature	

·,		1		r —			1	1	1	l .	
	Juvonen R,	whether the				study: 892	temperature		occurrence of RTI in	preceding any RTIs was -3.7+/-10.6; for	Author noted limitations: Pot
	Jokelainen J,	development				military	and humidity	(Total of 643 RTI	relation to	URTI and LRTI they were -4.1+/-10.6	confounding by crowding and
	Harju TH, Peitso	of RTIs is				recruits, 224		episodes were	(preceding)	degrees C and -1.1+/-10.0 degrees C,	annually occurring respirator
	A, Bloigu A, et	potentiated				asthmatic and		diagnosed during	ambient	respectively.	infection epidemics.
	al. Cold	by cold				668 non-		the follow-up	temperature		
	temperature	exposure and				asthmatic		period, 595 upper		Temperature was associated with	The military environment is
	and low	lowered				men, from		and 87 lower		common cold (p=0.017), pharyngitis	optimal for examining the
	humidity are	humidity in a				two intake		RTIs.)		(p=0.011) and LRTI (p=0.048). Absolute	association between cold
	associated with	northern				groups				humidity was associated with URTI	temperatures and RTIs becau
	increased	population.				enrolled in				(p<0.001). A 1 degrees C decrease in	conscripts are exposed to col
	occurrence of					military				temperature increased the estimated	frequently and for prolonged
	respiratory tract					service in July				risk for URTI by 4.3% (p<0.0001), for	periods. In Finland where mil
	infections.					2004 and in				common cold by 2.1% (p=0.004), for	service is mandatory they
	Respir Med.					January 2005				pharyngitis by 2.8% (p=0.019) and for	represent a normal population
	2009; 103(3):					in the Kajaani				LRTI by 2.1% (p=0.039). A decrease of	young men, and the effects o
	456-62. ⁶²					garrison in				1g/m(-3) in absolute humidity	indoor crowding are similar t
						northern				increased the estimated risk for URTI	those observed in schools in
						Finland				by 10.0% (p<0.001) and for pharyngitis	winter.
										by 10.8% (p=0.023). The average	
										outdoor temperature decreased during	
										the preceding three days of the onset	
										of any RTIs, URTI, LRTI or common cold.	
										The temperature for the preceding 14	
										days also showed a linear decrease for	
										any RTI, URTI or common cold.	
										Absolute humidity decreased linearly	
										during the preceding three days before	
										the onset of common cold, and during	
										the preceding 14 days for all RTIs,	
										common cold and LRTI.	
										Authors' conclusions: cold temperature	
										and low humidity were associated with	
										increased occurrence of RTIs, and a	
										decrease in temperature and humidity	
										preceded the onset of the infections.	
63	Tenias JM,	To examine	Case-	+	+	Hip fracture	Meteorologica	Hip fracture:	Case-crossover	In the case-crossover analysis, the	Author noted limitations
	Estarlich M,	the short-	crossover			cases	l variables	-cervical	analyses to study	frequency of periods of calm	Due in part to its retrospectiv
	Fuentes-	term				admitted to	 temperature 	-pertrochanteric	the relationship	wind on the day prior to the event was	nature and the use of
	Leonarte V,	relationship				two reference	 relative 		between the	the only variable associated in a	administrative data, the stud
L		•					•	•			1

		1				. . .		
Iniguez C,	between			hospitals,	humidity	incidence of a hip	significant fashion to the incidence of	should be viewed as a hypoth
Ballester F.	meteorologic			Valencia,	∙rain	fracture and the	hip fractures.	generating study.
Short-term	al conditions			Spain	 wind 	meteorological		
relationship	and the			(n=2121,	 other 	conditions, both on	Frequency of periods of calm wind	
between	incidence of			75.3%		the same day and	Symmetric	
meteorological	hip fracture			women)	(obtained	on the day previous	Delay 0 1.0002 (0.999–1.002)	
variables and	HF in people				from a	to the patient's	Delay 1 0.998 (0.997–0.999)	
hip fractures: an	>=45 years in				centrally	admission		
analysis carried	а				located		Semi metric	
out in a health	Mediterranea				weather	<u>Subgroups</u> by age	Delay 0 0.999 (0.998–1.001)	
area of the	n climate				station)	(older or younger	Delay 1 0.998 (0.996–0.999)	
Autonomous	zone					than 75 years of	Dec. He served as Odds Datis (
Region of						age), sex and type	Results expressed as Odds Ratio (Confidence Interval: 95%).	
Valencia, Spain						of fracture (cervical	Wind (OR by increase in tenths of an hour of	
(1996-2005).						or pertrochanteric).	periods of calm wind).	
Bone 2009;								
45(4): 794-8. ⁶³							Using this variable, the authors were	
							able to classify the days from calmest	
							to windiest. The analysis by quartiles	
							showed a dose–response relationship	
							in which the risk increased with greater	
							frequency of wind, with similar results	
							for both the symmetric and semi-	
							metric methods	
							Greater occurrence of cases in the	
							autumn and winter months.	
							Windiest days (quartile 4) were	
							associated with an increased risk of HF	
							(OR 1.32 (1.10, 1.58)) vs quartile 1,	
							especially in patients under 75: OR 1.53	
							(1.02, 2.29).	
							The remaining meteorological variables	
							were not associated with the incidence	
							of HFs.	
							The results were comparable across	
							different subgroups classified by age,	
			I I		1		and a subgroups classified by uge,	1

							1				1
										sex, and type of fracture.	
64	Yang TC, Wu PC,	To analyse	Spatial	-		Population in	'Cold surges'	Cardiovascular	Paired-samples' t-	The incidence of HFs varies seasonally and presents a significant association with the coldest times of the year. Results of before-after ratio in	Author noted limitations
	Chen VYJ, Su HJ.	spatial	analysis	_	_	townships of	defined	mortality	test to	cardiovascular mortality in relation to	- Ecological analysis, therefor
	Cold surge: a	variation in	unurysis			Taiwan in	(Taiwan	mortanty	investigate whether	cold surges, by geographical region of	ecological bias;
	sudden and	before-after				relation to	Central		the CVD mortality	Taiwan	-Exploratory study
	spatially varying	changes in				four 'cold	Weather		rates are		
	threat to	cardiovascular				surges', 2000-	Bureau) as:		significantly	Mean CVD (Min, Max, S.D.)	Reviewer comments
	health? Sci Total	mortality in				2003	(1) surface		different before	mortality ratio	Simple analysis, no analysis o
	Environ. 2009;	relation to					temperature		and after the cold		potential specific determinan
	407 (10): 3421- 4. ⁶⁴	four identified					drop within		surge. ANOVA tests used	North Taiwan 1.083(1.033 1.107 0.018)	(modifiers) of risk, e.g. popul characteristics.
	4.	'cold surges'. Specifically: 1)					24 hours > 8 deg C, or		to compare mean	(N=95)	characteristics.
		whether cold					(2) lowest		mortality ratios	Middle Taiwan 1.173 (1.003 1.263	See Chen <i>et al</i> 2010 above.
		surges impose					temperature		between regions.	0.056)	
		an immediate,					in the Taipei			(N=108)	
		adverse effect					metropolitan			South Taiwan 1.136 (1.047 1.363	
		on CVD					area <10 deg			0.059)	
		mortality; 2)					С.			(N=107)	
		whether								East Taiwan 0.991 (0.783 1.248	
		people living					Effect			0.129)	
		in temperate zones have a					<u>modifiers</u> Region (north,			(N=39)	
		higher					middle, south,			Cardiovascular disease mortality rates	
		tolerance of					east)			increased significantly after cold	
		extreme					,			surges, and varied spatially, with	
		temperature					Confounders			'greater tolerance' to cold surges in	
		drop.					<u>not treated.</u>			regions (e.g. eastern) with more	
										'severe winter temperatures'.	

Appe	ndix 5 table conti	nued: 2008 stud	1	1					r	•	
Ref	Study	Aim of study	Study design		lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
2008											
65	Analitis, A, Katsouyanni K, et al. "Effects of cold weather on mortality: results from 15 European cities within the PHEWE project." Am J Epidemiol 2008; 168(12): 1397- 1408. ⁶⁵	To assess the effects of temperature on (cold season) cause- and age-specific daily mortality in 15 European cities.	Cross- sectional, time series, and spatial study.	++	+/++	Population in 15 European cities during the cold season (October- March) between the years 1990- 2000 inclusive	Minimum apparent temperature from meteorologic al stations (ecological classifier), defined as minimum daily value of 3-hour apparent temperature values, which were adjusted for wind speed and barometric pressure. <u>Effect</u> <u>modifiers</u> Age, weather variables) <u>Confounders</u> Air pollution index, temporal correlation, holidays, day of the week, calendar month, long- term trends,	Daily mortality All-cause Cause-specific: Cardiovasc. Resp. Cerebrovasc.	The Poisson distribution was used to model each outcome for each age group at the city-level and for all cities pooled together.	RR for a 1 deg C decrease in temp All (natural) deaths: 1.35% (1.16, 1.53) Cardiovascular: 1.72% (1.44, 2.01) Respiratory: 3.30% (2.61, 3.99) Cerebrovascular: 1.25% (0.77, 1.73) The increase was greater for the older age groups. Cold effect greater in warmer (southern) cities. Persisted up to 23 days, with no evidence of mortality displacement.	Authors mention possible fut separation of 'apparent temperature' into air temper and humidity.

				\square			influenza epidemics.				
66	Barnes M, Butt S, Tomaszewski W. The dynamics of bad housing: the impact of bad housing on the living standards of children. London: National Centre for Social Research, EAGA partnership, Shelter, 2008. ⁶⁶	To examine the relationship between poor housing and outcome in children	Longitudinal panel study	+	+	Longitudinal annual follow- up of a sample of English children (n=6431 followed up annually), 2001 and 2005, using caregiver interviews for under 11-year olds, and self- completed questionnaires for adolescents	Overcrowded accommodati on, accommodati on in a poor state of repair and inadequately- heated accommodati on	Multiple outcomes including: Illness/illness behaviours, economic well- being Specific outcomes include: asthma or bronchitis symptoms multiple negative outcomes	Descriptive analyses and multivariable logistic regression	Percentage of children with problems with chest, breathing, asthma or bronchitis, according to the number of years they have lived in an inadequately hearted home3-5 years15% 1-2 years1-2 years11% 007%'Mental well-being' Percentage of children that have four or more negative "Every Child Matters"*(ECM) outcomes, according to the number of years they have lived in an inadequately heated home 3-5 years3-5 years28% 1-2 years1-2 years9% 004%Base: Secondary school age children in Britain in 2005Association is statistically significant for 4+ ECM outcomes (odds ratio 1.89, Cl not quoted) but NOT for respiratory symptoms.*The ten outcomes are i) A long- standing illness or disability, ii) to go without regular physical exercise, iii) in trouble for smoking, drinking or taking drugs, iv) bullied in or out of school, v) expelled or suspended from school, vi) does not see friends and does not attend organised activities, vii) has been in trouble with the police, viii) below average in key academic subjects, ix) family cannot afford an	A number of explanatory vari were considered to examine relationship of children living 'bad housing'. Some confour variables such as tenure, pov and inadequate housing need controlled for further. Limitations relate to potentia response bias and follow-up The outcome measures are d from secondary classification inadequate heating and fuel Associations are found for numerous poor housing factor responses of bad health and negative child outcome. Generalisable to England.

										annual holiday, and, x) family in income poverty.	
67	Brock A. Excess winter mortality in England and Wales, 2007/08 (provisional) and 2006/07 (final). Health stat. 2008; (40): 66-76. ⁶⁷ (See also later annual ONS reports)	To report excess winter mortality (EWM) for the winter period 2007/08, and final figures for the winter period 2006/07 for deaths occurring in England and Wales, as well as historical trends in EWM from 1950/51	Observational study: seasonal analysis of routine mortality data	+	+	England and Wales	Seasonal analysis (EWD)	Mortality	Figures by sex and age for the Government Office Regions of England, and Wales are presented for the five-year period 2003/04 to 2007/08, and by cause of death from 2004/05 to 2006/07	In the four months of winter 2007/08 there were an estimated 25,300 more deaths in England and Wales than in the non-winter period. This was more than in the previous winter, and similar to the winter of 2005/06, but not as many as in the winter of 2004/05. There were just over 1,500 more excess winter deaths in 2007/08 than in 2006/07, an increase of 7 per cent.	Restricted to standard EWM method.
68	Jimenez-Conde J, Ois A, Gomis M, Rodriguez- Campello A, Cuadrado-Godia E, Subirana I, et al. Weather as a trigger of stroke. Daily meteorological factors and incidence of stroke subtypes. Cerebrovasc Dis. 2008; 26 (4): 348-54. ⁶⁸	to 2007/08. To investigate relationship between daily meteorologic al conditions and daily as well as seasonal stroke incidence	Time series	+	+	1,286 consecutive strokes from the referral area of the Hospital del Mar, Barcelona, 2001-2003	Daily meteorologic al data from local monitoring station: - atmospheric pressure (AP) relative humidity (RH) - maximum, minimum, and mean temperatures - the variation of all these measures compared with the	Intra-cerebral haemorrhage (ICH) (n = 243) or ischaemic stroke (IS) (n = 1,043) IS was further divided into non- lacunar stroke (NLS) (n = 732) and lacunar stroke (LS) (n = 311)	Time series analysis	The daily incidences of NLS and ICH were higher in autumn and in winter, but depended strongly on the daily variations of AP Total stroke (TS) incidence showed little association with AP but was higher with the AP variations (CC: 0.127; p < 0.001). NLS were related to AP falls (OR: 2.41; p < 0.001) whilst ICHs were associated with AP rises (OR: 2.07; p = 0.01). NLS inversely related to temperature but not significant after adjusting for AP variations.	

	· · · · · · · · · · · · · · · · · · ·						previous day.	1	1		
69	JG, Adab P, Tunnicliffe W, Olowokure B, et al. Effect of social factors on winter hospital admission for respiratory disease: a case- control study of older people in	To establish the most important (especially social) factors associated with winter hospital admissions among older people presenting with acute respiratory disease	case-control study	++	++	Seventy-nine general practices in central England.	previous day.Of a cohort ofpatientsconsultingmedicalservices withlowerrespiratorytract infectionorexacerbationof chronicrespiratorydisease, 157hospitalisedcases werecompared to639 controls.Social,medical, andother factorswereexamined byinterview andGP records	Winter hospital admission with acute respiratory disease (excluding upper respiratory tract infection only)	Conditional logistic regression Confounder control: multivariable models including age, chronic conditions, smoking status, hospitalizations in previous year, functional score, ethnicity, rural- urban index, oral steroids, regular contact with family/friends	Risk factors (ORs)Social isolation:4.5 (1.3, 15.8)COPD4.0 (1.4, 11.4)Other chronic dis2.9 (1.2, 7.0)Both6.7 (2.4, 18.4)Being housebound2.2 (1.0, 4.8)Measures of material deprivation werenot significant risk factors foradmission at either individual or arealevel.Authors note: "Socioeconomic factorshad little relative effect compared withmedical and functional factors. Themost important was the presence oflong-term medical conditions(especially COPD), being housebound,and having received two or morecourses of oral steroid treatment in theprevious year. This combination offactors could be used by primarymedical services to identify olderpatients most vulnerable to winteradmissions."	Author acknowledged limitat The study had a low uptake, p because nearly one-third of t hospitalised patients died wit three months of being admitt and therefore could not take in the questionnaire. This res in reduced power for many outcome measures. Insufficie power to test effect of indoor temperature.
70	Ayres JG, Garden C, Reglitz K, Lyon J, Douglas JG. Home warmth and health status of COPD patients. Eur J Public Health. 2008; 18 (4):	To determine if the health status of patients with Chronic Obstructive Pulmonary Disease (COPD) is associated with maintaining recommend domestic	Cross- sectional observational study.	+	+	Study of 148 COPD patients (67 M, mean age 69 (SD 8.5)), living in their own homes	Living room (LR) and bedroom (BR) temperatures were measured at 30 min intervals over 1 week using electronic dataloggers. (Outdoor temperatures	Health status was measured using the St George's Respiratory Questionnaire (SGRQ) and EuroQol: EQ VAS	Descriptive statistics were collated for temperature monitoring results. Parametric and non- parametric statistics were used. Unadjusted associations between demographic, clinical and temperature	Independent of age, lung function, smoking and outdoor temperatures, poorer respiratory health status was significantly associated (P = 0.01) with fewer days with 9 h of warmth at 21 degrees C in the LR. A sub analysis showed that patients who smoked experienced more health effects than non-smokers (P < 0.01). <u>Conclusion</u> : maintaining the warmth guideline of 21 degrees C in living areas	Confounders of underlying du efficiency to maintain 9h/210 controlled for, bias of hospita admitted cases noted, expose outdoor cold not accounted f arbitrary selection of 'recommended' 9h/21C temperature not 'experience 'comfort' temperature. The findings are of limited generalisability to non hospit admitted COPD patients

indoor measures were temperatures of 21 deg C of 21 deg C of 21 deg C for at least 9 h per day in living areas measures were of 21 deg C for at least 9 h per day in living areas for at least 9 h per day in living areas measures were for at least 9 h per day in living areas for at least 9 h per day in living areas I deg c for at least 9 h per day in living areas measures were for at least 9 h per day in living areas for at least 9 h per day in living areas for at least 9 h per day in living areas	-				
Image: Service of the set of the se		indoor			for at least 9 h per day was associated
for at least 9 h Ilinitation and smokers were more vulnerable to get ady in disease impact reduction in warmth. scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS scores and EQ VAS predi					
Image: Perday in living areas Perdug in living areas Image: Perdug in living areas Perdug in living areas <td></td> <td></td> <td>Met Office.)</td> <td></td> <td></td>			Met Office.)		
Iving areas scores The demographic and diminativables in analyses included: age, validated; age, validated; age, validated; admissions core, number of prior admissions for COPD and percentage of predicted FEV1 and PCV exere bighly correlated (FEV1 and PCV exere bighly correlated (FEV1 and PCV exere bighly correlated; 0.10 in the unadjusted analyses ure of variables with P values of at least 0.10 in the unadjusted analyses					
scores. The demographic and clinical variables in analyses included: age, validated age, validated smoking status, martial status, Carstairs deprivation score, number of prior admissions for COPD and percentage of percentage of predicted FEV1 and FVC. were highly correlated (= 0.61, P < 0.001 only predicted FEV1 was used. Variables with P -values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated (= Using Status) status, Carelated (= Status) St		per day in		disease impact	reduction in warmth.
Image: Section of the section of th		living areas		scores and EQ VAS	
clinical variables in analyses age, validated age, validated smoking status, marital status, Carstairs deprivation score, number of prior admissions for COPD and percentage of predicted EV1 and FVC. Ware highly correlated (r = 0.61, P < 0.001) only				scores. The	
analyses included: age, validated smoking status, marital status; Carstairs deprivation score, number of prior admissions for COPD and percentage of predicted FEV1 and FVC As FEV1 and FVC As FEV1 and FVC As FEV1 and FVC were highly correlated (r = 0.61, P < 0.001) only predicted FEV1 was used. Variables with Pvalues of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated of uscons - Pvalue				demographic and	
age, validated smoking status, marital status, Carstairs deprivation score, number of prior admissions for COPD and percentage of predicted FEV1 and FVC were highly correlated (r = 0.61, P < 0.001) only predicted FEV1 was used. Variables with P-values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated outcomes a P-value				clinical variables in	
smoking status, marital status, Carstairs deprivation score, number of prior admissions for COPD and percentage of predicted FEV1 and FVC. As fEV1 and FVC as a fEV1 was used. Variables with P-values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated				analyses included:	
Image: Section of the section of th				age, validated	
Image: Carstains deprivation score, number of prior admissions for COPD and percentage of predicted FEV1 and PVC. AS FEV1 and FVC. AS FEV1 and FVC. were highly correlated (r = 0.61, predicted FEV1 was used. Variables with P-values of at least 0.10 in the unadjusted analyses were entered into analysis. Using Bonferroni correlated regression analysis. Using Bonferroni correlated correlated of correlotion for multivariate regression analysis. Using Bonferroni correlated of cortiones a P-value Supredicted feroni				smoking status,	
deprivation score, number of prior admissions for COPD and percentage of predicted FEV1 and FVC. AS FEV1 and FVC. Were highly correlated (r = 0.61, P < 0.001) only predicted FEV1 was used. Variables with P-values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated outcomes a P-value				marital status,	
Image: Second				Carstairs	
admissions for COPD and percentage of predicted FEV1 and FVC. As FEV1 and FVC were highly correlated (r = 0.61, P < 0.001) only predicted FEV1 was used. Variables with P-values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated outcomes a P-value				deprivation score,	
COPD and percentage of predicted FEV1 and FVC. As FEV1 and FVC were highly correlated (r = 0.61, P < 0.001) only predicted FEV1 was used. Variables with P-values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni Correction for multiple testing of intercorrelated outcomes a P-value				number of prior	
percentage of predicted FEV1 and FVC. As FEV1 and FVC. were highly correlated (r = 0.61, P < 0.001) only				admissions for	
Image: state in the state				COPD and	
FVC. As FEV1 and FVC. Were highly correlated (r = 0.61, P < 0.001) only				percentage of	
FVC were highly correlated (r = 0.61, P < 0.001) only predicted FEV1 was used. Variables with P-values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated outcomes a P-value					
Image: state of the state				FVC. As FEV1 and	
Image: P < 0.001) only				FVC were highly	
Image: state of the state				correlated (r = 0.61,	
Image: sector of the sector				P < 0.001) only	
P-values of at least 0.10 in the unadjusted analyses were entered into an ordinary least squared multivariate regression analysis. Using Bonferroni correction for multiple testing of intercorrelated outcomes a P-value				predicted FEV1 was	
Image: state stat					
Image: second				P-values of at least	
Image: state of the state				0.10 in the	
Image: state in the state				unadjusted analyses	
Image: squared multivariate Image: squared multivariate <td></td> <td></td> <td></td> <td>were entered into</td> <td></td>				were entered into	
Image: Second				an ordinary least	
Image: Second analysis Image: Second analysis Image: Second analys				squared	
Using Bonferroni correction for multiple testing of intercorrelated outcomes a P-value				multivariate	
Image: Contraction for the string of the				regression analysis.	
Image: Contraction for the string of the				Using Bonferroni	
intercorrelated outcomes a P-value					
outcomes a P-value				multiple testing of	
				intercorrelated	
of <0.01 was				outcomes a P-value	
				of <0.01 was	

					1			1			T
									required for significance.		
									Data were analysed		
									separately for		
									continuing smokers		
									and for non-		
									smokers.		
71	Rocklov J,	To describe	Time series	++	++	Population of	Temperature	Mortality, by	Generalized	Optimal (+minimum mortality)	Reviewer comment
	Forsberg B. The	seasonal				Stockholm,	derived from	cause	additive Poisson	temperature' was around 11-12 deg C.	
	effect of	patterns of				Sweden,	local		regression models	Below this temperature the cumulative	Although not fully clear, the a
	temperature on	natural				1998-2003	meteorologic	Modifiers		RR corresponded to a 0.7% (95%	and cause-specific results
	mortality in	mortality and					al monitoring	Age	Confounding	CI=0.5-0.9) decrease per degrees C.	presented seem to be heat e
	Stockholm	temperature-					stations for	Cause:	<u>control</u>		No equivalent results are pro
	19982003: a	mortality					Stockholm	cardiovascular,	influenza, season,	Age	for cold risk
	study of lag	relationship						respiratory	time trends, week	<65 years 0.5% (not	
	structures and	for high and							day, and holidays	significant)	
	heatwave	low								65-74 years 1.5% (not	
	effects. Scand J	temperatures								significant)	
	Public Health.									>74 years 1.6% (0.9, 2.3)	
	2008; 36(5):										
	516-23. ⁷¹									<u>Cause</u>	
										Cardiovascular 1.1% (95% CI=0.3-	
										2.0)	
										Respiratory 4.3% (95% CI=2.2-	
										6.5)	
										Lag structures from moving averages	
										and polynomial distributed lag models	
										suggested a prolonged effect during	
										winter, covering about a week.	

Арре	ndix 5 table conti	nued: 2007 stud	dies			-		-			
Ref	Study	Aim of study	Study design		lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>2007</u>											
	Bischoff-Ferrari HA, Orav JE, Barrett JA, Baron JA. Effect of seasonality and weather on fracture risk in individuals 65 years and older. <i>Osteoporosis</i> <i>international</i> 2007; 18 (9): 1225-33. ⁷²	To investigate seasonal variation in the incidence of four common fractures, and explore the association of weather with risk	Population- based observational study (analysis of Medicare data): semi- ecological comparisons	++	++	Individuals >= 65 years from 5% sample of the US Medicare population, residing in 50 US states 1 July 1986 to 30 June 1990 Cases with evidence of bone cancer of prior fracture were excluded.	 Season (winter was DJF, summer JJA etc) Weather (monthly data): snowfall sunny days mean daily temperature (data from US National Oceanic and Atmospheric Administratio n) 	• Fractures: - hip - distal forearm - proximal humerus - ankle.	Descriptive statistics and rate comparisons Poisson regression to study associations of season and weather variables with fracture risk with 95% confidence intervals. Fractures also evaluated in subgroups of populations.	For all fractures, rates were highest in winter and lowest in summer ($p < 0.05$ at all sites). The winter/summer elative risk for was significant for hip fractures (1.08, 1.05-1.12), distal forearm (1.19, 1.14-1.24), proximal humerus (1.20,1.14-1.27), and ankles (1.22, 1.15-1.29). <i>Winter</i> Higher winter temperatures were inversely related to risk for the distal forearm fractures (RR per 10 degrees Fahrenheit = 0.95, 0.92-0.99) and ankle fractures (0.87, 0.83-0.92). Winter peaks were more pronounced in warm climate states, in men, and in those younger than 80 years old. Total snowfall was associated with a reduced relative risk of hip fracture (0.95 (0.91- 0.99) per 20 inches) but an increased risk of non-hip fractures (6-12%; p < 0.05 at all sites). <i>Summer</i> Hip fracture risk tended to be lower during sunny weather (- 3% per 2 weeks of sunny days; p = 0.13), while other fractures were increased (15%- 20%; p < 0.05) in sunny weather. Significant differences in the winter- summer relative risk for hip and distal forearm fractures were seen between genders, and in distal forearm and proximal humerus according to age	Case definitions depended or validity of Medicare claims da Misclassification of exposure may have occurred when generalising weather from no local weather stations. The majority of cases were white female.

					1			1		1	
										bracket. Fractures contribute considerably to	
										winter morbidity in older individuals.	
										Younger age between 65 and 80, living	
										in warmer states and male gender are	
										risk factors for increased winter	
										morbidity due to fractures. Weather	
										affects hip fracture risk differently than the other fractures studied.	
73	Davie GS, Baker	To investigate	Cross-	+	+	New Zealand,	Seasonal	Cause-specific	Generalised		Authors note that the work w
	MG, Hales S,	the role of	sectional	т	т	between 1 st	definition:	monthly mortality	negative binomial	Age Young and the elderly particularly	benefit from a time-series an
	Carlin JB.	gender,	seasonal			January 1980	winter (June-	rates per 100,000	regression (selected	vulnerable	exploration of the role of clim
	Trends and	region and	analysis			until 31 st	September) vs	population	through goodness-		influenza, behaviour, crowdir
	determinants of	deprivation	,			January 2001	warmer	calculated from	of-fit tests) were	Sex (adjusted for all major covariates)	winter, levels of home heatin
	excess winter	on the				inclusive	months	routinely	used to model all-	M 1	thermal performance of
	mortality in	magnitude of					(October-	collected national	cause and cause-	F 1.09	houses.
	New Zealand:	excess winter					May).	mortality data by	specific mortality		
	1980 to 2000.	mortality						the New Zealand	rates between	Cause (adjusted for all major	
	BMC Public	(EWM) in					Effect	Health	winter (June-	covariates)	
	Health. 2007; 7: 263. ⁷³	New Zealand					modifiers	Information	September) and the	% of all EWDs	
	263.	(NZ) countries.					Age, gender, ethnicity,	Service, Ministry of Health	warmer months (October–	Circulatory system47%Respiratory system31%	
		Also of					geographical		May).	Respiratory system 51%	
		interest was					region,		ividy).	No evidence that EWM differed by	
		identifying					material/socia		No tests used for	ethnicity, region or local-area based	
		causes of					I deprivation		comparisons	deprivation level.	
		death with							between winter and		
		high					Confounders		non-winter.	Author note: "EWM in NZ is substantial	
		EWM.					not treated.			and at the upper end of the range	
										observed internationallythe	
										surprising lack of variation in EWM by	
										ethnicity, region and deprivation,	
										provides little guidance for how such	
74	Hajat S, Kovats	To determine	Ecological	++	++	All regions of	Maximum,	Mortality	Poisson generalised	mortality can be reduced." For all regions combined, a mean	
	RS, Lachowycz	the subgroups	time-series	1.4	1.4	England and	minimum and	ivioriality	linear models	relative risk of 1.06 (1.05, 1.06) per	
	K. Heat-related	of the				Wales, 1993	mean		allowing	deg C decrease below the cold	
	and cold-	population				and 2003	temperature		for over-dispersion	threshold (set at the 5th centile). Cold	
	related deaths	that are most					based on: (i)			effects were strongest in the East	
-			•			•	•	•	•	· · · · · · · · · · · · · · · · · · ·	•

			•									
	in England and	vulnerable to					Central		Control of	England region.		
	Wales: who is at	heat- and					England		<u>confounding</u>			
	risk? Occup	cold-related					temperature		cubic smoothing		articularly those in	
	Environ Med.	mortality					plus (ii) one		splines of date	nursing and care	homes, were most	
	2007; 64 (2): 93-						monitoring			vulnerable.		
	100. ⁷⁴						station per					
							region for			Vulnerability to e	ither heat or cold was	
							regional			not modified by a	area-based measures	
							analyses			of deprivation, ex	cept in rural	
										populations whe	re cold effects were	
							Modifiers			slightly stronger i	in more deprived	
							- classified			areas.		
							from					
							postcode					
							linkage of					
							individual					
							death records					
							to a UK					
							database of					
							all care and					
							nursing					
							homes, and					
							2001 UK					
							census small-					
							area					
							indicators					
75	Medina-Ramon	To examine	Case-	++	++	Daily	Exposure was	All-cause	The effect of hot	Percent change in	n total and cause-	
	M, Schwartz J.	the increase	crossover &			mortality data	assessed	mortality;	and cold	-	associated with (cold)	
	Temperature,	in mortality	meta-analysis			for 6,513,330	using two	Myocardial	temperature was		sults from the meta-	
	temperature	associated				deaths in 50	approaches:	infarction	examined in		cities, 1989–2000	
	extremes, and	with hot and				US cities,	(i) exposure	mortality;	season-specific			
	mortality: a	cold				1989-2000	to extreme	Cardiac arrest	models.	Cold exposure		
	study of	temperature					temperatures	mortality		Sequential result	s as follows	
	acclimatisation	in different					using city-	,	Meta-analysis city-	Lag 0	1	
	and effect	locations, the					specific		specific results, to	Lag 1	Extreme temp*	
	modification in	determinants					indicator		examine several city	Lag 2-day]	
	50 US cities.	of the					variables		characteristics as	Lag 0	1	
	Occup Environ	variability in					based on the		effect modifiers:	Lag 1	Piecewise linear	
	Med. 2007;	effect					local		- mean of cold	Lag 2-day		
			L	I	I	L		1	incur of colu		-	1

64 (12): 827- 33. ⁷⁵	estimates,			temperature	months' temp (deg		
33.75	and its			distribution;	C)	<u>Total mortality</u>	
	implications			(ii) piecewise	 variance of cold 	Extreme	
	for adaptation			linear	months temp (deg	0.03 (21.09 to 1.16)	
				variables to	C)	1.79 (0.87 to 2.72)	
				assess	- central heating (%)	1.59 (0.56 to 2.63)	
				exposure to	- population density	Piecewise	
				temperature	(pop/km ⁻²)	-0.19 (-0.22 to -0.15)	
				on a		0.23 (0.18 to 0.27)	
				continuous		0.04 (0.01 to 0.08)	
				scale		Myocardial infarction	
				above/below	Confounder	Extreme	
				a threshold.	control: fixed	2.43 (20.79 to 5.75)	
					stratum case-	1.51 (21.56 to 4.67)	
					crossover	3.90 (0.18 to 7.76)	
						Piecewise	
						0.00 (20.11 to 0.11)	
						0.25 (0.14 to 0.36)	
						0.26 (0.15 to 0.36)	
						<u>Cardiac arrest</u>	
						Extreme	
						7.29 (21.92 to 17.4)	
						11.9 (2.32 to 22.4)	
						16.2 (5.12 to 28.4)	
						Piecewise	
						-0.25 (-0.61 to 0.12)	
						0.62 (0.25 to 1.00)	
						0.39 (0.07 to 0.71)	
						*	
						* Per cent change in mortality on extreme temperature days relative to all other days	
						+ Per cent change in mortality per each degree of	
						maximum daily temperature below 17 deg C	
						Modification by city characteristics of	
						the two-day cumulative effect of	
						extreme cold on mortality. Comparison	
						of the	
						predicted change in mortality at the	
						25th and 75th percentile of the effect	
						modifier distribution.	
	I						

				-			•		
								Sequential results as follows	
								Mean of cold months' temp (deg C)	
								Variance of cold months temp (deg C)	
								Central heating (%)	
								Population density (pop/km ⁻²)	
								Change in total mortality at the:	
								25th percentile	
								1.31 (0.04 to 2.60)	
								1.88 (0.75 to 3.03)	
								1.79 (0.28 to 3.32)	
								1.87 (0.50 to 3.26)	
								75th percentile	
								1.81 (0.62 to 3.02)	
								1.13 (20.14 to 2.41)	
								1.22 (20.11 to 2.57)	
								1.70 (0.60 to 2.82)	
								Change in MI mortality at the:	
								25th percentile	
								3.10 (21.36 to 7.77)	
								4.65 (0.27 to 9.22)	
								4.38 (21.61 to 10.7)	
								4.66 (20.43 to 10.0)	
								75th percentile	
								4.71 (0.17 to 9.46)	
								3.13 (21.42 to 7.89)	
								3.92 (21.05 to 9.14)	
								4.26 (0.17 to 8.51)	
								Change in CA mortality at the:	
								25th percentile	
								11.9 (21.65 to 27.4)	
								18.00 (4.71 to 32.9)	
								18.0 (2.28 to 36.2)	
								17.8 (3.96 to 33.5)	
								75th percentile	
								19.0 (6.29 to 33.3)	
								14.00 (0.19 to 29.7)	
								14.2 (0.90 to 29.2)	
								16.7 (5.29 to 29.3)	
L I	1	1	1 1	L	1	1	I	(

					T	T					
76	Morris C. Fuel poverty, climate and mortality in Northern Ireland 1980- 2006 (NISRA Occasional Paper 25): Statistics and Boccasch	To examine temperature and changes in mortality rates in Northern Ireland, focusing on circulatory and	Observational study	+	++	Northern Ireland, 1980- 2006	Ambient temperature. Housing as an effect modifier	Mortality from circulatory and respiratory diseases	Descriptive analyses of relationship between housing conditions, cause of death and temperature	Mortality increases associated with extreme cold (2-day cumulative increase 1.59% (0.56, 2.63)), the former being especially marked for myocardial infarction and cardiac arrest deaths. The effect of extreme cold (defined as a percentile) was homogeneous across cities with different climates, suggesting that only the unusualness of the cold temperature (and not its absolute value) had a substantial impact on mortality (that is, acclimatisation to cold). During the period 1980-2006, deaths from circulatory and respiratory causes have declined by about 30%. In terms of death rates, there is some variability by age and cause in the decline, but all groups show a decline. Little decline in respiratory death rates for those 65 and over. It was possible to construct a robust	The authors conclude that the a considerable improvement cold-related mortality , may b linked to measures addressir poverty though this is not investigated
	and mortality in Northern Ireland 1980- 2006 (NISRA Occasional Paper 25):	and changes in mortality rates in Northern Ireland, focusing on	study				Housing as an effect	respiratory	between housing conditions, cause of death and	have declined by about 30%. In terms of death rates, there is some variability by age and cause in the decline, but all groups show a decline. Little decline in respiratory death rates for those 65 and over.	a considerable improvement cold-related mortality , may b linked to measures addressir poverty though this is not
	2007.									The relationships broadly hold up for shorter time periods. From 1980-1999, the proportion of deaths that could be linked to temperature shortfall was 16-21%, dependent on age group, falling to 5-	

	-										
77	Myint PK, Vowler SL, Woodhouse PR, Redmayne O, Fulcher RA. Winter excess in hospital admissions, in- patient mortality and length of acute hospital stay in stroke: a hospital	To examine the hypothesis that age, sex and type of stroke are major determinants of the presence or absence of winter excess in morbidity and mortality	Register- based observational study	+	++	Hospital- based stroke register from Norfolk, UK (n=5,481 patients, men=45%, age range 17 to 105 years, median=78 years).	Seasonal definition of excess winter death (Curwen)	Mortality	Calculation of winter excess for the number of admissions, in- patient deaths and length of acute hospital stay sex- specific analyses by (1) seasonal year and (2) quartiles of patients' age and stroke subtype.	 12% in the period 2000-2006. The circulatory death rate among those aged 65 or over was affected by temperature shortfall in each of the successive five year periods from 1980-2004. The impact of one degree of shortfall in the 1980s, however, was about three times as great as in the period 2000-2004, and even in the 1990's, the impact was more than double. Strong relationship found between type of central heating and cause of death (see Table 13) There appeared to be winter excess in hospital admissions, deaths and length of acute hospital stay overall accounting for 3/100,000 extra admissions (winter excess index of 3.4% in men and 7.6% in women) and 1/100,000 deaths (winter excess index of 4.7 and 8.6% in women) due to stroke in winter compared to non-winter periods. Older patients with non-haemorrhagic stroke mainly contribute to this excess. If our findings are replicated the period and the period and the excess index of the excess	Potential confounders related environment factors not dired accounted for. Exposed temperature, smoking, influe risks were not accounted for winter period is abritrary and based on temperatures. Win excess controlled for age and but no estimates of associaited provided.
	length of acute hospital stay in stroke: a	absence of winter excess in morbidity				median=78			patients' age and	non-haemorrhagic stroke mainly contribute to this excess.	
	database study over six seasonal years in Norfolk, UK. Neuroepidemiol ogy. 2007; 28(2): 79-85. ⁷⁷	associated with stroke.								throughout England and Wales, it is estimated that there are 1,700 excess admissions, 600 excess in-patient deaths and 24,500 extra acute hospital bed days each winter, related to stroke within the current population of approximately 60 million.	

Appe	ndix 5 table conti	nued: 2006 stud	dies								
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
2006											
78	Carson C, Hajat S, Armstrong B, Wilkinson P. Declining vulnerability to temperature- related mortality in London over the 20th century. Am J Epidemiol. 2006; 164(1): 77-84. ⁷⁸	To examine the degree to which population vulnerability to outdoor temperature changed over the 20 th century, as an indication of the possible effect of improvement in infrastructure, technology, and general health.	Time series study (weekly data)	+	++	London, UK during four periods of the 20 th century: 1900-1910, 1927-1937, 1954-1964, and 1986- 1996	Seasonal definition (winter (DJFM) to non-winter (AMJJASON) ratio) and use of temperature data for London (meteorologic al monitoring stations) for cold-mortality relationship <u>Confounding</u> Time-series for temperature- mortality relationship adjusted for season but not influenza	All cause, CVD and respiratory mortality	(for temperature) Autoregressive Poisson models	The ratio of winter deaths1900-19101.24 (1.16, 1.34)1927-19371.54 (1.42, 1.68)1954-19641.48 (1.35, 1.64)1986-19961.22 (1.13, 1.31)Temperature-mortality gradient for cold deaths (the increase in mortality per 1 degree C drop below 15 degrees C)1900-19102.52% (2.00, 3.03)1927-19372.34% (1.72, 2.96)1954-19641.64% (1.10, 2.19)1986-19961.17% (0.88, 1.45)Corresponding population attributable fractions were 12.5%, 11.2%, 8.7%, and 5.4%.Reductions in cold risk were most pronounced for CVD mortality.Authors note that "there was a progressive reduction in temperature- related deaths over the 20th century, despite an aging population. This trend is likely to reflect improvements in social, environmental, behavioural, and health-care factors"	
79	Diaz J, Linares C, Tobias A. Impact of extreme temperatures	To analyse the relationship between extreme temperatures	Time series study of one age group	++	+	Madrid, Spain, January 1986 to December 1997.	Meteorologic al variables from Madrid- Retiro Observatory	Cause-specific daily mortality as provided by the Madrid Regional	Generalised additive models fit separately for males, females and both sexes, for	Mortality impact was limited for temperatures in the 5th to the 95th percentiles range, but increased sharply thereafter.	

4											
l l	on daily	and sex- and		ſ '	\Box	\Box	located in the	Department of	winter, and for	When both sexes were analysed jointly,	T
	mortality in	cause-specific		'			Madrid	Statistics. All	summer.	effect of heat proved relevant for	
	Madrid (Spain)	mortality	'	'			metropolitan	except accidental		organic- and circulatory-cause	· /
.	among the 45-	among	'	1 '			area:	deaths were		mortality, with ARs of 11.5% and	
.	64 age-group.	persons aged	'	'			maximum	included and		12.0%, respectively. When sexes were	· /
	Int J	45-64 years.	'	'			daily	labelled as due to		analysed separately, results for males	
	Biometeorol.		'	1 '			temperature	organic causes,		were similar for organic (AR=12.3%)	
,	2006; 50(6):	'	'	1 '			(Tmax);	circulatory		and circulatory causes (13.3%), but no	
,	342-8. ⁷⁹	'	'	1 '			minimum	diseases, and		relationship observed for females.	
,	1	'	'	1 '			daily	respiratory			
,	1		'	'			temperature	diseases.		Ozone effect noticeable on organic-	· /
	1		'	1 '			(Tmin);			cause	· /
	1		'	'			relative			mortality in both sexes (AR=6.4%).	· /
,	1		'	'			humidity (RH)			Further appreciable effects were	· /
.	1		'	1 '			observed at			registered for: TSP in the case of males	· /
.	1		'	1 '			7.00 a.m.			(AR=4.2%) and organic causes; and	· /
.	1		'	'						NO2, which proved statistically	· /
,	1		'	1 '			Effect			significant in the case of both sexes for	· /
<u> </u>	1		'	1 '			modifiers			both organic and circulatory causes,	
,	1		'	'			Season,			particularly the latter (AR=15.0%).	
<u>, </u>	1		'	'			gender				· /
,	1		'	'			genaei			Impact of extreme cold was solely	
.	1		'	'			<u>Confounders</u>			evident in female organic-cause	
,	1		'	1 '			Air pollution			mortality AR=7.7%).	
.	1		'	1 '			(nitrogen				
.	1		'	'			ocides,			Influenza epidemics ("g") explained	
.	1		'	'			sulphur			most of variance in these models.	
,	1		'	'						THOSE OF VARIANCE IN THESE MODELS.	
<u>, </u>	1	'	'	'			dioxide, total				
,	1		'	'			suspended				
,	1		'	1 '			particulate				
,	1		'	1 '			matter,				
<u>, </u>	1		'	1 '			ozone),				
<u>, </u>	1		'	'			influenza				
<u>, </u>	1		'	1 '			epidemics,				
,	1		'	'			time lags,				
<u>, </u>	1		'	'			time trends,				
	 '	_ '	_ '	↓ '	<u> </u>		seasonalities				
80	Frank DA,	To evaluate	Cross-	+	+	USA: 2		Survey of		Families participating in the Low	Author acknowledged limitat
,	Neault NB,	the	sectional	1 '		emergency		caregivers with		Income Home Energy Assistance	Do not know why those eligit
	Skalicky A, Cook	association	surveys	′		departments		children < 3 years		Program reported more household	LIHEAP benefits did not recei
4											

JT, Wilson JD,	between a	and 3 primary	of age regarding	food insecurity (24% vs 20%)	them. Although attempt mad
Levenson S, et	family's	care clinics in	household		control for covariates throug
al. Heat or eat:	participation	5 urban sites,	demographics,	There were no significant group	multivariate analysis possible
the Low Income	in the Low	June 1998 to	child's lifetime	differences between recipients and	there was unobserved differe
Home Energy	Income Home	December	history of	nonrecipients in caregiver's education	between the two groups.
Assistance	Energy	2004.	hospitalizations,	or child's gender.	
Program and	Assistance		and, for the past		
nutritional and	Program and		12 months,	After controlling for these potentially	
health risks	the	Surveyed	household public	confounding variables, including	
among children	anthropometr	population	assistance	receipt of other means-tested	
less than 3	ic status and	included only	program	programs, compared with children in	
years of age.	health of their	Low Income	participation and	recipient households, those in	
Pediatrics.	young	Home Energy	household food	nonrecipient households had greater	
2006; 118 (5):	children.	Assistance	insecurity,	adjusted odds of being at aggregate	
e1293-302. ⁸⁰		Program	measured by the	nutritional risk for growth problems,	
	(Children's	income-	US Food Security	defined as children with weight-for-age	
	Sentinel	eligible renter	Scale, which	below the 5th percentile or weight-for-	
	Nutrition	households	classifies	height below the 10th percentile	
	Assessment	without	households as	(Adjusted odds ratio 1.23;95%Cl 1.00-	
	Project)	private	food insecure if	1.52, p=0.5).	
		insurance	they report that		
		who also	they cannot	Nonreceipients households had a	
		participated	afford enough	significantly lower mean weight-for-	
		in > or = 1	nutritious food	age z scores calculated from age- and	
		other means-	for all of the	gender-specific values from the	
		tested	members to lead	Centers for Disease Control and	
		program.	active, healthy	Prevention 2000 reference data (z	
			live	score -0.033 v 0.076, p=0.01).	
				However, in adjusted analyses, children	
				aged 2 to 3 years in recipient	
				households were not more likely to be	
				overweight (BMI > 95th percentile)	
				than those in nonrecipient households.	
				Rates of age-adjusted lifetime	
				hospitalization excluding birth and the	
				day of the interview did not differ	
				between Low Income Home Energy	
				Assistance Program recipient groups.	

Image: Second			-									
(1.10, 1.73)), while the RR declined substantially in fall and winter (RR = 1.06, (0.83 to 1.35) for the latter).	81	Jacobsen SJ, Killian JM, Weston SA, Roger VL. Seasonality and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted County, Minnesota, 1979 to 2002. J Am Coll Cardiol. 2006; 48 (2):	relationship of season and weather types with myocardial infarction (MI) and sudden cardiac death (SCD) in a geographicall y defined population, and test the hypothesis that increased risk in winter is related to	association	+	+	population of Olmsted County, Minnesota, USA, 1979 to	and meteorologic al data from local airport monitoring station (National Weather	myocardial infarction Sudden cardiac death (SCD) - with antecedent coronary heart disease (CHD) - without antecedent CHD (unexpected	year-specific event rates were calculated for each season, weather and precipitation category. Poisson regression was used to assess the association of MI/SCD on season and meteorological variables. Two-way interaction terms were used to test effect modification by outcome, prior CHD status, age, gender and	evaluated in the 2 emergency departments, children from eligible households not receiving the Low Income Home Energy Assistance Program had greater adjusted odds than those in recipient households of acute hospital admission on the day of the interview (adjusted odds ratio 1.32, 95% Cl:1.00-1.74; p=0.05) Age-, gender-, and year-adjusted RR of SCD, but not of MI, was increased: - in winter (vs summer): 1.17 (1.03, 1.32) - by low temperatures (<0 deg C vs. 18- 30 deg C): 1.20 (1.07, 1.35) Associations were stronger for unexpected SCD than for SCD with prior CHD. There was significant effect modification by prior CHD status in the relationship between temperature and SCD. Compared with the 18-30 deg C category, the RR below 0 deg C for unexpected SCD was 1.35 (1.17, 1.56) and with prior CHD was 0.95 (0.77, 1.17). After adjustment for all meteorological variables, low temperature was	
		2006; 48 (2): 287-92. ⁸¹	weather.							by outcome, prior CHD status, age, gender and	 1.17). After adjustment for all meteorological variables, low temperature was associated with a large increase in the risk of unexpected SCD (RR = 1.38 (1.10, 1.73)), while the RR declined substantially in fall and winter (RR = 	

P2 Medina-Ramo M, Zandeni A, Subpolation Schwart J, Schwart J, Schwar		1								Т	T	
187 Medina-Ramon To identify, Schwart J. Bardiny analysis Case-only analysis + + s and subpopulation s and s and subpopulation s and s and source present temperatures in research and mortality; + + s and subpopulation s and s and subpopulation s and subpopulation s and subpopulation s and s s and s specific c ause of death in a multicity c case only a analysis. + + s + s + s + s + s + s + s + s + s +			1	Į					ļ		related to either outcome.	
187 Medina-Ramon To identify, Schwart J. Bardiny analysis Case-only analysis + + s and subpopulation s and s and subpopulation s and s and source present temperatures in research and mortality; + + s and subpopulation s and s and subpopulation s and subpopulation s and subpopulation s and s s and s specific c ause of death in a multicity c case only a analysis. + + s + s + s + s + s + s + s + s + s +			1	ļ					ļ		No age or gender interactions were	
P result be accounted for by daily weather. 92 Metamatamon M, Zanobetti A, Cavanagh DP, Schwart J. Extreme coldentify causes with temperatures and mortality: assessing effect to temperature analysis. Case-only and temperature temperatures and social cause of feath na multi-city analysis. ++ + 7,789,655 deaths from Sol U.S. citles, 1989-2000. Mortality, alparameters of daily of daily temperatures in each city defined extremely cause of feath na multi-city in a multi-city analysis. for each mortality: assessing effect to temperature extremely cause of feath na multi-city in a multi-city			1	Į			' 		Į			
P result be accounted for by daily weather. 92 Metamatamon M, Zanobetti A, Cavanagh DP, Schwart J. Extreme coldentify causes with temperatures and mortality: assessing effect to temperature analysis. Case-only and temperature temperatures and social cause of feath na multi-city analysis. ++ + 7,789,655 deaths from Sol U.S. citles, 1989-2000. Mortality, alparameters of daily of daily temperatures in each city defined extremely cause of feath na multi-city in a multi-city analysis. for each mortality: assessing effect to temperature extremely cause of feath na multi-city in a multi-city				Į			' 		Į			
82 Medina-Baromon To identify Case-only Analysis ++ + 7,789.655 Metrozologic Modificution by subject characteristics Considering only samed Considering only samed <thc< td=""><td></td><td></td><td>1</td><td>Į</td><td></td><td></td><td>·</td><td></td><td>Į</td><td></td><td></td><td></td></thc<>			1	Į			·		Į			
International production Secondry Test of the production of subject inductional subje				l								
Cavanagh OP, s and So U.S. cities, Distributions modifier, a city- immetratives extreme cold will have dispective of daily Schwartz J. causes with increased increased increased motifium and regression model Extreme cold will have dispective of daily a and mortality: assessing effect to temperatures ordinality cavalagh OP, s and Age 2 65 years 10.80 yes, Cl (0.98.8, cl (82		,		++	+			Mortality,			
Schwartz J. mortality Extreme causes with increased nortality causes with increased page 26000 page 265 years 0.018 (0.998, 0.028, Cl) page 265 years 0.018 (0.998, 0.028, Cl) and mortality: susceptibility usceptibility neach cly defined calualed in extreme 2 1.018 (0.998, 0.028, Cl) 1.018 (0.998, 0.998, 0.983, 1.013 .018 (0.998, 0.998, 0.983, 1.013 characteristics and specific cause of death in a multi-city case-only analysis. extreme cold days (s/= 1st confounder control 1st 1.029 .009 (0.990, 1.029) .009 (0.999, 1.029) Environ Heelth Perspect. 2006; 114(9): 1331- 6 ¹⁴ extreme .009 (0.995, 1.020 .009 (0.995, 1.023				analysis					Į			Considering only same-day la
Extreme temperatures and mortality: assessing effect to modification by personal extreme classessing effect to calculated in a to modification by temperature extreme classessing effect to calculated in a to extreme calculated in a to subsequent meta- familieExtreme cold extreme calculated in a to subsequent meta- familieExtreme cold (95% CI) 0.998 (0.983, to0.998 (0.983, to0.990, 0.998 (0.983, to0.990, 0.998 (0.983, to0.990, 0.998 (0.983, to0.990, 0.990, to0.900, 0.990, 0.990, to0.900, 0.990, 0.990, 0.090, 0.990, to0.900, 0.990, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0	1	-		Į					Į		on mortality*	
temperatures increased increased maximum was fitted and an Characteristic OR (95% C) and mortality: susceptibility temperature in each city calculated in a 1.039) modification by temperature extremel subsequent meta- female 0.998 (0.983, characteristics extremely analysis. 1.010 Black race 1.009 (0.990, cause of death in a multi-city gas specific Cold days (c/= 1004 (0.990, 1.005 (0.983, in a multi-city cause of death in a multi-city Ist Confounder control 1.009 (0.990, gas specific cause of death in a multi-city Ist Confounder control 1.009 (0.993, gas specific cause of death in dwolffers: individual modifiers: 1.009 (0.995, gas specific causes of death individual modifiers: 1.040 (0.975, 1.008 (0.955, gas specific causes of death, place of death, place of death, and age, ser, and	1			Į			1989-2000.		Į			power.
and mortality: susceptibility to the mperature assessing effect to emperature extreme wetreme extreme extre				ļ					ļ			
assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. temperature extreme extreme characteristics and specific cause of death in a multi-city case-only analysis. time characteristic cause of death individual time characteristic cause of death individual time characteristic cause of death including primary and secondary causes of death, pace time characteristic causes of the putative causes of death, pace time characteristic causes of death, pace time characteristic causes of death including primary and secondary causes of death, pace time characteristic causes of death time characteristic causes of death time characteristic causes of death death, pace death, place time characteristic causes of death time characteristic causes of death time characteristic causes of death, pace time characteristic causes of death time characteristic causes of death death, place time characteristic causes of death, pace time characteristic causes of death time characteristic causes of death time characteristic causes of death death, place time characteristic causeristic causeristic causes time character				ļ			' 		ļ			
modification by personal temperature extreme temperature ext				ļ					ļ			
personal extreme extremely analysis. 1.013 characteristics and specific Black race 1.009 (0.990, cause of death in a multi-city case-only analysis. Low education* 1.006 (0.983- analysis. case-only analysis. Low education* 1.000 (0.995- 1.030 analysis. case-only analysis. Individual modifiers: Individual modifiers of the 1.046) U-to-fhospi death 1.020 (0.995- and (b) of risk Diabetes 0.979 (0.951- Individual and (b) of risk Diabetes 0.979 (0.951- 114(9): 1331- 6. ⁸² causes of death, palce modifiers of the 1.023) I.023) I.023) causes of death, place of death, and age, sex, race and Stroke 0.987 (0.956- 1.079) stroke J.020 V J.030 V I.023) causes of deductional attainment. Here just season 1.020 Stroke 0.987 (0.956- 1.020/ Low acouroiled on I.079) I.033 (1.036-				ļ					ļ			
characteristics and specific cause of death in a multi-city case-only analysis. cold days (=<br 1st percentile). Confounder control Case-only analysis requires control 1.029 case-only analysis. modifiers: individual only of (a) other Out-of-hospi death 1.020 (0.995- individual modifiers: individual only of (a) other Out-of-hospi death 1.020 (0.995- 114(9): 1331- 6. ⁸¹ f. ⁸¹ ges.endary secondary temperature effect causes of causes of causes of death, place primary and primary and age, sex, race and attainment. factors 1.029) 0.095/ 1029 0.095/ 0.995 (0.968- 1.023) 0.008) 0.008) 0.008) 6. ⁸¹ factors 1.029 0.095/ 0.995 (0.968- 1.023)a Componence (fect) causes of causes of death, place the putative of death, and and core of death Pneumonia 1.028 (0.979- 1.029 age, sex, race and and stroke 0.987 (0.956- 1.020) 1.020 1.020 user of the deductional attainment. 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.029-				ļ			' 		ļ			
and specific cause of death in a multi-city case-only analysis. 1st percentile). Confounder control Case-only analysis 1.029) Low education ¹ 1.006 (0.983-) Environ Health Perspect. 2006; 1114(9): 1331- 6 ⁸² Modifiers: including primary and secondary causes of death, place of death, and additionent. Out-of-hospi death 1.020 (0.995-) 1.046) Prespect. 2006; 114(9): 1331- 6 ⁸² Prespect. 2006; 1.029) Diabetes 0.979 (0.951-) 1200 Causes of death, place The puttive of death, and additionent. COPD 0.995 (0.968-) 1000 Causes of death, place the puttive of death, and additionent. COPD 0.995 (0.968-) 1000 Secondary the puttive causes of death, place The puttive of death, and additionent. COPD 0.995 (0.968-) 1000 Secondary the puttive causes of death, place COPD 0.995 (0.968-) 1000 Secondary the puttive additionent of death, place The puttive of death, and additionent. Couse of death to primary risk factors. 1.028 (0.979-) 1010 Secondary the puttive additionent of death, place Secondary Stroke 0.987 (0.956-) 1020 Up that we notifiers 1.020 Up thatity motifiers 1.020) Str			елиетте	ļ			' 	,	ļ	anaiysis.	-	
cause of death in a multr-city case-only analysis. Low education ↑ 1.006 (0.983 requires control analysis. Low education ↑ 1.006 (0.983 requires control only of (a) other Environ Health Perspect. 2006; 1144(9): 1331- 6. ⁸² Modifiers: including modifiers of the death records 1.046) Secondary causes of the death records temperature effect including Presenting chronic condition: including 1.020 (0.995-1) 114(9): 1331- 6. ⁸² secondary causes of the putative COPD 0.995 (0.968-1) 1.020 (0.995-1) 1.020 (0.995-1) 1.020 (0.995-1) 1.020 (0.995-1) 1.04(5): 1331- 6. ⁸² death, place the putative COPD 0.995 (0.968-1) 1.020 (0.995-1) 1.020 (0.995-1) 1.020 (0.995-1) 1.020 (0.995-1) 1.020 (0.979-1) 1.04(5): 1331- 6. ⁸² of death, nald age, sex, race and not primary risk factors Pneumonia 1.028 (0.979-1) 1.079 user of death attainment. Here just season 1.020) 1.053 (1.036-1) Vuer en ot mutually controlled so identified factors Myocarial infarct 1.030 (0.999-1) 1.052) 1.052 1.052 0.052-1) 1.052) 1.052) 1.052 1.0520 0.061 Carriac arrest<			1	ļ					ļ	Confounder control		
in a multi-city case-only analysis. in a multi-city case-only and (b) of (a) other in (0.00) Perspect. 2006; 114(9): 1331- 6. ⁵² in cluding primary and secondary in cluding primary and secondary in a multi-city causes of in a multi-city temperature effect, of death, place of death, not primary risk and educational attainment. in ot primary risk factors. in 0.28 (0.979- 1.028 (0.999- 1.028 (1	ļ			' 		ļ			
case-only analysis. case-only analysis. only of (a) other modifiers of the Environ Health Perspect. 2006; 114(9): 1331- 6. ⁸² Out-of-hospl death 1.020 (0.995 1.046) 1.046) 114(9): 1331- 6. ⁸² only of (a) other modifiers of the secondary 1.046) Presenting chronic condition: 114(9): 1331- 6. ⁸² only of (a) other modifiers of the secondary 1.008) 0.995 (0.968- 1023)a causes of death, place modifiers of the secondary 1.023(0.979- 1.028 (0.979- 1.028 (0.979- 1.028 (0.979- 1.028 (0.979- and not primary risk factors Pneumonia 1.028 (0.979- and of death, and age, sex, race and of death, and other primary risk factors Pneumonia 1.028 (0.979- 1.040 (b) was controlled. U/V was controlled. U/V was controlled. U/V U/V of death, and and and 1.020) 1.053 (1.036- Putative modifiers 1.040 (regress) 1.020 (regress) 1.020 (regress) of death Infiguress U/V U/V U/V U/V of death Infiguress U/V U/V U/V U/V Infiguress			1	ļ				percentile).	ļ		-	
analysis. Environ Health Perspect. 2006; 114(9): 1331- 6. ⁸² 6. ⁸² 6. ⁸² Secondary causes of modifiers of the 1.023)a causes of the putative COPD 0.995 (0.968-) causes of the putative COPD 0.995 (0.968-) add, halc the putative COPD 0.995 (0.968-) adeth, place the putative COPD 0.997 (0.956-) add there just season 1.020) 1.053 (1.036-) Putative modifiers 1.070 1.053 (1.036-) 1.0621-) were not mutually			1	ļ				Modifiers	ļ			
Environ Health Perspect. 2006; 114(9): 1331- 6. ⁸² Environ Health Perspect. 2006; 114(9): 1331- 6. ⁸² Meant Perspect. 2006; 1008 Diabetes 0.979 (0.951- 1020) 6. ⁸² Meant Perspect. 2006; 114(9): 1331- 6. ⁸² Meant Perspect. 2006; 1008 Meant Perspect. 2006; 1008 Meant Perspect. 2006; 1008 Meant Perspect. 2006; 1008 6. ⁸² Meant Perspect. 2006; 1008 6. ⁸² Meant Perspect. 2006; 1008 Meant Perspect. 2006; 1007 Meant Perspect. 2006; 1007 Meant Perspect. 2006; 1007 Meant Perspect. 2006; 1007 Meant Perspect. 2006 Meant Perspect. 2006; 1008 Meant Perspect. 2006; 1007 Meant Perspect. 2006; 1007 Meant Perspect. 2006; 1007 Meant Perspect. 2006 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2006 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 Meant Perspect. 2007 <t< td=""><td></td><td></td><td>1</td><td>ļ</td><td></td><td></td><td>' </td><td></td><td>ļ</td><td></td><td></td><td></td></t<>			1	ļ			' 		ļ			
Perspect. 2006; 114(9): 1331- 6.82 Diabetes 0.979 (0.951- 6.82 factors modified by 1.008) 1.008) 6.82 causes of modifiers of the 1.023)a 6.82 temperature effect, Cause of death, 1.028 (0.979- 6.82 of death, place of death, and not primary risk Pneumonia 1.028 (0.979- age, sex, race and factors. 1.079) 1.028 (0.979- and not primary risk Pneumonia 1.028 (0.979- age, sex, race and 1.079) 1.028 (0.979- adducational adducational 1.020 0.997 (0.956- educational attainment. (b) was controlled. CVD 1.053 (1.036- Putative modifiers 1.070) uere not mutually Myocardia Infarct 1.030 (0.999- controlled so 1.062 1.062 1.062 1.061 identified factors 1.230 1.137 (1.051- may not be 1.230			1	ļ					ļ			
114(9): 1331- 6. ⁸² primary and secondary causes of death, place factors modified by the putative 1.008) 0 0.995 (0.968- 1.023)a 1.023 (0.979- 1.028 (0.979- ard 1.028 (0.979- 1.079) ard age, sex, race and factors. 1.028 (0.979- 1.079) ard broke 0.987 (0.956- 1.020) educational attainment. Here just season 1.020) (b) was controlled. CVD 1.053 (1.036- 1.070) Were not mutually Myocardial infarct 1.030 (0.999- 0.002) 1.062) controlled so 1.062) 1.062) identified factors Cardiac arrest 1.137 (1.051- may not be			1	ļ					ļ			
6. ⁸² 6. ⁸² the putative COPD 0.995 (0.968-) 6.82 modifiers of the temperature effect, of death, place of death, and age, sex, race and the putative COPD 0.995 (0.968-) 7 Guse of death not primary risk Pneumonia 1.028 (0.979-) 8 Secondary not primary risk Pneumonia 1.028 (0.979-) 9 Stroke 0.987 (0.956-) 0.987 (0.956-) 1 Gustor 1.020) 1.053 (1.036-) 9 Putative modifiers 1.070) 1.053 (1.036-) 9 Putative modifiers 1.070) were not mutually Wooardial infarct 1.030 (0.999-) controlled so 1.0270) 10 Componential infarct 1.030 (0.999-) controlled factors 1.020) 10 Gustariani infarct 1.030 (0.999-) controlled factors 1.020) 10 Gustariani infarct 1.030 (0.999-) controlled factors 1.026/2 10 Gustariani infarct 1.030 (0.999-) controlled factors 1.230/1		114 (9): 1331-		ļ					ļ			
Image: Sector of the sector of death, place of death, place of death, and age, sex, race and educational attainment. modifiers of the temperature effect, of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sex, race and educational attainment. Image: Sector of death, and age, sector of death, and attainment. Image: Sector of death, and attainment.		6. ⁸²		ļ					ļ			
Image: sex race and educational attainment. temperature effect, not primary risk factors. Pneumonia 1.028 (0.979–1.028 (0.979–1.028 (0.979–1.028 (0.979–1.028 (0.979–1.028 (0.979–1.028 (0.979–1.028 (0.979–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.9956–1.028 (0.987 (0.985 (0.987 (0.985 (0.987 (0.985	1		1	ļ					ļ		•	
Image: Sex, race and educational attainment. not primary risk factors. Pneumonia 1.028 (0.979– Image: Sex, race and educational attainment. Not primary risk factors. Stroke 0.987 (0.956– Image: Verticational attainment. Here just season 1.020) Image: Verticational attainment. (b) was controlled. CVD 1.053 (1.036– Image: Verticational attainment. Not primary risk factors 1.070) Image: Verticational attainment. Not primary risk factors CVD 1.053 (1.036– Image: Verticational attainment. Not primary risk factors CVD 1.053 (1.036– Image: Verticational attainment. Not primary risk factors Cordiac arrest 1.137 (1.051– Image: Vertication attainment. Not primary risk factors Cardiac arrest 1.137 (1.051–			1	ļ					ļ	temperature effect,	-	
A P P P P P P P P P P P P P P P P P P P			1	ļ					ļ		Pneumonia 1.028 (0.979–	
educational attainment. Here just season 1.020) (b) was controlled. CVD 1.053 (1.036-) Putative modifiers 1.070) were not mutually Myocardial infarct 1.030 (0.999-) controlled so 1.062) identified factors Cardiac arrest 1.137 (1.051-) may not be 1.230)			1	ļ					ļ			
attainment. (b) was controlled. CVD 1.053 (1.036- Putative modifiers 1.070) were not mutually Myocardial infarct 1.030 (0.999- controlled so 1.062) identified factors Cardiac arrest 1.137 (1.051- may not be 1.230)			1	ļ			' 		ļ			
Putative modifiers 1.070) were not mutually Myocardial infarct 1.030 (0.999– controlled so 1.062) identified factors Cardiac arrest 1.137 (1.051– may not be 1.230)			1	ļ			' 	educational	ļ	-		
were not mutually Myocardial infarct 1.030 (0.999– controlled so 1.062) identified factors Cardiac arrest 1.137 (1.051– may not be 1.230)			' İ	ļ				attainment.	ļ		-	
controlled so 1.062) identified factors Cardiac arrest 1.137 (1.051- may not be 1.230)			1	ļ					ļ			
identified factors Cardiac arrest 1.137 (1.051– may not be 1.230)			1	ļ			' 		ļ	'	,	
may not be 1.230)			1	ļ			' 		ļ			
	1		' İ	ļ					ļ		-	
I independent. Contributing cause of death	1		' İ	ļ					ļ			
				l					l	independent.	Contributing cause of death	

·						r	r				
Pitsav Panag DB, Cr C, Stef Short- effect: atmos tempe and hu morbi acute syndro free o polluti	vos C, giotakos Chrysohoou efanadis C. t-term cts of ospheric oerature humidity on oidity from e coronary romes in of air ution rural	To evaluate effect of ambient temperature on morbidity from acute coronary syndromes (ACS) while avoiding confounding by air pollution.	Observational (ecological) study	+	+	Rural Greece, for 1 year.	Ambient temperature	Hospital admission (daily) for acute coronary syndrome	Daily admissions to hospital because of ACS were recorded for 1 year and analysed versus daily temperature and humidity.	Congest heart fail 0.976 (0.947– 1.005) Atrial fibrillation 1.052 (0.993– 1.115) *Results from the meta-analysis of 50 U.S. cities during the period 1989–2000. Estimates represent the relative odds of dying on an extreme cold day for persons who had the condition (e.g., being female) compared with persons who did not have the condition. † High school (=university) graduate or less. Cardiovascular deaths and especially cardiac arrest deaths showed a greater relative increase on extremely cold days. For a 1 degrees C decrease in temperature there was a 1.6% (95% confidence interval 0.9-2.2%) increase in admissions. This effect was more prominent in the elderly. No difference was detected according to sex or type of ACS.	Air quality only assumed to b good in rural areas, this may strictly be true (e.g. high grou level ozone on sunny days)
polluti Greec Cardic Rehab	ition rural cce. Eur J iovasc Prev abil. 2006;										
): 846-8. ⁸³ abito M,	To investigate	Cross-	+	+	Florence,	An objective	Computerized	Calculation of a	Hospital admissions for MI showed a	Authors note that: health
Crisci		the	sectional time			Italy: the	daily synoptic	inpatient hospital	daily MI admission	significant linear increase	complications may bias

		infarction (MI)				1998-2003	classification calculated using seven meteorologic	MI (808 hospitalizations) over five-winter survey provided	index (MIAI), taking into consideration the average admission value, characteristic of	from winter of 1998–1999 to winter of 2002–2003 (P<0.001). Significant differences found between MIAI values on Saturday (lowest MIAI	associations; age/sex effect modifiers not considered; ot environmental variables such pollution/pollen not consider
	climatological approach and hospital admissions for myocardial infarction in Florence, Italy. Environ Res. 2006; 102 (1): 52-60. ⁸⁴	by means of daily weather conditions, classified by an air-mass- based synoptic climatological approach.					al variables. These are measured at 0900 and 1500 h at a weather station located in Florence, by the Institute of Biometeorolo gy of the National Research Council, between the months of December to February, from 1998 to 2003.	by Administration of Careggi Hospital, main hospital in Tuscany. Only data of people resident in Florence considered.	each winter. Time lag in disease onset also considered. Days of the week and air mass types were tested for MIAI differences using the Mann-Whitney U test. Two-day sequences of air mass types tested for MIAI differences using ANOVA and Bonferroni tests.	values) and those observed on Tuesday (P<0.05), Wednesday (P<0.01), and Thursday (P<0.01). Significant MIAI differences found between air masses over short and long periods. MIAI values occurring 24 h after a day characterized by anticyclonic continental air mass were statistically higher than MIAI values occurring the day after a mixed air mass (P<0.05). MIAI values occurring 6 days after a cyclonic air mass were significantly higher than MIAI values occurring 6 days after an anticyclonic polar continental (P<0.05) or after a mixed (P<0.05) air mass. Significant variations found (P<0.001) of mean MIAI values among all possible 2-day sequences of air masses.	
							Effect modifiers Age (>=65, <65) Confounders Temporal, day-of-the- week, year, time lag				
85	Reinikainen M,	To determine	Observational	++	+	Finland: data	Month and	Hospital mortality	Logistic regression	The crude hospital mortality rate was	

Uusaro A,	whether there	study			on 31,040	season	(among ICU	analysis with chi-	17.9% in winter and 16.4% in non-	The study did not adjust for
Ruokonen E,	are seasonal	,			patients	('winter'	patients).	squared.	winter, P = 0.003.	hospital unit occupancy or
Niskanen M.	variations in				treated in 18	defined as the			,	characteristic of patients in
Excess mortality	mortality				Finnish ICUs.	period from	ΑΡΑϹΗΕ ΙΙ	Age, severity of	Even after adjustment for case mix,	surrounding beds. Population
in winter in	rates in					December to	severity of illness	illness, intensity of	winter season was an independent risk	studied was largely patients
Finnish	Finnish					February	was also	treatment, and	factor for increased hospital mortality	than 75.
intensive care.	intensive care					inclusive).	examined.	diagnosis were	(adjusted odds ratio 1.13, 95%	The definition of 'winter' an
Acta	units (ICUs)							controlled for.	confidence interval 1.04-1.22, P =	'summer' periods ignores th
Anaesthesiol	(,					Severity of			0.005).	that cold periods can occur
Scand, 2006:						illness with				of the defined winter period
50(6): 706-11. ⁸⁵						acute			In particular, the risk of respiratory	
						physiology			failure was increased in winter (0.7%	The severity of the Finnish w
						and chronic			increase, p<0.001).	much greater than that in th
						health			,	
						evaluation II			Crude hospital mortality was increased	
						(APACHE II)			during the main holiday season in July,	
						scores and			although not significantly when	
						intensity of			confounding factors adjusted for. The	
						care with			APACHE II severity of illness in July was	
						therapeutic			higher in July (18.3) than other months	
						intervention			(17.6),p=0.004.	
						scoring				
						system (TISS)			An increase in the mean daily TISS	
						scores.			score was an independent predictor of	
									increased hospital mortality (adjusted	
						Only included			odds ratio 1.04 for one additional point	
						patients			(1.04-1.05, p<0.001).	
						admitted for				
						the first time,			Authors' conclusions: severity of	
						and those			illness-adjusted hospital mortality for	
						with a known			Finnish ICU patients is higher in winter	
						outcome.			than in other seasons.	
Southern DA,	To compare	Observation	+	+/-	Alberta,	These data	Hospital	The average	There were 61 snow days and 575 non-	
Knudtson ML,	'snow days'	study			Canada	were merged	admission and	incidence of MIs on	snow days.	Exposed temperature not
Ghali WA,	with 'non-					with data	outcome in	snow days versus		accounted for in modelling,
Investigators A.	snow days'					from	myocardial	nonsnow days was	The incidence of MI (incidence density	morbidities were, influenza
Myocardial	with respect					Environment	infarction.	then determined.	ratio of 1.08, 95% CI 0.82 to 3.10) and	not accounted for.
infarction on	to the					Canada to		Risk-adjusted odds	the use of direct percutaneous	
snow days:	incidence of					determine the	The use of acute	ratios for the use of	coronary intervention (adjusted	Setting is not generalisable
incidence,	myocardial					amount of	procedures,	direct percutaneous	OR=1.07, 95% Cl 0.74 to 1.54) were	populations, snow events a

					[1					
	procedure, use	infarction					snowfall that	determined by	coronary	slightly higher on snow days.	frequent and temperature
	and outcomes.	(MI), the use					occurred on	linking to data	intervention and in-		exposure more extreme.
	Can J Cardiol.	of acute					any given day.	from the Alberta	hospital mortality	In-hospital mortality trended toward	
	2006; 22(1): 59-	procedures						Provincial PRoject	were also	being lower (adjusted OR=0.54, 95% Cl	
	61. ⁸⁶	and in-					Snow days	for Outcomes	determined.	0.28 to 1.04) for patients admitted on	
		hospital					were defined	Assessment in		snow days, although none of these	
		mortality					as days when	Coronary Heart		differences were statistically	
							at least 5 cm	disease		significant.	
							of snow fell,	(APPROACH).			
							and the two			Authors' conclusions: despite the	
							subsequent			potential for the significant adverse	
							days were			effects of snow days on the incidence	
							included			of MI, the use of acute procedures and	
							because of			outcomes, these findings suggest only	
							the lingering			minor effects, if any	
							effect of				
							'urban chaos'				
							that can				
							ensue after				
							significant				
							snowfall				
87	Wang H,	To examine	Observational	+	+	Hiroshima	In the	Acute myocardial	Poisson regression	Daily events of AMI decreased as	
	Matsumura M,	the main	study			City, Japan.	analysis,	infarction		temperature increased. Daily events in	
	Kakehashi M,	effects and				1993-2002:	thermo-			the low, moderate, and high	
	Eboshida A.	the				ambulance	hydrological-			temperature groups were 1.16, 1.07	
	Effects of	interaction of				data for cases	index (THI), or			and 0.90, respectively	
	atmospheric	atmospheric				of acute	humidity			(average=1.03/day).	
	temperature	temperature				myocardial	adjusted				
	and pressure on	and pressure				infarction	temperature,			Atmospheric pressure showed a	
	the occurrence	on AMI				(AMI)	was			weaker effect in the presence of	
	of acute					(n=3755).	calculated to			temperature. A more profound	
	myocardial						involve the			interaction was found between	
	infarction in						effect of			temperature and pressure.	
	Hiroshima City,						relative				
	Japan.						humidity.			The highest daily events 1.38 were	
	Hiroshima J									observed in the low temperature and	
	Med Sci. 2006;									low pressure group, while this	
	55(2): 45-51. ⁸⁷									meteorological type was always	
	. ,									accompanied by rain and/or snow. It	
						1		1			1

					was significant (p=0.047) and 37%	
					higher than that of the high	
					temperature and moderate pressure	
					group. The lowest daily events 0.87	
					were observed in the high temperature	
					and low pressure group. These	
					associations were reinforced when	
					temperature adjusted by relative	
					humidity was used.	
					Atmospheric temperature and the	
					interaction of temperature and	
					pressure had significant influences on	
					the occurrence of AMI. The highest risk	
					was found on days with low	
					temperature and low pressure. Days	
					with high risk were characterized by	
					winter rain and/or snow.	
<u> </u>		·	•			

Арре	Appendix 5 table continued: 2005 studies Ref Study Aim of study Study design Validity Pop, setting Exposure Outcomes Analysis Results Notes												
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes		
				Int	Ext								
200	5												
88	Barnett AG, Dobson AJ, McElduff P, Salomaa V, Kuulasmaa K, Sans S. Cold periods and coronary events: an analysis of populations worldwide. J Epidemiol Community Health. 2005; 59 (7): 551-7. ⁸⁸	To investigate the association between cold periods and coronary events, and the extent to which climate, sex, age, and previous cardiac history increase risk during cold weather	Time-series regression	+	+	Twenty four populations from around the world (including Belfast, NI but none in England) from the WHO's MONICA project, a 21 country register, 1980-1995.	Daily temperature from one weather station in each location. Also, daily humidity for 18 of the 24 sites.	People aged 35- 64 years who had a coronary event.	A hierarchical analyses of populations from the World Health Organisation's MONICA project.	Daily rates of coronary events were correlated with the average temperature over the current and previous three days. In cold periods, coronary event rates increased more in populations living in warm climates than in populations living in cold climates, where the increases were slight. The increase was greater in women than in men, especially in warm climates. On average, the odds for women having an event in the cold periods were 1.07 higher than the odds for men (95% posterior interval: 1.03 to 1.11). The effects of cold periods were similar in those with and without a history of a previous myocardial infarction.Conlcusions: rates of coronary events increased during comparatively cold periods, especially in warm climates. The smaller increases in colder climates suggest that some events in warmer climates are preventable. It is suggested that people living in warm climates, particularly women, should keep warm on cold days.			

80		_							1		1
89	Basu R, Dominici F, Samet JM. Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods. Epidemiology. 2005; 16(1): 58- 66. ⁸⁹	To compare time-series and case- crossover analyses using varying referent periods (ie, unidirectional, ambidirection al, and time- stratified) for studies of temperature and cardiorespirat ory mortality	Time series and case cross-over designs	+	+	Elderly population (>65 years) who died of cardiovascular or respiratory disesases in 1992, in the 20 largest metropolitan areas of the United States	Daily mean temperature and daily dew-point temperature (measure of relative humidity) in 1992 provided by the National Climatic Data Center Earthinfo CD2 database for each metropolitan area. <u>Effect</u> <u>modifiers</u> Age, season, region, heterogeneity within region,	Cardiorespiratory mortality data from the US Division of Vital Statistics	Conditional logistic regression models (case-crossover) and overdispersed Poisson regression model (time-series) used to estimate risk by metropolitan area and season. Odds ratios (case- crossover) and relative risks (time- series) calculated for cardiorespiratory mortality associated with 10°F increase in mean daily temperature, adjusted for mean daily dew-point temperature and day-of-week effects.	Regional analyses with time-stratefied case-crossover method (similar results with ambidirectional and time-series analyses, but not unidirectional)Greatest risk for temperature-related cardiorespiratory mortality occurred in summer. Strongest in Southwest (OR=1.15, 95% CI 1.07–1.24).In winter, all regional estimates showed no effect. Null or negative associations also found in spring and fall seasons, except for: Northwest in fall (1.04, 0.92–1.17), Southwest in spring (1.04; 0.98 –1.09), and Midwest in spring (1.03; 0.98 –1.08).Lag-zero and lag-1 day exposures had similar estimates, and both had stronger associations between temperature and cardiorespiratory mortality than lag-2 or -3 days.	Authors note lack of treatme some modifiers such as microenvironment characteri use of AC; only one year of da county-averaged temperatur
	comparison of epidemiologic methods. Epidemiology.	unidirectional, ambidirection al, and time- stratified) for				20 largest metropolitan areas of the	1992 provided by the National Climatic Data		area and season. Odds ratios (case- crossover) and relative risks (time-	summer. Strongest in Southwest (OR=1.15, 95% Cl 1.07–1.24). In winter, all regional estimates	
	2005; 16(1): 58- 66. ⁸⁹	temperature and cardiorespirat					Earthinfo CD2 database for each metropolitan		for cardiorespiratory mortality associated with 10°F increase in mean daily	associations also found in spring and fall seasons, except for: Northwest in fall (1.04, 0.92–1.17), Southwest in spring (1.04; 0.98–1.09), and Midwest in spring	
							<u>modifiers</u> Age, season, region, heterogeneity		adjusted for mean daily dew-point temperature and day-of-week	similar estimates, and both had stronger associations between temperature and cardiorespiratory	
							<u>Confounders</u> Relative humidity, air			Stratifying by age group gave no consistent evidence for effect modification by age for all regions.	
							pollution, time lag, day- of-week,			PM ₁₀ only confounder in summer months (Fig. 5), which slightly increased effects for some regions (Northeast and	
										Southwest) and slightly lowered for other regions (Southeast and Midwest). Ozone not confounder in summer or winter months.	
90	Cagle A,	To examine	Observational	+	+	People aged	Daily average	Out of hospital	Poisson regression	Identified a significant negative	Limitations include limited in
	Hubbard R.	the	study			55 years or	temperature	cardiac death:	to examine the	association between daily average	analysis of age (all individuals

·		. <u></u>									
	Cold-related	relationship	ļ			older with		data from State	association	temperature and cardiac mortality	55), and does not investigate
	cardiac	between	Health	.	ļI	out-of-		death records	between same-day	among persons over 55 years of age. A	vulnerability. Seasonal variati
	mortality in	temperature	statistics	.	ļI	hospital		ļ	daily average	5 degrees C increase in temperature	influenza, are not investigate
	King County,	and cardiac	(mortality	.	ļI	cardiac		ļ	temperature and	was associated with a decrease in	potential confounding factor,
	Washington,	death rates in	from cardiac	,	ļl	deaths, King		ļ	death rate.	death rate by a factor of 0.971 (95% CI:	was ambient levels of air poll
	USA 1980-2001.	King County,	causes) from	.	ļI	County,		ļ	Adjustment for	0.961, 0.982).	investigated. There is a risk o
	Ann Hum Biol.	Washington,	Washington	.	ļI	Washington		ļ	season		misclassifying the cause of de
	2005; 32(4):	USA and	State	,	ļ l	State, USA,		ļ		Relative risk for 5C temperature	1
	525-37. ⁹⁰	suggest	Department		ļI	1980 to 2001		ļ	Confounding	<u>change</u>	l i
		possible	of Health	.	ļI	(n=62,125)		ļ	factors investigated	Total 0.971 (0.961, 0.982)	1
		public health	ļ	.	ļI	ł		ļ	included season,	Males 0.976 (0.961, 0.991)	L L
		measures that	ļ ,		ļI	ł		ļ	year, precipitation,	Females 0.968 (0.953, 0.983)	L N
		can decrease	ļ i	,	ļ	ł		ļ	and barometric		l L
		the number of	ļ i	,	ļ	ł		ļ	pressure.	Temperature on rate ratio (change in	l L
		cardiac	ļ i	,	ļ	ł		ļ		death rate per 5 degrees C change in	l L
		deaths	ļ i	,	ļ	ł		ļ		temperature) continued to have a	l L
		associated	ļ	.	ļI	ł		ļ		significant influence, even with a five-	1
		with cold	ļ	.	ļI	ł		ļ		day time lag:	1
		exposure.	ļ	.	ļI	ł		ļ			1
		l I	ļ ,	,	ļ l	ł		ļ		Relativerisk for 5C temperature change	1
		l i	ļ ,	.	ļI	ł		ļ		1 day (0.969,0.958-0.979)	
		l i	ļ	.	ļI	ł		ļ		2-day lag (0.961,0.951-0.972)	1
		l i	ļ ,		ļI	ł		ļ		3-day lag (0.960,0.950-0.971)	L N
		l i	ļ ,		ļI	ł		ļ		4-day lag (0.959,0.949-0.970)	L N
		l I	ļ ,	,	ļ l	ł		ļ		5-day lag (0.959,0.948-0.969)	1
		l I	ļ ,	,	ļ l	ł		ļ			1
		l i	ļ ,	.	ļI	ł		ļ			
		l i	ļ ,	.	ļI	ł		ļ		Authors' conclusions: cold	
		l I	ļ ,	,	ļl	ļ		ļ		temperatures may be an important	1
		l i	ļ	.	ļI	ł		ļ		triggering factor in bringing on the	1
		l i	ļ	.	ļI	ł		ļ		onset of life-threatening cardiac	1
		l i	ļ	.	ļI	ł		ļ		events, even in regions with relatively	1
		l I	ļ ,	,	ļ l	ł		ļ		mild winters. Public health efforts	1
		l I	ļ ,	,	ļ l	ł		ļ		stressing cold exposure while out of	1
		l I	ļ ,	,	ļl	ļ		ļ		doors may play a prominent role in	1
		l I	ļ ,	,	ļl	ļ		ļ		encouraging a reduction in cold stress,	1
		l I	ļ ,	,	ļ l	ł		ļ		especially among seniors and those	1
		l i	l			l				already at higher risk of cardiac death.	
91	Carder M,	To investigate	Time series	++	++	Three largest	Dry bulb and	Cardio-respiratory	Generalised linear	Non-linear association between	
	McNamee R,	the lagged				Scottish cities	wind chill	mortality	Poisson regression	mortality and temperature: steeper at	

Beverland I,	effects of cold		(Glasgow,	temperature		models, with lags	temperatures below 11 degrees C.	
Elton R, Cohen	temperature		Edinburgh,			up to one month		
GR, Boyd J, et	on		Aberdeen),				The association between temperature	
al. The lagged	cardiorespirat		January 1981			Effects of	and mortality persisted at lag periods	
effect of cold	ory mortality		to December			temperature on	beyond two weeks but the effect size	
temperature	and to		2001.			mortality (lags up to	generally decreased with increasing	
and wind chill	determine		l			one month) were	lag.	
on	whether		l			quantified.		
cardiorespirator	"wind chill" is		l				Table. Estimated % increase (and 95%	
y mortality in	a better		l			Analyses were	confidence intervals) in mortality over	
Scotland. Occup	predictor of		l			conducted for the	the ensuing one month period	
Environ Med.	these effects		l			whole year and by	associated with a 1°C drop in the	
2005; 62(10):	than "dry		l			cool and warm	daytime mean temperature (when	
702-10. ⁹¹	bulb"		l			season	temperature <11°C) on any given day	
	temperature.		l					
			l				Cause of death Estimate (95% CI)	
			l				All cause mortality, all ages	
			l				2.93 (2.46, 3.39)	
			l				All cause mortality, >65 years	
			l				3.34 (2.81, 3.87)	
			l				All cause mortality, <65 years	
			l				1.40 (0.38, 2.41)	
			l				Cardiovascular, all ages	
			l				3.35 (2.64, 4.06)	
			l				Cardiovascular, >65 years	
			l				3.65 (2.87, 4.42)	
			l				Cardiovascular, <65 years	
			l				1.90 (0.10, 3.67)	
			l				Respiratory mortality, all ages	
			l				4.81 (3.45, 6.16)	
			l				Respiratory mortality, >65 years	
			l				4.65 (3.18, 6.10)	
			l				Respiratory mortality, <65 years	
			l				5.90 (2.60, 9.08)	
			l				"Other" cause mortality, all ages	
			1				1.71 (0.99, 2.41)	
			l				"Other" cause mortality, >65 years	
			l				2.06 (1.19, 2.93)	
			l				"Other" cause mortality, <65 years	
			1				0.46 (-0.86, 1.77)	
			·		1	1	0.10 (0.00, 1.77)	

			1				r	T	1	· · · · · ·
92	Diaz J, Garcia R, Lopez C, Linares C, Tobias A, Prieto L. Mortality impact of extreme winter temperatures. Int J Biometeorol. 2005; 49 (3): 179-83. ⁹²	To examine the effect of extreme winter temperature on mortality	Time series	+	+	Madrid, people older than 65 years (two different age groups: from 65 to 74, and older than 75). Data correspond to 1,815 winter days (November to March) over the period 1986-1997, during which time a total of 133,000 deaths occurred	Maximum, minimum and average daily temperatures, together with the relative humidity at 7 am and 3 pm. Air pollution variables were computed as daily average values.	Mortality (ICD9 codes 1–799) excluding accidental causes	ARIMA and Generalised Additive Models (GAM) time-series models	The effect of temperature on mortality was not observed to be significantly modified by season. There was little indication that "wind chill" temperature was a better predictor of mortality than "dry bulb" temperature. The daily maximum temperature (T(max)) was shown to be the best thermal indicator of the impact of climate on mortality. When total mortality was considered, the maximum impact occurred 7-8 days after a temperature extreme; for circulatory diseases the lag was between 7 and 14 days. When respiratory causes were evident at 4- 5 and 11 days. When the impact of winter extreme temperatures was compared with that associated with summer extremes, it was found to occur over a longer term, and appeared to be more indirect.
93	Heyman B, Harrington BE, Merleau-Ponty N, Stockton H, Ritchie N, Allan TF. Keeping Warm and Staying Well: Does Home	To investigate relationships between home energy efficiency, socio- economic status and respondent	Cross- sectional (mainly) and longitudinal surveys.	-	-	Two surveys of relatively deprived households in North East England . One in 2000 and a follow-up in 2001.	Measured: (i) socio- economic status (ii) objective measure of energy	Respondent- assessed overall health. Also asked about health behaviours and administered SF36 health questionnaire.	Tabulation and logistic regression analysis. Self-assessed health was dichotomized ("Excellent" or "very good" in one group, "good",	The main health measure used in the analysis, respondent-assessed overall health, was statistically significantly related to other health indicators, including SF36 scores, the reported presence of limiting conditions and health care behaviours such as visiting the GP.

· · · · ·				<u>г</u>					1	
	Energy	health.					efficiency		"fair" or "poor" in	Worse respondent self-assessed health
	Efficiency					Sampling in	(SAP rating)		the other).	was statistically significantly related to
	Mediate the				ž	2000 occurred				occupational, wealth and income
	Relationship					in two	(ii)		The 2000 survey	measures of poorer socio-economic
	between Socio-				'	"waves". In	Satisfaction		was basis of most	status. However, measures of heating
	economic				t	the first, 6500	with home		results.	satisfaction and sense of mastery
	Status and the				ł	households	heating			displaced the socio-economic
	Risk of Poorer				C	contacted by			Conducted path	measures when they were included in
	Health? Housing				F	phone, 2199	(iv) Mastery		analysis on patterns	the predictive logistic regression model
	Studies. 2005;				ā	agreed to	scale score		of relationships	for self-assessed respondent health.
	20(4): 649-64. ⁹³				F	participate,			between predictors	
					5	540 met	(v) Home		and self-assessed	Respondent health was significantly
					c	criteria for	tenure		health.	and independently associated with
					f	fuel poverty				lower satisfaction with home heating
					ā	and 301 were	(vi) Other			and worse SAP rating.
					i	interviewed.	individual			
					1	In Wave 2,	characteristics			In the full logistic regression model, a
					2	234 of 538	(age, gender,			unit decrease (worsening) in SAP score
					ł	household	smoking)			was associated with a 1.03 (1.01-1.05)
					á	approached in				odds of having poorer respondent-
					F	person were				assessed health.
					r	recruited.				
					9	Some				Results suggest that objective energy
					C	differences				efficiency, as measured by SAP ratings,
					1	were found				may play a double role, affecting
					ł	between the				satisfaction with home fuel
					t	two waves.				Inefficiency, which in turn influences
										health, as well as directly impacting on
					1	There was 13-				health.
					1	15% loss to				
						follow up for				Authors' conclusions: the findings
						the 2001				support other evidence that home
						survey.				energy efficiency makes an important
										contribution to the relationship
										between lower socio-economic status
										and poorer health, and document the
										combined relationship between
										objective and subjectively measured
										home energy efficiency and health.
94	Howieson SG,	To examine	Ecological		- (Scotland,	Seasonal	Mortality (EWD)	Correlation analysis	The SIMD is positively correlated with
		. o chainine					Casonal		con clation analysis	the child is positively concluded with

	Harran M	the sector of		r –	1	4000 2004	de Circitei				1
	Hogan M.	the relation	correlation			1989-2001:	definition:		of EWD ratio with	EWD by region (0.35 at the 5%	
	Multiple	between	study				excess winter		SIMD	confidence level).	A fairly crude analysis
	deprivation and	socio-					death (Dec-				
	excess winter	economic					Mar vs other			Author interpretation: "This correlation	
	deaths in	deprivation					months)			appears to go against the influence of	
	Scotland. J R	and excess								climatic variations, house type, energy	
	Soc Promot	winter death					Modifer:			efficiency and access to the gas	
	Health. 2005;						Scottish Index			network which favours urban areas."	
	125(1): 18-22. ⁹⁴						of Multiple				
							Deprivation				
							(SIMD) with				
							five criteria by				
							region:				
							income;				
							employment;				
							health and				
							disability;				
							education,				
							skills and				
							training; and				
							geographical				
							access to				
95							services				
95	Mirchandani S,	This study	Observational	+	+	Patients > 65	Season	Hip fracture by	Cross-tabulation	Temperature found to be positively	
	Aharonoff GB,	examined the	study:			years with	(winter was	type:	and chi-squared	correlated with hip fracture incidence.	Reviewer comment:
	Hiebert R, Capla	effect of	analysis of			fracture of	DJF, summer	- neck	statistics;	Adjusted number of fractures	
	EL, Zuckerman	weather and	routine			the femoral	JJA etc)	- inter-	correlation analysis	Winter 17507	- relatively simple analysis wi
	JD, Koval KJ. The	seasonality on	hospital			neck or inter-	Weather	trochanteric		Spring 16503	adjustment for season in ana
	effects of	hip fracture	discharge			trochanteric	variables		Rates of admission	Summer 15600	effect of weather variables
	weather and	incidence in	records			region, New	averaged by	(sub-trochanteric	were adjusted to a	Autumn 16758	
	seasonality on	older (>65)				York City,	month:	and pathological	'season' length of		- data on weather conditions
	hip fracture	adults				USA,	Min	fractures	91.25 days. Sample	Comparison of the characteristics of	averaged for each of the 144
	incidence in					admission	temperature	excluded)	79% women but	hip fracture patients: December-	months of analysis and correl
	older adults.					during 1985	Max		average monthly	January vs June-July	with the adjusted number of
	Orthopedics					to 1996	temperature		fracture rates were	DI II	fractures
	2005;28(2):149- 55. ⁹⁵					(n=66,346	Ave daily		adjusted for	No (%) 12124 10,374*	
	55.~					patients)	windspeed		age/sex/fracture	(53.9%) (46.1%)	
							Ave RH		type	Mean age 81.7 81.6	
							Precipitation			F:M ratio 3.6 3.9	
							Snowfall			Neck-to- 1.13 1.12	

Percent of possible sunshine Depth of snow Place of injuries: Indoors 86.1 90.6* Home 62 62.6 *p<0.001 Linear correlation of average monthly weather conditions and monthly adjusted number of hips fractures Weather parameter p-value Min temperature 0.167 <0.001
Sunshine 20.8* Depth of Place of injuries: Indoors 86.1 90.6* Home 62 *p<0.001
Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Indoors 86.1 90.6* Image: Place of injuries: Image: Place of injuries: Image: Place of injuries: Image: Place of i
Indoors 86.1 90.6* Home 62 Fp<0.001
Home 62 62.6 *p<0.001 Linear correlation of average monthly weather conditions and monthly adjusted number of hips fractures Weather parameter r p-value Min temperature 0.167 <0.001
*p<0.001
*p<0.001
Linear correlation of average monthly weather conditions and monthly adjusted number of hips fractures Weather parameter r p-value Min temperature 0.167 <0.001
Linear correlation of average monthly weather conditions and monthly adjusted number of hips fractures Weather parameter r p-value Min temperature 0.167 <0.001
weather conditions and monthly adjusted number of hips fractures Weather parameter r p-value Min temperature 0.167
weather conditions and monthly adjusted number of hips fractures Weather parameter r p-value Min temperature 0.167
adjusted number of hips fractures Weather parameter r p-value Min temperature 0.167
Weather parameter r p-value Min temperature 0.167 <0.001
p-value Min temperature 0.167 <0.001
p-value Min temperature 0.167 <0.001
Min temperature 0.167 <0.001
Max temperature 0.155 <0.001
Ave daily windspeed 0.166
<0.001
Ave RH 0.033 0.03
Amount of preciptn0.16 NS
Amount of snowfall0.021 NS
Percent of possible 0.005 NS
sunshine sunshine
Depth of snow 0.008 NS
Note that most hip fractures occur
indoors
96 Morabito M, To calculate Time series/ + + Hospital Classification Computerized Preliminary Daily event rates were significantly
Modesti PA, threshold temporal admissions of inpatient hospital statistical analysis related with daily mean air
Cecchi L, Crisci values of association for temperature discharge data for regressed daily temperature in patients >65 (P < 0.001):
A, Orlandini S, weather cross- myocardial exposure MI provided by event rates and 19% increase in daily event rates for a
Maracchi G, et discomfort sectional infarction for based on: the mean daily air 10 degrees C decrease.
al. Relationships which study the period (i) daily mean Administration of temperatures and
between increase the 1998-2002 in air Careggi Hospital assessed Highly significant seasonal fluctuation
myocardial hospital Italy. (ii) Apparent the main regional between age ratio of admissions was significantly
infarction: a admissions Temperature hospital. Only groups, sex and different from 1 (chi2=286.7, P<0.001)
biometeorologi for Index (ATI) in data of people seasonal and higher for patients >65 than for
cal approach. myocardial summer, and residents in fluctuations used =<65, in all seasons. Statistically

Int J Cardiol.	infarction in			the New U.S./	Florence	chi-squared tests.	significant fluctuation for different age	
2005; 105 (3):	winter and			Canada Wind	considered.		groups also found (chi2=430.7,	
288-93. ⁹⁶	summer.			Chill		Second statistical	P<0.001).	
				Temperature		analysis regressed		
				Index (NWCTI)		admission rates and	Cold-specific results	
				in winter,		'potential		
				which		discomfort days' for	Significant relationships between	
				combine air		different groups:	severe discomfort caused by cold	
				temperature,		summer/winter	conditions and hospitalization on same	
				relative		only, age, and sex.	day when considering everyone	
				humidity and			together (r = 0.74 ,	
				, wind velocity.		Correlation	P<0.05) and patients >=65 (without	
				Uses		between severe	difference of sex) (r =0.84, P<0.01).	
				meteorologic		discomfort	Males showed no significant	
				al data from		conditions and	associations, but females showed	
				the urban		hospitalization	highest correlation coefficients in both	
				weather		investigated on	total sample of females (without	
				station		same day and up to	difference of age) (r =0.85, P <0.01) and	
				located in the		three following	females >=65 (r =0.84, P <0.01).	
				centre of		days.	Statistically significant relationships	
				Florence.			found correlating hospitalizations	
							occurring two days after day with	
				Effect			severe discomfort conditions. Found	
				modifiers			for everyone together ($r = 0.84$, P	
				Age, sex, and			< 0.01) and males =>65 (r =0.97,	
				season.			P<0.001).	
				seuson.			1 \$0.001].	
				<u>Confounders</u>			Apparent temperature approach	
				Potential			important of heat impacts.	
				weather			important of fleat impacts.	
				confounders,				
				time-lags				
				controlled,				
				but several				
				potentially				
				important confounders				
				(e.g.				
				pollution,				
				deprivation				

97	Rudge J, Gilchrist R. Excess winter morbidity among older people at risk of cold homes: a population- based study in a London borough. J Public Health (Oxf). 2005; 27(4): 353-8. ⁹⁷	To examine the demonstrabili ty of a relationship between older people's health and fuel poverty risk, using morbidity data.	Observational population- based study	++	++	25,000 residents, >=65 years, in the London Borough of Newham (LBN). Using Hospital Episode Statistics (HES) data over 1993- 1997, anonymized at enumeration district (ED) level, we calculated excess winter morbidity, based on emergency hospital episodes for all respiratory diagnosis codes.	status, influenza/illne ss) not considered. Effect modifier: EDs were classified by a Fuel Poverty Risk Index (FPR), including factors of energy inefficient housing, low income, householder age and under occupation.	Excess winter morbidity (hospital admission for respiratory diagnosis)	Poisson regression of respiratory admissions focussing on interactions of FPR with season (no covariates).	FPR is a predictor of excess winter morbidity. In particular, FPR was observed showing a significant relationship with high winter morbidity counts for 2 of 4 years studied. Using FPR as a two-level factor (high and non-high), the model provides odds ratios: for 1993, winter/summer morbidity ratio for high FPR is 1.7 higher than the corresponding ratio for non-high FPR [95% confidence interval (CI)=1.1-2.7], and for 1996, the odds ratio is 1.6 (95% CI=0.9-2.8). In a regression with grouped EDs, having allowed for FPR, no other variables in our set contribute to the difference between winter and summer morbidity counts. Authors' conclusions: 'supporting evidence' of a relationship between energy inefficient housing and winter respiratory disease among older people, with public health implications for increasing health-driven energy efficiency housing interventions.	No adjustment for possibly confounding modifiers, in particular age. But given all a 65+, FPR still largely robust if assumes poverty does not als cause cold deaths by other ro
	Schwartz J. Who is sensitive to extremes of temperature?: A case-only	To investigate the characteristics of persons that put them	Case only analysis	++	++	160,062 deaths in Wayne County, Michigan,	Ambient temperature from the Detroit airport	Mortality in subjects who had one of the following conditions but	Case only analysis. Fit a logistic regression model with the indicators for extreme	All of the below are for the 1-day relative odds, as these showed the higher effects than the 3-day. Persons older than 84 years showed	

analysis.	at higher risk	among	station.	were then	weather conditions	greater effects of extreme cold but not	
Epidemiology.	of mortality	persons >= 65		discharged:	as predictors and	extreme heat with an OR of 1.16 (1.03,	
2005; 16(1): 67-	during	years,	Hot days	myocardial	the presence or	1.31).	
72. ⁹⁸	temperature	covered by	defined as	infarction (MI),	absence of the		
	extremes,	Medicare, and	>99 th	diabetes, COPD,	hypothesized	Women were at greater risk of dying	
	focusing on	who had a	percentile of	congestive heart	modifying condition	from extreme cold (1.14; 1.02-1.26).	
	the role of	previous	minimum	failure (CHD) and	as the dependent		
	medical	hospital	daily	pneumonia.	variable.	Nonwhites showed the greatest	
	conditions.	admission for	temperature.			evidence of effect modification with	
		heart and	Also looked at	Subjects	Potential modifiers:	ORs of 1.22 (1.09-1.37) on hot days and	
		lung disease.	days >99 th	identified from	sex, age (85 years of	(1.25; 1.12-1.40) on cold days.	
			percentile of	Medicare records.	age and older),		
			the 3-day		nonwhite race, as	Persons with diabetes showed	
			moving		well as the lung and	increased susceptibility to very hot	
			average of		heart diseases.	days with OR of 1.17 (1.04, 1.32)	
			minimum			whereas persons with COPD had	
			temperature		Also included	elevated risks of dying on cold days	
			(same day		seasonal sine and	(1.19; 1.07-1.33).	
			and two		cosine terms and		
			previous		linear and quadratic	Persons who survived MIs were less	
			days).		terms for apparent	susceptible than patients who were	
					temperature.	hospitalized for other conditions on	
			Similarly, cold			cold days (0.83; 0.69-0.99).	
			days defined				
			as those <1 st			Note that these are relative odds and	
			percentile and			do not mean that the absolute risk for	
			also looked at			these subjects is not elevated, just that	
			days <1 st			it is elevated less.	
			percentile of				
			the 3-day			The other conditions conveyed no	
			moving			higher risks than average.	
			average.				
						Overall, the results for extreme	
						temperatures were stable when	
						interactions with season and	
						continuous temperature were	
						included. However, although control	
						for these interactions did not affect the	
						differential susceptibilities to extreme	
						temperatures, there was some	

			evidence for an independent effect of the additional variables.
			Author's conclusion: socio- demographic characteristics and medical conditions can increase the likelihood of death associated with temperature extremes.

Appe	ndix 5 table conti					-		_			-
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>2004</u>											
99	Aronow WS, Ahn C. Elderly nursing home patients with congestive heart failure after myocardial infarction living in New York City have a higher prevalence of mortality in cold weather and warm weather months. J Gerontol A Biol Sci Med Sci. 2004; 59(2): 146-7. ⁹⁹	To investigate whether there was a seasonal variation in mortality from CHF.	Prospective observational study	-	+	New York city, USA: 517 patients, mean age 81 +/- 8 years, with congestive heart failure (CHF) after prior myocardial infarction who died in a nursing home in New York City with 24- hour on-site physician coverage	Cold and warm- weather months (December, January, February, March, July, and August) compared to Spring and Fall.	All-cause mortality	The exact binomial test was used to see if the number of deaths from CHF in the cold weather and warm weather months was significantly different from those in the spring and fall	321 of the 517 deaths (62%) occurred during the months of December, January, February, March, July, and August, and 196 deaths (38%) occurred during the other 6 months (p <.0001). Authors' conclusions: the number of deaths in patients with CHF after prior myocardial infarction in cold weather and warm weather months is significantly higher than those in spring and fall months (p <.0001).	Limitations include a small sa size; examining all-cause mor which may include non-CHF r deaths; no adjustment for the degree of 'cold'.
100	Goodman P, Dockery D, Clancy L. Cause- specific mortality and the extended effects of particulate pollution and temperature exposure. Environ Health Perspect. 2004; 112(2): 179- 85. ¹⁰⁰	To assess the associations of medium- term exposure to particulate pollution (black smoke) and temperature with age- standardized daily mortality	Cross- sectional time-series study	++	+	City of Dublin (Dublin County Borough), 1 st April 1980 until 31 st December 1996.	Daily black smoke (BS) air pollution concentration given by average of measurement s at six residential monitoring stations in Dublin. Daily minimum temperatures	Cause-specific daily mortality: ICD-9 codes - total non- trauma deaths < 800 cardio-vascular death 390–448 respiratory death 460–496, 507	Temperature- relevant analysis Apolynomial (six order) distributed lag model of both temperature (and RH) and BSfor 0-40 days after exposure was constructed for each cause- and age-specific mortality stratum. Day-specific log odds ratios and 95% confidence intervals	Cold temperature-relevant resultsEach decrease of 1 degree C wasassociated with a 2.6% increase inmortality in the following 40 days.Most of excess mortality associatedwith cold temperatures observed infirst three weeks after exposure.Age (40-day cumulative cold effect)Age-group % increase in mortality fora 1 deg C decrease in meantemperature (95% CI)0-641.4 (0.7, 2.2)65-742.8 (2.2, 3.5)75+3.0 (2.6, 3.5)	

							(deg Celsius)		(CIs) calculated	
							and daily			Cause (40-day cumulative cold effect)
							mean relative			Cause-group % increase in mortality
							humidity			for
							(percent)			a 1 deg C decrease in mean
							measured at			temperature (95% CI)
							Dublin			Cardiovascular 2.5 (2.0, 3.0)
							airport.			Respiratory 6.7 (5.8, 7.6)
										Other 1.5 (0.90, 2.0)
							<u>Effect</u>			
							<u>modifier</u>			The largest effects on cardiovascular
							Age			mortality were observed immediately,
										whereas respiratory mortality was
							Confounders			delayed and distributed over several
							Relative			weeks.
							humidity			
							, controlled,			
							changes in			
							age			
							distribution of			
							Dublin			
							Population			
							adjusted for			
							by			
							constructing			
							age-			
							standardized			
							daily, death			
							rate.			
							<i>r</i> espiratory			
							epidemic			
							indicator,			
							temporal,			
							day-of-week,			
							seasonal, and			
							long-term			
							trend factors.			
101	Haiat C Dird W	To determine	Time series	+	++	UK: elderly	Ambient	Lower and upper	Time series analysis	An association between low
-	Hajat S, Bird W,		Time series	+	++			Lower and upper		
	Haines A. Cold	the				people (65+	temperature	respiratory tract	of short-term	temperatures and an increase in LRTI
	weather and GP	magnitude		<u> </u>	1	years) in		infections (LRTI,	effects of	consultations was observed in all 16

	consultations	and				general		URTI)	temperature on	locations studied.
	for respiratory	consistency of				practices in 16			daily general	
	conditions by	associations				urban			practitioner (GP)	The biggest increase was estimated for
	elderly people	between cold				locations			consultations	the Norwich practices for which a
	in 16 locations	temperature				across the UK				19.0% increase in LRTI consultations
	in the UK. Eur J	and				where a Met				(95% CI 13.6, 24.7) was associated with
	Epidemiol.	consultations				Office				every 1degreesC drop in mean
	2004; 19(10):	for				monitoring				temperature below 5degreesC
	959-68. ¹⁰¹	respiratory				station was in				observed 0-20 days before the day of
		conditions in				operation.				consultation.
		primary care								
		settings at				Data for a 10-				Slightly weaker relationships were
		different sites				year period,				observed in the case of URTI
		in the UK.				1992-2001				consultations. A north/south gradient,
										with larger temperature effects in the
										north, was in evidence for both LRTI
										and URTI consultations.
										Authors' conclusions: an effect that
										was consistent and generally strongest
										in populations in the north was
										observed between cold temperature
										and respiratory consultations.
102	Maheswaran R,	To describe	Ecological	+	+	England: the	Seasonal	Deaths (aged 45	Analysis of excess	Mortality (sex, cause)
	Chan D, Fryers	the pattern of	analysis of			South	definition:	years and above):	winter mortality	Respiratory
	PT, McManus C,	excess winter	seasonal data			Yorkshire	excess winter	- all	ratios	F 1.70
	McCabe H.	mortality and				Coalfields	mortality	- cardiovascular	(observed/expected	M 1.58
	Socio-economic	emergency				Health Action	ratio.	- respiratory)	
	deprivation and	hospital				Zone: 1981 to		- all other		Cardiovascular
	excess winter	admissions,				1999 (deaths),				F 1.25
	mortality and	and the				1990-1999		Emergency		M 1.20
	emergency	relationship				(emergency		hospital		
	hospital	between				hospital		admissions		All other causes
	admissions in	excess winter				admissions)				F 1.09
	the South	mortality and								M 1.07
	Yorkshire	emergency						Modifiers		
	Coalfields	hospital						Age		Hospital admission ratio
	Health Action	admissions						Cause		Respiratory
	Zone, UK. Public	and socio-						Enumeration		F 1.80
	Health. 2004;	economic						district-level		M 1.58
	· · · · · ·	•	•		-	•	•	•	•	· · ·

										-	
	118(3): 167-	deprivation at						Townsend socio-		No excess was evident for the other	
	76. ¹⁰²	the						economic		two groups of conditions.	
		enumeration						deprivation score			
		district level.						(quintile)		No significant increase in excess winter	
										mortality ratios or excess winter	
										respiratory admission ratio with	
										increasing socio-economic deprivation.	
										With regard to age, we found P<0.0001	
										and for all other diseases P>0.001 and	
										also in the excess winter hospital	
										admission ratio for respiratory disease	
										P<0.0001	
										With regard to sex, the excess ratios	
										were lower in men than in women for	
										both respiratory mortality P<0.05 and	
										respiratory hospital admissions	
										P<0.0001	
										We also observed that excess winter	
										mortality ratios decreased significantly	
										over the 18-year period for	
										cardiovascular disease P<0.05 and for	
										all other diseases P<0.05.	
										Authors note: "Our results suggest that	
										measures to reduce excess winter	
										mortality should be implemented on a	
										population-wide basis and not limited	
										to socio-economically deprived areas.	
										There may also be a case for tailoring	
										interventions to specifically meet the	
103	D	· ·		-						needs of older people."	
105	Panagiotakos	To examine	Cross-	+	+	Cardiology	Daily mean,	Daily number of	Generalized	Negative correlation between hospital	Authors note: data consisted
	DB, Chrysohoou	the	sectional			emergency	maximum and	admissions for	additive models	admissions and mean daily	of people
	C, Pitsavos C,	association	time-series			units of	minimum	acute myocardial	(GAM) with loess	temperature (MDT): 1 deg C decrease	admitted alive, therefore do
	Nastos P,	between climatologic	study			hospitals in	temperatures,	infarction	smoothers applied	in mean air temperature yielding a 5%	cover all major
		I CUMPTOLOGIC	1			The greater	I rolativo				
	Anadiotis A, Tentolouris C,	parameters				the greater Athens area,	relative humidity,	(electrocardiogra phic changes,	to regress-time- series of daily	increase in hospital admissions due to an acute coronary event (β =0.05, risk	coronary events; air pollution investigated; relatively short

Image: state of all state of all state of all state of all state of all state of all state of all state of all state of all state of the state state of all state of the state state all states of the state state all states of the states all states of the states of the states all				1	1	1	ct	1				
Base of the second s			and daily				1 st January		compatible		ratio=1.05, P < 0.05).	duration of
Image: Specific sector on a specif												study period.
Image: Subscription: Start Su							August 2002				-	
acute coronary syndromes. Int. 94(2-3): 223- 33.*** sourdomes syndromes patients.75% male) evaluation evaluation intraclogical variables angina (cocurrence al station of the corresponding to corresponding to corresponding to the Geology 0.15 for males jand in edderly (β = 0.09, variables angina (cocurrence and patients.102, De 0.02, risk ratio=1.02, Pate 2.3 for 6.5 - years-oid). 9 412, 32.*** 3.**** A sign a pisode, al station of the corresponding to corresponding to the Geology Contribution of cocurrence al station of the corresponding to corresponding to coutcome and no significant interactions pera							(5450					
2 ³⁴ Wilkinson P, Pattenden S, Pattenden S, Patte									-	-		
Image: Cardiol 2004; 9: 002, risk ratio=1.02, risk ratio=									'	-	, , , , , , , , , , , , , , , , , , , ,	
94(2-3): 223- 33. ¹⁰⁰ 94(2-3): 223- 33. ¹⁰⁰ P= 0.23 for < 65-years-old).			(ACS)				male)					
104 Wilkinson P, Pattenden S, Wilkinson P, Pattenden S, To examine Population Population ++ ++ People aged>> Seasonal Seasonal Contribution of each potential contraction of at rest, within preceding 48 h, Corresponding Contribution of each potential contraction of the Geology Department Contribution of each potential contraction of the Geology Department For relative humidity, positive correlation found etween to the Geology Department For relative humidity, positive correlation found between to the contraction of the Geology Department For relative humidity, positive correlation found between to the contraction of the Geology Department For relative humidity, positive correlation found between to the genders 1 deg C decrease in T.H. Weiled 6% (lp=0.06, risk ratio=1.06, P= 0.039) increase in hospital admissions, in both genders 1 deg C decrease in T.H. Weiled 6% (lp=0.06, risk ratio=1.09, P 104 Wilkinson P, Pattenden S, the To examine Population ++ ++ People aged>> Seasonal Analysis of seasonal Little evidence of variation in winter.non-winter ratio by; The strength of this study isin uses individual level data unitiant winter.non-winter ratio by;		,							-			
104 Wilkinson P, Pattenden S, Wilkinson P, Pattenden S, To examine Population Population ++ ++ People aged>> Seasonal Seasonal Contribution of each potential contraction of at rest, within preceding 48 h, Corresponding Contribution of each potential contraction of the Geology Department Contribution of each potential contraction of the Geology Department For relative humidity, positive correlation found etween to the Geology Department For relative humidity, positive correlation found between to the contraction of the Geology Department For relative humidity, positive correlation found between to the contraction of the Geology Department For relative humidity, positive correlation found between to the genders 1 deg C decrease in T.H. Weiled 6% (lp=0.06, risk ratio=1.06, P= 0.039) increase in hospital admissions, in both genders 1 deg C decrease in T.H. Weiled 6% (lp=0.06, risk ratio=1.09, P 104 Wilkinson P, Pattenden S, the To examine Population ++ ++ People aged>> Seasonal Analysis of seasonal Little evidence of variation in winter.non-winter ratio by; The strength of this study isin uses individual level data unitiant winter.non-winter ratio by;		94 (2-3): 229-								hydrological index.	P = 0.23 for < 65-years-old).	
104 Wilkinson P, Pattenden S, the To examine Population ++ ++ Percent of the seasonal patterns, day- of -75 years Analysis of seasonal patterns, day- of -75 years Consume correlation found with hospital admissions (p=0.02, risk ratio per 10% corresponding to class lind of the F-test. Negative correlation found with hospital admissions, (p=0.04). Negative correlation found with hospital admissions, in both genders 1.4L, and hospital admissions, in both genders 1.4L, and hospital admissions, in both genders 1.4L, and hospital admissions, in both genders 1.4L, and hospital admissions, genders 1.4L, and hospital admissions, in both genders 1.4L, and hospital admissions, in the based cohort based in the set potential correlation in the set potential correlation in the set potential correlation in the set potential correlation in the set potential correlation in the set potential correlation, set in the set potential correlation in the set potential c		33										
104 Wilkinson P, Patueden S, the To examine based cohort Population +++ ++ + Peoplaged Confounder was consequentiation (Climatology of Climatology of Cli												
1/2014 Image: 1/2014												
In the Geology Department of the Geo												
104 Wilkinson P, Pattenden S, the To examine the Population based cohort ++ ++ People aged>> or ~75 yeap Braunwald classification) (ACS) in the major general hospital dimes.or Fit applied to determine serial-correlation Negative correlation found between T.H.I. and hospital admissions, in both genders. 1 deg C decrease to deg C decrease in hospital dimes.or Fit genders. 1 deg C decrease to deg C decrease in hospital admissions, in both genders. 1 deg C decrease to deg C decrease in hospital dimes.or Fit genders. 1 deg C decrease to deg C decrease in hospital dimes.or Fit genders. 1 deg C decrease to deg C decrease in hospital admissions, in both genders. 1 deg C decrease for ACS. Correlation significant elderry (B=0.09, risk ratio=1.09, P 0.017, No differences found when area recorded. Partly subjective. Partly subjective. applied to determine serial-correlation Partly subjective. applied to determine serial-correlation Negative correlation found between T.H.I. and hospital admissions, but of ACS. Correlation significant interactions between mean temperature and humidity or with day-of-the-week, holiday and strikes. 104 Wilkinson P, Pattenden S, the To examine based cohort ++ ++ People aged > or ~ 75 year> definition. Analysis of seasonal motality Analysis of seasonal wither.now.winter ratio by: It the evidence of variation in wister.now.winter ratio by:											change=1.24, P= 0.04).	
104 Wilkinson P, Pattenden S, the To examine Population ++ ++ People aged>> or = 75 years Confrue classification) (ACS) in five assessed from greater Athens Goodness-of-fit assessed from area recorded. Goodness-of-fit assessed from greater Athens Goodness-of-fit assessed from area recorded. Fith. and hospital admissions, in both genders. 1 dg C decrease in T.H.I. All yelded 6% (B=0.06, risk ratio=1.06, P= 0.039) increase in hospital admissions for ACS. Correlation function applied to outcome and no significant interactions between mean temperature and humidity or with day-of-the-week, holidays and strikes. 104 Wilkinson P, Pattenden S, the To examine Population ++ ++ People aged > or = 75 years Analysis of seasonal holiday days. Analysis of seasonal mortality Little evidence of variation in winter.no-winter ratio by: Util te vidence of variation in winter.no-winter ratio by:												
104 Wilkinson P, Pattenden S, the To examine the Population ++ ++ People age/s (ACS) in five major general hospitals in grater Athens are recorded. assessed from analysis statiled aconfination inthe and mesods in T.H.I. genders: 1 deg C decrease in T.H.I. Vielded 6% (B=0.06, risk ratio=1.06, P= 0.039) increase in tospital admissions for ACS. Correlation slightly stronger in elderly (B=0.09, risk ratio=1.09, P < 0.001). No differences found when analysis stratified according to outcome and no significant interactions between mean temperature and humidity or with day-of-the-week, holidays and strikes. 104 Wilkinson P, Pattenden S, the To examine based cohort Population ++ ++ People age/s Analysis of seasonal mortality Little evidence of variation in winternon-winter ratio by:											-	
 A thens ' major general hospitals in modifiers general hospitals in modifiers are a recorded. Partial auto- correlation function applied to degree of remaining serial-correlation slightly stronger in allysis stratified according to outcome and no significant interactions between mean temperature and hospitals in correlation, seasonal patterns, day of wreds, and holiday days. Wilkinson P, Pattenden S, the boundary of the based cohort Wilkinson P, Pattenden S, the based cohort Wilkinson P, Pattenden S, the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the based cohort H the												
104 Wilkinson P, Pattenden S, the To examine the Population Population ++ ++ People aged > Seasonal pattenden S, the Analysis of seasonal pattenden S, the Little evidence of variation in serial converted by: the Little evidence of variation in winter:non-winter ratio by:												
104 Wilkinson P, Pattenden S, To examine Population ++ ++ People aged > Seasonal or = 75 years Analysis of seasonal mortality Little evidence of variation in winter:non-winter ratio by: Little evidence of variation in winter:non-winter ratio by:								Athens		-		
104 Wilkinson P, Pattenden S, the Population based cohort ++ ++ + People aged > or = 75 years Call-cause) modifiers Gender and age in one of three groups: correlation function applied to determine degree of remaining serial-correlation correlation function applied to determine degree of remaining serial-correlation eld erg (\$0.00, 1), No differences found when analysis stratified accords between mean temperature and humidity or with day-of-the-week, holidays and strikes.									•			
104 Wilkinson P, Pattenden S, the To examine Pattenden S, the Population ++ ++ People aged > or = 75 years Partly subjective. Serial-correlation Partly subjective. applied to determine degree of remaining serial-correlation applied to determine degree of remaining serial-correlation OO(1). No Oliferences found when analysis stratified according to outcome and no significant interactions between mean termine analysis stratified according to outcome and no significant interactions between mean termine degree of remaining serial-correlation 104 Wilkinson P, Pattenden S, To examine the Population based cohort ++ ++ People aged > or = 75 years Analysis of seasonal definition: Little evidence of variation in winter:non-winter ratio by: The strength of this study is 1									-			
104 Wilkinson P, Pattenden S, To examine the based cohort Population the serial correlation To examine the based cohort Population the serial correlation ++ ++ ++ Peple aged > or = 75 years (All-cause) motality Analysis of seasonal ratio and its Little evidence of variation in winter.non-winter ratio by: The strength of this study is stratified according to outcome and no significant interactions between mean temperature and humidity or with day-of-the-week, holidays and strikes. 104 Wilkinson P, Pattenden S, To examine the Population based cohort ++ ++ Peple aged > or = 75 years (All-cause) motality Analysis of seasonal ratio and its Little evidence of variation in winter.non-winter ratio by: The strength of this study is stratified according to outcome and no significant interactions between mean temperature and humidity or with day-of-the-week, holidays and strikes.												
 Image: Second of the equal of t									Partly subjective.		0.001). No differences found when	
 Inter groups: Serial-correlation Serial-correlation<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td>								-				
104Wilkinson P, Pattenden S,To examine thePopulation based cohort++++People aged > or = 75 yearsSeasonal definition:(All-cause) mortalityAnalysis of seasonal ratio and itsLittle evidence of variation in winter:non-winter ratio by:The strength of this study is to uses individual level data unlike								three groups:				
104Wilkinson P, Pattenden S,To examine thePopulation based cohort++++People aged > or = 75 yearsSessonal definition:Analysis of seasonal mortalityAnalysis of seasonal ratio and itsLittle evidence of variation in winter:non-winter ratio by:The strength of this study is ratio uses individual level data unlikes								<=35yrs,36-		serial-correlation	between mean temperature and	
Image: 104Wilkinson P, Pattenden S,To examine thePopulation based cohort++++People aged > or = 75 yearsSeasonal definition:Analysis of seasonal mortalityLittle evidence of variation in winter:non-winter ratio by:The strength of this study is to uses individual level data unlike								64vrs. and >=			humidity or with day-of-the-week,	
Image: 104Wilkinson P, Pattenden S,To examine thePopulation based cohort++++People aged > or = 75 yearsSeasonal definition:Analysis of seasonal mortalityLittle evidence of variation in winter:non-winter ratio by:The strength of this study is to uses individual level data unit											holidays and strikes.	
Image: how provide the second statistically significant (β=0.10+/-0.15, risk ratio = 1.11, P=0.479). Similar results found regarding mean barometric pressure.hospital admissions, but not statistically significant (β=0.10+/-0.15, risk ratio = 1.11, P=0.479). Similar results found regarding mean barometric pressure.104Wilkinson P, Pattenden S,To examine thePopulation based cohort++ +++ explore aged > or = 75 yearsSeasonal definition:Analysis of seasonal mortalityLittle evidence of variation in winter:non-winter ratio by:The strength of this study is to uses individual level data unit								05913.				
Image: hospital admissions, but not statistically significant (β=0.10+/-0.15, risk ratio =1.11,P=0.479). Similar results found regarding mean barometric pressure.Nospital admissions, but not statistically significant (β=0.10+/-0.15, risk ratio =1.11,P=0.479). Similar results found regarding mean barometric pressure.104Wilkinson P, Pattenden S,To examine thePopulation based cohort++ +++++ People aged > or = 75 yearsSeasonal definition:(All-cause) mortalityAnalysis of seasonal ratio and itsLittle evidence of variation in winter:non-winter ratio by:The strength of this study is to uses individual level data unly								Confoundars			Wind speed negatively correlated with	
Image: height of the strength of this study is the strength of the strength of this study is the strength of this study is the strength of the stre												
104 Wilkinson P, Pattenden S, To examine the Population based cohort ++ ++ ++ People aged > or = 75 years Seasonal patterns, day- of-week, and holiday days. Analysis of seasonal ratio and its Little evidence of variation in winter:non-winter ratio by: The strength of this study is to uses individual level data unlight											statistically significant (β =0.10+/-0.15,	
104 Wilkinson P, Pattenden S, To examine the Population based cohort ++ ++ ++ People aged > or = 75 years Seasonal patterns, day- of-week, and holiday days. Analysis of seasonal ratio and its Little evidence of variation in winter:non-winter ratio by: The strength of this study is to uses individual level data unlight								,			risk ratio =1.11,P=0.479). Similar results	
Image: Image:								,			found regarding mean barometric	
Image: Non-Algorithm Image: Non-Algorithm <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>pressure.</td><td></td></th<>											pressure.	
Image: Image:												
104Wilkinson P, Pattenden S,To examine thePopulation based cohort++++People aged > or = 75 yearsSeasonal definition:(All-cause) mortalityAnalysis of seasonal ratio and itsLittle evidence of variation in winter:non-winter ratio by:The strength of this study is uses individual level data unl												
Pattenden S, the based cohort or = 75 years definition: mortality ratio and its winter:non-winter ratio by: uses individual level data unl	104	Wilkinson D	To ovamina	Dopulation			Dooplo agod >			Applycic of concernel	Little ovidence of variation in	The strength of this study is t
					++	++				-		
Amistroligib, determinants study information wintersholf- variation by -geographical region some of the other cruder eco									mortanty			
		AIIISUUIIg D,	uetermindints	study			1011 100	winter.non-		variation by	- Beographical region	

Fletcher A,	of	(119,389	general	winter ratio.		personal and linked	- age	analyses and presumably the
Kovats RS,	vulnerability	person years,	practices in	1	ļ	area characteristics	- any of the personal, socioeconomic,	is representative
Mangtani P, et	to winter	10,123	the Medical	1	ļ	ļ	or clinical factor examined except:	
al. Vulnerability	mortality in	deaths)	Research	1		ļ		
to winter	elderly British	followed up	Council trial	1	ļ	ļ	Relative risks	
mortality in	people	for death	of assessment	1	ļ	ļ	Sex (adjusted for all major covariates)	
elderly people	ļ	through the	and	1	ļ	ļ	M 1	
in Britain:	ļ	Office for	management	1	ļ	ļ	F 1.11 (1.00 to 1.23)	
population	ļ	National	ofolder	1	ļ	ļ		
based study.	ļ	Statistics	people in	1	ļ	ļ	Only self reported history of	
BMJ. 2004;	ļ		Britain	1	ļ	ļ	respiratory illness associated with	
329(7467):	ļ			1	ļ	ļ	winter death (adjusted for all major	
647. ¹⁰⁴	ļ			1	ļ	ļ	covariates)	
	ļ			1	ļ	ļ	No 1	
				1			Yes RR=1.20 (1.08 to 1.34)	
				1			There was no evidence that	
	ļ			1	ļ	ļ	socioeconomic deprivation or self-	
	ļ			1	ļ	ļ	reported financial worries or reported	
	ļ			1	ļ	ļ	difficulty in keeping house warm were	
				1	ļ		predictive of winter death.	
				1			Authors note that "The lack of	
	ļ			1		ļ	socioeconomic gradient suggests that	
	ļ			1		ļ	policies aimed at relief of fuel poverty	
	ļ			1		ļ	may need to be supplemented by	
	ļ			1		ļ	additional measures to tackle the	
	ļ			1		l I	burden of excess winter deaths in	
	ļ ,			1		ļ	elderly people" [more generally].	

Apper	ndix 5 table conti	nued: 2003 stud	dies								
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>2003</u>											
	Crawford JR, Parker MJ. Seasonal variation of proximal femoral fractures in the United Kingdom. <i>Injury</i> 2003; 34 (3):223- 5. ¹⁰⁵	To determine seasonal variation in the incidence of hip fractures by season and in relation to weather conditions	Prospective observational study: consecutive case series with 1-year follow-up	++	++	3034 consecutive hip fracture patients admitted to a single unit (Peterboroug h DGH) in the UK, 13 Jan 1989 to 12 Jan 2001	Month, season and temperature	 Hip fracture by type: extracapsular intracapsular Length of hospital stay Mortality (case fatality) 	Descriptive analyses	Comparison of number of admitted patients, their characteristics and outcome in winter and summer months Winter Summer (NDJ) (MJJ) No. of # 867 693 - intracap % 53.6% 57.0% - extracap 46.4% 43.0% % Male 20.4% 19.5% Mean age 81.8 81.3 From home 69.7% 65.5% Mean MTS* 5.4 5.5 Mean mobility score† 5.2 5.0 Days in hospital 23.2 23.4 Mortality - 30 d 9.7% 8.2% - 120 d 21.1% 16.7% - 365 d 31.5% 27.3% *MTS – mental test score (range 0-10) †Mobility score: range 0-9 • More hip fractures in winter than summer (p=0.002) • Increase in extracapsular fractures (p=0.006) and tendency to a higher mortality for those patients admitted in winter. • No statistically significant difference in patient characteristics between the winter and summer seasons.	Reviewer comment: - winter unusually defined as which accentuates winter ex
106	Donaldson GC,	To assess cold	Cross	+	+	England and	Central	Daily deaths from	Poisson regression	Cold related mortality in the retired	
	Keatinge WR.	related	sectional			Wales	England	Office of National	of mortality	(65–74) age group was generally higher	Authors note: possible ('simp

	Cold related	mortality	study with			between	temperatures	Statistics,	on temperature	in men of class 5 (unskilled) than class	explanation is that manual w
	mortality in	among social	time lags			1998-2000	from	for men and	in subgroups by	1	protected class 5 men agains
	England and	classes in	accounted for			1990 2000	Meteorologic	women in	social class, age,	(professional), or other classes, with	daytime cold stress.
	Wales;	England and	accounted for				al Office,	England and	sex.	little difference between men and	International surveys also poi
	influence of	Wales and in					were daily	Wales aged 65–74	Jex.	women or housewives, of any class.	important role of out of hom
	social class in	working and					means of	vears	Statistical	women of housewives, of any class.	factors. [especially] heating a
	working and	retired age					Squire's Gate	and 50–59 years,	comparisons	In the working age group (50–59),	insulation, but less attentio
	retired age	groups					Lancashire,	by social class:	assessed using the t	women in class 5 had significantly	to these.
	groups. J	groups					Manchester	1 (professional)	test between social	higher cold related mortality than	to these.
	Epidemiol						Airport,	2 (managerial and	classes 1 and 5 only	those in class 1, but in men in class 5	
	Community						Malvern,	technical)	(the extremes).	cold related mortality was on average	
							,		(the extremes).		
	Health. 2003;						Rothamstead.	3N (nonmanual skilled)		lower	
	57 (10): 790- 1. ¹⁰⁶						Effoct			than in men of any other class. It was	
	1.						Effect modifiers	3M (manual skilled)		also significantly lower in class 5 among men than women, or housewives, both	
							Social class,	4 (partly skilled)		in direct comparison and in relation to	
								5 (unskilled)		comparisons of men and women in	
							gender, age	5 (unskilled)		class 1.	
							group, and whether			class 1.	
							housewife.				
							nousewire.				
							Confounders				
							Mean				
							influenza				
							deaths 10				
							days before to				
							10 days after,				
							and single				
							three-day				
							time lag on				
107	Heely ID. Survey	Ta investions	Feelesterl			European suiter tra	temperature				
10,	Healy JD. Excess	To investigate	Ecological	+	+	Excess winter	Seasonal	All-cause	Multiple time series	Substantial country-to-country	Deviewer eensteret
	winter mortality	potential	(country-			deaths (all	(winter)	mortality	data on a variety of	variation in EWM. Highest rates in	Reviewer comment
	in Europe: a	causative	level) analysis			causes),	definition:		risk factors	western edge countries:	A calendar month-based defi
	cross country	factors	of EWM and			1988–97, EU-	DJFM vs other		analysed against	Portugal highest: 28% (25%, 31%)	of winter may represent diffe
	analysis	explaining	potential			14 countries	months		seasonal-mortality	Spain 21%, (19%, 23%)	seasonal effects in different
	identifying key	why certain	causative						patterns to identify	Ireland 21% (18%, 24%).	countries (more months are o
	risk factors. J	countries	factors						key		northern than southern clima
	Epidemiol	experience							relations	UK 18%, France 13%, Denmark 12%,	so a common DJFM period ha
	Community	dramatically								Finland 10%, Germany 11%.	different meaning.

He	ealth. 2003;	higher winter						
	(10): 784-	mortality.				Cross country variations in		
9. ¹	107	mortantji				mean winter environmental		
5.						temperature		
							Coef P-	
							value	
						Mean winter environ temp	0.2 0.001	
						Mean winter precipitation	0.23 0.017	
						Mean winter RH	0.54 0.001	
						PPP-adjusted per capita GDP		
						Primary education spend*	0.12 0.070	
						Second education spend*	20.27 0.061	
						Total health spend*	0.63 0.069	
						Public health spend*	0.60 0.001	
						Private health spend*	0.90 0.011	
						PPP-adjusted health spend	21.19 0.001	
						GPs per 1000 population	0.59 20.437	
						Hospital beds per 1000	20.23 0.067	
						Smoking rate	0.40 0.344	
						Obesity rate	0.30 0.512	
						Income poverty rate ⁺	20.47 0.008	
						Income inequality (Gini)	0.97 0.020	
						Deprivation rate (composite)		
						Fuel poverty rate (composite	e) 0.44	
						0.005		
						% of housing, cavity insul	22.56 0.022	
						% of housing, roof insul	1.36 0.110	
						% of housing, fFloor insul	1.01 0.029	
						% of housing, double glazed	20.31 0.024	
						* As a % of per capita GNP		
						+ 60% median equivalised incom	ne	
						Author notes: "The strong, p	ositive	
						relation with environmental		
						temperature and strong neg	ative	
						relation with thermal efficien		
						indicate that housing standa		
						southern and western Europ	e play	
						strong parts in such seasona	lity."	

				1		1				
										Conclusion: high seasonal mortality in
										southern and western Europe could be
										reduced through improved
										protection from the cold indoors,
										increased public spending on health
										care, and improved socioeconomic
										circumstances resulting in more
										equitable income distribution.
108	Hong YC, Rha	To investigate	Case-	+	+	Incheon,	Ambient	Ischemic stroke.	For each subject,	Decreased ambient temperature was
	JH, Lee JT, Ha	the	crossover			Korea: 545	temperature		the case period was	associated with risk of acute ischemic
	EH, Kwon HJ,	association				patients of	from the	Diagnosed with	matched to 2	stroke. The strongest effect was seen
	Kim H. Ischemic	between				the Inha	National	brain imaging.	control periods	on day after exposure to cold weather.
	stroke	ischemic				University	Meteorologic		exactly 1 week	The odds ratio (OR) for an interquartile
	associated with	stroke onset				Hospital.	al Office		before and after	range decrease in temperature was 2.9
	decrease in	and decrease				Conducted			onset of the	(95% confidence interval [CI] = 1.5-5.3).
	temperature.	in				over a 3-year			ischemic stroke.	There was a decreasing effect with
	Epidemiology.	temperature				period				time.
	2003; 14(4):					(January 1998			Used conditional	
	473-8. ¹⁰⁸					to December			logistic regression.	The risk period was 24-54 hours after
						2000)				cold exposure.
									In addition to	
									temperature,	Risk estimates associated with
									relative humidity,	decreased temperature were greater in
									barometric	the winter than in the summer.
									pressure and air	
									pollution were	Air pollutants were not associated with
									included as	stroke onset.
									continuous	
									variables.	The following subgroups were more
										susceptible to cold-induced ischemic
									Also evaluated the	stroke (ORs for one interquartile range
									effect of 24-hr and	decrease in temperature, lag of 1 day,
									3-hr average	controlled for humidity and pressure):
									temperature on	
									stroke onset.	Women: 3.74 (1.37,10.19)
										People aged over 65: (4.04 (1.48,11.04)
									Conducted	Previous hypertension: 3.33 (1.53,
									stratified analyses	7.26)
									by: age, sex, history	Previous hypercholesterolemia: 9.37
									of hypertension or	(1.51, 58)
L		1								

									hypercholesterolem ia and obesity.	Not obese: 3.66 (1.73, 7.73) Authors' conclusions: stroke occurrence rises with decreasing temperature; even a moderate decrease in temperature can increase the risk of ischemic stroke.	
109	Johnson H, Griffiths C. Estimating excess winter mortality in England Wales. Health stat. 2003; 20: 19- 24. ¹⁰⁹	To examine the method of calculating an excess winter mortality (EWM)	Analysis of routine mortality data	+	++	England and Wales	Season	Mortality	Descriptive analyses of seasonal excess	Over the last 50 years, in December to March, mortality levels have remained above average, and in May to October mortality has been consistently below average. Although year-on-year variability - which is most pronounced in the winter months - remains, there has been a steady log-linear decline in EWM. In general, the current method used by the Office for National Statistics (ONS) of estimating the EWM gives similar results to those of other methods of calculating EWM over the last 50 years. However, due to the year-on-year variability seen in seasonal mortality, mortality can also be above average in the autumn or spring. Where these periods are included in the comparison period for EWM calculations - as with the current ONS method - this has the effect of decreasing the EWM estimate. As well as examining EWM trends in England and Wales, the authors look at cause- specific patterns for deaths over the period 1993-2001	Methods for calculating EWN not given error or confidence intervals. Comparison of diffe analytical methods only. Study results reflect observed trends for different diseases a different methods of estimati EWM, no confounding effects as influenza are considered. Highly applicable to England a Wales
110	O'Neill MS,	To examine	Time series	++	++	Seven US	Mean daily	Mortality (ICD9	City-specific Poisson	Percentage change in mortality was	
	Zanobetti A,	effect				cities 1986-	apparent	codes 1–799)	regression analyses	calculated at 29 degrees C apparent	

			[<u> </u>				1
	Schwartz J.	modification				1993.	temperature	excluding	of daily non-injury	temperature (lag 0) and at -5C (mean	
	Modifiers of the	of heat- and					(a construct	accidental causes	mortality were fit	of lags 1, 2, and 3) relative to 15C.	
	temperature	cold-related					reflecting		with predictors of	Percentage change in total daily	
	and mortality	mortality					physiologic		mean daily	mortality associated with a -5°C	
	association in						effects of		apparent	apparent temperature: 10.1 (Cl 95%,	
	seven US cities.						temperature		temperature	7.0, 13.3), and with a 29°C apparent	
	Am J Epidemiol.						and humidity)			temperature: 5.0 (CI 95% 3.1, 7.0).	
	2003; 157(12):						calculated		Confounder control		
	1074-82. ¹¹⁰						from data		Time, barometric	Separate models were fit to death	
							from local		pressure, day of the	counts stratified by age, race, gender,	
							meteorologic		week, and PM ₁₀	education, and place of death. Effect	
							al monitoring			estimates were combined across cities,	
							stations			treating city as a random effect. Deaths	
										among Blacks compared with Whites,	
										deaths among the less educated, and	
										deaths outside a hospital were more	
										strongly associated with hot and cold	
										temperatures, but gender made no	
										difference. Stronger cold associations	
										were found for those less than age 65	
										years, but heat effects did not vary by	
										age. The strongest effect modifier was	
										place of death for heat, with out-of-	
										hospital effects more than five times	
										greater than in-hospital deaths,	
										supporting the biologic plausibility of	
										the associations. Place of death, race,	
										and educational attainment indicate	
										vulnerability to temperature-related	
										mortality, reflecting inequities in health	
										impacts related to climate change.	
111	Sullivan S,	To examine	(Postal)	+	+	All	Questionnaire	Illnesses, GHQ12	ANOVA	Poor housing conditions were	The symptoms of individuals
	Somerville M,	the extent of	survey of			households	elicited	score, EuroQol	ANOVA	associated with poor mental health	conditions of the housing and
	Hyland M,	the	housing			owned by the	information	score and		and well-being, but not with minor	household characteristic wer
	Barton A, on	relationship	residents			Riviera	on both the	symptom score.		illnesses or physical conditions.	reported, and so may be
	behalf of the	between	residents			Housing Trust,	physical	symptom score.		intesses of physical conditions.	misclassified or under or
	Torbay Healthy	physical and				Torbay, South	conditions in			27% of residents said they lived in a	overreported. The study popu
	Housing Group.	emotional									is much sicker and poorer that
	The Riviera	health and				Devon	dwelling and			dwelling that was often or always too cold.	
						Description	the physical			colu.	wider population, and the ho
	Housing and	housing		<u> </u>	<u> </u>	Responses	and mental				studied has often been alloca

Health Survey.	conditions		from 1053	health of its		Significant relationships were observed	on a medical priority basis. The
Kendall: EAGA			(38%)	occupants.		between cold homes and asthma	elderly in the study are less li
Charitable			household			(p=0.003), angina (p<0.001), diabetes	live in substandard housing.
Trust; 2003. ¹¹¹			and 2219	Questions for		(p<0.001), stroke (p=0.012), high blood	behaviour of individuals with
,			individuals	residences		pressure (p<0.001), anxiety/depression	dwellings is not accounted fo
			(total	were used to		(p<0.001), headache (p<0.001),	such as indoor cold due to sn
			population of	determine		arthritis/rheumatism (p<0.001), and	opening windows while smol
			individuals	usual		GHQ score (p<0.001). However, when	There were a large number o
			within the	temperature,		other interactions were accounted for,	respondents, and a small sam
			housing is	visible mould,		there was no significance.	size.
						there was no significance.	5120.
			unknown)	and damp.			
				Questions for			
				households			
				were used to			
				determine			
				number in			
				household,			
				age, health,			
				employment			
				status, and			
				benefits.			
				Questions for			
				individuals			
				were used to			
				determine			
				smoking,			
				drinking,			
				overall health			
				(EuroQoL),			
				and			
				emotional			
				health			
				(GHQ12).			
				The three			
				The three			
				housing			
				conditions			
				alongside			

			smoking and		
			drinking were		
			treated as		
			confounding		
			factors in the		
			relationship		
			between		
			housing and		
			health.		
<u> </u>					

Appe	ndix 5 table conti	nued: 2002 stud	dies								
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
2002											
112	Braga AL, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect. 2002; 110(9): 859- 63. ¹¹²	To estimate the acute effects and the lagged influence of weather (temperature and humidity) on respiratory and cardiovascular disease (CVD) deaths.	Time series	++	++	Population of 12 U.S. cities from 1986- 1993.	Daily average ambient temperature and humidity from the nearest airport station. Also included the role of other possible "predictors": prevalence of air conditioning, variance of summer and winter temperature, background mortality rate, percentage of the population with a college degree, percentage non-white, percentage unemployed, percentage below the poverty line, city size, mean	Daily counts of deaths from pneumonia, chronic obstructive pulmonary disease (COPD), all cardiovascular diseases (CVD) and myocardial infarction(MI). Data from the National Center for Health Statistics.	Generalized additive Poisson regressions for each city using nonparametric smooth functions to control for long- term time trend, season and barometric pressure. Also controlled for day of the week. Distributed lag model to estimate the effect and the lag structure of both temperature and humidity. The other predictors were included as a second stage analysis with an ecological regression.	In cold cities, heat and cold were associated with increased CVD deaths. In general, cold effects persisted for days, while heat effects were restricted to the day of death or the day before. For myocardial infarctions (MI), the effect of hot days was twice as large as the cold-day effect (6% and 3% increases in daily deaths), whereas for all CVD deaths the hot-day effect was five times smaller than the cold-day effect (1% and 5%, respectively). The effect of hot days included some harvesting. In terms of respiratory diseases, only heat increased COPD deaths (by 25%), whereas both affected pneumonia. In hot cities, neither hot nor cold temperatures had much effect on CVD or pneumonia deaths. However, for MI and COPD, there were lagged effects of heat. No consistent pattern for humidity. None of the predictors significantly modified the effects of hot or cold days on CVD deaths, except that for both COPD and pneumonia, variance in summer temperature was associated with increased heat effects (estimated at 30°C). The increases were 42.76% (4.54,94.94) for COPD and 28.01% (3.96,57.63) for pneumonia. The	

113	Chesser TJ, Howlett I, Ward AJ, Pounsford JC. The influence of outside temperature and season on	To determine whether the incidence of fractures altered with the daily temperature, seasons or	Observational study: consecutive case series	++	++	818 patients, >= 65 years, who presented to one district general hospital (Frenchay),	population age. Data taken from survey and census data. Month of year; location- specific max and min daily temperature grouped into 5 deg C bands	 Fracture of the proximal femur Length of hospital stay 	Descriptive analysis: presentation rates and length of stay in relation to month, season, temperature	 variance of winter temperature was similarly associated with cold deaths (estimated at -10°C). Increases were 25.86% (-1.12,60.20) and 12.57% (2.87,23.19) respectively in COPD and pneumonia. Authors suggest that increased temperature variability is the most relevant change in climate for the direc effects of weather on respiratory mortality. Analysis of climate change impacts should take into account regional weather differences (1) No statistically significant differences in the daily rate of fractures across temperature ranges for either max or min temperature, or by month of year. <i>Mean fractures per season:</i> Winter (DJF): 39.6 	non-parametric tests of assoc Author suggests winter lengtl
113	Howlett I, Ward AJ, Pounsford JC. The influence of outside temperature	whether the incidence of fractures altered with the daily temperature,	study: consecutive	++	++	>= 65 years, who presented to one district general hospital	year; location- specific max and min daily temperature grouped into	proximal femur • Length of	presentation rates and length of stay in relation to month, season,	 (1) No statistically significant differences in the daily rate of fractures across temperature ranges for either max or min temperature, or by month of year. Mean fractures per season: 	No denominator shown to calculate rates for temp band non-parametric tests of assoc Author suggests winter lengt stay may have been due to th
	2002;31(5):343-					period we				 in the characteristics of patients (age, sex, pre-injury mobility, residence, functional and mental scores) presenting in different seasons or temperature ranges. (3) Patients presenting in winter 	
114	Curriero FC,	To investigate	Time-series	++	++	11 large	Daily mean	All-cause and	For each city, a	• • •	

Heiner KS,	the		eastern US	temperature	cause-specific	Poisson regression	were the weather components most	
Samet JM,	association		cities in 1973-	and dew point	(cardiovascular,	general additive	strongly predictive of mortality, and	
Zeger SL, Strug	between		1994		respiratory and	model was fit to	mortality risk generally decreased as	
L, Patz JA.	temperature			Explored	other) mortality.	estimate the	temperature increased from the	
Temperature	and mortality			impact of city-	External causes	weather-mortality	coldest days to a certain threshold	
and mortality in	across a range			specific	excluded.	relation.	temperature, which varied by latitude,	
11 cities of the	of less			characteristics			above which mortality risk increased as	
eastern United	extreme			, in addition		Nonparametric	temperature increased.	
States. Am J	temperatures			to latitude,		functions used to		
Epidemiol.	in 11 US			including the		describe non-linear	The same day dew point provided an	
2002; 155(1):	cities, and to			percentage		relations.	additional explanation for mortality.	
80-7. ¹¹⁴	explore city-			of:				
	specific			1 elderly		Explored multiple	As in the models for all-cause	
	factors that			2 elderly and		lags and degrees of	mortality, mortality risk for	
	might explain			disabled		freedom to control	cardiovascular and respiratory diseases	
	variations in			3 adults		for calendar time.	decreased as temperature increased,	
	the			without a high			but cold slopes were steeper. Death	
	association.			school degree		In the second stage	from other causes (mainly cancer) did	
				4 living in		of analysis, used a	not show this association.	
				poverty		random effects		
				5 homes with		linear regression	There was a qualitatively similar	
				air		model to	relation between weather and	
				conditioning		summarize each	mortality for each age group, although	
				6 homes with		city's weather -	the temperature effect was smallest	
				heating		mortality relation;	for the youngest age group (<65) and	
				_		determined the	largest for those >75 years.	
				Also looked at		minimum mortality		
				associations		temperature and	There was a strong association of the	
				stratified by		the average cold	temperature-mortality relation with	
				age.		and hot slope while	latitude, with a greater effect of colder	
				-		exploring variation	temperatures on mortality risk in	
						due to city-specific	more-southern cities and of warmer	
						characteristics.	temperatures in more-northern cities.	
							Percentage of households with air	
							conditioners in the south and heaters	
							in the north, which serve as indicators	
							of socioeconomic status of the city	
							population, also predicted weather-	
							related mortality.	
•	•	1		•	•	•		

			Summary results from regressing the cold slopes, hot slopes, and minimum mortality temperatures on city-specific predictor variables with and without adjusting for latitude, United States, 1973–1994†
			Predictor‡ Cold slope§ (SE) MMT <u>%65+</u> Unadjusted -3.97* (1.27) 1.66 Adjusted -3.96* (1.17) 5.34
			%NOHS Unadjusted 0.10 (0.83) -5.95 Adjusted -0.46 (0.71) -3.46
			%Poverty Unadjusted 0.03 (0.10) 6.05 Adjusted -0.39 (0.83) -2.56 %65+ Disability
			Unadjusted 1.20 (1.70) 0.41 Adjusted 0.85 (1.48) 6.78 %Air Cond 6.78 6.78
			Unadjusted -0.22 (0.22) 2.54* Adjusted 0.44 (0.35) 0.46 <u>%Heating</u> Unadjusted 2.38 (1.60) -9.08
			Adjusted 0.74 (1.96) 5.33 * Statistically significant at the p = 0.05
			level. + Expressed as log-relative rates (
			1,000), which are approximately the percentage change in mortality per 10°F (°C = 5/9
			(°F – 32)) per 10-unit change in the predictor variable The regressions for each predictor

Ruralit depriv and ex winter morta ecolog study. Epider Comm Health	rell R, ler BW. ty, vation, xcess r ility: an gical J miol	To assess the association between both rurality, and area deprivation, and excess winter mortality	Area (ecological) analysis of seasonal ratio in mortality	+	+	Population of the S West region of England, 1994-1998. Both urban and rural areas	Seasonal definition (seasonality ratio). Modifiers: population density (urban/rural) and Townsend index (s-e deprivation) both calculated from 1991 census small area data.	All-cause mortality	Analysis of age-sex standardized seasonality ratio. Examination of modification of ratio by area characteristics (urban/rural, deprivation)	<pre>were performed both without including latitude (unadjusted) and including latitude (adjusted) as a second predictor.</pre>	Authors note that Townsend used here may be a weak me of area deprivation
--	---	--	---	---	---	--	---	------------------------	---	---	---

	C			-	-			1	1	
										Authors conclude that: "neither rurality nor area deprivation are importantly associated with excess winter mortality. [But that] these results cannot be used to suggest that policy aimed at reducing fuel poverty and improving housing energy efficiency
										might not be appropriately targeted at more deprived groups and rural
- 11	 ⁶ Mitchell R, Blane D, Bartley M. Elevated risk of high blood pressure: climate and the inverse housing law. Int J Epidemiol. 2002; 31(4): 831-8.¹¹⁶ 	To investigate whether an individual's risk of hypertension is associated with (a 'mismatch' between) the quality of their housing and the climate to which they have been exposed.	Cross- sectional observational study	+	+	Britain: data from the 5663 Health and Lifestyle Survey (HALS) participants for whom all relevant items were available. A two-stage study design: (1) the relationship between exposure to colder climate and housing quality was established; (2) the impact on risk of hypertension was determined for level of exposure to colder climate	 (1) Climatic exposure to cold (based on 10 km² grid climate model linked to place of residence) (2) A dichotomous housing quality variable based on combination of: access to an inside WC and sharing basic amenities; carbon monoxide in the (indoor) air; heating efficiency. (Heating was recorded as 	Systolic hypertension; diastolic hypertension (based on dichotomous classification of	Multivariable logistic regression	populations."Survey respondents with greaterexposure to colder climate are morelikely (1.32, 95% CI: 1.18-1.42) to live inpoor quality housing than those withlower exposure to colder climate.Risks of systolic and diastolichypertension in relation to climate andhousing quality are summarized asfollows:Relationship between climate, housingand risk of being hypertensive. Oddsratios (ORs) for (i) systolic and (ii)diastolic hypertension adjusted for:age, sex, body mass index (BMI), unitsof alcohol in the previous week, roomtemperature, smoking, whether takinganti-hypertensive medication.Systolic hypertensionLower exposure to colder climate, inbetter housingOR 1.16 (0.98, 1.36)Lower exposure to colder climate, inworse housingOR 1.15 (0.94, 1.40)Higher exposure to colder climate, in
						and housing	inefficient			

				1	r				-		
						quality.	when the			Diastolic hypertension	
							heating			Lower exposure to colder climate, in	
							system was			better housing OR 1.00	
							on but room			Higher exposure to colder climate, in	
							temperature			better housing OR 1.17 (0.99, 1.38)	
							was below			Lower exposure to colder climate, in	
							15°C).			worse housing OR 1.15 (0.94, 1.40)	
										Higher exposure to colder climate, in	
										worse housing OR 1.45 (1.18, 1.77)	
										Authors' conclusions: there appears to	
										be an 'inverse housing law' in Britain,	
										whereby longer term residents of	
										relatively cold areas are also more	
										likely to live in worse quality housing	
										and this combination of circumstances	
										is associated with significantly higher	
										risk of diastolic hypertension.	
										The findings provide an example of	
										how long term exposure to an adverse	
										environment, which may stem from	
										material disadvantage, can damage	
117	Stewart S,	To examine	Analysis of	+	++	Scotland,	Seasonal	Hospitalization	Analysis of seasonal	health. Admission rate	Authors poto
		seasonal	seasonal	+	++		(month)	and death due to	(month) variation,	July Dec	Authors note: "There is substantial seasona
	McIntyre K, Capewell S,	variation in	trends in			population study (using	definition	acute or	by age, sex, cause	F 7% below 12%	variation in HF hospitalization
	McMurray JJ.	hospitalizatio	admissions			individualized	demition	congestive heart	by age, sex, cause		deaths, particularly in the eld
	Heart failure in	ns and deaths	and deaths			morbidity and		failure; other		above year ave year ave OR 1.14, p<0.001	Approximately one-fifth of th
	a cold climate.	due to heart	and deaths			mortality		discharge		OK 1.14, p<0.001	winter excess in admissions is
	Seasonal	failure (HF)				from the		diagnose also		M 8% below 6% above	attributable to respiratory dis
	variation in	and possible				linked		analysed		Year ave year ave	Extra vigilance in patients wit
	heart failure-	contributors				Scottish		(respiratory		OR 1.16, p<0.001	is advisable in winter, as is
	related	to such				Morbidity		disease, AMI,		011110, p 0.001	immunization against
	morbidity and	variability				Record		other)		Greatest seasonal (monthly) variation	pneumococcus and influenza
	mortality. J Am	variability				scheme),		ouncry		occurred in those aged >75 years	pricumococcus una innucrizu
	Coll Cardiol.					1990 and				peak winter rates being 15% to 18%	
	2002; 39(5):					1996				higher than average.	
	760- ¹¹⁷										
										Winter peak in concomitantly coded	
L	l	1	1	1	1	1	1	I	1		

				respiratory disease; this seasonal	
				excess accounted for approximately	
				one-fifth of the winter increment in HF	
				hospitalizations.	
				Seasonal variation in mortality was also	
				seen in these patients. The number of	
				male deaths in December was 16%	
				higher, and in July 7% lower, than	
				average (OR 1.25, p < 0.001). In	
				women, the equivalent figures were	
				21% higher (January) and 14% lower	
				(July) (OR 1.21, p < 0.001). Again, the	
				greatest variation occurred in those	
				aged >75 yearspeak rates being 23%	
				to 35% higher than average.	

Appe	ndix 5 table conti	nued: 2001 stu	dies								
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
2001											
118	Aylin P, Morris S, Wakefield J, Grossinho A, Jarup L, Elliott P. Temperature, housing, deprivation and their relationship to excess winter mortality in Great Britain, 1986-1996. Int J Epidemiol. 2001; 30(5): 1100-8. ¹¹⁸	To examine the associations between temperature, housing, deprivation and excess winter mortality using census variables as proxies for housing conditions.	Small area ecological study at electoral ward level.	+	++	Men and women aged 65 and over: Great Britain, 1986-1996.	Winter season: defined by month (Dec – Mar).	Deaths from all causes ([ICD-9] codes 0-999), coronary heart disease (ICD-9 410-414), stroke (ICD-9 430-438) and respiratory diseases (ICD-9 460-519). Odds of death occurring in December to March compared to the rest of the year.	Analysis of the ratio of deaths in winter/non-winter months, and its variation with age, mean winter temperature, and area-based (electoral ward) markers of deprivation and central heating.	A trend of higher excess winter mortality with age was apparent across all disease categories (P < 0.01). 1.5% higher odds of dying in winter for every 1 degrees C reduction in 24-h mean winter temperature. The amount of rain, wind and hours of sunshine were inversely associated with excess winter mortality. Selected housing variables derived from the English House Condition Survey showed little agreement with census-derived variables at electoral ward level. For all-cause mortality there was little association between deprivation and excess winter mortality (e.g. all cause mortality by Carstairs index OR=0.99; similar findings for CHD, stroke, respiratory disease). Lack of central heating was associated with a higher risk of dying in winter (odds ratio [OR] = 1.016 (1.009-1.022).	Ecological study Reviewers disagreed on exter validity score: changed from -
119	Donaldson GC, Rintamaki H, Nayha S. Outdoor clothing: its relationship to geography, climate,	To examine (a) what are the determinants of regional variation in clothing worn outdoors	Inter-country (ecological) comparison of survey data	+	+	Survey data (of 6583 people) from eight regions of Europe: Samples divided by sex and age (50-	From survey and routine sources: (a) cold, wind, less physical activity and longer periods	(a) clothing (b) Indices of cold-related mortality	 (a) ANCOVA of clothing Vs (b) Correlation of patterns of clothing with indices of cold- related mortality 	Across Europe, the total clothing worn (as assessed by dry thermal insulation and numbers of items or layers) increased significantly with cold, wind, less physical activity and longer periods outdoors. Men wore 0.14 clo (1 clo = 0.115 m2 K	

					r		n	1		
1	behaviour and	and				59 and 65-74	outdoors.			W-1) more than women and the older
	cold-related	(b) whether				years).	(b) Clothing			people wore 0.05 clo more than the
	mortality in	wearing more					parameters:			younger group (both P < 0.001).
	Europe. Int J	clothing is					thermal			
	Biometeorol.	associated					insulation			Regional differences in clothing after
	2001; 45(1): 45-	with lower					properties,			allowance for these factors were
	51. ¹¹⁹	cold-related					number of			correlated (r = -0.74, P = 0.037; r = -
		mortality					layers and			0.74, P = 0.036 respectively), but not
							type			those in clothing layers (r = -0.21; P =
							- / 1			0.61), with indices of cold-related
										mortality.
										Cold weather most increased the
										wearing of gloves, scarves and hats.
										The geographical variation in the
										wearing of these three together items
										more closely matched that in cold-
										related mortality ($r = -0.89$, $P = 0.003$).
120	Huynen MM,	To investigate	Time series	++	++	The	Ambient	Mortality: total	Poisson log-linear	There was a V-like relationship
	Martens P,	the impact of	Time series	TT		Netherlands,	temperature	and by cause –	regression	between mortality and temperature,
	Schram D,	ambient							-	
	,					1979-1997,	(daily mean)	malignant neoplasm,	controlling for time trend and season.	with a lowest mortality rate at 16.5 degrees C for total mortality,
	Weijenberg MP,	temperature							trenu anu season.	
	Kunst AE. The	on mortality,						cardiovascular,		cardiovascular mortality, respiratory
	impact of heat	specifically						respiratory		mortality, and mortality among those
	waves and cold	the impact of								>=65 years.
	spells on	heat waves								
	mortality rates	and cold								For mortality due to malignant
	in the Dutch	spells, and the								neoplasms and mortality in the
	population.	possibility of								youngest age group, the optimum
	Environ Health	forward								temperatures were 15.5 degrees C and
	Perspect. 2001;	displacement								14.5 degrees C, respectively.
	109(5): 463-	of mortality.								
	70. ¹²⁰									The increase in mortality for each
										degree Celsius decrease below the
										optimum (lowest mortality)
										temperature in the preceding month
										was:
										malignant neoplasms 0.22%
										cardiovascular disease 1.69%
										respiratory diseases 5.15%
L	L	1	1	1	I	1	1	1	1	

								Γ	T	total mantality d. 0.70/	1
										total mortality 1.37%,	
										The average excess mortality during	
										the cold spells was 12.8%, mostly	
										attributable to the increase in	
										cardiovascular mortality and mortality	
										among the elderly.	
										No clear evidence of cold-induced	
										forward displacement of deaths.	
121	Nafstad P,	To determine	Time series	+	+	Oslo, Norway,	Ambient	Mortality from all	Time series counts	At temperatures below 10 degrees C, a	Majority of mortality was in t
	Skrondal A,	the				1990-1995	(outdoor)	diseases;	performed using	1 degrees C fall in the last 7 days	elderly population. Location
	Bjertness E.	associations					temperature,	mortality from	generalized additive	average temperature increased the	mortality (in homes, outside,
	Mortality and	between					relative	respiratory	models	daily mortality from all diseases by	hospital) was not taken into
	temperature in	temperature					humidity,	diseases;	with log link and	1.4%, respiratory diseases 2.1%, and	account. Confounding effects
	Oslo, Norway,	and daily					wind velocity	mortality from	Poisson error.	cardiovascular diseases 1.7%. Above 10	seasonal mortality not includ
	1990-1995. Eur	mortality					and air	cardiovascular	Frequency	degrees C, there was no statistically	
	J Epidemiol.						pollution	diseases;	distributions of	significant increase in daily mortality,	
	2001; 17(7):						(NO ₂).	mortality from	dose-response	except for respiratory mortality, which	
	621-7. ¹²¹						Averaged	gastrointestinal	curves were used to	increased by 4.7% per 1 degrees C	
							over several	diseases as a	estimate relative	increase in the last 7 days average	
							days and lags	control	risk using Poisson	temperature.	
							were also considered.		regression. Influenza was		
							considered.		included as a	Relative risk (total) T <10 C (7 day lag) (0.986, 0.981–	
									dummy variable.	0.991)	
									dunning variable.	Respiratory diseases	
									Confounding effects	T <10 C (7 day lag) (0.979, 0.966–	
									of air pollution	0.992)	
									considered.	Cardiovascular diseases	
										T <10 C (7 day lag) (0.983, 0.976–	
										0.990)	
										Daily mortality in Oslo increases with	
										temperatures falling below 10 degrees	
										C. The increase starts at lower	
										temperatures than shown in warmer	
										regions of the world, but at higher temperatures than in regions with even	
										colder climates.	
L										coluer cilliates.	1

						I					
122	van Rossum CT, Shipley MJ, Hemingway H, Grobbee DE,	To determine the seasonal effect on all- cause and	Cohort follow- up study	+	++	London, England: 25- year follow- up of 19,019	Seasonal definition Potential	Mortality	Regression analysis	As well insulated and heated dwellings are standard in Norway today, more adequate clothing during outdoor visits is probably the most important preventive measure for temperature related mortality. Participants at high risk based on age, employment grade, blood pressure, cholesterol, forced expiratory volume, smoking and diabetes did not have	
	Mackenbach JP,	cause-specific				male civil	effect			higher seasonal mortality.	
	Marmot MG.	mortality and				servants aged	modifiers age,			0 ,	
	Seasonal	to identify				40-69 years.	employment			Participants with ischaemic heart	
	variation in cause-specific	high-risk groups.					grade, blood pressure,			disease at baseline did have a higher seasonality effect	
	mortality: are	groups.					cholesterol,				
	there high-risk						forced			Baseline IHD status Rel risk (95% CI)	
	groups? 25-year						expiratory			With IHD 1.38 (1.2, 1.6) Wiithout IHD 1.18 (1.1, 1.3)	
	follow-up of civil servants						volume, smoking,			Wiithout IHD 1.18 (1.1, 1.3) (P = 0.03)	
	from the first						diabetes, pre-			(1 - 0.05)	
	Whitehall study.						existing			Authors' conclusions: seasonal	
	Int J Epidemiol.						disease status			mortality differences were greater	
	2001; 30(5): 1109-16X. ¹²²									among those with prevalent ischaemic heart disease and at older ages, but	
	1105 107.									were not greater in individuals of lower	
										socioeconomic status or with a high	
										multivariate risk score. Since seasonal	
										differences showed no evidence of	
										declining over time, elucidating their causes and preventive strategies	
										remains a public health challenge.	
123	Watkins SJ,	To test the	Analysis of	-	+	Metropolitan	Winter and	Age and sex-	Calculation of	Comparison of the winter summer ratio	Author noted limitations
	Byrne D,	prediction	routine health			Borough of	summer	standardized	standardized	in standard mortality ratio (%)	
	McDevitt M.	that winter	services			Stockport,	differences	hospital	mortality ratios and		Our present study is not capa
	Winter excess morbidity: is it a	excess morbidity	hospital admissions			England: routine health	(ratios).	admission rates for ischaemic	winter/summer ratios by ACCORN	G Council estates III 98 F Council estates II 113	doing more than suggest this serendipitous hypothesis. It
	summer	would be	data			services	Data classified	heart disease	group	E Council estates I 113	deserves testing in a study
	phenomenon?	observable	/-			hospital	by ACORN		0 - -	D Older terraced housing 79	designed for the purpose. Th
	•					•			-	· · · · · · · · · · · · · · · · · · ·	• • •

								1		1	
	Journal of	and would				admissions	group for area			C Older intermediate housing 88	serendipitous hypothesis is n
	Public Health	show a social				data,	of residence			B Higher income family housing 108	entirely satisfactory as an
	Medicine	class gradient								I High-status non-family areas 108	explanation of existing data.
	2001;23(3):237-	with greater					The authors			K Better off retirement areas 202	
	41. ¹²³	excesses in					speculative			J Affluent suburban housing 99	
		less affluent					that winter				
		groups, who					excess				
		are less able					morbidity is a			Winter excess	
		to heat their					feature of			Standardized rate	
		houses or					health			G Council estates III -0.07	
		whose lack of					benefits			F Council estates II +0.82	
		a car exposes					derived in the			E Council estates I -0.38	
		them more					summer and			D Older terraced housing -0.63	
		frequently to					differentially			C Older intermediate housing -0.11	
		outdoor cold					available to			B Higher income family housing +0.59	
		exposure					the more			I High-status non-family areas +0.57	
							affluent, such			K Better off retirement areas +3.65	
							as			J Affluent suburban housing +0.16	
							opportunities				
							for outdoor			Affluent groups showed winter excess	
							leisure.			morbidity, less affluent groups showed	
										"summer excess morbidity."	
124	Wilkinson P,	To examine	Seasonal	+	+	Population	Season	All-cause	(1) Analysis of	Seasonal analyses	Cross sectional study linking I
	Landon M,	whether	analysis			mortality	(winter (Dec-	mortality; deaths	seasonal pattern of	Relative risks (relative to baseline) all-	dwellings and postcode mort
	Armstrong B,	vulnerability	(winter: non-			data, England,	Mar) vs non-	from	deaths and its	cause deaths: unadjusted analyses	data. Confounders included I
	Stevenson S,	to winter	winter) and			1986-1996:	winter	cardiovascular,	variation with	Age (unadjusted)	dwelling characteristics and s
	Pattenden S,	death is	its variation			80,331 deaths	months);	respiratory and	personal and area	0-44 1	economic factors. Confoundi
	McKee M, et al.	related to	by area			from		other (non cardio-	characteristics;	45-64 1.17 (1.03 – 1.34)	seasonal influenza was not
	Cold Comfort:	housing	characteristics			cardiovascular	Modifiers:	respiratory)		65-74 1.20 (1.05 - 1.36)	accounted for, but a good
	The social and	quality and				disease linked	individual	disease.	(2) Daily time-series	75-84 1.21 (1.07 – 1.38)	association with indoor
	environmental	home heating				by postcode	level age, sex,		analysis, and test of	85+ 1.28 (1.13 – 1.46)	temperatures and dwelling e
	determinants of	U U				of residence	cause-of-		modification of	(p<0.001 for trend)	efficiency was found.
	excess winter					to data from	death; area-		cold-mortality		·
	deaths in					the 1991	level		, function by housing	<u>Sex</u> (unadjusted)	
	England, 1986-					English House	classifiers of		quality	M 1	
	96: Policy press					Conditions	socio-		,	F 1.03 (1.02 – 1.05)	
	Bristol; 2001. ¹²⁴					Survey	economic			(p=0.09)	
	,					- /	status and				
L		1	1	ı		1		1	1		1

		housing		Socio-economic groups of head of
		quality		household (unadjusted)
				Professional 1
				Managerial 0.96 (0.85 – 1.07)
				Intermed non-man10.93 (0.82 – 1.05)
				Junior non-manual 0.95 (0.84 – 1.08)
				Skilled manual 0.93 (0.84 – 1.04)
				Unskilled 0.92 (0.82 – 1.05)
				(p>0.2 for trend)
				SAP rating of energy efficiency
				(unadjusted)
				Q1: 51- (most eff) 1
				Q2: 41- 1.03 (0.97 – 1.09)
				Q3: 32- 1.06 (1.00 – 1.13)
				Q4: ≤31 (least eff) 1.05 (0.99 – 1.11)
				(p=0.05 for trend)
				Quartile of indoor temp (unadjusted)
				Q 1 (warmest) 1
				Q 2 1.11 (1.02 – 1.22)
				Q 3 1.04 (0.94 – 1.14)
				Q 4 (coolest) 1.20 (1.09 – 1.32)
				(p=0.002 for trend)
				Multi-variable adjusted all-cause
				deaths
				Property age (adj for age, sex, socio-
				economic group and central heating):
				Pre 1850 1
				1850-99 0.97 (0.83 – 1.12)
				1900-18 0.93 (0.80 - 1.09)
				1919-44 0.96 (0.83 – 1.11)
				1945-64 0.96 (0.83 - 1.11)
				Post 1980 0.82 (0.68 – 0.98)
				(p=0.001 for trend)
				Daily time-series

				Seasonal fluctuation and cold-mo	rtality
				relationship greater in homes pre	dicted
				to have low winter indoor	
				temperatures, though the variation	on
				between the warmest and coldes	
				houses was fairly small.	
				,	
				Effects of temperature on	
				cardiovascular death, and the	
				modification of these effects by he	ome
				heating	
				Quintile of stnd'ized Percent inci	rease
				indoor temp (SIC) in mortalit	
				(deg C) deg C fall ir	
				outdoor te	
				1 <14.8 2.2 (0.6, 3.9)	mβ
				1 14.8 2.2 (0.0, 3.9) 2 14.8- 1.1 (-0.5, 2.8)	
				2 14.0 ⁻ 1.1 (-0.3, 2.0) 3 16.6- 1.2 (-0.5, 2.9)	
				3 10.0- 1.2 (-0.3, 2.3) 4 18.4- 1.3 (-0.4, 3.0)	
				5 19.40.1 (-1.7, 1.5)	
				Trend (change per deg C increase	
				SIC): -0.13% (-0.26, -0.00)	
				(p=0.04 for trend)	

	ndix 5 table conti			1			1	I		1	
Ref	Study	Aim of study	Study design		lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>2000</u>											
125	Bulajic-Kopjar M. Seasonal variations in incidence of fractures among elderly people. Inj Prev. 2000; 6(1): 16- 9. ¹²⁵	To investigate seasonal variations in the incidence of fall related fractures among people 65 years and older.	Prospective, population based cohort	+	+	Population cohort of people aged 65 years and older in three urban areas in Norway (Stavanger, Trondheim, and Harstad) and Harstad) and their surrounding communities, 1990 to 1997 (a total of 459,904 person years). Cases were identified through a prospective registration system.	Cold season (October 1 st to 31th March) and warm season (1 st April to 30 th September).	Fall-related fractures (classified as hip, arm or other). Those caused by motor vehicle crashes and occupational injuries are excluded.	Fall-related fracture rates were calculated by age (65-79, and over 80), sex, and nature of injury according to ICD-code. The contribution of icy and slippery conditions to the incidence of injuries was analysed by classifying cases in those caused by slipping on ice and snow and those due to all other mechanisms.	There were 10,992 (2390 per 100,000 person years) fall related fractures. The risk was higher in the colder seasons (October through March) among people aged 65-79 years (relative risk (RR) = 1.39, 95% confidence interval (Cl) 1.32 to 1.47) and in people aged 80 years and older (RR = 1.17, 95% Cl 1.09 to 1.22). Slipping on ice and snow seems to explain the excessive incidence of hip and arm fractures during winter months. Incidence of fractures by nature of injury, age, sex, and season Incidence rate ratio (95% Cl) [PAR %] Women <u>65–79 years</u> Hip 820 684 1.20 (1.08 to 1.33) [9] Arm 1473 872 1.69 (1.55 to 1.84) [26] Other 560 478 1.17 (1.04 to 1.33) [8] Any 2853 2035 1.40 (1.32 to 1.49) [17] >80 years Hip 3235 3056 1.06 (0.98 to 1.15) [3] Arm 1544 1247	Cases were missed if they we treated outside of the registr system. Injuries may be over- reported (wrongly attributing injuries to slipping on ice), or under-reported (failing to des them properly).

										1.24 (1.10 to 1.40) [11]	
										Other 813 618	
										1.31 (1.11 to 1.56) [14]	
										Any 5592 4922	
										1.14 (1.07 to 1.21) [6]	
										Men	
										65–79 years	
										Hip 418 293	
										1.42 (1.20 to 1.70) [18]	
										Arm 357 211	
										1.69 (1.39 to 2.05) [26]	
										Other 270 262	
										1.03 (0.85 to 1.25) [1]	
										Any 1044 766	
										1.36 (1.22 to 1.52) [15]	
										>80 years	
										Hip 1769 1571	
										1.13 (0.96 to 1.32) [6]	
										Arm 527 346	
										1.52 (1.10 to 2.09) [21]	
										Other 522 379	
										1.38 (1.01 to 1.88) [16]	
										Any 2819 2297	
										1.23 (1.08 to 1.40) [10]	
										Authors' conclusion: season affects the	
										incidence of all types of fractures in	
										elderly people. Slipping on ice and	
										snow seems to be a causal mechanism	
										behind the seasonal effect. Preventive	
										measures targeting this causal	
										mechanism are likely to reduce the risk	
										of fracture, but the size of the effect is	
										difficult to estimate with certainty.	
126	Clinch JP, Healy	To propose an	Two country	_	+	Ireland and	Country	Excess winter	Informal	Mean mortality rates:	
	JD. Housing	hypothesis	ecological			Norway	comparison	mortality	comparison of	Ireland (95% CI)	Hypothesis paper with very li
	standards and	between poor	comparison			ivoiway	companson	mortanty	excess winter	Norway (95% Cl)	analytical basis: simple ecolog
	excess winter	housing	companson						mortality and other	Proportionate mortality from	comparison.
l		-									companson.
	mortality. J	standards (in							parameters in the	cardiovascular disease (%)	

Epidemiol	terms of			two countries	46.2 (45.34, 47.06)	The study method does not
Community	thermal				46.2 (45.26, 47.14)	attempt to strafiy or adjust for
Health. 2000;	efficiency and				Proportionate mortality from	confounders, although a num
54(9): 719-	heating				respiratory disease (%)	mentioned in discussion (e.g.
20.126	systems) and				13.8 (13.36, 14.24)	insulation, indoor temperature
	high rates of				9.9 (9.36, 10.44)	diet).
	excess winter				Crude mortality from cardiovascular	
	mortality in				disease per 1000 population	Applicable to UK as Ireland is
	Ireland				4.1 (3.94, 4.26)	similar in climate.
					4.9 (4.76, 5.14)	
					Crude mortality from respiratory	
					disease per 1000 population	
					1.3 (1.25, 1.35)	
					1.1 (1.03, 1.17)	
					Excess winter deaths per day from	
					cardiovascular disease	
					39.6 (32.59, 46.61)	
					6.3 (5.39, 7.21)	
					Excess winter deaths per day from	
					respiratory disease	
					24.3 (20.08, 28.52)	
					4.3 (3.32, 5.28)	
					Relative excess winter mortality from	
					cardiovascular disease	
					0.25 (0.21, 0.29)	
					0.12 (0.10, 0.14)	
					Relative excess winter mortality from	
					respiratory disease	
					0.57 (0.46, 0.68)	
					0.4 (0.32, 0.48)	
					Authors' conclusion: while Norway and	
					Ireland exhibit similar (crude and	
					proportionate) rates of mortality from	
					cardiovascular and respiratory disease,	
					relative excess winter mortality from	
					cardiovascular disease in Ireland is 2.1	
					times that in Norway and for	
					respiratory disease it is 1.4 times the	
			 		Norwegian figure. A possible significant	

		1			1	1					
										explanation for this strong seasonality	
										in Ireland is that Irish housing	
										standards are considerably poorer than	
										those in Norway, allowing falls in	
										outdoor temperature to have a much	
										greater impact on internal	
										temperatures.	
127	Gemmell I,	To assess	Seasonal and	+	+	Scotland,	Season	Mortality by	Lagged Poisson	There was significant seasonal variation	
	McLoone P,	seasonal	time-series			1981-1993	(Outdoor)	cause	regression analysis	in weekly death rates with a difference	
	Boddy FA,	variation in	analysis				temperature		of numbers of	of about 30% between a summer	
	Dickinson GJ,	mortality in							deaths and average	trough and a winter peak.	
	Watt GC.	Scotland,							weekly		
	Seasonal	1981-1993,							temperature with	This variation was principally	
	variation in	and its							adjustment for	attributable to respiratory disease,	
	mortality in	association							serial	cerebrovascular disease and coronary	
	Scotland.	with							autocorrelation and	artery disease.	
	International	socioeconomi							influenza epidemics		
	Journal of	c status and								Seasonal variation in mortality fell from	
	Epidemiology	outdoor								around 38% in 1981-1983 to around	
	2000;29(2):274-	temperature.								26% in 1991-1993.	
	9. ¹²⁷										
										There was no clear evidence of a	
										relationship between socioeconomic	
										status and seasonal mortality, however	
										the extent of the fall in seasonal	
										variation was greater in deprived areas	
										than in affluent areas.	
										Overall, a 1 degree C decrease in mean	
1										temperature was associated with a 1%	
										increase in deaths one week later. The	
										lag in this relationship varied by cause	
										of death and underlying temperature.	
										Authors' conclusion: seasonal	
										variations in mortality and the	
										relationship between temperature and	
										mortality are a significant public health	
										problem in Scotland. It is likely that the	
										strength of this relationship is a result	
				1	1				1	strength of this relationship is a result	

								of the population being unable to protect themselves adequately from the effects of temperature rather than
								the effects of temperature itself.
n GC, protective measures G, against cold in seven regions M, et of Europe in ht J lar 000;	Ecological country/ community- level) comparison	+	+	women, 50-59 and 65-74 years in north Finland, south Finland, Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo,	Temperature- related mortality. Temperature from outdoor meteorologic al monitoring stations	Cause-specific mortality	Analysis of variations in protective against cold outdoor temperatures	Data for the oldest subject group studied, aged 65-74, showed that in this vulnerable group, high levels of protection against indoor and outdoor cold at given outdoor temperatures were found mainly in countries with cold winters, and were associated with low levels of excess mortality at a given level of outdoor cold. Regions such as London that had poor protection against cold and/or high baseline mortalities had higher levels of winter excess mortality than expected for the coldness of their winters.
Dews association between excess winter ation mortality and excess socio- ortality economic deprivation, so that policy on. J decisions to alth reduce this c; excess	Area (ecological) comparison of excess winter death index	+	+	England and Wales and specific data for Bradford and manufacturin g districts	Season – for mortality Effect modifier 'Super Profile' groups derived from the 1991 Census were used as a measure of socio- economic status.	Age-standardized excess winter death	The age- standardized excess winter death index (EWDI) was calculated for each Super Profile group, for the population of Bradford. The EWDI was also calculated for the manufacturing districts (ONS area classification), a relatively deprived group and compared with that in England & Wales.	No significant trend was found in age- standardized excess winter mortality across the Super Profile groups (C hi-sq for trend=0.24;=>.05). The manufacturing districts had a similar EWDI to the national value. Authors' conclusion: excess winter mortality is not associated with deprivation.
y (y E, li er y torrologo), y E, li er y torrologo (jorrologo), at ci e co o cicio e a o cicio e a o	on GC, (x)protective measures against cold in seven regions of EuropeIM, et (y)of Europeer (y)of esssociation (y)betweenetcistion (y)mortality and eccossoc (y)deprivation, (y)oc (y)excessoc (y)excessoc (y)excessoc (y)excessof Europeexcessof Europe </td <td>on GC, (s, (s)protective measures against cold in seven regions of Europecountry/ community- level) comparisonE, (F, (F, K))seven regions of EuropecomparisonI M, et (r) (r) (r) (r) (r) (r) (r)of EuropecomparisonPA, (2000; 154-To look at the association betweenArea (ecological) comparison of excess winter death indexPA, (2000; 154-To look at the association betweenArea (ecological) comparison of excess winter death indexPA, (a) (c)<br <="" td=""/><td>on GC, (s, (s)</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>on GC, (s, measures) against cold in E, er y in to 0, Dewsprotective measures against cold in seven regions of Europecountry/ community- level) comparisonA, (2000; 154-To look at the association between excess winter mortality and nexcess socio- nortalityArea (ecological) comparison of excess winter death index++ (ecological) comparison of excess winter death index+</td><td>on GC, xy G, against cold in seven regions of Europecountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Finland, Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992VA, 0, Dews cition of excess winter cition of excess socio- to nortality and so constrainty could be aappropriatelyArea excess winter death index++To look at the cition of comparison of excess socio- comparison of excess socio- comparison of excess winter++To look at the cition of comparison of excess socio- deprivation, ic contality could be appropriately++To look at the cition of comparison of excess socia- deprivation, ic contality could be appropriatelyArea excess excess contality could be appropriately+Hart could be appropriatelyTo look at the excess socia-Area excess winter excess winter death index+Hart could be appropriatelyArea excess++Hart excessFor Bradford and manufacturin g districts</td><td>on GC, xy G, against cold in seven regions of Europecountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992related mortality. Temperature from outdoor meteorologic al monitoring stationstA, b, DewsTo look at the socio- deprivation, ic oon deprivation, ic commitArea (ecological) comparison of excess winter death index++England and specific data for Bradford and specific data for Bradford and specific data for Bradford and specific data for Bradford and derived from the 1991 Census were used as a measure of socio- economic deprivation, ic comparison to reduce this ealth reduce this ealth++England and specific data for Bradford and specific data for Bradford and mortality and specific data for Bradford and manufacturin g districtsEffect modifier 'Super Profile' groups derived from the 1991 Census were used as a measure of socio- economic cold be appropriately++</td><td>on GC, y, G, against cold in E, seven regions to In J olar 2000; 154-protective measures against cold in level) comparisoncountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992related mortality.mortalityA, to to between ciation ciation comparisonArea (ecological) comparison of excess winter death index+ to association between comparison of excess winter death index+ the season - for mortalityAge-standardized excess winter death indexA, to co<</td><td>on GC, measures against cold in E, in E, r r r in L1 bet too 101 J obciprotective momunity- level)community- community- level)women, 50-59 and 65-74 years in north Finland, Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988mortality motality.wariations in protective against cold outdoor temperaturesAA, b, DewsTo look at the association too tooArea (ecological) excess winter death index++England and Palermo, 1992Season - for mortalityAge-standardized excess winter deathThe age- scale and scale and palermo, 1992Age-standardized excess winter deathThe age- scale and scale and s</td></td>	on GC, (s, (s)protective measures against cold in seven regions of Europecountry/ community- level) comparisonE, (F, (F, K))seven regions of EuropecomparisonI M, et (r) (r) (r) (r) (r) (r) (r)of EuropecomparisonPA, (2000; 154-To look at the association betweenArea (ecological) comparison of excess winter death indexPA, (2000; 154-To look at the association betweenArea (ecological) comparison of excess winter death indexPA, (a) (c) <td>on GC, (s, (s)</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td> <td>on GC, (s, measures) against cold in E, er y in to 0, Dewsprotective measures against cold in seven regions of Europecountry/ community- level) comparisonA, (2000; 154-To look at the association between excess winter mortality and nexcess socio- nortalityArea (ecological) comparison of excess winter death index++ (ecological) comparison of excess winter death index+</td> <td>on GC, xy G, against cold in seven regions of Europecountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Finland, Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992VA, 0, Dews cition of excess winter cition of excess socio- to nortality and so constrainty could be aappropriatelyArea excess winter death index++To look at the cition of comparison of excess socio- comparison of excess socio- comparison of excess winter++To look at the cition of comparison of excess socio- deprivation, ic contality could be appropriately++To look at the cition of comparison of excess socia- deprivation, ic contality could be appropriatelyArea excess excess contality could be appropriately+Hart could be appropriatelyTo look at the excess socia-Area excess winter excess winter death index+Hart could be appropriatelyArea excess++Hart excessFor Bradford and manufacturin g districts</td> <td>on GC, xy G, against cold in seven regions of Europecountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992related mortality. Temperature from outdoor meteorologic al monitoring stationstA, b, DewsTo look at the socio- deprivation, ic oon deprivation, ic commitArea (ecological) comparison of excess winter death index++England and specific data for Bradford and specific data for Bradford and specific data for Bradford and specific data for Bradford and derived from the 1991 Census were used as a measure of socio- economic deprivation, ic comparison to reduce this ealth reduce this ealth++England and specific data for Bradford and specific data for Bradford and mortality and specific data for Bradford and manufacturin g districtsEffect modifier 'Super Profile' groups derived from the 1991 Census were used as a measure of socio- economic cold be appropriately++</td> <td>on GC, y, G, against cold in E, seven regions to In J olar 2000; 154-protective measures against cold in level) comparisoncountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992related mortality.mortalityA, to to between ciation ciation comparisonArea (ecological) comparison of excess winter death index+ to association between comparison of excess winter death index+ the season - for mortalityAge-standardized excess winter death indexA, to co<</td> <td>on GC, measures against cold in E, in E, r r r in L1 bet too 101 J obciprotective momunity- level)community- community- level)women, 50-59 and 65-74 years in north Finland, Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988mortality motality.wariations in protective against cold outdoor temperaturesAA, b, DewsTo look at the association too tooArea (ecological) excess winter death index++England and Palermo, 1992Season - for mortalityAge-standardized excess winter deathThe age- scale and scale and palermo, 1992Age-standardized excess winter deathThe age- scale and scale and s</td>	on GC, (s, 	on GC, (s, measures) against cold in E, er y in to 0, Dewsprotective measures against cold in seven regions of Europecountry/ community- level) comparisonA, (2000; 154-To look at the association between excess winter mortality and nexcess socio- nortalityArea (ecological) comparison of excess winter death index++ (ecological) comparison of excess winter death index+	on GC, xy G, against cold in seven regions of Europecountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Finland, Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992VA, 0, Dews cition of excess winter cition of excess socio- to nortality and so constrainty could be aappropriatelyArea excess winter death index++To look at the cition of comparison of excess socio- comparison of excess socio- comparison of excess winter++To look at the cition of comparison of excess socio- deprivation, ic contality could be appropriately++To look at the cition of comparison of excess socia- deprivation, ic contality could be appropriatelyArea excess excess contality could be appropriately+Hart could be appropriatelyTo look at the excess socia-Area excess winter excess winter death index+Hart could be appropriatelyArea excess++Hart excessFor Bradford and manufacturin g districts	on GC, xy G, against cold in seven regions of Europecountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992related mortality. Temperature from outdoor meteorologic al monitoring stationstA, b, DewsTo look at the socio- deprivation, ic oon deprivation, ic commitArea (ecological) comparison of excess winter death index++England and specific data for Bradford and specific data for Bradford and specific data for Bradford and specific data for Bradford and derived from the 1991 Census were used as a measure of socio- economic deprivation, ic comparison to reduce this ealth reduce this ealth++England and specific data for Bradford and specific data for Bradford and mortality and specific data for Bradford and manufacturin g districtsEffect modifier 'Super Profile' groups derived from the 1991 Census were used as a measure of socio- economic cold be appropriately++	on GC, y, G, against cold in E, seven regions to In J olar 2000; 154-protective measures against cold in level) comparisoncountry/ community- level) comparisonwomen, 50-59 and 65-74 years in north Finland, south Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988 to 1992, and Athens and Palermo, 1992related mortality.mortalityA, to to between ciation ciation comparisonArea (ecological) comparison of excess winter death index+ to association between comparison of excess winter death index+ the season - for mortalityAge-standardized excess winter death indexA, to co<	on GC, measures against cold in E, in E, r r r in L1 bet too 101 J obciprotective momunity- level)community- community- level)women, 50-59 and 65-74 years in north Finland, Baden- Wurttemburg, the Netherlands, London, and north Italy (24 groups), 1988mortality motality.wariations in protective against cold outdoor temperaturesAA, b, DewsTo look at the association too tooArea (ecological) excess winter death index++England and Palermo, 1992Season - for mortalityAge-standardized excess winter deathThe age- scale and scale and palermo, 1992Age-standardized excess winter deathThe age- scale and scale and s

Appendix 5 table continued: 1999 studies											
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>1999</u>											
130	Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J. 1999; 13(4): 844-9. ¹³⁰	To investigate whether falls in environmenta I temperature increase morbidity from chronic obstructive pulmonary disease (COPD).	Panel study	+	+	Daily lung function and symptom data collected over 12 months from 76 COPD patients living in East London	Outdoor and bedroom temperature. Questionnaire s were administered which asked primarily about the nature of night-time heating.	FEV1 PEFR Total and cause-	Panel Regression of lung function/PEFR on outdoor and bedroom temperature	A fall in outdoor or bedroom temperature was associated with increased frequency of exacerbation, and decline in lung function, irrespective of whether periods of exacerbation were excluded. Forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) fell markedly by a median of 45 mL (95% percentile range: -113-229 mL) and 74 mL (-454-991 mL), respectively, between the warmest and coolest week of the study. The questionnaire revealed that 10% had bedrooms <13 degrees C for 25% of the year, possibly because only 21% heated their bedrooms and 48% kept their windows open in November. Temperature-related reduction in lung function, and increase in exacerbations may contribute to the high level of cold-related morbidity from COPD.	
	Gorjanc ML, Flanders WD, VanDerslice J, Hersh J, Malilay J. Effects of temperature and snowfall on mortality in Pennsylvania. Am J Epidemiol. 1999; 149(12):	To examine the relation between exposure to severe cold weather and mortality	retrospective study of	+	+	Pennsylvania, USA: deaths occurring during the month of January from 1991 to 1996 classified by weather division of residence and	"Extreme" climatic conditions, i.e. when snowfall was greater than 3 cm and when temperatures were below -7 degrees C, using 146	lotal and cause- specific mortality: ischaemic heart, cerebrovasculara nd respiratory disease	Using division-days as units of observation (n = 1,560) mortality rates (counts/population) were analysed using generalized estimating equations, with allowance for	Total mortality increased on days of "extreme" climatic conditions (rate ratio (RR) = 1.27, 95 percent confidence interval (Cl) 1.12-1.44). On days of extreme conditions (vs milder days), RR for mortality due to ischemic heart diseases were: <u>Men</u> 35-49 years: RR = 3.54 (2.35-5.35) 50-64 years: RR = 1.77 (1.32-2.38)	

	121			1							
	1152-60. ¹³¹					cause.	weather stations over the 10 divisions		overdispersion and auto-correlation. Lag 3 for resp deaths, 0 otherwise. Division included as fixed effect, but no apparent control for time trands	65+ years: RR = 1.58 (1.37-1.82) Cold and snow had independent effects. Among women, mortality for those aged 65 years and older increased for respiratory causes (RR = 1.68, 95 percent Cl 1.28-2.21) and cerebrovascular causes (RR = 1.47, 95 percent Cl 1.13-1.91). Cold and snow exposure may be hazardous among men as young as 35 years.	
132	Jacobsen SJ, Sargent DJ, Atkinson EJ, O'Fallon WM, Melton LJ, 3rd. Contribution of weather to the seasonality of distal forearm fractures: a population- based study in Rochester, Minnesota. <i>Osteoporos Int</i> 1999; 9 (3):254- 9. ¹³²	To examine the contribution of weather to the seasonality of distal forearm fractures	Observational study: analysis of data from Rochester Epidemiology Project	++	++	Men and women aged >=35 years, Rochester, Minnesota, USA, 1952-89	• Season • Weather type: - snow - freezing rain - rain - high winds	Distal forearm fracture (incidence), classified as moderate or severe trauma.	Poisson regression model. <u>Confounder</u> <u>adjustment:</u> descriptive by season and weather type; adjusted for season and all weather variables simultaneously Age in women was classified as younger (35-64) and older (>=65).	 Distal forearm fractures due to falls were more frequent in the winter (p < 0.0001) among men and women Winter excess partially explained by a greater relative risk of distal forearm fractures on days with: <i>Women <65 years</i> freezing rain (1.65; 95% Cl 1.28-2.13) snow (1.42; 95% Cl 1.17-1.74) <i>Women >=65 years</i> freezing rain (1.63; 95% Cl 1.23-2.17) Author notes: the greater seasonality of forearm compared with hip fractures is explained by the fact that more of them occur out-of-doors. Among younger women, a 2.6-fold increase in the risk of fractures was seen in winter when adjusted for adverse weather. Residual effects of season after adjusting for daily weather 	Reduced relative risks when compared to UK studies may attributable to a culture more inclined to driving rather than walking. Subject to ecological fallacy. persistence of seasonality aft adjusting for weather could b to residual confounding. The setting where the fracture oc (indoor or outdoors) and time day. The results are only valid white women.

										conditions suggest that other factors	
122										play a role	
133	Shah S, Peacock	To investigate	Ecological	+	+	Croydon,	Seasonal	Main outcome	Regression	Age and sex standardised seasonality	Although ecological in design
	J. Deprivation	the effect of	comparison of			London,	definition:	measures were:	modelling, with	ratios for all deaths by ward	seems well done – e.g. other
	and excess	material	seasonal			United	EWD	EWD ratio	monthly average	deprivation	relevant variables controlled
	winter	deprivation	mortality at			Kingdom: all		and monthly	temperature and	quintiles before and after exclusion of	However it also used the Tow
	mortality. J	on the winter	electoral ward			deaths of		deaths	Townsend score as	nursing and residential home deaths	score which the other study
	Epidemiol	rise in	level.			Croydon			main predictors		suggests is a weak measure o
	Community	mortality and				residents,			(modifiers).	Results:	area-deprivation so any assoc
	Health. 1999;	temperature				1990–1995				- Quintile of Townsend index	may be under-represented. It
	53(8): 499-	dependent								- Standardised seasonality ratio (95%	be useful to compare finding
	502. ¹³³	variations in								CI)	studies which used Townsend
		mortality								- Standardised seasonality ratio (95%	others. However Debbie Law
										CI) after excluding nursing and	study that does not use the
										residential home deaths	Townsend score also shows n
											association
										Quintile I	
										121.7 (109.1 to 135.8)	
										119.7 (106.0 to 135.1)	
										Quintile II	
										120.3 (107.5 to 134.6)	
										120.2 (105.8 to 136.6)	
										Quintile III	
										117.2 (105.0 to 130.8)	
										113.0 (100.0 to 127.9)	
										Quintile IV	
										125.4 (110.9 to 141.8)	
										121.5 (106.2 to 139.0)	
										Quintile V 115.9 (103.7 to 129.5)	
										115.9 (103.7 to 129.5) 115.3 (102.6 to 129.6)	
										115.3 (102.8 (0 129.8)	
										Croydon average	
										119.7 (116.1 to 123.4)	
										119.7 (110.1 to 123.4) 117.4 (111.1 to 124.1)	
										11/.4 (111.1 (0 124.1)	
										No clear evidence of a relation	
										between age and sex standardised	
										seasonality ratios and Townsend scores	
										for all deaths or cardiovascular deaths	
				1			1			TOT all ueatils of cardiovascular deaths	

					was reported as the	The seasonal variation in stroke
	ļ				difference in	mortality also increased with age.
					mortality between	<65 years none
	ļ				the highest and	65 to 74 years 11.6%
	۱				lowest frequency	75 to 84 years 15.2%
	۱				seasons.	>85 years 19.3%
	ļ					(p < 0.005 for trend)
	ļ					
	۱					Authors' conclusions: the elderly
	۱					demonstrate a greater winter increase
						in AMI and stroke mortality than
	1					younger individuals.
I		 	·	ł	 	

Appendix 5 table continued: 1998 studies											
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext				-		
1998	8										
135	Levy AR, Bensimon DR, Mayo NE, Leighton HG. Inclement weather and the risk of hip fracture. <i>Epidemiology</i> 1998;9(2):172- 7. ¹³⁵	To determine association between inclement weather and hip fractures	Observational study: analysis of hospital admissions data	++	+	Hospital admissions for fracture neck of femur (ICD-9 code 820) for entire population of Montreal >=50 years, Quebec, 1982-92: 4018 days (n=18,455 cases)	 Season Meteorologic parameters: amount of snow, rain, and freezing rain (maximum) temperature 	Hip fracture	One cycle sine function to model seasonality Analysis of age-and sex-specific proportion of hip fractures occurring each day (as proportion of all fractures) analysed by Poisson regression <u>Confounder control:</u> models with season and combinations of meteorological conditions Sub-groups by sex and age (5 bands): 50-64, 65-74, 75-79, 80-84, >=85	Monthly frequency of occurrence of hip fracture: adjusted to $365/12=30.4$ days per month Adjusted frequency F M Jan 1345.4 453.1 Feb 1300.9 409.3 Mar 1128.7 346.2 Apr 1035.6 341.5 May 1087.5 323.6 Jun 1097.4 305.0 Jul 1087.5 309.9 Aug 1128.9 336.4 Sep 1248.4 340.5 Oct 1187.6 351.1 Nov 1182.6 363.8 Dec 1359.2 414.8 Peak-to-trough 1.2 1.4 ratio Annual peak* 343° 5° *360 ° of year starts at 1 Jan Adjusted associations between inclement weather, season and hip fractures. All ages. Proportional risk Women (95% Cl) Inclement weather index Tmax >5°C, no rain/snow 1.0 Tmax >5°C, no rain/snow 0.96 (0.92, 1.01) Tmax -5to5°C, no rain/sn 1.02 (0.93, 1.11) Tmax -5to5°C, no rain/snow 1.04 (0.97, 1.11) 1.11) <td></td>	

					T _{max} <-5°C, no rain/sn 1.25)	1.13 (1.02,
					T _{max} <-5°C, rain/snow	1 07 (0 98
					1.17)	1.07 (0.38,
					Any freezing precip	1.14 (1.04,
						1.14 (1.04,
					1.24)	
					<u>Season</u>	
					Summer (JJAS)	1.0
					Autumn (ON)	1.04 (0.98,
					1.09)	
					Winter (DJFM)	1.05 (0.99,
					1.12)	
					Spring (AM)	0.94 (0.89,
					0.99)	, , , , , , , , , , , , , , , , , , ,
					,	
					Men	
					Inclement weather inde	x
					T _{max} >5°C, no rain/snow	1.0
					T _{max} >5°C, rain/snow	
					1.00)	
					T _{max} -5to5°C, no rain/sn	1 09 (0 93
					1.26)	1.05 (0.55,
					T _{max} -5to5°C, rain/snow	1.02 (0.90,
					1.16)	•
					T _{max} <-5°C, no rain/sn	1.00 (0.83.
					1.20)	()
					, T _{max} <-5°C, rain/snow	1.16 (0.99.
					1.35)	
					Any freezing precip	1.36 (1.17,
					1.58)	1.00 (1.17)
					<u>Season</u>	
						1.0
					Summer (JJAS)	1.0
					Autumn (ON)	1.09 (0.99,
					1.20)	
					Winter (DJFM)	1.12 (1.00,
					1.26)	
					Spring (AM)	1.03 (0.94,
					1.13)	
					• Cyclical pattern in occu	rrence of hip
 1		 1	1		-,	

				fractures. Peak: mid-December for
				women, first week of January for men
				 Seasonality less pronounced among
				women than men
				• Days with lower temperatures, snow,
				and freezing rain were associated with
				increased rates of hip fracture.
				 Greatest risk associated with freezing
				rain.
				Association between inclement
				weather and hip fractures was
				stronger among younger persons,
				both women and men.
				 After adjusting for meteorologic
				variables, there remained increases in
				winter of 5% among women and 12%
				among men
• • • •				

Appe	ndix 5 table conti	nued: 1997 stu	dies								
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>1997</u>											
136	Ballester F, Corella D, Perez-Hoyos S, Saez M, Hervas A. Mortality as a function of temperature. A study in Valencia, Spain, 1991-1993. Int J Epidemiol. 1997; 26 (3): 551-61. ¹³⁶	To assesses the relationship between daily deaths and variations in ambient temperature	Time series	+	+	City of Valencia, Spain (over 750,000 inhabitants), 1991-1993	Temperature (daily mean) and relative humidity from local monitoring station.	Mortality: - All causes - All causes in subjects >70 years - All causes excluding external causes - Cardiovascular diseases - Respiratory diseases - Neoplasms	Autoregressive Poisson analysis using four lag periods. Confounder control: Seasonality, influenza, black smoke, humidity, day of the week, holidays	Relation between temperature and mortality by cause of death: analysis of cold months (Nov-April). Threshold temperature: 15 deg C Relative risks (95% Cl) for a 1 deg C decrease in temperature at lags of: 0 days 1-2 days 3-6 days 7-14 days All causes 1.015 (1.005, 1.024) 1.016 (1.004, 1.028) 1.032 (1.018, 1.046) All causes in subjects >70 years 1.016 (1.005, 1.028) 1.024 (1.011, 1.037) 1.023 (1.009, 1.037) 1.037 (1.021, 1.054) All causes 1.016 (1.006, 1.026) 1.016 (1.006, 1.027) 1.017 (1.005, 1.029) 1.031 (1.017, 1.045) Cardiovascular diseases 1.021 (1.006, 1.036) 1.026 (1.010, 1.043) 1.023 (1.021, 1.064)	

137	Bjornstig U, Bjornstig J, Dahlgren A. Slipping on ice and snow elderly women and young men	To examine epidemiologic al factors associated with slipping on snow and ice.	Observational study: analysis of routine data	+	+	Umea health district, Sweden (population 118,544)	Slip/fall coded by cause (snow, ice). Only slips on the same level (e.g. no falls from roofs)	hospitalisation, including fractures, due to slips or falls on snow or ice.	Descriptive analysis of routine data.	Respiratory diseases 1.023(0.994, 1.054) 1.046 (1.013, 1.080) 1.022 (0.987, 1.059) 1.017 (0.976, 1.060) Neoplasms 1.006 (0.987, 1.026) 1.000 (0.979, 1.022) 1.018 (0.995, 1.042) 1.015 (0.988, 1.042) A statistically significant association between temperature and mortality, including in cold (winter) season, with variations by age and cause of death. The effect of temperature is greater in persons aged over 70 years of age, and it is also greater in cases of circulatory and respiratory diseases. The injury rate was highest among the elderly, especially elderly women. High burden of injuries also in young men 20-29 years.	Alcohol consumption is a pot confounding factor. Falls not requiring hospitalisa were not included, meaning t was a bias towards the most vulnerable (e.g. the elderly).
137	Bjornstig J, Dahlgren A. Slipping on ice and snow	epidemiologic al factors associated with slipping	study: analysis of	+	+	district, Sweden (population	by cause (snow, ice). Only slips on the same level	hospitalisation, including fractures, due to slips or falls on		The injury rate was highest among the elderly, especially elderly women. High burden of injuries also in young	confounding factor. Falls not requiring hospitalisa were not included, meaning t

										measures, such as more effective snow clearing, sand and salt spreading in strategic areas, better slip preventive aids on shoes, and 'padding' of older women, would reduce the injuries and their consequences."	
138	Christophersen O. Mortality during the 1996/7 winter. Popul Trends. 1997; (90): 11- 7. ¹³⁸	To describe the timing of the winter peak, the population affected and the main causes of death in the winter peak of mortality in the 1996/7 winter (associated with an estimated 49 thousand excess deaths)	Analysis of routine data	+	+	England	Seasonal definition: winter	Mortality	The relationship between excess winter mortality, temperature and influenza was explored.	The peak in the number of deaths in December 1996 and January 1997 coincided with a peak in the number of deaths attributed to influenza and with low temperatures. However, the excess winter mortality was higher than expected, based on the experience of previous winters.	Standard EWM method + exploration of influence of influenza
139	Donaldson GC, Keatinge WR. Early increases in ischaemic heart disease mortality dissociated from and later changes associated with respiratory mortality after cold weather in south east England. J	To identify the time courses and magnitude of ischaemic heart (IHD), respiratory (RES), and all cause mortality associated with common 20-30 day patterns of cold weather	Cross- sectional time-series study	+	+	Population of south east England, including London, over 50 years of age from 1976-92	Mean daily temperatures obtained from three hourly measurement s at the Weather Centre, London. <u>Effect</u> <u>modifiers</u>	Daily mortality as deaths per 10^6 population. Absolute number of daily deaths extracted in relation to primary cause. Ischaemic heart disease (IHD) classified as ICD 410.0-414.9, respiratory disease (RES) as 460.0-519.9, and	Daily temperatures and daily cause- specific mortality on successive days before and after a reference day were regressed on temperature of reference day using high pass filtered data in which changes with cycle length <80 days were unaffected (< 2%), but slower	Colder-than-average days in the linear range 15 to 0 degrees C were associated with a "run up" of cold weather for 10-15 days beforehand and a "run down" for 10-15 days afterwards. The increases in deaths were maximal at 3 days after the peak in cold for IHD, at 12 days for RES, and at 3 days for all-cause mortality. The increase lasted approximately 40 days after the peak in cold. RES deaths were significantly delayed compared with IHD deaths. Excess deaths per million associated with these short-term temperature displacements were 7.3	

						-			-		
	Epidemiol	in order to					None	all-cause	cyclical changes and	for IHD, 5.8 for RES, and 24.7 for all	
	Community	assess links						mortality as 0-	trends were partly	cause, per one day fall of 1 degree C.	
	Health. 1997;	between cold					Confounders	999.9. Rates	or completely	These were greater by 52% for IHD,	
	51 (6): 643-8. ¹³⁹	exposure and					Linear trends	before 1984	suppressed. Annual	17% for RES, and 37% for all-cause	
		mortality						adjusted for	delays for different	mortality than the overall increases in	
								changing in	causes of death	daily mortality per degree C fall, at	
								coding	were compared	optimal delays, indicated by	
								instructions that	with each other by	regressions using unfiltered data.	
								year. Daily	Wilcoxon matched	Similar analyses of data at 0 to -6.7	
								estimates of	pairs rank test.	degrees C showed an immediate rise in	
								population		IHD mortality after cold, followed by a	
								obtained by linear	Results compared	fall in both IHD and RES mortality rates	
								regression of mid-	with overall	which peaked 17 and 20 days	
								year population	relations of	respectively after a peak in cold.	
								estimates (OPCS,	mortalities to		
								Series DH1, table	temperature, which	Conclusion: Twenty to 30 day patterns	
								2) against date.	include seasonal	of cold weather below 15 degrees C	
									and longer changes,	were followed:(1) rapidly by IHD	
									obtained by direct	deaths, consistent with known	
									regression of	thrombogenic and reflex consequences	
									unfiltered	of personal cold exposure; and (2) by	
									mortalities on	delayed increases in RES and	
									temperature at	associated IHD deaths in the range 0 to	
									successive delays.	15 degrees C, which were reversed for	
										a few degrees below 0 degree C, and	
										were probably multifactorial in cause.	
										These patterns provide evidence that	
										personal exposure to cold has a large	
										role in the excess mortality of winter.	
140	Donaldson GC,	To describe	Time-series	+	+	Deaths in men	Mean daily	Mortality from	Regression	The annual increase in all-cause	
	Keatinge WR.	reductions in				and women	temperature	ischemic heart	coefficients of	mortality per °C fall in temperature	
	Mortality	excess winter				aged 65-74	from	disease,	mortality on fall in	(excess winter mortality) declined by	
	related to cold	mortality in				years in	measurement	cerebrovascular	temperature were	32.3% between 1977 and 1994 (P =	
	weather in	England,				Greater	s at the	disease,	calculated for each	0.005).	
	elderly people	1979-1994.				London and	weather	respiratory	year by generalised	,	
	in southeast					ten other	centre in	disease, and all-	linear modelling for	The corresponding annual increase in	
	England, 1979-					English	London.	causes.	Poisson	mortality from ischaemic heart disease	
	94. BMJ 1997;					counties,	20110011		distribution, over	fell by 39.3% (P = 0.002),	
	315(7115):					1979-1994.	Looked at the	Calculated	the range 18°C to	cerebrovascular disease by 57.1% (P <	
	1055-6. ¹⁴⁰					20,0 100	effect on	number of deaths	0°C.	0.001), and respiratory disease by	
	1000 0.			1	I	I		number of deatins	0.0.	ologit, and respiratory disease by	

				r							
							mortality over	per day per		36.9% (P = 0.009).	
							the range of	million	Coefficients were		
							18 deg C to 0	population.	also calculated for	Baseline mortality at 18°C also fell, but	
							deg C.		baseline mortality	only by 16.9% for all causes (P < 0.001),	
									at 18 deg C.	24.4% for ischaemic heart disease (P <	
										0.002), 38.9% for cerebrovascular	
									Changes in annual	disease (P < 0.001), and 12.6% for	
									values with time	respiratory disease (P = 0.038).	
									were analysed by		
									ordinary linear	Influenza had little effect on the falling	
									regression.	death rates.	
									Controlled for	Authors comment: Substantial declines	
									influenza and used	in excess winter mortality from 1977 to	
									the lag with the	1994 were not due to fewer deaths	
									highest coefficient	from influenza. They can be attributed	
									for each cause of	in part to improvement in	
									death.	non-seasonal background factors such	
										as general medical care and diet, since	
										baseline death rates also fell. Assuming	
										that such background factors affected	
										baseline mortality and mortality	
										related to cold proportionately, about	
										half of the decline in excess winter	
										mortality can be explained by such	
										non-seasonal factors. The rest can	
										most easily be attributed to	
										improvements in home heating and to	
										factors such as greater car ownership,	
										which reduce outdoor exposure to	
										cold.	
141	Seretakis D,	To investigate	We used	-	+	Used monthly	Abstracted	Used the yearly	Estimated the peak-	The peak-to-trough ratio diminished by	Fairly short paper, little detai
	Lagiou P,	whether	published			coronary	data on	peak-to-trough	to-trough ratio in	about 2% per year until around	on methods
	Lipworth L,	declining	data on			deaths in the	"diseases of	ratio as primary	the monthly	1970, when the trend reversed. In New	
	Signorello LB,	coronary	coronary			United States	the	outcome and	frequency of US	England, the decline was steeper than	
	Rothman KJ,	mortality has	mortality by			from 1937	heart" for the	assessed its trend	coronary deaths	in the South, as measured from all	
	Trichopoulos D.	been	year to			through 1991.	entire United	over time by	using the Edwards	deaths.	
	Changing	accompanied	evaluate the			Deaths by	States for	linear regression;	harmonic		
	seasonality of	by a change in	time trend in			cause and	1937 through	depicted time	technique. This	Concludes that seasonal patterns in	
	mortality from	the seasonal	seasonal			month were	1969. Most of	trends using	method fits a sine	coronary mortality in the United States	

	-			1	1	1	r	1			
	coronary heart	pattern and	pattern. We			not available	these deaths	polynomial	curve to the	have changed with time. These	
	disease. Jama.	to investigate	fit a sine			by geographic	were due to	smoothing.	monthly	changes are compatible with the	
	1997; 278(12):	hypothesis	curve to the			area within	ischemic		frequencies on the	gradual expansion of adequate heating	
	1012-4. ¹⁴¹	that	monthly			the United	heart disease.		assumption that	and the subsequent increased use of	
		diminishing	frequency of			States, but we	We also		monthly variation	air-conditioning. Microclimatic	
		exposures to	deaths in each			were able to	abstracted		demonstrates a	influences on coronary mortality could	
		environmenta	year &			examine total	data on		single annual cycle.	explain in part the socioeconomic	
		l cold and	examined the			monthly	"ischemic		From the fitted sine	gradient of cardiovascular mortality.	
		heat have	trend over			deaths in 2	heart disease"		curve, one can		
		affected the	time in the			regions with	for 1970		estimate the peak		
		seasonal	ratio of peak			contrasting	through 1991,		and the trough of		
		pattern. ¹⁴¹	to trough of			climates, New	the latest year		the annual cycle.		
			the curve.			England and	for which data		The ratio of peak-		
						the South.	were		to-trough		
							available.		occurrence is a		
									measure of the		
							No explicit		intensity of the		
							treatment of		seasonal pattern.		
							temperature.		Trend over time in		
									the peak-to-trough		
									ratio is measured		
									by fitting linear		
									regressions. We		
									also depicted the		
									curvature of time		
									trends using		
									polynomial		
									smoothing		
									methods.		
142	The Eurowinter	To assess	Ecological	+	+	Men and	Temperature-	Cause-specific	Percentage	The percentage increases in all-cause	
	Group. Cold	whether	country/	1		women, 50-59	related	mortality	increases in deaths	mortality per 1 degree C fall in	Reviewer comment
	exposure and	increases in	community-			and 65-74	mortality.		per day per 1	temperature below 18 degrees C were	No seasonal control in time-s
	winter mortality	mortality per	level)			years in north	Temperature		degree C fall in	greater in warmer regions than in	analyses
	, from ischaemic	1 degree C fall	, comparison of			, Finland, south	from outdoor		temperature below	colder regions (eg, Athens 2.15% [95%	
	heart disease,	in	temporal			Finland,	meteorologic		18 degrees C	Cl 1.20-3.10] vs south Finland 0.27%	
	cerebrovascular	temperature	analysis of			Baden-	al monitoring		(indices of cold-	[0.15-0.40]).	
	disease,	differ in	daily time-			Wurttemburg,	stations		related mortality)		
	respiratory	various	series	1		the			were estimated by	At an outdoor temperature of 7	
	disease, and all	European	temperature-	1		Netherlands,			generalised linear	degrees C, the mean living-room	
	causes in warm	regions and to	mortality	1		London, and			modelling. We	temperature was 19.2 degrees C in	
					1		1	1			1

and cold regions	relate any	relationship.	north Italy (24		assessed protective	Athens and 21.7 degrees C in south	
of Europe.	differences to	Also, surveys	groups), 1988		factors by surveys	Finland; 13% and 72% of people in	
Lancet. 1997;	usual winter	conducted to	to 1992, and		and adjusted by	these regions, respectively, wore hats	
349 (9062):	climate and	assess	Athens and		regression to 7	when outdoors at 7 degrees C.	
1341-6. ¹⁴²	measures to	individual risk	Palermo,		degrees C outdoor		
	protect	factors and	1992		temperature	Multiple regression analyses (with	
	against cold	behaviour.				allowance for sex and age, in the six	
						regions with full data) showed that	
						high indices of cold-related mortality	
						were associated with high mean winter	
						temperatures, low living-room	
						temperatures, limited bedroom	
						heating, low proportions of people	
						wearing hats, gloves, and anoraks, and	
						inactivity and shivering when outdoors	
						at 7 degrees C (p < 0.01 for all-cause	
						mortality and respiratory mortality; p >	
						0.05 for mortality from ischaemic heart	
						disease and cerebrovascular disease).	
						Interpretation: Mortality increased to a	
						greater extent with given fall of	
						temperature in regions with warm	
						winters, in populations with cooler	
						homes, and among people who wore	
						fewer clothes and were less active	
						outdoors.	

Ref	Study	Aim of study	Study design	Val	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
		l i	l	Int	Ext						
1996				' <u> </u>	<u>ا</u>						
144	Laake K, Sverre JM. Winter excess mortality: a comparison between Norway and England plus Wales. Age Ageing. 1996; 25(5): 343-8. ¹⁴⁴	The primary objective is to relate winter mortality to age, outdoor temperature, and influenza to make comparisons between Norway and England plus Wales.	Two country ecological comparison.	+	+	England & Wales and Norway	Country comparison. Monthly data from August 1970 to July 1991 of all deaths (n = 12 154 000) and deaths attributed to influenza, broken down into three broad age bands (45-64, 65-74 and 75 years and above), and monthly mean temperature in London, were supplied for England and Wales. Information on age at death and month, year and cause of death (ICD7- 9) was made available from the Norwegian	Monthly mortality based on death records.	Seasonal mortality was calculated for the winter (December- March). Bivariate analyses used to examine excess winter mortality (December-March) in England and Wales, and South- east Norway.	A weak statistically insignificant (the difference sign test of trend [7]) decline in relative winter excess mortality in England and Wales during 1970-91. The relative excess winter mortality in the two countries was not correlated (Kendall tau = 0.18, 95%CI =0.16- 0.52), indicating that peaks and troughs in winter mortality occurred asynchronously. Relative excess winter mortality increased by age in both data sets and was higher in England and Wales. England and Wales, death certificates had any mention of influenza, and most of these deaths, were 27573 (0.2%) and 84%. Simple linear regression analyses showed a trend towards higher mortality in colder winters, and more markedly so in England and Wales (range mean winter temperature 3.2- 7.2°C, beta = -0.012, 95%CI = -0.032- 0.008) than in Norway (temperature range -6.1 -1.1°C, beta = -0.008, 95%CI = -0.022-0.006). Using monthly data, restricted to December-March, simple linear regression disclosed a statistically significant relationship (beta = -0.021, 95%CI = -0.027 to -0.015, R = 0.44) in the data from England and Wales. The probability of a winter death	Study method adjusts for confounders by influenza, o temperature (base on Londa age. Co-morbidities are not included. Applicable to Eng

			Central		versus a non-winter death was	
			Bureau of		modelled by multiple logistic	
			Statistics for		regression using age and influenza	
			the period		deaths as categorical explanatory	
			1966-86 on all		variables, and mean winter	
			Norwegians		temperature as an interval-scaled	
			aged 45 and		covariate. A good model fit was	
			over at death		achieved for the British data	
			(n = 774 700).		After multivariate adjustment,	
			Meteorologic		temperature emerged as an	
			al data for		independent and significant risk factor	
			Norway were		of winter death in England and Wales	
			provided by		only	
			the			
			Norwegian			
			Institute of			
			Meteorology.			
	•			•		•

Appendix 5 table continued: 1995 studies Ref Study Aim of study Study design Validity Pop, setting Exposure Outcomes Analysis Results											
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
1995											
1995 143	Jacobsen SJ, Sargent DJ, Atkinson EJ, O'Fallon WM, Melton LJ, 3rd. Population- based study of the contribution of weather to hip fracture seasonality. <i>Am J Epidemiol</i> 1995; 141 (1):79- 83. ¹⁴³	To assess the daily occurrence of hip fracture among women aged 45 years and older compared with the occurrence of inclement weather as recorded in hourly readings by the National Weather Service in Rochester for the same time period	Observational study: analysis of data from Rochester Epidemiology Project	++	++	Women aged >=45 years presenting with hip fracture, Rochester, Minnesota, 1952 to 1989	•Season •Weather type: - snow - freezing rain - rain - high winds	Hip fracture (incidence)	Poisson regression model. Confounder adjustment: descriptive by season and weather type; adjusted for season and all weather variables simultaneously	Weather and season relative risks (RR, and 95% confidence intervals (CI) of hi fracture among women, Rochester, Minnesota, by age, 1952-1989: results from Poisson regression modelUnadjustedRR (95% Aged 45-74 yearsWeather typeRsnow or blowing snow 1.41 (1.10, 1. Freezing rain/drizzleSnow or blowing snow1.41 (1.10, 1. freezing rain/drizzleAight wind0.83 (0.64, 1. 1.82 (1.27, 2. RainAgin0.83 (0.64, 1. freezing rain/drizzleHigh wind0.87 (0.36, 2. SeasonAutumn1.05 (0.76, 1. WinterMutter1.44 (1.06, 1. SpringSpring1.10 (0.80, 1. freezing rain/drizzleAged >=75 yearsWeather typeSnow or blowing snow1.13 (0.96, 1. freezing rain/drizzleAutumn1.03 (0.87, 1. freezing rain/drizzleAutumn1.03 (0.85, 1. WinterMinter1.16 (0.96, 1. SpringAdjusted for all factors (each weather type and season) simultaneously Aged 45-74 yearsWeather typeSnow or blowing snow1.22 (0.91, 1. freezing rain/drizzleAiged 45-74 yearsWeather typeSnow or blowing snow1.22 (0.91, 1. freezing rain/drizzle	adata suggest that factors other than weather that may be lin the seasonal pattern in hip froccurrence and that operate ages. CI 81) 62) 06) 07) 81) 62) 06) 07) 81) 62) 06) 07) 81) 62) 06) 07) 82) 35) 05) 05) 05) 05) 06) 99) 63)

								-				-
										Rain	0.87 (0.67, 1.13)	
										High wind	0.79 (0.32, 1.92)	
										Season		
										Autumn	0.95 (0.67, 1.33)	
										Winter	1.16 (0.81, 1.65)	
										Spring	1.08 (0.78, 1.50)	
										Aged >=75 years		
										Weather type		
										Snow or blowing snow	1.01 (0.84, 1.22)	
										Freezing rain/drizzle	0.89 (0.65, 1.21)	
										Rain	0.96 (0.82, 1.13)	
										High wind	1.35 (0.88, 2.08)	
										Season		
										Autumn	1.03 (0.84, 1.25)	
										Winter	1.15 (0.93, 1.43)	
										Spring	0.80 (0.65, 0.98)	
										Spring	0.00 (0.03, 0.90)	
										Among the women age	d 15-71 years	
										the risk of hip fracture		
										on days with snow or fr		
										reduced after controllir		
											IS IOI WEALINEI	
										Among women aged 75	vears and	
										older, ice and snow we		
										related to fracture occu		
										winter-related increase		
										1.16, 95% CI 0.96-1.40)		
										unchanged after contro	-	
										weather and was simila		
										weather-adjusted seaso		
										fracture occurrence in y	younger women.	
145	Longford III	To sushuate	Chatistical			Demulation	N A o uto lite u	Death frame.	Chatiatian (time	l liebly significant	ius sees sisting -	
1.5	Langford IH,	To evaluate	Statistical	+	+	Population	Mortality:	Death from:	Statistical (time-	Highly significant negat		Leveltudine Letudu voir -
	Bentham G. The	the possible	modelling			mortality	- all causes	all causes	series) models of	were found between te		Longitudinal study using
	potential effects	influence of	(quantitative			data, England	- chronic	chronic	the associations	death rates from all cau		observation data analysis of a
	of climate	climate	risk			and Wales,	bronchitis	bronchitis,	between monthly	chronic bronchitis, pne		cause winter excess death un
	change on	change on	assessment)st			1968 to 1988	- pneumonia	pneumonia	mortality rates and	ischaemic heart disease		climate change scenarios lack
	winter mortality	excess winter	udy				- ischaemic	ischaemic heart	temperature,	cerebrovascular disease	е.	uncertainty analysis. Many fa
	in England and	death and			l		heart disease	disease	influenza epidemics			are likely to have an effect or

145	Wales. Int J Biometeorol. 1995; 38 (3): 141-7. ¹⁴⁵	temperature- related mortality in England and Wales					- cerebrovascul ar disease.	cerebro- vascular disease.	<u>Confounding</u> Influenza	Higher temperatures predicted for 2050 might result in nearly 9000 fewer winter deaths each year with the largest contribution being from mortality from ischaemic heart disease. Such estimates depend on assumptions about the factors that may affect (modify) the temperature-mortality relationship	changes in EWD not accounte (e.g. underlying health of population and protective na of dwellings) <u>Reviewer comment</u> Temp-mortality relationship I to modify over time.
146	Lau EM, Gillespie BG, Valenti L, O'Connell D. The seasonality of hip fracture and its relationship with weather conditions in New South Wales. Aust J Public Health. 1995; 19 (1): 76- 80. ¹⁴⁶	To determine the seasonal pattern in hip fracture rates and its relationship to weather variables	Observational study of hospital admission data	++	++	Hospital admission data, New South Wales (Sydney), Australia. Years: 1981, 1983, 1986, 1988, 1989, 1990. Patients aged 50 and older included.	 Season Monthly weather parameters: Mean daily minimum temperature Mean cloud cover Number of days with strong wind Number of days of fog Number of days of mist Number of days with 0.1 mm or more rainfall 	• Hip fracture	Poisson regression of <i>monthly</i> admission rates. Seasonality of hip fracture rates examined for men women, those under 75 years old, and those over 75 years old. Non- significant variables were omitted from later models.	Consistent seasonal pattern for hip fracture: trough in the summer, peak in winter, statistically significant (P < 0.01) in men and in women, and in people 75 years and over. Mean daily minimum temperature for each month was the single weather variable independently and consistently associated with the monthly rates of hip fracture in both younger and older people. Sex-adjusted relative risk for hip fracture for different weather variables (50-74 years) Weather RR CI Minimum Temp 1.10 1.07-1.14 All variables-adjusted relative risk for hip fracture for different weather variables (50-74 years) Weather RR CI Minimum Temp 1.12 1.06-1.17 Sex-adjusted RR for hip fracture for different weather variables (>75 years) Weather RR CI Minimum temp 1.18 1.15-1.20	The weather conditions in Au are unlikely to be similar to th the UK. The location of any falls which lead to fractures (indoors or outdoors) was not recorded. Variation in activity levels due different seasons may drive s of the variations in fracture right

Appendix 5 table continued: 1994 studies											
Ref	Study	Aim of study	Study design			Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>1994</u>											
147	Parker MJ, Martin S. Falls, hip fractures and the weather. <i>Eur J</i> <i>Epidemiol</i> 1994; 10 (4):441- 2. ¹⁴⁷	To investigate whether sub- clinical hypothermia contributes to the risk of a fall and hip fracture	Prospective observational study of consecutive hospital admissions	+	+	Patients admitted with hip fracture to Birmingham Accident Hospital. Patients under the age of 60 years, those who fall in hospital, and those with no history of a fall were excluded. N=514, of whom 429 met inclusion criteria.	Meteorologic al parameters (from Birmingham University Weather Centre): •Temperature •Air frost •Ground frost	• Hip fracture	Days with 0, 1, 2, >2 fractures compared with daily meteorological parameters by Chi- squared test	No statistically significant variation by month/season. Weak association with the day of fall and ground frost (p=0.04); none for air frost (p=0.08) or minimum temperature (p=0.15).	The study limitations include small sample size; an older population, the majority of w were female; the patients ad to the single study In the hos may not be representative of wider population; the locatio the fall, such as indoors or outdoors, was not included in analysis; and the population be less inclined to leave the h during poor weather, and modifying their risk of fractur relative to the wider populat

Appe	Appendix 5 table continued: 1993 studies Ref Study Aim of study Study design Validity Pop, setting Exposure Outcomes Analysis Results Notes										
Ref	Study	Aim of study	Study design	Va	lidity	Pop, setting	Exposure	Outcomes	Analysis	Results	Notes
				Int	Ext						
<u>1993</u>											
148	Kunst AE, Looman CW, Mackenbach JP. Outdoor air temperature and mortality in The Netherlands: a time-series analysis. Am J Epidemiol. 1993; 137(3): 331-41. ¹⁴⁸	To address the question of whether the relation between outdoor temperature and death rates are attributable to the direct effects of exposure to heat and cold on the human body in general, and on the circulatory system in particular.	Time-series	+	+	Deaths in the Netherlands, 1979-1987	Meteorologic al variables: 24-hr average temperature, wind speed and relative humidity. Data were from a single centrally located station. Also controlled for influenza with data from a monitoring network of 45 general practices. Controlled for air pollution using data on sulphur dioxide from six stations.	All-cause mortality and mortality from neoplasms, cardiovascular diseases, respiratory diseases, all other diseases, and external causes.	Poisson regression analysis controlling for influenza, air pollution, and "season"; distinguishing lag periods; examining effect modification by wind speed and relative humidity; and distinguishing causes of death. Also controlled for long-term mortality trends and demographic changes in the population. Tested lags: 0, 1-2, 3-6, ,7-14, 15-30	In most lag periods, cold and heat is positively related to the actual mortality level. The largest effects (both statistically significant), after controlling for influenza, sulphur dioxide and season: Cold (lag 3-6): An increase of 0.45% per degree Heat (lag 0): An increase of 1.76% per degree. Cold at most lags was significantly associated with all causes of death except external causes, with respiratory effects relatively higher than cardiovascular effects. Both tended to be higher than for all-cause mortality. Heat had a rapid positive effect on all causes of death, and particularly on respiratory diseases and external causes. Heat effects per degree were higher than cold effects. Authors conclude that important direct effects of exposure to cold and heat on mortality were suggested by the following findings: 1) control for influenza incidence only reduced temperature-related mortality to a modest extent (the role of air pollution and "season" was negligible); 2) much of the temperature-related mortality, occurred within the first week; and 3) effect modification by	

										wind speed was in the expected	
										direction.	
										The finding that 57% of "unexplained"	
										cold-related mortality and 26% of the	
										"unexplained" heat-related mortality	
										was attributable to cardiovascular	
										diseases suggests that direct effects	
										are only in part the result of increased	
										stress on the circulatory system. For	
										heat-related mortality, direct effects	
										on the respiratory system are	
										probably more important.	
										For cold-related mortality, the analysis	
										yielded evidence of an important	
										indirect effect involving increased	
										incidence of influenza and other	
										respiratory infections	
149	Macey SM,	This study	Observational	+	+	USA: National	Excessive heat	Mortality from	Descriptive	A strong female bias was found for	
	Schneider DF.	examines		т	T		or excessive	excessive heat		deaths from excessive heat and a	
	Deaths from		study			mortality data	cold listed as		statistics and simple correlations.		
	excessive heat	preventable deaths				for years 1979-1985.		(ICD-9 code 900) or excessive cold	correlations.	stronger male bias for deaths from	
						1979-1985.	the primary			excessive cold. Non-white elderly and	
	and excessive	attributed to					cause of	(ICD-9 code 901)		elderly living in rural areas were	
	cold among the	excessive heat					death (N =	for individuals 60		disproportionately likely to suffer	
	elderly.	and excessive					3326 for cold	years of age or		deaths from temperature-related	
	Gerontologist.	cold for					and 2077 for	older.		causes.	
	1993; 33(4):	persons 60					heat).				
	497-500. ¹⁴⁹	years of age									
		and over.									
·						1				l I	

Appendix 6: Examples of quality assessment checklists used

The quality of reviewed studies was assessed using a prescribed checklist of 19 criteria relating to study design, conduct, analysis and reporting as appropriate for quantitative observational studies. The list of criteria is given below, and the Excel spreadsheet of results of the assessment for included studies is separately attached.

Questions/criteria for assessment of the quality studies

Description of the source population? Is the eligible population representative of the source population? Do the selected participants represent the eligible population? Minimisation of bias in exposure classification and comparison group? Was selection of exposure variables based on a sound theoretical basis? Was contamination acceptably low? How well were confounding factors identified and controlled for? Is the setting applicable to the UK? Were outcome measures and procedures reliable? Were outcome measurements complete? Were all important outcomes assessed? Was there a similar follow-up time of exposure and comparison groups? Was follow-up meaningful? Was the study sufficiently powered? Were multiple exposure variables considered in the analyses? Were analytical methods appropriate? Was the precision of association given or calculable? Are the study results internally valid (unbiased)? Are the findings generalisable to the source population (externally valid)?